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Preface

The International Mathematical Olympiad (IMO) is nearing its fiftieth an-
niversary and has already created a very rich legacy and firmly established
itself as the most prestigious mathematical competition in which a high-school
student could aspire to participate. Apart from the opportunity to tackle in-
teresting and very challenging mathematical problems, the IMO represents
a great opportunity for high-school students to see how they measure up
against students from the rest of the world. Perhaps even more importantly,
it is an opportunity to make friends and socialize with students who have
similar interests, possibly even to become acquainted with their future col-
leagues on this first leg of their journey into the world of professional and
scientific mathematics. Above all, however pleasing or disappointing the final
score may be, preparing for an IMO and participating in one is an adventure
that will undoubtedly linger in one’s memory for the rest of one’s life. It is
to the high-school-aged aspiring mathematician and IMO participant that we
devote this entire book.

The goal of this book is to include all problems ever shortlisted for the
IMOs in a single volume. Up to this point, only scattered manuscripts traded
among different teams have been available, and a number of manuscripts were
lost for many years or unavailable to many.

In this book, all manuscripts have been collected into a single compendium
of mathematics problems of the kind that usually appear on the IMOs. There-
fore, we believe that this book will be the definitive and authoritative source
for high-school students preparing for the IMO, and we suspect that it will be
of particular benefit in countries lacking adequate preparation literature. A
high-school student could spend an enjoyable year going through the numer-
ous problems and novel ideas presented in the solutions and emerge ready to
tackle even the most difficult problems on an IMO. In addition, the skill ac-
quired in the process of successfully attacking difficult mathematics problems
will prove to be invaluable in a serious and prosperous career in mathematics.

However, we must caution our aspiring IMO participant on the use of this
book. Any book of problems, no matter how large, quickly depletes itself if
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the reader merely glances at a problem and then five minutes later, having
determined that the problem seems unsolvable, glances at the solution.

The authors therefore propose the following plan for working through the
book. Each problem is to be attempted at least half an hour before the reader
looks at the solution. The reader is strongly encouraged to keep trying to solve
the problem without looking at the solution as long as he or she is coming up
with fresh ideas and possibilities for solving the problem. Only after all venues
seem to have been exhausted is the reader to look at the solution, and then
only in order to study it in close detail, carefully noting any previously unseen
ideas or methods used. To condense the subject matter of this already very
large book, most solutions have been streamlined, omitting obvious derivations
and algebraic manipulations. Thus, reading the solutions requires a certain
mathematical maturity, and in any case, the solutions, especially in geometry,
are intended to be followed through with pencil and paper, the reader filling
in all the omitted details. We highly recommend that the reader mark such
unsolved problems and return to them in a few months to see whether they
can be solved this time without looking at the solutions. We believe this to
be the most efficient and systematic way (as with any book of problems) to
raise one’s level of skill and mathematical maturity.

We now leave our reader with final words of encouragement to persist in
this journey even when the difficulties seem insurmountable and a sincere wish
to the reader for all mathematical success one can hope to aspire to.

Belgrade, Dušan Djukić
October 2004 Vladimir Janković

Ivan Matić
Nikola Petrović

For the most current information regarding The IMO Compendium you
are invited to go to our website: www.imo.org.yu. At this site you can also
find, for several of the years, scanned versions of available original shortlist
and longlist problems, which should give an illustration of the original state
the IMO materials we used were in.

We are aware that this book may still contain errors. If you find any, please
notify us at imo@matf.bg.ac.yu. A full list of discovered errors can be found
at our website. If you have any questions, comments, or suggestions regarding
both our book and our website, please do not hesitate to write to us at the
above email address. We would be more than happy to hear from you.
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created by Prof. Predrag Janičić. This program is specifically designed for
creating geometric pictures of unparalleled complexity quickly and efficiently.
Even though it is still in its testing phase, its capabilities and utility are
already remarkable and worthy of highest compliment.

Finally, we would like to thank our families for all their love and support
during the making of this book.



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The International Mathematical Olympiad . . . . . . . . . . . . . . . . . . 1
1.2 The IMO Compendium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Basic Concepts and Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Recurrence Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Groups and Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Triangle Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Vectors in Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Barycenters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Quadrilaterals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.5 Circle Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.6 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.7 Geometric Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.8 Trigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.9 Formulas in Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Number Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.1 Divisibility and Congruences . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Exponential Congruences . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.3 Quadratic Diophantine Equations . . . . . . . . . . . . . . . . . . . 21
2.4.4 Farey Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.1 Counting of Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.2 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



X Contents

3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 IMO 1959 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 IMO 1960 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 IMO 1961 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 IMO 1962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 IMO 1963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 IMO 1964 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 IMO 1965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8 IMO 1966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.8.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.8.2 Some Longlisted Problems 1959–1966 . . . . . . . . . . . . . . . . 36

3.9 IMO 1967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.9.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.9.2 Longlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.10 IMO 1968 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.10.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.10.2 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.11 IMO 1969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.11.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.11.2 Longlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.12 IMO 1970 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.12.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.12.2 Longlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.12.3 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.13 IMO 1971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.13.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.13.2 Longlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.13.3 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.14 IMO 1972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.14.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.14.2 Longlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.14.3 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.15 IMO 1973 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.15.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.15.2 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.16 IMO 1974 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.16.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.16.2 Longlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



Contents XI

3.16.3 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.17 IMO 1975 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.17.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.17.2 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.18 IMO 1976 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.18.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.18.2 Longlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.18.3 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.19 IMO 1977 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.19.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.19.2 Longlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.19.3 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.20 IMO 1978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.20.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.20.2 Longlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.20.3 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.21 IMO 1979 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.21.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.21.2 Longlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.21.3 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

3.22 IMO 1981 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
3.22.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
3.22.2 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

3.23 IMO 1982 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3.23.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3.23.2 Longlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
3.23.3 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

3.24 IMO 1983 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3.24.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3.24.2 Longlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3.24.3 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

3.25 IMO 1984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
3.25.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
3.25.2 Longlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
3.25.3 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

3.26 IMO 1985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
3.26.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
3.26.2 Longlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
3.26.3 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

3.27 IMO 1986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
3.27.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
3.27.2 Longlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
3.27.3 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

3.28 IMO 1987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
3.28.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204



XII Contents

3.28.2 Longlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
3.28.3 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

3.29 IMO 1988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
3.29.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
3.29.2 Longlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
3.29.3 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

3.30 IMO 1989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
3.30.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
3.30.2 Longlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
3.30.3 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

3.31 IMO 1990 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
3.31.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
3.31.2 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

3.32 IMO 1991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
3.32.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
3.32.2 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

3.33 IMO 1992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
3.33.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
3.33.2 Longlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
3.33.3 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

3.34 IMO 1993 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
3.34.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
3.34.2 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

3.35 IMO 1994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
3.35.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
3.35.2 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

3.36 IMO 1995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
3.36.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
3.36.2 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

3.37 IMO 1996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
3.37.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
3.37.2 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

3.38 IMO 1997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
3.38.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
3.38.2 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

3.39 IMO 1998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
3.39.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
3.39.2 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

3.40 IMO 1999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
3.40.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
3.40.2 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

3.41 IMO 2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
3.41.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
3.41.2 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

3.42 IMO 2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312



Contents XIII

3.42.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
3.42.2 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

3.43 IMO 2002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
3.43.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
3.43.2 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

3.44 IMO 2003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
3.44.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
3.44.2 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

3.45 IMO 2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
3.45.1 Contest Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
3.45.2 Shortlisted Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

4 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
4.1 Contest Problems 1959 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
4.2 Contest Problems 1960 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
4.3 Contest Problems 1961 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
4.4 Contest Problems 1962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
4.5 Contest Problems 1963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
4.6 Contest Problems 1964 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
4.7 Contest Problems 1965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
4.8 Contest Problems 1966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
4.9 Longlisted Problems 1967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
4.10 Shortlisted Problems 1968 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
4.11 Contest Problems 1969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
4.12 Shortlisted Problems 1970 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
4.13 Shortlisted Problems 1971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
4.14 Shortlisted Problems 1972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
4.15 Shortlisted Problems 1973 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
4.16 Shortlisted Problems 1974 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
4.17 Shortlisted Problems 1975 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
4.18 Shortlisted Problems 1976 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
4.19 Longlisted Problems 1977 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
4.20 Shortlisted Problems 1978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
4.21 Shortlisted Problems 1979 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
4.22 Shortlisted Problems 1981 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
4.23 Shortlisted Problems 1982 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
4.24 Shortlisted Problems 1983 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
4.25 Shortlisted Problems 1984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
4.26 Shortlisted Problems 1985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
4.27 Shortlisted Problems 1986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
4.28 Shortlisted Problems 1987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
4.29 Shortlisted Problems 1988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
4.30 Shortlisted Problems 1989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
4.31 Shortlisted Problems 1990 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
4.32 Shortlisted Problems 1991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544



XIV Contents

4.33 Shortlisted Problems 1992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
4.34 Shortlisted Problems 1993 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
4.35 Shortlisted Problems 1994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
4.36 Shortlisted Problems 1995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
4.37 Shortlisted Problems 1996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
4.38 Shortlisted Problems 1997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
4.39 Shortlisted Problems 1998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
4.40 Shortlisted Problems 1999 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646
4.41 Shortlisted Problems 2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
4.42 Shortlisted Problems 2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
4.43 Shortlisted Problems 2002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689
4.44 Shortlisted Problems 2003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
4.45 Shortlisted Problems 2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715

A Notation and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731
A.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731
A.2 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732

B Codes of the Countries of Origin . . . . . . . . . . . . . . . . . . . . . . . . . . 735

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737



1

Introduction

1.1 The International Mathematical Olympiad

The International Mathematical Olympiad (IMO) is the most important and
prestigious mathematical competition for high-school students. It has played a
significant role in generating wide interest in mathematics among high school
students, as well as identifying talent.

In the beginning, the IMO was a much smaller competition than it is today.
In 1959, the following seven countries gathered to compete in the first IMO:
Bulgaria, Czechoslovakia, German Democratic Republic, Hungary, Poland,
Romania, and the Soviet Union. Since then, the competition has been held
annually. Gradually, other Eastern-block countries, countries from Western
Europe, and ultimately numerous countries from around the world and every
continent joined in. (The only year in which the IMO was not held was 1980,
when for financial reasons no one stepped in to host it. Today this is hardly a
problem, and hosts are lined up several years in advance.) In the 45th IMO,
held in Athens, no fewer than 85 countries took part.

The format of the competition quickly became stable and unchanging.
Each country may send up to six contestants and each contestant competes
individually (without any help or collaboration). The country also sends a
team leader, who participates in problem selection and is thus isolated from
the rest of the team until the end of the competition, and a deputy leader,
who looks after the contestants.

The IMO competition lasts two days. On each day students are given
four and a half hours to solve three problems, for a total of six problems.
The first problem is usually the easiest on each day and the last problem
the hardest, though there have been many notable exceptions. ((IMO96-5) is
one of the most difficult problems from all the Olympiads, having been fully
solved by only six students out of several hundred!) Each problem is worth 7
points, making 42 points the maximum possible score. The number of points
obtained by a contestant on each problem is the result of intense negotiations
and, ultimately, agreement among the problem coordinators, assigned by the
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host country, and the team leader and deputy, who defend the interests of their
contestants. This system ensures a relatively objective grade that is seldom
off by more than two or three points.

Though countries naturally compare each other’s scores, only individual
prizes, namely medals and honorable mentions, are awarded on the IMO.
Fewer than one twelfth of participants are awarded the gold medal, fewer
than one fourth are awarded the gold or silver medal, and fewer than one half
are awarded the gold, silver or bronze medal. Among the students not awarded
a medal, those who score 7 points on at least one problem are awarded an
honorable mention. This system of determining awards works rather well. It
ensures, on the one hand, strict criteria and appropriate recognition for each
level of performance, giving every contestant something to strive for. On the
other hand, it also ensures a good degree of generosity that does not greatly
depend on the variable difficulty of the problems proposed.

According to the statistics, the hardest Olympiad was that in 1971, fol-
lowed by those in 1996, 1993, and 1999. The Olympiad in which the winning
team received the lowest score was that in 1977, followed by those in 1960 and
1999.

The selection of the problems consists of several steps. Participant coun-
tries send their proposals, which are supposed to be novel, to the IMO orga-
nizers. The organizing country does not propose problems. From the received
proposals (the longlisted problems), the problem committee selects a shorter
list (the shortlisted problems), which is presented to the IMO jury, consisting
of all the team leaders. From the short-listed problems the jury chooses six
problems for the IMO.

Apart from its mathematical and competitive side, the IMO is also a very
large social event. After their work is done, the students have three days
to enjoy events and excursions organized by the host country, as well as to
interact and socialize with IMO participants from around the world. All this
makes for a truly memorable experience.

1.2 The IMO Compendium

Olympiad problems have been published in many books [65]. However, the
remaining shortlisted and longlisted problems have not been systematically
collected and published, and therefore many of them are unknown to math-
ematicians interested in this subject. Some partial collections of shortlisted
and longlisted problems can be found in the references, though usually only
for one year. References [1], [30], [41], [60] contain problems from multiple
years. In total, these books cover roughly 50% of the problems found in this
book.

The goal of this book is to present, in a single volume, our comprehen-
sive collection of problems proposed for the IMO. It consists of all problems
selected for the IMO competitions, shortlisted problems from the 10th IMO



1.2 The IMO Compendium 3

and from the 12th through 44th IMOs, and longlisted problems from nineteen
IMOs. We do not have shortlisted problems from the 9th and the 11th IMOs,
and we could not discover whether competition problems at those two IMOs
were selected from the longlisted problems or whether there existed shortlisted
problems that have not been preserved. Since IMO organizers usually do not
distribute longlisted problems to the representatives of participant countries,
our collection is incomplete. The practice of distributing these longlists effec-
tively ended in 1989. A selection of problems from the first eight IMOs has
been taken from [60].

The book is organized as follows. For each year, the problems that were
given on the IMO contest are presented, along with the longlisted and/or
shortlisted problems, if applicable. We present solutions to all shortlisted
problems. The problems appearing on the IMOs are solved among the other
shortlisted problems. The longlisted problems have not been provided with
solutions, except for the two IMOs held in Yugoslavia (for patriotic reasons),
since that would have made the book unreasonably long. This book has thus
the added benefit for professors and team coaches of being a suitable book
from which to assign problems. For each problem, we indicate the country
that proposed it with a three-letter code. A complete list of country codes
and the corresponding countries is given in the appendix. In all shortlists, we
also indicate which problems were selected for the contest. We occasionally
make references in our solutions to other problems in a straightforward way.
After indicating with LL, SL, or IMO whether the problem is from a longlist,
shortlist, or contest, we indicate the year of the IMO and then the number
of the problem. For example, (SL89-15) refers to the fifteenth problem of the
shortlist of 1989.

We also present a rough list of all formulas and theorems not obviously
derivable that were called upon in our proofs. Since we were largely concerned
with only the theorems used in proving the problems of this book, we believe
that the list is a good compilation of the most useful theorems for IMO prob-
lem solving.

The gathering of such a large collection of problems into a book required
a massive amount of editing. We reformulated the problems whose original
formulations were not precise or clear. We translated the problems that were
not in English. Some of the solutions are taken from the author of the problem
or other sources, while others are original solutions of the authors of this
book. Many of the non-original solutions were significantly edited before being
included. We do not make any guarantee that the problems in this book
fully correspond to the actual shortlisted or longlisted problems. However, we
believe this book to be the closest possible approximation to such a list.



2

Basic Concepts and Facts

The following is a list of the most basic concepts and theorems frequently
used in this book. We encourage the reader to become familiar with them and
perhaps read up on them further in other literature.

2.1 Algebra

2.1.1 Polynomials

Theorem 2.1. The quadratic equation ax2 + bx + c = 0 (a, b, c ∈ R, a �= 0)
has solutions

x1,2 =
−b±

√
b2 − 4ac

2a
.

The discriminant D of the quadratic equation is defined as D = b2 − 4ac. For
D < 0 the solutions are complex and conjugate to each other, for D = 0 the
solutions degenerate to one real solution, and for D > 0 the equation has two
distinct real solutions.

Definition 2.2. Binomial coefficients
(
n
k

)
, n, k ∈ N0, k ≤ n, are defined as(

n

i

)
=

n!

i!(n− i)!
.

They satisfy
(
n
i

)
+
(

n
i−1

)
=

(
n+1

i

)
for i > 0 and also

(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
n

)
= 2n,(

n
0

)
−
(
n
1

)
+ · · · + (−1)n

(
n
n

)
= 0,

(
n+m

k

)
=
∑k

i=0

(
n
i

)(
m

k−i

)
.

Theorem 2.3 ((Newton’s) binomial formula). For x, y ∈ C and n ∈ N,

(x+ y)n =

n∑
i=0

(
n

i

)
xn−iyi.
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Theorem 2.4 (Bézout’s theorem). A polynomial P (x) is divisible by the
binomial x− a (a ∈ C) if and only if P (a) = 0.

Theorem 2.5 (The rational root theorem). If x = p/q is a rational zero
of a polynomial P (x) = anx

n + · · ·+a0 with integer coefficients and (p, q) = 1,
then p | a0 and q | an.

Theorem 2.6 (The fundamental theorem of algebra). Every noncon-
stant polynomial with coefficients in C has a complex root.

Theorem 2.7 (Eisenstein’s criterion (extended)). Let P (x) = anx
n +

· · · + a1x+ a0 be a polynomial with integer coefficients. If there exist a prime
p and an integer k ∈ {0, 1, . . . , n − 1} such that p | a0, a1, . . . , ak, p � ak+1,
and p2 � a0, then there exists an irreducible factor Q(x) of P (x) whose degree
is at least k. In particular, if p can be chosen such that k = n− 1, then P (x)
is irreducible.

Definition 2.8. Symmetric polynomials in x1, . . . , xn are polynomials that
do not change on permuting the variables x1, . . . , xn. Elementary symmetric
polynomials are σk(x1, . . . , xn) =

∑
xi1 · · ·xik

(the sum is over all k-element
subsets {i1, . . . , ik} of {1, 2, . . . , n}).

Theorem 2.9. Every symmetric polynomial in x1, . . . , xn can be expressed as
a polynomial in the elementary symmetric polynomials σ1, . . . , σn.

Theorem 2.10 (Vieta’s formulas). Let α1, . . . , αn and c1, . . . , cn be com-
plex numbers such that

(x − α1)(x− α2) · · · (x− αn) = xn + c1x
n−1 + c2x

n−2 + · · · + cn .

Then ck = (−1)kσk(α1, . . . , αn) for k = 1, 2, . . . , n.

Theorem 2.11 (Newton’s formulas on symmetric polynomials). Let
σk = σk(x1, . . . , xn) and let sk = xk

1 + xk
2 + · · · + xk

n, where x1, . . . , xn are
arbitrary complex numbers. Then

kσk = s1σk−1 − s2σk−2 + · · · + (−1)ksk−1σ1 + (−1)k−1sk .

2.1.2 Recurrence Relations

Definition 2.12. A recurrence relation is a relation that determines the el-
ements of a sequence xn, n ∈ N0, as a function of previous elements. A
recurrence relation of the form

(∀n ≥ k) xn + a1xn−1 + · · · + akxn−k = 0

for constants a1, . . . , ak is called a linear homogeneous recurrence relation of
order k. We define the characteristic polynomial of the relation as P (x) =
xk + a1x

k−1 + · · · + ak.
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Theorem 2.13. Using the notation introduced in the above definition, let
P (x) factorize as P (x) = (x−α1)

k1(x−α2)
k2 · · · (x−αr)

kr , where α1, . . . , αr

are distinct complex numbers and k1, . . . , kr are positive integers. The general
solution of this recurrence relation is in this case given by

xn = p1(n)αn
1 + p2(n)αn

2 + · · · + pr(n)αn
r ,

where pi is a polynomial of degree less than ki. In particular, if P (x) has k
distinct roots, then all pi are constant.

If x0, . . . , xk−1 are set, then the coefficients of the polynomials are uniquely
determined.

2.1.3 Inequalities

Theorem 2.14. The quadratic function is always positive; i.e., (∀x ∈ R) x2 ≥
0. By substituting different expressions for x, many of the inequalities below
are obtained.

Theorem 2.15 (Bernoulli’s inequalities).

1. If n ≥ 1 is an integer and x > −1 a real number then (1 + x)n ≥ 1 + nx.

2. If a > 1 or a < 0 then for x > −1 the following inequality holds: (1+x)α ≥
1 + αx.

3. If a ∈ (0, 1) then for x > −1 the following inequality holds: (1 + x)α ≤
1 + αx.

Theorem 2.16 (The mean inequalities). For positive real numbers x1, x2,
. . . , xn it follows that QM ≥ AM ≥ GM ≥ HM , where

QM =

√
x2

1 + · · · + x2
n

n
, AM =

x1 + · · · + xn

n
,

GM = n
√
x1 · · ·xn, HM =

n

1/x1 + · · · + 1/xn
.

Each of these inequalities becomes an equality if and only if x1 = x2 =
· · · = xn. The numbers QM , AM , GM , and HM are respectively called the
quadratic mean, the arithmetic mean, the geometric mean, and the harmonic
mean of x1, x2, . . . , xn.

Theorem 2.17 (The general mean inequality). Let x1, . . . , xn be positive
real numbers. For each p ∈ R we define the mean of order p of x1, . . . , xn by

Mp =
(

xp
1+···+xp

n

n

)1/p

for p �= 0, and Mq = limp→q Mp for q ∈ {±∞, 0}. In

particular, maxxi, QM , AM , GM , HM , and minxi are M∞, M2, M1, M0,
M−1, and M−∞ respectively. Then

Mp ≤ Mq whenever p ≤ q.
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Theorem 2.18 (Cauchy–Schwarz inequality). Let ai, bi, i = 1, 2, . . . , n,
be real numbers. Then(

n∑
i=1

aibi

)2

≤
(

n∑
i=1

a2
i

)(
n∑

i=1

b2i

)
.

Equality occurs if and only if there exists c ∈ R such that bi = cai for i =
1, . . . , n.

Theorem 2.19 (Hölder’s inequality). Let ai, bi, i = 1, 2, . . . , n, be nonneg-
ative real numbers, and let p, q be positive real numbers such that 1/p+1/q = 1.
Then

n∑
i=1

aibi ≤
(

n∑
i=1

ap
i

)1/p ( n∑
i=1

bqi

)1/q

.

Equality occurs if and only if there exists c ∈ R such that bi = cai for
i = 1, . . . , n. The Cauchy–Schwarz inequality is a special case of Hölder’s
inequality for p = q = 2.

Theorem 2.20 (Minkowski’s inequality). Let ai, bi (i = 1, 2, . . . , n) be
nonnegative real numbers and p any real number not smaller than 1. Then(

n∑
i=1

(ai + bi)
p

)1/p

≤
(

n∑
i=1

ap
i

)1/p

+

(
n∑

i=1

bpi

)1/p

.

For p > 1 equality occurs if and only if there exists c ∈ R such that bi = cai

for i = 1, . . . , n. For p = 1 equality occurs in all cases.

Theorem 2.21 (Chebyshev’s inequality). Let a1 ≥ a2 ≥ · · · ≥ an and
b1 ≥ b2 ≥ · · · ≥ bn be real numbers. Then

n
n∑

i=1

aibi ≥
(

n∑
i=1

ai

)(
n∑

i=1

bi

)
≥ n

n∑
i=1

aibn+1−i.

The two inequalities become equalities at the same time when a1 = a2 = · · · =
an or b1 = b2 = · · · = bn.

Definition 2.22. A real function f defined on an interval I is convex if f(αx+
βy) ≤ αf(x) + βf(y). for all x, y ∈ I and all α, β > 0 such that α+ β = 1. A
function f is said to be concave if the opposite inequality holds, i.e., if −f is
convex.

Theorem 2.23. If f is continuous on an interval I, then f is convex on that
interval if and only if

f

(
x+ y

2

)
≤ f(x) + f(y)

2
for all x, y ∈ I.
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Theorem 2.24. If f is differentiable, then it is convex if and only if the
derivative f ′ is nondecreasing. Similarly, differentiable function f is concave
if and only if f ′ is nonincreasing.

Theorem 2.25 (Jensen’s inequality). If f : I → R is a convex function,
then the inequality

f(α1x1 + · · · + αnxn) ≤ α1f(x1) + · · · + αnf(xn)

holds for all αi ≥ 0, α1 + · · · + αn = 1, and xi ∈ I. For a concave function
the opposite inequality holds.

Theorem 2.26 (Muirhead’s inequality). Given x1, x2, . . . , xn ∈ R+ and
an n-tuple a = (a1, · · · , an) of positive real numbers, we define

Ta(x1, . . . , xn) =
∑

ya1
1 . . . yan

n ,

the sum being taken over all permutations y1, . . . , yn of x1, . . . , xn. We say
that an n-tuple a majorizes an n-tuple b if a1 + · · · + an = b1 + · · · + bn and
a1 + · · · + ak ≥ b1 + · · · + bk for each k = 1, . . . , n − 1. If a nonincreasing
n-tuple a majorizes a nonincreasing n-tuple b, then the following inequality
holds:

Ta(x1, . . . , xn) ≥ Tb(x1, . . . , xn).

Equality occurs if and only if x1 = x2 = · · · = xn.

Theorem 2.27 (Schur’s inequality). Using the notation introduced for
Muirhead’s inequality,

Tλ+2µ,0,0(x1, x2, x3) + Tλ,µ,µ(x1, x2, x3) ≥ 2Tλ+µ,µ,0(x1, x2, x3),

where λ, µ ∈ R+. Equality occurs if and only if x1 = x2 = x3 or x1 = x2,
x3 = 0 (and in analogous cases).

2.1.4 Groups and Fields

Definition 2.28. A group is a nonempty set G equipped with an operation ∗
satisfying the following conditions:

(i) a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G.

(ii) There exists a (unique) additive identity e ∈ G such that e ∗ a = a ∗ e = a
for all a ∈ G.

(iii) For each a ∈ G there exists a (unique) additive inverse a−1 = b ∈ G such
that a ∗ b = b ∗ a = e.

If n ∈ Z, we define an as a ∗ a ∗ · · · ∗ a (n times) if n ≥ 0, and as (a−1)−n

otherwise.
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Definition 2.29. A group G = (G, ∗) is commutative or abelian if a∗ b = b∗a
for all a, b ∈ G.

Definition 2.30. A set A generates a group (G, ∗) if every element of G can
be obtained using powers of the elements of A and the operation ∗. In other
words, if A is the generator of a group G then every element g ∈ G can be
written as ai1

1 ∗ · · · ∗ ain
n , where aj ∈ A and ij ∈ Z for every j = 1, 2, . . . , n.

Definition 2.31. The order of a ∈ G is the smallest n ∈ N such that an = e,
if it exists. The order of a group is the number of its elements, if it is finite.
Each element of a finite group has a finite order.

Theorem 2.32 (Lagrange’s theorem). In a finite group, the order of an
element divides the order of the group.

Definition 2.33. A ring is a nonempty set R equipped with two operations
+ and · such that (R,+) is an abelian group and for any a, b, c ∈ R,

(i) (a · b) · c = a · (b · c);
(ii) (a+ b) · c = a · c+ b · c and c · (a+ b) = c · a+ c · b.

A ring is commutative if a · b = b · a for any a, b ∈ R and with identity if there
exists a multiplicative identity i ∈ R such that i · a = a · i = a for all a ∈ R.

Definition 2.34. A field is a commutative ring with identity in which every
element a other than the additive identity has a multiplicative inverse a−1

such that a · a−1 = a−1 · a = i.

Theorem 2.35. The following are common examples of groups, rings, and
fields:

Groups: (Zn,+), (Zp \ {0}, ·), (Q,+), (R,+), (R \ {0}, ·).
Rings: (Zn,+, ·), (Z,+, ·), (Z[x],+, ·), (R[x],+, ·).
Fields: (Zp,+, ·), (Q,+, ·), (Q(

√
2),+, ·), (R,+, ·), (C,+, ·).

2.2 Analysis

Definition 2.36. A sequence {an}∞n=1 has a limit a = limn→∞ an (also de-
noted by an → a) if

(∀ε > 0)(∃nε ∈ N)(∀n ≥ nε) |an − a| < ε.

A function f : (a, b) → R has a limit y = limx→c f(x) if

(∀ε > 0)(∃δ > 0)(∀x ∈ (a, b)) 0 < |x− c| < δ ⇒ |f(x) − y| < ε.
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Definition 2.37. A sequence xn converges to x ∈ R if limn→∞ xn = x. A
series

∑∞
n=1 xn converges to s ∈ R if and only if limm→∞

∑m
n=1 xn = s. A

sequence or series that does not converge is said to diverge.

Theorem 2.38. A sequence an is convergent if it is monotonic and bounded.

Definition 2.39. A function f is continuous on [a, b] if for every x0 ∈ [a, b],
limx→x0 f(x) = f(x0).

Definition 2.40. A function f : (a, b) → R is differentiable at a point x0 ∈
(a, b) if the following limit exists:

f ′(x0) = lim
x→x0

f(x) − f(x0)

x− x0
.

A function is differentiable on (a, b) if it is differentiable at every x0 ∈ (a, b).
The function f ′ is called the derivative of f . We similarly define the second
derivative f ′′ as the derivative of f ′, and so on.

Theorem 2.41. A differentiable function is also continuous. If f and g are
differentiable, then fg, αf +βg (α, β ∈ R), f ◦g, 1/f (if f �= 0), f−1 (if well-
defined) are also differentiable. It holds that (αf + βg)′ = αf ′ + βg′, (fg)′ =
f ′g + fg′, (f ◦ g)′ = (f ′ ◦ g) · g′, (1/f)′ = −f ′/f2, (f/g)′ = (f ′g − fg′)/g2,
(f−1)′ = 1/(f ′ ◦ f−1).

Theorem 2.42. The following are derivatives of some elementary functions
(a denotes a real constant): (xa)′ = axa−1, (lnx)′ = 1/x, (ax)′ = ax ln a,
(sinx)′ = cosx, (cos x)′ = − sinx.

Theorem 2.43 (Fermat’s theorem). Let f : [a, b] → R be a differentiable
function. The function f attains its maximum and minimum in this interval.
If x0 ∈ (a, b) is an extremum (i.e., a maximum or minimum), then f ′(x0) = 0.

Theorem 2.44 (Rolle’s theorem). Let f(x) be a continuously differentiable
function defined on [a, b], where a, b ∈ R, a < b, and f(a) = f(b) = 0. Then
there exists c ∈ [a, b] such that f ′(c) = 0.

Definition 2.45. Differentiable functions f1, f2, . . . , fk defined on an open
subset D of Rn are independent if there is no nonzero differentiable function
F : Rk → R such that F (f1, . . . , fk) is identically zero on some open subset
of D.

Theorem 2.46. Functions f1, . . . , fk : D → R are independent if and only if
the k × n matrix [∂fi/∂xj]i,j is of rank k, i.e. when its k rows are linearly
independent at some point.

Theorem 2.47 (Lagrange multipliers). Let D be an open subset of Rn

and f, f1, f2, . . . , fk : D → R independent differentiable functions. Assume
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that a point a in D is an extremum of the function f within the set of points
in D such that f1 = f2 = · · · = fn = 0. Then there exist real numbers
λ1, . . . , λk (so-called Lagrange multipliers) such that a is a stationary point of
the function F = f + λ1f1 + · · · + λkfk, i.e., such that all partial derivatives
of F at a are zero.

Definition 2.48. Let f be a real function defined on [a, b] and let a = x0 ≤
x1 ≤ · · · ≤ xn = b and ξk ∈ [xk−1, xk]. The sum S =

∑n
k=1(xk − xk−1)f(ξk)

is called a Darboux sum. If I = limδ→0 S exists (where δ = maxk(xk −xk−1)),
we say that f is integrable and I its integral. Every continuous function is
integrable on a finite interval.

2.3 Geometry

2.3.1 Triangle Geometry

Definition 2.49. The orthocenter of a triangle is the common point of its
three altitudes.

Definition 2.50. The circumcenter of a triangle is the center of its circum-
scribed circle (i.e. circumcircle). It is the common point of the perpendicular
bisectors of the sides of the triangle.

Definition 2.51. The incenter of a triangle is the center of its inscribed circle
(i.e. incircle). It is the common point of the internal bisectors of its angles.

Definition 2.52. The centroid of a triangle (median point) is the common
point of its medians.

Theorem 2.53. The orthocenter, circumcenter, incenter and centroid are
well-defined (and unique) for every non-degenerate triangle.

Theorem 2.54 (Euler’s line). The orthocenter H, centroid G, and cir-
cumcircle O of an arbitrary triangle lie on a line (Euler’s line) and satisfy
−−→
HG = 2

−−→
GO.

Theorem 2.55 (The nine-point circle). The feet of the altitudes from
A,B,C and the midpoints of AB, BC, CA, AH, BH, CH lie on a circle
(The nine-point circle).

Theorem 2.56 (Feuerbach’s theorem). The nine-point circle of a triangle
is tangent to the incircle and all three excircles of the triangle.

Theorem 2.57. Given a triangle 
ABC, let 
ABC′, 
AB′C, and 
A′BC
be equilateral triangles constructed outwards. Then AA′, BB′, CC′ intersect
in one point, called Torricelli’s point.
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Definition 2.58. Let ABC be a triangle, P a point, and X , Y , Z respectively
the feet of the perpendiculars from P to BC, AC, AB. Triangle XY Z is called
the pedal triangle of 
ABC corresponding to point P .

Theorem 2.59 (Simson’s line). The pedal triangle XY Z is degenerate, i.e.,
X, Y , Z are collinear, if and only if P lies on the circumcircle of ABC. Points
X, Y , Z are in this case said to lie on Simson’s line.

Theorem 2.60 (Carnot’s theorem). The perpendiculars from X,Y, Z to
BC,CA,AB respectively are concurrent if and only if

BX2 −XC2 + CY 2 − Y A2 +AZ2 − ZB2 = 0.

Theorem 2.61 (Desargues’s theorem). Let A1B1C1 and A2B2C2 be two
triangles. The lines A1A2, B1B2, C1C2 are concurrent or mutually parallel
if and only if the points A = B1C2 ∩ B2C1, B = C1A2 ∩ A1C2, and C =
A1B2 ∩A2B1 are collinear.

2.3.2 Vectors in Geometry

Definition 2.62. For any two vectors −→a ,−→b in space, we define the scalar

product (also known as dot product) of −→a and
−→
b as −→a · −→b = |−→a ||−→b | cosϕ,

and the vector product as −→a × −→
b = −→p , where ϕ = ∠(−→a ,−→b ) and −→p is the

vector with |−→p | = |−→a ||−→b || sinϕ| perpendicular to the plane determined by −→a
and

−→
b such that the triple of vectors −→a ,−→b ,−→p is positively oriented (note that

if −→a and
−→
b are collinear, then −→a ×−→

b =
−→
0 ). These products are both linear

with respect to both factors. The scalar product is commutative, while the

vector product is anticommutative, i.e. −→a ×−→
b = −−→

b ×−→a . We also define the

mixed vector product of three vectors −→a ,−→b ,−→c as [−→a ,−→b ,−→c ] = (−→a ×−→
b ) · −→c .

Remark. Scalar product of vectors −→a and
−→
b is often denoted by 〈−→a ,−→b 〉.

Theorem 2.63 (Thales’ theorem). Let lines AA′ and BB′ intersect in a

point O, A′ �= O �= B′. Then AB ‖ A′B′ ⇔
−−→
OA−−→
OA′

=
−−→
OB−−→
OB′

. (Here
−→a−→
b

denotes

the ratio of two nonzero collinear vectors).

Theorem 2.64 (Ceva’s theorem). Let ABC be a triangle and X,Y, Z be
points on lines BC,CA,AB respectively, distinct from A,B,C. Then the lines
AX,BY,CZ are concurrent if and only if

−−→
BX
−−→
XC

·
−−→
CY
−→
Y A

·
−→
AZ
−−→
ZB

= 1, or equivalently,
sin �BAX

sin �XAC

sin�CBY

sin�Y BA

sin �ACZ

sin �ZCB
= 1

(the last expression being called the trigonometric form of Ceva’s theorem).
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Theorem 2.65 (Menelaus’s theorem). Using the notation introduced for
Ceva’s theorem, points X,Y, Z are collinear if and only if

−−→
BX
−−→
XC

·
−−→
CY
−→
Y A

·
−→
AZ
−−→
ZB

= −1.

Theorem 2.66 (Stewart’s theorem). If D is an arbitrary point on the line
BC, then

AD2 =

−−→
DC
−−→
BC

BD2 +

−−→
BD
−−→
BC

CD2 −−−→
BD · −−→DC.

Specifically, if D is the midpoint of BC, then 4AD2 = 2AB2 + 2AC2 −BC2.

2.3.3 Barycenters

Definition 2.67. A mass point (A,m) is a point A which is assigned a mass
m > 0.

Definition 2.68. The mass center (barycenter) of the set of mass points

(Ai,mi), i = 1, 2, . . . , n, is the point T such that
∑

imi
−−→
TAi = 0.

Theorem 2.69 (Leibniz’s theorem). Let T be the mass center of the set
of mass points {(Ai,mi) | i = 1, 2, . . . , n} of total mass m = m1 + · · · +mn,
and let X be an arbitrary point. Then

n∑
i=1

miXA
2
i =

n∑
i=1

miTA
2
i +mXT 2.

Specifically, if T is the centroid of 
ABC and X an arbitrary point, then

AX2 + BX2 + CX2 = AT 2 +BT 2 + CT 2 + 3XT 2 .

2.3.4 Quadrilaterals

Theorem 2.70. A quadrilateral ABCD is cyclic (i.e., there exists a cir-
cumcircle of ABCD) if and only if ∠ACB = ∠ADB and if and only if
∠ADC + ∠ABC = 180◦.

Theorem 2.71 (Ptolemy’s theorem). A convex quadrilateral ABCD is
cyclic if and only if

AC ·BD = AB · CD + AD · BC.

For an arbitrary quadrilateral ABCD we have Ptolemy’s inequality (see 2.3.7,
Geometric Inequalities).
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Theorem 2.72 (Casey’s theorem). Let k1, k2, k3, k4 be four circles that all
touch a given circle k. Let tij be the length of a segment determined by an
external common tangent of circles ki and kj (i, j ∈ {1, 2, 3, 4}) if both ki and
kj touch k internally, or both touch k externally. Otherwise, tij is set to be the
internal common tangent. Then one of the products t12t34, t13t24, and t14t23
is the sum of the other two.

Some of the circles k1, k2, k3, k4 may be degenerate, i.e. of 0 radius and
thus reduced to being points. In particular, for three points A, B, C on a circle
k and a circle k′ touching k at a point on the arc of AC not containing B, we
have AC · b = AB · c+ a ·BC, where a, b, and c are the lengths of the tangent
segments from points A, B, and C to k′. Ptolemy’s theorem is a special case
of Casey’s theorem when all four circles are degenerate.

Theorem 2.73. A convex quadrilateral ABCD is tangent (i.e., there exists
an incircle of ABCD) if and only if

AB + CD = BC +DA.

Theorem 2.74. For arbitrary points A,B,C,D in space, AC ⊥ BD if and
only if

AB2 + CD2 = BC2 +DA2.

Theorem 2.75 (Newton’s theorem). Let ABCD be a quadrilateral, AD∩
BC = E, and AB ∩ DC = F (such points A,B,C,D,E, F form a com-
plete quadrilateral). Then the midpoints of AC, BD, and EF are collinear.
If ABCD is tangent, then the incenter also lies on this line.

Theorem 2.76 (Brocard’s theorem). Let ABCD be a quadrilateral in-
scribed in a circle with center O, and let P = AB ∩ CD, Q = AD ∩ BC,
R = AC ∩BD. Then O is the orthocenter of 
PQR.

2.3.5 Circle Geometry

Theorem 2.77 (Pascal’s theorem). If A1, A2, A3, B1, B2, B3 are distinct
points on a conic γ (e.g., circle), then points X1 = A2B3 ∩ A3B2, X2 =
A1B3 ∩A3B1, and X3 = A1B2 ∩A2B1 are collinear. The special result when
γ consists of two lines is called Pappus’s theorem.

Theorem 2.78 (Brianchon’s theorem). Let ABCDEF be an arbitrary
convex hexagon circumscribed about a conic (e.g., circle). Then AD, BE and
CF meet in a point.

Theorem 2.79 (The butterfly theorem). Let AB be a segment of circle
k and C its midpoint. Let p and q be two different lines through C that,
respectively, intersect k on one side of AB in P and Q and on the other in P ′

and Q′. Let E and F respectively be the intersections of PQ′ and P ′Q with
AB. Then it follows that CE = CF .
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Definition 2.80. The power of a point X with respect to a circle k(O, r) is
defined by P(X) = OX2−r2. For an arbitrary line l throughX that intersects

k at A and B (A = B when l is a tangent), it follows that P(X) =
−−→
XA · −−→XB.

Definition 2.81. The radical axis of two circles is the locus of points that
have equal powers with respect to both circles. The radical axis of circles
k1(O1, r1) and k2(O2, r2) is a line perpendicular to O1O2. The radical axes
of three distinct circles are concurrent or mutually parallel. If concurrent, the
intersection of the three axes is called the radical center.

Definition 2.82. The pole of a line l �� O with respect to a circle k(O, r) is a
point A on the other side of l from O such that OA ⊥ l and d(O, l) ·OA = r2.
In particular, if l intersects k in two points, its pole will be the intersection of
the tangents to k at these two points.

Definition 2.83. The polar of the point A from the previous definition is the
line l. In particular, if A is a point outside k and AM , AN are tangents to k
(M,N ∈ k), then MN is the polar of A.
Poles and polares are generally defined in a similar way with respect to arbi-
trary non-degenerate conics.

Theorem 2.84. If A belongs to a polar of B, then B belongs to a polar of A.

2.3.6 Inversion

Definition 2.85. An inversion of the plane π around the circle k(O, r) (which
belongs to π), is a transformation of the set π\{O} onto itself such that every
point P is transformed into a point P ′ on (OP such that OP · OP ′ = r2. In
the following statements we implicitly assume exclusion of O.

Theorem 2.86. The fixed points of the inversion are on the circle k. The
inside of k is transformed into the outside and vice versa.

Theorem 2.87. If A,B transform into A′, B′ after an inversion, then ∠OAB
= ∠OB′A′, and also ABB′A′ is cyclic and perpendicular to k. A circle per-
pendicular to k transforms into itself. Inversion preserves angles between con-
tinuous curves (which includes lines and circles).

Theorem 2.88. An inversion transforms lines not containing O into circles
containing O, lines containing O into themselves, circles not containing O
into circles not containing O, circles containing O into lines not containing
O.

2.3.7 Geometric Inequalities

Theorem 2.89 (The triangle inequality). For any three points A,B,C
in a plane AB + BC ≥ AC. Equality occurs when A,B,C are collinear and
B(A,B,C).
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Theorem 2.90 (Ptolemy’s inequality). For any four points A, B, C, D,

AC ·BD ≤ AB · CD + AD · BC.

Theorem 2.91 (The parallelogram inequality). For any four points A,
B, C, D,

AB2 +BC2 + CD2 +DA2 ≥ AC2 +BD2.

Equality occurs if and only if ABCD is a parallelogram.

Theorem 2.92. For a given triangle 
ABC the point X for which AX +
BX + CX is minimal is Toricelli’s point when all angles of 
ABC are less
than or equal to 120◦, and is the vertex of the obtuse angle otherwise. The point
X2 for which AX2

2 + BX2
2 + CX2

2 is minimal is the centroid (see Leibniz’s
theorem).

Theorem 2.93 (The Erdős–Mordell inequality). Let P be a point in the
interior of 
ABC and X,Y, Z projections of P onto BC,AC,AB, respec-
tively. Then

PA+ PB + PC ≥ 2(PX + PY + PZ).

Equality holds if and only if 
ABC is equilateral and P is its center.

2.3.8 Trigonometry

Definition 2.94. The trigonometric circle is the unit circle centered at the
origin O of a coordinate plane. Let A be the point (1, 0) and P (x, y) be a
point on the trigonometric circle such that �AOP = α. We define sinα = y,
cosα = x, tanα = y/x, and cotα = x/y.

Theorem 2.95. The functions sin and cos are periodic with period 2π. The
functions tan and cot are periodic with period π. The following simple identi-
ties hold: sin2 x + cos2 x = 1, sin 0 = sinπ = 0, sin(−x) = − sinx, cos(−x) =
cosx, sin(π/2) = 1, sin(π/4) = 1/

√
2, sin(π/6) = 1/2, cosx = sin(π/2 − x).

From these identities other identities can be easily derived.

Theorem 2.96. Additive formulas for trigonometric functions:

sin(α± β) = sinα cosβ ± cosα sinβ, cos(α ± β) = cosα cosβ ∓ sinα sinβ,

tan(α± β) = tan α±tan β
1∓tan α tan β , cot(α ± β) = cotα cot β∓1

cot α±cot β .

Theorem 2.97. Formulas for trigonometric functions of 2x and 3x:

sin 2x = 2 sinx cosx, sin 3x = 3 sinx− 4 sin3 x,
cos 2x = 2 cos2 x− 1, cos 3x = 4 cos3 x− 3 cosx,

tan 2x = 2 tan x
1−tan2 x , tan 3x = 3 tan x−tan3 x

1−3 tan2 x .
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Theorem 2.98. For any x ∈ R, sinx = 2t
1+t2 and cosx = 1−t2

1+t2 , where t =
tan x

2 .

Theorem 2.99. Transformations from product to sum:

2 cosα cosβ = cos(α+ β) + cos(α− β),
2 sinα cosβ = sin(α+ β) + sin(α− β),
2 sinα sinβ = cos(α− β) − cos(α+ β).

Theorem 2.100. The angles α, β, γ of a triangle satisfy

cos2 α+ cos2 β + cos2 γ + 2 cosα cosβ cos γ = 1,
tanα+ tanβ + tan γ = tanα tanβ tanγ.

Theorem 2.101 (De Moivre’s formula). If i2 = −1, then

(cosx+ i sinx)n = cosnx+ i sinnx.

2.3.9 Formulas in Geometry

Theorem 2.102 (Heron’s formula). The area of a triangle ABC with sides
a, b, c and semiperimeter s is given by

S =
√
s(s− a)(s− b)(s− c) =

1

4

√
2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4.

Theorem 2.103 (The law of sines). The sides a, b, c and angles α, β, γ of
a triangle ABC satisfy

a

sinα
=

b

sinβ
=

c

sin γ
= 2R,

where R is the circumradius of 
ABC.

Theorem 2.104 (The law of cosines). The sides and angles of 
ABC
satisfy

c2 = a2 + b2 − 2ab cosγ.

Theorem 2.105. The circumradius R and inradius r of a triangle ABC sat-
isfy R = abc

4S and r = 2S
a+b+c = R(cosα + cosβ + cos γ − 1). If x, y, z de-

note the distances of the circumcenter in an acute triangle to the sides, then
x+ y + z = R+ r.

Theorem 2.106 (Euler’s formula). If O and I are the circumcenter and
incenter of 
ABC, then OI2 = R(R − 2r), where R and r are respectively
the circumradius and the inradius of 
ABC. Consequently, R ≥ 2r.
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Theorem 2.107. The area S of a quadrilateral ABCD with sides a, b, c, d,
semiperimeter p, and angles α, γ at vertices A,C respectively is given by

S =

√
(p− a)(p− b)(p− c)(p− d) − abcd cos2

α+ γ

2
.

If ABCD is a cyclic quadrilateral, the above formula reduces to

S =
√

(p− a)(p− b)(p− c)(p− d).

Theorem 2.108 (Euler’s theorem for pedal triangles). Let X,Y, Z be
the feet of the perpendiculars from a point P to the sides of a triangle ABC.
Let O denote the circumcenter and R the circumradius of 
ABC. Then

SXY Z =
1

4

∣∣∣∣1 − OP 2

R2

∣∣∣∣SABC .

Moreover, SXY Z = 0 if and only if P lies on the circumcircle of 
ABC (see
Simson’s line).

Theorem 2.109. If

overrightarrowa = (a1, a2, a3),
−→
b = (b1, b2, b3),

−→c = (c1, c2, c3) are three
vectors in coordinate space, then

−→a ·−→b = a1b1 +a2b2 +a3b3,
−→a ×−→

b = (a1b2 −a2b1, a2b3 −a3b2, a3b1 −a1b3),

[−→a ,−→b ,−→c ] =

∣∣∣∣∣∣
∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
∣∣∣∣∣∣ .

Theorem 2.110. The area of a triangle ABC and the volume of a tetrahedron

ABCD are equal to |−−→AB ×−→
AC| and

∣∣∣[−−→AB,−→AC,−−→AD]∣∣∣, respectively.

Theorem 2.111 (Cavalieri’s principle). If the sections of two solids by
the same plane always have equal area, then the volumes of the two solids are
equal.

2.4 Number Theory

2.4.1 Divisibility and Congruences

Definition 2.112. The greatest common divisor (a, b) = gcd(a, b) of a, b ∈ N
is the largest positive integer that divides both a and b. Positive integers a
and b are coprime or relatively prime if (a, b) = 1. The least common multiple
[a, b] = lcm(a, b) of a, b ∈ N is the smallest positive integer that is divisible
by both a and b. It holds that [a, b](a, b) = ab. The above concepts are easily
generalized to more than two numbers; i.e., we also define (a1, a2, . . . , an) and
[a1, a2, . . . , an].
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Theorem 2.113 (Euclid’s algorithm). Since (a, b) = (|a − b|, a) = (|a −
b|, b) it follows that starting from positive integers a and b one eventually
obtains (a, b) by repeatedly replacing a and b with |a− b| and min{a, b} until
the two numbers are equal. The algorithm can be generalized to more than two
numbers.

Theorem 2.114 (Corollary to Euclid’s algorithm). For each a, b ∈ N
there exist x, y ∈ Z such that ax + by = (a, b). The number (a, b) is the
smallest positive number for which such x and y can be found.

Theorem 2.115 (Second corollary to Euclid’s algorithm). For a,m, n ∈
N and a > 1 it follows that (am − 1, an − 1) = a(m,n) − 1.

Theorem 2.116 (Fundamental theorem of arithmetic). Every positive
integer can be uniquely represented as a product of primes, up to their order.

Theorem 2.117. The fundamental theorem of arithmetic also holds in some
other rings, such as Z[i] = {a+ bi | a, b ∈ Z}, Z[

√
2], Z[

√
−2], Z[ω] (where ω

is a complex third root of 1). In these cases, the factorization into primes is
unique up to the order and divisors of 1.

Definition 2.118. Integers a, b are congruent modulo n ∈ N if n | a − b. We
then write a ≡ b (mod n).

Theorem 2.119 (Chinese remainder theorem). If m1,m2, . . . ,mk are
positive integers pairwise relatively prime and a1, . . . , ak, c1, . . . , ck are inte-
gers such that (ai,mi) = 1 (i = 1, . . . , n), then the system of congruences

aix ≡ ci (mod mi), i = 1, 2, . . . , n ,

has a unique solution modulo m1m2 · · ·mk.

2.4.2 Exponential Congruences

Theorem 2.120 (Wilson’s theorem). If p is a prime, then p | (p− 1)!+ 1.

Theorem 2.121 (Fermat’s (little) theorem). Let p be a prime number
and a be an integer with (a, p) = 1. Then ap−1 ≡ 1 (mod p). This theorem is
a special case of Euler’s theorem.

Definition 2.122. Euler’s function ϕ(n) is defined for n ∈ N as the number
of positive integers less than n and coprime to n. It holds that

ϕ(n) = n

(
1 − 1

p1

)
· · ·

(
1 − 1

pk

)
,

where n = pα1
1 · · · pαk

k is the factorization of n into primes.
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Theorem 2.123 (Euler’s theorem). Let n be a natural number and a be
an integer with (a, n) = 1. Then aϕ(n) ≡ 1 (mod n).

Theorem 2.124 (Existence of primitive roots). Let p be a prime. There
exists g ∈ {1, 2, . . . , p− 1} (called a primitive root modulo p) such that the set
{1, g, g2, . . . , gp−2} is equal to {1, 2, . . . , p− 1} modulo p.

Definition 2.125. Let p be a prime and α be a nonnegative integer. We say
that pα is the exact power of p that divides an integer a (and α the exact
exponent) if pα | a and pα+1 � a.

Theorem 2.126. Let a, n be positive integers and p be an odd prime. If pα

(α ∈ N) is the exact power of p that divides a− 1, then for any integer β ≥ 0,
pα+β | an − 1 if and only if pβ | n. (See (SL97-14).)

A similar statement holds for p = 2. If 2α (α ∈ N) is the exact power of
2 that divides a2 − 1, then for any integer β ≥ 0, 2α+β | an − 1 if and only if
2β+1 | n. (See (SL89-27).)

2.4.3 Quadratic Diophantine Equations

Theorem 2.127. The solutions of a2 + b2 = c2 in integers are given by a =
t(m2−n2), b = 2tmn, c = t(m2+n2) (provided that b is even), where t,m, n ∈
Z. The triples (a, b, c) are called Pythagorean (or primitive Pythagorean if
gcd(a, b, c) = 1).

Definition 2.128. GivenD ∈ N that is not a perfect square, a Pell’s equation
is an equation of the form x2 −Dy2 = 1, where x, y ∈ Z.

Theorem 2.129. If (x0, y0) is the least (nontrivial) solution in N of the Pell’s
equation x2 − Dy2 = 1, then all the integer solutions (x, y) are given by
x+ y

√
D = ±(x0 + y0

√
D)n, where n ∈ Z.

Definition 2.130. An integer a is a quadratic residue modulo a prime p if
there exists x ∈ Z such that x2 ≡ a (mod p). Otherwise, a is a quadratic
nonresidue modulo p.

Definition 2.131. Legendre’s symbol for an integer a and a prime p is defined
by (

a

p

)
=

⎧⎨⎩ 1 if a is a quadratic residue mod p and p � a;
0 if p | a;
−1 otherwise.

Clearly
(

a
p

)
=

(
a+p

p

)
and

(
a2

p

)
= 1 if p � a. Legendre’s symbol is multiplica-

tive, i.e.,
(

a
p

)(
b
p

)
=
(

ab
p

)
.

Theorem 2.132 (Euler’s criterion). For each odd prime p and integer a

not divisible by p, a
p−1
2 ≡

(
a
p

)
(mod p).
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Theorem 2.133. For a prime p > 3,
(

−1
p

)
,
(

2
p

)
and

(
−3
p

)
are equal to 1 if

and only if p ≡ 1 (mod 4), p ≡ ±1 (mod 8) and p ≡ 1 (mod 6), respectively.

Theorem 2.134 (Gauss’s Reciprocity law). For any two distinct odd
primes p and q, (

p

q

)(
q

p

)
= (−1)

p−1
2 · q−1

2 .

Definition 2.135. Jacobi’s symbol for an integer a and an odd positive integer
b is defined as (a

b

)
=

(
a

p1

)α1

· · ·
(
a

pk

)αk

,

where b = pα1
1 · · · pαk

k is the factorization of b into primes.

Theorem 2.136. If
(

a
b

)
= −1, then a is a quadratic nonresidue modulo b,

but the converse is false. All the above identities for Legendre symbols except
Euler’s criterion remain true for Jacobi symbols.

2.4.4 Farey Sequences

Definition 2.137. For any positive integer n, the Farey sequence Fn is the
sequence of rational numbers a/b with 0 ≤ a ≤ b ≤ n and (a, b) = 1 arranged
in increasing order. For instance, F3 = { 0

1 ,
1
3 ,

1
2 ,

2
3 ,

1
1}.

Theorem 2.138. If p1/q1, p2/q2, and p3/q3 are three successive terms in a
Farey sequence, then

p2q1 − p1q2 = 1 and
p1 + p3

q1 + q3
=
p2

q2
.

2.5 Combinatorics

2.5.1 Counting of Objects

Many combinatorial problems involving the counting of objects satisfying a
given set of properties can be properly reduced to an application of one of the
following concepts.

Definition 2.139. A variation of order n over k is a 1 to 1 mapping of
{1, 2, . . . , k} into {1, 2, . . . , n}. For a given n and k, where n ≥ k, the number
of different variations is V k

n = n!
(n−k)! .

Definition 2.140. A variation with repetition of order n over k is an arbitrary
mapping of {1, 2, . . . , k} into {1, 2, . . . , n}. For a given n and k the number of

different variations with repetition is V
k

n = kn.
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Definition 2.141. A permutation of order n is a bijection of {1, 2, . . . , n}
into itself (a special case of variation for k = n). For a given n the number of
different permutations is Pn = n!.

Definition 2.142. A combination of order n over k is a k-element subset of
{1, 2, . . . , n}. For a given n and k the number of different combinations is
Ck

n =
(
n
k

)
.

Definition 2.143. A permutation with repetition of order n is a bijection of
{1, 2, . . . , n} into a multiset of n elements. A multiset is defined to be a set in
which certain elements are deemed mutually indistinguishable (for example,
as in {1, 1, 2, 3}).

If {1, 2 . . . , s} denotes a set of different elements in the multiset and the
element i appears αi times in the multiset, then number of different permuta-
tions with repetition is Pn,α1,...,αs = n!

α1!·α2!···αs! . A combination is a special
case of permutation with repetition for a multiset with two different elements.

Theorem 2.144 (The pigeonhole principle). If a set of nk + 1 differ-
ent elements is partitioned into n mutually disjoint subsets, then at least one
subset will contain at least k + 1 elements.

Theorem 2.145 (The inclusion–exclusion principle). Let S1, S2, . . . , Sn

be a family of subsets of the set S. The number of elements of S contained in
none of the subsets is given by the formula

|S\(S1 ∪ · · · ∪ Sn)| = |S| −
n∑

k=1

∑
1≤i1<···<ik≤n

(−1)k|Si1 ∩ · · · ∩ Sik
| .

2.5.2 Graph Theory

Definition 2.146. A graph G = (V,E) is a set of objects, i.e., vertices, V
paired with the multiset E of some pairs of elements of V , i.e., edges. When
(x, y) ∈ E, for x, y ∈ V , the vertices x and y are said to be connected by an
edge; i.e., the vertices are the endpoints of the edge.

A graph for which the multiset E reduces to a proper set (i.e., the vertices
are connected by at most one edge) and for which no vertex is connected to
itself is called a proper graph.

A finite graph is one in which |E| and |V | are finite.

Definition 2.147. An oriented graph is one in which the pairs in E are or-
dered.

Definition 2.148. A proper graph Kn containing n vertices and in which
each pair of vertices is connected is called a complete graph.
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Definition 2.149. A k-partite graph (bipartite for k = 2)Ki1,i2,...,ik
is a graph

whose set of vertices V can be partitioned into k non-empty disjoint subsets
of cardinalities i1, i2, . . . , ik such that each vertex x in a subset W of V is
connected only with the vertices not in W .

Definition 2.150. The degree d(x) of a vertex x is the number of times x is
the endpoint of an edge (thus, self-connecting edges are counted twice). An
isolated vertex is one with the degree 0.

Theorem 2.151. For a graph G = (V,E) the following identity holds:∑
x∈V

d(x) = 2|E|.

As a consequence, the number of vertices of odd degree is even.

Definition 2.152. A trajectory (path) of a graph is a finite sequence of ver-
tices, each connected to the previous one. The length of a trajectory is the
number of edges through which it passes. A circuit is a path that ends in the
starting vertex. A cycle is a circuit in which no vertex appears more than once
(except the initial/final vertex).

A graph is connected if there exists a trajectory between any two vertices.

Definition 2.153. A subgraph G′ = (V ′, E′) of a graph G = (V,E) is a
graph such that V ′ ⊆ V and E′ contains exactly the edges of E connecting
points in V ′. A connected component of a graph is a connected subgraph such
that no vertex of the component is connected with any vertex outside of the
component.

Definition 2.154. A tree is a connected graph that contains no cycles.

Theorem 2.155. A tree with n vertices has exactly n− 1 edges and at least
two vertices of degree 1.

Definition 2.156. An Euler path is a path in which each edge appears exactly
once. Likewise, an Euler circuit is an Euler path that is also a circuit.

Theorem 2.157. The following conditions are necessary and sufficient for a
finite connected graph G to have an Euler path:

• If each vertex has even degree, then the graph contains an Euler circuit.
• If all vertices except two have even degree, then the graph contains an Euler

path that is not a circuit (it starts and ends in the two odd vertices).

Definition 2.158. A Hamilton circuit is a circuit that contains each vertex
of G exactly once (trivially, it is also a cycle).

A simple rule to determine whether a graph contains a Hamilton circuit
has not yet been discovered.
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Theorem 2.159. Let G be a graph with n vertices. If the sum of the degrees of
any two nonadjacent vertices in G is greater than n, then G has a Hamiltonian
circuit.

Theorem 2.160 (Ramsey’s theorem). Let r ≥ 1 and q1, q2, . . . , qs ≥ r.
There exists a minimal positive integer N(q1, q2, . . . , qs; r) such that for n ≥
N , if all subgraphs Kr of Kn are partitioned into s different sets, labeled
A1, A2 . . . , As, then for some i there exists a complete subgraph Kqi whose
subgraphs Kr all belong to Ai. For r = 2 this corresponds to coloring the
edges of Kn with s different colors and looking for i monochromatically colored
subgraphs Kqi [73].

Theorem 2.161. N(p, q; r) ≤ N(N(p− 1, q; r), N(p, q− 1; r); r− 1)+1, and
in particular, N(p, q; 2) ≤ N(p− 1, q; 2) +N(p, q − 1; 2).

The following values of N are known: N(p, q; 1) = p+q−1, N(2, p; 2) = p,
N(3, 3; 2) = 6, N(3, 4; 2) = 9, N(3, 5; 2) = 14, N(3, 6; 2) = 18, N(3, 7; 2) =
23, N(3, 8; 2) = 28, N(3, 9; 2) = 36, N(4, 4; 2) = 18, N(4, 5; 2) = 25 [73].

Theorem 2.162 (Turán’s theorem). If a simple graph on n = t(p− 1) + r

vertices has more than f(n, p) edges, where f(n, p) = (p−2)n2−r(p−1−r)
2(p−1) , then

it contains Kp as a subgraph. The graph containing f(n, p) vertices that does
not contain Kp is the complete multipartite graph with r subsets of size t+ 1
and p− 1 − r subsets of size t [73].

Definition 2.163. A planar graph is one that can be embedded in a plane
such that its vertices are represented by points and its edges by lines (not nec-
essarily straight) connecting the vertices such that the edges do not intersect
each other.

Theorem 2.164. A planar graph with n vertices has at most 3n− 6 edges.

Theorem 2.165 (Kuratowski’s theorem). Graphs K5 and K3,3 are not
planar. Every nonplanar graph contains a subgraph which can be obtained
from one of these two graphs by a subdivison of its edges.

Theorem 2.166 (Euler’s formula). For a given convex polyhedron let E be
the number of its edges, F the number of faces, and V the number of vertices.
Then E + 2 = F + V . The same formula holds for a planar graph (F is in
this case equal to the number of planar regions).
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Problems

3.1 The First IMO

Bucharest–Brasov, Romania, July 23–31, 1959

3.1.1 Contest Problems

First Day

1. (POL) For every integer n prove that the fraction 21n+4
14n+3 cannot be

reduced any further.

2. (ROM) For which real numbers x do the following equations hold:

(a)
√
x+

√
2x− 1 +

√
x+

√
2x− 1 =

√
2 ,

(b)
√
x+

√
2x− 1 +

√
x+

√
2x− 1 = 1 ,

(c)
√
x+

√
2x− 1 +

√
x+

√
2x− 1 = 2 ?

3. (HUN) Let x be an angle and let the real numbers a, b, c, cosx satisfy
the following equation:

a cos2 x+ b cosx+ c = 0 .

Write the analogous quadratic equation for a, b, c, cos 2x. Compare the
given and the obtained equality for a = 4, b = 2, c = −1.

Second Day

4. (HUN) Construct a right-angled triangle whose hypotenuse c is given
if it is known that the median from the right angle equals the geometric
mean of the remaining two sides of the triangle.

5. (ROM) A segment AB is given and on it a point M . On the same side
of AB squares AMCD and BMFE are constructed. The circumcircles of
the two squares, whose centers are P and Q, intersect in M and another
point N .
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(a) Prove that lines FA and BC intersect at N .
(b) Prove that all such constructed lines MN pass through the same point

S, regardless of the selection of M .
(c) Find the locus of the midpoints of all segments PQ, as M varies along

the segment AB.

6. (CZS) Let α and β be two planes intersecting at a line p. In α a point A
is given and in β a point C is given, neither of which lies on p. Construct B
in α and D in β such that ABCD is an equilateral trapezoid, AB ‖ CD,
in which a circle can be inscribed.



3.2 IMO 1960 29

3.2 The Second IMO

Bucharest–Sinaia, Romania, July 18–25, 1960

3.2.1 Contest Problems

First Day

1. (BUL) Find all the three-digit numbers for which one obtains, when
dividing the number by 11, the sum of the squares of the digits of the
initial number.

2. (HUN) For which real numbers x does the following inequality hold:

4x2

(1 −
√

1 + 2x)2
< 2x+ 9 ?

3. (ROM) A right-angled triangle ABC is given for which the hypotenuse
BC has length a and is divided into n equal segments, where n is odd.
Let α be the angle with which the point A sees the segment containing
the middle of the hypotenuse. Prove that

tanα =
4nh

(n2 − 1)a
,

where h is the height of the triangle.

Second Day

4. (HUN) Construct a triangle ABC whose lengths of heights ha and hb

(from A and B, respectively) and length of median ma (from A) are given.

5. (CZS) A cube ABCDA′B′C′D′ is given.
(a) Find the locus of all midpoints of segments XY , where X is any point

on segment AC and Y any point on segment B′D′.
(b) Find the locus of all points Z on segments XY such that

−−→
ZY = 2

−−→
XZ.

6. (BUL) An isosceles trapezoid with bases a and b and height h is given.
(a) On the line of symmetry construct the point P such that both (non-

base) sides are seen from P with an angle of 90◦.
(b) Find the distance of P from one of the bases of the trapezoid.
(c) Under what conditions for a, b, and h can the point P be constructed

(analyze all possible cases)?

7. (GDR) A sphere is inscribed in a regular cone. Around the sphere a
cylinder is circumscribed so that its base is in the same plane as the base
of the cone. Let V1 be the volume of the cone and V2 the volume of the
cylinder.
(a) Prove that V1 = V2 is impossible.
(b) Find the smallest k for which V1 = kV2, and in this case construct the

angle at the vertex of the cone.
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3.3 The Third IMO

Budapest–Veszprem, Hungary, July 6–16, 1961

3.3.1 Contest Problems

First Day

1. (HUN) Solve the following system of equations:

x+ y + z = a,

x2 + y2 + z2 = b2,

xy = z2,

where a and b are given real numbers. What conditions must hold on a
and b for the solutions to be positive and distinct?

2. (POL) Let a, b, and c be the lengths of a triangle whose area is S. Prove
that

a2 + b2 + c2 ≥ 4S
√

3 .

In what case does equality hold?

3. (BUL) Solve the equation cosn x−sinn x = 1, where n is a given positive
integer.

Second Day

4. (GDR) In the interior of 
P1P2P3 a point P is given. LetQ1,Q2, andQ3

respectively be the intersections of PP1, PP2, and PP3 with the opposing
edges of 
P1P2P3. Prove that among the ratios PP1/PQ1, PP2/PQ2,
and PP3/PQ3 there exists at least one not larger than 2 and at least one
not smaller than 2.

5. (CZS) Construct a triangle ABC if the following elements are given:
AC = b, AB = c, and �AMB = ω (ω < 90o), where M is the midpoint
of BC. Prove that the construction has a solution if and only if

b tan
ω

2
≤ c < b .

In what case does equality hold?

6. (ROM) A plane ε is given and on one side of the plane three noncollinear
points A, B, and C such that the plane determined by them is not parallel
to ε. Three arbitrary points A′, B′, and C′ in ε are selected. Let L, M ,
and N be the midpoints of AA′, BB′, and CC′, and G the centroid of

LMN . Find the locus of all points obtained for G as A′, B′, and C′ are
varied (independently of each other) across ε.
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3.4 The Fourth IMO

Prague–Hluboka, Czechoslovakia, July 7–15, 1962

3.4.1 Contest Problems

First Day

1. (POL) Find the smallest natural number n with the following properties:
(a) In decimal representation it ends with 6.
(b) If we move this digit to the front of the number, we get a number 4

times larger.

2. (HUN) Find all real numbers x for which

√
3 − x−

√
x+ 1 >

1

2
.

3. (CZS) A cube ABCDA′B′C′D′ is given. The point X is moving at a
constant speed along the square ABCD in the direction from A to B.
The point Y is moving with the same constant speed along the square
BCC′B′ in the direction from B′ to C′. Initially, X and Y start out from
A and B′ respectively. Find the locus of all the midpoints of XY .

Second Day

4. (ROM) Solve the equation

cos2 x+ cos2 2x+ cos2 3x = 1 .

5. (BUL) On the circle k three points A, B, and C are given. Construct the
fourth point on the circle D such that one can inscribe a circle in ABCD.

6. (GDR) Let ABC be an isosceles triangle with circumradius r and inra-
dius ρ. Prove that the distance d between the circumcenter and incenter
is given by

d =
√
r(r − 2ρ) .

7. (USS) Prove that a tetrahedron SABC has five different spheres that
touch all six lines determined by its edges if and only if it is regular.
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3.5 The Fifth IMO

Wroclaw, Poland, July 5–13, 1963

3.5.1 Contest Problems

First Day

1. (CZS) Determine all real solutions of the equation
√
x2 − p+2

√
x2 − 1 =

x, where p is a real number.

2. (USS) Find the locus of points in space that are vertices of right angles
of which one ray passes through a given point and the other intersects a
given segment.

3. (HUN) Prove that if all the angles of a convex n-gon are equal and the
lengths of consecutive edges a1, . . . , an satisfy a1 ≥ a2 ≥ · · · ≥ an, then
a1 = a2 = · · · = an.

Second Day

4. (USS) Find all solutions x1, . . . , x5 to the system of equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x5 + x2 = yx1,
x1 + x3 = yx2,
x2 + x4 = yx3,
x3 + x5 = yx4,
x4 + x1 = yx5,

where y is a real parameter.

5. (GDR) Prove that cos π
7 − cos 2π

7 + cos 3π
7 = 1

2 .

6. (HUN) Five students A, B, C, D, and E have taken part in a certain
competition. Before the competition, two persons X and Y tried to guess
the rankings. X thought that the ranking would be A,B,C,D,E; and
Y thought that the ranking would be D,A,E,C,B. At the end, it was
revealed that X didn’t guess correctly any rankings of the participants,
and moreover, didn’t guess any of the orderings of pairs of consecutive
participants. On the other hand, Y guessed the correct rankings of two
participants and the correct ordering of two pairs of consecutive partici-
pants. Determine the rankings of the competition.



3.6 IMO 1964 33

3.6 The Sixth IMO

Moscow, Soviet Union, June 30–July 10, 1964

3.6.1 Contest Problems

First Day

1. (CZS) (a) Find all natural numbers n such that the number 2n − 1 is
divisible by 7.

(b) Prove that for all natural numbers n the number 2n +1 is not divisible
by 7.

2. (HUN) Denote by a, b, c the lengths of the sides of a triangle. Prove that

a2(b+ c− a) + b2(c+ a− b) + c2(a+ b− c) ≤ 3abc.

3. (YUG) The incircle is inscribed in a triangle ABC with sides a, b, c.
Three tangents to the incircle are drawn, each of which is parallel to one
side of the triangle ABC. These tangents form three smaller triangles
(internal to 
ABC) with the sides of 
ABC. In each of these triangles
an incircle is inscribed. Determine the sum of areas of all four incircles.

Second Day

4. (HUN) Each of 17 students talked with every other student. They all
talked about three different topics. Each pair of students talked about
one topic. Prove that there are three students that talked about the same
topic among themselves.

5. (ROM) Five points are given in the plane. Among the lines that connect
these five points, no two coincide and no two are parallel or perpendicular.
Through each point we construct an altitude to each of the other lines.
What is the maximal number of intersection points of these altitudes
(excluding the initial five points)?

6. (POL) Given a tetrahedronABCD, letD1 be the centroid of the triangle
ABC and let A1, B1, C1 be the intersection points of the lines parallel to
DD1 and passing through the points A,B,C with the opposite faces of
the tetrahedron. Prove that the volume of the tetrahedron ABCD is one-
third the volume of the tetrahedron A1B1C1D1. Does the result remain
true if the point D1 is replaced with any point inside the triangle ABC?
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3.7 The Seventh IMO

Berlin, DR Germany, July 3–13, 1965

3.7.1 Contest Problems

First Day

1. (YUG) Find all real numbers x ∈ [0, 2π] such that

2 cosx ≤ |
√

1 + sin 2x−
√

1 − sin 2x| ≤
√

2.

2. (POL) Consider the system of equations⎧⎨⎩a11x1 + a12x2 + a13x3 = 0,
a21x1 + a22x2 + a23x3 = 0,
a31x1 + a32x2 + a33x3 = 0,

whose coefficients satisfy the following conditions:
(a) a11, a22, a33 are positive real numbers;
(b) all other coefficients are negative;
(c) in each of the equations the sum of the coefficients is positive.
Prove that x1 = x2 = x3 = 0 is the only solution to the system.

3. (CZS) A tetrahedron ABCD is given. The lengths of the edges AB and
CD are a and b, respectively, the distance between the lines AB and CD
is d, and the angle between them is equal to ω. The tetrahedron is divided
into two parts by the plane π parallel to the lines AB and CD. Calculate
the ratio of the volumes of the parts if the ratio between the distances of
the plane π from AB and CD is equal to k.

Second Day

4. (USS) Find four real numbers x1, x2, x3, x4 such that the sum of any of
the numbers and the product of other three is equal to 2.

5. (ROM) Given a triangle OAB such that ∠AOB = α < 90◦, let M be an
arbitrary point of the triangle different from O. Denote by P and Q the
feet of the perpendiculars from M to OA and OB, respectively. Let H be
the orthocenter of the triangle OPQ. Find the locus of points H when:
(a) M belongs to the segment AB;
(b) M belongs to the interior of 
OAB.

6. (POL) We are given n ≥ 3 points in the plane. Let d be the maximal
distance between two of the given points. Prove that the number of pairs
of points whose distance is equal to d is less than or equal to n.
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3.8 The Eighth IMO

Sofia, Bulgaria, July 3–13, 1966

3.8.1 Contest Problems

First Day

1. (USS) Three problems A, B, and C were given on a mathematics
olympiad. All 25 students solved at least one of these problems. The num-
ber of students who solved B and not A is twice the number of students
who solved C and not A. The number of students who solved only A is
greater by 1 than the number of students who along with A solved at least
one other problem. Among the students who solved only one problem, half
solved A. How many students solved only B?

2. (HUN) If a, b, and c are the sides and α, β, and γ the respective angles
of the triangle for which a + b = tan γ

2 (a tanα + b tanβ), prove that the
triangle is isosceles.

3. (BUL) Prove that the sum of distances from the center of the circum-
sphere of the regular tetrahedron to its four vertices is less than the sum
of distances from any other point to the four vertices.

Second Day

4. (YUG) Prove the following equality:

1

sin 2x
+

1

sin 4x
+

1

sin 8x
+ · · · + 1

sin 2nx
= cotx− cot 2nx,

where n ∈ N and x /∈ πZ/2k for every k ∈ N.

5. (CZS) Solve the following system of equations:

|a1 − a2|x2 + |a1 − a3|x3 + |a1 − a4|x4 = 1,

|a2 − a1|x1 + |a2 − a3|x3 + |a2 − a4|x4 = 1,

|a3 − a1|x1 + |a3 − a2|x2 + |a3 − a4|x4 = 1,

|a4 − a1|x1 + |a4 − a2|x2 + |a4 − a3|x3 = 1,

where a1, a2, a3, and a4 are mutually distinct real numbers.

6. (POL) Let M , K, and L be points on (AB), (BC), and (CA), respec-
tively. Prove that the area of at least one of the three triangles 
MAL,

KBM , and 
LCK is less than or equal to one-fourth the area of

ABC.
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3.8.2 Some Longlisted Problems 1959–1966

1. (CZS) We are given n > 3 points in the plane, no three of which lie on
a line. Does there necessarily exist a circle that passes through at least
three of the given points and contains none of the other given points in
its interior?

2. (GDR) Given n positive real numbers a1, a2, . . . , an such that a1a2 · · · an

= 1, prove that

(1 + a1)(1 + a2) · · · (1 + an) ≥ 2n.

3. (BUL) A regular triangular prism has height h and a base of side length
a. Both bases have small holes in the centers, and the inside of the three
vertical walls has a mirror surface. Light enters through the small hole in
the top base, strikes each vertical wall once and leaves through the hole
in the bottom. Find the angle at which the light enters and the length of
its path inside the prism.

4. (POL) Five points in the plane are given, no three of which are collinear.
Show that some four of them form a convex quadrilateral.

5. (USS) Prove the inequality

tan
π sinx

4 sinα
+ tan

π cosx

4 cosα
> 1

for any x, α with 0 ≤ x ≤ π/2 and π/6 < y < π/3.

6. (USS) A convex planar polygon M with perimeter l and area S is given.
Let M(R) be the set of all points in space that lie a distance at most R
from a point of M. Show that the volume V (R) of this set equals

V (R) =
4

3
πR3 +

π

2
lR2 + 2SR.

7. (USS) For which arrangements of two infinite circular cylinders does
their intersection lie in a plane?

8. (USS) We are given a bag of sugar, a two-pan balance, and a weight of
1 gram. How do we obtain 1 kilogram of sugar in the smallest possible
number of weighings?

9. (ROM) Find x such that

sin 3x cos(60◦ − 4x) + 1

sin(60◦ − 7x) − cos(30◦ + x) +m
= 0,

where m is a fixed real number.

10. (GDR) How many real solutions are there to the equation x =
1964 sinx− 189?
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11. (CZS) Does there exist an integer z that can be written in two different
ways as z = x! + y!, where x, y are natural numbers with x ≤ y?

12. (BUL) Find digits x, y, z such that the equality
√
xx · · · x︸ ︷︷ ︸

2n

− yy · · · y︸ ︷︷ ︸
n

= zz · · · z︸ ︷︷ ︸
n

holds for at least two values of n ∈ N, and in that case find all n for which
this equality is true.

13. (YUG) Let a1, a2, . . . , an be positive real numbers. Prove the inequality

(
n

2

)∑
i<j

1

aiaj
≥ 4

⎛⎝∑
i<j

1

ai + aj

⎞⎠2

and find the conditions on the numbers ai for equality to hold.

14. (POL) Compute the largest number of regions into which one can divide
a disk by joining n points on its circumference.

15. (POL) Points A,B,C,D lie on a circle such that AB is a diameter and
CD is not. If the tangents at C and D meet at P while AC and BD meet
at Q, show that PQ is perpendicular to AB.

16. (CZS) We are given a circle K with center S and radius 1 and a square
Q with center M and side 2. Let XY be the hypotenuse of an isosceles
right triangle XYZ. Describe the locus of points Z as X varies along K
and Y varies along the boundary of Q.

17. (ROM) Suppose ABCD and A′B′C′D′ are two parallelograms arbi-
trarily arranged in space, and let points M,N,P,Q divide the segments
AA′, BB′, CC′, DD′ respectively in equal ratios.
(a) Show that MNPQ is a parallelogram;
(b) Find the locus of MNPQ as M varies along the segment AA′.

18. (HUN) Solve the equation 1
sin x + 1

cos x = 1
p , where p is a real parameter.

Discuss for which values of p the equation has at least one real solution
and determine the number of solutions in [0, 2π) for a given p.

19. (HUN) Construct a triangle given the three exradii.

20. (HUN) We are given three equal rectangles with the same center in
three mutually perpendicular planes, with the long sides also mutually
perpendicular. Consider the polyhedron with vertices at the vertices of
these rectangles.
(a) Find the volume of this polyhedron;
(b) can this polyhedron be regular, and under what conditions?

21. (BUL) Prove that the volume V and the lateral area S of a right circular

cone satisfy the inequality
(

6V
π

)2 ≤
(

2S
π
√

3

)3

. When does equality occur?
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22. (BUL) Assume that two parallelograms P, P ′ of equal areas have sides
a, b and a′, b′ respectively such that a′ ≤ a ≤ b ≤ b′ and a segment of
length b′ can be placed inside P . Prove that P and P ′ can be partitioned
into four pairwise congruent parts.

23. (BUL) Three faces of a tetrahedron are right triangles, while the fourth
is not an obtuse triangle.
(a) Prove that a necessary and sufficient condition for the fourth face to

be a right triangle is that at some vertex exactly two angles are right.
(b) Prove that if all the faces are right triangles, then the volume of the

tetrahedron equals one -sixth the product of the three smallest edges
not belonging to the same face.

24. (POL) There are n ≥ 2 people in a room. Prove that there exist two
among them having equal numbers of friends in that room. (Friendship is
always mutual.)

25. (GDR) Show that tan 7◦30′ =
√

6 +
√

2 −
√

3 − 2.

26. (CZS) (a) Prove that (a1 +a2 + · · ·+ak)2 ≤ k(a2
1 + · · ·+a2

k), where k ≥ 1
is a natural number and a1, . . . , ak are arbitrary real numbers.

(b) If real numbers a1, . . . , an satisfy

a1 + a2 + · · · + an ≥
√

(n− 1)(a2
1 + · · · + a2

n),

show that they are all nonnegative.

27. (GDR) We are given a circleK and a point P lying on a line g. Construct
a circle that passes through P and touches K and g.

28. (CZS) Let there be given a circle with center S and radius 1 in the plane,
and let ABC be an arbitrary triangle circumscribed about the circle such
that SA ≤ SB ≤ SC. Find the loci of the vertices A,B,C.

29. (ROM) (a) Find the number of ways 500 can be represented as a sum of
consecutive integers.

(b) Find the number of such representations for N = 2α3β5γ , α, β, γ ∈ N.
Which of these representations consist only of natural numbers?

(c) Determine the number of such representations for an arbitrary natural
number N .

30. (ROM) If n is a natural number, prove that
(a) log10(n+ 1) > 3

10n + log10 n;
(b) logn! > 3n

10

(
1
2 + 1

3 + · · · + 1
n − 1

)
.

31. (ROM) Solve the equation |x2 − 1|+ |x2 − 4| = mx as a function of the
parameter m. Which pairs (x,m) of integers satisfy this equation?

32. (BUL) The sides a, b, c of a triangleABC form an arithmetic progression;
the sides of another triangle A1B1C1 also form an arithmetic progression.
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Suppose that ∠A = ∠A1. Prove that the triangles ABC and A1B1C1 are
similar.

33. (BUL) Two circles touch each other from inside, and an equilateral
triangle is inscribed in the larger circle. From the vertices of the triangle
one draws segments tangent to the smaller circle. Prove that the length
of one of these segments equals the sum of the lengths of the other two.

34. (BUL) Determine all pairs of positive integers (x, y) satisfying the equa-
tion 2x = 3y + 5.

35. (POL) If a, b, c, d are integers such that ad is odd and bc is even, prove
that at least one root of the polynomial ax3 + bx2 + cx+ d is irrational.

36. (POL) Let ABCD be a cyclic quadrilateral. Show that the centroids of
the triangles ABC, CDA, BCD, DAB lie on a circle.

37. (POL) Prove that the perpendiculars drawn from the midpoints of the
sides of a cyclic quadrilateral to the opposite sides meet at one point.

38. (ROM) Two concentric circles have radiiR and r respectively. Determine
the greatest possible number of circles that are tangent to both these
circles and mutually nonintersecting. Prove that this number lies between
3
2 ·

√
R+

√
r√

R−√
r
− 1 and 63

20 · R+r
R−r .

39. (ROM) In a plane, a circle with center O and radius R and two points
A,B are given.
(a) Draw a chord CD parallel to AB so that AC and BD intersect at a

point P on the circle.
(b) Prove that there are two possible positions of point P , say P1, P2, and

find the distance between them if OA = a, OB = b, AB = d.

40. (CZS) For a positive real number p, find all real solutions to the equation√
x2 + 2px− p2 −

√
x2 − 2px− p2 = 1.

41. (CZS) If A1A2 . . . An is a regular n-gon (n ≥ 3), how many different
obtuse triangles AiAjAk exist?

42. (CZS) Let a1, a2, . . . , an (n ≥ 2) be a sequence of integers. Show that
there is a subsequence ak1 , ak2 , . . . , akm , where 1 ≤ k1 < k2 < · · · < km ≤
n, such that a2

k1
+ a2

k2
+ · · · + a2

km
is divisible by n.

43. (CZS) Five points in a plane are given, no three of which are collinear.
Every two of them are joined by a segment, colored either red or gray, so
that no three segments form a triangle colored in one color.
(a) Prove that (1) every point is a vertex of exactly two red and two gray

segments, and (2) the red segments form a closed path that passes
through each point.

(b) Give an example of such a coloring.
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44. (YUG) What is the greatest number of balls of radius 1/2 that can be
placed within a rectangular box of size 10 × 10 × 1?

45. (YUG) An alphabet consists of n letters. What is the maximal length
of a word, if
(i) two neighboring letters in a word are always different, and
(ii) no word abab (a �= b) can be obtained by omitting letters from the

given word?

46. (YUG) Let

f(a, b, c) =

∣∣∣∣ |b− a|
|ab| +

b+ a

ab
− 2

c

∣∣∣∣ +
|b− a|
|ab| +

b+ a

ab
+

2

c
.

Prove that f(a, b, c) = 4 max{1/a, 1/b, 1/c}.
47. (ROM) Find the number of lines dividing a given triangle into two parts

of equal area which determine the segment of minimum possible length
inside the triangle. Compute this minimum length in terms of the sides
a, b, c of the triangle.

48. (USS) Find all positive numbers p for which the equation x2+px+3p = 0
has integral roots.

49. (USS) Two mirror walls are placed to form an angle of measure α. There
is a candle inside the angle. How many reflections of the candle can an
observer see?

50. (USS) Given a quadrangle of sides a, b, c, d and area S, show that S ≤
a+c
2 · b+d

2 .

51. (USS) In a school, n children numbered 1 to n are initially arranged in
the order 1, 2, . . . , n. At a command, every child can either exchange its
position with any other child or not move. Can they rearrange into the
order n, 1, 2, . . . , n− 1 after two commands?

52. (USS) A figure of area 1 is cut out from a sheet of paper and divided
into 10 parts, each of which is colored in one of 10 colors. Then the figure
is turned to the other side and again divided into 10 parts (not necessarily
in the same way). Show that it is possible to color these parts in the 10
colors so that the total area of the portions of the figure both of whose
sides are of the same color is at least 0.1.

53. (USS, 1966) Prove that in every convex hexagon of area S one can draw
a diagonal that cuts off a triangle of area not exceeding 1

6S.

54. (USS, 1966) Find the last two digits of a sum of eighth powers of 100
consecutive integers.

55. (USS, 1966) Given the vertex A and the centroid M of a triangle ABC,
find the locus of vertices B such that all the angles of the triangle lie in
the interval [40◦, 70◦].
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56. (USS, 1966) Let ABCD be a tetrahedron such that AB ⊥ CD,
AC ⊥ BD, and AD ⊥ BC. Prove that the midpoints of the edges of
the tetrahedron lie on a sphere.

57. (USS, 1966) Is it possible to choose a set of 100 (or 200) points on the
boundary of a cube such that this set is fixed under each isometry of the
cube into itself? Justify your answer.
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3.9 The Ninth IMO

Cetinje, Yugoslavia, July 2–13, 1967

3.9.1 Contest Problems

First Day (July 5)

1. ABCD is a parallelogram; AB = a, AD = 1, α is the size of ∠DAB, and
the three angles of the triangle ABD are acute. Prove that the four circles
KA, KB, KC , KD, each of radius 1, whose centers are the vertices A, B,
C, D, cover the parallelogram if and only if a ≤ cosα+

√
3 sinα.

2. Exactly one side of a tetrahedron is of length greater than 1. Show that
its volume is less than or equal to 1/8.

3. Let k, m, and n be positive integers such that m + k + 1 is a prime
number greater than n+ 1. Write cs for s(s+ 1). Prove that the product
(cm+1−ck)(cm+2−ck) · · · (cm+n−ck) is divisible by the product c1c2 · · · cn.

Second Day (July 6)

4. The triangles A0B0C0 and A′B′C′ have all their angles acute. Describe
how to construct one of the triangles ABC, similar to A′B′C′ and cir-
cumscribing A0B0C0 (so that A, B, C correspond to A′, B′, C′, and AB
passes through C0, BC through A0, and CA through B0). Among these
triangles ABC describe, and prove, how to construct the triangle with the
maximum area.

5. Consider the sequence (cn):

c1 = a1 + a2 + · · · + a8,
c2 = a2

1 + a2
2 + · · · + a2

8,
. . . . . . . . . . . .
cn = an

1 + an
2 + · · · + an

8 ,
. . . . . . . . . . . .

where a1, a2, . . . , a8 are real numbers, not all equal to zero. Given that
among the numbers of the sequence (cn) there are infinitely many equal
to zero, determine all the values of n for which cn = 0.

6. In a sports competition lasting n days there are m medals to be won. On
the first day, one medal and 1/7 of the remaining m− 1 medals are won.
On the second day, 2 medals and 1/7 of the remainder are won. And so
on. On the nth day exactly n medals are won. How many days did the
competition last and what was the total number of medals?

3.9.2 Longlisted Problems

1. (BUL 1) Prove that all numbers in the sequence
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107811

3
,

110778111

3
,

111077781111

3
, . . .

are perfect cubes.

2. (BUL 2) Prove that 1
3n

2 + 1
2n + 1

6 ≥ (n!)2/n (n is a positive integer)
and that equality is possible only in the case n = 1.

3. (BUL 3) Prove the trigonometric inequality cosx < 1− x2

2 + x4

16 , where
x ∈ (0, π/2).

4. (BUL 4) Suppose medians ma and mb of a triangle are orthogonal.
Prove that:
(a) The medians of that triangle correspond to the sides of a right-angled

triangle.
(b) The inequality

5(a2 + b2 − c2) ≥ 8ab

is valid, where a, b, and c are side lengths of the given triangle.

5. (BUL 5) Solve the system

x2 + x− 1 = y,
y2 + y − 1 = z,
z2 + z − 1 = x.

6. (BUL 6) Solve the system

|x+ y| + |1 − x| = 6,
|x+ y + 1| + |1 − y| = 4.

7. (CZS 1) Find all real solutions of the system of equations

x1 + x2 + · · · + xn = a,
x2

1 + x2
2 + · · · + x2

n = a2,
. . . . . . . . . . . . . . . . . .

xn
1 + xn

2 + · · · + xn
n = an.

8. (CZS 2)IMO1 ABCD is a parallelogram; AB = a, AD = 1, α is the size
of ∠DAB, and the three angles of the triangle ABD are acute. Prove
that the four circles KA, KB, KC , KD, each of radius 1, whose centers
are the vertices A, B, C, D, cover the parallelogram if and only if a ≤
cosα+

√
3 sinα.

9. (CZS 3) The circle k and its diameter AB are given. Find the locus of
the centers of circles inscribed in the triangles having one vertex on AB
and two other vertices on k.

10. (CZS 4) The square ABCD is to be decomposed into n triangles
(nonoverlapping) all of whose angles are acute. Find the smallest inte-
ger n for which there exists a solution to this problem and construct at
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least one decomposition for this n. Answer whether it is possible to ask
additionally that (at least) one of these triangles has a perimeter less than
an arbitrarily given positive number.

11. (CZS 5) Let n be a positive integer. Find the maximal number of non-
congruent triangles whose side lengths are integers less than or equal to
n.

12. (CZS 6) Given a segment AB of the length 1, define the set M of points
in the following way: it contains the two points A, B, and also all points
obtained from A, B by iterating the following rule: (∗) for every pair of
points X , Y in M , the set M also contains the point Z of the segment
XY for which Y Z = 3XZ.
(a) Prove that the set M consists of points X from the segment AB for

which the distance from the point A is either

AX =
3k

4n
or AX =

3k − 2

4n
,

where n, k are nonnegative integers.
(b) Prove that the point X0 for which AX0 = 1/2 = X0B does not belong

to the set M .

13. (GDR 1) Find whether among all quadrilaterals whose interiors lie inside
a semicircle of radius r there exists one (or more) with maximal area. If
so, determine their shape and area.

14. (GDR 2) Which fraction p/q, where p, q are positive integers less than
100, is closest to

√
2? Find all digits after the decimal point in the decimal

representation of this fraction that coincide with digits in the decimal
representation of

√
2 (without using any tables).

15. (GDR 3) Suppose tanα = p/q, where p and q are integers and q �= 0.
Prove that the number tanβ for which tan 2β = tan 3α is rational only
when p2 + q2 is the square of an integer.

16. (GDR 4) Prove the following statement: If r1 and r2 are real numbers
whose quotient is irrational, then any real number x can be approximated
arbitrarily well by numbers of the form zk1,k2 = k1r1+k2r2, k1, k2 integers;
i.e., for every real number x and every positive real number p two integers
k1 and k2 can be found such that |x− (k1r1 + k2r2)| < p.

17. (GBR 1)IMO3 Let k, m, and n be positive integers such that m+k+1 is
a prime number greater than n+ 1. Write cs for s(s+ 1). Prove that the
product (cm+1 − ck)(cm+2 − ck) · · · (cm+n − ck) is divisible by the product
c1c2 · · · cn.

18. (GBR 5) If x is a positive rational number, show that x can be uniquely
expressed in the form

x = a1 +
a2

2!
+
a3

3!
+ · · · ,
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where a1, a2, . . . are integers, 0 ≤ an ≤ n − 1 for n > 1, and the series
terminates.
Show also that x can be expressed as the sum of reciprocals of different
integers, each of which is greater than 106.

19. (GBR 6) The n points P1, P2, . . . , Pn are placed inside or on the bound-
ary of a disk of radius 1 in such a way that the minimum distance dn

between any two of these points has its largest possible value Dn. Calcu-
late Dn for n = 2 to 7 and justify your answer.

20. (HUN 1) In space, n points (n ≥ 3) are given. Every pair of points
determines some distance. Suppose all distances are different. Connect
every point with the nearest point. Prove that it is impossible to obtain
a polygonal line in such a way. 1

21. (HUN 2) Without using any tables, find the exact value of the product

P = cos
π

15
cos

2π

15
cos

3π

15
cos

4π

15
cos

5π

15
cos

6π

15
cos

7π

15
.

22. (HUN 3) The distance between the centers of the circles k1 and k2 with
radii r is equal to r. Points A and B are on the circle k1, symmetric with
respect to the line connecting the centers of the circles. Point P is an
arbitrary point on k2. Prove that

PA2 + PB2 ≥ 2r2.

When does equality hold?

23. (HUN 4) Prove that for an arbitrary pair of vectors f and g in the
plane, the inequality

af2 + bfg + cg2 ≥ 0

holds if and only if the following conditions are fulfilled: a ≥ 0, c ≥ 0,
4ac ≥ b2.

24. (HUN 5)IMO6 Father has left to his children several identical gold coins.
According to his will, the oldest child receives one coin and one-seventh of
the remaining coins, the next child receives two coins and one-seventh of
the remaining coins, the third child receives three coins and one-seventh of
the remaining coins, and so on through the youngest child. If every child
inherits an integer number of coins, find the number of children and the
number of coins.

25. (HUN 6) Three disks of diameter d are touching a sphere at their centers.
Moreover, each disk touches the other two disks. How do we choose the
radius R of the sphere so that the axis of the whole figure makes an angle

1 The statement so formulated is false. It would be trivially true under the addi-
tional assumption that the polygonal line is closed. However, from the offered
solution, which is not clear, it does not seem that the proposer had this in mind.
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of 60◦ with the line connecting the center of the sphere with the point on
the disks that is at the largest distance from the axis? (The axis of the
figure is the line having the property that rotation of the figure through
120◦ about that line brings the figure to its initial position. The disks are
all on one side of the plane, pass through the center of the sphere, and
are orthogonal to the axes.)

26. (ITA 1) Let ABCD be a regular tetrahedron. To an arbitrary point
M on one edge, say CD, corresponds the point P = P (M), which is the
intersection of two lines AH and BK, drawn from A orthogonally to BM
and from B orthogonally to AM . What is the locus of P as M varies?

27. (ITA 2) Which regular polygons can be obtained (and how) by cutting
a cube with a plane?

28. (ITA 3) Find values of the parameter u for which the expression

y =
tan(x − u) + tanx+ tan(x+ u)

tan(x− u) tanx tan(x+ u)

does not depend on x.

29. (ITA 4)IMO4 The triangles A0B0C0 and A′B′C′ have all their angles
acute. Describe how to construct one of the triangles ABC, similar to
A′B′C′ and circumscribing A0B0C0 (so that A, B, C correspond to A′,
B′, C′, and AB passes through C0, BC through A0, and CA through B0).
Among these triangles ABC, describe, and prove, how to construct the
triangle with the maximum area.

30. (MON 1) Given m+n numbers ai (i = 1, 2, . . . ,m), bj (j = 1, 2, . . . , n),
determine the number of pairs (ai, bj) for which |i− j| ≥ k, where k is a
nonnegative integer.

31. (MON 2) An urn contains balls of k different colors; there are ni balls
of the ith color. Balls are drawn at random from the urn, one by one,
without replacement. Find the smallest number of draws necessary for
getting m balls of the same color.

32. (MON 3) Determine the volume of the body obtained by cutting the
ball of radius R by the trihedron with vertex in the center of that ball if
its dihedral angles are α, β, γ.

33. (MON 4) In what case does the system

x+ y +mz = a,

x+my + z = b,

mx+ y + z = c,

have a solution? Find the conditions under which the unique solution of
the above system is an arithmetic progression.
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34. (MON 5) The faces of a convex polyhedron are six squares and eight
equilateral triangles, and each edge is a common side for one triangle and
one square. All dihedral angles obtained from the triangle and square
with a common edge are equal. Prove that it is possible to circumscribe
a sphere around this polyhedron and compute the ratio of the squares
of the volumes of the polyhedron and of the ball whose boundary is the
circumscribed sphere.

35. (MON 6) Prove the identity

n∑
k=0

(
n

k

)(
tan

x

2

)2k
[
1 + 2k 1(

1 − tan2(x/2)
)k

]
= sec2n x

2
+ secn x.

36. (POL 1) Prove that the center of the sphere circumscribed around a
tetrahedron ABCD coincides with the center of a sphere inscribed in
that tetrahedron if and only if AB = CD, AC = BD, and AD = BC.

37. (POL 2) Prove that for arbitrary positive numbers the following in-
equality holds:

1

a
+

1

b
+

1

c
≤ a8 + b8 + c8

a3b3c3
.

38. (POL 3) Does there exist an integer such that its cube is equal to
3n2 + 3n+ 7, where n is integer?

39. (POL 4) Show that the triangle whose angles satisfy the equality

sin2A+ sin2B + sin2 C

cos2A+ cos2B + cos2 C
= 2

is a right-angled triangle.

40. (POL 5)IMO2 Exactly one side of a tetrahedron is of length greater than
1. Show that its volume is less than or equal to 1/8.

41. (POL 6) A line l is drawn through the intersection point H of the
altitudes of an acute-angled triangle. Prove that the symmetric images la,
lb, lc of l with respect to sides BC, CA, AB have one point in common,
which lies on the circumcircle of ABC.

42. (ROM 1) Decompose into real factors the expression 1− sin5 x− cos5 x.

43. (ROM 2) The equation

x5 + 5λx4 − x3 + (λα − 4)x2 − (8λ+ 3)x+ λα− 2 = 0

is given.
(a) Determine α such that the given equation has exactly one root inde-

pendent of λ.
(b) Determine α such that the given equation has exactly two roots inde-

pendent of λ.



48 3 Problems

44. (ROM 3) Suppose p and q are two different positive integers and x is a
real number. Form the product (x+ p)(x+ q).
(a) Find the sum S(x, n) =

∑
(x + p)(x + q), where p and q take values

from 1 to n.
(b) Do there exist integer values of x for which S(x, n) = 0?

45. (ROM 4) (a) Solve the equation

sin3 x+ sin3

(
2π

3
+ x

)
+ sin3

(
4π

3
+ x

)
+

3

4
cos 2x = 0.

(b) Suppose the solutions are in the form of arcs AB of the trigonometric
circle (where A is the beginning of arcs of the trigonometric circle),
and P is a regular n-gon inscribed in the circle with one vertex at A.
(1) Find the subset of arcs with the endpoint B at a vertex of the

regular dodecagon.
(2) Prove that the endpoint B cannot be at a vertex of P if 2, 3 � n

or n is prime.

46. (ROM 5) If x, y, z are real numbers satisfying the relations x+y+z = 1
and arctanx+ arctan y + arctan z = π/4, prove that

x2n+1 + y2n+1 + z2n+1 = 1

for all positive integers n.

47. (ROM 6) Prove the inequality

x1x2 · · ·xk

(
xn−1

1 + xn−1
2 + · · · + xn−1

k

)
≤ xn+k−1

1 +xn+k−1
2 +· · ·+xn+k−1

k ,

where xi > 0 (i = 1, 2, . . . , k), k ∈ N , n ∈ N .

48. (SWE 1) Determine all positive roots of the equation xx = 1/
√

2.

49. (SWE 2) Let n and k be positive integers such that 1 ≤ n ≤ N + 1,
1 ≤ k ≤ N + 1. Show that

min
n	=k

| sinn− sin k| < 2

N
.

50. (SWE 3) The function ϕ(x, y, z), defined for all triples (x, y, z) of real
numbers, is such that there are two functions f and g defined for all pairs
of real numbers such that

ϕ(x, y, z) = f(x+ y, z) = g(x, y + z)

for all real x, y, and z. Show that there is a function h of one real variable
such that

ϕ(x, y, z) = h(x+ y + z)

for all real x, y, and z.
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51. (SWE 4) A subset S of the set of integers 0, . . . , 99 is said to have
property A if it is impossible to fill a crossword puzzle with 2 rows and
2 columns with numbers in S (0 is written as 00, 1 as 01, and so on).
Determine the maximal number of elements in sets S with property A.

52. (SWE 5) In the plane a point O and a sequence of points P1, P2, P3, . . .
are given. The distances OP1, OP2, OP3, . . . are r1, r2, r3, . . . , where r1 ≤
r2 ≤ r3 ≤ · · · . Let α satisfy 0 < α < 1. Suppose that for every n the
distance from the point Pn to any other point of the sequence is greater
than or equal to rα

n . Determine the exponent β, as large as possible, such
that for some C independent of n,2

rn ≥ Cnβ , n = 1, 2, . . . .

53. (SWE 6) In making Euclidean constructions in geometry it is permit-
ted to use a straightedge and compass. In the constructions considered
in this question, no compasses are permitted, but the straightedge is as-
sumed to have two parallel edges, which can be used for constructing two
parallel lines through two given points whose distance is at least equal
to the breadth of the ruler. Then the distance between the parallel lines
is equal to the breadth of the straightedge. Carry through the following
constructions with such a straightedge. Construct:
(a) The bisector of a given angle.
(b) The midpoint of a given rectilinear segment.
(c) The center of a circle through three given noncollinear points.
(d) A line through a given point parallel to a given line.

54. (USS 1) Is it possible to put 100 (or 200) points on a wooden cube such
that by all rotations of the cube the points map into themselves? Justify
your answer.

55. (USS 2) Find all x for which for all n,

sinx+ sin 2x+ sin 3x+ · · · + sinnx ≤
√

3

2
.

56. (USS 3) In a group of interpreters each one speaks one or several foreign
languages; 24 of them speak Japanese, 24 Malay, 24 Farsi. Prove that it
is possible to select a subgroup in which exactly 12 interpreters speak
Japanese, exactly 12 speak Malay, and exactly 12 speak Farsi.

57. (USS 4)IMO5 Consider the sequence (cn):

c1 = a1 + a2 + · · · + a8,
c2 = a2

1 + a2
2 + · · · + a2

8,
. . . . . . . . . . . .
cn = an

1 + an
2 + · · · + an

8 ,
. . . . . . . . . . . .

2 This problem is not elementary. The solution offered by the proposer, which is
not quite clear and complete, only shows that if such a β exists, then β ≥ 1

2(1−α)
.
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where a1, a2, . . . , a8 are real numbers, not all equal to zero. Given that
among the numbers of the sequence (cn) there are infinitely many equal
to zero, determine all the values of n for which cn = 0.

58. (USS 5) A linear binomial l(z) = Az + B with complex coefficients A
and B is given. It is known that the maximal value of |l(z)| on the segment
−1 ≤ x ≤ 1 (y = 0) of the real line in the complex plane (z = x + iy) is
equal to M . Prove that for every z

|l(z)| ≤ Mρ,

where ρ is the sum of distances from the point P = z to the points Q1:
z = 1 and Q3: z = −1.

59. (USS 6) On the circle with center O and radius 1 the point A0 is
fixed and points A1, A2, . . . , A999, A1000 are distributed in such a way
that ∠A0OAk = k (in radians). Cut the circle at points A0, A1, . . . , A1000.
How many arcs with different lengths are obtained?
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3.10 The Tenth IMO

Moscow–Leningrad, Soviet Union, July 5–18, 1968

3.10.1 Contest Problems

First Day

1. Prove that there exists a unique triangle whose side lengths are consecutive
natural numbers and one of whose angles is twice the measure of one of
the others.

2. Find all positive integers x for which p(x) = x2 − 10x − 22, where p(x)
denotes the product of the digits of x.

3. Let a, b, c be real numbers. Prove that the system of equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ax2

1 + bx1 + c = x2,
ax2

2 + bx2 + c = x3,
· · · · · · · · · · · ·

ax2
n−1 + bxn−1 + c = xn,
ax2

n + bxn + c = x1,

(a) has no real solutions if (b − 1)2 − 4ac < 0;
(b) has a unique real solution if (b − 1)2 − 4ac = 0;
(c) has more than one real solution if (b− 1)2 − 4ac > 0.

Second Day

4. Prove that in any tetrahedron there is a vertex such that the lengths of
its sides through that vertex are sides of a triangle.

5. Let a > 0 be a real number and f(x) a real function defined on all of R,
satisfying for all x ∈ R,

f(x+ a) =
1

2
+
√
f(x) − f(x)2.

(a) Prove that the function f is periodic; i.e., there exists b > 0 such that
for all x, f(x+ b) = f(x).

(b) Give an example of such a nonconstant function for a = 1.

6. Let [x] denote the integer part of x, i.e., the greatest integer not exceeding
x. If n is a positive integer, express as a simple function of n the sum[

n+ 1

2

]
+

[
n+ 2

4

]
+ · · · +

[
n+ 2i

2i+1

]
+ · · · .
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3.10.2 Shortlisted Problems

1. (SWE 2) Two ships sail on the sea with constant speeds and fixed
directions. It is known that at 9:00 the distance between them was 20
miles; at 9:35, 15 miles; and at 9:55, 13 miles. At what moment were the
ships the smallest distance from each other, and what was that distance?

2. (ROM 5)IMO1 Prove that there exists a unique triangle whose side
lengths are consecutive natural numbers and one of whose angles is twice
the measure of one of the others.

3. (POL 4)IMO4 Prove that in any tetrahedron there is a vertex such that
the lengths of its sides through that vertex are sides of a triangle.

4. (BUL 2)IMO3 Let a, b, c be real numbers. Prove that the system of equa-
tions ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ax2
1 + bx1 + c = x2,

ax2
2 + bx2 + c = x3,

· · · · · · · · · · · ·
ax2

n−1 + bxn−1 + c = xn,
ax2

n + bxn + c = x1,

has a unique real solution if and only if (b− 1)2 − 4ac = 0.

Remark. It is assumed that a �= 0.

5. (BUL 5) Let hn be the apothem (distance from the center to one of the
sides) of a regular n-gon (n ≥ 3) inscribed in a circle of radius r. Prove
the inequality

(n+ 1)hn+1 − nhn > r.

Also prove that if r on the right side is replaced with a greater number,
the inequality will not remain true for all n ≥ 3.

6. (HUN 1) If ai (i = 1, 2, . . . , n) are distinct non-zero real numbers, prove
that the equation

a1

a1 − x
+

a2

a2 − x
+ · · · + an

an − x
= n

has at least n− 1 real roots.

7. (HUN 5) Prove that the product of the radii of three circles exscribed to

a given triangle does not exceed 3
√

3
8 times the product of the side lengths

of the triangle. When does equality hold?

8. (ROM 2) Given an oriented line ∆ and a fixed point A on it, consider
all trapezoids ABCD one of whose bases AB lies on ∆, in the positive
direction. Let E,F be the midpoints of AB and CD respectively.
Find the loci of vertices B,C,D of trapezoids that satisfy the following:
(i) |AB| ≤ a (a fixed);
(ii) |EF | = l (l fixed);
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(iii) the sum of squares of the nonparallel sides of the trapezoid is constant.

Remark. The constants are chosen so that such trapezoids exist.

9. (ROM 3) Let ABC be an arbitrary triangle and M a point inside it. Let
da, db, dc be the distances from M to sides BC,CA,AB; a, b, c the lengths
of the sides respectively, and S the area of the triangle ABC. Prove the
inequality

abdadb + bcdbdc + cadcda ≤ 4S2

3
.

Prove that the left-hand side attains its maximum when M is the centroid
of the triangle.

10. (ROM 4) Consider two segments of length a, b (a > b) and a segment
of length c =

√
ab.

(a) For what values of a/b can these segments be sides of a triangle?
(b) For what values of a/b is this triangle right-angled, obtuse-angled, or

acute-angled?

11. (ROM 6) Find all solutions (x1, x2, . . . , xn) of the equation

1 +
1

x1
+
x1 + 1

x1x2
+

(x1 + 1)(x2 + 1)

x1x2x3
+ · · · + (x1 + 1) · · · (xn−1 + 1)

x1x2 · · ·xn
= 0.

12. (POL 1) If a and b are arbitrary positive real numbers and m an integer,
prove that (

1 +
a

b

)m

+

(
1 +

b

a

)m

≥ 2m+1.

13. (POL 5) Given two congruent triangles A1A2A3 and B1B2B3 (AiAk =
BiBk), prove that there exists a plane such that the orthogonal projections
of these triangles onto it are congruent and equally oriented.

14. (BUL 5) A line in the plane of a triangle ABC intersects the sides AB
and AC respectively at points X and Y such that BX = CY . Find the
locus of the center of the circumcircle of triangle XAY .

15. (GBR 1)IMO6 Let [x] denote the integer part of x, i.e., the greatest integer
not exceeding x. If n is a positive integer, express as a simple function of
n the sum [

n+ 1

2

]
+

[
n+ 2

4

]
+ · · · +

[
n+ 2i

2i+1

]
+ · · · .

16. (GBR 3) A polynomial p(x) = a0x
k + a1x

k−1 + · · · + ak with integer
coefficients is said to be divisible by an integer m if p(x) is divisible by
m for all integers x. Prove that if p(x) is divisible by m, then k!a0 is also
divisible by m. Also prove that if a0, k,m are nonnegative integers for
which k!a0 is divisible by m, there exists a polynomial p(x) = a0x

k + · · ·+
ak divisible by m.
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17. (GBR 4) Given a point O and lengths x, y, z, prove that there exists
an equilateral triangle ABC for which OA = x, OB = y, OC = z, if and
only if x+y ≥ z, y+z ≥ x, z+x ≥ y (the points O,A,B,C are coplanar).

18. (ITA 2) If an acute-angled triangle ABC is given, construct an equilat-
eral triangle A′B′C′ in space such that lines AA′, BB′, CC′ pass through
a given point.

19. (ITA 5) We are given a fixed point on the circle of radius 1, and going
from this point along the circumference in the positive direction on curved
distances 0, 1, 2, . . . from it we obtain points with abscisas n = 0, 1, 2, . . .
respectively. How many points among them should we take to ensure that
some two of them are less than the distance 1/5 apart?

20. (CZS 1) Given n (n ≥ 3) points in space such that every three of them
form a triangle with one angle greater than or equal to 120◦, prove that
these points can be denoted by A1, A2, . . . , An in such a way that for each
i, j, k, 1 ≤ i < j < k ≤ n, angle AiAjAk is greater than or equal to 120◦.

21. (CZS 2) Let a0, a1, . . . , ak (k ≥ 1) be positive integers. Find all positive
integers y such that

a0 | y; (a0 + a1) | (y + a1); . . . ; (a0 + an) | (y + an).

22. (CZS 3)IMO2 Find all positive integers x for which p(x) = x2 − 10x− 22,
where p(x) denotes the product of the digits of x.

23. (CZS 4) Find all complex numbers m such that polynomial

x3 + y3 + z3 +mxyz

can be represented as the product of three linear trinomials.

24. (MON 1) Find the number of all n-digit numbers for which some fixed
digit stands only in the ith (1 < i < n) place and the last j digits are
distinct.3

25. (MON 2) Given k parallel lines and a few points on each of them, find
the number of all possible triangles with vertices at these given points.4

26. (GDR)IMO5 Let a > 0 be a real number and f(x) a real function defined
on all of R, satisfying for all x ∈ R,

f(x+ a) =
1

2
+
√
f(x) − f(x)2.

(a) Prove that the function f is periodic; i.e., there exists b > 0 such that
for all x, f(x+ b) = f(x).

(b) Give an example of such a nonconstant function for a = 1.

3 The problem is unclear. Presumably n, i, j and the ith digit are fixed.
4 The problem is unclear. The correct formulation could be the following:

Given k parallel lines l1, . . . , lk and ni points on the line li, i = 1, 2, . . . , k, find
the maximum possible number of triangles with vertices at these points.
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3.11 The Eleventh IMO

Bucharest, Romania, July 5–20, 1969

3.11.1 Contest Problems

First Day (July 10)

1. Prove that there exist infinitely many natural numbers a with the following
property: the number z = n4 + a is not prime for any natural number n.

2. Let a1, a2, . . . , an be real constants and

y(x) = cos(a1 + x) +
cos(a2 + x)

2
+

cos(a3 + x)

22
+ · · · + cos(an + x)

2n−1
.

If x1, x2 are real and y(x1) = y(x2) = 0, prove that x1 − x2 = mπ for
some integer m.

3. Find conditions on the positive real number a such that there exists a
tetrahedron k of whose edges (k = 1, 2, 3, 4, 5) have length a, and the
other 6 − k edges have length 1.

Second Day (July 11)

4. Let AB be a diameter of a circle γ. A point C different from A and B
is on the circle γ. Let D be the projection of the point C onto the line
AB. Consider three other circles γ1, γ2, and γ3 with the common tangent
AB: γ1 inscribed in the triangle ABC, and γ2 and γ3 tangent to both (the
segment) CD and γ. Prove that γ1, γ2, and γ3 have two common tangents.

5. Given n points in the plane such that no three of them are collinear, prove
that one can find at least

(
n−3

2

)
convex quadrilaterals with their vertices

at these points.

6. Under the conditions x1, x2 > 0, x1y1 > z2
1 , and x2y2 > z2

2 , prove the
inequality

8

(x1 + x2)(y1 + y2) − (z1 + z2)2
≤ 1

x1y1 − z2
1

+
1

x2y2 − z2
2

.

3.11.2 Longlisted Problems

1. (BEL 1) A parabola P1 with equation x2 − 2py = 0 and parabola P2

with equation x2 + 2py = 0, p > 0, are given. A line t is tangent to P2.
Find the locus of pole M of the line t with respect to P1.

2. (BEL 2) (a) Find the equations of regular hyperbolas passing through
the points A(α, 0), B(β, 0), and C(0, γ).

(b) Prove that all such hyperbolas pass through the orthocenter H of the
triangle ABC.
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(c) Find the locus of the centers of these hyperbolas.
(d) Check whether this locus coincides with the nine-point circle of the

triangle ABC.

3. (BEL 3) Construct the circle that is tangent to three given circles.

4. (BEL 4) Let O be a point on a nondegenerate conic. A right angle with
vertex O intersects the conic at points A and B. Prove that the line AB
passes through a fixed point located on the normal to the conic through
the point O.

5. (BEL 5) Let G be the centroid of the triangle OAB.
(a) Prove that all conics passing through the points O,A,B,G are hyper-

bolas.
(b) Find the locus of the centers of these hyperbolas.

6. (BEL 6) Evaluate (cos(π/4) + i sin(π/4))10 in two different ways and
prove that (

10

1

)
−
(

10

3

)
+

1

2

(
10

5

)
= 24.

7. (BUL 1) Prove that the equation
√
x3 + y3 + z3 = 1969 has no integral

solutions.

8. (BUL 2) Find all functions f defined for all x that satisfy the condition

xf(y) + yf(x) = (x+ y)f(x)f(y),

for all x and y. Prove that exactly two of them are continuous.

9. (BUL 3) One hundred convex polygons are placed on a square with edge
of length 38 cm. The area of each of the polygons is smaller than π cm2,
and the perimeter of each of the polygons is smaller than 2π cm. Prove
that there exists a disk with radius 1 in the square that does not intersect
any of the polygons.

10. (BUL 4) Let M be the point inside the right-angled triangle ABC
(∠C = 90◦) such that

∠MAB = ∠MBC = ∠MCA = ϕ.

Let ψ be the acute angle between the medians of AC and BC. Prove that
sin(ϕ+ψ)
sin(ϕ−ψ) = 5.

11. (BUL 5) Let Z be a set of points in the plane. Suppose that there exists
a pair of points that cannot be joined by a polygonal line not passing
through any point of Z. Let us call such a pair of points unjoinable. Prove
that for each real r > 0 there exists an unjoinable pair of points separated
by distance r.

12. (CZS 1) Given a unit cube, find the locus of the centroids of all tetra-
hedra whose vertices lie on the sides of the cube.
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13. (CZS 2) Let p be a prime odd number. Is it possible to find p−1 natural
numbers n + 1, n + 2, . . . , n + p − 1 such that the sum of the squares of
these numbers is divisible by the sum of these numbers?

14. (CZS 3) Let a and b be two positive real numbers. If x is a real solution
of the equation x2 + px + q = 0 with real coefficients p and q such that
|p| ≤ a, |q| ≤ b, prove that

|x| ≤ 1

2

(
a+

√
a2 + 4b

)
. (1)

Conversely, if x satisfies (1), prove that there exist real numbers p and
q with |p| ≤ a, |q| ≤ b such that x is one of the roots of the equation
x2 + px+ q = 0.

15. (CZS 4) Let K1, . . . ,Kn be nonnegative integers. Prove that

K1!K2! · · ·Kn! ≥ [K/n]!n,

where K = K1 + · · · +Kn.

16. (CZS 5) A convex quadrilateral ABCD with sides AB = a, BC = b,
CD = c, DA = d and angles α = ∠DAB, β = ∠ABC, γ = ∠BCD, and
δ = ∠CDA is given. Let s = (a + b + c + d)/2 and P be the area of the
quadrilateral. Prove that

P 2 = (s− a)(s− b)(s− c)(s− d) − abcd cos2
α+ γ

2
.

17. (CZS 6) Let d and p be two real numbers. Find the first term of an arith-
metic progression a1, a2, a3, . . . with difference d such that a1a2a3a4 = p.
Find the number of solutions in terms of d and p.

18. (FRA 1) Let a and b be two nonnegative integers. Denote by H(a, b)
the set of numbers n of the form n = pa+ qb, where p and q are positive
integers. Determine H(a) = H(a, a). Prove that if a �= b, it is enough to
know all the sets H(a, b) for coprime numbers a, b in order to know all the
sets H(a, b). Prove that in the case of coprime numbers a and b, H(a, b)
contains all numbers greater than or equal to ω = (a− 1)(b− 1) and also
ω/2 numbers smaller than ω.

19. (FRA 2) Let n be an integer that is not divisible by any square greater
than 1. Denote by xm the last digit of the number xm in the number
system with base n. For which integers x is it possible for xm to be 0?
Prove that the sequence xm is periodic with period t independent of x.
For which x do we have xt = 1. Prove that if m and x are relatively prime,
then 0m, 1m, . . . , (n−1)m are different numbers. Find the minimal period
t in terms of n. If n does not meet the given condition, prove that it is
possible to have xm = 0 �= x1 and that the sequence is periodic starting
only from some number k > 1.
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20. (FRA 3) A polygon (not necessarily convex) with vertices in the lattice
points of a rectangular grid is given. The area of the polygon is S. If I is
the number of lattice points that are strictly in the interior of the polygon
and B the number of lattice points on the border of the polygon, find the
number T = 2S −B − 2I + 2.

21. (FRA 4) A right-angled triangle OAB has its right angle at the point B.
An arbitrary circle with center on the line OB is tangent to the line OA.
Let AT be the tangent to the circle different from OA (T is the point of
tangency). Prove that the median from B of the triangle OAB intersects
AT at a point M such that MB = MT .

22. (FRA 5) Let α(n) be the number of pairs (x, y) of integers such that
x+ y = n, 0 ≤ y ≤ x, and let β(n) be the number of triples (x, y, z) such
that x + y + z = n and 0 ≤ z ≤ y ≤ x. Find a simple relation between
α(n) and the integer part of the number n+2

2 and the relation among β(n),
β(n − 3) and α(n). Then evaluate β(n) as a function of the residue of n

modulo 6. What can be said about β(n) and 1+ n(n+6)
12 ? And what about

(n+3)2

6 ?
Find the number of triples (x, y, z) with the property x + y + z ≤ n,
0 ≤ z ≤ y ≤ x as a function of the residue of n modulo 6. What can be said

about the relation between this number and the number (n+6)(2n2+9n+12)
72 ?

23. (FRA 6) Consider the integer d = ab−1
c , where a, b, and c are positive

integers and c ≤ a. Prove that the set G of integers that are between 1
and d and relatively prime to d (the number of such integers is denoted
by ϕ(d)) can be partitioned into n subsets, each of which consists of b

elements. What can be said about the rational number ϕ(d)
b ?

24. (GBR 1) The polynomial P (x) = a0x
k + a1x

k−1 + · · · + ak, where
a0, . . . , ak are integers, is said to be divisible by an integer m if P (x) is a
multiple of m for every integral value of x. Show that if P (x) is divisible
by m, then a0 ·k! is a multiple of m. Also prove that if a, k,m are positive
integers such that ak! is a multiple of m, then a polynomial P (x) with
leading term axk can be found that is divisible by m.

25. (GBR 2) Let a, b, x, y be positive integers such that a and b have no
common divisor greater than 1. Prove that the largest number not ex-
pressible in the form ax+ by is ab− a− b. If N(k) is the largest number
not expressible in the form ax+ by in only k ways, find N(k).

26. (GBR 3) A smooth solid consists of a right circular cylinder of height
h and base-radius r, surmounted by a hemisphere of radius r and center
O. The solid stands on a horizontal table. One end of a string is attached
to a point on the base. The string is stretched (initially being kept in
the vertical plane) over the highest point of the solid and held down at
the point P on the hemisphere such that OP makes an angle α with
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the horizontal. Show that if α is small enough, the string will slacken if
slightly displaced and no longer remain in a vertical plane. If then pulled
tight through P , show that it will cross the common circular section of
the hemisphere and cylinder at a point Q such that ∠SOQ = φ, S being
where it initially crossed this section, and sinφ = r tan α

h .

27. (GBR 4) The segment AB perpendicularly bisects CD at X . Show that,
subject to restrictions, there is a right circular cone whose axis passes
through X and on whose surface lie the points A,B,C,D. What are the
restrictions?

28. (GBR 5) Let us define u0 = 0, u1 = 1 and for n ≥ 0, un+2 = aun+1+bun,
a and b being positive integers. Express un as a polynomial in a and b.
Prove the result. Given that b is prime, prove that b divides a(ub − 1).

29. (GDR 1) Find all real numbers λ such that the equation

sin4 x− cos4 x = λ(tan4 x− cot4 x)

(a) has no solution,
(b) has exactly one solution,
(c) has exactly two solutions,
(d) has more than two solutions (in the interval (0, π/4)).

30. (GDR 2)IMO1 Prove that there exist infinitely many natural numbers a
with the following property: The number z = n4 + a is not prime for any
natural number n.

31. (GDR 3) Find the number of permutations a1, . . . , an of the set
{1, 2, . . . , n} such that |ai − ai+1| �= 1 for all i = 1, 2, . . . , n − 1. Find
a recurrence formula and evaluate the number of such permutations for
n ≤ 6.

32. (GDR 4) Find the maximal number of regions into which a sphere can
be partitioned by n circles.

33. (GDR 5) Given a ring G in the plane bounded by two concentric circles
with radii R and R/2, prove that we can cover this region with 8 disks of
radius 2R/5. (A region is covered if each of its points is inside or on the
border of some disk.)

34. (HUN 1) Let a and b be arbitrary integers. Prove that if k is an integer
not divisible by 3, then (a+ b)2k + a2k + b2k is divisible by a2 + ab+ b2.

35. (HUN 2) Prove that

1 +
1

23
+

1

33
+ · · · + 1

n3
<

5

4
.

36. (HUN 3) In the plane 4000 points are given such that each line passes
through at most 2 of these points. Prove that there exist 1000 disjoint
quadrilaterals in the plane with vertices at these points.
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37. (HUN 4)IMO2 If a1, a2, . . . , an are real constants, and if

y = cos(a1 + x) + 2 cos(a2 + x) + · · · + n cos(an + x)

has two zeros x1 and x2 whose difference is not a multiple of π, prove that
y ≡ 0.

38. (HUN 5) Let r and m (r ≤ m) be natural numbers and Ak = 2k−1
2m π.

Evaluate
1

m2

m∑
k=1

m∑
l=1

sin(rAk) sin(rAl) cos(rAk − rAl).

39. (HUN 6) Find the positions of three points A,B,C on the boundary of
a unit cube such that min{AB,AC,BC} is the greatest possible.

40. (MON 1) Find the number of five-digit numbers with the following
properties: there are two pairs of digits such that digits from each pair are
equal and are next to each other, digits from different pairs are different,
and the remaining digit (which does not belong to any of the pairs) is
different from the other digits.

41. (MON 2) Given two numbers x0 and x1, let α and β be coefficients
of the equation 1 − αy − βy2 = 0. Under the given conditions, find an
expression for the solution of the system

xn+2 − αxn+1 − βxn = 0, n = 0, 1, 2, . . . .

42. (MON 3) Let Ak (1 ≤ k ≤ h) be n-element sets such that each two
of them have a nonempty intersection. Let A be the union of all the sets
Ak, and let B be a subset of A such that for each k (1 ≤ k ≤ h) the
intersection of Ak and B consists of exactly two different elements ak and
bk. Find all subsets X of the set A with r elements satisfying the condition
that for at least one index k, both elements ak and bk belong to X .

43. (MON 4) Let p and q be two prime numbers greater than 3. Prove that
if their difference is 2n, then for any two integers m and n, the number
S = p2m+1 + q2m+1 is divisible by 3.

44. (MON 5) Find the radius of the circle circumscribed about the isosceles
triangle whose sides are the solutions of the equation x2 − ax+ b = 0.

45. (MON 6)IMO5 Given n points in the plane such that no three of them
are collinear, prove that one can find at least

(
n−3

2

)
convex quadrilaterals

with their vertices at these points.

46. (NET 1) The vertices of an (n + 1)-gon are placed on the edges of a
regular n-gon so that the perimeter of the n-gon is divided into equal
parts. How does one choose these n + 1 points in order to obtain the
(n+ 1)gon with
(a) maximal area;
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(b) minimal area?

47. (NET 2)IMO4 Let A and B be points on the circle γ. A point C, different
from A and B, is on the circle γ. Let D be the projection of the point
C onto the line AB. Consider three other circles γ1, γ2, and γ3 with the
common tangent AB: γ1 inscribed in the triangle ABC, and γ2 and γ3

tangent to both (the segment) CD and γ. Prove that γ1, γ2, and γ3 have
two common tangents.

48. (NET 3) Let x1, x2, x3, x4, and x5 be positive integers satisfying

x1 +x2 +x3 +x4 +x5 = 1000,
x1 −x2 +x3 −x4 +x5 > 0,
x1 +x2 −x3 +x4 −x5 > 0,

−x1 +x2 +x3 −x4 +x5 > 0,
x1 −x2 +x3 +x4 −x5 > 0,

−x1 +x2 −x3 +x4 +x5 > 0.

(a) Find the maximum of (x1 + x3)
x2+x4 .

(b) In how many different ways can we choose x1, . . . , x5 to obtain the
desired maximum?

49. (NET 4) A boy has a set of trains and pieces of railroad track. Each
piece is a quarter of circle, and by concatenating these pieces, the boy
obtained a closed railway. The railway does not intersect itself. In passing
through this railway, the train sometimes goes in the clockwise direction,
and sometimes in the opposite direction. Prove that the train passes an
even number of times through the pieces in the clockwise direction and an
even number of times in the counterclockwise direction. Also, prove that
the number of pieces is divisible by 4.

50. (NET 5) The bisectors of the exterior angles of a pentagonB1B2B3B4B5

form another pentagon A1A2A3A4A5. Construct B1B2B3B4B5 from the
given pentagon A1A2A3A4A5.

51. (NET 6) A curve determined by

y =
√
x2 − 10x+ 52, 0 ≤ x ≤ 100,

is constructed in a rectangular grid. Determine the number of squares cut
by the curve.

52. (POL 1) Prove that a regular polygon with an odd number of edges
cannot be partitioned into four pieces with equal areas by two lines that
pass through the center of polygon.

53. (POL 2) Given two segments AB and CD not in the same plane, find
the locus of points M such that

MA2 +MB2 = MC2 +MD2.
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54. (POL 3) Given a polynomial f(x) with integer coefficients whose value
is divisible by 3 for three integers k, k + 1, and k + 2, prove that f(m) is
divisible by 3 for all integers m.

55. (POL 4)IMO3 Find the conditions on the positive real number a such that
there exists a tetrahedron k of whose edges (k = 1, 2, 3, 4, 5) have length
a, and the other 6 − k edges have length 1.

56. (POL 5) Let a and b be two natural numbers that have an equal number
n of digits in their decimal expansions. The first m digits (from left to
right) of the numbers a and b are equal. Prove that if m > n/2, then

a1/n − b1/n <
1

n
.

57. (POL 6) On the sides AB and AC of triangle ABC two points K and
L are given such that KB

AK + LC
AL = 1. Prove that KL passes through the

centroid of ABC.

58. (SWE 1) Six points P1, . . . , P6 are given in 3-dimensional space such that
no four of them lie in the same plane. Each of the line segments PjPk is
colored black or white. Prove that there exists one triangle PjPkPl whose
edges are of the same color.

59. (SWE 2) For each λ (0 < λ < 1 and λ �= 1/n for all n = 1, 2, 3, . . . )
construct a continuous function f such that there do not exist x, y with
0 < λ < y = x+ λ ≤ 1 for which f(x) = f(y).

60. (SWE 3) Find the natural number n with the following properties:
(1) Let S = {p1, p2, . . . } be an arbitrary finite set of points in the plane,

and rj the distance from Pj to the origin O. We assign to each Pj the
closed disk Dj with center Pj and radius rj . Then some n of these
disks contain all points of S.

(2) n is the smallest integer with the above property.

61. (SWE 4) Let a0, a1, a2 be determined with a0 = 0, an+1 = 2an + 2n.
Prove that if n is power of 2, then so is an.

62. (SWE 5) Which natural numbers can be expressed as the difference of
squares of two integers?

63. (SWE 6) Prove that there are infinitely many positive integers that
cannot be expressed as the sum of squares of three positive integers.

64. (USS 1) Prove that for a natural number n > 2,

(n!)! > n[(n− 1)!]n!.

65. (USS 2) Prove that for a > b2,√
a− b

√
a+ b

√
a− b

√
a+ · · · =

√
a− 3

4
b2 − 1

2
b.
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66. (USS 3) (a) Prove that if 0 ≤ a0 ≤ a1 ≤ a2, then

(a0 + a1x− a2x
2)2 ≤ (a0 + a1 + a2)

2

(
1 +

1

2
x+

1

3
x2 +

1

2
x3 + x4

)
.

(b) Formulate and prove the analogous result for polynomials of third
degree.

67. (USS 4)IMO6 Under the conditions x1, x2 > 0, x1y1 > z2
1 , and x2y2 > z2

2 ,
prove the inequality

8

(x1 + x2)(y1 + y2) − (z1 + z2)2
≤ 1

x1y1 − z2
1

+
1

x2y2 − z2
2

.

68. (USS 5) Given 5 points in the plane, no three of which are collinear, prove
that we can choose 4 points among them that form a convex quadrilateral.

69. (YUG 1) Suppose that positive real numbers x1, x2, x3 satisfy

x1x2x3 > 1, x1 + x2 + x3 <
1

x1
+

1

x2
+

1

x3
.

Prove that:
(a) None of x1, x2, x3 equals 1.
(b) Exactly one of these numbers is less than 1.

70. (YUG 2) A park has the shape of a convex pentagon of area 5
√

3 ha
(= 50000

√
3 m2). A man standing at an interior point O of the park

notices that he stands at a distance of at most 200 m from each vertex of
the pentagon. Prove that he stands at a distance of at least 100 m from
each side of the pentagon.

71. (YUG 3) Let four points Ai (i = 1, 2, 3, 4) in the plane determine four
triangles. In each of these triangles we choose the smallest angle. The sum
of these angles is denoted by S. What is the exact placement of the points
Ai if S = 180◦?
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3.12 The Twelfth IMO

Budapest–Keszthely, Hungary, July 8–22, 1970

3.12.1 Contest Problems

First Day (July 13)

1. Given a point M on the side AB of the triangle ABC, let r1 and r2 be the
radii of the inscribed circles of the triangles ACM and BCM respectively
while ρ1 and ρ2 are the radii of the excircles of the triangles ACM and
BCM at the sides AM and BM respectively. Let r and ρ denote the
respective radii of the inscribed circle and the excircle at the side AB of
the triangle ABC. Prove that

r1
ρ1

r2
ρ2

=
r

ρ
.

2. Let a and b be the bases of two number systems and let

An = x1x2 . . . xn
(a), An+1 = x0x1x2 . . . xn

(a),

Bn = x1x2 . . . xn
(b), Bn+1 = x0x1x2 . . . xn

(b),

be numbers in the number systems with respective bases a and b, so that
x0, x1, x2, . . . , xn denote digits in the number system with base a as well
as in the number system with base b. Suppose that neither x0 nor x1 is
zero. Prove that a > b if and only if

An

An+1
<

Bn

Bn+1
.

3. Let 1 = a0 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ · · · be a sequence of real numbers.
Consider the sequence b1, b2, . . . defined by

bn =

n∑
k=1

(
1 − ak−1

ak

)
1

√
ak

.

Prove that:
(a) For all natural numbers n, 0 ≤ bn < 2.
(b) Given an arbitrary 0 ≤ b < 2, there is a sequence a0, a1, . . . , an, . . .

of the above type such that bn > b is true for an infinity of natural
numbers n.

Second Day (July 14)

4. For what natural numbers n can the product of some of the numbers
n, n+1, n+ 2, n+ 3, n+4, n+ 5 be equal to the product of the remaining
ones?
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5. In the tetrahedron ABCD, the edges BD and CD are mutually per-
pendicular, and the projection of the vertex D to the plane ABC is the
intersection of the altitudes of the triangle ABC. Prove that

(AB +BC + CA)2 ≤ 6(DA2 +DB2 +DC2) .

For which tetrahedra does equality hold?

6. Given 100 points in the plane, no three of which are on the same line,
consider all triangles that have all their vertices chosen from the 100 given
points. Prove that at most 70% of these triangles are acute-angled.

3.12.2 Longlisted Problems

1. (AUT 1) Prove that

bc

b+ c
+

ca

c+ a
+

ab

a+ b
≤ 1

2
(a+ b+ c) (a, b, c > 0).

2. (AUT 2) Prove that the two last digits of 999

and 9999

in decimal
representation are equal.

3. (AUT 3) Prove that for a, b ∈ N, a!b! divides (a+ b)!.

4. (AUT 4) Solve the system of equations

x2 + xy = a2 + ab
y2 + xy = a2 − ab,

a, b real, a �= 0.

5. (AUT 5) Prove that n

√
1

n+1 + 2
n+1 + · · · + n

n+1 ≥ 1 for n ≥ 2.

6. (BEL 1) Prove that the equation in x

n∑
i=1

bi
x− ai

= c, bi > 0, a1 < a2 < a3 < · · · < an,

has n − 1 roots x1, x2, x3, . . . , xn−1 such that a1 < x1 < a2 < x2 < a3 <
x3 < · · · < xn−1 < an.

7. (BEL 2) Let ABCD be any quadrilateral. A square is constructed on
each side of the quadrilateral, all in the same manner (i.e., outward or
inward). Denote the centers of the squares by M1, M2, M3, and M4.
Prove:
(a) M1M3 = M2M4;
(b) M1M3 is perpendicular to M2M4.

8. (BEL 3) (SL70-1).
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9. (BEL 4) If n is even, prove that

1 − 1

2
+

1

3
− 1

4
+ · · · − 1

n
= 2

(
1

n+ 2
+

1

n+ 4
+

1

n+ 6
+ · · · + 1

2n

)
.

10. (BEL 5) Let A,B,C be angles of a triangle. Prove that

1 < cosA+ cosB + cosC ≤ 3

2
.

11. (BEL 6) Let ABCD and A′B′C′D′ be two squares in the same plane and
oriented in the same direction. Let A′′, B′′, C′′, and D′′ be the midpoints
of AA′, BB′, CC′, and DD′. Prove that A′′B′′C′′D′′ is also a square.

12. (BUL 1) Let x1, x2, x3, x4, x5, x6 be given integers, not divisible by 7.
Prove that at least one of the expressions of the form

±x1 ± x2 ± x3 ± x4 ± x5 ± x6

is divisible by 7, where the signs are selected in all possible ways. (Gener-
alize the statement to every prime number!)

13. (BUL 2) A triangleABC is given. Each side ofABC is divided into equal
parts, and through each of the division points are drawn lines parallel to
AB,BC, and CA, thus cutting ABC into small triangles. To each of the
vertices of these triangles is assigned 1, 2, or 3, so that:
(1) to A,B,C are assigned 1, 2 and 3 respectively;
(2) points on AB are marked by 1 or 2;
(3) points on BC are marked by 2 or 3;
(4) points on CA are marked by 3 or 1.
Prove that there must exist a small triangle whose vertices are marked by
1, 2, and 3.

14. (BUL 3) Let α+ β + γ = π. Prove that

sin 2α+ sin 2β + sin 2γ = 2(sinα+ sinβ + sin γ)(cosα+ cosβ + cos γ)

−2(sinα+ sinβ + sin γ).

15. (BUL 4) Given a triangle ABC, let R be the radius of its circumcir-
cle, O1, O2, O3 the centers of its exscribed circles, and q the perimeter of

O1O2O3. Prove that q ≤ 6

√
3R.

16. (BUL 5) Show that the equation√
2 − x2 +

3
√

3 − x3 = 0

has no real roots.
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17. (BUL 6) (SL70-3).
Original formulation. In a triangular pyramid SABC one of the angles
at S is right and the projection of S onto the base ABC is the orthocenter
of ABC. Let r be the radius of the circle inscribed in the base, SA = m,
SB = n, SC = p, H the height of the pyramid (through S), and r1, r2, r3
the radii of the circles inscribed in the intersections of the pyramid with
the planes determined by the altitude of the pyramid and the lines SA,
SB, SC respectively. Prove that:
(a) m2 + n2 + p2 ≥ 18r2;
(b) the ratios r1/H , r2/H, r3/H lie in the interval [0.4, 0.5].

18. (CZS 1) (SL70-4).

19. (CZS 2) Let n > 1 be a natural number, a ≥ 1 a real number, and
x1, x2, . . . , xn numbers such that x1 = 1,

xk+1

xk
= a+αk for k = 1, 2, . . . , n−

1, where αk are real numbers with αk ≤ 1
k(k+1) . Prove that

n−1
√
xn < a+

1

n− 1
.

20. (CZS 3) (SL70-5).

21. (CZS 4) Find necessary and sufficient conditions on given positive num-
bers u, v for the following claim to be valid: there exists a right-angled
triangle 
ABC with CD = u, CE = v, where D,E are points of the
segments AB such that AD = DE = EB = 1

3AB.

22. (FRA 1) (SL70-6).

23. (FRA 2) Let E be a finite set, PE the family of its subsets, and f a
mapping from PE to the set of nonnegative real numbers such that for
any two disjoint subsets A,B of E,

f(A ∪B) = f(A) + f(B).

Prove that there exists a subset F of E such that if with each A ⊂ E we
associate a subset A′ consisting of elements of A that are not in F , then
f(A) = f(A′), and f(A) is zero if and only if A is a subset of F .

24. (FRA 3) Let n and p be two integers such that 2p ≤ n. Prove the
inequality

(n− p)!

p!
≤

(
n+ 1

2

)n−2p

.

For which values does equality hold?

25. (FRA 4) Suppose that f is a real function defined for 0 ≤ x ≤ 1 having
the first derivative f ′ for 0 ≤ x ≤ 1 and the second derivative f ′′ for
0 < x < 1. Prove that if

f(0) = f ′(0) = f ′(1) = f(1) − 1 = 0,



68 3 Problems

there exists a number 0 < y < 1 such that |f ′′(y)| ≥ 4.

26. (FRA 5) Consider a finite set of vectors in space {a1, a2, . . . , an} and
the set E of all vectors of the form x = λ1a1 +λ2a2 + · · ·+λnan, where λi

are nonnegative numbers. Let F be the set consisting of all the vectors in
E and vectors parallel to a given plane P . Prove that there exists a set of
vectors {b1, b2, . . . , bp} such that F is the set of all vectors y of the form

y = µ1b1 + µ2b2 + · · · + µpbp,

where the µj are nonnegative.

27. (FRA 6) Find a natural number n such that for all prime numbers p, n
is divisible by p if and only if n is divisible by p− 1.

28. (GDR 1) A set G with elements u, v, w, . . . is a group if the following
conditions are fulfilled:
(1) There is a binary algebraic operation ◦ defined on G such that for all

u, v ∈ G there is a w ∈ G with u ◦ v = w.
(2) This operation is associative; i.e., for all u, v, w ∈ G, (u ◦ v) ◦ w =

u ◦ (v ◦ w).
(3) For any two elements u, v ∈ G there exists an element x ∈ G such

that u ◦ x = v, and an element y ∈ G such that y ◦ u = v.
Let K be a set of all real numbers greater than 1. On K is defined an
operation by

a ◦ b = ab+
√

(a2 − 1)(b2 − 1).

Prove that K is a group.

29. (GDR 2) Prove that the equation 4x+6x = 9x has no rational solutions.

30. (GDR 3) (SL70-9).

31. (GDR 4) Prove that for any triangle with sides a, b, c and area P the
following inequality holds:

P ≤
√

3

4
(abc)2/3.

Find all triangles for which equality holds.

32. (NET 1) Let there be given an acute angle ∠AOB = 3α, where OA =
OB. The point A is the center of a circle with radius OA. A line s parallel
to OA passes through B. Inside the given angle a variable line t is drawn
through O. It meets the circle in O and C and the given line s in D, where
∠AOC = x. Starting from an arbitrarily chosen position t0 of t, the series
t0, t1, t2, . . . is determined by defining BDi+1 = OCi for each i (in which
Ci and Di denote the positions of C and D, corresponding to ti). Making
use of the graphical representations of BD and OC as functions of x,
determine the behavior of ti for i → ∞.
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33. (NET 2) The vertices of a given square are clockwise lettered A,B,C,D.
On the side AB is situated a point E such that AE = AB/3.
Starting from an arbitrarily chosen point P0 on segment AE and go-
ing clockwise around the perimeter of the square, a series of points
P0, P1, P2, . . . is marked on the perimeter such that PiPi+1 = AB/3 for
each i. It will be clear that when P0 is chosen in A or in E, then some
Pi will coincide with P0. Does this possibly also happen if P0 is chosen
otherwise?

34. (NET 3) In connection with a convex pentagon ABCDE we consider
the set of ten circles, each of which contains three of the vertices of the
pentagon on its circumference. Is it possible that none of these circles
contains the pentagon? Prove your answer.

35. (NET 4) Find for every value of n a set of numbers p for which the fol-
lowing statement is true: Any convex n-gon can be divided into p isosceles
triangles.

Alternative version. The same about division into p polygons with axis
of symmetry.

36. (NET 5) Let x, y, z be nonnegative real numbers satisfying

x2 + y2 + z2 = 5 and yz + zx+ xy = 2.

Which values can the greatest of the numbers x2 − yz, y2 − xz, z2 − xy
have?

37. (NET 6) Solve the set of simultaneous equations

v2+ w2+ x2+ y2 = 6 − 2u,
u2+ w2+ x2+ y2 = 6 − 2v,
u2+ v2+ x2+ y2 = 6 − 2w,
u2+ v2+ w2+ y2 = 6 − 2x,
u2+ v2+ w2+ x2 = 6 − 2y.

38. (POL 1) Find the greatest integer A for which in any permutation of
the numbers 1, . . . , 100 there exist ten consecutive numbers whose sum is
at least A.

39. (POL 2) (SL70-8).

40. (POL 5) Let ABC be a triangle with angles α, β, γ commensurable with
π. Starting from a point P interior to the triangle, a ball reflects on the
sides of ABC, respecting the law of reflection that the angle of incidence
is equal to the angle of reflection.
Prove that, supposing that the ball never reaches any of the vertices
A,B,C, the set of all directions in which the ball will move through time
is finite. In other words, its path from the moment 0 to infinity consists
of segments parallel to a finite set of lines.
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41. (POL 6) Let a cube of side 1 be given. Prove that there exists a point
A on the surface S of the cube such that every point of S can be joined
to A by a path on S of length not exceeding 2. Also prove that there is
a point of S that cannot be joined with A by a path on S of length less
than 2.

42. (ROM 1) (SL70-2).

43. (ROM 2) Prove that the equation

x3 − 3 tan
π

12
x2 − 3x+ tan

π

12
= 0

has one root x1 = tan π
36 , and find the other roots.

44. (ROM 3) If a, b, c are side lengths of a triangle, prove that

(a+ b)(b + c)(c+ a) ≥ 8(a+ b− c)(b+ c− a)(c+ a− b).

45. (ROM 4) Let M be an interior point of tetrahedron V ABC. Denote
by A1, B1, C1 the points of intersection of lines MA,MB,MC with the
planes V BC, V CA, V AB, and by A2, B2, C2 the points of intersection of
lines V A1, V B1, V C1 with the sides BC,CA,AB.
(a) Prove that the volume of the tetrahedron V A2B2C2 does not exceed

one-fourth of the volume of V ABC.
(b) Calculate the volume of the tetrahedron V1A1B1C1 as a function of

the volume of V ABC, where V1 is the point of intersection of the line
VM with the plane ABC, and M is the barycenter of V ABC.

46. (ROM 5) Given a triangle ABC and a plane π having no common points
with the triangle, find a point M such that the triangle determined by
the points of intersection of the lines MA,MB,MC with π is congruent
to the triangle ABC.

47. (ROM 6) Given a polynomial

P (x) = ab(a− c)x3 + (a3 − a2c+ 2ab2 − b2c+ abc)x2

+(2a2b+ b2c+ a2c+ b3 − abc)x+ ab(b+ c),

where a, b, c �= 0, prove that P (x) is divisible by

Q(x) = abx2 + (a2 + b2)x+ ab

and conclude that P (x0) is divisible by (a + b)3 for x0 = (a + b + 1)n,
n ∈ N.

48. (ROM 7) Let a polynomial p(x) with integer coefficients take the value
5 for five different integer values of x. Prove that p(x) does not take the
value 8 for any integer x.
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49. (SWE 1) For n ∈ N, let f(n) be the number of positive integers k ≤ n
that do not contain the digit 9. Does there exist a positive real number p

such that f(n)
n ≥ p for all positive integers n?

50. (SWE 2) The area of a triangle is S and the sum of the lengths of its
sides is L. Prove that 36S ≤ L2

√
3 and give a necessary and sufficient

condition for equality.

51. (SWE 3) Let p be a prime number. A rational number x, with 0 < x < 1,
is written in lowest terms. The rational number obtained from x by adding
p to both the numerator and the denominator differs from x by 1/p2.
Determine all rational numbers x with this property.

52. (SWE 4) (SL70-10).

53. (SWE 5) A square ABCD is divided into (n − 1)2 congruent squares,
with sides parallel to the sides of the given square. Consider the grid of
all n2 corners obtained in this manner. Determine all integers n for which
it is possible to construct a nondegenerate parabola with its axis parallel
to one side of the square and that passes through exactly n points of the
grid.

54. (SWE 6) (SL70-11).

55. (USS 1) A turtle runs away from an UFO with a speed of 0.2 m/s. The
UFO flies 5 meters above the ground, with a speed of 20 m/s. The UFO’s
path is a broken line, where after flying in a straight path of length � (in
meters) it may turn through for any acute angle α such that tanα < 


1000 .
When the UFO’s center approaches within 13 meters of the turtle, it
catches the turtle. Prove that for any initial position the UFO can catch
the turtle.

56. (USS 2) A square hole of depth h whose base is of length a is given.
A dog is tied to the center of the square at the bottom of the hole by a
rope of length L >

√
2a2 + h2, and walks on the ground around the hole.

The edges of the hole are smooth, so that the rope can freely slide along
it. Find the shape and area of the territory accessible to the dog (whose
size is neglected).

57. (USS 3) Let the numbers 1, 2, . . . , n2 be written in the cells of an n× n
square board so that the entries in each column are arranged increasingly.
What are the smallest and greatest possible sums of the numbers in the
kth row? (k a positive integer, 1 ≤ k ≤ n.)

58. (USS 4) (SL70-12).

59. (USS 5) (SL70-7).
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3.12.3 Shortlisted Problems

1. (BEL 3) Consider a regular 2n-gon and the n diagonals of it that
pass through its center. Let P be a point of the inscribed circle and let
a1, a2, . . . , an be the angles in which the diagonals mentioned are visible
from the point P . Prove that

n∑
i=1

tan2 ai = 2n
cos2 π

2n

sin4 π
2n

.

2. (ROM 1)IMO2 Let a and b be the bases of two number systems and let

An = x1x2 . . . xn
(a), An+1 = x0x1x2 . . . xn

(a),

Bn = x1x2 . . . xn
(b), Bn+1 = x0x1x2 . . . xn

(b),

be numbers in the number systems with respective bases a and b, so that
x0, x1, x2, . . . , xn denote digits in the number system with base a as well
as in the number system with base b. Suppose that neither x0 nor x1 is
zero. Prove that a > b if and only if

An

An+1
<

Bn

Bn+1
.

3. (BUL 6)IMO5 In the tetrahedron SABC the angle BSC is a right angle,
and the projection of the vertex S to the plane ABC is the intersection
of the altitudes of the triangle ABC. Let z be the radius of the inscribed
circle of the triangle ABC. Prove that

SA2 + SB2 + SC2 ≥ 18z2.

4. (CZS 1)IMO4 For what natural numbers n can the product of some of
the numbers n, n+ 1, n+ 2, n+ 3, n+ 4, n+ 5 be equal to the product of
the remaining ones?

5. (CZS 3) Let M be an interior point of the tetrahedron ABCD. Prove
that

−−→
MA vol(MBCD) +

−−→
MB vol(MACD)

+
−−→
MC vol(MABD) +

−−→
MD vol(MABC) = 0

(vol(PQRS) denotes the volume of the tetrahedron PQRS).

6. (FRA 1) In the triangle ABC let B′ and C′ be the midpoints of the sides
AC and AB respectively and H the foot of the altitude passing through
the vertex A. Prove that the circumcircles of the triangles AB′C′, BC′H ,
and B′CH have a common point I and that the line HI passes through
the midpoint of the segment B′C′.
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7. (USS 5) For which digits a do exist integers n ≥ 4 such that each digit

of n(n+1)
2 equals a?

8. (POL 2)IMO1 Given a point M on the side AB of the triangle ABC, let
r1 and r2 be the radii of the inscribed circles of the triangles ACM and
BCM respectively and let ρ1 and ρ2 be the radii of the excircles of the
triangles ACM and BCM at the sides AM and BM respectively. Let r
and ρ denote the radii of the inscribed circle and the excircle at the side
AB of the triangle ABC respectively. Prove that

r1
ρ1

r2
ρ2

=
r

ρ
.

9. (GDR 3) Let u1, u2, . . . , un, v1, v2, . . . , vn be real numbers. Prove that

1 +

n∑
i=1

(ui + vi)
2 ≤ 4

3

(
1 +

n∑
i=1

u2
i

)(
1 +

n∑
i=1

v2
i

)
.

In what case does equality hold?

10. (SWE 4)IMO3 Let 1 = a0 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ · · · be a sequence of
real numbers. Consider the sequence b1, b2, . . . defined by:

bn =
n∑

k=1

(
1 − ak−1

ak

)
1

√
ak
.

Prove that:
(a) For all natural numbers n, 0 ≤ bn < 2.
(b) Given an arbitrary 0 ≤ b < 2, there is a sequence a0, a1, . . . , an, . . .

of the above type such that bn > b is true for infinitely many natural
numbers n.

11. (SWE 6) Let P,Q,R be polynomials and let S(x) = P (x3) + xQ(x3) +
x2R(x3) be a polynomial of degree n whose roots x1, . . . , xn are distinct.
Construct with the aid of the polynomials P,Q,R a polynomial T of degree
n that has the roots x3

1, x
3
2, . . . , x

3
n.

12. (USS 4)IMO6 We are given 100 points in the plane, no three of which are
on the same line. Consider all triangles that have all vertices chosen from
the 100 given points. Prove that at most 70% of these triangles are acute
angled.
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3.13 The Thirteenth IMO

Bratislava–Zilina, Czechoslovakia, July 10–21, 1971

3.13.1 Contest Problems

First Day (July 13)

1. Prove that the following statement is true for n = 3 and for n = 5, and
false for all other n > 2:
For any real numbers a1, a2, . . . , an,

(a1 − a2)(a1 − a3) · · · (a1 − an) + (a2 − a1)(a2 − a3) · · · (a2 − an) + . . .

+(an − a1)(an − a2) · · · (an − an−1) ≥ 0.

2. Given a convex polyhedron P1 with 9 vertices A1, . . . , A9, let us denote
by P2, P3, . . . , P9 the images of P1 under the translations mapping the
vertex A1 to A2, A3, . . . , A9, respectively. Prove that among the polyhedra
P1, . . . , P9 at least two have a common interior point.

3. Prove that the sequence 2n−3 (n > 1) contains a subsequence of numbers
relatively prime in pairs.

Second Day (July 14)

4. Given a tetrahedron ABCD all of whose faces are acute-angled triangles,
set

σ = �DAB + �BCD − �ABC − �CDA.

Consider all closed broken lines XY ZTX whose vertices X,Y, Z, T lie in
the interior of segments AB,BC,CD,DA respectively. Prove that:
(a) if σ �= 0, then there is no broken line XY ZT of minimal length;
(b) if σ = 0, then there are infinitely many such broken lines of minimal

length. That length equals 2AC sin(α/2), where

α = �BAC + �CAD + �DAB.

5. Prove that for every natural number m ≥ 1 there exists a finite set Sm of
points in the plane satisfying the following condition: If A is any point in
Sm, then there are exactly m points in Sm whose distance to A equals 1.

6. Consider the n× n array of nonnegative integers⎛⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 · · · a2n

...
...

...
an1 an2 . . . ann

⎞⎟⎟⎟⎠ ,

with the following property: If an element aij is zero, then the sum of the
elements of the ith row and the jth column is greater than or equal to n.
Prove that the sum of all the elements is greater than or equal to ≥ 1

2n
2.
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3.13.2 Longlisted Problems

1. (AUT 1) The points S(i, j) with integer Cartesian coordinates 0 < i ≤ n,
0 < j ≤ m, m ≤ n, form a lattice. Find the number of:
(a) rectangles with vertices on the lattice and sides parallel to the coor-

dinate axes;
(b) squares with vertices on the lattice and sides parallel to the coordinate

axes;
(c) squares in total, with vertices on the lattice.

2. (AUT 2) Let us denote by s(n) =
∑

d|n d the sum of divisors of a natural

number n (1 and n included). If n has at most 5 distinct prime divisors,
prove that s(n) < 77

16n. Also prove that there exists a natural number n
for which s(n) > 76

16n holds.

3. (AUT 3) Let a, b, c be positive real numbers, 0 < a ≤ b ≤ c. Prove that
for any positive real numbers x, y, z the following inequality holds:

(ax+ by + cz)
(x
a

+
y

b
+
z

c

)
≤ (x + y + z)2

(a+ c)2

4ac
.

4. (BUL 1) Let xn = 22n

+ 1 and let m be the least common multiple of
x2, x3, . . . , x1971. Find the last digit of m.

5. (BUL 2) (SL71-1).
Original formulation. Consider a sequence of polynomials X0(x), X1(x),
X2(x), . . . , Xn(x), . . . , where X0(x) = 2, X1(x) = x, and for every n ≥ 1
the following equality holds:

Xn(x) =
1

x
(Xn+1(x) +Xn−1(x)) .

Prove that (x2 − 4)[X2
n(x) − 4] is a square of a polynomial for all n ≥ 0.

6. (BUL 3) Let squares be constructed on the sides BC,CA,AB of a trian-
gle ABC, all to the outside of the triangle, and let A1, B1, C1 be their cen-
ters. Starting from the triangle A1B1C1 one analogously obtains a triangle
A2B2C2. If S, S1, S2 denote the areas of triangles ABC,A1B1C1, A2B2C2,
respectively, prove that S = 8S1 − 4S2.

7. (BUL 4) In a triangle ABC, letH be its orthocenter, O its circumcenter,
and R its circumradius. Prove that:
(a) |OH | = R

√
1 − 8 cosα cosβ cos γ, where α, β, γ are angles of the tri-

angle ABC;
(b) O ≡ H if and only if ABC is equilateral.

8. (BUL 5) (SL71-2).
Original formulation. Prove that for every natural number n ≥ 1 there
exists an infinite sequence M1,M2, . . . ,Mk, . . . of distinct points in the
plane such that for all i, exactly n among these points are at distance 1
from Mi.
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9. (BUL 6) The base of an inclined prism is a triangle ABC. The per-
pendicular projection of B1, one of the top vertices, is the midpoint of
BC. The dihedral angle between the lateral faces through BC and AB is
α, and the lateral edges of the prism make an angle β with the base. If
r1, r2, r3 are exradii of a perpendicular section of the prism, assuming that
in ABC, cos2A + cos2B + cos2 C = 1, ∠A < ∠B < ∠C, and BC = a,
calculate r1r2 + r1r3 + r2r3.

10. (CUB 1) In how many different ways can three knights be placed on a
chessboard so that the number of squares attacked would be maximal?

11. (CUB 2) Prove that n! cannot be the square of any natural number.

12. (CUB 3) A system of n numbers x1, x2, . . . , xn is given such that

x1 = logxn−1
xn, x2 = logxn

x1, . . . , xn = logxn−2
xn−1.

Prove that
∏n

k=1 xk = 1.

13. (CUB 4) One Martian, one Venusian, and one Human reside on Pluton.
One day they make the following conversation:
Martian : I have spent 1/12 of my life on Pluton.
Human : I also have.

Venusian : Me too.
Martian : But Venusian and I have spend much more time here than

you, Human.
Human : That is true. However, Venusian and I are of the same age.

Venusian : Yes, I have lived 300 Earth years.
Martian : Venusian and I have been on Pluton for the past 13 years.

It is known that Human and Martian together have lived 104 Earth years.
Find the ages of Martian, Venusian, and Human.5

14. (GBR 1) Note that 83 − 73 = 169 = 132 and 13 = 22 + 32. Prove that
if the difference between two consecutive cubes is a square, then it is the
square of the sum of two consecutive squares.

15. (GBR 2) Let ABCD be a convex quadrilateral whose diagonals intersect
at O at an angle θ. Let us set OA = a, OB = b, OC = c, and OD = d,
c > a > 0, and d > b > 0.
Show that if there exists a right circular cone with vertex V , with the
properties:
(1) its axis passes through O, and
(2) its curved surface passes through A,B,C and D, then

OV 2 =
d2b2(c+ a)2 − c2a2(d+ b)2

ca(d− b)2 − db(c− a)2
.

5 The numbers in the problem are not necessarily in base 10.
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Show also that if c+a
d+b lies between ca

db and
√

ca
db , and c−a

d−b = ca
db , then for

a suitable choice of θ, a right circular cone exists with properties (1) and
(2).

16. (GBR 3) (SL71-4).
Original formulation. Two (intersecting) circles are given and a point P
through which it is possible to draw a straight line on which the circles
intercept two equal chords. Describe a construction by straightedge and
compass for the straight line and prove the validity of your construction.

17. (GDR 1) (SL71-3).
Original formulation. Find all solutions of the system

x+ y + z = 3,

x3 + y3 + z3 = 15,

x5 + y5 + z5 = 83.

18. (GDR 2) Let a1, a2, . . . , an be positive numbers, mg = (a1a2 · · · an)1/n

their geometric mean, and ma = (a1 + a2 + · · · + an)/n their arithmetic
mean. Prove that

(1 +mg)
n ≤ (1 + a1) · · · (1 + an) ≤ (1 +ma)n.

19. (GDR 3) In a triangle P1P2P3 let PiQi be the altitude from Pi for
i = 1, 2, 3 (Qi being the foot of the altitude). The circle with diameter
PiQi meets the two corresponding sides at two points different from Pi.
Denote the length of the segment whose endpoints are these two points
by li. Prove that l1 = l2 = l3.

20. (GDR 4) LetM be the circumcenter of a triangleABC. The line through
M perpendicular to CM meets the lines CA and CB at Q and P respec-
tively. Prove that

CP

CM

CQ

CM

AB

PQ
= 2.

21. (HUN 1) (SL71-5).

22. (HUN 2) We are given an n× n board, where n is an odd number. In
each cell of the board either +1 or −1 is written. Let ak and bk denote the
products of numbers in the kth row and in the kth column respectively.
Prove that the sum a1 + a2 + · · ·+ an + b1 + b2 + · · ·+ bn cannot be equal
to zero.

23. (HUN 3) Find all integer solutions of the equation

x2 + y2 = (x− y)3.

24. (HUN 4) Let A, B, and C denote the angles of a triangle. If sin2A +
sin2B + sin2 C = 2, prove that the triangle is right-angled.



78 3 Problems

25. (HUN 5) Let ABC,AA1A2, BB1B2, CC1C2 be four equilateral triangles
in the plane satisfying only that they are all positively oriented (i.e., in
the counterclockwise direction). Denote the midpoints of the segments
A2B1, B2C1, C2A1 by P,Q,R in this order. Prove that the triangle PQR
is equilateral.

26. (HUN 6) An infinite set of rectangles in the Cartesian coordinate
plane is given. The vertices of each of these rectangles have coordinates
(0, 0), (p, 0), (p, q), (0, q) for some positive integers p, q. Show that there
must exist two among them one of which is entirely contained in the
other.

27. (HUN 7) (SL71-6).

28. (NET 1) (SL71-7).
Original formulation. A tetrahedron ABCD is given. The sum of angles
of the tetrahedron at the vertex A (namely ∠BAC,∠CAD,∠DAB) is de-
noted by α, and β, γ, δ are defined analogously. Let P,Q,R, S be variable
points on edges of the tetrahedron: P on AD, Q on BD, R on BC, and
S on AC, none of them at some vertex of ABCD. Prove that:
(a) if α+ β �= 2π, then PQ+QR+RS + SP attains no minimal value;
(b) if α+ β = 2π, then

AB sin
α

2
= CD sin

γ

2
and PQ+QR+RS + SP ≥ 2AB sin

α

2
.

29. (NET 2) A rhombus with its incircle is given. At each vertex of the
rhombus a circle is constructed that touches the incircle and two edges of
the rhombus. These circles have radii r1, r2, while the incircle has radius
r. Given that r1 and r2 are natural numbers and that r1r2 = r, find r1, r2,
and r.

30. (NET 3) Prove that the system of equations

2yz + x− y − z = a,
2xz − x+ y − z = a,
2xy − x− y + z = a,

a being a parameter, cannot have five distinct solutions. For what values
of a does this system have four distinct integer solutions?

31. (NET 4) (SL71-8).

32. (NET 5) Two half-lines a and b, with the common endpoint O, make an
acute angle α. Let A on a and B on b be points such that OA = OB, and
let b′ be the line through A parallel to b. Let β be the circle with center
B and radius BO. We construct a sequence of half-lines c1, c2, c3, . . . , all
lying inside the angle α, in the following manner:
(i) c1 is given arbitrarily;
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(ii) for every natural number k, the circle β intercepts on ck a segment
that is of the same length as the segment cut on b′ by a and ck+1.

Prove that the angle determined by the lines ck and b has a limit as k
tends to infinity and find that limit.

33. (NET 6) A square 2n × 2n grid is given. Let us consider all possible
paths along grid lines, going from the center of the grid to the border,
such that (1) no point of the grid is reached more than once, and (2) each
of the squares homothetic to the grid having its center at the grid center
is passed through only once.
(a) Prove that the number of all such paths is equal to 4

∏n
i=2(16i− 9).

(b) Find the number of pairs of such paths that divide the grid into two
congruent figures.

(c) How many quadruples of such paths are there that divide the grid into
four congruent parts?

34. (POL 1) (SL71-9).

35. (POL 2) (SL71-10).

36. (POL 3) (SL71-11).

37. (POL 4) Let S be a circle, and α = {A1, . . . , An} a family of open arcs
in S. Let N(α) = n denote the number of elements in α. We say that α
is a covering of S if

⋃n
k=1 Ak ⊃ S.

Let α = {A1, . . . , An} and β = {B1, . . . , Bm} be two coverings of S. Show
that we can choose from the family of all sets Ai ∩ Bj , i = 1, 2, . . . , n,
j = 1, 2, . . . ,m, a covering γ of S such that N(γ) ≤ N(α) +N(β).

38. (POL 5) Let A,B,C be three points with integer coordinates in the
plane and K a circle with radius R passing through A,B,C. Show that
AB·BC·CA ≥ 2R, and if the center ofK is in the origin of the coordinates,
show that AB ·BC · CA ≥ 4R.

39. (POL 6) (SL71-12).

40. (SWE 1) Prove that(
1 − 1

23

)(
1 − 1

33

)(
1 − 1

43

)
· · ·

(
1 − 1

n3

)
>

1

2
, n = 2, 3, . . . .

41. (SWE 2) Consider the set of grid points (m,n) in the plane, m,n inte-
gers. Let σ be a finite subset and define

S(σ) =
∑

(m,n)∈σ

(100 − |m| − |n|).

Find the maximum of S, taken over the set of all such subsets σ.

42. (SWE 3) Let Li, i = 1, 2, 3, be line segments on the sides of an equilateral
triangle, one segment on each side, with lengths li, i = 1, 2, 3. By L∗

i we



80 3 Problems

denote the segment of length li with its midpoint on the midpoint of
the corresponding side of the triangle. Let M(L) be the set of points in
the plane whose orthogonal projections on the sides of the triangle are
in L1, L2, and L3, respectively; M(L∗) is defined correspondingly. Prove
that if l1 ≥ l2 + l3, we have that the area of M(L) is less than or equal to
the area of M(L∗).

43. (SWE 4) Show that for nonnegative real numbers a, b and integers n ≥ 2,

an + bn

2
≥

(
a+ b

2

)n

.

When does equality hold?

44. (SWE 5) (SL71-13).

45. (SWE 6) Let m and n denote integers greater than 1, and let ν(n) be
the number of primes less than or equal to n. Show that if the equation

n
ν(n) = m has a solution, then so does the equation n

ν(n) = m− 1.

46. (USS 1) (SL71-14).

47. (USS 2) (SL71-15).

48. (USS 3) A sequence of real numbers x1, x2, . . . , xn is given such that
xi+1 = xi + 1

30000

√
1 − x2

i , i = 1, 2, . . . , and x1 = 0. Can n be equal to
50000 if xn < 1?

49. (USS 4) Diagonals of a convex quadrilateral ABCD intersect at a
point O. Find all angles of this quadrilateral if �OBA = 30◦,�OCB =
45◦,�ODC = 45◦, and �OAD = 30◦.

50. (USS 5) (SL71-16).

51. (USS 6) Suppose that the sides AB and DC of a convex quadrilateral
ABCD are not parallel. On the sides BC and AD, pairs of points (M,N)
and (K,L) are chosen such that BM = MN = NC and AK = KL = LD.
Prove that the areas of triangles OKM and OLN are different, where O
is the intersection point of AB and CD.

52. (YUG 1) (SL71-17).

53. (YUG 2) Denote by xn(p) the multiplicity of the prime p in the canonical

representation of the number n! as a product of primes. Prove that xn(p)
n <

1
p−1 and limn→∞

xn(p)
n = 1

p−1 .

54. (YUG 3) A set M is formed of
(
2n
n

)
men, n = 1, 2, . . . . Prove that we

can choose a subset P of the set M consisting of n+ 1 men such that one
of the following conditions is satisfied:
(1) every member of the set P knows every other member of the set P ;
(2) no member of the set P knows any other member of the set P .
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55. (YUG 4) Prove that the polynomial x4 + λx3 + µx2 + νx + 1 has no
real roots if λ, µ, ν are real numbers satisfying

|λ| + |µ| + |ν| ≤
√

2.

3.13.3 Shortlisted Problems

1. (BUL 2) Consider a sequence of polynomials P0(x), P1(x), P2(x), . . . ,
Pn(x), . . . , where P0(x) = 2, P1(x) = x and for every n ≥ 1 the following
equality holds:

Pn+1(x) + Pn−1(x) = xPn(x).

Prove that there exist three real numbers a, b, c such that for all n ≥ 1,

(x2 − 4)[P 2
n(x) − 4] = [aPn+1(x) + bPn(x) + cPn−1(x)]

2. (1)

2. (BUL 5)IMO5 Prove that for every natural number m ≥ 1 there exists a
finite set Sm of points in the plane satisfying the following condition: If A
is any point in Sm, then there are exactly m points in Sm whose distance
to A equals 1.

3. (GDR 1) Knowing that the system

x+ y + z = 3,

x3 + y3 + z3 = 15,

x4 + y4 + z4 = 35,

has a real solution x, y, z for which x2 + y2 + z2 < 10, find the value of
x5 + y5 + z5 for that solution.

4. (GBR 3) We are given two mutually tangent circles in the plane, with
radii r1, r2. A line intersects these circles in four points, determining three
segments of equal length. Find this length as a function of r1 and r2 and
the condition for the solvability of the problem.

5. (HUN 1)IMO1 Let a, b, c, d, e be real numbers. Prove that the expression

(a−b)(a−c)(a−d)(a−e)+(b−a)(b−c)(b−d)(b−e)+(c−a)(c−b)(c−d)(c−e)

+ (d− a)(d− b)(d− c)(d− e) + (e− a)(e− b)(e− c)(e− d)

is nonnegative.

6. (HUN 7) Let n ≥ 2 be a natural number. Find a way to assign nat-
ural numbers to the vertices of a regular 2n-gon such that the following
conditions are satisfied:
(1) only digits 1 and 2 are used;
(2) each number consists of exactly n digits;
(3) different numbers are assigned to different vertices;
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(4) the numbers assigned to two neighboring vertices differ at exactly one
digit.

7. (NET 1)IMO4 Given a tetrahedron ABCD whose all faces are acute-
angled triangles, set

σ = �DAB + �BCD − �ABC − �CDA.

Consider all closed broken lines XY ZTX whose vertices X,Y, Z, T lie in
the interior of segments AB,BC,CD,DA respectively. Prove that:
(a) if σ �= 0, then there is no broken line XY ZT of minimal length;
(b) if σ = 0, then there are infinitely many such broken lines of minimal

length. That length equals 2AC sin(α/2), where

α = �BAC + �CAD + �DAB.

8. (NET 4) Determine whether there exist distinct real numbers a, b, c, t
for which:
(i) the equation ax2 + btx+ c = 0 has two distinct real roots x1, x2,
(ii) the equation bx2 + ctx+ a = 0 has two distinct real roots x2, x3,
(iii) the equation cx2 + atx+ b = 0 has two distinct real roots x3, x1.

9. (POL 1) Let Tk = k − 1 for k = 1, 2, 3, 4 and

T2k−1 = T2k−2 + 2k−2, T2k = T2k−5 + 2k (k ≥ 3).

Show that for all k,

1 + T2n−1 =

[
12

7
2n−1

]
and 1 + T2n =

[
17

7
2n−1

]
,

where [x] denotes the greatest integer not exceeding x.

10. (POL 2)IMO3 Prove that the sequence 2n − 3 (n > 1) contains a subse-
quence of numbers relatively prime in pairs.

11. (POL 3) The matrix ⎛⎜⎝ a11 . . . a1n

... · · ·
...

an1 . . . ann

⎞⎟⎠
satisfies the inequality

∑n
j=1 |aj1x1 + · · ·+ ajnxn| ≤ M for each choice of

numbers xi equal to ±1. Show that

|a11 + a22 + · · · + ann| ≤ M.

12. (POL 6) Two congruent equilateral triangles ABC and A′B′C′ in the
plane are given. Show that the midpoints of the segments AA′, BB′, CC′

either are collinear or form an equilateral triangle.
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13. (SWE 5)IMO6 Consider the n× n array of nonnegative integers⎛⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 · · · a2n

...
...

...
an1 an2 . . . ann

⎞⎟⎟⎟⎠ ,

with the following property: If an element aij is zero, then the sum of the
elements of the ith row and the jth column is greater than or equal to n.
Prove that the sum of all the elements is greater than or equal to 1

2n
2.

14. (USS 1) A broken line A1A2 . . . An is drawn in a 50×50 square, so that
the distance from any point of the square to the broken line is less than
1. Prove that its total length is greater than 1248.

15. (USS 2) Natural numbers from 1 to 99 (not necessarily distinct) are
written on 99 cards. It is given that the sum of the numbers on any subset
of cards (including the set of all cards) is not divisible by 100. Show that
all the cards contain the same number.

16. (USS 5)IMO2 Given a convex polyhedron P1 with 9 vertices A1, . . . , A9,
let us denote by P2, P3, . . . , P9 the images of P1 under the translations
mapping the vertex A1 to A2, A3, . . . , A9 respectively. Prove that among
the polyhedra P1, . . . , P9 at least two have a common interior point.

17. (YUG 1) Prove the inequality

a1 + a3

a1 + a2
+
a2 + a4

a2 + a3
+
a3 + a1

a3 + a4
+
a4 + a2

a4 + a1
≥ 4,

where ai > 0, i = 1, 2, 3, 4.
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3.14 The Fourteenth IMO

Warsaw–Toruna, Poland, July 5–17, 1972

3.14.1 Contest Problems

First Day (July 10)

1. A set of 10 positive integers is given such that the decimal expansion of
each of them has two digits. Prove that there are two disjoint subsets of
the set with equal sums of their elements.

2. Prove that for each n ≥ 4 every cyclic quadrilateral can be decomposed
into n cyclic quadrilaterals.

3. Let m and n be nonnegative integers. Prove that (2m)!(2n)!
m!n!(m+n)! is an integer

(0! = 1).

Second Day (July 11)

4. Find all solutions in positive real numbers xi (i = 1, 2, 3, 4, 5) of the fol-
lowing system of inequalities:

(x2
1 − x3x5)(x

2
2 − x3x5) ≤ 0 (i)

(x2
2 − x4x1)(x

2
3 − x4x1) ≤ 0 (ii)

(x2
3 − x5x2)(x

2
4 − x5x2) ≤ 0 (iii)

(x2
4 − x1x3)(x

2
5 − x1x3) ≤ 0 (iv)

(x2
5 − x2x4)(x

2
1 − x2x4) ≤ 0. (v)

5. Let f and ϕ be real functions defined in the interval (−∞,∞) satisfying
the functional equation

f(x+ y) + f(x− y) = 2ϕ(y)f(x),

for arbitrary real x, y (give examples of such functions). Prove that if f(x)
is not identically 0 and |f(x)| ≤ 1 for all x, then |ϕ(x)| ≤ 1 for all x.

6. Given four distinct parallel planes, show that a regular tetrahedron exists
with a vertex on each plane.

3.14.2 Longlisted Problems

1. (BUL 1) Find all integer solutions of the equation

1 + x+ x2 + x3 + x4 = y4.

2. (BUL 2) Find all real values of the parameter a for which the system of
equations
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x4 = yz − x2 + a,

y4 = zx− y2 + a,

z4 = xy − z2 + a,

has at most one real solution.

3. (BUL 3) On a line a set of segments is given of total length less than
n. Prove that every set of n points of the line can be translated in some
direction along the line for a distance smaller than n/2 so that none of
the points remain on the segments.

4. (BUL 4) Given a triangle, prove that the points of intersection of three
pairs of trisectors of the inner angles at the sides lying closest to those
sides are vertices of an equilateral triangle.

5. (BUL 5) Given a pyramid whose base is an n-gon inscribable in a circle,
let H be the projection of the top vertex of the pyramid to its base. Prove
that the projections of H to the lateral edges of the pyramid lie on a circle.

6. (BUL 6) Prove the inequality

(n+ 1) cos
π

n+ 1
− n cos

π

n
> 1

for all natural numbers n ≥ 2.

7. (BUL 7) (SL72-1).

8. (CZS 1) (SL72-2).

9. (CZS 2) Given natural numbers k and n, k ≤ n, n ≥ 3, find the set
of all values in the interval (0, π) that the kth-largest among the interior
angles of a convex ngon can take.

10. (CZS 3) Given five points in the plane, no three of which are collinear,
prove that there can be found at least two obtuse-angled triangles with
vertices at the given points. Construct an example in which there are
exactly two such triangles.

11. (CZS 4) (SL72-3).

12. (CZS 5) A circle k = (S, r) is given and a hexagonAA′BB′CC′ inscribed
in it. The lengths of sides of the hexagon satisfy AA′ = A′B, BB′ = B′C,
CC′ = C′A. Prove that the area P of triangle ABC is not greater than
the area P ′ of triangle A′B′C′. When does P = P ′ hold?

13. (CZS 6) Given a sphere K, determine the set of all points A that are
vertices of some parallelograms ABCD that satisfy AC ≤ BD and whose
entire diagonal BD is contained in K.

14. (GBR 1) (SL72-7).

15. (GBR 2) (SL72-8).
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16. (GBR 3) Consider the set S of all the different odd positive integers
that are not multiples of 5 and that are less than 30m, m being a positive
integer. What is the smallest integer k such that in any subset of k integers
from S there must be two integers one of which divides the other? Prove
your result.

17. (GBR 4) A solid right circular cylinder with height h and base-radius
r has a solid hemisphere of radius r resting upon it. The center of the
hemisphere O is on the axis of the cylinder. Let P be any point on the
surface of the hemisphere and Q the point on the base circle of the cylinder
that is furthest from P (measuring along the surface of the combined
solid). A string is stretched over the surface from P to Q so as to be as
short as possible. Show that if the string is not in a plane, the straight
line PO when produced cuts the curved surface of the cylinder.

18. (GBR 5) We have p players participating in a tournament, each player
playing against every other player exactly once. A point is scored for
each victory, and there are no draws. A sequence of nonnegative integers
s1 ≤ s2 ≤ s3 ≤ · · · ≤ sp is given. Show that it is possible for this sequence
to be a set of final scores of the players in the tournament if and only if

(i)

p∑
i=1

si =
1

2
p(p− 1) and (ii) for all k < p,

k∑
i=1

si ≥ 1

2
k(k − 1).

19. (GBR 6) Let S be a subset of the real numbers with the following
properties:
(i) If x ∈ S and y ∈ S, then x− y ∈ S;
(ii) If x ∈ S and y ∈ S, then xy ∈ S;
(iii) S contains an exceptional number x′ such that there is no number y

in S satisfying x′y + x′ + y = 0;
(iv) If x ∈ S and x �= x′, there is a number y in S such that xy+x+y = 0.
Show that
(a) S has more than one number in it;
(b) x′ �= −1 leads to a contradiction;
(c) x ∈ S and x �= 0 implies 1/x ∈ S.

20. (GDR 1) (SL72-4).

21. (GDR 2) (SL72-5).

22. (GDR 3) (SL72-6).

23. (MON 1) Does there exist a 2n-digit number a2na2n−1 . . . a1 (for an
arbitrary n) for which the following equality holds:

a2n . . . a1 = (an . . . a1)
2?

24. (MON 2) The diagonals of a convex 18-gon are colored in 5 different
colors, each color appearing on an equal number of diagonals. The diag-
onals of one color are numbered 1, 2, . . . . One randomly chooses one-fifth
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of all the diagonals. Find the number of possibilities for which among the
chosen diagonals there exist exactly n pairs of diagonals of the same color
and with fixed indices i, j.

25. (NET 1) We consider n real variables xi (1 ≤ i ≤ n), where n is an
integer and n ≥ 2. The product of these variables will be denoted by p,
their sum by s, and the sum of their squares by S. Furthermore, let α be
a positive constant. We now study the inequality ps ≤ Sα. Prove that it
holds for every n-tuple (xi) if and only if α = n+1

2 .

26. (NET 2) (SL72-9).

27. (NET 3) (SL72-10).

28. (NET 4) The lengths of the sides of a rectangle are given to be odd
integers. Prove that there does not exist a point within that rectangle
that has integer distances to each of its four vertices.

29. (NET 5) Let A,B,C be points on the sides B1C1, C1A1, A1B1 of a
triangle A1B1C1 such that A1A,B1B,C1C are the bisectors of angles of
the triangle. We have that AC = BC and A1C1 �= B1C1.
(a) Prove that C1 lies on the circumcircle of the triangle ABC.
(b) Suppose that �BAC1 = π/6; find the form of triangle ABC.

30. (NET 6) (SL72-11).

31. (ROM 1) Find values of n ∈ N for which the fraction 3n−2
2n−3 is reducible.

32. (ROM 2) If n1, n2, . . . , nk are natural numbers and n1+n2+· · ·+nk = n,
show that

max
n1+···+nk=n

n1n2 · · ·nk = (t+ 1)rtk−r ,

where t = [n/k] and r is the remainder of n upon division by k; i.e.,
n = tk + r, 0 ≤ r ≤ k − 1.

33. (ROM 3) A rectangle ABCD is given whose sides have lengths 3 and
2n, where n is a natural number. Denote by U(n) the number of ways in
which one can cut the rectangle into rectangles of side lengths 1 and 2.
(a) Prove that U(n+ 1) + U(n− 1) = 4U(n);
(b) Prove that U(n) = 1

2
√

3
[(
√

3 + 1)(2 +
√

3)n + (
√

3 − 1)(2 −
√

3)n].

34. (ROM 4) If p is a prime number greater than 2 and a, b, c integers not
divisible by p, prove that the equation

ax2 + by2 = pz + c

has an integer solution.

35. (ROM 5) (a) Prove that for a, b, c, d ∈ R, m ∈ [1,+∞) with am+ b =
−cm+ d = m,

(i)
√
a2 + b2 +

√
c2 + d2 +

√
(a− c)2 + (b− d)2 ≥ 4m2

1+m2 , and
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(ii) 2 ≤ 4m2

1+m2 < 4.
(b) Express a, b, c, d as functions of m so that there is equality in (1).

36. (ROM 6) A finite number of parallel segments in the plane are given with
the property that for any three of the segments there is a line intersecting
each of them. Prove that there exists a line that intersects all the given
segments.

37. (SWE 1) On a chessboard (8 × 8 squares with sides of length 1) two
diagonally opposite corner squares are taken away. Can the board now be
covered with nonoverlapping rectangles with sides of lengths 1 and 2?

38. (SWE 2) Congruent rectangles with sides m (cm) and n (cm) are
given (m,n positive integers). Characterize the rectangles that can be
constructed from these rectangles (in the fashion of a jigsaw puzzle). (The
number of rectangles is unbounded.)

39. (SWE 3) How many tangents to the curve y = x3 − 3x (y = x3 + px)
can be drawn from different points in the plane?

40. (SWE 4) Prove the inequalities

u

v
≤ sinu

sin v
≤ π

2

u

v
, for 0 ≤ u < v ≤ π

2
.

41. (SWE 5) The ternary expansion x = 0.10101010 . . . is given. Give the
binary expansion of x.
Alternatively, transform the binary expansion y = 0.110110110 . . . into a
ternary expansion.

42. (SWE 6) The decimal number 13101 is given. It is instead written as a
ternary number. What are the two last digits of this ternary number?

43. (USS 1) A fixed point A inside a circle is given. Consider all chords
XY of the circle such that ∠XAY is a right angle, and for all such chords
construct the point M symmetric to A with respect to XY . Find the locus
of points M .

44. (USS 2) (SL72-12).

45. (USS 3) Let ABCD be a convex quadrilateral whose diagonals AC and
BD intersect at point O. Let a line through O intersect segment AB at
M and segment CD at N . Prove that the segment MN is not longer than
at least one of the segments AC and BD.

46. (USS 4) Numbers 1, 2, . . . , 16 are written in a 4×4 square matrix so that
the sum of the numbers in every row, every column, and every diagonal
is the same and furthermore that the numbers 1 and 16 lie in opposite
corners. Prove that the sum of any two numbers symmetric with respect
to the center of the square equals 17.
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3.14.3 Shortlisted Problems

1. (BUL 7)IMO5 Let f and ϕ be real functions defined on the set R satisfying
the functional equation

f(x+ y) + f(x− y) = 2ϕ(y)f(x), (1)

for arbitrary real x, y (give examples of such functions). Prove that if f(x)
is not identically 0 and |f(x)| ≤ 1 for all x, then |ϕ(x)| ≤ 1 for all x.

2. (CZS 1) We are given 3n points A1, A2, . . . , A3n in the plane, no three
of them collinear. Prove that one can construct n disjoint triangles with
vertices at the points Ai.

3. (CZS 4) Let x1, x2, . . . , xn be real numbers satisfying x1+x2+· · ·+xn =
0. Let m be the least and M the greatest among them. Prove that

x2
1 + x2

2 + · · · + x2
n ≤ −nmM.

4. (GDR 1) Let n1, n2 be positive integers. Consider in a plane E two dis-
joint sets of points M1 and M2 consisting of 2n1 and 2n2 points, respec-
tively, and such that no three points of the union M1 ∪M2 are collinear.
Prove that there exists a straightline g with the following property: Each
of the two half-planes determined by g on E (g not being included in
either) contains exactly half of the points of M1 and exactly half of the
points of M2.

5. (GDR 2) Prove the following assertion: The four altitudes of a tetrahe-
dron ABCD intersect in a point if and only if

AB2 + CD2 = BC2 +AD2 = CA2 +BD2.

6. (GDR 3) Show that for any n �≡ 0 (mod 10) there exists a multiple of
n not containing the digit 0 in its decimal expansion.

7. (GBR 1)IMO6 (a) A plane π passes through the vertex O of the regular
tetrahedron OPQR. We define p, q, r to be the signed distances of
P,Q,R from π measured along a directed normal to π. Prove that

p2 + q2 + r2 + (q − r)2 + (r − p)2 + (p− q)2 = 2a2,

where a is the length of an edge of a tetrahedron.
(b) Given four parallel planes not all of which are coincident, show that

a regular tetrahedron exists with a vertex on each plane.

8. (GBR 2)IMO3 Let m and n be nonnegative integers. Prove that m!n!(m+
n)! divides (2m)!(2n)!.

9. (NET 2)IMO4 Find all solutions in positive real numbers xi (i =
1, 2, 3, 4, 5) of the following system of inequalities:



90 3 Problems

(x2
1 − x3x5)(x

2
2 − x3x5) ≤ 0, (i)

(x2
2 − x4x1)(x

2
3 − x4x1) ≤ 0, (ii)

(x2
3 − x5x2)(x

2
4 − x5x2) ≤ 0, (iii)

(x2
4 − x1x3)(x

2
5 − x1x3) ≤ 0, (iv)

(x2
5 − x2x4)(x

2
1 − x2x4) ≤ 0. (v)

10. (NET 3)IMO2 Prove that for each n ≥ 4 every cyclic quadrilateral can
be decomposed into n cyclic quadrilaterals.

11. (NET 6) Consider a sequence of circles K1,K2,K3,K4, . . . of radii
r1, r2, r3, r4, . . . , respectively, situated inside a triangle ABC. The circle
K1 is tangent to AB and AC; K2 is tangent to K1, BA, and BC; K3 is
tangent to K2, CA, and CB; K4 is tangent to K3, AB, and AC; etc.
(a) Prove the relation

r1 cot
1

2
A+ 2

√
r1r2 + r2 cot

1

2
B = r

(
cot

1

2
A+ cot

1

2
B

)
,

where r is the radius of the incircle of the triangle ABC. Deduce the
existence of a t1 such that

r1 = r cot
1

2
B cot

1

2
C sin2 t1.

(b) Prove that the sequence of circles K1,K2, . . . is periodic.

12. (USS 2)IMO1 A set of 10 positive integers is given such that the decimal
expansion of each of them has two digits. Prove that there are two disjoint
subsets of the set with equal sums of their elements.
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3.15 The Fifteenth IMO

Moscow, Soviet Union, July 5–16, 1973

3.15.1 Contest Problems

First Day (July 9)

1. Let O be a point on the line l and
−−→
OP1,

−−→
OP2, . . . ,

−−→
OPn unit vectors such

that points P1, P2, . . . , Pn and line l lie in the same plane and all points
Pi lie in the same half-plane determined by l. Prove that if n is odd, then∥∥∥−−→OP1 +

−−→
OP2 + · · · + −−→

OPn

∥∥∥ ≥ 1.

(
∥∥∥−−→OM∥∥∥ is the length of vector

−−→
OM).

2. Does there exist a finite set M of points in space, not all in the same
plane, such that for each two points A,B ∈ M there exist two other
points C,D ∈ M such that lines AB and CD are parallel but not equal?

3. Determine the minimum of a2 + b2 if a and b are real numbers for which
the equation

x4 + ax3 + bx2 + ax+ 1 = 0

has at least one real solution.

Second Day (July 10)

4. A soldier has to investigate whether there are mines in an area that has
the form of equilateral triangle. The radius of his detector’s range is equal
to one-half the altitude of the triangle. The soldier starts from one vertex
of the triangle. Determine the smallest path through which the soldier has
to pass in order to check the entire region.

5. Let G be the set of functions f : R → R of the form f(x) = ax+ b, where
a and b are real numbers and a �= 0. Suppose that G satisfies the following
conditions:
(1) If f, g ∈ G, then g ◦ f ∈ G, where (g ◦ f)(x) = g[f(x)].
(2) If f ∈ G and f(x) = ax + b, then the inverse f−1 of f belongs to G

(f−1(x) = (x− b)/a).
(3) For each f ∈ G there exists a number xf ∈ R such that f(xf ) = xf .
Prove that there exists a number k ∈ R such that f(k) = k for all f ∈ G.

6. Let a1, a2, . . . , an be positive numbers and q a given real number, 0 < q <
1. Find n real numbers b1, b2, . . . , bn that satisfy:
(1) ak < bk for all k = 1, 2, . . . , n;

(2) q <
bk+1

bk
< 1

q for all k = 1, 2, . . . , n− 1;

(3) b1 + b2 + · · · + bn <
1+q
1−q (a1 + a2 + · · · + an).
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3.15.2 Shortlisted Problems

1. (BUL 6) Let a tetrahedron ABCD be inscribed in a sphere S. Find the
locus of points P inside the sphere S for which the equality

AP

PA1
+

BP

PB1
+

CP

PC1
+

DP

PD1
= 4

holds, where A1, B1, C1, and D1 are the intersection points of S with the
lines AP,BP,CP, and DP , respectively.

2. (CZS 1) Given a circle K, find the locus of vertices A of parallelograms
ABCD with diagonals AC ≤ BD, such that BD is inside K.

3. (CZS 6)IMO1 Prove that the sum of an odd number of unit vectors passing
through the same point O and lying in the same half-plane whose border
passes through O has length greater than or equal to 1.

4. (GBR 1) Let P be a set of 7 different prime numbers and C a set of
28 different composite numbers each of which is a product of two (not
necessarily different) numbers from P . The set C is divided into 7 disjoint
four-element subsets such that each of the numbers in one set has a com-
mon prime divisor with at least two other numbers in that set. How many
such partitions of C are there?

5. (FRA 2) A circle of radius 1 is located in a right-angled trihedron and
touches all its faces. Find the locus of centers of such circles.

6. (POL 2)IMO2 Does there exist a finite set M of points in space, not all in
the same plane, such that for each two points A,B ∈ M there exist two
other points C,D ∈ M such that lines AB and CD are parallel?

7. (POL 3) Given a tetrahedron ABCD, let x = AB · CD, y = AC ·BD,
and z = AD · BC. Prove that there exists a triangle with edges x, y, z.

8. (ROM 1) Prove that there are exactly
(

k
[k/2]

)
arrays a1, a2, . . . , ak+1 of

nonnegative integers such that a1 = 0 and |ai−ai+1| = 1 for i = 1, 2, . . . , k.

9. (ROM 2) Let Ox,Oy,Oz be three rays, and G a point inside the trihe-
dron Oxyz. Consider all planes passing throughG and cutting Ox,Oy,Oz
at points A,B,C, respectively. How is the plane to be placed in order to
yield a tetrahedron OABC with minimal perimeter?

10. (SWE 3)IMO6 Let a1, a2, . . . , an be positive numbers and q a given real
number, 0 < q < 1. Find n real numbers b1, b2, . . . , bn that satisfy:
(1) ak < bk for all k = 1, 2, . . . , n;

(2) q < bk+1

bk
< 1

q for all k = 1, 2, . . . , n− 1;

(3) b1 + b2 + · · · + bn <
1+q
1−q (a1 + a2 + · · · + an).

11. (SWE 4)IMO3 Determine the minimum of a2 + b2 if a and b are real
numbers for which the equation
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x4 + ax3 + bx2 + ax+ 1 = 0

has at least one real solution.

12. (SWE 6) Consider the two square matrices

A =

⎡⎢⎢⎢⎢⎣
1 1 1 1 1
1 1 1 −1 −1
1 −1 −1 1 1
1 −1 −1 −1 1
1 1 −1 1 −1

⎤⎥⎥⎥⎥⎦ and B =

⎡⎢⎢⎢⎢⎣
1 1 1 1 1
1 1 1 −1 −1
1 1 −1 1 −1
1 −1 −1 1 1
1 −1 1 −1 1

⎤⎥⎥⎥⎥⎦
with entries 1 and −1. The following operations will be called elementary:
(1) Changing signs of all numbers in one row;
(2) Changing signs of all numbers in one column;
(3) Interchanging two rows (two rows exchange their positions);
(4) Interchanging two columns.
Prove that the matrix B cannot be obtained from the matrix A using
these operations.

13. (YUG 4) Find the sphere of maximal radius that can be placed inside
every tetrahedron that has all altitudes of length greater than or equal to
1.

14. (YUG 5)IMO4 A soldier has to investigate whether there are mines in an
area that has the form of an equilateral triangle. The radius of his detector
is equal to one-half of an altitude of the triangle. The soldier starts from
one vertex of the triangle. Determine the shortest path that the soldier
has to traverse in order to check the whole region.

15. (CUB 1) Prove that for all n ∈ N the following is true:

2n
n∏

k=1

sin
kπ

2n+ 1
=

√
2n+ 1.

16. (CUB 2) Given a, θ ∈ R, m ∈ N, and P (x) = x2m−2|a|mxm cos θ+a2m,
factorize P (x) as a product of m real quadratic polynomials.

17. (POL 1)IMO5 Let F be a nonempty set of functions f : R → R of the
form f(x) = ax+ b, where a and b are real numbers and a �= 0. Suppose
that F satisfies the following conditions:
(1) If f, g ∈ F , then g ◦ f ∈ F , where (g ◦ f)(x) = g[f(x)].
(2) If f ∈ F and f(x) = ax + b, then the inverse f−1 of f belongs to F

(f−1(x) = (x− b)/a).
(3) None of the functions f(x) = x+ c, for c �= 0, belong to F .
Prove that there exists x0 ∈ R such that f(x0) = x0 for all f ∈ F .
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3.16 The Sixteenth IMO

Erfurt–Berlin, DR Germany, July 4–17, 1974

3.16.1 Contest Problems

First Day (July 8)

1. Alice, Betty, and Carol took the same series of examinations. There was
one grade of A, one grade of B, and one grade of C for each examination,
where A,B,C are different positive integers. The final test scores were

Alice Betty Carol
20 10 9

If Betty placed first in the arithmetic examination, who placed second in
the spelling examination?

2. Let 
ABC be a triangle. Prove that there exists a point D on the side
AB such that CD is the geometric mean of AD and BD if and only if

√
sinA sinB ≤ sin

C

2
.

3. Prove that there does not exist a natural number n for which the number

n∑
k=0

(
2n+ 1

2k + 1

)
23k

is divisible by 5.

Second Day (July 9)

4. Consider a partition of an 8×8 chessboard into p rectangles whose interiors
are disjoint such that each rectangle contains an equal number of white
and black cells. Assume that a1 < a2 < · · · < ap, where ai denotes
the number of white cells in the ith rectangle. Find the maximal p for
which such a partition is possible and for that p determine all possible
corresponding sequences a1, a2, . . . , ap.

5. If a, b, c, d are arbitrary positive real numbers, find all possible values of

S =
a

a+ b + d
+

b

a+ b+ c
+

c

b+ c+ d
+

d

a+ c+ d
.

6. Let P (x) be a polynomial with integer coefficients. If n(P ) is the number
of (distinct) integers k such that P 2(k) = 1, prove that n(P )−deg(P ) ≤ 2,
where deg(P ) denotes the degree of the polynomial P .
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3.16.2 Longlisted Problems

1. (BUL 1) (SL74-11).

2. (BUL 2) Let {un} be the Fibonacci sequence, i.e., u0 = 0, u1 = 1,
un = un−1 + un−2 for n > 1. Prove that there exist infinitely many prime
numbers p that divide up−1.

3. (BUL 3) Let ABCD be an arbitrary quadrilateral. Let squaresABB1A2,
BCC1B2, CDD1C2, DAA1D2 be constructed in the exterior of the
quadrilateral. Furthermore, let AA1PA2 and CC1QC2 be parallelograms.
For any arbitrary point P in the interior of ABCD, parallelograms RASC
and RPTQ are constructed. Prove that these two parallelograms have two
vertices in common.

4. (BUL 4) Let Ka,Kb,Kc with centers Oa, Ob, Oc be the excircles of a
triangle ABC, touching the interiors of the sides BC,CA,AB at points
Ta, Tb, Tc respectively.
Prove that the lines OaTa, ObTb, OcTc are concurrent in a point P for
which POa = POb = POc = 2R holds, where R denotes the circumradius
of ABC. Also prove that the circumcenter O of ABC is the midpoint of
the segment PJ , where J is the incenter of ABC.

5. (BUL 5) A straight cone is given inside a rectangular parallelepiped
B, with the apex at one of the vertices, say T , of the parallelepiped, and
the base touching the three faces opposite to T . Its axis lies at the long
diagonal through T . If V1 and V2 are the volumes of the cone and the
parallelepiped respectively, prove that

V1 ≤
√

3πV2

27
.

6. (CUB 1) Prove that the product of two natural numbers with their sum
cannot be the third power of a natural number.

7. (CUB 2) Let P be a prime number and n a natural number. Prove that
the product

N =
1

pn2

2n−1∏
i=1; 2�i

[
((p− 1)i)!

(
p2i

pi

)]
is a natural number that is not divisible by p.

8. (CUB 3) (SL74-9).

9. (CZS 1) Solve the following system of linear equations with unknown
x1, . . . , xn (n ≥ 2) and parameters c1, . . . , cn:
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2x1 −x2 = c1;
−x1 +2x2 −x3 = c2;

−x2 +2x3 −x4 = c3;
. . . . . . . . . . . .

−xn−2 +2xn−1 −xn = cn−1;
−xn−1 +2xn = cn.

10. (CZS 2) A regular octagon P is given whose incircle k has diameter 1.
About k is circumscribed a regular 16-gon, which is also inscribed in P ,
cutting from P eight isosceles triangles. To the octagon P , three of these
triangles are added so that exactly two of them are adjacent and no two
of them are opposite to each other. Every 11-gon so obtained is said to be
P ′.
Prove the following statement: Given a finite set M of points lying in P
such that every two points of this set have a distance not exceeding 1, one
of the 11-gons P ′ contains all of M .

11. (CZS 3) Given a line p and a triangle 
 in the plane, construct an
equilateral triangle one of whose vertices lies on the line p, while the other
two halve the perimeter of 
.

12. (CZS 4) A circle K with radius r, a point D on K, and a convex
angle with vertex S and rays a and b are given in the plane. Construct
a parallelogram ABCD such that A and B lie on a and b respectively,
SA+ SB = r, and C lies on K.

13. (FIN 1) Prove that 2147 − 1 is divisible by 343.

14. (FIN 2) Let n and k be natural numbers and a1, a2, . . . , an positive real
numbers satisfying a1 + a2 + · · · + an = 1. Prove that

a−k
1 + a−k

2 + · · · + a−k
n ≥ nk+1.

15. (FIN 3) (SL74-10).

16. (GBR 1) A pack of 2n cards contains n different pairs of cards. Each
pair consists of two identical cards, either of which is called the twin of
the other. A game is played between two players A and B. A third person
called the dealer shuffles the pack and deals the cards one by one face
upward onto the table. One of the players, called the receiver, takes the
card dealt, provided he does not have already its twin. If he does already
have the twin, his opponent takes the dealt card and becomes the receiver.
A is initially the receiver and takes the first card dealt. The player who
first obtains a complete set of n different cards wins the game. What
fraction of all possible arrangements of the pack lead to A winning? Prove
the correctness of your answer.

17. (GBR 2) Show that there exists a set S of 15 distinct circles on the
surface of a sphere, all having the same radius and such that 5 touch
exactly 5 others, 5 touch exactly 4 others, and 5 touch exactly 3 others.
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18. (GBR 3) (SL74-5).

19. (GBR 4) (Alternative to GBR 2) Prove that there exists, for n ≥ 4, a
set S of 3n equal circles in spacethat can be partitioned into three subsets
s5, s4, and s3, each containing n circles, such that each circle in sr touches
exactly r circles in S.

20. (NET 1) For which natural numbers n do there exist n natural numbers
ai (1 ≤ i ≤ n) such that

∑n
i=1 a

−2
i = 1?

21. (NET 2) Let M be a nonempty subset of Z+ such that for every element
x in M , the numbers 4x and [

√
x] also belong to M . Prove that M = Z+.

22. (NET 3) (SL74-8).

23. (POL 1) (SL74-2).

24. (POL 2) (SL74-7).

25. (POL 3) Let f : R → R be of the form f(x) = x + ε sinx, where
0 < |ε| ≤ 1. Define for any x ∈ R,

xn = f ◦ · · · ◦ f︸ ︷︷ ︸
n times

(x).

Show that for every x ∈ R there exists an integer k such that limn→∞ xn

= kπ.

26. (POL 4) Let g(k) be the number of partitions of a k-element set M , i.e.,
the number of families {A1, A2, . . . , As} of nonempty subsets of M such
that Ai ∩Aj = ∅ for i �= j and

⋃n
i=1Ai = M . Prove that

nn ≤ g(2n) ≤ (2n)2n for every n.

27. (ROM 1) Let C1 and C2 be circles in the same plane, P1 and P2 arbitrary
points on C1 and C2 respectively, and Q the midpoint of segment P1P2.
Find the locus of points Q as P1 and P2 go through all possible positions.

Alternative version. Let C1, C2, C3 be three circles in the same plane. Find
the locus of the centroid of triangle P1P2P3 as P1, P2, and P3 go through
all possible positions on C1, C2, and C3 respectively.

28. (ROM 2) Let M be a finite set and P = {M1,M2, . . . ,Mk} a partition

of M (i.e.,
⋃k

i=1Mi = M , Mi �= ∅, Mi ∩Mj = ∅ for all i, j ∈ {1, 2, . . . , k},
i �= j). We define the following elementary operation on P :

Choose i, j ∈ {1, 2, . . . , k}, such that i �= j and Mi has a elements and
Mj has b elements such that a ≥ b. Then take b elements from Mi and
place them into Mj , i.e., Mj becomes the union of itself unifies and a
b-element subset of Mi, while the same subset is subtracted from Mi

(if a = b, Mi is thus removed from the partition).
Let a finite set M be given. Prove that the property “for every partition P
of M there exists a sequence P = P1, P2, . . . , Pr such that Pi+1 is obtained
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from Pi by an elementary operation and Pr = {M}” is equivalent to “the
number of elements of M is a power of 2.”

29. (ROM 3) Let A,B,C,D be points in space. If for every point M on the
segment AB the sum

area(AMC)+area(CMD)+area(DMB)

is constant show that the points A,B,C,D lie in the same plane.

30. (ROM 4) (SL74-6).

31. (ROM 5) Let yα =
∑n

i=1 x
α
i , where α �= 0, y > 0, xi > 0 are real

numbers, and let λ �= α be a real number. Prove that yλ >
∑n

i=1 x
λ
i if

α(λ − α) > 0, and yλ <
∑n

i=1 x
λ
i if α(λ− α) < 0.

32. (SWE 1) Let a1, a2, . . . , an be n real numbers such that 0 < a ≤ ak ≤ b
for k = 1, 2, . . . , n. If

m1 =
1

n
(a1 + a2 + · · · + an) and m2 =

1

n
(a2

1 + a2
2 + · · · + a2

n),

prove that m2 ≤ (a+b)2

4ab m2
1 and find a necessary and sufficient condition

for equality.

33. (SWE 2) Let a be a real number such that 0 < a < 1, and let n be a
positive integer. Define the sequence a0, a1, a2, . . . , an recursively by

a0 = a; ak+1 = ak +
1

n
a2

k for k = 0, 1, . . . , n− 1.

Prove that there exists a real number A, depending on a but independent
of n, such that

0 < n(A− an) < A3.

34. (SWE 3) (SL74-3).

35. (SWE 4) If p and q are distinct prime numbers, then there are integers
x0 and y0 such that 1 = px0 + qy0. Determine the maximum value of
b − a, where a and b are positive integers with the following property:
If a ≤ t ≤ b, and t is an integer, then there are integers x and y with
0 ≤ x ≤ q − 1 and 0 ≤ y ≤ p− 1 such that t = px+ qy.

36. (SWE 5) Consider infinite diagrams

D =

∣∣∣∣∣∣∣∣∣
...

...
...

n20 n21 n22 . . .
n10 n11 n12 . . .
n00 n01 n02 . . .

where all but a finite number of the integers nij , i = 0, 1, 2, . . . , j =
0, 1, 2, . . . , are equal to 0. Three elements of a diagram are called adjacent
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if there are integers i and j with i ≥ 0 and j ≥ 0 such that the three
elements are
(i) nij , ni,j+1, ni,j+2, or
(ii) nij , ni+1,j , ni+2,j , or
(iii) ni+2,j , ni+1,j+1, ni,j+2.
An elementary operation on a diagram is an operation by which three
adjacent elements nij are changed into n′

ij in such a way that |nij −n′
ij | =

1. Two diagrams are called equivalent if one of them can be changed
into the other by a finite sequence of elementary operations. How many
inequivalent diagrams exist?

37. (USA 1) Let a, b, and c denote the three sides of a billiard table in the
shape of an equilateral triangle. A ball is placed at the midpoint of side
a and then propelled toward side b with direction defined by the angle θ.
For what values of θ will the ball strike the sides b, c, a in that order?

38. (USA 2) Consider the binomial coefficients
(
n
k

)
= n!

k!(n−k)! (k = 1,

2, . . . , n−1). Determine all positive integers n for which
(
n
1

)
,
(
n
2

)
, . . . ,

(
n

n−1

)
are all even numbers.

39. (USA 3) Let n be a positive integer, n ≥ 2, and consider the polynomial
equation

xn − xn−2 − x+ 2 = 0.

For each n, determine all complex numbers x that satisfy the equation
and have modulus |x| = 1.

40. (USA 4) (SL74-1).

41. (USA 5) Through the circumcenter O of an arbitrary acute-angled trian-
gle, chords A1A2, B1B2, C1C2 are drawn parallel to the sides BC,CA,AB
of the triangle respectively. If R is the radius of the circumcircle, prove
that

A1O ·OA2 +B1O ·OB2 + C1O ·OC2 = R2.

42. (USS 1) (SL74-12).

43. (USS 2) An (n2 +n+1)× (n2 +n+1) matrix of zeros and ones is given.
If no four ones are vertices of a rectangle, prove that the number of ones
does not exceed (n+ 1)(n2 + n+ 1).

44. (USS 3) We are given n mass points of equal mass in space. We define
a sequence of points O1, O2, O3, . . . as follows: O1 is an arbitrary point
(within the unit distance of at least one of the n points); O2 is the center
of gravity of all the n given points that are inside the unit sphere centered
at O1; O3 is the center of gravity of all of the n given points that are
inside the unit sphere centered at O2; etc. Prove that starting from some
m, all points Om, Om+1, Om+2, . . . coincide.

45. (USS 4) (SL74-4).
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46. (USS 5) Outside an arbitrary triangle ABC, triangles ADB and BCE
are constructed such that ∠ADB = ∠BEC = 90◦ and ∠DAB =
∠EBC = 30◦. On the segment AC the point F with AF = 3FC is
chosen. Prove that

∠DFE = 90◦ and ∠FDE = 30◦.

47. (VIE 1) Given two points A,B outside of a given plane P , find the
positions of points M in the plane P for which the ratio MA

MB takes a
minimum or maximum.

48. (VIE 2) Let a be a number different from zero. For all integers n define
Sn = an + a−n. Prove that if for some integer k both Sk and Sk+1 are
integers, then for each integer n the number Sn is an integer.

49. (VIE 3) Determine an equation of third degree with integral coefficients
having roots sin π

14 , sin 5π
14 and sin −3π

14 .

50. (YUG 1) Let m and n be natural numbers with m > n. Prove that

2(m− n)2(m2 − n2 + 1) ≥ 2m2 − 2mn+ 1.

51. (YUG 2) There are n points on a flat piece of paper, any two of them
at a distance of at least 2 from each other. An inattentive pupil spills
ink on a part of the paper such that the total area of the damaged part
equals 3/2. Prove that there exist two vectors of equal length less than 1
and with their sum having a given direction, such that after a translation
by either of these two vectors no points of the given set remain in the
damaged area.

52. (YUG 3) A fox stands in the center of the field which has the form of an
equilateral triangle, and a rabbit stands at one of its vertices. The fox can
move through the whole field, while the rabbit can move only along the
border of the field. The maximal speeds of the fox and rabbit are equal
to u and v, respectively. Prove that:
(a) If 2u > v, the fox can catch the rabbit, no matter how the rabbit

moves.
(b) If 2u ≤ v, the rabbit can always run away from the fox.

3.16.3 Shortlisted Problems

1. I 1 (USA 4)IMO1 Alice, Betty, and Carol took the same series of exam-
inations. There was one grade of A, one grade of B, and one grade of C
for each examination, where A,B,C are different positive integers. The
final test scores were

Alice Betty Carol
20 10 9

If Betty placed first in the arithmetic examination, who placed second in
the spelling examination?
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2. I 2 (POL 1) Prove that the squares with sides 1/1, 1/2, 1/3, . . . may be
put into the square with side 3/2 in such a way that no two of them have
any interior point in common.

3. I 3 (SWE 3)IMO6 Let P (x) be a polynomial with integer coefficients. If
n(P ) is the number of (distinct) integers k such that P 2(k) = 1, prove
that

n(P ) − deg(P ) ≤ 2,

where deg(P ) denotes the degree of the polynomial P .

4. I 4 (USS 4) The sum of the squares of five real numbers a1, a2, a3, a4, a5

equals 1. Prove that the least of the numbers (ai − aj)
2, where i, j =

1, 2, 3, 4, 5 and i �= j, does not exceed 1/10.

5. I 5 (GBR 3) Let Ar, Br, Cr be points on the circumference of a given
circle S. From the triangle ArBrCr, called 
r, the triangle 
r+1 is ob-
tained by constructing the pointsAr+1, Br+1, Cr+1 on S such thatAr+1Ar

is parallel to BrCr, Br+1Br is parallel to CrAr, and Cr+1Cr is parallel
to ArBr. Each angle of 
1 is an integer number of degrees and those
integers are not multiples of 45. Prove that at least two of the triangles

1,
2, . . . ,
15 are congruent.

6. I 6 (ROM 4)IMO3 Does there exist a natural number n for which the
number

n∑
k=0

(
2n+ 1

2k + 1

)
23k

is divisible by 5?

7. II 1 (POL 2) Let ai, bi be coprime positive integers for i = 1, 2, . . . , k,
and m the least common multiple of b1, . . . , bk. Prove that the greatest
common divisor of a1

m
b1
, . . . , ak

m
bk

equals the greatest common divisor of
a1, . . . , ak.

8. II 2 (NET 3)IMO5 If a, b, c, d are arbitrary positive real numbers, find all
possible values of

S =
a

a+ b + d
+

b

a+ b+ c
+

c

b+ c+ d
+

d

a+ c+ d
.

9. II 3 (CUB 3) Let x, y, z be real numbers each of whose absolute value
is different from 1/

√
3 such that x+ y + z = xyz. Prove that

3x− x3

1 − 3x2
+

3y − y3

1 − 3y2
+

3z − z3

1 − 3z2
=

3x− x3

1 − 3x2
· 3y − y3

1 − 3y2
· 3z − z3

1 − 3z2
.

10. II 4 (FIN 3)IMO2 Let 
ABC be a triangle. Prove that there exists a
point D on the side AB such that CD is the geometric mean of AD and
BD if and only if

√
sinA sinB ≤ sin C

2 .
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11. II 5 (BUL 1)IMO4 Consider a partition of an 8 × 8 chessboard into p
rectangles whose interiors are disjoint such that each of them has an equal
number of white and black cells. Assume that a1 < a2 < · · · < ap, where ai

denotes the number of white cells in the ith rectangle. Find the maximal p
for which such a partition is possible and for that p determine all possible
corresponding sequences a1, a2, . . . , ap.

12. II 6 (USS 1) In a certain language words are formed using an alphabet
of three letters. Some words of two or more letters are not allowed, and
any two such distinct words are of different lengths. Prove that one can
form a word of arbitrary length that does not contain any nonallowed
word.
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3.17 The Seventeenth IMO

Burgas–Sofia, Bulgaria, 1975

3.17.1 Contest Problems

First Day (July 7)

1. Let x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn be two n-tuples of
numbers. Prove that

n∑
i=1

(xi − yi)
2 ≤

n∑
i=1

(xi − zi)
2

is true when z1, z2, . . . , zn denote y1, y2, . . . , yn taken in another order.

2. Let a1, a2, a3, . . . be any infinite increasing sequence of positive integers.
(For every integer i > 0, ai+1 > ai.) Prove that there are infinitely manym
for which positive integers x, y, h, k can be found such that 0 < h < k < m
and am = xah + yak.

3. On the sides of an arbitrary triangle ABC, triangles BPC, CQA, and
ARB are externally erected such that

�PBC = �CAQ = 45◦,
�BCP = �QCA = 30◦,
�ABR = �BAR = 15◦.

Prove that �QRP = 90◦ and QR = RP .

Second Day (July 8)

4. Let A be the sum of the digits of the number 44444444 and B the sum of
the digits of the number A. Find the sum of the digits of the number B.

5. Is it possible to plot 1975 points on a circle with radius 1 so that the
distance between any two of them is a rational number (distances have to
be measured by chords)?

6. The function f(x, y) is a homogeneous polynomial of the nth degree in x
and y. If f(1, 0) = 1 and for all a, b, c,

f(a+ b, c) + f(b+ c, a) + f(c+ a, b) = 0,

prove that f(x, y) = (x− 2y)(x+ y)n−1.

3.17.2 Shortlisted Problems

1. (FRA) There are six ports on a lake. Is it possible to organize a series
of routes satisfying the following conditions:
(i) Every route includes exactly three ports;
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(ii) No two routes contain the same three ports;
(iii) The series offers exactly two routes to each tourist who desires to visit

two different arbitrary ports?

2. (CZS)IMO1 Let x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn be two
n-tuples of numbers. Prove that

n∑
i=1

(xi − yi)
2 ≤

n∑
i=1

(xi − zi)
2

is true when z1, z2, . . . , zn denote y1, y2, . . . , yn taken in another order.

3. (USA) Find the integer represented by
[∑109

n=1 n
−2/3

]
. Here [x] denotes

the greatest integer less than or equal to x (e.g. [
√

2] = 1).

4. (SWE) Let a1, a2, . . . , an, . . . be a sequence of real numbers such that
0 ≤ an ≤ 1 and an − 2an+1 + an+2 ≥ 0 for n = 1, 2, 3, . . . . Prove that

0 ≤ (n+ 1)(an − an+1) ≤ 2 for n = 1, 2, 3, . . . .

5. (SWE) Let M be the set of all positive integers that do not contain the
digit 9 (base 10). If x1, . . . , xn are arbitrary but distinct elements in M ,
prove that

n∑
j=1

1

xj
< 80.

6. (USS)IMO4 Let A be the sum of the digits of the number 1616 and B
the sum of the digits of the number A. Find the sum of the digits of the
number B without calculating 1616.

7. (GDR) Prove that from x+ y = 1 (x, y ∈ R) it follows that

xm+1
n∑

j=0

(
m+ j

j

)
yj + yn+1

m∑
i=0

(
n+ i

i

)
xi = 1 (m,n = 0, 1, 2, . . . ).

8. (NET)IMO3 On the sides of an arbitrary triangle ABC, triangles BPC,
CQA, and ARB are externally erected such that

�PBC = �CAQ = 45◦,
�BCP = �QCA = 30◦,
�ABR = �BAR = 15◦.

Prove that �QRP = 90◦ and QR = RP .

9. (NET) Let f(x) be a continuous function defined on the closed interval
0 ≤ x ≤ 1. Let G(f) denote the graph of f(x): G(f) = {(x, y) ∈ R2 | 0 ≤
x ≤ 1, y = f(x)}. Let Ga(f) denote the graph of the translated function
f(x − a) (translated over a distance a), defined by Ga(f) = {(x, y) ∈
R2 | a ≤ x ≤ a + 1, y = f(x − a)}. Is it possible to find for every a,
0 < a < 1, a continuous function f(x), defined on 0 ≤ x ≤ 1, such that
f(0) = f(1) = 0 and G(f) and Ga(f) are disjoint point sets?
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10. (GBR)IMO6 The function f(x, y) is a homogeneous polynomial of the nth
degree in x and y. If f(1, 0) = 1 and for all a, b, c,

f(a+ b, c) + f(b+ c, a) + f(c+ a, b) = 0,

prove that f(x, y) = (x− 2y)(x+ y)n−1.

11. (GBR)IMO2 Let a1, a2, a3, . . . be any infinite increasing sequence of pos-
itive integers. (For every integer i > 0, ai+1 > ai.) Prove that there are
infinitely many m for which positive integers x, y, h, k can be found such
that 0 < h < k < m and am = xah + yak.

12. (GRE) Consider on the first quadrant of the trigonometric circle the
arcs AM1 = x1, AM2 = x2, AM3 = x3, . . . , AMν = xν , such that x1 <
x2 < x3 < · · · < xν . Prove that

ν−1∑
i=0

sin 2xi −
ν−1∑
i=0

sin(xi − xi+1) <
π

2
+

ν−1∑
i=0

sin(xi + xi+1).

13. (ROM) Let A0, A1, . . . , An be points in a plane such that
(i) A0A1 ≤ 1

2A1A2 ≤ · · · ≤ 1
2n−1An−1An and

(ii) 0 < �A0A1A2 < �A1A2A3 < · · · < �An−2An−1An < 180◦,
where all these angles have the same orientation. Prove that the segments
AkAk+1, AmAm+1 do not intersect for each k and n such that 0 ≤ k ≤
m− 2 < n− 2.

14. (YUG) Let x0 = 5 and xn+1 = xn + 1
xn

(n = 0, 1, 2, . . . ). Prove that
45 < x1000 < 45, 1.

15. (USS)IMO5 Is it possible to plot 1975 points on a circle with radius 1 so
that the distance between any two of them is a rational number (distances
have to be measured by chords)?



106 3 Problems

3.18 The Eighteenth IMO

Wienna–Linz, Austria, 1976

3.18.1 Contest Problems

First Day (July 12)

1. In a convex quadrangle with area 32 cm2, the sum of the lengths of two
nonadjacent edges and of the length of one diagonal is equal to 16 cm.
What is the length of the other diagonal?

2. Let P1(x) = x2 − 2, Pj(x) = P1(Pj−1(x)), j = 2, 3, . . . . Show that for
arbitrary n, the roots of the equation Pn(x) = x are real and different
from one another.

3. A rectangular box can be filled completely with unit cubes. If one places
cubes with volume 2 in the box such that their edges are parallel to the
edges of the box, one can fill exactly 40% of the box. Determine all possible
(interior) sizes of the box.

Second Day (July 13)

4. Find the largest number obtainable as the product of positive integers
whose sum is 1976.

5. Let a set of p equations be given,

a11x1 + · · · + a1qxq = 0,
a21x1 + · · · + a2qxq = 0,

...
ap1x1 + · · · + apqxq = 0,

with coefficients aij satisfying aij = −1, 0, or +1 for all i = 1, . . . , p and
j = 1, . . . , q. Prove that if q = 2p, there exists a solution x1, . . . , xq of this
system such that all xj (j = 1, . . . , q) are integers satisfying |xj | ≤ q and
xj �= 0 for at least one value of j.

6. For all positive integral n, un+1 = un(u2
n−1−2)−u1, u0 = 2, and u1 = 2 1

2 .
Prove that

3 log2 [un] = 2n − (−1)n,

where [x] is the integral part of x.

3.18.2 Longlisted Problems

1. (BUL 1) (SL76-1).

2. (BUL 2) Let P be a set of n points and S a set of l segments. It is
known that:
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(i) No four points of P are coplanar.
(ii) Any segment from S has its endpoints at P .
(iii) There is a point, say g, in P that is the endpoint of a maximal number

of segments from S and that is not a vertex of a tetrahedron having
all its edges in S.

Prove that l ≤ n2

3 .

3. (BUL 3) (SL76-2).

4. (BUL 4) Find all pairs of natural numbers (m,n) for which 2m · 3n + 1
is the square of some integer.

5. (BUL 5) Let ABCDS be a pyramid with four faces and with ABCD
as a base, and let a plane α through the vertex A meet its edges SB and
SD at points M and N , respectively. Prove that if the intersection of the
plane α with the pyramid ABCDS is a parallelogram, then

SM · SN > BM ·DN.

