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2.2 Aufgaben und Lösungen 1962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
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1 Unsere Mathematikaufgabe

Die ”Wissenschaft und Fortschritt” war eine populärwissenschaftliche Zeitschrift für Naturwissenschaften
und Mathematik des Zentralrates der Freien Deutschen Jugend und später der Akademie der Wissen-
schaften der DDR von Mai 1951 bis Dezember 1990.

Die Zeitschrift beinhaltete in jeder Ausgabe mehrere Aufsätze und Artikel, Buchbesprechungen wissen-
schaftlicher und auch populärwissenschaftlicher Literatur, aktuelle Kurzmeldungen aus der Wissenschaft
und weitere mathematisch-naturwissenschaftliche Beiträge. Als Autoren wurden namhafte Wissenschaft-
ler der DDR und anderer Länder gewonnen.

Ab der Ausgabe von März 1961 enthielt die Zeitschrift jeweils drei bzw. zwei anspruchsvolle Mathe-
matikaufgaben. In nachfolgenden Heften wurden Lösungen veröffentlicht.
Auszüge aus dem Vorwort zu ”Unsere Mathematikaufgabe” im Heft März 1961:

”Liebe Leser!
An dieser Stelle werden Sie in Zukunft mathematische Aufgaben und Probleme finden, die Ihnen als
Material für eine ”mathematische Freizeitgestaltung” dienen sollen. Wir wollen Ihnen Gelegenheit geben,
Ihre mathematischen Fähigkeiten, Ihr logisches Denkvermögen selbst zu prüfen und zu entwickeln. Die
Aufgaben sollen den Prinzipien mathematischer Olympiaden entsprechen: Nicht das Gedächtnis soll ge-
prüft werden, sondern die Fähigkeit, sich selbständig in ein mathematisches Problem einzuarbeiten. ...
Wir bitten ... unsere Leser, uns selbstverfasste Aufgaben und Problemstellungen sowie Ideen einschließlich
Lösungen zur Verfügung zu stellen. ...
Darüber hinaus bitte wir alle Leser, uns durch Anregungen, Hinweise und Berichte über außerunterricht-
liche Arbeit auf mathematischem Gebiet zu unterstützen.”(Red.)

Nachfolgend werden alle in den 30 Jahren von 1961 bis 1990 veröffentlichten 982 Aufgaben und de-
ren Lösungen bereitgestellt.
Die Autoren der Aufgaben und Lösungen werden am Ende des Textes aufgelistet. In späteren Heften der
Zeitschrift wurden weitere eingesandte Lösungsvorschläge der Leser veröffentlicht. Einige dieser Lösungen
enthält auch diese Aufgabensammlung.
Hinweise auf evtl. vorhandene Fehler sind gern willkommen.
EMail-Adresse: kontakt@mathematikalpha.de

Steffen Polster, 2020

Dieses Werk ist lizenziert unter einer Creative Commons “Namensnennung –
Nicht-kommerziell – Weitergabe unter gleichen Bedingungen 3.0 Deutschland”
Lizenz.

Hinweis:
2016 wurde von ”Wurzel e.v.” eine Begleitschrift zur Bundesrunde der 55. Mathematik-Olympiade in Jena
herausgegeben.
Das Buch enthält ausgewählte Aufgaben mit Lösungen, die in der Zeitschrift ”Wissenschaft und Fort-
schritt” (WiFo) veröffentlicht wurden. Das Buch ist keine reine Wiedergabe der Aufgaben und Lösungen,
sondern vermittelt an Beispielaufgaben allgemeine Lösungsstrategien und auch zusätzlich wertvolle Hin-
weise zum Bearbeiten entsprechender Aufgaben.
siehe http://www.wurzel.org/zeitschrift/buecher.php?artikel=2016-250
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• A. Böttcher, Freiberg: 23/64, 30/71, 16/72, 24/72,

31/72, 7/73, 18/73, 30/81, 23/87, 12/88, 20/88, 4/89,
8/89, 15/89, 24/89, 8/90, 16/90

• J. Breme, Köthen: 22/90
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• G. Heinig, Zschopau: 4/65, 7/65, 25/65, 13/66
• H. Heinrich, Dresden: 22/84
• R. Heinrich, Dresden: 29/64
• J. Helbig, Babelsberg: 7/76, 22/78, 3/83
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• J. Kohlmann, Ballstädt: 22/75, 29/76, 32/76, 9/77,

16/77, 20/78
• H. König, Karl-Marx-Stadt: 17/66
• W. Körner, Dresden: 14/63
• W. Körper, Annaberg: 25/62
• A. Kramer, Leipzig: 12/77, 26/77, 32/79
• R. Krause, Freiberg: 14/75
• W. Kreipl, Zwickau: 12/80, 34/80, 31/81, 5/82, 21/82,

7/83, 20/83, 10/88
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• A. Müllner, Dresden: 24/78
• W. Münchow, Belzig: 27/64, 23/77
• R. Münzberg, Eisenach: 9/63, 15/68, 26/68
• A. Neumann, Dresden: 14/69
• M. Neupert, Karl-Marx-Stadt: 5/70, 8/70, 20/70, 22/70,

33/70
• G. Noack, Berlin: 36/71
• J. Noack, Dresden: 21/61
• H. Nollau, Frankenberg: 13/74, 1/86, 16/89
• W. Oettel, Neulobeda: 11/80
• J. Ohlhorst, Rudolstadt: 7/63
• K. Ossowski, Berlin: 11/83
• K.-J. Panzke, Dresden: 6/62, 29/63
• U. Partzsch, Berlin: 22/85, 19/87, 4/88, 11/88, 21/88,

20/90
• W. Paul, Gera: 13/68, 7/70, 28/70, 10/81, 2/83
• M. Petrof, Kaliningrad: 5/67
• H. Pfennigwerth, Mönchhagen: 6/83
• W. Pierschel, Templin: 28/61
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2.1 Aufgaben und Lösungen 1961

2 Aufgaben und Lösungen
2.1 Aufgaben und Lösungen 1961

Aufgabe 1/61
Bestimme alle dreiziffrigen Zahlen, die, durch 11 geteilt, eine Zahl ergeben, die gleich ist der Summe
der Quadrate der Ziffern der ursprünglichen Zahl!

Eine Zahl z = an10n + an−110n−1 + ...+ a2102 + a1 · 10 + a0 ist durch 11 teilbar, wenn die alternierende
Quersumme a0 − a1 + a2 −+...+ (−1)nan = 0 oder durch 11 teilbar ist.
Für dreiziffrige durch 11 teilbare Zahlen, die in der Form z = 100a+ 10b+ c dargestellt seien, wobei a, b
und c einziffrige Zahlen sind, gilt also, dass c− b+ a = 0 oder eine durch 11 teilbare Zahl sein muss, d.h.

a− b+ c = 0 (1) oder a− b+ c = 11 (2)

(weitere Fälle; etwa a− b+ c = 22; sind nicht möglich, da das Maximum von a− b+ c < 22 sein muss).
Die Ziffern der gesuchten Zahl müssen der Gleichung genügen

100a+ 10b+ c = 11(a2 + b2 + c2) (3)

Fall 1: b = a+ c in (3) eingesetzt, ergibt

100a+ 10a+ 10c+ c = 11(2a2 + 2ac+ 2c2)→ 10a+ c = 2(a2 + ac+ c2)

10a+ c muss also gerade sein, also auch c. Und weiter

a2 + (c− 5)a+ c2 − c

2 = 0→ a1;2 = 5− c
2 ± 1

2
√

25− 8c− 3c2

Folgende Fälle müssen untersucht werden (gerades c): c = 0, c = 2, c = 4, c = 6, c = 8:
c = 0: a1;2 = 5

2 ±
5
2 mit a1 = 5 und a2 = 0 (unbrauchbar) ; c ≥ 2: Wurzel imaginär

Also Fall 1: c = 0, a = 5, b = 5, eine gesuchte Zahl 550

Fall 2: b = a+ c− 11 in (3) eingesetzt, ergibt

100a+ 10a+ 10c− 100 + c = 11(a2 + (a+ c− 11)2 + c2)→ 10a+ c = 131 + 2(a2 + c2 + ac− 11a− 11c)

c muss also ungerade sein. Und weiter

a2 + (c− 16)a+ c2
131
2 − 23c

2 = 0→ a1;2 = 16− c
2 ± 1

2
√

14c− 3c2 − 6

Zu untersuchende Fälle (ungerades c): c = 1, c = 3, c = 5, c = 7, c = 9:
c = 1: a keine natürliche Zahl
c = 3: a1 = 8 und a2 = 5 (unbrauchbar, da dann b < 0)
c ≥ 5: Wurzel imaginär
Also Fall 2: c = 3, a = 8, b = 0, zweite gesuchte Zahl 803

Aufgabe 2/61
Für welche Werte der Veränderlichen x besteht die Ungleichung

4x2(
1−
√

1 + 2x
)2 < 2x+ 9 (1)

x muss folgenden Bedingungen genügen, damit (1) erfüllt ist:

4x2(
1−
√

1 + 2x
)2 < 2x+ 9 (1)

1) x ≥ − 1
2 , da sonst die Wurzel imaginär wäre. Für komplexe Zahlen ist keine Ordnungsrelation bekannt.

2) x 6= 0, da die Funktion f(x) = 4x2

(1−
√

1+2x)2 auf der linken Seite für x = 0 nicht erklärt ist. Sie hat an
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dieser Stelle eine hebbare Unstetigkeit.
3) Weiterhin folgt aus

4x2(
1−
√

1 + 2x
)2 =

4x2 (1 +
√

1 + 2x
)2(

1−
√

1 + 2x
)2 (1 +

√
1 + 2x

)2 =
(
1 +
√

1 + 2x
)2
< 2x− 9

2
√

1 + 2x < 7 und x < 45
8 .

Die Ungleichung (1) besteht für alle x, die der Bedingung − 1
2 ≤ x < 45

8 genügen, mit Ausnahme von
x = 0.

Aufgabe 3/61
Gegeben ist ein rechtwinkliges Dreieck ABC, dessen Hypotenuse BC in n gleiche Teile geteilt wird
(n eine ungerade Zahl).
Ist α der Winkel, unter dem die Teilstrecke, die den Mittelpunkt der Hypotenuse enthält, von A aus
gesehen wird, h die Höhe und a die Hypotenuse des rechtwinkligen Dreiecks, so zeige, dass

tanα = 4nh
(n2 − 1)a

Größen: DE = a
n ;HD = x;]DAE = α;]HAD = β

Behauptung: tanα = 4nh
(n2−1)a

Beweis: Es gilt tan β = x
h und x = h tan β (1). Dann ist

tanα+ β =
x+ a

n

h
und x = h tanα+ β − a

n
(2)

Aus (1) und (2) folgt: h tanα+ β − a
n = tan β. Nach Umfor-

mung wird a

h

B C

A

H DME

β
α

tanα = a

nh+ a tanα+ nh tan2 β
(3)

Da tan β = x
h ist, gilt tanα = ah

nh2+ax+nx2 (4). Nach dem Höhensatz wird

h2 =
(
n− 1

2 · a
n
− x
)(

n− 1
2 · a

n
+ a

n
− x
)

= a2

4 −
a2

4n2 −
ax

n
− x2

Aus der Gleichung (3) erhält man durch Einsetzen von (4) abschließend

tanα = ah
a2n

4 −
a2

4n − ax− nx2 + ax+ nx2
= 4nh

(n2 − 1)a

Aufgabe 4/61
Konstruiere ein Dreieck ABC, wenn ha, hb und sa bekannt sind.
ha ist die auf der Seite a errichtete Höhe, hb die auf der Seite b und sa ist die Seitenhalbierende der
Seite a.

ha sahb

B C

AE

H M

D
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Analysis: Es gilt MD ‖ BE,BM = CM,MD = 1
2BE = 1

2hb, da CB : CM = 2.1 = BE : MD = hb :
MD, damit MD = 1

2hb)
Konstruktion:
Aus ha,sa und einem rechten Winkel konstruiert man das Dreieck AHM bzw. AHM ′.
Über AM = sa wird der Thaleskreis konstruiert und um M ein Kreis mit dem Radius 1

2hb geschlagen.
Die Schnittpunkte dieser beiden Kreise seien D und D′. Die Punkte A und D bzw. A und D′ werden
verbunden und die Strecken AD bzw. AD′ über ihre Endpunkte hinaus zu Geraden verlängert.
Die Strecke HM wird ebenfalls über ihre Eckpunkte hinaus verlängert. Die Verlängerung von AD bzw.
AD′ schneidet die Verlängerung um HM in C bzw. C ′. Der um M mit dem Radius MC bzw. MC ′

gezeichnete Kreis schneidet die Verlängerung von HM in B und B′. Die Dreiecke M ABC und M AB′C ′
genügen den geforderten Bedingungen.
Wenn man vom M AHM ′ ausgeht über AM’ den Thaleskreis zeichnet, kann man analoge Konstruktionen
durchführen und erhält zwei Dreiecke, die auch den geforderten Bedingungen genügen.

Beweis: AH = ha;AM = sa bzw. AM ′ = sa (nach Konstruktion)
MD = MD′ = 1

2hb (nach Konstruktion)
]MDA = ]MD′A = 1R (nach Konstruktion)
MC = MB,MC ′ = MB′ (nach Konstruktion)
Man fällt noch von B auf die Verlängerung von AD und von B′ auf AD′ das Lot und erhält die Punkte
E und E′. Es gilt: BE ⊥ AC,B′E′ ⊥ AC ′ (Höhen auf b). Es gilt weiterhin

BC : MC = 2 : 1 und BC : MC = BE : MD bzw. für die Punkte B’,C’,M’,E’

Damit folgt BE = hb bzw. B′E′ = hb. Die Dreiecke M ABC und M A′B′C ′ sind die geforderten Dreiecke.
Determination: Die Konstruktion ist möglich, wenn sa = ha und hb < 2sa.

Aufgabe 5/61
Gegeben ist der Würfel ABCDA′B′C ′D′.

a) Bestimme den geometrischen Ort der Mittelpunkte der Strecke XV , wobei X ein beliebiger Punkt
der Strecke AC und V ein beliebiger Punkt der Strecke B′D′ ist.

b) Bestimme den geometrischen Ort der Punkte Z der Strecke XV , die die Beziehung ZV = 2XZ
erfüllen.

A′ B′

C′D′

A = X1 B

CD

Y1
Y2

M ′′2

M ′2

M2E

F

G

H

X2

M1

a) Analysis: a = Länge der Würfelkante
Behauptung:
1. Der geometrische Ort der Mittelpunkte M der Strecke XY ist die Fläche EFGH.
2. Die Fläche EFGH liegt parallel zur Grund- bzw. Deckfläche des Würfels.
3. Die Fläche EFGH ist ein Quadrat mit der Seitenlänge a

2
√

2.
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Beweis: 1. Es sei zunächst X1 = A und Y1 wandere auf B′D′. Dann gilt: AE : ED′ = AM1 : M1Y1 =
AF : FB′ = 1 : 1. Man erhält die Strecke EF .
Durch analoge Überlegungen erhält man die Strecken FG, GH und HE. Da AE : ED′ = CH : HD′ =
CG : GB′ = AF : FB′ gilt, liegen die Strecken EF , FG, GH und HE alle in der Ebene EFGH und
begrenzen den gesuchten geometrischen Ort.
X2 sei nun ein beliebiger Punkt der Strecke AC und Y2 ein beliebiger Punkt von B′D′. M2 sei der
Mittelpunkt von X2Y2. Es ist nachzuweisen, dass M2 ein Punkt der Ebene EFGH ist.
Man verbindet dazu Y2 mit A und C; auf den Strecken EF bzw. GH erhält man die Mittelpunkte von
Y2A und Y2C M ′2 und M ′′2 . Die Strecken AY2, CY2, AC und Y2X2 liegen in der Ebene AY2C.
Es gilt: AM ′2 : M ′2Y2 = X2M2 : M2Y2 = CM ′′2 : M ′′2 Y2 = 1 : 1.
M2 muss also auf der Strecke M ′2M ′′2 liegen. M ′2M ′′2 liegt aber in der Ebene EFGH, damit auch der
Punkt M2.

2. Da gilt AE : ED′ = AF : FB′ = 1 : 1, folgt EF ‖ D′B′, damit EF ‖ Ebene A′B′C ′D′. Es gilt auch
FG ‖ Ebene A′B′C ′D′, GH ‖ Ebene A′B′C ′D′ usw. Alle Geraden der Ebene EFGH verlaufen parallel
zur Grund- bzw. Deckfläche. Damit ist die gesamte Ebene EFGH parallel zur Grund- bzw. Deckfläche.

3. D′B′ = a
√

2. Da AE : AD′ = AF : FB′ = 1 : 2, ist EF = a
2
√

2. Analoge Überlegungen ergeben
FG = GH = HE = a

2
√

2.

b) Diesen Teil der Aufgabe löst und beweist man mit Hilfe ähnlicher Überlegungen wie im Teil a). Man
erhält:
1. Der geometrische Ort der Punkte Z, welche die Bedingung ZY = 2ZX erfüllen, ist eine Fläche
E′F ′G′H ′.
2. Die Fläche verläuft in der Höhe a

3 parallel zur Grundfläche.
3. Die Fläche E′F ′G′H ′ ist ein Rechteck mit den Seiten a

3
√

3 und a
3
√

8.

Aufgabe 6/61
Gegeben ist ein Kegel, die dem Kegel eingeschriebene Kugel und der der Kugel umschriebene Zylinder,
dessen Grundfläche mit der Grundfläche des Kegels in einer Ebene liegt. V1 ist der Rauminhalt des
Kegels und V2 der Rauminhalt des Zylinders.

a) Beweise, dass die Gleichung V1 = V2 nicht bestehen kann.

b) Bestimme die kleinste Zahl k, für die V1 = kV2 gilt, und konstruiere für diesen Fall den Winkel
an der Spitze des Kegels.

r2
r1

h

re

A B

C

M

D

E

Analysis: (1) VKegel = V1 = π
3 r

2
1h, (2) VZylinder = V2 = 2πr3

2 und
M DBC ∼M MEC, da Winkel bei C gemeinsam, rechter Winkel bei
E und D, Hauptähnlichkeitssatz.
Also ME : MC = DB : CB , d.h. r2

h−r2
= r1√

r2
1+h2

(3). Umformen

ergibt r2
1 = r2

2h
h−2r2

(4) mit h−2r2 6= 0, da h > 2r2. (4) in (1) eingesetzt,
führt zu

V1 = πr2
2h

2

3(h− 2r2
(5)

V1 in der Form (5) dividiert durch V2 in der Form (2) ergibt

V1

V2
= h2

6r2(h− 2r2)

a) Angenommen V1
V2

= 1 führt zu h2 − 6r2h + 12r2
2 = 0 mit h1;2 = 3r2 ±

√
9r2

2 − 12r2
2; unmöglich, da

Radikand kleiner als Null. Die Annahme ist falsch, d.h. V1 6= V2.
b) Annahme: V1

V2
= k, d.h. h2 − 6kr2h+ 12kr2

2 = 0 mit den Lösungen

h1;2 = 3kr2 ±
√

9k2r2
2 − 12kr2

2 (7)
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Damit Lösungen möglich sind, darf der Radikand nicht negativ sein: 9k2r2
2 − 12kr2

2 = 0, d.h., k = 4
3 ist

die kleinste Zahl, für die V1 = kV2 gilt. Aus (7) ergibt sich für k = 4
3 die Beziehung h)4r2.

Daraus folgt eine Möglichkeit, den Winkel an der Spitze zu konstruieren.

Konstruktion: Man zeichnet h = 4r2
2 = DC (DM = r2 wird von D aus viermal abgetragen).

Um M zeichnet man den Kreis mit dem radius r2 = DM und über der Strecke MC den Thaleskreis. Die
Schnittpunkte beider Kreise - E und F - werden mit C verbunden. Bei C entsteht der gesuchte Winkel
γ.

Aufgabe 7/61
Gegeben ist ein gleichschenkliges Trapez mit den Grundlinien a und b und der Höhe h.

a) Konstruiere den Punkt P auf der Symmetrieachse, von dem aus die beiden Schenkel unter einem
rechten Winkel erscheinen.

b) Bestimme die Entfernung des Punktes P von einer der beiden Grundlinien rechnerisch.

c) Unter welchen Bedingungen ist die Konstruktion des Punktes P möglich? (Diskussion der
möglichen Fälle)

a) Analysis: EP1 = x2, FP1 = x1, AB = a,DC = b, EF = h,
sowie ]BP1C = ]BP2C = 1R. Es folgt: P1, P2 müssen auf dem
Thaleskreis über BC bzw. AD liegen.
Konstruktion und Determination:
Es wird der Thaleskreis über einen der beiden Schenkel gezeich-
net. Dieser Kreis schneidet die Symmetrieachse entweder in zwei
(P1, P2), einem (P ) oder keinem Punkt. Diese Punkte sind jeweils
die gesuchten.

A B

CD E

F

P1

P2

b) Es gilt (siehe Abbildung): M BFP1 ∼M CEP1. Daraus folgt

x1 : a2 = b

2 : x2 d.h. x1 · x2 = ab

4
Außerdem gilt: x1+x2 = h (2). Aus (1) und (2) folgt, dass x1 und x2 Lösungen der Gleichung x2−hx+ ab

4 =
0 sind

x1;2 = h

2 ±
1
2
√
h2 − ab

c) Nach den Überlegungen von b gilt: Falls h2 > ab, gibt es zwei Lösungen, d.h. zwei Punkte; falls h2 = ab,
gibt es eine Lösung, d.h. einen Punkt, und falls h2 < ab, gibt es keine Lösung, d.h. keinen Punkt. Die
Konstruktion ist also nur möglich, falls h2 ≥ ab.

Aufgabe 8/61
In einer Abteilung eines volkseigenen Betriebes sollen Massenbedarfsartikel hergestellt werden. Eine
Vorkalkulation ergibt, dass die Produktion insgesamt b = 1650,00 DM fixe Kosten im Monat (Pflege,
Wartung und Amortisation der Produktionsanlagen. Verwaltungskosten usw.) und m1 = 6,50 DM
variable Kosten (je gefertigtes Stück, Materialkosten, Arbeitslöhne usw.) verursacht.
Der Werkabgabepreis (zuzüglich Produktionsabgabe) beträgt auf Grund preisrechtlicher Bestimmun-
gen m2 = 11,50 DM je Stück.
a) Es sind die Gesamtkosten y1 der Produktion und der Gesamterlös y2 (unter der Voraussetzung,

dass die Produktion restlos abgesetzt wird) in Abhängigkeit vom Produktionsausstoß x rechnerisch
und graphisch darzustellen.

b) Von welchem Produktionsausstoß xr an wird die Produktion rentabel?

c) Durch welche Maßnahmen kann die Rentabilität erhöht werden?

d) Welche Schlussfolgerungen ergeben sich, wenn die variablen Kosten ml den Werkabgabepreis m2
übersteigen?
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a) Die Gesamtkosten y1 der Produktion stellen sich als die Summe aus den fixen Kosten b und den mit
dem Produktionsausstoß x multiplizierten variablen Kosten ml dar: y1 = m1x+ b = 6,50x+ 1650,00.
Der Gesamterlös y2 ergibt sich als Produkt des Abgabepreises m2 mit dem Produktionsausstoß x: y2 =
m2x = 11,50x.
Gesamtkosten und Gesamterlös stellen demnach lineare Funktionen des Produktionsausstoßes x dar, die
nur für nicht negative x-Werte definiert sind (ein negativer Produktionsausstoß ist bei der Fragestellung
sinnlos).

Stück x

y in DM

100 200 330 400 500

1000

1650
2000

3000

3795

5000

6000

b) Die Produktion wird rentabel, wenn der Gesamterlös y2 nicht kleiner als die Gesamtkosten y1 ist:
y2 ≥ y1 → m2x ≥ m1x+ b. Daraus folgt:

m2x−m1x ≥ b; x ≥ b

m2 −m1

(wenn m2 +m1 > 0 oder, was dasselbe ist, m2 > m1 ist). Also ist die Produktion rentabel für

x ≥ xr = b

m2 −m1 = 1650
11,50− 6,50 = 330

Dabei ist xr die Abszisse des Schnittpunktes beider Geraden.

c) Es gibt vier Möglichkeiten, den Gewinn G = y2 − y1 und damit die Rentabilität zu erhöhen; diese
Möglichkeiten sind aus der graphischen Darstellung erkennbar:

1. Erhöhung des Werkabgabepreises m2. Das bedeutet in der graphischen Darstellung eine Drehung
der Geraden y2 um den Nullpunkt entgegen dem Uhrzeigersinn. Diese Möglichkeit kommt aber aus
preisrechtlichen Gründen nicht in Frage.

2. Erhöhung des Produktionsausstoßes x. Diese Möglichkeit findet eine obere Grenze bei vollständiger
Deckung des Bedarfs und in der Produktionskapazität.

3. Senkung der fixen Kosten b. Das bedeutet graphisch eine Verschiebung der Geraden y1 parallel zu
sich selbst in Richtung auf den Nullpunkt. Sie trägt verhältnismäßig viel zur Rentabilitätserhöhung
bei, wenn m1 klein ist.

4. Senkung der variablen Kosten m1 - graphisch eine Drehung der Geraden y1 um den Schnittpunkt
mit der y-Achse im Uhrzeigersinn.

d) Wenn die variablen Kosten m1 den Abgabepreis m2 übersteigen, wenn also m1 > m2 ist, kann unter
den gegebenen Bedingungen eine Rentabilität durch Erhöhung des Produktionsausstoßes nicht erreicht
werden.
In der graphischen Darstellung laufen in diesem Fall die Geraden y1 und y2 auseinander und haben keinen
Schnittpunkt, so dass es auch kein x, gibt, von dem an Rentabilität besteht. Rechnerisch erhält man aus
xr = b

m2−m1 wegen m1 > m2, b > 0, dass xr < 0 ist. (Das würde einen negativen Produktionsausstoß
bedeuten und ist sinnlos.)

12



2.1 Aufgaben und Lösungen 1961

Auch durch Senkung der fixen Kosten b allein ist dieser Zustand nicht zu ändern. Einzige Möglichkeit
bleibt demnach die Senkung der variablen Kosten m1, d.h. Einsparung von Material, Ausmerzung der
Verlustzeiten, schonender Einsatz des Werkzeugs, Steigerung der Arbeitsproduktivität.
Die Bedeutung des Satzes ”Spare mit jedem Gramm, mit jedem Millimeter, mit jeder Minute!” wird
hieran deutlich.

Aufgabe 9/61
Es ist a2 ≥ 0.
Beweis: Ist a = 0, so ist auch a2 = 0, und die Behauptung richtig. Ist a 6= 0, so ist a2 das Produkt
zweier Zahlen mit gleichen Vorzeichen, also positiv, und die Behauptung ist ebenfalls richtig.
Dann ist auch a2 − 2a+ 1 ≥ −2a+ 1.
Beweis: Es wurde auf beiden Seiten der Ungleichung Gleiches subtrahiert beziehungsweise addiert.
Durch Radizieren erhält man

a− 1 ≥ ±
√
−2a+ 1

Setzt man nunmehr a = 1
2 , so ergibt sich

1
2 − 1 ≥ ±

√
−1 + 1→ −1

2 ≥ 0

Das bedeutet, dass eine negative Zahl größer als oder gleich Null sein soll. Wo steckt der Fehler?

Sicherlich wird man zur Probe für a den Wert 1
2 gleich in die erste Ungleichung eingesetzt und folgender-

maßen gerechnet haben: a = 1
2 ; a2 = 1

4 →
1
4 ≥ 0.

Nun ist aber bekanntlich die Quadratwurzel doppeldeutig: x = ±
√
x2.

Beim Ausziehen der Quadratwurzel auf beiden Seiten der Ungleichung hätte man also schreiben müssen:
±(a− 1) und ±

√
−2a+ 1. (absichtlich wurde hier das Zeichen ≥ nicht gesetzt, da, wie sich anschließend

zeigt, sonst ein weiterer Fehler entsteht).
Auf der rechten Seite der Ungleichung war die Doppeldeutigkeit zwar berücksichtigt, dort wirkt sie sich
aber nicht aus, da sich für a = 1

2 der Wert ±0 ergibt.
Die linke Seite dagegen liefert für a = 1

2 gerade den negativen Wurzelwert, wenn die Doppeldeutigkeit
nicht berücksichtigt wird. Das Entscheidende ist nun, dass aus

x2 ≥ y nicht etwa folgt ± x ≥ ±√y

Das kann man sofort an Beispielen nachweisen: Aus 4 ≥ 1 folgt nicht ±2 ≥ ±1. Zwar ist die Beziehung
+2 ≥ +1 richtig, aber die Beziehung −2 ≥ −1 ist falsch; es gilt vielmehr −2 ≤ −1.

Aufgabe 10/61
In einem Geschäft für Photoartikel fragt ein Kunde: ”Wieviel kostet dieses Objektiv?” Die Verkäuferin
antwortet: ”Mit Lederetui 115,00 DM, mein Herr!” - ”Und wieviel kostet das Objektiv ohne Etui?”
fragt der Kunde weiter. ”Genau 100,00 DM mehr als das Etui!” sagt lächelnd die Verkäuferin. Wieviel
kostet das Objektiv?

Bezeichnet man mit x den Preis des Objektivs und mit y den Preis des Etuis, so gilt

x+ y = 115 ; x+ y = 100

(Beides zusammen kostet 115 DM, das Objektiv kostet 100 DM mehr als das Etui.) Löst man dieses
Gleichungssystem, so ergibt sich x = 107,50 DM; y = 7,50 DM. Tatsächlich kosten bei diesen Preisen das
Objektiv mit Etui 115,00 DM und das Objektiv ohne Etui 100,00 DM mehr als das Etui.

Aufgabe 11/61
Eine Türöffnung von 90 cm Breite soll mit Brettern zugenagelt werden. Zur Verfügung stehen Bretter
passender Länge von 8 cm, 10 cm und 12 cm Breite.
Welche Möglichkeiten gibt es, wenn kein Brett der Länge nach durchgesägt werden soll?

13



2.1 Aufgaben und Lösungen 1961

Bezeichnet man mit x die Anzahl der Bretter von 8 cm Breite, mit y die von 10 cm und mit z die von
12 cm Breite, so gilt 8x+ 10y + 12z = 90 oder, wenn man beide Seiten der Gleichung durch 2 dividiert,
4x+ 5y + 6z = 45.
Es handelt sich um eine Gleichung mit drei Unbekannten. Eine solche Gleichung hat zunächst unendlich
viele Lösungen. Die Anzahl der Lösungen wird aber durch die Bedingungen der Aufgabe stark einge-
schränkt.
1. Es sind nur positive Lösungen möglich, da eine negative Anzahl von Brettern sinnlos ist. Das heißt, es
muss gelten

0 ≤ 4x ≤, 0 ≤ 5y ≤ 45, 0 ≤ 6z ≤ 45→ 0 ≤ x ≤ 11, 0 ≤ y ≤ 9, 0 ≤ z ≤ 61
2

2. Es sind nur ganzzahlige Lösungen möglich, da kein Brett der Länge nach durchgesägt werden soll. Man
löst dieses diophantische Problem folgendermaßen:
Aus 4x+ 5y+ 6z = 45 folgt durch Subtraktion von 5y auf beiden Seiten der Gleichung 4x+ 6z = 45−5y.
Die linke Seite der Gleichung ist durch 2 teilbar, also muss auch die rechte Seite durch 2 teilbar sein. Da 45
eine ungerade Zahl ist, muss auch 5y und damit auch y eine ungerade Zahl sein. Wegen der Bedingungen
1 ergeben sich damit fünf Möglichkeiten für y: y = 1, y = 3, y = 5, y = 7, y = 9.
Setzt man diese fünf Werte der Reihe nach in die Gleichung ein, so erhält man fünf Gleichungen, die jede
nur noch zwei Unbekannte enthalten:

1. y = 1: 4x+ 6z = 45− 5→ 2x+ 37 = 20

2. y = 3: 4x+ 6z = 45− 15→ 2x+ 37 = 15

3. y = 5: 4x+ 6z = 45− 25→ 2x+ 37 = 10

4. y = 7: 4x+ 6z = 45− 35→ 2x+ 37 = 5

5. y = 9: 4x+ 6z = 45− 45→ 2x+ 37 = 0

Diese fünf Gleichungen behandelt man auf dieselbe Weise weiter. Dabei sieht man aber im Fall 5 (y = 9)
sofort, dass x = 0 und z = 0 folgt, d.h., eine Möglichkeit besteht darin, die Türöffnung mit neun Brettern
der Breite 10 cm auszufüllen. Es ist also x1 = 0, y1 = 9, z1 = 0.
Im Fall 1 (y = 1) folgt aus 2x + 3z = 20, dass 2x = 20 − 3z ist. Da 2x durch 2 teilbar ist, muss
auch 20 − 3z und damit auch z durch 2 teilbar sein. Mithin gelten für z folgende vier Möglichkeiten:
z2 = 0, z3 = 2, z4 = 4, z5 = 6. (für z ≥ 8 würde folgen x < 0 im Widerspruch zur Bedingung 1); für x
erhält man daraus: x2 = 10, x3 = 7, x4 = 4, x5 = 1.
In den Fällen 2, 3 und 4 geht man entsprechend vor, mit den Ergebnissen

1. y = 3: z6 = 1, z7 = 3, z8 = 5 und x6 = 6, x7 = 3, x8 = 0

2. y = 5: z9 = 0, z10 = 2 und x9 = 5, x10 = 2

3. y = 7: z11 = 1 und x11 = 1

Damit hat man insgesamt elf Lösungen des Problems gefunden. Aus dem Lösungsweg geht hervor, dass
es keine weiteren Lösungen geben kann.

Aufgabe 12/61
In einem Konstruktionsbüro sollen die Konstruktionsunterlagen für die Spezialanfertigung einer La-
boratoriumszentrifuge ausgearbeitet werden. Zwischen Antriebsmotor und Zentrifuge wird ein Stu-
fengetriebe eingebaut, das folgenden Anforderungen genügen soll:

1. Die erste Stufe ist Direktkupplung der Zentrifuge an den Motor, der eine Drehzahl a1 =
6400 min−1 hat.

2. Das Getriebe soll insgesamt fünf verschiedene Drehzahlen ermöglichen.

3. Die Drehzahl a2 soll 75% der Drehzahl a1 betragen, ebenso die Drehzahl a3 75% von a2 und so
fort.

Das Getriebe erhält den in der Abbildung schematisch dargestellten Aufbau. (a Antrieb, b Abtrieb,
S Schaltstellung)
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2.1 Aufgaben und Lösungen 1961

a b

2 4
5 7

a b

2 4
5 7

a b

2 4
5 7

a b

2 4
5 7

a b

2 4
5 7

1 3
6 8

S1

1 3
6 8

S2

1 3
6 8

S3

1 3
6 8

S4

1 3
6 8

S5

a) Es ist die Folge a1, a2, a3, a4, a5 der Drehzahlen aufzustellen.

b) Welche Übersetzungen müssen die Räderpaare (3, 4), (5, 6), (7, 8) erhalten, wenn das Räderpaar
(1, 2) im Verhältnis 1 : 1 übersetzt?

c) Wie groß müssen die Radien der Räder 1, 2, 3, 4, 5, 6, 7, 8 gewählt werden? Der Abstand der Vor-
gelegewelle von der Antriebs- beziehungsweise Abtriebswelle beträgt 175 mm (von Wellenmitte zu
Wellenmitte gemessen).

a) Es ist a1 = 6400 min−1 (Direktgang) die erste Stufe (Bedingung 1).
Da 75% = 0,75 = 3

4 ist, ergeben sich die folgenden Stufen durch Multiplikation der jeweils vorhergehenden
Stufe mit 3

4 :
a2 = 4800 min−1; a3 = 3600 min−1; a4 = 2700 min−1; a5 = 2025 min−1

Eine solche Folge, bei der jedes folgende Glied aus dem vorhergehenden durch Multiplikation mit ein und
demselben Faktor errechnet wird, heißt eine geometrische Folge.
b) Bei der Schaltstellung 2 sind die Räderpaare (1,2) und (5,6) in Eingriff. Wird mit av die Drehzahl der
Vorgelegewelle bezeichnet, so gilt:

a1

a2
= a1

av
· av
a2

= 6400
4800 = 4

3 = 4 : 3

Nun ist bei Schaltstellung 2: a1
av

= Ü(1,2) = 1
1 = 1, wenn mit Ü(1,2) das Übersetzungsverhältnis des

Räderpaares (1,2) bezeichnet wird. Dann folgt av
a2

= Ü(5,6) = 4 : 3. Das Räderpaar (5,6) muss also im
Verhältnis Ü(5,6) = 4 : 3 übersetzen.
Bei der Schaltung 3 sind die Räderpaare (1,2) und (7,8) in Eingriff. Analog erhält man a1

a3
= 6400

3600 = 16 : 9,
also Ü(7,8) = 16 : 9.
Bei Schaltungsstellung 4 sind die Räderpaare (3,4) und (5,6) in Eingriff. Daher gilt a1

a4
= 6400

2700 = 64 : 27.
Nun ist av

a4
= 4 : 3, also gilt a1

a4
= a1

av
· 4

3 = 64
27 . Daraus ergibt sich Ü(3,4) = 16 : 9.

c) Die Umfänge eines Räderpaares stehen zueinander im umgekehrten Verhältnis der Übersetzung. Gilt
beispielsweise für das Räderpaar (3,4) das Übersetzungsverhältnis Ü(3,4) = 16

9 , so gilt (mit Uk wird der
Umfang, mit rk der Radius des Rades k bezeichnet):

U4

U3
= 16

9 ,
2πr4

2πr3
= 16

9 ,
r4

r3
= 16

9

Ferner gilt r3 + r4 = 175 mm. Es liegt also ein Gleichungssystem mit zwei Unbekannten vor. Als Lösung
erhält man: r3 = 63 mm, r4 = 112 mm. Analog ergibt sich r1 = 87,5 mm, r2 = 87,5 mm, r5 = 75 mm,
r6 = 100 mm, r7 = 63 mm, r8 = 112 mm.

Aufgabe 13/61
Man denke sich den Erdäquator genau kreisförmig und um ihn ein überall anliegendes Band ge-
spannt. Anschließend werde das Band um 1 m verlängert; es stehe nun überall gleich weit von der
Erdoberfläche ab.

a) Wie groß ist der Abstand? Ob wohl eine Maus zwischen Erdoberfläche und Band durchschlüpfen
könnte? Der Erdradius werde mit r = 6370 km angenommen.

b) Man löse die gleiche Aufgabe für eine Kugel von der Größe einer Apfelsine (r = 4 cm)!
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2.1 Aufgaben und Lösungen 1961

Bezeichnet man den Radius der Kugel mit r und den Äquatorumfang mit U , so gilt U = 2πr oder r = U
2π .

Vergrößert man den Umfang U um Uz (in unserem Fall ist Uz = 1 m), so vergrößert sich auch der Radius
r, und zwar um rz und es gilt nun

U + Uz = 2(r + rz)π → r + rz = U + Uz
2π = U

2π + Uz
2π

Demnach ist rz = Uz
2π . Das bedeutet aber, dass die Vergrößerung rz des Radius r (der Abstand des

größeren Kreises vom kleineren) ausschließlich von Uz (der Vergrößerung des Umfangs), nicht aber vom
Radius r oder vom Kreisumfang U abhängt.
Für Erdkugel und Apfelsine ergibt sich also bei der gleichen Verlängerung Uz des Umfangs U die gleiche
Vergrößerung rz des Radius r. Für Uz = 1 m erhält man rz ≈ 0,159 m.
Es könnten also etwa fünf bis sechs ”übereinandergestellte” Mäuse durchkriechen. Wer es nicht glaubt,
prüfe es nach!

Aufgabe 14/61
Auf ihrem Flug um den Mond näherte sich die sowjetische Raumstation Lunik 3 dem Erdtrabanten
bis auf etwa 7000 km. Für die folgenden Berechnungen werde der Mondradius r mit r ≈ 1750 km
angenommen, der Flächeninhalt F einer Kugelkappe mit dem Kugelradius r und der Kappenhöhe h
ist F = 2πrh, wobei π ≈ 22

7 gesetzt werde.

a) Wie groß ist das Gebiet des Mondes, das aus dieser Entfernung übersehen werden könnte?

b) Wieviel Prozent der Mondoberfläche sind dies?

c) Unter welchem Sehwinkel ϕ wäre der Mond aus dieser Entfernung zu beobachten?

d) Wie breit muss ein Gegenstand sein, der aus 100 m Entfernung unter demselben Sehwinkel gesehen
werden soll?

a) Das zu übersehende Mondgebiet ist die Fläche einer Kugelkappe (Abbildung). Der Radius r der
Kugelkappe ist bekannt; er ist gleich dem Radius r des Mondes. Zur Berechnung des Flächeninhalts F wird
daher nur noch die Höhe h der Kugelkappe benötigt. Man errechnet sie durch mehrmalige Anwendung
des pythagoreischen Lehrsatzes oder mit Hilfe des Höhensatzes oder mit Hilfe des Satzes des Euklid.

ψ

ψ
2

M
S

Satellit

Mond

h

P Q

H

µ

µ

s r

T2

T1

1. Berechnung mit Hilfe des pythagoreischen Lehrsatzes: Die Dreiecke ST1M,T1QM und SQT1 sind
rechtwinklig. Also gilt u2 + r2 = (H + h)2 (1), s2 + (r − h)2 = r2 (2) und (H + h)2 + s2 = u2 (3).
Daraus folgt, wenn man (3) in (1) einsetzt und (2) nach s auflöst

(H + h)2 + s2 + r2 = (H + r)2 und s2 = r2 − (r − h)2

Setzt man die Gleichungen ineinander ein, so ergibt sich (H + h)2 + r2 − (r − h) + r2 = (H + r)2. Diese
Gleichung enthält als einzige Unbekannte die Höhe h der Kugelkappe. Man löst sie nach h auf:

h = Hr

H + r

Damit ergibt sich der Flächeninhalt F der Kugelkappe zu F = 2πrh = 2πr2H
H+r . Da in unserem Fall H = 2r

ist, wird die Berechnung numerisch besonders einfach:

F = 2πr2H

H + r
= 4πr2

3
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Mit r = 1750 km, π = 22
7 ergibt sich F ≈ 13000000 km2.

b) Man erhält den prozentualen Anteil p der zu überschauenden Mondoberfläche F an der gesamten
Mondoberfläche O, indem man F durch O dividiert und mit 100% multipliziert:

p = 2πr2H · 100
4πr2(r +H)% = 100r

3r % ≈ 33,3%

Man erkennt, dass der Prozentsatz p unabhängig ist vom Radius r, wenn die Höhe H des Beobachtungs-
punktes in Vielfachen von r ausgedrückt wird: H = kr. Dann kürzt sich nämlich die Größe r aus dem
Bruch weg.

ϕ
2

ϕD
C

B

A

a

b
2

b
2

c) Es ist, wie man aus der Abbildung erkennt, sin ϕ
2 = r

r+H .
Wegen H = 2r folgt daraus sin ϕ

2 = 1
3 , womit für den Winkel folgt ϕ ≈ 39,94◦.

d) Ist b die Breite des Gegenstands, a der Abstand des Beobachters, (Abbil-
dung) so muss gelten

AC

CD
= BC

CD
= b

2a = tan ϕ2 → b = 2a tan ϕ2 ≈ 70,70 m
Ergänzung von Erich Schiffner:

Die Frage nach der relativen Größe der aus dem Abstand a von der Oberfläche übersehbaren Fläche wird
am besten allgemein gelöst. Es sei a = k · r. Dann wird

(r − h)(k + 1)r = r2 daraus folgt h = k

k + 1r; F = 2πr2 k

k + 1

Für das Verhältnis von F zu H (H = Halbkugeloberfläche) gilt daher

F

H
= k

k + 1

Für k = 2 (siehe Aufgabe) wird F
H = 2

3 , für k = 1 wird F
H = 1

2 . Ist k = 1
n < 1, so erhält man

F

H
= 1
n+ 1

Für k ≈ 1
30 , d.h. n = 30 (Wostok I und II), erhält man z.B. F

H = 1
31 ≈ 0,032. Die beiden Kosmonauten

konnten also von jedem Punkt der Raumbahn rund 3% der Oberfläche der Erdhalbkugel überblicken.

Aufgabe 15/61
Es sind alle vierziffrigen Zahlen zu ermitteln, die folgende Eigenschaften haben:
1. Die Summe aus der ersten und zweiten Stelle ist gleich dem Quadrat aus der ersten Stelle.
2. Die Differenz aus der zweiten und der dritten Stelle ist gleich der ersten Stelle.
3. Die Summe aus der dritten und der vierten Stelle ist gleich der zweiten Stelle.
Wie kann man diese Zahlen allgemein darstellen?

Die Aufgabe enthält vier unbekannte Zahlen, nämlich die vier Stellen der gesuchten vierstelligen Zahlen.
Wie bezeichnen die erste Stelle mit x, die zweite mit y, die dritte mit z und die vierte mit u. Aus den
drei Bedingungen lassen sich drei Gleichungen aufstellen:

(1) x+ y = x2 1.Bedingung
(2) y − z = x 2.Bedingung
(3) z + u = y 3.Bedingung

Da mehr Unbekannte auftreten als Gleichungen vorhanden sind, hat das Gleichungssystem unendlich
viele Lösungen, deren Anzahl jedoch durch die Aufgabenstellung stark eingeschränkt wird: Die Lösungen
x, y, z, u sind Stellen einer vierziffrigen Zahl, also müssen sie einer der ganzen Zahlen zwischen 0 und 9
(beide Werte einschließlich) sein. Es gilt also: 0 ≤ x,y,z,u ≤ 9, x, y, z, u ganzzahlig
Zur Lösung formen wir die Gleichung (1) um: y = x(x − 1) (1b). An der Gleichung erkennt man, dass
für x nur die vier Werte x1 = 0, x2 = 1, x3 = 2, x4 = 3 in Frage kommen; denn für x = 4 müsste das
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einstellige y schon 12 werden.
Damit ergeben sich auch die y-Werte: y1 = 0, y2 = 0, y3 = 2, y4 = 6. Mit der Gleichung (2) ergeben sich
die z-Werte: z1 = 0, z2 = −1, z3 = 0, z4 = 3. Die Werte mit dem Index 2 scheiden aus, da z2 < 0 wäre.
Mit der Gleichung (3) folgt u1 = 0, u3 = 2, u4 = 3.
Damit hat man die vierziffrigen Zahlen 2202 und 3633 als Lösung gefunden. Das Ergebnis 0000 wird nicht
als echte vierziffrige Zahl anerkannt.

Um diese Zahlen durch einen allgemeinen Ausdruck darzustellen, schreibt man sie in der Form 1000x+
100y + 10z + u. Setzt man u = y − z und weitere Beziehungen von oben, so ergibt sich

1000x+ 100y + 10z + u = 1000x+ 101y + 9z = 991x+ 110y = 881x+ 110x2

Dieser Ausdruck liefert für x = 2 die Zahl 2002 und für x = 3 die Zahl 3633, die die gestellten Bedingungen
erfüllen. Dass es keine weiteren Zahlen mit den geforderten Eigenschaften geben kann, folgt aus dem
Lösungsweg, bei dem alle Möglichkeiten ausgeschöpft wurden.

Aufgabe 16/61
A sagt zu B: ”Diesen Anzug habe ich im Winterschlussverkauf um 20 % verbilligt gekauft.” Da
antwortet B: ”Dann hast du 25 % gespart.” Da wendet C ein: ”Wenn er nur um 10 % im Preis
gesenkt worden wäre, hättest du rund 11,1 % gespart.”
Wie erklärt sich diese kuriose Rechnung?

Die Ursache für die unterschiedlichen Prozentangaben liegt darin begründet, dass A den Prozentsatz vom
ursprünglichen (nicht gesenkten) Preis berechnet; B dagegen vom tatsächlichen (gesenkten) Verkaufspreis;
C geht einmal vom ursprünglichen und einmal vom gesenkten Preis aus.
Hat z.B. der Anzug vor der Preissenkung 160,00 DM gekostet, so wurde er zum Preis von 128,00 DM
verkauft, da die Preissenkung 20 % von 160,00 DM = 32,00 DM betrug.
Dann hat A, wie B behauptet, 32,00 DM = 25 % von 128,00 DM gespart.
Hätte nach den Angaben von C die Preissenkung nur 10 % von 160,00 DM = 16,00 DM betragen, so
hätte A den Betrag 144,00 DM bezahlt und 16,00 DM eingespart. Das sind aber rund 11,1 % von 144,00
DM.
Schlussfolgerung: Bei Prozentangaben muss der Grundwert, auf den sie sich beziehen, eindeutig feststehen;
sonst kann es Missverständnisse und Unklarheiten geben.

Aufgabe 17/61
Das Passagierflugzeug IL 14 P der Deutschen Lufthansa wiegt einschließlich voller Nutzlast etwa
18000 kp. Es benötigt beim Start vom Beginn des Rollens bis zum Abheben vom Boden ungefähr 30
s und hat im Augenblick des Abhebens eine Geschwindigkeit von rund 160 km

h .
Bei den folgenden Berechnungen werde von der Reibung und vom Luftwiderstand abgesehen und die
Bewegung des Flugzeugs als gleichförmig beschleunigt betrachtet.

1. Wie groß ist die Durchschnittsgeschwindigkeit beim Rollen?

2. Wie groß ist die Rollstrecke?

3. Wie groß ist die Beschleunigung des Flugzeugs?

4. Welche Kraft ist notwendig, um diese Beschleunigung hervorzurufen?

5. Welche Arbeit wird von den beiden Motoren während des Rollens für die Beschleunigung voll-
bracht?

6. Welche Leistung (in PS) muss jeder der beiden Motoren dazu abgeben?

1. Wir bezeichnen mit va die Anfangsgeschwindigkeit, mit ve die Endgeschwindigkeit und mit vd die
Durchschnittsgeschwindigkeit des Flugzeugs beim Rollen. Ferner sei l die Rollstrecke und t die
benötigte Zeit. Es gilt va+ve

2 = vd. Wegen va = 0ms , ve ≈ 44,4ms ergibt sich vd ≈ 22,2ms .

2. Für die Rollstrecke l gilt: l = vd · t ≈ 666m ≈ 2
3km.
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3. Für die Beschleunigung a gilt: a = ve−va
t ≈ 1,48ms2 .

4. Nachdem Grundgesetz der Dynamik berechnet sich die Kraft F mit F = m · a. Für die Masse m
gilt m = G

g , wenn G das Gewicht und g = 9,81ms2 die Fallbeschleunigung ist.
Dann wird F = G·a

g ≈ 2720 kp.

5. Arbeit W = F · l ≈ 1810000 kpm.

6. Leistung P = W
t ≈ 60000kpms . Dies entspricht 800 PS, so dass jeder Motor rund 400 PS Leistung

aufbringen muss.

Aufgabe 18/61
Konstruiere ein Dreieck aus sa = 6 cm, hb = 5 cm, hc = 7cm!

Vorüberlegung: Die Analysisfigur (Abbildung) zeigt, dass kein Teilstück des Dreiecks ABC unmittelbar
konstruierbar ist. Durch Festlegen jedes der drei gegebenen Stücke wird für einen weiteren Punkt des
Dreiecks ABC höchstens ein geometrischer Ort bestimmt.

F

E

B C

A

sa

hb

hc

a

bc

Die Situation ändert sich jedoch sofort, wenn man die Höhen hb und
hc in Richtung b bzw. c parallel zu sich selbst verschiebt, so dass sie
durch D verlaufen (Abbildung 2). Dann gilt M DBF ′ ∼= M DCF ′ we-
gen DB = DC = a

2 , ]BDF ′ = ]CDF ′′ (Scheitelwinkel), ]DF ′B =
]DF ′′C (rechte Winkel nach Konstruktion).
Also ist DF ′ = DF ′′ = hc

2 . Entsprechend gilt M DCE′ ∼= DBE′′ we-
gen DB = DC = a

2 , ]E′DC = ]DBE′′ (Scheitelwinkel), ]CE′D =
]BE′′D (rechter Winkel nach Konstruktion).

Damit ergibt sich die Möglichkeit, M AF ′D aus AD = sa, DF
′ = hc

2 ,]AF
′D = 90◦, und M AED aus

AD = sa, DE
′ = hb

2 ,]AE
′D = 90◦ zu konstruieren.

Man erhält daraus B und C auf folgende Weise: B liegt 1. auf der Geraden durch A und F ′ und 2. auf
der Parallelen zur Geraden durch A und E′ im Abstand hc, die in derselben Halbebene liegt wie D.

E′

E′′

F ′
F ′′

D
B

C

A

hc

hb

sa

a

b
c

C liegt 1. auf der Geraden durch A und E′ und 2. auf der Paralle-
len zur Geraden durch A und F ′ im Abstand hb, die in derselben
Halbebene liegt wie D.
Nach Festlegung von B (C) auf die beschriebene Weise erge-
ben sich für C (B) auch folgende geometrische Örter: C (B)
liegt 1. auf der Geraden durch A und E′ (F ′) und 2. auf der
Verlängerung von BD (CD) über D hinaus. Oder: C (B) liegt
auf der Verlängerung von BD (CD) über D hinaus im Abstand
BD (CD) = a

2 von D.

Konstruktionsbeschreibung:
Man legt AD = sa = 6 cm fest und schlägt über AD nach beiden Seiten den Thaleskreis. Um D schlägt
man mit hb

2 in der Zirkelspanne einen Kreisbogen, dessen Schnitt mit dem einen Thaleshalbkreis den
Punkt E′ liefert, und mit hc

2 in der Zirkelspanne einen Kreisbogen, dessen Schnitt mit dem anderen
Thaleshalbkreis den Punkt F ′ ergibt.
Sodann zieht man zu AE′ die Parallele im Abstand hb in der Halbebene, in der D liegt. Ihr Schnittpunkt
mit der Geraden durch A und F ′ ist B. Ferner zieht man zu AF ′ die Parallele im Abstand hc in der
Halbebene, in der D liegt. Ihr Schnittpunkt mit der Geraden durch A und E′ ist C.

Man kann C (B) auch nach Konstruktion von B (C) erhalten, indem man BD (CD) über D hinaus bis
zum Schnitt mit der Geraden durch A und E′ (F ′) bzw. um sich selbst verlängert.

Diskussion:
Die Aufgabe ist (bis auf Symmetrie) eindeutig lösbar, wenn hc

2 < sa und hb
2 < sa ist. In diesem Fall ergeben

die Kreisbögen um D je genau einen Schnittpunkt mit einem Thaleshalbkreis. Die weitere Konstruktion
ist eindeutig.
Wenn dagegen hb

2 ≥ sa oder hc
2 ≥ sa ist, so existiert kein entsprechender Schnittpunkt mit dem Thales-

halbkreis und die Aufgabe ist unlösbar.
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2.1 Aufgaben und Lösungen 1961

Im vorliegenden Fall ist die Aufgabe wegen hb
2 = 2,5 < 6 = sa und hc

2 = 3,5 < 6 = sa eindeutig lösbar.

Aufgabe 19/61
Ein schmiedeeiserner Rundstab von 4 m Länge und ein schmiedeeiserner Ring von 4 m Umfang sollen
in je zehn gleich große Stücke zersägt werden. Ring und Stab sind gleich dick.
Bei welchem der beiden Werkstücke erfordert das Zersägen mehr Zeit?

Um den Ring in 10 Stücke zu zersägen, muss man 10 Schnitte führen. Beim Stab dagegen genügen 9
Schnitte, wie man sich leicht überlegt bzw. an einer Skizze verdeutlicht.
Bei sonst gleichen Bedingungen erfordert daher das Zersägen des Ringes mehr Zeit.

Aufgabe 20/61
Für das Kraftwerk Klingenberg in Berlin-Rummelsburg wurden zwei neue Schornsteine gebaut. Jeder
von ihnen besteht aus einem Betonmantel, der die Form eines hohlen Kreiskegelstumpfs mit den
folgenden Maßen hat:
Unterer lichter Durchmesser du = 10,00 m, oberer lichter Durchmesser do = 7,50 m, unterer äußerer
Durchmesser Du = 11,20 m, oberer äußerer Durchmesser Do = 7,80 m, Höhe H = 140,00 m.
Dieser Mantel erhielt eine Auskleidung von Glaswolle, Kieselgur und Klinkersteinen.

a) Wieviel Kubikmeter Beton wurden für jeden der beiden Schornsteinmäntel benötigt?

b) Wie groß ist das Gewicht G jedes der beiden Schornsteinmäntel? Die Wichte γ des verwendeten
Betons werde mit γ = 2,4Mp

m3 angenommen.

c) Welchen Druck übt der Schornsteinmantel auf das Fundament aus?

a) Man erhält das Mauerwerksvolumen als Differenz aus dem Gesamtvolumen des Bauwerkes und dem
umbauten Hohlraum. Beides sind im vorliegenden Fall Kegelstümpfe Die Formel für das Volumen
eines Kegelstumpfs ist

V = πh

3 (r2
1 + r1r2 + r2

2)

wobei h die Höhe des Kegelstumpfs, r1 und r2 die Radien von Grund- und Deckkreis sind.
Für das Mauerwerksvolumen ergibt sich damit

V = πh

3 (R2
1 +R1R2 +R2

2)− πh

3 (r2
1 + r1r2 + r2

2)

mit R1 = Du
2 = 5,60 m, R2 = Do

2 = 3,90 m, r1 = du
2 = 5,00 m und r2 = do

2 = 3,75m. Daraus erhält
man V ≈ 1555 m3.

b) Das Gewicht eines Körpers ergibt sich wegen G = V · γ zu G ≈ 3732 Mp.

c) Den Druck p errechnet man als Quotient aus der wirksamen Kraft (in unserem Fall das Gewicht G)
und der Fläche, auf die die Kraft wirkt. Die Fläche F (der Grundriss des Schornsteinmantels) ist
ein Kreisring mit dem äußeren Radius Ra = 5,60 m und den inneren Radius Ri = 5,00 m. Es wird
F ≈ 20 m2, also für den Druck p ≈ 18,66 kp

cm2 . Bei der Rechnung wird allerdings vorausgesetzt, dass
sich die gesamte Last des Schornsteinmantels gleichmäßig auf den Querschnitt verteilt.

Aufgabe 21/61
Jörg kann ”zaubern”. Gestern kam Jörg mit einer Sensation in die Schule; er könne mathematisch
zaubern! Wir waren natürlich alle sehr gespannt, wie er das wohl fertigbringen wolle, und gleich in
der ersten Pause musste er mit der Zauberei beginnen.
Nachdem er mit dem Gesicht zur Wand gestellt worden war, damit er ja nicht sähe, was ich schrieb,
forderte er mich auf, eine dreistellige Zahl zu wählen, deren Ziffer in der Hunderterstelle um 2 höher
sein müsse als die Einerstelle; die Zehnerstelle könne eine beliebige Zahl sein.
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2.1 Aufgaben und Lösungen 1961

Ich schrieb 5 1 3 und sollte nun die Zahl ”umgedreht” daruntersetzen 3 1 5 und von der ersten
abziehen, der Differenz 1 9 8 (die Jörg nicht kannte!) 1 2 hinzuzählen und die Summe 210 : 70 teilen;
der Quotient 3 musste mit 12 multipliziert werden, was 36 ergab.
Jetzt glänzte Jörg noch mit dem neuesten Wissen, das wir seit der letzten Mathematikstunde hatten,
und verlangte, aus dem Produkt die Quadratwurzel zu ziehen:

√
36 = 6.

Damit war das Kunststück zu Ende. und er verkündete, dass wir 6 erhalten hätten.
Unser Erstaunen war groß! Er wurde bestürmt zu sagen, wie er das mache, und er möchte vor allem
noch einmal seine Kunst unter Beweis stellen, was er auch gern tat.
Mir ließ die Sache den ganzen Tag keine Ruhe, und am Nachmittag setzte ich mich hin und grübelte
so lange, bis ich die mathematische Gesetzmäßigkeit entdeckt und algebraisch bewiesen hatte, die
Jörg dieses ”Rechenkunststück” ermöglichte.
Wie muss man das wohl anstellen? Unsere Aufgabe lautet also:

Man schreibe eine beliebige dreistellige Zahl, deren Hunderterstelle um zwei größer ist als die Einer-
stelle. Von ihr subtrahiere man die Zahl, die man erhält, wenn man in der ursprünglichen Zahl die
Reihenfolge der Ziffern umkehrt. Zum Ergebnis addiere man 12; der Reihe nach sind dann mit den
jeweiligen Ergebnissen folgende weitere Rechenoperationen auszuführen: Division durch 70; Multipli-
kation mit 12 und man ziehe die Wurzel! Das Ergebnis ist 6.

1. Wie ist es möglich, dass bei einer beliebigen Zahl als Ausgangsgröße das Ergebnis der Rechen-
operationen vorausgesagt werden kann?

2. Ist eine allgemeine Lösung möglich, bei der die Hunderterstelle um n größer ist als die Einer-
stelle? (n = 1, 2, ..., 9)

1. Ist a = 100x + 10y + z die beliebige dreistellige Zahl, so gilt nach der in der Aufgaben gestellten
Bedingung x = z + 2, also a = 100(z + 2) + 10y + z = 100z + 200 + 10y + z.

Für die Zahl mit vertauschter Ziffernfolge gilt dann: b = 100z + 10y + x = 100z + y + z + 2. Subtrahiert
man b von a, so folgt: a− b = 198. Man sieht, dass durch die Subtraktion die Ziffern der Zahl a sämtlich
aus der Rechnung herausfallen und das Ergebnis unabhängig von der Wahl der Zahl a den Wert 198
ergibt. Die weiteren Rechnungen dienen nur zur Verschleierung dieses Sachverhalts.
2. Allgemein gilt, wenn x = z + n mit n = 1, 2, ..., 9 ist

a− b = 100z + 100n+ 10y + z − (100z + 10y + z + n) = 100n− n = 99n

Das Ergebnis 99n schließt natürlich den speziellen Fall 1 (n = 2, 99n = 198) ein. Auf dieser Grundlage
lässt sich ein mathematisches ”Zauberkunststück” ohne große Gedächtnisleistung aufbauen.

Lösung von Ernst Hennig:

Die Einerziffer sei x, die Zehnerziffer y, die Hunderterziffer ist dann x+ n mit n = 1, 2, 3, ..., (9− x). Die
Zahl heißt damit

100(x+ n) + 10y + x

die Zahl mit umgekehrter Ziffernfolge 100x + 10y + (x + n). Die Differenz der beiden Zahlen ist D =
100n− n = 99n.
Diese Differenz hat also einen konstanten, von der Ziffernwahl unabhängigen Wert 99n, der nur von dem
Betrag n abhängt.
Von hier ab kann Jörg zwei Wege wählen. Der einfachere ist folgender:

1. Jörg lässt zu der von ihm nicht genannten Differenz die Zahl 10 + n addieren (also 11, 12, 13, ...). Es
ergibt sich

99n+ 10 + n = 100n+ 10 = 10(10n+ 1)

das ergibt 110, 210, 310, ... Diese Zahl lässt er durch 10n+1 teilen, d.h. durch 11, 21, 31, ... Das Ergebnis
ist immer 10.

2. Etwas schwieriger für den mathematischen Zauberkünstler ist der zweite Weg, der die volle Verallge-
meinerung des Zahlenspiels darstellt (sie hat: aber nur für n ≥ 2 einen Sinn).
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1. Forderung: Zu der Differenz D die Zahl 100(n − 2) + 10(n − 1) + n addieren (also 012,123, 234, ...).
Ergebnis: 210(n− 1).
2. Forderung: Das Ergebnis durch 70 dividieren! Resultat: 3(n|1)’ d.h. 3, 6’ 9’ ...
3. Forderung: Das letzte Resultat mit 12(n− 1) multiplizieren! Es entsteht die Zahl 36(n− 1)2.
4. Forderung: Aus dem letzten Ergebnis ist noch die Quadratwurzel zu ziehen! Schlußergebnis: 6(n− 1),
d.h.; 6, 12, 18, ...

Aufgabe 22/61
Der Trog eines Schiffhebewerkes wiegt im leeren Zustand a Mp, die Wasserfüllung wiegt b Mp. Zum
Ausgleich sind Gegenmassen mit einem Gesamtgewicht (a+ b) Mp angebracht.
Wie groß ist Übergewicht des Troges samt Inhalt, wenn sich ein Schiff mit einem Gewicht (einschließ-
lich Ladung) von c Mp im Trog befindet?

Das Übergewicht ist Null!
Nach dem archimedischen Prinzip verdrängt nämlich ein schwimmender Körper eine Flüssigkeitsmenge
mit dem gleichen Gewicht wie sein eigenes. Beim Einfahren des Schiffes in den Trog sind also c Mp Wasser
ausgeflossen und das Gewicht des Troges samt Inhalt ist damit unverändert geblieben.

Aufgabe 23/61
Auf einer 22,5 km langen Straßenbahnstrecke sollen während der Zeit von 8h bis 16h die Wagenzüge
in beiden Richtungen in 10-min-Folge verkehren. Die ersten Züge dieser Betriebszeit verlassen 8h die
beiden Endhaltestellen. Ihre Durchschnittsgeschwindigkeit (einschließlich der Haltezeiten) beträgt
18kmh . Das Fahrpersonal soll an den Endhaltestellen eine Pause von mindestens 10 und höchstens 20
min haben.

1. Wann verlässt der erste von Endhaltestelle A abfahrende Wagenzug diese Endhaltestelle zum
zweitenmal?

2. Wieviel Wagenzüge müssen auf dieser Strecke in der Betriebszeit von 8h bis 16h eingesetzt
werden? Dabei sollen Züge, die aus dem Berufsverkehr vor 8h noch auf der Strecke sind und
aussetzen, sowie Züge, die für den 16h beginnenden Berufsverkehr bereits vorher zusätzlich auf
die Strecke gehen, nicht mitgerechnet werden.

3. In welchen Zeitabständen begegnen sich die Wagenzüge?

1. Aus der Formel s = v · t (in der mit s der Weg, mit v die Geschwindigkeit und mit t die Zeit
bezeichnet wird) folgt t = s

v . In unserem Fall sind s = 22,5 km und v = 18kmh .
Also gilt t = 22,5

28 h = 1 h 15 min.
Der erste Wagenzug ist demnach 9h15min an der Endhaltestelle B. Wegen der vorgeschriebenen
Pause verlässt er diese 9h30min. Da für die Rückfahrt gleiche Bedingungen gelten, tritt er von der
Endhaltestelle A aus seine zweite Fahrt 11h00min an.

2. Der erste von A abfahrende Wagenzug beginnt die Rückfahrt von B aus 90 min nach seiner Abfahrt.
In dieser Zeit sind sowohl von A aus als auch von B aus je neun Züge auf die Strecke gegangen,
insgesamt also 18 Züge.

3. Die Zeitabstände betragen 5 min. Das Ergebnis kann man aus mehreren Überlegungen erhalten,
z.B. aus folgender:
Wir betrachten die Begegnungen eines Wagenzuges a, der von A nach B fährt, mit zwei aufeinander
folgenden Wagenzügen b1 und b2, die von B nach A fahren. Im Zeitpunkt der Begegnung von a und
bl befindet sich b2 in einem Fahrabstand von 10 min vom Treffpunkt von a und b1.
Da a und b2 die gleiche Geschwindigkeit haben, muss jeder dieser beiden Wagenzüge bis zu ihrem
Treffpunkt die Hälfte der Strecke zurücklegen, die diesem Fahrabstand entspricht. Dazu sind aber
5 min erforderlich.

Lösung von Walter Rulff:
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Graphische Lösung:
Wir stellen die Fahrt der Straßenbahnzüge in einem rechtwinkligen Zeit-Weg-Diagramm (graphischer
Fahrplan - Abbildung) dar. Aus der Angabe der Geschwindigkeit v = 18km

h folgt, dass sich jeder Wagenzug
eine Stunde nach Abfahrt in der Entfernung 18 km vom Abfahrtsort befindet. Damit sind die Weg-Zeit-
Kurven festgelegt (wenigstens näherungsweise, da die Haltezeiten und Schwankungen der Geschwindigkeit
unberücksichtigt bleiben).
Aus dem Diagramm kann man die Ergebnisse unmittelbar ablesen.

Aufgabe 24/61
Beweis für die Behauptung, dass weniger mehr ist: Es ist(

1
2

)n
>

(
1
2

)n
· 1

2 =
(

1
2

)n+1

Durch Logarithmieren ergibt sich daraus

lg
(

1
2

)n
> lg

(
1
2

)n+1

Nach einem Logarithmengesetz ist lg am = m · lg a; also folgt

n · lg 1
2 > (n+ 1) · lg 1

2

Dividiert man beide Seiten der Ungleichung durch lg 1
2 , so erhält man n > n + 1. Wo steckt der

Fehler?

Der Fehler ist im letzten Schritt enthalten, in der Division durch lg 1
2 . Bekanntlich ist der Logarithmus

einer Zahl, die kleiner ist als 1, eine negative Zahl. Man kann jedoch Ungleichungen nicht wie Gleichungen
behandeln, sondern vor allem beim Rechnen mit negativen Zahlen ist bei Ungleichungen Vorsicht am
Platz.
Multipliziert oder dividiert man beide Seiten einer Ungleichung mit einer negativen Zahl, so muss man
das Ungleichheitszeichen umkehren. Es folgt dann aus

n · lg 1
2 > (n+ 1) · lg 1

2
durch die Division richtig n < n+ 1.

Aufgabe 25/61
Ein Schüler kürzt den Bruch 16

64 fälschlicherweise, indem er in Zähler und Nenner jeweils die Ziffer 6
streicht. Er erhält damit das richtige Ergebnis 1

4 .
Es ist festzustellen, für welche Brüche mit zweiziffrigem Zähler und zweiziffrigem Nenner dieses feh-
lerhafte Verfahren ebenfalls zum richtigen Ergebnis führt.

Bedingung für die Durchführbarkeit des Verfahrens ist, dass die letzte Stelle des Zählers mit der ersten
Stelle des Nenners übereinstimmt. Man kann daher die Brüche allgemein in folgender Form schreiben:

10x+ y

10y + z
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Streicht man im Zähler die letzte und im Nenner die erste Stelle, so erhält man daraus den Bruch x
z .

Beide Brüche sollen einander gleich sein: 10x+y
10y+z = x

z .
Dies ist eine Gleichung in drei Unbekannten, für die nur ganzzahlige Lösungen zwischen 1 und 9 (beide
Werte einschließlich) in Frage kommen. Es handelt sich also um ein diophantisches Problem. Zur Lösung
geht man folgendermaßen vor: Man fasst die Gleichung als Proportion auf und formt sie zur Produktglei-
chung um: (10x+ y)z = (10y + z)x→ 9xz = (10x− z)y.

Die linke Seite der Gleichung ist durch 9 teilbar, also muss auch die rechte Seite durch 9 teilbar sein. Das
ist sicher dann der Fall. wenn entweder y oder 10x − z durch 9 teilbar sind, ferner dann, wenn y und
10x − z beide durch 3 teilbar sind. Damit kommen aber für y zunächst die Werte 3; 6; 9 in Frage: den
Fall, dass 10x− z durch 9 teilbar ist, behandeln wir anschließend.

Aus y = 3 folgt 9xz = 3(10x− z)→ z = 10
3+ 1

x

. Die Gleichung liefert nur für x = 3 ein ganzzahliges z = 3.
Es wäre demnach 33

33 ein Bruch, der der gestellten Bedingung genügt.
Wir wollen aber Fälle mit x = y = z als trivial ansehen und nur solche Lösungen gelten lassen, für die
mindestens x 6= y oder y 6= z gilt.
Setzt man y = 6, so ergibt sich z = 20

3+ 2
x

.
Für x = 1 erhält man daraus z = 4, für x = 2 ergibt sich z = 5. Weitere ganzzahlige Lösungen hat diese
Gleichung nicht. Damit sind zwei Lösungen ermittelt

16
64 = 1

4 und 26
65 = 2

5

Aus y = 9 wird z = 10
1+ 1

x

mit den Lösungen x = 1, z = 5 und x = 4, z = 8 und

19
95 = 1

5 und 49
98 = 1

2
Es bleibt noch der Fall, dass 10x−z durch 9 teilbar ist. Für 10x−z kommen dann nur die Werte 9, 18, 27,
36, 45, 54, 63, 72, 81 in Frage; man sieht dass in jedem Fall x = z ist. Aus der Gleichung 9xz = (10x−z)y
folgt sofort x = y und somit nur triviale Lösungen.
Es gibt genau 4 Brüche der gesuchten Art:

16
64 = 1

4 und 26
65 = 2

5 und 19
95 = 1

5 und 49
98 = 1

2

Aufgabe 26/61

a

d

R

Der geometrische Mittelpunkt der kreiszylin-
derförmigen Ausfräsung (Abbildung) sei nicht be-
kannt. Zur Ermittlung des Durchmessers D = 2R
werden in die Ausfräsung genau geschliffene Bol-
zen mit dem Durchmesser d = 2r = 30 mm gelegt
und a zu a = 12 mm bestimmt.
Welchen Durchmesser D hat die Ausfräsung?

Es sei M der unbekannte Mittelpunkt. Dann gilt R = GM = HM = BM + r = AM + r. Ferner ist
BC = EF = a,AB = d, folglich (AC)2 = d2 − a2.
Da ]ACM = 90◦ ist, folgt CM2 +AC2 = AM2 und wegen AM = BM und CM = BM − a

(BM − a)2 + d2 − a2 = BM2 →

−2BM · a+ d2 = 0→ BM = d2

2a
Damit erhält man R = d2

2a + r bzw. D = d2

a + d. Setzt man die gegebenen Werte ein, so ergibt sich
D = 105 mm.
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Lösung von W. Koch:

a) Berechnung des Winkels β: cosβ = a
d , da ABD′F ′ ein Par-

allelogramm ist, gilt c = d.

b) Berechnung von b′: b′ = R · cosβ = R · ad
c) Berechnung von R: R : b′ = (R − r) : r und R : Ra

d =
(R− r) : R
Wegen d = 2r erhält man daraus R : Ra2r = (Rr) : r. Löst man
diese Gleichung nach R auf, so ergibt sich R = r + 2r2

a .

2. Lösung von W. Koch:

a) Berechnung des Winkels β: cosβ = a
d , da ABD′F ′ ein Par-

allelogramm ist, gilt c = d.

b) Berechnung des Winkels α′:
Es ist β = δ′ (Stufenwinkel an geschnittenen Paralellen) und
δ′ = α′ (wegen B′D′ = B′A′, A′B′D′ ist ein gleichschenkliges
Dreieck mit der Spitze bei B′). Daraus folgt α′ = β.

c) Berechnung von d′ = B′D′: (R−2r) : (R−r) = b′ : r ergibt
1

R−r = a
2r2 . Löst man diese Gleichung nach R auf, so ergibt

sich R = r + 2r2

a .

D′ r

r

a

B A′

c

A
C

B′ R

β

δ′

α′

Aufgabe 27/61
Auf einer Feier stößt jeder Anwesende mit jedem anderen an; die Gläser erklingen 120 mal. Als es
zum Tanzen geht, sagt jemand: ”Wenn jeder Herr mit jeder Dame tanzt, so können wir insgesamt 60
verschiedene Paare bilden.”
Wie viele Damen und wie viele Herren waren anwesend? Die Herren war in der Überzahl.

Jede der anwesenden Personen stößt mit (n− 1) anderen Personen an. Das wären n · (n− 1) ”Anstöße”;
dabei ist aber jedes Anstoßen doppelt gezählt. Die Gläser erklingen daher n

2 (n− 1) mal.
Die quadratische Gleichung n

2 (n−1) = 120→ n2−n−240 = 0 hat die Lösungen n1 = 16 und n2 = −15.
Die negative Lösung scheidet aus, so dass also 16 Personen anwesend waren.
Es seien nun d Damen und h Herren anwesend. Dann gilt, da jeder Herr mit jeder Dame tanzen soll, das
Gleichungssystem s + h = 16; d · h = 60 mit den Lösungen h1 = 10, d1 = 6 und h2 = 6, d2 = 10. Da
mehr Herren als Damen anwesend sind, sind also 10 Herren und 6 Damen bei der Feier.

