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A. Niherungsrechnung

1. Ermittlung von Niherungswerten

In den Naturwissenschaften und in der Technik haben wir es bei Berechnungen
hiufig mit GréBen zu tun, die zahlenméBig nur durch Naherungswerte angegeben
werden koénnen. Dafiir wollen wir einige Beispiele angeben:

1. Irmtlona,le Zahlen (7, }’2 u.a.) — Theoretisch kann man sie zwar auf beliebig viele
len genau ben. Beim praktischen Rechnen ist man jedoch auf Nahe-
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rungswerte angewiesen.

2. Gemessene GroBen (Lingen, Musen, Krifte u.a.) — Eine Messung ist immer mehr

oder igy Zum Beispiel wird der Durchmesser einer Kugel mit der
Mikrometerschraube genauer bestimmt als mit der Schieblehre. AuBerdem wirken
Einfliisse auf das Ergebnis der M g, auf die spiiter eingegangen wird.

3. MafBe von Einzel- und Fertigteilen in der Produktion (Abmessungen von Nieten,
Schrauben, Kapazitit von Kondensatoren u.a.) — In der Produktion sind fast
immer Werte fiir die MaBe festgelegt (Sollwerte), von denen das Einzelstiick mehr
oder weniger abweicht. Der Betrag, um den das Einzelstiick vom Sollwert héch-
stens abweichen darf, heit Toleranz.

Man sagt, derartige Niaherungswerte enthalten einen Fehler. Werden solche mit
Fehlern behaftete Werte als Ausgangswerte in Berechnungen verwendet, so sind
auch die Ergebnisse mit Fehlern behaftet. Das Teilgebiet der Mathematik, in dem
die Auswirkungen dieser Fehler auf Rechenergebnisse untersucht werden, heifit
Niherungsrechnung. Mit ihr werden wir uns in den folgenden Kapiteln beschiiftigen.

1. Grundlegende Begriffe

Zuniichst wollen wir einige grundlegende Begriffe definieren, die wir in den folgen-
den Abschnitten benstigen. ,

Die zu messende GroBe, z.B. eine Kraft, eine Linge, eine Zeit, bezeichnen wir als
MeBgroe.

Der Gegenstand, an dem die Messung ausgefiihrt wird, heiBt MeBgegenstand oder
MeBobjekt. Den Wert, den die M g ergibt, bezeich wir a]s MeBwert. Hiufig
stellt der MeBwert — z.B. bei einer Ling — gleich g das MoBergebnis
dar. In anderen Fillen wird aus einem oder mehreren MeBwerten erst das MeBergebms
1+




4 Ermittlung von Naherungswerten

berechnet. So errechnet man aus der gemessenen Wellenlinge die Frequenz, aus
Gewicht und Volumen eines MeBobjektes die Wichte.

Die einzelnen Mefwerte sind aus verschiedenen Griinden mehr oder weniger un-
genau. Abweichungen vom wahren (genauen) Wert der MeBgrofe kénnen z. B. durch
Umwelteinfliisse. wie Anderungen der Temperatur, der Luftfeuchtigkeit und des
Luftdruckes, auftreten. Solche Abweichungen haben ein bestimmtes Vorzeichen und
eine bestimmte GroBe. Sie lassen'sich ausschalten oder mathematisch erfassen und
korrigieren. Wir nennen sie systematische Fehler.

Wird eine Messung mehrmals durchgef\‘ihllt, so stellt man fest, dal die einzelnen
MeBwerte auch nach Ausschaltung der systematischen Fehler und trotz sorgfiltig-
sten Vorgehens noch immer voneinander abweichen. Diese Abweichungen kénnen
ihre Ursache in Schwankungen der personlichen Auffassung des Beobachters — z.B.
beim Ablesen der MaBzahl und Schiitzen der letzten Stelle — im toten Gang des
MeBgeriites u.dgl. haben. Sie schwanken bei wiederholter Messung nach Gré8e und
Vorzeichen. Da sie zufilliger Natur sind, nennen wir diese Abweichungen zufillige
Fehler. Um etwas iiber ihren EinfluB auf den MeBwert bzw. das MeBergebnis aus-
sagen zu kénnen, muB man die betreffende GroBe mehrmals messen. Zu diesem
Zweck legt man die MeBreihen an. ' '

2. Der Fehler eines Niherungswertes

Den Fehler eines Niherungswertes — hiufig absoluter Fehler genannt — erhalten
wir, indem wir vom Niherungswert i den genauen Wert z *subtrahieren. Es ist
Ax= §— x. Der Fehler ist also positiv, wenn der Naherungswert groBer ist als der
genaue Wert, und negativ, wenn der Niherungswert kleiner ist als der genaue Wert.

Beispiel 1:
Wiihlen wir fiir § zur Vereinfachung einer Rechnung an Stelle des genauen Wertes
2 = 0,375 den Niherungswert = 0,4, dann betriigt der Fehler

d4z=04—0,375=+0,025.
Beispiel 2:
Der Fehler 4z betrigt fiir # ~ 3,14

Az =314 — 3,14159...=—0,00159 ...

Als relativen Fehler eines Niaherungswertes bezeichnen wir das Verhiltnis seines
Fehlers zu seinem genauen Wert. Der relative Fehler 4 ist also

Adx
6=?. (1)

Ist der Fehler klein im Vergleich zum genauen Wert  bzw. zu dessen Niherungs-
wert %, so kénnen wir an Stelle des genanen Wertes den Niaherungswert setzen. Es
gilt dann

6=

. 1)

sl
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Beispiel 3:
Der relative Fehler fiir § ~ 0,4 betriigt nach (1)

+ 0,025

s = o5 = + 0068
Nach (1) erhalten wir
4T H0 = o062,
Beispiel 4:
Fiir @ =~ 3,14 erhalten wir als relativen Fehler
I

In der Praxis gibt man hiufig den relativen Fehler in Prozenten an und nennt ihn
dann den prozentualen Fehler.

Er ist
8% =2 .100%. @)

Beispiel 5:
Fiir Beispiel 4 ergibt sich der prozentuale Fehler zu

8% = —0,05%,.

Wir miissen noch beachten, daB die Angabe des relativen Fehlers nicht immer
sinnvoll ist. Das ist vor allem dann der Fall, wenn der MeBbereich einen willkiirlich
festgelegten Nullpunkt enthiilt. Haben wir z.B. die Temperatur t =1°C mit einem
Fehler von 0,5° gemessen, so erhalten wir nach der Celsiusskala den relativen

Fehler zu %1009 = 50%, 2732 -100%, = 0,18%. Die
Ursache ist darin zu sehen, daB 0°C keinen eigentlichen Nullpun.kt darstellt, sondern
nur ein Fixpunkt der Temperaturskala ist, den man willkiirlich mit 0° bezeich-

net hat. Der eigentliche Nullpunkt liegt bei — 273,2°C = 0°K. Der relative Fehler
betriigt deshalb 0,189,.

3. Das Ergebnis einer MeBreihe

Da wir wissen, da8l jeder MeBwert mit Ungenauigkeiten behaftet ist, verlassen wir
uns grundsitzlich nicht auf eine Messung, sondern wir bestimmen eine MeBgri8e
durch eine Reihe einzelner Messungen, die unter moglichst gleichen Voraussetzungen
vorgenommen werden. Die Anzahl der Einzelmessungen hiingt davon ab, wie genau
das MeBinstrument arbeitet und welche Genauigkeit das MeBergebnis haben soll.
Je groBer die Anzahl der Einzelmessungen ist, desto genauer wird das Ergebnis.

Aus den einzelnen Mefwerten einer Meireihe bestimmen wir das Ergebnis aller
Messungen.
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Wir setzen voraus, daB kein MeBwert einen systematischen Fehler enthilt.!) Dann
sind die MeBwerte nur noch mit zufilligen Fehlern behaftet und haben alle gleiche
Bedeutung fiir das Ergebms der Messu.ngen Unber dieser Voraussetzung liBt sich

mit Hilfe der Wahrsch daB es slnnvo]] 1st das arith-
metische Mittel aller MeBwerte als Erg is der Einzel Den
auf diese Weise ermittelten Wert ko, wir als einen besseren Wert fiir die wirk-

liche GroBe des MeBobjektes ansehen als den durch eine Messung bestimmten
Wert. Da wir den genauen Wert der MeBgroBe nicht kennen, wollen wir das arith-
metische Mittel als den ,richtigen’ Wert bezeich

Sind z,, z,, . . . z, die einzelnen MeBwerte, so ist das arithmetische Mittel z ge-
geben durch - 1
T=— (B + T+ 0+ Tp) 3)
oder unter Verwendung des S ichens durch
- 13
==z 3
SESE @

Die Festsetzung, daB wir Z als den ,richtigen Wert bezeichnen, darf uns nicht
dariiber hinwegtiuschen, daB das arithmetische Mittel nur einNaherungswert ist.
Hitten wir ndmlich statt » Messungen (n + 1) Messungen durchgefiihrt und wire
dabei z,,, & Z, so hitten wir ein Z* erhalten, das sicher von z abweicht. Unser
Wert & enthiilt also noch einen Fehler.

Die unmittelbare Anwendung der Formel (3) fiihrt, vor allem wenn die Zahl der
Messungen gro88 wird, zu grofien Zahlen. Wir vereinfachen die Rechnung, indem wir
von einem angensherten Mittelwert Z,, der abgeschiitzt wird, die Abweichungen be-
stimmen und mit dem Mittelwert der Abweich das arithmetische Mittel Z be-
rechnen. Dabei wihlen wir 7, so, daB sich mogllchst -einfache Zahlen ergeben. Es ist
dann

E=2+ (@ = 2) + (@2 — &) + -+ (2 = 2]
oder

T=2,+ — 2 (2 — Tg). 4
Die Berechnung fiithren wir stets in einem Rechenschema durch.
Beispiel 1:

Mit einer FeinmeBschraube (Trommelteilung ;3; mm) wird der Durchmesser eines
Werkstiickes siebenmal gemessen.

Messung Nr. I 1 2 3 4 5 (] 7

MeBgréBe in mm I 12,357 | 12,348 | 12,363 | 12,34} | 12,360 | 12,352 | 12,368

L

!) Wenn in einer MeBreihe die meisten MeBwerte eng beisammenliegen, einzelne aber weit ab-
streuen, ist die Vermutung begriindet, daB die abstreuenden MeBwerte nicht erkannte systema-
tische Fehler oder auch Ablesefehler enthalten. Solche Werte werden aus der MeBreihe als un-
brauchbar ausgeschieden.
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Es ist der Mittelwert zu bestimmen.

Messung MeBwert z ﬁ?&iﬁk::?r @ — %)
Nr. in mm inmm ° inpu
1 12,357 + 7
2 12,348 —2
3 12,363 . + 13
4 12,341 12,350 —9
5 12,360 + 10
6 12,352 T2
1 12,368 + 18
Summe +50 —11
= +39
o [1pamg o 1 39
a:—(12,350 Fr  oop) M

Z = 12,3556 mm.

a s oh,

In manchen Fillen lassen sich systematische Fehler folg Ben ausgl :
Man fithrt die Measungen 80 durch, daB einzelne systematlsche Fehler in ]ewells zwei

M gen untereinander verschiedene Vorzeichen haben. Z gehorende Mes-
sungen faﬂt man zu einem Satz zusammen; mehrere Sitze ergeben eine MeBreihe.
Zum Beispiel entsteh tematische Fehler bei kae].messungen mit dem Theo-

doliten dadurch daB der Drehpunkt nicht genan im Zentrum der Kreisteilung liegt.
Dieser systematische Fehler wird ausgeglichen, indem jeder Winkel zweimal gemes-
sen wird, wobei das Fernrohr fiir die zweite Messung um 180° gedreht und um-
geschlagen wird.

Beispiel 2:

Bei einem Streckenzug von P, nach P, werden in zwei Siitzen zu je drei Messungen
mit Theodolit und MeBlatte von P, aus die Lingen 235,73 m, 235,69 m, 235,76 m,
und von P, aus die Lingen 235,68 m, 235,75 m, 235,71 m gemessen.

Der Mittelwert, das arithmetische Mittel, ist dann

l= ;— (235,73 + 235,69 + 235,76 + 235,68 + 235,75 + 235,71) m
= 235,72 m.

Anders geartete Beispiele fiir das Anlegen von MeBsitzen finden wir in den
Aufgaben 6 und 7.

4. Beurteilung der Zuverlissigkeit eines Mittelwertes

Die Angabe der MeigroBe nur durch den Mittelwert wiirde eine Genauigkeit vor-
tiuschen, die nicht vorhanden ist. Wir haben zwar den Mittelwert als den ,,richtigen*
Wert bezeichnet; er ist aber aus einzelnen MeBwerten ermittelt, die alle mit zufal-
ligen Fehlern behaftet sind. Seine Genauigkeit hiingt von der Zuverlissigkeit der
einzelnen MeBwerte ab.
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Als MaB fiir die Zuverl_x"a',ssigkeit der MeBwerte bestimmen wir das arithmetische
Mittel Az') aus den Absolutbetrigen ihrer Abweichungen vom Mittelwert. Es ist

48 = 5 (|2 — 3| + | = F| + ooe + |2a— 3)) %)

oder, unter Verwendung des Summenzeichens,
~ 13 - ,
Az-_-_,;‘gllz,-_zl. (5)

Wir bezeichnen A% als die durchsehnittliche Abweichung einer Einzelmessung. Sie
ist stets eine nicht negative GroBe und gibt den Betrag an, um den die einzelnen
MeBwerte im Durchschnitt vom Mittelwert abweichen.

Beispiel 1:
Fiir Beispiel 2 des vorigen Abschnittes erhalten wir
A% = 4 (0,01 + 0,03+ 004+ 0,04+ 003+ 0,01)m
= 5-016m ~0027m.

Der Mittelwert hat eine Eigenschaft, die wir als Rechenkontrolle bei der Ermitt-
lung der durchschnittlichen Abweichung benutzen wollen. Bilden wir die Summe
der Abweichungen der Mewerte vom Mittelwert, so erhalten wir

@ — &)+ @— &)+ -+ (@y— )= (¥, + 2+ -+ 2,)—n &

=@+ ot Tp)— (@B Tt
=0.
Das bedeutet, daB8 die Summe der positiven Abweichungen dem Betrag nach stets
gleich der Summe der negativen Abweichungen ist.

Beispiel 2:

Wir berechnen die durchschnittliche Abweichung in Beispiel 1 des vorigen Ab-
schnittes. Es ist vorteilhaft, die Rechnung in Tabellenform durchzufiihren:

Mittelwert. & MeBwert z; Ary = (x,— 3) |
in mm *in mm in u !
12,3570 + 14 |
' 12,3480 - 16
| 12,3630 + 74
12,3556 12,3410 — 14,6
| 12,3600 + 44 |
i 12,3520 — 38 |
| 12,3680 + 12,4 '
l + 25,6 — 25,8
| =—02

1) Sprich: delta z geschlangt.
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Die Summe der 4z, muB Null sein. Da wir jedoch bei der Bildung des Mittelwertes &
gerundet haben, summieren sich die Rundungsfehler, die in die Abweichungen 4z,

n
eingehen, so daB wir 34z, = —0,2 erhalten. Diese Ungenauigkeit bedeutet nicht,
=1
daB wir einen Rechenfehler begangen haben.
Die durchschnittliche Abweichung erhalten wir zu

A= (1+256]+|—258])u="T3u.

Die relative Abweichung einer Einzel g berechnen wir entsprechend (1)
nach der Formel ¢ = %
Beispiel 3:
Die relative Abweichung einer Einzel g im 2. Beispiel des vorigen Abschnit-
tes betrigt
a4z 0,0073 mm
z =l2,3558mm~0’ 9.
Aufgaben
1. Mit einer Schieblehre wird ein Werksti ick fiilnfmal gy Dabei ergeben sich die folgend
MeBwerte: 150,73 mm; 150,84 mm; 150,75 mm; loOM mm; 150,78 mm.
Es sind der M.lttel\nert, und die durchschnittliche Abweichung zu b
2. Ein Winkel wird bei einer Ver g durch sechs N besti Es ergeben sich die
folgenden Werte: 77° 48’ 43", 77° 49’ 08" 77° 49° 00°, 77° 49’ 38", 77° 48’ 32", T7° 49’ 54".
Es sind der Mittelwert und die durchschnittliche Abweict zu besti

3. Eine Strecke wird mit einem MeBband dreimal gemessen. Dabei werden die folgenden Lingen
festgestellt: 15,87 m; 15,72 m; 15,94 m. Die mittlere Lange und die durchschnittliche Ab-
ichung sind zu b

4. Die relativen Abweichungen der Einzel gen sind zu b
a) in Aufgabe I,  b) in Aufgebe 2,  ¢) in Aufgabe 3.

5. Eine gerade Eisenbahnschiene mit einer Sollinge von 32 m wird mit MeBlatten und einem
GliedermaBstab fiinfmal gemessen. Es ergeben sich dabei die folgenden MeBwerte: 31,93 m;
32,15 m; 32,07 m; 31,98 m; 31,91 m.

Der Mittelwert, die durchschnittliche und die relative Abweichung der Einzel gen sowie
die relative Abweichung des Mittelwertes von der Sollinge sind zu bestimmen.

6. Ein volkseig Betrieb gewihrlei fur Priifi hi zur Unt hung von Stahl,
Eisen und anderen Metallen auf Festigkeit die folgende G igkei
1. im ersten Zehntel des MeBbereiches auf 1 Teilungsintervall,

2. dariiber auf 19, des Sollwertes.
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Fiir jede Priifmaschine wird vom Werkabnehmer ein Abnahmeprotokoll iiber die Anzeige-
8 igkeit mit 30 Messungen in Satzen zu je drei Messungen angefertigt. Einem solchen
Protokoll sind die folgenden Werte ent; :

Istwert l Istwert | Istwert . A}waeichung o
Sollwert 2kp als Einheit Mi t desx_s Sollwevr';s in %
245,7 246 246 245 246,3 — 0,16
478,3 479 479 479 479,0 +0,15
7168,7 717 718 718
958. 959 958 958
1192,7 1192 1193 1193
1435 1439 1438 1439
1670 1670 1670 1671
1910 1910 1910 1910
2152 2153 2152 2154
2387 2390 2390 2390

Berechnen Sie
a) die fehlenden Mittelwerte,
b) die relativen Abweichungen der Mittelwerte vom zugehérigen Sollwert auf 2 Dezimalen

genau,
o) die relati Abweich der Einzel ngen in den einzelnen Satzen!
7. Ein anderes Abnahmeprotokoll enthélt die folgenden Werte:
Istwert Istwert Istwert Abweichunyg
Sollwert : . Mittelwert des Mittelwertes in 9
8 kp als Einheit des Sollwertes °
479 479 479 479
958,7 959 958 959
1443,3 1443 1444 1444
1931,7 1937 1936 1936
2421 2423 2423 2423
2902 2907 2909 2908
3392 3395 3394 3396
3878 3880 3880 3880
4380 4380 4380 4380
4850 4858 4858 4859

Berechnen Sie

a) die Mittelwerte in den einzclnen Zeilen,

b) die relativen Abweichungen der Mittelwerte vom zugehérigen Sollwert auf 2 Dezimalen
genau,

¢) die relativen Abweich der Einzel gen in den einzelnen Satzen!

8. Die Dichte einer Fliissigkeit wurde zehnmal nach der gleichen Methode besti Es ergab
sich die folgenden Werte:
0,9345 g/cm?3; 0,9348 g/cm?; 0,9352 g/cm?; 0,9347 g/cm®; 0,9350 g/cm?;
0,9347 g/em3; 0,9348 g/cm?; 0,9348 g/cm?; 0,9348 g/cm?; 0,9346 g/cm®.
Bestimmen Sie den Mittelwert und die durchschnittliche Abweichung!
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I1. Das Rechnen mit Niherungswerten

5. Rundungsregeln und Kennzeichnung letzter Stellen

In der praktischen Mathematik wird, da MeBwerte stets Fehler aufweisen, immer
nur mit so viel geltenden Ziffern wie notwendig gerechnet. Dazu ist erforderlich. da8
die Genauigkeit des MeBwertes in irgendeiner Weise gekennzeichnet wird und daf
entbehrliche Stellen unter Beriicksichtigung der Rundungsregeln fortgelassen werden.

Die Rundungs- und Kiirzungsregeln von Zahlen enthilt das Normblatt DIN 1333.
Sie gelten fiir alle Zweige der Wissenschaft und Technik, nicht aber fiir das Geld-
wesen.

a) Rundungsregeln

Die Rundungsregeln beziehen sich auf Zahlen, die in dezimaler Form gegeben sind
und die an einer bestimmten Stelle abgebrochen werden sollen.

Abrunden heit, daB die letzte Stelle, die noch angegeben werden soll, unverin-
dert bleibt. Es wird abgerundet, wenn eine 0, 1, 2, 3 oder 4 folgt.

Beispiel: 8,2134 ~ 8,213 ~ 8,21 ~ 82 ~ 8.

Aufrunden heiBit, daB die letzte Stelle, die noch angegeben werden soll, um 1 er-
héht wird. Es wird aufgerundet, wenn eine 6, 7, 8 oder 9 folgt.

Beispiel: 34579 ~ 3,458 ~'3,46 ~ 3,5.

Sonderregeln fiir 5: Ist bekannt, daB eine 5 durch Abrundung entstanden ist, so
wird aufgerundet; ist sie aber durch Aufrunden entstanden, so wird abgerundet.

Beispiele: 6,1852 ~ 6,185 und weiter ~6,19;

ein Strich unter der letzten Ziffer ist das Kennzeichen fiir Aufrunden.
6,3146 ~ 6,315 und weiter ~6,3i;
ein Punkt iiber der letzten Ziffer ist das Kennzeichen fiir Abrunden.

Folgt auf die letzte Stelle, die noch angegeben werden soll, eine 5, so wird auf-
gerundet, wenn nach dieser 5 noch weitere von Null verschiedene Stellen folgen.

Beispiele: 314159 ~ 3,142,
4,25003 ~ 4.3.

Folgt auf die letzte Stelle, die noch angegeben werden soll, cine genaue 5 oder
eine 5 unbekannter Herkunft, so wird so gerundet, daB die letzte Stelle zu einer ge-
raden Zahl wird (Gerade-Zahl-Regel).

Beispiele: 1y = 0,0625 ~ 0,062,
15
B _37~38.

Anmerkung: Die ,,Gerade-Zahl-Regel*“ hat den Vorteil, daB man bei einer groBe-
ren Menge von Zahl ihernd ebensooft abrundet wie aufrundet.
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b) Kennzeichnung genauer letzter Stellen

Soll im Druck angegeben werden, da8 die letzte Stelle genau oder durch Ver-
einbarung festgelegt ist, so kann dies durch Fettdruck ausgedriickt werden.

Beispiel: 3 = 0,375
1 Technische Atmosphiire = 0,980665 Bar.

¢) Kennzeichnung unsicherer letzter Stellen

In der Fertigungsindustrie ist es notwendig, auBer den Sollwerten noch MaBzahlen
anzugeben, die vorschreiben, um wieviel das Werkstiick in seiner Abmessung vom
Sollwert abweichen darf. Man spricht von Toleranzen (Unsicherheiten) der Abmes-
sungen eines Werkstiickes. Folgende Schreibweisen sind,zulissig:

3,726 mm + 0,018 mm = 3,726 mm +18 u
= (3,726 + 0,018) mm = 3,726 mm - (1 4 0,005).

Auch bei Werten, die aus MeBwerten erhalten wurden, werden oft Grenzen an-
gegeben, innerhalb derer der wahre Wert liegt. Ist Z der Mittelwert einer MeBreihe,
so gibt man die MeBgroBe mit = Z 4+ AZ an. Diese Schreibweise bedeutet, da3
der wahre Wert der MeBgroBe zwischen £ — A% und Z+ Az liegt. Man nennt Az
die Unsicherheit des, MeBergebnisses.

Beispiel :
Die Lichtgeschwindigkeit im luftleeren Raum wird angegeben mit
co= (2,99790 - 0,00006) - 10 m/s.
l])a.s bedeutet, daB der wahre Wert zwischen 2,997 96 - 108 m/s und 2,99784 -10® m/s
iegt.

Im einzelnen gelten folgende Richtlinien:

1. Wird die Unsicherheit nicht glei itig zahl aBig g t, so sind hochstens
so viele Stellen anzugeben, daB die Unsicherheit in der letzten angegebenen Stelle
liegt. Betrigt die Unsicherheit hochstens -+ 0,5 Einheiten der letzten Stelle, so wird
diese im gewohnlichen Schriftgrad gedruckt. Ist die Unsicherheit aber gréBer, so
wird die letzte Stelle in Indexstellung gedruckt.

Beispiele:

a) Mit einer Fei hraublehre (Mikrometerschraube) ist eine Strecke mit
110,72 mm gemessen (Unsicherheit < 0,005 mm).

b) Mit einem StahlmeBband (cm- und mm-Teilung) wird eine Strecke mit 127,, mm
gemessen (Unsicherheit >0,05 mm).

2. Die Indexstellung ist ferner anzuwenden, wenn fiir die Benutzung von Zahlen-
werten in lingeren Rech die Kenntnis einer oder mehrerer der folgenden
Stellen zweckmiBig oder notwendlg erscheint.
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Beispiel :
. Fiir das Verhiltnis des .,internationalen* (Hg-) Ohms zum absoluten Ohm sind
Werte zwischen 1,00046 und 1.00052 gemessen worden. Thr Mittelwert 1,00049 ist
um weniger als 4 0,00005 unsicher.

Man schreibt
5 1,0004,
mit | 4 Dezimalen: 1 int. Ohm = 1,0005 ; abs. Ohm
3 1,000

3. Steht die in gewdhnlichem Schriftgrad anzugebende letzte Ziffer (Richtlinie 1)
in der Stelle der Zehner oder davor, so ist durch Wahl einer groBeren Einheit oder
durch Abtrennen von Zehnerpotenzen das Komma so weit nach links zu verschie-
ben. daB die tiefergestellten Ziffern erst hinter dem Komma erscheinen.

Beispiel:
Fiir die Lichtgeschwindigkeit c,= (2,99790 + 0,00006) -10® m s kann man auch
ohne Angabe der Unsicherheit schreiben

Co ~ 299710 m's oder ¢y~ 299.75-10%kms.

Die Schreibweise 299790 km s,. bei der die Null nicht entbehrt werden kann,
wiirde eine Genauigkeit vortiuschen, die nicht vorhanden ist.

6. Der Fehler einer Summe

Es sei j= i+ © die Summe zweier Naherungswerte. Da die Niaherungswerte i
und = mit den Fehlern 4« und Av behaftet sind, ist der genaue Wert der Summe

y=jJ+dy=ia+Adu+ v+ Av.

Subtrahieren wir von dieser Gleichung den Niherungswert der Summe § = 7 + 7.
so erhalten wir
Ay=Au+ Av.

Dies ist der Fehler des Ergebnisses, das aus den Niherungswerten berechnet wurde.

Sind die Fehler der Summanden nicht bekannt, so 1Bt sich hiufig eine Fehler-
grenze angeben. Bei gerundeten Grolen betriigt die Fehlergrenze stets 0,5 Einheiten
der letzten Stelle, da dieser Betrag vom wahren Fehler der betreffenden Grofe nicht
iiberschritten wird. In der Logarithmentafel finden wir zum Beispiel fiir lg 71 den
Wert 1,8513 angegeben. Da 1,8513 ein gerundeter Wert ist, betriigt die Fehlergrenze
51075, Dieser Betrag wird vom Betrag des wahren Fehlers nicht iiberschritten.

Die Fehlergrenze stellt eine nichtnegative Grofle dar. Wir bezeichnen sie mit A
bzw. A7. Es gilt also ’

|du| =44 und |4v| £ 4%
und damit
|4yl < da+ A5.
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Wir kénnen demnach die Fehlergrenze der Summe mit

4y = Au + 4% (6)
angeben.
Da jeder Summand wiederum eine Summe sein kann, gilt diese Gleichung fiir end-
lich viele Summanden.
Es gilt also der Satz:

Der Fehler ciner Summe ist gleich der Summe aus den Fehlern der Summanden.

Dividieren wir den Fehler der Summe durch ihren Wert, so erhalten wir den rela-
tiven Fehler. Dabei sind jedoch zwei Fille zu unterscheiden.

Haben die Glieder der Summe simtlich gleiches Vorzeichen, so iiberschreitet der
relative Fehler der Summe nicht den groBten relativen Fehler, der bei den einzelnen
Summanden auftritt. Sind dagegen die Vorzeichen der einzel Sum den unter-
einander verschieden und ist der Betrag der S klein gegeniiber den einzel
Gliedern, so kann der relative Fehler der Summe so groBe Werte annehmen, daf3
das Ergebnis unbrauchbar wird.

Beispiel 1:

Zwei Strecken sind mit (62,4 4+ 0,5) mm und mit (10,7 4 0,5) mm gemessen.
Wie groB ist der relative Fehler der Differenz?

Es ist
j=8—9=51,Tmm und Aj= A4+ Ab=1mm,
4y _ 1mm
G = 7 mm = 0019,

das heiBt, der relative Fehler betrigt 1,99, .

Beispiel 2:
Zwei Strecken sind mit (15,71 4+ 0,05) mm und mit (14,98 4+ 0,05) mm gemes-
sen. Welchen relativen Fehler besitzt die Differenz ?

Es ist )
J=%—9=073mm und A49§=Ai+ 49= 0,1 mm,
Ay _ 0lmm _
5 = o~ 197

das heiBt, der relative Fehler betrigt 13,79%,.
Obwohl im Beispiel 2 der relative Fehler der MeBgroSen nur 0,39, betrigt, be-
triigt der relative Fehler der Differenz 13,7%,. Das Ergebnis ist unbrauchbar.
Solche Fille, in denen im Nenner des Ausdrucks fiir den relativen Fehler eine
Differenz auftritt, mu8 man in der Praxis sorgfiltig priifen. Verlangt man ein ge-
naueres Endergebnis, so muB man versuchen, die Mefg igkeit entsprechend zu
steigern, oder man muB eine andere MeBmethode anwenden.
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7. Der Fehler eines Produktes
Es sei §= -5 das Produkt zweier Naherungswerte, die mit den Fehlern Au
und Av behaftet sind. Der genaue Wert des Produktes ist dann
y=9+dy=(i+ Au)(®+ Av).
Hieraus ergibt sich
J+Ay=a-9+ 4 -Av+5-Adu+ Adu-Av
und damit nach Subtraktion von §= i - 3
Ay=14-Av+ v - Au+ Au- Av.
Kennen wir statt der Fehler Az und Av die Fehlergrenzen 44 und A%, so kénnen
wir den Fehler des Produktes abschiitzen.