6. (CZS 1) For each point X of a given polytope, denote by f(X) the sum
of the distances of the point X from all the planes of the faces of the
polytope.
Prove that if f attains its maximum at an interior point of the polytope,
then f is constant.

7. (CZS 2) Let P be a fixed point and T a given triangle that contains the
point P . Translate the triangle T by a given vector v and denote by T ′

this new triangle. Let r, R, respectively, be the radii of the smallest disks
centered at P that contain the triangles T , T ′, respectively.
Prove that

r + |v| ≤ 3R

and find an example to show that equality can occur.

8. (CZS 3) (SL76-3).

9. (CZS 4) Find all (real) solutions of the system

3x1 − x2 − x3 − x5 = 0,

−x1 + 3x2 − x4 − x6 = 0,

−x1 + 3x3 − x4 − x7 = 0,

−x2 − x3 + 3x4 − x8 = 0,

−x1 + 3x5 − x6 − x7 = 0,

−x2 − x5 + 3x6 − x8 = 0,

−x3 − x5 + 3x7 − x8 = 0,

−x4 − x6 − x7 + 3x8 = 0.
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10. (FIN 1) Show that the reciprocal of any number of the form 2(m2 +
m + 1), where m is a positive integer, can be represented as a sum of
consecutive terms in the sequence (aj)

∞
j=1,

aj =
1

j(j + 1)(j + 2)
.

11. (FIN 2) (SL76-9).

12. (FIN 3) Five points lie on the surface of a ball of unit radius. Find the
maximum of the smallest distance between any two of them.

13. (GBR 1a) (SL76-4).

14. (GBR 1b) A sequence {un} of integers is defined by

u1 = 2, u2 = u3 = 7,

un+1 = unun−1 − un−2, for n ≥ 3.

Prove that for each n ≥ 1, un differs by 2 from an integral square.

15. (GBR 2) Let ABC and A′B′C′ be any two coplanar triangles. Let L be
a point such that AL‖BC, A′L‖B′C′, and M,N similarly defined. The
line BC meets B′C′ at P , and similarly defined are Q and R. Prove that
PL, QM , RN are concurrent.

16. (GBR 3) Prove that there is a positive integer n such that the decimal
representation of 7n contains a block of at leastm consecutive zeros, where
m is any given positive integer.

17. (GBR 4) Show that there exists a convex polyhedron with all its vertices
on the surface of a sphere and with all its faces congruent isosceles triangles
whose ratio of sides are

√
3 :

√
3 : 2.

18. (GDR 1) Prove that the number 191976 + 761976:

(a) is divisible by the (Fermat) prime number F4 = 224

+ 1;
(b) is divisible by at least four distinct primes other than F4.

19. (GDR 2) For a positive integer n, let 6(n) be the natural number whose
decimal representation consists of n digits 6. Let us define, for all natural
numbers m, k with 1 ≤ k ≤ m,[

m
k

]
=

6(m) · 6(m−1) · · · 6(m−k+1)

6(1) · 6(2) · · · 6(k)
.

Prove that for all m, k,

[
m
k

]
is a natural number whose decimal repre-

sentation consists of exactly k(m+ k − 1) − 1 digits.

20. (GDR 3) Let (an), n = 0, 1, . . ., be a sequence of real numbers such that
a0 = 0 and
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a3
n+1 =

1

2
a2

n − 1, n = 0, 1, . . . .

Prove that there exists a positive number q, q < 1, such that for all
n = 1, 2, . . . ,

|an+1 − an| ≤ q|an − an−1|,
and give one such q explicitly.

21. (GDR 4) Find the largest positive real number p (if it exists) such that
the inequality

x2
1 + x2

2 + · · · + x2
n ≥ p(x1x2 + x2x3 + · · · + xn−1xn) (1)

is satisfied for all real numbers xi, and (a) n = 2; (b) n = 5.
Find the largest positive real number p (if it exists) such that the inequal-
ity (1) holds for all real numbers xi and all natural numbers n, n ≥ 2.

22. (GDR 5) A regular pentagon A1A2A3A4A5 with side length s is given.
At each point Ai a sphere Ki of radius s/2 is constructed. There are two
spheres K1

′ and K2
′ eah of radius s/2 touching all the five spheres Ki.

Decide whether K1
′ and K2

′ intersect each other, touch each other, or
have no common points.

23. (NET 1) Prove that in a Euclidean plane there are infinitely many
concentric circles C such that all triangles inscribed in C have at least
one irrational side.

24. (NET 2) Let 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1. Prove that for all A ≥ 1
there exists an interval I of length 2 n

√
A such that for all x ∈ I,

|(x− x1)(x− x2) · · · (x− xn)| ≤ A.

25. (NET 3) (SL76-5).

26. (NET 4) (SL76-6).

27. (NET 5) In a plane three points P,Q,R, not on a line, are given. Let
k, l,m be positive numbers. Construct a triangle ABC whose sides pass
through P , Q, and R such that

P divides the segment AB in the ratio 1 : k,
Q divides the segment BC in the ratio 1 : l, and
R divides the segment CA in the ratio 1 : m.

28. (POL 1a) Let Q be a unit square in the plane: Q = [0, 1] × [0, 1]. Let
T : Q → Q be defined as follows:

T (x, y) =

{
(2x, y/2) if 0 ≤ x ≤ 1/2;
(2x− 1, y/2 + 1/2) if 1/2 < x ≤ 1.

Show that for every disk D ⊂ Q there exists an integer n > 0 such that
T n(D) ∩D �= ∅.
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29. (POL 1b) (SL76-7).

30. (POL 2) Prove that if P (x) = (x−a)kQ(x), where k is a positive integer,
a is a nonzero real number, Q(x) is a nonzero polynomial, then P (x) has
at least k + 1 nonzero coefficients.

31. (POL 3) Into every lateral face of a quadrangular pyramid a circle is
inscribed. The circles inscribed into adjacent faces are tangent (have one
point in common). Prove that the points of contact of the circles with the
base of the pyramid lie on a circle.

32. (POL 4) We consider the infinite chessboard covering the whole plane.
In every field of the chessboard there is a nonnegative real number. Every
number is the arithmetic mean of the numbers in the four adjacent fields
of the chessboard. Prove that the numbers occurring in the fields of the
chessboard are all equal.

33. (SWE 1) A finite set of points P in the plane has the following prop-
erty: Every line through two points in P contains at least one more point
belonging to P . Prove that all points in P lie on a straight line.

34. (SWE 2) Let {an}∞0 and {bn}∞0 be two sequences determined by the
recursion formulas

an+1 = an + bn,

bn+1 = 3an + bn, n = 0, 1, 2, . . . ,

and the initial values a0 = b0 = 1. Prove that there exists a uniquely
determined constant c such that n|can−bn| < 2 for all nonnegative integers
n.

35. (SWE 3) (SL76-8).

36. (USA 1) Three concentric circles with common center O are cut by a
common chord in successive points A,B,C. Tangents drawn to the circles
at the points A,B,C enclose a triangular region. If the distance from point
O to the common chord is equal to p, prove that the area of the region
enclosed by the tangents is equal to

AB · BC · CA
2p

.

37. (USA 2) From a square board 11 squares long and 11 squares wide, the
central square is removed. Prove that the remaining 120 squares cannot
be covered by 15 strips each 8 units long and one unit wide.

38. (USA 3) Let x =
√
a +

√
b, where a and b are natural numbers, x is

not an integer, and x < 1976. Prove that the fractional part of x exceeds
10−19.76.

39. (USA 4) In 
ABC, the inscribed circle is tangent to side BC at X .
Segment AX is drawn. Prove that the line joining the midpoint of segment
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AX to the midpoint of sideBC passes through the center I of the inscribed
circle.

40. (USA 5) Let g(x) be a fixed polynomial and define f(x) by f(x) =
x2 + xg(x3). Show that f(x) is not divisible by x2 − x+ 1.

41. (USA 6) (SL76-10).

42. (USS 1) For a point O inside a triangle ABC, denote by A1, B1, C1

the respective intersection points of AO,BO,CO with the corresponding
sides. Let n1 = AO

A1O , n2 = BO
B1O , n3 = CO

C1O . What possible values of
n1, n2, n3 can all be positive integers?

43. (USS 2) Prove that if for a polynomial P (x, y) we have

P (x− 1, y − 2x+ 1) = P (x, y),

then there exists a polynomial Φ(x) with P (x, y) = Φ(y − x2).

44. (USS 3) A circle of radius 1 rolls around a circle of radius
√

2. Initially,
the tangent point is colored red. Afterwards, the red points map from one
circle to another by contact. How many red points will be on the bigger
circle when the center of the smaller one has made n circuits around the
bigger one?

45. (USS 4) We are given n (n ≥ 5) circles in a plane. Suppose that every
three of them have a common point. Prove that all n circles have a common
point.

46. (USS 5) For a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0, prove the inequality

a4 + b4 + c4 + d4 + 2abcd ≥ a2b2 + a2c2 + a2d2 + b2c2 + b2d2 + c2d2.

47. (VIE 1) (SL76-11).

48. (VIE 2) (SL76-12).

49. (VIE 3) Determine whether there exist 1976 nonsimilar triangles with
angles α, β, γ, each of them satisfying the relations

sinα+ sinβ + sin γ

cosα+ cosβ + cos γ
=

12

7
and sinα sinβ sin γ =

12

25
.

50. (VIE 4) Find a function f(x) defined for all real values of x such that
for all x,

f(x+ 2) − f(x) = x2 + 2x+ 4,

and if x ∈ [0, 2), then f(x) = x2.

51. (YUG 1) Four swallows are catching a fly. At first, the swallows are
at the four vertices of a tetrahedron, and the fly is in its interior. Their
maximal speeds are equal. Prove that the swallows can catch the fly.
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3.18.3 Shortlisted Problems

1. (BUL 1) Let ABC be a triangle with bisectors AA1, BB1, CC1 (A1 ∈
BC, etc.) and M their common point. Consider the triangles MB1A,
MC1A,MC1B,MA1B,MA1C,MB1C, and their inscribed circles. Prove
that if four of these six inscribed circles have equal radii, then AB =
BC = CA.

2. (BUL 3) Let a0, a1, . . . , an, an+1 be a sequence of real numbers satisfying
the following conditions:

a0 = an+1 = 0,

|ak−1 − 2ak + ak+1| ≤ 1 (k = 1, 2, . . . , n).

Prove that |ak| ≤ k(n+1−k)
2 (k = 0, 1, . . . , n+ 1).

3. (CZS 3)IMO1 In a convex quadrangle with area 32 cm2, the sum of the
lengths of two nonadjacent edges and of the length of one diagonal is equal
to 16 cm.
(a) What is the length of the other diagonal?
(b) What are the lengths of the edges of the quadrangle if the perimeter

is a minimum?
(c) Is it possible to choose the edges in such a way that the perimeter is

a maximum?

4. (GBR 1a)IMO6 For all positive integral n, un+1 = un(u2
n−1 − 2) − u1,

u0 = 2, and u1 = 5/2. Prove that

3 log2[un] = 2n − (−1)n,

where [x] is the integral part of x.

5. (NET 3)IMO5 Let a set of p equations be given,

a11x1 + · · · + a1qxq = 0,
a21x1 + · · · + a2qxq = 0,

...
ap1x1 + · · · + apqxq = 0,

with coefficients aij satisfying aij = −1, 0, or +1 for all i = 1, . . . , p and
j = 1, . . . , q. Prove that if q = 2p, there exists a solution x1, . . . , xq of this
system such that all xj (j = 1, . . . , q) are integers satisfying |xj | ≤ q and
xj �= 0 for at least one value of j.

6. (NET 4)IMO3 A rectangular box can be filled completely with unit cubes.
If one places cubes with volume 2 in the box such that their edges are
parallel to the edges of the box, one can fill exactly 40% of the box.
Determine all possible (interior) sizes of the box.
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7. (POL 1b) Let I = (0, 1] be the unit interval of the real line. For a given
number a ∈ (0, 1) we define a map T : I → I by the formula

T (x, y) =

{
x+ (1 − a) if 0 < x ≤ a,
x− a if a < x ≤ 1.

Show that for every interval J ⊂ I there exists an integer n > 0 such that
T n(J) ∩ J �= ∅.

8. (SWE 3) Let P be a polynomial with real coefficients such that P (x) > 0
if x > 0. Prove that there exist polynomials Q and R with nonnegative

coefficients such that P (x) = Q(x)
R(x) if x > 0.

9. (FIN 2)IMO2 Let P1(x) = x2 − 2, Pj(x) = P1(Pj−1(x)), j = 2, 3, . . . .
Show that for arbitrary n the roots of the equation Pn(x) = x are real
and different from one another.

10. (USA 6)IMO4 Find the largest number obtainable as the product of pos-
itive integers whose sum is 1976.

11. (VIE 1) Prove that there exist infinitely many positive integers n such
that the decimal representation of 5n contains a block of 1976 consecutive
zeros.

12. (VIE 2) The polynomial 1976(x+x2+· · ·+xn) is decomposed into a sum
of polynomials of the form a1x+ a2x

2 + . . .+ anx
n, where a1, a2, · · · , an

are distinct positive integers not greater than n. Find all values of n for
which such a decomposition is possible.
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3.19 The Nineteenth IMO

Belgrade–Arandjelovac, Yugoslavia, July 1–13, 1977

3.19.1 Contest Problems

First Day (July 6)

1. Equilateral triangles ABK, BCL, CDM , DAN are constructed inside
the square ABCD. Prove that the midpoints of the four segments KL,
LM , MN , NK and the midpoints of the eight segments AK, BK, BL,
CL, CM , DM , DN , AN are the twelve vertices of a regular dodecagon.

2. In a finite sequence of real numbers the sum of any seven successive terms
is negative, and the sum of any eleven successive terms is positive. Deter-
mine the maximum number of terms in the sequence.

3. Let n be a given integer greater than 2, and let Vn be the set of integers
1 + kn, where k = 1, 2, . . . . A number m ∈ Vn is called indecomposable
in Vn if there do not exist numbers p, q ∈ Vn such that pq = m. Prove
that there exists a number r ∈ Vn that can be expressed as the product of
elements indecomposable in Vn in more than one way. (Expressions that
differ only in order of the elements of Vn will be considered the same.)

Second Day (July 7)

4. Let a, b, A,B be given constant real numbers and

f(x) = 1 − a cosx− b sinx−A cos 2x−B sin 2x.

Prove that if f(x) ≥ 0 for all real x, then

a2 + b2 ≤ 2 and A2 +B2 ≤ 1.

5. Let a and b be natural numbers and let q and r be the quotient and
remainder respectively when a2 + b2 is divided by a + b. Determine the
numbers a and b if q2 + r = 1977.

6. Let f : N → N be a function that satisfies the inequality f(n+1) > f(f(n))
for all n ∈ N. Prove that f(n) = n for all natural numbers n.

3.19.2 Longlisted Problems

1. (BUL 1) A pentagon ABCDE inscribed in a circle for which BC < CD
and AB < DE is the base of a pyramid with vertex S. If AS is the longest
edge starting from S, prove that BS > CS.

2. (BUL 2) (SL77-1).
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3. (BUL 3) In a company of n persons, each person has no more than d
acquaintances, and in that company there exists a group of k persons,
k ≥ d, who are not acquainted with each other. Prove that the number of
acquainted pairs is not greater than [n2/4].

4. (BUL 4) We are given n points in space. Some pairs of these points
are connected by line segments so that the number of segments equals
[n2/4], and a connected triangle exists. Prove that any point from which
the maximal number of segments starts is a vertex of a connected triangle.

5. (CZS 1) (SL77-2).

6. (CZS 2) Let x1, x2, . . . , xn (n ≥ 1) be real numbers such that 0 ≤ xj ≤ π,
j = 1, 2, . . . , n. Prove that if

∑n
j=1(cos xj + 1) is an odd integer, then∑n

j=1 sinxj ≥ 1.

7. (CZS 3) Prove the following assertion: If c1, c2, . . . , cn (n ≥ 2) are real
numbers such that

(n− 1)(c21 + c22 + · · · + c2n) = (c1 + c2 + · · · + cn)2,

then either all these numbers are nonnegative or all these numbers are
nonpositive.

8. (CZS 4) A hexahedron ABCDE is made of two regular congruent tetra-
hedra ABCD and ABCE. Prove that there exists only one isometry Z
that maps points A, B, C, D, E onto B, C, A, E, D, respectively. Find
all points X on the surface of hexahedron whose distance from Z(X) is
minimal.

9. (CZS 5) Let ABCD be a regular tetrahedron and Z an isometry map-
ping A, B, C, D into B, C, D, A, respectively. Find the set M of all
points X of the face ABC whose distance from Z(X) is equal to a given
number t. Find necessary and sufficient conditions for the set M to be
nonempty.

10. (FRG 1) (SL77-3).

11. (FRG 2) Let n and z be integers greater than 1 and (n, z) = 1. Prove:
(a) At least one of the numbers zi = 1+z+z2+ · · ·+zi, i = 0, 1, . . . , n−1,

is divisible by n.
(b) If (z−1, n) = 1, then at least one of the numbers zi, i = 0, 1, . . . , n−2,

is divisible by n.

12. (FRG 3) Let z be an integer > 1 and let M be the set of all numbers
of the form zk = 1 + z + · · · + zk, k = 0, 1, . . . . Determine the set T of
divisors of at least one of the numbers zk from M .

13. (FRG 4) (SL77-4).

14. (FRG 5) (SL77-5).
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15. (GDR 1) Let n be an integer greater than 1. In the Cartesian coordinate
system we consider all squares with integer vertices (x, y) such that 1 ≤
x, y ≤ n. Denote by pk (k = 0, 1, 2, . . . ) the number of pairs of points that
are vertices of exactly k such squares. Prove that

∑
k(k − 1)pk = 0.

16. (GDR 2) (SL77-6).

17. (GDR 3) A ball K of radius r is touched from the outside by mutually
equal balls of radius R. Two of these balls are tangent to each other.
Moreover, for two balls K1 and K2 tangent to K and tangent to each
other there exist two other balls tangent to K1, K2 and also to K. How
many balls are tangent to K? For a given r determine R.

18. (GDR 4) Given an isosceles triangle ABC with a right angle at C,
construct the center M and radius r of a circle cutting on segments
AB, BC, CA the segments DE, FG, and HK, respectively, such that
∠DME + ∠FMG + ∠HMK = 180◦ and DE : FG : HK = AB : BC :
CA.

19. (GBR 1) Given any integer m > 1 prove that there exist infinitely
many positive integers n such that the last m digits of 5n are a sequence
am, am−1, . . . , a1 = 5 (0 ≤ aj < 10) in which each digit except the last is
of opposite parity to its successor (i.e., if ai is even, then ai−1 is odd, and
if ai is odd, then ai−1 is even).

20. (GBR 2) (SL77-7).

21. (GBR 3) Given that x1+x2+x3 = y1+y2+y3 = x1y1+x2y2+x3y3 = 0,
prove that

x2
1

x2
1 + x2

2 + x2
3

+
y2
1

y2
1 + y2

2 + y2
3

=
2

3
.

22. (GBR 4) (SL77-8).

23. (HUN 1) (SL77-9).

24. (HUN 2) Determine all real functions f(x) that are defined and contin-
uous on the interval (−1, 1) and that satisfy the functional equation

f(x+ y) =
f(x) + f(y)

1 − f(x)f(y)
(x, y, x+ y ∈ (−1, 1)).

25. (HUN 3) Prove the identity

(z + a)n = zn + a

n∑
k=1

(
n

k

)
(a− kb)k−1(z + kb)n−k.

26. (NET 1) Let p be a prime number greater than 5. Let V be the collection
of all positive integers n that can be written in the form n = kp + 1 or
n = kp− 1 (k = 1, 2, . . . ). A number n ∈ V is called indecomposable in V
if it is impossible to find k, l ∈ V such that n = kl. Prove that there exists
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a number N ∈ V that can be factorized into indecomposable factors in V
in more than one way.

27. (NET 2) (SL77-10).

28. (NET 3) (SL77-11).

29. (NET 4) (SL77-12).

30. (NET 5) A triangle ABC with ∠A = 30◦ and ∠C = 54◦ is given. On
BC a point D is chosen such that ∠CAD = 12◦. On AB a point E is
chosen such that ∠ACE = 6◦. Let S be the point of intersection of AD
and CE. Prove that BS = BC.

31. (POL 1) Let f be a function defined on the set of pairs of nonzero
rational numbers whose values are positive real numbers. Suppose that f
satisfies the following conditions:
(1) f(ab, c) = f(a, c)f(b, c), f(c, ab) = f(c, a)f(c, b);
(2) f(a, 1 − a) = 1.
Prove that f(a, a) = f(a,−a) = 1, f(a, b)f(b, a) = 1.

32. (POL 2) In a room there are nine men. Among every three of them there
are two mutually acquainted. Prove that some four of them are mutually
acquainted.

33. (POL 3) A circleK centered at (0, 0) is given. Prove that for every vector
(a1, a2) there is a positive integer n such that the circle K translated by
the vector n(a1, a2) contains a lattice point (i.e., a point both of whose
coordinates are integers).

34. (POL 4) (SL77-13).

35. (ROM 1) Find all numbers N = a1a2 . . . an for which 9 × a1a2 . . . an =
an . . . a2a1 such that at most one of the digits a1, a2, . . . , an is zero.

36. (ROM 2) Consider a sequence of numbers (a1, a2, . . . , a2n). Define the
operation

S((a1, a2, . . . , a2n)) = (a1a2, a2a3, . . . , a2n−1a2n , a2na1).

Prove that whatever the sequence (a1, a2, . . . , a2n) is, with ai ∈ {−1, 1}
for i = 1, 2, . . . , 2n, after finitely many applications of the operation we
get the sequence (1, 1, . . . , 1).

37. (ROM 3) Let A1, A2, . . . , An+1 be positive integers such that (Ai, An+1)
= 1 for every i = 1, 2, . . . , n. Show that the equation

xA1
1 + xA2

2 + · · · + xAn
n = x

An+1

n+1

has an infinite set of solutions (x1, x2, . . . , xn+1) in positive integers.

38. (ROM 4) Let mj > 0 for j = 1, 2, . . . , n and a1 ≤ · · · ≤ an < b1 ≤ · · · ≤
bn < c1 ≤ · · · ≤ cn be real numbers. Prove:
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j=1

mj(aj + bj + cj)

⎤⎦2

> 3

⎛⎝ n∑
j=1

mj

⎞⎠⎡⎣ n∑
j=1

mj(ajbj + bjcj + cjaj)

⎤⎦ .
39. (ROM 5) Consider 37 distinct points in space, all with integer coordi-

nates. Prove that we may find among them three distinct points such that
their barycenter has integers coordinates.

40. (SWE 1) The numbers 1, 2, 3, . . . , 64 are placed on a chessboard, one
number in each square. Consider all squares on the chessboard of size
2 × 2. Prove that there are at least three such squares for which the sum
of the 4 numbers contained exceeds 100.

41. (SWE 2) A wheel consists of a fixed circular disk and a mobile circular
ring. On the disk the numbers 1, 2, 3, . . . , N are marked, and on the ring
N integers a1, a2, . . . , aN of sum 1
are marked (see the figure). The
ring can be turned into N differ-
ent positions in which the numbers
on the disk and on the ring match
each other. Multiply every number
on the ring with the corresponding
number on the disk and form the
sum of N products. In this way a

a1

a2

a3

a4
··

·

aN

1
2

3
4···

N

sum is obtained for every position of the ring. Prove that the N sums are
different.

42. (SWE 3) The sequence an,k, k = 1, 2, 3, . . . , 2n, n = 0, 1, 2, . . . , is defined
by the following recurrence formula:

a1 = 2, an,k = 2a3
n−1,k, an,k+2n−1 =

1

2
a3

n−1,k

for k = 1, 2, 3, . . . , 2n−1, n = 0, 1, 2, . . . .

Prove that the numbers an,k are all different.

43. (FIN 1) Evaluate

S =

n∑
k=1

k(k + 1) · · · (k + p),

where n and p are positive integers.

44. (FIN 2) Let E be a finite set of points in space such that E is not
contained in a plane and no three points of E are collinear. Show that
E contains the vertices of a tetrahedron T = ABCD such that T ∩ E =
{A,B,C,D} (including interior points of T ) and such that the projection
of A onto the plane BCD is inside a triangle that is similar to the triangle
BCD and whose sides have midpoints B,C,D.
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45. (FIN 2′) (SL77-14).

46. (FIN 3) Let f be a strictly increasing function defined on the set of real
numbers. For x real and t positive, set

g(x, t) =
f(x+ t) − f(x)

f(x) − f(x− t)
.

Assume that the inequalities

2−1 < g(x, t) < 2

hold for all positive t if x = 0, and for all t ≤ |x| otherwise.
Show that

14−1 < g(x, t) < 14

for all real x and positive t.

47. (USS 1) A square ABCD is given. A line passing through A intersects
CD at Q. Draw a line parallel to AQ that intersects the boundary of the
square at points M and N such that the area of the quadrilateral AMNQ
is maximal.

48. (USS 2) The intersection of a plane with a regular tetrahedron with
edge a is a quadrilateral with perimeter P . Prove that 2a ≤ P ≤ 3a.

49. (USS 3) Find all pairs of integers (p, q) for which all roots of the trino-
mials x2 + px+ q and x2 + qx+ p are integers.

50. (USS 4) Determine all positive integers n for which there exists a poly-
nomial Pn(x) of degree n with integer coefficients that is equal to n at n
different integer points and that equals zero at zero.

51. (USS 5) Several segments, which we shall call white, are given, and
the sum of their lengths is 1. Several other segments, which we shall call
black, are given, and the sum of their lengths is 1. Prove that every such
system of segments can be distributed on the segment that is 1.51 long in
the following way: Segments of the same color are disjoint, and segments
of different colors are either disjoint or one is inside the other. Prove
that there exists a system that cannot be distributed in that way on the
segment that is 1.49 long.

52. (USA 1) Two perpendicular chords are drawn through a given interior
point P of a circle with radius R. Determine, with proof, the maximum
and the minimum of the sum of the lengths of these two chords if the
distance from P to the center of the circle is kR.

53. (USA 2) Find all pairs of integers a and b for which

7a+ 14b = 5a2 + 5ab+ 5b2.
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54. (USA 3) If 0 ≤ a ≤ b ≤ c ≤ d, prove that

abbccdda ≥ bacbdcad.

55. (USA 4) Through a point O on the diagonal BD of a parallelogram
ABCD, segments MN parallel to AB, and PQ parallel to AD, are drawn,
with M on AD, and Q on AB. Prove that diagonals AO, BP , DN (ex-
tended if necessary) will be concurrent.

56. (USA 5) The four circumcircles of the four faces of a tetrahedron have
equal radii. Prove that the four faces of the tetrahedron are congruent
triangles.

57. (VIE 1) (SL77-15).

58. (VIE 2) Prove that for every triangle the following inequality holds:

ab+ bc+ ca

4S
≥ cot

π

6
,

where a, b, c are lengths of the sides and S is the area of the triangle.

59. (VIE 3) (SL77-16).

60. (VIE 4) Suppose x0, x1, . . . , xn are integers and x0 > x1 > · · · > xn.
Prove that at least one of the numbers |F (x0)|, |F (x1)|, |F (x2)|, . . . ,
|F (xn)|, where

F (x) = xn + a1x
n−1 + · · · + an, ai ∈ R, i = 1, . . . , n,

is greater than n!
2n .

3.19.3 Shortlisted Problems

1. (BUL 2)IMO6 Let f : N → N be a function that satisfies the inequality
f(n + 1) > f(f(n)) for all n ∈ N. Prove that f(n) = n for all natural
numbers n.

2. (CZS 1) A lattice point in the plane is a point both of whose coordinates
are integers. Each lattice point has four neighboring points: upper, lower,
left, and right. Let k be a circle with radius r ≥ 2, that does not pass
through any lattice point. An interior boundary point is a lattice point
lying inside the circle k that has a neighboring point lying outside k.
Similarly, an exterior boundary point is a lattice point lying outside the
circle k that has a neighboring point lying inside k. Prove that there are
four more exterior boundary points than interior boundary points.

3. (FRG 1)IMO5 Let a and b be natural numbers and let q and r be the
quotient and remainder respectively when a2 + b2 is divided by a + b.
Determine the numbers a and b if q2 + r = 1977.
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4. (FRG 4) Describe all closed bounded figures Φ in the plane any two
points of which are connectable by a semicircle lying in Φ.

5. (FRG 5) There are 2n words of length n over the alphabet {0, 1}. Prove
that the following algorithm generates the sequence w0, w1, . . . , w2n−1 of
all these words such that any two consecutive words differ in exactly one
digit.
(1) w0 = 00 . . .0 (n zeros).
(2) Suppose wm−1 = a1a2 . . . an, ai ∈ {0, 1}. Let e(m) be the exponent

of 2 in the representation of n as a product of primes, and let j =
1 + e(m). Replace the digit aj in the word wm−1 by 1 − aj . The
obtained word is wm.

6. (GDR 2) Let n be a positive integer. How many integer solutions
(i, j, k, l), 1 ≤ i, j, k, l ≤ n, does the following system of inequalities have:

1 ≤ −j + k + l ≤ n
1 ≤ i− k + l ≤ n
1 ≤ i− j + l ≤ n
1 ≤ i+ j − k ≤ n ?

7. (GBR 2)IMO4 Let a, b, A,B be given constant real numbers and

f(x) = 1 − a cosx− b sinx−A cos 2x−B sin 2x.

Prove that if f(x) ≥ 0 for all real x, then

a2 + b2 ≤ 2 and A2 +B2 ≤ 1.

8. (GBR 4) Let S be a convex quadrilateral ABCD and O a point inside
it. The feet of the perpendiculars from O to AB, BC, CD, DA are A1, B1,
C1, D1 respectively. The feet of the perpendiculars from O to the sides of
Si, the quadrilateral AiBiCiDi, are Ai+1Bi+1Ci+1Di+1, where i = 1, 2, 3.
Prove that S4 is similar to S.

9. (HUN 1) For which positive integers n do there exist two polynomials f
and g with integer coefficients of n variables x1, x2, . . . , xn such that the
following equality is satisfied:(

n∑
i=1

xi

)
f(x1, x2, . . . , xn) = g(x2

1, x
2
2, . . . , x

2
n)?

10. (NET 2)IMO3 Let n be an integer greater than 2. Define V = {1 + kn |
k = 1, 2, . . . }. A number p ∈ V is called indecomposable in V if it is not
possible to find numbers q1, q2 ∈ V such that q1q2 = p. Prove that there
exists a number N ∈ V that can be factorized into indecomposable factors
in V in more than one way.
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11. (NET 3) Let n be an integer greater than 1. Define

x1 = n, y1 = 1, xi+1 =

[
xi + yi

2

]
, yi+1 =

[
n

xi+1

]
for i = 1, 2, . . . ,

where [z] denotes the largest integer less than or equal to z. Prove that

min{x1, x2, . . . xn} = [
√
n].

12. (NET 4)IMO1 On the sides of a square ABCD one constructs inwardly
equilateral triangles ABK, BCL, CDM , DAN . Prove that the midpoints
of the four segments KL, LM , MN , NK, together with the midpoints of
the eight segments AK, BK, BL, CL, CM , DM , DN , AN , are the 12
vertices of a regular dodecagon.

13. (POL 4) Let B be a set of k sequences each having n terms equal to 1 or
−1. The product of two such sequences (a1, a2, . . . , an) and (b1, b2, . . . , bn)
is defined as (a1b1, a2b2, . . . , anbn). Prove that there exists a sequence
(c1, c2, . . . , cn) such that the intersection of B and the set containing all
sequences from B multiplied by (c1, c2, . . . , cn) contains at most k2/2n

sequences.

14. (FIN 2‘) Let E be a finite set of points such that E is not contained in
a plane and no three points of E are collinear. Show that at least one of
the following alternatives holds:
(i) E contains five points that are vertices of a convex pyramid having

no other points in common with E;
(ii) some plane contains exactly three points from E.

15. (VIE 1)IMO2 The length of a finite sequence is defined as the number of
terms of this sequence. Determine the maximal possible length of a finite
sequence that satisfies the following condition: The sum of each seven
successive terms is negative, and the sum of each eleven successive terms
is positive.

16. (VIE 3) Let E be a set of n points in the plane (n ≥ 3) whose co-
ordinates are integers such that any three points from E are vertices of
a nondegenerate triangle whose centroid doesn’t have both coordinates
integers. Determine the maximal n.
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3.20 The Twentieth IMO

Bucharest, Romania, 1978

3.20.1 Contest Problems

First Day (July 6)

1. Let n > m ≥ 1 be natural numbers such that the groups of the last three
digits in the decimal representation of 1978m, 1978n coincide. Find the
ordered pair (m,n) of such m,n for which m+ n is minimal.

2. Given any point P in the interior of a sphere with radius R, three mutu-
ally perpendicular segments PA,PB, PC are drawn terminating on the
sphere and having one common vertex in P . Consider the rectangular par-
allelepiped of which PA,PB, PC are coterminal edges. Find the locus of
the point Q that is diagonally opposite P in the parallelepiped when P
and the sphere are fixed.

3. Let {f(n)} be a strictly increasing sequence of positive integers: 0 <
f(1) < f(2) < f(3) < . . . . Of the positive integers not belonging to
the sequence, the nth in order of magnitude is f(f(n)) + 1. Determine
f(240).

Second day (July 7)

4. In a triangle ABC we have AB = AC. A circle is tangent internally to the
circumcircle of ABC and also to the sides AB,AC, at P,Q respectively.
Prove that the midpoint of PQ is the center of the incircle of ABC.

5. Let ϕ : {1, 2, 3, . . .} → {1, 2, 3, . . .} be injective. Prove that for all n,

n∑
k=1

ϕ(k)

k2
≥

n∑
k=1

1

k
.

6. An international society has its members in 6 different countries. The
list of members contains 1978 names, numbered 1, 2, . . . , 1978. Prove that
there is at least one member whose number is the sum of the numbers of
two, not necessarily distinct, of his compatriots.

3.20.2 Longlisted Problems

1. (BUL 1) (SL78-1).

2. (BUL 2) If

f(x) = (x+ 2x2 + · · · + nxn)2 = a2x
2 + a3x

3 + · · · + a2nx
2n,

prove that
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an+1 + an+2 + · · · + a2n =

(
n+ 1

2

)
5n2 + 5n+ 2

12
.

3. (BUL 3) Find all numbers α for which the equation

x2 − 2x[x] + x− α = 0

has two nonnegative roots. ([x] denotes the largest integer less than or
equal to x.)

4. (BUL 4) (SL78-2).

5. (CUB 1) Prove that for any triangle ABC there exists a point P in the
plane of the triangle and three points A′, B′, and C′ on the lines BC,
AC, and AB respectively such that

AB · PC′ = AC · PB′ = BC · PA′ = 0.3M2,

where M = max{AB,AC,BC}.
6. (CUB 2) Prove that for all X > 1 there exists a triangle whose sides

have lengths P1(X) = X4+X3+2X2+X+1, P2(X) = 2X3+X2+2X+1,
and P3(X) = X4−1. Prove that all these triangles have the same greatest
angle and calculate it.

7. (CUB 3) (SL78-3).

8. (CZS 1) For two given triangles A1A2A3 and B1B2B3 with areas ∆A

and ∆B , respectively, AiAk ≥ BiBk, i, k = 1, 2, 3. Prove that ∆A ≥ ∆B

if the triangle A1A2A3 is not obtuse-angled.

9. (CZS 2) (SL78-4).

10. (CZS 3) Show that for any natural number n there exist two prime
numbers p and q, p �= q, such that n divides their difference.

11. (CZS 4) Find all natural numbers n < 1978 with the following property:
If m is a natural number, 1 < m < n, and (m,n) = 1 (i.e., m and n
are relatively prime), then m is a prime number.

12. (FIN 1) The equation x3 + ax2 + bx+ c = 0 has three (not necessarily
distinct) real roots t, u, v. For which a, b, c do the numbers t3, u3, v3 satisfy
the equation x3 + a3x2 + b3x+ c3 = 0?

13. (FIN 2) The satellites A and B circle the Earth in the equatorial plane
at altitude h. They are separated by distance 2r, where r is the radius
of the Earth. For which h can they be seen in mutually perpendicular
directions from some point on the equator?

14. (FIN 3) Let p(x, y) and q(x, y) be polynomials in two variables such
that for x ≥ 0, y ≥ 0 the following conditions hold:
(i) p(x, y) and q(x, y) are increasing functions of x for every fixed y.
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(ii) p(x, y) is an increasing and q(x) is a decreasing function of y for every
fixed x.

(iii) p(x, 0) = q(x, 0) for every x and p(0, 0) = 0.
Show that the simultaneous equations p(x, y) = a, q(x, y) = b have a
unique solution in the set x ≥ 0, y ≥ 0 for all a, b satisfying 0 ≤ b ≤ a but
lack a solution in the same set if a < b.

15. (FRA 1) Prove that for every positive integer n coprime to 10 there
exists a multiple of n that does not contain the digit 1 in its decimal
representation.

16. (FRA 2) (SL78-6).

17. (FRA 3) (SL78-17).

18. (FRA 4) Given a natural number n, prove that the number M(n) of
points with integer coordinates inside the circle (O(0, 0),

√
n) satisfies

πn− 5
√
n+ 1 < M(n) < πn+ 4

√
n+ 1.

19. (FRA 5) (SL78-7).

20. (GBR 1) Let O be the center of a circle. Let OU,OV be perpendicular
radii of the circle. The chord PQ passes through the midpoint M of UV .
Let W be a point such that PM = PW , where U, V,M,W are collinear.
Let R be a point such that PR = MQ, where R lies on the line PW .
Prove that MR = UV .

Alternative version: A circle S is given with center O and radius r. Let
M be a point whose distance from O is r√

2
. Let PMQ be a chord of S.

The point N is defined by
−−→
PN =

−−→
MQ. Let R be the reflection of N by

the line through P that is parallel to OM . Prove that MR =
√

2r.

21. (GBR 2) A circle touches the sides AB,BC,CD,DA of a square at
points K,L,M,N respectively, and BU,KV are parallel lines such that
U is on DM and V on DN . Prove that UV touches the circle.

22. (GBR 3) Two nonzero integers x, y (not necessarily positive) are such

that x + y is a divisor of x2 + y2, and the quotient x2+y2

x+y is a divisor of
1978. Prove that x = y.

23. (GBR 4) (SL78-8).

24. (GBR 5) (SL78-9).

25. (GDR 1) Consider a polynomial P (x) = ax2 + bx + c with a > 0 that
has two real roots x1, x2. Prove that the absolute values of both roots are
less than or equal to 1 if and only if a + b + c ≥ 0, a − b + c ≥ 0, and
a− c ≥ 0.

26. (GDR 2) (SL78-5).
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27. (GDR 3) Determine the sixth number after the decimal point in the

number
(√

1978 +
[√

1978
])20

.

28. (GDR 4) Let c, s be real functions defined on R\{0} that are nonconstant
on any interval and satisfy

c

(
x

y

)
= c(x)c(y) − s(x)s(y) for any x �= 0, y �= 0.

Prove that:
(a) c(1/x) = c(x), s(1/x) = −s(x) for any x �= 0, and also c(1) = 1,

s(1) = s(−1) = 0;
(b) c and s are either both even or both odd functions (a function f is

even if f(x) = f(−x) for all x, and odd if f(x) = −f(−x) for all x).
Find functions c, s that also satisfy c(x) + s(x) = xn for all x, where n is
a given positive integer.

29. (GDR 5) (Variant of GDR 4) Given a nonconstant function f : R+ → R
such that f(xy) = f(x)f(y) for any x, y > 0, find functions c, s : R+ → R
that satisfy c(x/y) = c(x)c(y)−s(x)s(y) for all x, y > 0 and c(x)+s(x) =
f(x) for all x > 0.

30. (NET 1) (SL78-10).

31. (NET 2) Let the polynomials

P (x) = xn + an−1x
n−1 + · · · + a1x+ a0,

Q(x) = xm + bm−1x
m−1 + · · · + b1x+ b0,

be given satisfying the identity P (x)2 = (x2 − 1)Q(x)2 + 1. Prove the
identity

P ′(x) = nQ(x).

32. (NET 3) Let C be the circumcircle of the square with vertices (0, 0),
(0, 1978), (1978, 0), (1978, 1978) in the Cartesian plane. Prove that C con-
tains no other point for which both coordinates are integers.

33. (SWE 1) A sequence (an)∞0 of real numbers is called convex if 2an ≤
an−1 +an+1 for all positive integers n. Let (bn)∞0 be a sequence of positive
numbers and assume that the sequence (αnbn)∞0 is convex for any choice
of α > 0. Prove that the sequence (log bn)∞0 is convex.

34. (SWE 2) (SL78-11).

35. (SWE 3) A sequence (an)N
0 of real numbers is called concave if 2an ≥

an−1 + an+1 for all integers n, 1 ≤ n ≤ N − 1.
(a) Prove that there exists a constant C > 0 such that(

N∑
n=0

an

)2

≥ C(N − 1)

N∑
n=0

a2
n (1)
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for all concave positive sequences (an)N
0 .

(b) Prove that (1) holds with C = 3/4 and that this constant is best
possible.

36. (TUR 1) The integers 1 through 1000 are located on the circumference
of a circle in natural order. Starting with 1, every fifteenth number (i.e.,
1, 16, 31, . . . ) is marked. The marking is continued until an already marked
number is reached. How many of the numbers will be left unmarked?

37. (TUR 2) Simplify

1

loga(abc)
+

1

logb(abc)
+

1

logc(abc)
,

where a, b, c are positive real numbers.

38. (TUR 3) Given a circle, construct a chord that is trisected by two given
noncollinear radii.

39. (TUR 4) A is a 2m-digit positive integer each of whose digits is 1. B is
an m-digit positive integer each of whose digits is 4. Prove that A+B+1
is a perfect square.

40. (TUR 5) If Cp
n = n!

p!(n−p)! (p ≥ 1), prove the identity

Cp
n = Cp−1

n−1 + Cp−1
n−2 + · · · + Cp−1

p + Cp−1
p−1

and then evaluate the sum

S = 1 · 2 · 3 + 2 · 3 · 4 + · · · + 97 · 98 · 99.

41. (USA 1) (SL78-12).

42. (USA 2) A,B,C,D,E are points on a circle O with radius equal to r.
Chords AB and DE are parallel to each other and have length equal to x.
Diagonals AC,AD,BE,CE are drawn. If segment XY on O meets AC
at X and EC at Y , prove that lines BX and DY meet at Z on the circle.

43. (USA 3) If p is a prime greater than 3, show that at least one of the
numbers 3

p2 ,
4
p2 , . . . ,

p−2
p2 is expressible in the form 1

x + 1
y , where x and y

are positive integers.

44. (USA 4) In 
ABC with ∠C = 60o, prove that c
a + c

b ≥ 2.

45. (USA 5) If r > s > 0 and a > b > c, prove that

arbs + brcs + cras ≥ asbr + bscr + csar.

46. (USA 6) (SL78-13).

47. (VIE 1) Given the expression

Pn(x) =
1

2n

[(
x+

√
x2 − 1

)n

+
(
x−

√
x2 − 1

)n]
,

prove:
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(a) Pn(x) satisfies the identity Pn(x) − xPn−1(x) + 1
4Pn−2(x) ≡ 0.

(b) Pn(x) is a polynomial in x of degree n.

48. (VIE 2) (SL78-14).

49. (VIE 3) Let A,B,C,D be four arbitrary distinct points in space.
(a) Prove that using the segments AB+CD, AC +BD and AD+BC it

is always possible to construct a triangle T that is nondegenerate and
has no obtuse angle.

(b) What should these four points satisfy in order for the triangle T to be
right-angled?

50. (VIE 4) A variable tetrahedron ABCD has the following properties:
Its edge lengths can change as well as its vertices, but the opposite edges
remain equal (BC = DA, CA = DB, AB = DC); and the verticesA,B,C
lie respectively on three fixed spheres with the same center P and radii
3, 4, 12. What is the maximal length of PD?

51. (VIE 5) Find the relations among the angles of the triangle ABC whose
altitude AH and median AM satisfy ∠BAH = ∠CAM .

52. (YUG 1) (SL78-15).

53. (YUG 2) (SL78-16).

54. (YUG 3) Let p, q and r be three lines in space such that there is no plane
that is parallel to all three of them. Prove that there exist three planes
α, β, and γ, containing p, q, and r respectively, that are perpendicular to
each other (α ⊥ β, β ⊥ γ, γ ⊥ α).

3.20.3 Shortlisted Problems

1. (BUL 1) The set M = {1, 2, . . . , 2n} is partitioned into k nonintersecting
subsets M1,M2, . . . ,Mk, where n ≥ k3 + k. Prove that there exist even
numbers 2j1, 2j2, . . . , 2jk+1 in M that are in one and the same subset Mi

(1 ≤ i ≤ k) such that the numbers 2j1 − 1, 2j2 − 1, . . . , 2jk+1 − 1 are also
in one and the same subset Mj (1 ≤ j ≤ k).

2. (BUL 4) Two identically oriented equilateral triangles, ABC with center
S and A′B′C, are given in the plane. We also have A′ �= S and B′ �= S.
If M is the midpoint of A′B and N the midpoint of AB′, prove that the
triangles SB′M and SA′N are similar.

3. (CUB 3)IMO1 Let n > m ≥ 1 be natural numbers such that the groups of
the last three digits in the decimal representation of 1978m, 1978n coincide.
Find the ordered pair (m,n) of such m,n for which m+ n is minimal.

4. (CZS 2) Let T1 be a triangle having a, b, c as lengths of its sides and let
T2 be another triangle having u, v, w as lengths of its sides. If P,Q are the
areas of the two triangles, prove that
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16PQ ≤ a2(−u2 + v2 + w2) + b2(u2 − v2 + w2) + c2(u2 + v2 − w2).

When does equality hold?

5. (GDR 2) For every integer d ≥ 1, let Md be the set of all positive
integers that cannot be written as a sum of an arithmetic progression
with difference d, having at least two terms and consisting of positive
integers. Let A = M1, B = M2 � {2}, C = M3. Prove that every c ∈ C
may be written in a unique way as c = ab with a ∈ A, b ∈ B.

6. (FRA 2)IMO5 Let ϕ : {1, 2, 3, . . .} → {1, 2, 3, . . .} be injective. Prove that
for all n,

n∑
k=1

ϕ(k)

k2
≥

n∑
k=1

1

k
.

7. (FRA 5) We consider three distinct half-lines Ox,Oy,Oz in a plane.
Prove the existence and uniqueness of three points A ∈ Ox, B ∈ Oy,
C ∈ Oz such that the perimeters of the triangles OAB,OBC,OCA are
all equal to a given number 2p > 0.

8. (GBR 4) Let S be the set of all the odd positive integers that are not
multiples of 5 and that are less than 30m, m being an arbitrary positive
integer. What is the smallest integer k such that in any subset of k integers
from S there must be two different integers, one of which divides the other?

9. (GBR 5)IMO3 Let {f(n)} be a strictly increasing sequence of positive
integers: 0 < f(1) < f(2) < f(3) < · · · . Of the positive integers not
belonging to the sequence, the nth in order of magnitude is f(f(n)) + 1.
Determine f(240).

10. (NET 1)IMO6 An international society has its members in 6 different
countries. The list of members contains 1978 names, numbered 1, 2, . . . ,
1978. Prove that there is at least one member whose number is the sum
of the numbers of two, not necessarily distinct, of his compatriots.

11. (SWE 2) A function f : I → R, defined on an interval I, is called
concave if f(θx + (1 − θ)y) ≥ θf(x) + (1 − θ)f(y) for all x, y ∈ I and
0 ≤ θ ≤ 1. Assume that the functions f1, . . . , fn, having all nonnegative
values, are concave. Prove that the function (f1f2 . . . fn)1/n is concave.

12. (USA 1)IMO4 In a triangle ABC we have AB = AC. A circle is tangent
internally to the circumcircle of ABC and also to the sides AB,AC, at
P,Q respectively. Prove that the midpoint of PQ is the center of the
incircle of ABC.

13. (USA 6)IMO2 Given any point P in the interior of a sphere with ra-
dius R, three mutually perpendicular segments PA,PB, PC are drawn
terminating on the sphere and having one common vertex in P . Con-
sider the rectangular parallelepiped of which PA,PB, PC are coterminal
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edges. Find the locus of the point Q that is diagonally opposite P in the
parallelepiped when P and the sphere are fixed.

14. (VIE 2) Prove that it is possible to place 2n(2n + 1) parallelepipedic
(rectangular) pieces of soap of dimensions 1 × 2 × (n + 1) in a cubic box
with edge 2n+ 1 if and only if n is even or n = 1.

Remark. It is assumed that the edges of the pieces of soap are parallel to
the edges of the box.

15. (YUG 1) Let p be a prime and A = {a1, . . . , ap−1} an arbitrary subset
of the set of natural numbers such that none of its elements is divisible
by p. Let us define a mapping f from P(A) (the set of all subsets of A)
to the set P = {0, 1, . . . , p− 1} in the following way:

(i) if B = {ai1 , . . . , aik
} ⊂ A and

∑k
j=1 aij ≡ n (mod p), then f(B) = n,

(ii) f(∅) = 0, ∅ being the empty set.
Prove that for each n ∈ P there exists B ⊂ A such that f(B) = n.

16. (YUG 2) Determine all the triples (a, b, c) of positive real numbers such
that the system

ax+ by − cz = 0,

a
√

1 − x2 + b
√

1 − y2 − c
√

1 − z2 = 0,

is compatible in the set of real numbers, and then find all its real solutions.

17. (FRA 3) Prove that for any positive integers x, y, z with xy−z2 = 1 one
can find nonnegative integers a, b, c, d such that x = a2 + b2, y = c2 + d2,
z = ac+ bd.
Set z = (2q)! to deduce that for any prime number p = 4q + 1, p can be
represented as the sum of squares of two integers.
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3.21 The Twenty-First IMO

London, United Kingdom, 1979

3.21.1 Contest Problems

First Day (July 2)

1. Given that

1 − 1

2
+

1

3
− 1

4
+ · · · − 1

1318
+

1

1319
=
p

q
,

where p and q are natural numbers having no common factor, prove that
p is divisible by 1979.

2. A pentagonal prism A1A2 . . . A5B1B2 . . . B5 is given. The edges, the diag-
onals of the lateral walls, and the internal diagonals of the prism are each
colored either red or green in such a way that no triangle whose vertices
are vertices of the prism has its three edges of the same color. Prove that
all edges of the bases are of the same color.

3. There are two circles in the plane. Let a point A be one of the points
of intersection of these circles. Two points begin moving simultaneously
with constant speeds from the point A, each point along its own circle.
The two points return to the point A at the same time.
Prove that there is a point P in the plane such that at every moment of
time the distances from the point P to the moving points are equal.

Second Day (July 3)

4. Given a point P in a given plane π and also a given point Q not in π,
determine all points R in π such
that QP+PR

QR is a maximum.

5. The nonnegative real numbers x1, x2, x3, x4, x5, a satisfy the following re-
lations:

5∑
i=1

ixi = a,

5∑
i=1

i3xi = a2,

5∑
i=1

i5xi = a3.

What are the possible values of a?

6. Let S and F be two opposite vertices of a regular octagon. A counter starts
at S and each second is moved to one of the two neighboring vertices of the
octagon. The direction is determined by the toss of a coin. The process
ends when the counter reaches F . We define an to be the number of
distinct paths of duration n seconds that the counter may take to reach
F from S. Prove that for n = 1, 2, 3, . . . ,

a2n−1 = 0, a2n =
1√
2
(xn−1−yn−1), where x = 2 +

√
2, y = 2 −

√
2.
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3.21.2 Longlisted Problems

1. (BEL 1) (SL79-1).

2. (BEL 2) For a finite set E of cardinality n ≥ 3, let f(n) denote the
maximum number of 3-element subsets of E, any two of them having
exactly one common element. Calculate f(n).

3. (BEL 3) Is it possible to partition 3-dimensional Euclidean space into
1979 mutually isometric subsets?

4. (BEL 4) (SL79-2).

5. (BEL 5) Describe which natural numbers do not belong to the set

E = {[n+
√
n+ 1/2] | n ∈ N}.

6. (BEL 6) Prove that 1
2

√
4 sin2 36◦ − 1 = cos 72◦.

7. (BRA 1) M = (ai,j), i, j = 1, 2, 3, 4, is a square matrix of order four.
Given that:
(i) for each i = 1, 2, 3, 4 and for each k = 5, 6, 7,

ai,k = ai,k−4;

Pi = a1,i + a2,i+1 + a3,i+2 + a4,i+3;

Si = a4,i + a3,i+1 + a2,i+2 + a1,i+3;

Li = ai,1 + ai,2 + ai,3 + ai,4;

Ci = a1,i + a2,i + a3,i + a4,i,

(ii) for each i, j = 1, 2, 3, 4, Pi = Pj , Si = Sj , Li = Lj , Ci = Cj , and
(iii) a1,1 = 0, a1,2 = 7, a2,1 = 11, a2,3 = 2, and a3,3 = 15;
find the matrix M .

8. (BRA 2) The sequence (an) of real numbers is defined as follows:

a1 = 1, a2 = 2 and an = 3an−1 − an−2, n ≥ 3.

Prove that for n ≥ 3, an =
[

a2
n−1

an−2

]
+ 1, where [x] denotes the integer p

such that p ≤ x < p+ 1.

9. (BRA 3) The real numbers α1, α2, α3, . . . , αn are positive. Let us denote
by h = n

1/α1+1/α2+···+1/αn
the harmonic mean, g = n

√
α1α2 · · ·αn the

geometric mean, a = α1+α2+···+αn

n the arithmetic mean. Prove that h ≤
g ≤ a, and that each of the equalities implies the other one.

10. (BUL 1) (SL79-3).

11. (BUL 2) Prove that a pyramid A1A2 . . . A2k+1S with equal lateral edges
and equal space angles between adjacent lateral walls is regular.
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Variant. Prove that a pyramid A1 . . . A2k+1S with equal space angles
between adjacent lateral walls is regular if there exists a sphere tangent
to all its edges.

12. (BUL 3) (SL79-4).

13. (BUL 4) The plane is divided into equal squares by parallel lines; i.e.,
a square net is given. Let M be an arbitrary set of n squares of this net.
Prove that it is possible to choose no fewer than n/4 squares of M in such
a way that no two of them have a common point.

14. (CZS 1) Let S be a set of n2 + 1 closed intervals (n a positive integer).
Prove that at least one of the following assertions holds:
(i) There exists a subset S′ of n+ 1 intervals from S such that the inter-

section of the intervals in S′ is nonempty.
(ii) There exists a subset S′′ of n+ 1 intervals from S such that any two

of the intervals in S′′ are disjoint.

15. (CZS 2) (SL79-5).

16. (CZS 3) Let Q be a square with side length 6. Find the smallest integer
n such that in Q there exists a set S of n points with the property that
any square with side 1 completely contained in Q contains in its interior
at least one point from S.

17. (CZS 4) (SL79-6).

18. (FIN 1) Show that for no integers a ≥ 1, n ≥ 1 is the sum

1 +
1

1 + a
+

1

1 + 2a
+ · · · + 1

1 + na

an integer.

19. (FIN 2) For k = 1, 2, . . . consider the k-tuples (a1, a2, . . . , ak) of positive
integers such that

a1 + 2a2 + · · · + kak = 1979.

Show that there are as many such k-tuples with odd k as there are with
even k.

20. (FIN 3) (SL79-10).

21. (FRA 1) Let E be the set of all bijective mappings from R to R satisfying

(∀t ∈ R) f(t) + f−1(t) = 2t,

where f−1 is the mapping inverse to f . Find all elements of E that are
monotonic mappings.

22. (FRA 2) Consider two quadrilaterals ABCD and A′B′C′D′ in an affine
Euclidian plane such that AB = A′B′, BC = B′C′, CD = C′D′, and
DA = D′A′. Prove that the following two statements are true:
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(a) If the diagonals BD and AC are mutually perpendicular, then the
diagonals B′D′ and A′C′ are also mutually perpendicular.

(b) If the perpendicular bisector of BD intersects AC at M , and that

of B′D′ intersects A′C′ at M ′, then MA
MC

= M ′A′

M ′C′
(if MC = 0 then

M ′C′ = 0).

23. (FRA 3) Consider the set E consisting of pairs of integers (a, b), with a ≥
1 and b ≥ 1, that satisfy in the decimal system the following properties:
(i) b is written with three digits, as α2α1α0, α2 �= 0;
(ii) a is written as βp . . . β1β0 for some p;
(iii) (a+ b)2 is written as βp . . . β1β0α2α1α0.
Find the elements of E.

24. (FRA 4) Let a and b be coprime integers, greater than or equal to 1.
Prove that all integers n greater than or equal to (a − 1)(b − 1) can be
written in the form:

n = ua+ vb, with (u, v) ∈ N × N.

25. (FRG 1) (SL79-7).

26. (FRG 2) Let n be a natural number. If 4n + 2n + 1 is a prime, prove
that n is a power of three.

27. (FRG 3) (SL79-8).

28. (FRG 4) (SL79-9).

29. (GDR 1) (SL79-11).

30. (GDR 2) Let M be a set of points in a plane with at least two elements.
Prove that if M has two axes of symmetry g1 and g2 intersecting at an
angle α = qπ, where q is irrational, then M must be infinite.

31. (GDR 3) (SL79-12).

32. (GDR 4) Let n, k ≥ 1 be natural numbers. Find the number A(n, k) of
solutions in integers of the equation

|x1| + |x2| + · · · + |xk| = n.

33. (GRE 1) (SL79-13).

34. (GRE 2) Notice that in the fraction 16
64 we can perform a simplification

as 1	6
	64 = 1

4 obtaining a correct equality. Find all fractions whose numer-
ators and denominators are two-digit positive integers for which such a
simplification is correct.

35. (GRE 3) Given a sequence (an), with a1 = 4 and an+1 = a2
n−2 (∀n ∈ N),

prove that there is a triangle with side lengths an −1, an, an +1, and that
its area is equal to an integer.
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36. (GRE 4) A regular tetrahedron A1B1C1D1 is inscribed in a regular
tetrahedron ABCD, where A1 lies in the plane BCD, B1 in the plane
ACD, etc. Prove that A1B1 ≥ AB/3.

37. (GRE 5) (SL79-14).

38. (HUN 1) Prove the following statement: If a polynomial f(x) with
real coefficients takes only nonnegative values, then there exists a positive
integer n and polynomials g1(x), g2(x), . . . , gn(x) such that

f(x) = g1(x)
2 + g2(x)

2 + · · · + gn(x)2.

39. (HUN 2) A desert expedition camps at the border of the desert, and
has to provide one liter of drinking water for another member of the
expedition, residing on the distance of n days of walking from the camp,
under the following conditions:
(i) Each member of the expedition can pick up at most 3 liters of water.
(ii) Each member must drink one liter of water every day spent in the

desert.
(iii) All the members must return to the camp.
How much water do they need (at least) in order to do that?

40. (HUN 3) A polynomial P (x) has degree at most 2k, where k = 0, 1,
2, . . . . Given that for an integer i, the inequality −k ≤ i ≤ k implies
|P (i)| ≤ 1, prove that for all real numbers x, with −k ≤ x ≤ k, the
following inequality holds:

|P (x)| < (2k + 1)

(
2k

k

)
.

41. (HUN 4) Prove the following statement: There does not exist a pyramid
with square base and congruent lateral faces for which the measures of all
edges, total area, and volume are integers.

42. (HUN 5) Let a quadratic polynomial g(x) = ax2 + bx+ c be given and
an integer n ≥ 1. Prove that there exists at most one polynomial f(x) of
nth degree such that f(g(x)) = g(f(x)).

43. (ISR 1) Let a, b, c denote the lengths of the sides BC,CA,AB, respec-
tively, of a triangle ABC. If P is any point on the circumference of the
circle inscribed in the triangle, show that aPA2+bPB2+cPC2 is constant.

44. (ISR 2) (SL79-15).

45. (ISR 3) For any positive integer n we denote by F (n) the number of
ways in which n can be expressed as the sum of three different positive
integers, without regard to order. Thus, since 10 = 7+2+1 = 6+3+1 =
5 + 4+ 1 = 5 + 3+ 2, we have F (10) = 4. Show that F (n) is even if n ≡ 2
or 4 (mod 6), but odd if n is divisible by 6.

46. (ISR 4) (SL79-16).
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47. (NET 1) (SL79-17).

48. (NET 2) In the plane a circle C of unit radius is given. For any line l
a number s(l) is defined in the following way: If l and C intersect in two
points, s(l) is their distance; otherwise, s(l) = 0.
Let P be a point at distance r from the center of C. One defines M(r)
to be the maximum value of the sum s(m) + s(n), where m and n are
variable mutually orthogonal lines through P . Determine the values of r
for which M(r) > 2.

49. (NET 3) Let there be given two sequences of integers fi(1), fi(2), . . .
(i = 1, 2) satisfying:
(i) fi(nm) = fi(n)fi(m) if gcd(n,m) = 1;
(ii) for every prime P and all k = 2, 3, 4, . . . , fi(P

k) = fi(P )fi(P
k−1) −

P 2f(P k−2).
Moreover, for every prime P :

(iii) f1(P ) = 2P ,
(iv) f2(P ) < 2P .
Prove that |f2(n)| < f1(n) for all n.

50. (POL 1) (SL79-18).

51. (POL 2) Let ABC be an arbitrary triangle and let S1, S2, . . . , S7 be
circles satisfying the following conditions:

S1 is tangent to CA and AB,
S2 is tangent to S1, AB, and BC,
S3 is tangent to S2, BC, and CA,

· · · · · · · · · · · · · · · · · ·
S7 is tangent to S6, CA and AB.

Prove that the circles S1 and S7 coincide.

52. (POL 3) Let a real number λ > 1 be given and a sequence (nk) of positive
integers such that

nk+1

nk
> λ for k = 1, 2, . . . . Prove that there exists a

positive integer c such that no positive integer n can be represented in
more than c ways in the form n = nk + nj or n = nr − ns.

53. (POL 4) An infinite increasing sequence of positive integers nj (j =
1, 2, . . . ) has the property that for a certain c, 1

N

∑
nj≤N nj ≤ c, for every

N > 0
Prove that there exist finitely many sequences m

(i)
j (i = 1, 2, . . . , k) such

that
{n1, n2, . . . } =

⋃k
i=1{m

(i)
1 ,m

(i)
2 , . . . } and

m
(i)
j+1 > 2m

(i)
j (1 ≤ i ≤ k, j = 1, 2, . . . ).

54. (ROM 1) (SL79-19).

55. (ROM 2) Let a, b be coprime integers. Show that the equation ax2 +
by2 = z3 has an infinite set of solutions (x, y, z) with x, y, z ∈ Z and x, y
mutually coprime (in each solution).
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56. (ROM 3) Show that for every natural number n, n
√

2 − [n
√

2] > 1
2n

√
2

and that for every ε > 0 there exists a natural number n with n
√

2 −
[n
√

2] < 1
2n

√
2

+ ε.

57. (ROM 4) Let M be a set, and A,B,C given subsets of M . Find a
necessary and sufficient condition for the existence of a set X ⊂ M for
which (X ∪A) \ (X ∩B) = C. Describe all such sets X .

58. (ROM 5) Prove that there exists a natural number k0 such that for
every natural number k > k0 we may find a finite number of lines in the
plane, not all parallel to one of them, that divide the plane exactly in k
regions. Find k0.

59. (SWE 1) Determine the maximum value of x2y2z2w when x, y, z, w ≥ 0
and

2x+ xy + z + yzw = 1.

60. (SWE 2) (SL79-20).

61. (SWE 3) Let a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn be two
sequences such that

∑m
k=1 ak ≥

∑m
k=1 bk for all m ≤ n with equality for

m = n. Let f be a convex function defined on the real numbers. Prove
that

n∑
k=1

f(ak) ≤
n∑

k=1

f(bk).

62. (SWE 4) T is a given triangle with vertices P1, P2, P3. Consider an arbi-
trary subdivision of T into finitely many subtriangles such that no vertex
of a subtriangle lies strictly between two vertices of another subtriangle.
To each vertex V of the subtriangles there is assigned a number n(V )
according to the following rules:
(i) If V = Pi, then n(V ) = i.
(ii) If V lies on the side PiPj of T , then n(V ) = i or j.
(iii) If V lies inside the triangle T , then n(V ) is any of the numbers 1,2,3.
Prove that there exists at least one subtriangle whose vertices are num-
bered 1, 2, and 3.

63. (USA 1) If a1, a2, . . . , an denote the lengths of the sides of an arbitrary
n-gon, prove that

2 ≥ a1

s− a1
+

a2

s− a2
+ · · · + an

s− an
≥ n

n− 1
,

where s = a1 + a2 + · · · + an.

64. (USA 2) From point P on arc BC of the circumcircle about triangle
ABC, PX is constructed perpendicular to BC, PY is perpendicular to
AC, and PZ perpendicular to AB (all extended if necessary). Prove that

BC

PX
=
AC

PY
+
AB

PZ
.
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65. (USA 3) Given f(x) ≤ x for all real x and

f(x+ y) ≤ f(x) + f(y) for all real x, y,

prove that f(x) = x for all x.

66. (USA 4) (SL79-23).

67. (USA 5) (SL79-24).

68. (USA 6) (SL79-25).

69. (USS 1) (SL79-21).

70. (USS 2) There are 1979 equilateral triangles: T1, T2, . . . , T1979. A side of
triangle Tk is equal to 1/k, k = 1, 2, . . . , 1979. At what values of a number
a can one place all these triangles into the equilateral triangle with side
length a so that they don’t intersect (points of contact are allowed)?

71. (USS 3) (SL79-22).

72. (VIE 1) Let f(x) be a polynomial with integer coefficients. Prove that
if f(x) equals 1979 for four different integer values of x, then f(x) cannot
be equal to 2 × 1979 for any integral value of x.

73. (VIE 2) In a plane a finite number of equal circles are given. These circles
are mutually nonintersecting (they may be externally tangent). Prove that
one can use at most four colors for coloring these circles so that two circles
tangent to each other are of different colors. What is the smallest number
of circles that requires four colors?

74. (VIE 3) Given an equilateral triangle ABC of side a in a plane, let
M be a point on the circumcircle of the triangle. Prove that the sum
s = MA4 + MB4 + MC4 is independent of the position of the point M
on the circle, and determine that constant value as a function of a.

75. (VIE 4) Given an equilateral triangle ABC, let M be an arbitrary point
in space.
(a) Prove that one can construct a triangle from the segments MA, MB,

MC.
(b) Suppose that P and Q are two points symmetric with respect to the

center O of ABC. Prove that the two triangles constructed from the
segments PA,PB, PC and QA,QB,QC are of equal area.

76. (VIE 5) Suppose that a triangle whose sides are of integer lengths is
inscribed in a circle of diameter 6.25. Find the sides of the triangle.

77. (YUG 1) By h(n), where n is an integer greater than 1, let us denote the
greatest prime divisor of the number n. Are there infinitely many numbers
n for which h(n) < h(n+ 1) < h(n+ 2) holds?

78. (YUG 2) By ω(n), where n is an integer greater than 1, let us denote
the number of different prime divisors of the number n. Prove that there
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exist infinitely many numbers n for which ω(n) < ω(n + 1) < ω(n + 2)
holds.

79. (YUG 3) Let S be a unit circle and K a subset of S consisting of several
closed arcs. Let K satisfy the following properties:
(i) K contains three points A,B,C, that are the vertices of an acute-

angled triangle;
(ii) for every point A that belongs to K its diametrically opposite point

A′ and all points B on an arc of length 1/9 with center A′ do not
belong to K.

Prove that there are three points E,F,G on S that are vertices of an
equilateral triangle and that do not belong to K.

80. (YUG 4) (SL79-26).

81. (YUG 5) Let P be the set of rectangular parallelepipeds that have at
least one edge of integer length. If a rectangular parallelepiped P0 can be
decomposed into parallelepipeds P1, P2, . . . , Pn ∈ P , prove that P0 ∈ P .

3.21.3 Shortlisted Problems

1. (BEL 1) Prove that in the Euclidean plane every regular polygon having
an even number of sides can be dissected into lozenges. (A lozenge is a
quadrilateral whose four sides are all of equal length).

2. (BEL 4) From a bag containing 5 pairs of socks, each pair a different
color, a random sample of 4 single socks is drawn. Any complete pairs
in the sample are discarded and replaced by a new pair draw from the
bag. The process continues until the bag is empty or there are 4 socks of
different colors held outside the bag. What is the probability of the latter
alternative?

3. (BUL 1) Find all polynomials f(x) with real coefficients for which

f(x)f(2x2) = f(2x3 + x).

4. (BUL 3)IMO2 A pentagonal prism A1A2 . . . A5B1B2 . . . B5 is given. The
edges, the diagonals of the lateral walls and the internal diagonals of the
prism are each colored either red or green in such a way that no triangle
whose vertices are vertices of the prism has its three edges of the same
color. Prove that all edges of the bases are of the same color.

5. (CZS 2) Let n ≥ 2 be an integer. Find the maximal cardinality of a set
M of pairs (j, k) of integers, 1 ≤ j < k ≤ n, with the following property:
If (j, k) ∈ M , then (k,m) �∈ M for any m.

6. (CZS 4) Find the real values of p for which the equation√
2p+ 1 − x2 +

√
3x+ p+ 4 =

√
x2 + 9x+ 3p+ 9
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in x has exactly two real distinct roots (
√
t means the positive square root

of t).

7. (FRG 1)IMO1 Given that 1 − 1
2 + 1

3 − 1
4 + · · · − 1

1318 + 1
1319 = p

q , where
p and q are natural numbers having no common factor, prove that p is
divisible by 1979.

8. (FRG 3) For all rational x satisfying 0 ≤ x < 1, f is defined by

f(x) =

{
f(2x)/4, for 0 ≤ x < 1/2,

3/4 + f(2x− 1)/4, for 1/2 ≤ x < 1.

Given that x = 0.b1b2b3 . . . is the binary representation of x, find f(x).

9. (FRG 4)IMO6 Let S and F be two opposite vertices of a regular octagon.
A counter starts at S and each second is moved to one of the two neigh-
boring vertices of the octagon. The direction is determined by the toss of
a coin. The process ends when the counter reaches F . We define an to be
the number of distinct paths of duration n seconds that the counter may
take to reach F from S. Prove that for n = 1, 2, 3, . . . ,

a2n−1 = 0, a2n =
1√
2
(xn−1−yn−1), where x = 2 +

√
2, y = 2 −

√
2.

10. (FIN 3) Show that for any vectors a, b in Euclidean space,

|a× b|3 ≤ 3
√

3

8
|a|2|b|2|a− b|2.

Remark. Here × denotes the vector product.

11. (GDR 1) Given real numbers x1, x2, . . . , xn (n ≥ 2), with xi ≥ 1/n
(i = 1, 2, . . . , n) and with x2

1 +x2
2 + · · ·+x2

n = 1, find whether the product
P = x1x2x3 · · ·xn has a greatest and/or least value and if so, give these
values.

12. (GDR 3) Let R be a set of exactly 6 elements. A set F of subsets of R
is called an S-family over R if and only if it satisfies the following three
conditions:
(i) For no two sets X,Y in F is X ⊆ Y ;
(ii) For any three sets X,Y, Z in F , X ∪ Y ∪ Z �= R,
(iii)

⋃
X∈F X = R.

We define |F | to be the number of elements of F (i.e., the number of
subsets of R belonging to F ). Determine, if it exists, h = max |F |, the
maximum being taken over all S-families over R.

13. (GRE 1) Show that 20
60 < sin 20◦ < 21

60 .

14. (GRE 5) Find all bases of logarithms in which a real positive number
can be equal to its logarithm or prove that none exist.
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15. (ISR 2)IMO5 The nonnegative real numbers x1, x2, x3, x4, x5, a satisfy the
following relations:

5∑
i=1

ixi = a,

5∑
i=1

i3xi = a2,

5∑
i=1

i5xi = a3.

What are the possible values of a?

16. (ISR 4) LetK denote the set {a, b, c, d, e}. F is a collection of 16 different
subsets of K, and it is known that any three members of F have at least
one element in common. Show that all 16 members of F have exactly one
element in common.

17. (NET 1) Inside an equilateral triangle ABC one constructs points P ,
Q and R such that

∠QAB = ∠PBA = 15◦,
∠RBC = ∠QCB = 20◦,
∠PCA = ∠RAC = 25◦.

Determine the angles of triangle PQR.

18. (POL 1) Let m positive integers a1, . . . , am be given. Prove that there
exist fewer than 2m positive integers b1, . . . , bn such that all sums of dis-
tinct bk’s are distinct and all ai (i ≤ m) occur among them.

19. (ROM 1) Consider the sequences (an), (bn) defined by

a1 = 3, b1 = 100, an+1 = 3an , bn+1 = 100bn.

Find the smallest integer m for which bm > a100.

20. (SWE 2) Given the integer n > 1 and the real number a > 0 determine

the maximum of
∑n−1

i=1 xixi+1 taken over all nonnegative numbers xi with
sum a.

21. (USS 1) Let N be the number of integral solutions of the equation

x2 − y2 = z3 − t3

satisfying the condition 0 ≤ x, y, z, t ≤ 106, and let M be the number of
integral solutions of the equation

x2 − y2 = z3 − t3 + 1

satisfying the condition 0 ≤ x, y, z, t ≤ 106. Prove that N > M .

22. (USS 3)IMO3 There are two circles in the plane. Let a point A be one
of the points of intersection of these circles. Two points begin moving
simultaneously with constant speeds from the point A, each point along
its own circle. The two points return to the point A at the same time.
Prove that there is a point P in the plane such that at every moment of
time the distances from the point P to the moving points are equal.
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23. (USA 4) Find all natural numbers n for which 28 +211 +2n is a perfect
square.

24. (USA 5) A circle O with center O on base BC of an isosceles triangle
ABC is tangent to the equal sides AB,AC. If point P on AB and point
Q on AC are selected such that PB × CQ = (BC/2)2, prove that line
segment PQ is tangent to circle O, and prove the converse.

25. (USA 6)IMO4 Given a point P in a given plane π and also a given point
Q not in π, show how to determine a point R in π such that QP+PR

QR is a
maximum.

26. (YUG 4) Prove that the functional equations

f(x+ y) = f(x) + f(y),
and f(x+ y + xy) = f(x) + f(y) + f(xy) (x, y ∈ R)

are equivalent.
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3.22 The Twenty-Second IMO

Washington DC, United States of America, July 8–20,

1981

3.22.1 Contest Problems

First Day (July 13)

1. Find the point P inside the triangle ABC for which

BC

PD
+
CA

PE
+
AB

PF

is minimal, where PD, PE, PF are the perpendiculars from P to BC,
CA, AB respectively.

2. Let f(n, r) be the arithmetic mean of the minima of all r-subsets of the
set {1, 2, . . . , n}. Prove that f(n, r) = n+1

r+1 .

3. Determine the maximum value of m2 + n2 where m and n are integers
satisfying

m,n ∈ {1, 2, . . . , 1981} and (n2 −mn−m2)2 = 1.

Second Day (July 14)

4. (a) For which values of n > 2 is there a set of n consecutive positive
integers such that the largest number in the set in the set is a divisor
of the least common multiple of the remaining n− 1 numbers?

(b) For which values of n > 2 is there a unique set having the stated
property?

5. Three equal circles touch the sides of a triangle and have one common
point O. Show that the center of the circle inscribed in and of the circle
circumscribed about the triangle ABC and the point O are collinear.

6. Assume that f(x, y) is defined for all positive integers x and y, and that
the following equations are satisfied:

f(0, y) = y + 1,

f(x+ 1, 0) = f(x, 1),

f(x+ 1, y + 1) = f(x, f(x+ 1, y)).

Determine f(4, 1981).
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3.22.2 Shortlisted Problems

1. (BEL)IMO4 (a) For which values of n > 2 is there a set of n consecutive
positive integers such that the largest number in the set is a divisor
of the least common multiple of the remaining n− 1 numbers?

(b) For which values of n > 2 is there a unique set having the stated
property?

2. (BUL) A sphere S is tangent to the edges AB,BC,CD,DA of a tetrahe-
dron ABCD at the points E,F,G,H respectively. The points E,F,G,H
are the vertices of a square. Prove that if the sphere is tangent to the edge
AC, then it is also tangent to the edge BD.

3. (CAN) Find the minimum value of

max(a+ b+ c, b+ c+ d, c+ d+ e, d+ e+ f, e+ f + g)

subject to the constraints

(i) a, b, c, d, e, f, g ≥ 0, (ii) a+ b+ c+ d+ e+ f + g = 1.

4. (CAN) Let {fn} be the Fibonacci sequence {1, 1, 2, 3, 5, . . .}.
(a) Find all pairs (a, b) of real numbers such that for each n, afn + bfn+1

is a member of the sequence.
(b) Find all pairs (u, v) of positive real numbers such that for each n,

uf2
n + vf2

n+1 is a member of the sequence.

5. (COL) A cube is assembled with 27 white cubes. The larger cube is then
painted black on the outside and disassembled. A blind man reassembles
it. What is the probability that the cube is now completely black on the
outside? Give an approximation of the size of your answer.

6. (CUB) Let P (z) and Q(z) be complex-variable polynomials, with degree
not less than 1. Let

Pk = {z ∈ C | P (z) = k}, Qk = {z ∈ C | Q(z) = k}.

Let also P0 = Q0 and P1 = Q1. Prove that P (z) ≡ Q(z).

7. (FIN)IMO6 Assume that f(x, y) is defined for all positive integers x and
y, and that the following equations are satisfied:

f(0, y) = y + 1,

f(x+ 1, 0) = f(x, 1),

f(x+ 1, y + 1) = f(x, f(x+ 1, y)).

Determine f(2, 2), f(3, 3) and f(4, 4).
Alternative version: Determine f(4, 1981).
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8. (FRG)IMO2 Let f(n, r) be the arithmetic mean of the minima of all r-
subsets of the set {1, 2, . . . , n}. Prove that f(n, r) = n+1

r+1 .

9. (FRG) A sequence (an) is defined by means of the recursion

a1 = 1, an+1 =
1 + 4an +

√
1 + 24an

16
.

Find an explicit formula for an.

10. (FRA) Determine the smallest natural number n having the following
property: For every integer p, p ≥ n, it is possible to subdivide (partition)
a given square into p squares (not necessarily equal).

11. (NET) On a semicircle with unit radius four consecutive chordsAB,BC,
CD,DE with lengths a, b, c, d, respectively, are given. Prove that

a2 + b2 + c2 + d2 + abc+ bcd < 4.

12. (NET)IMO3 Determine the maximum value of m2 + n2 where m and n
are integers satisfying

m,n ∈ {1, 2, . . . , 100} and (n2 −mn−m2)2 = 1.

13. (ROM) Let P be a polynomial of degree n satisfying

P (k) =

(
n+ 1

k

)−1

for k = 0, 1, . . . , n.

Determine P (n+ 1).

14. (ROM) Prove that a convex pentagon (a five-sided polygon) ABCDE
with equal sides and for which the interior angles satisfy the condition
∠A ≥ ∠B ≥ ∠C ≥ ∠D ≥ ∠E is a regular pentagon.

15. (GBR)IMO1 Find the point P inside the triangle ABC for which

BC

PD
+
CA

PE
+
AB

PF

is minimal, where PD,PE, PF are the perpendiculars from P to BC,CA,
AB respectively.

16. (GBR) A sequence of real numbers u1, u2, u3, . . . is determined by u1

and the following recurrence relation for n ≥ 1:

4un+1 = 3
√

64un + 15.

Describe, with proof, the behavior of un as n → ∞.

17. (USS)IMO5 Three equal circles touch the sides of a triangle and have
one common point O. Show that the center of the circle inscribed in and
of the circle circumscribed about the triangle ABC and the point O are
collinear.
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18. (USS) Several equal spherical planets are given in outer space. On the
surface of each planet there is a set of points that is invisible from any of
the remaining planets. Prove that the sum of the areas of all these sets is
equal to the area of the surface of one planet.

19. (YUG) A finite set of unit circles is given in a plane such that the area
of their union U is S. Prove that there exists a subset of mutually disjoint
circles such that the area of their union is greater that 2S

9 .
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3.23 The Twenty-Third IMO

Budapest, Hungary, July 5–14, 1982

3.23.1 Contest Problems

First Day (July 9)

1. The function f(n) is defined for all positive integers n and takes on non-
negative integer values. Also, for all m,n,

f(m+ n) − f(m) − f(n) = 0 or 1;

f(2) = 0, f(3) > 0, and f(9999) = 3333.

Determine f(1982).

2. A nonisosceles triangle A1A2A3 is given with sides a1, a2, a3 (ai is the
side opposite to Ai). For all i = 1, 2, 3, Mi is the midpoint of side ai,
Ti is the point where the incircle touches side ai, and the reflection of
Ti in the interior bisector of Ai yields the point Si. Prove that the lines
M1S1,M2S2, and M3S3 are concurrent.

3. Consider the infinite sequences {xn} of positive real numbers with the
following properties:

x0 = 1 and for all i ≥ 0, xi+1 ≤ xi.

(a) Prove that for every such sequence there is an n ≥ 1 such that

x2
0

x1
+
x2

1

x2
+ · · · + x2

n−1

xn
≥ 3.999.

(b) Find such a sequence for which
x2
0

x1
+

x2
1

x2
+ · · · + x2

n−1

xn
< 4 for all n.

Second Day (July 10)

4. Prove that if n is a positive integer such that the equation x3−3xy2+y3 =
n has a solution in integers (x, y), then it has at least three such solutions.
Show that the equation has no solution in integers when n = 2891.

5. The diagonals AC and CE of the regular hexagon ABCDEF are divided
by the inner points M and N , respectively, so that AM

AC = CN
CE = r.

Determine r if B, M , and N are collinear.

6. Let S be a square with sides of length 100 and let L be a path within
S that does not meet itself and that is composed of linear segments
A0A1, A1A2, . . . , An−1An with A0 �= An. Suppose that for every point
P of the boundary of S there is a point of L at a distance from P not
greater than 1

2 . Prove that there are two points X and Y in L such that
the distance between X and Y is not greater than 1 and the length of the
part of L that lies between X and Y is not smaller than 198.
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3.23.2 Longlisted Problems

1. (AUS 1) It is well known that the binomial coefficients
(
n
k

)
= n!

k!(n−k)! ,

0 ≤ k ≤ n, are positive integers. The factorial n! is defined inductively by
0! = 1, n! = n · (n− 1)! for n ≥ 1.
(a) Prove that 1

n+1

(
2n
n

)
is an integer for n ≥ 0.

(b) Given a positive integer k, determine the smallest integer Ck with the
property that Ck

n+k+1

(
2n

n+k

)
is an integer for all n ≥ k.

2. (AUS 2) Given a finite number of angular regions A1, . . . , Ak in a plane,
each Ai being bounded by two half-lines meeting at a vertex and provided
with a + or − sign, we assign to each point P of the plane and not on a
bounding half-line the number k − l, where k is the number of + regions
and l the number of − regions that contain P . (Note that the boundary
of Ai does not belong to Ai.)

For instance, in the figure we have
two + regions QAP and RCQ, and
one − region RBP . Every point in-
side 
ABC receives the number �

�
�
�
��

�
�
�
�

�����

A

BC

PQ

R

+

−+

+1, while every point not inside 
ABC and not on a boundary halfline
the number 0. We say that the interior of 
ABC is represented as a sum
of the signed angular regions QAP , RBP , and RCQ.
(a) Show how to represent the interior of any convex planar polygon as a

sum of signed angular regions.
(b) Show how to represent the interior of a tetrahedron as a sum of signed

solid angular regions, that is, regions bounded by three planes inter-
secting at a vertex and provided with a + or − sign.

3. (AUS 3) Given n points X1, X2, . . . , Xn in the interval 0 ≤ Xi ≤ 1,
i = 1, 2, . . . , n, show that there is a point y, 0 ≤ y ≤ 1, such that

1

n

n∑
i=1

|y −Xi| =
1

2
.

4. (AUS 4) (SL82-14).
Original formulation. Let ABCD be a convex planar quadrilateral and
let A1 denote the circumcenter of 
BCD. Define B1, C1, D1 in a corre-
sponding way.
(a) Prove that either all ofA1, B1, C1, D1 coincide in one point, or they are

all distinct. Assuming the latter case, show that A1, C1 are on opposite
sides of the line B1D1, and similarly, B1, D1 are on opposite sides of
the line A1C1. (This establishes the convexity of the quadrilateral
A1B1C1D1.)

(b) Denote by A2 the circumcenter of B1C1D1, and define B2, C2, D2 in
an analogous way. Show that the quadrilateral A2B2C2D2 is similar
to the quadrilateral ABCD.
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(c) If the quadrilateral A1B1C1D1 was obtained from the quadrilat-
eral ABCD by the above process, what condition must be satis-
fied by the four points A1, B1, C1, D1? Assuming that the four points
A1, B1, C1, D1 satisfying this condition are given, describe a construc-
tion by straightedge and compass to obtain the original quadrilateral
ABCD. (It is not necessary to actually perform the construction).

5. (BEL 1) Among all triangles with a given perimeter, find the one with
the maximal radius of its incircle.

6. (BEL 2) On the three distinct lines a, b, and c three points A, B, and
C are given, respectively. Construct three collinear points X,Y, Z on lines
a, b, c, respectively, such that BY

AX = 2 and CZ
AX = 3.

7. (BEL 3) Find all solutions (x, y) ∈ Z2 of the equation

x3 − y3 = 2xy + 8.

8. (BRA 1) (SL82-10).

9. (BRA 2) Let n be a natural number, n ≥ 2, and let φ be Euler’s function;
i.e., φ(n) is the number of positive integers not exceeding n and coprime
to n. Given any two real numbers α and β, 0 ≤ α < β ≤ 1, prove that
there exists a natural number m such that

α <
φ(m)

m
< β.

10. (BRA 3) Let r1, . . . , rn be the radii of n spheres. Call S1, S2, . . . , Sn the
areas of the set of points of each sphere from which one cannot see any
point of any other sphere. Prove that

S1

r21
+
S2

r22
+ · · · + Sn

r2n
= 4π.

11. (BRA 4) A rectangular pool table has a hole at each of three of its
corners. The lengths of sides of the table are the real numbers a and b. A
billiard ball is shot from the fourth corner along its angle bisector. The
ball falls in one of the holes. What should the relation between a and b
be for this to happen?

12. (BRA 5) Let there be 3399 numbers arbitrarily chosen among the first
6798 integers 1, 2, . . . , 6798 in such a way that none of them divides an-
other. Prove that there are exactly 1982 numbers in {1, 2, . . . , 6798} that
must end up being chosen.

13. (BUL 1) A regular n-gonal truncated pyramid is circumscribed around
a sphere. Denote the areas of the base and the lateral surfaces of the
pyramid by S1, S2, and S, respectively. Let σ be the area of the polygon
whose vertices are the tangential points of the sphere and the lateral faces
of the pyramid. Prove that
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σS = 4S1S2 cos2
π

n
.

14. (BUL 2) (SL82-4).

15. (CAN 1) Show that the set S of natural numbers n for which 3/n
cannot be written as the sum of two reciprocals of natural numbers (S =
{n | 3/n �= 1/p+ 1/q for any p, q ∈ N}) is not the union of finitely many
arithmetic progressions.

16. (CAN 2) (SL82-7).

17. (CAN 3) (SL82-11).

18. (CAN 4) You are given an algebraic system admitting addition and
multiplication for which all the laws of ordinary arithmetic are valid except
commutativity of multiplication. Show that

(a+ ab−1a)−1 + (a+ b)−1 = a−1,

where x−1 is the element for which x−1x = xx−1 = e, where e is the
element of the system such that for all a the equality ea = ae = a holds.

19. (CAN 5) (SL82-15).

20. (CZS 1) Consider a cube C and two planes σ, τ , which divide Euclidean
space into several regions. Prove that the interior of at least one of these
regions meets at least three faces of the cube.

21. (CZS 2) All edges and all diagonals of regular hexagon A1A2A3A4A5A6

are colored blue or red such that each triangle AjAkAm, 1 ≤ j < k <
m ≤ 6 has at least one red edge. Let Rk be the number of red segments
AkAj , (j �= k). Prove the inequality

6∑
k=1

(2Rk − 7)2 ≤ 54.

22. (CZS 3) (SL82-19).

23. (FIN 1) Determine the sum of all positive integers whose digits (in base
ten) form either a strictly increasing or a strictly decreasing sequence.

24. (FIN 2) Prove that if a person a has infinitely many descendants (chil-
dren, their children, etc.), then a has an infinite sequence a0, a1, . . . of
descendants (i.e., a = a0 and for all n ≥ 1, an+1 is always a child of an).
It is assumed that no-one can have infinitely many children.
Variant 1. Prove that if a has infinitely many ancestors, then a has an
infinite descending sequence of ancestors (i.e., a0, a1, . . . where a = a0 and
an is always a child of an+1).
Variant 2. Prove that if someone has infinitely many ancestors, then all
people cannot descend from A(dam) and E(ve).
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25. (FIN 3) (SL82-12).

26. (FRA 1) Let (an)n≥0 and (bn)n≥0 be two sequences of natural numbers.
Determine whether there exists a pair (p, q) of natural numbers that satisfy

p < q and ap ≤ aq, bp ≤ bq.

27. (FRA 2) (SL82-18).

28. (FRA 3) Let (u1, . . . , un) be an ordered ntuple. For each k, 1 ≤ k ≤ n,
define vk = k

√
u1u2 · · ·uk. Prove that

n∑
k=1

vk ≤ e ·
n∑

k=1

uk.

(e is the base of the natural logarithm).

29. (FRA 4) Let f : R → R be a continuous function. Suppose that the
restriction of f to the set of irrational numbers is injective. What can we
say about f? Answer the analogous question if f is restricted to rationals.

30. (GBR 1) (SL82-9).

31. (GBR 2) (SL82-16).

32. (GBR 3) (SL82-1).

33. (GBR 4) A sequence (un) of integers is defined for n ≥ 0 by u0 = 0,
u1 = 1, and un − 2un−1 + (1 − c)un−2 = 0 (n ≥ 2), where c is a fixed
integer independent of n. Find the least value of c for which both of the
following statements are true:
(i) If p is a prime less than or equal to P , then p divides up.
(ii) If p is a prime greater than P , then p does not divide up.

34. (GDR 1) Let M be the set of all functions f with the following proper-
ties:
(i) f is defined for all real numbers and takes only real values.
(ii) For all x, y ∈ R the following equality holds: f(x)f(y) = f(x + y) +

f(x− y).
(iii) f(0) �= 0.
Determine all functions f ∈ M such that
(a) f(1) = 5/2;
(b) f(1) =

√
3.

35. (GDR 2) If the inradius of a triangle is half of its circumradius, prove
that the triangle is equilateral.

36. (NET 1) (SL82-13).

37. (NET 2) (SL82-5).
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38. (POL 1) Numbers un,k (1 ≤ k ≤ n) are defined as follows:

u1,1 = 1, un,k =

(
n

k

)
−

∑
d|n, d|k, d>1

un/d,k/d

(the empty sum is defined to be equal to zero). Prove that n | un,k for
every natural number n and for every k (1 ≤ k ≤ n).

39. (POL 2) Let S be the unit circle with center O and let P1, P2, . . . , Pn

be points of S such that the sum of vectors vi =
−−→
OPi is the zero vector.

Prove that the inequality
∑n

i=1XPi ≥ n holds for every point X .

40. (POL 3) We consider a game on an infinite chessboard similar to that of
solitaire: If two adjacent fields are occupied by pawns and the next field
is empty (the three fields lie on a vertical or horizontal line), then we may
remove these two pawns and put one of them on the third field. Prove that
if in the initial position pawns fill a 3k×n rectangle, then it is impossible
to reach a position with only one pawn on the board.

41. (POL 4) (SL82-8).

42. (POL 5) Let F be the family of all k-element subsets of the set
{1, 2, . . . , 2k + 1}. Prove that there exists a bijective function f : F → F
such that for every A ∈ F , the sets A and f(A) are disjoint.

43. (TUN 1) (a) What is the maximal number of acute angles in a convex
polygon?

(b) Consider m points in the interior of a convex n-gon. The n-gon is
partitioned into triangles whose vertices are among the n + m given
points (the vertices of the n-gon and the given points). Each of the
m points in the interior is a vertex of at least one triangle. Find the
number of triangles obtained.

44. (TUN 2) Let A and B be positions of two ships M and N , respectively,
at the moment when N saw M moving with constant speed v following
the line Ax. In search of help, N moves with speed kv (k < 1) along the
line By in order to meet M as soon as possible. Denote by C the point of
meeting of the two ships, and set

AB = d, ∠BAC = α, 0 ≤ α <
π

2
.

Determine the angle ∠ABC = β and time t that N needs in order to meet
M .

45. (TUN 3) (SL82-20).

46. (USA 1) Prove that if a diagonal is drawn in a quadrilateral inscribed
in a circle, the sum of the radii of the circles inscribed in the two triangles
thus formed is the same, no matter which diagonal is drawn.
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47. (USA 2) Evaluate sec′′ π
4 +sec′′ 3π

4 +sec′′ 5π
4 +sec′′ 7π

4 . (Here sec′′ means
the second derivative of sec.)

48. (USA 3) Given a finite sequence of complex numbers c1, c2, . . . , cn, show
that there exists an integer k (1 ≤ k ≤ n) such that for every finite
sequence a1, a2, . . . , an of real numbers with 1 ≥ a1 ≥ a2 ≥ · · · ≥ an ≥ 0,
the following inequality holds:∣∣∣∣∣

n∑
m=1

amcmn

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
m=1

cm

∣∣∣∣∣ .
49. (USA 4) Simplify

n∑
k=0

(2n)!

(k!)2((n− k)!)2
.

50. (USS 1) Let O be the midpoint of the axis of a right circular cylinder.
Let A and B be diametrically opposite points of one base, and C a point
of the other base circle that does not belong to the plane OAB. Prove
that the sum of dihedral angles of the trihedral OABC is equal to 2π.

51. (USS 2) Let n numbers x1, x2, . . . , xn be chosen in such a way that
1 ≥ x1 ≥ x2 ≥ · · · ≥ xn ≥ 0. Prove that

(1 + x1 + x2 + · · · + xn)α ≤ 1 + xα
1 + 2α−1xα

2 + · · · + nα−1xα
n

if 0 ≤ α ≤ 1.

52. (USS 3) We are given 2n natural numbers

1, 1, 2, 2, 3, 3, . . . , n− 1, n− 1, n, n.

Find all n for which these numbers can be arranged in a row such that
for each k ≤ n, there are exactly k numbers between the two numbers k.

53. (USS 4) (SL82-3).

54. (USS 5) (SL82-17).

55. (VIE 1) (SL82-6).

56. (VIE 2) Let f(x) = ax2 + bx+ c and g(x) = cx2 + bx+ a. If |f(0)| ≤ 1,
|f(1)| ≤ 1, |f(−1)| ≤ 1, prove that for |x| ≤ 1,
(a) |f(x)| ≤ 5/4,
(b) |g(x)| ≤ 2.

57. (YUG 1) (SL82-2).

3.23.3 Shortlisted Problems

1. A1 (GBR 3)IMO1 The function f(n) is defined for all positive integers
n and takes on nonnegative integer values. Also, for all m,n,
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f(m+ n) − f(m) − f(n) = 0 or 1;

f(2) = 0, f(3) > 0, and f(9999) = 3333.

Determine f(1982).

2. A2 (YUG 1) Let K be a convex polygon in the plane and suppose that
K is positioned in the coordinate system in such a way that

area (K ∩Qi) =
1

4
area K (i = 1, 2, 3, 4, ),

where the Qi denote the quadrants of the plane. Prove that if K contains
no nonzero lattice point, then the area of K is less than 4.

3. A3 (USS 4)IMO3 Consider the infinite sequences {xn} of positive real
numbers with the following properties:

x0 = 1 and for all i ≥ 0, xi+1 ≤ xi.

(a) Prove that for every such sequence there is an n ≥ 1 such that
x2
0

x1
+

x2
1

x2
+ · · · + x2

n−1

xn
≥ 3.999.

(b) Find such a sequence for which
x2
0

x1
+

x2
1

x2
+ · · · + x2

n−1

xn
< 4 for all n.

4. A4 (BUL 2) Determine all real values of the parameter a for which the
equation

16x4 − ax3 + (2a+ 17)x2 − ax+ 16 = 0

has exactly four distinct real roots that form a geometric progression.

5. A5 (NET 2)IMO5 Let A1A2A3A4A5A6 be a regular hexagon. Each of its
diagonals Ai−1Ai+1 is divided into the same ratio λ

1−λ , where 0 < λ < 1,
by a point Bi in such a way that Ai, Bi, and Bi+2 are collinear (i ≡
1, . . . , 6 (mod 6)). Compute λ.

6. A6 (VIE 1)IMO6 Let S be a square with sides of length 100 and let L be
a path within S that does not meet itself and that is composed of linear
segments A0A1, A1A2, . . . , An−1An with A0 �= An. Suppose that for every
point P of the boundary of S there is a point of L at a distance from P
not greater than 1

2 . Prove that there are two points X and Y in L such
that the distance between X and Y is not greater than 1 and the length
of that part of L that lies between X and Y is not smaller than 198.

7. B1 (CAN 2) Let p(x) be a cubic polynomial with integer coefficients
with leading coefficient 1 and with one of its roots equal to the product of
the other two. Show that 2p(−1) is a multiple of p(1)+p(−1)−2(1+p(0)).

8. B2 (POL 4) A convex, closed figure lies inside a given circle. The figure
is seen from every point of the circumference at a right angle (that is,
the two rays drawn from the point and supporting the convex figure are
perpendicular). Prove that the center of the circle is a center of symmetry
of the figure.
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9. B3 (GBR 1) Let ABC be a triangle, and let P be a point inside it such
that �PAC = �PBC. The perpendiculars from P to BC and CA meet
these lines at L and M , respectively, and D is the midpoint of AB. Prove
that DL = DM .

10. B4 (BRA 1) A box contains p white balls and q black balls. Beside the
box there is a pile of black balls. Two balls are taken out of the box. If
they have the same color, a black ball from the pile is put into the box.
If they have different colors, the white ball is put back into the box. This
procedure is repeated until the last two balls are removed from the box
and one last ball is put in. What is the probability that this last ball is
white?

11. B5 (CAN 3) (a) Find the rearrangement {a1, . . . , an} of {1, 2, . . . , n}
that maximizes

a1a2 + a2a3 + · · · + ana1 = Q.

(b) Find the rearrangement that minimizes Q.

12. B6 (FIN 3) Four distinct circles C,C1, C2, C3 and a line L are given in
the plane such that C and L are disjoint and each of the circles C1, C2, C3

touches the other two, as well as C and L. Assuming the radius of C to
be 1, determine the distance between its center and L.

13. C1 (NET 1)IMO2 A scalene triangle A1A2A3 is given with sides a1, a2, a3

(ai is the side opposite to Ai). For all i = 1, 2, 3, Mi is the midpoint of side
ai, Ti is the point where the incircle touches side ai, and the reflection of
Ti in the interior bisector of Ai yields the point Si. Prove that the lines
M1S1, M2S2, and M3S3 are concurrent.

14. C2 (AUS 4) Let ABCD be a convex plane quadrilateral and let A1

denote the circumcenter of 
BCD. Define B1, C1, D1 in a corresponding
way.
(a) Prove that either all ofA1, B1, C1, D1 coincide in one point, or they are

all distinct. Assuming the latter case, show that A1, C1 are on opposite
sides of the line B1D1, and similarly, B1, D1 are on opposite sides of
the line A1C1. (This establishes the convexity of the quadrilateral
A1B1C1D1.)

(b) Denote by A2 the circumcenter of B1C1D1, and define B2, C2, D2 in
an analogous way. Show that the quadrilateral A2B2C2D2 is similar
to the quadrilateral ABCD.

15. C3 (CAN 5) Show that

1 − sa

1 − s
≤ (1 + s)a−1

holds for every 1 �= s > 0 real and 0 < a ≤ 1 rational.
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16. C4 (GBR 2)IMO4 Prove that if n is a positive integer such that the
equation x3 − 3xy2 + y3 = n has a solution in integers (x, y), then it has
at least three such solutions. Show that the equation has no solution in
integers when n = 2891.

17. C5 (USS 5) The right triangles ABC and AB1C1 are similar and have
opposite orientation. The right angles are at C and C1, and we also have
�CAB = �C1AB1. Let M be the point of intersection of the lines BC1

and B1C. Prove that if the lines AM and CC1 exist, they are perpendic-
ular.

18. C6 (FRA 2) Let O be a point of three-dimensional space and let l1, l2, l3
be mutually perpendicular straight lines passing through O. Let S denote
the sphere with center O and radius R, and for every point M of S, let SM

denote the sphere with centerM and radiusR. We denote by P1, P2, P3 the
intersection of SM with the straight lines l1, l2, l3, respectively, where we
put Pi �= O if li meets SM at two distinct points and Pi = O otherwise (i =
1, 2, 3). What is the set of centers of gravity of the (possibly degenerate)
triangles P1P2P3 as M runs through the points of S?

19. C7 (CZS 3) Let M be the set of real numbers of the form m+n√
m2+n2

,

where m and n are positive integers. Prove that for every pair x ∈ M ,
y ∈ M with x < y, there exists an element z ∈ M such that x < z < y.

20. C8 (TUN 3) Let ABCD be a convex quadrilateral and draw regular tri-
angles ABM , CDP , BCN , ADQ, the first two outward and the other two
inward. Prove that MN = AC. What can be said about the quadrilateral
MNPQ?
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3.24 The Twenty-Fourth IMO

Paris, France, July 1–12, 1983

3.24.1 Contest Problems

First Day (July 6)

1. Find all functions f defined on the positive real numbers and taking pos-
itive real values that satisfy the following conditions:
(i) f(xf(y)) = yf(x) for all positive real x, y;
(ii) f(x) → 0 as x → +∞.

2. Let K be one of the two intersection points of the circles W1 and W2. Let
O1 and O2 be the centers of W1 and W2. The two common tangents to
the circles meet W1 and W2 respectively in P1 and P2, the first tangent,
and Q1 and Q2 the second tangent. Let M1 and M2 be the midpoints of
P1Q1 and P2Q2, respectively. Prove that ∠O1KO2 = ∠M1KM2.

3. Let a, b, c be positive integers satisfying (a, b) = (b, c) = (c, a) = 1. Show
that 2abc− ab− bc− ca is the largest integer not representable as

xbc+ yca+ zab

with nonnegative integers x, y, z.

Second Day (July 7)

4. Let ABC be an equilateral triangle. Let E be the set of all points from
segments AB, BC, and CA (including A, B, and C). Is it true that for any
partition of the set E into two disjoint subsets, there exists a right-angled
triangle all of whose vertices belong to the same subset in the partition?

5. Prove or disprove the following statement: In the set {1, 2, 3, . . . , 105} a
subset of 1983 elements can be found that does not contain any three
consecutive terms of an arithmetic progression.

6. If a, b, and c are sides of a triangle, prove that

a2b(a− b) + b2c(b− c) + c2a(c− a) ≥ 0

and determine when there is equality.

3.24.2 Longlisted Problems

1. (AUS 1) (SL83-1).

2. (AUS 2) Seventeen cities are served by four airlines. It is noted that
there is direct service (without stops) between any two cities and that
all airline schedules offer round-trip flights. Prove that at least one of the
airlines can offer a round trip with an odd number of landings.
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3. (AUS 3) (a) Given a tetrahedron ABCD and its four altitudes (i.e.,
lines through each vertex, perpendicular to the opposite face), assume
that the altitude dropped from D passes through the orthocenter H4

of ∆ABC. Prove that this altitude DH4 intersects all the other three
altitudes.

(b) If we further know that a second altitude, say the one from vertex A
to the face BCD, also passes through the orthocenter H1 of ∆BCD,
then prove that all four altitudes are concurrent and each one passes
through the orthocenter of the respective triangle.

4. (BEL 1) (SL83-2).

5. (BEL 2) Consider the set Q2 of points in R2, both of whose coordinates
are rational.
(a) Prove that the union of segments with vertices from Q2 is the entire

set R2.
(b) Is the convex hull of Q2 (i.e., the smallest convex set in R2 that con-

tains Q2) equal to R2?

6. (BEL 3) (SL83-3).

7. (BEL 4) Find all numbers x ∈ Z for which the number

x4 + x3 + x2 + x+ 1

is a perfect square.

8. (BEL 5) (SL83-4).

9. (BRA 1) (SL83-5).

10. (BRA 2) Which of the numbers 1, 2, . . . , 1983 has the largest number of
divisors?

11. (BRA 3) A boy at point A wants to get water at a circular lake and
carry it to point B. Find the point C on the lake such that the distance
walked by the boy is the shortest possible given that the line AB and the
lake are exterior to each other.

12. (BRA 4) The number 0 or 1 is to be assigned to each of the n vertices
of a regular polygon. In how many different ways can this be done (if we
consider two assignments that can be obtained one from the other through
rotation in the plane of the polygon to be identical)?

13. (BUL 1) Let p be a prime number and a1, a2, . . . , a(p+1)/2 different nat-
ural numbers less than or equal to p. Prove that for each natural number
r less than or equal to p, there exist two numbers (perhaps equal) ai and
aj such that

p ≡ aiaj(mod r).
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14. (BUL 2) Let l be tangent to the circle k at B. Let A be a point on k
and P the foot of perpendicular from A to l. Let M be symmetric to P
with respect to AB. Find the set of all such points M .

15. (CAN 1) Find all possible finite sequences {n0, n1, n2, . . . , nk} of integers
such that for each i, i appears in the sequence ni times (0 ≤ i ≤ k).

16. (CAN 2) (SL83-6).

17. (CAN 3) In how many ways can 1, 2, . . . , 2n be arranged in a 2 × n

rectangular array

(
a1 a2 · · · an

b1 b2 · · · bn

)
for which:

(i) a1 < a2 < · · · < an,
(ii) b1 < b2 < · · · < bn,
(iii) a1 < b1, a2 < b2, . . . , an < bn?

18. (CAN 4) Let b ≥ 2 be a positive integer.
(a) Show that for an integer N , written in base b, to be equal to the sum

of the squares of its digits, it is necessary either that N = 1 or that
N have only two digits.

(b) Give a complete list of all integers not exceeding 50 that, relative to
some base b, are equal to the sum of the squares of their digits.

(c) Show that for any base b the number of two-digit integers that are
equal to the sum of the squares of their digits is even.

(d) Show that for any odd base b there is an integer other than 1 that is
equal to the sum of the squares of its digits.

19. (CAN 5) (SL83-7).

20. (COL 1) Let f and g be functions from the set A to the same set A.
We define f to be a functional nth root of g (n is a positive integer) if
fn(x) = g(x), where fn(x) = fn−1(f(x)).
(a) Prove that the function g : R → R, g(x) = 1/x has an infinite number

of nth functional roots for each positive integer n.
(b) Prove that there is a bijection from R onto R that has no nth func-

tional root for each positive integer n.

21. (COL 2) Prove that there are infinitely many positive integers n for
which it is possible for a knight, starting at one of the squares of an n×n
chessboard, to go through each of the squares exactly once.

22. (CUB 1) Does there exist an infinite number of sets C consisting of 1983
consecutive natural numbers such that each of the numbers is divisible by
some number of the form a1983, with a ∈ N, a �= 1?

23. (FIN 1) (SL83-10).

24. (FIN 2) Every x, 0 ≤ x ≤ 1, admits a unique representation x =∑∞
j=0 aj2

−j, where all the aj belong to {0, 1} and infinitely many of them

are 0. If b(0) = 1+c
2+c , b(1) = 1

2+c , c > 0, and
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f(x) = a0 +
∞∑

j=0

b(a0) · · · b(aj)aj+1,

show that 0 < f(x) − x < c for every x, 0 < x < 1.
(FIN 2′) (SL83-11).

25. (FRG 1) How many permutations a1, a2, . . . , an of {1, 2, . . . , n} are
sorted into increasing order by at most three repetitions of the following
operation: Move from left to right and interchange ai and ai+1 whenever
ai > ai+1 for i running from 1 up to n− 1?

26. (FRG 2) Let a, b, c be positive integers satisfying (a, b) = (b, c) = (c, a) =
1. Show that 2abc− ab− bc− ca cannot be represented as bcx+ cay+ abz
with nonnegative integers x, y, z.

27. (FRG 3) (SL83-18).

28. (GBR 1) Show that if the sides a, b, c of a triangle satisfy the equation

2(ab2 + bc2 + ca2) = a2b+ b2c+ c2a+ 3abc,

then the triangle is equilateral. Show also that the equation can be satisfied
by positive real numbers that are not the sides of a triangle.

29. (GBR 2) Let O be a point outside a given circle. Two lines OAB, OCD
through O meet the circle at A,B,C,D, where A,C are the midpoints of
OB,OD, respectively. Additionally, the acute angle θ between the lines is
equal to the acute angle at which each line cuts the circle. Find cos θ and
show that the tangents at A,D to the circle meet on the line BC.

30. (GBR 3) Prove the existence of a unique sequence {un} (n = 0, 1, 2 . . . )
of positive integers such that

u2
n =

n∑
r=0

(
n+ r

r

)
un−r for all n ≥ 0,

where
(
m
r

)
is the usual binomial coefficient.

31. (GBR 4) (SL83-12).

32. (GBR 5) Let a, b, c be positive real numbers and let [x] denote the
greatest integer that does not exceed the real number x. Suppose that f
is a function defined on the set of nonnegative integers n and taking real
values such that f(0) = 0 and

f(n) ≤ an+ f([bn]) + f([cn]), for all n ≥ 1.

Prove that if b + c < 1, there is a real number k such that

f(n) ≤ kn for all n, (1)
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while if b + c = 1, there is a real number K such that f(n) ≤ Kn log2 n
for all n ≥ 2. Show that if b + c = 1, there may not be a real number k
that satisfies (1).

33. (GDR 1) (SL83-16).

34. (GDR 2) In a plane are given n points Pi (i = 1, 2, . . . , n) and two
angles α and β. Over each of the segments PiPi=1 (Pn+1 = P1) a point
Qi is constructed such that for all i:
(i) upon moving from Pi to Pi+1, Qi is seen on the same side of PiPi+1,
(ii) ∠Pi+1PiQi = α,
(iii) ∠PiPi+1Qi = β.
Furthermore, let g be a line in the same plane with the property that all
the points Pi, Qi lie on the same side of g. Prove that

n∑
i=1

d(Pi, g) =

n∑
i=1

d(Qi, g),

where d(M, g) denotes the distance from point M to line g.

35. (GDR 3) (SL83-17).

36. (ISR 1) The set X has 1983 members. There exists a family of subsets
{S1, S2, . . . , Sk} such that:
(i) the union of any three of these subsets is the entire set X , while
(ii) the union of any two of them contains at most 1979 members.
What is the largest possible value of k?

37. (ISR 2) The points A1, A2, . . . , A1983 are set on the circumference of a
circle and each is given one of the values ±1. Show that if the number of
points with the value +1 is greater than 1789, then at least 1207 of the
points will have the property that the partial sums that can be formed by
taking the numbers from them to any other point, in either direction, are
strictly positive.

38. (KUW 1) Let {un} be the sequence defined by its first two terms u0, u1

and the recursion formula

un+2 = un − un+1.

(a) Show that un can be written in the form un = αan + βbn, where
a, b, α, β are constants independent of n that have to be determined.

(b) If Sn = u0 + u1 + · · · + un, prove that Sn + un−1 is a constant inde-
pendent of n. Determine this constant.

39. (KUW 2) If α is the real root of the equation

E(x) = x3 − 5x− 50 = 0

such that xn+1 = (5xn + 50)1/3 and x1 = 5, where n is a positive integer,
prove that:
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(a) x3
n+1 − α3 = 5(xn − α)

(b) α < xn+1 < xn

40. (LUX 1) Four faces of tetrahedron ABCD are congruent triangles whose
angles form an arithmetic progression. If the lengths of the sides of the
triangles are a < b < c, determine the radius of the sphere circumscribed
about the tetrahedron as a function on a, b, and c. What is the ratio c/a
if R = a?

41. (LUX 2) (SL83-13).

42. (LUX 3) Consider the square ABCD in which a segment is drawn
between each vertex and the midpoints of both opposite sides. Find the
ratio of the area of the octagon determined by these segments and the
area of the square ABCD.

43. (LUX 4) Given a square ABCD, let P , Q, R, and S be four variable
points on the sides AB, BC, CD, and DA, respectively. Determine the
positions of the points P , Q, R, and S for which the quadrilateral PQRS
is a parallelogram, a rectangle, a square, or a trapezoid.

44. (LUX 5) We are given twelve coins, one of which is a fake with a different
mass from the other eleven. Determine that coin with three weighings and
whether it is heavier or lighter than the others.

45. (LUX 6) Let two glasses, numbered 1 and 2, contain an equal quantity
of liquid, milk in glass 1 and coffee in glass 2. One does the following: Take
one spoon of mixture from glass 1 and pour it into glass 2, and then take
the same spoon of the new mixture from glass 2 and pour it back into the
first glass. What happens after this operation is repeated n times, and
what as n tends to infinity?

46. (LUX 7) Let f be a real-valued function defined on I = (0,+∞) and
having no zeros on I. Suppose that

lim
x→+∞

f ′(x)
f(x)

= +∞.

For the sequence un = ln
∣∣∣f(n+1)

f(n)

∣∣∣, prove that un → +∞ (n → +∞).

47. (NET 1) In a plane, three pairwise intersecting circles C1, C2, C3 with
centers M1,M2,M3 are given. For i = 1, 2, 3, let Ai be one of the points of
intersection of Cj and Ck ({i, j, k} = {1, 2, 3}). Prove that if ∠M3A1M2 =
∠M1A2M3 = ∠M2A3M1 = π/3 (directed angles), then M1A1, M2A2, and
M3A3 are concurrent.

48. (NET 2) Prove that in any parallelepiped the sum of the lengths of the
edges is less than or equal to twice the sum of the lengths of the four
diagonals.



3.24 IMO 1983 163

49. (POL 1) Given positive integers k,m, n with km ≤ n and nonnegative
real numbers x1, . . . , xk, prove that

n

(
k∏

i=1

xm
i − 1

)
≤ m

k∑
i=1

(xn
i − 1) .

50. (POL 2) (SL83-14).

51. (POL 3) (SL83-15).

52. (ROM 1) (SL83-19).

53. (ROM 2) Let a ∈ R and let z1, z2, . . . , zn be complex numbers of mod-
ulus 1 satisfying the relation

n∑
k=1

z3
k = 4(a+ (a− n)i) − 3

n∑
k=1

zk.

Prove that a ∈ {0, 1, . . . , n} and zk ∈ {1, i} for all k.

54. (ROM 3) (SL83-20).

55. (ROM 4) For every a ∈ N denote by M(a) the number of elements of
the set

{b ∈ N | a+ b is a divisor of ab}.
Find maxa≤1983M(a).

56. (ROM 5) Consider the expansion

(1 + x+ x2 + x3 + x4)496 = a0 + a1x+ · · · + a1984x
1984.

(a) Determine the greatest common divisor of the coefficients a3, a8, a13,
. . . , a1983.

(b) Prove that 10340 < a992 < 10347.

57. (SPA 1) In the system of base n2 + 1 find a number N with n different
digits such that:
(i) N is a multiple of n. Let N = nN ′.
(ii) The number N and N ′ have the same number n of different digits in

base n2 + 1, none of them being zero.
(iii) If s(C) denotes the number in base n2 + 1 obtained by applying the

permutation s to the n digits of the number C, then for each permu-
tation s, s(N) = ns(N ′).

58. (SPA 2) (SL83-8).

59. (SPA 3) Solve the equation

tan2(2x) + 2 tan(2x) · tan(3x) − 1 = 0.

60. (SWE 1) (SL83-21).
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61. (SWE 2) Let a and b be integers. Is it possible to find integers p and q
such that the integers p+na and q+nb have no common prime factor no
matter how the integer n is chosen.

62. (SWE 3) A circle γ is drawn and let AB be a diameter. The point C
on γ is the midpoint of the line segment BD. The line segments AC and
DO, where O is the center of γ, intersect at P . Prove that there is a point
E on AB such that P is on the circle with diameter AE.

63. (SWE 4) (SL83-22).

64. (USA 1) The sum of all the face angles about all of the vertices except
one of a given polyhedron is 5160. Find the sum of all of the face angles
of the polyhedron.

65. (USA 2) Let ABCD be a convex quadrilateral whose diagonals AC and
BD intersect in a point P . Prove that

AP

PC
=

cot ∠BAC + cot∠DAC

cot ∠BCA+ cot∠DCA
.

66. (USA 3) (SL83-9).

67. (USA 4) The altitude from a vertex of a given tetrahedron intersects
the opposite face in its orthocenter. Prove that all four altitudes of the
tetrahedron are concurrent.

68. (USA 5) Three of the roots of the equation x4 − px3 + qx2 − rx+ s = 0
are tanA, tanB, and tanC, where A, B, and C are angles of a triangle.
Determine the fourth root as a function only of p, q, r, and s.

69. (USS 1) (SL83-23).

70. (USS 2) (SL83-24).

71. (USS 3) (SL83-25).

72. (USS 4) Prove that for all x1, x2, . . . , xn ∈ R the following inequality
holds: ∑

n≥i>j≥1

cos2(xi − xj) ≥ n(n− 2)

4
.

73. (VIE 1) Let ABC be a nonequilateral triangle. Prove that there exist
two points P and Q in the plane of the triangle, one in the interior and
one in the exterior of the circumcircle of ABC, such that the orthogonal
projections of any of these two points on the sides of the triangle are
vertices of an equilateral triangle.

74. (VIE 2) In a plane we are given two distinct points A,B and two lines
a, b passing through B and A respectively (a � B, b � A) such that the
line AB is equally inclined to a and b. Find the locus of points M in the
plane such that the product of distances from M to A and a equals the
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product of distances from M to B and b (i.e., MA ·MA′ = MB ·MB′,
where A′ and B′ are the feet of the perpendiculars from M to a and b
respectively).

75. (VIE 3) Find the sum of the fiftieth powers of all sides and diagonals of
a regular 100-gon inscribed in a circle of radius R.

3.24.3 Shortlisted Problems

1. (AUS 1) The localities P1, P2, . . . , P1983 are served by ten international
airlines A1, A2, . . . , A10. It is noticed that there is direct service (without
stops) between any two of these localities and that all airline schedules
offer round-trip flights. Prove that at least one of the airlines can offer a
round trip with an odd number of landings.

2. (BEL 1) Let n be a positive integer. Let σ(n) be the sum of the natural
divisors d of n (including 1 and n). We say that an integer m ≥ 1 is

superabundant (P.Erdös, 1944) if ∀k ∈ {1, 2, . . . ,m − 1}, σ(m)
m > σ(k)

k .
Prove that there exists an infinity of superabundant numbers.

3. (BEL 3)IMO4 We say that a set E of points of the Euclidian plane is
“Pythagorean” if for any partition of E into two sets A and B, at least
one of the sets contains the vertices of a right-angled triangle. Decide
whether the following sets are Pythagorean:
(a) a circle;
(b) an equilateral triangle (that is, the set of three vertices and the points

of the three edges).

4. (BEL 5) On the sides of the triangle ABC, three similar isosceles tri-
angles ABP (AP = PB), AQC (AQ = QC), and BRC (BR = RC) are
constructed. The first two are constructed externally to the triangle ABC,
but the third is placed in the same half-plane determined by the line BC
as the triangle ABC. Prove that APRQ is a parallelogram.

5. (BRA 1) Consider the set of all strictly decreasing sequences of n natural
numbers having the property that in each sequence no term divides any
other term of the sequence. Let A = (aj) and B = (bj) be any two such
sequences. We say that A precedes B if for some k, ak < bk and ai = bi for
i < k. Find the terms of the first sequence of the set under this ordering.

6. (CAN 2) Suppose that {x1, x2, . . . , xn} are positive integers for which
x1 + x2 + · · · + xn = 2(n + 1). Show that there exists an integer r with
0 ≤ r ≤ n− 1 for which the following n− 1 inequalities hold:

xr+1 + · · · + xr+i ≤ 2i+ 1 ∀i, 1 ≤ i ≤ n− r;

xr+1 + · · · + xn + x1 + · · · + xi ≤ 2(n− r + i) + 1 ∀i, 1 ≤ i ≤ r − 1.

Prove that if all the inequalities are strict, then r is unique and that
otherwise there are exactly two such r.
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7. (CAN 5) Let a be a positive integer and let {an} be defined by a0 = 0
and

an+1 = (an + 1)a+ (a+ 1)an + 2
√
a(a+ 1)an(an + 1) (n = 1, 2 . . . ).

Show that for each positive integer n, an is a positive integer.

8. (SPA 2) In a test, 3n students participate, who are located in three
rows of n students in each. The students leave the test room one by one.
If N1(t), N2(t), N3(t) denote the numbers of students in the first, second,
and third row respectively at time t, find the probability that for each t
during the test,

|Ni(t) −Nj(t)| < 2, i �= j, i, j = 1, 2, . . . .

9. (USA 3)IMO6 If a, b, and c are sides of a triangle, prove that

a2b(a− b) + b2c(b− c) + c2a(c− a) ≥ 0.

Determine when there is equality.

10. (FIN 1) Let p and q be integers. Show that there exists an interval I of
length 1/q and a polynomial P with integral coefficients such that∣∣∣∣P (x) − p

q

∣∣∣∣ < 1

q2

for all x ∈ I.

11. (FIN 2′) Let f : [0, 1] → R be continuous and satisfy:

bf(2x) = f(x), 0 ≤ x ≤ 1/2;
f(x) = b+ (1 − b)f(2x− 1), 1/2 ≤ x ≤ 1,

where b = 1+c
2+c , c > 0. Show that 0 < f(x)−x < c for every x, 0 < x < 1.

12. (GBR 4)IMO1 Find all functions f defined on the positive real numbers
and taking positive real values that satisfy the following conditions:
(i) f(xf(y)) = yf(x) for all positive real x, y.
(ii) f(x) → 0 as x → +∞.

13. (LUX 2) Let E be the set of 19833 points of the space R3 all three
of whose coordinates are integers between 0 and 1982 (including 0 and
1982). A coloring of E is a map from E to the set {red, blue}. How many
colorings of E are there satisfying the following property: The number of
red vertices among the 8 vertices of any right-angled parallelepiped is a
multiple of 4?

14. (POL 2)IMO5 Prove or disprove: From the interval [1, . . . , 30000] one
can select a set of 1000 integers containing no arithmetic triple (three
consecutive numbers of an arithmetic progression).
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15. (POL 3) Decide whether there exists a set M of natural numbers satis-
fying the following conditions:
(i) For any natural number m > 1 there are a, b ∈ M such that a+b = m.
(ii) If a, b, c, d ∈ M , a, b, c, d > 10 and a+ b = c+ d, then a = c or a = d.

16. (GDR 1) Let F (n) be the set of polynomials P (x) = a0+a1x+· · ·+anx
n,

with a0, a1, . . . , an ∈ R and 0 ≤ a0 = an ≤ a1 = an−1 ≤ · · · ≤ a[n/2] =
a[(n+1)/2]. Prove that if f ∈ F (m) and g ∈ F (n), then fg ∈ F (m+ n).

17. (GDR 3) Let P1, P2, . . . , Pn be distinct points of the plane, n ≥ 2. Prove
that

max
1≤i<j≤n

PiPj >

√
3

2
(
√
n− 1) min

1≤i<j≤n
PiPj .

18. (FRG 3)IMO3 Let a, b, c be positive integers satisfying (a, b) = (b, c) =
(c, a) = 1. Show that 2abc− ab− bc− ca is the largest integer not repre-
sentable as

xbc+ yca+ zab

with nonnegative integers x, y, z.

19. (ROM 1) Let (Fn)n≥1 be the Fibonacci sequence F1 = F2 = 1, Fn+2 =
Fn+1 + Fn (n ≥ 1), and P (x) the polynomial of degree 990 satisfying

P (k) = Fk, for k = 992, . . . , 1982.

Prove that P (1983) = F1983 − 1.

20. (ROM 3) Solve the system of equations

x1|x1| = x2|x2| + (x1 − a)|x1 − a|,
x2|x2| = x3|x3| + (x2 − a)|x2 − a|,

· · ·
xn|xn| = x1|x1| + (xn − a)|xn − a|,

in the set of real numbers, where a > 0.

21. (SWE 1) Find the greatest integer less than or equal to
∑21983

k=1 k1/1983−1.

22. (SWE 4) Let n be a positive integer having at least two different prime
factors. Show that there exists a permutation a1, a2, . . . , an of the integers
1, 2, . . . , n such that

n∑
k=1

k · cos
2πak

n
= 0.

23. (USS 1)IMO2 Let K be one of the two intersection points of the circles W1

and W2. Let O1 and O2 be the centers of W1 and W2. The two common
tangents to the circles meet W1 and W2 respectively in P1 and P2, the
first tangent, and Q1 and Q2, the second tangent. Let M1 and M2 be the
midpoints of P1Q1 and P2Q2, respectively. Prove that

∠O1KO2 = ∠M1KM2.
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24. (USS 2) Let dn be the last nonzero digit of the decimal representation
of n!. Prove that dn is aperiodic; that is, there do not exist T and n0 such
that for all n ≥ n0, dn+T = dn.

25. (USS 3) Prove that every partition of 3-dimensional space into three
disjoint subsets has the following property: One of these subsets contains
all possible distances; i.e., for every a ∈ R+, there are points M and N
inside that subset such that distance between M and N is exactly a.
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3.25 The Twenty-Fifth IMO

Prague, Czechoslovakia, June 29–July 10, 1984

3.25.1 Contest Problems

First Day (July 4)

1. Let x, y, z be nonnegative real numbers with x+ y + z = 1. Show that

0 ≤ xy + yz + zx− 2xyz ≤ 7

27
.

2. Find two positive integers a, b such that none of the numbers a, b, a+ b is
divisible by 7 and (a+ b)7 − a7 − b7 is divisible by 77.

3. In a plane two different points O and A are given. For each point X �= O
of the plane denote by α(X) the angle AOX measured in radians (0 ≤
α(X) < 2π) and by C(X) the circle with center O and radius OX+ α(X)

OX .
Suppose each point of the plane is colored by one of a finite number of
colors. Show that there exists a point X with α(X) > 0 such that its color
appears somewhere on the circle C(X).

Second Day (July 5)

4. Let ABCD be a convex quadrilateral for which the circle of diameter AB
is tangent to the line CD. Show that the circle of diameter CD is tangent
to the line AB if and only if the lines BC and AD are parallel.

5. Let d be the sum of the lengths of all diagonals of a convex polygon of n
(n > 3) vertices, and let p be its perimeter. Prove that

n− 3

2
<
d

p
<

1

2

([n
2

] [n+ 1

2

]
− 2

)
.

6. Let a, b, c, d be odd positive integers such that a < b < c < d, ad = bc,
and a+ d = 2k, b+ c = 2m for some integers k and m. Prove that a = 1.

3.25.2 Longlisted Problems

1. (AUS 1) The fraction 3
10 can be written as the sum of two positive

fractions with numerator 1 as follows: 3
10 = 1

5 + 1
10 and also 3

10 = 1
4 + 1

20 .
There are the only two ways in which this can be done.
In how many ways can 3

1984 be written as the sum of two positive fractions
with numerator 1?
Is there a positive integer n, not divisible by 3, such that 3

n can be written
as the sum of two positive fractions with numerator 1 in exactly 1984
ways?
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2. (AUS 2) Given a regular convex 2m-sided polygon P , show that there is
a 2m-sided polygon π with the same vertices as P (but in different order)
such that π has exactly one pair of parallel sides.

3. (AUS 3) The opposite sides of the reentrant hexagon AFBDCE in-
tersect at the points K,L,M (as shown in the figure). It is given that
AL = AM = a, BM = BK = b, CK = CL = c, LD = DM = d,
ME = EK = e, FK = FL = f .
(a) Given length a and the three angles α, β, and γ at the vertices A, B,

and C, respectively, satisfying the condition α + β + γ < 180◦, show
that all the angles and sides of the hexagon are thereby uniquely
determined.

(b) Prove that

1

a
+

1

e
=

1

b
+

1

d
.

Easier version of (b). Prove that

(a+ f)(b + d)(c+ e)
= (a+ e)(b+ f)(c+ d).
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L M

4. (BEL 1) Given a triangle ABC, three equilateral triangles AEB, BFC,
and CGA are constructed in the exterior of ABC. Prove that:
(a) CE = AF = BG;
(b) CE, AF , and BG have a common point.

5. (BEL 2) For a real number x, let [x] denote the greatest integer not
exceeding x. If m ≥ 3, prove that[

m(m+ 1)

2(2m− 1)

]
=

[
m+ 1

4

]
.

6. (BEL 3) Let P,Q,R be the polynomials with real or complex coefficients
such that at least one of them is not constant. If Pn +Qn +Rn = 0, prove
that n < 3.

7. (BUL 1) Prove that for any natural number n, the number
(
2n
n

)
divides

the least common multiple of the numbers 1, 2, . . . , 2n− 1, 2n.

8. (BUL 2) In the plane of a given triangle A1A2A3 determine (with proof)
a straight line l such that the sum of the distances from A1, A2, and A3

to l is the least possible.

9. (BUL 3) The circle inscribed in the triangle A1A2A3 is tangent to
its sides A1A2, A2A3, A3A1 at points T1, T2, T3, respectively. Denote by
M1,M2,M3 the midpoints of the segments A2A3, A3A1, A1A2, respec-
tively. Prove that the perpendiculars through the points M1,M2,M3 to
the lines T2T3, T3T1, T1T2 meet at one point.
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10. (BUL 4) Assume that the bisecting plane of the dihedral angle at edge
AB of the tetrahedron ABCD meets the edge CD at point E. Denote by
S1, S2, S3, respectively the areas of the triangles ABC, ABE, and ABD.
Prove that no tetrahedron exists for which S1, S2, S3 (in this order) form
an arithmetic or geometric progression.

11. (BUL 5) (SL84-13).

12. (CAN 1) (SL84-11).
Original formulation. Suppose that a1, a2, . . . , a2n are distinct integers
such that

(x− a1)(x − a2) · · · (x− a2n) + (−1)n−1(n!)2 = 0

has an integer solution r. Show that r = a1+a2+···+a2n

2n .

13. (CAN 2) (SL84-2).
Original formulation. Letm,n be nonzero integers. Show that 4mn−m−n
can be a square infinitely many times, but that this never happens when
either m or n is positive.

Alternative formulation. Let m,n be positive integers. Show that 4mn−
m − n can be 1 less than a perfect square infinitely often, but can never
be a square.

14. (CAN 3) (SL84-6).

15. (CAN 4) Consider all the sums of the form

1985∑
k=1

ekk
5 = ±15 ± 25 ± · · · ± 19855,

where ek = ±1. What is the smallest nonnegative value attained by a sum
of this type?

16. (CAN 5) (SL84-19).

17. (FRA 1) (SL84-1).

18. (FRA 2) Let c be the inscribed circle of the triangle ABC, d a line tan-
gent to c which does not pass through the vertices of triangle ABC. Prove
the existence of points A1, B1, C1, respectively, on the lines BC,CA,AB
satisfying the following two properties:
(i) Lines AA1, BB1, and CC1 are parallel.
(ii) Lines AA1, BB1, and CC1 meet d respectively at points A′, B′, and

C′ such that
A′A1

A′A
=
B′B1

B′B
=
C′C1

C′C
.

19. (FRA 3) Let ABC be an isosceles triangle with right angle at point A.
Find the minimum of the function F given by

F (M) = BM + CM −
√

3AM.
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20. (FRG 1) (SL84-5).

21. (FRG 2)
(1) Start with a white balls and b black balls.
(2) Draw one ball at random.
(3) If the ball is white, then stop. Otherwise, add two black balls and go

to step 2.
Let S be the number of draws before the process terminates. For the
cases a = b = 1 and a = b = 2 only, find an = P (S = n), bn = P (S ≤
n), limn→∞ bn, and the expectation value of the number of balls drawn:
E(S) =

∑
n≥1 nan.

22. (FRG 3) (SL84-17).
Original formulation. In a permutation (x1, x2, . . . , xn) of the set 1, 2, . . . ,
n we call a pair (xi, xj) discordant if i < j and xi > xj . Let d(n, k) be the
number of such permutations with exactly k discordant pairs.
(a) Find d(n, 2).
(b) Show that

d(n, k) = d(n, k − 1) + d(n− 1, k) − d(n− 1, k − 1)

with d(n, k) = 0 for k < 0 and d(n, 0) = 1 for n ≥ 1. Compute with
this recursion a table of d(n, k) for n = 1 to 6.

23. (FRG 4) A 2× 2× 12 box fixed in space is to be filled with twenty-four
1 × 1 × 2 bricks. In how many ways can this be done?

24. (FRG 5) (SL84-7).
Original formulation. Consider several types of 4-cell figures:

(a) (b) (c) (d) (e) .

Find, with proof, for which of these types of figures it is not possible to
number the fields of the 8×8 chessboard using the numbers 1, 2, . . . , 64 in
such a way that the sum of the four numbers in each of its parts congruent
to the given figure is divisible by 4.

25. (GBR 1) (SL84-10).

26. (GBR 2) A cylindrical container has height 6 cm and radius 4 cm. It
rests on a circular hoop, also of radius 4 cm, fixed in a horizontal plane
with its axis vertical and with each circular rim of the cylinder touching
the hoop at two points.
The cylinder is now moved so that each of its circular rims still touches
the hoop in two points. Find with proof the locus of one of the cylinder’s
vertical ends.

27. (GBR 3) The function f(n) is defined on the nonnegative integers n by:
f(0) = 0, f(1) = 1,
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f(n) = f

(
n− 1

2
m(m− 1)

)
− f

(
1

2
m(m+ 1) − n

)
,

for 1
2m(m− 1) < n ≤ 1

2m(m+ 1), m ≥ 2. Find the smallest integer n for
which f(n) = 5.

28. (GBR 4) A “number triangle” (tnk) (0 ≤ k ≤ n) is defined by tn,0 =
tn,n = 1 (n ≥ 0),

tn+1,m =
(
2 −

√
3
)m

tn,m +
(
2 +

√
3
)n−m+1

tn,m−1 (1 ≤ m ≤ n).

Prove that all tn,m are integers.

29. (GDR 1) Let Sn = {1, . . . , n} and let f be a function that maps every
subset of Sn into a positive real number and satisfies the following con-
dition: For all A ⊆ Sn and x, y ∈ Sn, x �= y, f(A ∪ {x})f(A ∪ {y}) ≤
f(A ∪ {x, y})f(A).
Prove that for all A,B ⊆ Sn the following inequality holds:

f(A) · f(B) ≤ f(A ∪B) · f(A ∩B).

30. (GDR 2) Decide whether it is possible to color the 1984 natural numbers
1, 2, 3, . . . , 1984 using 15 colors so that no geometric sequence of length 3
of the same color exists.

31. (LUX 1) Let f1(x) = x3 +a1x
2 +b1x+c1 = 0 be an equation with three

positive roots α > β > γ > 0. From the equation f1(x) = 0 one constructs
the equation f2(x) = x3 + a2x

2 + b2x+ c2 = x(x+ b1)
2 − (a1x+ c1)

2 = 0.
Continuing this process, we get equations f3, . . . , fn. Prove that

lim
n→∞

2n−1√−an = α.

32. (LUX 2) (SL84-15).

33. (MON 1) (SL84-4).

34. (MON 2) One country has n cities and every two of them are linked by a
railroad. A railway worker should travel by train exactly once through the
entire railroad system (reaching each city exactly once). If it is impossible
for worker to travel by train between two cities, he can travel by plane.
What is the minimal number of flights that the worker will have to use?

35. (MON 3) Prove that there exist distinct natural numbers m1,m2, . . . ,
mk satisfying the conditions

π−1984 < 25 −
(

1

m1
+

1

m2
+ · · · + 1

mk

)
< π−1960

where π is the ratio between circle and its diameter.
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36. (MON 4) The set {1, 2, . . . , 49} is divided into three subsets. Prove that
at least one of these subsets contains three different numbers a, b, c such
that a+ b = c.

37. (MOR 1) Denote by [x] the greatest integer not exceeding x. For all
real k > 1, define two sequences:

an(k) = [nk] and bn(k) =

[
nk

k − 1

]
.

If A(k) = {an(k) : n ∈ N} and B(k) = {bn(k) : n ∈ N}, prove that A(k)
and B(k) form a partition of N if and only if k is irrational.

38. (MOR 2) Determine all continuous functions f such that(
∀(x, y) ∈ R2

)
f(x+ y)f(x− y) = (f(x)f(y))

2
.

39. (MOR 3) Let ABC be an isosceles triangle, AB = AC, ∠A = 20◦. Let
D be a point on AB, and E a point on AC such that ∠ACD = 20◦ and
∠ABE = 30◦. What is the measure of the angle ∠CDE?

40. (NET 1) (SL84-12).

41. (NET 2) Determine positive integers p, q, and r such that the diagonal
of a block consisting of p×q×r unit cubes passes through exactly 1984 of
the unit cubes, while its length is minimal. (The diagonal is said to pass
through a unit cube if it has more than one point in common with the
unit cube.)

42. (NET 3) Triangle ABC is given for which BC = AC+ 1
2AB. The point

P divides AB such that RP : PA = 1 : 3. Prove that ∠CAP = 2∠CPA.

43. (POL 1) (SL84-16).

44. (POL 2) (SL84-9).

45. (POL 3) Let X be an arbitrary nonempty set contained in the plane and
let sets A1, A2, . . . , Am and B1, B2, . . . , Bn be its images under parallel
translations. Let us suppose that

A1 ∪A2 ∪ · · · ∪Am ⊂ B1 ∪B2 ∪ · · · ∪Bn

and that the sets A1, A2, . . . , Am are disjoint. Prove that m ≤ n.

46. (ROM 1) Let (an)n≥1 and (bn)n≥1 be two sequences of natural numbers
such that an+1 = nan + 1, bn+1 = nbn − 1 for every n ≥ 1. Show that
these two sequences can have only a finite number of terms in common.

47. (ROM 2) (SL84-8).

48. (ROM 3) Let ABC be a triangle with interior angle bisectors AA1,
BB1, CC1 and incenter I. If σ[IA1B] + σ[IB1C] + σ[IC1A] = 1

2σ[ABC],
where σ[ABC] denotes the area of ABC, show that ABC is isosceles.
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49. (ROM 4) Let n > 1 and xi ∈ R for i = 1, . . . , n. Set Sk = xk
1 + xk

2 +
· · · + xk

n for k ≥ 1. If S1 = S2 = · · · = Sn+1, show that xi ∈ {0, 1} for
every i = 1, 2, . . . , n.

50. (ROM 5) (SL84-14).

51. (SPA 1) Two cyclists leave simultaneously a point P in a circular run-
way with constant velocities v1, v2 (v1 > v2) and in the same sense. A
pedestrian leaves P at the same time, moving with velocity v3 = v1+v2

12 .
If the pedestrian and the cyclists move in opposite directions, the pedes-
trian meets the second cyclist 91 seconds after he meets the first. If the
pedestrian moves in the same direction as the cyclists, the first cyclist
overtakes him 187 seconds before the second does. Find the point where
the first cyclist overtakes the second cyclist the first time.

52. (SPA 2) Construct a scalene triangle such that

a(tanB − tanC) = b(tanA− tanC).

53. (SPA 3) Find a sequence of natural numbers ai such that ai =
∑i+4

r=1 dr,
where dr �= ds for r �= s and dr divides ai.

54. (SPA 4) Let P be a convex planar polygon with equal angles. Let
l1, . . . , ln be its sides. Show that a necessary and sufficient condition for
P to be regular is that the sum of the ratios li

li+1
(i = 1, . . . , n; ln+1 = l1)

equals the number of sides.

55. (SPA 5) Let a, b, c be natural numbers such that a+b+c = 2pq(p30+q30),
p > q being two given positive integers.
(a) Prove that k = a3 + b3 + c3 is not a prime number.
(b) Prove that if a · b · c is maximum, then 1984 divides k.

56. (SWE 1) Let a, b, c be nonnegative integers such that a ≤ b ≤ c, 2b �=
a + c and a+b+c

3 is an integer. Is it possible to find three nonnegative
integers d, e, and f such that d ≤ e ≤ f , f �= c, and such that a2+b2+c2 =
d2 + e2 + f2?

57. (SWE 2) Let a, b, c, d be a permutation of the numbers 1, 9, 8, 4 and let
n = (10a+ b)10c+d. Find the probability that 1984! is divisible by n.

58. (SWE 3) Let (an)∞1 be a sequence such that an ≤ an+m ≤ an + am for
all positive integers n and m. Prove that an

n has a limit as n approaches
infinity.

59. (USA 1) Determine the smallest positive integer m such that 529n +m ·
132n is divisible by 262417 for all odd positive integers n.

60. (USA 2) (SL84-20).

61. (USA 3) A fair coin is tossed repeatedly until there is a run of an odd
number of heads followed by a tail. Determine the expected number of
tosses.
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62. (USA 4) From a point P exterior to a circle K, two rays are drawn
intersecting K in the respective pairs of points A,A′ and B, B′. For any
other pair of points C,C′ on K, let D be the point of intersection of the
circumcircles of triangles PAC and PB′C′ other than point P . Similarly,
let D′ be the point of intersection of the circumcircles of triangles PA′C′

and PBC other than point P . Prove that the points P , D, and D′ are
collinear.

63. (USA 5) (SL84-18).

64. (USS 1) For a matrix (pij) of the format m× n with real entries, set

ai =

n∑
j=1

pij for i = 1, . . . ,m and bj =

m∑
i=1

pij for j = 1, . . . , n. (1)

By integering a real number we mean replacing the number with the in-
teger closest to it.
Prove that integering the numbers ai, bj , pij can be done in such a way
that (1) still holds.

65. (USS 2) A tetrahedron is inscribed in a sphere of radius 1 such that the
center of the sphere is inside the tetrahedron.
Prove that the sum of lengths of all edges of the tetrahedron is greater
than 6.

66. (USS 3) (SL84-3).
Original formulation. All the divisors of a positive integer n arranged in
increasing order are x1 < x2 < · · · < xk. Find all such numbers n for
which x2

5 + x2
6 − 1 = n.

67. (USS 4) With the medians of an acute-angled triangle another triangle is
constructed. If R and Rm are the radii of the circles circumscribed about
the first and the second triangle, respectively, prove that

Rm >
5

6
R.

68. (USS 5) In the Martian language every finite sequence of letters of
the Latin alphabet letters is a word. The publisher “Martian Words”
makes a collection of all words in many volumes. In the first volume there
are only one-letter words, in the second, two-letter words, etc., and the
numeration of the words in each of the volumes continues the numeration
of the previous volume. Find the word whose numeration is equal to the
sum of numerations of the words Prague, Olympiad, Mathematics.

3.25.3 Shortlisted Problems

1. (FRA 1) Find all solutions of the following system of n equations in n
variables:
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x1|x1| − (x1 − a)|x1 − a| = x2|x2|,
x2|x2| − (x2 − a)|x2 − a| = x3|x3|,

· · ·
xn|xn| − (xn − a)|xn − a| = x1|x1|,

where a is a given number.

2. (CAN 2) Prove:
(a) There are infinitely many triples of positive integers m,n, p such that

4mn−m− n = p2 − 1.
(b) There are no positive integers m,n, p such that 4mn−m− n = p2.

3. (USS 3) Find all positive integers n such that

n = d2
6 + d2

7 − 1,

where 1 = d1 < d2 < · · · < dk = n are all positive divisors of the number
n.

4. (MON 1)IMO5 Let d be the sum of the lengths of all diagonals of a convex
polygon of n (n > 3) vertices and let p be its perimeter. Prove that

n− 3

2
<
d

p
<

1

2

([n
2

] [n+ 1

2

]
− 2

)
.

5. (FRG 1)IMO1 Let x, y, z be nonnegative real numbers with x+y+z = 1.
Show that

0 ≤ xy + yz + zx− 2xyz ≤ 7

27
.

6. (CAN 3) Let c be a positive integer. The sequence {fn} is defined as
follows:

f1 = 1, f2 = c, fn+1 = 2fn − fn−1 + 2 (n ≥ 2).

Show that for each k ∈ N there exists r ∈ N such that fkfk+1 = fr.

7. (FRG 5)
(a) Decide whether the fields of the 8 × 8 chessboard can be numbered

by the numbers 1, 2, . . . , 64 in such a way that the sum of the four
numbers in each of its parts of one of the forms

is divisible by four.
(b) Solve the analogous problem for
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8. (ROM 2)IMO3 In a plane two different points O and A are given. For
each point X �= O of the plane denote by α(X) the angle AOX measured
in radians (0 ≤ α(X) < 2π) and by C(X) the circle with center O and

radius OX + α(X)
OX . Suppose each point of the plane is colored by one of a

finite number of colors. Show that there exists a point X with α(X) > 0
such that its color appears somewhere on the circle C(X).

9. (POL 2) Let a, b, c be positive numbers with
√
a+

√
b+

√
c =

√
3

2 . Prove
that the system of equations

√
y − a+

√
z − a = 1,√

z − b+
√
x− b = 1,√

x− c+
√
y − c = 1,

has exactly one solution (x, y, z) in real numbers.

10. (GBR 1) Prove that the product of five consecutive positive integers
cannot be the square of an integer.

11. (CAN 1) Let n be a natural number and a1, a2, . . . , a2n mutually distinct
integers. Find all integers x satisfying

(x− a1) · (x− a2) · · · (x− a2n) = (−1)n(n!)2.

12. (NET 1)IMO2 Find two positive integers a, b such that none of the num-
bers a, b, a+ b is divisible by 7 and (a+ b)7 − a7 − b7 is divisible by 77.

13. (BUL 5) Prove that the volume of a tetrahedron inscribed in a right
circular cylinder of volume 1 does not exceed 2

3π .

14. (ROM 5)IMO4 Let ABCD be a convex quadrilateral for which the circle
with diameter AB is tangent to the line CD. Show that the circle with
diameter CD is tangent to the line AB if and only if the lines BC and
AD are parallel.

15. (LUX 2) Angles of a given triangle ABC are all smaller than 120◦.
Equilateral trianglesAFB, BDC and CEA are constructed in the exterior
of 
ABC.
(a) Prove that the lines AD, BE, and CF pass through one point S.
(b) Prove that SD + SE + SF = 2(SA+ SB + SC).

16. (POL 1)IMO6 Let a, b, c, d be odd positive integers such that a < b < c <
d, ad = bc, and a+ d = 2k, b+ c = 2m for some integers k and m. Prove
that a = 1.

17. (FRG 3) In a permutation (x1, x2, . . . , xn) of the set 1, 2, . . . , n we call
a pair (xi, xj) discordant if i < j and xi > xj . Let d(n, k) be the number
of such permutations with exactly k discordant pairs. Find d(n, 2) and
d(n, 3).
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18. (USA 5) Inside triangle ABC there are three circles k1, k2, k3 each of
which is tangent to two sides of the triangle and to its incircle k. The radii
of k1, k2, k3 are 1, 4, and 9. Determine the radius of k.

19. (CAN 5) The triangular array (an,k) of numbers is given by an,1 = 1/n,
for n = 1, 2, . . . , an,k+1 = an−1,k − an,k, for 1 ≤ k ≤ n − 1. Find the
harmonic mean of the 1985th row.

20. (USA 2) Determine all pairs (a, b) of positive real numbers with a �= 1
such that

loga b < loga+1(b+ 1).



180 3 Problems

3.26 The Twenty-Sixth IMO

Joutsa, Finland, June 29–July 11, 1985

3.26.1 Contest Problems

First Day (July 4)

1. A circle whose center is on the side ED of the cyclic quadrilateral BCDE
touches the other three sides. Prove that EB + CD = ED.

2. Each of the numbers in the set N = {1, 2, 3, . . . , n − 1}, where n ≥ 3, is
colored with one of two colors, say red or black, so that:
(i) i and n− i always receive the same color, and
(ii) for some j ∈ N relatively prime to n, i and |j − i| receive the same

color for all i ∈ N , i �= j.
Prove that all numbers in N must receive the same color.

3. The weight w(p) of a polynomial p, p(x) =
∑n

i=0 aix
i, with integer coeffi-

cients ai is defined as the number of its odd coefficients. For i = 0, 1, 2, . . . ,
let qi(x) = (1+x)i. Prove that for any finite sequence 0 ≤ i1 < i2 < · · · <
in the inequality

w(qi1 + · · · + qin) ≥ w(qi1 )

holds.

Second Day (July 5)

4. Given a set M of 1985 positive integers, none of which has a prime divisor
larger than 26, prove that M has four distinct elements whose geometric
mean is an integer.

5. A circle with center O passes through points A and C and intersects the
sides AB and BC of the triangle ABC at points K and N , respectively.
The circumscribed circles of the triangles ABC and KBN intersect at
two distinct points B and M . Prove that �OMB = 90◦.

6. The sequence f1, f2, . . . , fn, . . . of functions is defined for x > 0 recursively
by

f1(x) = x, fn+1(x) = fn(x)

(
fn(x) +

1

n

)
.

Prove that there exists one and only one positive number a such that
0 < fn(a) < fn+1(a) < 1 for all integers n ≥ 1.

3.26.2 Longlisted Problems

1. (AUS 1) (SL85-4).
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2. (AUS 2) We are given a triangle ABC and three rectangles R1, R2, R3

with sides parallel to two fixed perpendicular directions and such that their
union covers the sides AB,BC, and CA; i.e., each point on the perimeter
of ABC is contained in or on at least one of the rectangles. Prove that all
points inside the triangle are also covered by the union of R1, R2, R3.

3. (AUS 3) A function f has the following property: If k > 1, j > 1,
and (k, j) = m, then f(kj) = f(m) (f(k/m) + f(j/m)). What values can
f(1984) and f(1985) take?

4. (BEL 1) Let x, y, and z be real numbers satisfying x + y + z = xyz.
Prove that

x(1 − y2)(1 − z2) + y(1 − z2)(1 − x2) + z(1 − x2)(1 − y2) = 4xyz.

5. (BEL 2) (SL85-16).

6. (BEL 3) On a one-way street, an unending sequence of cars of width a,
length b passes with velocity v. The cars are separated by the distance c.
A pedestrian crosses the street perpendicularly with velocity w, without
paying attention to the cars.
(a) What is the probability that the pedestrian crosses the street unin-

jured?
(b) Can he improve this probability by crossing the road in a direction

other than perpendicular?

7. (BRA 1) A convex quadrilateral is inscribed in a circle of radius 1. Prove
that the difference between its perimeter and the sum of the lengths of its
diagonals is greater than zero and less than 2.

8. (BRA 2) Let K be a convex set in the xy-plane, symmetric with respect
to the origin and having area greater than 4. Prove that there exists a point
(m,n) �= (0, 0) in K such that m and n are integers.

9. (BRA 3) (SL85-2).

10. (BUL 1) (SL85-13).

11. (BUL 2) Let a and b be integers and n a positive integer. Prove that

bn−1a(a+ b)(a+ 2b) · · · (a+ (n− 1)b)

n!

is an integer.

12. (CAN 1) Find the maximum value of

sin2 θ1 + sin2 θ2 + · · · + sin2 θn

subject to the restrictions 0 ≤ θi ≤ π, θ1 + θ2 + · · · + θn = π.

13. (CAN 2) Find the average of the quantity
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(a1 − a2)
2 + (a2 − a3)

2 + · · · + (an−1 − an)2

taken over all permutations (a1, a2, . . . , an) of (1, 2, . . . , n).

14. (CAN 3) Let k be a positive integer. Define u0 = 0, u1 = 1, and
un = kun−1 − un−2, n ≥ 2. Show that for each integer n, the number
u3

1 + u3
2 + · · · + u3

n is a multiple of u1 + u2 + · · · + un.

15. (CAN 4) Superchess is played on on a 12 × 12 board, and it uses su-
perknights, which move between opposite corner cells of any 3×4 subboard.
Is it possible for a superknight to visit every other cell of a superchessboard
exactly once and return to its starting cell?

16. (CAN 5) (SL85-18).

17. (CUB 1) Set

An =

n∑
k=1

k6

2k
.

Find limn→∞ An.

18. (CYP 1) The circles (R, r) and (P, ρ), where r > ρ, touch externally
at A. Their direct common tangent touches (R, r) at B and (P, ρ) at C.
The line RP meets the circle (P, ρ) again at D and the line BC at E. If
|BC| = 6|DE|, prove that:
(a) the lengths of the sides of the triangle RBE are in an arithmetic

progression, and
(b) |AB| = 2|AC|.

19. (CYP 2) Solve the system of simultaneous equations

√
x − 1/y − 2w + 3z = 1,
x + 1/y2 − 4w2 − 9z2 = 3,

x
√
x − 1/y3 − 8w3 + 27z3 = −5,
x2 + 1/y4 − 16w4 − 81z4 = 15.

20. (CZS 1) Let T be the set of all lattice points (i.e., all points with
integer coordinates) in three-dimensional space. Two such points (x, y, z)
and (u, v, w) are called neighbors if |x − u| + |y − v| + |z − w| = 1. Show
that there exists a subset S of T such that for each p ∈ T , there is exactly
one point of S among p and its neighbors.

21. (CZS 2) Let A be a set of positive integers such that for any two elements
x, y of A, |x− y| ≥ xy

25 . Prove that A contains at most nine elements. Give
an example of such a set of nine elements.

22. (CZS 3) (SL85-7).

23. (CZS 4) Let N = {1, 2, 3, . . .}. For real x, y, set S(x, y) = {s | s =
[nx+ y], n ∈ N}. Prove that if r > 1 is a rational number, there exist real
numbers u and v such that



3.26 IMO 1985 183

S(r, 0) ∩ S(u, v) = ∅, S(r, 0) ∪ S(u, v) = N.

24. (FRA 1) Let d ≥ 1 be an integer that is not the square of an integer.
Prove that for every integer n ≥ 1,

(n
√
d+ 1)| sin(nπ

√
d)| ≥ 1.

25. (FRA 2) Find eight positive integers n1, n2, . . . , n8 with the follow-
ing property: For every integer k, −1985 ≤ k ≤ 1985, there are eight
integers α1, α2, . . . , α8, each belonging to the set {−1, 0, 1}, such that

k =
∑8

i=1 αini.

26. (FRA 3) (SL85-15).

27. (FRA 4) Let O be a point on the oriented Euclidean plane and (i, j)
a directly oriented orthonormal basis. Let C be the circle of radius 1,
centered atO. For every real number t and nonnegative integer n letMn be

the point on C for which 〈i,−−−→OMn〉 = cos 2nt (or
−−−→
OMn = cos 2nti+sin 2ntj).

Let k ≥ 2 be an integer. Find all real numbers t ∈ [0, 2π) that satisfy
(i) M0 = Mk, and
(ii) if one starts from M0 and goes once around C in the positive direction,

one meets successively the points M0,M1, . . . ,Mk−2,Mk−1, in this
order.

28. (FRG 1) Let M be the set of the lengths of an octahedron whose sides
are congruent quadrangles. Prove that M has at most three elements.
(FRG 1a) Let an octahedron whose sides are congruent quadrangles be
given. Prove that each of these quadrangles has two equal sides meeting
at a common vertex.

29. (FRG 2) Call a four-digit number (xyzt)B in the number system with
base B stable if (xyzt)B = (dcba)B − (abcd)B, where a ≤ b ≤ c ≤ d are
the digits of (xyzt)B in ascending order. Determine all stable numbers in
the number system with base B.
(FRG 2a) The same problem with B = 1985.
(FRG 2b) With assumptions as in FRG 2, determine the number of
bases B ≤ 1985 such that there is a stable number with base B.

30. (GBR 1) A plane rectangular grid is given and a “rational point” is
defined as a point (x, y) where x and y are both rational numbers. Let
A,B,A′, B′ be four distinct rational points. Let P be a point such that
A′B′

AB = B′P
BC = PA′

PA . In other words, the trianglesABP , A′B′P are directly
or oppositely similar. Prove that P is in general a rational point and find
the exceptional positions of A′ and B′ relative to A and B such that there
exists a P that is not a rational point.

31. (GBR 2) Let E1, E2, and E3 be three mutually intersecting ellipses, all
in the same plane. Their foci are respectively F2, F3;F3, F1; and F1, F2.
The three foci are not on a straight line. Prove that the common chords
of each pair of ellipses are concurrent.
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32. (GBR 3) A collection of 2n letters contains 2 each of n different letters.
The collection is partitioned into n pairs, each pair containing 2 letters,
which may be the same or different. Denote the number of distinct parti-
tions by un. (Partitions differing in the order of the pairs in the partition
or in the order of the two letters in the pairs are not considered distinct.)

Prove that un+1 = (n+ 1)un − n(n−1)
2 un−2.

(GBR 3a) A pack of n cards contains n pairs of 2 identical cards. It is
shuffled and 2 cards are dealt to each of n different players. Let pn be the
probability that every one of the n players is dealt two identical cards.

Prove that 1
pn+1

= n+1
pn

− n(n−1)
2pn−2

.

33. (GBR 4) (SL85-12).

34. (GBR 5) (SL85-20).

35. (GDR 1) We call a coloring f of the elements in the set M = {(x, y) |
x = 0, 1, . . . , kn− 1; y = 0, 1, . . . , ln− 1} with n colors allowable if every
color appears exactly k and l times in each row and column and there are
no rectangles with sides parallel to the coordinate axes such that all the
vertices in M have the same color. Prove that every allowable coloring f
satisfies kl ≤ n(n+ 1).

36. (GDR 2) Determine whether there exist 100 distinct lines in the plane
having exactly 1985 distinct points of intersection.

37. (GDR 3) Prove that a triangle with angles α, β, γ, circumradius R, and
area A satisfies

tan
α

2
+ tan

β

2
+ tan

γ

2
≤ 9R2

4A
.

38. (IRE 1) (SL85-21).

39. (IRE 2) Given a triangle ABC and external points X , Y , and Z such
that �BAZ = �CAY , �CBX = �ABZ, and �ACY = �BCX , prove
that AX,BY , and CZ are concurrent.

40. (IRE 3) Each of the numbers x1, x2, . . . , xn equals 1 or −1 and

x1x2x3x4 + x2x3x4x5 + · · · + xn−3xn−2xn−1xn

+xn−2xn−1xnx1 + xn−1xnx1x2 + xnx1x2x3 = 0.

Prove that n is divisible by 4.

41. (IRE 4) (SL85-14).

42. (ISR 1) Prove that the product of two sides of a triangle is always
greater than the product of the diameters of the inscribed circle and the
circumscribed circle.

43. (ISR 2) Suppose that 1985 points are given inside a unit cube. Show
that one can always choose 32 of them in such a way that every (possibly
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degenerate) closed polygon with these points as vertices has a total length
of less than 8

√
3.

44. (ISR 3) (SL85-19).

45. (ITA 1) Two persons, X and Y , play with a die. X wins a game if the
outcome is 1 or 2; Y wins in the other cases. A player wins a match if he
wins two consecutive games. For each player determine the probability of
winning a match within 5 games. Determine the probabilities of winning
in an unlimited number of games. If X bets 1, how much must Y bet for
the game to be fair?

46. (ITA 2) Let C be the curve determined by the equation y = x3 in the
rectangular coordinate system. Let t be the tangent to C at a point P of
C; t intersects C at another point Q. Find the equation of the set L of the
midpoints M of PQ as P describes C. Is the correspondence associating
P and M a bijection of C on L? Find a similarity that transforms C into
L.

47. (ITA 3) Let F be the correspondence associating with every point P =
(x, y) the point P ′ = (x′, y′) such that

x′ = ax+ b, y′ = ay + 2b. (1)

Show that if a �= 1, all lines PP ′ are concurrent. Find the equation of
the set of points corresponding to P = (1, 1) for b = a2. Show that the
composition of two mappings of type (1) is of the same type.

48. (ITA 4) In a given country, all inhabitants are knights or knaves. A
knight never lies; a knave always lies. We meet three persons, A, B, and
C. Person A says, “If C is a knight, B is a knave.” Person C says, “A
and I are different; one is a knight and the other is a knave.” Who are the
knights, and who are the knaves?

49. (MON 1) (SL85-1).

50. (MON 2) From each of the vertices of a regular n-gon a car starts to
move with constant speed along the perimeter of the n-gon in the same
direction. Prove that if all the cars end up at a vertex A at the same time,
then they never again meet at any other vertex of the n-gon. Can they
meet again at A?

51. (MON 3) Let f1 = (a1, a2, . . . , an), n > 2, be a sequence of integers.
From f1 one constructs a sequence fk of sequences as follows: if fk =
(c1, c2, . . . , cn), then fk+1 = (ci1 , ci2 , ci3 + 1, ci4 + 1, . . . , cin + 1), where
(ci1 , ci2 , . . . , cin) is a permutation of (c1, c2, . . . , cn). Give a necessary and
sufficient condition for f1 under which it is possible for fk to be a constant
sequence (b1, b2, . . . , bn), b1 = b2 = · · · = bn, for some k.

52. (MON 4) In the triangle ABC, let B1 be on AC, E on AB, G on BC,
and let EG be parallel to AC. Furthermore, let EG be tangent to the
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inscribed circle of the triangle ABB1 and intersect BB1 at F . Let r, r1,
and r2 be the inradii of the trianglesABC, ABB1, and BFG, respectively.
Prove that r = r1 + r2.

53. (MON 5) For each P inside the triangle ABC, let A(P ), B(P ), and
C(P ) be the points of intersection of the lines AP , BP , and CP with the
sides opposite to A, B, and C, respectively. Determine P in such a way
that the area of the triangle A(P )B(P )C(P ) is as large as possible.

54. (MOR 1) Set Sn =
∑n

p=1(p
5 + p7). Determine the greatest common

divisor of Sn and S3n.

55. (MOR 2) The points A,B,C are in this order on lineD, andAB = 4BC.
Let M be a variable point on the perpendicular to D through C. Let
MT1 and MT2 be tangents to the circle with center A and radius AB.
Determine the locus of the orthocenter of the triangle MT1T2.

56. (MOR 3) Let ABCD be a rhombus with angle ∠A = 60◦. Let E be a
point, different from D, on the line AD. The lines CE and AB intersect
at F . The lines DF and BE intersect at M . Determine the angle �BMD
as a function of the position of E on AD.

57. (NET 1) The solid S is defined as the intersection of the six spheres with
the six edges of a regular tetrahedron T , with edge length 1, as diameters.
Prove that S contains two points at a distance 1√

6
.

(NET 1a) Using the same assumptions, prove that no pair of points in
S has a distance larger than 1√

6
.

58. (NET 2) Prove that there are infinitely many pairs (k,N) of positive
integers such that 1 + 2 + · · · + k = (k + 1) + (k + 2) + · · · +N .

59. (NET 3) (SL85-3).

60. (NOR 1) The sequence (sn), where sn =
∑n

k=1 sin k, n = 1, 2, . . . , is
bounded. Find an upper and lower bound.

61. (NOR 2) Consider the set A = {0, 1, 2, . . . , 9} and let (B1, B2, . . . , Bk)
be a collection of nonempty subsets of A such that Bi ∩ Bj has at most
two elements for i �= j. What is the maximal value of k?

62. (NOR 3) A “large” circular disk is attached to a vertical wall. It rotates
clockwise with one revolution per minute. An insect lands on the disk and
immediately starts to climb vertically upward with constant speed π

3 cm
per second (relative to the disk). Describe the path of the insect
(a) relative to the disk;
(b) relative to the wall.

63. (POL 1) (SL85-6).

64. (POL 2) Let p be a prime. For which k can the set {1, 2, . . . , k} be
partitioned into p subsets with equal sums of elements?
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65. (POL 3) Define the functions f, F : N → N, by

f(n) =

[
3 −

√
5

2
n

]
, F (k) = min{n ∈ N|fk(n) > 0},

where fk = f ◦ · · · ◦ f is f iterated n times. Prove that F (k + 2) =
3F (k + 1) − F (k) for all k ∈ N.

66. (ROM 1) (SL85-5).

67. (ROM 2) Let k ≥ 2 and n1, n2, . . . , nk ≥ 1 natural numbers having the
property n2 | 2n1 − 1, n3 | 2n2 − 1, . . . , nk | 2nk−1 − 1, and n1 | 2nk − 1.
Show that n1 = n2 = · · · = nk = 1.

68. (ROM 3) Show that the sequence {an}n≥1 defined by an = [n
√

2]
contains an infinite number of integer powers of 2. ([x] is the integer part
of x.)

69. (ROM 4) Let A and B be two finite disjoint sets of points in the plane
such that any three distinct points in A∪B are not collinear. Assume that
at least one of the sets A, B contains at least five points. Show that there
exists a triangle all of whose vertices are contained in A or in B that does
not contain in its interior any point from the other set.

70. (ROM 5) Let C be a class of functions f : N → N that contains the
functions S(x) = x + 1 and E(x) = x − [

√
x]2 for every x ∈ N. ([x] is

the integer part of x.) If C has the property that for every f, g ∈ C,
f + g, fg, f ◦ g ∈ C, show that the function max(f(x) − g(x), 0) is in C.

71. (ROM 6) For every integer r > 1 find the smallest integer h(r) > 1
having the following property: For any partition of the set {1, 2, . . . , h(r)}
into r classes, there exist integers a ≥ 0, 1 ≤ x ≤ y such that the numbers
a+ x, a+ y, a+ x+ y are contained in the same class of the partition.

72. (SPA 1) Construct a triangle ABC given the side AB and the distance
OH from the circumcenter O to the orthocenter H , assuming that OH
and AB are parallel.

73. (SPA 2) Let A1A2, B1B2, C1C2 be three equal segments on the three
sides of an equilateral triangle. Prove that in the triangle formed by the
lines B2C1, C2A1, A2B1, the segments B2C1, C2A1, A2B1 are proportional
to the sides in which they are contained.

74. (SPA 3) Find the triples of positive integers x, y, z satisfying

1

x
+

1

y
+

1

z
=

4

5
.

75. (SPA 4) Let ABCD be a rectangle, AB = a, BC = b. Consider the
family of parallel and equidistant straight lines (the distance between two
consecutive lines being d) that are at an the angle φ, 0 ≤ φ ≤ 90◦,
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with respect to AB. Let L be the sum of the lengths of all the segments
intersecting the rectangle. Find:
(a) how L varies,
(b) a necessary and sufficient condition for L to be a constant, and
(c) the value of this constant.

76. (SWE 1) Are there integers m and n such that

5m2 − 6mn+ 7n2 = 1985?

77. (SWE 2) Two equilateral triangles are inscribed in a circle with radius
r. Let A be the area of the set consisting of all points interior to both
triangles. Prove that 2A ≥ r2

√
3.

78. (SWE 3) (SL85-17).

79. (SWE 4) Let a, b, and c be real numbers such that

1

bc− a2
+

1

ca− b2
+

1

ab− c2
= 0.

Prove that
a

(bc− a2)2
+

b

(ca− b2)2
+

c

(ab− c2)2
= 0.

80. (TUR 1) Let E = {1, 2, . . . , 16} and let M be the collection of all
4 × 4 matrices whose entries are distinct members of E. If a matrix A =
(aij)4×4 is chosen randomly from M , compute the probability p(k) of
maxi minj aij = k for k ∈ E. Furthermore, determine l ∈ E such that
p(l) = max{p(k) | k ∈ E}.

81. (TUR 2) Given the side a and the corresponding altitude ha of a triangle
ABC, find a relation between a and ha such that it is possible to construct,
with straightedge and compass, triangle ABC such that the altitudes of
ABC form a right triangle admitting ha as hypotenuse.

82. (TUR 3) Find all cubic polynomials x3 + ax2 + bx + c admitting the
rational numbers a, b, and c as roots.

83. (TUR 4) Let Γi, i = 0, 1, 2, . . . , be a circle of radius ri inscribed in an
angle of measure 2α such that each Γi is externally tangent to Γi+1 and
ri+1 < ri. Show that the sum of the areas of the circles Γi is equal to the
area of a circle of radius r = 1

2r0(
√

sinα+
√

cscα).

84. (TUR 5) (SL85-8).

85. (USA 1) Let CD be a diameter of circle K. Let AB be a chord that is
parallel to CD. The line segment AE, with E on K, is parallel to CB; F
is the point of intersection of line segments AB and DE. The line segment
FG, with G on DC, extended is parallel to CB. Is GA tangent to K at
point A?
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86. (USA 2) Let l denote the length of the smallest diagonal of all rectangles
inscribed in a triangle T . (By inscribed, we mean that all four vertices of
the rectangle lie on the boundary of T .) Determine the maximum value

of l2

S(T ) taken over all triangles (S(T ) denotes the area of triangle T ).

87. (USA 3) (SL85-9).

88. (USA 4) Determine the range of w(w + x)(w + y)(w + z), where x, y,
z, and w are real numbers such that

x+ y + z + w = x7 + y7 + z7 + w7 = 0.

89. (USA 5) Given that n elements a1, a2, . . . , an are organized into n pairs
P1, P2, . . . , Pn in such a way that two pairs Pi, Pj share exactly one el-
ement when (ai, aj) is one of the pairs, prove that every element is in
exactly two of the pairs.

90. (USS 1) Decompose the number 51985−1 into a product of three integers,
each of which is larger than 5100.

91. (USS 2) Thirty-four countries participated in a jury session of the IMO,
each represented by the leader and the deputy leader of the team. Before
the meeting, some participants exchanged handshakes, but no team leader
shook hands with his deputy. After the meeting, the leader of the Illyrian
team asked every other participant the number of people they had shaken
hands with, and all the answers she got were different. How many people
did the deputy leader of the Illyrian team greet?

92. (USS 3) (SL85-11).
(USS 3a) Given six numbers, find a method of computing by using not
more than 15 additions and 14 multiplications the following five numbers:
the sum of the numbers, the sum of products of the numbers taken two
at a time, and the sums of the products of the numbers taken three, four,
and five at a time.

93. (USS 4) The sphere inscribed in tetrahedron ABCD touches the sides
ABD and DBC at points K and M , respectively. Prove that �AKB =
�DMC.

94. (USS 5) (SL85-22).

95. (VIE 1) (SL85-10).
(VIE 1a) Prove that for each point M on the edges of a regular tetrahe-
dron there is one and only one point M ′ on the surface of the tetrahedron
such that there are at least three curves joining M and M ′ on the sur-
face of the tetrahedron of minimal length among all curves joining M and
M ′ on the surface of the tetrahedron. Denote this minimal length by dM .
Determine the positions of M for which dM attains an extremum.

96. (VIE 2) Determine all functions f : R → R satisfying the following two
conditions:
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(a) f(x+ y) + f(x− y) = 2f(x)f(y) for all x, y ∈ R,
(b) limx→∞ f(x) = 0.

97. (VIE 3) In a plane a circle with radius R and center w and a line Λ
are given. The distance between w and Λ is d, d > R. The points M and
N are chosen on Λ in such a way that the circle with diameter MN is
externally tangent to the given circle. Show that there exists a point A
in the plane such that all the segments MN are seen in a constant angle
from A.

3.26.3 Shortlisted Problems

Proposals of the Problem Selection Committee.

1. (MON 1)IMO4 Given a set M of 1985 positive integers, none of which
has a prime divisor larger than 26, prove that the set has four distinct
elements whose geometric mean is an integer.

2. (BRA 3) A polyhedron has 12 faces and is such that:
(i) all faces are isosceles triangles,
(ii) all edges have length either x or y,
(iii) at each vertex either 3 or 6 edges meet, and
(iv) all dihedral angles are equal.
Find the ratio x/y.

3. (NET 3)IMO3 The weight w(p) of a polynomial p, p(x) =
∑n

i=0 aix
i, with

integer coefficients ai is defined as the number of its odd coefficients. For
i = 0, 1, 2, . . . , let qi(x) = (1 + x)i. Prove that for any finite sequence
0 ≤ i1 < i2 < · · · < in, the inequality

w(qi1 + · · · + qin) ≥ w(qi1 )

holds.

4. (AUS 1)IMO2 Each of the numbers in the set N = {1, 2, 3, . . . , n − 1},
where n ≥ 3, is colored with one of two colors, say red or black, so that:
(i) i and n− i always receive the same color, and
(ii) for some j ∈ N , relatively prime to n, i and |j − i| receive the same

color for all i ∈ N , i �= j.
Prove that all numbers in N must receive the same color.

5. (ROM 1) Let D be the interior of the circle C and let A ∈ C. Show

that the function f : D → R, f(M) = |MA|
|MM ′| , where M ′ = (AM ∩ C, is

strictly convex; i.e., f(P ) < f(M1)+f(M2)
2 , ∀M1,M2 ∈ D, M1 �= M2, where

P is the midpoint of the segment M1M2.

6. (POL 1) Let xn = 2

√
2 + 3

√
3 + . . .+ n

√
n. Prove that
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xn+1 − xn <
1

n!
, n = 2, 3, . . . .

Alternatives

7. 1a.(CZS 3) The positive integers x1, . . . , xn, n ≥ 3, satisfy x1 < x2 <
· · · < xn < 2x1. Set P = x1x2 · · ·xn. Prove that if p is a prime number, k
a positive integer, and P is divisible by pk, then P

pk ≥ n!.

8. 1b.(TUR 5) Find the smallest positive integer n such that
(i) n has exactly 144 distinct positive divisors, and
(ii) there are ten consecutive integers among the positive divisors of n.

9. 2a.(USA 3) Determine the radius of a sphere S that passes through the
centroids of each face of a given tetrahedron T inscribed in a unit sphere
with center O. Also, determine the distance from O to the center of S as
a function of the edges of T .

10. 2b.(VIE 1) Prove that for every point M on the surface of a regular
tetrahedron there exists a point M ′ such that there are at least three
different curves on the surface joining M to M ′ with the smallest possible
length among all curves on the surface joining M to M ′.

11. 3a.(USS 3) Find a method by which one can compute the coefficients
of P (x) = x6 + a1x

5 + · · · + a6 from the roots of P (x) = 0 by performing
not more than 15 additions and 15 multiplications.

12. 3b.(GBR 4) A sequence of polynomials Pm(x, y, z), m = 0, 1, 2, . . . , in
x, y, and z is defined by P0(x, y, z) = 1 and by

Pm(x, y, z) = (x+ z)(y + z)Pm−1(x, y, z + 1) − z2Pm−1(x, y, z)

for m > 0. Prove that each Pm(x, y, z) is symmetric, in other words, is
unaltered by any permutation of x, y, z.

13. 4a.(BUL 1) Let m boxes be given, with some balls in each box. Let
n < m be a given integer. The following operation is performed: choose n
of the boxes and put 1 ball in each of them. Prove:
(a) If m and n are relatively prime, then it is possible, by performing the

operation a finite number of times, to arrive at the situation that all
the boxes contain an equal number of balls.

(b) If m and n are not relatively prime, there exist initial distributions of
balls in the boxes such that an equal distribution is not possible to
achieve.

14. 4b.(IRE 4) A set of 1985 points is distributed around the circumference
of a circle and each of the points is marked with 1 or −1. A point is called
“good” if the partial sums that can be formed by starting at that point
and proceeding around the circle for any distance in either direction are
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all strictly positive. Show that if the number of points marked with −1 is
less than 662, there must be at least one good point.

15. 5a.(FRA 3) Let K and K ′ be two squares in the same plane, their sides
of equal length. Is it possible to decompose K into a finite number of tri-
angles T1, T2, . . . , Tp with mutually disjoint interiors and find translations
t1, t2, . . . , tp such that

K ′ =

p⋃
i=1

ti(Ti)?

16. 5b.(BEL 2) If possible, construct an equilateral triangle whose three
vertices are on three given circles.

17. 6a.(SWE 3)IMO6 The sequence f1, f2, . . . , fn, . . . of functions is defined
for x > 0 recursively by

f1(x) = x, fn+1(x) = fn(x)

(
fn(x) +

1

n

)
.

Prove that there exists one and only one positive number a such that
0 < fn(a) < fn+1(a) < 1 for all integers n ≥ 1.

18. 6b.(CAN 5) Let x1, x2, . . . , xn be positive numbers. Prove that

x2
1

x2
1 + x2x3

+
x2

2

x2
2 + x3x4

+ · · · +
x2

n−1

x2
n−1 + xnx1

+
x2

n

x2
n + x1x2

≤ n− 1.

Supplementary Problems

19. (ISR 3) For which integers n ≥ 3 does there exist a regular n-gon in the
plane such that all its vertices have integer coordinates in a rectangular
coordinate system?

20. (GBR 5)IMO1 A circle whose center is on the side ED of the cyclic
quadrilateralBCDE touches the other three sides. Prove that EB+CD =
ED.

21. (IRE 1) The tangents at B and C to the circumcircle of the acute-angled
triangle ABC meet at X . Let M be the midpoint of BC. Prove that
(a) ∠BAM = ∠CAX , and
(b) AM

AX = cos∠BAC.

22. (USS 5)IMO5 A circle with center O passes through points A and C and
intersects the sides AB and BC of the triangle ABC at points K and N ,
respectively. The circumscribed circles of the triangles ABC and KBN
intersect at two distinct points B and M . Prove that ∠OMB = 90◦.



3.27 IMO 1986 193

3.27 The Twenty-Seventh IMO

Warsaw, Poland, July 4–15, 1986

3.27.1 Contest Problems

First Day (July 9)

1. The set S = {2, 5, 13} has the property that for every a, b ∈ S, a �= b, the
number ab− 1 is a perfect square. Show that for every positive integer d
not in S, the set S ∪ {d} does not have the above property.

2. Let A,B,C be fixed points in the plane. A man starts from a certain point
P0 and walks directly to A. At A he turns his direction by 60◦ to the left
and walks to P1 such that P0A = AP1. After he performs the same action
1986 times successively around the points A,B,C,A,B,C, . . . , he returns
to the starting point. Prove that ABC is an equilateral triangle, and that
the vertices A,B,C are arranged counterclockwise.

3. To each vertex Pi (i = 1, . . . , 5) of a pentagon an integer xi is assigned,
the sum s =

∑
xi being positive. The following operation is allowed,

provided at least one of the xi’s is negative: Choose a negative xi, replace
it by −xi, and add the former value of xi to the integers assigned to
the two neighboring vertices of Pi (the remaining two integers are left
unchanged).
This operation is to be performed repeatedly until all negative integers
disappear. Decide whether this procedure must eventually terminate.

Second Day (July 10)

4. Let A,B be adjacent vertices of a regular n-gon in the plane and let O be
its center. Now let the triangle ABO glide around the polygon in such a
way that the points A and B move along the whole circumference of the
polygon. Describe the figure traced by the vertex O.

5. Find, with proof, all functions f defined on the nonnegative real numbers
and taking nonnegative real values such that
(i) f [xf(y)]f(y) = f(x+ y),
(ii) f(2) = 0 but f(x) �= 0 for 0 ≤ x < 2.

6. Prove or disprove: Given a finite set of points with integer coefficients in
the plane, it is possible to color some of these points red and the remaining
ones white in such a way that for any straight line L parallel to one of
the coordinate axes, the number of red colored points and the number of
white colored points on L differ by at most 1.
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3.27.2 Longlisted Problems

1. (AUS 1) Let k be one of the integers 2, 3, 4 and let n = 2k − 1. Prove
the inequality

1 + bk + b2k + · · · + bnk ≥ (1 + bn)
k

for all real b ≥ 0.

2. (AUS 2) Let ABCD be a convex quadrilateral. DA and CB meet at
F and AB and DC meet at E. The bisectors of the angles DFC and
AED are perpendicular. Prove that these angle bisectors are parallel to
the bisectors of the angles between the lines AC and BD.

3. (AUS 3) A line parallel to the side BC of a triangle ABC meets AB
in F and AC in E. Prove that the circles on BE and CF as diameters
intersect in a point lying on the altitude of the triangle ABC dropped
from A to BC.

4. (BEL 1) Find the last eight digits of the binary development of 271986.

5. (BEL 2) Let ABC and DEF be acute-angled triangles. Write d = EF ,
e = FD, f = DE. Show that there exists a point P in the interior of
ABC for which the value of the expression d ·AP +e ·BP +f ·CP attains
a minimum.

6. (BEL 3) In an urn there are one ball marked 1, two balls marked 2, and
so on, up to n balls marked n. Two balls are randomly drawn without
replacement. Find the probability that the two balls are assigned the same
number.

7. (BUL 1) (SL86-11).

8. (BUL 2) (SL86-19).

9. (CAN 1) In a triangle ABC, ∠BAC = 100◦, AB = AC. A point
D is chosen on the side AC such that ∠ABD = ∠CBD. Prove that
AD +DB = BC.

10. (CAN 2) A set of n standard dice are shaken and randomly placed in a
straight line. If n < 2r and r < s, then the probability that there will be
a string of at least r, but not more than s, consecutive 1’s can be written
as P/6s+2. Find an explicit expression for P .

11. (CAN 3) (SL86-20).

12. (CHN 1) Let O be an interior point of a tetrahedron A1A2A3A4. Let
S1, S2, S3, S4 be spheres with centers A1, A2, A3, A4, respectively, and let
U, V be spheres with centers at O. Suppose that for i, j = 1, 2, 3, 4, i �= j,
the spheres Si and Sj are tangent to each other at a point Bij lying on
AiAj . Suppose also that U is tangent to all edges AiAj and V is tangent to
the spheres S1, S2, S3, S4. Prove that A1A2A3A4 is a regular tetrahedron.
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13. (CHN 2) Let N = {1, 2, . . . , n}, n ≥ 3. To each pair i, j of elements ofN ,
i �= j, there is assigned a number fij ∈ {0, 1} such that fij + fji = 1. Let
r(i) =

∑
j 	=i fij and write M = maxi∈N r(i), m = mini∈N r(i). Prove that

for any w ∈ N with r(w) = m there exist u, v ∈ N such that r(u) = M
and fuvfvw = 1.

14. (CHN 3) (SL86-17).

15. (CHN 4) Let N = B1 ∪· · ·∪Bq be a partition of the set N of all positive
integers and let an integer l ∈ N be given. Prove that there exist a set
X ⊂ N of cardinality l, an infinite set T ⊂ N, and an integer k with
1 ≤ k ≤ q such that for any t ∈ T and any finite set Y ⊂ X , the sum
t+

∑
y∈Y y belongs to Bk.

16. (CZS 1) Given a positive integer k, find the least integer nk for which
there exist five sets S1, S2, S3, S4, S5 with the following properties:

|Sj | = k for j = 1, . . . , 5,

∣∣∣∣∣∣
5⋃

j=1

Sj

∣∣∣∣∣∣ = nk;

|Si ∩ Si+1| = 0 = |S5 ∩ S1|, for i = 1, . . . , 4.

17. (CZS 2) We call a tetrahedron right-faced if each of its faces is a right-
angled triangle.
(a) Prove that every orthogonal parallelepiped can be partitioned into six

right-faced tetrahedra.
(b) Prove that a tetrahedron with vertices A1, A2, A3, A4 is fight-faced

if and only if there exist four distinct real numbers c1, c2, c3, and
c4 such that the edges AjAk have lengths AjAk =

√
|cj − ck| for

1 ≤ j < k ≤ 4.

18. (CZS 3) (SL86-4).

19. (FIN 1) Let f : [0, 1] → [0, 1] satisfy f(0) = 0, f(1) = 1 and

f(x+ y) − f(x) = f(x) − f(x− y)

for all x, y ≥ 0 with x − y, x + y ∈ [0, 1]. Prove that f(x) = x for all
x ∈ [0, 1].

20. (FIN 2) For any angle α with 0 < α < 180◦, we call a closed convex
planar set an α-set if it is bounded by two circular arcs (or an arc and a
line segment) whose angle of intersection is α. Given a (closed) triangle
T , find the greatest α such that any two points in T are contained in an
α-set S ⊂ T .

21. (FRA 1) Let AB be a segment of unit length and let C, D be variable
points of this segment. Find the maximum value of the product of the
lengths of the six distinct segments with endpoints in the set {A,B,C,D}.
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22. (FRA 2) Let (an)n∈N be the sequence of integers defined recursively by
a0 = 0, a1 = 1, an+2 = 4an+1 + an for n ≥ 0. Find the common divisors
of a1986 and a6891.

23. (FRA 3) Let I and J be the centers of the incircle and the excircle in
the angle BAC of the triangle ABC. For any point M in the plane of
the triangle, not on the line BC, denote by IM and JM the centers of the
incircle and the excircle (touching BC) of the triangle BCM . Find the
locus of points M for which IIMJJM is a rectangle.

24. (FRA 4) Two families of parallel lines are given in the plane, consisting
of 15 and 11 lines, respectively. In each family, any two neighboring lines
are at a unit distance from one another; the lines of the first family are
perpendicular to the lines of the second family. Let V be the set of 165
intersection points of the lines under consideration. Show that there exist
not fewer than 1986 distinct squares with vertices in the set V .

25. (FRA 5) (SL86-7).

26. (FRG 1) (SL86-5).

27. (FRG 2) In an urn there are n balls numbered 1, 2, . . . , n. They are
drawn at random one by one one without replacement and the numbers are
recorded. What is the probability that the resulting random permutation
has only one local maximum?
A term in a sequence is a local maximum if it is greater than all its
neighbors.

28. (FRG 3) (SL86-13).

29. (FRG 4) We define a binary operation � in the plane as follows: Given
two points A and B in the plane, C = A � B is the third vertex of the
equilateral triangle ABC oriented positively. What is the relative position
of three points I, M , O in the plane if I � (M �O) = (O � I) � M holds?

30. (FRG 5) Prove that a convex polyhedron all of whose faces are equilat-
eral triangles has at most 30 edges.

31. (GBR 1) Let P and Q be distinct points in the plane of a triangle ABC
such that AP : AQ = BP : BQ = CP : CQ. Prove that the line PQ
passes through the circumcenter of the triangle.

32. (GBR 2) Find, with proof, all solutions of the equation 1
x + 2

y − 3
z = 1

in positive integers x, y, z.

33. (GBR 3) (SL86-1).

34. (GBR 4) For each nonnegative integer n, Fn(x) is a polynomial in x of
degreee n. Prove that if the identity

Fn(2x) =

n∑
r=0

(−1)n−r

(
n

r

)
2rFr(x)
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holds for each n, then

Fn(tx) =

n∑
r=0

(
n

r

)
tr(1 − t)n−rFr(x)

for each n and all t.

35. (GBR 5) Establish the maximum and minimum values that the sum
|a| + |b| + |c| can have if a, b, c are real numbers such that the maximum
value of |ax2 + bx+ c| is 1 for −1 ≤ x ≤ 1.

36. (GDR 1) (SL86-9).

37. (GDR 2) Prove that the set {1, 2, . . . , 1986} can be partitioned into 27
disjoint sets so that no one of these sets contains an arithmetic triple (i.e.,
three distinct numbers in an arithmetic progression).

38. (GDR 3) (SL86-12).

39. (GRE 1) Let S be a k-element set.
(a) Find the number of mappings f : S → S such that

(i) f(x) �= x for x ∈ S, (ii) f(f(x)) = x for x ∈ S.

(b) The same with the condition (i) left out.

40. (GRE 2) Find the maximum value that the quantity 2m+ 7n can have
such that there exist distinct positive integers xi (1 ≤ i ≤ m), yj (1 ≤ j ≤
n) such that the xi’s are even, the yj’s are odd, and

∑m
i=1 xi +

∑n
j=1 yj =

1986.

41. (GRE 3) Let M,N,P be the midpoints of the sides BC, CA, AB of a
triangle ABC. The lines AM , BN , CP intersect the circumcircle of ABC
at points A′, B′, C′, respectively. Show that if A′B′C′ is an equilateral
triangle, then so is ABC.

42. (HUN 1) The integers 1, 2, . . . , n2 are placed on the fields of an n × n
chessboard (n > 2) in such a way that any two fields that have a common
edge or a vertex are assigned numbers differing by at most n + 1. What
is the total number of such placements?

43. (HUN 2) (SL86-10).

44. (IRE 1) (SL86-14).

45. (IRE 2) Given n real numbers a1 ≤ a2 ≤ · · · ≤ an, define

M1 =
1

n

n∑
i=1

ai, M2 =
2

n(n− 1)

∑
1≤i<j≤n

aiaj , Q =
√
M2

1 −M2.

Prove that
a1 ≤ M1 −Q ≤ M1 +Q ≤ an

and that equality holds if and only if a1 = a2 = · · · = an.
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46. (IRE 3) We wish to construct a matrix with 19 rows and 86 columns,
with entries xij ∈ {0, 1, 2} (1 ≤ i ≤ 19, 1 ≤ j ≤ 86), such that:
(i) in each column there are exactly k terms equal to 0;
(ii) for any distinct j, k ∈ {1, . . . , 86} there is i ∈ {1, . . . , 19} with xij +

xik = 3.
For what values of k is this possible?

47. (ISR 1) (SL86-16).

48. (ISR 2) Let P be a convex 1986-gon in the plane. Let A,D be interior
points of two distinct sides of P and let B,C be two distinct interior
points of the line segment AD. Starting with an arbitrary point Q1 on
the boundary of P , define recursively a sequence of points Qn as follows:
given Qn extend the directed line segment QnB to meet the boundary of
P in a point Rn and then extend RnC to meet the boundary of P again
in a point, which is defined to be Qn+1. Prove that for all n large enough
the points Qn are on one of the sides of P containing A or D.

49. (ISR 3) Let C1, C2 be circles of radius 1/2 tangent to each other and
both tangent internally to a circle C of radius 1. The circles C1 and C2

are the first two terms of an infinite sequence of distinct circles Cn defined
as follows: Cn+2 is tangent externally to Cn and Cn+1 and internally to
C. Show that the radius of each Cn is the reciprocal of an integer.

50. (LUX 1) Let D be the point on the side BC of the triangle ABC such
that AD is the bisector of ∠CAB. Let I be the incenter of 
ABC.
(a) Construct the points P and Q on the sides AB and AC, respectively,

such that PQ is parallel to BC and the perimeter of the triangle APQ
is equal to k ·BC, where k is a given rational number.

(b) Let R be the intersection point of PQ and AD. For what value of k
does the equality AR = RI hold?

(c) In which case do the equalities AR = RI = ID hold?

51. (MON 1) Let a, b, c, d be the lengths of the sides of a quadrilateral
circumscribed about a circle and let S be its area. Prove that S ≤

√
abcd

and find conditions for equality.

52. (MON 2) Solve the system of equations

tanx1 + cotx1 = 3 tanx2,
tanx2 + cotx2 = 3 tanx3,

· · · · · ·
tanxn + cotxn = 3 tanx1.

53. (MON 3) For given positive integers r, v, n let S(r, v, n) denote the num-
ber of n-tuples of nonnegative integers (x1, . . . , xn) satisfying the equation
x1 + · · · + xn = r and such that xi ≤ v for i = 1, . . . , n. Prove that

S(r, v, n) =

m∑
k=0

(−1)k

(
n

k

)(
r − (v + 1)k + n− 1

n− 1

)
,
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where m = min
{
n,
[

r
v+1

]}
.

54. (MON 4) Find the least integer n with the following property: For any
set V of 8 points in the plane, no three lying on a line, and for any set
E of n line segments with endpoints in V , one can find a straight line
intersecting at least 4 segments in E in interior points.

55. (MON 5) Given an integer n ≥ 2, determine all n-digit numbers
M0 = a1a2 . . . an (ai �= 0, i = 1, 2, . . . , n) divisible by the numbers
M1 = a2a3 . . . ana1, M2 = a3a4 . . . ana1a2, . . . , Mn−1 = ana1a2 . . . an−1.

56. (MOR 1) Let A1A2A3A4A5A6 be a hexagon inscribed into a circle with
center O. Consider the circular arc with endpoints A1, A6 not containing
A2. For any point M of that arc denote by hi the distance from M to the
line AiAi+1 (1 ≤ i ≤ 5). Construct M such that the sum h1 + · · · + h5 is
maximal.

57. (MOR 2) In a triangle ABC, the incircle touches the sides BC, CA, AB
in the points A′, B′, C′, respectively; the excircle in the angle A touches
the lines containing these sides in A1, B1, C1, and similarly, the excircles
in the angles B and C touch these lines in A2, B2, C2 and A3, B3, C3.
Prove that the triangle ABC is right-angled if and only if one of the point
triples (A′, B3, C

′), (A3, B
′, C3), (A′, B′, C2), (A2, B2, C

′), (A2, B1, C2),
(A3, B3, C1), (A1, B2, C1), (A1, B1, C3) is collinear.

58. (NET 1) (SL86-6).

59. (NET 2) (SL86-15).

60. (NET 3) Prove the inequality

(−a+b+c)2(a−b+c)2(a+b−c)2 ≥ (−a2+b2+c2)(a2−b2+c2)(a2+b2−c2)

for all real numbers a, b, c.

61. (ROM 1) Given a positive integer n, find the greatest integer p with the
property that for any function f : P(X) → C, where X and C are sets of
cardinality n and p, respectively, there exist two distinct sets A,B ∈ P(X)
such that f(A) = f(B) = f(A ∪B). (P(X) is the family of all subsets of
X .)

62. (ROM 2) Determine all pairs of positive integers (x, y) satisfying the
equation px − y3 = 1, where p is a given prime number.

63. (ROM 3) Let AA′, BB′, CC′ be the bisectors of the angles of a triangle
ABC (A′ ∈ BC, B′ ∈ CA, C′ ∈ AB). Prove that each of the lines A′B′,
B′C′, C′A′ intersects the incircle in two points.

64. (ROM 4) Let (an)n∈N be the sequence of integers defined recursively by
a1 = a2 = 1, an+2 = 7an+1 − an − 2 for n ≥ 1. Prove that an is a perfect
square for every n.
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65. (ROM 5) Let A1A2A3A4 be a quadrilateral inscribed in a circle C. Show
that there is a point M on C such that MA1 −MA2 +MA3 −MA4 = 0.

66. (SWE 1) One hundred red points and one hundred blue points are
chosen in the plane, no three of them lying on a line. Show that these
points can be connected pairwise, red ones with blue ones, by disjoint line
segments.

67. (SWE 2) (SL86-2).

68. (SWE 3) Consider the equation x4 + ax3 + bx2 + ax+ 1 = 0 with real
coefficients a, b. Determine the number of distinct real roots and their
multiplicities for various values of a and b. Display your result graphically
in the (a, b) plane.

69. (TUR 1) (SL86-18).

70. (TUR 2) (SL86-21).

71. (TUR 3) Two straight lines perpendicular to each other meet each side
of a triangle in points symmetric with respect to the midpoint of that side.
Prove that these two lines intersect in a point on the nine-point circle.

72. (TUR 4) A one-person game with two possible outcomes is played as
follows: After each play, the player receives either a or b points, where a
and b are integers with 0 < b < a < 1986. The game is played as many
times as one wishes and the total score of the game is defined as the sum
of points received after successive plays. It is observed that every integer
x ≥ 1986 can be obtained as the total score whereas 1985 and 663 cannot.
Determine a and b.

73. (TUR 5) Let (ai)i∈N be a strictly increasing sequence of positive real
numbers such that limi→∞ ai = +∞ and ai+1/ai ≤ 10 for each i. Prove
that for every positive integer k there are infinitely many pairs (i, j) with
10k ≤ ai/aj ≤ 10k+1.

74. (USA 1) (SL86-8).
Alternative formulation. Let A be a set of n points in space. From the fam-
ily of all segments with endpoints in A, q segments have been selected and
colored yellow. Suppose that all yellow segments are of different length.
Prove that there exists a polygonal line composed of m yellow segments,
where m ≥ 2q

n , arranged in order of increasing length.

75. (USA 2) The incenter of a triangle is the midpoint of the line seg-
ment of length 4 joining the centroid and the orthocenter of the triangle.
Determine the maximum possible area of the triangle.

76. (USA 3) (SL86-3).

77. (USS 1) Find all integers x, y, z that satisfy

x3 + y3 + z3 = x+ y + z = 8.
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78. (USS 2) If T and T1 are two triangles with angles x, y, z and x1, y1, z1,
respectively, prove the inequality

cosx1

sinx
+

cos y1

sin y
+

cos z1
sin z

≤ cotx+ cot y + cot z.

79. (USS 3) Let AA1, BB1, CC1 be the altitudes in an acute-angled triangle
ABC. K and M are points on the line segments A1C1 and B1C1 respec-
tively. Prove that if the angles MAK and CAA1 are equal, then the angle
C1KM is bisected by AK.

80. (USS 4) Let ABCD be a tetrahedron and O its incenter, and let the
line OD be perpendicular to AD. Find the angle between the planes DOB
and DOC.

3.27.3 Shortlisted Problems

1. (GBR 3)IMO5 Find, with proof, all functions f defined on the nonnegative
real numbers and taking nonnegative real values such that
(i) f [xf(y)]f(y) = f(x+ y),
(ii) f(2) = 0 but f(x) �= 0 for 0 ≤ x < 2.

2. (SWE 2) Let f(x) = xn where n is a fixed positive integer and x =
1, 2, . . . . Is the decimal expansion a = 0.f(1)f(2)f(3) . . . rational for any
value of n?
The decimal expansion of a is defined as follows: If f(x) = d1(x)d2(x) . . .
. . . dr(x)(x) is the decimal expansion of f(x), then a = 0.1d1(2)d2(2) . . .
. . . dr(2)(2)d1(3) . . . dr(3)(3)d1(4) . . . .

3. (USA 3) Let A, B, and C be three points on the edge of a circular
chord such that B is due west of C and ABC is an equilateral triangle
whose side is 86 meters long. A boy swam from A directly toward B. After
covering a distance of x meters, he turned and swam westward, reaching
the shore after covering a distance of y meters. If x and y are both positive
integers, determine y.

4. (CZS 3) Let n be a positive integer and let p be a prime number, p > 3.
Find at least 3(n+1) [easier version: 2(n+1)] sequences of positive integers
x, y, z satisfying

xyz = pn(x + y + z)

that do not differ only by permutation.

5. (FRG 1)IMO1 The set S = {2, 5, 13} has the property that for every
a, b ∈ S, a �= b, the number ab − 1 is a perfect square. Show that for
every positive integer d not in S, the set S ∪ {d} does not have the above
property.

6. (NET 1) Find four positive integers each not exceeding 70000 and each
having more than 100 divisors.
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7. (FRA 5) Let real numbers x1, x2, . . . , xn satisfy 0 < x1 < x2 < · · · <
xn < 1 and set x0 = 0, xn+1 = 1. Suppose that these numbers satisfy the
following system of equations:

n+1∑
j=0, j 	=i

1

xi − xj
= 0 where i = 1, 2, . . . , n. (1)

Prove that xn+1−i = 1 − xi for i = 1, 2, . . . , n.

8. (USA 1) From a collection of n persons q distinct two-member teams
are selected and ranked 1, . . . , q (no ties). Let m be the least integer larger
than or equal to 2q/n. Show that there are m distinct teams that may
be listed so that (i) each pair of consecutive teams on the list have one
member in common and (ii) the chain of teams on the list are in rank
order.

Alternative formulation. Given a graph with n vertices and q edges num-
bered 1, . . . , q, show that there exists a chain of m edges, m ≥ 2q

n , each
two consecutive edges having a common vertex, arranged monotonically
with respect to the numbering.

9. (GDR 1)IMO6 Prove or disprove: Given a finite set of points with integer
coordinates in the plane, it is possible to color some of these points red
and the remaining ones white in such a way that for any straight line L
parallel to one of the coordinate axes, the number of red colored points
and the number of white colored points on L differ by at most 1.

10. (HUN 2) Three persons A,B,C, are playing the following game: A k-
element subset of the set {1, . . . , 1986} is randomly chosen, with an equal
probability of each choice, where k is a fixed positive integer less than
or equal to 1986. The winner is A,B or C, respectively, if the sum of
the chosen numbers leaves a remainder of 0, 1, or 2 when divided by 3.
For what values of k is this game a fair one? (A game is fair if the three
outcomes are equally probable.)

11. (BUL 1) Let f(n) be the least number of distinct points in the plane
such that for each k = 1, 2, . . . , n there exists a straight line containing
exactly k of these points. Find an explicit expression for f(n).
Simplified version. Show that f(n) =

[
n+1

2

] [
n+2

2

]
([x] denoting the great-

est integer not exceeding x).

12. (GDR 3)IMO3 To each vertex Pi (i = 1, . . . , 5) of a pentagon an integer
xi is assigned, the sum s =

∑
xi being positive. The following operation is

allowed, provided at least one of the xi’s is negative: Choose a negative xi,
replace it by −xi, and add the former value of xi to the integers assigned
to the two neighboring vertices of Pi (the remaining two integers are left
unchanged).
This operation is to be performed repeatedly until all negative integers
disappear. Decide whether this procedure must eventually terminate.
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13. (FRG 3) A particle moves from (0, 0) to (n, n) directed by a fair coin.
For each head it moves one step east and for each tail it moves one step
north. At (n, y), y < n, it stays there if a head comes up and at (x, n),
x < n, it stays there if a tail comes up. Let k be a fixed positive integer.
Find the probability that the particle needs exactly 2n+k tosses to reach
(n, n).

14. (IRE 1) The circle inscribed in a triangle ABC touches the sides
BC,CA,AB in D,E, F , respectively, and X,Y, Z are the midpoints of
EF,FD,DE, respectively. Prove that the centers of the inscribed circle
and of the circles around XY Z and ABC are collinear.

15. (NET 2) Let ABCD be a convex quadrilateral whose vertices do not
lie on a circle. Let A′B′C′D′ be a quadrangle such that A′, B′, C′, D′

are the centers of the circumcircles of triangles BCD,ACD,ABD, and
ABC. We write T (ABCD) = A′B′C′D′. Let us define A′′B′′C′′D′′ =
T (A′B′C′D′) = T (T (ABCD)).
(a) Prove that ABCD and A′′B′′C′′D′′ are similar.
(b) The ratio of similitude depends on the size of the angles of ABCD.

Determine this ratio.

16. (ISR 1)IMO4 Let A,B be adjacent vertices of a regular n-gon in the
plane and let O be its center. Now let the triangle ABO glide around the
polygon in such a way that the points A and B move along the whole
circumference of the polygon. Describe the figure traced by the vertex O.

17. (CHN 3)IMO2 Let A,B,C be fixed points in the plane. A man starts
from a certain point P0 and walks directly to A. At A he turns his di-
rection by 60◦ to the left and walks to P1 such that P0A = AP1. Af-
ter he does the same action 1986 times successively around the points
A,B,C,A,B,C, . . . , he returns to the starting point. Prove that 
ABC
is equilateral and that the vertices A,B,C are arranged counterclockwise.

18. (TUR 1) Let AX,BY,CZ be three cevians concurrent at an inte-
rior point D of a triangle ABC. Prove that if two of the quadrangles
DY AZ,DZBX,DXCY are circumscribable, so is the third.

19. (BUL 2) A tetrahedron ABCD is given such that AD = BC = a;
AC = BD = b; AB ·CD = c2. Let f(P ) = AP +BP +CP +DP , where
P is an arbitrary point in space. Compute the least value of f(P ).

20. (CAN 3) Prove that the sum of the face angles at each vertex of a tetra-
hedron is a straight angle if and only if the faces are congruent triangles.

21. (TUR 2) Let ABCD be a tetrahedron having each sum of opposite sides
equal to 1. Prove that

rA + rB + rC + rD ≤
√

3

3
,

where rA, rB, rC , rD are the inradii of the faces, equality holding only if
ABCD is regular.
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3.28 The Twenty-Eighth IMO

Havana, Cuba, July 5–16, 1987

3.28.1 Contest Problems

First Day (July 10)

1. Let S be a set of n elements. We denote the number of all permutations
of S that have exactly k fixed points by pn(k). Prove that

n∑
k=0

kpn(k) = n!.

2. The prolongation of the bisector AL (L ∈ BC) in the acute-angled trian-
gle ABC intersects the circumscribed circle at point N . From point L to
the sides AB and AC are drawn the perpendiculars LK and LM respec-
tively. Prove that the area of the triangle ABC is equal to the area of the
quadrilateral AKNM .

3. Suppose x1, x2, . . . , xn are real numbers with x2
1 +x2

2 + · · ·+x2
n = 1. Prove

that for any integer k > 1 there are integers ei not all 0 and with |ei| < k
such that

|e1x1 + e2x2 + · · · + enxn| ≤
(k − 1)

√
n

kn − 1
.

Second Day (July 11)

4. Does there exist a function f : N → N, such that f(f(n)) = n+ 1987 for
every natural number n?

5. Prove that for every natural number n ≥ 3 it is possible to put n points in
the Euclidean plane such that the distance between each pair of points is
irrational and each three points determine a nondegenerate triangle with
rational area.

6. Let f(x) = x2 + x + p, p ∈ N. Prove that if the numbers f(0), f(1), . . . ,
f([

√
p/3 ]) are primes, then all the numbers f(0), f(1), . . . , f(p − 2) are

primes.

3.28.2 Longlisted Problems

1. (AUS 1) Let x1, x2, . . . , xn be n integers. Let n = p+ q, where p and q
are positive integers. For i = 1, 2, . . . , n, put

Si = xi + xi+1 + · · · + xi+p−1 and Ti = xi+p + xi+p+1 + · · · + xi+n−1

(it is assumed that xi+n = xi for all i). Next, let m(a, b) be the number of
indices i for which Si leaves the remainder a and Ti leaves the remainder
b on division by 3, where a, b ∈ {0, 1, 2}. Show that m(1, 2) and m(2, 1)
leave the same remainder when divided by 3.
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2. (AUS 2) Suppose we have a pack of 2n cards, in the order 1, 2, . . . , 2n. A
perfect shuffle of these cards changes the order to n+1, 1, n+2, 2, . . . , n−
1, 2n, n; i.e., the cards originally in the first n positions have been moved
to the places 2, 4, . . . , 2n, while the remaining n cards, in their original
order, fill the odd positions 1, 3, . . . , 2n− 1.
Suppose we start with the cards in the above order 1, 2, . . . , 2n and then
successively apply perfect shuffles. What conditions on the number n are
necessary for the cards eventually to return to their original order? Justify
your answer.

Remark. This problem is trivial. Alternatively, it may be required to find
the least number of shuffles after which the cards will return to the original
order.

3. (AUS 3) A town has a road network that consists entirely of one-way
streets that are used for bus routes. Along these routes, bus stops have
been set up. If the one-way signs permit travel from bus stop X to bus
stop Y �= X , then we shall say Y can be reached from X .
We shall use the phrase Y comes after X when we wish to express that
every bus stop from which the bus stop X can be reached is a bus stop
from which the bus stop Y can be reached, and every bus stop that can
be reached from Y can also be reached from X . A visitor to this town
discovers that if X and Y are any two different bus stops, then the two
sentences “Y can be reached from X” and “Y comes after X” have exactly
the same meaning in this town.
Let A and B be two bus stops. Show that of the following two statements,
exactly one is true: (i) B can be reached from A; (ii) A can be reached
from B.

4. (AUS 4) Let a1, a2, a3, b1, b2, b3 be positive real numbers. Prove that

(a1b2 + a2b1 + a1b3 + a3b1 + a2b3 + a3b2)
2

≥ 4(a1a2 + a2a3 + a3a1)(b1b2 + b2b3 + b3b1)

and show that the two sides of the inequality are equal if and only if
a1/b1 = a2/b2 = a3/b3.

5. (AUS 5) Let there be given three circles K1,K2,K3 with centers
O1, O2, O3 respectively, which meet at a common point P . Also, let
K1 ∩ K2 = {P,A}, K2 ∩ K3 = {P,B}, K3 ∩ K1 = {P,C}. Given an
arbitrary point X on K1, join X to A to meet K2 again in Y , and join X
to C to meet K3 again in Z.
(a) Show that the points Z,B, Y are collinear.
(b) Show that the area of triangle XY Z is less than or equal to 4 times

the area of triangle O1O2O3.

6. (AUS 6) (SL87-1).
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7. (BEL 1) Let f : (0,+∞) → R be a function having the property
that f(x) = f(1/x) for all x > 0. Prove that there exists a function

u : [1,+∞) → R satisfying u
(

x+1/x
2

)
= f(x) for all x > 0.

8. (BEL 2) Determine the least possible value of the natural number n
such that n! ends in exactly 1987 zeros.

9. (BEL 3) In the set of 20 elements {1, 2, 3, 4, 5, 6, 7, 8, 9, 0, A, B, C,
D, J , K, L, U , X , Y , Z} we have made a random sequence of 28 throws.
What is the probability that the sequence CUBA JULY 1987 appears in
this order in the sequence already thrown?

10. (FIN 1) In a Cartesian coordinate system, the circle C1 has center
O1(−2, 0) and radius 3. Denote the point (1, 0) by A and the origin by O.
Prove that there is a constant c > 0 such that for every X that is exterior
to C1,

OX − 1 ≥ cmin{AX,AX2}.
Find the largest possible c.

11. (FIN 2) Let S ⊂ [0, 1] be a set of 5 points with {0, 1} ⊂ S. The graph
of a real function f : [0, 1] → [0, 1] is continuous and increasing, and it
is linear on every subinterval I in [0, 1] such that the endpoints but no
interior points of I are in S. We want to compute, using a computer, the

extreme values of g(x, t) = f(x+t)−f(x)
f(x)−f(x−t) for x − t, x + t ∈ [0, 1]. At how

many points (x, t) is it necessary to compute g(x, t) with the computer?

12. (FIN 3) (SL87-3).

13. (FIN 4) A be an infinite set of positive integers such that every n ∈ A is
the product of at most 1987 prime numbers. Prove that there is an infinite
set B ⊂ A and a number p such that the greatest common divisor of any
two distinct numbers in B is b.

14. (FRA 1) Given n real numbers 0 < t1 ≤ t2 ≤ · · · ≤ tn < 1, prove that

(1 − t2n)

(
t1

(1 − t21)
2

+
t22

(1 − t32)
2

+ · · · + tnn
(1 − tn+1

n )2

)
< 1.

15. (FRA 2) Let a1, a2, a3, b1, b2, b3, c1, c2, c3 be nine strictly positive real
numbers. We set

S1 = a1b2c3, S2 = a2b3c1, S3 = a3b1c2;
T1 = a1b3c2, T2 = a2b1c3, T3 = a3b2c1.

Suppose that the set {S1, S2, S3, T1, T2, T3} has at most two elements.
Prove that

S1 + S2 + S3 = T1 + T2 + T3.
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16. (FRA 3) Let ABC be a triangle. For every pointM belonging to segment
BC we denote byB′ and c′ the orthogonal projections ofM on the straight
lines AC and BC. Find points M for which the length of segment B′C′

is a minimum.

17. (FRA 4) Consider the number α obtained by writing one after another
the decimal representations of 1, 1987, 19872, . . . to the right the decimal
point. Show that α is irrational.

18. (FRA 5) (SL87-4).

19. (FRG 1) (SL87-14).

20. (FRG 2) (SL87-15).

21. (FRG 3) (SL87-16).

22. (GBR 1) (SL87-5).

23. (GBR 2) A lampshade is part of the surface of a right circular cone
whose axis is vertical. Its upper and lower edges are two horizontal circles.
Two points are selected on the upper smaller circle and four points on the
lower larger circle. Each of these six points has three of the others that
are its nearest neighbors at a distance d from it. By distance is meant the
shortest distance measured over the curved survace of the lampshade.
Prove that the area of the lampshade if d2(2θ +

√
3), where cot θ

2 = 3
θ .

24. (GBR 3) Prove that if the equation x4 + ax3 + bx + c = 0 has all its
roots real, then ab ≤ 0.

25. (GBR 4) Numbers d(n,m), with m,n integers, 0 ≤ m ≤ n, ae defined
by d(n, 0) = d(n, n) = 0 for all n ≥ 0 and

md(n,m) = md(n− 1,m)+ (2n−m)d(n− 1,m− 1) for all 0 < m < n.

Prove that all the d(n,m) are integers.

26. (GBR 5) Prove that if x, y, z are real numbers such that x2+y2+z2 = 2,
then

x+ y + z ≤ xyz + 2.

27. (GBR 6) Find, with proof, the smallest real number C with the following
property: For every infinite sequence {xi} of positive real numbers such
that x1 + x2 + · · · + xn ≤ xn+1 for n = 1, 2, 3, . . . , we have

√
x1 +

√
x2 + · · · + √

xn ≤ c
√
x1 + x2 + · · · + xn for n = 1, 2, 3, . . . .

28. (GDR 1) In a chess tournament there are n ≥ 5 players, and they have

already played
[

n2

4

]
+2 games (each pair have played each other at most

once).
(a) Prove that there are five players a, b, c, d, e for which the pairs ab, ac,

bc, ad, ae, de have already played.



208 3 Problems

(b) Is the statement also valid for the
[

n2

4

]
+ 1 games played?

Make the proof by induction over n.

29. (GDR 2) (SL87-13).

30. (GRE 1) Consider the regular 1987-gon A1A2 . . . A1987 with center O.
Show that the sum of vectors belonging to any proper subset of M =
{OAj | j = 1, 2, . . . , 1987} is nonzero.

31. (GRE 2) Construct a triangle ABC given its side a = BC, its circum-
radius R (2R ≥ a), and the difference 1/k = 1/c−1/b, where c = AB and
b = AC.

32. (GRE 3) Solve the equation 28x = 19y + 87z, where x, y, z are integers.

33. (GRE 4) (SL87-6).

34. (HUN 1) (SL87-8).

35. (HUN 2) (SL87-9).

36. (ICE 1) A game consists in pushing a flat stone along a sequence of
squares S0, S1, S2, . . . that are arranged in linear order. The stone is ini-
tially placed on square S0. When the stone stops on a square Sk it is
pushed again in the same direction and so on until it reaches S1987 or
goes beyond it; then the game stops. Each time the stone is pushed, the
probability that it will advance exactly n squares is 1/2n. Determine the
probability that the stone will stop exactly on square S1987.

37. (ICE 2) Five distinct numbers are drawn successively and at random
from the set {1, . . . , n}. Show that the probability of a draw in which the
first three numbers as well as all five numbers can be arranged to form an
arithmetic progression is greater than 6

(n−2)3 .

38. (ICE 3) (SL87-10).

39. (LUX 1) Let A be a set of polynomials with real coefficients and let
them satisfy the following conditions:
(i) if f ∈ A and deg f ≤ 1, then f(x) = x− 1;
(ii) if f ∈ A and deg f ≥ 2, then either there exists g ∈ A such that

f(x) = x2+deg g + xg(x) − 1 or there exist g, h ∈ A such that f(x) =
x1+deg gg(x) + h(x);

(iii) for every f, g ∈ A, both x2+deg f + xf(x) − 1 and x1+deg ff(x) + g(x)
belong to A.

Let Rn(f) be the remainder of the Euclidean division of the polynomial
f(x) by xn. Prove that for all f ∈ A and for all natural numbers n ≥ 1
we have

Rn(f)(1) ≤ 0 and Rn(f)(1) = 0 ⇒ Rn(f) ∈ A.

40. (MON 1) The perpendicular line issued from the center of the circum-
circle to the bisector of angle C in a triangle ABC divides the segment of
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the bisector inside ABC into two segments with ratio of lengths λ. Given
b = AC and a = BC, find the length of side c.

41. (MON 2) Let n points be given arbitrarily in the plane, no three of
them collinear. Let us draw segments between pairs of these points. What
is the minimum number of segments that can be colored red in such a way
that among any four points, three of them are connected by segments that
form a red triangle?

42. (MON 3) Find the integer solutions of the equation[√
2m

]
=
[
(2 +

√
2)n

]
.

43. (MON 4) Let 2n + 3 points be given in the plane in such a way that
no three lie on a line and no four lie on a circle. Prove that the number
of circles that pass through three of these points and contain exactly n
interior points is not less than 1

3

(
2n+3

2

)
.

44. (MOR 1) Let θ1, θ2, . . . , θn be real numbers such that sin θ1 + · · · +
sin θn = 0. Prove that

| sin θ1 + 2 sin θ2 + · · · + n sin θn| ≤
[
n2

4

]
.

45. (MOR 2) Let us consider a variable polygon with 2n sides (n ∈ N) in a
fixed circle such that 2n− 1 of its sides pass through 2n− 1 fixed points
lying on a straight line ∆. Prove that the last side also passes through a
fixed point lying on ∆.

46. (NET 1) (SL87-7).

47. (NET 2) Through a point P within a triangle ABC the lines l, m, and
n perpendicular respectively to AP,BP,CP are drawn. Prove that if l
intersects the line BC in Q, m intersects AC in R, and n intersects AB
in S, then the points Q, R, and S are collinear.

48. (POL 1) (SL87-11).

49. (POL 2) In the coordinate system in the plane we consider a convex
polygon W and lines given by equations x = k, y = m, where k and m are
integers. The lines determine a tiling of the plane with unit squares. We
say that the boundary of W intersects a square if the boundary contains
an interior point of the square. Prove that the boundary of W intersects
at most 4�d� unit squares, where d is the maximal distance of points
belonging to W (i.e., the diameter of W ) and �d� is the least integer not
less than d.

50. (POL 3) Let P,Q,R be polynomials with real coefficients, satisfying
P 4+Q4 = R2. Prove that there exist real numbers p, q, r and a polynomial
S such that P = pS, Q = qS and R = rS2.
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Variants: (1) P 4 + Q4 = R4; (2) gcd(P,Q) = 1; (3) ±P 4 + Q4 = R2 or
R4.

51. (POL 4) The function F is a one-to-one transformation of the plane into
itself that maps rectangles into rectangles (rectangles are closed; continu-
ity is not assumed). Prove that F maps squares into squares.

52. (POL 5) (SL87-12).

53. (ROM 1) (SL87-17).

54. (ROM 2) Let n be a natural number. Solve in integers the equation

xn + yn = (x − y)n+1.

55. (ROM 3) Two moving bodies M1,M2 are displaced uniformly on two
coplanar straight lines. Describe the union of all straight lines M1M2.

56. (ROM 4) (SL87-18).

57. (ROM 5) The bisectors of the angles B,C of a triangle ABC intersect
the opposite sides in B′, C′ respectively. Prove that the straight line B′C′

intersects the inscribed circle in two different points.

58. (SPA 1) Find, with argument, the integer solutions of the equation

3z2 = 2x3 + 385x2 + 256x− 58195.

59. (SPA 2) It is given that a11, a22 are real numbers, that x1, x2, a12, b1, b2
are complex numbers, and that a11a22 = a12a12 (where a12 is the conju-
gate of a12). We consider the following system in x1, x2:

x1(a11x1 + a12x2) = b1,
x2(a12x1 + a22x2) = b2.

(a) Give one condition to make the system consistent.
(b) Give one condition to make argx1 − arg x2 = 98◦.

60. (TUR 1) It is given that x = −2272, y = 103 +102c+10b+a, and z = 1
satisfy the equation ax + by + cz = 1, where a, b, c are positive integers
with a < b < c. Find y.

61. (TUR 2) Let PQ be a line segment of constant length λ taken on the
side BC of a triangle ABC with the order B,P,Q,C, and let the lines
through P and Q parallel to the lateral sides meet AC at P1 and Q1 and
AB at P2 and Q2 respectively. Prove that the sum of the areas of the
trapezoids PQQ1P1 and PQQ2P2 is independent of the position of PQ
on BC.

62. (TUR 3) Let l, l′ be two lines in 3-space and let A,B,C be three points
taken on l with B as midpoint of the segmentAC. If a, b, c are the distances

of A,B,C from l′, respectively, show that b ≤
√

a2+c2

2 , equality holding

if l, l′ are parallel.
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63. (TUR 4) Compute
∑2n

k=0(−1)ka2
k, where ak are the coefficients in the

expansion

(1 −
√

2x+ x2)n =

2n∑
k=0

akx
k.

64. (USA 1) Let r > 1 be a real number, and let n be the largest integer
smaller than r. Consider an arbitrary real number x with 0 ≤ x ≤ n

r−1 .
By a base-r expansion of x we mean a representation of x in the form

x =
a1

r
+
a2

r2
+
a3

r3
+ · · · ,

where the ai are integers with 0 ≤ ai < r.
You may assume without proof that every number x with 0 ≤ x ≤ n

r−1
has at least one base-r expansion.
Prove that if r is not an integer, then there exists a number p, 0 ≤ p ≤ n

r−1 ,
which has infinitely many distinct base-r expansions.

65. (USA 2) The runs of a decimal number are its increasing or decreasing
blocks of digits. Thus 024379 has three runs: 024, 43, and 379. Determine
the average number of runs for a decimal number in the set {d1d2 . . . dn |
dk �= dk+1, k = 1, 2, . . . , n− 1}, where n ≥ 2.

66. (USA 3) (SL87-2).

67. (USS 1) If a, b, c, d are real numbers such that a2 + b2 + c2 + d2 ≤ 1,
find the maximum of the expression

(a+ b)4 + (a+ c)4 + (a+ d)4 + (b+ c)4 + (b + d)4 + (c+ d)4.

68. (USS 2) (SL87-19).
Original formulation. Let there be given positive real numbers α, β, γ
such that α + β + γ < π, α + β > γ, β + γ > α, γ + α > β. Prove that
it is possible to draw a triangle with the lengths of the sides sinα, sinβ,
sin γ. Moreover, prove that its area is less than

1

8
(sin 2α+ sin 2β + sin 2γ).

69. (USS 3) (SL87-20).

70. (USS 4) (SL87-21).

71. (USS 5) To every natural number k, k ≥ 2, there corresponds a sequence
an(k) according to the following rule:

a0 = k, an = τ(an−1) for n ≥ 1,

in which τ(a) is the number of different divisors of a. Find all k for which
the sequence an(k) does not contain the square of an integer.
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72. (VIE 1) Is it possible to cover a rectangle of dimensions m × n with
bricks that have the trimino angular shape (an arrangement of three unit
squares forming the letter L) if:
(a) m× n = 1985 × 1987;
(b) m× n = 1987 × 1989?

73. (VIE 2) Let f(x) be a periodic function of period T > 0 defined over R.
Its first derivative is continuous on R. Prove that there exist x, y ∈ [0, T )
such that x �= y and

f(x)f ′(y) = f(y)f ′(x).

74. (VIE 3) (SL87-22).

75. (VIE 4) Let ak be positive numbers such that a1 ≥ 1 and ak+1 −ak ≥ 1
(k = 1, 2, . . . ). Prove that for every n ∈ N,

n∑
k=1

1

ak+1
1987
√
ak

< 1987.