Lösung von B. Vetters:

(Teillösung unter Vermeidung des Lösungsverfahrens für Gleichungen zweiten Grades)

Die Zahl der anwesenden Personen kann auch ohne Lösung einer Gleichung zweiten Grades ermittelt
werden. Die Gleichung

z(z − 1) = 240
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bedeutet, dass das Produkt zweier benachbarter ganzer Zahlen gleich 240 ist. Man bilde also alle möglichen
Produkte aus ganzen Zahlen, die den Wert 240 haben: 2 · 120, 3 · 80, 4 · 60, 5 · 48, 6 · 40 usw., wobei man
feststellt, dass sich die Differenz der Werte der beiden Faktoren immer mehr der Null nähert. Schließlich
kommt man zu dem Paar, dessen Differenz gleich 1 ist, nämlich zu 15 · 16 = 240.
Also ist z = 16.

Man kann an den Gedanken zwei weitere Überlegungen anschließen:
1. Es ist nicht notwendig, dass man alle Produkte mit dem Wert 240 ausprobiert. Aus der Gleichung
erkennt man, dass der Wert für z nur wenig von

√
240 differieren kann. Er muss also in der Nähe von 15

liegen.
2. Das Verfahren lässt sich — etwas abgewandelt — auch auf den zweiten Teil der Aufgabe anwenden.
Hier gilt

x(16− x) = 60 und x > 16− x

Die Ungleichung führt auf 2x > 16 oder x > 8. Also kommen für die Lösung nur die folgenden Werte in
Frage:

x = 10, 16− x = 6, x = 12, 16− x = 4, x = 15, 16− x = 1

Die rechte Spalte ermöglicht sofort die Auswahl von x = 10, 16− x = y = 6 als einzige Lösung.

Lösung von J. Schell:

(Hilfsmittel: Kombinatorik): Da jeder mit jedem anstoßen soll, ist die Anzahl der Kombinationen von je
2 aus der unbekannten Personenzahl x zu ermitteln.
Aus n Elementen kann man k Elemente auf

(
n
k

)
verschiedene Weisen auswählen. Es ist also(

x

2

)
= 120 oder x(x− 1)

1 · 2 = 120

also sx2 − x = 240 Daraus folgt x1 = +16, x2 = −15.
Die Anzahl der anwesenden Personen ist 16, da x2 = −15 als negative Lösung keinen Sinn ergibt und
daher als unbrauchbar auszuscheiden ist.

Nun sollen 60 Tanzpaare gebildet werden. Es seien x Herren (und demnach 16 − x Damen) anwesend,
und es ist x > 16− x.
16 Personen kann man auf

(16
2
)

verschiedene Weisen zu Paaren gruppieren. Von dieser Zahl ist aber
sowohl die Zahl der nur aus Herren bestehenden Paare als auch die Zahl der nur aus Damen bestehenden
Paare zu subtrahieren. Die erste ist

(
x
2
)
, die zweite

(16−x
2
)
. Also gilt(

16
2

)
−
(
x

2

)
−
(

16− x
2

)
= 60

16 · 15
1 · 2 − x(x− 1)

1 · 2 − (16− x)(15− x)
1 · 2 = 60

x2 − 16x+ 60 = 0

Die Lösung dieser Gleichung ist x1 = 10, x2 = 6. Wegen x > 16 − x scheidet der Wert x2 = 6 als
unbrauchbar aus.
Daraus folgt, dass 10 Herren und 6 Damen anwesend sind.

Aufgabe 28/61

A B

C
D

E F

G
H

+

−

Das Kantenmodell eines Würfels besteht aus zwölf Kupferdrähten glei-
cher Dicke. Diese haben also alle den gleichen Ohmschen Widerstand
R. An den Ecken A und G werde eine Spannung U angelegt.
Wie groß ist der Gesamtwiderstand Rg des Kantenmodells?
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Man überlegt sich, dass unter den gegeben Bedingungen die Punkte B, D und E gleiches Potential haben;
ebenso haben die Punkte C, F und H gleiches Potential. Man könnte also B, D und E sowie C, F und
H untereinander leitend verbinden; die Verbindungen würden stromlos bleiben.
Demnach kann man den Stromweg in drei Abschnitte einteilen:
1.Abschnitt: A bis (B,D,E);
2.Abschnitt: (B,D,E) bis (C,F,H);
3.Abschnitt: (C,F,H) bis G.
Der 1.Abschnitt setzt sich aus den parallel geschalteten Leiterstücken AB, AD und AE zusammen; sein
Widerstand R1 berechnet sich nach den Kirchhoffschen Verzweigungsgesetz zu

1
R1

= 1
R

+ 1
R

+ 1
R

= 3
R
→ R1 = R

3

Genau so berechnet man den Widerstand R3 des 3.Abschnitts: R3 = R
3 .

Der 2.Abschnitt besteht aus den parallel geschalteten Leiterstücken BC, BF , DC, DH, EF und EH.
Es gilt also R2 = R

6 .
Da für den Gesamtwiderstand Rg gilt: Rg = R1 +R2 +R− 3 folgt Rg = 5

6R.

Aufgabe 29/61
Gegeben sind drei zueinander parallele Geraden. Es ist ein gleichseitiges Dreieck zu konstruieren,
dessen Endpunkte je auf einer der gegebenen Geraden liegen.

A

B

C

g1

g2

g3

Analysis: Die allgemeine Lösung findet man, indem man von einem
leicht lösbaren Spezialfall ausgeht: Es werde zunächst angenommen, der
Abstand der gegebenen Parallelen g1 und g2 sei gleich dem Abstand der
Parallelen g2 und g3. Dann liegt das gesuchte Dreieck ABC symmetrisch
zu g2 (erste Abbildung), die Länge der Dreieckseite AB = BC = CA ist
gleich dem Abstand der Parallelen gl und g3, das Dreieck ABC ist ohne
weiteres konstruierbar.

Betrachtet man nun die Analysisfigur der zweiten
Abbildung. so erkennt man: Ist PD die Höhe im
Dreieck PQR, so ist ]PDC = ]BDR, da die Schen-
kel paarweise aufeinander senkrecht stehen. Da ferner
]CDB = ]PDR = 90◦ ist, ist das Dreieck CDP ähnlich
dem Dreieck BDR. Folglich gilt PD : RD = CD : BD.
Wegen CD : BD =

√
3 : 1 gilt dann aber auch

PD : RD =
√

3 : 1.
g1

g2

g3

g4

A

B

DC

P

Q

R

Konstruktionsbeschreibung: Man konstruiert die Mittelparallele g4 zu g1 und g3 und errichtet in einem
beliebigen Punkt D von g4 die Senkrechte, die g1 im Punkt A und g3 im Punkt B schneidet. Sodann
schlägt man um A und B zwei Kreisbögen mit AB als Radius, die sich in C auf g4 schneiden.
In C errichtet man die Senkrechte auf g4, sie schneidet g2 in P . Man verbindet P mit D und errichtet in
D auf PD die Senkrechte. Deren Schnitt mit g1 sei Q, mit g3 sei R. Das Dreieck PQR ist das gesuchte.

Determination: Da die Kreisbögen um A und B einander in zwei Punkten C und C ′ schneiden, ist das
gesuchte Dreieck PQR nur bis auf Symmetrie bestimmt. Alle anderen Konstruktionen sind stets und
eindeutig ausführbar.

Lösung von Willi Dörfler:

B′

C′

A

B

C

g1

g2

g3
Wir gehen von dem Spezialfall aus, dass die Parallelen
zwei gleiche Abstände haben. Die weitere Konstruktion
verläuft folgendermaßen (Abbildung):

In C wird auf AC die Senkrechte errichtet. Ihr Schnitt
mit g2, sei C ′. Von B aus trägt man auf g3 die Strecke
CC ′ = BB′ so ab, dass 4ABB′ und 4ACC ′ gleichen
Umlaufsinn haben.
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Dann ist AB = AC (nach Konstruktion; 4ABC ist gleichseitig), ∠ABB′ = ∠ACC ′ (nach Konstruktion
rechte Winkel) und CC ′ = BB′ (nach Konstruktion).
Also ist 4ABB′ ∼= 4ACC ′. Daraus folgt AB′ = AC ′, ∠CAC ′ = ∠BAB′, also auch ∠C ′AB′ = ∠CAB =
60◦ (nach Konstruktion).
Im Dreieck AB′C ′ sind demnach zwei Seiten einander gleich, und der von ihnen eingeschlossene Winkel
beträgt 60◦. Folglich ist das Dreieck gleichseitig.

Aufgabe 30/61
Fünf Hausfrauen wollen Schrippen kaufen. Als der Bäcker die vorrätigen gezählt hatte, erlaubt er
sich einen Scherz: ”Wenn jede von Ihnen die Hälfte der jeweils vorhandenen Schrippen und eine halbe
dazu kauft, bleibt keine übrig!” Wieviel Schrippen hatte der Bäcker, und wieviel hätten nach diesem
Vorschlag die einzelnen Kundinnen erhalten?

Es sei xn die Anzahl der Schrippen, die vorhanden sind, ehe die n-te Kundin gekauft hat. Die n-te Kundin
erhält dann

yn = xn
2 + 1

2 = xn + 1
2

Schrippen. Die Differenz xn − yn ist die Anzahl Schrippen, die nach dem Kauf der n-ten Kundin, also
vor dem Kauf der (n+ 1)-ten Käuferin vorhanden sind:

xn+1 = xn − yn = xn −
xn + 1

2 = xn − 1
2

Da nach der fünften Käuferin keine Schrippen mehr vorhanden sind, gilt x6 = 0, also x5−1
2 = 0, mithin

x5 = 1 und y5 = 1. Rückwärts die Ergebnisse einsetzen, ergibt x4 = 3;x3 = 7;x2 = 15;x1 = 31 und
y4 = 2; y3 = 4; y2 = 8; y1 = 16.
Es waren also anfangs 31 Schrippen vorhanden. Die erste Kundin erhält 16, die zweite 8, die dritte 4, die
vierte 2 und die fünfte 1 Schrippe. ”Halbe” Schrippen tauchen im Ergebnis nicht auf!

Aufgabe 31/61
Zur Umsetzung von Drehbewegun-
gen in geradlinige Bewegungen gibt
es verschiedene Möglichkeiten. Bei
Werkzeugmaschinen werden häufig
die Kreuzschleife (Konstruktionsprin-
zip siehe erste Abbildung) und die
schwingende Kurbelschleife (Konstruk-
tionsprinzip siehe zweite Abbildung
angewendet.
Der Radius r der Drehbewegung ist der
Abstand vom Drehpunkt M zum Mit-
telpunkt des Bolzens B.

B

M

ϕ
r

a) Es ist die Auslenkung s des schwingenden Maschinenteils (Werkzeug oder Werkstück) in
Abhängigkeit vom Drehwinkel ϕ anzugeben und die Funktion s = f(ϕ) in einem rechtwinkligen
kartesischen Koordinatensystem mit r = 1, a = 0,5 und l = 3 darzustellen. Welcher wesentliche
Unterschied besteht hinsichtlich der Bewegung des schwingenden Maschinenteils zwischen den beiden
Antriebsarten?

b) Für die Kreuzschleife sind die Geschwindigkeit v = v(t) und die Beschleunigung b = b(t) des
schwingenden Maschinenteils zu ermitteln; die Winkelgeschwindigkeit ω sei konstant: ω = ϕ

t =
konstant.
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ϕ

M

r

a

l

c) Wie groß ist der absolute Extremwert der Beschleunigung bei der Kreuzschleife? Welchen Durch-
messer d muss der Bolzen B mindestens haben, wenn τ die Scherfestigkeit des Bolzenwerkstoffs und
m die Masse des schwingenden Maschinenteils ist?

Es gilt τ = P
F , wobei F der Querschnitt des Materials und P die zum Abscheren (gegenseitiges

Verschieben zweier ”benachbarter” Querschnitte) erforderliche Kraft ist. Die Reibung werde ver-
nachlässigt.

d) Für die schwingende Kurbelschleife ist aus der graphischen Darstellung der Weg-Zeit-Funktion der
annähernde Verlauf der Geschwindigkeit-Zeit-Funktion und der Beschleunigung-Zeit-Funktion abzu-
lesen und graphisch darzustellen. Auch dabei gelte ω = ϕ

t = konstant.

e) Für welche Arten von Maschinen kommen diese beiden Antriebsarten auf Grund ihrer Eigenschaf-
ten vorwiegend in Frage?

S

B

M
90◦ − ϕ

ϕ

a) Kreuzschleife: Es ist (siehe Abbildung) s = MS. Bezeichnet
man als Drehwinkel ϕ den Winkel, den die Kurbel MB = r bei
Drehung im Uhrzeigersinn von MO aus überstreicht, so gilt

MS

r
= s

r
= cos (90◦ − ϕ)

Wegen cos (90◦ − ϕ) = sinϕ ergibt sich daraus s
r = sinϕ und

damit s = r sinϕ.
Grafische Darstellung für r = 2 und r = 1:

0.5

-0.5

1

-1

1.5

-1.5

2

-2

90◦ 180◦ 270◦ 360◦ ϕ

s

Schwingende Kurbelschleife: Bezeichnet man als Drehwinkel ϕ den Winkel, den die Kurbel MB = r
bei Drehung im Uhrzeigersinn von MO aus überstreicht (Abbildung), und als Schwingungswinkel ψ den
Winkel zwischen PS und PO (ebenfalls im Uhrzeigersinn gemessen), so ergibt sich OS

PO = s
l = tanψ also

s = l tanψ. Nun gilt aber

tanψ = TB

PT
= TB

PQ+QM +MT
= TB

a+ r +MT
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ψ
ϕ

M

S
B

a

l

Q

T

O

Damit hat man die gesuchte Funktion gefunden: s = l · sinϕ
a
r+1+cosϕ

0.5

-0.5

1

-1

1.5

-1.5

2

-2

2.5

-2.5

3

-3

90◦ 180◦ 270◦ 360◦ ϕ

s

grafische Darstellung für r = 1, a = 0,5, l = 3 Bei der Kreuzschleife schwingt der Maschinenteil harmo-
nisch, bei der schwingenden Kurbelschleife dagegen nicht. Bei der Kreuzschleife dauern Vor- und Rücklauf
gleich lang, bei der schwingenden Kurbelschleife geht der Vorlauf langsam, der Rücklauf dagegen schnell
vor sich.

b) Die Geschwindigkeit v = v(t) erhält man durch Differentiation des Weges nach der Zeit:

v = v(t) = ds(t)
dt

= d(r sinϕ)
dt

= d(r sin (ωt)
dt

Nach der Kettenregel ergibt sich

d(r sin (ωt)
dt

= d(r sinϕ)
dϕ

· dωt
dt

= ωr cos (ωt) = ωr cosϕ

90◦ 180◦ 270◦ 360◦ ϕ

v

Die Beschleunigung b = b(t) ist die Ableitung der Geschwindigkeit nach der Zeit. Ebenfalls nach der
Kettenregel wird b = −ω2r sin (ωt) = −ω2r sinϕ.

c) Extremwerte von b = b(t) liegen an den Nullstellen der ersten Abteilung von b, an denen die zweite
Ableitung von Null verschieden ist: db(t)

dt = −ω3r cos (ωt) = −ω3r cosϕ.
Aus −ω3r cosϕ = 0 folgt cosϕ = 0. Das ist für ϕ = 90◦ + k · 180◦, k = 0; 1; 2; 3; ... der Fall.
Nun ist d2b(t)

dt = ω4r sinϕ.
Für ϕ = 90◦ + (2k + 1) · 180◦, k = 0; 1; 2; 3; ... ist sinϕ = −1, also liegen Maximalwerte vor. Für
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ϕ = 90◦ + 2k) · 180◦, k = 0; 1; 2; 3; ... sind es Minimalwerte. In jedem Fall folgt allerdings |bextrem| = ω2r.
Nun folgt aus dem Grundgesetz der Dynamik P = mb für die Extremwerte von b: |Pextrem| = m|bextrem| =
mω2r.
Weiter ist bei Bruch des Bolzens P = τF . Setzt man P > |Pextrem|, so folgt τF > mω2r, mithin wegen
F = d2

4 π auch d2

4 πτ > mω2r.
Daraus errechnet man schließlich den Durchmesser d zu

d ≥ 2ω
√
mr

πτ

d) Im Bereich 0◦ ≤ ϕ ≤ 105◦ steigt die Weg-Zeit-Funktion fast geradlinig an, die Geschwindigkeit-Zeit-
Funktion ist daher in diesem Intervall annähernd konstant, größer als Null. Von ϕ ≈ 105◦ bis ϕ ≈ 133◦
geht die Geschwindigkeit auf Null zurück (Maximum des Weges), sie wird von ϕ ≈ 133◦ bis ϕ ≈ 227◦
negativ, wobei sie ihren kleinsten Wert offenbar zwischen ϕ ≈ 165◦ und ϕ ≈ 195◦ hat; in diesem Intervall
ist sie konstant, ihr absoluter Betrag etwa das Fünffache des Wertes zwischen 0◦ und 105◦.
Von ϕ ≈ 227◦ an wird die Geschwindigkeit wieder positiv, von ϕ ≈ 255◦ bleibt sie wieder annähernd
konstant von gleicher Größe wie zwischen 0◦ und 105◦. Der Kurvenverlauf der Geschwindigkeit v wird
demnach ungefähr dem der vorhergehenden Abbildung entsprechen.

90◦ 180◦ 270◦ 360◦ ϕ

b

Der Kurvenverlauf der Beschleunigung ist in der oberen Abbildung zu sehen.

e) Kreuzschleifen wird man vorwiegend bei solchen Maschinen verwenden, bei denen sowohl der Vor-
hub als auch der Rückhub Arbeitshübe sind (z.B. Maschinenfeilen und Maschinensägen).
Schwingende Kurbelschleifen werden dagegen hauptsächlich in solchen Maschinen verwendet, die nur im
Vorhub Arbeit vollbringen, im Rückhub aber leer laufen (z.B. Langhobelmaschinen). Durch den schnelle-
ren Rückhub wird die Zeit des Leerlaufs verkürzt und dadurch die Maschine besser ausgenutzt. Außerdem
ist die während des Arbeitshubes konstante Geschwindigkeit vorteilhaft.
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2.2 Aufgaben und Lösungen 1962

Aufgabe 1/62
Auf ein hölzernes Rad mit einem Durchmesser d = 75 mm soll ein schmiedeeiserner Reifen bei
einer Temperatur t ≈ 500◦C aufgezogen werden. Nach dem Abkühlen soll der Durchmesser D des
Reifens um 0,5 mm kleiner sein als der Durchmesser d des Rades, so dass der Reifen das Rad fest
zusammenpresst.
Wie groß muss der Durchmesser D′ des Reifens bei Anfertigung sein, damit er nach dem Abkühlen
des geforderte Maß hat?
Der Ausdehnungskoeffizient von Schmiedeeisen werde mit α ≈ 0,000012 je Grad angenommen.

Der Durchmesser D′ des Reifens muss D′ = 74,5 mm sein, da der Reifen bei normaler Temperatur
angefertigt wird. Allerdings reicht die Temperatur t ≈ 500◦C nicht aus, um ihn soviel zu vergrößern, dass
er auf das Rad aufgezogen werden kann. Ist U = πD ≈ 233,8 mm, so ist

U + Uz = U(1 + tz) = 233,8 · (1 + 0,000012 · 500) ≈ 235,2 mm

also Uz ≈ 1,4 mm, wenn mit Uz die Vergrößerung des Umfangs U und mit tz die Erhöhung der Temperatur
bezeichnet werden (in unserem Fall wurde tz = t gesetzt). Bezeichnen wir noch die Vergrößerung des
Durchmessers D mit Dz, so ergibt sich aus D +Dz = U+Uz

π , dass Dz ≈ 0,47 mm.
Es müsste aber Dz > 0,5 mm sein, damit D +Dz > 75 mm wird.

Aufgabe 2/62
Es ist der geometrische Ort aller Punkte zu ermitteln, bei denen das Verhältnis

PP1

PP2

der Abstände PP1 und PP2 zu zwei gegebenen Punkten P1 und P2 den konstanten Wert c hat.

xx

y

P1 P2

P (x; y)

a

u
v y

Es seien P1 und P2 die gegebenen Punkte, a ihr Abstand. Das Koordi-
natensystem (rechtwinklig-kartesisch) legt man zweckmäßig so, dass P1
im Ursprung und P2 auf der positiven x-Achse liegt. Dann gilt für einen
beliebigen Punkt P (x; y) des geometrischen Ortes (Abbildung):

x2 + y2 = u2 ; (x− a)2 + y2 = v2

Dividiert man die erste Gleichung durch die zweite, so erhält man

x2 + y2

(x− a)2 + y2 = u2

v2 = c2

Daraus folgt x2 + y2 = c2(x− a)2 + c2y2 und durch Umformung

x2 − 2x c2a

c2 − 1 + y2 + c2a2

c2 − 1 = 0→
(
x− ac2

c2 − 1

)2
+ y2 =

(
ac

c2 − 1

)2

Man erkennt, dass der geometrische Ort ein Kreis mit den Mittelpunktskoordinaten M
(
ac2

c2−1 ; 0
)

und
dem Radius r = ac

c2−1 ist.

Aufgabe 3/62
Wie lautet das Bildungsgesetz (das allgemeine Glied) der Zahlenfolge

(vn) = 0, 2, 2, 3, 5, 5, 6, 8, 8, 9, 11, 11, ...
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Vermindert man in der Folge (vn) das 2., 5., 8., ... Glied um 1,
so geht sie in die Folge (wn) = 0,1,2,3,4,5,6,7,... über. Deren
Bildungsgesetz ist leicht erkennbar: wn = n− 1.
Zur Folge (wn) muss man die Folge (an) =
0,1,0,0,1,0,0,1,0,0,1,... gliedweise addieren, wenn man die
Folge (vn) erhalten will: (vn) = (wn + an).

n = 1; 4; 7; ...

n = 2; 5; 8; ... n = 3; 6; 9; ...

Das Bildungsgesetz für (an) muss für n = 1,2,3 dieselben Werte ergeben wie für n = 4,5,6 oder für
n = 7,8,9, usw. Man kann eine solche Folge ”zyklisch” oder ”periodisch” nennen und sie entsprechend
darstellen.

Es liegt nahe für das Bildungsgesetz von (an) trigonometrische Funktionen zu verwenden. In der Tat ist

(bn) =
(

cos 2πn
3

)
= −0,5;−0,5; +1;−0,5;−0,5; +1; ...

Ersetzt man darin n durch n+ 1 und addiert 0,5, wird

(cn + 0,5) =
(

cos 2π(n+ 1)
3 + 0,5

)
= 0; 1,5; 0; 0; 1,5; 0; 0; 1,5; ...

Damit sind wir am Ziel:

(vn) = (wn + an) = (n− 1 + 2
3[(0,5 + cos 2π(n+ 1)

3 ]) = n− 2
3 −

2
3 cos 2π(n+ 1)

3
Lösung von Ulrich Richter:

Für das Bildungsgesetz der Zahlenfolge (vn) = 0, 2, 2, 3, 5, 5, 6, 8, 8, 9, 11, 11, ... lassen sich beliebige viele
allgemeine Glieder finden. Die Folge lässt sich auch als

(vn) = 1− 1; 2− 0; 3− 1; 4− 1; 5− 0; 6− 1; 7− 1; 8− 0; 9− 1; 10− 1; 11− 0; 12− 1; ...

schreiben. Die Folge (xn) = 1; 0; 1; 1; 0; 1; 1; 0; 1; 1; 0; ... ist periodisch und kann durch jede periodische
Funktion mit folgenden drei Eigenschaften beschrieben werden:

1. f(3λ) = f(3nλ) = 0,
2. f(λ) = f(λ+ 3nλ) = 1,
3. f(2λ) = f(2λ+ 3nλ) = 1.

Wie sich die Funktion an anderen Stellen verhält, ist völlig unwesentlich.
Als Beispiel einer Folge (xn) seien angegeben

(xn) =
(∣∣∣∣23√3 sin

[
(2n− 1)π3

]∣∣∣∣) oder (xn) =
(

4
3 sin2

[
(n+ 1)π3

])
so dass das Bildungsgesetz der Folge (vn) geschrieben werden kann als

vn = n−
∣∣∣∣23√3 sin

[
(2n− 1)π3

]∣∣∣∣ oder (xn) = n− 4
3 sin2

[
(n+ 1)π3

]
(wobei stets n = 1; 2; 3; ... gilt).

Lösung von Erich Schiffner:

Versteht man unter [a] die größte ganze Zahl x, für die gilt x ≤ a, so ist das allgemeine Glied der Folge

(vn) = n−
([n

3

]
−
[
n− 2

3

])
Beweis: Man bilde

vn+1 − vn = n+ 1−
([

n+ 1
3

]
−
[
n− 1

3

])
− n+

([n
3

]
−
[
n− 2

3

])
= 1−

([
n+ 1

3

]
−
[
n− 1

3

])
+
([n

3

]
−
[
n− 2

3

])
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Nun wird die erste Klammer für n = 3k gleich 1, ebenso die zweite, also ist: vn+1 − vn = 1 für n = 3k.
Für n = 3k + 1 ergibt sich vn+1 − vn = 1 − 0 + 1 = 2 und für n = 3k + 2 vn+1 − vn = 1 − 1 + 0 = 0,
womit alles bewiesen ist.

Aufgabe 4/62
Welchen Rest lässt die Zahl 2n beim Teilen durch 3?

Die Zahl 2n ist nicht durch 3 teilbar, da sie nur den Primfaktor 2 enthält. Also kann 2n beim Teilen durch
3 nicht den Rest Null lassen. Es kommen nur die Reste 1 und 2 in Frage.

n = 0 : 2n = 3 = 20 : 3 = 1 : 3 = 0 Rest 1
n = 1 : 2n = 3 = 21 : 3 = 2 : 3 = 0 Rest 2
n = 2 : 2n = 3 = 22 : 3 = 4 : 3 = 1 Rest 1
n = 3 : 2n = 3 = 23 : 3 = 8 : 3 = 2 Rest 2
n = 4 : 2n = 3 = 24 : 3 = 16 : 3 = 5 Rest 1

Es taucht die Vermutung auf, dass 2n beim Teilen durch 3 den Rest 1 lässt, wenn n gerade, und den Rest
2 lässt, wenn n ungerade ist. Zumindest gilt dies für n = 0 bis n = 4.
Um einen allgemeinen Beweis zu führen, schließen wir folgendermaßen:
Wenn 2n beim Teilen durch 3 den Rest 1 lässt, so kann man schreiben 2n = 3k + 1. Dann gilt für 2n+1:
2n+1 = 2 · 2n = 2(3k + 1) = 6k + 2.
Man sieht, dass dann 2n+1 beim Teilen durch 3 den Rest 2 lässt. Lässt dagegen 2n beim Teilen durch
3 den Rest 2, so kann man schreiben 2n = 3k + 2. Dann gilt entsprechend für 2n+1: 2n+1 = 2 · 2n =
2(3k + 2) = 6k + 4 = 6k + 3 + 1.
Man sieht, dass in diesem Fall 2n+1 beim Teilen durch 3 den Rest 1 lässt. Damit ist bewiesen, dass sich
beim Teilen der Zahl 2n durch 3 die Reste 1 und 2 regelmäßig abwechseln, wenn n die Folge 0; 1; 2; 3; 4; ...
durchläuft.
Es gilt also für jedes n: Die Zahl 2n lässt beim Teilen durch 3 den Rest 1, wenn n gerade, und den Rest
2, wenn n ungerade ist.
Mit Hilfe von Sätzen der Zahlentheorie bzw. der Gruppentheorie lässt sich diese Behauptung noch ele-
ganter beweisen.

Aufgabe 5/62

Gegeben ist ein Trapez mit den parallelen Seiten a und c,
der Höhe h und dem Winkel α (Abbildung). Gesucht ist die
Parallele zu a und c, die die Fläche des Trapezes halbiert.
Lösung 1. durch Berechnung, 2. durch Konstruktion.

A B

CD

a

b

c

d h

α

A B

CD

y

x

a

b

c

d h

1. Berechnung: Da die Fläche eines Trapezes ausschließ-
lich von der Länge der parallelen Seiten und der Höhe,
nicht aber von den Winkeln abhängt, spielt der Win-
kel α für das vorliegende Problem keine Rolle, und die
Betrachtungen können ohne Beschränkung der Allge-
meingültigkeit an einem rechtwinkligen Trapez durch-
geführt werden (Abbildung).
Die teilende Parallele habe die Länge x, ihr Abstand von
c sei y. Dann gilt

x+ c

2 · y = a+ c

4 · h
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Nach dem Strahlensatz gilt y
h = x−c

a−c , also y = x−c
a−ch. Daraus folgt nach Umrechnung

x2 − c2 = a2 − c2

2 → x =
√
a2 + c2

2
Man erkennt, dass die Länge der Parallelen unabhängig ist von der Höhe h. Ihr Abstand y von c ist dann

y = x− c
a− c

h→ y =

√
a2−c2

2 − c
a− c

· h

A B

CD

a

b

c

d F

E

x

2. Konstruktion: Die Berechnung liefert den Schlüssel zur Kon-
struktion. Aus

x =
√
a2 + c2

2 folgt x =
√(a

2
√

2
)2

+
( c

2
√

2
)2

Das heißt aber, man erhält x als Hypotenuse eines rechtwink-
ligen Dreiecks, dessen Katheten a

2
√

2 und c
2
√

2 sind. Diese
Katheten sind aber die halben Diagonalen aus den Quadraten
der beiden parallelen Trapezseiten.

Konstruktionsbeschreibung:
1. Man konstruiert die Quadrate über den parallelen Trapezsei-
ten, zieht in ihnen je eine Diagonale und halbiert diese.
2. Man konstruiert ein rechtwinkliges Dreieck mit den halbierten
Diagonalen als Katheten. Die Hypotenuse hat die Länge x der
gesuchten Parallelen.
3. Man trägt die Strecke x von A aus auf a = AB ab; der
Endpunkt sei E. Dann zieht man durch E eine Parallele zu
d = DA; ihr Schnitt mit b = BC sei F . Die Parallele zu a = AB
und c = CD durch F ist die gesuchte Parallele.

Determination: Sämtliche Konstruktionen sind stets ausführbar und eindeutig.

Aufgabe 6/62
Der kleine Zeiger der Uhr wird während eines Umlaufs mehrmals von großen Zeiger überholt.

1. Es sind die Winkel zu berechnen, die beide Zeiger beim Überrunden mit der Zeigerstellung um
0h bilden.

2. Es ist die Gleichung anzugeben, aus der man die Zeit (in min) errechnen kann, die der große
Zeiger von einer beliebigen Stunde bis zum Erreichen des kleinen Zeigers benötigt.

1) Die Winkel, die die Zeiger mit der Zeigerstellung um 0h bilden, sind Funktionen der Zeit. Wir bezeich-
nen mit αk den Winkel des kleines Zeigers mit der 0h-Stellung, αg den Winkel des großen Zeigers mit
der 0h-Stellung, ωk = 360◦

12h = 30◦
h die Winkelgeschwindigkeit des kleinen Zeigers, ωg = 360◦

1h = 360◦
h die

Winkelgeschwindigkeit des großen Zeigers und t die Zeit (in h).
Dann gelten die Gleichungen αk = ωk·t und αg = ωg ·t. Wenn beide Zeiger sich decken, ist αk = αg−n·360◦
mit n = 0, 1, 2,... (ganzzahlige Umläufe des großen Zeigers werden subtrahiert). Aus den Gleichungen er-
gibt sich

ωk · t = ωg · t− 360◦n oder t = 360◦n
ωg − ωk

= 360◦n
330◦/h = 12

11n h

Setzt man dies in die 1.Gleichung ein, so erhält man für αk den Winkel αkn, bei dem sich die Zeiger
decken: αkn = 30◦ · 12

11n = 360◦n
11 .

2) Wir bezeichnen mit ∆t die Zeitdifferenz zwischen dem Überrunden und der vorausgegangenen vol-
len Stunde, also ∆t = t− n. Wegen 1) ergibt sich daraus

∆t =
(

12
11n− n

)
= 1

11n h
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2.2 Aufgaben und Lösungen 1962

Mit 1 h = 60 min erhält man schließlich ∆t = 60n
11 min. Aus den Gleichungen von 1) und 2) kann man

eine Tabelle für n = 0, 1, ..., 11, αkn in ◦ und ∆t in min zusammenstellen.

n α◦kn ∆t(min) n α◦kn ∆t(min)
0 0 0,00 6 196,4 32,72
1 32,7 5,45 7 229,1 38,18
2 65,5 10,91 8 258,8 43,63
3 98,2 16,36 9 294,5 49,09
4 130,9 21,82 10 327,3 54,55
5 163,6 27,27 11 360,0 60,00

Aufgabe 7/62
Auf einer Eisenbahnstrecke begegnen sich ein D-Zug und ein Schnelltriebwagen. Der D-Zug hat eine
Länge von ld = 260 m und eine Geschwindigkeit von vd = 90 km

h , der Schnelltriebwagen ist ls = 30
m lang und hat eine Geschwindigkeit von vs = 144 km

h .
Wie lange dauert für einen Reisenden im D-Zug die Vorbeifahrt des Triebwagens und für einen
Reisenden im Triebwagen die Vorbeifahrt des D-Zuges?

Es ist vd = 90kmh = 25ms , vs = 144kmh = 40ms .
Man findet die Lösung durch die folgende Überlegung: Wenn der D-Zug sich nicht bewegte, der Triebwagen
aber die Geschwindigkeit vr = vd + vs hätte (oder umgekehrt), so wäre die Relativgeschwindigkeit von
D-Zug und Schnelltriebwagen zueinander dieselbe. Es muss also, wenn mit td und ts die entsprechenden
Zeiten bezeichnet werden, gelten

(vd + vs)ts = ls und (vd + vs)td = ld also

ts = ls
vd + vs

= 6
13 ≈ 0,5 s; td = ld

vd + vs
= 260

65 = 4 s

Die Zeit ts, für die Vorbeifahrt des Schnelltriebwagens am Reisenden im D-Zug beträgt also ts ≈ 0,5 s,
und die Zeit td für die Vorbeifahrt des D-Zuges am Reisenden im Triebwagen ist td = 4 s.

Aufgabe 8/62
Zwei Primzahlen, deren Differenz dem absoluten Betrag nach gleich 2 ist, nennt man Primzahlzwil-
linge.
Man beweise, dass oberhalb von 3 die Summe zweier Primzahlzwillinge stets durch 12 teilbar ist!

Jede Primzahl oberhalb von 3 ist entweder in der Form 6n− 1 oder in der Form 6n+ 1 mit n = 1,2,3,...
darstellbar.
Beweis: Jede natürliche Zahl lässt sich in einer der folgenden Formen darstellen: 6n; 6n+ 1; 6n+ 2; 6n+
3; 6n+ 4; 6n+ 5 mit n = 0,1,2,3,4,.... Von diesen Zahlen sind sicherlich die Zahlen 6n; 6n+ 2 und 6n+ 4
durch 2 und die Zahlen 6n; 6n+3 durch 3 teilbar und mithin keine Primzahlen. Wenn also eine natürliche
Zahl oberhalb 3 eine Primzahl ist, so ist sie entweder in der Form 6n+1 oder in der Form 6n+5 darstellbar.
Für 6n+ 5 kann man aber auch schreiben 6n′ − 1 mit n′ = n+ 1.
Daraus folgt: Primzahlzwillinge p1 und p2 haben stets die Form p1 = 6n−1 und p2 = 6n+1 mit gleichem
n.
Beweis: Angenommen, es sei pl = 6n∓ 1 und p2 = 6m± 1 mit n 6= m, so wäre

|p1 − p2| = |(6n∓ 1)− (6m± 1)| 6= 2

Damit ist aber p1 + p2 = (6n− 1) + (6n+ 1) = 12n, d.h., die Summe zweier Primzahlzwillinge oberhalb
3 ist durch 12 teilbar.
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Aufgabe 9/62

a) Ein Zahnrad K2 mit dem Teilkreisdurchmesser d = 2r rollt auf einem feststehenden Zahnrad K1
mit dem gleichen Teilkreisdurchmesser ab. Wie oft dreht sich K2 bei einem vollen Umlauf um K1
um seine Achse?

b) Ein Zahnrad K2 mit dem Teilkreisdurchmesser d2 = 2r2 rollt auf einem feststehenden Zahnrad
K1 mit einem Teilkreisdurchmesser d1 = 2r1 = 3d2 ab. Wie oft dreht sich K2 bei einem vollen
Umlauf um K1 um seine Achse?

c) Ein Zahnrad K2 mit dem Teilkreisdurchmesser d2 = 2r2 rollt auf einem feststehenden Zahnrad
K1 mit dem Teilkreisdurchmesser d1 = 2r1 = 1

3d2 ab. Wie oft muss es umlaufen, bis es sich genau
einmal um seine eigene Achse gedreht hat?

A′

M

A

A∗

B

K1

K

β

β′
ϕ

β

Der feststehende Kreis K1 hat den Durchmesser d1 = 2r1.
der Rollkreis K hat den Durchmesser d = 2r. Aus der Aus-
gangslage A (siehe Abbildung) rolle der Kreis K bis zum Um-
fangspunkt B. Der Berührungspunkt A∗ des Umfangs von
K in der Ausgangslage bewegt sich dabei in die Lage A′.
Die beiden Kreisbögen AB und A′B haben wegen der Bedin-
gung des Nichtgleitens die gleiche Länge. Die zu diesen Bögen
gehörenden Mittelpunktswinkel bezeichnen wir mit β und β′.
Dann ist die Gesamtdrehung ϕ des Rollkreises K: ϕ = β + β′.
Misst man die Winkel im Bogenmaß, so ist

_

AB = r1
_

β und
_

A′B = r
_

β′

Aus
_

AB =
_

A′B folgt r1
_

β = r
_

β′ oder β′ = r1
_

β
r = d1

_

β
d .

Somit ist die resultierende Drehung

_
ϕ =

_

β +
_

β′ =
_

β + d1
_

β

d
=
_

β (1 + d1

d
)

Misst man aber die Winkel im Gradmaß, so gilt entsprechend
_

AB = πd1β
360◦ und

_

A′B = πdβ′

360◦ . Wegen
_

AB =
_

AB′ gilt d1β = dβ′, also β′ = d1
_

β
d . Somit ist

ϕ = β + β′ = β + d1β

d
= β(1 + d1

d
)

In die allgemeine Form setzen wir ein:
Frage 1: d1 = d,

_

β = 2π bzw. β = 360◦, ergibt ϕ = 4π = 720◦.
Frage 2: d1 = 3d,

_

β = 2π = 360◦, ergibt ϕ = 8π = 1440◦.
Frage 2: d = 3d1,

_
ϕ = 2π = 360◦, ergibt

_

β = 6π
4 = 270◦.

Antwort: Im Fall a dreht sich der Rollkreis zweimal, im Fall b viermal um seinen Mittelpunkt, im Fall c
muss er drei Viertel des Festkreises umlaufen.

Aufgabe 10/62
Es ist −20 = −20

25− 45 = −20
25− 45 = 16− 36

52 − 2 · 5 · 9
2 = 42 − 2 · 4 · 9

2
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Addiert man auf beiden Seiten der Gleichung
( 9

2
)2, so ergibt sich

52 − 2 · 5 · 9
2 +

(
9
2

)2
= 42 − 2 · 4 · 9

2 +
(

9
2

)2
→
(

5− 9
2

)2
=
(

4− 9
2

)2

Auf beiden Seiten die Wurzel gezogen, liefert

5− 9
2 = 4− 9

2 und mit beidseitiger Addition von 9
2 somit 5 = 4

Wo steckt der Fehler?

Der Fehler liegt nicht in den als Aprilscherz eingeschmuggelten Druckfehlern, sondern im Wurzelziehen.
Die Gleichung (

5− 9
2

)2
=
(

4− 9
2

)2

ist noch richtig, denn es ist
(
5− 9

2
)2 = 1

4 und
(
4− 9

2
)2 = 1

4 . Durch das Ausziehen der Wurzel werden
aber der positive (auf der linken Seite der Gleichung) und der negative Wurzelwert (auf der rechten Seite)
einander gleichgesetzt.

Aufgabe 11/62
Berechnung der Jahreszahl 1962 aus dem Geburtstag
Schreiben Sie Ihren Geburtstag auf. Verdoppeln Sie die Nummer des Tages und addieren Sie die
Nummer des Monats zum Ergebnis.
(Beispiel: Geburtstag 27.8., Nummer des Tages 27, Nummer des Monats 8, Rechnung: 2 ·27+8 = 62.)
Multiplizieren Sie dieses neue Ergebnis mit 5 und addieren Sie 400. Subtrahieren Sie davon das
Zehnfache der Tagesnummer. Vom Doppelten dieses Ergebnisses subtrahieren Sie das Zehnfache der
Monatsnummer.
Wenn Sie die so errechnet Zahl mit 2,5 multiplizieren und schließlich noch 38 subtrahieren, so erhalten
Sie die Zahl 1962. Wie ist das bei so verschiedenen Ausgangswerten möglich?

Bezeichnet man die Tagesnummer mit a und die Monatsnummer b, so folgt aus den Anweisungen der
Aufgabe die folgende Rechnung:

1) Verdopplung der Tagesnummer: 2a
2) Addition der Monatsnummer: 2a+ b
3) Multiplikation mit 5: 5 · (2a+ b) = 10a+ 5b
4) Addition von 400: 10a+ 5b+ 400
5) Subtraktion des Zehnfachen der Tagesnummer: 10a+ 5b+ 400− 10a = 5b+ 400
Man sieht, dass ein Teil des Datums aus der Rechnung ”herausfällt”.
6) Verdopplung des Ergebnisses: 10b+ 800
7) Subtraktion des Zehnfachen der Monatsnummer: 10b+ 800− 10b = 800
Nun ist der Rest des Datums herausgefallen. Bei allen möglichen Ausgangswerten liegt nun das gleiche
Zwischenergebnis vor.
8) Multiplikation mit 2,5: 2,5 · 800 = 2000
9) Subtraktion von 38: 2000− 38 = 1962

Aufgabe 12/62
Drei Damen, alle unter 50 Jahre alt, treffen sich zur Geburtstagsfeier der jüngsten.
”Ich habe ein seltsames Alter erreicht”, sagt das Geburtstagskind, ”ich bin 5 1

2 mal so alt wie meine
Tochter und 11 mal so alt wie mein Sohn. Wenn mein Sohn so alt sein wird, wie meine Tochter jetzt
ist, dann werde ich 6 mal so alt sein wie er und 4 mal so alt wie meine Tochter.”
”Merkwürdig”, erwiderte die zweite, ”mit mir und meinen zwei Kindern steht es ebenso!”
”Das ist doch aber ein Zufall!” sagte die dritte nach einigem Nachdenken, ”die gleiche Rechnung
stimmt bei mir und meinen zwei Kindern! Und dabei sind wir drei Frauen doch verschieden alt!”
Wie alt sind die Mütter und ihre Kinder?
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Es scheint sich um ein diophantisches Problem zu handeln. Die Lösungen sind aber im vorliegenden Fall
durch eine einfache Überlegung zu finden:
Da die Mütter 11 mal so alt sind wie ihre jüngsten Kinder, kommen bei ganzzahligen Altersangaben nur
durch 11 teilbare Zahlen für das Alter der Mütter in Frage, also die Zahlen 11; 22; 33: 44; 55; 66; 77; 88;
99. Die Zahl 11 und die Zahlen 55; 66; 77; 66; 99 kann man sofort als unbrauchbar ausschließen. Da die
drei Mütter unterschiedlich alt sind, kommt nur die Lösung

1. Mutter 22 Jahre alt, 2. Mutter 33 Jahre alt, 3. Mutter 44 Jahre alt

in Betracht. Man prüft leicht nach, dass diese Zahlen auch die übrigen Bedingungen erfüllen. Aus ihnen
errechnet man das Alter der Kinder.
Alter der Mutter 22: älteres Kind 4, jüngeres Kind 2; Alter der Mutter 33: älteres Kind 6, jüngeres Kind
3; Alter der Mutter 44: älteres Kind 8, jüngeres Kind 4.

Aufgabe 13/62
Warum kann eine Quadratzahl oberhalb von 9 niemals aus lauter ungeraden Ziffern bestehen?

Es sei n = 10a+b, wobei a eine natürliche Zahl mit beliebig vielen Stellen und b eine einstellige natürliche
Zahl sei. Dann gilt

n2 = (10a+ b)2 = 100a2 + 20ab+ b2

Ist nun b gerade, so ist auch b2 gerade und mithin auch die Schlussziffer von n2. Ist aber b ungerade, so
sind die Fälle b = 1; b = 3; b = 5; b = 7; b = 9 möglich. In diesen Fällen ergibt sich

n2 = 100a2 + 20a+ 1 n2 = 100a2 + 60a+ 9
n2 = 100a2 + 100a+ 25 n2 = 100a2 + 140a+ 49

n2 = 100a2 + 180a+ 81

Man sieht, dass in diesen Fällen die Zehnerziffer gerade ist. Also enthält jede Quadratzahl oberhalb von
9 mindestens eine gerade Ziffer.

Aufgabe 14/62
Das Dreieck ABC sei bei C rechtwinklig. Es sei CD = hc die Höhe der Hypotenuse; ferner seien ρ
der Radius des Inkreises im Dreieck ABC, ρ1 und ρ2 die Radien der Inkreise in den Teildreiecken
ADC und BDC.
Man beweise, dass die Summe σ der Inkreisradien ρ, ρ1 und ρ2 gleich der Höhe hc ist!

ρρ1 ρ2

A B

C

Dc

a
b

hc

Wendet man die bekannte Dreiecksformel

tan γ2 = ρ

s− c
= 2ρ
a+ b+ c

mit

s = a+ b+ c

2
auf ein rechtwinkliges Dreieck an (γ = 90◦),
so ergibt sich wegen tan 45◦ = 1 der Satz:

Der Inkreisdurchmesser eines rechtwinkligen Dreiecks ist gleich der Summe der beiden Katheten ver-
mindert um die Hypotenuse. Daraus folgen für die rechtwinkligen Dreiecke ABC, CAD und BCD die
Gleichungen

2ρ = a+ b− c; 2ρ1 = q + hc − b; 2ρ2 = p+ hc − a

Durch Addition dieser Gleichungen ergibt sich wegen p+ q = c:

2(ρ+ ρ1 + ρ2) = 2hc → ρ+ ρ1 + ρ2 = hc
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Aufgabe 15/62
Es sei a

b <
c
d . Beweisen Sie, dass dann auch gilt (Voraussetzung: a, b, c, d > 0)

a

b
<
a+ c

b+ d
<
c

d

Die Ungleichung a
b <

c
d ist gleichbedeutend mit der Ungleichung ad < bc. Addiert man auf beiden Seiten

dieser Ungleichung die Größe ab, so folgt ab+ ad < ab+ be.
Damit gilt auch a(b+ d) < b(a+ c). Dividiert man beide Seiten durch b und durch (b+ d), so ergibt sich

a

b
<
a+ c

b+ d

und der erste Teil der Behauptung ist bewiesen. Addiert man auf beiden Seiten der Ungleichung ad < bc
dagegen die Größe cd, so folgt ad+cd < be+cd oder (a+c)d < (b+d)c. Daraus ergibt sich durch Division
mit (b+ d) und d die rechte Seite der Ungleichung und der zweite Teil der Behauptung ist bewiesen.

Aufgabe 16/62
Als ”magisches Quadrat” bezeichnet man eine quadratische Anordnung von Zahlen, bei der die Sum-
me aller in einer Zeile bzw. Spalte (oft auch Diagonalen) stehenden Zahlen konstant ist.
Manche magischen Quadrate sind zentralsymmetrisch, d.h., die Summe ie zweier zum Mittelpunkt
des Quadrats symmetrisch gelegener Zahlen ist konstant.
Man beweise, dass in diesem Fall zwei Zeilen bzw. Spalten, die zu einer Mittellinie des Quadrats
symmetrisch liegen, die gleiche Quadratsumme ergeben. Beispiel:

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

Es seien a1, a2, a3, ..., an und b1, b2, b3, ..., bn die beiden gewählten Zeilen (bzw. Spalten). Dann gilt

a1 + a2 + a3 + ...+ an = s = b1 + b2 + b3 + ...+ bn

Weiterhin ist a1 + bn = t; a2 + bn−1 = t; ...; an + b1 = t oder a1 = t− bn; a2 = t− bn−1; ...an = t− b1 (1).
Addiert man die Gleichungen, so ergibt sich s + s = n · t = 2s (2). Quadriert man die Gleichungen (1),
so folgt

a2
1 = (t− bn)2 = t2 − 2tbn + b2n; ...; a2

n = (t− b1)2 = t2 − 2tb1 + b21

und durch Addition erhält man daraus

a2
1 + a2

2 + ...+ a2
n = nt2 − 2t(b1 + b2 + ...+ bn) + b21 + ...+ b2n = t(nt− 2s) + b21 + ...+ b2n

Wegen (2) ist aber nt− 2s = 0 und damit ist die Behauptung bewiesen.

Lösung von Reinhard Neumann:

Symbolische Darstellung des magischen Quadrates:

a11 ; a12 ; ... a1i ; ... a1n
a21 ; a22 ; ... a2i ; ... a2n
...

...
...
...
...

...
...

ai1 ; ai2 ; ... aii ; ... ain
...

...
...
...
...

...
...

an1 ; an2 ; ... ani ; ... ann

Die Summe einer Zeile (bzw. Spalte) sei s =
n∑

m=1
aim.
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Die Summer zweier symmetrisch zum Mittelpunkt liegender Zahlen sei d: d = aim + a(n+1−i)(n+1−m). Es
gilt außerdem

nd =
∑
m

(aim + a(n+1−i)(n+1−m)) = 2s

also nd = 2s. Es ist zu beweisen, dass
n∑

m=1
a2
im =

n∑
m=1

a2
(n+1−i)(n+1−m)

ist. Beweis:
n∑

m=1
a2

(n+1−i)(n+1−m) =
n∑

m=1
(d− aim)2 =

n∑
m=1

(d2 − 2daim + a2
im)

=
n∑

m=1
d(d− 2aim) +

n∑
m=1

a2
im = d

[
n∑

m=1
d− 2

n∑
m=1

aim

]
+

n∑
m=1

a2
im

= d(nd− 2s) +
n∑

m=1
a2
im = d · 0 +

n∑
m=1

a2
im

Lösung von Gerhard Franz:

Zwei Spalten (Zeilen), die zur Mittellinie symmetrisch liegen, müssen nach Voraussetzung die folgende
Form haben:

x1 A− xn
x2 A− xn−1

...
...

xn−1 A− x2

xn A− x1

Die Quadratsumme der rechts stehenden Spalte ist
n∑

m=1
(A− xm)2 =

n∑
m=1

(A2 − 2Axm + x2
m) = n ·A2 − 2A

n∑
m=1

xm +
n∑

m=1
x2
m =

n∑
m=1

x2
m +R

Nun ist aber

R = n ·A2 − 2A
n∑

m=1
xm = n ·A2 − 2A

n∑
m=1

(A− xm) =

(wegen der Konstanz der Spaltensummen)

= n ·A2 − 2nA2 + 2A
n∑

m=1
xm = −n ·A2 + 2A

n∑
m=1

xm = −R

Aus R = −R folgt R = 0, d.h.
n∑

m=1
(A− xm)2 =

n∑
m=1

x2
m.

Aufgabe 17/62
Gegeben sind die voneinander verschiedenen Punkte A(−4; 5) und B(4; 5) sowie die Gerade g mit
der Gleichung y = 2x+ 15. Gesucht sind die Kreise K, die durch A und B gehen und g berühren.
Lösung a) analytisch, b) konstruktiv.

a) Analytisch: Es ist (x−c)2 +(y−d)2 = r2 die allgemeine Kreisgleichung, wenn M(C; d) der Mittelpunkt
und r der Radius des Kreises ist. Da A und B symmetrisch zur y-Achse liegen, liegt M auf der y-Achse;
mithin ist c = 0: x2 + (y − d)2 = r2 (1).
Die Koordinaten von A und B müssen die Kreisgleichung befriedigen, also gilt

42 + (5− d)2 = r2 oder d2 − 10d+ 41 = r2 (2)
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Nun sei C(x3; y3) der Berührungspunkt des Kreises mit der Geraden g; dann befriedigen seine Koordinaten
sowohl die Kreisgleichung (1) als auch die gegeben Geradengleichung y = 2x+ 15:

x2
3 + (y3 − d)2 = r2 (3) ; y3 = 2x3 + 15 (4)

Es sei nun y = mx + n die Gleichung des Berührungsradius. Da er senkrecht auf g steht, gilt m = − 1
2

(bekanntlich schneiden zwei Geraden mit den Anstiegen m1 und m2 einander genau dann unter einem
rechten Winkel, wenn m1 = − 1

m2
ist). Ferner müssen die Koordinaten von C und M die Gleichung des

Berührungsradius befriedigen. Damit folgt unmittelbar wegen M(0; d): d = n für x = 0 und y3 = − 1
2x3+d

(5).
Aus (4) und (5) folgt x3 = 2

5d− 6 (6) und y3 = 4
5d+ 3 (7).

Setzt man (6) in (7) ein, so erhält man 1
5d

2−6d+45 = r2. Im Verein mit (2) ergibt sich ein quadratisches
Gleichungssystem in zwei Unbekannten d und r2 mit den Lösungen

d = 2,5± 1,5
√

5; d1 = 5,85; d2 = −0,85 und r2
1 = 16,7; r2

2 = 50,2

Die Kreisgleichungen lauten also

x2 + (y − 5,85)2 = 16,7 und x2 + (y + 0,85)2 = 50,2
oder x2 + y2 − 11,7y = −17,5 und x2 + y2 + 1,7y = 49,7

A B

Mx

M

D

E

F

Kx

g
s

b) Konstruktiv:
1. Analysis (Abbildung): Ist D der
Berührungspunkt eines Kreises durch A und
B mit der Geraden g und E der Schnittpunkt von
g mit der Geraden durch A und B, so gilt nach
dem Sehnentangentensatz EA : ED = ED : EB
oder ED2 = EA · EB.

Ist Kx ein beliebiger Kreis durch A und B,
F der Berührungspunkt einer Tangente von E
aus an Kx, so gilt EA : EF = EF : EB oder
EF 2 = EA · EB. Es ist also ED = EF , und man
findet den Berührungspunkt, indem man einen
beliebigen Kreis durch A und B schlägt, von E
aus an ihn eine Tangente EF und EF von E aus
auf g abträgt. Der Kreismittelpunkt liegt dann 1.
auf der Mittelsenkrechten von AB und 2. auf der
Senkrechten auf g in D.

2. Konstruktionsbeschreibung:

1. Man errichtet auf AB die Mittelsenkrechte s und wählt auf ihre einen beliebigen Punkt Mx. Um
Mx schlägt man mit dem Radius r = AMx = BMx einen Kreis Kx.

2. Man verlängert AB bis zu Schnitt E mit der Geraden g. Über EMx schlägt man den Thaleskreis;
seine Schnittpunkte mit Kx seien F1 = F und F2.

3. Man schlägt um E einen Kreis mit dem Radius r = EF = EF2. Die Schnittpunkte dieses Kreises
mit g seien D = D1 und D2.

4. Man errichtet in D1 nud D2 auf g Senkrechte. Deren Schnittpunkte mit s seien M = M1 und M2.

5. Man schlägt um M1 und M2 mit M1D1 bzw. M2D2 als Radien zwei Kreise K1 bzw. K2. Es sind
die gesuchten Kreise.

3. Determination: Die Konstruktion nach 1. ist stets eindeutig ausführbar.
Bei der Konstruktion nach 2. sind folgende Fälle zu unterscheiden:

a) E liegt außerhalb von AB; dann ist die Konstruktion wie beschrieben ausführbar und man erhält
eindeutig die Strecke EF1 = EF2.
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b) E liegt auf A oder auf B. Dann ist A = E bzw. B = E und A = F1 = F2 bzw. B = F1 = F2, d.h., es
ist EF1 = EF2 = 0 und damit A = D1 = D2 bzw. B = D1 = D2. Es gibt genau einen Kreis.

c) E liegt zwischen A und B. Dann hat der Thaleskreis keinen Schnitt mit Kx und die Konstruktion ist
nicht ausführbar.

d) Es gibt kein E (AB und g liegen parallel). Dann berührt der Kreis K1 die Gerade g im Schnittpunkt
mit der Mittelsenkrechten s. Die Aufgabe hat nur eine Lösung, die aber durch die Konstruktionsbe-
schreibung nicht erfasst wird; im vorliegenden Fall trifft d nicht zu.

Bei der gestellten Aufgabe trifft Fall a zu.
Die Konstruktion nach 3. ist stets zweideutig für a) und eindeutig für b), dagegen für c) und d) nicht
ausführbar. Die Konstruktion nach 4. und 5. sind dann jeweils eindeutig und stets ausführbar. Damit
ergeben sich folgende Möglichkeiten:

1. A und B liegen in verschiedenen der durch g begrenzten Halbebenen oder beide auf g: keine Lösung.

2. A und B liegen nicht in verschiedenen der Halbebenen oder nicht beide auf g:
a) A und B haben von g die gleiche Entfernung: eine Lösung.
b) A und B haben von g nicht die gleiche Entfernung:
b1) Eine der beiden Punkte A und B liegt auf g: eine Lösung
b2) Keiner der beiden Punkte A und B liegt auf g: zwei Lösungen

Der letzte Fall trifft bei der gestellten Aufgabe zu.

Aufgabe 18/62
Bei zentrisch-zylindrischer Durchbohrung einer Kugel verbleibt ein ringförmiger Restkörper R. Es
soll nachgewiesen werden, dass der Rauminhalt VR dieses Restkörpers gleich dem Rauminhalt VK
einer Kugel mit dem Durchmesser l ist, wenn l die Länge der zylindrischen Bohrung ist (Abbildung).

ρ

r

h

l

Restkörper R
Kugel mit Durchmesser l

ρ

r

h

l

Restkörper R
Kugel mit Durchmesser l

Es sei r der Radius der durchbohrten Kugel, ρ der Radius und
l die Länge der zylindrischen Bohrung, ferner sei h die Höhe
der Kugelkappen, die durch die Bohrung erfasst werden.
Vom Volumen VK = 4

3πr
3 der Kugel sind abzuziehen a) das

Volumen VZ = πρ2l des Zylinders und b) zweimal das Volumen
Va = π

3h
2(3r−h) des Kugelabschnitts (Abbildung). Es gilt also

VR = VK − VZ − 2Va = 4
3πr

3 − πρ2l − 2π
3 (3r − h) = π

6 [8r3 − 6ρ2l − 4h2(3r − h)]
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Nun ist aber nach dem Lehrsatz des Pythagoras ρ2 = r2 − l2

4 , ferner ist 2h = 2r − l, also h = 2r−l
2 ,

h2 = r2 − rl + l2

4 . Damit ergibt sich

VR = π

6

[
8r3 − 6(r2 − l2

4 )l − (4r2− 4rl + l2)4r + l

2

]
= π

6 l
3

Es ist aber VK = π
6 l

3.

Aufgabe 19/62
Elli und Gerda erhalten das gleiche Monatsgehalt. ”Als ich noch mein Anfängergehalt bekam, wurden
mir einmal 13 Geldscheine ausgezahlt, und zwar doppelt soviel 50-DM-Scheine wie 1-DM-Scheine,
dazu noch einige 10-DM-Scheine; heute kann ich dasselbe sagen”, erklärt Elli.
Da erwidert Gerda: ”Ich bekam 5 mal soviel 20-DM-Scheine wie 1-DM-Scheine, dazu noch 5-DM-
Scheine, im ganzen doppelt so viele wie du. Wenn ich erst über 400 DM verdienen werde, spare ich
doppelt soviel wie jetzt.”
Wieviel Gehalt wurde jeder gezahlt, und wieviel Scheine jeder Sorte erhielten sie?

Wir bezeichnen die unbekannten Anzahlen folgendermaßen: x Anzahl der Fünfzig-DM-Scheine, y Anzahl
der Zwanzig-DM-Scheine, z Anzahl der Zehn-DM-Scheine, u Anzahl der Fünf-DM-Scheine, v Anzahl der
Eine-DM-Scheine.
Dann gelten auf Grund der Angaben von Elli und Gerda folgende Gleichungen:

x+ z + v = 13(1), x− 2v = 0(2), y + u+ v = 26(3), y − 5v = 0(4)

Es handelt sich um ein Gleichungssystem von vier Gleichungen mit fünf Unbekannten; da die Lösungen
Anzahlen darstellen, kommen für sie nur positive ganze Zahlen in Frage (diophantisches Problem). Aus
der Gleichung (4) erkennt man, dass y durch 5 teilbar ist. Damit kommen vier Lösungen in Betracht:

y = 5 mit v = 1, u = 20, x = 2, z = 10 (1.)
y = 10 mit v = 2, u = 14, x = 4, z = 7 (2.)
y = 15 mit v = 3, u = 8, x = 6, z = 4 (3.)
y = 20 mit v = 4, u = 2, x = 8, z = 1 (4.)

Werte y ≥ 25 kommen nicht in Frage, da sonst andere der gesuchten Werte negativ werden. Damit
ergeben sich zunächst folgende vier Möglichkeiten:

Elli Gerda
1. 2 · 50,00 DM = 100,00 DM 5 · 20,00 DM = 100,00 DM

10 · 10,00 DM = 100,00 DM 20 · 5,00 DM = 100,00 DM
1 · 1,00 DM = 1,00 DM 1 · 1,00 DM = 1,00 DM

Summe 201,00 DM Summe 201,00 DM
2. 4 · 50,00 DM = 200,00 DM 10 · 20,00 DM = 200,00 DM

7 · 10,00 DM = 70,00 DM 14 · 5,00 DM = 70,00 DM
2 · 1,00 DM = 2,00 DM 2 · 1,00 DM = 2,00 DM

Summe 272,00 DM Summe 272,00 DM
3. 6 · 50,00 DM = 300,00 DM 15 · 20,00 DM = 300,00 DM

4 · 10,00 DM = 40,00 DM 8 · 5,00 DM = 40,00 DM
3 · 1,00 DM = 3,00 DM 3 · 1,00 DM = 3,00 DM

Summe 343,00 DM Summe 343,00 DM
4. 8 · 50,00 DM = 400,00 DM 20 · 20,00 DM = 400,00 DM

1 · 10,00 DM = 10,00 DM 2 · 5,00 DM = 10,00 DM
4 · 1,00 DM = 4,00 DM 4 · 1,00 DM = 4,00 DM

Summe 414,00 DM Summe 414,00 DM
Aus den weiteren Angaben von Gerda und Elli lässt sich nun folgendes schließen:
a) Mindestens die Lösung 1 scheidet aus, da Elli als Anfängerin (bei niedrigerem Gehalt als heute!) eine
gleiche Verteilung der Scheine erhielt.
b) Die Lösung 4 scheidet aus, da Gerda nicht über 400,00 DM verdient.
c) Es verbleiben daher die Lösungen 2 und 3 als Möglichkeiten. Mit einer gewissen Wahrscheinlichkeit
kann man aus Gerdas Bemerkung vermuten, dass sie bereits über 300,00 DM verdient (Lösung 3); jedoch
ist dieser Schluss nicht zwingend. Die Aufgabe ist also nicht eindeutig lösbar.
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Aufgabe 20/62
Gegeben sind a und b mit a > b. Es ist ab

a−b zu konstruieren.

Das Produkt ab kann man als den Flächeninhalt F eines Rechtecks ABCD mit den Seiten a und b
auffassen. Bezeichnet man die gesuchte Größe mit x, so gilt ab

a−b = x oder x(a− b) = ab.
Damit ergibt sich x als Seite eines Rechtecks A′B′C ′D′ mit dem Flächeninhalt F und den Seiten x und a−
b. Das Problem stellt also konstruktiv eine Flächenverwandlung dar: Es ist das Rechteck ABCD mit den
Seiten a und b in ein flächengleiches Rechteck A′B′C ′D′ mit den Seiten x und a− b zu verwandeln. Dazu
bieten sich mehrere Konstruktionsmöglichkeiten an. Als einfachste erscheint die folgende (Abbildung):

F A B

B′ A′ E

C′ C
D

a

b

a− b

1. Man konstruiert das Rechteck ABCD mit AB = a und
BC = b.
2. Man verlängert BC über C hinaus um a− b bis E.
3. Man bringt die Geraden durch A und B sowie durch E
und D zum Schnitt; dieser sei F .
4. Man errichtet in F auf AF und in E auf CE die
Senkrechten; deren Schnitt sei B′.
5. Man verlängert AD bis zum Schnitt A′ mit EB′ und
CD bis zum Schnitt C ′ mit FB′.
Das Rechteck A′B′C ′D′ ist das gesuchte.

Es ist zu beweisen: 1. ABCD = A′B′C ′D′, 2. A′D = a− b oder C ′D = a− b.
1. M BEF ∼=M B′FE wegen EF = EF,]BFE = ]BE′F,]BEF = ]B′FE (beide sind Wechselwinkel
an geschnittenen Parallelen.)
M AFD ∼=M C ′DF wegen DF = DF,]AFB = ]C ′DF,]ADF = ]C ′FD (beide sind Wechselwinkel an
geschnittenen Parallelen.)
M CDE ∼=M A′ED wegen DE = DE,]CDE = ]A′ED,]CED = ]A′DE (beide sind Wechselwinkel
an geschnittenen Parallelen.)
Daraus folgt:

�ABCD =M BEF− M AFD− M CDE =M B′FE− M C ′DF− M A′ED = �A′B′C ′D′

2. A′D‖EC,A′E‖DC, daraus folgt A′D = EC = a− b (nach Konstruktion).

Lösung von Klaus Müller:

Konstruktionsbeschreibung:
Die Strecke AB = b wird über B hinaus um a verlängert bis zum Punkt C. Auf AC wird in B die
Senkrechte errichtet, die den Thaleskreis über AC in D schneidet. Auf BC = a wird von C aus die
Strecke b = CE abgetragen.
Die Mittelsenkrechte auf DE schneidet die Gerade durch A und C in F . Der Kreisbogen um F mit dem
Radius EF schneidet die Gerade durch A und C in G. Die Strecke GB ist die gesuchte.

Beweis: ab = DB2 (Höhensatz), GB · BE = DB2 (Höhensatz). BE = a − b (nach Konstruktion), also
GB · (a− b) = ab, und somit

GB = ab

a− b
2. Lösung von Klaus Müller:

Konstruktionsbeschreibung:
Man zeichne unter beliebigem Winkel zwei von einem Punkt S ausgehende Strahlen und trage auf dem
einen von ihnen die Strecke SA = a, auf dem anderen die Strecke SB = a ab.
Auf AS trage man von A aus die Strecke AC = b ab. Die Parallele zu CB durch A schneidet den Strahl
SB in D. Die Strecke BD ist die gesuchte.

Beweis: Nach dem ersten Strahlensatz gilt BD : AC = BS : CS, d.h.

BD = BS ·AC
CS

= ab

a− b

Lösung von Hans-Jürgen Weiß:
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Die Aufgabe ist gelöst, wenn es gelingt, aus einem Rechteck mit den Seiten a und b ein flächengleiches
Parallelogramm mit der Höhe a− b zu konstruieren.

In dem Rechteck ABCD sei AB = a, BC = b (a > b). Man schlage mit b als Radius einen Kreisbogen
um B, der AB in E schneidet. Nach Konstruktion ist AE = a− b.
Nun schlage man über AB den Thaleskreis und um A mit AE als Radius einen Kreisbogen, der den
Thaleskreis in F schneidet. Es ist AF = a − b nach Konstruktion und AF ⊥ FB. Die Gerade durch B
und F schneidet die Gerade durch C und D in C ′, die Parallele durch A zu BC ′ die Gerade durch C und
D in D′.
Das Parallelogramm ABC ′D′ hat mit dem Rechteck die Seite AB und die Höhe BC = AD gemeinsam,
beide sind also flächengleich. Ferner hat das Parallelogramm ABC ′D′ andererseits die Höhe AF = a− b
auf der Seite BC ′.
Demnach ist BC ′ = AD′ = ab

a−b die gesuchte Strecke.

Aufgabe 21/62

1

1

2

2

3

3

4

4

Bei einem schlüssellosen Vorhängeschloss wird der Riegelteil mit vier einseitig gelegenen, gleichen
und gleichabständigen Zähnen in eine Hülse mit vier gleichen, unabhängig voneinander um die Rie-
gelachse drehbaren Ringen eingeführt (Abbildung). Das ist aber nur bei einer bestimmten Stellung
der Ringe möglich, ebenso das Öffnen des Schlosses.
Auf den Ringen sind je sechs Buchstaben eingeprägt; vier davon (je Ring einer) geben bei der
Öffnungsstellung das dem Besitzer bekannte Schlüsselwort.

a) Wieviel verschiedene Schlüsselwörter sind bei dieser Konstruktion an jedem Schloss möglich? Als
”Schlüsselwort” gilt jede (auch sinnlose) Zusammenstellung von vier Buchstaben.

b) Es ist die Sicherheit dieses Schlosses mit der eines nach demselben Prinzip gebauten zu vergleichen,
das aber sechs Ringe mit je vier Buchstaben aufweist.

c) Wieviel verschiedene Ringe mit je sechs verschiedenen aus den 26 Buchstaben des Alphabets kann
der Herstellerbetrieb anfertigen?
Dabei gelten Ringe dann als gleich, wenn sie - ohne Rücksicht auf die Reihenfolge - nur gleiche Buch-
staben aufweisen und der Einschnitt unter demselben Buchstaben ist.

d) Wieviel Schlösser mit verschiedenen Schlüsselwörtern kann man aus diesen Ringen herstellen?

a) Man kann zunächst den ersten Ring in sechs verschiedene Stellungen bringen. Dann sind bei jeder
dieser Stellungen sechs Stellungen des zweiten Ringes möglich. Also ergeben sich für die Stellungen der
ersten beiden Ringe bereits 36 verschiedene Möglichkeiten.
Bei jeder davon kann man wieder auf sechs verschiedene Weisen den dritten Ring einstellen, so dass sich
damit 216 Stellungen ergeben.
Schließlich multipliziert sich diese Zahl wieder mit sechs, wenn man nun noch den letzten Ring einstellt,
so dass sich insgesamt 1296 verschiedene Einstellmöglichkeiten ergeben.
Allgemein kann man zeigen, dass sich bei n Ringen mit je m Zahlen mn verschiedene Schlüsselwörter
bilden lassen.

b) Aus der Lösung von a) ergibt sich sofort:
1. Schloss mit vier Ringen zu je sechs Buchstaben enthält 1296 Schlüsselwörter,
2. Schloss mit sechs Ringen zu je vier Buchstaben enthält 4096 Schlüsselwörter.
Die Sicherheit des zweiten Schlosses verhält sich also zu der des ersten wie 4096 : 1296 ≈ 3 : 1, d.h., das
zweite Schloss ist etwa dreimal so sicher wie das erste.

c) Es ist festzustellen, wieviel Möglichkeiten es gibt, aus n (in unserem Fall n = 26) verschiedenen Ele-
menten k (in unserem Fall k = 6) verschiedene auszuwählen.
Zunächst kann man aus den 26 Buchstaben auf 26 verschiedene Weisen einen Buchstaben auswählen.
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Bei jeder dieser 26 Möglichkeiten gibt es jetzt 25 Möglichkeiten zur Wahl eines zweiten Buchstaben, im
ganzen also 26 · 25.
Dabei überlegt man sich aber leicht, dass nun jede Buchstabenzusammenstellung doppelt vorkommt:
einmal wurde z.B. zu c der Buchstabe d gewählt und einmal zu d der Buchstabe c. Demnach muss man
das Produkt 26 · 25 noch durch zwei teilen, um die Anzahl der verschiedenen Möglichkeiten zu erhalten.
Bei jeder dieser Möglichkeiten hat man wiederum 24 neue Auswahlmöglichkeiten für den dritten Buchsta-
ben, wobei sich aber wieder jede Buchstabenkombination mehrfach ergibt: Einmal wird z.B. zu (ab) der
Buchstabe c, ein andermal zu (bc) der Buchstabe a und zum dritten zu (ac) der Buchstabe b hinzugefügt.
Andere Zusammenstellungen der drei Elemente a, b und c gibt es nicht. Also ist die Anzahl der 26 ·25 ·24
Kombinationen nunmehr auf 26·25·24

1·2·3 = 2600 angewachsen.
Man erkennt, wie die Entwicklung weitergeht:
Allgemein gilt für die Anzahl der Kombinationen von k Elementen aus n Elementen

x = n · (n− 1) · (n− 2) · ... · (n− k + 1)
1 · 2 · 3 · ... · k

in unserem Fall also x = 230230.
Da aber jeder der Ringe den Einschnitt unter jedem Buchstaben haben kann, muss diese Anzahl noch
mit sechs multipliziert werden: 230230 · 6 = 1381380. Es gibt also 1381380 verschiedene Ringe.

d) Da jeder der 26 Buchstaben auf jedem der vier Ringe eines Schlosses auftreten kann, läuft die Aufgabe
darauf hinaus, festzustellen, wieviel verschiedene Zusammenstellungen von 4 aus 26 Buchstaben es gibt,
wenn es dabei wohl auf die Reihenfolge ankommt, aber jeder Buchstabe sich bis zu viermal wiederholen
kann.
Zunächst kann man 26 Buchstaben auswählen; bei jeder dieser 26 Möglichkeiten kann man wieder auf
26 verschiedene Weisen einen zweiten Buchstaben wählen, so dass man damit schon 26 · 26 = 262

Möglichkeiten hat.
Man überlegt sich nun weiter, dass bei der Wahl des dritten Buchstabens sich diese Zahl wieder mit 26
multipliziert: 263. Bei der Wahl des vierten ergeben sich dann 264 = 456976 verschiedene Möglichkeiten.
Offensichtlich gilt allgemein dieselbe Formel wie bei a).

Aufgabe 22/62
Gesucht sind die Ellipse und die Hyperbel mit den folgenden Eigenschaften:

1. Die lineare Exzentrizität ist e = 20.

2. Die senkrecht aufeinanderstehenden Brennstrahlen l1 und l2 stehen zueinander im Verhältnis
l1 : l2 = 4 : 3.

Es sind a) die Längen der Brennstrahlen l1 und l2 zu bestimmen und b) die Gleichungen der Kegel-
schnitte aufzustellen.

a) Es seien P1 und P2 die Brennpunkte der beiden Kegelschnitte (wegen der Gleichheit der linearen
Exzentrizität fallen bei Übereinstimmung der Achsen auch die Brennpunkte zusammen) und P8 einer
der Punkte, in denen die Brennstrahlen senkrecht aufeinanderstehen. Die Punkte P1, P2 und P8 bilden
ein rechtwinkliges Dreieck, P8 liegt daher auf dem Thaleskreis über P1P2. Man erkennt sofort, dass es
(bis auf Symmetrie an den Kegelschnittachsen) genau einen Punkt P8 gibt, d.h., Ellipse und Hyperbel
schneiden einander in P8. Es gelten nun die folgenden Gleichungen:

l1 : l2 = 4 : 3 (1) und P1P
2
2 = 4e2 = l21 + l22 (2)

Durch Einsetzen von (1) in (2) folgt 4e2 = 25
16 l1 und 4e2 = 25

9 l2. Mit e = 20 ergibt sich daraus l1 = 32
und l2 = 24.

b) Die Ellipsengleichung kann man in der folgenden Form schreiben: x2b2 + y2a2 = a2b2 (4). Wir er-
setzen b2 durch die Relation b2 = a2 − e2 und erhalten damit

x2(a2 − e2) + y2a2 = a2(a2 − e2) (4a)

Um a zu ermitteln, errechnen wir die Koordinaten von P8 und setzen diese nebst e = 20 in (4a) ein. Durch
y8 zerlegen wir das Dreieck P1P2P8 in zwei rechtwinklige Teildreiecke. Dann gilt nach dem Lehrsatz des
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Pythagoras l21 = y2
8 + (e+ x8)2 (5a) und l22 = y2

8 + (e− x8)2 (5b).
Durch Subtraktion einer dieser beiden Gleichungen von der anderen und Auflösung nach x2 folgt daraus
xs = 5,6 und damit ys = ±1,2. Setzt man diese Werte in (4a) ein, so ergibt sich nach Auflösung der
entstehenden biquadratischen Gleichung

a4− 800a2 + 12544 = 0→ a2
1 = 784; a1 = 28 und a2

2 = 16; a2 = 4

Aus b2 = a2 − e2 folgt weiter b21 = 384, also b1 ≈ 19,6 und b22 = −384, also b2 ≈ 19,6i. Offenbar scheiden
a2 und b2 als (im Reellen) unbrauchbar aus, so daß die Gleichung der Ellipse lautet

384x2 + 784y2 = 301056→ x2

784 + y2

384 = 1

Analog erhält man aus der Hyperbelgleichung x2b2−y2a2 = a2b2 mit b2 = e2−a2 die Werte a1 = 28, a2 =
4 sowie b1 ≈ 19,6i, b2 ≈ 19,6. Man erkennt, dass in diesem Fall die Werte a1 und b1 als unbrauchbar
ausgeschieden werden müssen. Die Hyperbelgleichung nimmt damit die Form an

384x2 − 16y2 = 6144→ x2

16 −
y2

384 = 1

Aufgabe 23/62
Eine Gesellschaft von 12 Personen wollte nach einem 20 km entfernten Ort gelangen. Ihr stand jedoch
nur eine Taxe zur Verfügung, die außer dem Fahrer drei Personen befördern kann. Man arbeitete
einen ”Transportplan” aus, der garantierte, dass bei gleichzeitigem Aufbruch aller Personen auch alle
gleichzeitig am Ziel anlangten. Dabei wurde eine Durchschnittsgeschwindigkeit der Taxe von 65 km

h

und der Fußgänger von 5 km
h vorausgesetzt.