Es ist

@-Av < |i)-|4v|

und
|4v| < 4%,

also

%-Av || A3,
Ebenso ergibt sich

9-Au S |9|- d4.
Weiter ist

Av-Av < Ai- Ab.

|14y | S |6]|- 4%+ || - Au+ Au- As.
Die Fehlergrenze des Produktes ist daher
Af= |G| - Ao+ |9)- Ad+ Ad- As.
Ist A4 klein gegen % und A9 klein gegen 9, so kann man das Produkt Ad- A%

gegeniiber den ibrigen Gliedern der Summe vernachlissigen. In den Aufgaben zu
diesem Abschnitt ist dies stets der Fall. Wir setzen deshalb

Ay =|u|+ 4D 4+ |v]| . du. (7

Bei jedem praktischen Arbeiten muB jedoch die GréBenordnung des Produkts
Aii - A® abgeschitzt werden.

Dividieren wir die Formel (7) durch |7|= |i|- ]3], so ergibt sich der relative

Fehler zu - - -
Ay Au Av

—T = e 7

o~ Tl T o] @

Der relative Fehler eines Produktes §= i, - d,...%,, dessen Faktoren ,,
iy, . . ., i, die durchschnittlichen Fehler Ai,, 4%,, ..., A4, haben, betrigt

Wir erhalten so

Ay _ AW A% A%,
oo = )
Tl Tl Tl N

Diese Formel 1a8t sich aus Formel (7') herleiten, wenn man jeweils zwei Faktoren
zusammenfaBt.

Der relative Fehler eines Produktes ist gleich der Summe auns den relativen Feh-
lern der Faktoren.
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8. Der Fehler eines Quotienten

@} =1

Gegeben sei der Quotient i =
Fehlern Au und Av behaftet sind.

zweier Niherungswerte @ und %, die mit den

Dann ist =
- u+ du
y=§+dy=; "5
Es folgt
Ay=ttde 8
Y =51+ 40" %
oder
Ay =t Auv—u-dv
Y= %G+ 49

Ziehen wir % im Nenner vor die Klammer, so erhalten wir

oder

Av

Ist Av klein gegen %, so unterscheidet sich der Ausdruck __ wenig von 1.
1

. v
Wir kénnen ihn entsprechend unseren Betrachtungen bei der Herleitung des Fehlers
eines Froduktes vernachlissigen. Damit erhalten wir, falls 4v klein gegen © ist, den
Fehler des Quotienten mit guter Anniherung zu

v-du—u-do .
i

Ay~

Sind die Fehlergrenzen 4 & und A© gegeben, so schiitzen wir wieder den Fehler
des Quotienten ab.
Es ist wieder 4| A7 und |dv < At
und damit, wie wir gesehen haben, )
T-Au < |t|-did bzw. a-Av < |al-As.

Haben % Au und @-Av im Zihler des Bruches verschiedenes Vorzeichen, dann
addieren sich die Produkte. Wir beriicksichtigen diesen Fall bei unserer Abschiit-
zung, indem wir im Zihler die absoluten GroSen |%| - A% und |i|- A7 addieren.

*Wir erhalten so - . _ -
lAy]§|v|~Al-_z:;|u|-Av.

Die Fehlergrenze des, Quotienten ist damit

Ag=|vodu§;u-4v. ®)
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Nach der Division durch |7|= 'j% erhalten wir

| %] - Au+|u| Ao

Ay _

y

L1l
»

Ay Au @)
Iyl al * |
Der relative Fehler eines Quotlenton ist glonch der Summe aus den relativen
Fehlern des Divisors und des Dividenden.

9. Der Fehler einer Funktion
Es sei eine Funktion y = f(x) gegeben, die im betrachteten Intervall differenzier,
bar sei. Ist Z ein Niaherungswert mit dem Fehler Az, dann hat 7 den Fehler Ay.
Es ist _ _
J+ dy=f(z+ A=).
Durch Subtraktion von § = f(Z) erhalten wir den Fehler
Ay = f(z+ Az)— f(Z).
Durch Erweitern der rechten Seite dieser Gleichung mit 4« erhalten wir
_f@+ Az‘) —I@ . 4.

Ist Az hinreichend klein, so kann man den Dlﬂ'erenzenquotienten mit guter Annihe-
rung durch den Differentialquotienten er , und es ergibt sich

Ay = [ (%) A=.

Ist A Z die Fehlergrenze des Niherungswertes, so erhalten wir den Betrag der Feh-
lergrenze der Funktion, wenn wir beriicksichtigen, da8

[dz| =42 wnd [(2) = |f@)]

ist. Es ist also

45 =@ |- 43. ©)
Der Betrag des relativen Fehlers ist
4y _ lr @ | 4. ©)

il i@l
Beispiel:

Ein Winkel ist mit « = 62,64° 4+ 0,05° gemessen. Wie groB ist der Fehler von
sin a?
§ = 8in 62,64°,
Aj=|cos 62,64°| - A
= 0,4596 - 0,0008727 =~ 0,00040.
2 100917-2)
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Bei der numerischen Rechnung ist Ax in das BogenmaB umzuwandeln. Der
Wert sin 62,64° = 0,8881 besitzt also den Fehler 0,00040, d.h., sin« hat mit
& = 62,64° +0,05° die Fehlergrenze 0,00040. Hiervon kann man sich unmittelbar
iiberzeugen, wenn man die beiden Werte sin 62,59° und sin 62,69° der Funktionstafel
entnimmt.

Der relative Fehler betrigt

45 _ 0,00040
Ty ~ 08881

= 0,00045, das heilt 0,045%,.

10. Anwendung in der Trigonometrie

In einem rechtwinkligen Dreieck seien die Hypotenuse ¢ mit dem Fehler A&
und der Winkel « mit dem Fehler A& bekannt. Weiter sei vorausgesetzt, daB der
Fehler des rechten Winkels so gering ist, daB er gegen die anderen GréBen ver-
nachlissigt werden darf. Es ist der Fehler der Kathete ¢ zu bestimmen, wenn
¢ = (25,00 £+ 0,05) cm und a = (30 & 0,2)° sind.

' Da a=c-sina ist, errechnen wir den Fehler fiir ¢ unter Verwendung der For-

el (7), Af=al- A7+ |5|- Aa.
Wir setzen % = ¢ und o= sina. Dannist 4ii = Aé.
Fiir A7 erhalten wir nach Formel (9)
A% = |cosa|- AX.
Fiir Aa ergibt sich dann
Add=|sina|-Ac+ |¢-cosa|- AF.

Fiir den relativen Fehler erhalten wir

43 _ Ac lcosx|-Ax _ A%

la] Iel |sin | le]

+ |etga|-4da.

Bei der numerischen Rechnung ist zu beachten, daB .1x in das BogenmaBl um-
zurechnen ist.

Es ergibt sich

.l“'i‘T = ‘ﬂ? + 1,732 . 0,00349 = 0,002 -+ 0,0060

G = 0.0080.
Der prozentuale Fehler betrigt also 0,80%,.

Aufgaben

Es sind, wenn in der Aufgabe nichts and ben ist, die Fehlerg (in den Aufgaben
hiufig kurz mit ,,Fehler* bezeichnet) und die relativen Fehlergrenzen zu berechnen.
1. Die Seite eines Quadrates ist a = (52,52 + 0,05) mm. Berechnen Sie die Flache und ihren
Fehler!
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2. Der Durchmesser eines Kreises ist mit d = (13,40 + 0,02) cm gemessen. Wie groB ist der
Inhalt und dessen Fehler? !

3. Die Seiten eines Dreiecks werden mit Hilfe eines Stechzirkels auf einem Transversal-MaBstab
bestimmt. Dabei findet man die Werte 3 = 7,35 cm, b = 5,27 cm, ¢ = 8,64 cm. Die MeBwerte
der Seiten sind mit + 0,1 mm unsicher. Wie groB ist der Fehler des Umfanges?

4. Ineinem Gleichstromkreis wurde die Sy mit U = (36,33 + 0,005) Volt und die Strom-
starke mit / = (0,056 + 0,0005) Ampere g Der Wid d des S kerei: ist
zu bestimmen.

5. Die Seiten eines Rechtecks sind mit 81,5 mm und 57,5 mm gemeasen. Der Fehler jeder Linge
betrage + 0,2 mm. Wie groB sind die absolute und die relative Fehlergrenze des Flachen-
inhaltes?

6. Die Grundseite eines Dreiecks wurde mit 4,57 cm und die zugehérige Hohe mit 3,14 cm be-
stimmt. Der Fehler der MeBwerte betrage je + 0,2 mm. Wie groB sind die absolute und die
relative Fehlergrenze des Flacheninhaltes?

_%. An einem Trapez werden die Grundlinien mit @ = 7,45 cm und b = 5,79 cm und die Hohe

mith = 4,25 cm gemessen. Der MeBfehler sei + 0,5 mm. Wie groB ist der Fehler des Flachen-
inhaltes?

8. Bei einem LitermaB aus Aluminium sind der Durch und die Hohe gemessen worden.
Es ergaben sich die folgenden MeBwerte: d = (8,56 + 0,01) cm; & = (17,38 + 0,03) cm.
Bestimmen Sie
a) das Volumen und dessen Fehler,

b) die relative Abweich des Vol gegeniiber dem Sollwert!
Uberlegen Sie, wieviel Stellen von x verwendet werden miissen, damit durch dessen Nahrungs-
wert der Fehler des Ergebni nur lich beeinfluBt wird!
9. Beim A eines Ziegel: sind die folgenden MaBe festgestellt worden:
6= (243 + 0,2) cm; b= (11,6 £ 0,1) cm; ¢c=(1,2 + 0,1) cm.
Bestimmen Sie
a) die Fehlerg: und den relati Fehler des R inhalt
b) die relative Abweichung des Vol vom Sollwert (Kantenldngen 24 cm, 11,6 cm und
7,1cm)!

10. Bei einem Blatt DIN A 4 sind die Seiten zu @ = 210,4 mm und b = 296,4 .mm ermittelt
worden. Die Fehlergrenze betragt 0,3 mm.
Bestimmen Sie
a) die Flache und deren Fehler,
b) die relative Abweichung der Flache von der Sollfliche (¢ = 210 mm; b = 297 mm)!

11, Es ist im rechtwinkligen Dreieck b = ¢ - cos a. Besti Sie die absolute und die relative
Fehlergrenze der Seite b!

Es sei ¢ = 203,72 m + 0,05 m, « = 37,37° + 0,05°.
12. Es ist im rechtwinkligen Dreieck tgo = % - Bestil Sie die absolute und die

Fehlergrenze von o! Es sei 6 = 25,73 m + 0,05 m, b = 18,57 m + 0,05 m.
2%
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13. Der Flacheninhalt eines Dreiocks ist F— “’“T'“‘/ Bestimmen Sie den Fehler, wenn
a = 20,00 cm + 0,02 cm, b = 10,00 cm + 0,02 cm, y = 30° + 0,2° ist!
b sma

14. Nach dem Sinussatz ist im Dreieck a = . Bestimmen Sie den Fehler von s, wenn
b = 10,00 cm + 0,02 cm, & = 55° &+ 0,2°, B ="65° + 0,2° ist!

15. Die Masse eines kleinen Quecksilbertropfens soll in einem Uhbrglas mit einer Analysen-
waage bestimmt werden. Man erhielt die folgenden Mittelwerte:
Masse des Uhrglases ohne Hg (6102,37 + 0,05) mg,
Masse des Uhrglases mit Hg (6109,21 + 0,05) mg.
Wie groB sind die Messe des Quecksilbertropfens und der relative Fehler der Wagung?

16. Die Kapazitat eines Plattenkondensators soll berect werden (C= 8- % . Die Flache
der Platten wurde mit F = (105,7 + 0,13) cm®* und der Abstand der Platten mit

= (0,1 + 0,01) cm besti Die Dielektrizitatskonstante ist e, = 8,859 - 10~ ,‘lel:omb.

cm

II1. Niherungslésungen von Gleichungen

11. Praktische Berechnung erforderlicher Funktionswerte

In den Betrachtungen, die wir im folgenden durchfiihren werden, ist es hiufig
notwendig, Funktionswerte f(z) von ganzen rationalen Funktionen zu berechnen.
Diese Berechnung wird mitunter bereits dann umstiéndlich, wenn f(z) dritten Grades
ist. Wir entwickeln daher ein Schema, das die . Berechnung mit Hilfe des Rechen-
stabes gestattet. Dazu gehen wir von der Funktion dritten Grades

@) = 052 + a2 + 0,2 + a5
(mit ag= 0) als Beispiel aus. Wir ziehen den Faktor z vor die Klammer und er-
halten damit (@) = (52 + ag2 + 0] + aq.

Durch weitere Abtrennung des Faktors x ergibt sich

f(®) = (@32 + a)2 + @]z + a,.

Diese Gleichung erméglicht es uns, den Funktionswert f(z) in aufeinanderfolgen-
den Stufen zu berechnen:

1. Den Koeffizienten ¢, multiplizieren wir mit z.
2. Zum Produkt addieren wir den Koeffizienten a,.
3. Die Summe multiplizieren wir mit z.

4. Zu diesem Produkt addieren wir a,.

5. Diese Summe multiplizieren wir mit z.

6. Zum Produkt addieren wir a,.
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Diesen Rechengang stellen wir in dem folgenden Schema dar:

ay a, . a, aQ
agx agx+a;
(a3 x+az)x (asx+3z)x+a
[@yxsap)xsar)x [(ayx+a,)x+0,)x+0,

Verkiirzt schreiben wir das Schema folgendermaBen:

a; az a )
a,lx fd:x;ﬂz)x [fﬂJX*az)IX*dJX
[] H L]
ay agx+ap (asx +az) x +ay [lagxsa)x+ar]x+a,

Entsprechend kann dieses Schema fiir ganze rationale Funktionen n-ten Grades
aufgestellt werden. Es heiBt Hornersches Schema.
Beispiel :
Es soll f(z)= 2,523 — 3,122+ 1,52+ 0,8 fiir 2=1,5 berechnet werden. Wir
schreiben die Koeffizienten der Funktion in eine Zeile hintereinander:
25 —31 1,5 0,8..

Nun multiplizieren wir 2,6 mit z =1,5. Wir erhalten 3,75 und addieren diesen Wert
zu —3,1. Das Ergebnis 0,65 multiplizieren wir wieder mit z=1,5. Das Produkt

fassen wir mit dem nichsten Koeffizienten 1,5 usw. Es ergibt sich dann
im Schema:
256 —3,1 1,5 0,8
3,76 0,98 3,72
A B
RV
2,5 0,65 2,48 4,6 f(1,6)=45.

"Im Rechenstab stellen wir 1,5 fest ein und lesen simtliche Produkte ab, ohne die
Zunge zu verstellen.
Sind in der Funktion ein oder mehrere Koeffizienten gleich Null, so werden die
Koeffizienten 0 in der ersten Zeile mitgeschrieben.
Beispiel:
Es ist f(x) = bat — 2a® — 5z fiir 2= 2 zu berechnen.
f(x)=5624+0. 23— 222 — 62+ 0
5 0 -2 -5 0
10 20 36 62
5 10 18 31 62  f(2)=62.




22 Naherungslésungen von Gleichungen

12. Das Sekantenndherungsverfahren

Gegeben sei eine Funktion y = f(z). Es soll eine Nullstelle dieser Funktion be-
stimmt werden.

Zuniichst untersuchen wir, ob die Funktion iiberhaupt eine Nullstelle hat. Dazu
stellen wir eine Wertetafel auf an dieser priifen wir, ob mindestens zwei Funktions-
werte vorhanden sind, die er tzte Vorzeichen haben. Existieren zwei solche
Funktionswerte f(z,) und f (x,), so muB noch festgestellt werden, ob die Funktion
im Intervall von 2, bis z, stetig ist. Wenn das der Fall ist, so hat sie in diesem In-
tervall mindestens eine Nullstelle x,.

Bei allen folgenden Betrachtungen werden nur solche Funktionen behandelt, die
hochstens Liicken oder Pole als Unstetigkeitsstellen aufweisen. Es geniigt also, die

Untersuchung auf diese Fille zu beschrinken.

y Durch die Punkte [z,; f(z,)] und |z,; f(,)] legen

wir die Sekante (Abb.1); ihre Gleichung ist
J(@g) — f‘lfl) n— f(zn)
T, — T, TE_-T,
7lxy)
wenn mit £ und % die Koordinaten aller Punkte
auf der Sekante bezeichnet werden. Fiir 7, = 0 hat

-3 die Sekante eine Nullstelle £,. Es gilt dann
ftx) =2 T® .
W ST TG —f@y @

Da z, und & Werte im Intervall z, ...z, sind,

Abb. 1 liegt &, niiher an z, als mindestens einer der beiden
Werte 2, und z,.

Durch Fortsetzung dieses Verfahrens kann man die Stelle z, mit beliebiger Ge-

nauigkeit annihern. Dabei withlt man stets die Ausgangswerte fiir die weitere Be-

rechnung so, da die zugehérigen Funktionswerte verschiedene Vorzeichen haben.

e

Beispiel:
Gegeben sei die Funktion y = f(z)=2*+2— 5= 0.

2 B T T BT
oy l -5 | -3 | +5 I +25

Aus der Wertetafel erkennen wir, daB f(1)=—3 und f(2) = +5 verschiedene
Vorzeichen haben. Da es sich bei unserem Beispiel um eine ganze rationale Funk-
tion handelt, kénnen Liicken und Pole nicht auftreten. Daraus folgt, daB zwischen
2,=1 und z, = 2 eine Nullstelle liegt. Fiir £, ergibt sich

b=1- 2 =3 =14 F =137,
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Den Wert &, =1,375 runden wir auf &, ~1,4, da &, ohnehin nur ein Niherungs-
wert ist und die Verwendung des Wertes &, =1,375 die Fortsetzung der Rechnung
erschwert.

Fiir f(1,4) ergibt sich

1.4 org f(1,4) =—086.

Da f(1,4) negativ ist, wihlen wir den positiven Wert f(z,) = 5 fiir die Berechnung
des niichsten Naherungswertes. Wir bezeichnen ihn' mit &,, und es gilt

L=6— W -f(é).

Diese Gleichung wurde aus der Gleichung fiir £, gewonnen, indem dort fiir ; der
bessere Niherungswert &, éingesetzt wurde. Fiir &, erhilt man’

2—14 0,516

b= 14— 5 gy (—086) = 14+ P ~ 15.

Fiir f(1.5) ergibt sich
l( b erg f(1,5)=—0,125.

Fiithrt man eine weitere Niherung durch, so erhilt man &;=1,512 und
[(1,512) = —0,031. Es gilt also
2z, =1,512.

Das eben behandelte Verfahren heit Sekantenndherungsverfahren oder auch
regula falsi. Diese Bezeichnung (mittelalterliches Latein) bedeutet soviel wie ,,Regel
vom Falschen (ausgehend)".

13. Das Tangentenndherungsverfahren

Bei einem weiteren Verfahren zur naherungsweisen Besti g von Nullstell
einer Funktion wird an Stelle der Sekante die Tangente verwendet.

Es sei f(z) eine Funktion, von der bekannt ist, daB sie im Intervall 2, < z <z,
stetig und mindestens zweimal differenzierbar ist (vgl. die einleitenden Absitze zum
Abschnitt 12) und daB sie in diesem Intervall eine Nullstelle z, besitzt. Ferner sei
f' () und f"(z) im ganzen Intervall verschieden von Null, das heiBt, in diesem In-
tervall existieren weder Extremwerte noch Wendepunkte. Es haben also f(z,) und
J(x;) verschiedene Vorzeichen.

Die Gleichung der Tangente an die Kurve der Funktion f(z) im Punkte [z,; f(z,)]

ist
20O — iy,

wobei mit £ und 7 die Koordinaten aller Punkte auf der Tangente bezeichnet sind.
Fiir den Schnittpunkt der Tangente mit der z-Achse ergibt sich:

nm=0; 51=xx—f‘%

Wir mii nun untersuchen, ob £, einen besseren Niherungswert fiir 2, darstellt
als z,.



24 Naherungslésungen von Gleichungen

Wenn f(z,) und f"(z,) beide negativ sind, so steigt die Kurve von z, bis z,, und
sie ist konkav von unten. Die Tangente liegt also oberhalb der Kurve und schneidet
demnach die z-Achse zwischen 2, und 2, (Abb.2). Zum ent henden Er is ge-
langen wir, wenn f(z,) und f*(z,) beide positiv sind (Abb. 3) In diesen Fllen stellt

g ’7\ .WJ

Abb. 2 Abb.3

ey

£, eine bessere Niherung fiir z, dar als z,. Sind dagegen die Vorzeichen von f(z;)
und f"(z,) verschieden (Abb.4 und 5), so liegt der Schnittpunkt nicht zwischen z,
und z,. Uber seine Braichbarkeit als Niéherungswert kann man daher keine Aus-
sage machen.

Eine entsprechende Betrachtung kann man fiir den Niaherungswert z, anstellen.

14
lxp)
0 X
Abb. 4 Abb. 5
Da f(2,) und f(z,) verschiedene Vorzeichen haben, stimmt das Vorzeichen eines

und nur eines dieser beiden Werte mit dem Vorzeichen von f’(z) iiberein (das sich
nach der Voraussetzung im ganzen Intervall nicht éndert). Daher ist nur einer der
beiden Werte f(z,) und f(,) fiir die Berechnung von §, sicher brauchbar.

Es ist

ein besserer Niherungswert fiir x als der Wert x;, wenn

1@) 1" (@) >0
ist.
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Wir haben diese Bedingung aus der geometrischen Veranschaulichung gewonnen.
Auf einen strengen analytischen Beweis soll wegen seines Umfanges verzichtet
werden.

Durch Fortsetzung dieses Verfahrens kann man die Stelle z, mit beliebiger Ge-
nauigkeit annihern.

Beispiel:
Wir betrachten wieder die Funktion
fx)=2*4+2—5.
Zwei Niherungswerte sind 2, =1 und z,= 2. Es ist
f(z)=322+1
() = 6z.

und

Im Intervall 1 < z < 2 sind beide Ableitungen positiv, also verschieden von Null.
Wegen f"(z) >0 wihlen wir f(2) =5 als ersten Naherungswert. Es ist dann

b=2— D ~16

1(1,6) =~ 0,7.

und

Verwenden wir fiir die Berechnung des nichsten Niherungswertes diesen Wert, so
erhalten wir

&=16— g7 ~152

und
f(1,52) =~ 0,03.

Der dritte Naherungswert ergibt sich als

=152 08 ~ 1,516

£(1,516) = + 0,00016.

mit

Das eben behandelte Verfahren, das Tangentenndherungsverfahren, wurde von
Isaak Newton entwickelt und wird nach ihm auch als Newtonsches Niiherungs-
verfahren bezeichnet.

Das Newtonsche Niherungsverfahren fithrt schneller zu einem guten Niherungs-
wert als die regula falsi. Es hat aber gegeniiber der regula falsi den Nachteil, da8
fiir seine Anwendbarkeit mehr Einschrinkungen g ht werden muBten (vgl. da-
zu die einleitenden Absitze zu beiden Verfahren).

Da die Ableitungen bei ganzen rationalen Funktionen leicht zu bestimmen sind,
wird man in diesen Fillen in der Regel das Newtonsche Niherungsverfahren an-
wenden. Liegt jedoch ein Extremwert oder ein Wendepunkt im betrachteten Inter-
vall, so ist es zweckmiBig, mit Hilfe der regula falsi die ersten Niherungswerte zu
bestimmen. Gelingt es, auf diese Weise ein Intervall abzugrenzen, in dem zwar eine
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Naherungslésangen von Gleichungen

Nullstelle liegt, aber keine Extremwerte oder Wendepunkte mehr auftreten, so setzt
man die Berechnung mit Hilfe des Newtonschen Néherungsverfahrens fort. Ist eine
gebrochene rationale oder eine nichtrationale Funktion gegeben, so ist das Newton-
sche Naherungsverfahren nur dann zweckmiBig, wenn die Ableitungen leicht zu
bestimmen sind. In der Regel wird man in diesem Fall also die regula falsi anwenden.
Dabei ist zu beachten, daB man bei gebrochenen Funktionen zur Bestimmung von
Nullstellen zuniichst nur die Zahlerfunktion untersucht und dann erst priift, ob die
Nullstelle der Zahlerfunktion etwa auch Nullstelle der Nennerfunktion ist.

Aufgaben

1. Bestimmen Sie eine Wurzel der folgenden Gleichungen

19

5.

1. nach der regula falsi,
2. nach dem Newtonschen Naherungsverfahren!

Anmerkung: Berechnen Sie alle Funkti te mit dem Rechensteb unter Ver g
des Hornerschen Schemas!

a) P —5r—15=0 b) 22+ 3z—T7=0

¢) BP+a2—5=0 d) 22— 42—-3=0

0) 52— 62— T=0 1) 2,523 — 3,128 + 1,52+ 0,8 = 0

g) 2 — 222+ 3224+ 2 —10=0 h) 78+ 62° + 62+ 10z — 18 =0

i) 2°— 424+ 32— 24+ 9=0 k) 28— 323 — 223 — 5= 0.

Bestimmen Sie eine Wurzel der folgenden Gleichungen

1. nach der regula falsi,
2. nach dem Newtonschen Naherungsverfahren!

a) cosz —z=0 b) 2sinz—2=10

c¢)ctgz—z=0 d) tgz—2z=0

e) Tsinz—z+9=0 [)zz+},_4___0.

Anleilung Die zelehnensche Lésung der Glelchung ergibt einen ersten Naherungswert fiir

eine reelle Wurzel. V Sie zur zeichnerischen Losung der Gleichungen den Abscl
Goniometrie, Lehrbuch der Mathematik fiir das 10. Schuljahr!

Wie tief sinkt eine Eisenkugel,von 10 cm Radius in Quecksilber ein? (Die Wichte von Eisen
ist 7,8 p/cm?, von Quecksilber 13,55 p/cm?).

Anmerkung: Die angegebenen Werte sind als exakt anzusehen.

Emer Ha.lblmgel mit dem R&dlus r = 10,00 cm soll ein Zylinder einbeschrieben werden, dessen

des Halbkugel betragt. Wie groB sind der Radius und die Hohe
des Zylinders?

Einer Halbkugel soll ein Kegel, dessen Spitze im Kugelmittelpunkt liegt, einbeschrieben
werden. Der Radius der Kugel betragt r = 12 cm.

Wie gro8 sind der Radius und die Hohe des Kegels, wenn sein Volumen 500 cm®* betragen
soll?

Anmerkung: Vgl. Anmerkung zu Aufgabe 3.



B. Sphiirische Trigonometrie

Bei den bisherigen Betrachtungen in der Trigonometrie sind wir davon ausge-
gangen, daB die Figuren in einer Ebene liegen. Wir wollen in den folgenden Ab-
schnitten die trigonometrischen Untersuchungen auf die Kugeloberfliche ausdehnen.
Dieses Teilgebiet der Mathematik, mit dem wir uns jetzt beschiftigen werden, heiBt
sphiirische Trig: trie. Die Bezeichnung ist von dem griechischen Wort sphaira
(Kugel) abgeleitet.

I. Grundbegriffe der Kugelgeometrie

1. GroBkreise und Kleinkreise, kiirzeste Entfernung zweier Punkte

Wird eine Kugel von einer Ebene geschnitten, so entsteht als Schnittfigur ein
Kreis. Die GroBe des Schnittkreises ist vom Abstand a der Ebene vom Mittelpunkt
der Kugel abhiingig. Es ergeben sich die folgenden Méglichkeiten:

l.a=0 Der Mittelpunkt des Schnittkreises fillt mit dem Mittelpunkt der Ku-
’ gel zusammen. Der Radius des Schnittkreises ist gleich dem Radius
der Kugel. Es ist offensichtlich, daB es kei Schnittkreis mit groBe-
rem Radius geben kann. Man bezeichnet deshalb diesen Schnittkreis

als GroBkreis.

2.0 < a < r Der Radius des Schnittkreises jst o = J7> — a®. (Dies kann mit Hilfe
einer Zeichnung leicht hergeleitet werden.) Es ist also in diesem Falle
o stets kleiner als 7. Man bezeichnet deshalb diese Schnittkreise als

Kleinkreise.

3.a=r Die Ebene beriihrt die Kugel. Der Schnittkreis entartet zu einem
Punkt.

4.a>r1 Die Ebene schneidet die Kugel nicht. Es entsteht also kein Schnitt-
kreis. '

In der Ebene ist die Strecke die kiirzeste Verbindung zweier Punkte. Da es auf
der Kugeloberfliche keine Geraden gibt, tritt hier an die Stelle der Strecke der
kleinere Bogen eines GroBkreises durch die beiden Punkte. Dieser Bogen ist auf
der Kugeloberfliche die kiirzeste Verbindung zwischen zwei Punkten.

Es soll hier nur bewiesen werden, daB der kleinere Bogen des GroBkreises unter
allen méglichen Kreisbogen auf der Kugeloberfliche die kiirzeste Verbindung zweier
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Punkte ist. Um zu beweisen, daB er die kiirzeste Verbindung unter allen iiberhaupt
mdglichen Kurven ist, muB man Hilfsmittel heranziehen; die iiber den Lehrstoff der
Oberschule hinausgehen.

In der Abbildung 6a sind drei Kreise durch die Punkte 4 und B der Kugelober-
fliche gelegt. Die Abbildung 6b zeigt die Umlegung dieser Kreise in eine Ebene.
Die drei Kreise haben die Sehne AB = s gemeinsam.

Ist o der Radius des durch A und B gehenden Kreisbogens und «, der zugehtrige
Zentriwinkel, so wird die Linge b des Bogens durch die Formel b = «, - ¢ bestimmt.