76. (VIE 5) Given two sequences of positive numbers {ak} and {bk} (k ∈ N)
such that
(i) ak < bk,
(ii) cosakx+ cos bkx ≥ − 1

k for all k ∈ N and x ∈ R,
prove the existence of limk→∞ ak

bk
and find this limit.

77. (YUG 1) Find the least natural number k such that for any n ∈ [0, 1]
and any natural number n,

ak(1 − a)n <
1

(n+ 1)3
.

78. (YUG 2) (SL87-23).

3.28.3 Shortlisted Problems

1. (AUS 6) Let f be a function that satisfies the following conditions:
(i) If x > y and f(y) − y ≥ v ≥ f(x) − x, then f(z) = v + z, for some

number z between x and y.
(ii) The equation f(x) = 0 has at least one solution, and among the

solutions of this equation, there is one that is not smaller than all the
other solutions;

(iii) f(0) = 1.
(iv) f(1987) ≤ 1988.
(v) f(x)f(y) = f(xf(y) + yf(x) − xy).
Find f(1987).
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2. (USA 3) At a party attended by n married couples, each person talks
to everyone else at the party except his or her spouse. The conversations
involve sets of persons or cliques C1, C2, . . . , Ck with the following prop-
erty: no couple are members of the same clique, but for every other pair of
persons there is exactly one clique to which both members belong. Prove
that if n ≥ 4, then k ≥ 2n.

3. (FIN 3) Does there exist a second-degree polynomial p(x, y) in two
variables such that every nonnegative integer n equals p(k,m) for one and
only one ordered pair (k,m) of nonnegative integers?

4. (FRA 5) Let ABCDEFGH be a parallelepiped with AE‖BF‖CG‖DH .
Prove the inequality

AF +AH +AC ≤ AB +AD +AE +AG.

In what cases does equality hold?

5. (GBR 1) Find, with proof, the point P in the interior of an acute-angled
triangle ABC for which BL2 +CM2 +AN2 is a minimum, where L,M,N
are the feet of the perpendiculars from P to BC,CA,AB respectively.

6. (GRE 4) Show that if a, b, c are the lengths of the sides of a triangle
and if 2S = a+ b+ c, then

an

b+ c
+

bn

c+ a
+

cn

a+ b
≥

(
2

3

)n−2

Sn−1, n ≥ 1.

7. (NET 1) Given five real numbers u0, u1, u2, u3, u4, prove that it is always
possible to find five real numbers v0, v1, v2, v3, v4 that satisfy the following
conditions:
(i) ui − vi ∈ N.
(ii)

∑
0≤i<j≤4(vi − vj)

2 < 4.

8. (HUN 1) (a) Let (m, k) = 1. Prove that there exist integers a1, a2, . . . , am

and b1, b2, . . . , bk such that each product aibj (i = 1, 2, . . . ,m; j =
1, 2, . . . , k) gives a different residue when divided by mk.

(b) Let (m, k) > 1. Prove that for any integers a1, a2, . . . , am and b1, b2,
. . . , bk there must be two products aibj and asbt ((i, j) �= (s, t)) that
give the same residue when divided by mk.

9. (HUN 2) Does there exist a set M in usual Euclidean space such that
for every plane λ the intersection M ∩ λ is finite and nonempty?

10. (ICE 3) Let S1 and S2 be two spheres with distinct radii that touch
externally. The spheres lie inside a cone C, and each sphere touches the
cone in a full circle. Inside the cone there are n additional solid spheres
arranged in a ring in such a way that each solid sphere touches the cone
C, both of the spheres S1 and S2 externally, as well as the two neighboring
solid spheres. What are the possible values of n?
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11. (POL 1) Find the number of partitions of the set {1, 2, . . . , n} into three
subsets A1, A2, A3, some of which may be empty, such that the following
conditions are satisfied:
(i) After the elements of every subset have been put in ascending order,

every two consecutive elements of any subset have different parity.
(ii) If A1, A2, A3 are all nonempty, then in exactly one of them the minimal

number is even.

12. (POL 5) Given a nonequilateral triangle ABC, the vertices listed coun-
terclockwise, find the locus of the centroids of the equilateral triangles
A′B′C′ (the vertices listed counterclockwise) for which the triples of points
A,B′, C′; A′, B, C′; and A′, B′, C are collinear.

13. (GDR 2)IMO5 Is it possible to put 1987 points in the Euclidean plane
such that the distance between each pair of points is irrational and each
three points determine a nondegenerate triangle with rational area?

14. (FRG 1) How many words with n digits can be formed from the alphabet
{0, 1, 2, 3, 4}, if neighboring digits must differ by exactly one?

15. (FRG 2)IMO3 Suppose x1, x2, . . . , xn are real numbers with x2
1 + x2

2 +
· · ·+ x2

n = 1. Prove that for any integer k > 1 there are integers ei not all
0 and with |ei| < k such that

|e1x1 + e2x2 + · · · + enxn| ≤
(k − 1)

√
n

kn − 1
.

16. (FRG 3)IMO1 Let S be a set of n elements. We denote the number of all
permutations of S that have exactly k fixed points by pn(k). Prove:
(a)

∑n
k=0 kpn(k) = n!;

(b)
∑n

k=0(k − 1)2pn(k) = n!.

17. (ROM 1) Prove that there exists a four-coloring of the set M =
{1, 2, . . . , 1987} such that any arithmetic progression with 10 terms in
the set M is not monochromatic.

Alternative formulation. Let M = {1, 2, . . . , 1987}. Prove that there is a
function f : M → {1, 2, 3, 4} that is not constant on every set of 10 terms
from M that form an arithmetic progression.

18. (ROM 4) For any integer r ≥ 1, determine the smallest integer h(r) ≥ 1
such that for any partition of the set {1, 2, . . . , h(r)} into r classes, there
are integers a ≥ 0, 1 ≤ x ≤ y, such that a + x, a+ y, a+ x + y belong to
the same class.

19. (USS 2) Let α, β, γ be positive real numbers such that α + β + γ < π,
α + β > γ, β + γ > α, γ + α > β. Prove that with the segments of
lengths sinα, sinβ, sinγ we can construct a triangle and that its area is
not greater than

1

8
(sin 2α+ sin 2β + sin 2γ).
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20. (USS 3)IMO6 Let f(x) = x2 + x + p, p ∈ N. Prove that if the numbers
f(0), f(1), . . . , f([

√
p/3 ]) are primes, then all the numbers f(0), f(1), . . . ,

f(p− 2) are primes.

21. (USS 4)IMO2 The prolongation of the bisector AL (L ∈ BC) in the acute-
angled triangle ABC intersects the circumscribed circle at point N . From
point L to the sides AB and AC are drawn the perpendiculars LK and
LM respectively. Prove that the area of the triangle ABC is equal to the
area of the quadrilateral AKNM .

22. (VIE 3)IMO4 Does there exist a function f : N → N, such that f(f(n)) =
n+ 1987 for every natural number n?

23. (YUG 2) Prove that for every natural number k (k ≥ 2) there exists an
irrational number r such that for every natural number m,

[rm] ≡ −1 (mod k).

Remark. An easier variant: Find r as a root of a polynomial of second
degree with integer coefficients.
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3.29 The Twenty-Ninth IMO

Canberra, Australia, July 9–21, 1988

3.29.1 Contest Problems

First Day (July 15)

1. Consider two concentric circles of radii R and r (R > r) with center O.
Fix P on the small circle and consider the variable chord PA of the small
circle. Points B and C lie on the large circle; B,P,C are collinear and BC
is perpendicular to AP .
(a) For which value(s) of ∠OPA is the sum BC2 +CA2 +AB2 extremal?
(b) What are the possible positions of the midpoints U of BA and V of

AC as �OPA varies?

2. Let n be an even positive integer. Let A1, A2, . . . , An+1 be sets having
n elements each such that any two of them have exactly one element in
common, while every element of their union belongs to at least two of the
given sets. For which n can one assign to every element of the union one
of the numbers 0 and 1 in such a manner that each of the sets has exactly
n/2 zeros?

3. A function f defined on the positive integers (and taking positive integer
values) is given by

f(1) = 1, f(3) = 3,

f(2n) = f(n),

f(4n+ 1) = 2f(2n+ 1) − f(n),

f(4n+ 3) = 3f(2n+ 1) − 2f(n),

for all positive integers n. Determine with proof the number of positive
integers less than or equal to 1988 for which f(n) = n.

Second Day (July 16)

4. Show that the solution set of the inequality
70∑

k=1

k

x− k
≥ 5

4

is the union of disjoint half-open intervals with the sum of lengths 1988.

5. In a right-angled triangle ABC let AD be the altitude drawn to the hy-
potenuse and let the straight line joining the incenters of the triangles
ABD,ACD intersect the sides AB,AC at the points K,L respectively. If
E and E1 denote the areas of the triangles ABC and AKL respectively,
show that E

E1
≥ 2.

6. Let a and b be two positive integers such that ab+1 divides a2 + b2. Show

that a2+b2

ab+1 is a perfect square.
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3.29.2 Longlisted Problems

1. (BUL 1) (SL88-1).

2. (BUL 2) Let an =
[√

(n+ 1)2 + n2
]
, n = 1, 2, . . . , where [x] denotes

the integer part of x. Prove that
(a) there are infinitely many positive integers m such that am+1−am > 1;
(b) there are infinitely many positive integers m such that am+1−am = 1.

3. (BUL 3) (SL88-2).

4. (CAN 1) (SL88-3).

5. (CUB 1) Let k be a positive integer and Mk the set of all the integers
that are between 2k2 + k and 2k2 + 3k, both included. Is it possible to
partition Mk into two subsets A and B such that∑

x∈A

x2 =
∑
x∈B

x2?

6. (CZS 1) (SL88-4).

7. (CZS 2) (SL88-5).

8. (CZS 3) (SL88-6).

9. (FRA 1) If a0 is a positive real number, consider the sequence {an}
defined by

an+1 =
a2

n − 1

n+ 1
for n ≥ 0.

Show that there exists a real number a > 0 such that:
(i) for all real a0 ≥ a, the sequence {an} → +∞ (n → ∞);
(ii) for all real a0 < a, the sequence {an} → 0.

10. (FRA 2) (SL88-7).

11. (FRA 3) (SL88-8).

12. (FRA 4) Show that there do not exist more than 27 half-lines (or rays)
emanating from the origin in 3-dimensional space such that the angle
between each pair of rays is greater than of equal to π/4.

13. (FRA 5) Let T be a triangle with inscribed circle C. A square with sides
of length a is circumscribed about the same circle C. Show that the total
length of the parts of the edges of the square interior to the triangle T is
at least 2a.

14. (FRG 1) (SL88-9).

15. (FRG 2) Let 1 ≤ k < n. Consider all finite sequences of positive integers
with sum n. Find T (n, k), the total number of terms of size k in all of
these sequences.
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16. (FRG 3) Show that if n runs through all positive integers, f(n) =[
n+

√
n/3 + 1/2

]
runs through all positive integers skipping the terms

of the sequence an = 3n2 − 2n.

17. (FRG 4) Show that if n runs through all positive integers, f(n) =[
n+

√
3n+ 1/2

]
runs through all positive integers skipping the terms of

the sequence an =
[

n2+2n
3

]
.

18. (GBR 1) (SL88-25).

19. (GBR 2) (SL88-26).

20. (GBR 3) It is proposed to partition the set of positive integers into two
disjoint subsets A and B subject to the following conditions:
(i) 1 is in A;
(ii) no two distinct members of A have a sum of the form 2k + 2 (k =

0, 1, 2, . . .); and
(iii) no two distinct members of B have a sum of that form.
Show that this partitioning can be carried out in a unique manner and
determine the subsets to which 1987, 1988, and 1989 belong.

21. (GBR 4) (SL88-27).

22. (GBR 5) (SL88-28).

23. (GDR 1) (SL88-10).

24. (GDR 2) Let Zm,n be the set of all ordered pairs (i, j) with i ∈
{1, . . . ,m} and j ∈ {1, . . . , n}. Also let am,n be the number of all those
subsets of Zm,n that contain no two ordered pairs (i1, j1), (i2, j2) with
|i1 − i2| + |j1 − j2| = 1. Show that for all positive integers m and k,

a2
m,2k ≤ am,2k−1am,2k+1.

25. (GDR 3) (SL88-11).

26. (GRE 1) Let AB and CD be two perpendicular chords of a circle with
center O and radius r, and let X,Y, Z,W denote in cyclical order the
four parts into which the disk is thus divided. Find the maximum and

minimum of the quantity A(Z)
A(Y )+A(W ) , where A(U) denotes the area of U .

27. (GRE 2) (SL88-12).

28. (GRE 3) (SL88-13).

29. (GRE 4) Find positive integers x1, x2, . . . , x29, at least one of which is
greater than 1988, such that

x2
1 + x2

2 + · · · + x2
29 = 29x1x2 . . . x29.

30. (HKG 1) Find the total number of different integers that the function
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f(x) = [x] + [2x] +

[
5x

3

]
+ [3x] + [4x]

takes for 0 ≤ x ≤ 100.

31. (HKG 2) The circle x2 + y2 = r2 meets the coordinate axes at A =
(r, 0), B = (−r, 0), C = (0, r), and D = (0,−r). Let P = (u, v) and
Q = (−u, v) be two points on the circumference of the circle. Let N be
the point of intersection of PQ and the y-axis, and let M be the foot of the
perpendicular drawn from P to the x-axis. If r2 is odd, u = pm > qn = v,
where p and q are prime numbers, and m and n are natural numbers,
show that

|AM | = 1, |BM | = 9, |DN | = 8, |PQ| = 8.

32. (HKG 3) Assuming that the roots of x3+px2+qx+r = 0 are all real and
positive, find a relation between p, q, and r that gives a necessary condition
for the roots to be exactly the cosines of three angles of a triangle.

33. (HKG 4) Find a necessary and sufficient condition on the natural num-
ber n for the equation xn + (2 + x)n + (2 − x)n = 0 to have a real root.

34. (HKG 5) Express the number 1988 as the sum of some positive integers
in such a way that the product of these positive integers is maximal.

35. (HKG 6) In the triangle ABC, let D, E, and F be the midpoints of the
three sides, X , Y , and Z the feet of the three altitudes, H the orthocenter,
and P , Q, and R the midpoints of the line segments joining H to the three
vertices. Show that the nine points D,E, F, P,Q,R,X, Y, Z lie on a circle.

36. (HUN 1) (SL88-14).

37. (HUN 2) Let n points be given on the surface of a sphere. Show that the
surface can be divided into n congruent regions such that each of them
contains exactly one of the given points.

38. (HUN 3) In a multiple choice test there were 4 questions and 3 possible
answers for each question. A group of students was tested and it turned
out that for any 3 of them there was a question that the three students
answered differently. What is the maximal possible number of students
tested?

39. (ICE 1) (SL88-15).

40. (ICE 2) A sequence of numbers an, n = 1, 2, . . ., is defined as follows:
a1 = 1/2, and for each n ≥ 2,

an =

(
2n− 3

2n

)
an−1.

Prove that
∑n

k=1 ak < 1 for all n ≥ 1.
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41. (INA 1)
(a) Let ABC be a triangle with AB = 12 and AC = 16. Suppose M is the

midpoint of side BC and points E and F are chosen on sides AC and
AB respectively, and suppose that the lines EF and AM intersect at
G. If AE = 2AF then find the ratio EG/GF .

(b) Let E be a point external to a circle and suppose that two chords
EAB and ECD meet at an angle of 40◦. If AB = BC = CD, find
the size of ∠ACD.

42. (INA 2)
(a) Four balls of radius 1 are mutually tangent, three resting an the floor

and the fourth resting on the others. A tetrahedron, each of whose
edges has length s, is circumscribed around the balls. Find the value
of s.

(b) Suppose that ABCD and EFGH are opposite faces of a rectangu-
lar solid, with ∠DHC = 45◦ and ∠FHB = 60◦. Find the cosine of
∠BHD.

43. (INA 3)
(a) The polynomial x2k +1+(x+1)2k is not divisible by x2 +x+1. Find

the value of k.
(b) If p, q, and r are distinct roots of x3 − x2 + x− 2 = 0, find the value

of p3 + q3 + r3.
(c) If r is the remainder when each of the numbers 1059, 1417, and 2312

is divided by d, where d is an integer greater than one, find the value
of d− r.

(d) What is the smallest positive odd integer n such that the product of
21/7, 23/7, . . . , 2(2n+1)/7 is greater than 1000?

44. (INA 4)
(a) Let g(x) = x5 +x4 +x3 +x2 +x+1. What is the remainder when the

polynomial g(x12) is divided by the polynomial g(x)?
(b) If k is a positive integer and f is a function such that for every positive

number x, f(x2 +1)
√

x = k, find the value of f
(

9+y2

y2

)√12/y

for every

positive number y.
(c) The function f satisfies the functional equation f(x) + f(y) = f(x+

y) − xy − 1 for every pair x, y of real numbers. If f(1) = 1, find the
number of integers n for which f(n) = n.

45. (INA 5)
(a) Consider a circle K with diameter AB, a circle L tangent to AB and

to K, and a circle M tangent to circle K, circle L, and AB. Calculate
the ratio of the area of circle K to the area of circle M .

(b) In triangle ABC, AB = AC and �CAB = 80◦. If points D, E, and
F lie on sides BC, AC, and AB, respectively, and CE = CD and
BF = BD, find the measure of �EDF .
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46. (INA 6)

(a) Calculate x = (11+6
√

2)
√

11−6
√

2−(11−6
√

2)
√

11+6
√

2

(
√√

5+2+
√√

5−2)−(
√√

5+1)
.

(b) For each positive number x, let k = (x+1/x)6−(x6+1/x6)−2
(x+1/x)3+(x3+1/x3) . Calculate

the minimum value of k.

47. (IRE 1) (SL88-16).

48. (IRE 2) Find all plane triangles whose sides have integer length and
whose incircles have unit radius.

49. (IRE 3) Let −1 < x < 1. Show that

6∑
k=0

1 − x2

1 − 2x cos(2πk/7) + x2
=

7(1 + x7)

1 − x7
.

Deduce that

csc2 π

7
+ csc2 2π

7
+ csc2 3π

7
= 8.

50. (IRE 4) Let g(n) be defined as follows:

g(1) = 0, g(2) = 1,

g(n+ 2) = g(n) + g(n+ 1) + 1 (n ≥ 1).

Prove that if n > 5 is a prime, then n divides g(n)(g(n) + 1).

51. (ISR 1) Let A1, A2, . . . , A29 be 29 different sequences of positive integers.
For 1 ≤ i < j ≤ 29 and any natural number x, we define Ni(x) to be the
number of elements of the sequence Ai that are less than or equal to x,
and Nij(x) to be the number of elements of the intersection Ai ∩Aj that
are less than or equal to x.
It is given that for all 1 ≤ i ≤ 29 and every natural number x,

Ni(x) ≥ x

e
, where e = 2.71828 . . . .

Prove that there exists at least one pair i, j (1 ≤ i < j ≤ 29) such that
Nij(1988) > 200.

52. (ISR 2) (SL88-17).

53. (KOR 1) Let x = p, y = q, z = r, w = s be the unique solution of the
system of linear equations

x+ aiy + a2
i z + a3

iw = a4
i , i = 1, 2, 3, 4.

Express the solution of the following system in terms of p, q, r, and s:

x+ a2
i y + a4

i z + a6
iw = a8

i , i = 1, 2, 3, 4.

Assume the uniqueness of the solution.
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54. (KOR 2) (SL88-22).

55. (KOR 3) Find all positive integers x such that the product of all digits
of x is given by x2 − 10x− 22.

56. (KOR 4) The Fibonacci sequence is defined by

an+1 = an + an−1 (n ≥ 1), a0 = 0, a1 = a2 = 1.

Find the greatest common divisor of the 1960th and 1988th terms of the
Fibonacci sequence.

57. (KOR 5) Let C be a cube with edges of length 2. Construct a solid with
fourteen faces by cutting off all eight corners of C, keeping the new faces
perpendicular to the diagonals of the cube and keeping the newly formed
faces identical. If at the conclusion of this process the fourteen faces so
formed have the same area, find the area of each face of the new solid.

58. (KOR 6) For each pair of positive integers k and n, let Sk(n) be the
base-k digit sum of n. Prove that there are at most two primes p less than
20,000 for which S31(p) is a composite number.

59. (LUX 1) (SL88-18).

60. (MEX 1) (SL88-19).

61. (MEX 2) Prove that the numbers A, B, and C are equal, where we
define A as the number of ways that we can cover a 2 × n rectangle with
2× 1 rectangles, B as the number of sequences of ones and twos that add
up to n, and C as{(

m
0

)
+
(
m+1

2

)
+ · · · +

(
2m
2m

)
if n = 2m,(

m+1
1

)
+
(

m+2
3

)
+ · · · +

(
2m+1
2m+1

)
if n = 2m+ 1.

62. (MON 1) The positive integer n has the property that in any set of n
integers chosen from the integers 1, 2, . . . , 1988, twenty-nine of them form
an arithmetic progression. Prove that n > 1788.

63. (MON 2) Let ABCD be a quadrilateral. Let A′BCD′ be the reflection
of ABCD in BC, while A′′B′CD′ is the reflection of A′BCD′ in CD′ and
A′′B′′C′D′ is the reflection of A′′B′CD′ in D′A′′. Show that if the lines
AA′′ and BB′′ are parallel, then ABCD is a cyclic quadrilateral.

64. (MON 3) Given n points A1, A2, . . . , An, no three collinear, show that
the n-gon A1A2 . . . An can be inscribed in a circle if and only if

A1A2 · A3An · · ·An−1An +A2A3 ·A4An · · ·An−1An · A1An + · · ·
+An−1An−2 · A1An · · ·An−3An = A1An−1 · A2An · · ·An−2An.

65. (MON 4) (SL88-20).



3.29 IMO 1988 223

66. (MON 5) Suppose αi > 0, βi > 0 for 1 ≤ i ≤ n (n > 1) and that∑n
i=1 αi =

∑n
i=1 βi = π. Prove that

n∑
i=1

cosβi

sinαi
≤

n∑
i=1

cotαi.

67. (NET 1) Given a set of 1988 points in the plane, no three points of the
set collinear, the points of a subset with 1788 points are colored blue, and
the remaining 200 are colored red. Prove that there exists a line in the
plane such that each of the two parts into which the line divides the plane
contains 894 blue points and 100 red points.

68. (NET 2) Let S be the set of all sequences {ai | 1 ≤ i ≤ 7, ai = 0 or 1}.
The distance between two elements {ai} and {bi} of S is defined as∑7

i=1 |ai − bi|. Let T be a subset of S in which any two elements have a
distance apart greater than or equal to 3. Prove that T contains at most
16 elements. Give an example of such a subset with 16 elements.

69. (POL 1) For a convex polygon P in the plane let P ′ denote the convex
polygon with vertices at the midpoints of the sides of P . Given an integer

n ≥ 3, determine sharp bounds for the ratio
area(P ′)
area(P )

over all convex

n-gons P .

70. (POL 2) In 3-dimensional space a point O is given and a finite set A
of segments with the sum of the lengths equal to 1988. Prove that there
exists a plane disjoint from A such that the distance from it to O does
not exceed 574.

71. (POL 3) Given integers a1, . . . , a10, prove that there exists a nonzero
sequence (x1, . . . , x10) such that all xi belong to {−1, 0, 1} and the number∑10

i=1 xiai is divisible by 1001.

72. (POL 4) (SL88-21).

73. (SIN 1) In a group of n people each one knows exactly three others. They
are seated around a table. We say that the seating is perfect if everyone
knows the two sitting by their sides. Show that if there is a perfect seating
S for the group, then there is always another perfect seating that cannot
be obtained from S by rotation or reflection.

74. (SIN 2) (SL88-23).

75. (SPA 1) Let ABC be a triangle with inradius r and circumradius R.
Show that

sin
A

2
sin

B

2
+ sin

B

2
sin

C

2
+ sin

C

2
sin

A

2
≤ 5

8
+

r

4R
.

76. (SPA 2) The quadrilateral A1A2A3A4 is cyclic and its sides are a1 =
A1A2, a2 = A2A3, a3 = A3A4, and a4 = A4A1. The respective circles
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with centers Ii and radii ρi are tangent externally to each side ai and to
the sides ai+1 and ai−1 extended (a0 = a4). Show that

4∏
i=1

ai

ρi
= 4(cscA1 + cscA2)

2.

77. (SPA 3) Consider h+1 chessboards. Number the squares of each board
from 1 to 64 in such a way that when the perimeters of any two boards
of the collection are brought into coincidence in any possible manner, no
two squares in the same position have the same number. What is the
maximum value of h?

78. (SWE 1) A two-person game is played with nine boxes arranged in a
3 × 3 square, initially empty, and with white and black stones. At each
move a player puts three stones, not necessarily of the same color, in three
boxes in either a horizontal or a vertical row. No box can contain stones
of different colors: If, for instance, a player puts a white stone in a box
containing black stones, the white stone and one of the black stones are
removed from the box. The game is over when the center box and the
corner boxes each contain one black stone and the other boxes are empty.
At one stage of the game x boxes contained one black stone each and the
other boxes were empty. Determine all possible values of x.

79. (SWE 2) (SL88-24).

80. (SWE 3) Let S be an infinite set of integers containing zero and such
that the distance between successive numbers never exceeds a given fixed
number. Consider the following procedure: Given a set X of integers, we
construct a new set consisting of all numbers x± s, where x belongs to X
and s belongs to S.
Starting from S0 = {0} we successively construct sets S1, S2, S3, . . . using
this procedure. Show that after a finite number of steps we do not obtain
any new sets; i.e., Sk = Sk0 for k ≥ k0.

81. (USA 1) There are n ≥ 3 job openings at a factory, ranked 1 to n in
order of increasing pay. There are n job applicants, ranked 1 to n in order
of increasing ability. Applicant i is qualified for job j if and only if i ≥ j.
The applicants arrive one at a time in random order. Each in turn is
hired to the highest-ranking job for which he or she is qualified and that
is lower in rank than any job already filled. (Under these rules, job 1 is
always filled and hiring terminates thereafter.)
Show that applicants n and n−1 have the same probability of being hired.

82. (USA 2) The triangle ABC has a right angle at C. The point P is
located on segmentAC such that triangles PBA and PBC have congruent
inscribed circles. Express the length x = PC in terms of a = BC, b = CA,
and c = AB.

83. (USA 3) (SL88-29).
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84. (USS 1) (SL88-30).

85. (USS 2) (SL88-31).

86. (USS 3) Let a, b, c be integers different from zero. It is known that the
equation ax2 + by2 + cz2 = 0 has a solution (x, y, z) in integers different
from the solution x = y = z = 0. Prove that the equation ax2+by2+cz2 =
1 has a solution in rational numbers.

87. (USS 4) All the irreducible positive rational numbers such that the prod-
uct of the numerator and the denominator is less than 1988 are written
in increasing order. Prove that any two adjacent fractions a/b and c/d,
a/b < c/d, satisfy the equation bc− ad = 1.

88. (USS 5) There are six circles inside a fixed circle, each tangent to
the fixed circle and tangent to the two adjacent smaller circles. If the
points of contact between the six circles and the larger circle are, in order,
A1, A2, A3, A4, A5, and A6, prove that

A1A2 ·A3A4 ·A5A6 = A2A3 ·A4A5 ·A6A1.

89. (VIE 1) We match sets M of points in the coordinate plane to sets M∗

according to the rule that (x∗, y∗) belongs to M∗ if and only if xx∗+yy∗ ≤
1 whenever (x, y) ∈ M. Find all triangles Y such that Y∗ is the reflection
of Y at the origin.

90. (VIE 2) Does there exist a number α (0 < α < 1) such that there is an
infinite sequence {an} of positive numbers satisfying

1 + an+1 ≤ an +
α

n
an, n = 1, 2, . . .?

91. (VIE 3) A regular 14-gon with side length a is inscribed in a circle of
radius one. Prove that

2 − a

2a
>

√
3 cos

π

7
.

92. (VIE 4) Let p ≥ 2 be a natural number. Prove that there exists an
integer n0 such that

n0∑
i=1

1

i p
√
i+ 1

> p.

93. (VIE 5) Given a natural number n, find all polynomials P (x) of degree
less than n satisfying the following condition:

n∑
i=0

P (i)(−1)i

(
n

i

)
= 0.

94. (VIE 6) Let n+ 1 (n ≥ 1) positive integers be given such that for each
integer, the set of all prime numbers dividing this integer is a subset of
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the set of n given prime numbers. Prove that among these n+ 1 integers
one can find numbers (possibly one number) whose product is a perfect
square.

3.29.3 Shortlisted Problems

1. (BUL 1) An integer sequence is defined by

an = 2an−1 + an−2 (n > 1), a0 = 0, a1 = 1.

Prove that 2k divides an if and only if 2k divides n.

2. (BUL 3) Let n be a positive integer. Find the number of odd coefficients
of the polynomial

un(x) = (x2 + x+ 1)n.

3. (CAN 1) The triangle ABC is inscribed in a circle. The interior bi-
sectors of the angles A, B, and C meet the circle again at A′, B′, and
C′ respectively. Prove that the area of triangle A′B′C′ is greater than or
equal to the area of triangle ABC.

4. (CZS 1) An n × n chessboard (n ≥ 2) is numbered by the numbers
1, 2, . . . , n2 (every number occurs once). Prove that there exist two neigh-
boring (which share a common edge) squares such that their numbers
differ by at least n.

5. (CZS 2)IMO2 Let n be an even positive integer. Let A1, A2, . . . , An+1 be
sets having n elements each such that any two of them have exactly one
element in common while every element of their union belongs to at least
two of the given sets. For which n can one assign to every element of the
union one of the numbers 0 and 1 in such a manner that each of the sets
has exactly n/2 zeros?

6. (CZS 3) In a given tetrahedron ABCD let K and L be the centers of
edges AB and CD respectively. Prove that every plane that contains the
line KL divides the tetrahedron into two parts of equal volume.

7. (FRA 2) Let a be the greatest positive root of the equation x3−3x2+1 =
0. Show that [a1788] and [a1988] are both divisible by 17. ([x] denotes the
integer part of x.)

8. (FRA 3) Let u1, u2, . . . , um be m vectors in the plane, each of length
less than or equal to 1, which add up to zero. Show that one can rear-
range u1, u2, . . . , um as a sequence v1, v2, . . . , vm such that each partial
sum v1, v1 + v2, v1 + v2 + v3, . . . , v1 + v2 + · · ·+ vm has length less than or
equal to

√
5.

9. (FRG 1)IMO6 Let a and b be two positive integers such that ab+1 divides

a2 + b2. Show that a2+b2

ab+1 is a perfect square.
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10. (GDR 1) Let N = {1, 2, . . . , n}, n ≥ 2. A collection F = {A1, . . . , At}
of subsets Ai ⊆ N , i = 1, . . . , t, is said to be separating if for every pair
{x, y} ⊆ N , there is a set Ai ∈ F such that Ai ∩ {x, y} contains just one
element. A collection F is said to be covering if every element of N is
contained in at least one set Ai ∈ F . What is the smallest value f(n) of t
such that there is a set F = {A1, . . . , At} that is simultaneously separating
and covering?

11. (GDR 3) The lock on a safe consists of three wheels, each of which may
be set in eight different positions. Due to a defect in the safe mechanism
the door will open if any two of the three wheels are in the correct position.
What is the smallest number of combinations that must be tried if one
is to guarantee being able to open the safe (assuming that the “right
combination” is not known)?

12. (GRE 2) In a triangle ABC, choose any points K ∈ BC, L ∈ AC,
M ∈ AB, N ∈ LM , R ∈ MK, and F ∈ KL. If E1, E2, E3, E4, E5,
E6, and E denote the areas of the triangles AMR, CKR, BKF , ALF ,
BNM , CLN , and ABC respectively, show that

E ≥ 8 6
√
E1E2E3E4E5E6.

Remark. Points K,L,M,N,R, F lie on segments BC, AC, AB, LM ,
MK, KL respectively.

13. (GRE 3)IMO5 In a right-angled triangle ABC, let AD be the altitude
drawn to the hypotenuse and let the straight line joining the incenters of
the triangles ABD,ACD intersect the sides AB,AC at the points K,L
respectively. If E and E1 denote the areas of the triangles ABC and AKL
respectively, show that E

E1
≥ 2.

14. (HUN 1) For what values of n does there exist an n×n array of entries
−1, 0, or 1 such that the 2n sums obtained by summing the elements of
the rows and the columns are all different?

15. (ICE 1) Let ABC be an acute-angled triangle. Three lines LA, LB,
and LC are constructed through the vertices A, B, and C respectively
according to the following prescription: Let H be the foot of the altitude
drawn from the vertex A to the side BC; let SA be the circle with diameter
AH ; let SA meet the sides AB and AC at M and N respectively, where M
and N are distinct from A; then LA is the line through A perpendicular
to MN . The lines LB and LC are constructed similarly. Prove that LA,
LB, and LC are concurrent.

16. (IRE 1)IMO4 Show that the solution set of the inequality

70∑
k=1

k

x− k
≥ 5

4
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is a union of disjoint intervals the sum of whose lengths is 1988.

17. (ISR 2) In the convex pentagon ABCDE, the sides BC,CD,DE have
the same length. Moreover, each diagonal of the pentagon is parallel to
a side (AC is parallel to DE, BD is parallel to AE, etc.). Prove that
ABCDE is a regular pentagon.

18. (LUX 1)IMO1 Consider two concentric circles of radii R and r (R > r)
with center O. Fix P on the small circle and consider the variable chord
PA of the small circle. Points B and C lie on the large circle; B,P,C are
collinear and BC is perpendicular to AP .
(a) For what value(s) of ∠OPA is the sum BC2 +CA2 +AB2 extremal?
(b) What are the possible positions of the midpoints U of BA and V of

AC as ∠OPA varies?

19. (MEX 1) Let f(n) be a function defined on the set of all positive integers
and having its values in the same set. Suppose that f(f(m)+f(n)) = m+n
for all positive integers n,m. Find all possible values for f(1988).

20. (MON 4) Find the least natural number n such that if the set
{1, 2, . . . , n} is arbitrarily divided into two nonintersecting subsets, then
one of the subsets contains three distinct numbers such that the product
of two of them equals the third.

21. (POL 4) Forty-nine students solve a set of three problems. The score for
each problem is a whole number of points from 0 to 7. Prove that there
exist two students A and B such that for each problem, A will score at
least as many points as B.

22. (KOR 2) Let p be the product of two consecutive integers greater than
2. Show that there are no integers x1, x2, . . . , xp satisfying the equation

p∑
i=1

x2
i − 4

4p+ 1

(
p∑

i=1

xi

)2

= 1.

Alternative formulation. Show that there are only two values of p for

which there are integers x1, x2, . . . , xp satisfying the above inequality.

23. (SIN 2) Let Q be the center of the inscribed circle of a triangle ABC.
Prove that for any point P ,

a(PA)2+b(PB)2+c(PC)2 = a(QA)2+b(QB)2+c(QC)2+(a+b+c)(QP )2,

where a = BC, b = CA, and c = AB.

24. (SWE 2) Let {ak}∞1 be a sequence of nonnegative real numbers such

that ak − 2ak+1 + ak+2 ≥ 0 and
∑k

j=1 aj ≤ 1 for all k = 1, 2, . . . . Prove

that 0 ≤ (ak − ak+1) <
2
k2 for all k = 1, 2, . . . .
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25. (GBR 1) A positive integer is called a double number if its decimal rep-
resentation consists of a block of digits, not commencing with 0, followed
immediately by an identical block. For instance, 360360 is a double num-
ber, but 36036 is not. Show that there are infinitely many double numbers
that are perfect squares.

26. (GBR 2)IMO3 A function f defined on the positive integers (and taking
positive integer values) is given by

f(1) = 1, f(3) = 3,

f(2n) = f(n),

f(4n+ 1) = 2f(2n+ 1) − f(n),

f(4n+ 3) = 3f(2n+ 1) − 2f(n),

for all positive integers n. Determine with proof the number of positive
integers less than or equal to 1988 for which f(n) = n.

27. (GBR 4) The triangle ABC is acute-angled. Let L be any line in the
plane of the triangle and let u, v, w be the lengths of the perpendiculars
from A,B,C respectively to L. Prove that

u2 tanA+ v2 tanB + w2 tanC ≥ 2∆,

where ∆ is the area of the triangle, and determine the lines L for which
equality holds.

28. (GBR 5) The sequence {an} of integers is defined by a1 = 2, a2 = 7,
and

−1

2
< an+1 − a2

n

an−1
≤ 1

2
, for n ≥ 2.

Prove that an is odd for all n > 1.

29. (USA 3) A number of signal lights are equally spaced along a one-way
railroad track, labeled in order 1, 2, . . . , N (N ≥ 2). As a safety rule, a
train is not allowed to pass a signal if any other train is in motion on the
length of track between it and the following signal. However, there is no
limit to the number of trains that can be parked motionless at a signal,
one behind the other. (Assume that the trains have zero length.)
A series of K freight trains must be driven from Signal 1 to Signal N .
Each train travels at a distinct but constant speed (i.e., the speed is fixed
and different from that of each of the other trains) at all times when it is
not blocked by the safety rule. Show that regardless of the order in which
the trains are arranged, the same time will elapse between the first train’s
departure from Signal 1 and the last train’s arrival at Signal N .

30. (USS 1) A point M is chosen on the side AC of the triangle ABC in
such a way that the radii of the circles inscribed in the triangles ABM
and BMC are equal. Prove that
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BM2 = ∆ cot
B

2
,

where ∆ is the area of the triangle ABC.

31. (USS 2) Around a circular table an even number of persons have a
discussion. After a break they sit again around the circular table in a
different order. Prove that there are at least two people such that the
number of participants sitting between them before and after the break is
the same.
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3.30 The Thirtieth IMO

Braunschweig–Niedersachen, FR Germany, July 13–24,

1989

3.30.1 Contest Problems

First Day (July 18)

1. Prove that the set {1, 2, . . . , 1989} can be expressed as the disjoint union
of 17 subsets A1, A2, . . . , A17 such that:
(i) each Ai contains the same number of elements;
(ii) the sum of all elements of each Ai is the same for i = 1, 2, . . . , 17.

2. Let ABC be a triangle. The bisector of angle A meets the circumcircle
of triangle ABC in A1. Points B1 and C1 are defined similarly. Let AA1

meet the lines that bisect the two external angles at B and C in point A0.
Define B0 and C0 similarly. If SX1X2...Xn denotes the area of the polygon
X1X2 . . . Xn, prove that

SA0B0C0 = 2SAC1BA1CB1 ≥ 4SABC .

3. Given a set S in the plane containing n points and satisfying the conditions
(i) no three points of S are collinear,
(ii) for every point P of S there exist at least k points in S that have the

same distance to P ,
prove that the following inequality holds:

k <
1

2
+

√
2n.

Second Day (July 19)

4. The quadrilateral ABCD has the following properties:
(i) AB = AD +BC;
(ii) there is a point P inside it at a distance x from the side CD such that

AP = x+AD and BP = x+BC.
Show that

1√
x

≥ 1√
AD

+
1√
BC

.

5. For which positive integers n does there exist a positive integer N such
that none of the integers 1 +N, 2 +N, . . . , n+N is the power of a prime
number?

6. We consider permutations (x1, . . . , x2n) of the set {1, . . . , 2n} such that
|xi − xi+1| = n for at least one i ∈ {1, . . . , 2n − 1}. For every natural
number n, find out whether permutations with this property are more or
less numerous than the remaining permutations of {1, . . . , 2n}.
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3.30.2 Longlisted Problems

1. (AUS 1) In the set Sn = {1, 2, . . . , n} a new multiplication a∗b is defined
with the following properties:
(i) c = a ∗ b is in Sn for any a ∈ Sn, b ∈ Sn.
(ii) If the ordinary product a ·b is less than or equal to n, then a∗b = a ·b.
(iii) The ordinary rules of multiplication hold for ∗, i.e.,

(1) a ∗ b = b ∗ a (commutativity)
(2) (a ∗ b) ∗ c = a ∗ (b ∗ c) (associativity)
(3) If a ∗ b = a ∗ c then b = c (cancellation law).

Find a suitable multiplication table for the new product for n = 11 and
n = 12.

2. (AUS 2) (SL89-1).

3. (AUS 3) (SL89-2).

4. (AUS 4) (SL89-3).

5. (BUL 1) The sequences a0, a1, . . . and b0, b1, . . . are defined by the equal-
ities

a0 =

√
2

2
, an+1 =

√
2

2

√
1 −

√
1 − a2

n, n = 0, 1, 2, . . .

and

b0 = 1, bn+1 =

√
1 + b2n − 1

bn
, n = 0, 1, 2, . . . .

Prove the inequalities

2n+2an < π < 2n+2bn, for every n = 0, 1, 2, . . . .

6. (BUL 2) The circles c1 and c2 are tangent at the point A. A straight
line l through A intersects c1 and c2 at points C1 and C2 respectively.
A circle c, which contains C1 and C2, meets c1 and c2 at points B1 and
B2 respectively. Let κ be the circle circumscribed around triangle AB1B2.
The circle k tangent to κ at the point A meets c1 and c2 at the points D1

and D2 respectively. Prove that
(a) the points C1, C2, D1, D2 are concyclic or collinear;
(b) the points B1, B2, D1, D2 are concyclic if and only if AC1 and AC2

are diameters of c1 and c2.

7. (BUL 3) (SL89-4).

8. (COL 1) (SL89-5).

9. (COL 2) Let m be a positive integer and define f(m) to be the number
of factors of 2 in m! (that is, the greatest positive integer k such that
2k | m!). Prove that there are infinitely many positive integers m such
that m− f(m) = 1989.
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10. (CUB 1) Given the equation

4x3 + 4x2y − 15xy2 − 18y3 − 12x2 + 6xy + 36y2 + 5x− 10y = 0,

find all positive integer solutions.

11. (CUB 2) Given the equation

y4 + 4y2x− 11y2 + 4xy − 8y + 8x2 − 40x+ 52 = 0,

find all real solutions.

12. (CUB 3) Let P (x) be a polynomial such that the following inequalities
are satisfied:

P (0) > 0;
P (1) > P (0);
P (2) > 2P (1) − P (0);
P (3) > 3P (2) − 3P (1) + P (0);

and also for every natural number n, P (n+4) > 4P (n+3)− 6P (n+2)+
4P (n+ 1) − P (n). Prove that for every positive natural number n, P (n)
is positive.

13. (CUB 4) Let n be a natural number not greater than 44. Prove that for
any function f defined over N2 whose images are in the set {1, 2, . . . , n},
there are four ordered pairs (i, j), (i, k), (l, j), and (l, k) such that f(i, j) =
f(i, k) = f(l, j) = f(l, k), where i, j, k, l are chosen in such a way that
there are natural numbers n, p that satisfy

1989m ≤ i < l < 1989 + 1989m, 1989p ≤ j < k < 1989 + 1989p.

14. (CZS 1) (SL89-6).

15. (CZS 2) A sequence a1, a2, a3, . . . is defined recursively by a1 = 1 and
a2k+j = −aj (j = 1, 2, . . . , 2k). Prove that this sequence is not periodic.

16. (FIN 1) (SL89-7).

17. (FIN 2) Let a, 0 < a < 1, be a real number and f a continuous function
on [0, 1] satisfying f(0) = 0, f(1) = 1, and

f

(
x+ y

2

)
= (1 − a)f(x) + af(y)

for all x, y ∈ [0, 1] with x ≤ y. Determine f(1/7).

18. (FIN 3) There are some boys and girls sitting in an n × n quadratic
array. We know the number of girls in every column and row and every
line parallel to the diagonals of the array. For which n is this information
sufficient to determine the exact positions of the girls in the array? For
which seats can we say for sure that a girl sits there or not?
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19. (FRA 1) Let a1, . . . , an be distinct positive integers that do not contain
a 9 in their decimal representations. Prove that

1

a1
+ · · · + 1

an
≤ 30.

20. (FRA 2) (SL89-8).

21. (FRA 2b) Same problem as previous, but with a rectangular paral-
lelepiped having at least one integral side.

22. (FRA 3) Let ABC be an equilateral triangle with side length equal to a
natural number N . Consider the set S of all points M inside the triangle

ABC such that
−−→
AM = 1

N (n
−−→
AB + m

−→
AC), where m,n are integers and

0 ≤ m,n,m+n ≤ N . Every point of S is colored in one of the three colors
blue, white, red such that no point on AB is colored blue, no point on
AC is colored white, and no point on BC is colored red. Prove that there
exists an equilateral triangle with vertices in S and side length 1 whose
three vertices are colored blue, white, and red.

23. (FRA 3b) Like the previous problem, but with a regular tetrahedron
and four different colors used.

24. (FRA 4) (SL89-9).

25. (GBR 1) Let ABC be a triangle. Prove that there is a unique point U
in the plane of ABC such that there exist real numbers λ, µ, ν, κ, not all
zero, such that

λPL2 + µPM2 + νPN2 − κUP 2

is constant for all points P of the plane, where L,M,N are the feet of the
perpendiculars from P to BC,CA,AB respectively.

26. (GBR 2) Let a, b, c, d be positive integers such that ab = cd and a+ b =
c− d.
Prove that there exists a right-angled triangle the measures of whose sides
(in some unit) are integers and whose area measure is ab square units.

27. (GBR 3) Integers cm,n (m ≥ 0, n ≥ 0) are defined by cm,0 = 1 for all
m ≥ 0, c0,n = 1 for all n ≥ 0, and cm,n = cm−1,n − ncm−1,n−1 for all
m > 0, n > 0. Prove that cm,n = cn,m for all m ≥ 0, n ≥ 0.

28. (GBR 4) Let b1, b2, . . . , b1989 be positive real numbers such that the
equations

xr−1 − 2xr + xr+1 + brxr = 0 (1 ≤ r ≤ 1989)

have a solution with x0 = x1990 = 0 but not all of x1, . . . , x1989 are equal
to zero. Prove that

b1 + b2 + · · · + b1989 ≥ 2

995
.
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29. (GRE 1) Let L denote the set of all lattice points of the plane (points
with integral coordinates). Show that for any three points A,B,C of L
there is a fourth point D, different from A,B,C, such that the interiors of
the segments AD,BD,CD contain no points of L. Is the statement true
if one considers four points of L instead of three?

30. (GRE 2) In a triangle ABC for which 6(a+ b+ c)r2 = abc, we consider
a point M on the inscribed circle and the projections D,E, F of M on
the sides BC, AC, and AB respectively. Let S, S1 denote the areas of the
triangles ABC and DEF respectively. Find the maximum and minimum
values of the quotient S

S1
(here r denotes the inradius of ABC and, as

usual, a = BC, b = AC, c = AB).

31. (GRE 3) (SL89-10).

32. (HKG 1) Let ABC be an equilateral triangle. Let D,E, F,M,N, and
P bee the mid-points of BC, CA, AB, FD, FB, and DC respectively.
(a) Show that the line segments AM,EN, and FP are concurrent.
(b) Let O be the point of intersection of AM,EN, and FP . Find OM :

OF : ON : OE : OP : OA.

33. (HKG 2) Let n be a positive integer. Show that (
√

2 + 1)n =
√
m +√

m− 1 for some positive integer m.

34. (HKG 3) Given an acute triangle find a point inside the triangle such
that the sum of the distances from this point to the three vertices is the
least.

35. (HKG 4) Find all square numbers S1 and S2 such that S1 −S2 = 1989.

36. (HKG 5) Prove the identity

1+
1

2
− 2

3
+

1

4
+

1

5
− 2

6
+ · · ·+ 1

478
+

1

479
− 2

480
= 2

159∑
k=0

641

(161 + k)(480 − k)
.

37. (HUN 1) (SL89-11).

38. (HUN 2) Connecting the vertices of a regular n-gon we obtain a closed
(not necessarily convex) n-gon. Show that if n is even, then there are two
parallel segments among the connecting segments and if n is odd then
there cannot be exactly two parallel segments.

39. (HUN 3) (SL89-12).

40. (ICE 1) A sequence of real numbers x0, x1, x2, . . . is defined as follows:
x0 = 1989 and for each n ≥ 1

xn = −1989

n

n−1∑
k=0

xk.

Calculate the value of
∑1989

n=0 2nxn.
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41. (ICE 2) Alice has two urns. Each urn contains four balls and on each
ball a natural number is written. She draws one ball from each urn at
random, notes the sum of the numbers written on them, and replaces
the balls in the urns from which she took them. This she repeats a large
number of times. Bill, on examining the numbers recorded, notices that
the frequency with which each sum occurs is the same as if it were the sum
of two natural numbers drawn at random from the range 1 to 4. What
can he deduce about the numbers on the balls?

42. (ICE 3) (SL89-13).

43. (INA 1) Let f(x) = a sin2 x+ b sinx+ c, where a, b, and c are real num-
bers. Find all values of a, b, and c such that the following three conditions
are satisfied simultaneously:
(i) f(x) = 381 if sinx = 1/2.
(ii) The absolute maximum of f(x) is 444.
(iii) The absolute minimum of f(x) is 364.

44. (INA 2) Let A and B be fixed distinct points on the X axis, none of
which coincides with the origin O(0, 0), and let C be a point on the Y
axis of an orthogonal Cartesian coordinate system. Let g be a line through
the origin O(0, 0) and perpendicular to the line AC. Find the locus of the
point of intersection of the lines g and BC as C varies along the Y axis.
(Give an equation and a description of the locus.)

45. (INA 3) The expressions a+ b+ c, ab+ ac+ bc, and abc are called the
elementary symmetric expressions on the three letters a, b, c; symmetric
because if we interchange any two letters, say a and c, the expressions
remain algebraically the same. The common degree of its terms is called
the order of the expression.
Let Sk(n) denote the elementary expression on k different letters of order
n; for example S4(3) = abc + abd + acd + bcd. There are four terms in
S4(3). How many terms are there in S9891(1989)? (Assume that we have
9891 different letters.)

46. (INA 4) Given two distinct numbers b1 and b2, their product can be
formed in two ways: b1 × b2 and b2 × b1. Given three distinct numbers,
b1, b2, b3, their product can be formed in twelve ways: b1 × (b2 × b3); (b1 ×
b2) × b3; b1 × (b3 × b2); (b1 × b3) × b2; b2 × (b1 × b3); (b2 × b1) × b3;
b2 × (b3 × b1); (b2 × b3)× b1; b3 × (b1 × b2); (b3 × b1)× b2; b3 × (b2 × b1);
(b3 × b2) × b1. In how many ways can the product of n distinct letters be
formed?

47. (INA 5) Let log2
2 x− 4 log2 x−m2 − 2m− 13 = 0 be an equation in x.

Prove:
(a) For any real value of m the equation has has two distinct solutions.
(b) The product of the solutions of the equation does not depend on m.
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(c) One of the solutions of the equation is less than 1, while the other
solution is greater than 1.

Find the minimum value of the larger solution and the maximum value of
the smaller solution.

48. (INA 6) Let S be the point of intersection of the two lines l1 : 7x−5y+
8 = 0 and l2 : 3x + 4y − 13 = 0. Let P = (3, 7), Q = (11, 13), and let A
and B be points on the line PQ such that P is between A and Q, and B
is between P and Q, and such that PA/AQ = PB/BQ = 2/3. Without
finding the coordinates of B find the equations of the lines SA and SB.

49. (IND 1) Let A,B denote two distinct fixed points in space. Let X,P
denote variable points (in space), while K,N, n denote positive integers.
Call (X,K,N, P ) admissible if (N − K)PA + K · PB ≥ N · PX . Call
(X,K,N) admissible if (X,K,N, P ) is admissible for all choices of P .
Call (X,N) admissible if (X,K,N) is admissible for some choice of K in
the interval 0 < K < N . Finally, call X admissible if (X,N) is admissible
for some choice of N (N > 1). Determine:
(a) the set of admissible X ;
(b) the set ofX for which (X, 1989) is admissible but not (X,n), n < 1989.

50. (IND 2) (SL89-14).

51. (IND 3) Let t(n), for n = 3, 4, 5, . . . , represent the number of distinct,
incongruent, integer-sided triangles whose perimeter is n; e.g., t(3) = 1.
Prove that

t(2n− 1) − t(2n) =
[n
6

]
or

[n
6

+ 1
]
.

52. (IRE 1) (SL89-15).

53. (IRE 2) Let f(x) = (x − a1)(x − a2) · · · (x − an) − 2, where n ≥ 3
and a1, a2, . . . , an are distinct integers. Suppose that f(x) = g(x)h(x),
where g(x), h(x) are both nonconstant polynomials with integer coeffi-
cients. Prove that n = 3.

54. (IRE 3) Let f be a function from the real numbers to the real numbers
such that f(1) = 1, f(a+ b) = f(a)+f(b) for all a, b, and f(x)f(1/x) = 1
for all x �= 0.
Prove that f(x) = x for all real numbers x.

55. (IRE 4) Let [x] denote the greatest integer less than or equal to x. Let α
be the positive root of the equation x2 − 1989x− 1 = 0. Prove that there
exist infinitely many natural numbers n that satisfy the equation

[αn+ 1989α[αn]] = 1989n+ (19892 + 1)[αn].

56. (IRE 5) Let n = 2k − 1, where k ≥ 6 is an integer. Let T be the set
of all n-tuples (x1, x2, . . . , xn) where xi is 0 or 1 (i = 1, 2, . . . , n). For
x = (x1, . . . , xn) and y = (y1, . . . , yn) in T , let d(x,y) denote the number
of integers j with 1 ≤ j ≤ n such that xj �= yj . (In particular d(x,x) = 0.)



238 3 Problems

Suppose that there exists a subset S of T with 2k elements that has the
following property: Given any element x in T , there is a unique element
y in S with d(x,y) ≤ 3. Prove that n = 23.

57. (ISR 1) (SL89-16).

58. (ISR 2) Let P1(x), P2(x), . . . , Pn(x) be polynomials with real coefficients.
Show that there exist real polynomials Ar(x), Br(x) (r = 1, 2, 3) such that∑n

s=1(Ps(x))
2 = (A1(x))

2 + (B1(x))
2

= (A2(x))
2 + x(B2(x))

2

= (A3(x))
2 − x(B3(x))

2.

59. (ISR 3) Let v1, v2, . . . , v1989 be a set of coplanar vectors with |vr| ≤ 1
for 1 ≤ r ≤ 1989. Show that it is possible to find εr (1 ≤ r ≤ 1989), each
equal to ±1, such that ∣∣∣∣∣

1989∑
r=1

εrvr

∣∣∣∣∣ ≤ √
3.

60. (KOR 1) A real-valued function f on Q satisfies the following conditions
for arbitrary α, β ∈ Q:

(i) f(0) = 0, (ii) f(α) > 0 if α �= 0,
(iii) f(αβ) = f(α)f(β), (iv) f(α+ β) ≤ f(α) + f(β),
(v) f(m) ≤ 1989 for all m ∈ Z.

Prove that f(α+ β) = max{f(α), f(β)} if f(α) �= f(β).
Here, Z,Q denote the sets of integers and rational numbers, respectively.

61. (KOR 2) Let A be a set of positive integers such that no positive integer
greater than 1 divides all the elements of A. Prove that any sufficiently
large positive integer can be written as a sum of elements of A. (Elements
may occur several times in the sum.)

62. (KOR 3) (SL89-25).

63. (KOR 4) (SL89-26).

64. (KOR 5) Let a regular (2n+ 1)-gon be inscribed in a circle of radius r.
We consider all the triangles whose vertices are from those of the regular
(2n+ 1)-gon.
(a) How many triangles among them contain the center of the circle in

their interior?
(b) Find the sum of the areas of all those triangles that contain the center

of the circle in their interior.

65. (LUX 1) A regular n-gon A1A2A3 . . . Ak . . . An inscribed in a circle of
radius R is given. If S is a point on the circle, calculate T = SA2

1 +SA2
2 +

· · · + SA2
n.

66. (MON 1) (SL89-17).
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67. (MON 2) A family of sets A1, A2, . . . , An has the following properties:
(i) Each Ai contains 30 elements.
(ii) Ai ∩Aj contains exactly one element for all i, j, 1 ≤ i < j ≤ 30.
Find the largest possible n if the intersection of all these sets is empty.

68. (MON 3) If 0 < k ≤ 1 and ai are positive real numbers, i = 1, 2, . . . , n,
prove that(

a1

a2 + · · · + an

)k

+ · · · +
(

an

a1 + · · · + an−1

)k

≥ n

(n− 1)k
.

69. (MON 4) (SL89-18).

70. (MON 5) Three mutually nonparallel lines li (i = 1, 2, 3) are given
in a plane. The lines li determine a triangle and reflections fi with axes
on lines li. Prove that for every point of the plane, there exists a finite
composition of the reflections fi that maps that point to a point interior
to the triangle.

71. (MON 6) (SL89-19).

72. (MOR 1) Let ABCD be a quadrilateral inscribed in a circle with diam-

eter AB such that BC = a, CD = 2a, DA = 3
√

5−1
2 a. For each point M

on the semicircle AB not containing C and D, denote by h1, h2, h3 the
distances from M to the sides BC, CD, and DA. Find the maximum of
h1 + h2 + h3.

73. (NET 1) (SL89-20).

74. (NET 2) (SL89-21).

75. (PHI 1) (SL89-22).

76. (PHI 2) Let k and s be positive integers. For sets of real numbers
{α1, α2, . . . , αs} and {β1, β2, . . . , βs} that satisfy

∑s
i=1 α

j
i =

∑s
i=1 β

j
i for

each j = 1, 2, . . . , k, we write

{α1, α2, . . . , αs} =k {β1, β2, . . . , βs}.

Prove that if {α1, α2, . . . , αs} =k {β1, β2, . . . , βs} and s ≤ k, then there ex-
ists a permutation π of {1, 2, . . . , s} such that βi = απ(i) for i = 1, 2, . . . , s.

77. (POL 1) Given that

cosx+ cos y + cos z

cos(x+ y + z)
=

sinx+ sin y + sin z

sin(x+ y + z)
= a,

show that
cos(y + z) + cos(z + x) + cos(x+ y) = a.

78. (POL 2) (SL89-23).
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Alternative formulation. Two identical packs of n different cards are shuf-
fled together; all arrangements are equiprobable. The cards are then laid
face up, one at a time. For every natural number n, find out which is more
probable, that at least one pair of identical cards will appear in immediate
succession or that there will be no such pair.

79. (POL 3) To each pair (x, y) of distinct elements of a finite setX a number
f(x, y) equal to 0 or 1 is assigned in such a way that f(x, y) �= f(y, x) for
all x, y (x �= y). Prove that exactly one of the following situations occurs:
(i) X is the union of two disjoint nonempty subsets U, V such that

f(u, v) = 1 for every u ∈ U, v ∈ V .
(ii) The elements of X can be labeled x1, . . . , xn so that f(x1, x2) =

f(x2, x3) = · · · = f(xn−1, xn) = f(xn, x1) = 1.

Alternative formulation. In a tournament of n participants, each pair
plays one game (no ties). Prove that exactly one of the following situations
occurs:
(i) The league can be partitioned into two nonempty groups such that

each player in one of these groups has won against each player of the
other.

(ii) All participants can be ranked 1 through n so that ith player wins the
game against the (i+ 1)st and the nth player wins against the first.

80. (POL 4) We are given a finite collection of segments in the plane, of
total length 1. Prove that there exists a line � such that the sum of the
lengths of the projections of the given segments to the line � is less than
2/π.

81. (POL 5) (SL89-24).

82. (POR 1) Solve in the set of real numbers the equation 3x3 − [x] = 3,
where [x] denotes the integer part of x.

83. (POR 2) Poldavia is a strange kingdom. Its currency unit is the bourbaki
and there exist only two types of coins: gold ones and silver ones. Each
gold coin is worth n bourbakis and each silver coin is worth m bourbakis
(n and m are positive integers). Using gold and solver coins, it is possible
to obtain sums such as 10000 bourbakis, 1875 bourbakis, 3072 bourbakis,
and so on. But Poldavia’s monetary system is not as strange as it seems:
(a) Prove that it is possible to buy anything that costs an integral number

of bourbakis, as long as one can receive change.
(b) Prove that any payment abovemn−2 bourbakis can be made without

the need to receive change.

84. (POR 3) Let a, b, c, r, and s be real numbers. Show that if r is a root of
ax2 +bx+c = 0 and s is a root of −ax2 +bx+c = 0, then a

2x
2 +bx+c = 0

has a root between r and s.
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85. (POR 4) Let P (x) be a polynomial with integer coefficients such that
P (m1) = P (m2) = P (m3) = P (m4) = 7 for given distinct integers
m1,m2,m3, andm4. Show that there is no integerm such that P (m) = 14.

86. (POR 5) Given two natural numbers w and n, the tower of n w’s is the
natural number Tn(w) defined by

Tn(w) = ww..
.w

,

with n w’s on the right side. More precisely, T1(w) = w and Tn+1(w) =

wTn(w). For example, T3(2) = 222

= 16, T4(2) = 216 = 65536, and T2(3) =
33 = 27.
Find the smallest tower of 3’s that exceeds the tower of 1989 2’s. In other
words, find the smallest value of n such that Tn(3) > T1989(2). Justify
your answer.

87. (POR 6) A balance has a left pan, a right pan, and a pointer that moves
along a graduated ruler. Like many other grocer balances, this one works
as follows: An object of weight L is placed in the left pan and another of
weight R in the right pan, the pointer stops at the number R− L on the
graduated ruler.

There are n (≥ 2) bags of coins, each containing n(n−1)
2 +1 coins. All coins

look the same (shape, color, and so on). Of the bags, n−1 contain genuine
coins, all with the same weight. The remaining bag (we don’t know which
one it is) contains counterfeit coins. All counterfeit coins have the same
weight, and this weight is different from the weight of the genuine coins.
A legal weighing consists of placing a certain number of coins in one of the
pans, putting a certain number of coins in the other pan, and reading the
number given by the pointer in the graduated ruler. With just two legal
weighings it is possible to identify the bag containing counterfeit coins.
Find a way to do this and explain it.

88. (ROM 1) (SL89-27).

89. (ROM 2) (SL89-28).

90. (ROM 3) Prove that the sequence (an)n≥0, an = [n
√

2], contains an
infinite number of perfect squares.

91. (ROM 4) (SL89-29).

92. (ROM 5) Find the set of all a ∈ R for which there is no infinite sequence
(xn)n≥0 ⊂ R satisfying x0 = a, xn+1 = xn+α

βxn+1 , n = 0, 1, . . . , where
αβ > 0.

93. (ROM 6) For Φ : N → Z let us define MΦ = {f : N → Z; f(x) >
F (Φ(x)), ∀x ∈ N}.
(a) Prove that if MΦ1 = MΦ2 �= ∅, then Φ1 = Φ2.
(b) Does this property remain true if MΦ = {f : N → N; f(x) >

F (Φ(x)), ∀x ∈ N}?
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94. (SWE 1) Prove that a < b implies that a3 − 3a ≤ b3 − 3b + 4. When
does equality occur?

95. (SWE 2) (SL89-30).

96. (SWE 3) (SL89-31).

97. (THA 1) Let n be a positive integer, X = {1, 2, . . . , n}, and k a positive
integer such that n/2 ≤ k ≤ n. Determine, with proof, the number of all
functions f : X → X that satisfy the following conditions:
(i) f2 = f ;
(ii) the number of elements in the image of f is k;
(iii) for each y in the image of f , the number of all points x in X such that

f(x)=y is at most 2.

98. (THA 2) Let f : N → N be such that
(i) f is strictly increasing;
(ii) f(mn) = f(m)f(n) ∀m,n ∈ N; and
(iii) if m �= n and mn = nm, then f(m) = n or f(n) = m.
Determine f(30).

99. (THA 3) An arithmetic function is a real-valued function whose do-
main is the set of positive integers. Define the convolution product of two
arithmetic functions f and g to be the arithmetic function f � g, where
(f � g)(n) =

∑
ij=n f(i)g(i), and f�k = f � f � · · · � f (k times).

We say that two arithmetic functions f and g are dependent if there exists
a nontrivial polynomial of two variables P (x, y) =

∑
i,j aijx

iyj with real
coefficients such that

P (f, g) =
∑
i,j

aijf
�i � g�j = 0,

and say that they are independent if they are not dependent. Let p and q
be two distinct primes and set

f1(n) =

{
1 if n = p,
0 otherwise;

f2(n) =

{
1 if n = q,
0 otherwise.

Prove that f1 and f2 are independent.

100. (THA 4) Let A be an n×n matrix whose elements are nonnegative real
numbers. Assume that A is a nonsingular matrix and all elements of A−1

are nonnegative real numbers. Prove that every row and every column of
A has exactly one nonzero element.

101. (TUR 1) Let ABC be an equilateral triangle and Γ the semicircle
drawn exteriorly to the triangle, having BC as diameter. Show that if a
line passing through A trisects BC, it also trisects the arc Γ .

102. (TUR 2) If in a convex quadrilateralABCD, E and F are the midpoints
of the sides BC and DA respectively. Show that the sum of the areas of
the triangles EDA and FBC is equal to the area of the quadrangle.
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103. (USA 1) An accurate 12-hour analog clock has an hour hand, a minute
hand, and a second hand that are aligned at 12:00 o’clock and make one
revolution in 12 hours, 1 hour, and 1 minute, respectively. It is well known,
and not difficult to prove, that there is no time when the three hands
are equally spaced around the clock, with each separating angle 2π/3.
Let f(t), g(t), h(t) be the respective absolute deviations of the separating
angles from 2π/3 at t hours after 12:00 o’clock. What is the minimum
value of max{f(t), g(t), h(t)}?

104. (USA 2) For each nonzero complex number z, let arg z be the unique
real number t such that −π < t ≤ π and z = |z|(cos t + ı sin t). Given a
real number c > 0 and a complex number z �= 0 with arg z �= π, define

B(c, z) = {b ∈ R | |w − z| < b ⇒ | argw − arg z| < c}.

Determine necessary and sufficient conditions, in terms of c and z, such
that B(c, z) has a maximum element, and determine what this maximum
element is in this case.

105. (USA 3) (SL89-32).

106. (USA 4) Let n > 1 be a fixed integer. Define functions f0(x) = 0,
f1(x) = 1 − cosx, and for k > 0,

fk+1(x) = 2fk(x) cos x− fk−1(x).

If F (x) = f1(x) + f2(x) + · · · + fn(x), prove that
(a) 0 < F (x) < 1 for 0 < x < π

n+1 , and
(b) F (x) > 1 for π

n+1 < x < π
n .

107. (VIE 1) Let E be the set of all triangles whose only points with integer
coordinates (in the Cartesian coordinate system in space), in its interior
or on its sides, are its three vertices, and let f be the function of area of
a triangle. Determine the set of values f(E) of f .

108. (VIE 2) For every sequence (x1, x2, . . . , xn) of the numbers {1, 2, . . . , n}
arranged in any order, denote by f(s) the sum of absolute values of the
differences between two consecutive members of s. Find the maximum
value of f(s) (where s runs through the set of all such sequences).

109. (VIE 3) Let Ax,By be two noncoplanar rays with AB as a common per-
pendicular, and let M,N be two mobile points on Ax and By respectively
such that AM +BN = MN .
First version. Prove that there exist infinitely many lines coplanar with

each of the lines MN .
Second version. Prove that there exist infinitely many rotations around a

fixed axis ∆ mapping the line Ax onto a line coplanar with each of
the lines MN .
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110. (VIE 4) Do there exist two sequences of real numbers {ai}, {bi}, i ∈
N = {1, 2, 3, . . .}, satisfying the following conditions:

3π

2
≤ ai ≤ bi, cos aix+ cos bix ≥ −1

i

for all i ∈ N and all x, 0 < x < 1?

111. (VIE 5) Find the greatest number c such that for all natural numbers
n, {n

√
2} ≥ c

n (where {n
√

2} = n
√

2− [n
√

2]; [x] is the integer part of x).

For this number c, find all natural numbers n for which {n
√

2} = c
n .

3.30.3 Shortlisted Problems

1. (AUS 2)IMO2 Let ABC be a triangle. The bisector of angle A meets
the circumcircle of triangle ABC in A1. Points B1 and C1 are defined
similarly. Let AA1 meet the lines that bisect the two external angles at B
and C in point A0. Define B0 and C0 similarly. If SX1X2...Xn denotes the
area of the polygon X1X2 . . . Xn, prove that

SA0B0C0 = 2SAC1BA1CB1 ≥ 4SABC .

2. (AUS 3) Ali Barber, the carpet merchant, has a rectangular piece of
carpet whose dimensions are unknown. Unfortunately, his tape measure
is broken and he has no other measuring instruments. However, he finds
that if he lays it flat on the floor of either of his storerooms, then each
corner of the carpet touches a different wall of that room. If the two rooms
have dimensions of 38 feet by 55 feet and 50 feet by 55 feet, what are the
carpet dimensions?

3. (AUS 4) Ali Barber, the carpet merchant, has a rectangular piece of
carpet whose dimensions are unknown. Unfortunately, his tape measure is
broken and he has no other measuring instruments. However, he finds that
if he lays it flat on the floor of either of his storerooms, then each corner of
the carpet touches a different wall of that room. He knows that the sides of
the carpet are integral numbers of feet and that his two storerooms have
the same (unknown) length, but widths of 38 feet and 50 feet respectively.
What are the carpet dimensions?

4. (BUL 3) Prove that for every integer n > 1 the equation

xn

n!
+

xn−1

(n− 1)!
+ · · · + x2

2!
+
x

1!
+ 1 = 0

has no rational roots.

5. (COL 1) Consider the polynomial p(x) = xn +nxn−1+a2x
n−2 + · · ·+an

having all real roots. If r161 + r162 + · · · + r16n = n, where the rj are the
roots of p(x), find all such roots.
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6. (CZS 1) For a triangle ABC, let k be its circumcircle with radius r. The
bisectors of the inner angles A, B, and C of the triangle intersect respec-
tively the circle k again at points A′, B′, and C′. Prove the inequality

16Q3 ≥ 27r4P,

where Q and P are the areas of the triangles A′B′C′ and ABC respec-
tively.

7. (FIN 1) Show that any two points lying inside a regular n-gon E can
be joined by two circular arcs lying inside E and meeting at an angle of
at least

(
1 − 2

n

)
π.

8. (FRA 2) Let R be a rectangle that is the union of a finite number of
rectangles Ri, 1 ≤ i ≤ n, satisfying the following conditions:
(i) The sides of every rectangle Ri are parallel to the sides of R.
(ii) The interiors of any two different Ri are disjoint.
(iii) Every Ri has at least one side of integral length.
Prove that R has at least one side of integral length.

9. (FRA 4) For all integers n, n ≥ 0, there exist uniquely determined
integers an, bn, cn such that(

1 + 4
3
√

2 − 4
3
√

4
)n

= an + bn
3
√

2 + cn
3
√

4.

Prove that cn = 0 implies n = 0.

10. (GRE 3) Let g : C → C, w ∈ C, a ∈ C, w3 = 1 (w �= 1). Show that
there is one and only one function f : C → C such that

f(z) + f(wz + a) = g(z), z ∈ C.

Find the function f .

11. (HUN 1) Define sequence an by
∑

d|n ad = 2n. Show that n|an.

12. (HUN 3) At n distinct points of a circular race course there are n cars
ready to start. Each car moves at a constant speed and covers the circle
in an hour. On hearing the initial signal, each of them selects a direction
and starts moving immediately. If two cars meet, both of them change
directions and go on without loss of speed.
Show that at a certain moment each car will be at its starting point.

13. (ICE 3)IMO4 The quadrilateral ABCD has the following properties:
(i) AB = AD +BC;
(ii) there is a point P inside it at a distance x from the side CD such that

AP = x+AD and BP = x+BC.
Show that

1√
x

≥ 1√
AD

+
1√
BC

.
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14. (IND 2) A bicentric quadrilateral is one that is both inscribable in
and circumscribable about a circle. Show that for such a quadrilateral,
the centers of the two associated circles are collinear with the point of
intersection of the diagonals.

15. (IRE 1) Let a, b, c, d,m, n be positive integers such that a2+b2+c2+d2 =
1989, a+ b+ c+d = m2, and the largest of a, b, c, d is n2. Determine, with
proof, the values of m and n.

16. (ISR 1) The set {a0, a1, . . . , an} of real numbers satisfies the following
conditions:
(i) a0 = an = 0;
(ii) for 1 ≤ k ≤ n− 1,

ak = c+

n−1∑
i=k

ai−k(ai + ai+1).

Prove that c ≤ 1
4n .

17. (MON 1) Given seven points in the plane, some of them are connected
by segments so that:
(i) among any three of the given points, two are connected by a segment;
(i) the number of segments is minimal.
How many segments does a figure satisfying (i) and (ii) contain? Give an
example of such a figure.

18. (MON 4) Given a convex polygon A1A2 . . . An with area S, and a point
M in the same plane, determine the area of polygon M1M2 . . .Mn, where
Mi is the image of M under rotation Rα

Ai
around Ai by α, i = 1, 2, . . . , n.

19. (MON 6) A positive integer is written in each square of an m×n board.
The allowed move is to add an integer k to each of two adjacent numbers
in such a way that no negative numbers are obtained. (Two squares are
adjacent if they have a common side.) Find a necessary and sufficient
condition for it to be possible for all the numbers to be zero by a finite
sequence of moves.

20. (NET 1)IMO3 Given a set S in the plane containing n points and satis-
fying the conditions:
(i) no three points of S are collinear,
(ii) for every point P of S there exist at least k points in S that have the

same distance to P ,
prove that the following inequality holds:

k <
1

2
+

√
2n.

21. (NET 2) Prove that the intersection of a plane and a regular tetrahedron
can be an obtuse-angled triangle and that the obtuse angle in any such
triangle is always smaller than 120◦.
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22. (PHI 1)IMO1 Prove that the set {1, 2, . . . , 1989} can be expressed as the
disjoint union of 17 subsets A1, A2, . . . , A17 such that:
(i) each Ai contains the same number of elements;
(ii) the sum of all elements of each Ai is the same for i = 1, 2, . . . , 17.

23. (POL 2)IMO6 We consider permutations (x1, . . . , x2n) of the set {1, . . . ,
2n} such that |xi−xi+1| = n for at least one i ∈ {1, . . . , 2n−1}. For every
natural number n, find out whether permutations with this property are
more or less numerous than the remaining permutations of {1, . . . , 2n}.

24. (POL 5) For points A1, . . . , A5 on the sphere of radius 1, what is the
maximum value that min1≤i,j≤5 AiAj can take? Determine all configura-
tions for which this maximum is attained. (Or: determine the diameter of
any set {A1, . . . , A5} for which this maximum is attained.)

25. (KOR 3) Let a, b be integers that are not perfect squares. Prove that if

x2 − ay2 − bz2 + abw2 = 0

has a nontrivial solution in integers, then so does

x2 − ay2 − bz2 = 0.

26. (KOR 4) Let n be a positive integer and let a, b be given real numbers.
Determine the range of x0 for which

n∑
i=0

xi = a and

n∑
i=0

x2
i = b,

where x0, x1, . . . , xn are real variables.

27. (ROM 1) Let m be a positive odd integer, m ≥ 2. Find the smallest
positive integer n such that 21989 divides mn − 1.

28. (ROM 2) Consider in a plane Π the points O,A1, A2, A3, A4 such that
σ(OAiAj) ≥ 1 for all i, j = 1, 2, 3, 4, i �= j. Prove that there is at least
one pair i0, j0 ∈ {1, 2, 3, 4} such that σ(OAi0Aj0) ≥

√
2.

(We have denoted by σ(OAiAj) the area of triangle OAiAj .)

29. (ROM 4) A flock of 155 birds sit down on a circle C. Two birds Pi, Pj are
mutually visible if m(PiPj) ≤ 10◦. Find the smallest number of mutually
visible pairs of birds. (One assumes that a position (point) on C can be
occupied simultaneously by several birds.)

30. (SWE 2)IMO5 For which positive integers n does there exist a positive
integer N such that none of the integers 1 + N, 2 + N, . . . , n + N is the
power of a prime number?

31. (SWE 3) Let a1 ≥ a2 ≥ a3 be given positive integers and letN(a1, a2, a3)
be the number of solutions (x1, x2, x3) of the equation



248 3 Problems

a1

x1
+
a2

x2
+
a3

x3
= 1,

where x1, x2, and x3 are positive integers. Show that

N(a1, a2, a3) ≤ 6a1a2(3 + ln(2a1)).

32. (USA 3) The vertex A of the acute triangle ABC is equidistant from
the circumcenter O and the orthocenter H . Determine all possible values
for the measure of angle A.
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3.31 The Thirty-First IMO

Beijing, China, July 8–19, 1990

3.31.1 Contest Problems

First Day (July 12)

1. Given a circle with two chords AB,CD that meet at E, let M be a point
of chord AB other than E. Draw the circle through D, E, and M . The
tangent line to the circle DEM at E meets the lines BC,AC at F,G,
respectively. Given AM

AB = λ, find GE
EF .

2. On a circle, 2n − 1 (n ≥ 3) different points are given. Find the minimal
natural number N with the property that whenever N of the given points
are colored black, there exist two black points such that the interior of one
of the corresponding arcs contains exactly n of the given 2n− 1 points.

3. Find all positive integers n having the property that 2n+1
n2 is an integer.

Second Day (July 13)

4. Let Q+ be the set of positive rational numbers. Construct a function
f : Q+ → Q+ such that

f(xf(y)) =
f(x)

y
, for all x, y in Q+.

5. Two players A and B play a game in which they choose numbers alter-
nately according to the following rule: At the beginning, an initial natural
number n0 > 1 is given. Knowing n2k, player A may choose any n2k+1 ∈ N
such that

n2k ≤ n2k+1 ≤ n2
2k.

Then player B chooses a number n2k+2 ∈ N such that

n2k+1

n2k+2
= pr,

where p is a prime number and r ∈ N.
It is stipulated that playerA wins the game if he (she) succeeds in choosing
the number 1990, and player B wins if he (she) succeeds in choosing 1.
For which natural numbers n0 can player A manage to win the game, for
which n0 can player B manage to win, and for which n0 can players A
and B each force a tie?

6. Is there a 1990-gon with the following properties (i) and (ii)?
(i) All angles are equal;
(ii) The lengths of the 1990 sides are a permutation of the numbers

12, 22, . . . , 19892, 19902.
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3.31.2 Shortlisted Problems

1. (AUS 3) The integer 9 can be written as a sum of two consecutive
integers: 9 = 4+5. Moreover, it can be written as a sum of (more than one)
consecutive positive integers in exactly two ways: 9 = 4+5 = 2+3+4. Is
there an integer that can be written as a sum of 1990 consecutive integers
and that can be written as a sum of (more than one) consecutive positive
integers in exactly 1990 ways?

2. (CAN 1) Given n countries with three representatives each, m commit-
tees A(1), A(2), . . . A(m) are called a cycle if
(i) each committee has n members, one from each country;
(ii) no two committees have the same membership;
(iii) for i = 1, 2, . . . ,m, committee A(i) and committee A(i + 1) have no

member in common, where A(m+ 1) denotes A(1);
(iv) if 1 < |i − j| < m − 1, then committees A(i) and A(j) have at least

one member in common.
Is it possible to have a cycle of 1990 committees with 11 countries?

3. (CZS 1)IMO2 On a circle, 2n− 1 (n ≥ 3) different points are given. Find
the minimal natural number N with the property that whenever N of the
given points are colored black, there exist two black points such that the
interior of one of the corresponding arcs contains exactly n of the given
2n− 1 points.

4. (CZS 2) Assume that the set of all positive integers is decomposed into
r (disjoint) subsets A1 ∪ A2 ∪ · · ·Ar = N. Prove that one of them, say
Ai, has the following property: There exists a positive m such that for
any k one can find numbers a1, a2, . . . , ak in Ai with 0 < aj+1 − aj ≤ m
(1 ≤ j ≤ k − 1).

5. (FRA 1) Given 
ABC with no side equal to another side, let G, K,
and H be its centroid, incenter, and orthocenter, respectively. Prove that
∠GKH > 90◦.

6. (FRG 2)IMO5 Two players A and B play a game in which they choose
numbers alternately according to the following rule: At the beginning, an
initial natural number n0 > 1 is given. Knowing n2k, player A may choose
any n2k+1 ∈ N such that

n2k ≤ n2k+1 ≤ n2
2k.

Then player B chooses a number n2k+2 ∈ N such that

n2k+1

n2k+2
= pr,

where p is a prime number and r ∈ N.
It is stipulated that playerA wins the game if he (she) succeeds in choosing
the number 1990, and player B wins if he (she) succeeds in choosing 1.
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For which natural numbers n0 can player A manage to win the game, for
which n0 can player B manage to win, and for which n0 can players A
and B each force a tie?

7. (GRE 2) Let f(0) = f(1) = 0 and

f(n+ 2) = 4n+2f(n+ 1) − 16n+1f(n) + n · 2n2

, n = 0, 1, 2, 3, . . . .

Show that the numbers f(1989), f(1990), f(1991) are divisible by 13.

8. (HUN 1) For a given positive integer k denote the square of the sum of
its digits by f1(k) and let fn+1(k) = f1(fn(k)).
Determine the value of f1991(2

1990).

9. (HUN 3) The incenter of the triangle ABC is K. The midpoint of AB
is C1 and that of AC is B1. The lines C1K and AC meet at B2, the lines
B1K and AB at C2. If the areas of the triangles AB2C2 and ABC are
equal, what is the measure of angle ∠CAB?

10. (ICE 2) A plane cuts a right circular cone into two parts. The plane is
tangent to the circumference of the base of the cone and passes through
the midpoint of the altitude. Find the ratio of the volume of the smaller
part to the volume of the whole cone.

11. (IND 3′)IMO1 Given a circle with two chords AB,CD that meet at E, let
M be a point of chord AB other than E. Draw the circle through D, E,
and M . The tangent line to the circle DEM at E meets the lines BC,AC
at F,G, respectively. Given AM

AB = λ, find GE
EF .

12. (IRE 1) Let ABC be a triangle and L the line through C parallel to
the side AB. Let the internal bisector of the angle at A meet the side BC
at D and the line L at E and let the internal bisector of the angle at B
meet the side AC at F and the line L at G. If GF = DE, prove that
AC = BC.

13. (IRE 2) An eccentric mathematician has a ladder with n rungs that he
always ascends and descends in the following way: When he ascends, each
step he takes covers a rungs of the ladder, and when he descends, each
step he takes covers b rungs of the ladder, where a and b are fixed positive
integers. By a sequence of ascending and descending steps he can climb
from ground level to the top rung of the ladder and come back down to
ground level again. Find, with proof, the minimum value of n, expressed
in terms of a and b.

14. (JAP 2) In the coordinate plane a rectangle with vertices (0, 0), (m, 0),
(0, n), (m,n) is given where both m and n are odd integers. The rectangle
is partitioned into triangles in such a way that
(i) each triangle in the partition has at least one side (to be called a

“good” side) that lies on a line of the form x = j or y = k, where j
and k are integers, and the altitude on this side has length 1;
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(ii) each “bad” side (i.e., a side of any triangle in the partition that is not
a “good” one) is a common side of two triangles in the partition.

Prove that there exist at least two triangles in the partition each of which
has two good sides.

15. (MEX 2) Determine for which positive integers k the set

X = {1990, 1990 + 1, 1990 + 2, . . . , 1990 + k}

can be partitioned into two disjoint subsets A and B such that the sum
of the elements of A is equal to the sum of the elements of B.

16. (NET 1)IMO6 Is there a 1990-gon with the following properties (i) and
(ii)?
(i) All angles are equal;
(ii) The lengths of the 1990 sides are a permutation of the numbers

12, 22, . . . , 19892, 19902.

17. (NET 3) Unit cubes are made into beads by drilling a hole through
them along a diagonal. The beads are put on a string in such a way that
they can move freely in space under the restriction that the vertices of
two neighboring cubes are touching. Let A be the beginning vertex and B
be the end vertex. Let there be p× q× r cubes on the string (p, q, r ≥ 1).
(a) Determine for which values of p, q, and r it is possible to build a block

with dimensions p, q, and r. Give reasons for your answers.
(b) The same question as (a) with the extra condition that A = B.

18. (NOR) Let a, b be natural numbers with 1 ≤ a ≤ b, and M =
[

a+b
2

]
.

Define the function f : Z → Z by

f(n) =

{
n+ a, if n < M ,
n− b, if n ≥ M .

Let f1(n) = f(n), f i+1(n) = f(f i(n)), i = 1, 2, . . . . Find the smallest
natural number k such that fk(0) = 0.

19. (POL 1) Let P be a point inside a regular tetrahedron T of unit volume.
The four planes passing through P and parallel to the faces of T partition
T into 14 pieces. Let f(P ) be the joint volume of those pieces that are
neither a tetrahedron nor a parallelepiped (i.e., pieces adjacent to an edge
but not to a vertex). Find the exact bounds for f(P ) as P varies over T .

20. (POL 3) Prove that every integer k greater than 1 has a multiple that is
less than k4 and can be written in the decimal system with at most four
different digits.

21. (ROM 1′) Let n be a composite natural number and p a proper divisor
of n. Find the binary representation of the smallest natural number N

such that (1+2p+2n−p)N−1
2n is an integer.



3.31 IMO 1990 253

22. (ROM 4) Ten localities are served by two international airlines such
that there exists a direct service (without stops) between any two of these
localities and all airline schedules offer round-trip service between the
cities they serve. Prove that at least one of the airlines can offer two
disjoint round trips each containing an odd number of landings.

23. (ROM 5)IMO3 Find all positive integers n having the property that 2n+1
n2

is an integer.

24. (THA 2) Let a, b, c, d be nonnegative real numbers such that ab+ bc+
cd+ da = 1. Show that

a3

b+ c+ d
+

b3

a+ c+ d
+

c3

a+ b+ d
+

d3

a+ b+ c
≥ 1

3
.

25. (TUR 4)IMO4 Let Q+ be the set of positive rational numbers. Construct
a function f : Q+ → Q+ such that

f(xf(y)) =
f(x)

y
, for all x, y in Q+.

26. (USA 2) Let P be a cubic polynomial with rational coefficients, and let
q1, q2, q3, . . . be a sequence of rational numbers such that qn = P (qn+1) for
all n ≥ 1. Prove that there exists k ≥ 1 such that for all n ≥ 1, qn+k = qn.

27. (USS 1) Find all natural numbers n for which every natural number
whose decimal representation has n− 1 digits 1 and one digit 7 is prime.

28. (USS 3) Prove that on the coordinate plane it is impossible to draw a
closed broken line such that
(i) the coordinates of each vertex are rational;
(ii) the length each of its edges is 1;
(iii) the line has an odd number of vertices.
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3.32 The Thirty-Second IMO

Sigtuna, Sweden, July 12–23, 1991

3.32.1 Contest Problems

First Day (July 17)

1. Prove for each triangle ABC the inequality

1

4
<
IA · IB · IC
lAlBlC

≤ 8

27
,

where I is the incenter and lA, lB, lC are the lengths of the angle bisectors
of ABC.

2. Let n > 6 and let a1 < a2 < . . . < ak be all natural numbers that are
less than n and relatively prime to n. Show that if a1, a2, . . . , ak is an
arithmetic progression, then n is a prime number or a natural power of
two.

3. Let S = {1, 2, 3, . . . , 280}. Find the minimal natural number n such that
in any n-element subset of S there are five numbers that are pairwise
relatively prime.

Second Day (July 18)

4. Suppose G is a connected graph with n edges. Prove that it is possible to
label the edges of G from 1 to n in such a way that in every vertex v of G
with two or more incident edges, the set of numbers labeling those edges
has no common divisor greater than 1.

5. Let ABC be a triangle and M an interior point in ABC. Show that at
least one of the angles �MAB,�MBC, and �MCA is less than or equal
to 30◦.

6. Given a real number a > 1, construct an infinite and bounded sequence
x0, x1, x2, . . . such that for all natural numbers i and j, i �= j, the following
inequality holds:

|xi − xj ||i− j|a ≥ 1.

3.32.2 Shortlisted Problems

1. (PHI 3) Let ABC be any triangle and P any point in its interior. Let
P1, P2 be the feet of the perpendiculars from P to the two sides AC and
BC. Draw AP and BP , and from C drop perpendiculars to AP and BP .
Let Q1 and Q2 be the feet of these perpendiculars. Prove that the lines
Q1P2, Q2P1, and AB are concurrent.



3.32 IMO 1991 255

2. (JAP 5) For an acute triangle ABC, M is the midpoint of the segment
BC, P is a point on the segment AM such that PM = BM , H is the foot
of the perpendicular line from P to BC, Q is the point of intersection of
segment AB and the line passing through H that is perpendicular to PB,
and finally, R is the point of intersection of the segment AC and the line
passing through H that is perpendicular to PC.
Show that the circumcircle of 
QHR is tangent to the side BC at point
H .

3. (PRK 1) Let S be any point on the circumscribed circle of 
PQR. Then
the feet of the perpendiculars from S to the three sides of the triangle lie
on the same straight line. Denote this line by l(S, PQR). Suppose that
the hexagon ABCDEF is inscribed in a circle. Show that the four lines
l(A,BDF ), l(B,ACE), l(D,ABF ), and l(E,ABC) intersect at one point
if and only if CDEF is a rectangle.

4. (FRA 2)IMO5 Let ABC be a triangle and M an interior point in ABC.
Show that at least one of the angles �MAB,�MBC, and �MCA is less
than or equal to 30◦.

5. (SPA 4) In the triangle ABC, with �A = 60◦, a parallel IF to AC
is drawn through the incenter I of the triangle, where F lies on the side
AB. The point P on the side BC is such that 3BP = BC. Show that
�BFP = �B/2.

6. (USS 4)IMO1 Prove for each triangle ABC the inequality

1

4
<
IA · IB · IC
lAlBlC

≤ 8

27
,

where I is the incenter and lA, lB, lC are the lengths of the angle bisectors
of ABC.

7. (CHN 2) Let O be the center of the circumsphere of a tetrahedron
ABCD. Let L,M,N be the midpoints of BC,CA,AB respectively, and
assume thatAB+BC = AD+CD,BC+CA = BD+AD, andCA+AB =
CD +BD. Prove that ∠LOM = ∠MON = ∠NOL.

8. (NET 1) Let S be a set of n points in the plane. No three points of
S are collinear. Prove that there exists a set P containing 2n − 5 points
satisfying the following condition: In the interior of every triangle whose
three vertices are elements of S lies a point that is an element of P .

9. (FRA 3) In the plane we are given a set E of 1991 points, and certain
pairs of these points are joined with a path. We suppose that for every
point of E, there exist at least 1593 other points of E to which it is joined
by a path. Show that there exist six points of E every pair of which are
joined by a path.

Alternative version. Is it possible to find a set E of 1991 points in the
plane and paths joining certain pairs of the points in E such that every
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point of E is joined with a path to at least 1592 other points of E, and
in every subset of six points of E there exist at least two points that are
not joined?

10. (USA 5)IMO4 Suppose G is a connected graph with n edges. Prove that
it is possible to label the edges of G from 1 to n in such a way that in
every vertex v of G with two or more incident edges, the set of numbers
labeling those edges has no common divisor greater than 1.

11. (AUS 4) Prove that

995∑
m=0

(−1)m

1991 −m

(
1991 −m

m

)
=

1

1991
.

12. (CHN 3)IMO3 Let S = {1, 2, 3, . . . , 280}. Find the minimal natural num-
ber n such that in any n-element subset of S there are five numbers that
are pairwise relatively prime.

13. (POL 4) Given any integer n ≥ 2, assume that the integers a1, a2, . . . , an

are not divisible by n and, moreover, that n does not divide a1 + a2 +
· · ·+an. Prove that there exist at least n different sequences (e1, e2, · · · , en)
consisting of zeros or ones such that e1a1 + e2a2 + · · · + enan is divisible
by n.

14. (POL 3) Let a, b, c be integers and p an odd prime number. Prove that
if f(x) = ax2 + bx + c is a perfect square for 2p − 1 consecutive integer
values of x, then p divides b2 − 4ac.

15. (USS 2) Let an be the last nonzero digit in the decimal representation
of the number n!. Does the sequence a1, a2, . . . , an, . . . become periodic
after a finite number of terms?

16. (ROM 1)IMO2 Let n > 6 and a1 < a2 < · · · < ak be all natural numbers
that are less than n and relatively prime to n. Show that if a1, a2, . . . , ak

is an arithmetic progression, then n is a prime number or a natural power
of two.

17. (HKG 4) Find all positive integer solutions x, y, z of the equation 3x +
4y = 5z.

18. (BUL 1) Find the highest degree k of 1991 for which 1991k divides the
number

199019911992

+ 199219911990

.

19. (IRE 5) Let a be a rational number with 0 < a < 1 and suppose that

cos 3πa+ 2 cos 2πa = 0.

(Angle measurements are in radians.) Prove that a = 2/3.
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20. (IRE 3) Let α be the positive root of the equation x2 = 1991x+ 1. For
natural numbers m,n define

m ∗ n = mn+ [αm][αn],

where [x] is the greatest integer not exceeding x. Prove that for all natural
numbers p, q, r,

(p ∗ q) ∗ r = p ∗ (q ∗ r).
21. (HKG 6) Let f(x) be a monic polynomial of degree 1991 with integer

coefficients. Define g(x) = f2(x) − 9. Show that the number of distinct
integer solutions of g(x) = 0 cannot exceed 1995.

22. (USA 4) Real constants a, b, c are such that there is exactly one square
all of whose vertices lie on the cubic curve y = x3 + ax2 + bx + c. Prove
that the square has sides of length 4

√
72.

23. (IND 2) Let f and g be two integer-valued functions defined on the set
of all integers such that
(a) f(m+ f(f(n))) = −f(f(m+ 1) − n for all integers m and n;
(b) g is a polynomial function with integer coefficients and g(n) = g(f(n))

for all integers n.
Determine f(1991) and the most general form of g.

24. (IND 1) An odd integer n ≥ 3 is said to be “nice” if there is at least one
permutation a1, a2, . . . , an of 1, 2, . . . , n such that the n sums a1 − a2 +
a3 − · · · − an−1 + an, a2 − a3 + a4 − · · · − an + a1, a3 − a4 + a5 − · · · − a1 +
a2, . . . , an − a1 + a2 − · · · − an−2 + an−1 are all positive. Determine the
set of all “nice” integers.

25. (USA 1) Suppose that n ≥ 2 and x1, x2, . . . , xn are real numbers between
0 and 1 (inclusive). Prove that for some index i between 1 and n− 1 the
inequality

xi(1 − xi+1) ≥ 1

4
x1(1 − xn)

holds.

26. (CZS 1) Let n ≥ 2 be a natural number and let the real numbers
p, a1, a2, . . . , an, b1, b2, . . . , bn satisfy 1/2 ≤ p ≤ 1, 0 ≤ ai, 0 ≤ bi ≤ p,
i = 1, . . . , n, and

∑n
i=1 ai =

∑n
i=1 bi = 1. Prove the inequality

n∑
i=1

bi

n∏
j=1
j �=i

aj ≤ p

(n− 1)n−1
.

27. (POL 2) Determine the maximum value of the sum∑
i<j

xixj(xi + xj)

over all n-tuples (x1, . . . , xn), satisfying xi ≥ 0 and
∑n

i=1 xi = 1.



258 3 Problems

28. (NET 1)IMO6 Given a real number a > 1, construct an infinite and
bounded sequence x0, x1, x2, . . . such that for all natural numbers i and
j, i �= j, the following inequality holds:

|xi − xj ||i− j|a ≥ 1.

29. (FIN 2) We call a set S on the real line R superinvariant if for any
stretching A of the set by the transformation taking x to A(x) = x0 +
a(x−x0) there exists a translation B, B(x) = x+ b, such that the images
of S under A and B agree; i.e., for any x ∈ S there is a y ∈ S such that
A(x) = B(y) and for any t ∈ S there is a u ∈ S such that B(t) = A(u).
Determine all superinvariant sets.

Remark. It is assumed that a > 0.

30. (BUL 3) Two students A and B are playing the following game: Each
of them writes down on a sheet of paper a positive integer and gives the
sheet to the referee. The referee writes down on a blackboard two integers,
one of which is the sum of the integers written by the players. After that,
the referee asks student A: “Can you tell the integer written by the other
student?” If A answers “no,” the referee puts the same question to student
B. If B answers “no,” the referee puts the question back to A, and so on.
Assume that both students are intelligent and truthful. Prove that after
a finite number of questions, one of the students will answer “yes.”



3.33 IMO 1992 259

3.33 The Thirty-Third IMO

Moscow, Russia, July 10–21, 1992

3.33.1 Contest Problems

First Day (July 15)

1. Find all integer triples (p, q, r) such that 1 < p < q < r and (p − 1)(q −
1)(r − 1) is a divisor of (pqr − 1).

2. Find all functions f : R → R such that

f(x2 + f(y)) = y + f(x)2 for all x, y in R.

3. Given nine points in space, no four of which are coplanar, find the minimal
natural number n such that for any coloring with red or blue of n edges
drawn between these nine points there always exists a triangle having all
edges of the same color.

Second Day (July 16)

4. In the plane, let there be given a circle C, a line l tangent to C, and a
point M on l. Find the locus of points P that has the following property:
There exist two points Q and R on l such that M is the midpoint of QR
and C is the incircle of PQR.

5. Let V be a finite subset of Euclidean space consisting of points (x, y, z)
with integer coordinates. Let S1, S2, S3 be the projections of V onto the
yz, xz, xy planes, respectively. Prove that

|V |2 ≤ |S1||S2||S3|

(|X | denotes the number of elements of X).

6. For each positive integer n, denote by s(n) the greatest integer such that
for all positive integer k ≤ s(n), n2 can be expressed as a sum of squares
of k positive integers.
(a) Prove that s(n) ≤ n2 − 14 for all n ≥ 4.
(b) Find a number n such that s(n) = n2 − 14.
(c) Prove that there exist infinitely many positive integers n such that

s(n) = n2 − 14.

3.33.2 Longlisted Problems

1. (AUS 1) Points D and E are chosen on the sides AB and AC of the
triangle ABC in such a way that if F is the intersection point of BE and
CD, then AE + EF = AD +DF . Prove that AC + CF = AB +BF .
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2. (AUS 2) (SL92-1).
Original formulation. Let m be a positive integer and x0, y0 integers such
that x0, y0 are relatively prime, y0 divides x2

0 +m, and x0 divides y2
0 +m.

Prove that there exist positive integers x and y such that x and y are
relatively prime, y divides x2 +m, x divides y2 +m, and x+ y ≤ m+ 1.

3. (AUS 3) Let ABC be a triangle, O its circumcenter, S its centroid, and
H its orthocenter. Denote by A1, B1, and C1 the centers of the circles
circumscribed about the triangles CHB, CHA, and AHB, respectively.
Prove that the triangleABC is congruent to the triangleA1B1C1 and that
the nine-point circle of 
ABC is also the nine-point circle of 
A1B1C1.

4. (CAN 1) Let p, q, and r be the angles of a triangle, and let a = sin 2p,
b = sin 2q, and c = sin 2r. If s = (a+ b+ c)/2, show that

s(s− a)(s− b)(s− c) ≥ 0.

When does equality hold?

5. (CAN 2) Let I,H,O be the incenter, centroid, and circumcenter of the
nonisosceles triangle ABC. Prove that AI‖HO if and only if �BAC =
120◦.

6. (CAN 3) Suppose that n numbers x1, x2, . . . , xn are chosen randomly
from the set {1, 2, 3, 4, 5}. Prove that the probability that x2

1 + x2
2 + · · ·+

x2
n ≡ 0 (mod 5) is at least 1/5.

7. (CAN 4) Let X be a bounded, nonempty set of points in the Cartesian
plane. Let f(X) be the set of all points that are at a distance of at most 1
from some point in X . Let fn(X) = f(f(. . . (f(X)) . . . )) (n times). Show
that fn(X) becomes “more circular” as n gets larger. In other words, if
rn = sup{radii of circles contained in fn(X)} and Rn = inf{radii of circles
containing fn(X)}, then show that Rn/rn gets arbitrarily close to 1 as n
becomes arbitrarily large.

8. (CHN 1) (SL92-2).

9. (CHN 2) (SL92-3).

10. (CHN 3) (SL92-4).

11. (COL 1) Let φ(n,m), m �= 1, be the number of positive integers less
than or equal to n that are coprime with m. Clearly, φ(m,m) = φ(m),
where φ(m) is Euler’s phi function. Find all integers m that satisfy the
following inequality:

φ(n,m)

n
≥ φ(m)

m

for every positive integer n.

12. (COL 2) Given a triangle ABC such that the circumcenter is in the
interior of the incircle, prove that the triangle ABC is acute-angled.
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13. (COL 3) (SL92-5).

14. (FIN 1) Integers a1, a2, . . . , an satisfy |ak| = 1 and

n∑
k=1

akak+1ak+2ak+3 = 2,

where an+j = aj . Prove that n �= 1992.

15. (FIN 2) Prove that there exist 78 lines in the plane such that they have
exactly 1992 points of intersection.

16. (FIN 3) Find all triples (x, y, z) of integers such that

1

x2
+

2

y2
+

3

z2
=

2

3
.

17. (FRA 1) (SL92-20).

18. (FRG 1) Fibonacci numbers are defined as follows: F1 = F2 = 1, Fn+2 =
Fn+1+Fn, n ≥ 1. Let an be the number of words that consist of n letters 0
or 1 and contain no two letters 1 at distance two from each other. Express
an in terms of Fibonacci numbers.

19. (FRG 2) Denote by an the greatest number that is not divisible by 3
and that divides n. Consider the sequence s0 = 0, sn = a1 + a2 + · · ·+ an,
n ∈ N. Denote by A(n) the number of all sums sk (0 ≤ k ≤ 3n, k ∈ N0)
that are divisible by 3. Prove the formula

A(n) = 3n−1 + 2 · 3(n/2)−1 cos(nπ/6), n ∈ N0.

20. (FRG 3) Let X and Y be two sets of points in the plane and M be a set
of segments connecting points from X and Y . Let k be a natural number.
Prove that the segments from M can be painted using k colors in such a
way that for any point x ∈ X ∪ Y and two colors α and β (α �= β), the
difference between the number of α-colored segments and the number of
β-colored segments originating in X is less than or equal to 1.

21. (GBR 1) Prove that if x, y, z > 1 and 1
x + 1

y + 1
z = 2, then

√
x+ y + z ≥

√
x− 1 +

√
y − 1 +

√
z − 1.

22. (GBR 2) (SL92-21).

23. (HKG 1) An Egyptian number is a positive integer that can be expressed
as a sum of positive integers, not necessarily distinct, such that the sum
of their reciprocals is 1. For example, 32 = 2 + 3 + 9 + 18 is Egyptian
because 1

2 + 1
3 + 1

9 + 1
18 = 1. Prove that all integers greater than 23 are

Egyptian.
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24. (ICE 1) Let Q+ denote the set of nonnegative rational numbers. Show
that there exists exactly one function f : Q+ → Q+ satisfying the follow-
ing conditions:

(i) if 0 < q < 1
2 , then f(q) = 1 + f

(
q

1−2q

)
;

(ii) if 1 < q ≤ 2, then f(q) = 1 + f(q + 1);
(iii) f(q)f(1/q) = 1 for all q ∈ Q+.
Find the smallest rational number q ∈ Q+ such that f(q) = 19/92.

25. (IND 1) (a) Show that the set N of all natural numbers can be parti-
tioned into three disjoint subsets A, B, and C satisfying the following
conditions:

A2 = A, B2 = C, C2 = B,
AB = B, AC = C, BC = A,

where HK stands for {hk | h ∈ H, k ∈ K} for any two subsets H , K
of N, and H2 denotes HH .

(b) Show that for every such partition of N, min{n ∈ N | n ∈ A and n+
1 ∈ A} is less than or equal to 77.

26. (IND 2) (SL92-6).

27. (IND 3) Let ABC be an arbitrary scalene triangle. Define Σ to be the
set of all circles y that have the following properties:
(i) y meets each side of 
ABC in two (possibly coincident) points;
(ii) if the points of intersection of y with the sides of the triangle are la-

beled by P , Q, R, S, T , U , with the points occurring on the sides in
orders B(B,P,Q,C), B(C,R, S,A), B(A, T, U,B), then the following
relations of parallelism hold: TS‖BC; PU‖CA; RQ‖AB. (In the lim-
iting cases, some of the conditions of parallelism will hold vacuously;
e.g., if A lies on the circle y, then T , S both coincide with A and the
relation TS‖BC holds vacuously.)

(a) Under what circumstances is Σ nonempty?
(b) Assuming that Σ is nonempty, show how to construct the locus of

centers of the circles in the set Σ.
(c) Given that the set Σ has just one element, deduce the size of the

largest angle of 
ABC.
(d) Show how to construct the circles in Σ that have, respectively, the

largest and the smallest radii.

28. (IND 4) (SL92-7).
Alternative formulation. Two circlesG1 andG2 are inscribed in a segment
of a circle G and touch each other externally at a point W . Let A be a
point of intersection of a common internal tangent to G1 and G2 with the
arc of the segment, and let B and C be the endpoints of the chord. Prove
that W is the incenter of the triangle ABC.

29. (IND 5) (SL92-8).
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30. (IND 6) Let Pn = (19 + 92)(192 + 922) · · · (19n + 92n) for each positive
integer n. Determine, with proof, the least positive integer m, if it exists,
for which Pm is divisible by 3333.

31. (IRE 1) (SL92-19).

32. (IRE 2) Let Sn = {1, 2, . . . , n} and fn : Sn → Sn be defined inductively
as follows: f1(1) = 1, fn(2j) = j (j = 1, 2, . . . , [n/2]) and
(i) if n = 2k (k ≥ 1), then fn(2j − 1) = fk(j) + k (j = 1, 2, . . . , k);
(ii) if n = 2k + 1 (k ≥ 1), then fn(2k + 1) = k + fk+1(1), fn(2j − 1) =

k + fk+1(j + 1) (j = 1, 2, . . . , k).
Prove that fn(x) = x if and only if x is an integer of the form

(2n+ 1)(2d − 1)

2d+1 − 1

for some positive integer d.

33. (IRE 3) Let a, b, c be positive real numbers and p, q, r complex numbers.
Let S be the set of all solutions (x, y, z) in C of the system of simultaneous
equations

ax+ by + cz = p,
ax2 + by2 + cz2 = q,
ax3 + bx3 + cx3 = r.

Prove that S has at most six elements.

34. (IRE 4) Let a, b, c be integers. Prove that there are integers p1, q1, r1,
p2, q2, r2 such that

a = q1r2 − q2r1, b = r1p2 − r2p1, c = p1q2 − p2q1.

35. (IRN 1) (SL92-9).

36. (IRN 2) Find all rational solutions of

a2 + c2 + 17(b2 + d2) = 21,
ab+ cd = 2.

37. (IRN 3) Let the circles C1, C2, and C3 be orthogonal to the circle C
and intersect each other inside C forming acute angles of measures A, B,
and C. Show that A+B + C < π.

38. (ITA 1) (SL92-10).

39. (ITA 2) Let n ≥ 2 be an integer. Find the minimum k for which there
exists a partition of {1, 2, . . . , k} into n subsets X1, X2, . . . , Xn such that
the following condition holds: for any i, j, 1 ≤ i < j ≤ n, there exist
x1 ∈ X1, x2 ∈ X2 such that |xi − xj | = 1.
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40. (ITA 3) The colonizers of a spherical planet have decided to build N
towns, each having area 1/1000 of the total area of the planet. They also
decided that any two points belonging to different towns will have different
latitude and different longitude. What is the maximal value of N?

41. (JAP 1) Let S be a set of positive integers n1, n2, . . . , n6 and let n(f)
denote the number n1nf(1) + n2nf(2) + · · ·+n6nf(6), where f is a permu-
tation of {1, 2, . . . , 6}. Let

Ω = {n(f) | f is a permutation of {1, 2, . . . , 6}}.

Give an example of positive integers n1, . . . , n6 such that Ω contains as
many elements as possible and determine the number of elements of Ω.

42. (JAP 2) (SL92-11).

43. (KOR 1) Find the number of positive integers n satisfying φ(n) | n such
that ∞∑

m=1

(
n

m
− n− 1

m

)
= 1992.

What is the largest number among them? As usual, φ(n) is the number
of positive integers less than or equal to n and relatively prime to n.6

44. (KOR 2) (SL92-16).

45. (KOR 3) Let n be a positive integer. Prove that the number of ways
to express n as a sum of distinct positive integers (up to order) and the
number of ways to express n as a sum of odd positive integers (up to
order) are the same.

46. (KOR 4) Prove that the sequence 5, 12, 19, 26, 33, . . . contains no term
of the form 2n − 1.

47. (KOR 5) Find the largest integer not exceeding
∏1992

n=1
3n+2
3n+1 .

48. (MON 1) Find all the functions f : R+ → R satisfying the identity

f(x)f(y) = yα · f
(x

2

)
+ xβ · f

(y
2

)
, x, y ∈ R+,

where α, β are given real numbers.

49. (MON 2) Given real numbers xi (i = 1, 2, . . . , 4x+ 2) such that

4x+2∑
i=1

(−1)i+1xixi+1 = 4m (x1 = x4k+3),

prove that it is possible to choose numbers xk1 , . . . , xk6 such that

6 The problem in this formulation is senseless. The correct formulation could be,
“Find . . . such that

∑
∞

m=1

([
n
m

]
−
[

n−1
m

])
= 1992 . . . .”
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6∑
i=1

(−1)6xk1xkk+1
> m (xk1 = xk7).

50. (MON 3) Let N be a point inside the triangle ABC. Through the mid-
points of the segments AN , BN , and CN the lines parallel to the opposite
sides of 
ABC are constructed. Let AN , BN , and CN be the intersection
points of these lines. If N is the orthocenter of the triangle ABC, prove
that the nine-point circles of 
ABC and 
ANBNCN coincide.

Remark. The statement of the original problem was that the nine-point
circles of the triangles ANBNCN and AMBMCM coincide, where N and
M are the orthocenter and the centroid of 
ABC. This statement is false.

51. (NET 1) (SL92-12).

52. (NET 2) Let n be an integer > 1. In a circular arrangement of n lamps
L0, . . . , Ln−1, each one of which can be either ON or OFF, we start with
the situation that all lamps are ON, and then carry out a sequence of
steps, Step0, Step1, . . . . If Lj−1 (j is taken mod n) is ON, then Stepj

changes the status of Lj (it goes from ON to OFF or from OFF to ON)
but does not change the status of any of the other lamps. If Lj−1 is OFF,
then Stepj does not change anything at all. Show that:
(a) There is a positive integer M(n) such that after M(n) steps all lamps

are ON again.
(b) If n has the form 2k, then all lamps are ON after n2 − 1 steps.
(c) If n has the form 2k +1, then all lamps are ON after n2 −n+1 steps.

53. (NZL 1) (SL92-13).

54. (POL 1) Suppose that n > m ≥ 1 are integers such that the string of
digits 143 occurs somewhere in the decimal representation of the fraction
m/n. Prove that n > 125

55. (POL 2) (SL92-14).

56. (POL 3) A directed graph (any two distinct vertices joined by at most
one directed line) has the following property: If x, u, and v are three
distinct vertices such that x → u and x → v, then u → w and v → w for
some vertex w. Suppose that x → u → y → · · · → z is a path of length n,
that cannot be extended to the right (no arrow goes away from z). Prove
that every path beginning at x arrives after n steps at z.

57. (POL 4) For positive numbers a, b, c define A = (a + b + c)/3, G =
(abc)1/3, H = 3/(a−1 + b−1 + c−1). Prove that(

A

G

)3

≥ 1

4
+

3

4
· A
H
,

for every a, b, c > 0.
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58. (POR 1) Let ABC be a triangle. Denote by a, b, and c the lengths of
the sides opposite to the angles A, B, and C, respectively. Prove that7

bc

a+ b+ c
=

sinA+ sinB + sinC

cos(A/2) sin(B/2) sin(C/2)
.

59. (PRK 1) Let a regular 7-gon A0A1A2A3A4A5A6 be inscribed in a circle.
Prove that for any two points P , Q on the arc A0A6 the following equality
holds:

6∑
i=0

(−1)iPAi =

6∑
i=0

(−1)iQAi.

60. (PRK 2) (SL92-15).

61. (PRK 3) There are a board with 2n·2n (= 4n2) squares and 4n2−1 cards
numbered with different natural numbers. These cards are put one by one
on each of the squares. One square is empty. We can move a card to an
empty square from one of the adjacent squares (two squares are adjacent
if they have a common edge). Is it possible to exchange two cards on two
adjacent squares of a column (or a row) in a finite number of movements?

62. (ROM 1) Let c1, . . . , cn (n ≥ 2) be real numbers such that 0 ≤
∑
ci ≤ n.

Prove that there exist integers x1, . . . , xn such that
∑
ki = 0 and 1−n ≤

ci + nki ≤ n for every i = 1, . . . , n.

63. (ROM 2) Let a and b be integers. Prove that 2a2−1
b2+2 is not an integer.

64. (ROM 3) For any positive integer n consider all representations n =
a1 + · · · + ak, where a1 > a2 > · · · > ak > 0 are integers such that for all
i ∈ {1, 2, . . . , k − 1}, the number ai is divisible by ai+1. Find the longest
such representation of the number 1992.

65. (SAF 1) If A, B, C, and D are four distinct points in space, prove that
there is a plane P on which the orthogonal projections of A, B, C, and
D form a parallelogram (possibly degenerate).

66. (SPA 1) A circle of radius ρ is tangent to the sides AB and AC of the
triangle ABC, and its center K is at a distance p from BC.
(a) Prove that a(p − ρ) = 2s(r − ρ), where r is the inradius and 2s the

perimeter of ABC.
(b) Prove that if the circle intersect BC at D and E, then

DE =
4
√
rr1(ρ− r)(r1 − ρ)

(r1 − r)
,

where r1 is the exradius corresponding to the vertex A.

7 The statement of the problem is obviously wrong, and the authors couldn’t de-
termine a suitable alteration of the formulation which would make the problem
correct. We put it here only for completeness of the problem set.
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67. (SPA 2) In a triangle, a symmedian is a line through a vertex that is
symmetric to the median with the respect to the internal bisector (all
relative to the same vertex). In the triangle ABC, the median ma meets
BC at A′ and the circumcircle again at A1. The symmedian sa meets BC
at M and the circumcircle again at A2. Given that the line A1A2 contains
the circumcenter O of the triangle, prove that:

(a)
AA′

AM
=
b2 + c2

2bc
;

(b) 1 + 4b2c2 = a2(b2 + c2).

68. (SPA 3) Show that the numbers tan(rπ/15), where r is a positive integer
less than 15 and relatively prime to 15, satisfy

x8 − 92x6 + 134x4 − 28x2 + 1 = 0.

69. (SWE 1) (SL92-17).

70. (THA 1) Let two circles A and B with unequal radii r and R, respec-
tively, be tangent internally at the point A0. If there exists a sequence of
distinct circles (Cn) such that each circle is tangent to both A and B, and
each circle Cn+1 touches circle Cn at the point An, prove that

∞∑
n=1

|An+1An| <
4πRr

R+ r
.

71. (THA 2) Let P1(x, y) and P2(x, y) be two relatively prime polynomials
with complex coefficients. Let Q(x, y) and R(x, y) be polynomials with
complex coefficients and each of degree not exceeding d. Prove that there
exist two integers A1, A2 not simultaneously zero with |Ai| ≤ d + 1 (i =
1, 2) and such that the polynomial A1P1(x, y) +A2P2(x, y) is coprime to
Q(x, y) and R(x, y).

72. (TUR 1) In a school six different courses are taught: mathematics,
physics, biology, music, history, geography. The students were required to
rank these courses according to their preferences, where equal preferences
were allowed. It turned out that:
(i) mathematics was ranked among the most preferred courses by all stu-

dents;
(ii) no student ranked music among the least preferred ones;
(iii) all students preferred history to geography and physics to biology; and
(iv) no two rankings were the same.
Find the greatest possible value for the number of students in this school.

73. (TUR 2) Let {An | n = 1, 2, . . .} be a set of points in the plane such
that for each n, the disk with center An and radius 2n contains no other
point Aj . For any given positive real numbers a < b and R, show that
there is a subset G of the plane satisfying:
(i) the area of G is greater than or equal to R;
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(ii) for each point P in G, a <
∑∞

n=1
1

|AnP | < b.

74. (TUR 3) Let S =
{

πn

1992m | n,m ∈ Z
}
. Show that every real number

x ≥ 0 is an accumulation point of S.

75. (TWN 1) A sequence {an} of positive integers is defined by

an =

[
n+

√
n+

1

2

]
, n ∈ N.

Determine the positive integers that occur in the sequence.

76. (TWN 2) Given any triangle ABC and any positive integer n, we say
that n is a decomposable number for triangle ABC if there exists a de-
composition of the triangle ABC into n subtriangles with each subtriangle
similar to 
ABC. Determine the positive integers that are decomposable
numbers for every triangle.

77. (TWN 3) Show that if 994 integers are chosen from 1, 2, . . . , 1992 and
one of the chosen integers is less than 64, then there exist two among the
chosen integers such that one of them is a factor of the other.

78. (USA 1) Let Fn be the nth Fibonacci number, defined by F1 = F2 = 1
and Fn = Fn−1 + Fn−2 for n > 2. Let A0, A1, A2, . . . be a sequence of
points on a circle of radius 1 such that the minor arc from Ak−1 to Ak

runs clockwise and such that

µ(Ak−1Ak) =
4F2k+1

F 2
2k+1 + 1

for k ≥ 1, where µ(XY ) denotes the radian measure of the arc XY in the
clockwise direction. What is the limit of the radian measure of arc A0An

as n approaches infinity?

79. (USA 2) (SL92-18).

80. (USA 3) Given a graph with n vertices and a positive integer m that is
less than n, prove that the graph contains a set of m+1 vertices in which
the difference between the largest degree of any vertex in the set and the
smallest degree of any vertex in the set is at most m− 1.

81. (USA 4) Suppose that points X,Y, Z are located on sides BC, CA,
and AB, respectively, of 
ABC in such a way that 
XY Z is similar
to 
ABC. Prove that the orthocenter of 
XY Z is the circumcenter of

ABC.

82. (VIE 1) Let f(x) = xm + a1x
m−1 + · · · + am−1x + am and g(x) =

xn + b1x
n−1 + · · · + bn−1 + bn be two polynomials with real coefficients

such that for each real number x, f(x) is the square of an integer if and
only if so is g(x). Prove that if n+m > 0, then there exists a polynomial
h(x) with real coefficients such that f(x) · g(x) = (h(x))2.
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3.33.3 Shortlisted Problems

1. (AUS 2) Prove that for any positive integer m there exist an infinite
number of pairs of integers (x, y) such that (i) x and y are relatively prime;
(ii) y divides x2 +m; (iii) x divides y2 +m.

2. (CHN 1) Let R+ be the set of all nonnegative real numbers. Given two
positive real numbers a and b, suppose that a mapping f : R+ → R+

satisfies the functional equation

f(f(x)) + af(x) = b(a+ b)x.

Prove that there exists a unique solution of this equation.

3. (CHN 2) The diagonals of a quadrilateral ABCD are perpendicular:
AC⊥BD. Four squares, ABEF,BCGH,CDIJ,DAKL, are erected ex-
ternally on its sides. The intersection points of the pairs of straight lines
CL,DF ; DF,AH ; AH,BJ ; BJ,CL are denoted by P1, Q1, R1, S1, respec-
tively, and the intersection points of the pairs of straight lines AI,BK;
BK,CE; CE,DG; DG,AI are denoted by P2, Q2, R2, S2, respectively.
Prove that P1Q1R1S1

∼= P2Q2R2S2.

4. (CHN 3)IMO3 Given nine points in space, no four of which are coplanar,
find the minimal natural number n such that for any coloring with red
or blue of n edges drawn between these nine points there always exists a
triangle having all edges of the same color.

5. (COL 3) Let ABCD be a convex quadrilateral such that AC =
BD. Equilateral triangles are constructed on the sides of the quadrilat-
eral. Let O1, O2, O3, O4 be the centers of the triangles constructed on
AB,BC,CD,DA respectively. Show that O1O3 is perpendicular to O2O4.

6. (IND 2)IMO2 Find all functions f : R → R such that

f(x2 + f(y)) = y + f(x)2 for all x, y in R.

7. (IND 4) Circles G,G1, G2 are three circles related to each other as
follows: Circles G1 and G2 are externally tangent to one another at a
point W and both these circles are internally tangent to the circle G.
Points A,B,C are located on the circle G as follows: Line BC is a direct
common tangent to the pair of circles G1 and G2, and line WA is the
transverse common tangent at W to G1 and G2, with W and A lying on
the same side of the line BC. Prove that W is the incenter of the triangle
ABC.

8. (IND 5) Show that in the plane there exists a convex polygon of 1992
sides satisfying the following conditions:
(i) its side lengths are 1, 2, 3, . . . , 1992 in some order;
(ii) the polygon is circumscribable about a circle.
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Alternative formulation. Does there exist a 1992-gon with side lengths
1, 2, 3, . . . , 1992 circumscribed about a circle? Answer the same question
for a 1990-gon.

9. (IRN 1) Let f(x) be a polynomial with rational coefficients and α be
a real number such that α3 − α = f(α)3 − f(α) = 331992. Prove that for
each n ≥ 1,

(f (n)(α))3 − f (n)(α) = 331992,

where f (n)(x) = f(f(. . . f(x))), and n is a positive integer.

10. (ITA 1)IMO5 Let V be a finite subset of Euclidean space consisting of
points (x, y, z) with integer coordinates. Let S1, S2, S3 be the projections
of V onto the yz, xz, xy planes, respectively. Prove that

|V |2 ≤ |S1||S2||S3|

(|X | denotes the number of elements of X).

11. (JAP 2) In a triangle ABC, letD and E be the intersections of the bisec-
tors of ∠ABC and ∠ACB with the sides AC,AB, respectively. Determine
the angles ∠A,∠B,∠C if

�BDE = 24◦, �CED = 18◦.

12. (NET 1) Let f , g, and a be polynomials with real coefficients, f and g
in one variable and a in two variables. Suppose

f(x) − f(y) = a(x, y)(g(x) − g(y)) for all x, y ∈ R.

Prove that there exists a polynomial h with f(x) = h(g(x)) for all x ∈ R.

13. (NZL 1)IMO1 Find all integer triples (p, q, r) such that 1 < p < q < r
and (p− 1)(q − 1)(r − 1) is a divisor of (pqr − 1).

14. (POL 2) For any positive integer x define

g(x) = greatest odd divisor of x,

f(x) =

{
x/2 + x/g(x), if x is even;

2(x+1)/2, if x is odd.

Construct the sequence x1 = 1, xn+1 = f(xn). Show that the number
1992 appears in this sequence, determine the least n such that xn = 1992,
and determine whether n is unique.

15. (PRK 2) Does there exist a set M with the following properties?
(i) The set M consists of 1992 natural numbers.
(ii) Every element in M and the sum of any number of elements have the

form mk (m, k ∈ N, k ≥ 2).

16. (KOR 2) Prove that N = 5125−1
525−1 is a composite number.
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17. (SWE 1) Let α(n) be the number of digits equal to one in the binary
representation of a positive integer n. Prove that:
(a) the inequality α(n2) ≤ 1

2α(n)(α(n) + 1) holds;
(b) the above inequality is an equality for infinitely many positive integers;
(c) there exists a sequence (ni)

∞
1 such that α(n2

i )/α(ni) → 0 as i → ∞.

Alternative parts: Prove that there exists a sequence (ni)
∞
1 such that

α(n2
i )/α(ni) tends to

(d) ∞;
(e) an arbitrary real number γ ∈ (0, 1);
(f) an arbitrary real number γ ≥ 0.

18. (USA 2) Let [x] denote the greatest integer less than or equal to x.
Pick any x1 in [0, 1) and define the sequence x1, x2, x3, . . . by xn+1 = 0 if
xn = 0 and xn+1 = 1/xn − [1/xn] otherwise. Prove that

x1 + x2 + · · · + xn <
F1

F2
+
F2

F3
+ · · · + Fn

Fn+1
,

where F1 = F2 = 1 and Fn+2 = Fn+1 + Fn for n ≥ 1.

19. (IRE 1) Let f(x) = x8 + 4x6 + 2x4 + 28x2 + 1. Let p > 3 be a prime
and suppose there exists an integer z such that p divides f(z). Prove that
there exist integers z1, z2, . . . , z8 such that if

g(x) = (x− z1)(x − z2) · · · (x − z8),

then all coefficients of f(x) − g(x) are divisible by p.

20. (FRA 1)IMO4 In the plane, let there be given a circle C, a line l tangent
to C, and a point M on l. Find the locus of points P that have the
following property: There exist two points Q and R on l such that M is
the midpoint of QR and C is the incircle of PQR.

21. (GBR 2)IMO6 For each positive integer n, denote by s(n) the greatest
integer such that for all positive integers k ≤ s(n), n2 can be expressed
as a sum of squares of k positive integers.
(a) Prove that s(n) ≤ n2 − 14 for all n ≥ 4.
(b) Find a number n such that s(n) = n2 − 14.
(c) Prove that there exist infinitely many positive integers n such that

s(n) = n2 − 14.
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3.34 The Thirty-Fourth IMO

Istanbul, Turkey, July 13–24, 1993

3.34.1 Contest Problems

First Day (July 18)

1. Let n > 1 be an integer and let f(x) = xn + 5xn−1 + 3. Prove that there
do not exist polynomials g(x), h(x), each having integer coefficients and
degree at least one, such that f(x) = g(x)h(x).

2. A,B,C,D are four points in the plane, with C,D on the same side of the
line AB, such that AC ·BD = AD ·BC and �ADB = 90◦+�ACB. Find
the ratio

AB · CD
AC · BD,

and prove that circles ACD,BCD are orthogonal. (Intersecting circles
are said to be orthogonal if at either common point their tangents are
perpendicular.)

3. On an infinite chessboard, a solitaire game is played as follows: At the
start, we have n2 pieces occupying n2 squares that form a square of side
n. The only allowed move is a jump horizontally or vertically over an
occupied square to an unoccupied one, and the piece that has been jumped
over is removed. For what positive integers n can the game end with only
one piece remaining on the board?

Second Day (July 19)

4. For three points A,B,C in the plane we define m(ABC) to be the smallest
length of the three altitudes of the triangle ABC, where in the case of
A,B,C collinear, m(ABC) = 0. Let A,B,C be given points in the plane.
Prove that for any point X in the plane,

m(ABC) ≤ m(ABX) +m(AXC) +m(XBC).

5. Let N = {1, 2, 3, . . .}. Determine whether there exists a strictly increasing
function f : N → N with the following properties:

f(1) = 2; (1)

f(f(n)) = f(n) + n (n ∈ N). (2)

6. Let n be an integer greater than 1. In a circular arrangement of n lamps
L0, . . . , Ln−1, each one of that can be either ON or OFF, we start with the
situation where all lamps are ON, and then carry out a sequence of steps,
Step0,Step1,. . . . If Lj−1 (j is taken mod n) is ON, then Stepj changes the
status of Lj (it goes from ON to OFF or from OFF to ON) but does not
change the status of any of the other lamps. If Lj−1 is OFF, then Stepj

does not change anything at all. Show that:
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(a) There is a positive integer M(n) such that after M(n) steps all lamps
are ON again.

(b) If n has the form 2k, then all lamps are ON after n2 − 1 steps.
(c) If n has the form 2k +1, then all lamps are ON after n2 −n+1 steps.

3.34.2 Shortlisted Problems

1. (BRA 1) Show that there exists a finite set A ⊂ R2 such that for
every X ∈ A there are points Y1, Y2, . . . , Y1993 in A such that the distance
between X and Yi is equal to 1, for every i.

2. (CAN 2) Let triangle ABC be such that its circumradius R is equal to
1. Let r be the inradius of ABC and let p be the inradius of the orthic
triangle A′B′C′ of triangle ABC.
Prove that p ≤ 1 − 1

3 (1 + r)2.

Remark. The orthic triangle is the triangle whose vertices are the feet of
the altitudes of ABC.

3. (SPA 1) Consider the triangle ABC, its circumcircle k with center O
and radius R, and its incircle with center I and radius r. Another circle kc

is tangent to the sides CA,CB at D,E, respectively, and it is internally
tangent to k.
Show that the incenter I is the midpoint of DE.

4. (SPA 2) In the triangle ABC, let D,E be points on the side BC such
that ∠BAD = ∠CAE. If M,N are, respectively, the points of tangency
with BC of the incircles of the triangles ABD and ACE, show that

1

MB
+

1

MD
=

1

NC
+

1

NE
.

5. (FIN 3)IMO3 On an infinite chessboard, a solitaire game is played as
follows: At the start, we have n2 pieces occupying n2 squares that form a
square of side n. The only allowed move is a jump horizontally or vertically
over an occupied square to an unoccupied one, and the piece that has been
jumped over is removed. For what positive integers n can the game end
with only one piece remaining on the board?

6. (GER 1)IMO5 Let N = {1, 2, 3, . . .}. Determine whether there exists a
strictly increasing function f : N → N with the following properties:

f(1) = 2; (1)
f(f(n)) = f(n) + n (n ∈ N). (2)

7. (GEO 3) Let a, b, c be given integers a > 0, ac − b2 = P = P1 · · ·Pm

where P1, . . . , Pm are (distinct) prime numbers. LetM(n) denote the num-
ber of pairs of integers (x, y) for which

ax2 + 2bxy + cy2 = n.

Prove that M(n) is finite and M(n) = M(P k · n) for every integer k ≥ 0.
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8. (IND 1) Define a sequence 〈f(n)〉∞n=1 of positive integers by f(1) = 1
and

f(n) =

{
f(n− 1) − n, if f(n− 1) > n;
f(n− 1) + n, if f(n− 1) ≤ n,

for n ≥ 2. Let S = {n ∈ N | f(n) = 1993}.
(a) Prove that S is an infinite set.
(b) Find the least positive integer in S.
(c) If all the elements of S are written in ascending order as n1 < n2 <

n3 < · · · , show that

lim
i→∞

ni+1

ni
= 3.

9. (IND 4)
(a) Show that the set Q+ of all positive rational numbers can be par-

titioned into three disjoint subsets A,B,C satisfying the following
conditions:

BA = B, B2 = C, BC = A,

where HK stands for the set {hk | h ∈ H, k ∈ K} for any two subsets
H,K of Q+ and H2 stands for HH .

(b) Show that all positive rational cubes are in A for such a partition of
Q+.

(c) Find such a partition Q+ = A ∪B ∪ C with the property that for no
positive integer n ≤ 34 are both n and n+ 1 in A; that is,

min{n ∈ N | n ∈ A, n+ 1 ∈ A} > 34.

10. (IND 5) A natural number n is said to have the property P if whenever
n divides an − 1 for some integer a, n2 also necessarily divides an − 1.
(a) Show that every prime number has property P .
(b) Show that there are infinitely many composite numbers n that possess

property P .

11. (IRE 1)IMO1 Let n > 1 be an integer and let f(x) = xn + 5xn−1 + 3.
Prove that there do not exist polynomials g(x), h(x), each having integer
coefficients and degree at least one, such that f(x) = g(x)h(x).

12. (IRE 2) Let n, k be positive integers with k ≤ n and let S be a set
containing n distinct real numbers. Let T be the set of all real numbers
of the form x1 + x2 + · · · + xk, where x1, x2, . . . , xk are distinct elements
of S. Prove that T contains at least k(n− k) + 1 distinct elements.

13. (IRE 3) Let S be the set of all pairs (m,n) of relatively prime positive
integers m,n with n even and m < n. For s = (m,n) ∈ S write n = 2kn0,
where k, n0 are positive integers with n0 odd and define f(s) = (n0,m+
n− n0).
Prove that f is a function from S to S and that for each s = (m,n) ∈ S,
there exists a positive integer t ≤ m+n+1

4 such that f t(s) = s, where
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f t(s) = (f ◦ f ◦ · · · ◦ f)︸ ︷︷ ︸
t times

(s).

If m+n is a prime number that does not divide 2k−1 for k = 1, 2, . . . ,m+
n−2, prove that the smallest value of t that satisfies the above conditions
is

[
m+n+1

4

]
, where [x] denotes the greatest integer less than or equal to

x.

14. (ISR 1) The vertices D,E, F of an equilateral triangle lie on the sides
BC,CA,AB respectively of a triangle ABC. If a, b, c are the respective
lengths of these sides, and S the area of ABC, prove that

DE ≥ 2
√

2S√
a2 + b2 + c2 + 4

√
3S

.

15. (MCD 1)IMO4 For three points A,B,C in the plane we define m(ABC)
to be the smallest length of the three altitudes of the triangle ABC, where
in the case of A,B,C collinear, m(ABC) = 0. Let A,B,C be given points
in the plane. Prove that for any point X in the plane,

m(ABC) ≤ m(ABX) +m(AXC) +m(XBC).

16. (MCD 3) Let n ∈ N, n ≥ 2, and A0 = (a01, a02, . . . , a0n) be any n-tuple
of natural numbers such that 0 ≤ a0i ≤ i−1, for i = 1, . . . , n. The n-tuples
A1 = (a11, a12, . . . , a1n), A2 = (a21, a22, . . . , a2n), . . . are defined by

ai+1,j = Card{ai,l | 1 ≤ l ≤ j−1, ai,l ≥ ai,j}, for i ∈ N and j = 1, . . . , n.

Prove that there exists k ∈ N, such that Ak+2 = Ak.

17. (NET 2)IMO6 Let n be an integer greater than 1. In a circular arrange-
ment of n lamps L0, . . . , Ln−1, each one of that can be either ON or OFF,
we start with the situation where all lamps are ON, and then carry out
a sequence of steps, Step0,Step1,. . . . If Lj−1 (j is taken mod n) is ON,
then Stepj changes the status of Lj (it goes from ON to OFF or from
OFF to ON) but does not change the status of any of the other lamps. If
Lj−1 is OFF, then Stepj does not change anything at all. Show that:
(a) There is a positive integer M(n) such that after M(n) steps all lamps

are ON again.
(b) If n has the form 2k, then all lamps are ON after n2 − 1 steps.
(c) If n has the form 2k +1, then all lamps are ON after n2 −n+1 steps.

18. (POL 1) Let Sn be the number of sequences (a1, a2, . . . , an), where ai ∈
{0, 1}, in which no six consecutive blocks are equal. Prove that Sn → ∞
as n → ∞.

19. (ROM 2) Let a, b, n be positive integers, b > 1 and bn − 1 | a. Show
that the representation of the number a in the base b contains at least n
digits different from zero.
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20. (ROM 3) Let c1, . . . , cn ∈ R (n ≥ 2) such that 0 ≤
∑n

i=1 ci ≤ n. Show
that we can find integers k1, . . . , kn such that

∑n
i=1 ki = 0 and

1 − n ≤ ci + nki ≤ n for every i = 1, . . . , n.

21. (GBR 1) A circle S is said to cut a circle Σ diametrally if their common
chord is a diameter of Σ.
Let SA, SB, SC be three circles with distinct centers A,B,C respectively.
Prove that A,B,C are collinear if and only if there is no unique circle S
that cuts each of SA, SB, SC diametrally. Prove further that if there exists
more than one circle S that cuts each of SA, SB, SC diametrally, then all
such circles pass through two fixed points. Locate these points in relation
to the circles SA, SB, SC .

22. (GBR 2)IMO2 A,B,C,D are four points in the plane, with C,D on the
same side of the line AB, such that AC · BD = AD · BC and �ADB =
90◦ + �ACB. Find the ratio

AB · CD
AC · BD,

and prove that circles ACD,BCD are orthogonal. (Intersecting circles
are said to be orthogonal if at either common point their tangents are
perpendicular.)

23. (GBR 3) A finite set of (distinct) positive integers is called a “DS-set”
if each of the integers divides the sum of them all. Prove that every finite
set of positive integers is a subset of some DS-set.

24. (USA 3) Prove that

a

b+ 2c+ 3d
+

b

c+ 2d+ 3a
+

c

d+ 2a+ 3b
+

d

a+ 2b+ 3c
≥ 2

3

for all positive real numbers a, b, c, d.

25. (VIE 1) Solve the following system of equations, in which a is a given
number satisfying |a| > 1:

x2
1 = ax2 + 1,
x2

2 = ax3 + 1,
· · · · · ·
x2

999 = ax1000 + 1,
x2

1000 = ax1 + 1.

26. (VIE 2) Let a, b, c, d be four nonnegative numbers satisfying a+b+c+d =
1. Prove the inequality

abc+ bcd+ cda+ dab ≤ 1

27
+

176

27
abcd.
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3.35 The Thirty-Fifth IMO

Hong Kong, July 9–22, 1994

3.35.1 Contest Problems

First Day (July 13)

1. Let m and n be positive integers. The set A = {a1, a2, . . . , am} is a subset
of 1, 2, . . . , n. Whenever ai + aj ≤ n, 1 ≤ i ≤ j ≤ m, ai + aj also belongs
to A. Prove that

a1 + a2 + · · · + am

m
≥ n+ 1

2
.

2. N is an arbitrary point on the bisector of ∠BAC. P and O are points on
the lines AB and AN , respectively, such that �ANP = 90◦ = �APO. Q
is an arbitrary point on NP , and an arbitrary line through Q meets the
lines AB and AC at E and F respectively. Prove that �OQE = 90◦ if
and only if QE = QF .

3. For any positive integer k, Ak is the subset of {k + 1, k + 2, . . . , 2k} con-
sisting of all elements whose digits in base 2 contain exactly three 1’s. Let
f(k) denote the number of elements in Ak.
(a) Prove that for any positive integer m, f(k) = m has at least one

solution.
(b) Determine all positive integers m for which f(k) = m has a unique

solution.

Second Day (July 14)

4. Determine all pairs (m,n) of positive integers such that n3+1
mn−1 is an integer.

5. Let S be the set of real numbers greater than −1. Find all functions
f : S → S such that

f(x+ f(y) + xf(y)) = y + f(x) + yf(x) for all x and y in S,

and f(x)/x is strictly increasing for −1 < x < 0 and for 0 < x.

6. Find a set A of positive integers such that for any infinite set P of prime
numbers, there exist positive integers m ∈ A and n �∈ A, both the product
of the same number (at least two) of distinct elements of P .

3.35.2 Shortlisted Problems

1. A1 (USA) Let a0 = 1994 and an+1 =
a2

n

an+1 for each nonnegative integer
n. Prove that 1994 − n is the greatest integer less than or equal to an,
0 ≤ n ≤ 998.
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2. A2 (FRA)IMO1 Letm and n be positive integers. The setA = {a1, a2, . . . ,
am} is a subset of {1, 2, . . . , n}. Whenever ai + aj ≤ n, 1 ≤ i ≤ j ≤ m,
ai + aj also belongs to A. Prove that

a1 + a2 + · · · + am

m
≥ n+ 1

2
.

3. A3 (GBR)IMO5 Let S be the set of real numbers greater than −1. Find
all functions f : S → S such that

f(x+ f(y) + xf(y)) = y + f(x) + yf(x) for all x and y in S,

and f(x)/x is strictly increasing for −1 < x < 0 and for 0 < x.

4. A4 (MON) Let R denote the set of all real numbers and R+ the subset
of all positive ones. Let α and β be given elements in R, not necessarily
distinct. Find all functions f : R+ → R such that

f(x)f(y) = yαf
(x

2

)
+ xβf

(y
2

)
for all x and y in R+.

5. A5 (POL) Let f(x) = x2+1
2x for x �= 0. Define f (0)(x) = x and f (n)(x) =

f(f (n−1)(x)) for all positive integers n and x �= 0. Prove that for all
nonnegative integers n and x �= −1, 0, or 1,

f (n)(x)

f (n+1)(x)
= 1 +

1

f

((
x+1
x−1

)2n
) .

6. C1 (UKR) On a 5× 5 board, two players alternately mark numbers on
empty cells. The first player always marks 1’s, the second 0’s. One number
is marked per turn, until the board is filled. For each of the nine 3 × 3
squares the sum of the nine numbers on its cells is computed. Denote by
A the maximum of these sums. How large can the first player make A,
regardless of the responses of the second player?

7. C2 (COL) In a certain city, age is reckoned in terms of real numbers
rather than integers. Every two citizens x and x′ either know each other
or do not know each other. Moreover, if they do not, then there exists a
chain of citizens x = x0, x1, . . . , xn = x′ for some integer n ≥ 2 such that
xi−1 and xi know each other. In a census, all male citizens declare their
ages, and there is at least one male citizen. Each female citizen provides
only the information that her age is the average of the ages of all the
citizens she knows. Prove that this is enough to determine uniquely the
ages of all the female citizens.

8. C3 (MCD) Peter has three accounts in a bank, each with an integral
number of dollars. He is only allowed to transfer money from one account
to another so that the amount of money in the latter is doubled.
(a) Prove that Peter can always transfer all his money into two accounts.
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(b) Can Peter always transfer all his money into one account?

9. C4 (EST) There are n + 1 fixed positions in a row, labeled 0 to n in
increasing order from right to left. Cards numbered 0 to n are shuffled and
dealt, one in each position. The object of the game is to have card i in
the ith position for 0 ≤ i ≤ n. If this has not been achieved, the following
move is executed. Determine the smallest k such that the kth position
is occupied by a card l > k. Remove this card, slide all cards from the
(k+ 1)st to the lth position one place to the right, and replace the card l
in the lth position.
(a) Prove that the game lasts at most 2n − 1 moves.
(b) Prove that there exists a unique initial configuration for which the

game lasts exactly 2n − 1 moves.

10. C5 (SWE) At a round table are 1994 girls, playing a game with a deck
of n cards. Initially, one girl holds all the cards. In each turn, if at least
one girl holds at least two cards, one of these girls must pass a card to
each of her two neighbors. The game ends when and only when each girl
is holding at most one card.
(a) Prove that if n ≥ 1994, then the game cannot end.
(b) Prove that if n < 1994, then the game must end.

11. C6 (FIN) On an infinite square grid, two players alternately mark sym-
bols on empty cells. The first player always marks X ’s, the second O’s.
One symbol is marked per turn. The first player wins if there are 11 con-
secutive X ’s in a row, column, or diagonal. Prove that the second player
can prevent the first from winning.

12. C7 (BRA) Prove that for any integer n ≥ 2, there exists a set of 2n−1

points in the plane such that no 3 lie on a line and no 2n are the vertices
of a convex 2n-gon.

13. G1 (FRA) A semicircle Γ is drawn on one side of a straight line l. C
and D are points on Γ . The tangents to Γ at C and D meet l at B and
A respectively, with the center of the semicircle between them. Let E be
the point of intersection of AC and BD, and F the point on l such that
EF is perpendicular to l. Prove that EF bisects ∠CFD.

14. G2 (UKR) ABCD is a quadrilateral with BC parallel to AD. M is the
midpoint of CD, P that of MA and Q that of MB. The lines DP and
CQ meet at N . Prove that N is not outside triangle ABM .8

15. G3 (RUS) A circle ω is tangent to two parallel lines l1 and l2. A second
circle ω1 is tangent to l1 at A and to ω externally at C. A third circle ω2

is tangent to l2 at B, to ω externally at D, and to ω1 externally at E. AD
intersects BC at Q. Prove that Q is the circumcenter of triangle CDE.

8 This problem is false. However, it is true if “not outside ABM” is replaced by
“not outside ABCD”.
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16. G4 (AUS-ARM)IMO2 N is an arbitrary point on the bisector of ∠BAC.
P and O are points on the lines AB and AN , respectively, such that
�ANP = 90◦ = �APO. Q is an arbitrary point on NP , and an arbitrary
line through Q meets the lines AB and AC at E and F respectively. Prove
that �OQE = 90◦ if and only if QE = QF .

17. G5 (CYP) A line l does not meet a circle ω with center O. E is the
point on l such that OE is perpendicular to l. M is any point on l other
than E. The tangents from M to ω touch it at A and B. C is the point on
MA such that EC is perpendicular to MA. D is the point on MB such
that ED is perpendicular to MB. The line CD cuts OE at F . Prove that
the location of F is independent of that of M .

18. N1 (BUL) M is a subset of {1, 2, 3, . . . , 15} such that the product of
any three distinct elements of M is not a square. Determine the maximum
number of elements in M .

19. N2 (AUS)IMO4 Determine all pairs (m,n) of positive integers such that
n3+1
mn−1 is an integer.

20. N3 (FIN)IMO6 Find a set A of positive integers such that for any infinite
set P of prime numbers, there exist positive integers m ∈ A and n �∈ A,
both the product of the same number of distinct elements of P .

21. N4 (FRA) For any positive integer x0, three sequences {xn}, {yn}, and
{zn} are defined as follows:
(i) y0 = 4 and z0 = 1;
(ii) if xn is even for n ≥ 0, xn+1 = xn

2 , yn+1 = 2yn, and zn+1 = zn;
(iii) if xn is odd for n ≥ 0, xn+1 = xn − yn

2 − zn, yn+1 = yn, and zn+1 =
yn + zn.

The integer x0 is said to be good if xn = 0 for some n ≥ 1. Find the
number of good integers less than or equal to 1994.

22. N5 (ROM)IMO3 For any positive integer k, Ak is the subset of {k+1, k+
2, . . . , 2k} consisting of all elements whose digits in base 2 contain exactly
three 1’s. Let f(k) denote the number of elements in Ak.
(a) Prove that for any positive integer m, f(k) = m has at least one

solution.
(b) Determine all positive integers m for which f(k) = m has a unique

solution.

23. N6 (LAT) Let x1 and x2 be relatively prime positive integers. For n ≥ 2,
define xn+1 = xnxn−1 + 1.
(a) Prove that for every i > 1, there exists j > i such that xi

i divides xj
j .

(b) Is it true that x1 must divide xj
j for some j > 1?

24. N7 (GBR) A wobbly number is a positive integer whose digits in base 10
are alternately nonzero and zero, the units digit being nonzero. Determine
all positive integers that do not divide any wobbly number.
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3.36 The Thirty-Sixth IMO

Toronto, Canada, July 13–25, 1995

3.36.1 Contest Problems

First Day (July 19)

1. Let A,B,C, and D be distinct points on a line, in that order. The circles
with diameters AC and BD intersect at X and Y . O is an arbitrary point
on the line XY but not on AD. CO intersects the circle with diameter
AC again at M , and BO intersects the other circle again at N . Prove that
the lines AM , DN , and XY are concurrent.

2. Let a, b, and c be positive real numbers such that abc = 1. Prove that

1

a3(b + c)
+

1

b3(a+ c)
+

1

c3(a+ b)
≥ 3

2
.

3. Determine all integers n > 3 such that there are n points A1, A2, . . . , An

in the plane that satisfy the following two conditions simultaneously:
(a) No three lie on the same line.
(b) There exist real numbers p1, p2, . . . , pn such that the area of 
AiAjAk

is equal to pi + pj + pk, for 1 ≤ i < j < k ≤ n.

Second Day (July 20)

4. The positive real numbers x0, x1, . . . , x1995 satisfy x0 = x1995 and

xi−1 +
2

xi−1
= 2xi +

1

xi

for i = 1, 2, . . . , 1995. Find the maximum value that x0 can have.

5. Let ABCDEF be a convex hexagon with AB = BC = CD, DE = EF =
FA, and �BCD = �EFA = π/3 (that is, 60◦). Let G and H be two
points interior to the hexagon, such that angles AGB and DHE are both
2π/3 (that is, 120◦). Prove that AG+GB +GH +DH +HE ≥ CF .

6. Let p be an odd prime. Find the number of p-element subsets A of
{1, 2, . . . , 2p} such that the sum of all elements of A is divisible by p.

3.36.2 Shortlisted Problems

1. A1 (RUS)IMO2 Let a, b, and c be positive real numbers such that abc = 1.
Prove that

1

a3(b + c)
+

1

b3(a+ c)
+

1

c3(a+ b)
≥ 3

2
.
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2. A2 (SWE) Let a and b be nonnegative integers such that ab ≥ c2,
where c is an integer. Prove that there is a number n and integers
x1, x2, . . . , xn, y1, y2, . . . , yn such that

n∑
i=1

x2
i = a,

n∑
i=1

y2
i = b, and

n∑
i=1

xiyi = c.

3. A3 (UKR) Let n be an integer, n ≥ 3. Let a1, a2, . . . , an be real numbers
such that 2 ≤ ai ≤ 3 for i = 1, 2, . . . , n. If s = a1 + a2 + · · · + an, prove
that

a2
1 + a2

2 − a2
3

a1 + a2 − a3
+
a2
2 + a2

3 − a2
4

a2 + a3 − a4
+ · · · + a2

n + a2
1 − a2

2

an + a1 − a2
≤ 2s− 2n.

4. A4 (USA) Let a, b, and c be given positive real numbers. Determine all
positive real numbers x, y, and z such that

x+ y + z = a+ b+ c

and
4xyz − (a2x+ b2y + c2z) = abc.

5. A5 (UKR) Let R be the set of real numbers. Does there exist a function
f : R → R that simultaneously satisfies the following three conditions?
(a) There is a positive number M such that −M ≤ f(x) ≤ M for all x.
(b) f(1) = 1.
(c) If x �= 0, then

f

(
x+

1

x2

)
= f(x) +

[
f

(
1

x

)]2

.

6. A6 (JAP) Let n be an integer, n ≥ 3. Let x1, x2, . . . , xn be real numbers
such that xi < xi+1 for 1 ≤ i ≤ n− 1. Prove that

n(n− 1)

2

∑
i<j

xixj >

(
n−1∑
i=1

(n− i)xi

)⎛⎝ n∑
j=2

(j − 1)xj

⎞⎠ .

7. G1 (BUL)IMO1 Let A,B,C, and D be distinct points on a line, in that
order. The circles with diameters AC and BD intersect at X and Y . O
is an arbitrary point on the line XY but not on AD. CO intersects the
circle with diameter AC again at M , and BO intersects the other circle
again at N . Prove that the lines AM,DN, and XY are concurrent.

8. G2 (GER) Let A,B, and C be noncollinear points. Prove that there is
a unique point X in the plane of ABC such that XA2 + XB2 + AB2 =
XB2 +XC2 +BC2 = XC2 +XA2 + CA2.
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9. G3 (TUR) The incircle of ABC touches BC, CA, and AB at D, E, and
F respectively. X is a point inside ABC such that the incircle of XBC
touches BC at D also, and touches CX and XB at Y and Z, respectively.
Prove that EFZY is a cyclic quadrilateral.

10. G4 (UKR) An acute triangle ABC is given. Points A1 and A2 are taken
on the side BC (with A2 between A1 and C), B1 and B2 on the side AC
(with B2 between B1 and A), and C1 and C2 on the side AB (with C2

between C1 and B) such that

∠AA1A2 = ∠AA2A1 = ∠BB1B2 = ∠BB2B1 = ∠CC1C2 = ∠CC2C1.

The lines AA1, BB1, and CC1 form a triangle, and the lines AA2, BB2,
and CC2 form a second triangle. Prove that all six vertices of these two
triangles lie on a single circle.

11. G5 (NZL)IMO5 Let ABCDEF be a convex hexagon with AB = BC =
CD, DE = EF = FA, and �BCD = �EFA = π/3 (that is, 60◦). Let G
and H be two points interior to the hexagon such that angles AGB and
DHE are both 2π/3 (that is, 120◦). Prove that AG+GB+GH +DH +
HE ≥ CF .

12. G6 (USA) Let A1A2A3A4 be a tetrahedron, G its centroid, and
A′

1, A
′
2, A

′
3, and A′

4 the points where the circumsphere of A1A2A3A4 in-
tersects GA1, GA2, GA3, and GA4, respectively. Prove that

GA1 ·GA2 ·GA3 ·GA4 ≤ GA′
1 ·GA′

2 ·GA′
3 ·GA′

4

and

1

GA′
1

+
1

GA′
2

+
1

GA′
3

+
1

GA′
4

≤ 1

GA1
+

1

GA2
+

1

GA3
+

1

GA4
.

13. G7 (LAT) O is a point inside a convex quadrilateral ABCD of area
S. K, L, M , and N are interior points of the sides AB, BC, CD, and
DA respectively. If OKBL and OMDN are parallelograms, prove that√
S ≥

√
S1 +

√
S2, where S1 and S2 are the areas of ONAK and OLCM

respectively.

14. G8 (COL) Let ABC be a triangle. A circle passing through B and C in-
tersects the sides AB and AC again at C′ and B′, respectively. Prove that
BB′, CC′, and HH ′ are concurrent, where H and H ′ are the orthocenters
of triangles ABC and AB′C′ respectively.

15. N1 (ROM) Let k be a positive integer. Prove that there are infinitely
many perfect squares of the form n2k − 7, where n is a positive integer.

16. N2 (RUS) Let Z denote the set of all integers. Prove that for any integers
A and B, one can find an integer C for which M1 = {x2 +Ax+B : x ∈ Z}
and M2 = {2x2 + 2x+ C : x ∈ Z} do not intersect.
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17. N3 (CZE)IMO3 Determine all integers n > 3 such that there are n points
A1, A2, . . . , An in the plane that satisfy the following two conditions si-
multaneously:
(a) No three lie on the same line.
(b) There exist real numbers p1, p2, . . . , pn such that the area of 
AiAjAk

is equal to pi + pj + pk, for 1 ≤ i < j < k ≤ n.

18. N4 (BUL) Find all positive integers x and y such that x+y2+z3 = xyz,
where z is the greatest common divisor of x and y.

19. N5 (IRE) At a meeting of 12k people, each person exchanges greetings
with exactly 3k+6 others. For any two people, the number who exchange
greetings with both is the same. How many people are at the meeting?

20. N6 (POL)IMO6 Let p be an odd prime. Find the number of p-element
subsets A of {1, 2, . . . , 2p} such that the sum of all elements ofA is divisible
by p.

21. N7 (BLR) Does there exist an integer n > 1 that satisfies the following
condition?
The set of positive integers can be partitioned into n nonempty subsets
such that an arbitrary sum of n− 1 integers, one taken from each of any
n− 1 of the subsets, lies in the remaining subset.

22. N8 (GER) Let p be an odd prime. Determine positive integers x and
y for which x ≤ y and

√
2p − √

x − √
y is nonnegative and as small as

possible.

23. S1 (UKR) Does there exist a sequence F (1), F (2), F (3), . . . of nonneg-
ative integers that simultaneously satisfies the following three conditions?
(a) Each of the integers 0, 1, 2, . . . occurs in the sequence.
(b) Each positive integer occurs in the sequence infinitely often.
(c) For any n ≥ 2,

F
(
F
(
n163

))
= F (F (n)) + F (F (361)).

24. S2 (POL)IMO4 The positive real numbers x0, x1, . . . , x1995 satisfy x0 =
x1995 and

xi−1 +
2

xi−1
= 2xi +

1

xi

for i = 1, 2, . . . , 1995. Find the maximum value that x0 can have.

25. S3 (POL) For an integer x ≥ 1, let p(x) be the least prime that does not
divide x, and define q(x) to be the product of all primes less than p(x). In
particular, p(1) = 2. For x such that p(x) = 2, define q(x) = 1. Consider
the sequence x0, x1, x2, . . . defined by x0 = 1 and

xn+1 =
xnp(xn)

q(xn)

for n ≥ 0. Find all n such that xn = 1995.
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26. S4 (NZL) Suppose that x1, x2, x3, . . . are positive real numbers for which

xn
n =

n−1∑
j=0

xj
n

for n = 1, 2, 3, . . . . Prove that for all n,

2 − 1

2n−1
≤ xn < 2 − 1

2n
.

27. S5 (FIN) For positive integers n, the numbers f(n) are defined induc-
tively as follows: f(1) = 1, and for every positive integer n, f(n+1) is the
greatest integer m such that there is an arithmetic progression of positive
integers a1 < a2 < · · · < am = n for which

f(a1) = f(a2) = · · · = f(am).

Prove that there are positive integers a and b such that f(an+ b) = n+2
for every positive integer n.

28. S6 (IND) Let N denote the set of all positive integers. Prove that there
exists a unique function f : N → N satisfying

f(m+ f(n)) = n+ f(m+ 95)

for all m and n in N. What is the value of
∑19

k=1 f(k)?
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3.37 The Third-Seventh IMO

Mumbai, India, July 5–17, 1996

3.37.1 Contest Problems

First Day (July 10)

1. We are given a positive integer r and a rectangular board ABCD with
dimensions |AB| = 20, |BC| = 12. The rectangle is divided into a grid
of 20× 12 unit squares. The following moves are permitted on the board:
One can move from one square to another only if the distance between
the centers of the two squares is

√
r. The task is to find a sequence of

moves leading from the square corresponding to vertex A to the square
corresponding to vertex B.
(a) Show that the task cannot be done if r is divisible by 2 or 3.
(b) Prove that the task is possible when r = 73.
(c) Is there a solution when r = 97?

2. Let P be a point inside 
ABC such that

∠APB − ∠C = ∠APC − ∠B.

Let D,E be the incenters of 
APB,
APC respectively. Show that AP ,
BD, and CE meet in a point.

3. Let N0 denote the set of nonnegative integers. Find all functions f from
N0 into itself such that

f(m+ f(n)) = f(f(m)) + f(n), ∀m,n ∈ N0.

Second Day (July 11)

4. The positive integers a and b are such that the numbers 15a + 16b and
16a− 15b are both squares of positive integers. What is the least possible
value that can be taken on by the smaller of these two squares?

5. Let ABCDEF be a convex hexagon such that AB is parallel to DE,
BC is parallel to EF , and CD is parallel to AF . Let RA, RC , RE be the
circumradii of triangles FAB,BCD,DEF respectively, and let P denote
the perimeter of the hexagon. Prove that

RA +RC +RE ≥ P

2
.

6. Let p, q, n be three positive integers with p + q < n. Let (x0, x1, . . . , xn)
be an (n+ 1)-tuple of integers satisfying the following conditions:
(i) x0 = xn = 0.
(ii) For each i with 1 ≤ i ≤ n, either xi − xi−1 = p or xi − xi−1 = −q.
Show that there exists a pair (i, j) of distinct indices with (i, j) �= (0, n)
such that xi = xj .
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3.37.2 Shortlisted Problems

1. A1 (SLO) Let a, b, and c be positive real numbers such that abc = 1.
Prove that

ab

a5 + b5 + ab
+

bc

b5 + c5 + bc
+

ca

c5 + a5 + ca
≤ 1.

When does equality hold?

2. A2 (IRE) Let a1 ≥ a2 ≥ · · · ≥ an be real numbers such that

ak
1 + ak

2 + · · · + ak
n ≥ 0

for all integers k > 0. Let p = max{|a1|, . . . , |an|}. Prove that p = a1 and
that

(x− a1)(x− a2) · · · (x− an) ≤ xn − an
1

for all x > a1.

3. A3 (GRE) Let a > 2 be given, and define recursively

a0 = 1, a1 = a, an+1 =

(
a2

n

a2
n−1

− 2

)
an.

Show that for all k ∈ N, we have

1

a0
+

1

a1
+

1

a2
+ · · · + 1

ak
<

1

2

(
2 + a−

√
a2 − 4

)
.

4. A4 (KOR) Let a1, a2, . . . , an be nonnegative real numbers, not all zero.
(a) Prove that xn − a1x

n−1 − · · · − an−1x − an = 0 has precisely one
positive real root.

(b) Let A =
∑n

j=1 aj , B =
n∑

j=1

jaj, and let R be the positive real root of

the equation in part (a). Prove that

AA ≤ RB.

5. A5 (ROM) Let P (x) be the real polynomial function P (x) = ax3 +
bx2 + cx+ d. Prove that if |P (x)| ≤ 1 for all x such that |x| ≤ 1, then

|a| + |b| + |c| + |d| ≤ 7.

6. A6 (IRE) Let n be an even positive integer. Prove that there exists a
positive integer k such that

k = f(x)(x+ 1)n + g(x)(xn + 1)

for some polynomials f(x), g(x) having integer coefficients. If k0 denotes
the least such k, determine k0 as a function of n.
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A6′ Let n be an even positive integer. Prove that there exists a positive
integer k such that

k = f(x)(x+ 1)n + g(x)(xn + 1)

for some polynomials f(x), g(x) having integer coefficients. If k0 denotes
the least such k, show that k0 = 2q, where q is the odd integer determined
by n = q2r, r ∈ N.
A6′′ Prove that for each positive integer n, there exist polynomials
f(x), g(x) having integer coefficients such that

f(x)(x + 1)2
n

+ g(x)(x2n

+ 1) = 2.

7. A7 (ARM) Let f be a function from the set of real numbers R into
itself such that for all x ∈ R, we have |f(x)| ≤ 1 and

f

(
x+

13

42

)
+ f(x) = f

(
x+

1

6

)
+ f

(
x+

1

7

)
.

Prove that f is a periodic function (that is, there exists a nonzero real
number c such that f(x+ c) = f(x) for all x ∈ R).

8. A8 (ROM)IMO3 Let N0 denote the set of nonnegative integers. Find all
functions f from N0 into itself such that

f(m+ f(n)) = f(f(m)) + f(n), ∀m,n ∈ N0.

9. A9 (POL) Let the sequence a(n), n = 1, 2, 3, . . . , be generated as follows:
a(1) = 0, and for n > 1,

a(n) = a([n/2]) + (−1)
n(n+1)

2 . (Here [t] = the greatest integer ≤ t.)

(a) Determine the maximum and minimum value of a(n) over n ≤ 1996
and find all n ≤ 1996 for which these extreme values are attained.

(b) How many terms a(n), n ≤ 1996, are equal to 0?

10. G1 (GBR) Let triangle ABC have orthocenter H , and let P be a point
on its circumcircle, distinct from A,B,C. Let E be the foot of the altitude
BH, let PAQB and PARC be parallelograms, and let AQ meet HR in
X . Prove that EX is parallel to AP .

11. G2 (CAN)IMO2 Let P be a point inside 
ABC such that

∠APB − ∠C = ∠APC − ∠B.

Let D,E be the incenters of 
APB,
APC respectively. Show that
AP,BD and CE meet in a point.
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12. G3 (GBR) Let ABC be an acute-angled triangle with BC > CA. Let
O be the circumcenter, H its orthocenter, and F the foot of its altitude
CH . Let the perpendicular to OF at F meet the side CA at P . Prove
that ∠FHP = ∠BAC.
Possible second part: What happens if |BC| ≤ |CA| (the triangle still
being acute-angled)?

13. G4 (USA) Let 
ABC be an equilateral triangle and let P be a point
in its interior. Let the lines AP,BP,CP meet the sides BC,CA,AB in
the points A1, B1, C1 respectively. Prove that

A1B1 ·B1C1 · C1A1 ≥ A1B · B1C · C1A.

14. G5 (ARM)IMO5 Let ABCDEF be a convex hexagon such that AB
is parallel to DE, BC is parallel to EF , and CD is parallel to AF .
Let RA, RC , RE be the circumradii of triangles FAB,BCD,DEF respec-
tively, and let P denote the perimeter of the hexagon. Prove that

RA +RC +RE ≥ P

2
.

15. G6 (ARM) Let the sides of two rectangles be {a, b} and {c, d} with
a < c ≤ d < b and ab < cd. Prove that the first rectangle can be placed
within the second one if and only if

(b2 − a2)2 ≤ (bd− ac)2 + (bc− ad)2.

16. G7 (GBR) Let ABC be an acute-angled triangle with circumcenter O
and circumradius R. Let AO meet the circle BOC again in A′, let BO
meet the circle COA again in B′, and let CO meet the circle AOB again
in C′. Prove that

OA′ ·OB′ ·OC′ ≥ 8R3.

When does equality hold?

17. G8 (RUS) Let ABCD be a convex quadrilateral, and let RA, RB , RC ,
and RD denote the circumradii of the triangles DAB, ABC, BCD, and
CDA respectively. Prove that RA +RC > RB +RD if and only if

∠A+ ∠C > ∠B + ∠D.

18. G9 (UKR) In the plane are given a point O and a polygon F (not
necessarily convex). Let P denote the perimeter of F , D the sum of the
distances from O to the vertices of F , and H the sum of the distances
from O to the lines containing the sides of F . Prove that

D2 −H2 ≥ P 2

4
.
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19. N1 (UKR) Four integers are marked on a circle. At each step we si-
multaneously replace each number by the difference between this num-
ber and the next number on the circle, in a given direction (that is, the
numbers a, b, c, d are replaced by a − b, b − c, c − d, d − a). Is it possible
after 1996 such steps to have numbers a, b, c, d such that the numbers
|bc− ad|, |ac− bd|, |ab− cd| are primes?

20. N2 (RUS)IMO4 The positive integers a and b are such that the numbers
15a + 16b and 16a − 15b are both squares of positive integers. What is
the least possible value that can be taken on by the smaller of these two
squares?

21. N3 (BUL) A finite sequence of integers a0, a1, . . . , an is called quadratic
if for each i ∈ {1, 2, . . . , n} we have the equality |ai − ai−1| = i2.
(a) Prove that for any two integers b and c, there exist a natural number

n and a quadratic sequence with a0 = b and an = c.
(b) Find the smallest natural number n for which there exists a quadratic

sequence with a0 = 0 and an = 1996.

22. N4 (BUL) Find all positive integers a and b for which[
a2

b

]
+

[
b2

a

]
=

[
a2 + b2

ab

]
+ ab

where as usual, [t] refers to greatest integer that is less than or equal to t.

23. N5 (ROM) Let N0 denote the set of nonnegative integers. Find a bijec-
tive function f from N0 into N0 such that for all m,n ∈ N0,

f(3mn+m+ n) = 4f(m)f(n) + f(m) + f(n).

24. C1 (FIN)IMO1 We are given a positive integer r and a rectangular board
ABCD with dimensions |AB| = 20, |BC| = 12. The rectangle is divided
into a grid of 20× 12 unit squares. The following moves are permitted on
the board: One can move from one square to another only if the distance
between the centers of the two squares is

√
r. The task is to find a sequence

of moves leading from the square corresponding to vertex A to the square
corresponding to vertex B.
(a) Show that the task cannot be done if r is divisible by 2 or 3.
(b) Prove that the task is possible when r = 73.
(c) Is there a solution when r = 97?

25. C2 (UKR) An (n − 1) × (n − 1) square is divided into (n − 1)2 unit
squares in the usual manner. Each of the n2 vertices of these squares is to
be colored red or blue. Find the number of different colorings such that
each unit square has exactly two red vertices. (Two coloring schemes are
regarded as different if at least one vertex is colored differently in the two
schemes.)
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26. C3 (USA) Let k,m, n be integers such that 1 < n ≤ m − 1 ≤ k.
Determine the maximum size of a subset S of the set {1, 2, 3, . . . , k} such
that no n distinct elements of S add up to m.

27. C4 (FIN) Determine whether or not there exist two disjoint infinite sets
A and B of points in the plane satisfying the following conditions:
(i) No three points in A ∪ B are collinear, and the distance between any

two points in A∪ B is at least 1.
(ii) There is a point of A in any triangle whose vertices are in B, and there

is a point of B in any triangle whose vertices are in A.

28. C5 (FRA)IMO6 Let p, q, n be three positive integers with p + q < n.
Let (x0, x1, . . . , xn) be an (n+1)-tuple of integers satisfying the following
conditions:
(i) x0 = xn = 0.
(ii) For each i with 1 ≤ i ≤ n, either xi − xi−1 = p or xi − xi−1 = −q.
Show that there exists a pair (i, j) of distinct indices with (i, j) �= (0, n)
such that xi = xj .

29. C6 (CAN) A finite number of beans are placed on an infinite row of
squares. A sequence of moves is performed as follows: At each stage a
square containing more than one bean is chosen. Two beans are taken
from this square; one of them is placed on the square immediately to the
left, and the other is placed on the square immediately to the right of the
chosen square. The sequence terminates if at some point there is at most
one bean on each square. Given some initial configuration, show that any
legal sequence of moves will terminate after the same number of steps and
with the same final configuration.

30. C7 (IRE) Let U be a finite set and let f, g be bijective functions from
U onto itself. Let

S = {w ∈ U : f(f(w)) = g(g(w))}, T = {w ∈ U : f(g(w)) = g(f(w))},

and suppose that U = S ∪ T . Prove that for w ∈ U , f(w) ∈ S if and only
if g(w) ∈ S.
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3.38 The Thirty-Eighth IMO

Mar del Plata, Argentina, July 18–31, 1997

3.38.1 Contest Problems

First Day (July 24)

1. An infinite square grid is colored in the chessboard pattern. For any pair
of positive integers m,n consider a right-angled triangle whose vertices
are grid points and whose legs, of lengths m and n, run along the lines of
the grid. Let Sb be the total area of the black part of the triangle and Sw

the total area of its white part. Define the function f(m,n) = |Sb − Sw|.
(a) Calculate f(m,n) for all m,n that have the same parity.
(b) Prove that f(m,n) ≤ 1

2 max(m,n).
(c) Show that f(m,n) is not bounded from above.

2. In triangle ABC the angle at A is the smallest. A line through A meets the
circumcircle again at the point U lying on the arc BC opposite to A. The
perpendicular bisectors of CA and AB meet AU at V andW , respectively,
and the lines CV,BW meet at T . Show that AU = TB + TC.

3. Let x1, x2, . . . , xn be real numbers satisfying the conditions

|x1 + x2 + · · · + xn| = 1 and |xi| ≤
n+ 1

2
for i = 1, 2, . . . , n.

Show that there exists a permutation y1, . . . , yn of the sequence x1, . . . , xn

such that

|y1 + 2y2 + · · · + nyn| ≤
n+ 1

2
.

Second Day (July 25)

4. An n × n matrix with entries from {1, 2, . . . , 2n − 1} is called a silver
matrix if for each i the union of the ith row and the ith column contains
2n− 1 distinct entries. Show that:
(a) There exist no silver matrices for n = 1997.
(b) Silver matrices exist for infinitely many values of n.

5. Find all pairs of integers x, y ≥ 1 satisfying the equation xy2

= yx.

6. For a positive integer n, let f(n) denote the number of ways to represent
n as the sum of powers of 2 with nonnegative integer exponents. Rep-
resentations that differ only in the ordering in their summands are not
considered to be distinct. (For instance, f(4) = 4 because the number 4
can be represented in the following four ways: 4; 2+2; 2+1+1; 1+1+1+1.)
Prove that the inequality

2n2/4 < f(2n) < 2n2/2

holds for any integer n ≥ 3.
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3.38.2 Shortlisted Problems

1. (BLR)IMO1 An infinite square grid is colored in the chessboard pattern.
For any pair of positive integers m,n consider a right-angled triangle
whose vertices are grid points and whose legs, of lengths m and n, run
along the lines of the grid. Let Sb be the total area of the black part of
the triangle and Sw the total area of its white part. Define the function
f(m,n) = |Sb − Sw|.
(a) Calculate f(m,n) for all m,n that have the same parity.
(b) Prove that f(m,n) ≤ 1

2 max(m,n).
(c) Show that f(m,n) is not bounded from above.

2. (CAN) Let R1, R2, . . . be the family of finite sequences of positive inte-
gers defined by the following rules: R1 = (1), and if Rn−1 = (x1, . . . , xs),
then

Rn = (1, 2, . . . , x1, 1, 2, . . . , x2, . . . , 1, 2, . . . , xs, n).

For example, R2 = (1, 2), R3 = (1, 1, 2, 3), R4 = (1, 1, 1, 2, 1, 2, 3, 4).
Prove that if n > 1, then the kth term from the left in Rn is equal to 1 if
and only if the kth term from the right in Rn is different from 1.

3. (GER) For each finite set U of nonzero vectors in the plane we define
l(U) to be the length of the vector that is the sum of all vectors in U .
Given a finite set V of nonzero vectors in the plane, a subset B of V is said
to be maximal if l(B) is greater than or equal to l(A) for each nonempty
subset A of V .
(a) Construct sets of 4 and 5 vectors that have 8 and 10 maximal subsets

respectively.
(b) Show that for any set V consisting of n ≥ 1 vectors, the number of

maximal subsets is less than or equal to 2n.

4. (IRN)IMO4 An n×n matrix with entries from {1, 2, . . . , 2n− 1} is called
a coveralls matrix if for each i the union of the ith row and the ith column
contains 2n− 1 distinct entries. Show that:
(a) There exist no coveralls matrices for n = 1997.
(b) Coveralls matrices exist for infinitely many values of n.

5. (ROM) Let ABCD be a regular tetrahedron and M,N distinct points
in the planes ABC and ADC respectively. Show that the segments
MN,BN,MD are the sides of a triangle.

6. (IRE) (a) Let n be a positive integer. Prove that there exist distinct
positive integers x, y, z such that

xn−1 + yn = zn+1.

(b) Let a, b, c be positive integers such that a and b are relatively prime
and c is relatively prime either to a or to b. Prove that there exist
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infinitely many triples (x, y, z) of distinct positive integers x, y, z such
that

xa + yb = zc.

Original formulation: Let a, b, c, n be positive integers such that n is odd
and ac is relatively prime to 2b. Prove that there exist distinct positive
integers x, y, z such that
(i) xa + yb = zc, and
(ii) xyz is relatively prime to n.

7. (RUS) Let ABCDEF be a convex hexagon such that AB = BC, CD =
DE, EF = FA. Prove that

BC

BE
+
DE

DA
+
FA

FC
≥ 3

2
.

When does equality occur?

8. (GBR)IMO2 Four different points A,B,C,D are chosen on a circle Γ such
that the triangle BCD is not right-angled. Prove that:
(a) The perpendicular bisectors of AB and AC meet the line AD at cer-

tain points W and V , respectively, and that the lines CV and BW
meet at a certain point T .

(b) The length of one of the line segments AD, BT , and CT is the sum
of the lengths of the other two.

Original formulation. In triangle ABC the angle at A is the smallest. A
line through A meets the circumcircle again at the point U lying on the
arc BC opposite to A. The perpendicular bisectors of CA and AB meet
AU at V and W , respectively, and the lines CV,BW meet at T . Show
that AU = TB + TC.

9. (USA) Let A1A2A3 be a nonisosceles triangle with incenter I. Let Ci,
i = 1, 2, 3, be the smaller circle through I tangent to AiAi+1 and AiAi+2

(the addition of indices being mod 3). Let Bi, i = 1, 2, 3, be the second
point of intersection of Ci+1 and Ci+2. Prove that the circumcenters of
the triangles A1B1I, A2B2I, A3B3I are collinear.

10. (CZE) Find all positive integers k for which the following statement is
true:
If F (x) is a polynomial with integer coefficients satisfying the condition

0 ≤ F (c) ≤ k for each c ∈ {0, 1, . . . , k + 1},

then F (0) = F (1) = · · · = F (k + 1).

11. (NET) Let P (x) be a polynomial with real coefficients such that P (x) >
0 for all x ≥ 0. Prove that there exists a positive integer n such that
(1 + x)nP (x) is a polynomial with nonnegative coefficients.

12. (ITA) Let p be a prime number and let f(x) be a polynomial of degree
d with integer coefficients such that:
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(i) f(0) = 0, f(1) = 1;
(ii) for every positive integer n, the remainder of the division of f(n) by

p is either 0 or 1.
Prove that d ≥ p− 1.

13. (IND) In town A, there are n girls and n boys, and each girl knows each
boy. In town B, there are n girls g1, g2, . . . , gn and 2n− 1 boys b1, b2, . . .,
b2n−1. The girl gi, i = 1, 2, . . . , n, knows the boys b1, b2, . . . , b2i−1, and no
others. For all r = 1, 2, . . . , n, denote by A(r), B(r) the number of different
ways in which r girls from town A, respectively town B, can dance with r
boys from their own town, forming r pairs, each girl with a boy she knows.
Prove that A(r) = B(r) for each r = 1, 2, . . . , n.

14. (IND) Let b,m, n be positive integers such that b > 1 and m �= n. Prove
that if bm − 1 and bn − 1 have the same prime divisors, then b + 1 is a
power of 2.

15. (RUS) An infinite arithmetic progression whose terms are positive in-
tegers contains the square of an integer and the cube of an integer. Show
that it contains the sixth power of an integer.

16. (BLR) In an acute-angled triangle ABC, let AD,BE be altitudes and
AP,BQ internal bisectors. Denote by I and O the incenter and the cir-
cumcenter of the triangle, respectively. Prove that the points D, E, and
I are collinear if and only if the points P , Q, and O are collinear.

17. (CZE)IMO5 Find all pairs of integers x, y ≥ 1 satisfying the equation

xy2

= yx.

18. (GBR) The altitudes through the vertices A,B,C of an acute-angled
triangle ABC meet the opposite sides at D,E, F , respectively. The line
through D parallel to EF meets the lines AC and AB at Q and R, re-
spectively. The line EF meets BC at P . Prove that the circumcircle of
the triangle PQR passes through the midpoint of BC.

19. (IRE) Let a1 ≥ · · · ≥ an ≥ an+1 = 0 be a sequence of real numbers.
Prove that √√√√ n∑

k=1

ak ≤
n∑

k=1

√
k(

√
ak −√

ak+1).

20. (IRE) Let D be an internal point on the side BC of a triangle ABC.
The line AD meets the circumcircle of ABC again at X . Let P and Q be
the feet of the perpendiculars from X to AB and AC, respectively, and
let γ be the circle with diameter XD. Prove that the line PQ is tangent
to γ if and only if AB = AC.

21. (RUS)IMO3 Let x1, x2, . . . , xn be real numbers satisfying the conditions

|x1 + x2 + · · · + xn| = 1 and |xi| ≤
n+ 1

2
for i = 1, 2, . . . , n.
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Show that there exists a permutation y1, . . . , yn of the sequence x1, . . . , xn

such that

|y1 + 2y2 + · · · + nyn| ≤
n+ 1

2
.

22. (UKR) (a) Do there exist functions f : R → R and g : R → R such that

f(g(x)) = x2 and g(f(x)) = x3 for all x ∈ R?

(b) Do there exist functions f : R → R and g : R → R such that

f(g(x)) = x2 and g(f(x)) = x4 for all x ∈ R?

23. (GBR) Let ABCD be a convex quadrilateral and O the intersection of
its diagonals AC and BD. If

OA sin ∠A+OC sin ∠C = OB sin ∠B + OD sin ∠D,

prove that ABCD is cyclic.

24. (LIT)IMO6 For a positive integer n, let f(n) denote the number of ways to
represent n as the sum of powers of 2 with nonnegative integer exponents.
Representations that differ only in the ordering in their summands are not
considered to be distinct. (For instance, f(4) = 4 because the number 4
can be represented in the following four ways: 4; 2+2; 2+1+1; 1+1+1+1.)
Prove that the inequality

2n2/4 < f(2n) < 2n2/2

holds for any integer n ≥ 3.

25. (POL) The bisectors of angles A,B,C of a triangle ABC meet its cir-
cumcircle again at the points K,L,M , respectively. Let R be an internal
point on the side AB. The points P and Q are defined by the following
conditions: RP is parallel to AK, and BP is perpendicular to BL; RQ
is parallel to BL, and AQ is perpendicular to AK. Show that the lines
KP,LQ,MR have a point in common.

26. (ITA) For every integer n ≥ 2 determine the minimum value that the
sum a0 + a1 + · · · + an can take for nonnegative numbers a0, a1, . . . , an

satisfying the condition

a0 = 1, ai ≤ ai+1 + ai+2 for i = 0, . . . , n− 2.
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3.39 The Thirty-Ninth IMO

Taipei, Taiwan, July 10–21, 1998

3.39.1 Contest Problems

First Day (July 15)

1. A convex quadrilateral ABCD has perpendicular diagonals. The perpen-
dicular bisectors of AB and CD meet at a unique point P inside ABCD.
Prove that ABCD is cyclic if and only if triangles ABP and CDP have
equal areas.

2. In a contest, there are m candidates and n judges, where n ≥ 3 is an odd
integer. Each candidate is evaluated by each judge as either pass or fail.
Suppose that each pair of judges agrees on at most k candidates. Prove
that

k

m
≥ n− 1

2n
.

3. For any positive integer n, let τ(n) denote the number of its positive
divisors (including 1 and itself). Determine all positive integers m for

which there exists a positive integer n such that τ(n2)
τ(n) = m.

Second Day (July 16)

4. Determine all pairs (x, y) of positive integers such that x2y + x + y is
divisible by xy2 + y + 7.

5. Let I be the incenter of triangle ABC. Let K, L, and M be the points
of tangency of the incircle of ABC with AB, BC, and CA, respectively.
The line t passes through B and is parallel to KL. The lines MK and
ML intersect t at the points R and S. Prove that ∠RIS is acute.

6. Determine the least possible value of f(1998), where f is a function from
the set N of positive integers into itself such that for all m,n ∈ N,

f(n2f(m)) = m[f(n)]2.

3.39.2 Shortlisted Problems

1. (LUX)IMO1 A convex quadrilateral ABCD has perpendicular diagonals.
The perpendicular bisectors of AB and CD meet at a unique point P
inside ABCD. Prove that ABCD is cyclic if and only if triangles ABP
and CDP have equal areas.
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2. (POL) Let ABCD be a cyclic quadrilateral. Let E and F be variable
points on the sides AB and CD, respectively, such that AE : EB = CF :
FD. Let P be the point on the segment EF such that PE : PF = AB :
CD. Prove that the ratio between the areas of triangles APD and BPC
does not depend on the choice of E and F .

3. (UKR)IMO5 Let I be the incenter of triangle ABC. Let K, L, and M
be the points of tangency of the incircle of ABC with AB, BC, and CA,
respectively. The line t passes through B and is parallel to KL. The lines
MK and ML intersect t at the points R and S. Prove that ∠RIS is acute.

4. (ARM) Let M and N be points inside triangle ABC such that

∠MAB = ∠NAC and ∠MBA = ∠NBC.

Prove that
AM · AN
AB · AC +

BM · BN
BA ·BC +

CM · CN
CA · CB = 1.

5. (FRA) Let ABC be a triangle, H its orthocenter, O its circumcenter,
and R its circumradius. Let D be the reflection of A across BC, E that
of B across CA, and F that of C across AB. Prove that D, E, and F are
collinear if and only if OH = 2R.

6. (POL) Let ABCDEF be a convex hexagon such that ∠B+∠D+∠F =
360◦ and

AB

BC
· CD
DE

· EF
FA

= 1.

Prove that
BC

CA
· AE
EF

· FD
DB

= 1.

7. (GBR) Let ABC be a triangle such that ∠ACB = 2∠ABC. Let D be
the point on the side BC such that CD = 2BD. The segment AD is
extended to E so that AD = DE. Prove that

∠ECB + 180◦ = 2∠EBC.

8. (IND) Let ABC be a triangle such that ∠A = 90◦ and ∠B < ∠C. The
tangent at A to its circumcircle ω meets the line BC at D. Let E be the
reflection of A across BC, X the foot of the perpendicular from A to BE,
and Y the midpoint of AX . Let the line BY meet ω again at Z. Prove
that the line BD is tangent to the circumcircle of triangle ADZ.

9. (MON) Let a1, a2, . . . , an be positive real numbers such that a1 + a2 +
· · · + an < 1. Prove that

a1a2 · · · an[1 − (a1 + a2 + · · · + an)]

(a1 + a2 + · · · + an)(1 − a1)(1 − a2) · · · (1 − an)
≤ 1

nn+1
.
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10. (AUS) Let r1, r2, . . . , rn be real numbers greater than or equal to 1.
Prove that

1

r1 + 1
+

1

r2 + 1
+ · · · + 1

rn + 1
≥ n

n
√
r1r2 · · · rn + 1

.

11. (RUS) Let x, y, and z be positive real numbers such that xyz = 1. Prove
that

x3

(1 + y)(1 + z)
+

y3

(1 + z)(1 + x)
+

z3

(1 + x)(1 + y)
≥ 3

4
.

12. (POL) Let n ≥ k ≥ 0 be integers. The numbers c(n, k) are defined as
follows:

c(n, 0) = c(n, n) = 1 for all n ≥ 0;
c(n+ 1, k) = 2kc(n, k) + c(n, k − 1) for n ≥ k ≥ 1.

Prove that c(n, k) = c(n, n− k) for all n ≥ k ≥ 0.

13. (BUL)IMO6 Determine the least possible value of f(1998), where f is a
function from the set N of positive integers into itself such that for all
m,n ∈ N,

f(n2f(m)) = m[f(n)]2.

14. (GBR)IMO4 Determine all pairs (x, y) of positive integers such that x2y+
x+ y is divisible by xy2 + y + 7.

15. (AUS) Determine all pairs (a, b) of real numbers such that a�bn = b�an 
for all positive integers n. (Note that �x denotes the greatest integer less
than or equal to x.)

16. (UKR) Determine the smallest integer n ≥ 4 for which one can choose
four different numbers a, b, c, and d from any n distinct integers such that
a+ b− c− d is divisible by 20.

17. (GBR) A sequence of integers a1, a2, a3, . . . is defined as follows: a1 = 1,
and for n ≥ 1, an+1 is the smallest integer greater than an such that
ai + aj �= 3ak for any i, j, k in {1, 2, . . . , n + 1}, not necessarily distinct.
Determine a1998.

18. (BUL) Determine all positive integers n for which there exists an integer
m such that 2n − 1 is a divisor of m2 + 9.

19. (BLR)IMO3 For any positive integer n, let τ(n) denote the number of its
positive divisors (including 1 and itself). Determine all positive integers

m for which there exists a positive integer n such that τ(n2)
τ(n) = m.

20. (ARG) Prove that for each positive integer n, there exists a positive
integer with the following properties:
(i) It has exactly n digits.
(ii) None of the digits is 0.
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(iii) It is divisible by the sum of its digits.

21. (CAN) Let a0, a1, a2, . . . be an increasing sequence of nonnegative inte-
gers such that every nonnegative integer can be expressed uniquely in the
form ai + 2aj + 4ak, where i, j, k are not necessarily distinct. Determine
a1998.

22. (UKR) A rectangular array of numbers is given. In each row and each
column, the sum of all numbers is an integer. Prove that each nonintegral
number x in the array can be changed into either �x� or �x so that the
row sums and column sums remain unchanged. (Note that �x� is the least
integer greater than or equal to x, while �x is the greatest integer less
than or equal to x.)

23. (BLR) Let n be an integer greater than 2. A positive integer is said to be
attainable if it is 1 or can be obtained from 1 by a sequence of operations
with the following properties:
(i) The first operation is either addition or multiplication.
(ii) Thereafter, additions and multiplications are used alternately.
(iii) In each addition one can choose independently whether to add 2 or n.
(iv) In each multiplication, one can choose independently whether to mul-

tiply by 2 or by n.
A positive integer that cannot be so obtained is said to be unattainable.
(a) Prove that if n ≥ 9, there are infinitely many unattainable positive

integers.
(b) Prove that if n = 3, all positive integers except 7 are attainable.

24. (SWE) Cards numbered 1 to 9 are arranged at random in a row. In a
move, one may choose any block of consecutive cards whose numbers are in
ascending or descending order, and switch the block around. For example,
916532748 may be changed to 913562748. Prove that in at most 12 moves,
one can arrange the 9 cards so that their numbers are in ascending or
descending order.

25. (NZL) Let U = {1, 2, . . . , n}, where n ≥ 3. A subset S of U is said to be
split by an arrangement of the elements of U if an element not in S occurs
in the arrangement somewhere between two elements of S. For example,
13542 splits {1, 2, 3} but not {3, 4, 5}. Prove that for any n − 2 subsets
of U , each containing at least 2 and at most n − 1 elements, there is an
arrangement of the elements of U that splits all of them.

26. (IND)IMO2 In a contest, there are m candidates and n judges, where
n ≥ 3 is an odd integer. Each candidate is evaluated by each judge as
either pass or fail. Suppose that each pair of judges agrees on at most k
candidates. Prove that k

m ≥ n−1
2n .

27. (BLR) Ten points such that no three of them lie on a line are marked in
the plane. Each pair of points is connected with a segment. Each of these
segments is painted with one of k colors in such a way that for any k of
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the ten points, there are k segments each joining two of them with no two
being painted the same color. Determine all integers k, 1 ≤ k ≤ 10, for
which this is possible.

28. (IRN) A solitaire game is played on an m× n rectangular board, using
mn markers that are white on one side and black on the other. Initially,
each square of the board contains a marker with its white side up, except
for one corner square, which contains a marker with its black side up. In
each move, one can take away one marker with its black side up, but must
then turn over all markers that are in squares having an edge in common
with the square of the removed marker. Determine all pairs (m,n) of
positive integers such that all markers can be removed from the board.
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3.40 The Fortieth IMO

Bucharest, Romania, July 10–22, 1999

3.40.1 Contest Problems

First Day (July 16)

1. A set S of points in the plane will be called completely symmetric if it has
at least three elements and satisfies the following condition: For every two
distinct points A,B from S the perpendicular bisector of the segment AB
is an axis of symmetry for S.
Prove that if a completely symmetric set is finite, then it consists of the
vertices of a regular polygon.

2. Let n ≥ 2 be a fixed integer. Find the least constant C such that the
inequality ∑

i<j

xixj(x
2
i + x2

j ) ≤ C

(∑
i

xi

)4

holds for every x1, . . . , xn ≥ 0 (the sum on the left consists of
(
n
2

)
sum-

mands). For this constant C, characterize the instances of equality.

3. Let n be an even positive integer. We say that two different cells of an
n×n board are neighboring if they have a common side. Find the minimal
number of cells on the n × n board that must be marked so that every
cell (marked or not marked) has a marked neighboring cell.

Second Day (July 17)

4. Find all pairs of positive integers (x, p) such that p is a prime, x ≤ 2p ,
and xp−1 is a divisor of (p− 1)x + 1.

5. Two circles Ω1 and Ω2 touch internally the circle Ω in M and N , and
the center of Ω2 is on Ω1. The common chord of the circles Ω1 and Ω2

intersects Ω in A and B. MA and MB intersect Ω1 in C and D. Prove
that Ω2 is tangent to CD.

6. Find all the functions f : R → R that satisfy

f(x− f(y)) = f(f(y)) + xf(y) + f(x) − 1

for all x, y ∈ R.

3.40.2 Shortlisted Problems

1. N1 (TWN)IMO4 Find all pairs of positive integers (x, p) such that p is
a prime, x ≤ 2p , and xp−1 is a divisor of (p− 1)x + 1.
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2. N2 (ARM) Prove that every positive rational number can be repre-

sented in the form
a3 + b3

c3 + d3
, where a, b, c, d are positive integers.

3. N3 (RUS) Prove that there exist two strictly increasing sequences (an)
and (bn) such that an(an + 1) divides b2n + 1 for every natural number n.

4. N4 (FRA) Denote by S the set of all primes p such that the decimal
representation of 1/p has its fundamental period divisible by 3. For every
p ∈ S such that 1/p has its fundamental period 3r one may write 1/p =
0.a1a2 . . . a3ra1a2 . . . a3r . . . , where r = r(p); for every p ∈ S and every
integer k ≥ 1 define f(k, p) by

f(k, p) = ak + ak+r(p) + ak+2r(p).

(a) Prove that S is infinite.
(b) Find the highest value of f(k, p) for k ≥ 1 and p ∈ S.

5. N5 (ARM) Let n, k be positive integers such that n is not divisible by
3 and k ≥ n. Prove that there exists a positive integer m that is divisible
by n and the sum of whose digits in decimal representation is k.

6. N6 (BLR) Prove that for every real number M there exists an infinite
arithmetic progression such that:
(i) each term is a positive integer and the common difference is not di-

visible by 10;
(ii) the sum of the digits of each term (in decimal representation) exceeds

M .

7. G1 (ARM) Let ABC be a triangle and M an interior point. Prove that

min{MA,MB,MC} +MA+MB +MC < AB +AC + BC.

8. G2 (JAP) A circle is called a separator for a set of five points in a plane
if it passes through three of these points, it contains a fourth point in its
interior, and the fifth point is outside the circle.
Prove that every set of five points such that no three are collinear and no
four are concyclic has exactly four separators.

9. G3 (EST)IMO1 A set S of points in space will be called completely sym-
metric if it has at least three elements and satisfies the following condition:
For every two distinct points A,B from S the perpendicular bisector of
the segment AB is an axis of symmetry for S.
Prove that if a completely symmetric set is finite, then it consists of the
vertices of either a regular polygon, a regular tetrahedron, or a regular
octahedron.

10. G4 (GBR) For a triangle T = ABC we take the point X on the side
(AB) such that AX/XB = 4/5, the point Y on the segment (CX) such
that CY = 2Y X , and, if possible, the point Z on the ray (CA such that
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�CXZ = 180◦ − �ABC. We denote by Σ the set of all triangles T for
which �XY Z = 45◦.
Prove that all the triangles from Σ are similar and find the measure of
their smallest angle.

11. G5 (FRA) Let ABC be a triangle, Ω its incircle and Ωa, Ωb, Ωc three
circles three circles orthogonal to Ω passing through B and C, A and C,
and A and B respectively. The circles Ωa, Ωb meet again in C′; in the
same way we obtain the points B′ and A′. Prove that the radius of the
circumcircle of A′B′C′ is half the radius of Ω.

12. G6 (RUS)IMO5 Two circles Ω1 and Ω2 touch internally the circle Ω in
M and N , and the center of Ω2 is on Ω1. The common chord of the circles
Ω1 and Ω2 intersects Ω in A and B. MA and MB intersect Ω1 in C and
D. Prove that Ω2 is tangent to CD.

13. G7 (ARM) The point M inside the convex quadrilateral ABCD is such
that

MA = MC, ∠AMB = ∠MAD+∠MCD, ∠CMD = ∠MCB+∠MAB.

Prove that AB · CM = BC ·MD and BM ·AD = MA · CD.

14. G8 (RUS) Points A,B,C divide the circumcircle Ω of the triangle ABC
into three arcs. Let X be a variable point on the arc AB, and let O1, O2 be
the incenters of the triangles CAX and CBX . Prove that the circumcircle
of the triangle XO1O2 intersects Ω in a fixed point.

15. A1 (POL)IMO2 Let n ≥ 2 be a fixed integer. Find the least constant C
such that the inequality

∑
i<j

xixj(x
2
i + x2

j ) ≤ C

(∑
i

xi

)4

holds for every x1, . . . , xn ≥ 0 (the sum on the left consists of
(
n
2

)
sum-

mands). For this constant C, characterize the instances of equality.

16. A2 (RUS) The numbers from 1 to n2 are randomly arranged in the cells
of a n× n square (n ≥ 2). For any pair of numbers situated in the same
row or in the same column, the ratio of the greater number to the smaller
one is calculated.
Let us call the characteristic of the arrangement the smallest of these
n2(n−1) fractions. What is the highest possible value of the characteristic?

17. A3 (FIN) A game is played by n girls (n ≥ 2), everybody having a ball.
Each of the

(
n
2

)
pairs of players, in an arbitrary order, exchange the balls

they have at that moment. The game is called nice if at the end nobody
has her own ball, and it is called tiresome if at the end everybody has her
initial ball. Determine the values of n for which there exists a nice game
and those for which there exists a tiresome game.
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18. A4 (BLR) Prove that the set of positive integers cannot be partitioned
into three nonempty subsets such that for any two integers x, y taken from
two different subsets, the number x2 −xy+y2 belongs to the third subset.

19. A5 (JAP)IMO6 Find all the functions f : R → R that satisfy

f(x− f(y)) = f(f(y)) + xf(y) + f(x) − 1

for all x, y ∈ R.

20. A6 (SWE) For n ≥ 3 and a1 ≤ a2 ≤ · · · ≤ an given real numbers we
have the following instructions:
(1) place the numbers in some order in a circle;
(2) delete one of the numbers from the circle;
(3) if just two numbers are remaining in the circle, let S be the sum

of these two numbers. Otherwise, if there are more than two num-
bers in the circle, replace (x1, x2, x3, . . . , xp−1, xp) with (x1 + x2, x2 +
x3, . . . , xp−1 + xp, xp + x1). Afterwards, start again with step (2).

Show that the largest sum S that can result in this way is given by the
formula

Smax =

n∑
k=2

(
n− 2[
k
2

]
− 1

)
ak.

21. C1 (IND) Let n ≥ 1 be an integer. A path from (0, 0) to (n, n) in the
xy plane is a chain of consecutive unit moves either to the right (move
denoted by E) or upwards (move denoted by N), all the moves being
made inside the half-plane x ≥ y. A step in a path is the occurrence of
two consecutive moves of the form EN .
Show that the number of paths from (0, 0) to (n, n) that contain exactly
s steps (n ≥ s ≥ 1) is

1

s

(
n− 1

s− 1

)(
n

s− 1

)
.

22. C2 (CAN) (a) If a 5×n rectangle can be tiled using n pieces like those
shown in the diagram, prove that n is even.

(b) Show that there are more than 2 ·3k−1 ways to tile a fixed 5×2k rect-
angle (k ≥ 3) with 2k pieces. (Symmetric constructions are considered
to be different.)

23. C3 (GBR) A biologist watches a chameleon. The chameleon catches
flies and rests after each catch. The biologist notices that:
(i) the first fly is caught after a resting period of one minute;
(ii) the resting period before catching the 2mth fly is the same as the

resting period before catching the mth fly and one minute shorter
than the resting period before catching the (2m+ 1)th fly;
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(iii) when the chameleon stops resting, he catches a fly instantly.
(a) How many flies were caught by the chameleon before his first resting

period of 9 minutes?
(b) After how many minutes will the chameleon catch his 98th fly?
(c) How many flies were caught by the chameleon after 1999 minutes

passed?

24. C4 (GBR) Let A be a set of N residues (mod N2). Prove that there
exists a set B of N residues (mod N2) such that the set A+B = {a+ b |
a ∈ A, b ∈ B} contains at least half of all residues (mod N2).

25. C5 (BLR)IMO3 Let n be an even positive integer. We say that two dif-
ferent cells of an n×n board are neighboring if they have a common side.
Find the minimal number of cells on the n×n board that must be marked
so that every cell (marked or not marked) has a marked neighboring cell.

26. C6 (GBR) Suppose that every integer has been given one of the colors
red, blue, green, yellow. Let x and y be odd integers such that |x| �= |y|.
Show that there are two integers of the same color whose difference has
one of the following values: x, y, x+ y, x− y.

27. C7 (IRE) Let p > 3 be a prime number. For each nonempty subset T of
{0, 1, 2, 3, . . . , p−1} let E(T ) be the set of all (p−1)-tuples (x1, . . . , xp−1),
where each xi ∈ T and x1 + 2x2 + · · · + (p− 1)xp−1 is divisible by p and
let |E(T )| denote the number of elements in E(T ).
Prove that

|E({0, 1, 3})| ≥ |E({0, 1, 2})|,

with equality if and only if p = 5.
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3.41 The Forty-First IMO

Taejon, South Korea, July 13–25, 2000

3.41.1 Contest Problems

First day (July 18)

1. Two circles G1 and G2 intersect at M and N . Let AB be the line tangent
to these circles at A and B, respectively, such that M lies closer to AB
than N . Let CD be the line parallel to AB and passing through M , with
C on G1 and D on G2. Lines AC and BD meet at E; lines AN and CD
meet at P ; lines BN and CD meet at Q. Show that EP = EQ.

2. Let a, b, c be positive real numbers with product 1. Prove that(
a− 1 +

1

b

)(
b− 1 +

1

c

)(
c− 1 +

1

a

)
≤ 1.

3. Let n ≥ 2 be a positive integer and λ a positive real number. Initially
there are n fleas on a horizontal line, not all at the same point. We define
a move of choosing two fleas at some points A and B, with A to the left
of B, and letting the flea from A jump over the flea from B to the point
C such that BC/AB = λ.
Determine all values of λ such that for any point M on the line and for
any initial position of the n fleas, there exists a sequence of moves that
will take them all to the position right of M .

Second Day (July 19)

4. A magician has one hundred cards numbered 1 to 100. He puts them into
three boxes, a red one, a white one, and a blue one, so that each box
contains at least one card. A member of the audience draws two cards
from two different boxes and announces the sum of numbers on those
cards. Given this information, the magician locates the box from which
no card has been drawn. How many ways are there to put the cards in
the three boxes so that the trick works?

5. Does there exist a positive integer n such that n has exactly 2000 prime
divisors and 2n + 1 is divisible by n?

6. A1A2A3 is an acute-angled triangle. The foot of the altitude from Ai is
Ki, and the incircle touches the side opposite Ai at Li. The line K1K2 is
reflected in the line L1L2. Similarly, the lineK2K3 is reflected in L2L3 and
K3K1 is reflected in L3L1. Show that the three new lines form a triangle
with vertices on the incircle.
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3.41.2 Shortlisted Problems

1. C1 (HUN)IMO4 A magician has one hundred cards numbered 1 to 100.
He puts them into three boxes, a red one, a white one, and a blue one, so
that each box contains at least one card. A member of the audience draws
two cards from two different boxes and announces the sum of numbers
on those cards. Given this information, the magician locates the box from
which no card has been drawn. How many ways are there to put the cards
in the three boxes so that the trick works?

2. C2 (ITA) A brick staircase with three steps of width 2 is made of twelve
unit cubes. Determine all integers n for which it is possible to build a cube
of side n using such bricks.

3. C3 (COL) Let n ≥ 4 be a fixed positive integer. Given a set S =
{P1, P2, . . . , Pn} of points in the plane such that no three are collinear
and no four concyclic, let at, 1 ≤ t ≤ n, be the number of circles PiPjPk

that contain Pt in their interior, and let

m(S) = a1 + a2 + · · · + an.

Prove that there exists a positive integer f(n), depending only on n, such
that the points of S are the vertices of a convex polygon if and only if
m(S) = f(n).

4. C4 (CZE) Let n and k be positive integers such that n/2 < k ≤ 2n/3.
Find the least number m for which it is possible to place m pawns on m
squares of an n×n chessboard so that no column or row contains a block
of k adjacent unoccupied squares.

5. C5 (RUS) In the plane we have n rectangles with parallel sides. The
sides of distinct rectangles lie on distinct lines. The boundaries of the
rectangles cut the plane into connected regions. A region is nice if it has
at least one of the vertices of the n rectangles on its boundary. Prove that
the sum of the numbers of the vertices of all nice regions is less than 40n.
(There can be nonconvex regions as well as regions with more than one
boundary curve.)

6. C6 (FRA) Let p and q be relatively prime positive integers. A subset
S of {0, 1, 2, . . .} is called ideal if 0 ∈ S and for each element n ∈ S,
the integers n+ p and n+ q belong to S. Determine the number of ideal
subsets of {0, 1, 2 . . .}.

7. A1 (USA)IMO2 Let a, b, c be positive real numbers with product 1. Prove
that
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a− 1 +

1

b

)(
b− 1 +

1

c

)(
c− 1 +

1

a

)
≤ 1.

8. A2 (GBR) Let a, b, c be positive integers satisfying the conditions b > 2a
and c > 2b. Show that there exists a real number t with the property that
all the three numbers ta, tb, tc have their fractional parts lying in the
interval (1/3, 2/3].

9. A3 (BLR) Find all pairs of functions f : R → R, g : R → R such that

f(x+ g(y)) = xf(y) − yf(x) + g(x) for all x, y ∈ R.

10. A4 (GBR) The function F is defined on the set of nonnegative integers
and takes nonnegative integer values satisfying the following conditions:
For every n ≥ 0,
(i) F (4n) = F (2n) + F (n);
(ii) F (4n+ 2) = F (4n) + 1;
(iii) F (2n+ 1) = F (2n) + 1.
Prove that for each positive integer m, the number of integers n with
0 ≤ n < 2m and F (4n) = F (3n) is F (2m+1).

11. A5 (BLR)IMO3 Let n ≥ 2 be a positive integer and λ a positive real
number. Initially there are n fleas on a horizontal line, not all at the same
point. We define a move of choosing two fleas at some points A and B,
with A to the left of B, and letting the flea from A jump over the flea
from B to the point C such that BC/AB = λ.
Determine all values of λ such that for any point M on the line and for
any initial position of the n fleas, there exists a sequence of moves that
will take them all to the position right of M .

12. A6 (IRE) A nonempty set A of real numbers is called a B3-set if the
conditions a1, a2, a3, a4, a5, a6 ∈ A and a1+a2+a3 = a4+a5+a6 imply that
the sequences (a1, a2, a3) and (a4, a5, a6) are identical up to a permutation.
Let A = {a0 = 0 < a1 < a2 < · · · }, B = {b0 = 0 < b1 < b2 < · · · } be
infinite sequences of real numbers with D(A) = D(B), where, for a set
X of real numbers, D(X) denotes the difference set {|x − y| | x, y ∈ X}.
Prove that if A is a B3-set, then A = B.

13. A7 (RUS) For a polynomial P of degree 2000 with distinct real co-
efficients let M(P ) be the set of all polynomials that can be produced
from P by permutation of its coefficients. A polynomial P will be called
n-independent if P (n) = 0 and we can get from any Q in M(P ) a poly-
nomial Q1 such that Q1(n) = 0 by interchanging at most one pair of
coefficients of Q. Find all integers n for which n-independent polynomials
exist.

14. N1 (JAP) Determine all positive integers n ≥ 2 that satisfy the following
condition: For all integers a, b relatively prime to n,

a ≡ b (mod n) if and only if ab ≡ 1 (mod n).



310 3 Problems

15. N2 (FRA) For a positive integer n, let d(n) be the number of all positive
divisors of n. Find all positive integers n such that d(n)3 = 4n.

16. N3 (RUS)IMO5 Does there exist a positive integer n such that n has
exactly 2000 prime divisors and 2n + 1 is divisible by n?

17. N4 (BRA) Determine all triples of positive integers (a,m, n) such that
am + 1 divides (a+ 1)n.

18. N5 (BUL) Prove that there exist infinitely many positive integers n
such that p = nr, where p and r are respectively the semiperimeter and
the inradius of a triangle with integer side lengths.

19. N6 (ROM) Show that the set of positive integers that cannot be repre-
sented as a sum of distinct perfect squares is finite.

20. G1 (NET) In the plane we are given two circles intersecting at X and Y .
Prove that there exist four points A,B,C,D with the following property:
For every circle touching the two given circles at A and B, and meeting the
line XY at C and D, each of the lines AC,AD,BC,BD passes through
one of these points.

21. G2 (RUS)IMO1 Two circles G1 and G2 intersect at M and N . Let AB
be the line tangent to these circles at A and B, respectively, such that M
lies closer to AB than N . Let CD be the line parallel to AB and passing
through M , with C on G1 and D on G2. Lines AC and BD meet at E;
lines AN and CD meet at P ; lines BN and CD meet at Q. Show that
EP = EQ.

22. G3 (IND) Let O be the circumcenter and H the orthocenter of an acute
triangle ABC. Show that there exist points D, E, and F on sides BC,
CA, and AB respectively such that OD+DH = OE +EH = OF + FH
and the lines AD, BE, and CF are concurrent.

23. G4 (RUS) Let A1A2 . . . An be a convex polygon, n ≥ 4. Prove that
A1A2 . . . An is cyclic if and only if to each vertex Aj one can assign a pair
(bj , cj) of real numbers, j = 1, 2, . . . n, such that

AiAj = bjci − bicj for all i, j with 1 ≤ i ≤ j ≤ n.

24. G5 (GBR) The tangents at B and A to the circumcircle of an acute-
angled triangle ABC meet the tangent at C at T and U respectively. AT
meets BC at P , and Q is the midpoint of AP ; BU meets CA at R, and S
is the midpoint of BR. Prove that ∠ABQ = ∠BAS. Determine, in terms
of ratios of side lengths, the triangles for which this angle is a maximum.

25. G6 (ARG) Let ABCD be a convex quadrilateral with AB not parallel
to CD, let X be a point inside ABCD such that �ADX = �BCX < 90◦

and �DAX = �CBX < 90◦. If Y is the point of intersection of the
perpendicular bisectors of AB and CD, prove that �AY B = 2�ADX .
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26. G7 (IRN) Ten gangsters are standing on a flat surface, and the distances
between them are all distinct. At twelve o’clock, when the church bells
start chiming, each of them fatally shoots the one among the other nine
gangsters who is the nearest. At least how many gangsters will be killed?

27. G8 (RUS)IMO6 A1A2A3 is an acute-angled triangle. The foot of the
altitude from Ai is Ki, and the incircle touches the side opposite Ai at
Li. The line K1K2 is reflected in the line L1L2. Similarly, the line K2K3

is reflected in L2L3, and K3K1 is reflected in L3L1. Show that the three
new lines form a triangle with vertices on the incircle.
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3.42 The Forty-Second IMO

Washington DC, United States of America, July 1–14,

2001

3.42.1 Contest Problems

First Day (July 8)

1. In acute triangle ABC with circumcenter O and altitude AP , �C ≥
�B + 30◦. Prove that �A+ �COP < 90◦.

2. Prove that for all positive real numbers a, b, c,

a√
a2 + 8bc

+
a√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

3. Twenty-one girls and twenty-one boys took part in a mathematical com-
petition. It turned out that
(i) each contestant solved at most six problems, and
(ii) for each pair of a girl and a boy, there was at least one problem that

was solved by both the girl and the boy.
Show that there is a problem that was solved by at least three girls and
at least three boys.

Second Day (July 9)

4. Let n be an odd integer greater than 1 and let c1, c2, . . . , cn be integers.
For each permutation a = (a1, a2, . . . , an) of {1, 2, . . . , n}, define S(a) =∑n

i=1 ciai. Prove that there exist permutations a �= b of {1, 2, . . . , n} such
that n! is a divisor of S(a) − S(b).

5. Let ABC be a triangle with �BAC = 60◦. Let AP bisect ∠BAC and let
BQ bisect ∠ABC, with P on BC and Q on AC. If AB+BP = AQ+QB,
what are the angles of the triangle?

6. Let a > b > c > d be positive integers and suppose

ac+ bd = (b+ d+ a− c)(b + d− a+ c).

Prove that ab+ cd is not prime.

3.42.2 Shortlisted Problems

1. A1 (IND) Let T denote the set of all ordered triples (p, q, r) of nonneg-
ative integers. Find all functions f : T → R such that

f(p, q, r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if pqr = 0,

1 +
1

6
(f(p+ 1, q − 1, r) + f(p− 1, q + 1, r)

+f(p− 1, q, r + 1) + f(p+ 1, q, r − 1)
+f(p, q + 1, r − 1) + f(p, q − 1, r + 1)) otherwise.
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2. A2 (POL) Let a0, a1, a2, . . . be an arbitrary infinite sequence of positive
numbers. Show that the inequality 1 + an > an−1

n
√

2 holds for infinitely
many positive integers n.

3. A3 (ROM) Let x1, x2, . . . , xn be arbitrary real numbers. Prove the
inequality

x1

1 + x2
1

+
x2

1 + x2
1 + x2

2

+ · · · + xn

1 + x2
1 + · · · + x2

n

<
√
n.

4. A4 (LIT) Find all functions f : R → R satisfying

f(xy)(f(x) − f(y)) = (x− y)f(x)f(y)

for all x, y.

5. A5 (BUL) Find all positive integers a1, a2, . . . , an such that

99

100
=
a0

a1
+
a1

a2
+ · · · + an−1

an
,

where a0 = 1 and (ak+1 − 1)ak−1 ≥ a2
k(ak − 1) for k = 1, 2, . . . , n− 1.

6. A6 (KOR)IMO2 Prove that for all positive real numbers a, b, c,

a√
a2 + 8bc

+
a√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

7. C1 (COL) Let A = (a1, a2, . . . , a2001) be a sequence of positive integers.
Let m be the number of 3-element subsequences (ai, aj , ak) with 1 ≤ i <
j < k ≤ 2001 such that aj = ai + 1 and ak = aj + 1. Considering all such
sequences A, find the greatest value of m.

8. C2 (CAN)IMO4 Let n be an odd integer greater than 1 and let c1, c2, . . . ,
cn be integers. For each permutation a = (a1, a2, . . . , an) of {1, 2, . . . , n},
define S(a) =

∑n
i=1 ciai. Prove that there exist permutations a �= b of

{1, 2, . . . , n} such that n! is a divisor of S(a) − S(b).

9. C3 (RUS) Define a k-clique to be a set of k people such that every pair
of them are acquainted with each other. At a certain party, every pair of
3-cliques has at least one person in common, and there are no 5-cliques.
Prove that there are two or fewer people at the party whose departure
leaves no 3-clique remaining.

10. C4 (NZL) A set of three nonnegative integers {x, y, z} with x < y < z
is called historic if {z − y, y − x} = {1776, 2001}. Show that the set of all
nonnegative integers can be written as the union of disjoint historic sets.

11. C5 (FIN) Find all finite sequences (x0, x1, . . . , xn) such that for every
j, 0 ≤ j ≤ n, xj equals the number of times j appears in the sequence.
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12. C6 (CAN) For a positive integer n define a sequence of zeros and ones
to be balanced if it contains n zeros and n ones. Two balanced sequences a
and b are neighbors if you can move one of the 2n symbols of a to another
position to form b. For instance, when n = 4, the balanced sequences
01101001 and 00110101 are neighbors because the third (or fourth) zero in
the first sequence can be moved to the first or second position to form the
second sequence. Prove that there is a set S of at most 1

n+1

(
2n
n

)
balanced

sequences such that every balanced sequence is equal to or is a neighbor
of at least one sequence in S.

13. C7 (FRA) A pile of n pebbles is placed in a vertical column. This
configuration is modified according to the following rules. A pebble can
be moved if it is at the top of a column that contains at least two more
pebbles than the column immediately to its right. (If there are no pebbles
to the right, think of this as a column with 0 pebbles.) At each stage,
choose a pebble from among those that can be moved (if there are any)
and place it at the top of the column to its right. If no pebbles can be
moved, the configuration is called a final configuration. For each n, show
that no matter what choices are made at each stage, the final configuration
is unique. Describe that configuration in terms of n.

14. C8 (GER)IMO3 Twenty-one girls and twenty-one boys took part in a
mathematical competition. It turned out that
(i) each contestant solved at most six problems, and
(ii) for each pair of a girl and a boy, there was at least one problem that

was solved by both the girl and the boy.
Show that there is a problem that was solved by at least three girls and
at least three boys.

15. G1 (UKR) Let A1 be the center of the square inscribed in acute triangle
ABC with two vertices of the square on side BC. Thus one of the two re-
maining vertices of the square is on side AB and the other is on AC. Points
B1, C1 are defined in a similar way for inscribed squares with two vertices
on sides AC and AB, respectively. Prove that lines AA1, BB1, CC1 are
concurrent.

16. G2 (KOR)IMO1 In acute triangle ABC with circumcenter O and altitude
AP , �C ≥ �B + 30◦. Prove that �A+ �COP < 90◦.

17. G3 (GBR) Let ABC be a triangle with centroid G. Determine, with
proof, the position of the point P in the plane of ABC such that

AP ·AG+BP ·BG+ CP · CG

is a minimum, and express this minimum value in terms of the side lengths
of ABC.

18. G4 (FRA) Let M be a point in the interior of triangle ABC. Let A′ lie
on BC with MA′ perpendicular to BC. Define B′ on CA and C′ on AB
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similarly. Define

p(M) =
MA′ ·MB′ ·MC′

MA ·MB ·MC
.

Determine, with proof, the location of M such that p(M) is maximal.
Let µ(ABC) denote the maximum value. For which triangles ABC is the
value of µ(ABC) maximal?

19. G5 (GRE) Let ABC be an acute triangle. Let DAC, EAB, and FBC
be isosceles triangles exterior to ABC, with DA = DC, EA = EB, and
FB = FC such that

∠ADC = 2∠BAC, ∠BEA = 2∠ABC, ∠CFB = 2∠ACB.

Let D′ be the intersection of lines DB and EF , let E′ be the intersection
of EC and DF , and let F ′ be the intersection of FA and DE. Find, with
proof, the value of the sum

DB

DD′ +
EC

EE′ +
FA

FF ′ .

20. G6 (IND) Let ABC be a triangle and P an exterior point in the plane
of the triangle. Suppose AP,BP,CP meet the sides BC,CA,AB (or ex-
tensions thereof) in D,E, F , respectively. Suppose further that the areas
of triangles PBD,PCE,PAF are all equal. Prove that each of these areas
is equal to the area of triangle ABC itself.

21. G7 (BUL) Let O be an interior point of acute triangle ABC. Let A1

lie on BC with OA1 perpendicular to BC. Define B1 on CA and C1 on
AB similarly. Prove that O is the circumcenter of ABC if and only if
the perimeter of A1B1C1 is not less than any one of the perimeters of
AB1C1, BC1A1, and CA1B1.

22. G8 (ISR)IMO5 Let ABC be a triangle with �BAC = 60◦. Let AP bisect
∠BAC and let BQ bisect ∠ABC, with P on BC and Q on AC. If AB +
BP = AQ+QB, what are the angles of the triangle?

23. N1 (AUS) Prove that there is no positive integer n such that for k =
1, 2, . . . , 9, the leftmost digit (in decimal notation) of (n+ k)! equals k.

24. N2 (COL) Consider the system

x+ y = z + u,
2xy = zu.

Find the greatest value of the real constant m such that m ≤ x/y for
every positive integer solution x, y, z, u of the system with x ≥ y.

25. N3 (GBR) Let a1 = 1111, a2 = 1212, a3 = 1313, and

an = |an−1 − an−2| + |an−2 − an−3|, n ≥ 4.

Determine a1414 .
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26. N4 (VIE) Let p ≥ 5 be a prime number. Prove that there exists an
integer a with 1 ≤ a ≤ p− 2 such that neither ap−1 − 1 nor (a+ 1)p−1 − 1
is divisible by p2.

27. N5 (BUL)IMO6 Let a > b > c > d be positive integers and suppose

ac+ bd = (b+ d+ a− c)(b + d− a+ c).

Prove that ab+ cd is not prime.

28. N6 (RUS) Is it possible to find 100 positive integers not exceeding
25,000 such that all pairwise sums of them are different?
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3.43 The Forty-Third IMO

Glasgow, United Kingdom, July 19–30, 2002

3.43.1 Contest Problems

First Day (July 24)

1. Let n be a positive integer. Each point (x, y) in the plane, where x and
y are nonnegative integers with x+ y = n, is colored red or blue, subject
to the following condition: If a point (x, y) is red, then so are all points
(x′, y′) with x′ ≤ x and y′ ≤ y. Let A be the number of ways to choose n
blue points with distinct x-coordinates, and let B be the number of ways
to choose n blue points with distinct y-coordinates. Prove that A = B.

2. The circle S has center O, and BC is a diameter of S. Let A be a point
of S such that �AOB < 120◦. Let D be the midpoint of the arc AB that
does not contain C. The line through O parallel to DA meets the line AC
at I. The perpendicular bisector of OA meets S at E and at F . Prove
that I is the incenter of the triangle CEF .

3. Find all pairs of positive integers m,n ≥ 3 for which there exist infinitely
many positive integers a such that

am + a− 1

an + a2 − 1

is itself an integer.

Second Day (July 25)

4. Let n ≥ 2 be a positive integer, with divisors 1 = d1 < d2 < · · · < dk = n.
Prove that d1d2+d2d3+ · · ·+dk−1dk is always less than n2, and determine
when it is a divisor of n2.

5. Find all functions f from the reals to the reals such that

(f(x) + f(z))(f(y) + f(t)) = f(xy − zt) + f(xt+ yz)

for all real x, y, z, t.

6. Let n ≥ 3 be a positive integer. Let C1, C2, C3, . . . , Cn be unit circles in
the plane, with centers O1, O2, O3, . . . , On respectively. If no line meets
more than two of the circles, prove that∑

1≤i<j≤n

1

OiOj
≤ (n− 1)π

4
.
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3.43.2 Shortlisted Problems

1. N1 (UZB) What is the smallest positive integer t such that there exist
integers x1, x2, . . . , xt with

x3
1 + x3

2 + · · · + x3
t = 20022002?

2. N2 (ROM)IMO4 Let n ≥ 2 be a positive integer, with divisors 1 = d1 <
d2 < · · · < dk = n. Prove that d1d2 + d2d3 + · · · + dk−1dk is always less
than n2, and determine when it is a divisor of n2.

3. N3 (MON) Let p1, p2, . . . , pn be distinct primes greater than 3. Show
that 2p1p2···pn + 1 has at least 4n divisors.

4. N4 (GER) Is there a positive integer m such that the equation

1

a
+

1

b
+

1

c
+

1

abc
=

m

a+ b+ c

has infinitely many solutions in positive integers a, b, c?

5. N5 (IRN) Let m,n ≥ 2 be positive integers, and let a1, a2, . . . , an

be integers, none of which is a multiple of mn−1. Show that there exist
integers e1, e2, . . . , en, not all zero, with |ei| < m for all i, such that
e1a1 + e2a2 + · · · + enan is a multiple of mn.

6. N6 (ROM)IMO3 Find all pairs of positive integers m,n ≥ 3 for which
there exist infinitely many positive integers a such that

am + a− 1

an + a2 − 1

is itself an integer.

7. G1 (FRA) Let B be a point on a circle S1, and let A be a point distinct
from B on the tangent at B to S1. Let C be a point not on S1 such that
the line segment AC meets S1 at two distinct points. Let S2 be the circle
touching AC at C and touching S1 at a point D on the opposite side
of AC from B. Prove that the circumcenter of triangle BCD lies on the
circumcircle of triangle ABC.

8. G2 (KOR) Let ABC be a triangle for which there exists an interior
point F such that ∠AFB = ∠BFC = ∠CFA. Let the lines BF and CF
meet the sides AC and AB at D and E respectively. Prove that

AB +AC ≥ 4DE.

9. G3 (KOR)IMO2 The circle S has center O, and BC is a diameter of S.
Let A be a point of S such that �AOB < 120◦. Let D be the midpoint of
the arc AB that does not contain C. The line through O parallel to DA
meets the line AC at I. The perpendicular bisector of OA meets S at E
and at F . Prove that I is the incenter of the triangle CEF .
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10. G4 (RUS) Circles S1 and S2 intersect at points P and Q. Distinct points
A1 and B1 (not at P or Q) are selected on S1. The lines A1P and B1P
meet S2 again at A2 and B2 respectively, and the lines A1B1 and A2B2

meet at C. Prove that as A1 and B1 vary, the circumcenters of triangles
A1A2C all lie on one fixed circle.

11. G5 (AUS) For any set S of five points in the plane, no three of which
are collinear, let M(S) and m(S) denote the greatest and smallest areas,
respectively, of triangles determined by three points from S. What is the
minimum possible value of M(S)/m(S)?

12. G6 (UKR)IMO6 Let n ≥ 3 be a positive integer. Let C1, C2, C3, . . . , Cn

be unit circles in the plane, with centers O1, O2, O3, . . . , On respectively.
If no line meets more than two of the circles, prove that∑

1≤i<j≤n

1

OiOj
≤ (n− 1)π

4
.

13. G7 (BUL) The incircle Ω of the acute-angled triangle ABC is tangent
to BC at K. Let AD be an altitude of triangle ABC and let M be the
midpoint of AD. If N is the other common point of Ω and KM , prove
that Ω and the circumcircle of triangle BCN are tangent at N .

