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Preface

The International Mathematical Olympiad (IMO) is nearing its fiftieth an-
niversary and has already created a very rich legacy and firmly established
itself as the most prestigious mathematical competition in which a high-school
student could aspire to participate. Apart from the opportunity to tackle in-
teresting and very challenging mathematical problems, the IMO represents
a great opportunity for high-school students to see how they measure up
against students from the rest of the world. Perhaps even more importantly,
it is an opportunity to make friends and socialize with students who have
similar interests, possibly even to become acquainted with their future col-
leagues on this first leg of their journey into the world of professional and
scientific mathematics. Above all, however pleasing or disappointing the final
score may be, preparing for an IMO and participating in one is an adventure
that will undoubtedly linger in one’s memory for the rest of one’s life. It is
to the high-school-aged aspiring mathematician and IMO participant that we
devote this entire book.

The goal of this book is to include all problems ever shortlisted for the
IMOs in a single volume. Up to this point, only scattered manuscripts traded
among different teams have been available, and a number of manuscripts were
lost for many years or unavailable to many.

In this book, all manuscripts have been collected into a single compendium
of mathematics problems of the kind that usually appear on the IMOs. There-
fore, we believe that this book will be the definitive and authoritative source
for high-school students preparing for the IMO, and we suspect that it will be
of particular benefit in countries lacking adequate preparation literature. A
high-school student could spend an enjoyable year going through the numer-
ous problems and novel ideas presented in the solutions and emerge ready to
tackle even the most difficult problems on an IMO. In addition, the skill ac-
quired in the process of successfully attacking difficult mathematics problems
will prove to be invaluable in a serious and prosperous career in mathematics.

However, we must caution our aspiring IMO participant on the use of this
book. Any book of problems, no matter how large, quickly depletes itself if
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the reader merely glances at a problem and then five minutes later, having
determined that the problem seems unsolvable, glances at the solution.

The authors therefore propose the following plan for working through the
book. Each problem is to be attempted at least half an hour before the reader
looks at the solution. The reader is strongly encouraged to keep trying to solve
the problem without looking at the solution as long as he or she is coming up
with fresh ideas and possibilities for solving the problem. Only after all venues
seem to have been exhausted is the reader to look at the solution, and then
only in order to study it in close detail, carefully noting any previously unseen
ideas or methods used. To condense the subject matter of this already very
large book, most solutions have been streamlined, omitting obvious derivations
and algebraic manipulations. Thus, reading the solutions requires a certain
mathematical maturity, and in any case, the solutions, especially in geometry,
are intended to be followed through with pencil and paper, the reader filling
in all the omitted details. We highly recommend that the reader mark such
unsolved problems and return to them in a few months to see whether they
can be solved this time without looking at the solutions. We believe this to
be the most efficient and systematic way (as with any book of problems) to
raise one’s level of skill and mathematical maturity.

We now leave our reader with final words of encouragement to persist in
this journey even when the difficulties seem insurmountable and a sincere wish
to the reader for all mathematical success one can hope to aspire to.

Belgrade, Dusan Djukic¢
October 2004 Viadimir Jankovié
Tvan Matié

Nikola Petrovié

For the most current information regarding The IMO Compendium you
are invited to go to our website: www.imo.org.yu. At this site you can also
find, for several of the years, scanned versions of available original shortlist
and longlist problems, which should give an illustration of the original state
the IMO materials we used were in.

We are aware that this book may still contain errors. If you find any, please
notify us at imo@matf .bg.ac.yu. A full list of discovered errors can be found
at our website. If you have any questions, comments, or suggestions regarding
both our book and our website, please do not hesitate to write to us at the
above email address. We would be more than happy to hear from you.
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1

Introduction

1.1 The International Mathematical Olympiad

The International Mathematical Olympiad (IMO) is the most important and
prestigious mathematical competition for high-school students. It has played a
significant role in generating wide interest in mathematics among high school
students, as well as identifying talent.

In the beginning, the IMO was a much smaller competition than it is today.
In 1959, the following seven countries gathered to compete in the first IMO:
Bulgaria, Czechoslovakia, German Democratic Republic, Hungary, Poland,
Romania, and the Soviet Union. Since then, the competition has been held
annually. Gradually, other Eastern-block countries, countries from Western
Europe, and ultimately numerous countries from around the world and every
continent joined in. (The only year in which the IMO was not held was 1980,
when for financial reasons no one stepped in to host it. Today this is hardly a
problem, and hosts are lined up several years in advance.) In the 45th IMO,
held in Athens, no fewer than 85 countries took part.

The format of the competition quickly became stable and unchanging.
Each country may send up to six contestants and each contestant competes
individually (without any help or collaboration). The country also sends a
team leader, who participates in problem selection and is thus isolated from
the rest of the team until the end of the competition, and a deputy leader,
who looks after the contestants.

The IMO competition lasts two days. On each day students are given
four and a half hours to solve three problems, for a total of six problems.
The first problem is usually the easiest on each day and the last problem
the hardest, though there have been many notable exceptions. ((IMO96-5) is
one of the most difficult problems from all the Olympiads, having been fully
solved by only six students out of several hundred!) Each problem is worth 7
points, making 42 points the maximum possible score. The number of points
obtained by a contestant on each problem is the result of intense negotiations
and, ultimately, agreement among the problem coordinators, assigned by the
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host country, and the team leader and deputy, who defend the interests of their
contestants. This system ensures a relatively objective grade that is seldom
off by more than two or three points.

Though countries naturally compare each other’s scores, only individual
prizes, namely medals and honorable mentions, are awarded on the IMO.
Fewer than one twelfth of participants are awarded the gold medal, fewer
than one fourth are awarded the gold or silver medal, and fewer than one half
are awarded the gold, silver or bronze medal. Among the students not awarded
a medal, those who score 7 points on at least one problem are awarded an
honorable mention. This system of determining awards works rather well. It
ensures, on the one hand, strict criteria and appropriate recognition for each
level of performance, giving every contestant something to strive for. On the
other hand, it also ensures a good degree of generosity that does not greatly
depend on the variable difficulty of the problems proposed.

According to the statistics, the hardest Olympiad was that in 1971, fol-
lowed by those in 1996, 1993, and 1999. The Olympiad in which the winning
team received the lowest score was that in 1977, followed by those in 1960 and
1999.

The selection of the problems consists of several steps. Participant coun-
tries send their proposals, which are supposed to be novel, to the IMO orga-
nizers. The organizing country does not propose problems. From the received
proposals (the longlisted problems), the problem committee selects a shorter
list (the shortlisted problems), which is presented to the IMO jury, consisting
of all the team leaders. From the short-listed problems the jury chooses six
problems for the IMO.

Apart from its mathematical and competitive side, the IMO is also a very
large social event. After their work is done, the students have three days
to enjoy events and excursions organized by the host country, as well as to
interact and socialize with IMO participants from around the world. All this
makes for a truly memorable experience.

1.2 The IMO Compendium

Olympiad problems have been published in many books [65]. However, the
remaining shortlisted and longlisted problems have not been systematically
collected and published, and therefore many of them are unknown to math-
ematicians interested in this subject. Some partial collections of shortlisted
and longlisted problems can be found in the references, though usually only
for one year. References [1], [30], [41], [60] contain problems from multiple
years. In total, these books cover roughly 50% of the problems found in this
book.

The goal of this book is to present, in a single volume, our comprehen-
sive collection of problems proposed for the IMO. It consists of all problems
selected for the IMO competitions, shortlisted problems from the 10th IMO
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and from the 12th through 44th IMOs, and longlisted problems from nineteen
IMOs. We do not have shortlisted problems from the 9th and the 11th IMOs,
and we could not discover whether competition problems at those two IMOs
were selected from the longlisted problems or whether there existed shortlisted
problems that have not been preserved. Since IMO organizers usually do not
distribute longlisted problems to the representatives of participant countries,
our collection is incomplete. The practice of distributing these longlists effec-
tively ended in 1989. A selection of problems from the first eight IMOs has
been taken from [60].

The book is organized as follows. For each year, the problems that were
given on the IMO contest are presented, along with the longlisted and/or
shortlisted problems, if applicable. We present solutions to all shortlisted
problems. The problems appearing on the IMOs are solved among the other
shortlisted problems. The longlisted problems have not been provided with
solutions, except for the two IMOs held in Yugoslavia (for patriotic reasons),
since that would have made the book unreasonably long. This book has thus
the added benefit for professors and team coaches of being a suitable book
from which to assign problems. For each problem, we indicate the country
that proposed it with a three-letter code. A complete list of country codes
and the corresponding countries is given in the appendix. In all shortlists, we
also indicate which problems were selected for the contest. We occasionally
make references in our solutions to other problems in a straightforward way.
After indicating with LL, SL, or IMO whether the problem is from a longlist,
shortlist, or contest, we indicate the year of the IMO and then the number
of the problem. For example, (SL89-15) refers to the fifteenth problem of the
shortlist of 1989.

We also present a rough list of all formulas and theorems not obviously
derivable that were called upon in our proofs. Since we were largely concerned
with only the theorems used in proving the problems of this book, we believe
that the list is a good compilation of the most useful theorems for IMO prob-
lem solving.

The gathering of such a large collection of problems into a book required
a massive amount of editing. We reformulated the problems whose original
formulations were not precise or clear. We translated the problems that were
not in English. Some of the solutions are taken from the author of the problem
or other sources, while others are original solutions of the authors of this
book. Many of the non-original solutions were significantly edited before being
included. We do not make any guarantee that the problems in this book
fully correspond to the actual shortlisted or longlisted problems. However, we
believe this book to be the closest possible approximation to such a list.



2

Basic Concepts and Facts

The following is a list of the most basic concepts and theorems frequently
used in this book. We encourage the reader to become familiar with them and
perhaps read up on them further in other literature.

2.1 Algebra

2.1.1 Polynomials

Theorem 2.1. The quadratic equation ax® +bx +c =0 (a,b,c € R, a #0)
has solutions
—b+ b2 — dac

2a '

The discriminant D of the quadratic equation is defined as D = b — 4ac. For
D < 0 the solutions are complex and conjugate to each other, for D = 0 the
solutions degenerate to one real solution, and for D > 0 the equation has two
distinct real solutions.

T2 =

Definition 2.2. Binomial coefficients (Z), n,k € Ng, k < n, are defined as

(7;) - z'!(nni i

They satisfy (7) + (,",) = ("T") fori > 0 and also (2) + () +---+ (%) = 2",

()= () 4t COP() =0, (757 = 5 (). '

Theorem 2.3 ((Newton’s) binomial formula). For z,y € C and n € N,

(x+y)" = g (T;) AT
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Theorem 2.4 (Bézout’s theorem). A polynomial P(x) is divisible by the
binomial x — a (a € C) if and only if P(a) = 0.

Theorem 2.5 (The rational root theorem). If x = p/q is a rational zero
of a polynomial P(xz) = anx™+- - -+ag with integer coefficients and (p,q) = 1,
then p | ap and q | ay,.

Theorem 2.6 (The fundamental theorem of algebra). FEvery noncon-
stant polynomial with coefficients in C has a complex root.

Theorem 2.7 (Eisenstein’s criterion (extended)). Let P(z) = anz™ +
---4ai1x + ag be a polynomial with integer coefficients. If there exist a prime
p and an integer k € {0,1,...,n — 1} such that p | ag,a1,...,ak, p 1 ki1,
and p? t ag, then there exists an irreducible factor Q(z) of P(x) whose degree
is at least k. In particular, if p can be chosen such that k = n —1, then P(x)
is irreducible.

Definition 2.8. Symmetric polynomials in x1,...,x, are polynomials that
do not change on permuting the variables x1,...,z,. Elementary symmetric
polynomials are ox(z1,...,2,) = > 4 -+ - x4, (the sum is over all k-element

subsets {i1,... i} of {1,2,...,n}).

Theorem 2.9. Fvery symmetric polynomial in x1,...,x, can be expressed as
a polynomial in the elementary symmetric polynomials o1, ..., 0.
Theorem 2.10 (Vieta’s formulas). Let aq,...,a, and ¢1,..., ¢, be com-

plex numbers such that
(x—a))(z—ag) - (z—ay) =2+ 2" L 4" 24 e, .
Then ¢, = (—1)Fox(an,...,an) fork=1,2,...,n.

Theorem 2.11 (Newton’s formulas on symmetric polynomials). Let
or = op(x1,...,2n) and let s = x’f + xlg + -+ xﬁ, where x1,...,T, are
arbitrary complex numbers. Then

koy, = $104-1 — $205—2 + - + (—1)Fsp_101 + (1) sy,

2.1.2 Recurrence Relations

Definition 2.12. A recurrence relation is a relation that determines the el-
ements of a sequence x,, n € Ny, as a function of previous elements. A
recurrence relation of the form

(Vn>k) zp+aizpa+-+aptnr=0

for constants aq,...,ay is called a linear homogeneous recurrence relation of
order k. We define the characteristic polynomial of the relation as P(x) =
oF +ah Tt 4+ 4 ag.



2.1 Algebra 7

Theorem 2.13. Using the notation introduced in the above definition, let
P(z) factorize as P(z) = (x— )" (x —az)*? - (x — ;)% where ay, ...,
are distinct complex numbers and k1, ..., k, are positive integers. The general
solution of this recurrence relation is in this case given by

Zn = p1(n)af + pa(n)aly + - -+ pr(n)ay,

where p; is a polynomial of degree less than k;. In particular, if P(x) has k
distinct roots, then all p; are constant.

If xg, ..., xx—1 are set, then the coefficients of the polynomials are uniquely
determined.

2.1.3 Inequalities

Theorem 2.14. The quadratic function is always positive; i.e., (Vx € R) 22 >
0. By substituting different expressions for x, many of the inequalities below
are obtained.

Theorem 2.15 (Bernoulli’s inequalities).
1. If n > 1 is an integer and x > —1 a real number then (1 + x)" > 1+ nx.

2. Ifa>1 ora <0 then for x > —1 the following inequality holds: (1+xz)* >
14+ azx.

3. If a € (0,1) then for x > —1 the following inequality holds: (1 4+ z)* <
1+ ax.

Theorem 2.16 (The mean inequalities). For positive real numbers x1, x2,
.y Ty it follows that QM > AM > GM > HM, where

QM = \/xl +x2 AM:xl—i—---—i—xn’
n

n

GM = Yx1---xp, = .
Va 1/e1+ -+ 1)z,

FEach of these inequalities becomes an equality if and only if ©r1 = x9 =

- = &n. The numbers QM , AM, GM, and HM are respectively called the
quadratic mean, the arithmetic mean, the geometric mean, and the harmonic
mean of T1,xa,...,Tn.

Theorem 2.17 (The general mean inequality). Let z1,...,x, be positive
real numbers. For each p € R we define the mean of order p of z1,...,z, by

M. — R 1/p o
= " for p # 0, and My = lim, ., M, for g € {£o00,0}. In

particular, maxx;, QM, AM, GM, HM, and minz; are Mo, Mo, M, My,
M_1, and M_ respectively. Then

M, < M, whenever p<q.
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Theorem 2.18 (Cauchy—Schwarz inequality). Let a;,b;, i = 1,2,...,n,
be real numbers. Then

(5) < (8) (89)

Equality occurs if and only if there exists ¢ € R such that b; = ca; for i =
1,...,n.

Theorem 2.19 (Holder’s inequality). Let a;,b;, i = 1,2,...,n, be nonneg-
ative real numbers, and let p, q be positive real numbers such that 1/p+1/q = 1.

Then
n n l/p n 1/q
San< (X)) ()

Equality occurs if and only if there exists ¢ € R such that b; = ca; for
i = 1,...,n. The Cauchy—-Schwarz inequality is a special case of Hélder’s
inequalzty for p=q=2.

Theorem 2.20 (Minkowski’s inequality). Let a;,b; (i = 1,2,...,n) be
nonnegative real numbers and p any real number not smaller than 1. Then

n 1/p n 1/p n 1/p
(err) = () (20)
i=1 i=1 i=1

For p > 1 equality occurs if and only if there exists ¢ € R such that b; = ca;
fori=1,...,n. For p=1 equality occurs in all cases.

Theorem 2.21 (Chebyshev’s inequality). Let a; > a2 > -+ > a, and
by > by > -+ > b, be real numbers. Then

n n n n
nzaibi > (Z Gz‘) (Zh) > nzaibnﬂﬂw
i=1 i=1 i=1 i=1

The two inequalities become equalities at the same time when a1 = ag = --- =
Ay 0rby = by =---=0b,.

Definition 2.22. A real function f defined on an interval I is convez if f(ax+
By) < af(x)+ Bf(y). for all z,y € I and all o, 8 > 0 such that a + 5 =1. A
function f is said to be concave if the opposite inequality holds, i.e., if —f is
convex.

Theorem 2.23. If f is continuous on an interval I, then f is convex on that
interval if and only if
s (I+y> < f(fv);Lf(y)

9 forall xz,y € I.
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Theorem 2.24. If f is differentiable, then it is convex if and only if the
derivative f' is nondecreasing. Similarly, differentiable function f is concave
if and only if ' is nonincreasing.

Theorem 2.25 (Jensen’s inequality). If f : I — R is a convez function,
then the inequality

flonzr + -+ anxy) < arf(zr) + -+ anf(zn)

holds for all a; > 0, a1y + -+ an, =1, and z; € I. For a concave function
the opposite inequality holds.

Theorem 2.26 (Muirhead’s inequality). Given x1,22,...,2, € RT and

an n-tuple a = (ay,- -+ ,an) of positive real numbers, we define
Ta(Z1,.. . 2n) = Zy‘fl U Tl

the sum being taken over all permutations y1,...,Yn of T1,...,2,. We say

that an n-tuple a majorizes an n-tuple b if a; + - -+ a, = by +--- 4+ b, and
a1+ --+ax > by + -+ by for each k =1,...,n — 1. If a nonincreasing
n-tuple a majorizes a nonincreasing n-tuple b, then the following inequality
holds:

Ta(z1,... 20) > To(x1,. .., Zn).

Equality occurs if and only if x1 =z = - = xp.

Theorem 2.27 (Schur’s inequality). Using the notation introduced for
Muirhead’s inequality,

Tat21,0,0(x1, T2, 3) + T (@1, T2, 23) > 204y p0(21, T2, 3),

where A\, u € RY. Equality occurs if and only if x1 = 1o = x3 or x1 = Ta,
x3 =0 (and in analogous cases).

2.1.4 Groups and Fields

Definition 2.28. A group is a nonempty set G equipped with an operation *
satisfying the following conditions:

(i) ax (bxc) = (a*b) *xcfor all a,b,c € G.
(ii) There exists a (unique) additive identity e € G such that exa =a*e =a
for all a € G.
(iii) For each a € G there exists a (unique) additive inverse a=! = b € G such
that axb=0bxa =ce.
If n € Z, we define a" as a * a * ---*a (n times) if n > 0, and as (a=1)™"
otherwise.
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Definition 2.29. A group G = (G, *) is commutative or abelian if axb = bxa
for all a,b € G.

Definition 2.30. A set A generates a group (G, *) if every element of G can
be obtained using powers of the elements of A and the operation *. In other
words, if A is the generator of a group G then every element g € G' can be
written as ai' # - -+ x al», where a; € A and i; € Z for every j =1,2,...,n.

Definition 2.31. The order of a € G is the smallest n € N such that a” =
if it exists. The order of a group is the number of its elements, if it is finite.
Each element of a finite group has a finite order.

Theorem 2.32 (Lagrange’s theorem). In a finite group, the order of an
element divides the order of the group.

Definition 2.33. A ring is a nonempty set R equipped with two operations
+ and - such that (R, +) is an abelian group and for any a,b,c € R,

(i) (a-b)-c=a-(b-c);
(ii) (a+b)-c=a-c+b-candc-(a+b)=c-a+c-b.

A ring is commutative if a-b = b-a for any a,b € R and with identity if there
exists a multiplicative identity i € R such that i-a=a-i=a for all a € R.

Definition 2.34. A field is a commutative ring with identity in which every
element a other than the additive identity has a multiplicative inverse a="

such that a-a ! =a1.-a =1i.

Theorem 2.35. The following are common examples of groups, rings, and
fields:

Groups: (Zn,+), (Zp \ {0},-), (Q,+), (R,+), (R\ {0},").
Rings: (Zna'i'v')’ (Zv—i_v')’ (Z[ ] )7 ( [ ] +7')'
Fields: (Zp,+,-), (Q,+,"), (Q(V2),+,-), (R, +,-), (C,+,-).

2.2 Analysis

Definition 2.36. A sequence {a,}°2, has a limit a = lim,_, a, (also de-
noted by a, — a) if

(Ve > 0)(3n. € N)(Vn > n.) |ap, —a| < e.
A function f : (a,b) — R has a limit y = lim,_.. f(x) if

(Ve >0)(30 > 0)(Vz € (a,b)) 0< |z —c| <d=|f(x) —y| <e.
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Definition 2.37. A sequence x,, converges to x € R if lim, ooz, = . A
series Y 0 | @, converges to s € R if and only if limy, oo D ey T = 5. A
sequence or series that does not converge is said to diverge.

Theorem 2.38. A sequence a,, is convergent if it is monotonic and bounded.

Definition 2.39. A function f is continuous on [a,b] if for every zo € [a,b],

lim, 4, f(z) = f(z0)-

Definition 2.40. A function f : (a,b) — R is differentiable at a point x¢ €
(a,b) if the following limit exists:

f/(xo) — lim f(x) - f(xO)
T—To Tr — X
A function is differentiable on (a, b) if it is differentiable at every zg € (a,b).
The function f’ is called the derivative of f. We similarly define the second
derivative f” as the derivative of f’, and so on.

Theorem 2.41. A differentiable function is also continuous. If f and g are
differentiable, then fg, af +B3g (o, B E€R), fog, 1/f (if f #0), f=1 (if well-
defined) are also differentiable. It holds that (af + Bg) = af’ + B¢, (fg) =
flg+fg, (fog) =(fog) g, AL =—f/f (f/9) = (f9-fd)]s*
(=N =1/(f o f71).

Theorem 2.42. The following are derivatives of some elementary functions
(a denotes a real constant): (z*) = ax®1, (Inz) = 1/z, (a®) = a®lna,
(sinz)’ = cosz, (cosz) = —sinx.

Theorem 2.43 (Fermat’s theorem). Let f : [a,b] — R be a differentiable
function. The function f attains its mazimum and minimum in this interval.
If o € (a,b) is an extremum (i.e., a mazimum or minimum,), then f'(zq) = 0.

Theorem 2.44 (Rolle’s theorem). Let f(x) be a continuously differentiable
function defined on [a,b], where a,b € R, a < b, and f(a) = f(b) = 0. Then
there exists ¢ € [a,b] such that f'(c) = 0.

Definition 2.45. Differentiable functions fi, fo,..., fr defined on an open
subset D of R™ are independent if there is no nonzero differentiable function
F : R¥ — R such that F(fi,..., fx) is identically zero on some open subset
of D.

Theorem 2.46. Functions f1,..., fr : D — R are independent if and only if
the k x n matriz [0f;/0x;];; is of rank k, i.e. when its k rows are linearly
independent at some point.

Theorem 2.47 (Lagrange multipliers). Let D be an open subset of R™
and f, f1, fo,.-., fx : D — R independent differentiable functions. Assume
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that a point a in D is an extremum of the function f within the set of points
i D such that f, = fo = --- = f, = 0. Then there exist real numbers
A, ..., A\p (so-called Lagrange multipliers) such that a is a stationary point of
the function F = f + A\ f1 + -+ + A fr, i.e., such that all partial derivatives
of F' at a are zero.

Definition 2.48. Let f be a real function defined on [a,b] and let a = xg <
1 < <xp, =band & € [xp_1,xx). The sum S = >, (zp — zp—1)f (&)
is called a Darboux sum. If I = lims_,o .S exists (where § = maxy(x — zr—1)),
we say that f is integrable and I its integral. Every continuous function is
integrable on a finite interval.

2.3 Geometry

2.3.1 Triangle Geometry

Definition 2.49. The orthocenter of a triangle is the common point of its
three altitudes.

Definition 2.50. The circumcenter of a triangle is the center of its circum-
scribed circle (i.e. circumcircle). It is the common point of the perpendicular
bisectors of the sides of the triangle.

Definition 2.51. The incenter of a triangle is the center of its inscribed circle
(i.e. incircle). It is the common point of the internal bisectors of its angles.

Definition 2.52. The centroid of a triangle (median point) is the common
point of its medians.

Theorem 2.53. The orthocenter, circumcenter, incenter and centroid are
well-defined (and unique) for every non-degenerate triangle.

Theorem 2.54 (Euler’s line). The orthocenter H, centroid G, and cir-
cumcircle O of an arbitrary triangle lie on a line (Euler’s line) and satisfy

HG = 2GO.

Theorem 2.55 (The nine-point circle). The feet of the altitudes from
A, B,C and the midpoints of AB, BC, CA, AH, BH, CH lie on a circle
(The nine-point circle).

Theorem 2.56 (Feuerbach’s theorem). The nine-point circle of a triangle
18 tangent to the incircle and all three excircles of the triangle.

Theorem 2.57. Given a triangle NABC, let NABC', NAB'C, and NA'BC
be equilateral triangles constructed outwards. Then AA’, BB', CC' intersect
i one point, called Torricelli’s point.
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Definition 2.58. Let ABC be a triangle, P a point, and X, Y, Z respectively
the feet of the perpendiculars from P to BC, AC, AB. Triangle XY 7 is called
the pedal triangle of AABC corresponding to point P.

Theorem 2.59 (Simson’s line). The pedal triangle XY Z is degenerate, i.e.,
X, Y, Z are collinear, if and only if P lies on the circumcircle of ABC. Points
X, Y, Z are in this case said to lie on Simson’s line.

Theorem 2.60 (Carnot’s theorem). The perpendiculars from X,Y,Z to
BC,CA, AB respectively are concurrent if and only if

BX? _XC?+CY?-YA? 4+ AZ?2 - ZB%2=0.

Theorem 2.61 (Desargues’s theorem). Let A1 B1Cy and A3 B2Cy be two
triangles. The lines A1As, B1Bo, C1Cs are concurrent or mutually parallel
if and only if the points A = B1Cy N BsCy, B = C1As N A1Cs, and C =
A1Bs N A3 By are collinear.

2.3.2 Vectors in Geometry

_
Definition 2.62. For any two vectors @, b in space, we define the scalar
_ — = =
product (also known as dot product) of @ and b as @ - b = |a]|| b|cosy,
— 7 — — — .
and the vector product as @ x b = P, where ¢ = Z(@, b) and p is the
—
vector with || = | @ || b || sin | perpendicular to the plane determined by @’
— —
and b such that the triple of vectors @, b, p is positively oriented (note that

if @ and b are collinear, then @ x b = 0). These products are both linear
with respect to both factors. The scalar product is commutative, while the

— —

vector product is anticommutative, i.e. @ x b = — b x @. We also define the
— — —

mized vector product of three vectors @, b, ¢ as[a, b, ¢]=(d x b)-¢C.

— - . —
Remark. Scalar product of vectors @ and b is often denoted by (@', b ).
Theorem 2.63 (Thales’ theorem). Let lines AA” and BB’ intersect in a
point O, A’ # O # B'. Then AB | A'B' & 24 = 9B (Here % denotes

, ‘ oA’ OB
the ratio of two nonzero collinear vectors).

Theorem 2.64 (Ceva’s theorem). Let ABC' be a triangle and X,Y,Z be
points on lines BC,C A, AB respectively, distinct from A, B,C. Then the lines
AX,BY,CZ are concurrent if and only if

_ = —
BX CY AZ _1 valent] sin { BAX sin LCBY sin LACZ _1
Y& VA Zp 0 O eanaent™ G (X AC sin AY BAsin {ZCB

(the last expression being called the trigonometric form of Ceva’s theorem).
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Theorem 2.65 (Menelaus’s theorem). Using the notation introduced for

Ceva’s theorem, points X,Y, Z are collinear if and only if
—_— = —
BX CY AZ

T
XC YA ZB

Theorem 2.66 (Stewart’s theorem). If D is an arbitrary point on the line
BC, then

, DC_ ., BD  , = —
AD* = 5 BD*+ _CD* ~BD - DC.

Specifically, if D is the midpoint of BC, then 4AD? = 2AB? 4+ 2AC? — BC?.

2.3.3 Barycenters

Definition 2.67. A mass point (A, m) is a point A which is assigned a mass
m > 0.

Definition 2.68. The mass center (barycenter) of the set of mass points
—
(Aj,mg),i=1,2,...,n, is the point T such that >, m;TA; = 0.

Theorem 2.69 (Leibniz’s theorem). Let T' be the mass center of the set
of mass points {(A;,m;) | i =1,2,...,n} of total mass m =mq + -+ + my,
and let X be an arbitrary point. Then

i=1 i=1
Specifically, if T is the centroid of ANABC and X an arbitrary point, then

AX?+ BX?2+CX?=AT?+ BT?>+CT?>+3X71T?2.

2.3.4 Quadrilaterals

Theorem 2.70. A quadrilateral ABCD is cyclic (i.e., there exists a cir-
cumcircle of ABCD) if and only if ZACB = ZADB and if and only if
LADC + ZABC = 180°.

Theorem 2.71 (Ptolemy’s theorem). A convex quadrilateral ABCD is
cyclic if and only if

AC-BD =AB-CD+ AD - BC.

For an arbitrary quadrilateral ABC'D we have Ptolemy’s inequality (see 2.5.7,
Geometric Inequalities).
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Theorem 2.72 (Casey’s theorem). Let k1, ko, k3, kg be four circles that all
touch a given circle k. Let t;; be the length of a segment determined by an
external common tangent of circles k; and k; (1,7 € {1,2,3,4}) if both k; and
k; touch k internally, or both touch k externally. Otherwise, t;; is set to be the
internal common tangent. Then one of the products t1atsy, t13tas, and tiatos
s the sum of the other two.

Some of the circles ky, ko, ks, kg may be degenerate, i.e. of 0 radius and
thus reduced to being points. In particular, for three points A, B, C' on a circle
k and a circle k' touching k at a point on the arc of AC not containing B, we
have AC-b= AB-c+a-BC, where a, b, and ¢ are the lengths of the tangent
segments from points A, B, and C to k'. Ptolemy’s theorem is a special case
of Casey’s theorem when all four circles are degenerate.

Theorem 2.73. A convex quadrilateral ABCD is tangent (i.e., there exists
an incircle of ABCD) if and only if

AB+ CD = BC + DA.

Theorem 2.74. For arbitrary points A, B,C,D in space, AC 1L BD if and

Iy i
ol AB? + CD? = BC? + DA>.

Theorem 2.75 (Newton’s theorem). Let ABC'D be a quadrilateral, ADN
BC = E, and ABNDC = F (such points A,B,C,D,E,F form a com-
plete quadrilateral). Then the midpoints of AC, BD, and EF are collinear.
If ABCD is tangent, then the incenter also lies on this line.

Theorem 2.76 (Brocard’s theorem). Let ABCD be a quadrilateral in-
scribed in a circle with center O, and let P = ABNCD, Q = AD N BC,
R =ACN BD. Then O is the orthocenter of APQR.

2.3.5 Circle Geometry

Theorem 2.77 (Pascal’s theorem). If A, Ay, A3, By, Bo, By are distinct
points on a conic vy (e.g., circle), then points X1 = AsBs N A3Ba, Xo =
A1BsN A3Bq, and X3 = A1Bs N As By are collinear. The special result when
v consists of two lines is called Pappus’s theorem.

Theorem 2.78 (Brianchon’s theorem). Let ABCDEF be an arbitrary
convex hexagon circumscribed about a conic (e.g., circle). Then AD, BE and
CF meet in a point.

Theorem 2.79 (The butterfly theorem). Let AB be a segment of circle
k and C its midpoint. Let p and q be two different lines through C that,
respectively, intersect k on one side of AB in P and QQ and on the other in P’
and Q'. Let E and F respectively be the intersections of PQ' and P'Q with
AB. Then it follows that CE = CF.
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Definition 2.80. The power of a point X with respect to a circle k(O,r) is
defined by P(X) = OX?—r2. For an arbitrary line [ through X that intersects

—_ —
k at A and B (A = B when [ is a tangent), it follows that P(X) = XA- XB.

Definition 2.81. The radical azis of two circles is the locus of points that
have equal powers with respect to both circles. The radical axis of circles
k1(01,71) and ko(O2,72) is a line perpendicular to O;0;. The radical axes
of three distinct circles are concurrent or mutually parallel. If concurrent, the
intersection of the three axes is called the radical center.

Definition 2.82. The pole of a line I # O with respect to a circle (O, r) is a
point A on the other side of [ from O such that OA 1 [ and d(O,1)-OA = r2.
In particular, if [ intersects k in two points, its pole will be the intersection of
the tangents to k at these two points.

Definition 2.83. The polar of the point A from the previous definition is the
line . In particular, if A is a point outside k and AM, AN are tangents to k
(M,N € k), then M N is the polar of A.

Poles and polares are generally defined in a similar way with respect to arbi-
trary non-degenerate conics.

Theorem 2.84. If A belongs to a polar of B, then B belongs to a polar of A.

2.3.6 Inversion

Definition 2.85. An inversion of the plane 7w around the circle (O, r) (which
belongs to ), is a transformation of the set 7\{O} onto itself such that every
point P is transformed into a point P’ on (OP such that OP - OP’ = r%. In
the following statements we implicitly assume exclusion of O.

Theorem 2.86. The fized points of the inversion are on the circle k. The
inside of k is transformed into the outside and vice versa.

Theorem 2.87. If A, B transform into A’, B" after an inversion, then ZOAB
= /OB'A’, and also ABB'A’ is cyclic and perpendicular to k. A circle per-
pendicular to k transforms into itself. Inversion preserves angles between con-
tinuous curves (which includes lines and circles).

Theorem 2.88. An inversion transforms lines not containing O into circles
containing O, lines containing O into themselves, circles not containing O
into circles not containing O, circles containing O into lines not containing

0.

2.3.7 Geometric Inequalities

Theorem 2.89 (The triangle inequality). For any three points A, B,C
in a plane AB + BC > AC. Equality occurs when A, B,C are collinear and
B(A, B, C).
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Theorem 2.90 (Ptolemy’s inequality). For any four points A, B, C, D,
AC-BD < AB-CD+ AD - BC.

Theorem 2.91 (The parallelogram inequality). For any four points A,
B, C, D,
AB? 4+ BC? + CD? + DA? > AC? + BD”.

Equality occurs if and only if ABC'D is a parallelogram.

Theorem 2.92. For a given triangle NABC' the point X for which AX +
BX + CX is minimal is Toricelli’s point when all angles of AABC' are less
than or equal to 120°, and is the vertex of the obtuse angle otherwise. The point
Xy for which AX3 + BX3 + CX3 is minimal is the centroid (see Leibniz’s
theorem,).

Theorem 2.93 (The Erd6s—Mordell inequality). Let P be a point in the
interior of NABC and X,Y,Z projections of P onto BC, AC, AB, respec-

tively. Then
PA+PB+ PC >2(PX + PY +PZ).

Equality holds if and only if NABC' is equilateral and P is its center.

2.3.8 Trigonometry

Definition 2.94. The trigonometric circle is the unit circle centered at the
origin O of a coordinate plane. Let A be the point (1,0) and P(z,y) be a
point on the trigonometric circle such that L AOP = «. We define sina = y,
cosa =z, tana = y/z, and cot o = z/y.

Theorem 2.95. The functions sin and cos are periodic with period 2w. The
functions tan and cot are periodic with period . The following simple identi-
ties hold: sin? x 4 cos?>z = 1, sin0 = sinm = 0, sin(—z) = —sinz, cos(—z) =
cosz, sin(mw/2) = 1, sin(n/4) = 1/v/2, sin(r/6) = 1/2, cosx = sin(r/2 — ).
From these identities other identities can be easily derived.

Theorem 2.96. Additive formulas for trigonometric functions:

sin(a £ 8) = sinacos f £ cosasin B, cos(a £ 3) = cosacos 8 F sin asin 3,

_ tanazftan __ cotacotBF1
tan(aiﬁ) T l1Ftanatanp’ COt(a iﬁ) ~ cotazcotf -

Theorem 2.97. Formulas for trigonometric functions of 2x and 3x:

sin 2z = 2sinx cos z, sin3z = 3sinz — 4sin® z,

cos2x = 2coszx — 1, cos3x = 4cos® z — 3cosz,
. tan®

tan 2r = 2tanx tan 3z = 3tanz—tan” x

1—tan2 x>’ 1-3tan2 z
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1—t2

1442 where t =

Theorem 2.98. For any x € R, sinz = 1%2 and cosx =
tan 3.
Theorem 2.99. Transformations from product to sum:

2cosacos 8 = cos(a + 3) + cos(a — ),
2sinacos 8 = sin(a + 3) + sin(a — (),
2sinasin 8 = cos(a — ) — cos(a + ).

Theorem 2.100. The angles «, 3,7 of a triangle satisfy

cos? av + cos? 3 + cosZ vy 4+ 2cosaccos Bcosy = 1,
tan « + tan 8 + tany = tan « tan G tan-y.

Theorem 2.101 (De Moivre’s formula). Ifi? = —1, then

(cosx +isinx)" = cosnz + isinnz.

2.3.9 Formulas in Geometry

Theorem 2.102 (Heron’s formula). The area of a triangle ABC with sides
a,b,c and semiperimeter s is given by

1
S=+/s(s—a)(s—b)(s—c)= 4\/2a2b2 + 2a2c? + 2b2c2 — a* — bt — ct.

Theorem 2.103 (The law of sines). The sides a,b,c and angles «, 3,7 of
a triangle ABC' satisfy

a b c

o=, = . =2R,
sina  sinf  sinvy

where R is the circumradius of ANABC.

Theorem 2.104 (The law of cosines). The sides and angles of ANABC
satisfy

& =a® 4+ b* — 2abcosH.
Theorem 2.105. The circumradius R and inradius v of a triangle ABC' sat-
isfy R = ‘stc and r = afli—c = R(cosa + cosf + cosy — 1). If z,y,z de-
note the distances of the circumcenter in an acute triangle to the sides, then

r+y+z=R+r.

Theorem 2.106 (Euler’s formula). If O and I are the circumcenter and
incenter of AABC, then OI*> = R(R — 2r), where R and r are respectively
the circumradius and the inradius of ANABC. Consequently, R > 2r.
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Theorem 2.107. The area S of a quadrilateral ABCD with sides a,b,c,d,
semiperimeter p, and angles «,~y at vertices A, C respectively is given by

S = \/(p —a)(p—0)(p —¢)(p — d) — abed cos? “ —2|— T
If ABCD is a cyclic quadrilateral, the above formula reduces to

S=V(p—a)p-bp-c)p-d.

Theorem 2.108 (Euler’s theorem for pedal triangles). Let X,Y, Z be
the feet of the perpendiculars from a point P to the sides of a triangle ABC'.
Let O denote the circumcenter and R the circumradius of NABC'. Then

op?

1
Sxyz=4‘1— R SaBc -

Moreover, Sxyz = 0 if and only if P lies on the circumcircle of ANABC' (see
Simson’s line ).
Theorem 2.109. If

—
: —
overrightarrowa = (ay,a2,a3), b = (b1,b2,b3), ¢ = (c1,c2,¢3) are three
vectors in coordinate space, then

= . =
a-b =a1b1—|—a2b2—|—a3b3, axb= (albz—azbl,agbg—agbg,agbl—albg),

a; as a
= 1 @2 &3
[a,b,c]z b1 beg
C1 C2 C3

Theorem 2.110. The area of a triangle ABC and the volume of a tetrahedron
—_— = —_— —— —
ABCD are equal to |AB x AC| and HAB, ACQAD} ’, respectively.

Theorem 2.111 (Cavalieri’s principle). If the sections of two solids by
the same plane always have equal area, then the volumes of the two solids are
equal.

2.4 Number Theory

2.4.1 Divisibility and Congruences

Definition 2.112. The greatest common divisor (a,b) = ged(a,b) of a,b € N
is the largest positive integer that divides both a and b. Positive integers a
and b are coprime or relatively prime if (a,b) = 1. The least common multiple
[a,b] = lem(a,b) of a,b € N is the smallest positive integer that is divisible
by both a and b. It holds that [a, b](a,b) = ab. The above concepts are easily
generalized to more than two numbers; i.e., we also define (a1, as, ..., a,) and
[a1, a2, ..., an].
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Theorem 2.113 (Euclid’s algorithm). Since (a,b) = (la — b|,a) = (Ja —
b|,b) it follows that starting from positive integers a and b one eventually
obtains (a,b) by repeatedly replacing a and b with |a — b| and min{a, b} until
the two numbers are equal. The algorithm can be generalized to more than two
numbers.

Theorem 2.114 (Corollary to Euclid’s algorithm). For each a,b € N
there exist x,y € Z such that ax + by = (a,b). The number (a,b) is the
smallest positive number for which such x and y can be found.

Theorem 2.115 (Second corollary to Euclid’s algorithm). Fora,m,n €
N and a > 1 it follows that (a™ —1,a™ — 1) = a™™ — 1.

Theorem 2.116 (Fundamental theorem of arithmetic). Every positive
integer can be uniquely represented as a product of primes, up to their order.

Theorem 2.117. The fundamental theorem of arithmetic also holds in some
other rings, such as Z[i] = {a +bi | a,b € Z}, Z|\V/2], Z[\V—2], Z|w] (where w
is a complex third root of 1). In these cases, the factorization into primes is
unique up to the order and divisors of 1.

Definition 2.118. Integers a, b are congruent modulo n € N if n | a —b. We
then write a = b (mod n).

Theorem 2.119 (Chinese remainder theorem). If mi,ma,...,my are
positive integers pairwise relatively prime and aq,...,ag, c1,...,Ck are inte-
gers such that (a;,m;) =1 (i=1,...,n), then the system of congruences

a;x = ¢; (mod m;), i=1,2,...,n,

has a unique solution modulo mims - --my.

2.4.2 Exponential Congruences
Theorem 2.120 (Wilson’s theorem). If p is a prime, then p | (p—1)!+1.

Theorem 2.121 (Fermat’s (little) theorem). Let p be a prime number
and a be an integer with (a,p) = 1. Then a?~' =1 (mod p). This theorem is
a special case of Euler’s theorem.

Definition 2.122. Euler’s function ¢(n) is defined for n € N as the number
of positive integers less than n and coprime to n. It holds that

wen(i-2) (1)

* is the factorization of n into primes.

where n = p{* ---pp
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Theorem 2.123 (Euler’s theorem). Let n be a natural number and a be
an integer with (a,n) = 1. Then a®™ =1 (mod n).

Theorem 2.124 (Existence of primitive roots). Let p be a prime. There
exists g € {1,2,...,p—1} (called a primitive root modulo p) such that the set
{1,9,9% ...,9°72} is equal to {1,2,...,p — 1} modulo p.

Definition 2.125. Let p be a prime and « be a nonnegative integer. We say
that p® is the exzact power of p that divides an integer a (and « the ezact
exponent) if p* | @ and p**1 § a.

Theorem 2.126. Let a,n be positive integers and p be an odd prime. If p
(o € N) is the exact power of p that divides a — 1, then for any integer 3 > 0,
p8 | a™ — 1 if and only if p° | n. (See (SL97-14).)

A similar statement holds for p = 2. If 2* (« € N) is the exact power of
2 that divides a® — 1, then for any integer 3 >0, 2°%8 | a™ — 1 if and only if
2041 | n. (See (SL89-27).)

2.4.3 Quadratic Diophantine Equations

Theorem 2.127. The solutions of a®> + b*> = c* in integers are given by a =
t(m?—n?), b = 2tmn, c = t(m?+n?) (provided that b is even), where t,m,n €
Z. The triples (a,b,c) are called Pythagorean (or primitive Pythagorean if
ged(a,b,c) =1).

Definition 2.128. Given D € N that is not a perfect square, a Pell’s equation
is an equation of the form 22 — Dy? = 1, where z,y € Z.

Theorem 2.129. If (xg, yo) is the least (nontrivial) solution in N of the Pell’s
equation x*> — Dy? = 1, then all the integer solutions (x,y) are given by
z +yvVD = +(xo + yov'D)", where n € Z.

Definition 2.130. An integer a is a quadratic residue modulo a prime p if
there exists * € Z such that 2 = a (mod p). Otherwise, a is a quadratic

nonresidue modulo p.

Definition 2.131. Legendre’s symbol for an integer a and a prime p is defined
by

“ 1 if a is a quadratic residue mod p and p { a;
( ) =< 0 ifp|a;
p —1 otherwise.

Clearly (Z) = (“zp) and (f) = 1if p{ a. Legendre’s symbol is multiplica-

vevien (2) (2) = ()

Theorem 2.132 (Euler’s criterion). For each odd prime p and integer a

not divisible by p, a"2 = (Z) (mod p).
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Theorem 2.133. For a prime p > 3, (_pl), (12)) and (;3) are equal to 1 if

and only if p =1 (mod 4), p = £1 (mod 8) and p = 1 (mod 6), respectively.

Theorem 2.134 (Gauss’s Reciprocity law). For any two distinct odd

primes p and q,
P\ (¢ p=1a-1
=(—1) 2 2
<Q) (p) ( )

Definition 2.135. Jacobi’s symbol for an integer a and an odd positive integer

b is defined as N N
(=) ()
b P1 Dk ’

¢ is the factorization of b into primes.

where b = pi" ---p}
Theorem 2.136. If (‘g) = —1, then a is a quadratic nonresidue modulo b,
but the converse is false. All the above identities for Legendre symbols except
Euler’s criterion remain true for Jacobi symbols.

2.4.4 Farey Sequences

Definition 2.137. For any positive integer n, the Farey sequence F,, is the
sequence of rational numbers a/b with 0 < a < b < n and (a,b) = 1 arranged

in increasing order. For instance, F3 = {?, é, é, g, } .

Theorem 2.138. If p1/q1, p2/q2, and ps/qs are three successive terms in a
Farey sequence, then
p1+p3 _ P2

P21 —p1g2 =1 and = .
g1 +4g3 @

2.5 Combinatorics

2.5.1 Counting of Objects

Many combinatorial problems involving the counting of objects satisfying a
given set of properties can be properly reduced to an application of one of the
following concepts.

Definition 2.139. A wvariation of order n over k is a 1 to 1 mapping of
{1,2,...,k} into {1,2,...,n}. For a given n and k, where n > k, the number

of different variations is V= (ni!k)!'

Definition 2.140. A variation with repetition of order n over k is an arbitrary
mapping of {1,2,...,k} into {1,2,...,n}. For a given n and k the number of

different variations with repetition is V, = k™.
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Definition 2.141. A permutation of order n is a bijection of {1,2,...,n}
into itself (a special case of variation for k = n). For a given n the number of
different permutations is P, = nl!.

Definition 2.142. A combination of order n over k is a k-element subset of

{1,2,...,n}. For a given n and k the number of different combinations is
Cr = ()-

Definition 2.143. A permutation with repetition of order n is a bijection of
{1,2,...,n} into a multiset of n elements. A multiset is defined to be a set in

which certain elements are deemed mutually indistinguishable (for example,
asin {1,1,2,3}).

If {1,2...,s} denotes a set of different elements in the multiset and the
element 7 appears «; times in the multiset, then number of different permuta-
tions with repetition is P a,,...a, = al,_a’;!!___as!. A combination is a special
case of permutation with repetition for a multiset with two different elements.

Theorem 2.144 (The pigeonhole principle). If a set of nk + 1 differ-
ent elements is partitioned into n mutually disjoint subsets, then at least one
subset will contain at least k + 1 elements.

Theorem 2.145 (The inclusion—exclusion principle). Let S1,S2,...,5,
be a family of subsets of the set S. The number of elements of S contained in
none of the subsets is given by the formula

S\ U U8 =1S[=> > (=DFS, NN 8]

k=11<i1 << <n

2.5.2 Graph Theory

Definition 2.146. A graph G = (V,E) is a set of objects, i.e., vertices, V
paired with the multiset E of some pairs of elements of V, i.e., edges. When
(x,y) € E, for z,y € V, the vertices x and y are said to be connected by an
edge; i.e., the vertices are the endpoints of the edge.

A graph for which the multiset E reduces to a proper set (i.e., the vertices
are connected by at most one edge) and for which no vertex is connected to
itself is called a proper graph.

A finite graph is one in which |F| and |V| are finite.

Definition 2.147. An oriented graph is one in which the pairs in E are or-
dered.

Definition 2.148. A proper graph K, containing n vertices and in which
each pair of vertices is connected is called a complete graph.



24 2 Basic Concepts and Facts

Definition 2.149. A k-partite graph (bipartite for k = 2) K;, 4, ... 4, is a graph
whose set of vertices V' can be partitioned into k& non-empty disjoint subsets
of cardinalities i1,14s,...,4; such that each vertex x in a subset W of V is
connected only with the vertices not in W.

Definition 2.150. The degree d(z) of a vertex x is the number of times x is
the endpoint of an edge (thus, self-connecting edges are counted twice). An
isolated vertex is one with the degree 0.

Theorem 2.151. For a graph G = (V, E) the following identity holds:

> d(z) =2|E|.

zeV
As a consequence, the number of vertices of odd degree is even.

Definition 2.152. A trajectory (path) of a graph is a finite sequence of ver-
tices, each connected to the previous one. The length of a trajectory is the
number of edges through which it passes. A circuit is a path that ends in the
starting vertex. A cycle is a circuit in which no vertex appears more than once
(except the initial/final vertex).

A graph is connected if there exists a trajectory between any two vertices.

Definition 2.153. A subgraph G' = (V',E’) of a graph G = (V,E) is a
graph such that V/ C V and E’ contains exactly the edges of E connecting
points in V’. A connected component of a graph is a connected subgraph such
that no vertex of the component is connected with any vertex outside of the
component.

Definition 2.154. A tree is a connected graph that contains no cycles.

Theorem 2.155. A tree with n vertices has exactly n — 1 edges and at least
two vertices of degree 1.

Definition 2.156. An Euler path is a path in which each edge appears exactly
once. Likewise, an Fuler circuit is an Euler path that is also a circuit.

Theorem 2.157. The following conditions are necessary and sufficient for a
finite connected graph G to have an Euler path:

o If each verter has even degree, then the graph contains an FEuler circuit.
o [If all vertices except two have even degree, then the graph contains an Fuler
path that is not a circuit (it starts and ends in the two odd vertices).

Definition 2.158. A Hamilton circuit is a circuit that contains each vertex
of G exactly once (trivially, it is also a cycle).

A simple rule to determine whether a graph contains a Hamilton circuit
has not yet been discovered.
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Theorem 2.159. Let G be a graph with n vertices. If the sum of the degrees of
any two nonadjacent vertices in G is greater than n, then G has a Hamiltonian
circust.

Theorem 2.160 (Ramsey’s theorem). Let r > 1 and q1,q2,...,q5s > 7.
There exists a minimal positive integer N(qi1,qa,...,qs;7) such that for n >
N, if all subgraphs K, of K, are partitioned into s different sets, labeled
A1, Ay ... A, then for some i there exists a complete subgraph K, whose
subgraphs K, all belong to A;. For v = 2 this corresponds to coloring the
edges of K,, with s different colors and looking for i monochromatically colored
subgraphs K, [73].

Theorem 2.161. N(p,q;r) < N(N(p—1,q¢;7),N(p,q—1;7r);r—1)+1, and
in particular, N(p,¢;2) < N(p—1,¢;2)+ N(p,q —1;2).

The following values of N are known: N(p,q;1) =p+q—1, N(2,p;2) = p,
N(3,3;2) = 6, N(3,4;2) = 9, N(3,5:2) = 14, N(3,6;2) = 18, N(3,7;2) =
23, N(3,8;2) = 28, N(3,9;2) = 36, N(4,4;2) = 18, N(4,5;2) = 25 [73).

Theorem 2.162 (Turan’s theorem). If a simple graph onn =1t(p—1)+7r

2
vertices has more than f(n,p) edges, where f(n,p) = (p_2)”2(;1(1’;_1_r), then
it contains K, as a subgraph. The graph containing f(n,p) vertices that does
not contain K, is the complete multipartite graph with r subsets of size t +1

and p — 1 — r subsets of size t [73].

Definition 2.163. A planar graph is one that can be embedded in a plane
such that its vertices are represented by points and its edges by lines (not nec-
essarily straight) connecting the vertices such that the edges do not intersect
each other.

Theorem 2.164. A planar graph with n vertices has at most 3n — 6 edges.

Theorem 2.165 (Kuratowski’s theorem). Graphs K5 and Ks 3 are not
planar. Every monplanar graph contains a subgraph which can be obtained
from one of these two graphs by a subdivison of its edges.

Theorem 2.166 (Euler’s formula). For a given convex polyhedron let E be
the number of its edges, F' the number of faces, and V' the number of vertices.
Then E+2 = F 4+ V. The same formula holds for a planar graph (F' is in
this case equal to the number of planar regions).
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Problems

3.1 The First IMO
Bucharest—Brasov, Romania, July 23-31, 1959

3.1.1 Contest Problems

First Day

21n+4

Tanmi3 cannot be

1. (POL) For every integer n prove that the fraction
reduced any further.

2. (ROM) For which real numbers z do the following equations hold:

(a) Vz+v2r -1+ Vo +2z—1=v2,
b)) Ve+v2r—1+Ve+V2z—-1=1,
() Ve++v2z—14+ Vo +2r-1=27

3. (HUN) Let z be an angle and let the real numbers a, b, ¢, cosz satisfy
the following equation:

acos’z+bcosz+c=0.

Write the analogous quadratic equation for a, b, ¢, cos 2z. Compare the
given and the obtained equality for a =4, b =2, c = —1.

Second Day

4. (HUN) Construct a right-angled triangle whose hypotenuse ¢ is given
if it is known that the median from the right angle equals the geometric
mean of the remaining two sides of the triangle.

5. (ROM) A segment AB is given and on it a point M. On the same side
of AB squares AMCD and BM FE are constructed. The circumcircles of
the two squares, whose centers are P and (), intersect in M and another
point V.
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3 Problems

(a) Prove that lines FF'A and BC intersect at N.

(b) Prove that all such constructed lines M N pass through the same point
S, regardless of the selection of M.

(¢) Find the locus of the midpoints of all segments PQ, as M varies along
the segment AB.

. (CZS) Let a and (8 be two planes intersecting at a line p. In « a point A

is given and in (8 a point C'is given, neither of which lies on p. Construct B
in @ and D in § such that ABCD is an equilateral trapezoid, AB || CD,
in which a circle can be inscribed.
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3.2 The Second IMO
Bucharest—Sinaia, Romania, July 18-25, 1960

3.2.1 Contest Problems
First Day

1. (BUL) Find all the three-digit numbers for which one obtains, when
dividing the number by 11, the sum of the squares of the digits of the
initial number.

2. (HUN) For which real numbers z does the following inequality hold:

422
<2x+97
(1—+/1+2x)?

3. (ROM) A right-angled triangle ABC' is given for which the hypotenuse
BC has length a and is divided into n equal segments, where n is odd.
Let « be the angle with which the point A sees the segment containing
the middle of the hypotenuse. Prove that

4dnh
(n2—1)a’

where h is the height of the triangle.

tana =

Second Day

4. (HUN) Construct a triangle ABC whose lengths of heights h, and h;
(from A and B, respectively) and length of median m, (from A) are given.

5. (CZS) A cube ABCDA'B'C'D’ is given.
(a) Find the locus of all midpoints of segments XY, where X is any point
on segment AC' and Y any point on segment B’'D’. . .
(b) Find the locus of all points Z on segments XY such that ZY = 2XZ.

6. (BUL) An isosceles trapezoid with bases a and b and height & is given.
(a) On the line of symmetry construct the point P such that both (non-
base) sides are seen from P with an angle of 90°.
(b) Find the distance of P from one of the bases of the trapezoid.
(¢) Under what conditions for a, b, and h can the point P be constructed
(analyze all possible cases)?

7. (GDR) A sphere is inscribed in a regular cone. Around the sphere a
cylinder is circumscribed so that its base is in the same plane as the base
of the cone. Let V] be the volume of the cone and V5 the volume of the
cylinder.

(a) Prove that V4 = V3 is impossible.
(b) Find the smallest k for which V5 = kVa, and in this case construct the
angle at the vertex of the cone.
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3.

B

3 Problems

3 The Third IMO
udapest—Veszprem, Hungary, July 6-16, 1961

3.3.1 Contest Problems

First Day
. (HUN) Solve the following system of equations:
r+y+z=a,
224?422 =12
ry = 22,

where a and b are given real numbers. What conditions must hold on a
and b for the solutions to be positive and distinct?

. (POL) Let a, b, and ¢ be the lengths of a triangle whose area is S. Prove
that
a® + b2+ 248\/3.

In what case does equality hold?

. (BUL) Solve the equation cos™ x —sin™ z = 1, where n is a given positive
integer.

Second Day

. (GDR) In the interior of APy P» P3 a point P is given. Let Q1, Q2, and Q3
respectively be the intersections of PPy, PPs, and PPs; with the opposing
edges of APy P,Ps. Prove that among the ratios PP;/PQ1, PP/ PQ>,
and PPs;/PQs there exists at least one not larger than 2 and at least one
not smaller than 2.

. (CZS) Construct a triangle ABC' if the following elements are given:
AC =b, AB = ¢, and LAMB = w (w < 90°), where M is the midpoint
of BC. Prove that the construction has a solution if and only if

btan§§c<b.

In what case does equality hold?

. (ROM) A plane € is given and on one side of the plane three noncollinear
points A, B, and C such that the plane determined by them is not parallel
to €. Three arbitrary points A’, B’, and C’ in ¢ are selected. Let L, M,
and N be the midpoints of AA’, BB’, and CC’, and G the centroid of
ALMN. Find the locus of all points obtained for G as A’, B’, and C’ are
varied (independently of each other) across e.
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3.4 The Fourth IMO
Prague—Hluboka, Czechoslovakia, July 7-15, 1962

3.4.1 Contest Problems

First Day

1. (POL) Find the smallest natural number n with the following properties:
(a) In decimal representation it ends with 6.
(b) If we move this digit to the front of the number, we get a number 4
times larger.

2. (HUN) Find all real numbers z for which

1
\/3—x—\/x+1>2.

3. (CZS) A cube ABCDA'B'C'D'’ is given. The point X is moving at a
constant speed along the square ABCD in the direction from A to B.
The point Y is moving with the same constant speed along the square
BCC’'B’ in the direction from B’ to C’. Initially, X and Y start out from
A and B’ respectively. Find the locus of all the midpoints of XY

Second Day

4. (ROM) Solve the equation
cos® & + cos® 2z 4+ cos? 3z =1 .

5. (BUL) On the circle k three points A, B, and C are given. Construct the
fourth point on the circle D such that one can inscribe a circle in ABCD.

6. (GDR) Let ABC be an isosceles triangle with circumradius r and inra-
dius p. Prove that the distance d between the circumcenter and incenter

is given by
d=/r(r—2p).

7. (USS) Prove that a tetrahedron SABC has five different spheres that
touch all six lines determined by its edges if and only if it is regular.
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3 Problems

3.5 The Fifth IMO
Wroclaw, Poland, July 5-13, 1963

3.5.1 Contest Problems

First Day

(CZS) Determine all real solutions of the equation \/x2 —p+2Vr2 — 1=
x, where p is a real number.

(USS) Find the locus of points in space that are vertices of right angles
of which one ray passes through a given point and the other intersects a
given segment.

(HUN) Prove that if all the angles of a convex n-gon are equal and the

lengths of consecutive edges aq,...,a, satisfy a1 > as > --- > a,, then
a1 = ag = -+ = Qp.
Second Day

. (USS) Find all solutions z1, ..., x5 to the system of equations

T5 + X2 = Yyxry,
1 + T3 = yxa,
T2 + T4 = Y3,
T3+ Ts = Yy,
T4 + 1 = Yyos,

where y is a real parameter.

. (GDR) Prove that cos 7 — cos 27“ + cos 37“ = ;

. (HUN) Five students A, B, C, D, and E have taken part in a certain

competition. Before the competition, two persons X and Y tried to guess
the rankings. X thought that the ranking would be A, B,C, D, E; and
Y thought that the ranking would be D, A, E,C, B. At the end, it was
revealed that X didn’t guess correctly any rankings of the participants,
and moreover, didn’t guess any of the orderings of pairs of consecutive
participants. On the other hand, Y guessed the correct rankings of two
participants and the correct ordering of two pairs of consecutive partici-
pants. Determine the rankings of the competition.
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3.6 The Sixth IMO
Moscow, Soviet Union, June 30—July 10, 1964

3.6.1 Contest Problems

First Day

1. (CZS) (a) Find all natural numbers n such that the number 2™ — 1 is
divisible by 7.
(b) Prove that for all natural numbers n the number 2™ +1 is not divisible
by 7.

2. (HUN) Denote by a, b, ¢ the lengths of the sides of a triangle. Prove that
a*(b+c—a)+b*(c+a—b)+c*(a+b—c) < 3abe.

3. (YUG) The incircle is inscribed in a triangle ABC with sides a, b, c.
Three tangents to the incircle are drawn, each of which is parallel to one
side of the triangle ABC'. These tangents form three smaller triangles
(internal to AABC) with the sides of AABC'. In each of these triangles
an incircle is inscribed. Determine the sum of areas of all four incircles.

Second Day

4. (HUN) Each of 17 students talked with every other student. They all
talked about three different topics. Each pair of students talked about
one topic. Prove that there are three students that talked about the same
topic among themselves.

5. (ROM) Five points are given in the plane. Among the lines that connect
these five points, no two coincide and no two are parallel or perpendicular.
Through each point we construct an altitude to each of the other lines.
What is the maximal number of intersection points of these altitudes
(excluding the initial five points)?

6. (POL) Given a tetrahedron ABCD, let D1 be the centroid of the triangle
ABC and let Ay, B1,C be the intersection points of the lines parallel to
DD, and passing through the points A, B, C' with the opposite faces of
the tetrahedron. Prove that the volume of the tetrahedron ABCD is one-
third the volume of the tetrahedron A;B1C1D;. Does the result remain
true if the point D; is replaced with any point inside the triangle ABC?
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3 Problems

3.7 The Seventh IMO
Berlin, DR Germany, July 3-13, 1965

3.7.1 Contest Problems

1.

2.

First Day
(YUG) Find all real numbers z € [0, 27] such that

2cosx < |V1+sin2x — V1 — sin 2z < V2.
(POL) Consider the system of equations

a1171 + a12x2 + azrs = 0,
a2171 + a2 + ag3r3 = 0,
az1x1 + azaxz + azzrs = 0,

whose coeflicients satisfy the following conditions:

(a) ai1,a99,ass are positive real numbers;

(b) all other coefficients are negative;

(¢) in each of the equations the sum of the coefficients is positive.
Prove that 1 = x5 = 3 = 0 is the only solution to the system.

. (CZS) A tetrahedron ABCD is given. The lengths of the edges AB and

CD are a and b, respectively, the distance between the lines AB and C'D
is d, and the angle between them is equal to w. The tetrahedron is divided
into two parts by the plane 7 parallel to the lines AB and C'D. Calculate
the ratio of the volumes of the parts if the ratio between the distances of
the plane 7 from AB and CD is equal to k.

Second Day

. (USS) Find four real numbers x1, z3, 23, x4 such that the sum of any of

the numbers and the product of other three is equal to 2.

. (ROM) Given a triangle OAB such that ZAOB = o < 90°, let M be an

arbitrary point of the triangle different from O. Denote by P and @ the
feet of the perpendiculars from M to OA and OB, respectively. Let H be
the orthocenter of the triangle OPQ. Find the locus of points H when:
(a) M belongs to the segment AB;

(b) M belongs to the interior of AOAB.

. (POL) We are given n > 3 points in the plane. Let d be the maximal

distance between two of the given points. Prove that the number of pairs
of points whose distance is equal to d is less than or equal to n.
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3.8 The Eighth IMO
Sofia, Bulgaria, July 3—-13, 1966

3.8.1 Contest Problems

First Day

1. (USS) Three problems A, B, and C were given on a mathematics
olympiad. All 25 students solved at least one of these problems. The num-
ber of students who solved B and not A is twice the number of students
who solved C' and not A. The number of students who solved only A is
greater by 1 than the number of students who along with A solved at least
one other problem. Among the students who solved only one problem, half
solved A. How many students solved only B?

2. (HUN) If a, b, and c are the sides and «, 3, and v the respective angles
of the triangle for which a 4 b = tan } (atan« + btan ), prove that the
triangle is isosceles.

3. (BUL) Prove that the sum of distances from the center of the circum-
sphere of the regular tetrahedron to its four vertices is less than the sum
of distances from any other point to the four vertices.

Second Day

4. (YUG) Prove the following equality:

1 1 1

= cotx — cot 2"
sin 22 + sin 42 + sin 8« Tt sin 2" . *

where n € N and z ¢ 77Z/2F for every k € N.
5. (CZS) Solve the following system of equations:

lar — az|xs + |a1 — as|zs + |a1 — as]zs = 1,
lag — ai|z1 + |az — as|xzs + |as — aslzs =1,
lag — ai|z1 + |az — as|xzs + |ag — as]zs =1,

lag — ar]zy + |ag — az|xa + |as — az|lzs = 1,

where a1, as, as, and a4 are mutually distinct real numbers.

6. (POL) Let M, K, and L be points on (AB), (BC), and (CA), respec-
tively. Prove that the area of at least one of the three triangles AM AL,
AKBM, and ALCK is less than or equal to one-fourth the area of
NABC.
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3.8.2 Some Longlisted Problems 1959-1966

1.

10.

(CZS) We are given n > 3 points in the plane, no three of which lie on
a line. Does there necessarily exist a circle that passes through at least
three of the given points and contains none of the other given points in
its interior?

. (GDR) Given n positive real numbers aq, as, . . ., a, such that a1as - - - ap,
=1, prove that
(1+a1)(1+az) - (1+a,) > 2"
. (BUL) A regular triangular prism has height h and a base of side length

a. Both bases have small holes in the centers, and the inside of the three
vertical walls has a mirror surface. Light enters through the small hole in
the top base, strikes each vertical wall once and leaves through the hole
in the bottom. Find the angle at which the light enters and the length of
its path inside the prism.

. (POL) Five points in the plane are given, no three of which are collinear.

Show that some four of them form a convex quadrilateral.

. (USS) Prove the inequality

wsinx T COST
tan . an
4 sin o 4 cosa

for any x, with 0 < 2 < 7/2 and 7/6 <y < 7/3.

. (USS) A convex planar polygon M with perimeter [ and area S is given.

Let M(R) be the set of all points in space that lie a distance at most R
from a point of M. Show that the volume V(R) of this set equals

4
V(R) = 7R+ 727132 +29R.

(USS) For which arrangements of two infinite circular cylinders does
their intersection lie in a plane?

. (USS) We are given a bag of sugar, a two-pan balance, and a weight of

1 gram. How do we obtain 1 kilogram of sugar in the smallest possible
number of weighings?

. (ROM) Find z such that

sin 3z cos(60° — 4x) + 1 B
sin(60° — 7x) — cos(30° + x) +m

)

where m is a fixed real number.

(GDR) How many real solutions are there to the equation =z =
1964 sinx — 1897
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(CZS) Does there exist an integer z that can be written in two different
ways as z = z! + y!, where x, y are natural numbers with z < y?

(BUL) Find digits x,y, z such that the equality

VIE LYY Y=
2n n n
holds for at least two values of n € N, and in that case find all n for which
this equality is true.

(YUG) Let aq,as,...,a, be positive real numbers. Prove the inequality

2

n 1 1
(Z)Zaiaj 24 Zai+aj

i<j i<j
and find the conditions on the numbers a; for equality to hold.

(POL) Compute the largest number of regions into which one can divide
a disk by joining n points on its circumference.

(POL) Points A, B,C, D lie on a circle such that AB is a diameter and
CD is not. If the tangents at C and D meet at P while AC and BD meet
at @, show that PQ is perpendicular to AB.

(CZS) We are given a circle K with center S and radius 1 and a square
Q@ with center M and side 2. Let XY be the hypotenuse of an isosceles
right triangle XY Z. Describe the locus of points Z as X varies along K
and Y varies along the boundary of Q.

(ROM) Suppose ABCD and A’B'C’'D’ are two parallelograms arbi-
trarily arranged in space, and let points M, N, P,Q divide the segments
AA’, BB',CC’, DD’ respectively in equal ratios.

(a) Show that M N PQ is a parallelogram;

(b) Find the locus of M NPQ as M varies along the segment AA’.

(HUN) Solve the equation Sirlm + Colsw = 11), where p is a real parameter.

Discuss for which values of p the equation has at least one real solution
and determine the number of solutions in [0, 27) for a given p.

(HUN) Construct a triangle given the three exradii.

(HUN) We are given three equal rectangles with the same center in
three mutually perpendicular planes, with the long sides also mutually
perpendicular. Consider the polyhedron with vertices at the vertices of
these rectangles.

(a) Find the volume of this polyhedron;

(b) can this polyhedron be regular, and under what conditions?

(BUL) Prove that the volume V and the lateral area S of a right circular
3
cone satisfy the inequality (6;/)2 < (:\53) . When does equality occur?



38

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

3 Problems

(BUL) Assume that two parallelograms P, P’ of equal areas have sides
a,b and a’, b’ respectively such that ' < a < b < I/ and a segment of
length b’ can be placed inside P. Prove that P and P’ can be partitioned
into four pairwise congruent parts.

(BUL) Three faces of a tetrahedron are right triangles, while the fourth

is not an obtuse triangle.

(a) Prove that a necessary and sufficient condition for the fourth face to
be a right triangle is that at some vertex exactly two angles are right.

(b) Prove that if all the faces are right triangles, then the volume of the
tetrahedron equals one -sixth the product of the three smallest edges
not belonging to the same face.

(POL) There are n > 2 people in a room. Prove that there exist two
among them having equal numbers of friends in that room. (Friendship is
always mutual.)

(GDR) Show that tan7°30' = v/6 + v/2 — v/3 — 2.

(CZS) (a) Prove that (a1 +as+---+ag)? < k(a3 +---+a}), where k > 1
is a natural number and a1, ..., ar are arbitrary real numbers.
(b) If real numbers ay, ..., a, satisfy

al—i—ag—i—---—l—anz\/(n—l)(a%—i—---—i—a%),

show that they are all nonnegative.

(GDR) We are given a circle K and a point P lying on a line g. Construct
a circle that passes through P and touches K and g.

(CZS) Let there be given a circle with center S and radius 1 in the plane,
and let ABC be an arbitrary triangle circumscribed about the circle such
that SA < SB < SC. Find the loci of the vertices A, B, C.

(ROM) (a) Find the number of ways 500 can be represented as a sum of
consecutive integers.

(b) Find the number of such representations for N = 2%3°57, o, 3,7 € N.
Which of these representations consist only of natural numbers?

(¢) Determine the number of such representations for an arbitrary natural
number N.

(ROM) If n is a natural number, prove that
(a) logio(n ‘E 1) 1> 18 + log 711;
(b) logn! > 5 (54 5+ 4, —1).

n

(ROM) Solve the equation |22 — 1| + |22 — 4| = mx as a function of the
parameter m. Which pairs (x,m) of integers satisfy this equation?

(BUL) Thesides a, b, ¢ of a triangle ABC form an arithmetic progression;
the sides of another triangle A; B;C; also form an arithmetic progression.
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Suppose that ZA = ZA;. Prove that the triangles ABC and A; B1C; are
similar.

(BUL) Two circles touch each other from inside, and an equilateral
triangle is inscribed in the larger circle. From the vertices of the triangle
one draws segments tangent to the smaller circle. Prove that the length
of one of these segments equals the sum of the lengths of the other two.