3
Der Radius ¢ kann aus sinTe = 219 zu o = berechnet werden. Dann gilt
@, sinTe
also b= —2 5. Da s konstant ist, haben wir damit den Bogen b allein als
sin —Zi

Funktion von «, dargestellt. _
Wir setzen zur Vereinfachung % = 2 und betrachten das Verhalten der Funk-

tion b(z) = ;;—z- 8 im Intervall 0 <z < &.
Wir erhalten als erste Ableitung &' (z) = 227 a:f:‘?s.i .
Im Teilintervall 0 <z< % ist
tgz >z (vgl Lehrbuch der Mathematik, 11.Schuljahr),
also sinz >xcosz und damit sinz— xcesz > 0.
Im Teilintervall § <z < ist

sir‘w>0, zcosz =0 und damit sinz— zcosz > 0.
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s8inz — zcosz

Mit sinz— x cosz ist aber auch & (z)= ——

im ganzen Intervall

0 < z < 7 stets positiv. Das bedeutet, wenn wir wieder z = % setzen, daB die

“e

Funktion b('a?(,) = 8 im Intervall 0 < a(, < 27 mit wachsendem @, mono-
. %e
28in
2

ton wiichst bzw. mit kieiner werdendem a, monoton fillt. Der Bogen b wird also
8 A :
— e groBer p ist.
2 sil 5

um so kleiner, je kleiner e, ist oder, wegen g =

Da der GroBkreis unter allen moglichen Kreisen auf der Kugeloberfliche derjenige
mit dem gréBten Radius ist, stellt der kleinere Bogen des GroBkreises unter allen
moglichen Kreisbogen die kiirzeste Verbindung zwischen 4 und B dar.

Den kleineren Bogen des GroBkreises durch zwei Punkte auf der Kugelober-
fliche bezeichnen wir als geodiitische Linie. (Allgemein wird die kiirzeste Ver-
bindung zweier Punkte auf jeder gekrimmten Fliche als geoditische Linie be-
zeichnet.) .

Die Linge der geodiitischen Linie kann man auf zwei Arten messen: 1. mit einem
LiingenmaB auf dem kleineren Bogen des GroBkreises; 2. als Winkel, den die beiden
Radien zu den Endpunkten der geoditischen Linie bilden. Im ersten Falle ist die
Liinge der geoditischen Linie auBer von der Lage der Punkte auch vom Kugel-
radius abhingig, im zweiten Falle dagegen
nicht. Zur besseren Unterscheidung bezeichnen
wir die Linge der geoditischen Linie als sphéri-
schen Abstand, wenn sie im Lingenmaf} gemessen
ist, dagegen als sphirische Linge, wenn sie im
WinkelmaBl gemessen ist. Fiir die Linge der
geoditischen Linie gilt die folgende Relation:

R

180°

Dabei ist « die sphirische Linge und b der
sphérische Abstand (Abb. 7).

Fiir die Erde ist zum Beispiel die Liinge der
geoditischen Linie, die zur sphirischen Linge 1°
gehort, annihernd 111 km. Abb.7

b=r.a=r.

2. Das sphirische Zweieck, Winkel am Zweieck, Flicheninhalt

Im allgemeinen wird durch zwei Punkte auf der Kugel ein GroBkreis eindeutig
bestimmt, da der Mittelpunkt der Kugel mit diesen beiden Punkten zusammen die
Schnittebene festlegt. Sind speziell die beiden Punkte Endpunkte eines Durchmes-
sers, 8o liegen sie zusammen mit dem Mittelpunkt auf einer Geraden. In diesem Fall
lassen sich durch diese beiden Punkte, die diametral zueinander liegen, beliebig viele
GroBkreise ziehen, die simtlich einander halbieren.
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Durch zwei nicht zusammenfallende -GroBkreise wird die Kugeloberfliche in vier
Teile zerlegt, von denen je zwei einander kongruent sind (Abb. 8). Die so entstan-
denen Teile der Kugelfliche nennt man Kugelzweiecke. Alle Kugelzweiecke sind
gleichseitig. Die sphiirische Linge ihrer Seiten ist 180°. Die GroBe des Kugelzwei-
ecks ist von der GroBe des Winkels a zwischen den erzeugenden GroBkreisel
abhiingig. Diesen Winkel a0 bezeichnen wir als den Winkel des Kugelzweiecks.

Der Flicheninhalt eines Kugelzweiecks lifit
sich aus der Proportion

F:0=F:4nr?= a:360°

als
daria arla

T360° . 90°
bestimmen, wobei F die Fliche des Zweiecks
und O die Oberfliche der Kygel bedeuten.

Wird der Winkel jedoch im Bogenmafi ge-
messen, so ist

F:0=F:4nr*=a:2n,

F= 0

also
daria

5 =2ria.

‘F =

3. Das sphirische Dreieck, Flicheninhalt, Winkelsumme

Wir wollen im folgenden Dreiecke auf der Kugeloberfliche betrachten. Ein Kugel-
dreieck ist die Figur, die von drei GroBkreisbogen begrenzt wird. Die GroBkreis-
bogen sind dann nach Abschnitt 1 die Seiten des Dreiecks. Die Winkel zwischen den
erzeugenden GroBkreisebenen sind entsprechend Abschnitt 2 die Winkel des Drei-
ecks. Wir beschrinken uns bei den folgenden Untersuchungen auf solche Dreiecke,
bei denen jede Seite sowie jeder Winkel kleiner als 180° ist. Diese Dreiecke werden
als Eulersche Dreiecke bezeichnet.

Die vollstindigen GroBkreise schneiden sich
paarweise noch einmal in den drei Punkten 4,,
B, und C,, die jeweils diametral den Punkten
A, B und C gegeniiberliegen (Abb. 9). Dadurch
entsteht ein flichengleiches, symmetrisches
sphansches Dreleck AlB,(‘,, das aber den ent-

U inn des urspriinglichen
Dreiecks ABC hat. Dieses Dreieck heifit das
Scheiteldreieck zum Dreieck A BC. Neben dem
Dreieck 4 BC und seinem Scheiteldreieck 4, B,C,
entstehen aber auf .der Kugel noch weitere
sechs Dreiecke:

ABC,, A,BC, ABC,, ABC, ABC,
und A4 BC;.
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Die Flichen der acht Dreiecke bedecken vollstindig die Kugeloberfliche, ohne ein-
ander zu iiberschneiden.

Da je zwei gegeniiberliegende Dreiecke flichengleich sind, geniigt es, wenn wir uns
bei den folgenden Betrachtungen auf die Halbkugel beschrinken. Wir bezeichnen
den Flicheninhalt des Dreiecks 4 BC mit F, den des Dreiecks 4, BC mit F,, den
des Dreiecks 4 B,C mit F, und den des Dreiecks 4, B,C mit F;. Es gilt also

F+ Fy+ Fo+ Fg=2nr2, 1)

Andererseits bilden die Flichen F und F, ein Kugelzweieck ‘mit dem Winkel a,
die Flichen F und F, ein solches mit dem Winkel 8 und die Fliche des Scheitel-
dreiecks 4, B,C,, die der GroBe nach gleich F ist, und Fy ein Kugelzweieck mit dem
Winkel y. Daher ist nach Abschnitt 2

F+Fl="—£-?,
art
F+Fz=1wf.
2 .
F+Fy="07.

Durch Addition dieser drei Gleichungen ergibt sich

rl
3F+ F,+ Fy+ Fy= %07(“"' B+ )
und nach Subtraktion von (1)

nrt 180°z 72
2F = G (0 + B+ 9) — =55

nr? o
2F = o (@ + B+ y — 180°)
oder
nrt o
F=W(a+ﬂ+y—180). (2)

Wird @ + 8 + y — 180° = ¢ gesetzt, dann wird

2
F = To° £, (3)

Die GroBe ¢ heiBt sphirischer ExzeB.

Der Flicheninhalt spielt bei praktischen Berechnungen kaum eine Rolle. Die Be-
deutung der Formeln (2) und (3) liegt nicht so sehr in der Tatsache,” daB sie die
Berechnung des Flicheninhaltes eines sphirischen Dreiecks erméglichen, sondern
vielmehr darin, daB man aus ihnen eine Aussage iiber die Winkelsumme im sphi-
rischen Dreieck herleiten kann.

Voraussetzung fiir die Entstehung eines Dreiecks ist, daB die Punkte 4, B und C
nicht auf demselben GroBkreis liegen. Der Flicheninhalt des durch diese Punkte
bestimmten Dreiecks ist stets groBer als Null. Dann ist nach (2) und (3)

e=a+f+y—180° >0,
also
a+ f+y >180°.



32 Grundbegriffe der Kugelgeometrie

Die Winkelsumme im sphirischen Dreieck ist demnach stets groBer als 180°. Die
GroBe £ gibt dabei den UberschuB iiber 180° an. Dadurch wird die Bezeichnung
sphirischer Exze8 verstindlich.

Andererseits ist die Fliche eines Eulerschen Dreiecks stets kleiner als die der
Halbkugel. Es besteht mithin auch die Beziehung

et o N
w(«+ﬁ+ y—180°) < 2n 72,

aus der unmittelbar folgt
a+ B+ y—180° < 360°,

a+ B+ y < 540°.

Fiir die Winkelsumme im sphirischen Dreieck ergibt sich damit die folgende Un-
gleichung:
. 180° < @ + g+ y < 540°
oder N
ala+p+7<3x.

Im sphiirischen Dreieck ist die Winkelsumme stets groSer als 180° und kleiner
als 540°. Der sphiirische Exze8 ist stets groger als 0° und kleiner als 360°.

4. Das sphirische Dreieck und die kdrperliche Ecke

StoBen n Kanten (n > 2), von denen keine drei in einer Ebene liegen, in einem
"Punkt zusammen, so bilden sie eine n-seitige korperliche Ecke.

Durch die drei Seiten eines Eulerschen Dreiecks und den Mittelpunkt der Kugel
werden drei Ebenen bestimmt, die sich paarweise in drei Geraden schneiden. Diese
drei Geraden sind die Kanten einer dreiseitigen korperlichen Ecke. Es besteht also
ein Zusammenhang zwischen dem sphirischen Dreieck und der dreiseitigen kérper-
lichen Ecke.

Die Abbildung 10a zeigt das raumliche
Bild einer dreiseitigen kérperlichen Ecke,
die zu einem sphirischen Dreieck A BC' er-
ginzt ist. Die Projektion des Punktes 4 auf
die Ebene MBC sei A’. Wir fillen von 4
auf die Kanten M B und M C die Lote. Thre
FuBpunkte seien D und E. Nun verbinden
wir D und E mit 4’. Dann ist der Winkel
ADA’, der Neigungswinkel f der Ebene
M BA gegen die Ebene M BC, laut Defini-
tion der Winkel # des sphirischen Dreiecks.
Entsprechend ist der Winkel A E 4’ der Win- Abb. 10a
kel y.

Wir wollen nun die wahren GroBen der Seiten a, b und ¢ und der Winkel 8 und y
konstruieren. Dazu withlen wir eine der drei Seitenflichen der kérperlichen Ecke,
zum Beispiel M BC, als GrundriBebene; die beiden anderen Seitenflichen, also
MAB und M AC, klappen wir um die Achsen M B bzw. M C in die Zeichenebene.
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(4,]

1Ay
Abb. 10b Abb. 10¢

Die Stiitzdreiecke A DA’ und A EA’ werden um die Achsen DA’ bzw. E 4’ umgelegt
(Abb.10b). Es ist E(4,) = E[4,], A’[4,]= A'[A4,] und D(4,) = D[4,].

Die Abbildung 10b zeigt, wie man konstruktiv die GréBe der Winkel 8 und y er-
mitteln kann, wenn die drei Seiten eines sphirischen Dreiecks gegeben sind. Durch
Wahl einer anderen Seitenfliche als Grundri@3 lassen sich auch-die Winkel « und y
bzw. « und f konstruieren, wobei durch die zweimal konstruierten Winkel eine gute
Kontrolle iiber die Genauigkeit der Winkelwerte maoglich ist.

Betrachtet man in der Abbildung 10a zwei Seiten und den eingeschlossenen Winkel
(zum Beispiel a,f,c) als gegeben, so kann man entsprechend der Abbildung 10b
durch Abinderung der Reihenfolge der Konstruktionen (vgl. Abb.10c) die dritte
fehlende Seite konstruieren. Man geht dabei von den Punkten M, (4,), B, C, D, 4’
und (4,] aus und verwendet die Beziehung
A'[4;]=A'[A,]. Damit ist diese Aufgabe auf
den Fall dreier gegebener Seiten zuriickgefiihrt.

Alle durch Kanten begrenzten Kérper bilden
mehrere korperliche Ecken. Zum Beispiel hat
der Wiirfel acht, das Tetraeder vier Ecken. Mit
Hilfe der sphirischen Trigonometrie kénnen die
Neigungswinkel der® Seitenflichen kantig be-
grenzter Korper berechnet werden, indem man
die von den Kanten gebildeten Winkel als Seiten
eines sphirischen n-Ecks auffaBt und die Nei-
gungswinkel der Flichen als Winkel in den ent-
sprechenden sphirischen n-Ecken berechnet.

So ist zum Beispiel eine Tetraederecke eine kor-
perliche Ecke mit drei gleichen Seiten (Abb.11).
Abb. 11 Thre Seitenlinge ist 60°. Es muB jedoch darauf

3 (00917-2|
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hingewiesen werden, daB nicht jede kérperliche Ecke mit drei gleichen Seiten diese
Seitenlinge hat. Durch einen Diagonalschnitt bei einer Oktaederecke erhilt man

eine korperliche Ecke mit zwei Seiten zu 60° und einer Seite.zu 90° (Abb.12a). Ab-
bildung 12b zeigt die wahre GroBe der Seitenflichen. Sie sind in die Zeichenebene

)
AN
<

Abb. 12a Abb. 12b

b. Die Polarecke und das Polardreieck, die Seitensumme

Es sei M der Scheitelpunkt einer korperlichen Ecke mit dem zugehérigen sphi-
rischen Dreieck 4 BC. Im Scheitelpunkt M errichten wir auf den das Dreieck erzeu-
genden Ebenen M A B, M BC und M AC die Senkrechten. Diese bilden dort eine
neue Ecke, die wir die Polarecke der urspriinglichen Ecke nennen. Die drei Senk-
rechten durchstoBen die Kugeloberfliche in den drei Punkten A’, B’ und C’
(Abb.13a). Die Punkte 4’, B’ und C’ bilden ein sphirisches Dreieck, das wir das
Polardreieck A’ B’C’ zu dem urspriinglichen Dreieck 4 BC nennen.

Seiten und Winkel des Polardreiecks
werden genauso definiert wie Seiten und
Winkel des urspriinglichen sphirischen
Dreiecks. Wir wollen nun an Hand der
Abbildungen 13a und 13b die Zusammen-
hinge zwischen dem sphirischen Dreieck
und seinem Polardreieck herleiten.

Die beiden Ebenen M AC und MAB
haben den Neigungswinkel o, der gleich
dem Winkel « des sphirischen Dreiecks
bei A4 ist. Die Senkrechten im Punkt M
auf A M in den Ebenen M AC und M A B
haben bei M ebenfalls den Winkel «. Die
beiden Schenkel dieses Winkels durch-
stoBen die Kugel inden Punkten C, und B, .
Da die Kante M B’ senkrecht auf der
Abb. 13a Ebene M A C steht, steht sie auch senkrecht




Die Polarecke und das Polardreieck, die Seitensumme 35

auf MC,, und ebenso steht M (' senkrecht auf
M B,. Die Punkte B’, C’, B, und C, liegen auf
einem GroBkreis, dessen wahre GréBe in Abbil-
dung 13b dargestellt wird. Die Seite B'C’ des Polar-
dreiecks nennen wir a’. Aus Abbildung 13b folgt
die Beziehung

o« + 90°+ a’ + 90°= 360°
oder
a’ = 180° — a.

Die fiir die Seite a’ durchgefiihrten Betrachtungen
gelten entsprechend fiir die Seitend’ und ¢’. Somit ist

b'=180°—f und ¢ = 180°— y.

Abb. 13b

Wenn man das auf diese Weise gefundene Polardreieck 4’ B’C’ als Ausgangs-
dreieck wihlt und dazu das Polardreieck konstruiert, erhilt man wieder das Dreieck
A BC. Demnach ist das urspriingliche sphirische Dreieck das Polardreieck seines
eigenen Polardreiecks. Da jedem Dreieck eine korperliche Ecke eindeutig zugeord-
net ist, folgt daraus der Satz:

Jede Ecke ist die Polarecke ihrer Polarecke.

Aus diesem Satz ergeben sich drei weitere Formeln:
a=180"—«’, b=180°—p" und ¢ =180°—y".
Diese sechs Formeln werden in einem Satz zusammengefaBt:

Die Seiten (Winkel) eines sphirischon Dreiecks erginzen sich mit den entspre-
chenden Winkeln (Seiten) des Polardreiecks zu je 180°.

Aus diesem Satz folgt unter Verwendung der Siitze iiber die Winkelsumme im
sphirischen Dreieck ein wichtiger Satz iiber die Summe der Seiten.

Es ist
180° Ca'+ B + 9.

Unter Verwendung der obigen Formeln folgt dann
180° < (180° — a) + (180°— b) + (180°— ¢)
180° < 540°— (@ + b+ ¢)
a+ b+ c < 360°.
Da a, b und ¢ positiv sind, gilt also
0°< a4 b4 c < 360°

Die Seitensumme im sphérischen Dreieck ist kloiner als 360°, das heiBt kleiner als
ein GroBkreisumfang.

3*
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II. Berechnung des sphirischen Dreiecks

6. Das rechtwinklige sphirische Dreieck, die Nepersche Regel

Zur Ableitung der
Formeln verwenden wir
eine beij C rechtwinklige
Ecke (Abb. 14a). Von 4
fillen wir die Lote 4.4’
auf MCund AD auf M B
und verbinden 4’ mit D.
Die Ebene MCA steht
senkrecht auf der Ebene s
MC B, also ist der Win- Abb. 148
kel AA’'D ein rechter
Winkel. Der Winkel AD A’ ist der Neigungswinkel
der Ebene M B A gegen die Ebene M BC. Er ist der
Winkel £, den die sphirischen Seiten 4 B= ¢ und
BC = a miteinander bilden. AuBlerdem ist AC = b.

Die Ebenc M C' B verwenden wir als Zeichenebene;
wir legen die Ebenen MCA bzw. MBA um die
Achsen M C bzw. M B um. Das Dreieck 4 A'D legen
wir um die Achse DA’ um (Abb. 14b).

Aus Abbildung 14b entnehmen wir die folgenden Beziehungen:

ina = 42 ip o Al _ A4 _ D(4) _ D(4y
sing = =2, sinb = ¥4y Pt sine = 3% =
=¥ cosb= M4 _ M4 _ MD _MD
coSa= i =My - T’ COSC_TI(T,)—T-—'
. A'[A 4D
sinf = DEA:]I , cos PEAT
Wir bilden nun:
MD M4A MD
008@'0056=W-T=r—=eosc,
€0s@ . cosb = cosc; @
sinb _ A'(4) _r _ A(4) _ A[4] _ .
sincr D(4) D(4y) D[4] =sinf,
sinb
e = Sné. (28)

Durch Vertauschen der Katheten a und b sowie entsprechendes Vertauschen der
Winkel o und f erhalten wir:

=— =sina. @h)
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‘Weiter erhalten wir:

M4 sina _ MA' 4D _r 4D _ 4D

cosb-sina = —

v ‘sinc 1 MA D(4)  D(4y) _ D[A]

cosb - sine = cos B

und entsprechend durch Vertauschen der Katheten und Winkel

Daraus folgt:

cosa =

Also wird aus (1)

cosc = cosa -
Aus (3a) folgt:
aus (2a) folgt:

also wird aus (2b):

sing = sina« -

cos@ +sinf = cosa.

99%  und cosb=°?iﬁ-
sin B sina

cosx cosf
cosh = 58 " Sina — CU8% - ctgh,
cosc =ectgas ctg 3.
sma=ig,‘

_sinb
sine = —p,
. _cosf sinb _
smc—m~m—ct,gﬂ~tgb,

sina = ctgf - tgb

und entsprechend durch Vertauschen

Aus (1) folgt:
nach (2a) ist

also wird aus (3b)

cos & = ¢o8 @ - si

sinb = tga - cigex.

cosa = %8¢
~ cosd’

cosa =tgb.cige

und entspreche:nd durch Vertauschen

cosf =tga.ctge.
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Damit haben wir zehn Formeln zur Berechnung des rechtwinkligen sphirischen
Dreiecks erhalten. Sie lassen sich in einer Regel zusammenfassen.

Ordnet man die Bestim-
mungsstiicke eines recht-
winkligen sphérischen
Dreiecks wie in Abbil-
dung 15, wobei man den
rechten Winkel ausligt
und die Katheten @ und b
durch ihre Komplemoente

(90°—a) und (90°— b) Abb. 15
ersetzt, so ist der Kosinus eines jeden Stiickes gleich

a) dem Produkt der Kotangenten der anliegenden S'tilcke,
b) dem Produkt der Sinus der gegeniiberliegenden Stiicke.
Diese Regel heiBt Nepersche Regel?).

7. Das schietwinklige Dreieck

Nunmehr wollen wir Formeln zur Berechnung eines schiefwinkligen sphirischen
Dreiecks herleiten.

a) Der Sinussatz der sphirischen Trigonometrie

Wir gehen wie in der ebenen Trigono-
metrie vor und teilen durch eine Héhe
das gegebene Dreieck in zwei rechtwink-
lige Teildreiecke, auf die wir die Neper-
sche Regel anwenden kénnen.

Die Abbildung 16 ist die Skizze eines
sphérischen Dreiecks mit den zugehori-
gen Neperschen Fiinfecken fiir die bei-
den rechtwinkligen Teildreiecke. Es ist
in ADC

sinh,=sin« - sinb
und in BDC
sin h, = sin f - sina.
Daraus folgt
sine-sinb =sinf - sina’

oder

sing _ sina 90°-(c-q)

sinb  snp Abb. 16
') Diese Regel wird nach dem englischen Mathematiker John Napier (1550 bis 1617; latinisierte

Form des Namens: Neper) benannt, der 1614 eine ahnliche Regel gleichzeitig mit seiner Log-
tafel veroffentlicht
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Durch zyklische Vertauschung oder durch Verwendung der and beiden Hohen
h, und h, lassen sich dazu noch die beiden Formeln

snb _smf . sina_sina
sinc siny sinc siny
ableiten.
Diese drei Formeln, die eine gewisse Ahnlichkeit mit denen der ebenen Trigono-
metrie haben, lassen sich auch kurz als laufende Proportion

sina:sinf:siny =sina:sinb :sinc
oder in der Form
¢ sina _ sinb _ sine
Sine sing  siny
schreiben.
Diese Gleichungen werden als der Sinussatz der sphérischen Trigonometrie be-
zeichnet.

b) Die Kosinussitze der sphirischen Trigonometrie

1. Der Seitenkosinussatz

Wir wollen nun einen dem Kosinussatz der ebenen Trigonometrie entsprechenden
Satz fiir die sphiirische Trigonometrie herleiten. Die dazu erforderlichen Beziehungen
werden unter Verwendung der Neperschen Regel aus den beiden Teildreiecken ge-
wonnen.

Es gilt im Dreieck BDC (Abb. 16)

cosa = cos h, - cos (c — gq), ()
im Dreieck ADC
cos b= cosh,-cosgq, (II)
sing = ctga - tgh, = :Z:: . ::'.:Z (III)
und
sinh, = sin a - 8in b. v)
Untér Verwendung eines Additionstheorems geht die Formel (I) iiber in
cosa=cosh,-cosc-cosq+ cosh,-sinc-sing. )
Aus Gleichung (III) folgt
cosh,-sing = ﬂL""c
sln &
und durch Einsetzen von (IV)
cosh,~sinq=°£%ﬂ=sinb~oosa. (IIr')

Durch Einsetzen von (II) und (IIT') in (I') folgt schlieSlich

cosa = cosb . cosec 4 sinb.sinc. cosa.
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Durch zyklische Vertauschung oder durch Verwendung der beiden anderen Hohen
folgen die Formeln

cosb = cosa . cosc + sina +sinc « cos g
und
€0sC = cos@ - cosb 4 sina .sinb . cosy.

Diese drei Formeln, die neben den drei Seiten jeweils nur einen Winkel enthalten,
bilden den Seitenkosinussatz der sphérischen Trigonometrie.

2. Der Winkelkosinussatz

Die Beziehungen zwischen den Seiten und Winkeln eines sphirischen Dreiecks und
seines Polardreiecks ermdglichen es, aus dem Seitenkosinussatz weitere Formeln ab-
zuleiten. In

cosa’ = cosb’- cosc’+ sind’-sinc’ - cos o',

dem auf das Polardreieck 4’ B’C’ angewandten Seitenkosinussatz, setzt man:
a'=180°—a, ¥'=180°—pf, ¢'=180°—y und o =180°—a.
Man erhilt zunichst

cos (180° — &) = cos (180°— ) - cos (180°— y)
+ sin (180°— B) - sin (180°— ¥) - cos (180° — a).

Daraus folgt
—cosa=cosf-cosy—sinf-siny-cosa

und nach Multiplikation mit (—1)
cos@ = — cosfecosy 4 sinf-siny.cosa.
Durch zyklische Vertauschung folgen die weiteren Formeln

c0sf = — cos@ecosy + sine+siny .+ cosb
und
sy = —cosa+cosf + sina+sinf.cosc.

Diese drei Formeln, die neben den drei Winkeln jeweils nur eine Seite enthalten,
bilden den Winkelkosinussatz der sphirischen Trigonometrie.

Bei der Ableitung dieses Satzes haben wir die Beziehungen zwischen dem sphi-
rischen Dreieck und seinem Polardreieck verwendet. Wir sagen deshalb, der Seiten-
kosinussatz und der Winkelkosinussatz sind einander polar.

Man kann ihnliche Uberlegungen auch fiir den Sinussatz durchfiihren, erhilt
jedoch keine neuen Formeln. Wir sagen deshalb, der Sinussatz ist zu sich selbst
polar.
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8. Die sechs Fille der Dreiecksberechnung

Ein ebenes Dreieck ist durch die drei Winkel nicht eindeutig bestimmt, da durch
die Winkelsummenbeziehung der dritte Winkel aus zwei gegebenen Winkeln berech-
net werden kann. Das gilt fiir das sphirische Dreieck nicht mehr. Durch die drei
Winkel eines sphirischen Dreiecks sind die drei Seiten des zugehérigen Polardrei-
ecks eindeutig bestimmt. Daraus folgt, daBl das Polardreieck und damit das ur-
spriingliche sphirische Dreieck eindeutig bestimmt sind. Es sind also die folgenden
sechs Fille der Dreiecksberechnung oder Dreieckskonstruktion moglich (zur Ab-
kiirzung bezeichnen wir eine Seite mit § und einen Winkel mit W):

888 (3 Seiten),
S W8  (zwei Seiten und der eingeschlossene Winkel),

SSW  (zwei Seiten und ein Gegenwinkel)

und
W W W (drei Winkel),

WS W (zwei Winkel und die Zwischenseite),
W WS (zwei Winkel und eine Gegenseite).

Die drei Fiille der zweiten Gruppe lassen sich entsprechend den Ausfiihrungen des
ersten Absatzes auf die drei Fille der ersten Gruppe zuriickfiihren.

Die Konstruktion der Fille SSS und § W 8 ist im Abschnitt 4 in den Abbildungen
10b und 10c dargestellt. Die Konstruktion der Fille WW W und WS W wird mit
Hilfe des Polardreiecks auf die Fiille 88 und S W S zuriickgefiihrt. Die Berechnung
dieser vier Fille bietet keine Schwierigkeiten. Der Fall $8§ kann durch dreimalige
Verwendung des Seitenkosinussatzes und der Fall W W W entsprechend durch drei-
malige Verwendung des Winkelkosinussatzes gelost werden. Da fiir Eulersche Drei-
ecke nur Seiten bzw. Winkel unter180° in Frage kommen, ist durch Verwendung
der Kosinussitze die Losung eindeutig bestimmt, denn die Kosinusfunktion hat im
ersten und zweiten Quadranten verschiedene Vorzeichen.

In den Fillen SSS und W W W geniigt es auch, wenn man nur einen Winkel bzw.
eine Seite mit einem Kosinussatz berechnet, um dann die fehlenden beiden Stiicke
mit Hilfe des Si tzes zu ermitteln. Da aber die Sinusfunktion im ersten und
zweiten Quadranten gleiche Vorzeichen hat, ist diese Losung nicht eindeutig. Diesen
Nachteil muB man jedesmal bedenken, wenn man eine Berechnung mit Hllfe des
Sinussatzes vornimmt. Es gibt jedoch wie bei den eb Dreiecken B
zwischen den Winkeln und den Seiten eines sphirischen Dreiecks, die es ha.uﬁg er-
moglichen, von den beiden moglichen Losungen die brauchbare zu bestimmen. Die
wichtigsten Sitze seien hier ohne Beweis erwihnt.

1. Im sphirischen Dreieck liegen der kleineren Seito der kleinere Winkel, der
mittleren Seite der mittlere Winkel, der groSeren Selte der groBere Winkel
und gleichen Seiten gleiche Winkel gegeniiber.
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2. Die Summe zweier Seiten ist stets groBer als die dritte Seite.

3. Die Summe zweier Seiten und die Summe der beiden Gegenwinkel sind stets
zugleich kleiner, gleich oder graBer als 180°.

4. Die Summe zweier Winkel ist stets Eleiner als der um 180° vermohrte dritte
‘Winkol.

In den Fillen S WS und WS W erhilt man bei der Anwendung des Kosinussatzes
die fehlende dritte Seite bzw. den fehlenden dritten Winkel. Sie sind damit auf die
Fille SSS und W W W zuriickgefiihrt. In den Fillen SSW und W W 8 findet man
zunichst unter Verwendung des Sinussatzes den fehlenden gegeniiberliegenden
Winkel bzw. die fehleride gegeniiberliegende Seite. Dann bereitet aber die weitere
Losung Schwierigkeiten, weil die beiden noch fehlenden Stiicke selbst einander
gegeniiberliegen, so daB8 weder der Sinussatz noch einer der Kosinussitze unmittel-
bar zum Ziel fiihren.