14. G8 (ARM) Let S1 and S2 be circles meeting at the points A and B. A
line through A meets S1 at C and S2 at D. Points M,N,K lie on the line
segments CD,BC,BD respectively, with MN parallel to BD and MK
parallel to BC. Let E and F be points on those arcs BC of S1 and BD
of S2 respectively that do not contain A. Given that EN is perpendicular
to BC and FK is perpendicular to BD, prove that �EMF = 90◦.

15. A1 (CZE) Find all functions f from the reals to the reals such that

f(f(x) + y) = 2x+ f(f(y) − x)

for all real x, y.

16. A2 (YUG) Let a1, a2, . . . be an infinite sequence of real numbers for
which there exists a real number c with 0 ≤ ai ≤ c for all i such that

|ai − aj | ≥
1

i+ j
for all i, j with i �= j.

Prove that c ≥ 1.

17. A3 (POL) Let P be a cubic polynomial given by P (x) = ax3+bx2+cx+
d, where a, b, c, d are integers and a �= 0. Suppose that xP (x) = yP (y) for
infinitely many pairs x, y of integers with x �= y. Prove that the equation
P (x) = 0 has an integer root.

18. A4 (IND)IMO5 Find all functions f from the reals to the reals such that
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(f(x) + f(z))(f(y) + f(t)) = f(xy − zt) + f(xt+ yz)

for all real x, y, z, t.

19. A5 (IND) Let n be a positive integer that is not a perfect cube. Define
real numbers a, b, c by

a = 3
√
n, b =

1

a− [a]
, c =

1

b− [b]
,

where [x] denotes the integer part of x. Prove that there are infinitely
many such integers n with the property that there exist integers r, s, t,
not all zero, such that ra+ sb+ tc = 0.

20. A6 (IRN) Let A be a nonempty set of positive integers. Suppose that
there are positive integers b1, . . . , bn and c1, . . . , cn such that
(i) for each i the set biA+ ci = {bia+ ci | a ∈ A} is a subset of A, and
(ii) the sets biA+ ci and bjA+ cj are disjoint whenever i �= j.
Prove that

1

b1
+ · · · + 1

bn
≤ 1.

21. C1 (COL)IMO1 Let n be a positive integer. Each point (x, y) in the plane,
where x and y are nonnegative integers with x+ y ≤ n, is colored red or
blue, subject to the following condition: If a point (x, y) is red, then so
are all points (x′, y′) with x′ ≤ x and y′ ≤ y. Let A be the number of
ways to choose n blue points with distinct x-coordinates, and let B be
the number of ways to choose n blue points with distinct y-coordinates.
Prove that A = B.

22. C2 (ARM) For n an odd positive integer, the unit squares of an n× n
chessboard are colored alternately black and white, with the four corners
colored black. A tromino is an L-shape formed by three connected unit
squares. For which values of n is it possible to cover all the black squares
with nonoverlapping trominos? When it is possible, what is the minimum
number of trominos needed?

23. C3 (COL) Let n be a positive integer. A sequence of n positive integers
(not necessarily distinct) is called full if it satisfies the following condition:
For each positive integer k ≥ 2, if the number k appears in the sequence,
then so does the number k−1, and moreover, the first occurrence of k−1
comes before the last occurrence of k. For each n, how many full sequences
are there?

24. C4 (BUL) Let T be the set of ordered triples (x, y, z), where x, y, z are
integers with 0 ≤ x, y, z ≤ 9. Players A and B play the following guessing
game: Player A chooses a triple (x, y, z) in T , and Player B has to discover
A’s triple in as few moves as possible. A move consists of the following:
B gives A a triple (a, b, c) in T , and A replies by giving B the number
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|x+ y− a− b|+ |y+ z− b− c|+ |z+x− c− a|. Find the minimum number
of moves that B needs to be sure of determining A’s triple.

25. C5 (BRA) Let r ≥ 2 be a fixed positive integer, and let F be an infinite
family of sets, each of size r, no two of which are disjoint. Prove that there
exists a set of size r − 1 that meets each set in F .

26. C6 (POL) Let n be an even positive integer. Show that there is a
permutation x1, x2, . . . , xn of 1, 2, . . . , n such that for every 1 ≤ i ≤ n the
number xi+1 is one of 2xi, 2xi − 1, 2xi − n, 2xi − n − 1 (where we take
xn+1 = x1).

27. C7 (NZL) Among a group of 120 people, some pairs are friends. A weak
quartet is a set of four people containing exactly one pair of friends. What
is the maximum possible number of weak quartets?
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3.44 The Forty-Fourth IMO

Tokyo, Japan, July 7–19, 2003

3.44.1 Contest Problems

First Day (July 13)

1. Let A be a 101-element subset of the set S = {1, 2, . . . , 1000000}. Prove
that there exist numbers t1, t2, . . . , t100 in S such that the sets

Aj = {x+ tj |x ∈ A}, j = 1, 2, . . . , 100,

are pairwise disjoint.

2. Determine all pairs (a, b) of positive integers such that

a2

2ab2 − b3 + 1

is a positive integer.

3. Each pair of opposite sides of a convex hexagon has the following property:
The distance between their midpoints is equal to

√
3/2 times the sum of

their lengths.
Prove that all the angles of the hexagon are equal.

Second Day (July 14)

4. Let ABCD be a cyclic quadrilateral. Let P,Q,R be the feet of the per-
pendiculars from D to the lines BC,CA,AB, respectively. Show that
PQ = QR if and only if the bisectors of ∠ABC and ∠ADC are con-
current with AC.

5. Let n be a positive integer and let x1 ≤ x2 ≤ · · · ≤ xn be real numbers.
(a) Prove that ⎛⎝ n∑

i,j=1

|xi − xj |

⎞⎠2

≤ 2(n2 − 1)

3

n∑
i,j=1

(xi − xj)
2.

(b) Show that equality holds if and only if x1, . . . , xn is an arithmetic
progression.

6. Let p be a prime number. Prove that there exists a prime number q such
that for every integer n, the number np − p is not divisible by q.
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3.44.2 Shortlisted Problems

1. A1 (USA) Let aij , i = 1, 2, 3, j = 1, 2, 3, be real numbers such that aij

is positive for i = j and negative for i �= j.
Prove that there exist positive real numbers c1, c2, c3 such that the num-
bers

a11c1 + a12c2 + a13c3, a21c1 + a22c2 + a23c3, a31c1 + a32c2 + a33c3

are all negative, all positive, or all zero.

2. A2 (AUS) Find all nondecreasing functions f : R → R such that
(i) f(0) = 0, f(1) = 1;
(ii) f(a) + f(b) = f(a)f(b) + f(a + b − ab) for all real numbers a, b such

that a < 1 < b.

3. A3 (GEO) Consider pairs of sequences of positive real numbers a1 ≥
a2 ≥ a3 ≥ · · · , b1 ≥ b2 ≥ b3 ≥ · · · and the sums An = a1 + · · · + an,
Bn = b1 + · · ·+ bn, n = 1, 2, . . . . For any pair define ci = min{ai, bi} and
Cn = c1 + · · · + cn, n = 1, 2, . . . .
(a) Does there exist a pair (ai)i≥1, (bi)i≥1 such that the sequences (An)n≥1

and (Bn)n≥1 are unbounded while the sequence (Cn)n≥1 is bounded?
(b) Does the answer to question (1) change by assuming additionally that

bi = 1/i, i = 1, 2, . . .?
Justify your answer.

4. A4 (IRE)IMO5 Let n be a positive integer and let x1 ≤ x2 ≤ · · · ≤ xn be
real numbers.
(a) Prove that ⎛⎝ n∑

i,j=1

|xi − xj |

⎞⎠2

≤ 2(n2 − 1)

3

n∑
i,j=1

(xi − xj)
2.

(b) Show that equality holds if and only if x1, . . . , xn is an arithmetic
progession.

5. A5 (KOR) Let R+ be the set of all positive real numbers. Find all
functions f : R+ → R+ that satisfy the following conditions:
(i) f(xyz) + f(x) + f(y) + f(z) = f(

√
xy)f(

√
yz)f(

√
zx) for all x, y, z ∈

R+.
(ii) f(x) < f(y) for all 1 ≤ x < y.

6. A6 (USA) Let n be a positive integer and let (x1, . . . , xn), (y1, . . . , yn)
be two sequences of positive real numbers. Suppose (z2, z3, . . . , z2n) is a
sequence of positive real numbers such that

z2
i+j ≥ xiyj for all 1 ≤ i, j ≤ n.

Let M = max{z2, . . . , z2n}. Prove that
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M + z2 + · · · + z2n

2n

)2

≥
(
x1 + · · · + xn

n

)(
y1 + · · · + yn

n

)
.

7. C1 (BRA)IMO1 Let A be a 101-element subset of the set S = {1, 2, . . . ,
1000000}. Prove that there exist numbers t1, t2, . . . , t100 in S such that
the sets

Aj = {x+ tj | x ∈ A}, j = 1, 2, . . . , 100,

are pairwise disjoint.

8. C2 (GEO) Let D1, . . . , Dn be closed disks in the plane. (A closed disk
is a region bounded by a circle, taken jointly with this circle.) Suppose
that every point in the plane is contained in at most 2003 disks Di. Prove
that there exists disk Dk that intersects at most 7 · 2003 − 1 other disks
Di.

9. C3 (LIT) Let n ≥ 5 be a given integer. Determine the largest integer
k for which there exists a polygon with n vertices (convex or not, with
non-self-intersecting boundary) having k internal right angles.

10. C4 (IRN) Let x1, . . . , xn and y1, . . . , yn be real numbers. Let A =
(aij)1≤i,j≤n be the matrix with entries

aij =

{
1, if xi + yj ≥ 0;
0, if xi + yj < 0.

Suppose that B is an n × n matrix whose entries are 0, 1 such that the
sum of the elements in each row and each column of B is equal to the
corresponding sum for the matrix A. Prove that A = B.

11. C5 (ROM) Every point with integer coordinates in the plane is the
center of a disk with radius 1/1000.
(a) Prove that there exists an equilateral triangle whose vertices lie in

different disks.
(b) Prove that every equilateral triangle with vertices in different disks

has side length greater than 96.

12. C6 (SAF) Let f(k) be the number of integers n that satisfy the following
conditions:
(i) 0 ≤ n < 10k, so n has exactly k digits (in decimal notation), with

leading zeros allowed;
(ii) the digits of n can be permuted in such a way that they yield an

integer divisible by 11.
Prove that f(2m) = 10f(2m− 1) for every positive integer m.

13. G1 (FIN)IMO4 Let ABCD be a cyclic quadrilateral. Let P,Q,R be the
feet of the perpendiculars from D to the lines BC,CA,AB, respectively.
Show that PQ = QR if and only if the bisectors of ∠ABC and ∠ADC
are concurrent with AC.
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14. G2 (GRE) Three distinct points A,B,C are fixed on a line in this order.
Let Γ be a circle passing through A and C whose center does not lie on
the line AC. Denote by P the intersection of the tangents to Γ at A and
C. Suppose Γ meets the segment PB at Q. Prove that the intersection of
the bisector of ∠AQC and the line AC does not depend on the choice of
Γ .

15. G3 (IND) Let ABC be a triangle and let P be a point in its interior.
Denote by D,E, F the feet of the perpendiculars from P to the lines BC,
CA, and AB, respectively. Suppose that

AP 2 + PD2 = BP 2 + PE2 = CP 2 + PF 2.

Denote by IA, IB, IC the excenters of the triangle ABC. Prove that P is
the circumcenter of the triangle IAIBIC .

16. G4 (ARM) Let Γ1, Γ2, Γ3, Γ4 be distinct circles such that Γ1, Γ3 are
externally tangent at P , and Γ2, Γ4 are externally tangent at the same
point P . Suppose that Γ1 and Γ2; Γ2 and Γ3; Γ3 and Γ4; Γ4 and Γ1 meet
at A,B,C,D, respectively, and that all these points are different from P .
Prove that

AB ·BC
AD ·DC =

PB2

PD2
.

17. G5 (KOR) Let ABC be an isosceles triangle with AC = BC, whose
incenter is I. Let P be a point on the circumcircle of the triangle AIB
lying inside the triangle ABC. The lines through P parallel to CA and
CB meet AB at D and E, respectively. The line through P parallel to
AB meets CA and CB at F and G, respectively. Prove that the lines DF
and EG intersect on the circumcircle of the triangle ABC.

18. G6 (POL)IMO3 Each pair of opposite sides of a convex hexagon has the
following property: The distance between their midpoints is equal to

√
3/2

times the sum of their lengths.
Prove that all the angles of the hexagon are equal.

19. G7 (SAF) Let ABC be a triangle with semiperimeter s and inradius
r. The semicircles with diameters BC,CA,AB are drawn outside of the
triangle ABC. The circle tangent to all three semicircles has radius t.
Prove that

s

2
< t ≤ s

2
+

(
1 −

√
3

2

)
r.

20. N1 (POL) Let m be a fixed integer greater than 1. The sequence
x0, x1, x2, . . . is defined as follows:

xi =

{
2i, if 0 ≤ i ≤ m− 1;∑m

j=1 xi−j , if i ≥ m.

Find the greatest k for which the sequence contains k consecutive terms
divisible by m.
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21. N2 (USA) Each positive integer a undergoes the following procedure in
order to obtain the number d = d(a):
(1) move the last digit of a to the first position to obtain the number b;
(2) square b to obtain the number c;
(3) move the first digit of c to the end to obtain the number d.
(All the numbers in the problem are considered to be represented in base
10.) For example, for a = 2003, we have b = 3200, c = 10240000, and
d = 02400001 = 2400001 = d(2003).
Find all numbers a for which d(a) = a2.

22. N3 (BUL)IMO2 Determine all pairs (a, b) of positive integers such that

a2

2ab2 − b3 + 1

is a positive integer.

23. N4 (ROM) Let b be an integer greater than 5. For each positive integer
n, consider the number

xn = 11 . . .1︸ ︷︷ ︸
n−1

22 . . .2︸ ︷︷ ︸
n

5,

written in base b. Prove that the following condition holds if and only if
b = 10: There exists a positive integer M such that for every integer n
greater than M , the number xn is a perfect square.

24. N5 (KOR) An integer n is said to be good if |n| is not the square of
an integer. Determine all integers m with the following property: m can
be represented in infinitely many ways as a sum of three distinct good
integers whose product is the square of an odd integer.

25. N6 (FRA)IMO6 Let p be a prime number. Prove that there exists a prime
number q such that for every integer n, the number np − p is not divisible
by q.

26. N7 (BRA) The sequence a0, a1, a2, . . . is defined as follows:

a0 = 2, ak+1 = 2a2
k − 1 for k ≥ 0.

Prove that if an odd prime p divides an, then 2n+3 divides p2 − 1.

27. N8 (IRN) Let p be a prime number and let A be a set of positive integers
that satisfies the following conditions:
(i) the set of prime divisors of the elements in A consists of p−1 elements;
(ii) for any nonempty subset of A, the product of its elements is not a

perfect pth power.
What is the largest possible number of elements in A?
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3.45 The Forty-Fifth IMO

Athens, Greece, July 7–19, 2004

3.45.1 Contest Problems

First Day (July 12)

1. Let ABC be an acute-angled triangle with AB �= AC. The circle with
diameter BC intersects the sides AB and AC at M and N , respectively.
Denote by O the midpoint of BC. The bisectors of the angles BAC and
MON intersect at R. Prove that the circumcircles of the triangles BMR
and CNR have a common point lying on the line segment BC.

2. Find all polynomials P (x) with real coefficients that satisfy the equality

P (a− b) + P (b− c) + P (c− a) = 2P (a+ b+ c)

for all triples a, b, c of real numbers such that ab+ bc+ ca = 0.

3. Determine all m× n rectangles that can be covered with hooks made up
of 6 unit squares, as in the figure:

Rotations and reflections of hooks are allowed. The rectangle must be
covered without gaps and overlaps. No part of a hook may cover area
outside the rectangle.

Second Day (July 13)

4. Let n ≥ 3 be an integer and t1, t2, . . . , tn positive real numbers such that

n2 + 1 > (t1 + t2 + · · · + tn)

(
1

t1
+

1

t2
+ · · · + 1

tn

)
.

Show that ti, tj , tk are the side lengths of a triangle for all i, j, k with
1 ≤ i < j < k ≤ n.

5. In a convex quadrilateral ABCD the diagonal BD does not bisect the
angles ABC and CDA. The point P lies inside ABCD and satisfies

∠PBC = ∠DBA and ∠PDC = ∠BDA.

Prove that ABCD is a cyclic quadrilateral if and only if AP = CP .

6. We call a positive integer alternate if its decimal digits are alternately
odd and even. Find all positive integers n such that n has an alternate
multiple.
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3.45.2 Shortlisted Problems

1. A1 (KOR)IMO4 Let n ≥ 3 be an integer and t1, t2, . . . , tn positive real
numbers such that

n2 + 1 > (t1 + t2 + · · · + tn)

(
1

t1
+

1

t2
+ · · · + 1

tn

)
.

Show that ti, tj , tk are the side lengths of a triangle for all i, j, k with
1 ≤ i < j < k ≤ n.

2. A2 (ROM) An infinite sequence a0, a1, a2, . . . of real numbers satisfies
the condition

an = |an+1 − an+2| for every n ≥ 0

with a0 and a1 positive and distinct. Can this sequence be bounded?

3. A3 (CAN) Does there exist a function s : Q → {−1, 1} such that if x
and y are distinct rational numbers satisfying xy = 1 or x + y ∈ {0, 1},
then s(x)s(y) = −1? Justify your answer.

4. A4 (KOR)IMO2 Find all polynomials P (x) with real coefficients that
satisfy the equality

P (a− b) + P (b− c) + P (c− a) = 2P (a+ b+ c)

for all triples a, b, c of real numbers such that ab+ bc+ ca = 0.

5. A5 (THA) Let a, b, c > 0 and ab+ bc+ ca = 1. Prove the inequality

3

√
1

a
+ 6b+

3

√
1

b
+ 6c+

3

√
1

c
+ 6a ≤ 1

abc
.

6. A6 (RUS) Find all functions f : R → R satisfying the equation

f
(
x2 + y2 + 2f(xy)

)
= (f(x+ y))

2
for all x, y ∈ R.

7. A7 (IRE) Let a1, a2, . . . , an be positive real numbers, n > 1. Denote by
gn their geometric mean, and by A1, A2, . . . , An the sequence of arithmetic
means defined by Ak = a1+a2+···+ak

k , k = 1, 2, . . . , n. Let Gn be the
geometric mean of A1, A2, . . . , An. Prove the inequality

n n

√
Gn

An
+

gn

Gn
≤ n+ 1

and establish the cases of equality.

8. C1 (PUR) There are 10001 students at a university. Some students join
together to form several clubs (a student may belong to different clubs).
Some clubs join together to form several societies (a club may belong
to different societies). There are a total of k societies. Suppose that the
following conditions hold:
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(i) Each pair of students are in exactly one club.
(ii) For each student and each society, the student is in exactly one club

of the society.
(iii) Each club has an odd number of students. In addition, a club with

2m+ 1 students (m is a positive integer) is in exactly m societies.
Find all possible values of k.

9. C2 (GER) Let n and k be positive integers. There are given n circles
in the plane. Every two of them intersect at two distinct points, and all
points of intersection they determine are distinct. Each intersection point
must be colored with one of n distinct colors so that each color is used
at least once, and exactly k distinct colors occur on each circle. Find all
values of n ≥ 2 and k for which such a coloring is possible.

10. C3 (AUS) The following operation is allowed on a finite graph: Choose
an arbitrary cycle of length 4 (if there is any), choose an arbitrary edge
in that cycle, and delete it from the graph. For a fixed integer n ≥ 4, find
the least number of edges of a graph that can be obtained by repeated ap-
plications of this operation from the complete graph on n vertices (where
each pair of vertices are joined by an edge).

11. C4 (POL) Consider a matrix of size n×n whose entries are real numbers
of absolute value not exceeding 1, and the sum of all entries is 0. Let n be
an even positive integer. Determine the least number C such that every
such matrix necessarily has a row or a column with the sum of its entries
not exceeding C in absolute value.

12. C5 (NZL) Let N be a positive integer. Two players A and B, taking
turns, write numbers from the set {1, . . . , N} on a blackboard. A begins
the game by writing 1 on his first move. Then, if a player has written n on
a certain move, his adversary is allowed to write n+1 or 2n (provided the
number he writes does not exceed N). The player who writes N wins. We
say that N is of type A or of type B according as A or B has a winning
strategy.
(a) Determine whether N = 2004 is of type A or of type B.
(b) Find the least N > 2004 whose type is different from that of 2004.

13. C6 (IRN) For an n × n matrix A, let Xi be the set of entries in row
i, and Yj the set of entries in column j, 1 ≤ i, j ≤ n. We say that A is
golden if X1, . . . , Xn, Y1, . . . , Yn are distinct sets. Find the least integer n
such that there exists a 2004× 2004 golden matrix with entries in the set
{1, 2, . . . , n}.

14. C7 (EST)IMO3 Determine all m× n rectangles that can be covered with
hooks made up of 6 unit squares, as in the figure:
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Rotations and reflections of hooks are allowed. The rectangle must be
covered without gaps and overlaps. No part of a hook may cover area
outside the rectangle.

15. C8 (POL) For a finite graph G, let f(G) be the number of triangles
and g(G) the number of tetrahedra formed by edges of G. Find the least
constant c such that

g(G)3 ≤ c · f(G)4 for every graph G.

16. G1 (ROM)IMO1 Let ABC be an acute-angled triangle with AB �= AC.
The circle with diameter BC intersects the sides AB and AC at M and
N , respectively. Denote by O the midpoint of BC. The bisectors of the
angles BAC and MON intersect at R. Prove that the circumcircles of the
triangles BMR and CNR have a common point lying on the line segment
BC.

17. G2 (KAZ) The circle Γ and the line � do not intersect. Let AB be the
diameter of Γ perpendicular to �, with B closer to � than A. An arbitrary
point C �= A,B is chosen on Γ . The line AC intersects � at D. The line
DE is tangent to Γ at E, with B and E on the same side of AC. Let
BE intersect � at F , and let AF intersect Γ at G �= A. Prove that the
reflection of G in AB lies on the line CF .

18. G3 (KOR) Let O be the circumcenter of an acute-angled triangle ABC
with ∠B < ∠C. The line AO meets the side BC at D. The circumcenters
of the triangles ABD and ACD are E and F , respectively. Extend the
sides BA and CA beyond A, and choose on the respective extension points
G andH such that AG = AC and AH = AB. Prove that the quadrilateral
EFGH is a rectangle if and only if ∠ACB − ∠ABC = 60◦.

19. G4 (POL)IMO5 In a convex quadrilateral ABCD the diagonal BD does
not bisect the angles ABC and CDA. The point P lies inside ABCD and
satisfies

∠PBC = ∠DBA and ∠PDC = ∠BDA.

Prove that ABCD is a cyclic quadrilateral if and only if AP = CP .

20. G5 (SMN) Let A1A2 . . . An be a regular n-gon. The points B1, . . . , Bn−1

are defined as follows:
(i) If i = 1 or i = n− 1, then Bi is the midpoint of the side AiAi+1.
(ii) If i �= 1, i �= n − 1, and S is the intersection point of A1Ai+1 and

AnAi, then Bi is the intersection point of the bisector of the angle
AiSAi+1 with AiAi+1.

Prove the equality

∠A1B1An + ∠A1B2An + · · · + ∠A1Bn−1An = 180◦.

21. G6 (GBR) Let P be a convex polygon. Prove that there is a convex
hexagon that is contained in P and that occupies at least 75 percent of
the area of P .
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22. G7 (RUS) For a given triangle ABC, let X be a variable point on
the line BC such that C lies between B and X and the incircles of the
triangles ABX and ACX intersect at two distinct points P and Q. Prove
that the line PQ passes through a point independent of X .

23. G8 (SMN) A cyclic quadrilateral ABCD is given. The lines AD and
BC intersect at E, with C between B and E; the diagonals AC and BD
intersect at F . Let M be the midpoint of the side CD, and let N �= M
be a point on the circumcircle of the triangle ABM such that AN/BN =
AM/BM . Prove that the points E, F , and N are collinear.

24. N1 (BLR) Let τ(n) denote the number of positive divisors of the positive
integer n. Prove that there exist infinitely many positive integers a such
that the equation

τ(an) = n

does not have a positive integer solution n.

25. N2 (RUS) The function ψ from the set N of positive integers into itself
is defined by the equality

ψ(n) =

n∑
k=1

(k, n), n ∈ N,

where (k, n) denotes the greatest common divisor of k and n.
(a) Prove that ψ(mn) = ψ(m)ψ(n) for every two relatively prime m,n ∈

N.
(b) Prove that for each a ∈ N the equation ψ(x) = ax has a solution.
(c) Find all a ∈ N such that the equation ψ(x) = ax has a unique solution.

26. N3 (IRN) A function f from the set of positive integers N into itself is
such that for all m,n ∈ N the number (m2 + n)2 is divisible by f2(m) +
f(n). Prove that f(n) = n for each n ∈ N.

27. N4 (POL) Let k be a fixed integer greater than 1, and let m = 4k2 − 5.
Show that there exist positive integers a and b such that the sequence
(xn) defined by

x0 = a, x1 = b, xn+2 = xn+1 + xn for n = 0, 1, 2, . . .

has all of its terms relatively prime to m.

28. N5 (IRN)IMO6 We call a positive integer alternate if its decimal digits
are alternately odd and even. Find all positive integers n such that n has
an alternate multiple.

29. N6 (IRE) Given an integer n > 1, denote by Pn the product of all
positive integers x less than n and such that n divides x2 − 1. For each
n > 1, find the remainder of Pn on division by n.
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30. N7 (BUL) Let p be an odd prime and n a positive integer. In the
coordinate plane, eight distinct points with integer coordinates lie on a
circle with diameter of length pn. Prove that there exists a triangle with
vertices at three of the given points such that the squares of its side lengths
are integers divisible by pn+1.
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Solutions

4.1 Solutions to the Contest Problems of IMO 1959

1. The desired result (14n+ 3, 21n+ 4) = 1 follows from

3(14n+ 3) − 2(21n+ 4) = 1.

2. For the square roots to be real we must have 2x− 1 ≥ 0 ⇒ x ≥ 1/2 and
x ≥

√
2x− 1 ⇒ x2 ≥ 2x − 1 ⇒ (x − 1)2 ≥ 0, which always holds. Then

we have
√
x+

√
2x− 1 +

√
x−

√
2x− 1 = c ⇐⇒

c2 = 2x+ 2

√
x2 −

√
2x− 1

2
= 2x+ 2|x− 1| =

{
2, 1/2 ≤ x ≤ 1,
4x− 2, x ≥ 1.

(a) c2 = 2. The equation holds for 1/2 ≤ x ≤ 1.
(b) c2 = 1. The equation has no solution.
(c) c2 = 4. The equation holds for 4x− 2 = 4 ⇒ x = 3/2.

3. Multiplying the equality by 4(a cos2 x−b cosx+c), we obtain 4a2 cos4 x+
2(4ac− 2b2) cos2 x+ 4c2 = 0. Plugging in 2 cos2 x = 1 + cos 2x we obtain
(after quite a bit of manipulation):

a2 cos2 2x+ (2a2 + 4ac− 2b2) cos 2x+ (a2 + 4ac− 2b2 + 4c2) = 0.

For a = 4, b = 2, and c = −1 we get 4 cos2 x + 2 cosx − 1 = 0 and
16 cos2 2x+ 8 cos 2x− 4 = 0 ⇒ 4 cos2 2x+ 2 cos 2x− 1 = 0.

4. Analysis. Let a and b be the other two sides of the triangle. From the
conditions of the problem we have c2 = a2 + b2 and c/2 =

√
ab ⇔ 3/2c2 =

a2+b2+2ab = (a+b)2 ⇔
√

3/2c = a+b. Given a desired 
ABC let D be

a point on (AC such that CD = CB. In that case, AD = a+ b =
√

3/2c,
and also, since BC = CD, it follows that ∠ADB = 45◦.

Construction. From a segment of length c we elementarily construct a
segment AD of length

√
3/2 c. We then construct a ray (DX such that
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∠ADX = 45◦ and a circle k(A, c) that intersects the ray at point B.
Finally, we construct the perpendicular from B to AD; point C is the
foot of that perpendicular.

Proof. It holds that AB = c, and, since CB = CD, it also holds that AC+
CB = AC +CD = AD =

√
3/2 c. From this it follows that

√
AC · CB =

c/2. Since BC is perpendicular to AD, it follows that �BCA = 90◦. Thus
ABC is the desired triangle.

Discussion. Since AB
√

2 =
√

2c >
√

3/2 c = AD > AB, the circle k
intersects the ray DX in exactly two points, which correspond to two
symmetric solutions.

5. (a) It suffices to prove that AF ⊥ BC, since then for the intersection
point X we have ∠AXC = ∠BXF = 90◦, implying that X belongs
to the circumcircles of both squares and thus that X = N . The re-
lation AF ⊥ BC holds because from MA = MC, MF = MB, and
∠AMC = ∠FMB it follows that 
AMF is obtained by rotating

BMC by 90◦ around M .

(b) Since N is on the circumcircle of BMFE, it follows that ∠ANM =
∠MNB = 45◦. Hence MN is the bisector of ∠ANB. It follows that
MN passes through the midpoint of the arc ÂB of the circle with
diameter AB (i.e., the circumcircle of 
ABN) not containing N .

(c) Let us introduce a coordinate system such that A = (0, 0), B = (b, 0),
and M = (m, 0). Setting in general W = (xW , yW ) for an arbitrary
point W and denoting by R the midpoint of PQ, we have yR = (yP +
yQ)/2 = (m+b−m)/4 = b/4 and xR = (xP +xQ)/2 = (m+m+b)/4 =
(2m + b)/4, the parameter m varying from 0 to b. Thus the locus of
all points R is the closed segment R1R2 where R1 = (b/4, b/4) and
R2 = (b/4, 3b/4).

6. Analysis. For AB ‖ CD to hold evidently neither must intersect p and
hence constructing lines r in α through A and s in β through C, both
being parallel to p, we get that B ∈ r and D ∈ s. Hence the problem
reduces to a planar problem in γ, determined by r and s. Denote by A′

the foot of the perpendicular fromA to s. Since ABCD is isosceles and has
an incircle, it follows AD = BC = (AB + CD)/2 = A′C. The remaining
parts of the problem are now obvious.
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4.2 Solutions to the Contest Problems of IMO 1960

1. Given the number acb, since 11 | acb, it follows that c = a + b or c =
a+ b− 11. In the first case, a2 + b2 +(a+ b)2 = 10a+ b, and in the second
case, a2 + b2 + (a + b − 11)2 = 10(a − 1) + b. In the first case the LHS
is even, and hence b ∈ {0, 2, 4, 6, 8}, while in the second case it is odd,
and hence b ∈ {1, 3, 5, 7, 9}. Analyzing the 10 quadratic equations for a
we obtain that the only valid solutions are 550 and 803.

2. The LHS term is well-defined for x ≥ −1/2 and x �= 0. Furthermore,
4x2/(1−

√
1 + 2x)2 = (1+

√
1 + 2x)2. Since f(x) = (1+

√
1 + 2x)2 −2x−

9 = 2
√

1 + 2x− 7 is increasing and since f(45/8) = 0, it follows that the
inequality holds precisely for −1/2 ≤ x < 45/8 and x �= 0.

3. Let B′C′ be the middle of the n = 2k + 1 segments and let D be
the foot of the perpendicular from A to the hypotenuse. Let us assume
B(C,D,C′, B′, B). Then from CD < BD, CD+BD = a, and CD ·BD =
h2 we have CD2 − a · CD + h2 = 0 =⇒ CD = (a−

√
a2 − 4h2)/2 . Let

us define �DAC′ = γ and �DAB′ = β; then tanβ = DB′/h and tanγ =
DC′/h. Since DB′ = CB′ −CD = (k+ 1)a/(2k+ 1)− (c−

√
c2 − 4h2)/2

and DC′ = ka/(2k + 1) − (c−
√
c2 − 4h2)/2, we have

tanα = tan(β − γ) =
tanβ − tanγ

1 + tanβ · tan γ
=

a
(2k+1)h

1 + a2−4h2

4h2 − a2

4h2(2k+1)2

=
4h(2k + 1)

4ak(k + 1)
=

4nh

(n2 − 1)a
.

The case B(C,C′, D,B′, B) is similar.

4. Analysis. Let A′ and B′ be the feet of the perpendiculars from A and B,
respectively, to the opposite sides, A1 the midpoint of BC, and let D′ be
the foot of the perpendicular from A1 to AC. We then have AA1 = ma,
AA′ = ha, ∠AA′A1 = 90◦, A1D

′ = hb/2, and ∠AD′A1 = 90◦.

Construction. We construct the quadrilateral AD′A1A
′ (starting from the

circle with diameter AA1). Then C is the intersection of A′A1 and AD′,
and B is on the line A1C such that CA1 = A1B and B(B,A1, C).

Discussion. We must have ma ≥ ha and ma ≥ hb/2. The number of
solutions is 0 if ma = ha = hb/2, 1 if two of ma, ha, hb/2 are equal, and 2
otherwise.

5. (a) The locus of the points is the square EFGH where these four points
are the centers of the faces ABB′A′, BCC′B′, CDD′C′ and DAA′D′.

(b) The locus of the points is the rectangle IJKL where these points are
on AB′, CB′, CD′, and AD′ at a distance of AA′/3 with respect to
the plane ABCD.
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6. Let E,F respectively be the midpoints of the bases AB,CD of the isosce-
les trapezoid ABCD.
(a) The point P is on the intersection of EF and the circle with diameter

BC.
(b) Let x = EP . Since 
BEP ∼ 
PFC, we have x(h − x) = ab/4 ⇒

x1,2 = (h±
√
h2 − ab)/2 .

(c) If h2 > ab there are two solutions, if h2 = ab there is only one solution,
and if h2 < ab there are no solutions.

7. Let A be the vertex of the cone, O the center of the sphere, S the center
of the base of the cone, B a point on the base circle, and r the radius of
the sphere. Let ∠SAB = α. We easily obtain AS = r(1+sinα)/ sinα and
SB = r(1 + sinα) tanα/ sinα and hence V1 = πSB2 · SA/3 = πr3(1 +
sinα)2/[3 sinα(1 − sinα)] . We also have V2 = 2πr3 and hence

k =
(1 + sinα)2

6 sinα(1 − sinα)
⇒ (1 + 6k) sin2 α+ 2(1 − 3k) sinα+ 1 = 0 .

The discriminant of this quadratic must be nonnegative: (1− 3k)2 − (1 +
6k) ≥ 0 ⇒ k ≥ 4/3. Hence we cannot have k = 1. For k = 4/3 we have
sinα = 1/3, whose construction is elementary.
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4.3 Solutions to the Contest Problems of IMO 1961

1. This is a problem solvable using elementary manipulations, so we shall
state only the final solutions. For a = 0 we get (x, y, z) = (0, 0, 0). For
a �= 0 we get (x, y, z) ∈ {(t1, t2, z0), (t2, t1, z0)}, where

z0 =
a2 − b2

2a
and t1,2 =

a2 + b2 ±
√

(3a2 − b2)(3b2 − a2)

4a
.

For the solutions to be positive and distinct the following conditions are
necessary and sufficient: 3b2 > a2 > b2 and a > 0.

2. Using S = bc sinα/2 , a2 = b2 + c2 − 2bc cosα and (
√

3 sinα+ cosα)/2 =
cos(α− 60◦) we have

a2 + b2 + c2 ≥ 4S
√

3 ⇔ b2 + c2 ≥ bc(
√

3 sinα+ cosα) ⇔
⇔ (b − c)2 + 2bc(1 − cos(α− 60◦)) ≥ 0,

where equality holds if and only if b = c and α = 60◦, i.e., if the triangle
is equilateral.

3. For n ≥ 2 we have

1 = cosn x− sinn x ≤ | cosn x− sinn x|
≤ | cosn x| + | sinn x| ≤ cos2 x+ sin2 x = 1.

Hence sin2 x = | sinn x| and cos2 x = | cosn x|, from which it follows that
sinx, cosx ∈ {1, 0,−1} ⇒ x ∈ πZ/2. By inspection one obtains the set of
solutions

{mπ | m ∈ Z} for even n and {2mπ, 2mπ − π/2 | m ∈ Z} for odd n.

For n = 1 we have 1 = cosx− sinx = −
√

2 sin(x− π/4), which yields the
set of solutions

{2mπ, 2mπ − π/2 | m ∈ Z}.
4. Let xi = PPi/PQi for i = 1, 2, 3. For all i we have

1

xi + 1
=

PQi

PiQi
=

SPPjPk

SP1P2P3

,

where the indices j and k are distinct and different from i. Hence we have

f(x1, x2, x3) =
1

x1 + 1
+

1

x2 + 1
+

1

x3 + 1

=
S(PP2P3) + S(PP1P3) + S(PP2P3)

S(P1P2P3)
= 1.

It follows that 1/(xi + 1) ≥ 1/3 for some i and 1/(xj + 1) ≤ 1/3 for some
j. Consequently, xi ≤ 2 and xj ≥ 2.



338 4 Solutions

5. Analysis. Let C1 be the midpoint of AB. In 
AMB we have MC1 = b/2,
AB = c, and ∠AMB = ω. Thus, given AB = c, the point M is at the
intersection of the circle k(C′, b/2) and the set of points e that view AB
at an angle of ω. The construction of ABC is now obvious.

Discussion. It suffices to establish the conditions for which k and e inter-
sect. Let E be the midpoint of one of the arcs that make up e. A necessary
and sufficient condition for k to intersect e is

c

2
= C′A ≤ b

2
≤ C′E =

c

2
cot

ω

2
⇔ b tan

ω

2
≤ c < b.

6. Let h(X) denote the distance of a point X from ε, X restricted to being
on the same side of ε as A, B, and C. Let G1 be the (fixed) centroid of

ABC and G′

1 the centroid of 
A′B′C′. It is trivial to prove that G is
the midpoint of G1G

′
1. Hence varying G′

1 across ε, we get that the locus
of G is the plane α parallel to ε such that

X ∈ α ⇔ h(X) =
h(G1)

2
=
h(A) + h(B) + h(C)

6
.
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4.4 Solutions to the Contest Problems of IMO 1962

1. From the conditions of the problem we have n = 10x + 6 and 4n =
6 ·10m +x for some integer x. Eliminating x from these two equations, we
get 40n = 6 · 10m+1 + n− 6 ⇒ n = 2(10m+1 − 1)/13. Hence we must find
the smallest m such that this fraction is an integer. By inspection, this
happens for m = 6, and for this m we obtain n = 153846, which indeed
satisfies the conditions of the problem.

2. We note that f(x) =
√

3 − x−
√
x+ 1 is well-defined only for −1 ≤ x ≤ 3

and is decreasing (and obviously continuous) on this interval. We also

note that f(−1) = 2 > 1/2 and f(1 −
√

31/8) =
√

(1/4 +
√

31/4)2 −√
(1/4 −

√
31/4)2 = 1/2 . Hence the inequality is satisfied for −1 ≤ x <

1 −
√

31/8.

3. By inspecting the four different stages of this periodic motion we easily
obtain that the locus of the midpoints of XY is the edges of MNCQ,
where M , N , and Q are the centers of ABB′A′, BCC′B′, and ABCD,
respectively.

4. Since cos 2x = 1 + cos2 x and cosα + cosβ = 2 cos
(

α+β
2

)
cos

(
α−β

2

)
,

we have cos2 x + cos2 2x + cos2 3x = 1 ⇔ cos 2x + cos 4x + 2 cos2 3x =
2 cos 3x(cosx+cos 3x) = 0 ⇔ 4 cos 3x cos 2x cosx = 0. Hence the solutions
are x ∈ {π/2 +mπ, π/4 +mπ/2, π/6 +mπ/3 | m ∈ Z}.

5. Analysis. Let ABCD be the desired quadrilateral. Let us assume w.l.o.g.
that AB > BC (for AB = BC the construction is trivial). For a tangent
quadrilateral we have AD −DC = AB − BC. Let X be a point on AD
such that DX = DC. We then have AX = AB − BC and �AXC =
�ADC+�CDX = 180◦−∠ABC/2. Constructing X and hence D is now
obvious.

6. This problem is a special case, when the triangle is isosceles, of Euler’s
formula, which holds for all triangles.

7. The spheres are arranged in a similar manner as in the planar case where
we have one incircle and three excircles. Here we have one ”insphere” and
four ”exspheres” corresponding to each of the four sides. Each vertex of the
tetrahedron effectively has three tangent lines drawn from it to each of the
five spheres. Repeatedly using the equality of the three tangent segments
from a vertex (in the same vein as for tangent planar quadrilaterals) we
obtain SA + BC = SB + CA = SC + AB from the insphere. From the
exsphere opposite of S we obtain SA − BC = SB − CA = SC − AB,
hence SA = SB = SC and AB = BC = CA. By symmetry, we also have
AB = AC = AS. Hence indeed, all the edges of the tetrahedron are equal
in length and thus we have shown that the tetrahedron is regular.
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4.5 Solutions to the Contest Problems of IMO 1963

1. Obviously, x ≥ 0; hence squaring the given equation yields an equivalent
equation 5x2−p−4+4

√
(x2 − 1)(x2 − p) = x2, i.e., 4

√
(x2 − 1)(x2 − p) =

(p+ 4)− 4x2. If 4x2 ≤ (p+ 4), we may square the equation once again to
get −16(p+ 1)x2 + 16p = −8(p+ 4)x2 + (p+ 4)2, which is equivalent to
x2 = (4 − p)2/[4(4 − 2p)], i.e., x = (4 − p)/(2

√
4 − 2p). For this to be a

solution we must have p ≤ 2 and (4− p)2/(4− 2p) = 4x2 ≤ (p+4). Hence
4/3 ≤ p ≤ 2. Otherwise there is no solution.

2. Let A be the given point, BC the given segment, and B1,B2 the closed
balls with the diameters AB and AC respectively. Consider one right angle
∠AOK with K ∈ [BC]. If B′, C′ are the feet of the perpendiculars from
B,C to AO respectively, then O lies on the segment B′C′, which implies
that it lies on exactly one of the segments AB′, AC′. Hence O belongs
to exactly one of the balls B1,B2; i.e., O ∈ B1∆B2. This is obviously the
required locus.

3. Let
−−→
OA1,

−−→
OA2, . . . ,

−−→
OAn be the vectors corresponding respectively to the

edges a1, a2, . . . , an of the polygon. By the conditions of the problem,

these vectors satisfy
−−→
OA1 + · · ·+−−→

OAn =
−→
0 , ∠A1OA2 = ∠A2OA3 = · · · =

∠AnOA1 = 2π/n and OA1 ≥ OA2 ≥ · · · ≥ OAn. Our task is to prove
that OA1 = · · · = OAn.
Let l be the line through O perpendicular to OAn, and B1, . . . , Bn−1 the
projections of A1, . . . , An−1 onto l respectively. By the assumptions, the

sum of the
−−→
OBi’s is

−→
0 . On the other hand, since OBi ≤ OBn−i for all

i ≤ n/2, all the sums
−−→
OBi +

−−−−→
OBn−i lie on the same side of the point O.

Hence all these sums must be equal to
−→
0 . Consequently, OAi = OAn−i,

from which the result immediately follows.

4. Summing up all the equations yields 2(x1 + x2 + x3 + x4 + x5) = y(x1 +
x2 + x3 + x4 + x5). If y = 2, then the given equations imply x1 − x2 =
x2 − x3 = · · · = x5 − x1; hence x1 = x2 = · · · = x5, which is clearly a
solution. If y �= 2, then x1 + · · · + x5 = 0, and summing the first three
equalities gives x2 = y(x1 + x2 + x3). Using that x1 + x3 = yx2 we obtain
x2 = (y2 +y)x2, i.e., (y2 +y−1)x2 = 0. If y2 +y−1 �= 0, then x2 = 0, and
similarly x1 = · · · = x5 = 0. If y2 + y − 1 = 0, it is easy to prove that the
last two equations are the consequence of the first three. Thus choosing
any values for x1 and x5 will give exactly one solution for x2, x3, x4.

5. The LHS of the desired identity equals S = cos(π/7) + cos(3π/7) +
cos(5π/7). Now

S sin
π

7
=

sin 2π
7

2
+

sin 4π
7 − sin 2π

7

2
+

sin 6π
7 − sin 4π

7

2
=

sin 6π
7

2
⇒ S =

1

2
.

6. The result is EDACB.
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4.6 Solutions to the Contest Problems of IMO 1964

1. Let n = 3k+ r, where 0 ≤ r < 2. Then 2n = 23k+r = 8k ·2r ≡ 2r (mod 7).
Thus the remainder of 2n modulo 7 is 1, 2, 4 if n ≡ 0, 1, 2 (mod 3). Hence
2n − 1 is divisible by 7 if and only if 3 | n, while 2n + 1 is never divisible
by 7.

2. By substituting a = x+ y, b = y+ z, and c = z+ x (x, y, z > 0) the given
inequality becomes

6xyz ≤ x2y + xy2 + y2z + yz2 + z2x+ zx2,

which follows immediately by the AM–GM inequality applied to x2y, xy2,
x2z, xz2, y2z, yz2.

3. Let r be the radius of the incircle of 
ABC, ra, rb, rc the radii of the
smaller circles corresponding to A,B,C, and ha, hb, hc the altitudes from
A,B,C respectively. The coefficient of similarity between the smaller tri-
angle at A and the triangle ABC is 1 − 2r/ha, from which we easily
obtain ra = (ha − 2r)r/ha = (s − a)r/s. Similarly, rb = (s − b)r/s and
rc = (s − c)r/s. Now a straightforward computation gives that the sum
of areas of the four circles is given by

Σ =
(b+ c− a)(c+ a− b)(a+ b− c)(a2 + b2 + c2)π

(a+ b + c)3
.

4. Let us call the topics T1, T2, T3. Consider an arbitrary student A. By the
pigeonhole principle there is a topic, say T3, he discussed with at least 6
other students. If two of these 6 students discussed T3, then we are done.
Suppose now that the 6 students discussed only T1 and T2 and choose one
of them, say B. By the pigeonhole principle he discussed one of the topics,
say T2, with three of these students. If two of these three students also
discussed T2, then we are done. Otherwise, all the three students discussed
only T1, which completes the task.

5. Let us first compute the number of intersection points of the perpendic-
ulars passing through two distinct points B and C. The perpendiculars
from B to the lines through C other than BC meet all perpendiculars from
C, which counts to 3 ·6 = 18 intersection points. Each perpendicular from
B to the 3 lines not containing C can intersect at most 5 of the perpendic-
ulars passing through C, which counts to another 3 · 5 = 15 intersection
points. Thus there are 18 + 15 = 33 intersection points corresponding to
B,C.
It follows that the required total number is at most 10·33 = 330. But some
of these points, namely the orthocenters of the triangles with vertices at
the given points, are counted thrice. There are 10 such points. Hence the
maximal number of intersection points is 330 − 2 · 10 = 310.
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Remark. The jury considered only the combinatorial part of the problem
and didn’t require an example in which 310 points appear. However, it
is “easily” verified that, for instance, the set of points A(1, 1), B(e, π),
C(e2, π2), D(e3, π3), E(e4, π4) works.

6. We shall prove that the statement is valid in the general case, for an
arbitrary point D1 inside 
ABC. Since D1 belongs to the plane ABC,

there are real numbers a, b, c such that (a+b+c)
−−−→
DD1 = a

−−→
DA+b

−−→
DB+c

−−→
DC.

Since AA1 ‖ DD1, it holds that
−−→
AA1 = k

−−−→
DD1 for some k ∈ R. Now it

is easy to get
−−→
DA1 = −(b

−−→
DB + c

−−→
DC)/a,

−−→
DB1 = −(a

−−→
DA + c

−−→
DC)/b, and

−−→
DC1 = −(a

−−→
DA+ b

−−→
DB)/c. This implies

−−−→
D1A1 = −a2−−→DA+ b(a+ 2b+ c)

−−→
DB + c(a+ b+ 2c)

−−→
DC

a(a+ b+ c)
,

−−−→
D1B1 = −a(2a+ b+ c)

−−→
DA+ b2

−−→
DB + c(a+ b+ 2c)

−−→
DC

b(a+ b+ c)
, and

−−−→
D1C1 = −a(2a+ b+ c)

−−→
DA+ b(a+ 2b+ c)

−−→
DB + c2

−−→
DC

c(a+ b+ c)
.

By using

6VD1A1B1C1 =
∣∣∣[−−−→D1A1,

−−−→
D1B1,

−−−→
D1C1

]∣∣∣ and 6VDABC =
∣∣∣[−−→DA,−−→DB,−−→DC]∣∣∣

we get

VD1A1B1C1 =

∣∣∣∣∣∣
∣∣∣∣∣∣

a2 b(a+ 2b+ c) c(a+ b+ 2c)
a(2a+ b+ c) b2 c(a+ b+ 2c)
a(2a+ b+ c) b(a+ 2b+ c) c2

∣∣∣∣∣∣
∣∣∣∣∣∣

6abc(a+ b+ c)3
= 3VDABC .
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4.7 Solutions to the Contest Problems of IMO 1965

1. Let us set S =
∣∣√1 + sin 2x−

√
1 − sin 2x

∣∣. Observe that S2 = 2 −
2
√

1 − sin2 2x = 2 − 2| cos 2x| ≤ 2, implying S ≤
√

2. Thus the right-
hand inequality holds for all x.
It remains to investigate the left-hand inequality. If π/2 ≤ x ≤ 3π/2, then
cosx ≤ 0 and the inequality trivially holds. Assume now that cosx >
0. Then the inequality is equivalent to 2 + 2 cos 2x = 4 cos2 x ≤ S2 =
2 − 2| cos 2x|, which is equivalent to cos 2x ≤ 0, i.e., to x ∈ [π/4, π/2] ∪
[3π/2, 7π/4]. Hence the solution set is π/4 ≤ x ≤ 7π/4.

2. Suppose that (x1, x2, x3) is a solution. We may assume w.l.o.g. that |x1| ≥
|x2| ≥ |x3|. Suppose that |x1| > 0. From the first equation we obtain that

0 = |x1| ·
∣∣∣∣a11 + a12

x2

x1
+ a13

x3

x1

∣∣∣∣ ≥ |x1| · (a11 − |a12| − |a13|) > 0,

which is a contradiction. Hence |x1| = 0 and consequently x1 = x2 = x3 =
0.

3. Let d denote the distance between the lines AB and CD. Being parallel
to AB and CD, the plane π intersects the faces of the tetrahedron in a
parallelogram EFGH . Let X ∈ AB be a points such that HX ‖ DB.

Clearly VAEHBFG = VAXEH +
VXEHBFG. Let MN be the com-
mon perpendicular to lines AB and
CD (M ∈ AB, N ∈ CD) and let
MN,BN meet the plane π atQ and
R respectively. Then it holds that
BR/RN = MQ/QN = k and con-
sequently AX/XB = AE/EC =
AH/HD = BF/FC = BG/GD =
k. Now we have VAXEH/VABCD =
k3/(k + 1)3.

A

B

C

D

E

F

G

H

M

Q

N

R

X

Furthermore, if h = 3VABCD/SABC is the height of ABCD from D, then

VXEHBFG =
1

2
SXBFE

k

k + 1
h and

SXBFE = SABC − SAXE − SEFC =
(k + 1)2 − 1 − k2

(k + 1)2
=

2k

(1 + k)2
.

These relations give us VXEHBFG/VABCD = 3k2/(1 + k)3. Finally,

VAEHBFG

VABCD
=
k3 + 3k2

(k + 1)3
.

Similarly, VCEFDHG/VABCD = (3k+ 1)/(k+ 1)3, and hence the required
ratio is (k3 + 3k2)/(3k + 1).
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4. It is easy to see that all xi are nonzero. Let x1x2x3x4 = p. The given
system of equations can be rewritten as xi + p/xi = 2, i = 1, 2, 3, 4. The
equation x + p/x = 2 has at most two real solutions, say y and z. Then
each xi is equal either to y or to z. There are three cases:
(i) x1 = x2 = x3 = x4 = y. Then y + y3 = 2 and hence y = 1.
(ii) x1 = x2 = x3 = y, x4 = z. Then z + y3 = y + y2z = 2. It is easy to

obtain that the only possibilities for (y, z) are (−1, 3) and (1, 1).
(iii) x1 = x2 = y, x3 = x4. In this case the only possibility is y = z = 1.
Hence the solutions for (x1, x2, x3, x4) are (1, 1, 1, 1), (−1,−1,−1, 3), and
the cyclic permutations.

5. (a) Let A′ and B′ denote the feet of the perpendiculars from A and
B to OB and OA respectively. We claim that H ∈ A′B′. Indeed,
since MPHQ is a parallelogram, we have B′P/B′A = BM/BA =
MQ/AA′ = PH/AA′, which implies by Thales’s theorem that H ∈
A′B′. It is easy to see that the locus of H is the whole segment A′B′.

(b) In this case the locus of points H is obviously the interior of the
triangle OA′B′.

6. We recall the simple statement that every two diameters of a set must
have a common point.
Consider any point B that is an endpoint of k ≥ 2 diameters BC1, BC2,
. . . , BCk. We may assume w.l.o.g. that all the points C1, . . . , Ck lie on the
arc C1Ck, whose center is B and measure does not exceed 60◦. We observe
that for 1 < i < k any diameter with the endpoint Ci has to intersect
both the diameters C1B and ClB. Hence CiB is the only diameter with
an endpoint at Ci if i = 2, . . . , k− 1. In other words, with each point that
is an endpoint of k ≥ 2 we can associate k − 2 points that are endpoints
of exactly one diameter.
We now assume that each Ai is an endpoint of exactly ki ≥ 0 diameters,
and that k1, . . . , ks ≥ 2, while ks+1, . . . , kn ≤ 1. The total number D of
diameters satisfies the inequality 2D ≤ k1 +k2 + · · ·+ks +(n− s). On the
other hand, by the above consideration we have (k1 −2)+ · · ·+(ks −2) ≤
n− s, i.e., k1 + · · ·+ks ≤ n+ s. Hence 2D ≤ (n+ s)+ (n− s) = 2n, which
proves the result.
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4.8 Solutions to the Contest Problems of IMO 1966

1. Let Na, Nb, Nc, Nab, Nac, Nbc, Nabc denote the number of students who
solved exactly the problems whose letters are stated in the index of the
variable. From the conditions of the problem we have

Na +Nb +Nc +Nab +Nbc +Nac +Nabc = 25,

Nb +Nbc = 2(Nc +Nbc), Na −1 = Nac +Nabc +Nab, Na = Nb +Nc.

From the first and third equations we get 2Na +Nb +Nc +Nbc = 26, and
from the second and fourth we get 4Nb + Nc = 26 and thus Nb ≤ 6. On
the other hand, we have from the second equation Nb = 2Nc + Nbc ⇒
Nc ≤ Nb/2 ⇒ 26 ≤ 9Nb/2 ⇒ Nb ≥ 6; hence Nb = 6.

2. Angles α and β are less than 90◦, otherwise if w.l.o.g. α ≥ 90◦ we have
tan(γ/2) · (a tanα + b tanβ) < b tan(γ/2) tanβ ≤ b tan(γ/2) cot(γ/2) =
b < a + b . Since a ≥ b ⇔ tana ≥ tan b, Chebyshev’s inequality gives
a tanα + b tanβ ≥ (a + b)(tanα + tanβ)/2. Due to the convexity of the
tan function we also have (tanα+ tanβ)/2 ≥ tan[(α+ β)/2] = cot(γ/2).
Hence we have

tan
γ

2
(a tanα+ b tanβ) ≥ 1

2
tan

γ

2
(a+ b)(tanα+ tanβ)

≥ tan
γ

2
(a+ b) cot

γ

2
= a+ b.

The equalities can hold only if a = b. Thus the triangle is isosceles.

3. Consider a coordinate system in which the points of the regular tetrahe-
dron are placed at A(−a,−a,−a), B(−a, a, a), C(a,−a, a) and D(a, a,
−a). Then the center of the tetrahedron is at O(0, 0, 0). For a point
X(x, y, z) the sum XA + XB + XC + XD by the QM–AM inequal-
ity does not exceed 2

√
XA2 +XB2 +XC2 +XD2. Now, since XA2 =

(x+ a)2 + (y + a)2 + (z + a)2 etc., we easily obtain

XA2 +XB2 +XC2 +XD2 = 4(x2 + y2 + z2) + 12a2

≥ 12a2 = OA2 +OB2 +OC2 + OD2.

Hence XA+XB +XC +XD ≥ 2
√
OA2 +OB2 +OC2 +OD2 = OA +

OB +OC +OD.

4. It suffices to prove 1/sin 2kx = cot 2k−1x − cot 2kx for any integer k and
real x, i.e., 1/sin 2x = cotx− cot 2x for all real x. We indeed have

cotx−cot 2x = cotx− cot2 x− 1

2 cotx
=

(
cos x
sinx

)2
+ 1

2 cos x
sin x

=
1

2 sinx cos x
=

1

sin 2x
.
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5. We define L1 = |a1 −a2|x2 + |a1 −a3|x3 + |a1 −a4|x4 and analogously L2,
L3, and L4. Let us assume w.l.o.g. that a1 < a2 < a3 < a4. In that case,

2|a1 − a2||a2 − a3|x2 = |a3 − a2|L1 − |a1 − a3|L2 + |a1 − a2|L3

= |a3 − a2| − |a1 − a3| + |a1 − a2| = 0,

2|a2 − a3||a3 − a4|x3 = |a4 − a3|L2 − |a2 − a4|L3 + |a2 − a3|L4

= |a4 − a3| − |a2 − a4| + |a2 − a3| = 0.

Hence it follows that x2 = x3 = 0 and consequently x1 = x4 = 1/|a1 − a4|.
This solution set indeed satisfies the starting equations. It is easy to gen-
eralize this result to any ordering of a1, a2, a3, a4.

6. Let S denote the area of 
ABC. Let A1, B1, C1 be the midpoints of
BC,AC,AB respectively. We note that SA1B1C = SA1BC1 = SAB1C1 =
SA1B1C1 = S/4. Let us assume w.l.o.g. that M ∈ [AC1]. We then must
have K ∈ [BA1] and L ∈ [CB1]. However, we then have S(KLM) >
S(KLC1) > S(KB1C1) = S(A1B1C1) = S/4. Hence, by the pigeon-
hole principle one of the remaining three triangles 
MAL, 
KBM , and

LCK must have an area less than or equal to S/4. This completes the
proof.
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4.9 Solutions to the Longlisted Problems of IMO 1967

1. Let us denote the nth term of the given sequence by an. Then

an =
1

3

(
103n+3 − 102n+3

9
+ 7

102n+2 − 10n+1

9
+

10n+2 − 1

9

)
=

1

27
(103n+3 − 3 · 102n+2 + 3 · 10n+1 − 1) =

(
10n+1 − 1

3

)3

.

2. (n!)2/n = ((1 · 2 · · ·n)1/n)2 ≤
(

1+2+···+n
n

)2
=

(
n+1

2

)2 ≤ 1
3n

2 + 1
2n+ 1

6 .

3. Consider the function f : [0, π/2] → R defined by f(x) = 1 − x2/2 +
x4/16 − cosx.
It is easy to calculate that f ′(0) = f ′′(0) = f ′′′(0) = 0 and f ′′′′(x) =
3/2 − cosx.
Since f ′′′′(x) > 0, f ′′′(x) is increasing. Together with f ′′′(0) = 0, this gives
f ′′′(x) > 0 for x > 0; hence f ′′(x) is increasing, etc. Continuing in the
same way we easily conclude that f(x) > 0.

4. (a) Let ABCD be a parallelogram, and K,L the midpoints of segments
BC and CD respectively. The sides of 
AKL are equal and parallel
to the medians of 
ABC.

(b) Using the formulas 4m2
a = 2b2 +2c2 −a2 etc., it is easy to obtain that

m2
a +m2

b = m2
c is equivalent to a2 + b2 = 5c2. Then

5(a2 + b2 − c2) = 4(a2 + b2) ≥ 8ab.

5. If one of x, y, z is equal to 1 or −1, then we obtain solutions (−1,−1,−1)
and (1, 1, 1). We claim that these are the only solutions to the system.
Let f(t) = t2 + t− 1. If among x, y, z one is greater than 1, say x > 1, we
have x < f(x) = y < f(y) = z < f(z) = x, which is impossible. It follows
that x, y, z ≤ 1.
Suppose now that one of x, y, z, say x, is less than −1. Since mint f(t) =
−5/4, we have x = f(z) ∈ [−5/4,−1). Also, since f([−5/4,−1)) =
(−1,−11/16) ⊆ (−1, 0) and f((−1, 0)) = [−5/4,−1), it follows that
y = f(x) ∈ (−1, 0), z = f(y) ∈ [−5/4,−1), and x = f(z) ∈ (−1, 0),
which is a contradiction. Therefore −1 ≤ x, y, z ≤ 1.
If −1 < x, y, z < 1, then x > f(x) = y > f(y) = z > f(z) = x, a
contradiction. This proves our claim.

6. The given system has two solutions: (−2,−1) and (−14/3, 13/3).

7. Let Sk = xk
1 + xk

2 + · · · + xk
n and let σk, k = 1, 2, . . . , n denote the kth

elementary symmetric polynomial in x1, . . . , xn. The given system can be
written as Sk = ak, k = 1, . . . , n. Using Newton’s formulas

kσk = S1σk−1−S2σk−2+· · ·+(−1)kSk−1σ1+(−1)k−1Sk, k = 1, 2, . . . , n,
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the system easily leads to σ1 = a and σk = 0 for k = 2, . . . , n. By Vieta’s
formulas, x1, x2, . . . , xn are the roots of the polynomial xn − axn−1, i.e.,
a, 0, 0, . . . , 0 in some order.

Remark. This solution does not use the assumption that the xj ’s are real.

8. The circles KA,KB,KC ,KD cover the parallelogram if and only if for
every point X inside the parallelogram, the length of one of the segments
XA,XB,XC,XD does not exceed 1.
Let O and r be the center and radius of the circumcircle of 
ABD. For
every pointX inside 
ABD, it holds thatXA ≤ r orXB ≤ r orXD ≤ r.
Similarly, for X inside 
BCD, XB ≤ r or XC ≤ r or XD ≤ r. Hence
KA,KB,KC ,KD cover the parallelogram if and only if r ≤ 1, which is
equivalent to ∠ABD ≥ 30◦. However, this last is exactly equivalent to
a = AB = 2r sin ∠ADB ≤ 2 sin(α+ 30◦) =

√
3 sinα+ cosα.

9. The incenter of any such triangle lies inside the circle k. We shall show that
every point S interior to the circle S is the incenter of one such triangle. If
S lies on the segment AB, then it is obviously the incenter of an isosceles
triangle inscribed in k that has AB as an axis of symmetry. Let us now
suppose S does not lie on AB. Let X and Y be the intersection points
of lines AS and BS with k, and let Z be the foot of the perpendicular
from S to AB. Since the quadrilateral BZSX is cyclic, we have ∠ZXS =
∠ABS = ∠SXY and analogously ∠ZY S = ∠SY X , which implies that
S is the incenter of 
XYZ.

10. Let n be the number of triangles and let b and i be the numbers of vertices
on the boundary and in the interior of the square, respectively.
Since all the triangles are acute, each of the vertices of the square belongs
to at least two triangles. Additionally, every vertex on the boundary be-
longs to at least three, and every vertex in the interior belongs to at least
five triangles. Therefore

3n ≥ 8 + 3b+ 5i. (1)

Moreover, the sum of angles at any
vertex that lies in the interior, on
the boundary, or at a vertex of the
square is equal to 2π, π, π/2 respec-
tively. The sum of all angles of the
triangles equals nπ, which gives us
nπ = 4 · π/2 + bπ + 2iπ, i.e., n =
2 + b + 2i. This relation together
with (1) easily yields that i ≥ 2.
Since each of the vertices inside the
square belongs to at least five trian-
gles, and at most two contain both,
it follows that n ≥ 8. A B

CD

K L
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It is shown in the figure that the square can be decomposed into eight acute
triangles. Obviously one of them can have an arbitrarily small perimeter.

11. We have to find the number pn of triples of positive integers (a, b, c)
satisfying a ≤ b ≤ c ≤ n and a + b > c. Let us denote by pn(k)
the number of such triples with c = k, k = 1, 2, . . . , n. For k even,
pn(k) = k + (k − 2) + (k − 4) + · · · + 2 = (k2 + 2k)/4, and for k odd,
pn(k) = (k2 + 2k + 1)/4. Hence

pn = pn(1)+pn(2)+· · ·+pn(n) =

{
n(n+ 2)(2n+ 5)/24, for 2 | n,
(n+ 1)(n+ 3)(2n+ 1)/24, for 2 � n.

12. Let us denote by Mn the set of points of the segment AB obtained from A
and B by not more than n iterations of (∗). It can be proved by induction
that

Mn =

{
X ∈ AB | AX =

3k

4n
or

3k − 2

4n
for some k ∈ N

}
.

Thus (a) immediately follows from M =
⋃
Mn. It also follows that if

a, b ∈ N and a/b ∈ M , then 3 | a(b− a). Therefore 1/2 �∈ M .

13. The maximum area is 3
√

3r2/4 (where r is the radius of the semicircle)
and is attained in the case of a trapezoid with two vertices at the endpoints
of the diameter of the semicircle and the other two vertices dividing the
semicircle into three equal arcs.

14. We have that∣∣∣∣pq −
√

2

∣∣∣∣ =
|p− q

√
2|

q
=

|p2 − 2q2|
q(p+ q

√
2)

≥ 1

q(p+ q
√

2)
, (1)

because |p2 − 2q2| ≥ 1.
The greatest solution to the equation |p2 − 2q2| = 1 with p, q ≤ 100 is
(p, q) = (99, 70). It is easy to verify using (1) that 99

70 best approximates√
2 among the fractions p/q with p, q ≤ 100.

Second solution. By using some basic facts about Farey sequences one can
find that 41

29 <
√

2 < 99
70 and that 41

29 <
p
q <

99
70 implies p ≥ 41 + 99 > 100

because 99 · 29 − 41 · 70 = 1. Of the two fractions 41/29 and 99/70, the
latter is closer to

√
2.

15. Given that tanα ∈ Q, we have that tanβ is rational if and only if tanγ
is rational, where γ = β − α and 2γ = α. Putting t = tan γ we obtain
p
q = tan 2γ = 2t

1−t2 , which leads to the quadratic equation pt2+2qt−p = 0.

This equation has rational solutions if and only if its discriminant 4(p2+q2)
is a perfect square, and the result follows.

16. First let us notice that all the numbers zm1,m2 = m1r1 +m2r2 (m1,m2 ∈
Z) are distinct, since r1/r2 is irrational. Thus for any n ∈ N the in-
terval [−n(|r1| + |r2|), n(|r1| + |r2|)] contains (2n + 1)2 numbers zm1,m2 ,
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where |m1|, |m2| ≤ n. Therefore some two of these (2n + 1)2 numbers,

say zm1,m2 , zn1,n2 , differ by at most 2n(|r1|+|r2|)
(2n+1)2−1 = (|r1|+|r2|)

2(n+1) . By taking n

large enough we can achieve that

zq1,q2 = |zm1,m2 − zn1,n2 | ≤ p.

If now k is the integer such that kzq1,q2 ≤ x < (k+1)zq1,q2 , then zkq1,kq2 =
kzq1,q2 differs from x by at most p, as desired.

17. Using cr − cs = (r − s)(r + s+ 1) we can easily get

(cm+1 − ck) · · · (cm+n − ck)

c1c2 · · · cn
=

(m− k + n)!

(m− k)!n!
· (m+ k + n+ 1)!

(m+ k + 1)!(n+ 1)!
.

The first factor (m−k+n)!
(m−k)!n! =

(
m−k+n

n

)
is clearly an integer. The second

factor is also an integer because by the assumption, m+ k + 1 and (m+
k)!(n + 1)! are coprime, and (m + k + n+ 1)! is divisible by both; hence
it is also divisible by their product.

18. In the first part, it is sufficient to show that each rational number of the
form m/n!, m,n ∈ N, can be written uniquely in the required form. We
prove this by induction on n.
The statement is trivial for n = 1. Let us assume it holds for n− 1, and
let there be given a rational number m/n!. Let us take an ∈ {0, . . . , n−1}
such that m − an = nm1 for some m1 ∈ N. By the inductive hypothesis,
there are unique a1 ∈ N0, ai ∈ {0, . . . , i− 1} (i = 1, . . . , n− 1) such that

m1/(n− 1)! =
∑n−1

i=1 ai/i!, and then

m

n!
=

m1

(n− 1)!
+
an

n!
=

n∑
i=1

ai

i!
,

as desired. On the other hand, if m/n! =
∑n

i=1 ai/i!, multiplying by n! we
see that m − an must be a multiple of n, so the choice of an was unique
and therefore the representation itself. This completes the induction.
In particular, since ai | i! and i!/ai > (i−1)! ≥ (i− 1)!/ai−1, we conclude
that each rational q, 0 < q < 1, can be written as the sum of different
reciprocals.
Now we prove the second part. Let x > 0 be a rational number. For
any integer m > 106, let n > m be the greatest integer such that y =
x− 1

m − 1
m+1 −· · ·− 1

n > 0. Then y can be written as the sum of reciprocals
of different positive integers, which all must be greater than n. The result
follows immediately.

19. Suppose n ≤ 6. Let us decompose the disk by its radii into n congruent
regions, so that one of the points Pj lies on the boundaries of two of these
regions. Then one of these regions contains two of the n given points. Since
the diameter of each of these regions is 2 sin π

n , we have dn ≤ 2 sin π
n . This
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value is attained if Pi are the vertices of a regular n-gon inscribed in the
boundary circle. Hence Dn = 2 sin π

n .
For n = 7 we have D7 ≤ D6 = 1. This value is attained if six of the seven
points form a regular hexagon inscribed in the boundary circle and the
seventh is at the center. Hence D7 = 1.

20. The statement so formulated is false. It would be true under the additional
assumption that the polygonal line is closed. However, from the offered
solution, which is not clear, it does not seem that the proposer had this
in mind.

21. Using the formula

cosx cos 2x cos 4x · · · cos 2n−1x =
sin 2nx

2n sinx
,

which is shown by simple induction, we obtain

cos
π

15
cos

2π

15
cos

4π

15
cos

7π

15
= − cos

π

15
cos

2π

15
cos

4π

15
cos

8π

15
=

1

16
,

cos
3π

15
cos

6π

15
=

1

4
, cos

5π

15
=

1

2
.

Multiplying these equalities, we get that the required product P equals
1/128.

22. Let O1 and O2 be the centers of circles k1 and k2 and let C be the
midpoint of the segment AB. Using the well-known relation for elements
of a triangle, we obtain

PA2 + PB2 = 2PC2 + 2CA2 ≥ 2O1C
2 + 2CA2 = 2O1A

2 = 2r2.

Equality holds if P coincides with O1 or if A and B coincide with O2.

23. Suppose that a ≥ 0, c ≥ 0, 4ac ≥ b2. If a = 0, then b = 0, and the
inequality reduces to the obvious cg2 ≥ 0. Also, if a > 0, then

af2 + bfg + cg2 = a

(
f +

b

2a
g

)2

+
4ac− b2

4a
g2 ≥ 0.

Suppose now that af2+bfg+cg2 ≥ 0 holds for an arbitrary pair of vectors
f, g. Substituting f by tg (t ∈ R) we get that (at2 + bt + c)g2 ≥ 0 holds
for any real number t. Therefore a ≥ 0, c ≥ 0, 4ac ≥ b2.

24. Let the kth child receive xk coins. By the condition of the problem, the
number of coins that remain after him was 6(xk − k). This gives us a
recurrence relation

xk+1 = k + 1 +
6(xk − k) − k − 1

7
=

6

7
xk +

6

7
,
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which, together with the condition x1 = 1 + (m− 1)/7, yields

xk =
6k−1

7k
(m− 36) + 6 for 1 ≤ k ≤ n.

Since we are given xn = n, we obtain 6n−1(m−36) = 7n(n−6). It follows
that 6n−1 | n − 6, which is possible only for n = 6. Hence, n = 6 and
m = 36.

25. The answer is R = (4 +
√

3)d/6.

26. Let L be the midpoint of the edge AB. Since P is the orthocenter of

ABM and ML is its altitude, P lies on ML and therefore belongs to
the triangular area LCD. Moreover, from the similarity of triangles ALP
and MLB we have LP ·LM = LA ·LB = a2/4, where a is the side length
of tetrahedron ABCD. It easily follows that the locus of P is the image of
the segment CD under the inversion of the plane LCD with center L and
radius a/2. This locus is the arc of a circle with center L and endpoints
at the orthocenters of triangles ABC and ABD.

27. Regular polygons with 3, 4, and 6
sides can be obtained by cutting a
cube with a plane, as shown in the
figure. A polygon with more than 6
sides cannot be obtained in such a
way, for a cube has 6 faces. Also, if
a pentagon is obtained by cutting a

cube with a plane, then its sides lying on opposite faces are parallel; hence
it cannot be regular.

28. The given expression can be transformed into

y =
4 cos 2u+ 2

cos 2u− cos 2x
− 3.

It does not depend on x if and only if cos 2u = −1/2, i.e., u = ±π/3 + kπ
for some k ∈ Z.

29. Let arc la be the locus of points A lying on the opposite side from A0

with respect to the line B0C0 such that ∠B0AC0 = ∠A′. Let ka be the
circle containing la, and let Sa be the center of ka. We similarly define
lb, lc, kb, kc, Sb, Sc. It is easy to show that circles ka, kb, kc have a common
point S inside 
ABC. Let A1, B1, C1 be the points on the arcs la, lb, lc
diametrically opposite to S with respect to Sa, Sb, Sc respectively. Then
A0 ∈ B1C1 because ∠B1A0S = ∠C1A0S = 90◦; similarly, B0 ∈ A1C1 and
C0 ∈ A1B1. Hence the triangle A1B1C1 is circumscribed about 
A0B0C0

and similar to 
A′B′C′.
Moreover, we claim that 
A1B1C1 is the triangle ABC with the desired
properties having the maximum side BC and hence the maximum area.
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Indeed, if ABC is any other such triangle and S′
b, S

′
c are the projections of

Sb and Sc onto the line BC, it holds that BC = 2S′
bS

′
c ≤ 2SbSc = B1C1,

which proves the maximality of B1C1.

30. We assume w.l.o.g. that m ≤ n. Let r and s be the numbers of pairs for
which i− j ≥ k and of those for which j − i ≥ k. The desired number is
r + s. We easily find that

r =

{
(m− k)(m− k + 1)/2, k < m,
0, k ≥ m,

s =

⎧⎨⎩m(2n− 2k −m+ 1)/2, k < n−m,
(n− k)(n− k + 1)/2, n−m ≤ k < n,
0, k ≥ n.

31. Suppose that n1 ≤ n2 ≤ · · · ≤ nk. If nk < m, there is no solution.
Otherwise, the solution is 1+ (m− 1)(k− s+1)+

∑
i<s ni, where s is the

smallest i for which m ≤ ni holds.

32. Let us denote by V the volume of
the given body, and by Va, Vb, Vc

the volumes of the parts of the
given ball that lie inside the dihe-
dra of the given trihedron. It holds
that Va = 2R3α/3, Vb = 2R3β/3,
Vc = 2R3γ/3. It is easy to see that
2(Va+Vb+Vc) = 4V +4πR3/3, from
which it follows that

O
A A′

C

C′

B

B′

V =
1

3
R3(α+ β + γ − π).

33. If m �∈ {−2, 1}, the system has the unique solution

x =
b+ a− (1 +m)c

(2 +m)(1 −m)
, y =

a+ c− (1 +m)b

(2 +m)(1 −m)
, z =

b+ c− (1 +m)a

(2 +m)(1 −m)
.

The numbers x, y, z form an arithmetic progression if and only if a, b, c do
so.
For m = 1 the system has a solution if and only if a = b = c, while for
m = −2 it has a solution if and only if a+ b+ c = 0. In both these cases
it has infinitely many solutions.

34. Each vertex of the polyhedron is a vertex of exactly two squares and
triangles (more than two is not possible; otherwise, the sum of angles at
a vertex exceeds 360◦). By using the condition that the trihedral angles
are equal it is easy to see that such a polyhedron is uniquely determined
by its side length.
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The polyhedron obtained from a
cube by “cutting” its vertices, as
shown in the figure, satisfies the
conditions.
Now it is easy to calculate that
the ratio of the squares of vol-
umes of that polyhedron and of the
ball whose boundary is the circum-
scribed sphere is equal to 25/(8π2).

35. The given sum can be rewritten as

n∑
k=0

(
n

k

)(
tan2 x

2

)k

+

n∑
k=0

(
n

k

)(
2 tan2 x

2

1 − tan2 x
2

)k

.

Since 2 tan2(x/2)
1−tan2(x/2) = 1−cos x

cos x , the above sum is transformed using the bino-

mial formula into(
1 + tan2 x

2

)n

+

(
1 +

1 − cosx

cosx

)n

= sec2n x

2
+ secn x.

36. Suppose that the skew edges of the tetrahedron ABCD are equal. Let K,
L, M , P , Q, R be the midpoints of edges AB, AC, AD, CD, DB, BC
respectively. Segments KP,LQ,MR have the common midpoint T .

We claim that the lines KP , LQ
and MR are axes of symmetry
of the tetrahedron ABCD. From
LM ‖ CD ‖ RQ and similarly
LR ‖ MQ and LM = CD/2 =
AB/2 = LR it follows that LMQR
is a rhombus and therefore LQ ⊥
MR. We similarly show that KP is
perpendicular to LQ and MR, and

A

B D

C

K M

R P

L

Q

T

thus it is perpendicular to the plane LMQR. Since the lines AB and CD
are parallel to the plane LMQR, they are perpendicular to KP . Hence
the points A and C are symmetric to B and D with respect to the line
KP , which means that KP is an axis of symmetry of the tetrahedron
ABCD. Similarly, so are the lines LQ and MR.
The centers of circumscribed and inscribed spheres of tetrahedron ABCD
must lie on every axis of symmetry of the tetrahedron, and hence both
coincide with T .
Conversely, suppose that the centers of circumscribed and inscribed
spheres of the tetrahedron ABCD coincide with some point T . Then the
orthogonal projections of T onto the faces ABC and ABD are the cir-
cumcenters O1 and O2 of these two triangles, and moreover, TO1 = TO2.
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Pythagoras’s theorem gives AO1 = AO2, which by the law of sines im-
plies ∠ACB = ∠ADB. Now it easily follows that the sum of the an-
gles at one vertex of the tetrahedron is equal to 180◦. Let D′, D′′, and
D′′′ be the points in the plane ABC lying outside 
ABC such that

D′BC ∼= 
DBC, 
D′′CA ∼= 
DCA, and 
D′′′AB ∼= 
DAB. The
angleD′′AD′′′ is then straight, and hence A,B,C are midpoints of the seg-
ments D′′D′′′, D′′′D′, D′D′′ respectively. Hence AD = D′′D′′′/2 = BC,
and analogously AB = CD and AC = BD.

37. Using the A–G mean inequality we obtain

8a2b3c3 ≤ 2a8 + 3b8 + 3c8,
8a3b2c3 ≤ 3a8 + 2b8 + 3c8,
8a3b3c2 ≤ 3a8 + 3b8 + 2c8.

By adding these inequalities and dividing by 3a3b3c3 we obtain the desired
one.

38. Suppose that there exist integers n and m such that m3 = 3n2 + 3n+ 7.
Then from m3 ≡ 1 (mod 3) it follows that m = 3k + 1 for some k ∈ Z.
Substituting into the initial equation we obtain 3k(3k2 + 3k + 1) = n2 +
n+ 2. It is easy to check that n2 + n+ 2 cannot be divisible by 3, and so
this equality cannot be true. Therefore our equation has no solutions in
integers.

39. Since sin2A + sin2B + sin2 C + cos2A + cos2B + cos2 C = 3, the given
equality is equivalent to cos2A+cos2B+cos2 C = 1, which by multiplying
by 2 is transformed into

0 = cos 2A+ cos 2B + 2 cos2 C = 2 cos(A+B) cos(A−B) + 2 cos2 C

= 2 cosC(cos(A−B) − cosC).

It follows that either cosC = 0 or cos(A− B) = cosC. In both cases the
triangle is right-angled.

40. Suppose CD is the longest edge of the tetrahedron ABCD, AB = a, CK
and DL are the altitudes of the triangles ABC and ABD respectively, and
DM is the altitude of the tetrahedron ABCD. Then CK2 ≤ 1 − a2/4,
since CK is a leg of the right triangle whose other leg has length not
less than a/2 and whose hypotenuse has length not greater than 1 (AKC
or BKC). In the similar way we can show that DL2 ≤ 1 − a2/4. Since
DM ≤ DL, then DM2 ≤ 1 − a2/4. It follows that

V =
1

3

(a
2
CK

)
DM ≤ 1

6
a

(
1 − a2

4

)
=

1

24
a(2 − a)(2 + a)

=
1

24
[1 − (a− 1)2](2 + a) ≤ 1

24
· 1 · 3 =

1

8
.
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41. It is well known that the points K, L, M , symmetric to H with respect to
BC,CA,AB respectively, lie on the circumcircle k of the triangle ABC.
For K, this follows from an elementary calculation of angles of triangles
HBC and noting that �KBC = �HBC = �KAC. For other points the

proof is analogous. Since the lines
la, lb pass throughK and L and lb is
obtained from la by rotation about
C for an angle 2γ = ∠LCK, it fol-
lows that the intersection point P
of la and lb is at the circumcircle of
KLC, that is, k. Similarly, lb and
lc meet at a point on k; hence they
must pass through the same point
P .

A

B C

K

M
L

H
lc

la

lb

P

l

42. E = (1−sinx)(1−cos x)[3+2(sinx+cosx)+2 sinx cosx+sin x cosx(sinx+
cosx)].

43. We can write the given equation in the form

x5 − x3 − 4x2 − 3x− 2 + λ(5x4 + αx2 − 8x+ α) = 0.

A root of this equation is independent of λ if and only if it is a common
root of the equations

x5 − x3 − 4x2 − 3x− 2 = 0 and 5x4 + αx2 − 8x+ α = 0.

The first of these two equations is equivalent to (x − 2)(x2 + x+ 1)2 = 0
and has three different roots: x1 = 2, x2,3 = (−1 ± i

√
3)/2.

(a) For α = −64/5, x1 = 2 is the unique root independent of λ.
(b) For α = −3 there are two roots independent of λ: x1 = ω and x2 = ω2.

44. (a) S(x, n) = n(n− 1)
[
x2 + (n+ 1)x+ (n+ 1)(3n+ 2)/12

]
.

(b) It is easy to see that the equation S(x, n) = 0 has two roots x1,2 =(
−(n+ 1) ±

√
(n+ 1)/3

)
/2. They are integers if and only if n =

3k2 − 1 for some k ∈ N.

45. (a) Using the formula 4 sin3 x = 3 sinx − sin 3x one can easily reduce
the given equation to sin 3x = cos 2x. Its solutions are given by x =
(4k + 1)π/10, k ∈ Z.

(b) (1) The point B corresponding to the solution x = (4k + 1)π/10 is
a vertex of the regular dodecagon if and only if (4k + 1)π/10 =
2mπ/12, i.e., 3(4k + 1) = 5m for some m ∈ Z. This is possible if
and only if 5 | 4k + 1, i.e., k ≡ 1 (mod 5).

(2) Similarly, if the point B corresponding to x = (4k + 1)π/10 is a
vertex of a polygon P , then (4k + 1)n = 20m for some m ∈ N,
which implies that 4 | n.
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46. Let us set arctanx = a, arctan y = b, arctan z = c. Then tan(a+b) = x+y
1−xy

and tan(a+ b+ c) = x+y+z−xyz
1−yz−zx−xy = 1, which implies that

(x− 1)(y − 1)(z − 1) = xyz − xy − yz − zx+ x+ y + z − 1 = 0.

One of x, y, z is equal to 1, say z = 1, and consequently x + y = 0.
Therefore

x2n+1 + y2n+1 + z2n+1 = x2n+1 + (−x)2n+1 + 12n+1 = 1.

47. Using the A–G mean inequality we get

(n+ k − 1)xn
1x2 · · ·xk ≤ nxn+k−1

1 + xn+k−1
2 + · · · + xn+k−1

k ,

(n+ k − 1)x1x
n
2 · · ·xk ≤ xn+k−1

1 + nxn+k−1
2 + · · · + xn+k−1

k ,
. . . . . . . . . . . . . . .

(n+ k − 1)x1x2 · · ·xn
k ≤ xn+k−1

1 + xn+k−1
2 + · · · + nxn+k−1

k .

By adding these inequalities and dividing by n + k − 1 we obtain the
desired one.

Remark. This is also an immediate consequence of Muirhead’s inequality.

48. Put f(x) = x lnx. The given equation is equivalent to f(x) = f(1/2),
which has the solutions x1 = 1/2 and x2 = 1/4. Since the function f is
decreasing on (0, 1/e), and increasing on (1/e,+∞), this equation has no
other solutions.

49. Since sin 1, sin 2, . . . , sin(N+1) ∈ (−1, 1), two of these N+1 numbers have
distance less than 2/N . Therefore | sinn− sin k| < 2/N for some integers
1 ≤ k, n ≤ N + 1, n �= k.

50. Since ϕ(x, y, z) = f(x+y, z) = ϕ(0, x+y, z) = g(0, x+y+z), it is enough
to put h(t) = g(0, t).

51. If there exist two numbers ab, bc ∈ S, then one can fill a crossword puzzle

as

(
a b
b c

)
. The converse is obvious. Hence the set S has property A if and

only if the set of first digits and the set of second digits of numbers in S
are disjoint. Thus the maximum size of S is 25.

52. This problem is not elementary. The solution offered by the proposer was
not quite clear and complete (the existence was not proved).

53. (a) We can construct two lines parallel to the rays of the angle, at equal
distances from the rays. The intersection of these two lines lies on the
bisector of the angle.

(b) If the length of a segment AB exceeds the breadth of the ruler, we
can construct parallel lines through A and B in two different ways.
The diagonal in the resulting rhombus is the perpendicular bisector
of the segment AB.
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If the segment AB is too short, we can construct a line l parallel to
AB and centrally project AB onto l from a point C chosen sufficiently
close to the segment, thus obtaining an arbitrarily long segmentA′B′ ‖
AB. Then we construct the midpoint D′ of A′B′ as above. The line
D′C intersects the segment AB at its midpoint D. By means of lines
parallel to DC the segment AB can be prolonged symmetrically, and
then the perpendicular bisector can be found as above.

(c) follows immediately from part (b).
(d) Let there be given a point P and a line l. We draw an arbitrary line

through P that intersects l at A, and two lines l1 and l2 parallel to
AP , at equal distances from AP and on either side of AP . Line l1
intersects l at B. We can construct the midpoint C of AP . If BC
intersects l2 at D, then PD is parallel to l.

54. Let S be the given set of points on the cube. Let x, y, z denote the numbers
of points from S lying at a vertex, at the midpoint of an edge, at the
midpoint of a face of the cube, respectively, and let u be the number of
all other points from S.
Either there are no points from S at the vertices of the cube, or there
is a point from S at each vertex. Hence x is either 0 or 8. Similarly, y
is either 0 or 12, and z is either 0 or 6. Any other point of S has 24
possible images under rotations of the cube. Hence u is divisible by 24.
Since n = x + y + z + u and 6 | y, z, u, it follows that either 6 | n or
6 | n − 8, i.e., n ≡ 0 or n ≡ 2 (mod 6). Thus n = 200 is possible, while
n = 100 is not, because n ≡ 4 (mod 6).

55. It is enough to find all x from (0, 2π] such that the given inequality holds
for all n.
Suppose 0 < x < 2π/3. If n is the maximum integer for which nx ≤
2π/3, we have π/3 < nx ≤ 2π/3, and consequently sinnx ≥

√
3/2. Thus

sinx+ sin 2x+ · · · + sinnx >
√

3/2.
Suppose now that 2π/3 ≤ x < 2π. We have

sinx+ · · · + sinnx =
cos x

2 − cos 2n+1
2 x

2 sin x
2

≤
cos x

2 + 1

2 sin x
2

=
cot x

4

2
≤

√
3

2
.

For x = 2π the given inequality clearly holds for all n. Hence, the inequal-
ity holds for all n if and only if 2π/3 + 2kπ ≤ x ≤ 2π + 2kπ for some
integer k.

56. We shall prove by induction on n the following statement: If in some group
of interpreters exactly n persons, n ≥ 2, speak each of the three languages,
then it is possible to select a subgroup in which each language is spoken
by exactly two persons.
The statement of the problem easily follows from this: it suffices to select
six such groups.
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The case n = 2 is trivial. Let us assume n ≥ 2, and let Nj , Nm, Nf , Njm,
Njf , Nmf , Njmf be the sets of those interpreters who speak only Japanese,
only Malay, only Farsi, only Japanese and Malay, only Japanese and Farsi,
only Malay and Farsi, and all the three languages, respectively, and nj , nm,
nf , njm, njf , nmf , njmf the cardinalities of these sets, respectively. By the
condition of the problem, nj+njm+njf +njmf = nm+njm+nmf+njmf =
nf + njf + nmf + njmf = 24, and consequently

nj − nmf = nm − njf = nf − njm = c.

Now if c < 0, then njm, njf , nmf > 0, and it is enough to select one inter-
preter from each of the sets Njm, Njf , Nmf . If c > 0, then nj , nm, nf > 0,
and it is enough to select one interpreter from each of the sets Nj, Nm, Nf

and then use the inductive assumption. Also, if c = 0, then w.l.o.g.
nj = nmf > 0, and it is enough to select one interpreter from each of
the sets Nj , Nmf and then use the inductive hypothesis. This completes
the induction.

57. Obviously cn > 0 for all even n. Thus cn = 0 is possible only for an odd
n. Let us assume a1 ≤ a2 ≤ · · · ≤ a8: in particular, a1 ≤ 0 ≤ a8.
If |a1| < |a8|, then there exists n0 such that for every odd n > n0, 7|a1|n <
an
8 ⇒ an

1 + · · ·+ an
7 + an

8 > 7an
1 + an

8 > 0, contradicting the condition that
cn = 0 for infinitely many n. Similarly |a1| > |a8| is impossible, and we
conclude that a1 = −a8.
Continuing in the same manner we can show that a2 = −a7, a3 = −a6

and a4 = −a5. Hence cn = 0 for every odd n.

58. The following sequence of equalities and inequalities gives an even stronger
estimate than needed.

|l(z)| = |Az +B| =
1

2
|(z + 1)(A+B) + (z − 1)(A− B)|

=
1

2
|(z + 1)f(1) + (z − 1)f(−1)|

≤ 1

2
(|z + 1| · |f(1)| + |z − 1| · |f(−1)|)

≤ 1

2
(|z + 1| + |z − 1|)M =

1

2
ρM.

59. By the arc AB we shall always mean the positive arc AB. We denote by
|AB| the length of arc AB. Let a basic arc be one of the n + 1 arcs into
which the circle is partitioned by the points A0, A1, . . . , An, where n ∈ N.
Suppose that ApA0 and A0Aq are the basic arcs with an endpoint at A0,
and that xn, yn are their lengths, respectively. We show by induction on
n that for each n the length of a basic arc is equal to xn, yn or xn + yn.
The statement is trivial for n = 1. Assume that it holds for n, and let
AiAn+1, An+1Aj be basic arcs. We shall prove that these two arcs have
lengths xn, yn, or xn+yn. If i, j are both strictly positive, then |AiAn+1| =
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|Ai−1An| and |An+1Aj | = |AnAj−1| are equal to xn, yn, or xn +yn by the
inductive hypothesis.
Let us assume now that i = 0, i.e., that ApAn+1 and An+1A0 are
basic arcs. Then |ApAn+1| = |A0An+1−p| ≥ |A0Aq| = yn and sim-
ilarly |An+1Aq| ≥ xn, but |ApAq| = xn + yn, from which it follows
that |ApAn+1| = |A0Aq| = yn and consequently n + 1 = p + q. Also,
xn+1 = |An+1A0| = yn − xn and yn+1 = yn. Now, all basic arcs have
lengths yn − xn, xn, yn, xn + yn. A presence of a basic arc of length
xn + yn would spoil our inductive step. However, if any basic arc AkAl

has length xn + yn, then we must have l − q = k − p because 2π is ir-
rational, and therefore the arc AkAl contains either the point Ak−p (if
k ≥ p) or the point Ak+q (if k < p), which is impossible; hence, the proof
is complete for i = 0. The proof for j = 0 is analogous. This completes
the induction.
It can be also seen from the above considerations that the basic arcs take
only two distinct lengths if and only if n = p+ q − 1. If we denote by nk

the sequence of n’s for which this holds, and by pk, qk the sequences of
the corresponding p, q, we have p1 = q1 = 1 and

(pk+1, qk+1) =

{
(pk + qk, qk), if {pk/(2π)} + {qk/(2π)} > 1,

(pk, pk + qk), if {pk/(2π)} + {qk/(2π)} < 1.

It is now “easy” to calculate that p19 = p20 = 333, q19 = 377, q20 = 710,
and thus n19 = 709 < 1000 < 1042 = n20. It follows that the lengths of
the basic arcs for n = 1000 take exactly three different values.
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4.10 Solutions to the Shortlisted Problems of IMO 1968

1. Since the ships are sailing with constant speeds and directions, the second
ship is sailing at a constant speed and direction in reference to the first
ship. Let A be the constant position of the first ship in this frame. Let B1,
B2, B3, and B on line b defining the trajectory of the ship be positions of
the second ship with respect to the first ship at 9:00, 9:35, 9:55, and at the
moment the two ships were closest. Then we have the following equations
for distances (in miles):

AB1 = 20, AB2 = 15, AB3 = 13,
B1B2 : B2B3 = 7 : 4, AB2

i = AB2 +BB2
i .

Since BB1 > BB2 > BB3, it follows that B(B3, B,B2, B1) or B(B,B3, B2,
B1). We get a system of three quadratic equations with three unknowns:
AB, BB3 and B3B2 (BB3 being negative if B(B3, B,B1, B2), positive
otherwise). This can be solved by eliminating AB and then BB3. The
unique solution ends up being

AB = 12, BB3 = 5, B3B2 = 4,

and consequently, the two ships are closest at 10:20 when they are at a
distance of 12 miles.

2. The sides a, b, c of a triangle ABC with ∠ABC = 2∠BAC satisfy b2 =
a(a + c) (this statement is the lemma in (SL98-7)). Taking into account
the remaining condition that a, b, c are consecutive integers with a < b,
we obtain three cases:
(i) a = n, b = n+1, c = n+2. We get the equation (n+1)2 = n(2n+2),

giving us (a, b, c) = (1, 2, 3), which is not a valid triangle.
(ii) a = n, b = n + 2, c = n + 1. We get (n + 2)2 = n(2n + 1) ⇒

(n− 4)(n+ 1) = 0, giving us the triangle (a, b, c) = (4, 6, 5).
(iii) a = n + 1, b = n + 2, c = n. We get (n + 2)2 = (n + 1)(2n + 1) ⇒

n2 − n− 3 = 0, which has no positive integer solutions for n.
Hence, the only solution is the triangle with sides of lengths 4, 5, and 6.

3. A triangle cannot be formed out of three lengths if and only if one of them
is larger than the sum of the other two. Let us assume this is the case for
all triplets of edges out of each vertex in a tetrahedronABCD. Let w.l.o.g.
AB be the largest edge of the tetrahedron. Then AB ≥ AC + AD and
AB ≥ BC+BD, from which it follows that 2AB ≥ AC+AD+BC+BD.
This implies that either AB ≥ AC+BC or AB ≥ AD+BD, contradicting
the triangle inequality. Hence the three edges coming out of at least one
of the vertices A and B form a triangle.

Remark. The proof can be generalized to prove that in a polyhedron with
only triangular surfaces there is a vertex such that the edges coming out
of this vertex form a triangle.
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4. We will prove the equivalence in the two directions separately:
(⇒) Suppose {x1, . . . , xn} is the unique solution of the equation. Since

{xn, x1, x2 . . . , xn−1} is also a solution, it follows that x1 = x2 = · · · =
xn = x and the system of equations reduces to a single equation ax2 +
(b− 1)x+ c = 0. For the solution for x to be unique the discriminant
(b − 1)2 − 4ac of this quadratic equation must be 0.

(⇐) Assume (b− 1)2 − 4ac = 0. Adding up the equations, we get

n∑
i=1

f(xi) = 0, where f(x) = ax2 + (b− 1)x+ c.

But by the assumed condition, f(x) = a
(
x+ b−1

2a

)2
. Hence we must

have f(xi) = 0 for all i, and xi = − b−1
2a , which is indeed a solution.

5. We have hk = r cos(π/k) for all k ∈ N. Using cosx = 1 − 2 sin2(x/2) and
cosx = 2/(1 + tan2(x/2)) − 1 and tanx > x > sinx for all 0 < x < π/2,
it suffices to prove

(n+ 1)

(
1 − 2

π2

4(n+ 1)2

)
− n

(
2

1 + π2/(4n2)
− 1

)
> 1

⇔ 1 + 2n

(
1 − 1

1 + π2/(4n2)

)
− π2

2(n+ 1)
> 1

⇔ 1 +
π2

2

(
1

n+ π2/(4n)
− 1

n+ 1

)
> 1 ,

where the last inequality holds because π2 < 4n. It is also apparent that
as n tends to infinity the term in parentheses tends to 0, and hence it is
not possible to strengthen the bound. This completes the proof.

6. We define f(x) = a1

a1−x + a2

a2−x + · · · + an

an−x . Let us assume w.l.o.g.
a1 < a2 < · · · < an. We note that for all 1 ≤ i < n the function f
is continuous in the interval (ai, ai+1) and satisfies limx→ai f(x) = −∞
and limx→ai+1 f(x) = ∞. Hence the equation f(x) = n will have a real
solution in each of the n− 1 intervals (ai, ai+1).

Remark. In fact, this equation has exactly n solutions, and hence they
are all real. Moreover, the solutions are distinct if all ai are of the same
sign, since x = 0 is an evident solution.

7. Let ra, rb, rc denote the radii of the exscribed circles corresponding to the
sides of lengths a, b, c respectively, and R, p and S denote the circumra-
dius, semiperimeter, and area of the given triangle. It is well-known that
ra(p − a) = rb(p − b) = rc(p − c) = S =

√
p(p− a)(p− b)(p− c) = abc

4R .

Hence, the desired inequality rarbrc ≤ 3
√

3
8 abc reduces to p ≤ 3

√
3

2 R, which
is by the law of sines equivalent to

sinα+ sinβ + sin γ ≤ 3
√

3

2
.



4.10 Shortlisted Problems 1968 363

This inequality immediately follows from Jensen’s inequality, since the sine
is concave on [0, π]. Equality holds if and only if the triangle is equilateral.

8. Let G be the point such that BCDG is a parallelogram and let H be
the midpoint of AG. Obviously HEFD is also a parallelogram, and thus
DH = EF = l. If AD2 + BC2 = m2 is fixed, then from the Stewart
theorem we have

DH2 =
2DA2 + 2DG2 −AG2

4
=

2m2 −AG2

4
,

which is fixed.
Thus G and H are fixed points, and from here the locus of D is a circle
with center H and radius l. The locus of B is the segment (GI], where
I ∈ ∆ is a point in the positive direction such that AI = a. Finally, the
locus of C is a region of the plane consisting of a rectangle sandwiched
between two semicircles of radius l centered at points H and H ′, where

H ′ is a point such that
−−→
IH ′ =

−−→
GH .

9. We note that Sa = ada/2, Sb = bdb/2, and Sc = cdc/2 are the areas of
the trianglesMBC, MCA, andMAB respectively. The desired inequality
now follows from

SaSb + SbSc + ScSa ≤ 1

3
(Sa + Sb + Sc)

2 =
S2

3
.

Equality holds if and only if Sa = Sb = Sc, which is equivalent to M being
the centroid of the triangle.

10. (a) Let us set k = a/b > 1. Then a = kb and c =
√
kb, and a > c > b.

The segments a, b, c form a triangle if and only if k <
√
k + 1, which

holds if and only if 1 < k < 3+
√

5
2 .

(b) The triangle is right-angled if and only if a2 = b2 +c2 ⇔ k2 = k+1 ⇔
k = 1+

√
5

2 . Also, it is acute-angled if and only if k2 < k + 1 ⇔ 1 <

k < 1+
√

5
2 and obtuse-angled if 1+

√
5

2 < k < 3+
√

5
2 .

11. Introducing yi = 1
xi

, we transform our equation to

0 = 1 + y1 + (1 + y1)y2 + · · · + (1 + y1) · · · (1 + yn−1)yn

= (1 + y1)(1 + y2) · · · (1 + yn).

The solutions are n-tuples (y1, . . . , yn) with yi �= 0 for all i and yj = −1
for at least one index j. Returning to xi, we conclude that the solutions
are all the n-tuples (x1, . . . , xn) with xi �= 0 for all i, and xj = −1 for at
least one index j.

12. The given inequality is equivalent to (a+ b)m/bm +(a+ b)m/am ≥ 2m+1,
which can be rewritten as

1

2

(
1

am
+

1

bm

)
≥
(

2

a+ b

)m

.
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Since f(x) = 1/xm is a convex function for every m ∈ Z, the last in-
equality immediately follows from Jensen’s inequality (f(a) + f(b))/2 ≥
f ((a+ b)/2).

13. Translating one of the triangles if necessary, we may assume w.l.o.g. that
B1 ≡ A1. We also assume that B2 �≡ A2 and B3 �≡ A3, since the result is
obvious otherwise.
There exists a plane π through A1 that is parallel to both A2B2 and A3B3.
Let A′

2, A
′
3, B

′
2, B

′
3 denote the orthogonal projections of A2, A3, B2, B3

onto π, and let h2, h3 denote the distances of A2, B2 and of A3, B3 from
π. By the Pythagorean theorem, A′

2A
′
3
2 = A2A

2
3 − (h2 + h3)

2 = B2B
2
3 −

(h2 + h3)
2 = B′

2B
′
3
2
, and similarly A1A

′
2 = A1B

′
2 and A1A

′
3 = A1B

′
3;

hence 
A1A
′
2A

′
3 and 
A1B

′
2B

′
3 are congruent. If these two triangles are

equally oriented, then we have finished. Otherwise, they are symmetric
with respect to some line a passing through A1, and consequently the
projections of the triangles A1A2A3 and A1B2B3 onto the plane through
a perpendicular to π coincide.

14. Let O,D,E be the circumcenter of 
ABC and the midpoints of AB and
AC, and given arbitrary X ∈ AB and Y ∈ AC such that BX = CY ,
let O1, D1, E1 be the circumcenter of 
AXY and the midpoints of AX
and AY , respectively. Since AD = AB/2 and AD1 = AX/2, it follows
that DD1 = BX/2 and similarly EE1 = CY/2. Hence O1 is at the same
distance BX/2 = CY/2 from the lines OD and OE and lies on the half-
line bisector l of ∠DOE.
If we let X,Y vary along the segments AB and AC, we obtain that
the locus of O1 is the segment OP , where P ∈ l is a point at distance
min(AB,AC)/2 from OD and OE.

15. Set

f(n) =

[
n+ 1

2

]
+

[
n+ 2

4

]
+ · · · +

[
n+ 2i

2i+1

]
+ . . . .

We prove by induction that f(n) = n. This obviously holds for n = 1. Let
us assume that f(n− 1) = n− 1. Define

g(i, n) =

[
n+ 2i

2i+1

]
−
[
n− 1 + 2i

2i+1

]
.

We have that f(n)−f(n+1) =
∑∞

i=0 g(i, n). We also note that g(i, n) = 1
if and only if 2i+1 | n + 2i; otherwise, g(i, n) = 0. The divisibility 2i+1 |
n + 2i is equivalent to 2i | n and 2i+1 � n, which for a given n holds for
exactly one i ∈ N0. Thus it follows that f(n)−f(n−1) = 1 ⇒ f(n) = n.
The proof by induction is now complete.

Second solution. It is easy to show that [x+ 1/2] = [2x] − [x] for x ∈ R.
Now f(x) = ([x] − [x/2]) + ([x/2] − [x/4]) + · · · = [x]. Hence, f(n) = n
for all n ∈ N.
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16. We shall prove the result by induction on k. It trivially holds for k = 0.
Assume that the statement is true for some k − 1, and let p(x) be a
polynomial of degree k. Let us set p1(x) = p(x+1)−p(x). Then p1(x) is a
polynomial of degree k−1 with leading coefficient ka0. Also, m | p1(x) for
all x ∈ Z and hence by the inductive assumption m | (k− 1)! · ka0 = k!a0,
which completes the induction.
On the other hand, for any a0, k and m | k!a0, p(x) = k!a0

(
x
k

)
is a

polynomial with leading coefficient a0 that is divisible by m.

17. Let there be given an equilateral triangle ABC and a point O such that
OA = x, OB = y, OC = z. Let X be the point in the plane such that

CXB and 
COA are congruent and equally oriented. Then BX = x
and the triangle XOC is equilateral, which implies OX = z. Thus we
have a triangle OBX with BX = x, BO = y, and OX = z.
Conversely, given a triangle OBX with BX = x, BO = y and OX = z it
is easy to construct the triangle ABC.

18. The required construction is not feasible. In fact, let us consider the special
case ∠BOC = 135◦, ∠AOC = 120◦, ∠AOB = 90◦, where AA′ ∩ BB′ ∩
CC′ = {O}. Denoting OA′, OB′, OC′ by a, b, c respectively we obtain the
system of equations a2+b2 = a2+c2+ac = b2+c2+

√
2bc. Assuming w.l.o.g.

c = 1 we easily obtain a3−a2−a−1 = 0, which is an irreducible equation
of third degree. By a known theorem, its solution a is not constructible
by ruler and compass.

19. We shall denote by dn the shortest curved distance from the initial point to
the nth point in the positive direction. The sequence dn goes as follows:
0, 1, 2, 3, 4, 5, 6, 0.72, 1.72, . . . , 5.72, 0.43, 1.43, . . . , 5.43, 0.15 = d19. Hence
the required number of points is 20.

20. Let us denote the points A1, A2, . . . , An in such a manner that A1An is a
diameter of the set of given points, and A1A2 ≤ A1A3 ≤ · · · ≤ A1An.
Since for each 1 < i < n it holds that A1Ai < A1An, we have
∠AiA1An < 120◦ and hence ∠AiA1An < 60◦ (otherwise, all angles in

A1AiAn are less than 120◦). It follows that for all 1 < i < j ≤ n,
∠AiA1Aj < 120◦. Consequently, the angle in the triangle A1AiAj that is
at least 120◦ must be ∠A1AiAj . Moreover, for any 1 < i < j < k ≤ n
it holds that ∠AiAjAk ≥ ∠A1AjAk − ∠A1AjAi > 120◦ − 60◦ = 60◦

(because ∠A1AjAi < 60◦); hence ∠AiAjAk ≥ 120◦. This proves that the
denotation is correct.

Remark. It is easy to show that the diameter is unique. Hence the deno-
tation is also unique.

21. The given conditions are equivalent to y − a0 being divisible by a0, a0 +
a1, a0 +a2, . . . , a0 +an, i.e., to y = k[a0, a0 +a1, . . . , a0 +an]+a0, k ∈ N0.

22. It can be shown by induction on the number of digits of x that p(x) ≤ x
for all x ∈ N. It follows that x2 − 10x − 22 ≤ x, which implies x ≤ 12.
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Since 0 < x2 − 10x− 22 = (x− 12)(x+ 2) + 2, one easily obtains x ≥ 12.
Now one can directly check that x = 12 is indeed a solution, and thus the
only one.

23. We may assume w.l.o.g. that in all the factors the coefficient of x is 1.
Suppose that x + ay + bz is one of the linear factors of p(x, y, z) = x3 +
y3 + z3 +mxyz. Then p(x) is 0 at every point (x, y, z) with z = −ax− by.
Hence x3 + y3 + (−ax − by)3 + mxy(−ax − by) = (1 − a3)x3 − (3ab +
m)(ax+by)xy+(1−b3)y3 ≡ 0. This is obviously equivalent to a3 = b3 = 1
and m = −3ab, from which it follows that m ∈ {−3,−3ω,−3ω2}, where

ω = −1+i
√

3
2 . Conversely, for each of the three possible values for m there

are exactly three possibilities (a, b). Hence −3,−3ω,−3ω2 are the desired
values.

24. If the ith digit is 0, then the result is 9k−j9!/(10 − j)! if i > k − j and
9k−j−19!/(9 − j)! otherwise. If the ith digit is not 0, then the above results
are multiplied by 8.

25. The answer is∑
1≤p<q<r≤k

npnqnr +
∑

1≤p<q≤k

[
np

(
nq

2

)
+ nq

(
np

2

)]
.

26. (a) We shall show that the period of f is 2a. From (f(x+ a) − 1/2)
2

=
f(x) − f(x)2 we obtain(

f(x) − f(x)2
)

+
(
f(x+ a) − f(x+ a)2

)
=

1

4
.

Subtracting the above relation for x + a in place of x we get f(x) −
f(x)2 = f(x + 2a) − f(x + 2a)2, which implies (f(x) − 1/2)

2
=

(f(x+ 2a) − 1/2)2. Since f(x) ≥ 1/2 holds for all x by the condi-
tion of the problem, we conclude that f(x+ 2a) = f(x).

(b) The following function, as is directly verified, satisfies the conditions:

f(x) =

{
1/2 if 2n ≤ x < 2n+ 1,
1 if 2n+ 1 ≤ x < 2n+ 2,

for n = 0, 1, 2, . . . .
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4.11 Solutions to the Contest Problems of IMO 1969

1. Set a = 4m4, where m ∈ N and m > 1. We then have z = n4 + 4m4 =
(n2 + 2m2)2 − (2mn)2 = (n2 + 2m2 + 2mn)(n2 + 2m2 − 2mn). Since
n2 + 2m2 − 2mn = (n −m)2 + m2 ≥ m2 > 1, it follows that z must be
composite. Thus we have found infinitely many a that satisfy the condition
of the problem.

2. Using cos(a + x) = cos a cosx − sina sinx, we obtain f(x) = A sinx +
B cosx where A = − sina1− sina2/2−· · ·− sinan/2

n−1 and B = cos a1 +
cos a2/2+ · · ·+cos an/2

n−1. Numbers A and B cannot both be equal to 0,
for otherwise f would be identically equal to 0, while on the other hand, we
have f(−a1) = cos(a1 − a1) + cos(a2 − a1)/2 + · · ·+ cos(an − a1)/2

n−1 ≥
1−1/2−· · ·−1/2n−1 = 1/2n−1 > 0. Setting A = C cosφ and B = C sinφ,
where C �= 0 (such C and φ always exist), we get f(x) = C sin(x + φ).
It follows that the zeros of f are of the form x0 ∈ −φ + πZ, from which
f(x1) = f(x2) ⇒ x1 − x2 = mπ immediately follows.

3. We have several cases:
1◦ k = 1. W.l.o.g. let AB = a and the remaining segments have length

1. Let M be the midpoint of CD. Then AM = BM =
√

3/2 (
CDA
and 
CDB are equilateral) and 0 < AB < AM + BM =

√
3, i.e.,

0 < a <
√

3. It is evident that all values of a within this interval are
realizable.

2◦ k = 2. We have two subcases.
First, let AC = AD = a. Let M be the midpoint of CD. We have
CD = 1, AM =

√
a2 − 1/4, and BM =

√
3/2. Then we have 1 −√

3/2 = AB − BM < AM < AB + BM = 1 +
√

3/2, which gives us√
2 −

√
3 < a <

√
2 +

√
3.

Second, let AB = CD = a. Let M be the midpoint of CD. From

MAB we get a <

√
2.

Thus, from
√

2 −
√

3 <
√

2 <
√

2 +
√

3 it follows that the required

condition in this case is 0 < a <
√

2 +
√

3. All values for a in this
range are realizable.

3◦ k = 3. We show that such a tetrahedron exists for all a. Assume
a > 1. Assume AB = AC = AD = a. Varying A along the line
perpendicular to the plane BCD and through the center of 
BCD
we achieve all values of a > 1/

√
3. For a < 1/

√
3 we can observe a

similar tetrahedron with three edges of length 1/a and three of length
1 and proceed as before.

4◦ k = 4. By observing the similar tetrahedron we reduce this case to

k = 2 with length 1/a instead of a. Thus we get a >
√

2 −
√

3.
5◦ k = 5. We reduce to k = 1 and get a > 1/

√
3.

4. Let O be the midpoint of AB, i.e., the center of γ. Let O1, O2, and O3

respectively be the centers of γ1, γ2, and γ3 and let r1, r2, r3 respectively
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be the radii of γ1, γ2 and γ3. Let C1, C2, and C3 respectively be the points
of tangency of γ1, γ2 and γ3 with AB. Let D2 and D3 respectively be the
points of tangency of γ2 and γ3 with CD. Finally, let G2 and G3 respec-
tively be the points of tangency of γ2 and γ3 with γ. We have B(G2, O2, O),
G2O2 = O2D2, and G2O = OB. Hence, G2, D2, B are collinear. Sim-
ilarly, G3, D3, A are collinear. It follows that AG2D2D and BG3D3D
are cyclic, since ∠AG2D2 = ∠D2DA = ∠D3DB = ∠BG3D3 = 90◦.
Hence BC2

2 = BD2 · BG2 = BD · BA = BC2 ⇒ BC2 = BC
and hence AC2 = AB − BC. Similarly, AC3 = AC. We thus have
AC1 = (AC +AB −BC)/2 = (AC3 +AC2)/2. Hence, C1 is the mid-
point of C2C3. We also have r2 + r3 = C2C3 = AC + BC − AB = 2r1,
from which it follows that O1, O2, O3 are collinear.

Second solution. We shall prove the statement for arbitrary points A,B,C
on γ.
Let us apply the inversion ψ with respect to the circle γ1. We denote by
X̂ the image of an object X under ψ. Also, ψ maps lines BC,CA,AB
onto circles â, b̂, ĉ, respectively. Circles â, b̂, ĉ pass through the center O1

of γ1 and have radii equal to the radius of γ̂. Let P,Q,R be the centers
of â, b̂, ĉ respectively.
The line CD maps onto a circle k through Ĉ and O1 that is perpendicular
to ĉ. Therefore its center K lies in the intersection of the tangent t to ĉ and
the line PQ (which bisects ĈO1). Let O be a point such that RO1KO is a
parallelogram and γ′2, γ

′
3 the circles centered at O tangent to k. It is easy

to see that γ′2 and γ′3 are also tangent to ĉ, since OR and OK have lengths
equal to the radii of k and ĉ. Hence γ′2 and γ′3 are the images of γ2 and

γ3 under ψ. Moreover, since QÂOK and PB̂OK are parallelograms and
Q,P,K are collinear, it follows that Â, B̂, O are also collinear. Hence the
centers of γ1, γ2, γ3 are collinear, lying on the line O1O, and the statement
follows.

Third solution. Moreover, the statement holds for an arbitrary point
D ∈ BC. Let E,F,G,H be the points of tangency of γ2 with AB,CD
and of γ3 with AB,CD, respectively. Let Oi be the center of γi, i = 1, 2, 3.
As is shown in the third solution of (SL93-3), EF and GH meet at O1.
Hence the problem of proving the collinearity of O1, O2, O3 reduces to the
following simple problem:

Let D,E, F,G,H be points such that D ∈ EG, F ∈ DH and
DE = DF , DG = DH . Let O1, O2, O3 be points such that ∠O2ED =
∠O2FD = 90◦, ∠O3GD = ∠O3HD = 90◦, and O1 = EF ∩GH . Then
O1, O2, O3 are collinear.

Let K2 = DO2 ∩ EF and K3 = DO3 ∩ GH . Then O2K2/O2D =
DK3/DO3 = K2O1/DO3 and hence by Thales’ theorem O1 ∈ O2O3.

5. We first prove the following lemma.
Lemma. If of five points in a plane no three belong to a single line, then

there exist four that are the vertices of a convex quadrilateral.
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Proof. If the convex hull of the five points A,B,C,D,E is a pentagon or
a quadrilateral, the statement automatically holds. If the convex hull
is a triangle, then w.l.o.g. let 
ABC be that triangle and D,E points
in its interior. Let the line DE w.l.o.g. intersect [AB] and [AC]. Then
B,C,D,E form the desired quadrilateral.

We now observe each quintuplet of points within the set. There are
(
n
5

)
such quintuplets, and for each of them there is at least one quadruplet of
points forming a convex quadrilateral. Each quadruplet, however, will be
counted up to n− 4 times. Hence we have found at least 1

n−4

(
n
5

)
quadru-

plets. Since 1
n−4

(
n
5

)
≥

(
n−3

2

)
⇔ (n− 5)(n− 6)(n+ 8) ≥ 0, which always

holds, it follows that we have found at least
(
n−3

2

)
desired quadruplets of

points.

6. Define u1 =
√
x1y1 + z1, u2 =

√
x2y2 + z2, v1 =

√
x1y1 − z1, and v2 =√

x2y2 − z2. By expanding both sides of the equation we can easily verify
(x1 +x2)(y1 + y2)− (z1 + z2)

2 = (u1 +u2)(v1 + v2)+ (
√
x1y2 −

√
x2y1)

2 ≥
(u1 + u2)(v1 + v2). Since xiyi − z2

i = uivi for i = 1, 2, it suffices to prove

8

(u1 + u2)(v1 + v2)
≤ 1

u1v1
+

1

u2v2

⇔ 8u1u2v1v2 ≤ (u1 + u2)(v1 + v2)(u1v1 + u2v2),

which trivially follows from the AM–GM inequalities 2
√
u1u2 ≤ u1 + u2,

2
√
v1v2 ≤ v1 + v2 and 2

√
u1v1u2v2 ≤ u1v1 + u2v2.

Equality holds if and only if x1y2 = x2y1, u1 = u2 and v1 = v2, i.e. if and
only if x1 = x2, y1 = y2 and z1 = z2.

Second solution. Let us define f(x, y, z) = 1/(xy − z2). The problem
actually states that

2f

(
x1 + x2

2
,
y1 + y2

2
,
z1 + z2

2

)
≤ f(x1, y1, z1) + f(x2, y2, z2),

i.e., that the function f is convex on the set D = {(x, y, z) ∈ R2 | xy −
z2 > 0}. It is known that a twice continuously differentiable function
f(t1, t2, . . . , tn) is convex if and only if its Hessian [f ′

ij
′]ni,j=1 is positive

semidefinite, or equivalently, if its principal minors Dk = det[f ′
ij
′]ki,j=1, k =

1, 2, . . . , n, are nonnegative. In the case of our f this is directly verified:
D1 = 2y2/(xy − z2)3, D2 = 3xy + z2/(xy − z2)5, D3 = 6/(xy − z2)6 are
obviously positive.
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4.12 Solutions to the Shortlisted Problems of IMO 1970

1. Denote respectively by R and r the radii of the circumcircle and incircle,
by A1, . . . , An, B1, . . . , Bn ,the vertices of the 2n-gon and by O its center.
Let P ′ be the point symmetric to P with respect to O. Then AiP

′BiP
is a parallelogram, and applying cosine theorem on triangles AiBiP and
PP ′Bi yields

4R2 = PA2
i + PB2

i − 2PAi · PBi cos ai

4r2 = PB2
i + P ′B2

i − 2PBi · P ′Bi cos∠PBiP
′.

Since AiP
′BiP is a parallelogram, we have that P ′Bi = PAi and

∠PBiP
′ = π − ai. Subtracting the expression for 4r2 from the one for

4R2 yields 4(R2 − r2) = −4PAi · PBi cos ai = −8S�AiBiP cotai, hence
we conclude that

tan2 ai =
4S2

�AiBiP

(R2 − r2)2
. (1)

Denote by Mi the foot of the perpendicular from P to AiBi and let mi =
PMi. Then S�AiBiP = Rmi. Substituting this into (1) and adding up
these relations for i = 1, 2, . . . , n, we obtain

n∑
i=1

tan2 ai =
4R2

(R2 − r2)2

(
n∑

i=1

m2
i

)
.

Note that all the points Mi lie on a circle with diameter OP and form

a regular n-gon. Denote its center by F . We have that m2
i = ‖−−→PMi‖2 =

‖−−→FMi −
−−→
FP‖2 = ‖−−→FMi

2‖ + ‖−−→FP 2‖− 2〈−−→FMi,
−−→
FP 〉 = r2/2− 2〈−−→FMi,

−−→
FP 〉.

From this it follows that
∑n

i=1m
2
i = 2n(r/2)2 − 2

∑n
i=1〈

−−→
FMi,

−−→
FP 〉 =

2n(r/2)2 −2〈
∑n

i=1

−−→
FMi,

−−→
FP 〉 = 2n(r/2)2, because

∑n
i=1

−−→
FMi =

−→
0 . Thus

n∑
i=1

tan2 ai =
4R2

(R2 − r2)2
2n

(r
2

)2

= 2n
(r/R)2

(1 − (r/R)2)
2 = 2n

cos2 π
2n

sin4 π
2n

.

Remark. For n = 1 there is no regular 2-gon. However, if we think of a
2-gon as a line segment, the statement will remain true.

2. Suppose that a > b. Consider the polynomial P (X) = x1X
n−1+x2X

n−2+
· · · + xn−1X + xn. We have An = P (a), Bn = P (b), An+1 = x0a

n +
P (a), and Bn+1 = x0b

n + P (b). Now An/An+1 < Bn/Bn+1 becomes
P (a)/(x0a

n + P (a)) < P (b)/(x0b
n + P (b)), i.e.,

bnP (a) < anP (b).

Since a > b, we have that ai > bi and hence xia
nbn−i ≥ xib

nan−i (also,
for i ≥ 1 the inequality is strict). Summing up all these inequalities for
i = 1, . . . , n we get anP (b) > bnP (a), which completes the proof for a > b.
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On the other hand, for a < b we analogously obtain the opposite inequality
An/An+1 > Bn/Bn+1, while for a = b we have equality. Thus An/An+1 <
Bn/Bn+1 ⇔ a > b.

3. We shall use the following lemma
Lemma. If an altitude of a tetrahedron passes through the orthocenter of

the opposite side, then each of the other altitudes possesses the same
property.

Proof. Denote the tetrahedron by SABC and let a = BC, b = CA,
c = AB, m = SA, n = SB, p = SC. It is enough to prove that
an altitude passes through the orthocenter of the opposite side if and
only if a2 +m2 = b2 + n2 = c2 + p2.
Suppose that the foot S′ of the altitude from S is the orthocenter of
ABC. Then SS′ ⊥ ABC ⇒ SB2 − SC2 = S′B2 − S′C2. But from
AS′ ⊥ BC it follows that AB2 −AC2 = S′B2 −S′C2. From these two
equalities it can be concluded that n2 − p2 = c2 − b2, or equivalently,
n2 + b2 = c2 + p2. Analogously, a2 +m2 = n2 + b2, so we have proved
the first part of the equivalence.
Now suppose that a2 +m2 = b2 +n2 = c2 + p2. Defining S′ as before,
we get n2 − p2 = S′B2 − S′C2. From the condition n2 − p2 = c2 − b2

(⇔ b2 + n2 = c2 + p2) we conclude that AS′ ⊥ BC. In the same way
CS′ ⊥ AB, which proves that S′ is the orthocenter of 
ABC. The
lemma is thus proven.

Now using the lemma it is easy to see that if one of the angles at S is
right, than so are the others. Indeed, suppose that ∠ASB = π/2. From the
lemma we have that the altitude from C passes through the orthocenter
of 
ASB, which is S, so CS ⊥ ASB and ∠CSA = ∠CSB = π/2.
Therefore m2 + n2 = c2, n2 + p2 = a2, and p2 + m2 = b2, so it follows
that m2 + n2 + p2 = (a2 + b2 + c2)/2. By the inequality between the
arithmetic and quadric means, we have that (a2 + b2 + c2)/2 ≥ 2s2/3,
where s denotes the semiperimeter of 
ABC. It remains to be shown
that 2s2/3 ≥ 18r2. Since S�ABC = sr, this is equivalent to 2s4/3 ≥
18S2

ABC = 18s(s − a)(s − b)(s − c) by Heron’s formula. This reduces to
s3 ≥ 27(s−a)(s−b)(s−c), which is an obvious consequence of the AM–GM
mean inequality.

Remark. In the place of the lemma one could prove that the opposite
edges of the tetrahedron are mutually perpendicular and proceed in the
same way.

4. Suppose that n is such a natural number. If a prime number p divides any
of the numbers n, n+1, . . . , n+5, then it must divide another one of them,
so the only possibilities are p = 2, 3, 5. Moreover, n+ 1, n+ 2, n+ 3, n+ 4
have no prime divisors other than 2 and 3 (if some prime number greater
than 3 divides one of them, then none of the remaining numbers can have
that divisor). Since two of these numbers are odd, they must be powers of
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3 (greater than 1). However, there are no two powers of 3 whose difference
is 2. Therefore there is no such natural number n.

Second solution. Obviously, none of n, n + 1, . . . , n + 5 is divisible by
7; hence they form a reduced system of residues. We deduce that n(n +
1) · · · (n+5) ≡ 1 ·2 · · ·6 ≡ −1 (mod 7). If {n, . . . , n+5} can be partitioned
into two subsets with the same products, both congruent to, say, p modulo
7, then p2 ≡ −1 (mod 7), which is impossible.

Remark. Erdős has proved that a set n, n + 1, . . . , n +m of consecutive
natural numbers can never be partitioned into two subsets with equal
products of elements.

5. Denote respectively by A1, B1, C1 and D1 the points of intersection of the
lines AM , BM , CM , and DM with the opposite sides of the tetrahe-

dron. Since vol(MBCD) = vol(ABCD)
−−−→
MA1/

−−→
AA1, the relation we have

to prove is equivalent to

−−→
MA ·

−−−→
MA1
−−→
AA1

+
−−→
MB ·

−−−→
MB1
−−→
BB1

+
−−→
MC ·

−−−→
MC1
−−→
CC1

+
−−→
MD ·

−−−→
MD1
−−−→
DD1

= 0. (1)

There exist unique real numbers α, β, γ, and δ such that α+β+γ+δ = 1
and for every point O in space

−−→
OM = α

−→
OA + β

−−→
OB + γ

−−→
OC + δ

−−→
OD. (2)

(This follows easily from
−−→
OM =

−→
OA+

−−→
AM =

−→
OA+k

−−→
AB+ l

−→
AC+m

−−→
AD =

−−→
AB + k(

−−→
OB −−→

OA) + l(
−−→
OC −−→

OA) +m(
−−→
OD −−→

OA) for some k, l,m ∈ R.)
Further, from the condition that A1 belongs to the plane BCD we obtain
for every O in space the following equality for some β′, γ′, δ′:

−−→
OA1 = β′−−→OB + γ′

−−→
OC + δ′

−−→
OD. (3)

However, for λ =
−−−→
MA1/

−−→
AA1,

−−→
OM = λ

−→
OA+(1−λ)

−−→
OA1; hence substituting

(2) and (3) in this expression and equating coefficients for
−→
OA we obtain

λ =
−−−→
MA1/

−−→
AA1 = α. Analogously, β =

−−−→
MB1/

−−→
BB1, γ =

−−−→
MC1/

−−→
CC1, and

δ =
−−−→
MD1/

−−−→
DD1; hence (1) follows immediately for O = M .

Remark. The statement of the problem actually follows from the fact
that M is the center of mass of the system with masses vol(MBCD),
vol(MACD), vol(MABD), vol(MABC) at A,B,C,D respectively. Our
proof is actually a formal verification of this fact.

6. Let F be the midpoint of B′C′, A′ the midpoint of BC, and I the inter-
section point of the line HF and the circle circumscribed about 
BHC′.
Denote by M the intersection point of the line AA′ with the circum-
scribed circle about the triangle ABC. Triangles HB′C′ and ABC are
similar. Since ∠C′IF = ∠ABC = ∠A′MC, ∠C′FI = ∠AA′B = ∠MA′C,



4.12 Shortlisted Problems 1970 373

2C′F = C′B′, and 2A′C = CB, it follows that 
C′IB′ ∼ 
CMB, hence
∠FIB′ = ∠A′MB = ∠ACB. Now one concludes that I belongs to the
circumscribed circles of 
AB′C′ (since ∠C′IB′ = 180◦ − ∠C′AB′) and

HCB′.

Second Solution. We denote the angles of 
ABC by α, β, γ. Evidently

ABC ∼ 
HC′B′. Within 
HC′B′ there exists a unique point I such
that ∠HIB′ = 180◦ − γ, ∠HIC′ = 180◦ − β, and ∠C′IB′ = 180◦ − α,
and all three circles must contain this point. Let HI and B′C′ intersect in
F . It remains to show that FB′ = FC′. From ∠HIB′ + ∠HB′F = 180◦

we obtain ∠IHB′ = ∠IB′F . Similarly, ∠IHC′ = ∠IC′F . Thus circles
around 
IHC′ and 
IHB′ are both tangent to B′C′, giving us FB′2 =
FI · FH = FC′2.

7. For a = 5 one can take n = 10, while for a = 6 one takes n = 11. Now
assume a �∈ {5, 6}.
If there exists an integer n such that each digit of n(n+ 1)/2 is equal to
a, then there is an integer k such that n(n+ 1)/2 = (10k − 1)a/9. After
multiplying both sides of the equation by 72, one obtains 36n2 + 36n =
8a · 10k − 8a, which is equivalent to

9(2n+ 1)2 = 8a · 10k − 8a+ 9. (1)

So 8a · 10k − 8a+ 9 is the square of some odd integer. This means that its
last digit is 1, 5, or 9. Therefore a ∈ {1, 3, 5, 6, 8}.
If a = 3 or a = 8, the number on the RHS of (1) is divisible by 5, but not
by 25 (for k ≥ 2), and thus cannot be a square. It remains to check the case
a = 1. In that case, (1) becomes 9(2n+ 1)2 = 8 · 10k + 1, or equivalently
[3(2n+1)−1][3(2n+1)+1] = 8 ·10k ⇒ (3n+1)(3n+2) = 2 ·10k. Since the
factors 3n+ 1, 3n+ 2 are relatively prime, this implies that one of them
is 2k+1 and the other one is 5k. It is directly checked that their difference
really equals 1 only for k = 1 and n = 1, which is excluded. Hence, the
desired n exists only for a ∈ {5, 6}.

8. Let AC = b, BC = a,AM = x,BM = y, CM = l. Denote by I1
the incenter and by S1 the center of the excircle of ∆AMC. Suppose
that P1 and Q1 are feet of perpendiculars from I1 and S1, respectively,
to the line AC. Then 
I1CP1 ∼ 
S1CQ1, hence r1/ρ1 = CP1/CQ1.
We have CP1 = (AC +MC −AM)/2 = (b + l− x)/2 and CQ1 =
(AC +MC +AM)/2 = (b+ l + x)/2. Hence

r1
ρ1

=
b+ l − x

b+ l + x
.

We similarly obtain

r2
ρ2

=
b+ l − y

b+ l + y
and

r

ρ
=
a+ b− x− y

a+ b+ x+ y
.



374 4 Solutions

What we have to prove is now equivalent to

(b+ l − x)(a+ l − y)

(b+ l + x)(a+ l + y)
=
a+ b− x− y

a+ b+ x+ y
. (1)

Multiplying both sides of (1) by (a + l + y)(b + l + x)(a + b + x + y) we
obtain an expression that reduces to l2x + l2y + x2y + xy2 = b2y + a2x.
Dividing both sides by c = x + y, we get that (1) is equivalent to l2 =
b2y/(x+ y) + a2x/(x+ y) − xy, which is exactly Stewart’s theorem for l.
This finally proves the desired result.

9. Let us set a =
√∑n

i=1 u
2
i and b =

√∑n
i=1 v

2
i . By Minkowski’s inequality

(for p = 2) we have
∑n

i=1(ui + vi)
2 ≤ (a + b)2. Hence the LHS of the

desired inequality is not greater than 1 + (a+ b)2, while the RHS is equal
to 4(1 + a2)(1 + b2)/3. Now it is sufficient to prove that

3 + 3(a+ b)2 ≤ 4(1 + a2)(1 + b2).

The last inequality can be reduced to the trivial 0 ≤ (a− b)2 +(2ab− 1)2.
The equality in the initial inequality holds if and only if ui/vi = c for
some c ∈ R and a = b = 1/

√
2.

10. (a) Since an−1 < an, we have(
1 − ak−1

ak

)
1√
ak

=
ak − ak−1

a
3/2
k

≤
2(

√
ak −√

ak−1)
√
ak

ak
√
ak−1

= 2

(
1

√
ak−1

− 1√
ak

)
.

Summing up all these inequalities for k = 1, 2, . . . , n we obtain

bn ≤ 2

(
1√
a0

− 1√
an

)
< 2.

(b) Choose a real number q > 1, and let ak = qk, k = 1, 2, . . . . Then
(1 − ak−1/ak) /

√
ak = (1 − 1/q) /qk/2, and consequently

bn =

(
1 − 1

q

) n∑
k=1

1

qk/2
=

√
q + 1

q

(
1 − 1

qn/2

)
.

Since (
√
q + 1)/q can be arbitrarily close to 2, one can set q such that

(
√
q + 1)/q > b. Then bn ≥ b for all sufficiently large n.

Second solution.
(a) Note that

bn =

n∑
k=1

(
1 − ak−1

ak

)
1√
ak

=

n∑
k=1

(ak − ak−1) ·
1

a
3/2
k

;
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hence bn represents exactly the lower Darboux sum for the function
f(x) = x−3/2 on the interval [a0, an]. Then bn ≤

∫ an

a0
x−3/2dx <∫ +∞

1
x−3/2dx = 2.

(b) For each b < 2 there exists a number α > 1 such that
∫ α

1 x−3/2dx >
b + (2 − b)/2. Now, by Darboux’s theorem, there exists an array 1 =
a0 ≤ a1 ≤ · · · ≤ an = α such that the corresponding Darboux sums
are arbitrarily close to the value of the integral. In particular, there is
an array a0, . . . , an with bn > b.

11. Let S(x) = (x−x1)(x−x2) · · · (x−xn). We have x3 −x3
i = (x−xi)(ωx−

xi)(ω
2x − xi), where ω is a primitive third root of 1. Multiplying these

equalities for i = 1, . . . , n we obtain

T (x3) = (x3 − x3
1)(x

3 − x3
2) · · · (x3 − x3

n) = S(x)S(ωx)S(ω2x).

Since S(ωx) = P (x3) + ωxQ(x3) + ω2x2R(x3) and S(ω2x) = P (x3) +
ω2xQ(x3) + ωx2R(x3), the above expression reduces to

T (x3) = P 3(x3) + x3Q3(x3) + x6R3(x3) − 3P (x3)Q(x3)R(x3).

Therefore the zeros of the polynomial

T (x) = P 3(x) + xQ3(x) + x2R3(x) − 3P (x)Q(x)R(x)

are exactly x3
1, . . . , x

3
n. It is easily verified that deg T = deg S = n, and

hence T is the desired polynomial.

12. Lemma. Five points are given in the plane such that no three of them
are collinear. Then there are at least three triangles with vertices at
these points that are not acute-angled.

Proof. We consider three cases, according to whether the convex hull of
these points is a triangle, quadrilateral, or pentagon.
(i) Let a triangle ABC be the convex hull and two other points D and

E lie inside the triangle. At least two of the triangles ADB,BDC
and CDA have obtuse angles at the point D. Similarly, at least
two of the trianglesAEB,BEC and CEA are obtuse-angled. Thus
there are at least four non-acute-angled triangles.

(ii) Suppose that ABCD is the convex hull and that E is a point of
its interior. At least one angle of the quadrilateral is not acute,
determining one non-acute-angled triangle. Also, the point E lies
in the interior of either 
ABC or 
CDA hence, as in the previous
case, it determines another two obtuse-angled triangles.

(iii) It is easy to see that at least two of the angles of the pentagon are
not acute. We may assume that these two angles are among the
angles corresponding to vertices A, B, and C. Now consider the
quadrilateral ACDE. At least one its angles is not acute. Hence,
there are at least three triangles that are not acute-angled.
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Now we consider all combinations of 5 points chosen from the given 100.
There are

(
100
5

)
such combinations, and for each of them there are at least

three non-acute-angled triangles with vertices in it. On the other hand,
vertices of each of the triangles are counted

(
97
2

)
times. Hence there are at

least 3
(
100
5

)
/
(
97
2

)
non-acute-angled triangles with vertices in the given 100

points. Since the number of all triangles with vertices in the given points
is
(
100
3

)
, the ratio between the number of acute-angled triangles and the

number of all triangles cannot be greater than

1 −
3
(
100
5

)(
97
2

)(
100
3

) = 0.7.
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4.13 Solutions to the Shortlisted Problems of IMO 1971

1. Assuming that a, b, c in (1) exist, let us find what their values should
be. Since P2(x) = x2 − 2, equation (1) for n = 1 becomes (x2 − 4)2 =
[a(x2 − 2) + bx + 2c]2. Therefore, there are two possibilities for (a, b, c):
(1, 0,−1) and (−1, 0, 1). In both cases we must prove that

(x2 − 4)[Pn(x)2 − 4] = [Pn+1(x) − Pn−1(x)]
2. (2)

It suffices to prove (2) for all x in the interval [−2, 2]. In this interval we
can set x = 2 cos t for some real t. We prove by induction that

Pn(x) = 2 cosnt for all n. (3)

This is trivial for n = 0, 1. Assume (3) holds for some n− 1 and n. Then
Pn+1(x) = 4 cos t cosnt − 2 cos(n − 1)t = 2 cos(n + 1)t by the additive
formula for the cosine. This completes the induction.
Now (2) reduces to the obviously correct equality

16 sin2 t sin2 nt = (2 cos(n+ 1)t− 2 cos(n− 1)t)2.

Second solution. If x is fixed, the linear recurrence relation Pn+1(x) +
Pn−1(x) = xPn(x) can be solved in the standard way. The characteristic
polynomial t2 − xt+ 1 has zeros t1,2 with t1 + t2 = x and t1t2 = 1; hence,
the general Pn(x) has the form atn1 + btn2 for some constants a, b. From
P0 = 2 and P1 = x we obtain that

Pn(x) = tn1 + tn2 .

Plugging in these values and using t1t2 = 1 one easily verifies (2).

2. We will construct such a set Sm of 2m points.
Take vectors u1, . . . , um in a given plane, such that |ui| = 1/2 and
0 �= |c1u1 + c2u2 + · · · + cnun| �= 1/2 for any choice of numbers ci equal
to 0 or ±1. Such vectors are easily constructed by induction on m: For
u1, . . . , um−1 fixed, there are only finitely many vector values um that vi-
olate the upper condition, and we may set um to be any other vector of
length 1/2.
Let Sm be the set of all points M0 + ε1u1 + ε2u2 + · · ·+ εmum, where M0

is any fixed point in the plane and εi = ±1 for i = 1, . . . ,m. Then Sm

obviously satisfies the condition of the problem.

3. Let x, y, z be a solution of the given system with x2 + y2 + z2 = α < 10.
Then

xy + yz + zx =
(x + y + z)2 − (x2 + y2 + z2)

2
=

9 − α

2
.

Furthermore, 3xyz = x3 +y3+z3−(x+y+z)(x2+y2+z2−xy−yz−zx),
which gives us xyz = 3(9 − α)/2 − 4. We now have
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35 = x4 + y4 + z4 = (x3 + y3 + z3)(x+ y + z)

−(x2 + y2 + z2)(xy + yz + zx) + xyz(x+ y + z)

= 45 − α(9 − α)

2
+

9(9 − α)

2
− 12.

The solutions in α are α = 7 and α = 11. Therefore α = 7, xyz = −1,
xy + xz + yz = 1, and

x5 + y5 + z5 = (x4 + y4 + z4)(x + y + z)

−(x3 + y3 + z3)(xy + xz + yz) + xyz(x2 + y2 + z2)

= 35 · 3 − 15 · 1 + 7 · (−1) = 83.

4. In the coordinate system in which the x-axis passes through the centers
of the circles and the y-axis is their common tangent, the circles have
equations

x2 + y2 + 2r1x = 0, x2 + y2 − 2r2x = 0.

Let p be the desired line with equation y = ax+ b. The abscissas of points
of intersection of p with both circles satisfy one of

(1 + a2)x2 + 2(ab+ r1)x+ b2 = 0, (1 + a2)x2 + 2(ab− r2)x+ b2 = 0.

Let us denote the lengths of the chords and their projections onto the
x-axis by d and d1, respectively. From these equations it follows that

d2
1 =

4(ab+ r1)
2

(1 + a2)2
− 4b2

1 + a2
=

4(ab− r2)
2

(1 + a2)2
− 4b2

1 + a2
. (1)

Consider the point of intersection of p with the y-axis. This point has
equal powers with respect to both circles. Hence, if that point divides the
segment determined on p by the two circles on two segments of lengths x
and y, this power equals x(x+ d) = y(y + d), which implies x = y = d/2.
Thus each of the equations in (1) has two roots, one of which is thrice the
other. This fact gives us (ab+ r1)

2 = 4(1 + a2)b2/3. From (1) and this we
obtain

ab =
r2 − r1

2
, 4b2 + a2b2 = 3[(ab+ r1)

2 − a2b2] = 3r1r2;

a2 =
4(r2 − r1)

2

14r1r2 − r21 − r22
, b2 =

14r1r2 − r21 − r22
16

;

d2
1 =

(14r1r2 − r21 − r22)
2

36(r1 + r2)2
.

Finally, since d2 = d2
1(1 + a2), we conclude that

d2 =
1

12
(14r1r2 − r21 − r22),

and that the problem is solvable if and only if 7 − 4
√

3 ≤ r1

r2
≤ 7 + 4

√
3.
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5. Without loss of generality, we may assume that a ≥ b ≥ c ≥ d ≥ e.
Then a − b = −(b − a) ≥ 0, a − c ≥ b − c ≥ 0, a − d ≥ b − d ≥ 0 and
a− e ≥ b− e ≥ 0, and hence

(a− b)(a− c)(a− d)(a− e) + (b− a)(b − c)(b− d)(b − e) ≥ 0.

Analogously, (d− a)(d− b)(d− c)(d− e)+ (e− a)(e− b)(e− c)(e− d) ≥ 0.
Finally, (c − a)(c − b)(c − d)(c − e) ≥ 0 as a product of two nonnegative
numbers, from which the inequality stated in the problem follows.

Remark. The problem in an alternative formulation, accepted for the
IMO, asked to prove that the analogous inequality

(a1 − a2)(a1 − a2) · · · (a1 − an) + (a2 − a1)(a2 − a3) · · · (a2 − an) + · · ·
+(an − a1)(an − a2) · · · (an − an−1) ≥ 0

holds for arbitrary real numbers ai if and only if n = 3 or n = 5.
The case n = 3 is analogous to n = 5. For n = 4, a counterexample is
a1 = 0, a2 = a3 = a4 = 1, while for n > 5 one can take a1 = a2 = · · · =
an−4 = 0, an−3 = an−2 = an−1 = 2, an = 1 as a counterexample.

6. The proof goes by induction on n. For n = 2, the following numeration
satisfies the conditions (a)–(d): C1 = 11, C2 = 12, C3 = 22, C4 = 21.
Suppose that n > 2, and that the numeration C1, C2, . . . , C2n−1 of a reg-
ular 2n−1-gon, in cyclical order, satisfies (i)–(iv). Then one can assign to
the vertices of a 2n-gon cyclically the following numbers:

1C1, 1C2, . . . , 1C2n−1 , 2C2n−1 , . . . , 2C2, 2C1.

The conditions (i), (ii) obviously hold, while (iii) and (iv) follow from the
inductive assumption.

7. (a) Suppose that X,Y, Z are fixed on segments AB,BC,CD. It is proven
in a standard way that if ∠ATX �= ∠ZTD, then ZT +TX can be re-
duced. It follows that if there exists a broken line XY ZTX of minimal
length, then the following conditions hold:

∠DAB = π − ∠ATX − ∠AXT,

∠ABC = π − ∠BXY − ∠BY X = π − ∠AXT − ∠CY Z,

∠BCD = π − ∠CY Z − ∠CZY,

∠CDA = π − ∠DTZ − ∠DZT = π − ∠ATX − ∠CZY.

Thus σ = 0.
(b) Now let σ = 0. Let us cut the surface of the tetrahedron along

the edges AC, CD, and DB and set it down into a plane. Con-
sider the plane figure S = ACD′BD′′C′ thus obtained made up of
triangles BCD′, ABC,ABD′′, and AC′D′′, with Z ′, T ′, Z ′′ respec-
tively on CD′, AD′′, C′D′′ (here C′ corresponds to C, etc.). Since
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∠C′D′′A + ∠D′′AB + ∠ABC + ∠BCD′ = 0 as an oriented angle
(because σ = 0), the lines CD′ and C′D′′ are parallel and equally
oriented; i.e., CD′D′′C′ is a parallelogram.
The broken line XY ZTX has minimal length if and only if Z ′′, T ′, X ,
Y, Z ′ are collinear (where Z ′Z ′′ ‖
CC′), and then this length equals
Z ′Z ′′ = CC′ = 2AC sin(α/2).
There is an infinity of such lines,
one for every line Z ′Z ′′ parallel to
CC′ that meets the interiors of all
the segments CB,BA,AD′′. Such

α
2

D′

C C′

D′′

A

B

Z′′Z′

Y X

T ′

Z ′Z ′′ exist. Indeed, the triangles CAB and D′′AB are acute-angled,
and thus the segment AB has a common interior point with the par-
allelogram CD′D′′C′. Therefore the desired result follows.

8. Suppose that a, b, c, t satisfy all the conditions. Then abc �= 0 and

x1x2 =
c

a
, x2x3 =

a

b
, x3x1 =

b

c
.

Multiplying these equations, we obtain x2
1x

2
2x

2
3 = 1, and hence x1x2x3 =

ε = ±1. From (1) we get x1 = εb/a, x2 = εc/b, x3 = εa/c. Substituting
x1 in the first equation, we get ab2/a2 + tεb2/a+ c = 0, which gives us

b2(1 + tε) = −ac. (1)

Analogously, c2(1 + tε) = −ab and a2(1 + tε) = −bc, and therefore (1 +
tε)3 = −1; i.e., 1 + tε = −1, since it is real. This also implies together
with (1) that b2 = ac, c2 = ab, and a2 = bc, and consequently

a = b = c.

Thus the three equations in the problem are equal, which is impossible.
Hence, such a, b, c, t do not exist.

9. We use induction. Since T1 = 0, T2 = 1, T3 = 2, T4 = 3, T5 = 5, T6 = 8,
the statement is true for n = 1, 2, 3. Suppose that both formulas from the
problem hold for some n ≥ 3. Then

T2n+1 = 1 + T2n + 2n−1 =

[
17

7
2n−1 + 2n−1

]
=

[
12

7
2n

]
,

T2n+2 = 1 + T2n−3 + 2n+1 =

[
12

7
2n−2 + 2n+1

]
=

[
17

7
2n

]
.

Therefore the formulas hold for n+ 1, which completes the proof.

10. We use induction. Suppose that every two of the numbers a1 = 2n1 −
3, a2 = 2n2 − 3, . . . , ak = 2nk − 3, where 2 = n1 < n2 < · · · < nk, are
coprime. Then one can construct ak+1 = 2nk+1 − 3 in the following way:
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Set s = a1a2 . . . ak. Among the numbers 20, 21, . . . , 2s, two give the same
residue upon division by s, say s | 2α − 2β . Since s is odd, it can be
assumed w.l.o.g. that β = 0 (this is actually a direct consequence of
Euler’s theorem). Let 2α − 1 = qs, q ∈ N. Since 2α+2 − 3 = 4qs + 1
is then coprime to s, it is enough to take nk+1 = α+2. We obviously have
nk+1 > nk.

11. We use induction. The statement for n = 1 is trivial. Suppose that it holds
for n = k and consider n = k + 1. From the given condition, we have

k∑
j=1

|aj,1x1 + · · · + aj,kxk + aj,k+1|

+|ak+1,1x1 + · · · + ak+1,kxk + ak+1,k+1| ≤ M,

k∑
j=1

|aj,1x1 + · · · + aj,kxk − aj,k+1|

+|ak+1,1x1 + · · · + ak+1,kxk − ak+1,k+1| ≤ M

for each choice of xi = ±1. Since |a + b| + |a − b| ≥ 2|a| for all a, b, we
obtain

2

k∑
j=1

|aj1x1 + · · · + ajkxk| + 2|ak+1,k+1| ≤ 2M, that is,

k∑
j=1

|aj1x1 + · · · + ajkxk| ≤ M − |ak+1,k+1|.

Now by the inductive assumption
∑k

j=1 |ajj | ≤ M − |ak+1,k+1|, which is
equivalent to the desired inequality.

12. Let us start with the case A = A′. If the triangles ABC and A′B′C′ are
oppositely oriented, then they are symmetric with respect to some axis,
and the statement is true. Suppose that they are equally oriented. There
is a rotation around A by 60◦ that maps ABB′ onto ACC′. This rotation
also maps the midpoint B0 of BB′ onto the midpoint C0 of CC′, hence
the triangle AB0C0 is equilateral.
In the general case, when A �= A′, let us denote by T the translation that
maps A onto A′. Let X ′ be the image of a point X under the (unique)
isometry mapping ABC onto A′B′C′, and X ′′ the image of X under T .
Furthermore, let X0, X

′
0 be the midpoints of segments XX ′, X ′X ′′. Then

X0 is the image of X ′
0 under the translation −(1/2)T . However, since it

has already been proven that the triangle A′
0B

′
0C

′
0 is equilateral, its image

A0B0C0 under (1/2)T is also equilateral. The statement of the problem
is thus proven.

13. Let p be the least of all the sums of elements in one row or column. If
p ≥ n/2, then the sum of all elements of the array is s ≥ np ≥ n2/2.
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Now suppose that p < n/2. Without loss of generality, one can assume
that the sum of elements in the first row is p, and that exactly the first
q elements of it are different from zero. Then the sum of elements in the
last n− q columns is greater than or equal to (n−p)(n− q). Furthermore,
the sum of elements in the first q columns is greater than or equal to pq.
This implies that the sum of all elements in the array is

s ≥ (n− p)(n− q) + pq =
1

2
n2 +

1

2
(n− 2p)(n− 2q) ≥ 1

2
n2,

since n ≥ 2p ≥ 2q.

14. Denote by V the figure made by a circle of radius 1 whose center moves
along the broken line. From the condition of the problem, V contains the
whole 50 × 50 square, and thus the area S(V ) of V is not less than 2500.
Let L be the length of the broken line. We shall show that S(V ) ≤ 2L+π,
from which it will follow that L ≥ 1250 − π/2 > 1248. For each segment
li = AiAi+1 of the broken line, consider the figure Vi obtained by a circle
of radius 1 whose center moves along it, and let Vi be obtained by cutting
off the circle of radius 1 with center at the starting point of li. The area
of Vi is equal to 2AiAi+1. It is clear that the union of all the figures Vi

together with a semicircle with center in A1 and a semicircle with center
in An contains V completely. Therefore

S(V ) ≤ π + 2A1A2 + 2A2A3 + · · · + 2An−1An = π + 2L.

This completes the proof.

15. Assume the opposite. Then one can numerate the cards 1 to 99, with a
number ni written on the card i, so that n98 �= n99. Denote by xi the
remainder of n1 + n2 + · · · + ni upon division by 100, for i = 1, 2, . . . , 99.
All xi must be distinct: Indeed, if xi = xj , i < j, then ni+1 + · · · + nj is
divisible by 100, which is impossible. Also, no xi can be equal to 0. Thus,
the numbers x1, x2, . . . , x99 take exactly the values 1, 2, . . . , 99 in some
order.
Let x be the remainder of n1 + n2 + · · ·+n97 +n99 upon division by 100.
It is not zero; hence it must be equal to xk for some k ∈ {1, 2, . . . , 99}.
There are three cases:
(i) x = xk, k ≤ 97. Then nk+1 + nk+2 + · · · + n97 + n99 is divisible by

100, a contradiction;
(ii) x = x98. Then n98 = n99, a contradiction;
(iii) x = x99. Then n98 is divisible by 100, a contradiction.
Therefore, all the cards contain the same number.

16. Denote by P ′ the polyhedron defined as the image of P under the homo-
thety with center at A1 and coefficient of similarity 2. It is easy to see
that all Pi, i = 1, . . . , 9, are contained in P ′ (indeed, if M ∈ Pk, then
1
2

−−−→
A1M = 1

2 (
−−−→
A1Ak +

−−−→
A1M

′) for some M ′ ∈ P , and the claim follows from
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the convexity of P ). But the volume of P ′ is exactly 8 times the volume
of P , while the volumes of Pi add up to 9 times that volume. We conclude
that not all Pi have disjoint interiors.

17. We use the following obvious consequences of (a+ b)2 ≥ 4ab:

1

(a1 + a2)(a3 + a4)
≥ 4

(a1 + a2 + a3 + a4)2
,

1

(a1 + a4)(a2 + a3)
≥ 4

(a1 + a2 + a3 + a4)2
.

Now we have

a1 + a3

a1 + a2
+
a2 + a4

a2 + a3
+
a3 + a1

a3 + a4
+
a4 + a2

a4 + a1

=
(a1 + a3)(a1 + a2 + a3 + a4)

(a1 + a2)(a3 + a4)
+

(a2 + a4)(a1 + a2 + a3 + a4)

(a1 + a4)(a2 + a3)

≥ 4(a1 + a3)

a1 + a2 + a3 + a4
+

4(a2 + a4)

a1 + a2 + a3 + a4
= 4.
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4.14 Solutions to the Shortlisted Problems of IMO 1972

1. Suppose that f(x0) �= 0 and for a given y define the sequence xk by the
formula

xk+1 =

{
xk + y, if |f(xk + y)| ≥ |f(xk − y)|;
xk − y, otherwise.

It follows from (1) that |f(xk+1)| ≥ |ϕ(y)||f(xk)|; hence by induction,
|f(xk)| ≥ |ϕ(y)|k|f(x0)|. Since |f(xk)| ≤ 1 for all k, we obtain |ϕ(y)| ≤ 1.

Second solution. Let M = sup f(x) ≤ 1, and xk any sequence, possibly
constant, such that f(xk) → M , k → ∞. Then for all k,

|ϕ(y)| =
|f(xk + y) + f(xk − y)|

2|f(xk)| ≤ 2M

2|f(xk)| → 1, k → ∞.

2. We use induction. For n = 1 the assertion is obvious. Assume that it is
true for a positive integer n. Let A1, A2, . . . , A3n+3 be given 3n+3 points,
and let w.l.o.g. A1A2 . . . Am be their convex hull.
Among all the points Ai distinct from A1, A2, we choose the one, say Ak,
for which the angle ∠AkA1A2 is minimal (this point is uniquely deter-
mined, since no three points are collinear). The line A1Ak separates the
plane into two half-planes, one of which contains A2 only, and the other
one all the remaining 3n points. By the inductive hypothesis, one can con-
struct n disjoint triangles with vertices in these 3n points. Together with
the triangle A1A2Ak, they form the required system of disjoint triangles.

3. We have for each k = 1, 2, . . . , n that m ≤ xk ≤ M , which gives (M −
xk)(m− xk) ≤ 0. It follows directly that

0 ≥
n∑

k=1

(M − xk)(m− xk) = nmM − (m+M)

n∑
k=1

xk +

n∑
k=1

x2
k.

But
∑n

k=1 xk = 0, implying the required inequality.

4. Choose in E a half-line s beginning at a pointO. For every α in the interval
[0, 180◦], denote by s(α) the line obtained by rotation of s about O by α,
and by g(α) the oriented line containing s(α) on which s(α) defines the
positive direction. For each P in Mi, i = 1, 2, let P (α) be the foot of the
perpendicular from P to g(α), and lP (α) the oriented (positive, negative
or zero) distance of P (α) from O. Then for i = 1, 2 one can arrange the
lP (α) (P ∈ Mi) in ascending order, as l1(α), l2(α), . . . , l2ni(α). Call Ji(α)
the interval [lni(α), lni+1(α)]. It is easy to see that any line perpendicular
to g(α) and passing through the point with the distance l in the interior of
Ji(α) from O, will divide the set Mi into two subsets of equal cardinality.
Therefore it remains to show that for some α, the interiors of intervals
J1(α) and J2(α) have a common point. If this holds for α = 0, then
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we have finished. Suppose w.l.o.g. that J1(0) lies on g(0) to the left of
J2(0); then J1(180◦) lies to the right of J2(180◦). Note that J1 and J2

cannot simultaneously degenerate to a point (otherwise, we would have
four collinear points in M1 ∪ M2); also, each of them degenerates to a
point for only finitely many values of α. Since J1(α) and J2(α) move
continuously, there exists a subinterval I of [0, 180◦] on which they are
not disjoint. Thus, at some point of I, they are both nondegenerate and
have a common interior point, as desired.

5. Lemma. If X,Y, Z, T are points in space, then the lines XZ and Y T are
perpendicular if and only if XY 2 + ZT 2 = Y Z2 + TX2.

Proof. Consider the plane π through XZ parallel to Y T . If Y ′, T ′ are the
feet of the perpendiculars to π from Y, T respectively, then

XY 2 + ZT 2 = XY ′2 + ZT ′2 + 2Y Y ′2,
and Y Z2 + TX2 = Y ′Z2 + T ′X2 + 2Y Y ′2.

Since by the Pythagorean theorem XY ′2 +ZT ′2 = Y ′Z2 +T ′X2, i.e.,
XY ′2−Y ′Z2 = XT ′2−T ′Z2, if and only if Y ′T ′ ⊥ XZ, the statement
follows.

Assume that the four altitudes intersect in a point P . Then we have DP ⊥
ABC ⇒ DP ⊥ AB and CP ⊥ ABD ⇒ CP ⊥ AB, which implies that
CDP ⊥ AB, and CD ⊥ AB. By the lemma, AC2 +BD2 = AD2 +BC2.
Using the same procedure we obtain the relation AD2 + BC2 = AB2 +
CD2.
Conversely, assume that AB2 + CD2 = AC2 +BD2 = AD2 +BC2. The
lemma implies that AB ⊥ CD, AC ⊥ BD, AD ⊥ BC. Let π be the plane
containing CD that is perpendicular to AB, and let hD be the altitude
from D to ABC. Since π ⊥ AB, we have π ⊥ ABC ⇒ hD ⊂ π and
π ⊥ ABD ⇒ hC ⊂ π. The altitudes hD and hC are not parallel; thus
they have an intersection point PCD. Analogously, hB ∩hC = {PBC} and
hB ∩ hD = {PBD}, where both these points belong to π. On the other
hand, hB doesn’t belong to π; otherwise, it would be perpendicular to
both ACD and AB ⊂ π, i.e. AB ⊂ ACD, which is impossible. Hence,
hB can have at most one common point with π, implying PBD = PCD.
Analogously, PAB = PBD = PCD = PABCD.

6. Let n = 2α5βm, where α = 0 or β = 0. These two cases are analogous,
and we treat only α = 0, n = 5βm. The case m = 1 is settled by the
following lemma.
Lemma. For any integer β ≥ 1 there exists a multiple Mβ of 5β with β

digits in decimal expansion, all different from 0.
Proof. For β = 1, M1 = 5 works. Assume that the lemma is true for

β = k. There is a positive integer Ck ≤ 5 such that Ck2k + mk ≡
0 (mod 5), where 5kmk = Mk, i.e. Ck10k +Mk ≡ 0 (mod 5k+1). Then
Mk+1 = Ck10k +Mk satisfies the conditions, and proves the lemma.
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In the general case, consider, the sequence 1, 10β, 102β, . . . . It contains
two numbers congruent modulo (10β −1)m, and therefore for some k > 0,
10kβ ≡ 1 (mod (10β − 1)m) (this is in fact a consequence of Fermat’s
theorem). The number

10kβ − 1

10β − 1
Mβ = 10(k−1)βMβ + 10(k−2)βMβ + · · · +Mβ

is a multiple of n = 5βm with the required property.

7. (i) Consider the circumscribing cube
OQ1PR1O1QP1R (that is, the
cube in which the edges of the
tetrahedron are small diagonals),
of side b = a

√
2/2. The left-hand

side is the sum of squares of the
projections of the edges of the
tetrahedron onto a perpendicular
l to π. On the other hand, if l

O Q1

PR1

O1 Q

P1R

forms angles ϕ1, ϕ2, ϕ3 with OO1, OQ1, OR1 respectively, then the
projections of OP and QR onto l have lengths b(cosϕ2 + cosϕ3) and
b| cosϕ2 − cosϕ3|. Summing up all these expressions, we obtain

4b2(cos2 ϕ1 + cos2 ϕ2 + cos2 ϕ3) = 4b2 = 2a2.

(ii) We construct a required tetrahedron of edge length a given in (i).
Take O arbitrarily on π0, and let p, q, r be the distances of O from
π1, π2, π3. Since a > p, q, r, |p− q|, we can choose P on π1 anywhere at
distance a from O, and Q at one of the two points on π2 at distance
a from both O and P . Consider the fourth vertex of the tetrahedron:
its distance from π0 will satisfy the equation from (i); i.e., there are
two values for this distance; clearly, one of them is r, putting R on π3.

8. Let f(m,n) = (2m)!(2n)!
m!n!(m+n)! . Then it is directly shown that

f(m,n) = 4f(m,n− 1) − f(m+ 1, n− 1),

and thus n may be successively reduced until one obtains f(m,n) =∑
r crf(r, 0). Now f(r, 0) is a simple binomial coefficient, and the cr’s

are integers.

Second solution. For each prime p, the greatest exponents of p that divide
the numerator (2m)!(2n)! and denominator m!n!(m+n)! are respectively∑

k>0

([
2m

pk

]
+

[
2n

pk

])
and

∑
k>0

([
m

pk

]
+

[
n

pk

]
+

[
m+ n

pk

])
;

hence it suffices to show that the first exponent is not less than the second
one for every p. This follows from the fact that for each real x, [2x]+[2y] ≥
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[x] + [y] + [x + y], which is straightforward to prove (for example, using
[2x] = [x] + [x+ 1/2]).

9. Clearly x1 = x2 = x3 = x4 = x5 is a solution. We shall show that this
describes all solutions.
Suppose that not all xi are equal. Then among x3, x5, x2, x4, x1 two con-
secutive are distinct: Assume w.l.o.g. that x3 �= x5. Moreover, since
(1/x1, . . . , 1/x5) is a solution whenever (x1, . . . , x5) is, we may assume
that x3 < x5.
Consider first the case x1 ≤ x2. We infer from (i) that x1 ≤ √

x3x5 < x5

and x2 ≥ √
x3x5 > x3. Then x2

5 > x1x3, which together with (iv) gives
x2

4 ≤ x1x3 < x3x5; but we also have x2
3 ≤ x5x2; hence by (iii), x2

4 ≥
x5x2 > x5x3, a contradiction.
Consider next the case x1 > x2. We infer from (i) that x1 ≥ √

x3x5 > x3

and x2 ≤ √
x3x5 < x5. Then by (ii) and (v),

x1x4 ≤ max(x2
2, x

2
3) ≤ x3x5 and x2x4 ≥ min(x2

1, x
2
5) ≥ x3x5,

which contradicts the assumption x1 > x2.

Second solution.

0 ≥ L1 = (x2
1 − x3x5)(x

2
2 − x3x5) = x2

1x
2
2 + x2

3x
2
5 − (x2

1 + x2
2)x3x5

≥ x2
1x

2
2 + x2

3x
2
5 − 1

2
(x2

1x
2
3 + x2

1x
2
5 + x2

2x
2
3 + x2

2x
2
5),

and analogously for L2, . . . , L5. Therefore L1 + L2 + L3 + L4 + L5 ≥ 0,
with the only case of equality x1 = x2 = x3 = x4 = x5.

10. Consider first a triangle. It can be decomposed into k = 3 cyclic quadri-
laterals by perpendiculars from some interior point of it to the sides; also,
it can be decomposed into a cyclic quadrilateral and a triangle, and it
follows by induction that this decomposition is possible for every k. Since
every triangle can be cut into two triangles, the required decomposition
is possible for each n ≥ 6. It remains to treat the cases n = 4 and n = 5.
n = 4. If the center O of the circumcircle is inside a cyclic quadrilateral

ABCD, then the required decomposition is effected by perpendiculars
from O to the four sides. Otherwise, let C and D be the vertices of
the obtuse angles of the quadrilateral. Draw the perpendiculars at C
and D to the lines BC and AD respectively, and choose points P and
Q on them such that PQ ‖ AB. Then the required decomposition is
effected by CP, PQ,QD and the perpendiculars from P and Q to AB.

n = 5. If ABCD is an isosceles trapezoid with AB ‖ CD and AD = BC,
then it is trivially decomposed by lines parallel to AB. Otherwise,
ABCD can be decomposed into a cyclic quadrilateral and a trape-
zoid; this trapezoid can be cut into an isosceles trapezoid and a trian-
gle, which can further be cut into three cyclic quadrilaterals and an
isosceles trapezoid.
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Remark. It can be shown that the assertion is not true for n = 2 and
n = 3.

11. Let ∠A = 2x, ∠B = 2y, ∠C = 2z.
(a) Denote by Mi the center of Ki, i = 1, 2, . . . . If N1, N2 are the projec-

tions of M1,M2 onto AB, we have AN1 = r1 cotx, N2B = r2 cot y,
and N1N2 =

√
(r1 + r2)2 − (r1 − r2)2 = 2

√
r1r2. The required rela-

tion between r1, r2 follows from AB = AN1 +N1N2 +N2B.
If this relation is further considered as a quadratic equation in

√
r2,

then its discriminant, which equals

∆ = 4 (r(cot x+ cot y) cot y − r1(cotx cot y − 1)) ,

must be nonnegative, and therefore r1 ≤ r cot y cot z. Then t1, t2, . . .
exist, and we can assume that ti ∈ [0, π/2].

(b) Substituting r1 = r cot y cot z sin2 t1, r2 = r cot z cotx sin2 t2 in the
relation of (a) we obtain that sin2 t1 +sin2 t2 +k2 +2k sin t1 sin t2 = 1,
where we set k =

√
tanx tan y. It follows that (k + sin t1 sin t2)

2 =
(1 − sin2 t1)(1 − sin2 t2) = cos2 t1 cos2 t2, and hence

cos(t1 + t2) = cos t1 cos t2 − sin t1 sin t2 = k =
√

tanx tan y,

which is constant. Writing the analogous relations for each ti, ti+1 we
conclude that t1 + t2 = t4 + t5, t2 + t3 = t5 + t6, and t3 + t4 = t6 + t7.
It follows that t1 = t7, i.e., K1 = K7.

12. First we observe that it is not essential to require the subsets to be disjoint
(if they aren’t, one simply excludes their intersection). There are 210−1 =
1023 different subsets and at most 990 different sums. By the pigeonhole
principle there are two different subsets with equal sums.
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4.15 Solutions to the Shortlisted Problems of IMO 1973

1. The condition of the point P can be written in the form AP 2

AP ·PA1
+ BP 2

BP ·PB1
+

CP 2

CP ·PC1
+ DP 2

DP ·PD1
= 4. All the four denominators are equal to R2 −OP 2,

i.e., to the power of P with respect to S. Thus the condition becomes

AP 2 +BP 2 + CP 2 +DP 2 = 4(R2 − OP 2). (1)

Let M and N be the midpoints of segments AB and CD respectively, and
G the midpoint of MN , or the centroid of ABCD. By Stewart’s formula,
an arbitrary point P satisfies

AP 2 +BP 2 + CP 2 +DP 2 = 2MP 2 + 2NP 2 +
1

2
AB2 +

1

2
CD2

= 4GP 2 +MN2 +
1

2
(AB2 + CD2).

Particularly, for P ≡ O we get 4R2 = 4OG2 + MN2 + 1
2 (AB2 + CD2),

and the above equality becomes

AP 2 +BP 2 + CP 2 +DP 2 = 4GP 2 + 4R2 − 4OG2.

Therefore (1) is equivalent to OG2 = OP 2 +GP 2 ⇔ ∠OPG = 90◦. Hence
the locus of points P is the sphere with diameter OG. Now the converse
is easy.

2. Let D′ be the reflection of D across A. Since BCAD′ is then a parallel-
ogram, the condition BD ≥ AC is equivalent to BD ≥ BD′, which is
in turn equivalent to ∠BAD ≥ ∠BAD′, i.e. to ∠BAD ≥ 90◦. Thus the
needed locus is actually the locus of points A for which there exist points
B,D inside K with ∠BAD = 90◦. Such points B,D exist if and only
if the two tangents from A to K, say AP and AQ, determine an obtuse
angle. Then if P,Q ∈ K, we have ∠PAO = ∠QAO = ϕ > 45◦; hence
OA = OP

sin ϕ < OP
√

2. Therefore the locus of A is the interior of the circle

K ′ with center O and radius
√

2 times the radius of K.

3. We use induction on odd numbers n. For n = 1 there is nothing to prove.
Suppose that the result holds for n−2 vectors, and let us be given vectors
v1, v2, . . . , vn arranged clockwise. Set v′ = v2+v3+ · · ·+vn−1, u = v1+vn,
and v = v1 + v2 + · · · + vn = v′ + u. By the inductive hypothesis we have
|v′| ≥ 1. Now if the angles between v′ and the vectors v1, vn are α and β
respectively, then the angle between u and v′ is |α − β|/2 ≤ 90◦. Hence
|v′ + u| ≥ |v′| ≥ 1.

Second solution. Again by induction, it can be easily shown that all
possible values of the sum v = v1 + v2 + · · · + vn, for n vectors v1, . . . , vn

in the upper half-plane (with y ≥ 0), are those for which |v| ≤ n and
|v− ke| ≥ 1 for every integer k for which n− k is odd, where e is the unit
vector on the x axis.
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4. Each of the subsets must be of the form {a2, ab, ac, ad} or {a2, ab, ac, bc}.
It is now easy to count up the partitions. The result is 26460.

5. Let O be the vertex of the trihedron, Z the center of a circle k inscribed
in the trihedron, and A,B,C points in which the plane of the circle meets
the edges of the trihedron. We claim that the distance OZ is constant.
Set OA = x, OB = y, OC = z, BC = a, CA = b, AB = c, and let S
and r = 1 be the area and inradius of 
ABC. Since Z is the incenter of

ABC, we have (a+ b+ c)
−→
OZ = a

−→
OA+ b

−−→
OB + c

−−→
OC. Hence

(a+ b+ c)2OZ2 = (a
−→
OA + b

−−→
OB + c

−−→
OC)2 = a2x2 + b2y2 + c2z2. (1)

But since y2 + z2 = a2, z2 + x2 = b2 and x2 + y2 = c2, we obtain

x2 = −a2+b2+c2

2 , y2 = a2−b2+c2

2 , z2 = a2+b2−c2

2 . Substituting these values
in (1) yields

(a+ b+ c)2OZ2 =
2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4

2

= 8S2 = 2(a+ b+ c)2r2.

Hence OZ = r
√

2 =
√

2, and Z belongs to a sphere σ with center O and
radius

√
2.

Moreover, the distances of Z from the faces of the trihedron do not exceed
1; hence Z belongs to a part of σ that lies inside the unit cube with three
faces lying on the faces of the trihedron. It is easy to see that this part of
σ is exactly the required locus.

6. Yes. Take for M the set of vertices of a cube ABCDEFGH and two
points I, J symmetric to the center O of the cube with respect to the
laterals ABCD and EFGH .

Remark. We prove a stronger result: Given an arbitrary finite set of points
S, then there is a finite set M ⊃ S with the described property.
Choose a point A ∈ S and any point O such that AO ‖ BC for some two
points B,C ∈ S. Now let X ′ be the point symmetric to X with respect to
O, and S′ = {X,X ′ | X ∈ S}. Finally, take M = {X,X | X ∈ S′}, where
X denotes the point symmetric to X with respect to A. This M has the
desired property: If X,Y ∈ M and Y �= X, then XY ‖ XY ; otherwise,
XX, i.e., XA is parallel to X ′A′ if X �= A′, or to BC otherwise.

7. The result follows immediately from Ptolemy’s inequality.

8. Let fn be the required total number, and let fn(k) denote the number of
sequences a1, . . . , an of nonnegative integers such that a1 = 0, an = k, and
|ai − ai+1| = 1 for i = 1, . . . , n− 1. In particular, f1(0) = 1 and fn(k) = 0
if k < 0 or k ≥ n. Since an−1 is either k − 1 or k + 1, we have

fn(k) = fn−1(k + 1) + fn−1(k − 1) for k ≥ 1. (1)
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By successive application of (1) we obtain

fn(k) =

r∑
i=0

[(
r

i

)
−
(

r

i− k − 1

)]
fn−r(k + r − 2i). (2)

This can be verified by direct induction. Substituting r = n− 1 in (2), we
get at most one nonzero summand, namely the one for which i = k+n−1

2 .

Therefore fn(n− 1 − 2j) =
(
n−1

j

)
−
(
n−1
j−1

)
. Adding up these equalities for

j = 0, 1, . . . ,
[

n−1
2

]
we obtain fn =

( n−1
[ n−1

2 ]

)
, as required.

9. Let a, b, c be vectors going along Ox,Oy,Oz, respectively, such that
−−→
OG =

a+ b+ c. Now let A ∈ Ox, B ∈ Oy, C ∈ Oz and let
−→
OA = αa,

−−→
OB = βb,−−→

OC = γc, where α, β, γ > 0. Point G belongs to a plane ABC with
A ∈ Ox, B ∈ Oy, C ∈ Oz if and only if there exist positive real numbers

λ, µ, ν with sum 1 such that λ
−→
OA+µ

−−→
OB+ν

−−→
OC =

−−→
OG, which is equivalent

to λα = µβ = νγ = 1. Such λ, µ, ν exist if and only if

α, β, γ > 0 and
1

α
+

1

β
+

1

γ
= 1.

Since the volume of OABC is proportional to the product αβγ, it is
minimized when 1

α · 1
β · 1

γ is maximized, which occurs when α = β = γ = 3
and G is the centroid of 
ABC.

10. Let

bk = a1q
k−1 + · · ·+ ak−1q+ ak + ak+1q+ · · ·+ anq

n−k, k = 1, 2, . . . , n.

We show that these numbers satisfy the required conditions. Obviously
bk ≥ ak. Further,

bk+1 − qbk = −[(q2 − 1)ak+1 + · · · + qn−k−1(q2 − 1)an] > 0 ;

we analogously obtain qbk+1 − bk < 0. Finally,

b1 + b2 + · · · + bn = a1(q
n−1 + · · · + q + 1) + . . .

+ak(qn−k + · · · + q + 1 + q + · · · + qk−1) + . . .

≤ (a1 + a2 + · · · + an)(1 + 2q + 2q2 + · · · + 2qn−1)

<
1 + q

1 − q
(a1 + · · · + an).

11. Putting x + 1
x = t we also get x2 + 1

x2 = t2 − 2, and the given equation

reduces to t2 + at + b − 2 = 0. Since x = t±√
t2−4
2 , x will be real if and

only if |t| ≥ 2, t ∈ R. Thus we need the minimum value of a2 + b2 under
the condition at+ b = −(t2 − 2), |t| ≥ 2.
However, by the Cauchy–Schwarz inequality we have
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(a2 + b2)(t2 + 1) ≥ (at+ b)2 = (t2 − 2)2.

It follows that a2 + b2 ≥ h(t) = (t2−2)2

t2+1 . Since h(t) = (t2 + 1) + 9
t2+1 − 6

is increasing for t ≥ 2, we conclude that a2 + b2 ≥ h(2) = 4
5 .

The cases of equality are easy to examine: These are a = ± 4
5 and b = − 2

5 .

Second solution. In fact, there was no need for considering x = t+1/t. By
the Cauchy–Schwarz inequality we have (a2 +2b2 + a2)(x6 +x4/2+x2) ≥
(ax3 + bx2 + ax)2 = (x4 + 1)2. Hence

a2 + b2 ≥ (x4 + 1)2

2x6 + x4 + 2x2
≥ 4

5
,

with equality for x = 1.

12. Observe that the absolute values of the determinants of the given matrices
are invariant under all the admitted operations. The statement follows
from detA = 16 �= detB = 0.

13. Let S1, S2, S3, S4 denote the areas of the faces of the tetrahedron, V its
volume, h1, h2, h3, h4 its altitudes, and r the radius of its inscribed sphere.
Since

3V = S1h1 = S2h2 = S3h3 = S4h4 = (S1 + S2 + S3 + S4)r,

it follows that
1

h1
+

1

h2
+

1

h3
+

1

h4
=

1

r
.

In our case, h1, h2, h3, h4 ≥ 1, hence r ≥ 1/4. On the other hand, it
is clear that a sphere of radius greater than 1/4 cannot be inscribed in a
tetrahedron all of whose altitudes have length equal to 1. Thus the answer
is 1/4.

14. Suppose that the soldier starts at
the vertex A of the equilateral tri-
angleABC of side length a. Let ϕ, ψ
be the arcs of circles with centers B
and C and radii a

√
3/4 respectively,

that lie inside the triangle. In order
to check the vertices B,C, he must
visit some points D ∈ ϕ and E ∈ ψ.

A B

C

D

E F

M

N
ϕ

ψ

Thus his path cannot be shorter than the path ADE (or AED) itself.
The length of the path ADE is AD+DE ≥ AD+DC−a

√
3/4. Let F be

the reflection of C across the line MN , where M,N are the midpoints of
AB and BC. Then DC ≥ DF and hence AD +DC ≥ AD +DF ≥ AF .

Consequently AD + DE ≥ AF − a
√

3
4 = a

(√
7

2 −
√

3
4

)
, with equality if

and only if D is the midpoint of arc ϕ and E = (CD) ∩ ψ.
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Moreover, it is easy to verify that, in following the path ADE, the soldier
will check the whole region. Therefore this path (as well as the one sym-
metric to it) is shortest possible path that the soldier can take in order to
check the entire field.

15. If z = cos θ + i sin θ, then z − z−1 = 2i sin θ. Now put z = cos π
2n+1 +

i sin π
2n+1 . Using de Moivre’s formula we transform the required equality

into

A =

n∏
k=1

(zk − z−k) = in
√

2n+ 1. (1)

On the other hand, the complex numbers z2k (k = −n,−n+ 1, . . . , n) are
the roots of x2n+1 − 1, and hence

n∏
k=1

(x− z2k)(x− z−2k) =
x2n+1 − 1

x− 1
= x2n + · · · + x+ 1. (2)

Now we go back to proving (1). We have

(−1)nzn(n+1)/2A =

n∏
k=1

(1 − z2k) and z−n(n+1)/2A =

n∏
k=1

(1 − z−2k).

Multiplying these two equalities, we obtain (−1)nA2 =
∏n

k=1(1−z2k)(1−
z−2k) = 2n+1, by (2). ThereforeA = ±i−n

√
2n+ 1. This actually implies

that the required product is ±
√

2n+ 1, but it must be positive, since all
the sines are, and the result follows.

16. First, we have P (x) = Q(x)R(x) for Q(x) = xm − |a|meiθ and R(x) =
xm − |a|me−iθ, where eiϕ means of course cosϕ + i sinϕ. It remains to
factor both Q and R. Suppose that Q(x) = (x − q1) · · · (x − qm) and
R(x) = (x− r1) · · · (x− rm).
Considering Q(x), we see that |qm

k | = |a|m and also |qk| = |a| for k =
1, . . . ,m. Thus we may put qk = |a|eiβk and obtain by de Moivre’s formula
qm
k = |a|meimβk . It follows that mβk = θ + 2jπ for some j ∈ Z, and

we have exactly m possibilities for βk modulo 2π: βk = θ+2(k−1)π
m for

k = 1, 2, . . . ,m.
Thus qk = |a|eiβk ; analogously we obtain for R(x) that rk = |a|e−iβk .
Consequently,

xm−|a|meiθ =

m∏
k=1

(x−|a|eiβk ) and xm−|a|me−iθ =

m∏
k=1

(x−|a|e−iβk).

Finally, grouping the kth factors of both polynomials, we get

P (x) =

m∏
k=1

(x − |a|eiβk)(x− |a|e−iβk) =

m∏
k=1

(x2 − 2|a|x cosβk + a2)

=
m∏

k=1

(
x2 − 2|a|x cos

θ + 2(k − 1)π

m
+ a2

)
.
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17. Let f1(x) = ax+b and f2(x) = cx+d be two functions from F . We define

g(x) = f1◦f2(x) = acx+(ad+b) and h(x) = f2◦f1(x) = acx+(bc+d).

By the condition for F , both g(x) and h(x) belong to F . Moreover, there

exists h−1(x) = x−(bc+d)
ac , and

h−1 ◦ g(x) =
acx+ (ad+ b) − (bc+ d)

ac
= x+

(ad+ b) − (bc+ d)

ac

belongs to F . Now it follows that we must have ad+ b = bc+ d for every
f1, f2 ∈ F , which is equivalent to b

a−1 = d
c−1 = k. But these formulas

exactly describe the fixed points of f1 and f2: f1(x) = ax+ b = x ⇒ x =
b

a−1 . Hence all the functions in F fix the point k.
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4.16 Solutions to the Shortlisted Problems of IMO 1974

1. Denote by n the number of exams. We have n(A+B+C) = 20+10+9 = 39,
and since A,B,C are distinct, their sum is at least 6; therefore n = 3 and
A+B + C = 13.
Assume w.l.o.g. that A > B > C. Since Betty gained A points in arith-
metic, but fewer than 13 points in total, she had C points in both remain-
ing exams (in spelling as well). Furthermore, Carol also gained fewer than
13 points, but with at least B points on two examinations (on which Betty
scored C), including spelling. If she had A in spelling, then she would have
at least A + B + C = 13 points in total, a contradiction. Hence, Carol
scored B and placed second in spelling.

Remark. Moreover, it follows that Alice, Betty, and Carol scoredB+A+A,
A+ C + C, and C +B +B respectively, and that A = 8, B = 4, C = 1.

2. We denote by qi the square with side 1
i . Let us divide the big square into

rectangles ri by parallel lines, where the size of ri is 3
2 × 1

2i for i = 2, 3, . . .
and 3

2 × 1 for i = 1 (this can be done because 1 +
∑∞

i=2
1
2i = 3

2 ). In
rectangle r1, one can put the squares q1, q2, q3, as is done on the figure.
Also, since 1

2i + · · · + 1
2i+1−1 < 2i · 1

2i = 1 < 3
2 , in each ri, i ≥ 2, one can

put q2i , . . . , q2i+1−1. This completes the proof.

q1
q2

q3

q4 q5q6q7

q8, . . . , q15

Remark. It can be shown that the squares q1, q2 cannot fit in any square
of side less than 3

2 .

3. For deg(P ) ≤ 2 the statement is obvious, since n(P ) ≤ deg(P 2) =
2 deg(P ) ≤ deg(P ) + 2.
Suppose now that deg(P ) ≥ 3 and n(P ) > deg(P ) + 2. Then there is
at least one integer b for which P (b) = −1, and at least one x with
P (x) = 1. We may assume w.l.o.g. that b = 0 (if necessary, we con-
sider the polynomial P (x + b) instead). If k1, . . . , km are all integers
for which P (ki) = 1, then P (x) = Q(x)(x − k1) · · · (x − km) + 1 for
some polynomial Q(x) with integer coefficients. Setting x = 0 we ob-
tain (−1)mQ(0)k1 · · · km = 1−P (0) = 2. It follows that k1 · · · km | 2, and
hence m is at most 3. The same holds for the polynomial −P (x), and
thus P (x) = −1 also has at most 3 integer solutions. This counts for 6
solutions of P 2(x) = 1 in total, implying the statement for deg(P ) ≥ 4.
It remains to verify the statement for n = 3. If deg(P ) = 3 and n(P ) = 6,
then it follows from the above consideration that P (x) is either −(x2 −
1)(x− 2)+1 or (x2 − 1)(x+2)+1. It is directly checked that n(P ) equals
only 4 in both cases.
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4. Assume w.l.o.g. that a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5. If m is the least value of
|ai − aj |, i �= j, then ai+1 − ai ≥ m for i = 1, 2, . . . , 5, and consequently
ai − aj ≥ (i− j)m for any i, j ∈ {1, . . . , 5}, i > j. Then it follows that∑

i>j

(ai − aj)
2 ≥ m2

∑
i>j

(i− j)2 = 50m2.

On the other hand, by the condition of the problem,

∑
i>j

(ai − aj)
2 = 5

5∑
i=1

a2
i − (a1 + · · · + a5)

2 ≤ 5.

Therefore 50m2 ≤ 5; i.e., m2 ≤ 1
10 .

5. All the angles are assumed to be oriented and measured modulo 180◦.
Denote by αi, βi, γi the angles of triangle 
i, at Ai, Bi, Ci respectively. Let
us determine the angles of 
i+1. If Di is the intersection of lines BiBi+1

and CiCi+1, we have ∠Bi+1Ai+1Ci+1 = ∠DiBiCi+1 = ∠BiDiCi+1 +
∠DiCi+1Bi = ∠BiDiCi − ∠BiCi+1Ci = −2∠BiAiCi. We conclude that

αi+1 = −2αi, and analogously βi+1 = −2βi, γi+1 = −2γi.

Therefore αr+t = (−2)tαr. However, since (−2)12 ≡ 1 (mod 45) and
consequently (−2)14 ≡ (−2)2 (mod 180), it follows that α15 = α3, since
all values are modulo 180◦. Analogously, β15 = β3 and γ15 = γ3, and
moreover, 
3 and 
15 are inscribed in the same circle; hence 
3

∼= 
15.

6. We set

x =

n∑
k=0

(
2n+ 1

2k + 1

)
23k =

1√
8

n∑
k=0

(
2n+ 1

2k + 1

)√
8
2k+1

,

y =

n∑
k=0

(
2n+ 1

2k

)
23k =

n∑
k=0

(
2n+ 1

2k

)√
8
2k
.

Both x and y are positive integers. Also, from the binomial formula we
obtain

y + x
√

8 =

2n+1∑
i=0

(
2n+ 1

i

)√
8

i
= (1 +

√
8)2n+1,

and similarly y − x
√

8 = (1 −
√

8)2n+1.

Multiplying these equalities, we get y2−8x2 = (1+
√

8)2n+1(1−
√

8)2n+1 =
−72n+1. Reducing modulo 5 gives us

3x2 − y2 ≡ 22n+1 ≡ 2 · (−1)n.
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Now we see that if x is divisible by 5, then y2 ≡ ±2 (mod 5), which is
impossible. Therefore x is never divisible by 5.

Second solution. Another standard way is considering recurrent formulas.
If we set

xm =
∑

k

(
m

2k + 1

)
8k, ym =

∑
k

(
m

2k

)
8k,

then since
(
a
b

)
=

(
a−1

b

)
+

(
a−1
b−1

)
, it follows that xm+1 = xm + ym and

ym+1 = 8xm + ym; therefore xm+1 = 2xm +7xm−1. We need to show that
none of x2n+1 are divisible by 5. Considering the sequence {xm} modulo 5,
we get that xm = 0, 1, 2, 1, 1, 4, 0, 3, 1, 3, 3, 2, 0, 4, 3, 4, 4, 1, . . . . Zeros occur
in the initial position of blocks of length 6, where each subsequent block is
obtained by multiplying the previous one by 3 (modulo 5). Consequently,
xm is divisible by 5 if and only ifm is a multiple of 6, which cannot happen
if m = 2n+ 1.

7. Consider an arbitrary prime number p. If p | m, then there exists bi that is
divisible by the same power of p as m. Then p divides neither ai

m
bi

nor ai,
because (ai, bi) = 1. If otherwise p � m, then m

bi
is not divisible by p for any

i, hence p divides ai and ai
m
bi

to the same power. Therefore (a1, . . . , ak)

and
(
a1

m
b1
, . . . , ak

m
bk

)
have the same factorization; hence they are equal.

Second solution. For k = 2 we easily verify the formula
(
ma1

b1
,ma2

b2

)
=

m
b1b2

(a1b2, a2b1) = 1
b1b2

[b1, b2](a1, a2)(b1, b2) = (a1, a2), since [b1, b2] ·
(b1, b2) = b1b2. We proceed by induction:(

a1
m

b1
, . . . , ak

m

bk
, ak+1

m

bk+1

)
=

(
m

[b1, . . . , bk]
(a1, . . . , ak), ak+1

m

bk+1

)
= (a1, . . . , ak, ak+1).

8. It is clear that

a

a+ b+ c+ d
+

b

a+ b+ c+ d
+

c

a+ b+ c+ d
+

d

a+ b+ c+ d
< S

and S <
a

a+ b
+

b

a+ b
+

c

c+ d
+

d

c+ d
,

or equivalently, 1 < S < 2.
On the other hand, all values from (1, 2) are attained. Since S = 1
for (a, b, c, d) = (0, 0, 1, 1) and S = 2 for (a, b, c, d) = (0, 1, 0, 1), due
to continuity all the values from (1, 2) are obtained, for example, for
(a, b, c, d) = (x(1 − x), x, 1 − x, 1), where x goes through (0, 1).

Second solution. Set

S1 =
a

a+ b+ d
+

c

b+ c+ d
and S2 =

b

a+ b+ c
+

d

a+ c+ d
.
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We may assume without loss of generality that a+ b+ c+ d = 1. Putting
a+ c = x and b+ d = y (then x+ y = 1), we obtain that the set of values
of

S1 =
a

1 − c
+

c

1 − a
=

2ac+ x− x2

ac+ 1 − x

is
(
x, 2x

2−x

)
. Having the analogous result for S2 in mind, we conclude

that the values that S = S1 + S2 can take are
(
x+ y, 2x

2−x + 2y
2−y

]
. Since

x+ y = 1 and
2x

2 − x
+

2y

2 − y
=

4 − 4xy

2 + xy
≤ 2

with equality for xy = 0, the desired set of values for S is (1, 2).

9. There exist real numbers a, b, c with tan a = x, tan b = y, tan c = z. Then
using the additive formula for tangents we obtain

tan(a+ b+ c) =
x+ y + z − xyz

1 − xy − xz − yz
.

We are given that xyz = x + y + z. In this case xy + yz + zx = 1 is
impossible; otherwise, x, y, z would be the zeros of a cubic polynomial
t3 −λt2 + t−λ = (t2 +1)(t−λ) (where λ = xyz), which has only one real
root. It follows that

x+ y + z = xyz ⇐⇒ tan(a+ b + c) = 0. (1)

Hence a + b + c = kπ for some k ∈ Z. We note that 3x−x3

1−3x2 actually
expresses tan 3a. Since 3a+ 3b+ 3c = 3kπ, the result follows from (1) for

the numbers 3x−x3

1−3x2 ,
3y−y3

1−3y2 ,
3z−z3

1−3z2 .

10. If we set ∠ACD = γ1 and ∠BCD = γ2 for a point D on the segment AB,
then by the sine theorem,

f(D) =
CD2

AD · BD =
CD

AD
· CD
BD

=
sinα sinβ

sin γ1 sin γ2
.

The denominator of the last fraction is

sin γ1 sin γ2 =
1

2
(cos(γ1 − γ2) − cos(γ1 + γ2))

=
1

2
(cos(γ1 − γ2) − cos γ) ≤ 1 − cos γ

2
= sin2 γ

2
,

from which we deduce that the set of values of f(D) is the interval[
sin α sin β

sin2 γ
2
,+∞

)
. Hence f(D) = 1 (equivalently, CD2 = AD · BD) is

possible if and only if sinα sinβ ≤ sin2 γ
2 , i.e.,√

sinα sinβ ≤ sin
γ

2
.
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Second solution. Let E be the second point of intersection of the line CD
with the circumcircle k of ABC. Since AD ·BD = CD ·ED (power of D
with respect to k), CD2 = AD · BD ie equivalent to ED ≥ CD. Clearly
the ratio ED

CD (D ∈ AB) takes a minimal value when E is the midpoint of
the arc AB not containing C. (This follows from ED : CD = E′D : C′D
when C′ and E′ are respectively projections from C and E onto AB.) On
the other hand, it is directly shown that in this case

ED

CD
=

sin2 γ
2

sinα sinβ
,

and the assertion follows.

11. First, we notice that a1 + a2 + · · ·+ ap = 32. The numbers ai are distinct,
and consequently ai ≥ i and a1 + · · · + ap ≥ p(p+ 1)/2. Therefore p ≤ 7.
The number 32 can be represented as a sum of 7 mutually distinct positive
integers in the following ways:

(1) 32 = 1 + 2 + 3 + 4 + 5 + 6 + 11;
(2) 32 = 1 + 2 + 3 + 4 + 5 + 7 + 10;
(3) 32 = 1 + 2 + 3 + 4 + 5 + 8 + 9;
(4) 32 = 1 + 2 + 3 + 4 + 6 + 7 + 9;
(5) 32 = 1 + 2 + 3 + 5 + 6 + 7 + 8.

The case (1) is eliminated because there is no rectangle with 22 cells on an
8 × 8 chessboard. In the other cases the partitions are realized as below.

8

2

14

4 6

10

20

8 16
2
4 6

10 18
8

2

14

4 6

12 18

6

10

4

12

2

14 16

Case (2) Case (3) Case (4) Case (5)

12. We say that a word is good if it doesn’t contain any nonallowed word. Let
an be the number of good words of length n. If we prolong any good word
of length n by adding one letter to its end (there are 3an words that can
be so obtained), we get either
(i) a good word of length n+ 1, or
(ii) an (n+ 1)-letter word of the form XY , where X is a good word and

Y a nonallowed word.
The number of words of type (ii) with word Y of length k is exactly
an+1−k; hence the total number of words of kind (ii) doesn’t exceed an−1+
· · · + a1 + a0 (where a0 = 1). Hence

an+1 ≥ 3an − (an−1 + · · · + a1 + a0), a0 = 1, a1 = 3. (1)
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We prove by induction that an+1 > 2an for all n. For n = 1 the claim is
trivial. If it holds for i ≤ n, then ai ≤ 2i−nan; thus we obtain from (1)

an+1 > an

(
3 − 1

2
− 1

22
− · · · − 1

2n

)
> 2an.

Therefore an ≥ 2n for all n (moreover, one can show from (1) that an ≥
(n+ 2)2n−1); hence there exist good words of length n.

Remark. If there are two nonallowed words (instead of one) of each length
greater than 1, the statement of the problem need not remain true.
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4.17 Solutions to the Shortlisted Problems of IMO 1975

1. First, we observe that there cannot exist three routes of the form (A,B,C),
(A,B,D), (A,C,D), for if E,F are the remaining two ports, there can
be only one route covering A,E, namely, (A,E, F ). Thus if (A,B,C),
(A,B,D) are two routes, the one covering A,C must be w.l.o.g. (A,C,E).
The other roots are uniquely determined: These are (A,D, F ), (A,E, F ),
(B,D,E), (B,E, F ), (B,C, F ), (C,D,E), (C,D, F ).

2. Since there are finitely many arrangements of the zi’s, assume that
z1, . . . , zn is the one for which

∑n
i=1(xi − zi)

2 is minimal. We claim that
in this case i < j ⇒ zi ≥ zj , from which the claim of the problem directly
follows.
Indeed, otherwise we would have

(xi − zj)
2 + (xj − zi)

2 = (xi − zi)
2 + (xj − zj)

2

+2(xizi + xjzj − xizj − xjzi)
= (xi − zi)

2 + (xj − zj)
2 + 2(xi − xj)(zi − zj)

≤ (xi − zi)
2 + (xj − zj)

2,

contradicting the assumption.

3. From
(
(k + 1)2/3 + (k + 1)1/3k1/3 + k2/3

) (
(k + 1)1/3 − k1/3

)
= 1 and

3k2/3 < (k + 1)2/3+ (k + 1)1/3k1/3 + k2/3 < 3(k + 1)2/3 we obtain

3
(
(k + 1)1/3 − k1/3

)
< k−2/3 < 3

(
k1/3 − (k − 1)1/3

)
.

Summing from 1 to n we get

1 + 3
(
(n+ 1)1/3 − 21/3

)
<

n∑
k=1

k−2/3 < 1 + 3(n1/3 − 1).

In particular, for n = 109 this inequality gives

2997 < 1 + 3
(
(109 + 1)1/3 − 21/3

)
<

109∑
k=1

k−2/3 < 2998.

Therefore
[∑109

k=1 k
−2/3

]
= 2997.

4. Put ∆an = an−an+1. By the imposed condition, ∆an > ∆an+1. Suppose
that for some n, ∆an < 0: Then for each k ≥ n, ∆ak < ∆an; hence
an − an+m = ∆an + · · · +∆an+m−1 < m∆an. Thus for sufficiently large
m it holds that an − an+m < −1, which is impossible. This proves the
first part of the inequality.
Next one observes that

n ≥
n∑

k=1

ak = nan+1 +
n∑

k=1

k∆ak ≥ (1 + 2 + · · · + n)∆an =
n(n+ 1)

2
∆an.

Hence (n+ 1)∆an ≤ 2.
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5. There are exactly 8 · 9k−1 k-digit numbers in M (the first digit can be
chosen in 8 ways, while any other position admits 9 possibilities). The
least of them is 10k, and hence

∑
xj<10k

1

xj
=

k∑
i=1

∑
10i−1≤xj<10i

1

xj
<

k∑
i=1

∑
10i−1≤xj<10i

1

10i−1

=

k∑
i=1

8 · 9i−1

10i−1
= 80

(
1 − 9k

10k

)
< 80.

6. Let us denote by C the sum of digits of B. We know that 1616 ≡ A ≡
B ≡ C (mod 9). Since 1616 = 264 = 26·10+4 ≡ 24 ≡ 7, we get C ≡ 7 (mod
9). Moreover, 1616 < 10016 = 1032, hence A cannot exceed 9 · 32 = 288;
consequently, B cannot exceed 19 and C is at most 10. Therefore C = 7.

7. We use induction on m. Denote by Sm the left-hand side of the equality to
be proved. First S0 = (1− y)(1+ y+ · · ·+ yn)+ yn+1 = 1, since x = 1− y.
Furthermore,

Sm+1 − Sm

=

(
m+ n+ 1

m+ 1

)
xm+1yn+1 + xm+1

n∑
j=0

((
m+ 1 + j

j

)
xyj −

(
m+ j

j

)
yj

)

=

(
m+ n+ 1

m+ 1

)
xm+1yn+1

+xm+1
n∑

j=0

((
m+ 1 + j

j

)
yj −

(
m+ j

j

)
yj −

(
m+ 1 + j

j

)
yj+1

)

= xm+1

⎡⎣(m+ n+ 1

n

)
yn+1 +

n∑
j=0

((
m+ j

j − 1

)
yj −

(
m+ j + 1

j

)
yj+1

)⎤⎦
= 0;

i.e., Sm+1 = Sm = 1 for every m.

Second solution. Let us be given an unfair coin that, when tossed,
shows heads with probability x and tails with probability y. Note that
xm+1

(
m+j

j

)
yj is the probability that until the moment when the (m+1)th

head appears, exactly j tails (j < n + 1) have appeared. Similarly,
yn+1

(
n+i

i

)
xi is the probability that exactly i heads will appear before

the (n+1)th tail occurs. Therefore, the above sum is the probability that
either m + 1 heads will appear before n + 1 tails, or vice versa, and this
probability is clearly 1.

8. Let K and L be the feet of perpendiculars from P and Q to BC and AC
respectively.
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Let M,N be points on AB (or-
dered A − N − M − B) such that
RMN is a right isosceles triangle
with ∠R = 90◦. By sine theorem
we have BM

BA = BM
BR · BR

BA = sin 15◦

sin 45◦ .

Since BK
BC = sin 45◦ sin 30◦

cos 15◦ = sin 15◦

sin 45◦ ,
we deduce that MK ‖ AC and
MK = AL. Similarly, NL ‖ BC

A B

C

KL

MN

P

Q

R

and NL = BK. It follows that the vectors
−−→
RN,

−−→
NL,

−→
LQ are the images

of
−−→
RM,

−−→
KP,

−−→
MK respectively under a rotation of 90◦, and consequently

the same holds for their sums
−−→
RQ and

−→
RP . Therefore, QR = RP and

∠QRP = 90◦.

Second solution. Let ABS be the equilateral triangle constructed in the
exterior of 
ABC. Obviously, the triangles BPC, BRS, ARS, AQC are
similar. Let f be the rotational homothety centered at B that maps P
onto C, and let g be the rotational homothety about A that maps C onto
Q. The composition h = g ◦ f is also a rotational homothety; its angle is
∠PBC+∠CAQ = 90◦, and the coefficient is BC

BP · AQ
AC = 1. Moreover, R is

a fixed point of h because f(R) = S and g(S) = R. Hence R is the center
of h, and the statement follows from h(P ) = Q.

Remark. There are two more possible approaches: One includes using
complex numbers and the other one is mere calculating of RP,RQ,PQ
by the cosine theorem.

Second remark. The problem allows a generalization: Given that ∠CBP =
∠CAQ = α, ∠BCP = ∠ACQ = β, and ∠RAB = ∠RBA = 90◦ − α− β,
show that RP = RQ and ∠PRQ = 2α.

9. Suppose n is the natural number with na ≤ 1 < (n+ 1)a. If a function f
with the desired properties exists, then fa(a) = 0 and let w.l.o.g. f(a) > 0,
or equivalently, let the graph of fa lie below the graph of f . In this case
also f(2a) > f(a), since otherwise, the graphs of f and fa would intersect
between a and 2a. Continuing in this way we are led to 0 = f(0) <
f(a) < f(2a) < · · · < f(na). Thus if na = 1, i.e., a = 1/n, such an f
does not exist. On the other hand, if a �= 1/n, then we similarly obtain
f(1) > f(1 − a) > f(1 − 2a) > · · · > f(1 − na). Choosing values of f at
ia, 1 − ia, i = 1, . . . , n, so that they satisfy f(1 − na) < · · · < f(1 − a) <
0 < f(a) < · · · < f(na), we can extend f to other values of [0, 1] by linear
interpolation. A function obtained this way has the desired property.

10. We shall prove that for all x, y with x+y = 1 it holds that f(x, y) = x−2y.
In this case f(x, y) = f(x, 1 − x) can be regarded as a polynomial in
z = x− 2y = 3x− 2, say f(x, 1− x) = F (z). Putting in the given relation
a = b = x/2, c = 1 − x, we obtain f(x, 1 − x) + 2f(1 − x/2, x/2) = 0;
hence F (z) + 2F (−z/2) = 0. Now F (1) = 1, and we get that for all k,
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F ((−2)k) = (−2)k. Thus F (z) = z for infinitely many values of z; hence
F (z) ≡ z. Consequently f(x, y) = x− 2y if x+ y = 1.
For general x, y with x+y �= 0, since f is homogeneous ,we have f(x, y) =

(x + y)nf
(

x
x+y ,

y
x+y

)
= (x + y)n

(
x

x+y − 2 y
x+y

)
= (x + y)n−1(x − 2y).

The same is true for x+ y = 0, because f is a polynomial.

11. Let (aki) be the subsequence of (ak) consisting of all ak’s that give re-
mainder r upon division by a1. For every i > 1, aki ≡ ak1 (mod a1);
hence aki = ak1 + ya1 for some integer y > 0. It follows that for ev-
ery r = 0, 1, . . . , a1 − 1 there is exactly one member of the corresponding
(aki)i≥1 that cannot be represented as xal+yam, and hence at most a1+1
members of (ak) in total are not representable in the given form.

12. Since sin 2xi = 2 sinxi cosxi and sin(xi + xi+1) + sin(xi − xi+1) =
2 sinxi cosxi+1, the inequality from the problem is equivalent to

(cosx1 − cosx2) sinx1 + (cosx2 − cosx3) sinx2 + · · ·

· · · + (cosxν−1 − cosxν) sinxν−1 <
π

4
. (1)

Consider the unit circle with center at O(0, 0) and points Mi(cosxi, sinxi)
on it. Also, choose the points Ni(cosxi, 0) and M ′

i(cosxi+1, sinxi). It is
clear that (cos xi − cosxi+1) sinxi is equal to the area of the rectangle
MiNiNi+1M

′
i . Since all these rectangles are disjoint and lie inside the

quarter circle in the first quadrant whose area is π
4 , inequality (1) follows.

13. Suppose that AkAk+1 ∩ AmAm+1 �= ∅ for some k, m > k + 1. Without
loss of generality we may suppose that k = 0, m = n − 1 and that no
two segments AkAk+1 and AmAm+1 intersect for 0 ≤ k < m− 1 < n− 1
except for k = 0, m = n − 1. Also, shortening A0A1, we may suppose
that A0 ∈ An−1An. Finally, we may reduce the problem to the case that
A0 . . . An−1 is convex: Otherwise, the segment An−1An can be prolonged
so that it intersects some AkAk+1, 0 < k < n− 2.
If n = 3, then A1A2 ≥ 2A0A1 implies A0A2 > A0A1, hence ∠A0A1A2 >
∠A1A2A3, a contradiction.
Let n = 4. From A3A2 > A1A2 we conclude that ∠A3A1A2 > ∠A1A3A2.
Using the inequality ∠A0A3A2 > ∠A0A1A2 we obtain that ∠A0A3A1 >
∠A0A1A3 implying A0A1 > A0A3. Now we have A2A3 < A3A0 +A0A1 +
A1A2 < 2A0A1 +A1A2 ≤ 2A1A2 ≤ A2A3, which is not possible.
Now suppose n ≥ 5. If αi is the exterior angle at Ai, then α1 > · · · > αn−1;
hence αn−1 < 360◦

n−1 ≤ 90◦. Consequently ∠An−2An−1A0 ≥ 90◦ and
A0An−2 > An−1An−2. On the other hand, A0An−2 < A0A1+A1A2+· · ·+
An−3An−2 <

(
1

2n−2 + 1
2n−3 + · · · + 1

2

)
An−1An−2 < An−1An−2, which

contradicts the previous relation.

14. We shall prove that for every n ∈ N,
√

2n+ 25 ≤ xn ≤
√

2n+ 25 + 0.1.
Note that for n = 1000 this gives us exactly the desired inequalities.
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First, notice that the recurrent relation is equivalent to

2xk(xk+1 − xk) = 2. (1)

Since x0 < x1 < · · · < xk < · · · , from (1) we get x2
k+1 − x2

k = (xk+1 +
xk)(xk+1 − xk) > 2. Adding these up we obtain x2

n ≥ x2
0 + 2n, which

proves the first inequality.
On the other hand, xk+1 = xk + 1

xk
≤ xk + 0.2 (for xk ≥ 5), and one

also deduces from (1) that x2
k+1 − x2

k − 0.2(xk+1 − xk) = (xk+1 + xk −
0.2)(xk+1−xk) ≤ 2. Again, adding these inequalities up, (k = 0, . . . , n−1)
yields

x2
n ≤ 2n+ x2

0 + 0.2(xn − x0) = 2n+ 24 + 0.2xn.

Solving the corresponding quadratic equation, we obtain xn < 0.1 +√
2n+ 24.01 < 0.1+ +

√
2n+ 25.

15. Assume that the center of the circle is at the origin O(0, 0), and that
the points A1, A2, . . . , A1975 are arranged on the upper half-circle so
that ∠AiOA1 = αi (α1 = 0). The distance AiAj equals 2 sin

αj−αi

2 =
2 sin

αj

2 cos αi

2 − cos
αj

2 sin αi

2 , and it will be rational if all sin αk

2 , cos αk

2
are rational.
Finally, observe that there exist infinitely many angles α such that both
sinα, cosα are rational, and that such α can be arbitrarily small. For

example, take α so that sinα = 2t
t2+1 and cosα = t2−1

t2+1 for any t ∈ Q.
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4.18 Solutions to the Shortlisted Problems of IMO 1976

1. Let r denote the common inradius. Some two of the four triangles with
the inradii ρ have cross angles at M : Suppose these are 
AMB1 and

BMA1. We shall show that 
AMB1

∼= 
BMA1. Indeed, the altitudes
of these two triangles are both equal to r, the inradius of 
ABC, and
their interior angles at M are equal to some angle ϕ. If P is the point of
tangency of the incircle of 
A1MB with MB, then r

ρ = A1M+BM+A1B
A1B ,

which also implies r−2ρ
ρ = A1M+BM−A1B

A1B = 2MP
A1B = 2r cot(ϕ/2)

A1B . Since

similarly r−2ρ
ρ = 2r cot(ϕ/2)

B1A , we obtain A1B = B1A and consequently

AMB1

∼= 
BMA1. Thus ∠BAC = ∠ABC and CC1 ⊥ AB. There are
two alternatives for the other two incircles:
(i) If the inradii of AMC1 and AMB1 are equal to r, it is easy to obtain

that 
AMC1
∼= 
AMB1. Hence ∠AB1M = ∠AC1M = 90◦, and


ABC is equilateral.
(ii) The inradii of AMB1 and CMB1 are equal to r. Put x = ∠MAC1 =

∠MBC1. In this case ϕ = 2x and ∠B1MC = 90◦ − x. Now we have
AB1

CB1
=

SAMB1

SCMB1
= AM+MB1+AB1

CM+MB1+CB1
= AM+MB1−AB1

CM+MB1−CB1
= cot x

cot(45◦−x/2) . On

the other hand, AB1

CB1
= AB

BC = 2 cos 2x. Thus we have an equation for
x: tan (45◦ − x/2) = 2 cos 2x tanx, or equivalently

2 tan
(
45◦ − x

2

)
sin

(
45◦ − x

2

)
cos

(
45◦ − x

2

)
= 2 cos 2x sinx.

Hence sin 3x−sinx = 2 sin2
(
45◦ − x

2

)
= 1−sinx, implying sin 3x = 1,

i.e., x = 30◦. Therefore 
ABC is equilateral.

2. Let us put bi = i(n+ 1 − i)/2, and let ci = ai − bi, i = 0, 1, . . . , n+1. It is
easy to verify that b0 = bn+1 = 0 and bi−1 − 2bi + bi+1 = −1. Subtracting
this inequality from ai−1−2ai+ai+1 ≥ −1, we obtain ci−1−2ci+ci+1 ≥ 0,
i.e., 2ci ≤ ci−1 + ci+1. We also have c0 = cn+1 = 0.
Suppose that there exists i ∈ {1, . . . , n} for which ci > 0, and let ck
be the maximal such ci. Assuming w.l.o.g. that ck−1 < ck, we obtain
ck−1 + ck+1 < 2ck, which is a contradiction. Hence ci ≤ 0 for all i; i.e.,
ai ≤ bi.
Similarly, considering the sequence c′i = ai + bi one can show that c′i ≥ 0,
i.e., ai ≥ −bi for all i. This completes the proof.

3. (a) Let ABCD be a quadrangle with 16 = d = AB + CD +AC, and let
S be its area. Then S ≤ (AC ·AB +AC ·CD)/2 = AC(d−AC)/2 ≤
d2/8 = 32, where equality occurs if and only if AB ⊥ AC ⊥ CD and
AC = AB + CD = 8. In this case BD = 8

√
2.

(b) Let A′ be the point with
−−→
DA′ =

−→
AC. The triangular inequality implies

AD+BC ≥ AA′ = 8
√

5. Thus the perimeter attains its minimum for
AB = CD = 4.
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(c) Let us assume w.l.o.g. that CD ≤ AB. Then C lies inside 
BDA′

and hence BC +AD = BC + CA′ < BD +DA′. The maximal value
BD +DA′ of BC +AD is attained when C approaches D, making a
degenerate quadrangle.

4. The first few values are easily verified to be 2rn + 2−rn , where r0 = 0,
r1 = r2 = 1, r3 = 3, r4 = 5, r5 = 11, . . . . Let us put un = 2rn + 2−rn (we
will show that rn exists and is integer for each n). A simple calculation
gives us un(u2

n−1 −2) = 2rn+2rn−1 +2−rn−2rn−1 +2rn−2rn−1 +2−rn+2rn−1 .
If an array qn, with q0 = 0 and q1 = 1, is set so as to satisfy the linear
recurrence qn+1 = qn +2qn−1, then it also satisfies qn−2qn−1 = −(qn−1−
2qn−2) = · · · = (−1)n−1(q1 − 2q0) = (−1)n−1. Assuming inductively up
to n ri = qi, the expression for un(u2

n−1 − 2) = un+1 + u1 reduces to
2qn+1 + 2−qn+1 + u1. Therefore, rn+1 = qn+1. The solution to this linear

recurrence with r0 = 0, r1 = 1 is rn = qn = 2n−(−1)n

3 , and since [un] = 2rn

for n ≥ 0, the result follows.

Remark. One could simply guess that un = 2rn +2−rn for rn = 2n−(−1)n

3 ,
and then prove this result by induction.

5. If one substitutes an integer q-tuple (x1, . . . , xq) satisfying |xi| ≤ p for all
i in an equation of the given system, the absolute value of the right-hand
member never exceeds pq. So for the right-hand member of the system
there are (2pq + 1)p possibilities There are (2p + 1)q possible q-tuples
(x1, . . . , xq). Since (2p+ 1)q ≥ (2pq + 1)p, there are at least two q-tuples
(y1, . . . , yq) and (z1, . . . , zq) giving the same right-hand members in the
given system. The difference (x1, . . . , xq) = (y1 − z1, . . . , yq − zq) thus
satisfies all the requirements of the problem.

6. Suppose a1 ≤ a2 ≤ a3 are the dimensions of the box. If we set bi =
[ai/

3
√

2], the condition of the problem is equivalent to a1

b1
· a2

b2
· a3

b3
= 5. We

list some values of a, b = [a/ 3
√

2] and a/b:

a 2 3 4 5 6 7 8 9 10
b 1 2 3 3 4 5 6 7 7
a/b 2 1.5 1.33 1.67 1.5 1.4 1.33 1.29 1.43

We note that if a > 2, then a/b ≤ 5/3, and if a > 5, then a/b ≤ 3/2. If

a1 > 2, then a1

b1
· a2

b2
· a3

b3
< (5/3)

3
< 5, a contradiction. Hence a1 = 2. If also

a2 = 2, then a3/b3 = 5/4 ≤ 3
√

2, which is impossible. Also, if a2 ≥ 6, then
a2

b2
· a3

b3
≤ (1.5)2 < 2.5, again a contradiction. We thus have the following

cases:
(i) a1 = 2, a2 = 3, then a3/b3 = 5/3, which holds only if a3 = 5;
(ii) a1 = 2, a2 = 4, then a3/b3 = 15/8, which is impossible;
(iii) a1 = 2, a2 = 5, then a3/b3 = 3/2, which holds only if a3 = 6.
The only possible sizes of the box are therefore (2, 3, 5) and (2, 5, 6).
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7. The map T transforms the interval (0, a] onto (1 − a, 1] and the interval
(a, 1] onto (0, 1 − a]. Clearly T preserves the measure. Since the measure
of the interval [0, 1] is finite, there exist two positive integers k, l > k such
that T k(J) and T l(J) are not disjoint. But the map T is bijective; hence
T l−k(J) and J are not disjoint.

8. Every polynomial with real coefficients can be factored as a product of
linear and quadratic polynomials with real coefficients. Thus it suffices to
prove the result only for a quadratic polynomial P (x) = x2 − 2ax + b2,
with a > 0 and b2 > a2.
Using the identity

(x2 + b2)2n − (2ax)2n = (x2 − 2ax+ b2)
2n−1∑
k=0

(x2 + b2)k(2ax)2n−k−1

we have solved the problem if we can choose n such that b2n
(
2n
n

)
> 22na2n.

However, it is is easy to show that 2n
(
2n
n

)
< 22n; hence it is enough to

take n such that (b/a)2n > 2n. Since limn→∞(2n)1/(2n) = 1 < b/a, such
an n always exists.

9. The equation Pn(x) = x is of degree 2n, and has at most 2n distinct
roots. If x > 2, then by simple induction Pn(x) > x for all n. Similarly,
if x < −1, then P1(x) > 2, which implies Pn(x) > 2 for all n. It follows
that all real roots of the equation Pn(x) = x lie in the interval [−2, 2], and
thus have the form x = 2 cos t.
Now we observe that P1(2 cos t) = 4 cos2 t − 2 = 2 cos 2t, and in general
Pn(2 cos t) = 2 cos 2nt. Our equation becomes

cos 2nt = cos t,

which indeed has 2n different solutions t = 2πm
2n−1 (m = 0, 1, . . . , 2n−1 − 1)

and t = 2πm
2n+1 (m = 1, 2, . . . , 2n−1).

10. Let a1 < a2 < · · · < an be positive integers whose sum is 1976. Let M
denote the maximal value of a1a2 · · ·an. We make the following observa-
tions:
(1) a1 = 1 does not yield the maximum, since replacing 1, a2 by 1 + a2

increases the product.
(2) aj − ai ≥ 2 does not yield the maximal value, since replacing ai, aj by

ai + 1, aj − 1 increases the product.
(3) ai ≥ 5 does not yield the maximal value, since 2(ai−2) = 2ai−4 > ai.
Since 4 = 22, we may assume that all ai are either 2 or 3, and M = 2k3l,
where 2k + 3l = 1976.
(4) k ≥ 3 does not yield the maximal value, since 2 · 2 · 2 < 3 · 3.
Hence k ≤ 2 and 2k ≡ 1976 (mod 3) gives us k = 1, l = 658 and
M = 2 · 3658.
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11. We shall show by induction that 52k − 1 = 2k+2qk for each k = 0, 1, . . . ,
where qk ∈ N. Indeed, the statement is true for k = 0, and if it holds for

some k then 52k+1 − 1 =
(
52k

+ 1
)(

52k − 1
)

= 2k+3dk+1 where dk+1 =(
52k

+ 1
)
dk/2 is an integer by the inductive hypothesis.

Let us now choose n = 2k + k + 2. We have 5n = 10k+2qk + 5k+2. It
follows from 54 < 103 that 5k+2 has at most [3(k+2)/4]+2 nonzero digits,
while 10k+2qk ends in k+ 2 zeros. Hence the decimal representation of 5n

contains at least [(k + 2)/4]− 2 consecutive zeros. Now it suffices to take
k > 4 · 1978.

12. Suppose the decomposition into k polynomials is possible. The sum of
coefficients of each polynomial a1x + a2x

2 + · · · + anx
n equals 1 + · · · +

n = n(n + 1)/2 while the sum of coefficients of 1976(x + x2 + · · · + xn)
is 1976n. Hence we must have 1976n = kn(n + 1)/2, which reduces to
(n+1) | 3952 = 24·13·19. In other words, n is of the form n = 2α13β19γ−1,
with 0 ≤ α ≤ 4, 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1. We can immediately eliminate
the values n = 0 and n = 3951 that correspond to α = β = γ = 0 and
α = 4, β = γ = 1.
We claim that all other values n are permitted. There are two cases.
α ≤ 3. In this case k = 3952/(n + 1) is even. The simple choice of the

polynomials P = x+2x2+ · · ·+nxn and P ′ = nx+(n−1)x2+ · · ·+xn

suffices, since k(P + P ′)/2 = 1976(x+ x2 + · · · + xn).
α = 4. Then k is odd. Consider (k − 3)/2 pairs (P, P ′) of the former case

and
P1 =

[
nx+ (n− 1)x3 + · · · + n+1

2 xn
]

+
[

n−1
2 x2 + n−3

2 x4 + · · · + xn−1
]
;

P2 =
[

n+1
2 x+ n−1

2 x3 + · · · + xn
]

+
[
nx2 + (n− 1)x4 + · · · + n+3

2 xn−1
]
.

Then P + P1 + P2 = 3(n + 1)(x + x2 + · · · + xn)/2 and therefore
(k − 3)(P + P ′)/2 + (P + P1 + P2) = 1976(x+ x2 + · · · + xn).

It follows that the desired decomposition is possible if and only if 1 < n <
3951 and n+ 1 | 2 · 1976.



410 4 Solutions

4.19 Solutions to the Longlisted Problems of IMO 1977

1. Let P be the projection of S onto the planeABCDE. ObviouslyBS > CS
is equivalent to BP > CP . The conditions of the problem imply that
PA > PB and PA > PE. The locus of such points P is the region of the
plane that is determined by the perpendicular bisectors of segments AB
and AE and that contains the point diametrically opposite A. But since
AB < DE, the whole of this region lies on one side of the perpendicular
bisector of BC. The result follows immediately.

Remark. The assumption BC < CD is redundant.

2. We shall prove by induction on n that f(x) > f(n) whenever x > n.
The case n = 0 is trivial. Suppose that n ≥ 1 and that x > k implies
f(x) > f(k) for all k < n. It follows that f(x) ≥ n holds for all x ≥ n.
Let f(m) = minx≥n f(x). If we suppose that m > n, then m − 1 ≥ n
and consequently f(m − 1) ≥ n. But in this case the inequality f(m) >
f(f(m−1)) contradicts the minimality property ofm. The inductive proof
is thus completed.
It follows that f is strictly increasing, so f(n+ 1) > f(f(n)) implies that
n+ 1 > f(n). But since f(n) ≥ n we must have f(n) = n.

3. Let v1, v2, . . . , vk be k persons who are not acquainted with each other. Let
us denote by m the number of acquainted couples and by dj the number
of acquaintances of person vj . Then

m ≤ dk+1+dk+2+· · ·+dn ≤ d(n−k) ≤ k(n−k) ≤
(
k + (n− k)

2

)2

=
n2

4
.

4. Consider any vertex vn from which the maximal number d of seg-
ments start, and suppose it is not a vertex of a triangle. Let A =
{v1, v2, . . . , vd} be the set of points that are connected to vn, and let
B = {vd+1, vd+2, . . . , vn} be the set of the other points. Since vn is not
a vertex of a triangle, there is no segment both of whose vertices lie in
A; i.e., each segment has an end in B. Thus, if dj denotes the number of
segments at vj and m denotes the total number of segments, we have

m ≤ dd+1 + dd+2 + · · · + dn ≤ d(n− d) ≤
[
n2

4

]
= m.

This means that each inequality must be equality, implying that each
point in B is a vertex of d segments, and each of these segments has the
other end in A. Then there is no triangle at all, which is a contradiction.