(BUL) Determine all pairs of positive integers (z,y) satisfying the equa-
tion 2% = 3Y 4 5.

(POL) If a,b,c,d are integers such that ad is odd and bc is even, prove
that at least one root of the polynomial ax® + bx? 4 cx + d is irrational.

(POL) Let ABCD be a cyclic quadrilateral. Show that the centroids of
the triangles ABC, CDA, BCD, DAB lie on a circle.

(POL) Prove that the perpendiculars drawn from the midpoints of the
sides of a cyclic quadrilateral to the opposite sides meet at one point.

(ROM) Two concentric circles have radii R and r respectively. Determine

the greatest possible number of circles that are tangent to both these

circles and mutually nonintersecting. Prove that this number lies between

RV ETE R

(ROM) In a plane, a circle with center O and radius R and two points

A, B are given.

(a) Draw a chord C'D parallel to AB so that AC and BD intersect at a
point P on the circle.

(b) Prove that there are two possible positions of point P, say Pi, P, and
find the distance between them if OA = a, OB =b, AB = d.

(CZS) For a positive real number p, find all real solutions to the equation

Va2 4+ 2px — p? — /22 — 2px — p? = 1.

(CZS) If A1Ay... A, is a regular n-gon (n > 3), how many different
obtuse triangles A;A;Aj exist?

(CZS) Let ay,az,...,a, (n > 2) be a sequence of integers. Show that
there is a subsequence ay,, ag,, ..., ak,,, where 1 < ky < ko < -+ <k, <
n, such that ail + aiz 4+ -+ azm is divisible by n.

(CZS) Five points in a plane are given, no three of which are collinear.
Every two of them are joined by a segment, colored either red or gray, so
that no three segments form a triangle colored in one color.

(a) Prove that (1) every point is a vertex of exactly two red and two gray
segments, and (2) the red segments form a closed path that passes
through each point.

(b) Give an example of such a coloring.



40

44.

45.

46.

47.

48.

49.

50.

ol.

92.

93.

o4.

95.

3 Problems

(YUG) What is the greatest number of balls of radius 1/2 that can be
placed within a rectangular box of size 10 x 10 x 17

(YUG) An alphabet consists of n letters. What is the maximal length

of a word, if

(i) two neighboring letters in a word are always different, and

(ii) no word abab (a # b) can be obtained by omitting letters from the
given word?

(YUG) Let

[b—al b+a 2| |b—a|l b+a 2
+ - + +

f(a,b.c) = |ab] ab c |ab] ab ¢

Prove that f(a,b,c¢) = 4max{1/a,1/b,1/c}.

(ROM) Find the number of lines dividing a given triangle into two parts
of equal area which determine the segment of minimum possible length
inside the triangle. Compute this minimum length in terms of the sides
a, b, c of the triangle.

(USS) Find all positive numbers p for which the equation z?+pz+3p = 0
has integral roots.

(USS) Two mirror walls are placed to form an angle of measure o.. There
is a candle inside the angle. How many reflections of the candle can an
observer see?

(USS) Given a quadrangle of sides a,b, ¢,d and area S, show that S <

a+c | b+d
2 2

(USS) In a school, n children numbered 1 to n are initially arranged in
the order 1,2,...,n. At a command, every child can either exchange its
position with any other child or not move. Can they rearrange into the
order n,1,2,...,n — 1 after two commands?

(USS) A figure of area 1 is cut out from a sheet of paper and divided
into 10 parts, each of which is colored in one of 10 colors. Then the figure
is turned to the other side and again divided into 10 parts (not necessarily
in the same way). Show that it is possible to color these parts in the 10
colors so that the total area of the portions of the figure both of whose
sides are of the same color is at least 0.1.

(USS, 1966) Prove that in every convex hexagon of area S one can draw
a diagonal that cuts off a triangle of area not exceeding éS .

(USS, 1966) Find the last two digits of a sum of eighth powers of 100
consecutive integers.

(USS, 1966) Given the vertex A and the centroid M of a triangle ABC,
find the locus of vertices B such that all the angles of the triangle lie in
the interval [40°,70°].
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56. (USS, 1966) Let ABCD be a tetrahedron such that AB 1 CD,
AC 1 BD, and AD 1 BC'. Prove that the midpoints of the edges of
the tetrahedron lie on a sphere.

57. (USS, 1966) Is it possible to choose a set of 100 (or 200) points on the
boundary of a cube such that this set is fixed under each isometry of the
cube into itself? Justify your answer.
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3.9 The Ninth IMO
Cetinje, Yugoslavia, July 2-13, 1967

3.9.1 Contest Problems

First Day (July 5)

. ABCD is a parallelogram; AB = a, AD =1, « is the size of ZDAB, and

the three angles of the triangle ABD are acute. Prove that the four circles
K4, K, Ko, Kp, each of radius 1, whose centers are the vertices A, B,
C, D, cover the parallelogram if and only if a < cosa + v/3sina.

. Exactly one side of a tetrahedron is of length greater than 1. Show that

its volume is less than or equal to 1/8.

. Let k, m, and n be positive integers such that m + k£ + 1 is a prime

number greater than n + 1. Write ¢, for s(s + 1). Prove that the product
(cmt1—Ck)(Cm+2—Ck) -+ - (Cm4n—ck) is divisible by the product ¢1¢a - - - ¢y,

Second Day (July 6)

The triangles AgBoCy and A’B’C’ have all their angles acute. Describe
how to construct one of the triangles ABC, similar to A’B’C’ and cir-
cumscribing AgByCy (so that A, B, C correspond to A’, B/, C’, and AB
passes through Cy, BC through Aj, and C' A through By). Among these
triangles ABC' describe, and prove, how to construct the triangle with the
maximum area.

. Consider the sequence (¢, ):

1 = ay +az+---+ag,
2 =al+a3+---+aj,

where a1, as,...,as are real numbers, not all equal to zero. Given that
among the numbers of the sequence (¢, ) there are infinitely many equal
to zero, determine all the values of n for which ¢, = 0.

. In a sports competition lasting n days there are m medals to be won. On

the first day, one medal and 1/7 of the remaining m — 1 medals are won.
On the second day, 2 medals and 1/7 of the remainder are won. And so
on. On the nth day exactly n medals are won. How many days did the
competition last and what was the total number of medals?

3.9.2 Longlisted Problems

1.

(BUL 1) Prove that all numbers in the sequence



10.
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107811 110778111 111077781111
3 3 3 ) 3 3

are perfect cubes.

. (BUL 2) Prove that in? + In+} > (n)*™ (n is a positive integer)

and that equality is possible only in the case n = 1.

. (BUL 3) Prove the trigonometric inequality cosxz <1 — r; + ”1”;, where
z € (0,7/2).
. (BUL 4) Suppose medians m, and my of a triangle are orthogonal.
Prove that:
(a) The medians of that triangle correspond to the sides of a right-angled
triangle.

(b) The inequality
5(a® +b* — %) > 8ab

is valid, where a, b, and ¢ are side lengths of the given triangle.

. (BUL 5) Solve the system

P+r—-1=y,
vy +y—1=z
Z+z-1=u.

. (BUL 6) Solve the system

|z +y|+]1— =z =6,
e 4+y+1+1—y| =4

. (CZS 1) Find all real solutions of the system of equations

Ty +T2+ -+ Ty =aq,
a? + a3+ a2 =a?,

. (CZS 2)™MOL ABCD is a parallelogram; AB = a, AD = 1, « is the size

of ZDAB, and the three angles of the triangle ABD are acute. Prove
that the four circles K4, K, K¢, Kp, each of radius 1, whose centers
are the vertices A, B, C, D, cover the parallelogram if and only if a <
cos o + \/3sina.

. (CZS 3) The circle k and its diameter AB are given. Find the locus of

the centers of circles inscribed in the triangles having one vertex on AB
and two other vertices on k.

(CZS 4) The square ABCD is to be decomposed into n triangles
(nonoverlapping) all of whose angles are acute. Find the smallest inte-
ger n for which there exists a solution to this problem and construct at
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least one decomposition for this n. Answer whether it is possible to ask
additionally that (at least) one of these triangles has a perimeter less than
an arbitrarily given positive number.

(CZS 5) Let n be a positive integer. Find the maximal number of non-
congruent triangles whose side lengths are integers less than or equal to
n.

(CZS 6) Given a segment AB of the length 1, define the set M of points
in the following way: it contains the two points A, B, and also all points
obtained from A, B by iterating the following rule: () for every pair of
points X, Y in M, the set M also contains the point Z of the segment
XY for which YZ =3XZ.
(a) Prove that the set M consists of points X from the segment AB for
which the distance from the point A is either
3k 3k — 2
AX—4n or AX = o
where n, k are nonnegative integers.
(b) Prove that the point X for which AXy = 1/2 = X(B does not belong
to the set M.

(GDR 1) Find whether among all quadrilaterals whose interiors lie inside
a semicircle of radius r there exists one (or more) with maximal area. If
so, determine their shape and area.

(GDR 2) Which fraction p/q, where p, ¢ are positive integers less than
100, is closest to v/2? Find all digits after the decimal point in the decimal
representation of this fraction that coincide with digits in the decimal
representation of v/2 (without using any tables).

(GDR 3) Suppose tana = p/q, where p and ¢ are integers and g # 0.
Prove that the number tan 3 for which tan 28 = tan 3« is rational only
when p? + ¢2 is the square of an integer.

(GDR 4) Prove the following statement: If r1 and ro are real numbers
whose quotient is irrational, then any real number x can be approximated
arbitrarily well by numbers of the form 2y, , = ki1r1+kara, k1, ko integers;
i.e., for every real number x and every positive real number p two integers
k1 and ko can be found such that |x — (k171 + kara)| < p.

(GBR 1)™O3 Let k, m, and n be positive integers such that m +k+ 1 is
a prime number greater than n + 1. Write ¢, for s(s 4+ 1). Prove that the
product (¢pm41 —ck)(Cmi2 —¢k) -+ (Cm4n — ck) is divisible by the product
C1C2 " Cp.

(GBR 5) If z is a positive rational number, show that z can be uniquely
expressed in the form

as as

x=a1—|—2!—|—3!

_|_...’
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where aq, a9, ... are integers, 0 < a, < n — 1 for n > 1, and the series
terminates.

Show also that = can be expressed as the sum of reciprocals of different
integers, each of which is greater than 106.

(GBR 6) The n points Pi, Ps, ..., P, are placed inside or on the bound-
ary of a disk of radius 1 in such a way that the minimum distance d,,
between any two of these points has its largest possible value D,,. Calcu-
late D,, for n = 2 to 7 and justify your answer.

(HUN 1) In space, n points (n > 3) are given. Every pair of points
determines some distance. Suppose all distances are different. Connect
every point with the nearest point. Prove that it is impossible to obtain
a polygonal line in such a way. !

(HUN 2) Without using any tables, find the exact value of the product

p_ m 2T 3m 4 om 6m T

= COS ), COS |, COS | COS . COS  COS . COS ...
(HUN 3) The distance between the centers of the circles k1 and ko with
radii r is equal to r. Points A and B are on the circle k1, symmetric with
respect to the line connecting the centers of the circles. Point P is an
arbitrary point on ko. Prove that

PA% + PB? > 272,

When does equality hold?

(HUN 4) Prove that for an arbitrary pair of vectors f and ¢ in the
plane, the inequality
af?* +bfg+cg®> >0

holds if and only if the following conditions are fulfilled: a > 0, ¢ > 0,
4ac > b2.

(HUN 5)MO6 Father has left to his children several identical gold coins.
According to his will, the oldest child receives one coin and one-seventh of
the remaining coins, the next child receives two coins and one-seventh of
the remaining coins, the third child receives three coins and one-seventh of
the remaining coins, and so on through the youngest child. If every child
inherits an integer number of coins, find the number of children and the
number of coins.

(HUN 6) Three disks of diameter d are touching a sphere at their centers.
Moreover, each disk touches the other two disks. How do we choose the
radius R of the sphere so that the axis of the whole figure makes an angle

The statement so formulated is false. It would be trivially true under the addi-
tional assumption that the polygonal line is closed. However, from the offered
solution, which is not clear, it does not seem that the proposer had this in mind.
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of 60° with the line connecting the center of the sphere with the point on
the disks that is at the largest distance from the axis? (The axis of the
figure is the line having the property that rotation of the figure through
120° about that line brings the figure to its initial position. The disks are
all on one side of the plane, pass through the center of the sphere, and
are orthogonal to the axes.)

(ITA 1) Let ABCD be a regular tetrahedron. To an arbitrary point
M on one edge, say CD, corresponds the point P = P(M), which is the
intersection of two lines AH and BK, drawn from A orthogonally to BM
and from B orthogonally to AM. What is the locus of P as M varies?

(ITA 2) Which regular polygons can be obtained (and how) by cutting
a cube with a plane?

(ITA 3) Find values of the parameter u for which the expression

_ tan(z —u) + tanx + tan(z + u)
~ tan(x — u) tanx tan(z + u)

does not depend on =.

(ITA 4)™94 The triangles AgByCo and A’B’'C’ have all their angles
acute. Describe how to construct one of the triangles ABC, similar to
A'B'C’" and circumscribing AgBoCy (so that A, B, C correspond to A’,
B’, C', and AB passes through Cy, BC through Ag, and C'A through By).
Among these triangles ABC, describe, and prove, how to construct the
triangle with the maximum area.

(MON 1) Given m+n numbers a; (i =1,2,...,m), b; (j =1,2,...,n),
determine the number of pairs (a;, b;) for which |i — j| > k, where k is a
nonnegative integer.

(MON 2) An urn contains balls of k different colors; there are n; balls
of the ith color. Balls are drawn at random from the urn, one by one,
without replacement. Find the smallest number of draws necessary for
getting m balls of the same color.

(MON 3) Determine the volume of the body obtained by cutting the
ball of radius R by the trihedron with vertex in the center of that ball if
its dihedral angles are «, 3, 7.

(MON 4) In what case does the system

Tr+y+mz=a,
r+my+z=b,
mr+1y—+2z=c,

have a solution? Find the conditions under which the unique solution of
the above system is an arithmetic progression.
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(MON 5) The faces of a convex polyhedron are six squares and eight
equilateral triangles, and each edge is a common side for one triangle and
one square. All dihedral angles obtained from the triangle and square
with a common edge are equal. Prove that it is possible to circumscribe
a sphere around this polyhedron and compute the ratio of the squares
of the volumes of the polyhedron and of the ball whose boundary is the
circumscribed sphere.

(MON 6) Prove the identity

n 2k 1
Z (n) (tan x) 14 2F Ll = sec?” x + sec” x.
k 2 (1 — tan?(z/2)) 2

k=0

(POL 1) Prove that the center of the sphere circumscribed around a
tetrahedron ABCD coincides with the center of a sphere inscribed in
that tetrahedron if and only if AB =CD, AC = BD, and AD = BC.

(POL 2) Prove that for arbitrary positive numbers the following in-
equality holds:

1 1 _ a®+b+c8

b + c ™ adbied

(POL 3) Does there exist an integer such that its cube is equal to
3n? + 3n + 7, where n is integer?

(POL 4) Show that the triangle whose angles satisfy the equality

1
+
a

sin? A + sin? B + sin? C B
cos2 A+ cos2 B+cos2C
is a right-angled triangle.

(POL 5)™MO2 Exactly one side of a tetrahedron is of length greater than
1. Show that its volume is less than or equal to 1/8.

(POL 6) A line ! is drawn through the intersection point H of the
altitudes of an acute-angled triangle. Prove that the symmetric images [,
lp, l. of | with respect to sides BC', CA, AB have one point in common,
which lies on the circumcircle of ABC.

(ROM 1) Decompose into real factors the expression 1 —sin®  — cos® .

(ROM 2) The equation
2+ 5zt — 23 4+ (Na—4)2® — (B A+ 3)z+ A a—2=0

is given.

(a) Determine « such that the given equation has exactly one root inde-
pendent of .

(b) Determine « such that the given equation has exactly two roots inde-
pendent of .
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(ROM 3) Suppose p and ¢ are two different positive integers and z is a

real number. Form the product (x + p)(z + ¢).

(a) Find the sum S(z,n) = Y (x + p)(x + q), where p and ¢ take values
from 1 to n.

(b) Do there exist integer values of = for which S(z,n) = 07?

(ROM 4) (a) Solve the equation

sin® x + sin® <2;T —l—x) + sin® <4;T —i—x) + icos2x =0.

(b) Suppose the solutions are in the form of arcs AB of the trigonometric
circle (where A is the beginning of arcs of the trigonometric circle),
and P is a regular n-gon inscribed in the circle with one vertex at A.
(1) Find the subset of arcs with the endpoint B at a vertex of the

regular dodecagon.
(2) Prove that the endpoint B cannot be at a vertex of P if 2,3t n
or n is prime.

(ROM 5) If z, y, z are real numbers satisfying the relations z+y+z =1
and arctanz + arctany + arctan z = w/4, prove that

x2n+l 4 y2n+1 + 22n+1 =1

for all positive integers n.

(ROM 6) Prove the inequality
wimy a2 el T e ap T Y) <Pt gl R gt
where z; >0 (i =1,2,...,k), k€ N, n€ N.

(SWE 1) Determine all positive roots of the equation 2% = 1/+/2.

(SWE 2) Let n and k be positive integers such that 1 < n < N + 1,
1 <k <N + 1. Show that

i lsinn — sin '
Igl;iIkl|Sln7”L sink| < N
(SWE 3) The function ¢(z,y, z), defined for all triples (z,y, z) of real
numbers, is such that there are two functions f and g defined for all pairs
of real numbers such that

e(x,y,2) = flz+y,2) = g(z,y + 2)

for all real z, y, and z. Show that there is a function A of one real variable
such that
p(r,y,2) =h(z+y+2)

for all real x, y, and z.
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. (SWE 4) A subset S of the set of integers 0,...,99 is said to have

property A if it is impossible to fill a crossword puzzle with 2 rows and
2 columns with numbers in S (0 is written as 00, 1 as 01, and so on).
Determine the maximal number of elements in sets S with property A.

(SWE 5) In the plane a point O and a sequence of points Py, Pa, Ps, ...
are given. The distances OP;,OP,,OPs, ... are r1,72,73,..., where r; <
rg <13 < ---. Let « satisfy 0 < o < 1. Suppose that for every n the
distance from the point P, to any other point of the sequence is greater
than or equal to r&. Determine the exponent 3, as large as possible, such
that for some C' independent of n,?

rm>Cnf o n=1,2,....

(SWE 6) In making Euclidean constructions in geometry it is permit-
ted to use a straightedge and compass. In the constructions considered
in this question, no compasses are permitted, but the straightedge is as-
sumed to have two parallel edges, which can be used for constructing two
parallel lines through two given points whose distance is at least equal
to the breadth of the ruler. Then the distance between the parallel lines
is equal to the breadth of the straightedge. Carry through the following
constructions with such a straightedge. Construct:

(a) The bisector of a given angle.

(b) The midpoint of a given rectilinear segment.

(¢) The center of a circle through three given noncollinear points.

(d) A line through a given point parallel to a given line.

(USS 1) Is it possible to put 100 (or 200) points on a wooden cube such
that by all rotations of the cube the points map into themselves? Justify
your answer.

(USS 2) Find all « for which for all n,

sinx +sin2x +sin3x + - -- +sinnx <

(USS 3) In a group of interpreters each one speaks one or several foreign
languages; 24 of them speak Japanese, 24 Malay, 24 Farsi. Prove that it
is possible to select a subgroup in which exactly 12 interpreters speak
Japanese, exactly 12 speak Malay, and exactly 12 speak Farsi.

. (USS 4)™O5 Consider the sequence (cy,):

€1 = a1+ a2 +---+ag,
o = al+a3+---+di,

cn =af +ay +---+ag,

This problem is not elementary. The solution offered by the proposer, which is

not quite clear and complete, only shows that if such a 3 exists, then 3 > 2(1£a).
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where aj,as,...,as are real numbers, not all equal to zero. Given that
among the numbers of the sequence (c,) there are infinitely many equal
to zero, determine all the values of n for which ¢, = 0.

(USS 5) A linear binomial I(z) = Az + B with complex coefficients A
and B is given. It is known that the maximal value of |I(z)| on the segment
—1 <2 <1 (y=0) of the real line in the complex plane (z = x + iy) is
equal to M. Prove that for every z

l(z)| < Mp,
where p is the sum of distances from the point P = z to the points @1:
z=1and Q3: z = —1.

(USS 6) On the circle with center O and radius 1 the point Ay is
fixed and points Aj, As, ..., Aggg, A1p00 are distributed in such a way
that LAoOAy, = k (in radians). Cut the circle at points Ag, A1, ..., A1000-
How many arcs with different lengths are obtained?
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3.10 The Tenth IMO
Moscow—Leningrad, Soviet Union, July 5-18, 1968

3.10.1 Contest Problems

First Day

1. Prove that there exists a unique triangle whose side lengths are consecutive
natural numbers and one of whose angles is twice the measure of one of
the others.

2. Find all positive integers  for which p(x) = 22 — 102 — 22, where p(z)
denotes the product of the digits of x.

3. Let a, b, ¢ be real numbers. Prove that the system of equations

ax% + bx1 + ¢ = xo9,
ax% + bxo + ¢ = x3,

2 _
ar;_1 +bxrn_1+c=x,,
axi—l—bxn—l—c:a:l,

(a) has no real solutions if (b —1)? — 4ac < 0;
(b) has a unique real solution if (b — 1)? — 4ac = 0;
(c) has more than one real solution if (b — 1)? — 4ac > 0.

Second Day

4. Prove that in any tetrahedron there is a vertex such that the lengths of
its sides through that vertex are sides of a triangle.

5. Let a > 0 be a real number and f(z) a real function defined on all of R,
satisfying for all z € R,

flata)= )+ VI~ f@)

(a) Prove that the function f is periodic; i.e., there exists b > 0 such that
for all z, f(z +b) = f(z).
(b) Give an example of such a nonconstant function for a = 1.

6. Let [z] denote the integer part of , i.e., the greatest integer not exceeding
x. If n is a positive integer, express as a simple function of n the sum

n+1 n+2 n+ 27
L[]
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3.10.2 Shortlisted Problems

1.

(SWE 2) Two ships sail on the sea with constant speeds and fixed
directions. It is known that at 9:00 the distance between them was 20
miles; at 9:35, 15 miles; and at 9:55, 13 miles. At what moment were the
ships the smallest distance from each other, and what was that distance?

. (ROM 5)MOL Prove that there exists a unique triangle whose side

lengths are consecutive natural numbers and one of whose angles is twice
the measure of one of the others.

. (POL 4)™0%4 Prove that in any tetrahedron there is a vertex such that

the lengths of its sides through that vertex are sides of a triangle.

. (BUL 2)™O3 Let a, b, c be real numbers. Prove that the system of equa-

tions
ax% + bx1 + ¢ = xo9,

ax% + bxo + ¢ = x3,

2 _
ary_1 +bxn_1+c=ux,,
axi—l—bxn—i—c:xl,

has a unique real solution if and only if (b — 1)? — 4ac = 0.
Remark. 1t is assumed that a # 0.

. (BUL 5) Let h,, be the apothem (distance from the center to one of the

sides) of a regular n-gon (n > 3) inscribed in a circle of radius r. Prove
the inequality
(n+ Dhyy1 —nhy > 7.

Also prove that if r on the right side is replaced with a greater number,
the inequality will not remain true for all n > 3.

. (HUN 1) Ifa; (i=1,2,...,n) are distinct non-zero real numbers, prove

that the equation

ai a2 Gn,
—+ + .-+ =N
a; —x a2 — Ap — T

has at least n — 1 real roots.

. (HUN 5) Prove that the product of the radii of three circles exscribed to

a given triangle does not exceed 3\8/3 times the product of the side lengths
of the triangle. When does equality hold?

. (ROM 2) Given an oriented line A and a fixed point A on it, consider

all trapezoids ABCD one of whose bases AB lies on A, in the positive
direction. Let E, F' be the midpoints of AB and CD respectively.

Find the loci of vertices B, C, D of trapezoids that satisfy the following:
(i) |AB| <a (a fixed);

(i) |[EF| =1 (1 fixed);



10.

11.

12.

13.

14.

15.

16.

3.10 IMO 1968 53

(iii) the sum of squares of the nonparallel sides of the trapezoid is constant.

Remark. The constants are chosen so that such trapezoids exist.

. (ROM 3) Let ABC be an arbitrary triangle and M a point inside it. Let

dg, dp, d. be the distances from M to sides BC,CA, AB; a,b, ¢ the lengths
of the sides respectively, and S the area of the triangle ABC. Prove the
inequality
452
abd,dy + bedypd,. + cad.d, < .
Prove that the left-hand side attains its maximum when M is the centroid
of the triangle.

(ROM 4) Consider two segments of length a,b (a > b) and a segment

of length ¢ = Vab.

(a) For what values of a/b can these segments be sides of a triangle?

(b) For what values of a/b is this triangle right-angled, obtuse-angled, or
acute-angled?

(ROM 6) Find all solutions (z1, 2, ...,z,) of the equation

1 1+ 1 1 +1 +1 +1) - (xp_1+1
prtl @D+l o @t (@ 1)
X T1X2 L1X2X3 T1X2 - Tp

14+ =0.

(POL 1) If a and b are arbitrary positive real numbers and m an integer,

prove that
m b m
(1+a) +(1+ ) > gmHl,
b a

(POL 5) Given two congruent triangles A; As As and B1BaBs (4; A =
B;By,), prove that there exists a plane such that the orthogonal projections
of these triangles onto it are congruent and equally oriented.

(BUL 5) A line in the plane of a triangle ABC' intersects the sides AB
and AC respectively at points X and Y such that BX = CY. Find the
locus of the center of the circumcircle of triangle X AY.

(GBR 1)™096 Let, [x] denote the integer part of z, i.e., the greatest integer
not exceeding z. If n is a positive integer, express as a simple function of

n the sum _
n+1 n n+2 n n n+ 2 n
2 4 92i+1 :

(GBR 3) A polynomial p(z) = apz® + a;2F~! + --- + a;, with integer
coefficients is said to be divisible by an integer m if p(z) is divisible by
m for all integers x. Prove that if p(x) is divisible by m, then klag is also
divisible by m. Also prove that if ag,k, m are nonnegative integers for
which klag is divisible by m, there exists a polynomial p(z) = agx® +- - -+
ay, divisible by m.
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17. (GBR 4) Given a point O and lengths x,y, z, prove that there exists
an equilateral triangle ABC' for which OA = x, OB =y, OC = z, if and
onlyifx+y >z, y+2 > x, z+x > y (the points O, A, B, C are coplanar).

18. (ITA 2) If an acute-angled triangle ABC is given, construct an equilat-
eral triangle A’B’C’ in space such that lines AA’, BB’, CC’ pass through
a given point.

19. (ITA 5) We are given a fixed point on the circle of radius 1, and going
from this point along the circumference in the positive direction on curved
distances 0,1,2, ... from it we obtain points with abscisas n = 0,1,2,...
respectively. How many points among them should we take to ensure that
some two of them are less than the distance 1/5 apart?

20. (CZS 1) Given n (n > 3) points in space such that every three of them
form a triangle with one angle greater than or equal to 120°, prove that
these points can be denoted by Aj, As, ..., A, in such a way that for each
i,7,k, 1 <i<j<k<n, angle A;A; Ay is greater than or equal to 120°.

21. (CZS 2) Let ag,aq,...,a; (k> 1) be positive integers. Find all positive
integers y such that

ao | y; (a0 +a1) [(y+ar); ... (a0 +an) | (y+an).
22. (CZS 3)™O2 Find all positive integers = for which p(x) = 22 — 10z — 22,
where p(z) denotes the product of the digits of x.
23. (CZS 4) Find all complex numbers m such that polynomial
z3 + y3 + 23 + myz
can be represented as the product of three linear trinomials.
24. (MON 1) Find the number of all n-digit numbers for which some fixed

digit stands only in the ith (1 < 7 < n) place and the last j digits are
distinct.3

25. (MON 2) Given k parallel lines and a few points on each of them, find
the number of all possible triangles with vertices at these given points.*

26. (GDR)™O5 Let a > 0 be a real number and f(x) a real function defined
on all of R, satisfying for all x € R,

fla+a)= o + /1) - f@).

(a) Prove that the function f is periodic; i.e., there exists b > 0 such that
for all z, f(z +b) = f(z).
(b) Give an example of such a nonconstant function for a = 1.

3 The problem is unclear. Presumably n, i, j and the ith digit are fixed.
4 The problem is unclear. The correct formulation could be the following:
Given k parallel lines 11, ...,k and n; points on the linel;, i =1,2,...,k, find
the mazimum possible number of triangles with vertices at these points.
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3.11 The Eleventh IMO
Bucharest, Romania, July 5-20, 1969

3.11.1 Contest Problems

First Day (July 10)

1. Prove that there exist infinitely many natural numbers a with the following
property: the number z = n* 4+ a is not prime for any natural number n.

2. Let aj,aq,...,a, be real constants and

cos(az + )  cos(as + x) cos(ay, + x)

y(x) = cos(ar + ) + 92 on—1

If 21,29 are real and y(z1) = y(xz2) = 0, prove that 1 — o = mn for
some integer m.

3. Find conditions on the positive real number a such that there exists a
tetrahedron k of whose edges (kK = 1,2,3,4,5) have length a, and the
other 6 — k edges have length 1.

Second Day (July 11)

4. Let AB be a diameter of a circle 7. A point C different from A and B
is on the circle . Let D be the projection of the point C' onto the line
AB. Consider three other circles 71, 72, and 3 with the common tangent
AB: ~; inscribed in the triangle ABC, and 2 and ~3 tangent to both (the
segment) C'D and «y. Prove that 71,2, and 3 have two common tangents.

5. Given n points in the plane such that no three of them are collinear, prove
that one can find at least (",°) convex quadrilaterals with their vertices
at these points.

6. Under the conditions x1,22 > 0, x1y; > 212, and zoys > z%, prove the
inequality

8 < 1 1

+ .
(14 22) (Y1 +y2) — (21 4+ 22)2 = 21y1 — 27 Tay2 — 23

3.11.2 Longlisted Problems

1. (BEL 1) A parabola P; with equation 22 — 2py = 0 and parabola P»
with equation 22 4+ 2py = 0, p > 0, are given. A line ¢ is tangent to P,.
Find the locus of pole M of the line ¢ with respect to P;.

2. (BEL 2) (a) Find the equations of regular hyperbolas passing through
the points A(«,0), B(3,0), and C(0,~).
(b) Prove that all such hyperbolas pass through the orthocenter H of the
triangle ABC.
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(¢) Find the locus of the centers of these hyperbolas.
(d) Check whether this locus coincides with the nine-point circle of the
triangle ABC.

. (BEL 3) Counstruct the circle that is tangent to three given circles.
. (BEL 4) Let O be a point on a nondegenerate conic. A right angle with

vertex O intersects the conic at points A and B. Prove that the line AB
passes through a fixed point located on the normal to the conic through
the point O.

. (BEL 5) Let G be the centroid of the triangle OAB.

(a) Prove that all conics passing through the points O, A, B, G are hyper-
bolas.
(b) Find the locus of the centers of these hyperbolas.

. (BEL 6) Evaluate (cos(r/4) 4 isin(r/4))" in two different ways and

prove that

()= () +2(5) -

. (BUL 1) Prove that the equation \/x3 + 33 + 23 = 1969 has no integral

solutions.

. (BUL 2) Find all functions f defined for all x that satisfy the condition

zf(y) +yf(x) = (x+y)f(x)f(y),

for all x and y. Prove that exactly two of them are continuous.

. (BUL 3) One hundred convex polygouns are placed on a square with edge

of length 38 cm. The area of each of the polygons is smaller than = cm?,

and the perimeter of each of the polygons is smaller than 27 cm. Prove
that there exists a disk with radius 1 in the square that does not intersect
any of the polygons.

(BUL 4) Let M be the point inside the right-angled triangle ABC
(£C =90°) such that

LMAB =/MBC =/ MCA = ¢.

Let v be the acute angle between the medians of AC and BC. Prove that
sin(p+v) _ 5

sin(p—1) :

(BUL 5) Let Z be a set of points in the plane. Suppose that there exists
a pair of points that cannot be joined by a polygonal line not passing
through any point of Z. Let us call such a pair of points unjoinable. Prove
that for each real r > 0 there exists an unjoinable pair of points separated
by distance 7.

(CZS 1) Given a unit cube, find the locus of the centroids of all tetra-
hedra whose vertices lie on the sides of the cube.
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(CZS 2) Let p be a prime odd number. Is it possible to find p— 1 natural
numbers n + 1,n+ 2,...,n+ p — 1 such that the sum of the squares of
these numbers is divisible by the sum of these numbers?

(CZS 3) Let a and b be two positive real numbers. If z is a real solution
of the equation 22 + px + ¢ = 0 with real coefficients p and ¢ such that
Ip| < a, |q] < b, prove that

|x|§;(a+\/a2+4b). (1)

Conversely, if = satisfies (1), prove that there exist real numbers p and
q with |p| < a, |g| < b such that z is one of the roots of the equation
22 +pr+q=0.

(CZS 4) Let Ky,..., K, be nonnegative integers. Prove that

where K = K1 + -+ + K,,.

(CZS 5) A convex quadrilateral ABCD with sides AB = a, BC = b,
CD =c¢, DA =d and angles o = /DAB, 3 = ZABC, v = ZBCD, and
d = ZCDA is given. Let s = (a + b+ ¢+ d)/2 and P be the area of the
quadrilateral. Prove that

+7

P? = (s —a)(s —b)(s — ¢)(s — d) — abed cos? “ 5

(CZS 6) Let d and p be two real numbers. Find the first term of an arith-
metic progression ai, as, as, ... with difference d such that ayasasaq = p.
Find the number of solutions in terms of d and p.

(FRA 1) Let a and b be two nonnegative integers. Denote by H(a,b)
the set of numbers n of the form n = pa + ¢b, where p and ¢ are positive
integers. Determine H(a) = H(a,a). Prove that if a # b, it is enough to
know all the sets H(a,b) for coprime numbers a, b in order to know all the
sets H(a,b). Prove that in the case of coprime numbers a and b, H(a,b)
contains all numbers greater than or equal to w = (a — 1)(b— 1) and also
w/2 numbers smaller than w.

(FRA 2) Let n be an integer that is not divisible by any square greater
than 1. Denote by x,, the last digit of the number =™ in the number
system with base n. For which integers x is it possible for x,, to be 07
Prove that the sequence z,, is periodic with period ¢ independent of x.
For which x do we have x; = 1. Prove that if m and = are relatively prime,
then Op, Ly, . .., (n— 1), are different numbers. Find the minimal period
t in terms of n. If n does not meet the given condition, prove that it is
possible to have z,, = 0 # z; and that the sequence is periodic starting
only from some number k > 1.
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(FRA 3) A polygon (not necessarily convex) with vertices in the lattice
points of a rectangular grid is given. The area of the polygon is S. If [ is
the number of lattice points that are strictly in the interior of the polygon
and B the number of lattice points on the border of the polygon, find the
number T'= 2S5 — B — 2] + 2.

(FRA 4) A right-angled triangle O AB has its right angle at the point B.
An arbitrary circle with center on the line OB is tangent to the line OA.
Let AT be the tangent to the circle different from OA (T is the point of
tangency). Prove that the median from B of the triangle OAB intersects
AT at a point M such that M B = MT.

(FRA 5) Let a(n) be the number of pairs (z,y) of integers such that
z4+y=n,0<y<z, and let 5(n) be the number of triples (x,y, z) such
that t+y+4+ 2z =nand 0 < z <y < z. Find a simple relation between
a(n) and the integer part of the number ”'2*2 and the relation among (3(n),
B(n —3) and a(n). Then evaluate 3(n) as a function of the residue of n
modulo 6. What can be said about 3(n) and 1+ "(711;6) ? And what about
(n+3)% 4

Fir?d the number of triples (z,y,z) with the property z + y + z < n,
0 < z <y < x as a function of the residue of n modulo 6. What can be said
about the relation between this number and the number ("+6)(2"722+9n+12) ?
(FRA 6) Consider the integer d = “bc_l, where a, b, and ¢ are positive
integers and ¢ < a. Prove that the set G of integers that are between 1
and d and relatively prime to d (the number of such integers is denoted
by ¢(d)) can be partitioned into n subsets, each of which consists of b

elements. What can be said about the rational number “"%d)?

(GBR 1) The polynomial P(z) = aoz® + ajz*~! + --- + ay, where
aop, - . ., ar are integers, is said to be divisible by an integer m if P(z) is a
multiple of m for every integral value of x. Show that if P(x) is divisible
by m, then ag - k! is a multiple of m. Also prove that if a, k, m are positive
integers such that ak! is a multiple of m, then a polynomial P(z) with
leading term ax” can be found that is divisible by m.

(GBR 2) Let a,b,z,y be positive integers such that a and b have no
common divisor greater than 1. Prove that the largest number not ex-
pressible in the form ax + by is ab — a — b. If N(k) is the largest number
not expressible in the form ax + by in only k ways, find N (k).

(GBR 3) A smooth solid consists of a right circular cylinder of height
h and base-radius r, surmounted by a hemisphere of radius r and center
O. The solid stands on a horizontal table. One end of a string is attached
to a point on the base. The string is stretched (initially being kept in
the vertical plane) over the highest point of the solid and held down at
the point P on the hemisphere such that OP makes an angle a with
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the horizontal. Show that if a is small enough, the string will slacken if
slightly displaced and no longer remain in a vertical plane. If then pulled
tight through P, show that it will cross the common circular section of
the hemisphere and cylinder at a point @ such that ZSOQ = ¢, S being
where it initially crossed this section, and sing = "%,

(GBR 4) The segment AB perpendicularly bisects CD at X. Show that,
subject to restrictions, there is a right circular cone whose axis passes
through X and on whose surface lie the points A, B, C, D. What are the
restrictions?

(GBR 5) Let usdefineug = 0,u; = 1and forn > 0, up 2 = atpy1+bun,
a and b being positive integers. Express u,, as a polynomial in a and b.
Prove the result. Given that b is prime, prove that b divides a(up — 1).

(GDR 1) Find all real numbers A such that the equation
sin 2 — cos? z = A(tan? z — cot? z)

(a) has no solution,

(b) has exactly one solution,

(¢) has exactly two solutions,

(d) has more than two solutions (in the interval (0,7/4)).

(GDR. 2)™O©! Prove that there exist infinitely many natural numbers a
with the following property: The number z = n* + a is not prime for any
natural number n.

(GDR 3) Find the number of permutations ag,...,a, of the set
{1,2,...,n} such that |a; — aj4+1] # 1 for all ¢ = 1,2,...,n — 1. Find
a recurrence formula and evaluate the number of such permutations for
n < 6.

(GDR 4) Find the maximal number of regions into which a sphere can
be partitioned by n circles.

(GDR 5) Given a ring G in the plane bounded by two concentric circles
with radii R and R/2, prove that we can cover this region with 8 disks of
radius 2R/5. (A region is covered if each of its points is inside or on the
border of some disk.)

(HUN 1) Let a and b be arbitrary integers. Prove that if k is an integer
not divisible by 3, then (a + b)?* + a?* 4 b?* is divisible by a? + ab + b2.

(HUN 2) Prove that

TR R
23 33 nd 4
(HUN 3) In the plane 4000 points are given such that each line passes
through at most 2 of these points. Prove that there exist 1000 disjoint
quadrilaterals in the plane with vertices at these points.
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3 Problems
(HUN 4)MO2 1f ) as,..., a, are real constants, and if
y = cos(a; + x) + 2cos(az + x) + - - - + ncos(an + x)

has two zeros x1 and x2 whose difference is not a multiple of 7, prove that
y=0.

(HUN 5) Let r and m (r < m) be natural numbers and A, = 217,
Evaluate
1

m

) Z Zsm (rAy)sin(rd;) cos(rAy — rA;).

k=1 1=1
(HUN 6) Find the positions of three points A, B, C' on the boundary of
a unit cube such that min{AB, AC, BC} is the greatest possible.

(MON 1) Find the number of five-digit numbers with the following
properties: there are two pairs of digits such that digits from each pair are
equal and are next to each other, digits from different pairs are different,
and the remaining digit (which does not belong to any of the pairs) is
different from the other digits.

(MON 2) Given two numbers zg and z1, let o and § be coefficients
of the equation 1 — ay — By? = 0. Under the given conditions, find an
expression for the solution of the system

Tpy2 — Tpy1 — Pz, =0, n=0,1,2,....

(MON 3) Let A; (1 < k < h) be n-element sets such that each two
of them have a nonempty intersection. Let A be the union of all the sets
Ay, and let B be a subset of A such that for each k (1 < k < h) the
intersection of Ay and B consists of exactly two different elements a; and
by.. Find all subsets X of the set A with r elements satisfying the condition
that for at least one index k, both elements a; and by belong to X.

(MON 4) Let p and g be two prime numbers greater than 3. Prove that
if their difference is 2", then for any two integers m and n, the number
S = p?mtl 4 ¢+l s divisible by 3

(MON 5) Find the radius of the circle circumscribed about the isosceles
triangle whose sides are the solutions of the equation 2 — ax + b = 0.

(MON 6)™M95 Given n points in the plane such that no three of them
are collinear, prove that one can find at least (%) convex quadrilaterals
with their vertices at these points.

(NET 1) The vertices of an (n + 1)-gon are placed on the edges of a
regular n-gon so that the perimeter of the n-gon is divided into equal
parts. How does one choose these n + 1 points in order to obtain the
(n + 1)gon with

(a) maximal area;



47.

48.

49.

50.

o1.

52.

53.

3.11 IMO 1969 61

(b) minimal area?

(NET 2)™M94 Let A and B be points on the circle . A point C, different
from A and B, is on the circle 4. Let D be the projection of the point
C onto the line AB. Consider three other circles 1,72, and 73 with the
common tangent AB: 7 inscribed in the triangle ABC, and 72 and -3
tangent to both (the segment) C'D and 5. Prove that 1,72, and -3 have
two common tangents.

(NET 3) Let x1, 22, x3, 24, and x5 be positive integers satisfying

T +x2 +x3 +24 +25 = 1000,

T1 —x2 +x3 —4 +x5 > 0,

T, +x2 —x3 +4 —5 > 0,
—x1 +T9 +x3 —x4 +x5 > 0,

r1 —%2 +x3 x4 —x5 > 0,
—x1 +x9 —x3 +x4 +25 > 0.

(a) Find the maximum of (z; + x3)¥2T%4.
(b) In how many different ways can we choose x1,...,25 to obtain the
desired maximum?

(NET 4) A boy has a set of trains and pieces of railroad track. Each
piece is a quarter of circle, and by concatenating these pieces, the boy
obtained a closed railway. The railway does not intersect itself. In passing
through this railway, the train sometimes goes in the clockwise direction,
and sometimes in the opposite direction. Prove that the train passes an
even number of times through the pieces in the clockwise direction and an
even number of times in the counterclockwise direction. Also, prove that
the number of pieces is divisible by 4.

(NET 5) The bisectors of the exterior angles of a pentagon By Bo B3 B4 Bs
form another pentagon A;A;A3A,As. Construct By By BsByBs from the
given pentagon A As A3 A4 As.

(NET 6) A curve determined by
y=+22—10z+52, 0<z <100,
is constructed in a rectangular grid. Determine the number of squares cut

by the curve.

(POL 1) Prove that a regular polygon with an odd number of edges
cannot be partitioned into four pieces with equal areas by two lines that
pass through the center of polygon.

(POL 2) Given two segments AB and C'D not in the same plane, find
the locus of points M such that

MA? + MB? = MC? + MD?.
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3 Problems

(POL 3) Given a polynomial f(z) with integer coefficients whose value
is divisible by 3 for three integers k, k + 1, and k + 2, prove that f(m) is
divisible by 3 for all integers m.

(POL 4)™093 Find the conditions on the positive real number a such that
there exists a tetrahedron k of whose edges (k = 1,2,3,4,5) have length
a, and the other 6 — k edges have length 1.

(POL 5) Let a and b be two natural numbers that have an equal number
n of digits in their decimal expansions. The first m digits (from left to
right) of the numbers a and b are equal. Prove that if m > n/2, then

1

o

(POL 6) On the sides AB and AC' of triangle ABC' two points K and

L are given such that § I]? + ﬁ(i = 1. Prove that KL passes through the
centroid of ABC.

CLl/n _ bl/n <

(SWE 1) Six points Py, ..., Ps are given in 3-dimensional space such that
no four of them lie in the same plane. Each of the line segments P; Py is
colored black or white. Prove that there exists one triangle P; PP, whose
edges are of the same color.

(SWE 2) Foreach A (0 < A< land A # 1/nforalln =1,2,3,...)
construct a continuous function f such that there do not exist x,y with
0<A<y==z+ <1 for which f(z) = f(y).

(SWE 3) Find the natural number n with the following properties:

(1) Let S = {p1,p2,...} be an arbitrary finite set of points in the plane,
and r; the distance from P; to the origin O. We assign to each P; the
closed disk D; with center P; and radius r;. Then some n of these
disks contain all points of S.

(2) n is the smallest integer with the above property.

(SWE 4) Let ag,a1,a2 be determined with a9 = 0, an+1 = 2a, + 2™.
Prove that if n is power of 2, then so is a,.

(SWE 5) Which natural numbers can be expressed as the difference of
squares of two integers?

(SWE 6) Prove that there are infinitely many positive integers that
cannot be expressed as the sum of squares of three positive integers.

(USS 1) Prove that for a natural number n > 2,
(n!)! > n[(n — 1)

(USS 2) Prove that for a > b2,

3 1
\/a—b\/cH—b\/a—b\/cH—---:\/a—4b2—2b.
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(USS 3) (a) Prove that if 0 < ag < a1 < ag, then

1 1 1
(ag + a1z — azaz?)? < (ag + a1 + az)? (1 + o + 3132 + 21:3 + a:4> .
(b) Formulate and prove the analogous result for polynomials of third
degree.

(Uss 4=)IM06 Under the conditions x1,x2 > 0, z1y; > z%, and zays > 23,
prove the inequality

8 1 1
< + -
(1 +22)(y1 +y2) — (21 + 22)2 = @yy1 — 22 woys — 232

(USS 5) Given 5 points in the plane, no three of which are collinear, prove
that we can choose 4 points among them that form a convex quadrilateral.

(YUG 1) Suppose that positive real numbers 1, 2o, x3 satisfy

1 1 1
T1Tox3 > 1, 1+ X9 +2x3 < + + .
X i) I3
Prove that:
(a) None of z1,z9, 23 equals 1.
(b) Exactly one of these numbers is less than 1.

(YUG 2) A park has the shape of a convex pentagon of area 5v/3 ha
(= 50000y/3 m?). A man standing at an interior point O of the park
notices that he stands at a distance of at most 200 m from each vertex of
the pentagon. Prove that he stands at a distance of at least 100 m from
each side of the pentagon.

(YUG 3) Let four points A; (i = 1,2, 3,4) in the plane determine four
triangles. In each of these triangles we choose the smallest angle. The sum
of these angles is denoted by S. What is the exact placement of the points
A; if S =180°7
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3.12 The Twelfth IMO
Budapest—Keszthely, Hungary, July 8-22, 1970

3.12.1 Contest Problems

First Day (July 13)

1. Given a point M on the side AB of the triangle ABC, let r; and r3 be the
radii of the inscribed circles of the triangles ACM and BC'M respectively
while p; and py are the radii of the excircles of the triangles ACM and
BCM at the sides AM and BM respectively. Let r» and p denote the
respective radii of the inscribed circle and the excircle at the side AB of
the triangle ABC. Prove that

T To - r
pLpz P
2. Let a and b be the bases of two number systems and let

A, =x179.. .xn(“), Apy1 = xpx123 .. .xn(“),

b b
Bn:xlxg...xn(), B :xoxlxg...xn(),

be numbers in the number systems with respective bases a and b, so that
o, L1, T2, ..., T, denote digits in the number system with base a as well
as in the number system with base b. Suppose that neither xg nor x; is
zero. Prove that a > b if and only if

A, < B,
An-i—l Bn+l '

3. Letl =ap <a; <az <---<a, <--- be a sequence of real numbers.
Consider the sequence by, by, ... defined by

- a 1

k—1

b=3" <1 - ) |

k=1 ai ) \ak

Prove that:

(a) For all natural numbers n, 0 < b, < 2.

(b) Given an arbitrary 0 < b < 2, there is a sequence ag, a1, ...,an, .- .
of the above type such that b, > b is true for an infinity of natural
numbers n.

Second Day (July 14)

4. For what natural numbers n can the product of some of the numbers
n,n+1,n+2,n+3,n+4,n+5 be equal to the product of the remaining
ones?
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. In the tetrahedron ABCD, the edges BD and CD are mutually per-

pendicular, and the projection of the vertex D to the plane ABC' is the
intersection of the altitudes of the triangle ABC'. Prove that

(AB + BC + CA)? < 6(DA? + DB? + DC?) .

For which tetrahedra does equality hold?

Given 100 points in the plane, no three of which are on the same line,
consider all triangles that have all their vertices chosen from the 100 given
points. Prove that at most 70% of these triangles are acute-angled.

3.12.2 Longlisted Problems

1

. (AUT 1) Prove that

be ca ab 1
< .
b+c+c+a+a—|—b_2(a+b+c) (a,b,c > 0)

. (AUT 2) Prove that the two last digits of 9°° and 9999 in decimal

representation are equal.

3. (AUT 3) Prove that for a,b € N, alb! divides (a + b)!.

oo

. (AUT 4) Solve the system of equations

22+ 2y = a® +ab
V2 + oy = a? — ab, a,breal, a # 0.

. (AUT 5) Provethat #/ ' + 2 4+...4 7 >1forn>2.
n+1 n+1 n+1

. (BEL 1) Prove that the equation in x

n

b.
E ! =c, bi>0, a1 <ag <agz <-:---<ap,
i— T

has n — 1 roots x1,x9,23,...,2,_1 such that a1 < 21 < as < 22 < ag <
r3 << Tyl < Ap.

. (BEL 2) Let ABCD be any quadrilateral. A square is constructed on
each side of the quadrilateral, all in the same manner (i.e., outward or
inward). Denote the centers of the squares by My, Ma, M3, and M,.
Prove:

(a) MlMg = M2M4;
(b) M;Mjs is perpendicular to MyMy.

. (BEL 3) (SL70-1).



66

10.

11.

12.

13.

14.

15.

16.

3 Problems

. (BEL 4) If n is even, prove that

11+11+ 1_21+1+1++1
2 3 4 n \n+2 n+4 n+6 on )"

(BEL 5) Let A, B,C be angles of a triangle. Prove that
3
1 <cosA+cosB+cosC < 5

(BEL 6) Let ABCD and A’B'C’'D’ be two squares in the same plane and
oriented in the same direction. Let A”, B”,C”, and D" be the midpoints
of AA’, BB',CC’, and DD’. Prove that A”B”C" D" is also a square.

(BUL 1) Let 1,22, 23,24,25, %6 be given integers, not divisible by 7.
Prove that at least one of the expressions of the form

:|:£C1:|:$2:|:{E3:|:£U4:|:$5:|:$6

is divisible by 7, where the signs are selected in all possible ways. (Gener-
alize the statement to every prime number!)

(BUL 2) A triangle ABC is given. Each side of ABC' is divided into equal
parts, and through each of the division points are drawn lines parallel to
AB, BC, and CA, thus cutting ABC' into small triangles. To each of the
vertices of these triangles is assigned 1, 2, or 3, so that:

(1) to A, B,C are assigned 1, 2 and 3 respectively;

(2) points on AB are marked by 1 or 2;

(3) points on BC are marked by 2 or 3;

(4) points on C'A are marked by 3 or 1.

Prove that there must exist a small triangle whose vertices are marked by
1, 2, and 3.

(BUL 3) Let a+ 8+ v = 7. Prove that

sin 2« + sin 23 + sin 2y = 2(sin« + sin § + siny)(cos a + cos B + cos7y)
—2(sin a + sin 8 + sin 7).

(BUL 4) Given a triangle ABC, let R be the radius of its circumcir-
cle, O1, 03, O3 the centers of its exscribed circles, and ¢ the perimeter of
AO10505. Prove that ¢ < 6v/3 R.

(BUL 5) Show that the equation
V2 -2+ /3-a3=0

has no real roots.
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(BUL 6) (SL70-3).

Original formulation. In a triangular pyramid SABC one of the angles
at S is right and the projection of S onto the base ABC' is the orthocenter
of ABC'. Let r be the radius of the circle inscribed in the base, SA = m,
SB =mn, SC = p, H the height of the pyramid (through S), and 71, 2,73
the radii of the circles inscribed in the intersections of the pyramid with
the planes determined by the altitude of the pyramid and the lines SA,
SB, SC respectively. Prove that:

(a) m? +n?+p? > 18r%

(b) the ratios r1/H, ro/H, r3/H lie in the interval [0.4,0.5].

(CZS 1) (SL70-4).

(CZS 2) Let n > 1 be a natural number, ¢ > 1 a real number, and
21,2, ..., %, numbers such that z; = 1, z;zl =a+taifork=1,2,...,n—

1, where oy, are real numbers with a; < K Prove that

1
k+1)°
"V, <a+ !

" n—1"
(CZS 3) (SL70-5).

(CZS 4) Find necessary and sufficient conditions on given positive num-
bers u,v for the following claim to be valid: there exists a right-angled
triangle AABC with CD = u, CE = v, where D, E are points of the
segments AB such that AD = DE = EB = éAB.

(FRA 1) (SL70-6).

(FRA 2) Let E be a finite set, Pg the family of its subsets, and f a
mapping from Ppg to the set of nonnegative real numbers such that for
any two disjoint subsets A, B of E,

f(AUB) = f(A) + f(B).

Prove that there exists a subset F' of F such that if with each A C E we
associate a subset A’ consisting of elements of A that are not in F, then
f(A) = f(A’), and f(A) is zero if and only if A is a subset of F.

(FRA 3) Let n and p be two integers such that 2p < n. Prove the

inequality
(n—p)! < n+1 n_2p.
p! 2
For which values does equality hold?

(FRA 4) Suppose that f is a real function defined for 0 < 2 < 1 having
the first derivative f’ for 0 < x < 1 and the second derivative f” for
0 < x < 1. Prove that if
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3 Problems

there exists a number 0 < y < 1 such that |f”(y)| > 4.

(FRA 5) Consider a finite set of vectors in space {a1,as,...,a,} and
the set E of all vectors of the form x = A\jaj + Xoas +- - -+ A\pan, where \;
are nonnegative numbers. Let F' be the set consisting of all the vectors in
E and vectors parallel to a given plane P. Prove that there exists a set of
vectors {b1,bs,...,b,} such that F is the set of all vectors y of the form

y = p1by +,u2b2+--~+,upbp,

where the u; are nonnegative.

(FRA 6) Find a natural number n such that for all prime numbers p, n
is divisible by p if and only if n is divisible by p — 1.

(GDR 1) A set G with elements u,v,w,... is a group if the following

conditions are fulfilled:

(1) There is a binary algebraic operation o defined on G such that for all
u,v € G there is a w € G with uov = w.

(2) This operation is associative; i.e., for all u,v,w € G, (uov)ow =
uo (vow).

(3) For any two elements u,v € G there exists an element z € G such
that v o x = v, and an element y € G such that y ou = v.

Let K be a set of all real numbers greater than 1. On K is defined an

operation by

aob=ab+ /(a2 —1)(b2—1).

Prove that K is a group.
(GDR 2) Prove that the equation 4* 4+6* = 9% has no rational solutions.
(GDR 3) (SL70-9).

(GDR 4) Prove that for any triangle with sides a, b, c and area P the
following inequality holds:

4 (abe)?/3.

Find all triangles for which equality holds.

(NET 1) Let there be given an acute angle ZAOB = 3«, where OA =
OB. The point A is the center of a circle with radius OA. A line s parallel
to OA passes through B. Inside the given angle a variable line ¢ is drawn
through O. It meets the circle in O and C' and the given line s in D, where
/AOC = z. Starting from an arbitrarily chosen position ¢y of ¢, the series
to,t1,t2,... is determined by defining BD;+1 = OC; for each ¢ (in which
C; and D; denote the positions of C' and D, corresponding to t¢;). Making
use of the graphical representations of BD and OC' as functions of z,
determine the behavior of ¢; for i — oo.
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(NET 2) The vertices of a given square are clockwise lettered A, B, C, D.
On the side AB is situated a point E such that AE = AB/3.

Starting from an arbitrarily chosen point Py on segment AE and go-
ing clockwise around the perimeter of the square, a series of points
Py, P, Ps,... is marked on the perimeter such that P;P;+, = AB/3 for
each i. It will be clear that when Py is chosen in A or in F, then some
P; will coincide with Py. Does this possibly also happen if Py is chosen
otherwise?

(NET 3) In connection with a convex pentagon ABCDE we consider
the set of ten circles, each of which contains three of the vertices of the
pentagon on its circumference. Is it possible that none of these circles
contains the pentagon? Prove your answer.

(NET 4) Find for every value of n a set of numbers p for which the fol-
lowing statement is true: Any convex n-gon can be divided into p isosceles
triangles.

Alternative version. The same about division into p polygons with axis
of symmetry.

(NET 5) Let x,y, 2z be nonnegative real numbers satisfying

2?4+ 4+22=5 and yr+zxtay=2.
Which values can the greatest of the numbers z? — yz, y% — zz, 22 — xy
have?

(NET 6) Solve the set of simultaneous equations

vi+ w4 22+ y? = 6 — 2u,
u+ w+ 2%+ y? = 6 — 2v,
ul+ v+ 22+ 4?2 =6 — 2w,
w4+ 02+ Wi+ y? =6 — 2z,

w2+ w4 2 =6—2y.
(POL 1) Find the greatest integer A for which in any permutation of
the numbers 1, ..., 100 there exist ten consecutive numbers whose sum is
at least A.

(POL 2) (SL70-8).

(POL 5) Let ABC be a triangle with angles «, 3,y commensurable with
7. Starting from a point P interior to the triangle, a ball reflects on the
sides of ABC', respecting the law of reflection that the angle of incidence
is equal to the angle of reflection.

Prove that, supposing that the ball never reaches any of the vertices
A, B, C, the set of all directions in which the ball will move through time
is finite. In other words, its path from the moment 0 to infinity consists
of segments parallel to a finite set of lines.
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(POL 6) Let a cube of side 1 be given. Prove that there exists a point
A on the surface S of the cube such that every point of S can be joined
to A by a path on S of length not exceeding 2. Also prove that there is
a point of S that cannot be joined with A by a path on S of length less
than 2.

(ROM 1) (SL70-2).
(ROM 2) Prove that the equation

x3—3tan1ﬂ2x2—3az+tanlﬁ2 =0

has one root 1 = tan J;, and find the other roots.

(ROM 3) If a,b,c are side lengths of a triangle, prove that
(a+b)(b+c)(c+a)>8a+b—c)(b+c—a)ic+a—Db).

(ROM 4) Let M be an interior point of tetrahedron VABC. Denote

by Aj, By, Cy the points of intersection of lines M A, M B, MC' with the

planes VBC,VCA,V AB, and by Ay, By, Cs the points of intersection of

lines VA1,V By, VC; with the sides BC,CA, AB.

(a) Prove that the volume of the tetrahedron V As B3Cy does not exceed
one-fourth of the volume of VABC.

(b) Calculate the volume of the tetrahedron V3 A;B1Cy as a function of
the volume of VABC, where V; is the point of intersection of the line
V' M with the plane ABC, and M is the barycenter of VABC.

(ROM 5) Given a triangle ABC and a plane 7 having no common points
with the triangle, find a point M such that the triangle determined by
the points of intersection of the lines M A, M B, MC with 7 is congruent
to the triangle ABC.

(ROM 6) Given a polynomial

P(z) = ab(a — ¢)x3 + (a® — a®c 4 2ab* — b*c + abc)x?
+(2a%b 4 b*c + a*c + b® — abc)z + ab(b + ¢),

where a, b, ¢ # 0, prove that P(x) is divisible by
Q(z) = abz® + (a® + b*)x + ab

and conclude that P(z¢) is divisible by (a + b)3 for xo = (a + b+ 1)",
n € N.

(ROM 7) Let a polynomial p(x) with integer coefficients take the value
5 for five different integer values of x. Prove that p(x) does not take the
value 8 for any integer x.
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(SWE 1) For n € N, let f(n) be the number of positive integers k < n
that do not contain the digit 9. Does there exist a positive real number p
such that * (7?) > p for all positive integers n?

(SWE 2) The area of a triangle is S and the sum of the lengths of its
sides is L. Prove that 365 < L?y/3 and give a necessary and sufficient
condition for equality.

(SWE 3) Let p be a prime number. A rational number z, with 0 < z < 1,
is written in lowest terms. The rational number obtained from z by adding
p to both the numerator and the denominator differs from z by 1/p?.
Determine all rational numbers x with this property.

(SWE 4) (SL70-10).

(SWE 5) A square ABCD is divided into (n — 1)? congruent squares,
with sides parallel to the sides of the given square. Consider the grid of
all n? corners obtained in this manner. Determine all integers n for which
it is possible to construct a nondegenerate parabola with its axis parallel
to one side of the square and that passes through exactly n points of the
grid.

(SWE 6) (SL70-11).

(USS 1) A turtle runs away from an UFO with a speed of 0.2 m/s. The
UFO flies 5 meters above the ground, with a speed of 20 m/s. The UFO’s
path is a broken line, where after flying in a straight path of length ¢ (in
meters) it may turn through for any acute angle v such that tana < 10200.
When the UFQO’s center approaches within 13 meters of the turtle, it
catches the turtle. Prove that for any initial position the UFO can catch

the turtle.

(USS 2) A square hole of depth h whose base is of length a is given.
A dog is tied to the center of the square at the bottom of the hole by a
rope of length L > v/2a2 + h2, and walks on the ground around the hole.
The edges of the hole are smooth, so that the rope can freely slide along
it. Find the shape and area of the territory accessible to the dog (whose
size is neglected).

(USS 3) Let the numbers 1,2, ...,n2 be written in the cells of an n x n
square board so that the entries in each column are arranged increasingly.
What are the smallest and greatest possible sums of the numbers in the
kth row? (k a positive integer, 1 < k < n.)

(USS 4) (SL70-12).
(USS 5) (SL70-7).
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3.12.3 Shortlisted Problems

1.

(BEL 3) Consider a regular 2n-gon and the n diagonals of it that
pass through its center. Let P be a point of the inscribed circle and let
ai,as,...,a, be the angles in which the diagonals mentioned are visible
from the point P. Prove that

4o

- 2 cos? [
E tan“ a; = 2n .
= sin”

(ROM 1)™92 et g and b be the bases of two number systems and let

A, = x122 .. .xn(a), Apt1 = zox122 .. .xn(a),

B, =x1259.. .xn(b), Bhi+1 = xpz172 . . .xn(b),
be numbers in the number systems with respective bases a and b, so that
T, T1, X2, - .., Ty denote digits in the number system with base a as well
as in the number system with base b. Suppose that neither xy nor x; is
zero. Prove that a > b if and only if

A, < B, '
An-i—l Bn+l

. (BUL 6)™095 Ip the tetrahedron SABC the angle BSC is a right angle,

and the projection of the vertex S to the plane ABC' is the intersection
of the altitudes of the triangle ABC'. Let z be the radius of the inscribed
circle of the triangle ABC. Prove that

SA? + SB? + SC? > 1822,

. (CZS 1)™9%4 For what natural numbers n can the product of some of

the numbers n,n+ 1,n+ 2,n+ 3,n 4+ 4,n+ 5 be equal to the product of
the remaining ones?

. (CZS 3) Let M be an interior point of the tetrahedron ABCD. Prove

that

MAvol(MBCD) + MB vol(MACD)
— —
+MC vol(MABD) + MD vol(MABC) = 0

(vol(PQRS) denotes the volume of the tetrahedron PQRS).

. (FRA 1) In the triangle ABC' let B’ and C’ be the midpoints of the sides

AC and AB respectively and H the foot of the altitude passing through
the vertex A. Prove that the circumecircles of the triangles AB'C’, BC'H,
and B’C'H have a common point I and that the line HI passes through
the midpoint of the segment B'C’.
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(USS 5) For which digits a do exist integers n > 4 such that each digit

of n("2+1) equals a?

. (POL 2)™O9! Given a point M on the side AB of the triangle ABC, let

r1 and ro be the radii of the inscribed circles of the triangles ACM and
BCM respectively and let p; and p2 be the radii of the excircles of the
triangles ACM and BCM at the sides AM and BM respectively. Let r
and p denote the radii of the inscribed circle and the excircle at the side
AB of the triangle ABC' respectively. Prove that

r1 T2 - T
pLp2 P
. (GDR 3) Let uj,us,...,up,v1,0s,...,0, be real numbers. Prove that

1+i(ui+vi)2 < ; <1+§u%> <1+§v§>.

i=1
In what case does equality hold?

(SWE AJI:)IMO3 Let 1 =a9<a; <as <---<a, <--- be asequence of

real numbers. Consider the sequence by, b, ... defined by:
- Af—1 1
b= <1 - ) ,
Pt ag ) /o

Prove that:

(a) For all natural numbers n, 0 < b,, < 2.

(b) Given an arbitrary 0 < b < 2, there is a sequence ag, a1, ...,ap, ..
of the above type such that b,, > b is true for infinitely many natural
numbers n.

(SWE 6) Let P,Q, R be polynomials and let S(z) = P(23) + 2Q(23) +

22 R(23) be a polynomial of degree n whose roots x1,...,, are distinct.

Construct with the aid of the polynomials P, @), R a polynomial T of degree

n that has the roots x3, 23, ..., 23,

(USS 4)™O6 We are given 100 points in the plane, no three of which are
on the same line. Consider all triangles that have all vertices chosen from
the 100 given points. Prove that at most 70% of these triangles are acute
angled.
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3 Problems

3.13 The Thirteenth IMO
Bratislava—Zilina, Czechoslovakia, July 1021, 1971

3.13.1 Contest Problems

First Day (July 13)

. Prove that the following statement is true for n = 3 and for n = 5, and

false for all other n > 2:
For any real numbers a1, as, ..., an,

(al—ag)(al—a3)~-~(a1 —an)+(a2—al)(ag—ag)-~-(a2—an)+...

+(an —a1)(an —az) - (ap —an—1) > 0.

. Given a convex polyhedron P; with 9 vertices Aq,..., Ag, let us denote

by Ps, Ps, ..., Py the images of P, under the translations mapping the
vertex Aj to Ag, As, ..., Ag, respectively. Prove that among the polyhedra
Py, ..., Py at least two have a common interior point.

. Prove that the sequence 2" —3 (n > 1) contains a subsequence of numbers

relatively prime in pairs.

Second Day (July 14)

. Given a tetrahedron ABC'D all of whose faces are acute-angled triangles,

set
0 =4ADAB+ ABCD — LABC — LCDA.
Consider all closed broken lines XY ZT X whose vertices X,Y, Z, T lie in
the interior of segments AB, BC,CD, DA respectively. Prove that:
(a) if o # 0, then there is no broken line XY ZT of minimal length;
(b) if o = 0, then there are infinitely many such broken lines of minimal
length. That length equals 2AC sin(«/2), where

o= ABAC + LCAD + £DAB.

. Prove that for every natural number m > 1 there exists a finite set S,, of

points in the plane satisfying the following condition: If A is any point in
Sm, then there are exactly m points in S, whose distance to A equals 1.

. Consider the n x n array of nonnegative integers

a1 a1z ... Qin
Ga21 A22 *-- A2n

)
anl Ap2 ... Apn

with the following property: If an element a;; is zero, then the sum of the
elements of the 7th row and the jth column is greater than or equal to n.
Prove that the sum of all the elements is greater than or equal to > %nz.
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3.13.2 Longlisted Problems

1. (AUT 1) The points S(i, j) with integer Cartesian coordinates 0 < i < n,
0 <7 <m, m<n, form a lattice. Find the number of:
(a) rectangles with vertices on the lattice and sides parallel to the coor-
dinate axes;
(b) squares with vertices on the lattice and sides parallel to the coordinate
axes;
(¢) squares in total, with vertices on the lattice.

2. (AUT 2) Let us denote by s(n) = 3_,, d the sum of divisors of a natural
number n (1 and n included). If n has at most 5 distinct prime divisors,

prove that s(n) < Ign Also prove that there exists a natural number n
for which s(n) > on holds.

3. (AUT 3) Let a,b,c be positive real numbers, 0 < a < b < ¢. Prove that
for any positive real numbers z, y, z the following inequality holds:

vy - (@t o?
b ( ) < .
(a2 + by +c2) a+b+c s(zty+z) dac
4. (BUL 1) Let 2, = 22" + 1 and let m be the least common multiple of

T2,T3y...,21971- Find the last dlglt of m.

5. (BUL 2) (SL71-1).
Original formulation. Consider a sequence of polynomials Xo(z), X1 (z),
Xo(x),..., Xn(x),..., where Xo(z) = 2, X;(z) = z, and for every n > 1
the following equality holds:

Xolw) = | (Knia () + Xoa(0)).

Prove that (2% — 4)[X2(x) — 4] is a square of a polynomial for all n > 0.

6. (BUL 3) Let squares be constructed on the sides BC, C A, AB of a trian-
gle ABC, all to the outside of the triangle, and let Ay, By, C7 be their cen-
ters. Starting from the triangle A; B;C one analogously obtains a triangle
Ay ByCy. If S, S, S denote the areas of triangles ABC, A1 B1C1, A3 B2Cs,
respectively, prove that S = 857 — 4.5,.

7. (BUL 4) In atriangle ABC, let H be its orthocenter, O its circumcenter,
and R its circumradius. Prove that:
(a) |OH| = Ry/1 — 8cosacos Bcosy, where a, 3,7 are angles of the tri-
angle ABC;
(b) O = H if and only if ABC is equilateral.

8. (BUL 5) (SL71-2).
Original formulation. Prove that for every natural number n > 1 there
exists an infinite sequence My, Mo, ..., My, ... of distinct points in the
plane such that for all i, exactly n among these points are at distance 1
from M;.
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(BUL 6) The base of an inclined prism is a triangle ABC. The per-
pendicular projection of Bj, one of the top vertices, is the midpoint of
BC'. The dihedral angle between the lateral faces through BC and AB is
«, and the lateral edges of the prism make an angle § with the base. If
r1,7T9, 73 are exradii of a perpendicular section of the prism, assuming that
in ABC, cos? A+ cos?B +cos?C =1, LA < /B < ZC, and BC = aq,
calculate riro + r17r3 + rors3.

(CUB 1) In how many different ways can three knights be placed on a
chessboard so that the number of squares attacked would be maximal?

(CUB 2) Prove that n! cannot be the square of any natural number.

(CUB 3) A system of n numbers x1, 2, ..., %, is given such that
1 =log, . Tn, w2=log, mi, - ,  wp=log, , Tn-_1.

Prove that [],_, zp = 1.

(CUB 4) One Martian, one Venusian, and one Human reside on Pluton.
One day they make the following conversation:

Martian : 1 have spent 1/12 of my life on Pluton.

Human : T also have.
Venusian : Me too.

Martian : But Venusian and I have spend much more time here than

you, Human.

Human : That is true. However, Venusian and I are of the same age.
Venusian : Yes, I have lived 300 Earth years.

Martian : Venusian and I have been on Pluton for the past 13 years.
It is known that Human and Martian together have lived 104 Earth years.
Find the ages of Martian, Venusian, and Human.?

(GBR 1) Note that 8% — 73 =169 = 132 and 13 = 22 + 32. Prove that
if the difference between two consecutive cubes is a square, then it is the
square of the sum of two consecutive squares.