Wir wollen diese Fille an
einem konkreten Beispiel be-
handeln. Fiir den Fall SSW
seien a, b und o gegeben. Der
Winkel 8 wird sofort mit Hilfe
des Sinussatzes gefunden:

. sind -sina
sinf =———
sina
Die unbekannte Seite ¢ und Abb. 17

der unbekannte Winkel y wer-
den mit Hilfe der Hohe k. zerlegt. Es entstehen zwei rechtwinklige Teildreiecke, aus
denen mit Hilfe der Neperschen Formeln y,, y,, ¢, und c, berechnet werden kénnen.
In Abb. 17 sind zwei Beispiele dargestellt.

Einen zweiten, aber rechnerisch umstéindlicgen Losungsweg erhilt man, indem
man auf die noch unbekannte Seite und den noch unbekannten Winkel den Seiten-
bzw. Winkelkosinussatz anwendet. Es ist also

cosc=cosa-cosb+ sina-sinb - cosy
und
cosy=—cos «-cos f+ sine - sin B - cosc.

Es ergibt sich also ein Gleichungssystem mit den beiden Unbekannten cos ¢ und
cos y.

Bei einem dritten, hiufig begangenen Losungsweg verwendet man einen Kosinus-
satz, der auf eine schon bekannte Seite fithrt. Die unbekannte GroBe tritt dann
gleichzeitig in der Kosinusfunktion und in der Sinusfunktionsauf. Es ist zum Beispiel

&

cosa=cosbcosc+sinb-sinc- cosa. (I)
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Wir verwenden nun als HilfsgroBe den Bogen 4D und bezeichnen ihn mit y

(vgl. Abb.17). Dann ist nach der Neperschen Regel

cos & = ctg (90°— y) - otg b,

cos&=tgw-ctgb,

mithin
L8 _ g,
ctgh 8y
oder

cosa-tgb=1tgy;
daraus erhalten wir
cos e -sinb=cosb-tgy.

(II)
(1)

Diesen Ausdruck setzen wir in die Gleichung (I) ein. Dann erhalten wir

cosa=cosb-cosc+ sinc-cosb-tgy.

Durch weitere Umformung folgt dann

cosy-cosa=cosb-cosc-cosy+sinc-cosd-siny,

cos - cosa=cosb - (cosc- cos -+ sinc-sinyp).

Wir wenden auf diese Formel ein Additionstheorem an und erhalten

cosy - cosa = cos b - cos(c— ).

Daraus folgt

Cos Y - CO8G
haad Aol

cos (c — y) = L0l

und da y aus der Gleichung (II) bestimmt ist, ist auch ¢ bestimmbar.

Aufgaben

1. Wie lauten die 10 Formeln fiir das rechtwinklige spharische Dreieck, wenn das Dreieck

a) zwei rechte Winkel, b) drei rechte Winkel hat?

2. Berechnen Sie die fehlenden Stiicke des rechtwinkligen spharischen Dreiecks (Hyp o)t
a) a= 552°, b= 415° b) a= 91,9°, = 42,3°
©) a= 485°, c= 97,2° d) o= 836° a= TL,I°
) b=1356°, f= 99,0° f) o= 99,0°, o=1356°
g) a=132,2°, B= 104,6° b) b=167,4°, x= 739°
i) b=103,1°, c= 92,6° K) o= 1178, f= 325°

Wieviel Losungen gibt es jeweils? Beachten Sie insbesondere e) und f)!

o

h

8. Berechnen Sie die fehlenden Stiicke des gleichsch

fithrung auf zwei rechtwinklige Dreiecke (Basis b)! "
a) ¢ =117,9°, b= 3586°
¢) a= 87,2°, B=119,3°

b) b=972°, o=844°
d) a=184° o=57,1°

Dreiecks durch Zuriick-
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4. Unter welchem Winkel sind zwei benachbarte Seitenflichen bei einem
8) Tetraeder, b) Oktaeder, ¢) Dodekaeder und d) Ik 3
gegeneinander geneigt (vgl. Abb. 17 und 18)?

5. Unter welchem Winkel sind die Seitenflichen einer gerad ImiBigen, vil i
Pyramide gegeneinander geneigt, wenn je zwei benachbarte Kanten an der Spitze einen

Winkel von a) 20°, b) 40°, ¢) 60°, d) 80° bilden?

6. In den folgenden Aufgaben sind die fehlenden Seiten und kael der spharischen Dreiecke
zu berechnen.

8) a= 21,%°, b= 33,6°, c= 39,5° b) 6 =1143°, b= 89,9°, c=121,5°
¢) a= 934°, b=1073°, c= 359,5° d) a= 747, b= 98,6°, c= 656°
6) x= 834°, f= 633, y= 79,9° ) o= 656°, f=1126° y=1187°
g) o = 143,0°, f=167,8° y=152,3° h) o = 84,5°, f=1009°, y= 70,6°
) c= 51,5°, b= 42,9°, y= 48,0° k) c=127,3°, a= 42,5° y= 457°
) a=1285°, b= 89,2°, a=1357° m) «=131,3°, c=119,9°, a= 72,2°
n) a= 465°, f= 739°, a= 844° 0) o =1144°, y= 636°, a= 552°
P f= 6LI°, y=1198, b=1265° q) f= 194°, a= 59,6°, c=103,3°
) a= 97,7° c=1199°, f=140,5° §) a= 894°, b= 33,8, y=178,2°
) b=108,6°, c=1077°, x=108,6° u) 6=1045, b= 423°, y= 79,6°
V) a'=107,2°, f= 33,3°, c= 87,9° W) B=120,2°, y=109,I°0 a= 853
X) = 83,2°, y= 24,8, b= 385° ¥) a= 49,3°, f=1387°, c= 128

Bemerkung: Priifen Sie hach Losung der Aufgaben, ob in jedem Falle der Satz 1 (S. 41) erfiillt
ist! Aufgabe s sorgfiltig interpolieren!

. Berechnen Sie den Winkel in einem gleichseitigen sphirischen Dreieck, wenn die Seite
a) a=10° b) a=30°, ¢) a=50° d) a=70° e) a=90° ) a = 110° gegeben ist!

8. Es ist die Seite in einem gleichseitigen spharischen Dreieck zu errechnen, wenn der Winkel
8) a = 70°, b) o =90°, ¢) a = 110°, d) o = 130°, €) « = 150°, f) x = 170° gegeben
ist!

9. Zwischen welchen Grenzen liegt der Winkel in einem gleichseitigen spharischen Dreieck?
Berechnen Sie die zu diesen Grenzen gehérigen Seiten!

10. Die Kanten eines Dreibeins betragen
r=49cm, s=37cm, (= 42cm;
sie bilden die Winkel
(r,8) =a=280° (s 1)=0b=45°

(¢, 1) = ¢ = 60°.
Unter welchem Winkel sind die durch
die Kanten bestimmten Ebenen gegen
die gerechte Ebene igt, auf
die das Dreibein gestellt wird (vgl.
Abb. 18)? Abb. 18
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III. Anwendung auf die Erdkugel

9. Das Gradnetz und die GroBe der Erde

Durch neuere Messungen sowjetischer Geoditen wurde bestiitigt, daB die Erde ein
Ellipsoid mit drei ungleichen Achsen ist. Die lineare Exzentrizitit des Aquators ist
jedoch so klein, daB sie bei praktischen Berechnungen keine Rolle spielt. Man kann
also den Aquator als Kreis und mithin die Erde als ein Ellipsoid mit zwei ungleichen
Achsen annchmen. Die groBe Halbachse des Ellipsoides (Aquatorradius) hat die
Linge von'rund 6378 km, die kleine Halbachse (Erdmittelpunkt . . . Pol) die Linge
von rund 6357 km. In vielen Fillen kann man sogar die Abweichung des Rotations-
ellipsoides von der Kugel vernachlissigen. Es ist dann iiblich, mit dem mittleren
Erdradius von 7= 6370 km zu rechnen. Die dadurch auftretenden Fehler sind
im allgemei un tlich. Wir wollen im folgenden fiir alle Berechnungen diesen
Wert zugrunde legen, soweit nichts anderes angegeben ist. Durch diese Verein-
fachung wird es uns mdglich, die Ergebnisse der sphirischen Trigonometrie auf die
Erde anzuwenden.

Aus dem Erdkundeunterricht ist uns das Koordinatensystem auf der Erde be-
kannt. Durch dieses Koordinatensystem, das Gradnetz der Erde, ist die Lage jedes
Ortes P auf der Erde eindeutig angeb-
bar. Wir wollen im folgenden eine kurze
Zusammenfassung der wichtigsten Tat-
sachen geben.

Durch jeden Ort P und die beiden
Pole N und S (geographischer Nordpol
und geographischer Siidpol) ist ein GroB-
kreis bestimmt. Der Halbkreis von einem
Pol iiber den Ort P zum anderen Pol
wird als Meridian dieses Ortes bezeich-
net. Der Meridian von Greenwich ist der
Nullmeridian. Der sphirische Winkel des
Kugelzweiecks, das durch den Nullmeri-
dian und den Meridian des Ortes P ge-
bildet wird, ist die geographische Linge Abb. 19
des Ortes (Abb.19). Dabei wird der
Winkel gemessen, der kleiner als 180° ist; die Linge wird als éstliche oder westliche
Linge angegeben, je nachd ob die M g vom Nullmeridian aus in stlicher
oder in westlicher Richtung erfolgt. Die ostliche ist dabei die positive und die west-
liche die negative Richtung.

Der Durchmesser durch die beiden Pole ist die Erdachse. Der GroBkreis, auf dessen
erzeugender Ebene die Erdachse senkrecht steht, heiBt Aquator. Durch jeden Ort P,
der nicht auf dem Aquator liegt, wird ein Kleinkreis bestimmt, der dem Aquator
parallel ist. Dieser Kleinkreis heit Breitonkreis (oder — in der Nautik — Breitenpar-
allel). Durch den Aquator und den Breitenkreis wird auf dem Meridian von P ein
Bogen ausgeschnitten. Der Winkel, der zu diesem Bogen gehért, ist die geographi-
scho Breite des Ortes (Abb.19). Die Breite des Ortes P heiBt nérdliche Breite,
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wenn vom Aquator aus nach Norden gemessen wird, und siidliche Breite, wenn vom
Aquator aus nach Siiden gemessen wird. Der nordlichen Breite gibt man auch das
positive Vorzeichen, der siidlichen entsprechend das negative.

Bei Aufgaben, in denen die Entfernung zweier Orte auf der Erdoberfliche be-
stimmt werden soll, ist es notwendig, das Ergebnis in einem LingenmaB anzugeben.
Die Berechnung der Entfernung zweier Orte ergibt zunichst nur die Linge des
Bogens im Gradma8. Fiir die Umrechnung in Lingeneinheiten wurden Mittelwerte
fiir einen Meridiangrad bzw. einen Aquatorgrad bestimmt. In der Nautik wurde
dariiber hinaus eine besondere Lingeneinheit, die Seemeile, eingefiihrt. '

Eine Seemeile ist die Liinge einer mittleren Meridianminute: 1’ 21852 m. Diese
Beziehung beruht auf den Messungen, die zur Festlegung der Lingeneinheit Meter
durchgefiihrt wurden. Danach wurde das Meter als der zehnmillionste Teil des Erd-
quadranten definiert. Fiir die Linge eines Meridiangrades ergibt sich demnach
111,1 km. Diese Werte fiir die Lingeneinheiten weichen nur sehr wenig von den
‘Werten ab, die sich ergeben, wenn fiir die Berechnung der Lingeneinheiten der Erd-
radius mit r = 6370 km angenommen wird. Eine weitere Lingeneinheit, die durch
die Liinge eines Bogens definiert wurde, ist die geographische Meile. Eine geogra-
phische Meile ist die Linge von vier Aquatorminuten: 1 geographische Meile=7420m.
Die Linge eines Aquatorgrades betrigt 111,3 km. Als MaBeinheiten werden also die
folgenden Werte verwendet.

1 mittlerer Meridiangrad < 111,1 km = 60 sm
1sm = 1852 m,
1 Aquatorgrad £ 111,3 km = 15 geographische Meilen
1 geographische Meile = 7420 m.

Da die Ungenauigkeit fiir einen Meridiangrad héchstens 4+ 0,189, und fiir einen
Aquatorgrad héchstens — 0,369, betrigt, liefern beide Werte bei Entfernungsberech-
nungen hinreichend gute Niherungen. In der Nautik ist es iiblich, die Seemeile zu
verwenden.

10. Das Poldreieck, die Orthodrome und die Kurswinkel

Zwei Orte A und B auf der Erde (Abb.20a) sind durch ihre Koordinaten 4 (g, ; ,)
und B (g,; %,) gegeben. Der kleinere Bogen des GroBkreises durch 4 und B ist die
kiirzeste Entfernung ! zwischen den beiden Orten. Eine in der Nautik und der mathe-
matischen Geographie hiufig auftretende Aufgabe ist es, die kiirzeste Entfernung
zweier Orte auf der Erde zu berechnen. Zur Berechnung dieser Entfernung verwen-
den wir das sphirische Dreieck A N B. Dieses Dreieck heifit das Poldreieck, weil der
Nordpol der dritte Eckpunkt N ist. Fiir zwei Orte auf der Siidhalbkugel verwendet
man zweckmiBig das Poldreieck, das den Siidpol als dritten Eckpunkt hat. Liegt
ein Ort auf der Nord- und der andere auf der Siidhalbkugel, so ist es gleich, welchen
der Pole man verwendet.

Wir zeichnen als Analysisfigur fiirr das Poldreieck A N B ein durch drei Bogen be-
grenztes Dreieck (Abb.20b). Dabei ist 4 B=1 die gesuchte kiirzeste Entfernung,
AN =90°— ¢, und BN = 90° — ¢, jeweils das Komplement der geographischen
Breite und der Winkel A N B= 1,— 1, =41 der Liing terschied der beiden Orte.
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Die kiirzeste Entfernung ! ist nach dem Seitenkosinussatz
o8 1= cos (90° — gy) - cos (90° — @,) + sin (90° — @) - 8in (90° — ¢,) - 008 4 4
oder nach Umformung

cosl=sing, - sing, + cos g, - cos g, - cos 41.

Das Ergebnis ist ‘eindeutig, da die Kosinusfunktion im ersten und zweiten Qua-
dranten verschiedene Vorzeichen hat.

Abb. 20 b

Der GroBkreisbogen zwischen 4 und B
heiBt auch Orthodrome, dementsprechend
wird die kiirzeste Entfernung auch ortho-
drome Entfernung genannt.

Von den beiden Tangenten im Punkt A
an die GroBkreise des Poldreiecks zeigt

Abb.20a die eine Tangente nach Norden und die
andere in die Himmelsrichtung, nach der
man sich wenden muBl, wenn man auf der kiirzesten Verbindung nach B gelangen
will. Der Winkel « wird deshalb der Kurswinkel des Anfangskurses genannt. Eine
ihnliche Uberlegung gilt im Punkte B, nur daB hier die zweite Tangente in die Rich-
tung weist, aus der man in B ankommt. Der Kurswinkel 8 heiBt deshalb auch der
Kurswinkel des Endkurses. Wollte man in B auf demselben GroBkreis weiterfahren,
so wiire der zugehorige Anfangskurswinkel 180° — f. Im allgemeinen, das heiBt,
wenn ¢, &= —q, und /, == J, ist, ist « £180° — f. Daraus kénnen wir schlieBen,
daB der Kurswinkel auf der Orthodromen seinen Wert éndert. Diese Anderung er-
folgt stetig. Aus diesem Grunde wird im allgemeinen nicht der orthodrome Kurs
gesteuert.

Die Berechnung der beiden Kurswinkel erfolgt unter Anwendung des Sinussatzes.
Die Werte sind nicht eindeutig und erfordern die Heranziehung der auf den Seiten 41
bis 42 erwihnten Sitze. Bei Verwendung des Seitenkosinussatzes lassen sich auch
die beiden Kurswinkel in jedem Fall eindeutig bestimmen. Wegen der einfacheren
Rechnung ist jedoch im allgemeinen die Anwendung des Si tzes vorzuzieh

Die Bezeichnung des Kurses ist nicht einheitlich. Im allgemeinen gibt man den
Kurs nach der folgenden Methode an: Man bezeichnet die Nordrichtung mit 0° und
weiter die Ostrichtung mit 90°, die Siidrichtung mit 180° und die Westrichtung mit
270° (vgl. die Einteilung einer Windrose). Die Siidostrichtung bildet also mit der
Nordrichtung einen Winkel von 135°. Man schreibt sie: N 135° O (lies: Nord, 135°
iber Ost). In einzelnen Fillen wird noch die folgende Schreibweise durchgefiihrt:
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Man gibt der Nordrichtung und der Sidrichtung die Bezeichnung 0° und miB8t nun
den Winkel von 0° bis 90° in 6stlicher oder westlicher Richtung. Fiir die Stidostrich-
tung ergibt sich danach die folgende Schreibweise: S 45° O (Siid, 45° iiber Ost).

11. Loxodrome, Scheitelpunkt, Schnitt mit Meridian- und Parallelkreisen

Da es im allgemeinen praktisch nicht méglich ist, auf der Orthodromen zu fahren,
ist es notwendig, eine Linie konstanten Kurses festzulegen. Die Linie konstanten
Kurses hat die Eigenschaft, daB sie simtliche Meridiane unter dem gleichen Winkel
schneidet, und heit Loxodrome.

Verlauf und Linge der Loxodrome lassen sich im allgemeinen nicht mit den Mit-
teln der sphirischen Trigonometrie berechnen. Die Bestimmung der Loxodrome ist
ein Problem der Differentialgeometrie, also des Zweiges der Mathematik, der sich
mit der Anwendung der Infinitesimalrechnung auf die Geometrie beschiiftigt. Die
Loxodrome verlduft im allgemeinen wendelartig auf der Erdkugel und nihert sich
asymptotisch, je nach der Fahrtrichtung, zwei gegeniiberliegenden Polen. Von
Gerhard Kremer (genannt Mercator, 1512 bis 1594) ist eine Karte entwickelt worden,
auf der simtliche Loxodromen gerade Linien sind. Diese Karte wird Mercatorkarte
genannt (vgl: Atlas zur Erd- und Linderkunde, Grole Ausgabe, Karten 92;94c bis e).
Damit ist es moglich, durch einfaches Anlegen eines Lineals an diese Karte den loxo-
dromen Kurs abzulesen. Die loxodrome Entfernung zweier Orte ist nie kleiner als
die orthodrome Entfernung. Liegen beide Orte auf dem gleichen Meridian oder auf
dem Aquator, so sind beide Entfernungen gleich. In allen anderen Fillen ist die loxo-
drome Entfernung grofer. Der Unterschied kann betrichtliche Ausmafie annehmen.
So betrigt zum Beispiel der Unterschied der loxodromen und der orthodromen Ent-
fernung zwischen dem Nadelkap (Siidafrika; ¢, = 34,8° S, 2, = 20,0° O) und dem
Siidwestkap auf Tasmanien (Australien; ¢, = 43,7° S, 1, =146,7° O) rund 1180 km
und der gleiche Unterschied zwischen Kap Hoorn (Siidamerika; ¢, = 56,0°S,
/y=673°W) und dem Siidkap auf der Stewartinsel (Neuseeland; ¢, = 47,3° S,
/o =167,5° 0) rund 1200 km. Liegen zwei Orte auf derselben geographischen Breite,
so ist die Loxodrome, die hier die Meridiane unter 90° schneidet, ein Bogen des Par-
allelkreises, dessen Linge durch den Lingen-
unterschied beider Orte unter Verwendung
des Parallelkreisradius ¢ berechnet werden
kann (vgl. Abb.21). Es ist [,,,=p arc4].

=
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n.r-Ad-cosp
180° '

Diese spezielle Loxodrome ist eine geschlossene Kurve, und zwar ein Kleinkreis.

Da die loxodrome Entfernung wesentlich gréBer als die orthodrome Entfernung
sein kann, wird im allgemeinen nicht der loxodrome Kurs gefahren. Es werden viel-
mehr auf dem orthodromen Kurs einzelne Punkte festgelegt. Zwischen diesen Punk-
ten wird dann ein loxodromer Kurs gesteuert. Man braucht dann den Kurs nur in
bestimmten Zeitabschnitten und nicht stetig zu &ndern. Der Unterschied zwischen
der orthodromen Entfernung und einer solchen ist dann nicht mehr erheblich. Wir
kénnen die Anniaherung der Orthodromen durch Loxodrome auf einer Kugel mit der
Anniherung eines Kreises durch einen Polygonzug in der Ebene vergleichen.

Liegen zwei Orte A und B hinreichend nahe beieinander, so ist, wenn « ein spitzer
Winkel ist, auch noch 180°— f ein spitzer, das heiBt, § ist ein stumpfer Winkel.
Wegen der stetigen Kursinderung auf der Orthodromen wird 180° — # allmihlich
immer gréBer, und nach Erreichen des Wertes

B=180°— B =90° wird 180°— B

Wegen arc 4i= und g=rcosg ergibt sich [, =

ndi
180°

ein stumpfer, das heiBt, # wird ein spitzer Winkel.

Fiir die folgenden Betrachtungen wollen
wir ein Poldreieck verwenden, das als
dritten Eckpunkt den Nordpol enthilt.
Sind nun « und § spitze Winkel, so gibt
es auf dem Wege A B einen Meridian, der
von der Orthodromen unter einem Winkel
von 90° geschnitten wird. Der Schnittpunkt P, dieses Meridians mit der Orthodro-
men ist von allen Punkten auf dem Wege A B der dem Nordpol N am niichsten ge-
legene Punkt. Er heiBt Scheitelpunkt auf dem Wege A B. Bezeichnen wir seine geo-
graphischen Koordinaten mit P,(¢,; 2,) und setzen i, — 1, =4, 1, so ist die Seite
P,N = 90°— ¢, und der Winkel AN P, =4, 1. Indem bei P, rechtwinkligen sphi.-
rischen Dreieck 4 P, N kénnen 4, 2 und ¢, mit Hilfe der Neperschen Formeln berech-
net werden, wenn der Kurswinkel « vorher im sphirischen Dreieck 4 N B berechnet
worden ist (Abb.22). Ahnliche Uberlegungen gelten, wenn « und 8 stumpfe Winkel
sind. Dann ist der Schnittpunkt P, (der Scheitelpunkt), in dem der Meridian die
Orthodrome rechtwinklig schneidet, dem Siidpol am niichsten gelegen.

4 100017-2)
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Abb. 23

. Zur Kursfestlegung werden die Schnitt-
punkte mit beliebigen, aber hekannten
Liingenkreisen /, berechnet. Im Drei-
eck AP,N (Abb.23) ist der Winkel
ANP, = A).= }, — 4, der Winkel
NAP,=o und die Seite AN =90°—q,
bekannt. Dann konnen ¢,, die gesuchte Breite, und z, der Kurswinkel im
Punkte P,, berechnet werden.

In vielen Fillen ist die Ermittlung des Schnittpunktes mit einem gegebenen
Parallelkreis notwendig. Dabei ist die Berechnung der Linge des Schnittpunktes P,
mit dem Aquator (¢, = 0°) besonders einfach (Abb.24). Es ist der Winkel
ANP,=Ayh = ),— )y =A'P,, ein Bogen auf dem Aquator, die eine Dreieckseite.
Man verwendet entweder das rechtseitige Dreieck 4 P, N mit der Seite N P,= 90°,
der Seite AN = 90° — ¢, und dem Winkel N 4 P, = o oder das rechtwinklige Drei-
eck A A’ P, mit dem Winkel 4 4’ P, = 90°,
der Seite 4A’=¢, und dem Winkel
A’AP,=180° —«a zur Berechnung von
A,

Abb. 24

Die Ermittlung des Schnittpunktes P, mit einem beliebigen Parallelkreis (¢,)
fiithrt auf ein rechnerisch etwas umstindliches Verfahren (Abb.25). Im Dreieck
ANP, mit der Seite AN =90°—¢,, dem Winkel NAP,=a und der Seite
NP,=90°—¢, ist A= 1,— 2 wegen des Falles SSW nur umstindlich
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berechenbar. Hierbei ist zu beachten, daB
NA'P, nicht als rechtwinkliges Dreieck
benutzt werden darf, weil 4’ P, als Bogen
eines Breitenkreises keine Dreieckseite
darstellt.

Beispiel:

Fir die kiirzeste Verbindungslinie zwischen Hongkong H(p, = 22,3°N;
7, =114,2° O) und Valparaiso V (g, = 33,0°S; i, = 71,7°W) sind zu berechnen:

a) die kiirzeste Entfernung [ und die beiden Kurswinkel ¢ und g, *

b) der siidlichste Punkt P,

c¢) der Schnittpunkt D mit der Datun‘lgrenze (2p =180°),

d) der Schnittpunkt @ mit dem Aquator (¢, = 0°),

e) der Schnittpunkt W mit dem siidlichen Wendekreis (py = 23,5° S).

1. Allgemeine Lisung

Durch die Punkte H, N und V
ist ein sphirisches Dreieck be-
stimmt (Abb.26a), von dem uns
bekannt sind:

die Seite HN=90°— ¢y,
die Seite NV =90°+ |¢g|
und der Winkel 4,2 = 1, — 1,

wobei die Linge 1, als &stliche
Liinge angegeben werden muB. Zu-
niichst ist es erforderlich, die fehlen-
den Stiicke des sphirischen Drei-
ecks zu berechnen. Abb. 268

4+
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a) Nach dem Seitenkosinussatz ergibt sich die Seite H V=l (Abb.26b) aus
008 L= 008 (90° — @,)-- c08 (90° + gy ) + sin (90° — ;) - sin (90° + gy ) - cos 4,
oder
cosl= —singq, - sin|g,| + cos ¢, - cos |@,| - cos 4,1.
Die Winkel « und g ergeben sich nach dem Sinussatz (Abb. 26b) aus

(1)
oder
sina = 2/sleindi? @
und
sin

_ sin(90°— @) -sin4, 2
- sinl
oder

sinf = cos@, -sind, 4

sinl

@

Abb. 26 b
b) Die Berechnung des siidlichsten Punktes ergibt sich nach Abbildung 26c. Das
Neperschen Regel

Dreieck N H P ist bei P rechtwinklig. Es ergibt sich zuniichst fiir 4,4 nach der

cos (90° — @) = ctg A4 - ctg a,
also

ctgd, A = sing

" N
o« @A
3
en =sing-tga.  (4) ,, o
kd
N
Dann folgt fiir die geographische Liinge =
des Punktes P
lg=h+4,2. (5) )
Die geographische Breite des Punktes P P
ergibt sich aus
¢
co8 (— |gg|) = sin « - sin (90° — ¢,),

ke
€08 |@g| = sin o - cos @;. (6)

90°-7,

Abb.26¢

c) Die Berechnung des Schnittpunktes mit der Datumgrenze ergibt sich nach
Abb.26d. Im Dreieck HN D sind die folgenden Seiten und Winkel bekannt:

HN=90°—¢,, 4,4=180°— ), und «. Berechnet werden muB die Seite
DN = 90°+ |@p|. Zunichst ist es notwendig, den Winkel ¢ zu berechnen.
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Es ist nach dem Winkelkosinussatz

N
€08 £ = —co8 A4 - cos a + 8in Agl - sin « - cos (90°— ¢,) 900"1
oder
cos &£ = —cos ;2 - cos  + sindgd - sina - sin g, . (7) H %‘
Es ergibt sich nun fiir |¢p]: ES

sin & - 8in (90° — @)

8in (90° + |¢p|) = e
oder 0
8in o - cos @,
cos || = 5250 ® Abb.26d
d) Die Berechnung des Schnittpunktes @ mit dem Aquator ergibt sich aus Abbil-
dung 26e. Das Dreieck @ V4 V ist bei V4 rechtwinklig. Daraus ergibt sich fiir 4,1
08 (90° — |@y|) = ctg B - ctg (90°— 4, 1) 0 28,2 %
oder 4]
sin |gy| = otg B - tg4,1. ,
Es folgt
tg4,A =sin |g,| - tg B. 9)
Dann ist
Aa=N—A. (10)
e) Die Berechnung des Schnittpunktes W mit
dem siidlichen Wendekreis ergibt sich aus
Abbildung 26f. Im Dreieck HN W sind die
folgenden Seiten und Winkel bekannt: Abb. 266
HN=90°—¢,, NW=90°+ |pw| und a.
Zuniichst wird der Winkel y berechnet. Es ist
. __ sino-sin (90°— @)
SIRY = T 00°+ [ow)
oder .
siny =Sl P Y (1
Zur Berechnung des Winkels 4;1 verwenden
wir den Losungsweg mittels eines Hilfswinkels Abb. 26 f
(vgl. Seite 43). Es ist
c08 y = —co8 « - cosAg A + sin a - sind; 4 - cos (90° — )
oder
€08y = —co8 « - cosAyA + sina - sind; 2 - sing, .
1) Setzt man dJe Lésung b (" dinaten des Scheitelpunktes) als bekannt voraus, so a8t sich
die Rech im inkligen Dreieck DPN und die Rechnung e mit Hilfe des Dreiecks

WPN wesenthch vereinfachen.
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Wir setzen
tgy=tga- sing, (12)
oder
cosa-tgy=sina-sing,.
Dann gilt
siny .
€08y = —cos - cosd; A+ cos a - = - sind4;4,

CO8Y - cosy=—cosy-cosa-cosdgl+ cosa-siny-sind;d,

=cosa- (siny-sindsA— cosy - cosd; ),

=—cos a- cos (y+4;1),

also
_ _cosy.cosy
cos(y + 4;1) = wosa (13)
Dann folgt
Aw=h+4,2. (14)
2. Numerische Losung
a) (1) cosl= —sing,sin|p,| (3) sinf= t.'ds%.slnA,l
+ €08 ¢, €08 |¢y| cos 4, A sinl
(la) 4,1 =288,3°—114,2°=174,1° : num ig
cos cos 22,3° | 9,9662 — 10
A . sin sin 174,1° | 9,0120 — 10
sin g, sin 22,3° | 9,5792 — 10 sinl sin 168,1° | 9,3143 — 10
sin |@,| sin 33,0 9,7361 — 10 sin I PR I 2,.6630 — 10
 —0,2067 | 03153 —1 = 180°— 27,47°— 152,53°
008 Py cos 2230 | 9,9662 — 10 Die Winkel « und # sind stumpfe
hoe 'j"‘}. hoes 133;‘1’9 3333? _ :8 Winkel, wie man leicht am Globus
nachpriifen kann.
—0,7718 | 0,8875 — 1
cosl — 09785 | b)  (4) ctgd,A=sing, tga

1=180°—11,9°=168,1°
1=168,1 - 60 sm =10086 sm

2) sina= cos | @y sin 4,2

sinl
num . Ig
©08 |@,| cos 33,0° | 9,9236 — 10
sin 4,4 sin 174,1° | 9,0120 — 10
sinl sin 168,1° | 9,3143 — 10
sin & sin 24,72° l 9,6213 — 10

o« =180°— 24,72°=155,28°

num 1g
sin ¢, sin 22,3 | 9,572 — 10
tgo tg 155,28° | 96631 — 10
ctg 4,24 — ctg 80,09° | 9,2423 — 10

Ay =180° — 80,09° = 99,91°

(6) lg= 2 +453
A =114,2°+ 99,91°= 214,11° O
1g=145,89°W



Loxodrome, Scheitelpunkt, Schnitt mit Meridian- und Parallelkreisen 55

(6) cos|pg|=sinacosq,

d) (9) tgd,=sin|qp,|tgf

num Ig num Ig
sin x | sin 155,28° | 9,6213 — 10 sin |@,| sin 33° 9,7361 — 10
cos @, cos 22,37 9,9662 — 10 tg B tg 152,53° | 9,7159 — 10
cos |pgl cos 67,24° | 9,5875 — 10 tgd,A -—tg15,81° | 9,4520 — 10
@pg=67,24°8 4,7 =164,19°

Die Koordinaten des siidlichsten
Punktes sind P (67,24° S; 145,89°W).