Wie sah der Transportplan aus?

Wenn alle Personen die Strecke in der gleichen Zeit zurücklegen sollen, müssen sie die gleiche Durch-
schnittsgeschwindigkeit haben. Das wird dadurch erreicht, dass jeder von ihnen gleich weit zu Fuß geht
und gleich weit fährt. Demnach muss die Taxe, um jede Person ein Stück des Weges zu befördern, vier
Mal in Richtung des Ziels und dreimal zurückfahren.
Es sei x die Strecke, die jede Person in der Taxe zurücklegt, und y die Rückfahrstrecke. Dann gilt
4x− 3y = 20. (1)
Während der Zeit, in der die Taxe einmal hin- und zurückfährt, legt ein Fußgänger die Strecke x − y
zurück. In der gleichen Zeit zurückgelegte Wege verhalten sich aber wie die Geschwindigkeiten. Also gilt
x+y
x−y = 65

5 = 13
1 = 13. (2)

Man hat damit ein Gleichungssystem mit zwei Unbekannten gefunden; die Lösungen sind x = 14 und
y = 12. Das heißt, dass die Taxe 14 km in Richtung des Ziels fährt und 12 km zurück. Zu Fuß sind also
6 km zu gehen. Man rechnet ferner leicht aus, dass die Gesellschaft etwa 1 h 25 min benötigt, um an das
Ziel zu gelangen.

Aufgabe 24/62
Die Zahlenfolgen (sn) = 1

1 ; 1
2 ; 1

3 ; 1
4 ; 1

5 ; ... und (tn) = 0
1 ; 1

2 ; 2
3 ; 3

4 ; 4
5 ; ... haben die Bildungsgesetze sn = 1

n
und tn = n−1

n .
Welches Bildungsgesetz hat die aus beiden zusammengesetzte Folge

(un) = 1
1 ; 0

1 ; 1
2 ; 1

2 ; 1
3 ; 2

3 ; 1
4 ; 3

4 ; 1
5 ; 4

5 ; 1
6 ; 5

6 ; ...

Anmerkung: Oft wird angegeben: Es ist u2n = tn und u2n−1 = sn. Das ist nicht die gewünschte
Lösung. Gesucht wird vielmehr ein einheitliches Bildungsgesetz un, das für n = 1; 2; 3; ... die Glieder
der zusammengesetzten Folge ergibt.

Die Nennerfolge (Nn) = 1; 1; 2; 2; 3; 3; 4; 4; ... geht aus der natürlichen Zahlenfolge (n) = 1; 2; 3; 4; 5; 6; 7; 8; ...
hervor, wenn man zu dieser die Folge (an) = 1; 0; 1; 0; ... gliedweise addiert und die Glieder der Summen-
folge halbiert:

(Nn) =
(

1
2 [n+ an]

)
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Wie lautet aber das allgemeine Glied der Folge (an)? Eine Folge, deren Glieder nur zwei Werte annehmen
können, ist die Folge

(bn) = ([−1]n−1) = +1;−1; +1;−1; +1; ...

zu ihr braucht man nur die Folge (cn) = 1; 1; 1; ... = (1) gliedweise zu addieren und die Summenfolge
gliedweise zu halbieren. Es folgt dann

(an) =
(

1
2 [bn + cn]

)
=
(

1
2([−1]n−1 + 1)

)
Damit wird das gesuchte allgemeine Glied der Nennerfolge

(Nn) =
(

1
2 [n+ 1

2([−1]n−1 + 1)]
)

In der Zählerfolge (Zn) ist Zn = 1, wenn n ungerade ist. Subtrahiert man 1 von jedem Glied dieser Folge,
so geht sie in die Folge (Zn|1) = 0;−1; 0; 0; 0; 1; 0; 2; 0; 3; ... über. Wir fassen nun die Glieder dieser Folge
als Produkte aus den Gliedern einer noch zu bestimmenden Folge (cn) und den entsprechenden Gliedern
der Folge (bn) = 0; 1; 0; 1; 0; 1; ... auf; für (bn) gilt offenbar bn = 1

2 [1 + (−1)n]. Dann ist (Zn− 1) = (cnbn).
Von der Folge (cn) interessieren nur die Glieder mit geradem Index, da die übrigen Glieder durch die
Multiplikation annulliert werden, falls sie endlich sind (was wir von den Gliedern der Folge (cn) fordern
müssen). Wegen bn = 1 für gerades n muss für n = 2; 4; 6; 8; 10; ... gelten Cn = −1; 0; 1; 2; 3; 4; ....
Addiert man zu cn jeweils 2, so erhält man n

2 ; es ist also cn = n
2 − 2.

Man erkennt, dass cn auch für ungerades n endlich bleibt. Damit wird

(Zn − 1) =
([n

2 − 2
]
· 1

2 [1 + (−1)n]
)

= (1 + 1
4[n− 4][1 + (−1)n])

Aus Zn und Nn erhält man schließlich

un = n+ (n− 4)(−1)n

2n+ 1 + (−1)n−1

Lösung von Hans-Joachim Pollack:

Methodisch ist es am zweckmäßigsten, die Bildungsgesetze der Zählerfolge und der Nennerfolge von (un)
gesondert aufzustellen. Es werde mit der Nennerfolge begonnen:

(an) = 1; 1; 2; 2; 3; 3; 4; 4; ...

Die geradzahligen Glieder folgen dem Bildungsgesetz (cn) = n
2 . Da die vorangehenden ungeradzahligen

Glieder wertmäßig den folgenden geradzahligen Gliedern gleichen, muss eine Funktion von n gefunden
werden, deren Betrag, zu n

2 , addiert, den folgenden Bedingungen genügt:
Ist n gerade, so ist der Funktionswert gleich Null; ist n ungerade, so ist der Funktionswert gleich + 1

2 .
Auf Grund dieses periodischen Verhaltens liegt es nahe, sich beim Aufbau der Funktion einer trigonome-
trischen Funktion zu bedienen. Nun ist

(dn) =
(

sin nπ2

)
= +1; 0;−1; 0; +1; 0;−1; 0; ...

(d2
n) =

(
sin2 nπ

2

)
= +1; 0; +1; 0; +1; 0; +1; 0; ...(

1
2d

2
n

)
=
(

1
2 sin2 nπ

2

)
= +1

2; 0; +1
2 ; 0; +1

2 ; 0; +1
2 ; 0; ...

Damit ist
(an) =

(
cn + 1

2d
2
n

)
=
(
n

2 + 1
2 sin2 nπ

2

)
Die Zählerfolge lautet (bn) = 1; 0; 1; 1; 1; 2; 1; 3; 1; 4; ....
Die ungeradzahligen Glieder sind alle gleich 1, die geradzahligen durchlaufen — die Zahl Null mit einge-
schlossen — die Folge der natürlichen Zahlen. Es muss also eine Funktion von n gefunden werden, deren
Betrag, zu 1 addiert, den folgenden Bedingungen genügt:

Ist n geradzahlig, so ist der Funktionswert in der Weise von n linear abhängig, dass er die Folge der
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ganzen Zahlen — bei der Zahl −1 beginnend — durchläuft, ist n ungeradzahlig, so ist der Funktionswert
gleich Null. Nun ist

(en) =
(

cos nπ2

)
= 0;−1; 0; +1; 0;−1; 0; +1; 0; ...

(e2
n) =

(
cos2 nπ

2

)
= 0; +1; 0; +1; 0; +1; 0; +1; 0; ...(

1
2(n− 4)e2

n

)
=
(

1
2(n− 4) cos2 nπ

2

)
= 0;−1; 0; 0; 0; 1; 0; 2; 0; 3; 0; ...

und damit
(bn) =

(
1 + 1

2(n− 4) cos2 nπ

2

)
Das Bildungsgesetz der zusammengesetzten Folge lautet mithin

(un) = bn
an

=
(1 + 1

2 (n− 4) cos2 nπ
2

n
2 + 1

2 sin2 nπ
2

)
Anmerkung: Die Periodizität der Funktionen sin x und cosx, aber auch das periodische Verhalten der
Funktion in ermöglichen ein abgewandeltes Bildungsgesetz

(un) =
(1 + 0,5(n− 4)in cos nπ2

n
2 + 0,5in−1 sin nπ

2

)
Lösung von Hans-Joachim Pollack:

Aus der letzten Gleichung lässt sich mit Hilfe der Eulerschen Identität eix = cosx + i sin x eine weitere
Lösung entwickeln. Aus der Eulerschen Identität folgt

cosx = eix + e−ix

2 , sin x = eix − e−ix

2 , i = e
π
2 i

Durch Einsetzen in die entsprechenden Ausdrücke des allgemeinen Gliedes un ergibt sich:

cos nπ2 = e
1
2 inπ + e−

1
2 inπ

2 , sin nπ2 = e
1
2 inπ − e− 1

2 inπ

2 , in = e
1
2 inπ, in−1 = 1

i
e

1
2 inπ

und weiter

in cos nπ2 = 1
2(einπ + 1) ; in−1 sin nπ2 = −1

2(einπ − 1)

un = 4 + (n− 4)(einπ + 1)
2n− (einπ − 1)

Lösung von Jürgen Berndt:

In der Folge (un) bilden die sn das 1., 3.’ 5., ... Glied, die tn das 2.’ 4.’ 6., ... Glied. Demzufolge ergibt
sich für (un) unter Einführung der mod-Funktion:

(un) = 2
n+ 1(n mod 2) + n− 2

n
[(n− 1) mod 2]

(dabei bedeutet n mod a den Rest, den n beim Teilen durch a lässt)

Lösung von F. Götze:

Wir führen die Funktion ”größtes Ganzes einer reellen Zahl” ein und drücken dies durch eine eckige
Klammer aus; zum Beispiel ist

[ 5
2
]

= 2,
[ 11

3
]

= 3, [1,9999] = 1.
Mit dieser Symbolik ergibt sich für den Nenner der Folge (un) die Darstellung[

n+ 1
2

]
, n = 1, 2, 3, ...

Berücksichtigt man noch, dass für die geraden n jedes einzelne Glied der Folge (un) einen um 1 kleineren
Zähler hat als der Nenner und dass für ungerade n der Zähler stets den Wert 1 besitzt, so lässt sich das
Bildungsgesetz wie folgt angeben:

un =
1+(−1)n

2
([
n+1

2
]
− 1
)

+ 1−(−1)n
2[

n+1
2
] = 1 + (−1)n

2 − (−1)n[
n+1

2
]
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Aufgabe 25/62
Ein Lehrling soll in einer Kugellagerfabrik 1000 Kugeln mit einem Durchmesser von 1 cm abzählen.
Um diese Arbeit zu beschleunigen, nimmt er ein Gefäß mit den Innenmaßen 10 cm x 10 c m x 10
cm; er legt die erste Schicht sauber ein und füllt dann weiter auf.
Zum Schluss stellt er fest, dass entgegen seinen Erwartungen der Innenraum des Gefäßes nicht völlig
gefüllt wird. Er zählt deshalb die Kugeln ab. Überraschenderweise sind es mehr als tausend.
Wie viele waren es, und wieviel Zentimeter fehlten von der obersten Kugelschicht bis zum Rand des
Gefäßes?

Die 2., 4., 6., ... Kugelschicht besteht nur aus je 81 Kugeln, da
sich jede Kugel dieser Schicht in die Vertiefung zwischen je-
weils 4 Kugeln der vorhergehenden Schicht legt. Die 1., 3..5., ...
Schicht besteht dagegen — entsprechend den Innenmaßen des
Gefässes — aus 100 Kugeln.
Den Abstand zweier benachbarter Ebenen durch die Kugel-
mittelpunkte erhält man durch eine an Hand der Abbildung
durchgeführte Überlegung zu 1

2
√

2 cm. Damit haben n Schich-
ten die Gesamtdicke (1 + n−1

2
√

2) cm.
Es ist nun die größte (natürliche) Zahl n zu finden, für die gilt(

1 + n− 1
2
√

2
)
≤ 10

oder, was dasselbe besagt, n ≤ 9
√

2 + 1 ≈ 13,73.
Das heißt also, es sind 13 Schichten im Gefäß, 7 zu je 100 und
6 zu je 81 Kugeln, insgesamt demnach 1186.

Die Gesamthöhe dieser 13 Schichten ist
(
1 + 12

2
√

2
)

= (1+6
√

2) ≈ 9,48 cm. Von der obersten Kugelschicht
bis zum Rand des Gefäßes fehlen also noch ungefähr 0,52 cm.

Aufgabe 26/62

P1 P2 P3 P4

A

α1 α2 α3

Die Länge der nicht zugänglichen Strecke P2P3 (Abbil-
dung) soll ermittelt werden. Messbar sind auf Grund der
Geländeverhältnisse die Strecken P1P2 und P3P4 (wobei P1 und
P4 auf den Verlängerungen von P2P3 liegen) und die Winkel α1,
α2 und α3.

Wir setzen P1P2 = s1 und P3P4 = s2. Nach dem Sinussatz gilt
(vgl. Abbildung)

a) im Dreieck P1P3A: x+s1
P1A

= sinα1+α2
sin β (1)

b) im Dreieck P1P2A: P1A
s1

= sin β
sinα1

(2)

c) im Dreieck P2P4A: x+s2
P4A

= sinα2+α3
sin γ (3)

d) im Dreieck P3P4A: P4A
s2

= sin γ
sinα2

(4)
P1 P2 P3 P4

A

α1

α2
α3

s1 x s2

β γ

Damit hat man 4 Bestimmungsgleichungen mit 5 Unbekannten x, P1A,P4A, sin β, sin γ. Da die Winkel
β und γ durch die Winkelsummenbeziehung im Dreieck miteinander verbunden sind, ist zu erwarten,
dass bei geeigneten Substitutionen die trigonometrischen Funktionen dieser Winkel gleichzeitig aus der
Rechnung herausfallen und damit das System eindeutig lösbar ist.
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Aus (2) ermittelt man
P1A = sin β

sinα1
s1

dies in (1) eingesetzt, ergibt

x+ s1 = s1
sin β sin (α1 + α2)

sinα1 sin γ (1a)

Analog ergibt sich aus (4) und aus (3)

P3A = sin γ
sinα3

s2 ; x+ s2 = s2
sin γ sin (α2 + α3)

sinα3 sin β (2a)

Löst man (2a) nach sin γ auf und substituiert man den dafür gefundenen Wert in (1a), so folgt nach
Umrechnung

(x+ s1)(x+ s2) = s1s2
sin (α1 + α2) sin (α2 + α3)

sinα1 sinα3
= A

Man erkennt, dass mit sin γ zugleich auch sin β eliminiert worden ist. Nach Auflösung dieser quadratischen
Gleichung erhält man

x1;2 = −s1 + s2

2 ± 1
2
√

(s1 − s2)2 + 4A

Da der negative Wurzelwert für die Aufgabenstellung bedeutungslos ist, ergibt sich

x = −s1 + s2

2 + 1
2
√

(s1 − s2)2 + 4A

Damit ist die Aufgabe gelöst.
Ergänzung: Setzt man tanϕ = 2

√
A

(s1−s2) , so kann nach Umrechnung das Ergebnis vereinfacht werden:

x = −s1 + s2

2 + s1 − s2

cosϕ

Aufgabe 27/62
Ein Quadrat ist in 3 · 3 = 9 quadratische Felder geteilt. In diese 9 Felder sind 9 verschiedene Zahlen
aus der Folge 1, 2, 3, ..., 30 so einzutragen, dass das Produkt aus den drei Zahlen einer jeden Zeile und
einer jeden Spalte stets gleich 270 ist.

Es wird zunächst untersucht, welche von den Zahlen 1, 2, ..., 30 für die Lösung in Frage kommen. Zu
diesem Zweck wird das Produkt 270 in Primfaktoren zerlegt: 270 = 2 · 3 · 3 · 3 · 5 = 21 · 33 · 51.
Die einzusetzenden Zahlen dürfen demnach nur die Faktoren 2, 3, 32, 33, 5 enthalten. Das sind die 10
Zahlen 2, 3, 5, 6, 9, 10, 15, 18, 27 und 30 und außerdem die Zahl 1. Von diesen 11 Zahlen müssen 2
ausgeschieden werden. Das Produkt aller 11 Zahlen ist 25 · 311 · 54, während das Produkt der 9 in das
Quadrat einzusetzenden Zahlen 2703 = 23 · 39 · 53 ergibt. Das Produkt aller 11 Zahlen enthält also ge-
genüber dem Produkt der 9 Zahlen im Quadrat den Faktor 22 · 32 · 5 = 180 zu viel. Das Produkt der
beiden auszuscheidenden Zahlen ist demnach 180.
Es sind zwei Fälle möglich: 180 = 6 · 30 = 10 · 18.

Nunmehr prüfen wir, welche Anordnungsmöglichkeiten für die Primfaktoren bestehen. Da jeder der Prim-
faktoren 2, 3 und 5 in jeder Zeile und in jeder Spalte in derselben Anzahl auftreten muss, wenn die
Bedingungen der Aufgabe erfüllt sein sollen, sind folgende Anordnungen möglich:

I) II) III) IV) V) VI)
x . . x . . . x . . x . . . x . . x
. x . . . x x . . . . x x . . . x .
. . x . x . . . x x . . . x . x . .

Die einzelnen Anordnungen können ineinander übergeführt werden a) durch Vertauschung von Spalten
b) durch Vertauschung von Zeilen
Wegen der Gleichwertigkeit dieser Anordnungen ist es gleichgültig, in welches Feld man die 1 einsetzt.
Nimmt man das linke obere Feld, so entfallen für das Einsetzen der übrigen Faktoren die Schemata I und
II.
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Da für die Aufteilung der Primfaktoren 2, 3, 3, 3, 5 nur 4 Schemata (III bis VI) zur Verfügung stehen,
fasst man 2 Faktoren zusammen: 3 · 3 = 9. Man verteilt also 2, 3, 5, 9.
Dabei muss man beachten, dass die Faktoren 5 und 9 so verteilt werden müssen, dass sie nicht in einem
gemeinsamen Feld zusammentreffen; denn das Produkt 5 ·9 = 45 liegt außerhalb der zugelassenen Zahlen.
Also setzen wir die Zahlen 5 und 9 nach Schema III und VI (oder IV und V) als Teillösung (a) ein:

1 5 9
5 9 .
9 . 5

nunmehr sind nicht die Faktoren 2 und 3 nach Schema IV und V einzusetzen. Man erhält:
1 5 · 2 9 · 3 1 10 27

5 · 3 9 . = 15 9 2
9 · 2 . 5 18 3 5

Die Zahlen 6 und 30 kommen nicht vor. Die Zahlen 10 und 18 auszulassen ist nicht möglich. Versucht
man nämlich in Teillösung (a) die 2 einzusetzen, so stößt sie auf jeden Fall an einer Stelle auf eine 5 oder
9, was 10 oder 18 ergeben würde, also gerade die Zahl, die man nicht in das Schema einordnen will.

Zum Schluss soll untersucht werden, wieviel verschiedene Anordnungen der Zahlen aus der oben gefun-
denen Lösung durch Vertauschung von Zeilen oder Spalten entstehen. Im folgenden Schema (b)

11 12 13
21 22 23
31 32 33

bedeutet die erste Ziffer jeder Zahl die Zeilennummer und die zweite die Spaltennummer. 3 Elemente,
hier die Zahlen 1, 2, 3 kann man in 6 verschiedene Anordnungen (Permutationen) niederschreiben.
Die Vertauschungen kann man sowohl mit den Zeilennummern als auch mit den Spaltennummern durchführen.
Man findet also 36 verschiedenen Umstellungen des Schemas (b).
Weitere 36 neue Anordnungen, welche die gestellten Bedingungen erfüllen, erhält man, indem man in
jeder der bisher gefundenen 36 Lösungen die Zeilen und die Spalten miteinander vertauscht. Es gibt
demnach 72 verschiedene Anordnungen als Lösung der gestellten Aufgabe.

Aufgabe 28/62

a) In eine Hohlkugel mit dem Durchmesser D = 2R sollen sechs kleinere, gleich große Kugeln so
eingelagert werden, dass jede von ihnen die Hohlkugel von innen und vier der kleineren Kugel
berührt. Wie groß muss der Durchmesser d = 2r der kleineren Kugeln gewählt werden?

b) In eine Hohlkugel mit dem Durchmesser D = 2R sollen acht kleinere, gleich große Kugeln so
eingelagert werden, dass jede von ihnen die Hohlkugeln von innen und drei der kleineren Kugeln
berührt. Es ist der Durchmesser d = 2r der kleineren Kugeln zu bestimmen.

c) Der Hohlkugel sind vier einander gleiche Kugeln so einzulagern, dass jede Kugel jede andere Kugel
berührt. Wie groß ist ihr Durchmesser d = 2r?

M

M ′

B

B′

D

d

a) Die Mittelpunkte der eingelagerten Kugeln müssen in den Endpunk-
ten eines Oktaeders liegen, dessen Seitenlänge s = 2r = d ist. Der Ok-
taedermittelpunkt fällt mit dem Mittelpunkt der Hohlkugel zusammen.
Legt man durch vier (beliebige) Oktaederecken einen ebenen Schnitt,
so erhält man die nachfolgende Abbildung.
Der Durchmesser D setzt sich danach aus drei Teilstrecken zusammen:
BB′ = BM +MM ′ +M ′B′.
Nun ist MM ′ Diagonale im Quadrat mit der Seitenlänge s = d. Also
ist

D = r + d
√

2 + r = d+ d
√

2 = d(1 +
√

2)→ d = D√
2 + 1

Man erweitert den rechts stehenden Bruch mit
√

2− 1, um den Nenner rational zu machen:

d = D(
√

2− 1) ≈ 0,414D
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b) Die Mittelpunkte der eingelagerten Kugeln liegen in den Endpunk-
ten eines Würfels, dessen Mittelpunkt mit dem der Hohlkugel zusam-
menfällt. Legt man durch den Würfel einen Diagonalschnitt, so erhält
man die nachfolgende Abbildung als Schnittfigur.
Die Seiten des Rechtecks, das der Würfeldiagonalschnitt ergibt, sind
d und d

√
2. Die Rechteckdiagonalen sind die Körperdiagonalen des

Würfels und haben die Länge d
√

3. Es gilt hier für die Zusammenset-
zung des Durchmessers D der Hohlkugel:

D = r + d
√

3 + r = d(1 +
√

3)→ d = D√
3 + 1

≈ 0.366D

M1 M2

M3M4

D

d

B1
M1

O

M2 c) Die Mittelpunkte der vier eingelagerten Kugeln bilden ein Tetraeder
mit der Kantenlänge d. Der Schnittpunkt der vier Körperhöhen des
Tetraeders fallt mit dem Mittelpunkt der Hohlkugel zusammen. Die
Körperhöhe ist d

√
6

3 . Die Höhen teilen einander im Verhältnis 3 : 1,
von den Ecken aus gerechnet. Legt man einen Symmetrieschnitt durch
Tetraeder und Hohlkugel, so erhält man die nachfolgende Abbildung:

Aus der Abbildung erkennt man, dass OB1 = OM1 +M1B1 ist, also

R = 3
4 ·

d
√

6
3 = d

4(
√

6 + 2)→ D = d

2(
√

6 + 2)→ d = D(
√

6− 2) ≈ 0,449D

Aufgabe 29/62

r h R H R

d D

L

Es sind die Maße eines Aräometers zu bestimmen, an das folgende Forderungen gestellt werden:
1. Messbereich von ρ1 = 1,00 g

cm3 bis ρ2 = 2,00 g
cm3 ;

2. d = 2r = 1 cm;
3. D = 2R = 2 cm;
4. Die Skalenteilung soll so eingerichtet werden, dass im Mittel 2 mm Skalenlänge einer Differenz von
0,01 g

cm3 entsprechen.
Wie sind die Werte für h,H,L und für die Masse m des Aräometers zu wählen?

Aus 1. und 4. folgt für die Skalenlänge s:

s = ρ2 − ρ1

0,01 gcm−3 · 2 mm = 20 cm

Offenbar ist h ≥ s; ein genauerer Wert wird später ermittelt. In eine Flüssigkeit der Dichte ρ1 taucht das
Aräometer bis zum obersten Skalenpunkt ein, das verdrängte Volumen V1 ist V1 = m

ρ1
.

In eine Flüssigkeit der Dichte ρ2 taucht es bis zum untersten Skalenpunkt ein, das verdrängte Volumen
V2 ist V2 = m

ρ2
. Es gilt

V2

V1
= m

ρ2
: m
ρ1

= ρ1

ρ2
= 1

2
also V1 = 2V2, mithin auch V1 − V2 = V2.

Es ist aber V1−V2 gleich dem Volumen der Skalenröhre mit der Länge s, also V1−V2 = V2 = π
4 d

2s, und V2
gleich dem Volumen des Tauchkörpers bis zum Skalenpunkt für ρ2, also der Summe aus zwei Halbkugeln
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mit dem Durchmesser D, dem Zylinder mit dem Durchmesser D und der Höhe H sowie dem Zylinder
mit dem Durchmesser d und den Höhe x (Stück der Skalenröhre zwischen dem Ansatz am Tauchkörper
und dem Skalenpunkt für ρ2); dabei kann, wie sich später zeigen wird, der Kugelabschnitt am Ansatz
der Skalenröhre vernachlässigt werden. Es gilt also:

V2 = π

6D
3 + π

4D
2H + π

4 d
2x = π

4 d
2s → 2

3D
3 +D2H + d2x = d2s

oder H = d2

D2 (s − x) − 2
3D. Setzt man zunächst einmal x = 0, so ergibt sich H ≈ 3,67 cm. Man

wird nun H mit H = 3,5 cm ansetzen; dann ergibt sich x zu x ≈ 0,7 cm. Damit ergibt sich für h:
h ≥ s+ x = 20 + 0,7 = 20,7 cm.
Da die Skalenröhre auch beim Eintauchen bis zum obersten Skalenpunkt noch aus der Flüssigkeit her-
ausragen muss, damit man sie anfassen kann, wird man h mit h ≈ 22 cm festsetzen.
(Bemerkung: In der Praxis wird man die genaue Stellung der Skala, also die Lage des unteren Skalen-
punktes für ρ2, durch Eintauchen in eine Probeflüssigkeit der Dichte ρ2 ermitteln. Dabei gleicht man
gleichzeitig die kleine Ungenauigkeit aus, die sich durch die Vernachlässigung des Kugelabschnitts er-
gibt.)
Die Gesamtlänge L ergibt sich dann zu L = 2R+H + h+ r ≈ 28 cm.
Die erforderliche Masse m erhält man aus folgender Rechnung:

m = ρ1V1 = 2ρ1V2 = ρ2V2 = ρ2
π

4 d
2h ≈ 31,4 g

Aufgabe 30/62
Zu untersuchen sind Kreiskegelstümpfe mit gleicher Höhe und flächengleichen Achsschnitten. Wie
groß muss der Deckkreisradius sein, damit das Volumen möglichst groß wird?
Lösung a mit Hilfe, b ohne Verwendung der Differentialrechnung.

Für das Volumen R eines Kreiskegelstumpfs gilt

V = πh

3 (R2 +R · r + r2) (I)

Als Nebenbedingungen treten im vorliegenden Fall auf: h = konstant (gleiche Höhen), R+r
2 ·h = konstant

(flächengleiche Achsschnitte). Aus der letzten Gleichung folgt R + r = konstant = a oder R = a − r =
a− x (I) mit r = x. Setzt man (II) in (I) ein, so ergibt sich

V = π

3 h(a2 − 2ax+ x2 + ax− x2 + x2) = π

3 h(x2 − ax+ a2) (III)

Lösung a: Man erhält die Extremwerte von V , indem man V ′ = 0 setzt und V ′′ auf seinen Wert hin
überprüft:

V ′ = π

3 h(2x− a) V ′′ = 2π
3 h

Man erkennt, dass V ′′ > 0 für jedes x gilt, das heißt, die Funktion V hat keine relativen Maxima im
Innern des in Frage kommenden Intervalls. Wenn überhaupt Maxima existieren, müssen sie an den In-
tervallgrenzen liegen.
Wegen R ≥ 0 und r ≥ 0 folgt aus (II) 0 ≤ x ≤ a und a ≥ 0. Für x1 = 0 und für x3 = a ergibt sich
V = π

3ha
2. Für 0 < x < a ist x2 < ax, also x2 − ax < 0 und folglich a2 − ax + a2 < a2, d.h., dass

tatsächlich an den Intervallgrenzen maximale Werte liegen.

Lösung b: Aus (III) ergibt sich durch einfache Umformung

V = π

3 hx
2 − π

3 hax+ π

3 ha
2

Man erkennt, dass es sich bei V um eine ganze rationale Funktion zweiten Grades handelt. Wegen des
positiven Koeffizienten beim quadratischen Glied verläuft die die Funktion darstellende Parabel so, dass
sie nach positiven V -Werten hin offen ist. Daher können Maximalwerte nur an den in Frage kommenden
Intervallgrenzen auftreten.
Wegen R ≥ 0 und r ≥ 0 folgt aus (II) 0 ≤ x ≤ a, so dass x1 = 0 und x2 = a ein maximales Volumen
ergeben: Vmax = π

3ha
2.
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Schlussfolgerung 1: Aus (II) folgt mit x1 = 0, R = a und mit x2 = a,R = 0. Das heißt, das Volumen ist
dann ein Maximum, wenn der Kegelstumpf zum Kegel wird.
Schlussfolgerung 2: Nicht immer bietet bei Extremwertberechnungen die Differentialrechnung einen Lösungs-
weg.

Aufgabe 31/62
Es sei Kl ein Halbkreis mit dem Radius r1, K2 ein Kreis mit dem Radius r2 = 0,5r1, der den
Durchmesser und die Peripherie von Kl berührt, und K3 ein Kreis mit dem Radius r3, der sowohl
den Durchmesser und die Peripherie von Kl als auch die Peripherie von K2 berührt.
Es ist zu beweisen, dass unter diesen Voraussetzungen für r3 gilt 4r3 = r1!

M1

M2
M3

A

B
r1

r2

r3

Analysis (Abbildung): Wenn K3 die Peripherie von K1 im
Punkt B berührt, ist die Tangente t in B an Kl gleich-
zeitig auch Tangente in B an K3. Folglich bilden die
Berührungsradien von K1 und K3 eine Gerade, und da M1
und M3 auf derselben Seite der Peripherie von K1 liegen, fällt
M3 auf M1B. Es ist aber M1B = r1 = 2r2 = M1M3 + r3, slso
M1M3 = 2r2 − r3.

Ferner kann M1M3 nach dem Lehrsatz des Pythagoras aus M1A = r3 und AM3 berechnet werden; AM3
ist nach demselben Satz aus AM2 = r2−r3 und M2M3 = r2 +r3 darstellbar. Mithin kann eine Gleichung
mit r3 als einziger Unbekannter aufgestellt werden.
Beweis:

M1M
2
3 = (2r2 − r3)2 = 4r − 22 − 4r2r3 + r2

3 und

M1M
2
3 = r2

3 + (r2 + r3)2 − (r2 − r3)2 = r3
3 + 4r2r3

also r3
3 + 4r2r3 = 4r2

2 − 4r2r3 + r2
3 → 2r3 = r2. Wegen 2r2 = r1 wird 4r3 = r1.

Aufgabe 32/62
Der Durchmesser d eines Kreises wird von einer Sehne unter einem Winkel von 30◦ so geschnitten,
dass er im Verhältnis a

b = 1
3 geteilt wird.

a) Wie lang ist die Sehne?
b) Welchen Abstand hat die Sehne vom Mittelpunkt des Kreises?

Da die Länge d des Durchmessers in der Aufgabe nicht angegeben ist, wird er willkürlich mit d = 2r = 2
(Längeneinheiten) angenommen. Wenn a und b die beiden Teilstrecken des Durchmessers sind, gilt a

b = 1
3

und a+ b = d = 2. Daraus folgt b = 3a = 1,5 und a = 0,5.
Wir führen weitere Beziehungen entsprechend der Abbildung ein.
Dabei sei FM das Lot von M auf A1A2. Aus der Abbildung erkennt man:

M

A2

C2

B2
E2E1

A1

C1
B1

F

1. Da der Winkel MDF = 30◦ beträgt, gilt für den Winkel
DMF wegen der Rechtwinkligkeit des Dreiecks, dass ]DMF =
60◦ ist. Spiegelt man das Dreieck MDF an A1A2, so entsteht
demnach ein gleichseitiges Dreieck MDM ′, in dem M ′F = MF
und M ′D = DM = 0,5 ist.
Damit ist MF = 0,5DM = 0,25 der Abstand der Sehne A1A2
vom Mittelpunkt M des Kreises.

2. Aus der Rechtwinkligkeit des Dreiecks MFA2 folgt

FA2
2 = MA2

2 −MF 2 = r2 − 0,252 = 1− 1
16 = 15

16 → FA2 =
√

15
16 = 1

4
√

15

Dann ist aber A1A2 = 2FA2 = 1
2
√

15 ≈ 1,936.
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Aufgabe 33/62
Gegeben sind die Achse einer Parabel mit dem Brennpunkt F und dem Parameter OF sowie eine
Gerade g, die die Parabelachse im Punkt S so schneidet, dass SO > SF ist. Es sind die Schnittpunkte
von g mit der Parabel zu konstruieren.

M1

M2

O FS

B
MF ′

C

g′ g

A′

A′′

A1

A2

Analysis (Abbildung): FF ′ ist gemeinsame Tangente der drei
Kreise um M , M1, M2. Nach dem Tangentensatz ist

CF · CF ′ = CA′2 = CA2
1 = CA2

2 also

CA′ = CA1 = CA2

Die Mittelpunkte M1 und M2 haben jeweils den gleichen
Abstand von F und g: M1F = M1A1 und M2F = M2A2.
Also sind M1 und M2 Punkte der Parabel (laut Definition
des Parabel als geometrischer Ort aller der Punkte, die von
einem gegebenen Punkt denselben Abstand haben wie von
einer gegebenen Gerade). Da M1 und M2 außerdem auf g
liegen, sind diese Punkte die gesuchten Schnittpunkte.

Konstruktionsbeschreibung: Man wählt auf g einen beliebigen Punkt M und schlägt um ihn mit MF
als Radius einen Kreis. Von F aus fällt man auf g das Lot, das man über g hinaus bis zum Schnitt C
mit der in O auf der Parabelachse errichteten Senkrechten g′ verlängert. Nun schlägt man über CM den
Thaleskreis; seine Schnittpunkte mit dem Kreis um M seien A′ und A′′.
Man schlägt weiter um C mit CA′ = CA′′ als Radius einen Kreis, der g′ in A1 und A2 schneidet. Die
Senkrechten auf g′ in diesen Punkten schneiden g in den gesuchten Schnittpunkten M1 und M2.

Determination: Es ist laut Aufgabenstellung SO > SF . Wegen BF < SF und CF > OF ist auch
CB > BF und damit stets auch CM > MF . Damit schneidet der Thaleskreis über CM den Kreis um
M mit MF als Radius stets in zwei Punkten A′ und A′′. Wegen CA′ = CA′′ bleibt die Konstruktion
trotzdem eindeutig. Alle anderen Konstruktionen sind eindeutig ausführbar.

Aufgabe 34/62
Gegeben ist eine Gerade g und auf ihr zwei Punkte A und B.
Man beweise: Die Länge CT einer Tangente von einem auf g liegenden Punkt C an einen durch A
und B gehenden Kreis (T ist der Berührungspunkt) ist nur von der Lage von C, nicht aber vom
Radius r des Kreises abhängig.

CA B

T1

T2
T3

g

Nach dem Sehnentangentensatz ist das Produkt der Stre-
ckenlängen CA ·CB gleich dem Quadrat CT 2 des Tangentenab-
schnitts. Es gilt also für jeden durch A und B gehenden Kreis

CT 2 = CA · CB oder CT =
∣∣∣√CA · CB∣∣∣

Damit ist die Behauptung bewiesen; denn in dieser Gleichung
tritt der Radius r nicht auf, sondern nur zwei Strecken, deren
Länge von der Lage des Endpunktes C abhängt.

Aufgabe 35/62
Welchen Neigungswinkel α muss eine schiefe Ebene mit der Basis c haben, wenn eine Kugel auf ihr
in kürzester Zeit herabrollen soll? Die Reibung und das Drehmoment werden vernachlässigt.
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α

α
c

G

s

F Wir führen die folgenden Bezeichnungen ein (siehe Abbildung):
Länge der schiefen Ebene (Weg) s, Masse der Kugel m, Gewicht
der Kugel G, Beschleunigung b, Kraft F , benötigte Zeit t, Fall-
beschleunigung g.
Zweckmäßig stellt man die zum Herabrollen erforderliche Zeit
als Funktion des Neigungswinkels dar. Es ist

s = b

2 t
2, s = c

cosα, also c

cosα = b

2 t
2 oder t =

√
2c

b cosα
Aus der letzten Gleichung ist noch die Beschleunigung b zu eliminieren. Aus F = mb folgt b = F

m und
wegen F = G− sinα sowie G = g ·m ergibt sich b = g · sinα. Demnach ist nach einem Additionstheorem

t =
√

2c
g · sinα cosα =

√
4c

g · sin (2α)

Die Zeit t soll einen Minimalwert annehmen; das ist genau dann der Fall, wenn der Nenner des unter
der Wurzel stehenden Bruchs einen Maximalwert annimmt, d.h. also, wenn sin (2α) = 1 ist. Daraus folgt
unmittelbar

α = 45◦; tmin =
√

4c
g

= 2
√
c

g

Aufgabe 36/62

β2

α1

β1 α2

M

A

DCB

Ein Lichtstrahl werde in einem kugelförmigen Flüssigkeitstropfen einmal partiell reflektiert. Der Bre-
chungsindex Luft-Flüssigkeit sei nLF .

1. Welchen Winkel können einfallender und ausfallender Strahl maximal miteinander bilden (vgl.
Abbildung)?

2. Welche Werte ergeben sich, wenn die Flüssigkeit Wasser ist? Für den Brechungsindex Luft-Wasser
gilt nLF = 4

3 .

3. Welche Folgerung lässt das Ergebnis auf den Regenbogen zu?

a) Aus der Abbildung geht hervor: Es ist ]MCA = α2 (Basiswinkel im gleichschenkligen Dreieck MCA),
also ist β1 + 2α2 + 90◦ = 180◦ → β1 = 90◦ − 2α2. Ferner ist ]MAD = α1 (Scheitelwinkel), also gilt
β2
2 + α1 + β1 = 90◦. Daraus folgt β2 = 4α2 − 2α1.

Nun ist nLF = sinα1 : sinα2, d.h. α1 = arcsin (nLF · sinα2). Demnach folgt

β2 = 4α2 + 2 arcsin (nLF · sinα2)

Man hat damit β2 als Funktion von α2 ausgedrückt. Setzt man dβ2
dα2

= 0, so liefern die Lösungen dieser
Gleichung die Extremwerte dieser Funktion (sofern an diesen Stellen d2β2

dα2
2
6= 0 ist). Nun ist

dβ2

dα2
= 4− 2√

1− n2
LF · sin2 α2

· nLF · cosα2
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Mit Nullsetzen folgt

cosα2 = 2
√

1
3 −

1
3n2

LF

Damit kann man auch β1, α1 und β2 bestimmen. Es wäre noch nachzuprüfen, ob β2 für das gefundene
α2 ein Maximum annimmt. Wir wollen hier auf die Prüfung verzichten, da sie recht umständlich ist. In
der Tat nimmt β2 ein Maximum an.
Mit α1 = arcsin (nLF · sinα2) und β2 = 4α2 − 2α1 wird nun

β2 = 4 arccos
(

2
√

1
3 −

1
3n2

LF

)
− 2 arcsin

(
nLF · sin arccos

(
2
√

1
3 −

1
3n2

LF

))

b) Für nLF = 4
3 ist α2 = 40◦10′ ≈ 40◦; α2 ≈ 59◦ und β2 ≈ 42◦.

c) Der Winkel β2 ist der Sehwinkel, unter dem der Radius des Hauptregenbogens gesehen wird. Da
der Mittelpunkt des Regenbogens der Sonne gerade gegenüberliegt, bedeutet das u.a., dass ein Regenbo-
gen nur dann sichtbar ist, wenn die Sonne nicht höher als 42◦ über dem Horizont steht.
Bemerkung: Bei der Rechnung wurde von Dispersions- und Interferenzerscheinungen, die das wirkliche
Bild des Regenbogens formen, abgesehen.

Lösung von Rüdiger Thiele:

Betrachtet man im Dreieck ACD den Außenwinkel bei C (vgl. Abbildung), so erkennt man, dass gilt

α2 = α1 − α2 + 1
2β2 ; β2 = 4α2 − 2α1

denn das Lot geht durch den Mittelpunkt. Demzufolge ist das Dreieck ACM gleichschenklig. Dann ist

β′2 = dβ2

dα1
= 4dα2

dα1
− 2 ; β′′2 > 0

Ist β′2 = 0, so ergibt sich dα2
dα1

= 1
2 also 2dα2 = dα1. Aus dem Brechungsgesetz von Snellius folgt

cosα1dα1

cosα2dα2
= n oder n · cosα2 = 2 cosα1

Aus sinα1
sinα2 = n folgt sinα1 = n · sinα2 und

d sinα1

dα1
= n

d sinα2

dα1
= n

d sinα2dα2

dα2dα1
also cosα1dα1

cosα2dα2
= n

Daraus findet man
sin2 α2 = 4(−1 + sin2 α1) + n2

n2

Setzt man diesen Ausdruck in das Brechungsgesetz ein, so ergibt sich

sinα1 =
√

4− n2

3 , sinα2 = 1
n

√
4− n2

3

Bei nLW = 4
3 ist β2 ≈ 41◦. Man müsste beachten, dass für verschiedene Frequenzen des Lichtes der

Brechungskoeffizient etwas variiert.
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2.3 Aufgaben und Lösungen 1963

Aufgabe 1/63
Gegeben sind zwei Punkte A und B. Man konstruiere unter ausschließlicher Verwendung des Zirkels
(also ohne Verwendung eines Lineals) ein Quadrat, in dem A und B benachbarte Eckpunkte sind.

Analysis (Abbildung): Der Punkt C liegt
1. auf dem Kreis um B mit AB = a als Radius,
2. auf dem Kreis um A mit AB

√
2 = a

√
2 als Radius.

Der Punkt D liegt 1. auf dem Kreis um A mit AB = a als Radius,
2. auf dem Kreis um B mit AB

√
2 = a

√
2 als Radius.

Es kommt also darauf an, die Strecke AC = BD = a
√

2 zu konstruieren. Dazu verhilft die folgende
Überlegung:

Die direkte Konstruktion als Diagonale eines Quadrats mit der Seitenlänge a ist nicht möglich, da es
nicht gelingt, nur mit dem Zirkel die Lage des dritten Eckpunktes unmittelbar zu finden.
Aus der Gleichung 3a2 − a2 = 2a2 oder a

√
2 =

√
3a2 − a2 folgt aber, dass man a

√
2 erhält, wenn es

gelingt, ein rechtwinkliges Dreieck mit der Hypotenuse a
√

3 und einer Kathete a zu konstruieren.
Die Hypotenuse a

√
3 erhält man als doppelte Höhe eines gleichseitigen Dreiecks mit der Seite a bzw.

(da der Fußpunkt der Höhe nicht ermittelt werden kann) als längere Diagonale eines Rhombus mit der
Seitenlänge a und der kürzeren Diagonale a. Die Konstruktion des rechtwinkligen Dreiecks erfolgt über
die Konstruktion eines gleichschenkligen Dreiecks mit der Basis 2a und den Schenkeln a

√
3.

A B

CD

S1

S2

S3
S4

Konstruktion:
Man schlägt um A und um B Kreise mit dem Radius
a = AB. Ihre Schnittpunkte seien S1 und S2. Weiter
schlägt man um Sl einen Kreis mit dem Radius a, der
den Kreis um A außer in B in S3 schneidet. Um S2 und
S3 schlägt man Kreise mit dem Radius S3B = S1S2,
die sich in S4 schneiden (bzw. in S′4). Die Strecke
AS1 = AS′4 hat die Länge der Diagonalen AC = BD im
Quadrat ABCD.

Der Kreis um A mit dem Radius AS4 schneidet den Kreis um B mit dem Radius AB in C, und der Kreis
um B mit dem Radius AS4 schneidet den Kreis um A mit dem Radius AB in D.
Determination: Alle Konstruktionen sind (bis auf Symmetrie) stets eindeutig.

Aufgabe 2/63

In eine Welle sollen zwei Längsnuten eingefräst werden
(Querschnittszeichnung siehe Abbildung). Ein Verdrehen
der Welle um 135◦ ist mit den vorhandenen technischen
Mitteln nicht zu erreichen. Daher ist die Einstellung mittels
eines Sehnenmaßes erforderlich. Wie groß ist das Sehnen-
maß s?
Die erforderlichen Maße sind der Abbildung zu entnehmen.

s

135◦

70

5

20

Bekannt sind: ω = 135◦, a = 20 mm, t = 5 mm, d = 70 mm. Gesucht ist das Seitenmaß s. Weiterhin
seien ]BMD = δ;]ABM = γ;]ABD = β;]DBM = α und Winkel von MB zur Horizontalen α′.
Im Dreieck ABM gilt sin δ = s

2 : d2 = s
d , folglich ist s = d sin δ.

Ferner gilt δ = 90◦ − γ = 90◦ − (α + β). Nun ist α = α′ (Winkel an geschnittenen Parallelen), und für
sinα′ = sinα gilt
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s

ω = 135◦

t = 5

a = 20
M

B

C

A

D

sinα′ = sinα = a

2 : d2 = a

d
= 20

70 = 0,286

also α = 16◦40′. Für β folgt aus dem Dreieck ABD: β = 90◦ − ω
2 = 22◦30′. Damit ergibt sich für δ der

Wert δ = 50◦50′. Es ist also
s = d · sin δ = 70 sin 50◦50′ ≈ 54,2 mm

Aufgabe 3/63
In dem linearen Gleichungssystem

0,9x− 3,2y + 10,1 = 0 , 1,1x− 1.0y + 0,7 = 0

sind für die Koeffizienten der Unbekannten und für die absoluten Glieder Abweichungen von ±0,05
zulässig. Man bestimme für die Lösungen x = 3 und y = 4 die größtmöglichen Abweichungen nach
oben und nach unten!

Ein Gleichungssystem der Form

ax− by + c = 0 , dx− ey + f = 0

hat die Lösungen
x = ec− bf

bd− ae
, y = cd− af

bd− ae
Dabei sind die Vorzeichen so gewählt, dass Zähler und Nenner je positiv werden.
Die Werte x und y werden maximal, wenn die Zähler maximal und die Nenner minimal sind; sie werden
minimal, wenn die Zähler minimal und die Nenner maximal sind. Demnach ist x maximal, wenn a, e und
c maximal, b, d und f aber minimal sind:

xmax = 1,05 · 10,15− 3,15 · 0,65
3,15 · 1,05− 0,95 · 1,05 = 3,73

und minimal, wenn a, e und c minimal, b, d und f dagegen maximal sind:

xmin = 0,95 · 10,05− 3,25 · 0,75
3,25 · 1,15− 0,85 · 0,95 = 2,43

Bei y ist eine zusätzliche Überlegung notwendig, da die Zähler- und die Nennerbedingung nicht gleichzeitig
erfüllbar sind: Wenn c und e maximal, b und f minimal sind, wird y maximal. Die Werte d und a
beeinflussen Zähler und Nenner jeweils in gleicher Richtung; d beeinflusst den Nenner jedoch stärker als
den Zähler, wird also minimal gewählt; auch a beeinflusst den Nenner stärker als den Zähler, wird also
maximal gewählt:

ymax = 10,15 · 1,05− 0,95 · 0,65
3,15 · 1,05− 0,95 · 1,05 = 4,35

Analog schließt man: y ist minimal, wenn a, e und c minimal, b, d und f maximal sind.

ymin = 10,15 · 1,15− 0,85 · 0,75
3,25 · 1,15− 0,85 · 0,95 = 3,73
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Ergebnis: 2,43 ≤ x ≤ 3.73, maximale Abweichungen -0,57 und +0,73
3,73 ≤ y ≤ 4,35, maximale Abweichungen -0,27 und +0,35.

Aufgabe 4/63
Vorhanden sind eine Balkenwaage, ein 3-g-Gewichtsstück und ein 8-g-Gewichtsstück. Es ist zu zeigen,
dass man damit alle ganzzahligen Grammmengen 1g, 2g, ..., ng mit höchstens n Wägungen bestimmen
kann, wenn n ≥ 4 ist.

Zuerst zeigen wir, dass die Behauptung für n = 4 gilt:

1. Wägung: Auf die eine Waagschale legt man das 8-g-Gewichtsstück, auf die andere das 3-g-Gewichtsstück
sowie so viel abzuwägende Substanz, dass Gleichgewicht herrscht. Es sind 5 g abgewogen.

2. Wägung: Das 8-g-Gewichtsstück wird entfernt, von den abgewogenen 5 g Substanz wird so viel auf
die andere Waagschale gebracht, dass Gleichgewicht herrscht. Da befinden sich auf der einen Seite
4 g Substanz, auf der anderen 1 g Substanz und das 3-g-Gewichtsstück.

3. Wägung: wie die erste Wägung

4. Wägung: Das 8-g-Gewichtsstück auf der einen Waagschale wird durch das 3-g-Gewichtsstück ersetzt,
von den abgewogenen 5 g Substanz wird so viel entferntm dass Gleichgewicht herrscht. Man hat
dann 2 g entfernt, 3 g befinden sich noch auf der Waagschale.

Demnach hat man mit 4 Wägungen die Mengen 1 g, 2 g, 3 g und 4 g bestimmt.
Nun zeigen wir: Hat man bereits die Mengen bis k g abgewogen, so kann man mit einer Wägung die
Masse (k + 1) g bestimmen. Der Beweis dafür ist trivial:
Da man bereits die Mengen bis k g abgewogen hat, steht auch die Menge (k− 2) g zur Verfügung. Diese
benutzt man zusammen mit dem 3-g-Gewichtsstück zum Abwägen von [(k − 2) + 3] = (k + 1) g.
Damit ist gezeigt:
1. Die Behauptung gilt für n = 4.
2. Wenn die Behauptung für n = k gilt, gilt sie auch für n = k + 1. Damit gilt sie aber für alle n ≥ 4.
An der Richtigkeit ändert auch die Tatsache nichts, dass einige Mengen auf andere Weise bestimmt
werden können. (z.B. 5 g, 8 g, 11 g).

Aufgabe 5/63
Gegeben sind vier Punkte P1, P2, P3 und P4 in einer Ebene. Gesucht ist ein Viereck ABCD, dessen
Seitenmittelpunkte die Punkte P1, P2, P3 und P4 sind.
a) Welche Bedingung ist für die Lage der Punkte P1, P2, P3 und P4 notwendig, damit die Aufgabe
lösbar ist?
b) Wieviel Lösungen sind möglich, wenn die Aufgabe lösbar ist?

A

B

C

D

P1 P2

P3P4

Hilfssatz 1: Die Seitenmittelpunkte eines jeden Viereck bilden
die Eckpunkte eines Parallelogramms.
Beweis: Ist ABCD ein beliebiges Viereck und sind P1, P2, P3
und P4 die Seitenmittelpunkte (Abbildung), so gilt nach einem
Strahlensatz

P1P4 ‖ BD;P2P3 ‖ BD → P1P4 ‖ P2P3 und

P1P2 ‖ AC;P3P4 ‖ AC → P1P2 ‖ P3P4

Damit ist P1P2P3P4 ein Parallelogramm. Daraus folgt die Antwort für a):
Damit die Aufgabe lösbar ist, müssen P1, P2, P3 und P4 ein Parallelogramm bilden.

Hilfssatz 2: Wenn die Eckpunkte eines Parallelogramms auf den Seiten eines Vierecks liegen und zwei
benachbarte Eckpunkte die Viereckseiten halbieren, so halbieren auch die anderen Eckpunkte die anderen
Viereckseiten.
Beweis: Es seien P1, P2, P3 und P4 die Eckpunkte eines Parallelogramms, die auf den Seiten des Vierecks
ABCD liegen, und P1 bzw. P4 halbieren AB bzw. AD. Dann ist nach einem Strahlensatz P1P4 ‖ BD
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und P1P4 : BD = 1 : 2.
Wegen P1P4 ‖ P2P3 und P1P4 = P2P3 ist dann auch P2P3 ‖ BD und P2P3 : BD = 1 : 2. Nach demselben
Strahlensatz folgt daraus CP2 = P2B und CP3 = P3D.
Daraus folgt die Antwort für b):
Wenn die Aufgabe lösbar ist, gibt es unendlich viele Lösungen. Man wählt nämlich einen beliebigen Punkt
A so, dass er nicht auf einer Seite des Parallelogramms P1P2P3P4 liegt und verlängert die Verbindungs-
strecken von A zu zwei benachbarten Eckpunkte des Parallelogramms über diese hinaus um sich selbst.

Die Endpunkte der verlängerten Strecken sind die Viereckspunkte B und D. Von B und D aus zieht
man Geraden durch die beiden anderen Eckpunkte des Parallelogramms (und zwar durch die jeweils am
nächsten liegenden). Der Schnitt dieser Geraden ist der Viereckspunkt C.

P1 P2

P3P4

A

B

C

D

P1 P2

P3P4

A

B

C

D P1 P2

P3P4

A B

C

D

Da man A auf beliebig viele Weisen (obere linke Abbildung) wählen kann, ist die Behauptung bewiesen.

P1 P2

P3P4

A

B

C

D
P1 P2

P3P4

A

B

C

D
P1 P2

P3P4

A

B

C

D

Liegt A auf einer Parallelogrammseite, so ist ebenfalls eine Konstruktion möglich (obere mittlere Ab-
bildung), wenn die Parallelogrammpunkte geeignet ausgewählt werden; sonst entartet das Viereck zum
Dreieck (obere rechte Abbildung).

Aufgabe 6/63
Man zeige, dass der Ausdruck n7 − n für jede natürliche Zahl n ohne Rest durch 42 teilbar ist.

Der Beweis ist geführt, wenn gezeigt ist, dass n7 − n für jede natürliche Zahl n ohne Rest
a) durch 2 und durch 3 und mithin auch durch 6
b) durch 7 teilbar ist.
Beweis für a):
Man zerlegt n7 − n in die Faktoren (n− 1), n, (n+ 1) und n4 + n2 + 1:

n7 − n = n(n− 1)(n− 2)(n4 + n2 + 1)

Von der Richtigkeit dieser Produktdarstellung überzeugt man sich durch Ausmultiplizieren. Die Zahlen
(n− 1), n, (n+ 1) sind drei aufeinanderfolgende Zahlen; von ihnen ist mindestens eine ohne Rest durch 2
und genau eine ohne Rest durch 3 teilbar. Daraus folgt, dass auch das Produkt n7 − n ohne Rest durch
2 und 3 und folglich auch durch 6 teilbar ist.

Beweis für b):
Dieser Beweis wird mit Hilfe der vollständigen Induktion geführt. Die Richtigkeit der Behauptung für
n = 1 ergibt sich aus 17 − 1 = 0 und 7 teilt Null. Angenommen, es sei nun die Behauptung richtig für
n = k, also es sein k7 − k ohne Rest durch 7 teilbar: (k7 − k) : 7 = m Rest 0 mit m = 1; 2; 3; .... Dann ist

(k + 1)7 − (k + 1) = (k7 + 7k6 + 21k5 + 35k4 + 35k3 + 21k2 + 7k + 1− (k + 1) =

= (k7 + 7k6 + 21k5 + 35k4 + 35k3 + 21k2 + 7k − k = (k7 − k) + 7(k6 + 3k5 + 5k4 + 5k3 + 3k2 + k)
Nach der Induktionsannahme ist (k7 − k) = 7m. Also ist

(k + 1)7 − (k + 1) = 7(m+ k6 + 3k5 + 5k4 + 5k3 + 3k2 + k)
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ohne Rest durch 7 teilbar.
Da der Ausdruck n7−n durch 6 und durch 7 ohne Rest teilbar ist, ist er auch ohne Rest durch 6 · 7 = 42
teilbar.

Aufgabe 7/63
Zehn Eimer von gleicher Größe und gleichem Aussehen sind mit Münzen gefüllt, die sich äußerlich
durch nichts voneinander unterscheiden. In neun von diesen Eimern wiegt jede Münze 10 g, in einem
dagegen 11 g.
Wie kann man durch eine einzige Wägung ermitteln, in welchem Eimer sich die Münzen mit der
Masse 11 g befinden?

Man stelle die Eimer in einer Reihe auf und entnehme dem ersten eine, dem zweiten zwei, dem dritten
drei Münzen und so fort bis zum zehnten, dem man zehn Münzen entnimmt. Auf diese Weise hat man
schließlich 55 Münzen entnommen, die man insgesamt auf ganze Gramm genau abwiegt.
Befanden sich die Münzen mit der Masse 11 g im n-ten Eimer, so sind unter diesen 55 Münzen n Stück
mit der Masse von 11 g und (55 − n) Stück mit der Masse 10 g. Die Gesamtmasse G ist demnach (in
Gramm)

G = (55− k) · 10 + 11 · n = 550 + n

Dann ist aber n = G− 550. n ist die Nummer des Eimers, in dem sich die gesuchten Münzen befinden.

Aufgabe 8/63
Gegeben ist ein Dreieck ABC. Gesucht ist die Gerade g, deren Schnittpunkte X mit AB und Y mit
AC die Bedingung BX = XY = Y A erfüllen.

A B

C

Y

X

g

α

a) Analysis: Aus BX = XY = Y A folgt:
1. M AYX ist gleichschenklig (Basis AX), also gilt ]AXY = α
(Basiswinkel);
2. M BXY ist gleichschenklig (Basis BY ), also gilt
]XBY = ]BYX (Basiswinkel).
Nun ist ]AXY Außenwinkel zum M BXY ; nach dem Au-
ßenwinkelsatz ist ]AXY = α = ]XBY + ]BYX, und aus
]XBY = ]BYX folgt somit ]XBY = α

2 .

Damit ist M ABY aus AB, α und ]XBY = α
2 nach wsw konstruierbar. Dann ist aber M BXY aus

BX = AY , XY = AY und BY nach sss konstruierbar.

b) Konstruktion: Man halbiert den Winkel α und trägt den Winkel α2 in B an AB an; der freie Schenkel
schneidet AC in Y . Um B und um Y schlägt man mit AY in der Zirkelspanne zwei Kreisbögen, die
einander auf AB in X schneiden. Die Gerade durch X und Y ist die gesuchte Gerade.

c) Beweis: Es ist AY = Y X nach Konstruktion und Y X = XB nach Konstruktion. Ferner liegt Y auf
AC nach Konstruktion. Zu beweisen ist also noch, dass auch X auf AB liegt.
Dazu genügt es zu beweisen, dass ]AXY + ]BXY = 180◦ ist oder; was nach dem Außenwinkelsatz
dasselbe ist; dass ]AXY = ]XBY + ]Y BX ist. Nun ist nach Konstruktion M AYX gleichschenklig
mit Basis AX, also ist ]AXY = α. Ferner ist M BXY gleichschenklig mit Basis BY , also ist ]XBY =
]XY B. Nach Konstruktion ist aber ]XBY = α

2 , folglich gilt

]XBY + ]XY B = 2 · ]XBY = 2 · α2 = ]AXY

c) Determination: Sofern der freie Schenkel des in B an AB angetragenen Winkels α
2 die Seite AC (bzw.

deren Verlängerung) schneidet, ergibt sich der Punkt Y eindeutig. Kein Schnittpunkt ergibt sich, wenn
α + α

2 = 180◦ ist, das heißt, wenn α = 120◦ ist, da dann AC und der freie Schenkel parallel verlaufen.
Alle anderen Konstruktionen sind stets und eindeutig ausführbar.
In besonderen Fällen liegen die Punkte X und (oder) Y auf den Verlängerungen der Dreiecksseiten.
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Aufgabe 9/63
Für die Aufgabe
”Wie lautet die Gleichung des Kreises, der den MittelpunktM(3;−5) hat und der die Gerade 2x+6y =
3 berührt?”
wir der folgende analytische Lösungsweg angegeben:
Die Gerade 2x+ 6y = 3 (1) ist Tangente an den Kreis mit der Gleichung

(x− 3)2 + (y + 5)2 = r2

Wenn (x1; y1) die Koordinaten des Berührungspunktes sind, lautet die Gleichung der Kreistangente

(x1 − 3)(x1 − 3) + (y1 + 5)(y1 + 5) = r2 → (x1 − 3)x+ (y1 + 5)y = r2 + 3(x1 − 3)− 5(y1 + 5) (3)

Da die Gleichungen (1) und (3) die Gleichungen ein und derselben Tangente an den Kreis (2) sind,
ergeben sich die Koordinaten des Berührungspunktes und der Radius des Kreises durch Koeffizien-
tenvergleich:

x1 − 3 = 2; also x1 = 5
y1 + 5 = 6; also y1 = 1

r2 + 3(x1 − 3)− 5(y1 + 5) = 3; also r2 = 27

Die Kreisgleichung lautet daher (x− 3)2 + (y + 5)2 = 27.
Die Probe (die Koordinaten des Berührungspunktes müssen die Gleichung (1) befriedigen) ergibt,
dass das Ergebnis falsch ist.
Andere Lösungsmethoden liefern tatsächlich ein anderes Ergebnis. Wo steckt der Fehler?

Da man die Gleichung (1) mit einem beliebigen Faktor k 6= 0 multiplizieren kann, ohne dass die Gültigkeit
eingeschränkt würde, ist der Koeffizientenvergleich für die Gleichungen (1) und (3) in der vorliegenden
Form nicht durchführbar. Aus (1) folgt nämlich

2kx+ 6ky = 3k (4)

Führt man den Koeffizientenvergleich zwischen (3) und (4) durch, so ergibt sich

2k = x1 − 3; x1 = 2k + 3 (5)
6k = y1 + 5; y1 = 6k − 5 (6)

3k = r2 + 3(x1 − 3)− 5(y1 + 5); r2 = 27k (7)

Setzt man die Werte für x1 und y1 in die Gleichung (1) ein, so erhält man eine Bestimmungsgleichung
für k mit der Lösung k = 27

40 .
Diesen Wert setzt man in die Ausdrücke (5), (6) und (7) ein und erhält damit die Lösung der Aufgabe

x1 = 87
20 ; y1 = −19

20 ; r2 = 729
40

Die Gleichung des Kreises lautet also

(x− 3)2 + (y + 5)2 = 729
40

Aufgabe 10/63
Es ist √

33
8 = 3

√
3
8 ;

√
17 17

288 = 17
√

17
288 ;

√
12 12

143 = 12
√

12
143

Unter welchen Bedingungen für die in den Ausdrücken enthaltenen Zahlen gelten die Gleichungen
allgemein?

Hinweis: Die Schreibweise
√

3 3
8 ist als gemischte Zahl zu verstehen, d.h.

√
3 3

8 =
√

3 + 3
8 .
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Offensichtlich gilt in jedem Fall √
a+ a

b
= a

a

b

Quadriert man beide Seiten dieser Gleichung, so folgt a + a
b = a2

b oder, da a 6= 0 vorausgesetzt werden
kann,

1 + 1
b

= a2

b
→ b+ 1 = a2 → b = a2 − 1

Setzt man diesen Wert in (1) ein, so ergibt sich√
a+ a

a2 − 1 =
√
a3 − 1
a2 − 1 + a

a2 − 1 =
√

a3

a2 − 1 = a

√
a

a2 − 1

Die Gleichungen gelten also allgemein, wenn der Zähler des Bruchs mit dem ganzen Teil des Radikan-
den übereinstimmt und der Nenner gleich den um 1 verminderten Quadrat des Zählers ist (was in den
gegebenen Beispielen tatsächlich zutrifft). Dabei muss natürlich a = 1 wegen a2 − 1 = 0 ausgeschlossen
werden.

Aufgabe 11/63
Der folgende Satz ist zu beweisen: In jedem Viereck ist die Summe aus den Quadraten der Seiten
gleich der Summe aus den Quadraten der Diagonalen und dem vierfachen Quadrat des Abstands der
Diagonalmitten.

Benutzt man die Bezeichnungen der Ab-
bildung (mit E ist der Diagonalenschnitt-
punkt, mit F und G sind die Diagonalen-
mitten bezeichnet, so lautet die zu bewei-
sende Behauptung

a2 + b2 + c2 + d2 = e2 + f2 + 4m2

A B

CD

E

F
G

a

b

c

d m

e
2

f
2

x
ϕ 180◦ − ϕ

Aus dem Kosinussatz der ebenen Trigonometrie ergeben sich die folgenden Beziehungen

a2 =
(e

2 + x
)2

+
(
f

2 + y

)2
− 2

(e
2 + x

)(f
2 + y

)
cosϕ

b2 =
(e

2 − x
)2

+
(
f

2 + y

)2
+ 2

(e
2 − x

)(f
2 + y

)
cosϕ

c2 =
(e

2 − x
)2

+
(
f

2 − y
)2
− 2

(e
2 − x

)(f
2 − y

)
cosϕ

d2 =
(e

2 + x
)2

+
(
f

2 − y
)2

+ 2
(e

2 + x
)(f

2 − y
)

cosϕ

wobei die Beziehung cos (180◦ − ϕ) = −cosϕ verwendet wurde. Nach Auflösen der Klammern und Addi-
tion der vier Gleichungen ergibt sich

a2 + b2 + c2 + d2 = e2 + 4x2 + f2 + 4y2 − 8xy cosϕ = e2 + f2 + 4(x2 + y2 − 2xy cosϕ)

Ebenfalls nach dem Kosinussatz der ebenen Trigonometrie ist aber x2 + y2 − 2xy cosϕ = m2, und damit
ergibt sich die gesuchte Beziehung.

Aufgabe 12/63
Es sei a eine reelle Zahl. Dann gilt − 1

a = 0.
Beweis: ∫

tan (ax)dx =
∫

sin (ax)(cos (ax))−1dx
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Durch partielle Integration mit

sin (ax) = u′; u = −1
a

cos (ax); (cos (ax))−1) = v; v′ = sin (ax)
(cos (ax))2 · a

folgt ∫
tan (ax)dx = u · v −

∫
(v′ · u)dx = −1

a
+
∫ ( sin (ax)

(cos (ax))2 · a ·
1
a

cos (ax)dx
)

∫
tan (ax)dx = −1

a
+
∫

tan (ax)dx

Durch Subtraktion von
∫

tan xdx auf beiden Seiten der Gleichung ergibt sich die Behauptung. Wo
steckt der Fehler?

Bekanntlich liefert ein unbestimmtes Integral eine nicht vollständig bestimmte Funktion; das unbestimmte
Integral enthält vielmehr eine unbestimmte additive Konstante. Man kann daher nicht aus der Gleichheit
der Integranden allein schon auf die Gleichheit der Integrale schließen.
Im vorliegenden Fall wirkt sich diese Tatsache deshalb sichtbar aus, weil das Glied u · v auf der rechten
Seite der Gleichung eine additive Konstante darstellt. Korrekt muss die Herleitung folgendermaßen lauten:∫

tan (ax)dx = −1
a

+
∫ sin ax

(cos (ax))2 · a ·
1
a

cos (ax)dx+ C = −1
a

+
∫

tan (ax) + C

woraus richtig folgt, dass bei Gleichheit C = − 1
a ist.

Aufgabe 13/63
Einem Mathematiker wurde das Fahrrad gestohlen. Als man ihn nach seiner Fahrradnummer fragt,
antwortet er: ”Sie können die Nummer aus den folgenden Angaben errechnen:

a) Addiert man zum Quadrat der ersten Stelle das Quadrat der zweiten Stelle, so erhält man das
Quadrat der dritten Stelle.

b) Subtrahiert man von der ersten Stelle die zweite Stelle, so erhält man die um 1 vergrößerte fünfte
Stelle.

c) Die zweite Stelle ist gleich der vierten, die dritte Stelle ist gleich der sechsten und gleich der
siebenten.”

Welche Fahrradnummer hatte der Mathematiker?

Die Nummer bezeichnet man vorläufig mit sbcdefg, wobei die einzelnen Zeichen eine ganze Zahl zwischen
0 und 9 (beide einschließlich) bedeuten und die Schreibweise gemäß dem dekadischen Positionssystem
erfolgt.
Nach c) kann man vereinfachen: b = d, c = f = g also abcbecc. Nach a) gilt a2 + b2 = c2. Die Zahlen
a, b und c sind also pythagoreische Zahlen; als einziges pythagoreisches Tripel erfüllt das Tripel 3; 4; 5
die Bedingung, dass alle Zahlen unter 10 liegen. Damit ist die Nummer bereits eingegrenzt. Sie lautet
entweder 1. 3454e55 oder 2. 5353e55.
Nun berechnet man nach b) die Zahl e: a− b = e+ 1 ergibt e = a− b− 1.
1.) Mit a = 3 und b = 4 folgt e = −2. Eine negative Zahl kommt aber offenbar nicht in Frage, damit
scheidet die Möglichkeit 1 aus.
2.) Mit a = 4 und b = 3 folgt e = 0. Damit lautet die vollständige Nummer 4353055.

Aufgabe 14/63
Zur Nachprüfung, ob der Querschnitt eines Bolzens genau kreisförmig ist, wird der Bolzen zwischen
den angeschobenen Messbacken einer Schiebelehre gedreht und die Veränderung des Messbackenab-
standes beobachtet. Zweifellos ermöglicht eine Veränderung des Messbackenabstandes einen Schluss
dahingehend, dass der Querschnitt nicht kreisförmig ist.
Lässt umgekehrt die Unveränderlichkeit des Messbackenabstands den Schluss auf einen genau
kreisförmigen Querschnitt zu?
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Die Frage muss mit ”Nein” beantwortet werden. Tatsächlich gibt es Querschnitte, die bei der Messung
mit der Schieblehre überall den gleichen ”Durchmesser” zeigen und trotzdem nicht kreisförmig sind.
In der Abbildung ist ein spezielles Beispiel gezeigt.

A B

C

P1

P2 P3

P4

P5P6

M1 M2

M ′1

M ′2

Es sei ABC ein beliebiges Dreieck, dessen Seiten
über die Eckpunkte hinaus verlängert werden.
Weiter sei
- P1P2 ein Kreisbogen um A mit dem Radius
AP1 = AP2,
- P2P3 ein Kreisbogen um C mit dem Radius
CP2 = CP3,
- P3P4 ein Kreisbogen um B mit dem Radius
BP3 = BP4,
- P4P5 ein Kreisbogen um A mit dem Radius
AP4 = AP5,
- P5P6 ein Kreisbogen um C mit dem Radius
CP5 = CP6,
- P6P1 ein Kreisbogen um B mit dem Radius
BP6 = BP1

Die Randkurve ist geschlossen, wenn der Ausgangspunkt P1 so weit von A entfernt liegt, dass alle
Kreisbögen die Verlängerungen der Dreiecksseiten treffen. Dann ist

P1P4 = AP1 +AP4 = P2P5 = AP2 +AP5 = CP2 + CP5 = CP3 + CP6 = P3P6 =

= BP3 +BP6 = BP4 +BP1 = P4P1

Damit folgt aber weiter, dass der Abstand zweier paralleler Tangenten stets gleich P1P4 = P2P5 = P3P6,
also konstant ist (vgl. die parallelen Tangenten M1 und M2 bzw. M ′1 und M ′2 in der Abbildung).
Man erkennt, dass man nur mit Hilfe von Durchmesserprüfungen eine etwa vorhandene Unrundheit nicht
unbedingt erkennen muss.

Aufgabe 15/63
Es ist zu beweisen, das für a,b ≥ 0;n ≥ 2, ganz, gilt:

an + bn

2 ≥
(
a+ b

2

)n
Man kann den Beweis mit Hilfe der vollständig Induktion führen. Dazu ist ein Hilfssatz erforderlich.
Hilfssatz: Es gilt

an+1 + bn+1 ≥ anb+ abn

für a; b ≥ 0, n ≥ 1.
Beweis: Es sei 1. a ≥ b bzw. 2. a ≤ b. Dann gilt a − b ≥ 0 bzw. a − b ≤ 0 und wegen a,b ≥ 0 für n ≥ 1:
an ≥ bn bzw. an ≤ bn. Damit folgt in beiden Fällen

an(a− b) ≥ bn(a− b) oder an+1 − anb ≥ abn − nb + 1

also an+1 + bn+1 ≥ anb+ abn.
Den ersten Schritt des Induktionsbeweises stellt den Beweise der Richtigkeit der Behauptung für n = 2
dar.
Behauptung: Es gilt a2+b2

2 ≥
(
a+b

2
)2 für a, b ≥ 0.

Beweis: Sicher gilt für jedes a, b ≥ 0: (a− b)2 ≥ 0 also a2 − 2ab+ b2 ≥ 0. Addiert man auf beiden Seiten
dieser Ungleichung a2 + 2ab+ b2, so folgt

2(a2 + b2) ≥ a2 + 2ab+ b2 = (a+ b)2

Durch Division beider Seiten durch 4 folgt die Behauptung.
Der zweite Schritt besteht in der Durchführung der vollständigen Induktion.
Behauptung: Wenn gilt an+bn

2 ≥
(
a+b

2
)n dann gilt auch an+1+bn+1

2 ≥
(
a+b

2
)n+1.

Beweis: Es gelte
an + bn

2 ≥
(
a+ b

2

)n
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Durch Multiplikation beider Seiten dieser Ungleichung mit a+b
2 ≥ 0 (wegen a; b ≥ 0) wird die Gültigkeit

nicht angetastet; es folgt

a+ b

2 · a
n + bn

2 ≥
(
a+ b

2

)n
· a+ b

2 oder an+1 + anb+ abn + bn+1

4 ≥
(
a+ b

2

)n+1

Auf der linken Seite der Ungleichung ersetzt man die Summe anb + abn durch die nach dem Hilfssatz
nicht kleinere Summe an+1 + bn+1, die Gültigkeit der Ungleichung bleibt davon unberührt:

2(an+1 + bn+1)
4 = an+1 + bn+1

2 ≥
(
a+ b

2

)n+1

Da gezeigt wurde, dass die Behauptung für n = 2 gilt und dass aus der Gültigkeit für ein beliebiges n die
Gültigkeit für n+ 1 folgt, ist bewiesen, dass die Behauptung für jedes ganze n ≥ 2 gilt.