(GBR 2) Let ABCD be a convex quadrilateral whose diagonals intersect
at O at an angle 0. Let us set OA = a, OB = b, OC = ¢, and OD = d,
c>a>0,andd>b>0.

Show that if there exists a right circular cone with vertex V', with the
properties:

(1) its axis passes through O, and

(2) its curved surface passes through A, B,C and D, then

o _ b (c+a)?—cPa®(d+0)°

ov ca(d —b)? — db(c — a)?

5 The numbers in the problem are not necessarily in base 10.
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Show also that if 1% lies between % and /%, and §2¢ = 5, then for

a suitable choice of 8, a right circular cone exists with properties (1) and
(2).

(GBR 3) (SLT71-4).

Original formulation. Two (intersecting) circles are given and a point P
through which it is possible to draw a straight line on which the circles
intercept two equal chords. Describe a construction by straightedge and
compass for the straight line and prove the validity of your construction.
(GDR 1) (SL71-3).

Original formulation. Find all solutions of the system

z+y+z=23,
3 4y + 2% = 15,
z® +y° + 2° = 83.

(GDR 2) Let ai,as,...,a, be positive numbers, my = (aias--- an)l/"
their geometric mean, and m, = (a1 + a2 + -+ - + a,)/n their arithmetic

mean. Prove that
14+mg)" <(1+a1) - (1+an) <(14+mg)"

(GDR 3) In a triangle Py P,Ps let P;@Q; be the altitude from P; for
1 =1,2,3 (Q; being the foot of the altitude). The circle with diameter
P;Q; meets the two corresponding sides at two points different from P;.
Denote the length of the segment whose endpoints are these two points
by ll Prove that ll = lQ = 13.

(GDR 4) Let M be the circumcenter of a triangle ABC'. The line through
M perpendicular to C'M meets the lines CA and CB at @Q and P respec-

tively. Prove that

CP CQ AB _

CM CM PQ
(HUN 1) (SL71-5).
(HUN 2) We are given an n x n board, where n is an odd number. In
each cell of the board either +1 or —1 is written. Let a; and b, denote the
products of numbers in the kth row and in the kth column respectively.

Prove that the sum a; +as+- -+ a, + b1 + by + - - - + b, cannot be equal
to zero.

(HUN 3) Find all integer solutions of the equation
o® +y? = (v —y)’.

(HUN 4) Let A, B, and C denote the angles of a triangle. If sin A +
sin? B + sin? C' = 2, prove that the triangle is right-angled.
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(HUN 5) Let ABC, AA; Ay, BB1 B2, CC1C4 be four equilateral triangles
in the plane satisfying only that they are all positively oriented (i.e., in
the counterclockwise direction). Denote the midpoints of the segments
AQBl, BQOl, O2A1 by P, Q, R in this order. Prove that the triangle PQR
is equilateral.

(HUN 6) An infinite set of rectangles in the Cartesian coordinate
plane is given. The vertices of each of these rectangles have coordinates
(0,0), (p,0), (p,q), (0,q) for some positive integers p,q. Show that there
must exist two among them one of which is entirely contained in the
other.

(HUN 7) (SL71-6).

(NET 1) (SL71-7).

Original formulation. A tetrahedron ABCD is given. The sum of angles
of the tetrahedron at the vertex A (namely ZBAC, ZCAD,/DAB) is de-
noted by «, and (3,7, d are defined analogously. Let P, Q, R, .S be variable
points on edges of the tetrahedron: P on AD, @Q on BD, R on BC, and
S on AC, none of them at some vertex of ABCD. Prove that:

(a) if a+ B # 27, then PQ + QR + RS + SP attains no minimal value;
(b) if @« 4+ 3 = 27, then

ABsinC;:CDsin; and PQ+QR+RS+SP22ABSin§.

(NET 2) A rhombus with its incircle is given. At each vertex of the
rhombus a circle is constructed that touches the incircle and two edges of
the rhombus. These circles have radii r1, ro, while the incircle has radius
r. Given that r; and r9 are natural numbers and that r17ry = r, find rq, ro,
and 7.

(NET 3) Prove that the system of equations

2uz4+x—y— 2z =a,
20z —x+y— 2z =a,
2y —x —y+ 2 =aqa,

a being a parameter, cannot have five distinct solutions. For what values
of a does this system have four distinct integer solutions?

(NET 4) (SL71-8).

(NET 5) Two half-lines a and b, with the common endpoint O, make an
acute angle a. Let A on a and B on b be points such that OA = OB, and
let ' be the line through A parallel to b. Let 3 be the circle with center
B and radius BO. We construct a sequence of half-lines ¢y, ca,cs3, ..., all
lying inside the angle «, in the following manner:

(i) ¢ is given arbitrarily;



33.

34.
35.
36.
37.

38.

39.
40.

41.

42.

3.13 IMO 1971 79

(ii) for every natural number k, the circle § intercepts on ¢j a segment
that is of the same length as the segment cut on & by a and cgy1.
Prove that the angle determined by the lines c¢; and b has a limit as k

tends to infinity and find that limit.

(NET 6) A square 2n x 2n grid is given. Let us consider all possible

paths along grid lines, going from the center of the grid to the border,

such that (1) no point of the grid is reached more than once, and (2) each

of the squares homothetic to the grid having its center at the grid center

is passed through only once.

(a) Prove that the number of all such paths is equal to 4[]}, (16i — 9).

(b) Find the number of pairs of such paths that divide the grid into two
congruent figures.

(¢) How many quadruples of such paths are there that divide the grid into
four congruent parts?

(POL 1) (SL71-9).
(POL 2) (SL71-10).
(POL 3) (SL71-11).

(POL 4) Let S be a circle, and oo = {A1,..., A, } a family of open arcs
in S. Let N(«) = n denote the number of elements in a. We say that «
is a covering of S if [J;_, Ax D S.

Let « = {A41,...,A,} and 8 = {B1,..., By} be two coverings of S. Show
that we can choose from the family of all sets A; N B;, ¢ = 1,2,...,n,
j=1,2,...,m, a covering vy of S such that N(y) < N(«a) + N(f5).

(POL 5) Let A, B,C be three points with integer coordinates in the
plane and K a circle with radius R passing through A, B, C. Show that
AB-BC-CA > 2R, and if the center of K is in the origin of the coordinates,
show that AB - BC - CA > 4R.

(POL 6) (SL71-12).
(SWE 1) Prove that

1 1 1 1 1
o)) (D) ()] e

(SWE 2) Consider the set of grid points (m,n) in the plane, m,n inte-
gers. Let o be a finite subset and define

S(o) =Y (100 —|m| — |n]).
(m,n)€oc

Find the maximum of S, taken over the set of all such subsets o.

(SWE 3) Let L;,i = 1,2, 3, be line segments on the sides of an equilateral
triangle, one segment on each side, with lengths [;, i = 1,2,3. By L} we
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denote the segment of length [; with its midpoint on the midpoint of
the corresponding side of the triangle. Let M (L) be the set of points in
the plane whose orthogonal projections on the sides of the triangle are
in Ly, Lo, and Lg, respectively; M(L*) is defined correspondingly. Prove
that if Iy > lo + I3, we have that the area of M (L) is less than or equal to
the area of M (L*).

(SWE 4) Show that for nonnegative real numbers a, b and integers n > 2,

a™ +b" S (@ +b\" .
2 - 2
When does equality hold?

(SWE 5) (SL71-13).

(SWE 6) Let m and n denote integers greater than 1, and let v(n) be
the number of primes less than or equal to n. Show that if the equation

U(’;) = m has a solution, then so does the equation U(’;) =m—1.

(USS 1) (SL71-14).
(USS 2) (SL71-15).

(USS 3) A sequence of real numbers 1,2, ..., T, is given such that
Tiy1 = T; + 30500\/1 —z?,i=1,2,..., and ; = 0. Can n be equal to
50000 if z,, < 17

(USS 4) Diagonals of a convex quadrilateral ABCD intersect at a
point O. Find all angles of this quadrilateral if {OBA = 30°,{OCB =
45°, L0DC = 45°, and £LOAD = 30°.

(USS 5) (SL71-16).

(USS 6) Suppose that the sides AB and DC of a convex quadrilateral
ABCD are not parallel. On the sides BC and AD, pairs of points (M, N)
and (K, L) are chosen such that BM = MN = NC and AK = KL =LD.
Prove that the areas of triangles OK M and OLN are different, where O
is the intersection point of AB and CD.

(YUG 1) (SL71-17).

(YUG 2) Denote by 2, (p) the multiplicity of the prime p in the canonical

representation of the number n! as a product of primes. Prove that z"ygp ) <
1 n(p) _ 1

p—1 ’ np - p—1-

(YUG 3) A set M is formed of (27?) men, n = 1,2,.... Prove that we

can choose a subset P of the set M consisting of n 4+ 1 men such that one

of the following conditions is satisfied:

(1) every member of the set P knows every other member of the set P;

(2) no member of the set P knows any other member of the set P.

and lim,,_ o
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(YUG 4) Prove that the polynomial 2% + A2z® + px? + va + 1 has no
real roots if A, u, v are real numbers satisfying

AL+l + ] < V2.

3.13.3 Shortlisted Problems

1.

(BUL 2) Consider a sequence of polynomials Py(x), Pi(z), P2(z),. ..,
P,(x),..., where Py(z) = 2, Pi(x) = z and for every n > 1 the following
equality holds:

Poi1(z) + Poo1(x) = 2Py (2).

Prove that there exist three real numbers a, b, ¢ such that for all n > 1,

(22 = )[P2(x) — 4] = [aPus1(2) + bPu(2) + cPus (@) (1)

. (BUL 5)MO5 Prove that for every natural number m > 1 there exists a

finite set S, of points in the plane satisfying the following condition: If A
is any point in 5,,, then there are exactly m points in S, whose distance
to A equals 1.

. (GDR 1) Knowing that the system

T+y+z=3,
2342+ 2% =15,
zt oyt + 2t = 35,

has a real solution z,¥, z for which 22 + y2 + 22 < 10, find the value of
2 + 1° + 2° for that solution.

(GBR 3) We are given two mutually tangent circles in the plane, with
radii r1, 2. A line intersects these circles in four points, determining three
segments of equal length. Find this length as a function of r; and r, and
the condition for the solvability of the problem.

. (HUN 1)MO1 Let, g, b, ¢,d, e be real numbers. Prove that the expression

(a—b)(a—c)(a—d)(a—e)+(b—a)(b—c)(b—d)(b—e)+(c—a)(c—b)(c—d)(c—e)

+(d—a)(d—b)(d—)(d—€) + (e — a)(e — )(e — (e — d)

is nonnegative.

. (HUN 7) Let n > 2 be a natural number. Find a way to assign nat-

ural numbers to the vertices of a regular 2™-gon such that the following
conditions are satisfied:

(1) only digits 1 and 2 are used;

(2) each number consists of exactly n digits;

(3) different numbers are assigned to different vertices;
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(4) the numbers assigned to two neighboring vertices differ at exactly one
digit.

(NET 1)M9 Given a tetrahedron ABCD whose all faces are acute-

angled triangles, set

0=4DAB + £BCD — LABC — LCDA.

Consider all closed broken lines XY ZT X whose vertices X,Y, Z, T lie in

the interior of segments AB, BC,CD, D A respectively. Prove that:

(a) if o # 0, then there is no broken line XY ZT of minimal length;

(b) if o = 0, then there are infinitely many such broken lines of minimal
length. That length equals 2AC sin(«/2), where

o= 4BAC + LCAD + £LDAB.

(NET 4) Determine whether there exist distinct real numbers a, b, ¢, t
for which:

(i) the equation az? 4 btx + ¢ = 0 has two distinct real roots z1, z2,

(ii) the equation bz? + ctz + a = 0 has two distinct real roots o, x3,

(iii) the equation cx? + atx + b = 0 has two distinct real roots x3, x1.

(POL 1) LetTp =k —1for k=1,2,3,4 and
Top—1 = Tor—o + 272, Top = Top_5 + 2" (k>3).
Show that for all &,

12

17
- 2”—1} and 1+ Ty, = { 2"—1} ,

14T, = [ .

where [z] denotes the greatest integer not exceeding x.

(POL 2)™O3 Prove that the sequence 2" — 3 (n > 1) contains a subse-
quence of numbers relatively prime in pairs.

(POL 3) The matrix
aiq] ... Ain

anl --. Apn
satisfies the inequality E?:l lajiz1 + - -+ ajnzn| < M for each choice of
numbers x; equal to £1. Show that

la11 + a22 + - -+ + apn| < M.

(POL 6) Two congruent equilateral triangles ABC and A’B’C” in the
plane are given. Show that the midpoints of the segments AA’, BB', CC’
either are collinear or form an equilateral triangle.
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(SWE 5)™O96 Consider the n x n array of nonnegative integers

a1l a2 ... Qin
Ga21 A22 *-* A2n

)
Anl Ap2 ... App

with the following property: If an element a;; is zero, then the sum of the
elements of the 7th row and the jth column is greater than or equal to n.
Prove that the sum of all the elements is greater than or equal to énz.

(USS 1) A broken line A1 As ... A, is drawn in a 50 x 50 square, so that
the distance from any point of the square to the broken line is less than
1. Prove that its total length is greater than 1248.

(USS 2) Natural numbers from 1 to 99 (not necessarily distinct) are
written on 99 cards. It is given that the sum of the numbers on any subset
of cards (including the set of all cards) is not divisible by 100. Show that
all the cards contain the same number.

(USS 5)™MO2 Given a convex polyhedron P; with 9 vertices A, ..., Ag,
let us denote by P, Ps,..., Py the images of P; under the translations
mapping the vertex A; to As, As, ..., Ag respectively. Prove that among
the polyhedra P, ..., Py at least two have a common interior point.

(YUG 1) Prove the inequality

a Qa, Qa a a a a a
1+ 3 L 2+ 4 3+ L 4+ 2247
a1 + as az + as as + aq a4 + ay

where a; > 0,¢=1,2,3,4.
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3.14 The Fourteenth IMO
Warsaw—Toruna, Poland, July 5-17, 1972

3.14.1 Contest Problems

First Day (July 10)

A set of 10 positive integers is given such that the decimal expansion of
each of them has two digits. Prove that there are two disjoint subsets of
the set with equal sums of their elements.

. Prove that for each n > 4 every cyclic quadrilateral can be decomposed

into n cyclic quadrilaterals.

(2m)!(2n)!

min(mtn)! is an integer

Let m and n be nonnegative integers. Prove that
(or=1).

Second Day (July 11)

. Find all solutions in positive real numbers x; (i = 1,2,3,4,5) of the fol-

lowing system of inequalities:

(2] — w3w5) (23 — w325) <0 (i)
(23 — x421) (2% — 2471) <0 (ii)
(23 — z5m2) (23 — 2572) <0 (iii)
(23 — z123) (22 — 1123) <0 (iv)
(23 — wowq) (2] — 2224) <0 (v)

. Let f and ¢ be real functions defined in the interval (—oo, c0) satisfying

the functional equation

flx+y)+ flx—y) =20(y)f(z),

for arbitrary real z, y (give examples of such functions). Prove that if f(x)
is not identically 0 and |f(x)| < 1 for all z, then |p(z)| < 1 for all z.

. Given four distinct parallel planes, show that a regular tetrahedron exists

with a vertex on each plane.

3.14.2 Longlisted Problems

1. (BUL 1) Find all integer solutions of the equation

1+x+a?+2°+2" =y

2. (BUL 2) Find all real values of the parameter a for which the system of

equations



10.

11.
12.

13.

14.
15.

3.14 IMO 1972 85

T :yz—ac2—|—a7
zzx—y2+a,

z4=a:y—z2+a,

has at most one real solution.

. (BUL 3) On a line a set of segments is given of total length less than

n. Prove that every set of n points of the line can be translated in some
direction along the line for a distance smaller than n/2 so that none of
the points remain on the segments.

. (BUL 4) Given a triangle, prove that the points of intersection of three

pairs of trisectors of the inner angles at the sides lying closest to those
sides are vertices of an equilateral triangle.

. (BUL 5) Given a pyramid whose base is an n-gon inscribable in a circle,

let H be the projection of the top vertex of the pyramid to its base. Prove
that the projections of H to the lateral edges of the pyramid lie on a circle.

. (BUL 6) Prove the inequality

(n+1)cos T ncos” >1
n+1 n

for all natural numbers n > 2.

. (BUL 7) (SL72-1).
. (CZS 1) (SL72-2).
. (CZS 2) Given natural numbers k and n, k& < n, n > 3, find the set

of all values in the interval (0, 7) that the kth-largest among the interior
angles of a convex ngon can take.

(CZS 3) Given five points in the plane, no three of which are collinear,
prove that there can be found at least two obtuse-angled triangles with
vertices at the given points. Construct an example in which there are
exactly two such triangles.

(CZS 4) (SL72-3).

(CZS 5) Acircle k = (S, r) is given and a hexagon AA’BB'CC" inscribed
in it. The lengths of sides of the hexagon satisfy AA’ = A’B, BB’ = B'C,
CC'" = C'A. Prove that the area P of triangle ABC' is not greater than
the area P’ of triangle A’B’C’. When does P = P’ hold?

(CZS 6) Given a sphere K, determine the set of all points A that are
vertices of some parallelograms ABC D that satisfy AC < BD and whose
entire diagonal BD is contained in K.

(GBR 1) (SL72-7).
(GBR 2) (SL72-8).
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16. (GBR 3) Consider the set S of all the different odd positive integers
that are not multiples of 5 and that are less than 30m, m being a positive
integer. What is the smallest integer k such that in any subset of k integers
from S there must be two integers one of which divides the other? Prove
your result.

17. (GBR 4) A solid right circular cylinder with height h and base-radius
r has a solid hemisphere of radius r resting upon it. The center of the
hemisphere O is on the axis of the cylinder. Let P be any point on the
surface of the hemisphere and @) the point on the base circle of the cylinder
that is furthest from P (measuring along the surface of the combined
solid). A string is stretched over the surface from P to @ so as to be as
short as possible. Show that if the string is not in a plane, the straight
line PO when produced cuts the curved surface of the cylinder.

18. (GBR 5) We have p players participating in a tournament, each player
playing against every other player exactly once. A point is scored for
each victory, and there are no draws. A sequence of nonnegative integers
51 < 53 <53 < --- < sy is given. Show that it is possible for this sequence
to be a set of final scores of the players in the tournament if and only if

. 1 y S
(1) ;& = 2p(p— 1) and (ii) for all k < p, ;& > Qk(k —1).
19. (GBR 6) Let S be a subset of the real numbers with the following
properties:
(i) fzeSandy e S, then x —y € S;
(ii) If x € S and y € S, then zy € S;
(iii) S contains an exceptional number ' such that there is no number y
in S satisfying 2’y + 2’ +y = 0;
(iv) If z € S and x # 2/, there is a number y in S such that zy+x+y = 0.
Show that
(a) S has more than one number in it;
(b) o’ # —1 leads to a contradiction;
(c) x € S and z # 0 implies 1/z € S.

20. (GDR 1) (SL72-4).
21. (GDR 2) (SL72-5).
22. (GDR 3) (SL72-6).

23. (MON 1) Does there exist a 2n-digit number ag,a2,—1...a1 (for an
arbitrary n) for which the following equality holds:

agn...alz(an...al)z?

24. (MON 2) The diagonals of a convex 18-gon are colored in 5 different
colors, each color appearing on an equal number of diagonals. The diag-
onals of one color are numbered 1,2, .... One randomly chooses one-fifth
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of all the diagonals. Find the number of possibilities for which among the
chosen diagonals there exist exactly n pairs of diagonals of the same color
and with fixed indices i, j.

(NET 1) We consider n real variables x; (1 < i < n), where n is an
integer and n > 2. The product of these variables will be denoted by p,
their sum by s, and the sum of their squares by S. Furthermore, let o be
a positive constant. We now study the inequality ps < S®. Prove that it
holds for every n-tuple (z;) if and only if o = "J*.

(NET 2) (SL72-9).
(NET 3) (SL72-10).

(NET 4) The lengths of the sides of a rectangle are given to be odd
integers. Prove that there does not exist a point within that rectangle
that has integer distances to each of its four vertices.

(NET 5) Let A, B,C be points on the sides B1Cy,C1A1,A1B; of a
triangle A; B1C1 such that A1 A, BB, C1C are the bisectors of angles of
the triangle. We have that AC = BC and A;C; # B1C1.

(a) Prove that Cy lies on the circumcircle of the triangle ABC.

(b) Suppose that £ BAC, = 7 /6; find the form of triangle ABC.

(NET 6) (SL72-11).
(ROM 1) Find values of n € N for which the fraction gz:g is reducible.

(ROM 2) Ifny,ng,...,n; are natural numbers and ny+ng+- - -+n, = n,
show that
max  nyng---np = (t4 1)7tFT,
ni+-+ng=n
where t = [n/k] and r is the remainder of n upon division by k; i.e.,

n=tk+r,0<r<k-—1.

(ROM 3) A rectangle ABCD is given whose sides have lengths 3 and
2n, where n is a natural number. Denote by U(n) the number of ways in
which one can cut the rectangle into rectangles of side lengths 1 and 2.
(a) Prove that U(n+ 1)+ U(n — 1) = 4U(n);

(b) Prove that U(n) = ! [(V3+1)(2+v3)" + (V3 - 1)(2 - v3)"].

(ROM 4) If p is a prime number greater than 2 and a, b, ¢ integers not
divisible by p, prove that the equation

ar® +by? =pz+c

has an integer solution.
(ROM 5) (a) Prove that for a,b,c,d € R, m € [1,+00) with am + b =
—cm+d=m,
2
(i) Va2 + 02 +vVe2+d2+/(a—c)2+(b—d)2> *™, and

1+m?2>
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(i) 2< ', <4
(b) Express a, b, ¢,d as functions of m so that there is equality in (1).
(ROM 6) A finite number of parallel segments in the plane are given with
the property that for any three of the segments there is a line intersecting

each of them. Prove that there exists a line that intersects all the given
segments.

(SWE 1) On a chessboard (8 x 8 squares with sides of length 1) two
diagonally opposite corner squares are taken away. Can the board now be
covered with nonoverlapping rectangles with sides of lengths 1 and 27

(SWE 2) Congruent rectangles with sides m (cm) and n (cm) are
given (m,n positive integers). Characterize the rectangles that can be
constructed from these rectangles (in the fashion of a jigsaw puzzle). (The
number of rectangles is unbounded.)

(SWE 3) How many tangents to the curve y = 23 — 3z (y = 2® + px)
can be drawn from different points in the plane?

(SWE 4) Prove the inequalities

u _sinu _ mu m

< . < , for0<u<wv< .
v~ sinv 2v 2
(SWE 5) The ternary expansion z = 0.10101010... is given. Give the
binary expansion of x.
Alternatively, transform the binary expansion y = 0.110110110.. . into a
ternary expansion.

(SWE 6) The decimal number 131 is given. It is instead written as a
ternary number. What are the two last digits of this ternary number?

(USS 1) A fixed point A inside a circle is given. Consider all chords
XY of the circle such that /X AY is a right angle, and for all such chords
construct the point M symmetric to A with respect to XY. Find the locus
of points M.

(USS 2) (SL72-12).

(USS 3) Let ABCD be a convex quadrilateral whose diagonals AC' and
BD intersect at point O. Let a line through O intersect segment AB at
M and segment C'D at N. Prove that the segment M N is not longer than
at least one of the segments AC' and BD.

(USS 4) Numbers 1,2, ..., 16 are written in a 4 x 4 square matrix so that
the sum of the numbers in every row, every column, and every diagonal
is the same and furthermore that the numbers 1 and 16 lie in opposite
corners. Prove that the sum of any two numbers symmetric with respect
to the center of the square equals 17.
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3.14.3 Shortlisted Problems

1. (BUL 7)™O95 Let f and ¢ be real functions defined on the set R satisfying
the functional equation

flz+y)+ flx—y) =2p(y)f(x), (1)

for arbitrary real z, y (give examples of such functions). Prove that if f(x)
is not identically 0 and |f(x)| < 1 for all z, then |p(z)| < 1 for all z.

2. (CZS 1) We are given 3n points A, As, ..., As, in the plane, no three
of them collinear. Prove that one can construct n disjoint triangles with
vertices at the points A;.

3. (CZS 4) Let x1,x9,...,x, be real numbers satisfying x1+xo+- - -+ x, =
0. Let m be the least and M the greatest among them. Prove that

2]+ x5+ + 2l < —nmM.

4. (GDR 1) Let ny,ng be positive integers. Consider in a plane F two dis-
joint sets of points M; and M, consisting of 2n; and 2no points, respec-
tively, and such that no three points of the union M; U M are collinear.
Prove that there exists a straightline g with the following property: Each
of the two half-planes determined by g on E (g not being included in
either) contains exactly half of the points of M; and exactly half of the
points of Ms.

5. (GDR 2) Prove the following assertion: The four altitudes of a tetrahe-
dron ABC'D intersect in a point if and only if

AB* 4+ CD* = BC® + AD*> = CA* + BD”.
6. (GDR 3) Show that for any n #Z 0 (mod 10) there exists a multiple of

n not containing the digit 0 in its decimal expansion.

7. (GBR 1)™096 (3) A plane 7 passes through the vertex O of the regular
tetrahedron OPQR. We define p,q,r to be the signed distances of
P,Q, R from m measured along a directed normal to 7. Prove that

P4+ +(g—1)? 4+ —p)?+ (p—q)? =2d%

where a is the length of an edge of a tetrahedron.
(b) Given four parallel planes not all of which are coincident, show that
a regular tetrahedron exists with a vertex on each plane.

8. (GBR 2)™O3 Let m and n be nonnegative integers. Prove that m!n!(m+
n)! divides (2m)!(2n)!.

9. (NET 2)™MY4 Find all solutions in positive real numbers =; (i =
1,2,3,4,5) of the following system of inequalities:
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10.

11.
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3 Problems

(2] — w3w5) (23 — w325) <0, (i)
(23 — z4m1) (23 — 2471) <0, (ii)
(23 — z5m2) (23 — 2522) <0, (iii)
(23 — z123) (22 — 2123) <0, (iv)
(22 — waz4) (23 — 2274) < 0. (v)

(NET 3)™O2 Prove that for each n > 4 every cyclic quadrilateral can
be decomposed into n cyclic quadrilaterals.

(NET 6) Consider a sequence of circles K, Ko, K3, Ky,... of radii
r1,T2,73,T4,- .., respectively, situated inside a triangle ABC. The circle
K, is tangent to AB and AC; K is tangent to Ky, BA, and BC; K3 is
tangent to Ko, C'A, and CB; K, is tangent to K3, AB, and AC etc.

(a) Prove the relation

1 1 1 1
71 CcOt 2A+2\/7“1r2+r2(30t 2B =r <c0t 2A+cot 2B) ,

where r is the radius of the incircle of the triangle ABC. Deduce the
existence of a ¢; such that

1 1
ry = rcot 2Bcot 20s1n2t1.

(b) Prove that the sequence of circles K1, K, ... is periodic.

(USS 2)IMOL A get of 10 positive integers is given such that the decimal
expansion of each of them has two digits. Prove that there are two disjoint
subsets of the set with equal sums of their elements.
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3.15 The Fifteenth IMO
Moscow, Soviet Union, July 5-16, 1973

3.15.1 Contest Problems

First Day (July 9)

— —_—
1. Let O be a point on the line [ and OP;, 0P, ...,OP, unit vectors such
that points Py, Ps,..., P, and line [ lie in the same plane and all points

P; lie in the same half-plane determined by [. Prove that if n is odd, then

—  —— —
HOP1+OP2+---+OPn > 1.

(HO—>M is the length of vector O—M)

2. Does there exist a finite set M of points in space, not all in the same
plane, such that for each two points A, B € M there exist two other
points C; D € M such that lines AB and C'D are parallel but not equal?

3. Determine the minimum of a® + b2 if a and b are real numbers for which
the equation
2 tard+b+ar+1=0

has at least one real solution.

Second Day (July 10)

4. A soldier has to investigate whether there are mines in an area that has
the form of equilateral triangle. The radius of his detector’s range is equal
to one-half the altitude of the triangle. The soldier starts from one vertex
of the triangle. Determine the smallest path through which the soldier has
to pass in order to check the entire region.

5. Let G be the set of functions f : R — R of the form f(z) = ax + b, where
a and b are real numbers and a # 0. Suppose that G satisfies the following
conditions:

(1) If f,g € G, then go f € G, where (g o f)(z) = g[f(x)].

(2) If f € G and f(z) = ax + b, then the inverse f~! of f belongs to G
(f~H(z) = (z —b)/a).

(3) For each f € G there exists a number z; € R such that f(xy) = zy.

Prove that there exists a number k& € R such that f(k) =k for all f € G.

6. Let ay,as,...,a, be positive numbers and ¢ a given real number, 0 < g <
1. Find n real numbers by, bs, ..., b, that satisfy:
(1) ap < bg forall k=1,2,...,n;
b1 1 _ .
(2) ¢< <4 forallk=1,2,...,n—1;
(3) bi+ba+---+b, < }fg(a1+a2+-~~+an).
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3 Problems

3.15.2 Shortlisted Problems

1.

10.

11.

(BUL 6) Let a tetrahedron ABCD be inscribed in a sphere S. Find the
locus of points P inside the sphere S for which the equality

AP BP CP DP

—4
ra, TP, T pey TPy

holds, where Ay, B1,Cq, and D are the intersection points of S with the
lines AP, BP,CP, and DP, respectively.

. (CZS 1) Given a circle K, find the locus of vertices A of parallelograms

ABCD with diagonals AC < BD, such that BD is inside K.

. (CZS 6)™O0! Prove that the sum of an odd number of unit vectors passing

through the same point O and lying in the same half-plane whose border
passes through O has length greater than or equal to 1.

(GBR 1) Let P be a set of 7 different prime numbers and C a set of
28 different composite numbers each of which is a product of two (not
necessarily different) numbers from P. The set C' is divided into 7 disjoint
four-element subsets such that each of the numbers in one set has a com-
mon prime divisor with at least two other numbers in that set. How many
such partitions of C' are there?

. (FRA 2) A circle of radius 1 is located in a right-angled trihedron and

touches all its faces. Find the locus of centers of such circles.

. (POL 2)™O02 Does there exist a finite set M of points in space, not all in

the same plane, such that for each two points A, B € M there exist two
other points C, D € M such that lines AB and C'D are parallel?

(POL 3) Given a tetrahedron ABCD, let x = AB-CD, y= AC - BD,
and z = AD - BC. Prove that there exists a triangle with edges z,y, z.

. (ROM 1) Prove that there are exactly ([k];Q]) arrays ai, ag, . .., ag+1 of

nonnegative integers such that a; = 0 and |a;—a;41| = 1fori =1,2,... k.

. (ROM 2) Let Oz, Oy, Oz be three rays, and G a point inside the trihe-

dron Ozyz. Consider all planes passing through G and cutting Oz, Oy, Oz
at points A, B, C, respectively. How is the plane to be placed in order to
yield a tetrahedron OABC with minimal perimeter?

(SWE 3)™O6 [et ay,as,...,a, be positive numbers and g a given real
number, 0 < ¢ < 1. Find n real numbers by, bs, ..., b, that satisfy:

(1) ag <bgforall k=1,2,... n;

(2) g< "t < Lforallk=1,2,... .n—1

(3) bi+bo+---+by < (Tlar +as + -+ ay).

(SWE 4)™O03 Determine the minimum of a? + b? if a and b are real
numbers for which the equation
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2 4ard+bP+ar+1=0

has at least one real solution.

(SWE 6) Consider the two square matrices

11 1 11 11 1 11
1 1 1-1-1 1 1 1-1-1
A=([1-1-1 1 1 and B=|1 1-1 1-1
1-1-1-1 1 1-1-1 1 1
1 1-1 1-1 1-1 1-1 1

with entries 1 and —1. The following operations will be called elementary:
(1) Changing signs of all numbers in one row;

(2) Changing signs of all numbers in one column;

(3) Interchanging two rows (two rows exchange their positions);

(4) Interchanging two columns.

Prove that the matrix B cannot be obtained from the matrix A using
these operations.

(YUG 4) Find the sphere of maximal radius that can be placed inside
every tetrahedron that has all altitudes of length greater than or equal to
1.

(YUG 5)™MO4 A soldier has to investigate whether there are mines in an
area that has the form of an equilateral triangle. The radius of his detector
is equal to one-half of an altitude of the triangle. The soldier starts from
one vertex of the triangle. Determine the shortest path that the soldier
has to traverse in order to check the whole region.

(CUB 1) Prove that for all n € N the following is true:
Z”ﬁsin T an
il '

(CUB 2) Givena,f € R, m € N, and P(z) = 2*™ —2a|™2™ cos § +a*™,
factorize P(x) as a product of m real quadratic polynomials.

(POL 1)™O5 Let F be a nonempty set of functions f : R — R of the

form f(z) = ax + b, where a and b are real numbers and a # 0. Suppose

that F satisfies the following conditions:

(1) If f,g € F, then go f € F, where (go f)(z) = g[f ()]

(2) If f € F and f(x) = ax + b, then the inverse f~! of f belongs to F
(f @) = (x - b)/a).

(3) None of the functions f(z) = x + ¢, for ¢ # 0, belong to F.

Prove that there exists xo € R such that f(xzg) =z for all f € F.
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3.16 The Sixteenth IMO
Erfurt—Berlin, DR Germany, July 4-17, 1974

3.16.1 Contest Problems

First Day (July 8)

Alice, Betty, and Carol took the same series of examinations. There was
one grade of A, one grade of B, and one grade of C' for each examination,
where A, B, C are different positive integers. The final test scores were

Alice Betty Carol
20 10 9

If Betty placed first in the arithmetic examination, who placed second in
the spelling examination?

. Let AABC be a triangle. Prove that there exists a point D on the side

AB such that C'D is the geometric mean of AD and BD if and only if
C
Vsin A sin B < sin 5
Prove that there does not exist a natural number n for which the number
2”: (2n + 1) o3k
— 2k + 1
is divisible by 5.
Second Day (July 9)

. Consider a partition of an 8 X8 chessboard into p rectangles whose interiors

are disjoint such that each rectangle contains an equal number of white
and black cells. Assume that a; < a2 < -+ < ap, where a; denotes
the number of white cells in the ith rectangle. Find the maximal p for
which such a partition is possible and for that p determine all possible
corresponding sequences ai, as, . . ., ap.

. If a,b, ¢, d are arbitrary positive real numbers, find all possible values of

_ a n b n c N d
T a+b+d a+b+c b+c+d a+c+d

. Let P(z) be a polynomial with integer coefficients. If n(P) is the number

of (distinct) integers k such that P?(k) = 1, prove that n(P)—deg(P) < 2,
where deg(P) denotes the degree of the polynomial P.
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3.16.2 Longlisted Problems

1. (BUL 1) (SL74-11).

2. (BUL 2) Let {u,} be the Fibonacci sequence, i.e., ugp = 0, ug = 1,
Up = Up—1 + Up_o for n > 1. Prove that there exist infinitely many prime
numbers p that divide u,_1.

3. (BUL 3) Let ABCD be an arbitrary quadrilateral. Let squares ABB; Ao,
BCC1By, CDD{Cy, DAA1Ds be constructed in the exterior of the
quadrilateral. Furthermore, let AA; PAs and CC1QC5 be parallelograms.
For any arbitrary point P in the interior of ABCD, parallelograms RASC
and RPT(Q are constructed. Prove that these two parallelograms have two
vertices in common.

4. (BUL 4) Let K,, K, K. with centers O, Oy, O, be the excircles of a

triangle ABC, touching the interiors of the sides BC,C A, AB at points
Ty, Ty, T, respectively.
Prove that the lines O,T,, OyTy, O T, are concurrent in a point P for
which PO, = PO, = PO, = 2R holds, where R denotes the circumradius
of ABC. Also prove that the circumcenter O of ABC' is the midpoint of
the segment PJ, where J is the incenter of ABC.

5. (BUL 5) A straight cone is given inside a rectangular parallelepiped
B, with the apex at one of the vertices, say T', of the parallelepiped, and
the base touching the three faces opposite to T'. Its axis lies at the long
diagonal through T'. If V; and V5, are the volumes of the cone and the
parallelepiped respectively, prove that

- \/37TV2'

Vi 27

6. (CUB 1) Prove that the product of two natural numbers with their sum
cannot be the third power of a natural number.

7. (CUB 2) Let P be a prime number and n a natural number. Prove that

the product
2n—1

o )

p" i=1; 24
is a natural number that is not divisible by p.
8. (CUB 3) (SLT74-9).

9. (CZS 1) Solve the following system of linear equations with unknown
Z1,...,Z, (n >2) and parameters ci, ..., cy:
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2r1 —xo = c1;
—x1 +229 —x3 = ¢2;
—xo +2T3 —T4 = c3;

—Tn—-2 +2xn—1 —ZTpn = Cp—1;
—Tp_1 +2x, = cn.

(CZS 2) A regular octagon P is given whose incircle k has diameter 1.
About k is circumscribed a regular 16-gon, which is also inscribed in P,
cutting from P eight isosceles triangles. To the octagon P, three of these
triangles are added so that exactly two of them are adjacent and no two
of them are opposite to each other. Every 11-gon so obtained is said to be
P

Prove the following statement: Given a finite set M of points lying in P
such that every two points of this set have a distance not exceeding 1, one
of the 11-gons P’ contains all of M.

(CZS 3) Given a line p and a triangle A in the plane, construct an
equilateral triangle one of whose vertices lies on the line p, while the other
two halve the perimeter of A.

(CZS 4) A circle K with radius =, a point D on K, and a convex
angle with vertex S and rays a and b are given in the plane. Construct
a parallelogram ABCD such that A and B lie on a and b respectively,
SA+ SB=r,and C lies on K.

(FIN 1) Prove that 247 — 1 is divisible by 343.

(FIN 2) Let n and k be natural numbers and a1, as, . .., a, positive real
numbers satisfying a; + as + - - - + a,, = 1. Prove that

aT* +azk 4o +aTt >kt
(FIN 3) (SL74-10).

(GBR 1) A pack of 2n cards contains n different pairs of cards. Each
pair consists of two identical cards, either of which is called the twin of
the other. A game is played between two players A and B. A third person
called the dealer shuffles the pack and deals the cards one by one face
upward onto the table. One of the players, called the receiver, takes the
card dealt, provided he does not have already its twin. If he does already
have the twin, his opponent takes the dealt card and becomes the receiver.
A is initially the receiver and takes the first card dealt. The player who
first obtains a complete set of n different cards wins the game. What
fraction of all possible arrangements of the pack lead to A winning? Prove
the correctness of your answer.

(GBR 2) Show that there exists a set S of 15 distinct circles on the
surface of a sphere, all having the same radius and such that 5 touch
exactly 5 others, 5 touch exactly 4 others, and 5 touch exactly 3 others.
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(GBR 3) (SL74-5).

(GBR 4) (Alternative to GBR 2) Prove that there exists, for n > 4, a
set S of 3n equal circles in spacethat can be partitioned into three subsets
S5, S4, and s3, each containing n circles, such that each circle in s, touches
exactly r circles in S.

(NET 1) For which natural numbers n do there exist n natural numbers
a; (1 <i<n)suchthat >0  a;?=17

(NET 2) Let M be a nonempty subset of Z1 such that for every element
x in M, the numbers 4z and [/z] also belong to M. Prove that M = Z*.

(NET 3) (SL74-8).
(POL 1) (SL74-2).
(POL 2) (SL74-7).

(POL 3) Let f : R — R be of the form f(x) = z 4 esinz, where
0 < |e| < 1. Define for any z € R,

ta= oo f(a).
~ -~ -
n times
Show that for every « € R there exists an integer k such that lim, .o
= k.

(POL 4) Let g(k) be the number of partitions of a k-element set M, i.e.,
the number of families {A1, Ag, ..., As} of nonempty subsets of M such
that A; N A; =0 fori# j and J_, A; = M. Prove that

n™ < g(2n) < (2n)*"  for every n.

(ROM 1) Let C4 and C5 be circles in the same plane, P; and P» arbitrary
points on Cy and Cy respectively, and @ the midpoint of segment P; Ps.
Find the locus of points @ as P, and P, go through all possible positions.

Alternative version. Let Cq, Cs, C3 be three circles in the same plane. Find
the locus of the centroid of triangle P; P, P3 as P;, P>, and P3 go through
all possible positions on Cy, Cs, and C3 respectively.

(ROM 2) Let M be a finite set and P = {M;, Ms, ..., M} a partition
of M (ie., UF_, My = M, M; # 0, Min M; =0 for all i, j € {1,2,...,k},
1 # 7). We define the following elementary operation on P:
Choose i,j € {1,2,...,k}, such that ¢ # j and M; has a elements and
M; has b elements such that a > b. Then take b elements from M; and
place them into Mj, i.e., M; becomes the union of itself unifies and a
b-element subset of M;, while the same subset is subtracted from M;
(if a = b, M; is thus removed from the partition).
Let a finite set M be given. Prove that the property “for every partition P
of M there exists a sequence P = Py, Ps, ..., P, such that P;; is obtained
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30.
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32.

33.

34.
35.

36.

3 Problems

from P; by an elementary operation and P, = {M}” is equivalent to “the
number of elements of M is a power of 2.”

(ROM 3) Let A, B,C, D be points in space. If for every point M on the
segment AB the sum

area(AMC)+area(CMD)+area(DM B)

is constant show that the points A, B, C, D lie in the same plane.
(ROM 4) (SL74-6).
(ROM 5) Let y* = Y ' 2%, where a # 0, y > 0, 2; > 0 are real

17

numbers, and let A # o be a real number. Prove that y* > Dy x) if
a(A—a)>0,and y* <31 2} if a(A —a) <O.

(SWE 1) Let aq,as,...,a, be n real numbers such that 0 < a < a; <b
for k=1,2,...,n. If

1
my = (ag+az+---+a, and mgzn(a%—l-a%—i—---—i—ai),

o

a+b)? o

prove that my < ¢ 1.y ™7 and find a necessary and sufficient condition

for equality.

(SWE 2) Let a be a real number such that 0 < a < 1, and let n be a
positive integer. Define the sequence ag, a1, as, ..., a, recursively by

1
ap=a; agr1=ar+ ai fork=0,1,...,n—1.
n

Prove that there exists a real number A, depending on a but independent
of n, such that
0<n(A—a,) < A3

(SWE 3) (SL74-3).

(SWE 4) If p and q are distinct prime numbers, then there are integers
xo and yg such that 1 = pxy + qyo. Determine the maximum value of
b — a, where a and b are positive integers with the following property:
If a <t < b, and t is an integer, then there are integers x and y with
0<zx<g—1and 0 <y <p-—1such that t =pz + qy.

(SWE 5) Consider infinite diagrams

D = |20 T21 22 - ..
10 N11 N12 - ..
oo o1 No2 - - -

where all but a finite number of the integers n;;, i+ = 0,1,2,..., j =
0,1,2,..., are equal to 0. Three elements of a diagram are called adjacent
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if there are integers ¢ and j with ¢ > 0 and j > 0 such that the three
elements are

(1) Nij, T j4+1, N, 542, or

(i) 74,  Mit1j, Mit2y,  or
(i) nit2,j, Mit1j+1,  Mij+2-

An elementary operation on a diagram is an operation by which three
adjacent elements n;; are changed into n;; in such a way that [n;; —nj;| =
1. Two diagrams are called equivalent if one of them can be changed
into the other by a finite sequence of elementary operations. How many
inequivalent diagrams exist?

(USA 1) Let a, b, and ¢ denote the three sides of a billiard table in the
shape of an equilateral triangle. A ball is placed at the midpoint of side
a and then propelled toward side b with direction defined by the angle 6.
For what values of § will the ball strike the sides b, ¢, a in that order?

(USA 2) Consider the binomial coefficients (}) = k!(:ik)! (k = 1,
2,...,n—1). Determine all positive integers n for which (711), (Z), R (nr_Ll)

are all even numbers.

(USA 3) Let n be a positive integer, n > 2, and consider the polynomial
equation
" — 2" x4 2=0.

For each n, determine all complex numbers z that satisfy the equation
and have modulus |z| = 1.

(USA 4) (SL74-1).

(USA 5) Through the circumcenter O of an arbitrary acute-angled trian-
gle, chords Ay Ay, B1 B, C1C5 are drawn parallel to the sides BC,CA, AB
of the triangle respectively. If R is the radius of the circumcircle, prove
that

A10 - OAs + B10 - OBy + C10 - OCo = R?.

(USS 1) (SL74-12).

(USS 2) An (n?+n+1)x (n?+n+ 1) matrix of zeros and ones is given.
If no four ones are vertices of a rectangle, prove that the number of ones
does not exceed (n +1)(n? +n +1).

(USS 3) We are given n mass points of equal mass in space. We define
a sequence of points O1, 02,03, ... as follows: O; is an arbitrary point
(within the unit distance of at least one of the n points); Oz is the center
of gravity of all the n given points that are inside the unit sphere centered
at Op; Os is the center of gravity of all of the n given points that are
inside the unit sphere centered at Os; etc. Prove that starting from some
m, all points Oy, Opm+1, Omt2, - .. coincide.

(USS 4) (SL74-4).
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3 Problems

(USS 5) Outside an arbitrary triangle ABC), triangles ADB and BCE
are constructed such that ZADB = /BEC = 90° and Z/DAB =
/EBC = 30°. On the segment AC the point F' with AF = 3FC is
chosen. Prove that

/DFE =90° and JFDFE =30°.

(VIE 1) Given two points A, B outside of a given plane P, find the
positions of points M in the plane P for which the ratio %g takes a
minimum or maximum.

(VIE 2) Let a be a number different from zero. For all integers n define
Sn = a™ 4+ a=™. Prove that if for some integer k both Sy and Sii1 are
integers, then for each integer n the number S, is an integer.

(VIE 3) Determine an equation of third degree with integral coefficients

: o T s O tn —3T
having roots sin [}, sin {7 and sin 77".

(YUG 1) Let m and n be natural numbers with m > n. Prove that
2(m —n)*(m? —n? +1) > 2m? — 2mn + 1.

(YUG 2) There are n points on a flat piece of paper, any two of them
at a distance of at least 2 from each other. An inattentive pupil spills
ink on a part of the paper such that the total area of the damaged part
equals 3/2. Prove that there exist two vectors of equal length less than 1
and with their sum having a given direction, such that after a translation
by either of these two vectors no points of the given set remain in the
damaged area.

(YUG 3) A fox stands in the center of the field which has the form of an
equilateral triangle, and a rabbit stands at one of its vertices. The fox can
move through the whole field, while the rabbit can move only along the
border of the field. The maximal speeds of the fox and rabbit are equal
to w and v, respectively. Prove that:

(a) If 2u > v, the fox can catch the rabbit, no matter how the rabbit

moves.
(b) If 2u < v, the rabbit can always run away from the fox.

3.16.3 Shortlisted Problems

1.

I1 (USA 4)™O! Alice, Betty, and Carol took the same series of exam-
inations. There was one grade of A, one grade of B, and one grade of C
for each examination, where A, B, C are different positive integers. The
final test scores were

Alice Betty Carol
20 10 9

If Betty placed first in the arithmetic examination, who placed second in
the spelling examination?
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. I2 (POL 1) Prove that the squares with sides 1/1,1/2,1/3,... may be
put into the square with side 3/2 in such a way that no two of them have
any interior point in common.

. I3 (SWE 3)M96 Let P(z) be a polynomial with integer coefficients. If
n(P) is the number of (distinct) integers k such that P%(k) = 1, prove
that

n(P) — deg(P) <2,

where deg(P) denotes the degree of the polynomial P.

. I4 (USS 4) The sum of the squares of five real numbers ay, as, as, a4, as
equals 1. Prove that the least of the numbers (a; — a;)?, where i,j =
1,2,3,4,5 and i # j, does not exceed 1/10.

.15 (GBR 3) Let A,, B,,C, be points on the circumference of a given
circle S. From the triangle A, B,C,, called A, the triangle A, is ob-
tained by constructing the points A, 41, By4+1, Cr41 on S such that A, 1 A,
is parallel to B,C,, B,+1B, is parallel to C,.A,, and C,;1C, is parallel
to A, B,. Each angle of /\; is an integer number of degrees and those
integers are not multiples of 45. Prove that at least two of the triangles
NA1,Ns, ...,/ A15 are congruent.

. 16 (ROM 4)™O3 Does there exist a natural number n for which the

number
2”: (2n + 1) o3k
pors 2k + 1

is divisible by 57

II 1 (POL 2) Let a;,b; be coprime positive integers for ¢ = 1,2,...,k,
and m the least common multiple of by,...,b;. Prove that the greatest
common divisor of a; gll, ce, Ak g’}: equals the greatest common divisor of
ai,...,0qk.

. II 2 (NET 3)™MO5 [f ¢ b, ¢, d are arbitrary positive real numbers, find all
possible values of

a b c d

= aibrd T atbre T brerd Taterd

. IT 3 (CUB 3) Let z,y, z be real numbers each of whose absolute value
is different from 1/4/3 such that = 4+ y + z = zyz. Prove that

3 3 3 3

3z — 3y—y®  3z—=z 3z 3y—vy3 3z—=z

1-322  1-3y2  1-322 1-322 1-3y2 1-—322

IT 4 (FIN 3)™M92 Let AABC be a triangle. Prove that there exists a
point D on the side AB such that C'D is the geometric mean of AD and
BD if and only if vsin Asin B < sin §.
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12.

3 Problems

II 5 (BUL 1)™%4 Consider a partition of an 8 x 8 chessbhoard into p
rectangles whose interiors are disjoint such that each of them has an equal
number of white and black cells. Assume that a; < az < -+ < ap, where a;
denotes the number of white cells in the ith rectangle. Find the maximal p
for which such a partition is possible and for that p determine all possible
corresponding sequences a1, as, . . ., Gp.

IT1 6 (USS 1) In a certain language words are formed using an alphabet
of three letters. Some words of two or more letters are not allowed, and
any two such distinct words are of different lengths. Prove that one can
form a word of arbitrary length that does not contain any nonallowed
word.
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3.17 The Seventeenth IMO
Burgas—Sofia, Bulgaria, 1975

3.17.1 Contest Problems

First Day (July 7)

1. Let 1 > 29 > -+ > x,, and y; > y2 > -+ > y, be two n-tuples of
numbers. Prove that

@i — i) <) (@i — z)°
i=1

i=1
is true when 21, 29, ..., 2, denote y1,¥ys, ..., y, taken in another order.

2. Let ay,a2,as,... be any infinite increasing sequence of positive integers.
(For every integer ¢ > 0, a;4+1 > a;.) Prove that there are infinitely many m
for which positive integers z, y, h, k can be found such that 0 < h < k <m
and a,, = rap + yag.

3. On the sides of an arbitrary triangle ABC, triangles BPC, CQA, and
ARB are externally erected such that
APBC = LCAQ = 45°,
ABCP = £QCA = 30°,
{ABR = ABAR = 15°.
Prove that LQRP = 90° and QR = RP.

Second Day (July 8)

4. Let A be the sum of the digits of the number 44444444 and B the sum of
the digits of the number A. Find the sum of the digits of the number B.

5. Is it possible to plot 1975 points on a circle with radius 1 so that the
distance between any two of them is a rational number (distances have to
be measured by chords)?

6. The function f(x,y) is a homogeneous polynomial of the nth degree in z
and y. If f(1,0) =1 and for all a, b, ¢,

fla+be)+ f(b+c,a)+ flc+a,b) =0,

prove that f(x,y) = (z — 2y)(x + y)" L.

3.17.2 Shortlisted Problems

1. (FRA) There are six ports on a lake. Is it possible to organize a series
of routes satisfying the following conditions:
(i) Every route includes exactly three ports;
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(ii) No two routes contain the same three ports;
(iii) The series offers exactly two routes to each tourist who desires to visit
two different arbitrary ports?

2. (CZS)™O! Let oy > 29 > --- >z, and y1 > y2 > --- > ¥y, be two
n-tuples of numbers. Prove that
n n
Yo@i—y)? <D (@ —2)?
i=1 i=1

is true when z1, 22, ..., 2z, denote y1,¥ys, ...,y taken in another order.

3. (USA) Find the integer represented by [Ziﬁl n_2/3]. Here [x] denotes
the greatest integer less than or equal to = (e.g. [v/2] = 1).

4. (SWE) Let aj,aq9,...,a,,... be a sequence of real numbers such that
0<a, <1and a, — 26,41+ an42 >0 for n=1,2,3,.... Prove that

0<(n+1)(an—ant1) <2 forn=1,23,....

5. (SWE) Let M be the set of all positive integers that do not contain the
digit 9 (base 10). If z1,...,z, are arbitrary but distinct elements in M,

prove that
"1
> 7 <ao.
j=1

6. (USS)™O4 Let A be the sum of the digits of the number 16'¢ and B
the sum of the digits of the number A. Find the sum of the digits of the
number B without calculating 16'°.

7. (GDR) Prove that from z +y =1 (z,y € R) it follows that

mr N~ (M i e NS (P =0,1,2
x JZ_;)( ) >y +y Z( ; x (m,n , 1,200,

J =0

8. (NET)™O3 On the sides of an arbitrary triangle ABC, triangles BPC,
CQA, and ARB are externally erected such that
APBC = LCAQ = 45°,
£BCP = £QCA = 30°,
£ABR = ABAR = 15°.
Prove that LQRP = 90° and QR = RP.

9. (NET) Let f(z) be a continuous function defined on the closed interval
0 <z < 1. Let G(f) denote the graph of f(z): G(f) = {(z,y) e R? | 0 <
x <1,y = f(x)}. Let G,(f) denote the graph of the translated function
f(z — a) (translated over a distance a), defined by G.(f) = {(z,y) €
R?2|a <x<a+1,y= f(x—a)}. Is it possible to find for every a,
0 < a < 1, a continuous function f(x), defined on 0 < z < 1, such that
f(0) = f(1) =0 and G(f) and G,(f) are disjoint point sets?
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(GBR)™O6 The function f(z,y) is a homogeneous polynomial of the nth
degree in z and y. If f(1,0) =1 and for all a,b, ¢,

fla+b,e)+ f(b+c,a)+ flc+a,b) =0,

prove that f(x,y) = (z — 2y)(x + y)" L.

(GBR)™O2 Let ay,as,as, ... be any infinite increasing sequence of pos-
itive integers. (For every integer ¢ > 0, a;4+1 > a;.) Prove that there are
infinitely many m for which positive integers x,y, h, k can be found such
that 0 < h < k <m and a,,, = zapn + yay.

(GRE) Consider on the first quadrant of the trigonometric circle the
arcs AMy, = xv1,AMy = x5, AM3 = x3,...,AM, = x,, such that 21 <
Ty < x3 < -+ < x,. Prove that

v—1 v—1 v—1

. . ™ .
E sin 2x; — E sin(z; — Ti41) < 5 + E sin(x; + Ti11).
i=0 i=0 i=0

(ROM) Let Ag, A1, ..., A, be points in a plane such that

(i) Apdy < JA1A <+ < L A, 1A, and

(11) 0< £AgA1As < LA1AA3 < --- < LA, 2A, 1A, < 180°,

where all these angles have the same orientation. Prove that the segments
Ak Agy1, A Apmy1 do not intersect for each k& and n such that 0 < k <
m-—2<n-—2.

(YUG) Let 2o =5 and 211 = @y + mln (n=0,1,2,...). Prove that
45 < x1000 < 45, 1.

(USS)™O5 Tg it, possible to plot 1975 points on a circle with radius 1 so

that the distance between any two of them is a rational number (distances
have to be measured by chords)?
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3.18 The Eighteenth IMO
Wienna—Linz, Austria, 1976

3.18.1 Contest Problems

First Day (July 12)

1. In a convex quadrangle with area 32cm?, the sum of the lengths of two
nonadjacent edges and of the length of one diagonal is equal to 16 cm.
What is the length of the other diagonal?

2. Let Pi(z) = 22 — 2, Pj(x) = Pi(Pj_1(x)), j = 2,3 . Show that for
arbitrary n, the roots of the equation P,(z) = x are real and different
from one another.

3. A rectangular box can be filled completely with unit cubes. If one places
cubes with volume 2 in the box such that their edges are parallel to the
edges of the box, one can fill exactly 40% of the box. Determine all possible
(interior) sizes of the box.

Second Day (July 13)

4. Find the largest number obtainable as the product of positive integers
whose sum is 1976.

5. Let a set of p equations be given,

a1z + -+ aqre =0,
2171 + -+ -+ agqrq = 0,

ap1T1 + -+ apgrg = 0,

with coefficients a;; satisfying a;; = —1, 0, or +1 for all ¢ =1,...,p and
j=1,...,q. Prove that if ¢ = 2p, there exists a solution 1, ..., x4 of this
system such that all z; (j = 1,...,q) are integers satisfying |z;| < g and

x; # 0 for at least one value of j.

6. For all positive integral n, un11 = un(u2_; —2) —u1, ugp = 2, and u; = 2;.
Prove that
3logy [un] = 2" — (-1)",

where [z] is the integral part of x.

3.18.2 Longlisted Problems

1. (BUL 1) (SL76-1).

2. (BUL 2) Let P be a set of n points and S a set of | segments. It is
known that:
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(i) No four points of P are coplanar.
(ii) Any segment from S has its endpoints at P.
(iii) There is a point, say g, in P that is the endpoint of a maximal number
of segments from S and that is not a vertex of a tetrahedron having
all its edges in S.
Prove that [ < ’gz.

. (BUL 3) (SL76-2).

. (BUL 4) Find all pairs of natural numbers (m, n) for which 2™ - 3" 41
is the square of some integer.

. (BUL 5) Let ABCDS be a pyramid with four faces and with ABC'D
as a base, and let a plane « through the vertex A meet its edges SB and
SD at points M and N, respectively. Prove that if the intersection of the
plane « with the pyramid ABC DS is a parallelogram, then

SM-SN > BM - DN.

. (CZS 1) For each point X of a given polytope, denote by f(X) the sum
of the distances of the point X from all the planes of the faces of the
polytope.

Prove that if f attains its maximum at an interior point of the polytope,
then f is constant.

. (CZS 2) Let P be a fixed point and T a given triangle that contains the
point P. Translate the triangle T' by a given vector v and denote by T’
this new triangle. Let , R, respectively, be the radii of the smallest disks
centered at P that contain the triangles T', T”, respectively.

Prove that
r+|v| <3R

and find an example to show that equality can occur.
. (CZS 3) (SL76-3).
. (CZS 4) Find all (real) solutions of the system

32131—2122—133 — XI5 ZO,
—x1 + 322 — X4 — Tg =0,
—1 +3x3 — x4 —x7 =0,

—29 — 23 + 324 —xg =0,

—X1 +3ZC5 — T — X7 :0,
—To — x5 + 326 —xg =0,

—x3 — x5 +3z7 —xzg =0,

—X4 —x¢ —x7 + 3xg = 0.
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(FIN 1) Show that the reciprocal of any number of the form 2(m? +
m + 1), where m is a positive integer, can be represented as a sum of
consecutive terms in the sequence (a;)52,

1
YT+ DG+

(FIN 2) (SL76-9).

(FIN 3) Five points lie on the surface of a ball of unit radius. Find the
maximum of the smallest distance between any two of them.

(GBR 1a) (SL76-4).
(GBR 1b) A sequence {u,} of integers is defined by

U1:2, ’U,QZ’U,:;:?,

Up4+1 = UpUp—1 — Up—2, form > 3.

Prove that for each n > 1, u,, differs by 2 from an integral square.

(GBR 2) Let ABC and A’B’C’ be any two coplanar triangles. Let L be
a point such that AL||BC, A'L||B’C’, and M, N similarly defined. The
line BC meets B'C’ at P, and similarly defined are Q and R. Prove that
PL, QM, RN are concurrent.

(GBR 3) Prove that there is a positive integer n such that the decimal
representation of 7" contains a block of at least m consecutive zeros, where
m is any given positive integer.

(GBR 4) Show that there exists a convex polyhedron with all its vertices

on the surface of a sphere and with all its faces congruent isosceles triangles
whose ratio of sides are v/3: v/3 : 2.

(GDR 1) Prove that the number 191976 4 761976;

(a) is divisible by the (Fermat) prime number Fy = 22 + 1;

(b) is divisible by at least four distinct primes other than Fj.

(GDR 2) For a positive integer n, let 6(™ be the natural number whose

decimal representation consists of n digits 6. Let us define, for all natural
numbers m, k with 1 < k < m,

m g(m) . glm=1) .. g(m—k+1)
{k} T W .e@...m

Prove that for all m,k, [m is a natural number whose decimal repre-

k
sentation consists of exactly k(m + k — 1) — 1 digits.

(GDR 3) Let (an), n=0,1,..., be asequence of real numbers such that
ap = 0 and
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1
ai+1=2a,21—1, n=20,1,....

Prove that there exists a positive number ¢, ¢ < 1, such that for all
n=12,...,
lant1 — an| < glay — an—1|,

and give one such ¢ explicitly.

(GDR 4) Find the largest positive real number p (if it exists) such that
the inequality

224 a2 > plaiars F e+ F 2y 17,) (1)

is satisfied for all real numbers z;, and (a) n = 2; (b) n = 5.
Find the largest positive real number p (if it exists) such that the inequal-
ity (1) holds for all real numbers x; and all natural numbers n, n > 2.

(GDR 5) A regular pentagon A; As A3 A4 As with side length s is given.
At each point A; a sphere K; of radius s/2 is constructed. There are two
spheres Ky’ and K5’ eah of radius s/2 touching all the five spheres K;.
Decide whether K7’ and K5’ intersect each other, touch each other, or
have no common points.

(NET 1) Prove that in a Euclidean plane there are infinitely many
concentric circles C' such that all triangles inscribed in C have at least
one irrational side.

(NET 2) Let 0 <2y <9 <--- <z, < 1. Prove that for all A > 1
there exists an interval I of length 23/ A such that for all z € I,

(@ —21)(x —xg) -~ (& — 2p)| < A

(NET 3) (SL76-5).
(NET 4) (SL76-6).

(NET 5) In a plane three points P,Q, R, not on a line, are given. Let
k,l,m be positive numbers. Construct a triangle ABC whose sides pass
through P, @, and R such that

P divides the segment AB in the ratio 1 : k,

Q@ divides the segment BC' in the ratio 1: [, and

R divides the segment C'A in the ratio 1 : m.

(POL 1a) Let @ be a unit square in the plane: = [0,1] x [0, 1]. Let
T:Q — Q be defined as follows:

(22, 9/2) if0<az<1/2;

Show that for every disk D C @ there exists an integer n > 0 such that
T"(D)N D # (.
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(POL 1b) (SL76-7).

(POL 2) Prove that if P(z) = (r—a)*Q(z), where k is a positive integer,
a is a nonzero real number, Q(z) is a nonzero polynomial, then P(x) has
at least k 4 1 nonzero coeflicients.

(POL 3) Into every lateral face of a quadrangular pyramid a circle is
inscribed. The circles inscribed into adjacent faces are tangent (have one
point in common). Prove that the points of contact of the circles with the
base of the pyramid lie on a circle.

(POL 4) We consider the infinite chessboard covering the whole plane.
In every field of the chessboard there is a nonnegative real number. Every
number is the arithmetic mean of the numbers in the four adjacent fields
of the chessboard. Prove that the numbers occurring in the fields of the
chessboard are all equal.

(SWE 1) A finite set of points P in the plane has the following prop-
erty: Every line through two points in P contains at least one more point
belonging to P. Prove that all points in P lie on a straight line.

(SWE 2) Let {a,}5° and {b,}° be two sequences determined by the
recursion formulas

Un41 = an"'bn;
b1 = 3an + by, n=0,1,2,...,

and the initial values ag = by = 1. Prove that there exists a uniquely
determined constant ¢ such that n|ca, —b,| < 2 for all nonnegative integers
n.

(SWE 3) (SL76-8).

(USA 1) Three concentric circles with common center O are cut by a
common chord in successive points A, B, C. Tangents drawn to the circles
at the points A, B, C enclose a triangular region. If the distance from point
O to the common chord is equal to p, prove that the area of the region
enclosed by the tangents is equal to

AB-BC-CA
2p ’
(USA 2) From a square board 11 squares long and 11 squares wide, the

central square is removed. Prove that the remaining 120 squares cannot
be covered by 15 strips each 8 units long and one unit wide.

(USA 3) Let = \/a + Vb, where a and b are natural numbers, z is

not an integer, and x < 1976. Prove that the fractional part of z exceeds
10—19.76.

(USA 4) In AABC, the inscribed circle is tangent to side BC at X.
Segment AX is drawn. Prove that the line joining the midpoint of segment
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AX to the midpoint of side BC' passes through the center I of the inscribed
circle.

(USA 5) Let g(x) be a fixed polynomial and define f(z) by f(z) =
22 4+ xg(23). Show that f(z) is not divisible by 22 — z + 1.

(USA 6) (SL76-10).

(USS 1) For a point O inside a triangle ABC, denote by A, By,C4

the respective intersection points of AO, BO,CO with the corresponding

sides. Let n; = ,34100’ ng = BBl%, ng = gl%. What possible values of

ni,n2,ns can all be positive integers?

(USS 2) Prove that if for a polynomial P(x,y) we have
Plx—-1,y—2z+1)=P(x,y),

then there exists a polynomial @(z) with P(x,y) = ®(y — 2?).

(USS 3) A circle of radius 1 rolls around a circle of radius v/2. Initially,
the tangent point is colored red. Afterwards, the red points map from one
circle to another by contact. How many red points will be on the bigger
circle when the center of the smaller one has made n circuits around the
bigger one?

(USS 4) We are given n (n > 5) circles in a plane. Suppose that every
three of them have a common point. Prove that all n circles have a common
point.

(USS 5) Fora>0,b>0,c>0,d>0, prove the inequality
a* +b* + ¢t + d* + 2abed > aPb? + a®? + a?d? + b2 + b2 d? + PdP.
(VIE 1) (SL76-11).

(VIE 2) (SL76-12).

(VIE 3) Determine whether there exist 1976 nonsimilar triangles with
angles a, 3,7, each of them satisfying the relations

sina +sin 8 +siny 12

= and sinasin(Gsiny =
cosa + cos B + cosy 7 fsiny

25°

(VIE 4) Find a function f(x) defined for all real values of x such that
for all x,
flx+2) — f(x) = 2% + 22 + 4,

and if z € [0,2), then f(z) = 22.

(YUG 1) Four swallows are catching a fly. At first, the swallows are
at the four vertices of a tetrahedron, and the fly is in its interior. Their
maximal speeds are equal. Prove that the swallows can catch the fly.
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3.18.3 Shortlisted Problems

1.

(BUL 1) Let ABC be a triangle with bisectors AA;, BB1,CC; (A; €
BC, etc.) and M their common point. Consider the triangles M By A,
MC{A, MC B, MA{B, MA{C, M B1C, and their inscribed circles. Prove
that if four of these six inscribed circles have equal radii, then AB =
BC = CA.

. (BUL 3) Let ag, a1, ..., an, ant+1 be a sequence of real numbers satisfying

the following conditions:

ap = An41 :07
lag—1 —2ar +arp1] <1 (B=1,2,...,n).

Prove that |ag| < k("zl_k) (k=0,1,...,n+1).

. (CZS 3)™O! In a convex quadrangle with area 32 cm?, the sum of the

lengths of two nonadjacent edges and of the length of one diagonal is equal

to 16 cm.

(a) What is the length of the other diagonal?

(b) What are the lengths of the edges of the quadrangle if the perimeter
is a minimum?

(c) Is it possible to choose the edges in such a way that the perimeter is
a maximum?

. (GBR 1a)™M96 For all positive integral n, w,1 = u,(u2_; — 2) — u1,

ug = 2, and u; = 5/2. Prove that
3logyun] = 2" — (=1)",

where [z] is the integral part of x.

. (NET 3)™95 Let a set of p equations be given,

1171 + -+ a1qrq = 0,
a21%1 + + -+ Q2q%g = 0,

ap1T1 + -+ + apgrg = 0,

with coefficients a;; satisfying a;; = —1, 0, or +1 for all ¢ =1,...,p and
j=1,...,q. Prove that if ¢ = 2p, there exists a solution z1, ..., x4 of this
system such that all z; (j = 1,...,q) are integers satisfying |z;| < ¢ and

x; # 0 for at least one value of j.

. (NET 4)™O03 A rectangular box can be filled completely with unit cubes.

If one places cubes with volume 2 in the box such that their edges are
parallel to the edges of the box, one can fill exactly 40% of the box.
Determine all possible (interior) sizes of the box.
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(POL 1b) Let I = (0,1] be the unit interval of the real line. For a given
number a € (0,1) we define a map T : I — I by the formula

_ x—f—(l—@) if0<$§a7
T(%y)—{z_a ifa<z<l.

Show that for every interval J C I there exists an integer n > 0 such that

T(J)NJ # 0.

. (SWE 3) Let P be a polynomial with real coefficients such that P(x) > 0

if x > 0. Prove that there exist polynomials Q and R with nonnegative

coefficients such that P(z) = Rgz; if x> 0.

. (FIN 2)IMO2 Let Pi(z) = 22 — 2, Pj(z) = Pi(Pj_1(z)), j =

Show that for arbitrary n the roots of the equatlon P,(z) = x are real
and different from one another.

(USA 6)™94 Find the largest number obtainable as the product of pos-
itive integers whose sum is 1976.

(VIE 1) Prove that there exist infinitely many positive integers n such
that the decimal representation of 5" contains a block of 1976 consecutive
ZETOoS.

(VIE 2) The polynomial 1976(z+z%+- - -+2") is decomposed into a sum
of polynomials of the form a1z + asz? + ... + a,2", where ay,as,--- ,a,
are distinct positive integers not greater than n. Find all values of n for
which such a decomposition is possible.
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3.19 The Nineteenth IMO
Belgrade—Arandjelovac, Yugoslavia, July 1-13, 1977

3.19.1 Contest Problems

First Day (July 6)

1. Equilateral triangles ABK, BCL, CDM, DAN are constructed inside
the square ABCD. Prove that the midpoints of the four segments KL,
LM, MN, NK and the midpoints of the eight segments AK, BK, BL,
CL,CM, DM, DN, AN are the twelve vertices of a regular dodecagon.

2. In a finite sequence of real numbers the sum of any seven successive terms
is negative, and the sum of any eleven successive terms is positive. Deter-
mine the maximum number of terms in the sequence.

3. Let n be a given integer greater than 2, and let V,, be the set of integers
1+ kn, where k = 1,2,.... A number m € V,, is called indecomposable
in V,, if there do not exist numbers p,q € V,, such that pg = m. Prove
that there exists a number r € V,, that can be expressed as the product of
elements indecomposable in V,, in more than one way. (Expressions that
differ only in order of the elements of V,, will be considered the same.)

Second Day (July 7)

4. Let a,b, A, B be given constant real numbers and
f(x)=1—acosz —bsinz — Acos2z — Bsin2z.
Prove that if f(x) > 0 for all real z, then
a®+v2<2 and A2+ B?2<1.

5. Let a and b be natural numbers and let ¢ and r be the quotient and
remainder respectively when a? + b? is divided by a + b. Determine the
numbers a and b if g2 + r = 1977.

6. Let f : N — N be a function that satisfies the inequality f(n+1) > f(f(n))
for all n € N. Prove that f(n) = n for all natural numbers n.

3.19.2 Longlisted Problems

1. (BUL 1) A pentagon ABCDE inscribed in a circle for which BC < CD
and AB < DFE is the base of a pyramid with vertex S. If AS is the longest
edge starting from S, prove that BS > CS.