¢) (7) cose=—cosd,l cosa
+ sindy 2 sin & sin g,

(Ta) A1 =180°—114,2°= 65,8°

num Ig
cos 432 . cos 65,8° | 9,6127 — 10
cos cos 155,28° | 9,9582 — 10
+ 0,3723 0,5709 — 1
sin 444 sin 65,8° 9,9601 — 10
sin a sin 155,28° | 9,6213 — 10
sin @, sin 22,3° 9,5792 — 10
0,1447 0,1606 — 1
cos & | 05170
€= 58,87°
__ sina cosg,
(8 cos|gp|= sine
num Ig
sina sin 155,28° | 9,6213 — 10
€os @, cos 22,3° | 9,9662 — 10
sin & sin '58,87° | 9,9325 — 10
cos |gp| | cos 63,14° | 9,6550 — 10

@p=63,14°8

Die Datumgrenze wird unter der
Breite 63,14° S geschnitten.

(10) 24=dy— Ak
= 288,3° —164,19°

la=12411°

Der Aquator wird unter der Linge
124,11° O geschnitten.

¢ 11) siny— SR C08P
) (11) Y= s iowl

num i Ig
sina 8in 155,28° | 9,6213 — 10
cos @, " cos 22,3° 9,9662 — 10.
co8 |pw| oos 23,5° | 9,9624 — 10
sin y sin  24,95° | 9,6251 — 10

y = 24,95°

(12) tgy=tgasing,

num g
tg o tg 155,28° | 9,6631 — 10
sin @, sin 22,3° | 9,5792 — 10
tgy —1g9,91° | 9,2423— 10

p =180°— 9,91°=170,09°

= Xsveosy
(13) cos(yp+4;4)= o
num Ig
cos y cos 170,09° | 9,9935 — 10
cos y cos 24,95° | 9,9574 — 10
co8 & cos 155,28° | 9,9582 — 10
cos (y + Ag4) | — cos 10,5° | 9,8927 — 10
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v +4;4=190,5° (14) Aw= A +4,A=114,2° + 20,41°
434 =190,56° —170,09° = 20,41°
Aw =134,61°
Die Rechnung mit dem Wert
p+4;4=169,5° wirde einen nega- Der siidliche Wendekreis wird unter
tiven Wert fiir 451 ergeben. der Linge 134,61° O geschnitten.
Aufgaben
Geographische Koordinaten einiger Orte:
Geogr. Geogr. Geogr. Geogr.
Ort Breite Lange Ort Breite L:zi:
(@) () %) (%)
Athen............ 38,0° N 23,7°0 40,8° N 14,3° 0
Auckland (Neusee- 40,8° N 74,0° W
land) ........... 36,8° S 174,8° 0 59,9°N 10,7°0
lin . . el 52,5° N 134°0 48,8° N 2,3°0
Bombay . . 18,9° N 72,8° 0 39,9°N 116,4° 0O
Budapest . 47,5° N 19,1°0 52,4° N 13,10
Charkow .... 50,0° N 36,2° 0 Rio de Janeiro .. 22,9° S 43,2°W
Greenwich 51,5° N 0,0° Rostock......... 54,1° N 12,1° 0
Hamburg . 53,6° N 10,0° 0 San Francisco ... 37,8°N 1224°W
Hongkong . 22,3° N 114,2° 0 Strasbourg ...... 48,6° N 7,8° 0
Kairo ..... e 30,1° N 31,3° 0 Siidkap (Stewart-
e 56,0° 8 67,3°' W Island)........ 47,3° S 167,5° 0
69,9° N 170,5° O Siidwestkap
33,9°S 18,5° 0 (Tasmanien) . .. 43,7° 8 146,7° O
51,3° N 124° 0 Sydney ......... 33,9° S 151,2° 0
59,9° N 30,3° 0 Taschkent ...... 41,3° N 69,2° 0

51,5° N 0,2°W | Tbilissi ....
37,8° S 145,0° 0 Tokio .....
55,8° N 37,6°0 Ulan-Bator
. 34,8° S 20,0° 0 Valparaiso . .
Nagasaki . 32,8° N 129,9° 0 Wladiwostok . ...

41,7° N 44,8° 0
35,7° N 139,8° 0

431°N | 1316° 0

In den f den Aufgaben sind die geographischen Koordinaten, wenn nicht besonders ange-
geben, dleser Tnbelle zu entnehmen

1. Wie groB ist die kiirzeste Entfernung zwischen Charkow und Peking, und wie groB sind die
Kurswinkel ?

2. Das im Jahre 1874 von der Insel Valentia (¢, = 51,9°N; 4, = 10,4°W) nach Neufundland
(py = 47,7°N; 2, = 53,4°W) verlegte Kabel hat eine Linge von 1854 sm. Vergleichen Sie
diese Lange mit der kiirzesten Entfernung zwischen den beiden Orten!

8. Es ist die Lange des Weges zwischen dem Nadelkap und dem Siidwestkap von Tasmanien
zu bestimmen. Der orthodrome Kurs schneidet den 55. siidlichen Breitenparallel in den
Punkten F, und E,. Da ein Schiff die Packei nicht durchfahren kann, fahrt es auf dem
orthodromen Kurs bis E,, dann auf dem Breltenparallel bis E, und dann wieder auf dem
orthodromen Kurs. Die K inkel sind zu b




4.

8.

-

10.

11.

12,
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Wo liegt der Scheitelpunkt auf dem kii Wege von Rostock nach Wladi k und wie
weit ist er vom Nordpol entfernt?

Wie gro8 ist der U hied zwischen der loxod und der orthod: Entfernung
8) Leningrad—Oslo, b) New York—Neapel,
¢) Kapstadt—Sydney, d) Leningrad—Kap Oljutorski?

Wie weit ist der nordlichste bzw. der siidlichste Punkt  von d der Loxod.romen entfernt? (Die
Loxodrome liegt in diesen Fillen auf dem entsp )

)

Es sind die kiirzeste Entfernung fiir die Fluglinie zwischen Moskau und Peking iiber Ulan-
Bator und die Kurswinkel zu berechnen. Welches ist der nérdlichste Punkt jeder Teilstrecke ?

Der Portugiese Magalhdes benotigte bei seiner Erd lung 1520/21 fiir die Entfernung
von der nach ihm benannten MeeresstraBe (p, = 54, 5°S 7.. = 71,5°W) nach den Philip-
pinen (py = 8,0°N; 4, = 126,3°0) 99 Tage. Welche Zeit brauchte ein Schiff, das mit einer
Geschwindigkeit von 18 Knoten (1 Knoten = 1sm/h) fahrt, wenn es zunachst zum Ort
P(py = 8,0°N; A;=170,0°0) auf der Orthodromen und dann weiter auf der Loxodromen
fahren wiirde?

Ein Schiff fahrt von Auckland (N land) mit dem orthod Kurs ONO ab. Wo und
wann kreuzt es die Datumgrenu und wo und wann den Aqus.hor. wenn das Schiff mit einer
Geschwindigkeit von 19, 4 Knoten (1 Knoten = 1 sm/h) fahrt?

Es sind die kiirzeste Entfe ischen Leni d und Wladi k und der Scheitel
punkt zu bestimmen.

Von einem Ort P(p, = 34°20°S; 4, = 18° 20°0) will man nach Melboume fahren, ohne
wegen der Eisgefahr den Breitenparallel 55°S zu iibersch

a) Auf welchen Langen schneidet der orthod: Kurs diesen Breitenparallel ?
b) ernel S ilen sind zuriickzul wenn fiir den siidlich des 55. Breitenparallels ge-
gt Teil des orthod: Kurses der Kurs auf diesem Breitenparallel gewahlt wird ?

¢) In welchen Breiten schneiden die beiden GroBkreisbogen die durch 5 teilbaren Meridiane ?
d) Besti Sie den Anfangsk und den Endkurs!

Ein Schiff befindet sich in einem Ort P(p, = 50° 10’ S; 2, = 159° 20'W) und soll, ohne in
siidlichere Breiten zu kommen, nach Valparaiso fahren.

8) Auf welcher Linge schneidet der orthod Kurs den Breitenparallel 50° 10'S?

b) Wieviel S ilen sind zuriickzulegen, wenn fiir den siidlich des Breitenparallels 50° 10’ S
gel Teil des orthod Kurses der Kurs auf diesem Breitenparallel gewahlt wird ?

¢) Mit welchem Endkurs kommt man in Valparaiso an?

d) Die Schnittpunkte der Orthod mit den durch 5 teilbaren Meridianen sind zu be-
rechnen.

Es sind die Kurswinkel und die kiirzeste Entfernung fiir eine Fluglinie zu berechnen.

8) Leningrad—Moskau b) Berlin—Budapest
¢) Moskau—Thbilissi d) Peking—Wladiwostok
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13. Berech Sie die Orthod ischen Kapstadt und Rio de Janeiro und geben Sie die
K inkel und den Scheitelpunkt der Orthod an!

14. Von einem Ort P(1, = 136,9°W; o= 35,8°N) aoll ein Schiff auf dem kiirzesten Wege nach
San Francisco fnhren Es sind die b Br g, der Anfangskurs, der Endkurs und
der Scheitelpunkt zu b

15. Ein Schiff soll von Kapstadt nach Bombay fahren. Es fahrt zunachst auf dem Langenkreis
bis zum Breitenparallel 35°S und dann auf dem Breitenparallel bis 48° ostlicher Linge.
Von dort aus fihrt es auf der Orthodromen bis Bombay. Wie lang ist der Weg? Welches
sind die Kurswinkel in den einzelnen Orten? Um wieviel ist dieser Weg langer als die kiirzeste
Entfernung zwischen Kapstadt und Bombay?

16. Welche beiden Punkte des Aq sind von Taschk ebenso weit entfernt wie Taschkent
vom Nordpol ?

17. Es ist die kiirzeste Entfernung Kairo—Leipzig zu bestimmen.

18. Ein Schiff soll von Valparaiso nach Siidkap (Stewart-Island) fahren, ohne den Breitenparallel
55°8 zu iiberschreiten. Wie lang ist der Weg, wenn der siidlich des Breitenparallels 55°S
gelegene Teil des orthodromen Kurses durch den Kurs auf diesem Breitenparallel ersetzt
wird? Welche Kurswinkel ergeben sich? Um wieviel ist der Weg langer als die kiirzeste Ent-
fernung? Wie weit ist der Scheitelpunkt der Orthod vom Siidpol entfernt?

19. Es ist der kiirzeste Weg zwischen Taschkent und Lemngmd zu bestlmmen Unter welchen
Langen (Breiten) werden die durch 5 teilbaren Breitenk (L& gesch ?
Kennzeichnen Sie den Kurs auf der Karte!

20. Auf einer Kut;e ist die Orthodrome zwischen Charkow und Kap Oljutorski einzutragen.

21. Auf einer Merca.torkarte (Atlas zur Erd- und Landerkunde, 92c—e) sind die Loxodrome und
die Orthod hen dem Siid kep (T i und Neapel ei

&

Anmerkung zu den Aufgaben 20 und 21: Es sind mehrere Punkte der Orthodromen zu
berechnen.



C. Komplexe Zahlen

I. Vom Bereich der natiirlichen Zahlen zum Bereich
der reellen Zahlen

Der heutige Zahlbegriff ist das Ergebnis einer langen Entwicklung, die bereits in
vorgeschichtlicher Zeit begann. Aus den praktischen Bediirfnissen der Menschen er-
gaben sich das Zihlen und damit die ersten Zahlen der Folge

1,23, 4,5, --.

Sie sind Zahlen im urspriinglichen Sinne des Wortes, das heit, man kann mit
ihnen zéhlen. Doch kennzeichnet das Zihlen nur einen Teil ihrer Bedeutung. Es
steht namlich in einem engen wechselseitigen Zusammenhang mit dem Rechnen.
So entwickeln. sich einerseits die ersten Rechenoperationen unmittelbar aus dem
Zshlen durch Z f g einzel Ziahlschritte, wihrend andererseits das
Zihlen ohne die Hilfe des Rech nach wenigen Schritten aufhéren wiirde. Wir
konnen zu gréBeren Zahlen nur gelangen, indem wir kleinere rechnend zusammen-
setzen. Bei allen Zahlen von 11 an kommt dies bereits in unserer Ziffernschreibweise
zum Ausdruck (vgl. nachstehende Aufgabe). Erst das Rechnen erméglicht es also,
die Zahlen zu beherrschen und sie im praktischen Leben anzuwenden. Die wesent-
liche Bedeutung der Zahlen liegt also nicht darin, daB man mit ihnen zihlen, son-
dern daB man mit ihnen rechnen kann.

Um so entscheidender ist die Tatsache, da mit den betrachteten Zahlen wohl das
Zihlen ohne jede Einschrinkung moglich ist, jedoch viele von den einfachsten
Rechenaufgaben mit ihnen nicht 16sbar sind. Es ist daher erforderlich, umfassecndere
Zahlenbereiche zu bilden, in denen solche bisher unlésbaren Aufgaben gelost werden
konnen. Auch bei diesen Erweiterungen ist es berechtigt, von Zahlen zu sprechen;
denn schon bei den urspriinglichen Zahlen 1, 2, 3, - . - ist das Rechnen wesentlicher
als das Ziahlen. Wir miissen nur zuvor den urspriinglichen Zahlen einen besonderen
Namen geben, damit wir sie von dem erweiterten Begriff unterscheiden kénnen. Die
bekannte Bezeichnung ,,natiirliche Zahlen‘* soll daran erinnern, daB diese Zahlen die
erste Stufe des Zahlbegriffes darstellen, daB es Zahlen sind, mit denen man nicht nur
rechnen, sondern auch zéhlen kann.

Von den Erweiterungen des Zahlbegriffes sind uns schon einige bekannt. In der
Grundschule haben wir ganze und gebrochene, positive und negative Zahlen kennen-
gelernt. Im 9. Schuljahr wurden iiber die rationalen Zahlen hinausgehend die reellen
Zahlen behandelt. Wie wir im folgenden feststellen werden, 1aBt sich der Bereich der
reellen Zahlen noch zu dem der komplexen Zahlen erweitern.
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Aufgabe

Jede Ziffernschreibweise mturhcher Zahlen heruht — von den grundlegenden Zeichen fiir
die ersten Zahlen abgesehen — auf R

P

a) Welche Rechenschritte fithren zum Beispiel zu der mit dem Symbol 2645 gekennzeichneten
natiirlichen Zahl?

b) Welche Rechenoperationen liegen also der dekadischen Schreibweise zugrunde?

¢) Welche Rech ti sind d fiir die Schreibweise im rémischen Ziffernsyst
notwendig, etwa f'ur die Zahl CCXLIV?
d) Welche Rechenoperationen erfordert schlieBlich die Schreibweise einer gebroch Zahl,

etwa 17,125, im dekadischen System?

1. Der Bereich der natiirlichen Zahlen

Durch das Zihlen erhalten die natiirlichen Zahlen von selbst eine Ordnung, die
wir ihre lineare Anordnung nennen wollen. Die natiirlichen Zahlen sind in einer ganz
bestimmten Reihenfolge gegeben, in der jede von ihnen genau einen unmittelbaren
Nachfolger und genau “einen unmittelbaren Vorgiinger hat. Davon ausgenommen ist
nur die 1, die nur Nachfolger, aber keine Vorginger hat.

1 2 3 4 § -
Abb. 27

Diese Eigenschaft der natiirlichen Zahlen erméglicht die Veranschaulichung auf
dem Zahlenstrahl (Abb. 27). Dabei wird eine Zahl selbst auch oft als der Weg (Pfeil)
von einem Anfangspunkt A zu dem mit ihr bezeichneten Punkt a hen (Abb. 28).

)

Abb. 28

Der Abstand von Punkt zu Punkt bedeutet dann immer das Weitergehen von der
einen Zahl zur nichstfolgenden, er gibt also einen Schritt an.

a) Die Addition natiirlicher Zahlen

Die Zusammenfassung mehrerer Zihlschritte fithrt zur ersten Rechenoperation,
der Addition. Die Summe zweier natiirlicher Zahlen @ und b ist die Zahl, die man
erhilt, wenn man von a aus b Schritte weiterzihlt. Fiir dle natiirlichen Zahlen er-
geben sich die folgenden
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Grundgesetze der Addition:

1. Die Summe zweier natiirlicher Zahlen ist stets wieder eine cindeutig bestimmte
natiirliche Zahl. Die Addition ist also im Bereich der natiirlichen Zahlen immer
ausfiihrbar.

2. Die Addition ist kommutativ, daB heiBt, es gilt
a+b=>b+a.
3. Die Addition ist assoziativ, das heilt, es gilt
a+(b+ec)=(a+b)+e.

Diese Grundgesetze sind aus der Rechenpraxis von Jahrtausenden abstrahiert, so
daB sich zunichst jeder Zweifel an ihnen verbietet. Man kann aber einwenden, daf3
es sicher sehr groBe natiirliche Zahlen gibt, mit denen bisher noch niemand gerechnet
hat. Es ist deshalb von Bedeutung, daB man die uneingeschrinkte Giiltigkeit dieser
Grundgesetze aus der Erklirung der Addition mit Hilfe der linearen Anordnung ab-
leiten kann (vgl. Aufgabe 1). Die Berechtigung, gerade diese drei Regeln als Grund-
gesetze der Addition auszuzeichnen, liegt darin, daB sich alle iibrigen Rechenregeln
der Addition als Folgerungen aus ihnen ableiten lassen (vgl. Aufgabe 2).

b) Die Multiplikation natiirlicher Zahlen

Wie die Addition aus dem Zusammenfassen des Zihlens entsteht, so ergibt sich
die Multiplikation aus dem Zusammenfassen gewisser Additionsaufgaben. Es be-
deutet a - b nichts anderes als b+ b+ - - - + b, wobei b genau a mal als Summand
gesetzt wird. Diese Tatsache rechtfertigt auch die Bezeichnung Rechenoperation
zweiter Stufe.. Es gelten dabei analog die folgenden

Grundgesctze der Multiplikation:

1. Das Produkt zweier natiirlicher Zahlen ist stets wieder eine eindeutig bestimmte
natiirliche Zahl. Die Multiplikation ist also im Bereich der natiirlichen Zahlen
immer ausfiihrbar.

2. Die Multiplikation ist kommutativ, das heiBt, es gilt
ab=>b-.a.
3. Die Multipiikation ist assoziativ, das heiBt, es gilt
a.(b.o) =(a-b).c.

Dabei stehen beide Rechenoperationen in einem Zusammenhang, der zum Ausdruck
kommt in dem
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Grundgesetz der Verkniipfung beider Operationen:
Die Addition und die Multiplikation sind distributiv verkniipft, das heiBt, es gilt
a-(b+c)=a.bta-.c.

Fiir diese vier letzt ten Grundgesetze gilt das Entsprechende wie fiir die
Grundgesetze der Addition. Auch sie lassen sich aus der linaeren Anordnung der
natiirlichen Zahlen, der Erklirung der Addition und der Erklirung der Multipli-
kation ableiten (vgl. Aufgabe 3 und 4).

Das gesamte Rechnen im Bereich der natiirlichen Zahlen ist durch diese sieben
Grundgesetze bereits vollstindig bestimmt. Alle iibrigen Rechengesetze kann man
als Folgerungen aus ihnen gewinnen. Das gilt nicht nur fiir alle Regeln der Verkniip-
fung von Addition und Multiplikation (vgl. Aufgabe 5), sondern auch fiir die Re-
chenoperation dritter Stufe, das Potenzieren (vgl. Aufgabe 6). Es gilt dariiber
hinaus sogar fiir die Rechenoperationen, die aus den Umkehrungen der bisher be-
sprochenen Operationen entstehen, soweit diese iiberhaupt innerhalb des Bereiches
der natiirlichen Zahlen ausfiihrbar sind.

¢) Umkehrung der Addition

Die Addition zweier natiirlicher Zahlen ergibt wieder eine eindeutig bestimmte
natiirliche Zahl. Die Umkehrung besteht in der Aufgabe, zu einer gegebenen natiir-
lichen Zahl b eine zweite. Zahl z zu finden, so daB3 die Summe dieser beiden Zahlen
gleich einer gegebenen natiirlichen Zahl @ ist. Wir miissen also die Gleichung

b+z=a
16sen, und das ist innerhalb des Bereiches der natiirlichen Zahlen nur dann méglich,
wenn a groBer als b ist. In diesem Fall gibt es genau eine natiirliche Zahl x, die der
Gleichung geniigt und die wir als Differenz

z=a—b

bezeichnen. In allen anderen Fillen ist die Subtraktion innerhalb des Bereiches der
natiirlichen Zahlen unlésbar.

d) Umkehrung der Multiplikation

Hier verlsuft die Uberlegung analog. Auch die Multiplikation zweier natiirlicher
Zahlen hat als Ergebnis eine eindeutig bestimmte natiirliche Zahl. Die Umkehrung
besteht in der Aufgabe, zu einer gegebenen natiirlichen Zahl b eine zweite Zahl z zu
finden, so daB das Produkt dieser beiden Zahlen gleich einer gegebenen natiirlichen
Zahl a ist. Wir miissen also die Gleichung

b-z=a
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16sen, und das ist innerhalb des Bereiches der natiirlichen Zahlen nur dann méglich,

wenn ¢ ein Vielfaches von b oder gleich b ist. Dann gibt es genau eine natiirliche
Zahl x, die diese Gleichung erfiillt und die wir den Quotienten

z=a:b=

>|e

nennen. In allen anderen Fillen ist die Division innerhalb des Bereiches der natiir-
lichen Zahlen unlésbar.

e) Umkehrung des Potenzierens

Die Potenz einer natiirlichen Zahl mit einer natiirlichen Zahl als Exponenten ist
ebenfalls eine eindeutig bestimmte natiirliche Zahl. Hier ergeben sich jedoch fiir die
Umkehrung zwei Moglichkeiten (vgl. Aufgabe 7). Man kann einmal nach einer Zahl z
fragen, von der eine durch » bestimmte Potenz eine vorgegebene natiirliche Zahl a
ist, zum anderen danach, mit welchem Exponenten x eine gegebene natiirliche Zahl a
die Potenz der natiirlichen Zahl b ist. Die entsprechenden Gleichungen

2"=a bzw. b*=a

sind innerhalb des Bereiches der natiirlichen Zahlen nur bei geeigneter Wahl von n
und a bzw. b und a 16sbar. Man schreibt fiir diese Losungen, die dann eindeutig sind,

=Ya bzw. z="loga

und nennt die zugehorigen Operationen Radizieren und Logarithmieren (vgl. Auf-
gabe 8).

Damit ist der Weg zu allen Erweiterungen des Zahlbegrlﬂ‘es bereits durch die na-
tiirlichen Zahlen vorgezeichnet. Um die Subtraktion uneingeschrinkt ausfiihren zu
konnen, muB man die negativen Zahlen einfiihren. Fiir die uneingeschrinkte Aus-
fiihrbarkeit der Division ist die Einfiihrung der Briiche erforderlich. Das Radizieren
und Logarithmieren fiihrt schlieBlich zu den irrationalen und komplexen Zahlen.

Aufgaben
1. Die im Text erwihnte Ableitung der drei Grundgesetze der Addition aus der Erklarung der
Addition mit Hilfe der linearen Anordnung ist, exakt durchgefiihrt, verhaltnismaBig schwie-
ng Man lunn dlese Ablemmg aber unter Zuhilfenahme der auf Seite 60 erwiahnten Pfeil-
Ub gen Sie sich auf diese Weise von der Richtigkeit dieser

drei Grundgesetze !

2. Mit Hilfe der drei Grundgesetze der Addition ist zu zeigen, daB es bei der Berechnung einer
Summe mit endlich vielen Summandena + b + - - - + k weder auf die Reihenfolge noch auf
1 v Lriahene 7 £ (K1 ) ank tY).

& 8

1) Firr eine beliebige endliche Anzahl von S den ist ein Indukti hluB notwendi
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3. Die drei Gru.ndgesem der Multiplikation von mt\u'hchen Za.hlen smd entspreehend den

Uberlegungen in Aufgabe 1 mit Hilfe geeignet gen zu b g
Anlei : Fir das k tative Gesetz ist eine Zerlegung des Gesamtpfel]s (Abb. 29a) in
em rechtechges Schem zu w&hlen (Abb 29b) Fiir das a.ssozmuve Gesetz ist ein entspre-
POISP zu
a mol
r— N
) [ b b
Abb.29a
4. Entspmchend der Au.fga,be 3 ist d.le a mal
des distrib p N N
fiir natiirliche Zahlen h i . - —
1 1 1 [
5. Allein mit Hilfe der sleben Grund-
tze sind die folgend g 1 1 1 1
zu beweisen:

a) ib+c)-a=ba+ca
b)o-b+ct+d=ab+tactad  boml<
€) (6+b)-(c+d)
=ac+ ad + bc + bd
d) Geben Sie die weitestgehende Ver- L

allgemeinerung des ~ distributiven — -
Gesetzes an! Wie ware diese zu be-
weisen ? Abb. 29b
6. Ausder Erklarung des Potenzierensa” =4 - a - ... -a (n Faktoren) und mit den sieben Grund-
g sind die folgenden Regeln zu beweisen:
8) a" /am = gn+m, b) a".b" = (abd)", ¢) (@®)m = gn-m,
%. Begriinden Sie, weshalb es beim P i zwei Moglichkeiten fiir die Umkehrung gibt und

weshalb dies bei der Addition und Multiplikation nicht der Fall ist!

8. Losen Sie die Gleichungen 2* = 8 bzw. 57 = 125 und schreiben Sie die Ldsungen in der im
Text angegebenen Form! Bilden Sie weitere Beispiele dieser Art!

2. Die Erweiterung von Zahlenbereichen

Wir wollen zunichst untersuchen, wie ein bereits bekannter Zahlenbereich erwei-
tert werden kann und was man dabei unter ,,erweitern‘ versteht. Als Beispiel wihlen
wir dazu den Ubergang von den natiirlichen Zahlen zu den Briichen, deren Zihler
und Nenner natiirliche Zahlen sind.

Die Einfiihrung der Briiche und der Bruchrechnung entspringt dem Bediirfnis,
jede aus natiirlichen Zahlen gebildete Divisionsaufgabe 16sen zu konnen, so zum Bei-
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spiel die Aufgabe 2:3. Wir erhalten diese innerhalb des Bereiches der natiirlichen
Zahlen nicht vorhandene Losung, indem wir

a_ 2

2:3=5
schreiben. Auf diese Weise erkliren wir den Bruch ,,zwei Drittel*. Wenn wir damit
auch eine sehr hauliche Vorstellung verbinden, so haben wir doch eigentlich nur

die innerhalb des Bereiches der natiirlichen Zahlen unlésbare Aufgabe nochmals in
anderer Gestalt hingeschrieben.

DaB wir damit iiberhaupt etwas erreicht haben, ist in drei Tatsachen begriindet :

—

. Mit der Gesamtheit der so erklirten Briiche kann man nach den bekannten Re-
geln der Bruchrechnung wie mit natiirlichen Zahlen rechnen Es gelten nnmllch
fiir die Addition und Multiplikation von Briichen die gleichen sieben Grundg,
wie fiir natiirliche Zahlen (Aufgabe 2). Diese Grundgesetze bestimmen aber be-
reits alle Rechengesetze. Wenn also die gleichen Grundgesetze gelten, so behalten
auch alle daraus abgeleiteten Gesetze ihre Giiltigkeit.

34

. Diese Briiche enthalten die natiirlichen Zahlen als Briiche mit dem Nenner 1. Die
Bruchrechnung umfaBt also das Rechnen mit natiirlichen Zahlen.