Aufgabe 16/63
Folgendes ”Kartenkunststück” ist mathematisch zu begründen:
Man lässt einen Mitspieler aus einem Kartenspiel von 32 Blatt eine beliebige Karte ziehen und
verdeckt niederlegen. Es sei dies beispielsweise (ohne Rücksicht auf die Farbe) eine Sieben.
Der Mitspieler legt nun weitere Karten auf die gezogene, indem er von der Augenzahl der gezogenen an
bis 11 weiterzählt (im Beispiel also ”acht, neun, zehn, elf”). Damit erhält man einen Kartenhaufen.
Das Verfahren wird mit weiteren Kartenhaufen fortgesetzt, bis ein Rest an Karten verbleibt, der
keinen vollständigen Haufen mehr ergibt (wird dabei ein As gezogen, so bildet dies alleine einen
Haufen).
Aus der Anzahl der Haufen und der Anzahl der Karten im Rest kann man, ohne beim Bilden der
Haufen zugesehen zu haben, die Summe der Augen auf den gezogenen Karten ermitteln.
Man gebe die Rechnung an.

Die Summe aus den Augen der gezogenen Karten sei x, die Anzahl der Haufen sei n und die Anzahl der
Karten im Rest sei r. Dann gilt für die Anzahl A der Karten in den Haufen

A = n+ 11n− x = 12n− x

Es ist aber A+ r = 32 also 12n− x+ r = 32. Daraus folgt x = 12n+ r − 32.
Das Verfahren kann man noch variieren, indem man statt bis 11 bis zu einer anderen (am besten größeren)
Zahl weiterzählen lässt oder indem man ein Spiel verwendet, das nicht aus 32 Karten besteht.

Aufgabe 17/63
Gegeben ist ein Kreis mit dem Radius r. Der Kreis soll so in drei flächengleiche Teile zerlegt werden,
dass der Umfang eines jeden Teils gleich dem Kreisumfang ist.

A B
C1

C2M

Man drittelt einen Kreisdurchmesser AB durch die Punkte C1 und
C2 und schlägt über AC1, AC2, BC1 und BC2 Halbkreise so, dass
die von A ausgehenden und die von B ausgehenden Halbkreise auf
verschiedenen Seiten des Durchmessers AB liegen (Abbildung).
Dann gilt für den Flächeninhalt F der so entstehenden S-förmigen
Figur:

F = 2
( 2

3r
)2
π

2 − 2
( 1

3r
)2
π

2 = πr2

3
Aus Symmetriegründen hat dann jede der beiden Restfiguren den Flächeninhalt

F =
πr2 − πr2

3
2 = πr2

3
Für den halben Umfang U der S-förmigen Figur gilt

U

2 = 2
3πr + 1

3πr = πr

Dann gilt für den Umfang U jeder der Teilfiguren U = 2πr.
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Aufgabe 18/63

M1 M2

A B

A′

B′

c

a
b

a′

b′

g
ϕ

Gegeben sind zwei Kreise mit den Radien r1 = r2 = r. Der Abstand ihrer Mittelpunkte M1 und M2
sei c, und es gelte die Beziehung r < c < 2r. Durch einen Schnittpunkt der beiden Kreise werden
eine Gerade g gezogen.
Wenn g parallel zu M1M2 verläuft, sind die in den Kreisen entstehenden Sehnen a und b gleich lang:
a = b. Wird g aus dieser Lage um den Winkel ϕ gedreht, so entstehen die Sehnen a′ und b′ mit
a′ 6= b′. Folgende Fragen sind zu beantworten:

1. In welchem Verhältnis stehen die Kreisbögen AA′ und BB′?

2. Welches der Produkte ab und a′b′ ist kleiner?

3. Für welche Lage von g ist a′b′ ein Maximum, wenn r1 > r2 gilt? (In diesem Fall soll entsprechend
gelten r1 < c < r1 + r2)

Bezüglich der Bezeichnungen vgl. die Abbildung. Die Gerade g soll sich nur so weit drehen, dass die
beiden Sehnen noch beiderseits des Drehpunktes liegen.

a) Dass die beiden Kreisbögen AA′ und BB′ gleich groß sind, kann sofort aus dem Satz gefolgert werden,
dass zu gleichen Umfangswinkeln eines Kreises oder mehrerer gleicher Kreise gleich Kreisbögen gehören.
Die bei der gegebenen Aufgabe zu betrachtenden Umfangswinkel sind als Scheitelwinkel gleich.

M1 M2

2ϕ
2ϕαα

A B

A′

B′

c

a
b

a′

b′g

b) Aus der Abbildung erkennt man

a = b = 2r sin α2 ; a · b = 4r2 sin2 α

2
Entsprechend ergibt sich

a′ = 2r sin α− 2ϕ
2 ; b′ = 2r sin α+ 2ϕ

2 ; a′ · b′ = 4r2 sin α− 2ϕ
2 sin α+ 2ϕ

2
Wendet man auf den letzten Ausdruck die Additionstheoreme an, so erhält das Produkt die Gestalt
a′ ·b′ = 4r2 ·(A−B)(A+B) mit A = sin α

2 cosϕ und B = cos α2 sinϕ. Unter Verwendung der 3.binomischen
Formel ergibt sich daraus

a′ · b′ = 4r2
(

sin2 α

2 cos2 ϕ− sin2 ϕ cos2 α

2

)
≤ 4r2 sin2 α

2 cos2 ϕ ≤ 4r2 sin2 α

2 = a · b

Das Gleichheitszeichen gilt hierbei nur für ϕ = 0. Für ϕ 6= 0 gilt somit stets a′ · b′ < a · b.
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M1 M2

r1

r2

2ϕ
2ϕβα

A B

A′

B′

c

a
b

a′

b′g

c) Bei der Beantwortung der dritten Frage ist zu beachten, dass die Sehnen und die Zentriwinkel α und
β nicht mehr gleich sind, wenn die Gerade g parallel zu M1M2 verläuft. Die Winkel α und β kann man
als bekannt voraussetzen, da sie aus den gegebenen Größen r1, r2 und c leicht zu ermitteln sind (vgl.
Abbildung).
Für eine beliebige Lage von g ist das Produkt P = a′ · b′ der Sehnen a′ und b′ in Abhängigkeit vom
Drehwinkel ϕ gegeben durch

P = a′ · b′ = 2r1 sin α− 2ϕ
2 · 2r2 · sin

β + 2ϕ
2 und somit

dP

dϕ
= 4r1r2

[
sin α− 2ϕ

2 cos β + 2ϕ
2 − cos α− 2ϕ

2 sin β + 2ϕ
2

]
Aus dP

dϕ = P1 = 0 folgt

sin α− 2ϕ
2 cos β + 2ϕ

2 = cos α− 2ϕ
2 sin β + 2ϕ

2
Dividiert man diese Gleichung beiderseits durch sin α−2ϕ

2 sin β+2ϕ
2 , so erhält man

cot β + 2ϕ
2 = cot α− 2ϕ

2 → β + 2ϕ0 = α− 2ϕ0 → ϕ0 = α− β
2

Abschließend wäre zu untersuchen, ob P für ϕ0 einen Maximalwert annimmt. Da diese Rechnung keine
Besonderheiten aufweist, sei hier nur das Ergebnis mitgeteilt:

P ′′(ϕ0) = −8r1r2 < 0

Setzt man ϕ0 in die Ausdrücke für a′ und b′ ein, so erhält man folgendes Ergebnis:
Das Produkt der Sehnen wird maximal, wenn die Sehnen im gleichen Verhältnis stehen wie die Radien
der zugehörigen Kreise: a′ : b′ = r1 : r2 oder; was dasselbe aussagt, wenn die zu den Sehnen gehörenden
Zentriwinkel gleich groß sind. Sie sind dann gleich dem arithmetischen Mittel aus den Winkeln α und β.

Aufgabe 19/63
Ein Bauer hinterlässt seinen beiden Söhnen unter anderem eine Schafherde. Die Brüder lassen diese
Herde von einem Mittelsmann verkaufen, wobei sie ihm auftragen, er solle ein Schaf für soviel Mark
verkaufen, wie die Herde Schafe hat.
Der Mittelsmann bringt dem Erlös in lauter 10-Mark-Scheinen und einem Rest an Kleingeld, der
keinen vollen 10-Mark-Schein mehr ergibt. Die Brüder teilen das Geld so, dass beide gleich viele
10-Mark-Scheine erhalten. Dabei bleiben ein 10-Mark-Schein und der Kleingeldrest übrig. Da sagt
der ältere zum jüngeren Bruder: ”Ich nehme den Schein, und du bekommst den Rest und ein von mir
soeben gekauftes Taschenmesser, dann haben wir beide gleich viel bekommen.”
Wie teuer war das Taschenmesser?

Bestand die Herde aus n = 10x+y Schafen, so betrug der Erlös n2 = (10x+y)2 = 100x2+20xy+y2 Mark,
wobei y eine einstellige Zahl ist. Da beim Teilen des Geldes außer dem Kleingeldrest ein 10-Mark-Schein
übrigblieb, muss die Anzahl der 10-Mark-Scheine ungerade sein.
Da die Zahl 10x2 + 2xy auf jeden Fall gerade ist, kommt für y2 nur eine der Zahlen 16 oder 36 in Frage;
für y2 = 1; 4; 9; 25; 49; 64; 81 würde nämlich die Anzahl der 10-Mark-Scheine gerade. Das heißt aber nichts
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anderes, als dass der Kleingeldrest r = 6 Mark ist.
Bezeichnet man nun mit t den Preis des Taschenmessers in Mark, so muss offensichtlich gelten

10− t = r + t→ 10− r = 2t = 4→ t = 2

Das Taschenmesser kostet demnach 2 Mark.

Aufgabe 20/63
Es ist ein Dreieck aus hc = 3,5 cm, wγ = 4 cm und c = 12 cm zu konstruieren, wobei hc die Höhe
des Dreiecks auf der Seite c und wγ die Halbierende des Winkels γ ist.

A BD EP

C

hc

wγ

c

Das Dreieck CDE ist unmittelbar aus CD = hc,
]CDE = 90◦ und CE = wγ konstruierbar.
Errichtet man in C auf CE die Senkrechte, so
schneidet diese die Verlängerung von DE in P . Da
CE = wγ die Halbierende des Innenwinkels γ im
Dreieck ABC ist, ist CP die Halbierende des Au-
ßenwinkels γ′ (die Halbierenden zweier Nebenwinkel
stehen senkrecht aufeinander).

Nun gilt der Satz: Die Halbierenden von Innen- und Außenwinkel im Dreieck teilen die Gegenseite har-
monisch. Folglich ist die Punktreihe PAEB eine harmonische Punktreihe und es gilt

PA : AE = PB : BE

Führt man die Bezeichnungen PA = u und PE = d ein, so ist PB = u+c, AE = d−u und BE = u+c−d.
Damit ergibt sich

u

d− u
= u+ c

u+ c− d
Löst man diese Gleichung nach der einzigen Unbekannten u auf, so erhält man

u = d− c
2 +

√( c
2

)2
+
(
d

2

)2

Damit ist die Konstruktion des Punkte A auf PE möglich. B erhält man, indem man an PA in A die
Strecke c anträgt. (Bei dem Wurzelwert ist das negative Vorzeichen für die Problemstellung sinnlos, da
die Strecken absolut genommen werden.)

Konstruktionsbeschreibung: Man legt CD = hc fest, errichtet in D die Senkrechte und schlägt um C mit
wγ in der Zirkelspanne einen Kreisbogen; sein Schnittpunkt mit der Senkrechten ist E.
Man verlängert DE über beide Seiten hinaus und errichtet in C auf CE die Senkrechte; deren Schnitt
mit der Verlängerung von DE ist P . Von P aus trägt man auf PE = d die Strecke PQ = c

2 ab; in Q

errichtet man auf PQ die Senkrechte und trägt auf ihr von Q aus die Strecke QR = d
2 ab. Dann ist

PR =
√(

c
2
)2 +

(
d
2
)2 (nach dem Lehrsatz des Pythagoras).

Weiter trägt man auf QR von Q aus die Strecke QS = c
2 ab. Um R schlägt man mit RS = d

2 −
c
2 einen

Kreisbogen, der die Verlängerung von PR in T schneidet. Nach Konstruktion ist nun

PT =

√( c
2

)2
+
(
d

2

)2
+ d− c

2 = u = PA

Man schlägt also um P mit PT in der Zirkelspanne einen Kreisbogen, der PE in A schneidet. Verlängert
man PA um c, ergibt sich der Punkt B. Das Dreiecke ABC ist das gesuchte.

Determination: Das Dreieck CDE ist (bis auf Symmetrie) eindeutig konstruierbar, wenn wγ > hc ist.
Ist wγ = hc, so fällt E auf D und die Senkrechte auf CE in C parallel zu AB, schneidet diese als
nicht (harmonische Teilung im Verhältnis 1:1). Daraus folgt sofort, dass das Dreieck ABC symmetrisch
bezüglich der Winkelhalbierenden wγ bzw. der Höhe hc liegt, womit die weitere Konstruktion klar ist.
Ist wγ < hc, so existiert das Dreieck CDE nicht und damit ist das Dreieck ABC nicht konstruierbar.
Damit ergibt sich: Das Dreieck ABC ist (bis auf Symmetrie) eindeutig konstruierbarm wenn wγ ≥ hc ist.
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Aufgabe 21/63
Von einem konvexen Polyeder mit 53 Ecken und 19 Flächen werden sämtliche Ecken so durch ebene
Schnitte abgeschnitten, dass jeder Schnitt genau eine Ecke erfasst und kein Schnitt einen anderen
trifft oder berührt.
Wieviel Kanten, Ecken und Flächen hat das dadurch entstehende Polyeder?

Es seien e die Anzahl der Ecken, f die Anzahl der Flächen und k die Anzahl der Kanten des gegebenen
Polyeders. E, F und K die entsprechenden Zahlen des neuen Polyeders.
Stoßen in der i-ten Ecke des gegebenen Polyeders ki Kanten zusammen, so entstehen durch das Abschnei-
den dieser Ecke ein Polygon mit ki Seiten, also eine neue Fläche, ki neue Kanten und ki neue Ecken.
Keine der ursprünglichen Flächen und Kanten entfällt, wohl aber die ursprüngliche Ecke.
Da jede kante zwei Ecken verbindet, folgt dass die Anzahl der neuen Kanten gleich 2k und die der neuen
Ecken gleich 2k ist, während die Anzahl der neuen Flächen gleich e ist. Damit ergibt sich

K = 3k ; E = 2k ; F = f + e

Für k folgt aber aus dem Eulerschen Polyedersatz e+ f = k + 2, dass k = e+ f − 2 = 53 + 19− 2 = 70
ist. Demnach ist

K = 210 ; E = 140 ; F = 72

Tatsächlich gilt auch für diese Zahlen der Eulersche Polyedersatz: E + F = 212 = K + 2.

Anmerkung: Ein konvexes Polyeder mit 53 Ecken und 19 Flächen aus der Aufgabenstellung existiert
nicht, da es nach dem Eulerschen Polyedersatz 70 Kanten haben müsste. In jeder Ecke stoßen mindestens
3 Kanten zusammen, die jede 2 Ecken verbinden. Damit müsste k ≥ 3

2e gelten, was das ”Polyeder” nicht
erfüllt.

Aufgabe 22/63
Gesucht sind drei aufeinanderfolgende ungerade Zahlen, deren Quadratsumme eine aus vier gleichen
Ziffern bestehende Zahl ist.

Die drei aufeinanderfolgenden ungeraden Zahlen seine (2n− 1), (2n+ 1) und (2n+ 3) mit zunächst noch
unbekanntem, ganzzahligen n. Dann gilt auf Grund der Aufgabenstellung

(2n− 1)2 + (2n+ 1)2 + (2n+ 3)2 = 1111a

mit 0 ≤ a ≤ 9, a ganzzahlig. Es handelt sich also um eine Gleichung mit zwei Unbekannten, die gewissen
Einschränkungen unterliegen (diophantisches Problem). Berechnet man die Quadrate, so ergibt sich

12n2 + 12n+ 11 = 1111a→ 12n(n+ 1) = 11(101a− 1)

Die linke Seite dieser Gleichung ist durch 12 teilbar, daraus folgt, dass auch die rechte Seite durch 12
teilbar ist. Also ist der Ausdruck (101a−1) durch 12 teilbar. Offenbar kommen für a damit nur ungerade
Werte in Frage, da sonst 101a gerade und mithin (101a− 1) ungerade wäre.
Man stellt leicht fest, dass von den Werten a = 1; 3,5; 7; 9 nur der Wert a = 5 die geforderte Bedingung
erfüllt: 12n(n+ 1) = 11(101 · 5− 1) = 5544.
Damit ergibt sich für n die quadratische Gleichung

12n2 + 12n− 5544 = 0

mit den Lösungen n1 = 21 und n2 = −22. Aus n1 ergeben sich die drei ungeraden Zahlen 41, 43 und 45
und aus n2 die drei ungeraden Zahlen -45, -43 und -41 (also bis auf die Vorzeichen dieselben). Tatsächlich
ist

(±41)2 + (±43)2 + (±45)2 = 5555

Aufgabe 23/63
Ein Dreieck ist aus den drei Höhen zu konstruieren.
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Analysis: Für den Flächeninhalt F des Dreiecks gilt F = 1
2aha = 1

2bhb = 1
2chc. Daraus folgt a = 2F

ha
,

b = 2F
hb

, c = 2F
hc

. Daraus ergibt sich die Proportionalität

a : b : c = 1
ha

: 1
hb

: 1
hc

bzw. a′ : b′ : c′ = k

ha
: k

hb
: k

hc

wobei k eine geeignet gewählte Konstante ist, oder a′ : 1 = k : ha, b′ : 1 = k : hb, c′ : 1 = k : hc. Nach
dem 1. Strahlensatz lassen sich demnach für einen beliebigen Wert k 6= 0 die Strecken a′, b′ und c′ kon-
struieren. Damit ist das gesuchte Dreieck bis auf Ähnlichkeit bestimmt. Eine Ähnlichkeitstransformation
legt schließlich die Größe fest.

Konstruktion: Man legt zwei von demselben Punkt S ausgehende Strahlen fest und trägt man dem einen
die Strecken SP = ha und SQ = k sowie auf dem anderen die Strecke SR = 1 ab. Durch Q zieht man
die Parallele zu PR; ihr Schnittpunkt mit dem Strahl durch R sei T . Dann ist ST = a′.
Auf die gleiche Weise konstruiert man b′ und c′ aus hb bzw. hc. Aus a′, b′ und c′ konstruiert man ein
Dreiecke A′B′C ′ auf allgemeine bekannte Weise.
Die Ähnlichkeitstransformation kann man folgendermaßen durchführen: Man zieht zu der Geraden A′B′
in der Halbebene, in der C ′ liegt, im Abstand hc die Parallele und verlängert (falls erforderlich) B′C ′
bis zum Schnitt mit dieser. Der Schnittpunkt ist C. Die Parallele zu b′ durch C schneidet c′ bzw. dessen
Verlängerung in A. Das Dreieck AB′C = ABC ist das gesuchte.

Determination: Alle Konstruktionen sind stets und (bis auf Symmetrie) eindeutig ausführbar, wenn die
Strecken a′, b′ und c′ so beschaffen sind, dass stets die Summe zweier von ihnen größer ist als die drit-
te; andernfalls existiert kein Dreieck mit den geforderten Eigenschaften. Die Bedingung ist genau dann
erfüllt, wenn die Strecken 1

ha
, 1
hb

und 1
hc

dieselbe Bedingung erfüllen. Das heißt aber, es müssen für ha,
hb und hc die Relationen gelten:

(ha + hb)hc > hahb; (hb + hc)ha > hbhc; (ha + hc)hb > hahc

Aufgabe 24/63
Vier nicht benachbarte Ecken eines Quaders V = abc werden durch ebene Schnitte so abgestumpft,
dass von jeder Kante die Strecke x wegfällt. Mit den übrigen Ecken wird entsprechend verfahren, und
zwar werden dort die Schnitte so geführt, dass an jeder Ecke genau die dort zusammenstoßenden, bei
der Abstumpfung der ersten Ecken stehengebliebenen Kantenreste entfernt werden.
Wie groß muss man die Strecke x wählen, wenn der so entstehende, von acht Dreiecken und sechs
Parallelogrammen begrenzte Vierzehnflächner einen extremen Inhalt haben soll?

Bei der ersten Abstumpfung entfallen vier Pyramiden mit dem Inhalt 1
6x

3, dann noch vier (ebenfalls
dreiseitige) Pyramiden mit dem Inhalt 1

6 (a− x)(b− x)(c− x).
Es verbleibt (Abbildung)

V (x) = abc− 2
3x

3 − 2
3(a− x)(b− x)(c− x) = 1

3abc+ 2
3(ab+ bc+ ac)x− 2

3(a+ b+ c)x2

Damit ergibt sich

V ′(x) = 2
3(ab+ bc+ ac)− 4

3(a+ b+ c)x; V ′′(x) = −4
3(a+ b+ c) < 0

A B

CD

E
F

G
H

B1

B2

B3

x

x
x
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Es liegt also ein Maximum vor und aus V ′(x) = 0 folgt

xe = 1
2 ·

ab+ bc+ ac

a+ b+ c+

Das maximale Volumen Vmax des Vierzehnflächners beträgt also

Vmax = 1
3abc+ 1

6 ·
(ab+ bc+ ac)2

a+ b+ c

Determination und Spezialfall:
a) Ist (ohne Beschränkung der Allgemeingültigkeit) a > b > c, so muss im Extremfall xe ≤ c sein. Hieraus
folgt

c2 + a+ b

2 x− ab

2 ≥ 0

und schließlich durch Auflösung der quadratischen Ungleichung (negative Wurzelwerte kommen nicht in
Betracht)

c ≥ 1
4

[√
(a+ b)2 + 8ab− (a+ b)

]
b) Für den Würfel a3 erhält man xe = a

2 , Vmax = 5
6a

3.
Der Stumpfkörper ist der von acht gleichseitigen Dreiecken und sechs Quadraten begrenzte Körper, einer
der 15 halbregulären archimedischen Körper.

Aufgabe 25/63
Aus einem Brett sind ein Kreis mit dem Durchmesser d = 2r, ein Quadrat mit der Seite a = 2r und
ein gleichschenkliges Dreieck mit der Basis a = 2r und der Höhe b = 2r ausgeschnitten.
Welcher Körper lässt sich durch jede der drei Öffnungen hindurchschieben so, dass er sie dabei
vollständig ausfüllt?

Die Lösung findet man, wenn man den Körper im Dreitafel-
verfahren darstellt (Abbildung nächste Seite). Es ergibt sich
dann, dass ein Riss ein Kreis, der zweite Riss ein Quadrat und
der dritte Riss ein gleichschenkliges Dreieck ist.
Demzufolge muss es sich um einen Zylinder mit der Höhe des
Durchmessers handeln, von dem symmetrisch zu einem Ach-
senschnitt zwei Zylinderhufe abgeschnitten sind.
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Aufgabe 26/63
Im Jahre 1604 hatte zum ersten Mal seit Einführung des gregorianischen Kalenders der Februar fünf
Sonntage. In welchen Jahren wiederholt sich diese Eigenschaft?

Offenbar kann nur in Schaltjahren die gewünschte Eigenschaft auftreten, und zwar auch nur dann, wenn
der 1. Februar auf einen Sonntag fällt. Nach Ablauf eines Jahres von 365 Tagen verschiebt sich der
Wochentag für ein bestimmtes Datum um 1 da 365 = 7k+1 ist. In Schaltjahren beträgt die Verschiebung
2, nach Ablauf von vier Jahren (von denen eines ein Schaltjahr ist) also insgesamt 5.
Soll die Wiederkehr nach 4n Jahren eintreten, so muss also n · 5 durch 7 teilbar sein. Die kleinste Zahl n,
für die gilt n · 5 = 7m mit m = 1; 2; 3; ... ist n = 7.
Die erste Wiederholung erfolgt also nach 28 Jahren, die nächste nach weiteren 28 Jahren und so fort.
Danach ergeben sich zunächst die Jahreszahlen 1632, 1660 und 1688. Überschreitet man aber ein volles
Jahrhundert (nämlich eines der Jahre 1700, 1800 oder 1900), die nach dem Gregorianischen Kalender
keine Schaltjahre sind, so ist die Verschiebung um 1 kleiner. Es muss dann n · 5− 1 durch 7 teilbar sein.
Das ist für n = 3; 10; 17; ... der Fall.
Der Wert n = 3 kommt aber nicht in Frage, da durch ihn das Jahr 1700 noch nicht überschritten wird.
Demnach muss n = 10 sein, und die Zwischenzeit beträgt 40 Jahre. Man erhält somit die folgenden
Jahreszahlen:

1604 1632 1660 1688
1728 1756 1784
1824 1852 1880
1920 1948 1976

Da das Jahr 2000 (ebenso wie das Jahr 1600) ein Schaltjahr ist, folgt bereits nach 28 Jahren ein Februar
mit fünf Sonntagen, also im Jahr 2004. Damit beginnt aber ein neuer Zyklus mit denselben Endziffern

2004 2032 2060 2088 ...

Aufgabe 27/63
Man beweise, dass es unendliche viele Primzahlen der Form 6m − 1 gibt (wobei m eine natürliche
Zahl sei).

1. Es gibt mindestens eine Primzahl der Form 6m− 1, nämlich 5.
2. Angenommen es gäbe endlich viele, und zwar genau k verschiedene Primzahlen p1; p2; p3; ...; pk der
Form 6m− 1. Dann folgt, dass es mindestens k + 1 Primzahlen der Form 6m− 1 gibt - im Widerspruch
zur Annahme.
Beweis: Aus den k Primzahlen p1; p2; p3; ...; pk bilde man die Zahl 6p1p2p3...pk − 1.
a) Entweder ist 6p1p2p3...pk−1 selbst Primzahl. Dann ist sie von der Form 6m−1, und es gilt 6p1p2p3...pk−
1 = pk+1, was zu beweisen war.

b) Oder 6p1p2p3...pk−1 ist keine Primzahl. Dann müssen ihre Primteiler die Form 6m+ 1 oder 6m+ 5 =
6m′−1 haben, denn 2 und 3 sind sicher nicht Primteiler, und Zahlen der Form 6m, 6m+ 2, 6m+ 3 sowie
6m + 4 sind keine Primzahlen und können daher auch nicht Primteiler sein. Es können aber nicht alle
Primteiler die Form 6m + 1 haben, da das Produkt zweier Zahlen 6m1 + 1 und 6m2 + 1 stets die Form
6m3 + 1 hat:

(6m1 + 1)(6m2 + 1) = 36m1m2 + 6m1 + 6m2 + 1 = 6(6m1m2 +m1 +m2) + 1 = 6m3 + 1

Also befindet sich unter den Primteilern der Zahl 6p1p2p3...pk − 1 mindestens einer der Form 6m − 1.
Dieser kann aber mit keiner der Primzahlen p1; p2; p3; ...; pk identisch sein, da 6p1p2p3...pk−1 durch keine
dieser Zahlen teilbar ist. Also gibt es noch mindestens eine von p1; p2; ...; pk verschiedene Primzahl pk+1
von der Form 6m− 1, was zu beweisen war.
Damit ist gezeigt, dass die Annahme, es gäbe genau k verschiedene Primzahlen der Form 6m − 1, auf
einen Widerspruch führt. Zu jeder Anzahl k derartiger Primzahlen gibt es noch mindestens eine weitere;
also gibt es unendlich viele.
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Aufgabe 28/63

Gegeben ist ein Dreieck ABC. Die Seite a = BC werde über
C hinaus um ua bis C ′ verlängert, die Seite b = CA über A
hinaus um vb bis A′ und die Seite c = AB über B hinaus
um wc bis B′.
Wie groß ist der Flächeninhalt F ′ des Dreiecks A′B′C ′, ge-
messen in Flächeninhalten F des Dreiecks ABC? (Abbil-
dung) A

B

C

A′

B′

C ′

c a

b
vb

wc

ua

Es seien F1 der Flächeninhalt und h′a die Höhe des Dreiecks CC ′A′, F2 der Flächeninhalt und h′b die
Höhe des Dreiecks AA′B′ sowie F3 der Flächeninhalt und h′c die Höhe des Dreiecks BB′C ′. Dann gelten
die Gleichungen (Abbildung)

F1 = 1
2uah

′
a ; F2 = 1

2vbh
′
b ; F3 = 1

2wch
′
c

A

B

C

A′

B′

C′

vb

wc

ua

ha
hb

hc

h′a

h′b

h′c

Aus dem Strahlensatz folgt

h′a : ha = b+ vb

b
= 1 + v ; h′a = (1 + v)ha

h′b : hb = c+ wc

c
= 1 + w ; h′b = (1 + w)hb

h′c : hc = a+ ua

a
= 1 + u ; h′c = (1 + u)hc

Damit ergibt sich

F1 = 1
2ua(1 + v)ha ; F2 = 1

2vb(1 + w)hb ; F3 = 1
2wc(1 + u)hc

Wenn 1
2aha = 1

2bhb = 1
2chc = F folgt daraus

F1 = Fu(1 + v) ; F2 = Fv(1 + w) ; F3 = Fw(1 + u)

Für F ′ gilt F ′ = F + F1 + F2 + F3 also

F ′ = F + Fu(1 + v) + Fv(1 + w) + Fw(1 + u) = F (1 + u+ v + w + uv + vw + wu)
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Aufgabe 29/63
Bei einem Magnettongerät wird das Tonband nach der in der Abbildung schematisch gezeigten Kon-
struktion an den Magnetköpfen vorbeigezogen.

MagnetköpfeTonband

Andruckrolle

Antriebsrolle

Infolge von Herstellungsungenauigkeiten schwankt die Drehzahl n der Antriebsrolle um maximal
±0,1%. Ferner ist der Radius r der Antriebsrolle mit einem Fehler von maximal ±0,01 mm behaftet.
Mit diesem Magnettongerät wird ein 1000-Hz-Ton aufgenommen und anschließend abgespielt.
Um wieviel Hertz schwankt der abgespielte Ton maximal, wenn außer den angegebenen Ungenauig-
keiten keine weiteren Fehler vorhanden sind? Dabei sei n = 600min−1 und r = 3 mm.
Anleitung: Die Frequenz f ist der Tonbandgeschwindigkeit v proportional; d.h. f = k · v, wobei k ein
konstanter Faktor ist.

Es ist zunächst die Gleichung für die Bandgeschwindigkeit aufzustellen. Der Umfang der Antriebsrolle ist
U = 2πr. Dividiert man durch die Zeit T einer Umdrehung, so erhält man die Umfangsgeschwindigkeit,
die gleich der Bandgeschwindigkeit v ist. Demnach ist v = U

T = 2πr
T .

Mit T = 1
n erhält man schließlich v = 2πrn (1). Der Radius r und die Drehzahl n sind Schwankungen um

maximal ±∆r bzw. ±∆n unterworfen. Infolgedessen schwankt die Bandgeschwindigkeit v um den Wert
± M v.
Der größte Wert der Bandgeschwindigkeit ergibt sich, wenn r um +∆r und n um +∆n abweichen; dann
ist

v + ∆v = 2π(r + ∆r)(n+ ∆n)

Der absolute Fehler der Bandgeschwindigkeit wird dann

∆v = 2πrn+ 2π(r∆n+ ∆rn+ ∆r∆n)− 2πrn

(wegen v = 2πrn nach Gleichung 1). Somit wird

∆v = 2π(r∆n+ ∆rn+ ∆r∆n) (2)

Die Größen ∆r und ∆n sind sehr klein; ihr Produkt wird dann erst recht klein, d.h. ∆r∆n� r∆n+∆rn.
Man kann also ∆r∆n gegenüber r∆n+ ∆rn vernachlässigen, ohne einen sich auswirkenden Rechenfehler
zu begehen. Damit wird der absolute Fehler

∆v = 2π(r∆n+ n∆r) (3)

Dass die Vernachlässigung von ∆r∆n sinnvoll ist, kann durch Einsetzen der gegebenen Zahlenwerte in
die Gleichungen (2) und (3) und durch Vergleich der beider Ergebnisse bestätigt werden.
Bei der Aufnahme der Frequenz f wird infolge der Schwankungen der Bandgeschwindigkeit ein Fehler
verursacht. Es ist

f + ∆f = k(v + ∆v) ; ∆f = k(v + ∆v)− f

und wegen f = kv: ∆f = k∆v (4).
Durch Kombination von Gleichung (3) mit Gleichung (4) ergibt sich

∆f = 2kπ(r∆n+ n∆r) (5)

Die Konstante k lässt sich aus f = kv zu k = f
v bestimmen; mit Gleichung (1) erhält man daraus

k = f
2πrn (6). Setzt man Gleichung (6) in Gleichung (5) ein, so erhält man

∆f = f

(
∆n
n

+ ∆r
r

)
(7)
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Dies ist der maximale Fehler der Frequenz, die bei der Aufnahme auftritt. Im ungünstigsten Fall wird
derselbe Fehler nochmals durch die Wiedergabe verursacht; die Frequenz schwankt somit maximal um
den Wert

∆f ′ = 2f
(

∆n
n

+ ∆r
r

)
(8)

Mit ∆n
n = 0,001 = 0,01% und ∆r = 0,01 mm sowie r = 3 mm, f = 1000 Hz ergibt sich schließlich

∆f ′ = 8,6 Hz.
Dieselbe Abweichung ergibt sich bei Schwankungen nach unten. Bei der Wiedergabe des aufgenommenen
1000-Hz-Tons schwankt der Ton also um ±8,6 Hz, d.h., die Frequenz ändert sich innerhalb eines Bereiches
von 991,4 Hz bis 1008,6 Hz.

Aufgabe 30/63
Auf einer schiefen Ebene verstellbarer Neigung α liegt eine Masse m. Zwischen der Masse und der
Ebene besteht Haftreibung. Der Haftreibungskoeffizient sei µ0. Die Masse ist durch einen Faden am
oberen Rand der schiefen Ebene befestigt. Dieser Faden reißt bei einer Belastung Lr. Die Neigung
der Ebene wird nun (bei 0◦ beginnend) vergrößert.
Bei welcher Neigung αr reißt der Faden?

a) Man löse die Aufgabe in allgemeinen Größensymbolen, d.h., man stelle αr = f(m;µ0;Lr; g) ex-
plizit dar.

b) Man berechne αr zahlenmäßig für m = 3 kg, µ0 = 0,3, Lr = 8 N und g = 9,8ms2 .

Hangabtriebskraft: PA = mg sinα
Reibungskraft: PR = µ0mg cosα
Fadenbelastung: L = mg(sinα− µ0 cosα)
Zerreißbedingung: Lr ≥ mg(sinα− µ0 cosαr)
Die Zerreißbedingung ergibt eine Gleichung der allgemeinen Form sin x− a cosx = b mit x = αr, a = µ0
und b = Lr

mg .
Setzt man a = tan y und multipliziert die Gleichung mit cos y, so ergibt sich und weiter mit einem
Additionstheorem

sin x cos y − sin y cosx = b cos y → sin (x− y) = b cos y

Nach x aufgelöst, erhält man x = y + arcsin b cos y. Substituiert man y zurück, so folgt

x = arctan a+ arcsin
(

b√
1 + a2

)
Damit ergibt sich für die gesuchte Lösung und den gesuchten Zahlenwert

αr = arctanµ0 + arcsin
(

Lr

mg
√

1 + µ2
0

)
≈ 31◦48′

Aufgabe 31/63
Gegeben sei eine vierziffrige Zahl Z mit der folgenden Eigenschaft: Streicht man die ersten beiden
Ziffern weg, so erhält man die Quadratwurzel von Z. Wie heißt die Zahl Z?

Es sei Z = 100x + y, wobei 1 ≤ y99 und 10 ≤ x ≤ 99, x und y ganzzahlig ist. Dann gilt auf Grund der
Eigenschaften von Z: 100x+ y = y2 oder 100x = y(y − 1).
Es ist also das Produkt zweier ganzer aufeinanderfolgender Zahlen zu finden, das ein ganzzahliges Viel-
faches von 100 ist. Setzt man x = ab, so folgt entweder
1.) y = 4a; y − 1 = 25b oder 2.) y = 25a; y − 1 = 2b
Man überlegt sich leicht, dass die weitere Faktorenzerlegungen
3.) y = 2a; y − 1 = 50b oder 4.) y = 50a; y − 1 = 2b oder 5.) y = 10a; y − 1 = 10b
als unbrauchbar ausscheiden.
Daraus folgt: 25b = 4a − 1 oder 25a = 4b + 1. Die linken Seiten der Gleichungen sind durch 25 teilbar,
also müssen es auch die rechten sein. Damit kommen nur Werte in Frage, die als letzte Stellen entweder
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75 oder 25 haben, also b = 3; a = 19 oder a = 1; b = 6.
Wegen ab = x ≥ 10 kommen die Werte a = 1; b = 6 nicht in Betracht, und wegen ab = x ≤ 99 kommen
die weiteren Werte b = 7; a = 44 bzw. a = 5; b = 31 sowie alle größeren nicht in Frage.
Damit ist die Aufgabe gelöst. Es folgt

x = ab = 57 ; y = 4a = 25b+ 1 = 76

also Z = 100x+ y = 5776 = 762. Wie der Lösungsweg ausweist, ist dies auch die einzige Lösung.

Aufgabe 32/63
Die Haltbarkeit eines Motorradreifentyps wurde experimentell ermittelt. Bei Montage auf dem Hin-
terrad ergaben sich durchschnittlich 15000 km Fahrtstrecke bis zum vollständigen Verschleiß, bei
Montage auf dem Vorderrad dagegen 25000 km.

a) Nach welcher Fahrtstrecke müssen zwei gleichzeitig aufmontierte Räder ausgewechselt (Vorder-
und Hinterreifen vertauscht) werden, wenn beide nach der gleichen Fahrtstrecke vollständig ver-
schleißt sein sollen?

b) Welche Fahrtstrecke kann man maximal mit zwei Reifen zurücklegen?

Es werde angenommen, dass der Verschleiß proportional zur Fahrtstrecke ist.

Wir benutzen die folgenden Bezeichnungen (in km):
x Fahrtstrecke vor Reifenwechsel,
y Fahrtstrecke nach Reifenwechsel bis zum endgültigen Verschleiß
a = 25000 Fahrtstrecke des Vorderrades
b = 15000 Fahrtstrecke des Hinterrades (beides bis zum endgültigen Verschleiß)
Dann gilt für den Verschleiß des Vorderrades

x

a
· 100% + y

b
· 100% = 100% oder x

a
+ y

b
= 1

des Hinterrades
x

b
· 100% + y

a
· 100% = 100% oder x

b
+ y

a
= 1

Aus der Symmetrie der beiden Gleichungen bezüglich der Unbekannten x und y (wenn man beide ver-
tauscht, ergeben sich wieder die ursprünglichen Gleichungen) folgt unmittelbar y = x. Damit erhält
man

x

a
+ x

b
= 1 oder x = y = a · b

a+ b
= 9375

als Lösung zur Frage a. Die Lösung zur Frage b ergibt sich aus x+ y = x+ x = 2x = 18750. Die Reifen
müssen also nach 9375 km gewechselt werden, die Gesamtfahrstrecke beträgt 18750 km.

Aufgabe 33/63
Es sollen u Teile einer x-prozentigen Lösung mit v Teilen einer y-prozentigen Lösung derselben
Chemikalie gemischt werden, so dass sie u+ v Teile einer z-prozentigen Lösung ergeben.
1) Man berechne aus den Werten, wobei u : v das Mischungsverhältnis darstellt,
a) x, y und u : v den Wert z
b) x, z und u : v der Wert y
c) x, y und z den Wert u : v

2) In der Praxis wird zur Vereinfachung der Rechnung häufig das sogenannte ”Mi-
schungskreuz” angewendet: Die Differenzen aus der Prozentigkeit einer der Aus-
gangslösungen und der Prozentigkeit der Mischung ergeben jeweils die erforderli-
chen Anteile der anderen Ausgangslösung.
Beispiel: Aus einer 96-prozentigen und einer 89-prozentigen Lösung soll eine 85-
prozentige Lösung hergestellt werden. Das Mischungskreuz erhält folgende Gestalt:
Es sind also 5 Teile der 96-prozentigen Lösung mit elf Teilen der 80-prozentigen
Lösung zu mischen.

96 5

85

80 11

Man beweise die Richtigkeit dieses Verfahrens.
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3) Misst man u und v in Prozenten der gewünschten Gesamtmenge, so kann man auch das folgende
Nomogramm (Abbildung) verwenden.

100

80
70

60
50

40
30

20
10

0

10
20

30
40

50
60

70
80

90

Der Mittelteil des N-förmigen Nomogramms trägt
eine Einteilung von 0 bis 100, die die Anteile u und
v an der gewünschten Gesamtmenge liefert. Auf
einem beweglichen Stab ist die Prozentigkeit der
Lösungen aufgetragen.
Soll z.B. durch Mischung einer 40-prozentigen mit
einer 90-prozentigen eine 60-prozentige Lösung ent-
stehen, so sind Punkte 40 und 60 der beweglichen
Skala auf die Parallelen zu legen; der Stab ist nun
so lange parallel zu sich selbst zu verschieben, bis
er von der schrägen Skala bei 60 geschnitten wird.

Dieser Schnittpunkt teilt die schräge Skala im Verhältnis der zu mischenden Anteile; in unserem
Beispiel wären also 40 Teile der 90-prozentigen mit 60 Teilen der 40-prozentigen Lösung zu mischen.
Man beweise die Richtigkeit dieses Verfahrens.

1. Die erste Lösung enthält ux Teile reine Substanz, die zweite vy Teile, das Gemisch (u + v)z Teile.
Damit ergibt sich die Gleichung: ux+ vy = (u+ v)z.
Nach Division durch v ergibt sich daraus die Grundgleichung

u

v
x+ y =

(u
v

+ 1
)
z (1)

Da jeweils drei der vier Veränderlichen x, y, z und u
v gegeben sind, ist diese Gleichung als Gleichung mit

einer Unbekannten lösbar:

z =
u
vx+ y
u
v + 1 (2); y =

(u
v

+ 1
)
z − u

v
x (3); u

v
= z − y
x− z

(4)

2. Es sei x > z > y (ohne Beschränkung der Allgemeingültigkeit; ist x < z < y, so werden x und y
vertauscht; ist z = x; y, so ist die Aufgabe in der vorliegenden Form nicht lösbar). Die allgemeine Form
des Mischungskreuzes ist dann

x u = z − y

z

y v = x− z

Die Division von u durch v liefert die Gleichung (4). Das Mischungskreuz stellt also nichts anderes das
als eine Gedächtnishilfe für die Gleichung (4). Damit ist aber die Richtigkeit des Verfahrens bewiesen.

A

B

C

D

S

u

v

z − y

z − x
Bei dem Nomogramm ergeben sich zwei ähnliche Dreiecke (Abbildung):
Aus ]ASB = ]CSD (Scheitelwinkel), ]BAS = ]CDS (Wechselwin-
kel an geschnittenen Parallelen) folgt M ASB ∼=M DSC (nach dem
Hauptähnlichkeitssatz). Daraus folgt: BS : CS = AS : DS oder
u : v = (z − y) : (x− z). Das aber ist wieder Gleichung (4), womit die
Richtigkeit des Verfahrens bewiesen ist.

Aufgabe 34/63
Gesucht werden die drei positive ganze Zahlen, die nicht sämtlich gerade sind und für die folgende
weitere Bedingungen gelten:
1. Ihre Summe beträgt 102.
2. Ihr Produkt ist 24024.
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Man zerlegt zunächst das Produkt in seine Primfaktoren: 24024 = 2 · 2 · 2 · 3 · 7 · 11 · 13.
Da nur eine der drei gesuchten Zahlen gerade sein kann, kommt für die nur 8 oder ein Vielfaches von 8
in Frage. Als Vielfache scheiden 11 · 8 = 88 und alle größeren von vornherein aus, da sonst die Summen-
bedingung nicht erfüllbar ist. Damit stehen an geraden Zahlen der Zahlen 8, 3 · 8 = 24 und 7 · 8 = 56 zur
Verfügung.

1. Die gerade Zahl sei 8. Dann verbleiben für die beiden restlichen Zahlen x und y die Primfaktoren 3, 7,
11 und 13 und es muss gelten: x+ y = 102− 8 = 94. Damit ergeben sich folgende Kombinationen:

3 + 7 · 11 · 13 6= 94; 3 · 7 + 11 · 13 6= 94; 7 + 3 · 11 · 13 6= 94; 3 · 11 + 7 · 13 6= 94

11 + 3 · 7 · 13 6= 94; 3 · 13 + 7 · 11 6= 94; 13 + 3 · 7 · 11 6= 94

Folglich scheidet diese Möglichkeit aus.

2. Die gerade Zahl sei 24. Dann verbleiben für die beiden restlichen Zahlen x und y die Primfaktoren 7,
11 und 13 und es muss gelten x− y = 78.
Die drei möglichen Kombinationen ergeben nicht 78, so dass auch diese Möglichkeit ausscheidet.

7 + 11 · 13 6= 78; 11 + 7 · 13 6= 78; 13 + 7 · 11 6= 78

3. Die gerade Zahl sei 56. Dann verbleiben für die beiden restlichen Zahlen x und y die Primfaktoren 3,
11 und 13 und es muss gelten: x+ y = 46. Damit ergeben sich folgende Kombinationen:

3 + 11 · 13 6= 46; 11 + 3 · 13 6= 46; 13 + 3 · 11 = 46

Man sieht, dass die letzte Kombination zur Lösung führt. Die gesuchten Zahlen sind also 13, 33 und 56.
Ihre Summe ist 102, das Produkt ist 24024.

Aufgabe 35/63
Gegeben ist eine Ellipse E1 mit den Halbachsen
a1 und b1, deren kleine (bzw. große) Achse durch
den Punkt P in zwei Teilstrecken zerlegt ist. Diese
Teilstrecken seien die kleinen (bzw. großen) Achsen
zweier weiterer Ellipsen E2 und E3, die der Ellipse
E1 ähnlich seien.

Durch P sei die Parallele zur großen (bzw. kleinen)
Achse von E1 gezogen; deren Schnittpunkte mit E1
sind mit S′ und S′′ bezeichnet. Wird PS′ = PS′′

als große (bzw. kleine) Achse einer den Ellipsen E1,
E2 und E3 ähnlichen Ellipse E4 gewählt, so gilt

M

P
S′S′′

E1

E2

E3 E4

F (E1)− F (E2)− F (E3) = 2F (E4)

wobei mit F (Ei) der Flächeninhalt der Ellipse Fi bezeichnet ist. Man führe den Beweis für diese
Behauptung!

Wir führen den Beweis für den Fall, dass P die kleine Halbachse teilt. Der Beweis für den anderen Fall
verläuft analog.

Zweckmäßig wird die Ellipse E1 so in ein rechtwinklig-kartesisches Koordinatensystem gelegt, dass P auf
den Nullpunkt fällt und die große Achse parallel zur x-Achse liegt. Der Abstand des Mittelpunktes M1
von P sei m. Wird mit ai die große und mit bi die kleine Halbachse der Ellipse Ei bezeichnet, so hat die
Ellipse E1 in dieser Lage die Gleichung

x2

a2
1

+ (y −m)2

b21
= 1

Aus ihr erhält man die große Achse 2a4 von E4 als Abszisse von S′, indem man y = 0 setzt:

2a4 = xS′ = a1

b1

√
b21 −m2 ; a4 = a1

2b1

√
b21 −m2
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x

y

M

P S′S′′

E1

E2

E3 E4

Da die Ellipsen ähnlich sind, ist das Verhältnis entsprechender Halbachsen konstant: a1 : b1 = a4 : b4.
Daraus folgt

b4 = a4b1
a1

= 1
2

√
b21 −m2

Damit ergibt sich
F (E4) = πa4b4 = πa1

4b1
(b21 −m2)

Für die kleinen Halbachsen von E2 und E3 gilt auf Grund der Aufgabenstellung b2 = b1+m
2 und b3 = b1−m

2 .
Aus der Ähnlichkeit der Ellipsen E1, E2 und E3 folgt weiterhin a1 : a2 = b1 : b2 und a1 : a3 = b1 : b3 und
damit

a2 = a1

b1
· b1 +m

2 ; a3 = a1

b1
· b1 −m2

Mithin ist
F (E2) = πa1

4b1
(b1 +m)2 und F (E3) = πa1

4b1
(b1 −m)2

Wegen F (E1) = πa1b1 ergibt sich damit die Behauptung

F (E1)− F (E2)− F (E3) = πa1b1 −
πa1

4b1
(b1 +m)2 − πa1

4b1
(b1 −m)2 = 2πa1

4b1
(b2 −m2) = 2F (E4)

Aufgabe 36/63
Man beweise, dass für jede natürliche Zahl n ≥ 3 die Ungleichung gilt:

(n+ 1)n < n(n+1)

Die zu beweisende Ungleichung ist äquivalent der Ungleichung

(n+ 1)n

nn+1 < 1

Dies ist für n = 3 richtig, denn es ist 43

34 = 64
81 < 1.

Angenommen, die Richtigkeit der Ungleichung wäre für n = k bereits beweisen, d.h., es gelte

(k + 1)k

kk+1 < 1 dann ist kk+1

(k + 1)k > 1

und es folgt

(k + 2)k+1

(k + 1)k + 2 <
(k + 2)k+1 · kk+1

(k + 1)k + 2(k + 1)k = [k(k + 2)]k+1

(k + 1)2k+2 = k2 + 2k)k+1

(k2 + 2k + 1)k+1 < 1

Aus der Gültigkeit der Ungleichung für n = k folgt somit auch die Gültigkeit für n = k + 1 und somit
wegen der Gültigkeit für n = 3 die für jede natürliche Zahl n ≥ 3.
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Aufgabe 1/64
Es gibt in der Folge der natürlichen Zahlen zwei Gruppen von je vier unmittelbar aufeinanderfolgen-
den Primzahlen, die symmetrische zu einem Primzahlzwilling angeordnet sind. Der Abstand zwischen
der kleinsten und der größten dieser Primzahlen beträgt 70, ihr Produkt ist gleich 3959.
Welches sind die acht dieser Primzahlen und der Primzahlzwilling?

Wir nennen den Mittelpunkt der symmetrischen Gruppierung x. Dann ist die kleinste dieser Primzahlen
gleich x− 35 und die größte ist dann gleich x+ 35 und es gilt

(x− 35)(x+ 35) = 3959→ x2 − 1225 = 3959→ x1 = 72;x2 = −72

Demnach bilden 71 und 73 den Primzahlzwilling. Die kleinste der gesuchten Primzahlen in 72− 35 = 37,
die größte ist 72 + 35 = 107. Die beiden Gruppen von je vier aufeinanderfolgenden Primzahlen sind
37; 41; 43; 47 und 97; 101; 103; 107. Die Auswertung des x2-Wertes führt aus die entsprechenden negativen
Zahlen.

Aufgabe 2/64
Man beweise die Richtigkeit der Ungleichung

1
2 ·

3
4 ·

5
6 · ... ·

2n− 1
n

<
1√
2n

Dabei beträgt n die Anzahl der Faktoren.

Es sei
a1 · a2 · a3 · ... · ak · ... · an = 1

2 ·
3
4 ·

5
6 · ... ·

2n− 1
2n = a und

b1 · b2 · b3 · ... · bk · ... · bn = 2
3 ·

4
5 ·

6
7 · ... ·

2n
2n+ 1 = b

Dann ist a < b, da beide Produkte aus gleichviel Faktoren bestehen und für jedes k gilt ak < bk. Dann
ist auch a2 < ab = 1

2n+1 . Daraus folgt

a <
1√

2n+ 1
<

1√
2n

Aufgabe 3/64
Auf jeder Ecke eines Rechtecks F = ab wird eine Strecke x abgetragen, und zwar

a) von jeder Ecke im entgegengesetzten Uhrzeigersinn,

b) von zwei gegenüberliegenden Ecken aus in beide Richtungen

Die sich dadurch ergebenden Punkte sind Eckpunkte eines Parallelogramms. Für welche Strecke x
wird dessen Inhalt extrem?

a

b

a

b

x x

x

x

x x

x

x
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a) F1 = ab− (a− x)x− (b− x)x = ab− (a+ b)x+ 2x2; F ′1 = −(a+ b) + 4x; F ′′1 = 4 > 0

b) F2 = ab− x2 − (a− x)(b− x) = (a+ b)x− 2x2; F ′2 = (a+ b)− 4x F ′′2 = −4 < 0

Aus F ′1 = 0 folgt xE = 1
4 (a+ b). Aus F ′2 = 0 folgt xE = 1

4 (a+ b).
In beiden Fällen muss man x = 1

4 (a+ b) abtragen, um ein Extremum zu erhalten. Man findet bei a) ein
Minimum, bei b) ein Maximum. (Abbildung)

F1min = ab− (a+ b)2

8 ; F2max = (a+ b)2

8

Es ist stets, auch in den Extremfällen, F1 + F2 = F . Auch die Summe der Restdreiecke ist gleich F .
Aus ihnen kann man F in verschiedener Weise zusammensetzen, u.a. auch so, dass ein Trapezoid mit
rechtwinkligen Diagonalen entsteht.

Determination, Sonderfälle:
a) Bezeichnet man die kleinere Seite mit b, so muss x ≤ b sein, damit man ein im Rechteck liegendes
Parallelogramm erhält. Im Extremfall muss a+b

4 ≤ b, das heißt also, b ≥ a
3 sein. Im Grenzfall b = a

3 fallen
zwei Ecken der extremen Fläche in Gegenecken des Rechtecks, F1min = b2, F2max = 2b2.
b) Legt man ein Quadrat mit F = a2 zugrunde, so fallen die Extremfiguren mit dem Quadrat der
Seitenmitten zusammen. Dieses erscheint als Minimum aller einbeschriebenen Quadrate und als Maximum
aller einbeschriebenen Rechtecke. Die Seiten sind zu den Diagonalen des Quadrates parallel.

Aufgabe 4/64
Gegeben ist ein Kreis mit dem Mittelpunkt M und dem Radius r. Der Kreisumfang ist unter aus-
schließlicher Verwendung des Zirkels in vier gleiche Teile zu teilen.

Analysis: Die Aufgabe ist gleichbedeutend mit der Konstruktion eines einbeschriebenen Quadrates, d.h.
also, eines Quadrates mit der Diagonale d = 2r. Ist a die Seite dieses Quadrates, so gilt nach dem Lehrsatz
des Pythagoras 2a2 = d2 = 4r2 und demnach a = r

√
2.

Die Aufgabe verlangt als die Konstruktion der Strecke a = r
√

2 ausschließlich mit Hilfe des Zirkels.
Unproblematisch ist die Konstruktion einer Strecke b = r

√
3. Sie ergibt sich als Seite eines einbeschriebe-

nen gleichseitigen Dreiecks. Konstruiert man nun ein gleichschenkliges Dreieck mit der Basis d und den
Schenkeln b, so gilt für die Höhe h dieses Dreiecks nach dem Lehrsatz des Pythagoras

h2 = b2 −
(
d

2

)2
= (r
√

3)2 − r2 = 2r2

also h = r
√

2.
Um den Fußpunkt der Höhe zu finden, konstruiert man dieses Dreieck über einem Durchmesser eines
Kreises, dann ist der Kreismittelpunkt M als Halbierungspunkt des Durchmessers wegen der Symmetrie-
achsen des gleichschenkligen Dreiecks auf Fußpunkt der Höhe.

A

BC

D

E F

M

G′

G

H

I

J

Konstruktionsbeschreibung: Man teilt den Kreisumfang in sechs
gleiche Teile, indem man von einem beliebigen Punkt A des Kreis-
umfangs fortgesetzt den Radius r des Kreises abträgt. Die Teil-
punkte seien dann A, B, C, D, E und F (Abbildung).
Mit AC in der Zirkelspanne schlägt man um A und d Kreisbögen,
die einander in G (und G′) schneiden. Ferner schlägt man mit MG
(oder MG′) in der Zirkelspanne einen Kreisbogen um A, der den
Kreisumfang in H und I schneidet. Die Punkte A, H, D und I
teilen den Kreis in vier gleiche Teile.

Beweis: Es ist nach Konstruktion

AB = BC = CD = DE = EF = FA = MA = MB = MC = r

Ist J der Halbierungspunkt von MB, so ist er aus Symmetriegründen auch Halbierungspunkt von AC,
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und es gilt nach dem Lehrsatz des Pythagoras

JC2 = AJ2 = MA2 −MJ2 = r2 −
(r

2

)2
= 3

4r
2 → JC = AJ = r

2
√

3

und demnach AC = AJ + JC = r
√

3. Weiter gilt nach dem Satz des Pythagoras MG2 = DG2 −MD2

und nach Konstruktion DG = AC = r
√

3 und MD = r, also auch MG2 = 2r2 oder MG = r
√

2.
Nun ist nach Konstruktion AH = AI = r

√
2. Wegen MH = MA = MI = r folgt daraus nach dem Satz

des Pythagoras, das
]HMA = ]AMI = 90◦ ; ]HMI = 180◦

also HI Durchmesser des Kreises ist. Dann ist aus Symmetriegründen DH = AH und DI = AI also
AH = AI = DH = DI.

Aufgabe 5/64
Es ist zu beweisen, dass stets mindestens eine der drei natürlichen Zahlen x, y und z, die der Bedin-
gung x2 + y2 = z2 genügen (pythagoreische Tripel), durch 5 teilbar ist!

Wir setzen
x = 5r ± i, y = 5s± j, z = 5t± k

wobei r, s und t irgendwelche nichtnegative ganze Zahlen bedeuten, während i, j und k (unabhängig
voneinander) die Werte 0, 1 oder 2 annehmen können. Dann gilt

(5r ± i)2 + (5s± j)2 = (5t± k)2

oder; nach entsprechender Umformung;

25(r2 + s2 + t2)± 10(ri+ sj + tk) = k2 − i2 − j2

Da die linke Seite der Gleichung ohne Rest durch 5 teilbar ist, muss auch die rechte Seite ohne Rest durch
5 teilbar sein. Demzufolge kann die rechte Seite nur die beiden Werte -5 und 0 annehmen; denn die rechte
Seite kann nach der Voraussetzung über die Zahlen i, j und k nicht größer als 4 und nicht kleiner als -8
sein.

1. Fall: k2 − i2 − j2 = −5, d.h. k2 = i2 + j2 − 5.
Wegen k2 ≥ 0 muss i2 + j2 ≥ 5 sein. Es muss also mindestens einer der beiden Zahlen i, j den Wert
2 haben, während die andere gleich 1 oder 2 ist. Der Fall, dass beide gleich 2 sind, ist aber nicht
möglich, weil sich daraus k2 = 3 ergäbe. Damit bleibt nur die Möglichkeit, dass i = 2 und j = 1
(oder umgekehrt), also k2 = 0 ist.

2. Fall: k2 − i2 − j2 = 0, d.h. k2 = i2 + j2.
Wenn diese Gleichung in nichtnegativen ganzen Zahlen erfüllt sein soll, müssen entweder alle drei
Zahlen gleich Null sein, oder sie müssen sämtlich voneinander verschieden sein. Da aber für die drei
Zahlen i, j und k nur die Werte 0, 1 und 2 zur Verfügung stehen, ist i oder j gleich Null.

Damit ist gezeigt, dass stets mindestens eine der drei Zahlen i, j, k den Wert Null hat, d.h., dass
mindestens eine der drei Zahlen x, y und z durch 5 teilbar ist.

Aufgabe 6/64
Man zeichne eine Gerade durch die zwei gegebenen Punkte P und Q, die etwa 37 cm voneinan-
der entfernt sind. Zur Verfügung stehen ein Lineal (ohne Maßeinteilung) von 20 cm Länge und ein
Winkeldreieck mit einer Hypotenusenlänge von 15 cm Länge. Nicht erlaubt ist das Einvisieren des
Lineals zwischen den beiden Punkten (etwa so, wie man im Gelände ein Bandmaß zwischen zwei
Fluchtstäben einvisiert).

Zur Lösung verwendet man zwei geometrische Lehrsätze, auf deren Beweis hier verzichtet wird.

1. Die Parallele zu zwei gegenüberliegenden Seiten eines Parallelogramms durch den Diagonalen-
schnittpunkt ist Mittelparallele und halbiert die geschnittenen Seiten.
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2. Schneiden zwei Geraden auf zwei von einem Punkt ausgehenden Strahlen verhältnisgleiche Ab-
schnitte aus, so sind die Geraden parallel (Umkehrung des zweiten Strahlensatzes).

Man zeichnet durch P und Q je einen Strahl (unter Umständen durch mehrfaches Anlegen des Lineals),
der Schnittpunkt der Strahlen sei S. Man halbiert PS in P ′, indem man über PS als Seite ein Parallelo-
gramm PSUV konstruiert und durch den Diagonalenschnittpunkt D die Parallele zu SU zieht, die PS
in P ′ schneidet.
Entsprechend halbiert man QS in Q′. Man verbindet P ′ mit Q′ (nach dem Strahlensatz ist P ′Q′ = PQ

2 <
20 cm) und zieht zu P ′Q′ die Parallele zu P , die durch Q geht.

Bei der Konstruktion des Parallelogramms über PS bzw. QS hat man folgendes zu beachten: Im allge-
meinen wird eine Diagonale länger sein als das Lineal. Diese Schwierigkeit behebt man folgendermaßen:
Nachdem man durch P und durch S (bzw. durch Q und durch S) zwei Parallele gezogen hat, zeichnet
man zunächst die längere Diagonale (unter Umständen durch mehrfaches Anlegen des Lineals). Wählt
man den Winkel zwischen ihr und PS (bzw. QS) hinreichend klein, kann man immer erreichen, dass die
kürzere Diagonale kleiner als die Lineallänge wird (vorausgesetzt, PS und QS sind nicht zu groß).

Aufgabe 7/64

Welche Form hat ein Körper mit dem in der Abbildung gezeigten
Grund- und Aufriss?
Dabei sind alle Vierecke Quadrate, alle Kanten, die nicht sichtbar
sind, werden im Grund- und Aufriss von den Quadratseiten vollständig
überdeckt.

Ein Körper, dessen Grund- und Aufriss Quadrate von gleicher Größe mit der in der Aufgabe gezeigten
Lage sind, kann ein Würfel oder ein durch einen Diagonalenschnitt halbierter Würfel sein, wobei zwei
benachbarte Seitenflächen in den beiden Rissebenen liegen.
Sonst würden die nicht sichtbaren Kanten nicht sämtlich durch die Quadratseiten verdeckt werden, oder
es müssten noch andere sichtbare Kanten eingezeichnet sein. Mit Rücksicht auf die inneren Quadrate
in Grund- und Aufriss kann der Körper kein Würfel sein; diese Quadrate müssten nämlich in Grund-
und Aufriss von aufgesetzten Körpern oder von Ausschnitten des Würfels sein. Dann müssten aber noch
weitere sichtbare Kanten auftreten bzw. nicht sichtbare Kanten eingezeichnet sein.

Es kommt also nur ein halbierter Würfel in Frage, auf dessen Diagonalenfläche ein kleinerer halbierte
Würfel mit der Diagonalfläche aufgesetzt ist, bzw. in dessen Diagonalenfläche ein halber Würfel entspre-
chend eingeschnitten ist bzw. eine Kombination von beiden.
Lösungen der Aufgabe sind also die drei in den Abbildungen im Schrägbild dargestellten Körper.

Aufgabe 8/64
Ein gleichschenkliges Dreieck ist aus der Basis a und der Winkelhalbierenden w eines Basiswinkels
zu konstruieren.

Analysis: Aus der Analysisfigur (Abbildung) geht hervor: M BDE ∼M CED, nach Hauptähnlichkeitssatz
wegen BD = DE = w ist δ = β

2 , und nach dem Außenwinkelsatz ist β = ε+ δ = ε+ β
2 , also ε = β

2 = δ.
Daraus folgt CD = CE = X und
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A

B
C

D

E

F

G

M

w

a
2

a
2

w

x

x

β
2

β

ε

δ

x+ a

w
= w

x

Durch Auflösen dieser Gleichung nach der Unbekannten c ergibt sich x2 + ax− w2 = 0 oder

x = −a2 +
√
a2

4 + w2

(der negative Wert ist für das geometrische Problem bedeutungslos). Man konstruiert also die Strecke
CD = x, indem man die Hypotenuse eines rechtwinkligen Dreiecks mit den Katheten a

2 und w um a
2

vermindert. Damit ist M BCD nach sss und M ABC nach wsw konstruierbar.

Konstruktion: Man zeichnet BC = a mit dem Mittelpunkt M . In C errichtet man auf BC die Senkrechte,
auf der man CF = w abträgt. Um M schlägt man mit MC als Radius einen Kreis, der MF in G
schneidet. Mit GF als Radius schlägt man um C und mit w als Radius um B Kreisbögen, die einander in
D schneiden. In B trägt man an BC den Winkel DCM an; der freie Schenkel schneidet die Verlängerung
von CD über D hinaus in A. Das Dreieck ABC ist das gesuchte.

Determination: 1. Die Konstruktion von GF = CD ist bei jeder Wahl von a und w möglich.
2. Damit die Kreisbögen mit CD um C und mit w um B einander schneiden, muss gelten CE + w > a,
Wegen

CE = x = −a2 +
√
a2

4 + w2 folgt − a

2 +
√
a2

4 + w2 + w > a

und nach Umrechnung w
a >

2
3 .

3. Damit die Verlängerung von CD und der freie Schenkel des in B angetragenen Winkels einander
schneiden, muss gelten ]β < 90◦ oder, was dasselbe besagt, −x2 < a2 + w2. Die Umrechnung liefert
w
a <
√

2.
Alle Konstruktionen sind unter diesen Bedingungen (bis auf Symmetrie) eindeutig. Die Aufgabe ist also
eindeutig lösbar, wenn gilt

2
3 <

w

a
<
√

2

Zusatz: Ist w = a, so ist die Bedingung erfüllt, und es gelten die Proportionen

x+ a

a
= a

x
; x

a
= a− x

x

Die Strecke x ist dann also der größere Abschnitt der stetig geteilten Basis.

Aufgabe 9/64
Es sei p eine weder durch 2 noch durch 3 noch durch 5 teilbare ganze Zahl.
Welchen Rest lässt p4 beim Teilen durch 240?
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Zur Untersuchung der Teilbarkeit bildet man die Zahl p4 − 1 und zerlegt diese in Faktoren:

p4 − 1 = (p2 − 1)(p2 + 1) = (p− 1)(p+ 1)(p2 + 1)

1. Da p nicht durch 2 teilbar ist, folgt, dass auch p2 nicht durch 2 teilbar ist, wohl aber p− 1, p+ 1 und
p2 + 1. Da p− 1 und p+ 1 zwei aufeinanderfolgende gerade Zahlen sind, ist genau eine von ihnen sogar
durch 4 teilbar. Daraus folgt, dass p4 − 1 durch 16 teilbar ist.
2. Die Zahlen p− 1, p, p+ 1 sind drei aufeinanderfolgende ganze Zahlen. Genau eine von ihnen ist durch
3 teilbar. Da dies nicht p ist, muss es entweder p − 1 oder p + 1 sein. Daraus folgt, dass p4 − 1 durch 3
teilbar ist.

3. Da p nicht durch 5 teilbar ist, gilt entweder p = 5k ± 1 oder p = 5k ± 2 mit k = 0; 1; 2; 3; .... Daraus
folgt entweder

p2 = 25k4 ± 10k + 1 oder p2 = 25k4 ± 20k + 1

also entweder
p2 − 1 = 25k4 ± 10k oder p2 + 1 = 25k4 ± 20k

Man sieht, dass in jedem Fall genau einer der beiden Faktoren p2 − 1 oder p2 + 1 und damit auch das
Produkt p4 − 1 durch 5 teilbar ist.
Aus 1., 2. und 3. folgt, dass p4 − 1 durch 16 · 3 · 5 = 240 teilbar ist. Dann lässt aber p4 beim Teilen durch
240 (unter den angegebenen Bedingungen) stets den Rest 1.

Aufgabe 10/64
Gegeben sind zwei Geraden g1 und g2 und ein Kreis K. Man konstruiere ein Quadrat ABCD mit A
auf g1, B und D auf g2 und C auf K. Ferner gebe man eine vollständige Determination.

Analysis: Die Diagonale BD des gesuchten Quadrates ABCD liegt auf g2. Da das Quadrat symmetrisch
bezüglich seiner Diagonalen ist, liegt C symmetrisch zu A bezüglich g2 als Symmetrieachse. Da der geo-
metrische Ort für A die Gerade g1 ist, folgt, dass C auf einer bezüglich g2 zu g1 symmetrischen Geraden
g′1 liegt. Außerdem liegt C auf dem Kreis K. Man findet C also als Schnittpunkt der zu g1 bezüglich g2
symmetrischen Geraden g′1 mit dem Kreis K.

Konstruktionsbeschreibung: Man konstruiert die zu g1 bezüglich g2 symmetrische Gerade g′1. Ihr Schnitt-
punkt mit K ist C. Von C aus fällt man auf g2 das Lot, sein Fußpunkt sei M . Die Verlängerung von CM
über M hinaus schneidet g1 in A. Der Kreis um M mit MA = MC als Radius schneidet g2 in B und in
D.

Determination: Die Konstruktion von g′1 ist stets und eindeutig ausführbar. ist g1 ‖ g2, so ist auch g′1 ‖ g2;
ist g1 ⊥ g2, so ist g′1 = g1.
Schneidet g′1 den Kreis in zwei Punkten, so gibt es zwei Lösungen; berührt g′1 den Kreis in einem Punkte,
so gibt es genau eine Lösung; meidet g′1 den Kreis, so gibt es keine Lösung.
Entartet der Kreis K zum Punkt, so gibt es genau eine Lösung, wenn dieser auf g′1 liegt, sonst gibt es
keine Lösung. Die übrigen Konstruktionen sind stets und; bis auf Symmetrie bezüglich der Geraden durch
A und C; eindeutig ausführbar.

Aufgabe 11/64
Von einem Viereck ABCD seien die folgenden Stücke gegeben: AB = a, ]BCA = γ1, ]ACD = γ2,
]CDB = δ1, ]BDA = δ2.
a) Das Viereck ist zu konstruieren.
b) Wie groß ist die Seite CD = c, wenn AB = a = 1 (LE), γ1 = 30◦, γ2 = 30◦, δ1 = 45◦ und δ2 = 60◦
ist? (Lösung durch Berechnung)

a) Analysis: Durch die Winkel ACD = γ2 und CDA = δ = δ1+δ2 ist das Dreieck ACD bis auf Ähnlichkeit
bestimmt. Durch die Winkel BDC = δ2 und BCD = γ = γ1+γ2 ist das Dreieck BCD bis auf Ähnlichkeit
bestimmt. Damit ist auch das Viereck ABCD bis auf Ähnlichkeit bestimmt.
Man konstruiert daher zunächst ein dem Viereck ABCD ähnliches Viereck A′B′C ′D′, indem man an eine
beliebig gewählte Seite D′C ′ in D′ die Winkel CDB und CDA und in C ′ die Winkel ACD und BCD
anträgt. Die Schnittpunkte der freien Schenkel sind A′ bzw. B′.
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Sodann führt man eine Ähnlichkeitstransformation durch derart, dass die Seite A′B′ zur Seite AB = a
wird.

Konstruktionsbeschreibung: Man legt die Strecke C ′D′ beliebig fest und trägt in C ′ den Winkel ACD = γ2
sowie in D′ den Winkel CDA = δ = δ1 + δ2 an. Der Schnittpunkt der freien Schenkel ist A′. Dann trägt
man in C ′ den Winkel BCD = γ = γ1 + γ2 und in D′ den Winkel CDB = δ1 an, der Schnittpunkt der
freien Schenkel ist B′.
Die Ähnlichkeitstransformation kann man durchführen, indem man auf A′B′ die Strecke AB = a von A′
aus abträgt und durch B die Parallele zu B′C ′ zieht; deren Schnittpunkt mit der Geraden durch A′ und
C ′ ist C. Man zieht nun noch die Parallele durch C zu C ′D′, die die Gerade durch A′D′ = AD′ in D
schneidet.

Determination: Alle Teilkonstruktionen sind stets und eindeutig ausführbar, wenn die Summe je dreier
der vier gegebenen Winkel ungleich 180◦ ist; sonst ergeben sich keine Schnittpunkte der freien Schenkel
und die Aufgabe hat keine Lösung.

b) Auf Grund der Lösung a) führt man zweckmäßig die Berechnung an einem dem Viereck ABCD
ähnlichen Viereck A′B′C ′D′ durch dann. Es gilt dann

CD

AB
= C ′D′

A′B′
; CD = C ′D′

A′B′
AB

Da C ′D′ beliebig ist, wählt man es zweckmäßig gleich der 1 (LE). Dann wird wegen AB = 1 (LE):
CD = 1

A′B′ . Mittels Sinussatz der ebenen Trigonometrie berechnet man zunächst aus C ′D′ = 1 und den
gegebenen Winkel die Strecken D′A′ und D′B′ und daraus mit Hilfe des Kosinussatzes die Strecke A′B′.
Es ist

]DAC = α1 = 180◦ − γ2 − δ1 − δ2 = 45◦ und

]DBC = β2 = 180◦ − γ1 − γ2 − δ1 = 75◦

D′A′ = D′C ′ · sin γ2

sinα1
= sin γ2

sinα1
=
√

2
2 ≈ 0,7071

D′B′ = D′C ′ · sin γ1 + γ2

sin β1
= sin γ1 + γ2

sin β2
= 3
√

2
√

6
2 ≈ 0,8966

sin β2 = sin 75◦ wurde hier elementar mittels Additionstheorem berechnet.

A′B′ =
√

(D′A′)2 + (D′B′)2 − 2 ·D′A′ ·D′B′ · cos δ2 = ... = 1
2

√
20− 10

√
3

Aus CD = 1
A′B′ folgt abschließend CD = 2√

20−10
√

3
≈ 1,22.

Aufgabe 12/64
Es gelte a1 · a2 · a3 · ... · an = nn. Man beweise, dass dann gilt

a2
1 + a2

2 + a2
3 + ...+ a2

n ≥ n3

Aus a1 · a2 · a3 · ... · an = nn folgt
n
√
a1 · a2 · a3 · ... · an = n

Bekanntlich ist das geometrische Mittel n
√
a1 · a2 · a3 · ... · an aus n Zahlen ai mit i = 1; 2; ...;n nie größer

als das quadratische Mittel √
a2

1 + a2
2 + a2

3 + ...+ a2
n

n

aus denselben Zahlen ai. Also gilt

n = n
√
a1 · a2 · a3 · ... · an ≤

√
a2

1 + a2
2 + a2

3 + ...+ a2
n

n

Damit folgt aber n3 ≤ a2
1 + a2

2 + ...+ a2
n.
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Aufgabe 13/64
Es ist zu beweisen: Sind U der Umfang und sa; sb; sc die Seitenhalbierenden eines Dreiecks, so gilt
die Ungleichung

U

2 < sa + sb + sc < U

A B

C

DE

F c

ab

sc

sbsa

Der Beweis wird in zwei Schritten geführt (vgl. Abbildung).
1. Beweis für die Richtigkeit der Beziehung U

2 < s−a+sb+sc:
Für jedes Dreieck gilt der Satz: ”Die Summe zweier Seiten ist
größer als die dritte Seite.” und weiterhin ”Der Schnittpunkt
der Seitenhalbierenden teilt diese im Verhältnis 2 : 1”.
Danach gelten die folgenden Beziehungen (S ist der Schnitt-
punkt der Seitenhalbierenden):

AS + SF > AF oder 2
3sa + 1

3sc >
c

2

BS + SD > BD oder 2
3sb + 1

3sa >
a

2

CS + SE > CE oder 2
3sc + 1

3sb >
b

2
Durch Addition der drei Zeilen folgt unmittelbar die Behauptung.
2. Beweis für die Richtigkeit der Beziehung U = a+ b+ c > s− a+ sb + sc.
Nach Konstruktion ist AF = FB und AE = EC. Es gilt demnach die Beziehung AF : AB = AE : AC.
Nach dem Strahlensatz folgt EF ‖ CB. Außerdem gilt dann AF : AB = 1 : 2, AF : AB = EF : CB,
also EF : CB = 1 : 2, folglich ist EF = a

2 . Analog ergibt sich FD = b
2 und ED = c

2 . Damit erhält man
folgende Ungleichungen

AF + FD > AD oder c

2 + b

2 > sa

EF + FB > EB oder a

2 + c

2 > sb

EF + EC > CF oder a

2 + b

2 > sc

Durch Addition der Zeilen folgt unmittelbar die Behauptung. Damit ist bewiesen, dass in jedem Dreieck
die behauptete Ungleichungskette gilt.