2. (BUL 2) (SL77-1).
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. (BUL 3) In a company of n persons, each person has no more than d

acquaintances, and in that company there exists a group of k persons,
k > d, who are not acquainted with each other. Prove that the number of
acquainted pairs is not greater than [n?/4].

. (BUL 4) We are given n points in space. Some pairs of these points

are connected by line segments so that the number of segments equals
[n?/4], and a connected triangle exists. Prove that any point from which
the maximal number of segments starts is a vertex of a connected triangle.

. (CZS 1) (SL77-2).
. (CZS 2) Letzy,z2,...,2, (n > 1) be real numbers such that 0 < z; <,

j = 1,2,...,n. Prove that if 3.7 (cosz; + 1) is an odd integer, then
Z?:l sinz; > 1.

. (CZS 3) Prove the following assertion: If ¢1, ¢, ..., ¢, (n > 2) are real

numbers such that
(=1 + e+ Fe) = (et +en),

then either all these numbers are nonnegative or all these numbers are
nonpositive.

. (CZS 4) A hexahedron ABCDE is made of two regular congruent tetra-

hedra ABCD and ABCE. Prove that there exists only one isometry Z
that maps points A, B, C, D, E onto B, C, A, E, D, respectively. Find
all points X on the surface of hexahedron whose distance from Z(X) is
minimal.

. (CZS 5) Let ABCD be a regular tetrahedron and Z an isometry map-

ping A, B, C, D into B, C, D, A, respectively. Find the set M of all
points X of the face ABC whose distance from Z(X) is equal to a given
number ¢. Find necessary and sufficient conditions for the set M to be
nonempty.

(FRG 1) (SL77-3).

(FRG 2) Let n and z be integers greater than 1 and (n, z)

(a) At least one of the numbers z; = 14+z+22+---+2% i =0,
is divisible by n.

(b) If (z—1,n) = 1, then at least one of the numbers z;, i = 0,1,...,n—2,
is divisible by n.

(FRG 3) Let z be an integer > 1 and let M be the set of all numbers

of the form 2z =1+ 2z +---+ 2F, k= 0,1,... . Determine the set T of

divisors of at least one of the numbers z; from M.

(FRG 4) (SL77-4).
(FRG 5) (SL77-5).

= 1. Prove:
1,...,n—1,
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(GDR 1) Let n be an integer greater than 1. In the Cartesian coordinate
system we consider all squares with integer vertices (x,y) such that 1 <
z,y < n. Denote by px, (k=0,1,2,...) the number of pairs of points that
are vertices of exactly k such squares. Prove that 3, (k — 1)py = 0.

(GDR. 2) (SL77-6).

(GDR 3) A ball K of radius r is touched from the outside by mutually
equal balls of radius R. Two of these balls are tangent to each other.
Moreover, for two balls K; and K> tangent to K and tangent to each
other there exist two other balls tangent to K1, Ko and also to K. How
many balls are tangent to K7 For a given r determine R.

(GDR 4) Given an isosceles triangle ABC with a right angle at C,
construct the center M and radius r of a circle cutting on segments
AB, BC, CA the segments DE, FG, and HK, respectively, such that
/DME+ /FMG+ /ZHMK = 180° and DE : FG : HK = AB : BC':
CA.

(GBR 1) Given any integer m > 1 prove that there exist infinitely
many positive integers n such that the last m digits of 5™ are a sequence
Uy Gm—1,--.,081 =5 (0 < aj < 10) in which each digit except the last is
of opposite parity to its successor (i.e., if a; is even, then a;_; is odd, and
if a; is odd, then a;_; is even).
(GBR 2) (SL77-7).
(GBR 3) Given that 1 4+x9+23 = y1+y2+ys = z1y1 + T2y +x3ys = 0,
prove that
xf vi o 2

vi+ad+as  yi+ystys 3
(GBR 4) (SLT77-8).
(HUN 1) (SL77-9).

(HUN 2) Determine all real functions f(x) that are defined and contin-
uous on the interval (—1,1) and that satisfy the functional equation

f@)+ f(y)
L= f(@)f(y)

(HUN 3) Prove the identity

(z4+a)" =2z —|—az<> — kb)* (2 + kb)™

f($+y) (x7y7x+y€ (_151))'

(NET 1) Let p be a prime number greater than 5. Let V' be the collection
of all positive integers n that can be written in the form n = kp+ 1 or
n=kp—1(k=1,2,...). Anumber n € V is called indecomposable in V
if it is impossible to find k,l € V such that n = kl. Prove that there exists
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a number N € V that can be factorized into indecomposable factors in V'
in more than one way.

(NET 2) (SL77-10).
(NET 3) (SL77-11).
(NET 4) (SL77-12).

(NET 5) A triangle ABC with ZA = 30° and ZC = 54° is given. On
BC' a point D is chosen such that ZCAD = 12°. On AB a point F is
chosen such that ZACFE = 6°. Let S be the point of intersection of AD
and C'E. Prove that BS = BC.

(POL 1) Let f be a function defined on the set of pairs of nonzero
rational numbers whose values are positive real numbers. Suppose that f
satisfies the following conditions:

(1) f(abv C) = f(av C)f(bv C)v f(C, CLb) = f(C, a)f(c, b)a

(2) fla,1 —a)=1.

Prove that f(a,a) = f(a,—a) =1, f(a,b)f(b,a) = 1.

(POL 2) In aroom there are nine men. Among every three of them there

are two mutually acquainted. Prove that some four of them are mutually
acquainted.

(POL 3) A circle K centered at (0, 0) is given. Prove that for every vector
(a1,a2) there is a positive integer n such that the circle K translated by
the vector n(aj,as) contains a lattice point (i.e., a point both of whose
coordinates are integers).

(POL 4) (SL77-13).

(ROM 1) Find all numbers N = ajas...a, for which 9 x aqas...a, =
Gp - .. a2aq such that at most one of the digits ay,as, ..., a, is zero.

(ROM 2) Consider a sequence of numbers (aj, az, ..., asn). Define the
operation

S((al, az, ... ,agn)) = (alag, a2as3, ..., agn_lagn,agnal).
Prove that whatever the sequence (ai,as,...,asn) is, with a; € {-1,1}
for i = 1,2,...,2", after finitely many applications of the operation we

get the sequence (1,1,...,1).
(ROM 3) Let Ay, As, ..., Apt1 be positive integers such that (A;, Ap41)
=1 for every i = 1,2,...,n. Show that the equation

A A A,
x11+x22+~~-+xﬁ":xn+i’l

has an infinite set of solutions (z1, 2, ..., Z,+1) in positive integers.

(ROM 4) Letm; >0forj=1,2,....,nanda; <---<ap, <b <--- <
b, < g <---<¢, be real numbers. Prove:
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ij(aj-i-bj—i-cj) >3 ij ij(ajbj—i—bjcj-i-cjaj)
=1 =1 =1

(ROM 5) Consider 37 distinct points in space, all with integer coordi-
nates. Prove that we may find among them three distinct points such that
their barycenter has integers coordinates.

(SWE 1) The numbers 1,2,3,...,64 are placed on a chessboard, one
number in each square. Consider all squares on the chessboard of size
2 x 2. Prove that there are at least three such squares for which the sum
of the 4 numbers contained exceeds 100.

(SWE 2) A wheel consists of a fixed circular disk and a mobile circular
ring. On the disk the numbers 1,2, 3,..., N are marked, and on the ring
N integers ai,as,...,ayx of sum 1
are marked (see the figure). The
ring can be turned into N differ-
ent positions in which the numbers
on the disk and on the ring match
each other. Multiply every number
on the ring with the corresponding
number on the disk and form the
sum of N products. In this way a
sum is obtained for every position of the ring. Prove that the N sums are
different.

(SWE 3) The sequence a,, ;, k =1,2,3,. ,n=20,1,2,...,is defined
by the following recurrence formula:

1
_ _ 3 _ 3
ay = 2; an .k = 2an_17k7 an7k+2"_1 - 2an—1,k

for k=1,2,3,...,2" Y n=0,1,2,... .

Prove that the numbers a,, ; are all different.
(FIN 1) Evaluate

S=> k(k+1)---(k+p),
k=1

where n and p are positive integers.

(FIN 2) Let E be a finite set of points in space such that E is not
contained in a plane and no three points of E are collinear. Show that
E contains the vertices of a tetrahedron T'= ABCD such that TN E =
{A, B, C, D} (including interior points of T') and such that the projection
of A onto the plane BC'D is inside a triangle that is similar to the triangle
BCD and whose sides have midpoints B, C, D.
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(FIN 2') (SL77-14).

(FIN 3) Let f be a strictly increasing function defined on the set of real
numbers. For x real and ¢ positive, set

fle+1t) = f(z)

M0 = )~ 1)

Assume that the inequalities
27t < g(a,t) <2

hold for all positive ¢ if x = 0, and for all ¢ < |z| otherwise.
Show that
147 < g(z,t) < 14

for all real x and positive ¢.

(USS 1) A square ABCD is given. A line passing through A intersects
CD at Q. Draw a line parallel to AQ that intersects the boundary of the
square at points M and N such that the area of the quadrilateral AM NQ
is maximal.

(USS 2) The intersection of a plane with a regular tetrahedron with
edge a is a quadrilateral with perimeter P. Prove that 2a < P < 3a.

(USS 3) Find all pairs of integers (p, q) for which all roots of the trino-
mials 22 + pz + ¢ and x2 + gz + p are integers.

(USS 4) Determine all positive integers n for which there exists a poly-
nomial P, (z) of degree n with integer coefficients that is equal to n at n
different integer points and that equals zero at zero.

(USS 5) Several segments, which we shall call white, are given, and
the sum of their lengths is 1. Several other segments, which we shall call
black, are given, and the sum of their lengths is 1. Prove that every such
system of segments can be distributed on the segment that is 1.51 long in
the following way: Segments of the same color are disjoint, and segments
of different colors are either disjoint or one is inside the other. Prove
that there exists a system that cannot be distributed in that way on the
segment that is 1.49 long.

(USA 1) Two perpendicular chords are drawn through a given interior
point P of a circle with radius R. Determine, with proof, the maximum
and the minimum of the sum of the lengths of these two chords if the
distance from P to the center of the circle is kR.

(USA 2) Find all pairs of integers a and b for which

Ta + 14b = 5a% + 5ab + 5b°.
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(USA 3) If 0 <a <b<c<d, prove that
abbctd® > b*cPdca’.

(USA 4) Through a point O on the diagonal BD of a parallelogram
ABCD, segments M N parallel to AB, and P(Q parallel to AD, are drawn,
with M on AD, and @ on AB. Prove that diagonals AO, BP, DN (ex-
tended if necessary) will be concurrent.

(USA 5) The four circumcircles of the four faces of a tetrahedron have
equal radii. Prove that the four faces of the tetrahedron are congruent
triangles.

(VIE 1) (SL77-15).
(VIE 2) Prove that for every triangle the following inequality holds:
ab+ bc + ca s
> cot
a5 =%
where a, b, ¢ are lengths of the sides and S is the area of the triangle.
(VIE 3) (SL77-16).

(VIE 4) Suppose zg,21,...,2, are integers and xg > 1 > -+ > oy,
Prove that at least one of the numbers |F(xo)|, |F(x1)|, |F(z2)],-..,
|F(z,)], where

Fx)=a2"4+a2" '+ - +a, a€R, i=1,...,n,

n!

is greater than J, .

3.19.3 Shortlisted Problems

1.

(BUL 2)™MO6 Tet f: N — N be a function that satisfies the inequality
fn+1) > f(f(n)) for all n € N. Prove that f(n) = n for all natural
numbers n.

. (CZS 1) A lattice point in the plane is a point both of whose coordinates

are integers. Each lattice point has four neighboring points: upper, lower,
left, and right. Let k be a circle with radius » > 2, that does not pass
through any lattice point. An interior boundary point is a lattice point
lying inside the circle k& that has a neighboring point lying outside k.
Similarly, an exterior boundary point is a lattice point lying outside the
circle k that has a neighboring point lying inside k. Prove that there are
four more exterior boundary points than interior boundary points.

. (FRG 1)™95 Let g and b be natural numbers and let ¢ and r be the

quotient and remainder respectively when a? + b? is divided by a + b.
Determine the numbers a and b if ¢> + r = 1977.
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. (FRG 4) Describe all closed bounded figures ¢ in the plane any two

points of which are connectable by a semicircle lying in &.

. (FRG 5) There are 2™ words of length n over the alphabet {0, 1}. Prove

that the following algorithm generates the sequence wg, wy, ..., wan_1 of

all these words such that any two consecutive words differ in exactly one

digit.

(1) wo =00...0 (n zeros).

(2) Suppose wy,—1 = G103 ...an, a; € {0,1}. Let e(m) be the exponent
of 2 in the representation of n as a product of primes, and let j =
1 4 e(m). Replace the digit a; in the word wy,—1 by 1 — a;. The
obtained word is wy,.

. (GDR 2) Let n be a positive integer. How many integer solutions

(4,4,k,1), 1 <14,j,k,1 <n, does the following system of inequalities have:
1< —j+k+1<n
1< 1—k+4+1<n
1< i—j+i<n
1< i4+j—k<n?
(GBR 2)™9%4 et a,b, A, B be given constant real numbers and
f@)=1—acosx —bsinz — Acos2zx — Bsin2x.

Prove that if f(z) > 0 for all real z, then

a?+b><2 and A+ B <1.

. (GBR 4) Let S be a convex quadrilateral ABCD and O a point inside

it. The feet of the perpendiculars from O to AB, BC, CD, DA are Ay, By,
C1, Dy respectively. The feet of the perpendiculars from O to the sides of
S;, the quadrilateral A;B;C;D;, are A;4+1B;+1Ci+1D;i+1, where i = 1,2, 3.
Prove that Sy is similar to S.

. (HUN 1) For which positive integers n do there exist two polynomials f

and g with integer coefficients of n variables x1, x2, ..., x, such that the
following equality is satisfied:

n
(sz> f(xlvaW";xn) = g('x%ax%a "1:37,)?
i=1

(NET 2)™03 Let n be an integer greater than 2. Define V = {1 + kn |
k=1,2,...}. A number p € V is called indecomposable in V if it is not
possible to find numbers ¢, g2 € V such that qg2 = p. Prove that there
exists a number N € V that can be factorized into indecomposable factors
in V' in more than one way.
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(NET 3) Let n be an integer greater than 1. Define

i .
Tr=n, y1 =1, xip1= [%2‘%], Yit1 = [xn } fori=1,2,...,
i+1

where [z] denotes the largest integer less than or equal to z. Prove that

min{zy,z2,...2,} = [V/n].

(NET 4)™01! On the sides of a square ABC'D one constructs inwardly
equilateral triangles ABK, BCL, CDM, DAN. Prove that the midpoints
of the four segments KL, LM, M N, NK, together with the midpoints of
the eight segments AK, BK, BL, CL, CM, DM, DN, AN, are the 12
vertices of a regular dodecagon.

(POL 4) Let B be a set of k sequences each having n terms equal to 1 or
—1. The product of two such sequences (a1, as, ..., a,) and (b1, ba, ..., by,)
is defined as (a1b1,asbe,...,anb,). Prove that there exists a sequence
(c1,¢2,...,cy) such that the intersection of B and the set containing all
sequences from B multiplied by (c1,ca,...,¢,) contains at most k2/2"
sequences.

(FIN 2¢) Let F be a finite set of points such that E is not contained in

a plane and no three points of E are collinear. Show that at least one of

the following alternatives holds:

(i) E contains five points that are vertices of a convex pyramid having
no other points in common with F;

(ii) some plane contains exactly three points from FE.

(VIE 1)™092 The length of a finite sequence is defined as the number of
terms of this sequence. Determine the maximal possible length of a finite
sequence that satisfies the following condition: The sum of each seven
successive terms is negative, and the sum of each eleven successive terms
is positive.

(VIE 3) Let E be a set of n points in the plane (n > 3) whose co-
ordinates are integers such that any three points from E are vertices of

a nondegenerate triangle whose centroid doesn’t have both coordinates
integers. Determine the maximal n.
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3.20 The Twentieth IMO
Bucharest, Romania, 1978

3.20.1 Contest Problems

First Day (July 6)

1. Let n > m > 1 be natural numbers such that the groups of the last three
digits in the decimal representation of 1978",1978" coincide. Find the
ordered pair (m,n) of such m,n for which m + n is minimal.

2. Given any point P in the interior of a sphere with radius R, three mutu-
ally perpendicular segments PA, PB, PC' are drawn terminating on the
sphere and having one common vertex in P. Consider the rectangular par-
allelepiped of which PA, PB, PC are coterminal edges. Find the locus of
the point @ that is diagonally opposite P in the parallelepiped when P
and the sphere are fixed.

3. Let {f(n)} be a strictly increasing sequence of positive integers: 0 <
f(1) < f(2) < f(3) < .... Of the positive integers not belonging to
the sequence, the nth in order of magnitude is f(f(n)) + 1. Determine

£(240).
Second day (July 7)

4. In a triangle ABC we have AB = AC. A circle is tangent internally to the
circumcircle of ABC and also to the sides AB, AC, at P, (Q respectively.
Prove that the midpoint of PQ is the center of the incircle of ABC.

5. Let ¢ : {1,2,3,...} — {1,2,3,...} be injective. Prove that for all n,
— (k) _ (1
> 2,
k=1 k=1

6. An international society has its members in 6 different countries. The
list of members contains 1978 names, numbered 1,2, ...,1978. Prove that
there is at least one member whose number is the sum of the numbers of
two, not necessarily distinct, of his compatriots.

3.20.2 Longlisted Problems

1. (BUL 1) (SL78-1).
2. (BUL 2) If

f((E) _ (x+2x2++n;v")2 :a2x2+a3x3+"'+a2nx2”,

prove that
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n+1\5n2+5n+2
2 12 ’

an+1+an+2+"'+a2n:<

. (BUL 3) Find all numbers « for which the equation

2 —2zfz] +2z—a=0

has two nonnegative roots. ([x] denotes the largest integer less than or
equal to x.)

. (BUL 4) (SL78-2).
. (CUB 1) Prove that for any triangle ABC there exists a point P in the

plane of the triangle and three points A’, B’, and C’ on the lines BC,
AC, and AB respectively such that

AB-PC' = AC - PB' = BC - PA' = 0.3M?,

where M = max{AB, AC, BC'}.

(CUB 2) Prove that for all X > 1 there exists a triangle whose sides
have lengths Py (X) = X414+ X34+2X2+ X +1, Py(X) = 2X34+ X24+2X +1,
and P3(X) = X*—1. Prove that all these triangles have the same greatest
angle and calculate it.

(CUB 3) (SL78-3).

. (CZS 1) For two given triangles A3 As A3 and By BoBs with areas Ay

and Ap, respectively, A; A > B;By, i,k = 1,2,3. Prove that Ay > Ap
if the triangle A; As A3 is not obtuse-angled.

. (CZS 2) (SL78-4).

(CZS 3) Show that for any natural number n there exist two prime
numbers p and ¢, p # ¢, such that n divides their difference.

(CZS 4) Find all natural numbers n < 1978 with the following property:
If m is a natural number, 1 < m < n, and (m,n) =1 (i.e., m and n
are relatively prime), then m is a prime number.

(FIN 1) The equation 22 + ax?® + bz + ¢ = 0 has three (not necessarily
distinct) real roots t, u, v. For which a, b, ¢ do the numbers 3, u? v3 satisfy
the equation x2 + a32? 4+ b3z 4 ¢ = 07

(FIN 2) The satellites A and B circle the Earth in the equatorial plane
at altitude h. They are separated by distance 2r, where r is the radius
of the Earth. For which A can they be seen in mutually perpendicular
directions from some point on the equator?

(FIN 3) Let p(z,y) and ¢(x,y) be polynomials in two variables such
that for > 0, y > 0 the following conditions hold:
(i) p(z,y) and q(z,y) are increasing functions of z for every fixed y.
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(ii) p(z,y) is an increasing and ¢(z) is a decreasing function of y for every
fixed x.

(iii) p(z,0) = ¢(x,0) for every x and p(0,0) = 0.

Show that the simultaneous equations p(x,y) = a, q(z,y) =

unique solution in the set x > 0, y > 0 for all a, b satisfying 0 <

lack a solution in the same set if a < b.

b have a
b < a but
(FRA 1) Prove that for every positive integer n coprime to 10 there

exists a multiple of n that does not contain the digit 1 in its decimal
representation.

(FRA 2) (SL78-6).
(FRA 3) (SL78-17).

(FRA 4) Given a natural number n, prove that the number M (n) of
points with integer coordinates inside the circle (O(0,0), /n) satisfies

mm —5yn+1< M(n)<mn+4yn+1.

(FRA 5) (SL78-7).

(GBR 1) Let O be the center of a circle. Let OU, OV be perpendicular
radii of the circle. The chord PQ passes through the midpoint M of UV.
Let W be a point such that PM = PW, where U, V, M, W are collinear.
Let R be a point such that PR = M(), where R lies on the line PW.
Prove that MR =UV.

Alternative version: A circle S is given with center O and radius r. Let

M be a point whose distance from O is \;2. Let PMQ@ be a chord of S.

The point N is defined by PN = m Let R be the reflection of N by
the line through P that is parallel to OM. Prove that MR = /2r.

(GBR 2) A circle touches the sides AB, BC,CD, DA of a square at
points K, L, M, N respectively, and BU, KV are parallel lines such that
U ison DM and V on DN. Prove that UV touches the circle.

(GBR 3) Two nonzero integers x,y (not necessarily positive) are such
12+y2

that = + y is a divisor of 2% + y?, and the quotient *, 1y is a divisor of

1978. Prove that = y.
(GBR 4) (SL78-8).
(GBR 5) (SL78-9).

(GDR 1) Consider a polynomial P(z) = az? + bz + ¢ with a > 0 that
has two real roots =1, x3. Prove that the absolute values of both roots are
less than or equal to 1 if and only if a +b+¢ > 0, a —b+ ¢ > 0, and
a—c>0.

(GDR. 2) (SL78-5).
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(GDR 3) Determine the sixth number after the decimal point in the
number (V1978 + [v1978])”.

(GDR 4) Let ¢, s be real functions defined on R\{0} that are nonconstant
on any interval and satisfy

¢ (;) =c(x)c(y) — s(x)s(y) for any z # 0, y # 0.

Prove that:

(a) c(1/x) = c(x), s(1/x) = —s(z) for any = # 0, and also ¢(1) = 1,
s(1) =s(—1) =0;

(b) ¢ and s are either both even or both odd functions (a function f is
even if f(z) = f(—=) for all z, and odd if f(x) = —f(—=x) for all x).

Find functions ¢, s that also satisfy c¢(z) + s(z) = 2™ for all z, where n is

a given positive integer.

(GDR 5) (Variant of GDR 4) Given a nonconstant function f : RT — R

such that f(zy) = f(x)f(y) for any =,y > 0, find functions ¢, s : RT — R

that satisfy c(z/y) = c(z)c(y) — s(x)s(y) for all z,y > 0 and ¢(z) + s(z) =

f(z) for all z > 0.

(NET 1) (SL78-10).
(NET 2) Let the polynomials

P(r) =2" + ap_12" 1 + - + a12 + ao,
Q(x) = a™ 4+ byy—12™ 1 + - + by + by,

be given satisfying the identity P(z)? = (22 — 1)Q(x)? + 1. Prove the
identity

P'(z) = nQ(x).
(NET 3) Let C be the circumcircle of the square with vertices (0,0),
(0,1978), (1978,0), (1978, 1978) in the Cartesian plane. Prove that C con-
tains no other point for which both coordinates are integers.

(SWE 1) A sequence (a,)$° of real numbers is called convex if 2a, <
an—1+an41 for all positive integers n. Let (by,)5° be a sequence of positive
numbers and assume that the sequence (a™b,)3° is convex for any choice
of o > 0. Prove that the sequence (logb,,)&° is convex.

(SWE 2) (SL78-11).

(SWE 3) A sequence (a,,){ of real numbers is called concave if 2a, >
Gp—1 + ap4q for all integersn, 1 <n < N — 1.
(a) Prove that there exists a constant C' > 0 such that

N

N 2
(Z an> >C(N-1)) a? (1)
n=0

n=0
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for all concave positive sequences (ay ).
(b) Prove that (1) holds with C = 3/4 and that this constant is best
possible.

(TUR 1) The integers 1 through 1000 are located on the circumference
of a circle in natural order. Starting with 1, every fifteenth number (i.e.,
1,16,31,...) is marked. The marking is continued until an already marked
number is reached. How many of the numbers will be left unmarked?

(TUR 2) Simplify
1 1 1
log,, (abc) + log,, (abe) + log,.(abc)’
where a, b, ¢ are positive real numbers.

(TUR 3) Given a circle, construct a chord that is trisected by two given
noncollinear radii.

(TUR 4) A is a 2m-digit positive integer each of whose digits is 1. B is
an m-digit positive integer each of whose digits is 4. Prove that A+ B +1
is a perfect square.

(TUR 5) IfC% = . (p>1), prove the identity

Cr=Cl i +Cly+- +CP P}

and then evaluate the sum
S=1-2-3+2-3-4+---497-98-99.
(USA 1) (SL78-12).

(USA 2) A,B,C,D,FE are points on a circle O with radius equal to .
Chords AB and DFE are parallel to each other and have length equal to x.
Diagonals AC, AD, BE,CFE are drawn. If segment XY on O meets AC
at X and EC at Y, prove that lines BX and DY meet at Z on the circle.
(USA 3) If p is a prime greater than 3, show that at least one of the
numbers 3, 4 P~? is expressible in the form ! + ;, where 2 and y

. .p27.p2a"'a pz
are positive integers.

(USA 4) In AABC with ZC = 60°, prove that ¢ + ¢ > 2.
(USA 5) If r >s>0and a > b > ¢, prove that

a"b® +b"c® 4+ c"a’® > a’b" +b°c" + cfa”.
(USA 6) (SL78-13).
(VIE 1) Given the expression

! [(x-i-\/x?—l)n-i- (x— \/x2—1)"},

P,(z) = on

prove:
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(a) P,(z) satisfies the identity P,(x) — xP,—1(z) + iPn_g(x) =0.
(b) P,(x) is a polynomial in z of degree n.

48. (VIE 2) (SL78-14).

49. (VIE 3) Let A, B,C, D be four arbitrary distinct points in space.

(a) Prove that using the segments AB+ CD, AC+ BD and AD + BC'it
is always possible to construct a triangle T" that is nondegenerate and
has no obtuse angle.

(b) What should these four points satisty in order for the triangle T' to be
right-angled?

50. (VIE 4) A variable tetrahedron ABCD has the following properties:
Its edge lengths can change as well as its vertices, but the opposite edges
remain equal (BC = DA, CA = DB, AB = DC); and the vertices A, B, C
lie respectively on three fixed spheres with the same center P and radii
3,4,12. What is the maximal length of PD?

51. (VIE 5) Find the relations among the angles of the triangle ABC whose
altitude AH and median AM satisfy ZBAH = ZCAM.

52. (YUG 1) (SL78-15).
53. (YUG 2) (SL78-16).

54. (YUG 3) Let p, g and 7 be three lines in space such that there is no plane
that is parallel to all three of them. Prove that there exist three planes
«, B, and 7y, containing p, ¢, and r respectively, that are perpendicular to
each other (o« L 3, 8 L~, v L «).

3.20.3 Shortlisted Problems

1. (BUL 1) Theset M ={1,2,...,2n} is partitioned into k nonintersecting
subsets M, Ms, ..., M;, where n > k% + k. Prove that there exist even
numbers 2j1, 272, ..., 2j5+1 in M that are in one and the same subset M;
(1 <i < k) such that the numbers 2j; — 1,2j5 — 1,...,2j,+1 — 1 are also
in one and the same subset M; (1 < j <k).

2. (BUL 4) Two identically oriented equilateral triangles, ABC with center
S and A’'B’C, are given in the plane. We also have A’ # S and B’ # S.
If M is the midpoint of A’B and N the midpoint of AB’, prove that the
triangles SB’M and SA’N are similar.

3. (CUB 3)™O9! Let n > m > 1 be natural numbers such that the groups of
the last three digits in the decimal representation of 1978, 1978" coincide.
Find the ordered pair (m,n) of such m,n for which m + n is minimal.

4. (CZS 2) Let T; be a triangle having a, b, ¢ as lengths of its sides and let
Ts be another triangle having u, v, w as lengths of its sides. If P, @Q are the
areas of the two triangles, prove that
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16PQ < a*(—u? + v* + w?) + b*(u? — v + w?) 4+ A(u? + v — w?).

When does equality hold?

. (GDR 2) For every integer d > 1, let My be the set of all positive

integers that cannot be written as a sum of an arithmetic progression
with difference d, having at least two terms and consisting of positive
integers. Let A = My, B = My \ {2}, C = Ms. Prove that every ¢ € C
may be written in a unique way as ¢ = ab with a € A, b € B.

. (FRA 2)™95 Tet : {1,2,3,...} — {1,2,3,...} be injective. Prove that

for all n,

— (k) _ (1

DIRVEED DI

k=1 k=1
(FRA 5) We consider three distinct half-lines Oz, Oy, Oz in a plane.
Prove the existence and uniqueness of three points A € Ox, B € Oy,

C € Oz such that the perimeters of the triangles OAB, OBC,OCA are
all equal to a given number 2p > 0.

. (GBR 4) Let S be the set of all the odd positive integers that are not

multiples of 5 and that are less than 30m, m being an arbitrary positive
integer. What is the smallest integer k such that in any subset of k integers
from S there must be two different integers, one of which divides the other?

. (GBR 5)™O03 Let {f(n)} be a strictly increasing sequence of positive

integers: 0 < f(1) < f(2) < f(3) < ---. Of the positive integers not
belonging to the sequence, the nth in order of magnitude is f(f(n)) + 1.
Determine f(240).

(NET 1)™M96 An international society has its members in 6 different
countries. The list of members contains 1978 names, numbered 1,2, ...,
1978. Prove that there is at least one member whose number is the sum
of the numbers of two, not necessarily distinct, of his compatriots.

(SWE 2) A function f : I — R, defined on an interval I, is called
concave if f(0z + (1 — 0)y) > 0f(z) + (1 — 0)f(y) for all z,y € I and
0 <60 < 1. Assume that the functions fi,..., fn, having all nonnegative
values, are concave. Prove that the function (fifa... fn)"/" is concave.

(USA 1)™MO I 4 triangle ABC we have AB = AC. A circle is tangent
internally to the circumcircle of ABC and also to the sides AB, AC, at
P, @ respectively. Prove that the midpoint of PQ@ is the center of the
incircle of ABC.

(USA 6)™O2 Given any point P in the interior of a sphere with ra-
dius R, three mutually perpendicular segments PA, PB, PC are drawn
terminating on the sphere and having one common vertex in P. Con-
sider the rectangular parallelepiped of which PA, PB, PC are coterminal
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edges. Find the locus of the point @) that is diagonally opposite P in the
parallelepiped when P and the sphere are fixed.

(VIE 2) Prove that it is possible to place 2n(2n + 1) parallelepipedic
(rectangular) pieces of soap of dimensions 1 x 2 x (n + 1) in a cubic box
with edge 2n + 1 if and only if n is even or n = 1.

Remark. It is assumed that the edges of the pieces of soap are parallel to
the edges of the box.

(YUG 1) Let p be a prime and A = {aq,...,a,—1} an arbitrary subset
of the set of natural numbers such that none of its elements is divisible
by p. Let us define a mapping f from P(A) (the set of all subsets of A)
to the set P = {0,1,...,p — 1} in the following way:

(i) if B=A{ai,...,a;} C Aand 2?21 a;; =n (mod p), then f(B) =n,
(i) f(0) =0, 0 being the empty set.

Prove that for each n € P there exists B C A such that f(B) = n.

(YUG 2) Determine all the triples (a, b, ¢) of positive real numbers such
that the system

ax +by —cz =0,
aV/1— a2+ by/1—y2 —c\/1—22 =0,
is compatible in the set of real numbers, and then find all its real solutions.

(FRA 3) Prove that for any positive integers x, y, z with zy — 22 = 1 one
can find nonnegative integers a, b, ¢, d such that x = a? + b, y = ¢* + d?,
z = ac+ bd.

Set z = (2¢)! to deduce that for any prime number p = 4g + 1, p can be
represented as the sum of squares of two integers.
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3.21 The Twenty-First IMO
London, United Kingdom, 1979

3.21.1 Contest Problems
First Day (July 2)
1. Given that
1 1 n 1 1 n 1 . 1 p
2 3 4 1318 1319 ¢’
where p and ¢ are natural numbers having no common factor, prove that
p is divisible by 1979.

2. A pentagonal prism Ay Ay ... A5 B1 B> ... Bs is given. The edges, the diag-
onals of the lateral walls, and the internal diagonals of the prism are each
colored either red or green in such a way that no triangle whose vertices
are vertices of the prism has its three edges of the same color. Prove that
all edges of the bases are of the same color.

3. There are two circles in the plane. Let a point A be one of the points
of intersection of these circles. Two points begin moving simultaneously
with constant speeds from the point A, each point along its own circle.
The two points return to the point A at the same time.

Prove that there is a point P in the plane such that at every moment of
time the distances from the point P to the moving points are equal.

Second Day (July 3)

4. Given a point P in a given plane 7 and also a given point @ not in 7,
determine all points R in 7 such

that QPQ+RPR is a maximum.

5. The nonnegative real numbers 1, z2, T3, T4, 5, a satisfy the following re-
lations:

What are the possible values of a?

6. Let S and F be two opposite vertices of a regular octagon. A counter starts
at S and each second is moved to one of the two neighboring vertices of the
octagon. The direction is determined by the toss of a coin. The process
ends when the counter reaches F. We define a,, to be the number of
distinct paths of duration n seconds that the counter may take to reach
F from S. Prove that forn =1,2,3,...,

"h wherex =242,y =2— /2.

a2n—1 = 0, (a" -y

aop =
2 V2
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3.21.2 Longlisted Problems

1.
2.

8.

10.
11.

(BEL 1) (SL79-1).

(BEL 2) For a finite set E of cardinality n > 3, let f(n) denote the
maximum number of 3-element subsets of E, any two of them having
exactly one common element. Calculate f(n).

. (BEL 3) Is it possible to partition 3-dimensional Euclidean space into

1979 mutually isometric subsets?

(BEL 4) (SL79-2).

. (BEL 5) Describe which natural numbers do not belong to the set

E={n++vn+1/2]|neN}.

. (BEL 6) Prove that }\/4sin?36° — 1 = cos 72°.

(BRA 1) M = (a;;), 3,j = 1,2,3,4, is a square matrix of order four.
Given that:
(i) for each i =1,2,3,4 and for each k = 5,6, 7,

Q4 ) = QA k—4;
=a1,;+ a24+1 + a344+2 + A4,i13;
= Q4,; T a3,i+1 + Q2,i+2 + Q1,i+3;

=a;1+a;2+a;3+ a;4;

QLA

=a1,;+ a2;+as; + a4,

(ll) for each Z'7j = 1,2,3,4, Pl = Pj, Sl = Sj, Ll = Lj, Ci = Cj, and
(111) a171 = 0, alyg = 7, a271 = 11, a273 = 27 and a3,3 = 15;
find the matrix M.

(BRA 2) The sequence (ay,) of real numbers is defined as follows:
a =1, a=2 and a,=3a,_1—apn_2, N> 3.

2
af:;] + 1, where [z] denotes the integer p

an

Prove that for n > 3, a, = {
such that p <z <p—+1.

. (BRA 3) The real numbers ay, ag, as, . . ., a, are positive. Let us denote

by h = 1/a1+1/a:+___+1/a the harmonic mean, g = /oiog--- o, the
geometric mean, a = “1+*2 T the arithmetic mean. Prove that h <

g < a, and that each of the equalities implies the other one.
(BUL 1) (SL79-3).

(BUL 2) Prove that a pyramid A; A, ... Agk11.S with equal lateral edges
and equal space angles between adjacent lateral walls is regular.
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Variant. Prove that a pyramid Aj...Asg+15 with equal space angles
between adjacent lateral walls is regular if there exists a sphere tangent
to all its edges.

(BUL 3) (SL79-4).

(BUL 4) The plane is divided into equal squares by parallel lines; i.e.,
a square net is given. Let M be an arbitrary set of n squares of this net.
Prove that it is possible to choose no fewer than n/4 squares of M in such
a way that no two of them have a common point.

(CZS 1) Let S be a set of n? + 1 closed intervals (n a positive integer).

Prove that at least one of the following assertions holds:

(i) There exists a subset S’ of n + 1 intervals from S such that the inter-
section of the intervals in S’ is nonempty.

(ii) There exists a subset S” of n + 1 intervals from S such that any two
of the intervals in S” are disjoint.

(CZS 2) (SL79-5).

(CZS 3) Let @ be a square with side length 6. Find the smallest integer
n such that in @ there exists a set S of n points with the property that
any square with side 1 completely contained in ) contains in its interior
at least one point from S.

(CZS 4) (SL79-6).
(FIN 1) Show that for no integers a > 1, n > 1 is the sum

1 1 1
1
+1+a+1+2a+ +1+na

an integer.
(FIN 2) For k=1,2,... consider the k-tuples (a1, as, ..., ax) of positive
integers such that

a1 + 2ag + - - - + kagx = 1979.

Show that there are as many such k-tuples with odd k as there are with
even k.
(FIN 3) (SL79-10).

(FRA 1) Let E be the set of all bijective mappings from R to R satisfying
(VEER)  f@)+ M =21,
where f~! is the mapping inverse to f. Find all elements of F that are

monotonic mappings.

(FRA 2) Cousider two quadrilaterals ABC'D and A’B'C’'D’ in an affine
Euclidian plane such that AB = A’'B’, BC = B'C’', CD = C’'D’, and
DA = D'A’. Prove that the following two statements are true:
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(a) If the diagonals BD and AC are mutually perpendicular, then the
diagonals B’D’ and A’C’ are also mutually perpendicular.

(b) If the perpendicular bisector of BD intersects AC' at M, and that
of B'D’ intersects A’C’ at M’, then %é = Aj‘g:g; (if MC = 0 then
M'C" =0).

23. (FRA 3) Consider the set F consisting of pairs of integers (a, b), with a >
1 and b > 1, that satisfy in the decimal system the following properties:
(i) b is written with three digits, as asc g, g # 0;

(i) @ is written as §p ... 010y for some p;

(iii) (a + b)? is written as 8, ... 31 Boazarap.

Find the elements of F.

24. (FRA 4) Let a and b be coprime integers, greater than or equal to 1.
Prove that all integers n greater than or equal to (a — 1)(b — 1) can be
written in the form:

n=wua+vb, with (u,v) € NxN.

25. (FRG 1) (SL79-7).

26. (FRG 2) Let n be a natural number. If 4™ 4+ 2™ + 1 is a prime, prove
that n is a power of three.

27. (FRG 3) (SL79-8).
28. (FRG 4) (SL79-9).
29. (GDR 1) (SL79-11).

30. (GDR 2) Let M be a set of points in a plane with at least two elements.
Prove that if M has two axes of symmetry g; and g intersecting at an
angle o = gm, where ¢ is irrational, then M must be infinite.

31. (GDR 3) (SL79-12).

32. (GDR 4) Let n,k > 1 be natural numbers. Find the number A(n, k) of
solutions in integers of the equation

1] + foa -+ ] = .

33. (GRE 1) (SL79-13).

34. (GRE 2) Notice that in the fraction ;5 we can perform a simplification
as éz = 411 obtaining a correct equality. Find all fractions whose numer-
ators and denominators are two-digit positive integers for which such a

simplification is correct.

35. (GRE 3) Given asequence (a,), with a; = 4 and a,+1 = a2 -2 (Vn € N),
prove that there is a triangle with side lengths a,, — 1, a,, a,, + 1, and that
its area is equal to an integer.
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36. (GRE 4) A regular tetrahedron A;B;CyD; is inscribed in a regular
tetrahedron ABCD, where A; lies in the plane BCD, B; in the plane
ACD, etc. Prove that A1B; > AB/3.

37. (GRE 5) (SL79-14).

38. (HUN 1) Prove the following statement: If a polynomial f(z) with
real coefficients takes only nonnegative values, then there exists a positive
integer n and polynomials g1 (), g2(z), ..., gn(x) such that

f(@) = 91(2)? + g2(2)® + - + gn(x)*.

39. (HUN 2) A desert expedition camps at the border of the desert, and
has to provide one liter of drinking water for another member of the
expedition, residing on the distance of n days of walking from the camp,
under the following conditions:

(i) Each member of the expedition can pick up at most 3 liters of water.
(ii) Each member must drink one liter of water every day spent in the
desert.
(iii) All the members must return to the camp.
How much water do they need (at least) in order to do that?

40. (HUN 3) A polynomial P(x) has degree at most 2k, where k = 0, 1,
2,.... Given that for an integer i, the inequality —k < i < k implies
|P(#)] < 1, prove that for all real numbers z, with —k < x < k, the
following inequality holds:

P(2)] < (2k + 1)(2:).

41. (HUN 4) Prove the following statement: There does not exist a pyramid
with square base and congruent lateral faces for which the measures of all
edges, total area, and volume are integers.

42. (HUN 5) Let a quadratic polynomial g(x) = ax? + bx + ¢ be given and
an integer n > 1. Prove that there exists at most one polynomial f(z) of
nth degree such that f(g(z)) = g(f(z)).

43. (ISR 1) Let a,b, c denote the lengths of the sides BC,CA, AB, respec-
tively, of a triangle ABC. If P is any point on the circumference of the
circle inscribed in the triangle, show that aPA%+bPB?+cPC? is constant.

44. (ISR 2) (SL79-15).

45. (ISR 3) For any positive integer n we denote by F(n) the number of
ways in which n can be expressed as the sum of three different positive
integers, without regard to order. Thus, since 10 =74+24+1=64+3+1=
54+4+41=>5+3+2, we have F'(10) = 4. Show that F'(n) is even if n = 2
or 4 (mod 6), but odd if n is divisible by 6.

46. (ISR 4) (SL79-16).
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47.
48.

49.

50.
ol.

92.

93.

54.
95.

3 Problems

(NET 1) (SL79-17).

(NET 2) In the plane a circle C' of unit radius is given. For any line [
a number s(l) is defined in the following way: If [ and C' intersect in two
points, s(I) is their distance; otherwise, s(I) = 0.

Let P be a point at distance r from the center of C'. One defines M (r)
to be the maximum value of the sum s(m) + s(n), where m and n are
variable mutually orthogonal lines through P. Determine the values of r
for which M (r) > 2.

(NET 3) Let there be given two sequences of integers f;(1), fi(2),...

(i = 1,2) satisfying:

(i) fi(nm) = fi(n)fi(m) if ged(n,m) = 1;

(ii) for every prime P and all k = 2,3.4,..., f;(P*) = f;(P)f;(P*!) —
P2f(Pk_2).

Moreover, for every prime P:

(i) f,(P) = 2P,

(iv) f2(P) < 2P.

Prove that | f2(n)| < fi(n) for all n.

(POL 1) (SL79-18).

(POL 2) Let ABC be an arbitrary triangle and let Sy, Ss,...,S7 be
circles satisfying the following conditions:

S1 is tangent to CA and AB,

So is tangent to S1, AB, and BC,

S3 is tangent to Sy, BC, and CA,

S7 is tangent to Sg, CA and AB.
Prove that the circles S7 and S~ coincide.

(POL 3) Let areal number A > 1 be given and a sequence (ny) of positive
integers such that "1’;:1 > A\ for k = 1,2,.... Prove that there exists a
positive integer ¢ such that no positive integer n can be represented in
more than ¢ ways in the form n = n; 4+ n; or n = n, — n,.

(POL 4) An infinite increasing sequence of positive integers n; (j =

1,2,...) has the property that for a certain c, ]i, Enj<N n; < c, for every

N>0 ‘

Prove that there exist finitely many sequences mg-l) (1 =1,2,...,k) such

that ) _
{nl,ng,...}:Ule{mgz),mg),...} and

m\ >l (1<i<k j=12...)
(ROM 1) (SL79-19).

(ROM 2) Let a,b be coprime integers. Show that the equation ax? +
by? = 23 has an infinite set of solutions (z,y, 2) with x,y,2 € Z and z,y
mutually coprime (in each solution).
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o7.

o8.

99.

60.
61.

62.

63.

64.
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(ROM 3) Show that for every natural number n, nv/2 — [nv/2] > o \/2

and that for every € > 0 there exists a natural number n with nyv/2 —
[n\/2] 2n \/2

(ROM 4) Let M be a set, and A, B,C given subsets of M. Find a
necessary and sufficient condition for the existence of a set X C M for
which (X U A) \ (X N B) = C. Describe all such sets X.

(ROM 5) Prove that there exists a natural number ko such that for
every natural number k > ky we may find a finite number of lines in the
plane, not all parallel to one of them, that divide the plane exactly in k
regions. Find k.

(SWE 1) Determine the maximum value of 22y?z2w when z,y, z,w > 0
and
20+ 2y + z +yzw = 1.

(SWE 2) (SL79-20).

(SWE 3) Let a; <as < - <a,and by < by < --- < b, be two
sequences such that >", ap > > )L, by for all m < n with equality for
m = n. Let f be a convex function defined on the real numbers. Prove

that . .
Zf ap) < Z
k=1 k=1

(SWE 4) T is a given triangle with vertices Py, P», P5. Consider an arbi-
trary subdivision of 7" into finitely many subtriangles such that no vertex
of a subtriangle lies strictly between two vertices of another subtriangle.
To each vertex V' of the subtriangles there is assigned a number n(V)
according to the following rules:

(i) 'V = P, then n(V) = 1.

(ii) If V lies on the side P;P; of T', then n(V') =1 or j.
(iii) If V lies inside the triangle T', then n(V) is any of the numbers 1,2,3.
Prove that there exists at least one subtriangle whose vertices are num-
bered 1, 2, and 3.

(USA 1) Ifay,as,...,a, denote the lengths of the sides of an arbitrary
n-gon, prove that

2> Mo o4y s T
s—ai S—as s—ap n—1

where s = a1 +ax+ -+ an.

(USA 2) From point P on arc BC of the circumcircle about triangle
ABC, PX is constructed perpendicular to BC, PY is perpendicular to
AC, and PZ perpendicular to AB (all extended if necessary). Prove that

BC AC n AB
PX PY PZ’
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65.

66.
67.
68.
69.
70.

71.
72.

73.

74.

75.

76.

7.

78.

3 Problems
(USA 3) Given f(z) <z for all real z and
fle+y) < f(x)+ f(y) for all real z,y,

prove that f(z) =« for all .
(USA 4) (SL79-23).
(USA 5) (SL79-24).
(USA 6) (SL79-25).
(USS 1) (SL79-21).

(USS 2) There are 1979 equilateral triangles: T1, 5, ..., Tig79. A side of
triangle T}, is equal to 1/k, k = 1,2,...,1979. At what values of a number
a can one place all these triangles into the equilateral triangle with side
length a so that they don’t intersect (points of contact are allowed)?

(USS 3) (SL79-22).

(VIE 1) Let f(x) be a polynomial with integer coefficients. Prove that
if f(x) equals 1979 for four different integer values of x, then f(x) cannot
be equal to 2 x 1979 for any integral value of x.

(VIE 2) In a plane a finite number of equal circles are given. These circles
are mutually nonintersecting (they may be externally tangent). Prove that
one can use at most four colors for coloring these circles so that two circles
tangent to each other are of different colors. What is the smallest number
of circles that requires four colors?

(VIE 3) Given an equilateral triangle ABC' of side a in a plane, let
M be a point on the circumcircle of the triangle. Prove that the sum
s = MA* + MB* + MC* is independent of the position of the point M
on the circle, and determine that constant value as a function of a.

(VIE 4) Given an equilateral triangle ABC, let M be an arbitrary point

in space.

(a) Prove that one can construct a triangle from the segments M A, M B,
MC.

(b) Suppose that P and @Q are two points symmetric with respect to the
center O of ABC. Prove that the two triangles constructed from the
segments PA, PB, PC and QA, QB, QC are of equal area.

(VIE 5) Suppose that a triangle whose sides are of integer lengths is
inscribed in a circle of diameter 6.25. Find the sides of the triangle.

(YUG 1) By h(n), where n is an integer greater than 1, let us denote the
greatest prime divisor of the number n. Are there infinitely many numbers
n for which h(n) < h(n + 1) < h(n + 2) holds?

(YUG 2) By w(n), where n is an integer greater than 1, let us denote
the number of different prime divisors of the number n. Prove that there



79.

80.
81.
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exist infinitely many numbers n for which w(n) < w(n +1) < w(n + 2)
holds.

(YUG 3) Let S be a unit circle and K a subset of S consisting of several

closed arcs. Let K satisfy the following properties:

(i) K contains three points A, B,C, that are the vertices of an acute-
angled triangle;

(ii) for every point A that belongs to K its diametrically opposite point
A’ and all points B on an arc of length 1/9 with center A’ do not
belong to K.

Prove that there are three points F, F,G on S that are vertices of an

equilateral triangle and that do not belong to K.

(YUG 4) (SL79-26).

(YUG 5) Let P be the set of rectangular parallelepipeds that have at
least one edge of integer length. If a rectangular parallelepiped Py can be
decomposed into parallelepipeds Py, Ps, ..., P, € P, prove that Py € P.

3.21.3 Shortlisted Problems

1.

(BEL 1) Prove that in the Euclidean plane every regular polygon having
an even number of sides can be dissected into lozenges. (A lozenge is a
quadrilateral whose four sides are all of equal length).

. (BEL 4) From a bag containing 5 pairs of socks, each pair a different

color, a random sample of 4 single socks is drawn. Any complete pairs
in the sample are discarded and replaced by a new pair draw from the
bag. The process continues until the bag is empty or there are 4 socks of
different colors held outside the bag. What is the probability of the latter
alternative?

. (BUL 1) Find all polynomials f(x) with real coefficients for which

f@)f(22%) = f(22° + 2).

. (BUL 3)™MO2 A pentagonal prism A Ay ... AsB1 By ... Bs is given. The

edges, the diagonals of the lateral walls and the internal diagonals of the
prism are each colored either red or green in such a way that no triangle
whose vertices are vertices of the prism has its three edges of the same
color. Prove that all edges of the bases are of the same color.

. (CZS 2) Let n > 2 be an integer. Find the maximal cardinality of a set

M of pairs (j,k) of integers, 1 < j < k < n, with the following property:
If (j,k) € M, then (k,m) ¢ M for any m.

. (CZS 4) Find the real values of p for which the equation

V2p+1—a24+ /B3 +p+d=a2+9x+3p+9
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10.

11.

12.

13.
14.

in 2 has exactly two real distinct roots (v/t means the positive square root
of t).

. (FRG 1)™O1 Given that 1— J + 5 — } + - — 13/ + 1550 = v, where

3
p and ¢ are natural numbers having no common factor, prove that p is

divisible by 1979.

. (FRG 3) For all rational z satisfying 0 < x < 1, f is defined by

] f(22)/4, for 0 <z <1/2,
T@ =33/ 4 p@e—1)/a for 1/2 <z < 1.

Given that = 0.b1b2b3 ... is the binary representation of x, find f(x).

. (FRG 4)™O6 Let S and F be two opposite vertices of a regular octagon.

A counter starts at S and each second is moved to one of the two neigh-
boring vertices of the octagon. The direction is determined by the toss of
a coin. The process ends when the counter reaches F'. We define a,, to be
the number of distinct paths of duration n seconds that the counter may
take to reach F' from S. Prove that forn =1,2,3,...,

1
a2n—1 =0, Qon = /2 (x”_l—y”_l), where r = 2 + \/2, y=2— V2.

(FIN 3) Show that for any vectors a, b in Euclidean space,

3V

*laPlbfla — bl

la x b® <

Remark. Here x denotes the vector product.

(GDR 1) Given real numbers 1, 22,...,2, (n > 2), with z; > 1/n
(i=1,2,...,n) and with 23 + 23+ --+ 22 = 1, find whether the product
P = zyxox3 - - - x, has a greatest and/or least value and if so, give these
values.

(GDR 3) Let R be a set of exactly 6 elements. A set F' of subsets of R
is called an S-family over R if and only if it satisfies the following three
conditions:

(i) For no two sets X,Y in Fis X CY;

(ii) For any three sets X,Y, Z in F, XUY UZ # R,
(i) Uxep X = R.

We define |F| to be the number of elements of F (i.e., the number of
subsets of R belonging to F). Determine, if it exists, h = max|F)|, the
maximum being taken over all S-families over R.

20 : o 21
(GRE 1) Show that g <sin20° < g;.

(GRE 5) Find all bases of logarithms in which a real positive number
can be equal to its logarithm or prove that none exist.
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(ISR 2)IMO5 The nonnegative real numbers x1, x2, 3, 4, T5, a satisfy the
following relations:

5 5
E 1T, = a, E igxi = a2, E i5a:1- =dd.
i i=1 i=1

What are the possible values of a?

(ISR 4) Let K denote the set {a, b, c,d, e}. F is a collection of 16 different
subsets of K, and it is known that any three members of F' have at least
one element in common. Show that all 16 members of F' have exactly one
element in common.

(NET 1) Inside an equilateral triangle ABC one constructs points P,
@ and R such that

/QAB = /PBA = 15°,

/RBC = /ZQCB = 20°,

/PCA=/RAC = 25°.
Determine the angles of triangle PQR.

(POL 1) Let m positive integers aq, ..., a; be given. Prove that there
exist fewer than 2" positive integers b1, ..., b, such that all sums of dis-
tinct bg’s are distinct and all a; (i < m) occur among them.

(ROM 1) Consider the sequences (a,), (by,) defined by
a1 =3, b =100, Ung1 = 3%, bpp1 = 100°",
Find the smallest integer m for which b,, > aigo-
(SWE 2) Given the integer n > 1 and the real number a > 0 determine
the maximum of Z?:_ll x;x;+1 taken over all nonnegative numbers x; with

sum a.

(USS 1) Let N be the number of integral solutions of the equation
R . R

satisfying the condition 0 < z,y, z,t < 105, and let M be the number of
integral solutions of the equation

2yt =231
satisfying the condition 0 < z,, z,t < 10%. Prove that N > M.

(USS 3)™MO3 There are two circles in the plane. Let a point A be one
of the points of intersection of these circles. Two points begin moving
simultaneously with constant speeds from the point A, each point along
its own circle. The two points return to the point A at the same time.
Prove that there is a point P in the plane such that at every moment of
time the distances from the point P to the moving points are equal.
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23. (USA 4) Find all natural numbers n for which 28 4 2! + 27 is a perfect
square.

24. (USA 5) A circle O with center O on base BC of an isosceles triangle
ABC is tangent to the equal sides AB, AC. If point P on AB and point
Q on AC are selected such that PB x CQ = (BC/2)?, prove that line
segment P(Q) is tangent to circle O, and prove the converse.

25. (USA 6)™94 Given a point P in a given plane 7 and also a given point
@ not in 7, show how to determine a point R in 7 such that Q%J“RP Risa
maximum.

26. (YUG 4) Prove that the functional equations

flx+y) = flz)+ f(y),
and  f(x+y+ay) = f(z)+ f(y) + flzy) (z,y €R)

are equivalent.
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3.22 The Twenty-Second IMO
Washington DC, United States of America, July 8-20,
1981

3.22.1 Contest Problems

First Day (July 13)
1. Find the point P inside the triangle ABC for which

BC n CA n AB

PD PE PF
is minimal, where PD, PE, PF are the perpendiculars from P to BC,
CA, AB respectively.

2. Let f(n,r) be the arithmetic mean of the minima of all r-subsets of the
, _ n+l
set {1,2,...,n}. Prove that f(n,r) = 77;.

3. Determine the maximum value of m? 4+ n? where m and n are integers
satisfying

m,n €{1,2,...,1981} and (n* —mn —m?)* = 1.

Second Day (July 14)

4. (a) For which values of n > 2 is there a set of n consecutive positive
integers such that the largest number in the set in the set is a divisor
of the least common multiple of the remaining n — 1 numbers?

(b) For which values of n > 2 is there a unique set having the stated
property?

5. Three equal circles touch the sides of a triangle and have one common

point O. Show that the center of the circle inscribed in and of the circle
circumscribed about the triangle ABC and the point O are collinear.

6. Assume that f(z,y) is defined for all positive integers x and y, and that
the following equations are satisfied:

f(oay):y+17
flz+1,0) = f(z,1),
f(x+1,y+1) :f(x,f(x+1,y)).

Determine f(4,1981).
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3.22.2 Shortlisted Problems

1. (BEL)™©4 (a) For which values of n > 2 is there a set of n consecutive
positive integers such that the largest number in the set is a divisor
of the least common multiple of the remaining n — 1 numbers?

(b) For which values of n > 2 is there a unique set having the stated
property?

2. (BUL) A sphere S is tangent to the edges AB, BC,CD, DA of a tetrahe-
dron ABCD at the points F, F, G, H respectively. The points F, F, G, H
are the vertices of a square. Prove that if the sphere is tangent to the edge
AC, then it is also tangent to the edge BD.

3. (CAN) Find the minimum value of
max(a+b+c,b+c+d,c+d+ed+e+ fie+ f+9g)
subject to the constraints
(i) a,b,c,d,e, f,g >0, (i) a+b+c+d+e+ f+g=1

4. (CAN) Let {f.} be the Fibonacci sequence {1,1,2,3,5,...}.
(a) Find all pairs (a, b) of real numbers such that for each n, af, +bfn11
is a member of the sequence.
(b) Find all pairs (u,v) of positive real numbers such that for each n,
uf? +wvf2,, is a member of the sequence.

5. (COL) A cube is assembled with 27 white cubes. The larger cube is then
painted black on the outside and disassembled. A blind man reassembles
it. What is the probability that the cube is now completely black on the
outside? Give an approximation of the size of your answer.

6. (CUB) Let P(z) and Q(z) be complex-variable polynomials, with degree
not less than 1. Let
Py={2€C|P(z) =k}, @Qr={2€C|Q(z) =k}

Let also Py = Qo and P; = Q1. Prove that P(z) = Q(2).

7. (FIN)™MO6 Assume that f(z,y) is defined for all positive integers z and
y, and that the following equations are satisfied:

f(ovy):y+17
f(x+170):f(x71)7
f(x—l—l,y—i—l) zf(x,f(x—i—l,y))

Determine f(2,2), f(3,3) and f(4,4).
Alternative version: Determine f(4,1981).
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. (FRG)™©2 Let f(n,r) be the arithmetic mean of the minima of all r-

subsets of the set {1,2,...,n}. Prove that f(n,r) = ’;_ﬁ

. (FRG) A sequence (a,) is defined by means of the recursion

1+ 4a, + /1 + 24a,

ar=1,  apy1 = 16
Find an explicit formula for a,,.

(FRA) Determine the smallest natural number n having the following
property: For every integer p, p > n, it is possible to subdivide (partition)
a given square into p squares (not necessarily equal).

(NET) On asemicircle with unit radius four consecutive chords AB, BC,
CD, DE with lengths a, b, ¢, d, respectively, are given. Prove that
a® +b% + ¢* + d* + abe + bed < 4.

(NET)™O3 Determine the maximum value of m? + n? where m and n
are integers satisfying

m,n € {1,2,...,100} and (n? —mn—m?)?*=1.
(ROM) Let P be a polynomial of degree n satisfying

-1
1
P(k):(n;: > for k=0,1,...,n.
Determine P(n + 1).

(ROM) Prove that a convex pentagon (a five-sided polygon) ABCDE
with equal sides and for which the interior angles satisfy the condition
/A>/B>/C > /D > /E is a regular pentagon.

(GBR)™O! Find the point P inside the triangle ABC for which

BC n CA n AB

PD PE PF
is minimal, where PD, PE, PF are the perpendiculars from P to BC, CA,
AB respectively.
(GBR) A sequence of real numbers wuy, us,us, ... is determined by uq
and the following recurrence relation for n > 1:

QUp41 = ¥64u,, + 15.

Describe, with proof, the behavior of u,, as n — oco.

(USS)™MO5 Three equal circles touch the sides of a triangle and have
one common point O. Show that the center of the circle inscribed in and
of the circle circumscribed about the triangle ABC and the point O are
collinear.
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18.

19.

3 Problems

(USS) Several equal spherical planets are given in outer space. On the
surface of each planet there is a set of points that is invisible from any of
the remaining planets. Prove that the sum of the areas of all these sets is
equal to the area of the surface of one planet.

(YUG) A finite set of unit circles is given in a plane such that the area
of their union U is S. Prove that there exists a subset of mutually disjoint
circles such that the area of their union is greater that 295 .
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3.23 The Twenty-Third IMO
Budapest, Hungary, July 5-14, 1982

3.23.1 Contest Problems

First Day (July 9)

1. The function f(n) is defined for all positive integers n and takes on non-
negative integer values. Also, for all m,n,

flm+n)—f(m)—f(n)=0 or 1;
F(2)=0, f(3)>0, and f(9999) = 3333.
Determine f(1982).

2. A nonisosceles triangle A;AsAs is given with sides a1, az2,as (a; is the
side opposite to A;). For all ¢ = 1,2,3, M; is the midpoint of side a;,
T; is the point where the incircle touches side a;, and the reflection of
T; in the interior bisector of A; yields the point S;. Prove that the lines
M;S1, M>S5, and M3S3 are concurrent.

3. Consider the infinite sequences {x,} of positive real numbers with the
following properties:

9o =1 and forall i>0, z;41 <.

(a) Prove that for every such sequence there is an n > 1 such that

2 2 2
o LT L 4 T S 3990,
X1 X9 In

2 2 2
(b) Find such a sequence for which j‘l) + 2 +- w;‘;l < 4 for all n.

Second Day (July 10)

4. Prove that if n is a positive integer such that the equation z3 —3xy% 4% =
n has a solution in integers (z,y), then it has at least three such solutions.
Show that the equation has no solution in integers when n = 2891.

5. The diagonals AC and C'E of the regular hexagon ABCDEF are divided

. . . AM _ CN _
by the inner points M and N, respectively, so that ;% = 5 = r.
Determine r if B, M, and N are collinear.

6. Let S be a square with sides of length 100 and let L be a path within
S that does not meet itself and that is composed of linear segments
ApAq, A1As, ..., An_1 A, with Ag # A,. Suppose that for every point
P of the boundary of S there is a point of L at a distance from P not
greater than ; Prove that there are two points X and Y in L such that
the distance between X and Y is not greater than 1 and the length of the
part of L that lies between X and Y is not smaller than 198.
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3.23.2 Longlisted Problems

1. (AUS 1) It is well known that the binomial coefficients (}) = k!(;‘ik)!,
0 < k < n, are positive integers. The factorial n! is defined inductively by
Ol=1,nl=n-(n—-1)!forn>1.

(a) Prove that %, (*") is an integer for n > 0.
(b) Given a positive integer k, determine the smallest integer C with the

property that +Ckk+1 (ffk) is an integer for all n > k.

2. (AUS 2) Given a finite number of angular regions Ay, ..., A in a plane,
each A; being bounded by two half-lines meeting at a vertex and provided
with a + or — sign, we assign to each point P of the plane and not on a
bounding half-line the number k — [, where k is the number of + regions
and [ the number of — regions that contain P. (Note that the boundary
of A; does not belong to A;.) A
For instance, in the figure we have
two 4 regions QAP and RC(Q, and G _B
one — region RBP. Every point in-
side AABC receives the number P

+1, while every point not inside AABC and not on a boundary halfline

the number 0. We say that the interior of AABC' is represented as a sum

of the signed angular regions QAP, RBP, and RCQ.

(a) Show how to represent the interior of any convex planar polygon as a
sum of signed angular regions.

(b) Show how to represent the interior of a tetrahedron as a sum of signed
solid angular regions, that is, regions bounded by three planes inter-
secting at a vertex and provided with a 4+ or — sign.

3. (AUS 3) Given n points Xi, Xo,..., X, in the interval 0 < X; < 1,
i=1,2,...,n, show that there is a point y, 0 < y < 1, such that

4. (AUS 4) (SL82-14).

Original formulation. Let ABCD be a convex planar quadrilateral and

let Ay denote the circumcenter of ABCD. Define By,C1, D1 in a corre-

sponding way.

(a) Provethat either all of A1, By, C1, D; coincide in one point, or they are
all distinct. Assuming the latter case, show that A, C; are on opposite
sides of the line By D, and similarly, By, D; are on opposite sides of
the line A;C;. (This establishes the convexity of the quadrilateral
AlBl Cl Dl)

(b) Denote by As the circumcenter of B1Cy D1, and define By, C3, Dy in
an analogous way. Show that the quadrilateral As ByCs D4 is similar
to the quadrilateral ABCD.
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(¢) If the quadrilateral A;B;Cy1D; was obtained from the quadrilat-
eral ABCD by the above process, what condition must be satis-
fied by the four points Ay, By, Cy, D17 Assuming that the four points
Ay, By, C1, D; satisfying this condition are given, describe a construc-
tion by straightedge and compass to obtain the original quadrilateral
ABCD. (It is not necessary to actually perform the construction).

. (BEL 1) Among all triangles with a given perimeter, find the one with

the maximal radius of its incircle.

. (BEL 2) On the three distinct lines a, b, and ¢ three points A, B, and

C are given, respectively. Construct three collinear points X, Y, Z on lines
a, b, c, respectively, such that f& = 2 and S)Z< = 3.

(BEL 3) Find all solutions (x,y) € Z? of the equation

23—y =22y + 8.

. (BRA 1) (SL82-10).
. (BRA 2) Let n be anatural number, n > 2, and let ¢ be Euler’s function;

i.e., ¢(n) is the number of positive integers not exceeding n and coprime
to n. Given any two real numbers o and 3, 0 < a < 8 < 1, prove that
there exists a natural number m such that

¢(m)

a < < p.
m

(BRA 3) Let rq,...,r, be the radii of n spheres. Call Sy, 52, ...,S, the
areas of the set of points of each sphere from which one cannot see any
point of any other sphere. Prove that

S1 S Sp,
s+ e+ T =4,
reooT Th

(BRA 4) A rectangular pool table has a hole at each of three of its
corners. The lengths of sides of the table are the real numbers a and b. A
billiard ball is shot from the fourth corner along its angle bisector. The
ball falls in one of the holes. What should the relation between a and b
be for this to happen?

(BRA 5) Let there be 3399 numbers arbitrarily chosen among the first
6798 integers 1,2,..., 6798 in such a way that none of them divides an-
other. Prove that there are exactly 1982 numbers in {1,2,...,6798} that
must end up being chosen.

(BUL 1) A regular n-gonal truncated pyramid is circumscribed around
a sphere. Denote the areas of the base and the lateral surfaces of the
pyramid by S, S2, and S, respectively. Let o be the area of the polygon
whose vertices are the tangential points of the sphere and the lateral faces
of the pyramid. Prove that



150

14.
15.

16.
17.
18.

19.
20.

21.

22.
23.

24.

3 Problems

oS = 45,55 cos? 7T.
n

(BUL 2) (SL82-4).

(CAN 1) Show that the set S of natural numbers n for which 3/n
cannot be written as the sum of two reciprocals of natural numbers (S =
{n|3/n#1/p+1/qfor any p,q € N}) is not the union of finitely many
arithmetic progressions.

(CAN 2) (SL82-7).
(CAN 3) (SL82-11).

(CAN 4) You are given an algebraic system admitting addition and
multiplication for which all the laws of ordinary arithmetic are valid except
commutativity of multiplication. Show that

(a+abta) '+ (a+b)t=a"t,
where 27! is the element for which 27!z = za2~! = e, where e is the
element of the system such that for all a the equality ea = ae = a holds.

(CAN 5) (SL82-15).

(CZS 1) Cousider a cube C and two planes o, 7, which divide Euclidean
space into several regions. Prove that the interior of at least one of these
regions meets at least three faces of the cube.

(CZS 2) All edges and all diagonals of regular hexagon Ay As A3 A4 A5 A
are colored blue or red such that each triangle A;A A, 1 <j <k <
m < 6 has at least one red edge. Let Ry be the number of red segments
ArAj, (j # k). Prove the inequality

6
> (2R, —7)* < 54.
k=1

(CZS 3) (SL82-19).

(FIN 1) Determine the sum of all positive integers whose digits (in base
ten) form either a strictly increasing or a strictly decreasing sequence.

(FIN 2) Prove that if a person a has infinitely many descendants (chil-
dren, their children, etc.), then a has an infinite sequence ag,as,... of
descendants (i.e., a = ag and for all n > 1, a4 is always a child of a,,).
It is assumed that no-one can have infinitely many children.

Variant 1. Prove that if ¢ has infinitely many ancestors, then a has an
infinite descending sequence of ancestors (i.e., ag, a1, ... where a = ag and
ap is always a child of a,41).

Variant 2. Prove that if someone has infinitely many ancestors, then all
people cannot descend from A(dam) and E(ve).
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(FIN 3) (SL82-12).

(FRA 1) Let (an)n>0 and (by)n>0 be two sequences of natural numbers.
Determine whether there exists a pair (p, ¢) of natural numbers that satisfy

p<q and ap < aq, by < by

(FRA 2) (SL82-18).

(FRA 3) Let (u1,...,uy,) be an ordered ntuple. For each k, 1 < k <mn,
define vy = {/uiusz - - - ux. Prove that

n n
E v < e- E Uk
k=1 k=1

(e is the base of the natural logarithm).

(FRA 4) Let f: R — R be a continuous function. Suppose that the
restriction of f to the set of irrational numbers is injective. What can we
say about f7 Answer the analogous question if f is restricted to rationals.

(GBR 1) (SL82-9).
(GBR 2) (SL82-16).
(GBR 3) (SL82-1).

(GBR 4) A sequence (u,) of integers is defined for n > 0 by ug = 0,
up = 1, and up — 2up—1 + (1 — Q)up—2 = 0 (n > 2), where ¢ is a fixed
integer independent of n. Find the least value of ¢ for which both of the
following statements are true:

(i) If p is a prime less than or equal to P, then p divides u,.

(i) If p is a prime greater than P, then p does not divide w,,.

(GDR 1) Let M be the set of all functions f with the following proper-

ties:

(i) f is defined for all real numbers and takes only real values.

(ii) For all z,y € R the following equality holds: f(z)f(y) = f(z +y) +
flz—y).

(ii)) £(0) 0.

Determine all functions f € M such that

(a) F(1) = 5/2

(b) £(1)= 3.

(GDR 2) If the inradius of a triangle is half of its circumradius, prove
that the triangle is equilateral.

(NET 1) (SL82-13).

37. (NET 2) (SL82-5).
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(POL 1) Numbers u, ; (1 <k <n) are defined as follows:

n
uig =1, unk = (k) - Z Un/d,k/d

dln, d|k, d>1

(the empty sum is defined to be equal to zero). Prove that n | u, for
every natural number n and for every k (1 < k < n).

(POL 2) Let S be the unit circle with center O and let Py, Ps,..., P,

be points of S such that the sum of vectors v; = O—PZ is the zero vector.
Prove that the inequality Y., XP; > n holds for every point X.

(POL 3) We consider a game on an infinite chessboard similar to that of
solitaire: If two adjacent fields are occupied by pawns and the next field
is empty (the three fields lie on a vertical or horizontal line), then we may
remove these two pawns and put one of them on the third field. Prove that
if in the initial position pawns fill a 3k x n rectangle, then it is impossible
to reach a position with only one pawn on the board.

(POL 4) (SL82-8).

(POL 5) Let F be the family of all k-element subsets of the set
{1,2,...,2k 4+ 1}. Prove that there exists a bijective function f : F — F
such that for every A € F, the sets A and f(A) are disjoint.

(TUN 1) (a) What is the maximal number of acute angles in a convex
polygon?