5. Let us denote by I and E the sets of interior boundary points and exterior
boundary points. Let ABCD be the square inscribed in the circle k with
sides parallel to the coordinate axes. Lines AB,BC,CD,DA divide the
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plane into 9 regions: R, RA, RB ,
RC , RD, RAB , RBC , RCD, RDA.
There is a unique pair of lat-
tice points AI ∈ R, AE ∈
RA that are opposite vertices of
a unit square. We similarly de-
fine BI , CI , DI , BE , CE , DE. Let us
form a graph G by connecting each
point from E lying in RAB (respec-
tively RBC ,RCD,RDA) to its up-

A B

D C

AE

AI

R

RA RB

RCRD

RAB

RBC

RCD

RDA

per (respectively left, lower, right) neighbor point (which clearly belongs
to I). It is easy to see that:
(i) All vertices from I other than AI , BI , CI , DI have degree 1.
(ii) AE is not in E if and only if AI ∈ I and degAI = 2.
(iii) No other lattice points inside RA belong to E.
Thus if m is the number of edges of the graph G and s is the number of
points among AE , BE , CE , and DE that are in E, using (i)–(iii) we easily
obtain |E| = m+ s and |I| = m− (4 − s) = |E| + 4.

6. Let 〈y〉 denote the distance from y ∈ R to the closest even integer. We
claim that

〈1 + cosx〉 ≤ sinx for all x ∈ [0, π].

Indeed, if cosx ≥ 0, then 〈1 + cosx〉 = 1 − cosx ≤ 1 − cos2 x = sin2 x ≤
sinx; the proof is similar if cosx < 0.
We note that 〈x+ y〉 ≤ 〈x〉 + 〈y〉 holds for all x, y ∈ R. Therefore

n∑
j=1

sinxj ≥
n∑

j=1

〈1 + cosxj〉 ≥
〈

n∑
j=1

(1 + cosxj)

〉
= 1.

7. Let us suppose that c1 ≤ c2 ≤ · · · ≤ cn and that c1 < 0 < cn. There exists
k, 1 ≤ k < n, such that ck ≤ 0 < ck+1. Then we have

(n− 1)(c21 + c22 + · · · + c2n) ≥ k(c21 + · · · + c2k) + (n− k)(c2k+1 + · · · + c2n)

≥ (c1 + · · · + ck)2 + (ck+1 + · · · + cn)2

= (c1 + · · · + cn)2

−2(c1 + · · · + ck)(ck+1 + · · · + cn),

from which we obtain (c1 + · · ·+ ck)(ck+1 + · · ·+ cn) ≥ 0, a contradiction.

Second solution. By the given condition and the inequality between arith-
metic and quadratic mean we have

(c1 + · · · + cn)2 = (n− 1)(c21 + · · · + c2n−1) + (n− 1)c2n

≥ (c1 + · · · + cn−1)
2 + (n− 1)c2n,

which is equivalent to 2(c1 + c2 + · · ·+ cn)cn ≥ nc2n. Similarly, 2(c1 + c2 +
· · · + cn)ci ≥ nc2i for all i = 1, . . . , n. Hence all ci are of the same sign.



412 4 Solutions

8. There is exactly one point satisfying the given condition on each face of
the hexahedron. Namely, on the face ABD it is the point that divides the
median from D in the ratio 32 : 3.

9. A necessary and sufficient condition for M to be nonempty is that
1/

√
10 ≤ t ≤ 1.

10. Integers a, b, q, r satisfy

a2 + b2 = (a+ b)q + r, 0 ≤ r < a+ b, q2 + r = 1977.

From q2 ≤ 1977 it follows that q ≤ 44, and consequently a2 + b2 <
45(a + b). Having in mind the inequality (a + b)2 ≤ 2(a2 + b2), we get
(a + b)2 < 90(a + b), i.e., a + b < 90 and consequently r < 90. Now
from q2 = 1977 − r > 1977 − 90 = 1887 it follows that q > 43; hence
q = 44 and r = 41. It remains to find positive integers a and b satisfying
a2 + b2 = 44(a+ b) + 41, or equivalently

(a− 22)2 + (b − 22)2 = 1009.

The only solutions to this Diophantine equation are (|a− 22|, |b− 22|) ∈
{(15, 28), (28, 15)}, which yield (a, b) ∈ {(7, 50), (37, 50), (50, 7), (50, 37)}.

11. (a) Suppose to the contrary that none of the numbers z0, z1, . . . , zn−1 is
divisible by n. Then two of these numbers, say zk and zl (0 ≤ k < l ≤
n − 1), are congruent modulo n, and thus n | zl − zk = zk+1zl−k−1.
But since (n, z) = 1, this implies n | zl−k−1, which is a contradiction.

(b) Again suppose the contrary, that none of z0, z1, . . . , zn−2 is divisible
by n. Since (z−1, n) = 1, this is equivalent to n � (z−1)zj, i.e., zk �≡ 1
(mod n) for all k = 1, 2, . . . , n− 1. But since (z, n) = 1, we also have
that zk �≡ 0 (mod n). It follows that there exist k, l, 1 ≤ k < l ≤ n− 1
such that zk ≡ zl, i.e., zl−k ≡ 1 (mod n), which is a contradiction.

12. According to part (a) of the previous problem we can conclude that T =
{n ∈ N | (n, z) = 1}.

13. The figure Φ contains two points A and B having maximum distance.
Let h be the semicircle with diameter AB that lies in Φ, and let k be
the circle containing h. Consider any point M inside k. The line passing
through M that is orthogonal to AM meets h in some point P (because
∠AMB > 90◦). Let h′ and h′ be the two semicircles with diameter AP ,
where M ∈ h′. Since h′ contains a point C such that BC > AB, it cannot
be contained in Φ, implying that h′ ⊂ Φ. Hence M belongs to Φ. Since
Φ contains no points outside the circle k, it must coincide with the disk
determined by k. On the other hand, any disk has the required property.

14. We prove by induction on n that independently of the word w0, the given
algorithm generates all words of length n. This is clear for n = 1. Suppose
now the statement is true for n− 1, and that we are given a word w0 =
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c1c2 . . . cn of length n. Obviously, the words w0, w1, . . . , w2n−1−1 all have
the nth digit cn, and by the inductive hypothesis these are all words whose
nth digit is cn. Similarly, by the inductive hypothesis w2n−1 , . . . , w2n−1 are
all words whose nth digit is 1 − cn, and the induction is complete.

15. Each segment is an edge of at most two squares and a diagonal of at most
one square. Therefore pk = 0 for k > 3, and we have to prove that

p0 = p2 + 2p3. (1)

Let us calculate the number q(n) of considered squares. Each of these
squares is inscribed in a square with integer vertices and sides paral-
lel to the coordinate axes. There are (n − s)2 squares of side s with
integer vertices and sides parallel to the coordinate axes, and each of
them circumscribes exactly s of the considered squares. It follows that
q(n) =

∑n−1
s=1 (n− s)2s = n2(n2 − 1)/12. Computing the number of edges

and diagonals of the considered squares in two ways, we obtain that

p1 + 2p2 + 3p3 = 6q(n). (2)

On the other hand, the total number of segments with endpoints in the
considered integer points is given by

p0 + p1 + p2 + p3 =

(
n2

2

)
=
n2(n2 − 1)

2
= 6q(n). (3)

Now (1) follows immediately from (2) and (3).

16. For i = k and j = l the system is reduced to 1 ≤ i, j ≤ n, and has exactly
n2 solutions. Let us assume that i �= k or j �= l. The points A(i, j), B(k, l),
C(−j+k+l, i−k+l),D(i−j+l, i+j−k) are vertices of a negatively oriented
square with integer vertices lying inside the square [1, n]× [1, n], and each
of these squares corresponds to exactly 4 solutions to the system. By the
previous problem there are exactly q(n) = n2(n2 − 1)/12 such squares.
Hence the number of solutions is equal to n2 + 4q(n) = n2(n2 + 2)/3.

17. Centers of the balls that are tangent to K are vertices of a regular poly-
hedron with triangular faces, with edge length 2R and radius of circum-
scribed sphere r+R. Therefore the number n of these balls is 4, 6, or 20.
It is straightforward to obtain that:
(i) If n = 4, then r +R = 2R(

√
6/4), whence R = r(2 +

√
6).

(ii) If n = 6, then r +R = 2R(
√

2/2), whence R = r(1 +
√

2).

(iii) If n = 20, then r + R = 2R
√

5 +
√

5/8, whence R = r
[√

5 − 2
√

5+

(3 −
√

5)/2
]
.

18. Let U be the midpoint of the segment AB. The point M belongs to CU

and CM = (
√

5 − 1)CU/2, r = CU
√√

5 − 2.
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19. We shall prove the statement by induction on m. For m = 2 it is trivial,
since each power of 5 greater than 5 ends in 25. Suppose that the statement
is true for some m ≥ 2, and that the last m digits of 5n alternate in parity.
It can be shown by induction that the maximum power of 2 that divides
52m−2 − 1 is 2m, and consequently the difference 5n+2m−2 − 5n is divisible
by 10m but not by 2 ·10m. It follows that the last m digits of the numbers
5n+2m−2

and 5n coincide, but the digits at the positionm+1 have opposite
parity. Hence the last m+1 digits of one of these two powers of 5 alternate
in parity. The inductive proof is completed.

20. There exist u, v such that a cosx + b sinx = r cos(x − u) and A cos 2x +
B sin 2x = R cos 2(x− v), where r =

√
a2 + b2 and R =

√
A2 +B2. Then

1 − f(x) = r cos(x− u) +R cos 2(x− v) ≤ 1 holds for all x ∈ R.
There exists x ∈ R such that cos(x− u) ≥ 0 and cos 2(x− v) = 1 (indeed,
either x = v or x = v + π works). It follows that R ≤ 1. Similarly, there
exists x ∈ R such that cos(x − u) = 1/

√
2 and cos 2(x − v) ≥ 0 (either

x = u− π/4 or x = u+ π/4 works). It follows that r ≤
√

2.

Remark. The proposition of this problem contained as an addendum the
following, more difficult, inequality:√

a2 + b2 +
√
A2 +B2 ≤ 2.

The proof follows from the existence of x ∈ R such that cos(x− u) ≥ 1/2
and cos 2(x− v) ≥ 1/2.

21. Let us consider the vectors v1 = (x1, x2, x3), v2 = (y1, y2, y3), v3 = (1, 1, 1)
in space. The given equalities express the condition that these three vec-

tors are mutually perpendicular. Also,
x2
1

x2
1+x2

2+x2
3
,

y2
1

y2
1+y2

2+y2
3
, and 1/3 are

the squares of the projections of the vector (1, 0, 0) onto the directions of
v1, v2, v3, respectively. The result follows from the fact that the sum of
squares of projections of a unit vector on three mutually perpendicular
directions is 1.

22. Since the quadrilateral OA1BB1 is cyclic, ∠OA1B1 = ∠OBC. By using
the analogous equalities we obtain ∠OA4B4 = ∠OB3C3 = ∠OC2D2 =
∠OD1A1 = ∠OAB, and similarly ∠OB4A4 = ∠OBA. Hence 
OA4B4 ∼

OAB. Analogously, we have for the other three pairs of triangles

OB4C4 ∼ 
OBC, 
OC4D4 ∼ 
OCD, 
OD4A4 ∼ 
ODA, and con-
sequently ABCD ∼ A4B4C4D4.

23. Every polynomial q(x1, . . . , xn) with integer coefficients can be expressed
in the form q = r1 + x1r2, where r1, r2 are polynomials in x1, . . . , xn

with integer coefficients in which the variable x1 occurs only with even
exponents. Thus if q1 = r1−x1r2, the polynomial qq1 = r21−x2

1r
2
2 contains

x1 only with even exponents. We can continue inductively constructing
polynomials qj , j = 2, 3, . . . , n, such that qq1q2 · · · qj contains each of
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variables x1, x2, . . . , xj only with even exponents. Thus the polynomial
qq1 · · · qn is a polynomial in x2

1, . . . , x
2
n.

The polynomials f and g exist for every n ∈ N. In fact, it suffices to
construct q1, . . . , qn for the polynomial q = x1 + · · · + xn and take f =
q1q2 · · · qn.

24. Setting x = y = 0 gives us f(0) = 0. Let us put g(x) = arctanf(x). The
given functional equation becomes tan g(x+ y) = tan(g(x) + g(y)); hence

g(x+ y) = g(x) + g(y) + k(x, y)π,

where k(x, y) is an integer function. But k(x, y) is continuous and k(0, 0) =
0, therefore k(x, y) = 0. Thus we obtain the classical Cauchy’s functional
equation g(x + y) = g(x) + g(y) on the interval (−1, 1), all of whose
continuous solutions are of the form g(x) = ax for some real a. Moreover,
g(x) ∈ (−π, π) implies |a| ≤ π/2.
Therefore f(x) = tan ax for some |a| ≤ π/2, and this is indeed a solution
to the given equation.

25. Let

fn(z) = zn + a
n∑

k=1

(
n

k

)
(a− kb)k−1(z + kb)n−k.

We shall prove by induction on n that fn(z) = (z+ a)n. This is trivial for
n = 1. Suppose that the statement is true for some positive integer n− 1.
Then

f ′
n(z) = nzn−1 + a

n−1∑
k=1

(
n

k

)
(n− k)(a− kb)k−1(z + kb)n−k−1

= nzn−1 + na
n−1∑
k=1

(
n− 1

k

)
(a− kb)k−1(z + kb)n−k−1

= nfn−1(z) = n(z + a)n−1.

It remains to prove that fn(−a) = 0. For z = −a we have by the lemma
of (SL81-13),

fn(−a) = (−a)n + a

n∑
k=1

(
n

k

)
(−1)n−k(a− kb)n−1

= a

n∑
k=0

(
n

k

)
(−1)n−k(a− kb)n−1 = 0.

26. The result is an immediate consequence (for G = {−1, 1}) of the following
generalization.
(1) Let G be a proper subgroup of Z∗

n (the multiplicative group of residue
classes modulo n coprime to n), and let V be the union of elements
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of G. A number m ∈ V is called indecomposable in V if there do
not exist numbers p, q ∈ V , p, q �∈ {−1, 1}, such that pq = m. There
exists a number r ∈ V that can be expressed as a product of elements
indecomposable in V in more than one way.

First proof. We shall start by proving the following lemma.
Lemma. There are infinitely many primes not in V that do not divide n.
Proof. There is at least one such prime: In fact, any number other than

±1 not in V must have a prime factor not in V , since V is closed
under multiplication. If there were a finite number of such primes, say
p1, p2, . . . , pk, then one of the numbers p1p2 · · · pk +n, p2

1p2 · · · pk +n is
not in V and is coprime to n and p1, . . . , pk, which is a contradiction.
[This lemma is actually a direct consequence of Dirichlet’s theorem.]

Let us consider two such primes p, q that are congruent modulo n. Let pk

be the least power of p that is in V . Then pk, qk, pk−1q, pqk−1 belong to
V and are indecomposable in V . It follows that

r = pk · qk = pk−1q · pqk−1

has the desired property.

Second proof. Let p be any prime not in V that does not divide n, and let
pk be the least power of p that is in V . Obviously pk is indecomposable
in V . Then the number

r = pk · (pk−1 + n)(p+ n) = p(pk−1 + n) · pk−1(p+ n)

has at least two different factorizations into indecomposable factors.

27. The result is a consequence of the generalization from the previous prob-
lem for G = {1}.
Remark. There is an explicit example: r = (n − 1)2 · (2n − 1)2 = [(n −
1)(2n− 1)]2.

28. The recurrent relations give us that

xi+1 =

[
xi + [n/xi]

2

]
=

[
xi + n/xi

2

]
≥ [

√
n].

On the other hand, if xi > [
√
n] for some i, then we have xi+1 < xi. This

follows from the fact that xi+1 < xi is equivalent to xi > (xi + n/xi)/2,
i.e., to x2

i > n. Therefore xi = [
√
n] holds for at least one i ≤ n− [

√
n]+1.

Remark. If n + 1 is a perfect square, then xi = [
√
n] implies xi+1 =

[
√
n] + 1. Otherwise, xi = [

√
n] implies xi+1 = [

√
n].

29. Let us denote the midpoints of segments LM , AN , BL, MN , BK, CM ,
NK, CL, DN , KL, DM , AK by P1, P2, P3, P4, P5, P6, P7, P8, P9, P10,
P11, P12, respectively.
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We shall prove that the dodecagon
P1P2P3 . . . P11P12 is regular. From
BL = BA and ∠ABL = 30◦ it
follows that ∠BAL = 75◦. Simi-
larly ∠DAM = 75◦, and therefore
∠LAM = 60◦, which together with
AL = AM implies that the triangle
ALM is equilateral. Now, from the
triangles OLM and ALN , we get A B

CD

L

M

N
O

P1
P2

OP1 = LM/2, OP2 = AL/2 and OP2 ‖ AL. Hence OP1 = OP2,
∠P1OP2 = ∠P1AL = 30◦ and ∠P2OM = ∠LAD = 15◦. The desired
result follows from symmetry.

30. Suppose ∠SBA = x. By the trigonometric form of Ceva’s theorem we
have

sin(96◦ − x)

sinx

sin 18◦

sin 12◦
sin 6◦

sin 48◦
= 1. (1)

We claim that x = 12◦ is a solution of this equation. To prove this, it
is enough to show that sin 84◦ sin 6◦ sin 18◦ = sin 48◦ sin 12◦ sin 12◦, which
is equivalent to sin 18◦ = 2 sin 48◦ sin 12◦ = cos 36◦ − cos 60◦. The last
equality can be checked directly.
Since the equation is equivalent to (sin 96◦ cotx− cos 96◦) sin 6◦ sin 18◦ =
sin 48◦ sin 12◦, the solution x ∈ [0, π) is unique. Hence x = 12◦.

Second solution. We know that if a, b, c, a′, b′, c′ are points on the unit
circle in the complex plane, the lines aa′, bb′, cc′ are concurrent if and
only if

(a− b′)(b − c′)(c− a′) = (a− c′)(b − a′)(c− b′). (1)

We shall prove that x = 12◦. We may suppose that ABC is the triangle
in the complex plane with vertices a = 1, b = ε9, c = ε14, where ε =
cos π

15 + i sin π
15 . If a′ = ε12, b′ = ε28, c′ = ε, our task is the same as

proving that lines aa′, bb′, cc′ are concurrent, or by (1) that

(1 − ε28)(ε9 − ε)(ε14 − ε12) − (1 − ε)(ε9 − ε12)(ε14 − ε28) = 0.

The last equality holds, since the left-hand side is divisible by the mini-
mum polynomial of ε: z8 + z7 − z5 − z4 − z3 + z + 1.

31. We obtain from (1) that f(1, c) = f(1, c)f(1, c); hence f(1, c) = 1 and con-
sequently f(−1, c)f(−1, c) = f(1, c) = 1, i.e. f(−1, c) = 1. Analogously,
f(c, 1) = f(c,−1) = 1.
Clearly f(1, 1) = f(−1, 1) = f(1,−1) = 1. Now let us assume that a �= 1.
Observe that f(x−1, y) = f(x, y−1) = f(x, y)−1. Thus by (1) and (2) we
get

1 = f(a, 1 − a)f(1/a, 1 − 1/a)

= f(a, 1 − a)f

(
a,

1

1 − 1/a

)
= f

(
a,

1 − a

1 − 1/a

)
= f(a,−a).
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We now have f(a, a) = f(a,−1)f(a,−a) = 1 · 1 = 1 and 1 = f(ab, ab) =
f(a, ab)f(b, ab) = f(a, a)f(a, b)f(b, a)f(b, b) = f(a, b)f(b, a).

32. It is a known result that among six persons there are 3 mutually ac-
quainted or 3 mutually unacquainted. By the condition of the problem
the last case is excluded.
If there is a man in the room who is not acquainted with four of the oth-
ers, then these four men are mutually acquainted. Otherwise, each man
is acquainted with at least five others, and since the sum of numbers
of acquaintances of all men in the room is even, one of the men is ac-
quainted with at least six men. Among these six there are three mutually
acquainted, and they together with the first one make a group of four
mutually acquainted men.

33. Let r be the radius of K and s >
√

2/r an integer. Consider the points
Ak(ka1− [ka1], ka2− [ka2]), where k = 0, 1, 2, . . . , s2. Since all these points
are in the unit square, two of them, say Ap, Aq, q > p, are in a small
square with side 1/s, and consequently ApAq ≤

√
2/s < r. Therefore, for

n = q− p, m1 = [qa1]− [pa1] and m2 = [qa2]− [pa2] the distance between
the points n(a1, a2) and (m1,m2) is less then r, i.e., the point (m1,m2) is
in the circle K + n(a1, a2).

34. Let A be the set of the 2n sequences of n terms equal to ±1. Since there
are k2 products ab with a, b ∈ B, by the pigeonhole principle there exists
c ∈ A such that ab = c holds for at most k2/2n pairs (a, b) ∈ B × B.
Then cb ∈ B holds for at most k2/2n values b ∈ B, which means that
|B ∩ cB| ≤ k2/2n.

35. The solutions are 0 and Nk = 10 99 . . .9︸ ︷︷ ︸
k

89, where k = 0, 1, 2, . . . .

Remark. If we omit the condition that at most one of the digits is zero,
the solutions are numbers of the form Nk1Nk2 . . . Nkr , where k1 = kr,
k2 = kr−1 etc.
The more general problem k · a1a2 . . . an = an . . . a2a1 has solutions only
for k = 9 and for k = 4 (namely 0, 2199 . . .978 and combinations as
above).

36. It can be shown by simple induction that Sm(a1, . . . , a2n) = (b1, . . . , b2n),
where

bk =

m∏
i=0

a
(m

i )
k+i (assuming that ak+2n = ak).

If we take m = 2n all the binomial coefficients
(
m
i

)
apart from i = 0 and

i = m will be even, and thus bk = akak+m = 1 for all k.

37. We look for a solution with xA1
1 = · · · = xAn

n = nA1A2···Anx and xn+1 =
ny. In order for this to be a solution we must have A1A2 · · ·Anx + 1 =
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An+1y. This equation has infinitely many solutions (x, y) in N, since
A1A2 · · ·An and An+1 are coprime.

38. The condition says that the quadratic equation f(x) = 0 has distinct real
solutions, where

f(x) = 3x2
n∑

j=1

mj − 2x

n∑
j=1

mj(aj + bj + cj) +

n∑
j=1

mj(ajbj + bjcj + cjaj).

It is easy to verify that the function f is the derivative of

F (x) =

n∑
j=1

mj(x− aj)(x − bj)(x − cj).

Since F (a1) ≤ 0 ≤ F (an), F (b1) ≤ 0 ≤ F (bn) and F (c1) ≤ 0 ≤ F (cn),
F (x) has three distinct real roots, and hence by Rolle’s theorem its deriva-
tive f(x) has two distinct real roots.

39. By the pigeonhole principle, we can find 5 distinct points among the given
37 such that their x-coordinates are congruent and their y-coordinates are
congruent modulo 3. Now among these 5 points either there exist three
with z-coordinates congruent modulo 3, or there exist three whose z-
coordinates are congruent to 0, 1, 2 modulo 3. These three points are the
desired ones.

Remark. The minimum number n such that among any n integer points
in space one can find three points whose barycenter is an integer point
is n = 19. Each proof of this result seems to consist in studying a great
number of cases.

40. Let us divide the chessboard into 16 squares Q1, Q2, . . . , Q16 of size 2× 2.
Let sk be the sum of numbers in Qk, and let us assume that s1 ≥ s2 ≥
· · · ≥ s16. Since s4 + s5 + · · · + s16 ≥ 1 + 2 + · · · + 52 = 1378, we must
have s4 ≥ 100 and hence s1, s2, s3 ≥ 100 as well.

41. The considered sums are congruent modulo n to Sk =
∑N

i=1(i + k)ai,
k = 0, 1, . . . , N − 1. Since Sk = S0 + k(a1 + · · · + an) = S0 + k, all these
sums give distinct residues modulo n and therefore are distinct.

42. It can be proved by induction on n that

{an,k | 1 ≤ k ≤ 2n} = {2m | m = 3n+3n−1s1+· · ·+31sn−1+sn (si = ±1)}.

Thus the result is an immediate consequence of the following lemma.
Lemma. Each positive integer s can be uniquely represented in the form

s = 3n + 3n−1s1 + · · · + 31sn−1 + sn, where si ∈ {−1, 0, 1}. (1)

Proof. Both the existence and the uniqueness can be shown by simple
induction on s. The statement is trivial for s = 1, while for s > 1
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there exist q ∈ N, r ∈ {−1, 0, 1} such that s = 3q + r, and q has a
unique representation of the form (1).

43. Since k(k + 1) · · · (k + p) = (p+ 1)!
(
k+p
p+1

)
= (p+ 1)!

[(
k+p+1

p+2

)
−

(
k+p
p+2

)]
, it

follows that

n∑
k=1

k(k + 1) · · · (k + p) = (p+ 1)!

(
n+ p+ 1

p+ 2

)
=
n(n+ 1) · · · (n+ p+ 1)

p+ 2
.

44. Let d(X,σ) denote the distance from a point X to a plane σ. Let us
consider the pair (A, π) where A ∈ E and π is a plane containing
some three points B,C,D ∈ E such that d(A, π) is the smallest possi-
ble. We may suppose that B,C,D are selected such that 
BCD con-
tains no other points of E. Let A′ be the projection of A on π, and
let lb, lc, ld be lines through B,C,D parallel to CD,DB,BC respec-
tively. If A′ is in the half-plane determined by ld not containing BC,
then d(D,ABC) ≤ d(A′, ABC) < d(A,BCD), which is impossible. Sim-
ilarly, A′ lies in the half-planes determined by lb, lc that contain D, and
hence A′ is inside the triangle bordered by lb, lc, ld. The minimality prop-
erty of (A, π) and the way in which BCD was selected guarantee that
E ∩ T = {A,B,C,D}.

45. As in the previous problem, let us choose the pair (A, π) such that d(A, π)
is minimal. If π contains only three points of E, we are done. If not, there
are four points in E ∩ P , say A1, A2, A3, A4, such that the quadrilateral
Q = A1A2A3A4 contains no other points of E. Suppose Q is not convex,
and that w.l.o.g. A1 is inside the triangle A2A3A4. If A0 is the projection
of A on P , the point A1 belongs to one of the triangles A0A2A3, A0A3A4,
A0A4A2, say A0A2A3. Then d(A1, AA2A3) ≤ d(A0, AA2A3) < AA0,
which is impossible. Hence Q is convex. Also, by the minimality prop-
erty of (A, π) the pyramid AA1A2A3A4 contains no other points of E.

46. We need to consider only the case t > |x|. There is no loss of generality
in assuming x > 0.
To obtain the estimate from below, set

a1 = f

(
−x+ t

2

)
− f(−(x+ t)), a2 = f(0) − f

(
−x+ t

2

)
,

a3 = f

(
x+ t

2

)
− f(0), a4 = f(x+ t) − f

(
x+ t

2

)
.

Since −(x + t) < x − t and x < (x + t)/2, we have f(x) − f(x − t) ≤
a1 + a2 + a3. Since 2−1 < aj+1/aj < 2, it follows that

g(x, t) >
a4

a1 + a2 + a3
>

a3/2

4a3 + 2a3 + a3
= 14−1.

To obtain the estimate from above, set
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b1 = f(0) − f

(
−x+ t

3

)
, b2 = f

(
x+ t

3

)
− f(0),

b3 = f

(
2(x+ t)

3

)
− f

(
x+ t

3

)
, b4 = f(x+ t) − f

(
2(x+ t)

3

)
.

If t < 2x, then x − t < −(x + t)/3 and therefore f(x) − f(x − t) ≥ b1.
If t ≥ 2x, then (x + t)/3 ≤ x and therefore f(x) − f(x − t) ≥ b2. Since
2−1 < bj+1/bj < 2, we get

g(x, t) <
b2 + b3 + b4
min{b1, b2}

<
b2 + 2b2 + 4b2

b2/2
= 14.

47. M lies on AB and N lies on BC. If CQ ≤ 2CD/3, then BM = CQ/2. If
CQ > 2CD/3, then N coincides with C.

48. Let a plane cut the edges AB,BC,CD,DA at points K,L,M,N respec-
tively.
Let D′, A′, B′ be distinct points in the plane ABC such that the triangles
BCD′, CD′A′, D′A′B′ are equilateral, and M ′ ∈ [CD′], N ′ ∈ [D′A′], and

K ′ ∈ [A′B′] such that CM ′ = CM ,
A′N ′ = AN , and A′K ′ = AK.
The perimeter P of the quadrilat-
eral KLMN is equal to the length
of the polygonal line KLM ′N ′K ′,
which is not less than KK ′. It fol-
lows that P ≥ 2a.

A C A′

B D′ B′

K

L
M ′

N ′ K′

Let us consider all quadrilateralsKLMN that are obtained by intersecting
the tetrahedron by a plane parallel to a fixed plane α. The lengths of the
segments KL,LM,MN,NK are linear functions in AK, and so is P .
Thus P takes its maximum at an endpoint of the interval, i.e., when the
plane KLMN passes through one of the vertices A,B,C,D, and it is easy
to see that in this case P ≤ 3a.

49. If one of p, q, say p, is zero, then −q is a perfect square. Conversely,
(p, q) = (0,−t2) and (p, q) = (−t2, 0) satisfy the conditions for t ∈ Z.
We now assume that p, q are nonzero. If the trinomial x2 + px+ q has two
integer roots x1, x2, then |q| = |x1x2| ≥ |x1|+ |x2|− 1 ≥ |p|− 1. Similarly,
if x2 + qx+ p has integer roots, then |p| ≥ |q| − 1 and q2 − 4p is a square.
Thus we have two cases to investigate:
(i) |p| = |q|. Then p2 − 4q = p2 ± 4p is a square, so (p, q) = (4, 4).
(ii) |p| = |q|±1. The solutions for (p, q) are (t,−1− t) for t ∈ Z and (5, 6),

(6, 5).

50. Suppose that Pn(x) = n for x ∈ {x1, x2, . . . , xn}. Then

Pn(x) = (x− x1)(x − x2) · · · (x− xn) + n.
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From Pn(0) = 0 we obtain n = |x1x2 · · ·xn| ≥ 2n−2 (because at least
n − 2 factors are different from ±1) and therefore n ≥ 2n−2. It follows
that n ≤ 4.
For each positive integer n ≤ 4 there exists a polynomial Pn. Here is the
list of such polynomials:

n = 1 : ±x, n = 2 : 2x2, x2 ± x, −x2 ± 3x,
n = 3 : ±(x3 − x) + 3x2, n = 4 : −x4 + 5x2.

51. We shall use the following algorithm:
Choose a segment of maximum length (“basic” segment) and put on it
unused segments of the opposite color without overlapping, each time
of the maximum possible length, as long as it is possible. Repeat the
procedure with remaining segments until all the segments are used.

Let us suppose that the last basic segment is black. Then the length of
the used part of any white basic segment is greater than the free part,
and consequently at least one-half of the length of the white segments has
been used more than once. Therefore all basic segments have total length
at most 1.5 and can be distributed on a segment of length 1.51.
On the other hand, if we are given two white segments of lengths 0.5 and
two black segments of lengths 0.999 and 0.001, we cannot distribute them
on a segment of length less than 1.499.

52. The maximum and minimum are 2R
√

4 − 2k2 and 2R
(
1 +

√
1 − k2

)
re-

spectively.

53. The discriminant of the given equation considered as a quadratic equation
in b is 196−75a2. Thus 75a2 ≤ 196 and hence −1 ≤ a ≤ 1. Now the integer
solutions of the given equation are easily found: (−1, 3), (0, 0), (1, 2).

54. We shall use the following lemma.
Lemma. If a real function f is convex on the interval I and x, y, z ∈ I,

x ≤ y ≤ z, then

(y − z)f(x) + (z − x)f(y) + (x− y)f(z) ≤ 0.

Proof. The inequality is obvious for x = y = z. If x < z, then there exist
p, r such that p+ r = 1 and y = px+ rz. Then by Jensen’s inequality
f(px + rz) ≤ pf(x) + rf(z), which is equivalent to the statement of
the lemma.

By applying the lemma to the convex function − lnx we obtain xyyzzx ≥
yxzyxz for any 0 < x ≤ y ≤ z. Multiplying the inequalities abbcca ≥ bacbac

and accdda ≥ cadcad we get the desired inequality.

Remark. Similarly, for 0 < a1 ≤ a2 ≤ · · · ≤ an it holds that
aa2
1 aa3

2 · · · aa1
n ≥ aa1

2 aa2
3 · · · aan

1 .

55. The statement is true without the assumption that O ∈ BD. Let BP ∩
DN = {K}. If we denote

−−→
AB = a,

−−→
AD = b and

−→
AO = αa + βb for some

α, β ∈ R, 1/α+ 1/β �= 1, by straightforward calculation we obtain that
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−−→
AK =

α

α+ β − αβ
a+

β

α+ β − αβ
b =

1

α+ β − αβ

−→
AO.

Hence A,K,O are collinear.

56. See the solution to (LL67-38).

57. Suppose that there exists a sequence of 17 terms a1, a2, . . . , a17 satisfying
the required conditions. Then the sum of terms in each row of the rect-
angular array below is positive, while the sum of terms in each column is
negative, which is a contradiction.

a1 a2 . . . a11

a2 a3 . . . a12

...
...

...
a7 a8 . . . a17

On the other hand, there exist 16-term sequences with the required prop-
erty. An example is 5, 5,−13, 5, 5, 5,−13, 5, 5,−13, 5, 5, 5,−13, 5, 5 which
can be obtained by solving the system of equations

∑k+10
i=k ai = 1

(k = 1, 2, . . . , 6) and
∑l+6

i=l ai = −1 (l = 1, 2, . . . , 10).

Second solution. We shall prove a stronger statement: If 7 and 11 in the
question are replaced by any positive integers m,n, then the maximum
number of terms is m+ n− (m,n) − 1.
Let a1, a2, . . . , al be a sequence of real numbers, and let us define s0 = 0
and sk = a1 + · · · + ak (k = 1, . . . , l). The given conditions are equivalent
to sk > sk+m for 0 ≤ k ≤ l −m and sk < sk+n for 0 ≤ k ≤ l − n.
Let d = (m,n) and m = m′d, n = n′d. Suppose that there exists a
sequence (ak) of length greater than or equal to l = m+ n− d satisfying
the required conditions. Then the m′ + n′ numbers s0, sd, . . . , s(m′+n′−1)d

satisfy n′ inequalities sk+m < sk and m′ inequalities sk < sk+n. Moreover,
each term skd appears twice in these inequalities: once on the left-hand
and once on the right-hand side. It follows that there exists a ring of
inequalities si1 < si2 < · · · < sik

< si1 , giving a contradiction.
On the other hand, suppose that such a ring of inequalities can be made
also for l = m + n − d − 1, say si1 < si2 < · · · < sik

< si1 . If there
are p inequalities of the form ak+m < ak and q inequalities of the form
ak+n > ak in the ring, then qn = rm, which implies m′ | q, n′ | p and thus
k = p + q ≥ m′ + n′. But since all i1, i2, . . . , ik are congruent modulo d,
we have k ≤ m′ + n′ − 1, a contradiction. Hence there exists a sequence
of length m+ n− d− 1 with the required property.

58. The following inequality (Finsler and Hadwiger, 1938) is sharper than the
one we have to prove:

2ab+ 2bc+ 2ca− a2 − b2 − c2 ≥ 4S
√

3. (1)

First proof. Let us set 2x = b + c − a, 2y = c + a − b, 2z = a + b − c.
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Then x, y, z > 0 and the inequality (1) becomes

y2z2 + z2x2 + x2y2 ≥ xyz(x+ y + z),

which is equivalent to the obvious inequality (xy − yz)2 + (yz − zx)2 +
(zx− xy)2 ≥ 0.

Second proof. Using the known relations for a triangle

a2 + b2 + c2 = 2s2 − 2r2 − 8rR,
ab+ bc+ ca = s2 + r2 + 4rR,

S = rs,

where r and R are the radii of the incircle and the circumcircle, s the
semiperimeter and S the area, we can transform (1) into

s
√

3 ≤ 4R+ r.

The last inequality is a consequence of the inequalities 2r ≤ R and s2 ≤
4R2 + 4Rr + 3r2, where the last one follows from the equality HI2 =
4R2 + 4Rr+ 3r2 − s2 (H and I being the orthocenter and the incenter of
the triangle).

59. Let us consider the set R of pairs of coordinates of the points from E
reduced modulo 3. If some element of R occurs thrice, then the corre-
sponding points are vertices of a triangle with integer barycenter. Also,
no three elements from E can have distinct x-coordinates and distinct y-
coordinates. By an easy discussion we can conclude that the set R contains
at most four elements. Hence |E| ≤ 8.
An example of a set E consisting of 8 points that satisfies the required
condition is

E = {(0, 0), (1, 0), (0, 1), (1, 1), (3, 6), (4, 6), (3, 7), (4, 7)}.

60. By Lagrange’s interpolation formula we have

F (x) =

n∑
j=0

F (xj)

∏
i	=j(x − xj)∏
i	=j(xi − xj)

.

Since the leading coefficient in F (x) is 1, it follows that

1 =

n∑
j=0

F (xj)∏
i	=j(xi − xj)

.

Since ∣∣∣∣∣∣
∏
i	=j

(xi − xj)

∣∣∣∣∣∣ =

j−1∏
i=0

|xi − xj |
n∏

i=j+1

|xi − xj | ≥ j!(n− j)!,
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we have

1 ≤
n∑

j=0

|F (xj)|∣∣∣∏i	=j(xi − xj)
∣∣∣ ≤ 1

n!

n∑
j=0

(
n

j

)
|F (xj)| ≤

2n

n!
max |F (xj)|.

Now the required inequality follows immediately.
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4.20 Solutions to the Shortlisted Problems of IMO 1978

1. There exists an Ms that contains at least 2n/k = 2(k2 + 1) elements. It
follows that Ms contains either at least k2 + 1 even numbers or at least
k2 +1 odd numbers. In the former case, consider the predecessors of those

k2 +1 numbers: among them, at least k2+1
k+1 > k, i.e., at least k+1, belong

to the same subset, say Mt. Then we choose s, t. The latter case is similar.

Second solution. For all i, j ∈ {1, 2, . . . , k}, consider the set Nij = {r |
2r ∈ Mi, 2r − 1 ∈ Mj}. Then {Nij | i, j} is a partition of {1, 2, . . . , n}
into k2 subsets. For n ≥ k3 +1 one of these subsets contains at least k+1
elements, and the statement follows.

Remark. The statement is not necessarily true when n = k3.

2. Consider the transformation φ of the plane defined as the homothety H
with center B and coefficient 2 followed by the rotation R about the center
O through an angle of 60◦. Being direct, this mapping

must be a rotational homothety. We
also see that H maps S into the
point symmetric to S with respect
to OA, and R takes it back to S.
Hence S is a fixed point, and is
consequently also the center of φ.
Therefore φ is the rotational homo-
thety about S with the angle 60◦

O

A

B

S

A′

B′

M

N

and coefficient 2. (In fact, this could also be seen from the fact that φ
preserves angles of triangles and maps the segment SR onto SB, where
R is the midpoint of AB.)
Since φ(M) = B′, we conclude that ∠MSB′ = 60◦ and SB′/SM = 2.
Similarly, ∠NSA′ = 60◦ and SA′/SN = 2, so triangles MSB′ and NSA′

are indeed similar.

Second solution. Probably the simplest way here is using complex num-
bers. Put the origin at O and complex numbers a, a′ at points A,A′, and
denote the primitive sixth root of 1 by ω. Then the numbers at B, B′,
S and N are ωa, ωa′, (a + ωa)/3, and (a + ωa′)/2 respectively. Now it
is easy to verify that (n − s) = ω(a′ − s)/2, i.e., that ∠NSA′ = 60◦ and
SA′/SN = 2.

3. What we need are m,n for which 1978m(1978n−m − 1) is divisible by
1000 = 8 ·125. Since 1978n−m −1 is odd, it follows that 1978m is divisible
by 8, so m ≥ 3.
Also, 1978n−m − 1 is divisible by 125, i.e., 1978n−m ≡ 1 (mod 125).
Note that 1978 ≡ −2 (mod 5), and consequently also −2n−m ≡ 1. Hence
4 | n−m = 4k, k ≥ 1. It remains to find the least k such that 19784k ≡ 1
(mod 125). Since 19784 ≡ (−22)4 = 4842 ≡ (−16)2 = 256 ≡ 6, we reduce
it to 6k ≡ 1. Now 6k = (1 + 5)k ≡ 1 + 5k + 25

(
k
2

)
(mod 125), which
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reduces to 125 | 5k(5k− 3). But 5k− 3 is not divisible by 5, and so 25 | k.
Therefore 100 | n−m, and the desired values are m = 3, n = 103.

4. Let γ, ϕ be the angles of T1 and T2 opposite to c and w respectively. By
the cosine theorem, the inequality is transformed into

a2(2v2 − 2uv cosϕ) + b2(2u2 − 2uv cosϕ)

+2(a2 + b2 − 2ab cosγ)uv cosϕ ≥ 4abuv sinγ sinϕ.

This is equivalent to 2(a2v2 + b2u2) − 4abuv(cosγ cosϕ+ sin γ sinϕ) ≥ 0,
i.e., to

2(av − bu)2 + 4abuv(1 − cos(γ − ϕ)) ≥ 0,

which is clearly satisfied. Equality holds if and only if γ = ϕ and a/b =
u/v, i.e., when the triangles are similar, a corresponding to u and b to v.

5. We first explicitly describe the elements of the sets M1,M2.
x �∈ M1 is equivalent to x = a+(a+1)+ · · ·+(a+n−1) = n(2a+n−1)/2

for some natural numbers n, a, n ≥ 2. Among n and 2a+ n − 1, one
is odd and the other even, and both are greater than 1; so x has an
odd factor ≥ 3. On the other hand, for every x with an odd divisor
p > 3 it is easy to see that there exist corresponding a, n. Therefore
M1 = {2k | k = 0, 1, 2, . . .}.

x �∈ M2 is equivalent to x = a+(a+2)+· · ·+(a+2(n−1)) = n(a+n−1),
where n ≥ 2, i.e. to x being composite. Therefore M2 = {1} ∪ {p |
p = prime}.

x �∈ M3 is equivalent to x = a + (a + 3) + · · · + (a + 3(n − 1)) =
n(2a+ 3(n− 1))/2.

It remains to show that every c ∈ M3 can be written as c = 2kp with
p prime. Suppose the opposite, that c = 2kpq, where p, q are odd and
q ≥ p ≥ 3. Then there exist positive integers a, n (n ≥ 2) such that
c = n(2a + 3(n − 1))/2 and hence c �∈ M3. Indeed, if k = 0, then n = 2
and 2a + 3 = pq work; otherwise, setting n = p one obtains a = 2kq −
3(p− 1)/2 ≥ 2q − 3(p− 1)/2 ≥ (p+ 3)/2 > 1.

6. For fixed n and the set {ϕ(1), . . . , ϕ(n)}, there are finitely many possi-
bilities for mapping ϕ to {1, . . . , n}. Suppose ϕ is the one among these
for which

∑n
k=1 ϕ(k)/k2 is minimal. If i < j and ϕ(i) < ϕ(j) for some

i, j ∈ {1, . . . , n}, define ψ as ψ(i) = ϕ(j), ψ(j) = ϕ(i), and ψ(k) = ϕ(k)
for all other k. Then∑ ϕ(k)

k2
−
∑ ψ(k)

k2
=

(
ϕ(i)

i2
+
ϕ(j)

j2

)
−
(
ϕ(i)

j2
+
ϕ(j)

i2

)
= (i− j)(ϕ(j) − ϕ(i))

i+ j

i2j2
> 0,

which contradicts the assumption. This shows that ϕ(1) < · · · < ϕ(n),
and consequently ϕ(k) ≥ k for all k. Hence
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n∑
k=1

ϕ(k)

k2
≥

n∑
k=1

k

k2
=

n∑
k=1

1

k
.

7. Let x = OA, y = OB, z = OC, α = ∠BOC, β = ∠COA, γ = ∠AOB. The
conditions yield the equation x + y +

√
x2 + y2 − 2xy cos γ = 2p, which

transforms to (2p − x − y)2 = x2 + y2 − 2xy cos γ, i.e. (p − x)(p − y) =
xy(1 − cos γ). Thus

p− x

x
· p− y

y
= 1 − cos γ,

and analogously p−y
y · p−z

z = 1 − cosα, p−z
z · p−x

x = 1 − cosβ. Setting

u = p−x
x , v = p−y

y , w = p−z
z , the above system becomes

uv = 1 − cos γ, vw = 1 − cosα, wu = 1 − cosβ.

This system has a unique solution in positive real numbers u, v, w:

u =
√

(1−cos β)(1−cosγ)
1−cos α , etc. Finally, the values of x, y, z are uniquely de-

termined from u, v, w.

Remark. It is not necessary that the three lines be in the same plane.
Also, there could be any odd number of lines instead of three.

8. Take the subset {ai} = {1, 7, 11, 13, 17, 19, 23, 29, . . . , 30m− 1} of S con-
taining all the elements of S that are not multiples of 3. There are 8m
such elements. Every element in S can be uniquely expressed as 3tai for
some i and t ≥ 0. In a subset of S with 8m+ 1 elements, two of them will
have the same ai, hance one will divide the other.
On the other hand, for each i = 1, 2, . . . , 8m choose t ≥ 0 such that 10m <
bi = 3tai < 30m. Then there are 8m bi’s in the interval (10m, 30m), and
the quotient of any two of them is less than 3, so none of them can divide
any other. Thus the answer is 8m.

9. Since the nth missing number (gap) is f(f(n))+1 and f(f(n)) is a member
of the sequence, there are exactly n−1 gaps less than f(f(n)). This leads
to

f(f(n)) = f(n) + n− 1. (1)

Since 1 is not a gap, we have f(1) = 1. The first gap is f(f(1)) + 1 = 2.
Two consecutive integers cannot both be gaps (the predecessor of a gap
is of the form f(f(m))). Now we deduce f(2) = 3; a repeated application
of the formula above gives f(3) = 3 + 1 = 4, f(4) = 4 + 2 = 6, f(6) = 9,
f(9) = 14, f(14) = 22, f(22) = 35, f(35) = 56, f(56) = 90, f(90) = 145,
f(145) = 234, f(234) = 378.
Also, f(f(35))+1 = 91 is a gap, so f(57) = 92. Then by (1), f(92) = 148,
f(148) = 239, f(239) = 386. Finally, here f(f(148)) + 1 = 387 is a gap,
so f(240) = 388.
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Second solution. As above, we arrive at formula (1). Then by simple
induction it follows that f(Fn +1) = Fn+1 + 1, where Fk is the Fibonacci
sequence (F1 = F2 = 1).
We now prove by induction (on n) that f(Fn + x) = Fn+1 + f(x) for all
x with 1 ≤ x ≤ Fn−1. This is trivially true for n = 0, 1. Supposing that it
holds for n− 1, we shall prove it for n:
(i) If x = f(y) for some y, then by the inductive assumption and (1)

f(Fn + x) = f(Fn + f(y)) = f(f(Fn−1 + y))

= Fn + f(y) + Fn−1 + y − 1 = Fn+1 + f(x).

(ii) If x = f(f(y))+1 is a gap, then f(Fn +x−1)+1 = Fn+1+f(x−1)+1
is a gap also:

Fn+1 + f(x) + 1 = Fn+1 + f(f(f(y))) + 1

= f(Fn + f(f(y))) + 1 = f(f(Fn−1 + f(y))) + 1.

It follows that f(Fn + x) = Fn+1 + f(x− 1) + 2 = Fn+1 + f(x).
Now, since we know that each positive integer x is expressible as x =
Fk1 + Fk2 + · · · + Fkr , where 0 < kr �= 2, ki ≥ ki+1 + 2, we obtain
f(x) = Fk1+1 + Fk2+1 + · · · + Fkr+1. Particularly, 240 = 233 + 5 + 2, so
f(240) = 377 + 8 + 3 = 388.

Remark. It can be shown that f(x) = [αx], where α = (1 +
√

5)/2.

10. Assume the opposite. One of the countries, say A, contains at least 330
members a1, a2, . . . , a330 of the society ( 6 · 329 = 1974). Consider the
differences a330 −ai, = 1, 2, . . . , 329: the members with these numbers are
not in A, so at least 66 of them, a330 − ai1 , . . . , a330 − ai66 , belong to the
same country, say B. Then the differences (ai66 − a330) − (aij − a330) =
ai66 − aij , j = 1, 2, . . . , 65, are neither in A nor in B. Continuing this
procedure, we find that 17 of these differences are in the same country, say
C, then 6 among 16 differences of themselves in a country D, and 3 among
5 differences of themselves in E; finally, one among two differences of these
3 differences belong to country F , so that the difference of themselves
cannot be in any country. This is a contradiction.

Remark. The following stronger ([6!e] = 1957) statement can be proved
in the same way.
Schurr’s lemma. If n is a natural number and e the logarithm base, then

for every partition of the set {1, 2, . . . , [en!]} into n subsets one of
these subsets contains some two elements and their difference.

11. Set F (x) = f1(x)f2(x) · · · fn(x): we must prove concavity of F 1/n. By the
assumption,
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F (θx+ (1 − θ)y) ≥
n∏

i=1

[θfi(x) + (1 − θ)f(y)]

=

n∑
k=0

θk(1 − θ)n−k
∑

fi1(x) . . . fik
(x)fik+1

(y)fin(y),

where the second sum goes through all
(
n
k

)
k-subsets {i1, . . . , ik} of

{1, . . . , n}. The inequality between the arithmetic and geometric means
now gives us∑

fi1(x)fi2 (x) · · · fik
(x)fik+1

(y)fin(y) ≥
(
n

k

)
F (x)k/nF (y)(n−k)/n.

Inserting this in the above inequality and using the binomial formula, we
finally obtain

F (θx+ (1 − θ)y) ≥
n∑

k=0

θk(1 − θ)n−k

(
n

k

)
F (x)k/nF (y)(n−k)/n

=
(
θF (x)1/n + (1 − θ)F (y)1/n

)n

,

which proves the assertion.

12. Let O be the center of the smaller circle, T its contact point with the
circumcircle of ABC, and J the midpoint of segment BC. The figure is
symmetric with respect to the line through A,O, J, T .
A homothety centered at A taking T into J will take the smaller circle
into the incircle of ABC, hence will take O into the incenter I. On the
other hand, ∠ABT = ∠ACT = 90◦ implies that the quadrilateralsABTC
and APOQ are similar. Hence the above homothety also maps O to the
midpoint of PQ. This finishes the proof.

Remark. The assertion is true for a nonisosceles triangle ABC as well,
and this (more difficult) case is a matter of SL93-3.

13. Lemma. If MNPQ is a rectangle and O any point in space, then OM2 +
OP 2 = ON2 +OQ2.

Proof. Let O1 be the projection of O onto MNPQ, and m,n, p, q de-
note the distances of O1 from MN,NP, PQ,QM , respectively. Then
OM2 = OO2

1 +q2+m2, ON2 = OO2
1 +m2+n2, OP 2 = OO2

1 +n2+p2,
OQ2 = OO2

1 + p2 + q2, and the lemma follows immediately.
Now we return to the problem. Let O be the center of the given sphere
S, and X the point opposite P in the face of the parallelepiped through
P,A,B. By the lemma, we have OP 2 + OQ2 = OC2 + OX2 and OP 2 +
OX2 = OA2 + OB2. Hence 2OP 2 + OQ2 = OA2 + OB2 + OC2 = 3R2,
i.e. OQ =

√
3R2 −OP 2 > R.

We claim that the locus of Q is the whole sphere (O,
√

3R2 − OP 2).
Choose any point Q on this sphere. Since OQ > R > OP , the sphere
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with diameter PQ intersects S on a circle. Let C be an arbitrary point
on this circle, and X the point opposite C in the rectangle PCQX . By
the lemma, OP 2 +OQ2 = OC2 +OX2, hence OX2 = 2R2 −OP 2 > R2.
The plane passing through P and perpendicular to PC intersects S in
a circle γ; both P,X belong to this plane, P being inside and X out-
side the circle, so that the circle with diameter PX intersects γ at some
point B. Finally, we choose A to be the point opposite B in the rectangle
PBXA: we deduce that OA2 + OB2 = OP 2 + OX2, and consequently
A ∈ S. By the construction, there is a rectangular parallelepiped through
P,A,B,C,X,Q.

14. We label the cells of the cube by (a1, a2, a3), ai ∈ {1, 2, . . . , 2n + 1}, in
a natural way: for example, as Cartesian coordinates of centers of the
cells ((1, 1, 1) is one corner, etc.). Notice that there should be (2n+ 1)3 −
2n(2n + 1) · 2(n + 1) = 2n + 1 void cells, i.e., those not covered by any
piece of soap.
n = 1. In this case, six pieces of soap 1×2×2 can be placed on the following

positions: [(1, 1, 1), (2, 2, 1)], [(3, 1, 1), (3, 2, 2)], [(2, 3, 1), (3, 3, 2)] and
the symmetric ones with respect to the center of the box. (Here [A,B]
denotes the rectangle with opposite corners at A,B.)

n is even. Each of the 2n+ 1 planes Pk = {(a1, a2, k) | ai = 1, . . . , 2n+ 1}
can receive 2n pieces of soap: In fact, Pk can be partitioned into four
n × (n + 1) rectangles at the corners and the central cell, while an
n× (n+ 1) rectangle can receive n/2 pieces of soap.

n is odd, n > 1. Let us color a cell (a1, a2, a3) blue, red, or yellow if exactly
three, two or one ai respectively is equal to n + 1. Thus there are 1
blue, 6n red, and 12n2 yellow cells. We notice that each piece of soap
must contain at least one colored cell (because 2(n+1) > 2n+1). Also,
every piece of soap contains an even number (actually, 1 · 2, 1(n+ 1),
or 2(n + 1)) of cells in Pk. On the other hand, 2n + 1 cells are void,
i.e., one in each plane.
There are several cases for a piece of soap S:
(i) S consists of 1 blue, n+ 1 red and n yellow cells;
(ii) S consists of 2 red and 2n yellow cells (and no blue cells);
(iii) S contains 1 red cell, n+1 yellow cells, and the are rest uncolored;
(iv) S contains 2 yellow cells and no blue or red ones.
From the descriptions of the last three cases, we can deduce that if S
contains r red cells and no blue, then it contains exactly 2 + (n− 1)r
red ones. (∗)
Now, let B1, . . . , Bk be all boxes put in the cube, with a possible
exception for the one covering the blue cell: thus k = 2n(2n + 1) if
the blue cell is void, or k = 2n(2n + 1) − 1 otherwise. Let ri and yi

respectively be the numbers of red and yellow cells inside Bi. By (∗)
we have y1 + · · · + yk = 2k + (n − 1)(r1 + · · · + rk). If the blue cell
is void, then r1 + · · · + rk = 6n and consequently y1 + · · · + yk =
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4n(2n+1)+6n(n−1) = 14n2−2n, which is impossible because there
are only 12n2 < 14n2−2n yellow cells. Otherwise, r1+· · ·+rk ≥ 5n−2
(because n + 1 red cells are covered by the box containing the blue
cell, and one can be void) and consequently y1 + · · · + yk ≥ 4n(2n+
1)−2+(n−1)(5n−2) = 13n2−3n; since there are n more yellow cells
in the box containing the blue one, this counts for 13n2 − 2n > 12n2

(n ≥ 3), again impossible.

Remark. The following solution of the case n odd is simpler, but does
not work for n = 3. For k = 1, 2, 3, let mk be the number of pieces whose
long sides are perpendicular to the plane πk(ak = n + 1). Each of these
mk pieces covers exactly 2 cells of πk, while any other piece covers n+ 1,
2(n+1), or none. It follows that 4n2 +4n− 2mk is divisible by n+1, and
so is 2mk. This further implies that 2m1 + 2m2 + 2m3 = 4n(2n+ 1) is a
multiple of n + 1, which is impossible for each odd n except n = 1 and
n = 3.

15. Let Cn = {a1, . . . , an} (C0 = ∅) and Pn = {f(B) | B ⊆ Cn}. We claim
that Pn contains at least n+1 distinct elements. First note that P0 = {0}
contains one element. Suppose that Pn+1 = Pn for some n. Since Pn+1 =
{an+1 + r | r ∈ Pn}, it follows that for each r ∈ Pn, also r + bn ∈ Pn.
Then obviously 0 ∈ Pn implies kbn ∈ Pn for all k; therefore Pn = P
has at least p ≥ n + 1 elements. Otherwise, if Pn+1 ⊃ Pn for all n, then
|Pn+1| ≥ |Pn| + 1 and hence |Pn| ≥ n + 1, as claimed. Consequently,
|Pp−1| ≥ p . (All the operations here are performed modulo p.)

16. Clearly |x| ≤ 1. As x runs over [−1, 1], the vector u = (ax, a
√

1 − x2)
runs over all vectors of length a in the plane having a nonnegative vertical
component. Putting v = (by, b

√
1 − y2), w = (cz, c

√
1 − z2), the system

becomes u+v = w, with vectors u, v, w of lengths a, b, c respectively in the
upper half-plane. Then a, b, c are sides of a (possibly degenerate) triangle;
i.e, |a− b| ≤ c ≤ a+ b is a necessary condition.
Conversely, if a, b, c satisfy this condition, one constructs a triangle OMN

with OM = a, ON = b, MN = c. If the vectors
−−→
OM,

−−→
ON have a positive

nonnegative component, then so does their sum. For every such triangle,

putting u =
−−→
OM , v =

−−→
ON , and w =

−−→
OM+

−−→
ON gives a solution, and every

solution is given by one such triangle. This triangle is uniquely determined
up to congruence: α = ∠MON = ∠(u, v) and β = ∠(u,w).
Therefore, all solutions of the system are

x = cos t, y = cos(t+ α), z = y = cos(t+ β), t ∈ [0, π − α] or

x = cos t, y = cos(t− α), z = y = cos(t− β), t ∈ [α, π].

17. Let z0 ≥ 1 be a positive integer. Supposing that the statement is true for
all triples (x, y, z) with z < z0, we shall prove that it is true for z = z0
too.
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If z0 = 1, verification is trivial, while x0 = y0 is obviously impossible. So
let there be given a triple (x0, y0, z0) with z0 > 1 and x0 < y0, and define
another triple (x, y, z) by

x = z0, y = x0 + y0 − 2z0, and z = z0 − x0.

Then x, y, z are positive integers. This is clear for x, z, while y = x0 +y0−
2z0 ≥ 2(

√
x0y0 − z0) > 2(z0 − z0) = 0. Moreover, xy − z2 = x0(x0 + y0 −

2z0) − (z0 − x0)
2 = x0y0 − z2

0 = 1 and z < z0, so that by the assumption,
the statement holds for x, y, z. Thus for some nonnegative integers a, b, c, d
we have

x = a2 + b2, y = c2 + d2, z = ac+ bd.

But then we obtain representations of this sort for x0, y0, z0 too:

x0 = a2 + b2, y0 = (a+ c)2 + (b+ d)2, z0 = a(a+ c) + b(b+ d).

For the second part of the problem, we note that for z = (2q)!,

z2 = (2q)!(2q)(2q − 1) · · · 1 ≡ (2q)! · (−(2q + 1))(−(2q + 2)) · · · (−4q)

= (−1)2q(4q)! ≡ −1 (mod p),

by Wilson’s theorem. Hence p | z2 + 1 = py for some positive integer
y > 0. Now it follows from the first part that there exist integers a, b such
that x = p = a2 + b2.

Second solution. Another possibility is using arithmetic of Gaussian in-
tegers.
Lemma. Suppose m,n, p, q are elements of Z or any other unique factor-

ization domain, with mn = pq. then there exist elements a, b, c, d such
that m = ab, n = cd, p = ac, q = bd.

Proof is direct, for example using factorization of a, b, c, d into primes.
We now apply this lemma to the Gaussian integers in our case (because
Z[i] has the unique factorization property), having in mind that xy =
z2 + 1 = (z + i)(z − i). We obtain

(1) x = ab, (2) y = cd, (3) z + i = ac, (4) z − i = bd

for some a, b, c, d ∈ Z[i]. Let a = a1+a2i, etc. By (3) and (4), gcd(a1, a2) =
· · · = gcd(d1, d2). Then (1) and (2) give us b = a, c = d. The statement
follows at once: x = ab = aa = a2

1 + a2
2, y = dd = d2

1 + d2
2 and z + i =

(a1d1 + a2d2) + ı(a2d1 − a1d2) ⇒ z = a1d1 + a2d2.
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4.21 Solutions to the Shortlisted Problems of IMO 1979

1. We prove more generally, by induction on n, that any 2n-gon with equal
edges and opposite edges parallel to each other can be dissected. For
n = 2 the only possible such 2n-gon is a single lozenge, so our theo-
rem holds in this case. We will now show that it holds for general n.
Assume by induction that it holds for n − 1. Let A1A2 . . . A2n be an
arbitrary 2n-gon with equal edges and opposite edges parallel to each
other. Then we can construct points Bi for i = 3, 4, . . . , n such that−−−→
AiBi =

−−−→
A2A1 =

−−−−−−−→
An+1An+2. We set B2 = A2n+1 = A1 and Bn+1 = An+2.

It follows that AiBiBi+1Ai+1 for i = 2, 3, 4, . . . , n are all lozenges. It
also follows that BiBi+1 for i = 2, 3, 4, . . . , n are equal to the edges of
A1A2 . . . A2n and parallel to AiAi+1 and hence to An+iAn+i+1. Thus
B2 . . . Bn+1An+3 . . . A2n is a 2(n− 1)-gon with equal edges and opposite
sides parallel and hence, by the induction hypothesis, can be dissected
into lozenges. We have thus provided a dissection for A1A2 . . . A2n. This
completes the proof.

2. The only way to arrive at the latter alternative is to draw four different
socks in the first drawing or to draw only one pair in the first drawing
and then draw two different socks in the last drawing. We will call these
probabilities respectively p1, p2, p3. We calculate them as follows:

p1 =

(
5
4

)
24(

10
4

) =
8

21
, p2 =

5
(
4
2

)
22(

10
4

) =
4

7
, p3 =

4(
6
2

) =
4

15
.

We finally calculate the desired probability: P = p1 + p2p3 = 8
15 .

3. An obvious solution is f(x) = 0. We now look for nonzero solutions.
We note that plugging in x = 0 we get f(0)2 = f(0); hence f(0) = 0
or f(0) = 1. If f(0) = 0, then f is of the form f(x) = xkg(x), where
g(0) �= 0. Plugging this formula into f(x)f(2x2) = f(2x3 + x) we get
2kx2kg(x)g(2x2) = (2x2 + 1)kg(2x3 + x). Plugging in x = 0 gives us
g(0) = 0, which is a contradiction. Hence f(0) = 1.
For an arbitrary root α of the polynomial f , 2α3 + α must also be a
root. Let α be a root of the largest modulus. If |α| > 1 then |2α3 + α| >
2|α|3 − |α| > |α|, which is impossible. It follows that |α| ≤ 1 and hence
all roots of f have modules less than or equal to 1. But the product of
all roots of f is |f(0)| = 1, which implies that all the roots have modulus
1. Consequently, for a root α it holds that |α| = |2α3 − α| = 1. This is
possible only if α = ±ı. Since the coefficients of f are real it follows that
f must be of the form f(x) = (x2 + 1)k where k ∈ N0. These polynomials
satisfy the original formula. Hence, the solutions for f are f(x) = 0 and
f(x) = (x2 + 1)k, k ∈ N0.

4. Let us prove first that the edges A1A2, A2A3, . . . , A5A1 are of the same
color. Assume the contrary, and let w.l.o.g. A1A2 be red and A2A3 be
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green. Three of the segmentsA2Bl (l = 1, 2, 3, 4, 5), sayA2Bi, A2Bj , A2Bk,
have to be of the same color, let it w.l.o.g. be red. Then A1Bi, A1Bj , A1Bk

must be green. At least one of the sides of triangle BiBjBk, say BiBj ,
must be an edge of the prism. Then looking at the triangles A1BiBj and
A2BiBj we deduce that BiBj can be neither green nor red, which is a
contradiction. Hence all five edges of the pentagon A1A2A3A4A5 have the
same color. Similarly, all five edges of B1B2B3B4B5 have the same color.
We now show that the two colors are the same. Assume otherwise, i.e.,
that w.l.o.g. the A edges are painted red and the B edges green. Let
us call segments of the form AiBj diagonal (i and j may be equal). We
now count the diagonal segments by grouping the red segments based
on their A point, and the green segments based on their B point. As
above, the assumption that three of AiBj for fixed i are red leads to a
contradiction. Hence at most two diagonal segments out of each Ai may
be red, which counts up to at most 10 red segments. Similarly, at most
10 diagonal segments can be green. But then we can paint at most 20
diagonal segments out of 25, which is a contradiction. Hence all edges in
the pentagons A1A2A3A4A5 and B1B2B3B4B5 have the same color.

5. Let A = {x | (x, y) ∈ M} and B = {y | (x, y) ∈ M . Then A and B are
disjoint and hence

|M | ≤ |A| · |B| ≤ (|A| + |B|)2
4

≤
[
n2

4

]
.

These cardinalities can be achieved for M = {(a, b) | a = 1, 2, . . . , [n/2],
b = [n/2] + 1, . . . , n} .

6. Setting q = x2 + x− p, the given equation becomes√
(x + 1)2 − 2q +

√
(x+ 2)2 − q =

√
(2x+ 3)2 − 3q. (1)

Taking squares of both sides we get 2
√

((x+ 1)2 − 2q)((x+ 2)2 − q) =
2(x+ 1)(x+ 2). Taking squares again we get

q
(
2q − 2(x+ 2)2 − (x+ 1)2

)
= 0.

If 2q = 2(x + 2)2 + (x + 1)2, at least one of the expressions under the
three square roots in (1) is negative, and in that case the square root is
not well-defined. Thus, we must have q = 0.
Now (1) is equivalent to |x + 1| + |x + 2| = |2x + 3|, which holds if and
only if x �∈ (−2,−1). The number of real solutions x of q = x2 +x− p = 0
which are not in the interval (−2,−1) is zero if p < −1/4, one if p = −1/4
or 0 < p < 2, and two otherwise.
Hence, the answer is −1/4 < p ≤ 0 or p ≥ 2.

7. We denote the sum mentioned above by S. We have the following equali-
ties:
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S = 1 − 1

2
+

1

3
− 1

4
+ · · · − 1

1318
+

1

1319

= 1 +
1

2
+ · · · + 1

1319
− 2

(
1

2
+

1

4
+ · · · + 1

1318

)
= 1 +

1

2
+ · · · + 1

1319
−
(

1 +
1

2
+ · · · + 1

659

)
=

1

660
+

1

661
+ · · · + 1

1319

=
989∑

i=660

1

i
+

1

1979 − i
=

989∑
i=660

1979

i · (1979 − i)

Since no term in the sum contains a denominator divisible by 1979 (1979
is a prime number), it follows that when S is represented as p/q the
numerator p will have to be divisible by 1979.

8. By the definition of f , it holds that f(0.b1b2 . . . ) = 3b1/4+f(0.b2b3 . . . )/4
= 0.b1b1 + f(0.b2b3 . . . )/4. Continuing this argument we obtain

f(0.b1b2b3 . . . ) = 0.b1b1 . . . bnbn +
1

22n
f(0.bn+1bn+2 . . . ). (1)

The binary representation of every rational number is eventually periodic.
Let us first determine f(x) for a rational x with the periodic representation
x = 0.b1b2 . . . bn. Using (1) we obtain f(x) = 0.b1b1 . . . bnbn + f(x)/22n,
and hence f(x) = 2n

2n−10.b1b1 . . . bnbn = 0.b1b1 . . . bnbn.

Now let x = 0.a1a2 . . . akb1b2 . . . bn be an arbitrary rational number. Then
it follows from (1) that

f(x) = 0.a1a1 . . . akak +
1

22n
f(0.b1b2 . . . bn) = 0.a1a1 . . . akakb1b1 . . . bnbn.

Hence f(0.b1b2 . . . ) = 0.b1b1b2b2 . . . for every rational number 0.b1b2 . . . .

9. Let us number the vertices, starting from S and moving clockwise. In that
case S = 1 and F = 5. After an odd number of moves to a neighboring
point we can be only on an even point, and hence it follows that a2n−1 = 0
for all n ∈ N. Let us define respectively zn and wn as the number of paths
from S to S in 2n moves and the number of paths from S to points 3 and
7 in 2n moves. We easily derive the following recurrence relations:

a2n+2 = wn, wn+1 = 2wn + 2zn, zn+1 = 2zn + wn, n = 0, 1, 2, . . . .

By subtracting the second equation from the third we get zn+1 = wn+1 −
wn. By plugging this equation into the formula for wn+2 we get wn+2 −
4wn+1 +2wn = 0 . The roots of the characteristic equation r2 −4r+2 = 0
are x = 2 +

√
2 and y = 2 −

√
2. From the conditions w0 = 0 and w1 = 2

we easily obtain a2n = wn−1 = (xn−1 − yn−1)/
√

2 .
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10. In the cases a =
−→
0 , b =

−→
0 , and a ‖ b the inequality is trivial. Otherwise,

let us consider a triangle ABC such that
−−→
CB = a and

−→
CA = b. From

this point on we shall refer to α, β, γ as angles of ABC. Since |a × b| =
|a||b| sin γ, our inequality reduces to |a||b| sin3 γ ≤ 3

√
3|c|2/8, which is

further reduced to

sinα sinβ sin γ ≤ 3
√

3

8

using the sine law. The last inequality follows immediately from Jensen’s
inequality applied to the function f(x) = ln sinx, which is concave for
0 < x < π because f ′(x) = cotx is strictly decreasing.

11. Let us define yi = x2
i . We thus have y1 + y2 + · · ·+ yn = 1, yi ≥ 1/n2, and

P =
√
y1y2 . . . yn.

The upper bound is obtained immediately from the AM–GM inequality:
P ≤ 1/nn/2, where equality holds when xi =

√
yi = 1/

√
n.

For the lower bound, let us assume w.l.o.g. that y1 ≥ y2 ≥ · · · ≥ yn.
We note that if a ≥ b ≥ 1/n2 and s = a + b > 2/n2 is fixed, then
ab = (s2 − (a− b)2)/4 is minimized when |a− b| is maximized, i.e., when
b = 1/n2. Hence y1y2 · · · yn is minimal when y2 = y3 = · · · = yn = 1/n2.
Then y1 = (n2 − n+ 1)/n2 and therefore Pmin =

√
n2 − n+ 1/nn.

12. The first criterion ensures that all sets in an S-family are distinct. Since
the number of different families of subsets is finite, h has to exist. In
fact, we will show that h = 11. First of all, if there exists X ∈ F such
that |X | ≥ 5, then by (3) there exists Y ∈ F such that X ∪ Y = R. In
this case |F | is at most 2. Similarly, for |X | = 4, for the remaining two
elements either there exists a subset in F that contains both, in which case
we obtain the previous case, or there exist different Y and Z containing
them, in which case X ∪ Y ∪ Z = R, which must not happen. Hence we
can assume |X | ≤ 4 for all X ∈ F .
Assume |X | = 1 for some X . In that case other sets must not contain that
subset and hence must be contained in the remaining 5-element subset.
These elements must not be subsets of each other. From elementary com-
binatorics, the largest number of subsets of a 5-element set of which none
is subset of another is

(
5
2

)
= 10. This occurs when we take all 2-element

subsets. These subsets also satisfy (2). Hence |F |max = 11 in this case.
Otherwise, let us assume |X | = 3 for some X . Let us define the following
families of subsets: G = {Z = Y \X | Y ∈ F} and H = {Z = Y ∩X | Y ∈
F}. Then no two sets in G must complement each other in R \ X , and
G must cover this set. Hence G contains exactly the sets of each of the
remaining 3 elements. For each element of G no two sets in H of which
one is a subset of another may be paired with it. There can be only 3 such
subsets selected within a 3-element set X . Hence the number of remaining
sets is smaller than 3 · 3 = 9. Hence in this case |F |max = 10.
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In the remaining case all subsets have two elements. There are
(
6
2

)
= 15

of them. But for every three that complement each other one must be
discarded; hence the maximal number for F in this case is 2 · 15/3 = 10.
It follows that h = 11.

13. From elementary trigonometry we have sin 3t = 3 sin t − 4 sin3 t. Hence,
if we denote y = sin 20◦, we have

√
3/2 = sin 60◦ = 3y − 4y3. Obviously

0 < y < 1/2 = sin 30◦. The function f(x) = 3x− 4x3 is strictly increasing
on [0, 1/2) because f ′(x) = 3−12x2 > 0 for 0 ≤ x < 1/2. Now the desired
inequality 20

60 = 1
3 < sin 20◦ < 21

60 = 7
20 follows from

f

(
1

3

)
<

√
3

2
< f

(
7

20

)
,

which is directly verified.

14. Let us assume that a ∈ R \ {1} is such that there exist a and x such that
x = loga x, or equivalently f(x) := lnx/x = ln a. Then a is a value of the
function f(x) for x ∈ R+ \ {1}, and the converse also holds.
First we observe that f(x) tends to −∞ as x → 0 and f(x) tends to 0 as
x → 1. Since f(x) > 0 for x > 1, the function f(x) takes its maximum at
a point x for which f ′(x) = (1 − lnx)/x2 = 0. Hence

max f(x) = f(e) = e1/e.

It follows that the set of values of f(x) for x ∈ R+ is the interval
(−∞, e1/e), and consequently the desired set of bases a of logarithms is
(0, 1) ∪ (1, e1/e].

15. We note that

5∑
i=1

i(a−i2)2xi = a2
5∑

i=1

ixi−2a
5∑

i=1

i3xi+
5∑

i=1

i5xi = a2 ·a−2a·a2+a3 = 0.

Since the terms in the sum on the left are all nonnegative, it follows that
all the terms have to be 0. Thus, either xi = 0 for all i, in which case a = 0,
or a = j2 for some j and xi = 0 for i �= j. In this case, xj = a/j = j.
Hence, the only possible values of a are {0, 1, 4, 9, 16, 25}.

16. Obviously, no two elements of F can be complements of each other. If one
of the sets has one element, then the conclusion is trivial. If there exist two
different 2-element sets, then they must contain a common element, which
in turn must then be contained in all other sets. Thus we can assume that
there exists at most one 2-element subset of K in F . Since there can be at
most 6 subsets of more than 3 elements of a 5-element set, it follows that
at least 9 out of 10 possible 3-element subsets of K belong to F . Let us
assume, without loss of generality, that all sets but {c, d, e} belong to F .
Then sets {a, b, c}, {a, d, e}, and {b, c, d} have no common element, which
is a contradiction. Hence it follows that all sets have a common element.
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17. Let K, L, and M be intersections of CQ and BR, AR and CP , and AQ
and BP , respectively. Let ∠X denote the angle of the hexagonKQMPLR
at the vertex X , where X is one of the six points. By an elementary
calculation of angles we get

∠K = 140◦, ∠L = 130◦,∠M = 150◦,∠P = 100◦,∠Q = 95◦,∠R = 105◦ .

Since ∠KBC = ∠KCB, it follows that K is on the symmetry line of
ABC through A. Analogous statements hold for L and M . Let KR and
KQ be points symmetric to K with respect to AR and AQ, respectively.
Since ∠AKQQ = ∠AKQKR = 70◦ and ∠AKRR = ∠AKRKQ = 70◦, it

follows that KR, R, Q, and KQ

are collinear. Hence ∠QRK =
2∠R − 180◦ and ∠RQK = 2∠Q −
180◦. We analogously get ∠PRL =
2∠R−180◦, ∠RPL = 2∠P −
180◦, ∠QPM = 2∠P − 180◦ and
∠PQM = 2∠Q− 180◦. From these
formulas we easily get ∠RPQ =
60◦, ∠RQP = 75◦, and ∠QRP =
45◦.

A B

C

KL

M
P Q

R

KQ

KR

15o 15o

20o

20o25o

25o

18. Let us write all ai in binary representation. For S ⊆ {1, 2, . . . ,m} let us
define b(S) as the number in whose binary representation ones appear in
exactly the slots where ones appear in all ai where i ⊆ S and don’t appear
in any other ai. Some b(S), including b(∅), will equal 0, and hence there
are fewer than 2m different positive b(S). We note that no two positive
b(S1) and b(S2) (S1 �= S2) have ones in the same decimal places. Hence
sums of distinct b(S)’s are distinct. Moreover

ai =
∑
i∈S

b(S)

and hence the positive b(S) are indeed the numbers b1, . . . , bn whose ex-
istence we had to prove.

19. Let us define ij for two positive integers i and j in the following way:
i1 = i and ij+1 = iij for all positive integers j. Thus we must find the
smallest m such that 100m > 3100. Since 1001 = 100 > 27 = 32, we
inductively have 100j = 10100j−1 > 3100j−1 > 33j = 3j+1 and hence
m ≤ 99. We now prove that m = 99 by proving 10098 < 3100. We note
that (1001)

2 = 104 < 274 = 312 < 327 = 33. We also note for d > 12
(which trivially holds for all d = 100i) that if c > d2, then we have

3c > 3d2

> 312d = (312)d > 10000d = (100d)2.

Hence from 33 > (1001)
2 it inductively follows that 3j > (100j−2)

2 >
100j−2 and hence that 10099 > 3100 > 10098. Hence m = 99.



440 4 Solutions

20. Let xk = max{x1, x2, . . . , xn}. Then xixi+1 ≤ xixk for i = 1, 2, . . . , k − 1
and xixi+1 ≤ xkxi+1 for i = k, . . . , n− 1. Summing up these inequalities
for i = 1, 2, . . . , n− 1 we obtain

n−1∑
i=1

≤ xk(x1 + · · · + xk−1 + xk+1 + · · · + xn) = xk(a− xk) ≤ a2

4
.

We note that the value a2/4 is attained for x1 = x2 = a/2 and x3 = · · · =
xn = 0. Hence a2/4 is the required maximum.

21. Let f(n) be the number of different ways n ∈ N can be expressed as x2+y3

where x, y ∈ {0, 1, . . . , 106}. Clearly f(n) = 0 for n < 0 or n > 1012+1018.
The first equation can be written as x2 + t3 = y2 + z3 = n, whereas the
second equation can be written as x2 + t3 = n+ 1, y2 + z3 = n. Hence we
obtain the following formulas for M and N :

M =

m∑
i=0

f(i)2, N =

m−1∑
i=0

f(i)f(i+ 1) .

Using the AM–GM inequality we get

N =

m−1∑
i=0

f(i)f(i+ 1)

≤
m−1∑
i=0

f(i)2 + f(i+ 1)2

2
=
f(0)2

2
+

m−1∑
i=1

f(i)2 +
f(m)2

2
< M .

The last inequality is strong, since f(0) = 1 > 0. This completes our
proof.

22. Let the centers of the two circles be denoted by O and O1 and their
respective radii by r and r1, and let
the positions of the points on the
circles at time t be denoted by M(t)
and N(t). Let Q be the point such
that OAO1Q is a parallelogram. We
will show that Q is the point P we
are looking for, i.e., that QM(t) =
QN(t) for all t. We note that OQ =
O1A = r1, O1Q = OA = r and

A

O O1

P = Q

M(t)

N(t)

ωt ωt
φ φ

∠QOA = ∠QO1A = φ. Since the two points return to A at the same time,
it follows that ∠M(t)OA = ∠N(t)O1A = ωt. Therefore ∠QOM(t) =
∠QO1N(t) = φ+ωt, from which it follows that 
QOM(t) ∼= 
QO1N(t).
Hence QM(t) = QN(t), as we claimed.

23. It is easily verified that no solutions exist for n ≤ 8. Let us now assume
that n > 8. We note that 28 + 211 + 2n = 28 · (9 + 2n−8). Hence 9 + 2n−8
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must also be a square, say 9 + 2n−8 = x2, x ∈ N, i.e., 2n−8 = x2 − 9 =
(x−3)(x+3). Thus x−3 and x+3 are both powers of 2, which is possible
only for x = 5 and n = 12. Hence, n = 12 is the only solution.

24. Clearly O is the midpoint of BC. Let M and N be the points of tangency
of the circle with AB and AC, respectively, and let ∠BAC = 2ϕ. Then
∠BOM = ∠CON = ϕ.
Let us assume that PQ touches the circle in X . If we set ∠POM =
∠POX = x and ∠QON = ∠QOX = y, then 2x + 2y = ∠MON =
180◦− 2ϕ, i.e., y = 90◦ −ϕ−x. It follows that ∠OQC = 180◦−∠QOC−
∠OCQ = 180◦ − (ϕ+ y)− (90◦ − ϕ) = 90◦ − y = x+ ϕ = ∠BOP . Hence
the triangles BOP and CQO are similar, and consequently BP · CQ =
BO · CO = (BC/2)2.
Conversely, let BP · CQ = (BC/2)2 and let Q′ be the point on (AC)
such that PQ′ is tangent to the circle. Then BP ·CQ′ = (BC/2)2, which
implies Q ≡ Q′.

25. Let us first look for such a point R on a line l in π going through P . Let
∠QPR = 2θ. Consider a point Q′ on l such that Q′P = QP . Then we
have

QP + PR

QR
=
RQ′

QR
=

sinQ′QR
sinQQ′R

.

Since QQ′P is fixed, the maximal value of the expression occurs when
∠QQ′R = 90◦. In this case (QP + PR)/QR = 1/sin θ. Looking at all
possible lines l, we see that θ is minimized when l equals the projection
of PQ onto π. Hence, the point R is the intersection of the projection of
PQ onto π and the plane through Q perpendicular to PQ.

26. Let us assume that f(x + y) = f(x) + f(y) for all reals. In this case we
trivially apply the equation to get f(x + y + xy) = f(x + y) + f(xy) =
f(x)+f(y)+f(xy). Hence the equivalence is proved in the first direction.
Now let us assume that f(x+ y+ xy) = f(x) + f(y) + f(xy) for all reals.
Plugging in x = y = 0 we get f(0) = 0. Plugging in y = −1 we get
f(x) = −f(−x). Plugging in y = 1 we get f(2x + 1) = 2f(x) + f(1)
and hence f(2(u + v + uv) + 1) = 2f(u + v + uv) + f(1) = 2f(uv) +
2f(u) + 2f(v) + f(1) for all real u and v. On the other hand, plugging
in x = u and y = 2v + 1 we get f(2(u + v + uv) + 1) = f(u + (2v +
1) + u(2v+ 1)) = f(u) + 2f(v) + f(1) + f(2uv+ u). Hence it follows that
2f(uv) + 2f(u) + 2f(v) + f(1) = f(u) + 2f(v) + f(1) + f(2uv + u), i.e.,

f(2uv + u) = 2f(uv) + f(u). (1)

Plugging in v = −1/2 we get 0 = 2f(−u/2) + f(u) = −2f(u/2) + f(u).
Hence, f(u) = 2f(u/2) and consequently f(2x) = 2f(x) for all reals.
Now (1) reduces to f(2uv + u) = f(2uv) + f(u). Plugging in u = y and
x = 2uv, we obtain f(x) + f(y) = f(x+ y) for all nonzero reals x and y.
Since f(0) = 0, it trivially holds that f(x+ y) = f(x) + f(y) when one of
x and y is 0.
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4.22 Solutions to the Shortlisted Problems of IMO 1981

1. Assume that the set {a−n+1, a−n+2, . . . , a} of n consecutive numbers
satisfies the condition a | lcm[a− n+ 1, . . . , a− 1]. Let a = pα1

1 pα2
2 . . . pαr

r

be the canonic representation of a, where p1 < p2 < · · · < pr are primes
and α1, · · · , αr > 0. Then for each j = 1, 2, . . . , r, there exists m, m =
1, 2, . . . , n− 1, such that p

αj

j | a−m, i.e., such that p
αj

j | m. Thus p
αj

j ≤
n−1. If r = 1, then a = pα1

1 ≤ n−1, which is impossible. Therefore r ≥ 2.
But then there must exist two distinct prime numbers less than n; hence
n ≥ 4.
For n = 4, we must have pα1

1 , pα2
2 ≤ 3, which leads to p1 = 2, p2 = 3,

α1 = α2 = 1. Therefore a = 6, and {3, 4, 5, 6} is a unique set satisfying
the condition of the problem.
For every n ≥ 5 there exist at least two such sets. In fact, for n = 5
we easily find two sets: {2, 3, 4, 5, 6} and {8, 9, 10, 11, 12}. Suppose that
n ≥ 6. Let r, s, t be natural numbers such that 2r ≤ n − 1 < 2r+1,
3s ≤ n− 1 < 3s+1, 5t ≤ n − 1 < 5t+1. Taking a = 2r · 3s and a = 2r · 5t

we obtain two distinct sets with the required property. Thus the answers
are (a) n ≥ 4 and (b) n = 4.

2. Lemma. Let E, F , G, H , I, and K be points on edges AB, BC, CD, DA,
AC, and BD of a tetrahedron. Then there is a sphere that touches
the edges at these points if and only if

AE = AH = AI, BE = BF = BK,
CF = CG = CI, DG = DH = DK.

(∗)

Proof. The “only if” side of the equivalence is obvious.

We now assume (∗). Denote by
ε, φ, γ, η, ι, and κ planes through
E, F , G, H , I, K perpendicular
to AB, BC, CD, DA, AC and
BD respectively. Since the three
planes ε, η, and ι are not mutually
parallel, they intersect in a com-
mon point O. Clearly, 
AEO ∼=

A

B

C

D

H

E

F

G


AHO ∼= 
AIO; hence OE = OH = OI = r, and the sphere σ(O, r)
is tangent to AB,AD,AC.
To prove that σ is also tangent to BC,CD,BD it suffices to show that
planes φ, γ, and κ also pass through O. Without loss of generality we
can prove this for just φ. By the conditions forE,F, I, these are exactly
the points of tangency of the incircle of 
ABC and its sides, and if S
is the incenter, then SE ⊥ AB, SF ⊥ BC, SI ⊥ AC. Hence ε, ι, and
φ all pass through S and are perpendicular to the plane ABC, and
consequently all share the line l through S perpendicular to ABC.
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Since l = ε∩ ι, the point O will be situated on l, and hence φ will also
contain O. This completes our proof of the lemma.

Let AH = AE = x, BE = BF = y, CF = CG = z, and DG = DH = w.
If the sphere is also tangent to AC at some point I, then AI = x and
IC = z. Using the stated lemma it suffices to prove that if AC = x + z,
then BD = y + w.
Let EF = FG = GH = HI = t, ∠BAD = α, ∠ABC = β, ∠BCD = γ,
and ∠ADC = δ. We get

t2 = EH2 = AE2 +AH2 − 2 · AE · AH cosα = 2x2(1 − cosα).

We similarly conclude that t2 = 2y2(1−cosβ) = 2z2(1−cosγ) = 2w2(1−
cos δ). Further, using that AB = x + y, BC = y + z, cosβ = 1 − t2/2y2,
we obtain

AC2 = AB2 +BC2 − 2AB ·BC cosβ = (x− z)2 + t2
(
x

y
+ 1

)(
z

y
+ 1

)
.

Analogously, from the triangle ADC we get AC2 = (x − z)2 + t2(x/w +
1)(z/w + 1), which gives (x/y + 1)(z/y+ 1) = (x/w + 1)(z/w + 1). Since
f(s) = (x/s + 1)(z/s + 1) is a decreasing function in s, it follows that
y = w; similarly x = z.
Hence CF = CG = x and DG = DH = y. Hence AC ‖ EF and AC : t =
AC : EF = AB : EB = (x+ y) : y; i.e., AC = t(x+ y)/y. Similarly, from
the triangleABD, we get thatBD = t(x+y)/x. Hence if AC = x+z = 2x,
it follows that 2x = t(x + y)/y ⇒ 2xy = t(x + y) ⇒ BD = t(x + y)/x =
2y = y + w. This completes the proof.

Second solution. Without loss of generality, assume that EF = 2. Con-
sider the Cartesian system in which points O,E, F,G,H respectively have
coordinates (0, 0, 0), (−1,−1, a), (1,−1, a), (1, 1, a), (−1, 1, a). Line AH
is perpendicular to OH and AE is perpendicular to OE; hence from
Pythagoras’s theorem AO2 = AH2 +HO2 = AE2 +EO2 = AE2 +HO2,
which implies AH = AE. Therefore the y-coordinate of A is zero; analo-
gously the x-coordinates of B and D and the y-coordinate of C are 0. Let

A have coordinates (x0, 0, z1): then
−→
EA(x0 + 1, 1, z1 − a) ⊥ −−→

EO(1, 1,−a),
i.e.,

−→
EA · −−→EO = x0 + 2 + a(a− z1) = 0. Similarly, for B(0, y0, z2) we have

y0 + 2 + a(a− z2) = 0. This gives us

z1 =
x0 + a2 + 2

a
, z2 =

y0 + a2 + 2

a
. (1)

We haven’t used yet that A(x0, 0, z1), E(−1,−1, a) and B(0, y0, z2) are
collinear, so let A′, B′, E′ be the feet of perpendiculars from A,B,E to
the plane xy. The line A′B′, given by y0x + x0y = x0y0, z = 0, contains
the point E′(−1,−1, 0), from which we obtain

(x0 + 1)(y0 + 1) = 1. (2)
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In the same way, from the points B and C we get relations similar to (1)
and (2) and conclude that C has the coordinates C(−x0, 0, z1). Similarly
we get D(0,−y0, z2). The condition that AC is tangent to the sphere
σ(O,OE) is equivalent to z1 =

√
a2 + 2, i.e., to x0 = a

√
a2 + 2− (a2 +2).

But then (2) implies that y0 = −a
√
a2 + 2− (a2 +2) and z2 = −

√
a2 + 2,

which means that the sphere σ is tangent to BD as well. This finishes the
proof.

3. Denote max(a + b + c, b+ c+ d, c+ d + e, d+ e+ f, e+ f + g) by p. We
have

(a+ b+ c) + (c+ d+ e) + (e+ f + g) = 1 + c+ e ≤ 3p,

which implies that p ≥ 1/3. However, p = 1/3 is achieved by taking
(a, b, c, d, e, f, g) = (1/3, 0, 0, 1/3, 0, 0, 1/3). Therefore the answer is 1/3.

Remark. In fact, one can prove a more general statement in the same way.
Given positive integers n, k, n ≥ k, if a1, a2, . . . , an are nonnegative real
numbers with sum 1, then the minimum value of maxi=1,...,n−k+1{ai +
ai+1 + · · ·+ ai+k−1} is 1/r, where r is the integer with k(r− 1) < n ≤ kr.

4. We shall use the known formula for the Fibonacci sequence

fn =
1√
5
(αn − (−1)nα−n), where α =

1 +
√

5

2
. (1)

(a) Suppose that afn + bfn+1 = fkn for all n, where kn > 0 is an integer
depending on n. By (1), this is equivalent to a(αn − (−1)nα−n) +
b(αn+1 + (−1)nα−n−1) = αkn − (−1)knα−kn , i.e.,

αkn−n = a+ bα− α−2n(−1)n(a− bα−1 − (−α)n−kn) → a+ bα (2)

as n → ∞. Hence, since kn is an integer, kn−n must be constant from
some point on: kn = n+ k and αk = a+ bα. Then it follows from (2)
that α−k = a − bα−1, and from (1) we conclude that afn + bfn+1 =
fk+n holds for every n. Putting n = 1 and n = 2 in the previous
relation and solving the obtained system of equations we get a = fk−1,
b = fk. It is easy to verify that such a and b satisfy the conditions.

(b) As in (a), suppose that uf2
n + vf2

n+1 = fln for all n. This leads to

u+ vα2 −
√

5αln−2n = 2(u− v)(−1)nα−2n

−(uα−4n + vα−4n−2 + (−1)ln
√

5α−ln−2n)

→ 0,

as n → ∞. Thus u + vα2 =
√

5αln−2n, and ln − 2n = k is equal to
a constant. Putting this into the above equation and multiplying by
α2n we get u − v → 0 as n → ∞, i.e., u = v. Finally, substituting
n = 1 and n = 2 in uf2

n + uf2
n+1 = fln we easily get that the only

possibility is u = v = 1 and k = 1. It is easy to verify that such u and
v satisfy the conditions.
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5. There are four types of small cubes upon disassembling:
(1) 8 cubes with three faces, painted black, at one corner;
(2) 12 cubes with two black faces, both at one edge;
(3) 6 cubes with one black face;
(4) 1 completely white cube.
All cubes of type (1) must go to corners, and be placed in a correct way
(one of three): for this step we have 38 · 8! possibilities. Further, all cubes
of type (2) must go in a correct way (one of two) to edges, admitting
212 · 12! possibilities; similarly, there are 46 · 6! ways for cubes of type
(3), and 24 ways for the cube of type (4). Thus the total number of good
reassemblings is 388! · 21212! · 466! · 24, while the number of all possible

reassemblings is 2427 ·27!. The desired probability is 388!·21212!·466!·24
2427·27! . It is

not necessary to calculate these numbers to find out that the blind man
practically has no chance to reassemble the cube in a right way: in fact,
the probability is of order 1.8 · 10−37.

6. Assume w.l.o.g. that n = degP ≥ degQ, and let P0 = {z1, z2, . . . , zk},
P1 = {zk+1, zk+2, . . . zk+m}. The polynomials P and Q match at k + m
points z1, z2, . . . , zk+m; hence if we prove that k +m > n, the result will
follow.
By the assumption,

P (x) = (x− z1)
α1 · · · (x− zk)αk = (x− zk+1)

αk+1 · · · (x− zk+m)αk+m + 1

for some positive integers α1, . . . , αk+m. Let us consider P ′(x). As we
know, it is divisible by (x − zi)

αi−1 for i = 1, 2, . . . , k +m; i.e.,

k+m∏
i=1

(x− zi)
αi−1 | P ′(x).

Therefore 2n − k − m = deg
∏k+m

i=1 (x − zi)
αi−1 ≤ degP ′ = n − 1, i.e.,

k +m ≥ n+ 1, as we claimed.

7. We immediately find that f(1, 0) = f(0, 1) = 2. Then f(1, y + 1) =
f(0, f(1, y)) = f(1, y) + 1; hence f(1, y) = y + 2 for y ≥ 0. Next we
find that f(2, 0) = f(1, 1) = 3 and f(2, y+1) = f(1, f(2, y)) = f(2, y)+2,
from which f(2, y) = 2y + 3. Particularly, f(2, 2) = 7. Further, f(3, 0) =
f(2, 1) = 5 and f(3, y + 1) = f(2, f(3, y)) = 2f(3, y) + 3. This gives
by induction f(3, y) = 2y+3 − 3. For y = 3, f(3, 3) = 61. Finally, from
f(4, 0) = f(3, 1) = 13 and f(4, y + 1) = f(3, f(4, y)) = 2f(4,y)+3 − 3, we
conclude that

f(4, y) = 22..
.2

− 3 (y + 3 twos).

8. Since the number k, k = 1, 2, . . . , n − r + 1, is the minimum in exactly(
n−k
r−1

)
r-element subsets of {1, 2, . . . , n}, it follows that
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f(n, r) =
1(
n
r

) n−r+1∑
k=1

k

(
n− k

r − 1

)
.

To calculate the sum in the above expression, using the equality
(
r+j

j

)
=∑j

i=0

(
r+i−1
r−1

)
, we note that

n−r+1∑
k=1

k

(
n− k

r − 1

)
=

n−r∑
j=0

(
j∑

i=0

(
r + i− 1

r − 1

))

=

n−r∑
j=0

(
r + j

r

)
=

(
n+ 1

r + 1

)
=
n+ 1

r + 1

(
n

r

)
.

Therefore f(n, r) = (n+ 1)/(r + 1).

9. If we put 1 + 24an = b2n, the given recurrent relation becomes

2

3
b2n+1 =

3

2
+
b2n
6

+ bn =
2

3

(
3

2
+
bn
2

)2

, i.e., bn+1 =
3 + bn

2
, (1)

where b1 = 5. To solve this recurrent equation, we set cn = 2n−1bn. From
(1) we obtain

cn+1 = cn + 3 · 2n−1 = · · · = c1 + 3(1 + 2 + 22 + · · · + 2n−1)

= 5 + 3(2n − 1) = 3 · 2n + 2.

Therefore bn = 3 + 2−n+2 and consequently

an =
b2n − 1

24
=

1

3

(
1 +

3

2n
+

1

22n−1

)
=

1

3

(
1 +

1

2n−1

)(
1 +

1

2n

)
.

10. It is easy to see that partitioning into p = 2k squares is possible for k ≥ 2
(Fig. 1). Furthermore, whenever it is possible to partition the square into
p squares, there is a partition of the square into p+ 3 squares: namely, in
the partition into p squares, divide one of them into four new squares.

p = 8 x y

y

y

x-y

Fig. 1 Fig. 2

This implies that both p = 2k and p = 2k + 3 are possible if k ≥ 2, and
therefore all p ≥ 6 are possible.
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On the other hand, partitioning the square into 5 squares is not possible.
Assuming it is possible, one of its sides would be covered by exactly two
squares, which cannot be of the same size (Fig. 2). The rest of the big
square cannot be partitioned into three squares. Hence, the answer is
n = 6.

11. Let us denote the center of the semicircle by O, and ∠AOB = 2α,
∠BOC = 2β, AC = m, CE = n.
We claim that a2 +b2+n2+abn = 4. Indeed, since a = 2 sinα, b = 2 sinβ,
n = 2 cos(α+ β), we have

a2 + b2 + n2 + abn

= 4(sin2 α+ sin2 β + cos2(α+ β) + 2 sinα sinβ cos(α+ β))

= 4 + 4

(
−cos 2α

2
− cos 2β

2
+ cos(α+ β) cos(α− β)

)
= 4 + 4 (cos(α+ β) cos(α− β) − cos(α+ β) cos(α− β)) = 4.

Analogously, c2 + d2 + m2 + cdm = 4. By adding both equalities and
subtracting m2 + n2 = 4 we obtain

a2 + b2 + c2 + d2 + abn+ cdm = 4.

Since n > c and m > b, the desired inequality follows.

12. We will solve the contest problem (in which m,n ∈ {1, 2, . . . , 1981}). For
m = 1, n can be either 1 or 2. If m > 1, then n(n −m) = m2 ± 1 > 0;
hence n−m > 0. Set p = n−m. Since m2 −mp− p2 = m2 − p(m+ p) =
−(n2 − nm−m2), we see that (m,n) is a solution of the equation if and
only if (p,m) is a solution too. Therefore, all the solutions of the equation
are given as two consecutive members of the Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, . . . .

So the required maximum is 9872 + 15972.

13. Lemma. For any polynomial P of degree at most n,

n+1∑
i=0

(−1)i

(
n+ 1

i

)
P (i) = 0. (1)

Proof. We shall use induction on n. For n = 0 it is trivial. Assume that
it is true for n = k and suppose that P (x) is a polynomial of degree
k + 1. Then P (x) − P (x + 1) clearly has degree at most k; hence (1)
gives
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0 =

k+1∑
i=0

(−1)i

(
k + 1

i

)
(P (i) − P (i+ 1))

=

k+1∑
i=0

(−1)i

(
k + 1

i

)
P (i) +

k+2∑
i=1

(−1)i

(
k + 1

i− 1

)
P (i)

=
k+2∑
i=0

(−1)i

(
k + 2

i

)
P (i).

This completes the proof of the lemma.
Now we apply the lemma to obtain the value of P (n + 1). Since P (i) =(
n+1

i

)−1
for i = 0, 1, . . . , n, we have

0 =
n+1∑
i=0

(−1)i

(
n+ 1

i

)
P (i) = (−1)n+1P (n+ 1) +

{
1, 2 | n;
0, 2 � n.

It follows that P (n+ 1) =

{
1, 2 | n;
0, 2 � n.

14. We need the following lemma.
Lemma. If a convex quadrilateral PQRS satisfies PS = QR and ∠SPQ ≥

∠RQP , then ∠QRS ≥ ∠PSR.
Proof. If the lines PS and QR are parallel, then this quadrilateral is a

parallelogram, and the statement is trivial. Otherwise, let X be the
point of intersection of lines PS and QR.
Assume that ∠SPQ+∠RQP > 180◦. Then ∠XPQ ≤ ∠XQP implies
that XP ≥ XQ, and consequently XS ≥ XR. Hence, ∠QRS =
∠XRS ≥ ∠XSR = ∠PSR.
Similarly, if ∠SPQ + ∠RQP < 180◦, then ∠XPQ ≥ ∠XQP , from
which it follows that XP ≤ XQ, and thus XS ≤ XR; hence ∠QRS =
180◦ − ∠XRS ≥ 180◦ − ∠XSR = ∠PSR.

Now we apply the lemma to the quadrilateral ABCD. Since ∠B ≥ ∠C
and AB = CD, it follows that ∠CDA ≥ ∠BAD, which together with
∠EDA = ∠EAD gives ∠D ≥ ∠A. Thus ∠A = ∠B = ∠C = ∠D. Analo-
gously, by applying the lemma to BCDE we obtain ∠E ≥ ∠B, and hence
∠B = ∠C = ∠D = ∠E.

15. Set BC = a, CA = b, AB = c, and denote the area of 
ABC by P , and
a/PD+ b/PE + c/PF by S. Since a ·PD+ b ·PE + c ·PF = 2P , by the
Cauchy–Schwarz inequality we have

2PS = (a · PD + b · PE + c · PF )

(
a

PD
+

b

PE
+

c

PF

)
≥ (a+ b + c)2,

with equality if and only if PD = PE = PF , i.e., P is the incenter of

ABC. In that case, S attains its minimum:
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Smin =
(a+ b+ c)2

2P
.

16. The sequence {un} is bounded, whatever u1 is. Indeed, assume the
opposite, and let um be the first member of the sequence such that
|um| > max{2, |u1|}. Then |um−1| = |u3

m −15/64| > |um|, which is impos-
sible.
Next, let us see for what values of um, um+1 is greater, equal, or smaller,
respectively.
If um+1 = um, then um = u3

m+1 − 15/64 = u3
m − 15/64; i.e., um is a root

of x3 − x − 15/64 = 0. This equation factors as (x + 1/4)(x2 − x/4 −
15/16) = 0, and hence um is equal to x1 = (1 −

√
61)/8, x2 = −1/4, or

x3 = (1 +
√

61)/8, and these are the only possible limits of the sequence.
Each of um+1 > um, um+1 < um is equivalent to u3

m − um − 15/64 < 0
and u3

m −um −15/64 > 0 respectively. Thus the former is satisfied for um

in the interval I1 = (−∞, x1) or I3 = (x2, x3), while the latter is satisfied
for um in I2 = (x1, x2) or I4 = (x3,∞). Moreover, since the function
f(x) = 3

√
x+ 15/64 is strictly increasing with fixed points x1, x2, x3, it

follows that um will never escape from the interval I1, I2, I3, or I4 to
which it belongs initially. Therefore:
(1) if u1 is one of x1, x2, x3, the sequence {um} is constant;
(2) if u1 ∈ I1, then the sequence is strictly increasing and tends to x1;
(3) if u1 ∈ I2, then the sequence is strictly decreasing and tends to x1;
(4) if u1 ∈ I3, then the sequence is strictly increasing and tends to x3;
(5) if u1 ∈ I4, then the sequence is strictly decreasing and tends to x3.

17. Let us denote by SA, SB, SC the centers of the given circles, where SA lies
on the bisector of ∠A, etc. Then SASB ‖ AB, SBSC ‖ BC, SCSA ‖ CA,
so that the inner bisectors of the angles of triangle ABC are also inner
bisectors of the angles of 
SASBSC . These two triangles thus have a
common incenter S, which is also the center of the homothety χ mapping

SASBSC onto 
ABC.
The point O is the circumcenter of triangle SASBSC , and so is mapped
by χ onto the circumcenter P of ABC. This means that O, P , and the
center S of χ are collinear.

18. Let C be the convex hull of the set of the planets: its border consists
of parts of planes, parts of cylinders, and parts of the surfaces of some
planets. These parts of planets consist exactly of all the invisible points;
any point on a planet that is inside C is visible. Thus it remains to show
that the areas of all the parts of planets lying on the border of C add up
to the area of one planet.
As we have seen, an invisible part of a planet is bordered by some main
spherical arcs, parallel two by two. Now fix any planet P , and translate
these arcs onto arcs on the surface of P . All these arcs partition the surface
of P into several parts, each of which corresponds to the invisible part of
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one of the planets. This correspondence is bijective, and therefore the
statement follows.

19. Consider the partition of plane π into regular hexagons, each having in-
radius 2. Fix one of these hexagons, denoted by γ. For any other hexagon
x in the partition, there exists a unique translation τx taking it onto γ.
Define the mapping ϕ : π → γ as follows: If A belongs to the interior of a
hexagon x, then ϕ(A) = τx(A) (if A is on the border of some hexagon, it
does not actually matter where its image is).
The total area of the images of the union of the given circles equals S,
while the area of the hexagon γ is 8

√
3. Thus there exists a point B of

γ that is covered at least S
8
√

3
times, i.e., such that ϕ−1(B) consists of at

least S
8
√

3
distinct points of the plane that belong to some of the circles.

For any of these points, take a circle that contains it. All these circles are
disjoint, with total area not less than π

8
√

3
S ≥ 2S/9.

Remark. The statement becomes false if the constant 2/9 is replaced by
any number greater than 1/4. In that case a counterexample is, for exam-
ple, a set of unit circles inside a circle of radius 2 covering a sufficiently
large part of its area.
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4.23 Solutions to the Shortlisted Problems of IMO 1982

1. From f(1) + f(1) ≤ f(2) = 0 we obtain f(1) = 0. Since 0 < f(3) ≤
f(1) + f(2) + 1, it follows that f(3) = 1. Note that if f(3n) ≥ n, then
f(3n + 3) ≥ f(3n) + f(3) ≥ n + 1. Hence by induction f(3n) ≥ n holds
for all n ∈ N. Moreover, if the inequality is strict for some n, then it is so
for all integers greater than n as well. Since f(9999) = 3333, we deduce
that f(3n) = n for all n ≤ 3333.
By the given condition, we have 3f(n) ≤ f(3n) ≤ 3f(n) + 2. There-
fore f(n) = [f(3n)/3] = [n/3] for n ≤ 3333. In particular, f(1982) =
[1982/3] = 660.

2. Since K does not contain a lattice point other than O(0, 0), it is bounded
by four lines u, v, w, x that pass through the points U(1, 0), V (0, 1),
W (−1, 0), X(0,−1) respectively. Let PQRS be the quadrilateral formed
by these lines, where U ∈ SP , V ∈ PQ, W ∈ QR, X ∈ RS.
If one of the quadrants, sayQ1, contains no vertices of PQRS, then K∩Q1

is contained in 
OUV and hence has area less than 1/2. Consequently
the area of K is less than 2.
Let us now suppose that P,Q,R, S lie in different quadrants. One of the
angles of PQRS is at least 90◦: let it be ∠P . Then SUPV ≤ PU ·PV/2 ≤
(PU2 + PV 2)/4 ≤ UV 2/4 = 1/2, which implies that SK∩Q1 < SOUPV ≤
1. Hence the area of K is less than 4.

3. (a) By the Cauchy–Schwarz inequality we have
(
x2

0/x1 + · · · + x2
n−1/xn

)
·

(x1 + · · · + xn) ≥ (x0 + · · · + xn−1)
2. Let us set Xn−1 = x1 + x2 +

· · · + xn−1. Using x0 = 1, the last inequality can be rewritten as

x2
0

x1
+ · · ·+

x2
n−1

xn
≥ (1 +Xn−1)

2

Xn−1 + xn
≥ 4Xn−1

Xn−1 + xn
=

4

1 + xn/Xn−1
. (1)

Since xn ≤ xn−1 ≤ · · · ≤ x1, it follows that Xn−1 ≥ (n − 1)xn. Now
(1) yields x2

0/x1 + · · · + x2
n−1/xn ≥ 4(n− 1)/n, which exceeds 3.999

for n > 4000.
(b) The sequence xn = 1/2n obviously satisfies the required condition.

Second solution to part (a). For each n ∈ N, let us find a constant cn such
that the inequality x2

0/x1 + · · · + x2
n−1/xn ≥ cnx0 holds for any sequence

x0 ≥ x1 ≥ · · · ≥ xn > 0.
For n = 1 we can take c1 = 1. Assuming that cn exists, we have

x2
0

x1
+

(
x2

1

x2
+ · · · + x2

n

xn+1

)
≥ x2

0

x1
+ cnx1 ≥ 2

√
x2

0cn = x0 · 2√cn.

Thus we can take cn+1 = 2
√
cn. Then inductively cn = 22−1/2n−2

, and
since cn → 4 as n → ∞, the result follows.

Third solution. Since {xn} is decreasing, there exists limn→∞ xn = x ≥ 0.
If x > 0, then x2

n−1/xn ≥ xn ≥ x holds for each n, and the result is trivial.
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If otherwise x = 0, then we note that x2
n−1/xn ≥ 4(xn−1 − xn) for each

n, with equality if and only if xn−1 = 2xn. Hence

lim
n→∞

n∑
k=1

x2
k−1

xk
≥ lim

n→∞

n∑
k=1

4(xk−1 − xk) = 4x0 = 4.

Equality holds if and only if xn−1 = 2xn for all n, and consequently
xn = 1/2n.

4. Suppose that a satisfies the requirements of the problem and that x, qx,
q2x, q3x are the roots of the given equation. Then x �= 0 and we may
assume that |q| > 1, so that |x| < |qx| < |q2x| < |q3x|. Since the equation
is symmetric, 1/x is also a root and therefore 1/x = q3x, i.e., q = x−2/3. It
follows that the roots are x, x1/3, x−1/3, x−1. Now by Vieta’s formula we
have x+x1/3 +x−1/3 +x−1 = a/16 and x4/3 +x2/3 +2+x−2/3 +x−4/3 =
(2a+ 17)/16. On setting z = x1/3 + x−1/3 these equations become

z3 − 2z = a/16,

(z2 − 2)2 + z2 − 2 = (2a+ 17)/16.

Substituting a = 16(z3 − 2z) in the second equation leads to z4 − 2z3 −
3z2 + 4z + 15/16 = 0. We observe that this polynomial factors as (z +
3/2)(z−5/2)(z2− z−1/4). Since |z| = |x1/3 +x−1/3| ≥ 2, the only viable
value is z = 5/2. Consequently a = 170 and the roots are 1/8, 1/2, 2, 8.

5. We first observe that 
A5B4A4
∼=


A3B2A2. Since ∠A5A3A2 = 90◦,
we have ∠A2B4A4 = ∠A2B4A3 +
∠A3B4A4 = (90◦ − ∠B2A2A3) +
(∠B4A5A4 + ∠A5A4B4) = 90◦ +
∠B4A5A4 = 120◦. Hence B4 be-
longs to the circle with center A3

and radius A3A4, so A3A4 = A3B4.

O

A1 A2

A6 A3

A4A5

B4

B2

Thus λ = A3B4/A3A5 = A3A4/A3A5 = 1/
√

3.

6. Denote by d(U, V ) the distance between points or sets of points U and V .
For P,Q ∈ L we shall denote by LPQ the part of L between points P and
Q and by lPQ the length of this part. Let us denote by Si (i = 1, 2, 3, 4)
the vertices of S and by Ti points of L such that SiTi ≤ 1/2 in such a way
that lA0T1 is the least of the lA0Ti ’s, S2 and S4 are neighbors of S1, and
lA0T2 < lA0T4 .
Now we shall consider the points of the segment S1S4. Let D and E be the
sets of points defined as follows: D = {X ∈ [S1S4] | d(X,LA0T2) ≤ 1/2}
and E = {X ∈ [S1S4] | d(X,LT2An) ≤ 1/2}. Clearly D and E are closed,
nonempty (indeed, S1 ∈ D and S4 ∈ E) subsets of [S1S4]. Since their
union is a connected set S1S4, it follows that they must have a nonempty
intersection. Let P ∈ D ∩ E. Then there exist points X ∈ LA0T2 and
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Y ∈ LT2An such that d(P,X) ≤ 1/2, d(P, Y ) ≤ 1/2, and consequently
d(X,Y ) ≤ 1. On the other hand, T2 lies between X and Y on L, and thus
LXY = LXT2 +LT2Y ≥ XT2 +T2Y ≥ (PS2 −XP −S2T2)+ (PS2 −Y P −
S2T2) ≥ 99 + 99 = 198.

7. Let a, b, ab be the roots of the cubic polynomial P (x) = (x−a)(x− b)(x−
ab). Observe that

2p(−1) = −2(1 + a)(1 + b)(1 + ab);
p(1) + p(−1) − 2(1 + p(0)) = −2(1 + a)(1 + b).

The statement of the problem is trivial if both the expressions are equal

to zero. Otherwise, the quotient 2p(−1)
p(1)+p(−1)−2(1+p(0)) = 1 + ab is rational

and consequently ab is rational. But since (ab)2 = −P (0) is an integer, it
follows that ab is also an integer. This completes the proof.

8. Let F be the given figure. Consider any chord AB of the circumcircle γ
that supports F . The other supporting lines to F from A and B intersect
γ again at D and C respectively so that ∠DAB = ∠ABC = 90◦. Then
ABCD is a rectangle, and hence CD must support F as well, from which
it follows that F is inscribed in the rectangle ABCD touching each of
its sides. We easily conclude that F is the intersection of all such rectan-
gles. Now, since the center O of γ is the center of symmetry of all these
rectangles, it must be so for their intersection F as well.

9. Let X and Y be the midpoints of the segments AP and BP . Then DY PX

is a parallelogram. Since X and Y
are the circumcenters of 
APM
and 
BPL, it follows that XM =
XP = DY and Y L = Y P = DX .
Furthermore, ∠DXM = ∠DXP +
∠PXM = ∠DXP + 2∠PAM =
∠DY P + 2∠PBL = ∠DY P +
∠PY L = ∠DY L. Therefore, the
triangles DXM and LYD are con-
gruent, implying DM = DL.

A B

C

PM

L

X
Y

D

10. If the two balls taken from the box are both white, then the number of
white balls decreases by two; otherwise, it remains unchanged. Hence the
parity of the number of white balls does not change during the procedure.
Therefore if p is even, the last ball cannot be white; the probability is 0.
If p is odd, the last ball has to be white; the probability is 1.

11. (a) Suppose {a1, a2, . . . , an} is the arrangement that yields the maxi-
mal value Qmax of Q. Note that the value of Q for the rearrange-
ment {a1, . . . , ai−1, aj , aj−1, . . . , ai, aj+1, . . . , an} equals Qmax − (ai −
aj)(ai−1−aj+1), where 1 < i < j < n. Hence (ai−aj)(ai−1−aj+1) ≥ 0
for all 1 < i < j < n.
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We may suppose w.l.o.g. that a1 = 1. Let ai = 2. If 2 < i <
n, then (a2 − ai)(a1 − ai+1) < 0, which is impossible. Therefore
i is either 2 or n; let w.l.o.g. an = 2. Further, if aj = 3 for
2 < j < n, then (a1 − aj+1)(a2 − aj) < 0, which is impossi-
ble; therefore a2 = 3. Continuing this argument we obtain that
A = {1, 3, 5, . . . , 2[(n− 1)/2] + 1, 2[n/2], . . . , 4, 2}.

(b) A similar argument leads to the minimizing rearrangement {1, n, 2,
n− 1, . . . , [n/2] + 1}.

12. Let y be the line perpendicular to L passing through the center of C. It
can be shown by a continuity argument that there exists a point Y ∈ y
such that an inversion Ψ centered at Y maps C and L onto two concentric
circles Ĉ and L̂. Let X̂ denote the image of an object X under Ψ . Then
the circles Ĉi touch Ĉ externally and L̂ internally, and all have the same
radius. Let us now rotate the picture around the common center Z of Ĉ
and L̂ so that Ĉ3 passes through Y . Applying the inversion Ψ again on
the picture thus obtained, Ĉ and L̂ go back to C and L, but Ĉ3 goes to
a line C′

3 parallel to L, while the images of Ĉ1 and Ĉ2 go to two equal
circles C′

1 and C′
2 touching L, C′

3, and C. This way we have achieved that
C3 becomes a line.
Denote by O1, O2, O respectively
the centers of the circles C′

1, C
′
2, C

and by T the point of tangency of
the circles C′

1 and C′
2. If x is the

common radius of the circles C′
1 and

C′
2, then from 
O1TO we obtain

that (x− 1)2 + x2 = (x+ 1)2, and

L

C′

3

C′

1 C′

2T

x x
1

O1

O

O2

thus x = 4. Hence the distance of O from L equals 2x− 1 = 7.

13. Points S1, S2, S3 clearly lie on the inscribed circle. Let X̂Y
denote the oriented arc XY . The
arcs T̂2S1 and T̂1T3 are equal, since
they are symmetric with respect
to the bisector of ∠A1. Similarly,

T̂3T2 = Ŝ2T1. Therefore T̂3S1 =
T̂3T2 + T̂2S1 = Ŝ2T1 + T̂1T3 =
Ŝ2T3. It follows that S1S2 is parallel
to A1A2, and consequently S1S2 ‖
M1M2. Analogously S1S3 ‖ M1M3

A1 A2

A3

S1

S2

S3

T1

T2

T3

and S2S3 ‖ M2M3.
Since the circumcircles of 
M1M2M3 and 
S1S2S3 are not equal, these
triangles are not congruent and hence they must be homothetic. Then all
the lines MiSi pass through the center of homothety.

Second solution. Set the complex plane so that the incenter of 
A1A2A3

is the unit circle centered at the origin. Let ti, si respectively denote the
complex numbers of modulus 1 corresponding to Ti, Si. Clearly t1t1 =
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t2t2 = t3t3 = 1. Since T2T3 and T1S1 are parallel, we obtain t2t3 = t1s1,
or s1 = t2t3t1. Similarly s2 = t1t3t2, s3 = t1t2t3, from which it follows
that s2 − s3 = t1(t3t2 − t2t3). Since the number in parentheses is strictly
imaginary, we conclude that OT1 ⊥ S2S3 and consequently S2S3 ‖ A2A3.
We proceed as in the first solution.

14. (a) If any two of A1, B1, C1, D1 coincide, say A1 ≡ B1, then ABCD is
inscribed in a circle centered at A1 and hence all A1, B1, C1, D1 coin-
cide.
Assume now the opposite, and let w.l.o.g. ∠DAB + ∠DCB < 180◦.
Then A is outside the circumcircle of 
BCD, so A1A > A1C. Simi-
larly, C1C > C1A. Hence the perpendicular bisector lAC of AC sepa-
rates points A1 and C1. Since B1, D1 lie on lAC , this means that A1

and C1 are on opposite sides B1D1. Similarly one can show that B1

and D1 are on opposite sides of A1C1.
(b) Since A2B2 ⊥ C1D1 and C1D1 ⊥ AB, it follows that A2B2 ‖ AB.

Similarly A2C2 ‖ AC, A2D2 ‖ AD, B2C2 ‖ BC, B2D2 ‖ BD, and
C2D2 ‖ CD. Hence 
A2B2C2 ∼ 
ABC and 
A2D2C2 ∼ 
ADC,
and the result follows.

15. Let a = k/n, where n, k ∈ N, n ≥ k. Putting tn = s, the given inequality

becomes 1−tk

1−tn ≤ (1 + tn)k/n−1, or equivalently

(1 + t+ · · · + tk−1)n(1 + tn)n−k ≤ (1 + t+ · · · + tn−1)n.

This is clearly true for k = n. Therefore it is enough to prove that the left-
hand side of the above inequality is an increasing function of k. We are led
to show that (1+t+· · ·+tk−1)n(1+tn)n−k ≤ (1+t+· · ·+tk)n(1+tn)n−k−1.

This is equivalent to 1 + tn ≤ An, where A = 1+t+···+tk

1+t+···+tk−1 . But this easily
follows, since

An − tn = (A− t)(An−1 +An−2t+ · · · + tn−1)

≥ (A− t)(1 + t+ · · · + tn−1) =
1 + t+ · · · + tn−1

1 + t+ · · · + tk−1
≥ 1.

Remark. The original problem asked to prove the inequality for real a.

16. It is easy to verify that whenever (x, y) is a solution of the equation
x3 − 3xy2 + y3 = n, so are the pairs (y − x,−x) and (−y, x− y). No two
of these three solutions are equal unless x = y = n = 0.
Observe that 2981 ≡ 2 (mod 9). Since x3, y3 ≡ 0,±1 (mod 9), x3 −
3xy2 + y3 cannot give the remainder 2 when divided by 9. Hence the
above equation for n = 2981 has no integer solutions.

17. Let A be the origin of the Cartesian plane. Suppose that BC : AC = k and
that (a, b) and (a1, b1) are coordinates of the points C and C1, respectively.
Then the coordinates of the point B are (a, b)+k(−b, a) = (a−kb, b+ka),
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while the coordinates of B1 are (a1, b1) + k(b1,−a1) = (a+ kb1, b1 − ka1).

Thus the lines BC1 and CB1 are given by the equations x−a1

y−b1
= x−(a−kb)

y−(b+ka)

and x−a
y−b = x−(a1+kb1)

y−(b1−ka1) respectively. After multiplying, these equations

transform into the forms

BC1 : kax+ kby = kaa1 + kbb1 + ba1 − ab1 − (b − b1)x + (a− a1)y
CB1 : ka1x+ kb1y = kaa1 + kbb1 + ba1 − ab1 − (b − b1)x + (a− a1)y.

The coordinates (x0, y0) of the pointM satisfy these equations, from which
we deduce that kax0 + kby0 = ka1x0 + kb1y0. This yields x0

y0
= − b1−b

a1−a ,
implying that the lines CC1 and AM are perpendicular.

18. Set the coordinate system with the axes x, y, z along the lines l1, l2, l3
respectively. The coordinates (a, b, c) of M satisfy a2 + b2 + c2 = R2, and
so SM is given by the equation (x−a)2+(y−b)2+(z−c)2 = R2. Hence the
coordinates of P1 are (x, 0, 0) with (x− a)2 + b2 + c2 = R2, implying that
either x = 2a or x = 0. Thus by the definition we obtain x = 2a. Similarly,
the coordinates of P2 and P3 are (0, 2b, 0) and (0, 0, 2c) respectively. Now,
the centroid of 
P1P2P3 has the coordinates (2a/3, 2b/3, 2c/3). Therefore
the required locus of points is the sphere with center O and radius 2R/3.

19. Let us set x = m/n. Since f(x) = (m+ n)/
√
m2 + n2 = (x+ 1)/

√
1 + x2

is a continuous function of x, f(x) takes all values between any two values
of f ; moreover, the corresponding x can be rational. This completes the
proof.

Remark. Since f is increasing for x ≥ 1, 1 ≤ x < z < y implies f(x) <
f(z) < f(y).

20. Since MN is the image of AC under rotation about B for 60◦, we have
MN = AC.
Similarly, PQ is the image of AC under rotation about D through 60◦,
from which it follows that PQ ‖ MN . Hence either M,N,P,Q are
collinear or MNPQ is a parallelogram.
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4.24 Solutions to the Shortlisted Problems of IMO 1983

1. Suppose that there are n airlines A1, . . . , An and N > 2n cities. We shall
prove that there is a round trip by at least one Ai containing an odd
number of stops.
For n = 1 the statement is trivial, since one airline serves at least 3 cities
and hence P1P2P3P1 is a round trip with 3 landings. We use induction
on n, and assume that n > 1. Suppose the contrary, that all round trips
by An consist of an even number of stops. Then we can separate the
cities into two nonempty classes Q = {Q1, . . . , Qr} and R = {R1, . . . , Rs}
(where r+s = N), so that each flight by An runs between a Q-city and an
R-city. (Indeed, take any city Q1 served by An; include each city linked to
Q1 by An in R, then include in Q each city linked by An to any R-city, etc.
Since all round trips are even, no contradiction can arise.) At least one of
r, s is larger than 2n−1, say r > 2n−1. But, only A1, . . . , An−1 run between
cities in {Q1, . . . , Qr}; hence by the induction hypothesis at least one of
them flies a round trip with an odd number of landings, a contradiction.
It only remains to notice that for n = 10, 2n = 1024 < 1983.

Remark. If there are N = 2n cities, there is a schedule with n airlines
that contain no odd round trip by any of the airlines. Let the cities be Pk,
k = 0, . . . , 2n − 1, and write k in the binary system as an n-digit number
a1 . . . an (e.g., 1 = (0 . . . 001)2). Link Pk and Pl by Ai if the ith digits k
and l are distinct but the first i − 1 digits are the same. All round trips
under Ai are even, since the ith digit alternates.

2. By definition, σ(n) =
∑

d|n d =
∑

d|n n/d = n
∑

d|n 1/d, hence σ(n)/n =∑
d|n 1/d. In particular, σ(n!)/n! =

∑
d|n! 1/d ≥

∑n
k=1 1/k. It follows that

the sequence σ(n)/n is unbounded, and consequently there exist an infinite
number of integers n such that σ(n)/n is strictly greater than σ(k)/k for
k < n.

3. (a) A circle is not Pythagorean. Indeed, consider the partition into two
semicircles each closed at one and open at the other end.

(b) An equilateral triangle, call it PQR, is Pythagorean. Let P ′, Q′, and
R′ be the points on QR, RP , and PQ such that PR′ : R′Q = QP ′ :
P ′R = RQ′ : Q′P = 1 : 2. Then Q′R′ ⊥ PQ, etc. Suppose that
PQR is not Pythagorean, and consider a partition into A,B, neither
of which contains the vertices of a right-angled triangle. At least two
of P ′, Q′, and R′ belong to the same class, say P ′, Q′ ∈ A. Then
[PR] \ {Q′} ⊂ B and hence R′ ∈ A (otherwise, if R′′ is the foot of
the perpendicular from R′ to PR, 
RR′R′′ is right-angled with all
vertices in B). But this implies again that [PQ] \ {R′} ⊂ B, and thus
B contains vertices of a rectangular triangle. This is a contradiction.

4. The rotational homothety centered at C that sends B to R also sends A
to Q; hence the triangles ABC and QRC are similar. For the same reason,
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ABC and 
PBR are similar. Moreover, BR = CR; hence 
CRQ ∼=

RBP . Thus PR = QC = AQ and QR = PB = PA, so APQR is a
parallelogram.

5. Each natural number p can be written uniquely in the form p = 2q(2r−1).
We call 2r − 1 the odd part of p. Let An = (a1, a2, . . . , an) be the first
sequence. Clearly the terms of An must have different odd parts, so those
parts must be at least 1, 3, . . . , 2n− 1. Being the first sequence, An must
have the numbers 2n− 1, 2n− 3, . . . , 2k+ 1 as terms, where k = [n+ 1/3]
(then 3(2k− 1) < 2n− 1 < 3(2k+ 1)). Smaller odd numbers 2s+ 1 (with
s < k) obviously cannot be terms of An. In this way we have obtained the
n − k odd numbers of An. The other k terms must be even, and by the
same reasoning as above they must be precisely the terms of 2Ak (twice
the terms of Ak). Therefore An is defined recursively as

A0 = ∅, A1 = {1}, A2 = {3, 2};
An = {2n− 1, 2n− 3, . . . , 2k + 1} ∪ 2Ak.

6. The existence of r: Let S = {x1 + x2 + · · · + xi − 2i | i = 1, 2, . . . , n}. Let
maxS be attained for the first time at r′.
If r′ = n, then x1 + x2 + · · · + xi − 2i < 2 for 1 ≤ i ≤ n − 1, so one can
take r = r′.
Suppose that r′ < n. Then for l < n−r′ we have xr′+1+xr′+2+· · ·+xr′+l =
(x1 + · · · + xr′+l − 2(r′ + l)) − (x1 + · · · + xr′ − 2r′) + 2l ≤ 2l; also, for
i < r′ we have (xr′+1 + · · · + xn) + (x1 + · · · + xi − 2i) < (xr′+1 + · · · +
xn) + (x1 + · · · + xr′ − 2r′) = (x1 + · · · + xn) − 2r′ = 2(n − r′) + 2 ⇒
xr′+1 + · · · + xn + x1 + · · · + xi ≤ 2(n+ i− r′) + 1, so we can again take
r = r′.
For the second part of the problem, we relabel the sequence so that r = 0
works.
Suppose that the inequalities are strict. We have x1 + x2 + · · ·+ xk ≤ 2k,
k = 1, . . . , n − 1. Now, 2n + 2 = (x1 + · · · + xk) + (xk+1 + · · · + xn) ≤
2k+ xk+1 + · · ·+ xn ⇒ xk+1 + · · ·+ xn ≥ 2(n− k) + 2 > 2(n− k) + 1. So
we cannot begin with xk+1 for any k > 0.
Now assume that there is an equality for some k. There are two cases:
(i) Suppose x1+x2+· · ·+xi ≤ 2i (i = 1, . . . , k) and x1+· · ·+xk = 2k+1,

x1 + · · ·+xk+l ≤ 2(k+ l)+1 (1 ≤ l ≤ n−1−k). For i ≤ k−1 we have
xi+1+· · ·+xn = 2(n+1)−(x1+· · ·+xi) > 2(n−i)+1, so we cannot take
r = i. If there is a j ≥ 1 such that x1 +x2 + · · ·+xk+j ≤ 2(k+j), then
also xk+j+1 + · · ·+xn > 2(n−k− j)+1. If (∀j ≥ 1) x1 + · · ·+xk+j =
2(k + j) + 1, then xn = 3 and xk+1 = · · · = xn−1 = 2. In this case we
directly verify that we cannot take r = k+j. However, we can also take
r = k: for k+l ≤ n−1, xk+1+· · ·+xk+l ≤ 2(k+l)+1−(2k+1) = 2l, also
xk+1 + · · ·+xn = 2(n−k)+1, and moreover x1 ≤ 2, x1 +x2 ≤ 4, . . . .

(ii) Suppose x1 + · · ·+xi ≤ 2i (1 ≤ i ≤ n−2) and x1+ · · ·+xn−1 = 2n−1.
Then we can obviously take r = n − 1. On the other hand, for any
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1 ≤ i ≤ n− 2, xi+1 + · · ·+xn−1 +xn = (x1 + · · ·+xn−1)− (x1 + · · ·+
xi) + 3 > 2(n− i) + 1, so we cannot take another r �= 0.

7. Clearly, each an is positive and
√
an+1 =

√
an

√
a+ 1+

√
an + 1

√
a. Notice

that
√
an+1 + 1 =

√
a+ 1

√
an + 1 +

√
a
√
an. Therefore

(
√
a+ 1 −

√
a)(

√
an + 1 −√

an)

= (
√
a+ 1

√
an + 1 +

√
a
√
an) − (

√
an

√
a+ 1 +

√
an + 1

√
a)

=
√
an+1 + 1 −√

an+1.

By induction,
√
an+1−

√
an =

(√
a+ 1 −

√
a
)n

. Similarly,
√
an+1+

√
an =(√

a+ 1 +
√
a
)n

. Hence,

√
an =

1

2

[(√
a+ 1 +

√
a
)n −

(√
a+ 1 −

√
a
)n
]
,

from which the result follows.

8. Situations in which the condition of the statement is fulfilled are the fol-
lowing:
S1: N1(t) = N2(t) = N3(t)
S2: Ni(t) = Nj(t) = h, Nk(t) = h + 1, where (i, j, k) is a permutation of

the set {1, 2, 3}. In this case the first student to leave must be from
row k. This leads to the situation S1.

S3: Ni(t) = h,Nj(t) = Nk(t) = h+ 1, ((i, j, k) is a permutation of the set
{1, 2, 3}). In this situation the first student leaving the room belongs
to row j (or k) and the second to row k (or j). After this we arrive at
the situation S1.

Hence, the initial situation is S1 and after each triple of students leaving
the room the situation S1 must recur. We shall compute the probability
Ph that from a situation S1 with 3h students in the room (h ≤ n) one
arrives at a situation S1 with 3(h− 1) students in the room:

Ph =
(3h) · (2h) · h

(3h) · (3h− 1) · (3h− 2)
=

3!h3

3h(3h− 1)(3h− 2)
.

Since the room becomes empty after the repetition of n such processes,
which are independent, we obtain for the probability sought

P =
n∏

h=1

Ph =
(3!)n(n!)3

(3n)!
.

9. For any triangle of sides a, b, c there exist 3 nonnegative numbers x, y, z
such that a = y+z, b = z+x, c = x+y (these numbers correspond to the
division of the sides of a triangle by the point of contact of the incircle).
The inequality becomes
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(y+ z)2(z+x)(y−x)+ (z+x)2(x+ y)(z− y)+ (x+ y)2(y+ z)(x− z) ≥ 0.

Expanding, we get xy3 + yz3 + zx3 ≥ xyz(x + y + z). This follows from

Cauchy’s inequality (xy3+yz3+zx3)(z+x+y) ≥
(√

xyz(x + y + z)
)2

with
equality if and only if xy3/z = yz3/x = zx3/y, or equivalently x = y = z,
i.e., a = b = c.

10. Choose P (x) = p
q

(
(qx − 1)2n+1 + 1

)
, I = [1/2q, 3/2q]. Then all the coef-

ficients of P are integers, and∣∣∣∣P (x) − p

q

∣∣∣∣ =

∣∣∣∣pq (qx − 1)2n+1

∣∣∣∣ ≤ ∣∣∣∣pq
∣∣∣∣ 1

22n+1
,

for x ∈ I. The desired inequality follows if n is chosen large enough.

11. First suppose that the binary representation of x is finite: x = 0, a1a2 . . . an

=
∑n

j=1 aj2
−j , ai ∈ {0, 1}. We shall prove by induction on n that

f(x) =

n∑
j=1

b0 . . . bj−1aj, where bk =

{
−b if ak = 0,
1 − b if ak = 1.

(Here a0 = 0.) Indeed, by the recursion formula,

a1 = 0 ⇒ f(x) = bf(
∑n−1

j=1 aj+12
−j) = b

∑n−1
j=1 b1 . . . bjaj+1 hence f(x) =∑n−1

j=0 b0 . . . bjaj+1 as b0 = b1 = b;

a1 = 1 ⇒ f(x) = b + (1 − b)f(
∑n−1

j=1 aj+12
−j) =

∑n−1
j=0 b0 . . . bjaj+1, as

b0 = b, b1 = 1 − b.
Clearly, f(0) = 0, f(1) = 1, f(1/2) = b > 1/2. Assume x =

∑n
j=0 aj2

−j ,

and for k ≥ 2, v = x+2−n−k+1, u = x+2−n−k = (v+x)/2. Then f(v) =
f(x) + b0 . . . bnb

k−2 and f(u) = f(x) + b0 . . . bnb
k−1 > (f(v) + f(x))/2.

This means that the point (u, f(u)) lies above the line joining (x, f(x))
and (v, f(v)). By induction, every (x, f(x)), where x has a finite binary
expansion, lies above the line joining (0, 0) and (1/2, b) if 0 < x < 1/2,
or above the line joining (1/2, b) and (1, 1) if 1/2 < x < 1. It follows
immediately that f(x) > x. For the second inequality, observe that

f(x) − x =

∞∑
j=1

(b0 . . . bj−1 − 2−j)aj

<
∞∑

j=1

(bj − 2−j)aj <
∞∑

j=1

(bj − 2−j) =
b

1 − b
− 1 = c.

By continuity, these inequalities also hold for x with infinite binary rep-
resentations.

12. Putting y = x in (1) we see that there exist positive real numbers z such
that f(z) = z (this is true for every z = xf(x)). Let a be any of them.
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Then f(a2) = f(af(a)) = af(a) = a2, and by induction, f(an) = an.
If a > 1, then an → +∞ as n → ∞, and we have a contradiction with
(2). Again, a = f(a) = f(1 · a) = af(1), so f(1) = 1. Then, af(a−1) =
f(a−1f(a)) = f(1) = 1, and by induction, f(a−n) = a−n. This shows that
a �< 1. Hence, a = 1. It follows that xf(x) = 1, i.e., f(x) = 1/x for all x.
This function satisfies (1) and (2), so f(x) = 1/x is the unique solution.

13. Given any coloring of the 3×1983−2 points of the axes, we prove that there
is a unique coloring of E having the given property and extending this
coloring. The first thing to notice is that given any rectangle R1 parallel
to a coordinate plane and whose edges are parallel to the axes, there is an
even number r1 of red vertices on R1. Indeed, let R2 and R3 be two other
rectangles that are translated from R1 orthogonally to R1 and let r2, r3
be the numbers of red vertices on R2 and R3 respectively. Then r1 + r2,
r1 +r3, and r2 +r3 are multiples of 4, so r1 = (r1 +r2 +r1 +r3−r2−r3)/2
is even.
Since any point of a coordinate plane is a vertex of a rectangle whose
remaining three vertices lie on the corresponding axes, this determines
uniquely the coloring of the coordinate planes. Similarly, the coloring of
the inner points of the parallelepiped is completely determined. The solu-
tion is hence 23×1983−2 = 25947.

14. Let Tn be the set of all nonnegative integers whose ternary representations
consist of at most n digits and do not contain a digit 2. The cardinality of
Tn is 2n, and the greatest integer in Tn is 11 . . . 1 = 30 +31 + · · ·+3n−1 =
(3n − 1)/2. We claim that there is no arithmetic triple in Tn. To see
this, suppose x, y, z ∈ Tn and 2y = x + z. Then 2y has only 0’s and
2’s in its ternary representation, and a number of this form can be the
sum of two integers x, z ∈ Tn in only one way, namely x = z = y. But
|T10| = 210 = 1024 and maxT10 = (310 − 1)/2 = 29524 < 30000. Thus the
answer is yes.

15. There is no such set. Suppose M satisfies (a) and (b) and let qn =
|{a ∈ M : a ≤ n}|. Consider the differences b − a, where a, b ∈ M and
10 < a < b ≤ k. They are all positive and less than k, and (b) implies that
they are

(
qk−q10

2

)
different integers. Hence

(
qk−q10

2

)
< k, so qk ≤

√
2k+10.

It follows from (a) that among the numbers of the form a + b, where
a, b ∈ M , a ≤ b ≤ n, or a ≤ n < b ≤ 2n, there are all integers from the
interval [2, 2n+ 1]. Thus

(
qn+1

2

)
+ qn(q2n − qn) ≥ 2n for every n ∈ N. Set

Qk =
√

2k + 10. We have
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qn + 1

2

)
+ qn(q2n − qn) =

1

2
qn +

1

2
qn(2q2n − qn)

≤ 1

2
qn +

1

2
qn(2Q2n − qn)

≤ 1

2
Qn +

1

2
Qn(2Q2n −Qn)

≤ 2(
√

2 − 1)n+ (20 +
√

2/2)
√
n+ 55,

which is less than n for n large enough, a contradiction.

16. Set hn,i(x) = xi + · · · + xn−i, 2i ≤ n. The set F (n) is the set of linear
combinations with nonnegative coefficients of the hn,i’s. This is a convex
cone. Hence, it suffices to prove that hn,ihm,j ∈ F (m+n). Indeed, setting
p = n− 2i and q = m− 2j and assuming p ≤ q we obtain

hn,i(x)hm,j(x) = (xi + · · · + xi+p)(xj + · · · + xj+q) =

n−i+j∑
k=i+j

hm+n,k,

which proves the claim.

17. Set a = minPiPj , b = maxPiPj . We use the following lemma.
Lemma. There exists a disk of radius less than or equal to b/

√
3 containing

all the Pi’s.
Assuming that this is proved, the disks with center Pi and radius a/2 are
disjoint and included in a disk of radius b/

√
3 + a/2; hence comparing

areas,

nπ · a
2

4
< π ·

(
b√
3

+ a/2

)2

and b >
√

3/2 · (
√
n− 1)a.

Proof of the lemma. If a nonobtuse triangle with sides a ≥ b ≥ c has
a circumscribed circle of radius R, we have R = a/(2 sinα) ≤ a/

√
3.

Now we show that there exists a disk D of radius R containing A =
{P1, . . . , Pn} whose border C is such that C ∩A is not included in an
open semicircle, and hence contains either two diametrically opposite
points and R ≤ b/2, or an acute-angled triangle and R ≤ b/

√
3.

Among all disks whose borders pass through three points of A and
that contain all of A, let D be the one of least radius. Suppose that
C ∩ A is contained in an arc of central angle less than 180◦, and
that Pi, Pj are its endpoints. Then there exists a circle through Pi, Pj

of smaller radius that contains A, a contradiction. Thus D has the
required property, and the assertion follows.

18. Let (x0, y0, z0) be one solution of bcx + cay + abz = n (not necessarily
nonnegative). By subtracting bcx0 + cay0 + abz0 = n we get

bc(x− x0) + ca(y − y0) + ab(z − z0) = 0.
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Since (a, b) = (a, c) = 1, we must have a|x−x0 or x−x0 = as. Substituting
this in the last equation gives

bcs+ c(y − y0) + b(z − z0) = 0.

Since (b, c) = 1, we have b|y − y0 or y − y0 = bt. If we substitute this in
the last equation we get bcs+bct+b(z−z0) = 0, or cs+ct+z−z0 = 0, or
z − z0 = −c(s+ t). In x = x0 + as and y = y0 + bt, we can choose s and t
such that 0 ≤ x ≤ a−1 and 0 ≤ y ≤ b−1. If n > 2abc− bc− ca−ab, then
abz = n− bcx− acy > 2abc− ab− bc− ca− bc(a− 1) − ca(b− 1) = −ab
or z > −1, i.e., z ≥ 0. Hence, it is representable as bcx+ cay + abz with
x, y, z ≥ 0.
Now we prove that 2abc−bc−ca−ab is not representable as bcx+cay+abz
with x, y, z ≥ 0. Suppose that bcx+ cay + abz = 2abc− ab− bc− ca with
x, y, z ≥ 0. Then

bc(x+ 1) + ca(y + 1) + ab(z + 1) = 2abc

with x+1, y+1, z+1 ≥ 1. Since (a, b) = (a, c) = 1, we have a|x+1 and thus
a ≤ x+ 1. Similarly b ≤ y+ 1 and c ≤ z+1. Thus bca+ cab+ abc ≤ 2abc,
a contradiction.

19. For all n, there exists a unique polynomial Pn of degree n such that
Pn(k) = Fk for n + 2 ≤ k ≤ 2n + 2 and Pn(2n + 3) = F2n+3 − 1.
For n = 0, we have F1 = F2 = 1, F3 = 2, P0 = 1. Now suppose that
Pn−1 has been constructed and let Pn be the polynomial of degree n
satisfying Pn(X + 2) − Pn(X + 1) = Pn−1(X) and Pn(n + 2) = Fn+2.
(The mapping Rn[X ] → Rn−1[X ]×R, P "→ (Q,P (n+2)), where Q(X) =
P (X + 2) − P (X + 1), is bijective, since it is injective and those two
spaces have the same dimension; clearly degQ = degP − 1.) Thus for
n+2 ≤ k ≤ 2n+2 we have Pn(k+1) = Pn(k)+Fk−1 and Pn(n+2) = Fn+2;
hence by induction on k, Pn(k) = Fk for n+ 2 ≤ k ≤ 2n+ 2 and

Pn(2n+ 3) = F2n+2 + Pn−1(2n+ 1) = F2n+3 − 1.

Finally, P990 is exactly the polynomial P of the terms of the problem, for
P990 − P has degree less than or equal to 990 and vanishes at the 991
points k = 992, . . . , 1982.

20. If (x1, x2, . . . , xn) satisfies the system with parameter a, then (−x1,−x2,
. . . ,−xn) satisfies the system with parameter −a. Hence it is sufficient to
consider only a ≥ 0.
Let (x1, . . . , xn) be a solution. Suppose x1 ≤ a, x2 ≤ a, . . . , xn ≤ a.
Summing the equations we get

(x1 − a)2 + · · · + (xn − a)2 = 0

and see that (a, a, . . . , a) is the only such solution. Now suppose that
xk ≥ a for some k. According to the kth equation,
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xk+1|xk+1| = x2
k − (xk − a)2 = a(2xk − a) ≥ a2,

which implies that xk+1 ≥ a as well (here xn+1 = x1). Consequently, all
x1, x2, . . . , xn are greater than or equal to a, and as above (a, a, . . . , a) is
the only solution.

21. Using the identity

an − bn = (a− b)

n−1∑
m=0

an−m−1bm

with a = k1/n and b = (k − 1)1/n one obtains

1 <
(
k1/n − (k − 1)1/n

)
nk1−1/n for all integers n > 1 and k ≥ 1.

This gives us the inequality k1/n−1 < n
(
k1/n − (k − 1)1/n

)
if n > 1 and

k ≥ 1. In a similar way one proves that n
(
(k + 1)1/n − k1/n

)
< k1/n−1 if

n > 1 and k ≥ 1. Hence for n > 1 and m > 1 it holds that

n
m∑

k=1

(
(k + 1)1/n − k1/n

)
<

m∑
k=1

k1/n−1

< n

m∑
k=2

(
k1/n − (k − 1)1/n

)
+ 1,

or equivalently,

n
(
(m+ 1)1/n − 1

)
<

m∑
k=1

k1/n−1 < n
(
m1/n − 1

)
+ 1.

The choice n = 1983 and m = 21983 then gives

1983 <
21983∑
k=1

k1/1983−1 < 1984.

Therefore the greatest integer less than or equal to the given sum is 1983.

22. Decompose n into n = st, where the greatest common divisor of s and t
is 1 and where s > 1 and t > 1. For 1 ≤ k ≤ n put k = vs + u, where
0 ≤ v ≤ t − 1 and 1 ≤ u ≤ s, and let ak = avs+u be the unique integer
in the set {1, 2, 3, . . . , n} such that vs+ ut− avs+u is a multiple of n. To
prove that this construction gives a permutation, assume that ak1 = ak2 ,
where ki = vis+ ui, i = 1, 2. Then (v1 − v2)s+ (u1 − u2)t is a multiple of
n = st. It follows that t divides (v1 − v2), while |v1 − v2| ≤ t− 1, and that
s divides (u1 − u2), while |u1 − u2| ≤ s− 1. Hence, v1 = v2, u1 = u2, and
k1 = k2. We have proved that a1, . . . , an is a permutation of {1, 2, . . . , n}
and hence
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n∑
k=1

k cos
2πak

n
=

t−1∑
v=0

(
s∑

u=1

(vs+ u) cos

(
2πv

t
+

2πu

s

))
.

Using
∑s

u=1 cos(2πu/s) =
∑s

u=1 sin(2πu/s) = 0 and the additive formu-
las for cosine, one finds that

n∑
k=1

k cos
2πak

n
=

t−1∑
v=0

(
cos

2πv

t

s∑
u=1

u cos
2πu

s
− sin

2πv

t

s∑
u=1

u sin
2πu

s

)

=

(
s∑

u=1

u cos
2πu

s

)(
t−1∑
v=0

cos
2πv

t

)

−
(

s∑
u=1

u sin
2πu

s

)(
t−1∑
v=0

sin
2πv

t

)
= 0.

23. We note that ∠O1KO2 = ∠M1KM2 is equivalent to ∠O1KM1 =
∠O2KM2. Let S be the intersection point of the common tangents, and

let L be the second point of in-
tersection of SK and W1. Since

SO1P1 ∼ 
SP1M1, we have SK ·
SL = SP 2

1 = SO1 · SM1 which
implies that points O1, L,K,M1 lie
on a circle. Hence ∠O1KM1 =
∠O1LM1 = ∠O2KM2.

P1

P2

Q1

Q2

O1 O2M1 M2

K
L

S

24. See the solution of (SL91-15).

25. Suppose the contrary, that R3 = P1 ∪ P2 ∪ P3 is a partition such that
a1 ∈ R+ is not realized by P1, a2 ∈ R+ is not realized by P2 and a3 ∈ R+

not realized by P3, where w.l.o.g. a1 ≥ a2 ≥ a3.
If P1 = ∅ = P2, then P3 = R3, which is impossible.
If P1 = ∅, and X ∈ P2, the sphere centered at X with radius a2 is included
in P3 and a3 ≤ a2 is realized, which is impossible.
If P1 �= ∅, let X1 ∈ P1. The sphere S centered in X1, of radius a1 is
included in P2 ∩ P3. Since a1 ≥ a3, S �⊂ P3. Let X2 ∈ P2 ∩ S. The circle
{Y ∈ S | d(X2, Y ) = a2} is included in P3, but a2 ≤ a1; hence it has
radius r = a2

√
1 − a2

2/(4a
2
1) ≥ a2

√
3/2 and a3 ≤ a2 ≤ a2

√
3 < 2r; hence

a3 is realized by P3.
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4.25 Solutions to the Shortlisted Problems of IMO 1984

1. This is the same problem as (SL83-20).

2. (a) For m = t(t − 1)/2 and n = t(t + 1)/2 we have 4mn − m − n =
(t2 − 1)2 − 1.

(b) Suppose that 4mn−m− n = p2, or equivalently, (4m− 1)(4n− 1) =
4p2 +1. The number 4m−1 has at least one prime divisor, say q, that
is of the form 4k + 3. Then 4p2 ≡ −1 (mod q). However, by Fermat’s
theorem we have

1 ≡ (2p)q−1 =
(
4p2

) q−1
2 ≡ (−1)

q−1
2 (mod q),

which is impossible since (q − 1)/2 = 2k + 1 is odd.

3. From the equality n = d2
6 + d2

7 − 1 we see that d6 and d7 are relatively
prime and d7 | d2

6 − 1 = (d6 − 1)(d6 + 1), d6 | d2
7 − 1 = (d7 − 1)(d7 + 1).

Suppose that d6 = ab, d7 = cd with 1 < a < b, 1 < c < d. Then n has
7 divisors smaller than d7, namely 1, a, b, c, d, ab, ac, which is impossible.
Hence, one of the two numbers d6 and d7 is either a prime p or the square of
a prime p2, where p is not 2. Let it be di, i ∈ {6, 7}; then di | (dj−1)(dj+1)
implies that dj ≡ ±1 (mod di), and consequently (d2

i −1)/dj ≡ ±1 as well.
But either dj or (d2

i − 1)/dj is less than di, and therefore equals di − 1.
We thus conclude that d7 = d6 + 1. Setting d6 = x, d7 = x+ 1 we obtain
that n = x2 + (x+ 1)2 − 1 = 2x(x+ 1) is even.
(i) Assume that one of x, x+ 1 is a prime p. The other one has at most 6

divisors and hence must be of the form 23, 24, 25, 2q, 2q2, 4q, where q
is an odd prime. The numbers 23 and 24 are easily eliminated, while
25 yields the solution x = 31, x + 1 = 32, n = 1984. Also, 2q is
eliminated because n = 4pq then has only 4 divisors less than x; 2q2

is eliminated because n = 4pq2 has at least 6 divisors less than x; 4q
is also eliminated because n = 8pq has 6 divisors less than x.

(ii) Assume that one of x, x+1 is p2. The other one has at most 5 divisors
(p excluded), and hence is of the form 23, 24, 2q, where q is an odd
prime. The number 23 yields the solution x = 8, x + 1 = 9, n = 144,
while 24 is easily eliminated. Also, 2q is eliminated because n = 4p2q
has 6 divisors less than x.

Thus there are two solutions in total: 144 and 1984.

4. Consider the convex n-gonA1A2 . . . An (the indices are considered modulo
n). For any diagonal AiAj we have AiAj +Ai+1Aj+1 > AiAi+1 +AjAj+1.
Summing all such n(n− 3)/2 inequalities, we obtain 2d > (n−3)p, proving
the first inequality.
Let us now prove the second inequality. We notice that for each diagonal
AiAi+j (we may assume w.l.o.g. that j ≤ [n/2]) the following relation
holds:

AiAi+j < AiAi+1 + · · · +Ai+j−1Ai+j . (1)
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If n = 2k + 1, then summing the inequalities (1) for j = 2, 3, . . . , k and
i = 1, 2, . . . , n yields d < (2 + 3 + · · · + k)p = ([n/2] [n+ 1/2] − 2) p/2.
If n = 2k, then summing the inequalities (1) for j = 2, 3, . . . , k − 1,
i = 1, 2, . . . , n and for j = k, i = 1, 2, . . . , k again yields d < (2 + 3 + · · ·+
(k − 1) + k/2)p = 1

2 ([n/2] [n+ 1/2] − 2) p.

5. Let f(x, y, z) = xy + yz + zx − 2xyz. The first inequality follows imme-
diately by adding xy ≥ xyz, yz ≥ xyz, and zx ≥ xyz (in fact, a stronger
inequality xy + yz + zx− 9xyz ≥ 0 holds).
Assume w.l.o.g. that z is the smallest of x, y, z. Since xy ≤ (x+ y)2/4 =
(1 − z)2/4 and z ≤ 1/2, we have

xy + yz + zx− 2xyz = (x+ y)z + xy(1 − 2z)

≤ (1 − z)z +
(1 − z)2(1 − 2z)

4

=
7

27
− (1 − 2z)(1 − 3z)2

108
≤ 7

27
.

6. From the given recurrence we infer fn+1−fn = fn−fn−1+2. Consequently,
fn+1 − fn = (f2 − f1) + 2(n − 1) = c − 1 + 2(n − 1). Summing up for
n = 1, 2, . . . , k − 1 yields the explicit formula

fk = f1 + (k − 1)(c− 1) + (k − 1)(k − 2) = k2 + bk − b,

where b = c−4. Now we easily obtain fkfk+1 = k4 +2(b+1)k3 +(b2 + b+
1)k2 − (b2 + b)k− b. We are looking for an r for which the last expression
equals fr. Setting r = k2 + pk+ q we get by a straightforward calculation
that p = b + 1, q = −b, and r = k2 + (b + 1)k − b = fk + k. Hence
fkfk+1 = ffk+k for all k.

7. It clearly suffices to solve the problem for the remainders modulo 4 (16 of
each kind).
(a) The remainders can be placed as shown in Figure 1, so that they

satisfy the conditions.

1 0 3 2 1 0 3 2
2 3 0 1 2 3 0 1
3 2 1 0 3 2 1 0
0 1 2 3 0 1 2 3
1 0 3 2 1 0 3 2
2 3 0 1 2 3 0 1
3 2 1 0 3 2 1 0
0 1 2 3 0 1 2 3

p
q r s
t

Fig. 1 Fig. 2

(b) Suppose that the required numbering exists. Consider a part of the
chessboard as in Figure 2. By the stated condition, all the numbers
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p + q + r + s, q + r + s + t, p+ q + r + t, p + r + s + t give the same
remainder modulo 4, and so do p, q, r, s. We deduce that all numbers
on black cells of the board, except possibly the two corner cells, give
the same remainder, which is impossible.

8. Suppose that the statement of the problem is false. Consider two arbitrary
circles R = (O, r) and S = (O, s) with 0 < r < s < 1. The point X ∈ R
with α(X) = r(s − r) < 2π satisfies that C(X) = S. It follows that the
color of the point X does not appear on S. Consequently, the set of colors
that appear on R is not the same as the set of colors that appear on S.
Hence any two distinct circles with center at O and radii less than 1 have
distinct sets of colors. This is a contradiction, since there are infinitely
many such circles but only finitely many possible sets of colors.

9. Let us show first that the system has at most one solution. Suppose that
(x, y, z) and (x′, y′, z′) are two distinct solutions and that w.l.o.g. x < x′.
Then the second and third equation imply that y > y′ and z > z′, but
then

√
y − a+

√
z − a >

√
y′ − a+

√
z′ − a, which is a contradiction.

We shall now prove the existence of at least one solution. Let P be an
arbitrary point in the plane and K,L,M points such that PK =

√
a,

PL =
√
b, PM =

√
c, and ∠KPL = ∠LPM = ∠MPK = 120◦.

The lines through K,L,M perpendicular respectively to PK,PL, PM
form an equilateral triangle ABC, where K ∈ BC, L ∈ AC, and
M ∈ AB. Since its area equals AB2

√
3/4 = S�BPC + S�APC +

S�APB = AB
(√

a+
√
b+

√
c
)
/2, it follows that AB = 1. Therefore

x = PA2, y = PB2, and z = PC2 is a solution of the system (indeed,√
y − a +

√
z − a =

√
PB2 − PK2 +

√
PC2 − PK2 = BK + CK = 1,

etc.).

10. Suppose that the product of some five consecutive numbers is a square.
It is easily seen that among them at least one, say n, is divisible neither
by 2 nor 3. Since n is coprime to the remaining four numbers, it is itself a
square of a number m of the form 6k ± 1. Thus n = (6k ± 1)2 = 24r + 1,
where r = k(3k ± 1)/2. Note that neither of the numbers 24r− 1, 24r+ 5
is one of our five consecutive numbers because it is not a square. Hence
the five numbers must be 24r, 24r + 1, . . . , 24r + 4. However, the number
24r + 4 = (6k ± 1)2 + 3 is divisible by 6r + 1, which implies that it is
a square as well. It follows that these two squares are 1 and 4, which is
impossible.

11. Suppose that an integer x satisfies the equation. Then the numbers x −
a1, x− a2, . . . , x− a2n are 2n distinct integers whose product is 1 · (−1) ·
2 · (−2) · · ·n · (−n).
From here it is obvious that the numbers x−a1, x−a2, . . . , x−a2n are some
reordering of the numbers −n,−n + 1, . . . ,−1, 1, . . . , n − 1, n. It follows
that their sum is 0, and therefore x = (a1 + a2 + · · · + a2n)/2n. This is
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the only solution if {a1, a2, . . . , a2n} = {x− n, . . . , x− 1, x+ 1, . . . , x+n}
for some x ∈ N. Otherwise there is no solution.

12. By the binomial formula we have

(a+ b)7 − a7 − b7 = 7ab[(a5 + b5) + 3ab(a3 + b3) + 5a2b2(a+ b)]
= 7ab(a+ b)(a2 + ab+ b2)2.

Thus it will be enough to find a and b such that 7 � a, b and 73 | a2+ab+b2.
Such numbers must satisfy (a + b)2 > a2 + ab+ b2 ≥ 73 = 343, implying
a+ b ≥ 19. Trying a = 1 we easily find the example (a, b) = (1, 18).

13. Let Z be the given cylinder of radius r, altitude h, and volume πr2h = 1, k1

and k2 the circles surrounding its bases, and V the volume of an inscribed
tetrahedron ABCD.
We claim that there is no loss of generality in assuming that A,B,C,D
all lie on k1 ∪ k2. Indeed, if the vertices A,B,C are fixed and D moves
along a segment EF parallel to the axis of the cylinder (E ∈ k1, F ∈ k2),
the maximum distance of D from the plane ABC (and consequently the
maximum value of V ) is achieved either at E or at F . Hence we shall
consider only the following two cases:
(i) A,B ∈ k1 and C,D ∈ k2. Let P,Q be the projections of A,B on

the plane of k2, and R,S the projections of C,D on the plane of
k1, respectively. Then V is one-third of the volume V ′ of the prism
ARBSCPDQ with bases ARBS and CPDQ. The area of the quadri-
lateral ARBS inscribed in k1 does not exceed the area of the square
inscribed therein, which is 2r2. Hence 3V = V ′ ≤ 2r2h = 2/π.

(ii) A,B,C ∈ k1 and D ∈ k2. The area of the triangle ABC does not
exceed the area of an equilateral triangle inscribed in k1, which is

3
√

3r2/4. Consequently, V ≤
√

3
4 r

2h =
√

3
4π < 2

3π .

14. Let M and N be the midpoints of AB and CD, and let M ′, N ′ be their
projections on CD and AB, respectively. We know that MM ′ = AB/,
and hence

SABCD = SAMD +SBMC +SCMD =
1

2
(SABD +SABC)+

1

4
AB ·CD. (1)

The line AB is tangent to the circle with diameter CD if and only if
NN ′ = CD/2, or equivalently,

SABCD = SAND + SBNC + SANB =
1

2
(SBCD + SACD) +

1

4
AB · CD.

By (1), this is further equivalent to SABC + SABD = SBCD + SACD.
But since SABC + SACD = SABD + SBCD = SABCD, this reduces to
SABC = SBCD, i.e., to BC ‖ AD.

15. (a) Since rotation by 60◦ around A transforms the triangle CAF into

EAB, it follows that �(CF,EB) = 60◦. We similarly deduce that
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�(EB,AD) = �(AD,FC) = 60◦. Let S be the intersection point of
BE and AD. Since �CSE = �CAE = 60◦, it follows that EASC is
cyclic. Therefore �(AS, SC) = 60◦ = �(AD,FC), which implies that
S lies on CF as well.

(b) A rotation of EASC around E by 60◦ transforms A into C and S into
a point T for which SE = ST = SC +CT = SC + SA. Summing the
equality SE = SC+SA and the analogous equalities SD = SB+SC
and SF = SA+ SB yields the result.

16. From the first two conditions we can easily conclude that a + d > b + c
(indeed, (d + a)2 − (d − a)2 = (c + b)2 − (c − b)2 = 4ad = 4bc and
d− a > c− b > 0). Thus k > m.
From d = 2k − a and c = 2m − b we get a(2k − a) = b(2m − b), or
equivalently,

(b + a)(b− a) = 2m(b− 2k−ma). (1)

Since 2k−ma is even and b is odd, the highest power of 2 that divides the
right-hand side of (1) is m. Hence (b+ a)(b− a) is divisible by 2m but not
by 2m+1, which implies b+a = 2m1p and b−a = 2m2q, where m1,m2 ≥ 1,
m1 +m2 = m, and p, q are odd.
Furthermore, b = (2m1p+ 2m2q)/2 and a = (2m1p− 2m2q)/2 are odd,
so either m1 = 1 or m2 = 1. Note that m1 = 1 is not possible, since
it would imply that b − a = 2m−1q ≥ 2m−1, although b + c = 2m and
b < c imply that b < 2m−1. Hence m2 = 1 and m1 = m − 1. Now since
a+ b < b+ c = 2m, we obtain a+ b = 2m−1 and b− a = 2q, where q is an
odd integer. Substituting these into (1) and dividing both sides by 2m we
get

q = 2m−2 + q − 2k−ma =⇒ 2k−ma = 2m−2.

Since a is odd and k > m, it follows that a = 1.

Remark. Now it is not difficult to prove that all fourtuplets (a, b, c, d) that
satisfy the given conditions are of the form (1, 2m−1−1, 2m−1+1, 22m−2−
1), where m ∈ N, m ≥ 3.

17. For any m = 0, 1, . . . , n − 1, we shall find the number of permutations
(x1, x2, . . . , xn) with exactly k discordant pairs such that xn = n − m.
This xn is a member of exactly m discordant pairs, and hence the permu-
tation (x1, . . . , xn−1 of the set {1, 2, . . . , n}\{m} must have exactly k−m
discordant pairs: there are d(n− 1, k −m) such permutations. Therefore

d(n, k) = d(n− 1, k) + d(n− 1, k − 1) · · · + d(n− 1, k − n+ 1)

= d(n− 1, k) + d(n, k − 1)

(note that d(n, k) is 0 if k < 0 or k >
(
n
2

)
).

We now proceed to calculate d(n, 2) and d(n, 3). Trivially, d(n, 0) = 1. It
follows that d(n, 1) = d(n− 1, 1) + d(n, 0) = d(n− 1, 1) + 1, which yields
d(n, 1) = d(1, 1) + n− 1 = n− 1.



4.25 Shortlisted Problems 1984 471

Further, d(n, 2) = d(n − 1, 2) + d(n, 1) = d(n − 1, 2) + n − 1 = d(2, 2) +
2 + 3 + · · · + n− 1 = (n2 − n− 2)/2.
Finally, using the known formula 12 + 22 + · · ·+ k2 = k(k+ 1)(2k+ 1)/6,
we have d(n, 3) = d(n − 1, 3) + d(n, 2) = d(n − 1, 3) + (n2 − n − 2)/2 =
d(2, 3) +

∑n
i=3(n

2 − n− 2)/2 = (n3 − 7n+ 6)/6.

18. Suppose that circles k1(O1, r1), k2(O2, r2), and k3(O3, r3) touch the edges
of the angles ∠BAC, ∠ABC, and ∠ACB, respectively. Denote also by
O and r the center and radius of the incircle. Let P be the point of
tangency of the incircle with AB and let F be the foot of the perpendicular
from O1 to OP . From 
O1FO we obtain cot(α/2) = 2

√
rr1/(r − r1)

and analogously cot(β/2) = 2
√
rr2/(r − r2), cot(γ/2) = 2

√
rr3/(r − r3).

We will now use a well-known trigonometric identity for the angles of a
triangle:

cot
α

2
+ cot

β

2
+ cot

γ

2
= cot

α

2
· cot

β

2
· cot

γ

2
.

(This identity follows from tan(γ/2) = cot (α/2 + β/2) and the formula
for the cotangent of a sum.)
Plugging in the obtained cotangents, we get

2
√
rr1

r − r1
+

2
√
rr2

r − r2
+

2
√
rr3

r − r3
=

2
√
rr1

r − r1
· 2

√
rr2

r − r2
· 2

√
rr3

r − r3
⇒

√
r1(r − r2)(r − r3) +

√
r2(r − r1)(r − r3)

+
√
r3(r − r1)(r − r2) = 4r

√
r1r2r3.

For r1 = 1, r2 = 4, and r3 = 9 we get

(r−4)(r−9)+2(r−1)(r−9)+3(r−1)(r−4) = 24r ⇒ 6(r−1)(r−11) = 0.

Clearly, r = 11 is the only viable value for r.

19. First, we shall prove that the numbers in the nth row are exactly the
numbers

1

n
(
n−1

0

) , 1

n
(
n−1

1

) , 1

n
(
n−1

2

) , . . . , 1

n
(
n−1
n−1

) . (1)

The proof of this fact can be done by induction. For small n, the statement
can be easily verified. Assuming that the statement is true for some n, we
have that the kth element in the (n+ 1)st row is, as is directly verified,

1

n
(
n−1
k−1

) − 1

(n+ 1)
(

n
k−1

) =
1

(n+ 1)
(
n
k

) .
Thus (1) is proved. Now the geometric mean of the elements of the nth
row becomes:

1

n n

√(
n−1

0

)
·
(
n−1

1

)
· · ·

(
n−1
n−1

) ≥ 1

n

(
(n−1

0 )+(n−1
1 )+···+(n−1

n−1)
n

) =
1

2n−1
.

The desired result follows directly from substituting n = 1984.
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20. Define the set S = R+ � {1}. The given inequality is equivalent to
ln b/lna < ln (b+ 1)/ln (a+ 1).
If b = 1, it is obvious that each a ∈ S satisfies this inequality. Suppose
now that b is also in S.
Let us define on S a function f(x) = ln (x+ 1)/lnx. Since ln (x + 1) > lnx
and 1/x > 1/x+ 1 > 0, we have

f ′(x) =
ln x
x+1 − ln (x+1)

x

ln2 x
< 0 for all x.

Hence f is always decreasing. We also note that f(x) < 0 for x < 1 and
that f(x) > 0 for x > 1 (at x = 1 there is a discontinuity).
Let us assume b > 1. From ln b/lna < ln (b+ 1)/ln (a+ 1) we get f(b) >
f(a). This holds for b > a or for a < 1.
Now let us assume b < 1. This time we get f(b) < f(a). This holds for
a < b or for a > 1.
Hence all the solutions to loga b < loga+1(b + 1) are {b = 1, a ∈ S},
{a > b > 1}, {b > 1 > a}, {a < b < 1}, and {b < 1 < a}.
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4.26 Solutions to the Shortlisted Problems of IMO 1985

1. Since there are 9 primes (p1 = 2 < p2 = 3 < · · · < p9 = 23) less than 26,

each number xj ∈ M is of the form
∏9

i=1 p
aij

i , where 0 ≤ aij . Now, xjxk

is a square if aij + aik ≡ 0 (mod 2) for i = 1, . . . , 9. Since the number
of distinct ninetuples modulo 2 is 29, any subset of M with at least 513
elements contains two elements with square product. Starting from M
and eliminating such pairs, one obtains (1985 − 513)/2 = 736 > 513
distinct two-element subsets of M each having a square as the product of
elements. Reasoning as above, we find at least one (in fact many) pair of
such squares whose product is a fourth power.

2. The polyhedron has 3 · 12/2 = 18 edges, and by Euler’s formula, 8 vertices.
Let v1 and v2 be the numbers of vertices at which respectively 3 and 6
edges meet. Then v1 + v2 = 8 and 3v1 + 6v2 = 2 · 18, implying that
v1 = 4. Let A,B,C,D be the vertices at which three edges meet. Since
the dihedral angles are equal, all the edges meeting at A, say AE,AF,AG,
must have equal length, say x. (If x = AE = AF �= AG = y, and AEF ,
AFG, and AGE are isosceles, ∠EAF �= ∠FAG, in contradiction to the
equality of the dihedral angles.) It is easy to see that at E, F , and G six
edges meet. One proceeds to conclude that if H is the fourth vertex of
this kind, EFGH must be a regular tetrahedron of edge length y, and
the other vertices A, B, C, and D are tops of isosceles pyramids based on
EFG, EFH , FGH , and GEH . Let the plane through A,B,C meet EF ,
HF , and GF , at E′, H ′, and G′. Then AE′BH ′CG′ is a regular hexagon,
and since x = FA = FE′, we have E′G′ = x and AE′ = x/

√
3. From the

isosceles triangles AEF and FAE′ we obtain finally, with �EFA = α,
y
2x = cosα = 1 − 2 sin2(α/2), x/(2x

√
3) = sin(α/2), and y/x = 5/3.

3. We shall write P ≡ Q for two polynomials P and Q if P (x) − Q(x) has
even coefficients.
We observe that (1 + x)2

m ≡ 1 + x2m

for every m ∈ N. Consequently, for
every polynomial p with degree less than k = 2m, w(p · qk) = 2w(p).
Now we prove the inequality from the problem by induction on in. If
in ≤ 1, the inequality is trivial. Assume it is true for any sequence with
i1 < · · · < in < 2m (m ≥ 1), and let there be given a sequence with
k = 2m ≤ in < 2m+1. Consider two cases.
(i) i1 ≥ k. Then w(qi1 +· · ·+qin) = 2w(qi1−k+· · ·+qin−k) ≥ 2w(qi1−k) =

w(qi1 ).
(ii) i1 < k. Then the polynomial p = qi1 + · · · + qin has the form

p =

k−1∑
i=0

aix
i + (1 + x)k

k−1∑
i=0

bix
i ≡

k−1∑
i=0

[
(ai + bi)x

i + bix
i+k

]
.

Whenever some ai is odd, either ai + bi or bi in the above sum will be
odd. It follows that w(p) ≥ w(qi1 ), as claimed.
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The proof is complete.

4. Let 〈x〉 denote the residue of an integer x modulo n. Also, we write a ∼ b
if a and b receive the same color. We claim that all the numbers 〈ij〉,
i = 1, 2, . . . , n− 1, are of the same color. Since j and n are coprime, this
will imply the desired result.
We use induction on i. For i = 1 the statement is trivial. Assume now
that the statement is true for i = 1, . . . , k − 1. For 1 < k < n we have
〈kj〉 �= j. If 〈kj〉 > j, then by (ii), 〈kj〉 ∼ 〈kj〉−j = 〈(k−1)j〉. If otherwise
〈kj〉 < j, then by (ii) and (i), 〈kj〉 ∼ j − 〈kj〉 ∼ n− j + 〈kj〉 = 〈(k− 1)j〉.
This completes the induction.

5. Let w.l.o.g. circle C have unit radius. For each m ∈ R, the locus of points
M such that f(M) = m is the circle Cm with radius rm = m/(m+ 1),
that is tangent to C at A. Let Om be the center of Cm. We have to show
that if M ∈ Cm and N ∈ Cn, where m,n > 0, then the midpoint P of
MN lies inside the circle C(m+n)/2. This is trivial if m = n, so let m �= n.
For fixed M , P is in the image C′

n of Cn under the homothety with center
M and coefficient 1/2. The center of the circle C′

n is at the midpoint of
OnM . If we let both M and N vary, P will be on the union of circles with
radius rn/2 and centers in the image of Cm under the homothety with
center On and coefficient 1/2. Hence P is not outside the circle centered
at the midpoint OmOn and with radius (rm + rn)/2. It remains to show
that r(m+n)/2 > (rm + rn)/2. But this inequality is easily reduced to
(m− n)2 > 0, which is true.

6. Let us set

xn,i =
i

√
i+

i+1

√
i+ 1 + · · · + n

√
n,

yn,i = xi−1
n+1,i + xi−2

n+1,ixn,i + · · · + xi−1
n,i .

In particular, xn,2 = xn and xn,i = 0 for i > n. We observe that for
n > i > 2,

xn+1,i − xn,i =
xi

n+1,i − xi
n,i

yn,i
=
xn+1,i+1 − xn,i+1

yn,i
.

Since yn,i > ixi−1
n,i ≥ i1+(i−1)/i ≥ i3/2 and xn+1,n+1 − xn,n+1 = n+1

√
n+ 1,

simple induction gives

xn+1 − xn ≤
n+1
√
n+ 1

(n!)3/2
<

1

n!
for n > 2.

The inequality for n = 2 is directly verified.

7. Let ki ≥ 0 be the largest integer such that pki | xi, i = 1, . . . , n, and
yi = xi/p

ki . We may assume that k = k1 + · · · + kn. All the yi must be
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distinct. Indeed, if yi = yj and ki > kj , then xi ≥ pxj ≥ 2xi ≥ 2x1, which
is impossible. Thus y1y2 . . . yn = P/pk ≥ n!.
If equality holds, we must have yi = 1, yj = 2 and yk = 3 for some i, j, k.
Thus p ≥ 5, which implies that either yi/yj ≤ 1/2 or yi/yj ≥ 5/2, which
is impossible. Hence the inequality is strict.

8. Among ten consecutive integers that divide n, there must exist numbers
divisible by 23, 32, 5, and 7. Thus the desired number has the form n =
2α13α25α37α411α5 · · · , where α1 ≥ 3, α2 ≥ 2, α3 ≥ 1, α4 ≥ 1. Since n has
(α1 + 1)(α2 + 1)(α3 + 1) · · · distinct factors, and (α1 + 1)(α2 + 1)(α3 +
1)(α4 + 1) ≥ 48, we must have (α5 + 1) · · · ≤ 3. Hence at most one αj ,
j > 4, is positive, and in the minimal n this must be α5. Checking through
the possible combinations satisfying (α1 + 1)(α2 + 1) · · · (α5 + 1) = 144
one finds that the minimal n is 25 · 32 · 5 · 7 · 11 = 110880.

9. Let −→a ,−→b ,−→c ,−→d denote the vectors
−→
OA,

−−→
OB,

−−→
OC,

−−→
OD respectively. Then

|−→a | = |−→b | = |−→c | = |−→d | = 1. The centroids of the faces are (
−→
b +−→c +

−→
d )/3,

(−→a + −→c +
−→
d )/3, etc., and each of these is at distance 1/3 from P =

(−→a +
−→
b + −→c +

−→
d )/3; hence the required radius is 1/3. To compute |P |

as a function of the edges of ABCD, observe that AB2 = (
−→
b − −→a )2 =

2 − 2−→a · −→b etc. Now

P 2 =
|−→a +

−→
b + −→c +

−→
d |2

9

=
16 − 2(AB2 +BC2 +AC2 +AD2 +BD2 + CD2)

9
.

10. If M is at a vertex of the regular
tetrahedron ABCD (AB = 1), then
one can take M ′ at the center of the
opposite face of the tetrahedron.

Let M be on the face (ABC) of the
tetrahedron, excluding the vertices.
Consider a continuous mapping f
of C onto the surface S of ABCD
that maps m + neıπ/3 for m,n ∈
Z onto A, B, C, D if (m,n) ≡
(1, 1), (1, 0), (0, 1), (0, 0) (mod 2) re-

DB

C A

B

CA

M6

M1

M2

M3

M4

M5

M̂ ′

A C

B

B

AC

spectively, and maps each unit equilateral triangle with vertices of the
form m+neıπ/3 isometrically onto the corresponding face of ABCD. The
point M then has one preimage Mj , j = 1, 2, . . . , 6, in each of the six
preimages of 
ABC having two vertices on the unit circle. The Mj ’s
form a convex centrally symmetric (possibly degenerate) hexagon. Of the
triangles formed by two adjacent sides of this hexagon consider the one,
say M1M2M3, with the smallest radius of circumcircle and denote by M̂ ′
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its circumcenter. Then we can choose M ′ = f(M̂ ′). Indeed, the images of

the segments M1M̂ ′, M2M̂ ′, M3M̂ ′ are three different shortest paths on
S from M to M ′.

11. Let −x1, . . . ,−x6 be the roots of the polynomial. Let sk,i (k ≤ i ≤ 6)
denote the sum of all products of k of the numbers x1, . . . , xi. By Vieta’s
formula we have ak = sk,6 for k = 1, . . . , 6. Since sk,i = sk−1,i−1xi +
sk,i−1, one can compute the ak by the following scheme (the horizontal
and vertical arrows denote multiplications and additions respectively):

x1 → s2,2 → s3,3 → s4,4 → s5,5 → a6

↓ ↓ ↓ ↓ ↓
s1,2 → s2,3 → s3,4 → s4,5 → a5

↓ ↓ ↓ ↓
s1,3 → s2,4 → s3,5 → a4

↓ ↓ ↓
s1,4 → s2,5 → a3

↓ ↓
s1,5 → a2

↓
a1

12. We shall prove by induction on m that Pm(x, y, z) is symmetric and that

(x+ y)Pm(x, z, y + 1) − (x + z)Pm(x, y, z + 1) = (y − z)Pm(x, y, z) (1)

holds for all x, y, z. This is trivial for m = 0. Assume now that it holds
for m = n− 1.
Since obviously Pn(x, y, z) = Pn(y, x, z), the symmetry of Pn will follow
if we prove that Pn(x, y, z) = Pn(x, z, y). Using (1) we have Pn(x, z, y) −
Pn(x, y, z) = (y+z)[(x+y)Pn−1(x, z, y+1)−(x+z)Pn−1(x, y, z+1)]−(y2−
z2)Pn−1(x, y, z) = (y+ z)(y− z)Pn−1(x, y, z)− (y2 − z2)Pn−1(x, y, z) = 0.
It remains to prove (1) for m = n. Using the already established symmetry
we have

(x+ y)Pn(x, z, y + 1) − (x+ z)Pn(x, y, z + 1)

= (x+ y)Pn(y + 1, z, x) − (x+ z)Pn(z + 1, y, x)

= (x+ y)[(y + x+ 1)(z + x)Pn−1(y + 1, z, x+ 1) − x2Pn−1(y + 1, z, x)]

−(x+ z)[(z + x+ 1)(y + x)Pn−1(z + 1, y, x+ 1) − x2Pn−1(z + 1, y, x)]

= (x+ y)(x + z)(y − z)Pn−1(x+ 1, y, z) − x2(y − z)Pn−1(x, y, z)

= (y − z)Pn(z, y, x) = (y − z)Pn(x, y, z),

as claimed.

13. If m and n are relatively prime, there exist positive integers p, q such that
pm = qn + 1. Thus by putting m balls in some boxes p times we can
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achieve that one box receives q + 1 balls while all others receive q balls.
Repeating this process sufficiently many times, we can obtain an equal
distribution of the balls.
Now assume gcd(m,n) > 1. If initially there is only one ball in the boxes,
then after k operations the number of balls will be 1+km, which is never
divisible by n. Hence the task cannot be done.

14. It suffices to prove the existence of a good point in the case of exactly 661
−1’s. We prove by induction on k that in any arrangement with 3k + 2
points k of which are −1’s a good point exists. For k = 1 this is clear by
inspection. Assume that the assertion holds for all arrangements of 3n+2
points and consider an arrangement of 3(n + 1) + 2 points. Now there
exists a sequence of consecutive −1’s surrounded by two +1’s. There is a
point P which is good for the arrangement obtained by removing the two
+1’s bordering the sequence of −1’s and one of these −1’s. Since P is out
of this sequence, clearly the removal either leaves a partial sum as it was
or diminishes it by 1, so P is good for the original arrangement.

Second solution. Denote the number on an arbitrary point by a1, and the
numbers on successive points going in the positive direction by a2, a3, . . .
(in particular, ak+1985 = ak). We define the partial sums s0 = 0, sn =
a1 + a2 + · · · + an for all positive integers n; then sk+1985 = sk + s1985
and s1985 ≥ 663. Since s1985m ≥ 663m and 3 · 663m > 1985(m + 2) + 1
for large m, not all values 0, 1, 2, . . .663m can appear thrice among the
1985(m + 2) + 1 sums s−1985, s−1984, . . . , s1985(m+1) (and none of them
appears out of this set). Thus there is an integral value s > 0 that appears
at most twice as a partial sum, say sk = sl = s, k < l. Then either ak or
al is a good point. Actually, si > s must hold for all i > l, and si < s for
all i < k (otherwise, the sum s would appear more than twice). Also, for
the same reason there cannot exist indices p, q between k and l such that
sp > s and sq < s; i.e., for k < p < l, sp’s are either all greater than or
equal to s, or smaller than or equal to s. In the former case ak is good,
while in the latter al is good.

15. There is no loss of generality if
we assume K = ABCD, K ′ =
AB′C′D′, and that K ′ is obtained
from K bya clockwise rotation
around A by φ, 0 ≤ φ ≤ π/4. Let
C′D′, B′C′, and the parallel to AB
through D′ meet the line BC at E,
F , and G respectively. Let us now
choose points E′ ∈ AB′, G′ ∈ AB,
C′′ ∈ AD′, and E′′ ∈ AD such that A

B

B′

C

C′

C′′

D

D′

D′′

E

E′

E′′

F
G

G′

H

H ′

1

2

2

3

3

4

4

5

5

the triangles AE′G′ and AC′′E′′ are translates of the triangles D′EG
and FC′E respectively. Since AE′ = D′E and AC′′ = FC′, we have
C′′E′′ = C′E = B′E′ and C′′D′ = B′F , which imply that 
E′′C′′D′ is a
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translate of 
E′B′F , and consequently E′′D′ = E′F and E′′D′ ‖ E′F . It
follows that there exist points H ∈ CD, H ′ ∈ BF , and D′′ ∈ E′G′ such
that E′′D′HD is a translate of E′FH ′D′′. The remaining parts of K and
K ′ are the rectangles D′GCH and D′′H ′BG′ of equal area.
We shall now show that two rectangles with parallel sides and equal ar-
eas can be decomposed into translation invariant parts. Let the sides of
the rectangles XY ZT and X ′Y ′Z ′T ′ (XY ‖ X ′Y ′) satisfy X ′Y ′ < XY ,
Y ′Z ′ > Y Z, and X ′Y ′ · Y ′Z ′ = XY · Y Z. Suppose that 2X ′Y ′ > XY
(otherwise, we may cut off congruent rectangles from both the original
ones until we reduce them to the case of 2X ′Y ′ > XY ). Let U ∈ XY
and V ∈ ZT be points such that Y U = TV = X ′Y ′ and W ∈ XV be a
point such that UW ‖ XT . Then translating 
XUW to a triangle V ZR
and 
XV T to a triangle WRS results in a rectangle UY RS congruent
to X ′Y ′Z ′T ′.
Thus we have partitioned K and K ′ into translation-invariant parts. Al-
though not all the parts are triangles, we may simply triangulate them.

16. Let the three circles be α(A, a), β(B, b), and γ(C, c), and assume c ≤ a, b.
We denote by RX,ϕ the rotation around X through an angle ϕ. Let PQR
be an equilateral triangle, say of positive orientation (the case of negatively
oriented 
PQR is analogous), with P ∈ α, Q ∈ β, and R ∈ γ. Then
Q = RP,−60◦(R) ∈ RP,−60◦(γ) ∩ β.
Since the center of RP,−60◦(γ) is RP,−60◦(C) = RC,60◦(P ) and it lies on
RC,60◦(α), the union of circles RP,−60◦(γ) as P varies on α is the annulus
U with center A′ = RC,60◦(A) and radii a− c and a+ c. Hence there is a
solution if and only if U ∩ β is nonempty.

17. The statement of the problem is equivalent to the statement that there is
one and only one a such that 1− 1/n < fn(a) < 1 for all n. We note that
each fn is a polynomial with positive coefficients, and therefore increasing
and convex in R+.
Define xn and yn by fn(xn) = 1 − 1/n and fn(yn) = 1. Since

fn+1(xn) =

(
1 − 1

n

)2

+

(
1 − 1

n

)
1

n
= 1 − 1

n

and fn+1(yn) = 1+1/n, it follows that xn < xn+1 < yn+1 < yn. Moreover,
the convexity of fn together with the fact that fn(x) > x for all x > 0
implies that yn − xn < fn(yn) − fn(xn) = 1/n. Therefore the sequences
have a common limit a, which is the only number lying between xn and
yn for all n. By the definition of xn and yn, the statement immediately
follows.

18. Set yi =
x2

i

xi+1xi+2
, where xn+i = xi. Then

∏n
i=1 yi = 1 and the inequality

to be proved becomes
∑n

i=1
yi

1+yi
≤ n− 1, or equivalently
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n∑
i=1

1

1 + yi
≥ 1.

We prove this inequality by induction on n.
Since 1

1+y + 1
1+y−1 = 1, the inequality is true for n = 2. Assume that it

is true for n− 1, and let there be given y1, . . . , yn > 0 with
∏n

i=1 yi = 1.
Then 1

1+yn−1
+ 1

1+yn
> 1

1+yn−1yn
, which is equivalent to 1 + ynyn−1(1 +

yn + yn−1) > 0. Hence by the inductive hypothesis

n∑
i=1

1

1 + yi
≥

n−2∑
i=1

1

1 + yi
+

1

1 + yn−1yn
≥ 1.

Remark. The constant n − 1 is best possible (take for example xi = ai

with a arbitrarily large).

19. Suppose that for some n > 6 there is a regular n-gon with vertices having
integer coordinates, and that A1A2 . . . An is the smallest such n-gon, of

side length a. If O is the origin and Bi the point such that
−−→
OBi =

−−−−→
Ai−1Ai,

i = 1, 2, . . . , n (where A0 = An), then Bi has integer coordinates and
B1B2 . . . Bn is a regular polygon of side length 2a sin(π/n) < a, which is
impossible.
It remains to analyze the cases n ≤ 6. If P is a regular n-gon with n =
3, 5, 6, then its center C has rational coordinates. We may suppose that C
also has integer coordinates and then rotate P around C thrice through
90◦, thus obtaining a regular 12-gon or 20-gon, which is impossible. Hence
we must have n = 4 which is indeed a solution.

20. Let O be the center of the circle touching the three sides of BCDE and
let F ∈ (ED) be the point such that EF = EB. Then ∠EFB = 90◦ −
∠E/2 = ∠C/2 = ∠OCB, which implies that B,C, F,O lie on a circle. It
follows that ∠DFC = ∠OBC = ∠B/2 = 90◦ − ∠D/2 and consequently
∠DCF = ∠DFC. Hence ED = EF + FD = EB + CD.

Second solution. Let r be the radius of the small circle and let M,N
be the points of tangency of the circle with BE and CD respectively.
Then EM = r cotE, DN = r cotD, MB = r cot(∠B/2) = r tan(∠D/2),
NC = r tan(∠E/2), and ED = EO + OD = r/sinD + r/sinE. The
statement follows from the identity cotx+ tan(x/2) = 1/sinx.

21. Let B1 and C1 be the points on the rays AC and AB respectively such
that XB1 = XC = XB = XC1. Then ∠XB1C = ∠XCB1 = ∠ABC and
∠XC1B = ∠XBC1 = ∠ACB, which imply that B1, X,C1 are collinear
and 
AB1C1 ∼ 
ABC. Moreover, X is the midpoint of B1C1 because
XB1 = XC = XB = XC1, from which we conclude that 
AXC1 ∼

AMC. Therefore ∠BAX = ∠CAM and

AM

AX
=

CM

XC1
=
CM

XC
= cosα.
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22. Assume that 
ABC is acute (the case of an obtuse 
ABC is similar).
Let S and R be the centers of the circumcircles of 
ABC and 
KBN ,
respectively. Since ∠BNK = ∠BAC, the triangles BNK and BAC are
similar. Now we have ∠CBR = ∠ABS = 90◦ − ∠ACB, which gives us
BR ⊥ AC and consequently BR ‖ OS. Similarly BS ⊥ KN implies that
BS ‖ OR. Hence BROS is a parallelogram.
Let L be the point symmetric to B with respect to R. Then RLOS is also
a parallelogram, and since SR ⊥ BM , we obtain OL ⊥ BM . However, we
also have LM ⊥ BM , from which we conclude that O,L,M are collinear
and OM ⊥ BM .

Second solution. The lines BM , NK, and CA are the radical axes of
pairs of the three circles, and hence they

intersect at a single point P . Also,
the quadrilateral MNCP is cyclic.
Let OA = OC = OK = ON = r.
We then have
BM · BP = BN · BC = OB2 − r2,
PM · PB = PN · PK = OP 2 − r2.
It follows that OB2 − OP 2 =
BP (BM − PM) = BM2 − PM2,
which implies that OM ⊥ MB.

A

B

C

K

L

M

N

O
P

R

S
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4.27 Solutions to the Shortlisted Problems of IMO 1986

1. If w > 2, then setting in (i) x = w − 2, y = 2, we get f(w) = f((w −
2)f(w))f(2) = 0. Thus

f(x) = 0 if and only if x ≥ 2.

Now let 0 ≤ y < 2 and x ≥ 0. The LHS in (i) is zero if and only if
xf(y) ≥ 2, while the RHS is zero if and only if x+ y ≥ 2. It follows that
x ≥ 2/f(y) if and only if x ≥ 2 − y. Therefore

f(y) =

{ 2
2−y for 0 ≤ y < 2;

0 for y ≥ 2.

The confirmation that f satisfies the given conditions is straightforward.

2. No. If a were rational, its decimal expansion would be periodic from some
point. Let p be the number of decimals in the period. Since f(102p) has
2np zeros, it contains a full periodic part; hence the period would consist
only of zeros, which is impossible.

3. Let E be the point where the boy turned westward, reaching the shore at
D. Let the ray DE cut AC at F and the shore again at G. Then EF =
AE = x (because AEF is an equilateral triangle) and FG = DE = y.
From AE · EB = DE · EG we obtain x(86 − x) = y(x + y). If x is odd,
then x(86 − x) is odd, while y(x + y) is even. Hence x is even, and so y
must also be even. Let y = 2y1. The above equation can be rewritten as

(x + y1 − 43)2 + (2y1)
2 = (43 − y1)

2.

Since y1 < 43, we have (2y1, 43−y1) = 1, and thus (|x+y1 −43|, 2y1, 43−
y1) is a primitive Pythagorean triple. Consequently there exist integers
a > b > 0 such that y1 = ab and 43 − y1 = a2 + b2. We obtain that
a2 + b2 + ab = 43, which has the unique solution a = 6, b = 1. Hence
y = 12 and x = 2 or x = 72.

Remark. The Diophantine equation x(86−x) = y(x+y) can be also solved
directly. Namely, we have that x(344 − 3x) = (2y + x)2 is a square, and
since x is even, we have (x, 344 − 3x) = 2 or 4. Consequently x, 344 − 3x
are either both squares or both two times squares. The rest is easy.

4. Let x = pαx′, y = pβy′, z = pγz′ with p � x′y′z′ and α ≥ β ≥ γ. From the
given equation it follows that pn(x + y) = z(xy − pn) and consequently
z′ | x + y. Since also pγ | x + y, we have z | x + y, i.e., x + y = qz. The
given equation together with the last condition gives us

xy = pn(q + 1) and x+ y = qz. (1)

Conversely, every solution of (1) gives a solution of the given equation.
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For q = 1 and q = 2 we obtain the following classes of n + 1 solutions
each:

q = 1 : (x, y, z) = (2pi, pn−i, 2pi + pn−i) for i = 0, 1, 2, . . . , n;

q = 2 : (x, y, z) =
(
3pj, pn−j, 3pj+pn−j

2

)
for j = 0, 1, 2, . . . , n.

For n = 2k these two classes have a common solution (2pk, pk, 3pk); oth-
erwise, all these solutions are distinct. One further solution is given by
(x, y, z) =

(
1, pn(pn + 3)/2, p2 + 2

)
, not included in the above classes for

p > 3. Thus we have found 2(n+ 1) solutions.
Another type of solution is obtained if we put q = pk + pn−k. This yields
the solutions

(x, y, z) = (pk, pn + pn−k + p2n−2k, pn−k + 1) for k = 0, 1, . . . , n.

For k < n these are indeed new solutions. So far, we have found 3(n+1)−1
or 3(n + 1) solutions. One more solution is given by (x, y, z) = (p, pn +
pn−1, pn−1 + pn−2 + 1).

5. Suppose that for every a, b ∈ {2, 5, 13, d}, a �= b, the number ab − 1 is a
perfect square. In particular, for some integers x, y, z we have

2d− 1 = x2, 5d− 1 = y2, 13d− 1 = z2.

Since x is clearly odd, d = (x2 + 1)/2 is also odd because 4 � x2 + 1.
It follows that y and z are even, say y = 2y1 and z = 2z1. Hence (z1 −
y1)(z1 +y1) = (z2 − y2)/4 = 2d. But in this case one of the factors z1−y1,
z1 + y1 is odd and the other one is even, which is impossible.

6. There are five such numbers:

69300 = 22 · 32 · 52 · 7 · 11 : 3 · 3 · 3 · 2 · 2 = 108 divisors;
50400 = 25 · 32 · 52 · 7 : 6 · 3 · 3 · 2 = 108 divisors;
60480 = 26 · 33 · 5 · 7 : 7 · 4 · 2 · 2 = 112 divisors;
55440 = 24 · 32 · 5 · 7 · 11 : 5 · 3 · 2 · 2 · 2 = 120 divisors;
65520 = 24 · 32 · 5 · 7 · 13 : 5 · 3 · 2 · 2 · 2 = 120 divisors.

7. Let P (x) = (x − x0)(x − x1) · · · (x − xn)(x − xn+1). Then

P ′(x) =

n+1∑
j=0

P (x)

x− xj
and P ′′(x) =

n+1∑
j=0

∑
k 	=j

P (x)

(x− xj)(x− xk)
.

Therefore

P ′′(xi) = 2P ′(xi)
∑
j 	=i

1

(xi − xj)

for i = 0, 1, . . . , n + 1, and the given condition implies P ′′(xi) = 0 for
i = 1, 2, . . . , n. Consequently,
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x(x− 1)P ′′(x) = (n+ 2)(n+ 1)P (x). (1)

It is easy to observe that there is a unique monic polynomial of degree
n+2 satisfying differential equation (1). On the other hand, the polynomial
Q(x) = (−1)nP (1 − x) also satisfies this equation, is monic, and degQ =
n+ 2. Therefore (−1)nP (1 − x) = P (x), and the result follows.

8. We shall solve the problem in the alternative formulation. Let LG(v) de-
note the length of the longest directed chain of edges in the given graph G
that begins in a vertex v and is arranged decreasingly relative to the num-
bering. By the pigeonhole principle it suffices to show that

∑
v L(v) ≥ 2q

in every such graph. We do this by induction on q.
For q = 1 the claim is obvious. We assume that it is true for q − 1 and
consider a graph G with q edges numbered 1, . . . , q. Let the edge number
q connect vertices u and w. Removing this edge, we get a graph G′ with
q − 1 edges. We then have

LG(u) ≥ LG′(w) + 1, LG(w) ≥ LG′(u) + 1, LG(v) ≥ LG′(v) for other v.

Since
∑
LG′(v) ≥ 2(q − 1) by inductive assumption, it follows that∑

LG(v) ≥ 2(q − 1) + 2 = 2q as desired.

Second solution. Let us place a spider at each vertex of the graph. Let
us now interchange the positions of the two spiders at the endpoints of
each edge, listing the edges increasingly with respect to the numbering.
This way we will move spiders exactly 2q times (two for each edge). Hence
there is a spider that will be moved at least 2q/n times. All that remains
is to notice that the path of each spider consists of edges numbered in
increasing order.

Remark. A chain of the stated length having all vertices distinct does
not necessarily exist. An example is n = 4, q = 6 with the numbering
following the order ab, cd, ac, bd, ad, bc.

9. We shall use induction on the number n of points. The case n = 1 is
trivial. Let us suppose that the statement is true for all 1, 2, . . . , n − 1,
and that we are given a set T of n points.
If there exists a point P ∈ T and a line l that is parallel to an axis and
contains P and no other points of T , then by the inductive hypothesis we
can color the set T \ {P} and then use a suitable color for P . Let us now
suppose that whenever a line parallel to an axis contains a point of T , it
contains another point of T . It follows that for an arbitrary point P0 ∈ T
we can choose points P1, P2, . . . such that PkPk+1 is parallel to the x-axis
for k even, and to the y-axis for k odd. We eventually come to a pair of
integers (r, s) of the same parity, 0 ≤ r < s, such that lines PrPr+1 and
PsPs+1 coincide. Hence the closed polygonal line Pr+1Pr+2 . . . PsPr+1 is of
even length. Thus we may color the points of this polygonal line alternately
and then apply the inductive assumption for the rest of the set T . The
induction is complete.
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Second solution. Let P1, P2, . . . , Pk be the points lying on a line l parallel
to an axis, going from left to right or from up to down. We draw segments
joining P1 with P2, P3 with P4, and generally P2i−1 with P2i. Having this
done for every such line l, we obtain a set of segments forming certain
polygonal lines. If one of these polygonal lines is closed, then it must have
an even number of vertices. Thus, we can color the vertices on each of the
polygonal lines alternately (a point not lying on any of the polygonal lines
may be colored arbitrarily). The obtained coloring satisfies the conditions.

10. The set X = {1, . . . , 1986} splits into triads T1, . . . , T662, where Tj =
{3j − 2, 3j − 1, 3j}.
Let F be the family of all k-element subsets P such that |P ∩ Tj | = 1 or
2 for some index j. If j0 is the smallest such j0, we define P ′ to be the
k-element set obtained from P by replacing the elements of P ∩Tj0 by the
ones following cyclically inside Tj0 . Let s(P ) denote the remainder modulo
3 of the sum of elements of P . Then s(P ), s(P ′), s(P ′′) are distinct, and
P ′′′ = P . Thus the operator ′ gives us a bijective correspondence between
the sets X ∈ F with s(P ) = 0, those with s(P ) = 1, and those with
s(P ) = 2.
If 3 � k is not divisible by 3, then each k-element subset of X belongs to
F , and the game is fair. If 3 | k, then k-element subsets not belonging
to F are those that are unions of several triads. Since every such subset
has the sum of elements divisible by 3, it follows that player A has the
advantage.

11. Let X be a finite set in the plane and lk a line containing exactly k points
of X (k = 1, . . . , n). Then ln contains n points, ln−1 contains at least n−2
points not lying on ln, ln−2 contains at least n− 4 points not lying on ln
or ln−1, etc. It follows that

|X | ≥ g(n) = n+ (n− 2) + (n− 4) + · · · +
(
n− 2

[
n
2

])
.

Hence f(n) ≥ g(n) =
[

n+1
2

] [
n+2

2

]
, where the last equality is easily proved

by induction.
We claim that f(n) = g(n). To prove this, we shall inductively construct
a set Xn of cardinality g(n) with the required property. For n ≤ 2 a
one-point and two-point set satisfy the requirements. Assume that Xn is
a set of g(n) points and that lk is a line containing exactly k points of
Xn, k = 1, . . . , n. Consider any line l not parallel to any of the lk’s and
not containing any point of Xn or any intersection point of the lk. Let l
intersect lk in a point Pk, k = 1, . . . , n, and let Pn+1, Pn+2 be two points
on l other than P1, . . . , Pn. We define Xn+2 = Xn ∪ {P1, . . . , Pn+2}. The
set Xn+2 consists of g(n) + (n + 2) = g(n + 2) points. Since the lines
l, ln, . . . , l2, l1 meet Xn in n + 2, n + 1, . . . , 3, 2 points respectively (and
there clearly exists a line containing only one point of Xn+2), this set also
meets the demands.
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12. We define f(x1, . . . , x5) =
∑5

i=1(xi+1 − xi−1)
2 (x0 = x5, x6 = x1).

Assuming that x3 < 0, according to the rules the lattice vector X =
(x1, x2, x3, x4, x5) changes into Y = (x1, x2 + x3,−x3, x4 + x3, x5). Then

f(Y ) − f(X) = (x2 + x3 − x5)
2 + (x1 + x3)

2 + (x2 − x4)
2

+(x3 + x5)
2 + (x1 − x3 − x4)

2 − (x2 − x5)
2

−(x3 − x1)
2 − (x4 − x2)

2 − (x5 − x3)
2 − (x1 − x4)

2

= 2x3(x1 + x2 + x3 + x4 + x5) = 2x3S < 0.

Thus f strictly decreases after each step, and since it takes only positive
integer values, the number of steps must be finite.

Remark. One could inspect the behavior of g(x) =
∑5

i=1

∑5
j=1 |xi+xi+1+

· · · + xj−1| instead. Then g(Y ) − g(X) = |S + x3| − |S − x3| > 0.

13. Let us consider the infinite integer lattice and assume that having reached
a point (x, n) or (n, y), the particle continues moving east and north fol-
lowing the rules of the game. The required probability pk is equal to the
probability of getting to one of the points E1(n, n+ k), E2(n+ k, n), but
without passing through (n, n+ k − 1) or (n+ k − 1, n). Thus p is equal
to the probability p1 of getting to E1(n, n+ k) via D1(n − 1, n+ k) plus
the probability p2 of getting to E2(n + k, n) via D2(n + k, n − 1). Both
p1 and p2 are easily seen to be equal to

(
2n+k−1

n−1

)
2−2n−k, and therefore

p =
(
2n+k−1

n−1

)
2−2n−k+1.

14. We shall use the following simple fact.
Lemma. If k̂ is the image of a circle k under an inversion centered at a

point Z, and O1, O2 are centers of k and k̂, then O1, O2, and Z are
collinear.

Proof. The result follows immediately from the symmetry with respect
to the line ZO1.

Let I be the center of the inscribed circle i. Since IX · IA = IE2, the
inversion with respect to i takes points A into X , and analogously B,C
into Y, Z respectively. It follows from the lemma that the center of circle
ABC, the center of circle XY Z, and point I are collinear.

15. (a) This is the same problem as SL82-14.
(b) If S is the midpoint of AC, we have B′S = AC cos ∠D

2 sin ∠D , D′S =

AC cos ∠B
2 sin ∠B , B′D′ = AC

∣∣∣ sin(∠B+∠D)
2 sin ∠B sin ∠D

∣∣∣. These formulas are true also

if ∠B > 90◦ or ∠D > 90◦. We similarly obtain that A′′C′′ =

B′D′
∣∣∣ sin(∠A′+∠C′)
2 sin ∠A′ sin ∠C′

∣∣∣ . Therefore

A′′C′′ = AC
sin2(∠A+ ∠C)

4 sin∠A sin ∠B sin ∠C sin∠D
.

16. Let Z be the center of the polygon.
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Suppose that at some moment we
have A ∈ Pi−1Pi and B ∈
PiPi+1, where Pi−1, Pi, Pi+1 are ad-
jacent vertices of the polygon. Since
∠AOB = 180◦ − ∠Pi−1PiPi+1,
the quadrilateral APiBO is cyclic.
Hence ∠APiO = ∠ABO = ∠APiZ,
which means that O ∈ PiZ.

Zi

A

B

O

Z

Pi−1 Pi

Pi+1

Moreover, from OPi = 2r sin ∠PiAO, where r is the radius of circle
APiBO, we obtain that ZPi ≤ OPi ≤ ZPi/cos(π/n). Thus O traces a
segment ZZi as A and B move along Pi−1Pi and PiPi+1 respectively,
where Zi is a point on the ray PiZ with PiZi cos(π/n) = PiZ. When A,B
move along the whole circumference of the polygon, O traces an asterisk
consisting of n segments of equal length emanating from Z and pointing
away from the vertices.

17. We use complex numbers to represent the position of a point in the plane.
For convenience, let A1, A2, A3, A4, A5, . . . be A,B,C,A,B, . . . respec-
tively, and let P0 be the origin. After the kth step, the position of Pk will
be Pk = Ak + (Pk−1 − Ak)u, k = 1, 2, 3, . . . , where u = e4πı/3. We easily
obtain

Pk = (1 − u)(Ak + uAk−1 + u2Ak−2 + · · · + uk−1A1).

The condition P0 ≡ P1986 is equivalent to A1986 +uA1985 + · · ·+u1984A2 +
u1985A1 = 0, which, having in mind that A1 = A4 = A7 = · · · , A2 = A5 =
A8 = · · · , A3 = A6 = A9 = · · · , reduces to

662(A3 + uA2 + u2A1) = (1 + u3 + · · · + u1983)(A3 + uA2 + u2A1) = 0.

It follows that A3 −A1 = u(A1 −A2), and the assertion follows.

Second solution. Let fP denote the rotation with center P through 120◦

clockwise. Let f1 = fA. Then f1(P0) = P1. Let B′ = f1(B), C′ = f1(C),
and f2 = fB′ . Then f2(P1) = P2 and f2(AB

′C′) = A′B′C′′. Finally, let
f3 = fC′′ and f3(A

′B′C′′) = A′′B′′C′′. Then g = f3f2f1 is a translation
sending P0 to P3 and C to C′′. Now P1986 = P0 implies that g662 is the
identity, and thus C = C′′.
LetK be such thatABK is equilateral and positively oriented. We observe
that f2f1(K) = K; therefore the rotation f2f1 satisfies f2f1(P ) �= P for
P �= K. Hence f2f1(C) = C′′ = C implies K = C.

18. We shall use the following criterion for a quadrangle to be circumscribable.
Lemma. The quadrangle AY DZ is circumscribable if and only if DB −

DC = AB −AC.
Proof. Suppose that AY DZ is circumscribable and that the incircle is

tangent to AZ, ZD, DY , Y A at M , N , P , Q respectively. Then
DB−DC = PB−NC = MB−QC = AB−AC. Conversely, assume
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thatDB−DC = AB−AC and let
a tangent from D to the incircle
of the triangle ACZ meet CZ and
CA atD′ �= Z and Y ′ �= A respec-
tively. According to the first part
we have D′B−D′C = AB −AC.
It follows that |D′B − DB| =
|D′C−DC| = DD′, implying that
D′ ≡ D.

A

B C

D

M

N P

Q

X

Y
Z

Let us assume that DZBX and DXCY are circumscribable. Using the
lemma we obtain DC − DA = BC − BA and DA − DB = CA − CB.
Adding these two inequalities yields DC − DB = AC − AB, and the
statement follows from the lemma.

19. Let M andN be the midpoints of segments AB and CD, respectively. The
given conditions imply that 
ABD ∼= 
BAC and 
CDA ∼= 
DCB;
hence MC = MD and NA = NB. It follows that M and N both lie
on the perpendicular bisectors of AB and CD, and consequently MN
is the common perpendicular bisector of AB and CD. Points B and C
are symmetric to A and D with respect to MN . Now if P is a point in
space and P ′ the point symmetric to P with respect to MN , we have
BP = AP ′, CP = DP ′, and thus f(P ) = AP + AP ′ + DP + DP ′. Let
PP ′ intersect MN in Q. Then AP +AP ′ ≥ 2AQ and DP +DP ′ ≥ 2DQ,
from which it follows that f(P ) ≥ 2(AQ + DQ) = f(Q). It remains to
minimize f(Q) with Q moving along the line MN .
Let us rotate point D around MN to a point D′ that belongs to the plane
AMN , on the side of MN opposite to A. Then f(Q) = 2(AQ+D′Q) ≥
AD′, and equality occurs when Q is the intersection of AD′ and MN .
Thus min f(Q) = AD′. We note that 4MD2 = 2AD2 + 2BD2 − AB2 =
2a2 + 2b2 −AB2 and 4MN2 = 4MD2 −CD2 = 2a2 + 2b2 −AB2 −CD2.
Now, AD′2 = (AM +D′N)2 +MN2, which together with AM +D′N =
(a+ b)/2 gives us

AD′2 =
a2 + b2 +AB · CD

2
=
a2 + b2 + c2

2
.

We conclude that min f(Q) =
√

(a2 + b2 + c2)/2.

20. If the faces of the tetrahedron ABCD are congruent triangles, we must
have AB = CD, AC = BD, and AD = BC. Then the sum of angles at
A is ∠BAC + ∠CAD + ∠DAB = ∠BDC + ∠CBD + ∠DCB = 180◦.
We now assume that the sum of angles at each vertex is 180◦. Let
us construct triangles BCD′, CAD′′, ABD′′′ in the plane ABC, exte-
rior to 
ABC, such that 
BCD′ ∼= 
BCD, 
CAD′′ ∼= 
CAD, and

ABD′′′ ∼= 
ABD. Then by the assumption, A ∈ D′′D′′′, B ∈ D′′′D′,
and C ∈ D′D′′. Since also D′′A = D′′′A = DA, etc., A,B,C are the mid-
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points of segments D′′D′′′, D′′′D′, D′D′′ respectively. Thus the triangles
ABC, BCD′, CAD′′, ABD′′′ are congruent, and the statement follows.

21. Since the sum of all edges of ABCD is 3, the statement of the problem is
an immediate consequence of the following statement:
Lemma. Let r be the inradius of a triangle with sides a, b, c. Then a +

b+ c ≥ 6
√

3 · r, with equality if and only if the triangle is equilateral.
Proof. If S and p denotes the area and semiperimeter of the triangle, by

Heron’s formula and the AM–GM inequality we have

pr = S =
√
p(p− a)(p− b)(p− c)

≤

√
p

(
(p− a) + (p− b) + (p− c)

3

)3

=

√
p4

27
=

p2

3
√

3
,

i.e., p ≥ 3
√

3 · r, which is equivalent to the claim.
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4.28 Solutions to the Shortlisted Problems of IMO 1987

1. By (ii), f(x) = 0 has at least one solution, and there is the greatest among
them, say x0. Then by (v), for any x,

0 = f(x)f(x0) = f(xf(x0) + x0f(x) − x0x) = f(x0(f(x) − x)). (1)

It follows that x0 ≥ x0(f(x) − x).
Suppose x0 > 0. By (i) and (iii), since f(x0)− x0 < 0 < f(0)− 0, there is
a number z between 0 and x0 such that f(z) = z. By (1), 0 = f(x0(f(z)−
z)) = f(0) = 1, a contradiction. Hence, x0 < 0. Now the inequality
x0 ≥ x0(f(x) − x) gives f(x) − x ≥ 1 for all x; so, f(1987) ≥ 1988.
Therefore f(1987) = 1988.

2. Let di denote the number of cliques of which person i is a member. Clearly
di ≥ 2. We now distinguish two cases:
(i) For some i, di = 2. Suppose that i is a member of two cliques, Cp

and Cq. Then |Cp| = |Cq| = n, since for each couple other than i and
his/her spouse, one member is in Cp and one in Cq. There are thus
(n− 1)(n− 2) pairs (r, s) of nonspouse persons distinct from i, where
r ∈ Cp, s ∈ Cq. We observe that each such pair accounts for a different
clique. Otherwise, we find two members of Cp or Cq who belong to
one other clique. It follows that k ≥ 2+(n−1)(n−2) ≥ 2n for n ≥ 4.

(ii) For every i, di ≥ 3. Suppose that k < 2n. For i = 1, 2, . . . , 2n as-
sign to person i an indeterminant xi, and for j = 1, 2, . . . , k set
y =

∑
i∈Cj

xi. From linear algebra, we know that if k < 2n, then there
exist x1, x2, . . . , x2n, not all zero, such that y1 = y2 = · · · = yk = 0.
On the other hand, suppose that y1 = y2 = · · · = yk = 0. Let M be
the set of the couples and M ′ the set of all other pairs of persons.
Then

0 =

k∑
j=1

y2
j =

2n∑
i=1

dix
2
i + 2

∑
(i,j)∈M ′

xixj

=

2n∑
i=1

(di − 2)x2
i + (x1 + x2 + · · · + x2n)2 +

∑
(i,j)∈M

(xi − xj)
2

≥
2n∑
i=1

x2
i > 0,

if not all x1, x2, . . . , x2n are zero, which is a contradiction. Hence k ≥
2n.

Remark. The condition n ≥ 4 is essential. For a party attended by 3
couples {(1, 4), (2, 5), (3, 6)}, there is a collection of 4 cliques satisfying
the conditions: {(1, 2, 3), (3, 4, 5), (5, 6, 1), (2, 4, 6)}.
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3. The answer: yes. Set

p(k,m) = k + [1 + 2 + · · · + (k +m)] =
(k +m)2 + 3k +m

2
.

It is obviously of the desired type.

4. Setting x1 =
−−→
AB, x2 =

−−→
AD, x3 =

−→
AE, we have to prove that

‖x1 + x2‖+ ‖x2 + x3‖+ ‖x3 + x1‖ ≤ ‖x1‖+ ‖x2‖+ ‖x3‖+ ‖x1 + x2 + x3‖.

We have

(‖x1‖ + ‖x2‖ + ‖x3‖)2 − ‖x1 + x2 + x3‖2

= 2
∑

1≤i<j≤3

(‖xi‖‖xj‖ − 〈xi, xj〉) =
∑

1≤i<j≤3

[
(‖xi‖ + ‖xj‖)2 − ‖xi + xj‖2

]
=

∑
1≤i<j≤3

(‖xi‖ + ‖xj‖ + ‖xi + xj‖)(‖xi‖ + ‖xj‖ − ‖xi + xj‖).

The following two inequalities are obvious:

‖xi‖ + ‖xj‖ − ‖xi + xj‖ ≥ 0, (1)

‖xi‖ + ‖xj‖ + ‖xi + xj‖ ≤ ‖x1‖ + ‖x2‖ + ‖x3‖ + ‖x1 + x2 + x3‖. (2)

It follows that

(‖x1‖ + ‖x2‖ + ‖x3‖)2 − ‖x1 + x2 + x3‖2

≤
(

3∑
i=1

‖xi‖ +

∥∥∥∥∥
3∑

i=1

xi

∥∥∥∥∥
)⎛⎝2

3∑
i=1

‖xi‖ −
∑

1≤i<j≤3

‖xi + xj‖

⎞⎠ ,

and dividing by the positive number
∑3

i=1 ‖xi‖ +
∥∥∥∑3

i=1 xi

∥∥∥ we obtain

3∑
i=1

‖xi‖ −
∥∥∥∥∥

3∑
i=1

xi

∥∥∥∥∥ ≤ 2

3∑
i=1

‖xi‖ −
∑

1≤i<j≤3

‖xi + xj‖.

The inequality is proven. Let us analyze the cases of equality. If one of
the vectors is null, then equality obviously holds. Suppose that xi �= 0,
i = 1, 2, 3. For every i, j, at least one of (1) and (2) is equality. Equality
in (1) holds if and only if xi and xj are collinear with the same direction,
while in (2) it holds if and only if −xk and x1 + x2 + x3 are collinear with
the same direction. If not all the vectors are collinear, then there are at
least two distinct pairs xi, xj , i < j, for which (2) is an equality, so at least
two of xi are collinear with x1 + x2 + x3, but then so is the third; hence,
the sum x1 + x2 + x3 must be 0. Thus the cases of equality are (a) the
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vectors are collinear with the same direction; (b) the vectors are collinear,
two of them have the same direction, say xi, xj , and ‖xk‖ ≥ ‖xi‖ + ‖xj‖;
(c) one of the vectors is 0; (d) their sum is 0.

Second solution. The following technique, although not quite elementary,
is often used to effectively reduce geometric inequalities of first degree,
like this one, to the one-dimensional case.
Let σ be a fixed sphere with center O. For an arbitrary segment d in
space, and any line l, we denote by πl(d) the length of the projection of d
onto l. Consider the integral of lengths of these projections on all possible
directions of OP , with P moving on the sphere:

∫
σ πOP (d) dσ. It is clear

that this value depends only on the length of d (because of symmetry);
hence ∫

σ

πOP dσ = c · |d| for some constant c �= 0. (1)

Notice that by the one-dimensional case, for any point P ∈ σ,

πOP (x1) + πOP (x2) + πOP (x3) + πOP (x1 + x2 + x3)

≥ πOP (x1 + x2) + πOP (x1 + x3) + πOP (x2 + x3).

By integration on σ, using (1), we obtain

c(‖x1‖+‖x2‖+‖x3‖+‖x1+x2+x3‖) ≥ c(‖x1+x2‖+‖x1+x3‖+‖x2+x3‖).

5. Assuming the notation a = BC, b = AC, c = AB; x = BL, y = CM ,
z = AN , from the Pythagorean theorem we obtain

(a− x)2 + (b− y)2 + (c− z)2 = x2 + y2 + z2

=
x2 + (a− x)2 + y2 + (b − y)2 + z2 + (c− z)2

2
.

Since x2+(a−x)2 = a2/2+(a−2x)2/2 ≥ a2/2 and similarly y2+(b−y)2 ≥
b2/2 and z2 + (c− z)2 ≥ c2/2, we get

x2 + y2 + z2 ≥ a2 + b2 + c2

4
.

Equality holds if and only if P is the circumcenter of the triangle ABC,
i.e., when x = a/2, y = b/2, z = c/2.

6. Suppose w.l.o.g. that a ≥ b ≥ c. Then 1/(b+ c) ≥ 1/(a+ c) ≥ 1/(a+ b).
Chebyshev’s inequality yields

an

b+ c
+

bn

a+ c
+

cn

a+ b
≥ 1

3
(an + bn + cn)

(
1

b+ c
+

1

a+ c
+

1

a+ b

)
. (1)

By the Cauchy-Schwarz inequality we have
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2(a+ b+ c)

(
1

b+ c
+

1

a+ c
+

1

a+ b

)
≥ 9,

and the mean inequality yields (an + bn + cn)/3 ≥ [(a+ b+ c)/3]
n
. We

obtain from (1) that

an

b+ c
+

bn

a+ c
+

cn

a+ b
≥

(
a+ b+ c

3

)n (
1

b+ c
+

1

a+ c
+

1

a+ b

)
≥ 3

2

(
a+ b + c

3

)n−1

=

(
2

3

)n−2

Sn−1.

7. For all real numbers v the following inequality holds:

∑
0≤i<j≤4

(vi − vj)
2 ≤ 5

4∑
i=0

(vi − v)2. (1)

Indeed,∑
0≤i<j≤4

(vi − vj)
2 =

∑
0≤i<j≤4

[(vi − v) − (vj − v)]2

= 5

4∑
i=0

(vi − v)2 −
(

4∑
i=0

(vi − v)

)2

≤ 5

4∑
i=0

(vi − v)2.

Let us first take vi’s, satisfying condition (1), so that w.l.o.g. v0 ≤ v1 ≤
v2 ≤ v3 ≤ v4 ≤ 1 + v0. Defining v5 = 1 + v0, we see that one of the
differences vj+1 − vj , j = 0, . . . , 4, is at most 1/5. Take v = (vj+1 + vj)/2,
and then place the other three vj ’s in the segment [v − 1/2, v + 1/2]. Now
we have |v − vj | ≤ 1/10, |v − vj+1| ≤ 1/10, and |v − vk| ≤ 1/2, for any k
different from j, j + 1. The vi’s thus obtained have the required property.
In fact, using the inequality (1), we obtain

∑
0≤i<j≤4

(vi − vj)
2 ≤ 5

(
2

(
1

10

)2

+ 3

(
1

2

)2
)

= 3.85 < 4.

Remark. The best possible estimate for the right-hand side is 2.

8. (a) Consider

ai = ik + 1, i = 1, 2, . . . ,m; bj = jm+ 1, j = 1, 2, . . . , k.

Assume that mk | aibj − asbt = (ik+1)(jm+ 1)− (sk+1)(tm+1) =
km(ij−st)+m(j− t)+k(i−s). Since m divides this sum, we get that
m | k(i − s), or, together with gcd(k,m) = 1, that i = s. Similarly
j = t, which proves part (a).
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(b) Suppose the opposite, i.e., that all the residues are distinct. Then the
residue 0 must also occur, say at a1b1: mk | a1b1; so, for some a′ and
b′, a′ | a1, b

′ | b1, and a′b′ = mk. Assuming that for some i, s �= i,
a′ | ai − as, we obtain mk = a′b′ | aib1 − asb1, a contradiction. This
shows that a′ ≥ m and similarly b′ ≥ k, and thus from a′b′ = mk we
have a′ = m, b′ = k. We also get (1): all ai’s give distinct residues
modulo m = a′, and all bj ’s give distinct residues modulo k = b′.
Now let p be a common prime divisor of m and k. By (∗), exactly
p−1

p m of ai’s and exactly p−1
p k of bj ’s are not divisible by p. Therefore

there are precisely (p−1)2

p2 mk products aibj that are not divisible by
p, although from the assumption that they all give distinct residues it

follows that the number of such products is p−1
p mk �= (p−1)2

p2 mk. We

have arrived at a contradiction, thus proving (b).

9. The answer is yes. Consider the curve

C = {(x, y, z) | x = t, y = t3, z = t5, t ∈ R}.

Any plane defined by an equation of the form ax+by+cz+d = 0 intersects
the curve C at points (t, t3, t5) with t satisfying ct5 + bt3 + at + d = 0.
This last equation has at least one but only finitely many solutions.

10. Denote by r,R (take w.l.o.g. r < R)
the radii and by A,B the centers
of the spheres S1, S2 respectively.
Let s be the common radius of the
spheres in the ring, C the center of
one of them, say S, and D the foot
of the perpendicular from C to AB.
The centers of the spheres in the
ring form a regular n-gon with cen-
ter D, and thus sin(π/n) = s/CD.
Using Heron’s formula on the trian-
gle ABC, we obtain (r+R)2CD2 =
4rRs(r +R+ s), and hence

A

B

E2

E1

C ED

R

r

s

v

sin2 π

n
=

s2

CD2
=

(r +R)2s

4(r +R+ s)rR
. (1)

Choosing the unit of length so that r + R = 2, for simplicity of writing,
we write (1) as 1/sin2(π/n) = rR (1 + 2/s) . Let now v be half the angle
at the top of the cone. Then clearly R− r = (R+ r) sin v = 2 sin v, giving
us R = 1 + sin v, r = 1 − sin v. It follows that

1

sin2 π
n

=

(
1 +

2

s

)
cos2 v. (2)
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We need to express s as a function of R and r. Let E1, E2, E be collinear
points of tangency of S1, S2, and S with the cone. Obviously, E1E2 =
E1E +E2E, i.e., 2

√
rs+ 2

√
Rs = 2

√
Rr = (R+ r) cos v = 2 cos v. Hence,

cos2 v = s(
√
R+

√
r)2 = s(R+ r + 2

√
Rr) = s(2 + 2 cos v).

Substituting this into (2), we obtain 2 + cos v = 1/sin(π/n). Therefore
1/3 < sin(π/n) < 1/2, and we conclude that the possible values for n are
7, 8, and 9.

11. Let A1 be the set that contains 1, and let the minimal element of A2

be less than that of A3. We shall construct the partitions with required
properties by allocating successively numbers to the subsets that always
obey the rules. The number 1 must go to A1; we show that for every
subsequent number we have exactly two possibilities. Actually, while A2

and A3 are both empty, every successive number can enter either A1 or
A2. Further, when A2 is no longer empty, we use induction on the number
to be placed, denote it by m: if m can enter Ai or Aj but not Ak, and
it enters Ai, then m + 1 can be placed in Ai or Ak, but not in Aj . The
induction step is finished. This immediately gives us that the final answer
is 2n−1.