Innerhalb der Briiche ist nicht nur jede Divisionsaufgabe mit natiirlichen Zahlen,
sondern sogar jede Divisionsaufgabe mit Briichen ausfiihrbar. Dieser Sachverhalt
wird durch ein weiteres Grundgesetz gekennzeichnet: Innerhalb der Briiche mit
natiirlichen Zahlen als Zihler und Nenner ist die Multiplikation immer umkehr-
bar, das heiBt, jede Divisionsaufgabe ist 15sbar.

o

Zusammenfassend konnen wir also folgendes feststellen: Mit Hilfe der schon be-
kannten natiirlichen Zahlen werden durch die Bildung der Briiche neue Zahlen ab-
geleitet. Dics geschieht, indem die Divisionsaufgaben mit natiirlichen Zahlen in
geeigneter Gestalt, eben als Briiche, geschrieben werden. Das Rechnen mit diesen
neuen Zahlen wird durch die Regeln der Bruchrechnung auf das Rechnen mit natiir-
lichen Zahlen zuriickgefiihrt (vgl. Aufgabe 1). Dabei bleiben alle Rechengesetze der
natiirlichen Zahlen fiir die neuen Zahlen giiltig. Der Bereich der neuen Zahlen ist
eine Erweiterung des Ausgangsbereiches der natiirlichen Zahlen, da er diese enthiilt.
Der Bereich der neuen Zahlen ist von dem Mangel des Ausgangsbereiches, daB die
Division nur beschrinkt ausfiihrbar ist, frei.

Mit der Verallgemeinerung dieses Verfahrens haben wir bereits das Prinzip jeder
Erweiterung eines vorliegenden Zahlenbereiches gefunden: Gerade die im alten Be-
reich unlésbaren Aufgaben werden zur Erklirung der neuen Zahlen verwendet. Das
Rechnen mit ihnen wird so auf das bereits bekannte Rechnen mit den alten Zahlen
zuriickgefiihrt, daB dabei alle Rechengesetze des alten Bereichs giiltig bleiben. Der
neue Bereich mufl den alten enthalten und von dem entsprechenden Mangel des
alten Bereiches frei sein.

Die Festlegung, dafl die Rechengesetze des alten Bereiches auch im neuen Bereich
gelten sollen, nennt man das Permanenzprinzip oder das Prinzip von der Permanenz
der Rechengesetze.

Wir werden in den folgenden Abschnitten erkennen, daB alle Erweiterungen von
Zahlenbereichen nach dem eben geschilderten Verfahren durchgefiihrt werden. Aller-

5 (00917-2]
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dings ist eine exakte Durchfiihrung dieser Gedankenginge oft zu umfangreich und
schwierig, als daB wir sie vollstindig behandeln konnten. Wir wollen an Hand unseres
Beispiels nur zwei Probleme betrachten, die bei allen Erweiterungen eine Rolle
spielen:

Jede der neuen Zahlen kann in unendlich vielen verschiedenen Formen auftreten.
So erkliren zum Beispiel die Divisionsaufgaben

2. 4. 6. 10 14
38 9 1 g MW

den gleichen Bruch. Man muf} also kennzeichnen, welche der neuen Zahlen einander
gleich sind. Bei den Briichen geschieht dies durch die Regeln des Kiirzens und Er-
weiterns. Die Rechenregeln der neuen Zahlen miissen selbstverstindlich von dieser
Mehrdeutigkeit der Schreibweise unabhingig sein (vgl. Aufgabe 3). So darf es keinen

EinfluB haben, wenn man beispielsweise % statt - bei Rechnungen verwendet.
Weiterhin sind die alten Zahlen in den neuen zunichst in anderer Gestalt enthal-
ten. So besteht doch ein begrifflicher Unterschied zwischen dem Bruch —‘:'— und der

natiirlichen Zahl 5, von dem wir gerade absehen, wenn wir sagen, daB die Briiche
die natiirlichen Zahlen enthalten. Dies ist moglich, da das Rechnen mit allen Briichen
a b ¢

T ) T y T Tt
a, b, c, ---. In der hoheren Mathematik sagt man fiir diesen Sachverhalt: Die Briiche
mit dem Nenner 1 sind ein isomorphes Bild der natiirlichen Zahlen und kénnen
durch diese ersetzt werden. Erst nach dieser Ersetzung wird aus dem véllig neuen
Rechenbereich der Briiche eine Erweiterung des Bereiches der natiirlichen Zahlen.

vollig gleich verliuft zu dem Rechnen mit den natiirlichen Zahlen

Den Bereich der gebrochenen Zahlen kann man auf dem Zahlenstrahl veranschau
lichen, indem man die Einheitsschritte entsprechend unterteilt. Es zeigt sich dann,

daB gleichen Briichen (z.B. § und %) gleiche Punkte entsprechen.

Aufgaben

1. Uberlegen Sie, daB die Addition und die Multiplikation von Briichen durch die Rechenregeln

a c _a-dtb-c 6 ¢ _a-¢
Tta="%4 "™ T 7T 5
auf Rechenoperati mit den natiirlichen Zahlen a, b, ¢, d zuriickgefiihrt werden!

2. Es ist zu beweisen, daB die Addition und die Multiplikation von Briichen den sieben Grund-
gesetzen der Addition und Multiplikation natiirlicher Zahlen g

'8

8. An konkreten Beispielen ist zu bestatigen, daB die in der Aufgabe 1 angegebenen Regeln
der Bruchrechnyng davon unabhéngig sind, ob die Briiche % und % soweit als moglich ge-
kiirzt sind oder nicht. '
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3. Der Bereich der rationalen Zahlen

Wir haben im vorigen Abschnitt die Erweiterung der natiirlichen Zahlen zu den
Briichen mit natiirlichen Zahlen als Zihler und Nenner besprochen. In dem so ent-
standenen Bereich gelten die gleichen Rechengesetze wie im Bereich der natiirlichen
Zahlen, dariiber hinaus ist die Division uneingeschrinkt durchfiihrbar. Jedoch ist
nach wie vor die Subtraktion nur dann méglich, wenn der Minuend gréBer als der
Subtrahend ist. Diese Tatsache veranlaBt uns, auch diesen Bereich zu erweitern.
Wir werden den Bereich der rationalen Zahlen erhalten.

Diese Erweiterung kann nicht einfach dadurch vorgenommen werden, daB wir den
mit den Bildern der bereits vorhandenen Briiche markierten Zahlenstrahl (Abb.30)

7
?

Abb. 30

an dem mit O bezeichneten Anfangspunkt spiegeln und alle neu entstehenden Zahlen
mit einem Minuszeichen versehen (Abb.31). Die Punkte der so entstehenden Zahlen-
geraden sind nimlich nur Bilder der rationalen Zahlen und nicht diese selbst. Wir
konnen aus diesem Bild nur entnehmen, wie die rationalen Zahlen angeordnet sind,
nicht aber, wie mit ihnen zu rechnen ist. Man mu8 die Erweiterung vielmehr in der
im vorigen Abschnitt Besprochenen Art durchfiihren. Wir wollen dies in groBien
Zigen andeuten.

-3 -2 .5! -1 .; [ 2 1

Nk
~
<

Abb. 31

Wir, erkliren die neuen (rationalen) Zahlen als die Gesamtheit aller Subtraktions-
aufgaben mit alten Zahlen, also mit den bereits vorhandenen Briichen. Eine Reihe
von solchen Subtraktionsaufgaben fallen immer zu der gleichen neuen Zahl zusam-
men, zum Beispiel

2 3 7 7
oder
1-4_2_,_5_7_125_ 128
3 3 6 [ 3
oder
1 13 3
T—2=8_t-6-1=2_3_.,

B
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Man nennt dann die.Zahlen, deren Minuend groBer als der Subtrahend ist, positiv;
diejenigen, deren Minuend kleiner als der Subtrahend ist, negativ, und fiihrt kiirzere

Bezeichnungen ein (in unseren Beispielen — 2, — i bzw. +5; vgl. dazu noch Auf-
gabe 2).

Das Rechnen mit den neuen Zahlen muB dann auf das Rechnen mit den alten
Zahlen zuriickgefiihrt werden. So wird zum Beispiel die Aufgabe

(+8) + (—=2)=(+3)
abgeleitet aus
[T—2]+[3—-5]=[(T+3)—(2+8)]=(10-7),

wobei man die Minuenden 7 und 3 und die Subtrahenden 2 und 5 fiir sich addiert.
Es laBt sich nachweisen, daB dies tatsichlich allgemein moglich ist und dabei alle
fiir die Briiche giiltigen Rechenregeln auch fiir die neuen Zahlen giiltig bleiben (Per-
ma prinzip). Die so entstehenden neuen Zahlen enthalten die alten als positive
Zahlen und erméglichen es, die Subtraktion uneingeschrinkt auszufiihren.

Damit haben wir in zwei Schritten einen Zahlenbereich gew . in dem ebenso
gerechnet wird wie im Bereich der natiirlichen Zahlen und in dem alle vier Grund-
rechenarten uneingeschrinkt durchfithrbar sind, allerdings mit Ausnahme der Di-
vision durch Null. Man nennt diesen neuen Bereich den der rationalen Zahlen.

Wir wollen noch kurz begriinden, daB die Aufgabe, durch Null zu dividieren,
grundsitzlich undurchfiihrbar ist. Der Quotient a : b ist als die Lésung 2 der Glei-
chung bz = a erklirt. Setzen wir aber in dieser Gleichung b = 0, so wird das Pro-
dukt bz unabhingig von der Wahl von z zu Null. Fiir a = 0 ist das ein Widerspruch,
fiir @ = 0 hiitte die Gleichung alle Zahlen z als Lésung. Wir kénnen also auch keine
Erwelterung finden, die eine Losung der Aufgabe a:0 eunogllchte, ohne die fiir
Zahlen giiltigen Rech tze (Perma

-3

lnup) zu verl

Man kann noch auf einem zweiten Wege vom Bereich der natiirlichen Zahlen zum
Bereich der rationalen Zahlen gelangen. Anstatt zuerst die uneingeschrinkte Aus-
fiithrbarkeit der Division zu fordern und damit als Zwischenbereich den der positiven
Briiche zu erhalten, kann man mit der Forderung der uneingeschrinkten Durchfiihr-
barkeit der Subtraktion beginnen. Dann erhilt man als Zwischenbereich den der
ganzen Zahlen. das heiBt den der positiven und negativen ganzen Zahlen einschlie-
lich der Null. Von ihm gelangt man durch die Forderung der uneingeschrinkten
Durchfiihrbarkeit der Division (auBer der durch Null) ebenfalls zum Bereich der
rationalen Zahlen. Wihrend der von uns beschrittene Weg der historische ist, der
wegen seiner besseren Anschaulichkeit auch im Unterricht gewihlt wird, hat der
zweite Weg gewisse Vorteile bei einer systematisierenden Ubersicht. Es ist namlich
folgerichtiger, zuerst die Umkehrung der Addition als der Rechenoperation erster
Stufe und dann die Umkehrung der Multiplikation als der Rechenoperation zweiter
Stufe zu behandeln.

Aufgaben

1. Die Erweiterung des Bereiches der positiven Briiche zum Bereich der rationalen Zahlen ist
schrittweise mit der Erweiterung des Bereiches der natiirlichen Zahlen zum Bereich der
positiven Briiche zu vergleichen.

2. Welche Subtraktionsaufgaben mit alten Zahlen (positive Briiche) erkliren die neue Zahl
Null?
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4. Der Bereich der reellen Zahlen

Wir wollen nunmehr den Bereich der rationalen Zahlen erweitern. Dazu gehen wir
nochmals zu den natiirlichen Zahlen zuriick, die, wie wir erkannt hatten, in be-
stimmter Reihenfolge angeordnet sind (Abb.32). Die Sonderrolle der 1 wird auf-
gehoben, wenn wir den Bereich der natiir-
lichen Zahlen durch die Forderung der
uneingeschriankten Durchfiihrbarkeit der 7 2 7
Subtraktion zunichst zum Bereich der Abb. 32
ganzen Zahlen erweitern (Abb.33). Hier
hat jede Zahl genau einen unmittelbaren
Vorgiinger und genau einen unmittelbaren Nachfolger. Daraus folgt, daB fiir zwei
Zahlen genau eine der drei Beziehungen a < b, a = b, a > b zutrifft.

-3 -2 -1 0 + +2 +3
Abb. 33

Auch jeder rationalen Zahl entspricht ein ganz bestimmter Punkt der Zahlen-
geraden. Man erhilt ihn (vgl. die Bemerkung am Ende von Abschnitt 2), indem man
die Einheitsschritte entsprechend den jeweils auftretenden Nennern unterteilt
(Abb.34)." In der so entstehenden linearen Anordnung der rationalen Zahlen gilt
ebenfalls fiir zwei Zahlen genau eine der drei Beziehungen a < b, a = b, a > b. Da-

gegen kann man nicht mehr von dem ittelbaren Vorginger bzw. Nachfolger
1 2 1 2 1 —] ‘% L } I 2 Lan
T T T T T T T T T T T T
-3 -2 -1 0+ + +1 +2 +3
Abb. 34

einer Zahl sprechen; vielmehr gibt es zwischen zwei noch so benachbarten rationalen
Zahlen ¢ und b immer noch unendlich viele weitere rationale Zahlen, etwa

b-—a a+b—a_ a+b—a

a+ 3 ot

Um diesen Unterschied in der linearen Anordnung der ganzen und der rationalen
Zahlen auszudriicken, sagt man: Die Punkte, die die ganzen Zahlen darstellen, liegen
diskret; die den rationalen Zahlen entsprechenden Punkte liegen iiberall dicht.

Dennoch gibt es zwischen diesen iiberall dicht liegenden rationalen Punkten noch
weitere Punkte, denen keine rationale Zahl entspricht. Als Beispiel wollen wir in der
angegebenen Weise ein Quadrat 4 BC' D von der Seitenlinge 1 iiber der Zahlengera-
den so konstruieren, daB die Diagonale AC mit der Zahlengeraden zusammenfillt
(Abb. 35). Nach Konstruktion ist der Eckpunkt C ein Punkt der Zahlengeraden,
und sein Abstand vom Punkte 4 = 0 ist nach dem Lehrsatz des Pythagoras 2.
Wiirde nun dem Punkt C eine rationale Zahl entsprechen, so wire ﬁ eine rationale
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Zahl. Dies ist jedoch nicht 8

der Fall (vgl. Lehrbuch der

Mathematik, 9. Schuljahr). A p

Wir wissen auch, da8 dieser :

Punkt C keine Ausnahme ist. -2 -1 O\ . *2

Die weitaus meisten Wurzeln
und Logarithmen rationaler Abb. 35
Zahlen sind nicht rational.

Andererseits liegt der Punkt C, gerade weil die rationalen Punkte fiberall dicht
liegen, in unmittelbarer Nachbarschaft von solchen rationalen Punkten, das heiBt,

die Zahl Y2 kann durch rationale Zahlen mit beliebiger Genauigkeit angenihert
werden. Zum Beispiel gilt

0

1 <¥Z<e2

14 <y2<15
141 <Y2 <142
1,414 < V2 < 1,415

usw.

Dies lehrt uns zweierlei: Einmal konnen wir die Zahl 2 bei allen praktischen Rech-
nungen so genau, wie es nur erforderlich ist, durch rationale Zahlen annihern. Auf
diese Weise haben wir bisher stets mit Wurzeln und Logarithmen gerechnet. Zum
anderen aber erhalten wir einen Hinweis, wie wir den Bereich der rationalen Zahlen
zu erweitern ha.ben, um all dle Aufgaben exakt l6sen zu kénnen, fiir die wir bisher

nur Néherung er ke Die Tabelle zeigt uns namlich, da8 die
Zahl Y2 nichts anderes ist als der Grenzwert der Folge rationaler Zahlen

1; 1,4; 141; 1414; ...

Diese Folge konvergiert, sie hat aber keinen rationalen Grenzwert. Genauso verhilt
es sich bei allen anderen Anniherungen nichtrationaler Zahlen durch rationale. Wir
werden also als neue Zahlen einfach die Gesamtheit aller konvergenten Folgen mit
rationalen Zahlen einfithren. Sie entspricht der Gesamtheit aller endlichen und un-
endlichen Dezimalbriiche und wird der Bereich der reellen Zahlen genannt.

Eine exakte Durchfilhrung dieser Erweiterung miilte wieder so vorgenommen
werden: Bekannt sind die rationalen Zahlen. Die reellen Zahlen werden als neue
Zahlen mit Hilfe konvergenter Folgen rationaler Zahlen erklirt. Zwei Folgen, bei
denen die Differenz der Glieder gegen Null konvergiert, definieren dabei die gleiche
reelle Zahl. Das Rechnen mit diesen Folgen muB8 auf das Rechnen mit ihren Glie-
dern, also auf das bekannte Rechnen mit rationalen Zahlen zuriickgefiihrt werden.
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Dabei miissen alle fiir rationale Zahlen geltenden Rechengesetze erhalten bleiben
(Permanenzprinzip). Jede rationale Zahl tritt selbst als eine solche Folge auf. Zum

Beispiel wird die Zahl % dargestellt durch die Folge
111 1
2' 2’ 2’ 2’
oder durch die Folge
0; 04; 049; 0499; 04999; -...

Der auf diese Weise entstandene Bereich der veellen Zahlen ist damit eine Erwei-
terung des Bereiches der rationalen Zahlen. Die neuen, nichtrationalen reellen Zahlen
werden irrationale Zahlen genannt.

Im Bereich der reellen Zahlen hat dann jede konvergierende Folge eine reelle Zahl
als Grenzwert. Das bedeutet, daB simtliche Wurzeln mit positivem Radikanden und
simtliche Logarithmen positiver Zahlen mit positiver Basis in diesem Bereich ent-
halten sind. Dariiber hinaus enthilt er auch diejenigen Zahlen, die iiberhaupt nur
als Grenzwert einer Folge erklirt werden konnen, wie zum Beispiel die bei der Kreis-
berechnung auftretende Zahl & oder die Zahl e, die Basis der natiirlichen Log-
arithmen.

Auch jeder irrationalen reellen Zahl entspricht ein bestimmter Punkt der Zahlen-
geraden. Auf Grund ihrer Konstruktion erschopfen sie alle noch vorhandenen
Punkte. Auf diese Weise entspricht jeder reellen Zahl genau ein Punkt der Zahlen-
geraden und umgekehrt jedem Punkt der Zahlengeraden genau eine rationale bzw.
irrationale reelle Zahl. Damit ist auch fiir die reellen Zahlen wieder eine lineare An-
ordnung gegeben, wie wir sie schon fiir die rationalen Zahlen kennengelernt haben
(vgl. Aufgabe 1).

Aufgaben

1. Erkliren Sie die Beziehungen a <<b, a = b, a > b zwischen Dezimalbriichen unabhingig
von ihrer D llung auf der Zahl den nur mit Hilfe der in ihnen auftretenden Ziffern!

2. Die Irrationalzahl V1,2 ist mit Hilfe einer konvergierenden Folge rationaler Zahlen bzw. durch
einen unendlichen Dezimalbruch darzustellen. Geben Sie die ersten vier Glieder bzw. Ziffern
an!

I1. Der Bereich der komplexen Zahlen

Ausgehend vom Bereich der natiirlichen Zahlen sind wir durch mehrfache Erwei-
terung zum Bereich der reellen Zahlen gelangt. Auch in diesem Bereich sind noch
nicht simtliche R tionen geschrinkt durchfiihrbar. Es ist zum Bei-
spiel nicht maoglich, die Qua,dmtwurzel aus einer negativen Zahl auszuziehen, da es
keine reelle Zahl gibt, deren Quadrat negativ ist. Auch die Logarithmen negativer
Zahlen existieren in diesem Bereich nicht.

Es liegt also nahe, auch iiber den Bereich der reellen Zahlen hinauszugehen und
einen neuen Zahlenbereich zu schaffen, in dem alle sieben Rechenoperationen
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uneingeschrinkt ausfithrbar sind. Da, wie wir gesehen haben, die reellen Zahlen die
Punkte der Zahlengeraden bereits erschopfen, konnen die Bilder der neuen Zahlen
nicht mehr auf dieser Geraden liegen. Damit entfillt auch die Moglichkeit, diese
Zahlen zusammen mit den reellen Zahlen linear anzuordnen. Wir sehen also, daB
wir den urspriinglichen Begriff der (natiirlichen) Zahl noch wesentlich mehr als bisher
verallgemeinern miissen.

Aus dem Gesagten ist zu erkliren, daB die historische Entwicklung verhiltnis-
miBig lange bei den reellen Zahlen stehengeblieben ist. Bis zum Beginn der Neuzeit
wurden Losungen von Aufgaben zum Beispiel in der Form z = J—2 fiir unmoglich,
unwirklich oder eingebildet gehalten. Dadurch ist auch die heute noch gebriuchliche
Bezeichnung ,,imaginiire Zahlen* fiir derartige Losungen entstanden, obgleich wir
dabei heute nicht mehr an die urspriingliche Bedeutung des Wortes imaginir denken.
Diese Zahlen sind zusammen mit den aus ihnen entwickelten komplexen Zahlen zu
einem unentbehrlichen Hilfsmittel der gesamten Mathematik und ihrer Anwendungs-
gebiete geworden. Sie sind damit weder geheimnisvoller noch unwirklicher als die
Zahlen der bisher betrachteten Bereiche.

5. Einfiihrung der imagindren Zahlen

Wir wollen als Erweiterung des Bereiches der reellen Zahlen einen neuen Zahlen-
bereich finden, in dem die Rechengesetze der reellen Zahlen weitergelten und alle
sieben Rechenoperationen (mit Ausnahme der Division durch Null) uneingeschrinkt
durchfiihrbar sind. Dazu gehen wir schrittweise vor und betrachten zunichst die im
Bereich der reellen Zahlen unlésbaren Quadratwurzeln, etwa

=1, y-s, J-3, y=osm o, =

Sie alle sind von der Form J—a mit irgendeiner positiven reellen Zahl a. Diese
im alten Bereich unlésbaren Rechenaufgaben fithren wir als neue Zahlen ein; wir
nennen sie imaginire Zahlen: Ein solches Vorgehen entspricht genau unserem Vor-
gehen bei jeder der bisher besprochenen Erweiterungen von Zahlenbereichen. Die
imaginiren Zahlen entstehen also véllig auf die gleiche Art wie zum Beispiel die
negativen oder irrationalen Zahlen. Wir miissen noch wie bei den bisher betrach-
teten Erweiterungen feststellen, wie mit diesen imaginiren Zahlen umzugehen, das
heiBt zu rechnen ist.

Nach dem Permanenzprinzip sollen auch im neuen Zahlenbereich die Rechen-
gesetze der reellen Zahlen gelten. Wir konnen daher wegen

Yab=ya- Vb
alle imaginiren Zahlen —a mit & >0 umformen?):
N C s e
1) Beachten Sie, daB Vs eine Rech isung ist, eine abgeki Schreibweise fiir die Losun-

gen der Gleichung z* = a, von denen behnnthch bei o > 0 im Bereich der reellen Zahlen stets

genau zwei exlstleren' Desglelchen ist die Formel ¥a-b = Ya - Vb als eine Relation zwischen
diesen Rech Belm Ei konl Zahlen ist daher auf die
Doppeldeutigkeit der Los gen (Vorzeichen) zu achten.

PP
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Da }J+a stets zwei reelle Losungen hat, werden damit alle imaginiiren Zahlen zu
reellzahligen Vielfachen von ¥—1, das heiBt, alle im Bereich der reellen Zahlen un-
losbaren Aufgaben Y—a werden auf eine, nimlich J—1, zuriickgefiihrt.

Eine Losung der Aufgabe Y—1 (von denen der neue Bereich ja wenigstens eine
enthalten muB) sei i. Mit |

i2=—1
ist aber auch
(=i = (=12 2 =—1.
Wir schreiben also
y=1=2i
und nennen i die imaginire Einheit. Damit sind alle imaginiren Zahlen reellzahlige
Vielfache der imaginidren Einheit :.

Aufgaben

1. Die folgenden imaginiren Zahlen sind nach dem Beispiel
VA= FdVT= 2.0
als reellzahlige Vielfache der imagindren Einheit ¢ zu schreiben:
— - — ! 16 —
V=9, V-1, V=1, V—E, V—l—tj, V=2, V=18=x.
9 25

2, Die gleiche Umformung wie in Aufgabe 1 ist fiir Y= &* durchzufishren und das Ergebnis zu
erlautern. .

3. Es sind die folgend: in-quadratischen Gleichungen zu lésen:
72416 =0, 2+ 3=0, 24+ 1=0, 2t — 16 =0,
#4+9=0,  #41=0, #—5=0 #=0.
Was kann man iiber die Anzahl der Wurzeln jeder dieser Gleichungen aussagen?

1

4. Die folgenden reellen bzw. imaginaren Zahlen sind als Q urzeln zu schreib
+2, —2, 420, —2.4, —1, +38.i,
—mi,  —i, +a, —a, +a-i, —a-i.
(a ist eine beliebige reelle Zahl.)

5. Die Gleichung z* — 16 = 0 hat zwei reelle und zwei imaginiare Wurzeln. Geben Sie diese
an und bilden Sie dhnliche Beispiele!

Anleitung: Es ist Yo = I/PTE.
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6. Das Rechnen mit imagindren Zahlen

Wir wollen zuniichst imaginire Zahlen miteinander und mit reellen Zahlen multi-
plizieren. Da nach dem Permanenzprinzip die gleichen formalen Rechengesetze wie
fiir reelle Zahlen gelten sollen, macht dies keinerlei Schwierigkeiten. Man muB nur
beriicksichtigen, dal wegen

V=1=xi

stets fiir i2 = (Vj)z = —1 zu setzen ist.

Es ist also oder allgemein
=1 4n = 41
2=—1 1o g
B=12.i=(—1) - i=—1 2= —1
=12 2= (—1)(—1)=+1 3 =3
B=1-i=+41-1=1¢ usw. mit n=0;1; 2; ...

Mit Hilfe dieser GesetzmiBigkeit kann man die folgenden Produkte ausrechnen:
3.(5-9)=(3-5)-i=15-14
(8-9)-(6-9)=(3-5)-¥=15-(—-1)=—15
B:4)-(6-%)-(2-9=(3-5-2)-3=30-(—4)=—30-14
a-b-9)=(a-b) -1
(@-t) - b-i)=(@-b)-i*=—(a-b).
Zur Vereinfachung der Schreibweise werden wir im folgenden den Multiplikations-
punkt vor der imaginiren Einheit i meist weglassen, also statt 3.4 einfach 3,
statt a - ¢ einfach ai schreiben.

Als nichstes wollen wir Divisionsaufgaben mit reellen und imaginiren Zahlen
16sen. Auch da ergeben sich wegen der Permanenz der Rechengesetze aus

i:1=—1 die Formeln i=_‘—,1 und _i=|‘L‘

Wir kénnen also die folgenden Briiche umformen:

15¢ 15 .

—3——-3»1—.“”,

LA I WO SRS |
n~3 73" 0=—3%
8: 8 i

n=4 T2 1=2
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Hheach

inken, die nur i

Bei der Addition und Subtraktion wollen wir uns zuniichst ‘auf solche Aufgaben
indre Zahlen enthalten. Man kann, da auch im neuen Be-

reich das distributive Gesetz gelten soll, die imaginire Einheit ausklammern. So gilt

zum Beispiel:

5i4 Ti= 5.5+ T-i= 5+ T)-i= 12i,
176 —195=17.§—19 - i= (17 =19) - i = —23.

Allgemein ist
ai+ bi= (a+ b)i.

Aufgaben

1. Die folgenden Aufgeben sind zu lésen:

a) 3i-16; 10i-7.54; 1&%5;
Loy — /1 1 15,
3i.1=8; 7—12-1/—7, a5 o8 V- Vs

21

5.Y—25;

(Y=3)i-(Y=9)i.

b) Welche Grundgesetze der Multiplikation werden zur Lésung der Aufgaben verwendet?

2. Begriinden Sie, weshalb das Produkt zweier reeller Zahlen reell, das Produkt einer reellen
mit einer imaginadren Zahl imaginir, das Produkt zweier imagindrer Zahlen reell ist!

3. Stellen Sie eine Tabelle auf, die die P
enthalt!

von ¢ mit negati

4. Die folgenden Briiche sind zu vereinfachen:

3. =4 17 10i 4, 1 3=
7i’ 73 V=7 =2 V== 2i’

5. Es ist zu berechnen:

5., 8., 5. . V=247
Pl S S By 1Y _V_ . I—2rc .
3'Tgt Tl 164 3 15’

1 ; 3.
SO o
6. Berechnen Sie
V—-——3n l/ ?

4. 3. .
Ti—gt + ¥—2;
7. Wodurch unterscheidet sich die Aufgabe

V_

von den unter Nummer 5 angegebenen Aufgaben?

Exp ten von i~! bis i~8
e, o 4l
bi' [ bi

V 4+V
5- — 251
4 5,86
-9 &t
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7. Einfiihrung der komplexen Zahlen
Wir miissen nun noch untersuchen, zu welchem Ergebnis wir bei der Addition
bzw. Subtraktion von reellen und imaginiren Zahlen gelangen. Auch diese Rechen-
operationen miissen sich in dem angestrebten neuen Zahlenbereich ausfiihren lassen.
Versuchen wir aber, eine reelle Zahl und eine imaginire Zahl zu addieren, etwa

3+ 51
a+ bi, (@ %0; b=0),

so kann das Ergebnis weder eine reelle noch eine imaginire Zahl sein.
Wiire nimlich @ + bi = ¢ mit irgendeiner geeigneten reellen Zahl c, so folgte nach
dem Permanenzprinzip, da

oder allgemein

bi=c—a,

also reell scin miiBte, was doch nicht der Fall ist.

Analog folgte aus a + bi = di, daB a imaginir sein miiBte.

Damit ergibt sich eine weitere Notwendigkeit: Es geniigt nicht, den Bereich der
reellen Zahlen nur mit den zum Quadratwurzelausziehen notwendigen imaginiren
Zahlen zu erweitern. Wir miissen vielmehr auch alle Summen

a+ bi

einer beliebigen reellen Zahl a und einer beliebigen imaginiren Zahl bi als vonein-
ander verschiedene Zahlen des neuen Bereiches hen.!) Threr zusam t
Form wegen werden sie komplexe Zahlen genannt, wobei man die reelle Zahl @ als
den Realteil, die reelle Zahl b als den Imaginérteil der komplexen Zahl a + b7 be-
zeichnet. Die Gesamtheit aller komplexen Zahlen, das heiBt also aller Ausdriicke
a + bi mit beliebi llem a und beliebi reellem b, bildet bereits den von
uns gesuchten neuen Zahlenberelch Er enthlt insbesondere auch alle reellen und
alle imaginiren Zahlen. Fiir reelle Zahlen ist nimlich b = 0 und fiir imaginire a = 0.
Wir werden sehen, daB in diesem Bereich alle sieben Grundrechenoperationen un-
eingeschrinkt ausfiihrbar sind.