(b) Counsider m points in the interior of a convex n-gon. The n-gon is
partitioned into triangles whose vertices are among the n + m given
points (the vertices of the n-gon and the given points). Each of the
m points in the interior is a vertex of at least one triangle. Find the
number of triangles obtained.

(TUN 2) Let A and B be positions of two ships M and N, respectively,
at the moment when N saw M moving with constant speed v following
the line Az. In search of help, N moves with speed kv (k < 1) along the
line By in order to meet M as soon as possible. Denote by C the point of
meeting of the two ships, and set

AB=d, /BAC=aqa, 0<a< g
Determine the angle ZABC = [ and time ¢ that N needs in order to meet
M.

(TUN 3) (SL82-20).

(USA 1) Prove that if a diagonal is drawn in a quadrilateral inscribed
in a circle, the sum of the radii of the circles inscribed in the two triangles
thus formed is the same, no matter which diagonal is drawn.
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(USA 2) Evaluate sec” | +sec” T +sec” °F +sec” T . (Here sec”” means
the second derivative of sec.)

(USA 3) Given a finite sequence of complex numbers ¢y, ca, . . ., ¢,,, show
that there exists an integer k (1 < k < n) such that for every finite
sequence ai, s, . . ., an of real numbers with 1 > a; > as > -+ > a, > 0,

the following inequality holds:

n
E AmCm N
m=1

<

n
E Cm| -
m=1

(USA 4) Simplify
= (2n)!
2:: (ED)2((n — k)1)?

k=0

(USS 1) Let O be the midpoint of the axis of a right circular cylinder.
Let A and B be diametrically opposite points of one base, and C' a point
of the other base circle that does not belong to the plane OAB. Prove
that the sum of dihedral angles of the trihedral OABC' is equal to 2.

(USS 2) Let n numbers x1,xa,...,x, be chosen in such a way that
1>x1 >x9>--->x, > 0. Prove that

Itz + ot ) <T4+af +297 28 + o+ 0oy

fo<a<l.

(USS 3) We are given 2n natural numbers
1,1,2,2,3,3,....,n—1,n— 1,n,n.

Find all n for which these numbers can be arranged in a row such that
for each k£ < n, there are exactly k numbers between the two numbers k.
(USS 4) (SL82-3).

(USS 5) (SL82-17).

(VIE 1) (SL82-6).

(VIE 2) Let f(z) = ax® + bx +c and g(z) =
lf(D)] <1, |f(=1)| <1, prove that for |z| <1,
(a) |f(x)] <5/4,

(b) lg(x)] < 2.

(YUG 1) (SL82-2).

cx® +br+a. If | f(0) < 1,

3.23.3 Shortlisted Problems

1.

A1 (GBR 3)™MO! The function f(n) is defined for all positive integers
n and takes on nonnegative integer values. Also, for all m,n,
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3 Problems

fm+n) = f(m) = f(n)= 0 or 1;
F(2)=0, f(3)>0, and f(9999) = 3333.
Determine f(1982).

. A2 (YUG 1) Let K be a convex polygon in the plane and suppose that

K is positioned in the coordinate system in such a way that
1
area (K NQ;) = 4 Area K (i=1,2,3,4,),

where the Q; denote the quadrants of the plane. Prove that if K contains
no nonzero lattice point, then the area of K is less than 4.

. A3 (USS 4)MO3 Consider the infinite sequences {z,,} of positive real

numbers with the following properties:
zo=1 and forall ¢>0, z;11 <.
(a) Prove that for every such sequence there is an n > 1 such that ﬁ) +
2
g T > 3999,

2
(b) Find such a sequence for which ﬁ + i +o 4 m;‘;l < 4 for all n.

. A4 (BUL 2) Determine all real values of the parameter a for which the

equation
162* — ax® + (2a +17)2% —ax +16 =0

has exactly four distinct real roots that form a geometric progression.

. A5 (NET 2)™O5 Let A; Ay A3 A4 A5 Ag be a regular hexagon. Each of its

diagonals A;_1A;4+1 is divided into the same ratio 13\, where 0 < A < 1,

by a point B; in such a way that A;, B;, and B;yo are collinear (i =
1,...,6 (mod 6)). Compute .

. A6 (VIE 1)™MO6 Let S be a square with sides of length 100 and let L be

a path within S that does not meet itself and that is composed of linear
segments AgA1, A1 As, ..., An_1A, with Ag # A,. Suppose that for every
point P of the boundary of S there is a point of L at a distance from P
not greater than % Prove that there are two points X and Y in L such
that the distance between X and Y is not greater than 1 and the length
of that part of L that lies between X and Y is not smaller than 198.

. B1 (CAN 2) Let p(x) be a cubic polynomial with integer coefficients

with leading coefficient 1 and with one of its roots equal to the product of
the other two. Show that 2p(—1) is a multiple of p(1)+p(—1) —2(1+p(0)).

. B2 (POL 4) A convex, closed figure lies inside a given circle. The figure

is seen from every point of the circumference at a right angle (that is,
the two rays drawn from the point and supporting the convex figure are
perpendicular). Prove that the center of the circle is a center of symmetry
of the figure.
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. B3 (GBR 1) Let ABC be a triangle, and let P be a point inside it such

that L PAC' = £ PBC. The perpendiculars from P to BC and C'A meet
these lines at L and M, respectively, and D is the midpoint of AB. Prove
that DL = DM.

B4 (BRA 1) A box contains p white balls and ¢ black balls. Beside the
box there is a pile of black balls. Two balls are taken out of the box. If
they have the same color, a black ball from the pile is put into the box.
If they have different colors, the white ball is put back into the box. This
procedure is repeated until the last two balls are removed from the box
and one last ball is put in. What is the probability that this last ball is
white?

B5 (CAN 3) (a) Find the rearrangement {a1,...,a,} of {1,2,...,n}
that maximizes

aras + asaz + -+ ana; = Q.

(b) Find the rearrangement that minimizes Q.

B6 (FIN 3) Four distinct circles C, C1,Csy, C5 and a line L are given in
the plane such that C' and L are disjoint and each of the circles Cy, Cs, Cs
touches the other two, as well as C and L. Assuming the radius of C to
be 1, determine the distance between its center and L.

C1 (NET 1)™O02 A scalene triangle A; A Az is given with sides ay, as, a3
(a; is the side opposite to A4;). For all i = 1,2, 3, M; is the midpoint of side
a;, T; is the point where the incircle touches side a;, and the reflection of
T; in the interior bisector of A; yields the point S;. Prove that the lines
M,S1, M5>S, and M3S3 are concurrent.

C2 (AUS 4) Let ABCD be a convex plane quadrilateral and let A;
denote the circumcenter of ABCD. Define By, (1, D; in a corresponding
way.

(a) Provethat either all of A1, By, C1, D1 coincide in one point, or they are
all distinct. Assuming the latter case, show that A, C; are on opposite
sides of the line By D, and similarly, By, D; are on opposite sides of
the line A;Cy. (This establishes the convexity of the quadrilateral
AlBl Cl Dl)

(b) Denote by As the circumcenter of B;Cy D1, and define By, C3, Dy in
an analogous way. Show that the quadrilateral As BoCy Do is similar
to the quadrilateral ABCD.

C3 (CAN 5) Show that

1—s°

<1 a—1
1—8 7( +S)

holds for every 1 # s > 0 real and 0 < a < 1 rational.
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16. C4 (GBR 2)™©%4 Prove that if n is a positive integer such that the
equation 2% — 32y% + y> = n has a solution in integers (x,y), then it has
at least three such solutions. Show that the equation has no solution in
integers when n = 2891.

17. C5 (USS 5) The right triangles ABC and AB;C} are similar and have
opposite orientation. The right angles are at C' and C7, and we also have
ACAB = LC1AB;. Let M be the point of intersection of the lines BC}
and B;C. Prove that if the lines AM and CC} exist, they are perpendic-
ular.

18. C6 (FRA 2) Let O be a point of three-dimensional space and let Iy, ls, I3
be mutually perpendicular straight lines passing through O. Let S denote
the sphere with center O and radius R, and for every point M of S, let Sjs
denote the sphere with center M and radius R. We denote by Py, P>, Ps the
intersection of Sy, with the straight lines [y, l5, [3, respectively, where we
put P; # O if [; meets Sy at two distinct points and P; = O otherwise (i =
1,2,3). What is the set of centers of gravity of the (possibly degenerate)
triangles Py P, P3 as M runs through the points of S7

19. C7 (CZS 3) Let M be the set of real numbers of the form \/lejfnw
where m and n are positive integers. Prove that for every pair x € M,

y € M with x < y, there exists an element z € M such that x < z < y.

20. C8 (TUN 3) Let ABCD be a convex quadrilateral and draw regular tri-
angles ABM, CDP, BCN, ADQ, the first two outward and the other two
inward. Prove that M N = AC. What can be said about the quadrilateral
MNPQ?
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3.24 The Twenty-Fourth IMO
Paris, France, July 1-12, 1983

3.24.1 Contest Problems

First Day (July 6)

1. Find all functions f defined on the positive real numbers and taking pos-
itive real values that satisfy the following conditions:
(i) f(zf(y)) =yf(x) for all positive real z,y;
(i) f(z) — 0asz — +oc.

2. Let K be one of the two intersection points of the circles W7 and Ws. Let
01 and O be the centers of Wi and W5. The two common tangents to
the circles meet W7 and Wy respectively in P; and P», the first tangent,
and @1 and @2 the second tangent. Let M; and Ms be the midpoints of
P1@Q1 and P»Q2, respectively. Prove that Z01 KOy = ZM; K Ms.

3. Let a, b, ¢ be positive integers satisfying (a,b) = (b,¢) = (¢,a) = 1. Show
that 2abc — ab — be — ca is the largest integer not representable as
xbc 4+ yca + zab

with nonnegative integers x, y, z.

Second Day (July 7)

4. Let ABC be an equilateral triangle. Let E be the set of all points from
segments AB, BC, and C A (including A, B, and C). Is it true that for any
partition of the set E into two disjoint subsets, there exists a right-angled
triangle all of whose vertices belong to the same subset in the partition?

5. Prove or disprove the following statement: In the set {1,2,3,...,105} a
subset of 1983 elements can be found that does not contain any three
consecutive terms of an arithmetic progression.

6. If a, b, and c are sides of a triangle, prove that
a®b(a — b) + b%c(b — ¢) + c*a(c —a) >0

and determine when there is equality.

3.24.2 Longlisted Problems

1. (AUS 1) (SL83-1).

2. (AUS 2) Seventeen cities are served by four airlines. It is noted that
there is direct service (without stops) between any two cities and that
all airline schedules offer round-trip flights. Prove that at least one of the
airlines can offer a round trip with an odd number of landings.
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3 Problems

(AUS 3) (a) Given a tetrahedron ABCD and its four altitudes (i.e.,
lines through each vertex, perpendicular to the opposite face), assume
that the altitude dropped from D passes through the orthocenter Hy
of AABC. Prove that this altitude D H, intersects all the other three
altitudes.

(b) If we further know that a second altitude, say the one from vertex A
to the face BCD, also passes through the orthocenter H; of ABCD,
then prove that all four altitudes are concurrent and each one passes
through the orthocenter of the respective triangle.

. (BEL 1) (SL83-2).
. (BEL 2) Consider the set Q2 of points in R?, both of whose coordinates

are rational.

(a) Prove that the union of segments with vertices from Q2 is the entire
set R2.

(b) Is the convex hull of Q2 (i.e., the smallest convex set in R? that con-
tains Q?) equal to R??

. (BEL 3) (SL83-3).
. (BEL 4) Find all numbers x € Z for which the number

P+t rr+1

is a perfect square.

. (BEL 5) (SL83-4).
. (BRA 1) (SL83-5).

(BRA 2) Which of the numbers 1,2,...,1983 has the largest number of
divisors?

(BRA 3) A boy at point A wants to get water at a circular lake and
carry it to point B. Find the point C on the lake such that the distance
walked by the boy is the shortest possible given that the line AB and the
lake are exterior to each other.

(BRA 4) The number 0 or 1 is to be assigned to each of the n vertices
of a regular polygon. In how many different ways can this be done (if we
consider two assignments that can be obtained one from the other through
rotation in the plane of the polygon to be identical)?

(BUL 1) Let p be a prime number and ay, az, ..., a(y41)/2 different nat-
ural numbers less than or equal to p. Prove that for each natural number
r less than or equal to p, there exist two numbers (perhaps equal) a; and
a; such that

p = a;aj(mod 7).
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14. (BUL 2) Let [ be tangent to the circle k at B. Let A be a point on k
and P the foot of perpendicular from A to [. Let M be symmetric to P
with respect to AB. Find the set of all such points M.

15. (CAN 1) Find all possible finite sequences {ng, n1, no, ..., ny} of integers
such that for each 4, ¢ appears in the sequence n; times (0 < i < k).

16. (CAN 2) (SL83-6).
17. (CAN 3) In how many ways can 1,2,...,2n be arranged in a 2 X n
ayp ag - Ap . .
by by - by for which:
(l) a; < as < --- < ap,
(ll) by < by <--- < by,
(lll) a; < bl, as < bQ, ey ap < b,?

18. (CAN 4) Let b > 2 be a positive integer.

(a) Show that for an integer N, written in base b, to be equal to the sum
of the squares of its digits, it is necessary either that N = 1 or that
N have only two digits.

(b) Give a complete list of all integers not exceeding 50 that, relative to
some base b, are equal to the sum of the squares of their digits.

(c) Show that for any base b the number of two-digit integers that are
equal to the sum of the squares of their digits is even.

(d) Show that for any odd base b there is an integer other than 1 that is
equal to the sum of the squares of its digits.

19. (CAN 5) (SL83-7).

20. (COL 1) Let f and g be functions from the set A to the same set A.
We define f to be a functional nth root of g (n is a positive integer) if
f7(2) = g(x), where f*(z) = f*~1(f()).

(a) Prove that the function g : R — R, g(z) = 1/2 has an infinite number
of nth functional roots for each positive integer n.

(b) Prove that there is a bijection from R onto R that has no nth func-
tional root for each positive integer n.

rectangular array

21. (COL 2) Prove that there are infinitely many positive integers n for
which it is possible for a knight, starting at one of the squares of an n x n
chessboard, to go through each of the squares exactly once.

22. (CUB 1) Does there exist an infinite number of sets C' consisting of 1983
consecutive natural numbers such that each of the numbers is divisible by
some number of the form a!?®3, with @ € N, a # 1?

23. (FIN 1) (SL83-10).

24. (FIN 2) Every z, 0 < z < 1, admits a unique representation z =
Y70 a;277, where all the a; belong to {0, 1} and infinitely many of them

are 0. If b(0) = 2T¢, b(1) ¢ >0, and

_ 1
24c¢? T 24¢?
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3 Problems
fl@)=ao+ Y blag)---blaj)aj1,
j=0

show that 0 < f(x) —x < ¢ for every z, 0 < z < 1.
(FIN 2) (SL83-11).

(FRG 1) How many permutations aj,as,...,a, of {1,2,...,n} are
sorted into increasing order by at most three repetitions of the following
operation: Move from left to right and interchange a; and a;y; whenever
a; > a;y1 for ¢ running from 1 up to n — 17

(FRG 2) Let a, b, ¢ be positive integers satisfying (a,b) = (b, ¢) = (¢,a) =
1. Show that 2abc — ab — bc — ca cannot be represented as bex + cay + abz
with nonnegative integers x, y, z.

(FRG 3) (SL83-18).
(GBR 1) Show that if the sides a, b, ¢ of a triangle satisfy the equation

2(ab® 4 bc® + ca®) = a®b + b?c + c*a + 3abe,
then the triangle is equilateral. Show also that the equation can be satisfied

by positive real numbers that are not the sides of a triangle.

(GBR 2) Let O be a point outside a given circle. Two lines OAB, OCD
through O meet the circle at A, B, C, D, where A, C are the midpoints of
OB, OD, respectively. Additionally, the acute angle € between the lines is
equal to the acute angle at which each line cuts the circle. Find cos 6 and
show that the tangents at A, D to the circle meet on the line BC.

(GBR 3) Prove the existence of a unique sequence {u,} (n =0,1,2...)
of positive integers such that

ui = E <n * r) Upp—rr for all n > 0,
r
r=0

where (') is the usual binomial coefficient.
(GBR 4) (SL83-12).

(GBR 5) Let a,b,c be positive real numbers and let [z] denote the
greatest integer that does not exceed the real number x. Suppose that f
is a function defined on the set of nonnegative integers n and taking real
values such that f(0) =0 and

fn) <an+ f([bn]) + f([en]), foralln > 1.
Prove that if b + ¢ < 1, there is a real number k£ such that

f(n) <kn  for all n, (1)
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while if b + ¢ = 1, there is a real number K such that f(n) < Knlog,n
for all n > 2. Show that if b 4+ ¢ = 1, there may not be a real number k
that satisfies (1).

(GDR. 1) (SL83-16).

(GDR 2) In a plane are given n points P; (i = 1,2,...,n) and two
angles o and (. Over each of the segments P;P;—1 (Pn,+1 = P1) a point
Q; is constructed such that for all i:

(i) upon moving from P; to P11, @; is seen on the same side of P;P;41,
(ii) £ZP1PQi =«
(iil) LPPy1Q; = 0.

Furthermore, let g be a line in the same plane with the property that all
the points P;, @; lie on the same side of g. Prove that

n n

Zd(Pi;g) = Z d(Qi, 9),

i=1 i=1
where d(M, g) denotes the distance from point M to line g.
(GDR 3) (SL83-17).

(ISR 1) The set X has 1983 members. There exists a family of subsets
{51, S2,...,S;} such that:

(i) the union of any three of these subsets is the entire set X, while

(ii) the union of any two of them contains at most 1979 members.

What is the largest possible value of k7

(ISR 2) The points Aq, As, ..., Ajgs3 are set on the circumference of a
circle and each is given one of the values £1. Show that if the number of
points with the value +1 is greater than 1789, then at least 1207 of the
points will have the property that the partial sums that can be formed by
taking the numbers from them to any other point, in either direction, are
strictly positive.

(KUW 1) Let {uy} be the sequence defined by its first two terms ug, u;
and the recursion formula
Up4+2 = Up — Up41-

(a) Show that w, can be written in the form w, = aa™ + Bb", where
a,b, a, B are constants independent of n that have to be determined.

(b) If S,, = up + u1 + - - - + uy, prove that S, + u,—_1 is a constant inde-
pendent of n. Determine this constant.

(KUW 2) If « is the real root of the equation
E(z)=2%—52—-50=0

such that 2,41 = (52, + 50)/3 and z; = 5, where n is a positive integer,
prove that:
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3 Problems

(a) x?H_l —a® =5(x, —a)
(b) a < Tpi1 < Ty

(LUX 1) Four faces of tetrahedron ABC D are congruent triangles whose
angles form an arithmetic progression. If the lengths of the sides of the
triangles are a < b < ¢, determine the radius of the sphere circumscribed
about the tetrahedron as a function on a, b, and ¢. What is the ratio c¢/a
if R=a?

(LUX 2) (SL83-13).

(LUX 3) Consider the square ABCD in which a segment is drawn
between each vertex and the midpoints of both opposite sides. Find the
ratio of the area of the octagon determined by these segments and the
area of the square ABCD.

(LUX 4) Given a square ABCD, let P, @, R, and S be four variable
points on the sides AB, BC, CD, and DA, respectively. Determine the
positions of the points P, ), R, and S for which the quadrilateral PQRS
is a parallelogram, a rectangle, a square, or a trapezoid.

(LUX 5) We are given twelve coins, one of which is a fake with a different
mass from the other eleven. Determine that coin with three weighings and
whether it is heavier or lighter than the others.

(LUX 6) Let two glasses, numbered 1 and 2, contain an equal quantity
of liquid, milk in glass 1 and coffee in glass 2. One does the following: Take
one spoon of mixture from glass 1 and pour it into glass 2, and then take
the same spoon of the new mixture from glass 2 and pour it back into the
first glass. What happens after this operation is repeated n times, and
what as n tends to infinity?

(LUX 7) Let f be a real-valued function defined on I = (0,+0c0) and
having no zeros on I. Suppose that
f'(x)

lim = +o0.
e f(a)

For the sequence u, = In ‘ f(frz:)l) ‘, prove that u,, — +o00 (n — +00).

(NET 1) In a plane, three pairwise intersecting circles Cy, Co, C3 with
centers My, Mo, M5 are given. For i = 1,2, 3, let A; be one of the points of
intersection of C; and Cy ({7, j, k} = {1, 2, 3}). Prove that if ZM3sA; M, =
LM AsMs = L MyAsM; = 7/3 (directed angles), then M; Ay, MsAs, and
M3 As are concurrent.

(NET 2) Prove that in any parallelepiped the sum of the lengths of the

edges is less than or equal to twice the sum of the lengths of the four
diagonals.
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(POL 1) Given positive integers k, m,n with km < n and nonnegative
real numbers x4, ..., x, prove that

k k
n(HxT—l) ng(x?—l).

(POL 2) (SL83-14).
(POL 3) (SL83-15).
(ROM 1) (SL83-19).

(ROM 2) Let a € R and let 21, 29, ..., 2, be complex numbers of mod-
ulus 1 satisfying the relation

n

Zz,% =4(a+ (a —n)i) —Ssz.
k=1

k=1
Prove that a € {0,1,...,n} and 2 € {1,i} for all k.
(ROM 3) (SL83-20).

(ROM 4) For every a € N denote by M(a) the number of elements of
the set
{b e N|a+bis a divisor of ab}.

Find maXq<1983 M(a)
(ROM 5) Consider the expansion

(1+z+a?+23+2M% =ag + a1z + - + arogar®®t

(a) Determine the greatest common divisor of the coefficients as, ag, a13,

-, 01983.
(b) Prove that 10340 < %92 < 10347.

(SPA 1) In the system of base n? + 1 find a number N with n different

digits such that:

(i) N is a multiple of n. Let N = nN’.

(ii) The number N and N’ have the same number n of different digits in
base n? + 1, none of them being zero.

(iii) If s(C) denotes the number in base n? + 1 obtained by applying the

permutation s to the n digits of the number C, then for each permu-
tation s, s(IV) = ns(N').

(SPA 2) (SL83-8).
(SPA 3) Solve the equation

tan?(2z) + 2 tan(2z) - tan(3z) — 1 = 0.

(SWE 1) (SL83-21).
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3 Problems

(SWE 2) Let a and b be integers. Is it possible to find integers p and ¢
such that the integers p 4+ na and ¢ + nb have no common prime factor no
matter how the integer n is chosen.

(SWE 3) A circle 7 is drawn and let AB be a diameter. The point C
on + is the midpoint of the line segment BD. The line segments AC and
DO, where O is the center of v, intersect at P. Prove that there is a point
E on AB such that P is on the circle with diameter AE.

(SWE 4) (SL83-22).

(USA 1) The sum of all the face angles about all of the vertices except
one of a given polyhedron is 5160. Find the sum of all of the face angles
of the polyhedron.

(USA 2) Let ABCD be a convex quadrilateral whose diagonals AC' and
BD intersect in a point P. Prove that

AP cot ZBAC + cot ZDAC
PC  cot LZBCA+cot ZDCA’

(USA 3) (SL83-9).

(USA 4) The altitude from a vertex of a given tetrahedron intersects
the opposite face in its orthocenter. Prove that all four altitudes of the
tetrahedron are concurrent.

(USA 5) Three of the roots of the equation x* — px® +gz? —rz+s=0
are tan A, tan B, and tan C', where A, B, and C are angles of a triangle.
Determine the fourth root as a function only of p, g, r, and s.

(USS 1) (SL83-23).
(USS 2) (SL83-24).
(USS 3) (SL83-25).

(USS 4) Prove that for all 21,2z9,...,2, € R the following inequality
holds: 5
Z cos®(z; — x5) > nin = )

— 4
n>i>j5>1

(VIE 1) Let ABC be a nonequilateral triangle. Prove that there exist
two points P and () in the plane of the triangle, one in the interior and
one in the exterior of the circumcircle of ABC, such that the orthogonal
projections of any of these two points on the sides of the triangle are
vertices of an equilateral triangle.

(VIE 2) In a plane we are given two distinct points A, B and two lines
a,b passing through B and A respectively (a 3 B,b 3 A) such that the
line AB is equally inclined to a and b. Find the locus of points M in the
plane such that the product of distances from M to A and a equals the
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product of distances from M to B and b (i.e., MA- MA' = MB-MPB’,
where A’ and B’ are the feet of the perpendiculars from M to a and b
respectively).

(VIE 3) Find the sum of the fiftieth powers of all sides and diagonals of
a regular 100-gon inscribed in a circle of radius R.

3.24.3 Shortlisted Problems

1.

(AUS 1) The localities P;, Py, ..., Pigs3 are served by ten international
airlines Ay, As, ..., A1p. It is noticed that there is direct service (without
stops) between any two of these localities and that all airline schedules
offer round-trip flights. Prove that at least one of the airlines can offer a
round trip with an odd number of landings.

. (BEL 1) Let n be a positive integer. Let o(n) be the sum of the natural

divisors d of n (including 1 and n). We say that an integer m > 1 is
superabundant (P.Erdos, 1944) if Vk € {1,2,...,m — 1}, UEZL) > U(kk).
Prove that there exists an infinity of superabundant numbers.

. (BEL 3)MO% We say that a set E of points of the Euclidian plane is

“Pythagorean” if for any partition of E into two sets A and B, at least

one of the sets contains the vertices of a right-angled triangle. Decide

whether the following sets are Pythagorean:

(a) a circle;

(b) an equilateral triangle (that is, the set of three vertices and the points
of the three edges).

. (BEL 5) On the sides of the triangle ABC| three similar isosceles tri-

angles ABP (AP = PB), AQC (AQ = QC), and BRC (BR = RC) are
constructed. The first two are constructed externally to the triangle ABC,
but the third is placed in the same half-plane determined by the line BC
as the triangle ABC. Prove that APR(Q) is a parallelogram.

. (BRA 1) Consider the set of all strictly decreasing sequences of n natural

numbers having the property that in each sequence no term divides any
other term of the sequence. Let A = (a;) and B = (b;) be any two such
sequences. We say that A precedes B if for some k, ar < by and a; = b; for
i < k. Find the terms of the first sequence of the set under this ordering.

. (CAN 2) Suppose that {x1,z2,...,2z,} are positive integers for which

21+ x2+ -+ x, = 2(n+ 1). Show that there exists an integer r with
0 <7 <n—1 for which the following n — 1 inequalities hold:

Tpg1+ o+ Tppy <2041 Vi, 1<i<n-—r;
Tog1+ ot Tptor+ o <2n—r+i)+1 Vi, 1<i<r—1

Prove that if all the inequalities are strict, then r is unique and that
otherwise there are exactly two such r.
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3 Problems

(CAN 5) Let a be a positive integer and let {a,} be defined by ag =0
and

tng1 = (an +Da+ (a+ Dan +2v/a(a+ Dan(an+1) (n=1,2...).

Show that for each positive integer n, a,, is a positive integer.

. (SPA 2) In a test, 3n students participate, who are located in three

rows of n students in each. The students leave the test room one by one.
If Ni(t), Na(t), N3(t) denote the numbers of students in the first, second,
and third row respectively at time ¢, find the probability that for each ¢
during the test,

INi(t) = N;j(O)| <2, i#j i,j=12,....
(USA 3)™MO6 If g b, and c are sides of a triangle, prove that
a®b(a —b) + b%c(b — ¢) + c*a(c —a) > 0.

Determine when there is equality.

(FIN 1) Let p and g be integers. Show that there exists an interval I of
length 1/¢ and a polynomial P with integral coefficients such that

for all z € I.
(FIN 2) Let f:[0,1] — R be continuous and satisfy:

bf(2z) = f(x), 0<a<1/2;
fl@)=b+1-0)fR2x-1), 1/2<z<1,

where b = ;Ig, ¢ > 0. Show that 0 < f(z) —x < cforevery z, 0 <z < 1.

(GBR 4)™0! Find all functions f defined on the positive real numbers
and taking positive real values that satisfy the following conditions:

(i) f(zf(y)) =yf(x) for all positive real z,y.
(i) f(z) — 0asz — +o0.

(LUX 2) Let E be the set of 19833 points of the space R? all three
of whose coordinates are integers between 0 and 1982 (including 0 and
1982). A coloring of F' is a map from E to the set {red, blue}. How many
colorings of E are there satisfying the following property: The number of
red vertices among the 8 vertices of any right-angled parallelepiped is a
multiple of 47

(POL 2)™O3 Prove or disprove: From the interval [1,...,30000] one
can select a set of 1000 integers containing no arithmetic triple (three
consecutive numbers of an arithmetic progression).
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. (POL 3) Decide whether there exists a set M of natural numbers satis-
fying the following conditions:
(i) For any natural number m > 1 there are a,b € M such that a+b = m.
(ii) If a,b,¢,d € M, a,b,¢c,d > 10 and a + b= c+ d, then a = c or a = d.

(GDR 1) Let F(n) be the set of polynomials P(z) = aptai1x+- - +a,z",
with ag,a1,...,ap € Rand 0 < ap = ap < a1 = ap—1 < -+ < apyg =
[(n41)/2]- Prove that if f € F'(m) and g € F(n), then fg € F(m +n).

(GDR 3) Let Py, Ps,..., P, be distinct points of the plane, n > 2. Prove
that
max P P; > \/3(\/n— 1) min PP;
1<i<j<n =7 2 1<i<j<n 7

(FRG 3)™O3 Let a,b,c be positive integers satisfying (a,b) = (b,c) =
(¢,a) = 1. Show that 2abc — ab — be — ca is the largest integer not repre-
sentable as

xbc 4+ yca + zab

with nonnegative integers x, y, z.

(ROM 1) Let (Fy,)n>1 be the Fibonacci sequence Fy = Fr =1, Fj40 =
Foy1+ F, (n>1), and P(z) the polynomial of degree 990 satisfying

P(k)=Fy, fork=992,...,1982.
Prove that P(1983) = F1983 —1.
(ROM 3) Solve the system of equations

ri|z1| = z2|22| + (T1 — @)|T1 — 0,
Ta|ze| = z3]|23] + (T2 — a@)|T2 — al,

Tnlzn| = 21]21| + (20 — a@)|20 — a,

in the set of real numbers, where a > 0.

21983

(SWE 1) Find the greatest integer less than or equal to Sy, k'/1983=1,

(SWE 4) Let n be a positive integer having at least two different prime
factors. Show that there exists a permutation ai, as, . .., a, of the integers

1,2,...,n such that
= 2
E k - cos 7rak:O.
n
k=1

(USS 1)™92 [et K be one of the two intersection points of the circles W;
and Ws. Let O and Os be the centers of W7 and W5. The two common
tangents to the circles meet W7 and W respectively in P, and P, the
first tangent, and Q)7 and @3, the second tangent. Let M; and M; be the
midpoints of P;Q1 and P>Q)2, respectively. Prove that

401K02 = ZMlKMZ
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25.

3 Problems

(USS 2) Let d,, be the last nonzero digit of the decimal representation
of n!. Prove that d,, is aperiodic; that is, there do not exist 1" and ng such
that for all n > ng, dptr = dp.-

(USS 3) Prove that every partition of 3-dimensional space into three
disjoint subsets has the following property: One of these subsets contains
all possible distances; i.e., for every a € R4, there are points M and N
inside that subset such that distance between M and N is exactly a.
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3.25 The Twenty-Fifth IMO
Prague, Czechoslovakia, June 29—July 10, 1984

3.25.1 Contest Problems

First Day (July 4)

1. Let z,y, z be nonnegative real numbers with = + y + z = 1. Show that

0<a2y+yz+zex—2zyz < 97"

2. Find two positive integers a, b such that none of the numbers a,b,a + b is
divisible by 7 and (a + b)” — a” — b7 is divisible by 77.

3. In a plane two different points O and A are given. For each point X # O

of the plane denote by a(X) the angle AOX measured in radians (0 <
a(X) < 2m) and by C(X) the circle with center O and radius OX + ogf().
Suppose each point of the plane is colored by one of a finite number of
colors. Show that there exists a point X with «(X) > 0 such that its color

appears somewhere on the circle C(X).

Second Day (July 5)

4. Let ABCD be a convex quadrilateral for which the circle of diameter AB
is tangent to the line C'D. Show that the circle of diameter C'D is tangent
to the line AB if and only if the lines BC and AD are parallel.

5. Let d be the sum of the lengths of all diagonals of a convex polygon of n
(n > 3) vertices, and let p be its perimeter. Prove that

n—3 <d< 1 [n] n+1 _q
2 p 2\ L2 2 '
6. Let a,b,c,d be odd positive integers such that a < b < ¢ < d, ad = be,
and a + d = 2%, b+ ¢ = 2™ for some integers k and m. Prove that a = 1.

3.25.2 Longlisted Problems

1. (AUS 1) The fraction } can be written as the sum of two positive
fractions with numerator 1 as follows: 130 = é + 110 and also 1% = 411 + 210.
There are the only two ways in which this can be done.

In how many ways can 1938 4 be written as the sum of two positive fractions
with numerator 17

Is there a positive integer n, not divisible by 3, such that f’l can be written
as the sum of two positive fractions with numerator 1 in exactly 1984
ways?
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3 Problems

. (AUS 2) Given a regular convex 2m-sided polygon P, show that there is

a 2m-sided polygon m with the same vertices as P (but in different order)
such that 7 has exactly one pair of parallel sides.

. (AUS 3) The opposite sides of the reentrant hexagon AFBDCE in-

tersect at the points K, L, M (as shown in the figure). It is given that

AL = AM = a, BM = BK =b, CK = CL = ¢, LD = DM = d,

ME=FK=e¢, FK=FL=f.

(a) Given length a and the three angles «, 3, and v at the vertices A, B,
and C, respectively, satisfying the condition o 4+ 8 + v < 180°, show
that all the angles and sides of the hexagon are thereby uniquely

determined.
(b) Prove that
1,1 1.1
a e b d
Easier version of (b). Prove that
(a+ f)b+d)(c+e)
=(a+e)(b+ f)(c+d).

C.

. (BEL 1) Given a triangle ABC, three equilateral triangles AEB, BFC,

and CGA are constructed in the exterior of ABC. Prove that:
(a) CE = AF = BG;
(b) CE, AF, and BG have a common point.

. (BEL 2) For a real number z, let [z] denote the greatest integer not

exceeding z. If m > 3, prove that

) =17

. (BEL 3) Let P,Q, R be the polynomials with real or complex coefficients

such that at least one of them is not constant. If P" 4+ Q™+ R™ = 0, prove
that n < 3.

. (BUL 1) Prove that for any natural number n, the number (21?) divides

the least common multiple of the numbers 1,2,...,2n — 1, 2n.

. (BUL 2) In the plane of a given triangle A; As A3 determine (with proof)

a straight line [ such that the sum of the distances from A;, Ao, and As
to [ is the least possible.

. (BUL 3) The circle inscribed in the triangle A;A3As is tangent to

its sides A1 As, AsAsz, A3A; at points 11, Ts, T3, respectively. Denote by
My, Ms, M3 the midpoints of the segments AsAsz, A3Aq, A1 Ao, respec-
tively. Prove that the perpendiculars through the points My, Ms, M3 to
the lines ToT5, 15171, T1T> meet at one point.
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(BUL 4) Assume that the bisecting plane of the dihedral angle at edge
AB of the tetrahedron ABCD meets the edge C'D at point E. Denote by
S1,S2,53, respectively the areas of the triangles ABC, ABE, and ABD.
Prove that no tetrahedron exists for which Sy, Sz, S5 (in this order) form
an arithmetic or geometric progression.

(BUL 5) (SL84-13).

(CAN 1) (SL84-11).
Original formulation. Suppose that ai,as,...,as, are distinct integers
such that

(x—a1)(z —az) - (x —ag,) + (=1)"1(n)2 =0

aitaz+---+azn
9 .

has an integer solution r. Show that r = .

(CAN 2) (SL84-2).

Original formulation. Let m,n be nonzero integers. Show that 4mn—m—n
can be a square infinitely many times, but that this never happens when
either m or n is positive.

Alternative formulation. Let m,n be positive integers. Show that 4mn —
m — n can be 1 less than a perfect square infinitely often, but can never
be a square.

(CAN 3) (SL84-6).
(CAN 4) Counsider all the sums of the form

1985
Z exk® = +1°£2° + ... 4+ 19857,

where e, = +1. What is the smallest nonnegative value attained by a sum
of this type?

(CAN 5) (SL84-19).
(FRA 1) (SL84-1).

(FRA 2) Let ¢ be the inscribed circle of the triangle ABC, d a line tan-
gent to ¢ which does not pass through the vertices of triangle ABC'. Prove
the existence of points Ay, By, C1, respectively, on the lines BC,CA, AB
satisfying the following two properties:
(i) Lines AA;, BBy, and CC} are parallel.
(ii) Lines AA;, BB;, and CC; meet d respectively at points A’, B, and
C’ such that

A'Ay,  B'By C'Ch

AA BB CC
(FRA 3) Let ABC be an isosceles triangle with right angle at point A.
Find the minimum of the function F' given by

F(M)=BM +CM — v3AM.
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3 Problems

(FRG 1) (SL84-5).

(FRG 2)

(1) Start with a white balls and b black balls.

(2) Draw one ball at random.

(3) If the ball is white, then stop. Otherwise, add two black balls and go
to step 2.

Let S be the number of draws before the process terminates. For the

cases a = b =1and a = b = 2 only, find a, = P(S =n), b, = P(S <

n), lim, o by, and the expectation value of the number of balls drawn:

E(S) =351 nan.

(FRG 3) (SL84-17).

Original formulation. In a permutation (z1, 232, ...,2,) of theset 1,2,...,

n we call a pair (z;, ;) discordant if i < j and x; > x;. Let d(n, k) be the

number of such permutations with exactly k discordant pairs.

(a) Find d(n,2).

(b) Show that

d(n, k) =d(n,k—1)+dn—-1,k)—dn—-1,k—1)

with d(n,k) =0 for k¥ < 0 and d(n,0) = 1 for n > 1. Compute with
this recursion a table of d(n, k) for n =1 to 6.

(FRG 4) A 2x2x 12 box fixed in space is to be filled with twenty-four
1 x 1 x 2 bricks. In how many ways can this be done?

(FRG 5) (SL84-7).
Original formulation. Consider several types of 4-cell figures:

(a) (b) () (d) (e)

Find, with proof, for which of these types of figures it is not possible to
number the fields of the 8 x 8 chessboard using the numbers 1,2, ...,64 in
such a way that the sum of the four numbers in each of its parts congruent
to the given figure is divisible by 4.

(GBR 1) (SL84-10).

(GBR 2) A cylindrical container has height 6 cm and radius 4 cm. It
rests on a circular hoop, also of radius 4 cm, fixed in a horizontal plane
with its axis vertical and with each circular rim of the cylinder touching
the hoop at two points.

The cylinder is now moved so that each of its circular rims still touches
the hoop in two points. Find with proof the locus of one of the cylinder’s
vertical ends.

(GBR 3) The function f(n) is defined on the nonnegative integers n by:
f(0)y=0, f(1) =1,
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)= 1 (0= ymm =) =7 (Gmem 1 -n).

for Jm(m 1) n < im(m+1), m > 2. Find the smallest integer n for
which f(n) =

(GBR 4) A “number triangle” (t,x) (0 < k < n) is defined by ¢, 0 =
tnn =1 (n>0),

tutm = (2 ¢3) tum + (24 V3

n—m-+1
) tnm—1 (1 <m <n).

Prove that all ¢, ,, are integers.

(GDR 1) Let S, ={1,...,n} and let f be a function that maps every
subset of S, into a positive real number and satisfies the following con-
dition: For all A C S,, and z,y € S,, z # y, f(AU{z})f(AU{y}) <

fAU{z, y}) f(A).

Prove that for all A, B C S,, the following inequality holds:

f(A)-f(B) < f(AUB)- f(ANB).

(GDR 2) Decide whether it is possible to color the 1984 natural numbers
1,2,3,...,1984 using 15 colors so that no geometric sequence of length 3
of the same color exists.

(LUX 1) Let fi(v) = 2 +a122 +b1x+c1 = 0 be an equation with three
positive roots a > 8 > v > 0. From the equation f;(z) = 0 one constructs
the equation fa(x) = 23 + agx? + box + co = z(x +b1)? — (@12 +¢1)? = 0.
Continuing this process, we get equations fs,..., f,. Prove that

. —1
lim *""V/—a, = .

n—oo

(LUX 2) (SL84-15).
(MON 1) (SL84-4).

(MON 2) One country has n cities and every two of them are linked by a
railroad. A railway worker should travel by train exactly once through the
entire railroad system (reaching each city exactly once). If it is impossible
for worker to travel by train between two cities, he can travel by plane.
What is the minimal number of flights that the worker will have to use?

(MON 3) Prove that there exist distinct natural numbers m,mao, ...,
my, satisfying the conditions

1 1 1
mq mo mig

where 7 is the ratio between circle and its diameter.
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3 Problems

(MON 4) Theset {1,2,...,49} is divided into three subsets. Prove that
at least one of these subsets contains three different numbers a, b, ¢ such
that a +b=c.

(MOR 1) Denote by [z] the greatest integer not exceeding x. For all
real k > 1, define two sequences:

nk
an(k) =[nk] and b,(k) = [k—l] .
If A(k) = {an(k) : n € N} and B(k) = {b,(k) : n € N}, prove that A(k)
and B(k) form a partition of N if and only if k is irrational.

(MOR 2) Determine all continuous functions f such that

(V(z,y) €R?)  flz+y)flx—y) = (f(x)f(y)>.

(MOR 3) Let ABC be an isosceles triangle, AB = AC, ZA = 20°. Let
D be a point on AB, and E a point on AC such that ZACD = 20° and
/ABE = 30°. What is the measure of the angle ZCDE?

(NET 1) (SL84-12).

(NET 2) Determine positive integers p, g, and r such that the diagonal
of a block consisting of p X ¢ X r unit cubes passes through exactly 1984 of
the unit cubes, while its length is minimal. (The diagonal is said to pass
through a unit cube if it has more than one point in common with the
unit cube.)

(NET 3) Triangle ABC is given for which BC = AC + %AB. The point
P divides AB such that RP : PA =1: 3. Prove that ZCAP = 2/CPA.

(POL 1) (SL84-16).
(POL 2) (SL84-9).

(POL 3) Let X be an arbitrary nonempty set contained in the plane and
let sets Ay, Ag,..., Ay and By, Bs, ..., B, be its images under parallel
translations. Let us suppose that

A1UA2U"'UAmC31UBQU'~~UBn

and that the sets A1, As, ..., A, are disjoint. Prove that m < n.

(ROM 1) Let (an)n>1 and (b, )n>1 be two sequences of natural numbers
such that an4+1 = na, + 1, byy1 = nb, — 1 for every n > 1. Show that
these two sequences can have only a finite number of terms in common.

(ROM 2) (SL84-8).

(ROM 3) Let ABC be a triangle with interior angle bisectors AA;,
BBy, CCy and incenter I. If 0[IA; B] + o[IB1C] + o[IC, A] = Jo[ABC],
where o[ABC] denotes the area of ABC, show that ABC is isosceles.
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(ROM 4) Letn >1landa; € Rfori=1,...,n. Set Sx = a¥ + 2§ +
coodaf for k> 1.1f S; = Sy = -+ = S,41, show that z; € {0,1} for
every 1 =1,2,...,n.

(ROM 5) (SL84-14).

(SPA 1) Two cyclists leave simultaneously a point P in a circular run-
way with constant velocities v1,v2 (v1 > v2) and in the same sense. A
pedestrian leaves P at the same time, moving with velocity vs = ”11+2”2.
If the pedestrian and the cyclists move in opposite directions, the pedes-
trian meets the second cyclist 91 seconds after he meets the first. If the
pedestrian moves in the same direction as the cyclists, the first cyclist
overtakes him 187 seconds before the second does. Find the point where

the first cyclist overtakes the second cyclist the first time.

(SPA 2) Construct a scalene triangle such that

a(tan B —tan C') = b(tan A — tan C).
(SPA 3) Find a sequence of natural numbers a; such that a; = 25;41 d,.,
where d, # ds for r # s and d, divides a;.

(SPA 4) Let P be a convex planar polygon with equal angles. Let
l1,...,l, be its sides. Show that a necessary and sufficient condition for
P to be regular is that the sum of the ratios lilil (i=1,...,n; lus1 =11)
equals the number of sides.

(SPA 5) Let a, b, ¢ be natural numbers such that a+b+c = 2pq(p3°+¢3°),
p > q being two given positive integers.

(a) Prove that k = a® + b® + 3 is not a prime number.

(b) Prove that if a - b - ¢ is maximum, then 1984 divides k.

(SWE 1) Let a,b, c be nonnegative integers such that a < b < ¢, 2b #
a + ¢ and “+§+c is an integer. Is it possible to find three nonnegative
integers d, e, and f such that d < e < f, f # ¢, and such that a®?4b*+c? =
d? + e + f27

(SWE 2) Let a,b,c,d be a permutation of the numbers 1,9, 8,4 and let
n = (10a + b)'%*<. Find the probability that 1984! is divisible by n.

(SWE 3) Let (ay)$° be a sequence such that a, < anym < an + ap, for
all positive integers n and m. Prove that %" has a limit as n approaches
infinity.

(USA 1) Determine the smallest positive integer m such that 529" 4+m -
132" is divisible by 262417 for all odd positive integers n.
(USA 2) (SL84-20).

(USA 3) A fair coin is tossed repeatedly until there is a run of an odd
number of heads followed by a tail. Determine the expected number of
tosses.
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3 Problems

(USA 4) From a point P exterior to a circle K, two rays are drawn
intersecting K in the respective pairs of points A, A’ and B, B’. For any
other pair of points C,C" on K, let D be the point of intersection of the
circumcircles of triangles PAC and PB’C’ other than point P. Similarly,
let D’ be the point of intersection of the circumcircles of triangles PA'C’
and PBC other than point P. Prove that the points P, D, and D’ are
collinear.

(USA 5) (SL84-18).

(USS 1) For a matrix (p;;) of the format m x n with real entries, set

=1

al:zplj forizl,...,m and bJ:szJ fOI‘jZI,.-.,n- (1)
j=1

By integering a real number we mean replacing the number with the in-
teger closest to it.

Prove that integering the numbers a;, b;,p;; can be done in such a way
that (1) still holds.

(USS 2) A tetrahedron is inscribed in a sphere of radius 1 such that the
center of the sphere is inside the tetrahedron.

Prove that the sum of lengths of all edges of the tetrahedron is greater
than 6.

(USS 3) (SL84-3).

Original formulation. All the divisors of a positive integer n arranged in
increasing order are r; < xo < --- < zp. Find all such numbers n for
which x% + x% —1=n.

(USS 4) With the medians of an acute-angled triangle another triangle is
constructed. If R and R, are the radii of the circles circumscribed about
the first and the second triangle, respectively, prove that

5
R, > GR.

(USS 5) In the Martian language every finite sequence of letters of
the Latin alphabet letters is a word. The publisher “Martian Words”
makes a collection of all words in many volumes. In the first volume there
are only one-letter words, in the second, two-letter words, etc., and the
numeration of the words in each of the volumes continues the numeration
of the previous volume. Find the word whose numeration is equal to the
sum of numerations of the words Prague, Olympiad, Mathematics.

3.25.3 Shortlisted Problems

1.

(FRA 1) Find all solutions of the following system of n equations in n
variables:
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ri|zi| — (71 — a)|r1 — a| = 2|22l
Ta|z2| — (72 — a)|r2 — a| = z3|xs],

xnlxn| — (zn — a)|xn - a| = x1|x1|,
where a is a given number.
. (CAN 2) Prove:
(a) There are infinitely many triples of positive integers m,n,p such that
dmn—m—n=7p*>—1.
(b) There are no positive integers m, n, p such that 4mn —m —n = p?.

. (USS 3) Find all positive integers n such that
n=d:+d2—1,

where 1 = d; < ds < --- < d =n are all positive divisors of the number
n.

. (MON 1)™O95 T et d be the sum of the lengths of all diagonals of a convex
polygon of n (n > 3) vertices and let p be its perimeter. Prove that

n—3<d< 1 [n] n+1 _q

o Sp S ollal] 2 '
. (FRG 1)™O! Let z,y, » be nonnegative real numbers with 2 +y+2z = 1.
Show that

7
0<z2y+yz+zx—2zyz < o7

. (CAN 3) Let ¢ be a positive integer. The sequence {f,} is defined as
follows:

fl =1, f2 =¢, fn+1 :2fn_.fn—l+2 (TLZ 2)
Show that for each k € N there exists r € N such that fifx+1 = fr.

. (FRG 5)

(a) Decide whether the fields of the 8 x 8 chessboard can be numbered
by the numbers 1,2,...,64 in such a way that the sum of the four
numbers in each of its parts of one of the forms

is divisible by four.
(b) Solve the analogous problem for
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3 Problems

(ROM 2)™O3 I a plane two different points O and A are given. For
each point X # O of the plane denote by «a(X) the angle AOX measured
in radians (0 < a(X) < 27) and by C(X) the circle with center O and
radius OX + Og‘;?. Suppose each point of the plane is colored by one of a
finite number of colors. Show that there exists a point X with o(X) >0

such that its color appears somewhere on the circle C(X).

. (POL 2) Let a,b, ¢ be positive numbers with /a+vb++/c = ‘é3. Prove

that the system of equations

Vy—a++vz—a=1,
\/z—b—l—\/x—bzl,
Vr—c+y—c=1,

has exactly one solution (z,y, z) in real numbers.

(GBR 1) Prove that the product of five consecutive positive integers
cannot be the square of an integer.

(CAN 1) Let n be anatural number and a1, ag, . . . , ag, mutually distinct
integers. Find all integers z satisfying

(z—a1) (z—az) (= az) = (-1)" ().

(NET 1)™©92 Find two positive integers a, b such that none of the num-
bers a, b, a + b is divisible by 7 and (a 4 b)7 — a” — b is divisible by 77.

(BUL 5) Prove that the volume of a tetrahedron inscribed in a right
circular cylinder of volume 1 does not exceed 3277'

(ROM 5)™MO4 Let ABCD be a convex quadrilateral for which the circle
with diameter AB is tangent to the line C'D. Show that the circle with
diameter CD is tangent to the line AB if and only if the lines BC' and
AD are parallel.

(LUX 2) Angles of a given triangle ABC are all smaller than 120°.
Equilateral triangles AF B, BDC and CE A are constructed in the exterior
of NABC.

(a) Prove that the lines AD, BE, and C'F pass through one point S.

(b) Prove that SD + SE + SF =2(SA+ SB+ SC).

(POL 1)™O6 Let a, b, c,d be odd positive integers such that a < b < ¢ <
d, ad = be, and a +d = 2%, b+ ¢ = 2™ for some integers k and m. Prove
that a = 1.

(FRG 3) In a permutation (z1,x2,...,z,) of the set 1,2,...,n we call
a pair (x;,z;) discordant if ¢ < j and z; > ;. Let d(n, k) be the number
of such permutations with exactly k& discordant pairs. Find d(n,2) and
d(n,3).
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18. (USA 5) Inside triangle ABC' there are three circles ki, k2, k3 each of
which is tangent to two sides of the triangle and to its incircle k. The radii
of ky, ko, ks are 1, 4, and 9. Determine the radius of k.

19. (CAN 5) The triangular array (a,_ i) of numbers is given by a, 1 = 1/n,
forn = 1,2,..., ap k41 = Gn_1,k — Ank, for 1 < k < n — 1. Find the
harmonic mean of the 1985th row.

20. (USA 2) Determine all pairs (a,b) of positive real numbers with a # 1

such that
log, b < log, . (b+1).
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3.26 The Twenty-Sixth IMO
Joutsa, Finland, June 29—July 11, 1985

3.26.1 Contest Problems

First Day (July 4)

1. A circle whose center is on the side ED of the cyclic quadrilateral BCDFE
touches the other three sides. Prove that EB + CD = ED.

2. Each of the numbers in the set N = {1,2,3,...,n — 1}, where n > 3, is
colored with one of two colors, say red or black, so that:
(i) i and n — ¢ always receive the same color, and
(ii) for some j € N relatively prime to n, ¢ and |j — i| receive the same
color for all i € N, i # j.
Prove that all numbers in N must receive the same color.

3. The weight w(p) of a polynomial p, p(z) = .1, a;z*, with integer coeffi-
cients a; is defined as the number of its odd coefficients. Fori = 0,1,2, ...,
let g;(x) = (14 ). Prove that for any finite sequence 0 < iy < iy < --- <
i, the inequality

w(gi, + -+ qi,) > w(gi,)

holds.

Second Day (July 5)

4. Given a set M of 1985 positive integers, none of which has a prime divisor
larger than 26, prove that M has four distinct elements whose geometric
mean is an integer.

5. A circle with center O passes through points A and C' and intersects the
sides AB and BC' of the triangle ABC at points K and N, respectively.
The circumscribed circles of the triangles ABC and K BN intersect at
two distinct points B and M. Prove that LOM B = 90°.

6. The sequence f1, fa,..., fn,...of functions is defined for x > 0 recursively
by

A =a o) =@ (f@+ ).

n

Prove that there exists one and only one positive number a such that
0 < fu(a) < fa+1(a) < 1 for all integers n > 1.

3.26.2 Longlisted Problems

1. (AUS 1) (SL85-4).
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. (AUS 2) We are given a triangle ABC' and three rectangles Ry, R, R3

with sides parallel to two fixed perpendicular directions and such that their
union covers the sides AB, BC, and C 4; i.e., each point on the perimeter
of ABC' is contained in or on at least one of the rectangles. Prove that all
points inside the triangle are also covered by the union of Ry, R, R3.

. (AUS 3) A function f has the following property: If & > 1, j > 1,

and (k,7) = m, then f(kj) = f(m) (f(k/m)+ f(j/m)). What values can
f(1984) and f(1985) take?

. (BEL 1) Let z, y, and z be real numbers satisfying = + y + z = ayz.

Prove that

z(1—y?)(1 —2%) +y(1 — 21 —2%) + 2(1 — 22)(1 — y?) = dayz.

. (BEL 2) (SL85-16).

. (BEL 3) On a one-way street, an unending sequence of cars of width a,

length b passes with velocity v. The cars are separated by the distance c.

A pedestrian crosses the street perpendicularly with velocity w, without

paying attention to the cars.

(a) What is the probability that the pedestrian crosses the street unin-
jured?

(b) Can he improve this probability by crossing the road in a direction
other than perpendicular?

. (BRA 1) A convex quadrilateral is inscribed in a circle of radius 1. Prove

that the difference between its perimeter and the sum of the lengths of its
diagonals is greater than zero and less than 2.

. (BRA 2) Let K be a convex set in the zy-plane, symmetric with respect

to the origin and having area greater than 4. Prove that there exists a point
(m,n) # (0,0) in K such that m and n are integers.

. (BRA 3) (SL85-2).
10.
11.

(BUL 1) (SL85-13).
(BUL 2) Let a and b be integers and n a positive integer. Prove that
" ta(a+b)(a+2b)---(a+ (n—1)b)
n!
is an integer.

(CAN 1) Find the maximum value of
sin? 0y + sin g + - - - +sin? 6,

subject to the restrictions 0 < 0; <7, 01 +0+---+ 0, =m.
(CAN 2) Find the average of the quantity
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3 Problems
(a1 — a2)® + (a2 — as)* + - + (an—1 — an)’
taken over all permutations (a1, ag, . ..,ay) of (1,2,...,n).
(CAN 3) Let k be a positive integer. Define ug = 0, u; = 1, and

Up = KUp_1 — Up—2, n > 2. Show that for each integer n, the number
u3 4+ ud + - +ud is a multiple of uy +ug + -+ + up.

(CAN 4) Superchess is played on on a 12 x 12 board, and it uses su-
perknights, which move between opposite corner cells of any 3 x4 subboard.
Is it possible for a superknight to visit every other cell of a superchessboard
exactly once and return to its starting cell?

(CAN 5) (SL85-18).
(CUB 1) Set

An = Z 9k
k=1
Find lim,,— o Ap.

(CYP 1) The circles (R,r) and (P, p), where r > p, touch externally

at A. Their direct common tangent touches (R,r) at B and (P, p) at C.

The line RP meets the circle (P, p) again at D and the line BC at E. If

|BC| = 6|DE)|, prove that:

(a) the lengths of the sides of the triangle RBE are in an arithmetic
progression, and

(b) |AB| = 2|AC).

(CYP 2) Solve the system of simultaneous equations

Ve—1/y — 2w + 3z =1,
x4+ 1/y? — 4w? — 922 =3,
xy/z — 1/y3 — 8wd + 2723 = -5,
22 + 1/y* — 16w* — 812% = 15.

(CZS 1) Let T be the set of all lattice points (i.e., all points with
integer coordinates) in three-dimensional space. Two such points (z,y, 2)
and (u,v,w) are called neighbors if |x — u| + |y — v| + |z — w| = 1. Show
that there exists a subset S of T such that for each p € T', there is exactly
one point of S among p and its neighbors.

(CZS 2) Let A be a set of positive integers such that for any two elements
z,yof A, |z —y| > 7¢. Prove that A contains at most nine elements. Give
an example of such a set of nine elements.

(CZS 3) (SL85-7).

(CZS 4) Let N = {1,2,3,...}. For real z,y, set S(z,y) = {s|s =
[nx +y],n € N}. Prove that if » > 1 is a rational number, there exist real
numbers v and v such that
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S(r,0) N S(u,v) =0, S(r,0)US(u,v) =N.

(FRA 1) Let d > 1 be an integer that is not the square of an integer.
Prove that for every integer n > 1,

(nvVd +1)|sin(nwVd)| > 1.

(FRA 2) Find eight positive integers ni,no,...,ns with the follow-
ing property: For every integer k, —1985 < k < 1985, there are eight
integers a1, o, ...,as, each belonging to the set {—1,0,1}, such that

k= Z?:l QM.
(FRA 3) (SL85-15).

(FRA 4) Let O be a point on the oriented Euclidean plane and (i, j)

a directly oriented orthonormal basis. Let C be the circle of radius 1,

centered at O. For every real number ¢ and nonnegative integer n let M, be

— —

the point on C for which (i, OM,,) = cos 2"t (or OM,, = cos 2"ti+sin 2"tj).

Let k > 2 be an integer. Find all real numbers ¢ € [0, 27) that satisfy

(i) My = My, and

(ii) if one starts from My and goes once around C' in the positive direction,
one meets successively the points My, My, ..., Mg_o, Mg_1, in this
order.

(FRG 1) Let M be the set of the lengths of an octahedron whose sides
are congruent quadrangles. Prove that M has at most three elements.
(FRG 1a) Let an octahedron whose sides are congruent quadrangles be
given. Prove that each of these quadrangles has two equal sides meeting
at a common vertex.

(FRG 2) Call a four-digit number (zyzt)p in the number system with
base B stable if (zyzt)g = (dcba)p — (abed) g, where a < b < ¢ < d are
the digits of (zyzt)p in ascending order. Determine all stable numbers in
the number system with base B.

(FRG 2a) The same problem with B = 1985.

(FRG 2b) With assumptions as in FRG 2, determine the number of
bases B < 1985 such that there is a stable number with base B.

(GBR 1) A plane rectangular grid is given and a “rational point” is
defined as a point (z,y) where z and y are both rational numbers. Let
A, B, A’, B’ be four distinct rational points. Let P be a point such that
“gg, = BB,g = I;ﬁl . In other words, the triangles ABP, A’ B’ P are directly
or oppositely similar. Prove that P is in general a rational point and find
the exceptional positions of A’ and B’ relative to A and B such that there

exists a P that is not a rational point.

(GBR 2) Let Eq, Es, and E3 be three mutually intersecting ellipses, all
in the same plane. Their foci are respectively Fb, F3; F3, Fy; and Fi, Fs.
The three foci are not on a straight line. Prove that the common chords
of each pair of ellipses are concurrent.
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3 Problems

(GBR 3) A collection of 2n letters contains 2 each of n different letters.
The collection is partitioned into n pairs, each pair containing 2 letters,
which may be the same or different. Denote the number of distinct parti-
tions by w,. (Partitions differing in the order of the pairs in the partition
or in the order of the two letters in the pairs are not considered distinct.)
Prove that u,+1 = (n + 1)u, — n("2 Dt

(GBR 3a) A pack of n cards contains n pairs of 2 identical cards. It is
shuffled and 2 cards are dealt to each of n different players. Let p,, be the
probability that every one of the n players is dealt two identical cards.

_1)
Prove th 1 _ndl _ nn=l)
ove that Pn+1 Pn 2pn—2

(GBR 4) (SL85-12).
(GBR 5) (SL85-20).

(GDR 1) We call a coloring f of the elements in the set M = {(x,y) |
x=0,1,...,kn—1;y=0,1,...,In — 1} with n colors allowable if every
color appears exactly k£ and [ times in each row and column and there are
no rectangles with sides parallel to the coordinate axes such that all the
vertices in M have the same color. Prove that every allowable coloring f
satisfies kl < n(n + 1).

(GDR 2) Determine whether there exist 100 distinct lines in the plane
having exactly 1985 distinct points of intersection.

(GDR 3) Prove that a triangle with angles a, 3,7, circumradius R, and
area A satisfies
n® +tan? +tan? < OF
2 2 2~ 4A
(IRE 1) (SL85-21).

(IRE 2) Given a triangle ABC' and external points X, Y, and Z such
that L BAZ = LCAY, ACBX = LABZ, and LACY = {BCX, prove
that AX, BY, and CZ are concurrent.

(IRE 3) Each of the numbers x1, za,..., 2, equals 1 or —1 and
T1T2X3%4 + T2T3T4XT5 + *+* + Tp—3Tp—2Tn—1Tn
+Tp_9Tpn_1TpT1 + Tp_1TnT1T2 + Tpri1x2x3 = 0.
Prove that n is divisible by 4.
(IRE 4) (SL85-14).

(ISR 1) Prove that the product of two sides of a triangle is always
greater than the product of the diameters of the inscribed circle and the
circumscribed circle.

(ISR 2) Suppose that 1985 points are given inside a unit cube. Show
that one can always choose 32 of them in such a way that every (possibly
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degenerate) closed polygon with these points as vertices has a total length
of less than 8v/3.

(ISR 3) (SL85-19).

(ITA 1) Two persons, X and Y, play with a die. X wins a game if the
outcome is 1 or 2; Y wins in the other cases. A player wins a match if he
wins two consecutive games. For each player determine the probability of
winning a match within 5 games. Determine the probabilities of winning
in an unlimited number of games. If X bets 1, how much must Y bet for
the game to be fair?

(ITA 2) Let C be the curve determined by the equation y = x3 in the
rectangular coordinate system. Let ¢ be the tangent to C' at a point P of
C; t intersects C' at another point (). Find the equation of the set L of the
midpoints M of PQ as P describes C. Is the correspondence associating
P and M a bijection of C' on L? Find a similarity that transforms C' into
L.

(ITA 3) Let F be the correspondence associating with every point P =
(z,y) the point P’ = (2’,y') such that

¥ =ax+0b, y =ay+2b (1)

Show that if @ # 1, all lines PP’ are concurrent. Find the equation of
the set of points corresponding to P = (1,1) for b = a®. Show that the
composition of two mappings of type (1) is of the same type.

(ITA 4) In a given country, all inhabitants are knights or knaves. A
knight never lies; a knave always lies. We meet three persons, A, B, and
C. Person A says, “If C' is a knight, B is a knave.” Person C says, “A
and I are different; one is a knight and the other is a knave.” Who are the
knights, and who are the knaves?

(MON 1) (SL85-1).

(MON 2) From each of the vertices of a regular n-gon a car starts to
move with constant speed along the perimeter of the n-gon in the same
direction. Prove that if all the cars end up at a vertex A at the same time,
then they never again meet at any other vertex of the n-gon. Can they
meet again at A?

(MON 3) Let f; = (a1,a92,...,a,), n > 2, be a sequence of integers.
From f; one constructs a sequence f of sequences as follows: if fr =
(c1,¢2,...,¢n), then fri1 = (ciy,CinsCiy + 1,60y +1,...,¢, + 1), where
(Ciys Cigs - - -, Ci,, ) Is & permutation of (c1,ca, ..., ¢,). Give a necessary and
sufficient condition for f; under which it is possible for fj to be a constant
sequence (b1, ba,...,by), by = by = -+ = by, for some k.

(MON 4) In the triangle ABC, let By be on AC, E on AB, G on BC,
and let EG be parallel to AC. Furthermore, let EG be tangent to the
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inscribed circle of the triangle ABB; and intersect BBy at F. Let r, rq,
and 79 be the inradii of the triangles ABC, ABB;, and BF G, respectively.
Prove that r = r{ + ra.

(MON 5) For each P inside the triangle ABC, let A(P), B(P), and
C(P) be the points of intersection of the lines AP, BP, and CP with the
sides opposite to A, B, and C, respectively. Determine P in such a way
that the area of the triangle A(P)B(P)C(P) is as large as possible.

(MOR 1) Set S, = >.)_,(p° +p"). Determine the greatest common
divisor of S,, and S3,.

(MOR 2) The points A, B, C are in this order on line D, and AB = 4BC.
Let M be a variable point on the perpendicular to D through C. Let
MT; and MT; be tangents to the circle with center A and radius AB.
Determine the locus of the orthocenter of the triangle MT1T5.

(MOR 3) Let ABCD be a rhombus with angle ZA = 60°. Let E be a
point, different from D, on the line AD. The lines CE and AB intersect
at F'. The lines DF and BFE intersect at M. Determine the angle { BM D
as a function of the position of £ on AD.

(NET 1) The solid S is defined as the intersection of the six spheres with
the six edges of a regular tetrahedron T', with edge length 1, as diameters.
Prove that S contains two points at a distance \}6.

(NET 1a) Using the same assumptions, prove that no pair of points in

S has a distance larger than \/1 .

(NET 2) Prove that there are infinitely many pairs (k, N) of positive
integers such that 1 +2+---+k=(k+1)+(k+2)+---+ N.
(NET 3) (SL85-3).

(NOR 1) The sequence (s,), where s, = Y p_ sink, n = 1,2,..., is
bounded. Find an upper and lower bound.

(NOR 2) Consider the set A ={0,1,2,...,9} and let (By, Ba,..., B)
be a collection of nonempty subsets of A such that B; N B; has at most
two elements for i # j. What is the maximal value of k7

(NOR 3) A “large” circular disk is attached to a vertical wall. It rotates
clockwise with one revolution per minute. An insect lands on the disk and
immediately starts to climb vertically upward with constant speed § cm
per second (relative to the disk). Describe the path of the insect

(a) relative to the disk;

(b) relative to the wall.

(POL 1) (SL85-6).

(POL 2) Let p be a prime. For which k can the set {1,2,...,k} be
partitioned into p subsets with equal sums of elements?



65.

66.
67.

68.

69.

70.

71.

72.

73.

74.

75.

3.26 IMO 1985 187

(POL 3) Define the functions f, F: N — N, by

fn) = [3—2\/5n

where f¥ = fo.--o fis f iterated n times. Prove that F(k + 2) =
3F(k + 1) — F(k) for all k € N,

(ROM 1) (SL85-5).

(ROM 2) Let k > 2 and nq,na,...,n, > 1 natural numbers having the
property ng | 2™ — 1, n3 | 2" —1,...,nk | 2™ — 1, and ny | 2™ — 1.
Show that ny =no =---=np = 1.

(ROM 3) Show that the sequence {an}n>1 defined by a, = [nv/2]
contains an infinite number of integer powers of 2. ([z] is the integer part
of z.)

(ROM 4) Let A and B be two finite disjoint sets of points in the plane
such that any three distinct points in AU B are not collinear. Assume that
at least one of the sets A, B contains at least five points. Show that there
exists a triangle all of whose vertices are contained in A or in B that does
not contain in its interior any point from the other set.

(ROM 5) Let C be a class of functions f : N — N that contains the
functions S(z) = x + 1 and E(x) = x — [/z]? for every x € N. ([z] is
the integer part of z.) If C' has the property that for every f,g € C,
f+g,fg,foge C, show that the function max(f(z) — g(x),0) is in C.

(ROM 6) For every integer » > 1 find the smallest integer h(r) > 1
having the following property: For any partition of the set {1,2,...,h(r)}
into r classes, there exist integers a > 0, 1 < x < y such that the numbers
a+x,a+y,a+ x+y are contained in the same class of the partition.

(SPA 1) Construct a triangle ABC' given the side AB and the distance
OH from the circumcenter O to the orthocenter H, assuming that OH
and AB are parallel.

(SPA 2) Let AjAy, B1By,C1Cy be three equal segments on the three
sides of an equilateral triangle. Prove that in the triangle formed by the
lines BoCy,Cy Ay, Aa By, the segments BoCh, Co Ay, A By are proportional
to the sides in which they are contained.

. F(k) =min{n € N|f*(n) > 0},

(SPA 3) Find the triples of positive integers z,y, z satisfying
1 1 1 4

x + Y + : 5
(SPA 4) Let ABCD be a rectangle, AB = a, BC' = b. Consider the

family of parallel and equidistant straight lines (the distance between two
consecutive lines being d) that are at an the angle ¢, 0 < ¢ < 90°,
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with respect to AB. Let L be the sum of the lengths of all the segments
intersecting the rectangle. Find:

(a) how L varies,

(b) a necessary and sufficient condition for L to be a constant, and

(¢) the value of this constant.

(SWE 1) Are there integers m and n such that
5m® — 6mn + Tn”® = 19857

(SWE 2) Two equilateral triangles are inscribed in a circle with radius
r. Let A be the area of the set consisting of all points interior to both
triangles. Prove that 24 > r2y/3.

(SWE 3) (SL85-17).
(SWE 4) Let a, b, and ¢ be real numbers such that

L T
be—a?2 ca—1  ab—c2
Prove that
a n b n c
(be —a2)?2  (ca—1b%)?  (ab—c?)?

(TUR 1) Let E = {1,2,...,16} and let M be the collection of all
4 x 4 matrices whose entries are distinct members of E. If a matrix A =
(@ij)axa is chosen randomly from M, compute the probability p(k) of
max; min; a;; = k for kK € E. Furthermore, determine | € F such that
p(l) = max{p(k) | k € E}.

(TUR 2) Given the side a and the corresponding altitude h,, of a triangle
ABC, find a relation between a and h, such that it is possible to construct,
with straightedge and compass, triangle ABC such that the altitudes of
ABC form a right triangle admitting h, as hypotenuse.

(TUR 3) Find all cubic polynomials 2 + ax? + bz + ¢ admitting the
rational numbers a, b, and ¢ as roots.

(TUR 4) Let I;,i=0,1,2,..., be a circle of radius r; inscribed in an
angle of measure 2a such that each I is externally tangent to [541 and
ri+1 < r;. Show that the sum of the areas of the circles I is equal to the
area of a circle of radius r = Lro(Vsina + /esca).

(TUR 5) (SL85-8).

(USA 1) Let CD be a diameter of circle K. Let AB be a chord that is
parallel to C'D. The line segment AFE, with E on K, is parallel to CB; F
is the point of intersection of line segments AB and DFE. The line segment
FG, with G on DC, extended is parallel to CB. Is GA tangent to K at
point A?

=0.
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(USA 2) Let [ denote the length of the smallest diagonal of all rectangles
inscribed in a triangle T'. (By inscribed, we mean that all four vertices of
the rectangle lie on the boundary of T'.) Determine the maximum value

l2
of S(T
(USA 3) (SL85-9).

(USA 4) Determine the range of w(w + z)(w + y)(w + z), where z, y,
z, and w are real numbers such that

) taken over all triangles (S(T) denotes the area of triangle T).

c+y+z+w=2"+y +2"+w’ =0.