12. Here all angles will be oriented and measured counterclockwise.

Note that �CA′B = �AB′C =
�BC′A = π/3. Let a′, b′, c′ denote
respectively the inner bisectors of
angles A′, B′, C′ in triangle A′B′C′.
The lines a′, b′, c′ meet at the cen-
troid X of A′B′C′, and �(a′, b′) =
�(b′, c′) = �(c′, a′) = 2π/3. Now
let K,L,M be the points such that
KB = KC, LC = LA, MA = MB,
and �BKC = �CLA = �AMB =
2π/3, and let C1, C2, C3 be the cir-
cles circumscribed about triangles

A

B C
L

M

K
C′

A′

B′

P
X

BKC, CLA, and AMB respectively. These circles are characterized by
C1 = {Z | �BZC = 2π/3}, etc.; hence we deduce that they meet at a
point P such that �BPC = �CPA = �APB = 2π/3 (Torricelli’s point).
Points A′, B′, C′ run over C1 � {P}, C2 � {P}, C3 � {P} respectively. As
for a′, b′, c′, we see that K ∈ a′, L ∈ b′, M ∈ c′, and also that they can take
all possible directions except KP,LP,MP respectively (if K = P , KP is
assumed to be the corresponding tangent at K). Then, since �KXL =
2π/3, X runs over the circle defined by {Z | �KZL = 2π/3}, without
P . But analogously, X runs over the circle {Z | �LZM = 2π/3}, from
which we can conclude that these two circles are the same, both equal to
the circumcircle of KLM , and consequently also that triangle KLM is
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equilateral (which is, anyway, a well-known fact). Therefore, the locus of
the points X is the circumcircle of KLM minus point P .

13. We claim that the points Pi(i, i
2), i = 1, 2, . . . , 1987, satisfy the conditions.

In fact:
(i) PiPj =

√
(i− j)2 + (i2 − j2)2 = |i− j|

√
1 + (i+ j)2.

It is known that for each positive integer n,
√
n is either an integer

or an irrational number. Since i + j <
√

1 + (i+ j)2 < i + j + 1,√
1 + (i+ j)2 is not an integer, it is irrational, and so is PiPj .

(ii) The area A of the triangle PiPjPk, for distinct i, j, k, is given by

A =

∣∣∣∣ i2 + j2

2
(i− j) +

j2 + k2

2
(j − k) +

k2 + i2

2
(k − i)

∣∣∣∣
=

∣∣∣∣(i− j)(j − k)(k − i)

2

∣∣∣∣ ∈ Q � {0},

also showing that this triangle is nondegenerate.

14. Let xn be the total number of counted words of length n, and yn, zn, un,
zn, yn the numbers of counted words of length n starting with 0, 1, 2, 3, 4,
respectively (indeed, by symmetry, words starting with 0 are equally num-
bered as those starting with 4, etc.). We have the clear relations

(1) yn = zn−1; (2) zn = yn−1 + un−1;

(3) un = 2zn−1; (4) xn = 2yn + 2zn + un.

From (1), (2), and (3) we get zn = zn−2 + 2zn−2 = 3zn−2, with z1 = 1,
z2 = 2, which gives

z2n = 2 · 3n−1, z2n+1 = 3n.

Then (1), (3), and (4) obviously imply

y2n = 3n−1, y2n+1 = 2 · 3n−1;
u2n = 2 · 3n−1, u2n+1 = 4 · 3n−1;
x2n = 8 · 3n−1, x2n+1 = 14 · 3n−1;

with the initial number x1 = 5.

15. Since x2
1 + x2

2 + · · · + x2
n = 1, we get by the Cauchy-Schwarz inequality

|x1| + |x2| + · · · + |xn| ≤
√
n(x2

1 + x2
2 + · · · + x2

n) =
√
n.

Hence all kn sums of the form e1x1 + e2x2 + · · · + enxn, with ei ∈
{0, 1, 2, . . . , k−1}, must lie in some closed interval $ of length (k−1)

√
n.

This interval can be covered with kn − 1 closed subintervals of length
k−1

kn−1

√
n. By the pigeonhole principle there must be two of these sums
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lying in the same subinterval. Their difference, which is of the form
e1x1 + e2x2 + · · · + enxn where ei ∈ {0,±1, . . . ,±(k − 1)}, satisfies

|e1x1 + e2x2 + · · · + enxn| ≤
(k − 1)

√
n

kn − 1
.

16. We assume that S = {1, 2, . . . , n}, and use the obvious fact

n∑
k=0

pn(k) = n! (0)

(a) To each permutation π of S we assign an n-vector (e1, e2, . . . , en),
where ei is 1 if i is a fixed point of π, and 0 otherwise. Since exactly
pn(k) of the assigned vectors contain exactly k “1”s, the considered
sum

∑n
k=0 kpn(k) counts all the “1”s occurring in all the n! assigned

vectors. But for each i, 1 ≤ i ≤ n, there are exactly (n − 1)! per-
mutations that fix i; i.e., exactly (n − 1)! of the vectors have ei = 1.
Therefore the total number of “1”s is n · (n− 1)! = n!, implying

n∑
k=0

kpn(k) = n!. (1)

(b) In this case, to each permutation π of S we assign a vector (d1, . . . , dn)
instead, with di = k if i is a fixed point of π, and di = 0 otherwise,
where k is the number of fixed points of π.
Let us count the sum Z of all components di for all the n! permuta-
tions. There are pn(k) such vectors with exactly k components equal
to k, and sums of components equal to k2. Thus, Z =

∑n
k=0 k

2pn(k).
On the other hand, we may first calculate the sum of all components di

for fixed i. In fact, the value di = k > 0 will occur exactly pn−1(k−1)

times, so that the sum of the di’s is
∑n

k=1 kpn−1(k − 1) =
∑n−1

k=0 (k +
1)pn−1(k) = 2(n− 1)!. Summation over i yields

Z =
∑n

k=0 k
2pn(k) = 2n!. (2)

From (0), (1), and (2), we conclude that

n∑
k=0

(k − 1)2pn(k) =

n∑
k=0

k2pn(k) − 2

n∑
k=0

kpn(k) +

n∑
k=0

pn(k) = n!.

Remark. Only the first part of this problem was given on the IMO.

17. The number of 4-colorings of the set M is equal to 41987. Let A be the
number of arithmetic progressions in M with 10 terms. The number of col-
orings containing a monochromatic arithmetic progression with 10 terms
is less than 4A · 41977. So, if A < 49, then there exist 4-colorings with the
required property.
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Now we estimate the value of A. If the first term of a 10-term progression
is k and the difference is d, then 1 ≤ k ≤ 1978 and d ≤

[
1987−k

9

]
; hence

A =

1978∑
k=1

[
1987 − k

9

]
<

1986 + 1985 + · · · + 9

9
=

1995 · 1978

18
< 49.

18. Note first that the statement that some a+ x, a + y, a+ x + y belong to
a class C is equivalent to the following statement:
(1) There are positive integers p, q ∈ C such that p < q ≤ 2p.
Indeed, given p, q, take simply x = y = q − p, a = 2p − q; conversely, if
a, x, y (x ≤ y) exist such that a+ x, a+ y, a+ x+ y ∈ C, take p = a+ y,
q = a+ x+ y: clearly, p < q ≤ 2p.
We will show that h(r) = 2r. Let {1, 2, . . . , 2r} = C1 ∪C2 ∪ · · · ∪Cr be an
arbitrary partition into r classes. By the pigeonhole principle, two among
the r + 1 numbers r, r + 1, . . . , 2r belong to the same class, say i, j ∈ Ck.
If w.l.o.g. i < j, then obviously i < j ≤ 2i, and so by (1) this Ck has the
required property.
On the other hand, we consider the partition

{1, 2, . . . , 2r − t} =

r−t⋃
k=1

{k, k + r} ∪ {r − t+ 1} ∪ · · · ∪ {r}

and prove that (1), and thus also the required property, does not hold. In
fact, none of the classes in the partition contains p and q with p < q ≤ 2p,
because k + r > 2k.

19. The facts given in the problem allow us to draw a triangular pyramid with
angles 2α, 2β, 2γ at the top and lateral edges of length 1/2. At the base
there is a triangle whose side lengths are exactly sinα, sinβ, sin γ. The
area of this triangle does not exceed the sum of areas of the lateral sides,
which equals (sin 2α+ sin 2β + sin 2γ)/8.

20. Let y be the smallest nonnegative integer with y ≤ p− 2 for which f(y) is
a composite number. Denote by q the smallest prime divisor of f(y). We
claim that y < q.
Suppose the contrary, that y ≥ q. Let r be a positive integer such that
y ≡ r (mod q). Then f(y) ≡ f(r) ≡ 0 (mod q), and since q ≤ y ≤ p− 2 ≤
f(r), we conclude that q | f(r), which is a contradiction to the minimality
of y.
Now, we will prove that q > 2y. Suppose the contrary, that q ≤ 2y. Since

f(y) − f(x) = (y − x)(y + x+ 1),

we observe that f(y)− f(q− 1− y) = (2y− q+ 1)q, from which it follows
that f(q− 1− y) is divisible by q. But by the assumptions, q− 1− y < y,
implying that f(q − 1 − y) is prime and therefore equal to q. This is
impossible, because
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f(q − 1 − y) = (q − 1 − y)2 + (q − 1 − y) + p > q + p− y − 1 ≥ q.

Therefore q ≥ 2y + 1. Now, since f(y), being composite, cannot be equal
to q, and q is its smallest prime divisor, we obtain that f(y) ≥ q2. Conse-
quently,

y2 + y + p ≥ q2 ≥ (2y + 1)2 = 4y2 + 4y + 1 ⇒ 3(y2 + y) ≤ p− 1,

and from this we easily conclude that y <
√
p/3, which contradicts the

condition of the problem. In this way, all the numbers

f(0), f(1), . . . , f(p− 2)

must be prime.

21. Let P be the second point of inter-
section of segment BC and the cir-
cle circumscribed about quadrilat-
eral AKLM . Denote by E the in-
tersection point of the linesKN and
BC and by F the intersection point
of the lines MN and BC. Then
∠BCN = ∠BAN and ∠MAL =
∠MPL, as angles on the same arc.
Since AL is a bisector, ∠BCN =
∠BAL = ∠MAL = ∠MPL, and
consequently PM ‖ NC. Similarly

A

B C

N

E

F

K

M

P

we prove KP ‖ BN . Then the quadrilaterals BKPN and NPMC are
trapezoids; hence

SBKE = SNPE and SNPF = SCMF .

Therefore SABC = SAKNM .

22. Suppose that there exists such function f . Then we obtain

f(n+ 1987) = f(f(f(n))) = f(n) + 1987 for all n ∈ N,

and from here, by induction, f(n+ 1987t) = f(n) + 1987t for all n, t ∈ N.
Further, for any r ∈ {0, 1, . . . , 1986}, let f(r) = 1987k + l, k, l ∈ N,
l ≤ 1986. We have

r + 1987 = f(f(r)) = f(l + 1987k) = f(l) + 1987k,

and consequently there are two possibilities:
(i) k = 1 ⇒ f(r) = l + 1987 and f(l) = r;
(ii) k = 0 ⇒ f(r) = l and f(l) = r + 1987;
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in both cases, r �= l. In this way, the set {0, 1, . . . , 1986} decomposes to
pairs {a, b} such that

f(a) = b and f(b) = a+ 1987, or f(b) = a and f(a) = b+ 1987.

But the set {0, 1, . . . , 1986} has an odd number of elements, and cannot
be decomposed into pairs. Contradiction.

23. If we prove the existence of p, q ∈ N such that the roots r, s of

f(x) = x2 − kp · x+ kq = 0

are irrational real numbers with 0 < s < 1 (and consequently r > 1), then
we are done, because from r + s, rs ≡ 0 (mod k) we get rm + sm ≡ 0
(mod k), and 0 < sm < 1 yields the assertion.
To prove the existence of such natural numbers p and q, we can take them
such that f(0) > 0 > f(1), i.e.,

kq > 0 > k(q − p) + 1 ⇒ p > q > 0.

The irrationality of r can be obtained by taking q = p − 1, because the
discriminant D = (kp)2 − 4kp+ 4k, for (kp− 2)2 < D < (kp− 1)2, is not
a perfect square for p ≥ 2.
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4.29 Solutions to the Shortlisted Problems of IMO 1988

1. Assume that p and q are real and b0, b1, b2, . . . is a sequence such that
bn = pbn−1 + qbn−2 for all n > 1. From the equalities bn = pbn−1 + qbn−2,
bn+1 = pbn + qbn−1, bn+2 = pbn+1 + qbn, eliminating bn+1 and bn−1 we
obtain that bn+2 = (p2 +2q)bn− q2bn−2. So the sequence b0, b2, b4, . . . has
the property

b2n = Pb2n−2 +Qb2n−4, P = p2 + 2q, Q = −q2. (1)

We shall solve the problem by induction. The sequence an has p = 2,
q = 1, and hence P = 6, Q = −1.
Let k = 1. Then a0 = 0, a1 = 1, and an is of the same parity as an−2; i.e.,
it is even if and only if n is even.
Let k ≥ 1. We assume that for n = 2km, the numbers an are divisible
by 2k, but divisible by 2k+1 if and only if m is even. We assume also
that the sequence c0, c1, . . . , with cm = am·2k , satisfies the condition cn =
pcn−1−cn−2, where p ≡ 2 (mod 4) (for k = 1 it is true). We shall prove the
same statement for k+ 1. According to (1), c2n = Pc2n−2 − c2n−4, where
P = p2 − 2. Obviously P ≡ 2 (mod 4). Since P = 4s+ 2 for some integer
s, and c2n = 2k+1d2n, c0 = 0, c1 ≡ 2k (mod 2k+1), and c2 = pc1 ≡ 2k+1

(mod 2k+2), we have

c2n = (4s+ 2)2k+1d2n−2 − c2n−4 ≡ c2n−4 (mod 2k+2),

i.e., 0 ≡ c0 ≡ c4 ≡ c8 ≡ · · · and 2k+1 ≡ c2 ≡ c6 ≡ · · · (mod 2k+2), which
proves the statement.

Second solution. The recursion is solved by

an =
1

2
√

2

(
(1 +

√
2)n − (1 −

√
2)n

)
=

(
n

1

)
+ 2

(
n

3

)
+ 22

(
n

5

)
+ · · · .

Let n = 2km with m odd; then for p > 0 the summand

2p

(
n

2p+ 1

)
= 2k+pm

(n− 1) . . . (n− 2p)

(2p+ 1)!
= 2k+p m

2p+ 1

(
n− 1

2p

)
is divisible by 2k+p, because the denominator 2p+ 1 is odd. Hence

an = n+
∑
p>0

2p

(
n

2p+ 1

)
= 2km+ 2k+1N

for some integer N , so that an is exactly divisible by 2k.

Third solution. It can be proven by induction that a2n = 2an(an +an+1).
The required result follows easily, again by induction on k.

2. For polynomials f(x), g(x) with integer coefficients, we use the notation
f(x) ∼ g(x) if all the coefficients of f − g are even. Let n = 2s. It is

immediately shown by induction that (x2 + x + 1)2
s ∼ x2s+1

+ x2s

+ 1,
and the required number for n = 2s is 3.
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Let n = 2s − 1. If s is odd, then n ≡ 1 (mod 3), while for s even, n ≡ 0
(mod 3). Consider the polynomial

Rs(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x+ 1)(x2n−1 + x2n−4 + · · · + xn+3) + xn+1

+xn + xn−1 + (x+ 1)(xn−4 + xn−7 + · · · + 1),
2 � s;

(x+ 1)(x2n−1 + x2n−4 + · · · + xn+2) + xn

+(x+ 1)(xn−3 + xn−6 + · · · + 1),
2 | s.

It is easily checked that (x2+x+1)Rs(x) ∼ x2s+1

+x2s

+1 ∼ (x2+x+1)2
s

,
so thatRs(x) ∼ (x2+x+1)2

s−1. In this case, the number of odd coefficients
is (2s+2 − (−1)s)/3.
Now we pass to the general case. Let the number n be represented in the
binary system as

n = 11 . . . 1︸ ︷︷ ︸
ak

00 . . .0︸ ︷︷ ︸
bk

11 . . .1︸ ︷︷ ︸
ak−1

00 . . .0︸ ︷︷ ︸
bk−1

. . . 11 . . . 1︸ ︷︷ ︸
a1

00 . . . 0︸ ︷︷ ︸
b1

,

bi > 0 (i > 1), b1 ≥ 0, and ai > 0. Then n =
∑k

i=1 2si(2ai − 1), where
si = b1 + a1 + b2 + a2 + · · · + bi, and hence

un(x) = (x2 + x+ 1)n =
k∏

i=1

(x2 + x+ 1)2
si (2ai−1) ∼

k∏
i=1

Rai(x
2si

).

Let Rai(x
2si

) ∼ xri,1 + · · · + xri,di ; clearly ri,j is divisible by 2si and
ri,j ≤ 2si+1(2ai − 1) < 2si+1 , so that for any j, ri,j can have nonzero
binary digits only in some position t, si ≤ t ≤ si+1 − 1. Therefore, in

k∏
i=1

Rai(x
2si

) ∼
k∏

i=1

(xri,1 + · · · + xri,di ) =
k∑

i=1

di∑
pi=1

xr1,p1+r2,p2+···+rk,pk

all the exponents r1,p1 +r2,p2 + · · ·+rk,pk
are different, so that the number

of odd coefficients in un(x) is

k∏
i=1

di =

k∏
i=1

2ai+2 − (−1)ai

3
.

3. Let R be the circumradius, r the inradius, s the semiperimeter, ∆ the
area of ABC and ∆′ the area of A′B′C′. The angles of triangle A′B′C′

are A′ = 90◦ −A/2, B′ = 90◦ − B/2, and C′ = 90◦ − C/2, and hence

∆ = 2R2 sinA sinB sinC

and ∆′ = 2R2 sinA′ sinB′ sinC′ = 2R2 cos
A

2
cos

B

2
cos

C

2
.

Hence,

∆

∆′ =
sinA sinB sinC

cos A
2 cos B

2 cos C
2

= 8 sin
A

2
sin

B

2
sin

C

2
=

2r

R
,
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where we have used that r = AI sin(A/2) = · · · = 4R sin(A/2) · sin(B/2) ·
sin(C/2). Euler’s inequality 2r ≤ R shows that ∆ ≤ ∆′.

Second solution. Let H be orthocenter of triangle ABC, and Ha, Hb, Hc

points symmetric to H with respect to BC,CA,AB, respectively. Since
∠BHaC = ∠BHC = 180◦−∠A, points Ha, Hb, Hc lie on the circumcircle
of ABC, and the area of the hexagon AHcBHaCHb is double the area of
ABC. (1)
Let us apply the analogous result for the triangle A′B′C′. Since its or-
thocenter is the incenter I of ABC, and the point symmetric to I with
respect to B′C′ is the point A, we find by (1) that the area of the hexagon
AC′BA′CB′ is double the area of A′B′C′.
But it is clear that the area of ∆CHaB is less than or equal to the area
of ∆CA′B etc.; hence, the area of AHcBHaCHb does not exceed the area
of AC′BA′CB′. The statement follows immediately.

4. Suppose that the numbers of any two neighboring squares differ by at most
n − 1. For k = 1, 2, . . . , n2 − n, let Ak, Bk, and Ck denote, respectively,
the sets of squares numbered by 1, 2, . . . , k; of squares numbered by k +
n, k + n+ 1, . . . , n2; and of squares numbered by k + 1, . . . , k + n− 1. By
the assumption, the squares from Ak and Bk have no edge in common;
Ck has n − 1 elements only. Consequently, for each k there exists a row
and a column all belonging either to Ak, or to Bk.
For k = 1, it must belong to Bk, while for k = n2 − n it belongs to Ak.
Let k be the smallest index such that Ak contains a whole row and a
whole column. Since Bk−1 has that property too, it must have at least
two squares in common with Ak, which is impossible.

5. Let n = 2k and let A = {A1, . . . , A2k+1} denote the family of sets with
the desired properties. Since every element of their union B belongs to
at least two sets of A, it follows that Aj =

⋃
i	=j Ai ∩ Aj holds for every

1 ≤ j ≤ 2k+1. Since each intersection in the sum has at most one element
and Aj has 2k elements, it follows that every element of Aj , i.e., in general
of B, is a member of exactly two sets.
We now prove that k is even, assuming that the marking described in
the problem exists. We have already shown that for every two indices
1 ≤ j ≤ 2k + 1 and i �= j there exists a unique element contained in both
Ai and Aj . On a 2k × 2k matrix let us mark in the ith column and jth
row for i �= j the number that was joined to the element of B in Ai ∩Aj .
In the ith row and column let us mark the number of the element of B in
Ai ∩A2k+1. In each row from the conditions of the marking there must be
an even number of zeros. Hence, the total number of zeros in the matrix is
even. The matrix is symmetric with respect to its main diagonal; hence it
has an even number of zeros outside its main diagonal. Hence, the number
of zeros on the main diagonal must also be even and this number equals
the number of elements in A2k+1 that are marked with 0, which is k.
Hence k must be even.
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For even k we note that the dimensions of a 2k × 2k matrix are divisible
by 4. Tiling the entire matrix with the 4 × 4 submatrix

Q =

⎡⎢⎢⎣
0 1 0 1
1 0 1 0
0 1 1 0
1 0 0 1

⎤⎥⎥⎦ ,
we obtain a marking that indeed satisfies all the conditions of the problem;
hence we have shown that the marking is possible if and only if k is even.

6. Let ω be the plane through AB, parallel to CD. Define the point trans-
formation f : X "→ X ′ in space as follows. If X ∈ KL, then X ′ = X ;
otherwise, let ωX be the plane through X parallel to ω: then X ′ is the
point symmetric to X with respect to the intersection point of KL with
ωX . Clearly, f(A) = B, f(B) = A, f(C) = D, f(D) = C; hence f maps
the tetrahedron onto itself.
We shall show that f preserves volumes. Let s : X "→ X ′′ denote the
symmetry with respect to KL, and g the transformation mapping X ′′

into X ′; then f = g ◦ s. If points X ′′
1 = s(X1) and X ′′

2 = s(X2) have
the property that X ′′

1X
′′
2 is parallel to KL, then the segments X ′′

1X
′′
2 and

X ′
1X

′
2 have the same length and lie on the same line. Then by Cavalieri’s

principle g preserves volume, and so does f .
Now, if α is any plane containing the line KL, the two parts of the tetra-
hedron on which it is partitioned by α are transformed into each other by
f , and therefore have the same volumes.

Second solution. Suppose w.l.o.g.
that the plane α through KL meets
the interiors of edges AC and BD

at X and Y . Let
−−→
AX = λ

−→
AC and−−→

BY = µ
−−→
BD, for 0 ≤ λ, µ ≤ 1. Then

the vectors
−−→
KX = λ

−→
AC − −−→

AB/2,−−→
KY = µ

−−→
BD+

−−→
AB/2,

−−→
KL =

−→
AC/2+−−→

BD/2 are coplanar; i.e., there ex-
ist real numbers a, b, c, not all zero,
such that

A B

C

D

K

L

X

Y

−→
0 = a

−−→
KX + b

−−→
KY + c

−−→
KL = (λa+ c/2)

−→
AC + (µb+ c/2)

−−→
BD +

b− a

2

−−→
AB.

Since
−→
AC,

−−→
BD,

−−→
AB are linearly independent, we must have a = b and

λ = µ. We need to prove that the volume of the polyhedron KXLYBC,
which is one of the parts of the tetrahedron ABCD partitioned by α,
equals half of the volume V of ABCD. Indeed, we obtain

VKXLY BC = VKXLC + VKBY LC =
1

4
(1 − λ)V +

1

4
(1 + µ)V =

1

2
V.
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7. The algebraic equation x3 − 3x2 + 1 = 0 admits three real roots β, γ, a,
with

−0.6 < β < −0.5, 0.6 < γ < 0.7,
√

8 < a < 3.

Define, for all integers n,

un = βn + γn + an.

It holds that un+3 = 3un+2 − un.
Obviously, 0 < βn +γn < 1 for all n ≥ 2, and we see that un−1 = [an] for
n ≥ 2. It is now a question whether u1788 − 1 and u1988 − 1 are divisible
by 17.
Working modulo 17, we get u0 ≡ 3, u1 ≡ 3, u2 ≡ 9, u3 ≡ 7, u4 ≡
1, . . . , u16 = 3, u17 = 3, u18 = 9. Thus, un is periodic modulo 17, with
period 16. Since 1788 = 16 · 111 + 12, 1988 = 16 · 124 + 4, it follows that
u1788 ≡ u12 ≡ 1 and u1988 ≡ u4 = 1. So, [a1788] and [a1988] are divisible
by 17.

Second solution. The polynomial x3 − 3x2 + 1 allows the factorization
modulo 17 as (x − 4)(x − 5)(x + 6). Hence it is easily seen that un ≡
4n + 5n + (−6)n. Fermat’s theorem gives us 4n ≡ 5n ≡ (−6)n ≡ 1 for
16 | n, and the rest follows easily.

Remark. In fact, the roots of x3 − 3x2 + 1 = 0 are 1
2 sin 10◦ ,

1
2 sin 50◦ , and

− 1
2 sin 70◦ .

8. Consider first the case that the vectors are on the same line. Then if e is a
unit vector, we can write u1 = x1e, . . . , un = xne for scalars xi, |xi| ≤ 1,
with zero sum. It is now easy to permute x1, x2, . . . , xn into z1, z2, . . . zn

so that |z1| ≤ 1, |z1 + z2| ≤ 1, . . . , |z1 + z2 + · · · + zn−1| ≤ 1. Indeed,
suppose w.l.o.g. that z1 = x1 ≥ 0; then we choose z2, . . . , zr from the xi’s
to be negative, until we get to the first r with x1 + x2 + · · · + xr ≤ 0; we
continue successively choosing positive zj ’s from the remaining xi’s until
we get the first partial sum that is positive, and so on. It is easy to verify
that |z1 + z2 + · · · + zj | ≤ 1 for all j = 1, 2, . . . , n.
Now we pass to the general case. Let s be the longest vector that can
be obtained by summing a subset of u1, . . . , um, and assume w.l.o.g.
that s = u1 + · · · + up. Further, let δ and δ′ respectively be the lines
through the origin O in the direction of s and perpendicular to s, and
e, e′ respectively the unit vectors on δ and δ′. Put ui = xie + yie

′,
i = 1, 2, . . . ,m. By the definition of δ and δ′, we have |xi|, |yi| ≤ 1;
x1+· · ·+xm = y1+· · ·+ym = 0; y1+· · ·+yp = yp+1+· · ·+ym = 0; we also
have xp+1, . . . , xm ≤ 0 (otherwise, if xi > 0 for some i, then |s+vi| > |s|),
and similarly x1, . . . , xp ≥ 0. Finally, suppose by the one-dimensional case
that y1, . . . , yp and yp+1, . . . , ym are permuted in such a way that all the
sums y1 + · · · + yi and yp+1 + · · · + yp+i are ≤ 1 in absolute value.
We apply the construction of the one-dimensional case to x1, . . . , xm tak-
ing, as described above, positive zi’s from x1, x2, . . . , xp and negative ones
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from xp+1, . . . , xm, but so that the order is preserved; this way we get a
permutation xσ1 , xσ2 , . . . , xσm . It is then clear that each sum yσ1 + yσ2 +
· · ·+yσk

decomposes into the sum (y1 +y2 + · · ·+yl)+(yp+1 + · · ·+yp+n)
(because of the preservation of order), and that each of these sums is less
than or equal to 1 in absolute value. Thus each sum uσ1 + · · · + uσk

is
composed of a vector of length at most 2 and an orthogonal vector of
length at most 1, and so is itself of length at most

√
5.

9. Let us assume a2+b2

ab+1 = k ∈ N. We then have a2 − kab + b2 = k. Let
us assume that k is not an integer square, which implies k ≥ 2. Now we
observe the minimal pair (a, b) such that a2 −kab+ b2 = k holds. We may
assume w.l.o.g. that a ≥ b. For a = b we get k = (2 − k)a2 ≤ 0; hence we
must have a > b.
Let us observe the quadratic equation x2 − kbx + b2 − k = 0, which has
solutions a and a1. Since a+ a1 = kb, it follows that a1 ∈ Z. Since a > kb
implies k > a+ b2 > kb and a = kb implies k = b2, it follows that a < kb
and thus b2 > k. Since aa1 = b2 − k > 0 and a > 0, it follows that a1 ∈ N
and a1 = b2−k

a < a2−1
a < a . We have thus found an integer pair (a1, b)

with 0 < a1 < a that satisfies the original equation. This is a contradiction
of the initial assumption that (a, b) is minimal. Hence k must be an integer
square.

10. We claim that if the family {A1, . . . , At} separates the n-set N , then
2t ≥ n. The proof goes by induction. The case t = 1 is clear, so suppose
that the claim holds for t − 1. Since At does not separate elements of
its own or its complement, it follows that {A1, . . . , At−1} is separating for
both At andN�At, so that |At|, |N�At| ≤ 2t−1. Then |N | ≤ 2·2t−1 = 2t,
as claimed.
Also, if the set N with N = 2t is separated by {A1, . . . , At}, then (pre-
cisely) one element of N is not covered. To show this, we again use in-
duction. This is trivial for t = 1, so let t ≥ 1. Since A1, . . . , At−1 separate
both At and N �At, N � At must have exactly 2t−1 elements, and thus
one of its elements is not covered by A1, . . . , At−1, and neither is covered
by At. We conclude that a separating and covering family of t subsets can
exist only if n ≤ 2t − 1.
We now construct such subsets for the set N if 2t−1 ≤ n ≤ 2t − 1, t ≥ 1.
For t = 1, put A1 = {1}. In the step from t to t+1, let N = N ′∪N ′′∪{y},
where |N ′|, |N ′′| ≤ 2t−1; let A′

1, . . . , A
′
t be subsets covering and separating

N ′ and A′′
1 , . . . , A

′′
t such subsets for N ′′. Then the subsets Ai = A′

i ∪ A′′
i

(i = 1, . . . , t) and At+1 = N ′′ ∪ {y} obviously separate and cover N .
The answer: t = [log2 n] + 1.

Second solution. Suppose that the sets A1, . . . , At cover and separate N .
Label each element x ∈ N with a string of (x1x2 . . . xt) of 0’s and 1’s,
where xi is 1 when x ∈ Ai, 0 otherwise. Since the Ai’s separate, these
strings are distinct; since they cover, the string (00 . . . 0) does not occur.
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Hence n ≤ 2t −1. Conversely, for 2t−1 ≤ n < 2t, represent the elements of
N in base 2 as strings of 0’s and 1’s of length t. For 1 ≤ i ≤ t, take Ai to
be the set of numbers in N whose binary string has a 1 in the ith place.
These sets clearly cover and separate.

11. The answer is 32. Write the combinations as triples k = (x, y, z), 0 ≤
x, y, z ≤ 7. Define the sets K1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)},
K2 = {(2, 0, 0), (0, 2, 0), (0, 0, 2), (2, 2, 2)}, K3 = {(0, 0, 0), (4, 4, 4)}, and
K = {k = k1 + k2 + k3 | ki ∈ Ki, i = 1, 2, 3}. There are 32 combinations
in K. We shall prove that these combinations will open the safe in every
case.
Let t = (a, b, c) be the right combination. Set k3 = (0, 0, 0) if at least
two of a, b, c are less than 4, and k3 = (4, 4, 4) otherwise. In either case,
the difference t− k3 contains two nonnegative elements not greater than
3. Choosing a suitable k2 we can achieve that t − k3 − k2 contains two
elements that are 0, 1. So, there exists k1 such that t−k3−k2−k1 = t−k
contains two zeros, for k ∈ K. This proves that 32 is sufficient.
Suppose that K is a set of at most 31 combinations. We say that k ∈ K
covers the combination k1 if k and k1 differ in at most one position. One
of the eight sets Mi = {(i, y, z) | 0 ≤ y, z ≤ 7}, i = 0, 1, . . . , 7, contains
at most three elements of K. Suppose w.l.o.g. that this is M0. Further,
among the eight sets Nj = {(0, j, z) | 0 ≤ z ≤ 7}, j = 0, . . . , 7, there are at
least five, say w.l.o.g. N0, . . . , N4, not containing any of the combinations
from K.
Of the 40 elements of the set N = {(0, y, z) | 0 ≤ y ≤ 4, 0 ≤ z ≤ 7}, at
most 5·3 = 15 are covered by K∩M0, and at least 25 aren’t. Consequently,
the intersection ofK with L = {(x, y, z) | 1 ≤ x ≤ 7, 0 ≤ y ≤ 4, 0 ≤ z ≤ 7}
contains at least 25 elements. So K has at most 31 − 25 = 6 elements in
the set P = {(x, y, z) | 0 ≤ x ≤ 7, 5 ≤ y ≤ 7, 0 ≤ z ≤ 7}. This implies
that for some j ∈ {5, 6, 7}, say w.l.o.g. j = 7, K contains at most two
elements in Qj = {(x, y, z) | 0 ≤ x, z ≤ 7, y = j}; denote them by l1, l2.
Of the 64 elements of Q7, at most 30 are covered by l1 and l2. But then
there remain 34 uncovered elements, which must be covered by different
elements of K�Q7, having itself less at most 29 elements. Contradiction.

12. Let E(XY Z) stand for the area of a triangle XY Z. We have

E1

E
=

E(AMR)

E(AMK)
· E(AMK)

E(ABK)
· E(ABK)

E(ABC)
=

MR

MK
· AM
AB

· BK
BC

⇒

(
E1

E

)1/3

≤ 1

3

(
MR

MK
+
AM

AB
+
BK

BC

)
.

We similarly obtain(
E2

E

)1/3

≤ 1

3

(
KR

MK
+
BM

AB
+
CK

BC

)
.
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Therefore (E1/E)
1/3

+ (E2/E)
1/3 ≤ 1, i.e., 3

√
E1 + 3

√
E2 ≤ 3

√
E. Analo-

gously, 3
√
E3 + 3

√
E4 ≤ 3

√
E and 3

√
E5 + 3

√
E6 ≤ 3

√
E; hence

8 6
√
E1E2E3E4E5E6

= 2( 3
√
E1

3
√
E2)

1/2 · 2( 3
√
E3

3
√
E4)

1/2 · 2( 3
√
E5

3
√
E6)

1/2

≤ ( 3
√
E1 + 3

√
E2) · ( 3

√
E3 + 3

√
E4) · ( 3

√
E5 + 3

√
E6) ≤ E.

13. Let AB = c, AC = b, ∠CBA = β, BC = a, and AD = h.
Let r1 and r2 be the inradii of ABD and ADC respectively and O1 and

O2 the centers of the respective in-
circles. We obviously have r1/r2 =
c/b. We also have DO1 =

√
2r1,

DO2 =
√

2r2, and ∠O1DA =
∠O2DA = 45◦. Hence ∠O1DO2 =
90◦ and DO1/DO2 = c/b from
which it follows that 
O1DO2 ∼

BAC.

A

B CD

K

L

O1
O2

P

We now define P as the intersection of the circumcircle of 
O1DO2 with
DA. From the above similarity we have ∠DPO2 = ∠DO1O2 = β =
∠DAC. It follows that PO2 ‖ AC and from ∠O1PO2 = 90◦ it also fol-
lows that PO1 ‖ AB. We also have ∠PO1O2 = ∠PO2O1 = 45◦; hence
∠LKA = ∠KLA = 45◦, and thus AK = AL. From ∠O1KA = ∠O1DA =
45◦, O1A = O1A, and ∠O1KA = ∠O1DA we have 
O1KA ∼= 
O1DA
and hence AL = AK = AD = h. Thus

E

E1
=
ah/2

h2/2
=
a

h
=
a2

ah
=
b2 + c2

bc
≥ 2 .

Remark. It holds that for an arbitrary triangle ABC, AK = AL if and
only if AB = AC or �BAC = 90◦.

14. Consider an array [aij ] of the given property and denote the sums of the
rows and the columns by ri and cj respectively. Among the ri’s and cj ’s,
one element of [−n, n] is missing, so that there are at least n nonnegative
and n nonpositive sums. By permuting rows and columns we can obtain
an array in which r1, . . . , rk and c1, . . . , cn−k are nonnegative. Clearly

n∑
i=1

|ri| +
n∑

j=1

|cj | ≥
n∑

r=−n

|r| − n = n2.

But on the other hand,
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n∑
i=1

|ri| +
n∑

j=1

|cj | =

k∑
i=1

ri −
n∑

i=k+1

ri +

n−k∑
j=1

cj −
n∑

j=n−k+1

cj =

=
∑
i≤k

aij −
∑
i>k

aij +
∑

j≤n−k

aij −
∑

j>n−k

aij =

= 2

k∑
i=1

n−k∑
j=1

aij − 2

n∑
i=k+1

n∑
j=n−k+1

aij ≤ 4k(n− k).

This yields n2 ≤ 4k(n− k), i.e., (n− 2k)2 ≤ 0, and thus n must be even.
We proceed to show by induction that for all even n an array of the given
type exists. For n = 2 the array in Fig. 1 is good. Let such an n × n
array be given for some even n ≥ 2, with c1 = n, c2 = −n + 1, c3 =
n− 2, . . . , cn−1 = 2, cn = −1 and r1 = n− 1, r2 = −n+ 2, . . . , rn−1 = 1,
rn = 0. Upon enlarging this array as indicated in Fig. 2, the positive
sums are increased by 2, the nonpositive sums are decreased by 2, and the
missing sums −1, 0, 1, 2 occur in the new rows and columns, so that the
obtained array (n+ 2) × (n+ 2) is of the same type.

1

1

-1

0

1 -1 1 -1

1 -1 1 -1

-1

1

-1

1

-1

1

-1

1

1

1

-1

0

n × n

Fig. 1 Fig. 2

15. Referring to the description of LA, we have ∠AMN = ∠AHN = 90◦ −
∠HAC = ∠C, and similarly ∠ANM = ∠B. Since the triangle ABC is
acute-angled, the line LA lies inside the angleA. Hence if P = LA∩BC and
Q = LB ∩AC, we get ∠BAP = 90◦ − ∠C; hence AP passes through the
circumcenter O of ∆ABC. Similarly we prove that LB and LC contains
the circumcenter O also. It follows that LA, LB and LC intersect at the
point O.

Remark. Without identifying the point of intersection, one can prove the
concurrence of the three lines using Ceva’s theorem, in usual or trigono-
metric form.

16. Let f(x) =
∑70

k=1
k

x−k . For all integers i = 1, . . . , 70 we have that f(x)
tends to plus infinity as x tends downward to i, and f(x) tends to minus
infinity as x tends upward to i. As x tends to infinity, f(x) tends to 0.
Hence it follows that there exist x1, x2, . . . , x70 such that 1 < x1 < 2 <
x2 < 3 < · · · < x69 < 70 < x70 and f(xi) = 5

4 for all i = 1, . . . , 70. Then

the solution to the inequality is given by S =
⋃70

i=1(i, xi].
For numbers x for which f(x) is well-defined, the equality f(x) = 5

4 is
equivalent to
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p(x) =

70∏
j=1

(x − j) − 4

5

70∑
k=1

k

70∏
j=1
j �=k

(x− j) = 0.

The numbers x1, x2, . . . , x70 are then the zeros of this polynomial. The
sum

∑70
i=1 xi is then equal to minus the coefficient of x69 in p, which

equals
∑70

i=1

(
i+ 4

5 i
)
. Finally,

|S| =

70∑
i=1

(xi − i) =
4

5
·

70∑
i=1

i =
4

5
· 70 · 71

2
= 1988 .

17. Let AC and AD meet BE in R,S, respectively. Then by the conditions
of the problem,

∠AEB = ∠EBD = ∠BDC = ∠DBC = ∠ADB = ∠EAD = α,

∠ABE = ∠BEC = ∠ECD = ∠CED = ∠ACE = ∠BAC = β,

∠BCA = ∠CAD = ∠ADE = γ.

Since ∠SAE = ∠SEA, it follows that AS = SE, and analogously BR =
RA. But BSDC and REDC are parallelograms; hence BS = CD = RE,
giving us BR = SE and AR = AS. Then also AC = AD, because RS ‖
CD. We deduce that 2β = ∠ACD = ∠ADC = 2α, i.e., α = β.
It will be sufficient to show that α = γ, since that will imply α = β = γ =
36◦. We have that the sum of the interior angles of ACD is 4α+γ = 180◦.
We have

sin γ

sinα
=
AE

DE
=
AE

CD
=
AE

RE
=

sin(2α+ γ)

sin(α+ γ)
,

i.e., cosα− cos(α+2γ) = 2 sinγ sin(α+γ) = 2 sinα sin(2α+γ) = cos(α+
γ) − cos(3α + γ). From 4α + γ = 180◦ we obtain − cos(3α + γ) = cosα.
Hence

cos(α+ γ) + cos(α + 2γ) = 2 cos
γ

2
cos

2α+ 3γ

2
= 0,

so that 2α+ 3γ = 180◦. It follows that α = γ.

Second solution. We have ∠BEC = ∠ECD = ∠DEC = ∠ECA =
∠CAB, and hence the trapezoid BAEC is cyclic; consequently, AE =
BC. Similarly AB = ED, and ABCD is cyclic as well. Thus ABCDE is
cyclic and has all sides equal; i.e., it is regular.

18. (i) Define ∠APO = φ and S = AB2 + AC2 + BC2. We calculate PA =

2r cosφ and PB,PC =
√
R2 − r2 cos2 φ±r sinφ. We also have AB2 =

PA2 +PB2, AC2 = PA2 +PC2 and BC = BP +PC. Combining all
these we obtain

S = AB2 +AC2 +BC2 = 2(PA2 + PB2 + PC2 + PB · PC)

= 2(4r2 cos2 φ+ 2(R2 − r2 cos2 φ+ r2 sin2 φ) + R2 − r2)

= 6R2 + 2r2.
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Hence it follows that S is constant; i.e., it does not depend on φ.
(ii) Let B1 and C1 respectively be points such that APBB1 and APCC1

are rectangles. It is evident that B1 and C1 lie on the larger circle and

that
−−→
PU = 1

2

−−→
PB1 and

−−→
PV = 1

2

−−→
PC1. It is evident that we can arrange

for an arbitrary point on the larger circle to be B1 or C1. Hence, the
locus of U and V is equal to the circle obtained when the larger circle
is shrunk by a factor of 1/2 with respect to point P .

19. We will show that f(n) = n for every n (thus also f(1988) = 1988).
Let f(1) = r and f(2) = s. We obtain respectively the following equalities:
f(2r) = f(r + r) = 2; f(2s) = f(s+ s) = 4; f(4) = f(2 + 2) = 4r; f(8) =
f(4+4) = 4s; f(5r) = f(4r+r) = 5; f(r+s) = 3; f(8) = f(5+3) = 6r+s.
Then 4s = 6r + s, which means that s = 2r.
Now we prove by induction that f(nr) = n and f(n) = nr for every
n ≥ 4. First we have that f(5) = f(2 + 3) = 3r + s = 5r, so that the
statement is true for n = 4 and n = 5. Suppose that it holds for n − 1
and n. Then f(n + 1) = f(n − 1 + 2) = (n − 1)r + 2r = (n + 1)r, and
f((n+ 1)r) = f((n− 1)r + 2r) = (n− 1) + 2 = n+ 1. This completes the
induction.
Since 4r ≥ 4, we have that f(4r) = 4r2, and also f(4r) = 4. Then r = 1,
and consequently f(n) = n for every natural number n.

Second solution. f(f(1)+n+m) = f(f(1)+f(f(n)+f(m))) = 1+f(n)+
f(m), so f(n) + f(m) is a function of n + m. Hence f(n + 1) + f(1) =
f(n)+f(2) and f(n+1)−f(n) = f(2)−f(1), implying that f(n) = An+B
for some constants A,B. It is easy to check that A = 1, B = 0 is the only
possibility.

20. Suppose that An = {1, 2, . . . , n} is partitioned into Bn and Cn, and that
neither Bn nor Cn contains 3 distinct numbers one of which is equal to
the product of the other two. If n ≥ 96, then the divisors of 96 must be
split up. Let w.l.o.g. 2 ∈ Bn. There are four cases.
(i) 3 ∈ Bn, 4 ∈ Bn. Then 6, 8, 12 ∈ Cn ⇒ 48, 96 ∈ Bn. A contradiction

for 96 = 2 · 48.
(ii) 3 ∈ Bn, 4 ∈ Cn. Then 6 ∈ Cn, 24 ∈ Bn, 8, 12, 48 ∈ Cn. A contradiction

for 48 = 6 · 8.
(iii) 3 ∈ Cn, 4 ∈ Bn. Then 8 ∈ Cn, 24 ∈ Bn, 6, 48 ∈ Cn. A contradiction

for 48 = 6 · 8.
(iv) 3 ∈ Cn, 4 ∈ Cn. Then 12 ∈ Bn, 6, 24 ∈ Cn. A contradiction for

24 = 4 · 6.
If n = 95, there is a very large number of ways of partitioning An.
For example, Bn = {1, p, p2, p3q2, p4q, p2qr | p, q, r = distinct primes},
Cn = {p3, p4, p5, p6, pq, p2q, p3q, p2q2, pqr | p, q, r = distinct primes}.
Then B95 = {1, 2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41,
43, 47, 48, 49, 53, 59, 60, 61, 67, 71, 72, 73, 79, 80, 83, 84, 89, 90}.
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21. Let X be the set of all ordered triples a = (a1, a2, a3) for ai ∈ {0, 1, . . . , 7}.
Write a ≺ b if ai ≤ bi for i = 1, 2, 3 and a �= b. Call a subset Y ⊂ X
independent if there are no a, b ∈ Y with a ≺ b. We shall prove that an
independent set contains at most 48 elements.
For j = 0, 1, . . . , 21 let Xj = {(a1, a2, a3) ∈ X | a1 +a2 +a3 = j}. If x ≺ y
and x ∈ Xj , y ∈ Xj+1 for some j, then we say that y is a successor of x,
and x a predecessor of y.
Lemma. If A is an m-element subset of Xj and j ≤ 10, then there are at

least m distinct successors of the elements of A.
Proof. For k = 0, 1, 2, 3 let Xj,k = {(a1, a2, a3) ∈ Xj | min(a1, a2, a3, 7 −

a1, 7 − a2, 7 − a3) = k}. It is easy to verify that every element of Xj,k

has at least two successors in Xj+1,k and every element of Xj+1,k has
at most two predecessors in Xj,k. Therefore the number of elements
of A ∩ Xj,k is not greater than the number of their successors. Since
Xj is a disjoint union of Xj,k, k = 0, 1, 2, 3, the lemma follows.

Similarly, elements of an m-element subset of Xj , j ≥ 11, have at least m
predecessors.
Let Y be an independent set, and let p, q be integers such that p < 10 < q.
We can transform Y by replacing all the elements of Y ∩ Xp with their
successors, and all the elements of Y ∩Xq with their predecessors. After
this transformation Y will still be independent, and by the lemma its size
will not be reduced. Every independent set can be eventually transformed
in this way into a subset of X10, and X10 has exactly 48 elements.

22. Set X =
∑p

i=1 xi and w.l.o.g. assume that X ≥ 0 (if (x1, . . . , xp) is a
solution, then (−x1, . . . ,−xp) is a solution too). Since x2 ≥ x for all
integers x, it follows that

∑p
i=1 x

2
i ≥ X .

If the last inequality is an equality, then all xi’s are 0 or 1; then, taking
that there are a 1’s, the equation becomes 4p+ 1 = 4(a+1)+ 4

a−1 , which
forces p = 6 and a = 5.
Otherwise, we have X + 1 ≤

∑p
i=1 x

2
i = 4

4p+1X
2 + 1, so X ≥ p+ 1. Also,

by the Cauchy–Schwarz inequality, X2 ≤ p
∑p

i=1 x
2
i = 4p

4p+1X
2 + p, so

X2 ≤ 4p2 + p and X ≤ 2p. Thus 1 ≤ X/p ≤ 2. However,

p∑
i=1

(
xi −

X

p

)2

=
∑

x2
i − 2X

p

∑
xi +

X2

p

=
∑

x2
i − p

X2

p2
= 1 − X2

p(4p+ 1)
< 1,

and we deduce that − 1 < xi − X/p < 1 for all i. This finally gives
xi ∈ {1, 2}. Suppose there are b 2’s. Then 3b+ p = 4(b+ p)2/(4p+ 1) + 1,
so p = b+ 1/(4b− 3), which leads to p = 2, b = 1.
Thus there are no solutions for any p �∈ {2, 6}.
Remark. The condition p = n(n+1), n ≥ 3, was unnecessary in the official
solution, too (its only role was to simplify showing that X �= p− 1).
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23. Denote by R the intersection point of lines AQ and BC. We know that
BR : RC = c : b and AQ : QR = (b + c) : a. By applying Stewart’s
theorem to ∆PBC and ∆PAR we obtain

a · AP 2 + b ·BP 2 + c · CP 2 = aPA2 + (b+ c)PR2 + (b + c)RB · RC
= (a+ b+ c)QP 2 + (b+ c)RB ·RC + (a+ b+ c)QA ·QR.

(1)
On the other hand, putting P = Q into (1), we get that

a ·AQ2 + b ·BQ2 + c · CQ2 = (b+ c)RB · RC + (a+ b+ c)QA ·QR,

and the required statement follows.

Second solution. At vertices A,B,C place weights equal to a, b, c in some
units respectively, so that Q is the center of gravity of the system. The
left side of the equality to be proved is in fact the moment of inertia of the
system about the axis through P and perpendicular to the plane ABC.
On the other side, the right side expresses the same, due to the parallel
axes theorem.

Alternative approach. Analytical geometry. The fact that all the variable
segments appear squared usually implies that this is a good approach.
Assign coordinates A(xa, ya), B(xb, yb), C(xc, yc), and P (x, y), use that
(a + b + c)Q = aA + bB + cC, and calculate. Alternatively, differentiate
f(x, y) = a · AP 2 + b · BP 2 + c · CP 2 − (a+ b + c)QP 2 and show that it
is constant.

24. The first condition means in fact that ak−ak+1 is decreasing. In particular,
if ak − ak+1 = −δ < 0, then ak − ak+m = (ak − ak+1) + · · · + (ak+m−1 −
ak+m) < −mδ, which implies that ak+m > ak + mδ, and consequently
ak+m > 1 for large enough m, a contradiction. Thus ak − ak+1 ≥ 0 for all
k.
Suppose that ak − ak+1 > 2/k2. Then for all i < k, ai − ai+1 > 2/k2, so
that ai−ak+1 > 2(k + 1 − i)/k2, i.e., ai > 2(k + 1 − i)/k2, i = 1, 2, . . . , k.
But this implies a1+a2+· · ·+ak > 2/k2+4/k2+· · ·+2k/k2 = k(k + 1)/k2,
which is impossible. Therefore ak − ak+1 ≤ 2/k2 for all k.

25. Observe that 1001 = 7 · 143, i.e., 103 = −1 + 7a, a = 143. Then by the
binomial theorem, 1021 = (−1 + 7a)7 = −1 + 72b for some integer b,
so that we also have 1021n ≡ −1 (mod 49) for any odd integer n > 0.
Hence N = 9

49 (1021n + 1) is an integer of 21n digits, and N(1021n + 1) =(
3
7 (1021n + 1)

)2
is a double number that is a perfect square.

26. The overline in this problem will exclusively denote binary representa-
tion. We will show by induction that if n = ckck−1 . . . c0 =

∑k
i=0 ci2

i is
the binary representation of n (ci ∈ {0, 1}), then f(n) = c0c1 . . . ck =∑k

i=0 ci2
k−i is the number whose binary representation is the palindrome

of the binary representation of n. This evidently holds for n ∈ {1, 2, 3}.
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Let us assume that the claim holds for all numbers up to n− 1 and show
it holds for n = ckck−1 . . . c0. We observe three cases:
(i) c0 = 0 ⇒ n = 2m ⇒ f(n) = f(m) = 0c1 . . . ck = c0c1 . . . ck.
(ii) c0 = 1, c1 = 0 ⇒ n = 4m + 1 ⇒ f(n) = 2f(2m + 1) − f(m) =

2 · 1c2 . . . ck − c2 . . . ck = 2k + 2 · c2 . . . ck − c2 . . . ck = 10c2 . . . ck =
c0c1 . . . ck.

(iii) c0 = 1, c1 = 1 ⇒ n = 4m + 3 ⇒ f(n) = 3f(2m + 1) − 2f(m) =
3 · 1c2 . . . ck − 2 · c2 . . . ck = 2k + 2k−1 + 3 · c2 . . . ck − 2 · c2 . . . ck =
11c2 . . . ck = c0c1 . . . ck.

We thus have to find the number of palindromes in binary representation
smaller than 1998 = 11111000100. We note that for allm ∈ N the numbers
of 2m- and (2m − 1)-digit binary palindromes are both equal to 2m−1.
We also note that 11111011111 and 11111111111 are the only 11-digit
palindromes larger than 1998. Hence we count all palindromes of up to
11 digits and exclude the largest two. The number of n ≤ 1998 such that
f(n) = n is thus equal to 1+1+2+2+4+4+8+8+16+16+32−2 = 92.

27. Consider a Cartesian system with the x-axis on the line BC and origin at
the foot of the perpendicular from A to BC, so that A lies on the y-axis.
Let A be (0, α), B(−β, 0), C(γ, 0), where α, β, γ > 0 (because ABC is
acute-angled). Then

tanB =
α

β
, tanC =

α

γ
and tanA = − tan(B + C) =

α(β + γ)

α2 − βγ
;

here tanA > 0, so α2 > βγ. Let L have equation x cos θ + y sin θ + p = 0.
Then

u2 tanA+ v2 tanB + w2 tanC

=
α(β + γ)

α2 − βγ
(α sin θ + p)2 +

α

β
(−β cos θ + p)2 +

α

γ
(γ cos θ + p)2

= (α2 sin2 θ + 2αp sin θ + p2)
α(β + γ)

α2 − βγ
+ α(β + γ) cos2 θ +

α(β + γ)

βγ
p2

=
α(β + γ)

βγ(α2 − βγ)
(α2p2 + 2αpβγ sin θ + α2βγ sin2 θ + βγ(α2 − βγ) cos2 θ)

=
α(β + γ)

βγ(α2 − βγ)

[
(αp+ βγ sin θ)2 + βγ(α2 − βγ)

]
≥ α(β + γ) = 2∆,

with equality when αp+ βγ sin θ = 0, i.e., if and only if L passes through
(0, βγ/α), which is the orthocenter of the triangle.

28. The sequence is uniquely determined by the conditions, and a1 = 2, a2 =
7, a3 = 25, a4 = 89, a5 = 317, . . . ; it satisfies an = 3an−1 + 2an−2 for
n = 3, 4, 5. We show that the sequence bn given by b1 = 2, b2 = 7,
bn = 3bn−1 + 2bn−2 has the same inequality property, i.e., that bn = an:

bn+1bn−1−b2n = (3bn+2bn−1)bn−1−bn(3bn−1+2bn−2) = −2(bnbn−2−b2n−1)
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for n > 2 gives that bn+1bn−1 − b2n = (−2)n−2 for all n ≥ 2. But then∣∣∣∣bn+1 − b2n
bn−1

∣∣∣∣ =
2n−2

bn−1
<

1

2
,

since it is easily shown that bn−1 > 2n−1 for all n. It is obvious that
an = bn are odd for n > 1.

29. Let the first train start from Signal 1 at time 0, and let tj be the time
it takes for the jth train in the series to travel from one signal to the
next. By induction on k, we show that Train k arrives at signal n at time
sk + (n− 2)mk, where sk = t1 + · · · + tk and mk = maxj=1,...,k tj .
For k = 1 the statement is clear. We now suppose that it is true for k
trains and for every n, and add a (k + 1)th train behind the others at
Signal 1. There are two cases to consider:
(i) tk+1 ≥ mk, i.e., mk+1 = tk+1. Then Train k + 1 leaves Signal 1 when

all the others reach Signal 2, which by the induction happens at time
sk. Since by the induction hypothesis Train k arrives at Signal i+1 at
time sk+(i−1)mk ≤ sk+(i−1)tk+1, Train k+1 is never forced to stop.
The journey finishes at time sk + (n− 1)tk+1 = sk+1 + (n− 2)mk+1.

(ii) tk+1 < mk, i.e., mk+1 = mk. Train k + 1 leaves Signal 1 at time
sk, and reaches Signal 2 at time sk + tk+1, but must wait there until
all the other trains get to Signal 3, i.e., until time sk + mk (by the
induction hypothesis). So it reaches Signal 3 only at time sk +mk +
tk+1. Similarly, it gets to Signal 4 at time sk + 2mk + tk+1, etc. Thus
the entire schedule finishes at time sk + (n − 2)mk + tk+1 = sk+1 +
(n− 2)mk+1.

30. Let ∆1, s1, r
′ denote the area, semiperimeter, and inradius of triangle

ABM , ∆2, s2, r
′ the same quantities for triangle MBC, and ∆, s, r those

for 
ABC. Also, let P ′ and Q′ be the points of tangency of the incircle
of 
ABM with the side AB and of the incircle of 
MBC with the side
BC, respectively, and let P,Q be the points of tangency of the incircle of

ABC with the sides AB,BC. We have ∆1 = s1r

′, ∆2 = s2r
′, ∆ = sr,

so that sr = (s1 + s2)r
′. Then

s1 + s2 = s+BM ⇒ r′

r
=

s

s+BM
. (1)

On the other hand, from similarity of triangles it follows that AP ′/AP =
CQ′/CQ = r′/r. By a well-known formula we find that AP = s − BC,
CQ = s − AB, AP ′ = s1 − BM , CQ′ = s2 − BM , and therefore deduce
that

r′

r
=
s1 −BM

s−BC
=
s2 −BM

s−AB
⇒ r′

r
=
s1 + s2 − 2BM

2s−AB −BC
=
s−BM

AC
. (2)

It follows from (1) and (2) that (s−BM)/AC = s/(s+BM), giving us
s2 −BM2 = s ·AC. Finally,
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BM2 = s(s−AC) = s · BP = s · r cot
B

2
= ∆ cot

B

2
.

31. Denote the number of participants by 2n, and assign to each seat one of
the numbers 1, 2, . . . , 2n. Let the participant who was sitting at the seat
k before the break move to seat π(k). It suffices to prove that for every
permutation π of the set {1, 2, . . . , 2n}, there exist distinct i, j such that
π(i) − π(j) = ±(i− j), the differences being calculated modulo 2n.
If there are distinct i and j such that π(i)− i = π(j)− j modulo 2n, then
we are done.
Suppose that all the differences π(i)−i are distinct modulo 2n. Then they
take values 0, 1, . . . , 2n− 1 in some order, and consequently

2n∑
i=1

(π(i) − i) = 0 + 1 + · · · + (2n− 1) ≡ n(2n− 1) (mod 2n).

On the other hand,
∑2n

i=1(π(i) − i) =
∑
π(i) −

∑
i = 0, which is a

contradiction because n(2n− 1) is not divisible by 2n.

Remark. For an odd number of participants, the statement is false. For
example, the permutation (a, 2a, . . . , (2n+1)a) of (1, 2, . . . , 2n+1) modulo
2n+1 does not satisfy the statement when gcd(a2 −1, 2n+1) = 1. Check
that such an a always exists.
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4.30 Solutions to the Shortlisted Problems of IMO 1989

1. Let I denote the intersection of the three internal bisectors. Then
IA1 = A1A

0. One way proving this
is to realize that the circumcircle
of ABC is the nine-point circle of
A0B0C0, hence it bisects IA0, since
I is the orthocenter of A0B0C0. An-
other way is through noting that
IA1 = A1B, which follows from
∠A1IB = ∠IBA1 = (∠A+ ∠B)/2,
and A1B = A1A

0 which follows
from ∠A1A

0B = ∠A1BA
0 = 90◦−

A

B C
A1

B1

C1

A0

B0

C0

I

∠IBA1. Hence, we obtain SIA1B = SA0A1B .
Repeating this argument for the six triangles that have a vertex at
I and adding them up gives us SA0B0C0 = 2SAC1BA1CB1 . To prove
SAC1BA1CB1 ≥ 2SABC , draw the three altitudes in triangle ABC inter-
secting in H . Let X , Y , and Z be the symmetric points of H with respect
the sides BC, CA, and AB, respectively. Then X,Y, Z are points on the
circumcircle of 
ABC (because ∠BXC = ∠BHC = 180◦ − ∠A). Since
A1 is the midpoint of the arc BC, we have SBA1C ≥ SBXC . Hence

SAC1BA1CB1 ≥ SAZBXCY = 2(SBHC + SCHA + SAHB) = 2SABC .

2. Let the carpet have width x, length y. Suppose that the carpet EFGH
lies in a room ABCD, E being on AB, F on BC, G on CD, and H on
DA. Then 
AEH ≡ 
CGF ∼ 
BFE ≡ 
DHG. Let y

x = k, AE = a
and AH = b. In that case BE = kb and DH = ka.
Thus a+ kb = 50, ka+ b = 55, whence a = 55k−50

k2−1 and b = 50k−55
k2−1 . Hence

x2 = a2 + b2 = 5525k2−11000k+5525
(k2−1)2 , i.e.,

x2(k2 − 1)2 = 5525k2 − 11000k+ 5525.

Similarly, from the equations for the second storeroom, we get

x2(k2 − 1)2 = 4469k2 − 8360k+ 4469.

Combining the two equations, we get 5525k2 − 11000k+5525 = 4469k2 −
8360k + 4469, which implies k = 2 or 1/2. Without loss of generality
we have y = 2x and a + 2b = 50, 2a + b = 55; hence a = 20, b = 15,
x =

√
152 + 202 = 25, and y = 50. We have thus shown that the carpet is

25 feet by 50 feet.

3. Let the carpet have width x, length y. Let the length of the storerooms be
q. Let y/x = k. Then, as in the previous problem, (kq−50)2+(50k−q)2 =
(kq − 38)2 + (38k − q)2, i.e.,
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kq = 22(k2 + 1). (1)

Also, as before, x2 =
(

kq−50
k2−1

)2

+
(

50k−q
k2−1

)2

, i.e.,

x2(q2 − 1)2 = (k2 + 1)(q2 − 1900), (2)

which, together with (1), yields

x2k2(k2 − 1)2 = (k2 + 1)(484k4 − 932k2 + 484).

Since k is rational, let k = c/d, where c and d are integers with gcd(c, d) =
1. Then we obtain

x2c2(c2 − d2)2 = c2(484c4 − 448c2d2 − 448d4) + 484d6.

We thus have c2 | 484d6, but since (c, d) = 1, we have c2 | 484 ⇒ c | 22.
Analogously, d | 22; thus k = 1, 2, 11, 22, 1

2 ,
1
11 ,

1
22 ,

2
11 ,

11
2 . Since reciprocals

lead to the same solution, we need only consider k ∈
{
1, 2, 11, 22, 11

2

}
,

yielding q = 44, 55, 244, 485, 125, respectively. We can test these values
by substituting them into (2). Only k = 2 gives us an integer solution,
namely x = 25, y = 50.

4. First we note that for every integer k > 0 and prime number p, pk doesn’t
divide k!. This follows from the fact that the highest exponent r of p for
which pr|k! is

r =

[
k

p

]
+

[
k

p2

]
+ · · · < k

p
+

k

p2
+ · · · =

k

p− 1
< k.

Now suppose that α is a rational root of the given equation. Then

αn +
n!

(n− 1)!
αn−1 + · · · + n!

2!
α2 +

n!

1!
α+ n! = 0, (1)

from which we can conclude that α must be an integer, not equal to
±1. Let p be a prime divisor of n and let r be the highest exponent
of p for which pr|n!. Then p | α. Since pk|αk and pk � k!, we obtain
that pr+1 | n!αk/k! for k = 1, 2, . . . , n. But then it follows from (1) that
pr+1 | n!, a contradiction.

5. According to the Cauchy–Schwarz inequality,(
n∑

i=1

ai

)2

≤
(

n∑
i=1

a2
i

)(
n∑

i=1

12

)
= n

(
n∑

i=1

a2
i

)
.

Since r1+· · ·+rn = −n, applying this inequality we obtain r21+. . .+r
2
n ≥ n,

and applying it three more times, we obtain

r161 + · · · + r16n ≥ n,

with equality if and only if r1 = r2 = . . . = rn = −1 and p(x) = (x+ 1)n.



518 4 Solutions

6. Let us denote the measures of the inner angles of the triangle ABC by
α, β, γ. Then P = r2(sin 2α + sin 2β + sin 2γ)/2. Since the inner angles
of the triangle A′B′C′ are (β + γ)/2, (γ + α)/2, (α+ β)/2, we also have
Q = r2[sin (β + γ) + sin (γ + α) + sin (α+ β)]/2. Applying the AM–GM
mean inequality, we now obtain

16Q3 =
16

8
r6(sin (β + γ) + sin (γ + α) + sin (α+ β))3

≥ 54r6 sin (β + γ) sin (γ + α) sin (α+ β)

= 27r6[cos(α− β) − cos(α + β + 2γ)] sin(α+ β)

= 27r6[cos(α− β) + cos γ] sin(α+ β)

=
27

2
r6[sin(α+ β + γ) + sin(α+ β − γ) + sin 2α+ sin 2β]

=
27

2
r6[sin(2γ) + sin 2α+ sin 2β] = 27r4P.

This completes the proof.

7. Assume that P1 and P2 are points inside E, and that the line P1P2 inter-
sects the perimeter of E at Q1 and Q2. If we prove the statement for Q1

and Q2, we are done, since these arcs can be mapped homothetically to
join P1 and P2.
Let V1, V2 be two vertices of E. Then applying two homotheties to the
inscribed circle of E one can find two arcs (one of them may be a side of
E) joining these two points, both tangent to the sides of E that meet at
V1 and V2. If A is any point of the side V2V3, two homotheties with center
V1 take the arcs joining V1 to V2 and V3 into arcs joining V1 to A; their
angle of incidence at A remains (1 − 2/n)π.
Next, for two arbitrary points Q1 and Q2 on two different sides V1V2 and
V3V4, we join V1 and V2 to Q2 with pairs of arcs that meet at Q2 and
have an angle of incidence (1 − 2/n)π. The two arcs that meet the line
Q1Q2 again outside E meet at Q2 at an angle greater than or equal to
(1 − 2/n)π. Two homotheties with center Q2 carry these arcs to ones
meeting also at Q1 with the same angle of incidence.

8. Let A,B,C,D denote the vertices of R. We consider the set S of all points
E of the plane that are vertices of at least one rectangle, and its subset
S′ consisting of those points in S that have both coordinates integral in
the orthonormal coordinate system with point A as the origin and lines
AB,AD as axes.
First, to each E ∈ S we can assign an integer nE as the number of
rectangles Ri with one vertex at E. It is easy to check that nE = 1 if E
is one of the vertices A,B,C,D; in all other cases nE is either 2 or 4.
Furthermore, for each rectangle Ri we define f(Ri) as the number of
vertices of Ri that belong to S′. Since every Ri has at least one side of
integer length, f(Ri) can take only values 0, 2, or 4. Therefore we have
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n∑
i=1

f(Ri) ≡ 0 (mod 2).

On the other hand,
∑n

i=1 f(Ri) is equal to
∑

E∈S′ nE , implying that∑
E∈S′

nE ≡ 0 (mod 2).

However, since nA = 1, at least one other nE , where E ∈ S′, must be odd,
and that can happen only for E being B, C, or D. We conclude that at
least one of the sides of R has integral length.

Second solution. Consider the coordinate system introduced above. If D
is a rectangle whose sides are parallel to the axes of the system, it is easy
to prove that ∫

D

sin 2πx sin 2πy dx dy = 0

if and only if at least one side of D has integral length. This holds for all
Ri’s, so that adding up these equalities we get

∫
R sin 2πx sin 2πy dx dy = 0.

Thus, R also has a side of integral length.

9. From an+1 + bn+1
3
√

2 + cn+1
3
√

4 = (an + bn
3
√

2 + cn
3
√

4)(1 + 4 3
√

2 − 4 3
√

4)
we obtain an+1 = an − 8bn + 8cn. Since a0 = 1, an is odd for all n.
For an integer k > 0, we can write k = 2lk′, k′ being odd and l a nonneg-
ative integer. Let us set v(k) = l, and define βn = v(bn), γn = v(cn). We
prove the following lemmas:
Lemma 1. For every integer p ≥ 0, b2p and c2p are nonzero, and β2p =

γ2p = p+ 2.
Proof. By induction on p. For p = 0, b1 = 4 and c1 = −4, so the assertion

is true. Suppose that it holds for p. Then

(1+4
3
√

2−4
3
√

4)2
p+1

= (a+2p+2(b′ 3
√

2+c′ 3
√

4))2 with a, b′, and c′ odd.

Then we easily obtain that (1 + 4 3
√

2 − 4 3
√

4)2
p+1

= A+ 2p+3(B 3
√

2 +
C 3
√

4), where A,B = ab′+2p+1E,C = ac′+2p+1F are odd. Therefore
Lemma 1 holds for p+ 1.

Lemma 2. Suppose that for integers n,m ≥ 0, βn = γn = λ > βm =
γm = µ. Then bn+m, cn+m are nonzero and βn+m = γn+m = µ.

Proof. Calculating (a′ + 2λ(b′ 3
√

2 + c′ 3
√

4))(a′′ + 2µ(b′′ 3
√

2 + c′′ 3
√

4)), with
a′, b′, c′, a′′, b′′, c′′ odd, we easily obtain the product A + 2µ(B 3

√
2 +

C 3
√

4), where A,B = a′b′′ + 2λ−µE, and C = a′c′′ + 2λ−µF are odd,
which proves Lemma 2.

Since every integer n > 0 can be written as n = 2pr + · · · + 2p1 , with
0 ≤ p1 < · · · < pr, from Lemmas 1 and 2 it follows that cn is nonzero,
and that γn = p1 + 2.

Remark. b1989 and c1989 are divisible by 4, but not by 8.
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10. Plugging in wz + a instead of z into the functional equation, we obtain

f(wz + a) + f(w2z + wa+ a) = g(wz + a). (1)

By repeating this process, this time in (1), we get

f(w2z + wa+ a) + f(z) = g(w2z + wa+ a). (2)

Solving the system of linear equations (1), (2) and the original functional
equation, we easily get

f(z) =
g(z) + g(w2z + wa+ a) − g(wz + a)

2
.

This function thus uniquely satisfies the original functional equation.

11. Call a binary sequence S of length n repeating if for some d | n, d > 1, S
can be split into d identical blocks. Let xn be the number of nonrepeating
binary sequences of length n. The total number of binary sequences of
length n is obviously 2n. Any sequence of length n can be produced by
repeating its unique longest nonrepeating initial block according to need.
Hence, we obtain the recursion relation

∑
d|n xd = 2n. This, along with

x1 = 2, gives us an = xn for all n.
We now have that the sequences counted by xn can be grouped into groups
of n, the sequences in the same group being cyclic shifts of each other.
Hence, n | xn = an.

12. Assume that each car starts with a unique ranking number. Suppose that
while turning back at a meeting point two cars always exchanged their
ranking numbers. We can observe that ranking numbers move at a con-
stant speed and direction. One hour later, after several exchanges, each
starting point will be occupied by a car of the same ranking number and
proceeding in the same direction as the one that started from there one
hour ago.
We now give the cars back their original ranking numbers. Since the se-
quence of the cars along the track cannot be changed, the only possibility
is that the original situation has been rotated, maybe onto itself. Hence
for some d | n, after d hours each car will be at its starting position and
orientation.

13. Let us construct the circles σ1 with center A and radius R1 = AD, σ2

with center B and radius R2 = BC, and σ3 with center P and radius x.
The points C and D lie on σ2 and σ1 respectively, and CD is tangent to
σ3. From this it is plain that the greatest value of x occurs when CD is
also tangent to σ1 and σ2. We shall show that in this case the required
inequality is really an equality, i.e., that 1√

x
= 1√

AD
+ 1√

BC
. Then the

inequality will immediately follow.
Denote the point of tangency of CD with σ3 by M . By the Pythagorean
theorem we have CD =

√
(R1 +R2)2 − (R1 −R2)2 = 2

√
R1R2. On the
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other hand, CD = CM + MD = 2
√
R2x + 2

√
R1x. Hence, we obtain

1√
x

= 1√
R1

+ 1√
R2

.

14. Lemma 1. In a quadrilateral ABCD circumscribed about a circle, with
points of tangency P,Q,R, S on DA,AB,BC,CD respectively, the
lines AC,BD,PR,QS concur.

Proof. Follows immediately, for example, from Brianchon’s theorem.

Lemma 2. Let a variable chordXY of a circle C(I, r) subtend a right angle
at a fixed point Z within the circle. Then the locus of the midpoint P
of XY is a circle whose center is at the midpoint M of IZ and whose
radius is

√
r2/2 − IZ2/4.

Proof. From ∠XZY = 90◦ follows
−−→
ZX ·−−→ZY = (

−→
IX−−→

IZ) · (−→IY −−→
IZ) = 0.

Therefore,

−−→
MP 2 = (

−−→
MI +

−→
IP )2 =

1

4
(−−→
IZ +

−→
IX +

−→
IY )2

=
1

4
(IX2 + IY 2 − IZ2 + 2(

−→
IX −−→

IZ) · (−→IY −−→
IZ))

=
1

2
r2 − 1

4
IZ2.

Lemma 3. Using notation as in Lemma 1, if ABCD is cyclic, PR is
perpendicular to QS.

Proof. Consider the inversion in C(I, r), mapping A to A′ etc. (P,Q,R, S
are fixed). As is easily seen, A′, B′, C′, D′ will lie at the midpoints of
PQ,QR,RS, SP , respectively. A′B′C′D′ is a parallelogram, but also
cyclic, since inversion preserves circles; thus it must be a rectangle,
and so PR ⊥ QS.

Now we return to the main result. Let I and O be the incenter and circum-
center, Z the intersection of the diagonals, and P,Q,R, S,A′, B′, C′, D′

points as defined in Lemmas 1 and 3. From Lemma 3, the chords
PQ,QR,RS, SP subtend 90◦ at Z. Therefore by Lemma 2 the points
A′, B′, C′, D′ lie on a circle whose center is the midpoint Y of IZ. Since
this circle is the image of the circle ABCD under the considered inver-
sion (centered at I), it follows that I,O, Y are collinear, and hence so are
I,O, Z.

Remark. This is the famous Newton’s theorem for bicentric quadrilaterals.

15. By Cauchy’s inequality, 44 <
√

1989 < a + b + c + d ≤
√

2 · 1989 < 90.
Since m2 = a+ b+ c+ d is of the same parity as a2 + b2 + c2 + d2 = 1989,
m2 is either 49 or 81. Let d = max{a, b, c, d}.
Suppose that m2 = 49. Then (49 − d)2 = (a + b + c)2 > a2 + b2 + c2 =
1989 − d2, and so d2 − 49d+ 206 > 0. This inequality does not hold for
5 ≤ d ≤ 44. Since d ≥

√
1989/4 > 22, d must be at least 45, which is

impossible because 452 > 1989. Thus we must have m2 = 81 and m = 9.
Now, 4d > 81 implies d ≥ 21. On the other hand, d <

√
1989, and hence
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d = 25 or d = 36. Suppose that d = 25 and put a = 25 − p, b = 25 − q,
c = 25−r with p, q, r ≥ 0. From a+b+c = 56 it follows that p+q+r = 19,
which, together with (25 − p)2 + (25 − q)2 + (25 − r)2 = 1364, gives us
p2 + q2 + r2 = 439 > 361 = (p+ q+ r)2, a contradiction. Therefore d = 36
and n = 6.

Remark. A little more calculation yields the unique solution a = 12,
b = 15, c = 18, d = 36.

16. Define Sk =
∑k

i=0 ai (k = 0, 1, . . . , n) and S−1 = 0. We note that Sn−1 =
Sn. Hence

Sn =

n−1∑
k=0

ak = nc+

n−1∑
k=0

n−1∑
i=k

ai−k(ai + ai+1)

= nc+

n−1∑
i=0

i∑
k=0

ai−k(ai + ai+1) = nc+

n−1∑
i=0

(ai + ai+1)

i∑
k=0

ai−k

= nc+

n−1∑
i=0

(Si+1 − Si−1)Si = nc+ S2
n,

i.e., S2
n − Sn + nc = 0. Since Sn is real, the discriminant of the quadratic

equation must be positive, and hence c ≤ 1
4n .

17. A figure consisting of 9 lines is shown below.

� �
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� �

�

			













						

�
�

�

�
�

�

Now we show that 8 lines are not sufficient. Assume the opposite. By
the pigeonhole principle, there is a vertex, say A, that is joined to at
most 2 other vertices. Let B,C,D,E denote the vertices to which A is
not joined, and F,G the other two vertices. Then any two vertices of
B,C,D,E must be mutually joined for an edge to exist within the triangle
these two points form with A. This accounts for 6 segments. Since only
two segments remain, among A, F , and G at least two are not joined.
Taking these two and one of B,C,D,E that is not joined to any of them
(it obviously exists), we get a triple of points, no two of which are joined;
a contradiction.

Second solution. Since (a) is equivalent to the fact that no three points
make a “blank triangle,” by Turan’s theorem the number of “blank edges”
cannot exceed [72/4] = 12, leaving at least 7 · 6/2 − 12 = 9 segments. For

general n, the answer is [(n− 1)/2]
2
.
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18. Consider the triangle MAiMi. Obviously, the point Mi is the image

of Ai under the composition C of rotation R
α/2−90◦

M and homothety

H
2 sin(α/2)
M . Therefore, the polygon M1M2 . . .Mn is obtained as the im-

age of A1A2 . . . An under the rotational homothety C with coefficient
2 sin(α/2). Therefore SM1M2...Mn = 4 sin2 (α/2) · S.

19. Let us color the board in a chessboard fashion. Denote by Sb and Sw

respectively the sum of numbers in the black and in the white squares. It
is clear that every allowed move leaves the difference Sb − Sw unchanged.
Therefore a necessary condition for annulling all the numbers is Sb = Sw.
We now show it is sufficient. Assuming Sb = Sw let us observe a triple
of (different) cells a, b, c with respective values xa, xb, xc where a and c
are both adjacent to b. We first prove that we can reduce xa to be 0 if
xa > 0. If xa ≤ xb, we subtract xa from both a and b. If xa > xb, we
add xa − xb to b and c and proceed as in the previous case. Applying the
reduction in sequence, along the entire board, we reduce all cells except
two neighboring cells to be 0. Since Sb = Sw is invariant, the two cells
must have equal values and we can thus reduce them both to 0.

20. Suppose k ≥ 1/2 +
√

2n. Consider a point P in S. There are at least k
points in S having all the same distance to P , so there are at least

(
k
2

)
pairs

of points A,B with AP = BP . Since this is true for every point P ∈ S,
there are at least n

(
k
2

)
triples of points (A,B, P ) for which AP = BP

holds. However,

n

(
k

2

)
= n

k(k − 1)

2
≥ n

2

(√
2n+

1

2

)(√
2n− 1

2

)
=
n

2

(
2n− 1

4

)
> n(n− 1) = 2

(
n

2

)
.

Since
(
n
2

)
is the number of all possible pairs (A,B) with A,B ∈ S, there

must exist a pair of points A,B with more than two points Pi such that
APi = BPi. These points Pi are collinear (they lie on the perpendicular
bisector of AB), contradicting condition (1).

21. In order to obtain a triangle as the intersection we must have three points
P,Q,R on three sides of the tetrahedron passing through one vertex, say
T . It is clear that we may suppose w.l.o.g. that P is a vertex, and Q and R
lie on the edges TP1 and TP2 (P1, P2 are vertices) or on their extensions

respectively. Suppose that
−→
TQ = λ

−−→
TP1 and

−→
TR = µ

−−→
TP2, where λ, µ > 0.

Then

cos∠QPR =

−−→
PQ · −→PR
PQ · PR

=
(λ− 1)(µ− 1) + 1

2
√
λ2 − λ+ 1

√
µ2 − µ+ 1

.

In order to obtain an obtuse angle (with cos < 0) we must choose µ < 1

and λ > 2−µ
1−µ > 1. Since

√
λ2 − λ+ 1 > λ − 1 and

√
µ2 − µ+ 1 > 1 − µ,

we get that for (λ− 1)(µ− 1) + 1 < 0,
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cos∠QPR >
1 − (1 − µ)(λ− 1)

2(1 − µ)(λ− 1)
> −1

2
; hence ∠QPR < 120◦.

Remark. After obtaining the formula for cos∠QPR, the official solution
was as follows: For fixed µ0 < 1 and λ > 1, cos∠QPR is a decreasing
function of λ: indeed,

∂ cos∠QPR

∂λ
=

µ− (3 − µ)λ

4(λ2 − λ+ 1)3/2(µ2 − µ+ 1)1/2
< 0.

Similarly, for a fixed, sufficiently large λ0, cos∠QPR is decreasing for µ
decreasing to 0. Since limλ→0,µ→0+ cos∠QPR = −1/2, we conclude that
∠QPR < 120◦.

22. The statement remains valid if 17 is replaced by any divisor k of 1989 = 32·
13 ·17, 1 < k < 1989, so let k be one such divisor. The set {1, 2, . . . , 1989}
can be partitioned as {1, 2, . . . , 3k} ∪

⋃L
j=1{(2j + 1)k + 1, (2j + 1)k +

2, . . . , (2j + 1)k + 2k} = X ∪ Y1 ∪ · · · ∪ YL, where L = (1989 − 3k)/2k.
The required statement will be an obvious consequence of the following
two claims.
Claim 1. The set X = {1, 2, . . . , 3k} can be partitioned into k disjoint

subsets, each having 3 elements and the same sum.
Proof. Since k is odd, let t = k − 1/2 and X = {1, 2, . . . , 6t + 3}. For

l = 1, 2, . . . , t, define

X2l−1 = {l, 3t+ 1 + l, 6t+ 5 − 2l},
X2l = {t+ 1 + l, 2t+ 1 + l, 6t+ 4 − 2l}

X2t+1 = Xk = {t+ 1, 4t+ 2, 4t+ 3}.

It is easily seen that these three subsets are disjoint and that the sum
of elements in each set is 9t+ 6.

Claim 2. Each Yj = {(2j+1)k+1, . . . , (2j+1)k+2k} can be partitioned
into k disjoint subsets, each having 2 elements and the same sum.

Proof. The obvious partitioning works:

Yj = {(2j+1)k+1, (2j+1)k+2k}∪· · ·∪{(2j+1)k+k, (2j+1)k+(k+1)}.

23. Two numbers x, y ∈ {1, . . . , 2n} will be called twins if |x − y| = n. Then
the set {1, . . . , 2n} splits into n pairs of twins. A permutation (x1, . . . , x2n)
of this set is said to be of type Tk if |xi − xi+1| = n holds for exactly
k indices i (thus a permutation of type T0 contains no pairs of neigh-
boring twins). Denote by Fk(n) the number of Tk-type permutations of
{1, . . . , 2n}.
Let (x1, . . . , x2n) be a permutation of type T0. Removing x2n and its twin,
we obtain a permutation of 2n − 2 elements consisting of n − 1 pairs of
twins. This new permutation is of one of the following types:
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(i) type T0: x2n can take 2n values, and its twin can take any of 2n− 2
positions;

(ii) type T1: x2n can take any one of 2n values, but its twin must be
placed to separate the unique pair of neighboring twins in the new
permutation.

The recurrence formula follows:

F0(n) = 2n[(2n− 2)F0(n− 1) + F1(n− 1)]. (1)

Now let (x1, . . . , x2n) be a permutation of type T1, and let (xj , xj+1) be
the unique neighboring twin pair. Similarly, on removing this pair we get
a permutation of 2n − 2 elements, either of type T0 or of type T1. The
pair (xj , xj+1) is chosen out of n twin pairs and can be arranged in two
ways. Also, in the first case it can be placed anywhere (2n − 1 possible
positions), but in the second case it must be placed to separate the unique
pair of neighboring twins. Hence,

F1(n) = 2n[(2n− 1)F0(n− 1) + F1(n− 1)] = F0(n) + 2nF0(n− 1). (2)

This implies that F0(n) < F1(n). Therefore the permutations with at
least one neighboring twin pair are more numerous than those with no
such pairs.

Remark 1. As in the official solution, formulas (1) and (2) together give
for F0 the recurrence

F0(n) = 2n[(2n− 1)F0(n− 1) + (2n− 2)F0(n− 2)].

For the ratio pn = F0(n)/(2n)!, simple algebraic manipulation yields pn =
pn−1 + pn−2

(2n−3)(2n−1) . Since p1 = 0, we get

pn < pn−1 +
1

(2n− 3)(2n− 1)
= pn−1 +

1

2(2n− 3)
− 1

2(2n− 1)
< · · · < 1

2
.

Remark 2. Using the inclusion–exclusion principle, the following formula
can be obtained:

F0(n) = 20

(
n

0

)
(2n)! − 21

(
n

1

)
(2n− 1)! + 22

(
n

2

)
(2n− 2)! − · · ·

· · · + (−1)n−12n

(
n

n

)
n!.

One consequence is that in fact, limn→∞ pn = 1/e.

Second solution. Let f : T0 → T1 be the mapping defined as follows: if
(x1, x2, . . . , x2n) ∈ T0 and xk, k > 2, is the twin of x1, then

f(x1, x2, . . . , x2n) = (x2, . . . , xk−1, x1, xk, . . . , x2n).

The mapping f is injective, but not surjective. Thus F0(n) < F1(n).
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24. Instead of Euclidean distance, we will use the angles ∠AiOAj , O de-
noting the center of the sphere. Let {A1, . . . , A5} be any set for which
mini	=j ∠AiOAj ≥ π/2 (such a set exists: take for example five vertices
of an octagon). We claim that two of the Ai’s must be antipodes, thus
implying that mini	=j ∠AiOAj is exactly equal to π/2, and consequently
that mini	=j AiAj =

√
2.

Suppose no two of the five points are antipodes. Visualize A5 as the south
pole. Then A1, . . . , A4 lie in the northern hemisphere, including the equa-
tor (but excluding the north pole). No two of A1, . . . , A4 can lie in the
interior of a quarter of this hemisphere, which means that any two of
them differ in longitude by at least π/2. Hence, they are situated on four
meridians that partition the sphere into quarters. Finally, if one of them
does not lie on the equator, its two neighbors must. Hence, in any case
there will exist an antipodal pair, giving us a contradiction.

25. We may assume w.l.o.g. that a > 0 (because a, b < 0 is impossible,
and a, b �= 0 from the condition of the problem). Let (x0, y0, z0, w0) �=
(0, 0, 0, 0) be a solution of x2 − ay2 − bz2 + abw2. Then

x2
0 − ay2

0 = b(z2
0 − aw2

0).

Multiplying both sides by (z2
0 − aw2

0), we get

(x2
0 − ay2

0)(z
2
0 − aw2

0) − b(z2
0 − aw2

0)
2 = 0

⇔ (x0z0 − ay0w0)
2 − a(y0z0 − x0w0)

2 − b(z2
0 − aw2

0)
2 = 0.

Hence, for x1 = x0z0 − ay0w0, y1 = y0z0 − x0w0, z1 = z2
0 − aw2

0 , we
have

x2
1 − ay2

1 − bz2
1 = 0.

If (x1, y1, z1) is the trivial solution, then z1 = 0 implies z0 = w0 = 0 and
similarly x0 = y0 = 0 because a is not a perfect square. This contradicts
the initial assumption.

26. By the Cauchy–Schwarz inequality,(
n∑

i=1

xi

)2

≤ n

n∑
i=1

x2
i .

Since
∑n

i=1 xi = a − x0 and
∑n

i=1 x
2
i = b − x2

0, we have (a − x0)
2 ≤

n(b− x2
0), i.e.,

(n+ 1)x2
0 − 2ax0 + (a2 − nb) ≤ 0.

The discriminant of this quadratic is D = 4n(n + 1)
[
b− a2/(n+ 1)

]
, so

we conclude that
(i) if a2 > (n+ 1)b, then such an x0 does not exist;
(ii) if a2 = (n+ 1)b, then x0 = a/n+ 1; and
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(iii) if a2 < (n+ 1)b, then a−√
D/2

n+1 ≤ x0 ≤ a+
√

D/2
n+1 .

It is easy to see that these conditions for x0 are also sufficient.

27. Let n be the required exponent, and suppose n = 2kq, where q is an odd
integer. Then we have

mn − 1 = (m2k − 1)[(m2k(q−1) + · · · +m2k

+ 1] = (m2k − 1)A,

where A is odd. Therefore mn − 1 and m2k − 1 are divisible by the same
power of 2, and so n = 2k.
Next, we observe that

m2k − 1 = (m2k−1 − 1)(m2k−1

+ 1) = . . .

= (m2 − 1)(m2 + 1)(m4 + 1) · · · (m2k−1

+ 1).

Let s be the maximal positive integer for which m ≡ ±1 (mod 2s). Then
m2 − 1 is divisible by 2s+1 and not divisible by 2s+2. All the numbers

m2 + 1,m4 + 1, . . . ,m2k−1

+ 1 are divisible by 2 and not by 4. Hence

m2k − 1 is divisible by 2s+k and not by 2s+k+1.
It follows from the above consideration that the smallest exponent n equals
21989−s if s ≤ 1989, and n = 1 if s > 1989.

28. Assume w.l.o.g. that the rays OA1, OA2, OA3, OA4 are arranged clock-
wise. Setting OA1 = a, OA2 = b, OA3 = c, OA4 = d, and ∠A1OA2 = x,
∠A2OA3 = y, ∠A3OA4 = z, we have

S1 = σ(OA1A2) =
1

2
ab| sinx|, S2 = σ(OA1A3) =

1

2
ac| sin(x+ y)|,

S3 = σ(OA1A4) =
1

2
ad| sin(x+ y + z)|, S4 = σ(OA2A3) =

1

2
bc| sin y|,

S5 = σ(OA2A4) =
1

2
bd| sin(y + z)|, S6 = σ(OA3A4) =

1

2
cd| sin z|.

Since sin(x+ y+ z) siny+sinx sin z = sin(x+ y) sin(y+ z), it follows that
there exists a choice of k, l ∈ {0, 1} such that

S1S6 + (−1)kS2S5 + (−1)lS3S4 = 0.

For example (w.l.o.g.), if S3S4 = S1S6 + S2S5, we have(
max
1≤i≤6

Si

)2

≥ S3S4 = S1S6 + S2S5 ≥ 1 + 1 = 2,

i.e., max1≤i≤6 Si ≥
√

2 as claimed.

29. Let Pi, sitting at the place A, and Pj sitting at B, be two birds that can
see each other. Let k and l respectively be the number of birds visible from
B but not from A, and the number of those visible from A but not from
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B. Assume that k ≥ l. Then if all birds from B fly to A, each of them will
see l new birds, but won’t see k birds anymore. Hence the total number
of mutually visible pairs does not increase, while the number of distinct
positions occupied by at least one bird decreases by one. Repeating this
operation as many times as possible one can arrive at a situation in which
two birds see each other if and only if they are in the same position. The
number of such distinct positions is at most 35, while the total number
of mutually visible pairs is not greater than at the beginning. Thus the
problem is equivalent to the following one:
(1) If xi ≥ 0 are integers with

∑35
j=1 xj = 155, find the least possible

value of
∑35

j=1 (x2
j − xj)/2.

If xj ≥ xi + 2 for some i, j, then the sum of (x2
j − xj)/2 decreases (for

xj −xi−2) if xi, xj are replaced with xi +1, xj −1. Consequently, our sum
attains its minimum when the xi’s differ from each other by at most 1. In
this case, all the xi’s are equal to either [155/35] = 4 or [155/35]+1 = 5,
where 155 = 20 · 4+15 · 5. It follows that the (minimum possible) number
of mutually visible pairs is 20 · 4·3

2 + 15 · 5·4
2 = 270.

Second solution for (1). Considering the graph consisting of birds as
vertices and pairs of mutually nonvisible birds as edges, we see that there is
no complete 36-subgraph. Turan’s theorem gives the answer immediately.
(See problem (SL89-17).)

30. For all n such N exists. For a given n choose N = (n + 1)!2 + 1. Then
1 + j is a proper factor of N + j for 1 ≤ j ≤ n. So if N + j = pm is a
power of a prime p, then 1 + j = pr for some integer r, 1 ≤ r < m. But
then pr+1 divides both (n+ 1)!2 = N − 1 and pm = N + j, implying that
pr+1 | 1 + j, which is impossible. Thus none of N + 1, N + 2, . . . , N + n is
a power of a prime.

Second solution. Let p1, p2, . . . , p2n be distinct primes. By the Chinese
remainder theorem, there exists a natural number N such that p1p2 |
N + 1, p3p4 | N + 2, . . . , p2n−1p2n | N + n, and then obviously none of
the numbers N + 1, . . . , N + n can be a power of a prime.

31. Let us denote by Npqr the number of solutions for which ap/xp ≥ aq/xq ≥
ar/xr, where (p, q, r) is one of six permutations of (1, 2, 3). It is clearly
enough to prove that Npqr +Nqpr ≤ 2a1a2(3 + ln(2a1)).
First, from

3ap

xp
≥ ap

xp
+
aq

xq
+
ar

xr
= 1 and

ap

xp
< 1

we get ap + 1 ≤ xp ≤ 3ap. Similarly, for fixed xp we have

2aq

xq
≥ aq

xq
+
ar

xr
= 1 − ap

xp
and

aq

xq
≤ min

(
ap

xp
, 1 − ap

xp

)
,
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which gives max {aq · xp/ap, aq · xp/(xp − ap)} ≤ xq ≤ 2aq · xp/(xp − ap),
i.e., if ap +1 ≤ xp ≤ 2ap there are at most aq · xp/(xp − ap)+1/2 possible
values for xq (because there are [2x] − [x] = [x+ 1/2] integers between x
and 2x), and if 2ap+1 ≤ xp ≤ 3ap, at most 2aq · xp/(xp − ap)−aq · xp/ap+
1 possible values. Given xp and xq, xr is uniquely determined. Hence

Npqr ≤
2ap∑

xp=ap+1

(
aq · xp

xp − ap
+

1

2

)
+

3ap∑
xp=2ap+1

(
2aq · xp

xp − ap
− aq · xp

ap
+ 1

)

=
3ap

2
+ aq

ap∑
k=1

[
k + ap

k
+

(
2(k + 2ap)

k + ap
− k + 2ap

ap

)]

=
3ap

2
+ aq

ap∑
k=1

[
1 − k

ap
+ ap

(
1

k
+

2

k + ap

)]

=
3ap

2
− aq

2
+ apaq

(
1

2
+

ap∑
k=1

(
1

k
+

2

k + ap

))

≤ apaq

(
3

2aq
− 1

2ap
+ ln(2ap) +

5

2
− ln 2

)
,

where we have used
∑n

k=1 (1/k + 2/(k + n)) ≤ ln(2n)+ 2− ln 2 (this can
be proved by induction). Hence,

Npqr +Nqpr ≤ 2apaq(1 + 0.5 + ln(2ap)+ 2− ln 2) < 2a1a2(2.81 + ln(2a1)).

Remark. The official solution was somewhat simpler, but used that
the interval (x, 2x], for real x, cannot contain more than x integers,
which is false in general. Thus it could give only a weaker estimate
N ≤ 6a1a2 (9/2 − ln 2 + ln(2a1)).

32. Let CC′ be an altitude, and R the circumradius. Then, since AH = R,
we have AC′ = |R sinB| and hence (1) CC′ = |R sinB tanA|. On the
other hand, CC′ = |BC sinB| = 2|R sinA sinB|, which together with (1)
yields 2| sinA| = | tanA| ⇒ | cosA| = 1/2. Hence, ∠A is 60◦. (Without
the condition that the triangle is acute, ∠A could also be 120◦.)

Second Solution. For a point X , let X denote the vector OX . Then
|A| = |B| = |C| = R and H = A+B + C, and moreover,

R2 = (H −A)2 = (B + C)2 = 2B
2

+ 2C
2 − (B − C)2 = 4R2 −BC2.

It follows that sinA = BC
2R =

√
3/2, i.e., that ∠A = 60◦.

Third Solution. Let A1 be the midpoint of BC. It is well known that
AH = 2OA1, and since AH = AO = BO, it means that in the right-
angled triangle BOA1 the relation BO = 2OA1 holds. Thus ∠BOA1 =
∠A = 60◦.
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4.31 Solutions to the Shortlisted Problems of IMO 1990

1. Let N be a number that can be written as a sum of 1990 consecutive
integers and as a sum of consecutive positive integers in exactly 1990 ways.
The former requirement gives us N = m+ (m+ 1) + · · · + (m+ 1989) =
995(2m+ 1989) for some m. Thus 2 � N , 5 | N , and 199 | N . The latter
requirement tells us that there are exactly 1990 ways to express N as
n+ (n+ 1)+ · · ·+ (n+ k), or equivalently, express 2N as (k+ 1)(2n+ k).
Since N is odd, it follows that one of the factors k + 1 and 2n+ k is odd
and the other is divisible by 2, but not by 4. Evidently k+1 < 2n+k. On
the other hand, every factorization 2N = ab, 1 < a < b, corresponds to a
single pair (n, k), where n = b−a+1

2 (which is an integer) and k = a − 1.
The number of such factorizations is equal to d(2N)/2 − 1 because a = b
is impossible (here d(x) denotes the number of positive divisors of an
x ∈ N). Hence we must have d(2N) = 2 · 1991 = 3982. Now let 2N =
2·5e1 ·199e2 ·pe3

3 · · · per
r be a factorization of 2N into prime numbers, where

p3, . . . , pr are distinct primes other than 2, 5, and 199 and e1, · · · , er are
positive integers. Then d(2N) = 2(e1 + 1)(e2 + 1) · · · (er + 1), from which
we deduce (e1 + 1)(e2 + 1) · · · (er + 1) = 1991 = 11 · 181. We thus get
{e1, e2} = {10, 180} and e3 = · · · = er = 0. Hence N = 510 · 199180 and
N = 5180 · 19910 are the only possible solutions. These numbers indeed
satisfy the desired properties.

2. We will call a cycle with m committees and n countries an (m,n) cycle.
We will number the delegates from each country with numbers 1, 2, 3 and
denote committees by arrays of these integers (of length n) defining which
of the delegates from each country is in the committee. We will first devise
methods of constructing larger cycles out of smaller cycles.
Let A1, . . . , Am be an (m,n) cycle, where m is odd. Then the following is
a (2m,n+ 1) cycle:

(A1, 1), (A2, 2), . . . , (Am, 1), (A1, 2), (A2, 1), . . . , (Am, 2).

Also, let A1, . . . , Am be an (m,n) cycle and k ≤ m an even integer. Then
the cycle

(A1, 3), (A2, 1), (A3, 2), . . . , (Ak−2, 1), (Ak−1, 2),
(Ak, 3), (Ak−1, 1), (Ak−2, 2), . . . , (A2, 2)

is a (2(k − 1), n+ 1) cycle.
Starting from the ((1),(2),(3)) cycle with parameters (3, 1) we can se-
quentially construct larger cycles using the shown methods. The obtained
cycles have parameters as follows:

(6, 2), (10, 3), . . . , (2k + 2, k), . . . , (1026, 10), (1990, 11).

Thus there exists a cycle of 1990 committees with 11 countries.
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3. A segment connecting two points which divides the given circle into two
arcs one of which contains exactly n points in its interior we will call a
good segment. Good segments determine one or more closed polygonal
lines that we will call stars. Let us compute the number of stars. Note
first that gcd(n+ 1, 2n− 1) = gcd(n+ 1, 3).
(i) Suppose that 3 � n + 1. Then the good segments form a single star.

Among any n points, two will be adjacent vertices of the star. On the
other hand, we can select n− 1 alternate points going along the star,
and in this case no two points lie on a good segment. Hence N = n.

(ii) If 3 | n + 1, we obtain three stars of
[

2n−1
3

]
vertices. If more than[

2n−1
6

]
= n−2

3 points are chosen on any of the stars, then two of them
will be connected with a good segment. On the other hand, we can
select n−2

3 alternate points on each star, which adds up to n−2 points
in total, no two of which lie on a good segment. Hence N = n− 1.

To sum up, N = n for 3 � 2n− 1 and N = n− 1 for 3 | 2n− 1.

4. Assuming that A1 is not such a set Ai, it follows that for every m there
exist m consecutive numbers not in A1. It follows that A2 ∪A3 ∪ · · · ∪Ar

contains arbitrarily long sequences of numbers. Inductively, let us assume
that Aj ∪Aj+1∪· · ·∪Ar contains arbitrarily long sequences of consecutive
numbers and none of A1, A2, . . . , Aj−1 is the desired set Ai. Let us assume
that Aj is also not Ai. Hence for each m there exists k(m) such that among
k(m) elements of Aj there exist two consecutive elements that differ by at
leastm. Let us considerm·k(m) consecutive numbers in Aj∪· · ·∪Ar, which
exist by the induction hypothesis. Then either Aj contains fewer than
k(m) of these integers, in which case Aj+1∪· · ·∪Ar containsm consecutive
integers by the pigeonhole principle or Aj contains k(m) integers among
which there exists a gap of length m of consecutive integers that belong
to Aj+1 ∪ · · · ∪ Ar. Hence we have proven that Aj+1 ∪ · · · ∪ Ar contains
sequences of integers of arbitrary length. By induction, assuming that
A1, A2, . . . , Ar−1 do not satisfy the conditions to be the set Ai, it follows
that Ar contains sequences of consecutive integers of arbitrary length and
hence satisfies the conditions necessary for it to be the set Ai.

5. Let O be the circumcenter of ABC, E the midpoint of OH , and R and r
the radii of the circumcircle and incircle respectively. We use the following

facts from elementary geometry:
−−→
OH = 3

−−→
OG, OK2 = R2 − 2Rr, and

KE = R
2 − r. Hence

−−→
KH = 2

−−→
KE − −−→

KO and
−−→
KG = 2

−−→
KE+

−−→
KO

3 . We then
obtain

−−→
KH · −−→KG =

1

3
(4KE2 −KO2) = −2

3
r(R − 2r) < 0 .

Hence cos∠GKH < 0 ⇒ ∠GKH > 90◦.

6. Let W denote the set of all n0 for which player A has a winning strategy,
L the set of all n0 for which player B has a winning strategy, and T the
set of all n0 for which a tie is ensured.
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Lemma. Assume {m,m+1, . . .1990} ⊆ W and that there exists s ≤ 1990
such that s/pr ≥ m, where pr is the largest degree of a prime that
divides s. Then all integers x such that

√
s ≤ x < m also belong in

W .
Proof. Starting from x, player A can choose s, and by definition of s,

player B cannot choose a number smaller than m. This ensures player
A the victory.

We now have trivially that since 452 = 2025 > 1990, it follows that for
n0 ∈ {45, . . . , 1990} player A can choose 1990 in the first move. Hence
{45, . . . , 1990} ⊆ W . Using m = 45 and selecting s = 420 = 22 · 3 · 5 · 7 we
apply the lemma to get that all integers x such that

√
420 < 21 ≤ x ≤ 1990

are in W . Again, using m = 21 and selecting s = 168 = 23 · 3 · 7 we apply
the lemma to get that all integers x such that

√
168 < 13 ≤ x ≤ 1990

are in W . Selecting s = 105 we obtain the new value for m at m = 11.
Selecting s = 60 we obtain m = 8. Thus {8, . . . , 1990} ⊆ W .
For n0 > 1990 there exists r ∈ N such that 2r · 32 < n0 ≤ 2r+1 · 32 < n2

0.
PlayerA can take n1 = 2r+1·32. The number playerB selects has to satisfy
8 ≤ n2 < n0. After finitely many steps he will select 8 ≤ n2r ≤ 1990, and
A will have a winning strategy. Hence all m ≥ 8 belong to W .
Now let us consider the case n0 ≤ 5. Since the smallest number divisible
by three different primes is 30 and n2

0 ≤ 52 = 25 < 30, it follows that n1 is
of the form n1 = pr or n1 = pr ·qs, where p and q are two different primes.
In the first case player B can choose 1 and win, while in the second case
he can select the smaller of pr, qs, which is also smaller than

√
n1 ≤ n0.

Thus player B can eventually reach n2k = 1. Thus {2, 3, 4, 5} ⊆ L.
Finally, for n0 = 6 or n0 = 7 player A must select a number divisible by at
least three primes, which must be 30 = 2 · 3 · 5 or 42 = 2 · 3 · 7; otherwise,
B can select a degree of a prime smaller than n0, yielding n2 < 6 and
victory for B. Player B must select a number smaller than 8. Hence, he
has to select 6 in both cases. Afterwards, to avoid losing the game, player
A will always choose 30 and player B always 6. In this case we would have
a tie. Hence T ⊆ {6, 7}.
Considering that we have accounted for all integers n0 > 1, the final
solution is L = {2, 3, 4, 5}, T = {6, 7}, and W = {x ∈ N | x ≥ 8}.

7. Let f(n) = g(n)2n2

for all n. The recursion then transforms into g(n +
2)− 2g(n+ 1) + g(n) = n · 16−n−1 for n ∈ N0. By summing this equation
from 0 to n− 1, we get

g(n+ 1) − g(n) =
1

152
· (1 − (15n+ 1)16−n).

By summing up again from 0 to n − 1 we get g(n) = 1
153 · (15n − 32 +

(15n+ 2)16−n+1). Hence

f(n) =
1

153
· (15n+ 2 + (15n− 32)16n−1) · 2(n−2)2 .
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Now let us look at the values of f(n) modulo 13:

f(n) ≡ 15n+ 2 + (15n− 32)16n−1 ≡ 2n+ 2 + (2n− 6)3n−1.

We have 33 ≡ 1 (mod 13). Plugging in n ≡ 1 (mod 13) and n ≡ 1 (mod
3) for n = 1990 gives us f(1990) ≡ 0 (mod 13). We similarly calculate
f(1989) ≡ 0 and f(1991) ≡ 0 (mod 13).

8. Since 21990 < 8700 < 10700, we have f1(2
1990) < (9·700)2 < 4·107. We then

have f2(2
1990) < (3+9·7)2 < 4900 and finally f3(2

1990) < (3+9·3)2 = 302.
It is easily shown that fk(n) ≡ fk−1(n)2 (mod 9). Since 26 ≡ 1 (mod 9),
we have 21990 ≡ 24 ≡ 7 (all congruences in this problem will be mod 9).
It follows that f1(2

1990) ≡ 72 ≡ 4 and f2(2
1990) ≡ 42 ≡ 7. Indeed, it

follows that f2k(21990) ≡ 7 and f2k+1(2
1990) ≡ 4 for all integer k > 0.

Thus f3(2
1990) = r2 where r < 30 is an integer and r ≡ f2(2

1990) ≡ 7. It
follows that r ∈ {7, 16, 25} and hence f3(2

1990) ∈ {49, 256, 625}. It follows
that f4(2

1990) = 169, f5(2
1990) = 256, and inductively f2k(21990) = 169

and f2k+1(2
1990) = 256 for all integer k > 1. Hence f1991(2

1990) = 256.

9. Let a, b, c be the lengths of the sides of 
ABC, s = a+b+c
2 , r the inradius

of the triangle, and c1 and b1 the lengths of AB2 and AC2 respectively.
As usual we will denote by S(XY Z) the area of 
XY Z. We have

S(AC1B2) =
AC1 ·AB2

AC · AB S(ABC) =
c1rs

2b
,

S(AKB2) =
c1r

2
, S(AC1K) =

cr

4
.

From S(AC1B2) = S(AKB2) + S(AC1K) we get c1rs
2b = c1r

2 + cr
4 ; there-

fore (a − b + c)c1 = bc. By looking at the area of 
AB1C2 we sim-
ilarly obtain (a + b − c)b1 = bc. From these two equations and from
S(ABC) = S(AB2C2), from which we have b1c1 = bc, we obtain

a2 − (b− c)2 = bc ⇒ b2 + c2 − a2

2bc
= cos(∠BAC) =

1

2
⇒ ∠BAC = 60◦.

10. Let r be the radius of the base and h the height of the cone. We may
assume w.l.o.g. that r = 1. Let A be the top of the cone, BC the di-
ameter of the circumference of the base such that the plane touches the
circumference at B, O the center of the base, and H the midpoint of OA
(also belonging to the plane). Let BH cut the sheet of the cone at D. By
applying Menelaus’s theorem to 
AOC and 
BHO, we conclude that
AD
DC = CB

BO · OH
HA = 1

2 and HD
DB = HA

AO · OC
CB = 1

4 .
The plane cuts the cone in an ellipse whose major axis is BD. Let E
be the center of this ellipse and FG its minor axis. We have BE

ED = 1
2 .

Let E′, F ′, G′ be radial projections of E,F,G from A onto the base of
the cone. Then E sits on BC. Let h(X) denote the height of a point X
with respect to the base of the cone. We have h(E) = h(D)/2 = h/3.
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Hence EF = 2E′F ′/3. Applying Menelaus’s theorem to 
BHO we get
OE′

E′B = BE
EH · HA

AO = 1. Hence EF = 2
3

√
3

2 = 1√
3
.

Let d denote the distance from A to the plane. Let V1 and V denote the
volume of the cone above the plane (on the same side of the plane as A)
and the total volume of the cone. We have

V1

V
=
BE ·EF · d

h
=

(2BH/3)(1/
√

3)(2SAHB/BH)

h

=
(2/3)(1/

√
3)(h/2)

h
=

1

3
√

3
.

Since this ratio is smaller than 1/2, we have indeed selected the correct
volume for our ratio.

11. Assume B(A,E,M,B). Since A,B,C,D lie on a circle, we have ∠GCE =
∠MBD and ∠MAD = ∠FCE. Since FD is tangent to the circle around

EMD at E, we have ∠MDE = ∠FEB = ∠AEG. Consequently,
∠CEF = 180◦−∠CEA−∠FEB = 180◦−∠MED−∠MDE = ∠EMD
and ∠CEG = 180◦ −∠CEF = 180◦ −∠EMD = ∠DMB. It follows that

CEF ∼ 
AMD and 
CEG ∼

BMD. From the first similarity
we obtain CE · MD = AM · EF ,
and from the second we obtain CE ·
MD = BM ·EG. Hence

AM ·EF = BM · EG =⇒
GE

EF
=
AM

BM
=

λ

1 − λ
.

If B(A,M,E,B), interchanging the

A B

C

D

E

F

G

M

roles of A and B we similarly obtain GE
EF = λ

1−λ .

12. Let d(X, l) denote the distance of a point X from a line l. Using the
elementary facts that AF : FC = c : a and BD : DC = c : b, we obtain
d(F,L) = a

a+chc and d(D,L) = b
b+chc, where ha is the altitude of 
ABC

from A. We also have ∠FGC = β/2, ∠DEC = α/2. It follows that

DE =
d(D,L)

sin(α/2)
and FG =

d(F,L)

sin(β/2)
. (1)

Now suppose that a > b. Since the function f(x) = x
x+c is strictly increas-

ing, we deduce d(F,L) > d(D,L). Furthermore, sin(α/2) > sin(β/2), so
we get from (1) that FG > DE.
Similarly, a < b implies FG < DE. Hence we must have a = b, i.e.,
AC = BC.

13. We will call the ground the “zeroth” rung. We will prove that the minimum
n is n = a+b−(a, b). It is plain that if (a, b) = k > 1, the scientist can climb
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only onto the rungs divisible by k and we can just observe these rungs to
obtain the situation equivalent to a′ = a/k, b′ = b/k, and n′ = a′ + b′ − 1.
Thus let us assume that (a, b) = 1 and show that n = a+ b− 1.
We obviously have n > a. Consider n = a + b − k, k ≥ 1, and let us
assume without loss of generality that a > b (otherwise, we can reverse
the problem starting from the top rung in our round trip). Then we can
uniquely define the numbers ri, 0 ≤ ri < b, by ri ≡ ia (mod b). We now
describe the only possible sequence of moves. From a position 0 ≤ p ≤ b−k
we can move only a rungs upward and for p > b− 1 we can move only b
rungs downward. If we end up at b− k < p ≤ b − 1, we are stuck. Hence,
given that we are at ri, if ri ≤ b− k, we can move to a+ ri, and when we
descend as far as we can go we will end up at ri+1 ≡ a+ ri (mod b).
If the mathematician climbs to the highest rung and then comes back to
ri = 0, then we deduce b | ia, so i ≥ b. But since (a, b) = 1, there exists
0 < j < b such that rj ≡ ja ≡ b − 1 (mod b). Thus the mathematician
has visited the position b − 1. For him not to get stuck we must have
k ≤ 1 and n ≥ a + b − 1. For n = a + b − 1 by induction he can come
to any position ri, i ≥ 0, so he eventually comes to rj = b − 1, climbs to
the highest rung, and then continues until he gets to rb = 0. Hence the
answer to the problem is n = a+ b− 1.

14. Let V be the set of all midpoints of bad sides, and E the set of segments
connecting two points in V that belong to the same triangle. Each edge in
E is parallel to exactly one good side and thus is parallel to the coordinate
grid and has half-integer coordinates. Thus, the edges of E are a subset
of the grid formed by joining the centers of the squares in the original
grid to each other. Let G be a graph whose set of vertices is V and set of
edges is E. The degree of each vertex X , denoted by d(X), is 0, 1, or 2.
We observe the following cases:
(i) d(X) = 0 for some X . Then both triangles containing X have two

good sides.
(ii) d(X) = 1 for some X . Since

∑
X∈V d(X) = 2|E| is even, it follows

that at least another vertex Y has the degree 1. Hence both X and Y
belong to triangles having two good sides.

(iii) d(X) = 2 for all X ∈ V . We will show that this case cannot occur. We
prove first that centers of all the squares of the m×n board belong to
V ∪E. A bad side contains no points with half-integer coordinates in
its interior other than its midpoint. Therefore either a point X is in V ,
or it lies on the segment connecting the midpoints of the two bad sides.
Evidently, the graph G can be partitioned into disjoint cycles. Each
center of a square is passed exactly once in exactly one cycle. Let us
color the board black and white in a standard chessboard fashion. Each
cycle passes through centers that must alternate in color, and hence
it contains an equal number of black and white centers. Consequently,
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the numbers of black and white squares on the entire board must be
equal, contradicting the condition that m and n are odd.

Our proof is thus completed.

15. Let S(Z) denote the sum of all the elements of a set Z. We have S(X) =

(k+1) ·1990+ k(k+1)
2 . To partition the set into two parts with equal sums,

S(X) must be even and hence k(k+1)
2 must be even. Hence k is of the form

4r or 4r + 3, where r is an integer.
For k = 4r + 3 we can partition X into consecutive fourtuplets {1990 +
4l, 1990 + 4l + 1, 1990 + 4l + 2, 1990 + 4l + 3} for 0 ≤ l ≤ r and put
1990 + 4l, 1990+ 4l+ 3 ∈ A and 1990 + 4l+ 1, 1990 + 4l+ 2 ∈ B for all l.
This would give us S(A) = S(B) = (3980 + 4r + 3)(r + 1).
For k = 4r the numbers of elements in A and B must differ. Let us assume
without loss of generality |A| < |B|. Then S(A) ≤ (1990+2r+1)+(1990+
2r+2)+ · · ·+(1990+4r) and S(B) ≥ 1990+1991+ · · ·+(1990+2r). Plug-
ging these inequalities into the condition S(A) = S(B) gives us r ≥ 23 and
consequently k ≥ 92. We note that B = {1990, 1991, . . . , 2034, 2052, 2082}
and A = {2035, 2036, . . . , 2051, 2053, . . . , 2081} is a partition for k = 92
that satisfies S(A) = S(B). To construct a partition out of higher k = 4r
we use the k = 92 partition for the first 93 elements and construct for the
remaining elements as was done for k = 4r + 3.
Hence we can construct a partition exactly for the integers k of the form
k = 4r + 3, r ≥ 0, and k = 4r, r ≥ 23.

16. Let A0A1 . . . A1989 be the desired 1990-gon. We also define A1990 = A0.
Let O be an arbitrary point. For 1 ≤ i ≤ 1990 let Bi be a point such that−−→
OBi =

−−−−→
Ai−1Ai. We define B0 = B1990. The points Bi must satisfy the fol-

lowing properties: ∠BiOBi+1 = 2π
1990 , 0 ≤ i ≤ 1989, lengths of OBi are a

permutation of 12, 22, . . . , 19892, 19902, and
∑1989

i=0

−−→
OBi =

−→
0 . Conversely,

any such set of points Bi corresponds to a desired 1990-gon. Hence, our

goal is to construct vectors
−−→
OBi satisfying all the stated properties.

Let us group vectors of lengths (2n − 1)2 and (2n)2 into pairs and put
them diametrically opposite each other. The length of the resulting vec-
tors is 4n − 1. The problem thus reduces to arranging vectors of lengths

3, 7, 11, . . . , 3979 at mutual angles of 2π
995 such that their sum is

−→
0 . We

partition the 995 directions into 199 sets of five directions at mutual an-
gles 2π

5 . The directions when intersected with a unit circle form a regular
pentagon. We group the set of lengths of vectors 3, 7, . . . , 3979 into 199
sets of five consecutive elements of the set. We place each group of lengths
on directions belonging to the same group of directions, thus constructing

five vectors. We use that
−−→
OC1 + · · · + −−→

OCn = 0 where O is the center of
a regular n-gon C1 . . . Cn. In other words, vectors of equal lengths along
directions that form a regular n-gon cancel each other out. Such are the
groups of five directions. Hence, we can assume for each group of five
lengths for its lengths to be {0, 4, 8, 12, 16}. We place these five lengths
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in a random fashion on a single group of directions. We then rotate the
configuration clockwise by 2π

199 to cover other groups of directions and re-
peat until all groups of directions are exhausted. It follows that all vectors
of each of the lengths {0, 4, 8, 12, 16} will form a regular 199-gon and will
thus cancel each other out.
We have thus constructed a way of obtaining points Bi and have hence
shown the existence of the 1990-gon satisfying (i) and (ii).

17. Let us set a coordinate system denoting the vertices of the block. The
vertices of the unit cubes of the block can be described as {(x, y, z) | 0 ≤
x ≤ p, 0 ≤ y ≤ q, 0 ≤ z ≤ r}, and we restrict our attention to only
these points. Suppose the point A is fixed at (a, b, c). Then for every other
necklace point (x, y, z) numbers x− a, y − b, and z − c must be of equal
parity. Conversely, every point (x, y, z) such that x−a, y−b, and z−c are
of the same parity has to be a necklace point. Consider the graph G whose
vertices are all such points and edges are all diagonals of the unit cubes
through these points. In part (a) we are looking for an open or closed
Euler path, while in part (b) we are looking for a closed Euler path.
Necklace points in the interior of the (p, q, r) box have degree 8, points on
the surface have degree 4, points on the edge have degree 2, and points
on the corner have degree 1. A closed Euler path can be formed if and
only if all vertices are of an even degree, while an open Euler path can be
formed if and only if exactly two vertices have an odd degree. Hence the
problem in part (a) amounts to being able to choose a point A such that
0 or 2 corner vertices are necklace vertices, whereas in part (b) no corner
points can be necklace vertices. We distinguish two cases.
(i) At least two of p, q, r, say p, q, are even. We can choose a = 1, b = c =

0. In this case none of the corners is a necklace point. Hence a closed
Euler path exists.

(ii) At most one of p, q, r is even. However one chooses A, exactly two
necklace points are at the corners. Hence, an open Euler path exists,
but it is impossible to form a closed path.

Hence, in part (a), a box can be made of all (p, q, r) and in part (b) only
those (p, q, r) where at least two of the numbers are even.

18. Clearly, it suffices to consider the case (a, b) = 1. Let S be the set of
integers such that M − b ≤ x ≤ M + a − 1. Then f(S) ⊆ S and 0 ∈ S.
Consequently, fk(0) ∈ S. Let us assume for k > 0 that fk(0) = 0. Since
f(m) = m + a or f(m) = m − b, it follows that k can be written as
k = r+ s, where ra− sb = 0. Since a and b are relatively prime, it follows
that k ≥ a+ b.
Let us now prove that fa+b(0) = 0. In this case a+ b = r + s and hence
fa+b(0) = (a + b − s)a − sb = (a + b)(a − s). Since a + b | fa+b(0) and
fa+b(0) ∈ S, it follows that fa+b(0) = 0. Thus for (a, b) = 1 it follows
that k = a+ b. For other a and b we have k = a+b

(a,b) .
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19. Let d1, d2, d3, d4 be the distances of the point P to the tetrahedron. Let
d be the height of the regular tetrahedron. Let xi = di/d. Clearly, x1 +
x2 + x3 + x4 = 1, and given this condition, the parameters vary freely
as we vary P within the tetrahedron. The four tetrahedra have volumes
x3

1, x
3
2, x

3
3, and x3

4, and the four parallelepipeds have volumes of 6x2x3x4,
6x1x3x4, 6x1x2x4, and 6x1x2x3. Hence, using x1 + x2 + x3 + x4 = 1 and
setting g(x) = x2(1 − x), we directly verify that

f(P ) = f(x1, x2, x3, x4) = 1 −
4∑

i=1

x3
i − 6

∑
1≤i<j<k≤4

xixjxk

= 3(g(x1) + g(x2) + g(x3) + g(x4)) .

We note that g(0) = 0 and g(1) = 0. Hence, as x1 tends to 1 and other
variables tend to 0, f(x1, x2, x3, x4) = 0. Thus f(P ) is sharply bounded
downwards at 0.
We now find an upper bound. We note that

g(xi + xj) = (xi + xj)
2(1 − x1 − x2)

= g(xi) + g(xj) + 2xixj

(
1 − 3

2
(xi + xj)

)
;

thus for xi + xj ≤ 2/3 and xi, xj > 0 we have g(xi + xj) + g(0) ≥
g(xi) + g(xj). Equality holds only when xi + xj = 2/3.
Assuming without loss of generality x1 ≥ x2 ≥ x3 ≥ x4, we have g(x1) +
g(x2)+g(x3)+g(x4) < g(x1)+g(x2)+g(x3+x4). Assuming y1+y2+y3 = 1
and y1 ≥ y2 ≥ y3, we have g(y1) + g(y2) + g(y3) ≤ g(y1) + g(y2 + y3).
Hence g(x1) + g(x2) + g(x3) + g(x4) < g(x) + g(1 − x) for some x. We
also have g(x) + g(1 − x) = x(1 − x) ≤ 1/4. Hence f(P ) ≤ 3/4. Equality
holds for x1 = x2 = 1/2, x3 = x4 = 0 (corresponding to the midpoint of
an edge), and as the variables converge to these values, f(P ) converges to
3/4. Hence the bounds for f(P ) are

0 < f(P ) <
3

4
.

20. Let n be the unique integer such that 2n−1 ≤ k < 2n. Let S(n) be the set
of numbers less than 10n that are written with only the digits {0, 1} in
the decimal system. Evidently |S(n)| = 2n > k and hence there exist two
numbers x, y ∈ S(n) such that k | x− y.
Let us show that w = |x − y| is the desired number. By definition k | w.
We also have

w < 1.2 · 10n−1 ≤ 1.2 · (23
√

2)n−1 ≤ 1.2 · k3
√
k ≤ k4.

Finally, since x, y ∈ S(n), it follows that w = |x− y| can be written using
only the digits {0, 1, 8, 9}. This completes the proof.
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21. We must solve the congruence (1+2p +2n−p)N ≡ 1 (mod 2n). Since (1+
2p + 2n−p) and 2n are coprime, there clearly exists a unique N satisfying
this equation and 0 < N < 2n.

Let us assume n = mp. Then we have (1 + 2p)
(∑m−1

j=0 (−1)j2jp
)

≡
1 (mod 2n) and (1 + 2n−p)(1 − 2n−p) ≡ 1 (mod 2n). By multiplying
the two congruences we obtain

(1 + 2p)(1 + 2n−p)(1 − 2n−p)

⎛⎝m−1∑
j=0

(−1)j2jp

⎞⎠ ≡ 1 (mod 2n) .

Since (1 + 2p)(1 + 2n−p) ≡ (1 + 2p + 2n−p) (mod 2n), it follows that N ≡
(1−2n−p)

(∑m−1
j=0 (−1)j2jp

)
(mod 2n). The integer N =

∑m−1
j=0 (−1)j2jp−

2n−p + 2n satisfies the congruence and 0 < N ≤ 2n. Using that for a > b
we have in binary representation

2a − 2b = 11 . . .11︸ ︷︷ ︸
a−b times

00 . . . 00︸ ︷︷ ︸
b times

,

the binary representation of N is calculated as follows:

N =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
11 . . .11︸ ︷︷ ︸
p times

11 . . . 11︸ ︷︷ ︸
p times

00 . . .00︸ ︷︷ ︸
p times

. . . 11 . . .11︸ ︷︷ ︸
p times

00 . . . 00︸ ︷︷ ︸
p−1 times

1, 2 � n
p ,

11 . . .11︸ ︷︷ ︸
p−1 times

00 . . .00︸ ︷︷ ︸
p+1 times

11 . . .11︸ ︷︷ ︸
p times

00 . . . 00︸ ︷︷ ︸
p times

. . . 11 . . . 11︸ ︷︷ ︸
p times

00 . . .00︸ ︷︷ ︸
p−1 times

1, 2 | n
p .

22. We can assume without loss of generality that each connection is ser-
viced by only one airline and the problem reduces to finding two disjoint
monochromatic cycles of the same color and of odd length on a complete
graph of 10 points colored by two colors. We use the following two stan-
dard lemmas:
Lemma 1. Given a complete graph on six points whose edges are colored

with two colors there exists a monochromatic triangle.
Proof. Let us denote the vertices by c1, c2, c3, c4, c5, c6. By the pigeonhole

principle at least three vertices out of c1, say c2, c3, c4, are of the
same color, let us call it red. Assuming that at least one of the edges
connecting points c2, c3, c4 is red, the connected points along with c1
form a red triangle. Otherwise, edges connecting c2, c3, c4 are all of
the opposite color, let us call it blue, and hence in all cases we have a
monochromatic triangle.

Lemma 2. Given a complete graph on five points whose edges are colored
two colors there exists a monochromatic triangle or a monochromatic
cycle of length five.

Proof. Let us denote the vertices by c1, c2, c3, c4, c5. Assume that out of
a point ci three vertices are of the same color. We can then proceed
as in Lemma 1 to obtain a monochromatic triangle. Otherwise, each
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point is connected to other points with exactly two red and two blue
vertices. Hence, we obtain monochromatic cycles starting from a single
point and moving along the edges of the same color. Since each cycle
must be of length at least three (i.e., we cannot have more than one
cycle of one color), it follows that for both red and blue we must have
one cycle of length five of that color.

We now apply the lemmas. Let us denote the vertices by c1, c2, . . . , c10. We
apply Lemma 1 to vertices c1, . . . , c6 to obtain a monochromatic triangle.
Out of the seven remaining vertices we select 6 and again apply Lemma 1
to obtain another monochromatic triangle. If they are of the same color, we
are done. Otherwise, out of the nine edges connecting the two triangles
of opposite color at least 5 are of the same color, we can assume blue
w.l.o.g., and hence a vertex of a red triangle must contain at least two
blue edges whose endpoints are connected with a blue edge. Hence there
exist two triangles of different colors joined at a vertex. These take up
five points. Applying Lemma 2 on the five remaining points, we obtain a
monochromatic cycle of odd length that is of the same color as one of the
two joined triangles and disjoint from both of them.

23. Let us assume n > 1. Obviously n is odd. Let p ≥ 3 be the smallest
prime divisor of n. In this case (p − 1, n) = 1. Since 2n + 1 | 22n − 1, we
have that p | 22n − 1. Thus it follows from Fermat’s little theorem and
elementary number theory that p | (22n − 1, 2p−1 − 1) = 2(2n,p−1) − 1.
Since (2n, p− 1) ≤ 2, it follows that p | 3 and hence p = 3.
Let us assume now that n is of the form n = 3kd, where 2, 3 � d. We first
prove that k = 1.
Lemma. If 2m − 1 is divisible by 3r, then m is divisible by 3r−1.
Proof. This is the lemma from (SL97-14) with p = 3, a = 22, k = m,

α = 1, and β = r.
Since 32k divides n2 | 22n − 1, we can apply the lemma to m = 2n and
r = 2k to conclude that 32k−1 | n = 3kd. Hence k = 1.
Finally, let us assume d > 1 and let q be the smallest prime factor of d.
Obviously q is odd, q ≥ 5, and (n, q−1) ∈ {1, 3}. We then have q | 22n −1
and q | 2q−1 − 1. Consequently, q | 2(2n,q−1) − 1 = 22(n,q−1) − 1, which
divides 26 − 1 = 63 = 32 · 7, so we must have q = 7. However, in that case
we obtain 7 | n | 2n + 1, which is a contradiction, since powers of two can
only be congruent to 1,2 and 4 modulo 7. It thus follows that d = 1 and
n = 3. Hence n > 1 ⇒ n = 3.
It is easily verified that n = 1 and n = 3 are indeed solutions. Hence these
are the only solutions.

24. Let us denote A = b+ c+ d, B = a+ c+ d, C = a+ b+ d, D = a+ b+ c.
Since ab + bc + cd + da = 1 the numbers A,B,C,D are all positive. By
trivially applying the AM-GM inequality we have:

a2 + b2 + c2 + d2 ≥ ab+ bc+ cd+ da = 1 .
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We will prove the inequality assuming only that A,B,C,D are positive
and a2 + b2 + c2 + d2 ≥ 1. In this case we may assume without loss of
generality that a ≥ b ≥ c ≥ d ≥ 0. Hence a3 ≥ b3 ≥ c3 ≥ d3 ≥ 0 and
1
A ≥ 1

B ≥ 1
C ≥ 1

D > 0. Using the Chebyshev and Cauchy inequalities we
obtain:

a3

A
+
b3

B
+
c3

C
+
d3

D

≥ 1

4
(a3 + b3 + c3 + d3)

(
1

A
+

1

B
+

1

C
+

1

D

)
≥ 1

16
(a2 + b2 + c2 + d2)(a+ b+ c+ d)

(
1

A
+

1

B
+

1

C
+

1

D

)
=

1

48
(a2 + b2 + c2 + d2)(A+B + C +D)

(
1

A
+

1

B
+

1

C
+

1

D

)
≥ 1

3
.

This completes the proof.

25. Plugging in x = 1 we get f(f(y)) = f(1)/y and hence f(y1) = f(y2)
implies y1 = y2 i.e. that the function is bijective. Plugging in y = 1 gives
us f(xf(1)) = f(x) ⇒ xf(1) = x ⇒ f(1) = 1. Hence f(f(y)) = 1/y.
Plugging in y = f(z) implies 1/f(z) = f(1/z). Finally setting y = f(1/t)
into the original equation gives us f(xt) = f(x)/f(1/t) = f(x)f(t).
Conversely, any functional equation on Q+ satisfying (i) f(xt) = f(x)f(t)
and (ii) f(f(x)) = 1

x for all x, t ∈ Q+ also satisfies the original func-

tional equation: f(xf(y)) = f(x)f(f(y)) = f(x)
y . Hence it suffices to find

a function satisfying (i) and (ii).
We note that all elements q ∈ Q+ are of the form q =

∏n
i=1 p

ai

i where
pi are prime and ai ∈ Z. The criterion (a) implies f(q) = f(

∏n
i=1 p

ai

i ) =∏n
i=1 f(pi)

ai . Thus it is sufficient to define the function on all primes. For
the function to satisfy (b) it is necessary and sufficient for it to satisfy
f(f(p)) = 1

p for all primes p. Let qi denote the i-th smallest prime. We
define our function f as follows:

f(q2k−1) = q2k, f(q2k) =
1

q2k−1
, k ∈ N .

Such a function clearly satisfies (b) and along with the additional condition
f(xt) = f(x)f(t) it is well defined for all elements of Q+ and it satisfies
the original functional equation.

26. We note that |P (x)/x| → ∞. Hence, there exists an integer number M
such that M > |q1| and |P (x)| ≤ |x| ⇒ |x| < M . It follows that |qi| < M
for all i ∈ N because assuming |qi| ≥ M for some i we get |qi−1| =
|P (qi)| > |qi| ≥ M and this ultimately contradicts |q1| < M .

Let us define q1 = r
s and P (x) = ax3+bx2+cx+d

e where r, s, a, b, c, d, e are
all integers. For N = sa we shall prove by induction that Nqi is an integer
for all i ∈ N. By definition N �= 0.
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For i = 1 this obviously holds. Assume it holds for some i ∈ N. Then
using qi = P (qi+1) we have that Nqi+1 is a zero of the polynomial

Q(x) =
e

a
N3

(
P
( x
N

)
− qi

)
= x3 + (sb)x2 + (s2ac)x+ (s3a2d− s2ae(Nqi)) .

Since Q(x) is a monic polynomial with integer coefficients (a conclusion
for which we must assume the induction hypothesis) and Nqi+1 is rational
it follows by the rational root theorem that Nqi+1 is an integer.
It follows that all qi are multiples of 1/N . Since −M < qi < M we
conclude that qi can take less than T = 2M |N | distinct values. Therefore
for each j there are mj and mj + kj (kj > 0) both belonging to the set
{jT + 1, jT + 2, . . . , jT + T } such that qmj = qmj+kj . Since kj < T for
all kj it follows that there exists a positive integer k which appears an
infinite number of times in the sequence kj , i.e. there exist infinitely many
integers m such that qm = qm+k. Moreover, qm = qm+k clearly implies
qn = qn+k for all n ≤ m. Hence qn = qn+k holds for all n.

27. Let us denote by An(k) the n-digit number which consists of n − 1 ones
and one digit seven in the k + 1-th rightmost position (0 ≤ k < n). Then
An(k) = (10n + 54 · 10k − 1)/9.
We note that if 3 | n we have that 3 | An(k) for all k. Hence n cannot be
divisible by 3.
Now let 3 � n. We claim that for each such n ≥ 5, there exists k < n
for which 7 | An(k). We see that An(k) is divisible by 7 if and only if
10n − 1 ≡ 2 · 10k (mod 7). There are several cases.

n ≡ 1 (mod 6). Then 10n − 1 ≡ 2 ≡ 2 · 100, so 7 | An(0).
n ≡ 2 (mod 6). Then 10n − 1 ≡ 1 ≡ 2 · 104, so 7 | An(4).
n ≡ 4 (mod 6). Then 10n − 1 ≡ 3 ≡ 2 · 105, so 7 | An(5).
n ≡ 5 (mod 6). Then 10n − 1 ≡ 4 ≡ 2 · 102, so 7 | An(2).

The remaining cases are n = 1, 2, 4. For n = 4 the number 1711 = 29 · 59
is composite, while it is easily checked that n = 1 and n = 2 are solutions.
Hence the answer is n = 1, 2.

28. Let us first prove the following lemma.
Lemma. Let (b′/a′, d′/c′) and (b′′/a′′, d′′/c′′) be two points with rational

coordinates where the fractions given are irreducible. If both a′ and c′

are odd and the distance between the two points is 1 then it follows
that a′′ and c′′ are odd, and that b′ + d′ and b′′ + d′′ are of a different
parity.

Proof. Let b/a and d/c be irreducible fractions such that b′/a′ − b′′/a′′ =
b/a and d′/c′ − d′′/c′′ = d/c. Then it follows that b2/a2 + d2/c2 =
1 ⇒ b2c2 + a2d2 = a2c2. Since (a, b) = 1 and (c, d) = 1 it follows that
a | c, c | a and hence a = c. Consequently b2 + d2 = a2. Since a is
mutually co-prime to b and d it follows that a and b+d are odd. From
b′′/a′′ = b/a+ b′/a′ we get that a′′ | aa′, so a′′ is odd. Similarly, c′′ is
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odd as well. Now it follows that b′′ ≡ b+ b′ and similarly d′′ ≡ d+ d′

(mod 2). Hence b′′ + d′′ ≡ b′ + d′ + b+ d ≡ b′ + d′ + 1 (mod 2), from
which it follows that b′ + d′ and b′′ + d′′ are of a different parity.

Without loss of generality we start from the origin of the coordinate sys-
tem (0/1, 0/1). Initially b + d = 0 and after moving to each subsequent
point along the broken line b + d changes parity by the lemma. Hence it
will not be possible to return to the origin after an odd number of steps
since b+ d will be odd.
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4.32 Solutions to the Shortlisted Problems of IMO 1991

1. All the angles ∠PP1C, ∠PP2C, ∠PQ1C, ∠PQ2C are right, hence P1, P2,

Q1, Q2 lie on the circle with di-
ameter PC. The result now fol-
lows immediately from Pascal’s
theorem applied to the hexagon
P1PP2Q1CQ2. It tells us that the
points of intersection of the three
pairs of lines P1C,PQ1 (intersec-
tion A), P1Q2, P2Q1 (intersection

A

B C

P

P2

P1

Q1

Q2X

X) and PQ2, P2C (intersection B) are collinear.

2. Let HQ meet PB at Q′ and HR meet PC at R′. From MP = MB = MC

we have ∠BPC = 90o. So PR′HQ′

is a rectangle. Since PH is perpen-
dicular to BC, it follows that the
circle with diameter PH , through
P,R′, H,Q′, is tangent to BC. It is
now sufficient to show that QR is
parallel to Q′R′. Let CP meet AB
at X , and BP meet AC at Y . Since
P is on the median, it follows (for
example, by Ceva’s theorem) that

A

B C

P

M

X

Q

Y

R

Q′ R′

H

AX/XB = AY/Y C, i.e. that XY is parallel to BC. Consequently,
PY/BP = PX/CP . Since HQ is parallel to CX , we have QQ′/HQ′ =
PX/CP and similarly RR′/HR′ = PY/BP . It follows that QQ′/HQ′ =
RR′/HR′, hence QR is parallel to Q′R′ as required.

Second solution. It suffices to show that ∠RHC = ∠RQH , or equivalently
RH : QH = PC : PB. We assume PC : PB = 1 : x. Let X ∈ AB and
Y ∈ AC be points such that MX ⊥ PB and MY ⊥ PC. Since MX
bisects ∠AMB and MY bisects AMC, we deduce

AX : XB = AM : MB = AY : Y C ⇒ XY ‖ BC ⇒
⇒ 
XYM ∼ 
CBP ⇒ XM : MY = 1 : x.

Now from CH : HB = 1 : x2 we obtain RH : MY = CH : CM = 1 : 1+x2

2

and QH : MX = BH : BM = x2 : 1+x2

2 . Therefore

RH : QH =
2

1 + x2
MY :

2x2

1 + x2
MX = 1 : x.

3. Consider the problem with the unit circle on the complex plane. For conve-
nience, we use the same letter for a point in the plane and its corresponding
complex number.
Lemma 1. Line l(S, PQR) contains the point Z = P+Q+R+S

2 .
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Proof. Suppose P ′, Q′, R′ are the feet of perpendiculars from S to QR,
RP , PQ respectively. It suffices to show that P ′, Q′, R′, Z are on the
same line. Let us first represent P ′ by Q,R, S. Since P ′ ∈ QR, we

have P ′−Q
R−Q =

(
P ′−Q
R−Q

)
, that is,

(P ′ −Q)(R−Q) = (P ′ −Q)(R −Q). (1)

On the other hand, since SP ′ ⊥ QR, the ratio P ′−S
R−Q is purely imagi-

nary. Thus

(P ′ − S)(R −Q) = −(P ′ − S)(R−Q). (2)

Eliminating P ′ from (1) and (2) and using the fact that X = X−1

for X on the unit circle, we obtain P ′ = (Q+R+ S −QR/S)/2 and
analogously Q′ = (P + R + S − PR/S)/2 and R′ = (P + Q + S −
PQ/S)/2. Hence Z − P ′ = (P +QR/S)/2, Z −Q′ = (Q+ PR/S)/2
and Z − R′ = (R + PQ/S)/2. Setting P = p2, Q = q2, R = r2,

S = s2 we obtain Z − P ′ = pqr
2s

(
ps
qr + qr

ps

)
, Z − Q′ = pqr

2s

(
qs
pr + pr

qs

)
and Z − P ′ = pqr

2s

(
rs
pq + pq

rs

)
.

Since x + x−1 = 2Re x is real for all x on the unit circle, it follows
that the ratio of every pair of these differences is real, which means
that Z, P ′, Q′, R′ belong to the same line.

Lemma 2. If P,Q,R, S are four different points on a circle, then the lines
l(P,QRS), l(Q,RSP ), l(R,SPQ), l(S, PQR) intersect at one point.

Proof. By Lemma 1, they all pass through P+Q+R+S
2 .

Now we can find the needed conditions for A,B, . . . , F . In fact, the
lines l(A,BDF ), l(D,ABF ) meet at Z1 = A+B+D+F

2 , and l(B,ACE),

l(E,ABC) meet at Z2 = A+B+C+E
2 . Hence, Z1 ≡ Z2 if and only if

D − C = E − F ⇔ CDEF is a rectangle.

Remark. The line l(S, PQR) is widely known as Simson line; the proof
that the feet of perpendiculars are collinear is straightforward. The key
claim, Lemma 1, is a known property of Simson lines, and can be shown
elementarily:
∗ l(S, PQR) passes through the midpoint X of HS, where H is the

orthocenter of PQR.

4. Assume the contrary, that ∠MAB, ∠MBC, ∠MCA are all greater than
30◦. By the sine Ceva theorem, it holds that

sin ∠MAC sin ∠MBA sin∠MCB

= sin ∠MAB sin ∠MBC sin ∠MCA > sin3 30◦ =
1

8
.

(∗)

On the other hand, since ∠MAC+∠MBA+∠MCB < 180◦−3·30◦ = 90◦,
Jensen’s inequality applied on the concave function ln sinx (x ∈ [0, π])
gives us sin ∠MAC sin ∠MBA sin∠MCB < sin3 30◦, contradicting (∗).
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Second solution. Denote the intersections of PA,PB, PC with BC,CA,
AB by A1, B1, C1, respectively. Suppose that each of the angles ∠PAB,
∠PBC,∠PCA is greater than 30o and denote PA = 2x, PB = 2y, PC =
2z. Then PC1 > x, PA1 > y, PB1 > z. On the other hand, we know that

PC1

PC + PC1
+

PA1

PA+ PA1
+

PB1

PB + PB1
=
SABP

SABC
+
SPBC

SABC
+
SAPC

SABC
= 1.

Since the function t
p+t is increasing, we obtain x

2z+x + y
2x+y + z

2y+z < 1.

But on the contrary, Cauchy-Schwartz inequality (or alternatively Jensen’s
inequality) yields

x

2z + x
+

y

2x+ y
+

z

2y + z
≥ (x+ y + z)2

x(2z + x) + y(2x+ y) + z(2y + z)
= 1.

5. Let P1 be the point on the side BC such that ∠BFP1 = β/2. Then

∠BP1F = 180o − 3β/2, and the sine law gives us BF
BP1

= sin(3β/2)
sin(β/2) =

3 − 4 sin2(β/2) = 1 + 2 cosβ.
Now we calculate BF

BP . We have ∠BIF = 120o − β/2, ∠BFI = 60o and
∠BIC = 120o, ∠BCI = γ/2 = 60o − β/2. By the sine law,

BF = BI
sin(120o − β/2)

sin 60o
, BP =

1

3
BC = BI

sin 120o

3 sin(60o − β/2)
.

It follows that BF
BP = 3 sin(60o−β/2) sin(60o+β/2)

sin2 60o = 4 sin(60o −β/2) sin(60o +

β/2) = 2(cosβ − cos 120o) = 2 cosβ + 1 = BF
BP1

. Therefore P ≡ P1.

6. Let a, b, c be sides of the triangle. Let A1 be the intersection of line AI with
BC. By the known fact, BA1 : A1C = c : b and AI : IA1 = AB : BA1,
hence BA1 = ac

b+c and AI
IA1

= AB
BA1

= b+c
a . Consequently AI

lA
= b+c

a+b+c .
Put a = n+p, b = p+m, c = m+n: it is obvious that m,n, p are positive.
Our inequality becomes

2 <
(2m+ n+ p)(m+ 2n+ p)(m+ n+ 2p)

(m+ n+ p)3
≤ 64

27
.

The right side inequality immediately follows from the inequality between
arithmetic and geometric means applied on 2m+ n+ p, m+ 2n+ p and
m+n+2p. For the left side inequality, denote by T = m+n+p. Then we
can write (2m+n+ p)(m+ 2n+ p)(m+n+2p) = (T +m)(T +n)(T + p)
and

(T+m)(T+n)(T+p) = T 3+(m+n+p)T 2+(mn+np+pn)T+mnp > 2T 3.

Remark. The inequalities cannot be improved. In fact, AI·BI·CI
lAlBlC

is equal
to 8/27 for a = b = c, while it can be arbitrarily close to 1/4 if a = b and
c is sufficiently small.

7. The given equations imply AB = CD, AC = BD, AD = BC. Let L1,
M1, N1 be the midpoints of AD,BD,CD respectively. Then the above
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equalities yield

L1M1 = AB/2 = LM,
L1M1 ‖ AB ‖ LM ;

L1M = CD/2 = LM1,
L1M ‖ CD ‖ LM1.

Thus L,M,L1,M1 are coplanar and
LML1M1 is a rhombus as well as
MNM1N1 and LNL1N1. Then the

A B

C

D

M

N
L

M1

N1

L1

Q

segments LL1, MM1, NN1 have the common midpoint Q and QL ⊥ QM ,
QL ⊥ QN , QM ⊥ QN . We also infer that the line NN1 is perpendicular
to the plane LML1M1 and hence to the line AB. Thus QA = QB, and
similarly, QB = QC = QD, hence Q is just the center O, and ∠LOM =
∠MON = ∠NOL = 90◦.

8. Let P1(x1, y1), P2(x2, y2), . . . , Pn(xn, yn) be the n points of S in the co-
ordinate plane. We may assume x1 < x2 < · · · < xn (choosing adequate
axes and renumbering the points if necessary). Define d to be half the
minimum distance of Pi from the line PjPk, where i, j, k go through all
possible combinations of mutually distinct indices.
First we define a set T containing 2n− 4 points:

T = {(xi, yi − d), (xi, yi + d) | i = 2, 3, . . . , n− 1}.

Consider any triangle PkPlPm, where k < l < m. Its interior contains at
least one of the two points (xl, yl±d), so T is a set of 2n−4 points with the
required property. However, at least one of the points of T is useless. The
convex hull of S is a polygon with at least three points in S as vertices.
Let Pj be a vertex of that hull distinct from P1 and Pn. Clearly one of
the points (xj , yj ± d) lies outside the convex hull, and thus can be left
out. The remaining set of 2n− 5 points satisfies the conditions.

9. Let A1, A2 be two points of E which are joined. In E \ {A1, A2}, there
are at most 397 points to which A1 is not joined, and at most as much
to which A2 is not joined. Consequently, there exists a point A3 which
is joined to both A1 and A2. There are at most 3 · 397 = 1191 points of
E \ {A1, A2, A3} to which at least one of A1, A2, A3 is not joined, hence
it is possible to choose a point A4 joined to A1, A2, A3. Similarly, there
exists a point A5 which is joined to all A1, A2, A3, A4. Finally, among the
remaining 1986 points, there are at most 5 · 397 = 1985 which are not
joined to one of the points A1, . . . , A5. Thus there is at least one point A6

joined to all A1, . . . , A5. It is clear that A1, . . . , A6 are pairwise joined.

Solution of the alternative version. Let be given 1991 points instead.
Number the points from 1 to 1991, and join i and j if and only if i − j
is not a multiple of 5. Then each i is joined to 1592 or 1593 other points,
and obviously among any six points there are two which are not joined.
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10. We start at some vertex v0 and walk along distinct edges of the graph,
numbering them 1, 2, . . . in the order of appearance, until this is no longer
possible without reusing an edge. If there are still edges which are not
numbered, one of them has a vertex which has already been visited (else
G would not be connected). Starting from this vertex, we continue to
walk along unused edges resuming the numbering, until we eventually get
stuck. Repeating this procedure as long as possible, we shall number all
the edges.
Let v be a vertex which is incident with e ≥ 2 edges. If v = v0, then it is
on the edge 1, so the gcd at v is 1. If v �= v0, suppose that it was reached
for the first time by the edge r. At that time there was at least one unused
edge incident with v (as e ≥ 2), hence one of them was labelled by r + 1.
The gcd at v again equals gcd(r, r + 1) = 1.

11. To start with, observe that 1
n−m

(
n−m

m

)
= 1

n

[(
n−m

m

)
+
(
n−m−1

m−1

)]
.

For n = 1, 2, . . . set Sn =
∑[n/2]

m=0(−1)m
(
n−m

m

)
. Using the identity

(
m
k

)
=(

m−1
k

)
+
(
m−1
k−1

)
we obtain the following relation for Sn:

Sn+1 =
∑
m

(−1)m

(
n−m+ 1

m

)
=

∑
m

(−1)m

(
n−m

m

)
+
∑
m

(−1)m

(
n−m

m− 1

)
= Sn − Sn−1.

Since the initial members of the sequence Sn are 1, 1, 0,−1,−1, 0, 1, 1, . . . ,
we thus find that Sn is periodic with period 6.
Now the sum from the problem reduces to

1

1991

(
1991

0

)
− 1

1991

[(
1990

1

)
+

(
1989

0

)]
+· · ·− 1

1991

[(
996

995

)
+

(
995

994

)]

=
1

1991
(S1991 − S1989) =

1

1991
(0 − (−1)) =

1

1991
.

12. Let Am be the set of those elements of S which are divisible by m. By the
inclusion-exclusion principle, the number of elements divisible by 2, 3, 5
or 7 equals

|A2 ∪A3 ∪A5 ∪A7|
= |A2| + |A3| + |A5| + |A7| − |A6| − |A10| − |A14| − |A15|
−|A21| − |A35| + |A30| + |A42| + |A70| + |A105| − |A210|

= 140 + 93 + 56 + 40 − 46 − 28 − 20 − 18
−13 − 8 + 9 + 6 + 4 + 2 − 1 = 216.

Among any five elements of the set A2 ∪ A3 ∪ A5 ∪ A7, one of the sets
A2, A3, A5, A7 contains at least two, and those two are not relatively
prime. Therefore n > 216.
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We claim that the answer is n = 217. First notice that the set A2 ∪A3 ∪
A5 ∪A7 consists of four prime (2, 3, 5, 7) and 212 composite numbers. The
set S \ A contains exactly 8 composite numbers: namely, 112, 11 · 13, 11 ·
17, 11 · 19, 11 · 23, 132, 13 · 17, 13 · 19. Thus S consists of the unity, 220
composite numbers and 59 primes.
Let A be a 217-element subset of S, and suppose that there are no five
pairwise relatively prime numbers in A. Then A can contain at most 4
primes (or unity and three primes) and at least 213 composite numbers.
Hence the set S \A contains at most 7 composite numbers. Consequently,
at least one of the following 8 five-element sets is disjoint with S \A, and
is thus entirely contained in A:

{2 · 23, 3 · 19, 5 · 17, 7 · 13, 11 · 11}, {2 · 29, 3 · 23, 5 · 19, 7 · 17, 11 · 13},
{2 · 31, 3 · 29, 5 · 23, 7 · 19, 11 · 17}, {2 · 37, 3 · 31, 5 · 29, 7 · 23, 11 · 19},
{2 · 41, 3 · 37, 5 · 31, 7 · 29, 11 · 23}, {2 · 43, 3 · 41, 5 · 37, 7 · 31, 13 · 17},
{2 · 47, 3 · 43, 5 · 41, 7 · 37, 13 · 19}, {2 · 2, 3 · 3, 5 · 5, 7 · 7, 13 · 13}.

As each of these sets consists of five numbers relatively prime in pairs, the
claim is proved.

13. Call a sequence e1, . . . , en good if e1a1+· · ·+enan is divisible by n. Among
the sums s0 = 0, s1 = a1, s2 = a1 + a2, . . . , sn = a1 + · · · + an, two give
the same remainder modulo n, and their difference corresponds to a good
sequence. To show that, permuting the ai’s, we can find n − 1 different
sequences, we use the following
Lemma. Let A be a k×n (k ≤ n−2) matrix of zeros and ones, whose every

row contains at least one 0 and at least two 1’s. Then it is possible to
permute columns of A is such a way that in any row 1’s do not form
a block.

Proof. We will use the induction on k. The case k = 1 and arbitrary
n ≥ 3 is trivial. Suppose that k ≥ 2 and that for k − 1 and any
n ≥ k + 1 the lemma is true. Consider a k × n matrix A, n ≥ k + 2.
We mark an element aij if either it is the only zero in the i-th row,
or one of the 1’s in the row if it contains exactly two 1’s. Since n ≥ 4,
every row contains at most two marked elements, which adds up to
at most 2k < 2n marked elements in total. It follows that there is a
column with at most one marked element. Assume w.l.o.g. that it is
the first column and that a1j isn’t marked for j > 1. The matrix B,
obtained by omitting the first row and first column from A, satisfies
the conditions of the lemma. Therefore, we can permute columns of
B and get the required form. Considered as a permutation of column
of A, this permutation may leave a block of 1’s only in the first row
of A. In the case that it is so, if a11 = 1 we put the first column in
the last place, otherwise we put it between any two columns having
1’s in the first row. The obtained matrix has the required property.

Suppose now that we have got k different nontrivial good sequences
ei
1, . . . , e

i
n, i = 1, . . . , k, and that k ≤ n − 2. The matrix A = (ei

j)
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fulfils the conditions of Lemma, hence there is a permutation σ from
Lemma. Now among the sums s0 = 0, s1 = aσ(1), s2 = aσ(1) + aσ(2),
. . . , sn = aσ(1) + · · · + aσ(n), two give the same remainder modulo n. Let
sp ≡ sq (mod n), p < q. Then n | sq − sp = aσ(p+1) + · · · + aσ(q), and
this yields a good sequence e1, . . . , en with eσ(p+1) = · · · = eσ(q) = 1 and
other e’s equal to zero. Since from the construction we see that none of
the sequences eσ(j)i has all 1’s in a block, in this way we have got a new
nontrivial good sequence, and we can continue this procedure until there
are n− 1 sequences. Together with the trivial 0, . . . , 0 sequence, we have
found n good sequences.

14. Suppose that f(x0), f(x0 + 1), . . . , f(x0 + 2p− 2) are squares. If p | a and
p � b, then f(x) ≡ bx+c (mod p) for x = x0, . . . , x0+p−1 form a complete
system of residues modulo p. However, a square is always congruent to
exactly one of the p+1

2 numbers 0, 12, 22, . . . , (p−1
2 )2 and thus cannot give

every residue modulo p. Also, if p | a and p | b, then p | b2 − 4ac.
We now assume p � a. The following identities hold for any quadric poly-
nomial:

4a · f(x) = (2ax+ b)2 − (b2 − 4ac) (1)
and

f(x+ p) − f(x) = p(2ax+ b) + p2a. (2)

Suppose that there is an y, x0 ≤ y ≤ x0 +p−2, for which f(y) is divisible
by p. Then both f(y) and f(y+p) are squares divisible by p, and therefore
both are divisible by p2. But relation (2) implies that p | 2ay+b, and hence
by (1) b2 − 4ac is divisible by p as well.
Therefore it suffices to show that such an y exists, and for that aim we
prove that there are two such y in [x0, x0 + p− 1]. Assume the opposite.
Since for x = x0, x0+1, . . . , x0+p−1 f(x) is congruent modulo p to one of

the p−1
2 numbers 12, 22, . . . ,

(
p−1
2

)2
, it follows by the pigeon-hole principle

that for some mutually distinct u, v, w ∈ {x0, . . . , x0 + p − 1} we have
f(u) ≡ f(v) ≡ f(w) (mod p). Consequently the difference f(u) − f(v) =
(u − v)(a(u + v) + b) is divisible by p, but it is clear that p � u − v,
hence a(u + v) ≡ −b (mod p). Similarly a(u + w) ≡ −b (mod p), which
together with the previous congruence yields p | a(v − w) ⇒ p | v − w
which is clearly impossible. It follows that p | f(y1) for at least one y1,
x0 ≤ y1 < x0 + p.
If y2, x0 ≤ y2 < x0 + p is such that a(y1 + y2) + b ≡ 0 (mod p), we
have p | f(y1) − f(y2) ⇒ p | f(y2). If y1 = y2, then by (1) p | b2 − 4ac.
Otherwise, among y1, y2 one belongs to [x0, x0 + p− 2] as required.

Second solution. Using Legendre’s symbols
(

a
p

)
for quadratic residues

we can prove a stronger statement for p ≥ 5. It can be shown that

p−1∑
x=0

(
ax2 + bx+ c

p

)
= −

(
a

p

)
if p � b2 − 4ac,
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hence for at most p+3
2 values of x between x0 and x0 + p − 1 inclusive,

ax2 + bx+ c is a quadratic residue or 0 modulo p. Therefore, if p ≥ 5 and
f(x) is a square for p+5

2 consecutive values, then p | b2 − 4ac.

15. Assume that the sequence has the period T . We can find integers k > m >
0, as large as we like, such that 10k ≡ 10m (mod T ), using for example
Euler’s theorem. It is obvious that a10k−1 = a10k and hence, taking k
sufficiently large and using the periodicity, we see that

a2·10k−10m−1 = a10k−1 = a10k = a2·10k−10m .

Since (2 · 10k − 10m)! = (2 · 10k − 10m)(2 · 10k − 10m − 1)! and the last
nonzero digit of 2 · 10k − 10m is nine, we must have a2·10k−10m−1 = 5
(if s is a digit, the last digit of 9s is s only if s = 5). But this means
that 5 divides n! with a greater power than 2 does, which is impossible.
Indeed, if the exponents of these powers are α2, α5 respectively, then α5 =
[n/5] + [n/52] + · · · ≤ α2 = [n/2] + [n/22] + · · · .

16. Let p be the least prime number that does not divide n: thus a1 = 1 and
a2 = p. Since a2−a1 = a3−a2 = · · · = r, the ai’s are 1, p, 2p−1, 3p−2, . . . .
We have the following cases:
p = 2. Then r = 1 and the numbers 1, 2, 3, . . . , n− 1 are relatively prime

to n, hence n is a prime.
p = 3. Then r = 2, so every odd number less than n is relatively prime to

n, from which we deduce that n has no odd divisors. Therefore n = 2k

for some k ∈ N.
p > 3. Then r = p − 1 and ak+1 = a1 + k(p − 1) = 1 + k(p − 1). Since

n− 1 also must belong to the progression, we have p− 1 | n− 2. Let q
be any prime divisor of p− 1. Then also q | n− 2. On the other hand,
since q < p, it must divide n too, therefore q | 2, i.e. q = 2. This means
that p− 1 has no prime divisors other than 2 and thus p = 2l + 1 for
some l ≥ 2. But in order for p to be prime, l must be even (because
3 | 2l + 1 for l odd). Now we recall that 2p− 1 is also relatively prime
to n; but 2p− 1 = 2l+1 + 1 is divisible by 3, which is a contradiction
because 3 | n.

17. Taking the equation 3x + 4y = 5z (x, y, z > 0) modulo 3, we get that
5z ≡ 1 (mod 3), hence z is even, say z = 2z1. The equation then becomes
3x = 52z1 − 4y = (5z1 − 2y)(5z1 + 2y). Each factor 5z1 − 2y and 5z1 + 2y is
a power of 3, for which the only possibility is 5z1 +2y = 3x and 5z1 −2y =
1. Again modulo 3 these equations reduce to (−1)z1 + (−1)y = 0 and
(−1)z1 − (−1)y = 1, implying that z1 is odd and y is even. Particularly,
y ≥ 2. Reducing the equation 5z1 + 2y = 3x modulo 4 we get that 3x ≡ 1,
hence x is even. Now if y > 2, modulo 8 this equation yields 5 ≡ 5z1 ≡
3x ≡ 1, a contradiction. Hence y = 2, z1 = 1. The only solution of the
original equation is x = y = z = 2.



552 4 Solutions

18. For integers a > 0, n > 0 and α ≥ 0, we shall write aα ‖ n when aα | n
and aα+1 � n.
Lemma. For every odd number a ≥ 3 and an integer n ≥ 0 it holds that

an+1 ‖ (a+ 1)an − 1 and an+1 ‖ (a− 1)an

+ 1.

Proof. We shall prove the first relation by induction (the second is anal-
ogous). For n = 0 the statement is obvious. Suppose that it holds for
some n, i.e. that (1 + a)an

= 1 +Nan+1, a � N . Then

(1+a)an+1

= (1+Nan+1)a = 1+a ·Nan+1+

(
a

2

)
N2a2n+2 +Ma3n+3

for some integer M . Since
(
a
2

)
is divisible by a for a odd, we deduce

that the part of the above sum behind 1 + a · Nan+1 is divisible by
an+3. Hence (1 + a)an+1

= 1 +N ′an+2, where a � N ′.
It follows immediately from Lemma that

19911993 ‖ 199019911992

+ 1 and 19911991 ‖ 199219911990 − 1.

Adding these two relations we obtain immediately that k = 1991 is the
desired value.

19. Set x = cos(πa). The given equation is equivalent to 4x3+4x2−3x−2 = 0,
which factorizes as (2x+ 1)(2x2 + x− 2) = 0.
The case 2x + 1 = 0 yields cos(πa) = −1/2 and a = 2/3. It remains
to show that if x satisfies 2x2 + x − 2 = 0 then a is not rational. The
polynomial equation 2x2 + x − 2 = 0 has two real roots, x1,2 = −1±√

17
4 ,

and since |x| ≤ 1 we must have x = cosπa = −1+
√

17
4 .

We now prove by induction that, for every integer n ≥ 0, cos(2nπa) =
an+bn

√
17

4 for some odd integers an, bn. The case n = 0 is trivial. Also, if

cos(2nπa) = an+bn

√
17

4 , then

cos(2n+1πa) = 2 cos2(2nπa) − 1

=
1

4

(
a2

n + 17b2n − 8

2
+ anbn

√
17

)
=
an+1 + bn+1

√
17

4
.

By the inductive step that an, bn are odd, it is obvious that an+1, bn+1

are also odd. This proves the claim.
Note also that, since an+1 = 1

2 (a2
n + 17b2n − 8) > an, the sequence {an} is

strictly increasing. Hence the set of values of cos(2nπa), n = 0, 1, 2, . . . , is
infinite (because

√
17 is irrational). However, if a were rational, then the

set of values of cosmπa, m = 1, 2, . . . , would be finite, a contradiction.
Therefore the only possible value for a is 2/3.

20. We prove the result with 1991 replaced by any positive integer k. For
natural numbers p, q, let ε = (αp− [αp])(αq − [αq]). Then 0 < ε < 1 and
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ε = α2pq − α(p[αq] + q[αp]) + [αp][αq].

Multiplying this equality by α−k and using α2 = kα+1, i.e. α(α−k) = 1,
we get

(α− k)ε = α(pq + [αp][αq]) − (p[αq] + q[αp] + k[αp][αq]).

Since 0 < (α−k)ε < 1, we have [α(p∗ q)] = p[αq]+ q[αp]+k[αp][αq]. Now

(p ∗ q) ∗ r = (p ∗ q)r + [α(p ∗ q)][αr] =
= pqr + [αp][αq]r + [αq][αr]p + [αr][αp]q + k[αp][αq][αr].

Since the last expression is symmetric, the same formula is obtained for
p ∗ (q ∗ r).

21. The polynomial g(x) factorizes as g(x) = f(x)2−9 = (f(x)−3)(f(x)+3).
If one of the equations f(x) + 3 = 0 and f(x) − 3 = 0 has no integer
solutions, then the number of integer solutions of g(x) = 0 clearly does
not exceed 1991.
Suppose now that both f(x) + 3 = 0 and f(x) − 3 = 0 have in-
teger solutions. Let x1, . . . , xk be distinct integer solutions of the for-
mer, and xk+1, . . . , xk+l be distinct integer solutions of the latter equa-
tion. There exist monic polynomials p(x), q(x) with integer coefficients
such that f(x) + 3 = (x − x1)(x − x2) . . . (x − xk)p(x) and f(x) − 3 =
(x− xk+1)(x− xk+2) . . . (x − xk+l)q(x). Thus we obtain

(x−x1)(x−x2) . . . (x−xk)p(x)−(x−xk+1)(x−xk+2) . . . (x−xk+l)q(x) = 6.

Putting x = xk+1 we get (xk+1 − x1)(xk+1 − x2) · · · (xk+1 − xk) | 6, and
since the product of more than four distinct integers cannot divide 6, this
implies k ≤ 4. Similarly l ≤ 4; hence g(x) = 0 has at most 8 distinct
integer solutions.

Remark. The proposer provided a solution for the upper bound of 1995
roots which was essentially the same as that of (IMO74-6).

22. Suppose w.l.o.g. that the center of the square is at the origin O(0, 0). We
denote the curve y = f(x) = x3 + ax2 + bx + c by γ and the vertices of
the square by A,B,C,D in this order.
At first, the symmetry with respect to the point O maps γ into the curve
γ (y = f(−x) = x3 − ax2 + bx − c). Obviously γ also passes through
A,B,C,D, and thus has four different intersection points with γ. Then
2ax2 + 2c has at least four distinct solution, which implies a = c = 0.
Particularly, γ passes through O and intersects all quadrants, and hence
b < 0.
Further, the curve γ′, obtained by rotation of γ around O for 90◦, has an
equation −x = f(y) and also contains the points A,B,C,D and O. The
intersection points (x, y) of γ ∩ γ′ are determined by −x = f(f(x)), and
hence they are roots of a polynomial p(x) = f(f(x)) + x of 9-th degree.
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But the number of times that one cubic actually crosses the other in each
quadrant is in the general case even (draw the picture!), and since ABCD
is the only square lying on γ ∩ γ′, the intersection points A,B,C,D must
be double. It follows that

p(x) = x[(x − r)(x + r)(x − s)(x + s)]2, (1)

where r, s are the x-coordinates of A and B. On the other hand, p(x) is
defined by (x3+bx)3+b(x3+bx)+x, and therefore equating of coefficients
with (1) yields

3b = −2(r2 + s2), 3b2 = (r2 + s2)2 + 2r2s2,
b(b2 + 1) = −2r2s2(r2 + s2), b2 + 1 = r4s4.

Straightforward solving this system of equations gives b = −
√

8 and r2 +
s2 =

√
18.

The line segment from O to (r, s) is half a diagonal of the square, and
thus a side of the square has length a =

√
2(r2 + s2) = 4

√
72.

23. From (i), replacing m by f(f(m)), we get

f( f(f(m)) + f(f(n)) ) = −f(f( f(f(m)) + 1)) − n;
analogously f( f(f(n)) + f(f(m)) ) = −f(f( f(f(n)) + 1)) −m.

From these relations we get f(f(f(f(m))+1))−f(f(f(f(n))+1)) = m−n.
Again from (i),

f(f( f(f(m)) + 1)) = f(−m− f(f(2)) )
and f(f( f(f(n)) + 1)) = f(−n− f(f(2)) ).

Setting f(f(2)) = k we obtain f(−m − k) − f(−n − k) = m − n for all
integers m,n. This implies f(m) = f(0) − m. Then also f(f(m)) = m,
and using this in (i) we finally get

f(n) = −n− 1 for all integers n.

Particularly f(1991) = −1992.
From (ii) we obtain g(n) = g(−n − 1) for all integers n. Since g is a
polynomial, it must also satisfy g(x) = g(−x − 1) for all real x. Let us
now express g as a polynomial on x + 1/2: g(x) = h(x + 1/2). Then
h satisfies h(x + 1/2) = h(−x − 1/2), i.e. h(y) = h(−y), hence it is a
polynomial in y2; thus g is a polynomial in (x + 1/2)2 = x2 + x + 1/4.
Hence g(n) = p(n2 + n) (for some polynomial p) is the most general form
of g.

24. Let yk = ak − ak+1 + ak+2 − · · · + ak+n−1 for k = 1, 2, . . . , n, where we
define xi+n = xi for 1 ≤ i ≤ n. We then have y1 + y2 = 2a1, y2 + y3 =
2a2, . . . , yn + y1 = 2an.
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(i) Let n = 4k−1 for some integer k > 0. Then for each i = 1, 2, . . . , n we
have that yi = (ai +ai+1+ · · ·+ai−1)−2(ai+1+ai+3+ · · ·+ai−2)=1+
2 + · · · + (4k − 1) − 2(ai+1 + ai+3 + · · · + ai−2) is even. Suppose now
that a1, . . . , an is a good permutation. Then each yi is positive and
even, so yi ≥ 2. But for some t ∈ {1, . . . , n} we must have at = 1,
and thus yt + yt+1 = 2at = 2 which is impossible. Hence the numbers
n = 4k − 1 are not good.

(ii) Let n = 4k + 1 for some integer k > 0. Then 2, 4, . . . , 4k, 4k + 1, 4k −
1, . . . , 3, 1 is a permutation with the desired property. Indeed, in this
case y1 = y4k+1 = 1, y2 = y4k = 3, . . . , y2k = y2k+2 = 4k − 1,
y2k+1 = 4k + 1.

Therefore all nice numbers are given by 4k + 1, k ∈ N.

25. Since replacing x1 by 1 can only reduce the set of indices i for which the
desired inequality holds, we may assume x1 = 1. Similarly we may assume
xn = 0. Now we can let i be the largest index such that xi > 1/2. Then
xi+1 ≤ 1/2, hence

xi(1 − xi+1) ≥ 1

4
=

1

4
x1(1 − xn).

26. Without loss of generality we can assume b1 ≥ b2 ≥ · · · ≥ bn. We denote
by Ai the product a1a2 . . . ai−1ai+1 . . . an. If for some i < j holds Ai < Aj ,
then biAi + bjAj ≤ biAj + bjAi (or equivalently (bi − bj)(Ai − Aj) ≤ 0).
Therefore the sum

∑n
i=1 biAi does not decrease when we rearrange the

numbers a1, . . . , an so that A1 ≥ · · · ≥ An, and consequently a1 ≤ · · · ≤
an. Further, for fixed ai’s and

∑
bi = 1, the sum

∑n
i=1 biAi is maximal

when b1 takes the largest possible value, i.e. b1 = p, b2 takes the remaining
largest possible value b2 = 1 − p, whereas b3 = · · · = bn = 0. In this case

n∑
i=1

biAi = pA1 + (1 − p)A2 = a3 . . . an(pa2 + (1 − p)a1)

≤ p(a1 + a2)a3 . . . an ≤ p

(n− 1)n−1
,

using the inequality between the geometric and arithmetic means for
a3, . . . , an, a1 + a2.

27. Write F (x1, . . . , xn) =
∑

i<j xixj(xi+xj). Choose an n-tuple (x1, . . . , xn),∑n
i=1 xi = 1, xi ≥ 0 with at least three nonzero components, and assume

w.l.o.g. that x1 ≥ · · · ≥ xk−1 ≥ xk ≥ xk+1 = · · · = xn = 0. We claim that
replacing xk−1, xk with xk−1 + xk, 0 the value of F increases. Write for
brevity xk−1 = a, xk = b. Then

F (. . . , a+ b, 0, 0, . . . ) − F (. . . , a, b, 0, . . . )

=

k−2∑
i=1

xi(a+ b)(xi + a+ b) −
k−2∑
i=1

[xia(xi + a) + xib(xi + b)] − ab(a+ b)
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= ab

(
2

k−2∑
i=1

xi − a− b

)
= ab(2 − 3(a+ b)) > 0,

because xk−1 + xk ≤ 2
3 (x1 + xk−1 + xk−2) ≤ 2

3 . Repeating this procedure
we can reduce the number of nonzero xi’s to two, increasing the value of
F in each step. It remains to maximize F over n-tuples (x1, x2, 0, . . . , 0)
with x1, x2 ≥ 0, x1 + x2 = 1: in this case F equals x1x2 and attains its
maximum value 1

4 when x1 = x2 = 1
2 , x3 = . . . , xn = 0.

28. Let xn = c(n
√

2 − [n
√

2]) for some constant c > 0. For i > j, putting
p = [i

√
2] − [j

√
2], we have

|xi−xj| = c|(i−j)
√

2−p| =
|2(i− j)2 − p2|c
(i− j)

√
2 + p

≥ c

(i− j)
√

2 + p
≥ c

4(i− j)
,

because p < (i − j)
√

2 + 1. Taking c = 4, we obtain that for any i > j,
(i − j)|xi − xj | ≥ 1. Of course, this implies (i − j)a|xi − xj | ≥ 1 for any
a > 1.

Remark. The constant 4 can be replaced with 3/2 +
√

2.

Second solution. Another example of a sequence {xn} is constructed in
the following way: x1 = 0, x2 = 1, x3 = 2 and x3ki+m = xm + i

3k for

i = 1, 2 and 1 ≤ m ≤ 3k. It is easily shown that |i− j| · |xi − xj | ≥ 1/3 for
any i �= j.

Third solution. If n = b0+2b1+ · · ·+2kbk, bi ∈ {0, 1}, then one can set xn

to be = b0+2−ab1+· · ·+2−kabk. In this case it holds that |i−j|a|xi−xj | ≥
2a−2
2a−1 .

29. One easily observes that the following sets are super-invariant: one-point
set, its complement, closed and open half-lines or their complements, and
the whole real line. To show that these are the only possibilities, we first
observe that S is super-invariant if and only if for each a > 0 there is a b
such that x ∈ S ⇔ ax+ b ∈ S.
(i) Suppose that for some a there are two such b’s: b1 and b2. Then x ∈

S ⇔ ax + b1 ∈ S and x ∈ S ⇔ ax + b2 ∈ S, which implies that S is
periodic: y ∈ S ⇔ y+ b1−b2

a ∈ S. Since S is identical to a translate of
any stretching of S, all positive numbers are periods of S. Therefore
S ≡ R.

(ii) Assume that, for each a, b = f(a) is unique. Then for any a1 and a2,

x ∈ S ⇔ a1x+ f(a1) ∈ S ⇔ a1a2x+ a2f(a1) + f(a2) ∈ S
⇔ a2x+ f(a2) ∈ S ⇔ a1a2x+ a1f(a2) + f(a1) ∈ S.

As above it follows that a1f(a2)+f(a1) = a2f(a1)+f(a2), or equiva-
lently f(a1)(a2−1) = f(a2)(a1−1). Hence (for some c), f(a) = c(a−1)
for all a. Now x ∈ S ⇔ ax + c(a − 1) ∈ S actually means that
y − c ∈ S ⇔ ay − c ∈ S for all a. Then it is easy to conclude that
{y − c | y ∈ S} is either a half-line or the whole line, and so is S.
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30. Let a and b be the integers written by A and B respectively, and let x < y
be the two integers written by the referee. Suppose that none of A and B
ever answers ”yes”.
Initially, regardless of a, A knows that 0 ≤ b ≤ y and answers ”no”. In
the second step, B knows that A obtained 0 ≤ b ≤ y, but if a were greater
than x, A would know that a+ b = y and would thus answer ”yes”. So B
concludes 0 ≤ a ≤ x but answers ”no”. The process continues.
Suppose that, in the n-th step, A knows that B obtained rn−1 ≤ a ≤ sn−1.
If b > x− rn−1, B would know that a+ b > x and hence a+ b = y, while
if b < y− sn−1, B would know that a+ b < y, i.e. a+ b = x: in both cases
he would be able to guess a. However, B answered ”no”, from which A
concludes y− sn−1 ≤ b ≤ x− rn−1. Put rn = y− sn−1 and sn = x− rn−1.
Similarly, in the next step B knows that A obtained rn ≤ b ≤ sn and,
since A answered ”no”, concludes y− sn ≤ a ≤ x− rn. Put rn+1 = y− sn

and sn+1 = x− rn.
Notice that in both cases si+1 − ri+1 = si − ri − (y− x). Since y− x > 0,
there exists an m for which sm − rm < 0, a contradiction.
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4.33 Solutions to the Shortlisted Problems of IMO 1992

1. Assume that a pair (x, y) with x < y satisfies the required conditions. We

claim that the pair (y, x1) also satisfies the conditions, where x1 = y2+m
x

(note that x1 > y is a positive integer). This will imply the desired result,
since starting from the pair (1, 1) we can obtain arbitrarily many solutions.
First, we show that gcd(x1, y) = 1. Suppose to the contrary that gcd(x1, y)
= d > 1. Then d | x1 | y2+m ⇒ d | m, which implies d | y | x2+m ⇒ d | x.
But this last is impossible, since gcd(x, y) = 1. Thus it remains to show
that x1 | y2 + m and y | x2

1 + m. The former relation is obvious. Since
gcd(x, y) = 1, the latter is equivalent to y | (xx1)

2 +mx2 = y4 + 2my2 +
m2 +mx2, which is true because y | m(m+x2) by the assumption. Hence
(y, x1) indeed satisfies all the required conditions.

Remark. The original problem asked to prove the existence of a pair (x, y)
of positive integers satisfying the given conditions such that x+y ≤ m+1.
The problem in this formulation is trivial, since the pair x = y = 1
satisfies the conditions. Moreover, this is sometimes the only solution with
x + y ≤ m + 1. For example, for m = 3 the least nontrivial solution is
(x0, y0) = (1, 4).

2. Let us define xn inductively as xn = f(xn−1), where x0 ≥ 0 is a fixed real
number. It follows from the given equation in f that xn+2 = −axn+1 +
b(a+ b)xn. The general solution to this equation is of the form

xn = λ1b
n + λ2(−a− b)n,

where λ1, λ2 ∈ R satisfy x0 = λ1 + λ2 and x1 = λ1b − λ2(a + b). In
order to have xn ≥ 0 for all n we must have λ2 = 0. Hence x0 = λ1

and f(x0) = x1 = λ1b = bx0. Since x0 was arbitrary, we conclude that
f(x) = bx is the only possible solution of the functional equation. It is
easily verified that this is indeed a solution.

3. Consider two squares AB′CD′ and A′BC′D. Since AC ⊥ BD, these two
squares are homothetic, which implies that the lines AA′, BB′, CC′, DD′

are concurrent at a certain point O.

Since the rotation about A by 90◦

takes ∆ABK into ∆AFD, it fol-
lows that BK ⊥ DF . Denote by
T the intersection of BK and DF .
The rotation about some point X
by 90◦ maps BK into DF if and
only if TX bisects an angle between
BK and DF . Therefore ∠FTA =
∠ATK = 45◦. Moreover, the quad-

A

B

D

C

E

F

L

K

T

A′

rilateral BA′DT is cyclic, which implies that ∠BTA′ = BDA′ = 45◦

and consequently that the points A, T,A′ are collinear. It follows that the
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point O lies on a bisector of ∠BTD and therefore the rotation R about
O by 90◦ takes BK into DF . Analogously, R maps the lines CE,DG,AI
into AH,BJ,CL. Hence the quadrilateral P1Q1R1S1 is the image of the
quadrilateral P2Q2R2S2, and the result follows.

4. There are 36 possible edges in total. If not more than 3 edges are left
undrawn, then we can choose 6 of the given 9 points no two of which are
connected by an undrawn edge. These 6 points together with the edges
between them form a two-colored complete graph, and thus by a well-
known result there exists at least one monochromatic triangle. It follows
that n ≤ 33.
In order to show that n = 33, we shall give an example of a graph with 32
edges that does not contain a monochromatic triangle. Let us start with a
complete graph C5 with 5 vertices. Its edges can be colored in two colors
so that there is no monochromatic triangle (Fig. 1). Furthermore, given
a graph H with k vertices without monochromatic triangles, we can add
to it a new vertex, join it to all vertices of H except A, and color each
edge BX in the same way as AX . The obtained graph obviously contains
no monochromatic triangles. Applying this construction four times to the
graph C5 we get an example like that of Fig. 2.

Fig. 1 Fig. 2

Second solution. For simplicity, we call the colors red and blue.
Let r(k, l) be the least positive integer r such that each complete r-graph
whose edges are colored in red and blue contains either a complete red
k-graph or a complete blue l-graph. Also, let t(n, k) be the greatest pos-
sible number of edges in a graph with n vertices that does not contain a
complete k-graph. These numbers exist by the theorems of Ramsey and
Turán.
Let us assume that r(k, l) < n. Every graph with n vertices and t(n, r(k, l))
+1 edges contains a complete subgraph with r(k, l) vertices, and this
subgraph contains either a red complete k-graph or a blue complete l-
graph.
We claim that t(n, r(k, l)) + 1 is the smallest number of edges with the
above property. By the definition of r(k, l) there exists a coloring of the
complete graph H with r(k, l) − 1 vertices in two colors such that no red
complete k-graph or blue complete l-graph exists. Let cij be the color in



560 4 Solutions

which the edge (i, j) of H is colored, 1 ≤ i < j ≤ r(k, l) − 1. Consider a
complete r(k, l)−1-partite graphG with n vertices and exactly t(n, r(k, l))
edges and denote its partitions by Pi, i = 1, . . . , r(k, l)−1. If we color each
edge of H between Pi and Pj (j < i) in the color cij , we obviously obtain
a graph with n vertices and t(n, r(k, l)) edges in two colors that contains
neither a red complete k-graph nor a blue complete l-graph.
Therefore the answer to our problem is t(9, r(3, 3)) + 1 = t(9, 6)+ 1 = 33.

5. Denote by K,L,M , and N the midpoints of the sides AB,BC,CD, and
DA, respectively. The quadrilateral KLMN is a rhombus. We shall prove
that O1O3 ‖ KM . Similarly, O2O4 ‖ LN , and the desired result follows
immediately.

We have
−−−→
O1O3 =

−−→
KM+

(−−−→
O1K +

−−−→
MO3

)
. Assume that ABCD is positively

oriented. A rotational homothety R with angle −90◦ and coefficient 1/
√

3

takes the vectors
−−→
BK and

−−→
CM into

−−−→
O1K and

−−−→
MO3 respectively. Therefore

−−−→
O1O3 =

−−→
KM + (

−−−→
O1K +

−−−→
MO3) =

−−→
KM + R(

−−→
BK +

−−→
CM)

=
−−→
KM +

1

2
R(

−−→
BA +

−−→
CD) =

−−→
KM + R(

−−→
LN).

Since LN ⊥ KM , it follows that R(LN) is parallel to KM and so is
O1O3.

6. It is easy to see that f is injective and surjective. From f(x2 + f(y)) =
f((−x)2 + f(y)) it follows that f(x)2 = (f(−x))2, which implies f(−x) =
−f(x) because f is injective. Furthermore, there exists z ∈ R such that
f(z) = 0. From f(−z) = −f(z) = 0 we deduce that z = 0. Now we
have f(x2) = f(x2 + f(0)) = 0 + (f(x))2 = f(x)2, and consequently
f(x) = f(

√
x)2 > 0 for all x > 0. It also follows that f(x) < 0 for x < 0.

In other words, f preserves sign.
Now setting x > 0 and y = −f(x) in the given functional equation we
obtain

f(x− f(x)) = f(
√
x

2
+ f(−x)) = −x+ f(

√
x)2 = −(x− f(x)).

But since f preserves sign, this implies that f(x) = x for x > 0. Moreover,
since f(−x) = −f(x), it follows that f(x) = x for all x. It is easily verified
that this is indeed a solution.

7. Let G1, G2 touch the chord BC at P,Q and touch the circle G at R,S
respectively. Let D be the midpoint of the complementary arc BC of G.
The homothety centered at R mapping G1 onto G also maps the line BC
onto a tangent of G parallel to BC. It follows that this line touches G at
point D, which is therefore the image of P under the homothety. Hence
R,P , and D are collinear. Since ∠DBP = ∠DCB = ∠DRB, it follows
that 
DBP ∼ 
DRB and consequently that DP ·DR = DB2. Similarly,
points S,Q,D are collinear and satisfy DQ · DS = DB2 = DP · DR.
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Hence D lies on the radical axis of the circles G1 and G2, i.e., on their
common tangent AW , which also implies that AW bisects the angle BAD.
Furthermore, since DB = DC = DW =

√
DP ·DR, it follows from the

lemma of (SL99-14) that W is the incenter of 
ABC.

Remark. According to the third solution of (SL93-3), both PW and QW
contain the incenter of 
ABC, and the result is immediate. The problem
can also be solved by inversion centered at W .

8. For simplicity, we shall write n instead of 1992.
Lemma. There exists a tangent n-gon A1A2 . . . An with sides A1A2 = a1,

A2A3 = a2, . . . , AnA1 = an if and only if the system

x1 + x2 = a1, x2 + x3 = a2, , . . . , xn + x1 = an (1)

has a solution (x1, . . . , xn) in positive reals.
Proof. Suppose that such an n-gonA1A2 . . . An exists. Let the side AiAi+1

touch the inscribed circle at point Pi (where An+1 = A1). Then x1 =
A1Pn = A1P1, x2 = A2P1 = A2P2, . . . , xn = AnPn−1 = AnPn is
clearly a positive solution of (1).
Now suppose that the system (1) has a positive real solution (x1, . . . ,
xn). Let us draw a polygonal line A1A2 . . . An+1 touching a circle
of radius r at points P1, P2, . . . , Pn respectively such that A1P1 =
An+1Pn = x1 and AiPi = AiPi−1 = xi for i = 2, . . . , n. Observe that

OA1 = OAn+1 =
√
x2

1 + r2 and
the function f(r) = ∠A1OA2 +
∠A2OA3 + · · · + ∠AnOAn+1 =
2(arctan x1

r + · · · + arctan xn

r ) is
continuous. Thus A1A2 . . . An+1

is a closed simple polygonal line
if and only if f(r) = 360◦. But
such an r exists, since f(r) → 0

O

P1

P2
Pn−1

Pn

A1

A2

A3

An−1

An

An+1

when r → ∞ and f(r) → ∞ when r → 0. This proves the second
direction of the lemma.

For n = 4k, the system (1) is solvable in positive reals if ai = i for i ≡ 1, 2
(mod 4), ai = i+1 for i ≡ 3 and ai = i− 1 for i ≡ 0 (mod 4). Indeed, one
solution is given by xi = 1/2 for i ≡ 1, xi = 3/2 for i ≡ 3 and xi = i−3/2
for i ≡ 0, 2 (mod 4).

Remark. For n = 4k + 2 there is no such n-gon. In fact, solvability of
the system (1) implies a1 + a3 + · · · = a2 + a4 + · · · , while in the case
n = 4k + 2 the sum a1 + a2 + · · · + an is odd.

9. Since the equation x3 − x − c = 0 has only one real root for every c >
2/(3

√
3) , α is the unique real root of x3 − x− 331992 = 0. Hence fn(α) =

f(α) = α.

Remark. Consider any irreducible polynomial g(x) in the place of x3 −
x− 331992. The problem amounts to proving that if α and f(α) are roots
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of g, then any f (n)(α) is also a root of g. In fact, since g(f(x)) vanishes at
x = α, it must be divisible by the minimal polynomial of α, that is, g(x).
It follows by induction that g(f (n)(x)) is divisible by g(x) for all n ∈ N,
and hence g(f (n)(α)) = 0.

10. Let us set S(x) = {(y, z) | (x, y, z) ∈ V }, Sy(x) = {z | (x, z) ∈ Sy} and
Sz(x) = {y | (x, y) ∈ Sz}. Clearly S(x) ⊂ Sx and S(x) ⊂ Sy(x) × Sz(x).
It follows that

|V | =
∑

x

|S(x)| ≤
∑

x

√
|Sx||Sy(x)||Sz(x)|

=
√

|Sx|
∑

x

√
|Sy(x)||Sz(x)|.

(1)

Using the Cauchy–Schwarz inequality we also get∑
x

√
|Sy(x)||Sz(x)| ≤

√∑
x

|Sy(x)|
√∑

x

|Sz(x)| =
√

|Sy||Sz|. (2)

Now (1) and (2) together yield |V | ≤
√

|Sx||Sy||Sz|.
11. Let I be the incenter of 
ABC. Since 90◦ + α/2 = ∠BIC = ∠DIE =

138◦, we obtain that ∠A = 96◦.
A

B C

D

E

I

E′ D′

S

Let D′ and E′ be the points symmetric to D and E with respect to CE
and BD respectively, and let S be the intersection point of ED′ and BD.
Then ∠BDE′ = 24◦ and ∠D′DE′ = ∠D′DE − ∠E′DE = 24◦ ,which
means that DE′ bisects the angle SDD′. Moreover, ∠E′SB = ∠ESB =
∠EDS + ∠DES = 60◦ and hence SE′ bisects the angle D′SB. It follows
that E′ is the excenter of 
D′DS and consequently ∠D′DC = ∠DD′C =
∠SD′E′ = (180◦ − 72◦)/2 = 54◦. Finally, ∠C = 180◦ − 2 · 54◦ = 72◦ and
∠B = 12◦.

12. Let us set deg f = n and deg g = m. We shall prove the result by induction
on n. If n < m, then degx[f(x)− f(y)] < degx[g(x)− g(y)], which implies
that f(x)−f(y) = 0, i.e., that f is constant. The statement trivially holds.
Assume now that n ≥ m. Transition to f1(x) = f(x) − f(0) and g1(x) =
g(x) − g(0) allows us to suppose that f(0) = g(0) = 0. Then the given
condition for y = 0 gives us f(x) = f1(x)g(x), where f1(x) = a(x, 0) and
deg f1 = n−m. We now have

a(x, y)(g(x) − g(y)) = f(x) − f(y) = f1(x)g(x) − f1(y)g(y)
= [f1(x) − f1(y)]g(x) + f1(y)[g(x) − g(y)].
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Since g(x) is relatively prime to g(x)−g(y), it follows that f1(x)−f1(y) =
b(x, y)(g(x)−g(y)) for some polynomial b(x, y). By the induction hypoth-
esis there exists a polynomial h1 such that f1(x) = h1(g(x)) and con-
sequently f(x) = g(x) · h1(g(x)) = h(g(x)) for h(t) = th1(t). Thus the
induction is complete.

13. Let us define

F (p, q, r) =
(pqr − 1)

(p− 1)(q − 1)(r − 1)

= 1 +
1

p− 1
+

1

q − 1
+

1

r − 1

+
1

(p− 1)(q − 1)
+

1

(q − 1)(r − 1)
+

1

(r − 1)(p− 1)
.

Obviously F is a decreasing function of p, q, r. Suppose that 1 < p < q < r
are integers for which F (p, q, r) is an integer. Observe that p, q, r are either
all even or all odd. Indeed, if for example p is odd and q is even, then pqr−1
is odd while (p−1)(q−1)(r−1) is even, which is impossible. Also, if p, q, r
are even then F (p, q, r) is odd.
If p ≥ 4, then 1 < F (p, q, r) ≤ F (4, 6, 8) = 191/105 < 2, which is impossi-
ble. Hence p ≤ 3.
Let p = 2. Then q, r are even and 1 < F (2, q, r) ≤ F (2, 4, 6) = 47/15 < 4.
Therefore F (2, q, r) = 3. This equality reduces to (q− 3)(r− 3) = 5, with
the unique solution q = 4, r = 8.
Let p = 3. Then q, r are odd and 1 < F (3, q, r) ≤ F (3, 5, 7) = 104/48 < 3.
Therefore F (3, q, r) = 2. This equality reduces to (q − 4)(r − 4) = 11,
which leads to q = 5, r = 15.
Hence the only solutions (p, q, r) of the problem are (2, 4, 8) and (3, 5, 15).

14. We see that x1 = 20. Suppose that for some m, r ∈ N we have xm = 2r.
Then inductively xm+i = 2r−i(2i + 1) for i = 1, 2, . . . , r and xm+r+1 =
2r+1. Since every natural number can be uniquely represented as the prod-
uct of an odd number and a power of two, we conclude that every natural
number occurs in our sequence exactly once.
Moreover, it follows that 2k − 1 = xk(k+1)/2. Thus xn = 1992 = 23 · 249
implies that xn+3 = 255 = 2·128−1 = x128·129/2 = x8256. Hence n = 8253.

15. The result follows from the following lemma by taking n = 1992·1993
2 and

M = {d, 2d, . . . , 1992d}.
Lemma. For every n ∈ N there exists a natural number d such that all

the numbers d, 2d, . . . , nd are of the form mk (m, k ∈ N, k ≥ 2).
Proof. Let p1, p2, . . . , pn be distinct prime numbers. We shall find d in

the form d = 2α23α3 · · ·nαn , where αi ≥ 0 are integers such that kd
is a perfect pkth power. It is sufficient to find αi, i = 2, 3, . . . , n, such
that αi ≡ 0 (mod pj) if i �= j and αi ≡ −1 (mod pj) if i = j. But



564 4 Solutions

the existence of such αi’s is an immediate consequence of the Chinese
remainder theorem.

16. Observe that x4 + x3 + x2 + x+ 1 = (x2 + 3x+ 1)2 − 5x(x+ 1)2. Thus for
x = 525 we have

N = x4 + x3 + x2 + x+ 1

= (x2 + 3x+ 1 − 513(x+ 1))(x2 + 3x+ 1 + 513(x+ 1)) = A · B.

Clearly, both A and B are positive integers greater than 1.

17. (a) Let n =
∑k

i=1 2ai , so that α(n) = k. Then

n2 =
∑

i

22ai +
∑
i<j

2ai+aj+1

has at most k +
(
k
2

)
= k(k+1)

2 binary ones.
(b) The above inequality is an equality for all numbers nk = 2k.

(c) Put nm = 22m−1 −
∑m

j=1 22m−2j

, where m > 1. It is easy to see that
α(nm) = 2m −m. On the other hand, squaring and simplifying yields

n2
m = 1 +

∑
i<j 22m+1+1−2i−2j

. Hence α(n2
m) = 1 + m(m+1)

2 and thus

α(n2
m)

α(nm)
=

2 +m(m+ 1)

2(2m −m)
→ 0 as m → ∞.

Solution to the alternative parts.
(1) Let n =

∑n
i=1 22i

. Then n2 =
∑n

i=1 22i+1

+
∑

i<j 22i+2j+1 has exactly
k(k+1)

2 binary ones, and therefore α(n2)
α(n) = 2k

k(k+1) → ∞.

(2) Consider the sequence ni constructed in part (c). Let θ > 1 be a
constant to be chosen later, and let Ni = 2mini − 1 where mi > α(ni)
is such that mi/α(ni) → θ as i → ∞. Then α(Ni) = α(ni) +mi − 1,
whereas N2

i = 22min2
i −2mi+1ni +1 and α(N2

i ) = α(n2
i )−α(ni)+mi.

It follows that

lim
i→∞

α(N2
i )

α(Ni)
= lim

i→∞
α(n2

i ) + (θ − 1)α(ni)

(1 + θ)α(ni)
=
θ − 1

θ + 1
,

which is equal to γ ∈ [0, 1] for θ = 1+γ
1−γ (for γ = 1 we set mi/α(ni) →

∞).
(3) Let be given a sequence (ni)

∞
i=1 with α(n2

i )/α(ni) → γ. Taking mi >
α(ni) and Ni = 2mini + 1 we easily find that α(Ni) = α(ni) + 1 and
α(N2

i ) = α(n2
i ) + α(ni) + 1. Hence α(N2

i )/α(Ni) = γ + 1. Continuing
this procedure we can construct a sequence ti such that α(t2i )/α(ti) =
γ + k for an arbitrary k ∈ N.

18. Let us define inductively f1(x) = f(x) = 1
x+1 and fn(x) = f(fn−1(x)),

and let gn(x) = x + f(x) + f2(x) + · · · + fn(x). We shall prove first the
following statement.
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Lemma. The function gn(x) is strictly increasing on [0, 1], and gn−1(1) =
F1/F2 + F2/F3 + · · · + Fn/Fn+1.

Proof. Since f(x) − f(y) = y−x
(1+x)(1+y) is smaller in absolute value than

x − y, it follows that x > y implies f2k(x) > f2k(y) and f2k+1(x) <
f2k+1(y), and moreover that for every integer k ≥ 0,

[f2k(x) − f2k(y)] + [f2k+1(x) − f2k+1(y)] > 0.

Hence if x > y, we have gn(x)− gn(y) = (x− y)+ [f(x)− f(y)]+ · · ·+
[fn(x) − fn(y)] > 0, which yields the first part of the lemma.
The second part follows by simple induction, since fk(1) = Fk+1/Fk+2.

If some xi = 0 and consequently xj = 0 for all j ≥ i, then the problem
reduces to the problem with i−1 instead of n. Thus we may assume that all
x1, . . . , xn are different from 0. If we write ai = [1/xi], then xi = 1

ai+xi+1
.

Thus we can regard xi as functions of xn depending on a1, . . . , an−1.
Suppose that xn, an−1, . . . , a3, a2 are fixed. Then x2, x3, . . . , xn are all
fixed, and x1 = 1

a1+x2
is maximal when a1 = 1. Hence the sum S =

x1 + x2 + · · · + xn is maximized for a1 = 1.
We shall show by induction on i that S is maximized for a1 = a2 = · · · =
ai = 1. In fact, assuming that the statement holds for i− 1 and thus a1 =
· · · = ai−1 = 1, having xn, an−1, . . . , ai+1 fixed we have that xn, . . . , xi+1

are also fixed, and that xi−1 = f(xi), . . . , x1 = f i−1(xi). Hence by the
lemma, S = gi−1(xi) + xi+1 + · · · + xn is maximal when xi = 1

ai+xi+1
is

maximal, that is, for ai = 1. Thus the induction is complete.
It follows that x1 + · · · + xn is maximal when a1 = · · · = an−1 = 1, so
that x1 + · · · + xn = gn−1(x1). By the lemma, the latter does not exceed
gn−1(1). This completes the proof.

Remark. The upper bound is the best possible, because it is approached
by taking xn close to 1 and inductively (in reverse) defining xi−1 = 1

1+xi
=

1
ai+xi

.

19. Observe that f(x) = (x4 + 2x2 + 3)2 − 8(x2 − 1)2 = [x4 + 2(1 −
√

2)x2 +
3+2

√
2][x4 +2(1+

√
2)x2 +3−2

√
2]. Now it is easy to find that the roots

of f are

x1,2,3,4 = ±i
(
i

4
√

2 ± 1
)

and x5,6,7,8 = ±i
(

4
√

2 ± 1
)
.

In other words, xk = αi + βj , where α2
i = −1 and β4

j = 2.
We claim that any root of f can be obtained from any other using rational
functions. In fact, we have

x3 = −αi − 3βj + 3αiβ
2
j + β3

j ,

x5 = 11αi + 7βj − 10αiβ
2
j − 10β3

j

x7 = −71αi − 49βj + 35αiβ
2
j + 37β3

j ,

from which we easily obtain that
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αi = 24−1(127x+5x3+19x5+5x7), βj = 24−1(151x+5x3+19x5+5x7).

Since all other values of α and β can be obtained as rational functions
of αi and βj , it follows that all the roots xl are rational functions of a
particular root xk.
We now note that if x1 is an integer such that f(x1) is divisible by p,
then p > 3 and x1 ∈ Zp is a root of the polynomial f . By the previous
consideration, all remaining roots x2, . . . , x8 of f over the field Zp are
rational functions of x1, since 24 is invertible in Zp. Then f(x) factors as

f(x) = (x − x1)(x − x2) · · · (x − x8),

and the result follows.

20. Denote by U the point of tangency of the circle C and the line l. LetX and
U ′ be the points symmetric to U with respect to S and M respectively;
these points do not depend on the choice of P . Also, let C′ be the excircle

of 
PQR corresponding to P , S′

the center of C′, and W,W ′ the
points of tangency of C and C′

with the line PQ respectively. Ob-
viously, 
WSP ∼ 
W ′S′P . Since
SX ‖ S′U ′ and SX : S′U ′ =
SW : S′W ′ = SP : S′P , we de-
duce that ∆SXP ∼ ∆S′U ′P , and
consequently that P lies on the line
XU ′. On the other hand, it is easy
to show that each point P of the ray
U ′X over X satisfies the required
condition. Thus the desired locus is
the extension of U ′X over X .

U U ′M

P

S′

S
W

Q R

W ′

X

21. (a) Representing n2 as a sum of n2 − 13 squares is equivalent to repre-
senting 13 as a sum of numbers of the form x2 − 1, x ∈ N, such as
0, 3, 8, 15, . . . . But it is easy to check that this is impossible, and hence
s(n) ≤ n2 − 14.

(b) Let us prove that s(13) = 132 − 14 = 155. Observe that

132 = 82 + 82 + 42 + 42 + 32

= 82 + 82 + 42 + 42 + 22 + 22 + 12

= 82 + 82 + 42 + 32 + 32 + 22 + 12 + 12 + 12.

Given any representation of n2 as a sum of m squares one of which is
even, we can construct a representation as a sum of m+ 3 squares by
dividing the odd square into four equal squares. Thus the first equality
enables us to construct representations with 5, 8, 11, . . . , 155 squares,
the second to construct ones with 7, 10, 13, . . . , 154 squares, and the
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third with 9, 12, . . . , 153 squares. It remains only to represent 132 as
a sum of k = 2, 3, 4, 6 squares. This can be done as follows:

132 = 122 + 52 = 122 + 42 + 32

= 112 + 42 + 42 + 42 = 122 + 32 + 22 + 22 + 22 + 22.

(c) We shall prove that whenever s(n) = n2 − 14 for some n ≥ 13, it also
holds that s(2n) = (2n)2 − 14. This will imply that s(n) = n2 − 14 for
any n = 2t · 13.
If n2 = x2

1 + · · · + x2
r, then we have (2n)2 = (2x1)

2 + · · · + (2xr)
2.

Replacing (2xi)
2 with x2

i +x2
i +x2

i +x2
i as long as it is possible we can

obtain representations of (2n)2 consisting of r, r + 3, . . . , 4r squares.
This gives representations of (2n)2 into k squares for any k ≤ 4n2−62.
Further, we observe that each number m ≥ 14 can be written as a sum
of k ≥ m numbers of the form x2 − 1, x ∈ N, which is easy to verify.
Therefore if k ≤ 4n2−14, it follows that 4n2−k is a sum of k numbers
of the form x2 − 1 (since k ≥ 4n2 − k ≥ 14), and consequently 4n2 is
a sum of k squares.

Remark. One can find exactly the value of f(n) for each n:

f(n) =

⎧⎨⎩
1, if n has a prime divisor congruent to 3 mod 4;
2, if n is of the form 5 · 2k, k a positive integer;
n2 − 14, otherwise.
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4.34 Solutions to the Shortlisted Problems of IMO 1993

1. First we notice that for a rational point O (i.e., with rational coordinates),
there exist 1993 rational points in each quadrant of the unit circle centered
at O. In fact, it suffices to take

X =

{
O +

(
± t2 − 1

t2 + 1
,± 2t

t2 + 1

)∣∣∣∣ t = 1, 2, . . . , 1993

}
.

Now consider the set A = {(i/q, j/q) | i, j = 0, 1, . . . , 2q}, where q =∏1993
i=1 (t2 + 1). We claim that A gives a solution for the problem. Indeed,

for any P ∈ A there is a quarter of the unit circle centered at P that is
contained in the square [0, 2] × [0, 2]. As explained above, there are 1993
rational points on this quarter circle, and by definition of q they all belong
to A.

Remark. Substantially the same problem was proposed by Bulgaria for
IMO 71: see (SL71-2), where we give another possible construction of a
set A.

2. It is well known that r ≤ 1
2R. Therefore 1

3 (1 + r)2 ≤ 1
3

(
1 + 1

2

)2
= 3

4 .
It remains only to show that p ≤ 1

4 . We note that p does not exceed
one half of the circumradius of 
A′B′C′. However, by the theorem on
the nine-point circle, this circumradius is equal to 1

2R, and the conclusion
follows.

Second solution. By a well-known relation we have cosA+cosB+cosC =
1+ r

R (= 1+ r when R = 1). Next, recalling that the incenter of 
A′B′C′

is at the orthocenter of 
ABC, we easily obtain p = 2 cosA cosB cosC.
Cosines of angles of a triangle satisfy the identity cos2A+cos2B+cos2 C+
2 cosA cosB cosC = 1 (the proof is straightforward: see (SL81-11)). Thus

p+
1

3
(1 + r)2 = 2 cosA cosB cosC +

1

3
(cosA+ cosB + cosC)2

≤ 2 cosA cosB cosC + cos2A+ cos2B + cos2 C = 1.

3. Let O1 and ρ be the center and radius of kc. It is clear that C, I,O1 are
collinear and CI/CO1 = r/ρ. By Stewart’s theorem applied to 
OCO1,

OI2 =
r

ρ
OO2

1 +

(
1 − r

ρ

)
OC2 − CI · IO1. (1)

Since OO1 = R − ρ, OC = R and by Euler’s formula OI2 = R2 − 2Rr,
substituting these values in (1) gives CI · IO1 = rρ, or equivalently CO1 ·
IO1 = ρ2 = DO2

1 . Hence the triangles CO1D and DO1I are similar,
implying ∠DIO1 = 90◦. Since CD = CE and the line CO1 bisects the
segment DE, it follows that I is the midpoint of DE.

Second solution. Under the inversion with center C and power ab, kc is
transformed into the excircle of ÂB̂C corresponding to C. Thus CD =
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ab
s , where s is the common semiperimeter of 
ABC and 
ÂB̂C, and

consequently the distance from D to BC is ab
s sinC = 2SABC

s = 2r. The
statement follows immediately.

Third solution. We shall prove a stronger statement: Let ABCD be a
convex quadrilateral inscribed in a circle k, and k′ the circle that is tangent
to segments BO,AO at K,L respectively (where O = BD ∩ AC), and
internally to k at M . Then KL contains the incenters I, J of 
ABC and

ABD.
Let K ′,K ′′, L′, L′′, N denote the midpoints of arcs BC,BD,AC,AD,AB
that don’t contain M ; X ′, X ′′ the points on k defined by X ′N = NX ′′ =
K ′K ′′ = L′L′′ (as oriented arcs); and set S = AK ′ ∩BL′′, M = NS ∩ k,
K = K ′′M ∩BO, L = L′M ∩AO.
It is clear that I = AK ′ ∩ BL′, J = AK ′′ ∩ BL′′. Furthermore, X ′M
contains I (to see this, use the fact that for A,B,C,D,E, F on k, lines
AD, BE, CF are concurrent if and only if AB ·CD ·EF = BC ·DE ·FA,
and then express AM/MB by applying this rule to AMBK ′NL′′ and
show that AK ′,MX ′, BL′ are concurrent).

Analogously,X ′′M contains J . Now
the points B,K, I, S,M lie on a cir-
cle (∠BKM = ∠BIM = ∠BSM),
and points A,L, J, S,M do so as
well. Lines IK, JL are parallel to
K ′′L′ (because ∠MKI = ∠MBI =
∠MK ′′L′). On the other hand,
the quadrilateral ABIJ is cyclic,
and simple calculation with an-
gles shows that IJ is also paral-
lel to K ′′L′. Hence K, I, J, L are
collinear.

A B

C
D

O

K′

K′′

L′

L′′

X ′′ X ′

S

IJ
K

L

M

N

Finally, K ≡ K, L ≡ L, and M ≡ M because the homothety centered at
M that maps k′ to k sends K to K ′′ and L to L′ (thus M,K,K ′′, as well
as M,L,L′, must be collinear). As is seen now, the deciphered picture
yields many other interesting properties. Thus, for example, N,S,M are
collinear, i.e., ∠AMS = ∠BMS.

Fourth solution. We give an alternative proof of the more general state-
ment in the third solution. Let W be the foot of the perpendicular from
B to AC. We define q = CW , h = BW , t = OL = OK, x = AL,
θ = �WBO (θ is negative if B(O,W,A), θ = 0 if W = O), and as usual,
a = BC, b = AC, c = AB. Let α = �KLC and β = �ILC (both angles
must be acute). Our goal is to prove α = β. We note that 90◦ − θ = 2α.
One easily gets

tanα =
cos θ

1 + sin θ
, tanβ =

2SABC

a+b+c
b+c−a

2 − x
. (1)



570 4 Solutions

Applying Casey’s theorem to A,B,C, k′, we get AC · BK + AL · BC =
AB ·CL, i.e., b

(
h

cos θ − t
)
+xa = c(b−x). Using that t = b−x−q−h tanθ

we get

x =
b(b+ c− q) − bh

(
1

cos θ + tan θ
)

a+ b+ c
. (2)

Plugging (2) into the second equation of (1) and using bh = 2SABC and
c2 = b2 + a2 − 2bq, we obtain tanα = tanβ, i.e., α = β, which completes
our proof.

4. Let h be the altitude from A and ϕ = ∠BAD. We have BM = 1
2 (BD +

AB −AD) and MD = 1
2 (BD −AB +AD), so

1

MB
+

1

MD
=

BD

MB ·MD
=

4BD

BD2 −AB2 −AD2 + 2AB ·AD

=
4BD

2AB ·AD(1 − cosϕ)
=

2BD sinϕ

2SABD(1 − cosϕ)

=
2BD sinϕ

BD · h(1 − cosϕ)
=

2

h tan ϕ
2

.

It follows that 1
MB + 1

MD depends only on h and ϕ. Specially, 1
NC + 1

NE =
2

h tan(ϕ/2) as well.

5. For n = 1 the game is trivially over. If n = 2, it can end, for example, in
the following way:

•
•

•
• −→

•
• −→

•

Fig. 1

The sequence of moves shown in Fig. 2 enables us to remove three pieces
placed in a 1 × 3 rectangle, using one more piece and one more free cell.
In that way, for any n ≥ 4 we can reduce an (n + 3) × (n + 3) square to
an n× n square (Fig. 3). Therefore the game can end for every n that is
not divisible by 3.

• •

•
• −→

•
•

•
−→

• •
−→

•

Fig. 2 Fig. 3

Suppose now that one can play the game on a 3k×3k square so that at the
end only one piece remains. Denote the cells by (i, j), i, j ∈ {1, . . . , 3k},
and let S0, S1, S2 denote the numbers of pieces on those squares (i, j) for
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which i+j gives remainder 0, 1, 2 respectively upon division by 3. Initially
S0 = S1 = S2 = 3k2. After each move, two of S0, S1, S2 diminish and one
increases by one. Thus each move reverses the parity of the Si’s, so that
S0, S1, S2 are always of the same parity. But in the final position one of the
Si’s must be equal to 1 and the other two must be 0, which is impossible.

6. Notice that for α = 1+
√

5
2 , α2n = αn+n for all n ∈ N. We shall show that

f(n) =
[
αn+ 1

2

]
(the closest integer to αn) satisfies the requirements.

Observe that f is strictly increasing and f(1) = 2. By the definition of f ,
|f(n)−αn| ≤ 1

2 and f(f(n))− f(n)−n is an integer. On the other hand,

|f(f(n)) − f(n) − n| = |f(f(n)) − f(n) − α2n+ αn|
= |f(f(n)) − αf(n) + αf(n) − α2n− f(n) + αn|
= |(α− 1)(f(n) − αn) + (f(f(n)) − αf(n))|
≤ (α− 1)|f(n) − αn| + |f(f(n)) − αf(n)|

≤ 1

2
(α − 1) +

1

2
=

1

2
α < 1,

which implies that f(f(n)) − f(n) − n = 0.

7. Multiplying by a and c the equation

ax2 + 2bxy + cy2 = P kn, (1)

gives (ax+ by)2 + Py2 = aP kn and (bx+ cy)2 + Px2 = cP kn.
It follows immediately that M(n) is finite; moreover, (ax+ by)2 and (bx+
cy)2 are divisible by P , and consequently ax + by, bx + cy are divisible
by P because P is not divisible by a square greater than 1. Thus there
exist integers X,Y such that bx + cy = PX , ax + by = −PY . Then
x = −bX − cY and y = aX + bY . Introducing these values into (1) and
simplifying the expression obtained we get

aX2 + 2bXY + cY 2 = P k−1n. (2)

Hence (x, y) "→ (X,Y ) is a bijective correspondence between integral so-
lutions of (1) and (2), so that M(P kn) = M(P k−1n) = · · · = M(n).

8. Suppose that f(n) = 1 for some n > 0. Then f(n + 1) = n + 2, f(n +
2) = 2n + 4, f(n + 3) = n + 1, f(n + 4) = 2n + 5, f(n + 5) = n, and
so by induction f(n + 2k) = 2n + 3 + k, f(n + 2k − 1) = n + 3 − k
for k = 1, 2, . . . , n + 2. Particularly, n′ = 3n + 3 is the smallest value
greater than n for which f(n′) = 1. It follows that all numbers n with
f(n) = 1 are given by n = bi, where b0 = 1, bn = 3bn−1 + 3. Furthermore,
bn = 3 + 3bn−1 = 3 + 32 + 32bn−2 = · · · = 3 + 32 + · · · + 3n + 3n =
= 1

2 (5 · 3n − 3).
It is seen from above that if n ≤ bi, then f(n) ≤ f(bi − 1) = bi +1. Hence
if f(n) = 1993, then n ≥ bi ≥ 1992 for some i. The smallest such bi is
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b7 = 5466, and f(bi + 2k− 1) = bi + 3− k = 1993 implies k = 3476. Thus
the least integer in S is n1 = 5466 + 2 · 3476 − 1 = 12417.
All the elements of S are given by ni = bi+6 +2k−1, where bi+6 +3−k =
1993, i.e., k = bi+6−1990. Therefore ni = 3bi+6−3981 = 1

2 (5·3i+7−7971).
Clearly S is infinite and limi→∞

ni+1

ni
= 3.

9. We shall first complete the “multiplication table” for the sets A,B,C. It
is clear that this multiplication is commutative and associative, so that
we have the following relations:

AC = (AB)B = BB = C;
A2 = AA = (AB)C = BC = A;
C2 = CC = B(BC) = BA = B.

(a) Now put 1 in A and distribute the primes arbitrarily in A,B,C. This
distribution uniquely determines the partition of Q+ with the stated
property. Indeed, if an arbitrary rational number

x = pα1
1 · · · pαk

k qβ1

1 · · · qβl

l r
γ1

1 · · · rγm
m

is given, where pi ∈ A, qi ∈ B, ri ∈ C are primes, it is easy to see that
x belongs to A,B, or C according as β1 + · · · + βl + 2γ1 + · · · + 2γm

is congruent to 0, 1, or 2 (mod 3).
(b) In every such partition, cubes all belong to A. In fact, A3 = A2A =

AA = A, B3 = B2B = CB = A, C3 = C2C = BC = A.
(c) By (b) we have 1, 8, 27 ∈ A. Then 2 �∈ A, and since the problem is

symmetric with respect to B,C, we can assume 2 ∈ B and conse-
quently 4 ∈ C. Also 7 �∈ A, and also 7 �∈ B (otherwise, 28 = 4 · 7 ∈ A
and 27 ∈ A), so 7 ∈ C, 14 ∈ A, 28 ∈ B. Further, we see that 3 �∈ A
(since otherwise 9 ∈ A and 8 ∈ A). Put 3 in C. Then 5 �∈ B (otherwise
15 ∈ A and 14 ∈ A), so let 5 ∈ C too. Consequently 6, 10 ∈ A. Also
13 �∈ A, and 13 �∈ C because 26 �∈ A, so 13 ∈ B. Now it is easy to
distribute the remaining primes 11, 17, 19, 23, 29, 31: one possibility is

A = {1, 6, 8, 10, 14, 19, 23, 27, 29, 31, 33, . . .},
C = {3, 4, 5, 7, 18, 22, 24, 26, 30, 32, 34, . . .},
B = {2, 9, 11, 12, 13, 15, 16, 17, 20, 21, 25, 28, 35, . . .}.

Remark. It can be proved that min{n ∈ N | n ∈ A, n+ 1 ∈ A} ≤ 77.

10. (a) Let n = p be a prime and let p | ap − 1. By Fermat’s theorem p |
ap−1 − 1, so that p | agcd(p,p−1) − 1 = a − 1, i.e., a ≡ 1 (mod p).
Since then ai ≡ 1 (mod p), we obtain p | ap−1 + · · ·+ a+ 1 and hence
p2 | ap − 1 = (a− 1)(ap−1 + · · · + a+ 1).

(b) Let n = p1 · · · pk be a product of distinct primes and let n | an − 1.
Then from pi | an − 1 = (a(n/pi))pi − 1 and part (a) we conclude that
p2

i | an − 1. Since this is true for all indices i, we also have n2 | an − 1;
hence n has the property P .
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11. Due to the extended Eisenstein criterion, f must have an irreducible factor
of degree not less than n − 1. Since f has no integral zeros, it must be
irreducible.

Second solution. The proposer’s solution was as follows. Suppose that
f(x) = g(x)h(x), where g, h are nonconstant polynomials with integer
coefficients. Since |f(0)| = 3, either |g(0)| = 1 or |h(0)| = 1. We may
assume |g(0)| = 1 and that g(x) = (x−α1) · · · (x−αk). Then |α1 · · ·αk| =
1. Since αn−1

i (αi + 5) = −3, taking the product over i = 1, 2, . . . , k yields
|(α1 + 5) · · · (αk + 5)| = |g(−5)| = 3k. But f(−5) = g(−5)h(−5) = 3, so
the only possibility is deg g = k = 1. This is impossible, because f has no
integral zeros.

Remark. Generalizing this solution, it can be shown that if a,m, n are
positive integers and p < a− 1 is a prime, then F (x) = xm(x − a)n + p
is irreducible. The details are left to the reader.

12. Let x1 < x2 < · · · < xn be the elements of S. We use induction on n.
The result is trivial for k = 1 or n = k, so assume that it is true for
n− 1 numbers. Then there exist m = (k − 1)(n− k) + 1 distinct sums of
k− 1 numbers among x2, . . . , xn; call these sums Si, S1 < S2 < · · · < Sm.
Then x1 + S1, x1 + S2, . . . , x1 + Sm are distinct sums of k of the numbers
x1, x2, . . . , xn. However, the biggest of these sums is

x1 + Sm ≤ x1 + xn−k+2 + xn−k+3 + · · · + xn;

hence we can find n−k sums that are greater and thus not included here:
x2+xn−k+2+· · ·+xn, x3+xn−k+2+· · ·+xn, . . . , xn−k+1+xn−k+2+· · ·+xn.
This counts for k(n− k) + 1 sums in total.

Remark. Equality occurs if S is an arithmetic progression.

13. For an odd integer N > 1, let SN = {(m,n) ∈ S | m + n = N}. If
f(m,n) = (m1, n1), then m1 + n1 = m+ n with m1 odd and m1 ≤ n

2 <
N
2 < n1, so f maps SN to SN . Also f is bijective, since if f(m,n) =
(m1, n1), then n is uniquely determined as the even number of the form
2km1 that belongs to the interval [N+1

2 , N ], and this also determines m.

Note that SN has at most
[

N+1
4

]
elements, with equality if and only if

N is prime. Thus if (m,n) ∈ SN , there exist s, r with 1 ≤ s < r ≤
[

N+5
4

]
such that fs(m,n) = f r(m,n). Consequently f t(m,n) = (m,n), where
t = r − s, 0 < t ≤

[
N+1

4

]
=
[

m+n+1
4

]
.

Suppose that (m,n) ∈ SN and t is the least positive integer with
f t(m,n) = (m,n). We write (m,n) = (m0, n0) and f i(m,n) = (mi, ni) for
i = 1, . . . , t. Then there exist positive integers ai such that 2aimi = ni−1,
i = 1, . . . , t. Since mt = m0, multiplying these equalities gives

2a1+a2+···+atm0m1 · · ·mt−1 = n0n1 · · ·nt−1

≡ (−1)tm0m1 · · ·mt−1 (mod N).
(1)
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It follows that N | 2k ± 1 and consequently N | 22k − 1, where k =
a1 + · · · + at. On the other hand, it also follows that 2k | n0n1 · · ·nt−1 |
(N − 1)(N − 3) · · · (N − 2[N/4]). But since

(N − 1)(N − 3) · · ·
(
N − 2

[
N
4

])
1 · 3 · · ·

(
2
[

N−2
4

]
+ 1

) =
2 · 4 · · · (N − 1)

1 · 2 · · · N−1
2

= 2
N−1

2 ,

we conclude that 0 < k ≤ N−1
2 , where equality holds if and only if

{n1, . . . , nt} is the set of all even integers from N+1
2 to N − 1, and conse-

quently t = N+1
4 .

Now if N � 2h − 1 for 1 ≤ h < N − 1, we must have 2k = N − 1. Therefore
t = N+1

4 .

14. Consider any point T inside the triangle ABC or on its boundary. Since

2S = 2(SAETF + SBFTD + SCDTE)

≤ AT · EF +BT · FD + CT ·DE = (AT +BT + CT )DE,

it suffices to find a point T such that

(AT +BT + CT )2 ≥ a2 + b2 + c2 + 4S
√

3

2
.

We distinguish two cases:
(i) If all angles of 
ABC are less than 120◦, then the sum AT+BT+CT

attains its minimum when T is the Torricelli point, i.e., such that
∠ATB = ∠BTC = ∠CTA = 120◦. In this case, by the cosine theorem
we get

AT 2 +AT · BT +BT 2 = c2,

BT 2 +BT · CT + CT 2 = a2,

CT 2 + CT ·AT +AT 2 = b2,

3(AT ·BT +BT · CT + CT ·AT ) = 4
√

3(SATB + SBTC + SCTA)

= 4
√

3S.

Adding these four equalities, we obtain 2(AT + BT + CT )2 = a2 +
b2 + c2 + 4

√
3S.

(ii) Let ∠ACB ≥ 120◦. We claim that T = C satisfies the requirements.
Indeed, a2 + b2 + c2 + 4

√
3S = a2 + b2 + (a2 + b2 − 2ab cos∠C) +

2
√

3ab sin∠C = 2(a2 + b2) + 2ab(
√

3 sin ∠C − cos∠C) = 2(a2 + b2) +
4ab sin(∠C − 30◦) ≤ 2(a+ b)2, which proves the desired inequality.

15. Denote by d(PQR) the diameter of a triangle PQR. It is clear that
d(PQR) · m(PQR) = 2SPQR. So if the point X lies inside the triangle
ABC or on its boundary, we have d(ABX), d(BCX), d(CAX) ≤ d(ABC),
which implies
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m(ABX) +m(BCX) +m(CAX) =
2SABX

d(ABX)
+

2SBCX

d(BCX)
+

2SCAX

d(CAX)

≥ 2SABX + 2SBCX + 2SCAX

d(ABC)

=
2SABC

d(ABC)
= m(ABC).

If X is outside 
ABC but inside the angle BAC, consider the point Y
of intersection of AX and BC. Then m(ABX)+m(BCX) +m(CAX) ≥
m(ABY ) + m(BCY ) + m(CAY ) ≥ m(ABC). Also, if X is inside the
opposite angle of ∠BAC (i.e., ∠DAE, where B(D,A,B) and B(E,A,C)),
then m(ABX) + m(BCX) + m(CAX) ≥ m(BCX) ≥ m(ABC). Since
these are substantially all possible different positions of point X , we have
finished the proof.