Aufgabe 14/64
Gegeben sind eine Strecke AB und eine dazu parallele Gerade g. Die Strecke ist ausschließlich mit
Hilfe eines Lineals zu verdoppeln, d.h., zur Konstruktion ist nur das Ziehen von Geraden zugelassen.

A B

C

D E F

G

H IK

L

g

Man wählt einen beliebigen Punkt C so, dass die Verbin-
dungsstrecken AC und BC die Gerade g in den Punkten
D bzw. E schneide. Auf g wähle man weiter einen Punkt
F außerhalb der Strecke DE (vgl. Abbildung).
Die Gerade durch C und F schneidet die Gerade durch
A und B in G. Nun ziehe man in den Trapezen ABED
und BGFE die Diagonalen; die Diagonalenschnittpunkte
seine H bzw. I.
Die Verbindungsgerade von H und I schneidet die
Gerade durch C, E und B in K. Die Gerade durch D
und K schneidet die Gerade durch A und B in L. Es ist
BL = AB und damit AL = 2AB.

Beweis: Wegen der Parallelität von AB und DE gilt nach einem Strahlensatz

DE

AB
= EC

BC
= EB

BG
; DE

AB
= DH

BH
; EF

BG
= FI

BI
also DH

BH
= FI

BI
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Daraus folgt (ebenfalls nach einem Strahlensatz-Umkehrung): HI ‖ BF . Damit ergibt sich, wieder nach
einem Strahlensatz

AB

HK
= BE

BK
: BL

HK
= BD

DH
= BE

EK

Aus diesen beiden Gleichungen folgt

AB

HK
= BL

HK
; AB = BL

Aufgabe 15/64
Ein Exportauftrag über 1500 Stück Type 1 und 800 Stück Type 2 eines Gerätes soll auf zwei Werke
I und II verteilt werden. Der maximale Produktionsausstoß beträgt für
- Werk I: 30 Stück/Tag Type 1 oder 20 Stück/Tag Type 2,
- Werk II: 50 Stück/Tag Type 1 oder 40 Stück/Tag Type 2.
Wie muss der Auftrag auf die beiden Werke verteilt werden, wenn er in möglichst kurzer Zeit erfüllt
werden soll?

Das Werk I stellt an x11 Tagen Type 1 und an x12 Tagen Type 2 her, das Werk II an x21 Tagen Type 1
und an x22 Tagen Type 2.
Bedingung für das Zeitminimum ist, dass beide Werke ihnen Teilauftrag in den gleichen Zeit erledigen;
denn würde beispielsweise das Werk I mehr Zeit benötigen als das Werk II, so könnte man durch eine
Verlagerung eines Teils des Auftrags von Werk I auf Werk II die Lieferfrist verkürzen. Es gilt somit die
erste Gleichung

x11 + x12 = x21 + x22

Für die Herstellung von Type 1 gilt: 30x11 + 50x21 = 1500 und für Type 2: 20x12 + 40x22 = 800. Diese
drei Gleichungen werden vereinfacht und geordnet

x11 + x12 − x21 − x22 = 0 (1)
3x11 + 5x21 = 150 (2)
x12 + 2x22 = 40 (3)

Es liegt ein Gleichungssystem von drei Gleichungen mit vier Variablen vor. Die Lösungsmannigfaltigkeit
ist einfach unendlich. Betrachtet man x22 als freien Parameter, so folgt aus Gleichung (3)

x12 = 40− 2x22 (4)

Dieser Wert ergibt, wenn man ihn in Gleichung (1) einsetzt x11 − x21 = 3x22 − 40. Zusammen mit
Gleichung (2) ergibt sich die Lösung

x11 = 15
8 x22 −

25
4 (5) ; x21 = −9

8x22 + 135
4 (6)

Der Variabilitätsbereich für x11 ist 0 ≤ x11 ≤ 50. Das Werk I brauchte nämlich 50 Tage, wenn es 1500
Stück Type 1 allein herstellen würde. Entsprechend findet man

0 ≤ x21 ≤ 30 ; 0 ≤ x12 ≤ 40 ; 0 ≤ x22 ≤ 20

Aus den Gleichungen (4), (5) und (6) folgt aber weiter

0 ≤ 40− 2x22 ≤ 40 also 0 ≤ x22 ≤ 20

0 ≤ 15
8 x22 −

25
4 ≤ 50 also 10

3 ≤ x22 ≤ 30

0 ≤ −9
8x22 + 135

4 ≤ 30 also 10
3 ≤ x22 ≤ 30

Der gemeinsame Variabilitätsbereich für x22 ist demnach

10
3 ≤ x22 ≤ 20
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Für die Fertigungszeit T gilt: T = x11 + x12 = x21 + x22; oder, durch Einführung der Variablen x22 aus
den Gleichungen (4), (5) und (6)

T = 135
4 − 1

8x22

Sie ist linear vom Parameter x22 abhängig und nimmt den kleinsten Wert an, wenn x22 den größten
zulässigen Wert annimmt, also für x22 = 20. Damit ergibt sich die Lösung

x22 = 20 ; x12 = 0 ; x21 = 45
4 ; x11 = 125

4 ; T = 125
4

Damit berechnet man die Stückzahlen
Type 1 Type 2

Werk I 937,5 0
Werk II 562,5 800,0

Theoretisch ergeben sich halbe Stückzahlen. In der Praxis wird man dem Werk I 937 Stück und dem
Werk II 563 Stück in Auftrag geben. Dadurch erhöht sich die theoretisch kürzeste Lieferzeit von 31 1

4
Tagen ein wenig.

Aufgabe 16/64
Welche zweistelligen Zahlen erfüllen folgende Bedingung: Das um die Quersumme verminderte Pro-
dukt der beiden Stellen ist 3?

Bezeichnet man die gesuchte Zahl mit u = 10x+y (wobei x und y ganze Zahlen mit 0 ≤ x ≤ 9, 0 ≤ y ≤ 9
sind), so folgt aus der gestellten Bedingung die Gleichung

xy − (x+ y) = 3

Durch Umformung erhält man daraus die Gleichungen

y(x− 1) = x+ 3→ y = x+ 3
x− 1 → y = 1 + 4

x− 1

Da y ganzzahlig ist, muss (x− 1) Teiler von 4 sein. Damit kommen nur die folgenden Werte in Frage

x-1: 1 2 4
x: 2 3 5
y: 5 3 2

Die Zahlen lauten also u1 = 25, u2 = 33 und u3 = 52.

Aufgabe 17/64
Es ist ein Dreieck aus der Seite a, dem ihr gegenüberliegenden Winkel α und der Winkelhalbierenden
wα zu konstruieren.

α
2

α
2

A

B C
D

F

M

Analysis: Die Abbildung zeigt, dass für den Punkt A zunächst
ein geometrischer Ort existiert: der Kreis um M mit BC = a
als Sehne und ]BMC = 2α als Zentriwinkel (nach dem Satz
über Peripherie- und Zentriwinkel).
Einen zweiten geometrischen Ort findet man durch die folgende
Überlegung:
Verlängert man die Winkelhalbierende wα über den Eckpunkt
D auf BC = a hinaus bis zum Schnittpunkt E mit dem Kreis
um M , so ergeben sich zwei Dreiecke ACE und CED. Diese
Dreiecke sind ähnlich.

Beweis: Es ist 1. ]CEA = ]DEC, 2. ]EAC = ]ECD = α
2 ; das letztere ergibt sich unmittelbar aus
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]ECB = ]EAB = α
2 .

Damit gilt
EC

ED
= wα + ED

EC
oder 2ED =

√
w2
α + (2EC)2 − wα

(das andere Vorzeichen der Wurzel ergibt geometrisch keinen Sinn.) Also ist ED konstruierbar, damit
aber auch EA. Den Punkt E findet man 1. auf dem Kreis um M , 2. auf der Mittelsenkrechten von BC
(wegen ]BEC = 180◦ − α, ]ECD = α

2 ist auch ]EBC = α
2 und somit M BEC gleichschenklig).

Konstruktionsbeschreibung: Man trägt in C an BC = a nach derselben Seite den Winkel α an, errichtet
auf dem freien Schenkel von a die Senkrechte und bringt diese mit der Mittelsenkrechten von BC zum
Schnitt.
Der Schnittpunkt ist der Mittelpunkt M des Ortskreises für A und E, sein Radius ist MB = MC. Der
Punkt E ergibt sich als Schnittpunkt des Ortskreises mit der Mittelsenkrechten von BC.
Nunmehr konstruiert man in einer Hilfskonstruktion die Strecke EA: sie ergibt sich, wenn man von der
Hypotenuse eines rechtwinkligen Dreiecks mit den Katheten wα und 2EC die Strecke wα subtrahiert, die
verbleibende Reststrecke halbiert und zu ihr wα wieder addiert (vgl. Abbildung).

wα

wα

AE

EC

EC

ED

ED

Mit EA als Radius schlägt man um E einen Kreis, dessen Schnitt-
punkt mit dem Kreis um M der Punkt A ist.

Determination: Ja nach Wahl von wα gibt es zwei (bezüglich ME
symmetrische) Lösungen oder genau eine Lösung (gleichschenkliges
Dreieck) oder keine Lösung.

Aufgabe 18/64
Man stelle die beiden Funktionen graphisch dar:

a) y1 =
√

(1 + x)2 −
√

(1− x)2; b) y2 = 1√
(1 + x)2 +

√
(1− x)2

x

y

−2

−2

−1

−1

1

1

2

2 y1

y2

Die exakte Definition der Quadratwurzel besagt, dass es im
Bereich der reellen Zahlen zu jeder nicht negativen Zahl a stets
genau eine nicht negative Zahl b gibt, für die die Gleichung
b2 = a gilt.
Die beiden Radikanden der Aufgaben sind als Quadrate für
jeden Wert von x nicht negativ. Das Radizieren ergibt nach
der Definition√

(1 + x)2 = |1 + x| =
{

(1 + x) für − 1 ≤ x
−(1 + x) für x ≤ −1

√
(1− x)2 = |1− x| =

{
(1− x) für x ≤ 1
−(1− x) für 1 ≤ x

Somit gilt für x ≤ −1:

y1 = −(1 + x)− (1− x) = −2 ; y2 = 1
−(1 + x) + (1− x) = − 1

2x

für −1 ≤ x ≤ 1:

y1 = (1 + x)− (1− x) = 2x ; y2 = 1
(1 + x) + (1− x) = 1

2

für 1 ≤ x:
y1 = (1 + x)− (−(1− x)) = 2 ; y2 = 1

(1 + x) + (−(1− x)) = 1
2x

Jede Bildkurve setzt sich, wie die Abbildung zeigt, aus drei Teilstücken zusammen.
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Aufgabe 19/64
Welcher Rest ergibt sich, wenn man eine Quadratzahl durch 8 teilt?

Wir treffen eine Fallunterscheidung

1. Die Quadratzahl sei gerade: z2 = 2m.
Dann ist sicher auch z gerade: z = 2n und es gilt z2 = (2n)2 = 4n2

a) n = 2k: z2 = 4n2 = 4 · 4k2 = 16k2. Die Quadratzahl lässt beim Teilen durch 8 den Rest 0.
b) n = 2k + 1: z2 = 4n2 = 4(4k2 + 4k + 1) = 16k2 + 16k + 4. Die Quadratzahl lässt beim Teilen
durch 8 den Rest 4.

2. Die Quadratzahl sei ungerade: z2 = 2m+ 1.
Dann ist sicher auch z ungerade: z = 2n+ 1 und es gilt z2 = (2n+ 1)2 = 4n2 + 4n+ 1. Den letzten
Ausdruck formen wir um: 4n2 + 4n+ 1 = 4n(n+ 1) + 1.
a) n = 2k: 4n(n + 1) = 4(2k)(2k + 1) = 8k(2k + 1); dieser Ausdruck ist durch 8 teilbar, also lässt
die Quadratzahl beim Teilen durch 8 den Rest 1.
b) n = 2k + 1: 4n(n+ 1) = 4(2k + 1)(2k + 2) = 8(2k + 1)(k + 1). Auch dieser Ausdruck ist durch 8
teilbar, und es gilt dasselbe wie bei 2a)

Daraus folgt: Eine Quadratzahl lässt beim Teilen durch 8 den Rest 0, wenn die Basis durch 4 teilbar ist;
sie lässt den Rest 4, wenn die Basis durch 2 teilbar ist und den Rest 1 in allen übrigen Fällen (d.h., wenn
die Basis ungerade ist).
Bei den vorstehenden Betrachtungen bedeuten m, n und k (wie sich aus dem Sinn ergibt) stets irgend-
welche natürliche Zahlen; einschließlich der Null.

Aufgabe 20/64
Ein Rennwagen durchfährt im fliegenden Start dreimal eine Teststrecke s, wobei die Geschwindigkei-
ten v1, v2 und v3 gemessen werden (v1 6= v2 6= v3). Wie groß ist die mittlere Geschwindigkeit vm aus
den drei Versuchsfahrten?

Die mittlere Geschwindigkeit vm ergibt sich, wenn man die Summe aller durchfahrenen Strecken durch
die Summe der benötigten Zeiten teilt:

vm =

n∑
i=1

si

n∑
i=1

ti

Nun ist s− 1 = s2 = s3 = s, also
3∑
i=1

si = 3s. Aus v = s
t ergibt sich ti = si

vi
= s

vi
. Damit ist

3∑
i=1

ti =
3∑
i=1

s

vi
= s

(
1
v1

+ 1
v2

+ 1
v3

)
Für vm folgt demnach

vm = 3s
s
(

1
v1

+ 1
v2

+ 1
v3

) = 3 v1v2v3

v1v2 + v2v3 + v1v3

Bildet man den reziproken Wert 1
vm

, so ergibt sich

1
vm

= 1
3

(
1
v1

+ 1
v2

+ 1
v3

)
Man erkennt, dass die mittlere Geschwindigkeit nicht etwa gleich dem arithmetischen Mittel aus den
Einzelgeschwindigkeiten ist, sondern sie ist gleich dem sogenannten harmonischen Mittel daraus. Der
reziproke Wert der mittleren Geschwindigkeit ist gleich dem arithmetischen Mittel aus den reziproken
Werten der Einzelgeschwindigkeiten.
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Aufgabe 21/64
Gegeben ist ein Viereck ABCD, bei dem die Verlängerungen der Seiten AB und CD einander recht-
winklig schneiden. Es ist zu beweisen:
Teilt man die Seiten BC und DA im Verhältnis der anliegenden Seiten, so schneidet die Gerade die
Verlängerungen von AB und CD unter einem Winkel von 45◦.

x

y

A D

B

C

T1

T2

α

Man legt zweckmäßig das Viereck ABCD so in
ein rechtwinkliges Koordinatensystem, dass die Eck-
punkte auf den Achsen liegen (Abbildung).
Man bestimmt zunächst die Koordinaten der Teil-
punkte T1 und T2, stellt dann die Gleichung der Ge-
raden durch T1 und T2 auf und ermittelt deren An-
stieg. Damit erhält man den Tangens des Schnitt-
winkels mit der Abszissenachse (Verlängerung von
AB), aus dem auch der Schnittwinkel mit der Or-
dinatenachse folgt (Verlängerung von CD).
Der Punkt T1 teilt die Strecke AD innen im
Verhältnis

λ = −AB
CD

= −b− a
c− d

= a− b
c− d

Der Punkte T2 teilt die Strecke BC innen im gleichen Verhältnis. Für die Koordinaten des Teilpunktes
T einer Strecke P1P2 gilt bekanntlich

xT = x1 − λx2

1− λ ; yT = y1 − λy2

1− λ
Wendet man diese Formeln an, so erhält man nach entsprechender Rechnung:

xT1 = a(c− d)
c− d− a+ b

; yT1 = d(b− a)
c− d− a+ b

xT2 = b(c− d)
c− d− a+ b

; yT2 = c(b− a)
c− d− a+ b

Aus der Zweipunkteform der Geradengleichung

y2 − y1

x2 − x1
= y1 − y
x1 − y

folgt m = tanα = y2 − y1

x2 − x1

Mit den Werten x1 = xT1 , y1 = yT1 , x2 = yT2 und y2 = yT2 ergibt sich damit

m =
d(b−a)−c(b−a)
c−d−a+b

a(c−d)−b(c−d)
c−d−a+b

= (b− a)(d− c)
(c− d)(a− b) = 1

Aus m = tanα = 1 folgt α = 45◦. Das heißt, die Abszissenachse wird unter einem Winkel von 45◦
geschnitten; damit wird aber die Ordinatenachse unter dem gleichen Winkel geschnitten.

Aufgabe 22/64
Gesucht sind zwei natürliche Zahlen a und b mit a 6= b; a; b 6= 0, für die die folgende Beziehung gilt:
a3 + b3 = (a+ b)2.
Es ist zu zeigen, dass es (bis auf die Reihenfolge) genau ein derartiges Zahlenpaar a; b gibt.

Die gesuchten Zahlen sollen die Gleichung

a3 + b3 = (a+ b)2

befriedigen. Wegen a+ b 6= 0 kann man beide Seiten dieser Gleichung durch a+ b dividieren, man erhält
damit

a2 − ab+ b2 = a+ b ; a2 − ab− a+ b2 − b = 0→ a2 − a(b+ 1) + b(b− 1) = 0
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Man betrachtet b als freien Parameter und löst diese quadratische Gleichung nach a auf:

a1;2 = b+ 1
2 ±

√(
b+ 1

2

)2
− b2 + 1 = b+ 1

2 ± 1
2
√

1 + 6b− 3b2

Notwendige Bedingung dafür, dass a eine natürliche Zahl ist, ist 1 + 6b− 3b2 ≥ 0.
Betrachtet man die Funktion y = −3x2 + 6x+ 1, so stellt man fest, dass Werte y ≥ 0 nur zwischen den
beiden Nullstellen (einschließlich) auftreten. Dies sind aber die Werte y1 = 1 + 2

3
√

3 und y2 = 1− 2
3
√

3.
Als natürliche Zahlen b 6= 0 kommen aus diesem Intervall nur die Werte b1 = 1 und b2 = 2 in Frage. Aus
ihnen folgt a1 = 2 und a2 = 1. Aus dem Gang der Herleitung folgt, dass dies auch die einzigen Zahlen
mit der verlangten Eigenschaft sind.

Aufgabe 23/64
Gegeben sei ein Kreis mit zwei zueinander senkrechten, sonst aber beliebigen Sehnen PQ und RS.
Es ist zu beweisen, dass für den Radius r des Kreises die Gleichung gilt:

4r2 = PR2 +QS2

R S

P

Q

M

O
α

ϕ

β

ϕ′ β

γ

r

r

Verwendet man die Bezeichnungen der Abbildung, so gilt ϕ = ϕ′

(da ϕ und ϕ′ Peripheriewinkel über derselben Sehne RQ sind).
Weiter erkennt man aus der Abbildung die Gültigkeit der folgenden
Beziehungen:

OS = QS · cosϕ also OS2 = QS2 · cos2 ϕ

OP = PR · cosϕ also OP 2 = PR2 · cos2 ϕ

Daraus folgt durch Addition

OS2 +OP 2 = PS2 = (QS2 + PR2) cos2 ϕ (1)

Aus dem Satz über die Winkelsumme im Dreieck folgt α = 90◦ − ϕ, mithin ist γ = 2α = 2(90◦ − ϕ)
als Zentriwinkel über dem gleichen Bogen. Für β folgt damit (wieder nach dem Winkelsummensatz des
Dreiecks) β = 90◦ − 90◦ + ϕ = ϕ. Nun ist

PS

2r = cosϕ also PS2

4r2 = cos2 ϕ (2)

Setzt man (2) in (1) ein, so folgt

PS2 = (QS2 + PR2)PS
2

4r2 also 4r2 = QS2 + PR2

Aufgabe 24/64
Man gebe eine Summenformel für die Reihe

n∑
ν=0

νb · eν(a+bx)

Es ist für a 6= −x (diesen Fall betrachten wir zunächst)
n∑
ν=0

νbeν(a+bx) = 0 · be0 + bea+bx + 2be2(a+bx) + ...+ nben(a+bx)

und da νbeν(a+bx) = (eν(a+bx))′ ist, kann man schreiben
n∑
ν=0

νbeν(a+bx) =
n∑
ν=0

[
beν(a+bx)

]′
= (e0)′ + (ea+bx)′ + ...+ (en(a+bx))′ =

[
e0 + ea+bx + ...+ en(a+bx)

]′

97



2.4 Aufgaben und Lösungen 1964

Innerhalb der eckigen Klammern steht eine geometrische Reihe mit a1 = e0 = 1; q = ea+bx und mit n+ 1
Gliedern, deren Summe mit

sn+1 = a1
qn+1 − 1
q − 1 = e(n+1)(a+bx) − 1

ea+bx − 1
angegeben werden kann. Damit folgt
n∑
ν=0

νbeν(a+bx) =
n∑
ν=0

[
beν(a+bx)

]′
=
[
e(n+1)(a+bx) − 1

ea+bx − 1

]′
= b[ne(n+2)(a+bx) − (n− 1)e(n+1)(a+bx) + ea+bx]

(ea+bx − 1)2

(nach der Quotientenregel der Differentialrechnung).
Für den Fall a = −bx erhält man ein arithmetische Reihe:

n∑
ν=0

νbeν(a+bx) =
n∑
ν=0

νb = b
n(n+ 1)

2

Aufgabe 25/64
Gegeben ist eine dreiseitige regelmäßige Pyramide mit der Seitenkante s = 10 cm und dem Winkel
α = 75◦ zwischen der Seiten- und Grundkante.
Wie lang ist der kürzeste Weg auf dem Mantel der Pyramide, der von einem Eckpunkt der Grundfläche
ausgehend einmal um die Pyramide herum zum Ausgangspunkt führt?

S

A

A′

B

C

30◦

75◦
75◦

Man denke sich den Mantel längs der Seitenkante auf-
geschnitten, auf der der Ausgangspunkt liegt, und in
die Ebene abgewickelt. Der kürzeste Weg zwischen zwei
Punkten der Ebene ist die Verbindungsstrecke dieser
Punkte (vgl. Abbildung).
Der Mantel setzt sich aus drei kongruenten gleichschenk-
ligen Dreiecken zusammen. Aus dem Winkelsummensatz
für das ebene Dreieck folgt, dass jeder Winkel zwischen
zwei Seitenkanten gleich 30◦ ist, für den Winkel ASA′
folgt damit ]ASA′ = 90◦. Damit ist

aa′ = s
√

2 = 10
√

2 ≈ 14,14 cm

Aufgabe 26/64
Es ist zu beweisen, dass in jedem Parallelogramm jede Seitenhalbierende ein Drittel einer Diagonale
abschneidet (unter Seitenhalbierender ist die Verbindungsstrecke einer Seitenmitte mit einer Ecke zu
verstehen.)

Der Beweise kann mit Hilfe der analytischen Geometrie geführt werden. Dazu legt man zweckmäßigerweise
ein beliebiges Parallelogramm so in das Koordinatensystem, wie es die Abbildung zeigt.
Die Koordinaten der Eckpunkte sind dann A(0; 0);B(a; 0);C(a + e; b);D(e; b), der Punkte E (Halbie-
rungspunkt von AB = a) hat die Koordinaten E(a2 ; 0).
Die Gleichung der Diagonalen AC ergibt sich damit zu y = b

a+ex, die der Seitenhalbierenden zu

y = b

e− a
2
x+ a

2 ·
b

a
2 − e

= 2b
2e− ax+ ab

a− 2e

(wie man leicht aus der Zwei-Punkte-Form der Geradengleichung herleitet).

x

y

A(0; 0) B(a; 0)

C(a+ e; b)D(e; b)

E(a2 ; 0)

F
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Durch Gleichsetzen ergeben sich die Koordinaten des Schnittpunktes:

b

a+ e
x = 2b

2e− ax+ ab

a− 2e ; 1
a+ e

= 2
2e− a + a

(a− 2e)x

x = a+ e

3 ; y = b

a+ e
x = b

3
Bereits aus diesen Koordinaten ist zu erkennen, dass dieser Schnittpunkt F die Diagonale AC drittelt.
Tatsächlich ergibt sich für die Länge der Diagonalen AD

AD =
√

(a+ e)2 + b2

und für die Länge der Strecke AF

AF =

√(
a+ e

3

)2
+
(
b

3

)2
= 1

3
√

(a+ e)2 + b2 = 1
3AD

Analog lässt sich der Beweis für die anderen Seitenhalbierenden bzw. für die andere Diagonale führen.

Aufgabe 27/64
Man bestimme die Folge (xn) derjenigen xn-Werte, für die gilt: sin 1

xn
= 1.

Wegen der Periodizität der sin-Funktion folgt aus der Gültigkeit der Gleichung

sin 1
xn

= 1 die Gleichung sin (a+ 2kπ) = 1

(k beliebig, ganz) mit 1
xn

= a+ 2kπ oder xn = 1
a+2kπ . Da aus sin (a+ 2kpi) = sin a = 1 folgt a = π

2 , gilt

xn = 2
π + 4nπ = 2

π(1 + 4n)

Dass es sich bei der Folge

(xn) =
(

2
π(1 + 4n)

)
deren erste Glieder x0 = 2

π , x1 = 2
5π , x−1 = 2

−3π , x2 = 2
9π , x−2 = 2

−7π , ... sind, um eine Nullfolge handelt,
ist ohne weiteres erkennbar.

Aufgabe 28/64
Man suche eine dreistellige Zahl, für die die folgenden Bedingungen gelten:
1. Ihre Quersumme ist 17.
2. Multipliziert man die erste Stelle mit 4, so erhält man die aus den letzten beiden Stellen bestehende
Zahl.

Die gesuchte Zahl sei u = 100x + 10y + z, wobei gilt 0 < x ≤ 9, 0 ≤ y; z ≤ 9, x; y; z ganzzahlig. Dann
gilt auf Grund der Bedingungen:

x+ y + z = 17 (1) ; 10y + z = 4x (2)

Eliminiert man aus diesen Gleichungen z, so folgt

5x− 9y = 17→ x = 4 + 2y − 3− y
5

Es muss also 3 + y durch 5 teilbar sein. Folglich kann y nur die Werte y1 = 2 und y2 = 7 annehmen.
Daraus folgt x1 = 7 und x2 = 16. da x2 = 16 > 9 ist, entfallen x2 und y2. Es folgt weiter z = 8.
Damit ergibt sich die gesuchte Zahl u zu u = 728. Die Probe bestätigt die Richtigkeit der Lösung.
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Aufgabe 29/64
In ein gegebenes Dreieck ABC ist ohne Benutzung äußerer Punkte eine Parallele B′C ′ zur Seite BC
so zu konstruieren (B′ auf AC, C ′ auf AB), dass der Umfang des Dreiecks AB′C ′ gleich der Seite
AB des gegebenen Dreiecks ist.

A B

C

O
B′

C′ C′′

ρ

hc

Konstruktion: Man konstruiere den Inkreismittelpunkt O
des Dreiecks ABC mit Hilfe der Winkelhalbierenden in
bekannter Weise und ziehe durch O die Parallele zu AB. Ihr
Schnittpunkt mit AC sei B′. Durch B′ ziehe man die Parallele
zu BC, ihr Schnittpunkt mit AB sei C ′. Das Dreieck AB′C ′

ist das gesuchte.

Beweis (vgl. Abbildung): Zu beweisen ist, dass

AB′ +B′C ′ + C ′A = AB

ist. Zum Beweise ziehe man die Hilfslinien AO, BO und OC ′′ ‖ B′C ′ (C ′′ auf AB). Dann ist
1) C ′C ′′ = B′O (Gegenseiten im Parallelogramm nach Konstruktion)
2) C ′C ′′ = B′A (M AOB′ ist gleichschenklig, da ]B′AO = ]C ′AO = ]AOB′, folgt aus AO als Winkel-
halbierender bzw. AC ′′ ‖ OB′ nach Konstruktion)
3) C ′′B = C ′′O (M BOC ′′ ist gleichschenklig, da ]OBC ′′ = ]BOC ′′; folgt aus BO als Winkelhalbieren-
der bzw. OC ′′ ‖ B′C ′ ‖ BC nach Konstruktion)
4) C ′′B = C ′B′ (Gegenseiten im Parallelogramm nach Konstruktion).
Also ist

AB′ +B′C ′ + C ′A = C ′C ′′ + C ′′B +AC ′ = AB

Der Beweis lässt sich auch rechnerisch führen. Nach den Strahlensätzen ist

AB′

AC
= AC ′

AB
= B′C ′

CB
= ρ

hc

Daraus folgt
2s′ = AB′ +B′C ′ + C ′A = ρ

hc
(AC + CB +AB) = 2ρs

hc

Wegen F = ρs = chc2 folgt 2s′ = c.

Aufgabe 30/64
Man beweise, dass für jede natürliche Zahl n die folgende Ungleichung gilt:

n! >
(
n+ 1

4

)n+1

Wir führen den Beweis durch vollständige Induktion. Die Behauptung gilt, wie man durch Nachrechnen
leicht bestätigt, für n = 1 und n = 2. Angenommen, sie gilt für n = k

k! >
(
k + 1

4

)k+1

Dann folgt

k!(k + 1) >
(
k + 1

4

)k+1
· (k + 1) =

(
k + 2

4

)k+2
· 4(k + 1)k+1

(k + 2)k+2

(k + 1)! >
(
k + 2

4

)k+2
· 4(

k+2
k+1

)k+2

Nun ist (
k + 2
k + 1

)k+2
=
(

1 + 1
k + 1

)k+1
·
(

1 + 1
k + 1

)
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Bekanntlich gilt (
1 + 1

k + 1

)
< e < 3

und für k ≥ 2 ist 1 + 1
k+1 ≤

4
3 . Folglich ist

4(
k+2
k+1

)k+2 ≥ 1

Daraus folgt unmittelbar, dass

(k + 1)! >
(
k + 2

4

)k+2

ist, denn die rechte Seite der Ungleichung wird durch das Weglassen des Faktors nur noch verkleinert.
Also folgt aus der Gültigkeit der Ungleichung für n = k ≥ 2 die Gültigkeit für n = k+1; da ihre Gültigkeit
für n = 1 und n = 2 bereits erwiesen ist, gilt sie somit für alle n.

Aufgabe 31/64
Gegeben sind drei gleichgroße Kreise in einer Ebene, von denen jeder die beiden anderen berührt.
Die (kleineren) Bögen zwischen den Berührungspunkten bilden ein Bogendreieck, dessen Spitzen die
Berührungspunkte sind. Zeichnet man in dieses den Inkreis, so entstehen drei neue Bogendreiecke.
Man berechne und konstruiere die Radien der Inkreise für alle vier Bogendreiecke.

h1

h11

h12

A2 A3

A1

M

M1

M3 M2

B1

B2B3

r

Berechnung: Die Zentren der gegebenen Kreise bilden ein gleichseitiges Dreieck mit den Seiten a = 2r
und den Höhen hi = r

√
3, wobei r der Radius der Kreise ist. Da im gleichseitigen Dreieck die Höhen mit

den Seitenhalbierenden zusammenfallen, teilt der Höhenschnittpunkt M jede Höhe hi in zwei Abschnitte
hi1 und hi2 = hi1 (vgl. Abbildung).
Der große Inkreis habe den Radius x, jeder kleinere, die aus Symmetriegründen einander gleich sind,
den Radius y. Ebenfalls aus Symmetriegründen ist der Höhenschnittpunkt M das Zentrum der großen
Inkreises.
Wegen r + x = hi2 = 2

3r
√

3 wird

x = 1
3r(2
√

3− 3) ≈ 0,1547r

Zur Berechnung von y kann man auf das Dreieck M1B1A3 den Lehrsatz des Pythagoras anwenden. Es
ist

M1B1 = h11 − x− y = 1
3h1 − x− y = 1

3r
√

3− x− y und x = 2
3
√

3− r

M1B1 = r(1− 1
3
√

3)− y ferner B1A3 = r; A3M1 = r + y

Daraus folgt [
r(1− 1

3
√

3− y
]2

+ r2 = (r + y)2
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Löst man diese Gleichung nach y auf, so ergibt sich

y = r

33(9− 4
√

3) ≈ 0,0628r

Konstruktion: Man findet x ohne weiteres durch Konstruktion des Höhenschnittpunktes. Um y zu finden,
führt man y auf x zurück:

y

x
=

r
33 (9− 4

√
3)

1
3r(2
√

3− 3)
= 9− 4

√
3

11(2
√

3− 3)
= 1 + 2

√
3

11 = 1
2
√

3− 1

Damit kann man den ersten Strahlensatz anwenden, indem man auf dem einen Strahl; mit beliebig
gewählter Strecke 1; die Strecken 1 und 2

√
3− 1 abträgt, denen y und k auf dem anderen Strahl entspre-

chen.
Die Strecke 2

√
3− 1 erhält man, indem man aus der Diagonale eines Quadrats mit der Seitenlänge 1 und

der Strecke als Katheten ein rechtwinkliges Dreieck konstruiert, dessen Hypotenuse nach dem Lehrsatz
des Pythagoras gleich

√
3 ist.

Vom Doppelten dieser Hypotenuse subtrahiert man die Strecke 1.

Aufgabe 32/64
Welche Kubikzahlen unter 109 enden mit ihren letzten drei Ziffern wieder mit einer Kubikzahl?

Das Basis der gesuchten Kubikzahl habe die Form 10x + y. Die Fälle x = 0 und y = 0 sind trivial und
können daher außer acht gelassen werden. Es gilt also 0 < x ≤ 99 und 0 < y ≤ 9, x und y ganzzahlig.
Die Forderung der Aufgabe besagt, dass

(10x+ y)3 = 103k + z2 = 103k + y3 (1)

ist. Zunächst beweisen wir, dass z = y ist, wäre nämlich

(10x+ y)3 = 103k + z2 mit z 6= y und 0 < z ≤ 9

so würde folgen

103x3 + 3 · 102x2y + 3 · 10xy2 + y3 = 103k + z3

10(102x3 − 102k + 30x2y + 3xy2) = z33− y3

d.h., z3− y3 müsste durch 10 teilbar sein. Das wäre aber nur möglich, wenn zwei der ersten neun Kubik-
zahlen gleiche Einerziffern hätten, diese sind aber sämtlich voneinander verschieden: 1; 8; 7; 4; 5; 6; 3; 2; 9.
Eine Umformung von (1) ergibt

103x3 + 3 · 102x2y + 3 · 10xy2 + y3 = 103k + z3

10 · 3xy(10x+ y) = 103(k − x3)
3xy(10x+ y) = 100(k − x3)

Das links stehende Produkt muss also durch 100 teilbar sein. Da 3 zu 100 teilerfremd ist, folgt, dass
xy(10x+ y) durch 100 teilbar ist. Wir unterscheiden nun drei Fälle:

1. Für y = 1; 3; 7; 9 bedeutet das: x muss durch 100 teilbar sein. Das widerspricht aber der Vorausset-
zung 0 < x ≤ 99, und damit scheiden dieser Werte für y aus.

2. Für y = 5 ist (10x+y) nicht durch 4 teilbar; also muss x durch 4 teilbar sein: x = 4n mit 0 < n ≤ 24,
n ganzzahlig.
Das liefert die 24 Werte x = 4; 8; 12; ...; 92; 96.

3. Für y = 2; 4; 6; 8 ergibt sich, da weder y noch (10x+ y) durch 5 teilbar ist; dass x durch 25 teilbar
sein muss. Das liefert die Werte x = 25; 50; 75.

Damit erhalten wir das folgende Ergebnis:
Von den 999 Kubikzahlen unter 109 haben 36 die verlangte Eigenschaft, nämlich die folgenden:
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453 853 1253 1653 2053 2453 2853 3253 3653

4053 4453 4853 5253 5653 6053 6453 6853 7253

7653 8053 8453 8853 9253 9653 2523 2543 2563

2583 5023 5043 5063 5083 7523 7543 7563 7583

Aufgabe 33/64
Zur näherungsweisen Berechnung des Rauminhalts von Körpern in der Form von Pyramiden- und
Kegelstümpfen, wie sie oft in der Technik vorkommen, wird oft die Faustformel

V ≈ VN = h

2 (G1 +G2)

angewandt. Dabei bedeuten h die Höhe des Stumpfkörpers, G1 und G2 die Inhalte der beiden paral-
lelen, zur Höhe h senkrecht verlaufenden Begrenzungsflächen.
Bei großen prozentualen Unterschieden der parallelen Begrenzungsflächen wird der Fehler bei der
Verwendung dieser Formel beträchtlich (bis zu 50 %). Daher ist die Lösung der folgenden Aufgabe
wichtig:
Wieviel Prozent darf der Unterschied der Größen G1 und G2 höchstens betragen, wenn der Fehler
der Näherungsformel 1 % bzw. n % nicht überschreiten soll?

Der Fehler bei der Verwendung der Faustformel ist

f = VN − V = h

2 (G1 +G2)− h

3 (G1 +G2 +
√
G1G2) = h

6 (G1 +G2 − 2
√
G1G2) = h

6 (
√
G1 −

√
G2)2

Hieraus ergibt sich zunächst, dass die Faustformel für G1 6= G2 stets einen zu großen Wert liefert. Die
weitere Umformung

f = h

6G1

(
1−

√
G2

G1

)2

zeigt, dass der Fehler f bei konstantem VerhältnisG2 : G1 zur Höhe h sowie zuG1 buw. zuG2 proportional
ist.
Für den relativen Fehler f

V erhält man

f

V
= (

√
G1 −

√
G2)2

2(G1 +G2 +
√
G1G2

=
(

1− G2

G1

)2
: 2
(

1 + G2

G1
+
√
G2

G1

)

Ersetzt man nun
√

G2
G1

durch x (wobei also x das Verhältnis entsprechende Strecken in den parallelen
Begrenzungsflächen ist), so folgt

f

V
= (1− x)2

2(1 + x+ x2)
Der relative Fehler ist also nur vom Verhältnis G2 : G1 abhängig. Wenn er kleiner oder höchstens gleich
0,01 = 1% sein soll, gilt für x die Ungleichung

(1− x)2 ≤ 0,01 · 2(1 + x+ x2)

da 2(1 + x+ x2) > 0 ist. Durch entsprechende Umformungen folgt

50(1− x)2 ≤ 1 + x+ x2 → x2 − 101
49 x ≤ −1→

(
x− 101

98

)2
<

597
982

Es sei nun (ohne Beschränkung der Allgemeingültigkeit) G2 ≤ G1, also x ≤ 1. Dann erhält man (bei
Rechenstabgenauigkeit)

x ≥ 101−
√

597
98 = 0,781→ 0,610 ≤ x ≤ 1

Also muss G2 ≥ 0,610G1 sein, d.h. G2 muss mindestens die Größe 61,0% von G1 haben, wenn der Fehler
bei der Verwendung der Faustformel 1% nicht überschreiten soll. Der Unterschied |G1−G2| darf höchstens
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39% der größeren Fläche betragen.
Soll der Fehler n% nicht überschreiten, so ergibt sich entsprechend die Ungleichung

(1− x)2 ≤ 2n
100(1 + x+ x2)

Hierdurch ergibt sich entsprechend der für n = 1 durchgeführten Rechnung, wobei noch 100+n
50−n = k gesetzt

und beachtet wird, dass k ≥ 2 bzw. k
2 ≥ 1 ist:

x ≥ k +
√
k2 − 4
2

Eine Untersuchung der Fehlerfunktion

y = f

V
= (1− x)2

2(1 + x+ x2)

liefert übrigens im Intervall 0 ≤ x ≤ 1 den Maximalwert 0,5 = 50%, und zwar für x = 0. Dieser Wert
wird also angenommen, wenn der Körper eine Pyramide bzw. ein Kegel ist (G2 = 0).

Aufgabe 34/64
Von einem Würfel soll durch einen ebenen Schnitt ein Körper abgeschnitten werden, dessen Volumen
1
6 des Würfelvolumens beträgt. Dabei ist jegliche Messung ausgeschlossen.

Zwei Überlegungen führen zum Ziel. 1) Da jegliche Messung ausgeschlossen ist, muss die Schnittfläche
durch bereits fixierte Punkte festgelegt werden. Als solche kommen nur die Eckpunkte des Würfel in
Frage.
Die Schnittfläche wird durch mindestens drei (nicht sämtlich auf der gleichen Geraden liegende) Punkte
fixiert; es können höchstens vier Punkte sein, da es keine Ebene durch den Würfel gibt, die mehr als vier
Eckpunkte enthält. Die drei bzw. vier Punkte können nicht Eckpunkte der gleichen Seitenfläche sein, da
sonst die Schnittfläche mit dieser zusammenfiele und damit kein Körper abgeschnitten würde.

a) Bei vier Punkten müsste der Schnitt mit einer Diagonalfläche zusammenfassen (vgl. linke Abbildung);
der Würfel würde damit, wie man leicht erkennt, halbiert, und die Aufgabe wäre demnach nicht gelöst.
Also entfällt diese Möglichkeit.

b) Bei drei Punkten wird der Schnitt so geführt, dass er durch die einer Ecke benachbarten Eckpunkte
geht (vgl. rechte Abbildung). Es wird eine Pyramide abgeschnitten, deren Grundfläche ein gleichseitiges
Dreieck mit der Seitenlänge a

2
√

2 ist, deren Seitenkanten die Länge a haben und senkrecht aufeinander
stehen (wobei mit a die Länge der Würfelkante bezeichnet wird).
Dass dieser Schnitt auch die weiteren Bedingungen der Aufgabe erfüllt, prüft man leicht nach, indem
man eine Seitenfläche als Grundfläche und eine (darauf senkrecht stehende!) Seitenkante als Höhe wählt.
Es ist dann V = 1

3 ·
a2

2 · a = a3

6 .

2) Das Volumen des abgeschnittenen Körpers soll 1
6a

3 = 1
3 ·

a2

2 · a betragen.
Die Faktorenzerlegung zeigt, dass die Bedingungen von einer Pyramide erfüllt werden, deren Grundfläche
gleich der halben Seitenfläche des Würfels und deren Höhe gleich der Würfelkante ist. Damit gelangt man
zum gleichen Ergebnis wie unter 1).
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Aufgabe 35/64

Über den drei Seiten eines beliebigen Dreiecks seien die Quadrate
gezeichnet. Ja zwei benachbarter Ecken dieser Quadrate seien
(vgl. Abbildung) geradlinig miteinander verbunden. Die dadurch
entstehenden Dreiecke heißen pythagoreische Ergänzungsdreiecke.
Es ist zu beweise, dass jedes der pythagoreischen
Ergänzungsdreiecke dem ursprünglichen Dreieck inhaltsgleich
ist.

Jedes der pythagoreischen Dreiecke hat einen Eckpunkt mit dem ursprünglichen Dreieck gemeinsam, die
beiden von von diesem Eckpunkt ausgehenden Seiten des pythagoreischen Dreiecks stimmen mit den
beiden von diesem Eckpunkt ausgehenden Seiten des ursprünglichen Dreiecks überein, und die einge-
schlossenen Winkel ergänzen einander zu 180◦ (vgl. Abbildung).
Daraus und aus der Flächeninhaltsformel für das Dreieck folgt

α
α1

β
β1

γ

γ1

A B

C
A1

A2 B1

B2

C1

C2

2I1 = bc sinα1 = bc sin 180◦ − α = bc sinα = 2I
2I2 = ac sin β1 = ac sin 180◦ − β = ac sin β = 2I
2I3 = ab sin γ1 = ab sin 180◦ − γ = ab sin γ = 2I

Daraus folgt unmittelbar I1 = I2 = I3 = I.

Aufgabe 36/64

O AA′

B

B′
C

In einen Quadranten einer Ellipse mit den Halbachsen a und b sind gemäß Abbildung zwei Halbellipsen
mit den Halbachsen a

2 und b
2 eingezeichnet.

1. Es ist der Flächeninhalt des Flächenstücks zu ermitteln, das den beiden Halbellipsen gemeinsam
ist.

2. Es ist zu beweisen, dass dieses Flächenstück inhaltsgleich dem Flächenstück des Quadranten
ist, das von keiner der beiden Halbellipsen überdeckt wird.
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a) Das in der Abbildung eingezeichnete Rechteck OA′CB′ mit den Seiten a
2 und b

2 wird von je einem Qua-
dranten der beiden kleineren Ellipsen vollständig, zum Teil doppelt überdeckt. Der doppelt überdeckte
Teil ist seinem Inhalt nach demzufolge gleich der Differenz aus der Summe der Inhalte jedes der beiden
Ellipsenquadranten und dem Inhalt des Rechtecks.
Der Flächeninhalt einer Ellipse mit den Halbachsen a und b ist F = πab. Für die beiden im Rechteck
liegenden Ellipsenquadranten folgt daraus F1 = F2 = πab

16 , ihre Summe ist also FS = πab
8 . Damit ergibt

sich für den Inhalt des doppelt überdeckten Flächenstückes

Fd = πab

8 − ab

4 = ab

4 (π2 − 1)

b) Der Beweis kann auf mehrere Weisen geführt werden.
b1) Die Summe aus den Flächeninhalten der beiden kleinen Halbellipsen ist gleich dem Flächeninhalt der
großen Ellipsenquadranten: 2F1 + 2F2 = F

2 , da F1 = F2 = πab
16 und F = πab (vgl. a). Daraus folgt unmit-

telbar, dass der doppelt überdeckte und der nicht überdeckte Flächenteil des Quadranten inhaltsgleich
sind.
b2) Man subtrahiert von dem Inhalt des großen Ellipsenquadranten die Inhalte der beiden kleinen Ellip-
senquadranten und den Inahlt des Rechtecks OA′CB′:

πab

4 − 2 · πab16 −
ab

4 = ab

4 (π2 − 1)

womit die Übereinstimmung mit dem doppelt überdeckten Flächenstück gezeigt ist.
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2.5 Aufgaben und Lösungen 1965

Aufgabe 1/65
Gegeben ist ein Würfel mit der Kantenlänge a. Es ist zu zeigen, dass man aus diesem Würfel ein
Loch so herausschneiden kann, dass ein Würfel mit der Kantenlänge b > a hindurchpasst.

Eine Möglichkeit besteht darin, dass man das Loch mit qua-
dratischem Querschnitt in Richtung einer Raumdiagonale des
Würfels legt (Abbildung). Dann ist

b2 = 2x2 und b2 = a2 + 2(a− x)2 = 3a2 + 2x2 − 4ax

Daraus folgt durch Gleichsetzen und Auflösen nach x: x = 3
4a.

Damit ergibt sich b2 = 2( 3
4a)2 = 18

16a
2, also b > a.

a

x

x

b

Aufgabe 2/65

In der Abbildung sind Aufriss und Seitenriss eines nicht
kugelförmigen Körpers dargestellt (der Grundriss braucht
demnach kein Kreis zu sein!).
Welche Form kann der Körper haben?

Der gesuchte Körper ergibt sich als Durchdringung zweier gerader Kreiszylinder mit gleichen Radien. man
erhält ihn beispielsweise, wenn ein gerader Kreiszylinder senkrecht zu seiner Achse kreisförmig abgedreht
wird, wobei der Drehradius gleich dem Zylinderradius ist.

Aufgabe 3/65
Die Gleichung ax = ax hat für jede reelle positive Zahl a eine Lösung x1 = 1. Welche Bedingung
muss die Zahl a erfüllen, damit die Gleichung

a) eine weitere Lösung x2 < 1

b) eine weitere Lösung x2 > 1

c) keine von 1 verschiedene Lösung hat?

Die Lösungen der Gleichung ax = ax sind die Nullstellen der stetigen Funktion y = ax− ax, die die erste
Ableitung y′ax ln a− a und die zweite Ableitung y′′ = ax(ln a)2 hat.
Für jedes reelle x ist y′′ > 0, die erste Ableitung ist also monoton steigend, und die Funktion hat eine
von oben konkave (von unten konvexe) Kurve, mithin höchstens ein Minimum und kein Maximum.
Hat die Funktion kein Minimum, so ist x1 = 1 die einzige Nullstelle. Hat die Funktion ein Minimum und
liegt dies unterhalb der x-Achse, so gilt

x2 < xmin < x1 = 1 oder x2 > xmin > x1 = 1

Hat die Funktion ein Minimum und liegt dies auf der x-Achse, so ist x2 = xmin = x1 = 1. Oberhalb der
x-Achse kann das Minimum nicht liegen, da die Funktion sonst auch ein Maximum haben müsste.
Zur Ermittlung des Wertes xmin setzen wir y′ = 0. Daraus folgt

xmin = 1− ln ln a
ln a
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Ist 0 < a ≤ 1, so ist ln a ≤ 0, ln ln a ist nicht reell und es existiert kein Minimum.
Ist 1 < a ≤ e, so ist 0 < ln a < 1, ln ln a < 0, xmin < 1 und damit ist auch x2 > 1.
Ist a = e, so ist ln a = 1, ln ln a = 0, xmin = 1 und damit ist auch x2 = x1 = 1.
Ist a > e, so ist ln a > 1, ln ln a > 0, xmin < 1 also auch x2 < 1.
Wir erhalten also das folgende Ergebnis: Im Falle a) muss a > e, im Falle b) muss 1 < a < e und im Falle
c) muss entweder 0 < a ≤ 1 oder a = e sein.

Aufgabe 4/65
Es seien p1 und p2 zwei Primzahlzwillinge mit p1; p2 > 3. Man beweise, dass p1p2 +1 durch 36 teilbar
ist.

Jede natürliche Zahl n lässt sich auf genau eine der folgenden Weisen darstellen: 6k; 6k + 1; 6k + 2; 6k +
3; 6k + 4; 6k + 5, wobei k = 0,1,2,... ist.
Mit k′ = k + 1 kann man für 6k + 4 auch 6k′ − 2, für 6k + 5 auch 6k′ − 1 schreiben. Offensichtlich sind
6k; 6k+ 2 und 6k+ 4 durch 2 und 6k sowie 6k+ 3 durch 3 teilbar, also niemals Primzahlen. Daraus folgt,
dass sich Primzahlen stets entweder durch 6k + 1 oder durch 6k − 1 darstellen lassen (was nicht heißt,
dass jede so dargestellte Zahl Primzahl ist).
Soll die Differenz zweier Primzahlen 2 sein (Primzahlzwillinge), so muss demzufolge die erste Primzahl
die Form 6k − 1 und die zweite die Form 6k + 1 haben (vorausgesetzt, die Primzahlen sind beide größer
als 3).
Für zwei Primzahlzwillinge p1 und p2 gilt also: p1 = 6k − 1 und p2 = 6k + 1. Dann ist

p1p2 + 1 = (6k − 1)(6k + 1) + 1 = 36k2 − 1 + 1 = 36k2

also durch 36 teilbar.

Aufgabe 5/65
Welche dreistelligen natürlichen Zahlen haben die folgende Eigenschaft:
Zerschneidet man ihr im Dezimalsystem dargestelltes Quadrat in zwei je dreistellige Abschnitte, so
ist der rechte Abschnitt um 1 größer als der linke.

Bezeichnet man die gesuchte Zahl mit n und die Stellen von n2 mit a; b; c; a; b; (c+ 1), so gilt

n2 = 105a+ 104b+ 103c+ 102a+ 10b+ c+ 1 = (103 + 1)(102a+ 10b+ c) + 1

oder n2 − 1 = 1001(102a+ 10b+ c). Das heißt, n2 − 1 ist durch 1001 teilbar.
Da n2− 1 = (n+ 1)(n− 1) und 1001 = 7 · 11 · 13 ist, muss man n so bestimmen, dass (n+ 1)(n− 1 durch
7; 11; 13 teilbar ist. Dafür gibt es 8 Möglichkeiten:

1. n+ 1 ist teilbar durch 7; 11; 13
2. n+ 1 ist teilbar durch 7; 11; n− 1 ist teilbar durch 13
3. n+ 1 ist teilbar durch 7; 13; n− 1 ist teilbar durch 11
4. n+ 1 ist teilbar durch 11; 13; n− 1 ist teilbar durch 7
5. n− 1 ist teilbar durch 7; 11; 13
6. n− 1 ist teilbar durch 7; 11; n+ 1 ist teilbar durch 13
7. n− 1 ist teilbar durch 7; 13; n+ 1 ist teilbar durch 11
8. n− 1 ist teilbar durch 11; 13; n+ 1 ist teilbar durch 7

Zur Berechnung der einzelnen Fälle:

1. n+ 1 = 7 · 11 · 13 · k = 1001k; für k = 0 ergibt sich n = −1, für k ≥ 1 folgt n > 1000, diese Zahlen
scheiden aus, da sie nicht den Bedingungen der Aufgabe entsprechen.

2. n+ 1 = 7 · 11 · k = 77k; 77k− 2 muss durch 13 teilbar sein. Dies ist für k = 11 der Fall. Folglich ist
n1 = 846.

3. n + 1 = 7 · 13 · k = 91k; 91k − 2 muss durch 11 teilbar sein. Dies trifft für k = 8 zu. Demnach ist
n2 = 727.

4. n + 1 = 11 · 13 · k = 143k; 143k − 2 muss durch 7 teilbar sein. Dies ist für k = 3 der Fall. Damit
ergibt sich n3 = 428.
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5. n− 1 = 7 · 11 · 13 · k = 1001k; die Bemerkung zu 1. trifft zu

6. n− 1 = 7 · 11 · k = 77k ergibt analog n4 = 155.

7. n− 1 = 7 · 13 · k = 91k; ergibt n5 = 274.

8. n− 1 = 11 · 13 · k = 143k; ergibt n6 = 573.

Damit hat man die folgenden Ergebnisse (n;n2) gefunden: (846; 715716); (727; 528529); (428; 183184);
(155; 024025); (274; 075076); (573; 328329).

Aufgabe 6/65
Ein Radfahrer auf regennasser Straße sieht Tropfen vom höchsten Punkt des Vorderrades wegfliegen.
Welche Geschwindigkeit haben diese bezüglich der Straße?

Der Radfahrer habe die Geschwindigkeit v. Dies ist dann auch die Umlaufgeschwindigkeit des Rades. Für
jeden Punkt des Rades gilt, dass sich die Geschwindigkeit in Fahrtrichtung und die Umfangsgeschwin-
digkeit des Rades vektoriell addieren. Da im höchsten Punkt des Rades die Tangentialrichtung mir der
Fahrtrichtung übereinstimmt, wird die Geschwindigkeit der Tropfen in Fahrtrichtung 2v.

Eine zweite Lösung ergibt sich mit Hilfe der Differentialrechnung: Jeder Punkt des Rades beschreibt eine
Zykloide; für Punkte des Radumfangs ist dies eine gemeinsame Zykloide mit der Parameterdarstellung

x = rωt− r sinωt ; y = r − r cosωt

wobei r der Radius des Rades und ω die Winkelgeschwindigkeit des Rades sind. Mit t ist die Zeit be-
zeichnet. Für die Geschwindigkeit v des Fahrrades gilt v = rω (sie ist gleich der Umfangsgeschwindigkeit
des Rades). Die Geschwindigkeit eines Punktes des Radumfangs in x-Richtung ergibt sich zu

dx

dt
= rω − rω cosωt (1)

Für den höchsten Punkt des Rades ist yh = 2r = r − r cosωt− h; daraus folgt cosωth = −1. Setzt man
diesen Wert in die Gleichung (1) ein, so ergibt sich

dx

dt(yh) = rω − rω(−1) = 2rω = 2v

als Geschwindigkeit des höchsten Punktes in Fahrtrichtung. Dies ist die Geschwindigkeit der wegfliegenden
Tropfen.

Aufgabe 7/65
Gesucht sind drei Quadratzahlen a, b und c so, dass a− b = b− c = 24 ist.

Setzt man a = x2, b = y2 und c = z2, so folgt aus der Aufgabe x2− y2 = y2− z2 = 24. Daraus ergibt sich

x2 − y2 = (x+ y)(x− y) = 24 (1); y2 − z2 = (y + z)(y − z) = 24 (2)

Für x+ y und x− y bzw. für y+ z und y− z kommen nur die ganzzahligen Teiler von 24 in Frage. Damit
ergeben sich die folgenden Wertepaare:

1. 2. 3. 4.
x+ y bzw. y + z 24 12 8 6
x− y bzw. y − z 1 2 3 4

Die Paare 1. und 3. entfallen, da Summe und Differenz beider ungerade sind und sich damit keine
ganzzahligen Lösungen für x, y und z ergeben. Aus den restlichen zwei Paaren ergeben sich die folgenden
Lösungen:

2. x = 7, y = 5 bzw. y = 7, z = 5 ; 4. x = 5, y = 1 bzw. y = 5, z = 1

Hieraus folgt (durch Kombination beider Lösungen), dass x = 7, y = 5 und z = 1 ist.
Die gesuchten Zahlen sind also a = 72 = 49, b = 52 = 25, c = 12 = 1.
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Aufgabe 8/65
a) Man bestimme die kleinsten beiden natürlichen Zahlen, für die die Zahl Z = 248011n − 1 durch
36 teilbar ist.
b) Man weise nach, dass es keine natürliche Zahl n gibt, für welche die Zahl Z ′ = 248001n− 1 durch
36 teilbar ist.

Eine Zahl x ist genau dann durch 36 teilbar, wenn sie sowohl durch 4 als auch durch 9 teilbar ist.

1. Nach der bekannten Teilbarkeitsregel ist eine Zahl x genau dann durch 4 teilbar, wenn die aus den
letzten beiden Stellen von x gebildete Zahl durch 4 teilbar ist.
Die Beziehung 4 | (11n − 1) wird für jede ganze Zahl n erfüllt, die Element der Menge M1 =
{3; 7; 11; ...} ist, d.h. der aus den Gliedern ak der arithmetischen Folge {ak} = {4k − 1} mit k =
1; 2; 3; ... bestehenden Menge.

2. Die Zahl Z1 = 248011 lässt bei der Division durch 9 den Rest 7, das n-fache demzufolge einen
Rest 7n (der nicht der kleinstmögliche Rest ist). Die Zahl Z = 248011n− 1 lässt demnach bei der
Division durch 9 einen Rest 7n− 1, sie ist genau dann durch 9 teilbar, wenn 7n− 1 durch 9 teilbar
ist.

3. Für diejenigen Zahlen n, die sowohl der Menge M1 als auch der Menge M2 angehören, d.h., die
Elemente des Durchschnitts M1 ∩M2 sind, ergibt sich sowohl die Teilbarkeit durch 4 als auch die
Teilbarkeit durch 9, also auch die Teilbarkeit durch 36. Es ist

M = M1 ∩M2 = {31; 67; 103; 139; ...}

Die kleinsten beiden dieser Zahlen sind n1 = 31 und n2 = 67. Demzufolge sind die beiden gesuchten
Zahlen

248011n1 − 1 = 7688340 ; 248011n2 − 1 = 16616736

b) Die Zahl Z ′1 = 248001 ist durch 3 teilbar, da ihre Quersumme durch 3 teilbar ist. Dann ist auch
Z ′2 = 248001n durch 3 teilbar. Damit kann Z ′ = 248001n − 1 nicht durch 3, folglich auch nicht durch 9
und demnach auch nicht durch 36 teilbar sein.

Aufgabe 9/65
Man weise die Gültigkeit der folgenden Ungleichung für alle natürlichen Zahlen n nach:

n! >
(n

3

)n
Wir führen den Beweis durch vollständige Induktion. Die Ungleichung gilt, wie man durch Einsetzen
bestätigt, für n = 1. Angenommen, sie gelte für n = k: k! >

(
k
3
)k. Dann folgt:

k!(k + 1) >
(
k

3

)k
(k + 1) =

(
k + 1

3

)k+1
· 3kk

(k + 1)k =
(
k + 1

3

)k+1
· 3

(1 + 1
k )k

Nun gilt für jede natürliche Zahl k (1 + 1
k )k < e < 3. Folglich ist 3

(1+ 1
k )k > 1.

Daraus folgt unmittelbar, dass

k!(k + 1) = (k + 1)! >
(
k + 1

3

)k+1

ist, denn die rechte Seite wird durch das Weglassen des zweiten Faktors nur noch verkleinert. Da aus der
Gültigkeit der Ungleichung für n = k die Gültigkeit für n = k + 1 folgt und da die Gültigkeit für n = 1
feststeht, gilt die Ungleichung für alle natürlichen Zahlen n.
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Aufgabe 10/65
Ein Herr löst auf der Bank einen Scheck ein und kontrolliert nicht den ausgezahlten Betrag. In einem
Geschäft bezahlt er von diesem Geld eine Rechnung über 26,66 MDN. Zu seiner Verwunderung
verbleibt nun ein Rest, der doppelt so groß ist wie der Betrag, über den der Scheck ausgestellt war.
Der Herr geht deshalb wieder zur Bank, wo sich herausstellt, dass der Kassierer die Zahlen für Mark
und Pfennig verwechselt hat.
Über welchen Betrag lautete der Scheck?

Der Scheck lautete über x Mark und y Pfennig = (100x+ y) Pfennig. Ausgezahlt wurden y Mark und x
Pfennig = (100y + x) Pfennig. Davon wurden ausgegeben 26 Mark und 66 Pfennig = 2666 Pfennig. Es
verblieb ein Rest von 2x Mark und 2y Pfennig = (200x+ 2y) Pfennig. Somit ergibt sich die Gleichung

100y + x− 2666 = 200x+ 2y → y = 199x+ 2666
98 = 2x+ 27 + 3x+ 20

98
Damit x und y ganzzahlig sind, muss es eine ganze Zahl u geben, so dass 3x+ 20 = 98u ist. Also folgt

x = 98u− 20
3 = 32u− 7 + 2u+ 1

3
Damit x ganzzahlig wird, kommen nur die Werte u = 1;u = 4;u = 7; ...u = 3k + 1 mit k = 0; 1; 2; ... in
Frage. Daraus folgt x = 26 als einziger Wert (da x ein Pfennigbetrag war, gilt x ≤ 99, was nur für u = 1
erfüllt ist). Damit ergibt sich auch y = 80.
Der Scheck lautete also auf 26,80 MDN, es wurden versehentlich 80,26 MDN ausgezahlt und nach Be-
gleichen der Rechnung über 26,66 MDN verblieben noch 53,60 MDN, also das Doppelte von 26,80 MDN.

Aufgabe 11/65
Es sei ABC ein beliebiges spitzwinkliges Dreieck. D, E und F seien Fußpunkte der Höhen ha, hb und
hc. Es ist zu beweisen, dass die Höhen gleichzeitig Winkelhalbierende im Dreieck DEF sind.

Wir führen den Beweis an Hand der Abbildung. Dabei genügt es, den Beweis für eine der drei Höhen zu
führen, die Behauptung für die anderen Höhen folgt dann durch zyklische Vertauschung der entsprechen-
den Stücke.

A

B CD

E

F

a

b

c
ha

hb hc

Es ist M ADC ∼M BEC (beide Dreiecke enthalten den Winkel γ
bei C und je einen rechten Winkel, Hauptähnlichkeitssatz). Daraus
folgt DC

CE = a
b , M DCE ∼M ABC (beide Dreiecke enthalten den

Winkel γ und stimmen im Verhältnis zweier Seiten überein).
Demnach ist ]DEC = β; ]EDC = α (Gleichheit der Win-
kel in ähnlichen Dreiecken). Analog schließt man ]DFB = γ;
]FDC = α. Für den Winkel ]FDA und für den Winkel ]EDA
ergibt sich damit ]FDA = 90◦ − α; ]EDA = 90◦ − α, also
]FDA = ]EDA.

Folglich ist AD = ha Halbierende des Winkels ]FDE, was zu beweisen war.

Aufgabe 12/65
Eine gut brauchbare Iterationsformel für die näherungsweise Berechnung von

√
a ist

un+1 = 1
2

(
un + a

un

)
wobei un ein n-ter Näherungswert ist. Es ist zu beweisen:

1. Ist u0 6= 0 ein zu kleiner Näherungswert für
√
a, so ist u1 = 1

2

(
u0 + a

u0

)
ein zu großer

Näherungswert.

2. Ist un ein zu großer Näherungswert für
√
a, so ist un+1 = 1

2

(
un + a

un

)
ein besserer zu großer

Näherungswert.
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3. Die Folge {un}, die man durch wiederholte Anwendung der Iterationsformel gewinnt, konvergiert
tatsächlich gegen

√
a.

Es sei
√
a = x, also a = x2.

1.) Zu beweisen ist: Ist 0 < u0 < x, so ist u1 = 1
2

(
u0 + a

u0

)
> x.

Beweis: Es sei u0x−∆x mit x > ∆x > 0 (nach Voraussetzung). Dann ist

u1 = 1
2

(
u0 + a

u0

)
=
(
x−∆x+ x2

x−∆x

)
= x+ ∆x2

2(x−∆x)

Wegen x > ∆x ist x−∆x > 0, folglich ist auch

∆x2

2(x−∆x) > 0

und damit u1 > x =
√
a.

2.) Zu beweisen ist: Ist un > x, so ist un+1 = 1
2

(
un + a

un

)
> x.

Beweis: Es sei un = x+ ∆x mit ∆x > 0 (nach Voraussetzung). Dann ist

un+1 = 1
2

(
un + a

un

)
=
(
x+ ∆x+ x2

x+ ∆x

)
= x+ ∆x2

2(x+ ∆x)

Nun ist
0 < ∆x2

2(x+ ∆x) = ∆x
2
(
x

∆x + 1
) < ∆x

wegen 2
(
x

∆x + 1
)
> 2 (da ∆x > 0, ist x

∆x > 0), also

un = x+ ∆x > un+1 = x+ ∆x2

2(x+ ∆x) > x =
√
a

3.) Mit diesen Beweisen ist zwar gezeigt, dass die Folge {un} sich immer mehr
√
a = x (spätestens vom

zweiten Glied an von oben) nähert, es ist aber noch nicht bewiesen, dass sie tatsächlich gegen diesen Wert
konvergiert (d.h., dass sie sich ihm beliebig nähert). Es könnte nämlich sein, dass sie gegen eine Wert
x+ c konvergiert, wobei c eine positive Konstante ist.
Ist un = x+ ∆xn (also ∆xn > 0, so ist

un+1 = 1
2

(
x+ ∆xn + x2

x+ ∆xn

)
= x+ ∆x2

n

2(x+ ∆xn) = x+ ∆xn+1

Nun ist
0 < ∆xn+1 = ∆x2

n

2(x+ ∆xn) = ∆xn
2
(

x
∆xn + 1

) < 1
2∆xn

wegen x
∆xn + 1 > 1. Also ist die Folge

{vn} =
{
x+ ∆x1

2n−1

}
eine Majorante für die Folge {un}. Da

lim
n→∞

vn = lim
n→∞

(
x+ ∆x1

2n−1

)
= x

und un > x für jedes n, ist nach dem Majorantenkriterium auch limn→∞ un = x
√
a.

Schlussfolgerung: Für jedes a > 0 und für jedes ∆x0 > 0 konvergiert die Folge {un} mit un+1 =
1
2

(
un + a

un

)
gegen

√
a.

Man kann also von einem völlig beliebigen Näherungswert (auch von scheinbar unsinnigen wie beispiels-
weise

√
a ≈ 1 oder

√
a ≈ a) ausgehen. Dabei erfolgt die Annäherung spätestens von zweiten Glied an von

oben.
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Aufgabe 13/65
Gegeben sind drei Punkte A, B und C, die nicht auf einer Geraden liegen. Man konstruiere einen
vierten Punkt D, der die folgende Eigenschaft hat:
Legt man durch D einige beliebige Gerade und fällt man auf sie die Lote von den gegebenen Punkten,
so ist das Lot von C gleich der Summe der Lote von A und von B.

A BE

C

G

H

J D
F

Analysis: Angenommen, die Aufgabe sei bereits gelöst (vgl.
Abbildung). Dann bilden die Punkte A, B, G und J ein bei G
und J rechtwinkliges Trapez. Ist E der Halbierungspunkt von AB
und EH das Lot von E auf GJ , so gilt AJ +BG = 2EH (EH ist
Mittellinie im Trapez).
Ferner ist CF = AJ + BG = 2EH nach den Bedingungen der
Aufgabe. Ist nun D der Schnittpunkt der Geraden EC mit GJ ,
so gilt wegen der Ähnlichkeit der Dreiecke CFD und EHD (nach
dem Hauptähnlichkeitssatz), dass DE : DC = EH : CF = 1 : 2
ist. Daraus ergibt sich folgende Konstruktion.

Konstruktion: Man halbiere die Strecke AB. Der Mittelpunkt sei E. Man verbinde E mit C und teile
EC innen im Verhältnis 1 : 2. Der Teilpunkt D ist der gesuchte Punkt.

Beweis: Zieht man durch D eine beliebige Gerade und fällt man auf sie die Lote AJ , BG, CF und EH
(wobei E der Halbierungspunkt von AB ist), so gilt:
M CFD ∼M EHD (Gleichheit der Winkel ]CFD = ]EHD und ]FDC = ]HDE, Hauptähnlichkeitssatz),
also FC : EH = CD : ED = 2 : 1, folglich FC = 2EH.
Da nun AJ , EH und BG parallel sind und AE = EB gilt, ist EH Mittellinie im Trapez ABGJ und
mithin EH = AJ+BG

2 , also FC = AJ +BG.

Aufgabe 14/65
Welche Bedingungen müssen a und b erfüllen (a;n > 0; ganz), wenn m =

√
an + an+1 eine natürliche

Zahl sein soll?

Es ist
m =

√
an + an+1 =

√
an(a+ 1)

Man unterscheidet nun zwei Fälle.
1) Es sei n = 2k mit k = 1; 2; 3; .... Dann ist

m =
√
a2k(a+ 1))ak

√
a+ 1

Damit m eine natürliche Zahl ist, muss a + 1 eine Quadratzahl sein: a + 1 = b2r mit b; r > 0, ganz.
Daraus folgt a = b2r − 1. Wenn n gerade ist, muss also a um 1 kleiner sein als eine Potenz mit geradem
Exponenten.
2) Es sei n = 2k − 1 mit k = 1; 2; 3; .... Dann ist

m =
√
a2k−1(a+ 1))ak−1

√
a(a+ 1)

Damit m eine natürliche Zahl ist, muss a(a+1) eine Quadratzahl sein. Das ist aber nicht möglich, denn a
und a+ 1 sind teilerfremd, so dass ihr Produkt nur dann eine Quadratzahl sein kann, wenn jeder Faktor
eine Quadratzahl wäre, woraus jedoch folgen würde a = 0 im Widerspruch zur Voraussetzung a > 0.
Die Bedingungen lauten also:
1.) n muss eine gerade Zahl sein und 2.) a muss um 1 kleiner als eine Potenz mit geradem Exponenten
sein.

Aufgabe 15/65
Welcher Beschränkung unterliegt µ, wenn die Ungleichung für alle reellen a, b und λ gelten soll:

a4 + λ2b4 ≥ µa2b2
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Zunächst ist klar, dass die Ungleichung für a = 0 oder für b = 0 oder für a = b = 0 bei jedem reellen λ gilt.
Sieht man von diesen Fällen ab, so kann man für die weiteren Betrachtungen a 6= 0; b 6= 0 voraussetzen,
durch a4 dividieren und b2

c2 = x substituieren; man erhält also

1 + λ2x2 ≥ µx 1− µx+ λ2x2 ≥ 0 (1)

Hiervon kann man ohne weiteres zu der gegebenen Ungleichung zurückkommen. Die Aufgabe besteht
jetzt darin, festzustellen, unter welchen Bedingungen die quadratische Form

y = 1− µx+ λ2x2 (2a)

nicht negativ ist. Man ergänzt die ersten Glieder quadratisch und findet

y =
(

1− µ

2x
)2

+
(
λ2 − µ2

4

)
x2 (2b)

Diese Summe von Quadraten reeller Zahlen ist nichtnegativ, wenn es die Koeffizienten der Quadrate sind,
d.h., wenn

λ2 − µ2

4 ≥ 0; µ ≤ 2|λ| (3)

gilt. Das ist die gesuchte Bedingung. Aus der Gleichheit in (3) folgt allerdings nicht die Gleichheit in (1),
denn in (2b) bleibt das erste Quadrat stehen und ma hat(

1− µ

2x
)2
≥ (1− |λ|x)2 ≥ 0

und nur für
x = 1

|λ|
(4)

tritt auch in (1) Gleichheit ein.
Ist (3) nicht erfüllt, ist also µ > 2|λ|, so gilt die Ungleichung nicht für alle a und b; eine Umgebung des
kritischen Wertes (4) muss man ausnehmen. Dies erkennt man leicht, wenn man (2) als Parabel deutet,
deren Achse in Richtung der positiven y-Achse eines rechtwinkligen kartesischen Koordinatensystems
verläuft. Die Schnittpunkte der Parabel mit der x-Achse liegen bei

x1;2 = 1
2λ2 (µ±

√
µ2 − 4λ2) (5)

Für µ < 2|λ| sind sie komplex, die Parabel liegt in den ersten beiden Quadranten, y ist stets positiv.
Bei µ = 2|λ| berührt sie die x-Achse an der Stelle (4), y ist gleich Null an der Stelle x1;2 = µ

2λ2 = 1
2|λ| ,

sonst positiv, also überall nicht negativ. Damit sind (3) und (4) auch geometrisch gewonnen.
Und für µ > 2|λ| ist y nur dann nichtnegativ, wenn x nicht zwischen x1 und x2 gemäß (5) liegt.

Zusammenfassung:
Ist a = 0 oder b = 0 oder a = b = 0, so gilt die Ungleichung uneingeschränkt für jedes λ und jedes µ. Ist
a 6= 0 und b 6= 0 sowie

1. µ ≤ 2|λ|, so gilt sie für alle a, b und λ.

2. µ = 2|λ| oder |λ| = x = a2

b2 , so besteht Gleichheit.

3. µ > 2|λ|, so gilt die Ungleichung nur für diejenigen a und b, für die x = b2

a2 nicht in dem offenen
Intervall x1 < x < x2 liegt.

Aufgabe 16/65
Der Unterschied zwischen der Differenz der Kuben und der Differenz der Quadrate zweier benach-
barter natürlicher Zahlen beträgt 114. Um welche Zahlen handelt es sich?

Die beiden benachbarten Zahlen können durch ein Symbol ausgedrückt werden. Ist a die größere von
beiden, so ist a− 1 die kleinere. Die Differenz der Kuben ist a3 − (a− 1)3 = 3a2 − 3a− 1, die Differenz
der Quadrate ist a2 − (a− 1)2 = 2a− 1. Der Unterschied zwischen beiden ist demnach

|(3a2 − 3a+ 1)− (2a− 1)| = |3a2 − 5a+ 2|
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Nach den Bedingungen der Aufgabe gelten also die beiden Gleichungen

3a2 − 5a+ 2 = 114→ a2 − 5
3a−

112
3 = 0 und − 3a2 + 4a− 2 = 114→ a2 − 5

3a+ 116
3 = 0

Die rechte Gleichung hat keine reellen Lösungen, die linke liefert die Lösungen a1 = 7 und a2 = − 32
6 . Die

Lösung a2 ist keine Lösung im Sinne der Aufgabe, de sie nicht ganzzahlig ist. Die gesuchten Zahlen sind
also 7 und 6.
Dasselbe Ergebnis erhält man, wenn man mit a die kleinere der beiden Zahlen bezeichnet. Das Ergebnis
ist also eindeutig.

Aufgabe 17/65
Man bestimme den geometrischen Ort für den Mittelpunkt einer Kugel mit gegebenem Radius r, die
zwei einander unter dem Winkel 2α schneidende Geraden berührt.