(USA 5) Given that n elements a1, as, ..., a, are organized into n pairs
Py, P, ..., P, in such a way that two pairs F;, P; share exactly one el-
ement when (a;,a;) is one of the pairs, prove that every element is in
exactly two of the pairs.

(USS 1) Decompose the number 5198% —1 into a product of three integers,
each of which is larger than 50,

(USS 2) Thirty-four countries participated in a jury session of the IMO,
each represented by the leader and the deputy leader of the team. Before
the meeting, some participants exchanged handshakes, but no team leader
shook hands with his deputy. After the meeting, the leader of the Illyrian
team asked every other participant the number of people they had shaken
hands with, and all the answers she got were different. How many people
did the deputy leader of the Illyrian team greet?

(USS 3) (SL85-11).

(USS 3a) Given six numbers, find a method of computing by using not
more than 15 additions and 14 multiplications the following five numbers:
the sum of the numbers, the sum of products of the numbers taken two
at a time, and the sums of the products of the numbers taken three, four,
and five at a time.

(USS 4) The sphere inscribed in tetrahedron ABCD touches the sides
ABD and DBC' at points K and M, respectively. Prove that {AKB =
£DMC.

(USS 5) (SL85-22).

(VIE 1) (SL85-10).

(VIE 1a) Prove that for each point M on the edges of a regular tetrahe-
dron there is one and only one point M’ on the surface of the tetrahedron
such that there are at least three curves joining M and M’ on the sur-
face of the tetrahedron of minimal length among all curves joining M and
M’ on the surface of the tetrahedron. Denote this minimal length by d,.
Determine the positions of M for which dj; attains an extremum.

(VIE 2) Determine all functions f : R — R satisfying the following two
conditions:
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(a) flx+y)+ fle—y)=2f(2)f(y) for all 2,y € R,
(b) lim, . f(z) = 0.

97. (VIE 3) In a plane a circle with radius R and center w and a line A
are given. The distance between w and A is d, d > R. The points M and
N are chosen on A in such a way that the circle with diameter M N is
externally tangent to the given circle. Show that there exists a point A
in the plane such that all the segments M N are seen in a constant angle
from A.

3.26.3 Shortlisted Problems

Proposals of the Problem Selection Committee.

1. (MON 1)™M%4 Given a set M of 1985 positive integers, none of which
has a prime divisor larger than 26, prove that the set has four distinct
elements whose geometric mean is an integer.

2. (BRA 3) A polyhedron has 12 faces and is such that:
(i) all faces are isosceles triangles,
(i) all edges have length either = or y,
(iii) at each vertex either 3 or 6 edges meet, and
(iv) all dihedral angles are equal.
Find the ratio z/y.

3. (NET 3)™O3 The weight w(p) of a polynomial p, p(z) = >, a;z’, with
integer coefficients a; is defined as the number of its odd coefficients. For
i=0,1,2,..., let ¢gi(z) = (1 + z)*. Prove that for any finite sequence
0<i1 <ig <--- < ipn, the inequality

w(qi, + -+ q,) > w(q,)

holds.

4. (AUS 1)™O2 Each of the numbers in the set N = {1,2,3,...,n — 1},
where n > 3, is colored with one of two colors, say red or black, so that:
(i) i and n — ¢ always receive the same color, and
(ii) for some j € N, relatively prime to n, i and |j — 4| receive the same

color for all i € N, i # j.
Prove that all numbers in N must receive the same color.

5. (ROM 1) Let D be the interior of the circle C' and let A € C. Show
that the function f : D — R, f(M) = [} where M’ = (AM N C, is
strictly convex; i.e., f(P) < f(Ml);f(Mz), VYMy, My € D, My # M, where
P is the midpoint of the segment M; Ms.

6. (POL 1) Let z, = \2/2+ Y/34 ...+ /n. Prove that
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Tyl — Tn < n=223,....

Alternatives

. 1a.(CZS 3) The positive integers z1,...,z,, n > 3, satisfy 21 < x5 <

s < Ty < 2x1. Set P = x179 - - - T,. Prove that if p is a prime number, k&

a positive integer, and P is divisible by p”, then zi‘ > nl.

. 1b.(TUR 5) Find the smallest positive integer n such that

(i) m has exactly 144 distinct positive divisors, and
(ii) there are ten consecutive integers among the positive divisors of n.

. 2a.(USA 3) Determine the radius of a sphere S that passes through the

centroids of each face of a given tetrahedron T inscribed in a unit sphere
with center O. Also, determine the distance from O to the center of S as
a function of the edges of T'.

2b.(VIE 1) Prove that for every point M on the surface of a regular
tetrahedron there exists a point M’ such that there are at least three
different curves on the surface joining M to M’ with the smallest possible
length among all curves on the surface joining M to M’.

3a.(USS 3) Find a method by which one can compute the coefficients
of P(x) = 2° + a12% + - - - + ag from the roots of P(z) = 0 by performing
not more than 15 additions and 15 multiplications.

3b.(GBR 4) A sequence of polynomials P, (x,y,2), m =0,1,2,...,in
x, y, and z is defined by Py(z,y,z) =1 and by

Pm(%yyz) = (J? + Z)(y + Z)Pm—l(xvywz + 1) - ZQPm—l(x7y7Z)

for m > 0. Prove that each P, (z,y,z) is symmetric, in other words, is
unaltered by any permutation of z,y, z.

4a.(BUL 1) Let m boxes be given, with some balls in each box. Let

n < m be a given integer. The following operation is performed: choose n

of the boxes and put 1 ball in each of them. Prove:

(a) If m and n are relatively prime, then it is possible, by performing the
operation a finite number of times, to arrive at the situation that all
the boxes contain an equal number of balls.

(b) If m and n are not relatively prime, there exist initial distributions of
balls in the boxes such that an equal distribution is not possible to
achieve.

4b.(IRE 4) A set of 1985 points is distributed around the circumference
of a circle and each of the points is marked with 1 or —1. A point is called
“good” if the partial sums that can be formed by starting at that point
and proceeding around the circle for any distance in either direction are
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all strictly positive. Show that if the number of points marked with —1 is
less than 662, there must be at least one good point.

5a.(FRA 3) Let K and K’ be two squares in the same plane, their sides
of equal length. Is it possible to decompose K into a finite number of tri-
angles 11,15, ..., T, with mutually disjoint interiors and find translations

t1,t2,...,t, such that
p

K' = Jt(T)?
i=1
5b.(BEL 2) If possible, construct an equilateral triangle whose three
vertices are on three given circles.

6a.(SWE 3)™O6 The sequence f1, fa, ..., fn, ... of functions is defined
for z > 0 recursively by

n

A =a o) =@ (f@+ ).

Prove that there exists one and only one positive number a such that
0 < fa(a) < fari(a) <1 for all integers n > 1.

6b.(CAN 5) Let 1,29, ...,2, be positive numbers. Prove that
a? 3 Ty ay
2

9 9 5 <n-—1.
T] + T2T3 T5 + T34 Ty _ 1+ TpT1 Ty + T1T2

Supplementary Problems

(ISR 3) For which integers n > 3 does there exist a regular n-gon in the
plane such that all its vertices have integer coordinates in a rectangular
coordinate system?

(GBR 5)™MO1 A circle whose center is on the side ED of the cyclic
quadrilateral BCDE touches the other three sides. Prove that EB+CD =
ED.

(IRE 1) The tangents at B and C' to the circumcircle of the acute-angled
triangle ABC meet at X. Let M be the midpoint of BC. Prove that
(a) £LBAM = ZCAX, and

(b) 45 = cos ZBAC.

(USS 5)IMO5 A circle with center O passes through points A and C' and
intersects the sides AB and BC of the triangle ABC at points K and N,
respectively. The circumscribed circles of the triangles ABC' and K BN
intersect at two distinct points B and M. Prove that ZOM B = 90°.
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3.27 The Twenty-Seventh IMO
Warsaw, Poland, July 4-15, 1986

3.27.1 Contest Problems

First Day (July 9)

1. The set S = {2,5,13} has the property that for every a,b € S, a # b, the
number ab — 1 is a perfect square. Show that for every positive integer d
not in S, the set S U {d} does not have the above property.

2. Let A, B, C be fixed points in the plane. A man starts from a certain point
Py and walks directly to A. At A he turns his direction by 60° to the left
and walks to P; such that PyA = AP;. After he performs the same action
1986 times successively around the points A, B,C, A, B, C, ..., he returns
to the starting point. Prove that ABC is an equilateral triangle, and that
the vertices A, B, C' are arranged counterclockwise.

3. To each vertex P; (i = 1,...,5) of a pentagon an integer x; is assigned,
the sum s = Y z; being positive. The following operation is allowed,
provided at least one of the x;’s is negative: Choose a negative x;, replace
it by —x;, and add the former value of z; to the integers assigned to
the two neighboring vertices of P; (the remaining two integers are left
unchanged).

This operation is to be performed repeatedly until all negative integers
disappear. Decide whether this procedure must eventually terminate.

Second Day (July 10)

4. Let A, B be adjacent vertices of a regular n-gon in the plane and let O be
its center. Now let the triangle ABO glide around the polygon in such a
way that the points A and B move along the whole circumference of the
polygon. Describe the figure traced by the vertex O.

5. Find, with proof, all functions f defined on the nonnegative real numbers
and taking nonnegative real values such that

() flzfWlf(y) = fz+y),
(ii) f(2) =0but f(z) A0 for 0 <z < 2.

6. Prove or disprove: Given a finite set of points with integer coefficients in
the plane, it is possible to color some of these points red and the remaining
ones white in such a way that for any straight line L parallel to one of
the coordinate axes, the number of red colored points and the number of
white colored points on L differ by at most 1.
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3.27.2 Longlisted Problems

10.

11.
12.

. (AUS 1) Let k be one of the integers 2,3,4 and let n = 2¥ — 1. Prove

the inequality
14+ 0F 0% ™ > (1407

for all real b > 0.

(AUS 2) Let ABCD be a convex quadrilateral. DA and C'B meet at
F and AB and DC meet at E. The bisectors of the angles DFC and
AED are perpendicular. Prove that these angle bisectors are parallel to
the bisectors of the angles between the lines AC and BD.

. (AUS 3) A line parallel to the side BC of a triangle ABC' meets AB

in F and AC in E. Prove that the circles on BE and CF as diameters
intersect in a point lying on the altitude of the triangle ABC dropped
from A to BC.

. (BEL 1) Find the last eight digits of the binary development of 271986,
. (BEL 2) Let ABC and DEF be acute-angled triangles. Write d = EF,

e = FD, f = DE. Show that there exists a point P in the interior of
ABC for which the value of the expression d- AP+e- BP+ f-CP attains

a minimum.

. (BEL 3) In an urn there are one ball marked 1, two balls marked 2, and

so on, up to n balls marked n. Two balls are randomly drawn without
replacement. Find the probability that the two balls are assigned the same
number.

. (BUL 1) (SL86-11).
. (BUL 2) (SL86-19).
. (CAN 1) In a triangle ABC, ZBAC = 100°, AB = AC. A point

D is chosen on the side AC such that ZABD = /ZCBD. Prove that
AD + DB = BC.

(CAN 2) A set of n standard dice are shaken and randomly placed in a
straight line. If n < 2r and r < s, then the probability that there will be
a string of at least 7, but not more than s, consecutive 1’s can be written
as P/6°T2. Find an explicit expression for P.

(CAN 3) (SL86-20).

(CHN 1) Let O be an interior point of a tetrahedron A; Az A3Ay. Let
S1,S52, S3,54 be spheres with centers Ay, As, Az, Ay, respectively, and let
U,V be spheres with centers at O. Suppose that for i,7 =1,2,3,4, ¢ # j,
the spheres S; and S; are tangent to each other at a point B;; lying on
A;A;. Suppose also that U is tangent to all edges A; A; and V' is tangent to
the spheres Sy, Sa, S3, S4. Prove that A1 A3 A3A, is a regular tetrahedron.
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(CHN 2) Let N ={1,2,...,n},n > 3. To each pair 4, j of elements of N,
i # j, there is assigned a number f;; € {0,1} such that f;; + f;; = 1. Let
r(i) = Zj# fi; and write M = max;en r(7), m = min;en (7). Prove that
for any w € N with r(w) = m there exist u,v € N such that r(u) = M
and fu fow = 1.

(CHN 3) (SL86-17).

(CHN 4) Let N= ByU---UBy be a partition of the set N of all positive
integers and let an integer | € N be given. Prove that there exist a set
X C N of cardinality I, an infinite set 7" C N, and an integer k with
1 < k < g such that for any t € T and any finite set Y C X, the sum
t+ > ,cy Y belongs to By.

(CZS 1) Given a positive integer k, find the least integer ny for which
there exist five sets Sy, So, S3, S4, S5 with the following properties:

|S-7|:k fOI‘j:l,,,,75’ USJ = N,

|SiﬂSi+1| =0= |S5ﬂ51|, fori=1,...,4.

(CZS 2) We call a tetrahedron right-faced if each of its faces is a right-

angled triangle.

(a) Prove that every orthogonal parallelepiped can be partitioned into six
right-faced tetrahedra.

(b) Prove that a tetrahedron with vertices Aj, As, A3, Ay is fight-faced
if and only if there exist four distinct real numbers ¢y, co, c3, and
¢4 such that the edges Aj;Aj have lengths A;A, = \/|cj — ¢| for
1< <k <4

(CZS 3) (SL86-4).
(FIN 1) Let f:[0,1] — [0,1] satisfy f(0) =0, f(1) =1 and

fle+y) = f2) = fz) = flz—y)

for all z,y > 0 with z — y,x + y € [0,1]. Prove that f(z) = z for all
x € [0,1].

(FIN 2) For any angle o with 0 < o < 180°, we call a closed convex
planar set an a-set if it is bounded by two circular arcs (or an arc and a
line segment) whose angle of intersection is «. Given a (closed) triangle
T, find the greatest a such that any two points in 7" are contained in an
a-set S CT.

(FRA 1) Let AB be a segment of unit length and let C, D be variable
points of this segment. Find the maximum value of the product of the
lengths of the six distinct segments with endpoints in the set {A, B, C, D}.
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(FRA 2) Let (an)nen be the sequence of integers defined recursively by
ap =0, a1 =1, apnye = 4apy1 + a, for n > 0. Find the common divisors
of ai9ss and aesgo1-

(FRA 3) Let I and J be the centers of the incircle and the excircle in
the angle BAC of the triangle ABC. For any point M in the plane of
the triangle, not on the line BC, denote by I, and Jjy; the centers of the
incircle and the excircle (touching BC') of the triangle BCM. Find the
locus of points M for which ITy;JJys is a rectangle.

(FRA 4) Two families of parallel lines are given in the plane, consisting
of 15 and 11 lines, respectively. In each family, any two neighboring lines
are at a unit distance from one another; the lines of the first family are
perpendicular to the lines of the second family. Let V' be the set of 165
intersection points of the lines under consideration. Show that there exist
not fewer than 1986 distinct squares with vertices in the set V.

(FRA 5) (SL86-7).
(FRG 1) (SL86-5).

(FRG 2) In an urn there are n balls numbered 1,2,...,n. They are
drawn at random one by one one without replacement and the numbers are
recorded. What is the probability that the resulting random permutation
has only one local maximum?

A term in a sequence is a local maximum if it is greater than all its
neighbors.

(FRG 3) (SL86-13).

(FRG 4) We define a binary operation x in the plane as follows: Given
two points A and B in the plane, C' = A x B is the third vertex of the
equilateral triangle ABC oriented positively. What is the relative position
of three points I, M, O in the plane if I x (M x O) = (O * I) x M holds?

(FRG 5) Prove that a convex polyhedron all of whose faces are equilat-
eral triangles has at most 30 edges.

(GBR 1) Let P and @ be distinct points in the plane of a triangle ABC
such that AP : AQ = BP : BQ = CP : CQ. Prove that the line PQ
passes through the circumcenter of the triangle.

(GBR 2) Find, with proof, all solutions of the equation i + 3 — 2 =1
in positive integers z,y, z. ‘

(GBR. 3) (SL86-1).

(GBR 4) For each nonnegative integer n, F,,(z) is a polynomial in 2 of
degreee n. Prove that if the identity

Fo(22) = i(—l)"_r (”) 9" F(z)

r
r=0
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holds for each n, then

Fy(tz) = an <"> (1 — )" Fy(x)

T
r=0

for each n and all ¢.

(GBR 5) Establish the maximum and minimum values that the sum

|a| + |b| + |¢| can have if a, b, ¢ are real numbers such that the maximum
value of |az? + bz +c| is 1 for -1 <z < 1.

(GDR 1) (SL86-9).
(GDR 2) Prove that the set {1,2,...,1986} can be partitioned into 27

disjoint sets so that no one of these sets contains an arithmetic triple (i.e.,
three distinct numbers in an arithmetic progression).

(GDR 3) (SL86-12).

(GRE 1) Let S be a k-element set.
(a) Find the number of mappings f : S — S such that

() fx) £xforzesS, (i) f(f(z)) =xforzels.

(b) The same with the condition (i) left out.

(GRE 2) Find the maximum value that the quantity 2m + 7n can have
such that there exist distinct positive integers x; (1 <i<m),y; (1<j <
n) such that the z;’s are even, the y;’s are odd, and Y, @+ 377, y; =
1986.

(GRE 3) Let M, N, P be the midpoints of the sides BC, CA, AB of a
triangle ABC. The lines AM, BN, C' P intersect the circumcircle of ABC
at points A’, B’,C’, respectively. Show that if A’B’C’ is an equilateral
triangle, then so is ABC.

(HUN 1) The integers 1,2,...,n2 are placed on the fields of an n x n
chessboard (n > 2) in such a way that any two fields that have a common
edge or a vertex are assigned numbers differing by at most n + 1. What
is the total number of such placements?

(HUN 2) (SL86-10).
(IRE 1) (SL86-14).
(IRE 2) Given n real numbers a; < ag < --- < ay, define

1 2
Mlzn;ai, M2:7”L(7”L—1) Z aiaj, Q:\/M%—Mg.

1<i<j<n

Prove that
a <M —Q< M +Q<ay,

and that equality holds if and only if a1 = a2 = - = ay,.
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3 Problems

(IRE 3) We wish to construct a matrix with 19 rows and 86 columns,

with entries z;; € {0,1,2} (1 <i <19, 1 < j < 86), such that:

(i) in each column there are exactly k terms equal to 0;

(ii) for any distinct j,k € {1,...,86} there is ¢ € {1,...,19} with z;; +
Tile = 3.

For what values of k is this possible?

(ISR 1) (SL86-16).

(ISR 2) Let P be a convex 1986-gon in the plane. Let A, D be interior
points of two distinct sides of P and let B,C be two distinct interior
points of the line segment AD. Starting with an arbitrary point Q; on
the boundary of P, define recursively a sequence of points @,, as follows:
given @, extend the directed line segment @, B to meet the boundary of
P in a point R,, and then extend R,,C to meet the boundary of P again
in a point, which is defined to be @;,+1. Prove that for all n large enough
the points @, are on one of the sides of P containing A or D.

(ISR 3) Let C,C> be circles of radius 1/2 tangent to each other and
both tangent internally to a circle C of radius 1. The circles C; and Cy
are the first two terms of an infinite sequence of distinct circles C), defined
as follows: C), 12 is tangent externally to C,, and C,,+1 and internally to
C. Show that the radius of each C), is the reciprocal of an integer.

(LUX 1) Let D be the point on the side BC' of the triangle ABC' such

that AD is the bisector of ZCAB. Let I be the incenter of AABC.

(a) Construct the points P and @ on the sides AB and AC, respectively,
such that PQ is parallel to BC and the perimeter of the triangle APQ
is equal to k- BC', where k is a given rational number.

(b) Let R be the intersection point of PQ and AD. For what value of k
does the equality AR = RI hold?

(¢) In which case do the equalities AR = RI = ID hold?

(MON 1) Let a,b,c,d be the lengths of the sides of a quadrilateral
circumscribed about a circle and let S be its area. Prove that S < vabed
and find conditions for equality.

(MON 2) Solve the system of equations

tanxzi + cot x1 = 3tan o,
tan zs + cot xo = 3tanzs,

tanx, + cotx, = 3tanx;.

(MON 3) For given positive integers r, v, n let S(r, v, n) denote the num-
ber of n-tuples of nonnegative integers (x1, . .., x, ) satisfying the equation
r1+ -+ x, =r and such that z; <wv for i = 1,...,n. Prove that

S(r,v,n) = i(—l)’“ (Z) (7“ — (v ‘f;ll_)kl-i- n— 1)7

k=0
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where m = min {n, [Uil} }

(MON 4) Find the least integer n with the following property: For any
set V of 8 points in the plane, no three lying on a line, and for any set
E of n line segments with endpoints in V', one can find a straight line
intersecting at least 4 segments in F in interior points.

(MON 5) Given an integer n > 2, determine all n-digit numbers
My = aras...a, (a; # 0, i = 1,2,...,n) divisible by the numbers
M1 = a20a3...0an,01, M2 = asay4 ...ana10a2, ..., Mn—l = anpa1a2 ...0p—1.

(MOR 1) Let A1 A3A3A4A5A¢6 be a hexagon inscribed into a circle with
center O. Consider the circular arc with endpoints A;, Ag not containing
As. For any point M of that arc denote by h; the distance from M to the
line 4; 4,11 (1 <4 <5). Construct M such that the sum hq + - - + hs is
maximal.

(MOR 2) In a triangle ABC), the incircle touches the sides BC, CA, AB
in the points A’, B’, C’, respectively; the excircle in the angle A touches
the lines containing these sides in A7, By, C1, and similarly, the excircles
in the angles B and C touch these lines in As, Bo,Cy and As, B3, Cs.
Prove that the triangle ABC is right-angled if and only if one of the point
triples (A/, Bg, C/), (Ag, B/, 03), (A/, B/, 02), (AQ, BQ, C/), (AQ, Bl, 02),
(Ag, Bg, Cl), (Al, BQ, Cl), (Al, Bl, 03) is collinear.

(NET 1) (SL86-6).
(NET 2) (SL86-15).
(NET 3) Prove the inequality

(—a+b+c)?(a—b+c)*(a+b—c)? > (—a® +b*+c*)(a® —b*+c*) (a® +-b> —¢?)

for all real numbers a, b, c.

(ROM 1) Given a positive integer n, find the greatest integer p with the
property that for any function f : P(X) — C, where X and C are sets of
cardinality n and p, respectively, there exist two distinct sets A, B € P(X)
such that f(A4) = f(B) = f(AU B). (P(X) is the family of all subsets of
X.)

(ROM 2) Determine all pairs of positive integers (x,y) satisfying the
equation p® — y3 = 1, where p is a given prime number.
(ROM 3) Let AA’, BB',CC’ be the bisectors of the angles of a triangle

ABC (A’ € BC, B’ € CA, C' € AB). Prove that each of the lines A’'B’,
B'C’, C'A’ intersects the incircle in two points.

(ROM 4) Let (ayn)nen be the sequence of integers defined recursively by
a1 =az =1, apys = Tap4+1 — a, — 2 for n > 1. Prove that a,, is a perfect
square for every n.



200

65.

66.

67.
68.

69.
70.
71.

72.

73.

74.

75.

76.
e

3 Problems

(ROM 5) Let A1 A3A3A, be a quadrilateral inscribed in a circle C. Show
that there is a point M on C such that M Ay — M Ay + MA3; — MA, =0.

(SWE 1) One hundred red points and one hundred blue points are
chosen in the plane, no three of them lying on a line. Show that these
points can be connected pairwise, red ones with blue ones, by disjoint line
segments.

(SWE 2) (SL86-2).

(SWE 3) Consider the equation 2* + az® + bx? + ax + 1 = 0 with real
coefficients a,b. Determine the number of distinct real roots and their
multiplicities for various values of a and b. Display your result graphically
in the (a,b) plane.

(TUR 1) (SL86-18).
(TUR 2) (SL86-21).

(TUR 3) Two straight lines perpendicular to each other meet each side
of a triangle in points symmetric with respect to the midpoint of that side.
Prove that these two lines intersect in a point on the nine-point circle.

(TUR 4) A one-person game with two possible outcomes is played as
follows: After each play, the player receives either a or b points, where a
and b are integers with 0 < b < a < 1986. The game is played as many
times as one wishes and the total score of the game is defined as the sum
of points received after successive plays. It is observed that every integer
x > 1986 can be obtained as the total score whereas 1985 and 663 cannot.
Determine a and b.

(TUR 5) Let (a;)ien be a strictly increasing sequence of positive real
numbers such that lim;_. a; = 400 and a;+1/a; < 10 for each i. Prove
that for every positive integer k there are infinitely many pairs (4, j) with
10% < a;/a; < 10F+L

(USA 1) (SL86-8).

Alternative formulation. Let A be a set of n points in space. From the fam-
ily of all segments with endpoints in A, g segments have been selected and
colored yellow. Suppose that all yellow segments are of different length.
Prove that there exists a polygonal line composed of m yellow segments,
where m > 213, arranged in order of increasing length.

(USA 2) The incenter of a triangle is the midpoint of the line seg-
ment of length 4 joining the centroid and the orthocenter of the triangle.
Determine the maximum possible area of the triangle.

(USA 3) (SL86-3).
(USS 1) Find all integers z,y, z that satisfy

PP+l =r+y+2=8.
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(USS 2) If T and Ty are two triangles with angles z,y, z and x1, y1, 21,
respectively, prove the inequality
COSZ1 ~ COSY;  COSZy
. + . + . < cotx + coty + cot z.
sinx siny sin z
(USS 3) Let AA;, BB, CCh be the altitudes in an acute-angled triangle
ABC. K and M are points on the line segments A;C; and B;C; respec-
tively. Prove that if the angles M AK and C'AA; are equal, then the angle
C1K M is bisected by AK.

(USS 4) Let ABCD be a tetrahedron and O its incenter, and let the
line OD be perpendicular to AD. Find the angle between the planes DOB
and DOC.

3.27.3 Shortlisted Problems

1.

(GBR 3)™95 Find, with proof, all functions f defined on the nonnegative
real numbers and taking nonnegative real values such that

() flzfWf(y) = fx+y),
(ii) f(2)=0but f(z) A0 for 0 <z < 2.

. (SWE 2) Let f(z) = 2™ where n is a fixed positive integer and = =

1,2,... . Is the decimal expansion a = 0.f(1)f(2)f(3) ... rational for any
value of n?

The decimal expansion of a is defined as follows: If f(x) = dy(z)d2(z) ...
...dy(g)() is the decimal expansion of f(z), then a = 0.1d1(2)d2(2)...
cody2)(2)di(3) ... dr(3)(3)di(4) ... .

. (USA 3) Let A, B, and C be three points on the edge of a circular

chord such that B is due west of C and ABC is an equilateral triangle
whose side is 86 meters long. A boy swam from A directly toward B. After
covering a distance of x meters, he turned and swam westward, reaching
the shore after covering a distance of y meters. If z and y are both positive
integers, determine y.

. (CZS 3) Let n be a positive integer and let p be a prime number, p > 3.

Find at least 3(n+1) [easier version: 2(n+1)] sequences of positive integers
x,y, z satisfying
zyz=p"(zx+y+2)

that do not differ only by permutation.

. (FRG 1)™O! The set S = {2,5,13} has the property that for every

a,b € S, a # b, the number ab — 1 is a perfect square. Show that for
every positive integer d not in S, the set SU{d} does not have the above

property.

. (NET 1) Find four positive integers each not exceeding 70000 and each

having more than 100 divisors.
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3 Problems

(FRA 5) Let real numbers 21, zo,...,2, satisfy 0 < 21 < 22 < -+ <
zn, < 1 and set zg =0, z,4+1 = 1. Suppose that these numbers satisfy the
following system of equations:

n+1 1
=0 wherei=1,2,...,n. (1)
40,571 T T
Prove that Tn+l1—i = 1-— ZT; for i = 1, 2, ey

. (USA 1) From a collection of n persons ¢ distinct two-member teams

are selected and ranked 1,. .., ¢ (no ties). Let m be the least integer larger
than or equal to 2¢/n. Show that there are m distinct teams that may
be listed so that (i) each pair of consecutive teams on the list have one
member in common and (ii) the chain of teams on the list are in rank
order.

Alternative formulation. Given a graph with n vertices and ¢ edges num-
bered 1,...,q, show that there exists a chain of m edges, m > an, each
two consecutive edges having a common vertex, arranged monotonically
with respect to the numbering.

. (GDR 1)™MO06 Provye or disprove: Given a finite set of points with integer

coordinates in the plane, it is possible to color some of these points red
and the remaining ones white in such a way that for any straight line L
parallel to one of the coordinate axes, the number of red colored points
and the number of white colored points on L differ by at most 1.

(HUN 2) Three persons A, B, C, are playing the following game: A k-
element subset of the set {1,...,1986} is randomly chosen, with an equal
probability of each choice, where k is a fixed positive integer less than
or equal to 1986. The winner is A, B or C, respectively, if the sum of
the chosen numbers leaves a remainder of 0, 1, or 2 when divided by 3.
For what values of k is this game a fair one? (A game is fair if the three
outcomes are equally probable.)

(BUL 1) Let f(n) be the least number of distinct points in the plane
such that for each kK = 1,2,...,n there exists a straight line containing
exactly k of these points. Find an explicit expression for f(n).

Simplified version. Show that f(n) = ["3'] ["5?] ([z] denoting the great-
est integer not exceeding z).

(GDR 3)™93 Tg each vertex P; (i = 1,...,5) of a pentagon an integer
x; is assigned, the sum s = Y z; being positive. The following operation is
allowed, provided at least one of the z;’s is negative: Choose a negative x;,
replace it by —x;, and add the former value of x; to the integers assigned
to the two neighboring vertices of P; (the remaining two integers are left
unchanged).

This operation is to be performed repeatedly until all negative integers
disappear. Decide whether this procedure must eventually terminate.
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(FRG 3) A particle moves from (0,0) to (n,n) directed by a fair coin.
For each head it moves one step east and for each tail it moves one step
north. At (n,y), y < n, it stays there if a head comes up and at (z,n),
T < n, it stays there if a tail comes up. Let k be a fixed positive integer.
Find the probability that the particle needs exactly 2n + k tosses to reach
(n,n).

(IRE 1) The circle inscribed in a triangle ABC touches the sides
BC,CA,AB in D, E,F, respectively, and X,Y, Z are the midpoints of
EF,FD,DE, respectively. Prove that the centers of the inscribed circle
and of the circles around XY Z and ABC' are collinear.

(NET 2) Let ABCD be a convex quadrilateral whose vertices do not
lie on a circle. Let A’B’C'D’ be a quadrangle such that A", B’,C’, D’
are the centers of the circumcircles of triangles BCD, ACD, ABD, and
ABC. We write T(ABCD) = A’'B'C'D’. Let us define A”B"C"D" =
T(A'B'C'D") =T(T(ABCD)).

(a) Prove that ABCD and A”B”C" D" are similar.

(b) The ratio of similitude depends on the size of the angles of ABCD.

Determine this ratio.

(ISR 1)™©Y4 Tet A, B be adjacent vertices of a regular n-gon in the
plane and let O be its center. Now let the triangle ABO glide around the
polygon in such a way that the points A and B move along the whole
circumference of the polygon. Describe the figure traced by the vertex O.

(CHN 3)™O2 Let A, B,C be fixed points in the plane. A man starts
from a certain point Py and walks directly to A. At A he turns his di-
rection by 60° to the left and walks to P; such that PpA = AP;. Af-
ter he does the same action 1986 times successively around the points
A, B,C A, B,C,..., he returns to the starting point. Prove that AABC
is equilateral and that the vertices A, B, C are arranged counterclockwise.

(TUR 1) Let AX,BY,CZ be three cevians concurrent at an inte-
rior point D of a triangle ABC. Prove that if two of the quadrangles
DY AZ DZBX,DXCY are circumscribable, so is the third.

(BUL 2) A tetrahedron ABCD is given such that AD = BC = q;
AC = BD =b; AB-CD = 2. Let f(P) = AP+ BP + CP + DP, where
P is an arbitrary point in space. Compute the least value of f(P).

(CAN 3) Prove that the sum of the face angles at each vertex of a tetra-
hedron is a straight angle if and only if the faces are congruent triangles.

(TUR 2) Let ABCD be a tetrahedron having each sum of opposite sides
equal to 1. Prove that V3
ra+rp+rc+rp < 3

where r4,7p,7c,rp are the inradii of the faces, equality holding only if
ABCD is regular.
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3 Problems

3.28 The Twenty-Eighth IMO
Havana, Cuba, July 5-16, 1987

3.28.1 Contest Problems

First Day (July 10)

. Let S be a set of n elements. We denote the number of all permutations

of S that have exactly k fixed points by p, (k). Prove that

> kpn(k) = n!.
k=0

. The prolongation of the bisector AL (L € BC) in the acute-angled trian-

gle ABC intersects the circumscribed circle at point N. From point L to
the sides AB and AC are drawn the perpendiculars LK and LM respec-
tively. Prove that the area of the triangle ABC is equal to the area of the
quadrilateral AKNM.

. Suppose 1,72, . . ., T, are real numbers with 23 + 23+ --+22 = 1. Prove
that for any integer k > 1 there are integers e; not all 0 and with |e;| < k
such that (k- 1)y

— n
|€1$1—|—€2$2+"'+€n$n|§ o1

Second Day (July 11)

Does there exist a function f : N — N, such that f(f(n)) = n + 1987 for
every natural number n?

. Prove that for every natural number n > 3 it is possible to put n points in

the Euclidean plane such that the distance between each pair of points is
irrational and each three points determine a nondegenerate triangle with
rational area.

. Let f(z) = 22 +  + p, p € N. Prove that if the numbers f£(0), f(1),...,

f([\/p/3 ]) are primes, then all the numbers f(0), f(1),..., f(p — 2) are
primes.

3.28.2 Longlisted Problems

1.

(AUS 1) Let x1,2o,...,x, be n integers. Let n = p + ¢, where p and ¢
are positive integers. For ¢ = 1,2,...,n, put

Si=i +Tit1+ -+ Tipp—1 and T; = Tipp + Tippr1 + -+ Tign—1
(it is assumed that x;, = z; for all ¢). Next, let m(a,b) be the number of
indices 7 for which S; leaves the remainder a and T; leaves the remainder
b on division by 3, where a,b € {0,1,2}. Show that m(1,2) and m(2,1)
leave the same remainder when divided by 3.
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2. (AUS 2) Suppose we have a pack of 2n cards, in the order 1,2,...,2n. A
perfect shuffle of these cards changes the order ton—+1,1,n+2,2,...,n—
1,2n,n; i.e., the cards originally in the first n positions have been moved

to the places 2,4,...,2n, while the remaining n cards, in their original
order, fill the odd positions 1,3,...,2n — 1.
Suppose we start with the cards in the above order 1,2,...,2n and then

successively apply perfect shuffles. What conditions on the number n are
necessary for the cards eventually to return to their original order? Justify
your answer.

Remark. This problem is trivial. Alternatively, it may be required to find
the least number of shuffles after which the cards will return to the original
order.

3. (AUS 3) A town has a road network that consists entirely of one-way
streets that are used for bus routes. Along these routes, bus stops have
been set up. If the one-way signs permit travel from bus stop X to bus
stop Y # X, then we shall say Y can be reached from X.

We shall use the phrase Y comes after X when we wish to express that
every bus stop from which the bus stop X can be reached is a bus stop
from which the bus stop Y can be reached, and every bus stop that can
be reached from Y can also be reached from X. A visitor to this town
discovers that if X and Y are any two different bus stops, then the two
sentences “Y can be reached from X” and “Y comes after X” have exactly
the same meaning in this town.

Let A and B be two bus stops. Show that of the following two statements,
exactly one is true: (i) B can be reached from A; (ii) A can be reached
from B.

4. (AUS 4) Let aq,as,as,by, b, bs be positive real numbers. Prove that

(a1b2 + asby + a1bs + agby + asbs + a3b2)2
> 4(araz2 + agas + azay ) (b1ba + babs + bsby)

and show that the two sides of the inequality are equal if and only if
al/bl = ag/bg = a3/b3.

5. (AUS 5) Let there be given three circles Kp, K2, K3 with centers
01,02, 03 respectively, which meet at a common point P. Also, let
K1 N KQ = {P,A}, K2 N Kg = {P,B}, Kg N K1 = {P,C} Given an
arbitrary point X on K7, join X to A to meet K5 again in Y, and join X
to C to meet K3 again in Z.

(a) Show that the points Z, B,Y are collinear.
(b) Show that the area of triangle XY Z is less than or equal to 4 times
the area of triangle O10503.

6. (AUS 6) (SL87-1).
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3 Problems

(BEL 1) Let f : (0,400) — R be a function having the property
that f(x) = f(1/x) for all x > 0. Prove that there exists a function

u: [1,400) — R satisfying u (w+21/w> = f(x) for all x > 0.

. (BEL 2) Determine the least possible value of the natural number n

such that n! ends in exactly 1987 zeros.

. (BEL 3) In the set of 20 elements {1, 2, 3,4, 5,6,7,8,9,0, A, B, C,

D,J,K,L, U, X, Y, Z} we have made a random sequence of 28 throws.
What is the probability that the sequence CUBA JULY 1987 appears in
this order in the sequence already thrown?

(FIN 1) In a Cartesian coordinate system, the circle Cy has center
01(—2,0) and radius 3. Denote the point (1,0) by A and the origin by O.
Prove that there is a constant ¢ > 0 such that for every X that is exterior
to (1,

OX — 1> cmin{AX, AX?}.

Find the largest possible c.

(FIN 2) Let S C [0,1] be a set of 5 points with {0,1} C S. The graph
of a real function f : [0,1] — [0,1] is continuous and increasing, and it
is linear on every subinterval I in [0, 1] such that the endpoints but no
interior points of I are in S. We want to compute, using a computer, the
extreme values of g(z,t) = ;gi;r_t)fzg{g; for x —t,z +t € [0,1]. At how

many points (z,t) is it necessary to compute g(x,t) with the computer?
(FIN 3) (SL87-3).

(FIN 4) A be an infinite set of positive integers such that every n € A is
the product of at most 1987 prime numbers. Prove that there is an infinite

set B C A and a number p such that the greatest common divisor of any
two distinct numbers in B is b.

(FRA 1) Given n real numbers 0 < t; <tg <--- <t, <1, prove that

1 t3 tn
1—+¢2 n <1.
(1=t) ((1 —ap ta-g2 T —tz+1>2>

(FRA 2) Let aj,as,as,by,be,bs, c1,ca,c5 be nine strictly positive real
numbers. We set

S1 =aibacs, So = agbscy, S3 = agbicy;
Ty = aibzca, To = asbics, T3 = azbacy.

Suppose that the set {S1,S52,953,T1,Ta,T5} has at most two elements.
Prove that
S1+ 8y +8S3=T1 + 15+ T;.
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(FRA 3) Let ABC be a triangle. For every point M belonging to segment
BC we denote by B’ and ¢’ the orthogonal projections of M on the straight
lines AC and BC. Find points M for which the length of segment B'C’

is a minimum.

(FRA 4) Consider the number a obtained by writing one after another
the decimal representations of 1,1987,19872,... to the right the decimal
point. Show that « is irrational.

(FRA 5) (SL87-4).

(FRG 1) (SL8T7-14).

(FRG 2) (SL8T7-15).

(FRG 3) (SL87-16).

(GBR 1) (SL87-5).

(GBR 2) A lampshade is part of the surface of a right circular cone
whose axis is vertical. Its upper and lower edges are two horizontal circles.
Two points are selected on the upper smaller circle and four points on the
lower larger circle. Each of these six points has three of the others that
are its nearest neighbors at a distance d from it. By distance is meant the
shortest distance measured over the curved survace of the lampshade.
Prove that the area of the lampshade if d*(20 + v/3), where cot § = 3.

(GBR 3) Prove that if the equation z* + a2® + bz + ¢ = 0 has all its
roots real, then ab < 0.

(GBR 4) Numbers d(n,m), with m,n integers, 0 < m < n, ae defined
by d(n,0) = d(n,n) =0 for all n > 0 and
md(n,m) =mdn—1,m)+ (2n—m)d(n—1,m—1) forall0 <m <n.

Prove that all the d(n,m) are integers.

(GBR. 5) Prove that if o, y, z are real numbers such that 2% +y%+22 = 2,
then
r+y+z<azyz+ 2.

(GBR 6) Find, with proof, the smallest real number C with the following
property: For every infinite sequence {z;} of positive real numbers such
that z1 + 2o+ + 2y < zpy1 forn=1,2,3,..., we have

VIt vVra+ ooy <evri+ae 4+ +w, forn=1,2,3,....

(GDR 1) In a chess tournament there are n > 5 players, and they have
already played {’f} + 2 games (each pair have played each other at most

once).
(a) Prove that there are five players a, b, ¢, d, e for which the pairs ab, ac,
be, ad, ae, de have already played.
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2
(b) Is the statement also valid for the {’Z } + 1 games played?
Make the proof by induction over n.

(GDR 2) (SL87-13).

(GRE 1) Consider the regular 1987-gon Aj A, ... Ajgs7 with center O.
Show that the sum of vectors belonging to any proper subset of M =
{OA;|j=1,2,...,1987} is nonzero.

(GRE 2) Construct a triangle ABC given its side a = BC, its circum-
radius R (2R > a), and the difference 1/k =1/c—1/b, where ¢ = AB and
b= AC.

(GRE 3) Solve the equation 28% = 19¥ 4 877, where z, y, z are integers.
(GRE 4) (SL87-6).
(HUN 1) (SL87-8).
(HUN 2) (SL87-9).

(ICE 1) A game consists in pushing a flat stone along a sequence of
squares Sg, S1,52, ... that are arranged in linear order. The stone is ini-
tially placed on square Sy. When the stone stops on a square Sy it is
pushed again in the same direction and so on until it reaches Sigg7 or
goes beyond it; then the game stops. Each time the stone is pushed, the
probability that it will advance exactly n squares is 1/2™. Determine the
probability that the stone will stop exactly on square Syog7.

(ICE 2) Five distinct numbers are drawn successively and at random
from the set {1,...,n}. Show that the probability of a draw in which the
first three numbers as well as all five numbers can be arranged to form an
arithmetic progression is greater than (n_62)3 .

(ICE 3) (SL87-10).

(LUX 1) Let A be a set of polynomials with real coefficients and let

them satisfy the following conditions:

(i) if f € Aand deg f <1, then f(z) =2 —1;

(ii) if f € A and deg f > 2, then either there exists ¢ € A such that
f(x) = 2%+9%89 1 2g(x) — 1 or there exist g, h € A such that f(z) =
w899 (x) 4 h(z);

(iii) for every f,g € A, both 22T4¢8f 4 g f(z) — 1 and !4 f f(z) + g()
belong to A.

Let R, (f) be the remainder of the Euclidean division of the polynomial

f(x) by a™. Prove that for all f € A and for all natural numbers n > 1

we have

Ry(f)(1) <0 and  Rn(f)(1) =0 = Rn(f) € A.

(MON 1) The perpendicular line issued from the center of the circum-
circle to the bisector of angle C' in a triangle ABC' divides the segment of
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the bisector inside ABC' into two segments with ratio of lengths A. Given
b= AC and a = BC, find the length of side c.

(MON 2) Let n points be given arbitrarily in the plane, no three of
them collinear. Let us draw segments between pairs of these points. What
is the minimum number of segments that can be colored red in such a way
that among any four points, three of them are connected by segments that
form a red triangle?

(MON 3) Find the integer solutions of the equation
[vam] = [2+v2)n].

(MON 4) Let 2n + 3 points be given in the plane in such a way that
no three lie on a line and no four lie on a circle. Prove that the number
of circles that pass through three of these points and contain exactly n

. . i 1 (2n+3
interior points is not less than 3( 5 )

(MOR. 1) Let 64,65,...,0, be real numbers such that sinf; + --- +
sin #,, = 0. Prove that

2

|sinf; + 2sinfs + - - - + nsinb,| < [Z } .
(MOR 2) Let us consider a variable polygon with 2n sides (n € N) in a
fixed circle such that 2n — 1 of its sides pass through 2n — 1 fixed points
lying on a straight line A. Prove that the last side also passes through a
fixed point lying on A.

(NET 1) (SL87-7).

(NET 2) Through a point P within a triangle ABC the lines [, m, and
n perpendicular respectively to AP, BP,C'P are drawn. Prove that if [
intersects the line BC in ), m intersects AC in R, and n intersects AB
in S, then the points ), R, and S are collinear.

(POL 1) (SL87-11).

(POL 2) In the coordinate system in the plane we consider a convex
polygon W and lines given by equations x = k, y = m, where k and m are
integers. The lines determine a tiling of the plane with unit squares. We
say that the boundary of W intersects a square if the boundary contains
an interior point of the square. Prove that the boundary of W intersects
at most 4[d]| unit squares, where d is the maximal distance of points
belonging to W (i.e., the diameter of W) and [d] is the least integer not
less than d.

(POL 3) Let P,Q, R be polynomials with real coefficients, satisfying
P*+Q* = R?. Prove that there exist real numbers p, ¢, and a polynomial
S such that P = pS, Q = ¢S and R = rS?.
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52.
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o4.
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56.
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60.

61.

62.

3 Problems

Variants: (1) P* + Q* = R%; (2) ged(P,Q) = 1; (3) £P* + Q* = R% or
R
(POL 4) The function F' is a one-to-one transformation of the plane into

itself that maps rectangles into rectangles (rectangles are closed; continu-
ity is not assumed). Prove that F' maps squares into squares.

(POL 5) (SL87-12).
(ROM 1) (SL87-17).
(ROM 2) Let n be a natural number. Solve in integers the equation

2"yt = (z—y)"

(ROM 3) Two moving bodies Mj, My are displaced uniformly on two
coplanar straight lines. Describe the union of all straight lines M; Mo.

(ROM 4) (SL87-18).

(ROM 5) The bisectors of the angles B, C' of a triangle ABC' intersect
the opposite sides in B’, C' respectively. Prove that the straight line B'C’
intersects the inscribed circle in two different points.

(SPA 1) Find, with argument, the integer solutions of the equation
327 = 22% + 38522 + 2562 — 58195.

(SPA 2) 1t is given that a11, a2e are real numbers, that x1, x2, a12, b1, ba
are complex numbers, and that ai1a20 = a12a12 (where aj2 is the conju-
gate of aj). We consider the following system in x7, xo:

z1(anz1 + a12x2) = by,
z2(a1221 + a22x2) = ba.

(a) Give one condition to make the system consistent.

(b) Give one condition to make argz, — arg xo = 98°.

(TUR 1) It is given that z = —2272, y = 10>+ 10%c+10b+a, and z = 1
satisfy the equation ax + by + cz = 1, where a, b, ¢ are positive integers
with a < b < ¢. Find y.

(TUR 2) Let PQ be a line segment of constant length A taken on the
side BC of a triangle ABC with the order B, P,Q,C, and let the lines
through P and @ parallel to the lateral sides meet AC' at P; and @)1 and
AB at P, and 2 respectively. Prove that the sum of the areas of the
trapezoids PQQ1P; and PQQ2 P> is independent of the position of PQ
on BC.

(TUR 3) Let [,!’ be two lines in 3-space and let A, B, C be three points
taken on [ with B as midpoint of the segment AC. If a, b, ¢ are the distances
of A, B,C from I, respectively, show that b < \/ “2‘2”2, equality holding
if I’ are parallel.
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(TUR 4) Compute Zi’;o(—l)ka%, where ay, are the coefficients in the
expansion

2n
(1—V2z+a2?)" = Zakxk.
k=0

(USA 1) Let r > 1 be a real number, and let n be the largest integer
smaller than r. Consider an arbitrary real number z with 0 < z < Tfl.
By a base-r expansion of x we mean a representation of z in the form

p= "R

roor r

where the a; are integers with 0 < a; < r.
You may assume without proof that every number x with 0 < z <
has at least one base-r expansion.
Prove that if 7 is not an integer, then there exists a number p,0 <p < ™|
which has infinitely many distinct base-r expansions.

n
r—1

(USA 2) The runs of a decimal number are its increasing or decreasing
blocks of digits. Thus 024379 has three runs: 024, 43, and 379. Determine
the average number of runs for a decimal number in the set {dids...d, |
dp, # dg+1, k=1,2,...,n— 1}, where n > 2.

(USA 3) (SL87-2).
(USS 1) If a,b,c,d are real numbers such that a® + b* + 2 + d? < 1,
find the maximum of the expression

(a+b)*+ @+ +(a+d)* +(b+)* +(b+d)*+ (c+d)™

(USS 2) (SL87-19).

Original formulation. Let there be given positive real numbers «, 3,y
such that o+ +v < m a+ 06>, 6+~ > a, v+ a > (. Prove that
it is possible to draw a triangle with the lengths of the sides sin «, sin g,
siny. Moreover, prove that its area is less than

1
5 (sin 2« + sin 23 + sin 27).

(USS 3) (SL87-20).
(USS 4) (SL87-21).

(USS 5) To every natural number &, k > 2, there corresponds a sequence
an (k) according to the following rule:

ag=k, ap=r7(an—1) forn>1,

in which 7(a) is the number of different divisors of a. Find all & for which
the sequence a,, (k) does not contain the square of an integer.
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3 Problems

(VIE 1) Is it possible to cover a rectangle of dimensions m x n with
bricks that have the trimino angular shape (an arrangement of three unit
squares forming the letter L) if:

(a) m xn = 1985 x 1987;

(b) m x n = 1987 x 19897

(VIE 2) Let f(z) be a periodic function of period T' > 0 defined over R.
Its first derivative is continuous on R. Prove that there exist z,y € [0,T)
such that x # y and

f@)f' () = ) f ().
(VIE 3) (SL87-22).

(VIE 4) Let ay be positive numbers such that a; > 1 and ag41 —ag > 1
(k=1,2,...). Prove that for every n € N,

Zn: < 1987.
=1

k41 198\/ak

(VIE 5) Given two sequences of positive numbers {ax} and {b;} (k € N)
such that

(1) ar < by,

(i) cosarz + cosbgx > — for all k € N and z € R,

prove the existence of hmk_,oO b‘“ and find this limit.

(YUG 1) Find the least natural number k such that for any n € [0, 1]
and any natural number n,
1
k n
1—
a"(1—a)" < (n+1)

(YUG 2) (SL87-23).

3.28.3 Shortlisted Problems

1.

(AUS 6) Let f be a function that satisfies the following conditions:

(i) f x >y and f(y) —y > v > f(x) — x, then f(2) = v + z, for some
number z between z and y.

(ii) The equation f(z) = 0 has at least one solution, and among the
solutions of this equation, there is one that is not smaller than all the
other solutions;

(it)) £(0) =

(iv (1987) < 1988.

) [
v) f(@)f(y) = f(xf(y) +yf(x) —zy).
Find f(1987).
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. (USA 3) At a party attended by n married couples, each person talks

to everyone else at the party except his or her spouse. The conversations
involve sets of persons or cliques C1, Co, ..., C) with the following prop-
erty: no couple are members of the same clique, but for every other pair of
persons there is exactly one clique to which both members belong. Prove
that if n > 4, then k£ > 2n.

. (FIN 3) Does there exist a second-degree polynomial p(x,y) in two

variables such that every nonnegative integer n equals p(k, m) for one and
only one ordered pair (k,m) of nonnegative integers?

. (FRA 5) Let ABCDEFGH be a parallelepiped with AE||BF||CG||DH.

Prove the inequality
AF + AH + AC < AB+ AD + AE + AG.

In what cases does equality hold?

. (GBR 1) Find, with proof, the point P in the interior of an acute-angled

triangle ABC' for which BL?+CM? + AN? is a minimum, where L, M, N
are the feet of the perpendiculars from P to BC,CA, AB respectively.

. (GRE 4) Show that if a,b, c are the lengths of the sides of a triangle

and if 25 = a + b + ¢, then

a” b c

n 2 n—2
> Sn—l > 1.
b+c+c+a+a+b_(3> =

. (NET 1) Given five real numbers ug, u1, ug, us, u4, prove that it is always

possible to find five real numbers vy, v1, v2, v3, v4 that satisfy the following
conditions:

(1) u; — v; € N,

(ii) Eogz‘<j§4(”i —v;)? <4

. (HUN 1) (a)Let (m, k) = 1. Prove that there exist integers ay, az, . .., am

and by, b2,...,b, such that each product a;b; (¢ = 1,2,...,m; j =
1,2,...,k) gives a different residue when divided by mk.

(b) Let (m,k) > 1. Prove that for any integers a1, as,...,am, and by, bo,
..., by there must be two products a;b; and asby ((¢,7) # (s,t)) that
give the same residue when divided by mk.

. (HUN 2) Does there exist a set M in usual Euclidean space such that

for every plane A the intersection M N A is finite and nonempty?

(ICE 3) Let S and Sz be two spheres with distinct radii that touch
externally. The spheres lie inside a cone C, and each sphere touches the
cone in a full circle. Inside the cone there are n additional solid spheres
arranged in a ring in such a way that each solid sphere touches the cone
C, both of the spheres S7 and S3 externally, as well as the two neighboring
solid spheres. What are the possible values of n?
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3 Problems

(POL 1) Find the number of partitions of the set {1,2,...,n} into three

subsets Aj, As, Az, some of which may be empty, such that the following

conditions are satisfied:

(i) After the elements of every subset have been put in ascending order,
every two consecutive elements of any subset have different parity.

(ii) If Ay, As, A3 are all nonempty, then in exactly one of them the minimal
number is even.

(POL 5) Given a nonequilateral triangle ABC, the vertices listed coun-
terclockwise, find the locus of the centroids of the equilateral triangles
A'B'C" (the vertices listed counterclockwise) for which the triples of points
A B, C"; A,B,C"; and A’, B’,C are collinear.

(GDR 2)™O5 g it possible to put 1987 points in the Euclidean plane
such that the distance between each pair of points is irrational and each
three points determine a nondegenerate triangle with rational area?

(FRG 1) How many words with n digits can be formed from the alphabet
{0,1,2,3,4}, if neighboring digits must differ by exactly one?

(FRG 2)™93 Suppose 21,2, ..., T, are real numbers with x? + 23 +
---+ 2 = 1. Prove that for any integer k > 1 there are integers e; not all
0 and with |e;| < k such that

(k—1)y/n
kr—1
(FRG 3)™©! Let S be a set of n elements. We denote the number of all
permutations of S that have exactly k fixed points by p, (k). Prove:
(@) D—g kpn(k) =nl;
(b) Xj—o(k —1)*pn(k) = nl.
(ROM 1) Prove that there exists a four-coloring of the set M =

{1,2,...,1987} such that any arithmetic progression with 10 terms in
the set M is not monochromatic.

Alternative formulation. Let M = {1,2,...,1987}. Prove that there is a
function f : M — {1,2, 3,4} that is not constant on every set of 10 terms
from M that form an arithmetic progression.

(ROM 4) For any integer r > 1, determine the smallest integer h(r) > 1
such that for any partition of the set {1,2,...,h(r)} into r classes, there
are integers a > 0,1 < x < y, such that a + z,a + y,a + x + y belong to
the same class.

lerx1 + eawa + -+ + epwp| <

(USS 2) Let «, 3,7 be positive real numbers such that o + 3+ v < m,
a+p > B+ > a v+ a > . Prove that with the segments of
lengths sin ¢, sin 8, siny we can construct a triangle and that its area is
not greater than

1
5 (sin 2ar + 8in 23 + sin 2).
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(USS 3)MO6 et f(x) = 22 + 2 + p, p € N. Prove that if the numbers
£(0), f(1),..., f([\/p/3]) are primes, then all the numbers f(0), f(1),...,
f(p—2) are primes.

(USS 4)™02 The prolongation of the bisector AL (L € BC') in the acute-
angled triangle ABC intersects the circumscribed circle at point N. From
point L to the sides AB and AC are drawn the perpendiculars LK and
LM respectively. Prove that the area of the triangle ABC' is equal to the
area of the quadrilateral AK NM.

(VIE 3)™O4 Does there exist a function f : N — N, such that f(f(n)) =
n + 1987 for every natural number n?

(YUG 2) Prove that for every natural number & (k > 2) there exists an
irrational number r such that for every natural number m,

[rf]=-1 (mod k).

Remark. An easier variant: Find r as a root of a polynomial of second
degree with integer coefficients.
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3 Problems

3.29 The Twenty-Ninth IMO
Canberra, Australia, July 9-21, 1988

3.29.1 Contest Problems

First Day (July 15)

. Consider two concentric circles of radii R and r (R > r) with center O.

Fix P on the small circle and consider the variable chord PA of the small

circle. Points B and C lie on the large circle; B, P, C are collinear and BC'

is perpendicular to AP.

(a) For which value(s) of ZOPA is the sum BC? + C A% 4+ AB? extremal?

(b) What are the possible positions of the midpoints U of BA and V of
AC as £LOP A varies?

. Let n be an even positive integer. Let Ay, Ao, ..., Ay41 be sets having

n elements each such that any two of them have exactly one element in
common, while every element of their union belongs to at least two of the
given sets. For which n can one assign to every element of the union one
of the numbers 0 and 1 in such a manner that each of the sets has exactly
n/2 zeros?

. A function f defined on the positive integers (and taking positive integer

values) is given by

f) =1, f@3)=3,
f(@2n) = f(n),
fdn+1)=2f(2n+1) — f(n),
flAn+3) =3f(2n+1) —2f(n),

for all positive integers n. Determine with proof the number of positive
integers less than or equal to 1988 for which f(n) = n.

Second Day (July 16)

. Show that the solution set of the inequality

0 5

2 k2

=1

is the union of disjoint half-open intervals with the sum of lengths 1988.

. In a right-angled triangle ABC' let AD be the altitude drawn to the hy-

potenuse and let the straight line joining the incenters of the triangles
ABD, ACD intersect the sides AB, AC' at the points K, L respectively. If
E and E; denote the areas of the triangles ABC and AK L respectively,
show that 51 > 2.

. Let @ and b be two positive integers such that ab+ 1 divides a? + b%. Show

2,52
that ‘Zbibl is a perfect square.
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3.29.2 Longlisted Problems

© oo N O

10.
11.
12.

13.

14.
15.

. (BUL 1) (SL88-1).

. (BUL 2) Let ay, = [\/(TL—F 1)? +n2}, n = 1,2,..., where [z] denotes

the integer part of z. Prove that
(a) there are infinitely many positive integers m such that a,,+1—a;, > 1;
(b) there are infinitely many positive integers m such that a,,+1 —am = 1.

. (BUL 3) (SL88-2).
. (CAN 1) (SL88-3).
. (CUB 1) Let k be a positive integer and M}, the set of all the integers

that are between 2k2 + k and 2k2 + 3k, both included. Is it possible to
partition M} into two subsets A and B such that

ZxQZZxQ?

z€EA z€B

. (CZS 1) (SL88-4).
. (CZS 2) (SL88-5).
. (CZS 3) (SL88-6).

. (FRA 1) If ap is a positive real number, consider the sequence {a,}

defined by
2

pt1 = 7:_:1 for n > 0.

Show that there exists a real number a > 0 such that:
(i) for all real ag > a, the sequence {a,} — +00 (n — 00);
(ii) for all real ag < a, the sequence {a,} — 0.

(FRA 2) (SL88-7).
(FRA 3) (SL88-8).

(FRA 4) Show that there do not exist more than 27 half-lines (or rays)
emanating from the origin in 3-dimensional space such that the angle
between each pair of rays is greater than of equal to 7/4.

(FRA 5) Let T be a triangle with inscribed circle C. A square with sides
of length a is circumscribed about the same circle C'. Show that the total
length of the parts of the edges of the square interior to the triangle T is
at least 2a.

(FRG 1) (SL88-9).

(FRG 2) Let 1 <k < n. Consider all finite sequences of positive integers
with sum n. Find T'(n, k), the total number of terms of size k in all of
these sequences.
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16.

17.

18.
19.
20.

3 Problems

(FRG 3) Show that if n runs through all positive integers, f(n) =
[n +/n/3+1/ 2} runs through all positive integers skipping the terms
of the sequence a, = 3n? — 2n.

(FRG 4) Show that if n runs through all positive integers, f(n) =
[n + v/3n +1/2] runs through all positive integers skipping the terms of

2
the sequence a,, = [" '3*2"}

(GBR 1) (SL88-25).
(GBR 2) (SL88-26).

(GBR 3) It is proposed to partition the set of positive integers into two

disjoint subsets A and B subject to the following conditions:

(i) 1isin A;

(ii) no two distinct members of A have a sum of the form 2% + 2 (k =
0,1,2,...); and

(iii) no two distinct members of B have a sum of that form.

21.
22.
23.
24.

25.
26.

27.
28.
29.

30.

Show that this partitioning can be carried out in a unique manner and
determine the subsets to which 1987, 1988, and 1989 belong.

(GBR 4) (SL88-27).
(GBR 5) (SL88-28).
(GDR. 1) (SL88-10).

(GDR 2) Let Z,, be the set of all ordered pairs (i,j) with ¢ €
{1,...,m} and j € {1,...,n}. Also let @, be the number of all those
subsets of Z,, , that contain no two ordered pairs (i1, 1), (i2,j2) with
li1 — da| + |j1 — j2| = 1. Show that for all positive integers m and k,

2
Uk < m,2k—10m, 2k+1-

(GDR 3) (SL88-11).

(GRE 1) Let AB and C'D be two perpendicular chords of a circle with
center O and radius 7, and let XY, Z W denote in cyclical order the
four parts into which the disk is thus divided. Find the maximum and
minimum of the quantity A(Y‘?J(Q(W), where A(U) denotes the area of U.
(GRE 2) (SL88-12).
(GRE 3) (SL88-13).

(GRE 4) Find positive integers x1,xa, . . ., T29, at least one of which is
greater than 1988, such that

2 .2 2
]+ 25+ xhg = 292122 . .. Tog.

(HKG 1) Find the total number of different integers that the function
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x] + [32] + [4a]

takes for 0 < x < 100.

(HKG 2) The circle 22 + y? = r? meets the coordinate axes at A =
(r,0), B = (-r,0), C = (0,r), and D = (0,—7). Let P = (u,v) and
Q = (—u,v) be two points on the circumference of the circle. Let N be
the point of intersection of PQ and the y-axis, and let M be the foot of the
perpendicular drawn from P to the z-axis. If r2 is odd, u = p™ > ¢" = v,
where p and ¢ are prime numbers, and m and n are natural numbers,
show that

|AM| =1, |BM|=9, |DN| =38, |PQ|=S8.

(HKG 3) Assuming that the roots of 2°+pa?+qgz+r = 0 are all real and
positive, find a relation between p, ¢, and r that gives a necessary condition
for the roots to be exactly the cosines of three angles of a triangle.

(HKG 4) Find a necessary and sufficient condition on the natural num-
ber n for the equation 2™ 4 (2 + )™ + (2 — 2)™ = 0 to have a real root.

(HKG 5) Express the number 1988 as the sum of some positive integers
in such a way that the product of these positive integers is maximal.

(HKG 6) In the triangle ABC, let D, E, and F be the midpoints of the
three sides, X, Y, and Z the feet of the three altitudes, H the orthocenter,
and P, @, and R the midpoints of the line segments joining H to the three
vertices. Show that the nine points D, E, F, P,Q, R, X, Y, Z lie on a circle.

(HUN 1) (SL88-14).

(HUN 2) Let n points be given on the surface of a sphere. Show that the
surface can be divided into n congruent regions such that each of them
contains exactly one of the given points.

(HUN 3) In a multiple choice test there were 4 questions and 3 possible
answers for each question. A group of students was tested and it turned
out that for any 3 of them there was a question that the three students
answered differently. What is the maximal possible number of students
tested?

(ICE 1) (SL88-15).

(ICE 2) A sequence of numbers a,, n = 1,2, ..., is defined as follows:
a; = 1/2, and for each n > 2,

2n—3
Ay, = App1-
2n !

Prove that Y;_  ar <1 for alln > 1.
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41. (INA 1)

(a) Let ABC be a triangle with AB = 12 and AC' = 16. Suppose M is the
midpoint of side BC' and points E and F' are chosen on sides AC' and
AB respectively, and suppose that the lines EF and AM intersect at
G.If AE = 2AF then find the ratio EG/GF.

(b) Let E be a point external to a circle and suppose that two chords
EAB and ECD meet at an angle of 40°. If AB = BC = CD, find
the size of ZACD.

42. (INA 2)

(a) Four balls of radius 1 are mutually tangent, three resting an the floor
and the fourth resting on the others. A tetrahedron, each of whose
edges has length s, is circumscribed around the balls. Find the value
of s.

(b) Suppose that ABCD and EFGH are opposite faces of a rectangu-
lar solid, with ZDHC' = 45° and ZFHB = 60°. Find the cosine of
/ZBHD.

43. (INA 3)

(a) The polynomial 2* 4+ 1+ (z + 1)2* is not divisible by 22 + z + 1. Find
the value of k.

(b) If p, ¢, and r are distinct roots of 2® — 2% + 2 — 2 = 0, find the value
of p3 + ¢ +r3.

(¢) If r is the remainder when each of the numbers 1059, 1417, and 2312
is divided by d, where d is an integer greater than one, find the value
of d—r.

(d) What is the smallest positive odd integer n such that the product of
2U/7 93/7 . 2@n+t1)/T ig greater than 10007

44. (INA 4)
(a) Let g(x) = 2° + 2 + 2® + 2% + £+ 1. What is the remainder when the
polynomial g(x'?) is divided by the polynomial g(x)?
(b) If k is a positive integer and f is a function such that for every positive

12/y
number z, f(z2+1)V* = k, find the value of f (9;’2 ) v for every

positive number y.

(c) The function f satisfies the functional equation f(z) + f(y) = f(xz +
y) —xy — 1 for every pair z,y of real numbers. If f(1) = 1, find the
number of integers n for which f(n) = n.

45. (INA 5)
(a) Consider a circle K with diameter AB, a circle L tangent to AB and
to K, and a circle M tangent to circle K, circle L, and AB. Calculate
the ratio of the area of circle K to the area of circle M.
(b) In triangle ABC, AB = AC and LCAB = 80°. If points D, E, and
F' lie on sides BC, AC, and AB, respectively, and CE = CD and
BF = BD, find the measure of L EDF.
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(INA 6)

(a) Calculate 2 — (1146v/2)1/11-6v/2— (11— 6\/2)\/11—4—6\/2

(V54240 V5-2)— (v V5+1)
(b) For each positive number z, let k = (w(;ri/lg;)mwf(;i/szg)2 Calculate
the minimum value of k.

(IRE 1) (SL88-16).

(IRE 2) Find all plane triangles whose sides have integer length and
whose incircles have unit radius.

(IRE 3) Let —1 < = < 1. Show that

i 1—2? 7(1+27)
01—2xc0s27rk/7)+a:2_ 1—27

Deduce that

0 T 9 2m 9 3T
csc 74—<3sc 7 + csc .

(IRE 4) Let g(n) be defined as follows:

g(1)=0, g¢(2)=1,
gn+2)=gn)+gn+1)+1 (n>1).

=38.

Prove that if n > 5 is a prime, then n divides g(n)(g(n) 4+ 1).

(ISR 1) Let Ay, Aa, ..., Aag be 29 different sequences of positive integers.
For 1 <i < j <29 and any natural number z, we define N;(z) to be the
number of elements of the sequence A; that are less than or equal to z,
and N;;j(x) to be the number of elements of the intersection A; N A; that
are less than or equal to .

It is given that for all 1 < ¢ < 29 and every natural number zx,

Ni(z) > ”cf where e = 2.71828 .. ..

Prove that there exists at least one pair 4,7 (1 < i < j < 29) such that
N,;;(1988) > 200.

(ISR 2) (SL88-17).

(KOR 1) Let x =p,y =¢q, 2 =7, w= s be the unique solution of the
system of linear equations

ar—l—aiy—l—a?z—kafw:af, 1=1,2,3,4.
Express the solution of the following system in terms of p, ¢, 7, and s:
r+aly+aiz+adw=a}, i=1,234.

Assume the uniqueness of the solution.
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(KOR 2) (SL88-22).

(KOR 3) Find all positive integers z such that the product of all digits
of z is given by x2 — 10z — 22.

(KOR 4) The Fibonacci sequence is defined by
pty1 =ap+an—1 (M>1), a=0,a =ay=1.

Find the greatest common divisor of the 1960th and 1988th terms of the
Fibonacci sequence.

(KOR 5) Let C be a cube with edges of length 2. Construct a solid with
fourteen faces by cutting off all eight corners of C, keeping the new faces
perpendicular to the diagonals of the cube and keeping the newly formed
faces identical. If at the conclusion of this process the fourteen faces so
formed have the same area, find the area of each face of the new solid.

(KOR 6) For each pair of positive integers k and n, let Si(n) be the
base-k digit sum of n. Prove that there are at most two primes p less than
20,000 for which Ss1(p) is a composite number.

(LUX 1) (SL88-18).
(MEX 1) (SL88-19).

(MEX 2) Prove that the numbers A, B, and C are equal, where we
define A as the number of ways that we can cover a 2 X n rectangle with
2 x 1 rectangles, B as the number of sequences of ones and twos that add

up to n, and C as
+1 2 e
(1)+(3)—|—~~—|—(2m+1) ifn=2m+1.
e positive integer n has the propert, at In any set of n
MON 1) Th itive integ has th v that i y set of
integers chosen from the integers 1,2, ..., 1988, twenty-nine of them form

an arithmetic progression. Prove that n > 1788.

(MON 2) Let ABCD be a quadrilateral. Let A’BC'D’ be the reflection
of ABCD in BC, while A”B'CD’ is the reflection of A’BCD’ in CD’ and
A"B"C'D’ is the reflection of A”B’CD’ in D'A”. Show that if the lines
AA"” and BB" are parallel, then ABCD is a cyclic quadrilateral.

(MON 3) Given n points Ay, As, ..., A,, no three collinear, show that
the n-gon A3 Ay ... A, can be inscribed in a circle if and only if

A1Ag - A3Ap - Ap1An + Ao Az - Ay Ay - A1 Ay - AAp + -+
+An—1An—2 : AlAn e An—SAn = AlAn—l : AQAn e An—QAn-

(MON 4) (SL88-20).
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(MON 5) Suppose o > 0, 3; > 0 for 1 <7 < n (n > 1) and that
S o =i B =m. Prove that

cos f3;
X_; sin o < Z cot «;.
(NET 1) Given a set of 1988 points in the plane, no three points of the
set collinear, the points of a subset with 1788 points are colored blue, and
the remaining 200 are colored red. Prove that there exists a line in the
plane such that each of the two parts into which the line divides the plane
contains 894 blue points and 100 red points.

(NET 2) Let S be the set of all sequences {a; | 1 <i<7,a; =0 or 1}.
The distance between two elements {a;} and {b;} of S is defined as
23:1 |a; — b;|. Let T be a subset of S in which any two elements have a
distance apart greater than or equal to 3. Prove that T' contains at most
16 elements. Give an example of such a subset with 16 elements.

(POL 1) For a convex polygon P in the plane let P’ denote the convex

polygon with vertices at the midpoints of the sides of P. Given an integer

/
n > 3, determine sharp bounds for the ratio area(F’) over all convex
area(P)

n-gons P.

(POL 2) In 3-dimensional space a point O is given and a finite set A
of segments with the sum of the lengths equal to 1988. Prove that there
exists a plane disjoint from A such that the distance from it to O does
not exceed 574.

(POL 3) Given integers az,...,a1p, prove that there exists a nonzero
sequence (1, . .., z19) such that all z; belong to {—1,0, 1} and the number
S0 @a, is divisible by 1001.

(POL 4) (SL88-21).

(SIN 1) In a group of n people each one knows exactly three others. They
are seated around a table. We say that the seating is perfect if everyone
knows the two sitting by their sides. Show that if there is a perfect seating
S for the group, then there is always another perfect seating that cannot
be obtained from S by rotation or reflection.