16. Let Sn = {A = (a1, . . . , an) | 0 ≤ ai < i}. For A = (a1, . . . , an), let
A′ = (a1, . . . , an−1), so that we can write A = (A′, an). The proof of the
statement from the problem will be given by induction on n. For n = 2
there are two possibilities for A0, so one directly checks that A2 = A0.
Now assume that n ≥ 3 and that A0 = (A′

0, a0n) ∈ Sn. It is clear that
then any Ai is in Sn too. By the induction hypothesis there exists k ∈ N
such that A′

k = A′
k+2 = A′

k+4 = · · · and A′
k+1 = A′

k+3 = · · · . Observe
that if we increase (decrease) akn, ak+1,n will decrease (respectively in-
crease), and this will also increase (respectively decrease) ak+2,n. Hence
akn, ak+2,n, ak+4,n, . . . is monotonically increasing or decreasing, and since
it is bounded (by 0 and n − 1), it follows that we will eventually have
ak+2i,n = ak+2i+2,n = · · · . Consequently Ak+2i = Ak+2i+2.

17. We introduce the rotation operationRot to the left by one, so that Stepj =
Rot−j ◦ Step0 ◦ Rotj . Now writing Step∗ = Rot ◦ Step0, the problem is
transformed into the question whether there is an M(n) such that all
lamps are ON again after M(n) successive applications of Step∗.
We operate in the field Z2, representing OFF by 0 and ON by 1. So if
the status of Lj at some moment is given by vj ∈ Z2, the effect of Stepj is
that vj is replaced by vj +vj−1. With the n-tuple v0, . . . , vn−1 we associate
the polynomial

P (x) = vn−1x
n−1 + v0x

n−2 + v1x
n−3 + · · · + vn−2.

By means of Step∗, this polynomial is transformed into the polynomial
Q(x) over Z of degree less than n that satisfies Q(x) ≡ xP (x) (mod
xn + xn−1 + 1). From now on, the sign ≡ always stands for congruence
with this modulus.
(i) It suffices to show the existence of M(n) with xM(n) ≡ 1. Because

the number of residue classes is finite, there are r, q, r < q such that
xq ≡ xr, i.e., xr(xq−r − 1) = 0. One can take M(n) = q − r. (Or
simply note that there are only finitely many possible configurations;
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since each operation is bijective, the configuration that reappears first
must be ON,ON, . . . , ON .)

(ii) We shall prove that if n = 2k, then xn2−1 ≡ 1. We have xn2 ≡
(xn−1 + 1)n ≡ xn2−n + 1, because all binomial coefficients of order
n = 2k are even, apart from the first one and the last one. Since also
xn2 ≡ xn2−1 + xn2−n, this is what we wanted.

(iii) Now if n = 2k + 1, we prove that xn2−n+1 ≡ 1. We have xn2−1 ≡
(xn+1)n−1 ≡ (x + xn)n−1 ≡ xn−1 + xn2−n (again by evenness of

binomial coefficients of order n−1 = 2k). Together with xn2 ≡ xn2−1+

xn2−n, this leads to xn2 ≡ xn−1.

18. Let Bn be the set of sequences with the stated property (Sn = |Bn|). We
shall prove by induction on n that Sn ≥ 3

2Sn−1 for every n.
Suppose that for every i ≤ n, Si ≥ 3

2Si−1, and consequently Si ≤(
2
3

)n−i
Sn. Let us consider the 2Sn sequences obtained by putting 0 or

1 at the end of any sequence from Bn. If some sequence among them does
not belong to Bn+1, then for some k ≥ 1 it can be obtained by extend-
ing some sequence from Bn+1−6k by a sequence of k terms repeated six
times. The number of such sequences is 2kSn+1−6k. Hence the number of
sequences not satisfying our condition is not greater than∑
k≥1

2kSn+1−6k ≤
∑
k≥1

2k

(
2

3

)6k−1

Sn =
3

2
Sn

2(2/3)6

1 − 2(2/3)6
=

192

601
Sn <

1

2
Sn.

Therefore Sn+1 is not smaller than 2Sn − 1
2Sn = 3

2Sn. Thus we have

Sn ≥
(

3
2

)n
.

19. Let s be the minimum number of nonzero digits that can appear in the b-
adic representation of any number divisible by bn −1. Among all numbers
divisible by bn − 1 and having s nonzero digits in base b, we choose the
number A with the minimum sum of digits. Let A = a1b

n1 + · · · + asb
ns ,

where 0 < ai ≤ b− 1 and n1 > n2 > · · · > ns.
First, suppose that ni ≡ nj (mod n), i �= j. Consider the number

B = A− aib
ni − ajb

nj + (ai + aj)b
nj+kn,

with k chosen large enough so that nj + kn > n1: this number is divisible
by bn − 1 as well. But if ai + aj < b, then B has s − 1 digits in base b,
which is impossible; on the other hand, ai + aj ≥ b is also impossible, for
otherwise B would have sum of digits less for b−1 than that of A (because
B would have digits 1 and ai+aj −b in the positions nj +kn+1, nj +kn).
Therefore ni �≡ nj if i �= j.
Let ni ≡ ri, where ri ∈ {0, 1, . . . , n − 1} are distinct. The number C =
a1b

r1 + · · · + asb
rs also has s digits and is divisible by bn − 1. But since

C < bn, the only possibility is C = bn − 1 which has exactly n digits in
base b. It follows that s = n.
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20. For every real x we shall denote by �x and �x� the greatest integer less
than or equal to x and the smallest integer greater than or equal to x
respectively. The condition ci + nki ∈ [1 − n, n] is equivalent to ki ∈ Ii =[

1−ci

n − 1, 1 − ci

n

]
. For every ci, this interval contains two integers (not

necessarily distinct), namely pi =
⌈

1−ci

n − 1
⌉
≤ qi =

⌊
1 − ci

n

⌋
. In order to

show that there exist integers ki ∈ Ii with
∑n

i=1 ki = 0, it is sufficient to
show that

∑n
i=1 pi ≤ 0 ≤

∑n
i=1 qi.

Since pi <
1−ci

n , we have

n∑
i=1

pi < 1 −
n∑

i=1

ci
n

≤ 1,

and consequently
∑n

i=1 pi ≤ 0 because the pi’s are integers. On the other
hand, qi > − ci

n implies

n∑
i=1

qi > −
n∑

i=1

ci
n

≥ −1,

which leads to
∑n

i=1 qi ≥ 0. The proof is complete.

21. Assume that S is a circle with center O that cuts Si diametrically in points
Pi, Qi, i ∈ {A,B,C}, and denote by ri, r the radii of Si and S respectively.
Since OA is perpendicular to PAQA, it follows by Pythagoras’s theorem
that OA2 +AP 2

A = OP 2
A, i.e., r2A +OA2 = r2. Analogously r2B +OB2 = r2

and r2C + OC2 = r2. Thus if OA, OB, OC are the feet of perpendiculars
from O to BC,CA,AB respectively, then OCA

2−OCB
2 = r2B −r2A. Since

the left-hand side is a monotonic function of OC ∈ AB, the point OC is
uniquely determined by the imposed conditions. The same holds for OA

and OB.

If A,B,C are not collinear, then the
positions of OA, OB, OC uniquely
determine the point O, and there-
fore the circle S also. On the other
hand, ifA,B,C are collinear, all one
can deduce is thatO lies on the lines
lA, lB, lC through OA, OB, OC , per-
pendicular to BC,CA,AB respec-
tively. By this, lA, lB, lC are paral-
lel, so O can be either anywhere on
the line if these lines coincide, or

A B

C

O

OA

OB

OC

SA

SB

SC lAlB

lC

S

nowhere if they don’t coincide. So if there exists more than one circle S,
A,B,C lie on a line and the foot O′ of the perpendicular from O to the
line ABC is fixed. If X,Y are the intersection points of S and the line
ABC, then r2 = OX2 = OA2 + r2A and consequently O′X2 = O′A2 + r2A,
which implies that X,Y are fixed.

22. Let M be the point inside ∠ADB that satisfies DM = DB and DM ⊥
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DB. Then ∠ADM = ∠ACB and
AD/DM = AC/CB. It follows
that the triangles ADM,ACB are
similar; hence ∠CAD = ∠BAM
(because ∠CAB = ∠DAM) and
AB/AM = AC/AD. Consequently
the triangles CAD, BAM are sim-
ilar and therefore AC

AB = CD
BM =

CD√
2BD

. Hence AB·CD
AC·BD =

√
2.

A B

C

D

M

T

U

Let CT,CU be the tangents at C to the circles ACD,BCD respectively.
Then (in oriented angles) ∠TCU = ∠TCD+∠DCU = ∠CAD+∠CBD =
90◦, as required.

Second solution to the first part. Denote by E,F,G the feet of the per-
pendiculars from D to BC,CA,AB. Consider the pedal triangle EFG.
Since FG = AD sin ∠A, from the sine theorem we have FG : GE : EF =
(CD · AB) : (BD · AC) : (AD · BC). Thus EG = FG. On the other
hand, ∠EGF = ∠EGD + ∠DGF = ∠CBD + ∠CAD = 90◦ implies that
EF : EG =

√
2 : 1; hence the required ratio is

√
2.

Third solution to the first part. Under inversion centered at C and with
power r2 = CA ·CB, the triangle DAB maps into a right-angled isosceles
triangle D∗A∗B∗, where

D∗A∗ =
AD ·BC
CD

, D∗B∗ =
AC ·BD
CD

, A∗B∗ =
AB · CD
CD

.

Thus D∗B∗ : A∗B∗ =
√

2, and this is the required ratio.

23. Let the given numbers be a1, . . . , an. Put s = a1 + · · · + an and m =
lcm(a1, . . . , an) and write m = 2kr with k ≥ 0 and r odd. Let the binary
expansion of r be r = 2k0 + 2k1 + · · · + 2kt , with 0 = k0 < · · · < kt.
Adjoin to the set {a1, . . . , an} the numbers 2kis, i = 1, 2, . . . , t. The sum
of the enlarged set is rs. Finally, adjoin rs, 2rs, 22rs, . . . , 2l−1rs for l =
max{k, kt}. The resulting set has sum 2lrs, which is divisible by m and
so by each of aj , and also by the 2is above and by rs, 2rs, . . . , 2l−1rs.
Therefore this is a DS-set.

Second solution. We show by induction that there is a DS-set containing
1 and n. For n = 2, 3, take {1, 2, 3}. Assume that {1, n, b1, . . . , bk} is a DS-
set. Then {1, n + 1, n, 2(n + 1)n, 2(n + 1)b1, . . . , 2(n + 1)bk} is a DS-set
too.
For given a1, . . . , an let m be a sufficiently large common multiple of
the ai’s such that u = m − (a1 + · · · + an) �= ai for all i. There ex-
ist b1, . . . , bk such that {1, u, b1, . . . , bk} is a DS-set. It is clear that
{a1, . . . , an, u,mu,mb1, . . . ,mbk} is a DS-set containing a1, . . . , an.

24. By the Cauchy–Schwarz inequality, if x1, x2, . . . , xn and y1, y2, . . . , yn are
positive numbers, then
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n∑

i=1

xi

yi

)(
n∑

i=1

xiyi

)
≥

(
n∑

i=1

xi

)2

.

Applying this to the numbers a, b, c, d and b+2c+3d, c+2d+3a, d+2a+
3b, a+ 2b+ 3c (here n = 4), we obtain

a

b+ 2c+ 3d
+

b

c+ 2d+ 3a
+

c

d+ 2a+ 3b
+

d

a+ 2b+ 3c

≥ (a+ b+ c+ d)2

4(ab+ ac+ ad+ bc+ bd+ cd)
≥ 2

3
.

The last inequality follows, for example, from (a − b)2 + (a − c)2 + · · · +
(c− d)2 ≥ 0. Equality holds if and only if a = b = c = d.

Second solution. Putting A = b+2c+3d, B = c+2d+3a, C = d+2a+3b,
D = a+ 2b+ 3c, our inequality transforms into

−5A+ 7B + C +D

24A
+

−5B + 7C +D +A

24B

+
−5C + 7D +A+B

24C
+

−5D + 7A+B + C

24D
≥ 2

3
.

This follows from the arithmetic-geometric mean inequality, since B
A + C

B +
D
C + A

D ≥ 4, etc.

25. We need only consider the case a > 1 (since the case a < −1 is reduced to
a > 1 by taking a′ = −a, x′i = −xi). Since the left sides of the equations
are nonnegative, we have xi ≥ − 1

a > −1, i = 1, . . . , 1000. Suppose w.l.o.g.
that x1 = max{xi}. In particular, x1 ≥ x2, x3. If x1 ≥ 0, then we deduce
that x2

1000 ≥ 1 ⇒ x1000 ≥ 1; further, from this we deduce that x999 > 1
etc., so either xi > 1 for all i or xi < 0 for all i.
(i) xi > 1 for every i. Then x1 ≥ x2 implies x2

1 ≥ x2
2, so x2 ≥ x3. Thus

x1 ≥ x2 ≥ · · · ≥ x1000 ≥ x1, and consequently x1 = · · · = x1000. In
this case the only solution is xi = 1

2 (a+
√
a2 + 4) for all i.

(ii) xi < 0 for every i. Then x1 ≥ x3 implies x2
1 ≤ x2

3 ⇒ x2 ≤ x4. Similarly,
this leads to x3 ≥ x5, etc. Hence x1 ≥ x3 ≥ x5 ≥ · · · ≥ x999 ≥ x1 and
x2 ≤ x4 ≤ · · · ≤ x2, so we deduce that x1 = x3 = · · · and x2 = x4 =
· · · . Therefore the system is reduced to x2

1 = ax2 + 1, x2
2 = ax1 + 1.

Subtracting these equations, one obtains (x1 − x2)(x1 + x2 + a) = 0.
There are two possibilities:
(1) If x1 = x2, then x1 = x2 = · · · = 1

2 (a−
√
a2 + 4).

(2) x1 + x2 + a = 0 is equivalent to x2
1 + ax1 + (a2 − 1) = 0. The

discriminant of the last equation is 4 − 3a2. Therefore if a > 2√
3
,

this case yields no solutions, while if a ≤ 2√
3
, we obtain x1 =

1
2 (−a−

√
4 − 3a2), x2 = 1

2 (−a+
√

4 − 3a2), or vice versa.
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26. Set

f(a, b, c, d) = abc+ bcd+ cda+ dab− 176

27
abcd

= ab(c+ d) + cd

(
a+ b− 176

27
ab

)
.

If a + b − 176
a b ≤ 0, by the arithmetic-geometric inequality we have

f(a, b, c, d) ≤ ab(c+ d) ≤ 1
27 .

On the other hand, if a+ b− 176
a b > 0, the value of f increases if c, d are

replaced by c+d
2 , c+d

2 . Consider now the following fourtuplets:

P0(a, b, c, d), P1

(
a, b,

c+ d

2
,
c+ d

2

)
, P2

(
a+ b

2
,
a+ b

2
,
c+ d

2
,
c+ d

2

)
,

P3

(
1

4
,
a+ b

2
,
c+ d

2
,
1

4

)
, P4

(
1

4
,
1

4
,
1

4
,
1

4

)
From the above considerations we deduce that for i = 0, 1, 2, 3 either
f(Pi) ≤ f(Pi+1), or directly f(Pi) ≤ 1/27. Since f(P4) = 1/27, in every
case we are led to

f(a, b, c, d) = f(P0) ≤ 1

27
.

Equality occurs only in the cases (0, 1/3, 1/3, 1/3) (with permutations)
and (1/4, 1/4, 1/4, 1/4).

Remark. Lagrange multipliers also work. On the boundary of the set one
of the numbers a, b, c, d is 0, and the inequality immediately follows, while
for an extremum point in the interior, among a, b, c, d there are at most
two distinct values, in which case one easily verifies the inequality.
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4.35 Solutions to the Shortlisted Problems of IMO 1994

1. Obviously a0 > a1 > a2 > · · · . Since ak − ak+1 = 1 − 1
ak+1 , we have

an = a0 +(a1 −a0)+ · · ·+(an −an−1) = 1994−n+ 1
a0+1 + · · ·+ 1

an−1+1 >

1994 − n. Also, for 1 ≤ n ≤ 998,

1

a0 + 1
+ · · · + 1

an−1 + 1
<

n

an−1 + 1
<

998

a997 + 1
< 1

because as above, a997 > 997. Hence �an = 1994 − n.

2. We may assume that a1 > a2 > · · · > am. We claim that for i = 1, . . . ,m,
ai +am+1−i ≥ n+1. Indeed, otherwise ai+am+1−i, . . . , ai+am−1, ai+am

are i different elements of A greater than ai, which is impossible. Now by
adding for i = 1, . . . ,m we obtain 2(a1 + · · · + am) ≥ m(n + 1), and the
result follows.

3. The last condition implies that f(x) = x has at most one solution in
(−1, 0) and at most one solution in (0,∞). Suppose that for u ∈ (−1, 0),
f(u) = u. Then putting x = y = u in the given functional equation yields
f(u2 + 2u) = u2 + 2u. Since u ∈ (−1, 0) ⇒ u2 + 2u ∈ (−1, 0), we deduce
that u2 + 2u = u, i.e., u = −1 or u = 0, which is impossible. Similarly, if
f(v) = v for v ∈ (0,∞), we are led to the same contradiction.
However, for all x ∈ S, f(x+ (1 + x)f(x)) = x+ (1 + x)f(x), so we must
have x + (1 + x)f(x) = 0. Therefore f(x) = − x

1+x for all x ∈ S. It is
directly verified that this function satisfies all the conditions.

4. Suppose that α = β. The given functional equation for x = y yields
f(x/2) = x−αf(x)2/2; hence the functional equation can be written as

f(x)f(y) =
1

2
xαy−αf(y)2 +

1

2
yαx−αf(x)2,

i.e., (
(x/y)α/2f(y) − (y/x)α/2f(x)

)2

= 0.

Hence f(x)/xα = f(y)/yα for all x, y ∈ R+, so f(x) = λxα for some
λ. Substituting into the functional equation we obtain that λ = 21−α or
λ = 0. Thus either f(x) ≡ 21−αxα or f(x) ≡ 0.
Now let α �= β. Interchanging x with y in the given equation and sub-
tracting these equalities from each other, we get (xα −xβ)f(y/2) = (yα −
yβ)f(x/2), so for some constant λ ≥ 0 and all x �= 1, f(x/2) = λ(xα−xβ).
Substituting this into the given equation, we obtain that only λ = 0 is
possible, i.e., f(x) ≡ 0.

5. If f (n)(x) = pn(x)
qn(x) for some positive integer n and polynomials pn, qn, then

f (n+1)(x) = f

(
pn(x)

qn(x)

)
=
pn(x)2 + qn(x)2

2pn(x)qn(x)
.
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Note that f (0)(x) = x/1. Thus f (n)(x) = pn(x)
qn(x) , where the sequence of

polynomials pn, qn is defined recursively by

p0(x) = x, q0(x) = 1, and

pn+1(x) = pn(x)2 + qn(x)2, qn+1(x) = 2pn(x)qn(x).

Furthermore, p0(x) ± q0(x) = x ± 1 and pn+1(x) ± qn+1(x) = pn(x)2 +
qn(x)2 ± 2pn(x)qn(x) = (pn(x)± qn(x))2, so pn(x)± qn(x) = (x± 1)2

n

for
all n. Hence

pn(x) =
(x+ 1)2

n

+ (x− 1)2
n

2
and qn(x) =

(x+ 1)2
n − (x− 1)2

n

2
.

Finally,

f (n)(x)

f (n+1)(x)
=
pn(x)qn+1(x)

qn(x)pn+1(x)
=

2pn(x)2

pn+1(x)
=

((x + 1)2
n

+ (x− 1)2
n

)2

(x+ 1)2n+1 + (x − 1)2n+1

= 1 +
2
(

x+1
x−1

)2n

1 +
(

x+1
x−1

)2n+1 = 1 +
1

f

((
x+1
x−1

)2n
) .

6. Call the first and second player M and N respectively. N can keep A ≤ 6.

Indeed, let 10 dominoes be placed
as shown in the picture, and when-
ever M marks a 1 in a cell of some
domino, let N mark 0 in the other
cell of that domino if it is still
empty. Since any 3 × 3 square con-
tains at least three complete domi-

a
b
c
d
e

1 2 3 4 5

noes, there are at least three 0’s inside. Hence A ≤ 6.
We now show that M can make A = 6. Let him start by marking 1
in c3. By symmetry, we may assume that N ’s response is made in row
4 or 5. Then M marks 1 in c2. If N puts 0 in c1, then M can always
mark two 1’s in b × {1, 2, 3} as well as three 1’s in {a, d} × {1, 2, 3}.
Thus either {a, b, c} × {1, 2, 3} or {b, c, d} × {1, 2, 3} will contain six 1’s.
However, if N does not play his second move in c1, then M plays there,
and thus he can easily achieve to have six 1’s either in {a, b, c}× {1, 2, 3}
or {c, d, e} × {1, 2, 3}.

7. Let a1, a2, . . . , am be the ages of the male citizens (m ≥ 1). We claim that
the age of each female citizen can be expressed in the form c1a1+· · ·+cmam

for some constants ci ≥ 0, and we will prove this by induction on the
number n of female citizens.
The claim is clear if n = 1. Suppose it holds for n and consider the case
of n+ 1 female citizens. Choose any of them, say A of age x who knows k
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citizens (at least one male). By the induction hypothesis, the age of each
of the other n females is expressible as c1a1 + · · · + cmam + c0x, where
ci ≥ 0 and c0 + c1 + · · · + cm = 1. Consequently, the sum of ages of the k
citizens who know A is kx = b1a1 + · · · + bmam + b0x for some constants
bi ≥ 0 with sum k. But A knows at least one male citizen (who does not
contribute to the coefficient of x), so b0 ≤ k−1. Hence x = b1a1+···+bmam

k−b0
,

and the claim follows.

8. (a) Let a, b, c, a ≤ b ≤ c be the amounts of money in dollars in Peter’s
first, second, and third account, respectively. If a = 0, then we are
done, so suppose that a > 0. Let Peter make transfers of money into
the first account as follows. Write b = aq + r with 0 ≤ r < a and
let q = m0 + 2m1 + · · · + 2kmk be the binary representation of q
(mi ∈ {0, 1}, mk = 1). In the ith transfer, i = 1, 2, . . . , k + 1, if
mi = 1 he transfers money from the second account, while if mi = 0
he does so from the third. In this way he has transferred exactly
(m0+2m1+· · ·+2kmk)a dollars from the second account, thus leaving
r dollars in it, r < a. Repeating this procedure, Peter can diminish
the amount of money in the smallest account to zero, as required.

(b) If Peter has an odd number of dollars, he clearly cannot transfer his
money into one account.

9. (a) For i = 1, . . . , n, let di be 0 if the card i is in the ith position, and 1
otherwise. Define b = d1 + 2d2 + 22d3 + · · · + 2n−1dn, so that 0 ≤ b ≤
2n−1, and b = 0 if and only if the game is over. After each move some
digit dl changes from 1 to 0 while dl+1, dl+2, . . . remain unchanged.
Hence b decreases after each move, and consequently the game ends
after at most 2n − 1 moves.

(b) Suppose the game lasts exactly 2n − 1 moves. Then each move de-
creases b for exactly one, so playing the game in reverse (starting
from the final configuration), every move is uniquely determined. It
follows that if the configuration that allows a game lasting 2n − 1
moves exists, it must be unique.
Consider the initial configuration 0, n, n − 1, . . . , 2, 1. We prove by
induction that the game will last exactly 2n − 1 moves, and that the
card 0 will get to the 0th position only in the last move. This is trivial
for n = 1, so suppose that the claim is true for some n = m − 1 ≥ 1
and consider the case n = m. Obviously the card 0 does not move until
the card m gets to the 0-th position. But if we ignore the card 0 and
consider the card m to be the card 0, the induction hypothesis gives
that the card m will move to the 0th position only after 2m−1 − 1
moves. After these 2m−1 − 1 moves, we come to the configuration
0,m− 1, . . . , 2, 1,m. The next move yields m, 0,m− 1, . . . , 2, 1, so by
the induction hypothesis again we need 2m−1−1 moves more to finish
the game.
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10. (a) The case n > 1994 is trivial. Suppose that n = 1994. Label the girls
G1 to G1994, and let G1 initially hold all the cards. At any moment
give to each card the value i, i = 1, . . . , 1994, if Gi holds it. Define the
characteristic C of a position as the sum of all these values. Initially
C = 1994. In each move, if Gi passes cards to Gi−1 and Gi+1 (where
G0 = G1994 and G1995 = G1), C changes for ±1994 or does not
change, so that it remains divisible by 1994. But if the game ends, the
characteristic of the final position will be C = 1 + 2 + · · · + 1994 =
997 · 1995, which is not divisible by 1994.

(b) Whenever a card is passed from one girl to another for the first time,
let the girls sign their names on it. Thereafter, if one of them passes a
card to her neighbor, we shall assume that the passed card is exactly
the one signed by both of them. Thus each signed card is stuck between
two neighboring girls, so if n < 1994, there are two neighbors who
never exchange cards. Consequently, there is a girl G who played only
a finite number of times. If her neighbor plays infinitely often, then
after her last move, G will continue to accumulate cards indefinitely,
which is impossible. Hence every girl plays finitely many times.

11. Tile the table with dominoes and
numbers as shown in the picture.
The second player will not lose if
whenever the first player plays in
a cell of a domino, he plays in the
other cell of the domino, and when-
ever the first player plays on a num-
ber, he plays on the same number
that is diagonally adjacent.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

4

4

4

4

4

4

4

4

4

4

4

4

4

4

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

12. Define Sn recursively as follows: Let S2 = {(0, 0), (1, 1)} and Sn+1 =
Sn ∪ Tn, where Tn = {(x+ 2n−1, y +Mn) | (x, y) ∈ Sn}, with Mn chosen
large enough so that the entire set Tn lies above every line passing through
two points of Sn. By definition, Sn has exactly 2n−1 points and contains
no three collinear points. We claim that no 2n points of this set are the
vertices of a convex 2n-gon.
Consider an arbitrary convex polygon P with vertices in Sn. Join by
a diagonal d the two vertices of P having the smallest and greatest x-
coordinates. This diagonal divides P into two convex polygons P1,P2, the
former lying above d. We shall show by induction that both P1,P2 have at
most n vertices. Assume to the contrary that P1 has at least n+1 vertices
A1(x1, y1), . . . , An+1(xn+1, yn+1) in Sn, with x1 < · · · < xn+1. It follows
that y2−y1

x2−x1
> · · · > yn+1−yn

xn+1−xn
. By the induction hypothesis, not more than

n − 1 of these vertices belong to Sn−1 or Tn−1, so let Ak−1, Ak ∈ Sn−1,
Ak+1 ∈ Tn−1. But by the construction of Tn−1,

yk+1−yk

xk+1−xk
> yk−yk−1

xk−xk−1
, which
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gives a contradiction. Similarly, P2 has no more than n vertices, and there-
fore P itself has at most 2n− 2 vertices.

13. Extend AD and BC to meet at P , and let Q be the foot of the perpendic-
ular from P to AB. Denote by O the center of Γ . Since 
PAQ ∼ 
OAD
and 
PBQ ∼ 
OBC, we obtain AQ

AD = PQ
OD = PQ

OC = BQ
BC . Therefore

AQ
QB · BC

CP · PD
DA = 1, so by the converse Ceva theorem, AC, BD, and PQ are

concurrent. It follows that Q ≡ F . Finally, since the points O,C, P,D, F
are concyclic, we have ∠DFP = ∠DOP = ∠POC = ∠PFC.

14. Although it does not seem to have been noticed at the jury, the state-
ment of the problem is false. For A(0, 0), B(0, 4), C(1, 4), D(7, 0), we have
M(4, 2), P (2, 1), Q(2, 3) and N(9/2, 1/2) �∈ 
ABM .
The official solution, if it can be called so, actually shows that N lies
inside ABCD and goes as follows: The case AD = BC is trivial, so let
AD > BC. Let L be the midpoint of AB. Complete the parallelograms
ADMX and BCMY . Now N = DX ∩CY , so let CY and DX intersect
AB at K and H respectively. From LX = LY and

HL

LX
=
HA

AD
<

LA

AD
<
KB

AD
<
KB

BC
=
KL

LY

we get HL < KL, and the statement follows.

15. We shall prove that AD is a common tangent of ω and ω2. Denote by
K,L the points of tangency of ω with l1 and l2 respectively. Let r, r1, r2
be the radii of ω, ω1, ω2 respectively, and set KA = x, LB = y. It will
be enough if we show that xy = 2r2, since this will imply that 
KLB
and 
AKO are similar, where O is the center of ω, and consequently that
OA ⊥ KD (because D ∈ KB). Now if O1 is the center of ω1, we have x2 =
KA2 = OO2

1−(KO−AO1)
2 = (r+r1)

2−(r−r1)2 = 4rr1 and analogously
y2 = 4rr2. But we also have (r1 +r2)

2 = O1O
2
2 = (x−y)2 +(2r−r1−r2)2,

so x2 − 2xy + y2 = 4r(r1 + r2 − r), from which we obtain xy = 2r2 as
claimed. Hence AD is tangent to both ω, ω2, and similarly BC is tangent
to ω, ω1.
It follows that Q lies on the radical axes of pairs of circles (ω, ω1) and
(ω, ω2). Therefore Q also lies on the radical axis of (ω1, ω2), i.e., on the
common tangent at E of ω1 and ω2. Hence QC = QD = QE.

Second solution. An inversion with center at D maps ω and ω2 to parallel
lines, ω1 and l2 to disjoint equal circles touching ω, ω2, and l1 to a circle
externally tangent to ω1, l2, and to ω. It is easy to see that the obtained
picture is symmetric (with respect to a diameter of l1), and that line AD
is parallel to the lines ω and ω2. Going back to the initial picture, this
means that AD is a common tangent of ω and ω2. The end is like that in
the first solution.



586 4 Solutions

16. First, assume that ∠OQE = 90◦. Extend PN to meet AC at R. Then
OEPQ and ORFQ are cyclic quadrilaterals; hence we have ∠OEQ =
∠OPQ = ∠ORQ = ∠OFQ. It follows that


OEQ ∼= 
OFQ and QE = QF .
Now suppose QE = QF . Let S
be the point symmetric to A with
respect to Q, so that the quadri-
lateral AESF is a parallelogram.
Draw the line E′F ′ through Q so
that ∠OQE′ = 90◦ and E′ ∈ AB,
F ′ ∈ AC. By the first part QE′ =
QF ′; hence AE′SF ′ is also a paral-

A

B C

N
P R

O

Q

E

F

S

lelogram. It follows that E ≡ E′, F ≡ F ′, and ∠OQE = 90◦.

17. We first prove that AB cuts OE in a fixed point H . Note that ∠OAH =
∠OMA = ∠OEA (because O,A,E,M lie on a circle); hence 
OAH ∼

OEA. This implies OH ·OE = OA2, i.e., H is fixed.

Let the lines AB and CD meet
at K. Since EAOBM and ECDM
are cyclic, we have ∠EAK =
∠EMB = ∠ECK, so ECAK is
cyclic. Therefore ∠EKA = 90◦,
hence EKBD is also cyclic and
EK ‖ OM . Then ∠EKF =
∠EBD = ∠EOM = ∠OEK, from
which we deduce that KF = FE.
However, since ∠EKH = 90◦, the

O

E M

A

B

C
D

H

K
F

l

point F is the midpoint of EH ; hence it is fixed.

18. Since for each of the subsets {1, 4, 9}, {2, 6, 12}, {3, 5, 15} and {7, 8, 14} the
product of its elements is a square and these subsets are disjoint, we have
|M | ≤ 11. Suppose that |M | = 11. Then 10 ∈ M and none of the disjoint
subsets {1, 4, 9}, {2, 5}, {6, 15}, {7, 8, 14} is a subset of M . Consequently
{3, 12} ⊂ M , so none of {1}, {4}, {9}, {2, 6}, {5, 15}, and {7, 8, 14} is a
subset of M : thus |M | ≤ 9, a contradiction. It follows that |M | ≤ 10, and
this number is attained in the case M = {1, 4, 5, 6, 7, 10, 11, 12, 13, 14}.

19. Since mn− 1 and m3 are relatively prime, mn − 1 divides n3 + 1 if and
only if it divides m3(n3 + 1) = (m3n3 − 1) +m3 + 1. Thus

n3 + 1

mn− 1
∈ Z ⇔ m3 + 1

mn− 1
∈ Z;

hence we may assume that m ≥ n. If m = n, then n3+1
n2−1 = n + 1

n−1 is

an integer, so m = n = 2. If n = 1, then 2
m−1 ∈ Z, which happens only

when m = 2 or m = 3. Now suppose m > n ≥ 2. Since m3 + 1 ≡ 1 and
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mn− 1 ≡ −1 (mod n), we deduce n3+1
mn−1 = kn− 1 for some integer k > 0.

On the other hand, kn−1 < n3+1
n2−1 = n+ 1

n−1 ≤ 2n−1 gives that k = 1, and

therefore n3+1 = (mn−1)(n−1). This yieldsm = n2+1
n−1 = n+1+ 2

n−1 ∈ N,
so n ∈ {2, 3} and m = 5. The solutions with m < n are obtained by
symmetry.
There are 9 solutions in total: (1, 2), (1, 3), (2, 1), (3, 1), (2, 2), (2, 5), (3, 5),
(5, 2), (5, 3).

20. Let A be the set of all numbers of the form p1p2 . . . pp1 , where p1 < p2 <
· · · < pp1 are primes. In other words, A = {2 · 3, 2 · 5, . . . } ∪ {3 · 5 · 7, 3 · 5 ·
11, . . . } ∪ {5 · 7 · 11 · 13 · 17, . . . } ∪ · · · .
This set satisfies the requirements of the problem. Indeed, for any infinite
set of primes P = {q1, q2, . . . } (where q1 < q2 < · · · ) we have

m = q1q2 · · · qq1 ∈ A and n = q2q3 · · · qq1+1 �∈ A.

21. Note first that yn = 2k (k ≥ 2) and zk ≡ 1 (mod 4) for all n, so if xn is
odd, xn+1 will be even. Further, it is shown by induction on n that yn > zn

when xn−1 is even and 2yn > zn > yn when xn−1 is odd. In fact, n = 1 is
the trivial case, while if it holds for n ≥ 1, then yn+1 = 2yn > zn = zn+1

if xn is even, and 2yn+1 = 2yn > yn + zn = zn+1 if xn is odd (since then
xn−1 is even).
If x1 = 0, then x0 = 3 is good. Suppose xn = 0 for some n ≥ 2.
Then xn−1 is odd and xn−2 is even, so that yn−1 > zn−1. We claim
that a pair (yn−1, zn−1), where 2k = yn−1 > zn−1 > 0 and zn−1 ≡ 1
(mod 4), uniquely determines x0 = f(yn−1, zn−1). We see that xn−1 =
1
2yn−1 + zn−1, and define (xk, yk, zk) backwards as follows, until we get
(yk, zk) = (4, 1). If yk > zk, then xk−1 must have been even, so we define
(xk−1, yk−1, zk−1) = (2xk, yk/2, zk); otherwise xk−1 must have been odd,
so we put (xk−1, yk−1, zk−1) = (xk − yk/2 + zk, yk, zk − yk). We even-
tually arrive at (y0, z0) = (4, 1) and a good integer x0 = f(yn−1, zn−1),
as claimed. Thus for example (yn−1, zn−1) = (64, 61) implies xn−1 = 93,
(xn−2, yn−2, zn−2) = (186, 32, 61) etc., and x0 = 1953, while in the case
of (yn−1, zn−1) = (128, 1) we get x0 = 2080.
Note that y′ > y ⇒ f(y′, z′) > f(y, z) and z′ > z ⇒ f(y, z′) > f(y, z).
Therefore there are no y, z for which 1953 < f(y, z) < 2080. Hence all good
integers less than or equal to 1994 are given as f(y, z), y = 2k ≤ 64 and
0 < z ≡ 1 (mod 4), and the number of such (y, z) equals 1+2+4+8+16 =
31. So the answer is 31.

22. (a) Denote by b(n) the number of 1’s in the binary representation of n.
Since b(2k + 2) = b(k + 1) and b(2k + 1) = b(k) + 1, we deduce that

f(k + 1) =

{
f(k) + 1, if b(k) = 2;
f(k), otherwise.

(1)

The set of k’s with b(k) = 2 is infinite, so it follows that f(k) is
unbounded. Hence f takes all natural values.
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(b) Since f is increasing, k is a unique solution of f(k) = m if and only
if f(k − 1) < f(k) < f(k + 1). By (1), this inequality is equivalent
to b(k − 1) = b(k) = 2. It is easy to see that then k − 1 must be of
the form 2t + 1 for some t. In this case, {k + 1, . . . , 2k} contains the

number 2t+1 + 3 = 10 . . .0112 and t(t−1)
2 binary (t+ 1)-digit numbers

with three 1’s, so m = f(k) = t(t−1)
2 + 1.

23. (a) Let p be a prime divisor of xi, i > 1, and let xj ≡ uj (mod p)
where 0 ≤ uj ≤ p − 1 (particularly ui ≡ 0). Then uj+1 ≡ ujuj−1 +
1 (mod p). The number of possible pairs (uj , uj+1) is finite, so uj

is eventually periodic. We claim that for some dp > 0, ui+dp = 0.
Indeed, suppose the contrary and let (um, um+1, . . . , um+d−1) be the
first period for m ≥ i. Then m �= i. By the assumption um−1 �≡
um+d−1, but um−1um ≡ um+1 − 1 ≡ um+d+1 − 1 ≡ um+d−1um+d ≡
um+d−1um (mod p), which is impossible if p � um. Hence there is a
dp with ui = ui+dp = 0 and moreover ui+1 = ui+dp+1 = 1, so the
sequence uj is periodic with period dp starting from ui. Let m be
the least common multiple of all dp’s, where p goes through all prime
divisors of xi. Then the same primes divide every xi+km, k = 1, 2, . . . ,
so for large enough k and j = i+ km, xi

i | xj
j .

(b) If i = 1, we cannot deduce that xi+1 ≡ 1 (mod p). The following ex-
ample shows that the statement from (a) need not be true in this case.
Take x1 = 22 and x2 = 9. Then xn is even if and only if n ≡ 1 (mod
3), but modulo 11 the sequence {xn} is 0, 9, 1, 10, 0, 1, 1, 2, 3, 7, 0, . . . ,
so 11 | xn (n > 1) if and only if n ≡ 5 (mod 6). Thus for no n > 1 can
we have 22 | xn.

24. A multiple of 10 does not divide any wobbly number. Also, if 25 | n, then
every multiple of n ends with 25, 50, 75, or 00; hence it is not wobbly. We
now show that every other number n divides some wobbly number.
(i) Let n be odd and not divisible by 5. For any k ≥ 1 there exists l

such that (10k − 1)n divides 10l − 1, and thus also divides 10kl − 1.

Consequently, vk = 10kl−1
10k−1 is divisible by n, and it is wobbly when

k = 2 (indeed, v2 = 101 . . . 01).
If n is divisible by 5, one can simply take 5v2 instead.

(ii) Let n be a power of 2. We prove by induction on m that 22m+1 has
a wobbly multiple wm with exactly m nonzero digits. For m = 1,
take w1 = 8. Suppose that for some m ≥ 1 there is a wobbly wm =
22m+1dm. Then the numbers a · 102m + wm are wobbly and divisible
by 22m+1 when a ∈ {2, 4, 6, 8}. Moreover, one of these numbers is
divisible by 22m+3. Indeed, it suffices to choose a such that a

2 + dm is
divisible by 4. This proves the induction step.

(iii) Let n = 2mr, where m ≥ 1 and r is odd, 5 � r. Then v2mwm is wobbly
and divisible by both 2m and r (using notation from (i), r | v2m).
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4.36 Solutions to the Shortlisted Problems of IMO 1995

1. Let x = 1
a , y = 1

b , z = 1
c . Then xyz = 1 and

S =
1

a3(b + c)
+

1

b3(c+ a)
+

1

c3(a+ b)
=

x2

y + z
+

y2

z + x
+

z2

x+ y
.

We must prove that S ≥ 3
2 . From the Cauchy–Schwarz inequality,

[(y + z) + (z + x) + (x+ y)] · S ≥ (x + y + z)2 ⇒ S ≥ x+ y + z

2
.

It follows from the A-G mean inequality that x+y+z
2 ≥ 3

2
3
√
xyz = 3

2 ; hence
the proof is complete. Equality holds if and only if x = y = z = 1, i.e.,
a = b = c = 1.

Remark. After reducing the problem to x2

y+z + y2

z+x + z2

x+y ≥ 3
2 , we can solve

the problem using Jensen’s inequality applied to the function g(u, v) =
u2/v. The problem can also be solved using Muirhead’s inequality.

2. We may assume c ≥ 0 (otherwise, we may simply put −yi in the place of
yi). Also, we may assume a ≥ b. If b ≥ c, it is enough to take n = a+b−c,
x1 = · · · = xa = 1, y1 = · · · = yc = ya+1 = · · · = ya+b−c = 1, and the
other xi’s and yi’s equal to 0, so we need only consider the case a > c > b.
We proceed to prove the statement of the problem by induction on a+ b.
The case a+b = 1 is trivial. Assume that the statement is true when a+b ≤
N , and let a+b = N+1. The triple (a+b−2c, b, c−b) satisfies the condition
(since (a+ b − 2c)b− (c− b)2 = ab− c2), so by the induction hypothesis
there are n-tuples (xi)

n
i=1 and (yi)

n
i=1 with the wanted property. It is easy

to verify that (xi + yi)
n
i=1 and (yi)

n
i=1 give a solution for (a, b, c).

3. Write Ai =
a2

i +a2
i+1−a2

i+2

ai+ai+1−ai+2
= ai+ai+1+ai+2− 2aiai+1

ai+ai+1−ai+2
. Since 2aiai+1 ≥

4(ai + ai+1 − 2) (which is equivalent to (ai − 2)(ai+1 − 2) ≥ 0), it follows

that Ai ≤ ai + ai+1 + ai+2 − 4
(
1 + ai+2−2

ai+ai+1−ai+2

)
≤ ai + ai+1 + ai+2 −

4
(
1 + ai+2−2

4

)
, because 1 ≤ ai + ai+1 − ai+2 ≤ 4. Therefore Ai ≤ ai +

ai+1 − 2, so
∑n

i=1Ai ≤ 2s− 2n as required.

4. The second equation is equivalent to a2

yz + b2

zx + c2

xy + abc
xyz = 4. Let x1 =

a√
yz , y1 = b√

zx
, z1 = c√

xy . Then x2
1 + y2

1 + z2
1 + x1y1z1 = 4, where

0 < x1, y1, z1 < 2. Regarding this as a quadratic equation in z1, the
discriminant (4−x2

1)(4−y2
1) suggests that we let x1 = 2 sinu, y1 = 2 sin v,

0 < u, v < π/2. Then it is directly shown that z1 will be exactly 2 cos(u+v)
as the only positive solution of the quadratic equation.
Thus a = 2

√
yz sinu, b = 2

√
xz sin v, c = 2

√
xy(cosu cos v − sinu sin v),

so from x+ y + z − a− b− c = 0 we obtain

(
√
x cos v −√

y cosu)2 + (
√
x sin v +

√
y sinu−

√
z)2 = 0,
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which implies

√
z =

√
x sin v+

√
y sinu =

1

2
(y1

√
x+ x1

√
y) =

1

2

(
b√
zx

√
x+

a
√
yz

√
y

)
.

Therefore z = a+b
2 . Similarly, x = b+c

2 and y = c+a
2 . It is clear that the

triple (x, y, z) =
(

b+c
2 , c+a

2 , a+b
2

)
is indeed a (unique) solution of the given

system of equations.

Second solution. Put x = b+c
2 − u, y = c+a

2 − v, z = a+b
2 − w, where

u ≤ b+c
2 , v ≤ c+a

2 , w ≤ a+b
2 and u + v + w = 0. The equality abc +

a2x + b2y + c2z = 4xyz becomes 2(au2 + bv2 + cw2 + 2uvw) = 0. Now
uvw > 0 is clearly impossible. On the other hand, if uvw ≤ 0, then two
of u, v, w are nonnegative, say u, v ≥ 0. Taking into account w = −u− v,
the above equality reduces to 2[(a+ c−2v)u2 +(b+ c−2u)v2 +2cuv] = 0,
so u = v = 0.

Third solution. The fact that we are given two equations and three vari-
ables suggests that this is essentially a problem on inequalities. Setting
f(x, y, z) = 4xyz− a2x− b2y− c2z, we should show that max f(x, y, z) =
abc, for 0 < x, y, z, x + y + z = a + b + c, and find when this value is
attained. Thus we apply Lagrange multipliers to F (x, y, z) = f(x, y, z) −
λ(x + y + z − a− b − c), and obtain that f takes a maximum at (x, y, z)
such that 4yz − a2 = 4zx− b2 = 4xy − c2 = λ and x+ y + z = a+ b + c.
The only solution of this system is (x, y, z) =

(
b+c
2 , c+a

2 , a+b
2

)
.

5. Suppose that a function f satisfies the condition, and let c be the least
upper bound of {f(x) | x ∈ R}. We have c ≥ 2, since f(2) = f(1 +
1/12) = f(1) + f(1)2 = 2. Also, since c is the least upper bound, for each
k = 1, 2, . . . there is an xk ∈ R such that f(xk) ≥ c− 1/k. Then

c ≥ f

(
xk +

1

x2
k

)
≥ c− 1

k
+ f

(
1

xk

)2

=⇒ f

(
1

xk

)
≥ − 1√

k
.

On the other hand,

c ≥ f

(
1

xk
+ x2

k

)
= f

(
1

xk

)
+ f(xk)2 ≥ − 1√

k
+

(
c− 1

k

)2

.

It follows that
1√
k

− 1

k2
≥ c

(
c− 1 − 2

k

)
,

which cannot hold for k sufficiently large.

Second solution. Assume that f exists and let n be the least integer such
that f(x) ≤ n

4 for all x. Since f(2) = 2, we have n ≥ 8. Let f(x) > n−1
4 .

Then f(1/x) = f(x + 1/x2) − f(x) < 1/4, so f(1/x) > −1/2. On the

other hand, this implies
(

n−1
4

)2
< f(x)2 = f(1/x+x2)−f(1/x) < n

4 + 1
2 ,

which is impossible when n ≥ 8.
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6. Let yi = xi+1 + · · · + xn, Y =
∑n

j=2(j − 1)xj , and zi = n(n−1)
2 yi − (n −

i)Y . Then n(n−1)
2

∑
i<j xixj −

(∑n−1
i=1 (n− i)xi

)
Y = n(n−1)

2

∑n−1
i=1 xiyi −∑n−1

i=1 (n− i)xiY =
∑n−1

i=1 xizi, so it remains to show that
∑n−1

i=1 xizi > 0.

Since
∑n−1

i=1 yi = Y and
∑n−1

i=1 (n − i) = n(n−1)
2 , we have

∑
zi = 0.

Note that Y <
∑n

j=2(j − 1)xn = n(n−1)
2 xn, and consequently zn−1 =

n(n−1)
2 xn − Y > 0. Furthermore, we have

zi+1

n− i− 1
− zi

n− i
=
n(n− 1)

2

(
yi+1

n− i− 1
− yi

n− i

)
> 0,

which means that z1

n−1 < z2

n−2 < · · · < zn−1

1 . Therefore there is a k for
which z1, . . . , zk ≤ 0 and zk+1, . . . , zn−1 > 0. But then zi(xi − xk) ≥ 0,

i.e., xizi ≥ xkzi for all i, so
∑n−1

i=1 xizi >
∑n−1

i=1 xkzi = 0 as required.

Second solution. Set X =
∑n−1

j=1 (n− j)xj and Y =
∑n

j=2(j − 1)xj . Since

4XY = (X + Y )2 − (X − Y )2, the RHS of the inequality becomes

XY =
1

4

⎡⎣(n− 1)2

(
n∑

i=1

xi

)2

−
(

n∑
i=1

(2i− 1 − n)xi

)2
⎤⎦ .

The LHS equals 1
4

(
(n− 1)2 (

∑n
i=1 xi)

2 − (n− 1)
∑

i<j(xj − xi)
2
)
. Since∑n

i=1(2i− 1 − n)xi =
∑

i<j(xj − xi) also holds, we must prove that⎛⎝∑
i<j

(xj − xi)

⎞⎠2

> (n− 1)
∑
i<j

(xj − xi)
2. (1)

Putting xi+1 − xi = di > 0 (so, xj − xi = di + di+1 + · · · + dj−1)
and expanding the obtained expressions, we reduce this inequality to∑

k k
2(n− k)2d2

k + 2
∑

k<l kl(n− k)(n− l)dkdl >
∑

k(n− 1)k(n− k)d2
k +

2
∑

k<l(n − 1)k(n − l)dkdl, which is verified immediately by comparing
coefficients.

Remark. An inequality significantly stronger than (1) in the second solu-
tion has appeared later, as IMO 03-5.

7. The result is trivial if O coincides with X or Y , so let us assume it does
not. From OB ·ON = OC ·OM = OX ·OY we deduce that BCMN is a
cyclic quadrilateral. Further, if O lies between X and Y , then ∠MAD +
∠MND = ∠MAD+∠MNB+∠BND = ∠MAD+∠MCA+∠AMC =
180◦. Similarly, we also have ∠MAD+ ∠MND = 180◦ if O is not on the
segment XY . Therefore ADNM is cyclic. Now let AM and DN intersect
at Z and let the line ZX intersect the two circles at Y1 and Y2. Then
ZX · ZY1 = ZM · ZA = ZN · ZD = ZX · ZY2. Hence Y1 = Y2 = Y ,
implying that Z lies on XY .
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Second solution. Let Z1, Z2 be the points in which AM,DN respectively
meet XY , and P = BC ∩XY . Then, from 
OPC ∼ 
APZ1, we have

PZ1 = PA·PC
PO = PX2

PO and analogously PZ2 = PX2

PO . Hence, we conclude
that Z1 ≡ Z2.

8. Let A′, B′, C′ be the points symmetric to A,B,C with respect to the
midpoints of BC,CA,AB respectively. From the condition on X we have
XB2 −XC2 = AC2 −AB2 = A′B2 −A′C2, and hence X must lie on the
line through A′ perpendicular to BC. Similarly, X lies on the line through
B′ perpendicular to CA. It follows that there is a unique position for X ,
namely the orthocenter of 
A′B′C′. It easily follows that this point X
satisfies the original equations.

9. If EF is parallel to BC, 
ABC must be isosceles and E, Y are symmetric
to F,Z with respect to AD, so the result follows. Now suppose that EF
meets BC at P . By Menelaus’s theorem, BP

CP = BF
FA · AE

EC = BD
DC (since

BD = BF , CD = CE, AE = AF ). It follows that the point P depends
only on D and not on A. In particular, the same point is obtained as the
intersection of ZY with BC. Therefore PE ·PF = PD2 = PY ·PZ, from
which it follows that EFZY is a cyclic quadrilateral.

Second solution. Since CD = CY = CE and BD = BZ = BF , all angles
of EFZY can be calculated in terms of angles ofABC and Y ZBC. In fact,
∠FEY = 1

2 (∠A+ ∠C + ∠BCY ) and ∠FZY = 1
2 (180◦ + ∠B + ∠BCY ),

which gives us ∠FEY + ∠FZY = 180◦.

10. Let the two triangles be X1Y1Z1, X2Y2Z2, with X1 = BB1 ∩ CC1, Y1 =

CC1 ∩ AA1, Z1 =AA1 ∩ BB1,
X2 = BB2 ∩ CC2, Y2 = CC2 ∩
AA2, Z2 = AA2 ∩ BB2. First, we
observe that ∠ABB2 = ∠ACC1

and ∠ABB1 = ∠ACC2. Conse-
quently ∠BZ1A1 = ∠BAA1 +
∠ABB1 = ∠BCC2 + ∠C2CA =
∠C and similarly ∠AZ2B2 = ∠C,
∠AY1C1 = ∠CY2A2 = ∠B.
Also, 
ABB2 ∼ 
ACC1; hence
AC1/AC = AB2/AB.

A B

C

A1

A2
B1

B2

C1 C2

Y1

Z1

X1

Z2

X2

Y2

From the sine formula, we obtain

AZ1

sin ∠ABZ1
=

AB

sin ∠AZ1B
=

AB

sin ∠C
=

AC

sin∠B
=

AC

sin ∠AY2C

=
AY2

sin ∠ACY2
=⇒ AZ1 = AY2.

Analogously, BX1 = BZ2 and CY1 = CX2. Furthermore, again from the
sine formula,
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AY1

sin∠AC1Y1
=

AC1

sin ∠AY1C1
=
AC1

AC

AC

sin ∠B

=
AB2

AB

AB

sin ∠C
=

AB2

sin ∠AZ2B2
=

AZ2

sin ∠AB2Z2
.

Hence, AY1 = AZ2 and, analogously, BZ1 = BX2 and CX1 = CY2. We
deduce that Y1Z2 ‖ BC and Z2X1 ‖ AC, which gives us ∠Y1Z2X1 =
180◦ − ∠C = 180◦ − ∠Y1Z1X1. It follows that Z2 lies on the circle cir-
cumscribed about 
X1Y1Z1. Similarly, so do X2 and Y2.

Second solution. Let H be the orthocenter of 
ABC. Triangles AHB,
BHC, CHA, ABC have the same circumradius R. Additionally,

∠HAAi = ∠HBBi = ∠HCCi = θ (i = 1, 2).

Since ∠HBX1 = ∠HCX1 = θ, BCX1H is concyclic and thereforeHX1 =
2R sin θ. The same holds for HY1, HZ1, HX2, HY2, HZ2. Hence Xi, Yi, Zi

(i = 1, 2) lie on a circle centered at H .

11. Triangles BCD and EFA are equilateral, and hence BE is an axis of
symmetry of ABDE. Let C′, F ′ respectively be the points symmetric to
C,F with respect to BE. The points G and H lie on the circumcircles
of ABC′ and DEF ′ respectively (because, for instance, ∠AGB = 120◦ =
180◦−∠AC′B); hence from Ptolemy’s theorem we have AG+GB = C′G
and DH +HE = HF ′. Therefore

AG+GB +GH +DH +HE = C′G+GH +HF ′ ≥ C′F ′ = CF,

with equality if and only if G and H both lie on C′F ′.

Remark. Since by Ptolemy’s inequality AG+GB ≥ C′G and DH+HE ≥
HF ′, the result holds without the condition ∠AGB = ∠DHE = 120◦.

12. Let O be the circumcenter and R the circumradius of A1A2A3A4. We

have OA2
i = (

−−→
OG+ (

−−→
OAi −

−−→
OG))2 = OG2 +GA2

i + 2
−−→
OG · −−→GAi. Summing

up these equalities for i = 1, 2, 3, 4 and using that
∑4

i=1

−−→
GAi =

−→
0 , we

obtain
4∑

i=1

OA2
i = 4OG2 +

4∑
i=1

GA2
i ⇐⇒

4∑
i=1

GA2
i = 4(R2 −OG2). (1)

Now we have that the potential of G with respect to the sphere equals
GAi ·GA′

i = R2 −OG2. Plugging in these expressions for GA′
i, we reduce

the inequalities we must prove to

GA1 ·GA2 ·GA3 ·GA4 ≤ (R2 −OG2)2 (2)

and (R2 −OG2)

4∑
i=1

1

GAi
≥

4∑
i=1

GAi. (3)
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Inequality (2) immediately follows from (1) and the quadratic-geometric
mean inequality for GAi. Since from the Cauchy–Schwarz inequality we

have
∑4

i=1 GA
4
i ≥ 1

4

(∑4
i=1GAi

)2

and
(∑4

i=1 GAi

)(∑4
i=1

1
GAi

)
≥ 16,

inequality (3) follows from (1) and from(
4∑

i=1

GA2
i

)(
4∑

i=1

1

GAi

)
≥ 1

4

(
4∑

i=1

GAi

)2 ( 4∑
i=1

1

GAi

)
≥ 4

4∑
i=1

GAi.

13. If O lies on AC, then ABCD, AKON , and OLCM are similar; hence
AC = AO+OC implies

√
S =

√
S1 +

√
S2. Assume that O does not lie on

AC and that w.l.o.g. it lies inside triangle ADC. Let us denote by T1, T2

the areas of parallelograms KBLO,NOMD respectively. Consider a line
through O that intersects AD,DC,CB,BA respectively at X,Y, Z,W so
that OW/OX = OZ/OY (such a line exists by a continuity argument:
the left side is smaller when W = X = A, but greater when Y = Z = C).
The desired inequality is equivalent
to T1 + T2 ≥ 2

√
S1S2. Since trian-

gles WKO,OLZ,WBZ are similar
and WO + OZ = WZ, we have√
SWKO +

√
SOLZ =

√
SWBZ =√

SWKO + SOLZ + T1, which im-
plies T1 = 2

√
SWKOSOLZ . Simi-

larly, T2 = 2
√
SXNOSOMY .

Since OW/OZ = OX/OY , we have
SWKO/SXNO = SOLZ/SOMY .

A

B

C

D

O

K
L

MN

S1 S2

T1

T2

X YZW

Therefore we obtain

T1 + T2 = 2
√
SWKOSOLZ + 2

√
SXNOSOMY

= 2
√

(SWKO + SXNO)(SOLZ + SOMY ) ≥ 2
√
S1S2.

Second solution. By an affine transformation of the plane one can trans-
form any nondegenerate quadrilateral into a cyclic one, thereby preserving
parallelness and ratios of areas. Thus we may assume w.l.o.g. that ABCD
is cyclic.
By a well-known formula, the area of a cyclic quadrilateral with sides
a, b, c, d and semiperimeter p is given by

S =
√

(p− a)(p− b)(p− c)(p− d) .

Let us set AK = a1, KB = b1, BL = a2, LC = b2, CM = a3, MD = b3,
DN = a4, NA = b4. Then the sides of quadrilateral AKON are ai, the
sides of CLOM are bi, and the sides of ABCD are ai + bi (i = 1, 2, 3, 4).
If p and q are the semiperimeters of AKON and CLOM , and xi = p−ai,
yi = q − bi, then we have S1 =

√
x1x2x3x4, S2 =

√
y1y2y3y4, and S =√

(x1 + y1)(x2 + y2)(x3 + y3)(x4 + y4) . Thus we need to show that
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4
√
x1x2x3x4 + 4

√
y1y2y3y4 ≤ 4

√
(x1 + y1)(x2 + y2)(x3 + y3)(x4 + y4) .

By setting yi = tixi we reduce this inequality to 1 + 4
√
t1t2t3t4 ≤

4
√

(1 + t1)(1 + t2)(1 + t3)(1 + t4) . One way to prove the last inequality
is to apply the simple inequality

1 +
√
uv ≤

√
(1 + u)(1 + v)

to
√
t1t2,

√
t3t4 and then to t1, t2 and t3, t4.

14. Let BB′ cut CC′ at P . Since ∠B′BC′ = ∠B′CC′, it follows that
∠PBH = ∠PCH . Let D and E be points such that BPCD and HPCE
are parallelograms (consequently, so is BHED). Triangles BAC and
C′AB′ are similar, from which we deduce that 
B′H ′C′ and 
BHC
are similar, as well as 
B′PC′

and 
BDC. Hence B′PC′H ′ and
BDCH are similar, from which we
obtain ∠H ′PB′ = ∠HDB. Now
∠CDE = ∠PBH = ∠PCH =
∠CHE implies that HCED is
a cyclic quadrilateral. Therefore
∠BPH = ∠DCE = ∠DHE =
∠HDB = ∠H ′PB′; hence HH ′

also passes through P .

B

A

C

C′

B′

H

H ′

P

D

E

Second solution. Observe that 
HBC ∼ 
H ′B′C′, ∠PBH = ∠PCH
and ∠PB′H ′ = ∠PC′H ′.
By Ceva’s theorem in trigonometric form applied to 
BPC and the point
H , we have sin ∠BPH

sin ∠HPC = sin ∠HBP
sin ∠HBC · sin ∠HCB

sin ∠HCP = sin ∠HCB
sin ∠HBC . Similarly, Ceva’s

theorem for 
B′PC′ and point H ′ yields sin ∠B′PH′

sin∠H′PC′ = sin ∠H′C′B′

sin ∠H′B′C′ . Thus
it follows that

sin ∠B′PH ′

sin∠H ′PC′ =
sin ∠BPH

sin ∠HPC
,

which finally implies that ∠BPH = ∠B′PH ′.

15. We show by induction on k that there exists a positive integer ak for
which a2

k ≡ −7 (mod 2k). The statement of the problem follows, since
every ak + r2k (r = 0, 1, . . . ) also satisfies this condition.
Note that for k = 1, 2, 3 one can take ak = 1. Now suppose that a2

k ≡ −7
(mod 2k) for some k > 3. Then either a2

k ≡ −7 (mod 2k+1) or a2
k ≡ 2k −7

(mod 2k+1). In the former case, take ak+1 = ak. In the latter case, set
ak+1 = ak + 2k−1. Then a2

k+1 = a2
k + 2kak + 22k−2 ≡ a2

k + 2k ≡ −7 (mod

2k+1) because ak is odd.

16. If A is odd, then every number in M1 is of the form x(x + A) + B ≡ B
(mod 2), while numbers in M2 are congruent to C modulo 2. Thus it is
enough to take C ≡ B + 1 (mod 2).
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If A is even, then all numbers in M1 have the form
(
X + A

2

)2
+ B − A2

4

and are congruent to B − A2

4 or B − A2

4 + 1 modulo 4, while numbers in

M2 are congruent to C modulo 4. So one can choose any C ≡ B− A2

4 + 2
(mod 4).

17. For n = 4, the vertices of a unit square A1A2A3A4 and p1 = p2 = p3 =
p4 = 1

6 satisfy the conditions. We claim that there are no solutions for
n = 5 (and thus for any n ≥ 5).
Suppose to the contrary that points Ai and pi, i = 1, . . . , 5, satisfy the
conditions. Denote the area of 
AiAjAk by Sijk = pi + pj + pk, 1 ≤ i <
j < k ≤ 5. Observe that all the pi’s must be distinct. Indeed, if p4 = p5,
then S124 = S125 and S234 = S235, which implies that A4A5 is parallel
to A1A2 and A2A3, so A1, A2, A3 are collinear, which is impossible. Also
note that if AiAjAkAl is convex, then Sijk + Sikl = Sijl + Sjkl gives
pi + pk = pj + pl. Now consider the convex hull of A1, A2, A3, A4, A5.
There are three cases.
(i) The convex hull is the pentagon A1A2A3A4A5. Then A1A2A3A4 and

A1A2A3A5 are convex, so we have p1 + p3 = p2 + p4 and p1 + p3 =
p2 + p5. Hence p4 = p5, a contradiction.

(ii) The convex hull is w.l.o.g. the quadrilateral A1A2A3A4. Assume that
A5 lies within A1A3A4. Then A1A2A3A5 is also convex, so as in (1)
we get p4 = p5.

(iii) The convex hull is w.l.o.g. the triangle A1A2A3. Since S124 + S134 +
S234 = S125 + S135 + S235, we conclude that again p4 = p5.

18. Let x = za and y = zb, where a and b are relatively prime. The given
Diophantine equation becomes a + zb2 + z2 = z2ab, so a = zc for some

c ∈ Z. We obtain c+ b2 + z = z2cb, or c = b2+z
z2b−1 .

(i) If z = 1, then c = b2+1
b−1 = b+ 1 + 2

b−1 , so b = 2 or b = 3. These values
yield two solutions: (x, y) = (5, 2) and (x, y) = (5, 3).

(ii) If z = 2, then 16c = 16b2+32
4b−1 = 4b+1+ 33

4b−1 , so b = 1 or b = 3. In this
case (x, y) = (4, 2) or (x, y) = (4, 6).

(iii) Let z ≥ 3. First, we see that z2c = z2b2+z3

z2b−1 = b + b+z3

z2b−1 . Thus b+z3

z2b−1

must be a positive integer, so b + z3 ≥ z2b − 1, which implies b ≤
z2−z+1

z−1 . It follows that b ≤ z. But then b2 + z ≤ z2 + b < z2b−1, with

the last inequality because (z2−1)(b−1) > 2. Therefore c = b2+z
z2b−1 < 1,

a contradiction.
The only solutions for (x, y) are (4, 2), (4, 6), (5, 2), (5, 3).

19. For each two people let n be the number of people exchanging greetings
with both of them. To determine n in terms of k, we shall count in two
ways the number of triples (A,B,C) of people such that A exchanged
greetings with both B and C, but B and C mutually did not.
There are 12k possibilities for A, and for each A there are (3k+ 6) possi-
bilities for B. Since there are n people who exchanged greetings with both
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A and B, there are 3k + 5 − n who did so with A but not with B. Thus
the number of triples (A,B,C) is 12k(3k + 6)(3k + 5 − n). On the other
hand, there are 12k possible choices of B, and 12k− 1− (3k+6) = 9k− 7
possible choices of C; for every B,C, A can be chosen in n ways, so the
number of considered triples equals 12kn(9k − 7).

Hence (3k + 6)(3k+ 5 − n) = n(9k − 7), i.e., n = 3(k+2)(3k+5)
12k−1 . This gives

us that 4n
3 = 12k2+44k+40

12k−1 = k + 4 − 3k−44
12k−1 is an integer too. It is directly

verified that only k = 3 gives an integer value for n, namely n = 6.

Remark. The solution is complete under the assumption that such a k
exists. We give an example of such a party with 36 persons, k = 3. Let
the people sit in a 6 × 6 array [Pij ]

6
i,j=1, and suppose that two persons

Pij , Pkl exchanged greetings if and only if i = k or j = l or i− j ≡ k − l
(mod 6). Thus each person exchanged greetings with exactly 15 others,
and it is easily verified that this party satisfies the conditions.

20. We shall consider the set M = {0, 1, . . . , 2p − 1} instead. Let M1 =
{0, 1, . . . , p − 1} and M2 = {p, p + 1, . . . , 2p − 1}. We shall denote by
|A| and σ(A) the number of elements and the sum of elements of the set
A; also, let Cp be the family of all p-element subsets of M . Define the
mapping T : Cp → Cp as T (A) = {x+ 1 | x ∈ A ∩M1} ∪ {A ∩M2}, the
addition being modulo p. There are exactly two fixed points of T : these
are M1 and M2. Now if A is any subset from Cp distinct from M1,M2,
and k = |A ∩ M1| with 1 ≤ k ≤ p − 1, then for i = 0, 1, . . . , p − 1,
σ(T i(A)) = σ(A) + ik (mod p). Hence subsets A, T (A), . . . , T p−1(A) are
distinct, and exactly one of them has sum of elements divisible by p. Since
σ(M1), σ(M2) are divisible by p and Cp \ {M1,M2} decomposes into fam-
ilies of the form {A, T (A), . . . , T p−1(A)}, we conclude that the required

number is 1
p (|Cp| − 2) + 2 = 1

p

((
2p
p

)
− 2

)
+ 2.

Second solution. Let Ck be the family of all k-element subsets of
{1, 2, . . . , 2p}. Denote by Mk (k = 1, 2, . . . , p) the family of p-element mul-
tisets with k distinct elements from {1, 2, . . . , 2p}, exactly one of which ap-
pears more than once, that have sum of elements divisible by p. It is clear
that every subset from Ck, k < p, can be complemented to a multiset from
Mk ∪Mk+1 in exactly two ways, since the equation (p− k)a ≡ 0 (mod p)
has exactly two solutions in {1, 2, . . . , 2p}. On the other hand, every mul-
tiset from Mk can be obtained by completing exactly one subset from
Ck. Additionally, a multiset from Mk can be obtained from exactly one
subset from Ck−1 if k < p, and from exactly p subsets from Ck−1 if k = p.
Therefore |Mk| + |Mk+1| = 2|Ck| = 2

(
2p
k

)
for k = 1, 2, . . . , p − 2, and

|Mp−1| + p|Mp| = 2|Cp−1| = 2
(

2p
p−1

)
. Since M1 = 2p, it is not difficult to

show using recursion that |Mp| = 1
p

((
2p
p

)
− 2

)
+ 2.
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Third solution. Let ω = cos 2π
p + i sin 2π

p . We have
∏2p

i=1(x − ωi) =

(xp − 1)2 = x2p − 2xp + 1; hence comparing the coefficients at xp, we

obtain
∑
ωi1+···+ip =

∑p−1
i=0 aiω

i = 2, where the first sum runs over all
p-subsets {i1, . . . , ip} of {1, . . . , 2p}, and ai is the number of such subsets

for which i1 + · · · + ip ≡ i (mod p). Setting q(x) = −2 +
∑p−1

i=0 aix
i, we

obtain q(ωj) = 0 for j = 1, 2, . . . , p−1. Hence 1+x+ · · ·+xp−1 | q(x), and

since deg q = p−1, we have q(x) = −2+
∑p−1

i=0 aix
i = c(1+x+ · · ·+xp−1)

for some constant c. Thus a0 − 2 = a1 = · · · = ap−1, which together with

a0 + · · · + ap−1 =
(
2p
p

)
yields a0 = 1

p

((
2p
p

)
− 2

)
+ 2.

21. We shall show that there is no such n. Certainly, n = 2 does not work,
so suppose n ≥ 3. Let a, b be distinct elements of A1, and c any integer
greater than −a and −b. We claim that a + c, b + c belong to the same
subsets. Suppose to the contrary that a+ c ∈ A1 and b+ c ∈ A2, and take
arbitrary elements xi ∈ Ai, i = 3, . . . , n. The number b + x3 + · · · + xn is
in A2, so that s = (a+ c) + (b+ x3 + · · ·+ xn) + x4 + · · ·+ xn must be in
A3. On the other hand, a+x3 + · · ·+xn ∈ A2, so s = (a+x3 + · · ·+xn)+
(b + c) + x4 + · · · + xn is in A1, a contradiction. Similarly, if a + c ∈ A2

and b + c ∈ A3, then s = a + (b + c) + x4 + · · · + xn belongs to A2, but
also s = b+ (a+ c) + x4 + · · · + xn ∈ A3, which is impossible.
For i = 1, . . . , n choose xi ∈ Ai; set s = x1 + · · ·+xn and yi = s−xi. Then
yi ∈ Ai. By what has been proved above, 2xi = xi+xi belongs to the same
subset as xi + yi = s does. It follows that all numbers 2xi, i = 1, . . . , n,
are in the same subset. Since we can arbitrarily take xi from each set Ai,
it follows that all even numbers belong to the same set, say A1. Similarly,
2xi + 1 = (xi + 1) + xi is in the subset to which (xi + 1) + yi = s + 1
belongs for all i = 1, . . . , n; hence all odd numbers greater than 1 are in
the same subset, say A2. By the above considerations, 3 − 2 = 1 ∈ A2

also. But then nothing remains in A3, . . . , An, a contradiction.

22. Let u =
√

2p −
√
x − √

y and v = u(2
√

2p − u) = 2p − (
√

2p − u)2 =
2p − x − y −

√
4xy for x, y ∈ N, x ≤ y. Obviously u ≥ 0 if and only if

v ≥ 0, and u, v attain minimum positive values simultaneously. Note that
v �= 0. Otherwise u = 0 too, so y = (

√
2p−

√
x)2 = 2p−x−2

√
2px, which

implies that 2px is a square, and consequently x is divisible by 2p, which
is impossible.
Now let z be the smallest integer greater than

√
4xy. We have z2−1 ≥ 4xy,

z ≤ 2p− x − y, and z ≤ p because
√

4xy ≤ (
√
x +

√
y)2 < 2p. It follows

that

v = 2p− x− y −
√

4xy ≥ z −
√
z2 − 1 =

1

z +
√
z2 − 1

≥ 1

p+
√
p2 − 1

.

Equality holds if and only if z = x + y = p and 4xy = p2 − 1, which is
satisfied only when x = p−1

2 and y = p+1
2 . Hence for these values of x, y,

both u and v attain positive minima.
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23. By putting F (1) = 0 and F (361) = 1, condition (c) becomes F (F (n163)) =
F (F (n)) for n ≥ 2. For n = 2, 3, . . . , 360 let F (n) = n, and inductively
define F (n) for n ≥ 362 as follows:

F (n) =

{
F (m), if n = m163, m ∈ N;
the least number not in {F (k) | k < n} , otherwise.

Obviously, (a) each nonnegative integer appears in the sequence because
there are infinitely many numbers not of the form m163, and (b) each
positive integer appears infinitely often because F (m163) = F (m). Since
F (n163) = F (n), (c) also holds.

Second solution. Another example of such a sequence is as follows: If n =
pα1
1 pα2

2 · · · pαk

k , is the factorization of n into primes, we put F (n) = α1 +
α2 + · · ·+αk and F (1) = 0. Conditions (a) and (b) are evidently satisfied
for this F , while (c) follows from F (F (n163)) = F (163F (n)) = F (F (n))+1
(because 163 is a prime) and F (F (361)) = F (F (192)) = F (2) = 1.

24. The given condition is equivalent to (2xi − xi−1)(xixi−1 − 1) = 0, so
either xi = 1

2xi−1 or xi = 1
xi−1

. We shall show by induction on n that

for any n ≥ 0, xn = 2knxen
0 for some integer kn, where |kn| ≤ n and

en = (−1)n−kn . Indeed, this is true for n = 0. If it holds for some n,
then xn+1 = 1

2xn = 2kn−1xen
0 (hence kn+1 = kn − 1 and en+1 = en) or

xn+1 = 1
xn

= 2−knx−en
0 (hence kn+1 = −kn and en+1 = −en).

Thus x0 = x1995 = 2k1995xe1995
0 . Note that e1995 = 1 is impossible, since

in that case k1995 would be odd, although it should equal 0. Therefore
e1995 = −1, which gives x2

0 = 2k1995 ≤ 21994, so the maximal value that
x0 can have is 2997. This value is attained in the case xi = 2997−i for
i = 0, . . . , 997 and xi = 2i−998 for i = 998, . . . , 1995.

Second solution. First we show that there is an n, 0 ≤ n ≤ 1995, such
that xn = 1. Suppose the contrary. Then each of xn belongs to one of the
intervals I−i−1 = [2−i−1, 2−i) or Ii = (2i, 2i+1], where i = 0, 1, 2, . . . . Let
xn ∈ Iin . Note that by the formula for xn, in and in−1 are of different
parity. Hence i0 and i1995 are also of different parity, contradicting x0 =
x1995.
It follows that for some n, xn = 1. Now if n ≤ 997, then x0 ≤ 2997, while
if n ≥ 998, we also have x0 = x1995 ≤ 2997.

25. By the definition of q(x), it divides x for all integers x > 0, so f(x) =
xp(x)/q(x) is a positive integer too. Let {p0, p1, p2, . . . } be all prime num-
bers in increasing order. Since it easily follows by induction that all xn’s
are square-free, we can assign to each of them a unique code according
to which primes divide it: if pm is the largest prime dividing xn, the code
corresponding to xn will be . . . 0smsm−1 . . . s0, with si = 1 if pi | xn and
si = 0 otherwise. Let us investigate how f acts on these codes. If the code
of xn ends with 0, then xn is odd, so the code of f(xn) = xn+1 is obtained
from that of xn by replacing s0 = 0 by s0 = 1. Furthermore, if the code of
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xn ends with 011 . . .1, then the code of xn+1 ends with 100 . . .0 instead.
Thus if we consider the codes as binary numbers, f acts on them as an
addition of 1. Hence the code of xn is the binary representation of n and
thus xn uniquely determines n.
Specifically, if xn = 1995 = 3 · 5 · 7 · 19, then its code is 10001110 and
corresponds to n = 142.

26. For n = 1 the result is trivial, since x1 = 1. Suppose now that n ≥ 2 and
let fn(x) = xn −

∑n−1
i=0 x

i. Note that xn is the unique positive real root

of fn, because fn(x)
xn−1 = x− 1− 1

x − · · · − 1
xn−1 is strictly increasing on R+.

Consider gn(x) = (x − 1)fn(x) = (x − 2)xn + 1. Obviously gn(x) has
no positive roots other than 1 and xn > 1. Observe that

(
1 − 1

2n

)n
>

1 − n
2n ≥ 1

2 for n ≥ 2 (by Bernoulli’s inequality). Since then

gn

(
2 − 1

2n

)
= − 1

2n

(
2 − 1

2n

)n

+ 1 = 1 −
(

1 − 1

2n+1

)n

> 0,

and

gn

(
2 − 1

2n−1

)
= − 1

2n−1

(
2 − 1

2n−1

)n

+ 1 = 1 − 2

(
1 − 1

2n

)n

< 0,

we conclude that xn is between 2 − 1
2n−1 and 2 − 1

2n , as required.

Remark. Moreover, limn→∞ 2n(2 − xn) = 1.

27. Computing the first few values of f(n), we observe the following pattern:

f(4k) = k, k ≥ 3, f(8) = 3;
f(4k + 1) = 1, k ≥ 4, f(5) = f(13) = 2;
f(4k + 2) = k − 3, k ≥ 7, f(2) = 1, f(6) = f(10) = 2,

f(14) = f(18) = 3, f(26) = 4;
f(4k + 3) = 2.

We shall prove these statements simultaneously by induction on n, having
verified them for k ≤ 7.
(i) Let n = 4k. Since f(3) = f(7) = · · · = f(4k − 1) = 2, we have

f(4k) ≥ k. But f(n) ≤ maxm<n f(m)+ 1 ≤ (k− 1)+ 1, so f(4k) = k.
(ii) Let n = 4k+ 1, k ≥ 7. Since f(4k) = k and f(m) < k for m < 4k, we

deduce that f(4k + 1) = 1.
(iii) Let n = 4k+ 2, k ≥ 7. Since f(17) = f(21) = · · · = f(4k+ 1) = 1, we

obtain f(4k+2) ≥ k−3. On the other hand, if f(4k+1) = f(4k+1−
d) = 1, then d ≥ 8, and 4k + 1 − 8(k − 3) < 0. So f(4k + 2) = k − 3.

(iv) Let n = 4k+3, k ≥ 7. We have f(4k+2) = k−3 and f(m) = k−3 for
exactly one m < 4k+2 (namely for m = 4k−12); hence f(4k+3) = 2.

Therefore, for example, f(4n + 8) = n + 2 for all n; hence we can take
a = 4 and b = 8.
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28. Let F (x) = f(x)− 95 for x ≥ 1. Writing k for m+95, the given condition
becomes

F (k + F (n)) = F (k) + n, k ≥ 96, n ≥ 1. (1)

Thus for x, z ≥ 96 and an arbitrary y we have F (x + y) + z = F (x +
y + F (z)) = F (x + F (F (y) + z)) = F (x) + F (y) + z, and consequently
F (x + y) = F (x) + F (y) whenever x ≥ 96. Moreover, since then F (x +
y) + F (96) = F (x + y + 96) = F (x) + F (y + 96) = F (x) + F (y) + F (96)
for any x, y, we obtain

F (x+ y) = F (x) + F (y), x, y ∈ N. (2)

It follows by induction that F (n) = nc for all n, where F (1) = c. Equation
(1) becomes ck + c2n = ck + n, and yields c = 1. Hence F (n) = n and
f(n) = n+ 95 for all n.

Finally,
∑19

k=1 f(k) = 96 + 97 + · · · + 114 = 1995.

Second solution. First we show that f(n) > 95 for all n. If to the contrary
f(n) ≤ 95, we have f(m) = n + f(m + 95 − f(n)), so by induction
f(m) = kn+f(m+k(95−f(n))) ≥ kn for all k, which is impossible. Now
for m > 95 we have f(m+ f(n)−95) = n+ f(m), and again by induction
f(m + k(f(n) − 95)) = kn + f(m) for all m,n, k. It follows that with n
fixed,

(∀m) lim
k→∞

f(m+ k(f(n) − 95))

m+ k(f(n) − 95)
=

n

f(n) − 95
;

hence

lim
s→∞

f(s)

s
=

n

f(n) − 95
.

Hence n
f(n)−95 does not depend on n, i.e., f(n) ≡ cn+95 for some constant

c. It is easily checked that only c = 1 is possible.
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4.37 Solutions to the Shortlisted Problems of IMO 1996

1. We have a5 + b5 − a2b2(a + b) = (a3 − b3)(a2 − b2) ≥ 0, i.e. a5 + b5 ≥
a2b2(a+ b). Hence

ab

a5 + b5 + ab
≤ ab

a2b2(a+ b) + ab
=

abc2

a2b2c2(a+ b) + abc2
=

c

a+ b+ c
.

Now, the left side of the inequality to be proved does not exceed c
a+b+c +

a
a+b+c + b

a+b+c = 1. Equality holds if and only if a = b = c.

2. Clearly a1 > 0, and if p �= a1, we must have an < 0, |an| > |a1|, and
p = −an. But then for sufficiently large odd k, −ak

n = |an|k > (n−1)|a1|k,
so that ak

1 + · · · + ak
n ≤ (n − 1)|a1|k − |an|k < 0, a contradiction. Hence

p = a1.
Now let x > a1. From a1 + · · · + an ≥ 0 we deduce

∑n
j=2(x − aj) ≤

(n− 1)
(
x+ a1

n−1

)
, so by the AM–GM inequality,

(x−a2) · · · (x−an) ≤
(
x+

a1

n− 1

)n−1

≤ xn−1+xn−2a1+· · ·+an−1
1 . (1)

The last inequality holds because
(
n−1

r

)
≤ (n − 1)r for all r ≥ 0. Multi-

plying (1) by (x− a1) yields the desired inequality.

3. Since a1 > 2, it can be written as a1 = b+b−1 for some b > 0. Furthermore,
a2
1 − 2 = b2 + b−2 and hence a2 = (b2 + b−2)(b + b−1). We prove that

an =
(
b+ b−1

) (
b2 + b−2

) (
b4 + b−4

)
· · ·

(
b2

n−1

+ b−2n−1
)

by induction. Indeed, an+1

an
=

(
an

an−1

)2

− 2 =
(
b2

n−1

+ b−2n−1
)2

− 2 =

b2
n

+ b−2n

.
Now we have

n∑
i=1

1

ai
= 1 +

b

b2 + 1
+

b3

(b2 + 1)(b4 + 1)
+ · · ·

· · · + b2
n−1

(b2 + 1)(b4 + 1) . . . (b2n + 1)
.

(1)

Note that 1
2 (a+2−

√
a2 − 4) = 1+ 1

b ; hence we must prove that the right
side in (1) is less than 1

b . This follows from the fact that

b2
k

(b2 + 1)(b4 + 1) · · · (b2k + 1)

=
1

(b2 + 1)(b4 + 1) · · · (b2k−1 + 1)
− 1

(b2 + 1)(b4 + 1) · · · (b2k + 1)
;

hence the right side in (1) equals 1
b

(
1 − 1

(b2+1)(b4+1)...(b2n+1)

)
, and this is

clearly less than 1/b .
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4. Consider the function

f(x) =
a1

x
+
a2

x2
+ · · · + an

xn
.

Since f is strictly decreasing from +∞ to 0 on the interval (0,+∞), there
exists exactly one R > 0 for which f(R) = 1. This R is also the only
positive real root of the given polynomial.
Since lnx is a concave function on (0,+∞), Jensen’s inequality gives us

n∑
j=1

aj

A

(
ln

A

Rj

)
≤ ln

⎛⎝ n∑
j=1

aj

A
· A
Rj

⎞⎠ = ln f(R) = 0.

Therefore
∑n

j=1 aj(lnA − j lnR) ≤ 0, which is equivalent to A lnA ≤
B lnR, i.e., AA ≤ RB.

5. Considering the polynomials ±P (±x) we may assume w.l.o.g. that a, b ≥
0. We have four cases:
(1) c ≥ 0, d ≥ 0. Then |a| + |b| + |c| + |d| = a+ b+ c+ d = P (1) ≤ 1.
(2) c ≥ 0, d < 0. Then |a|+ |b|+ |c|+ |d| = a+b+c−d = P (1)−2P (0) ≤ 3.
(3) c < 0, d ≥ 0. Then

|a| + |b| + |c| + |d| = a+ b− c+ d

=
4

3
P (1) − 1

3
P (−1) − 8

3
P (1/2) +

8

3
P (−1/2) ≤ 7.

(4) c < 0, d < 0. Then

|a| + |b| + |c| + |d| = a+ b− c− d

=
5

3
P (1) − 4P (1/2) +

4

3
P (−1/2) ≤ 7.

Remark. It can be shown that the maximum of 7 is attained only for
P (x) = ±(4x3 − 3x).

6. Let f(x), g(x) be polynomials with integer coefficients such that

f(x)(x + 1)n + g(x)(xn + 1) = k0. (∗)

Write n = 2rm for m odd and note that xn + 1 = (x2r

+ 1)B(x), where
B(x) = x2r(m−1) − x2r(m−2) + · · · − x2r

+ 1. Moreover, B(−1) = 1; hence
B(x) − 1 = (x+ 1)c(x) and thus

R(x)B(x) + 1 = (B(x) − 1)n = (x+ 1)nc(x)n (1)

for some polynomials c(x) and R(x).
The zeros of the polynomial x2r

+ 1 are ωj , with ω1 = cos π
2r + i sin π

2r ,
and ωj = ω2j−1 for 1 ≤ j ≤ 2r. We have
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(ω1 + 1)(ω2 + 1) · · · (ω2r+1 + 1) = 2. (2)

From (∗) we also get f(ωj)(ωj + 1)n = k0 for j = 1, 2, . . . , 2r. Since
A = f(ω1)f(ω2) · · · f(ω2r) is a symmetric polynomial in ω1, . . . , ω2r with
integer coefficients, A is an integer. Consequently, taking the product over
j = 1, 2, . . . , 2r and using (2) we deduce that 2nA = k2r

0 is divisible by
2n = 22rm. Hence 2m | k0.
Furthermore, since ωj + 1 = (ω1 + 1)pj(ω1) for some polynomial pj

with integer coefficients, (2) gives (ω1 + 1)2
r

p(ω1) = 2, where p(x) =
p2(x) · · · p2r(x) has integer coefficients. But then the polynomial (x +
1)2

r

p(x) − 2 has a zero x = ω1, so it is divisible by its minimal poly-
nomial x2r

+ 1. Therefore

(x+ 1)2
r

p(x) = 2 + (x2r

+ 1)q(x) (3)

for some polynomial q(x). Raising (3) to the mth power we get (x +
1)np(x)n = 2m + (x2r

+ 1)Q(x) for some polynomial Q(x) with integer
coefficients. Now using (1) we obtain

(x+ 1)nc(x)n(x2r

+ 1)Q(x) = (x2r

+ 1)Q(x) + (x2r

+ 1)Q(x)B(x)R(x)
= (x + 1)np(x)n − 2m + (xn + 1)Q(X)R(x).

Therefore (x+1)nf(x)+(xn+1)g(x) = 2m for some polynomials f(x), g(x)
with integer coefficients, and k0 = 2m.

7. We are given that f(x+a+b)−f(x+a) = f(x+b)−f(x), where a = 1/6
and b = 1/7. Summing up these equations for x, x+b, . . . , x+6b we obtain
f(x+ a+1)− f(x+ a) = f(x+1)− f(x). Summing up the new equations
for x, x+ a, . . . , x+ 5a we obtain that

f(x+ 2) − f(x+ 1) = f(x+ 1) − f(x).

It follows by induction that f(x + n) − f(x) = n[f(x + 1) − f(x)]. If
f(x + 1) �= f(x), then f(x + n) − f(x) will exceed in absolute value
an arbitrarily large number for a sufficiently large n, contradicting the
assumption that f is bounded. Hence f(x+ 1) = f(x) for all x.

8. Putting m = n = 0 we obtain f(0) = 0 and consequently f(f(n)) = f(n)
for all n. Thus the given functional equation is equivalent to

f(m+ f(n)) = f(m) + f(n), f(0) = 0 .

Clearly one solution is (∀x) f(x) = 0. Suppose f is not the zero function.
We observe that f has nonzero fixed points (for example, any f(n) is a
fixed point). Let a be the smallest nonzero fixed point of f . By induction,
each ka (k ∈ N) is a fixed point too. We claim that all fixed points of f
are of this form. Indeed, suppose that b = ka + i is a fixed point, where
i < a. Then
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b = f(b) = f(ka+ i) = f(i+ f(ka)) = f(i) + f(ka) = f(i) + ka;

hence f(i) = i. Hence i = 0.
Since the set of values of f is a set of its fixed points, it follows that for
i = 0, 1, . . . , a− 1, f(i) = ani for some integers ni ≥ 0 with n0 = 0.
Let n = ka+ i be any positive integer, 0 ≤ i < a. As before, the functional
equation gives us

f(n) = f(ka+ i) = f(i) + ka = (ni + k)a.

Besides the zero function, this is the general solution of the given func-
tional equation. To verify this, we plug in m = ka + i, n = la + j and
obtain

f(m+ f(n)) = f(ka+ i+ f(la+ j)) = f((k + l + nj)a+ i)

= (k + l+ nj + ni)a = f(m) + f(n).

9. From the definition of a(n) we obtain

a(n) − a([n/2]) =

{
1 if n ≡ 0 or n ≡ 3 (mod 4);

−1 if n ≡ 1 or n ≡ 2 (mod 4).

Let n = bkbk−1 . . . b1b0 be the binary representation of n, where we as-
sume bk = 1. If we define p(n) and q(n) to be the number of indices
i = 0, 1, . . . , k − 1 with bi = bi+1 and the number of i = 0, 1, . . . , k − 1
with bi �= bi+1 respectively, we get

a(n) = p(n) − q(n). (1)

(a) The maximum value of a(n) for n ≤ 1996 is 9 when p(n) = 9 and
q(n) = 0, i.e., in the case n = 11111111112 = 1023.
The minimum value is −10 and is attained when p(n) = 0 and q(n) =
10, i.e., only for n = 101010101012 = 1365.

(b) From (1) we have that a(n) = 0 is equivalent to p(n) = q(n) = k/2.
Hence k must be even, and the k/2 indices i for which bi = bi+1 can
be chosen in exactly

(
k

k/2

)
ways. Thus the number of positive integers

n < 211 = 2048 with a(n) = 0 is equal to(
0

0

)
+

(
2

1

)
+

(
4

2

)
+

(
6

3

)
+

(
8

4

)
+

(
10

5

)
= 351.

But five of these numbers exceed 1996: these are 2002 = 111110100102,
2004 = 111110101002, 2006 = 111110101102, 2010 = 111110110102,
2026 = 111111010102. Therefore there are 346 numbers n ≤ 1996 for
which a(n) = 0.

10. We first show that H is the common orthocenter of the triangles ABC
and AQR.
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Let G,G′, H ′ be respectively the
centroid of 
ABC, the centroid
of 
PBC, and the orthocenter of

PBC. Since the triangles ABC
and PBC have a common circum-
center, from the properties of the

Euler line we get
−−→
HH ′ = 3

−−→
GG′ =−→

AP . But 
AQR is exactly the im-
age of 
PBC under translation by−→
AP ; hence the orthocenter of AQR
coincides with H . (Remark: This

A

B C

P

E

H

Q R

X

can be shown by noting that AHBQ is cyclic.)
Now we have that RH ⊥ AQ; hence ∠AXH = 90◦ = ∠AEH . It follows
that AXEH is cyclic; hence

∠EXQ = 180◦ − ∠AHE = 180◦ − ∠BCA = 180◦ − ∠BPA = ∠PAQ

(as oriented angles). Hence EX ‖ AP .

11. Let X,Y, Z respectively be the feet of the perpendiculars from P to BC,
CA, AB. Examining the cyclic quadrilaterals AZPY , BXPZ, CY PX ,
one can easily see that ∠XZY = ∠APB − ∠C and XY = PC sin∠C.
The first relation gives that XY Z is isosceles with XY = XZ, so from
the second relation PB sin ∠B = PC sin∠C. Hence AB/PB = AC/PC.
This implies that the bisectors BD and CD of ∠ABP and ∠ACP divide
the segment AP in equal ratios; i.e., they concur with AP .

Second solution. Take that X,Y, Z are the points of intersection of
AP,BP,CP with the circumscribed circle of ABC instead. We similarly
obtain XY = XZ. If we write AP ·PX = BP ·PY = CP ·PZ = k, from
the similarity of 
APC and 
ZPX we get

AC

XZ
=
AP

PZ
=
AP · CP

k
,

i.e., XZ = k·AC·BP
AP ·BP ·CP . It follows again that AC/AB = PC/PB.

Third solution. Apply an inversion with center at A and radius r, and
denote by Q the image of any point Q. Then the given condition becomes
∠BCP = ∠CBP , i.e., BP = PC. But

PB =
r2

AP ·ABPB,

so AC/AB = PC/PB.

Remark. Moreover, it follows that the locus of P is an arc of the circle of
Apollonius through C.
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12. It is easy to see that P lies on the segment AC. Let E be the foot of
the altitude BH and Y, Z the midpoints of AC,AB respectively. Draw
the perpendicular HR to FP (R ∈ FP ). Since Y is the circumcenter
of 
FCA, we have ∠FY A = 180◦ − 2∠A. Also, OFPY is cyclic; hence
∠OPF = ∠OY F = 2∠A− 90◦. Next, 
OZF and 
HRF are similar, so
OZ/OF = HR/HF. This leads to

HR · OF = HF · OZ = 1
2HF ·

HC = 1
2HE ·HB = HE ·OY =⇒

HR/HE = OY/OF. Moreover,
∠EHR = ∠FOY ; hence the tri-
angles EHR and FOY are similar.
Consequently ∠HPC = ∠HRE =
∠OY F = 2∠A − 90◦, and finally,
∠FHP = ∠HPC +∠HCP = ∠A. A B

C

Y

Z

O

F

H
E

P
R

Second solution. As before, ∠HFY = 90◦−∠A, so it suffices to show that
HP ⊥ FY . The points O,F, P, Y lie on a circle, say Ω1 with center at
the midpoint Q of OP . Furthermore, the points F, Y lie on the nine-point
circle Ω of 
ABC with center at the midpointN of OH . The segment FY
is the common chord of Ω1 and Ω, from which we deduce that NQ ⊥ FY .
However, NQ ‖ HP , and the result follows.

Third solution. Let H ′ be the point symmetric to H with respect to
AB. Then H ′ lies on the circumcircle of ABC. Let the line FP meet
the circumcircle at U, V and meet H ′B at P ′. Since OF ⊥ UV , F is the
midpoint of UV . By the butterfly theorem, F is also the midpoint of PP ′.
Therefore 
H ′FP ′ ∼= FHP ; hence ∠FHP = ∠FH ′B = ∠A.

Remark. It is possible to solve the problem using trigonometry. For ex-

ample, FZ
ZO = FK

KP = sin(A−B)
cos C , where K is on CF with PK ⊥ CF . Then

CF
KP = sin(A−B)

cos C + tanA, from which one obtains formulas for KP and

KH . Finally, we can calculate tan∠FHP = KP
KH = · · · = tanA.

Second remark. Here is what happens when BC ≤ CA. If ∠A > 45◦,
then ∠FHP = ∠A. If ∠A = 45◦, the point P escapes to infinity. If
∠A < 45◦, the point P appears on the extension of AC over C, and
∠FHP = 180◦ − ∠A.

13. By the law of cosines applied to 
CA1B1, we obtain

A1B
2
1 = A1C

2 + B1C
2 −A1C ·B1C ≥ A1C ·B1C.

Analogously, B1C
2
1 ≥ B1A · C1A and C1A

2
1 ≥ C1B · A1B, so that multi-

plying these inequalities yields

A1B
2
1 ·B1C

2
1 · C1A

2
1 ≥ A1B ·A1C · B1A ·B1C · C1A · C1B. (1)

Now, the lines AA1, BB1, CC1 concur, so by Ceva’s theorem, A1B ·B1C ·
C1A = AB1 · BC1 · CA1, which together with (1) gives the desired in-
equality. Equality holds if and only if CA1 = CB1, etc.
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14. Let a, b, c, d, e, and f denote the lengths of the sides AB, BC, CD, DE,
EF , and FA respectively.

Note that ∠A = ∠D, ∠B = ∠E,
and ∠C = ∠F . Draw the lines PQ
and RS through A and D perpen-
dicular to BC and EF respectively
(P,R ∈ BC, Q,S ∈ EF ). Then
BF ≥ PQ = RS. Therefore 2BF ≥
PQ+RS, or

A

B C

D

Q EF

P R

S

a

b
c

d

e

f

2BF ≥ (a sinB + f sinC) + (c sinC + d sinB),

and similarly, 2BD ≥ (c sinA+ b sinB) + (e sinB + f sinA),
2DF ≥ (e sinC + d sinA) + (a sinA+ b sinC).

(1)

Next, we have the following formulas for the considered circumradii:

RA =
BF

2 sinA
, RC =

BD

2 sinC
, RE =

DF

2 sinE
.

It follows from (1) that

RA +RC +RE ≥ 1

4
a

(
sinB

sinA
+

sinA

sinB

)
+

1

4
b

(
sinC

sinB
+

sinB

sinC

)
+ · · ·

≥ 1

2
(a+ b + · · · ) =

P

2
,

with equality if and only if ∠A = ∠B = ∠C = 120◦ and FB ⊥ BC etc.,
i.e., if and only if the hexagon is regular.

Second solution. Let us construct points A′′, C′′, E′′ such that ABA′′F ,
CDC′′B, and EFE′′D are parallelograms. It follows that A′′, C′′, B are

collinear and also C′′, E′′, B and
E′′, A′′, F . Furthermore, let A′ be
the intersection of the perpendicu-
lars through F and B to FA′′ and
BA′′, respectively, and let C′ and
E′ be analogously defined. Since
A′FA′′B is cyclic with the diameter
being A′A′′ and since 
FA′′B ∼=

BAF , it follows that 2RA =
A′A′′ = x.

A

B

C

D

E

F

A′ C′

E′

A′′

C′′

E′′

Similarly, 2RC = C′C′′ = y and 2RE = E′E′′ = z. We also have AB =
FA′′ = ya, AF = A′′B = za, CD = C′′B = zc, CB = C′′D = xc,
EF = E′′D = xe, and ED = E′′F = ye. The original inequality we must
prove now becomes

x+ y + z ≥ ya + za + zc + xc + xe + ye . (1)
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We now follow and generalize the standard proof of the Erdős–Mordell
inequality (for the triangle A′C′E′), which is what (1) is equivalent to
when A′′ = C′′ = E′′.
We set C′E′ = a, A′E′ = c and A′C′ = e. Let A1 be the point symmetric
to A′′ with respect to the bisector of ∠E′A′C′. Let F1 and B1 be the
feet of the perpendiculars from A1 to A′C′ and A′E′, respectively. In that
case, A1F1 = A′′F = ya and A1B1 = A′′B = za. We have

ax = A′A1 ·E′C′ ≥ 2SA′E′A1C′ = 2SA′E′A1 + 2SA′C′A1

= cza + eya .

Similarly, cy ≥ exc + azc and ez ≥ aye + cxe. Thus

x+ y + z ≥ c

a
za +

a

c
zc +

e

c
xc +

c

e
xe +

a

e
ye +

e

a
ya

=
( c
a

+
a

c

)(za + zc

2

)
+
( c
a
− a

c

)(za − zc

2

)
+ · · · .

(2)

Let us set a1 = xc−xe

2 , c1 = ye−ya

2 , e1 = za−zc

2 . We note that 
A′′C′′E′′ ∼

A′C′E′ and hence a1/a = c1/c = e1/e = k. Thus

(
c
a − a

c

)
e1 +(

e
c − c

e

)
a1 +

(
a
e − e

a

)
c1 = k

(
ce
a − ae

c + ea
c − ca

e + ac
e − ec

a

)
= 0. Equation

(2) reduces to

x+ y + z ≥
( c
a

+
a

c

)(za + zc

2

)
+
(e
c

+
c

e

)(xe + xc

2

)
+
(a
e

+
e

a

)(ya + ye

2

)
.

Using c/a + a/c, e/c + c/e, a/e + e/a ≥ 2 we finally get x + y + z ≥
ya + za + zc + xc + xe + ye.
Equality holds if and only if a = c = e and A′′ = C′′ = E′′ =
center of 
A′C′E′, i.e., if and only if ABCDEF is regular.

Remark. From the second proof it is evident that the Erdős–Mordell in-
equality is a special case of the problem. if Pa, Pb, Pc are the feet of the
perpendiculars from a point P inside 
ABC to the sides BC,CA,AB,
and PaPPbP

′
c, PbPPcP

′
a, PcPPaP

′
b parallelograms, we can apply the prob-

lem to the hexagon PaP
′
cPbP

′
aPcP

′
b to prove the Erdős–Mordell inequality

for 
ABC and point P .

15. Denote by ABCD and EFGH the two rectangles, where AB = a, BC =
b, EF = c, and FG = d. Obviously, the first rectangle can be placed
within the second one with the angle α between AB and EF if and only
if

a cosα+ b sinα ≤ c, a sinα+ b cosα ≤ d. (1)

Hence ABCD can be placed within EFGH if and only if there is an
α ∈ [0, π/2] for which (1) holds.
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The lines l1(ax+ by = c) and l2(bx+ ay = d) and the axes x and y bound
a region R. By (1), the desired placement of the rectangles is possible if
and only if R contains some point (cosα, sinα) of the unit circle centered
at the origin (0, 0). This in turn holds if and only if the intersection point
L of l1 and l2 lies outside the unit circle. It is easily computed that L has

coordinates
(

bd−ac
b2−a2 ,

bc−ad
b2−a2

)
. Now L being outside the unit circle is exactly

equivalent to the inequality we want to prove.

Remark. If equality holds, there is exactly one way of placing. This hap-
pens, for example, when (a, b) = (5, 20) and (c, d) = (16, 19).

Second remark. This problem is essentially very similar to (SL89-2).

16. Let A1 be the point of intersection of OA′ and BC; similarly define B1

and C1. From the similarity of triangles OBA1 and OA′B we obtain OA1 ·
OA′ = R2. Now it is enough to show that 8OA1 · OB′ · OC′ ≤ R3. Thus
we must prove that

λµν ≤ 1

8
, where

OA1

OA
= λ,

OB1

OB
= µ,

OC1

OC
= ν. (1)

On the other hand, we have

λ

1 + λ
+

µ

1 + µ
+

ν

1 + ν
=
SOBC

SABC
+
SAOC

SABC
+
SABO

SABC
= 1.

Simplifying this relation, we get

1 = λµ+ µν + νλ+ 2λµν ≥ 3(λµν)2/3 + 2λµν,

which cannot hold if λµν > 1
8 . Hence λµν ≤ 1

8 , with equality if and only
if λ = µ = ν = 1

2 . This implies that O is the centroid of ABC, and
consequently, that the triangle is equilateral.

Second solution. In the official solution, the inequality to be proved is
transformed into

cos(A−B) cos(B − C) cos(C −A) ≥ 8 cosA cosB cosC.

Since cos(B−C)
cos A = − cos(B−C)

cos(B+C) = tan B tan C+1
tan B tan C−1 , the last inequality becomes

(xy+1)(yz+1)(zx+1) ≥ 8(xy−1)(yz−1)(zx−1), where we write x, y, z
for tanA, tanB, tanC. Using the relation x+ y+ z = xyz, we can reduce
this inequality to

(2x+ y + z)(x+ 2y + z)(x+ y + 2z) ≥ 8(x+ y)(y + z)(z + x).

This follows from the AM–GM inequality: 2x+y+z = (x+y)+(x+z) ≥
2
√

(x+ y)(x+ z), etc.
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17. Let the diagonals AC and BD meet in X . Either ∠AXB or ∠AXD is
geater than or equal to 90◦, so we assume w.l.o.g. that ∠AXB ≥ 90◦. Let
α, β, α′, β′ denote ∠CAB, ∠ABD, ∠BDC, ∠DCA. These angles are all
acute and satisfy α+ β = α′ + β′. Furthermore,

RA =
AD

2 sinβ
, RB =

BC

2 sinα
, RC =

BC

2 sinα′ , RD =
AD

2 sinβ′ .

Let ∠B + ∠D = 180◦. Then A,B,C,D are concyclic and trivially RA +
RC = RB +RD.

Let ∠B+∠D > 180◦. Then D lies within the circumcircle of ABC, which
implies that β > β′. Similarly α < α′, so we obtain RA < RD and
RC < RB. Thus RA +RC < RB +RD.

Let ∠B + ∠D < 180◦. As in the previous case, we deduce that RA > RD

and RC > RB , so RA +RC > RB +RD.

18. We first prove the result in the simplest case. Given a 2-gon ABA and a
point O, let a, b, c, h denote OA,OB,AB, and the distance of O from AB.
Then D = a+ b, P = 2c, and H = 2h, so we should show that

(a+ b)2 ≥ 4h2 + c2. (1)

Indeed, let l be the line through O parallel to AB, and D the point
symmetric to B with respect to l. Then (a+ b)2 = (OA+OB)2 = (OA+
OD)2 ≥ AD2 = c2 + 4h2.
Now we pass to the general case. Let A1A2 . . . An be the polygon F and
denote by di, pi, and hi respectively OAi, AiAi+1, and the distance of O
from AiAi+1 (where An+1 = A1). By the case proved above, we have for
each i, di +di+1 ≥

√
4h2

i + p2
i . Summing these inequalities for i = 1, . . . , n

and squaring, we obtain

4D2 ≥
(∑n

i=1

√
4h2

i + p2
i

)2

.

It remains only to prove that
∑n

i=1

√
4h2

i + p2
i ≥

√∑n
i=1(4h

2
i + p2

i ) =√
4H2 +D2. But this follows immediately from the Minkowski inequality.

Equality holds if and only if it holds in (1) and in the Minkowski inequality,
i.e., if and only if d1 = · · · = dn and h1/p1 = · · · = hn/pn. This means
that F is inscribed in a circle with center at O and p1 = · · · = pn, so F is
a regular polygon and O its center.

19. It is easy to check that after 4 steps we will have all a, b, c, d even. Thus
|ab−cd|, |ac−bd|, |ad−bc| remain divisible by 4, and clearly are not prime.
The answer is no.

Second solution. After one step we have a+ b+ c+d = 0. Then ac− bd =
ac+ b(a+ b+ c) = (a+ b)(b + c) etc., so

|ab− cd| · |ac− bd| · |ad− bc| = (a+ b)2(a+ c)2(b+ c)2.
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However, the product of three primes cannot be a square, hence the answer
is no.

20. Let 15a+ 16b = x2 and 16a− 15b = y2, where x, y ∈ N. Then we obtain

x4 +y4 = (15a+16b)2+(16a−15b)2 = (152+162)(a2 +b2) = 481(a2+b2).

In particular, 481 = 13 · 37 | x4 + y4. We have the following lemma.
Lemma. Suppose that p | x4 + y4, where x, y ∈ Z and p is an odd prime,

where p �≡ 1 (mod 8). Then p | x and p | y.
Proof. Since p | x8 − y8 and by Fermat’s theorem p | xp−1 − yp−1, we

deduce that p | xd − yd, where d = (p−1, 8). But d �= 8, so d | 4. Thus
p | x4 − y4, which implies that p | 2y4, i.e., p | y and p | x.

In particular, we can conclude that 13 | x, y and 37 | x, y. Hence x and y
are divisible by 481. Thus each of them is at least 481.
On the other hand, x = y = 481 is possible. It is sufficient to take a =
31 · 481 and b = 481.

Second solution. Note that 15x2+16y2 = 481a2. It can be directly verified
that the divisibility of 15x2 + 16y2 by 13 and by 37 implies that both x
and y are divisible by both primes. Thus 481 | x, y.

21. (a) It clearly suffices to show that for every integer c there exists a
quadratic sequence with a0 = 0 and an = c, i.e., that c can be ex-
pressed as ±12 ± 22 ± · · · ± n2. Since

(n+ 1)2 − (n+ 2)2 − (n+ 3)2 + (n+ 4)2 = 4,

we observe that if our claim is true for c, then it is also true for c± 4.
Thus it remains only to prove the claim for c = 0, 1, 2, 3. But one
immediately finds 1 = 12, 2 = −12 − 22 − 32 + 42, and 3 = −12 + 22,
while the case c = 0 is trivial.

(b) We have a0 = 0 and an = 1996. Since an ≤ 12 + 22 + · · · + n2 =
1
6n(n+ 1)(2n+ 1), we get a17 ≤ 1785, so n ≥ 18. On the other hand,
a18 is of the same parity as 12 + 22 + · · · + 182 = 2109, so it cannot
be equal to 1996. Therefore we must have n ≥ 19. To construct a
required sequence with n = 19, we note that 12 + 22 + · · · + 192 =
2470 = 1996 + 2 · 237; hence it is enough to write 237 as a sum of
distinct squares. Since 237 = 142 + 52 + 42, we finally obtain

1996 = 12 + 22 + 32 − 42 − 52 + 62 + · · ·+ 132 − 142 + 152 + · · ·+ 192.

22. Let a, b ∈ N satisfy the given equation. It is not possible that a = b (since
it leads to a2 + 2 = 2a), so we assume w.l.o.g. that a > b. Next, for
a > b = 1 the equation becomes a2 = 2a, and one obtains a solution
(a, b) = (2, 1).

Let b > 1. If
[

a2

b

]
= α and

[
b2

a

]
= β, then we trivially have ab ≥

αβ. Since also a2+b2

ab ≥ 2, we obtain α + β ≥ αβ + 2, or equivalently
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(α − 1)(β − 1) ≤ −1. But α ≥ 1, and therefore β = 0. It follows that
a > b2, i.e., a = b2 + c for some c > 0. Now the given equation becomes

b3 + 2bc+
[

c2

b

]
=
[

b4+2b2c+b2+c2

b3+bc

]
+ b3 + bc, which reduces to

(c− 1)b+

[
c2

b

]
=

[
b2(c+ 1) + c2

b3 + bc

]
. (1)

If c = 1, then (1) always holds, since both sides are 0. We obtain a family
of solutions (a, b) = (n, n2 + 1) or (a, b) = (n2 + 1, n). Note that the
solution (1, 2) found earlier is obtained for n = 1.

If c > 1, then (1) implies that b2(c+1)+c2

b3+bc ≥ (c− 1)b. This simplifies to

c2(b2 − 1) + b2(c(b2 − 2) − (b2 + 1)) ≤ 0. (2)

Since c ≥ 2 and b2 − 2 ≥ 0, the only possibility is b = 2. But then (2)
becomes 3c2 + 8c− 20 ≤ 0, which does not hold for c ≥ 2.
Hence the only solutions are (n, n2 + 1) and (n2 + 1, n), n ∈ N.

23. We first observe that the given functional equation is equivalent to

4f

(
(3m+ 1)(3n+ 1) − 1

3

)
+ 1 = (4f(m) + 1) (4f(n) + 1) .

This gives us the idea of introducing a function g : 3N0 + 1 → 4N0 + 1
defined as g(x) = 4f

(
x−1
3

)
+ 1. By the above equality, g will be multi-

plicative, i.e.,

g(xy) = g(x)g(y) for all x, y ∈ 3N0 + 1.

Conversely, any multiplicative bijection g from 3N0 +1 onto 4N0 +1 gives

us a function f with the required property: f(x) = g(3x+1)−1
4 .

It remains to give an example of such a function g. Let P1, P2, Q1, Q2 be
the sets of primes of the forms 3k+1, 3k+2, 4k+1, and 4k+3, respectively.
It is well known that these sets are infinite. Take any bijection h from
P1 ∪P2 onto Q1 ∪Q2 that maps P1 bijectively onto Q1 and P2 bijectively
onto Q2. Now define g as follows: g(1) = 1, and for n = p1p2 · · · pm (pi’s
need not be different) define g(n) = h(p1)h(p2) · · ·h(pm). Note that g is
well-defined. Indeed, among the pi’s an even number are of the form 3k+2,
and consequently an even number of h(pi)s are of the form 4k+ 3. Hence
the product of the h(pi)’s is of the form 4k + 1. Also, it is obvious that g
is multiplicative. Thus, the defined g satisfies all the required properties.

24. We shall work on the array of lattice points defined by A = {(x, y) ∈ Z2 |
0 ≤ x ≤ 19, 0 ≤ y ≤ 11}. Our task is to move from (0, 0) to (19, 0) via
the points of A so that each move has the form (x, y) → (x + a, y + b),
where a, b ∈ Z and a2 + b2 = r.
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(a) If r is even, then a+ b is even whenever a2 + b2 = r (a, b ∈ Z). Thus
the parity of x + y does not change after each move, so we cannot
reach (19, 0) from (0, 0).
If 3 | r, then both a and b are divisible by 3, so if a point (x, y) can
be reached from (0, 0), we must have 3 | x. Since 3 � 19, we cannot get
to (19, 0).

(b) We have r = 73 = 82+32, so each move is either (x, y) → (x±8, y±3)
or (x, y) → (x± 3, y ± 8). One possible solution is shown in Fig. 1.

(c) We have 97 = 92 + 42. Let us partition A as B ∪ C, where B =
{(x, y) ∈ A | 4 ≤ y ≤ 7}. It is easily seen that moves of the type
(x, y) → (x ± 9, y ± 4) always take us from the set B to C and vice
versa, while the moves (x, y) → (x±4, y±9) always take us from C to
C. Furthermore, each move of the type (x, y) → (x± 9, y± 4) changes
the parity of x, so to get from (0, 0) to (19, 0) we must have an odd
number of such moves. On the other hand, with an odd number of
such moves, starting from C we can end up only in B, although the
point (19, 0) is not in B. Hence, the answer is no.

Remark. Part (c) can also be solved by examining all cells that can be
reached from (0, 0). All these cells are marked in Fig. 2.
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25. Let the vertices in the bottom row be assigned an arbitrary coloring,
and suppose that some two adjacent vertices receive the same color. The
number of such colorings equals 2n − 2. It is easy to see that then the
colors of the remaining vertices get fixed uniquely in order to satisfy the
requirement. So in this case there are 2n − 2 possible colorings.
Next, suppose that the vertices in the bottom row are colored alternately
red and blue. There are two such colorings. In this case, the same must
hold for every row, and thus we get 2n possible colorings.
It follows that the total number of considered colorings is (2n − 2)+2n =
2n+1 − 2.

26. Denote the required maximum size by Mk(m,n). If m < n(n+1)
2 , then

trivially M = k, so from now on we assume that m ≥ n(n+1)
2 .

First we give a lower bound for M . Let r = rk(m,n) be the largest integer
such that r + (r + 1) + · · · + (r + n − 1) ≤ m. This is equivalent to

nr ≤ m − n(n−1)
2 ≤ n(r + 1), so r =

[
m
n − n−1

2

]
. Clearly no n elements

from {r + 1, r + 2, . . . , k} add up to m, so
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M ≥ k − rk(m,n) = k −
[
m

n
− n− 1

2

]
. (1)

We claim that M is actually equal to k− rk(m,n). To show this, we shall
prove by induction on n that if no n elements of a set S ⊆ {1, 2, . . . , k}
add up to m, then |S| ≤ k − rk(m,n).
For n = 2 the claim is true, because then for each i = 1, . . . , rk(m, 2) =[

m−1
2

]
at least one of i and m − i must be excluded from S. Now let

us assume that n > 2 and that the result holds for n − 1. Suppose that
S ⊆ {1, 2, . . . , k} does not contain n distinct elements with the sum m,
and let x be the smallest element of S. We may assume that x ≤ rk(m,n),
because otherwise the statement is clear. Consider the set S′ = {y − x |
y ∈ S, y �= x}. Then S′ is a subset of {1, 2, . . . , k − x} no n− 1 elements
of which have the sum m − nx. Also, it is easily checked that n − 1 ≤
m − nx − 1 ≤ k − x, so we may apply the induction hypothesis, which
yields that

|S| ≤ 1 + k − x− rk(m− nx, n− 1) = k −
[
m− x

n− 1
− n

2

]
. (2)

On the other hand,
(

m−x
n−1 − n

2

)
− rk(m,n) =

m−nx−n(n−1)
2

n(n−1) ≥ 0 because

x ≤ rk(m,n); hence (2) implies |S| ≤ k − rk(m,n) as claimed.

27. Suppose that such sets of points A,B exist.
First, we observe that there exist five points A,B,C,D,E in A such that
their convex hull does not contain any other point of A. Indeed, take any
point A ∈ A. Since any two points of A are at distance at least 1, the
number of points X ∈ A with XA ≤ r is finite for every r > 0. Thus it is
enough to choose four points B,C,D,E of A that are closest to A. Now
consider the convex hull C of A,B,C,D,E.
Suppose that C is a pentagon, say ABCDE. Then each of the disjoint
triangles ABC,ACD,ADE contains a point of B. Denote these points by
P,Q,R. Then 
PQR contains some point F ∈ A, so F is inside ABCDE,
a contradiction.
Suppose that C is a quadrilateral, say ABCD, with E lying within
ABCD. Then the triangles ABE,BCE,CDE,DAE contain some points
P,Q,R, S of B that form two disjoint triangles. It follows that there are
two points of A inside ABCD, which is a contradiction.
Finally, suppose that C is a triangle with two points of A inside. Then C is
the union of five disjoint triangles with vertices in A, so there are at least
five points of B inside C. These five points make at least three disjoint
triangles containing three points of A. This is again a contradiction.
It follows that no such sets A,B exist.

28. Note that w.l.o.g., we can assume that p and q are coprime. Indeed, oth-
erwise it suffices to consider the problem in which all xi’s and p, q are
divided by gcd(p, q).
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Let k, l be the number of indices i with xi+1 − xi = p and the number
of those i with xi+1 − xi = −q (0 ≤ i < n). From x0 = xn = 0 we get
kp = lq, so for some integer t > 1, k = qt, l = pt, and n = (p+ q)t.
Consider the sequence yi = xi+p+q − xi, i = 0, . . . , n − p − q. We claim
that at least one of the yi’s equals zero. We begin by noting that each yi

is of the form up − vq, where u + v = p + q; therefore yi = (u + v)p −
v(p+ q) = (p−v)(p+ q) is always divisible by p+ q. Moreover, yi+1 −yi =
(xi+p+q+1 −xi+p+q)− (xi+1 −xi) is 0 or ±(p+ q). We conclude that if no
yi is 0 then all yi’s are of the same sign. But this is in contradiction with
the relation y0 + yp+q + · · · + yn−p−q = xn − x0 = 0. Consequently some
yi is zero, as claimed.

Second solution. As before we assume (p, q) = 1. Let us define a sequence
of points Ai(yi, zi) (i = 0, 1, . . . , n) in N2

0 inductively as follows. Set A0 =
(0, 0) and define (yi+1, zi+1) as (yi, zi + 1) if xi+1 = xi + p and (yi + 1, zi)
otherwise. The points Ai form a trajectory L in N2

0 continuously moving
upwards and rightwards by steps of length 1. Clearly, xi = pzi − qyi

for all i. Since xn = 0, it follows that (zn, yn) = (kq, kp), k ∈ N. Since
yn + zn = n > p + q, it follows that k > 1. We observe that xi = xj if
and only if AiAj ‖ A0An. We shall show that such i, j with i < j and
(i, j) �= (0, n) must exist.
If L meets A0An in an interior point, then our statement trivially holds.
From now on we assume the opposite. Let Pij be the rectangle with sides
parallel to the coordinate axes and with vertices at (ip, jq) and ((i +
1)p, (j + 1)q). Let Lij be the part of the trajectory L lying inside Pij . We
may assume w.l.o.g. that the endpoints of L00 lie on the vertical sides of
P00. Then there obviously exists d ∈ {1, . . . , k−1} such that the endpoints
of Ldd lie on the horizontal sides of Pdd. Consider the translate L′

dd of Ldd

for the vector −d(p, q). The endpoints of L′
dd lie on the vertical sides of P00.

Hence L00 and L′
dd have some point X �= A0 in common. The translate Y

of point X for the vector d(p, q) belongs to L and satisfies XY ‖ A0An.

29. Let the squares be indexed serially by the integers: . . . ,−1, 0, 1, 2, . . . .
When a bean is moved from i to i + 1 or from i + 1 to i for the first
time, we may assign the index i to it. Thereafter, whenever some bean
is moved in the opposite direction, we shall assume that it is exactly the
one marked by i, and so on. Thus, each pair of neighboring squares has a
bean stuck between it, and since the number of beans is finite, there are
only finitely pairs of neighboring squares, and thus finitely many squares
on which moves are made. Thus we may assume w.l.o.g. that all moves
occur between 0 and l ∈ N and that all beans exist at all times within
[0, l].
Defining bi to be the number of beans in the ith cell (i ∈ Z) and b the
total number of beans, we define the semi-invariant S =

∑
i∈Z i

2bi. Since
all moves occur above 0, the semi-invariant S increases by 2 with each
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move, and since we always have S < b · l2, it follows that the number of
moves must be finite.
We now prove the uniqueness of the final configuration and the number
of moves for some initial configuration {bi}. Let xi ≥ 0 be the number of
moves made in the ith cell (i ∈ Z) during the game. Since the game is
finite, only finitely many of xi’s are nonzero. Also, the number of beans
in cell i, denoted as ei, at the end is

(∀i ∈ Z) ei = bi + xi−1 + xi+1 − 2xi ∈ {0, 1} . (1)

Thus it is enough to show that given bi ≥ 0, the sequence {xi}i∈Z of
nonnegative integers satisfying (1) is unique.
Suppose the assertion is false, i.e., that there exists at least one sequence
bi ≥ 0 for which there exist distinct sequences {xi} and {x′i} satisfying (1).
We may choose such a {bi} for which min{

∑
i∈Z xi,

∑
i∈Z x

′
i} is minimal

(since
∑

i∈Z xi is always finite). We choose any index j such that bj > 1.
Such an index j exists, since otherwise the game is over. Then one must
make at least one move in the jth cell, which implies that xj , x

′
j ≥ 1.

However, then the sequences {xi} and {x′i} with xj and x′j decreased
by 1 also satisfy (1) for a sequence {bi} where bj−1, bj , bj+1 is replaced
with bj−1 +1, bj −2, bj+1 +1. This contradicts the assumption of minimal
min{

∑
i∈Z xi,

∑
i∈Z x

′
i} for the initial {bi}.

30. For convenience, we shall write f2, fg, . . . for the functions f ◦f, f ◦g, . . . .
We need two lemmas.
Lemma 1. If f(x) ∈ S and g(x) ∈ T , then x ∈ S ∩ T .
Proof. The given condition means that f3(x) = g2f(x) and gfg(x) =

fg2(x). Since x ∈ S ∪ T = U , we have two cases:
x ∈ S. Then f2(x) = g2(x), which also implies f3(x) = fg2(x). There-

fore gfg(x) = fg2(x) = f3(x) = g2f(x), and since g is a bijection,
we obtain fg(x) = gf(x), i.e., x ∈ T .

x ∈ T . Then fg(x) = gf(x), so g2f(x) = gfg(x). It follows that
f3(x) = g2f(x) = gfg(x) = fg2(x), and since f is a bijection, we
obtain x ∈ S.

Hence x ∈ S∩T in both cases. Similarly, f(x) ∈ T and g(x) ∈ S again
imply x ∈ S ∩ T .

Lemma 2. f(S ∩ T ) = g(S ∩ T ) = S ∩ T .
Proof. By symmetry, it is enough to prove f(S ∩ T ) = S ∩ T , or in other

words that f−1(S∩T ) = S∩T . Since S∩T is finite, this is equivalent
to f(S ∩ T ) ⊆ S ∩ T .
Let f(x) ∈ S ∩ T . Then if g(x) ∈ S (since f(x) ∈ T ), Lemma 1 gives
x ∈ S ∩ T ; similarly, if g(x) ∈ T , then by Lemma 1, x ∈ S ∩ T .

Now we return to the problem. Assume that f(x) ∈ S. If g(x) �∈ S, then
g(x) ∈ T , so from Lemma 1 we deduce that x ∈ S ∩ T . Then Lemma 2
claims that g(x) ∈ S ∩T too, a contradiction. Analogously, from g(x) ∈ S
we are led to f(x) ∈ S. This finishes the proof.
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4.38 Solutions to the Shortlisted Problems of IMO 1997

1. Let ABC be the given triangle, with ∠B = 90◦ and AB = m, BC = n.
For an arbitrary polygon P we denote by w(P) and b(P) respectively the
total areas of the white and black parts of P .
(a) Let D be the fourth vertex of the rectangle ABCD. When m and

n are of the same parity, the coloring of the rectangle ABCD is
centrally symmetric with respect to the midpoint of AC. It fol-
lows that w(ABC) = 1

2w(ABCD) and b(ABC) = 1
2b(ABCD); thus

f(m,n) = 1
2 |w(ABCD) − b(ABCD)|. Hence f(m,n) equals 1

2 if m
and n are both odd, and 0 otherwise.

(b) The result when m,n are of the same parity follows from (a). Suppose
that m > n, where m and n are of different parity. Choose a point
E on AB such that AE = 1. Since by (a) |w(EBC) − b(EBC)| =
f(m − 1, n) ≤ 1

2 , we have f(m,n) ≤ 1
2 + |w(EAC) − b(EAC)| ≤

1
2 + S(EAC) = 1

2 + n−1
2 = n

2 . Therefore f(m,n) ≤ 1
2 min(m,n).

(c) Let us calculate f(m,n) for m = 2k+1, n = 2k, k ∈ N. With E defined
as in (b), we have BE = BC = 2k. If the square at B is w.l.o.g. white,
CE passes only through black squares. The white part of 
EAC then

consists of 2k similar triangles with areas 1
2

i
2k

i
2k+1 = i2

4k(2k+1) , where

i = 1, 2, . . . , 2k. The total white area of EAC is

1

4k(2k + 1)
(12 + 22 + · · · + (2k)2) =

4k + 1

12
.

Therefore the black area is (8k−1)/12, and f(2k+1, 2k) = (2k−1)/6,
which is not bounded.

2. For any sequence X = (x1, x2, . . . , xn) let us define

X = (1, 2, . . . , x1, 1, 2, . . . , x2, . . . , 1, 2, . . . , xn).

Also, for any two sequences A,B we denote their concatenation by AB.
It clearly holds that AB = A B. The sequences R1, R2, . . . are given by
R1 = (1) and Rn = Rn−1(n) for n > 1.
We consider the family of sequences Qni for n, i ∈ N, i ≤ n, defined as
follows:

Qn1 = (1), Qnn = (n), and Qni = Qn−1,i−1Qn−1,i if 1 < i < n.

These sequences form a Pascal-like triangle, as shown in the picture below:

Q1i : 1
Q2i : 1 2
Q3i : 1 12 3
Q4i : 1 112 123 4
Q5i : 1 1112 112123 1234 5
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We claim that Rn is in fact exactly Qn1Qn2 . . .Qnn. Before proving this,
we observe that Qni = Qn−1,i. This follows by induction, because Qni =
Qn−1,i−1Qn−1,i = Qn−2,i−1 Qn−2,i = Qn−1,i for n ≥ 3, i ≥ 2 (the cases
i = 1 and n = 1, 2 are trivial). Now R1 = Q11 and

Rn = Rn−1(n) = Qn−1,1 . . . Qn−1,n−1(n) = Qn,1 . . . Qn,n−1Qn,n

for n ≥ 2, which justifies our claim by induction.
Now we know enough about the sequence Rn to return to the question
of the problem. We use induction on n once again. The result is obvious
for n = 1 and n = 2. Given any n ≥ 3, consider the kth elements of Rn

from the left, say u, and from the right, say v. Assume that u is a member
of Qnj, and consequently that v is a member of Qn,n+1−j. Then u and
v come from symmetric positions of Rn−1 (either from Qn−1,j, Qn−1,n−j ,
or from Qn−1,j−1, Qn−1,n+1−j), and by the inductive hypothesis exactly
one of them is 1.

3. (a) For n = 4, consider a convex quadrilateral ABCD in which AB =

BC = AC = BD and AD = DC, and take the vectors
−−→
AB,

−−→
BC,−−→

CD,
−−→
DA. For n = 5, take the vectors

−−→
AB,

−−→
BC,

−−→
CD,

−−→
DE,

−→
EA for any

regular pentagon ABCDE.
(b) Let us draw the vectors of V as originated from the same point O.

Consider any maximal subset B ⊂ V , and denote by u the sum of all
vectors from B. If l is the line through O perpendicular to u, then B
contains exactly those vectors from V that lie on the same side of l as
u does, and no others. Indeed, if any v �∈ B lies on the same side of l,
then |u + v| ≥ |u|; similarly, if some v ∈ B lies on the other side of l,
then |u− v| ≥ |u|.
Therefore every maximal subset is determined by some line l as the
set of vectors lying on the same side of l. It is obvious that in this way
we get at most 2n sets.

4. (a) Suppose that an n× n coveralls matrix A exists for some n > 1. Let
x ∈ {1, 2, . . . , 2n− 1} be a fixed number that does not appear on the
fixed diagonal of A. Such an element must exist, since the diagonal
can contain at most n different numbers. Let us call the union of the
ith row and the ith column the ith cross. There are n crosses, and each
of them contains exactly one x. On the other hand, each entry x of A
is contained in exactly two crosses. Hence n must be even. However,
1997 is an odd number; hence no coveralls matrix exists for n = 1997.

(b) For n = 2, A2 =

[
1 2
3 1

]
is a coveralls matrix. For n = 4, one such

matrix is, for example,

A4 =

⎡⎢⎢⎣
1 2 5 6
3 1 7 5
4 6 1 2
7 4 3 1

⎤⎥⎥⎦ .
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This construction can be generalized. Suppose that we are given an
n × n coveralls matrix An. Let Bn be the matrix obtained from An

by adding 2n to each entry, and Cn the matrix obtained from Bn by
replacing each diagonal entry (equal to 2n+ 1 by induction) with 2n.
Then the matrix

A2n =

[
An Bn

Cn An

]
is coveralls. To show this, suppose that i ≤ n (the case i > n is similar).
The ith cross is composed of the ith cross of An, the ith row of Bn, and
the ith column of Cn. The ith cross of Ai covers 1, 2, . . . , 2n− 1. The
ith row of Bn covers all numbers of the form 2n+j, where j is covered
by the ith row of An (including j = 1). Similarly, the ith column of Cn

covers 2n and all numbers of the form 2n+ k, where k > 1 is covered
by the ith column of An. Thus we see that all numbers are accounted
for in the ith cross of A2n, and hence A2n is a desired coveralls matrix.
It follows that we can find a coveralls matrix whenever n is a power
of 2.

Second solution for part b. We construct a coveralls matrix explicitly
for n = 2k. We consider the coordinates/cells of the matrix elements
modulo n throughout the solution. We define the i-diagonal (0 ≤ i <
n) to be the set of cells of the form (j, j + i), for all j. We note that
each cross contains exactly one cell from the 0-diagonal (the main
diagonal) and two cells from each i-diagonal. For two cells within an
i diagonal, x and y, we define x and y to be related if there exists a
cross containing both x and y. Evidently, for every cell x not on the
0-diagonal there are exactly two other cells related to it. The relation
thus breaks up each i-diagonal (i > 0) into cycles of length larger
than 1. Due to the diagonal translational symmetry (modulo n), all
the cycles within a given i-diagonal must be of equal length and thus
of an even length, since n = 2k.
The construction of a coveralls matrix is now obvious. We select a
number, say 1, to place on all the cells of the 0-diagonal. We pair
up the remaining numbers and assign each pair to an i-diagonal, say
(2i, 2i+1). Going along each cycle within the i-diagonal we alternately
assign values of 2i and 2i + 1. Since the cycle has an even length, a
cell will be related only to a cell of a different number, and hence each
cross will contain both 2i and 2i+ 1.

5. We shall prove first the 2-dimensional analogue:
Lemma. Given an equilateral triangle ABC and two points M,N on

the sides AB and AC respectively, there exists a triangle with sides
CM,BN,MN .

Proof. Consider a regular tetrahedron ABCD. Since CM = DM and
BN = DN , one such triangle is DMN .
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Now, to solve the problem for a regular tetrahedron ABCD, we consider
a 4-dimensional polytope ABCDE whose faces ABCD, ABCE, ABDE,
ACDE, BCDE are regular tetrahedra. We don’t know what it looks like,
but it yields a desired triangle: for M ∈ ABC and N ∈ ADC, we have
DM = EM and BN = EN ; hence the desired triangle is EMN .

Remark. A solution that avoids embedding in R4 is possible, but no longer
so short.

6. (a) One solution is

x = 2n2

3n+1, y = 2n2−n3n, z = 2n2−2n+23n−1.

(b) Suppose w.l.o.g. that gcd(c, a) = 1. We look for a solution of the form

x = pm, y = pn, z = qpr, p, q,m, n, r ∈ N.

Then xa +yb = pma +pnb and zc = qcprc, and we see that it is enough
to assume ma − 1 = nb = rc (there are infinitely many such triples
(m,n, r)) and qc = p+ 1.

7. Let us set AC = a, CE = b, EA = c. Applying Ptolemy’s inequality for
the quadrilateral ACEF we get

AC ·EF + CE · AF ≥ AE · CF.

Since EF = AF , this implies FA
FC ≥ c

a+b . Similarly BC
BE ≥ a

b+c and DE
DA ≥

b
c+a . Now,

BC

BE
+
DE

DA
+
FA

FC
≥ a

b+ c
+

b

c+ a
+

c

a+ b
.

Hence it is enough to prove that

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
. (1)

If we now substitute x = b+ c, y = c+ a, z = a+ b and S = a+ b+ c the
inequality (1) becomes equivalent to S(1/x+ 1/y+ 1/y)− 3 ≥ 3/2 which
follows immediately form 1/x+ 1/y + 1/z ≥ 9/(x+ y + z) = 9/(2S).
Equality occurs if it holds in Ptolemy’s inequalities and also a = b = c.
The former happens if and only if the hexagon is cyclic. Hence the only
case of equality is when ABCDEF is regular.

8. (a) Denote by b and c the perpendicular bisectors of AB and AC re-
spectively. If w.l.o.g. b and AD do not intersect (are parallel), then
∠BCD = ∠BAD = 90◦, a contradiction. Hence V,W are well-defined.
Now, ∠DWB = 2∠DAB and ∠DV C = 2∠DAC as oriented an-
gles, and therefore ∠(WB,V C) = 2(∠DVC − ∠DWB) = 2∠BAC =
2∠BCD is not equal to 0. Consequently CV and BW meet at some
T with ∠BTC = 2∠BAC.
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(b) Let B′ be the second point of intersection of BW with Γ . Clearly
AD = BB′. But we also have ∠BTC = 2∠BAC = 2∠BB′C, which
implies that CT = TB′. It follows that AD = BB′ = |BT ± TB′| =
|BT ± CT |.

Remark. This problem is also solved easily using trigonometry.

9. For i = 1, 2, 3 (all indices in this problem will be modulo 3) we denote by
Oi the center of Ci and by Mi the midpoint of the arc Ai+1Ai+2 that

does not contain Ai. First we have
that Oi+1Oi+2 is the perpendicular
bisector of IBi, and thus it contains
the circumcenter Ri of AiBiI. Ad-
ditionally, it is easy to show that
Ti+1Ai = Ti+1I and Ti+2Ai =
Ti+2I, which implies that Ri lies on
the line Ti+1Ti+2. Therefore Ri =
Oi+1Oi+2 ∩ Ti+1Ti+2.

A1 A2

A3

I B1

B2
B3

R3

R1

Now, the lines T1O1, T2O2, T3O3 are concurrent at I. By Desargues’s the-
orem, the points of intersection of Oi+1Oi+2 and Ti+1Ti+2, i.e., the Ri’s,
lie on a line for i = 1, 2, 3.

Second solution. The centers of three circles passing through the same
point I and not touching each other are collinear if and only if they have
another common point. Hence it is enough to show that the circles AiBiI
have a common point other than I.
Now apply inversion at center I and with an arbitrary power. We shall
denote by X ′ the image of X under this inversion. In our case, the image
of the circle Ci is the line B′

i+1B
′
i+2 while the image of the line Ai+1Ai+2 is

the circle IA′
i+1A

′
i+2 that is tangent to B′

iB
′
i+2, and B′

iB
′
i+2. These three

circles have equal radii, so their centers P1, P2, P3 form a triangle also
homothetic to 
B′

1B
′
2B

′
3. Consequently, points A′

1, A
′
2, A

′
3, that are the

reflections of I across the sides of P1P2P3, are vertices of a triangle also
homothetic to B′

1B
′
2B

′
3. It follows that A′

1B
′
1, A

′
2B

′
2, A

′
3B

′
3 are concurrent

at some point J ′, i.e., that the circles AiBiI all pass through J .

10. Suppose that k ≥ 4. Consider any polynomial F (x) with integer coeffi-
cients such that 0 ≤ F (x) ≤ k for x = 0, 1, . . . , k+1. Since F (k+1)−F (0)
is divisible by k + 1, we must have F (k + 1) = F (0). Hence

F (x) − F (0) = x(x− k − 1)Q(x)

for some polynomial Q(x) with integer coefficients. In particular, F (x) −
F (0) is divisible by x(k + 1 − x) > k + 1 for every x = 2, 3, . . . , k − 1, so
F (x) = F (0) must hold for any x = 2, 3, . . . , k − 1. It follows that

F (x) − F (0) = x(x − 2)(x− 3) · · · (x− k + 1)(x− k − 1)R(x)
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for some polynomial R(x) with integer coefficients. Thus k ≥ |F (1) −
F (0)| = k(k − 2)!|R(1)|, although k(k − 2)! > k for k ≥ 4. In this case
we have F (1) = F (0) and similarly F (k) = F (0). Hence, the statement is
true for k ≥ 4.
It is easy to find counterexamples for k ≤ 3. These are, for example,

F (x) =

⎧⎨⎩
x(2 − x) for k = 1,
x(3 − x) for k = 2,
x(2 − x)2(4 − x) for k = 3.

11. All real roots of P (x) (if any) are negative: say −a1,−a2, . . . ,−ak. Then
P (x) can be factored as

P (x) = C(x + a1) · · · (x+ ak)(x2 − b1x+ c1) · · · (x2 − bmx+ cm), (1)

where x2 − bix+ ci are quadratic polynomials without real roots.
Since the product of polynomials with positive coefficients is again a poly-
nomial with positive coefficients, it will be sufficient to prove the result
for each of the factors in (1). The case of x+ aj is trivial. It remains only
to prove the claim for every polynomial x2 − bx+ c with b2 < 4c.
From the binomial formula, we have for any n ∈ N,

(1 + x)n(x2 − bx+ c) =

n+2∑
i=0

[(
n

i− 2

)
− b

(
n

i− 1

)
+ c

(
n

i

)]
xi =

n+2∑
i=0

Cix
i,

where

Ci =
n!
(
(b+ c+ 1)i2 − ((b + 2c)n+ (2b+ 3c+ 1))i+ c(n2 + 3n+ 2)

)
xi

i!(n− i+ 2)!
.

The coefficients Ci of xi appear in the form of a quadratic polynomial
in i depending on n. We claim that for large enough n this polynomial
has negative discriminant, and is thus positive for every i. Indeed, this
discriminant equals D = ((b+ 2c)n+ (2b+ 3c+ 1))2 − 4(b+ c+ 1)c(n2 +
3n + 2) = (b2 − 4c)n2 − 2Un + V , where U = 2b2 + bc + b − 4c and
V = (2b + c+ 1)2 − 4c, and since b2 − 4c < 0, for large n it clearly holds
that D < 0.

12. Lemma. For any polynomial P of degree at most n, the following equality
holds:

n+1∑
i=0

(−1)i

(
n+ 1

i

)
P (i) = 0.

Proof. See (SL81-13).
Suppose to the contrary that the degree of f is at most p − 2. Then it
follows from the lemma that

0 =

p−1∑
i=0

(−1)i

(
p− 1

i

)
f(i) ≡

p−1∑
i=0

f(i) (mod p),
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since
(

p−1
i

)
= (p−1)(p−2)···(p−i)

i! ≡ (−1)i (mod p). But this is clearly im-
possible if f(i) equals 0 or 1 modulo p and f(0) = 0, f(1) = 1.

Remark. In proving the essential relation
∑p−1

i=0 f(i) ≡ 0 (mod p), it is
clearly enough to show that Sk = 1k + 2k + · · · + (p − 1)k is divisible by
p for every k ≤ p− 2. This can be shown in two other ways.
(1) By induction. Assume that S0 ≡ · · · ≡ Sk−1 (mod p). By the binomial

formula we have

0 ≡
p−1∑
n=0

[(n+ 1)k+1 − nk+1] ≡ (k + 1)Sk +

k−1∑
i=0

(
k + 1

i

)
Si (mod p),

and the inductive step follows.
(2) Using the primitive root g modulo p. Then

Sk ≡ 1 + gk + · · · + gk(p−2) =
gk(p−1) − 1

gk − 1
≡ 0 (mod p).

13. Denote A(r) and B(r) by A(n, r) and B(n, r) respectively.
The numbers A(n, r) can be found directly: one can choose r girls and r

boys in
(
n
r

)2
ways, and pair them in r! ways. Hence

A(n, r) =

(
n

r

)2

· r! =
n!2

(n− r)!2r!
.

Now we establish a recurrence relation between the B(n, r)’s. Let n ≥ 2
and 2 ≤ r ≤ n. There are two cases for a desired selection of r pairs of
girls and boys:
(i) One of the girls dancing is gn. Then the other r − 1 girls can choose

their partners in B(n − 1, r − 1) ways and gn can choose any of the
remaining 2n− r boys. Thus, the total number of choices in this case
is (2n− r)B(n − 1, r − 1).

(ii) gn is not dancing. Then there are exactly B(n− 1, r) possible choices.
Therefore, for every n ≥ 2 it holds that

B(n, r) = (2n− r)B(n− 1, r − 1) +B(n− 1, r) for r = 2, . . . , n.

Here we assume that B(n, r) = 0 for r > n, while B(n, 1) = 1 + 3 + · · · +
(2n− 1) = n2.
It is directly verified that the numbers A(n, r) satisfy the same initial
conditions and recurrence relations, from which it follows that A(n, r) =
B(n, r) for all n and r ≤ n.

14. We use the following nonstandard notation: (1◦) for x, y ∈ N, x ∼ y means
that x and y have the same prime divisors; (2◦) for a prime p and integers
r ≥ 0 and x > 0, pr ‖ x means that x is divisible by pr, but not by pr+1.
First, bm −1 ∼ bn−1 is obviously equivalent to bm−1 ∼ gcd(bm −1, bn−
1) = bd − 1, where d = gcd(m,n). Setting bd = a and m = kd, we reduce
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the condition of the problem to ak − 1 ∼ a− 1. We are going to show that
this implies that a+ 1 is a power of 2. This will imply that d is odd (for
even d, a+ 1 = bd + 1 cannot be divisible by 4), and consequently b+ 1,
as a divisor of a + 1, is also a power of 2. But before that, we need the
following important lemma (Theorem 2.126).
Lemma. Let a, k be positive integers and p an odd prime. If α ≥ 1 and

β ≥ 0 are such that pα ‖ a− 1 and pβ ‖ k, then pα+β ‖ ak − 1.

Proof. We use induction on β. If β = 0, then ak−1
a−1 = ak−1+ · · ·+a+1 ≡ k

(mod p) (because a ≡ 1), and it is not divisible by p.
Suppose that the lemma is true for some β ≥ 0, and let k = pβ+1t

where p � t. By the induction hypothesis, ak/p = apβt = mpα+β + 1
for some m not divisible by p. Furthermore,

ak−1 = (mpα+β+1)p−1 = (mpα+β)p+· · ·+
(
p

2

)
(mpα+β)2+mpα+β+1.

Since p |
(
p
2

)
= p(p−1)

2 , all summands except for the last one are
divisible by pα+β+2. Hence pα+β+1 ‖ ak−1, completing the induction.

Now let ak − 1 ∼ a− 1 for some a, k > 1. Suppose that p is an odd prime

divisor of k, with pβ ‖ k. Then putting X = apβ−1 + · · · + a + 1 we also

have (a − 1)X = apβ − 1 ∼ a − 1; hence each prime divisor q of X must
also divide a− 1. But then ai ≡ 1 (mod q) for each i ∈ N0, which gives us
X ≡ pβ (mod q). Therefore q | pβ , i.e., q = p; hence X is a power of p.
On the other hand, since p | a − 1, we put pα ‖ a − 1. From the lemma

we obtain pα+β ‖ apβ − 1, and deduce that pβ ‖ X . But X has no prime
divisors other than p, so we must have X = pβ. This is clearly impossible,
because X > pβ for a > 1. Thus our assumption that k has an odd prime
divisor leads to a contradiction: in other words, k must be a power of 2.
Now ak −1 ∼ a−1 implies a−1 ∼ a2 −1 = (a−1)(a+1), and thus every
prime divisor q of a+ 1 must also divide a− 1. Consequently q = 2, so it
follows that a+ 1 is a power of 2. As we explained above, this gives that
b+ 1 is also a power of 2.

Remark. In fact, one can continue and show that k must be equal to 2. It
is not possible for a4 − 1 ∼ a2 − 1 to hold. Similarly, we must have d = 1.
Therefore all possible triples (b,m, n) with m > n are (2s − 1, 2, 1).

15. Let a+ bt, t = 0, 1, 2, . . . , be a given arithmetic progression that contains
a square and a cube (a, b > 0). We use induction on the progression step
b to prove that the progression contains a sixth power.
(i) b = 1: this case is trivial.
(ii) b = pm for some prime p and m > 0. The case pm | a trivially reduces

to the previous case, so let us have pm � a.
Suppose that gcd(a, p) = 1. If x, y are integers such that x2 ≡ y3 ≡ a
(here all the congruences will be mod pm), then x6 ≡ a3 and y6 ≡ a2.
Consider an integer y1 such that yy1 ≡ 1. It satisfies a2(xy1)

6 ≡
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x6y6y6
1 ≡ x6 ≡ a3, and consequently (xy1)

6 ≡ a. Hence a sixth power
exists in the progression.
If gcd(a, p) > 1, we can write a = pkc, where k < m and p � c. Since the
arithmetic progression xt = a+ bt = pk(c+ pm−kt) contains a square,
k must be even; similarly, it contains a cube, so 3 | k. It follows that
6 | k. The progression c + pm−kt thus also contains a square and a
cube; hence by the previous case it contains a sixth power and thus
xt does also.

(iii) b is not a power of a prime, and thus can be expressed as b = b1b2,
where b1, b2 > 1 and gcd(b1, b2) = 1. It is given that progressions
a + b1t and a + b2t both contain a square and a cube, and therefore
by the inductive hypothesis they both contain sixth powers: say z6

1

and z6
2 , respectively. By the Chinese remainder theorem, there exists

z ∈ N such that z ≡ z1 (mod b1) and z ≡ z2 (mod b2). But then z6

belongs to both of the progressions a+ b1t and a+ b2t. Hence z6 is a
member of the progression a+ bt.

16. Let da(X), db(X), dc(X) denote the distances of a point X interior to

ABC from the lines BC,CA,AB respectively. We claim that X ∈ PQ
if and only if da(X) + db(X) = dc(X). Indeed, if X ∈ PQ and PX =
kPQ then da(X) = kda(Q), db(X) = (1 − k)db(P ), and dc(X) = (1 −
k)dc(P )+kdc(Q), and simple substitution yields da(X)+db(X) = dc(X).
The converse follows easily. In particular, O ∈ PQ if and only if da(O) +
db(O) = dc(O), i.e., cosα+ cosβ = cos γ.
We shall now show that I ∈ DE if and only if AE + BD = DE. Let K
be the point on the segment DE such that AE = EK. Then ∠EKA =
1
2∠DEC = 1

2∠CBA = ∠IBA; hence the points A,B, I,K are concyclic.
The point I lies on DE if and only if ∠BKD = ∠BAI = 1

2∠BAC =
1
2∠CDE = ∠DBK, which is equivalent to KD = BD, i.e., to AE+BD =
DE. But since AE = AB cosα, BD = AB cosβ, and DE = AB cos γ, we
have that I ∈ DE ⇔ cosα + cosβ = cos γ. The conditions for O ∈ PQ
and I ∈ DE are thus equivalent.

Second solution. We know that three points X,Y, Z are collinear if and

only if for some λ, µ ∈ R with sum 1, we have λ
−−→
CX + µ

−−→
CY =

−→
CZ.

Specially, if
−−→
CX = p

−→
CA and

−−→
CY = q

−−→
CB for some p, q, and

−→
CZ = k

−→
CA+

l
−−→
CB, then Z lies on XY if and only if kq + lp = pq.
Using known relations in a triangle we directly obtain

−−→
CP =

sinβ

sinβ + sin γ

−−→
CB,

−−→
CQ =

sinα

sinα+ sin γ

−→
CA,

−−→
CO =

sin 2α · −→CA+ sin 2β · −−→CB
sin 2α+ sin 2β + sin 2γ

;
−−→
CD =

tanβ

tanβ + tan γ

−−→
CB,

−−→
CE =

tanβ

tanβ + tan γ

−→
CA,

−→
CI =

sinα · −→CA+ sinβ · −−→CB
sinα+ sinβ + sin γ

.
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Now by the above considerations we get that the conditions (1) P,Q,O are
collinear and (2)D,E, I are collinear are both equivalent to cosα+cosβ =
cos γ.

17. We note first that x and y must be powers of the same positive integer.
Indeed, if x = pα1

1 · · · pαk

k and y = pβ1

1 · · · pβk

k (some of αi and βi may be

0, but not both for the same index i), then xy2

= yx implies αi

βi
= x

y2 = p
q

for some p, q > 0 with gcd(p, q) = 1, so for a = p
α1/p
1 · · · pαk/p

k we can take
x = ap and y = aq.
If a = 1, then (x, y) = (1, 1) is the trivial solution. Let a > 1. The given

equation becomes apa2q

= aqap

, which reduces to pa2q = qap. Hence p �= q,
so we distinguish two cases:
(i) p > q. Then from a2q < ap we deduce p > 2q. We can rewrite the

equation as p = ap−2qq, and putting p = 2q + d, d > 0, we obtain
d = q(ad − 2). By induction, 2d − 2 > d for each d > 2, so we must
have d ≤ 2. For d = 1 we get q = 1 and a = p = 3, and therefore
(x, y) = (27, 3), which is indeed a solution. For d = 2 we get q = 1,
a = 2, and p = 4, so (x, y) = (16, 2), which is another solution.

(ii) p < q. As above, we get q/p = a2q−p, and setting d = 2q− p > 0, this

is transformed to ad = a(2ad−1)p, or equivalently to d = (2ad − 1)p.
However, this equality cannot hold, because 2ad−1 > d for each a ≥ 2,
d ≥ 1.

The only solutions are thus (1, 1), (16, 2), and (27, 3).

18. By symmetry, assume that AB > AC. The point D lies between M and
P as well as between Q and R, and if we show that DM ·DP = DQ ·DR,
it will imply that M,P,Q,R lie on a circle.
Since the triangles ABC,AEF,AQR are similar, the points B,C,Q,R lie
on a circle. Hence DB ·DC = DQ ·DR, and it remains to prove that

DB ·DC = DM ·DP.

However, the points B,C,E, F are concyclic, but so are the points
E,F,D,M (they lie on the nine-point circle), and we obtain PB · PC =
PE · PF = PD · PM . Set PB = x and PC = y. We have PM = x+y

2

and hence PD = 2xy
x+y . It follows that DB = PB − PD = x(x−y)

x+y ,

DC = y(x−y)
x+y , and DM = (x−y)2

2(x+y) , from which we immediately obtain

DB ·DC = DM ·DP = xy(x−y)2

(x+y)2 , as needed.

19. Using that an+1 = 0 we can transform the desired inequality into√
a1 + a2 + · · · + an+1

≤
√

1
√
a1 + (

√
2 −

√
1)

√
a2 + · · · + (

√
n+ 1 −

√
n)

√
an+1. (1)

We shall prove by induction on n that (1) holds for any a1 ≥ a2 ≥ · · · ≥
an+1 ≥ 0, i.e., not only when an+1 = 0. For n = 0 the inequality is
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obvious. For the inductive step from n− 1 to n, where n ≥ 1, we need to
prove the inequality√

a1 + · · · + an+1 −
√
a1 + · · · + an ≤ (

√
n+ 1 −

√
n)

√
an+1. (2)

Putting S = a1 + a2 + · · · + an, this simplifies to
√
S + an+1 −

√
S ≤√

nan+1 + an+1 − √
nan+1. For an+1 = 0 the inequality is obvious.

For an+1 > 0 we have that the function f(x) =
√
x+ an+1 −

√
x =

an+1√
x+an+1+

√
x

is strictly decreasing on R+; hence (2) will follow if we show

that S ≥ nan+1. However, this last is true because a1, . . . , an ≥ an+1.
Equality holds if and only if a1 = a2 = · · · = ak and ak+1 = · · · = an+1 =
0 for some k.

Second solution. Setting bk =
√
ak − √

ak+1 for k = 1, . . . , n we have
ai = (bi + · · · + bn)2, so the desired inequality after squaring becomes

n∑
k=1

kb2k + 2
∑

1≤k<l≤n

kbkbl ≤
n∑

k=1

k b2k + 2
∑

1≤k<l≤n

√
kl bkbl,

which clearly holds.

20. To avoid dividing into cases regarding the position of the point X , we use
oriented angles.
Let R be the foot of the perpendicular from X to BC. It is well known
that the points P,Q,R lie on the corresponding Simson line. This line is
a tangent to γ (i.e., the circle XDR) if and only if ∠PRD = ∠RXD. We
have

∠PRD = ∠PXB = 90◦ − ∠XBA = 90◦ − ∠XBC + ∠ABC
= 90◦ − ∠DAC + ∠ABC

and
∠RXD = 90◦ − ∠ADB = 90◦ + ∠BCA− ∠DAC;

hence ∠PRD = ∠RXD if and only if ∠ABC = ∠BCA, i.e, AB = AC.

21. For any permutation π = (y1, y2, . . . , yn) of (x1, x2, . . . , xn), denote by
S(π) the sum y1 + 2y2 + · · · + nyn. Suppose, contrary to the claim, that
|S(π)| > n+1

2 for any π.
Further, we note that if π′ is obtained from π by interchanging two
neighboring elements, say yk and yk+1, then S(π) and S(π′) differ by
|yk + yk+1| ≤ n+ 1, and consequently they must be of the same sign.
Now consider the identity permutation π0 = (x1, . . . , xn) and the re-
verse permutation π0 = (xn, . . . , x1). There is a sequence of permuta-
tions π0, π1, . . . , πm = π0 such that for each i, πi+1 is obtained from
πi by interchanging two neighboring elements. Indeed, by successive in-
terchanges we can put xn in the first place, then xn−1 in the second
place, etc. Hence all S(π0), . . . , S(πm) are of the same sign. However, since
|S(π0) + S(πm)| = (n+ 1)|x1 + · · ·+ xn| = n+ 1, this implies that one of
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S(π0) and S(π0) is smaller than n+1
2 in absolute value, contradicting the

initial assumption.

22. (a) Suppose that f and g are such functions. From g(f(x)) = x3 we have
f(x1) �= f(x2) whenever x1 �= x2. In particular, f(−1), f(0), and
f(1) are three distinct numbers. However, since f(x)2 = f(g(f(x))) =
f(x3), each of the numbers f(−1), f(0), f(1) is equal to its square,
and so must be either 0 or 1. This contradiction shows that no such
f, g exist.

(b) The answer is yes. We begin with constructing functions F,G : (1,∞)
→ (1,∞) with the property F (G(x)) = x2 and G(F (x)) = x4 for x >

1. Define the functions ϕ, ψ by F (22t

) = 22ϕ(t)

and G(22t

) = 22ψ(t)

.
These functions determine F and G on the entire interval (1,∞), and
satisfy ϕ(ψ(t)) = t+1 and ψ(ϕ(t)) = t+2. It is easy to find examples
of ϕ and ψ: for example, ϕ(t) = 1

2 t+1, ψ(t) = 2t. Thus we also arrive
at an example for F,G:

F (x) = 22
1
2

log2 log2 x+1

= 22
√

log2 x, G(x) = 222 log2 log2 x

= 2log2
2 x.

It remains only to extend these functions to the whole of R. This can
be done as follows:

f̃(x) =

⎧⎨⎩F (x) for x > 1,
1/F (1/x) for 0 < x < 1,
x for x ∈ {0, 1};

g̃(x) =

⎧⎨⎩ G(x) for x > 1,
1/G(1/x) for 0 < x < 1,

x for x ∈ {0, 1};

and then f(x) = f̃(|x|), g(x) = g̃(|x|) for x ∈ R.

It is directly verified that these functions have the required property.

23. Let K,L,M , and N be the projections of O onto the lines AB,BC,CD,
and DA, and let α1, α2, α3, α4, β1, β2, β3, β4 denote the angles OAB,
OBC, OCD, ODA, OAD, OBA, OCB, ODC, respectively.
We start with the following observation: Since NK is a chord of the circle
with diameter OA, we have OA sin ∠A = NK = ON cosα1 + OK cosβ1

(because ∠ONK = α1 and ∠OKN = β1). Analogous equalities also
hold: OB sin ∠B = KL = OK cosα2 + OL cosβ2, OC sin ∠C = LM =
OL cosα3 +OM cosβ3 and OD sin ∠D = MN = OM cosα4 +ON cosβ4.
Now the condition in the problem can be restated as NK +LM = KL+
MN (i.e., KLMN is circumscribed), i.e.,

OK(cosβ1 − cosα2) +OL(cosα3 − cosβ2)
+OM(cosβ3 − cosα4) +ON(cosα1 − cosβ4) = 0.

(1)

To prove that ABCD is cyclic, it suffices to show that α1 = β4. Assume
the contrary, and let w.l.o.g. α1 > β4. Then point A lies inside the circle
BCD, which is further equivalent to β1 > α2. On the other hand, from
α1 + β2 = α3 + β4 we deduce α3 > β2, and similarly β3 > α4. Therefore,
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since the cosine is strictly decreasing on (0, π), the left side of (1) is strictly
negative, yielding a contradiction.

24. There is a bijective correspondence between representations in the given
form of 2k and 2k + 1 for k = 0, 1, . . . , since adding 1 to every represen-
tation of 2k, we obtain a representation of 2k + 1, and conversely, every
representation of 2k + 1 contains at least one 1, which can be removed.
Hence, f(2k + 1) = f(2k).
Consider all representations of 2k. The number of those that contain at
least one 1 equals f(2k − 1) = f(2k − 2), while the number of those not
containing a 1 equals f(k) (the correspondence is given by division of
summands by 2). Therefore

f(2k) = f(2k − 2) + f(k). (1)

Summing these equalities over k = 1, . . . , n, we obtain

f(2n) = f(0) + f(1) + · · · + f(n). (2)

We first prove the right-hand inequality. Since f is increasing, and f(0)+
f(1) = f(2), (2) yields f(2n) ≤ nf(n) for n ≥ 2. Now f(23) = f(0) +

· · · + f(4) = 10 < 232/2, and one can easily conclude by induction that

f(2n+1) ≤ 2nf(2n) < 2n · 2n2/2 < 2(n+1)2/2 for each n ≥ 3.
We now derive the lower estimate. It follows from (1) that f(x+2)−f(x)
is increasing. Consequently, for each m and k < m we have f(2m+ 2k)−
f(2m) ≥ f(2m + 2k − 2) − f(2m − 2) ≥ · · · ≥ f(2m) − f(2m − 2k), so
f(2m + 2k) + f(2m − 2k) ≥ 2f(2m). Adding all these inequalities for
k = 1, 2, . . . ,m, we obtain f(0) + f(2) + · · · + f(4m) ≥ (2m + 1)f(2m).
But since f(2) = f(3), f(4) = f(5) etc., we also have f(1) + f(3) + · · · +
f(4m − 1) > (2m − 1)f(2m), which together with the above inequality
gives

f(8m) = f(0) + f(1) + · · · + f(4m) > 4mf(2m). (3)

Finally, we have that the inequality f(2n) > 2n2/4 holds for n = 2 and
n = 3, while for larger n we have by induction f(2n) > 2n−1f(2n−2) >

2n−1+(n−2)2/4 = 2n2/4. This completes the proof.

Remark. Despite the fact that the lower estimate is more difficult, it
is much weaker than the upper estimate. It can be shown that f(2n)

eventually (for large n) exceeds 2cn2

for any c < 1
2 .

25. Let MR meet the circumcircle of triangle ABC again at a point X . We
claim thatX is the common point of the linesKP,LQ,MR. By symmetry,
it will be enough to show that X lies on KP . It is easy to see that X and
P lie on the same side of AB as K. Let Ia = AK ∩ BP be the excenter
of 
ABC corresponding to A. It is easy to calculate that ∠AIaB = γ/2,
from which we get ∠RPB = ∠AIaB = ∠MCB = ∠RXB. Therefore
R,B, P,X are concyclic. Now if P and K are on distinct sides of BX (the
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other case is similar), we have
∠RXP = 180◦ − ∠RBP = 90◦ −
β/2 = ∠MAK = 180◦ − ∠RXK,
from which it follows that K,X,P
are collinear, as claimed.

Remark. It is not essential for the
statement of the problem that R be
an internal point of AB. Work with
cases can be avoided using oriented
angles.

A B

C

R

M

K

L
X

P

Ia

Q

26. Let us first examine the case that all the inequalities in the problem are
actually equalities. Then an−2 = an−1 + an, an−3 = 2an−1 + an, . . . , a0 =
Fnan−1 + Fn−1an = 1, where Fn is the nth Fibonacci number. Then it
is easy to see (from F1 + F2 + · · · + Fk = Fk+2) that a0 + · · · + an =

(Fn+2 − 1)an−1 + Fn+1an = Fn+2−1
Fn

+
(
Fn+1 − Fn−1(Fn+2−1)

Fn

)
an. Since

Fn−1(Fn+2−1)
Fn

≤ Fn+1, it follows that a0 + a1 + · · · + an ≥ Fn+2−1
Fn

, with

equality holding if and only if an = 0 and an−1 = 1
Fn

.
We denote by Mn the required minimum in the general case. We shall
prove by induction that Mn = Fn+2−1

Fn
. For M1 = 1 and M2 = 2 it is easy

to show that the formula holds; hence the inductive basis is true. Suppose
that n > 2. The sequences 1, a2

a1
, . . . , an

a1
and 1, a3

a2
, . . . , an

a2
also satisfy the

conditions of the problem. Hence we have

a0 + · · · + an = a0 + a1

(
1 +

a2

a1
+ · · · + an

a1

)
≥ 1 + a1Mn−1

and

a0 + · · · + an = a0 + a1 + a2

(
1 +

a3

a2
+ · · · + an

a2

)
≥ 1 + a1 + a2Mn−2.

Multiplying the first inequality by Mn−2−1 and the second one by Mn−1,
adding the inequalities and using that a1 + a2 ≥ 1, we obtain (Mn−1 +
Mn−2 + 1)(a0 + · · · + an) ≥ Mn−1Mn−2 +Mn−1 +Mn−2 + 1, so

Mn ≥ Mn−1Mn−2 +Mn−1 +Mn−2 + 1

Mn−1 +Mn−2 + 1
.

Since Mn−1 = Fn+1−1
Fn−1

and Mn−2 = Fn−1
Fn−2

, the above inequality easily

yields Mn ≥ Fn+2−1
Fn

. However, we have shown above that equality can

occur; hence Fn+2−1
Fn

is indeed the required minimum.
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4.39 Solutions to the Shortlisted Problems of IMO 1998

1. We begin with the following observation: Suppose that P lies in 
AEB,
whereE is the intersection ofAC andBD (the other cases are similar). Let
M,N be the feet of the perpendiculars from P to AC andBD respectively.
We have SABP = SABE −SAEP −SBEP = 1

2 (AE ·BE−AE ·EN −BE ·
EM) = 1

2 (AM ·BN −EM ·EN). Similarly, SCDP = 1
2 (CM ·DN −EM ·

EN). Therefore, we obtain

SABP − SCDP =
AM ·BN − CM ·DN

2
. (1)

Now suppose that ABCD is cyclic.
Then P is the circumcenter of
ABCD; hence M and N are the
midpoints of AC and BD. Hence
AM = CM and BN = DN ; thus
(1) gives us SABP = SCDP .
On the other hand, suppose that
ABCD is not cyclic and let w.l.o.g.

A B

C
D

E

P

M N

PA = PB > PC = PD. Then we must have AM > CM and BN >
DN , and consequently by (1), SABP > SCDP . This proves the other
implication.

Second solution. Let F and G denote the midpoints of AB and CD, and
assume that P is on the same side of FG as B and C. Since PF ⊥ AB,
PG ⊥ CD, and ∠FEB = ∠ABE, ∠GEC = ∠DCE, a direct computa-
tion yields ∠FPG = ∠FEG = 90◦ + ∠ABE + ∠DCE.
Taking into account that SABP = 1

2AB · FP = FE · FP , we note that
SABP = SCDP is equivalent to FE · FP = GE · GP , i.e., to FE/EG =
GP/PF . But this last is equivalent to triangles EFG and PGF being
similar, which holds if and only if EFPG is a parallelogram. This last is
equivalent to ∠EFP = ∠EGP , or 2∠ABE = 2∠DCE. Thus SABP =
SCDP is equivalent to ABCD being cyclic.

Remark. The problems also allows an analytic solution, for example
putting the x and y axes along the diagonals AC and BD.

2. If AD and BC are parallel, then ABCD is an isosceles trapezoid with
AB = CD, so P is the midpoint of EF . Let M and N be the midpoints
of AB and CD. Then MN ‖ BC, and the distance d(E,MN) equals the
distance d(F,MN) because B and D are the same distance from MN and
EM/BM = FN/DN . It follows that the midpoint P of EF lies on MN ,
and consequently SAPD : SBPC = AD : BC.
If AD and BC are not parallel, then they meet at some point Q. It is
plain that 
QAB ∼ 
QCD, and since AE/AB = CF/CD, we also
deduce that 
QAE ∼ 
QCF . Therefore ∠AQE = ∠CQF . Further, from
these similarities we obtain QE/QF = QA/QC = AB/CD = PE/PF ,
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which in turn means that QP is the internal bisector of ∠EQF . But since
∠AQE = ∠CQF , this is also the internal bisector of ∠AQB. Hence P is
at equal distances from AD and BC, so again SAPD : SBPC = AD : BC.

Remark. The part AB ‖ CD could also be regarded as a limiting case of
the other part.

Second solution. Denote λ = AE
AB , AB = a, BC = b, CD = c, DA = d,

∠DAB = α, ∠ABC = β. Since d(P,AD) = c·d(E,AD)+a·d(F,AD)
a+c , we have

SAPD = cSEAD+aSF AD

a+c = λcSABD+(1−λ)aSACD

a+c . Since SABD = 1
2ad sinα

and SACD = 1
2cd sinβ, we are led to SAPD = acd

a+c [λ sinα+ (1 − λ) sinβ],

and analogously SBPC = abc
a+c [λ sinα + (1 − λ) sin β]. Thus we obtain

SAPD : SBPC = d : b.

3. Lemma. If U,W, V are three points on a line l in this order, and X a
point in the plane with XW ⊥ UV , then ∠UXV < 90◦ if and only if
XW 2 > UW · VW .

Proof. Let XW 2 > UW ·VW , and let X0 be a point on the segment XW
such that X0W

2 ≥ UW ·VW . Then X0W/UW = VW/X0W , so that
triangles X0WU and VWX0 are similar. Thus ∠UX0V = ∠UX0W +
∠WUX0 = 90◦, which immediately implies that ∠UXV < 90◦.
Similarly, if XW 2 ≤ UW · VW , then ∠UXV ≥ 90◦.

Since BI ⊥ RS, it will be enough by the lemma to show that BI2 >
BR·BS. Note that 
BKR ∼ 
BSL: in fact, we have ∠KBR = ∠SBL =
90◦ − β/2 and ∠BKR = ∠AKM = ∠KLM = ∠BSL = 90◦ − α/2. In
particular, we obtain BR/BK = BL/BS = BK/BS, so that BR ·BS =
BK2 < BI2.

Second solution. Let E,F be the midpoints of KM and LM respectively.
The quadrilaterals RBIE and SBIF are inscribed in the circles with
diameters IR and IS. Now we have ∠RIS = ∠RMS+∠IRM+∠ISM =
90◦ − β/2 + ∠IBE + ∠IBF = 90◦ − β/2 + ∠EBF .
On the other hand, BE and BF are medians in 
BKM and 
BLM in
which BM > BK and BM > BL. We conclude that ∠MBE < 1

2∠MBK
and ∠MBF < 1

2∠MBL. Adding these two inequalities gives ∠EBF <
β/2. Therefore ∠RIS < 90◦.
Remark. It can be shown (using vectors) that the statement remains true
for an arbitrary line t passing through B.

4. Let K be the point on the ray BN with ∠BCK = ∠BMA. Since
∠KBC = ∠ABM , we get 
BCK ∼ 
BMA. It follows that BC/BM =
BK/BA, which implies that also 
BAK ∼ 
BMC. The quadrilat-
eral ANCK is cyclic, because ∠BKC = ∠BAM = ∠NAC. Then by
Ptolemy’s theorem we obtain

AC ·BK = AC ·BN +AN · CK + CN · AK. (1)

On the other hand, from the similarities noted above we get
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CK =
BC ·AM
BM

, AK =
AB · CM
BM

and BK =
AB · BC
BM

.

After substitution of these values, the equality (1) becomes

AB · BC ·AC
BM

= AC · BN +
BC · AM · AN

BM
+
AB · CM · CN

BM
,

which is exactly the equality we must prove multiplied by AB·BC·CA
BM .

5. Let G be the centroid of 
ABC and H the homothety with center G and

ratio − 1
2 . It is well-known that H

maps H into O. For every other
point X , let us denote by X ′ its
image under H. Also, let A2B2C2

be the triangle in which A,B,C are
the midpoints of B2C2, C2A2, and
A2B2, respectively.
It is clear that A′, B′, C′ are the
midpoints of sides BC,CA,AB re-
spectively. Furthermore, D′ is the
reflection of A′ across B′C′. Thus
D′ must lie on B2C2 and A′D′ ⊥

A

B C

D

E

F

A′

B′C′

A2

B2C2

G

H

O

D′

E′

F ′

B2C2. However, it also holds that OA′ ⊥ B2C2, so we conclude that
O,D′, A′ are collinear andD′ is the projection of O on B2C2. Analogously,
E′, F ′ are the projections of O on C2A2 and A2B2.
Now we apply Simson’s theorem. It claims that D′, E′, F ′ are collinear
(which is equivalent to D,E, F being collinear) if and only if O lies on the
circumcircle of A2B2C2. However, this circumcircle is centered at H with
radius 2R, so the last condition is equivalent to HO = 2R.

6. Let P be the point such that 
CDP and 
CBA are similar and equally
oriented. Since then ∠DCP = ∠BCA and BC

CA = DC
CP , it follows that

∠ACP = ∠BCD and AC
CP = BC

CD , so 
ACP ∼ 
BCD. In particular,
BC
CA = DB

PA .
Furthermore, by the conditions of the problem we have ∠EDP = 360◦ −
∠B − ∠D = ∠F and PD

DE = PD
CD · CD

DE = AB
BC · CD

DE = AF
FE . Therefore


EDP ∼ 
EFA as well, so that similarly as above we conclude that

AEP ∼ 
FED and consequently AE

EF = PA
FD .

Finally, BC
CA · AE

EF · FD
DB = DB

PA · PA
FD · FD

DB = 1.

Second solution. Let a, b, c, d, e, f be the complex coordinates of A, B,
C, D, E, F , respectively. The condition of the problem implies that a−b

b−c ·
c−d
d−e · e−f

f−a = −1.

On the other hand, since (a − b)(c − d)(e − f) + (b − c)(d − e)(f − a) =
(b−c)(a−e)(f−d)+(c−a)(e−f)(d−b) holds identically, we immediately
deduce that b−c

c−a · a−e
e−f · f−d

d−b = −1. Taking absolute values gives BC
CA · AE

EF ·
FD
DB = 1.
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7. We shall use the following result.
Lemma. In a triangle ABC with BC = a, CA = b, and AB = c,

i. ∠C = 2∠B if and only if c2 = b2 + ab;
ii. ∠C + 180◦ = 2∠B if and only if c2 = b2 − ab.

Proof.
i. Take a point D on the extension of BC over C such that CD = b.

The condition ∠C = 2∠B is equivalent to ∠ADC = 1
2∠C = ∠B,

and thus to AD = AB = c. This is further equivalent to triangles
CAD and ABD being similar, so CA/AD = AB/BD, i.e., c2 =
b(a+ b).

ii. Take a point E on the ray CB such that CE = b. As above,
∠C + 180◦ = 2∠B if and only if 
CAE ∼ 
ABE, which is
equivalent to EB/BA = EA/AC, or c2 = b(b− a).

Let F,G be points on the ray CB such that CF = 1
3a and CG = 4

3a.
Set BC = a, CA = b, AB = c, EC = b1, and EB = c1. By the lemma
it follows that c2 = b2 + ab. Also b1 = AG and c1 = AF , so Stewart’s
theorem gives us c21 = 2

3b
2 + 1

3c
2 − 2

9a
2 = b2 + 1

3ab − 2
9a

2 and b21 =
− 1

3b
2 + 4

3c
2 + 4

9a
2 = b2 + 4

3ab + 4
9a

2. It follows that b1 = 2
3a + b and

c21 = b21 −
(
ab+ 2

3a
2
)

= b21 − ab1. The statement of the problem follows
immediately by the lemma.

8. Let M be the point of intersection of AE and BC, and let N be the point
on ω diametrically opposite A.
Since ∠B < ∠C, points N and
B are on the same side of AE.
Furthermore, ∠NAE = ∠BAX =
90◦ − ∠ABE; hence the triangles
NAE and BAX are similar. Con-
sequently, 
BAY and 
NAM are
also similar, sinceM is the midpoint

A

B C D

E

M

N

X

Y Z

ω

of AE. Thus ∠ANZ = ∠ABZ = ∠ABY = ∠ANM , implying that
N,M,Z are collinear. Now we have ∠ZMD = 90◦ − ∠ZMA = ∠EAZ =
∠ZED (the last equality because ED is tangent to ω); hence ZMED is
a cyclic quadrilateral. It follows that ∠ZDM = ∠ZEA = ∠ZAD, which
is enough to conclude that MD is tangent to the circumcircle of AZD.

Remark. The statement remains valid if ∠B ≥ ∠C.

9. Set an+1 = 1− (a1 + · · ·+ an). Then an+1 > 0, and the desired inequality
becomes

a1a2 · · · an+1

(1 − a1)(1 − a2) · · · (1 − an+1)
≤ 1

nn+1
.

To prove it, we observe that

1 − ai = a1 + · · ·+ ai−1 + ai+1 + · · ·+ an+1 ≥ n n
√
a1 · · · ai−1ai+1 · · ·an+1.

Multiplying these inequalities for i = 1, 2, . . . , n + 1, we get exactly the
inequality we need.
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10. We shall first prove the inequality for n of the form 2k, k = 0, 1, 2, . . . .
The case k = 0 is clear. For k = 1, we have

1

r1 + 1
+

1

r2 + 1
− 2√

r1r2 + 1
=

(
√
r1r2 − 1)(

√
r1 −√

r2)
2

(r1 + 1)(r2 + 1)(
√
r1r2 + 1)

≥ 0.

For the inductive step it suffices to show that the claim for k and 2 implies
that for k + 1. Indeed,

2k+1∑
i=1

1

ri + 1
≥ 2k

2k√r1r2 · · · r2k + 1
+

2k

2k√r2k+1r2k+2 · · · r2k+1 + 1

≥ 2k+1

2k+1√r1r2 · · · r2k+1 + 1
,

(1)

and the induction is complete.
We now show that if the statement holds for 2k, then it holds for every
n < 2k as well. Put rn+1 = rn+2 = · · · = r2k = n

√
r1r2 . . . rn. Then (1)

becomes

1

r1 + 1
+ · · · + 1

rn + 1
+

2k − n
n
√
r1 · · · rn + 1

≥ 2k

n
√
r1 · · · rn + 1

.

This proves the claim.

Second solution. Define ri = exi , where xi > 0. The function f(x) = 1
1+ex

is convex for x > 0: indeed, f ′′(x) = ex(ex−1)
(ex+1)3 > 0. Thus by Jensen’s in-

equality applied to f(x1), . . . , f(xn), we get 1
r1+1 +· · ·+ 1

rn+1 ≥ n
n
√

r1···rn+1 .

11. The given inequality is equivalent to x3(x+ 1) + y3(y + 1) + z3(z + 1) ≥
3
4 (x+ 1)(y + 1)(z + 1). By the A-G mean inequality, it will be enough to
prove a stronger inequality:

x4 + x3 + y4 + y3 + z4 + z3 ≥ 1

4
[(x+ 1)3 + (y + 1)3 + (z + 1)3]. (1)

If we set Sk = xk+yk+zk, (1) takes the form S4+S3 ≥ 1
4S3+

3
4S2+

3
4S1+

3
4 .

Note that by the A-G mean inequality, S1 = x+y+z ≥ 3. Thus it suffices
to prove the following:

If S1 ≥ 3 and m > n are positive integers, then Sm ≥ Sn.

This can be shown in many ways. For example, by Hölder’s inequality,

(xm + ym + zm)n/m(1 + 1 + 1)(m−n)/m ≥ xn + yn + zn.

(Another way is using the Chebyshev inequality: if x ≥ y ≥ z then xk−1 ≥
yk−1 ≥ zk−1; hence Sk = x · xk−1 + y · yk−1 + z · zk−1 ≥ 1

3S1Sk−1, and
the claim follows by induction.)
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Second solution. Assume that x ≥ y ≥ z. Then also 1
(y+1)(z+1) ≥

1
(x+1)(z+1) ≥ 1

(x+1)(y+1) . Hence Chebyshev’s inequality gives that

x3

(1 + y)(1 + z)
+

y3

(1 + x)(1 + z)
+

z3

(1 + x)(1 + y)

≥ 1

3

(x3 + y3 + z3) · (3 + x+ y + z)

(1 + x)(1 + y)(1 + z)
.

Now if we put x + y + z = 3S, we have x3 + y3 + z3 ≥ 3S and (1 +
x)(1 + y)(1 + z) ≤ (1 + a)3 by the A-G mean inequality. Thus the needed

inequality reduces to 6S3

(1+S)3 ≥ 3
4 , which is obviously true because S ≥ 1.

Remark. Both these solutions use only that x+ y + z ≥ 3.

12. The assertion is clear for n = 0. We shall prove the general case
by induction on n. Suppose that c(m, i) = c(m,m − i) for all i and
m ≤ n. Then by the induction hypothesis and the recurrence formula
we have c(n + 1, k) = 2kc(n, k) + c(n, k − 1) and c(n + 1, n + 1 − k) =
2n+1−kc(n, n+ 1 − k) + c(n, n− k) = 2n+1−kc(n, k− 1) + c(n, k). Thus it
remains only to show that

(2k − 1)c(n, k) = (2n+1−k − 1)c(n, k − 1).

We prove this also by induction on n. By the induction hypothesis,

c(n− 1, k) =
2n−k − 1

2k − 1
c(n− 1, k − 1)

and

c(n− 1, k − 2) =
2k−1 − 1

2n+1−k − 1
c(n− 1, k − 1).

Using these formulas and the recurrence formula we obtain (2k−1)c(n, k)−
(2n+1−k − 1)c(n, k − 1) = (22k − 2k)c(n− 1, k) − (2n − 3 · 2k−1 + 1)c(n−
1, k − 1) − (2n+1−k − 1)c(n− 1, k − 2) = (2n − 2k)c(n− 1, k − 1) − (2n −
3 · 2k−1 + 1)c(n− 1, k− 1)− (2k−1 − 1)c(n− 1, k− 1) = 0. This completes
the proof.

Second solution. The given recurrence formula resembles that of binomial
coefficients, so it is natural to search for an explicit formula of the form

c(n, k) = F (n)
F (k)F (n−k) , where F (m) = f(1)f(2) · · · f(m) (with F (0) = 1)

and f is a certain function from the natural numbers to the real numbers.
If there is such an f , then c(n, k) = c(n, n− k) follows immediately.
After substitution of the above relation, the recurrence equivalently re-
duces to f(n+1) = 2kf(n−k+1)+f(k). It is easy to see that f(m) = 2m−1
satisfies this relation.

Remark. If we introduce the polynomial Pn(x) =
∑n

k=0 c(n, k)x
k, the

recurrence relation gives P0(x) = 1 and Pn+1(x) = xPn(x) + Pn(2x).
As a consequence of the problem, all polynomials in this sequence are
symmetric, i.e., Pn(x) = xnPn(x−1).
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13. Denote by F the set of functions considered. Let f ∈ F , and let
f(1) = a. Putting n = 1 and m = 1 we obtain f(f(z)) = a2z and
f(az2) = f(z)2 for all z ∈ N. These equations, together with the original
one, imply f(x)2f(y)2 = f(x)2f(ay2) = f(x2f(f(ay2))) = f(x2a3y2) =
f(a(axy)2) = f(axy)2, or f(axy) = f(x)f(y) for all x, y ∈ N. Thus
f(ax) = af(x), and we conclude that

af(xy) = f(x)f(y) for all x, y ∈ N. (1)

We now prove that f(x) is divisible by a for each x ∈ N. In fact, we
inductively get that f(x)k = ak−1f(xk) is divisible by ak−1 for every k.
If pα and pβ are the exact powers of a prime p that divide f(x) and a
respectively, we deduce that kα ≥ (k − 1)β for all k, so we must have
α ≥ β for any p. Therefore a | f(x).
Now we consider the function on natural numbers g(x) = f(x)/a. The
above relations imply

g(1) = 1, g(xy) = g(x)g(y), g(g(x)) = x for all x, y ∈ N. (2)

Since g ∈ F and g(x) ≤ f(x) for all x, we may restrict attention to the
functions g only.
Clearly g is bijective. We observe that g maps a prime to a prime. Assume
to the contrary that g(p) = uv, u, v > 1. Then g(uv) = p, so either
g(u) = 1 and g(v) = 1. Thus either g(1) = u or g(1) = v, which is
impossible.
We return to the problem of determining the least possible value of
g(1998). Since g(1998) = g(2 · 33 · 37) = g(2) · g(3)3 · g(37), and g(2),
g(3), g(37) are distinct primes, g(1998) is not smaller than 23 · 3 · 5 = 120.
On the other hand, the value of 120 is attained for any function g satis-
fying (2) and g(2) = 3, g(3) = 2, g(5) = 37, g(37) = 5. Hence the answer
is 120.

14. If x2y + x + y is divisible by xy2 + y + 7, then so is the number y(x2y +
x+ y) − x(xy2 + y + 7) = y2 − 7x.
If y2−7x ≥ 0, then since y2−7x < xy2 +y+7, it follows that y2−7x = 0.
Hence (x, y) = (7t2, 7t) for some t ∈ N. It is easy to check that these pairs
really are solutions.
If y2 − 7x < 0, then 7x − y2 > 0 is divisible by xy2 + y + 7. But then
xy2 + y + 7 ≤ 7x − y2 < 7x, from which we obtain y ≤ 2. For y = 1,
we are led to x + 8 | 7x − 1, and hence x + 8 | 7(x + 8) − (7x − 1) = 57.
Thus the only possibilities are x = 11 and x = 49, and the obtained pairs
(11, 1), (49, 1) are indeed solutions. For y = 2, we have 4x+ 9 | 7x− 4, so
that 7(4x+ 9) − 4(7x− 4) = 79 is divisible by 4x+ 9. We do not get any
new solutions in this case.
Therefore all required pairs (x, y) are (7t2, 7t) (t ∈ N), (11, 1), and (49, 1).

15. The condition is obviously satisfied if a = 0 or b = 0 or a = b or a, b are
both integers. We claim that these are the only solutions.
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Suppose that a, b belong to none of the above categories. The quotient
a/b = �a /�b is a nonzero rational number: let a/b = p/q, where p and q
are coprime nonzero integers.
Suppose that p �∈ {−1, 1}. Then p divides �an for all n, so in particular
p divides �a and thus a = kp + ε for some k ∈ N and 0 ≤ ε < 1.
Note that ε �= 0, since otherwise b = kq would also be an integer. It
follows that there exists an n ∈ N such that 1 ≤ nε < 2. But then
�na = �knp + nε = knp + 1 is not divisible by p, a contradiction.
Similarly, q �∈ {−1, 1} is not possible. Therefore we must have p, q = ±1,
and since a �= b, the only possibility is b = −a. However, this leads to
�−a = −�a , which is not valid if a is not an integer.

16. Let S be a set of integers such that for no four distinct elements a, b, c, d ∈
S, it holds that 20 | a+ b− c− d. It is easily seen that there cannot exist
distinct elements a, b, c, d with a ≡ b and c ≡ d (mod 20). Consequently,
if the elements of S give k different residues modulo 20, then S itself has
at most k + 2 elements.
Next, consider these k elements of S with different residues modulo 20.

They give k(k−1)
2 different sums of two elements. For k ≥ 7 there are at

least 21 such sums, and two of them, say a+b and c+d, are equal modulo
20; it is easy to see that a, b, c, d are discinct. It follows that k cannot
exceed 6, and consequently S has at most 8 elements.
An example of a set S with 8 elements is {0, 20, 40, 1, 2, 4, 7, 12}. Hence
the answer is n = 9.

17. Initially, we determine that the first few values for an are 1, 3, 4, 7, 10,
12, 13, 16, 19, 21, 22, 25. Since these are exactly the numbers of the forms
3k + 1 and 9k + 3, we conjecture that this is the general pattern. In fact,
it is easy to see that the equation x + y = 3z has no solution in the set
K = {3k + 1, 9k + 3 | k ∈ N}. We shall prove that the sequence {an} is
actually this set ordered increasingly.
Suppose an > 25 is the first member of the sequence not belonging to K.
We have several cases:
(i) an = 3r + 2, r ∈ N. By the assumption, one of r + 1, r + 2, r + 3 is of

the form 3k + 1 (and smaller than an), and therefore is a member ai

of the sequence. Then 3ai equals an + 1, an + 4, or an + 7, which is a
contradiction because 1, 4, 7 are in the sequence.

(ii) an = 9r, r ∈ N. Then an + a2 = 3(3r + 1), although 3r + 1 is in the
sequence, a contradiction.

(iii) an = 9r + 6, r ∈ N. Then one of the numbers 3r + 3, 3r + 6, 3r + 9
is a member aj of the sequence, and thus 3aj is equal to an + 3,
an +12, or an +21, where 3, 12, 21 are members of the sequence, again
a contradiction.

Once we have revealed the structure of the sequence, it is easy to compute
a1998. We have 1998 = 4·499+2, which implies a1998 = 9·499+a2 = 4494.
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18. We claim that, if 2n − 1 divides m2 + 9 for some m ∈ N, then n must be
a power of 2. Suppose otherwise that n has an odd divisor d > 1. Then
2d − 1 | 2n − 1 is also a divisor of m2 + 9 = m2 + 32. However, 2d − 1
has some prime divisor p of the form 4k − 1, and by a well-known fact, p
divides both m and 3. Hence p = 3 divides 2d − 1, which is impossible,
because for d odd, 2d ≡ 2 (mod 3). Hence n = 2r for some r ∈ N.
Now let n = 2r. We prove the existence of m by induction on r. The case
r = 1 is trivial. Now for any r > 1 note that 22r − 1 = (22r−1 − 1)(22r−1

+
1). The induction hypothesis claims that there exists an m1 such that

22r−1 − 1 | m2
1 + 9. We also observe that 22r−1

+ 1 | m2
2 + 9 for simple

m2 = 3 ·22r−2

. By the Chinese remainder theorem, there is an m ∈ N that
satisfies m ≡ m1 (mod 22r−1 − 1) and m ≡ m2 (mod 22r−1

+ 1). It is easy

to see that this m2 + 9 will be divisible by both 22r−1 − 1 and 22r−1

+ 1,
i.e., that 22r − 1 | m2 + 9. This completes the induction.

19. For n = pα1
1 pα2

2 · · · pαr
r , where pi are distinct primes and αi natural num-

bers, we have τ(n) = (α1+1) · · · (αr+1) and τ(n2) = (2α1+1) . . . (2αr+1).
Putting ki = αi +1, the problem reduces to determining all natural values
of m that can be represented as

m =
2k1 − 1

k1
· 2k2 − 1

k2
· · · 2kr − 1

kr
. (1)

Since the numerator τ(n2) is odd, m must be odd too. We claim that
every odd m has a representation of the form (1). The proof will be done
by induction.
This is clear for m = 1. Now for every m = 2k − 1 with k odd the result
follows easily, since m = 2k−1

k · k, and k can be written as (1). We cannot
do the same if k is even; however, in the case m = 4k − 1 with k odd, we
can write it as m = 12k−3

6k−1 · 6k−1
3k · k, and this works.

In general, suppose that m = 2tk − 1, with k odd. Following the same
pattern, we can write m as

m =
2t(2t − 1)k − (2t − 1)

2t−1(2t − 1)k − (2t−1 − 1)
· · · 4(2t − 1)k − 3

2(2t − 1)k − 1
· 2(2t − 1)k − 1

(2t − 1)k
· k.

The induction is finished. Hence m can be represented as τ(n2)
τ(n) if and only

if it is odd.

20. We first consider the special case n = 3r. Then the simplest choice 10n−1
9 =

11 . . . 1 (n digits) works. This can be shown by induction: it is true for r =

1, while the inductive step follows from 103r − 1 = (103r−1 − 1)(102·3r−1

+

103r−1

+ 1), because the second factor is divisible by 3.
In the general case, let k ≥ n/2 be a positive integer and a1, . . . , an−k be
nonzero digits. We have
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A = (10k − 1)a1a2 . . . an−k

= a1a2 . . . an−k−1a′n−k 99 . . . 99︸ ︷︷ ︸
2k−n

b1b2 . . . bn−k−1b′n−k,

where a′n−k = an−k − 1, bi = 9 − ai, and b′n−k = 9 − a′n−k. The sum of
digits of A equals 9k independently of the choice of digits a1, . . . , an−k.
Thus we need only choose k ≥ n

2 and digits a1, . . . , an−k−1 �∈ {0, 9} and
an−k ∈ {0, 1} in order for the conditions to be fulfilled. Let us choose

k =

{
3r, if 3r < n ≤ 2 · 3r for some r ∈ Z,
2 · 3r, if 2 · 3r < n ≤ 3r+1 for some r ∈ Z;

and a1a2 . . . an−k = 22 . . .2. The number

A = 22 . . . 2︸ ︷︷ ︸
n−k−1

1 99 . . .99︸ ︷︷ ︸
2k−n

77 . . . 7︸ ︷︷ ︸
n−k−1

8

thus obtained is divisible by 2 · (10k − 1), which is, as explained above,
divisible by 18 · 3r. Finally, the sum of digits of A is either 9 · 3r or 18 · 3r;
thus A has the desired properties.

21. Such a sequence is obviously strictly increasing. We note that it must be
unique. Indeed, given a0, a1, . . . , an−1, then an is the least positive integer
not of the form ai + 2aj + 4ak, i, j, k < n.
We easily get that the first few an’s are 0, 1, 8, 9, 64, 65, 72, 73, . . . . Let
{cn} be the increasing sequence of all positive integers that consist of
zeros and ones in base 8, i.e., those of the form t0 + 23t1 + · · · + 23qtq
where ti ∈ {0, 1}. We claim that an = cn. To prove this, it is enough
to show that each m ∈ N can be uniquely written as ci + 2cj + 4ck. If
m = t0 +2t1+ · · ·+2rtr (ti ∈ {0, 1}), then m = ci +2cj +22ck is obviously
possible if and only if ci = t0 + 23t3 + 26t6 + · · · , cj = t1 + 23t4 + . . . , and
ck = t2 + 23t5 + · · · .
Hence for n = s0 + 2s1 + · · · + 2rsr we have an = s0 + 8s1 + · · · + 8rsr.
In particular, 1998 = 2 + 22 + 23 + 26 + 27 + 28 + 29 + 210, so a1998 =
8 + 82 + 83 + 86 + 87 + 88 + 89 + 810 = 1227096648.

Second solution. Define f(x) = xa0+xa1+· · · . Then the assumed property
of {an} gives

f(x)f(x2)f(x4) =
∑
i,j,k

xai+2aj+4ak =
∑

n

xn =
1

1 − x
.

We also get as a consequence f(x2)f(x4)f(x8) = 1
1−x2 , which gives f(x) =

(1 + x)f(x8). Continuing this, we obtain

f(x) = (1 + x)(1 + x8)(1 + x82

) · · · .

Hence the an’s are integers that have only 0’s and 1’s in base 8.
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22. We can obviously change each x into �x or �x� so that the column sums
remain unchanged. However, this does not necessarily match the row sums
as well, so let us consider the sum S of the absolute values of the changes
in the row sums. It is easily seen that S is even, and we want it to be 0.
A row may have a higher or lower sum than desired. Let us mark a cell
by − if its entry x was changed to �x , and by + if it was changed to �x�
instead. We call a row R2 accessible from a row R1 if there is a column
C such that C ∩ R1 is marked + and C ∩ R2 is marked −. Note that a
column containing a + must contain a − as well, because column sums
are unchanged. Hence from each row with a higher sum we can access
another row.
Assume that the row sum in R1 is higher. If R1, R2, . . . , Rk is a sequence
of rows such that Ri+1 is accessible from Ri via some column Ci and such
that the row sum in Rk is lower, then by changing the signs in Ci ∩ Ri

and Ci ∩ Ri+1 (i = 1, 2, . . . , k − 1) we decrease S by 2, leaving column
sums unchanged. We claim that such a sequence of rows always exists.
Let R be the union of all rows that are accessible from R1, directly or
indirectly; let R be the union of the remaining rows. We show that for any
column C, the sum in R∩C is not higher. If R∩C contains no +’s, then
this is clear. If R∩C contains a +, since the rows of R are not accessible,
the set R ∩ C contains no −’s. It follows that the sum in R ∩ C is not
lower, and since column sums are unchanged, we again come to the same
conclusion. Thus the total sum in R is not higher. Therefore, there is a
row in R with too low a sum, justifying our claim.

23. (a) If n is even, then every odd integer is unattainable. Assume that n ≥ 9
is odd. Let a be obtained by addition from some b, and b from c by
multiplication. Then a is 2c + 2, 2c + n, nc + 2, or nc + n, and is in
every case congruent to 2c+ 2 modulo n− 2. In particular, if a ≡ −2
(mod n− 2), then also b ≡ −4 and c ≡ −2 (mod n− 2).
Now consider any a = kn(n−2)−2, where k is odd. If it is attainable,
but not divisible by 2 or n, it must have been obtained by addition.
Thus all predecessors of a are congruent to either −2 or −4 (mod
n− 2), and none of them equals 1, a contradiction.

(b) Call an attainable number addy if the last operation is addition, and
multy if the last operation is multiplication. We prove the following
claims by simultaneous induction on k:
(1) n = 6k is both addy and multy;
(2) n = 6k + 1 is addy for k ≥ 2;
(3) n = 6k + 2 is addy for k ≥ 1;
(4) n = 6k + 3 is addy;
(5) n = 6k + 4 is multy for k ≥ 1;
(6) n = 6k + 5 is addy.
The cases k ≤ 1 are easily verified. For k ≥ 2, suppose all six state-
ments hold up to k − 1.
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Since 6k − 3 is addy, 6k is multy.
Next, 6k−2 is multy, so both 6k = (6k−2)+2 and 6k+1 = (6k−2)+3
are addy.
Since 6k is multy, both 6k + 2 and 6k + 3 are addy.
Number 6k + 4 = 2 · (3k + 2) is multy, because 3k + 2 is addy (being
either 6l+ 2 or 6l+ 5).
Finally, we have 6k+5 = 3 · (2k+1)+2. Since 2k+1 is 6l+1, 6l+3,
or 6l+5, it is addy except for 7. Hence 6k+5 is addy except possibly
for 23. But 23 = ((1 · 2 + 2) · 2 + 2) · 2 + 3 is also addy.
This completes the induction. Now 1 is given and 2 = 1 · 2, 4 = 1 + 3.
It is easily checked that 7 is not attainable, and hence it is the only
unattainable number.

24. Let f(n) be the minimum number of moves needed to monotonize any
permutation of n distinct numbers. Let us be given a permutation π of
{1, 2, . . . , n}, and let k be the first element of π. In f(n−1) moves, we can
transform π to either (k, 1, 2, . . . , k−1, k+1, . . . , n) or (k, n, n−1, . . . , k+
1, k − 1, . . . , 1). Now the former can be changed to (k, k − 1, . . . , 2, 1, k +
1, . . . , n), which is then monotonized in the next move. Similarly, the latter
also can be monotonized in two moves. It follows that f(n) ≤ f(n−1)+2.
Thus we shall be done if we show that f(5) ≤ 4.
First we note that f(3) = 1. Consider a permutation of {1, 2, 3, 4}. If either
1 or 4 is the first or the last element, we need one move to monotonize the
other three elements, and at most one more to monotonize the whole per-
mutation. Of the remaining four permutations, (2, 1, 4, 3) and (3, 4, 1, 2)
can also be monotonized in two moves. The permutations (2, 4, 1, 3) and
(3, 1, 4, 2) require 3 moves, but by this we can choose whether to change
them into (1, 2, 3, 4) or (4, 3, 2, 1).
We now consider a permutation of {1, 2, 3, 4, 5}. If either 1 or 5 is in the
first or last position, we can monotonize the rest in 3 moves, but in such a
way that the whole permutation can be monotonized in the next move. If
this is not the case, then either 1 or 5 is in the second or fourth position.
Then we simply switch it to the outside in one move and continue as in
the former case. Hence f(5) = 4, as desired.

25. We use induction on n. For n = 3, we have a single two-element subset
{i, j} that is split by (i, k, j) (where k is the third element of U). Assume
that the result holds for some n ≥ 3, and consider a family F of n − 1
proper subsets of U = {1, 2, . . . , n+ 1}, each with at least 2 elements.
To continue the induction, we need an element a ∈ U that is contained in
all n-element subsets of F , but in at most one of the two-element subsets.
We claim that such an a exists. Let F contain k n-element subsets and
m 2-element subsets (k +m ≤ n − 1). The intersection of the n-element
subsets contains exactly n+ 1 − k ≥ m+ 2 elements. On the other hand,
at most m elements belong to more than one 2-element subset, which
justifies our claim.
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Now let A be the 2-element subset that contains a, if it exists; otherwise,
let A be any subset from F containing a. Excluding a from all the subsets
from F \ {A}, we get at most n − 2 subsets of U \ {a} with at least 2
and at most n− 1 elements. By the inductive hypothesis, we can arrange
U \ {a} so that we split all the subsets of F except A. It remains to place
a, and we shall make a desired arrangement if we put it anywhere away
from A.

26. Put n = 2r + 1. Since each of the
(
n
2

)
pairs of judges agrees on at most

two candidates, the total number of agreements is at most k
(
n
2

)
. On the

other hand, if the ith candidate is passed by xi judges and failed by n−xi

judges, then the number of agreements on this candidate equals(
xi

2

)
+

(
n− xi

2

)
=
x2

i + (n− xi)
2 − n

2
≥ r2 + (n− r)2 − n

2
=

(n− 1)2

4
.

Therefore the total number of agreements is at least m(n−1)2

4 , which im-
plies that

k

(
n

2

)
≥ m(n− 1)2

4
, hence

k

m
≥ n− 1

2n
.

Remark. The obtained inequality is sharp. Indeed, if m =
(
2r+1

r

)
and

each candidate is passed by a different subset of r judges, we get equality.
A similar example shows that the result is not valid for even n. In that
case the weaker estimate k

m ≥ n−2
2n−2 holds.

27. Since this is essentially a graph problem, we call the points and segments
vertices and edges of the graph. We first prove that the task is impossible
if k ≤ 4.
Cases k ≤ 2 are trivial. If k = 3, then among the edges from a vertex A
there are two of the same color, say AB and AC, so we don’t have all the
three colors among the edges joining A,B,C.
Now let k = 4, and assume that there is a desired coloring. Consider the
edges incident with a vertex A. At least three of them have the same color,
say blue. Suppose that four of them, AB,AC,AD,AE, are blue. There is
a blue edge, say BC, among the ones joining B,C,D,E. Then four of the
edges joining A,B,C,D are blue, and we cannot complete the coloring.
So, exactly three edges from A are blue: AB,AC,AD. Also, of the edges
connecting any three of the 6 vertices other than A,B,C,D, one is blue
(because the edges joining them with A are not so). By a classical result,
there is a blue triangle EFG with vertices among these six. Now one of
EB,EC,ED must be blue as well, because none of BC,BD,CD is. Let
it be EB. Then four of the edges joining B,E, F,G are blue, which is
impossible.
For k = 5 the task is possible. Label the vertices 0, 1, . . . , 9. For each color,
we divide the vertices into four groups and paint in this color every edge
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joining two from the same group, as shown below. Then among any 5
vertices, 2 must belong to the same group, and the edge connecting them
has the considered color.

yellow: 01 12 20 36 69 93 57 48
red: 23 34 42 58 81 15 79 60
blue: 45 56 64 70 03 37 91 82
green: 67 78 86 92 25 59 13 04
orange: 89 90 08 14 47 71 35 26.

A desired coloring can be made for k ≥ 6 as well. Paint the edge ij in the
(i + j)th color for i < j ≤ 8, and in the 2ith color if j = 9 (the addition
being modulo 9). We can ignore the edges painted with the extra colors.
Then the edges of one color appear as five disjoint segments, so that any
complete k-graph for k ≥ 5 contains one of them.

28. Let A be the number of markers with white side up, and B the number
of pairs of markers whose squares share a side.
We claim that A + B does not change its parity as the game progresses.
Suppose that in some move we remove a marker that has exactly k neigh-
bors, among them r with white side up (0 ≤ r ≤ k ≤ 4). Of course, this
marker has its black side up. When it is removed, the r white markers get
black side up, while the k − r black ones become white. Thus A changes
by k − 2r. As for B, it decreases by k. It follows that A decreases by 2r
and preserves its parity, as claimed.
Initially, A = mn− 1 and B = m(n− 1) + n(m− 1); hence A+B equals
3mn−m − n− 1. If we succeed in removing all the markers, we end up
with A + B = 0. Hence 3mn−m− n− 1 = (m − 1)(n − 1) + 2(mn− 1)
must be even, or equivalently at least one of m and n is odd.
On the other hand, the game can be finished successfully if m or n is
odd. Assume that m is odd. As shown in the picture, we can arrive at
the position (1) in m moves; with m+1

2 moves we reduce it to the position
(1 1

2 ), and with the next m−1
2 moves to the position (2). We continue until

we empty all the columns.

•

◦◦
◦
◦◦
◦
◦◦
◦

◦◦
◦
◦◦
◦
◦◦
◦◦ ◦

−→

••
•

••
••

◦◦
◦

◦◦
◦◦

−→

•

•
•

•
•

•
•

◦

◦
◦

−→

••
•

••
••

(0) (1) (1 1
2 ) (2)

m

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
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4.40 Solutions to the Shortlisted Problems of IMO 1999

1. Obviously (1, p) (where p is an arbitrary prime) and (2, 2) are solutions
and the only solutions to the problem for x < 3 or p < 3.
Let us now assume x, p ≥ 3. Since p is odd, (p−1)x+1 is odd, and hence x
is odd. Let q be the largest prime divisor of x, which also must be odd. We
have q | x | xp−1 | (p−1)x+1 ⇒ (p−1)x ≡ −1 (mod q). Also from Fermat’s
little theorem (p−1)q−1 ≡ 1 (mod q). Since q−1 and x are coprime, there
exist integers α, β such that xα = (q− 1)β + 1. We also note that α must
be odd. We now have p− 1 ≡ (p− 1)(q−1)β+1 ≡ (p − 1)xα ≡ −1 (mod q)
and hence q | p ⇒ q = p. Since x is odd, p | x, and x ≤ 2p, it follows x = p
for all x, p ≥ 3. Thus

pp−1 | (p− 1)x + 1 = p2 ·
(
pp−2 −

(
p

1

)
pp−1 + · · · −

(
p

p− 2

)
+ 1

)
.

Since the expression in parenthesis is not divisible by p, it follows that
pp−1|p2 and hence p ≤ 3. One can easily verify that (3, 3) is a valid
solution.
We have shown that the only solutions are (1, p), (2, 2), and (3, 3), where
p is an arbitrary prime.

2. We first prove that every rational number in the interval (1, 2) can be

represented in the form a3+b3

a3+d3 . Taking b, d such that b �= d and a = b+ d,

we get a2 − ab+ b2 = a2 − ad+ d2 and

a3 + b3

a3 + d3
=

(a+ b)(a2 − ab+ b2)

(a+ d)(a2 − ad+ d2)
=
a+ b

a+ d
.

For a given rational number 1 < m/n < 2 we can select a = m + n and
b = 2m − n such that along with d = a − b we have a+b

a+d = m
n . This

completes the proof of the first statement.
For m/n outside of the interval we can easily select a rational number p/q

such that 3
√

n
m < p

q <
3

√
2n
m . In other words 1 < p3m

q3n < 2. We now proceed

to obtain a, b and d for p3m
q3n as before, and we finally have

p3m

q3n
=
a3 + b3

a3 + d3
⇒ m

n
=

(aq)3 + (bq)3

(ap)3 + (dp)3
.

Thus we have shown that all positive rational numbers can be expressed

in the form a3+b3

c3+d3 .

3. We first prove the following lemma.
Lemma. For d, c ∈ N and d2 | c2 + 1 there exists b ∈ N such that

d2(d2 + 1) | b2 + 1.
Proof. It is enough to set b = c+ d2c− d3 = c+ d2(c− d).
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Using the lemma it suffices to find increasing sequences dn and cn such that
cn−dn is an increasing sequence and d2

n | c2n+1. We then obtain the desired
sequences an and bn from an = d2

n and bn = cn + d2
n(cn − dn). It is easy

to check that dn = 22n + 1 and cn = 2ndn satisfy the required conditions.
Hence we have demonstrated the existence of increasing sequences an and
bn such that an(an + 1) | b2n + 1.

Remark. There are many solutions to this problem. For example, it is
sufficient to prove that the Pell-type equation 5an(an + 1) = b2n + 1 has
an infinity of solutions in positive integers. Alternatively, one can show
that an(an + 1) can be represented as a sum of two coprime squares for
infinitely many an, which implies the existence of bn.

4. (a) The fundamental period of p is the smallest integer d(p) such that
p | 10d(p) − 1.
Let s be an arbitrary prime and set Ns = 102s + 10s + 1. In that case
Ns ≡ 3 (mod 9). Let ps �= 37 be a prime dividingNs/3. Clearly ps �= 3.
We claim that such a prime exists and that 3 | d(ps). The prime ps

exists, since otherwise Ns could be written in the form Ns = 3 · 37k ≡
3 (mod 4), while on the other hand for s > 1 we have Ns ≡ 1 (mod 4).
Now we prove 3 | d(ps). We have ps | Ns | 103s−1 and hence d(ps) | 3s.
We cannot have d(ps) | s, for otherwise ps | 10s − 1 ⇒ ps | (102s +
10s + 1, 10s − 1) = 3; and we cannot have d(ps) | 3, for otherwise
ps | 103 − 1 = 999 = 33 · 37, both of which contradict ps �= 3, 37. It
follows that d(ps) = 3s. Hence for every prime s there exists a prime
ps such that d(ps) = 3s. It follows that the cardinality of S is infinite.

(b) Let r = r(s) be the fundamental period of p ∈ S. Then p | 103r − 1,

p � 10r − 1 ⇒ p | 102r + 10r + 1. Let xj = 10j−1

p and yj = {xj} =
0.ajaj+1aj+2 . . . . Then aj < 10yj, and hence

f(k, p) = ak + ak+r + ak+2r < 10(yk + yk+r + yk+2r) .

We note that xk + xk+s(p) + xk+2s(p) =
10k−1Np

p is an integer, from
which it follows that yk + yk+s(p) + yk+2s(p) ∈ N. Hence yk + yk+s(p) +
yk+2s(p) ≤ 2. It follows that f(k, p) < 20. We note that f(2, 7) =
4 + 8 + 7 = 19. Hence 19 is the greatest possible value of f(k, p).

5. Since one can arbitrarily add zeros at the end of m, which increases divis-
ibility by 2 and 5 to an arbitrary exponent, it suffices to assume 2, 5 � n.
If (n, 10) = 1, there exists an integerw ≥ 2 such that 10w ≡ 1 (mod n). We
also note that 10iw ≡ 1 (mod n) and 10jw+1 ≡ 10 (mod n) for all integers
i and j. Let us assume that m is of the formm =

∑u
i=1 10iw+

∑v
j=1 10jw+1

for integers u, v ≥ 0 (where if u or v is 0, the corresponding sum is
0). Obviously, the sum of the digits of m is equal to u + v, and also
m ≡ u + 10v (mod n). Hence our problem reduces to finding integers
u, v ≥ 0 such that u + v = k and n | u + 10v = k + 9v. Since (n, 9) = 1,
it follows that there exists some v0 such that 0 ≤ v0 < n ≤ k and 9v0 ≡
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−k (mod n) ⇒ n | k + 9v0. Taking this v0 and setting u0 = k − v0 we
obtain the desired parameters for defining m.

6. Let N be the smallest integer greater than M . We take the difference of
the numbers in the progression to be of the form 10m + 1, m ∈ N. Hence
we can take an = a0 + n(10m + 1) = bsbs−1 . . . b0 where a0 is the initial
term in the progression and bsbs−1 . . . b0 is the decimal representation of
an. Since 2m is the smallest integer x such that 10x ≡ 1 (mod 10m + 1),
it follows that 10k ≡ 10l (mod 10m + 1) ⇔ k ≡ l (mod 2m). Hence

a0 ≡ an = bsbs−1 . . . b0 ≡
2m−1∑
i=0

ci10i (mod 10m + 1),

where ci = bi + b2m+i + b4m+i + · · · ≥ 0 for i = 0, 1, . . . , 2m− 1 (these ci
also depend on n). We note that

∑2m−1
i=0 ci10i is invariant modulo 10m +1

for all n and that
∑2m−1

i=0 ci =
∑s

j=0 bj for a given n. Hence we must
choose a0 and m such that a0 is not congruent to any number of the form∑2m−1

i=0 ci10i, where c0 + c1 + · · · + c2m−1 ≤ N (c0, c1, . . . , c2m−1 ≥ 0).
The number of ways to select the nonnegative integers c0, c1, . . . , c2m−1

such that c0 + c1 + · · · + c2m−1 ≤ N is equal to the number of strictly
increasing sequences 0 ≤ c0 < c0 + c1 + 1 < c0 + c1 + c2 + 2 + · · · <
c0 + c1 + · · ·+ c2m−1 +2m−1 ≤ N+2m−1, which is equal to the number
of 2m-element subsets of {0, 1, 2, . . . , N + 2m− 1}, which is

(
N+2m

N

)
. For

sufficiently large m we have
(
N+2m

N

)
< 10m, and hence in this case one can

select a0 such that a0 is not congruent to
∑2m−1

i=0 ci10i modulo 10m+1 for
any set of integers c0, c1, . . . , c2m−1 such that c0 + c1 + · · · + c2m−1 ≤ N .
Thus we have found the desired arithmetic progression.

7. We use the following simple lemma.
Lemma. Suppose that M is the interior point of a convex quadrilateral

ABCD. Then it follows that MA+MB < AD +DC + CB.
Proof. We repeatedly make use of the triangle inequality. The line AM ,

in addition to A, intersects the quadrilateral in a second point N . In
that case AM +MB < AN +NB < AD +DC + CB.

We now apply this lemma in the following way. Let D, E, and F be
median points of BC, AC, and AB. Any point M in the interior of 
ABC
is contained in at least two of the three convex quadrilaterals ABDE,
BCEF , and CAFD. Let us assume without loss of generality that M is
in the interior of BCEF and CAFD. In that case we apply the lemma to
obtain AM +CM < AF +FD+DC and BM +CM < CE +EF +FB
to obtain

CM +AM +BM + CM < AF + FD +DC + CE + EF + FB

= AB +AC +BC

from which the required conclusion immediately follows.
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8. Let A, B, C, and D be inverses of four of the five points, with the fifth
point being the pole of the inversion. A separator through the pole trans-
forms into a line containing two of the remaining four points such that
the remaining two points are on opposite sides of the line. A separator not
containing the pole transforms into a circle through three of the points
with the fourth point in its interior. Let K be the convex hull of A,B,C,
and D. We observe two cases:
(i) K is a quadrilateral, for example ABCD. In that case the four sep-

arators are the two diagonals and two circles ABC and ADC if
∠A + ∠C < 180◦, or BAD and BCD otherwise. The remaining six
viable circles and lines are clearly not separators.

(ii) K is a triangle, for example ABC with D in its interior. In that case
the separators are lines DA, DB, DC and the circle ABC. No other
lines and circles qualify.

We have thus shown that any set of five points satisfying the stated con-
ditions will have exactly four separators.

9. Let rPQ denote a reflection about the planar bisector of PQ with P,Q ∈ S.
Let G be the centroid of S. From rPQ(S) = S it follows that rPQ(G) = G.
Hence G belongs to the perpendicular bisector of PQ and thus GP = GQ.
Consequently the whole of S lies on a sphere Σ centered at G. We note
the following two cases:
(a) S is a subset of a plane π. In this case S is included in a circle k, G be-

ing its center. Hence its n points form a convex polygon A1A2 . . . An.
When applying rAiAi+2 for some 0 < i < n− 1 the point Ai+1 trans-
forms into some point of S lying on the same side of AiAi+1, which
has to be Ai+1 itself. It thus follows that AiAi+1 = Ai+1Ai+2 for all
0 < i < n− 1 and hence A1A2 . . . An is a regular n-gon.

(b) The points in S are not coplanar. It follows that S is a polyhedron
P inscribed in a sphere Σ centered at G. By applying the previous
case to the faces of the polyhedron, it follows that all faces are regular
n-gons.
Let us take an arbitrary vertex V and let V V1, V V2 and V V3 be three
consecutive edges stemming from V (V , V1, V2, and V3 defining two
adjacent faces of P ). We now look at rV1V3 . Since this transformation
leaves the half-planes [V1V3, V2 and [V1V3, V invariant and since V2

and V are the only points of P on the respective half-planes, it fol-
lows that rV1V3 leaves V and V2 invariant. This transform also swaps
V1 and V3. Hence, the face determined by V V1V2 is transformed by
rV1V3 into the face V V3V2, and thus the two faces sharing V V2 are
congruent. We conclude that all faces are congruent and similarly
that vertices are endpoints of the same number of edges; hence P is a
regular polyhedron.
Finally, we have to rule out S being vertices of a cube, a dodecahedron,
or an icosahedron. In all of these cases if we select two diametrically
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opposite points P and Q, then S\{P,Q} is not symmetric with respect
to the bisector of PQ, which prevents rPQ from being an invariant
transformation of S.

It thus follows that the only viable finite completely symmetric sets are
vertices of regular n-gons, the tetrahedron, and the octahedron. It is not
explicitly asked for, but it is easy to verify that all of these are indeed
completely symmetric.

Remark. On the IMO, a simpler version of this problem was adopted,
adding the condition that S belongs to a plane and thus eliminating the
need for the second case altogether.

10. We use the following lemma.

Lemma. Let ABC be a triangle andX ∈ AB such that
−−→
AX :

−−→
XB = m : n.

Then (m + n) cot∠CXB = n cotA −m cotB and m cot∠ACX =
(n+m) cotC + n cotA.

Proof. Let CD be the altitude fromC and h its length. Then using oriented
segments we have AX = AD + DX = h cotA − h cot∠CXB and
BX = BD + DX = h cotB + h cot ∠CXB. The first formula in
the lemma now follows from n · AX = m · BX . The second formula
immediately follows from the first part applied to the triangle ACX
and the point X ′ ∈ AC such that XX ′ ‖ BC.

Let us set cotA = x, cotB = y, and cotC = z. Applying the second for-
mula in the lemma to 
ABC and the point X , we obtain 4 cot∠ACX =
9z+5x. Applying the first formula in the lemma to 
CXZ and the point Y
and using ∠XY Z = 45◦ and cot∠CXZ = −y, we obtain 3 cot∠XY Z =
cot ∠ACX − 2 cot∠CXZ = 9z+5x

4 + 2y ⇒ 5x+ 8y + 9z = 12.
We now use the well-known relation for cotangents of a triangle xy+yz+
xz = 1 to get 9 = 9(x + y)z + 9xy = (x+ y)(12 − 5x − 8z) + 9xy = 9 ⇒
(4y + x − 3)2 + 9(x − 1)2 = 0 ⇒ x = 1, y = 1

2 , z = 1
3 . It follows that

x, y, and z have fixed values, and hence all triangles T in Σ are similar,
with their smallest angle A having cotangent 1 and thus being equal to
∠A = 45◦.

11. Let Ω(I, r) be the incircle of 
ABC. Let D, E, and F denote the points
where Ω touches BC, AC, and AB, respectively. Let P , Q, and R denote
the midpoints of EF , DF , and DE respectively. We prove that Ωa passes
through Q and R. Since 
IQD ∼ 
IDB and 
IRD ∼ 
IDC, we
obtain IQ · IB = IR · IC = r2. We conclude that B,C,Q, and R lie
on a single circle Γa. Moreover, since the power of I with respect to Γa

is r2, it follows for a tangent IX from I to Γa that X lies on Ω and
hence Ω is perpendicular to Γa. From the uniqueness of Ωa it follows that
Ωa = Γa. Thus Ωa contains Q and R. Similarly Ωb contains P and R and
Ωc contains P and Q. Hence, A′ = P , B′ = Q and C′ = R. Therefore the
radius of the circumcircle of 
A′B′C′ is half the radius of Ω.

12. We first introduce the following lemmas.
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Lemma 1. Let ABC be a triangle, I its inenter and Ia the center of
the excircle touching BC. Let A′ be the center of the arc B̂C of the
circumcircle not containing A. Then A′B = A′C = A′I = A′Ia.

Proof. The result follows from a straightforward calculation of the relevant
angles.

Lemma 2. Let two circles k1 and k2 meet each other at points X and Y
and touch a circle k internally in points M and N , respectively. Let
A be one of the intersections of the line XY with k. Let AM and AN
intersect k1 and k2 respectively at C and E. Then CE is a common
tangent of k1 and k2.

Proof. Since AC ·AM = AX ·AY = AE ·AN , the points M,N,E,C lie on
a circle. LetMN meet k1 again at Z. IfM ′ is any point on the common
tangent at M , then ∠MCZ = ∠M ′MZ = ∠M ′MN = ∠MAN (as
oriented angles), implying that CZ ‖ AN . It follows that ∠ACE =
∠ANM = ∠CZM . Hence CE is tangent to k1 and analogously to k2.

In the main problem, let us define E and F respectively as intersections
of NA and NB with Ω2. Then applying Lemma 2 we get that CE and
DF are the common tangents of Ω1 and Ω2.
If the circles have the same radii,
the result trivially holds. Otherwise,
let G be the intersection of CE and
DF . Let O1 and O2 be the centers
of Ω1 and Ω2. Since O1D = O1C
and ∠O1DG = ∠O1CG = 90◦, it
follows that O1 is the midpoint of
the shorter arc of the circumcircle
of 
CDG. The center O2 is located
on the bisector of ∠CGD, since Ω2

touches both GC and GD.

O
O1

O2

A

B

C

D

E

F
G

M
N

X

Y

However, it also sits on Ω1, and using Lemma 1 we obtain that O2 is
either at the incenter or at the excenter of 
CDG opposite G. Hence,
Ω2 is either the incircle or the excircle of CDG and thus in both cases
touches CD.

Second solution. Let O be the center of Γ , and r, r1, r2 the radii of
Γ, Γ1, Γ2. It suffices to show that the distance d(O2, CD) is equal to r2.
The homothety with center M and ratio r/r1 takes Γ1, C,D into Γ,A,B,
respectively; hence CD ‖ AB and d(C,AB) = r−r1

r d(M,AB). Let O1O2

meet XY at R. Then d(O2, CD) = O2R+ r−r1

r d(M,AB), i.e.,

d(O2, CD) = O2R +
r − r1
r

[O1O2 −O2R+ r1 cos∠OO1O2], (1)

since O,O1, and M are collinear. We have O1X = O1O2 = r1, OO1 =
r− r1, OO2 = r− r2, and O2X = r2. Using the cosine law in the triangles

OO1O2 and XO1O2, we obtain that cos∠OO1O2 =
2r2

1−2rr1+2rr2−r2
2

2r1(r−r1)
and

O2R =
r2
2

2r1
. Substituting these values in (1) we get d(O2, CD) = r2.
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13. Let us construct a convex quadrilateral PQRS and an interior point T
such that 
PTQ ∼= 
AMB, 
QTR ∼ 
AMD, and 
PTS ∼ 
CMD.
We then have TS = MD·PT

MC = MD and TR
TS = TR·TQ·TP

TQ·TP ·TS = MD·MB·MC
MA·MA·MD =

MB
MC (using MA = MC). We also have ∠STR = ∠BMC and therefore

RTS ∼ 
BMC. Now the relations between angles become

∠TPS + ∠TQR = ∠PTQ and ∠TPQ+ ∠TSR = ∠PTS,

implying that PQ ‖ RS and QR ‖ PS. Hence PQRS is a parallelogram
and hence AB = PQ = RS and QR = PS. It follows that BC

MC = RS
TS =

AB
MD ⇒ AB · CM = BC · MD and AD·BM

AM = AD·QT
AM = QR = PS =

CD·TS
MD = CD ⇒ BM · AD = MA · CD.

14. We first introduce the same lemma as in problem 12 and state it here
without proof.
Lemma. Let ABC be a triangle and I the center of its incircle. Let M be

the center of the arc B̂C of the circumcircle not containing A. Then
MB = MC = MI.

Let the circle XO1O2 intersect the circle Ω again at point T . Let M
and N be respectively the midpoints of arcs B̂C and ÂC, and let P
be the intersection of Ω and the line through C parallel to MN . Then
the lemma gives MP = NC = NI = NO1 and NP = MC =
MI = MO2. Since O1 and O2 lie on XN and XM respectively, we
have ∠NTM = ∠NXM = ∠O1XO2 = ∠O1TO2 and hence ∠NTO1 =
∠MTO2. Moreover, ∠TNO1 = ∠TNX = ∠TMO2, from which it fol-
lows that 
O1NT ∼ 
O2MT . Thus NT

MP = NT
NO1

= MT
MO2

= MT
NP ⇒

MP ·MT = NP ·NT ⇒ SMPT = SNPT . It follows that TP bisects the
segment MN , and hence it passes through I. We conclude that T belongs
to the line PI and does not depend on X .