Aufgaben
1. Es ist Realteil und Imaginarteil der folgenden komplexen Zahlen zu nennen:
. . 1 .
3 4 5i; 440 —5 + 2i; 3 + (—4)¢; %—4:‘;
—12 — 8i; | S r—yi; 0+ 3i; —;—-{-oi.

hnitt ist eine k lexe Zahl. Geben Sie ihren

2. Das Ergebnis der Aufgabe 7 im vorigen Ab
Realteil und ihren Imaginirteil an!
3. Die folgenden Zahlen sind als komplexe Zahlen zu schreiben:
. ; — . 538 3, L. .
17; 1745 0,335 V=35; 5 —4 —1; i — i 0.

) Es bedeutet also 6 - bi =c + di stets a =c¢ und b = d. Insbesondere ist demnach
a + bi = 0 gleichwertig mit 6 = b = 0.
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8. Die Rechenoperationen erster und zweiter Stute
im Bereich der komplexen Zahlen

Nach dem Permanenzprinzip sollen alle Rechengesetze, die wir fiir den Bereich
der reellen Zahlen kennengelernt haben, auch fiir den Bereich der komplexen Zahlen
gelten. Dazu miissen wir die Summe und das Produkt zweier komplexer Zahlen ge-
eignet, festsetzen, das heiBt auf Rechnungen mit reellen Zahlen zuriickfiihren. Wir
werden sehen, da man dabei unter Beriicksichtigung von 2= —1 so verfahren
kann, als ob alle vorkommenden Ausdriicke reell wiren. Mit den auf diese Weise ge-
wonnenen Erklirungen fiir Summe und Produkt gelten dann tatsichlich im Bereich
der komplexen Zahlen die gleichen Rechengesetze wie im Bereich der reellen Zahlen.

Um eine geeignete Erklirung fiir die Summe zweier komplexer Zahlen

(@ + bi) + (c + di)
zu finden, ersetzen wir die imaginire Einheit ¢ durch eine reelle Zahl = und erhalten
(@ + bx) + (c+ dx).
Dann gilt
(@+bz)+ (c+dx)=a+c+bz+dz=(a+c)+ (b+d)z.
Entsprechend setzen wir bei der urspriinglichen Aufgabe
(@+bi)+ (c+di)=a+c+bi+di=(a+c)+ (b+d)i
und erkliren:

Komplexe Zahlen werden addiert, indem die Realteile und die Imaginirteile fiir
sich addiert werden.

Damit. ist die Summe zweier komplexer Zahlen stets wieder eine eindeutig be-
stimmte komplexe Zahl. Diese Formulierung ist auch dann richtig, wenn in beson-
deren Fillen das Ergebnis reell oder imaginir ausfillt. Wie wir im vorigen Abschnitt
gesehen haben, sind ja die reellen Zahlen die komplexen Zahlen a + b mit b = 0,
die imaginiren Zahlen die komplexen Zahlen a + bi mit a = 0.

Die Addition komplexer Zahlen ist kommutativ und assoziativ (vgl. Aufg.3). Sie
ist aber auch umkehrbar, denn zu zwei komplexen Zahlen

(@+ b3) und (c+ di)
gibt es stets eine Differenz

(@4 b8)— (c+di)= (a—c) + (b— d)i,
die als komplexe Zahl der Gleichung

(c+ di)+ (@— &)+ (b — d)i) = (a + b3)
geniigt.

Komplexe Zahlen werden also subtrahiert, indem die Realteile und die Ima-
gindirteile fiir sich subtrahiort werden.
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Bevor wir zur Multiplikation ubergehen, wollen wir noch eine Begriffsbildung ken-
nenlernen, die beim Rechnen mit k Zahlen hiufig verwendet wird. Zu jeder
komplexen Zahl a + bi gibt es eine komplexe Zahl a — bi. Beide unterscheiden sich
also nur durch das Vorzeichen der Imaginirteile und werden konjugiert komplex
genannt. Es ist auch iiblich, die eine Zahl den konjugiert komplexen Wert der ande-
ren zu nennen.

Auf Grund der bisher besprochenen Gesetze fiir komplexe Zahlen gilt
(@ + bi)+ (@ — bi) = 2a

und
(@ + bé)— (@ — bi) = 2bi.

Die Summe zweier konjugiert komplexer Zahlen ist also reell, die Differenz zweier
konjugiert kompl Zahlen i

Um eine geeignete Erklirung fiir das Produkt zweier komplexer Zahlen
(@ + bi) - (c+ di)

zu finden, verfahren wir wie bei der Summe. Ersetzen wir wieder die imaginire Ein-
heit ¢ durch die reelle Zahl z, so erhalten wir

(@+b2): (c+ dx)=ac+ adx + bxc + bxdx
=ac+ (ad + bc)x + bdx?.
Entsprechend setzen wir bei-der urspriinglichen Aufgabe
(@+ bi) - (c+ di)=ac+ (ad + bc)i + bdi2.
Unter Beriicksichtigung von 2= —1 erhalten wir

(@ + b3) - (¢ + d3) = (ac— bd) + (ad + bc)i
und erkliren: :

Komplexe Zahlen werden nach der Formel
(@ + bi)+ (c + di) = (ac — bd) + (ad + be)i
multipliziert.!)
Damit ist das Produkt zweier komplexer Zahlen stets wieder eine eindeutig be-
stimmte komplexe Zahl. Insbesondere ist das Produkt zweier konjugiert komplexer

Zahlen
(@ + b3)- (@a— bi)=a®+ b2+ (ab— ba)i = a® + b2

immer reell. Auf die Bedeutung von a2 + b2 werden wir spiter zu sprechen kommen.

1) Erst die hiermit vorgenommene Erklarung der Addition und Multiplikation komplexer
Zahlen stellt, streng g den A punkt fiir ]edes Recl hnen mit ihnen dar Insofem

haben die in den Abschnitten 5 ui ionen nur vorb
Charakter. Sie sind als Spezmlf&l]e m dleien Erklarungen enthalten
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Auch die Multiplikation komplexer Zahlen ist kommutativ, und assoziativ. Dies
1iBt sich ohne Schwierigkeiten nachpriifen, doch wollen wir uns damit begniigen,
beide Gesetze in Formeln aufzuschreiben (vgl. Aufgabe 9). Weiterhin ist die Multi-
plikation ebenfalls umkehrbar. Der Quotient zweier komplexer Zahlen

a+bi
c+di

ist ndmlich wieder eine komplexe Zahl. Wir erhalten sie dadurch, daB wir mit dem
konjugiert komplexen Wert des Nenners' erweitern:

a+bi _ (a+Dbi)(c—di) _(ac+ bd)+(bc—ad)o'.

c+di  (c+di) (c—di) It d

Damit wird der Nenner c2+ d? reell. Dividieren wir Realteil und Imaginiirteil des
Zihlers fiir sich durch den jetzt reellen Nenner, so entsteht die komplexe Zahl

ac+bd
Crxd

be—cd.,
tarat
deren Produkt mit ¢ + d¢ genau a + bt ergibt (vgl. Aufgabe 11).

Dieser Ubergang ist immer durchfiihrbar, es sei denn, daB8 ¢% + d? = 0, das heift
also ¢ = d = 0 ist (vgl. Aufgabe 12).

Im Bereich der komplexen Zahlen ist also jede Division, mit Ausnahme der
durch 0, austiihrhar.

Wir haben damit gelernt, simtliche vier Rechenoperationey erster und zweiter
Stufe mit komplexen Zahlen vorzunehmen. Sie geniigen den bereits aus den anderen
Zahlenbereichen bekannten Rechengesetzen, denn auBler den schon bei Addition und
Multiplikation erwihnten Grundgesetzen gilt auch das beide Operationen verbin-
dende distributive Gesetz (Aufgabe 13).

Wenn wir den Bereich der komplexen Zahlen mit dem Bereich der reellen Zahlen
und dem Bereich der rationalen Zahlen vergleichen, erkennen wir: Solange wir nur
die Rechenoperationen erster und zweiter Stufe betrachten, sind alle drei Zahlen-
bereiche beziiglich der dabei giiltigen Rechengesetze gleich geartet. In jedem der
drei Bereiche ist die Summe zweier Zahlen wieder eine bestimmte Zahl des Bereiches.
Die Addition ist kommutativ und assoziativ und innerhalb jedes der drei Bereiche
umbkehrbar, das heifit, jede Subtraktionsaufgabe ist losbar. Dies gilt sowohl fiir die
Summe bzw. Differenz von rationalen Zahlen wie fiir die von reellen Zahlen als auch
fiir die von komplexen Zahlen, wobei natiirlich der Bereich der reellen Zahlen auch
alle rationalen, der Bereich der komplexen Zahlen auch alle reellen Zahlen enthilt.

Gleiches gilt fiir die Multiplikation in jedem der drei Bereiche. Sie ist stets ein-
deutig ausfiithrbar, kommutativ, assoziativ und bis auf die Division durch Null um-
kehrbar. SchlieBlich gelten in jedem der drei Bereiche das distributive Gesetz und
damit alle aus den Grundgesetzen folgenden Rechenregeln.

Anders wird es freilich, wenn wir die Rechenoperationen dritter Stufe betrach-
ten. Zwar ist das-Potenzieren mit einer natiirlichen Zahl als Exponenten, das ja
nichts anderes ist als eine Zusammenfassung von Multiplikationen, in allen drei Be-
reichen immer ausfithrbar und geniigt den gleichen Gesetzen. Die beiden Umkehr-
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operationen sind dagegen im Bereich der rationalen Zahlen nur in speziellen Fillen,
im Bereich der reellen Zahlen fiir alle positiven Zahlen, im Bereich der komplexen
Zahlen stets ausfiihrbar.

Zunichst wollen wir uns mit den komplexen Zahlen etwas vertrauter machen. Die
reellen Zahlen konnten wir als Punkte einer Zahlengeraden veranschaulichen. Eine
solche lineare Anordnung ist, wie wir bereits wissen, fiir komplexe Zahlen nicht
mehr méglich, da die reellen Zahlen schon alle Punkte der Zahlengeraden erschopfen.
Die kompl Zahlen ko aber durch eine zweidimensionale Anordnung als
Punkte einer Ebene veranschaulicht werden. Diese Veranschaulichung wurde von
Carl Friedrich GauB eingefiihrt. Sie heiBt deshalb GauBsche Zahlenebene.

Aufgaben
1. Berechnen Sie
a) (5+ 3i) + (7 -+ 2i); (17— 4i) + 34 2i);  (—8+4 4i) + (4 —3i);
b) (0,75 + 2:) + (— 0,5 — 0,54); 3¢+ (4 — i) (17 + 5¢) + (4 — 51i);
) 3+ 2i) + (—3—2i) + (4—Ti); (—4+ 3i) + 5i; 54 (17— 2i);
d) 8 — 2i) + @+ 2i); 71— i) +; (8+ 30) + (=84 i)
e) (1254 3i) + (=104 i) + (2 — 41); (—4 — i) + (4 + 17i); (-84 3i) 4 8;
1) (24 3i) + 17+ (— 19 + 2i); (@ + bi)+ (6 — bi);  (a+ bi)+ (—a + bi)!
2. Erklaren Sie, wieswdie Addition kompl Zahlen auf Rechenoperationen mit reellen Zahlen

zuriickgefiihrt wird!

3. Geben Sie das kommutative und das assoziative Gesetz der Addition fiir komplexe Zahlen
als Formeln an! Begriinden Sie die Giiltigkeit dieser Gesetze!

4. a) (12 + 3i) — (4 + 2i) (8 + 2i) — (3 + 8i) (17 + 2i) — 9i
b) (124 7i)—8 (6 + 3i) — (9 — 2i) B+ 2i)— (—4+1)
¢) (@ + bi) — (a — bi) (@ + bi) — (—a + bi) (@ + bi) — (—a — bi)

5. a) Zu den folgenden komplexen Zahlen sind die konjugiert komplexen Zahlen zu bilden.

4420 1—2i 541 0,5 — 0,75¢ —442i
4—2i a—bi 3a + 2bi 17i i
b) Aus den jeweils zueinander konjugiert kompl Zahlen sind die Summe und die Diffe-

renz zu bilden.

6. Der folgende Satz ist zu begriinden: Eine komplexe Zahl ist reell, wenn sie mit ihrer konjugiert
kompl Zahl fallt, und umgekehrt.

7. Die henden Betracht wie bei Aufgabe 2 sind fiir die Multiplikation durchzu-

P &

fithren.
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8. a) (4 + 2i)- (5 + 39) 4—14)-(34 39 (0,5 — 7) - (8 — 2¢)
b) (34 2¢)-(3 — 2i) (—54 i) - (—2— 0,751) 2—i)-(2419)
¢) (—8+ 2,5i) - (—8 — 2,51) (—1—4)- (—1414) (—3 + 4i)- (6 + 2i)

d) 5+ 2i)- 4—30)-(—7—1) (—6—1)- (14 3i)-2i @2—19)-(9+1)

9. Schreiben Sie das k ive und das iative Gesetz der Multiplikation fiir komplexe
Zahlen als Formeln!

10. Berechnen Sie

10+ 10i, 1—2i, —33—21i 5—3i 1m—i,
sxa Waro 9w Vigmd 9=
V=2 a4 bi, 14zy 4 (4y* —6aY)i
N 3= 8 o —%¢ ) 3z gi !
11. Es ist die im Text Seite 79, Zeile 12 aufgestellte Behauptung durch A h h
weisen.

12. Bei dem im Text verwendeten SchluB, daB mit ¢2 + d2 = 0 auch ¢ = d = 0 gilt, ist Voraus-
setzung, daB ¢ und d als Realteil und Imaginirteil einer kompl Zahl reell sind. An Bei-
spielen ist zu zeigen, daB die Quad: zweier kompl Zahlen Null sein kann, ohne
daB die beiden Zahlen Null sind.

13. Berechnen Sie
3420 [6—9+ (1+434)

entsprechend dem distributiven Gesetz auf zwei verschiedene Arten und vergleichen Sie
beide Ergebnisse. Es ist auch das distributive Gesetz fiir komplexe Zahlen als allgemeine
Formel zu schreiben.

Entsprechend ist zu b J

a) (7—4i)~[(—~;—%i)-0.-(5—%i)] b) ‘(5 + 24) - [(— 3+ ) — (2 —2i)]

) (—4+30) 2§+ @—T0)] d)9i-[(5+2i)—-;—i

9. Die GauBsche Zahlenebene

Wie wir wissen, entspricht jedem Punkt der Zahlengeraden eine reelle Zahl und
umgekehrt. Dabei ist diese Zuordnung schon durch die Wahl der Einheitsstrecke
von 0 bis +1 festgelegt. Um dies einzusehen, brauchen wir nur jeder reellen Zahl
den Vektor vom Ursprung O bis zu dem mit ihr bezeichneten Punkt zuzuordnen.
Jeder reellen Zahl @ =a : 1 entspricht dann das a-fache des Einheitsvektors.

Entsprechend konnen wir alle imaginiiren Zahlen auf einer Geraden veranschau-
lichen, indem wir jede imaginiire Zahl b - ¢ als das b-fache der imaginiren Einheit §
6 [00917-2)
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auffassen. Die so aus der ,,imaginiren Einheitsstrecke* von 0 bis ; entstehende Ge-

rade withlen wir senkrecht zur Zahlengeraden mit dem Schnittpunkt 0=0.1=0.1%
(vgl. Abb.36). Die beiden Geraden werden reelle bzw. imaginire Achse genannt.

2

Vi

-4 -3 -2 -1 0 1402 2 .3 .Z *6

Abb. 36

Die eine veranschaulicht alle reellen, die andere alle imaginiren Zahlen. Die Zahl
Null ist die einzige, die als reelle und zugleich als imaginire Zahl aufgefafit werden
kann.

Aus der analytischen Geometrie ist bekannt, daB man jeden Punkt einer Ebene
eindeutig durch ein Paar reeller Zahlen (Abszisse und Ordinate) kennzeichnen kann
und daB umgekehrt jedem solchen Zahlenpaar eindeutig ein Punkt dieser Ebene ent-
spricht. Andererseits ist jede komplexe Zahl

a+ bt

durch die beiden reellen Zahlen @ und b eindeutig festgelegt, und umgekehrt gibt
es zu jedem Paar reeller Zahlen @ und b genau eine komplexe Zalil a + bi. Beides
zusammen bedeutet, daB durch die Konstruk-
tion, wie sie die Abbildung 37 darstellt, jeder
komplexen Zahl a + bi genau ein Punkt der
durch die reelle und imaginire Achse aufgespann-
ten GauBschen Zahlenebene zugeordnet wird. Auf
diese Weise entspricht also jedem Punkt der
Zahlenebene eindeutig eine komplexe Zahl und i
jeder komplexen Zahl eindeutig ein Punkt der
Zahlenebene. Die Punkte der reellen und der
imaginiren Zahlen fallen dabei auf die beiden
Achsen. Die Abbildung 38 gibt dazu einige Bei- Abb. 37
spiele.

Die Veranschaulichung der komplexen Zahlen als Punkte der GauBschen Zahlen-
ebene erweist sich auch fiir das praktische Rechnen mit ihnen oft als vorteilhaft.
So ké wir zum Beispiel die Addition komplexer Zahlen zeichnerisch ausfiihren,

7] . —qorbi

[ S S
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indem wir die Strecken wie Vektoren aneinanderfiigen, die vom Nullpunkt zu den
die komplexen Zahlen darstellenden Punkten fiihren (vgl. Abb. 39). Bei der Subtrak-
tion kann man entsprechend verfahren (vgl. Abb.40). Das darf uns jedoch nicht

Ut-———— ’————73;' 2
|
—24ig— — — — =i |
r 1
! 1
1 +
-4 -3 -2 -1 o 1 2 3,4 3
! 1
| -i |
Sy - —— —~ |
AU - —131' -2
Abb. 38
pedsi Y feragrrai
a+bi
DY RS
- o
s ~
il c+di
7~
-
(a—c/o/b-wi\’
o
Abb. 39 Abb. 40

dazu veranlassen, die komplexen Zahlen selbst mit den Vektoren einer Ebene zu ver-
wechseln. Komplexe Zahlen sind arithmetische oder algebraische Rechengréfen. Sie
werden durch Punkte veranschaulicht, und die Verbindungsstrecken dieser Punkte
zum Nullpunkt verhalten sich beziiglich Addition und Subtraktion wie Vektoren.
Schon fiir die Multiplikation komplexer Zahlen gelten andere Gesetze als fiir die
Multiplikation von Vektoren, so daB kein Vergleich mdoglich ist.

Aufgaben

1. Es ist zu untersuchen, welchen Punkten der GauBschen Zahleneb die folgenden kom-
plexen Zahlen entsprechen.

34 4¢ 0,5 — 2¢ —0,5— 3i —74 5¢ 144
V5 V=8 n ai 0

8*
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2. Nach dem Vorbilde der analytischen Geometrie teilt man auch die GauBsche Zahlenebene
in vier Quadranten ein. Welche Vorzeichen haben Real- und Imaginiirteil in diesen vier
Quadranten?

3. Wo liegen alle komplexen Zahlen mit gleichem Realteil, wo die mit gleichem Imaginarteil?

4. Wie liegen konjugiert komplexe Zahlen zueinander?

5. Welchen Punkten der GauBschen Zahleneb tsprechen die kompl Zahlen a + bé
mit ¢ = b?

6. Wo liegen diejenigen komplexen Zahlen a -+ bi, fiir die die Gleichung a2 + b* = 1 erfiillt ist?

7. Die folgenden Aufgaben sind zeichnerisch zu lésen und die Ergebni hnerisch nach
priifen:
B+ 2i) + (4+1); (2—1i)—(3+3i); 5it (4—1i); (—3+20)+ 3+ 20);
@+i)+@2—i)s (248 —(2—1i); (4+3i)—6; 6i—5.

II1. Rechenoperationen im Bereich der komplexen Zahlen

10. Die trigonometrische Form der komplexen Zahlen

Wir haben die komplexen Zahlen in der sogenannten ,arithmetischen Form‘
a + bt als alle méglichen Summen reeller und imaginirer Zahlen kennengelernt. Ihre
Veranschaulichung in der GauBschen Zahlenebene fiihrt uns zu einer anderen Schreib-
weise, die die ,trigonometrische
Form‘‘ der komplexen Zahlen genannt
wird und die fiir die Durchfiihrung
der Rechenoperationen zweiter und
dritter Stufe vorteilhafter ist.

Jeder komplexen Zahl a + b7 ent-
spricht genau ein Punkt der GauB-
schen Zahlenebene. Analytisch be-
trachtet sind dabei @ und b die Cartesi-
schen .Koordinaten dieses Punktes.
Gehen wir von ihnen zu Polarkoordi- Abb. 41
naten (vgl. Lehrbuch der Mathematik,
11.Schuljahr, Seite 191ff.) iiber, so erhalten wir zwei andere Bestimmungsstiicke,
7 und @, die diesen Punkt ebenfalls eindeutig kennzeichnen (vgl. Abb.41).

Durch die Formeln?)
= ;Va®+ 2, tp=a.rctg%

a=r7-cosq, b=r sing

und

1) Das tiefgestellte Pluszeichen vor der Wurzel bedeutet, daB die Wurzel positiv auszuziehen ist.
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lassen sich 7 und @ eindeutig aus @ und b besti und umgekehrt. Wir kénnen
daher die komplexe Zahl a + bi durch r und ¢ ausdriicken:

a+bi=7r-cospticresing=r(cosp -+ i-sing).

Man nennt 7 den Betrag, ¢ das Argument und 7(cosg + i-sing) die trigono-
metrische Form der komplexen Zahl. Wegen der Periodizitit der trigonometrischen
Funktionen ist das Argument ¢ nur bis auf ganzzahlige Vielfache von 2x bestimmt.
Der Betrag r ist dabei die positive Wurzel aus dem Produkt der komplexen Zahl
mit ihrem konjugiert komplexen Wert:

r=,V@+bi) (a—bi)=_Ya?+ b7,
wofiir man auch
r=|a+ bi|

schreibt. Diese Definition des Betrages einer komplexen Zahl steht nicht im Wider-
spruch zur Definition des Betrages einer reellen Zahl. Fiir b = 0 ist nimlich die kom-
plexe Zahl a + bi gleich der reellen Zahl a und ihr Betrag 7= |a + bi|= |a| der
Betrag dieser reellen Zahl.

Aufgaben und Ubungen

1. Welche komplexen Zahlen haben den gleichen Betrag, welche das gleiche Argument?

2. Welche Besonderheit gilt fiir die Null als komplexe Zahl in tri trischer Form?
3. Geben Sie die folgenden komplexen Zahlen jeweils in ihrer anderen Form an:
. 1 1. e .
a) 3+ 4i; b) »5—5--V3, €) 2 —2i;
d) —V3—3i; o) 5i; n—1;
LR AN = 5z . . &m\,
5)2(""“?"'""“?)' h) Vs(msT+;~smT).
T 2 LN AN
i) 7 (cosmw+ i-sinm); k) 3(cos§+|~sm :T)'
2 T, . . Tn 01 : ot
D (eos " i -sin —3-); m) 10(c0853,1°+ i - sin 53,1°);

n) 9 (cos 270° - ¢ - sin 270°)!

11. Multiplikation und Division komplexer Zahlen
in trigonometrischer Form

Sind zwei komplexe Zahlen in arithmetischer Form gegeben, so lassen sie sich
miihelos addieren und subtrahieren, wihrend die Multiplikation und erst recht die
Division einige Rechnungen erfordern. Diese Rechenoperationen lassen sich mit kom-
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plexen Zahlen in trigonometrischer Form leichter durchfiihren. Es gilt nimlich, wie
wir weiter unten beweisen,

{r1 (cos @y + i« sin @)} + {r2 (cos pa+ i+ sin @a)}

=11+ 72 (cos (p1+ @2) + i+ sin (91 + @2))
und
{r1(cospr+ i« singy)} : {ra(cos gz i~ sin ?2)}

= :—: (cos (p1— @2) + i« sin (91— 92)) -

Zwei komplexe Zahlen in trigonometrischer Form multipliziert man also, indem
man ihre Betrige multipliziert und ihre Argumente addiert. Man dividiért sie, in-
dem man ihre Betrige dividiert und ihre Argumente subtrahiert. Man muf nur be-
achten, daB sich bei der Addition bzw. Subtraktion der Argumente Werte ergeben
koénnen, die auBerhalb des Winkelbereiches von 0 bis 27 liegen. Da negative Winkel
oder Winkel groBer als 27 auf Winkel im Bereich von 0 bis 27 zuriickgefiihrt werden
konnen, wird in einem solchen Falle das neue Argument um +2x oder um —2x
abgeindert.

Wir wollen nun die behaupteten Formeln beweisen. Zunichst ist

{ri(cos @, + ¢ - sin gy)} - [ry(cos @y + ¢ - sin )}
=1, - Ty([cOs @, co8 @, — sing, sing,] + i[sing, cosg, + cos ¢, sing,]).

Nach den Additionstheoremen fiir trigonometrische Funktionen ist aber

€08 @ €08 @p — 8ing, sing, = cos (¢ + ¢,)
und

sing, cos@, + cosq, sing, = sin (p, + @),
woraus bereits die behauptete Formel fiir das Produkt folgt.

Die Division ist die Umkehrung der Multiplikation. Multiplizieren wir den Aus-
uck :‘ (cos (@, — @;) + @ - sin (¢, — @) mit 7,(cos @y + % - sing,), so erhalten wir
2
nach der eben bewiesenen Formel

1"_;'72(009(%—‘?:'*‘?’2)"' i 8in (g — @+ @p)) = 7, (COS @, + & - sing,).

Da der Quotient zweier komplexer Zahlen eindeutig bestimmt ist, ist die Richtig-
keit der zweiten Formel ebenfalls gezeigt.

Die Multiplikation und die Division komplexer Zahlen in trigonometrischer Form
lassen sich in der GauBschen Zahleneb veranschaulichen (vgl. Abb.42 und
Abb. 43).

Der dem Produkt zugeordnete Punkt liegt auf dem Strahl, dessen Argument die
Summe der Winkel ¢, und ¢, ist, und hat den Betrag 7, - 7, als Abstand vom Null-
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punkt. Da nach dem Strahlensatz die entsprechenden Seiten @hnlicher Dreiecke ein-
ander proportional sind, gilt

(ry - Tg)im=r1y:1;

also kann die Linge 7, - 7, konstruiert werden (vgl. Abb. 44). Wir verbinden den der
Zahl r,(cos ¢, + i -sing,) zugeordneten Punkt Z, mit dem die 1 darstellenden
Punkt E und erhalten das Dreieck OEZ,. Der Punkt Z, ist das Bild der Zahl
7,(c08 ¢y + @ - 8in ¢y). Die freien Schenkel der in O und Z, an 0Z, angelegten Winkel ¢,
bzw. X OEZ, schneiden einander in Z. Es ist AOEZ, ~ NOZ,Z und damit die
Linge von OZ gleich dem Produkt 7, - 7,. Der konstruierte Punkt Z stellt also das
Produkt

dar.
Entsprechend liegt der dem Quotienten zweier Zahlen zugeordnete
Punkt auf dem Strahl, dessen Argument die Differenz der Winkel ¢, und g, ist. Er

7173(c08 () + @) + § - 8in (@ + @y))

______ 4 A P

N\

\

 /, y i /|
\
\

\
\
2N \ 3
\ )
A f A /l\
I o, "

Abb. 44 Abb. 45

hat den Betrag ? als Abstand vom Nullpunkt. Wir konnen ihn, den eben erliuter-
B 2 N
ten Gedankengang umkehrend, ebenfalls konstruieren (vgl. Abb. 45).
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Es ist dann AOZ,E ~ AOZ,Z und wegen

n -
tl=mr:r
" =711

die Linge von OZ der Quotient % . Der Punkt Z stellt den Quotienten
2

T (008 (3 — o) + i - sin (91 — o))
dar.

Aufgaben

1. a) 2(m%+e.sm%)%(m%+i.sin3;)

b) —;—(eosn+i~sinn)~é(eos¥+i-sin3;)

¢) 7,5 (cos 32°+ i -8in 32°) - 4,8 (cos 117°+ i - sin 117°)
Tn, . . 1n 2n . . 2n
d) 5(eos?+t-smT)~3,5(cosA3f+x-sm?)

@) 10 (cos 53,1°+ ¢ - 8in 53,1°) - 12 (cos 342,7° - i - sin 342,7°)

a) %(ws%+¢-sin%):2(cos%+i-sin~n-)

2 6

L | 2 n - 1
b) 2(cos?+l~smi).—:‘x—(oosfg—{—l-sm»g)

¢) 4 (cos 184°+ i - sin 184°) : 12 (cos 254° + i - sin 254°)
4 n . .=
d) l.?(cosT+4~sm?)
@) 4i:5 (cos45°+ ¢ -sin 45°)
= Sbn, . . 57
n —s.l's(cosT+-~smT)
3. Fiihren Sie einige der in 1 und 2 gestellten Aufgaben zeichnerisch durch!

12. Potenzen und Wurzeln komplexer Zahlen, der Satz von Moivre

Die Multiplikation komplexer Zahlen in trigonometrischer Form ergibt eine iiber-
sichtliche Schreibweise fiir die Potenzen komplexer Zahlen. So ist zum Beispiel

fr(cosp + & - sing)}2 = {r(cosp + - sing)} - {r(cosg + i - sing)}
= 12(cos2¢ + 1 - 8in2¢)

{r(cosp + i -sing)}? = {r(cosp + 4 - sing))2 - {r(cos g + & - sing)}
= 73(cos 3¢ + ¢ - sin3¢).
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Wir wollen sogleich die nach Moivre benannte Formel
{r(cosgp + i+sing)}” = 2" (cosng + i+ sinng)

fiir positive, ganzzahlige » beweisen. Wir fithren einen InduktionsschluB durch und
nehmen an, daB die Formel bereits fiir » vewiesen sei. Sie gilt dann wegen
{r(cosp + i - sing)j*+1 = |r(cosp + i - sing)}" - {r(cos¢ + i - sin))
= {r"(cosnp + i - sinng))} - [r(cosp + i - sing))}
=17 (Co8 (ng + @) + & - (sinng + @)
= 1m*1(cos(n + 1)g + ¢ - sin(n +1)¢)
auch fir n + 1. Fiir # =1 ist sie sicher richtig. Sie gilt also fiir alle positiven ganz-
zahligen n.
Esist dabei wieder zu beachten, daB das Argument ng groBer als 2z werden kann
und dann um ganzzahlige Vielfache der Periode 2x abzuindern ist.
Satz von Moivre:
Die Formel
{r(cosp + i+ sing))” =" (cosng + i+sinng)
gilt tiir beliebige rationale Werte von n.