(SIN 2) (SL88-23).

(SPA 1) Let ABC be a triangle with inradius r and circumradius R.
Show that

. . +.B.C+.C.A 5 r
sin, sin ) Fsin ) sin ) +sin sin ) < 8 AR

(SPA 2) The quadrilateral A; A3AsA, is cyclic and its sides are a3 =
A1 Ay, as = A3Ajz, ag = AsAy, and agy = A4A;. The respective circles



224

e

78.

79.
80.

81.

82.

83.

3 Problems

with centers I; and radii p; are tangent externally to each side a; and to
the sides a;+1 and a;_; extended (ag = a4). Show that

4
H Zl = 4(csc Ay + csc Ag)?.

(SPA 3) Consider h+ 1 chessboards. Number the squares of each board
from 1 to 64 in such a way that when the perimeters of any two boards
of the collection are brought into coincidence in any possible manner, no
two squares in the same position have the same number. What is the
maximum value of h?

(SWE 1) A two-person game is played with nine boxes arranged in a
3 x 3 square, initially empty, and with white and black stones. At each
move a player puts three stones, not necessarily of the same color, in three
boxes in either a horizontal or a vertical row. No box can contain stones
of different colors: If, for instance, a player puts a white stone in a box
containing black stones, the white stone and one of the black stones are
removed from the box. The game is over when the center box and the
corner boxes each contain one black stone and the other boxes are empty.
At one stage of the game = boxes contained one black stone each and the
other boxes were empty. Determine all possible values of x.

(SWE 2) (SL88-24).

(SWE 3) Let S be an infinite set of integers containing zero and such
that the distance between successive numbers never exceeds a given fixed
number. Consider the following procedure: Given a set X of integers, we
construct a new set consisting of all numbers z + s, where x belongs to X
and s belongs to S.

Starting from Sy = {0} we successively construct sets S1, Sa, S3, ... using
this procedure. Show that after a finite number of steps we do not obtain
any new sets; i.e., Sy = Sk, for k > ko.

(USA 1) There are n > 3 job openings at a factory, ranked 1 to n in
order of increasing pay. There are n job applicants, ranked 1 to n in order
of increasing ability. Applicant i is qualified for job j if and only if 7 > j.
The applicants arrive one at a time in random order. Each in turn is
hired to the highest-ranking job for which he or she is qualified and that
is lower in rank than any job already filled. (Under these rules, job 1 is
always filled and hiring terminates thereafter.)

Show that applicants n and n—1 have the same probability of being hired.

(USA 2) The triangle ABC has a right angle at C. The point P is
located on segment AC' such that triangles PBA and PBC have congruent
inscribed circles. Express the length = PC in terms of a = BC, b= CA,
and ¢ = AB.

(USA 3) (SL88-29).



84.
85.
86.

87.

88.

89.

90.

91.

92.

93.

94.

3.29 IMO 1988 225

(USS 1) (SL88-30).
(USS 2) (SL88-31).

(USS 3) Let a,b,c be integers different from zero. It is known that the
equation az? + by? + cz? = 0 has a solution (x,y, 2) in integers different
from the solution z = y = z = 0. Prove that the equation az?+4by?+c2? =
1 has a solution in rational numbers.

(USS 4) All the irreducible positive rational numbers such that the prod-
uct of the numerator and the denominator is less than 1988 are written
in increasing order. Prove that any two adjacent fractions a/b and c¢/d,
a/b < c¢/d, satisfy the equation bc — ad = 1.

(USS 5) There are six circles inside a fixed circle, each tangent to
the fixed circle and tangent to the two adjacent smaller circles. If the

points of contact between the six circles and the larger circle are, in order,
Al, AQ, Ag, A4, A5, and AG, prove that

AjAy - AsAy - AsAs = A As - AgAs - AgAs.

(VIE 1) We match sets M of points in the coordinate plane to sets M*
according to the rule that (z*, y*) belongs to M* if and only if zz* +yy* <
1 whenever (x,y) € M. Find all triangles ) such that Y* is the reflection
of ) at the origin.

(VIE 2) Does there exist a number o (0 < o < 1) such that there is an
infinite sequence {a,} of positive numbers satisfying

«
1—|—an+1§an—|—nan, n=12,...7

(VIE 3) A regular 14-gon with side length a is inscribed in a circle of

radius one. Prove that
2-a > 4/3cos T
2a 7

(VIE 4) Let p > 2 be a natural number. Prove that there exists an

integer ng such that
no

1
Zz‘{)/z'+1>p'

i=1

(VIE 5) Given a natural number n, find all polynomials P(x) of degree
less than n satisfying the following condition:

_anp(i)(_w (’;) = 0.

(VIE 6) Let n+1 (n > 1) positive integers be given such that for each
integer, the set of all prime numbers dividing this integer is a subset of
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the set of n given prime numbers. Prove that among these n + 1 integers
one can find numbers (possibly one number) whose product is a perfect
square.

3.29.3 Shortlisted Problems

1.

(BUL 1) An integer sequence is defined by
anp =2ap-1+an—2 (n>1), ay=0, ag=1.

Prove that 2* divides a,, if and only if 2 divides n.

. (BUL 3) Let n be a positive integer. Find the number of odd coefficients

of the polynomial
up(z) = (22 + z + 1)

. (CAN 1) The triangle ABC is inscribed in a circle. The interior bi-

sectors of the angles A, B, and C meet the circle again at A’, B’, and
C' respectively. Prove that the area of triangle A’B’C’ is greater than or
equal to the area of triangle ABC.

(CZS 1) An n x n chessboard (n > 2) is numbered by the numbers
1,2,...,n?% (every number occurs once). Prove that there exist two neigh-
boring (which share a common edge) squares such that their numbers
differ by at least n.

. (CZS 2)™02 Let n be an even positive integer. Let Ay, Aa, ..., A1 be

sets having n elements each such that any two of them have exactly one
element in common while every element of their union belongs to at least
two of the given sets. For which n can one assign to every element of the
union one of the numbers 0 and 1 in such a manner that each of the sets
has exactly n/2 zeros?

. (CZS 3) In a given tetrahedron ABCD let K and L be the centers of

edges AB and CD respectively. Prove that every plane that contains the
line KL divides the tetrahedron into two parts of equal volume.

. (FRA 2) Let a be the greatest positive root of the equation #3 —32%+1 =

0. Show that [a!"®8] and [a!?®8] are both divisible by 17. ([x] denotes the
integer part of z.)

. (FRA 3) Let uj,us,...,un be m vectors in the plane, each of length

less than or equal to 1, which add up to zero. Show that one can rear-

range uj,us, ..., Uy, as a sequence vi,vs,..., Uy, such that each partial
sum v, vy + V2,1 + V2 + U3, ...,01 + U2+ - - + Uy, has length less than or
equal to /5.

. (FRG 1)™06 Let g and b be two positive integers such that ab+1 divides

a? + b%. Show that ‘fbiblz is a perfect square.
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(GDR 1) Let N ={1,2,...,n}, n > 2. A collection F = {Ay,..., A}
of subsets A; C N, i =1,...,t, is said to be separating if for every pair
{z,y} C N, there is a set A; € F such that A; N {z,y} contains just one
element. A collection F' is said to be covering if every element of N is
contained in at least one set A; € F. What is the smallest value f(n) of ¢
such that there is a set F' = { Ay, ..., A;} that is simultaneously separating
and covering?

(GDR 3) The lock on a safe consists of three wheels, each of which may
be set in eight different positions. Due to a defect in the safe mechanism
the door will open if any two of the three wheels are in the correct position.
What is the smallest number of combinations that must be tried if one
is to guarantee being able to open the safe (assuming that the “right
combination” is not known)?

(GRE 2) In a triangle ABC, choose any points K € BC, L € AC,
M € AB, N € LM, R € MK, and F € KL. If FEy, E>, E3, Ey, Es,
Eg, and E denote the areas of the triangles AMR, CKR, BKF, ALF,
BNM, CLN, and ABC respectively, show that

E > 83V/E1EyE3E4F5F.

Remark. Points K,L,M,N, R, F lie on segments BC, AC, AB, LM,
MK, KL respectively.

(GRE 3)™O05 In a right-angled triangle ABC, let AD be the altitude
drawn to the hypotenuse and let the straight line joining the incenters of
the triangles ABD, AC'D intersect the sides AB, AC at the points K, L
respectively. If E and E; denote the areas of the triangles ABC and AK L
respectively, show that 51 > 2.

(HUN 1) For what values of n does there exist an n x n array of entries
—1,0, or 1 such that the 2n sums obtained by summing the elements of
the rows and the columns are all different?

(ICE 1) Let ABC be an acute-angled triangle. Three lines L4, Lp,
and L¢ are constructed through the vertices A, B, and C respectively
according to the following prescription: Let H be the foot of the altitude
drawn from the vertex A to the side BC'; let S 4 be the circle with diameter
AH; let Sy meet the sides AB and AC at M and N respectively, where M
and N are distinct from A; then L4 is the line through A perpendicular
to M N. The lines Ly and L¢ are constructed similarly. Prove that L 4,
Lp, and L& are concurrent.

(IRE 1)™M9%4 Show that the solution set of the inequality
70

k 5
kz::lx—kzél
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is a union of disjoint intervals the sum of whose lengths is 1988.

(ISR 2) In the convex pentagon ABCDE, the sides BC,CD, DE have
the same length. Moreover, each diagonal of the pentagon is parallel to
a side (AC is parallel to DE, BD is parallel to AE, etc.). Prove that
ABCDE is a regular pentagon.

(LUX 1)™MO! Consider two concentric circles of radii R and r (R > 7)

with center O. Fix P on the small circle and consider the variable chord

PA of the small circle. Points B and C' lie on the large circle; B, P, C are

collinear and BC' is perpendicular to AP.

(a) For what value(s) of ZOPA is the sum BC? + C A% + AB? extremal?

(b) What are the possible positions of the midpoints U of BA and V of
AC as ZOPA varies?

(MEX 1) Let f(n) be a function defined on the set of all positive integers
and having its values in the same set. Suppose that f(f(m)+f(n)) = m+n
for all positive integers n, m. Find all possible values for f(1988).

(MON 4) Find the least natural number n such that if the set
{1,2,...,n} is arbitrarily divided into two nonintersecting subsets, then
one of the subsets contains three distinct numbers such that the product
of two of them equals the third.

(POL 4) Forty-nine students solve a set of three problems. The score for
each problem is a whole number of points from 0 to 7. Prove that there
exist two students A and B such that for each problem, A will score at
least as many points as B.

(KOR 2) Let p be the product of two consecutive integers greater than
2. Show that there are no integers x1, z9, ..., z, satisfying the equation

Zp: 4p+1<zp:xi>2:1'

=1 i=1

Alternative formulation. Show that there are only two values of p for
which there are integers x1, xa, ..., z, satisfying the above inequality.
(SIN 2) Let @ be the center of the inscribed circle of a triangle ABC.
Prove that for any point P,

a(PA)*+b(PB)*+¢(PC)? = a(QA)*+b(QB)*+¢(QC)* +(a+b+c) (QP)?,

where a = BC, b= CA, and ¢ = AB.

(SWE 2) Let {ar}?° be a sequence of nonnegative real numbers such
that ar, — 2ax+1 + agy2 > 0 and Z;C:l a; <1forall k=1,2,... . Prove
that 0 < (ax — apy1) < k22 forall k =1,2,... .
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(GBR 1) A positive integer is called a double number if its decimal rep-
resentation consists of a block of digits, not commencing with 0, followed
immediately by an identical block. For instance, 360360 is a double num-
ber, but 36036 is not. Show that there are infinitely many double numbers
that are perfect squares.

(GBR 2)™93 A function f defined on the positive integers (and taking
positive integer values) is given by

fO=1 fB)=3
f(2n) = f(n),
f(dn+1) = 2f(2n+1) ~ f(n),
)=

fAn+3)=3f(2n+1) —2f(n),

for all positive integers n. Determine with proof the number of positive
integers less than or equal to 1988 for which f(n) = n.

(GBR 4) The triangle ABC is acute-angled. Let L be any line in the
plane of the triangle and let u,v,w be the lengths of the perpendiculars
from A, B, C respectively to L. Prove that

u?tan A + v tan B + w? tan C' > 2A,

where A is the area of the triangle, and determine the lines L for which
equality holds.

(GBR 5) The sequence {a,} of integers is defined by a1 = 2, as = 7,
and )
az 1
—2<an+1—an_1§2, for n > 2.
Prove that a,, is odd for all n > 1.

(USA 3) A number of signal lights are equally spaced along a one-way
railroad track, labeled in order 1,2,...,N (N > 2). As a safety rule, a
train is not allowed to pass a signal if any other train is in motion on the
length of track between it and the following signal. However, there is no
limit to the number of trains that can be parked motionless at a signal,
one behind the other. (Assume that the trains have zero length.)

A series of K freight trains must be driven from Signal 1 to Signal N.
Each train travels at a distinct but constant speed (i.e., the speed is fixed
and different from that of each of the other trains) at all times when it is
not blocked by the safety rule. Show that regardless of the order in which
the trains are arranged, the same time will elapse between the first train’s
departure from Signal 1 and the last train’s arrival at Signal V.

(USS 1) A point M is chosen on the side AC of the triangle ABC in
such a way that the radii of the circles inscribed in the triangles ABM
and BMC are equal. Prove that
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B
BM? = Acot .

where A is the area of the triangle ABC.

(USS 2) Around a circular table an even number of persons have a
discussion. After a break they sit again around the circular table in a
different order. Prove that there are at least two people such that the
number of participants sitting between them before and after the break is
the same.
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3.30 The Thirtieth IMO
Braunschweig—Niedersachen, FR Germany, July 13-24,
1989

3.30.1 Contest Problems

First Day (July 18)

1. Prove that the set {1,2,...,1989} can be expressed as the disjoint union
of 17 subsets A1, Ao, ..., A7 such that:
(i) each A; contains the same number of elements;
(ii) the sum of all elements of each A; is the same for i =1,2,...,17.

2. Let ABC be a triangle. The bisector of angle A meets the circumcircle
of triangle ABC in A;. Points By and C; are defined similarly. Let AA;
meet the lines that bisect the two external angles at B and C' in point A°.
Define BY and C° similarly. If Sx, x,...x, denotes the area of the polygon
X1Xs...X,, prove that

Sgopoco = 2Sac,Ba,cB, > 4SaBc.

3. Given a set S in the plane containing n points and satisfying the conditions
(i) no three points of S are collinear,
(ii) for every point P of S there exist at least k points in .S that have the
same distance to P,
prove that the following inequality holds:

1
k<2+¢m.

Second Day (July 19)

4. The quadrilateral ABCD has the following properties:
(i) AB=AD + BC;
(ii) there is a point P inside it at a distance = from the side C'D such that
AP =x+ AD and BP = x + BC.

Show that
1 1 1

> + .

v = VAD /BC
5. For which positive integers n does there exist a positive integer N such
that none of the integers 1 + N,2+ N,...,n+ N is the power of a prime

number?
6. We consider permutations (x1,...,2a,) of the set {1,...,2n} such that
|z; — xix1| = n for at least one i € {1,...,2n — 1}. For every natural

number 7, find out whether permutations with this property are more or
less numerous than the remaining permutations of {1,...,2n}.



232 3 Problems
3.30.2 Longlisted Problems

1. (AUS 1) Intheset S, = {1,2,...,n} anew multiplication ax*b is defined
with the following properties:
(i) e=axbisin S, for any a € S,,b € S,,.
(ii) If the ordinary product a-b is less than or equal to n, then axb = a-b.
(iii) The ordinary rules of multiplication hold for , i.e.,
(1) a*b="bxa (commutativity)
(2) (axb)xc=ax(bxc) (associativity)
(3) If a* b= ax*c then b = ¢ (cancellation law).
Find a suitable multiplication table for the new product for n = 11 and
n=12.

2. (AUS 2) (SL89-1).
3. (AUS 3) (SL89-2).
4. (AUS 4) (SL89-3).
5. (BUL 1) The sequences ag, a1, ... and by, by, . .. are defined by the equal-

ities

ap = 22, Ani1 = \22\/1— Vi—-a2, n=0,1,2,...
and
bo=1, bpi= \/be%_l, n=0,1,2,....

Prove the inequalities
nt2q, <1 < 2" 2p,,  foreveryn=0,1,2,... .

6. (BUL 2) The circles ¢; and ¢y are tangent at the point A. A straight
line [ through A intersects ¢; and ce at points Cy7 and Cs respectively.
A circle ¢, which contains C7 and C5, meets ¢; and ¢y at points By and
By respectively. Let x be the circle circumscribed around triangle ABj Bs.
The circle k tangent to k at the point A meets ¢; and c¢o at the points Dy
and Dy respectively. Prove that
(a) the points Ci,Cs, D1, Dy are concyclic or collinear;
(b) the points Bi, Ba, D1, D2 are concyclic if and only if AC; and ACH

are diameters of ¢; and cs.

7. (BUL 3) (SL89-4).
8. (COL 1) (SL89-5).

9. (COL 2) Let m be a positive integer and define f(m) to be the number
of factors of 2 in m! (that is, the greatest positive integer k such that
2% | m!). Prove that there are infinitely many positive integers m such
that m — f(m) = 1989.
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(CUB 1) Given the equation
4o + 4x?y — 152y* — 18y — 1222 + 62y + 36y> + 5z — 10y = 0,
find all positive integer solutions.
(CUB 2) Given the equation
yt + dyPx — 1192 + 4oy — 8y + 822 — 402 + 52 = 0,

find all real solutions.

(CUB 3) Let P(x) be a polynomial such that the following inequalities
are satisfied:

P0) >0

P(1) > P(0);

P(2) > 2P(1) — P(0);

P(3) > 3P(2) — 3P(1) + P(0);

and also for every natural number n, P(n+4) > 4P(n+3) —6P(n+2) +
4P(n + 1) — P(n). Prove that for every positive natural number n, P(n)
is positive.

(CUB 4) Let n be a natural number not greater than 44. Prove that for
any function f defined over N? whose images are in the set {1,2,...,n},
there are four ordered pairs (i, §), (i, k), (I, 7), and (I, k) such that f(i,j) =
fl, k) = f(l,7) = f(l,k), where i, j,k,l are chosen in such a way that
there are natural numbers n, p that satisfy

1989m < ¢ <1 < 19894 1989m, 1989p < j < k < 1989 + 1989p.

(CZS 1) (SL8Y-6).

(CZS 2) A sequence ag,as,as,... is defined recursively by a; = 1 and
agryj = —a; (j =1,2,...,2%). Prove that this sequence is not periodic.

(FIN 1) (SL89-7).

(FIN 2) Let a, 0 < a < 1, be areal number and f a continuous function
on [0, 1] satisfying f(0) =0, f(1) =1, and

F(737) = a-as@ )

for all z,y € [0, 1] with < y. Determine f(1/7).

(FIN 3) There are some boys and girls sitting in an n x n quadratic
array. We know the number of girls in every column and row and every
line parallel to the diagonals of the array. For which n is this information
sufficient to determine the exact positions of the girls in the array? For
which seats can we say for sure that a girl sits there or not?
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3 Problems

(FRA 1) Let aq,...,a, be distinct positive integers that do not contain
a 9 in their decimal representations. Prove that
1 1

o4 <30
ai Qnp

(FRA 2) (SL89-8).

(FRA 2b) Same problem as previous, but with a rectangular paral-
lelepiped having at least one integral side.

(FRA 3) Let ABC be an equilateral triangle with side length equal to a
natural number N. Consider the set S of all points M inside the triangle
— — —

ABC such that AM =  (nAB + mAC), where m,n are integers and
0 <m,n,m+n < N. Every point of S is colored in one of the three colors
blue, white, red such that no point on AB is colored blue, no point on
AC ' is colored white, and no point on BC is colored red. Prove that there
exists an equilateral triangle with vertices in S and side length 1 whose
three vertices are colored blue, white, and red.

(FRA 3b) Like the previous problem, but with a regular tetrahedron
and four different colors used.

(FRA 4) (SL89-9).

(GBR 1) Let ABC be a triangle. Prove that there is a unique point U
in the plane of ABC such that there exist real numbers A, u, v, K, not all

zero, such that
APL? + uPM?* + vPN? — kUP?

is constant for all points P of the plane, where L, M, N are the feet of the
perpendiculars from P to BC,CA, AB respectively.

(GBR 2) Let a,b,c,d be positive integers such that ab = c¢d and a+b =
c—d.

Prove that there exists a right-angled triangle the measures of whose sides
(in some unit) are integers and whose area measure is ab square units.
(GBR 3) Integers ¢ (m > 0,n > 0) are defined by ¢, 0 = 1 for all
m >0, co, = 1 foralln >0, and ¢ = Cm—1,n — NCm—1,n—1 for all
m > 0,n > 0. Prove that ¢, , = cp,m for allm > 0,n > 0.

(GBR 4) Let by, ba,...,b19s9 be positive real numbers such that the
equations

Tpo1 — 2Tp + Tpgp1 + bz, =0 (1 <7 < 1989)

have a solution with xy = x19990 = 0 but not all of x1, ..., 21989 are equal
to zero. Prove that

2
bi +by+---+D > )
1+ 02 + +1989_995
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(GRE 1) Let L denote the set of all lattice points of the plane (points
with integral coordinates). Show that for any three points A, B,C of L
there is a fourth point D, different from A, B, C, such that the interiors of
the segments AD, BD,CD contain no points of L. Is the statement true
if one considers four points of L instead of three?

(GRE 2) In a triangle ABC for which 6(a + b+ ¢)r?> = abc, we consider
a point M on the inscribed circle and the projections D, E, F of M on
the sides BC, AC, and AB respectively. Let S, S denote the areas of the
triangles ABC and DEF respectively. Find the maximum and minimum

values of the quotient 5 (here r denotes the inradius of ABC and, as
usual, a = BC, b = AC), C—AB)

(GRE 3) (SL89-10).

(HKG 1) Let ABC be an equilateral triangle. Let D, E, F, M, N, and

P bee the mid-points of BC, CA, AB, FD, FB, and DC respectively.

(a) Show that the line segments AM, EN, and F'P are concurrent.

(b) Let O be the point of intersection of AM, EN, and FP. Find OM :
OF : ON : OF : OP : OA.

(HKG 2) Let n be a positive integer. Show that (v/2 + 1)” = /m +
vm — 1 for some positive integer m.

(HKG 3) Given an acute triangle find a point inside the triangle such
that the sum of the distances from this point to the three vertices is the
least.

(HKG 4) Find all square numbers S; and S such that S; — Se = 1989.
(HKG 5) Prove the identity

peloz 2 1 12 _2§9: 641
2 345 6 478 1479 480 T £ (161 + k) (480 — k)’

(HUN 1) (SL89-11).

(HUN 2) Connecting the vertices of a regular n-gon we obtain a closed
(not necessarily convex) n-gon. Show that if n is even, then there are two
parallel segments among the connecting segments and if n is odd then
there cannot be exactly two parallel segments.

(HUN 3) (SL89-12).

(ICE 1) A sequence of real numbers xg, x1, T2, ... is defined as follows:
2o = 1989 and for each n > 1

1989 2
n k=0

Calculate the value of 21989 "L
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41.

42.
43.

44.

45.

46.

47.

3 Problems

(ICE 2) Alice has two urns. Each urn contains four balls and on each
ball a natural number is written. She draws one ball from each urn at
random, notes the sum of the numbers written on them, and replaces
the balls in the urns from which she took them. This she repeats a large
number of times. Bill, on examining the numbers recorded, notices that
the frequency with which each sum occurs is the same as if it were the sum
of two natural numbers drawn at random from the range 1 to 4. What
can he deduce about the numbers on the balls?

(ICE 3) (SL89-13).

(INA 1) Let f(z) = asin® z +bsinz + ¢, where a, b, and ¢ are real num-
bers. Find all values of a, b, and ¢ such that the following three conditions
are satisfied simultaneously:

(i) f(z) =381 if sinz = 1/2.

(ii) The absolute maximum of f(x) is 444.
(iii) The absolute minimum of f(x) is 364.

(INA 2) Let A and B be fixed distinct points on the X axis, none of
which coincides with the origin O(0,0), and let C' be a point on the YV
axis of an orthogonal Cartesian coordinate system. Let g be a line through
the origin O(0, 0) and perpendicular to the line AC'. Find the locus of the
point of intersection of the lines g and BC' as C varies along the Y axis.
(Give an equation and a description of the locus.)

(INA 3) The expressions a + b+ ¢, ab+ ac + be, and abe are called the
elementary symmetric expressions on the three letters a, b, ¢; symmetric
because if we interchange any two letters, say a and ¢, the expressions
remain algebraically the same. The common degree of its terms is called
the order of the expression.

Let Sk(n) denote the elementary expression on k different letters of order
n; for example S4(3) = abc + abd + acd + bed. There are four terms in
S4(3). How many terms are there in Sggg1(1989)7 (Assume that we have
9891 different letters.)

(INA 4) Given two distinct numbers b; and by, their product can be
formed in two ways: by X bs and by X by;. Given three distinct numbers,
b1, b2, b, their product can be formed in twelve ways: by X (by X b3); (b1 X
bg) X bg; bl X (bg X bg); (bl X b3) X bg; b2 X (bl X bg); (bg X bl) X b3;
b2 X (bg X bl); (b2 X bg) X bl; bg X (bl X bz); (bg X bl) X bQ; bg X (bQ X bl);
(bs X ba) X by. In how many ways can the product of n distinct letters be
formed?

(INA 5) Let logsx — 4logyz — m? — 2m — 13 = 0 be an equation in .
Prove:

(a) For any real value of m the equation has has two distinct solutions.
(b) The product of the solutions of the equation does not depend on m.
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(¢) One of the solutions of the equation is less than 1, while the other
solution is greater than 1.

Find the minimum value of the larger solution and the maximum value of

the smaller solution.

(INA 6) Let S be the point of intersection of the two lines I; : 7Tz — 5y +
8=0andly:3x+4y—13=0. Let P = (3,7), Q = (11,13), and let A
and B be points on the line PQ such that P is between A and @, and B
is between P and @, and such that PA/AQ = PB/BQ = 2/3. Without
finding the coordinates of B find the equations of the lines SA and SB.

(IND 1) Let A, B denote two distinct fixed points in space. Let X, P
denote variable points (in space), while K, N, n denote positive integers.
Call (X, K, N, P) admissible if (N — K)PA+ K -PB > N - PX. Call
(X, K,N) admissible if (X, K, N, P) is admissible for all choices of P.
Call (X, N) admissible if (X, K, N) is admissible for some choice of K in
the interval 0 < K < N. Finally, call X admissible if (X, V) is admissible
for some choice of N (N > 1). Determine:

(a) the set of admissible X;

(b) the set of X for which (X, 1989) is admissible but not (X, n), n < 1989.

(IND 2) (SL89-14).

(IND 3) Let t(n), for n = 3,4,5,..., represent the number of distinct,
incongruent, integer-sided triangles whose perimeter is n; e.g., t(3) = 1.
Prove that

t(2n —1) —t(2n) = [Z] or [Z + 1} .

(IRE 1) (SL89-15).

(IRE 2) Let f(z) = (x —a1)(xz — a2) -+ (x — ap) — 2, where n > 3
and aj,as,...,a, are distinct integers. Suppose that f(z) = g(x)h(z),
where g(x),h(z) are both nonconstant polynomials with integer coeffi-
cients. Prove that n = 3.

(IRE 3) Let f be a function from the real numbers to the real numbers
such that f(1) =1, f(a+b) = f(a)+ f(b) for all a, b, and f(x)f(1/z) =1
for all z # 0.

Prove that f(z) = « for all real numbers z.

(IRE 4) Let [z] denote the greatest integer less than or equal to z. Let «
be the positive root of the equation 22 — 19892 — 1 = 0. Prove that there
exist infinitely many natural numbers n that satisfy the equation

[an + 1989ajan]] = 1989n + (19892 + 1)[an).

(IRE 5) Let n = 2k — 1, where k > 6 is an integer. Let T be the set
of all n-tuples (x1,x2,...,2,) where z; is 0 or 1 (i = 1,2,...,n). For
x = (z1,...,2,) and y = (y1,...,Yn) in T, let d(x,y) denote the number
of integers j with 1 < j < n such that ; # y;. (In particular d(x,x) = 0.)
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3 Problems

Suppose that there exists a subset S of T with 2* elements that has the
following property: Given any element x in 7', there is a unique element
y in S with d(x,y) < 3. Prove that n = 23.

(ISR 1) (SL89-16).

(ISR 2) Let Py (z), P2(x),. .., Py(z) be polynomials with real coefficients.
Show that there exist real polynomials A,.(x), B,-(z) (r = 1,2, 3) such that

Y1 (Pe(2))? = (A1(2))? + (Ba(x))?
(Aa(x))? + 2(By(x))?
(A3(x))? — 2(Bs(2))?

(ISR 3) Let vy,vq,...,v1989 be a set of coplanar vectors with |v,.| < 1
for 1 <r < 1989. Show that it is possible to find €, (1 < r < 1989), each
equal to +1, such that

1989

E €rUp
r=1

(KOR 1) A real-valued function f on Q satisfies the following conditions
for arbitrary «, 8 € Q:

(i) £(0) =0, (i) f(a) > 0if a #0,
(iii) f(apB) = f() f(B), (iv) fla+8) < f(a) + £(B),
(v) f(m) <1989 for all m € Z.

Prove that f(a + 8) = max{f(a), f(8)} if f(a) # f(B).

Here, Z,Q denote the sets of integers and rational numbers, respectively.

< V3.

(KOR 2) Let A be a set of positive integers such that no positive integer
greater than 1 divides all the elements of A. Prove that any sufficiently
large positive integer can be written as a sum of elements of A. (Elements
may occur several times in the sum.)

(KOR. 3) (SL89-25).
(KOR 4) (SL89-26).

(KOR 5) Let a regular (2n + 1)-gon be inscribed in a circle of radius 7.

We consider all the triangles whose vertices are from those of the regular

(2n + 1)-gon.

(a) How many triangles among them contain the center of the circle in
their interior?

(b) Find the sum of the areas of all those triangles that contain the center
of the circle in their interior.

(LUX 1) A regular n-gon A1 AsAs... Ay ... A, inscribed in a circle of
radius R is given. If S is a point on the circle, calculate T' = SA? + SA3Z +
o+ SAZ

(MON 1) (SL89-17).
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. (MON 2) A family of sets Ay, As,..., A, has the following properties:
(i) Each A; contains 30 elements.
(i) A; N A; contains exactly one element for all 4,7, 1 < < j < 30.
Find the largest possible n if the intersection of all these sets is empty.

(MON 3) If 0 < k <1 and a; are positive real numbers, i = 1,2,...,n,
prove that

a k+ N an k> n
az+---+ap aj+ - +an—1) T (n—1)F

(MON 4) (SL89-18).

(MON 5) Three mutually nonparallel lines I; (i = 1,2,3) are given
in a plane. The lines [; determine a triangle and reflections f; with axes
on lines [;. Prove that for every point of the plane, there exists a finite
composition of the reflections f; that maps that point to a point interior
to the triangle.

(MON 6) (SL89-19).

(MOR 1) Let ABCD be a quadrilateral inscribed in a circle with diam-

eter AB such that BC' = a, CD = 2a, DA = 3\/3_1(1. For each point M
on the semicircle AB not containing C' and D, denote by hi, ho, hs the
distances from M to the sides BC, C'D, and DA. Find the maximum of
hi + ho + hs.

(NET 1) (SL89-20).
(NET 2) (SL89-21).
(PHI 1) (SL89-22).

(PHI 2) Let k and s be positive integers. For sets of real numbers

{a1,ag,..., a5} and {B1, Ba, .. ., Bs} that satisfy 37 ) =327 3/ for
each j =1,2,...,k, we write

{051,052,. "aas} =k {613ﬂ27"'7ﬂ5}'

Prove that if {a, g, ..., as} = {B1, B2, ..., Bs} and s < k, then there ex-
ists a permutation 7 of {1,2,..., s} such that 8; = ) fori =1,2,...,s.
(POL 1) Given that
cosx +cosy+cosz  sinz+siny +sinz
cos(r+y+z2) sinfe+y+z)
show that
cos(y + z) + cos(z 4+ x) + cos(z + y) = a.
(POL 2) (SL89-23).
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Alternative formulation. Two identical packs of n different cards are shuf-
fled together; all arrangements are equiprobable. The cards are then laid
face up, one at a time. For every natural number n, find out which is more
probable, that at least one pair of identical cards will appear in immediate
succession or that there will be no such pair.

(POL 3) To each pair (z, y) of distinct elements of a finite set X a number
f(z,y) equal to 0 or 1 is assigned in such a way that f(x,y) # f(y,x) for
all z,y (z # y). Prove that exactly one of the following situations occurs:

(i) X is the union of two disjoint nonempty subsets U,V such that
f(u,v) =1 for every u e U,v € V.

(ii) The elements of X can be labeled z1,...,2, so that f(x1,22) =
flxo,23) = = f(¥n_1,2n) = f(xn,21) = 1.

Alternative formulation. In a tournament of n participants, each pair

plays one game (no ties). Prove that exactly one of the following situations

occurs:

(i) The league can be partitioned into two nonempty groups such that
each player in one of these groups has won against each player of the
other.

(ii) All participants can be ranked 1 through n so that ith player wins the
game against the (¢ + 1)st and the nth player wins against the first.

(POL 4) We are given a finite collection of segments in the plane, of
total length 1. Prove that there exists a line ¢ such that the sum of the
lengths of the projections of the given segments to the line ¢ is less than
2/m.

(POL 5) (SL89-24).

(POR 1) Solve in the set of real numbers the equation 3z3 — [z] = 3,
where [z] denotes the integer part of .

(POR 2) Poldavia is a strange kingdom. Its currency unit is the bourbaki
and there exist only two types of coins: gold ones and silver ones. Each
gold coin is worth n bourbakis and each silver coin is worth m bourbakis
(n and m are positive integers). Using gold and solver coins, it is possible
to obtain sums such as 10000 bourbakis, 1875 bourbakis, 3072 bourbakis,
and so on. But Poldavia’s monetary system is not as strange as it seems:
(a) Prove that it is possible to buy anything that costs an integral number
of bourbakis, as long as one can receive change.
(b) Prove that any payment above mn —2 bourbakis can be made without
the need to receive change.

(POR 3) Let a,b,c,r, and s be real numbers. Show that if r is a root of
ax?+bx+c=0and s is a root of —az?+bxr+c = 0, then gx2—|—bx—|—c =0
has a root between r and s.
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(POR 4) Let P(x) be a polynomial with integer coefficients such that
P(my) = P(mg) = P(ms) = P(my4) = 7 for given distinct integers
mq, ma, ms, and my. Show that there is no integer m such that P(m) = 14.

(POR 5) Given two natural numbers w and n, the tower of n w’s is the
natural number T}, (w) defined by

Ty (w) = w® ,

with n w’s on the right side. More precisely, T} (w) = w and Tp,41(w) =
wT» (). For example, T5(2) = 22° = 16, Ty(2) = 2!6 = 65536, and T5(3) =
33 = 27.

Find the smallest tower of 3’s that exceeds the tower of 1989 2’s. In other
words, find the smallest value of n such that T,,(3) > Tigso(2). Justify
your answer.

(POR 6) A balance has a left pan, a right pan, and a pointer that moves
along a graduated ruler. Like many other grocer balances, this one works
as follows: An object of weight L is placed in the left pan and another of
weight R in the right pan, the pointer stops at the number R — L on the
graduated ruler.

There are n (> 2) bags of coins, each containing "(n2_1) +1 coins. All coins
look the same (shape, color, and so on). Of the bags, n— 1 contain genuine
coins, all with the same weight. The remaining bag (we don’t know which
one it is) contains counterfeit coins. All counterfeit coins have the same
weight, and this weight is different from the weight of the genuine coins.
A legal weighing consists of placing a certain number of coins in one of the
pans, putting a certain number of coins in the other pan, and reading the
number given by the pointer in the graduated ruler. With just two legal
weighings it is possible to identify the bag containing counterfeit coins.
Find a way to do this and explain it.

(ROM 1) (SL89-27).
(ROM 2) (SL89-28).

(ROM 3) Prove that the sequence (a,)n>0, @, = [nV/2], contains an
infinite number of perfect squares.

(ROM 4) (SL89-29).

(ROM 5) Find the set of all a € R for which there is no infinite sequence
(n)n>0 C R satisfying z9 = a, zp41 = g;jfl, n = 0,1,..., where

af > 0.

(ROM 6) For & : N — Z let us define Mg = {f : N — Z; f(z) >

F(®(x)),Vx € N}.

(a) Prove that if Mg, = Mg, # 0, then @1 = Ps.

(b) Does this property remain true if Mg = {f : N — N;f(z) >
F(®(z)),Vx € N}?
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(SWE 1) Prove that a < b implies that a®> — 3a < b — 3b + 4. When
does equality occur?

(SWE 2) (SL89-30).
(SWE 3) (SL89-31).

(THA 1) Let n be a positive integer, X = {1,2,...,n}, and k a positive
integer such that n/2 < k < n. Determine, with proof, the number of all
functions f : X — X that satisfy the following conditions:
W) f2=1;
(ii) the number of elements in the image of f is k;
(iii) for each y in the image of f, the number of all points x in X such that
f(x)=y is at most 2.

(THA 2) Let f: N — N be such that

(i) f is strictly increasing;

(ii) f(mn) = f(m)f(n) Ym,n € N; and
(iii) if m # n and m™ = n™, then f(m) =n or f(n) = m.
Determine f(30).

(THA 3) An arithmetic function is a real-valued function whose do-
main is the set of positive integers. Define the convolution product of two
arithmetic functions f and g to be the arithmetic function f x g, where
(f % 9)(n) = Sy F(0)9(d), and F** = [ fx---x f (k times).

We say that two arithmetic functions f and g are dependent if there exists
a nontrivial polynomial of two variables P(z,y) = > aijxiyj with real
coefficients such that

P(f,9) = ayf*+g =0,

2%

4,3

and say that they are independent if they are not dependent. Let p and ¢
be two distinct primes and set

fl(n):{lifn:p, fQ(n):{lifn:q,

0 otherwise; 0 otherwise.
Prove that f; and f; are independent.

(THA 4) Let A be an n x n matrix whose elements are nonnegative real
numbers. Assume that A is a nonsingular matrix and all elements of A~!
are nonnegative real numbers. Prove that every row and every column of
A has exactly one nonzero element.

(TUR 1) Let ABC be an equilateral triangle and I' the semicircle
drawn exteriorly to the triangle, having BC as diameter. Show that if a
line passing through A trisects BC, it also trisects the arc I.

(TUR 2) Ifin a convex quadrilateral ABC'D, E and F are the midpoints
of the sides BC and DA respectively. Show that the sum of the areas of
the triangles EDA and FBC is equal to the area of the quadrangle.
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(USA 1) An accurate 12-hour analog clock has an hour hand, a minute
hand, and a second hand that are aligned at 12:00 o’clock and make one
revolution in 12 hours, 1 hour, and 1 minute, respectively. It is well known,
and not difficult to prove, that there is no time when the three hands
are equally spaced around the clock, with each separating angle 2m/3.
Let f(t),g(t), h(t) be the respective absolute deviations of the separating
angles from 27/3 at ¢ hours after 12:00 o’clock. What is the minimum
value of max{f(¢), g(¢t), h(t)}?

(USA 2) For each nonzero complex number z, let argz be the unique
real number ¢ such that —7 < ¢ < 7 and z = |z|(cost + ¢sint). Given a
real number ¢ > 0 and a complex number z # 0 with argz # m, define

Ble,z)={beR| |lw—z| <b= |argw —arg z| < c}.

Determine necessary and sufficient conditions, in terms of ¢ and z, such
that B(c, z) has a maximum element, and determine what this maximum
element is in this case.

(USA 3) (SL89-32).

(USA 4) Let n > 1 be a fixed integer. Define functions fo(x) = 0,
fi(x) =1 —cosz, and for k > 0,

fr+1(z) = 2fk(z) cosz — fr—1().

If F(z) = fi(z) + fo(z) + - - - + fn(z), prove that
() 0<F(z)<lforO<z< 7,,and

(b) F(z) >1for &, <z<7.

(VIE 1) Let E be the set of all triangles whose only points with integer
coordinates (in the Cartesian coordinate system in space), in its interior
or on its sides, are its three vertices, and let f be the function of area of
a triangle. Determine the set of values f(F) of f.

(VIE 2) For every sequence (21,2, ..., Z,) of the numbers {1,2,...,n}
arranged in any order, denote by f(s) the sum of absolute values of the
differences between two consecutive members of s. Find the maximum
value of f(s) (where s runs through the set of all such sequences).

(VIE 3) Let Az, By be two noncoplanar rays with AB as a common per-

pendicular, and let M, N be two mobile points on Az and By respectively

such that AM + BN = MN.

First version. Prove that there exist infinitely many lines coplanar with
each of the lines M N.

Second version. Prove that there exist infinitely many rotations around a
fixed axis A mapping the line Ax onto a line coplanar with each of
the lines M'N.
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110. (VIE 4) Do there exist two sequences of real numbers {a;}, {b;}, i €
N =1{1,2,3,...}, satisfying the following conditions:
3

Q 1
5 <a; <b;, cosa;x+cosbyx>—
1

forallie Nand all z, 0 < x < 17

111. (VIE 5) Find the greatest number ¢ such that for all natural numbers
n, {nv2} > ¢ (where {nv2} = nv/2 — [nv/2]; [z] is the integer part of z).
For this number c, find all natural numbers n for which {nv2} = ©.

3.30.3 Shortlisted Problems

1. (AUS 2)MO2 Tet ABC be a triangle. The bisector of angle A meets
the circumcircle of triangle ABC in A;. Points B; and C are defined
similarly. Let AA; meet the lines that bisect the two external angles at B
and C in point A°. Define BY and C° similarly. If Sx, x,...x, denotes the
area of the polygon X7 X5 ... X, prove that

Sgopoco = 254c,Ba,cB, 2> 4SaBC.

2. (AUS 3) Ali Barber, the carpet merchant, has a rectangular piece of
carpet whose dimensions are unknown. Unfortunately, his tape measure
is broken and he has no other measuring instruments. However, he finds
that if he lays it flat on the floor of either of his storerooms, then each
corner of the carpet touches a different wall of that room. If the two rooms
have dimensions of 38 feet by 55 feet and 50 feet by 55 feet, what are the
carpet dimensions?

3. (AUS 4) Ali Barber, the carpet merchant, has a rectangular piece of
carpet whose dimensions are unknown. Unfortunately, his tape measure is
broken and he has no other measuring instruments. However, he finds that
if he lays it flat on the floor of either of his storerooms, then each corner of
the carpet touches a different wall of that room. He knows that the sides of
the carpet are integral numbers of feet and that his two storerooms have
the same (unknown) length, but widths of 38 feet and 50 feet respectively.
What are the carpet dimensions?

4. (BUL 3) Prove that for every integer n > 1 the equation

n xn—l $2

v T N
nl " (n—1)! I

has no rational roots.

5. (COL 1) Consider the polynomial p(x) = 2" +na" ! +ax" 2+ -+a,
having all real roots. If r{% + r3% + ... + 7% = n, where the r; are the
roots of p(z), find all such roots.
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. (CZS 1) For a triangle ABC| let k be its circumcircle with radius r. The

bisectors of the inner angles A, B, and C of the triangle intersect respec-
tively the circle k again at points A’, B’, and C’. Prove the inequality

16Q3 > 27 P,

where Q and P are the areas of the triangles A’B'C’ and ABC respec-
tively.

. (FIN 1) Show that any two points lying inside a regular n-gon E can

be joined by two circular arcs lying inside F and meeting at an angle of
at least (1 — i) .

. (FRA 2) Let R be a rectangle that is the union of a finite number of

rectangles R;, 1 < i < n, satisfying the following conditions:
(i) The sides of every rectangle R; are parallel to the sides of R.
(ii) The interiors of any two different R; are disjoint.
(iii) Every R; has at least one side of integral length.
Prove that R has at least one side of integral length.

(FRA 4) For all integers n, n > 0, there exist uniquely determined
integers an, by, ¢, such that

(1 432 —4\‘74)n = an + b2 + V4

Prove that ¢, = 0 implies n = 0.

(GRE 3) Let g: C - C,weC,aecC,w*=1(w# 1). Show that
there is one and only one function f : C — C such that

f)+ fwz+a) =g(z), z€C.

Find the function f.
(HUN 1) Define sequence a,, by 3, as = 2". Show that n|a,.

(HUN 3) At n distinct points of a circular race course there are n cars
ready to start. Each car moves at a constant speed and covers the circle
in an hour. On hearing the initial signal, each of them selects a direction
and starts moving immediately. If two cars meet, both of them change
directions and go on without loss of speed.

Show that at a certain moment each car will be at its starting point.

(ICE 3)™94 The quadrilateral ABC'D has the following properties:

(i) AB=AD + BC;

(ii) there is a point P inside it at a distance = from the side C'D such that
AP =2+ AD and BP =z + BC.

Show that
1 1 1

Nz = VAD * VBC’
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(IND 2) A bicentric quadrilateral is one that is both inscribable in
and circumscribable about a circle. Show that for such a quadrilateral,
the centers of the two associated circles are collinear with the point of
intersection of the diagonals.

(IRE 1) Let a,b, ¢, d, m,n be positive integers such that a?+b*+c?+d? =
1989, a +b+c+d = m?, and the largest of a, b, ¢, d is n?. Determine, with
proof, the values of m and n.

(ISR 1) The set {ag,as,...,a,} of real numbers satisfies the following
conditions:
(i) ap = ap, = 0;
(i) for 1 <k <n-1,
n—1
ar=c+ Y ai_g(a; + aip1).
i=k

Prove that ¢ < 41n.

(MON 1) Given seven points in the plane, some of them are connected
by segments so that:

(i) among any three of the given points, two are connected by a segment;
(i) the number of segments is minimal.

How many segments does a figure satisfying (i) and (ii) contain? Give an
example of such a figure.

(MON 4) Given a convex polygon Aj As ... A, with area S, and a point
M in the same plane, determine the area of polygon M1 M, ... M,, where
M; is the image of M under rotation R, around A; by a, i =1,2,...,n.

(MON 6) A positive integer is written in each square of an m x n board.
The allowed move is to add an integer k to each of two adjacent numbers
in such a way that no negative numbers are obtained. (Two squares are
adjacent if they have a common side.) Find a necessary and sufficient
condition for it to be possible for all the numbers to be zero by a finite
sequence of moves.

(NET 1)™93 Given a set S in the plane containing n points and satis-

fying the conditions:

(i) no three points of S are collinear,

(ii) for every point P of S there exist at least k points in S that have the
same distance to P,

prove that the following inequality holds:

1
k< 9 +V2n.
(NET 2) Prove that the intersection of a plane and a regular tetrahedron
can be an obtuse-angled triangle and that the obtuse angle in any such
triangle is always smaller than 120°.
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. (PHI 1)™91 Prove that the set {1,2,...,1989} can be expressed as the
disjoint union of 17 subsets Ay, As, ..., A17 such that:
(i) each A; contains the same number of elements;
(ii) the sum of all elements of each A; is the same for i =1,2,...,17.

(POL 2)™96 We consider permutations (x1, ..., x2,) of the set {1,...,
2n} such that |z; — ;41| = n for at least one ¢ € {1,...,2n—1}. For every
natural number n, find out whether permutations with this property are
more or less numerous than the remaining permutations of {1,...,2n}.

(POL 5) For points Aj,..., As on the sphere of radius 1, what is the
maximum value that min;<; ;<5 A;A; can take? Determine all configura-
tions for which this maximum is attained. (Or: determine the diameter of
any set {A1,..., A5} for which this maximum is attained.)

(KOR 3) Let a,b be integers that are not perfect squares. Prove that if

2 —ay? — bz* 4 abw?® =0

has a nontrivial solution in integers, then so does
22 —ay? —bz® = 0.

(KOR 4) Let n be a positive integer and let a, b be given real numbers.
Determine the range of x¢ for which

n n
E z; =a and E xf =0,
i=0 i=0

where xq, x1,...,x, are real variables.

(ROM 1) Let m be a positive odd integer, m > 2. Find the smallest
positive integer n such that 21989 divides m™ — 1.

(ROM 2) Consider in a plane IT the points O, Ay, As, A, A4 such that
0(OA;A;) > 1 for all i,j = 1,2,3,4, i # j. Prove that there is at least
one pair g, jo € {1,2,3,4} such that 0(OA4;, A;,) > /2.

(We have denoted by 0(OA;A;) the area of triangle OA;A;.)

(ROM 4) A flock of 155 birds sit down on a circle C. Two birds P;, P; are
mutually visible if m(P;P;) < 10°. Find the smallest number of mutually
visible pairs of birds. (One assumes that a position (point) on C can be
occupied simultaneously by several birds.)

(SWE 2)™O5 For which positive integers n does there exist a positive
integer N such that none of the integers 1 + N,2+ N,...,n + N is the
power of a prime number?

(SWE 3) Let a; > as > as be given positive integers and let N (a1, as, as)
be the number of solutions (x1,z2,x3) of the equation
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a1 ag as
+ T+ T =1,
Z1 Z2 xs3

where x1, xo2, and x3 are positive integers. Show that
N(aq,az2,a3) < 6a1a2(3 + 1n(2aq)).

32. (USA 3) The vertex A of the acute triangle ABC' is equidistant from
the circumcenter O and the orthocenter H. Determine all possible values
for the measure of angle A.
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3.31 The Thirty-First IMO
Beijing, China, July 8-19, 1990

3.31.1 Contest Problems

First Day (July 12)

1. Given a circle with two chords AB,CD that meet at E, let M be a point
of chord AB other than E. Draw the circle through D, E, and M. The
tangent line to the circle DEM at F meets the lines BC, AC' at F,G,
respectively. Given ‘Zl‘g =\, find g?

2. On a circle, 2n — 1 (n > 3) different points are given. Find the minimal
natural number N with the property that whenever N of the given points
are colored black, there exist two black points such that the interior of one
of the corresponding arcs contains exactly n of the given 2n — 1 points.

+1

3. Find all positive integers n having the property that 2”11 is an integer.

n

Second Day (July 13)

4. Let QT be the set of positive rational numbers. Construct a function
f: QT — QT such that

flzf(y) = f(yx)’ for all z,y in Q7.

5. Two players A and B play a game in which they choose numbers alter-
nately according to the following rule: At the beginning, an initial natural
number ng > 1is given. Knowing nay, player A may choose any nag4+1 € N
such that

nok < Nagkr1 < N3y

Then player B chooses a number nagy2 € N such that

n2k+1

)

n2k+2

where p is a prime number and r € N.

It is stipulated that player A wins the game if he (she) succeeds in choosing
the number 1990, and player B wins if he (she) succeeds in choosing 1.
For which natural numbers ny can player A manage to win the game, for
which ng can player B manage to win, and for which ng can players A
and B each force a tie?

6. Is there a 1990-gon with the following properties (i) and (ii)?
(i) All angles are equal;
(ii) The lengths of the 1990 sides are a permutation of the numbers
12,22,...,19892,19902.
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3.31.2 Shortlisted Problems

1.

(AUS 3) The integer 9 can be written as a sum of two consecutive
integers: 9 = 4+5. Moreover, it can be written as a sum of (more than one)
consecutive positive integers in exactly two ways: 9 =4+5=2+3+4.1Is
there an integer that can be written as a sum of 1990 consecutive integers
and that can be written as a sum of (more than one) consecutive positive
integers in exactly 1990 ways?

. (CAN 1) Given n countries with three representatives each, m commit-

tees A(1), A(2),...A(m) are called a cycle if

(i) each committee has n members, one from each country;

(ii) no two committees have the same membership;

(iii) for ¢ = 1,2,...,m, committee A(:) and committee A(¢ + 1) have no
member in common, where A(m + 1) denotes A(1);

(iv) if 1 < |i — j] < m — 1, then committees A(7) and A(j) have at least
one member in common.

Is it possible to have a cycle of 1990 committees with 11 countries?

. (CZS 1)™92 On a circle, 2n — 1 (n > 3) different points are given. Find

the minimal natural number N with the property that whenever N of the
given points are colored black, there exist two black points such that the
interior of one of the corresponding arcs contains exactly n of the given
2n — 1 points.

. (CZS 2) Assume that the set of all positive integers is decomposed into

r (disjoint) subsets A3 U A2 U--- A, = N. Prove that one of them, say
A;, has the following property: There exists a positive m such that for
any k one can find numbers ai,as,...,ar in A; with 0 < aj41 —a; <m
(1<j<k—1).

. (FRA 1) Given AABC with no side equal to another side, let G, K,

and H be its centroid, incenter, and orthocenter, respectively. Prove that
ZGKH > 90°.

. (FRG 2)™O©5 Two players A and B play a game in which they choose

numbers alternately according to the following rule: At the beginning, an
initial natural number ng > 1 is given. Knowing nog, player A may choose
any ngk+1 € N such that

2
nak < Nogy1 < Ny

Then player B chooses a number nggy2 € N such that

N2k+1 _

n2k+2 ’
where p is a prime number and r € N.
It is stipulated that player A wins the game if he (she) succeeds in choosing
the number 1990, and player B wins if he (she) succeeds in choosing 1.
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For which natural numbers ny can player A manage to win the game, for
which ng can player B manage to win, and for which ng can players A
and B each force a tie?

(GRE 2) Let f(0) = f(1) =0 and
Fn+2)=4"2f(n+1)— 16" f(n) +n-2"", n=0,1,2,3,....

Show that the numbers f(1989), £(1990), f(1991) are divisible by 13.

. (HUN 1) For a given positive integer k denote the square of the sum of

its digits by f1(k) and let fni1(k) = fi(fu(k)).
Determine the value of f1991(2

. (HUN 3) The incenter of the triangle ABC is K. The midpoint of AB

is C1 and that of AC is By. The lines C1 K and AC meet at By, the lines
B1K and AB at (. If the areas of the triangles AB>Cy and ABC' are
equal, what is the measure of angle ZCAB?

(ICE 2) A plane cuts a right circular cone into two parts. The plane is
tangent to the circumference of the base of the cone and passes through
the midpoint of the altitude. Find the ratio of the volume of the smaller
part to the volume of the whole cone.

(IND 3')™MOL Given a circle with two chords AB, C'D that meet at F, let
M be a point of chord AB other than E. Draw the circle through D, FE,
and M. The tangent line to the circle DEM at E meets the lines BC, AC

at I, G, respectively. Given ‘Zl‘g =\, find g?

(IRE 1) Let ABC be a triangle and L the line through C parallel to
the side AB. Let the internal bisector of the angle at A meet the side BC
at D and the line L at E and let the internal bisector of the angle at B
meet the side AC' at F' and the line L at G. If GF = DE, prove that
AC = BC.

(IRE 2) An eccentric mathematician has a ladder with n rungs that he
always ascends and descends in the following way: When he ascends, each
step he takes covers a rungs of the ladder, and when he descends, each
step he takes covers b rungs of the ladder, where a and b are fixed positive
integers. By a sequence of ascending and descending steps he can climb
from ground level to the top rung of the ladder and come back down to
ground level again. Find, with proof, the minimum value of n, expressed
in terms of a and b.

(JAP 2) In the coordinate plane a rectangle with vertices (0,0), (m,0),

(0,n), (m,n) is given where both m and n are odd integers. The rectangle

is partitioned into triangles in such a way that

(i) each triangle in the partition has at least one side (to be called a
“good” side) that lies on a line of the form = = j or y = k, where j
and k are integers, and the altitude on this side has length 1;
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(ii) each “bad” side (i.e., a side of any triangle in the partition that is not
a “good” one) is a common side of two triangles in the partition.
Prove that there exist at least two triangles in the partition each of which

has two good sides.

(MEX 2) Determine for which positive integers k the set
X ={1990,1990+1,1990 + 2, ...,1990 + k}

can be partitioned into two disjoint subsets A and B such that the sum
of the elements of A is equal to the sum of the elements of B.

(NET 1)™06 [5 there a 1990-gon with the following properties (i) and

(ii)?

(i) All angles are equal;

(ii) The lengths of the 1990 sides are a permutation of the numbers
12,22, ...,19892,19902.

(NET 3) Unit cubes are made into beads by drilling a hole through
them along a diagonal. The beads are put on a string in such a way that
they can move freely in space under the restriction that the vertices of
two neighboring cubes are touching. Let A be the beginning vertex and B
be the end vertex. Let there be p X ¢ X r cubes on the string (p,q,r > 1).
(a) Determine for which values of p, ¢, and r it is possible to build a block
with dimensions p, ¢, and r. Give reasons for your answers.
(b) The same question as (a) with the extra condition that A = B.

(NOR) Let a,b be natural numbers with 1 < a < b, and M = [*$?].
Define the function f : Z — Z by

F(n) = n+ a, ifn< M,
T ln-—b, ifn > M.

Let fi(n) = f(n), f1(n) = f(fi(n)), i = 1,2,... . Find the smallest
natural number k such that f*(0) = 0.

(POL 1) Let P be a point inside a regular tetrahedron T' of unit volume.
The four planes passing through P and parallel to the faces of T" partition
T into 14 pieces. Let f(P) be the joint volume of those pieces that are
neither a tetrahedron nor a parallelepiped (i.e., pieces adjacent to an edge
but not to a vertex). Find the exact bounds for f(P) as P varies over 7.

(POL 3) Prove that every integer k greater than 1 has a multiple that is
less than k* and can be written in the decimal system with at most four
different digits.

(ROM 1’) Let n be a composite natural number and p a proper divisor
of n. Find the binary representation of the smallest natural number N

142P 42" "P)N—1 . .
such that F +2n ) is an integer.
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(ROM 4) Ten localities are served by two international airlines such
that there exists a direct service (without stops) between any two of these
localities and all airline schedules offer round-trip service between the
cities they serve. Prove that at least one of the airlines can offer two
disjoint round trips each containing an odd number of landings.

(ROM 5)™O3 Find all positive integers n having the property that 2:;{1
is an integer.

(THA 2) Let a,b,c,d be nonnegative real numbers such that ab + bc +
cd + da = 1. Show that

a’® n b n 3 n a3 >1
b+c+d a+c+d a+b+d a+b+c 3

(TUR 4)™O4 Let Q7 be the set of positive rational numbers. Construct
a function f: Q* — QT such that

flxfly)) = ff;), for all z,y in QT.

(USA 2) Let P be a cubic polynomial with rational coefficients, and let
41,92, 4s, - - - be a sequence of rational numbers such that ¢, = P(g,+1) for
all n > 1. Prove that there exists k£ > 1 such that for alln > 1, ¢, 4+x = ¢n-

(USS 1) Find all natural numbers n for which every natural number
whose decimal representation has n — 1 digits 1 and one digit 7 is prime.

(USS 3) Prove that on the coordinate plane it is impossible to draw a
closed broken line such that

(i) the coordinates of each vertex are rational;

(i) the length each of its edges is 1;
(iii) the line has an odd number of vertices.
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3.32 The Thirty-Second IMO
Sigtuna, Sweden, July 12-23, 1991

3.32.1 Contest Problems

First Day (July 17)

. Prove for each triangle ABC' the inequality

1 IA-IB-IC 8
< < ,
4 lalgle - 27

where [ is the incenter and l 4,1, o are the lengths of the angle bisectors
of ABC.

. Let n > 6 and let a; < as < ... < a be all natural numbers that are

less than n and relatively prime to n. Show that if a1, aso,...,ax is an
arithmetic progression, then n is a prime number or a natural power of
two.

. Let S ={1,2,3,...,280}. Find the minimal natural number n such that

in any n-element subset of S there are five numbers that are pairwise
relatively prime.

Second Day (July 18)

. Suppose G is a connected graph with n edges. Prove that it is possible to

label the edges of G from 1 to n in such a way that in every vertex v of G
with two or more incident edges, the set of numbers labeling those edges
has no common divisor greater than 1.

. Let ABC be a triangle and M an interior point in ABC. Show that at

least one of the angles K M AB, £ M BC', and L M CA is less than or equal
to 30°.

. Given a real number a > 1, construct an infinite and bounded sequence

g, T1, T2, . . . such that for all natural numbers i and j, ¢ # j, the following
inequality holds:
|lwi — @j]li — j[* = 1.

3.32.2 Shortlisted Problems

1.

(PHI 3) Let ABC be any triangle and P any point in its interior. Let
Py, P> be the feet of the perpendiculars from P to the two sides AC and
BC. Draw AP and BP, and from C' drop perpendiculars to AP and BP.
Let @1 and @2 be the feet of these perpendiculars. Prove that the lines
Q1P>,Q2P;, and AB are concurrent.
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. (JAP 5) For an acute triangle ABC, M is the midpoint of the segment
BC, P is a point on the segment AM such that PM = BM, H is the foot
of the perpendicular line from P to BC, @ is the point of intersection of
segment AB and the line passing through H that is perpendicular to PB,
and finally, R is the point of intersection of the segment AC and the line
passing through H that is perpendicular to PC.

Show that the circumcircle of AQH R is tangent to the side BC' at point
H.

. (PRK 1) Let S be any point on the circumscribed circle of APQR. Then
the feet of the perpendiculars from S to the three sides of the triangle lie
on the same straight line. Denote this line by (S, PQR). Suppose that
the hexagon ABCDEF is inscribed in a circle. Show that the four lines
I(A,BDF),l(B,ACE),l(D,ABF), and l[(E, ABC') intersect at one point
if and only if CDEF is a rectangle.

. (FRA 2)™O95 Tet ABC be a triangle and M an interior point in ABC.
Show that at least one of the angles A M AB, £ M BC, and £ MCA is less
than or equal to 30°.

. (SPA 4) In the triangle ABC, with LA = 60°, a parallel IF to AC
is drawn through the incenter I of the triangle, where F' lies on the side
AB. The point P on the side BC is such that 3BP = BC. Show that
ABFP = 4BJ2.

. (USS 4)™MO1 prove for each triangle ABC the inequality

1 IA-IB-IC 8
< < ,
4 lalgle - 27

where [ is the incenter and l 4,1, o are the lengths of the angle bisectors
of ABC.

. (CHN 2) Let O be the center of the circumsphere of a tetrahedron
ABCD. Let L, M, N be the midpoints of BC,CA, AB respectively, and
assume that AB+BC = AD+CD,BC+CA = BD4+AD, and CA+AB =
CD + BD. Prove that ZLOM = ZMON = ZNOL.

. (NET 1) Let S be a set of n points in the plane. No three points of
S are collinear. Prove that there exists a set P containing 2n — 5 points
satisfying the following condition: In the interior of every triangle whose
three vertices are elements of S lies a point that is an element of P.

. (FRA 3) In the plane we are given a set E of 1991 points, and certain
pairs of these points are joined with a path. We suppose that for every
point of E, there exist at least 1593 other points of E to which it is joined
by a path. Show that there exist six points of F every pair of which are
joined by a path.

Alternative version. Is it possible to find a set F of 1991 points in the
plane and paths joining certain pairs of the points in F such that every
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point of E is joined with a path to at least 1592 other points of E, and
in every subset of six points of FE there exist at least two points that are
not joined?

(USA 5)™MO4 Quppose G is a connected graph with n edges. Prove that
it is possible to label the edges of G from 1 to n in such a way that in
every vertex v of G with two or more incident edges, the set of numbers
labeling those edges has no common divisor greater than 1.

(AUS 4) Prove that

% (—1)™ (1991 —m\ 1
=199 -m\  m 1991
(CHN 3)™MO3 [et § = {1,2,3,...,280}. Find the minimal natural num-

ber n such that in any n-element subset of S there are five numbers that
are pairwise relatively prime.

(POL 4) Given any integer n > 2, assume that the integers a1, ao, . . ., an
are not divisible by n and, moreover, that n does not divide a; + as +
-+ -+a,. Prove that there exist at least n different sequences (eq, ea, -+ , ey)
consisting of zeros or ones such that eja; + esas + - - - + e,ay, is divisible
by n.

(POL 3) Let a,b,c be integers and p an odd prime number. Prove that
if f(z) = az® + bx + c is a perfect square for 2p — 1 consecutive integer
values of z, then p divides b% — 4ac.

(USS 2) Let a, be the last nonzero digit in the decimal representation
of the number n!. Does the sequence ai,as,...,an,... become periodic
after a finite number of terms?

(ROM l)IM02 Let n > 6 and a1 < as < --- < ax be all natural numbers
that are less than n and relatively prime to n. Show that if a1, a9, ..., ax
is an arithmetic progression, then n is a prime number or a natural power
of two.

(HKG 4) Find all positive integer solutions z, y, z of the equation 3% +
4Y = 57,
(BUL 1) Find the highest degree k of 1991 for which 1991% divides the

number
1 1990

19901991 4 199219917,
(IRE 5) Let a be a rational number with 0 < @ < 1 and suppose that

cos3ma + 2cos2ma = 0.

(Angle measurements are in radians.) Prove that a = 2/3.
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(IRE 3) Let a be the positive root of the equation 2% = 1991z + 1. For
natural numbers m, n define

m*n =mn + [am]an],

where [z] is the greatest integer not exceeding x. Prove that for all natural
numbers p, q, T,

(prq)xr=px(gxr).
(HKG 6) Let f(z) be a monic polynomial of degree 1991 with integer
coefficients. Define g(z) = f?(x) — 9. Show that the number of distinct
integer solutions of g(x) = 0 cannot exceed 1995.

(USA 4) Real constants a, b, ¢ are such that there is exactly one square
all of whose vertices lie on the cubic curve y = 2® + ax? + bx + c. Prove
that the square has sides of length v/72.

(IND 2) Let f and g be two integer-valued functions defined on the set

of all integers such that

(a) fim+ f(f(n))) = —=f(f(m+ 1) —n for all integers m and n;

(b) g is a polynomial function with integer coefficients and g(n) = g(f(n))
for all integers n.

Determine f(1991) and the most general form of g.

(IND 1) An odd integer n > 3 is said to be “nice” if there is at least one
permutation ai,as,...,a, of 1,2,...,n such that the n sums a1 — as +
ag =" —0ap-1+0p, 02— A3+ A4 — -+ —0p + 01,03 — A4+ a5 — -~ — a1+
ag,...,0p — a1 + ag — - -+ — ap_2 + ap—1 are all positive. Determine the
set of all “nice” integers.

(USA 1) Suppose that n > 2 and z1, 22, . . ., T, are real numbers between

0 and 1 (inclusive). Prove that for some index ¢ between 1 and n — 1 the
inequality

1
(1 —aiq1) > 4901(1 —zp)
holds.

(CZS 1) Let n > 2 be a natural number and let the real numbers
Dy G1,a2, ..., Gn,b1,bo, ... by satisfy 1/2 < p < 1,0 < a;, 0 < b; < p,
i=1,...,n,and Y ;" a; =Y ., by = 1. Prove the inequality

n n

D
bi Q; S ne1l"
2l < oy
Gt
(POL 2) Determine the maximum value of the sum
Z TiTj (z; + {Ej)

i<j

over all n-tuples (z1,...,x,), satisfying 2; > 0 and ) ; = 1.



258

28.

29.

30.

3 Problems

(NET 1)™O6 Given a real number a > 1, construct an infinite and
bounded sequence g, x1,T2,... such that for all natural numbers ¢ and
7, 1 # 7, the following inequality holds:

lz; — wj]li — §1* > 1.

(FIN 2) We call a set S on the real line R superinvariant if for any
stretching A of the set by the transformation taking z to A(z) = zg +
a(x — o) there exists a translation B, B(x) = x + b, such that the images
of S under A and B agree; i.e., for any € S there is a y € S such that
A(z) = B(y) and for any ¢t € S there is a u € S such that B(t) = A(u).
Determine all superinvariant sets.

Remark. It is assumed that a > 0.

(BUL 3) Two students A and B are playing the following game: Each
of them writes down on a sheet of paper a positive integer and gives the
sheet to the referee. The referee writes down on a blackboard two integers,
one of which is the sum of the integers written by the players. After that,
the referee asks student A: “Can you tell the integer written by the other
student?” If A answers “no,” the referee puts the same question to student
B. If B answers “no,” the referee puts the question back to A, and so on.
Assume that both students are intelligent and truthful. Prove that after
a finite number of questions, one of the students will answer “yes.”
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3.33 The Thirty-Third IMO
Moscow, Russia, July 10-21, 1992

3.33.1 Contest Problems

First Day (July 15)

1. Find all integer triples (p,q,r) such that 1 < p < ¢ < r and (p —1)(q —
1)(r — 1) is a divisor of (pgr — 1).

2. Find all functions f : R — R such that
f@®*+ f(y)) =y + f(z)? for all z,y in R.

3. Given nine points in space, no four of which are coplanar, find the minimal
natural number n such that for any coloring with red or blue of n edges
drawn between these nine points there always exists a triangle having all
edges of the same color.

Second Day (July 16)

4. In the plane, let there be given a circle C, a line [ tangent to C, and a
point M on . Find the locus of points P that has the following property:
There exist two points Q and R on [ such that M is the midpoint of QR
and C' is the incircle of PQR.

5. Let V be a finite subset of Euclidean space consisting of points (z,y, 2)
with integer coordinates. Let Si, 52,53 be the projections of V' onto the
yz, xz, xy planes, respectively. Prove that

[V[? < 1S1]|S2]] 55|

(|X| denotes the number of elements of X).

6. For each positive integer n, denote by s(n) the greatest integer such that
for all positive integer k < s(n), n? can be expressed as a sum of squares
of k positive integers.

(a) Prove that s(n) < n? — 14 for all n > 4.

(b) Find a number n such that s(n) = n? — 14.

(¢) Prove that there exist infinitely many positive integers n such that
s(n) =n? —14.

3.33.2 Longlisted Problems

1. (AUS 1) Points D and E are chosen on the sides AB and AC of the
triangle ABC in such a way that if F' is the intersection point of BE and
CD, then AE + EF = AD + DF. Prove that AC + CF = AB + BF.
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. (AUS 2) (SL92-1).

Original formulation. Let m be a positive integer and xg, yo integers such
that x¢,yo are relatively prime, yo divides 23 +m, and zo divides y3 + m.
Prove that there exist positive integers z and y such that x and y are
relatively prime, y divides 22 + m, x divides y> + m, and = +y < m + 1.

. (AUS 3) Let ABC be a triangle, O its circumcenter, S its centroid, and

H its orthocenter. Denote by A;, By, and C7 the centers of the circles
circumscribed about the triangles CHB, CHA, and AH B, respectively.
Prove that the triangle ABC is congruent to the triangle A; B;C and that
the nine-point circle of AABC' is also the nine-point circle of AA;B1Ch.

(CAN 1) Let p, g, and r be the angles of a triangle, and let a = sin 2p,
b =sin2q, and ¢ =sin2r. If s = (a + b + ¢)/2, show that

s(s—a)(s—b)(s—c)>0.

When does equality hold?

. (CAN 2) Let I, H, O be the incenter, centroid, and circumcenter of the

nonisosceles triangle ABC'. Prove that AI||HO if and only if {BAC =
120°.

(CAN 3) Suppose that n numbers 1, 2a, ..., z, are chosen randomly
from the set {1,2,3,4,5}. Prove that the probability that % + 2% + .- +
22 =0 (mod 5) is at least 1/5.

. (CAN 4) Let X be a bounded, nonempty set of points in the Cartesian

plane. Let f(X) be the set of all points that are at a distance of at most 1
from some point in X. Let f(X) = f(f(...(f(X))...)) (n times). Show
that f™(X) becomes “more circular” as n gets larger. In other words, if
rn, = sup{radii of circles contained in f"(X)} and R,, = inf{radii of circles
containing f™(X)}, then show that R, /r, gets arbitrarily close to 1 as n
becomes arbitrarily large.