Remark. An alternative approach is to apply an inversion at point C.
Points O1 and O2 become excenters of 
AXC and 
BXC, and T be-
comes the projection of Ic onto AB.

15. For all xi = 0 any C will do, so we may assume the contrary. Since the
equation is symmetric and homogeneous, we may assume

∑
i xi = 1.

The equation now becomes F (x1, x2, . . . , xn) =
∑

i<j xixj(x
2
i + x2

j) =∑
i x

2
i

∑
j 	=i xj =

∑
i x

3
i (1 − xi) =

∑
i f(xi) ≤ C, where we define f(x) =

x3 − x4. We note that for x, y ≥ 0 and x+ y ≤ 2/3,

f(x+ y) + f(0) − f(x) − f(y) = 3xy(x+ y)

(
2

3
− x− y

)
≥ 0 . (1)

We note that if at least three elements of {x1, x2, . . . , xn} are nonzero the
condition of (1) always holds for the two smallest ones. Hence, applying (1)
repeatedly, we obtain F (x1, x2, . . . , xn) ≤ F (a, 1− a, 0, . . . , 0) = 1

2 (2a(1−
a))(1 − 2a(1 − a)) ≤ 1

8 = F
(

1
2 ,

1
2 , 0, . . . , 0

)
. Thus we have C = 1

8 (for all
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n), and equality holds only when two xi are equal and the remaining ones
are 0.

Second solution. Let M = x2
1 + x2

2 + · · · + x2
n. Using ab ≤ (a+ 2b)2/8 we

have ∑
1≤i<j≤n

xixj(x
2
i + x2

j) ≤ M
∑
i<j

xixj

≤ 1

8

⎛⎝M + 2
∑
i<j

xixj

⎞⎠2

=
1

8

(
n∑

i=1

xi

)4

.

Equality holds if and only if M = 2
∑

i<j xixj and xixj(x
2
i +x2

j) = Mxixj

for all i < j, which holds if and only if n − 2 of the xi are zero and the
remaining two are equal.

Remark. Problems (SL90-26) and (SL91-27) are very similar.

16. Let C(A) denote the characteristic of an arrangement A. We shall prove
that max C(A) = n+1

n .
Let us prove first C(A) ≤ n+1

n for all A. Among elements {n2 − n, n2 −
n+1, . . . , n2}, by the pigeonhole principle, in at least one row and at least
one column there exist two elements, and hence one pair in the same row
or column that is not (n2 − n, n2). Hence

C(A) ≤ max

{
n2

n2 − n+ 1
,
n2 − 1

n2 − n

}
=
n2 − 1

n2 − n
=
n+ 1

n
.

We now consider the following arrangement:

aij =

{
i+ n(j − i− 1) if i < j,
i+ n(n− i+ j − 1) if i ≥ j.

We claim that C(a) = n+1
n . Indeed, in this arrangement no two numbers

in the same row or column differ by less than n− 1, and in addition, n2

and n2 − n+ 1 are in different rows and columns, and hence

C(A) ≥ n2 − 1

n2 − n
=
n+ 1

n
.

17. A game is determined by the ordering t1, . . . , tN of the N =
(

n
2

)
transpo-

sitions (i, j) of the set {1, 2, . . . , n}. The game is nice if the permutation
P = tN tN−1 . . . t1 has no fixed point, and tiresome if P is the identity
(denoted by I). Recall that every permutation can be written as a com-
position of disjoint cycles.
We claim that there exists a nice game if and only if n �= 3.
For n = 2, P2 = t1 = (1, 2) is obviously nice. For n = 3 each game
has the form P = (b, c)(a, c)(a, b) = (a, c) for an appropriate nota-
tion of the players, which cannot be nice. Now for n ≥ 4 we define
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Pn = (1, 2)(1, 3)(2, 3) · · · (1, n)(2, n) · · · (n − 1, n). We obtain inductively
that Pn = Pn−1(1, n, n− 1, . . . , 2) = (1, n)(2, n− 1) · · · (i, n+ 1 − i) · · · is
nice for all even n.
Also, if n = 2k+1 is odd, thenQn = Pn−1(1, n)(2, n) · · · (k, n)(n−1, n)(n−
2, n) · · · (k + 1, n) maps i to n + 1 − i for i ≤ k, to n − 1 − i for k + 1 ≤
i ≤ 2k − 1, and to 3k + 1 − i if i ∈ {2k, 2k + 1}. Hence Qn is nice. This
justifies our claim.
Now we prove that a tiresome game exists if and only if n ≡ 0, 1 (mod 4).
Evidently every transposition changes the sign of the permutation. Thus

the sign of P is (−1)(
n
2) and for P to be the identity we must have 2 |(

n
2

)
⇒ n ≡ 0, 1(mod 4).

Let us now construct tiresome games for the allowed n. For n = 4k we
divide the girls into groups of 4. In each group we perform the following
game: (3, 4)(1, 3)(2, 4)(2, 3)(1, 4)(1, 2) = I. On the other hand, among two
different groups (call them {1, 2, 3, 4} and {5, 6, 7, 8}) we perform

(4, 7)(3, 7)(4, 6)(1, 6)(2, 8)(3, 8)(2, 7)(2, 6)
(4, 5)(4, 8)(1, 7)(1, 8)(3, 5)(3, 6)(2, 5)(1, 5) = I.

For n = 4k + 1 we divide into groups of four as before, with one girl
remaining. Every time a group (denoted {1, 2, 3, 4}) is to play a game the
remaining girl (denoted 5) joins in, and they play

(3, 5)(3, 4)(4, 5)(1, 3)(2, 4)(2, 3)(1, 4)(1, 5)(1, 2)(2, 5) = I.

This completes the proof.

18. Define f(x, y) = x2 − xy + y2. Let us assume that three such sets A, B,
and C do exist and that w.l.o.g. 1, b, and c (c > b) are respectively their
smallest elements.
Lemma 1. Numbers x, y, and x+ y cannot belong to three different sets.
Proof. The number f(x, x+ y) = f(y, x+ y) must belong to both the set

containing y and the set containing x, a contradiction.
Lemma 2. The subset C contains a multiple of b. Moreover, if kb is the

smallest such multiple, then (k− 1)b ∈ B and (k− 1)b+1, kb+1 ∈ A.
Proof. Let r be the residue of c modulo b. If r = 0, the first statement

automatically holds. Let 0 < r < b. In that case r ∈ A, and c − r
is then not in B according to Lemma 1. Hence c − r ∈ A and since
b | c − r, it follows that b | f(c − r, b) ∈ C, thus proving the first
statement. It follows immediately from Lemma 1 that (k − 1)b ∈ B.
Now by Lemma 1, (k− 1)b+ 1 = kb− (b− 1) must be in A; similarly,
kb+ 1 = [(k − 1)b+ 1] + b ∈ A as well.

Let us show by induction that (nk − 1)b + 1, nkb+ 1 ∈ A for all integers
n. The inductive basis has been shown in Lemma 2. Assuming that [(n−
1)k − 1]b + 1 ∈ A and (n − 1)kb + 1 ∈ A, we get that (nk − 1)b + 1 =
((n − 1)kb+ 1) + (k − 1)b = [((n − 1)k − 1)b + 1] + kb belongs to A and



4.40 Shortlisted Problems 1999 655

nkb+ 1 = ((nk − 1)b+ 1) + b = ((n− 1)kb+ 1) + kb ⇒ nkb+ 1 ∈ A. This
finishes the inductive step. In particular, f(kb, kb+1) = (kb+1)kb+1 ∈ A.
However, since kb ∈ C, kb+1 ∈ A, it follows that f(kb, kb+1) ∈ B, which
is a contradiction.

19. Let A = {f(x) | x ∈ R} and f(0) = c. Plugging in x = y = 0 we get
f(−c) = f(c) + c− 1, hence c �= 0. If x ∈ A, then taking x = f(y) in the

original functional equation we get f(x) = c+1
2 − x2

2 for all x ∈ A.
We now show that A−A = {x1 − x2 | x1, x2 ∈ A} = R. Indeed, plugging
in y = 0 into the original equation gives us f(x−c)−f(x) = cx+f(c)−1,
an expression that evidently spans all the real numbers. Thus, each x can
be represented as x = x1 − x2, where x1, x2 ∈ A. Plugging x = x1 and
f(y) = x2 into the original equation gives us

f(x) = f(x1−x2) = f(x1)+x1x2+f(x2)−1 = c−x2
1 + x2

2

2
+x1x2 = c−x2

2
.

Hence we must have c = c+1
2 , which gives us c = 1. Thus f(x) = 1 − x2

2
for all x ∈ R. It is easily checked that this function satisfies the original
functional equation.

20. We first introduce some useful notation. An arrangement around the circle
will be denoted by x = {x1, x2, . . . , xn}, where the elements are arranged
clockwise and x1 is fixed to be the smallest number. We will call an ar-
rangement balanced if x1 ≤ xn ≤ x2 ≤ xn−1 ≤ x3 ≤ xn−2 ≤ · · · (the
string of inequalities continues until all the elements are accounted for).
We will denote the permutation of x = {x1, x2, . . . , xn} in ascending order
by x′ = {x′1, x′2, . . . , x′n}. We will let fi(x) = {fi(x)1, fi(x)2, . . . , fi(x)n−1}
denote the arrangement after one iteration of the algorithm where xi was
the deleted element.
Lemma 1. If an arrangement x is balanced, then f1(x) is also balanced.
Proof. In one iteration we have {x1, . . . , xn} → {xn + x2, x2 + x3, . . . ,

xn−1 + xn}. Since xn ≤ x2 ≤ xn−1 ≤ x3 ≤ xn−2 ≤ · · · , it follows that
xn + x2 ≤ xn + xn−1 ≤ x2 + x3 ≤ xn−1 + xn−2 ≤ · · · , which means
that f1(x) is balanced.

We will first show by induction that Smax can be reached by using the bal-
anced initial arrangement {a1, a3, a5, . . . , a6, a4, a2} and repeatedly delet-
ing the smallest member. For n = 3 we have S3 = a2 + a3, in accordance
with the formula. Assuming that the formula holds for a given n, we note
that for an arrangement x = {a1, a3, a5, . . . , a6, a4, a2} the arrangement
f1(x) is also balanced. We now apply the induction hypothesis and use
that

(
n−2

i

)
+
(
n−2
i−1

)
=
(

n−1
i

)
:

S(x) = S(f1(x))

=

n−1∑
k=2

(
n− 2

[k/2] − 1

)
(ak + ak+2) +

(
n− 2

[n/2] − 1

)
(an + an+1) = Smax.
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We now prove that every other arrangement yields a smaller value. We
shall write {x1, . . . , xn} ≤ {y1, . . . , yn} whenever x′n + x′n−1 + · · · + x′i ≤
y′n + y′n−1 + · · · + y′i holds for all 1 ≤ i ≤ n.
Lemma 2. Let x be an arbitrary arrangement and y a balanced arrange-

ment, both of n elements, such that x ≤ y. Then it follows that
fi(x) ≤ f1(y), for all i.

Proof. For any 1 ≤ j ≤ n−1 there exists kj such that fi(x)j = xkj +xkj+1

(assuming kj + 1 = 1 if kj = n− 1). Then we have

fi(x)n−1 + · · · + fi(x)n−j = (xk1 + xk1+1) + · · · + (xkj + xkj+1)

≤ 2x′n + · · · + 2x′n−i+1 + x′n−i + x′n−i−1

= f1(y)n−1 + · · · + f1(y)n−j

for all j, and hence fi(x) ≤ f1(y).
An immediate consequence of Lemma 2 is fn−2(x) ≤ fn−2

1 (y), implying
S = fn−2(x)1 + fn−2(x)2 ≤ fn−2

1 (y)1 + fn−2
1 (y)2 = Smax(y). Thus the

proof is finished.

21. Let us call f(n, s) the number of paths from (0, 0) to (n, n) that contain
exactly s steps. Evidently, for all n we have f(n, 1) = f(2, 2) = 1, in
accordance with the formula. Let us thus assume inductively for a given
n > 2 that for all s we have f(n, s) = 1

s

(
n−1
s−1

)(
n

s−1

)
. We shall prove that

the given formula holds also for all f(n+ 1, s), where s ≥ 2.
We say that an (n+1, s)- or (n+1, s+1)-path is related to a given (n, s)-
path if it is obtained from the given path by inserting a step EN between
two moves or at the beginning or the end of the path. We note that by
inserting the step between two moves that form a step one obtains an
(n + 1, s)-path; in all other cases one obtains an (n + 1, s + 1)-path. For
each (n, s)-path there are exactly 2n+ 1 − s related (n+ 1, s+ 1)-paths,
and for each (n, s + 1)-path there are s + 1 related (n + 1, s + 1)-paths.
Also, each (n+ 1, s+ 1)-path is related to exactly s+ 1 different (n, s)- or
(n, s+ 1)-paths. Thus:

(s+ 1)f(n+ 1, s+ 1) = (2n+ 1 − s)f(n, s) + (s+ 1)f(n, s+ 1)

=
2n+ 1 − s

s

(
n− 1

s− 1

)(
n

s− 1

)
+

(
n− 1

s

)(
n

s

)
=

(
n

s

)(
n+ 1

s

)
,

i.e., f(n+ 1, s+ 1) = 1
s+1

(
n
s

)(
n+1

s

)
. This completes the proof.

22. (a) Color the first, third, and fifth row red, and the remaining squares
white. There in total n pieces and 3n red squares. Since each piece
can cover at most three red squares, it follows that each piece colors
exactly three red squares. Then it follows that the two white squares
it covers must be on the same row; otherwise, the piece has to cover
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at least three. Hence, each white row can be partitioned into pairs of
squares belonging to the same piece. Thus it follows that the number
of white squares in a row, which is n, must be even.

(b) Let ak denote the number of different tilings of a 5 × 2k rectangle.
Let bk be the number of tilings that cannot be partitioned into two
smaller tilings along a vertical line (without cutting any pieces). It is
easy to see that a1 = b1 = 2, b2 = 2, a2 = 6 = 2 · 3, b3 = 4, and
subsequently, by induction, b3k ≥ 4, b3k+1 ≥ 2, and b3k+2 ≥ 2. We

also have ak = bk +
∑k−1

i=1 biak−i. For k ≥ 3 we now have inductively

ak > 2 +

k−1∑
i=1

2ak−i ≥ 2 · 3k−1 + 2ak−1 ≥ 2 · 3k .

23. Let r(m) denote the rest period before the mth catch, t(m) the number of
minutes before the mth catch, and f(n) as the number of flies caught in
n minutes. We have r(1) = 1, r(2m) = r(m), and r(2m + 1) = f(m) + 1.
We then have by induction that r(m) is the number of ones in the binary
representation of m. We also have t(m) =

∑m
i=1 r(i) and f(t(m)) = m.

From the recursive relations for r we easily derive t(2m+1) = 2t(m)+m+1
and consequently t(2m) = 2t(m)+m− r(m). We then have, by induction
on p, t(2pm) = 2pt(m) + p ·m · 2p−1 − (2p − 1)r(m).
(a) We must find the smallest number m such that r(m + 1) = 9. The

smallest number with nine binary digits is 1111111112 = 511; hence
the required m is 510.

(b) We must calculate t(98). Using the recursive formulas we have t(98) =
2t(49)+49−r(49), t(49) = 2t(24)+25, and t(24) = 8t(3)+36−7r(3).
Since we have t(3) = 4, r(3) = 2 and r(49) = r(1100012) = 3, it
follows t(24) = 54 ⇒ t(49) = 133 ⇒ t(98) = 312.

(c) We must find mc such that t(mc) ≤ 1999 < t(mc + 1). One can
estimate where this occurs using the formula t(2p(2q − 1)) = (p +
q)2p+q−1 − p 2p−1 − q 2p + q, provable from the recursive relations. It
suffices to note that t(462) = 1993 and t(463) = 2000; hence mc = 462.

24. Let S = {0, 1, . . . , N2 − 1} be the group of residues (with respect to
addition modulo N2) and A an n-element subset. We will use |X | to
denote the number of elements of a subset X of S, and X to refer to the
complement of X in S. For i ∈ S we also define Ai = {a+ i | a ∈ A}. Our

task is to select 0 ≤ i1 < · · · < iN ≤ N2 − 1 such that
∣∣∣⋃N

j=1Aij

∣∣∣ ≥ 1
2 |S|.

Each x ∈ S appears in exactly N sets Ai. We have
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∑
i1<···<iN

∣∣∣∣∣∣
N⋂

j=1

Aij

∣∣∣∣∣∣ =
∑

i1<···<iN

|{x ∈ S | x /∈ Ai1 , . . . , AiN }|

=
∑
x∈S

|{i1 < · · · < iN |x /∈ Ai1 , . . . , AiN }|

=
∑
x∈S

(
N2 −N

N

)
=

(
N2 −N

N

)
|S| .

Hence ∑
i1<···<iN

∣∣∣∣∣∣
N⋃

j=1

Aij

∣∣∣∣∣∣ =
∑

i1<···<iN

⎛⎝|S| −

∣∣∣∣∣∣
N⋂

j=1

Aij

∣∣∣∣∣∣
⎞⎠

=

((
N2

N

)
−
(
N2 −N

N

))
|S|.

Thus, by the pigeonhole principle, one can choose i1 < · · · < iN such that∣∣∣⋃N
j=1 Aij

∣∣∣ ≥
(
1 −

(
N2−N

N

)
/
(
N2

N

))
|S|. Since

(
N2

N

)
/
(
N2−N

N

)
≥

(
N2

N2−N

)N

=
(
1 + 1

N−1

)N

> e > 2, it follows that
∣∣∣⋃N

j=1 Aij

∣∣∣ ≥ 1
2 |S|; hence the cho-

sen i1 < · · · < iN are indeed the elements of B that satisfy the conditions
of the problem.

25. Let n = 2k. Color the cells neigh-
boring the edge of the board black.
Then color the cells neighboring the
black cells white. Then in alterna-
tion color the still uncolored cells
neighboring the white or black cells
on the boundary the opposite color
and repeat until all cells are colored.

We call the cells colored the same color in each such iteration a “frame.”
In the color scheme described, each cell (white or black) neighbors exactly
two black cells. The number of black cells is 2k(k+1), and hence we need
to mark at least k(k + 1) cells.
On the other hand, going along each black-colored frame, we can alter-
nately mark two consecutive cells and then not mark two consecutive cells.
Every cell on the black frame will have one marked neighbor. One can ar-
range these sequences on two consecutive black frames such that each cell
in the white frame in between has exactly one neighbor. Hence, starting
from a sequence on the largest frame we obtain a marking that contains
exactly half of all the black cells, i.e., k(k + 1) and neighbors every cell.
It follows that the desired minimal number of markings is k(k + 1).

Remark. For n = 4k−1 and n = 4k+1 one can perform similar markings
to obtain minimal numbers 4k2 − 1 and (2k + 1)2, respectively.
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26. We denote colors by capital initial letters. Let us suppose that there exists
a coloring f : Z → {R,G,B, Y } such that for any a ∈ Z we have f{a, a+
x, a+ y, a+x+ y} = {R,G,B, Y }. We now define a coloring of an integer
lattice g : Z×Z → {R,G,B, Y } by the rule g(i, j) = f(xi+ yj). It follows
that every unit square in g must have its vertices colored by four different
colors.
If there is a row or column with period 2, then applying the condition
to adjacent unit squares, we get (by induction) that all rows or columns,
respectively, have period 2.
On the other hand, taking a row to be not of period 2, i.e., containing
a sequence of three distinct colors, for example GRY , we get that the
next row must contain in these columns Y BG, and the following GRY ,
and so on. It would follow that a column in this case must have period
2. A similar conclusion holds if we start with an aperiodic column. Hence
either all rows or all columns must have period 2.
Let us assume w.l.o.g. that all rows have a period of 2. Assuming w.l.o.g.
{g(0, 0), g(1, 0)} = {G,B}, we get that the even rows are painted with
{G,B} and odd with {Y,R}. Since x is odd, it follows that g(y, 0) and
g(0, x) are of different color. However, since g(y, 0) = f(xy) = g(0, x), this
is a contradiction. Hence the statement of the problem holds.

27. Denote A = {0, 1, 2} andB = {0, 1, 3}. Let fT (x) =
∑

a∈T x
a. Then define

FT (x) = fT (x)fT (x2) · · · fT (xp−1). We can write FT (x) =
∑p(p−1)

i=0 aix
i,

where ai is the number of ways to select an array {x1, . . . , xp−1} where
xi ∈ T for all i and x1 + 2x2 + · · ·+(p− 1)xp−1 = i. Let w = cos(2π/p)+
i sin(2π/p), a pth root of unity. Noting that

1 + wj + w2j + · · · + w(p−1)j =

{
p, p | j,
0, p � j,

it follows that FT (1) + FT (w) + · · · + FT (wp−1) = pE(T ).
Since |A| = |B| = 3, it follows that FA(1) = FB(1) = 3p−1. We also have
for p � i, j that FT (wi) = FT (w). Finally, we have

FA(w) =

p−1∏
i=1

(1 + wi + w2i) =

p−1∏
i=1

1 − w3i

1 − wi
= 1.

Hence, combining these results, we obtain

E(A) =
3p−1 + p− 1

p
and E(B) =

3p−1 + (p− 1)FB(w)

p
.

It remains to demonstrate that FB(w) ≥ 1 for all p and that equality
holds only for p = 5. Since E(B) is an integer, it follows that FB(w) is an

integer and FB(w) ≡ 1 (mod p). Since fB(wp−i) = fB(wi), it follows that

FB(w) = |fB(w)|2
∣∣fB(w2)

∣∣2 · · · ∣∣fB

(
w(p−1)/2

)∣∣2 > 0. Hence FB(w) ≥ 1.
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It remains to show that FB(w) = 1 if and only if p = 5. We have the
formula (x−w)(x−w2) · · · (x−wp−1) = xp−1 +xp−2 + · · ·+x+1 = xp−1

x−1 .

Let fB(x) = x3 + x + 1 = (x − λ)(x − µ)(x − ν), where λ, µ, and ν are
the three zeros of the polynomial fB(x). It follows that

FB(w) =

(
λp − 1

λ− 1

)(
µp − 1

µ− 1

)(
νp − 1

ν − 1

)
= −1

3
(λp − 1)(µp − 1)(νp − 1),

since (λ− 1)(µ− 1)(ν − 1) = −fB(1) = −3. We also have λ+ µ+ ν = 0,
λµν = −1, λµ+ λν + µν = 1, and λ2 + µ2 + ν2 = (λ+ µ+ ν)2 − 2(λµ+
λν +µν) = −2. By induction (using that (λr +µr + νr)+ (λr−2 +µr−2 +
νr−2)+(λr−3+µr−3+νr−3) = 0), it follows that λr +µr +νr is an integer
for all r ∈ N.
Let us assume FB(x) = 1. It follows that (λp − 1)(µp − 1)(νp − 1) = −3.
Hence λp, µp, νp are roots of the polynomial p(x) = x3−qx2+(1+q)x+1,
where q = λp + µp + νp. Since fB(x) is an increasing function in real
numbers, it follows that it has only one real root (w.l.o.g.) λ, the other
two roots being complex conjugates. From fB(−1) < 0 < fB(−1/2) it
follows that −1 < λ < −1/2. It also follows that λp is the x coordinate
of the intersection of functions y = x3 + x + 1 and y = q(x2 − x). Since
λ < λp < 0, it follows that q > 0; otherwise, q(x2 −x) intersects x3 +x+1
at a value smaller than λ. Additionally, as p increases, λp approaches 0,
and hence q must increase.
For p = 5 we have 1+w+w3 = −w2(1+w2) and hence G(w) =

∏p−1
i=1 (1+

w2j) = 1. For a zero of fB(x) we have x5 = −x3 − x2 = −x2 + x+ 1 and
hence q = λ5 + µ5 + ν5 = −(λ2 + µ2 + ν2) + (λ+ µ+ ν) + 3 = 5.
For p > 5 we also have q ≥ 6. Assuming again FB(x) = 1 and defining
p(x) as before, we have p(−1) < 0, p(0) > 0, p(2) < 0, and p(x) > 0 for a
sufficiently large x > 2. It follows that p(x) must have three distinct real
roots. However, since µp, νp ∈ R ⇒ νp = µp = µp, it follows that p(x)
has at most two real roots, which is a contradiction. Hence, it follows that
FB(x) > 1 for p > 5 and thus E(A) ≤ E(B), where equality holds only
for p = 5.
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4.41 Solutions to the Shortlisted Problems of IMO 2000

1. In order for the trick to work, whenever x+ y = z + t and the cards x, y
are placed in different boxes, either z, t are in these boxes as well or they
are both in the remaining box.
Case 1. The cards i, i + 1, i + 2 are in different boxes for some i. Since

i+(i+3) = (i+1)+(i+2), the cards i and i+3 must be in the same
box; moreover, i− 1 must be in the same box as i+ 2, etc. Hence the
cards 1, 4, 7, . . . , 100 are placed in one box, the cards 2, 5, . . . , 98 are
in the second, while 3, 6, . . . , 99 are in the third box. The number of
different arrangements of the cards is 6 in this case.

Case 2. No three successive cards are all placed in different boxes. Suppose
that 1 is in the blue box, and denote by w and r the smallest numbers
on cards lying in the white and red boxes; assume w.l.o.g. that w < r.
The card w + 1 is obviously not red, from which it follows that r >
w+1. Now suppose that r < 100. Since w+r = (w−1)+(r+1), r+1
must be in the blue box. But then (r + 1) + w = r + (w + 1) implies
that w + 1 must be red, which is a contradiction. Hence the red box
contains only the card 100. Since 99 +w = 100 + (w − 1), we deduce
that the card 99 is in the white box. Moreover, if any of the cards k,
2 ≤ k ≤ 99, were in the blue box, then since k + 99 = (k − 1) + 100,
the card k − 1 should be in the red box, which is impossible. Hence
the blue box contains only the card 1, whereas the cards 2, 3, . . . , 99
are all in the white box.
In general, one box contains 1, another box only 100, while the re-
maining contains all the other cards. There are exactly 6 such ar-
rangements, and the trick works in each of them.

Therefore the answer is 12.

2. Since the volume of each brick is 12, the side of any such cube must be
divisible by 6.

Suppose that a cube of side n = 6k can be built using n3

12 = 18k3 bricks.
Set a coordinate system in which the cube is given as [0, n]× [0, n]× [0, n]
and color in black each unit cube [2p, 2p+ 1] × [2q, 2q + 1] × [2r, 2r + 1].

There are exactly n3

9 = 27k3 black cubes. Each brick covers either one or
three black cubes, which is in any case an odd number. It follows that the
total number of black cubes must be even, which implies that k is even.
Hence 12 | n.
On the other hand, two bricks can be fitted together to give a 2×3×4 box.
Using such boxes one can easily build a cube of side 12, and consequently
any cube of side divisible by 12.

3. Clearly m(S) is the number of pairs of point and triangle (Pt, PiPjPk)
such that Pt lies inside the circle PiPjPk. Consider any four-element set
Sijkl = {Pi, Pj , Pk, Pl}. If the convex hull of Sijkl is the triangle PiPjPk,
then we have ai = aj = ak = 0, al = 1. Suppose that the convex hull is
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the quadrilateral PiPjPkPl. Since this quadrilateral is not cyclic, we may
suppose that ∠Pi + ∠Pk < 180◦ < ∠Pj + ∠Pl. In this case ai = ak = 0
and aj = al = 1. Therefore m(Sijkl) is 2 if Pi, Pj , Pk, Pl are vertices of a
convex quadrilateral, and 1 otherwise.
There are

(
n
4

)
four-element subsets Sijkl. If a(S) is the number of such

subsets whose points determine a convex quadrilateral, we have m(S) =
2a(S) +

((
n
4

)
− a(S)

)
=

(
n
4

)
+ a(S) ≤ 2

(
n
4

)
. Equality holds if and only if

every four distinct points of S determine a convex quadrilateral, i.e. if and
only if the points of S determine a convex polygon. Hence f(n) = 2

(
n
4

)
has the desired property.

4. By a good placement of pawns we mean the placement in which there is
no block of k adjacent unoccupied squares in a row or column.
We can make a good placement as follows: Label the rows and columns
with 0, 1, . . . , n − 1 and place a pawn on a square (i, j) if and only if k
divides i+ j + 1. This is obviously a good placement in which the pawns
are placed on three lines with k, 2n−2k, and 2n−3k squares, which adds
up to 4n− 4k pawns in total.

Now we shall prove that a good
placement must contain at least
4n − 4k pawns. Suppose we have a
good placement of m pawns. Parti-
tion the board into nine rectangular
regions as shown in the picture. Let
a, b, . . . , h be the numbers of pawns
in the rectangles A,B, . . . , H re-
spectively. Note that each row that
passes through A,B, and C either

A B C

D

EFG

H

n − k n − k

n − k

n − k

2k − n

2k − n

contains a pawn inside B, or contains a pawn in both A and C. It follows
that a+ c+2b ≥ 2(n− k). We similarly obtain that c+ e+2d, e+ g+2f ,
and g + a+ 2h are all at least 2(n− k). Adding and dividing by 2 yields
a+ b+ · · · + h ≥ 4(n− k), which proves the statement.

5. We say that a vertex of a nice region is convex if the angle of the region
at that vertex equals 90◦; otherwise (if the angle is 270◦), we say that a
vertex is concave.
For a simple broken line C contained in the boundary of a nice region
R we call the pair (R,C) a boundary pair. Such a pair is called outer if
the region R is inside the broken line C, and inner otherwise. Let Bi, Bo

be the sets of inner and outer boundary pairs of nice regions respectively,
and let B = Bi ∪ Bo. For a boundary pair b = (R,C) denote by cb and vb

respectively the number of convex and concave vertices of R that belong
to C. We have the following facts:
(1) Each vertex of a rectangle corresponds to one concave angle of a nice

region and vice versa. This correspondence is bijective, so
∑

b∈B vb =
4n.
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(2) For a boundary pair b = (R,C) the sum of angles of R that are on
C equals (cb + vb − 2)180◦ if b is outer, and (cb + vb + 2)180◦ if b
is inner. On the other hand the sum of angles is obviously equal to

cb ·90◦+vb ·270◦. It immediately follows that cb−vb =

{
4 if b ∈ Bo,

−4 if b ∈ Bi.
(3) Since every vertex of a rectangle appears in exactly two boundary pairs

and each boundary pair contains at least one vertex of a rectangle,
the number K of boundary pairs is less than or equal to 8n.

(4) The set Bi is nonempty, because every boundary of the infinite region
is inner.

Consequently, the sum of the numbers of the vertices of all nice regions is
equal to∑

b∈B
(cb + vb) =

∑
b∈B

(2vb + (cb − vb)) ≤ 2 · 4n+ 4(K − 1) − 4 ≤ 40n− 8.

6. Every integer z has a unique representation z = px+ qy, where x, y ∈ Z,
0 ≤ x ≤ q − 1. Consider the region T in the xy-plane defined by the last
inequality and px + qy ≥ 0. There is a bijective correspondence between
lattice points of this region and nonnegative integers given by (x, y) "→
z = px + qy. Let us mark all lattice points of T whose corresponding
integers belong to S and color in black the unit squares whose left-bottom
vertices are at marked points. Due to the condition for S, this coloring has
the property that all points lying on the right or above a colored point are
colored as well. In particular, since the point (0, 0) is colored, all points
above or on the line y = 0 are colored. What we need is the number of
such colorings of T .
The border of the colored subregion C of T determines a path from (0, 0)
to (q,−p) consisting of consecutive unit moves either to the right or down-
wards. There are

(
p+q

p

)
such paths in total. We must find the number of

such paths not going below the line l : px+ qy = 0.
Consider any path γ = A0A1 . . . Ap+q from A0 = (0, 0) to Ap+q = (q,−p).
We shall see the path γ as a sequence G1G2 . . . Gp+q of moves to the right
(R) or downwards (D) with exactly p D’s and q R’s.
Two paths are said to be equivalent if one is obtained from the other by a
circular shift of the corresponding sequence G1G2 . . . Gp+q. We note that
all the p + q circular shifts of a path are distinct. Indeed, G1 . . .Gp+q ≡
Gi+1 . . . Gi+p+q would imply G1 = Gi+1 = G2i+1 = · · · (where Gj+p+q =
Gj), so G1 = · · · = Gp+q, which is impossible. Hence each equivalence
class contains exactly p+ q paths.
Let li, 0 ≤ i < p+ q, be the line through Ai that is parallel to the line l.
Since gcd(p, q) = 1, all these lines are distinct.
Let lm be the unique lowest line among the li’s. Then the path
Gm+1Gm+2 . . . Gm+p+q is above the line l. Every other cyclic shift gives
rise to a path having at least one vertex below the line l. Thus each equiv-
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alence class contains exactly one path above the line l, so the number of
such paths is equal to 1

p+q

(
p+q

p

)
. Therefore the answer is 1

p+q

(
p+q

p

)
.

7. Elementary computation gives
(
a− 1 + 1

b

) (
b− 1 + 1

c

)
= ab−a+ a

c − b+
1 − 1

c + 1 − 1
b + 1

bc . Using ab = 1
c and 1

bc = a we obtain(
a− 1 +

1

b

)(
b− 1 +

1

c

)
=
a

c
− b− 1

b
+ 2 ≤ a

c
,

since b+ 1
b ≥ 2. Similarly we obtain(

b− 1 +
1

c

)(
c− 1 +

1

a

)
≤ b

a
and

(
c− 1 +

1

a

)(
a− 1 +

1

b

)
≤ c

b
.

The desired inequality follows from the previous three inequalities. Equal-
ity holds if and only if a = b = c = 1.

8. We note that {ta} lies in
(

1
3 ,

2
3

]
if and only if there is an integer k such

that k + 1
3 < ta ≤ k + 2

3 , i.e., if and only if t ∈ Ik =
(

k+1/3
a , k+2/3

a

]
for

some k. Similarly, t should belong to the sets Jm =
(

m+1/3
b , m+2/3

b

]
and

Kn =
(

n+1/3
c , n+2/3

c

]
for some m,n. We have to show that Ik ∩ Jm ∩Kn

is nonempty for some integers k,m, n.
The intervals Kn are separated by a distance 2

3c , and since 2
3c <

1
3b , each

of the intervals Jm intersects at least one of the Kn’s. Hence it is enough
to prove that Jm ⊂ Ik for some k,m.
Let um and vm be the left and right endpoints of Jm. Since avm = aum +
a
3b < aum + 1

6 , it will suffice to show that there is an integer m such that
the fractional part of aum lies in

[
1
3 ,

1
2

]
.

Let a = dα, b = dβ, gcd(α, β) = 1. Setting m = dµ we obtain that

aum = am+1/3
b = αm

dβ + α
3β = αµ

β + α
3β . Since αµ gives all possible residues

modulo β, every term of the arithmetic progression j
β + α

3β (j ∈ Z) has
its fractional part equal to the fractional part of some aum. Now for β ≥ 6
the progression step is 1

β ≤ 1
6 , so at least one of the aum has its fractional

part in [1/3, 1/2]. If otherwise β ≤ 5, the only irreducible fractions α
β

that satisfy 2α < β are 1
3 ,

1
4 ,

1
5 ,

2
5 ; hence one can take m to be 1, 1, 2, 3

respectively. This justifies our claim.

9. Let us first solve the problem under the assumption that g(α) = 0 for
some α.
Setting y = α in the given equation yields g(x) = (α+1)f(x)−xf(α). Then
the given equation becomes f(x+g(y)) = (α+1−y)f(x)+(f(y)−f(α))x,
so setting y = α + 1 we get f(x + n) = mx, where n = g(α + 1) and
m = f(α+ 1) − f(α). Hence f is a linear function, and consequently g is
also linear. If we now substitute f(x) = ax + b and g(x) = cx + d in the
given equation and compare the coefficients, we easily find that
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f(x) =
cx− c2

1 + c
and g(x) = cx− c2, c ∈ R \ {−1}.

Now we prove the existence of α such that g(α) = 0. If f(0) = 0 then
putting y = 0 in the given equation we obtain f(x + g(0)) = g(x), so we
can take α = −g(0).
Now assume that f(0) = b �= 0. By replacing x by g(x) in the given
equation we obtain f(g(x) + g(y)) = g(x)f(y) − yf(g(x)) + g(g(x)) and,
analogously, f(g(x) + g(y)) = g(y)f(x) − xf(g(y)) + g(g(y)). The given
functional equation for x = 0 gives f(g(y)) = a − by, where a = g(0). In
particular, g is injective and f is surjective, so there exists c ∈ R such
that f(c) = 0. Now the above two relations yield

g(x)f(y) − ay + g(g(x)) = g(y)f(x) − ax+ g(g(y)). (1)

Plugging y = c in (1) we get g(g(x)) = g(c)f(x) − ax + g(g(c)) + ac =
kf(x) − ax + d. Now (1) becomes g(x)f(y) + kf(x) = g(y)f(x) + kf(y).
For y = 0 we have g(x)b + kf(x) = af(x) + kb, whence

g(x) =
a− k

b
f(x) + k.

Note that g(0) = a �= k = g(c), since g is injective. From the surjectivity
of f it follows that g is surjective as well, so it takes the value 0.

10. Clearly F (0) = 0 by (i). Moreover, it follows by induction from (i) that
F (2n) = fn+1 where fn denotes the nth Fibonacci’s number. In general, if
n = εk2k+εk−12

k−1+· · ·+ε1·2+ε0 (where εi ∈ {0, 1}), it is straightforward
to verify that

F (n) = εkfk+1 + εk−1fk + · · · + ε1f2 + ε0f1. (1)

We observe that if the binary representation of n contains no two adjacent
ones, then F (3n) = F (4n). Indeed, if n = εkr2kr + · · · + εk02

k0 , where
ki+1 − ki ≥ 2 for all i, then 3n = εkr(2

kr+1 +2kr)+ · · ·+ εk0(2
k0+1 +2k0).

According to this, in computing F (3n) each fi+1 in (1) is replaced by
fi+1 + fi+2 = fi+3, leading to the value of F (4n).
We shall prove the converse: F (3n) ≤ F (4n) holds for all n ≥ 0, with
equality if and only if the binary representation of n contains no two
adjacent ones.
We prove by induction onm ≥ 1 that this holds for all n satisfying 0 ≤ n <
2m. The verification for the early values of m is direct. Assume it is true
for a certain m and let 2m ≤ n ≤ 2n+1. If n = 2m + p, 0 ≤ p < 2m, then
(1) implies F (4n) = F (2m+2 + 4p) = fm+3 + F (4p). Now we distinguish
three cases:
(i) If 3p < 2m, then the binary representation of 3p does not carry into

that of 3 · 2m. Then it follows from (1) and the induction hypothesis
that



666 4 Solutions

F (3n) = F (3 ·2m)+F (3p) = fm+3 +F (3p) ≤ fm+3 +F (4p) = F (4n).

Equality holds if and only if F (3p) = F (4p), i.e. p has no two adjacent
binary ones.

(ii) If 2m ≤ 3p < 2m+1, then the binary representation of 3p carries 1 into
that of 3·2m. Thus F (3n) = fm+3+(F (3p)−fm+1) = fm+2+F (3p) <
fm+3 + F (4p) = F (4n).

(iii) If 2m+1 ≤ p < 3 · 2m, then the binary representation of 3p caries 10
into that of 3 · 2m, which implies

F (3n) = fm+3 + fm+1 + (F (3p) − fm+2) = 2fm+1 + F (3p) < F (4n).

It remains to compute the number of integers in [0, 2m) with no two
adjacent binary 1’s. Denote their number by um. Among them there
are um−1 less than 2m−1 and um−2 in the segment [2m−1, 2m). Hence
um = um−1 + um−2 for m ≥ 3. Since u1 = 2 = f3, u2 = 3 = f4, we
conclude that um = fm+2 = F (2m+1).

11. We claim that for λ ≥ 1
n−1 we can take all fleas as far to the right as

we want. In every turn we choose the leftmost flea and let it jump over
the rightmost one. Let d and δ denote the maximal and the minimal
distances between two fleas at some moment. Clearly, d ≥ (n− 1)δ. After
the leftmost flea jumps over the rightmost one, the minimal distance does
not decrease, because λd ≥ δ. However, the position of the leftmost flea
moved to the right by at least δ, and consequently we can move the fleas
arbitrarily far to the right after a finite number of moves.
Suppose now that λ < 1

n−1 . Under this assumption we shall prove that
there is a number M that cannot be reached by any flea. Let us assign to
each flea the coordinate on the real axis in which it is settled. Denote by
sk the sum of all the numbers in the kth step, and by wk the coordinate
of the rightmost flea. Clearly, sk ≤ nwk. We claim that the sequence wk

is bounded.
In the (k+1)th move let a flea A jump over B, landing at C, and let a, b, c
be their respective coordinates. We have sk+1 − sk = c− a. Then by the
given rule, λ(b− a) = c− b = sk+1 − sk + a− b, which implies sk+1 − sk =
(1+λ)(b−a) = 1+λ

λ (c− b). Hence sk+1 −sk ≥ 1+λ
λ (wk+1 −wk). Summing

up these inequalities for k = 0, . . . , n− 1 yields sn − s0 ≥ 1+λ
λ (wn − w0).

Now using sn ≤ nwn we conclude that(
1 + λ

λ
− n

)
wn ≤ 1 + λ

λ
w0 − s0.

Since 1+λ
λ − n > 0, this proves the result.

12. Since D(A) = D(B), we can define f(i) > g(i) ≥ 0 that satisfy bi−bi−1 =
af(i) − ag(i) for all i.
The number bi+1 − bi−1 ∈ D(B) = D(A) can be written in the form
au − av, u > v ≥ 0. Then bi+1 − bi−1 = bi+1 − bi + bi − bi−1 implies
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af(i+1) + af(i) + av = ag(i+1) + ag(i) + au, so the B3 property of A implies
that (f(i+ 1), f(i), v) and (g(i+ 1), g(i), u) coincide up to a permutation.
It follows that either f(i+ 1) = g(i) or f(i) = g(i+ 1). Hence if we define
R = {i ∈ N0 | f(i+ 1) = g(i)} and S = {i ∈ N0 | f(i) = g(i+ 1)} it holds
that R ∪ S = N0.
Lemma. If i ∈ R , then also i+ 1 ∈ R.
Proof. Suppose to the contrary that i ∈ R and i + 1 ∈ S, i.e., g(i) =

f(i+1) = g(i+2). There are integers x and y such that bi+2 − bi−1 =
ax − ay. Then ax − ay = af(i+2) − ag(i+2) + af(i+1) − ag(i+1) + af(i) −
ag(i) = af(i+2) + af(i) − ag(i+1) − ag(i), so by the B3 property (x, g(i+
1), g(i)) and (y, f(i+ 2), f(i)) coincide up to a permutation. But this
is impossible, since f(i+2), f(i) > g(i+2) = g(i) = f(i+1) > g(i+1).
This proves the lemma.

Therefore if i ∈ R �= ∅, then it follows that every j > i belongs to R.
Consequently g(i) = f(i+1) > g(i+1) = f(i+2) > g(i+2) = f(i+3) >
· · · is an infinite decreasing sequence of nonnegative integers, which is
impossible. Hence S = N0, i.e.,

bi+1 − bi = af(i+1) − af(i) for all i ∈ N0.

Thus f(0) = g(1) < f(1) < f(2) < · · · , implying f(i) ≥ i. On the other
hand, for any i there exist j, k such that af(i)−ai = bj−bk = af(j)−af(k),
so by the B3 property i ∈ {f(i), f(k)} is a value of f . Hence we must have
f(i) = i for all i, which finally gives A = B.

13. One can easily find n-independent polynomials for n = 0, 1. For example,
P0(x) = 2000x2000 + · · · + 2x2 + x + 0 is 0-independent (for Q ∈ M(P0)
it suffices to exchange the coefficient 0 of Q with the last term), and
P1(x) = 2000x2000+· · ·+2x2+x−(1+2+· · ·+2000) is 1-independent (since
any Q ∈ M(P1) vanishes at x = 1). Let us show that no n-independent
polynomials exist for n �∈ {0, 1}.
Consider separately the case n = −1. For any set T we denote by S(T ) the
sum of elements of T . Suppose that P (x) = a2000x

2000+· · ·+a1x+a0 is −1-
independent. Since P (−1) = (a0 +a2+ · · ·+a2000)−(a1 +a3+ · · ·+a1999),
this means that for any subset E of the set C = {a0, a1, . . . , a2000} having
1000 or 1001 elements there exist elements e ∈ E and f ∈ C \E such that
S(E ∪ {f} \ {e}) = 1

2S(C), or equivalently that S(E) − 1
2S(C) = e − f .

We may assume w.l.o.g. that a0 < a1 < · · · < a2000.
Suppose that E is a 1000-element subset of C containing b0, b1 but not
b1999, b2000. By the −1-independence of P there exist e ∈ E and f ∈
C \ E such that S(E) − 1

2S(C) = e− f . The same must hold for the set
E′ = E ∪ {b1999, b2000} \ {b0, b1}, so for some e′ ∈ E′ and f ′ ∈ C \ E′ we
have S(E′) − 1

2S(C) = e′ − f ′. It follows that b1999 + b2000 − b0 − b1 =
S(E′) − S(E) = e+ e′ − f − f ′. Therefore the transposition e ↔ f must
involve at least one of the elements b0, b1, b1999, b2000.
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There are 7994 possible transpositions involving one of these four ele-
ments. On the other hand, by (SL93-12) the subsets E of C containing
b0, b1 but not b1999, b2000 give at least 998·999+1 distinct sums of elements,
far exceeding 7994. This is a contradiction.
For the case |n| ≥ 2 we need the following lemma.
Lemma. Let n ≥ 2 be a natural number and P (x) = amx

m+· · ·+a1x+a0 a
polynomial with distinct coefficients. Then the set {Q(n) | Q ∈ M(P )}
contains at least 2m elements.

Proof. We shall use induction on m. The statement is easily verified for
m = 1. Assume w.l.o.g. that am < · · · < a1 < a0. Consider two
polynomials Qk and Qk+1 of the form

Qk(x) = amx
m + · · · + akx

k + a0x
k−1 + bk−1x

k−2 + · · · + b1,

Qk+1(x) = amx
m + · · · + ak+1x

k+1 + a0x
k + ckx

k−1 + · · · + c1,

where (bk−1, . . . , b1) and (ck, . . . , c1) are permutations of the sets
{ak−1, . . . , a1} and {ak, . . . , a1} respectively. We claim thatQk+1(n) ≥
Qk(n). Indeed, since a0 − ck ≤ a0 − ak and bj − cj < a0 − ak for
1 ≤ j ≤ n−1, we haveQk+1(n)−Qk(x) = (a0−ak)nk−(a0−ck)nk−1−
(bk−1−ck−1)n

k−2−· · ·−(b1−c1) ≥ (a0−ak)(nk−nk−1−· · ·−n−1) > 0.
Furthermore, by the induction hypothesis the polynomials of the form
Qk(x) take at least 2k−2 values at x = n. Hence the total number of
values of Q(n) for Q ∈ M(P ) is at least 1+1+2+22+· · ·+2m−1 = 2m.

Now we return to the main result. Suppose that P (x) = a2000x
2000

+a1999x
1999+a0 is an n-independent polynomial. Since P2(x) = a2000x

2000

+a1998x
1998+· · ·+a2x

2+a0 is a polynomial in t = x2 of degree 1000, by the
lemma it takes at least 21000 distinct values at x = n. Hence {Q(n) | Q ∈
M(P )} contains at least 21000 elements. On the other hand, interchang-
ing the coefficients bi and bj in a polynomial Q(x) = b2000x

2000 + · · · + b0
modifies the value of Q at x = n by (bi − bj)(n

i −nj) = (ak − al)(n
i −nj)

for some k, l. Hence there are fewer than 20014 possible modifications of
the value at n. Since 20014 < 21000, we have arrived at a contradiction.

14. The given condition is obviously equivalent to a2 ≡ 1 (mod n) for all inte-
gers a coprime to n. Let n = pα1

1 pα2
2 · · · pαk

k be the factorization of n onto
primes. Since by the Chinese remainder theorem the numbers coprime to
n can give any remainder modulo pαi

i except 0, our condition is equivalent
to a2 ≡ 1 (mod pαi

i ) for all i and integers a coprime to pi.
Now if pi ≥ 3, we have 22 ≡ 1 (mod pαi

i ), so pi = 3 and αi = 2. If pj = 2,
then 32 ≡ 1 (mod 2αj ) implies αj ≤ 3. Hence n is a divisor of 23 · 3 = 24.
Conversely, each n | 24 has the desired property.

15. Let n = pα1
1 pα2

2 · · · pαk

k be the factorization of n onto primes (p1 < p2 <
· · · < pk). Since 4n is a perfect cube, we deduce that p1 = 2 and α1 =
3β1 + 1, α2 = 3β2, . . . , αk = 3βk for some integers βi ≥ 0. Using d(n) =
(α1 + 1) · (α2 + 1) · · · (αk + 1) we can rewrite the equation d(n)3 = 4n as
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(3β1 + 2) · (3β2 + 1) · · · (3βk + 1) = 2β1+1pβ2

2 · · · pβk

k .

Since d(n) is not divisible by 3, it follows that pi ≥ 5 for i ≥ 2. Thus the
above equation is equivalent to

3β1 + 2

2β1+1
=

pβ2

2

3β2 + 1
· · · pβk

k

3βk + 1
. (1)

For i ≥ 2 we have pβi

i ≥ (1 + 4)βi ≥ 1 + 4βi; hence (1) implies that
3β1+2
2β1+1 ≥ 1, which leads to β1 ≤ 2.

For β1 = 0 or β1 = 2 we have that 3β1+2
2β1+1 = 1, and therefore β2 = · · · =

βk = 0. This yields the solutions n = 2 and n = 27 = 128.
For β1 = 1 the left-hand side of (1) equals 5

4 . On the other hand, if pi > 5

or βi > 1, then
p

βi
i

3βi+1 >
5
4 , which is impossible. We conclude that p2 = 5

and k = 2, so n = 2000.
Hence the solutions for n are 2, 128, and 2000.

16. More generally, we will prove by induction on k that for each k ∈ N
there exists nk ∈ N that has exactly k distinct prime divisors such that
nk | 2nk + 1 and 3 | nk.
For k = 1, n1 = 3 satisfies the given conditions. Now assume that k ≥ 1
and nk = 3αm where 3 � m, so that m has exactly k − 1 prime divisors.
Then the number 3nk = 3α+1m has exactly k prime divisors and 23nk+1 =
(2nk + 1)(22nk − 2nk + 1) is divisible by 3nk, since 3 | 22nk − 2nk + 1. We
shall find a prime p not dividing nk such that nk+1 = 3pnk. It is enough
to find p such that p | 23nk + 1 and p � 2nk + 1.
Moreover, we shall show that for every integer a > 2 there exists a prime
number p that divides a3 + 1 = (a + 1)(a2 − a + 1) but not a + 1. To
prove this we observe that gcd(a2 − a + 1, a + 1) = gcd(3, a + 1). Now
if 3 � a + 1, we can simply take p = 3; otherwise, if a = 3b − 1, then
a2 − a + 1 = 9b2 − 9b + 3 is not divisible by 32; hence we can take for p

any prime divisor of a2−a+1
3 .

17. Trivially all triples (a, 1, n) and (1,m, n) are solutions. Assume now that
a > 1 and m > 1.
If m is even, then am + 1 ≡ (−1)m + 1 ≡ 2 (mod a + 1), which implies
that am + 1 = 2t. In particular, a is odd. But this is impossible, since
2 < am + 1 = (am/2)2 + 1 ≡ 2 (mod 4). Hence m is odd.
Let p be an arbitrary prime divisor of m and m = pm1. Then am + 1 |
(a+ 1)n | (am1 + 1)n, so bp + 1 | (b+ 1)n for b = am1 . It follows that

P =
bp + 1

b+ 1
= bp−1 − bp−2 + · · · + 1 | (b + 1)n.

Since P ≡ p (mod b + 1), we deduce that P has no prime divisors other
than p; hence P is a power of p and p | b+1. Let b = kp−1, k ∈ N. Then by
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the binomial formula we have bi = (kp−1)i ≡ (−1)i+1(ikp−1) (mod p2),
and therefore P ≡ −kp((p− 1) + (p− 2) + · · · + 1) + p ≡ p (mod p2). We
conclude that P ≤ p. But we also have P ≥ bp−1 − bp−2 ≥ bp−2 > p for
p > 3, so we must have P = p = 3 and b = 2. Since b = am1 , we obtain
a = 2 and m = 3. The triple (2, 3, n) is indeed a solution if n ≥ 2.
Hence the set of solutions is {(a, 1, n), (1,m, n) | a,m, n ∈ N} ∪ {(2, 3, n) |
n ≥ 2}.
Remark. This problem is very similar to (SL97-14).

18. It is known that the area of the triangle is S = pr = p2/n and S =√
p(p− a)(p− b)(p− c). It follows that p3 = n2(p − a)(p − b)(p − c),

which by putting x = p− a, y = p− b, and z = p− c transforms into

(x+ y + z)3 = n2xyz. (1)

We will be done if we show that (1) has a solution in positive integers for
infinitely many natural numbers n. Let us assume that z = k(x + y) for
an integer k > 0. Then (1) becomes (k + 1)3(x + y)2 = kn2xy. Further,
by setting n = 3(k + 1) this equation reduces to

(k + 1)(x+ y)2 = 9kxy. (2)

Set t = x/y. Then (2) has solutions in positive integers if and only if (k+
1)(t+1)2 = 9kt has a rational solution, i.e., if and only if its discriminant
D = k(5k−4) is a perfect square. Setting k = u2, we are led to show that
5u2 − 4 = v2 has infinitely many integer solutions. But this is a classic
Pell-type equation, whose solution is every Fibonacci number u = F2i+1.
This completes the proof.

19. Suppose that a natural number N satisfies N = a2
1 + · · · + a2

k, 2N =
b21 + · · ·+ b2l , where ai, bj are natural numbers such that none of the ratios
ai/aj, bi/bj, ai/bj, bj/ai is a power of 2.

We claim that every natural number n >
∑4N−2

i=0 (2iN + 1)2 can be rep-
resented as a sum of distinct squares. Suppose n = 4qN + r, 0 ≤ r < 4N .
Then

n = 4Ns+

r−1∑
i=0

(2iN + 1)2

for some positive integer s, so it is enough to show that 4Ns is a sum
of distinct even squares. Let s =

∑C
c=1 22uc +

∑D
d=1 22vd+1 be the binary

expansion of s. Then

4Ns =

C∑
c=1

k∑
i=1

(2uc+1ai)
2 +

D∑
d=1

l∑
j=1

(2ud+1bj)
2,

where all the summands are distinct by the condition on ai, bj .
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It remains to choose an appropriate N : for example N = 29, because
29 = 52 + 22 and 58 = 72 + 32.

Second solution. It can be directly checked that every odd integer 67 <
n ≤ 211 can be represented as a sum of distinct squares. For any n > 211
we can choose an integer m such that m2 > n

2 and n − m2 is odd and
greater than 67, and therefore by the induction hypothesis can be written
as a sum of distinct squares. Hence n is also a sum of distinct squares.

20. Denote by k1, k2 the given circles and by k3 the circle through A,B,C,D.
We shall consider the case that k3 is inside k1 and k2, since the other case
is analogous.
Let AC and AD meet k1 at points
P and R, and BC and BD meet k2

at Q and S respectively. We claim
that PQ and RS are the common
tangents to k1 and k2, and therefore
P,Q,R, S are the desired points.
The circles k1 and k3 are tangent to
each other, so we have DC ‖ RP .

P

A

X

B

Q

C

D

Y SR

k1

k2

k3

Since
AC · CP = XC · CY = BC · CQ,

the quadrilateral ABQP is cyclic, implying that ∠APQ = ∠ABQ =
∠ADC = ∠ARP. It follows that PQ is tangent to k1. Similarly, PQ is
tangent to k2.

21. Let K be the intersection point of the lines MN and AB.
Since KA2 = KM · KN = KB2,
it follows that K is the midpoint of
the segment AB, and consequently
M is the midpoint of AB. Thus it
will be enough to show that EM ⊥
PQ, or equivalently that EM ⊥
AB. However, since AB is tangent
to the circle G1 we have ∠BAM =
∠ACM = ∠EAB, and similarly

M

N

B

A

C

D
K

E

P

Q

∠ABM = ∠EBA. This implies that the triangles EAB and MAB are
congruent. Hence E and M are symmetric with respect to AB; hence
EM ⊥ AB.

Remark. The proposer has suggested an alternative version of the prob-
lem: to prove that EN bisects the angle CND. This can be proved by
noting that EANB is cyclic.

22. Let L be the point symmetric to H with respect to BC. It is well known
that L lies on the circumcircle k of 
ABC. Let D be the intersection
point of OL and BC. We similarly define E and F . Then

OD +DH = OD +DL = OL = OE + EH = OF + FH.
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We shall prove that AD,BE, and
CF are concurrent. Let line AO
meet BC atD′. It is easy to see that
∠OD′D = ∠ODD′; hence the per-
pendicular bisector of BC bisects
DD′ as well. Hence BD = CD′. If
we define E′ and F ′ analogously, we
have CE = AE′ and AF = BF ′.
Since the lines AD′, BE′, CF ′ meet
at O, it follows that BD

DC · CE
EA · AF

FB =

B C

A

OH

L

D D′

E
E′

F
F ′

BD′

D′C · CE′

E′A · AF ′

F ′B = 1. This proves our claim by Ceva’s theorem.

23. First, suppose that there are numbers (bi, ci) assigned to the vertices of
the polygon such that

AiAj = bjci − bicj for all i, j with 1 ≤ i ≤ j ≤ n. (1)

In order to show that the polygon is cyclic, it is enough to prove that
A1, A2, A3, Ai lie on a circle for each i, 4 ≤ i ≤ n, or equivalently, by
Ptolemy’s theorem, that A1A2 ·A3Ai +A2A3 ·AiA1 = A1A3 ·A2Ai. But
this is straightforward with regard to (1).
Now suppose that A1A2 . . . An is a cyclic quadrilateral. By Ptolemy’s the-
orem we have AiAj = A2Aj · A1Ai

A1A2
−A2Ai · A1Aj

A1A2
for all i, j. This suggests

taking b1 = −A1A2, bi = A2Ai for i ≥ 2 and ci = A1Ai

A1A2
for all i. Indeed,

using Ptolemy’s theorem, one easily verifies (1).

24. Since ∠ABT = 180◦ − γ and ∠ACT = 180◦ − β, the law of sines gives
BP
PC = SABT

SACT
= AB·BT ·sinγ

AB·BT ·sinβ = AB sin γ
AC sin β = c2

b2 , which implies BP = c2a
b2+c2 .

Denote by M and N the feet of perpendiculars from P and Q on AB. We

have cot∠ABQ = BN
NQ = 2BN

PM = BA+BM
BP sin β = c+BP cos β

BP sin β = b2+c2+ac cos β
ca sin β =

2(b2+c2)+a2+c2−b2

2ca sin β = a2+b2+3c2

4SABC
= 2 cotα + 2 cotβ + cotγ. Similarly,

cot ∠BAS = 2 cotα+ 2 cotβ + cotγ; hence ∠ABQ = ∠BAS.
Now put p = cotα and q = cotβ. Since p+q ≥ 0, the A-G mean inequality

gives us cot∠ABQ = 2p+ 2q+ 1−pq
p+q ≥ 2p+ 2q+ 1−(p+q)2/4

p+q = 7
4 (p+ q)+

1
p+q ≥ 2

√
7
4 =

√
7. Hence ∠ABQ ≤ arctan 1√

7
. Equality holds if and only

if cotα = cotβ = 1√
7
, i.e., when a : b : c = 1 : 1 : 1√

2
.

25. By the condition of the problem, 
ADX and 
BCX are similar. Then
there exist points Y ′ and Z ′ on the perpendicular bisector of AB such
that 
AY ′Z ′ is similar and oriented the same as 
ADX , and 
BY ′Z ′ is
(being congruent to 
AY ′Z ′) similar and oriented the same as 
BCX .
Since then AD/AY ′ = AX/AZ ′ and ∠DAY ′ = ∠XAZ ′, 
ADY ′ and


AXZ ′ are also similar, implying AD
AX = DY ′

XZ′ . Analogously, BC
BX = CY ′

XZ′ .

It follows from AD
AX = BC

BX that CY ′ = DY ′, which means that Y ′ lies on
the perpendicular bisector of CD. Hence Y ′ ≡ Y .
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Now ∠AY B = 2∠AY Z ′ = 2∠ADX , as desired.

26. The problem can be reformulated in the following way: Given a set S
of ten points in the plane such that the distances between them are all
distinct, for each point P ∈ S we mark the point Q ∈ S \ {P} nearest to
P . Find the least possible number of marked points.
Observe that each point A ∈ S is the nearest to at most five other points.
Indeed, for any six points P1, . . . , P6 one of the angles PiAPj is at most
60◦, in which case PiPj is smaller than one of the distances APi, APj . It
follows that at least two points are marked.
Now suppose that exactly two points, say A and B, are marked. Then AB
is the minimal distance of the points from S, so by the previous observation
the rest of the set S splits into two subsets of four points according to
whether the nearest point is A or B. Let these subsets be {A1, A2, A3, A4}
and {B1, B2, B3, B4} respectively. Assume that the points are labelled so
that the angles AiAAi+1 are successively adjacent as well as the angles
BiBBi+1, and that A1, B1 lie on one side of AB, and A4, B4 lie on the
other side. Since all the angles AiAAi+1 and BiBBi+1 are greater than
60◦, it follows that

∠A1AB + ∠BAA4 + ∠B1BA+ ∠ABB4 < 360◦.

Therefore ∠A1AB+ ∠B1BA < 180◦ or ∠A4AB+ ∠B4BA < 180◦. With-
out loss of generality, let us assume the first inequality.
On the other hand, note that the quadrilateralABB1A1 is convex because
A1 and B1 are on different sides of the perpendicular bisector of AB.
From A1B1 > A1A and BB1 > AB we obtain ∠A1AB1 > ∠A1B1A and
∠BAB1 > ∠AB1B. Adding these relations yields ∠A1AB > ∠A1B1B.
Similarly, ∠B1BA > ∠B1A1A. Adding these two inequalities, we get

180◦ > ∠A1AB + ∠B1BA > ∠A1B1B + ∠B1A1A;

hence the sum of the angles of the quadrilateral ABB1A1 is less than
360◦, which is a contradiction. Thus at least 3 points are marked.
An example of a configuration in which exactly 3 gangsters are killed is
shown below.

3† 6† 8†

52

4

1 10

7

9

27. Denote by α1, α2, α3 the angles of 
A1A2A3 at vertices A1, A2, A3 respec-
tively. Let T1, T2, T3 be the points symmetric to L1, L2, L3 with respect
to A1I, A2I, and A3I respectively. We claim that T1T2T3 is the desired
triangle.
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Denote by S1 and R1 the points
symmetric to K1 and K3 with re-
spect to L1L3. It is enough to show
that T1 and T3 lie on the line R1S1.
To prove this, we shall prove that
∠K1S1T1 = ∠K ′K1S1 for a point
K ′ on the line K1K3 such that K3

and K ′ lie on different sides of K1.
We show first that S1 ∈ A1I. Let
X be the point of intersection of
lines A1I and L1L3. We see from
the triangle A1L3X that ∠L1XI =
α3/2 = ∠L1A3I, which implies that
L1XA3I is cyclic.

A1

A2 A3
L1

L2

L3

T1

T2
T3

I

X

K1

K3 S1

K′

We now have ∠A1XA3 = 90◦ = ∠A1K1A3; hence A1K1XA3 is also
cyclic. It follows that ∠K1XI = ∠K1A3A1 = α3 = 2∠L1XI; hence
X1L1 bisects the angle K1X1I. Hence S1 ∈ XI as claimed. Now we
have ∠K1S1T1 = ∠K1S1L1 + 2∠L1S1X = ∠S1K1L1 + 2∠L1K1X . It
remains to prove that K1X bisects ∠A3K1K

′. From the cyclic quadrilat-
eral A1K1XA3 we see that ∠XK1A3 = α1/2. Since A1K3K1A3 is cyclic,
we also have ∠K ′K1A3 = α1 = 2∠XK1A3, which proves the claim.
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4.42 Solutions to the Shortlisted Problems of IMO 2001

1. First, let us show that such a function is at most unique. Suppose that f1

and f2 are two such functions, and consider g = f1 − f2. Then g is zero
on the boundary and satisfies

g(p, q, r) =
1

6
[g(p+ 1, q − 1, r) + · · · + g(p, q − 1, r + 1)],

i.e., g(p, q, r) is equal to the average of the values of g at six points (p +
1, q − 1, r), . . . that lie in the plane π given by x + y + z = p + q + r.
Suppose that (p, q, r) is the point at which g attains its maximum in
absolute value on π ∩ T . The averaging property of g implies that the
values of g at (p+1, q− 1, r) etc. are all equal to g(p, q, r). Repeating this
argument we obtain that g is constant on the whole of π ∩ T , and hence
it equals 0 everywhere. Therefore f1 ≡ f2.
It remains to guess f . It is natural to try f(p, q, r) = pqr first: it satisfies
f(p, q, r) = 1

6 [f(p+ 1, q− 1, r) + · · ·+ f(p, q− 1, r+ 1)] + p+q+r
3 . Thus we

simply take

f(p, q, r) =
3

p+ q + r
f(p, q, r) =

3pqr

p+ q + r

and directly check that it satisfies the required property. Hence this is the
unique solution.

2. It follows from Bernoulli’s inequality that for each n ∈ N,
(
1 + 1

n

)n ≥ 2,

or n
√

2 ≤ 1 + 1
n . Consequently, it will be enough to show that 1 + an >(

1 + 1
n

)
an−1. Assume the opposite. Then there exists N such that for

each n ≥ N ,

1 + an ≤
(

1 +
1

n

)
an−1, i.e.,

1

n+ 1
+

an

n+ 1
≤ an−1

n
.

Summing for n = N, . . . ,m yields am

m+1 ≤ aN−1

N −
(

1
N+1 + · · ·+ 1

m+1

)
.

However, it is well known that the sum 1
N+1 + · · · + 1

m+1 can be arbi-
trarily large for m large enough, so that am

m+1 is eventually negative. This
contradiction yields the result.

Second solution. Suppose that 1 + an ≤ n
√

2an−1 for all n ≥ N . Set
bn = 2−(1+1/2+···+1/n) and multiply both sides of the above inequality to
obtain bn + bnan ≤ bn−1an−1. Thus

bNaN > bNaN − bnan ≥ bN + bN+1 + · · · + bn.

However, it can be shown that
∑

n>N bN diverges: in fact, since 1 + 1
2 +

· · ·+ 1
n < 1 + lnn, we have bn > 2−1−ln n = 1

2n
− ln 2 > 1

2n , and we already
know that

∑
n>N

1
2n diverges.

Remark. As can be seen from both solutions, the value 2 in the problem
can be increased to e.
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3. By the arithmetic–quadratic mean inequality, it suffices to prove that

x2
1

(1 + x2
1)

2
+

x2
2

(1 + x2
1 + x2

2)
2

+ · · · + x2
n

(1 + x2
1 + · · · + x2

n)2
< 1.

Observe that for k ≥ 2 the following holds:

x2
k

(1 + x2
1 + · · · + x2

k)2
≤ x2

k

(1 + · · · + x2
k−1)(1 + · · · + x2

k)

=
1

1 + x2
1 + · · · + x2

k−1

− 1

1 + x2
1 + · · · + x2

k

.

For k = 1 we have
x2
1

(1+x1)2
≤ 1 − 1

1+x2
1
. Summing these inequalities, we

obtain

x2
1

(1 + x2
1)

2
+ · · · + x2

n

(1 + x2
1 + · · · + x2

n)2
≤ 1 − 1

1 + x2
1 + · · · + x2

n

< 1.

Second solution. Let an(k) = sup
(

x1

k2+x2
1

+ · · · + xn

k2+x2
1+···+x2

n

)
and an =

an(1). We must show that an <
√
n. Replacing xi by kxi shows that

an(k) = an/k. Hence

an = sup
x1

(
x1

1 + x2
1

+
an−1√
1 + x2

1

)
= sup

θ
(sin θ cos θ + an−1 cos θ), (1)

where tan θ = x1. The above supremum can be computed explicitly:

an =
1

8
√

2

(
3an−1 +

√
a2

n−1 + 8

)√
4 − a2

n−1 + an−1

√
a2

n−1 + 8.

However, the required inequality is weaker and can be proved more easily:
if an−1 <

√
n− 1, then by (1) an < sin θ+

√
n− 1 cos θ =

√
n sin(θ+α) ≤√

n, for α ∈ (0, π/2) with tanα =
√
n.

4. Let (∗) denote the given functional equation. Substituting y = 1 we get
f(x)2 = xf(x)f(1). If f(1) = 0, then f(x) = 0 for all x, which is the
trivial solution. Suppose f(1) = C �= 0. Let G = {y ∈ R | f(y) �= 0}.
Then

f(x) =

{
Cx if x ∈ G,
0 otherwise.

(1)

We must determine the structure of G so that the function defined by (1)
satisfies (∗).
(1) Clearly 1 ∈ G, because f(1) �= 0.
(2) If x ∈ G, y �∈ G, then by (∗) it holds f(xy)f(x) = 0, so xy �∈ G.
(3) If x, y ∈ G, then x/y ∈ G (otherwise by 2◦, y(x/y) = x �∈ G).
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(4) If x, y ∈ G, then by 2◦ we have x−1 ∈ G, so xy = y/x−1 ∈ G.
Hence G is a set that contains 1, does not contain 0, and is closed under
multiplication and division. Conversely, it is easy to verify that every such
G in (1) gives a function satisfying (∗).

5. Let a1, a2, . . . , an satisfy the conditions of the problem. Then ak > ak−1,
and hence ak ≥ 2 for k = 1, . . . , n. The inequality (ak+1 − 1)ak−1 ≥
a2

k(ak − 1) can be rewritten as

ak−1

ak
+

ak

ak+1 − 1
≤ ak−1

ak − 1
.

Summing these inequalities for k = i+ 1, . . . , n− 1 and using the obvious
inequality an−1

an
< an−1

an−1 , we obtain ai

ai+1
+ · · · + an−1

an
< ai

ai+1−1 . Therefore

ai

ai+1
≤ 99

100
− a0

a1
− · · · − ai−1

ai
<

ai

ai+1 − 1
for i = 1, 2, . . . , n− 1. (1)

Consequently, given a0, a1, . . . , ai, there is at most one possibility for ai+1.
In our case, (1) yields a1 = 2, a2 = 5, a3 = 56, a4 = 2802 = 78400.
These values satisfy the conditions of the problem, so that this is a unique
solution.

6. We shall determine a constant k > 0 such that

a√
a2 + 8bc

≥ ak

ak + bk + ck
for all a, b, c > 0. (1)

This inequality is equivalent to (ak + bk + ck)2 ≥ a2k−2(a2 + 8bc), which
further reduces to

(ak + bk + ck)2 − a2k ≥ 8a2k−2bc.

On the other hand, the AM–GM inequality yields

(ak + bk + ck)2 − a2k = (bk + ck)(2ak + bk + ck) ≥ 8ak/2b3k/4c3k/4,

and therefore k = 4/3 is a good choice. Now we have

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ a4/3

a4/3 + b4/3 + c4/3
+

b4/3

a4/3 + b4/3 + c4/3
+

c4/3

a4/3 + b4/3 + c4/3
= 1.

Second solution. The numbers x = a√
a2+8bc

, y = b√
b2+8ca

and z = c√
c2+8ab

satisfy

f(x, y, z) =

(
1

x2
− 1

)(
1

y2
− 1

)(
1

z2
− 1

)
= 83.
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Our task is to prove x+ y + z ≥ 1.
Since f is decreasing on each of the variables x, y, z, this is the same as
proving that x, y, z > 0, x + y + z = 1 implies f(x, y, z) ≥ 83. However,

since 1
x2 − 1 = (x+y+z)2−x2

x2 = (2x+y+z)(y+z)
x2 , the inequality f(x, y, z) ≥ 83

becomes

(2x+ y + z)(x+ 2y + z)(x+ y + 2z)(y + z)(z + x)(x + y)

x2y2z2
≥ 83,

which follows immediately by the AM–GM inequality.

Third solution. We shall prove a more general fact: the inequality
a√

a2+kbc
+ b√

b2+kca
+ c√

c2+kab
≥ 3√

1+k
is true for all a, b, c > 0 if and

only if k ≥ 8.
Firstly suppose that k ≥ 8. Setting x = bc/a2, y = ca/b2, z = ab/c2, we
reduce the desired inequality to

F (x, y, z) = f(x) + f(y) + f(z) ≥ 3√
1 + k

, where f(t) =
1√

1 + kt
, (2)

for x, y, z > 0 such that xyz = 1. We shall prove (2) using the method of
Lagrange multipliers.
The boundary of the set D = {(x, y, z) ∈ R3

+ | xyz = 1} consists of points
(x, y, z) with one of x, y, z being 0 and another one being +∞. If w.l.o.g.
x = 0, then F (x, y, z) ≥ f(x) = 1 ≥ 3/

√
1 + k.

Suppose now that (x, y, z) is a point of local minimum of F on D.
There exists λ ∈ R such that (x, y, z) is stationary point of the function
F (x, y, z)+λxyz. Then (x, y, z, λ) is a solution to the system f ′(x)+λyz =
f ′(y) + λxz = f ′(z) + λxy = 0, xyz = 1. Eliminating λ gives us

xf ′(x) = yf ′(y) = zf ′(z), xyz = 1. (3)

The function tf ′(t) = −kt
2(1+kt)3/2 decreases on the interval (0, 2/k] and

increases on [2/k,+∞) because (tf ′(t))′ = k(kt−2)
4(1+kt)5/2 . It follows that two

of the numbers x, y, z are equal. If x = y = z, then (1, 1, 1) is the only
solution to (3). Suppose that x = y �= z. Since (yf ′(y))2 − (zf ′(z))2 =
k2(z−y)(k3y2z2−3kyz−y−z)

4(1+ky)3(1+kz)3 , (3) gives us y2z = 1 and k3y2z2−3kyz−y−z =

0. Eliminating z we obtain an equation in y, k3/y2 − 3k/y− y− 1/y2 = 0,
whose only real solution is y = k − 1. Thus (k − 1, k − 1, 1/(k − 1)2) and
the cyclic permutations are the only solutions to (3) with x, y, z being
not all equal. Since F (k − 1, k − 1, 1/(k − 1)2) = (k + 1)/

√
k2 − k + 1 >

F (1, 1, 1) = 1, the inequality (2) follows.
For 0 < k < 8 we have that a√

a2+kbc
+ b√

b2+kca
+ c√

c2+kab
> a√

a2+8bc
+

b√
b2+8ca

+ c√
c2+8ab

≥ 1. If we fix c and let a, b tend to 0, the first two sum-

mands will tend to 0 while the third will tend to 1. Hence the inequality
cannot be improved.
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7. It is evident that arranging of A in increasing order does not diminish
m. Thus we can assume that A is nondecreasing. Assume w.l.o.g. that
a1 = 1, and let bi be the number of elements of A that are equal to i
(1 ≤ i ≤ n = a2001). Then we have b1 + b2 + · · · + bn = 2001 and

m = b1b2b3 + b2b3b4 + · · · + bn−2bn−1bn. (1)

Now if bi, bj (i < j) are two largest b’s, we deduce from (1) and the AM–
GM inequality that m ≤ bibj(b1+· · ·+bi−1+bi+1+· · ·+bj−1+bj+1+bn) ≤(

2001
3

)3
= 6673 (b1b2b3 ≤ b1bibj, etc.). The value 6673 is attained for

b1 = b2 = b3 = 667 (i.e., a1 = · · · = a667 = 1, a668 = · · · = a1334 = 2,
a1335 = · · · = a2001 = 3). Hence the maximum of m is 6673.

8. Suppose to the contrary that all the S(a)’s are different modulo n!. Then
the sum of S(a)’s over all permutations a satisfies

∑
a S(a) ≡ 0+1+ · · ·+

(n! − 1) = (n!−1)n!
2 ≡ n!

2 (mod n!). On the other hand, the coefficient of
ci in

∑
a S(a) is equal to (n− 1)!(1 + 2 + · · · + n) = n+1

2 n! for all i, from
which we obtain∑

a

S(a) ≡ n+ 1

2
(c1 + · · · + cn)n! ≡ 0 (mod n!)

for odd n. This is a contradiction.

9. Consider one such party. The result is trivially true if there is only one
3-clique, so suppose there exist at least two 3-cliques C1 and C2. We
distinguish two cases:
(i) C1 = {a, b, c} and C2 = {a, d, e} for some distinct people a, b, c, d, e. If

the departure of a destroys all 3-cliques, then we are done. Otherwise,
there is a third 3-clique C3, which has a person in common with each
of C1, C2 and does not include a: say, C3 = {b, d, f} for some f . We
thus obtain another 3-clique C4 = {a, b, d}, which has two persons in
common with C3, and the case (ii) is applied.

(ii) C1 = {a, b, c} and C2 = {a, b, d} for distinct people a, b, c, d. If the
departure of a, b leaves no 3-clique, then we are done. Otherwise, for
some e there is a clique {c, d, e}.
We claim that then the departure of c, d breaks all 3-cliques. Sup-
pose the opposite, that a 3-clique C remains. Since C shares a per-
son with each of the 3-cliques {c, d, a}, {c, d, b}, {c, d, e}, it must be
C = {a, b, e}. However, then {a, b, c, d, e} is a 5-clique, which is as-
sumed to be impossible.

10. For convenience let us write a = 1776, b = 2001, 0 < a < b. There are two
types of historic sets:

(1) {x, x+ a, x+ a+ b} and (2) {x, x+ b, x+ a+ b}.

We construct a sequence of historic sets H1, H2, H3, . . . inductively as
follows:
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(i) H1 = {0, a, a+ b}, and
(ii) Let yn be the least nonnegative integer not occurring in Un = H1 ∩

· · · ∩Hn. We take Hn+1 to be {yn, yn + a, yn + a+ b} if yn + a �∈ Un,
and {yn, yn + b, yn + a+ b} otherwise.

It remains to show that this construction never fails. Suppose that it failed
at the construction of Hn+1. The element yn + a + b is not contained in
Un, since by the construction the smallest elements of H1, . . . , Hn are all
less than yn. Hence the reason for the failure must be the fact that both
yn + a and yn + b are covered by Un. Further, yn + b must have been the
largest element of its set Hk, so the smallest element of Hk equals yn − a.
But since yn is not covered, we conclude that Hk is of type (2). This is a
contradiction, because yn was free, so by the algorithm we had to choose
for Hk the set of type (1) (that is, {yn − a, yn, yn + b}) first.

11. Let (x0, x1, . . . , xn) be any such sequence: its terms are clearly nonnegative
integers. Also, x0 = 0 yields a contradiction, so x0 > 0. Let m be the
number of positive terms among x1, . . . , xn. Since xi counts the terms
equal to i, the sum x1 + · · ·+xn counts the total number of positive terms
in the sequence, which is known to be m+ 1. Therefore among x1, . . . , xn

exactly m− 1 terms are equal to 1, one is equal to 2, and the others are
0. Only x0 can exceed 2, and consequently at most one of x3, x4, . . . can
be positive. It follows that m ≤ 3.
(i) m = 1: Then x2 = 2 (since x1 = 2 is impossible), so x0 = 2. The

resulting sequence is (2, 0, 2, 0).
(ii) m = 2: Either x1 = 2 or x2 = 2. These cases yield (1, 2, 1, 0) and

(2, 1, 2, 0, 0) respectively.
(iii) m = 3: This means that xk > 0 for some k > 2. Hence x0 = k and

xk = 1. Further, x1 = 1 is impossible, so x1 = 2 and x2 = 1; there
are no more positive terms in the sequence. The resulting sequence is
(p, 2, 1, 0, . . . , 0︸ ︷︷ ︸

p−3

, 1, 0, 0, 0).

12. For each balanced sequence a = (a1, a2, . . . , a2n) denote by f(a) the sum
of j’s for which aj = 1 (for example, f(100101) = 1 + 4 + 6 = 11).
Partition the

(
2n
n

)
balanced sequences into n+ 1 classes according to the

residue of f modulo n + 1. Now take S to be a class of minimum size:
obviously |S| ≤ 1

n+1

(
2n
n

)
. We claim that every balanced sequence a is

either a member of S or a neighbor of a member of S. We consider two
cases.
(i) Let a1 be 1. It is easy to see that moving this 1 just to the right of

the kth 0, we obtain a neighboring balanced sequence b with f(b) =
f(a) + k. Thus if a �∈ S, taking a suitable k ∈ {1, 2, . . . , n} we can
achieve that b ∈ S.

(ii) Let a1 be 0. Taking this 0 just to the right of the kth 1 gives a neighbor
b with f(b) = f(a) − k, and the conclusion is similar to that of (i).

This justifies our claim.
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13. At any moment, let pi be the number of pebbles in the ith column, i =
1, 2, . . . . The final configuration has obvious properties p1 ≥ p2 ≥ · · · and
pi+1 ∈ {pi, pi − 1}. We claim that pi+1 = pi > 0 is possible for at most
one i.
Assume the opposite. Then the final configuration has the property that
for some r and s > r we have pr+1 = pr, ps+1 = ps > 0 and pr+k =
pr+1 − k + 1 for all k = 1, . . . , s − r. Consider the earliest configuration,
say C, with this property. What was the last move before C? The only
possibilities are moving a pebble either from the rth or from the sth
column; however, in both cases the configuration preceding this last move
had the same property, contradicting the assumption that C is the earliest.
Therefore the final configuration looks as follows: p1 = a ∈ N, and for
some r, pi equals a − (i − 1) if i ≤ r, and a − (i − 2) otherwise. It is

easy to determine a, r: since n = p1 + p2 + · · · = (a+1)(a+2)
2 − r, we get

a(a+1)
2 ≤ n < (a+1)(a+2)

2 , from which we uniquely find a and then r as
well.

The final configuration for n = 13:

•
• • •
• • • •
• • • • •

14. We say that a problem is difficult for boys if at most two boys solved it,
and difficult for girls if at most two girls solved it.
Let us estimate the number of pairs boy-girl both of whom solved some
problem difficult for boys. Consider any girl. By the condition (ii), among
the six problems she solved, at least one was solved by at least 3 boys, and
hence at most 5 were difficult for boys. Since each of these problems was
solved by at most 2 boys and there are 21 girls, the considered number of
pairs does not exceed 5 · 2 · 21 = 210.
Similarly, there are at most 210 pairs boy-girl both of whom solved some
problem difficult for girls. On the other hand, there are 212 > 2 ·210 pairs
boy-girl, and each of them solved one problem in common. Thus some
problems were difficult neither for girls nor for boys, as claimed.

Remark. The statement can be generalized: if 2(m − 1)(n − 1) + 1 boys
and as many girls participated, and nobody solved more thanm problems,
then some problem was solved by at least n boys and n girls.

15. Let MNPQ be the square inscribed in 
ABC with M ∈ AB, N ∈ AC,
P,Q ∈ BC, and let AA1 meet MN,PQ at K,X respectively. Put MK =
PX = m, NK = QX = n, and MN = d. Then

BX

XC
=
m

n
=
BX +m

XC + n
=
BP

CQ
=
d cotβ + d

d cotγ + d
=

cotβ + 1

cotγ + 1
.

Similarly, if BB1 and CC1 meet AC and BC at Y, Z respectively then
CY
Y A = cot γ+1

cot α+1 and AZ
ZB = cot α+1

cot β+1 . Therefore BX
XC

CY
Y A

AZ
ZB = 1, so by Ceva’s

theorem, AX,BY,CZ have a common point.
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Second solution. Let A2 be the center of the square constructed over BC
outside 
ABC. Since this square and the inscribed square correspond-
ing to the side BC are homothetic, A, A1, and A2 are collinear. Points
B2, C2 are analogously defined. Denote the angles BAA2, A2AC,CBB2,
B2BA,ACC2, C2CB by α1, α2, β1, β2, γ1, γ2. By the law of sines we have

sinα1

sinα2
=

sin(β + 45◦)
sin(γ + 45◦)

,
sinβ1

sinβ2
=

sin(γ + 45◦)
sin(α+ 45◦)

,
sin γ1

sin γ2
=

sin(α+ 45◦)
sin(β + 45◦)

.

Since the product of these ratios is 1, by the trigonometric Ceva’s theorem
AA2, BB2, CC2 are concurrent.

16. Since ∠OCP = 90◦ − ∠A, we are led to showing that ∠OCP > ∠COP ,
i.e., OP > CP . By the triangle inequality it suffices to prove CP < 1

2CO.
Let CO = R. The law of sines yields CP = AC cos γ = 2R sinβ cos γ <
2R sinβ cos(β + 30◦). Finally, we have

2 sinβ cos(β + 30◦) = sin(2β + 30◦) − sin 30◦ ≤ 1

2
,

which completes the proof.

17. Let us investigate a more general problem, in which G is any point of the
plane such that AG,BG,CG are sides of a triangle.
Let F be the point in the plane such that BC : CF : FB = AG : BG : CG
and F,A lie on different sides of BC. Then by Ptolemy’s inequality, on
BPCF we have AG · AP + BG · BP + CG · CP = AG · AP + AG

BC (CF ·
BP +BF · CP ) ≥ AG ·AP + AG

BCBC · PF. Hence

AG ·AP +BG · BP + CG · CP ≥ AG ·AF, (1)

where equality holds if and only if P lies on the segment AF and on the
circle BCF . Now we return to the case of G the centroid of 
ABC.

We claim that F is then the point
Ĝ in which the line AG meets again
the circumcircle of 
BGC. Indeed,
if M is the midpoint of AB, by
the law of sines we have BC

CĜ
=

sin ∠BĜC

sin ∠CBĜ
= sin ∠BGM

sin∠AGM = AG
BG , and

similarly BC

BĜ
= AG

CG . Thus (1) im-
plies

A B

C

P

G

F

AG ·AP +BG ·BP + CG · CP ≥ AG ·AĜ.
It is easily seen from the above considerations that equality holds if and
only if P ≡ G, and then the (minimum) value of AG · AP + BG · BP +
CG · CP equals
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AG2 +BG2 + CG2 =
a2 + b2 + c2

3
.

Second solution. Notice that AG · AP ≥ −→
AG · −→AP =

−→
AG · (

−→
AG +

−−→
PG).

Summing this inequality with analogous inequalities for BG · BP and
CG ·CP gives us AG ·AP +BG ·BP +CG ·CP ≥ AG2 +BG2 +CG2 +

(
−→
AG+

−−→
BG+

−−→
CG) · −−→PG = AG2 +BG2 +CG2 = a2+b2+c2

3 . Equality holds
if and only if P ≡ Q.

18. Let α1, β1, γ1, α2, β2, γ2 denote the angles ∠MAB, ∠MBC, ∠MCA,
∠MAC, ∠MBA, ∠MCB respectively. Then MB′·MC′

MA2 = sinα1 sinα2,
MC′·MA′

MB2 = sinβ1 sinβ2,
MA′·MB′

MC2 = sin γ1 sin γ2; hence

p(M)2 = sinα1 sinα2 sinβ1 sinβ2 sinγ1 sin γ2.

Since

sinα1 sinα2 =
1

2
(cos(α1 − α2) − cos(α1 + α2) ≤ 1

2
(1 − cosα) = sin2 α

2
,

we conclude that

p(M) ≤ sin
α

2
sin

β

2
sin

γ

2
.

Equality occurs when α1 = α2, β1 = β2, and γ1 = γ2, that is, when M is
the incenter of 
ABC.
It is well known that µ(ABC) = sin α

2 sin β
2 sin γ

2 is maximal when 
ABC
is equilateral (it follows, for example, from Jensen’s inequality applied to
ln sinx). Hence maxµ(ABC) = 1

8 .

19. It is easy to see that the hexagon
AEBFCD is convex and ∠AEB +
∠BFC+∠CDA = 360◦. Using this
relation we obtain that the circles
ω1, ω2, ω3 with centers at D,E, F
and radii DA,EB,FC respectively
all pass through a common point
O. Indeed, if ω1 ∩ ω2 = {O}, then
∠AOB = 180◦ − ∠AEB/2 and
∠BOC = 180◦ − ∠BFC/2; hence
∠COA = 180◦ − ∠CDA/2 as well,
i.e., O ∈ ω3. The point O is the re-

A B

C

D

E

F

D′

E′

F ′O

flection of A with respect to DE. Similarly, it is also the reflection of B
with respect to EF , and that of C with respect to FD. Hence

DB

DD′ = 1 +
D′B
DD′ = 1 +

SEBF

SEDF
= 1 +

SOEF

SDEF
.

Analogously EC
EE′ = 1+ SODF

SDEF
and FA

FF ′ = 1+ SODE

SDEF
. Adding these relations

gives us
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DB

DD′ +
EC

EE′ +
FA

FF ′ = 3 +
SOEF + SODF + SODE

SDEF
= 4.

20. By Ceva’s theorem, we can choose real numbers x, y, z such that

−−→
BD
−−→
DC

=
z

y
,

−−→
CE
−→
EA

=
x

z
, and

−→
AF
−−→
FB

=
y

x
.

The point P lies outside the triangle ABC if and only if x, y, z are not
all of the same sign. In what follows, SX will denote the signed area of a
figure X .
Let us assume that the area SABC of 
ABC is 1. Since SPBC : SPCA :
SPAB = x : y : z and SPBD : SPDC = z : y, it follows that
SPBD = z

y+z
x

x+y+z . Hence SPBD = 1
y(y+z)

xyz
x+y+z , SPCE = 1

z(z+x)
xyz

x+y+z ,

SPAF = 1
x(x+y)

xyz
x+y+z . By the condition of the problem we have |SPBD| =

|SPCE | = |SPAF |, or

|x(x + y)| = |y(y + z)| = |z(z + x)|.

Obviously x, y, z are nonzero, so that we can put w.l.o.g. z = 1. At least
two of the numbers x(x+y), y(y+1), 1(1+x) are equal, so we can assume
that x(x + y) = y(y + 1). We distinguish two cases:
(i) x(x + y) = y(y + 1) = 1 + x. Then x = y2 + y − 1, from which

we obtain (y2 + y − 1)(y2 + 2y − 1) = y(y + 1). Simplification gives
y4 + 3y3 − y2 − 4y + 1 = 0, or

(y − 1)(y3 + 4y2 + 3y − 1) = 0.

If y = 1, then also z = x = 1, so P is the centroid of 
ABC, which
is not an exterior point. Hence y3 + 4y2 + 3y− 1 = 0. Now the signed
area of each of the triangles PBD,PCE,PAF equals

SPAF =
yz

(x+ y)(x+ y + z)

=
y

(y2 + 2y − 1)(y2 + 2y)
=

1

y3 + 4y2 + 3y − 2
= −1.

It is easy to check that not both of x, y are positive, implying that P
is indeed outside 
ABC. This is the desired result.

(ii) x(x + y) = y(y + 1) = −1 − x. In this case we are led to

f(y) = y4 + 3y3 + y2 − 2y + 1 = 0.

We claim that this equation has no real solutions. In fact, assume that
y0 is a real root of f(y). We must have y0 < 0, and hence u = −y0 > 0
satisfies 3u3 − u4 = (u + 1)2. On the other hand,



4.42 Shortlisted Problems 2001 685

3u3 − u4 = u3(3 − u) = 4u
(u

2

)(u
2

)
(3 − u)

≤ 4u

(
u/2 + u/2 + 3 − u

3

)3

= 4u

≤ (u+ 1)2,

where at least one of the inequalities is strict, a contradiction.

Remark. The official solution was incomplete, missing the case (ii).

21. We denote by p(XY Z) the perimeter of a triangle XY Z.
If O is the circumcenter of 
ABC, then A1, B1, C1 are the midpoints
of the corresponding sides of the triangle, and hence p(A1B1C1) =
p(AB1C1) = p(A1BC1) = p(A1B1C).
Conversely, suppose that p(A1B1C1) ≥ p(AB1C1), p(A1BC1), p(A1B1C).
Let α1, α2, β1, β2, γ1, γ2 denote ∠B1A1C, ∠C1A1B, ∠C1B1A, ∠A1B1C,
∠A1C1B, ∠B1C1A.
Suppose that γ1, β2 ≥ α. If A2 is the
fourth vertex of the parallelogram
B1AC1A2, then these conditions
imply that A1 is in the interior or on
the border of 
B1C1A2, and there-
fore p(A1B1C1) ≤ p(A2B1C1) =
p(AB1C1). Moreover, if one of the
inequalities γ1 ≥ α, β2 ≥ α is strict,
then p(A1B1C1) is strictly less than

A B

C

O

A1

B1

C1

A2α1

β1

γ1

α2

β2

γ2

p(AB1C1), contrary to the assumption. Hence

β2 ≥ α =⇒ γ1 ≤ α,
γ2 ≥ β =⇒ α1 ≤ β,
α2 ≥ γ =⇒ β1 ≤ γ,

(1)

the last two inequalities being obtained analogously to the first one. Be-
cause of the symmetry, there is no loss of generality in assuming that
γ1 ≤ α. Then since γ1 + α2 = 180◦ − β = α + γ, it follows that α2 ≥ γ.
From (1) we deduce β1 ≤ γ, which further implies γ2 ≥ β. Similarly, this
leads to α1 ≤ β and β2 ≥ α. To sum up,

γ1 ≤ α ≤ β2, α1 ≤ β ≤ γ2, β1 ≤ γ ≤ α2.

Since OA1BC1 and OB1CA1 are cyclic, we have ∠A1OB = γ1 and
∠A1OC = β2. Hence BO : CO = cosβ2 : cos γ1, hence BO ≤ CO.
Analogously, CO ≤ AO and AO ≤ BO. Therefore AO = BO = CO, i.e.,
O is the circumcenter of ABC.

22. Let S and T respectively be the points on the extensions of AB and AQ
over B and Q such that BS = BP and QT = QB. It is given that AS =
AB +BP = AQ+QB = AT . Since ∠PAS = ∠PAT , the triangles APS
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and APT are congruent, from which we deduce that ∠ATP = ∠ASP =
β/2 = ∠QBP . Hence ∠QTP = ∠QBP .
If P does not lie on BT , then the last equality implies that 
QBP and

QTP are congruent, so P lies on the internal bisector of ∠BQT . But P
also lies on the internal bisector of ∠QAB; consequently, P is an excenter
of 
QAB, thus lying on the internal bisector of ∠QBS as well. It follows
that ∠PBQ = β/2 = ∠PBS = 180◦−β, so β = 120◦, which is impossible.
Therefore P ∈ BT , which means that T ≡ C. Now from QC = QB we
conclude that 120◦ − β = γ = β/2, i.e., β = 80◦ and γ = 40◦.

23. For each positive integer x, define α(x) = x/10r if r is the positive integer
satisfying 10r ≤ x < 10r+1. Observe that if α(x)α(y) < 10 for some
x, y ∈ N, then α(xy) = α(x)α(y). If, as usual, [t] means the integer part
of t, then [α(x)] is actually the leftmost digit of x.
Now suppose that n is a positive integer such that k ≤ α((n+k)!) < k+1
for k = 1, 2, . . . , 9. We have

1 < α(n+ k) =
α((n+ k)!)

α((n + k − 1)!)
<
k + 1

k − 1
≤ 3 for 2 ≤ k ≤ 9,

from which we obtain α(n+k+1) > α(n+k) (the opposite can hold only
if α(n+ k) ≥ 9). Therefore

1 < α(n+ 2) < · · · < α(n+ 9) ≤ 5

4
.

On the other hand, this implies that α((n+4)!) = α((n+1)!)α(n+2)α(n+
3)α(n + 4) < (5/4)3α((n + 1)!) < 4, contradicting the assumption that
the leftmost digit of (n+ 4)! is 4.

24. We shall find the general solution to the system. Squaring both sides of
the first equation and subtracting twice the second equation we obtain
(x − y)2 = z2 + u2. Thus (z, u, x− y) is a Pythagorean triple. Then it is
well known that there are positive integers t, a, b such that z = t(a2 − b2),
u = 2tab (or vice versa), and x− y = t(a2 + b2). Using that x+ y = z + u
we come to the general solution:

x = t(a2 + ab), y = t(ab− b2); z = t(a2 − b2), u = 2tab.

Putting a/b = k we obtain

x

y
=
k2 + k

k − 1
= 3 + (k − 1) +

2

k − 1
≥ 3 + 2

√
2,

with equality for k − 1 =
√

2. On the other hand, k can be arbitrarily
close to 1 +

√
2, and so x/y can be arbitrarily close to 3 + 2

√
2. Hence

m = 3 + 2
√

2.

Remark. There are several other techniques for solving the given system.
The exact lower bound of m itself can be obtained as follows: by the

system
(

x
y

)2

− 6x
y + 1 =

(
z−u

y

)2

≥ 0, so x/y ≥ 3 + 2
√

2.
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25. Define bn = |an+1−an| for n ≥ 1. From the equalities an+1 = bn−1+bn−2,
from an = bn−2 + bn−3 we obtain bn = |bn−1 − bn−3|. From this relation
we deduce that bm ≤ max(bn, bn+1, bn+2) for all m ≥ n, and consequently
bn is bounded.
Lemma. If max(bn, bn+1, bn+2) = M ≥ 2, then max(bn+6, bn+7, bn+8) ≤

M − 1.
Proof. Assume the opposite. Suppose that bj = M , j ∈ {n, n+ 1, n+ 2},

and let bj+1 = x and bj+2 = y. Thus bj+3 = M − y. If x, y,M − y are
all less than M , then the contradiction is immediate. The remaining
cases are these:
(i) x = M . Then the sequence has the form M,M, y,M − y, y, . . . ,

and since max(y,M − y, y) = M , we must have y = 0 or y = M .
(ii) y = M . Then the sequence has the form M,x,M, 0, x,M − x, . . . ,

and since max(0, x,M − x) = M , we must have x = 0 or x = M .
(iii) y = 0. Then the sequence is M,x, 0,M,M − x,M − x, x, . . . , and

since max(M − x, x, x) = M , we have x = 0 or x = M .
In every case M divides both x and y. From the recurrence formula
M also divides bi for every i < j. However, b2 = 1212 − 1111 and
b4 = 1111 are relatively prime, a contradiction.

From max(b1, b2, b3) ≤ 1313 and the lemma we deduce inductively that
bn ≤ 1 for all n ≥ 6·1313−5. Hence an = bn−2+bn−3 takes only the values
0, 1, 2 for n ≥ 6 · 1313 − 2. In particular, a1414 is 0, 1, or 2. On the other
hand, the sequence an modulo 2 is as follows: 1, 0, 1, 0, 0, 1, 1; 1, 0, 1, 0, . . . ;
and therefore it is periodic with period 7. Finally, 1414 ≡ 0 modulo 7,
from which we obtain a1414 ≡ a7 ≡ 1 (mod 2). Therefore a1414 = 1.

26. Let C be the set of those a ∈ {1, 2, . . . , p−1} for which ap−1 ≡ 1 (mod p2).
At first, we observe that a, p − a do not both belong to C, regardless of
the value of a. Indeed, by the binomial formula,

(p− a)p−1 − ap−1 ≡ −(p− 1)p ap−2 �≡ 0 (mod p2).

As a consequence we deduce that |C| ≤ p−1
2 . Further, we observe that

p− k ∈ C ⇔ k ≡ k(p− k)p−1 (mod p2), i.e.,

p− k ∈ C ⇔ k ≡ k(kp−1 − (p− 1)p kp−2) ≡ kp + p (mod p2). (1)

Now assume the contrary to the claim, that for every a = 1, . . . , p− 2 one
of a, a+1 is in C. In this case it is not possible that a, a+1 are both in C,
for then p−a, p−a−1 �∈ C. Thus, since 1 ∈ C, we inductively obtain that
2, 4, . . . , p−1 �∈ C and 1, 3, 5, . . . , p−2 ∈ C. In particular, p−2, p−4 ∈ C,
which is by (1) equivalent to 2 ≡ 2p + p and 4 ≡ 4p + p (mod p2).
However, squaring the former equality and subtracting the latter, we ob-
tain 2p+1p ≡ p (mod p2), or 4 ≡ 1 (mod p), which is a contradiction unless
p = 3. This finishes the proof.
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27. The given equality is equivalent to a2 − ac + c2 = b2 + bd + d2. Hence
(ab+ cd)(ad + bc) = ac(b2 + bd+ d2) + bd(a2 − ac+ c2), or equivalently,

(ab+ cd)(ad+ bc) = (ac+ bd)(a2 − ac+ c2). (1)

Now suppose that ab+ cd is prime. It follows from a > b > c > d that

ab+ cd > ac+ bd > ad+ bc; (2)

hence ac+ bd is relatively prime with ab + cd. But then (1) implies that
ac+ bd divides ad+ bc, which is impossible by (2).

Remark. Alternatively, (1) could be obtained by applying the law of
cosines and Ptolemy’s theorem on a quadrilateral XY ZT with XY = a,
Y Z = c, ZT = b, TX = d and ∠Y = 60◦, ∠T = 120◦.

28. Yes. The desired result is an immediate consequence of the following fact
applied on p = 101.
Lemma. For any odd prime number p, there exist p nonnegative integers

less than 2p2 with all pairwise sums mutually distinct.
Proof. We claim that the numbers an = 2np + (n2) have the desired

property, where (x) denotes the remainder of x upon division by p.
Suppose that ak + al = am + an. By the construction of ai, we have
2p(k+ l) ≤ ak +al < 2p(k+ l+1). Hence we must have k+ l = m+n,
and therefore also (k2) + (l2) = (m2) + (n2). Thus

k + l ≡ m+ n and k2 + l2 ≡ m2 + n2 (mod p).

But then it holds that (k− l)2 = 2(k2 + l2)− (k+ l)2 ≡ (m−n)2 (mod
p), so k − l ≡ ±(m − n), which leads to (k, l) = (m,n). This proves
the lemma.
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4.43 Solutions to the Shortlisted Problems of IMO 2002

1. Consider the given equation modulo 9. Since each cube is congruent to
either −1, 0 or 1, whereas 20022002 ≡ 42002 = 4 · 64667 ≡ 4 (mod 9), we
conclude that t ≥ 4.
On the other hand, 20022002 = 2002 · (2002667)3 = (103 + 103 + 13 +
13)(2002667)3 is a solution with t = 4. Hence the answer is 4.

2. Set S = d1d2 + · · · + dk−1dk. Since di/n = 1/dk+1−i, we have S
n2 =

1
dkdk−1

+ · · · + 1
d2d1

. Hence

1

d2d1
≤ S

n2
≤

(
1

dk−1
− 1

dk

)
+ · · · +

(
1

d1
− 1

d2

)
= 1 − 1

dk
< 1,

or (since d1 = 1) 1 < n2

S ≤ d2. This shows that S < n2.
Also, if S is a divisor of n2, then n2/S is a nontrivial divisor of n2 not
exceeding d2. But d2 is obviously the least prime divisor of n (and also of
n2), so we must have n2/S = d2, which holds if and only if n is prime.

3. We observe that if a, b are coprime odd numbers, then gcd(2a+1, 2b+1) =
3. In fact, this g.c.d. divides gcd(22a−1, 22b−1) = 2gcd(2a,2b)−1 = 22−1 =
3, while 3 obviously divides both 2a + 1 and 2b + 1. In particular, if 3 � b,
then 32 � 2b +1, so 2a +1 and (2b +1)/3 are coprime; consequently 2ab +1

(being divisible by 2a + 1, 2b + 1) is divisible by (2a+1)(2b+1)
3 .

Now we prove the desired result by induction on n. For n = 1, 2p1 + 1 is
divisible by 3 and exceeds 32, so it has at least 4 divisors. Assume that
2a+1 = 2p1···pn−1 +1 has at least 4n−1 divisors and consider N = 2ab+1 =
2p1···pn + 1 (where b = pn). As above, 2a + 1 and 2b+1

3 are coprime, and
thus Q = (2a + 1)(2b + 1)/3 has at least 2 · 4n−1 divisors. Moreover, N is
divisible by Q and is greater than Q2 (indeed, N > 2ab > 22a22b > Q2 if
a, b ≥ 5). Then N has at least twice as many divisors as Q (because for
every d | Q both d and N/d are divisors of N), which counts up to 4n

divisors, as required.

Remark. With some knowledge of cyclotomic polynomials, one can show
that 2p1···pn + 1 has at least 22n−1

divisors, far exceeding 4n.

4. For a = b = c = 1 we obtain m = 12. We claim that the given equation
has infinitely many solutions in positive integers a, b, c for this value of m.
After multiplication by abc(a+b+c) the equation 1

a+ 1
b + 1

c+ 1
abc−

12
a+b+c = 0

becomes

a2(b + c) + b2(c+ a) + c2(a+ b) + a+ b+ c− 9abc = 0. (1)

We must show that this equation has infinitely many solutions in positive
integers. Suppose that (a, b, c) is one such solution with a < b < c. Re-
garding (1) as a quadratic equation in a, we see by Vieta’s formula that(
b, c, bc+1

a

)
also satisfies (1).
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Define (an)∞n=0 by a0 = a1 = a2 = 1 and an+1 = anan−1+1
an−2

for each
n > 1.
We show that all an’s are integers. This procedure is fairly standard.
The above relation for n and n − 1 gives an+1an−2 = anan−1 + 1 and
an−1an−2 + 1 = anan−3, so that adding yields an−2(an−1 + an+1) =
an(an−1 + an−3). Therefore an+1+an−1

an
= an−1+an−3

an−2
= · · · , from which it

follows that
an+1 + an−1

an
=

{ a2+a0

a1
= 2 for n odd;

a3+a1

a2
= 3 for n even.

It is now an immediate consequence that every an is integral. Also, the
above consideration implies that (an−1, an, an+1) is a solution of (1) for
each n ≥ 1. Since an is strictly increasing, this gives an infinity of solutions
in integers.

Remark. There are infinitely many values of m ∈ N for which the given
equation has at least one solution in integers, and each of those values
admits an infinity of solutions.

5. Consider all possible sums c1a1 + c2a2 + · · · + cnan, where each ci is an
integer with 0 ≤ ci < m. There are mn such sums, and if any two of them
give the same remainder modulo mn, say

∑
ciai ≡

∑
diai (mod mn),

then
∑

(ci −di)ai is divisible by mn, and since |ci −di| < m, we are done.
We claim that two such sums must exist.
Suppose to the contrary that the sums

∑
i ciai (0 ≤ ci < m) give all the

different remainders modulo mn. Consider the polynomial

P (x) =
∑

xc1a1+···+cnan ,

where the sum is taken over all (c1, . . . , cn) with 0 ≤ ci < m. If ξ is a
primitive mnth root of unity, then by the assumption we have

P (ξ) = 1 + ξ + · · · + ξmn−1 = 0.

On the other hand, P (x) can be factored as

P (x) =
n∏

i=1

(1 + xai + · · · + x(m−1)ai) =
n∏

i=1

1 − xmai

1 − xai
,

so that none of its factors is zero at x = ξ because mai is not divisible by
mn. This is obviously a contradiction.

Remark. The example ai = mi−1 for i = 1, . . . , n shows that the condition
that no ai is a multiple of mn−1 cannot be removed.

6. Suppose that (m,n) is such a pair. Assume that division of the polynomial
F (x) = xm + x − 1 by G(x) = xn + x2 − 1 gives the quotient Q(x) and
remainder R(x). Since degR(x) < degG(x), for x large enough |R(x)| <
|G(x)|; however,R(x) is divisible by G(x) for infinitely many integers x, so
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it is equal to zero infinitely often. Hence R ≡ 0, and thus F (x) is exactly
divisible by G(x).
The polynomialG(x) has a root α in the interval (0, 1), becauseG(0) = −1
and G(1) = 1. Then also F (α) = 0, so that

αm + α = αn + α2 = 1.

If m ≥ 2n, then 1 − α = αm ≤ (αn)2 = (1 − α2)2, which is equivalent to
α(α−1)(α2 +α−1) ≥ 0. But this last is not possible, because α2+α−1 >
αm + α− 1 = 0; hence m < 2n.
Now we have F (x)/G(x) = xm−n − (xm−n+2 − xm−n − x + 1)/G(x), so
H(x) = xm−n+2 −xm−n −x+1 is also divisible by G(x); but degH(x) =
m − n + 2 ≤ n + 1 = degG(x) + 1, from which we deduce that either
H(x) = G(x) or H(x) = (x − a)G(x) for some a ∈ Z. The former case
is impossible. In the latter case we must have m = 2n − 1, and thus
H(x) = xn+1 − xn−1 − x + 1; on the other hand, putting x = 1 gives
a = 1, so H(x) = (x − 1)(xn + x2 − 1) = xn+1 − xn + x3 − x2 − x + 1.
This is possible only if n = 3 and m = 5.

Remark. It is an old (though difficult) result that the polynomial xn ±
xk ±1 is either irreducible or equals x2 ±x+1 times an irreducible factor.

7. To avoid working with cases, we use oriented angles modulo 180◦. Let K
be the circumcenter of 
BCD, and X any point on the common tangent
to the circles at D. Since the tangents at the ends of a chord are equally
inclined to the chord, we have ∠BAC = ∠ABD + ∠BDC + ∠DCA =
∠BDX + ∠BDC + ∠XDC = 2∠BDC = ∠BKC. It follows that
B,C,A,K are concyclic, as required.

8. Construct equilateral triangles ACP and ABQ outside the triangle ABC.
Since ∠APC+ ∠AFC = 60◦ + 120◦ = 180◦, the points A,C, F, P lie on a
circle; hence ∠AFP = ∠ACP = 60◦ = ∠AFD, so D lies on the segment
FP ; similarly, E lies on FQ. Further, note that

FP

FD
= 1 +

DP

FD
= 1 +

SAPC

SAFC
≥ 4

with equality if F is the midpoint of the smaller arcAC: hence FD ≤ 1
4FP

and FE ≤ 1
4FQ. Then by the law of cosines,

DE =
√
FD2 + FE2 + FD · FE

≤ 1

4

√
FP 2 + FQ2 + FP · FQ =

1

4
PQ ≤ AP +AQ = AB +AC.

Equality holds if and only if 
ABC is equilateral.

9. Since ∠BCA = 1
2∠BOA = ∠BOD, the lines CA and OD are parallel, so

that ODAI is a parallelogram. It follows that AI = OD = OE = AE =
AF . Hence
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∠IFE = ∠IFA−∠EFA = ∠AIF −∠ECA = ∠AIF −∠ACF = ∠CFI.

Also, from AE = AF we get that CI bisects ∠ECF . Therefore I is the
incenter of 
CEF .

10. Let O be the circumcenter of A1A2C, and O1, O2 the centers of S1, S2

respectively.
First, from ∠A1QA2 = 180◦ − ∠PA1Q− ∠QA2P = 1

2 (360◦ − ∠PO1Q−
∠QO2P ) = ∠O1QO2 we obtain ∠A1QA2 = ∠B1QB2 = ∠O1QO2.

Therefore ∠A1QA2 = ∠B1QP +
∠PQB2 = ∠CA1P + ∠CA2P =
180◦−∠A1CA2, from which we con-
clude that Q lies on the circum-
circle of 
A1A2C. Hence OA1 =
OQ. However, we also have O1A2 =
O1Q. Consequently, O,O1 both lie
on the perpendicular bisector of
A1Q, so OO1 ⊥ A1Q. Similarly,
OO2 ⊥ A2Q, leading to ∠O2OO1 =

O1 O2

P

Q

A1

A2

B1

B2

C

O

S1
S2

180◦ − ∠A1QA2 = 180◦ − ∠O1QO2. Hence, O lies on the circle through
O1, O2, Q, which is fixed.

11. When S is the set of vertices of a regular pentagon, then it is easily

verified that M(S)
m(S) = 1+

√
5

2 = α. We claim that this is the best possible.

Let A,B,C,D,E be five arbitrary points, and assume that 
ABC has
the area M(S). We claim that some triangle has area less than or equal
to M(S)/α.
Construct a larger triangle A′B′C′ with C ∈ A′B′ ‖ AB, A ∈ B′C′ ‖ BC,
B ∈ C′A′ ‖ CA. The point D, as well as E, must lie on the same side of
B′C′ as BC, for otherwise 
DBC would have greater area than 
ABC.
A similar result holds for the other edges, and therefore D,E lie inside the
triangle A′B′C′ or on its boundary. Moreover, at least one of the triangles
A′BC,AB′C,ABC′, say ABC′, contains neither D nor E. Hence we can
assume that D,E are contained inside the quadrilateral A′B′AB.
An affine linear transformation does not change the ratios between areas.
Thus if we apply such an affine transformation mapping A,B,C into the
vertices ABMCN of a regular pentagon, we won’t change M(S)/m(S).
If now D or E lies inside ABMCN , then we are done. Suppose that both
D and E are inside the triangles CMA′, CNB′. Then CD,CE ≤ CM
(because CM = CN = CA′ = CB′) and ∠DCE is either less than or
equal to 36◦ or greater than or equal to 108◦, from which we obtain that
the area of 
CDE cannot exceed the area of 
CMN = M(S)/α. This
completes the proof.

12. Let l(MN) denote the length of the shorter arc MN of a given circle.
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Lemma. Let PR,QS be two chords of a circle k of radius r that meet each
other at a point X , and let ∠PXQ = ∠RXS = 2α. Then l(PQ) +
l(RS) = 4αr.

Proof. Let O be the center of the circle. Then l(PQ) + l(RS) = ∠POQ ·
r + ∠ROS · r = 2(∠QSP + ∠RPS)r = 2∠QXP · r = 4αr.

Consider a circle k, sufficiently large, whose interior contains all the given
circles. For any two circles Ci, Cj , let their exterior common tangents
PR,QS (P,Q,R, S ∈ k) form an angle 2α. Then OiOj = 2

sin α , so α >
sinα = 2

OiOj
. By the lemma we have l(PQ) + l(RS) = 4αr ≥ 8r

OiOj
, and

hence
1

OiOj
≤ l(PQ) + l(RS)

8r
. (1)

Now sum all these inequalities for i < j. The result will follow if we show
that every point of the circle k belongs to at most n − 1 arcs such as
PQ,RS. Indeed, that will imply that the sum of all the arcs is at most

2(n− 1)πr, hence from (1) we conclude that
∑ 1

OiOj
≤ (n−1)π

4 .

Consider an arbitrary point T of k. We prove by induction (the basis n = 1
is trivial) that the number of pairs of circles that are simultaneously in-
tercepted by a ray from T is at most n − 1. Let Tu be a ray touching k
at T . If we let this ray rotate around T , it will at some moment intercept
a pair of circles for the first time, say C1, C2. At some further moment
the interception with one of these circles, say C1, is lost and never estab-
lished again. Thus the pair (C1, C2) is the only pair containing C1 that
is intercepted by some ray from T . On the other hand, by the inductive
hypothesis the number of such pairs not containing C1 does not exceed
n− 2, justifying our claim.

13. Let k be the circle throughB,C that is tangent to the circle Ω at pointN ′.
We must prove that K,M,N ′ are collinear. Since the statement is trivial
for AB = AC, we may assume that AC > AB. As usual, R, r, α, β, γ
denote the circumradius and the inradius and the angles of 
ABC, re-
spectively.
We have tan∠BKM = DM/DK. Straightforward calculation gives
DM = 1

2AD = R sinβ sin γ and DK = DC−DB
2 − KC−KB

2 = R sin(β −
γ) −R(sinβ − sin γ) = 4R sin β−γ

2 sin β
2 sin γ

2 , so we obtain

tan ∠BKM =
sinβ sin γ

4 sin β−γ
2 sin β

2 sin γ
2

=
cos β

2 cos γ
2

sin β−γ
2

.

To calculate the angle BKN ′, we
apply the inversion ψ with center
at K and power BK ·CK. For each
object X , we denote by X̂ its image
under ψ. The incircle Ω maps to a KB C

A

k

Ω

N

−→
ψ

B̂ ĈÛ

N̂ Ω̂

K

k̂
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line Ω̂ parallel to B̂Ĉ, at distance BK·CK
2r from B̂Ĉ. Thus the point N̂ ′ is

the projection of the midpoint Û of B̂Ĉ onto Ω̂. Hence

tan∠BKN ′ = tan∠B̂KN̂ ′ =
ÛN̂ ′

ÛK
=

BK · CK
r(CK −BK)

.

Again, one easily checks that KB · KC = bc sin2 α
2 and r = 4R sin α

2 ·
sin β

2 · sin γ
2 , which implies

tan ∠BKN ′ =
bc sin2 α

2

r(b − c)

=
4R2 sinβ sin γ sin2 α

2

4R sin α
2 sin β

2 sin γ
2 · 2R(sinβ − sinγ)

=
cos β

2 cos γ
2

sin β−γ
2

.

Hence ∠BKM = ∠BKN ′, which implies that K,M,N ′ are indeed
collinear; thus N ′ ≡ N .

14. Let G be the other point of intersection of the line FK with the arc BAD.

Since BN/NC = DK/KB and
∠CEB = ∠BGD the triangles
CEB and BGD are similar. Thus
BN/NE = DK/KG = FK/KB.
From BN = MK and BK =
MN it follows that MN/NE =
FK/KM . But we also have that
∠MNE = 90◦ + ∠MNB = 90◦ +
∠MKB = ∠FKM , and hence

MNE ∼ 
FKM .

A

B

C

D
M

K
N

E

F

G

S1 S2

Now ∠EMF = ∠NMK − ∠NME − ∠KMF = ∠NMK − ∠NME −
∠NEM = ∠NMK − 90◦ + ∠BNM = 90◦ as claimed.

15. We observe first that f is surjective. Indeed, setting y = −f(x) gives
f(f(−f(x)) − x) = f(0) − 2x, where the right-hand expression can take
any real value.
In particular, there exists x0 for which f(x0) = 0. Now setting x = x0 in
the functional equation yields f(y) = 2x0 + f(f(y) − x0), so we obtain

f(z) = z − x0 for z = f(y) − x0.

Since f is surjective, z takes all real values. Hence for all z, f(z) = z + c
for some constant c, and this is indeed a solution.

16. For n ≥ 2, let (k1, k2, . . . , kn) be the permutation of {1, 2, ..., n} with
ak1 ≤ ak2 ≤ · · · ≤ akn . Then from the condition of the problem, using the
Cauchy–Schwarz inequality, we obtain
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c ≥ akn − ak1 = |akn − akn−1 | + · · · + |ak3 − ak2 | + |ak2 − ak1 |

≥ 1

k1 + k2
+

1

k2 + k3
+ · · · + 1

kn−1 + kn

≥ (n− 1)2

(k1 + k2) + (k2 + k3) + · · · + (kn−1 + kn)

=
(n− 1)2

2(k1 + k2 + · · · + kn) − k1 − kn
≥ (n− 1)2

n2 + n− 3
≥ n− 1

n+ 2
.

Therefore c ≥ 1 − 3
n+2 for every positive integer n. But if c < 1, this

inequality is obviously false for all n > 3
1−c − 2. We conclude that c ≥ 1.

Remark. The least value of c is not greater than 2 ln 2. An example of
a sequence {an} with 0 ≤ an ≤ 2 ln 2 can be constructed inductively as
follows: Given a1, a2, . . . , an−1, then an can be any number from [0, 2 ln 2]

that does not belong to any of the intervals
(
ai − 1

i+n , ai + 1
i+n

)
(i =

1, 2, . . . , n− 1), and the total length of these intervals is always less than
or equal to

2

n+ 1
+

2

n+ 2
+ · · · + 2

2n− 1
< 2 ln 2.

17. Let x, y be distinct integers satisfying xP (x) = yP (y); this is equivalent
to a(x4 − y4) + b(x3 − y3) + c(x2 − y2) + d(x− y) = 0. Dividing by x− y
we obtain

a(x3 + x2y + xy2 + y3) + b(x2 + xy + y2) + c(x+ y) + d = 0.

Putting x+ y = p, x2 + y2 = q leads to x2 + xy+ y2 = p2+q
2 , so the above

equality becomes

apq +
b

2
(p2 + q) + cp+ d = 0, i.e. (2ap+ b)q = −(bp2 + 2cp+ 2d).

Since q ≥ p2/2, it follows that p2|2ap + b| ≤ 2|bp2 + 2cp + 2d|, which is
possible only for finitely many values of p, although there are infinitely
many pairs (x, y) with xP (x) = yP (y). Hence there exists p such that
xP (x) = (p− x)P (p− x) for infinitely many x, and therefore for all x.
If p �= 0, then p is a root of P (x). If p = 0, the above relation gives
P (x) = −P (−x). This forces b = d = 0, so P (x) = x(ax2 + c). Thus 0 is
a root of P (x).

18. Putting x = z = 0 and t = y into the given equation gives 4f(0)f(y) =
2f(0) for all y. If f(0) �= 0, then we deduce f(y) = 1

2 , i.e., f is identically
equal to 1

2 .
Now we suppose that f(0) = 0. Setting z = t = 0 we obtain

f(xy) = f(x)f(y) for all x, y ∈ R. (1)

Thus if f(y) = 0 for some y �= 0, then f is identically zero. So, assume
f(y) �= 0 whenever y �= 0.
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Next, we observe that f is strictly increasing on the set of positive reals.
Actually, it follows from (1) that f(x) = f(

√
x)2 ≥ 0 for all x ≥ 0, so that

the given equation for t = x and z = y yields f(x2+y2) = (f(x)+f(y))2 ≥
f(x2) for all x, y ≥ 0.
Using (1) it is easy to get f(1) = 1. Now plugging t = y into the given
equation, we are led to

2[f(x) + f(z)] = f(x− z) + f(x+ z) for all x, z. (2)

In particular, f(z) = f(−z). Further, it is easy to get by induction from (2)
that f(nx) = n2f(x) for all integers n (and consequently for all rational
numbers as well). Therefore f(q) = f(−q) = q2 for all q ∈ Q. But f is
increasing for x > 0, so we must have f(x) = x2 for all x.
It is easy to verify that f(x) = 0, f(x) = 1

2 and f(x) = x2 are indeed
solutions.

19. Write m = [ 3
√
n]. To simplify the calculation, we shall assume that [b] = 1.

Then a = 3
√
n, b = 1

3
√

n−m
= 1

n−m3

(
m2 +m 3

√
n+

3
√
n2
)
, c = 1

b−1 =

u+ v 3
√
n+w

3
√
n2 for certain rational numbers u, v, w. Obviously, integers

r, s, t with ra + sb + tc = 0 exist if (and only if) u = m2w, i.e., if (b −
1)(m2w + v 3

√
n+ w

3
√
n2) = 1 for some rational v, w.

When the last equality is expanded and simplified, comparing the coeffi-
cients at 1, 3

√
n,

3
√
n2 one obtains

1 : v+ ((m2 +m3 − n)m2 +m)w = n−m3,
3
√
n : (m2 +m3 − n)v+ (m3 + n)w = 0,

3
√
n2 : mv+ (2m2 +m3 − n)w = 0.

(1)

In order for the system (1) to have a solution v, w, we must have (2m2 +
m3−n)(m2+m3−n) = m(m3+n). This quadratic equation has solutions
n = m3 and n = m3 +3m2 +m. The former is not possible, but the latter
gives a− [a] > 1

2 , so [b] = 1, and the system (1) in v, w is solvable. Hence
every number n = m3 + 3m2 + m, m ∈ N, satisfies the condition of the
problem.

20. Assume to the contrary that 1
b1

+ · · · + 1
bn

> 1. Certainly n ≥ 2 and A is
infinite. Define fi : A → A as fi(x) = bix+ ci for each i. By condition (ii),
fi(x) = fj(y) implies i = j and x = y; iterating this argument, we deduce
that fi1(. . . fim(x) . . . ) = fj1(. . . fjm(x) . . . ) implies i1 = j1, . . . , im = jm
and x = y.
As an illustration, we shall consider the case b1 = b2 = b3 = 2 first. If a is
large enough, then for any i1, . . . , im ∈ {1, 2, 3} we have fi1 ◦· · ·◦fim(a) ≤
2.1ma. However, we obtain 3m values in this way, so they cannot be all
distinct if m is sufficiently large, a contradiction.
In the general case, let real numbers di > bi, i = 1, 2 . . . , n, be chosen such
that 1

d1
+ · · · + 1

dn
> 1: for a large enough, fi(x) < dia for each x ≥ a.
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Also, let ki > 0 be arbitrary rational numbers with sum 1; denote by N0

the least common multiple of their denominators.
LetN be a fixed multiple ofN0, so that each kjN is an integer. Consider all
combinations fi1 ◦ · · · ◦ fiN of N functions, among which each fi appears
exactly kiN times. There are FN = N !

(k1N)!···(knN)! such combinations,

so they give FN distinct values when applied to a. On the other hand,
fi1 ◦ · · · ◦ fiN (a) ≤ (dk1

1 · · · dkn
n )Na. Therefore

(dk1
1 · · · dkn

n )Na ≥ FN for all N , N0 | N . (1)

It remains to find a lower estimate for FN . In fact, it is straightforward to

verify that FN+N0/FN tends to QN0 , where Q = 1/
(
kk1
1 · · · kkn

n

)
. Conse-

quently, for every q < Q there exists p > 0 such that FN > pqN . Then (1)
implies that(

dk1

1 · · · dkn
n

q

)N

>
p

a
for every multiple N of N0,

and hence dk1
1 · · ·dkn

n /q ≥ 1. This must hold for every q < Q, and so we
have dk1

1 · · · dkn
n ≥ Q, i.e.,

(k1d1)
k1 · · · (kndn)kn ≥ 1.

However, if we choose k1, . . . , kn such that k1d1 = · · · = kndn = u, then
we must have u ≥ 1. Therefore 1

d1
+ · · · + 1

dn
≤ k1 + · · · + kn = 1, a

contradiction.

21. Let ai be the number of blue points with x-coordinate i, and bi the number
of blue points with y-coordinate i. Our task is to show that a0a1 · · · an−1 =
b0b1 · · · bn−1. Moreover, we claim that a0, . . . , an−1 is a permutation of
b0, . . . , bn−1, and to show this we use induction on the number of red
points.
The result is trivial if all the points are blue. So, choose a red point (x, y)
with x+y maximal: clearly ax = by = n−x−y−1. If we change this point
to blue, ax and by will decrease by 1. Then by the induction hypothesis,
a0, . . . , an−1 with ax decreased by 1 is a permutation of b0, . . . , bn−1 with
by decreased by 1. However, ax = by, and the claim follows.

Remark. One can also use induction on n: it is not more difficult.

22. Write n = 2k + 1. Consider the black squares at an odd height: there are
(k+1)2 of them in total and no two can be covered by one trimino. Thus,
we always need at least (k + 1)2 triminoes, which cover 3(k+ 1)2 squares
in total. However, 3(k + 1)2 is greater than n2 for n = 1, 3, 5, so we must
have n ≥ 7.
The case n = 7 admits such a covering, as shown in Figure 1. For n > 7
this is possible as well: it follows by induction from Figure 2.
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(n− 2)×
(n− 2)

Fig. 2Fig. 1

23. We claim that there are n! full sequences. To show this, we construct a
bijection with the set of permutations of {1, 2, . . . , n}.
Consider a full sequence (a1, a2, . . . , an), and let m be the greatest of the
numbers a1, . . . , an. Let Sk, 1 ≤ k ≤ m, be the set of those indices i for
which ai = k. Then S1, . . . Sm are nonempty and form a partition of the
set {1, 2, . . . , n}. Now we write down the elements of S1 in descending
order, then the elements of S2 in descending order and so on. This maps
the full sequence to a permutation of {1, 2, . . . , n}. Moreover, this map is
reversible, since each permutation uniquely breaks apart into decreasing
sequences S′

1, S
′
2, . . . , S

′
m, so that maxS′

i > minS′
i−1. Therefore the full

sequences are in bijection with the permutations of {1, 2, . . . , n}.
Second solution. Let there be given a full sequence of length n. Removing
from it the first occurrence of the highest number, we obtain a full sequence
of length n− 1. On the other hand, each full sequence of length n− 1 can
be obtained from exactly n full sequences of length n. Therefore, if xn is
the number of full sequences of length n, we deduce xn = nxn−1.

24. Two moves are not sufficient. Indeed, the answer to each move is an even
number between 0 and 54, so the answer takes at most 28 distinct values.
Consequently, two moves give at most 282 = 784 distinct outcomes, which
is less than 103 = 1000.
We now show that three moves are sufficient. With the first move (0, 0, 0),
we get the reply 2(x+ y+ z), so we now know the value of s = x+ y+ z.
Now there are several cases:
(i) s ≤ 9. Then we ask (9, 0, 0) as the second move and get (9 − x− y) +

(9−x− z)+ (y+ z) = 18− 2x, so we come to know x. Asking (0, 9, 0)
we obtain y, which is enough, since z = s− x− y.

(ii) 10 ≤ s ≤ 17. In this case the second move is (9, s− 9, 0). The answer
is z+(9−x)+ |x+ z− 9| = 2k, where k = z if x+ z ≥ 9, or k = 9−x
if x+ z < 9. In both cases we have z ≤ k ≤ y + z ≤ s.
Let s− k ≤ 9. Then in the third move we ask (s− k, 0, k) and obtain

|z−k|+|k−y−z|+y, which is actually (k−z)+(y+z−k)+y = 2y.
Thus we also find out x + z, and thus deduce whether k is z or
9 − x. Consequently we determine both x and z.

Let s − k > 9. In this case, the third move is (9, s − k − 9, k). The
answer is |s − k − x − y| + |s − 9 − y − z| + |k + 9 − z − x| =
(k− z)+ (9−x)+ (9−x+k− z) = 18+2k−2(x+ z), from which
we find out again whether k is z or 9−x. Now we are easily done.
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(iii) 18 ≤ s ≤ 27. Then as in the first case, asking (0, 9, 9) and (9, 0, 9) we
obtain x and y.

25. Assume to the contrary that no set of size less than r meets all sets in F .
Consider any set A of size less than r that is contained in infinitely many
sets of F . By the assumption, A is disjoint from some set B ∈ F . Then
of the infinitely many sets that contain A, each must meet B, so some
element b of B belongs to infinitely many of them. But then the set A∪{b}
is contained in infinitely many sets of F as well.
Such a set A exists: for example, the empty set. Now taking for A the
largest such set we come to a contradiction.

26. Write n = 2m. We shall define a directed graph G with vertices 1, . . . ,m
and edges labelled 1, 2, . . . , 2m in such a way that the edges issuing from
i are labelled 2i− 1 and 2i, and those entering it are labelled i and i+m.
What we need is an Euler circuit in G, namely a closed path that passes
each edge exactly once. Indeed, if xi is the ith edge in such a circuit,
then xi enters some vertex j and xi+1 leaves it, so xi ≡ j (mod m) and
xi+1 = 2j − 1 or 2j. Hence 2xi ≡ 2j and xi+1 ≡ 2xi or 2xi − 1 (mod n),
as required.
The graph G is connected: by induction on k there is a path from 1 to k,
since 1 is connected to j with 2j = k or 2j − 1 = k, and there is an edge
from j to k. Also, the in-degree and out-degree of each vertex of G are
equal (to 2), and thus by a known result, G contains an Euler circuit.

27. For a graph G on 120 vertices (i.e., people at the party), write q(G) for
the number of weak quartets in G. Our solution will consist of three parts.
First, we prove that some graph G with maximal q(G) breaks up as a
disjoint union of complete graphs. This will follow if we show that any two
adjacent vertices x, y have the same neighbors (apart from themselves).
Let Gx be the graph obtained from G by “copying” x to y (i.e., for each
z �= x, y, we add the edge zy if zx is an edge, and delete zy if zx is not an
edge). Similarly Gy is the graph obtained from G by copying y to x. We
claim that 2q(G) ≤ q(Gx) + q(Gy). Indeed, the number of weak quartets
containing neither x nor y is the same in G, Gx, and Gy, while the number
of those containing both x and y is not less in Gx and Gy than in G. Also,
the number containing exactly one of x and y in Gx is at least twice the
number in G containing x but not y, while the number containing exactly
one of x and y in Gy is at least twice the number in G containing y but
not x. This justifies our claim by adding. It follows that for an extremal
graph G we must have q(G) = q(Gx) = q(Gy). Repeating the copying
operation pair by pair (y to x, then their common neighbor z to both
x, y, etc.) we eventually obtain an extremal graph consisting of disjoint
complete graphs.
Second, suppose the complete graphs in G have sizes a1, a2, . . . , an. Then
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q(G) =
n∑

i=1

(
ai

2

) ∑
j<k
j,k 	=i

ajak.

If we fix all the ai except two, say p, q, then p + q = s is fixed, and for
some constants Ci, q(G) = C1+C2pq+C3

((
p
2

)
+
(
q
2

))
+C4

(
q
(
p
2

)
+ p

(
q
2

))
=

A+Bpq, where A and B depend only on s. Hence the maximum of q(G)
is attained if |p − q| ≤ 1 or pq = 0. Thus if q(G) is maximal, any two
nonzero ai’s differ by at most 1.
Finally, if G consists of n disjoint complete graphs, then q(G) cannot
exceed the value obtained if a1 = · · · = an (not necessarily integral),
which equals

Qn =
1202

n

(
120/n

2

)(
n− 1

2

)
= 30 · 1202 (n− 1)(n− 2)(120 − n)

n3
.

It is easy to check that Qn takes its maximum when n = 5 and a1 = · · · =
a5 = 24, and that this maximum equals 15 · 23 · 243 = 4769280.
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4.44 Solutions to the Shortlisted Problems of IMO 2003

1. Consider the pointsO(0, 0, 0), P (a11, a21, a31), Q(a12, a22, a32), R(a13, a23,
a33) in three-dimensional Euclidean space. It is enough to find a point
U(u1, u2, u3) in the interior of the triangle PQR whose coordinates are

all positive, all negative, or all zero (indeed, then we have
−−→
OU = c1

−−→
OP +

c2
−−→
OQ+ c3

−−→
OR for some c1, c2, c3 > 0 with c1 + c2 + c3 = 1).

Let P ′(a11, a21, 0), Q′(a12, a22, 0), and R′(a13, a23, 0) be the projections
of P,Q, and R onto the Oxy plane. We see that P ′, Q′, R′ lie in the
fourth, second, and third quadrants, respectively. We have the following
two cases:
(i) O is in the exterior of 
P ′Q′R′.

Set S′ = OR′ ∩ P ′Q′ and let S
be the point of the segment PQ
that projects to S′. The point S
has its z coordinate negative (be-
cause the z coordinates of P and
Q are negative). Thus any point

y

x
O

R′

Q′

P ′

S′

of the segment SR sufficiently close to S has all coordinates negative.
(ii) O is in the interior or on the boundary of 
P ′Q′R′.

Let T be the point in the plane PQR whose projection is O. If T = O,
then all coordinates of T are zero, and we are done. Otherwise O is
interior to 
P ′Q′R′. Suppose that the z coordinate of T is positive
(negative). Since x and y coordinates of T are equal to 0, there is a
point U inside PQR close to T with both x and y coordinates positive
(respectively negative), and this point U has all coordinates of the
same sign.

2. We can rewrite (ii) as −(f(a)− 1)(f(b)− 1) = f(−(a− 1)(b− 1) + 1)− 1.
So putting g(x) = f(x+1)−1, this equation becomes −g(a−1)g(b−1) =
g(−(a− 1)(b− 1)) for a < 1 < b. Hence

−g(x)g(y) = g(−xy) for x < 0 < y,

and g is nondecreasing with g(−1) = −1, g(0) = 0. (1)

Conversely, if g satisfies (1), than f is a solution of our problem.
Setting y = 1 in (1) gives −g(−x)g(1) = g(x) for each x > 0, and therefore
(1) reduces to g(1)g(yz) = g(y)g(z) for all y, z > 0. We have two cases:
(i) g(1) = 0. By (1) we have g(z) = 0 for all z > 0. Then any nonde-

creasing function g : R → R with g(−1) = −1 and g(z) = 0 for z ≥ 0
satisfies (1) and gives a solution: f is nondecreasing, f(0) = 0 and
f(x) = 1 for every x ≥ 1

(ii) g(1) �= 0. Then the function h(x) = g(x)
g(1) is nondecreasing and satisfies

h(0) = 0, h(1) = 1, and h(xy) = h(x)h(y). Fix a > 0, and let h(a) =
b = ak for some k ∈ R. It follows by induction that h(aq) = h(a)q =
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(aq)k for every rational number q. But h is nondecreasing, so k ≥ 0,
and since the set {aq | q ∈ Q} is dense in R+, we conclude that
h(x) = xk for every x > 0. Finally, putting g(1) = c, we obtain
g(x) = cxk for all x > 0. Then g(−x) = −xk for all x > 0. This g
obviously satisfies (1). Hence

f(x) =

⎧⎨⎩ c(x− 1)k, if x > 1;
1, if x = 1;
1 − (1 − x)k, if x < 1,

where c > 0 and k ≥ 0.

3. (a) Given any sequence cn (in particular, such that Cn converges), we
shall construct an and bn such that An and Bn diverge.
First, choose n1 such that n1c1 > 1 and set a1 = a2 = · · · = an1 =
c1: this uniquely determines b2 = c2, . . . , bn1 = cn1 . Next, choose n2

such that (n2 − n1)cn1+1 > 1 and set bn1+1 = · · · = bn2 = cn1+1;
again an1+1, . . . , an2 is hereby determined. Then choose n3 with (n3−
n2)cn2+1 > 1 and set an2+1 = · · · = an3 = cn2+1, and so on. It is plain
that in this way we construct decreasing sequences an, bn such that∑
an and

∑
bn diverge, since they contain an infinity of subsums that

exceed 1; on the other hand, cn = min(an, bn) and Cn is convergent.
(b) The answer changes in this situation. Suppose to the contrary that

there is such a pair of sequences (an) and (bn). There are infinitely
many indices i such that ci = bi (otherwise all but finitely many terms
of the sequence (cn) would be equal to the terms of the sequence (an),
which has an unbounded sum). Thus for any n0 ∈ N there is j ≥ 2n0

such that cj = bj . Then we have

j∑
k=n0

ck ≥
j∑

k=n0

cj = (j − n0)
1

j
≥ 1

2
.

Hence the sequence (Cn) is unbounded, a contradiction.

4. By the Cauchy–Schwarz inequality we have⎛⎝ n∑
i,j=1

(i− j)2

⎞⎠⎛⎝ n∑
i,j=1

(xi − xj)
2

⎞⎠ ≥

⎛⎝ n∑
i,j=1

|i− j| · |xi − xj |

⎞⎠2

. (1)

On the other hand, it is easy to prove (for example by induction) that

n∑
i,j=1

(i− j)2 = (2n− 2) · 12 + (2n− 4) · 22 + · · ·+ 2 · (n− 1)2 =
n2(n2 − 1)

6

and that
n∑

i,j=1

|i− j| · |xi − xj | =
n

2

n∑
i,j=1

|xi − xj |.
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Thus the inequality (1) becomes

n2(n2 − 1)

6

⎛⎝ n∑
i,j=1

(xi − xj)
2

⎞⎠ ≥ n2

4

⎛⎝ n∑
i,j=1

|xi − xj |

⎞⎠2

,

which is equivalent to the required one.

5. Placing x = y = z = 1 in (i) leads to 4f(1) = f(1)3, so by the condition
f(1) > 0 we get f(1) = 2. Also putting x = ts, y = t

s , z = s
t in (i) gives

f(t)f(s) = f(ts) + f(t/s). (1)

In particular, for s = 1 the last equality yields f(t) = f(1/t); hence
f(t) ≥ f(1) = 2 for each t. It follows that there exists g(t) ≥ 1 such
that f(t) = g(t) + 1

g(t) . Now it follows by induction from (1) that g(tn) =

g(t)n for every integer n, and therefore g(tq) = g(t)q for every rational q.
Consequently, if t > 1 is fixed, we have f(tq) = aq + a−q, where a = g(t).
But since the set of aq (q ∈ Q) is dense in R+ and f is monotone on (0, 1]
and [1,∞), it follows that f(tr) = ar + a−r for every real r. Therefore, if
k is such that tk = a, we have

f(x) = xk + x−k for every x ∈ R.

6. Set X = max{x1, . . . , xn} and Y = max{y1, . . . , yn}. By replacing xi

by x′i = xi

X , yi by y′i = yi

Y and zi by z′i = zi√
XY

, we may assume that

X = Y = 1. It is sufficient to prove that

M + z2 + · · · + z2n ≥ x1 + · · · + xn + y1 + · · · + yn, (1)

because this implies the result by the A-G mean inequality.
To prove (1) it is enough to prove that for any r, the number of terms
greater than r on the left-hand side of (1) is at least that number on the
right-hand side of (1).
If r ≥ 1, then there are no terms on the right-hand side greater than r.
Suppose that r < 1 and consider the sets A = {i | 1 ≤ i ≤ n, xi > r}
and B = {i | 1 ≤ i ≤ n, yi > r}. Set a = |A| and b = |B|. If xi > r and
yj > r, then zi+j ≥ √

xiyj > r; hence

C = {k | 2 ≤ k ≤ 2n, zk > r} ⊇ A+B = {α+ β | α ∈ A, β ∈ B}.

It is easy to verify that |A+B| ≥ |A|+ |B|−1. It follows that the number
of zk’s greater than r is ≥ a + b − 1. But in that case M > r, implying
that at least a+ b elements of the left-hand side of (1) is greater than r,
which completes the proof.

7. Consider the setD = {x−y | x, y ∈ A}. Obviously, the number of elements
of the set D is less than or equal to 101 ·100+1. The sets A+ ti and A+ tj
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are disjoint if and only if ti − tj �∈ D. Now we shall choose inductively 100
elements t1, . . . , t100.
Let t1 be any element of the set S \D (such an element exists, since the
number of elements of S is greater than the number of elements of D).
Suppose now that we have chosen k (k ≤ 99) elements t1, . . . , tk from D
such that the difference of any two of the chosen elements does not belong
to D. We can select tk+1 to be an element of S that does not belong to
any of the sets t1 +D, t2 +D, . . . , tk +D (this is possible to do, since each
of the previous sets has at most 101 · 100 + 1 elements; hence their union
has at most 99(101 · 100 + 1) = 999999 < 1000000 elements).

8. Let S be the disk with the smallest radius, say s, and O the center of that
disk. Divide the plane into 7 regions: one bounded by disk s and 6 regions
T1, . . . , T6 shown in the figure.

Any of the disks different from S,
say Dk, has its center in one of the
seven regions. If its center is inside
S then Dk contains point O. Hence
the number of disks different from S
having their centers in S is at most
2002.
Consider a disk Dk that intersects
S and whose center is in the re-
gion Ti. Let Pi be the point such
that OPi bisects the region Ti and
OPi = s

√
3.

O

P1

P2
P6

P3

P4

P5

T1

T2 T6

T3

T4

T5

K

L
U6 V6

We claim that Dk contains Pi. Divide the region Ti by a line li through
Pi perpendicular to OPi into two regions Ui and Vi, where O and Ui are
on the same side of li. Let K be the center of Dk. Consider two cases:
(i) K ∈ Ui. Since the disk with the center Pi and radius s contains Ui,

we see that KPi ≤ s. Hence Dk contains Pi.
(ii) K ∈ Vi. Denote by L the intersection point of the segment KO with

the circle s.
We want to prove that KL > KPi. It is enough to prove that
∠KPiL > ∠KLPi. However, it is obvious that ∠LPiO ≤ 30◦ and
∠LOPi ≤ 30◦, hence ∠KLPi ≤ 60◦, while ∠NPiL = 90◦ − ∠LPiO ≥
60◦. This implies that ∠KPiL ≥ ∠NPiL ≥ 60◦ ≥ ∠KLPi (N is the
point on the edge of Ti as shown in the figure). Our claim is thus
proved.

Now we see that the number of disks with centers in Ti that intersect S
is less than or equal to 2003, and the total number of disks that intersect
S is not greater than 2002 + 6 · 2003 = 7 · 2003 − 1.

9. Suppose that k of the angles of an n-gon are right. Since the other n− k
angles are less than 360◦ and the sum of the angles is (n−2)180◦, we have
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the inequality k · 90◦ + (n− k)360◦ > (n− 2)180◦, which is equivalent to
k < 2n+4

3 . Since n and k are integers, it follows that k ≤
[
2n
3

]
+ 1.

If n = 5, then
[
2n
3

]
+ 1 = 4, but if a pentagon has four right angles,

the other angle is equal to 180◦, which is impossible. Hence for n = 5,
k ≤ 3. It is easy to construct a pentagon with 3 right angles, e.g., as in
the picture below.
Now we shall show by induction that for n ≥ 6 there is an n-gon with[

2n
3

]
+ 1 internal right angles. For n = 6, 7, 8 examples are presented in

the picture. Assume that there is a (n−3)gon with
[

2(n−3)
3

]
+1 =

[
2n
3

]
−1

internal right angles. Then one of the internal angles, say ∠BAC, is not
convex. Interchange the vertex A with four new vertices A1, A2, A3, A4 as
shown in the picture such that ∠BA1A2 = ∠A3A4C = 90◦.

n = 5 n = 6 n = 7 n = 8

CB

A

A1

A2 A3

A4

n − 3 → n

10. Denote by bij the entries of the matrix B. Suppose the contrary, i.e., that
there is a pair (i0, j0) such that ai0,j0 �= bi0,j0 . We may assume without
loss of generality that ai0,j0 = 0 and bi0,j0 = 1.
Since the sums of elements in the i0th rows of the matrices A and B
are equal, there is some j1 for which ai0,j1 = 1 and bi0,j1 = 0. Similarly,
from the fact that the sums in the j1th columns of the matrices A and
B are equal, we conclude that there exists i1 such that ai1,j1 = 0 and
bi1,j1 = 1. Continuing this procedure, we construct two sequences ik, jk
such that aik,jk

= 0, bik,jk
= 1, aik,jk+1

= 1, bik,jk+1
= 0. Since the set

of the pairs (ik, jk) is finite, there are two different numbers t, s such that
(it, jt) = (is, js). From the given condition we have that xik

+ yik
< 0

and xik+1
+ yik+1

≥ 0. But jt = js, and hence 0 ≤
∑t−1

k=s(xik
+ yjk+1

) =∑t−1
k=s(xik

+ yjk
) < 0, a contradiction.

11. (a) By the pigeonhole principle there are two different integers x1, x2,
x1 > x2, such that |{x1

√
3} − {x2

√
3}| < 0.001. Set a = x1 − x2.

Consider the equilateral triangle with vertices (0, 0), (2a, 0), (a, a
√

3).
The points (0, 0) and (2a, 0) are lattice points, and we claim that
the point (a, a

√
3) is at distance less than 0.001 from a lattice point.

Indeed, since 0.001 > |{x1

√
3}−{x2

√
3}| = |a

√
3−([x1

√
3]− [x2

√
3])|,

we see that the distance between the points (a, a
√

3) and (a, [x1

√
3]−

[x2

√
3]) is less than 0.001, and the point (a, [x1

√
3] − [x2

√
3]) is with

integer coefficients.
(b) Suppose that P ′Q′R′ is an equilateral triangle with side length l ≤ 96

such that each of its vertices P ′, Q′, R′ lies in a disk of radius 0.001
centered at a lattice point. Denote by P,Q,R the centers of these
disks. Then we have l − 0.002 ≤ PQ,QR,RP ≤ l + 0.002. Since
PQR is not an equilateral triangle, two of its sides are different, say
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PQ �= QR. On the other hand, PQ2, QR2 are integers, so we have
1 ≤ |PQ2 − QR2| = (PQ + QR)|PQ − QR| ≤ 0.004(PQ + QR) ≤
(2l + 0.004) · 0.004 ≤ 2 · 96.002 · 0.004 < 1, which is a contradiction.

12. Denote by ak−1ak−2 . . . a0 the decimal representation of a number whose
digits are ak−1, . . . , a0. We will use the following well-known fact:

ak−1ak−2 . . . a0 ≡ i (mod 11) ⇐⇒
k−1∑
l=0

(−1)lal ≡ i (mod 11).

Let m be a positive integer. Define A as the set of integers n (0 ≤ n <
102m) whose right 2m − 1 digits can be so permuted to yield an integer
divisible by 11, and B as the set of integers n (0 ≤ n < 102m−1) whose
digits can be permuted resulting in an integer divisible by 11.
Suppose that a = a2m−1 . . . a0 ∈ A. Then there that satisfies

2m−1∑
l=0

(−1)lbl ≡ 0 (mod 11). (1)

The 2m-tuple (b2m−1, . . . , b0) satisfies (1) if and only if the 2m-tuple
(kb2m−1 + l, . . . , kb0 + l) satisfies (1), where k, l ∈ Z, 11 � k.
Since a0 + 1 �≡ 0 (mod 11), we can choose k from the set {1, . . . , 10} such
that (a0 +1)k ≡ 1 (mod 11). Thus there is a permutation of the 2m-tuple
((a2m−1+1)k−1, . . . , (a1+1)k−1, 0) satisfying (1). Interchanging odd and
even positions if necessary, we may assume that this permutation keeps
the 0 at the last position. Since (ai + 1)k is not divisible by 11 for any i,
there is a unique bi ∈ {0, 1, . . . , 9} such that bi ≡ (ai + 1)k − 1 (mod 11).
Hence the number b2m−1 . . . b1 belongs to B.
Thus for fixed a0 ∈ {0, 1, 2, . . . , 9}, to each a ∈ A such that the last
digit of a is a0 we associate a unique b ∈ B. Conversely, having a0 ∈
{0, 1, 2, . . . , 9} fixed, from any number b2m−1 . . . b1 ∈ B we can reconstruct
a2m−1 . . . a1a0 ∈ A. Hence |A| = 10|B|, i.e., f(2m) = 10f(2m− 1).

13. Denote by K and L the intersec-
tions of the bisectors of ∠ABC and
∠ADC with the line AC, respec-
tively. Since AB : BC = AK : KC
and AD : DC = AL : LC, we have
to prove that

PQ = QR ⇔ AB

BC
=
AD

DC
. (1)

Since the quadrilaterals AQDR and
QPCD are cyclic, we see that

A

B C

D

P

Q

R

∠RDQ = ∠BAC and ∠QDP = ∠ACB. By the law of sines it fol-

lows that AB
BC = sin(∠ACB)

sin(∠BAC) and that QR = AD sin(∠RDQ), QP =

CD sin(∠QDP ). Now we have
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AB

BC
=

sin(∠ACB)

sin(∠BAC)
=

sin(∠QDP )

sin(∠RDQ)
=
AD ·QP
QR · CD.

The statement (1) follows directly.

14. Denote by R the intersection point of the bisector of ∠AQC and the line
AC. From ∆ACQ we get

AR

RC
=
AQ

QC
=

sin ∠QCA

sin ∠QAC
.

By the sine version of Ceva’s theorem we have sin ∠APB
sin ∠BPC · sin ∠QAC

sin ∠PAQ ·
sin ∠QCP
sin ∠QCA = 1, which is equivalent to

sin ∠APB

sin ∠BPC
=

(
sin ∠QCA

sin ∠QAC

)2

because ∠QCA = ∠PAQ and ∠QAC = ∠QCP . Denote by S(XY Z) the
area of a triangle XY Z. Then

sin ∠APB

sin ∠BPC
=
AP ·BP · sin ∠APB

BP · CP · sin ∠BPC
=
S(∆ABP )

S(∆BCP )
=
AB

BC
,

which implies that
(

AR
RC

)2
= AB

BC . Hence R does not depend on Γ .

15. From the given equality we see that 0 = (BP 2 +PE2)− (CP 2 + PF 2) =
BF 2 − CE2, so BF = CE = x for some x. Similarly, there are y and z
such that CD = AF = y and BD = AE = z. It is easy to verify that D,
E, and F must lie on the segments BC,CA,AB.
Denote by a, b, c the length of the segments BC,CA,AB. It follows that
a = z + y, b = z + x, c = x + y, so D,E, F are the points where the
excircles touch the sides of 
ABC. Hence P , D, and IA are collinear and

∠PIAC = ∠DIAC = 90◦ − 180◦ − ∠ACB

2
=

∠ACB

2
.

In the same way we obtain that ∠PIBC = ∠ACB
2 and PIB = PIA.

Analogously, we get PIC = PIB , which implies that P is the circumcenter
of the triangle IAIBIC .

16. Apply an inversion with center at P and radius r; let X̂ denote the image
of X . The circles Γ1, Γ2, Γ3, Γ4 are transformed into lines Γ̂1, Γ̂2, Γ̂3, Γ̂4,
where Γ̂1 ‖ Γ̂3 and Γ̂2 ‖ Γ̂4, and therefore ÂB̂ĈD̂ is a parallelogram.

Further, we have AB = r2

PÂ·PB̂
ÂB̂, BC = r2

PB̂·PĈ
B̂Ĉ, CD = r2

PĈ·PD̂
ĈD̂,

DA = r2

PD̂·PÂ
D̂Â and PB = r2

PB̂
, PD = r2

PD̂
. The equality to be proven

becomes
PD̂2

PB̂2
· ÂB̂ · B̂Ĉ
ÂD̂ · D̂Ĉ

=
PD̂2

PB̂2
,

which holds because ÂB̂ = ĈD̂ and B̂Ĉ = D̂Â.
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17. The triangles PDE and CFG are homothetic; hence lines FD, GE, and
CP intersect at one point. Let Q be the intersection point of the line CP
and the circumcircle of 
ABC. The required statement will follow if we
show that Q lies on the lines GE and FD.
Since ∠CFG = ∠CBA = ∠CQA, the quadrilateral AQPF is cyclic.
Analogously, BQPG is cyclic. However, the isosceles trapezoid BDPG is
also cyclic; it follows that B,Q,D, P,G lie on a circle. Therefore we get

∠PQF = ∠PAC, ∠PQD = ∠PBA. (1)

Since I is the incenter of 
ABC,
we have ∠CAI = 1

2∠CAB =
1
2∠CBA = ∠IBA; hence CA is the
tangent at A to the circumcircle of

ABI. This implies that ∠PAC =
∠PBA, and it follows from (1) that
∠PQF = ∠PQD, i.e., that F,D,Q
are also collinear. Similarly, G,E,Q
are collinear and the claim is thus
proved.

A B

C

I P

D E

GF

Q

18. Let ABCDEF be the given hexagon. We shall use the following lemma.
Lemma. If ∠XZY ≥ 60◦ and if M is the midpoint of XY , then MZ ≤√

3
2 XY , with equality if and only if 
XY Z is equilateral.

Proof. Let Z ′ be the point such that 
XYZ ′ is equilateral. Then Z is
inside the circle circumscribed about 
XYZ ′. Consequently MZ ≤
MZ ′ =

√
3

2 XY , with equality if and only if Z = Z ′.
Set AD∩BE = P , BE∩CF = Q, and CF ∩AD = R. Suppose ∠APB =
∠DPE > 60◦, and let K,L be the midpoints of the segments AB and
DE respectively. Then by the lemma,

√
3

2
(AB +DE) = KL ≤ PK + PL <

√
3

2
(AB +DE),

which is impossible. Therefore ∠APB ≤ 60◦ and similarly ∠BQC ≤ 60◦,
∠CRD ≤ 60◦. But the sum of the angles APB,BQC,CRD is 180◦, from
which we conclude that these angles are all equal to 60◦, and moreover that
the triangles APB,BQC,CRD are equilateral. Thus ∠ABC = ∠ABP +
∠QBC = 120◦, and in the same way all angles of the hexagon are equal
to 120◦.

19. Let D,E, F be the midpoints of BC,CA,AB, respectively. We construct
smaller semicircles Γd, Γe, Γf inside 
ABC with centers D,E, F and radii
d = s−a

2 , e = s−b
2 , f = s−c

2 respectively. Since DE = d+ e, DF = d+ f ,
and EF = e+ f , we deduce that Γd, Γe, and Γf touch each other at the
points D1, E1, F1 of tangency of the incircle γ of 
DEF with its sides
(D1 ∈ EF , etc.). Consider the circle Γg with center O and radius g that
lies inside 
DEF and tangents Γd, Γe, Γf .
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Now let OD,OE,OF meet the
semicircles Γd, Γe, Γf at D′, E′, F ′

respectively. We have OD′ = OD+
DD′ = g + d+ a

2 = g + s
2 and sim-

ilarly OE′ = OF ′ = g + s
2 . It fol-

lows that the circle with center O
and radius g + s

2 touches all three
semicircles, and consequently t =
g + s

2 > s
2 . Now set the coordinate

system such that we have the points
D1(0, 0), E(−e, 0), F (f, 0) and such A

BC
D

E FD1

E1F1

D′

E′

F ′

γd

γe

γf

Γd
Γe

Γf

that the y coordinate of D is positive.
Apply the inversion with center D1 and unit radius. This inversion maps

the circles Γe and Γf to the lines Γ̂e

[
x = − 1

2e

]
and Γ̂e

[
x = 1

2f

]
respec-

tively, and the circle γ goes to the line γ̂
[
y = 1

r

]
. The images Γ̂d and Γ̂g

of Γd, Γg are the circles that touch the lines Γ̂e and Γ̂f . Since Γ̂d, Γ̂g are
perpendicular to γ, they have radii equal to R = 1

4e + 1
4f and centers

at
(
− 1

4e + 1
4f ,

1
r

)
and

(
− 1

4e + 1
4f ,

1
r + 2R

)
respectively. Let p and P be

the distances from D1(0, 0) to the centers of Γg and Γ̂g respectively. We

have that P 2 =
(

1
4e − 1

4f

)2

+
(

1
r + 2R

)2
, and that the circles Γg and Γ̂g

are homothetic with center of homothety D1; hence p/P = g/R. On the

other hand, Γ̂g is the image of Γg under inversion; hence the product of
the tangents from D1 to these two circles is equal to 1. In other words, we
obtain

√
p2 − g2 ·

√
P 2 −R2 = 1. Using the relation p/P = g/R we get

g = R
P 2−R2 .

The inequality we have to prove is equivalent to (4+2
√

3)g ≤ r. This can
be proved as follows:

r − (4 + 2
√

3)g =
r(P 2 −R2 − (4 + 2

√
3)R/r)

P 2 −R2

=

r

((
1
r + 2R

)2
+
(

1
4e − 1

4f

)2

−R2 − (4 + 2
√

3)R
r

)
P 2 −R2

=
r

P 2 −R2

((
R
√

3 − 1

r

)2

+

(
1

4e
− 1

4f

)2
)

≥ 0.

Remark. One can obtain a symmetric formula for g:

1

2g
=

1

s− a
+

1

s− b
+

1

s− c
+

2

r
.

20. Let ri be the remainder when xi is divided by m. Since there are at most
mm types of m-consecutive blocks in the sequence (ri), some type will
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repeat at least twice. Then since the entire sequence is determined by one
m-consecutive block, the entire sequence will be periodic.
The formula works both forward and backward; hence using the rule xi =
xi+m −

∑m−1
j=1 xi+j we can define x−1, x−2, . . . . Thus we obtain that

(r−m, . . . , r−1) = (0, 0, . . . , 0, 1).

Hence there are m − 1 consecutive terms in the sequence (xi) that are
divisible by m.
If there were m consecutive terms in the sequence (xi) divisible by m,
then by the recurrence relation all the terms of (xi) would be divisible by
m, which is impossible.

21. Let a be a positive integer for which d(a) = a2. Suppose that a has n+ 1
digits, n ≥ 0. Denote by s the last digit of a and by f the first digit of c.
Then a = ∗ . . . ∗ s, where ∗ stands for a digit that is not important to us at
the moment. We have ∗ . . . ∗ s2 = a2 = d = ∗ . . . ∗ f and b2 = s ∗ . . . ∗2 =
c = f ∗ . . . ∗.
We cannot have s = 0, since otherwise c would have at most 2n digits,
while a2 has either 2n + 1 or 2n + 2 digits. The following table gives all
possibilities for s and f :

s 1 2 3 4 5 6 7 8 9

f = last digit of ∗ . . . ∗ s2 1 4 9 6 5 6 9 4 1
f = first digit of s ∗ . . . ∗2 1, 2, 3 4 − 8 9, 1 1, 2 2, 3 3, 4 4, 5, 6 6, 7, 8 8, 9

We obtain from the table that s ∈ {1, 2, 3} and f = s2, and consequently
c = b2 and d have exactly 2n + 1 digits each. Put a = 10x + s, where
x < 10n. Then b = 10ns + x, c = 102ns2 + 2 · 10nsx + x2, and d =
2 ·10n+1sx+10x2 +s2, so from d = a2 it follows that x = 2s · 10n−1

9 . Thus
a = 6 . . . 6︸ ︷︷ ︸

n

3, a = 4 . . . 4︸ ︷︷ ︸
n

2 or a = 2 . . . 2︸ ︷︷ ︸
n

1. For n ≥ 1 we see that a cannot

be a = 6 . . . 63 or a = 4 . . . 42 (otherwise a2 would have 2n + 2 digits).
Therefore a equals 1, 2, 3 or 2 . . . 2︸ ︷︷ ︸

n

1 for n ≥ 0. It is easy to verify that

these numbers have the required property.

22. Let a and b be positive integers for which a2

2ab2−b3+1 = k is a positive

integer. Since k > 0, it follows that 2ab2 ≥ b3, so 2a ≥ b. If 2a > b, then
from 2ab2 − b3 + 1 > 0 we see that a2 > b2(2a − b) + 1 > b2, i.e. a > b.
Therefore, if a ≤ b, then a = b/2.
We can rewrite the given equation as a quadratic equation in a, a2 −
2kb2a + k(b3 − 1) = 0, which has two solutions, say a1 and a2, one of
which is in N0. From a1 + a2 = 2kb2 and a1a2 = k(b3 − 1) it follows
that the other solution is also in N0. Suppose w.l.o.g. that a1 ≥ a2. Then
a1 ≥ kb2 and

0 ≤ a2 =
k(b3 − 1)

a1
≤ k(b3 − 1)

kb2
< b.
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By the above considerations we have either a2 = 0 or a2 = b/2. If a2 = 0,
then b3 − 1 = 0 and hence a1 = 2k, b = 1. If a2 = b/2, then b = 2t for
some t, and k = b2/4, a1 = b4/2 − b/2. Therefore the only solutions are

(a, b) ∈ {(2t, 1), (t, 2t), (8t4 − t, 2t) | t ∈ N}.

It is easy to show that all of these pairs satisfy the given condition.

23. Assume that b ≥ 6 has the required property. Consider the sequence
yn = (b − 1)xn. From the definition of xn we easily find that yn = b2n +
bn+1 + 3b − 5. Then ynyn+1 = (b − 1)2xnxn+1 is a perfect square for all
n > M . Also, straightforward calculation implies(
b2n+1 +

bn+2 + bn+1

2
− b3

)2

< ynyn+1 <

(
b2n+1 +

bn+2 + bn+1

2
+ b3

)2

.

Hence for every n > M there is an integer an such that |an| < b3 and

ynyn+1 =
(
b2n + bn+1 + 3b− 5

) (
b2n+2 + bn+2 + 3b− 5

)
=

(
b2n+1 +

bn+1(b+ 1)

2
+ an

)2

.
(1)

Now considering this equation modulo bn we obtain (3b − 5)2 ≡ a2
n, so

that assuming that n > 3 we get an = ±(3b− 5).
If an = 3b − 5, then substituting in (1) yields 1

4b
2n(b4 − 14b3 + 45b2 −

52b + 20) = 0, with the unique positive integer solution b = 10. Also, if
an = −3b + 5, we similarly obtain 1

4b
2n(b4 − 14b3 − 3b2 + 28b + 20) −

2bn+1(3b2 − 2b− 5) = 0 for each n, which is impossible.

For b = 10 it is easy to show that xn =
(

10n+5
3

)2
for all n. This proves

the statement.

Second solution. In problems of this type, computing zn =
√
xn asymp-

totically usually works.

From limn→∞ b2n

(b−1)xn
= 1 we infer that limn→∞ bn

zn
=

√
b− 1. Further-

more, from (bzn + zn+1)(bzn − zn+1) = b2xn − xn+1 = bn+2 + 3b2 − 2b− 5
we obtain

lim
n→∞

(bzn − zn+1) =
b
√
b− 1

2
.

Since the zn’s are integers for all n ≥ M , we conclude that bzn − zn+1 =
b
√

b−1
2 for all n sufficiently large. Hence b − 1 is a perfect square, and

moreover b divides 2zn+1 for all large n. It follows that b | 10; hence the
only possibility is b = 10.

24. Suppose that m = u+v+w where u, v, w are good integers whose product
is a perfect square of an odd integer. Since uvw is an odd perfect square,
we have that uvw ≡ 1 (mod 4). Thus either two or none of the numbers
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u, v, w are congruent to 3 modulo 4. In both cases u+ v+w ≡ 3 (mod 4).
Hence m ≡ 3 (mod 4).
Now we shall prove the converse: every m ≡ 3 (mod 4) has infinitely many
representations of the desired type. Let m = 4k+3. We shall represent m
in the form

4k + 3 = xy + yz + zx, for x, y, z odd. (1)

The product of the summands is an odd square. Set x = 1 + 2l and
y = 1 − 2l. In order to satisfy (1), z must satisfy z = 2l2 + 2k + 1. The
summands xy, yz, zx are distinct except for finitely many l, so it remains
only to prove that for infinitely many integers l, |xy|, |yz|, and |zx| are not
perfect squares. First, observe that |xy| = 4l2 − 1 is not a perfect square
for any l �= 0.
Let p, q > m be fixed different prime numbers. The system of congruences
1+2l ≡ p (mod p2) and 1− 2l ≡ q (mod q2) has infinitely many solutions
l by the Chinese remainder theorem. For any such l, the number z =
2l2 + 2k + 1 is divisible by neither p nor q, and hence |xz| (respectively
|yz|) is divisible by p, but not by p2 (respectively by q, but not by q2).
Thus xz and yz are also good numbers.

25. Suppose that for every prime q, there exists an n for which np ≡ p (mod
q). Assume that q = kp + 1. By Fermat’s theorem we deduce that pk ≡
nkp = nq−1 ≡ 1 (mod q), so q | pk − 1.

It is known that any prime q such that q | pp−1
p−1 must satisfy q ≡ 1 (mod

p). Indeed, from q | pq−1 − 1 it follows that q | pgcd(p,q−1) − 1; but q � p− 1

because pp−1
p−1 ≡ 1 (mod p−1), so gcd(p, q−1) �= 1. Hence gcd(p, q−1) = p.

Now suppose q is any prime divisor of pp−1
p−1 . Then q | gcd(pk −1, pp−1) =

pgcd(p,k)−1, which implies that gcd(p, k) > 1, so p | k. Consequently q ≡ 1

(mod p2). However, the number pp−1
p−1 = pp−1 + · · · + p + 1 must have at

least one prime divisor that is not congruent to 1 modulo p2. Thus we
arrived at a contradiction.

Remark. Taking q ≡ 1 (mod p) is natural, because for every other q, np

takes all possible residues modulo q (including p too). Indeed, if p � q− 1,
then there is an r ∈ N satisfying pr ≡ 1 (mod q − 1); hence for any a the
congruence np ≡ a (mod q) has the solution n ≡ ar (mod q).
The statement of the problem itself is a special case of the Chebotarev’s
theorem.

26. Define the sequence xk of positive reals by ak = coshxk (cosh is the

hyperbolic cosine defined by cosh t = et+e−t

2 ). Since cosh(2xk) = 2a2
k−1 =

coshxk+1, it follows that xk+1 = 2xk and thus xk = λ ·2k for some λ > 0.
From the condition a0 = 2 we obtain λ = log(2 +

√
3). Therefore

an =
(2 +

√
3)2

n

+ (2 −
√

3)2
n

2
.
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Let p be a prime number such that p | an. We distinguish the following
two cases:
(i) There exists an m ∈ Z such that m2 ≡ 3 (mod p). Then we have

(2 +m)2
n

+ (2 −m)2
n

≡ 0 (mod p). (1)

Since (2 +m)(2 −m) = 4 −m2 ≡ 1 (mod p), multiplying both sides

of (1) by (2 + m)2
n

gives (2 + m)2
n+1 ≡ −1 (mod p). It follows that

the multiplicative order of (2 +m) modulo p is 2n+2, or 2n+2 | p− 1,
which implies that 2n+3 | (p− 1)(p+ 1) = p2 − 1.

(ii) m2 ≡ 3 (mod p) has no integer solutions. We will work in the algebraic
extension Zp(

√
3) of the field Zp. In this field

√
3 plays the role of m,

so as in the previous case we obtain (2+
√

3)2
n+1

= −1; i.e., the order
of 2 +

√
3 in the multiplicative group Zp(

√
3)∗ is 2n+2. We cannot

finish the proof as in the previous case: in fact, we would conclude
only that 2n+2 divides the order p2 − 1 of the group. However, it will
be enough to find a u ∈ Zp(

√
3) such that u2 = 2+

√
3, since then the

order of u is equal to 2n+3.
Note that (1 +

√
3)2 = 2(2 +

√
3). Thus it is sufficient to prove that

1
2 is a perfect square in Zp(

√
3). But we know that in this field an =

0 = 2a2
n−1 − 1, and hence 2a2

n−1 = 1 which implies 1
2 = a2

n−1. This
completes the proof.

27. Let p1, p2, . . . , pr be distinct primes, where r = p − 1. Consider the sets

Bi = {pi, p
p+1
i , . . . , p

(r−1)p+1
i } and B =

⋃r
i=1Bi. Then B has (p − 1)2

elements and satisfies (i) and (ii).
Now suppose that |A| ≥ r2 + 1 and that A satisfies (i) and (ii), and let
{t1, . . . , tr2+1} be distinct elements of A, where tj = p

αj1

1 · pαj2

2 · · · pαjr
r .

We shall show that the product of some elements of A is a perfect pth
power, i.e., that there exist τj ∈ {0, 1} (1 ≤ j ≤ r2 + 1), not all equal to

0, such that T = tτ1
1 · tτ2

2 · · · tτr2+1

r2+1 is a pth power. This is equivalent to the
condition that

r2+1∑
j=1

αijτj ≡ 0 (mod p)

holds for all i = 1, . . . , r.
By Fermat’s theorem it is sufficient to find integers x1, . . . , xr2+1, not all
zero, such that the relation

r2+1∑
j=1

αijx
r
j ≡ 0 (mod p)

is satisfied for all i ∈ {1, . . . , r}. Set Fi =
∑r2+1

j=1 αijx
r
j . We want to find

x1, . . . , xr such that F1 ≡ F2 ≡ · · · ≡ Fr ≡ 0 (mod p), which is by
Fermat’s theorem equivalent to
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F (x1, . . . , xr) = F r
1 + F r

2 + · · · + F r
r ≡ 0 (mod p). (1)

Of course, one solution of (1) is (0, . . . , 0): we are not satisfied with it
because it generates the empty subset of A, but it tells us that (1) has at
least one solution.
We shall prove that the number of solutions of (1) is divisible by p, which
will imply the existence of a nontrivial solution and thus complete the
proof. To do this, consider the sum

∑
F (x1, . . . , xr2+1)

r taken over all

vectors (x1, . . . , xr2+1) in the vector space Zr2+1
p . Our statement is equiv-

alent to ∑
F (x1, . . . , xr2+1)

r ≡ 0 (mod p). (2)

Since the degree of F r is r2, in each monomial in F r at least one of the
variables is missing. Consider any of these monomials, say bxa1

i1
xa2

i2
· · ·xak

ik
.

Then the sum
∑
bxa1

i1
xa2

i2
· · ·xak

ik
, taken over the set of all vectors

(x1, . . . , xr2+1) ∈ Zr2+1
p , is equal to

pr2+1−u ·
∑

(xi1 ,...,xik
)∈Zk

p

bxa1

i1
xa2

i2
· · ·xak

ik
,

which is divisible by p, so that (2) is proved. Thus the answer is (p− 1)2.
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4.45 Solutions to the Shortlisted Problems of IMO 2004

1. By symmetry, it is enough to prove that t1 + t2 > t3. We have(
n∑

i=1

ti

)(
n∑

i=1

1

t i

)
= n2 +

∑
i<j

(
ti
tj

+
tj
ti

− 2

)
. (1)

All the summands on the RHS are positive, and therefore the RHS is not
smaller than n2 + T , where T = (t1/t3 + t3/t1 − 2) + (t2/t3 + t3/t2 − 2).
We note that T is increasing as a function in t3 for t3 ≥ max{t1, t2}. If
t1+t2 = t3, then T = (t1+t2)(1/t1+1/t2)−1 ≥ 3 by the Cauchy–Schwarz
inequality. Hence, if t1 + t2 ≤ t3, we have T ≥ 1, and consequently the
RHS in (1) is greater than or equal to n2 + 1, a contradiction.

Remark. In can be proved, for example using Lagrange multipliers, that
if n2 +1 in the problem is replaced by (n+

√
10− 3)2, then the statement

remains true. This estimate is the best possible.

2. We claim that the sequence {an} must be unbounded.
The condition of the sequence is equivalent to an > 0 and an+1 = an+an−1

or an − an−1. In particular, if an < an−1, then an+1 > max{an, an−1}.
Let us remove all an such that an < an−1. The obtained sequence (bm)m∈N

is strictly increasing. Thus the statement of the problem will follow if we
prove that bm+1 − bm ≥ bm − bm−1 for all m ≥ 2.
Let bm+1 = an+2 for some n. Then an+2 > an+1. We distinguish two
cases:
(i) If an+1 > an, we have bm = an+1 and bm−1 ≥ an−1 (since bm−1 is

either an−1 or an). Then bm+1 − bm = an+2 − an+1 = an = an+1 −
an−1 = bm − an−1 ≥ bm − bm−1.

(ii) If an+1 < an, we have bm = an and bm−1 ≥ an−1. Consequently,
bm+1−bm = an+2−an = an+1 = an−an−1 = bm−an−1 ≥ bm−bm−1.

3. The answer is yes. Every rational number x > 0 can be uniquely expressed
as a continued fraction of the form a0 + 1/(a1 + 1/(a2 + 1/(· · · + 1/an)))
(where a0 ∈ N0, a1, . . . , an ∈ N). Then we write x = [a0; a1, a2, . . . , an].
Since n depends only on x, the function s(x) = (−1)n is well-defined. For
x < 0 we define s(x) = −s(−x), and set s(0) = 1. We claim that this s(x)
satisfies the requirements of the problem.
The equality s(x)s(y) = −1 trivially holds if x+ y = 0.
Suppose that xy = 1. We may assume w.l.o.g. that x > y > 0. Then
x > 1, so if x = [a0; a1, a2, . . . , an], then a0 ≥ 1 and y = 0 + 1/x =
[0; a0, a1, a2, . . . , an]. It follows that s(x) = (−1)n, s(y) = (−1)n+1, and
hence s(x)s(y) = −1.
Finally, suppose that x+ y = 1. We consider two cases:
(i) Let x, y > 0. We may assume w.l.o.g. that x > 1/2. Then there

exist natural numbers a2, . . . , an such that x = [0; 1, a2, . . . , an] =
1/(1 + 1/t), where t = [a2, . . . , an]. Since y = 1 − x = 1/(1 + t) =
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[0; 1 + a2, a3, . . . , an], we have s(x) = (−1)n and s(y) = (−1)n−1,
giving us s(x)s(y) = −1.

(ii) Let x > 0 > y. If a0, . . . , an ∈ N are such that −y = [a0; a1, . . . , an],
then x = [1 + a0; a1, . . . , an]. Thus s(y) = −s(−y) = −(−1)n and
s(x) = (−1)n, so again s(x)s(y) = −1.

4. Let P (x) = a0 + a1x + · · · + anx
n. For every x ∈ R the triple (a, b, c) =

(6x, 3x,−2x) satisfies the condition ab+ bc+ ca = 0. Then the condition
on P gives us P (3x) +P (5x) +P (−8x) = 2P (7x) for all x, implying that
for all i = 0, 1, 2, . . . , n the following equality holds:(

3i + 5i + (−8)i − 2 · 7i
)
ai = 0.

Suppose that ai �= 0. Then K(i) = 3i +5i +(−8)i − 2 · 7i = 0. But K(i) is
negative for i odd and positive for i = 0 or i ≥ 6 even. Only for i = 2 and
i = 4 do we have K(i) = 0. It follows that P (x) = a2x

2 + a4x
4 for some

real numbers a2, a4.
It is easily verified that all such P (x) satisfy the required condition.

5. By the general mean inequality (M1 ≤ M3), the LHS of the inequality to
be proved does not exceed

E =
3
3
√

3

3

√
1

a
+

1

b
+

1

c
+ 6(a+ b+ c).

From ab + bc + ca = 1 we obtain that 3abc(a + b + c) = 3(ab · ac +
ab · bc + ac · bc) ≤ (ab + ac + bc)2 = 1; hence 6(a + b + c) ≤ 2

abc . Since
1
a + 1

b + 1
c = ab+bc+ca

abc = 1
abc , it follows that

E ≤ 3
3
√

3

3

√
3

abc
≤ 1

abc
,

where the last inequality follows from the AM–GM inequality 1 = ab+bc+
ca ≥ 3 3

√
(abc)2, i.e., abc ≤ 1/(3

√
3). The desired inequality now follows.

Equality holds if and only if a = b = c = 1/
√

3.

6. Let us make the substitution z = x + y, t = xy. Given z, t ∈ R, x, y are
real if and only if 4t ≤ z2. Define g(x) = 2(f(x) − x). Now the given
functional equation transforms into

f
(
z2 + g(t)

)
= (f(z))

2
for all t, z ∈ R with z2 ≥ 4t. (1)

Let us set c = g(0) = 2f(0). Substituting t = 0 into (1) gives us

f(z2 + c) = (f(z))
2

for all z ∈ R. (2)

If c < 0, then taking z such that z2 + c = 0, we obtain from (2) that
f(z)2 = c/2, which is impossible; hence c ≥ 0. We also observe that
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x > c implies f(x) ≥ 0. (3)

If g is a constant function, we easily find that c = 0 and therefore f(x) = x,
which is indeed a solution.
Suppose g is nonconstant, and let a, b ∈ R be such that g(a)−g(b) = d > 0.
For some sufficiently large K and each u, v ≥ K with v2 − u2 = d the
equality u2 + g(a) = v2 + g(b) by (1) and (3) implies f(u) = f(v). This
further leads to g(u)− g(v) = 2(v− u) = d

u+
√

u2+d
. Therefore every value

from some suitably chosen segment [δ, 2δ] can be expressed as g(u)−g(v),
with u and v bounded from above by some M .
Consider any x, y with y > x ≥ 2

√
M and δ < y2 −x2 < 2δ. By the above

considerations, there exist u, v ≤ M such that g(u) − g(v) = y2 − x2,
i.e., x2 + g(u) = y2 + g(v). Since x2 ≥ 4u and y2 ≥ 4v, (1) leads to
f(x)2 = f(y)2. Moreover, if we assume w.l.o.g. that 4M ≥ c2, we conclude
from (3) that f(x) = f(y). Since this holds for any x, y ≥ 2

√
M with

y2 − x2 ∈ [δ, 2δ], it follows that f(x) is eventually constant, say f(x) = k
for x ≥ N = 2

√
M . Setting x > N in (2) we obtain k2 = k, so k = 0 or

k = 1.
By (2) we have f(−z) = ±f(z), and thus |f(z)| ≤ 1 for all z ≤ −N .
Hence g(u) = 2f(u) − 2u ≥ −2 − 2u for u ≤ −N , which implies that g
is unbounded. Hence for each z there exists t such that z2 + g(t) > N ,
and consequently f(z)2 = f(z2 + g(t)) = k = k2. Therefore f(z) = ±k for
each z.
If k = 0, then f(x) ≡ 0, which is clearly a solution. Assume k = 1.
Then c = 2f(0) = 2 (because c ≥ 0), which together with (3) implies
f(x) = 1 for all x ≥ 2. Suppose that f(t) = −1 for some t < 2. Then
t − g(t) = 3t+ 2 > 4t. If also t − g(t) ≥ 0, then for some z ∈ R we have
z2 = t−g(t) > 4t, which by (1) leads to f(z)2 = f(z2+g(t)) = f(t) = −1,
which is impossible. Hence t − g(t) < 0, giving us t < −2/3. On the
other hand, if X is any subset of (−∞,−2/3), the function f defined by
f(x) = −1 for x ∈ X and f(x) = 1 satisfies the requirements of the
problem.
To sum up, the solutions are f(x) = x, f(x) = 0 and all functions of the
form

f(x) =

{
1, x �∈ X,
−1, x ∈ X,

where X ⊂ (−∞,−2/3).

7. Let us set ck = Ak−1/Ak for k = 1, 2, . . . , n, where we define A0 = 0. We
observe that ak/Ak = (kAk − (k − 1)Ak−1)/Ak = k − (k − 1)ck. Now we
can write the LHS of the inequality to be proved in terms of ck, as follows:

n

√
Gn

An
=

n2
√
c2c23 · · · cn−1

n and
gn

Gn
= n

√√√√ n∏
k=1

(k − (k − 1)ck).
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By the AM −GM inequality we have

n
n2
√

1n(n+1)/2c2c23 . . . c
n−1
n ≤ 1

n

(
n(n+ 1)

2
+

n∑
k=2

(k − 1)ck

)
=
n+ 1

2
+

1

n

n∑
k=1

(k − 1)ck.

(1)

Also by the AM–GM inequality, we have

n

√√√√ n∏
k=1

(k − (k − 1)ck) ≤ n+ 1

2
− 1

n

n∑
k=1

(k − 1)ck. (2)

Adding (1) and (2), we obtain the desired inequality. Equality holds if and
only if a1 = a2 = · · · = an.

8. Let us write n = 10001. Denote by T the set of ordered triples (a, C,S),
where a is a student, C a club, and S a society such that a ∈ C and
C ∈ S. We shall count |T | in two different ways.
Fix a student a and a society S. By (ii), there is a unique club C such
that (a, C,S) ∈ T . Since the ordered pair (a,S) can be chosen in nk ways,
we have that |T | = nk.
Now fix a club C. By (iii), C is in exactly (|C| − 1)/2 societies, so there
are |C|(|C|− 1)/2 triples from T with second coordinate C. If C is the set

of all clubs, we obtain |T | =
∑

C∈C
|C|(|C|−1)

2 . But we also conclude from
(i) that ∑

C∈C

|C|(|C| − 1)

2
=
n(n− 1)

2
.

Therefore n(n− 1)/2 = nk, i.e., k = (n− 1)/2 = 5000.
On the other hand, for k = (n− 1)/2 there is a desired configuration with
only one club C that contains all students and k identical societies with
only one element (the club C). It is easy to verify that (i)–(iii) hold.

9. Obviously we must have 2 ≤ k ≤ n. We shall prove that the possible
values for k and n are 2 ≤ k ≤ n ≤ 3 and 3 ≤ k ≤ n. Denote all colors
and circles by 1, . . . , n. Let F (i, j) be the set of colors of the common
points of circles i and j.
Suppose that k = 2 < n. Consider the ordered pairs (i, j) such that color j
appears on the circle i. Since k = 2, clearly there are exactly 2n such pairs.
On the other hand, each of the n colors appears on at least two circles,
so there are at least 2n pairs (i, j), and equality holds only if each color
appears on exactly 2 circles. But then at most two points receive each of
the n colors and there are n(n− 1) points, implying that n(n− 1) = 2n,
i.e., n = 3. It is easy to find examples for k = 2 and n = 2 or 3.
Next, let k = 3. An example for n = 3 is given by F (i, j) = {i, j} for each
1 ≤ i < j ≤ 3. Assume n ≥ 4. Then an example is given by F (1, 2) =
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{1, 2}, F (i, i+ 1) = {i} for i = 2, . . . , n− 2, F (n− 1, n) = {n− 2, n− 1}
and F (i, j) = n for all other i, j > i.
We now prove by induction on k that a desired coloring exists for each
n ≥ k ≥ 3. Let there be given n circles. By the inductive hypothesis, circles
1, 2, . . . , n − 1 can be colored in n − 1 colors, k of which appear on each
circle, such that color i appears on circle i. Then we set F (i, n) = {i, n}
for i = 1, . . . , k and F (i, n) = {n} for i > n. We thus obtain a coloring of
the n circles in n colors, such that k + 1 colors (including color i) appear
on each circle i.

10. The least number of edges of such a graph is n.
We note that deleting edge AB of a 4-cycle ABCD from a connected
and nonbipartite graph G yields a connected and nonbipartite graph, say
H . Indeed, the connectedness is obvious; also, if H were bipartite with
partition of the set of vertices into P1 and P2, then w.l.o.g. A,C ∈ P1

and B,D ∈ P2, so G = H ∪ {AB} would also be bipartite with the same
partition, a contradiction.
Any graph that can be obtained from the complete n-graph in the de-
scribed way is connected and has at least one cycle (otherwise it would
be bipartite); hence it must have at least n edges.
Now consider a complete graph with vertices V1, V2, . . . , Vn. Let us remove
every edge ViVj with 3 ≤ i < j < n from the cycle V2ViVjVn. Then for
i = 3, . . . , n− 1 we remove edges V2Vi and ViVn from the cycles V1ViV2Vn

and V1ViVnV2 respectively, thus obtaining a graph with exactly n edges:
V1Vi (i = 2, . . . , n) and V2Vn.

11. Consider the matrix A = (aij)
n
i,j=1 such that aij is equal to 1 if i, j ≤ n/2,

−1 if i, j > n/2, and 0 otherwise. This matrix satisfies the conditions from
the problem and all row sums and column sums are equal to ±n/2. Hence
C ≥ n/2.
Let us show that C = n/2. Assume to the contrary that there is a matrix
B = (bij)

n
i,j=1 all of whose row sums and column sums are either greater

than n/2 or smaller than −n/2. We may assume w.l.o.g. that at least n/2
row sums are positive and, permuting rows if necessary, that the first n/2
rows have positive sums. The sum of entries in the n/2× n submatrix B′

consisting of first n/2 rows is greater than n2/4, and since each column
of B′ has sum at most n/2, it follows that more than n/2 column sums of
B′, and therefore also of B, are positive. Again, suppose w.l.o.g. that the
first n/2 column sums are positive. Thus the sums R+ and C+ of entries
in the first n/2 rows and in the first n/2 columns respectively are greater
than n2/4. Now the sum of all entries of B can be written as∑

aij = R+ + C+ +
∑

i>n/2

j>n/2

aij −
∑

i≤n/2

j≤n/2

aij >
n2

2
− n2

4
− n2

4
= 0,

a contradiction. Hence C = n/2, as claimed.
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12. We say that a number n ∈ {1, 2, . . . , N} is winning if the player who is on
turn has a winning strategy, and losing otherwise. The game is of type A
if and only if 1 is a losing number.
Let us define n0 = N , ni+1 = [ni/2] for i = 0, 1, . . . and let k be such
that nk = 1. Consider the sets Ai = {ni+1 + 1, . . . , ni}. We call a set
Ai all-winning if all numbers from Ai are winning, even-winning if even
numbers are winning and odd are losing, and odd-winning if odd numbers
are winning and even are losing.
(i) Suppose Ai is even-winning and consider Ai+1. Multiplying any num-

ber from Ai+1 by 2 yields an even number from Ai, which is a losing
number. Thus x ∈ Ai+1 is winning if and only if x + 1 is losing, i.e.,
if and only if it is even. Hence Ai+1 is also even-winning.

(ii) Suppose Ai is odd-winning. Then each k ∈ Ai+1 is winning, since 2k
is losing. Hence Ai+1 is all-winning.

(iii) Suppose Ai is all-winning. Multiplying x ∈ Ai+1 by two is then a
losing move, so x is winning if and only if x+1 is losing. Since ni+1 is
losing, Ai+1 is odd-winning if ni+1 is even and even-winning otherwise.

We observe that A0 is even-winning if N is odd and odd-winning other-
wise. Also, if some Ai is even-winning, then all Ai+1, Ai+2, . . . are even-
winning and thus 1 is losing; i.e., the game is of typeA. The game is of type
B if and only if the sets A0, A1, . . . are alternately odd-winning and all-
winning with A0 odd-winning, which is equivalent to N = n0, n2, n4, . . .
all being even. Thus N is of type B if and only if all digits at the odd
positions in the binary representation of N are zeros.
Since 2004 = 11111010100 in the binary system, 2004 is of type A. The
least N > 2004 that is of type B is 100000000000 = 211 = 2048. Thus the
answer to part (b) is 2048.

13. Since Xi, Yi, i = 1, . . . , 2004, are 4008 distinct subsets of the set Sn =
{1, 2, . . . , n}, it follows that 2n ≥ 4008, i.e. n ≥ 12.
Suppose n = 12. Let X = {X1, . . . , X2004}, Y = {Y1, . . . , Y2004}, A =
X ∪ Y. Exactly 212 − 4008 = 88 subsets of Sn do not occur in A.
Since each row intersects each column, we have Xi ∩ Yj �= ∅ for all i, j.
Suppose |Xi|, |Yj | ≤ 3 for some indices i, j. Since then |Xi ∪ Yj | ≤ 5, any
of at least 27 > 88 subsets of Sn \ (Xi ∩ Yj) can occur in neither X nor
Y, which is impossible. Hence either in X or in Y all subsets are of size
at least 4. Suppose w.l.o.g. that k = |Xl| = mini |Xi| ≥ 4. There are

nk =

(
12 − k

0

)
+

(
12 − k

1

)
+ · · · +

(
12 − k

k − 1

)
subsets of S \ Xl with fewer than k elements, and none of them can be
either in X (because |Xl| is minimal in X ) or in Y. Hence we must have
nk ≤ 88. Since n4 = 93 and n5 = 99, it follows that k ≥ 6. But then
none of the

(
12
0

)
+ · · · +

(
12
5

)
= 1586 subsets of Sn is in X , hence at least

1586−88 = 1498 of them are in Y. The 1498 complements of these subsets
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also do not occur in X , which adds to 3084 subsets of Sn not occurring in
X . This is clearly a contradiction.
Now we construct a golden matrix for n = 13. Let

A1 =

[
1 1
2 3

]
and Am =

[
Am−1 Am−1

Am−1 Bm−1

]
for m = 2, 3, . . . ,

where Bm−1 is the 2m−1 × 2m−1 matrix with all entries equal to m+2. It
can be easily proved by induction that each of the matrices Am is golden.
Moreover, every upper-left square submatrix of Am of size greater than
2m−1 is also golden. Since 210 < 2004 < 211, we thus obtain a golden
matrix of size 2004 with entries in S13.

14. Suppose that an m×n rectangle can be covered by “hooks”. For any hook
H there is a unique hook K that covers its “ inside” square. Then also H
covers the inside square of K, so the set of hooks can be partitioned into
pairs of type {H,K}, each of which forms one of the following two figures
consisting of 12 squares:

A1 B1 A2 B2

Thus the m× n rectangle is covered by these tiles. It immediately follows
that 12 | mn.
Suppose one of m,n is divisible by 4. Let w.l.o.g. 4 | m. If 3 | n, one can
easily cover the rectangle by 3×4 rectangles and therefore by hooks. Also,
if 12 | m and n �∈ {1, 2, 5}, then there exist k, l ∈ N0 such that n = 3k+4l,
and thus the rectangle m × n can be partitioned into 3 × 12 and 4 × 12
rectangles all of which can be covered by hooks. If 12 | m and n = 1, 2, or
5, then it is easy to see that covering by hooks is not possible.
Now suppose that 4 � m and 4 � n. Then m,n are even and the number
of tiles is odd. Assume that the total number of tiles of types A1 and B1

is odd (otherwise the total number of tiles of types A2 and B2 is odd,
which is analogous). If we color in black all columns whose indices are
divisible by 4, we see that each tile of type A1 or B1 covers three black
squares, which yields an odd number in total. Hence the total number of
black squares covered by the tiles of types A2 and B2 must be odd. This
is impossible, since each such tile covers two or four black squares.

15. Denote by V1, . . . , Vn the vertices of a graph G and by E the set of its
edges. For each i = 1, . . . , n, let Ai be the set of vertices connected to
Vi by an edge, Gi the subgraph of G whose set of vertices is Ai, and Ei

the set of edges of Gi. Also, let vi, ei, and ti = f(Gi) be the numbers of
vertices, edges, and triangles in Gi respectively.
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The numbers of tetrahedra and triangles one of whose vertices is Vi are
respectively equal to ti and ei. Hence

n∑
i=1

vi = 2|E|,
n∑

i=1

ei = 3f(G) and
n∑

i=1

ti = 4g(G).

Since ei ≤ vi(vi − 1)/2 ≤ v2
i /2 and ei ≤ |E|, we obtain e2i ≤ v2

i |E|/2,
i.e., ei ≤ vi

√
|E|/2. Summing over all i yields 3f(G) ≤ 2|E|

√
|E|/2, or

equivalently f(G)2 ≤ 2|E|3/9. Since this relation holds for each graph Gi,
it follows that

ti = f(Gi) = f(Gi)
1/3f(Gi)

2/3 ≤
(

2

9

)1/3

f(G)1/3ei.

Summing the last inequality for i = 1, . . . , n gives us

4g(G) ≤ 3

(
2

9

)1/3

f(G)1/3 · f(G), i.e. g(G)3 ≤ 3

32
f(G)4.

The constant c = 3/32 is the best possible. Indeed, in a complete graph

Cn it holds that g(Kn)3/f(Kn)4 =
(
n
4

)3(n
3

)−4 → 3
32 as n → ∞.

Remark. Let Nk be the number of complete k-subgraphs in a finite graph
G. Continuing inductively, one can prove that Nk

k+1 ≤ k!
(k+1)kN

k+1
k .

16. Note that 
ANM ∼ 
ABC and consequently AM �= AN . Since OM =
ON , it follows that OR is a perpendicular bisector of MN . Thus, R is the
common point of the median of MN and the bisector of ∠MAN . Then it
follows from a well-known fact that R lies on the circumcircle of 
AMN .
Let K be the intersection of AR and BC. We then have ∠MRA =
∠MNA = ∠ABK and ∠NRA = ∠NMA = ∠ACK, from which we
conclude that RMBK and RNCK are cyclic. Thus K is the desired in-
tersection of the circumcircles of 
BMR and 
CNR and it indeed lies
on BC.

17. Let H be the reflection of G about
AB (GH ‖ �). Let M be the
intersection of AB and �. Since
∠FEA = ∠FMA = 90◦, it follows
that AEMF is cyclic and hence
∠DFE = ∠BAE = ∠DEF . The
last equality holds because DE is
tangent to Γ . It follows that DE =
DF and hence DF 2 = DE2 =
DC ·DA (the power of D with re-

A

B

M

E

F

G

D

C

H

Γ




spect to Γ ). It then follows that ∠DCF = ∠DFA = ∠HGA = ∠HCA.
Thus it follows that H lies on CF as desired.
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18. It is important to note that since β < γ, ∠ADC = 90◦ − γ + β is acute.
It is elementary that ∠CAO = 90◦ − β. Let X and Y respectively be the
intersections of FE and GH with AD. We trivially get X ∈ EF ⊥ AD
and 
AGH ∼= 
ACB. Consequently, ∠GAY = ∠OAB = 90◦ − γ =
90◦ − ∠AGY . Hence, GH ⊥ AD and thus GH ‖ FE. That EFGH is a
rectangle is now equivalent to FX = GY and EX = HY .
We have that GY = AG sin γ = AC sin γ and FX = AF sinγ (since
∠AFX = γ). Thus,

FX = GY ⇔ CF = AF = AC ⇔ ∠AFC = 60◦ ⇔ ∠ADC = 30◦.

Since ∠ADC = 180◦ − ∠DCA − ∠DAC = 180◦ − γ − (90◦ − β), it
immediately follows that FX = GY ⇔ γ − β = 60◦. We similarly obtain
EX = HY ⇔ γ − β = 60◦, proving the statement of the problem.

19. Assume first that the points A,B,C,D are concyclic. Let the lines BP
and DP meet the circumcircle of ABCD again at E and F , respectively.
Then it follows from the given conditions that ÂB = ĈF and ÂD = ĈE;
hence BF ‖ AC andDE ‖ AC. ThereforeBFED andBFAC are isosceles
trapezoids and thus P = BE∩DF lies on the common bisector of segments
BF,ED,AC. Hence AP = CP .
Assume in turn that AP = CP . Let P w.l.o.g. lie in the triangles ACD
and BCD. Let BP and DP meet AC at K and L, respectively. The
points A and C are isogonal conjugates with respect to 
BDP , which
implies that ∠APK = ∠CPL. Since AP = CP , we infer that K and L
are symmetric with respect to the perpendicular bisector p of AC. Let E
be the reflection of D in p. Then E lies on the line BP , and the triangles
APD and CPE are congruent. Thus ∠BDC = ∠ADP = ∠BEC, which
means that the points B,C,E,D are concyclic. Moreover, A,C,E,D are
also concyclic. Hence, ABCD is a cyclic quadrilateral.

20. We first establish the following lemma.
Lemma. Let ABCD be an isosceles trapezoid with bases AB and CD.

The diagonals AC and BD intersect at S. Let M be the midpoint of
BC, and let the bisector of the angle BSC intersect BC at N . Then
∠AMD = ∠AND.

Proof. It suffices to show that the points A,D,M,N are concyclic. The
statement is trivial for AD ‖ BC. Let us now assume that AD and
BC meet at X , and let XA = XB = a, XC = XD = b. Since SN is
the bisector of ∠CSB, we have

a−XN

XN − b
=
BN

CN
=
BS

CS
=
AB

CD
=
a

b
,

and an easy computation yields XN = 2ab
a+b . We also have XM = a+b

2 ;
hence XM ·XN = XA ·XD. Therefore A,D,M,N are concyclic, as
needed.
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Denote by Ci the midpoint of the side AiAi+1, i = 1, . . . , n − 1. By def-
inition C1 = B1 and Cn−1 = Bn−1. Since A1AiAi+1An is an isosceles
trapezoid with A1Ai ‖ Ai+1An for i = 2, . . . , n − 2, it follows from the
lemma that ∠A1BiAn = ∠A1CiAn for all i.
The sum in consideration thus
equals ∠A1C1An+∠A1C2An+· · ·+
∠A1Cn−1An. Moreover, the trian-
gles A1CiAn and An+2−iC1An+1−i

are congruent (a rotation about
the center of the n-gon carries the
first one to the second), and conse-
quently

∠A1CiAn = ∠An+2−iC1An+1−i

for i = 2, . . . , n− 1.
A1

A2

A3 A4

An

B1

C2

B3

Bn−1

B2

. . .

HenceΣ = ∠A1C1An+∠AnC1An−1+· · ·+∠A3C1A2 = ∠A1C1A2 = 180◦.

21. Let ABC be the triangle of maximum area S contained in P (it exists
because of compactness of P). Draw parallels to BC,CA,AB through
A,B,C, respectively, and denote the triangle thus obtained by A1B1C1

(A ∈ B1C1, etc.). Since each triangle with vertices in P has area at most
S, the entire polygon P is contained in A1B1C1.
Next, draw lines of support of P parallel to BC,CA,AB and not intersect-
ing the triangle ABC. They determine a convex hexagon UaVaUbVbUcVc

containing P , with Vb, Uc ∈ B1C1, Vc, Ua ∈ C1A1, Va, Ub ∈ A1B1. Each
of the line segments UaVa, UbVb, UcVc contains points of P . Choose such
points A0, B0, C0 on UaVa, UbVb, UcVc, respectively. The convex hexagon
AC0BA0CB0 is contained in P , because the latter is convex. We prove
that AC0BA0CB0 has area at least 3/4 the area of P .
Let x, y, z denote the areas of triangles UaBC, UbCA, and UcAB. Then
S1 = SAC0BA0CB0 = S + x + y + z. On the other hand, the triangle
A1UaVa is similar to 
A1BC with similitude τ = (S − x)/S, and hence
its area is τ2S = (S − x)2/S. Thus the area of quadrilateral UaVaCB is
S − (S − x)2/S = 2z − z2/S. Analogous formulas hold for quadrilaterals
UbVbAC and UcVcBA. Therefore

SP ≤ SUaVaUbVbUcVc = S + SUaVaCB + SUbVbAC + SUcVcBA

= S + 2(x+ y + z) − x2 + y2 + z2

S

≤ S + 2(x+ y + z) − (x+ y + z)2

3S
.

Now 4S1−3SP ≥= S−2(x+y+z)+(x+y+z)2/S = (S−x−y−z)2/S ≥ 0;
i.e., S1 ≥ 3SP/4, as claimed.

22. The proof uses the following observation:
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Lemma. In a triangleABC, letK,L be the midpoints of the sidesAC,AB,
respectively, and let the incircle of the triangle touch BC,CA at D,E,
respectively. Then the lines KL and DE intersect on the bisector of
the angle ABC.

Proof. Let the bisector �b of ∠ABC meet DE at T . One can assume that
AB �= BC, or else T ≡ K ∈ KL. Note that the incenter I of 
ABC is
between B and T , and also T �= E. From the triangles BDT andDEC
we obtain ∠ITD = α/2 = ∠IAE, which implies that A, I, T, E are
concyclic. Then ∠ATB = ∠AEI = 90◦. Thus L is the circumcenter
of 
ATB from which ∠LTB = ∠LBT = ∠TBC ⇒ LT ‖ BC ⇒ T ∈
KL, which is what we were supposed to prove.

Let the incircles of 
ABX and 
ACX touch BX at D and F , respec-
tively, and let them touch AX at E and G, respectively. Clearly, DE
and FG are parallel. If the line PQ intersects BX and AX at M and
N , respectively, then MD2 = MP ·MQ = MF 2, i.e., MD = MF and
analogously NE = NG. It follows that PQ is parallel to DE and FG and
equidistant from them.
The midpoints of AB,AC, and AX lie on the same line m, parallel to BC.
Applying the lemma to 
ABX , we conclude that DE passes through the
common point U of m and the bisector of ∠ABX . Analogously, FG passes
through the common point V of m and the bisector of ∠ACX . Therefore
PQ passes through the midpoint W of the line segment UV . Since U, V
do not depend on X , neither does W .

23. To start with, note that point N is uniquely determined by the imposed
properties. Indeed, f(X) = AX/BX is a monotone function on both arcs
AB of the circumcircle of 
ABM .

Denote by P and Q respectively
the second points of intersection of
the line EF with the circumcircles
of 
ABE and 
ABF . The prob-
lem is equivalent to showing that
N ∈ PQ. In fact, we shall prove
that N coincides with the midpoint
N of segment PQ.
The cyclic quadrilaterals APBE,
AQBF , and ABCD yield ∠APQ =
180◦ − ∠APE = 180◦ − ∠ABE =
∠ADC and ∠AQP = ∠AQF =
∠ABF = ∠ACD. It follows that

APQ ∼ 
ADC, and conse-
quently 
ANP ∼ 
AMD. Analo-

A

B

C

D

E

F

M

P

Q

N
Ω

gously 
BNP ∼ 
BMC. Therefore AN/AM = PQ/DC = BN/BM ,
i.e., AN/BN = AM/BM . Moreover, ∠ANB = ∠ANP + ∠PNB =
∠AMD + ∠BMC = 180◦ − ∠AMB, which means that point N lies on
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the circumcircle of 
AMB. By the uniqueness of N , we conclude that
N ≡ N , which completes the solution.

24. Setting m = an we reduce the given equation to m/τ(m) = a.
Let us show that for a = pp−1 the above equation has no solutions in
N if p > 3 is a prime. Assume to the contrary that m ∈ N is such that
m = pp−1τ(m). Then pp−1 | m, so we may set m = pαk, where α, k ∈ N,
α ≥ p − 1, and p � k. Let k = pα1

1 · · · pαr
r be the decomposition of k into

primes. Then τ(k) = (α1 + 1) · · · (αr + 1) and τ(m) = (α + 1)τ(k). Our
equation becomes

pα−p+1k = (α+ 1)τ(k). (1)

We observe that α �= p−1: otherwise the RHS would be divisible by p and
the LHS would not be so. It follows that α ≥ p, which also easily implies
that pα−p+1 ≥ p

p+1 (α+ 1).

Furthermore, since α+ 1 cannot be divisible by pα−p+1 for any α ≥ p, it
follows that p | τ(k). Thus if p | τ(k), then at least one αi+1 is divisible by

p and consequently αi ≥ p−1 for some i. Hence k ≥ p
αi
i

αi+1τ(k) ≥ 2p−1

p τ(k).
But then we have

pα−p+1k ≥ p

p+ 1
(α+ 1) · 2p−1

p
τ(k) > (α+ 1)τ(k),

contradicting (1). Therefore (1) has no solutions in N.

Remark. There are many other values of a for which the considered equa-
tion has no solutions in N: for example, a = 6p for a prime p ≥ 5.

25. Let n be a natural number. For each k = 1, 2, . . . , n, the number (k, n) is
a divisor of n. Consider any divisor d of n. If (k, n) = n/d, then k = nl/d
for some l ∈ N, and (k, n) = (l, d)n/d, which implies that l is coprime to
d and l ≤ d. It follows that (k, n) is equal to n/d for exactly ϕ(d) natural
numbers k ≤ n. Therefore

ψ(n) =
n∑

k=1

(k, n) =
∑
d|n

ϕ(d)
n

d
= n

∑
d|n

ϕ(d)

d
. (1)

(a) Let n,m be coprime. Then each divisor f of mn can be uniquely
expressed as f = de, where d | n and e | m. We now have by (1)

ψ(mn) = mn
∑
f |mn

ϕ(f)

f
= mn

∑
d|n, e|m

ϕ(de)

de

= mn
∑

d|n, e|m

ϕ(d)

d

ϕ(e)

e
=

⎛⎝n∑
d|n

ϕ(d)

d

⎞⎠⎛⎝m∑
e|m

ϕ(e)

e

⎞⎠
= ψ(m)ψ(n).
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(b) Let n = pk, where p is a prime and k a positive integer. According to
(1),

ψ(n)

n
=

k∑
i=0

ϕ(pi)

pi
= 1 +

k(p− 1)

p
.

Setting p = 2 and k = 2(a− 1) we obtain ψ(n) = an for n = 22(a−1).
(c) We note that ψ(pp) = pp+1 if p is a prime. Hence, if a has an odd prime

factor p and a1 = a/p, then x = pp22a1−2 is a solution of ψ(x) = ax
different from x = 22a−2.
Now assume that a = 2k for some k ∈ N. Suppose x = 2αy is a positive
integer such that ψ(x) = 2kx. Then 2α+ky = ψ(x) = ψ(2α)ψ(y) =
(α+2)2α−1ψ(y), i.e., 2k+1y = (α+2)ψ(y). We notice that for each odd
y, ψ(y) is (by definition) the sum of an odd number of odd summands
and therefore odd. It follows that ψ(y) | y. On the other hand, ψ(y) >
y for y > 1, so we must have y = 1. Consequently α = 2k+1−2 = 2a−2,
giving us the unique solution x = 22a−2.
Thus ψ(x) = ax has a unique solution if and only if a is a power of 2.

26. For m = n = 1 we obtain that f(1)2 + f(1) divides (12 + 1)2 = 4, from
which we find that f(1) = 1.
Next, we show that f(p−1) = p−1 for each prime p. By the hypothesis for
m = 1 and n = p−1, f(p−1)+1 divides p2, so f(p−1) equals either p−1
or p2 −1. If f(p−1) = p2 −1, then f(1)+ f(p−1)2 = p4 −2p2 +2 divides
(1+(p−1)2)2 < p4−2p2+2, giving a contradiction. Hence f(p−1) = p−1.
Let us now consider an arbitrary n ∈ N. By the hypothesis for m = p− 1,
A = f(n) + (p − 1)2 divides (n + (p− 1)2)2 ≡ (n − f(n))2 (mod A), and
hence A divides (n−f(n))2 for any prime p. Taking p large enough, we can
obtainA to be greater than (n−f(n))2, which implies that (n−f(n))2 = 0,
i.e., f(n) = n for every n.

27. Set a = 1 and assume that b ∈ N is such that b2 ≡ b + 1 (mod m). An
easy induction gives us xn ≡ bn (mod m) for all n ∈ N0. Moreover, b is
obviously coprime to m, and hence each xn is coprime to m.
It remains to show the existence of b. The congruence b2 ≡ b + 1 (mod
m) is equivalent to (2b − 1)2 ≡ 5 (mod m). Taking 2b − 1 ≡ 2k, i.e.,
b ≡ 2k2 + k − 2 (mod m), does the job.

Remark. A desired b exists whenever 5 is a quadratic residue modulo m,
in particular, when m is a prime of the form 10k ± 1.

28. If n is divisible by 20, then every multiple of n has two last digits even and
hence it is not alternate. We shall show that any other n has an alternate
multiple.
(i) Let n be coprime to 10. For each k there exists a number Ak(n) =

10 . . . 010 . . .01 . . .0 . . . 01 = 10mk−1
10k−1

(m ∈ N) that is divisible by n (by

Euler’s theorem, choose m = ϕ[n(10k − 1)]). In particular, A2(n) is
alternate.
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(ii) Let n = 2 · 5r · n1, where r ≥ 1 and (n1, 10) = 1. We shall show by
induction that, for each k, there exists an alternative k-digit odd num-
ber Mk that is divisible by 5k. Choosing the number 10A2r(n1)M2r

will then solve this case, since it is clearly alternate and divisible by
n.
We can trivially chooseM1 = 5. Let there be given an alternate r-digit
multiple Mr of 5r, and let c ∈ {0, 1, 2, 3, 4} be such that Mr/5

r ≡
−c · 2r (mod 5). Then the (r + 1)digit numbers Mr + c · 10r and
Mr + (5 + c) · 10r are respectively equal to 5r(Mr/5

r + 2r · c) and
5r(Mr/5

r + 2r · c + 5 · 2r), and hence they are divisible by 5r+1 and
exactly one of them is alternate: we set it to be Mr+1.

(iii) Let n = 2r ·n1, where r ≥ 1 and (n1, 10) = 1. We show that there exists
an alternate 2r-digit number Nr that is divisible by 22r+1. Choosing
the number A2r(n1)Nr will then solve this case.
We choose N1 = 16, and given Nr, we can prove that one of Nr +
m · 102r, for m ∈ {10, 12, 14, 16}, is divisible by 22r+3 and therefore
suitable for Nr+1. Indeed, for Nr = 22r+1d we have Nr + m · 102r =
22r+1(d + 5rm/2) and d + 5rm/2 ≡ 0 (mod 4) has a solution m/2 ∈
{5, 6, 7, 8} for each d and r.

Remark. The idea is essentially the same as in (SL94-24).

29. Let Sn = {x ∈ N | x ≤ n, n | x2 − 1}. It is easy to check that Pn ≡ 1
(mod n) for n = 2 and Pn ≡ −1 (mod n) for n ∈ {3, 4}, so from now on
we assume n > 4.
We note that if x ∈ Sn, then also n−x ∈ Sn and (x, n) = 1. Thus Sn splits
into pairs {x, n − x}, where x ∈ Sn and x ≤ n/2. In each of these pairs
the product of elements gives remainder −1 upon division by n. Therefore
Pn ≡ (−1)m, where Sn has 2m elements. It remains to find the parity of
m.
Suppose first that n > 4 is divisible by 4. Whenever x ∈ Sn, the numbers
|n/2−x|, n−x, n−|n/2−x| also belong to Sn (indeed, n | (n/2−x)2−1 =
n2/4 − nx + x2 − 1 because n | n2/4, etc.). In this way the set Sn splits
into four-element subsets {x, n/2 − x, n/2 + x, n− x}, where x ∈ Sn and
x < n/4 (elements of these subsets are different for x �= n/4, and n/4
doesn’t belong to Sn for n > 4). Therefore m = |Sn|/2 is even and Pn ≡ 1
(mod m).
Now let n be odd. If n | x2 − 1 = (x− 1)(x+ 1), then there exist natural
numbers a, b such that ab = n, a | x − 1, b | x + 1. Obviously a and b
are coprime. Conversely, given any odd a, b ∈ N such that (a, b) = 1 and
ab = n, by the Chinese remainder theorem there exists x ∈ {1, 2, . . . , n−1}
such that a | x−1 and b | x+1. This gives a bijection between all ordered
pairs (a, b) with ab = n and (a, b) = 1 and the elements of Sn. Now if
n = pα1

1 · · · pαk

k is the decomposition of n into primes, the number of pairs
(a, b) is equal to 2k (since for every i, either pαi

i | a or pαi

i | b), and hence
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m = 2k−1. Thus Pn ≡ −1 (mod n) if n is a power of an odd prime, and
Pn ≡ 1 otherwise.
Finally, let n be even but not divisible by 4. Then x ∈ Sn if and only
if x or n − x belongs to Sn/2 and x is odd. Since n/2 is odd, for each
x ∈ Sn/2 either x or x+ n/2 belongs to Sn, and by the case of n odd we
have Sn ≡ ±1 (mod n/2), depending on whether or not n/2 is a power
of a prime. Since Sn is odd, it follows that Pn ≡ −1 (mod n) if n/2 is a
power of a prime, and Pn ≡ 1 otherwise.

Second solution. Obviously Sn is closed under multiplication modulo n.
This implies that Sn with multiplication modulo n is a subgroup of Zn,
and therefore there exist elements a1 = −1, a2, . . . , ak ∈ Sn that generate
Sn. In other words, since the ai are of order two, Sn consists of products∏

i∈A ai, where A runs over all subsets of {1, 2, . . . , k}. Thus Sn has 2k

elements, and the product of these elements equals Pn ≡ (a1a2 · · · ak)2
k−1

(mod n). Since a2
i ≡ 1 (mod n), it follows that Pn ≡ 1 if k ≥ 2, i.e., if

|Sn| > 2. Otherwise Pn ≡ −1 (mod n).
We note that |Sn| > 2 is equivalent to the existence of a ∈ Sn with
1 < a < n−1. It is easy to find that such an a exists if and only if neither
of n, n/2 is a power of an odd prime.

30. We shall denote by k the given circle with diameter pn.
Let A,B be lattice points (i.e., points with integer coordinates). We shall
denote by µ(AB) the exponent of the highest power of p that divides the
integer AB2. We observe that if S is the area of a triangle ABC where
A,B,C are lattice points, then 2S is an integer. According to Heron’s
formula and the formula for the circumradius, a triangle ABC whose
circumcenter has diameter pn satisfies

2AB2BC2 + 2BC2CA2 + 2CA2AB2 −AB4 −BC4 − CA4 = 16S2 (1)

and AB2 ·BC2 · CA2 = (2S)2p2n. (2)

Lemma 1. Let A,B, and C be lattice points on k. If none of AB2, BC2,
CA2 is divisible by pn+1, then µ(AB), µ(BC), µ(CA) are 0, n, n in
some order.

Proof. Let k = min{µ(AB), µ(BC), µ(CA)}. By (1), (2S)2 is divisible
by p2k. Together with (2), this gives us µ(AB) + µ(BC) + µ(CA) =
2k+ 2n. On the other hand, if none of AB2, BC2, CA2 is divisible by
pn+1, then µ(AB) + µ(BC) + µ(CA) ≤ k + 2n. Therefore k = 0 and
the remaining two of µ(AB), µ(BC), µ(CA) are equal to n.

Lemma 2. Among every four lattice points on k, there exist two, say
M,N , such that µ(MN) ≥ n+ 1.

Proof. Assume that this doesn’t hold for some points A,B,C,D on k.
By Lemma 1, µ for some of the segments AB,AC, . . . , CD is 0, say
µ(AC) = 0. It easily follows by Lemma 1 that then µ(BD) = 0 and
µ(AB) = µ(BC) = µ(CD) = µ(DA) = n. Let a, b, c, d, e, f ∈ N be
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such that AB2 = pna, BC2 = pnb, CD2 = pnc, DA2 = pnd, AC2 = e,

BD2 = f . By Ptolemy’s theorem we have
√
ef = pn

(√
ac+

√
bd
)
.

Taking squares, we get that ef
p2n =

(√
ac+

√
bd
)2

= ac+ bd+2
√
abcd

is rational and hence an integer. It follows that ef is divisible by p2n,
a contradiction.

Now we consider eight lattice points A1, A2, . . . , A8 on k. We color each
segment AiAj red if µ(AiAj) > n and black otherwise, and thus obtain
a graph G. The degree of a point X will be the number of red segments
with an endpoint in X . We distinguish three cases:
(i) There is a point, say A8, whose degree is at most 1. We may suppose

w.l.o.g. that A8A7 is red and A8A1, . . . , A8A6 black. By a well-known
fact, the segments joining vertices A1, A2, . . . , A6 determine either a
red triangle, in which case there is nothing to prove, or a black triangle,
say A1A2A3. But in the latter case the four points A1, A2, A3, A8 do
not determine any red segment, a contradiction to Lemma 2.

(ii) All points have degree 2. Then the set of red segments partitions into
cycles. If one of these cycles has length 3, then the proof is complete. If
all the cycles have length at least 4, then we have two possibilities: two
4-cycles, say A1A2A3A4 and A5A6A7A8, or one 8-cycle, A1A2 . . . A8.
In both cases, the four points A1, A3, A5, A7 do not determine any red
segment, a contradiction.

(iii) There is a point of degree at least 3, say A1. Suppose that A1A2,
A1A3, and A1A4 are red. We claim that A2, A3, A4 determine at least
one red segment, which will complete the solution. If not, by Lemma
1, µ(A2A3), µ(A3A4), µ(A4A2) are n, n, 0 in some order. Assuming
w.l.o.g. that µ(A2A3) = 0, denote by S the area of triangle A1A2A3.
Now by formula (1), 2S is not divisible by p. On the other hand, since
µ(A1A2) ≥ n+ 1 and µ(A1A3) ≥ n+ 1, it follows from (2) that 2S is
divisible by p, a contradiction.
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Notation and Abbreviations

A.1 Notation

We assume familiarity with standard elementary notation of set theory, alge-
bra, logic, geometry (including vectors), analysis, number theory (including
divisibility and congruences), and combinatorics. We use this notation liber-
ally.
We assume familiarity with the basic elements of the game of chess (the move-
ment of pieces and the coloring of the board).
The following is notation that deserves additional clarification.

◦ B(A,B,C), A−B −C: indicates the relation of betweenness, i.e., that B
is between A and C (this automatically means that A,B,C are different
collinear points).

◦ A = l1 ∩ l2: indicates that A is the intersection point of the lines l1 and
l2.

◦ AB: line throughA andB, segmentAB, length of segmentAB (depending
on context).

◦ [AB: ray starting in A and containing B.

◦ (AB: ray starting in A and containing B, but without the point A.

◦ (AB): open interval AB, set of points between A and B.

◦ [AB]: closed interval AB, segment AB, (AB) ∪ {A,B}.
◦ (AB]: semiopen interval AB, closed at B and open at A, (AB) ∪ {B}.

The same bracket notation is applied to real numbers, e.g., [a, b) = {x |
a ≤ x < b}.

◦ ABC: plane determined by points A,B,C, triangle ABC (
ABC) (de-
pending on context).

◦ [AB,C: half-plane consisting of line AB and all points in the plane on the
same side of AB as C.
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◦ (AB,C: [AB,C without the line AB.

◦ 〈−→a ,−→b 〉, −→a · −→b : scalar product of −→a and
−→
b .

◦ a, b, c, α, β, γ: the respective sides and angles of triangle ABC (unless oth-
erwise indicated).

◦ k(O, r): circle k with center O and radius r.

◦ d(A, p): distance from point A to line p.

◦ SA1A2...An : area of n-gon A1A2 . . . An (special case for n = 3, SABC : area
of 
ABC).

◦ N, Z, Q, R, C: the sets of natural, integer, rational, real, complex numbers
(respectively).

◦ Zn: the ring of residues modulo n, n ∈ N.

◦ Zp: the field of residues modulo p, p being prime.

◦ Z[x], R[x]: the rings of polynomials in x with integer and real coefficients
respectively.

◦ R∗: the set of nonzero elements of a ring R.

◦ R[α], R(α), where α is a root of a quadratic polynomial in R[x]: {a+ bα |
a, b ∈ R}.

◦ X0: X ∪ {0} for X such that 0 /∈ X .

◦ X+, X−, aX + b, aX + bY : {x | x ∈ X,x > 0}, {x | x ∈ X,x < 0},
{ax + b | x ∈ X}, {ax + by | x ∈ X, y ∈ Y } (respectively) for X,Y ⊆ R,
a, b ∈ R.

◦ [x], �x : the greatest integer smaller than or equal to x.

◦ �x�: the smallest integer greater than or equal to x.

The following is notation simultaneously used in different concepts (depending
on context).

◦ |AB|, |x|, |S|: the distance between two points AB, the absolute value of
the number x, the number of elements of the set S (respectively).

◦ (x, y), (m,n), (a, b): (ordered) pair x and y, the greatest common divisor
of integers m and n, the open interval between real numbers a and b
(respectively).

A.2 Abbreviations

We tried to avoid using nonstandard notations and abbreviations as much
as possible. However, one nonstandard abbreviation stood out as particularly
convenient:
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◦ w.l.o.g.: without loss of generality.

Other abbreviations include:

◦ RHS: right-hand side (of a given equation).

◦ LHS: left-hand side (of a given equation).

◦ QM, AM, GM, HM: the quadratic mean, the arithmetic mean, the geo-
metric mean, the harmonic mean (respectively).

◦ gcd, lcm: greatest common divisor, least common multiple (respectively).

◦ i.e.: in other words.

◦ e.g.: for example.
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Codes of the Countries of Origin

ARG Argentina
ARM Armenia
AUS Australia
AUT Austria
BEL Belgium
BLR Belarus
BRA Brazil
BUL Bulgaria
CAN Canada
CHN China
COL Colombia
CUB Cuba
CYP Cyprus
CZE Czech Republic
CZS Czechoslovakia
EST Estonia
FIN Finland
FRA France
FRG Germany, FR
GBR United Kingdom
GDR Germany, DR
GEO Georgia
GER Germany

GRE Greece
HKG Hong Kong
HUN Hungary
ICE Iceland
INA Indonesia
IND India
IRE Ireland
IRN Iran
ISR Israel
ITA Italy
JAP Japan
KAZ Kazakhstan
KOR Korea, South
KUW Kuwait
LAT Latvia
LIT Lithuania
LUX Luxembourg
MCD Macedonia
MEX Mexico
MON Mongolia
MOR Morocco
NET Netherlands
NOR Norway
NZL New Zealand

PHI Philippines
POL Poland
POR Portugal
PRK Korea, North
PUR Puerto Rico
ROM Romania
RUS Russia
SAF South Africa
SIN Singapore
SLO Slovenia
SMN Serbia and Montenegro
SPA Spain
SWE Sweden
THA Thailand
TUN Tunisia
TUR Turkey
TWN Taiwan
UKR Ukraine
USA United States
USS Soviet Union
UZB Uzbekistan
VIE Vietnam
YUG Yugoslavia
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