Beweis:

Fiir positive ganzzahlige n haben wir die Formel bereits als richtig erkannt. Im
folgenden werden wir sie in drei Teilschritten fiir alle anderen rationalen Werte von n
beweisen.

a) Beweis der Moivreschen Formel fiir negative ganzzahlige n = —p

Nach der Definition von Potenzen mit negativen Exponenten ist

Lo 1
{r (cos@ + i - sin @)} ’—(m»

Wir erweitern mit (cosq — ¢ - sing)? und erhalten:

(cos @ — i - sin ¢)?
7{(cos@ + i -8in ) (cosP — ¢ - BN PNP

{r(cosgp +i.sing)}-»=

Da cos? @ + sin?p =1 ist, steht im Nenner nur 7». Den Zihler kénnen wir aber
wegen cos@ = cos(—¢@) und —sing=sin(—¢) in (cos(—¢)+ i sin(—¢))?
= cos (— p@) + © - 8in (— p@) umwandeln.
Es ist also
{r(cos @ + i - sin @)} ~? = r~?(cos (— p@) + i - sin (— pg)).

Damit ist die Giiltigkeit der Formel fiir negative g hlige Exponenten bewiesen.
7 100917-2]
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b) Beweis der Moivreschen Formel fiir positive Briiche der Form n = %

Wir bilden von der komplexen Zahl H(eos —@p+1i- sint qa) die g-te Potenz?).
Es ist

{r%(oos%ip+i-sin%cp)}q=(r':') (cos— + 4 .sin=- (p)
=7(cos® + ¢ -sing).

Erheben wir diese Gleichung in die —-te Potenz, so erhalten wir mit vertauschben
Seiten

{r(cosp + - simp)}"—= 17 (cos%cp +1i- sinr;w).

Damit ist die Giiltigkeit der Formel fiir Exponenten von der Form n = % bewiesen.

¢) Beweis der Moivreschen Formel fiir beliebige rationale n

Da jede rationale Zahl n = £ als Quotient zweier ganzer Zahlen mit ¢ > 0 ge-

schrieben werden kann, folgt aus den letzten beiden Teilschritten bereits die Giiltig-
keit der Moivreschen Formel fiir beliebige rationale n:

2 1 1 »
{r(cosp + i.sing))? = [{r(‘cosqp + i -8in (p)}"] = [r" (cos%q) +1i- sin-;r fp)]
LA
=77 (cos%(p + i-sin qgnp)

Damit ist der Satz von Moivre bewiesen.

Es lassen sich also mit Hilfe der Moivreschen Formel alle Potenzen und Wurzeln
komplexer Zahlen mit rationalen Exponenten berechnen. Wir konnen hier nur an-
geben, daB auch alle Wurzeln und Potenzen mit reellem, ja sogar mit komplexem

Exponenten n innerhalb des Bereiches der komplexen Zahlen existieren. Auch fiir
sie gilt die Moivresche Formel.

Aufgaben
1. Berech Sie die folgenden P . ! Zakhlen einmal in der gegebenen arith-
metischen Form, sodann in tngonometmcher Form nach dem Moivreschen Satz!
2) (44 3i » (§+3ir3) ¢) (24 20t

; 1
!) Dabei ist hier unter 7?¢ die positive reelle g¢-te Wurzel aus der (positiven) reellen Zahl r zu

verstehen; dn gllt auch im folgenden, wenn r¢ als Betrag einer in trigonometrischer Form ge-
schrieb ys Zeahl
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2. Verfolgen Sie die Reckmmgen der Aufgabe 1 in der GauBschen Zahlenebene! Sprechen Sie
das Ei in i

Form fiir beliebige P aus!
1 3 z\17
3. n){?(eosn+i.sinn)} b) { (005——+t sm3)}
LN A L - s
c){?(cos?+s-sm-6)] d) {l cos 3~+v~sm 3)]
e) {5(cos10°+ i -sin10°)}* 1) {2 (cos 127°+ i -8in 127°))®
4. Berech Sie die folgenden Wurzeln nach dem Moi hen Satz fiir gebrochene Expo-
nenten und priifen Sie die Resultate! Die Mehrdeutigkeit dieser Aufgaben wird erst im fol-
genden Abschnitt behandelt und soll vorliufig auBer acht gelassen werden.
Y T m) i/—-ﬁ
a) Vﬁ(eos§+|-sm§) b) |/ 32 cos§+|~sm3)
5 -
c) |/32(cos;—:'—+i-sin%) d) ‘/27 Losgn+i-sin%1t)
o) ‘16 (cos 144° F & -on 1447 1) V4(c0s 260° 7 7 - 5 2609

13. Algebraische Gleichungen
Eine algebraische Gleichung n-ten Grades hat die Form
Q2"+ @y 2" 4 T+ gy =

Die Koeffizienten a,,a,_,,...,a, konnen beliebige reelle oder auch komplexe
Zahlen sein, wobei nur die Einschrinkung a, = 0 notwendig ist. Fiir die Theorie
der algebraischen Gleichungen sind die komplexen Zahlen ein unentbehrliches Hilfs-
mittel.

So kénnen schon bei quadratischen Gleichungen mit reellen Koeffizienten kom-
plexe Wurzeln auftreten. Im Lehrbuch der Mathematik, 9. Schuljahr, wurden fiir die
quadratischen Gleichungen in Normalform

22+ px+qg=0

ne-2+)E Ty,
2T,

abgeleitet. Der Radikand der Quadratwurzel, die Diskriminante D = % — g, gibt

an, welcher Art diese Wurzeln sind. So sind fiir D > 0 die Wurzeln 2, und z, reell
und voneinander verschieden, fiir D = 0 fallen beide zu einer reellen Doppelwurzel

*

die Wurzeln
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zusammen. Im Falle D < 0 konnten wi_r bisher nur feststellen, daB keine reellen
Waurzeln existieren. Es wird nimlich YD imaginir, und wir erhalten die beiden
Lésungen

it

x2=—%—il/

Sie sind konjugiert komplex.

Wir konnen also feststellen, daB8 im Bereich der komplexen Zahlen eine quadra-
tische Gleichung stets zwei Wurzeln hat, die allerdings zu einer Doppelwurzel zu-
sammenfallen konnen. Dieser Satz bleibt richtig, wenn man quadratische Glei-
chungen mit komplexen Koeffizienten betrachtet.

Fiir die Gleichungen dritten Grades gibt es éhnliche, jedoch schon wesentlich kom-
pliziertere Auflosungsformeln. Sie werden nach dem italieniscl Mathematik
Cardano benannt und sagen aus, daB jede Gleichung dritten Grades genau drei
Whurzeln hat, von denen allerdings wieder zwei zu einer doppelten oder alle drei zu
einer dreifachen Wurzel zusammenfallen konnen. Wir wollen dies an einigen Bei-
spielen zeigen.

So hat die Gleichung

r |
5y

B’—622+1lz—6=(z—1)(x— 2)(z.— 3)=0
die drei voneinander verschiedenen reellen Wurzeln
=1, 2,=2, =3
(vgl. Lehrbuch der Mathematik, 11. Schuljahr, S.38), die Gleichung
B—-2224+2x=(x—0)(z— (1 +i))(x—(1—1i)=0

die reelle Wurzel z, = 0 und die beiden konjugiert komplexen Wurzeln z, =1 +- 1,
2y =1 — i, die Gleichung

BP—32+4=(x+1)(z—2)(z—2)=0

die reelle Wurzel z, = —1 und die reelle Doppelwurzel x, = 2, = 2 und schlieBlich
die Gleichung
#—322+38rx—1=(x—1)(z—1)(x—1)=0

eine reelle dreifache Wurzel z, = 2, = z;=1.

Auch bei Gleichungen dritten Grades ist also der Satz, daB es drei Wurzeln gibt,
nur richtig, wenn man die komplexen Wurzeln mitberiicksichtigt. Sie miissen iibri-
gens bei einer Gleichung dritten Grades mit reellen Koeffizienten konjugiert kom-
plex auftreten, so daB eine solche Gleichung entweder drei reelle oder eine reelle und
zwei konjugiert komplexe Wurzeln hat.



Algebraische Gleichungen 93

Eine Verallgemeinerung dieser Behauptung ist der berithmte Fundamentalsatz der
Algebra, der zum ersten Male von Carl Friedrich GauB im Jahre 1799 exakt
bawiesen wurde:

Jede algebraische Gleichung n-ten Grades mit reellen oder komplexen Koeffi-
zienten hat im Bereich der komplexen Zahlen genau n Wurzeln, wenn man jede
‘Wurzel mit ihrer Vielfachheit zihit.

Man kann also jede algebraische Gleichung n-ten Grades in » Wurzelfaktoren zer-
legen:
@z + -+ T+ Gy =a, (& — %) (@ — ) (- ) - - (— x,) = 0.

Dabei sind z,, .. ., z, die Wurzeln dieser Gleichung. Sie kénnen reell oder komplex
sein und konnen mehrfach auftreten. Ein Beweis des Fundamentalsatzes der Algebra
setzt Kenntnisse voraus, die an der Oberschule nicht zur Verfiigung stehen. Wir
wollen ihn jedoch fiir einige Gleichungen nachpriifen.

So muB die Gleichung n-ten Grades

a"—1=0
n Wurzeln haben, die man wegen

a=¥1

die n-ten Einheitswurzeln nennt. Im Bereich der reellen Zahlen hat diese Gleichung
aber nur die Wurzel +1, falls » ungerade, und die Wurzeln +1 und —1, falls » gerade
ist. Wir wollen die komplexen Wurzeln der Gleichung er- '
mitteln.

Dazu schreiben wir 1 als komplexe Zahl in trigonometri-
scher Form und wenden den Moivreschen Satz an:

1=r(cosp + i sing),

n— 1 P . . P
yi=rn (cos-ﬂ—+ z~sm;)-

Abb. 46

1
Dabei ist r=1. Da 7" als Betrag einer komplexen Zahl positiv reell werden muB,
ist dafiir +1 zu wihlen; das Argument ¢ ist zunichst 0 (vgl. Abb.46). Dann wird

aber % ebenfalls 0, und wir erhalten
n . . ..
Y1=1-(cos0+i-sin0)= (14 0-i)=1.

Nun benutzen wir die Periodizitit der Sinus- und Kosinusfunktion. Wegen
8in 0 =sin2x und cos 0 = cos 2 konnen wir auch 27z als Argument ¢ fiir die

Zahl 1 wiihlen: Dann wird 1:— = 27" und damit
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Diese komplexe Zahl liegt auf dem Kreis mit dem Radius 1 und dem Nullpunkt
der GauBschen Zahlenebene als Mittelpunkt, um —'l‘- des Vollkreises im mathematisch

positiven Sinne aus der reellen Achse herausgedreht. Sie erfiillt tatsichlich die
Gleichung

z"=1.
Das veranlaBt uns, das Argument ¢ von 1 der Reihe nach als
=227, ¢=3-27, ..., p=(n—1)-2x
anzusetzen. Damit erhélt man fiir 'iq die weiteren Argumente

27

P _o.2" 2 _g.27 F—n—1).2%
n n n n

und damit insgesamt » verschiedene Losungen
’i'i=1~(cosk2"i’+i-sink2ni') (k=0,1,...,n—1)

unserer Gleichung. Fiir alle anderen ganzzahligen k ergeben sich keine neuen Werte
fiir die Wurzeln. In der Abbildung 47 sind fiir » = 6 und in der Abbildung 48 fiir
n =17 die n-ten Einheitswurzeln in der komplexen Zahlenebene dargestellt.

eN/e g
-1 iz 2 -1 ] & Y]
2%/
6
- d
. Abb. 47 Abb. 48

Im allgemeinen Falle sind es die Eckpunkte eines in den Einheitskreis einbeschrie-
benen reguliren n-Eckes, dessen eine Ecke im Punkte +1 liegt. Es bestiitigt sich,
daB —1 nur fiir gerade » Losung ist. Die nicht reellen Wurzeln treten konjugiert
komplex auf. Dieser geometrischen Bedeutung wegen nennen wir die Gleichung
2" —1 = 0 auch Kreisteilungsgleichung.
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Die gleichen Uberlegungen konnen wir auch fiir die Gleichung
" —a=0
mit beliebigem, positiv reellem @ durchfiihren. Die'} @ muB also ebenfalls » Lisungen

haben. Wir erhalten sie, wenn wir a als komplexe Zahl in trigonometrischer Form
schreiben

a=r(cosg + ¢ -8ing)=a(cosp + i - sinp)
und bei Anwendung des Moivreschen Satzes das Argument ¢ der Reihe nach als
¢=0,¢=2xn ¢=2-2n,..., p=(rn—1) 27 ansetzen. Es sind dann
»—

1
- 2n .. 2n
a=a" (cosk7+t~smk~”») (k=0,1,...,n—1)

die n verschied Lésungen unserer Gleichung, wobei als Betrag dieser komplexen
Zahl natiirlich wieder die positive reelle n-te Wurzel aus a zu setzen ist.

So hat zum Beispiel 1/8 die drei Losungen

"y§=8i(ooso.?a’?+i.sin0-?3’-’)=2(1+o)=§,

s|/§=85 (cosl : %’+i~sinl 23}) =2(cos:')—;+i<sinf‘%'),
V8=8! (cos2- 57+ i-sin2 ) =2 (cos’y + i -sin %),

die in der Abbildung 49 veranschaulicht sind.

-1+iVF

PR Y S

-1-iVF

Abb. 49

Vergleichen wir das Ergebnis fiir "}’_a mit dem fiir 'VT, so sehen wir, daB wir alle

Lésungen ’i/n—z erhalten konnen, indem wir die positive reelle n-te Wurzel aus a mit
allen n-ten Einheitswurzeln multiplizieren. Wir konnen sogar von irgendeiner der

h

n Lésungen von ’i/ a ausg und durch Multiplikation dieser Losung mit allen n-ten
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Einheitswurzeln alle anderen erhalten. Ist nimlich « eine beliebige Lisung der Y a,
das heiBt «” = a, so erfiillt auch stets « - ’i/—l wegen
(a-y1)"= a"('i/—l)"= a-1=a
die Gleichung z" = a.
-Wir wollen schlieBlich zeigen, daB jede komplexe Zahl

Zy = 7(co8 @ + i - sin¢g)

genau n inander verschiedene n-te Wurzeln hat. Es sind dies die n komplexen
Zablen 1 k—1)-2 k—1)-2
wy =" (cos‘-”—j'—(—:-!-'w—’—t +i- sh@') (k=1,2,...,n),
Zo
\
\
\
% \
\
\
¥ " ‘|
T r

Abb. 50
1

deren Betrag ™ die positive reelle n-te Wurzel des Betrages r ist. Wir erhalten sie,
indem wir entweder vor Anwendung des Moivreschen Lehrsatzes das Argument ¢
der Reihe nach als

¢+0-27, @+1-27, ..., o+ (n—1) -2z

ansetzen (die weiteren Argumente @ + n - 2, . .. ergeben keine neuen Losungen)
oder die sich auszy= r(cos ¢+ 1 - 8in ¢) nach dem Moivreschen Satz ergebende Lésung

1
= (cos® +i.sin¥
w, r"(oosn+o mnn)

mit allen n-ten Einheitswurzeln multiplizieren:
1
{r" (cos% + - sin w)} . {(c,ossz"+ i~sinlcg"1')'

n

1
=17(oos¢+:'2"+i~sin¢+:'2") k=0,1,...,n—1).

In der Abbildung 50 sind als Beispiel die sechsten Wurzeln der komplexen Zahl
r(cos @ + i - sin p) dargestellt.
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Aufgaben
1. Losen Sie die folgenden quadratischen Gleichungen!
a) 2 4+z+4+1=0 b) 822 — 824 10=0 ¢) 422 4 122+ 10=0
d) 42+ 1224+ 9=0 e) 422+ 1224+ 8=0 ) 22—52+225=0

2. Die Losungen der im Text angegebenen Gleichungen dritten Grades sind nachzupriifen.

3. Die Gleichung vierten Grades z4 4 22 — z — 2 = 0 hat zwei reelle und zwei konjugiert
komplexe Wurzeln. Sie sind zu bestimmen.

Anleitung: Die reellen Wurzeln z, und r, sind durch Probieren leicht zu finden, die Division
durch (z — 1,) (x — z,) fithrt zu einer Gleichung zweiten Grades.

4. Berechnen Sie die dritten, vierten, fiinften und sechsten Einheitswurzeln!
5. Samtliche Losungen von

4 - 8 83— 8

Vezs, V=8, V=, V==, V2, V==

sind als komplexe Zahlen und ihre Bilder in der GauBschen Zahleneb b

6. Die Losungen der Aufgabe 4 zu Abschnitt 12 sind vollstandig zu berech

14. Anwendung komplexer Zahlen in Physik und Technik

Die komplexen Zahlen sind in den Anwend bieten der Mathematik von
groBer Bedeutung. Es gibt heute wenige Gebiete der Phymk und der Technik, die
auf das Hilfsmittel der komplexen Zahlen verzicht ten. Wir mii uns

darauf beschrinken, an einigen Beispielen die Anwendbarkeit der komplexen
Zahlen auf physikalische Probleme zu zeigen.

a) Der Wechselstromwiderstand

Es ist bekannt, daB in einer von Wechselstrom durchflossenen Spule auBer dem
Ohmschen, auch fiir Gleichstrom vorhand Widerstand Rq der durch Induktion
hervorgerufene  Blindwiderstand  (induktiver
Widerstand) Ry = 2xf- L auftritt. Er hingt
von der Selbstinduktion L der Spule und der
Frequenz f des Wechselstromes ab. Wir kénnen
den Wechselstromwiderstand als eine komplexe
Zahl R = Rq + iR, aunffassen (vgl. Abb.51).

Der Betrag |R|= VR? + R}, ist der in das
Ohmsche Gesetz eingehende Scheinwiderstand,

R:Ry-iR

R
das Argument @ = arc tg TL_ die Phasenver-
Q

Abb. 51

schiebung. Der Vorteil dieser Betrachtungsweise

ist, daB sich bei Hintereinanderschaltung mehrerer Spulen die Widerstinde wie
komplexe Zahlen addieren und bei Parallelschaltung die Kirchhoffsche Regel gilt,
wenn wir fiir alle auftretenden Widerstinde Ry + ¢ Ry einsetzen.
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Wir wollen dazu zwei Beispiele durch- S» S,
rechnen:

1. An den Stromkreis (vgl. Abb.52)
sei Netzwechselspannung (f= 50 Hz,
U=220V) angelegt. Die Spule S, habe eine T
Selbstinduktion L, =7 Henry, die Spule S,
eine  Selbstinduktion L, = 3,5 Henry Abb. 52
und beide einen Ohmschen Widerstand
Rg, = Rq,=200Q. Wir wollen die Stromstirke berechnen. Es ist

Ry= R +i2nfL =200+ i2x - 50 - 7 ~ 200 + 2200%
By= Ro +i2nfLy= 200+ i27x - 50 - 3,5 ~ 200 + 11003,

wobei wir zur Vereinfachung fiir # den Néherungswert 27—2 gesetzt haben. Dann ist
R= R, + R, =~ 400 + 33007 der kompl_exg Eesamtwidersta,nd des Kreises. Der Be-
trag der komplexen Zahl R ist }400? + 3300% ~ 3324. Damit ist die Stromstirke
U _ 220
R] ™ 3324

2. Schalten wir dagegen beide Spulen parallel (vgl. Abb.53), so haben wir nach
der Kirchhoffschen Regel

R=

I= A~ 0,066A.

R, R, _ (200 2200i) (200 + 11004)

R+ R, 400 4 3300

Wir bringen die drei komplexen Zahlen in ihre trigonometrische Form und wenden
den Satz von Moivre an. Da wir lediglich den Betrag von R brauchen, verzichten
wir auf die Berechnung der Ausdriicke

cosp + i - sing. Es ist dann Sy
IR Ry 22101120
IR ="R,Fr, 3324 745, 1_7 Sz
U 220
I= ® =~ mA ~ 0,295A.
Auf dhnliche Weise verfiahrt man, wenn ]
ein Kondensator in einem Wechselstrom-

kreis liegt. Abb. 53

b) Bewegung auf einem Kreis
Auf einem Kreis mit dem Radius r bewege sich ein Kérper mit der konstanten
Geschwindigkeit v (vgl. Abb. 54). Wir kénnen dann seinen Ort s zu jedem Zeitpunkt ¢,
also seinen Weg, durch die komplexe Zahl s=1r cos% t+4- sin—'ri t) be-

schreiben, ‘wobei der Winkel ¢ im BogenmaB das Verhiltnis des zuriickgelegten
Bogens v - t zum Kreisradius r ist.
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Da die Geschwindigkeit die erste, die Beschleunigung die zweite Ableitung des
Weges nach der Zeit ist und, wie wir nicht beweisen wollen, die Differentiation von
Funktionen im Bereich der komplexen Zahlen ebenso wie im Bereich der reellen
Zahlen verliuft, konnen wir auch hier sofort
die Geschwindigkeit und die Zentralbeschleuni-
gung berechnen. Es ist dann

$ ds v . v v

. /\” 5—7(— sm;t+z~cos7t)~7,
b4 \ - dts %y i.sin%¢ 0%
d—,—’r(—cos; —s-sm;)~'—,-

Beriicksichtigen wir in beiden komplexen Zah-
len nur die Betriige, so erhalten wir tatsich-
lich die Geschwindigkeit » aus der ersten, die

Zentralbeschleunigung "T' aus der zweiten Ab-
Abb. 54 leitung.

¢) Schwingungen eines Massenpunktes

Eine punktférmige Masse m schwinge zwischen zwei gleich starken Federn (vgl.

A

Abb. 55

S

Sehen wir von Reibungsverlusten ab, so ist die riicktreibende Kraft K um so
groBer, je mehr der Punkt aus der Mittellage ausgelenkt ist. Dabei ist K proportional
der Entfernung z vom Ruhepunkt. Unter Verwendung eines Proportionalititsfak-
tors — x ergibt sich demnach

K=—% 2.

Die positive GroBe » wird auch Federkonstante genannt. Da die Kraft das Produkt
aus Masse und Beschleunigung ist, erhalten wir eine Relation

d*z

—%-g=m g5

Ahnliche Beziehungen treten bei allen Schwingungsproblemen auf. Die eben gewon-
nene Relation wird von der komplexen Zahl

* Y
=’(°°sl/7't+"sml/7't)
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als Funktion von ¢ erfiillt. Es ist nimlich

%—r(—sinl/%-t+i'cosl/-—;;-t)-V—%-,

&z x (

= " m '
das heiBt

'z %

b= " m

Dabei entspricht der komplexen Zahl z- ein
Punkt in der GauBschen Zahlenebene, der auf
dem Kreis vom Radius r mit der Geschwindig-

keit 7 - % umlanuft (vgl. Abb. 56).

NDie Projektion dieses Punktes auf die reelle
Achse, also der Realteil von z, beschreibt den
Weg der schwingenden Masse. Der Betra,g T

ist die Amplitude, das Arg l/— ein MaB
fiir die Frequenz der Schwingung.

Aufgaben

1. Rechnen Sie die unter a) durchgefiihrten
Beispiele nach!

2. Welche Stromstéirke flieBt in dem Stromkreis
der Abbildung 67, der an das Wechselstrom-

Abb. 56

S

netz (f = 50 Hz, U = 220V)
ist?

8,: Selbstinduktion 2 Henry,
Ohmscher Widerstand 50 Q
8,: Selbstinduktion 5 Henry,
Ohmscher Widerstand 250 Q
Sy: Selbstinduktion 3 Henry
Ohmscher Widerstand 100 Q

156. Zusammentassung

Sz

S3

Abb. 57

Wir haben die Entwicklung des Zahlenbegriffes vom Bereich der natiirlichen bis
zum Bereich der komplexen Zahlen verfolgt. Riickschauend kénnen wir feststellen,
daB die vorgenommenen Erweiterungen von Stufe zu Stufe durch den jeweils vor-
liegenden Zahlenbereich und die Bediirfnisse der Rechenpraxis vorgeschrieben sind.
Wir honnen auch sagen, dab der Bereich der natirlichen Zahlen bereits den Ansatz

zu allen Erweiterungen in sich trigt.

Bei jeder Erweiterung wurde unter Beibehaltung aller bereits giiltigen Rechen-
gesetze der Umfang der vornehmbaren Rechenoperationen erweitert, wihrend man
sich vom urspriinglichen Zahlbegriff, nimlich der Moglichkeit, mit den Zahlen zu
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ziéhlen, immer mehr entfernte. Wir wollen dies noch einmal in Form einer Tabelle
zusammenstellen.

Die Tatsache, daB auch das Logarithmieren und damit alle sieben Grundrechen-
operationen innerhalb der komplexen Zahlen immer durchfiihrbar sind, kénnen wir
hier nur erwihnen. Auch hat jede konvergierende Folge komplexer Zahlen stets eine
komplexe Zahl als Grenzwert, so daB auch die Probleme der Infinitesimalrechnung
nicht iiber den Bereich der komplexen Zahlen hinausfiihren.

Wir haben also mit dem Bereich der komplexen Zahlen einen echten AbschluB in
der Entwicklung des Zahlbegriffes erreicht. Da es keine in ihm unlésbaren Rechen-

" aufgaben gibt, die man als ,,neue Zahlen* einfiihren kénnte, liegt auch kein prak-
tisches Bediirfnis vor, ihn zu erweitern.

Freilich kann man auch iiber den Bereich der kompl Zahlen h gehende
abstrakte Rechenbereiche schaffen, wie Vektoren, Matrizen, Quaternionen usw. Sie
konnen ebenso wie die komplexen Zahlen auf physikalische Probleme angewendet
werden und stellen teilweise unentbehrliche Hilfsmittel zur Erforschung und Beherr-
schung der Natur dar. Trotzdem ist es nicht mehr angebracht, bei ihnen von Zahlen
zu sprechen. Man kann nimlich beweisen, daB jeder iiber die komplexen Zahlen
hinausgehende Rechenbereich wenigstens eines der schon fiir die natiirlichen Zahlen
geltenden Grundgesetze verletzen muB. In den meisten Fillen ist es das kommuta-
tive Gesetz der Multiplikation, welches nicht mehr aufrechterhalten werden kann.

Bereich Vervollkommnung Entfernung
der Rechentechnik vom urspriinglichen Zlhlbegnﬁ
fet"e':l‘lh Ider Addition und Multiplikation unein- | Abzahlen im urspriinglichen Sinne
Zohten " geschrankt durchfithrbar des Wortes
Bereich der Subtraktion uneingeschriankt durch- Abz&hleq nach zwei %lten. ver-

ganzen Zahlen

fiihrbar

auf der Z

- Statt diskreter Punktmenge auf der
f:t‘i‘zle:l:l:r Division uneingeschrankt durch- Zahl den dichte P o
Zahlen fishrbar Ermoglicht Messungen mit beliebig
genauer Annéherung
Jede konvergierende Zahlenfolge hat
Bereich der einen Gljepzwert Damit_Potenzie- Kontinuierliche Punktmenge _auf

reellen Zahlen

ren, Rad: nd Logari

der Znhlengerulen Jeder Lénge

weltgehend durchfuhrbu

t exakt eine Zahl

Pohenzleren, Rulmeren und Log-

Lineare Anordnung muB aufgegeben

Bereich der kt durch-
komplexen filhrbar. Jede algebraische Glei- X"de" D:f:; M’;’ e.!dzrlne!:nsno‘l;:::
Zahlen chung n-ten Grades hat genau °

n Wurzeln

génge in einer Ebene zu beschreiben

R 1

: In der

gegeniiber “dem

ittl Spalte ist jeweils die Vervollk
hend, b Das Dariiberstehende bleibt erhalten, das

der Rechentechnik

Darunterstehende ist noch nicht erreicht. Die Dmsnon durch Null ist stets ausgeschlossen.
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IV. Zusammenstellung der wichtigsten Formeln
zum Rechnen mit komplexen Zahlen

Eine komplexe Zahl kann in arithmetischer und in tngonometnscher Form ge-
schrieben werden:

z=a+ bi=r(cosep + i-sing).

Dabei gelten fiir den Realteil @ und den Imaginirteil b einerseits und fiir den Be-
trag r und das Argument ¢ andererseits die Umrechnungsformeln:

= ,Va* + b2, ¢ = are tz%,
a=1r-cos¢p, b=1r-sing.
Addition und Subtraktion zweier kompl Zahlen in arithmetischer Form:

@+b)+ (c+di)=(a+c)+ (b+ d)i
@+bi)—(ct+adi)=(a—c)+ (b—d)i
Multiplikation und Division zweier komplexer Zahlen in arithmetischer Form:
(@ + bi)+ (c + di) = (ac — bd) + (ad + be)i

a4+ bi_ ac+bd bec—ad
c+di cE4d c2 4 d?

Multiplikation und Division zweier komplexer Zahlen in trigonometrischer Form:
{r1(cos @y + i singy)} « {rs (cos s+ i singa)}

=717 (¢08 (P1+ g2) + i+ sin (¢ + ¢2))
{1 (cos gy + i+ singy)} 2 {re (cos pa + i+ singu)}

= :—; (cos (@1 — @2) + i« sin (91 — @2))
Fiir die Potenz einer komplexen Zahl in trigonometrischer Form gilt (Satz von

Moivre):
{r(cosg + i« sing)}” = 1" (cosng + i+ sinng)

fiir alle reellen (sogar kompléxen) Exponenten 7.

Insbesondere gilt fiir zwei zueinander konjugiert komplexe Zahlen:
(a + bi) + (a — bi) = 2a,
(8 + bi) — (@ — bi) = 2bi,
(@ + bi) (@ — bi) = a® + b2,
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