. (CHN 1) (SL92-2).
. (CHN 2) (SL92-3).

(CHN 3) (SL92-4).

(COL 1) Let ¢(n,m), m # 1, be the number of positive integers less
than or equal to n that are coprime with m. Clearly, ¢(m,m) = ¢(m),
where ¢(m) is Euler’s phi function. Find all integers m that satisfy the

following inequality:
o(n,m) _ o(m)

n m
for every positive integer n.

(COL 2) Given a triangle ABC such that the circumcenter is in the
interior of the incircle, prove that the triangle ABC is acute-angled.
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(COL 3) (SL92-5).
(FIN 1) Integers a1, as,...,a, satisfy |ax| = 1 and

n

E Ok Qk+10k420k+3 = 2,
k=1

where an4; = a;. Prove that n # 1992.

(FIN 2) Prove that there exist 78 lines in the plane such that they have
exactly 1992 points of intersection.

(FIN 3) Find all triples (z,y, z) of integers such that

(FRA 1) (SL92-20).

(FRG 1) Fibonacci numbers are defined as follows: F} = F5 =1, Fj, 10 =
Foi1+F,, n>1. Let a, be the number of words that consist of n letters 0
or 1 and contain no two letters 1 at distance two from each other. Express
a,, in terms of Fibonacci numbers.

(FRG 2) Denote by a,, the greatest number that is not divisible by 3
and that divides n. Consider the sequence sg =0, s, = a1 +as+ -+ ay,
n € N. Denote by A(n) the number of all sums s (0 < k < 3", k € Ny)
that are divisible by 3. Prove the formula

A(n) =3""1 + 2.3 cog(nr/6), n € No.

(FRG 3) Let X and Y be two sets of points in the plane and M be a set
of segments connecting points from X and Y. Let k£ be a natural number.
Prove that the segments from M can be painted using k colors in such a
way that for any point x € X UY and two colors « and 8 (a # (), the
difference between the number of a-colored segments and the number of
(B-colored segments originating in X is less than or equal to 1.

(GBR 1) Prove that if z,y,z > 1 and 316 + ; + i = 2, then

Vity+z>Ve—14+y—1+vVz—1.

(GBR 2) (SL92-21).

(HKG 1) An Egyptian numberis a positive integer that can be expressed
as a sum of positive integers, not necessarily distinct, such that the sum
of their reciprocals is 1. For example, 32 = 2 4+ 3 + 9 + 18 is Egyptian
because ; + :1,’ + é + 118 = 1. Prove that all integers greater than 23 are
Egyptian.
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24. (ICE 1) Let QT denote the set of nonnegative rational numbers. Show
that there exists exactly one function f : QT — QT satisfying the follow-
ing conditions:

(i) if 0 < g <}, then f(q) =1+ f (1 %, );
(i) if 1 < ¢ <2, then f(q) =1+ f(qg+1);
(i) f(a)f(1/q) =1 for all g € Q.
Find the smallest rational number ¢ € QT such that f(q) = 19/92.
25. (IND 1) (a) Show that the set N of all natural numbers can be parti-

tioned into three disjoint subsets A, B, and C' satisfying the following

conditions:
A2 =4, B?=C, C? = B,
AB=DB, AC=C, BC=A,

where HK stands for {hk | h € H, k € K} for any two subsets H, K
of N, and H? denotes HH.

(b) Show that for every such partition of N, min{n € N|n € A and n +
1 € A} is less than or equal to 77.

26. (IND 2) (SL92-6).

27. (IND 3) Let ABC be an arbitrary scalene triangle. Define X' to be the
set of all circles y that have the following properties:

(i) y meets each side of AABC' in two (possibly coincident) points;

(ii) if the points of intersection of y with the sides of the triangle are la-
beled by P, Q, R, S, T, U, with the points occurring on the sides in
orders B(B, P,Q,C), B(C,R, S, A), B(A,T,U, B), then the following
relations of parallelism hold: T'S||BC; PU||CA; RQ||AB. (In the lim-
iting cases, some of the conditions of parallelism will hold vacuously;
e.g., if A lies on the circle y, then T', S both coincide with A and the
relation T'S||BC holds vacuously.)

(a) Under what circumstances is X' nonempty?

(b) Assuming that X' is nonempty, show how to construct the locus of
centers of the circles in the set X.

(c) Given that the set X has just one element, deduce the size of the
largest angle of AABC.

(d) Show how to construct the circles in X' that have, respectively, the
largest and the smallest radii.

28. (IND 4) (SL92-7).
Alternative formulation. Two circles G; and G4 are inscribed in a segment
of a circle G and touch each other externally at a point W. Let A be a
point of intersection of a common internal tangent to G; and G2 with the
arc of the segment, and let B and C be the endpoints of the chord. Prove
that W is the incenter of the triangle ABC.

29. (IND 5) (SL92-8).
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(IND 6) Let P, = (19+92)(192 +922) - - (19" 4 92") for each positive
integer n. Determine, with proof, the least positive integer m, if it exists,
for which P, is divisible by 3333.

(IRE 1) (SL92-19).

(IRE 2) Let S, ={1,2,...,n} and f, : S, — S, be defined inductively
as follows: f1(1) =1, fn(2) =7 (i =1,2,...,[n/2]) and

(i) if n=2k (k> 1), then f,(2j — 1) = f() + k (j =1,2,...,k);

(ii) if n =2k +1 (k > 1), then f,(2k + 1) = k+ fir1(1), fn(24 — 1) =

E+ frri(+1) (G=1,2,...,k).
Prove that f,,(z) = z if and only if « is an integer of the form

(2n+1)(27 - 1)
2d+1 _ 1

for some positive integer d.

(IRE 3) Let a,b, ¢ be positive real numbers and p, g, r complex numbers.
Let S be the set of all solutions (z, y, z) in C of the system of simultaneous
equations
ax + by 4+ cz = p,
ax® 4+ by? + cz? =g,
ax3 + ba® + ca® =r.

Prove that S has at most six elements.
(IRE 4) Let a,b,c be integers. Prove that there are integers p1, g1, 71,
P2, q2, T3 such that

a=qrz —qer1, b=r1p2 —7T2p1, €=pig2 — P2qs-
(IRN 1) (SL92-9).
(IRN 2) Find all rational solutions of

a’+c+17(b* + d?) = 21,
ab+ cd = 2.

(IRN 3) Let the circles Cq, Cy, and C3 be orthogonal to the circle C
and intersect each other inside C forming acute angles of measures A, B,
and C. Show that A+ B+ C < 7.

(ITA 1) (SL92-10).

(ITA 2) Let n > 2 be an integer. Find the minimum & for which there
exists a partition of {1,2,...,k} into n subsets X1, Xo,..., X, such that
the following condition holds: for any 4,5, 1 < i < j < n, there exist
x1 € X1, 2 € Xy such that |z; — ;| = 1.
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. (ITA 3) The colonizers of a spherical planet have decided to build N

towns, each having area 1/1000 of the total area of the planet. They also
decided that any two points belonging to different towns will have different
latitude and different longitude. What is the maximal value of N7

(JAP 1) Let S be a set of positive integers ny, nao,...,ng and let n(f)
denote the number nin g1y +nango) + - - +nenye), where f is a permu-
tation of {1,2,...,6}. Let

2 ={n(f) | f is a permutation of {1,2,...,6}}.

Give an example of positive integers ni,...,ng such that {2 contains as
many elements as possible and determine the number of elements of (2.

(JAP 2) (SL92-11).
(KOR 1) Find the number of positive integers n satisfying ¢(n) | n such
that

3y (" —"_1> — 1992.
m m

m=1
What is the largest number among them? As usual, ¢(n) is the number
of positive integers less than or equal to n and relatively prime to n.%
(KOR 2) (SL92-16).

(KOR 3) Let n be a positive integer. Prove that the number of ways
to express n as a sum of distinct positive integers (up to order) and the
number of ways to express n as a sum of odd positive integers (up to
order) are the same.

(KOR 4) Prove that the sequence 5,12,19,26,33,... contains no term
of the form 2™ — 1.
(KOR 5) Find the largest integer not exceeding H:fff gZﬁ

(MON 1) Find all the functions f : RT — R satisfying the identity

f@)fly) =y f (;) +a’ - f (g) z,y € RT,

where «, § are given real numbers.

(MON 2) Given real numbers x; (i = 1,2,...,4x + 2) such that
442
D (D) miwi =4m (21 = zapys),
i=1

prove that it is possible to choose numbers xg, , ..., g, such that

6 The problem in this formulation is senseless. The correct formulation could be,

“Find ... such that > °°_ ([»] = ["']) =1992 ... .

m



50.

ol.
52.

53.
54.

55.
56.

o7.

3.33 IMO 1992 265

6

Z(_l)ﬁxk1xkk+1 >m (x/ﬂ = Q?k7).
=1

(MON 3) Let N be a point inside the triangle ABC. Through the mid-
points of the segments AN, BN, and C'N the lines parallel to the opposite
sides of AABC are constructed. Let Ay, By, and Cn be the intersection
points of these lines. If NV is the orthocenter of the triangle ABC, prove
that the nine-point circles of AABC and AAxyByCy coincide.

Remark. The statement of the original problem was that the nine-point
circles of the triangles Ay BnyCy and Ajy BpChy coincide, where N and
M are the orthocenter and the centroid of AABC. This statement is false.

(NET 1) (SL92-12).

(NET 2) Let n be an integer > 1. In a circular arrangement of n lamps
Lo, ..., L,_1, each one of which can be either ON or OFF, we start with
the situation that all lamps are ON, and then carry out a sequence of
steps, Stepo, Stepi,... . If Lj_; (j is taken mod n) is ON, then Step;
changes the status of L; (it goes from ON to OFF or from OFF to ON)
but does not change the status of any of the other lamps. If L;_; is OFF,
then Step; does not change anything at all. Show that:

(a) There is a positive integer M (n) such that after M (n) steps all lamps

are ON again.
(b) If n has the form 2* then all lamps are ON after n? — 1 steps.
(c) If n has the form 2% + 1, then all lamps are ON after n? —n + 1 steps.

(NZL 1) (SL92-13).

(POL 1) Suppose that n > m > 1 are integers such that the string of
digits 143 occurs somewhere in the decimal representation of the fraction
m/n. Prove that n > 125

(POL 2) (SL92-14).

(POL 3) A directed graph (any two distinct vertices joined by at most
one directed line) has the following property: If =, w, and v are three
distinct vertices such that x — v and £ — v, then v — w and v — w for
some vertex w. Suppose that £ — v — y — --- — z is a path of length n,
that cannot be extended to the right (no arrow goes away from z). Prove
that every path beginning at = arrives after n steps at z.

(POL 4) For positive numbers a,b,c define A = (a +b+¢)/3, G =
(abc)'/3, H=3/(a"' + b~ + ¢ 1). Prove that

AN 1 3 A
> 40
G) 4 4 H

for every a,b,c > 0.
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58. (POR 1) Let ABC be a triangle. Denote by a, b, and ¢ the lengths of
the sides opposite to the angles A, B, and C, respectively. Prove that”

bc  sinA+sinB+sinC
a+b+c  cos(A/2)sin(B/2)sin(C/2)

59. (PRK 1) Let aregular 7-gon AgA; A2 A3 A4 A5 Ag be inscribed in a circle.
Prove that for any two points P, @ on the arc AgAg the following equality
holds:

60. (PRK 2) (SL92-15).

61. (PRK 3) There are a board with 2n-2n (= 4n?) squares and 4n?—1 cards
numbered with different natural numbers. These cards are put one by one
on each of the squares. One square is empty. We can move a card to an
empty square from one of the adjacent squares (two squares are adjacent
if they have a common edge). Is it possible to exchange two cards on two
adjacent squares of a column (or a row) in a finite number of movements?

62. (ROM 1) Letcy,...,c, (n > 2) be real numbers such that 0 < > ¢; < n.
Prove that there exist integers z1,...,z, such that > k; =0and 1—n <
c; +nk; <nforeveryi=1,...,n.

63. (ROM 2) Let a and b be integers. Prove that 2;24__21 is not an integer.

64. (ROM 3) For any positive integer n consider all representations n =
ai + -+ a, where a; > as > --- > ar > 0 are integers such that for all
1 €{1,2,...,k — 1}, the number qa; is divisible by a;11. Find the longest
such representation of the number 1992.

65. (SAF 1) If A, B, C, and D are four distinct points in space, prove that
there is a plane P on which the orthogonal projections of A, B, C, and
D form a parallelogram (possibly degenerate).

66. (SPA 1) A circle of radius p is tangent to the sides AB and AC' of the
triangle ABC, and its center K is at a distance p from BC.
(a) Prove that a(p — p) = 2s(r — p), where r is the inradius and 2s the
perimeter of ABC.
(b) Prove that if the circle intersect BC' at D and E, then

DE = 4\/7'7‘1 ((p __r)g/rl - p)

)

where 11 is the exradius corresponding to the vertex A.

" The statement of the problem is obviously wrong, and the authors couldn’t de-
termine a suitable alteration of the formulation which would make the problem
correct. We put it here only for completeness of the problem set.
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(SPA 2) In a triangle, a symmedian is a line through a vertex that is
symmetric to the median with the respect to the internal bisector (all
relative to the same vertex). In the triangle ABC, the median m, meets
BC at A’ and the circumcircle again at A;. The symmedian s, meets BC
at M and the circumcircle again at A,. Given that the line A; As contains
the circumcenter O of the triangle, prove that:

AAT b+ P .
@ = abe
(b) 1+ 4b%c? = a?(b? + 2).

(SPA 3) Show that the numbers tan(r7/15), where r is a positive integer
less than 15 and relatively prime to 15, satisfy

2% — 9220 + 1342% — 2822 +1 = 0.

(SWE 1) (SL92-17).

(THA 1) Let two circles A and B with unequal radii r and R, respec-
tively, be tangent internally at the point Ag. If there exists a sequence of
distinct circles (C),) such that each circle is tangent to both A and B, and
each circle C,41 touches circle C,, at the point A,,, prove that

= 4m Rr

n; |An 1Ay < .

(THA 2) Let Pi(z,y) and Pa(x,y) be two relatively prime polynomials
with complex coefficients. Let Q(z,y) and R(z,y) be polynomials with
complex coefficients and each of degree not exceeding d. Prove that there
exist two integers A;, Az not simultaneously zero with [A4;| <d+1 (i =
1,2) and such that the polynomial A; P (z,y) + A2 Ps(z,y) is coprime to
Q(z,y) and R(z,y).

(TUR 1) In a school six different courses are taught: mathematics,
physics, biology, music, history, geography. The students were required to
rank these courses according to their preferences, where equal preferences
were allowed. It turned out that:

(i) mathematics was ranked among the most preferred courses by all stu-

dents;

(ii) no student ranked music among the least preferred ones;
(iii) all students preferred history to geography and physics to biology; and
(iv) no two rankings were the same.

Find the greatest possible value for the number of students in this school.

(TUR 2) Let {4, | n=1,2,...} be a set of points in the plane such
that for each n, the disk with center A,, and radius 2" contains no other
point A;. For any given positive real numbers a < b and R, show that
there is a subset G of the plane satisfying:

(i) the area of G is greater than or equal to R;
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(ii) for each point P in G, a <> o7, \AiPI <b.

(TUR 3) Let S = {5, |n,m € Z}. Show that every real number
x > 0 is an accumulation point of S.

(TWN 1) A sequence {a,} of positive integers is defined by
1
an = [n—l—\/n—i—J, n € N.

Determine the positive integers that occur in the sequence.

(TWN 2) Given any triangle ABC and any positive integer n, we say
that n is a decomposable number for triangle ABC' if there exists a de-
composition of the triangle ABC into n subtriangles with each subtriangle
similar to AABC. Determine the positive integers that are decomposable
numbers for every triangle.

(TWN 3) Show that if 994 integers are chosen from 1,2,...,1992 and
one of the chosen integers is less than 64, then there exist two among the
chosen integers such that one of them is a factor of the other.

(USA 1) Let F, be the nth Fibonacci number, defined by F; = Fp =1
and F,, = F,,_1 + F,,_5 for n > 2. Let Ay, A1, Aa,... be a sequence of
points on a circle of radius 1 such that the minor arc from Ay_; to Ay
runs clockwise and such that

4F55 11
(Ag—14x) =
Fj,+1

for k > 1, where pu(XY') denotes the radian measure of the arc XY in the
clockwise direction. What is the limit of the radian measure of arc AgA,,
as n approaches infinity?

(USA 2) (SL92-18).

(USA 3) Given a graph with n vertices and a positive integer m that is
less than n, prove that the graph contains a set of m + 1 vertices in which
the difference between the largest degree of any vertex in the set and the
smallest degree of any vertex in the set is at most m — 1.

(USA 4) Suppose that points X,Y, Z are located on sides BC, CA,
and AB, respectively, of AABC in such a way that AXYZ is similar
to AABC'. Prove that the orthocenter of AXY Z is the circumcenter of
NABC.

(VIE 1) Let f(z) = 2™ + a12™ ' 4+ -+ + am_12 + ay, and g(z) =
2 4+ bz 4+ - 4+ by_1 + b, be two polynomials with real coefficients
such that for each real number z, f(z) is the square of an integer if and

only if so is g(z). Prove that if n +m > 0, then there exists a polynomial
h(x) with real coefficients such that f(x) - g(z) = (h(z))?.
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3.33.3 Shortlisted Problems

1.

(AUS 2) Prove that for any positive integer m there exist an infinite
number of pairs of integers (z, y) such that (i)  and y are relatively prime;
(ii) y divides x2 4+ m; (iii) « divides y? + m.

. (CHN 1) Let RT be the set of all nonnegative real numbers. Given two

positive real numbers a and b, suppose that a mapping f : Rt — R*
satisfies the functional equation

f(f (@) +af(z) = bla+ b).

Prove that there exists a unique solution of this equation.

. (CHN 2) The diagonals of a quadrilateral ABCD are perpendicular:

ACLBD. Four squares, ABEF, BCGH,CDIJ, DAKL, are erected ex-
ternally on its sides. The intersection points of the pairs of straight lines
CL,DF; DF,AH; AH,BJ; BJ,CL are denoted by P, Q1, R1,S1, respec-
tively, and the intersection points of the pairs of straight lines Al, BK;
BK,CFE; CE,DG; DG, AI are denoted by P»,Q2, Ra,Sa, respectively.
Prove that PlQlRl;S’l = P2Q2R2S2.

. (CHN 3)™O3 Given nine points in space, no four of which are coplanar,

find the minimal natural number n such that for any coloring with red
or blue of n edges drawn between these nine points there always exists a
triangle having all edges of the same color.

. (COL 3) Let ABCD be a convex quadrilateral such that AC =

BD. Equilateral triangles are constructed on the sides of the quadrilat-
eral. Let O1,02,03,04 be the centers of the triangles constructed on
AB, BC,CD, DA respectively. Show that O; O3 is perpendicular to O20y.

. (IND 2)™O©2 Find all functions f : R — R such that

f*+ fy) =y + f(x)* for all z,y in R.

. (IND 4) Circles G,G1,Gy are three circles related to each other as

follows: Circles G; and G2 are externally tangent to one another at a
point W and both these circles are internally tangent to the circle G.
Points A, B, C are located on the circle G as follows: Line BC' is a direct
common tangent to the pair of circles G; and Gg, and line WA is the
transverse common tangent at W to Gy and Gq, with W and A lying on
the same side of the line BC'. Prove that W is the incenter of the triangle
ABC.

. (IND 5) Show that in the plane there exists a convex polygon of 1992

sides satisfying the following conditions:
(i) its side lengths are 1,2,3,...,1992 in some order;
(i) the polygon is circumscribable about a circle.
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Alternative formulation. Does there exist a 1992-gon with side lengths
1,2,3,...,1992 circumscribed about a circle? Answer the same question
for a 1990-gon.

. (IRN 1) Let f(z) be a polynomial with rational coefficients and « be

a real number such that o® —a = f(a)® — f(a) = 331992, Prove that for
eachn > 1,

(£ (0))? = £ (a) = 3312,
where f((z) = f(f(... f(2))), and n is a positive integer.

(ITA 1)™O5 Let V be a finite subset of Euclidean space consisting of
points (z,y, z) with integer coordinates. Let S7,S2, S5 be the projections
of V onto the yz, xz, xy planes, respectively. Prove that

[VI? < 1S1]|S2]] 55|

(|X| denotes the number of elements of X).

(JAP 2) In atriangle ABC, let D and E be the intersections of the bisec-
tors of ZABC and ZAC B with the sides AC, AB, respectively. Determine
the angles ZA, /B, ZC if

ABDE = 24°, £LCED = 18°.

(NET 1) Let f, g, and a be polynomials with real coefficients, f and g
in one variable and a in two variables. Suppose

f(@) = fly) = a(z,y)(g(z) — g(y)) forallz,yeR.

Prove that there exists a polynomial h with f(x) = h(g(z)) for all z € R.

(NZL 1)™01! Find all integer triples (p,q,7) such that 1 < p < ¢ < r
and (p—1)(qg—1)(r — 1) is a divisor of (pgr — 1).

(POL 2) For any positive integer x define

g(z) = greatest odd divisor of x,

o) = x/2 4 x/g(x), if z is even;
V= 26+D/2 i 1 is odd.

Construct the sequence 1 = 1,2,41 = f(z,). Show that the number
1992 appears in this sequence, determine the least n such that x,, = 1992,
and determine whether n is unique.

(PRK 2) Does there exist a set M with the following properties?

(i) The set M consists of 1992 natural numbers.

(ii) Every element in M and the sum of any number of elements have the
form m* (m,k € N, k > 2).

(KOR 2) Prove that N = 55122:__11 is a composite number.
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(SWE 1) Let a(n) be the number of digits equal to one in the binary
representation of a positive integer n. Prove that:

(a) the inequality a(n?) < ja(n)(a(n) + 1) holds;

(b) the above inequality is an equality for infinitely many positive integers;
(c) there exists a sequence (n;)$° such that a(n?)/a(n;) — 0 as i — oo.
Alternative parts: Prove that there exists a sequence (n;)° such that
a(n?)/a(n;) tends to

(d) oo

(e) an arbitrary real number € (0, 1);

(f) an arbitrary real number v > 0.

(USA 2) Let [z] denote the greatest integer less than or equal to x.
Pick any x; in [0,1) and define the sequence x1,xo, 3, ... by ,41 =0 if
xn =0 and x,41 = 1/z, — [1/2,] otherwise. Prove that

b ot e < g B
:L‘l 1:2 DY x ... y
" F  Fs Fra

where 1 = Fo =1 and Fy 410 = Fy41 + F, forn > 1.

(IRE 1) Let f(z) = 2® + 425 4 22* 4 282% + 1. Let p > 3 be a prime
and suppose there exists an integer z such that p divides f(z). Prove that
there exist integers z1, 2o, . . ., 2zg such that if

9(x) = (x — 21) (2 — 22) - -~ (& — 28),
then all coefficients of f(z) — g(x) are divisible by p.

(FRA 1)™©4 In the plane, let there be given a circle C, a line [ tangent
to C, and a point M on [. Find the locus of points P that have the
following property: There exist two points () and R on [ such that M is
the midpoint of QR and C' is the incircle of PQR.

(GBR. 2)™96 For each positive integer n, denote by s(n) the greatest

integer such that for all positive integers & < s(n), n? can be expressed

as a sum of squares of k positive integers.

(a) Prove that s(n) < n? — 14 for all n > 4.

(b) Find a number n such that s(n) = n? — 14.

(¢) Prove that there exist infinitely many positive integers n such that
s(n) =n? —14.
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3.34 The Thirty-Fourth IMO
Istanbul, Turkey, July 13—24, 1993

3.34.1 Contest Problems

First Day (July 18)

. Let n > 1 be an integer and let f(x) = 2™ + 52"~ ! + 3. Prove that there

do not exist polynomials g(z), h(z), each having integer coefficients and
degree at least one, such that f(z) = g(x)h(z).

. A, B,C, D are four points in the plane, with C, D on the same side of the

line AB, such that AC-BD = AD-BC and LADB = 90°+ LACB. Find

the ratio
AB-CD

AC - BD’
and prove that circles ACD, BCD are orthogonal. (Intersecting circles
are said to be orthogonal if at either common point their tangents are
perpendicular.)

. On an infinite chessboard, a solitaire game is played as follows: At the

start, we have n? pieces occupying n? squares that form a square of side
n. The only allowed move is a jump horizontally or vertically over an
occupied square to an unoccupied one, and the piece that has been jumped
over is removed. For what positive integers n can the game end with only
one piece remaining on the board?

Second Day (July 19)

. For three points A, B, C in the plane we define m(ABC) to be the smallest

length of the three altitudes of the triangle ABC, where in the case of
A, B, C collinear, m(ABC) = 0. Let A, B, C be given points in the plane.
Prove that for any point X in the plane,

m(ABC) < m(ABX) + m(AXC) +m(XBC).

. Let N=1{1,2,3,...}. Determine whether there exists a strictly increasing

function f : N — N with the following properties:

(1) =2; (1)
f(f(n))=f(n)+n (neN). (2)

. Let n be an integer greater than 1. In a circular arrangement of n lamps

Ly, ..., L,_1, each one of that can be either ON or OFF, we start with the
situation where all lamps are ON, and then carry out a sequence of steps,
Stepo,Step,. ... If Lj_1 (j is taken mod n) is ON, then Step; changes the
status of L; (it goes from ON to OFF or from OFF to ON) but does not
change the status of any of the other lamps. If L;_; is OFF, then Step;
does not change anything at all. Show that:
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(a) There is a positive integer M (n) such that after M (n) steps all lamps
are ON again.

(b) If n has the form 2* then all lamps are ON after n? — 1 steps.

(c) If n has the form 2% + 1, then all lamps are ON after n? —n + 1 steps.

3.34.2 Shortlisted Problems

1.

(BRA 1) Show that there exists a finite set A C R? such that for
every X € A there are points Y7, Ys, ..., Y1993 in A such that the distance
between X and Y; is equal to 1, for every 1.

. (CAN 2) Let triangle ABC be such that its circumradius R is equal to

1. Let r be the inradius of ABC and let p be the inradius of the orthic
triangle A’B’C” of triangle ABC.
Prove that p < 1— (14 r)2.

Remark. The orthic triangle is the triangle whose vertices are the feet of
the altitudes of ABC.

. (SPA 1) Consider the triangle ABC, its circumcircle k with center O

and radius R, and its incircle with center I and radius r. Another circle k.
is tangent to the sides CA,CB at D, E, respectively, and it is internally
tangent to k.

Show that the incenter I is the midpoint of DE.

. (SPA 2) In the triangle ABC, let D, E be points on the side BC' such

that /BAD = ZCAE. If M, N are, respectively, the points of tangency
with BC of the incircles of the triangles ABD and ACFE, show that

T N
MB " MD ~ NC ' NE

. (FIN 3)™O3 On an infinite chessboard, a solitaire game is played as

follows: At the start, we have n? pieces occupying n? squares that form a
square of side n. The only allowed move is a jump horizontally or vertically
over an occupied square to an unoccupied one, and the piece that has been
jumped over is removed. For what positive integers n can the game end
with only one piece remaining on the board?

. (GER 1)™O3 Let N = {1,2,3,...}. Determine whether there exists a

strictly increasing function f : N — N with the following properties:

(1) =2; (1)

f(fn)) =f(n)+n  (neN). (2)

. (GEO 3) Let a,b,c be given integers a > 0, ac —b*> = P = P, --- P,
where Py, ..., Py, are (distinct) prime numbers. Let M (n) denote the num-

ber of pairs of integers (z,y) for which
azx® + 2bxy + cy? = n.
Prove that M (n) is finite and M (n) = M (P* - n) for every integer k > 0.
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(IND 1) Define a sequence (f(n))>2; of positive integers by f(1) = 1

and
_Jfn=1)—n, if f(n—1)>n;
f(n)_{f(n—l)—i—n, if f(n—1) <n,

forn > 2. Let S ={n e N | f(n) =1993}.
(a) Prove that S is an infinite set.
(b) Find the least positive integer in S.
(c) If all the elements of S are written in ascending order as n; < ng <
ng < ---, show that
. Ni+1
lim =3.

1—00 n;

. (IND 4)

(a) Show that the set QT of all positive rational numbers can be par-
titioned into three disjoint subsets A, B, C satisfying the following
conditions:

BA=B, B?=C, BC=A,

where HK stands for the set {hk | h € H,k € K} for any two subsets
H, K of Qt and H? stands for HH.

(b) Show that all positive rational cubes are in A for such a partition of
Q.

(c) Find such a partition Qt = AU B U C with the property that for no
positive integer n < 34 are both n and n + 1 in A; that is,

min{n e N|ne€ A,n+1¢€ A} > 34.

(IND 5) A natural number n is said to have the property P if whenever

n divides a™ — 1 for some integer a, n? also necessarily divides a™ — 1.

(a) Show that every prime number has property P.

(b) Show that there are infinitely many composite numbers n that possess
property P.

(IRE 1)™O91 Let n > 1 be an integer and let f(z) = 2™ + 52"~ + 3.
Prove that there do not exist polynomials g(z), h(z), each having integer
coefficients and degree at least one, such that f(z) = g(x)h(x).

(IRE 2) Let n,k be positive integers with & < n and let S be a set
containing n distinct real numbers. Let T be the set of all real numbers
of the form =1 + xo + - - - + x), where z1, x4, ...,z are distinct elements
of S. Prove that T contains at least k(n — k) 4+ 1 distinct elements.

(IRE 3) Let S be the set of all pairs (m,n) of relatively prime positive
integers m, n with n even and m < n. For s = (m,n) € S write n = 2¥n,
where k,ng are positive integers with ng odd and define f(s) = (ng,m +
n—mng).

Prove that f is a function from S to S and that for each s = (m,n) € S,
there exists a positive integer ¢ < m"j‘“ such that ft(s) = s, where
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Fis) = (fof oo f)(s)

~ ~
t times
If m+n is a prime number that does not divide 28 —1 for k = 1,2,...,m+

n — 2, prove that the smallest value of ¢ that satisfies the above conditions
is [™*7*!], where [z] denotes the greatest integer less than or equal to
.

(ISR 1) The vertices D, E, F of an equilateral triangle lie on the sides
BC,CA, AB respectively of a triangle ABC'. If a,b, ¢ are the respective
lengths of these sides, and S the area of ABC, prove that

DE > 2v/25 _
Va2 + 02+ +4v/35

(MCD 1)™9%4 For three points A, B, C' in the plane we define m(ABC)
to be the smallest length of the three altitudes of the triangle ABC, where
in the case of A, B, C collinear, m(ABC) = 0. Let A, B, C be given points
in the plane. Prove that for any point X in the plane,

m(ABC) < m(ABX) + m(AXC) + m(XBC).

(MCD 3) Letn € N,n > 2, and Ag = (ao1, a0z, - - -, @on) be any n-tuple
of natural numbers such that 0 < ag; <i—1,fori=1,...,n. The n-tuples
Al = (all, ai, ... ,aln), A2 = (CL21, aA22,y .« .y a2n), ... are defined by

aiy1,; = Card{a;; |1 <1 <j—1,a;1 >a;;}, forieNandj=1,...,n

Prove that there exists k € N, such that Ago = Ayg.

(NET 2)™O96 Let n be an integer greater than 1. In a circular arrange-
ment of n lamps Ly, ..., L,_1, each one of that can be either ON or OFF,
we start with the situation where all lamps are ON, and then carry out
a sequence of steps, Stepo,Stepi,... . If Lj_1 (j is taken mod n) is ON,
then Step; changes the status of L; (it goes from ON to OFF or from
OFF to ON) but does not change the status of any of the other lamps. If
L;_1 is OFF, then Step; does not change anything at all. Show that:

(a) There is a positive integer M (n) such that after M (n) steps all lamps

are ON again.
(b) If n has the form 2*, then all lamps are ON after n? — 1 steps.
(¢) If n has the form 2¥ 4 1, then all lamps are ON after n? —n + 1 steps.

(POL 1) Let S, be the number of sequences (a1, as, ..., a,), where a; €
{0,1}, in which no six consecutive blocks are equal. Prove that S,, — oo
as n — oo.

(ROM 2) Let a,b,n be positive integers, b > 1 and b™ — 1 | a. Show
that the representation of the number a in the base b contains at least n
digits different from zero.
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20. (ROM 3) Let c1,...,¢, € R (n > 2) such that 0 < 3" | ¢; < n. Show
that we can find integers k1, ..., k, such that Z?:l k; = 0 and

l—-n<c¢+nk;<n foreveryi=1,...,n.

21. (GBR 1) A circle S is said to cut a circle X' diametrally if their common
chord is a diameter of 3.
Let Sa,Sp, Sc be three circles with distinct centers A, B, C respectively.
Prove that A, B, C are collinear if and only if there is no unique circle S
that cuts each of Sy4, Sp, Sc diametrally. Prove further that if there exists
more than one circle S that cuts each of Sa, Sp, Sc diametrally, then all
such circles pass through two fixed points. Locate these points in relation
to the circles S4, Sg, Sc.

22. (GBR 2)M92 A B O, D are four points in the plane, with C, D on the
same side of the line AB, such that AC - BD = AD - BC and {ADB =
90° + LACB. Find the ratio

AB-CD
AC - BD’
and prove that circles ACD, BCD are orthogonal. (Intersecting circles

are said to be orthogonal if at either common point their tangents are
perpendicular.)

23. (GBR 3) A finite set of (distinct) positive integers is called a “DS-set”
if each of the integers divides the sum of them all. Prove that every finite
set of positive integers is a subset of some DS-set.

24. (USA 3) Prove that

b d 2
o+ + o C >
b+2+3d " c+2d+3a  d+2a+3b  a+2b+3c" 3

for all positive real numbers a, b, c, d.

25. (VIE 1) Solve the following system of equations, in which a is a given
number satisfying |a| > 1:

x% =axy + 1,
3 = azz + 1,

2 _
$2999 = ax1o000 + 1,
xlOOO == axl + ]..

26. (VIE 2) Let a, b, ¢, d be four nonnegative numbers satisfying a+b+c+d =
1. Prove the inequality

1 1
abc + bed + cda + dab < o7 + 276abcd.

7
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3.35 The Thirty-Fifth IMO
Hong Kong, July 9-22, 1994

3.35.1 Contest Problems

First Day (July 13)

1. Let m and n be positive integers. The set A = {a1,as,...,an,} is a subset
of 1,2,...,n. Whenever a; +a; <n,1<1i<j<m,a; +a; also belongs

to A. Prove that
a1 +ax+---+apm S n+1

m -2
2. N is an arbitrary point on the bisector of ZBAC. P and O are points on
the lines AB and AN, respectively, such that {ANP = 90° = LAPO. @
is an arbitrary point on NP, and an arbitrary line through @ meets the
lines AB and AC at E and F' respectively. Prove that LOQFE = 90° if
and only if QF = QF.

3. For any positive integer k, Ay is the subset of {k+ 1,k +2,...,2k} con-
sisting of all elements whose digits in base 2 contain exactly three 1’s. Let
f(k) denote the number of elements in Ag.

(a) Prove that for any positive integer m, f(k) = m has at least one
solution.

(b) Determine all positive integers m for which f(k) = m has a unique
solution.

Second Day (July 14)

1

4. Determine all pairs (m, n) of positive integers such that n’fbi‘tl is an integer.

5. Let S be the set of real numbers greater than —1. Find all functions
f S8 — S such that

fle+fy) +2f(y) =y+ f@) +yf(z) forallzandyin S,

and f(z)/x is strictly increasing for —1 < z < 0 and for 0 < z.

6. Find a set A of positive integers such that for any infinite set P of prime
numbers, there exist positive integers m € A and n € A, both the product
of the same number (at least two) of distinct elements of P.

3.35.2 Shortlisted Problems

1. A1 (USA) Let ag =1994 and a, 41 = aail_l for each nonnegative integer
n. Prove that 1994 — n is the greatest integer less than or equal to a,,
0 <n <998.
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. A2 (FRA)™O©! Let m and n be positive integers. The set A = {ay,as, ...,

am} is a subset of {1,2,...,n}. Whenever a; +a; <n,1<i<j <m,
a; + a; also belongs to A. Prove that
a1 +as+ -+ am S n+1
m - 2

. A3 (GBR)™O3 Let S be the set of real numbers greater than —1. Find

all functions f : S — S such that

fle+fy)+2f(y) =y+ f(x)+yf(z) forallzandyin S,

and f(z)/x is strictly increasing for —1 < z < 0 and for 0 < z.

. A4 (MON) Let R denote the set of all real numbers and R the subset

of all positive ones. Let a and 3 be given elements in R, not necessarily
distinct. Find all functions f : RT™ — R such that

f@)fly) =y“f (;)—i—xﬁf (g) for all z and y in R™.

. A5 (POL) Let f(z) = ””221'1 for x # 0. Define f()(z) = 2 and ™) (z) =

F(f=V(z)) for all positive integers n and = # 0. Prove that for all
nonnegative integers n and x # —1,0, or 1,

Fm(x) 1

o ((=)7)

f(n-l—l)(x)

. C1 (UKR) On a5 x 5 board, two players alternately mark numbers on

empty cells. The first player always marks 1’s, the second 0’s. One number
is marked per turn, until the board is filled. For each of the nine 3 x 3
squares the sum of the nine numbers on its cells is computed. Denote by
A the maximum of these sums. How large can the first player make A,
regardless of the responses of the second player?

C2 (COL) In a certain city, age is reckoned in terms of real numbers
rather than integers. Every two citizens  and 2’ either know each other
or do not know each other. Moreover, if they do not, then there exists a
chain of citizens x = xg, x1,...,z, = 2’ for some integer n > 2 such that
z;_1 and x; know each other. In a census, all male citizens declare their
ages, and there is at least one male citizen. Each female citizen provides
only the information that her age is the average of the ages of all the
citizens she knows. Prove that this is enough to determine uniquely the
ages of all the female citizens.

. C3 (MCD) Peter has three accounts in a bank, each with an integral

number of dollars. He is only allowed to transfer money from one account
to another so that the amount of money in the latter is doubled.
(a) Prove that Peter can always transfer all his money into two accounts.
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(b) Can Peter always transfer all his money into one account?

. C4 (EST) There are n + 1 fixed positions in a row, labeled 0 to n in

increasing order from right to left. Cards numbered 0 to n are shuffled and
dealt, one in each position. The object of the game is to have card 7 in
the ith position for 0 < ¢ < n. If this has not been achieved, the following
move is executed. Determine the smallest &£ such that the kth position
is occupied by a card I > k. Remove this card, slide all cards from the
(k + 1)st to the Ith position one place to the right, and replace the card I
in the [th position.

(a) Prove that the game lasts at most 2 — 1 moves.

(b) Prove that there exists a unique initial configuration for which the

game lasts exactly 2" — 1 moves.

C5 (SWE) At a round table are 1994 girls, playing a game with a deck
of n cards. Initially, one girl holds all the cards. In each turn, if at least
one girl holds at least two cards, one of these girls must pass a card to
each of her two neighbors. The game ends when and only when each girl
is holding at most one card.

(a) Prove that if n > 1994, then the game cannot end.

(b) Prove that if n < 1994, then the game must end.

C6 (FIN) On an infinite square grid, two players alternately mark sym-
bols on empty cells. The first player always marks X'’s, the second O’s.
One symbol is marked per turn. The first player wins if there are 11 con-
secutive X’s in a row, column, or diagonal. Prove that the second player
can prevent the first from winning.

CT7 (BRA) Prove that for any integer n > 2, there exists a set of 2"~}
points in the plane such that no 3 lie on a line and no 2n are the vertices
of a convex 2n-gon.

G1 (FRA) A semicircle I' is drawn on one side of a straight line I. C
and D are points on I'. The tangents to I" at C' and D meet [ at B and
A respectively, with the center of the semicircle between them. Let E be
the point of intersection of AC and BD, and F' the point on [ such that
EF is perpendicular to [. Prove that EF bisects ZC'FD.

G2 (UKR) ABCD is a quadrilateral with BC parallel to AD. M is the
midpoint of CD, P that of M A and Q that of M B. The lines DP and
CQ meet at N. Prove that NV is not outside triangle ABM.®

G3 (RUS) A circle w is tangent to two parallel lines I; and l5. A second
circle wy is tangent to I3 at A and to w externally at C. A third circle wo
is tangent to Iy at B, to w externally at D, and to w; externally at E. AD
intersects BC' at @. Prove that @ is the circumcenter of triangle CDFE.

8 This problem is false. However, it is true if “not outside ABM? is replaced by

“not outside ABC'D”.
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16. G4 (AUS-ARM)™O2 N is an arbitrary point on the bisector of ZBAC.
P and O are points on the lines AB and AN, respectively, such that
AANP =90° = LAPO. @Q is an arbitrary point on NP, and an arbitrary
line through @ meets the lines AB and AC at E and F respectively. Prove
that LOQFE = 90° if and only if QF = QF.

17. G5 (CYP) A line [ does not meet a circle w with center O. E is the
point on [ such that OF is perpendicular to [. M is any point on [ other
than E. The tangents from M to w touch it at A and B. C is the point on
M A such that EC is perpendicular to M A. D is the point on M B such
that ED is perpendicular to M B. The line CD cuts OF at F. Prove that
the location of F' is independent of that of M.

18. N1 (BUL) M is a subset of {1,2,3,...,15} such that the product of
any three distinct elements of M is not a square. Determine the maximum
number of elements in M.

19. N2 (AUS)™O4 Determine all pairs (m, n) of positive integers such that
11:111—1

20. N3 (FIN)™O6 Find a set A of positive integers such that for any infinite
set P of prime numbers, there exist positive integers m € A and n ¢ A,
both the product of the same number of distinct elements of P.

is an integer.

21. N4 (FRA) For any positive integer xg, three sequences {z,}, {y.}, and
{zn} are defined as follows:
(i) yo=4 and zo = 1;
(ii) if z,, is even for n > 0, Zy41 = By Ynt1 = 2Yn, and zp1 = 2p;
(iii) if 2, is odd for n > 0, Tpy1 = T — %' — 20, Ynt1 = Yn, and 2,41 =
UYn + Zn.
The integer xzq is said to be good if x,, = 0 for some n > 1. Find the
number of good integers less than or equal to 1994.

22. N5 (ROM)™O3 For any positive integer k, Ay, is the subset of {k+1, k+
2,...,2k} consisting of all elements whose digits in base 2 contain exactly
three 1’s. Let f(k) denote the number of elements in Ay.

(a) Prove that for any positive integer m, f(k) = m has at least one
solution.

(b) Determine all positive integers m for which f(k) = m has a unique
solution.

23. N6 (LAT) Let 2; and x5 be relatively prime positive integers. For n > 2,
define 41 = Tprp—1 + 1. _ _
(a) Prove that for every i > 1, there exists j > i such that x} divides .

(b) Is it true that x; must divide x; for some j > 17
24. N7 (GBR) A wobbly number is a positive integer whose digits in base 10

are alternately nonzero and zero, the units digit being nonzero. Determine
all positive integers that do not divide any wobbly number.
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3.36 The Thirty-Sixth IMO
Toronto, Canada, July 13—-25, 1995

3.36.1 Contest Problems

First Day (July 19)

1. Let A, B,C, and D be distinct points on a line, in that order. The circles
with diameters AC' and BD intersect at X and Y. O is an arbitrary point
on the line XY but not on AD. CO intersects the circle with diameter
AC again at M, and BO intersects the other circle again at N. Prove that
the lines AM, DN, and XY are concurrent.

2. Let a, b, and ¢ be positive real numbers such that abc = 1. Prove that

1 1 1 S 3
a3(b+c) * b3(a+c) * Ala+b) — 2
3. Determine all integers n > 3 such that there are n points Aq, Aa, ..., A,
in the plane that satisfy the following two conditions simultaneously:
(a) No three lie on the same line.
(b) There exist real numbers p1, pa, . . ., pn, such that the area of AA;A; Ay
is equal to p; +p;j + pr, for 1 <i < j <k < n.

Second Day (July 20)
4. The positive real numbers xg, 1, . . ., T1995 satisfy zg = 1995 and

2 1
Ti—1 + =2z; +

i—1 T
for i =1,2,...,1995. Find the maximum value that zy can have.

5. Let ABCDEF be a convex hexagon with AB = BC =CD, DE = EF =
FA, and ABCD = {EFA = w/3 (that is, 60°). Let G and H be two
points interior to the hexagon, such that angles AGB and DHE are both
27/3 (that is, 120°). Prove that AG+ GB+ GH + DH + HE > CF.

6. Let p be an odd prime. Find the number of p-element subsets A of
{1,2,...,2p} such that the sum of all elements of A is divisible by p.

3.36.2 Shortlisted Problems

1. A1 (RUS)™O2 et q, b, and ¢ be positive real numbers such that abc = 1.

Prove that
1 1 1 3

> .
ad(b+c) +b3(a+c) i Ala+b) — 2
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2.

3 Problems

A2 (SWE) Let a and b be nonnegative integers such that ab > c?,
where ¢ is an integer. Prove that there is a number n and integers
T1,%2, s Tny Y1, Y2, - - -, Yn sSuch that

Z z? = a, i y?=b, and i TiYi = C.
' i=1 i=1

. A3 (UKR) Let n be an integer, n > 3. Let aq, aq, ..., a, be real numbers

such that 2 < a; < 3fori=1,2,...,n. If s =ay +as + -+ ay, prove
that

2 2 2 2 2 2 2 2 2
ai +a5—a as+a5—a a; +ai—a
1 2 3 2 3 4, n 1 2 <96 _ o

a1+ az —as a2 +az — aq anp + a1 —asg

. A4 (USA) Let a, b, and ¢ be given positive real numbers. Determine all

positive real numbers z, y, and z such that

r+y+z=a+b+c

and
dayz — (a*x + b2y + *2) = abe.

. A5 (UKR) Let R be the set of real numbers. Does there exist a function

f: R — R that simultaneously satisfies the following three conditions?
(a) There is a positive number M such that —M < f(z) < M for all x.

(b) f(1)=1.
(¢) If  #£ 0, then
i(or )=l )

. A6 (JAP) Let n be an integer, n > 3. Let 21,22, .. ., Z,, be real numbers

such that x; < x;41 for 1 <i <n — 1. Prove that

n(n2— 1) inxj > (Z_:(n — z)aa) Z(] —1)z;

i<j i=1 =2

. G1 (BUL)MO! Let A, B,C, and D be distinct points on a line, in that

order. The circles with diameters AC' and BD intersect at X and Y. O
is an arbitrary point on the line XY but not on AD. CO intersects the
circle with diameter AC' again at M, and BO intersects the other circle
again at N. Prove that the lines AM, DN, and XY are concurrent.

. G2 (GER) Let A, B, and C be noncollinear points. Prove that there is

a unique point X in the plane of ABC such that XA? + XB? + AB? =
XB?4+ XC?+ BC? = XC?* + XA? + CA%
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G3 (TUR) The incircle of ABC touches BC, CA, and AB at D, E, and
F respectively. X is a point inside ABC' such that the incircle of X BC
touches BC' at D also, and touches C'X and X B at Y and Z, respectively.
Prove that FFZY is a cyclic quadrilateral.

G4 (UKR) An acute triangle ABC is given. Points A; and A, are taken
on the side BC' (with Ay between A; and C), By and By on the side AC
(with By between By and A), and C7 and C3 on the side AB (with Cy
between C; and B) such that

LAA1 Ay = LAASAy = LBB1By = LBByBy = LCC1Cy = LOCCh.

The lines AA,, BBy, and CC; form a triangle, and the lines AA5, BBs,
and C'Cy form a second triangle. Prove that all six vertices of these two
triangles lie on a single circle.

G5 (NZL)™O5 Let ABCDEF be a convex hexagon with AB = BC =
CD,DE =FEF =FA, and {BCD = L{EFA = 7/3 (that is, 60°). Let G
and H be two points interior to the hexagon such that angles AGB and
DHE are both 27r/3 (that is, 120°). Prove that AG+GB+ GH + DH +
HE > CF.

G6 (USA) Let A1A2A3A4 be a tetrahedron, G its centroid, and
Al AL, AL and A) the points where the circumsphere of A1 A3A3A4, in-
tersects GA1, GAs, GAs, and GAy, respectively. Prove that

GA, - GAy - GAs - GA, < GA) - GA, - GAL - GA,

and

1+1+1+1 1+1+1+1
GA, T GAY, T GAL T GA, T GAL T GAy T GAs | GAy

G7 (LAT) O is a point inside a convex quadrilateral ABCD of area
S. K, L, M, and N are interior points of the sides AB, BC, CD, and
DA respectively. If OKBL and OM DN are parallelograms, prove that
VS > \/S1 + /Ss, where Sy and S are the areas of ONAK and OLCM
respectively.

G8 (COL) Let ABC be a triangle. A circle passing through B and C' in-
tersects the sides AB and AC again at C’ and B’, respectively. Prove that
BB’,CC’, and HH' are concurrent, where H and H’ are the orthocenters
of triangles ABC and AB’C’ respectively.

N1 (ROM) Let k be a positive integer. Prove that there are infinitely
many perfect squares of the form n2* — 7, where n is a positive integer.

N2 (RUS) Let Z denote the set of all integers. Prove that for any integers
A and B, one can find an integer C' for which My = {2?+ Az +B : x € Z}
and Ms = {22% + 2z + C : x € Z} do not intersect.



284

17.

18.

19.

20.

21.

22.

23.

24.

25.

3 Problems

N3 (CZE)™O3 Determine all integers n > 3 such that there are n points

Ay, As, ..., A, in the plane that satisfy the following two conditions si-

multaneously:

(a) No three lie on the same line.

(b) There exist real numbers p1, pa, . . ., pn such that the area of AA;A; Ay
is equal to p; +p; +pr, for 1 <i < j <k < n.

N4 (BUL) Find all positive integers x and y such that x +y?+ 23 = xyz,
where z is the greatest common divisor of x and y.

N5 (IRE) At a meeting of 12k people, each person exchanges greetings
with exactly 3k + 6 others. For any two people, the number who exchange
greetings with both is the same. How many people are at the meeting?

N6 (POL)™O6 Let p be an odd prime. Find the number of p-element
subsets A of {1,2,...,2p} such that the sum of all elements of A is divisible
by p.

N7 (BLR) Does there exist an integer n > 1 that satisfies the following
condition?

The set of positive integers can be partitioned into n nonempty subsets
such that an arbitrary sum of n — 1 integers, one taken from each of any
n — 1 of the subsets, lies in the remaining subset.

N8 (GER) Let p be an odd prime. Determine positive integers = and
y for which z <y and /2p — /z — \/y is nonnegative and as small as
possible.

S1 (UKR) Does there exist a sequence F'(1), F(2), F(3),... of nonneg-
ative integers that simultaneously satisfies the following three conditions?
(a) Each of the integers 0,1,2,... occurs in the sequence.

(b) Each positive integer occurs in the sequence infinitely often.

(c) For any n > 2,

F(F (n'%)) = F(F(n)) + F(F(361)).

S2 (POL)™O4 The positive real numbers g, 1, . .., 1995 satisfy x¢ =
1995 and
2 1
Ti—1 + =2z; +
i—1 Zi
fori=1,2,...,1995. Find the maximum value that xy can have.
S3 (POL) For an integer x > 1, let p(z) be the least prime that does not

divide z, and define g(z) to be the product of all primes less than p(z). In
particular, p(1) = 2. For « such that p(z) = 2, define g(z) = 1. Consider

the sequence xg, 1, z2,... defined by g =1 and
. ivnp(xn)
Tn4+1 =
Q(zn)

for n > 0. Find all n such that z,, = 1995.
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26. S4 (NZL) Suppose that 21,22, z3, ... are positive real numbers for which

3
|
-

<.
Il
o

forn =1,2,3,.... Prove that for all n,

1

1
2 — _1§xn<2—2n.

277,

27. S5 (FIN) For positive integers n, the numbers f(n) are defined induc-
tively as follows: f(1) = 1, and for every positive integer n, f(n+1) is the
greatest integer m such that there is an arithmetic progression of positive
integers a1 < ag < -+ < @y, = n for which

fla1) = f(az) = - = f(am).

Prove that there are positive integers a and b such that f(an+b) =n+2
for every positive integer n.

28. S6 (IND) Let N denote the set of all positive integers. Prove that there
exists a unique function f:N — N satisfying

fm+ f(n)) =n+ f(m+95)

for all m and n in N. What is the value of 3,2, f(k)?
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3 Problems

3.37 The Third-Seventh IMO
Mumbai, India, July 5-17, 1996

3.37.1 Contest Problems

First Day (July 10)

. We are given a positive integer r and a rectangular board ABCD with

dimensions |AB| = 20, |BC| = 12. The rectangle is divided into a grid
of 20 x 12 unit squares. The following moves are permitted on the board:
One can move from one square to another only if the distance between
the centers of the two squares is /7. The task is to find a sequence of
moves leading from the square corresponding to vertex A to the square
corresponding to vertex B.

(a) Show that the task cannot be done if r is divisible by 2 or 3.

(b) Prove that the task is possible when r = 73.

(c) Is there a solution when r = 97?7

. Let P be a point inside AABC such that

LAPB — /C = LAPC — ZB.

Let D, E be the incenters of AAPB, AAPC respectively. Show that AP,
BD, and CFE meet in a point.

. Let Ny denote the set of nonnegative integers. Find all functions f from

Np into itself such that
fm+ f(n)) = f(f(m))+ f(n), Vm,n € No.

Second Day (July 11)

. The positive integers a and b are such that the numbers 15a + 16b and

16a — 15b are both squares of positive integers. What is the least possible
value that can be taken on by the smaller of these two squares?

. Let ABCDEF be a convex hexagon such that AB is parallel to DFE,

BC is parallel to EF', and CD is parallel to AF. Let R4, Rc, Rg be the
circumradii of triangles FAB, BCD, DEF respectively, and let P denote
the perimeter of the hexagon. Prove that

P
Ra+ Rc + Rg > 5"

. Let p,q,n be three positive integers with p + ¢ < n. Let (zg, z1,...,Ty)

be an (n + 1)-tuple of integers satisfying the following conditions:

(i) o =2, =0.

(ii) For each i with 1 <14 <n, either x; — z;—1 =p or z; — 2,1 = —q.
Show that there exists a pair (i, ) of distinct indices with (i,7) # (0,n)
such that z; = x;.
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3.37.2 Shortlisted Problems

1.

A1l (SLO) Let a, b, and ¢ be positive real numbers such that abc = 1.
Prove that

ab n be n ca <1
a’ +b>+ab B3+ S +be A +adtea
When does equality hold?

. A2 (IRE) Let a; > ag > -+ > a, be real numbers such that

af +ak+--+ak >0

for all integers k > 0. Let p = max{|a1],...,|an|}. Prove that p = a; and
that
(x—a1)(x—az) - (z—ap) <z™ —a}

for all x > a;.

. A3 (GRE) Let a > 2 be given, and define recursively

a2
ap=1, a1=a, api1= ( o —2) G-
Ap—1
Show that for all £ € N, we have

111 11
e <2(2+a—\/a2—4).

ap ay ag ag
. A4 (KOR) Let ay,as,...,a, be nonnegative real numbers, not all zero.
(a) Prove that 2™ — a;2" ! — .-+ — a,_12 — a, = 0 has precisely one

positive real root.
n
b) Let A= Y" a;, B= jaj, and let R be the positive real root of
j=14j J
j=1
the equation in part (a). Prove that

A4 < RE.

. A5 (ROM) Let P(z) be the real polynomial function P(z) = az® +

bx? 4 cx 4 d. Prove that if |P(z)| < 1 for all  such that |z| < 1, then

la] + 0] + |e| + |d| < 7.

. A6 (IRE) Let n be an even positive integer. Prove that there exists a

positive integer k such that
k= fx)(z+1)"+g(x)(z" +1)

for some polynomials f(z), g(z) having integer coefficients. If ko denotes
the least such k, determine kg as a function of n.
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11.

3 Problems

A6’ Let n be an even positive integer. Prove that there exists a positive
integer k such that

k= fx)(z+1)"+g(x)(z" +1)

for some polynomials f(z), g(z) having integer coefficients. If ko denotes
the least such k, show that kg = 29, where ¢ is the odd integer determined
by n=¢2",r € N.

A6” Prove that for each positive integer n, there exist polynomials
f(z), g(z) having integer coefficients such that

f@)(z+1)%" +g(2)(@¥ +1)=2.

. A7 (ARM) Let f be a function from the set of real numbers R into

itself such that for all z € R, we have |f(z)| <1 and

f<x+ig>+f(x):f(x+é>+f(x+;).

Prove that f is a periodic function (that is, there exists a nonzero real
number ¢ such that f(z +¢) = f(x) for all z € R).

. A8 (ROM)™O3 et Ny denote the set of nonnegative integers. Find all

functions f from Ny into itself such that

fm+fn)) = f(f(m)) + f(n), Vm,n € No.

. A9 (POL) Let the sequence a(n),n =1,2,3, ..., be generated as follows:

a(l) =0, and for n > 1,

n(n+1)
2

a(n) = a([n/2]) + (=1)

(a) Determine the maximum and minimum value of a(n) over n < 1996
and find all n < 1996 for which these extreme values are attained.
(b) How many terms a(n), n < 1996, are equal to 0?7

G1 (GBR) Let triangle ABC have orthocenter H, and let P be a point
on its circumcircle, distinct from A, B, C. Let E be the foot of the altitude
BH, let PAQB and PARC be parallelograms, and let AQ meet HR in
X. Prove that EX is parallel to AP.

G2 (CAN)™O2 Let P be a point inside AABC such that

(Here [t] = the greatest integer < ¢.)

LAPB — /C = LAPC — /B.

Let D,E be the incenters of AAPB, AAPC respectively. Show that
AP, BD and CFE meet in a point.
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G3 (GBR) Let ABC be an acute-angled triangle with BC > C'A. Let
O be the circumcenter, H its orthocenter, and F the foot of its altitude
CH. Let the perpendicular to OF at I meet the side CA at P. Prove
that /ZFHP = /BAC.

Possible second part: What happens if |BC| < |CA| (the triangle still
being acute-angled)?

G4 (USA) Let AABC be an equilateral triangle and let P be a point

in its interior. Let the lines AP, BP,CP meet the sides BC,CA, AB in
the points Ay, By, C; respectively. Prove that

AlBl ~B101 . ClAl > AlB . BlC . OlA

G5 (ARM)™O5 Let ABCDEF be a convex hexagon such that AB
is parallel to DE, BC is parallel to EF, and CD is parallel to AF.
Let R4, Ro, Rg be the circumradii of triangles FAB, BCD, DEF respec-
tively, and let P denote the perimeter of the hexagon. Prove that

P
Ra+ Rc+ Rg > 9

G6 (ARM) Let the sides of two rectangles be {a,b} and {c,d} with
a < c¢<d<band ab < cd. Prove that the first rectangle can be placed
within the second one if and only if

(b? —a?)? < (bd — ac)* + (bc — ad)?.

GT7 (GBR) Let ABC be an acute-angled triangle with circumcenter O
and circumradius R. Let AO meet the circle BOC again in A’ let BO
meet the circle COA again in B’, and let CO meet the circle AOB again
in C’. Prove that

OA'-OB'-0C" > 8R*.

When does equality hold?

G8 (RUS) Let ABCD be a convex quadrilateral, and let R4, Rp, Rc,
and Rp denote the circumradii of the triangles DAB, ABC, BCD, and
C DA respectively. Prove that R4 + Rc > Rp + Rp if and only if

LA+ ZC > LB+ £D.

G9 (UKR) In the plane are given a point O and a polygon F (not
necessarily convex). Let P denote the perimeter of F, D the sum of the
distances from O to the vertices of F, and H the sum of the distances
from O to the lines containing the sides of F. Prove that

P2

D?—H?>>" .
=4
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3 Problems

N1 (UKR) Four integers are marked on a circle. At each step we si-
multaneously replace each number by the difference between this num-
ber and the next number on the circle, in a given direction (that is, the
numbers a, b, ¢, d are replaced by a — b,b — ¢,c — d,d — a). Is it possible
after 1996 such steps to have numbers a,b, c,d such that the numbers
|bc — ad|, |ac — bd|, |ab — cd| are primes?

N2 (RUS)™O4 The positive integers a and b are such that the numbers
15a 4+ 16b and 16a — 15b are both squares of positive integers. What is
the least possible value that can be taken on by the smaller of these two
squares?

N3 (BUL) A finite sequence of integers ag, ay, . . . , ay, is called quadratic

if for each i € {1,2,...,n} we have the equality |a; — a;_1| = i°.

(a) Prove that for any two integers b and ¢, there exist a natural number
n and a quadratic sequence with ag = b and a,, = c.

(b) Find the smallest natural number n for which there exists a quadratic
sequence with ag = 0 and a,, = 1996.

N4 (BUL) Find all positive integers a and b for which

[z 2]

where as usual, [t] refers to greatest integer that is less than or equal to ¢.

N5 (ROM) Let Ny denote the set of nonnegative integers. Find a bijec-
tive function f from Ny into Ny such that for all m,n € Ny,

fBmn+m+n)=4f(m)f(n)+ f(m) + f(n).

C1 (FIN)™O©! We are given a positive integer 7 and a rectangular board
ABCD with dimensions |AB| = 20, |BC| = 12. The rectangle is divided
into a grid of 20 x 12 unit squares. The following moves are permitted on
the board: One can move from one square to another only if the distance
between the centers of the two squares is /7. The task is to find a sequence
of moves leading from the square corresponding to vertex A to the square
corresponding to vertex B.

(a) Show that the task cannot be done if r is divisible by 2 or 3.

(b) Prove that the task is possible when r = 73.

(c) Is there a solution when r = 977

C2 (UKR) An (n—1) x (n — 1) square is divided into (n — 1)? unit
squares in the usual manner. Each of the n? vertices of these squares is to
be colored red or blue. Find the number of different colorings such that
each unit square has exactly two red vertices. (T'wo coloring schemes are
regarded as different if at least one vertex is colored differently in the two
schemes.)
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C3 (USA) Let k,m,n be integers such that 1 < n < m—1 < k.
Determine the maximum size of a subset S of the set {1,2,3,...,k} such
that no n distinct elements of S add up to m.

C4 (FIN) Determine whether or not there exist two disjoint infinite sets

A and B of points in the plane satisfying the following conditions:

(i) No three points in AU B are collinear, and the distance between any
two points in AU B is at least 1.

(ii) There is a point of A in any triangle whose vertices are in B8, and there
is a point of B in any triangle whose vertices are in A.

C5 (FRA)™O6 Let p g,n be three positive integers with p + ¢ < n.
Let (xo,1,...,2,) be an (n+ 1)-tuple of integers satisfying the following
conditions:

(i) o =z, =0.

(ii) For each i with 1 < ¢ < n, either z; —x;—1y =p or z; — x;—1 = —q.
Show that there exists a pair (4, ) of distinct indices with (4, 7) # (0,n)
such that z; = x;.

C6 (CAN) A finite number of beans are placed on an infinite row of
squares. A sequence of moves is performed as follows: At each stage a
square containing more than one bean is chosen. Two beans are taken
from this square; one of them is placed on the square immediately to the
left, and the other is placed on the square immediately to the right of the
chosen square. The sequence terminates if at some point there is at most
one bean on each square. Given some initial configuration, show that any
legal sequence of moves will terminate after the same number of steps and
with the same final configuration.

C7 (IRE) Let U be a finite set and let f, g be bijective functions from
U onto itself. Let

S={welU: f(fw) =g(gw))}, T={welU:flgw)) =g(f(w)}

and suppose that U = SUT. Prove that for w € U, f(w) € S if and only
it g(w) € S.
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3 Problems

3.38 The Thirty-Eighth IMO
Mar del Plata, Argentina, July 18-31, 1997

3.38.1 Contest Problems

First Day (July 24)

. An infinite square grid is colored in the chessboard pattern. For any pair

of positive integers m,n consider a right-angled triangle whose vertices
are grid points and whose legs, of lengths m and n, run along the lines of
the grid. Let Sy be the total area of the black part of the triangle and S,
the total area of its white part. Define the function f(m,n) = |Sp — Sy|.
(a) Calculate f(m,n) for all m,n that have the same parity.

(b) Prove that f(m,n) < j max(m,n).

(¢) Show that f(m,n) is not bounded from above.

. In triangle ABC the angle at A is the smallest. A line through A meets the

circumcircle again at the point U lying on the arc BC opposite to A. The
perpendicular bisectors of C A and AB meet AU at V and W, respectively,
and the lines C'V, BW meet at T'. Show that AU =TB +TC.

. Let x1,xo,...,z, be real numbers satisfying the conditions

1
|z1 + 224+~ +2,] =1 and |xl|§n—2’— for i=1,2,...,n.

Show that there exists a permutation 1, ..., y, of the sequence z1,...,z,

such that
n+1

ly1 + 2y2 + - + nyp| < 5

Second Day (July 25)

. An n X n matrix with entries from {1,2,...,2n — 1} is called a silver

matriz if for each ¢ the union of the ith row and the ith column contains
2n — 1 distinct entries. Show that:

(a) There exist no silver matrices for n = 1997.

(b) Silver matrices exist for infinitely many values of n.

. Find all pairs of integers x,y > 1 satisfying the equation v = yo.

. For a positive integer n, let f(n) denote the number of ways to represent

n as the sum of powers of 2 with nonnegative integer exponents. Rep-
resentations that differ only in the ordering in their summands are not
considered to be distinct. (For instance, f(4) = 4 because the number 4
can be represented in the following four ways: 4; 2+2; 2+1+1; 14+1+1+1.)
Prove that the inequality

277,2/4 <f(2n) <2n2/2

holds for any integer n > 3.
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3.38.2 Shortlisted Problems

1. (BLR)™O! Ay infinite square grid is colored in the chessboard pattern.
For any pair of positive integers m,n consider a right-angled triangle
whose vertices are grid points and whose legs, of lengths m and n, run
along the lines of the grid. Let S, be the total area of the black part of
the triangle and S,, the total area of its white part. Define the function
f(m,n) =[Sy — Su|.

(a) Calculate f(m,n) for all m,n that have the same parity.
(b) Prove that f(m,n) < ) max(m,n).
(¢) Show that f(m,n) is not bounded from above.

2. (CAN) Let Ry, Ry, ... be the family of finite sequences of positive inte-
gers defined by the following rules: Ry = (1), and if R,,—1 = (z1, ..., ),
then

R,=(1,2,...,21,1,2,...,2a,...,1,2, ..., 25,n).

For example, Ry = (1,2),Rs = (1,1,2,3), Ry = (1,1,1,2,1,2,3,4).
Prove that if n > 1, then the kth term from the left in R, is equal to 1 if
and only if the kth term from the right in R,, is different from 1.

3. (GER) For each finite set U of nonzero vectors in the plane we define
I(U) to be the length of the vector that is the sum of all vectors in U.
Given a finite set V' of nonzero vectors in the plane, a subset B of V is said
to be maximal if [(B) is greater than or equal to [(A) for each nonempty
subset A of V.

(a) Construct sets of 4 and 5 vectors that have 8 and 10 maximal subsets
respectively.

(b) Show that for any set V' consisting of n > 1 vectors, the number of
maximal subsets is less than or equal to 2n.

4. (IRN)™O% An p x n matrix with entries from {1,2,...,2n — 1} is called
a coveralls matriz if for each ¢ the union of the ith row and the ith column
contains 2n — 1 distinct entries. Show that:

(a) There exist no coveralls matrices for n = 1997.
(b) Coveralls matrices exist for infinitely many values of n.

5. (ROM) Let ABCD be a regular tetrahedron and M, N distinct points
in the planes ABC and ADC respectively. Show that the segments
MN, BN, MD are the sides of a triangle.

6. (IRE) (a) Let n be a positive integer. Prove that there exist distinct
positive integers x, ¥y, z such that

xn—l 4 yn _ Zn-ﬁ-l.

(b) Let a,b, c be positive integers such that a and b are relatively prime
and c is relatively prime either to a or to b. Prove that there exist
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10.

11.

12.

3 Problems

infinitely many triples (z,y, z) of distinct positive integers z, y, z such
that
%+ y° = 2°.

Original formulation: Let a, b, c,n be positive integers such that n is odd
and ac is relatively prime to 2b. Prove that there exist distinct positive
integers x,y, z such that
(i) % +y* = z¢, and
(ii) zyz is relatively prime to n.

. (RUS) Let ABCDEF be a convex hexagon such that AB = BC, CD =

DE, EF = FA. Prove that
BC DE FA _3
+ + > -
BE DA FC — 2

When does equality occur?

. (GBR)™O2 Four different points A, B, C, D are chosen on a circle I" such

that the triangle BCD is not right-angled. Prove that:

(a) The perpendicular bisectors of AB and AC meet the line AD at cer-
tain points W and V, respectively, and that the lines C'V and BW
meet at a certain point 7.

(b) The length of one of the line segments AD, BT, and CT is the sum
of the lengths of the other two.

Original formulation. In triangle ABC' the angle at A is the smallest. A

line through A meets the circumcircle again at the point U lying on the

arc BC' opposite to A. The perpendicular bisectors of CA and AB meet

AU at V and W, respectively, and the lines CV, BW meet at T. Show

that AU =TB+TC.

. (USA) Let A;A2As be a nonisosceles triangle with incenter I. Let C;,

i =1,2,3, be the smaller circle through I tangent to A;A;+1 and A;A;49
(the addition of indices being mod 3). Let B;, ¢ = 1,2,3, be the second
point of intersection of C;y; and Cjte. Prove that the circumcenters of
the triangles Ay B11, Ay Bol, A3 B3l are collinear.

(CZE) Find all positive integers k for which the following statement is
true:
If F(z) is a polynomial with integer coefficients satisfying the condition

0< F(c)<k foreachce{0,1,...,k+1},
then F(0)=F(1)=---=F(k+1).

(NET) Let P(z) be a polynomial with real coefficients such that P(x) >
0 for all z > 0. Prove that there exists a positive integer n such that
(1+ z)"P(x) is a polynomial with nonnegative coefficients.

(ITA) Let p be a prime number and let f(x) be a polynomial of degree
d with integer coefficients such that:
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(i) f(0)=0, f(1) =1
(i) for every positive integer n, the remainder of the division of f(n) by
p is either 0 or 1.

Prove that d > p — 1.

(IND) Intown A, there are n girls and n boys, and each girl knows each
boy. In town B, there are n girls g1, 92, ..., 9, and 2n — 1 boys by, ba, . . .,
ban—1. The girl g;, = 1,2,...,n, knows the boys b1, bs,...,b2;_1, and no
others. For allr = 1,2,...,n, denote by A(r), B(r) the number of different
ways in which r girls from town A, respectively town B, can dance with r
boys from their own town, forming r pairs, each girl with a boy she knows.
Prove that A(r) = B(r) for each r =1,2,...,n.

(IND) Let b,m,n be positive integers such that b > 1 and m # n. Prove
that if ™ — 1 and b™ — 1 have the same prime divisors, then b+ 1 is a
power of 2.

(RUS) An infinite arithmetic progression whose terms are positive in-
tegers contains the square of an integer and the cube of an integer. Show
that it contains the sixth power of an integer.

(BLR) In an acute-angled triangle ABC, let AD, BE be altitudes and
AP, BQ internal bisectors. Denote by I and O the incenter and the cir-
cumcenter of the triangle, respectively. Prove that the points D, E, and
I are collinear if and only if the points P, @), and O are collinear.

(CZE)™O5 Find all pairs of integers x,y > 1 satisfying the equation
Y = y*.

(GBR) The altitudes through the vertices A, B,C of an acute-angled
triangle ABC meet the opposite sides at D, E, F', respecti