Vorüberlegung: Der Kugelmittelpunkt hat in jeder Lage den gleichen Abstand von den Geraden, die
Kugeltangenten sind. Der geometrische Ort des Kugelmittelpunktes gehört demnach den beiden Symme-
triebenen des Geradenpaares an.
Diese Ebenen stehen senkrecht auf der durch die beiden Geraden bestimmten Ebene und schneiden diese
in den beiden Winkelhalbierenden.

g2

g1

r

r
αα

α

Der geometrische Ort des Mittelpunktes einer Kugel, die nur eine Gerade berührt, ist eine Zylinderfläche,
deren Radius gleich dem Kugelradius und deren Achse die Gerade ist.
Der gesuchte Ort ist demnach der Schnitt der beiden Symmetriebenen mit dem Zylinder vom Radius r um
eine der beiden Geraden. Da eine nicht achsenparallele Ebene einen Zylinder in einer Ellipse schneidet,
besteht der geometrische Ort aus zwei Ellipsen, deren Nebenachsen zusammenfallen und deren Haupt-
achsen senkrecht aufeinander stehen.
Die halben Nebenachsen sind gleich dem Kugelradius r, die halben Hauptachsen ergeben sich nach der
Abbildung (die den Grundriss des Schnitts darstellt) zu

r

sinα und r

cosα

Aufgabe 18/65
Es ist zu beweisen, dass für beliebige positive Zahlen a, b, c, d die Ungleichung

a

b+ c+ d
+ b

a+ c+ d
+ c

a+ b+ d
+ d

a+ b+ c
≥ 4

3

gilt. In welchem Fall tritt Gleichheit ein?

Offensichtlich tritt Gleichheit ein für a = b = c = d. Dann gilt nämlich

a

3a + a

3a + a

3a + a

3a = 4
3

Ob noch in einem anderen Fall die Ungleichung zur Gleichung wird, bleibt nachzuprüfen. Substituiert
man

b+ c+ d = A; a+ c+ d = B a+ b+ d = C a+ b+ c = D
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so nimmt die linke Seite der Ungleichung die Form

a

A
+ b

B
+ c

C
+ d

D

an. Daraus folgt
a

A
+ b

B
+ c

C
+ d

D
= a+A

A
+ b+B

B
+ c+ C

C
+ d+D

D
− 4

Nun ist a+A = b+B = c+ C = d+D = a+ b+ c+ d = E. Damit ergibt sich

a

A
+ b

B
+ c

C
+ d

D
= E

A
+ E

B
+ E

C
+ E

D
− 4 = E

(
1
A

+ 1
B

+ 1
C

+ 1
D

)
− 4

Weiter ist 3E = 3a+ 3b+ 3c+ 3d = A+B + C +D. Es folgt

a

A
+ b

B
+ c

C
+ d

D
= 1

3(A+B + C +D)
(

1
A

+ 1
B

+ 1
C

+ 1
D

)
− 4 =

= 1
3

(
A+B + C +D

A
+ A+B + C +D

B
+ A+B + C +D

C
+ A+B + C +D

D

)
− 4 =

= 1
3

(
1 + B

A
+ C

A
+ D

A
+ 1 + A

B
+ C

B
+ D

B
+ 1 + A

C
+ B

C
+ D

C
+ 1 + A

D
+ B

D
+ C

D

)
− 4 =

= 1
3

[(
A

B
+ B

A

)
+
(
A

C
+ C

A

)
+
(
A

D
+ D

A

)
+
(
B

C
+ C

B

)
+
(
B

D
+ D

B

)
+
(
C

D
+ D

C

)]
− 8

3
In der eckigen Klammer stehen 6 Summen zu je zweier positiver einander reziproker Zahlen. Wir beweisen
nun den folgenden Hilfssatz:
Für zwei positive Zahlen x und y gilt stets x

y + y
x ≥ 2.

Beweis: Es ist sicher für jedes positive x und y: (x− y)2 ≥ 0. Daraus folgt

x2 + y2 ≥ 2xy → x2 + y2

xy
≥ 2→ x

y
+ y

x
≥ 2

Dabei tritt Gleichheit offensichtlich genau dann ein, wenn x = y ist.
Demzufolge gilt (

a

A
+ b

B
+ c

C
+ d

D

)
≥ 1

3 · 12− 8
3 = 4

3

Aufgabe 19/65
In einer Ebene seien vier Punkte A, B, C, D gegeben, von denen nicht mehr als zwei auf derselben
Geraden liegen. Man konstruiere in dieser Ebene ein Quadrat so, dass auf jeder Quadratseite (oder
ihrer Verlängerung) je einer der gegebenen Punkte liegt.

A

B

C

D

E

F G

HX Analysis: Es seien A, B, C, D die gegebenen Punkte, EFGH
das gesuchte Quadrat und X der Schnittpunkt des Lotes von
C auf BD mit der gegenüberliegenden Seite EH (oder ihrer
Verlängerung). Dann ist BD = CX.
Der Beweis folgt aus der Kongruenz der Dreiecke CXX ′ und
BDD′ (wobei X ′ bzw. D′ die Fußpunkte der Lote von X und
D auf die Gegenseite sind); es ist nämlich DD′ = XX ′ =
FG = EH, ]DD′B = ]XX ′C = 90◦ und ]D′BD =
]X ′CX (senkrecht aufeinanderstehende Schenkel).
Daraus ergibt sich sofort die folgende Konstruktion.

Konstruktion: Man zeichne BD und fälle von C das Lot auf BD. Auf dessen Verlängerung bestimme
man X so, dass CX = BD ist. Die Fußpunkte der Lote von B und D auf die durch X und A bestimmte
Gerade sind E und H, die Fußpunkte der Lote von B und D auf die zu AX parallele Gerade durch C
sind F und G.
Die Konstruktion ist stets ausführbar.
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Aufgabe 20/65

S R

A BP1 P2 P3

M

Q

x

r

y

Eine Strecke AB = 2r wird durch die Punkte P1, P2 und P3
in vier gleiche Teile geteilt. Kreisbögen mit den Radien 3

2r
um P1 und P3 schneiden einander über AB in Q. Kreisbögen
um A, P2 und B mit dem Radius r schneiden einander auf
derselben Seite von AB in den Punkten R und S.
Wie groß ist der Radius x des Kreises, der die Spitzbögen
ARP2 und P2SB von außen und den Spitzbogen AQB von
innen berührt (vgl. Abbildung)? Wo liegt der Mittelpunkt
dieses Kreises?

Hilfssatz: Die Zentralen einander berührender Kreise verlaufen durch den Berührungspunkt (auf den
Beweis wird verzichtet, da er allgemein bekannt ist).
Im Dreieck P1MB gilt

(3
2r − x)2 − r2

4 = (r + x)2 − r2

daraus folgt durch Auflösung nach x: x = 2
5r. Für y ergibt sich aus dem Dreieck P1P2M :

y2 = (r + x)2 − r2 = 24
25r

2 → y = 2
5r
√

6

Damit ist die auf Grund der Abbildung naheliegende Vermutung widerlegt, M liege auf dem Halbkreis
mit dem Radius r um P2, denn es ist

2
5r
√

6 = r

√
24
25 6= r

Aufgabe 21/65
Es sei Sn =

n∑
r=1

1√
r
. Man beweise, dass für jede natürliche Zahl n > 1 die Ungleichung gilt:

2
√
n+ 1− 2 < Sn < 2

√
n− 1

Induktionsbasis: Für n = 2 gilt die Ungleichung, denn es ist

2
√

3− 2 ≈ 1,46 < 1 + 1√
2
≈ 1,71 < 2

√
2− 1 ≈ 1,85

Induktionsannahme: Es sei die Ungleichung für n = k richtig, d.h., es gelte

2
√
k + 2 < Sk < 2

√
k − 1

Hilfssatz: Es ist
2
√
k + 2− 2

√
k + 1 < 1√

k + 1
< 2
√
k + 1− 2

√
k

Beweis

2
√
k + 2− 2

√
k + 1 = 2(

√
k + 2−

√
k + 1)(

√
k + 2 +

√
k + 1)

(
√
k + 2 +

√
k + 1)

= 2
(
√
k + 2 +

√
k + 1)

<

<
1√
k + 1

<
2

√
k + 1 +

√
k

= 2(
√
k + 1−

√
k)(
√
k + 1 +

√
k)

(
√
k + 1 +

√
k)

= 2
√
k + 1− 2

√
k

Induktionsschluss: Die Addition der Ungleichungen

2
√
k + 1− 2 < Sk < 2

√
k − 1 und 2

√
k + 2− 2

√
k + 1 < 1√

k + 1
< 2
√
k + 1− 2

√
k

ergibt unmittelbar
2
√
k + 2 < Sk+1 < 2

√
k + 1− 2

√
k

Somit gilt die gegebene Ungleichung für alle natürlichen Zahlen n > 1.
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Aufgabe 22/65
Gesucht ist eine natürliche Zahl mit der folgenden Eigenschaft: Die letzte Ziffer ist z; streicht man
diese Ziffer weg und setzt sie als erste Stelle vor die übrigen Ziffern, so entsteht das Siebenfache der
ursprünglichen Zahl.

Da die ”neue Zahl” das Siebenfache der ursprünglichen sein soll und aus dieser durch das Wegstreichen
und Vorsetzen der letzten Stelle hervorgehen soll, muss sich die vorletzte Stelle aus der letzten durch
Multiplikation mit 7 ergeben.

Da 7 · z = 49 ist die vorletzte Stelle eine 9.
Die drittletzte Stelle ergibt sich wiederum durch Multiplikation der vorletzten mit 7, wobei jedoch der
Übertrag der 4 Zehner aus 49 zu beachten ist; sie ergibt sich also durch 7 · 9 + 4 = 67 zu 7. Damit erhält
man auch die viertletzte Stelle aus 7 · 7 + 6 = 55 zu 5.
Das Verfahren setzt man fort, bis schließlich eine Ziffernfolge 10 aufgetreten ist. Man hat damit die
kleinste natürliche Zahl mit der geforderten Eigenschaft erhalten. Würde man das Verfahren darüber
hinaus fortsetzen, so ergebe sich eine Periodizität; damit ist gezeigt, dass es beliebig viele derartige
Zahlen gibt.

Die auf diese Weise gefundene Zahl ist 1014492753623188405797.
Streicht man die letzte Stelle und setzt sie vor die erste, so ergibt sich die Zahl 7101449275362318840579,
die tatsächlich das Siebenfache der ursprünglichen ist.

Aufgabe 23/65
Gegeben sind die beiden Punkte A und B. Gesucht ist der Halbierungspunkt der Strecke AB. Zur
Konstruktion ist nur der Zirkel zugelassen.

A B C

D

E

S T

H

Konstruktion: Man schlage um die Punkte A und B je einen
Kreis mit dem Radius r = AB. Es ergeben sich die Schnitt-
punkte S und S′. Ein weiterer Kreis um S mit dem Radius
r = AB schneidet den Kreis um B außer in A in T . Ein
Kreis um T mit demselben Radius schneidet den Kreis um
B in S und C (vgl. Abbildung).
Ein Kreis um C mit dem Radius R = AC schneidet den
Kreis um A in den Punkten D und E. Die beiden Kreise,
die man mit dem Radius r = AB um D und E schlägt,
haben die Schnittpunkte A und H. Der Punkt H ist der
gesuchte Halbierungspunkt.

A B C

D

E

F

G H

S T

Beweis: Verlängert man die Strecke AC um sich selbst hinaus bis F und verbindet D mit A und F ,
so ergibt sich ein bei D rechtwinkliges Dreieck ADF , denn der Winkel ADF ist Peripheriewinkel im
Halbkreis über AF (vgl. Abbildung 2).
Die Hypotenuse hat die Länge 4r, die Kathete AD = AB hat die Länge r. Der Fußpunkt die Höhe auf
AF sei G.
Nach dem Kathetensatz gilt dann r2 = 4r ·AG = AB2. Daraus ergibt sich AB = 4AG oder AG = 1

4AB.
Nun ist G gleichzeitig Fußpunkt der Höhe auf der Basis AH des gleichschenkligen Dreiecks ADH. Damit
gilt AG = GH oder AH = 2AG, folglich AH = 1

2AB.
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Aufgabe 24/65
Man beweise, dass für jede natürliche Zahl n ≥ 1 gilt

n∑
ν=1

cos (2ν − 1)π
2n = 0

Es ist
n∑
ν=1

cos (2ν − 1)π
2n = cos 1π

2n + cos 3π
2n + ...+ cos (2n− 1)π

2n =
n∑
ν=1

cos (2ν − 1) + 1
2n π

Dann ist (wegen cos (π − x) = cosx)

n∑
ν=1

cos (2ν − 1)π
2n = 1

2

n∑
ν=1

[
cos (2ν − 1)

2n π − cos (2ν − 1) + 1
2n π

]
=

= 1
2

n∑
ν=1

[
cos (2ν − 1)

2n π − cos
(
π − (2ν − 1) + 1

2n π

)]
= 1

2

n∑
ν=1

0 = 0

Aufgabe 25/65
Gesucht ist ein Paar natürlicher Zahlen m und n mit m 6= n, m;n 6= 0, das die Gleichung(m

4

)m
=
(n

4

)n
erfüllt. Es ist weiter zu zeigen, dass es (bis auf die Reihenfolge) genau ein derartiges Paar gibt.

Da m 6= n ist, kann m > n angenommen werden,. Aus m ≥ 1 und m > n folgt
(
m
4
)m

>
(
n
4
)n. Demnach

muss m < 4 sein, und es folgt mm = nn · 4m−n. Da m > n ist, muss m eine gerade Zahl sein. Für m
kommt demnach nur m = 2 in Frage. Tatsächlich ist m = 2, n = 1 das einzige Lösungspaar.

Aufgabe 26/65
Man beweise den folgenden Satz: Ein Dreieck mit den Seitenlängen a, b und c und dem Umkreisradius
r ist genau dann rechtwinklig, wenn gilt:

a2 + b2 + c2 = 8r2

a

b

ca1

b1

M

C

B

A

C ′

Es sei ABC ein beliebiges Dreieck, C ′ der dem Punkt C diago-
nal gegenüberliegende Punkt auf dem Umkreis. Dann ist nach
dem Satz des Thales

a2 + a2
1 = (2r)2; b2 + b21 = (2r)2 → a2 + b2 + a2

1 + b21 = 8r2

Die Behauptung a2 + b2 + c2 = 8r2 ist genau dann richtig,
wenn c2 = a2

1 + b21 ist. Das aber ist genau dann der Fall (nach
dem Satz des Thales bzw. nach dem Satz des Pythagoras),
wenn c Durchmesser des Umkreises ist, also wenn ABC ein
rechtwinkliges Dreieck ist.

Aufgabe 27/65
Die Kurve der Funktion y = f(x) = ax soll die Kurve der Funktion y = g(x) = xn im 1.Quadranten
berühren.
Für welche Werte von a und n ist dies möglich? Man bestimme die Koordinaten des
Berührungspunktes.
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Werden zwei Kurven durch die Funktionen f(x) und g(x) dargestellt, so lauten die Bedingungen für die
Berührung in einem Punkt mit der Abszisse: f(x) = g(x) und f ′(x) = g′(x).
Die gegebenen Funktionen und ihre Ableitungen sind f(x) = ax; f ′(x) = ax ln x und g(x) = xn; g′(x) =
nxn−1. Der Berührungspunkt sei (x1; y1). Dann gelten die Gleichungen

ax1 = xn1 und ax1 ln x1 = nxn1

Logarithmieren der 1.Gleichung und Division mit der zweiten ergibt xn1
ax1 = ln x1. Mit der 1.Gleichung

wird damit ln x1 = 1, also x1 = e. Einsetzen in die Gleichung ergibt n = e ln a bzw. a = e
√
en. Für y1

ergibt sich somit y1 = en.
Ergebnis: Die Koordinaten des Berührungspunktes sind (e; en). Eine Berührung ist nur möglich, wenn a
und n durch die Gleichung n = e ln a verbunden sind. Eine Berührung ist unmöglich, wenn a = 1 ist, da
dann n = 0 wird und die beiden Funktionen als identische Geraden zusammenfallen. Wenn a < 1 ist,
dann ist n < 0.

Aufgabe 28/65
Eine zweistellige Zahl ist zu finden, bei der das Produkt aus den beiden Ziffern gleich der Differenz
aus dem fünffachen Quadrat der letzten Ziffer und der um 10 vermehrten Quersumme ist.

Die gesuchte Zahl sei z = 10x − y mit 0 ≤ x; y ≤ 9, ganz. Aus den Bedingungen der Aufgabe folgt die
Gleichung

xy = 5y2 − x− y − 10 bzw. y2 = xy + x+ y + 10
5

Da xy + x+ y wegen der Bedingungen für x und y sicher kleiner als 100 ist, folgt für y2 < 22 und damit
y ≤ 4. Unter den damit in Frage kommenden Werten y = 1; 2; 3; 4 erfüllt nur der Wert y = 3 mit x = 8
die Gleichung. Also ist nur das Zahlenpaar mit x = 8, y = 3 eine Lösung und es ist z = 83.

Aufgabe 29/65

M T

P

Q

t g

Gegeben sind ein Kreis k mit einer Tangente sowie dem
Berührungspunkt T von k mit t und eine zu t parallele Gerade
g. Jede Gerade durch T schneidet k in einem Punkt P und g
in einem Punkt Q.
Es ist zu beweisen: Der Produkt p = TP · TQ ist konstant,
d.h., p ist unabhängig von der speziellen Lage der Geraden
durch T .

a

B

r
A

M T

P

Q

t g Die zu t parallele Gerade g kann bezüglich des Kreises drei prin-
zipiell verschiedene Lagen einnehmen. Eine Möglichkeit zeigt die
Abbildung. Weiterhin kann g durch den Kreis verlaufen oder auch
auf der anderen Kreisseite diesen passieren. In allen drei Fällen
kann man jedoch die folgenden Gleichungen mit dem Winkel
α = ]MTA = ]BTQ aufstellen: cosα = a

TQ cosα = TP
2r

Daraus ergibt sich unmittelbar

a

TQ
= TP

2r also TP · TQ = 2ar

Da a und r konstante Faktoren; unabhängig vom Anstieg der Sekante; ist also TP · TQ konstant.

Aufgabe 30/65
Man beweise den folgenden Satz:
Ist p eine Primzahl und p > 5, so ist jede aus p − 1 gleichen Ziffern n bestehende Zahl z durch p
teilbar.
Beispiele: 444444 ist durch 7 teilbar, 1111111111 ist durch 11 teilbar.
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Jeder Primzahlstammbruch (außer für p = 2 und p = 5) lässt sich einen reinperiodischen Dezimalbruch
mit genau (p − 1)-stelliger Periode schreiben. Dass eventuell kürzerer Perioden auftreten, kann hier
unbeachtet bleiben, da die Periodenlänge in einem solchen Falle stets Teiler von p−1 sein muss, also eine
entsprechend vervielfachte Periode anzunehmen wäre.)
Eine solche (p − 1)-stellige Periode ergibt, mit p multipliziert, eine (p − 1)-stellige aus lauter Neunen
aufgebaute Zahl, die bei Division durch 9 in eine durch p teilbare, aus lauter Einsen geschriebene (p −
1)-stellige Zahl übergeht. Jedes Vielfache solcher Zahl ist dann auch durch p teilbar, natürlich p > 5
vorausgesetzt.

Aufgabe 31/65
Gegeben sind zwei konzentrische Kreise. Es ist eine gemeinsame Sekante zu konstruieren, so dass die
Sehne des äußeren Kreises doppelt so groß ist wie die Sehne des inneren Kreises.

M

D AF

E

C

B

Analysis: Angenommen, die Aufgabe wäre bereits gelöst. Verlängert
man den Radius MA über A hinaus um sich selbst bis B, so ist das
entstehende Dreieck ABC kongruent dem Dreieck ADM . (Wegen
AD = CD, AM = AB, ]DAM = ]CAB). Wegen ]ADM = 90◦ ist
dann auch ]ACB = 90◦. Damit ergibt sich folgende Konstruktion:

2. Konstruktion: Man zeichne in den inneren Kreis einen beliebigen
Radius MA und verlängere ihn um sich selbst bis zum Punkt B.
Über AB schlage man den Thaleskreis, der den äußeren Kreis in C
schneidet. Die Gerade durch A und C ist die gesuchte Sekante.

3. Beweis: Folgt unmittelbar aus der Analysis.
4. Determination: Die Wahl des Punktes A ist auf beliebig viele Weisen möglich. Zu jeder Wahl gibt es
genau zwei Schnittpunkte C und C ′ des Thaleskreises mit dem äußeren Kreis, wenn der Radius R des
äußeren Kreises kleiner ist als das Doppelte des Radius r des inneren Kreises: R < 2r.
Ist R = 2r, so berührt der Thaleskreis den äußeren Kreis in genau einem Punkt. Für R > 2r gibt es
keinen Schnittpunkt und die Aufgabe ist unlösbar.

Aufgabe 32/65
Man zeige, dass die beiden Ungleichungen

xyz(x+ y + z) > 0 und xy + yz + xz > 0

mit x; y; z 6= 0 genau dann gelten, wenn sgn x = sgn y = sgn z ist. Dabei ist sgn a = 0, wenn a = 0,
sgn a = 1, wenn a > 0 und sgn a = −1, wenn a < 0 ist.

Der Beweis gliedert sich in zwei Teile.
1. Aus sgn x = sgn y = sgn z folgt sgn xyz = sgn x = sgn x+ y + z und damit sgn xyz(x+ y + z) = 1
sowie sgn xy = sgn yz = sgn zx = 1, also sgn (xy + yz + zx) = 1.
Das heißt aber nichts anderes als

xyz(x+ y + z) > 0 und xy + yz + xz > 0

2. Angenommen, es wäre sgn x = sgn y = − sgn z, so würde folgen sgn xy = 1, sgn yz = −1, sgn xz = −1,
also xy > 0, yz < 0, xz < 0. Durch Division der ersten gegebenen Ungleichung durch yz < 0 folgt
x2 + xy + xz < 0.
Addiert man auf beiden Seiten dieser Ungleichung yz und subtrahiert man x2, so ergibt sich

xy + yz + zx < −x2 + yz < 0

(da yz < 0) im Widerspruch zur Voraussetzung. Also ist die Annahme falsch und es kann nur gelten
sgn x = sgn y = sgn z (da die Annahme sgn x = sgn z = − sgn y auf einen analogen Widerspruch führt).
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Aufgabe 33/65
Es sei a eine beliebige positive reelle Zahl. Man beweise:

a) Ist x 6= n
√
a und a > 0, so ist

y = a+ (n− 1)xn

nxn−1 > n
√
a

b) Ist

y1 >
n
√
a; yk =

a+ (n− 1)ynk−1

nyn−1
k−1

und zk = a

yn−1
k

so konvergiert die Folge {yk}monoton fallend (also von oben) und die Folge {zk}monoton steigend
(also von unten) gegen n

√
a.

a) Die n positiven Zahlen a
xn−1 ;x;x; ...;x mit x 6= a

xn−1 haben das arithmetische Mittel y und das
geometrische Mittel n

√
a. Ersteres ist bekanntlich immer größer als letzteres.

b) Nach a) sind alle Glieder der Folge {yk} größer als n
√
a. Alle Glieder der Folge {zk} sind kleiner als

n
√
a, denn es ist

znk =
(

a

yn−1
k

)n
= an

(ynk )n−1 <
an

an−1 = a

und das Radizieren eine monotone Operation. Also ist

z1 <
n
√
a < y1 ; z2 <

n
√
a < y2, ...

Somit ist
yk = zk−1 + (n− 1)yk−1

n
= yk−1 −

yk−1 − zk−1

n
< yk−1

und natürlich zk > zk−1, also {yk} monoton fallend, {zk} monoton steigend. Demnach ist jedes der
Intervalle Ik = (zk; yk) im vorherigen Intervall Ik−1 = (zk−1; yk−1) enthalten, und jedes Intervall Ik
enthält n

√
a.

Da nun aber die Intervalllängen

yk − zk < yk − zk−1 = yk−1 −
yk−1 − zk−1

n
− zk−1 = (yk−1 − zk−1)

(
1− 1

n

)
von Index zu Index stärker als mit dem konstanten Faktor

(
1− 1

n

)
< 1 schrumpfen, also gegen Null kon-

vergieren, zieht sich die Intervallschachtelung {Ik} auf einen Punkt zusammen: n
√
a. Somit konvergieren

beide Begrenzungsfolgen {yk} und {zk} gegen n
√
a.

Aufgabe 34/65
Es gibt vier aufeinanderfolgende natürliche Zahlen, von denen gilt:
Die Summe der Kuben der beiden kleineren ist gleich der Differenz der Kuben der beiden größeren.
Diese vier Zahlen sind zu finden.

Wenn w, x, y und z die vier aufeinanderfolgenden natürlichen Zahlen sind, so gilt auf Grund der Be-
hauptung

w3 + x3 = z3 − y3 → w3 + x3 + y3 = z3

Ferner gilt, wenn mit w die kleinste der vier Zahlen bezeichnet wird, x = w + 1, y = w + 2, z = w + 3,
also

w3 + (w + 1)3 + (w + 2)3 = (w + 3)3 → 2w3 − 12w = 18→ w(w2 − 6) = 9
Da w als natürliche Zahl ganz sein muss, ist w2 ebenfalls ganz und damit auch der Faktor in der Klammer.
Die Zahl 9 ist also in zwei ganzzahlige Faktoren zerlegt, mit den Möglichkeiten:
1. 9 = 1 · 9: diese Möglichkeit scheidet aus, da weder w = 1 noch w = 9 die Gleichung erfüllt.
2. 9 = 3 · 3: durch w = 3 ist die Gleichung erfüllt
Wenn w = 3, so folgt x = 4, y = 5, z = 6. Einsetzen dieser Werte in die Ausgangsgleichung liefert
27 + 64 = 216− 215. Damit ist die Aufgabe gelöst.
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Aufgabe 35/65
Es seien A, B, C und D die Eckpunkte eines ebenen Vierecks. Man beweise, dass dann gilt

sin]CAB · sin]DBC · sin]ACD · sin]BDA = sin]ABD · sin]BCA · sin]CDB · sin]DAC

Zunächst sei das Viereck konvex. Im weiteren verwenden wird die Bezeichnungen aus der Abbildung.
Nach dem Sinussatz der ebenen Trigonometrie kann man folgende Gleichungen aufstellen:

a : x = sin ρ : sinα1; x : y = sin γ1 : sin β1; y : c = sin δ2 : sin ρ

Durch Auflösung des Systems (Elimination von x und y) ergibt sich:

c · sin γ2 · sin δ2 = a · sinα1 · sin β1 (1)

Weiter gelten, ebenfalls nach dem Sinussatz, die folgenden Gleichungen:

a : w = sin ρ : sin β2; w : z = sin δ1 : sinα2; z : c = sin γ1 : sin ρ

Die Elimination von z und w ergibt: c · sin δ1 · sin γ1 = a · sinα2 · sin β2 (2)

A B

C

D

M

ρ

α1

α2
β2

β1

γ1
γ2

δ2
δ1

a

b

c

d
w x

y
z

Dividiert man (1) durch (2), so folgt:

sin γ1 · sin δ1
sin γ2 · sin δ2

= sinα2 · sin β2

sinα1 · sin β1

sinα1 · sin β1 · sin γ1 · sin δ1 = sinα2 · sin β2 · sin γ2 · sin δ2
Das ist aber die Behauptung. Der Nachweis für ein konkaves Viereck
führt zu analogen Gleichungen und Beziehungen.

Aufgabe 36/65
Es ist zu beweisen: Wenn |xi| ≤ 1 und n eine natürliche Zahl mit n ≥ 2 ist, so ist

n∑
i=1

x2
i ≥ n ·

n∏
i=1

xi

1. Die Behauptung ist trivial, wenn für mindestens ein i gilt xi = 0, da die Summe nicht negativ und das
Produkt 0 ist.
2. Die Behauptung ist trivial, wenn für genau 2m + 1 Indizes i mit m = 0, 1,... gilt xi < 0, da dann die
Summe nicht negativ ist, das Produkt aber negativ.
3. Wenn für genau 2m Indizes i gilt xi < 0, so ist

n∑
i=1

x2
i =

n∑
i=1
|xi|2 und

n∏
i=1

xi =
n∏
i=1
|xi|

Es genügt also, die Behauptung für 0 ≤ xi ≤ 1 zu beweisen.
Beweis mit Hilfe der vollständigen Induktion:

1. Die Behauptung ist sich richtig für n = 2. Für jedes xi > 0 mit i = 1, 2 ist

(x1 − x2)2 ≥ 0→ x2
1 − 2x1x2 + x2

2 ≥ 0→ x2
1 + x2

2 ≥ 2x1x2

2. Angenommen, die Behauptung gelte für n = r:
r∑
i=1

x2
i ≥ n ·

r∏
i=1

xi

Dann ist
r+1∑
i=1

x2
i =

r∑
i=1

x2
i + x2

r+1 ≥
r∏
i=1

xi + x2
r+1
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und wegen xr+1 < 1 wird

r

r∏
i=1

xi ≥ r
r∏
i=1

xixr+1 = r

r+1∏
i=1

xi

Ohne Beschränkung der Allgemeinheit sei xr+1 ≥ xr. Dann ist aber

xr+1 ≥
n∏
i=1

xi → x2
r+1 ≤

n∏
i=1

xixr+1 =
r+1∏
i=1

xi

r

r∏
i=1

xi + x2
r+1 ≥ r

r+1∏
i=1

xi +
r+1∏
i=1

xi = (r + 1)
r+1∏
i=1

xi

r+1∑
i=1

x2
i ≥ (r + 1) ·

r+1∏
i=1

xi

Damit gilt die Behauptung für alle n ≥ 2 und für alle xi mit |xi| ≤ 0.
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2.6 Aufgaben und Lösungen 1966

Aufgabe 1/66
Es ist zu beweisen, dass man unter n ganzen Zahlen stets k Zahlen mit k ≤ n so auswählen kann,
dass ihre Summe durch n teilbar ist. Dabei gelte auch eine einzelne Zahl als Summe.

Die n Zahlen seien a1, a2, a3, ..., an. Daraus kann man mindestens n Summen bilden: a1; a1 +a2; a1 +a2 +
a3; ...; a1 + a2 + ...+ an.
Da bei der Division durch n insgesamt n verschiedene Reste 0; 1; 2; ...;n möglich sind, ist unter diesen
Summen entweder eine, die bei der Division durch n den Rest null lässt (dann ist die Behauptung
bewiesen), oder unter diesen Summen sind mindestens zwei, die bei der Division durch n denselben Rest
m lassen (m < n). Dann lässt aber die Differenz zweier solcher Summen mit demselben Rest m bei der
Division durch n den Rest null. Da diese Differenz eine Summe im Sinne der Aufgabe ist, ist damit die
Behauptung vollständig bewiesen.

Aufgabe 2/66
Es ist ein Dreieck aus dem Winkel α, der Halbierenden sa seiner Gegenseite a und der Höhe ha auf
der Gegenseite a zu konstruieren!

D

sa

sa

B

A

M
H

ha

C

Analysis: Das Dreieck AMH ist nach ssw ohne weiteres konstruierbar,
wenn sa ≥ ha ist. Im Falle sa = ha fällt M mit H zusammen, das
Dreieck ABC wird gleichschenklig, damit ist sogar das Dreieck ABC
aus den Dreiecken AMB und AMC nach sww konstruierbar.
Verlängert man AM = sa über M hinaus um sich selbst bis zu Punkt D,
so bilden die Punkte A, B, D, C ein Viereck, indem sich die Diagonalen
halbieren, also ein Parallelogramm. Daraus folgt, dass ]DCA = 180◦−α
ist. Der Punkt C liegt also auf dem Kreis, der AD = 2sa als Sehne und
180◦ − α als Peripheriewinkel fasst.

Ferner liegt er auf der Geraden durch M und H (falls M = H, auf der Senkrechten zu AD in M).
Die Konstruktion ergibt sich aus der Analysis. Das Dreieck ABC ist genau dann konstruierbar, wenn
sa ≥ ha und α < 180◦ ist und zwar, bis auf Symmetrie, eindeutig.

Aufgabe 3/66
Man löse die Gleichung (√

2 +
√

3
)x

+
(√

2−
√

3
)x

= 4

Setzt man y =
(√

2 +
√

3
)x

, so wird

1
y

= 1(√
2 +
√

3
)x =

(
1√

2 +
√

3

)x
=
( √

2−
√

3√
2 +
√

3
√

2−
√

3

)x
=
(√

2 +
√

3
)x

Damit erhält die gegebene Gleichung die Form y + 1
y = 4. Da stets y 6= 0 ist, folgt y2 − 4y + 1 = 0 und

damit y = 2±
√

3.
1.) Ist y = 2 +

√
3, so ergibt sich

(√
2 +
√

3
)x

= 2 +
√

3. Damit ist die Lösung x = 2 offensichtlich.

2.) Ist y = 2−
√

3, so ergibt sich
(√

2 +
√

3
)x

= 2−
√

3. Da ferner gilt

1
2 +
√

3
= 2−

√
3

(2 +
√

3)(2−
√

3)
= 2−

√
3

ergibt sich
(√

2 +
√

3
)x

= 1
2+
√

3 mit der Lösung x = −2.
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Aufgabe 4/66
Welches reguläre Polyeder hat folgende Eigenschaften?

1. Werden die Flächenmitten untereinander entsprechend verbunden, so entsteht wieder ein re-
guläres Polyeder.

2. Werden die Kantenmitten dieses zweiten Polyeders untereinander entsprechend verbunden, so
entsteht ein drittes reguläres Polyeder.

3. Werden die Flächenmitten dieses dritten Polyeders untereinander entsprechend verbunden, so
entsteht ein viertes reguläres Polyeder. Welches Polyeder ist das?

Es gibt fünf reguläre Polyeder. Zur Lösung stellen wir eine Tabelle dieser Polyeder mit der Anzahl der
Ecken, Flächen und Kanten auf:

Polyeder Ecken Flächen Kanten
Tetraeder 4 4 6
Hexaeder 8 6 12
Oktaeder 6 8 12

Dodekaeder 20 12 30
Ikosaeder 12 20 30

Die unter 1. geforderte Eigenschaft weist jedes der Polyeder auf. Bei der Verbindung der Kantenmitten
zu einem Polyeder scheiden jedoch Dodekaeder und Ikosaeder aus, weil es kein reguläres Polyeder mit 12
bzw. mit 30 Ecken gibt (die Kantenmitten müssten Eckpunkte des dritten Polyeders werden).
Aber auch Hexaeder und Oktaeder scheiden aus, weil von den 12 Kantenmittelpunkten des Hexaeders
bzw. Oktaeders jeweils 4 in einer Ebene liegen. Nur beim Tetraeder ergäbe sich wegen der 6 Kanten
ein Polyeder mit 6 Ecken, also ein Oktaeder. Dessen Flächenmittelpunkte, untereinander entsprechend
verbunden, liefern ein Hexaeder.
Also einziges reguläres Polyeder hat das Tetraeder die geforderten Eigenschaften, und das vierte ”einge-
schachtelte” Polyeder ist ein Hexaeder (Würfel).

Aufgabe 5/66
Man beschreibe einem Kreis ein Viereck ein. Welche Bedingungen müssen die Diagonalen erfüllen,
wenn die Summe der Kreisbögen über zwei nicht benachbarten Seiten gleich dem halben Kreisumfang
sein sollen?

Die beiden Diagonalen schneiden einander im Punkt P unter dem Winkel α bzw. seinem Supplement
180◦ − α. Angenommen es gelte

_

AB +
_

CD = u
2 , wobei u der Umfang des Kreises ist, so folgt

_

AB +
_

BC +
_

CD +
_

DA = u

2 +
_

BC +
_

DA = u

also
_

BC +
_

DA = u
2 . Das heißt, genau dann, wenn die eine Bogensumme gleich dem Halbkreisbogen ist,

ist es auch die andere. Daher genügt es zu untersuchen, für welchen Winkel α die Relation
_

AB+
_

CD = u
2

richtig ist.
Da der Peripheriewinkel über einem Kreisbogen gleich dem halben Zentriwinkel ist, addieren sich die
Kreisbögen bei der Addition von Peripherie- und Zentriwinkeln und umgekehrt. Im Dreieck PBC sind
]PBC = β und ]PCB = γ Peripheriewinkel der Bögen

_

CD und
_

AB. Ihre Summe ist β+ γ = 180◦−α.
Daraus folgt nach der vorherigen Überlegung, dass für die Summe ϕ der Zentriwinkel über beiden Bögen
gilt: ϕ = 2(β + γ) = 360◦ − 2α.
Nur im Fall α = 90◦ ist die Summe der Zentriwinkel über beiden Bögen gleich 180◦, so dass sie einen
Halbkreis erfasst. Notwendig und hinreichend ist also die Orthogonalität der beiden Diagonalen, d.h. die
beiden Diagonalen stehen senkrecht aufeinander.
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Aufgabe 6/66
In der Gaußschen Zahlenebene wird eine komplexe Zahl

z = u+ i · v = r(cosϕ+ i sinϕ)

durch einen Punkt mit den Koordinaten u = r cosϕ und v = r sinϕ abgebildet. Dabei wird die
u-Achse als reelle und die v-Achse als imaginäre Achse bezeichnet.

Zwischen der Geraden, die den Winkel zwischen den Achsen im ersten Quadranten halbiert und
der positiven reellen Achse liegt eine Punktmenge, deren Elemente ganzzahlige Koordinaten u; v
haben. Diese Elemente haben die Eigenschaft, dass jedem von ihnen ein pythagoreisches Zahlentripel
eindeutig zugeordnet ist; die Zahlen des Tripels entsprechen den Seiten eines rechtwinkligen Dreiecks,
dessen Ecken der Ursprung, der Punkt z2 und der Fußpunkt des Lotes von z2 auf die reelle Achse
sind.
Weshalb gehören die Punkte der erwähnten Winkelhalbierenden mit ganzzahligen Koordinaten u; v
nicht zu der genannten Punktmenge?

Der Punkt z2 ist der Schlüssel zur Lösung. Quadriert man z, so ergibt sich

z2 = u2 − v2 + 2uv · i = r2(cos (2ϕ) + i sin (2ϕ))

Liegt nun ein Punkt z auf der erwähnten Winkelhalbierenden, so ist u = v und ϕ = 45◦. Setzt man diese
Werte ein, so folgt z2 = 2uv · i = r2 · i. Der Punkt liegt also dann auf der imaginären Achse, der Fußpunkt
des Lotes auf die reelle Achse fällt mit dem Ursprung zusammen.
Das Dreieck ist damit zur Strecke entartet. Damit wird in dem durch z bestimmten Tripel eine Zahl
gleich Null, während die beiden anderen einander gleich werden. Ein solches ”triviales” Tripel gilt nicht
als pythagoreisches Tripel.

Aufgabe 7/66
Welche Bedingungen muss ein Viereck erfüllen, damit um jeden seiner Eckpunkte ein Kreis existiert,
der die Kreise um die ihm benachbarten Eckpunkte berührt?

Angenommen, ein Viereck erfülle die Bedingung. Dann gilt (siehe Abbildung)

AB = ra + rb; BC = rb + rc; CD = rc + rd; DA = ra + ra

A
B

C

D

ra rb

rd

rc
Durch Subtraktion folgt daraus AB = BC = ra − rc und
DA − CD = ra − rc, d.h. AB − BC = DA − CD, al-
so AB + CD = BC + DA, das heißt, die Summen der ge-
genüberliegenden Seiten sind gleich. Da alle durchgeführten
Umformungen umkehrbar eindeutig sind, folgt umgekehrt aus
der Gleichheit der Summen gegenüberliegender Seiten die
Existenz der Kreise.

Aufgabe 8/66
Man beweise: Gilt für zwei Zahlenpaare (a; b) und (c; d) die folgende Gleichung

a2 + b2 + (a+ b)2 = c2 + d2 + (c+ d)2

so gilt auch die Gleichung
a4 + b4 + (a+ b)4 = c4 + d4 + (c+ d)4

127



2.6 Aufgaben und Lösungen 1966

Die Voraussetzung lautet
a2 + b2 + (a+ b)2 = c2 + d2 + (c+ d)2

Formt man diese Gleichung um, so ergibt sich

2(a2 + ab+ b2) = 2(c2 + cd+ d2)

Durch Quadrieren folgt

4(a4 + a2b2 + b4 + 2a3b+ 2ab3 + 3a2b2) = 4(c4 + c2d2 + d4 + 2c3d+ 2cd3 + 3c2d2)

Nach Dividieren durch 2 und Umstellung der Glieder erhält man

a4 + b4 + a4 + 4a3b+ 6a2b2 + 4ab3 + b4 = c4 + d4 + c4 + 4c3d+ 6c2d2 + 4cd3 + d4

a4 + b4 + (a+ b)4 = c4 + d4 + (c+ d)4

Aufgabe 9/66
Man berechne

n∑
k=1

(kxk−1) = 1 + 2x+ 3x2 + ...+ nxn−1

Es gilt∫ ( n∑
k=1

(kxk−1)
)
dx =

∫ (
1 + 2x+ 3x2 + ...+ nxn−1) =

n∑
k=1

xk + c = x+ x2 + x3 + ...+ xn + c

Die rechte Seite dieser Gleichung stellt eine geometrische Reihe mit dem Anfangsglied a1 = x, dem
Quotienten q = x und der Gliederzahl n dar. Damit ist nach der Summenformel geometrischer Reihen∫ ( n∑

k=1
(kxk−1)

)
dx = x

1− xn

1− x + c

Differenziert man wieder, so folgt

n∑
k=1

(kxk−1) =
d(x 1−xn

1−x + c)
dx

Mit Hilfe der Produktregel und der Quotientenregel ergibt sich daraus
n∑
k=1

(kxk−1) = 1 + 2x+ 3x2 + ...+ nxn−1 = 1− (n+ 1)xn + nxn+1

(1− x)2

Aufgabe 10/66
”Beweis” dafür, dass der Gewicht einer Lokomotive gleich dem Gewicht eines Ziegelsteins ist:
Das Gewicht der Lokomotive betrage m, das Gewicht des Ziegelsteins z.
Dann sei m + z = es die Summe beider. Damit gilt m − 2s = −z und m = −z + 2s. Multipliziert
man diese beiden Gleichungen miteinander, so ergibt sich:

m2 − 2ms = z2 − 2zs

oder, nach Addition von s2 auf beiden Seiten

m2 − 2ms+ s2 = z2 − 2zs+ s2 → (m− s)2 = (z − s)2 → also m = z

Wo steckt der Fehler?
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Der Fehler liegt in der letzten Schlussfolgerung. Aus

(m− s)2 = (z − s)2

kann man nicht folgern, dass m − s = z − s und damit m = z, sondern nur |m − s| = ||z − s|. Daraus
ergibt sich dann entweder m − s = z − s oder m − s = −(z − s). Tatsächlich gilt im vorliegenden Falle
die zweite dieser Relationen. Damit folgt aber wieder die Ausgangsgleichung m+ z = 2s.

Aufgabe 11/66
Es sind die fünf Zahlen einer Lottoziehung (1 bis 90) gesucht, über die folgendes ausgesagt wird:

a) Es treten alle Ziffern von 1 bis 9 genau einmal auf.

b) Nur die drei mittleren Zahlen sind gerade.

c) Die kleinste Zahl hat mit der größten einen (von ihr selbst verschiedenen) gemeinsamen Teiler.

d) Die Quersumme einer Zahl ist ein Viertel der Quersumme der größten Zahl.

e) Die Quersummen zweier anderer Zahlen verhalten sich wie 1:2.

a) Da fünf Zahlen gesucht sind, aber nur neun Ziffern auftreten, muss die kleinste Zahl einstellig sein.

b) Diese kleinste Zahl ist ungerade.

c) Da sie mit der größten Zahl einen (von ihr selbst verschiedenen) gemeinsamen Teiler hat, ist sie die Zahl
Neun. (alle anderen ungeraden einstelligen Zahlen sind Primzahlen oder die Eins). Der gemeinsame
Teiler ist also 3. Die Quersumme der größten Zahl ist somit durch 3 teilbar.

d) Da die Quersumme der größten Zahl außerdem durch 4 teilbar sein muss und die Quersumme einer
zweistelligen Zahl mit verschiedenen Ziffern höchstens 17 ist (im vorliegenden Fall sogar höchstens 15,
da die Ziffer 9 nicht mehr auftreten kann), ist die Quersumme der größten Zahl 12. Da die größte Zahl
ungerade ist, kommen für sie nur 75 oder 57 in Frage.
Die Quersumme einer anderen Zahl ist 1

4 · 12 = 3. Für sie kommen demnach nur 12 oder 21 in Frage.
Nach b) ist sie gerade, also ist 12 die zweite Zahl.

e) Es verbleiben die Ziffern 3, 4, 6, 8. Daraus müssen zwei Zahlen gebildet werden, deren Quersummen
sich wie 1:2 verhalten. Man probiert leicht aus (6 Möglichkeiten), dass dies nur für die beiden Kom-
binationen 3;4 und 6;8 möglich ist.
Nach b) ist nun die dritte Zahl 34 (43 ist ungerade). Da nach b) die größte Zahl ungerade ist, scheiden
die Möglichkeiten 86 für die vierte und 57 für die größte Zahl aus.

Die fünf Zahlen sind also 9, 12, 34, 68, 75.

Aufgabe 12/66
Die Summe

sn = 12 − 22 + 32 − 42 + ...+ (−1)n−2(n− 1)2 + (−1)n−1n2

soll berechnet werden!

1.) Es sei n eine gerade Zahl. Dann ist

sn = (12−22)+(32−42)+ ...+[(n−1)2−n2] = −3−7−11− ...−(2n−1) = −(3+7+11+ ...+(2n−1)) =

= −1
2 [(3 + (2n− 1)] · n2 = −n(n+ 1)

2
2.) Es sei n eine ungerade Zahl. Dann ist sn = sn−1 + n2, wobei n-1 eine gerade Zahl ist. Auf sie kann
man das Ergebnis von 1.) anwenden: sn = − (n−1)n

2 + n2 = n(n+1)
2 .

Fasst man beide Ergebnisse zusammen, so folgt

sn = (−1)n−1n(n+ 1)
2

Beachtet man, dass rechts, abgesehen vom Vorzeichen, die Summenformel der natürlichen Zahlen steht,
so erhält man das Ergebnis in der Form 12 − 22 + 33 − 42 + ...± n2 = ±(1 + 2 + ...n).
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Aufgabe 13/66
Man beweise, dass es genau ein Paar natürlicher Zahlen x und y gibt, für dass z = xy − 4 eine
Primzahl ist, wenn y eine gerade Zahl ist!

Es sei y = 2k mit k = 1, 2, 3, .... Dann ist

xy − 4 = x2k − 4 = (xk + 2)(xk − 2) = z

Da z Primzahl sein soll, muss einer der beiden Faktoren gleich 1 und der andere gleich z sein. Da xk ≥ 1
ist, muss also gelten xk − 2 = 3 oder xk = 3, also x = 3 und k = 1.
Das heißt, nur das Paar x = 3, y = 2 liefert für z eine Primzahl.

Aufgabe 14/66
Von einem Dreieck ABC sind festgelegt der Eckpunkt A, der Mittelpunkt Mi des Inkreises und der
Mittelpunkt Mu des Umkreises. Das Dreieck ist zu konstruieren.

α/2 β/2

α+β
2

γ

D

A B

C

MiMu

Analysis: Der Punkt liege erstens auf dem Umkreis des Dreiecks
und zweitens auf der Winkelhalbierenden wα. Auf der Winkel-
halbierenden wα liegt auch Mi, da die Seiten b und c Tangenten
an den Inkreis sind.

Wegen ]BAD = ]CAD = α
2 ist BD = CD (zu gleichen

Peripheriewinkeln gehören im selben Kreis auch gleiche Seh-
nen). Weiter ist ]ADB = ]ACB = γ (Peripheriewinkel über
derselben Sehne) und ]CBMi = ]ABMi = β

2 (Mi liegt auch
auf der Winkelhalbierenden wβ).

Aus beidem folgt ]BMiD = α+β
2 (Außenwinkel im Dreieck ABMi) und ]ABD = β + α

2 (nach dem
Winkelsummensatz, Dreieck ABD), also ]DBMi = α+β

2 , d.h., das Dreieck BDMi ist gleichschenklig:
BD = MiD. Aus BD = CD folgt unmittelbar CD = MiD.

Konstruktion: Um den Punkt Mu schlägt man mit dem Radius MuA = ru einen Kreis. Durch A und Mi

legt man eine Gerade, die den Kreis um Mu in D schneidet. Um D schlägt man einen Kreis mit DMi als
Radius. Die Schnittpunkte dieses Kreises mit dem Umkreis (Kreis um Mu) sind die Punkte B und C.

Determination: Ist MuMi < MuA, d.h. der Inkreismittelpunkt liegt innerhalb des Umkreises, so ist das
Dreieck ABC (bis auf die Bezeichnung) eindeutig konstruierbar. Ist speziell Mi = Mu, so ergibt sich ein
gleichseitiges Dreieck. Ist MuMi ≥MuA, so ist das Dreieck ABC nicht konstruierbar.

Aufgabe 15/66
Für die Berechnung der Quadratwurzel aus einer Zahl z = p2 + a mit 0 ≤ a ≤ 2p + 1 gilt die
Näherungsformel √

z =
√
p2 + a ≈ p+ a

2p+ 1
Wir groß ist der maximale Fehler dieser Näherung in Abhängigkeit von a? Wie ändert sich dieser in
Abhängigkeit von p?

Es sei
√
z =

√
p2 + a = p+ a

2p+1 + ε, also

ε = f1(a) =
√
p2 + a− a

p+ 1 − p

(mit p = konstant). Daraus folgt

ε′ = f ′1(a) = 2√
p2 + a

− 1
2p+ 1
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ε′′ = f ′′1 (a) = − 1
4(p2 + a)

√
p2 + a

< 0

(für jedes a ≥ 0). Also liefert die Lösung der Gleichung ε′ = 0 die Maxima. Es ergibt sich a = p+ 1
4 und

damit εmax = 1
4(2p+1) = f2(p).

Man erkennt, dass εmax mit wachsendem p sich immer mehr der Null nähert, es ist

lim
p→∞

εmax = lim
p→∞

1
4(2p+ 1) = 0

Wie leicht zu sehen ist, hat ε Minima an den Grenzen des Definitionsintervalls εmin1 = 0 für a = 0 und
εmin2 = 0 für a = 2p+ 1.

Aufgabe 16/66
In der Zeitung ”Neues Deutschland” vom 29. Juni 1965 fand sich folgende Notiz:
Als dieser Tage ein Kleintierhalter in Christdorff im Kreis Wittstock ein Huhn schlachtete, gab es
neben dem Sonntagsbraten auch noch eine Summe Bargeld als Zusatz. Im Magen des Huhns befanden
sich 17 Münzen, insgesamt 34 Pfennig ...
Angenommen, es handelte sich um Münzen, die gegenwärtig im Umlauf sind. Welche Münzen waren
es in welcher Anzahl?

Die Aufgabe führt auf eine leicht lösbare diophantische Gleichung. Bezeichnet man die Anzahl der 10-Pf-
Stücke mit x, die der 5-Pf-Stücke mit y und die der 1-Pf-Stücke mit z (größere Münzen kommen nicht in
Frage), so ergibt sich das folgende Gleichungssystem

x+ y + z = 17 , 10x+ 5y + z = 34

wobei x, y und z natürliche Zahlen bedeuten. Subtrahiert man die erste von der zweiten Gleichung, so
ergibt sich 9x+ 4y = 17.
Da 17 nicht durch 4 teilbar ist, muss x > 0 sein, da y ≥ 0 ist, muss x < 2 sein. Also ist x = 1.
Durch Einsetzen dieses Wertes ergibt sich y = 2 und schließlich z = 14. Es handelte sich demnach um 1
10-Pf-Stück, 2 5-Pf-Stücke und 14 1-Pf-Stücke. Die Probe bestätigt die Richtigkeit dieser Lösung.

Aufgabe 17/66
Gegeben sei ein beliebiges Dreieck ABC. Wie lang ist der kürzeste der Streckenzüge AXY B, wobei
X ein beliebiger Punkt im Innern der Strecke BC und Y ein beliebiger Punkt im Innern der Strecke
AC ist?

A

B

C

A′

B′
B1 A1

XY

Man spiegele A an BC und nenne den Bildpunkt A′. Weiter
spiegele man B an AC und nenne den Bildpunkt B′ (siehe
Abbildung). Die Gerade durch A′ und B′ schneide AC in
B1 und BC in A1.
Der Symmetrie wegen wird B′Y = Y B und A′X = XA,
Folglich haben die Streckenzüge AXY B und A′XY B′

die gleiche Länge. Da offensichtlich A′XY B′ für X = A1
und Y = B1 die minimale Länge smin besitzt, kann nur
AA1BB1 der gesuchte kürzeste Streckenzug sein.

Wegen B′C = BC = a,A′C = AC = b und ]B′CA′ = 3γ wird für γ < 60◦ laut Kosinussatz

smin =
√
a2 + b2 − 2ab cos 3γ

AA1BB1 sind jedoch dann und nur dann der gesuchte Streckenzug, wenn die Schnittpunkte A1 und B1
auf den Seiten BC und AC liegen. Man kann zeigen, dass das der Fall ist, wenn 90◦ − α < 2γ < 120◦
gilt.

Interessant sind die Grenzfälle 2γ = 120◦ und 2γ = 90◦ − α. Im ersten Fall wird A1 = B1 = C, der
minimale Streckenzug verläuft nicht mehr im Inneren des Dreiecks, sondern er entartet zum Streckenzug
ACB mit der Länge a + b. Dieser Grenzfall folgt auch aus der Gleichung für smin, wenn man in ihr
γ = 60◦ setzt. Im anderen Fall wird A1 = B und ]AB1B = 90◦. Der minimale Streckenzug ABB1B
ist ebenfalls keine Lösung im Sinne der Aufgabenstellung, sondern wiederum ein Grenzfall. Seine Länge
beträgt c(1 + 2 sinα).
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Aufgabe 18/66
Zeichnet man über den Seiten eines spitzwinkligen Dreiecks ABC gleichseitige Dreiecke nach außen
und verbindet man die dadurch entstehenden Eckpunkte mit den ihnen gegenüberliegenden Eckpunk-
ten des Dreiecks, so gelten für die Verbindungsstrecken die folgenden Sätze:

1. Die drei Verbindungsstrecken sind gleich lang.

2. Die drei Verbindungsstrecken schneiden einander unter Winkeln von je 60◦.

3. Die drei Verbindungsstrecken schneiden einander in einem einzigen Punkt im Innern des Drei-
ecks.

Diese Sätze sind zu beweisen.

Wir verwenden die Bezeichnungen der Abbildung auf der nächsten Seite.

1. Beweis von Satz 1 - Es ist ∆ACD ∼= ∆ECB
nach sws; AC = EC, CD = CB nach Konstruktion, ]ACD = ]ECB = ]ACB + 60◦, wegen ]ACE =
]BCD = 60◦.
Damit ist auch AD = BE. Analog beweist man mit Hilfe der Dreiecke ADB und CDF , dass AD = CF ,
bzw. mit Hilfe der Dreiecke AEB und CAF , dass EB = CF ist. Also gilt der Satz 1.

2. Beweis von Satz 2 - Es ist ∆APG ∼ ∆DEG
nach Hauptähnlichkeitssatz, ]GAP = ]GEC wegen ∆ACD ∼= ∆ECB, ]AGP = ]EGP als Scheitel-
winkel.
Daraus folgt ]AGF = ]ECG = 60◦. Demnach schneiden AD und BE einander unter einem Winkel von
60◦. Analog beweist man, dass auch AD und CF bzw. BE und CF einander unter einem Winkel von
60◦ schneiden. Also gilt der Satz 2.

A B

C

P

E

D

F

G

3. Beweis von Satz 3 - Es ist ]CAD = ]CAD = ]CEB =
]CEP (wegen ∆ACD ∼= ∆ECB).
Demnach sind die Winkel CAP und CEP nach der Umkehrung
des Peripheriewinkelsatzes Umfangswinkel desselben Kreises
über der Sehne PC. Damit sind aber auch die Winkel EAC
und EPC Umfangswinkel desselben Kreise über der Sehne EC.
Also folgt ]EPC = ]EAC = 60◦.
Weiter ist ]ABP = 120◦ (Nebenwinkel zu ]EPA = 60◦)
und ]AFB = 60◦ (Winkel im gleichseitigen Dreieck), also
]APB + ]AFB = 180◦.

Das heißt, das Viereck APBF ist ein Sehnenviereck. Damit folgt
]ABF = ]APF . Aus ]APF = 60◦ (Winkel im gleichseitigen
Dreieck) folgt somit ]ABF = 60◦.

Da ]APF = ]APE = ]EPS = 60◦ ist, muss der Streckenzug CPF auf einer Geraden liegen. Das heißt
aber, dass die Verbindungsstrecke CF die Verbindungsstrecken BE und AD in deren Schnittpunkt P
schneidet. Damit ist auch Satz 3 bewiesen.

Aufgabe 19/66
Man beweise: Die letzten beiden Ziffern der Quadrate zweier natürlicher Zahlen, für die gilt a±b = 50n
mit n = 1, 2, 3,... stimmen überein.

Ohne Beschränkung der Allgemeingültigkeit sei a ≥ b. Aus a ± b = 50n folgt ±b = 50n − a → b2 =
2500n2 − 100an+ a2.
Durch einfache Umformung erhält man daraus a2 − b2 = 100n(a − 25n). Die Differenz der Quadrate a
und b ist also durch 100 teilbar. Demnach haben die beiden Quadrate gleiche Zehner und gleiche Einer.

Aufgabe 20/66
Eine Ellipse mit den Halbachsen a und b ist in einen flächengleichen Kreis umzuformen.
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Der Flächeninhalt der Ellipse ist abπ, der des gesuchten Kreises ist r2π. Es gilt also

abπ = r2π oder r2 = ab; r =
√
ab

Der gesuchte Radius ist demnach gleich dem geometrischen Mittel aus den beiden Halbachsen. Die Auf-
gabe besteht also darin, ein Rechteck mit den Seiten a und b in ein flächengleiches Quadrat mit der Seite
r zu verwandeln. Das ist mit Hilfe des Höhensatzes (oder auch mit Hilfe des Satzes von Euklid) möglich.
Man trägt auf einer Geraden die Strecken AB = a und BC = b ab, schlägt über AC = a+b den Halbkreis
und errichtet in B die Senkrechte. Ihr Schnittpunkt mit dem Halbkreis sei D.
Das Dreieck ACD ist nach dem Satz des Thales rechtwinklig bei D, BD ist Höhe auf die Hypotenuse
in diesem Dreieck. Nach dem Höhensatz ist die Höhe auf der Hypotenuse eines rechtwinkligen Dreiecks
mittlere Proportionale zu den beiden Hypotenusenabschnitten. Also gilt

BD2 = AB ·BC = ab oder BD =
√
ab = r

Damit ist die Aufgabe gelöst.

Aufgabe 21/66
Zu lösen ist das Gleichungssystem

xy(x+ y) = 20 , 1
x

+ 1
y

= 5
4

Dem gegebenen System äquivalent ist das System

xy(x+ y) = 20 , x+ y = 5
4xy

Mit x + y = a1, xy = a2 nimmt es die Gestalt a1a2 = 20 , a1 = 5
4a2 an. Durch Einsetzen folgt a1 =

±5, a2 = ±4. Damit hält man die beiden Systeme

x+ y = 5, xy = 4 , x+ y = −5, xy = −4

Wegen x 6= 0 ergibt sich nach Einsetzen als Lösungen: x11 = 4, y11 = 1 ; x12 = 1, y12 = 4 ; x21 ≈
0,7, y21 ≈ −5,7 ; x22 ≈ −5,7, y22 ≈ −0,7. Die Probe bestätigt die Richtigkeit.

Aufgabe 22/66
Man beweise: Sind a, b und c drei nicht negative, voneinander verschiedene Zahlen, so gilt stets

a3 + b3 + c3 ≥ 3abc

Man kann die Behauptung auch in der Form a3 + b3 + c3− 3abc > 0 schreiben. Nun besteht die Identität

a3 + b3 + c3 − 3abc = (a+ b+ c+)(a2 + b2 + c2 − ab− ac− bc)

wovon man sich durch Ausmultiplizieren leicht überzeugt. Des weiteren ist

a2 +b2 +c2−ab−ac−bc = 1
2(a2−2ab+b2 +a2−2ac+c2 +b2−2bc+c2) = 1

2 [(a−b)2 +(a−c)2 +(b−c)2]

Der letzte Ausdruck ist aber sicher größer als null, da wegen der für a, b und c getroffenen Voraussetzung
jeder einzelne Faktor größer als null ist.
Bei den durchgeführten Umformungen wurden nur eindeutig umkehrbare Rechenoperationen verwendet.
Daher folgt umgekehrt aus der letzten Feststellung die Behauptung.
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Aufgabe 23/66

Der in der Abbildung im Zweitafelbild dargestellte Körper soll um eine
Achse, die senkrecht auf der Aufrisstafel steht, um 45◦ gedreht werden.
Wie sieht das Zweitafelbild nach der Drehung aus? Um welchen Körper
handelt es sich?
(Stellt man sich den Körper als Drahtmodell vor, so werden alle ”hinten”
bzw. ”unten”l.iegenden Kanten in den Rissen verdeckt.)

Wir stellen uns den Körper als Drahtmodell vor. In die gegebenen Risse (Abbildung) werden Punktsym-
bole eingetragen. Der Originalpunkt A z.B. ergibt den Grundriss A′ und den Aufriss A′′. Die Symbole
für verdeckte Punkte werden an die zweite Stelle gesetzt. So wird z.B. im Grundriss Punkt F von Punkt
E verdeckt.
Der Körper soll nun um eine Achse, die senkrecht auf der Aufrisstafel steht, um 45◦ gedreht werden.
Nun kann man ohne weiteres den Aufriss drehen, weil sich alle Verschiebungen auf Bahnen vollziehen,
die parallel zur Aufrisstafel liegen.
Bezüglich der Grundrisstafel ist der Sachverhalt anders; wegen der genannten Verschiebungseigenschaft
bleiben die Abstände der Risse von der Aufrisstafel erhalten.

A′

J ′,N ′ G′,L′

D′ E′,F ′ B′

K′,O′ H′,M ′

C′

F ′′

N ′′,O′′ L′′,M ′′

D′′ A′′,C′′ B′′

E′′

J ′′,K′′ G′′,H′′

Distanzlinien

Infolgedessen be-
wegen sich die
Grundrisse der
Punkte auf Di-
stanzlinien parallel
zur Rissachse; die
Schnittpunkte der
Ordnungslinien
aus dem (neuen)
Aufriss mit diesen
Distanzlinien lie-
fern die Grundrisse
der Punkte.

F ′′ L′′,M ′′ B′′

N ′′,O′′ A′′,C′′ G′′,H′′

D′′ J ′′,K′′ E′′

C′

K′,M ′

J ′,L′

A′

O′

D′,F ′

N ′

H′

E′,B′

G′

Dabei kann man die folgende wichtige Feststellung treffen:
Betrachtet man die Risse der Fläche DKEJ , so stellt man fest, dass im Grundriss der zweiten Abbildung
die Fläche DKEJ in wahrer Größe und Gestalt vom Riss D′K ′E′J ′ wiedergegeben wird; sie ist offenbar
ein Rhombus. Da nun alle anderen in der Abbildung dargestellten Flächen die gleichen Projektionseigen-
schaften zeigen, müssen sich auch die Original gleichen. Das heißt, alle Seitenflächen sind Rhomben, im
ganzen 12.
Ergebnis: der Körper ist ein Rhombendodekaeder.
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Aufgabe 24/66
Beweis, dass π = 1 ist: Es wird das Integral I =

∫
dx

x ln xπ auf zwei Arten bestimmt.

1. Substitution t = ln xπ, dx = x
πdt. Es ergibt sich∫

dx

x ln xπ =
∫
xdx

πxt
= 1
π

∫
dt

t
= 1
π

ln |t|+ C = 1
π

ln | ln xπ|+ C

2. Substitution t = ln x, dx = xdt. Es ergibt sich∫
dx

x ln xπ =
∫

dx

πx ln x = 1
π

∫
dt

t
= 1
π

ln |t|+ C = 1
π

ln | ln x|+ C

Demnach ist xπ = x, also π = 1. Wo steckt der Fehler?

Der Fehler beruht darauf, dass die beiden unbestimmten Integrationskonstanten gleichgesetzt wurden.
Es muss richtig heißen ∫

dx

x ln xπ = 1
π

ln | ln xπ|+ C1 = 1
π

ln | ln x|+ C2

Dann folgt aus dieser Gleichung

C1 − C2 = 1
π

ln | ln x| − 1
π

ln | ln xπ| = 1
π

ln | ln x|
| ln xπ| = 1

π
ln | ln x|
π| ln x| = 1

π
ln 1
π

Die beiden Konstanten C1 und C2 unterscheiden sich also um einen konstanten Wert.

Aufgabe 25/66
Welches ist das größte Vielfache von 11, in dem keine der Zehn mehr als einmal vorkommt?

Sollen alle zehn Ziffern genau einmal vorkommen, so muss die Zahl zehnstellig sein und die Quersumme 45
haben. Eine Zahl ist genau dann durch 11 teilbar, wenn die Differenz aus der Summe x der geradstelligen
Ziffern und der Summe y der ungeradstelligen Ziffern gleich null oder einem Vielfachen von 11 ist. Man
hat also das Gleichungssystem

x+ y = 45 ; x− y = 11k

mit k = 0;±1;±2, ... in positiven ganzen Zahlen zu lösen. Es ergibt sich

x = 45 + 11k
2 ; y = 45− 11k

2

Daraus folgt: 1. k ist ungerade; 2. |k| < 5 (da sonst entweder x oder y negativ würde). Also kommen nur
die Werte k = ±1 und k = ±3 in Frage.
I. k = ±1 liefert x = 28, y = 17 bzw. x = 17, y = 28.
II. k = ±3 liefert x = 39, y = 6 bzw. x = 6, y = 39.
Fall II ergibt keine brauchbare Lösung, da fünf verschiedene Ziffern stets eine Summe ergeben, die größer
als 6 ist.

Man muss also (Fall I) die zehn Ziffern so in zwei Fünfergruppen aufteilen, dass die eine die Summe
28, die andere die Summe 17 ergibt. Die gesuchte größte Zahl wird sich dann ergeben, wenn man die
Ziffern in jeder Gruppe nach fallender Größe (von links her) ordnet und bei der geradstelligen Gruppe
möglichst viele ungerade, bei der ungeradstelligen Gruppe möglichst viele gerade Ziffern verwendet (wobei
die Stellen von der Einerstelle aus gezählt wurden):
geradstellige Gruppe: 9 7 5 4 3
ungeradstellige Gruppe: 8 6 2 1 0
gesuchte Zahl: 9 8 7 6 5 2 4 1 3 0
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Aufgabe 26/66
Eine Fläche, die sich aus einem Rechteck mit den Seiten a und b und einem Halbkreis mit dem Radius
r = b

2 zusammensetzt, habe einen Flächeninhalt A = 100 cm2.
Ohne Benutzung der Differentialrechnung ermittle man die Seiten a und b = 2r so, dass der Umfang
der Fläche minimal wird. Wie groß ist Umin?
(Der Halbkreis grenzt mit seiner geraden Begrenzungslinie an die Seite b des Rechtecks an.)

Es ist A = ab+ π
8 b

2 und U = 2a+ b+ π
2 b. Eliminiert man aus diesen Gleichungen die Variable a, so erhält

man für die Variable b die quadratische Gleichung

b2 − 4U
4 + π

b+ 8A
4 + π

= 0

Die Bedingung für die Existenz einer reellen Lösung lautet

D = 4U2 − 8A(4 + π)
(4 + π)2 ≥ 0

Daraus folgt U2 ≥ 2A(4 + π) und Umin =
√

2A(4 + π) ≈ 37,8 cm (Rechenstabgenauigkeit). Die quadra-
tische Gleichung für b hat dann die Doppellösung (entsprechend für a):

b = 2Umin
4 + π

= 2
√

2A
4 + π

≈ 10,58 cm; a = Umin
4 + π

=
√

2A
4 + π

≈ 5,29 cm

Anmerkung: Man hätte anfangs auch b eliminieren können und hätte so eine quadratische Gleichung für
a erhalten, die zum selben Ergebnis geführt hätte.

Aufgabe 27/66
Welche Bedingungen müssen die Diagonalen eines ebenen konvexen Vierecks ABCD mit dem Dia-
gonalenschnittpunkt S erfüllen, wenn die Flächensumme der Dreiecke ABS und DSC gleich der
Flächensumme der Dreiecks BCS und ASD sein soll?

Werden die Diagonalabschnitte folgendermaßen bezeichnet: AS = w;BS = x;CS = y;DS = z, ist ferner
F (ABS) = A1;F (BSC) = A2;F (CSD) = A3;F (DSA) = A4 und ]ASB = ρ, so gilt

A1 = 1
2wx sin ρ ; A2 = 1

2xy sin 180◦ − ρ = 1
2xy sin ρ

A3 = 1
2yz sin ρ ; A4 = 1

2wz sin 180◦ − ρ = 1
2wz sin ρ

A1 +A3 = 1
2 sin ρ(wx+ yz) ; A2 +A4 = 1

2 sin ρ(xy + wz)

Ist nun A1 + A3 = A2 + A4, so folgt, dass wx + yz = xy + wz sein muss (da ρ 6= 0◦ und ρ 6= 180◦, ist
auch sin ρ 6= 0). Eine Umformung ergibt (w − y)(x− z) = 0.
Diese Gleichung ist genau dann erfüllt, wenn w = y oder wenn x = z ist, d.h., wenn mindestens eine der
beiden Diagonalen durch S halbiert wird.
Aus A1 + A3 = A2 + A4 folgt also w = y oder x = z. Da alle durchgeführten Operationen eindeutig
umkehrbar sind, folgt umgekehrt aus w = y oder aus x = z, dass A1 +A3 = A2 +A4 ist. Die Bedingung,
dass mindestens eine der beiden Diagonalen die andere halbiert, ist demnach zugleich notwendig und
hinreichend dafür, dass die beiden Flächensummen einander gleich sind.

Aufgabe 28/66
Ein Kreissektor mit dem Zentriwinkel π3 werde so durch eine Senkrechte zur Winkelhalbierende geteilt,
dass der Umfang des einen Teils gleich dem Umfang des anderen Teils ist.
Welcher der beiden Teile hat den größeren Flächeninhalt?
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S A

B

X

Y

M

Zunächst wird die Lage der Senkrechten XY zur Winkelhalbierenden
SM festgestellt. Für sie gibt es drei Möglichkeiten (Abbildung): Entwe-
der schneidet XY den Kreisbogen, oder XY fällt mit AB zusammen,
oder XY schneidet die Schenkel des Zentriwinkels.
Im Falle der Übereinstimmung von XY und AB müsste der Umfang
des gleichseitigen Dreiecks SAB mit AB = BS = SA = r dem Umfang
des Kreissegments AMB gleich sein. Die Nachrechnung ergibt, dass der
Dreiecksumfang größer ist als der Segmentumfang. Daraus folgt zugleich,
dass XY den Kreisbogen nicht schneiden kann; durch Verschieben der
Senkrechten in Richtung auf M würde nämlich der kleinere Umfang
weiter verkleinert, der größere dagegen vergrößert werden.

Also schneidet XY die Schenkel SA und SB, so dass das gleichseitige Dreieck SXY mit den Seiten
SX = XY = Y S = x entsteht.
Soll der Umfang der beiden Teilfiguren gleich sein, so muss gelten 3x = 2(r−x)+x+ π

3 r. Durch Auflösen
dieser Gleichung nach x erhält man x = r

12 (6 + π). Die Flächeninhalte sind

A1 = 1
4x

2√3 = 1
576r

2(6 + π)2√3 und A2 = 1
6πr

2 −A1 = 1
576r

2[96π − (6 + π)2]
√

3

Die Ausrechnung zeigt, dass A1 < A2 ist.

Aufgabe 29/66
In einem Würfel mit der Kantenlänge a sind neun möglichst große gleiche Kugeln derart einzulagern,
dass eine davon als Mittelpunkt den Schnittpunkt der Körperdiagonalen hat, während die übrigen
acht in die Ecken des Würfels gelegt werden.
Wie groß ist der Durchmesser d der Kugeln, ausgedrückt durch die Würfelseite a?

r

a a

r

x

a
√

2

a

Auf einer Körperdiagonale des Würfels müssen die Mittelpunkte der Zentralkugel und der zwei Kugeln
liegen, die entgegengesetzte Ecken füllen. In der Abbildung sind ein Schnitt durch den Würfel, der zwei
Körperdiagonalen enthält, und die Draufsicht auf den Würfel dargestellt.
Die Länge der Körperdiagonale ist a

√
3. Aus dieser Abbildung liest man die Gültigkeit der folgenden

Gleichungen ab:
r : x = a : a

√
3 (1) 4r + 2x = a

√
3 (2)

Löst man dieses Gleichungssystem nach r durch Substitution von x = r
√

3 (aus Gleichung I) auf, so
erhält man

r = a

2 ·
√

3
2 +
√

3
= a

2 (2
√

3− 3) ≈ 0,232a

Daraus folgt unmittelbar d = a(2
√

3− 3) ≈ 0,464a.

Aufgabe 30/66
Gegeben sei ein Polynom

f(x) = xn + xn−1 + ...+ x+ 1

Man gebe f(x+ 1) als Polynom in x an.
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Das Polynom stellt eine endliche geometrische Reihe mit a = 1, q = x und n+ 1 Gliedern dar, es ist also

f(x) = xn + xn−1 + ...+ x+ 1 = xn+1 − 1
x− 1

Daraus folgt

f(x+ 1) = (x+ 1)n+1 − 1
x

Entwickelt man den Zähler nach dem binomischen Satz folgt

f(x+ 1) = 1
x

[
xn+1 +

(
n+ 1

1

)
xn +

(
n+ 1

2

)
xn−1 + ...+

(
n+ 1
n

)
x

]
=

= xn +
(
n+ 1

1

)
xn−1 +

(
n+ 1

2

)
xn−2 + ...+

(
n+ 1
n

)
Damit ist die gesuchte Darstellung gefunden.

Aufgabe 31/66
Ist ABC ein gleichschenkliges Dreieck mit AB = AC und g eine beliebige Gerade durch A, die
BC oder die Verlängerung von BC in D und den Umkreis des Dreiecks in E schneidet, so ist stets
AD ·AE = AB2 = AC2.
Dieser Satz ist zu beweisen.

A B

C

E

D

Wir unterscheiden zwei Fälle.
1. Der Punkt D liegt auf der Strecke BC. Es ist (1. Abbil-
dung) ]ACB = ]ABC (Basiswinkel im gleichschenkligen Dreieck),
]AEB = ]ACB (Peripheriewinkel über demselben Bogen). Demnach
gilt M ABC ∼M AEB. Daraus folgt unmittelbar

AD : AB = AB : AE oder AD ·AE = AB2 = AC2

2. Der Punkt D liegt auf der Verlängerung der Strecke BC über B
hinaus (liegt D auf der Verlängerung der Strecke BC über C hinaus,
so verläuft der Beweis analog). Es ist ]ACB = 180◦ − ]AEB (nach
dem Satz über Periphiere- und Zentriwinkel), ]ABD = 180◦−]ACB
(Außenwinkelsatz). Daraus folgt ]AEB = ]ABD und M ABD ∼M
AEB und damit wieder

AD : AB = AB : AE oder AD ·AE = AB2 = AC2

Die Spezialfälle E = B und E = C sind trivial, da in diesem Fällen
auch D = B und D = C gilt.

A

B

C

E
D

Aufgabe 32/66
Eine elektrischer Heizofen enthält zwei Widerstände R1 und R2, die in vier Schaltstufen A, B, C und
D geschaltet werden können.
In der Stufe A werden R1 und R2 parallel geschaltet, in den Stufen B und C ist je einer der beiden
Widerstände in Betrieb, in der Stufe D liegen R1 und R2 in Reihe.
Die Widerstände sollen so bemessen werden, dass bei einer Spannung von 22 V eine maximale Leistung
von 6000 W auftritt und die Leistungen in den verschiedenen Stufen eine geometrische Folge bilden.
Wie groß müssen die Widerstände sein und welche Leistungen treten bei den einzelnen Schaltstufen
auf?

Es ist N = U · I = U2

R , wobei mit N die Leistung, mit U die Spannung, mit I die Stromstärke und mit
R der Widerstand bezeichnet wird. Daraus folgt für die maximale Leistung

Nmax = U2 · 1
Rmin

oder Rmin = U2

Nmax
= 2202

6000Ω
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Nach dem Kirchhoffschen Gesetz über die Stromverzweigung ergibt sich Rmin bei Parallelschaltung von
R1 und R2 zu

Rmin = R1R2

R1 +R2
also Rmin = R1R2

R1 +R2
= 2202

6000Ω

Es sei nun Nmax = NA = aNB = a2NC = a3ND, wobei a der Quotient der geforderten geometrischen
Folge ist und der Index bei N die Schaltstufe angibt. Dann ist

NB = U2

R1
; NC = U2

R2
; ND = U2

R1 +R2
oder R1 = U2

NB
= aU2

NA
; R2 = U2

NC
= aU2

ND

und damit folgt aus der Gleichung für Rmin durch Einsetzen und Vereinfachen a2 − a − 1 = 0 oder
a = 0,5(1 +

√
5). Aus den Gleichungen kann man nun die Widerstände R1 und R2 berechnen:

R1 = 2202 · 0,5(1 +
√

5)
6000 ≈ 13Ω , R2 = 2202 · 0,52(1 +

√
5)2

6000 ≈ 21,1Ω

Für die Leistungen wird NB ≈ 3710 W, NC ≈ 2290 W, ND ≈ 1420 W. Es zeigt sich, dass die Leistungs-
stufen eine zusätzliche Beziehung aufweisen: NB = NC +ND und NA = NB +NC .

Aufgabe 33/66
Gesucht sind alle natürlichen Zahlen z mit 100 ≤ z < 1000, die folgende Eigenschaft haben:
Bei jeder beliebigen Potenz zk mit natürlichem k werden die letzten drei Stellen von den Ziffern von
z in derselben Reihenfolge gebildet.

Nach den Forderungen der Aufgabe muss für jedes natürliche k gelten zk = 1000n + z (wobei n eine
natürliche Zahl ist).
Daraus folgt zk − z = 1000n, das heißt, zk − z ist durch 1000 teilbar. Nun ist zk − z sowohl durch z als
auch durch z − 1 teilbar (wenn k > 1; dies folgt aus der Tatsache, dass z = 0 und z = 1 Nullstellen des
Polynoms zk − z sind).
Da dies für jedes k > 1 gilt, gilt es speziell auch für k = 2, woraus folgt, dass z(z − 1) bereits durch 1000
teilbar ist.
Zu suchen sind also alle Produkte aus zwei aufeinanderfolgenden dreistelligen natürlichen Zahlen, die
durch 1000 teilbar sind.
Es ist 1000 = 23 · 53. Da z und z − 1 aufeinanderfolgende Zahlen sind, ist eine von ihnen gerade, die
andere ungerade. In einer von ihnen ist also sicher der Faktor 23 = 8 enthalten. Da die zweite sicher
mindestens durch 5 teilbar ist, kommen für sie nur Zahlen mit der Endziffer 5, für die erste nur Zahlen
mit den Endziffern 4 oder 6 (nicht aber 0, 2, 8) in Frage.
Folglich muss die zweite Zahl sogar durch 125 teilbar sein (sonst käme ein Faktor 5 neben Faktoren 2 in
der ersten Zahl vor, und die Endziffer wäre damit 0). Als ungerade Zahlen stehen damit nur noch die
Zahlen 125, 375, 625 und 875 zur Verfügung, zu denen entweder 124 oder 126 bzw. 374 oder 376, 624
oder 626, 874 oder 876 als gerade Zahlen gehören.
Man überzeugt sich leicht davon, dass unter ihnen nur die Zahlen z1 = 376 mit z1−1 = 375 und z2 = 625
mit z2 − 1 = 624 die geforderten Bedingungen erfüllen.

Aufgabe 34/66
Wieviel Raumdiagonalen hat ein Rhombendodekaeder?

Das Rhombendodekaeder besteht aus 12 begrenzenden Rhomben mit 14 Ecken und 24 Kanten.

1. Rechnerische Lösung: Aus 14 Eckpunkten lassen sich
(14

2
)

= 91 Paare bilden; jedes Paar be-
stimmt eine Verbindungsstrecke. Also kann man 14 Ecken auf 91 verschiedene Weisen paarweise
miteinander verbinden. Von diesen 91 Verbindungen müssen erstens 24 Kanten und zweitens 24
Flächendiagonalen (je Rhombus 2) ausgeschieden werden, es verbleiben also 43 Raumdiagonalen.

2. Anschauliche Lösung: An 6 Ecken stoßen je 4 und an 8 Ecken je 6 Rhomben zusammen. Jede
”vierzählige” Ecke E4 hat 8 Nachbarecken, zu denen keine Raumdiagonalen führen; die restlichen 5
Ecken sind ”Fernecken” mit Raumdiagonalen. Damit stellt man zunächst 6·5 = 30 Raumdiagonalen
fest.
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Entsprechend besitzt jede E3 6 Nachbar- und 7 Fernecken. Es finden sich also weitere 7 · 8 = 56
Raumdiagonalen, insgesamt also 86. Damit ist aber offenbar jede Raumdiagonale zweimal erfasst
worden, nämlich von jedem Eckpunkt aus; daraus folgt dann, dass das Rhombendodekaeder 86

2 = 43
Raumdiagonalen hat.

Aufgabe 35/66
Es ist zu beweisen: Jede ganze Zahl n > 1, die nicht durch 2 oder durch 5 teilbar ist, ist ein Teiler
mindestens einer Zahl der Form 10n − 1.

Es sei k > 1 und k enthalte nicht die Teiler 2 oder 5. Dann ist nach der Theorie der Dezimalbrüche 1
k ein

reinperiodischer Dezimalbruch mit n-stelliger Periode (n ≥ 1, ganz):

1
k

= 0,b1b2...bnb1b2...bnb1b2...

(wobei die Schreibweise auf der rechten Seite der Gleichung die Darstellung des Dezimalbruchs in der
üblichen Positionsschreibweise sei, die bi also nichtnegative ganze Zahlen sind).
Durch Multiplikation mit 10n ergibt sich

10n · 1
k

= b1b2...bn,b1b2...bnb1b2...

Durch Subtraktion der ersten von der zweiten Gleichung folgt

10n · 1
k
− 1
k

= b1b2...bn = B mit B = 10n − 1
k

Die letzte Gleichung besagt aber nichts anderes, als dass 10n − 1 durch k teilbar ist.

Aufgabe 36/66
Es sei P (x) = a0 + a1x+ ...+ anx

n ein Polynom n-ten Grades (n ≥ 1, ganz), und es gelte weiterhin
|an| ≥ |a1| für i = 0,1,2,...n.
Man zeige: Für jede Nullstelle x0 gilt |x0| ≤ n.

Für x0 = 0 ist die Behauptung sicher richtig, daher können wir ohne Beschränkung der Allgemeinheit
x0 6= 0 voraussetzen. Nach Voraussetzung soll P (x0) = 0 sein, das heißt aber

anx
n
0 = −(a0 + ...+ an−1x

n−1
0 ) = −xn−1

0

(
a0

xn−1
0

+ a1

xn−2
0

+ ...+ an−2

x0
+ an−1

)
Da das Polynom den Grad n tatsächlich haben soll, ist an 6= 0. Mithin folgt

x0 = − 1
an

(
a0

xn−1
0

+ ...+ an−1

)
; |x0| =

∣∣∣∣ 1
an

∣∣∣∣ (∣∣∣∣ a0

xn−1
0

+ ...+ an−1

∣∣∣∣)
Die Dreiecksungleichung für n Summanden liefert

|x0| ≤
∣∣∣∣ 1
an

∣∣∣∣ (∣∣∣∣ a0

xn−1
0

∣∣∣∣+ ...+ |an−1|
)

Bei |x0| ≥ 1 ist
∣∣∣ 1
xν0

∣∣∣ < 1 (ν > 0) und damit (da |an| ≥ |ai|)

|x0| ≤
1
an

(|a0|+ |a1|+ ...+ |an−1|) ≤
1
an

(|an|+ |an|+ ...+ |an|) ≤
n|an|
|an|

= n

Für |x| < 1 ist die Behauptung wegen n ≥ 1 trivial.
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2.7 Aufgaben und Lösungen 1967

Aufgabe 1/67
Unter welchen Voraussetzungen ist die folgende Aufgabe lösbar?
In einem Kreis mit dem Radius r soll durch einen gegebenen Punkt, dessen Abstand vom Mittelpunkt
M gleich a ist, eine Sehne gelegt werden, so dass P die Sehne im Verhältnis m : n teilt (m < n).

P

R

Q

R′′ Q′′

M

R′

Q′

a

r

Durch jeden Punkt im Innern des Kreises kann man beliebig viele
Sehnen legen. Die größte Sehne durch einen gegebenen Punkt P
ist der Durchmesser QR (siehe Abbildung). Sie wird durch P im
Verhältnis

PR : PQ = (r − a) : (r + a)

geteilt. Dreht man die Sehne um P (ganz gleich, in welchem Sinne),
so wird stets PR′ > PR und PQ′ < PQ, also ist PR′

PQ′ >
PR
PQ . Wenn

die Sehne durch P senkrecht zum Durchmesser durch P steht, ist
PR′′ = PQ′′, und in diesem Falle isr PR′

PQ′ = 1.

Da aber nach der Aufgabenstellung m < n sein soll, ist m
n < 1. Daraus folgt unmittelbar, dass Voraus-

setzung für die Lösbarkeit der Aufgabe einzig die Gültigkeit der Ungleichung ist:

1 > m

n
>
PR

PQ
= r − a
r + a

Aufgabe 2/67
Gegeben sind eine Gerade g sowie zwei Punkte A und B, die beide in der gleichen von g begrenzten
Halbebene liegen. Man konstruiere einen Punkt P auf g derart, dass die Strecke AP mit g den
doppelten Winkel bildet wie die Strecke BP mit g.

P

B

B′

E

A

D

C

Man spiegele den Punkt B an g nach B′ und schlage um
B′ mit dem Radius B′A einen Kreis, der g in C schneidet.
Das Lot von B′ auf AC schneidet g im gesuchten Punkt P
(Abbildung).
Beweis: Nach Konstruktion ist B′A = B′C, also Dreieck
AB′C gleichschenklig mit der Basis AC. Damit ist das Lot
von B′ auf AC Symmetrieachse zu AC. Daraus folgt, dass
]APD = ]DPC ist. Da g Symmetrieachse zu BB′ ist, folgt,
dass ]BPE = ]EPB′ ist.

Ferner ist ]EPB′ = ]DPC (Scheitelwinkel). Daraus ergibt sich durch Zusammenfassung dieser Glei-
chungen:

]APC = 2]DPC = 2]EPB′ = 2]EPB

Aufgabe 3/67
Man beweise die Identität durch vollständige Induktion:

n∑
k=1

k3 =
[

n∑
k=1

k

]2

Für n = 1 ist die Behauptung richtig: 13 = 12.
Die Behauptung sei nun für n richtig, d.h., es gelte

13 + 23 + 33 + ...+ n3 = (1 + 2 + 3 + ...+ n)2

Nun gelten die folgenden Beziehungen

(n+ 1)3 = (n+ 1)2(n+ 1) = (n+ 1)2 + n(n+ 1)(n+ 1) = (n+ 1)2 + 2n(n+ 1)
2 (n+ 1) =
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= (n+ 1)2 + 2(1 + 2 + 3 + ...+ n)(n+ 1)

Daraus folgt

13 + 23 + 33 + ...+ n3 + (n+ 1)3 = (1 + 2 + 3 + ...+ n)2 + 2(n+ 1)(1 + 2 + 3 + ...+ n) + (n+ 1)2 =

= [(1 + 2 + ...+ n) + (n+ 1)]2 also
n∑
k=1

k3 =
[

n∑
k=1

k

]2

Damit ist gezeigt: Die Behauptung gilt für n = 1. Wenn die Behauptung für ein beliebiges n gilt, so gilt
diese auch für n+ 1. Damit gilt die Behauptung für jedes n.

Aufgabe 4/67
Gegeben sind zwei parallele Geraden g1 und g2, sowie ein Punkt P , der weder zwischen noch auf
diesen Geraden liegt.
Man konstruiere ein gleichschenkliges rechtwinkliges Dreieck so, dass P der Scheitelpunkt des rechten
Winkels ist und die beiden anderen Eckpunkte je einer auf g1 und g2 liegen!

P

P2

P1 B

Ag2

g1

g3 g4

g2

U
Analysis (siehe Abbildung): Das gesuchte Dreieck sei APB.
U sei sein Umkreis. Aus dem Peripheriewinkelsatz folgt
]BAP = ]BDP = 45◦ und ]ABP = ]ACP = 45◦.
Daraus ergibt sich unmittelbar die Konstruktion.

Konstruktion: Man ziehe durch P zwei Geraden g3 und
g4, die g1 und g2 unter Winkeln von 45◦ schneiden. Der
Schnittpunkt von g1 und g3 sei P1, der Schnittpunkt von g2
und g4 sein P2.

Über P1P2 als Durchmesser schlägt man einen Kreis, der g1 außer in P1 in B und g2 außer in P2 in A
schneidet. Das Dreieck ABP ist das gesuchte.
Determination: Die Konstruktion ist bis auf Symmetrie eindeutig und stets ausführbar.

Aufgabe 5/67
Gegeben sind drei Punkte A,B, C, die nicht sämtlich auf der gleichen Geraden liegen. Man konstruiere
einen vierten Punkt D, der die folgende Eigenschaft hat:
Legt man durch D eine beliebige Gerade und fällt man auf sie die Lote von den gegebenen Punkten
und bezeichnet man die Fußpunkte dieser Lote mit A′, B′ und C ′, so ist DC ′ = DA′ +DB′.

Der gesuchte Punkt D ist der vierte Eckpunkt des Par-
allelogramms ABCD, und zwar der dem Punkt C ge-
genüberliegende (Abbildung).
Beweis: Ist DA ‖ BC und DA = BC, so ist ABCD
ein Parallelogramm. Dann ist aber auch DA′ = B′C ′

(Projektionen gleichlanger paralleler Strecken auf diesel-
be Gerade sind gleichlang). Wegen DC ′ = DB′ + B′C ′

ist dann aber DC ′ = DB′ +DA′. Der Punkt D hat also
die verlangte Eigenschaft. A

B

C

D
A1

B1
C1

Aufgabe 6/67
Bestimme alle reellen Zahlen x, für die gilt

√
x− 0,5x

0,5
√
x− x

≤ 15
√
x

Man substituiert p =
√
x, so dass die Ungleichung die Form

p− 0,5p2

0,5p− p2 ≤ 15p
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annimmt, kürzt die linke Seite mit p (p = 0 ist offenbar ausgeschlossen) und subtrahiert auf beiden Seiten
15p

15p2 − 8p+ 1
0,5− p ≤ 0

Diese Ungleichung ist erfüllt, wenn entweder
1.) 15p2 − 8p+ 1 ≤ 0 und 0,5− p > 0 oder 2.) 15p2 − 8p+ 1 ≥ 0 und 0,5− p < 0
gilt. Nun ist 15p2−8p+ 1 = (5p−1)(3p−1) ≤ 0 genau dann, wenn 5p−1 ≥ 0 und 3p−1 ≤ 0 ist. Daraus
folgt unmittelbar 1

5 ≤ p ≤
1
3 , womit auch 0,5− p > 0 erfüllt ist. Damit folgt zunächst

1
25 ≤ x ≤

1
9

Für 2. folgt, dass p > 0,5 ist. Die Ungleichung 15p2− 8p+ 1 = (5p− 1)(3p− 1) ≥ 0 ist aber für alle Werte
p > 0,5 sicher erfüllt. Damit ergibt sich weiter x > 1

4 .
Die Ungleichung ist also für alle reellen Zahlen erfüllt, für die gilt

1
25 ≤ x ≤

1
9 oder x >

1
4

Aufgabe 7/67
Man halbiere einen Kreisbogen, dessen Mittelpunkt M und dessen Endpunkte P und Q gegeben sind,
nur mit Benutzung des Zirkels durch Schlagen von Kreisbögen.

Analysis: Da nur Kreisbögen geschlagen werden dürfen und dafür zunächst als Mittelpunkte nur die
Punkte M , P und Q sowie als Radien nur die Strecken MP = MQ = r und PQ = s zur Verfügung
stehen, liegt es nahe, die Verwendbarkeit derjenigen Punkte zu überprüfen, die sich als Schnittpunkte
von Kreisen mit r und s um P , Q und M ergeben.

r

s s
2

s
2

P Q

M
R S

V

X

U
Zu diesen Punkten gehören auch die Punkte R und S (Abbil-
dung), die das Dreieck MPQ zu Parallelogrammen ergänzen.
Dann steht als neuer Radius der Strecke RQ = SP zur
Verfügung; es ist:

RQ = PS =
√

(s+ s

2)2 + r2 − (s2)2 =
√

2s2 + r2

wegen MQ = SQ = r ist MV = V S, wegen MS = s ist
MV = V S = s

2 .

Angenommen der Kreisbogen wäre durch den Punkt X bereits halbiert; dann wäre

RX =
√
RM2 +MX2 =

√
s2 + r2

Man erhält also RX = SX als zweite Kathete eines rechtwinkligen Dreiecks mit der ersten Kathete s und
der Hypotenuse

√
2s2 + r2. Dieses Dreieck ergibt sich, wenn man über RS als Basis ein gleichschenkliges

Dreieck mit den Schenkeln RU = SU =
√

2s2 + r2 = RQ = SP konstruiert; die gesuchte Strecke RX ist
dann UM .

Konstruktionsbeschreibung: Man schlägt um P einen Kreisbogen mit dem Radius r und um M einen
Kreisbogen mit dem Radius s. Von den beiden Schnittpunkten wählt man jenen aus, der das Dreieck PQM
zu einem Parallelogramm ergänzt; dieser Punkt ist R. Entsprechend konstruiert man durch Kreisbögen
um Q den Punkt S.
Mit RQ als Radius schlägt man um R und S Kreisbögen, die einander in U und in U ′ schneiden. Mit
UM = U ′M als Radius schlägt man um R und S Kreisbögen, die einander in X und X ′ schneiden.
Derjenige der beiden Punkte X und X ′, der auf dem Bogen PQ liegt, halbiert den Bogen PQ.

Aufgabe 8/67
Gegeben sind zwei einander schneidende Geraden g1 und g2 und einen Punkt P , der weder auf g1
noch auf g2 liegt. Gesucht ist eine gerade durch P , auf der die durch g1 und g2 begrenzte Strecke
von P halbiert wird.
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a) Der Schnittpunkt S der beiden Geraden g1 und g2 liege auf dem Zeichenblatt.

b) Der Schnittpunkt S der beiden Geraden g2 und g2 liege nicht auf dem Zeichenblatt, die Konstruk-
tion ist jedoch auf das Zeichenblatt beschränkt.

Man betrachtet SP als halbe Diagonale eines zu konstruierenden Parallelogramms, wobei die von S ausge-
henden Seiten auf g1 und g2 liegen. (Benutzung des Satzes ”Im Parallelogramm halbieren die Diagonalen
einander”).
a) Man verbindet S mit P und verlängert SP über P hinaus um sich selbst bis T . Durch T zieht man
Parallelen zu g1 und g2; deren Schnittpunkt mit g1 und g2 seien Q1 und Q2. Die Verbindungsstrecke
Q1Q2 hat die verlangte Eigenschaft.

b) Man führt eine Verschiebung der gegebenen Stücke parallel zu g1 (oder zu g2) durch, so dass der
Schnittpunkt S′ der verschobenen Geraden mit der sich in verschobenen auf dem Zeichenblatt liegt.
Vorausgesetzt, dass danach auch P auf dem Zeichenblatt liegt, führt man die Konstruktion nach a) durch;
anschließend macht man die Verschiebung durch die entgegengesetzte Verschiebung rückgängig.

c)Wenn bei der Konstruktion nach a) der Punkt T oder bei der Konstruktion nach b) einer der Punkte
P ′ und T ′ oder beide außerhalb des Zeichenblattes liegen würden, so führt folgendes Verfahren zum Ziel:
Bezüglich des gegebenen Punktes P als Ähnlichkeitszentrum wird eine zentrale Streckung mit einem
Streckenverhältnis kleiner als 1 so durchgeführt, dass alle zur Konstruktion erforderlichen Punkte auf
dem Zeichenblatt liegen.
Man verkürzt die Lote l1 und l2 von P auf g1 und g2 im gleichen Verhältnis so, dass die Parallelen zu
g1 und g2 durch die Teilpunkte einander auf dem Zeichenblatt in einem Punkt S′ schneiden. Mit S′
und P führt man die Konstruktion nach a) durch. Die sich damit ergebende Gerade erfüllt die gestellte
Bedingung.

Aufgabe 9/67
In einer Klasse haben drei Schüler in Mathematik die Note sehr gut, zwölf die Note gut und die
übrigen befriedigend und ausreichend. Um die besten Schüler zu fördern, stellt der Lehrer jedem der
sehr guten Schüler ein eigenes mathematisches Problem zur Lösung; jeder dieser Schüler soll sich vier
der guten Schüler zur Mitarbeit auswählen.
Wieviele Möglichkeiten gibt es, die zwölf Mitarbeiter in Gruppen zu je vier auf die drei sehr guten
Schüler zu verteilen?

Der erste der sehr guten Schüler hat 12 Möglichkeiten, sich den ersten Mitarbeiter auszuwählen, 11
Möglichkeiten für den zweiten, 10 für den dritten und 9 für den vierten. Da die Reihenfolge des Mitarbeiter
aber keine Rolle spielt, hat er nicht 12 · 11 · 10 · 9 sondern nur 12·11·10·9

1·2·3·4 = 495 Möglichkeiten, sich seine
Mitarbeiter auszuwählen.
Der zweite der sehr guten Schüler hat entsprechend noch 8·7·6·5

1·2·3·4 = 70 Möglichkeiten, der dritte muss den
Rest nehmen.
Insgesamt gibt es damit 495 · 70 = 34650 Möglichkeiten, die zwölf Mitarbeiter auf die drei sehr guten
Schüler zu verteilen.

Aufgabe 10/67
Gesucht sind alle natürlichen Zahlen z mit der folgenden Eigenschaft:
Setzt man als weitere Stelle an ihr Ende die Ziffer 1, so erhält man das Siebenfache der Zahl, die sich
durch Erhöhung der höchsten Stelle von z um 1 ergibt.

Die Zahl z habe n Stellen (n = 0; 1; 2; ...). Durch Anfügen der ergibt sich die Zahl 10z+1, durch Erhöhen
der höchsten Stelle um 1 die Zahl 10n + z. Dann besteht die Gleichung

7(10n + z) = 10z + 1

mit der Lösung z = 1
3 (7 · 10n − 1).
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Für n = 0 folgt z = 2, für n = 1 ergibt sich z = 23, für n = 3 ist z = 233. Allgemeine besteht die Zahl zk
aus der höchsten Stelle 2 und k nachfolgenden Stellen, die sämtlich gleich 3 sind.
Erhöht man nämlich die höchste Stelle um 1, so ergibt sich eine Zahl deren n = k + 1 Stellen sämtlich
gleich 3 sind. Multipliziert man diese Zahl mit 7, so ist die niedrigste Stelle wegen 3 · 7 = 21 gleich 1; die
folgenden k Stellen ergeben sich aus der Multiplikation 3 · 7 = 21 und dem Übertrag 2 sämtlich zu 3, die
höchste Stelle aber aus dem Übertrag allein zu 2.
Dieses Produkt ist aber gerade die Zahl 10z + 1.

Aufgabe 11/67
Gegeben sind zwei Kreise K(A) und K(B) mit den Mittelpunkten A bzw. B, die einander in S und
S′ schneiden. PA und PB seien Punkte auf K(A) bzw. K(B) derart, dass S auf der Strecke PAPB
liegt.
Gesucht ist der geometrische Ort für die Mittelpunkte aller möglichen Strecken PAPB .

A B

S

S′
SA SB

SM

K(A)
K(B)

P ′A

P ′B

PA

PB

Es seien SA und SB je ein Endpunkt eines Durchmessers vonK(A) bzw. K(B), deren zweiter gemeinsamer
Endpunkt S ist. Ferner sei SM der Mittelpunkt von SASB , P ′A und P ′B seien die Schnittpunkte der
Tangenten in S an K(B) mit K(A) bzw. an K(A) mit K(B) (Abbildung).
Dann ist der Kreisbogen um den Halbierungspunkt von SSM mit 1

2SSM als Radius, der von P ′AS bis
P ′BS verläuft, der gesuchte geometrische Ort.

Beweis: Nach dem Satz des Thales ist PASA ⊥ PAPB und PBSB ⊥ PAPB , also sind PASA und PBSB
parallel zur Mittelsenkrechten von PAPB . Nach dem Strahlensatz schneidet daher diese Mittelsenkrechte
die Strecke SASB in SM . Der Mittelpunkt von PAPB liegt daher auf dem Thaleskreis über SSM .
Da PAPB nicht durch das Dreieck SP ′AP ′B verlaufen kann (in diesem Fall würde S außerhalb von PAPB
liegen), entfällt der in diesem Dreieck liegende Teil des Thaleskreises.

Aufgabe 12/67
Man zeige die Gültigkeit der folgenden Abschätzung mit 0 < x < 1, n eine natürliche Zahl:

(1 + x)n < 1 + (2n − 1)x

Nach dem binomischen Lehrsatz gilt

(1 + x)n =
n∑
k=0

xk ·
(
n

k

)
= 1 +

n∑
k=1

(
n

k

)
xk = 1 + x ·

n∑
k=1

(
n

k

)
xk−1

Wegen 0 < x < 1 gilt 0 < xk−1 < 1. Daraus folgt

(1 + x)n < x ·
n∑
k=1

(
n

k

)
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Weiter ist

2n = (1 + 1)n =
n∑
k=0

(
n

k

)
= 1 +

n∑
k=1

(
n

k

)
also

n∑
k=1

(
n

k

)
= 2n − 1

Daraus ergibt sich aber ohne weiteres (1 + x)n < 1 + x(2n − 1).

Aufgabe 13/67
Zwei Brüder haben am selben Tage Geburtstag. Als sie ihn das letztemal feierten, waren sie zusammen
48 Jahre alt. Das Alter des einen wurde durch eine Kubikzahl angegeben. Teilte man sein Alter und
das Alter des anderen durch die Basis dieser Kubikzahl, so ergaben die Resultate in dieser Reihenfolge
das Datum des Geburtstages.
Wie alt waren die beiden Brüder und an welchem Tage hatten sie Geburtstag?

Es kommen nur die Kubikzahlen 1; 8; 27 in Frage, da bereits die vierte Kubikzahl 64 größer als 48 ist.
Probiert man sie der Reihe nach aus, so ergeben sich folgende Rechnungen:

1. 48− 1 = 47; 1 : 1 = 1; 47 : 1 = 47
Das Datum 1.47. ist unmöglich (außerdem ist es unwahrscheinlich, dass von zwei Brüdern einer 47
Jahre und der andere 1 Jahr alt ist).

2. 48− 8 = 40; 8 : 2 = 4; 40 : 2 = 20
Für das Ergebnis gilt entsprechendes wie unter 1.

3. 48− 27 = 21; 27 : 3 = 9; 21 : 3 = 7
Es ergibt sich als Geburtsdatum der 9.7., die beiden Brüder waren also 27 und 21 Jahre at.

Da die Fallunterscheidung vollständig ist, ist dieses Ergebnis eindeutig.

Aufgabe 14/67
Ohne Benutzung der Differentialrechnung ist zu beweisen:
Unter allen Dreiecken mit gegebenem Umfang U und gegebener Seite BC = a hat das gleichschenklige
den maximalen Flächeninhalt.

Aus U = a+ b+ c folgt b+ c = U − a = konstant. Der Punkt A des Dreiecks hat also von B und C eine
konstante Abstandssumme und liegt demzufolge auf einer Ellipse mit den Brennpunkten B und C und
dem Brennpunktabstand a sowie der großen Achse b+ c.
Aus der Flächeninhaltsformel F = 1

2a · ha folgt, dass bei konstantem a der Flächeninhalt maximal ist,
wenn ha maximal ist. Offensichtlich ist das genau dann der Fall, wenn ha mit der kleinen Halbachse der
Ellipse zusammenfällt, wenn also A im Nebenscheitel der Ellipse liegt.
Aus Symmetriegründen ist das Dreieck dann gleichschenklig.

Aufgabe 15/67
Man beweise, dass

a) die 5. Potenz einer natürlichen Zahl a die gleiche Endziffer hat wie a selbst.

b) die 21. Potenz einer zu 10 teilerfremden natürlichen Zahl a die gleiche Zehner- und die gleiche
Einerziffer hat wie a selbst.

a) Die Behauptung besagt, dass für jede natürliche Zahl a der Ausdruck

a5 − a = a(a4 − 1) = a(a2 + 1)(a− 1)(a+ 1)

durch 10 teilbar ist. Da a5 − a auf jeden Fall gerade ist (mit a ist auch a5 gerade oder ungerade), genügt
es, die Teilbarkeit durch 5 zu beweisen.
Neben dem trivialen Fall a = 5k unterscheidet man noch die Fälle a = 5k ± 1 und a = 5k ± 2. Im ersten
Fall ist a− 1 bzw. a+ 1 durch 5 teilbar; im zweiten Fall ist

a2 + 1 = (5k ± 2)2 + 1 = 25k2 ± 20k + 4 + 1 = 5(k2 ± 4k + 1)
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durch 5 teilbar.

b) Die Behauptung besagt, dass unter der Voraussetzung ”a ist zu 10 teilerfremd” der Ausdruck

a21 − 1 = a(a20 − 1)

durch 100 teilbar ist. Man unterscheidet wieder zwei Fälle:
1. a = 10k ± 1 und 2. a = 10k ± 3.
(in allen anderen Fällen ist a entweder durch 2 oder durch 5 teilbar und demzufolge nicht teilerfremd zu
10). Entwickelt man a20 nach dem binomischen Satz, so sind alle Summanden bis auf den letzten durch
100 teilbar. Man erhält also im Falle
1. (10k ± 1)20 = 100A+ 1 oder a20 − 1 = 100A,
2. (10k ± 3)20 = 100B + 320 oder a20 − 1 = 100B + 320 − 1

Nun ist 320 = (34)5 = (8 · 10 + 1)5. Entwickelt man diesen Ausdruck nach dem binomischen Satz, so
enthalten alle Summanden bis auf den letzten der Faktor 100: 320 = 100C + 1. Dann ist 320 − 1 durch
100 teilbar, womit alles bewiesen ist.

Aufgabe 16/67

Das in der Abbildung gegebene Zweitafelbild stellt Grund- und
Aufriss von Profilstäben dar und hat (außer an den äußeren Be-
grenzungen) keine verdeckten Kanten. Sämtliche Flächen sind
eben.
Die Darstellung ist nicht eindeutig. Es sind Querschnitte (Sei-
tenrisse) aller auf Grund dieser Darstellung möglichen Pro-
filstäbe zu finden.

10976

2 3 4 5 8

1

Da keine verdeckten Kanten vorhanden sind, müssen alle möglichen Profilstäbe zwei zueinander senk-
rechte Flächen gleicher Breite haben (Abbildung, oben).
Die folgenden Tatsachen ermöglichen es, auf dem Wege von Alternativentscheidungen sukzessiv alle
Möglichkeiten zu erfassen. Dazu kann man die Form eines ”Stammbaums” (Abbildung) benutzen.
An eine zur Grundrissebene senkrechte Fläche können nur eine zum Grundriss parallele oder eine zum
Grundriss um 45◦ geneigte Fläche angrenzen.
An eine zur Grundrissebene parallele Fläche können nur eine zum Grundriss senkrechte oder eine zum
Grundriss um 45◦ geneigte Fläche angrenzen.
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An eine zur Grundrissebene um 45◦ geneigte Fläche können nur eine zum Grundriss parallele oder eine
zum Grundriss senkrechte Fläche anschließen.
Die Abbildung zeigt, das insgesamt 10 Lösungen existieren, unter denen sich jedoch drei Paare von je
zwei zueinander symmetrischen Profilen befinden. Die drei symmetrische Profilpaare sind 2 und 8, 3 und
5, 6 und 10. Es gibt also 7 wesentlich verschiedene Lösungen.

Zusätzlich zu den in der offiziellen Lösung genannten Profilen, sind weitere möglich:

Aufgabe 17/67
Gesucht ist eine (im dekadischen System) vierstellige Zahl, von der folgendes bekannt ist:

1. Die Summe aller zweistelligen Zahlen, die sich aus je zwei Ziffern der gesuchten Zahl darstellen
lassen, ist 594.

2. Dividiert man die gesuchte Zahl durch ihre Quersumme, so erhält man eine Zahl, die gleich
dem Siebenfachen der letzten Ziffer der gesuchten Zahl ist.

3. Alle Ziffern der gesuchten Zahl sind voneinander verschieden und nicht gleich Null.

Es sei z = 1000a+ 100b+ 10c+ d die gesuchte Zahl, Q = a+ b+ c+ d ihre Quersumme. Die zweistelligen
Zahlen, die man aus den Ziffern a, b, c, d bilden kann, sind
10a+ b, 10a+ c, 10a+ d, 10b+ a, 10b+ c, 10b+ c, 10c+ a, 10c+ b, 10c+ d, 10d+ a, 10d+ b, 10d+ c
Die Summe aller dieser zweistelligen Zahlen ist 33(a+ b+ c+ d) = 594, also a+ b+ c+ d = 18 = Q. Aus
z
Q = 17d folgt nun sofort z = Q · 17d = 306d. Es ergibt sich also die Gleichung

z = 1000a+ 100b+ 10c+ d = 306d ; 10(100a+ 10b+ c) = 305d

Die Zahl d miss also gerade sein:
d = 2, dann ist z = 612, entfällt, da nicht vierstellig
d = 4, dann ist z = 1224, entfällt, da b = c
d = 6, dann ist z = 1836, möglich, Probe bestätigt Richtigkeit
d = 8, dann ist z = 2448, entfällt, da b = c
Die Zahl 1836 ist also die einzige Lösung der Aufgabe.

Aufgabe 18/67
Gegeben ist ein beliebiges Viereck mit den Seiten a, b, c, d.
Man konstruiere ein Trapez aus den Seiten des Vierecks so, dass die Reihenfolge der Seiten un-
verändert bleibt.

Da die Reihenfolge der vier Seiten durch das Viereck bereits festgelegt ist, gibt es nur noch zwei Möglichkeiten,
die für ein Trapez notwendigen parallelen Gegenseiten auszuwählen. E seien dies (ohne Beschränkung
der Allgemeingültigkeit, im anderen Fall verläuft die Konstruktion analog) die Seiten a und c.

A B

CD E

a

b dd

c a− c a) Analysis und Konstruktion: Es sei zunächst a 6= c. Ohne
Beschränkung der Allgemeinheit sei a > c (im anderen Fall
analog). Die Verlängerung der Seite c im Trapez schneidet eine
durch den Punkt B parallel zu d verlaufende Gerade in E. Es
ist BC = d,BE = d (Gegenseiten im Parallelogramm ABED),
ED = a (Gegenseiten im Parallelogramm), also EC = a − c.
Das Dreieck BEC ist demnach nach sss eindeutig konstruierbar.

Damit ist der Abstand der parallelen Seiten a und c bestimmt und das Trapez konstruierbar; Man kon-
struiert zunächst die Seitendifferenz a − c, danach aus dieser Differenz, der Seite b und der Seite d das
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Dreieck BEC. Die Seite EC wird über C hinaus um c verlängert, der Endpunkt ist D. Auf der Parallelen
zu CD durch B wird von B aus nach derselben Seite, auf der D liegt, die Strecke BA = a abgetragen.
Ist a = c, so ist diese Konstruktion nicht ausführbar. Entweder ist auch b = d; dann ist das gegebene
Viereck ein Parallelogramm und mithin bereits ein Trapez (Spezialfall). Oder er ist b 6= d; dann können
nur b und d als parallele Gegenseiten gewählt werden, und das Trapez wird gleichschenklig.

Determination: Das Dreieck BEC ist eindeutig konstruierbar, wenn die Summe zweier beliebiger Drei-
ecksseiten jeweils größer ist als die dritte Dreiecksseite. Es muss also gelten:

b+ d > |a− c|; b+ |a− c| > d; d+ |a− c| > b

Daraus ergibt sich b + d > |a − c| und |a − c| > |b − d| als notwendige und hinreichende Bedingung für
die eindeutige Konstruierbarkeit des Trapezes mit a und c als parallele Seiten.

Aufgabe 19/67
Zwei Kinder spielen mit einer Fünf-Pfennig-Münze und mit einem Würfel. Sie vereinbaren: A wirft
einmal die Münze, B wirft dreimal den Würfel. Gewinnen soll, wer eine ”Fünf” wirft.
Wie sind die Gewinnchancen verteilt?

Es ist offensichtlich, dass für A der Wahrscheinlichkeit P (5) = 0,5 ist, da zwei Fälle möglich sind, von
denen einer günstig ist. B muss um zu gewinnen, mindestens eine Fünf unter den drei Würfen haben.
Da die drei Ereignisse ”5 beim i-ten Wurf” (i = 1; 2; 3) einander nicht ausschließen, kann man den
Additionssatz anwenden. Man geht daher zum entgegengesetzten Ereignis über: B verliert, wenn die
drei Ereignisse ”nicht 5 beim i-ten Wurf” eintreten; dafür gilt (da sie voneinander unabhängig sind) der
Multiplikationssatz. Demzufolge ist für B die Wahrscheinlichkeit, eine Fünf zu werfen

P (5) = 1− P (5)3 = 1−
(

5
6

)
13 ≈ 0,42

B hat also wesentlich geringere Gewinnchancen.

Aufgabe 20/67
Man trage vom Ursprung O eines räumlichen, rechtwinkligen Koordinatensystems auf den Achsen
die Strecken a, b und c bis zu den Punkten A, B bzw. C ab. Dann fälle man von O das Lot auf die
Ebene ABC. Sein Fußpunkt sei M . Es ist zu beweisen, dass das Lot die Länge hat:

h =
√

1
1
a2 + 1

b2 + 1
c2

Verwendeter Hilfssatz: Steht eine Gerade auf zwei nicht zueinander parallelen geraden einer Ebene senk-
recht bzw. kreuzt sie diese senkrecht, so steht sie auf jeder Geraden dieser Ebene senkrecht oder sie kreuzt
sie senkrecht.

A

B

C

O

D M

a

b

c

d

h

x
y

Man verbindet B mit M und bezeichnet den Schnittpunkt
der Verlängerung von BM über M hinaus mit AC mit D.
Weiter bezeichnet man OC mit d, CD mit x und MD mit y
(Abbildung).
Die Strecke OB steht aus OA und OC und damit nach dem
Hilfssatz auf OD senkrecht. Das Dreieck BOD ist also bei O
rechtwinklig. Die Strecke AC kreuzt nach dem Hilfssatz OM
senkrecht, da OM auf der Ebene ABC senkrecht steht und
AC eine Gerade dieser Ebene ist.
AC kreuzt aber auch OB senkrecht, da OB auf der Ebene
AOC senkrecht steht und AC auch in dieser Ebenen liegt.
Demnach steht AC auch auf OD senkrecht, und somit ist das
Dreieck ODC bei D rechtwinklig.

Wendet man nun auf die rechtwinkligen Dreiecken BOD,OMD,AOC und ODC die Sätze des Pythago-
ras und des Euklid an, so erhält man

h2 = d2 − y2; d2 = c2 − x2; c2 = x
√
a2 + c2; x2 = c4

a2 + c2
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d2 = c2 − c4

a2 + c2
= a2c2

a2 + c2
; d2 = y

√
d2 + b2; y2 = d2

d2 + b2

Demnach gilt

h = d− d4

d2 + b2
= d2b2

d2 + b2
=

a2b2c2

a2+c2

a2c2

a2+c2 + b2
= a2b2c2

a2c2 + a2b2 + b2c2

Hieraus folgt die zu beweisende Gleichung

h =
√

1
1
a2 + 1

b2 + 1
c2

Aufgabe 21/67
Es seien A, B, a0, b0, a1, b1 und x natürliche Zahlen und es gelte

x | Aa0 +Bb0 sowie x | Aa1 −Bb1

wobei c | d bedeutet, dass c Teiler von d ist). Man weise nach, dass unter diesen Voraussetzungen
auch

x | Zn = Aa1n+a0 +Bb1n+b0

für jede natürliche Zahl n gilt.

Wir beweisen die Behauptung durch vollständige Induktion.
1. Wegen Z0 = Aa0 +Bb0 laut Voraussetzung gilt die Behauptung sicher für n = 0.
2. Angenommen, die Behauptung gelte für ein n = k:

x | Zk = Aa1k+a0 +Bb1k+b0

Nun ist
Zk+1 = Aa1(k+1)+a0 +Bb1(k+1)+b0 = Aa1k+a0 ·Aa1 +Bb1k+b0 ·Bb1 =

= Aa1(Aa1k+a0 +Bb1k+b0) + (Bb1 −Aa1)Bb1k+b0 = Aa1Zk − (Aa1 −Bb1)Bb1k+b0

Wegen x | Zk laut Induktionsannahme und x|(Aa1 −Bb1) laut Voraussetzung folgt daraus x | Zk+1. Aus
1. und 2. folgt die Richtigkeit der Behauptung.

Aufgabe 22/67
Gegeben ist eine Strecke mit der Länge a Längeneinheiten (LE) sowie die Längeneinheit selbst.
Wie kann man daraus eine Strecke mit der Länge 4

√
a3 LE konstruieren?

Es ist 4
√
a3 =

√
a
√
a. Die Strecke mit der Länge

√
a
√
a LE findet man als Seite eines Quadrats mit

dem Flächeninhalt a
√
a LE2. Dieses Quadrat erhält man mit Hilfe des Kathetensatzes aus einem

flächengleichen Rechteck mit den Seiten x = a LE und y =
√
a LE. Die Strecke y =

√
a LE ergibt

sich nach dem Höhensatz aus den Strecken a LE und 1 LE. Damit folgt die Konstruktion:

1. Man schlägt über der Strecke AC = (a+ 1) LE den Thaleskreis und errichtet im Punkt B, der von C
den Abstand 1 LE hat, auf dieser Strecke die Höhe; sie schneidet den Thaleskreis in D. Die Strecke BD
hat die Länge y =

√
a LE.

2. Man schlägt über der Strecke AB = a LE den Thaleskreis und errichtet im Punkt E, der von B den
Abstand y =

√
a LE hat, auf dieser Strecke die Höhe; sie schneidet den Thaleskreis in F . Die Strecke BF

hat die Länge
√
a
√
a LE = 4

√
a3 LE und ist somit die gesuchte Strecke.

Aufgabe 23/67
Man beweise: Ist n eine natürliche Zahl und 2n − 1 eine Primzahl, so ist auch n eine Primzahl.

Wir führen einen indirekten Beweis. Angenommen, 2n − 1 sei eine Primzahl, n dagegen nicht. Dann ist
n in Faktoren zerlegbar: n = ab mit a; b 6= 1 und damit a; b 6= n, a; b natürliche Zahlen.
Damit ist 2n − 1 = 2ab − 1 = (2a)b − 1. Diese Zahl ist aber durch 2a − 1 teilbar:

(2a)b − 1
2a − 1 = (2a)b−1 + (2a)b−2 + ...+ (2a)
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nach der Summenformel für die endliche geometrische Reihe. Wegen b 6= 1 ist aber 2a − 1 6= (2a)b − 1,
und wegen a 6= 1 ist 2a − 1 6= 1. Der Teiler von 2n − 1 ist also von 1 und von 2n − 1 verschieden. Daraus
folgt, dass 2n−1 keine Primzahl ist - im Widerspruch zur Annahme. Also ist die Annahme falsch, folglich
muss der zu beweisende Satz richtig sein.

Aufgabe 24/67
Bei der serienmäßigen Montage von 1000 Geräten, die 100 MDN je Gerät kostet, werden 300 Wi-
derstände je Gerät eingebaut, deren Prüfung auf Einhaltung der Toleranz 0,12 MDN je Widerstand
entstehen.
Die Wahrscheinlichkeit dafür, dass ein Widerstand die Toleranz nicht einhält, beträgt (nach sta-
tistischen Unterlagen) 0,1 %. Das Gerät funktioniert nur dann einwandfrei, wenn alle Widerstände
maßhaltig sind. Eine Endkontrolle ist auf jeden erforderlich.
Was ist ökonomisch vorteilhafter - eine Kontrolle der Widerstände vor der Montage oder ein Verzicht
darauf?
Die Materialkosten für fehlerhafte Geräte können außer Betracht bleiben, da das Material verwertbar
bleibt.

Man stellt zur Entscheidung der Frage die Kosten K1 bei Prüfung der Widerstände vor der Montage
und die voraussichtlichen Kosten K2 für die Montage nicht funktionstüchtiger Geräte bei Verzicht auf die
Kontrolle gegenüber.
Es werden 300 Widerstände je Gerät · 1000 Geräte = 300000 Widerstände benötigt, die einwandfrei sind.
Da (wahrscheinlich!) nur 99,9% der Widerstände maßhaltig sind, müssen 300000·100

99,9 = 300300 Widerstände
geprüft werden.
Die Kosten dafür betragen K1 = 36036 MDN.
Die Wahrscheinlichkeit P (A) dafür, dass in ein Gerät bei Verzicht auf vorherige Kontrolle nur einwandfreie
Widerstände eingebaut werden, ist P (A) = 0,999300; für die Wahrscheinlichkeit dafür, dass es auf Grund
fehlerhafter Widerstände Ausschuss ist, gilt

P (A) = 1− P (A) = 1− 0,999300 ≈ 0,256 = 25,6%

D.h., wahrscheinlich sind 25,6 % der Geräte fehlerhaft, es müssten 1000·100
74,6 ≈ 1340 Geräte produziert

werden, so dass für 340 Geräte die Montagekosten zusätzlich anfallen. Damit ist K2 = 34000 MDN.
Man erkennt: K1 > K2. Verzicht auf vorherige Kontrolle ist ökonomisch vorteilhafter.

Aufgabe 25/67
Gesucht sind alle Primzahlen p, für die gilt 3p+ 4 = a2 (wobei a eine natürliche Zahl ist).

Aus 3p+ 4 = a2 folgt 3p = a2 − 4 = (a− 2)(a+ 2). Da p eine Primzahl ist, gilt
(1) entweder a+ 2 = 3 und a− 2 = p
(2) oder a− 2 = 3 und a+ 2 = p
(1) kann nicht gelten, da sonst a = 1 und p negativ wäre; folglich gilt (2). Dann ist aber a = 5 und p = 7.
Tatsächlich ist 3 · 7 + 4 = 25 = 52. Der Lösungsweg schließt weitere Lösungen für p aus.

Lösung von Emil Donath:

Aus der Gleichung 3p+ 4 = a2 ist ersichtlich, dass die linke Seite ein Quadrat sein muss und durch den
Term (n+ 2)2 dargestellt werden kann.
Nun ist (n + 2)2 = n2 + 4n + 4 = a2. Durch Koeffizientenvergleich der letzten mit der ersten Gleichung
ergibt sich

3p = n2 + 4n oder p = n(n+ 4)
3

Für p ergibt sich dann und nur dann eine Primzahl, wenn entweder |n| oder |n+4| gleich 3 und n(n+4) > 0
ist. Ist n ein Vielfaches von 3, so bleibt n(n+4)

3 ein Produkt, das nicht nur 1 und p als Faktoren enthält,
und p kann dann keine Primzahl sein.
Ist n = 3, so ist p = 7 die einzige Primzahl, durch die diese Gleichung erfüllt wird. Für n = −1 ergibt
sich p = −1, also keine Primzahl. Setzt man jedoch n = −7, so erhält man wiederum p = 7.
Also ist p = 7 die einzige Primzahl, die die vorgegebene Gleichung erfüllt.
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Aufgabe 26/67
Es seien a, b und c die Seiten eines beliebigen ebenen Dreiecks, r dessen Umkreisradius und ρ der
Inkreisradius. Man beweise die Richtigkeit der Formel

2r · ρ = abc

a+ b+ c

Es ist bekanntlich wegen ha = b sin γ der Flächeninhalt A = 1
2ab sin γ. Aus dem Peripheriewinkelsatz

folgt sin γ = c
2r .

Zerlegt man das Dreieck ABC in drei Teildreiecke mit dem Inkreismittelpunkt als allen drei Teildreiecken
gemeinsamem Eckpunkt, so ergibt sich

A = 1
2ρ(a+ b+ c) und weiter 1

2ab
c

2r = 1
2ρ(a+ b+ c)

und damit 2rρ = abc
a+b+c .

Aufgabe 27/67
Beweisen Sie, dass die Ungleichung

a

b+ c
+ b

a+ c
+ c

a+ b
> 1

für jedes positive, reelle a; b; c gilt!

Wegen a > 0, b > 0, c > 0 gilt auch a+ b > 0, b+ c > 0, c+ a > 0 und

a+ b < a+ b+ c; b+ c < a+ b+ c; c+ a < a+ b+ c

Damit aber auch

1
a+ b

>
1

a+ b+ c
; 1

b+ c
>

1
a+ b+ c

; 1
a+ c

>
1

a+ b+ c

Multipliziert man die letzten drei Ungleichungen mit c, mit a bzw. mit b und addiert man diese, so erhält
man

c

a+ b
+ a

b+ c
+ b

a+ c
>
c+ a+ b

a+ b+ c
= 1

Lösung von Wolfgang Burmeister:

Nach einem bekannten Satz ist das arithmetische Mittel von n positiven Zahlen nicht kleiner als deren
harmonisches Mittel. Es gilt also speziell für die positiven Zahlen x; y; z:

x+ y + z

3 ≥ 3
1
x + 1

y + 1
z

Auf den Fall
x = a+ b+ c

a+ b
; y = a+ b+ c

a+ c
; z = a+ b+ c

c+ b

angewandt, erhält man

c

a+ b
+ b

c+ a
+ a

b+ c
= 3 ·

a+b+c
a+b + a+b+c

a+c + a+b+c
c+b

3 − 3

≥ 3 · 3
a+b
a+b+c + a+c

a+b+c + c+b
a+b+c

− 3 = 3 · 3
2 − 3 = 3

2

Es gilt also die schärfere Ungleichung

c

a+ b
+ b

c+ a
+ a

b+ c
≥ 3

2
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in der die Gleichheit nur für x = y = z eintritt, was wiederum nur für a = b = c möglich ist.

Lösung von Jörg Seeländer:

Ich schätze die Ungleichung
a

b+ c
+ b

c+ a
+ c

a+ b
≥ 1

nach unten ab, indem ich jeden Bruch der linken Seite verkleinere (was lt. Voraussetzung a; b; c > 0
möglich ist):

a

b+ c
+ b

c+ a
+ c

a+ b
>

a

a+ b+ c
+ b

b+ c+ a
+ c

c+ a+ b
= 1

womit alles bewiesen ist.

Lösung von Karl Böllmann:

Richtig ist sicher die folgende Ungleichung:

(a+ b)(a− b)2 + (a+ c)(a− c)2 + (b+ c)(b− c)2 ≥ 0

wobei Gleichheit nur für den Fall a = b = c gilt.
Addiert man auf beiden Seiten das Produkt 3(a + b)(a + c)(b + c), so erhält man nach entsprechender
Rechnung

2[a(a+ b)(a+ c) + b(a+ b)(b+ c) + c(a+ c)(b+ c)] ≥ 3(a+ b)(a+ c)(b+ c)

Dividiert man beide Seiten der Ungleichung durch 2(a+ b)(a+ c)(b+ c) und kürzt man die entstehenden
Brüche, so ergibt sich

a

b+ c
+ b

a+ c
+ c

a+ b
≥ 3

2
Es gilt also sogar eine schärfere Ungleichung.

Lösung von Manfred Kießling:

Zu zeigen ist
a

b+ c
+ b

a+ c
+ c

a+ b
> 1

für reelle a, b, c > 0. Da der Ausdruck zyklisch ist, gilt o.B.d.A. a < b < c. Damit wird wegen c+a < c+ b
und a+ b < c+ b

a

b+ c
+ b

a+ c
+ c

a+ b
>

a

b+ c
+ b

b+ c
+ c

c+ b
= a+ b+ c

b+ c
= 1 + a

b+ c
> 1

Lösung von Eckehard Krauß:

Ist s =
n∑
i=1

ai, so gilt wegen ai > 0:

n∑
i=1

ai
s− ai

>

n∑
i=1

ai
s

= 1
s

n∑
i=1

ai = 1
s
· s = 1

In unserem Falle ist n = 3, a1 = a, a2 = b, a3 = c.

Aufgabe 28/67
Gegeben sei ein beliebiges regelmäßiges n-Eck mit dem Inkreisradius r. Gesucht ist der geometrische
Ort aller Punkte P , für die die Summe der Abstände von den n-Eckseiten bzw. deren Verlängerungen
gleich dem n-fachen des Inkreisradius r ist.

Behauptung: Der gesuchte geometrische Ort ist das gesamte n-Eck einschließlich der n-Eckseiten.
Beweis: Verbindet man den Mittelpunkt des n-Ecks mit den Ecken, so entstehen n Dreiecke, wobei jedes
den Flächeninhalt F = sr

2 hat (dabei ist s die n-Eckseite). Der Flächeninhalt des n-Ecks ist also Fg = nsr
2 .

Verbindet man einen beliebigen Punkt P im Inneren des n-Ecks mit den Ecken, so entstehen ebenfalls n
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Dreiecke mit dem Flächeninhalt Fk = sak
2 , wobei ak der Abstand des Punktes von der k-ten Seiten ist,

k = 1; 2; 3; ...;n. Damit erhält man für den Flächeninhalt des n-Ecks

Fg =
n∑
k=1

Fk =
n∑
k=1

sak
2 = s

2

n∑
k=1

ak

Durch Vergleich (Gleichsetzen) ergibt sich

nsr

2 = s

2

n∑
k=1

ak oder nr =
n∑
k=1

ak

Man überlegt sich leicht, dass die Beziehung auch Gültigkeit hat, wenn für ein k gilt ak = 0, d.h., wenn
P auf einer n-Eckseite liegt.

Aufgabe 29/67
Die Gleichung sin (x+ y) sin (x− y)− cos (x+ y) cos (x− y) = 0,5 ist zu lösen.

Nach den Additionstheorem gilt

sin (x+ y) = sin x cos y + cosx sin y
sin (x− y) = sin x cos y − cosx sin y
cos (x+ y) = cosx cos y − sin x sin y
cos (x− y) = cosx cos y + sin x sin y

Setzt man dies in der Gleichung ein und multipliziert man die Produkt aus, so ergibt sich

sin2 x cos2 y − cos2 x sin2 y − cos2 x cos2 y + sin2 x sin2 y = 0,5

Durch Ausklammern folgt
(sin2 x− cos2 x)(cos2 y + sin2 y) = 0,5

Mit sin2 x+cos2 x = 1 wird die Gleichung zu 2 sin2 x = 1,5. Man erkennt, dass die Gleichung für beliebiges
y erfüllt ist. Die weitere Lösung ergibt

sin2 x = 3
4 → | sin x| =

1
2
√

3→ x1;2 = π

3 ± kπ;x3;4 = 2π
3 ± kπ

(k = 1; 2; 3; ...) Die Gleichung gilt also für diese vier Wertescharen und für jeden beliebigen y-Wert.

Aufgabe 30/67
Gesucht ist die Summe

∞∑
k=1

ak = a1 + a2 + a3 + ...+ an + ...

von der folgendes bekannt ist:

1. Die Glieder der Reihe bilden eine monotone Folge.

2. Es ist a1 = 1, an > 0 für jedes n.

3. Es ist
∞∏
k=1

a2k−1 =
∞∏
k=1

a2k.

4. Es ist a2k = a2k−2 − a2k−1.

Aus der Bedingung 3 folgt

a1 · a3 · ... · a2k−1 · ... = a2 · a4 · ... · a2k · ... oder a1

a2
· a3

a4
· ... · a2k−1

a2k
· ... = 1
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Wäre die Folge {ak} streng monoton wachsend, so wäre a2k−1 < a2k und somit a2k−1
a2k

< 1 für jedes k im
Widerspruch zu der vorstehenden Gleichung. Analog schließt man, das sie nicht streng monoton fallend
sein kann. Also ist a2k−1 = a2k für jedes k.
Damit nimmt S die folgende Gestalt an:

S = a1 + a2 + ...+ an + ... = a2 + a2 + a4 + a4 + ...+ an + ... = 2
∞∑
k=1

a2k

Aus 4. ergibt sich damit a2k = a2k−2 − a2k, also a2k = 1
2a2k−2. Das heißt aber, die Folge {a2k} ist eine

geometrische Folge mit dem Quotienten q = 1
2 . Nach der Summenformel für unendliche geometrische

Reihen gilt damit (wegen a2 = a1 = 1)

S = 2
∞∑
k=1

a2k = 2 a2

1− q = 4

Lösung von Hans-Jörg Roos:

Da a2k = a2k−2 − a2k−1 gilt und a2k > 0 ist, gilt auch a2k−2 > a2k−1, die Folge fällt also monoton. Alle
ak mit k ≥ 3 sind demnach kleiner als 1, und

∞∏
k=1

a2k−1 = 0,
∞∏
k=1

a2k = 0 also
∞∏
k=1

a2k−1 =
∞∏
k=1

a2k

Aus den Bedingungen 1), 2) und 4) allein kann man also die Summe der Folge nicht eindeutig angeben,
da a2 und alle a2k−1 frei wählbar sind.
Ändert man die Bedingung 3) der Aufgabe so, dass man

∞∏
k=1

a2k−1 =
∞∏
k=1

a2k in
n∏
k=1

a2k−1 =
n∏
k=1

a2k

umwandelt, so ist die Aufgabe eindeutig lösbar. Für k = 1 gilt dann a1 = a2, für k = 2 gilt a1 ·a3 = a2 ·a4
usw. Daraus folgt aber a2k−1 = a2k.
Wegen a2k = a2k−2 − a2k−1 gilt a2k = 1

2a2k−2. Damit kann man die Glieder der Folge ermitteln. Man
erhält:

S = 1 + 1 + 1
2 + 1

2 + 1
4 + 1

4 + ...+ 1
2k + 1

2k + ... = 4

Aufgabe 31/67
Fällt man von einem beliebigen Punkt P der Ebene die Lote auf die Verbindungsgeraden AB, BC
und CA dreier nicht auf derselben Geraden liegender Punkte A, B und C dieser Ebene, so entstehen
die Fußpunkte X, Y bzw. Z. Man beweise, dass stets gilt:

AX2 +BY 2 + CZ2 = BX2 + CY 2 +AZ2

Wir verwenden die Bezeichnungen der Abbildung und nehmen P im Inneren des Dreiecks ABC an. Dann
lautet die Behauptung

c21 + a2
1 + b21 = c22 + a2

2 + b22

Zum Beweis wende man auf die entstehenden sechs rechtwinkligen Dreiecke den Satz des Pythagoras an.
Man erhält:

A B

C

P

c1 c2

a1

a2

b2

b1

k1
k2

k3

h3

h1
h2

c21 = k2
1 − h2

3; a2
1 = k2

2 − h2
1; b21 = k2

3 − h2
2 (1)

c22 = k2
2 − h2

3; a2
2 = k2

3 − h2
1; b22 = k2

1 − h2
2 (2)

Die Additionen der Gleichungen (1) bzw. (2) liefern

c21 + a2
1 + b21 = k2

1 + k2
2 + k2

3 − (h2
1 + h2

2 + h2
3)

c22 + a2
2 + b22 = k2

1 + k2
2 + k2

3 − (h2
1 + h2

2 + h2
3)

womit die Behauptung bewiesen ist. Der Beweis verläuft analog, wenn P außerhalb des Dreiecks ABC
oder auf seinem Umfang liegt.
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Aufgabe 32/67
Man bestimme an Hand einer geometrischen Überlegung den exakten Wert von sin 18◦!

In einem Dreieck ABC (Abbildung) gilt

]BAD = ]CAD = ]ACB = 36◦

]CAB = ]ABC = ]BDA = 72◦

Daraus folgt M ABC ∼M BDA,AB = AD = AC,AC = BC. Setzt
man AB = 2a und AC = b, so gilt wegen der Ähnlichkeit (b − 2a) :
2a = 2a : b. Daraus folgt die quadratische Gleichung(a

b

)2
+ a

2b = 1
4 mit der Lösung a

b
= −1±

√
5

4
A B

C

D

36◦
36◦ 72◦

72◦

36◦

Nun ist a
b = sin 360◦

20 = sin 18◦. Da die sin-Funktion im 1. Quadranten positiv ist, kommt der negative
Wert für uns nicht in Frage. Damit ergibt sich

sin 18◦ =
√

5− 1
4

Aufgabe 33/67
Man beweise: Erfüllen drei natürliche Zahlen x; y; z, die keinen gemeinsamen Teiler haben, die Bedin-
gung x2 +y2 = z2 (sogenannte pythagoreische Grundtripel), so können x und y nicht beide ungerade
sein.

1. Indirekter Beweis: Angenommen, x und y wären beide ungerade. Dann könnte man sie in der Form
x = 2k+1 und y = 2l+1 schreiben, und z wäre gerade: z = 2m (wobei k; l;m ganze nichtnegative Zahlen
sind). Dann wird

x2 + y2 = 4(k2 + l2) + 4(k + l) + 2 = 4m2

Das ist jedoch ein Widerspruch, da 2 nicht durch 4 teilbar ist. Also ist die Annahme falsch und es muss
eine der beiden Zahlen x und y gerade, die andere ungerade sein (dass nicht beide gerade sein können,
folgt unmittelbar aus der Voraussetzung, da dann auch z gerade wäre und somit die drei Zahlen den
gemeinsamen Teiler 2 hätten).

2. Direkter Beweis: Drei pythagoreische Zahlen x; y; z kann man stets in der Form

x = u2 − v2

2 ; y = uv ; z = u2 + v2

2
darstellen, wobei u und v ungerade Zahlen mit u > v sind. Dann ist y als Produkt zweier ungerader
Zahlen selbst ungerade.
Setzt man u = 2m+ 1, v = 2n+ l (wobei m und n ganze nichtnegative Zahlen mit m > n sind), so ist

x = (2m+ 1)2 − (2n+ 1)2

2 = 2(m− n)(m+ n+ 1)

also gerade. Wegen der Kommutativität der Addition könnte man auch x = uv, y = u2−v2

2 setzen; dann
ist x ungerade, y gerade. Damit ist die Behauptung bewiesen.

Lösung von Peter Beckmann:

Wären sowohl x als auch y ungerade, so wäre x ≡ ±1 (mod 4) und y ≡ ±1 (mod 4), d.h. x2 ≡ 1 (mod
4) und y2 ≡ 1 (mod 4) und damit

x2 + y2 ≡ 2 (mod 4)

Es gibt aber kein z, das die Kongruenz z2 ≡ 2 (mod 4) erfüllt, da 2 quadratischer Nichtrest (mod 4) ist.
Die beiden Zahlen x und y können also nicht beide Ungerade sein (die Forderung der Teilerfremdheit von
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x; y; z ist überflüssig).

Lösung von Karl-Heinz Tuschel:

Wir können ohne Einschränkung der Allgemeingültigkeit annehmen, dass y > x ist. Es sei y = x+ n mit
n > 0. Dann ist

x2 + (x+ n)2 = z2 → x2 = z

2 · z − nx−
n

2 · n

Wenn x und y beide ungerade sind, so sind z und n gerade. Dann ist aber offenbar jeder Summand auf
der rechten Seite der letzten Gleichung gerade. Folglich müsste auch x2 und damit auch x gerade sein,
was der Voraussetzung widerspricht.

Aufgabe 34/67
Gegeben sei ein Dreieck ABC und ein Punkt P im Inneren des Dreiecks. Die Verlängerungen der
Strecken AP , BP und CP schneiden die Dreiecksseiten in den Punkten A1, B1 und C1. Man beweise,
dass gilt

A1P

AA1
+ B1P

BB1
+ C1P

CC1
= 1

A B

C

P
hc

hpc

A1

B1

C1

Man errichte im Dreieck ABC die Höhe hc auf die Seite AB = c
und ziehe die Parallele zu c durch P (Abbildung). Der Abstand der
Parallelen von c sei hpc. Dann gilt für den Flächeninhalt A(ABC)
des Dreiecks ABC die Gleichung

A(ABC) = 1
2AB · hc

und für den Flächeninhalt A(ABP ) des Dreiecks AB:
A(ABP ) = 1

2AB · hpc. Daraus folgt A(ABP )
A(ABC) = hpc

hc
.

Nach dem Strahlensatz gilt aber hpc
hc

= C1P
CC1

. Also gilt

A(ABP )
A(ABC) = C1P

CC1

Analog erhält man
A(BCP )
A(ABC) = A1P

AA1
; A(ACP )

A(ABC) = B1P

BB1

Addiert man die drei Gleichungen, so ergibt sich

A1P

AA1
+ B1P

BB1
+ C1P

CC1
= A(ABP ) +A(BCP ) +A(ACP )

A(ABC) = 1

wegen A(ABP ) +A(BCP ) +A(ACP ) = A(ABC).

Aufgabe 35/67
Man zeige, dass man unter (n+ 1) verschiedenen natürlichen Zahlen, die sämtlich kleiner als 2n sind,
stets drei finden kann, bei denen die Summe zweier stets gleich der dritten Zahl ist.

Die Zahlen seien z1; z2; ...; zn+1; sie seien der Größe nach geordnet: 0 < z1 < z2 < z3 < ... < zn+1. Wir
bilden nun die n Zahlen z2 − z1; z3 − z1, z4 − z1; ...; zn+1 − z1.
Diese Zahlen sind wieder sämtlich voneinander verschieden und kleiner als 2n. Unter ihnen ist mindestens
eine, die gleich einer der Zahlen z2; z3; z4; ...; zn+1 ist. Wäre das nämlich nicht der Fall, so könnten die 2n
Zahlen

z2; z3; z4; ...; zn+1; z2 − z1; z3 − z1, z4 − z1; ...; zn+1 − z1

nicht sämtlich kleiner als 2n sein.
Es gilt also sicher für mindestens ein k und ein m zk − z1 = zm mit k;m ≤ n + 1. Daraus folgt sofort
zk = zm + z1.
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Aufgabe 36/67
Weisen Sie durch elementare Umformungen nach, dass die Gleichung

x4 − 12x3 + 63x2 − 102x+ 85 = 0

keine reellen Lösungen hat!

Der Nachweis ist erbracht, wenn gezeigt ist, dass der Wertevorrat der Funktion

f(x) = x4 − 12x3 + 63x2 − 102x+ 85

für die reelle Variable x nur positive Zahlen enthält. Dies wiederum ist bewiesen, wenn sich das Polynom 4.
Grades als Summe von mindestens einem positiven und sonst nur nichtnegativen Summanden darstellen
lässt. Sicher nicht negativ sind Potenzen mit geraden Exponenten. Man ergänzt daher zunächst die ersten
beiden Glieder x2 − 12x3 des Polynoms zur vollen 4. Potenz eines Binoms:

f(x) = x3 − 12x3 + 54x2 − 108x+ 81 + 9x2 + 6x+ 4 = (x− 3)4 + 9x2 + 6x+ 4

Nun ergänzt man die folgenden beiden Glieder 9x2 + 6x zum vollen Quadrat eines Binoms:

f(x) = (x− 3)4 + 9x2 + 6x+ 1 + 3 = (x− 3)4 + (3x+ 1)2 + 3

Da die ersten beiden Summanden wegen der geraden Exponenten sicher nicht negativ sind und der dritte
Summand positiv ist, kann die Funktion nirgends den Wert 0 annehmen. Daraus folgt, dass die vorgelegte
Gleichung keine reellen Lösungen hat.
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2.8 Aufgaben und Lösungen 1968

Aufgabe 1/68
In einem Punkt A befinden sich n Scheiben Si mit den Durchmessern di (i = 1; 2; ...;n) so
übereinander-gestapelt, dass dj < dk für j < k gilt.
Sie sollen einzeln nach einem Punkt B gebracht werden, wobei ein Punkt C als Äblageplatz”benutzt
werden darf.
Dabei ist die Bedingung zu beachten, dass niemals eine größere Scheibe auf einer kleineren liegen
darf.
Wie viele Transportschritte sind mindestens erforderlich?

Man versucht zunächst durch Probieren eine Vermutung zu finden:
Für n = 1 ist offensichtlich ein Schritt erforderlich. Bei n = 2 wird zunächst der erste (oberste) Scheibe
nach C, darauf die zweite nach B und schließlich die erste nach B gebracht (3 Schritte).
Ebenso überlegt man, dass für n = 3 sich 7 und für n = 4 sich 15 Schritte ergeben.

Vermutung: Bei n Scheiben ist die Anzahl der erforderlichen Schritte 2n − 1.

Beweis durch vollständige Induktion:
Für n = 1 bis n = 4 ist die Vermutung offensichtlich richtig.
Denn 21 − 1 = 1; 22 − 1 = 3; 23 − 1 = 7; 24 − 1 = 15.
Wir nehmen an, die ersten k Scheiben ließen sich in 2k − 1 Schritten umordnen. Dann ordnet man sich
entsprechend nach C, bringt die (k + 1)-te Scheibe nach B und ordnet die ersten k Scheiben in 2k − 1
Schritten von C nach B.
Die Gesamtzahl der Schritte ist dann

(2k − 1) + 1 + (2k − 1) = 2 · 2k − 1 = 2k+1 − 1

Damit ist die Richtigkeit der Vermutung bewiesen.

Aufgabe 2/68
Ein rechtwinkliges Dreieck ist aus einer Kathete und dem Hypotenusenabschnitt, der zur anderen
Kathete gehört zu konstruieren.

A B

C

a

q p

c

D

E1

E2

Analysis: Ohne Beschränkung der Allgemeinheit seien γ =
90◦ und a sowie q gegeben. Es gilt (siehe Skizze) nach dem
Satz von Euklid

a2 = pc und p = c− q (wegen p+ q = c)

also
a2 = (c− q)c

Daraus folgt

c = q

2 ±
√

(q2)2 + a2

wobei das Minuszeichen geometrisch keine Bedeutung hat (sonst wäre c < 0).

Konstruktion: Auf dem freien Schenkel eines rechten Winkels mit dem Scheitelpunkt C trägt man die
Strecken a = AB und q

2 = CD ab.
Der Kreis um D mit dem Radius q

2 schneidet BD in E1 und E2. Man bezeichne so, dass D zwischen den
Punkten E1 und B liegt.
Der dritte Punkt A des gesuchten Dreiecks ist der Schnittpunkt der Verlängerung von CD über D hinaus
mit dem Kreis um B mit dem Radius BE1.

Beweis: Nach Konstruktion ist

AB = BE1 = BD +DE1 =
√
a2 + q2

4 + q

2 = c

Determination: Analysis und Konstruktion zeigen, dass die Aufgabe stets eindeutig lösbar ist; a und q
können als Strecken beliebig vorgegeben werden.
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Aufgabe 3/68
Man bestimme sechs Primzahlen so, dass sie eine arithmetische Folge bilden und ihre Summe ein
Minimum ist.

Es sei p1 die kleinste der sechs Primzahlen, p2, ..., p6 die übrigen und d die (nach Definition konstante)
Differenz der arithmetischen Folge. Dann gilt

p1 = p1, p2 = p1 + d, p3 = p1 + 2d, p4 = p1 + 3d, p5 = p1 + 4d, p6 = p1 + 5d

Damit S = 6p1 + 15d ein Minimum wird, müssen p1 und d minimal gewählt werden.
Für p1 kommen 2; 3; 5 nicht in Frage, denn wäre p1 = 2, so wäre p3 = 2 + 2d nicht Primzahl, wäre p1 = 3
so folgt, dass p4 = 3 + 3d nicht Primzahl ist, und entsprechend ergibt sich für p1 = 5, dass p6 = 5 + 5d
nicht Primzahl sein kann.
Daraus folgt p1 ≥ 7, der kleinste in Frage kommende Wert für p1 ist 7.

Für die Wahl von d ergeben sich folgende Überlegungen:
1. d muss durch 2 teilbar sein, da sonst p2 = p1 + d gerade und somit keine Primzahl wäre.
2. d muss durch 3 teilbar sein, da sonst wenigstens eine der Zahlen p2, ..., p6 durch 3 teilbar wäre.
Beweis: Wenn d nicht durch 3 teilbar ist, lässt es beim Teilen durch 3 entweder den Rest 1 oder 2.
Die Zahl p1 ist als Primzahl nicht durch 3 teilbar, lässt also ebenfalls entweder den Rest 1 oder 2.
Wie man leicht nachprüft, führt jede der vier möglichen Kombinationen auf mindestens eine Zahl pi mit
i = 2,...,6, die durch 3 teilbar ist.
3. d muss durch 5 teilbar sein (Schlussfolgerung analog).
Also ist d durch 2 · 3 · 5 = 30 teilbar, das kleinste mögliche d ist also 30.

Tatsächlich bilden die Zahlen 7; 37; 67; 97; 127; 157 eine Primzahlfolge.
Ihre Summe ist 492; es ist die kleinste Summe aus sechs Primzahlen, die eine arithmetische Folge bilden.

Aufgabe 4/68
Es sei 0 < a < 1, n eine natürliche Zahl. Welche Zahlen a unterscheiden sich von n von ihrer
reziproken Zahl?
Welcher Wert ergibt sich speziell für n = 1?

Aus der in der Aufgabe geforderten Bedingung ergibt sich sofort die Gleichung

n = 1
a
− a

oder - nach Multiplikation mit a 6= 0 und Umformung - a2 + na− 1 = 0 mit der (wegen a > 0) einzigen
Lösung

a = 1
2(
√
n2 + 4− n)

Speziell für n = 1 folgt a = 1
2 (
√

5− 1) ≈ 0,618..., also die Maßzahl des Goldenen Schnitts. Tatsächlich ist
1

0,618... = 1,618....
Alle Zahlen a, die die Gleichung erfüllen, haben die geforderte Eigenschaft. Es sind, wie man sich leicht
überzeugt, abzählbar unendlich viele.

Aufgabe 5/68
Auf der Seite AB des beliebigen Dreiecks ABC liege ein Punkt P .
Ferner sei Q ein innerer Punkt der Seite AC und R ein innerer Punkt der Seite BC.
Wird P mit Q und R verbunden, so zerfällt das Dreieck in drei Teilstücke.

a) Wie müssen die Lagen von Q und R gewählt werden, wenn die drei Teilstücke flächengleich sein
sollen?

b) Unter welchen Bedingungen sind alle drei Teilstücke Dreiecke?
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Analysis zu a): Wenn alle drei Teilstücke flächengleich sein sollen, muss jedes Teilstück den Flächeninhalt
F
3 haben (wobei mit F der Flächeninhalt des Dreiecks ABC bezeichnet ist).

Wir konstruieren zunächst ein Dreieck ACD mit D auf AB so, dass sein Flächeninhalt gleich F
3 ist, indem

wir D im Inneren von AB so festlegen, dass AD = AB
3 ist.

Dieses Dreieck wird dann in ein flächengleiches Dreieck APQ verwandelt.

A B

C

D P E

Q

R

Da denn Dreiecken ADC und APQ das Dreieck ADQ
gemeinsam ist, läuft dieser Teil der Lösung darauf
hinaus, ein zum Dreieck DQC flächengleiches Dreieck
DQP zu konstruieren.
Nun haben die Dreiecke DQC und DQP diesselbe
Grundlinie DQ; sie sind also dann flächengleich, wenn
sie die gleiche Höhe auf dieser haben.
Das heißt aber, dass Q auf der Parallelen durch D zu
PC liegen muss. Eine analoge Überlegung zur Kon-
struktion von R. Konstruktion und Beweis zu a) folgen
unmittelbar aus der Analysis.

Überlegung zu b): Alle drei Teilstücke sind genau dann Dreiecke, wenn entweder Q oder R mit zusam-
menfällt. Da nach Analysis zu a) sowohl DQ als auch ER zu PC parallel sein müssen (wobei E der zweite
Drittelungspunkt von AB ist), gilt entweder P = D oder P = E.

Aufgabe 6/68
Beweisen Sie, dass für jede natürliche Zahl k > 0 die Zahl xk = 72k+343 ohne Rest durch 392 teilbar
ist!

Zum Ziel führt eine geschickte Umformung und Faktorenzerlegung. Es ist

xk = 72k + 343 = 72k − 49 + 392 = 72k − 72 + 392 = 72(72k−2 − 1) + 392 = 72(7k−1 − 1)(7k−1 + 1) + 392

Da der zweite Summand ohne Rest durch 392 teilbar ist, genügt es, nachzuweisen, dass dies auch für den
ersten Summanden zutrifft.
Er ist genau dann ohne Rest durch 392 teilbar, wenn er mindestens die Primfaktoren von 392 enthält:
392 = 23 ·72. Die Primzahlpotenz 72 ist enthalten; es bleibt also noch zu zeigen, dass die Faktoren 7k−1−1
und 7k−1 + 1 die Primzahlpotenz 23 enthalten.
Mit 7 ist auch 7k−1 ein ungerade Zahl. Folglich sind 7k−1 − 1 und 7k−1 + 1 zwei aufeinanderfolgende
gerade Zahlen, also sind beide durch 2 und genau eine von ihnen sogar durch 4 = 22 ohne Rest teilbar.
Ihr Produkt enthält also den Faktor 2 · 22 = 23.

Aufgabe 7/68
Gesucht sind alle natürlichen Zahlen n, für die

n∑
k=1

k eine dreistellige Zahl mit gleichen Ziffern ist.

Es ist
n∑
k=1

k = n(n+ 1)
2

nach der Aufgabenstellung soll dieser Ausdruck eine dreistellige Zahl mit gleichen Ziffern sein.
Eine solche Zahl kann man durch 111a mit 1 ≤ a ≤ 9 (a ganzzahlig) darstellen. Also muss die Gleichung

n(n+ 1)
2 = 111a

gelten. Umgeformt ergibt sich n(n+ 1) = 222a = 2 · 3 · 37 · a.
Die linke Seite dieser Gleichung ist ein Produkt aus zwei aufeinanderfolgenden Zahlen. Folglich muss auch
die rechte Seite ein solches Produkt sein. Daraus schließt man, dass

2 · 3 · a = 6a = 36 oder 2 · 3 · a = 6a = 38
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sein muss (man überzeugt sich leicht, dass andere Faktorenkombinationen wegen der Bedingung für a
nicht in Frage kommen). Nur die erste dieser beiden Gleichungen hat für a eine ganzzahlige Lösung,
nämlich a = 6. Damit folgt n = 36, und die dreistellige Zahl ist 666.

Aufgabe 8/68
Eine Ebene werde von n Geraden in 56 Teile geteilt. Keine der n Geraden sei parallel zu einer anderen,
und in keinem Punkt schneiden einander mehr als zwei Geraden.
Wie groß ist n?

Behauptung: Unter den in der Aufgabe genannten Bedingungen teilen n Geraden die Ebene in

kn = 1 + n(n+ 1)
2

Teile.
Beweis: Die Behauptung ist offensichtlich richtig für n = 0 (die Ebene wird nicht geteilt, besteht also aus
einem Teil) und für n = 1 (die Ebene wird einmal, also in zwei Teile geteilt).
Angenommen, die Behauptung sei für n = i richtig: ki = 1 + i(i+1)

2 .
Dann werden durch die (i + 1)-te Gerade i + 1 Ebenenteile erzeugt. Da diese Gerade nämlich zu keiner
anderen parallel ist, schneidet sie jede andere; da sie außerdem durch keinen anderen Schnittpunkt zweier
Geraden geht, schneidet sie i − 1 zwischen den i Geraden liegende und 2 außerhalb von ihnen liegende
Ebenenteile, insgesamt also i+ 1 Ebenenteile in je 2 Teile. Es ist also

ki+1 = 1 + i(i+ 1)
2 + i+ 1 = 1 + (i+ 1)(i+ 2)

2

Aus der Gültigkeit für n = i folgt also die Gültigkeit für n = i+ 1. Damit ist insgesamt gezeigt, dass die
Behauptung richtig ist.
Aus der Gleichung kn = 1 + n(n+1)

2 = 56 folgt nun n = 10.
(Da n eine natürliche Zahl ist, scheidet die negative Lösung der sich ergebenden quadratischen Gleichung
aus.) Es liegen demnach 10 Geraden in der Ebene.

Aufgabe 9/68
Man beweise, dass alle Binomialkoeffizienten

(
n
k

)
für 0 < k ≤ n − 1 durch n ohne Rest teilbar sind,

wenn n eine Primzahl ist, und dass für jede Nichtprimzahl n mindestens ein Binomialkoeffizient
(
n
k

)
für 0 < k ≤ n− 1 nicht durch n ohne Rest teilbar ist!

Alle Binomialkoeffizienten
(
n
k

)
sind ganzzahlig, wenn n und k ganzzahlig sind (im übrigen ist

(
n
k

)
nur für

ganzzahliges k definiert).
Nach der Definition des Binomialkoeffizienten ist(

n

k

)
= n · (n− 1) · (n− 2) · ... · (n− k + 1)

1 · 2 · ... · k

Nimmt man an, dass n eine Primzahl ist, so sind für 0 < k ≤ n−1 alle Faktoren des Nenners stets kleiner
als diese Primzahl. Wegen der Ganzzahligkeit von

(
n
k

)
muss dann auch n·(n−1)·(n−2)·...·(n−k+1)

1·2·...·k ganzzahlig
sein.
Daher ist

(
n
k

)
ein ganzzahliges Vielfaches der Primzahl n, d.h.,

(
n
k

)
ist dann für 0 < k ≤ n− 1 stets durch

n teilbar.
Ist n keine Primzahl, so ist unter allen k mit 0 < k ≤ n− 1 mindestens ein k1 zu finden, das Primteiler
von n ist. Dann ist nur der erste Faktor n des Zählers von

(
n
k1

)
durch k1 ohne Rest teilbar, da das

nächstkleinere Vielfache von k1, nämlich n− k1, im Zähler nicht mehr als Faktor vorkommt.
Ist km1 (wobei m eine natürliche Zahl ist) die höchste in n enthaltene Potenz von k1, so enthält demnach(
n
k1

)
nur noch km−1

1 und nicht km1 als Teiler. Folglich ist
(
n
k1

)
nicht ohne Rest durch n teilbar, wenn n

keine Primzahl ist.
Beispiele:

1.
(

12
3

)
= 12 · 11 · 10

1 · 2 · 3 = 220 = 2 · 11 · 10

162



2.8 Aufgaben und Lösungen 1968

(nicht durch 12 teilbar, da 12 Nichtprimzahl und 3 Primteiler von 12 ist)

2.
(

12
5

)
= 12 · 11 · 10 · 9 · 8

1 · 2 · 3 · 4 · 5 = 792 = 12 · 66

(durch 12 teilbar, da 12 zwar Nichtprimzahl, 5 aber nicht Primteiler von 12 ist).

Aufgabe 10/68
Beim Schachspiel kann man mit den Türmen Züge beliebiger Länge (sofern kein Feld besetzt ist) in
seitlicher Richtung und senkrecht dazu ausführen.
Auf wieviel Wegen kann ein Turm von einem Eckfeld in das diagonal gegenüberliegende Eckfeld
überführt werden, wenn keine rückläufigen Züge zugelassen sind.

Ohne Beschränkung der Allgemeinheit nehmen wir an, das Ausgangsfeld sei das linke untere, das Zielfeld
das rechte obere Feld.
Den Übergang zum rechts benachbarten symbolisieren wir mir r, den zum oberhalb benachbarten Feld
mit o. Solche Züge nennen wir ”Elementarzüge”. Jede erlaubte Zugfolge, z.B.

3r...2o...r...4o...r...o...2r

lässt sich in einer Folge von 14 Elementarzügen auflösen: rrrooroooororr.
Es liegt demnach eine Permuation von 14 Elementen rrrrrrrooooooo vor, wobei je 7 Elemente einander
gleich sind. Die Anzahl der Permutationen ist in diesem Falle

P (14) = 14!
7! · 7! = 3432

Der Turm kann sein Ziel auf 3432 verschiedenen Wegen erreichen.

Aufgabe 11/68
Ist von drei natürlichen Zahlen a, b, c, die ein pythagoreisches Tripel bilden (für die also gilt
a2 + b2 = c2), einer der beiden Zahlen a oder b eine Primzahl, so sind die beiden anderen zwei
aufeinanderfolgende Zahlen, und die Primzahl ist die kleinste der drei Zahlen.
Dieser Satz ist zu beweisen. Es ist ferner zu prüfen, ob umgekehrt auch gilt:
Sind unter drei pythagoreischen Zahlen zwei aufeinanderfolgende Zahlen, so ist die dritte Zahl die
kleinste und Primzahl.

Angenommen, unter den drei natürlichen Zahlen a, b, c, für die gilt a2 + b2 = c2, sei a eine Primzahl:
a = p. Dann gilt

a2 = p2 = c2 − b2 = (c+ b)(c− b)

Daraus folgt bereits p2 < c2 und damit p < c. Da c+ b > c− b ist, muss wegen der Primzahleigenschaft
von p gelten p2 = c+ b und c− b = 1. Daraus folgt c = b+ 1 > b.
Nun ist p 6= b (unter drei pythagoreischen Zahlen sind niemals zwei gleiche, wie man leicht nachweist),
also ist p < b. Damit ist der Satz bewiesen.

Die Umkehrung gilt nicht, wie man an Hand des Gegenbeispiels 9; 40; 41 beweisen kann:
Diese Zahlen bilden ein pythagoreisches Tripel, und die zwei größeren sind zwei aufeinanderfolgende
Zahlen. Die kleinste dieser drei Zahlen ist aber keine Primzahl.

Aufgabe 12/68
Man berechne die Summe

n∑
k=1

k ·
(
n

k

)

Es ist
k ·
(
n

k

)
= k

n!
k!(n− k)! = n

(n− 1)!
(k − 1)![(n− 1)− (k − 1)]! = n ·

(
n− 1
k − 1

)
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Daraus ergibt sich
n∑
k=1

k

(
n

k

)
= n ·

n∑
k=1

(
n− 1
k − 1

)
= n ·

n∑
l=0

(
n− l
l

)
· 1l · 1n−1−l = n(1 + 1)n−1 = n · 2n−1

Aufgabe 13/68
Gesucht sind alle ganzzahligen Lösungen der Gleichung

√
y2 − 80 = 2(x+ 2).

Da der rechte Term der Gleichung ganzzahlig sein soll, muss auch der linke Term ganzzahlig sein. Es gilt
also

√
y2 − 80 = z mit ganzzahligem z oder

y2 − 80 = z2, y2 − z2 = (y − z)(y + z) = 80

Offensichtlich sind y und z entweder beide gerade oder beide ungerade, da sonst die Faktoren y − z und
y+z beide ungerade und damit ihr Produkt ungerade wären. Man zerlegt also die Zahl 80 in ihre geraden
Faktoren:

80 = |40| · |2| = |21 + 19| · |21− 19]
80 = |20| · |4| = |12 + 8| · |12− 8]

80 = |10| · |8| = |9 + 1| · |9− 1]

Für y kommen also nur die Zahlen ±9;±12;±21 in Frage. Dabei ergibt sich für ±12 ein ganzzahliger
Wert für x: x = 2. Die ganzzahligen Lösungen sind demnach x1 = 2; y1 = 12 und x2 = 2; y2 = −12.

Aufgabe 14/68
Gesucht sind alle natürlichen Zahlen, die gleich dem Quadrat ihrer Quersumme sind.

Ist q die Quersumme der gesuchten Zahl x, so soll laut Aufgabenstellung die Gleichung x = q2 gelten.
Nun gehören q und q2 derselben Restklasse mod 9 an:

q2 ≡ q (mod 9)→ q(q − 1) ≡ 0 (mod 9) (1)

woraus sich q ≡ 0 (mod 9) oder q ≡ 1 (mod 9) ergibt.
Die einstelligen q-Werte 1 und 9 erfüllen die Bedingungen der Aufgabe: 1 = 12 und 81 = 92.
Hat die Quersumme n Stellen (n ≥ 2), gilt also 10n−1 ≤ qn ≤ 10n (2), so hat q2

n entweder 2n− 1 oder 2n
Stellen. Die Quersumme einer solchen Zahl ist höchstens 9 · 2n = 18n. Also gilt qn ≤ 18n (3).
Aus den Ungleichungen (2) und (3) folgt als notwendige Bedingung 10n−1 ≤ 18n. (4)

Diese Ungleichung ist für die natürlichen Zahlen 1 und 2 erfüllt. Dies sind aber auch die einzigen
natürlichen Zahlen, für die sie gilt; wie man leicht aus einer graphischen Darstellung der Funktionen
f(x) = 10x−1 und g(x) = 18x erkennt. Bereits für n = 3 gilt diese Ungleichung nicht mehr.
Wir stellen nunmehr die zweistelligen q-Werte und ihre Quadrate zusammen, die unter Beachtung der
Ungleichung (3) die Kongruenzen (1) erfüllen:

q = 10; 18; 19; 27; 28; 36
q2 = 100; 324; 361; 729; 784; 1296

Es zeigt sich, dass die Quersummen von q2 nicht q ergeben, sondern nur zu q kongruent (mod 9) sind.
Also hat die Aufgabe nur die beiden Lösungen x = 1 und x = 81 (wobei x = 1 als trivial angesehen
werden kann).

Aufgabe 15/68
Unter welcher Bedingung liegen in einem Dreieck ABC die Eckpunkte A und B, der
Höhenschnittpunkt H, der Umkreismittelpunkt U und der Inkreismittelpunkt I auf einem Kreis?
Radius und Lage des Mittelpunktes dieses Kreises sind zu bestimmen.
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A B

C

H

G

I
U

U ′

Wenn H, I und U auf einem Kreis durch A und B lie-
gen, so gilt nach dem Peripheriewinkelsatz ](AHB) =
](AIB) = ](AUB).
Nun ist ](AHB) = ](AHG) + ](GHB) = α + β (senk-
recht aufeinanderstehende Schenkel). Aus dem Dreieck
AIB ergibt sich ](AIB) = 180◦ − ](IAB) − ](IBA)
(Winkelsummensatz); da IA und IB die Winkel α und β
halbieren

](AIB) = 180◦ − α

2 −
β

2
Aus diesen Betrachtungen folgt

α+ β = 180◦ − α

2 −
β

2 → α+ β = 120◦

Nach dem Winkelsummensatz ist dann γ = 60◦. Da γ = ](ACB) Peripheriewinkel im Umkreis über
der Sehne AB ist, muss nach dem Satz über Peripherie- und Zentriwinkel ](AUB) = 2γ = 120◦ sein.
Folglich liegt auch U nach dem Satz über Peripheriewinkel auf dem Kreis, auf dem A, H, I und B liegen.

Damit ist gezeigt: Wenn H und I auf einem Kreis durch A und B liegen, so ist γ = 60◦, und U liegt auf
demselben Kreis.
Man folgert umgekehrt: Wenn γ = 60◦ ist, so sind ](AUB) = 120◦,](AIB) = 120◦,](AHB) = 120◦,
folglich liegen A, H, I, U und B auf einem Kreis. Die Bedingung ist also sowohl notwendig als auch
hinreichend.

Das ∆AUB wegen AU = AB gleichschenklig mit der Basis AB ist, folgt aus der Gleichschenkligkeit von
∆ABU ′, dass ](BAU ′) = ](ABU ′) = 30◦ ist. Das Dreieck UU ′A ist also gleichseitig, und es ist

UU ′ = AU = BU = AU ′ = BU ′

Daraus folgt, dass der gesuchte Radius UU ′ gleich dem Umkreisradius des Dreiecks ABC ist und U ′

symmetrisch zu U bezüglich AB als Symmetrieachse liegt.

Aufgabe 16/68
Beweise: Der Ausdruck 3n2 − 1 ergibt für kein ganzzahliges n eine Quadratzahl!

Zur Lösung benutzen wir folgenden Satz:
Jede Quadratzahl lässt beim Dividieren mit 4 den Rest 0 oder den Rest 1.
Beweis dieses Satzes: Ist die Basis der Quadratzahl m2 gerade, also m = 2k (mit natürlichem k), so ist
m2 = (2k)2 = 4k2 ohne Rest durch 4 teilbar. Ist die Basis m der Quadratzahl ungerade, also m = 2k+ 1
(mit natürlichem k), so ist m2 = (2k + 1)2 = 4k2 + 4k + 1 durch 4 mit dem Rest 1 teilbar.

Beweis der Behauptung: Nach dem eben bewiesenen Satz ist

n2 ≡ 0 (mod 4) , oder n2 ≡ 1 (mod 4)

3n2 ≡ 0 (mod 4) , oder 3n2 ≡ 3 (mod 4)

3n2 − 1 ≡ 3 (mod 4) , oder 3n2 − 1 ≡ 2 (mod 4)

Die Zahl 3n2 − 1 lässt also bei ganzzahligem n nie den Rest 0 oder den Rest 1 beim Dividieren durch 4,
kann also nach dem oben bewiesenen Satz nicht Quadratzahl sein.

Aufgabe 17/68
Im Raum seien 2n Punkte gegeben (n ≤ 1, ganz). Wir verbinden diese Punkte paarweise derart durch
2n−1 Strecken, dass jeder Punkt genau einmal Endpunkte einer Strecke ist.
Mit den 2n−1 Mittelpunkten dieser Strecken verfahren wir analog usw. Nach dem n-ten Schritt
erhalten wir genau einen Mittelpunkt, dieser heiße A. Es ist zu beweisen, dass die Lange von A
unabhängig von der Bildung der Punktepaare ist.
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Wir betrachten die gegebenen Punkte als Massepunkte mit der Masse m. Nachdem wir das angegebene
Verfahren einmal durchgeführt haben, erhalten wir 2n−1 Punkte, von denen jeder Schwerpunkt von zwei
Punkten ist und somit die Masse 2m verkörpert.
Beim zweiten Schritt erhalten wir 2n−2 Schwerpunkte, deren jeder die Masse 4m verkörpert usw. Der
Punkt A ist demnach Masseschwerpunkt aller gegebenen Punkte. Da das gegebene Punktsystem sicher
genau einen Schwerpunkt hat, muss sich A unabhängig von der Zusammenfassung der Punkte zu Paaren
ergeben.

Aufgabe 18/68
Man beweise, dass für alle natürlichen Zahlen n ≥ 1 die Ungleichung

n
√

2− 1 ≤ 1
n
<

n
√

3− 1

gilt (wobei 1
√
a = a bedeute)!

Sicher gilt für jedes natürliche n ≥ 1 die Ungleichung

2 ≤
(

1 + 1
n

)2

mit n = 1,2,3,... strebt bekanntlich von unten gegen die Basis e = 2,718... der natürlichen Logarithmen:
limn→∞

(
1 + 1

n

)n = e. Für n = 1 ist
(
1 + 1

n

)n = 2. Damit ist aber

n
√

2 ≤ 1 + 1
n
<

n
√

3 und n
√

2− 1 ≤ 1
n
<

n
√

3− 1

Aufgabe 19/68
Im Jahre 1968 ist jemand genau so alt, wie die Quersumme seines Geburtsjahres angibt. In welchem
Jahr ist er geboren?

Das Geburtsjahr muss offensichtlich im 20. Jahrhundert liegen; würde es nämlich noch ins 19. Jahrhundert
fallen, so wäre die höchste in Frage kommende Quersumme die das Jahres 1899, sie beträgt 27. Es ist
aber 1899 + 27 < 1968.
Man kann daher ansetzen

1900 + 10z + e+ (1 + 9 + z + e) = 1968
wobei z die Zehnerstelle und e die Einerstelle des Geburtsjahres sind. Daraus folgt nach Umformung
z = 2

11 (29− e).
Da für e die Ungleichung 0 ≤ e ≤ 9 gilt und z ganzzahlig sein muss (beides auf Grund ihrer Definition
als Einer- bzw. Zehnerstelle) kann nur e = 7 gelten. Damit wird z = 4.
Das Geburtsjahr ist also 1947 mit der Quersumme 21, die genau das Alter im Jahre 1968 angibt.

Aufgabe 20/68
Gesucht ist der Flächeninhalt des kleinstmöglichen rechtwinkligen Dreiecks ABC mit der Hypotenuse
c, dessen Seiten a, b und c sowie dessen Höhe hc ganzzahlig sind.

A B

C

D

ab hc

q p

c

Wir verwenden die Bezeichnungen der Abbildung. Durch hc ent-
stehen außer dem rechtwinkligen Dreieck ABC noch die beiden
bei D rechtwinkligen Dreiecke ADC und BCD, so dass die folgen-
den Beziehungen gelten, die sämtlich in ganzen Zahlen erfüllt sein
müssen:

a2 + b2 = c2 (1) ; q2 + h2
c = b2 (2) ; p2 + h2

c = a2 (3)

pq = h2
c (4) ; p+ q = c (5)

Aus (4) folgt p = h2
c

q (6), d.h., hc und q haben einen gemeinsamen Teiler; dann muss wegen (2) auch b
diesen Teiler haben:

q = tu ; hc = tv ; b = tw (7)
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Daraus ergibt sich, dass q, hc und p kein primitives pythagoreisches Tripel bilden können.
Es sei nun u; v;w ein primitives pythagoreisches Tripel, d.h., u, v und w seien paarweise teilerfremd.
Dann folgt aus (6), wenn man (7) einsetzt, dass das kleinstmögliche t sich für t = u ergibt: q = u2, hc =
uv, b = uw (8).
Damit folgt aber aus (6) auch p = v2 und aus (3) und (5) a = vw, c = w2. Die Probe zeigt, dass auch (1)
erfüllt ist:

a2 + b2 = (vw)2 + (uw)2 = w2(v2 + u2) = w2 · w2 = w4 = c2

Das kleinste Dreieck erhält man, wenn man für u, v, w das kleinste primitive pythagoreische Tripel
einsetzt. Das ist bekanntlich 3, 4, 5. Der Flächeninhalt ergibt sich dann zu

F = 1
2ab = 1

2vw · uw = 1
2 · 3 · 4 · 5

2 = 150 Flächeneinheiten

Aufgabe 21/68
Man löse das System folgender Gleichungen

log2 x · logx (x− 3y) = 2 (I)

x · ylogx y = y
5
2 (II)

Geht man bei der Gleichung (I) zur Basis 2 über, so erhält man

log2 x · logx (x− 3y) = log2 x
log2 (x− 3y)

log2 x
= log2 (x− 3y) = 2

oder x− 3y = 4. Logarithmiert man die Gleichung (II) zur Basis x, so ergibt sich die Gleichung

log2
x y −

5
2 log y + 1 = 0→ logx y = 5±

√
25− 16
4 = 5± 3

4

Daraus folgt 1. logx y = 2, y = x2; und 2. logx y = 0,5, x = y2.
Man erhält nun wieder zwei Systeme

(A) x− 3y = 4 y = x2

(B) x− 3y = 4 x = y2

System (A) hat keine reellen Lösungen; die Lösungen von System (B) sind x1 = 1, y1 = −1 und x2 =
16, y2 = 4.
Da aber nach Definition des Logarithmus (im Reellen) y stets positiv sein muss, erfüllt nur x2 = 16, y2 = 4
das System (I)(II).

Aufgabe 22/68
Man beweise: Sind m und n natürliche Zahlen (m,n > 0), so treten beim Teilen von mn durch n2

höchstens n verschiedene Reste auf.

Jede natürliche Zahl m kann man als m = kn + r darstellen, wobei auch k und r natürliche Zahlen
(einschließlich der Null) sind und r einen der Werte 0; 1; 2; ...;n− 1 hat. Dann ist nach dem binomischen
Satz

mn = (k · n+ r)n = knnn +
(
n

1

)
kn−1nn−1r + · · ·+

(
n

n− 1

)
knrn−1 + rn

Da alle Glieder dieser Summe bei auf das letzte durch n2 ohne Rest teilbar sind, gilt

mn ≡ rn ( mod n2)

Da r nur die Werte 0; 1; ...;n−1 annehmen kann, also insgesamt n Werte möglich sind, kann rn ebenfalls
höchstens n Werte annehmen.
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Aufgabe 23/68
Wie groß ist die in der Abbildung gefärbte Parallelogrammfläche?

A B

CD

E

G

F
H

J

K

L

M

a
2

a
2

b
2

b
2

Nach Konstruktion ist AG ‖ EC und BH ‖ FD. Nach einem Strahlensatz gilt daher (wegen AE = EB
nach Konstruktion)

AI = 2EK, BK = 2FL, IK = KB, KL = LC

Dreht man das Dreieck BKE um den Punkt E um 180◦, so dass der Punkt B mit dem Punkt A zusam-
menfällt, so ergibt sich ein Parallelogramm AIKK ′ (gleichlange Gegenseiten im Viereck). In der gleichen
Weise ergänzen die Dreiecke AIH, DMG und CLF die Trapeze HIMD, GMLC bzw. FLKB zu Par-
allelogrammen.
Jedes dieser vier (ergänzten) Parallelogramme ist kongruent dem Parallelogramm IKLM (Übereinstimmung
in den Seiten und Winkeln). Also ist der Flächeninhalt A des Parallelogramms IKLM A = 1

5ab, wenn
mit a und b die Seitenlängen des Rechtecks bezeichnet werden.

Aufgabe 24/68
Es ist zu beweisen: Sind a und b natürliche Zahlen, die teilerfremd sind, und ist p eine ungerade
Primzahl, die ein Teiler von a+ b ist, so ist ap + bp ohne Rest durch p2 teilbar.

Da p ungerade ist, lässt sich ap + bp ohne Rest durch a+ b teilen:

ap + bp = (a+ b)(ap−1 − ap−2b± · · ·+ bp−1) = (a+ b) · S

Da p Teiler von a+ b ist, gilt a+ b ≡ 0 (mod p) oder b ≡ −a (mod p). Also ist

S ≡ ap−1ap−1 + · · ·+ ap−1 ≡ pap−1 (mod p)

Demnach ist p Teiler eines jedes Faktors und p2 ein Teiler von ap + bp.

Aufgabe 25/68
Man beweise, dass es keine Primzahl der Form a4 + 4 (mit a 6= 0; 1, a eine natürliche Zahl) gibt.

Die Zahl a4 + 4 lässt sich in der Form

a4 + 4 = a4 + 4a2 + 4− 4a2 = (a2 + 2)2 − (2a)2 = (a2 + 2− 2a)(a2 + 2 + 2a)

schreiben. Wegen a 6= 1 ist jeder dieser Faktoren sowohl von 1 als auch von a4 + 4 verschieden. Daraus
folgt, dass a4 + 4 nicht Primzahl ist.

Aufgabe 26/68
Unter welchen Bedingungen ist in einem Dreieck das Quadrat des Umkreisdurchmessers gleich der
Summe aus den Quadraten zweier Dreiecksseiten?

Wir verwenden die übliche Bezeichnungsweise (Dreieckseiten a, b, c; gegenüberliegende Winkel α, β, γ;
Umkreisdurchmesser d). Gefordert wird s3 = a2 + b2. Wegen a = d · sinα und b = d · sin β ergibt sich
andererseits

a2 + b2 = d2(sin2 α+ sin2 β)
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Durch Koeffizientenvergleich folgt daraus

sin2 α+ sin2 β = 1; sin2 β = 1− sin2 α = cos2 α; sin β = | cosα|

Diese Relation ist für 0◦ < α;β < 180◦ offensichtlich genau dann erfüllt, wenn entweder

1. α+ β = 90◦ oder 2. |α− β| = 90◦

ist. Die Lösung 1 kann als trivial angesehen werden (das Dreieck ist rechtwinklig, der Umkreis ist gleich
dem Thaleskreis, sein Durchmesser ist gleich der Hypotenuse).
Ergebnis: In einem Dreieck ist das Quadrat des Umkreisdurchmessers gleich der Summe aus den Quadra-
ten zweier Dreieckseiten, wenn die Summe oder Differenz zweier Dreieckwinkel 90◦ ist. Wie die Herleitung
zeigt, ist die Bedingung sowohl notwendig als auch hinreichend. Der Satz ist also umkehrbar.

Aufgabe 27/68
Es ist zu beweisen, dass es genau eine natürliche Zahl n gibt, die folgende Bedingungen erfüllt:

1. Sie besteht (in der dekadischen Schreibweise) aus drei verschiedenen Ziffern, von denen keine
gleich 1 ist.

2. Je zwei ihrer Ziffern bezeichnen zueinander teilerfremde Zahlen.

3. Sie ist durch jede der von ihren Ziffern bezeichneten Zahlen teilbar.

Wie sich weiter zeigt, besteht die Zahl n aus Primzahlziffern.

Die Ziffern der Zahl n, die das Verlangte leistet, seien a, b, c. Weder a noch b können gerade oder gleich
5 sein, da sonst n ebenfalls gerade bzw. durch 5 teilbar wäre; demnach müsste in diesem Falle c gerade
bzw. durch 5 teilbar sein, was der Bedingung 2 widerspricht.
Ferner können a, b, c nicht gleich null sein, da keine Zahl, und demnach auch nicht n, durch Null teilbar
ist. Nach Bedingung 1 kann auch keine der Ziffern a, b, c gleich 1 sein. Es verbleiben für a und b:

a ∈ {3; 7; 9}; b ∈ {3; 7; 9}

Wegen Bedingung 2 können a und b nicht gleichzeitig die beiden Werte 3 und 9 annehmen. Sicher ist also
einer von ihnen gleich 7, während der andere 3 oder 9 ist. In jedem Falle gilt daher (a+ b) ≡ 1 (mod 3),
woraus folgt c ≡ 2 (mod 3), also c ∈ {2; 5; 8}.
Nun lässt sich die Lösung durch Fallunterscheidung ermitteln. Man hat insgesamt 12 Fälle zu überprüfen:

1. a = 7 b = 3 c ∈ {2; 5; 8} bzw. b = 9 c ∈ {2; 5; 8}

2. b = 7 a = 3 c ∈ {2; 5; 8} bzw. a = 9 c ∈ {2; 5; 8}
Von ihnen erweist sich nur der Fall a = 7, b = 2; c = 5 als mögliche Lösung. Die gesuchte Zahl lautet
somit 735.

Aufgabe 28/68
Man beweise, dass für jede Primzahl p ≥ 7 der Term

T = p4 − 20p2 + 64

durch 45 ohne Rest teilbar ist!

Der gegebene Term wird in Faktoren zerlegt:

T = p4 − 20p2 + 64 = (p2 − 4)(p2 − 16) = (p− 2)(p+ 2)(p− 4)(p+ 4)

Man untersucht die Teilbarkeit der Faktoren durch 3 und 5. Da p 6= 3 ist, gilt p ≡ 1 (mod 3) oder p ≡ 2
(mod 3). Dann ist aber p− 4 ≡ 0 (mod 3) und p+ 2 ≡ 0 (mod 3) oder p− 2 ≡ 0 (mod 3) und p+ 4 ≡ 0
(mod 3), d.h., in jedem Fall sind zwei Faktoren durch 3 teilbar; 9 ist also Teiler von T .
Da p 6= 5 ist, gilt p ≡ 1, 2, 3 oder 4 (mod 5). Dann ist aber p + 4, p− 2, p + 2 oder p− 4 ≡ 0 (mod 5),
d.h. in jedem Fall ist ein Faktor von T durch 4 teilbar.
Ergebnis: Für jede Primzahl p ≥ 7 ist der Term T = p4 − 20p2 + 64 durch 45 ohne Rest teilbar.
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Aufgabe 29/68
Es sind die kleinsten sechs natürlichen Zahlen mit folgenden Eigenschaften zu bestimmen:

1. Jede Zahl besteht mindestens aus den an beliebiger Stelle stehenden und in beliebiger Reihen-
folge angeordneten Ziffer 3, 5 und 9.

2. Jede Zahl ist wenigstens durch 3, 5 und 8 teilbar.

Die letzte Ziffer der kleinsten Zahl n1 sei a, die vorletzte b usw.: n1 = ...edcba.
Wegen 2 muss n durch 5 · 8 = 40 teilbar sein, d.h. a = 0 und b ist gerade. Wäre n1 5stellig„ so müsste
n1 = 359b0 sein.
Auch bei einer beliebigen Permutation der Ziffern 3, 5 und 9 könnte b wegen der Teilbarkeit von n1 durch
8 (alle drei Zahlen 3, 5 und 9 sind ungerade) nur 2 oder 6 sein. Dann wäre aber die Quersumme nicht
durch 3 teilbar, folglich ist n1 mindestens 6stellig. Die kleinste 6.Ziffer wäre 1, falls ein entsprechendes b
(b = 2 oder b = 6) existiert. Tatsächlich ist die Quersumme von n1 = 1359b0 für b = 6 durch 3 teilbar.
Daraus folgt n1 = 135960.
Die übrigen gesuchten Ziffern ergeben sich durch Permutationen der Ziffern 3, 5 und 9, da dabei die
gestellten Bedingungen nicht verletzt werden zu

n2 = 139560;n3 = 153960;n4 = 159360;n5 = 193560;n6 = 195360

Aufgabe 30/68
In der Ebene seien zwei rechte Winkel mit den Schenkeln h1 und h2 bzw. k1 und k2 so gegeben, dass
kein Schenkel des einen Winkels zu irgendeinem Schenkel des anderen Winkels parallel verläuft.
Man zeige, dass man allein mit einem Parallelenlineal (einem Instrument, des über ein gewöhnliches
Lineal hinaus noch die Parallelverschiebung von Geraden ermöglicht) zu jedem Punkt P und zu jeder
Geraden g die zu g senkrechte Gerade durch P konstruieren kann!

Falls g zu irgendeinem Schenkel der gegebenen rechten Winkel parallel ist, ist die Konstruktion trivial.
Im Folgenden können wir voraussetzen, dass g nicht zu hi oder ki (i = 1,2) parallel ist. Wir ziehen durch
P die Parallelen h′i zu hi. Eine beliebig gewählte Parallele g′ zu g, die nicht durch P geht, schneidet h′i
in den Punkte Hi, die voneinander und von P verschieden sind.
Die Parallelen zu ki durch Hl (l = 1,2; l 6= i) schneiden einander in einem von P verschiedenen Punkt Q.

P

H2 H1

h′2 h′1

k′2k′1

Q

g′

g

h2

k2

k1

h1

Nach Konstruktion (bzw. Voraussetzung) sind die Geraden H1Q und H2Q Höhen im Dreieck PH1H2.
Da sich die Höhen eines Dreiecks stets in genau einem Punkt schneiden, ist PQ die Senkrechte von P auf
g′ und damit auch auf g.
Die Hilfsgerade g′ ist für die Konstruktion nur nötig, wenn der Punkt P auf der Geraden g liegt; sonst
kann g′ = g gewählt werden.
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Aufgabe 31/68
Beweisen Sie: Wenn die Summe der Quadrate zweier natürlicher Zahlen durch 11 teilbar ist, so ist
jede der Zahlen durch 11 teilbar.

Die beiden natürlichen Zahlen seien a und b und es gelte a ≡ r (mod 11), b ≡ s (mod 11). Dann ist
a2 ≡ r2 (mod 11), b2 ≡ s2 (mod 11). Für r und s kommen nur die Zahlen

0;±1;±2;±3;±4;±5

in Frage, für r2 und s2 demnach 0; +1; +4; +9 ≡ 2 (mod 11); +16 ≡ +5 (mod 11) und +25 ≡ +3 (mod
11).
Nun ist a2 +b2 ≡ r2 +s2 (mod 11) genau dann durch 11 teilbar, wenn r2 +s2 ≡ 0 (mod 11) gilt. Man prüft
leicht nach, dass unter den 21 Kombinationen von je 2 Elementen (mit Wiederholung) aus der Menge der
6 quadratischen Reste nur eine einzige zu finden ist, bei der die Summe der Elemente diese Kongruenz
erfüllt, nämlich r2 = 0 und s2 = 0.
Also ist auch r = s = 0 und damit sind a und b durch 11 teilbar.

Aufgabe 32/68
Man zeige, dass für n ≥ 3 die folgende Ungleichung gilt:

n
√
n > n+1

√
n+ 1

Bekanntlich ist die Folge mit dem allgemeinen Glied an =
(
1 + 1

n

)n monoton wachsend und es gilt

lim
n→∞

(
1 + 1

n

)n
= e

Demnach ist
(
1 + 1

n

)n
< e < 3. Für n ≥ 3 folgt(
1 + 1

n

)n
=
(
n+ 1
n

)n
< 3 ≤ n→ (n+ 1)n < n · nn = nn+1

Erhebt man beide Seiten der Ungleichung in die 1
(n+1)n -te Potenz (da beide Seiten nicht negativ sind,

wird dadurch die Gültigkeit der Ungleichung nicht beeinflusst), so ergibt sich
n+1
√
n+ 1 < n

√
n

Aufgabe 33/68
Gegeben sind eine Symmetrieachse g und zwei bezüglich derselben symmetrische Punkte P und P ′.
Man konstruiere unter ausschließlicher Verwendung des Lineals (d.h. nur durch Ziehen von Geraden)
zu einem beliebigen Punkt X den bezüglich g symmetrischen Punkt X ′.

Der Fall, dass X auf g liegt, ist trivial und braucht daher nicht erörtert zu werden (X = X ′). Ohne
Beschränkung der Allgemeinheit werden angenommen, dass X in derselben Halbebene wie P liegt. Es
sind dann die folgenden Fälle zu unterscheiden:

1. Der Punkt X liegt nicht auf der Geraden durch P und P ′ und die Strecke XP ist nicht parallel zu
g.

2. Der Punkt X liegt auf der Geraden durch P und P ′ oder die Strecke XP ist parallel zu g.

Zu 1.): Man ziehe die Gerade durch P und X; da PX nicht parallel zu g ist, schneidet diese h in einem
Punkt H1. Man ziehe ferner die Gerade durch P ′ und X; da X nicht auf der Geraden durch P und P ′

liegt, schneidet diese g in einem von H1 verschiedenen Punkt H2 (die Geraden PX und P ′X haben den
Schnittpunkt X; da X nicht auf g liegt, könnte H1 = H2 nur dann gelten, wenn die Geraden PX und
P ′X zusammenfallen, dann läge aber X auf PP ′ im Widerspruch zur Voraussetzung).
Die Geraden PH2 und P ′H1 schneiden einander in einem zu X symmetrischen Punkt X ′.
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Beweis: ∆H1XH2 ' ∆H1X
′H2 wegen H1H2 = H1H2, ]XH1H2 = ]X ′H1H2 (Symmetrie der auf den

Schenkeln liegenden Punkte P und P ′), ]XH2H1 = ]X ′H2H1x (ebendeshalb).
Folglich liegt X ′ symmetrisch zu X bezüglich g.

Zu 2.): Man nehme zunächst einen Hilfspunkt Q an, der den Bedingungen des Falles 1 entspricht und
konstruiere nach Fall den symmetrischen Punkt Q′. Dabei ist es ohne weiteres möglich, Q so zu wählen,
dass QX nicht parallel zu g ist. Dann ist die Konstruktion von X’ nach dem Fall 1 mit Hilfe den beiden
symmetrischen Punkte Q und Q′ anstelle von P und P ′ möglich.

Aufgabe 34/68
Es ist zu beweisen: Wenn die Summe dreier gegebener Quadratzahlen durch 9 teilbar ist, so sind
unter ihnen zwei, die beim Teilen durch 9 den gleichen Rest lassen.

Jede natürliche Zahl n lässt sich in der Form n = 9k ± r darstellen, wobei k eine natürliche Zahl
(einschließlich Null) und r = 0;±1;±2;±3;±4 ist. Für eine Quadratzahl ergibt sich demnach n2 =
81k2 − 18kr + r2.
Daraus folgt, dass als Rest einer Quadratzahl beim Teilen durch 9 nur die Zahlen 0; 1; 4; 7 in Frage
kommen.
Ist nun die Summe dreier Quadratzahlen durch 9 ohne Rest teilbar, so muss die Summe der Reste der
Quadratzahlen ohne Rest durch 9 teilbar sein. Das ist aber für die Restkombinationen (0; 0; 0), (1; 4; 4),
(1; 1; 7), (4; 7; 7) möglich. Man sieht, dass in jedem Fall zwei Quadratzahlen den gleichen Rest lassen.

Aufgabe 35/68
Verbindet man die Eckpunkte eines Parallelogramms mit den Mittelpunkten benachbarter Seiten, so
begrenzen die acht Verbindungsstrecken ein Achteck.
Es ist zu beweisen, dass dessen Flächeninhalt ein Sechstel des Parallelogramminhalts ist.

M

A B C

D

EFG

H

h′

P1

P2

P3

P4

P5

P6
P7

P8

Man beweist, dass der Flächeninhalt des Dreiecks MP4P5 ein Sechstel vom Flächeninhalt des Dreiecks
MDE ist. Es ist FBCE ein Parallelogramm; folglich halbiert P4 die Strecken FC und BE und damit
auch MD: MP4 = P4D. Entsprechend folgt MP6 = P6F .
Die Strecken DP6 und FP4 sind also Seitenhalbierende im Dreieck MDF . Da sich die Seitenhalbierenden
eines Dreiecks im Verhältnis 1 : 2 schneiden, gilt nach einem Strahlensatz h : h′ = 1 : 3 und h = 1

3h
′.

Für den Flächeninhalt A(MP4P5) des Dreiecks MP4P5 ergibt sich damit

A(MP4P5) = 1
2 ·MP4 · h = 1

2 ·
MD

2
h′

3 = 1
2 ·

MDh′

6 = 1
2A(MDE)

Analog kann die entsprechende Aussage für die übrigen Dreiecke MPiPi+ mit i = 1, 2, ..., 8 und P9 ≡ P1
bewiesen werden. Damit folgt die in der Aufgabe aufgestellte Behauptung.
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Aufgabe 36/68
Man beweise, dass für jede ungerade Zahl n > 1 die Gleichung

n−1
2∏

k=1
[n2 − (2k − 1)2] = (n2 − 12)(n2 − 32) · · · [n2 − (n− 2)2] = 2n−1(n− 1)!

erfüllt ist!

Eine Umformung des Produktes ergibt

n−1
2∏

k=1
[n2 − (2k − 1)2] =

n−1
2∏

k=1
(n+ 2k − 1)(n− 2k + 1) = (n+ 1)(n− 1)(n+ 3)(n− 3)...(2n− 2)2

Dieses Produkt besteht aus n − 1 geraden Faktoren, und zwar sind dies alle geraden Zahlen von 2 bis
2n− 2. Demnach hat das gegebene Produkt für alle ungeraden Zahlen n > 1 den Wert 2n−1(n− 1)!
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2.9 Aufgaben und Lösungen 1969

Aufgabe 1/69
An zwei einander nicht schneidende, verschieden große Kreise seien die gemeinsamen Tangenten
gelegt. Der Winkel zwischen den äußeren Tangenten sei α, der zwischen den inneren sei β.
Gesucht ist der Winkel zwischen den Tangenten vom Zentrum des größeren Kreises an den kleineren
Kreis.

P

O

N

M

A

B

C

D

r r
r

α
2

β
2

x
2

R

R

Wir verwenden die Bezeichnungen gemäß der Abbildung. Dann gilt

PO −NO −NP = R

sin α
2
− r

sin α
2

= MO +MP = R

sin β
2

+ r

sin β
2

Daraus folgt PO sin α
2 = R− r (I) und PO sin β

2 = R+ r (II).
Aus (I) und (II) ergibt sich 2r = PO

(
sin β

2 − sin α
2

)
und weiterhin

sin x2 = r

PO
= 1

2

(
sin β2 − sin α2

)
Damit gilt für den gesuchten Winkel x:

x = 2 arcsin
[

1
2

(
sin β2 − sin α2

)]

Aufgabe 2/69
Man geben alle Werte für x und y an, die dem Gleichungssystem

[x] + 2y = 9
2 , [2x] + 3y = 31

4

mit x ≥ 0 genügen. Dabei ist [z] die größte ganze Zahl, die nicht größer als z ist.

Es sei [x] = n. Es gilt, zwei Fälle zu unterscheiden:
1.) n ≤ x < n+ 0,5
Dann wird [2x] = [2n] und es ergibt sich das Gleichungssystem

n+ 2y = 4,5 , 2n+ 3y = 7,75

mit der Lösung n = 2, y = 1,25. Für x ergibt sich daraus die Ungleichung 2 ≤ x < 2,5.
2.) n+ 0,5 ≤ x < n+ 1
Dann ist [2x] = 2n+ 1 und es ergibt sich das Gleichungssystem

n+ 2y = 4,5 , 2n+ 1 + 3y = 7,75

mit den Lösung n = 0, y = 2,25. Für x ergibt sich daraus die Ungleichung 0,5 ≤ x < 1.
Demzufolge genügen die Werte 2 ≤ x < 2,5; y = 1,25 und 0,5 ≤ x < 1; y = 2,25 dem vorgegebenen
Gleichungssystem.

Aufgabe 3/69
Man beweise: Ist die Summe von n ganzen Zahlen a1; a2; a3; · · · ; an ohne Rest durch 5 teilbar, so ist
auch die Summe der 5.Potenzen dieser Zahlen ohne Rest durch 5 teilbar.

Der Satz von Fermat besagt, dass für einen Primzahlmodul p und jede ganze Zahl a die Kongruenz ap ≡ a
(mod p) gilt. Für jede der ganzen Zahlen ai gilt nach der Aufgabenstellung mit i = 1, 2, ..., n

a5
i ≡ ai (mod 5) ;

n∑
i=1

a5
i ≡

n∑
i=1

ai (mod 5)
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In Verbindung mit der Voraussetzung
n∑
i=1

ai = 0 (mod 5) folgt aus der Transitivität der Kongruenz
n∑
i=1

a5
i = 0 (mod 5), d.h. die Summe der 5.Potenzen ist ohne Rest durch 5 teilbar, w.z.b.w.

Verallgemeinerung: Ist die Summe von n ganzen Zahlen restlos durch eine Primzahl p teilbar, so ist auch
die Summe der p-ten Potenzen dieser Zahlen restlos durch p teilbar.

Aufgabe 4/69
Man zeichne um den Scheitelpunkt eines beliebigen spitzen
Winkels einen Kreisbogen mit beliebigem Radius MA und
trage darauf drei gleich lange Kreisbögen AB, BC und
CD ab (Abbildung).
Dann zeichne man durch B, C und D Parallele zu
MA. E sei der Schnittpunkt der Paralleln durch D
mit dem freien Schenkel des Winkels. Mit dem Radius
ME schlage man den Kreisbogen um M , der die Par-
allelen durch B und C in H und G und MA in F schneidet. M A

F

B

C

DE
G

H

Warum ist die Behauptung falsch, MG und MH würden den Winkel in drei gleiche Teile teilen?
Bekanntlich ist die Trisektion eines beliebigen Winkels allein mit Zirkel und Lineal unmöglich!

Der Fehler liegt in der Annahme, dass Parallele zwei konzentrische Kreisbögen, die von ihnen begrenzt
werden, in gleichem Verhältnis teilen. Es sei ]BMA = ϕ,]HMF = ϕ1,]GMH = ϕ2,MA = R und
MF = r. Der Abstand d der Geraden durch BH und MA ist dann d = R sinϕ = r sinϕ1, der Abstand
d′ der Geraden durch GC und MA ist d′ = R sin 2ϕ = r sin (ϕ1 + ϕ2).
Wäre nun ϕ1 = ϕ2, so würde durch Division folgen

sin 2ϕ
sinϕ = sin 2ϕ1

sinϕ1

woraus folgt 2 cosϕ = 2 cosϕ und damit wegen ϕ;ϕ1 < π : ϕ = ϕ1. Das ist aber ein Widerspruch, da M ,
H und B nicht auf ein und derselben Geraden liegen. Damit sind aber bereits die ersten beiden Teilwinkel
ϕ1 und ϕ2 voneinander verschieden.

Aufgabe 5/69
Gegeben ist ein Parallelogramm mit dem Umfang u = 30 LE, dessen Winkel sämtlich nicht kleiner
als 60◦ sind. In dieses Parallelogramm sei ein gleichseitiges Dreieck derart einbeschrieben, dass eine
Seite des Dreiecks mit der Parallelogrammseite AB = a übereinstimmt und die gegenüberliegende
Ecke des Dreiecks auf der gegenüberliegenden Parallelogrammseite liegt.
Wie groß sind die Parallelogrammseiten a und b, wenn ihre Maßzahlen ganzzahlig sind?

Die Höhe des Parallelogramms ist auf Grund der Aufgabenstellung gleich der des gleichseitigen Dreiecks
und also h = a

2
√

3.
Die Seite b ist am längsten, wenn das Parallelogramm ein Rhombus und am kürzesten, wenn es ein
Rechteck ist. Im ersten Fall ist u = 4a und also a = 7,5 LE, im zweiten Fall ist u = 2a+ 2h = 2a+ a

√
3

und also a = 8,038 LE. Daraus folgert man 7,5 LE ≤ a ≤ 8,038 LE.
Wegen der geforderten Ganzzahligkeit der Maßzahlen von a und b kann hieraus nur a = 8 LE gefolgert
werden. Damit ist b = u

2 − a = 7 LE.

Aufgabe 6/69
Gegeben sind die rationalen Zahlen a, b, c, d. Man beweise:
Ist ad− bc = 0, so ist q = ap+b

cp+d rational für jede beliebige reelle Zahl p.
Ist ad− bc 6= 0, so ist q = ap+b

cp+d irrational für jede irrationale Zahl p.

Aus q =
∣∣∣ap+bcp+d

∣∣∣ folgt durch äquivalente Umformung p(cq − a) = −(dq − b).
Es sei nun zunächst ad− bc = 0. Ist cq − a = 0, so ist auch b− dq = 0 und es folgt q = a

c = b
d . Also ist q
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als Quotient zweier rationaler Zahlen bei beliebigem p selbst rational.
Ist dq− b = 0, so folgt für cq−a = 0 dasselbe, für cq−a 6= 0, dass p = 0 ist. In diesem Fall ist aber q = b

d
ebenfalls rational.
Nun sei ad− bc 6= 0. Dann ist a 6= bc

d , a = bc
d + ∆a mit rationalem ∆a. Durch Einsetzen folgt
pc

d
= − dq − b

dq − b−∆a
Wäre nun q rational, so wäre auch p rational. Für irrationales p kann also q nicht rational sein.

Aufgabe 7/69
Für welche ganzen Zahlen n ist der Ausdruck 3n2 + 3n− 1 durch 5 teilbar?

Es ist die Kongruenz 3n2 + 3n − 1 ≡ 0 (mod 5) zu lösen. Da −1 ≡ −6 (mod 5) ist, kann man dafür
schreiben 3n2 + 3n− 6 ≡ 0 (mod 5) oder; da 3 und 5 teilerfremd sind; n2 + n− 2 ≡ 0 (mod 5).
Es ist aber m2 + n− 2 = (n− 1)(n− 2). Da 5 einer Primzahl ist, gibt es nur die beiden Lösungen

n1 ≡ 1 (mod 5) ; n2 ≡ −2 ≡ −3 (mod 5)

Der Ausdruck 3n2 + 3n − 1 ist also durch 5 teilbar, wenn n bei Division durch 5 den Rest 1 oder den
Rest 3 lässt.

Aufgabe 8/69
Man beweise: In jedem Dreieck ist der obere Abschnitt einer Höhe doppelt so groß wie die Länge des
Lotes vom Umkreismittelpunkt auf die Seite, auf der die Höhe steht.

K

F
E

H

B C

A

D G

O

Q

Wir verwenden die aus der Abbildung ersichtlichen Be-
zeichnungen. Es sei O der Schnittpunkt der Höhen, Q der
Schnittpunkt der Mittelsenkrechten, d.h. der Umkreis-
mittelpunkt. Ferner seienGK die Verbindungsstrecke der
Seitenmitten G von BC und K von AB sowie F und D
die Fußpunkte der Höhen auf AB bzw. BC.
Es ist GQ ‖ AD und KQ ‖ FC da Höhe und Mittel-
senkrechte senkrecht auf derselben Seite stehen. Weiter
ist wegen BA = 2BK und BC = 2BG auch KG ‖
AC und; nach einem Strahlensatz; AC = 2KG. Da-
mit sind die Dreiecke OAC und QGK ähnlich mit einem
Ähnlichkeitsverhältnis 2 : 1, woraus die Behauptung un-
mittelbar folgt.

Aufgabe 9/69
Es sei f(x) eine Funktion 3.Grades und q(x) eine Funktion 2.Grades. An den Stellen x0 = a, x1 =
a + h, x2 = a + 2h mögen die Funktionswerte beider Funktionen übereinstimmen, also f(x0) =
q(x0), f(x1) = q(x1), f(x2) = q(x2).
Man beweise, dass dann die Gleichung gilt

x2∫
x0

f(x)dx =
x2∫
x0

q(x)dx

Wir betrachten die Differenz der beiden Integrale:

D =
x2∫
x0

f(x)dx−
x2∫
x0

q(x)dx =
x2∫
x0

[f(x)− q(x)]dx

Der Integrand ist eine Funktion 3.Grades, die bei x0, x1 und x2 Nullstellen hat, also in der Form c(x −
x0)(x− x1)(x− x2) geschrieben werden kann. Mit der Hilfsvariablen u = x− x1 erhalten wir

D =
+h∫
−h

c(u+ h)u(u− h)du =
+h∫
−h

c(u3 − h2u)du = c

[
u4

4 −
h2u2

2

]+h

−h
= 0
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Aufgabe 10/69
Bekanntlich gibt es Primzahlzwillinge; das sind Primzahlen, die in der Folge der ungeraden
natürlichen Zahlen unmittelbar aufeinanderfolgen. Es ist zu beweisen, dass es außer (3; 5; 7) kei-
ne Primzahldrillinge gibt.

In der Folge der ungeraden natürlichen Zahlen oberhalb 3 lassen sich drei aufeinanderfolgende Zahlen
stets durch eines der drei folgenden Tripel darstellen:

(6n− 3; 6n− 1; 6n+ 1), (6n− 1; 6n+ 1; 6n+ 3), (6n+ 1; 6n+ 3; 6n+ 5)

wobei n eine natürliche Zahl ist. In jedem dieser Tripel ist eine Zahl enthalten, die durch 3 teilbar,
also keine Primzahl ist (nämlich 6n − 3 oder 6n + 3). Folglich gibt es oberhalb der Primzahl 3 keine
Primzahldrillinge.

Aufgabe 11/69
Man beweise: Es gibt unendlich viele ganze Zahlen, die sich nicht als Summe dreier Kubikzahlen
darstellen lassen.
Welche Zahlen sind dies?

Jede ganze Zahl kann man in der Form g = 9k ± r darstellen, wobei k eine ganze Zahl und r =
0,±1,±2;±3;±4 ist. Für eine Kubikzahl ergibt sich demnach

g3 = 729k3 ± 243k2r + 27kr2 ± r3

Daraus folgt, dass als Reste einer Kubikzahl beim Teilen durch 9 nur die Zahlen 0,±1 in Frage kommen.
Angenommen, es ließe sich jede ganze Zahl als Summe dreier Kubikzahlen darstellen; dann müsste sich
jeder mögliche Rest als Summe aus einer Kombination der drei Zahlen 0; +1; -1 (mit Wiederholung)
darstellen lassen. Die möglichen Kombinationen sind aber

(0; 0; 0), (0; 0; +1), (0; 0;−1), (0; +1; +1), (0;−1; +1), (0;−1;−1),
(+1; +1; +1), (−1;−1;−1), (+1; +1;−1), (−1;−1; +1)

Man erkennt, dass sich keine darunter befindet, bei der die Summe +4 oder -4 ergibt. Daher kann man
die ganzen Zahlen der Form g = 9k ± 4 nicht als Summe dreier Kubikzahlen darstellen, das sind aber
unendlich viele.

Aufgabe 12/69
Es sind alle Paare (x; y) zu finden, die das Gleichungssystem

|y − x| = |x+ 1]
y − 3

4 =
[
x− 1

5

]
befriedigen, wobei [a] eine ganze Zahl mit a− 1 < [a] ≤ a ist.

Wir beseitigen in (1) die Betragszeichen durch Fallunterscheidung:
1.Fall: sgn (y − x) = sgn (x+ 1). Dann ist y − x = x+ 1, y = 2x+ 1
2.Fall: sgn (y − x) 6= sgn (x+ 1). Dann ist y − x = −x− 1, y = −1
Man formt (2) um und setzt ein: y = 4

[
x−1

5
]

+ 3.
1.Fall:

2x+ 1 = 4
[
x− 1

5

]
+ 3→ x− 1

2 =
[
x− 1

5

]
Daraus folgt, dass x ungerade ist, x = 2k + 1 (k ganz). Damit ergibt sich

x− 1
5 − 1 < x− 1

2 ≤ x− 1
5 → 2x− 12 < 5x− 5 ≤ 2x− 2→ −12 < 3(2k + 1)− 5 ≤ −2→
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→ −10 < 6k ≤ 0→ −5
3 < k ≤ 0

also (wegen der Ganzzahligkeit k) k1 = −1, k2 = 0. Da alle Umformungen umkehrbar sind, ergeben sich
daraus die Lösungspaare (−1;−1) und (1; 3).
2.Fall:

−1 = 4
[
x− 1

5

]
+ 3→ x− 1

5 − 1 < −1 ≤ x− 1
5 → −4 ≤ x < 1

Da alle Umformungen umkehrbar sind, erhalten wir die Lösungen (x0;−1) mit −4 ≤ x0 < 1, in denen
das bereits ermittelte Paar (−1;−1) mit enthalten ist.
Die gesuchten Paare sind also (1; 3) und (x0;−1) mit −4 ≤ x0 < 1.

Aufgabe 13/69
Gesucht sind die fünf kleinsten, nicht einstelligen aufeinanderfolgenden Zahlen zi (mit i = 1;2;3;4;5),
für die gilt: zi ist durch i+ 4 teilbar und hat die Endziffer i+ 4.

Es sei zi = 10a+i+4, wobei a eine natürliche Zahl ist. Dann müssen nach Aufgabenstellung die folgenden
Beziehungen gelten (dabei sind b, c, d, e, f ebenfalls natürliche Zahlen)

10a+ 5 = 5b, 10a+ 6 = 6c, 10a+ 7 = 7d, 10a+ 8 = 8e, 10a+ 9 = 9f

Durch Umstellen ergibt sich daraus

b− 1 = 2a, c− 1 = 5a
3 , d− 1 = 10a

7 , e− 1 = 5a
4 , f − 1 = 10a

9
Daraus folgt, dass a durch 3, 7, 4, 9 teilbar sein muss. Das kleinste gemeinschaftliche Vielfache dieser
Zahlen ist 252. Die fünf gesuchten Zahlen sind somit 2525, 2526, 2527, 2528, 2529. Die Probe zeigt,
dass diese Zahlen tatsächlich die geforderten Eigenschaften haben. Gleichzeitig geht aus dem Lösungsweg
hervor, dass es die kleinsten fünf derartigen Zahlen sind, die nicht einstellig sind.

Aufgabe 14/69
B = 34z + 5

51z + 8
für keine natürliche Zahl z gekürzt werden kann!

Wir führen einen Widerspruchsbeweis. Angenommen, es gäbe eine natürliche Zahl, für die Zähler und
Nenner des Bruches B ohne Rest durch die natürliche Zahl f > 1 teilbar sind. Dann würde gelten
34z + 5 ≡ 0 (mod f) und 51z + 8 ≡ 0 (mod f).
Multipliziert man die linke dieser Kongruenzen mit 3, die rechte mit 2, so folgt 102z + 15 ≡ 0 (mod f)
und 102z + 16 ≡ 0 (mod f).
Durch Subtraktion der linken von der rechten Kongruenz ergibt sich 1 ≡ 0 (mod f), das ist aber für
f > 1 ein Widerspruch. Folglich ist die Annahme falsch, d.h., es gibt kein natürliches z, für das der Bruch
kürzbar ist.

Aufgabe 15/69
Auf wie viele verschiedene Arten kann man die Zahl 30030 als Produkt dreier natürlicher Zahlen (von
1 verschiedener) Faktoren schreiben (wobei die Reihenfolge der Faktoren keine Rolle spielt)?

Die Primfaktorzerlegung der gegebenen Zahl 30030 ist

30030 = 2 · 3 · 5 · 7 · 11 · 13

Die Zahl 30030 enthält also 6 voneinander verschiedene Primfaktoren, von denen mehrere zu einem Faktor
zusammengefasst werden müssen. Dazu gibt es mehrere Möglichkeiten:

1. Man fasst 4 Primfaktoren zu einem Faktor zusammen, die beiden übrigen Primfaktoren bilden den
zweiten und dritten Faktor. Aus den 6 Primfaktoren kann man auf

(6
4
)

=
(6

2
)

= 15 verschiedene Weisen
4 auswählen.
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2. Man fasst 3 Primfaktoren zum ersten, 2 weitere zum zweiten Faktor zusammen, der verbleibende
Primfaktor bildet den dritten Faktor. Aus den 6 Primfaktoren kann man auf

(6
3
)

= 20 verschiedene
Weisen 3 auswählen, aus den restlichen 3 Primfaktoren auf

(3
2
)

= 3 verschiedene Weisen 2, so dass sich
für die Gesamtzahl der auf dieser Art zu bildenden Faktoren 20 · 3 = 60 ergibt.

3.Man fasst je 2 Primfaktoren zu einem Faktor zusammen. Das ist, analog zu den Überlegungen im
2.Fall, auf

(6
4
)
·
(4

2
)

= 90 verschiedene Weisen möglich. Da die drei Faktoren aber auf 3! = 6 verschiedene
Weisen permutiert werden können, ohne dass sie eine neue Faktorenzerlegung liefern, muss man diese
Anzahl noch durch 3! dividieren. Die Gesamtzahl der auf diese Art zu bildenden Produkte beträgt also
90 : 4 = 15.
Damit ergibt sich die Anzahl aller möglichen Dastellungen der Zahl 30030 durch ein Produkt von 3
natürlichen Faktoren (ohne Berücksichtigung der Reihenfolge) 15 + 60 + 15 = 90.

Aufgabe 16/69
Zwei Freunde A und B treffen sich. Nach dem Alter seiner Kinder befragt, sagt A: ”Du kannst es
selbst ausrechnen. Meine vier Kinder sind zusammen 15 Jahr alt. Das Produkt ihrer ganzzahligen
Altersangaben ist gleich deiner Postleitzahl.”
B rechnet. Nach einer Weile fragt er: ”Sind unter deinen Kindern Zwillinge?” A antwortet darauf,
sofort gibt B das Alter der Kinder an.
Wie lautete A’s Antwort? Wie alt sind die Kinder?

B bildete alle Quadrupel natürlicher Zahlen, deren Summe 13 ist, wobei die Reihenfolge keine Rolle spielt
und Wiederholung möglich ist. In jedem Quadrupel berechnete er das Produkt der vier Zahlen. Wäre
seine Postleitzahl als Produkt nur einmal aufgetreten, so hätte er sofort die Antwort geben können.
Bei der Rekonstruktion von B’s Gedankengang können wir also alle Quadrupel ausschließen, deren Pro-
dukt nur einmal auftritt. Es verbleiben dann noch die folgenden Quadrupel:

Produkt 40 : (1; 1; 5; 8), (1; 2; 2; 10)
Produkt 72 : (1; 2; 6; 6), (1; 3; 3; 8), (2; 2; 2; 9)

Produkt 96 : (1; 4; 4; 6), (2; 2; 3; 8)

Alle Quadrupel bis auf (2; 2; 2; 9) enthalten genau 2 gleiche Zahlen. Hätte A mit ”Ja” auf B’s Frage
geantwortet, so hätte B das Alter der Kinder nicht nennen können. Die Antwort war also ”Nein” so dass
B das Alter der Kinder mit 2, 2, 2 (Drillinge) und 9 angab.

Aufgabe 17/69
Von einem geraden Kreiskegel seien die Oberfläche A und das Verhältnis k der Höhe h zum Radius
r gegeben (k = h

r ).
Gesucht ist eine Formel, die das Volumen V in Abhängigkeit von A und k angibt.

In der gebräuchlichen Formel V = πr2h
3 sind r und h durch A und k auszudrücken. Aus

A = πr(r +
√
r2 + h2) und h = kr wird

r2 = A

π(1 +
√

1 + k2)
und h = k

√
A

π(1 +
√

1 + k2)

und damit die gewünschte Formel

V = Ak

3(1 +
√

1 + k2)

√
A

π(1 +
√

1 + k2)
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Aufgabe 18/69
Gegeben ist eine quadratische Gleichung x2 +px+ q = 0, der die (im allgemeinen komplexen) Zahlen
x1 und x2 genügen. Gesucht ist eine quadratische Gleichung

x2 + f(p; q)x+ g(p; q) = 0

der die Zahlen x2
1 und x2

2 genügen. Die Koeffizienten p und q seien reell, f und q seien irgendwelche
Funktionen.
In welchen Fällen sind die beiden Gleichungen identisch? Man bestimme alle derartigen Fälle!

Nach dem Satz des Vieta gilt x1 + x2 = −p und x1x2 = q sowie x2
1 + x2

2 = −f(p; q), x2
1x

2
2 = g(p; q). Es

ist aber

x2
1 + x2

2 = (x1 + x2)2 − 2x1x2 = p2 − 2q = −f(p; q);x2
1x

2
2 = (x1x2)2 = q2 = g(p; q)

Der Gleichung x2 + (2q− p2)x+ q2 = 0 genügen also die Zahlen x2
1 und x2

2, sie sind bei gegebenem p und
q eindeutig bestimmt.
Wenn beide Gleichungen identisch sein sollen, muss gelten p = 2q − p2 und q = q2. Daraus folgt sofort
q = 0 oder q = 1.
a) q = 0 führt zu p = −p2, also p = 0 oder p = −1.
b) q = 1 führt zu p = 2− p2, also p = 1 oder p = −2.
Es sind also vier Fälle möglich: x2 = 0 (trivial), x2 − x = 0, x2 + x + 1 = 0 und x2 − 2x + 1 = 0. Die
Ermittlung der Lösungen dieser Gleichung bestätigt die Richtigkeit.

Aufgabe 19/69
Gegeben ist ein beliebiges n-Eck, das zwei Symmetrieachsen s1 uns s2 besitzt. Man beweise, dass sich
s1 und s2 im Inneren des n-Ecks schneiden!

Angenommen, s1 und s2 fallen nicht zusammen und schneiden einander nicht im Inneren des n-Ecks.
Dann teilen sie die Fläche des n-Ecks in drei Flächenstücke A1, A2 und A3. Auf Grund der Eigenschaften
der Symmetrie gilt: A1 = A2 +A3 , A3 = A1 +A2.
Daraus folgt A1 = A2 +A1 +A2, also A2 = 0. Das heißt aber, s1 und s2 fallen zusammen im Widerspruch
zur Annahme.

Aufgabe 20/69
Welche natürlichen Zahlen sind als Differenz der Quadrate zweier von 0 verschiedener natürlicher
Zahlen darstellbar?

Aus der Identität k2 − (k − 1)2 = 2k − 1 folgt zunächst, dass alle ungeraden natürlichen Zahlen außer 1
in der geforderten Weise dargestellt werden können. Es bleibt also noch zu untersuchen, welche geraden
natürlichen Zahlen in dieser Weise darstellbar sind.
Eine gerade natürliche Zahl kann Differenz entweder zweier gerader oder zweier ungerader Zahlen sein.
Sind k und m natürliche Zahlen mit k > m ≥ 1, so gilt für die geforderte Darstellung demnach entweder

(2k)2 − (2k − 2m)2 = 4m(2km−m) oder (2k − 1)2 − (2k − 2m− 1)2 = 4m(2k −m− 1)

In jedem Fall ist die dargestellte Zahl durch 4 teilbar. Es erhebt sich die Frage, ob alle durch 4 teilbaren
Zahlen eine solche Darstellung haben. Das ist genau dann der Fall, wenn mit den Darstellungen n =
m(2k −m) oder n = m(2k −m− 1) alle natürlichen Zahlen erfasst werden.
Man erkennt leicht, dass alle ungeraden natürlichen Zahlen sich aus n = m(2k −m) für m = 1 ergeben
(wegen k > m = 1 allerdings mit Ausnahme der Zahl 1), während alle geraden natürlichen Zahlen aus
n = m(2k −m− 1) für m = 1 folgen (aus dem gleichen Grund mit Ausnahme der Zahl 0). Man braucht
dann nur k = n+1

2 bzw. k = n+2
2 zu setzen.

Da die Zahl 0 trivialerweise als Differenz der Quadrate zweier von 0 verschiedener natürlicher Zahlen
darstellbar ist, kann man feststellen, dass
1. alle ungeraden natürlichen Zahlen außer 1 und
2. alle durch 4 teilbaren Zahlen außer 4
und nur diese die gestellte Bedingung erfüllen. Die Darstellung ist allerdings nicht eindeutig (wie aus den
Betrachtungen und den Beispielen 42 − 12 = 82 − 72 = 15 und 52 − 12 = 72 − 52 = 24 hervorgeht).
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Aufgabe 21/69
Es ist die Gleichung

x
√

16 + x
√

20 = x
√

25

im Bereiche der reellen Zahlen zu lösen.

Nach Division beider Seiten der Gleichung durch x
√

25 ergibt sich

x

√
16
25 + x

√
4
5 = 1 oder x

√(
4
5

)2
+ x

√
4
5 = 1

Es liegt nahe, die Substitution a = x

√
4
5 durchzuführen. Dann folgt a2 + a− 1 = 0 mit a = −1±

√
5

2 .
Der negative Wert entfällt; mit dem positiven Wert folgt

x

√
4
5 = 1 +

√
5

2

Durch Logarithmieren erhält man die Näherungslösung x = 0,4637. Eine Überschlagsrechnung mit x ≈ 0,5
bestätigt die Richtigkeit des Ergebnisses.

Aufgabe 22/69
Lässt man vom Geburts- und vom Todesjahr eines berühmten deutschen Gelehrten die erste Ziffer
weg, so erhält man zwei Zahlen a und b, für die folgendes gilt:

1. Beide Zahlen lassen sich in ein Produkt von je drei von einander verschiedenen Faktoren (die
sämtlich größer als 1 sind) zerlegen, wobei unter den 6 Faktoren 5 Primzahlen sind.

2. Die beiden kleineren Faktoren von a sind je um 2 kleiner als die entsprechenden Faktoren von
b.

3. Der größte Faktor von a ist gleich der Summe aus dem Zehnfachen des kleinsten Faktors und
dem mittleren Faktor von a.

4. Der größte Faktor von b ist gleich der Summe aus dem Doppelten des kleinsten Faktors und
dem mittleren Faktor von b und um 1 größer als das Doppelte des mittleren Faktors.

Man bestimme die beiden Jahreszahlen und nenne den Gelehrten!

Die nach zunehmender Größe geordneten Faktoren von a seien x, y, z, und die Faktoren von b seien u, v,
w. Dann gelten die folgenden Gleichungen: z = 10x+ y, w = 2u+ v = 2v+ l oder z = 10x+ y, v = 2u−1.
Als Lösungswerte für u kommen nach der letzten Gleichung nur die natürlichen Zahlen von 2 bis 5 in
Frage, da 12 größer als 1 sein soll und bei u > 5 sich Werte für v und w ergeben würden, bei denen das
Produkt uvw größer als 1000 wäre.
Die Werte 2 und 3 scheiden für u aus, da sonst x < 2 wäre. Für u = 4, v = 7 ergäbe sich w = 15. Dann
wären aber zwei Faktoren keine Primzahlen. Demnach ist nur die Lösung u = 5, v = 9, w = 19 möglich,
aus der sich x = 3, y = 7 und z = 37 ergibt.
Die beiden Jahreszahlen sind demnach 1777 und 1855. Sie sind das Geburtsjahr und das Todesjahr von
Carl Friedrich Gauß.

Aufgabe 23/69
Für die reellen Zahlen a, b, x, y gelte

a2 + b2 = 1, x2 + y2 = 1, ay − bx = 1

Man zeige, dass unter diesen Voraussetzungen ax+ by = 0 ist!

Man setze a = cosα, b = sinα, x = sin β, y = cosβ. Dann ist

a2 + b2 = cos2 α+ sin2 α = 1 x2 + x2 = cos2 β + sin2 β = 1
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ay − bx = cosα cosβ − sinα sin β = cos (α+ β) = 1

Weiterhin ist
ax+ by = cosα sin β + sinα cosβ = sin (α+ β)

Aus sin2 (α+ β) + cos2 (α+ β) = 1 folgt dann sin (α+ β) = 0, d.h. ax+ by = 0.

Aufgabe 24/69
Man beweise, dass das Polynom

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

mit ganzen Koeffizienten für kein ganzes x der Wert Null annimmt, wenn es für x = 0 und für x = 1
ungerade Werte hat.

Es ist f(0) = a0 ungerade, ferner f(1) = an + an−1 + · · · + a1 + a0 ungerade, also an + an1 + · · · + al
gerade.
In der Summe an + an−1 + · · ·+ a1 ist daher die Summe der ungeraden Koeffizienten gerade.
Ist nun x eine gerade Zahl, so ist anxn+an−1x

n−1 + · · ·+a1x ebenfalls gerade, und wegen a0 ungerade ist
f(x) ungerade. Ist x eine ungerade Zahl, so folgt aus der Tatsache, dass das Produkt aus einer geraden und
einer ungeraden Zahl stets gerade ist, und aus der Tatsache, dass die Anzahl der ungeraden Koeffizienten
gerade ist, dass anxn + an−1x

n−1 + · · ·+ a1x gerade ist.
Das heißt aber, dass auch in diesem Fall f(x) ungerade ist. Demnach kann f(x) für kein ganzes x gerade
sein, insbesondere also nicht den Wert null annehmen.

Aufgabe 25/69
Für welche ganzen, positiven Zahlen n ist die Zahl 2n ± 1 das Quadrat einer ganzen Zahl?

Wir unterscheiden die beiden Fälle 2n + 1 und 2n − 1.
1. Es sei z = 2n + 1 eine Quadratzahl. Dann gilt z = 2n + 1 = q2 also 2n = q2− 1 = (q+ 1)(q− 1). Damit
ist q + 1 = 2ν ; q − 1 = 2µ mit ν > µ, ν + µ = n.
Durch Subtraktion erhält man

2ν − 2µ = 2; 2ν−1 − 2µ−1 = 2ν−1 − 2n−ν−1 = 1

Die einzigen Potenzen der Zahl 2, die sich um 1 voneinander unterscheiden, sind 21 und 20. Daraus folgt
ν − 1 = 1, µ− 1 = n− ν − 1 = 0 also ν = 2, n = 3. Tatsächlich ist 23 + 1 = 8 + 1 = 9 = 32.

2. Es sei z = 2n − 1 eine Quadratzahl. Offensichtlich ist dies für n = 1 der Fall: 21 − 1 = 1 = 12. Wir
setzen also im folgenden n > 1 voraus.
Für jedes n > 1 lässt 2n beim Teilen durch 4 den Rest 0. Also lässt 2n − 1 beim Teilen durch 4 den Rest
3. Jede Quadratzahl lässt aber beim Teilen durch 4 den Rest 0 oder 1, wie sich aus (2k)2 = 4k2 und
(2k + 1)2 = 4k2 + 4k + 1 sofort ergibt. Daraus folgt, dass die Annahme für n > 1 falsch ist.
Es gibt also nur zwei Quadratzahlen der Form 2n ± 1, nämlich für n = 3 (Pluszeichen) und für n = 1
(Minuszeichen).

Aufgabe 26/69
Aus den Strecken a und b konstruiere man die Strecke c = 4

√
a4 + b4!

Bemerkung: Dabei sei der Einfachheit halber auf die - streng genommen notwendige - Unterscheidung
zwischen Strecke und Maßzahl der Strecke verzichtet.

Die Lösung muss auf bestimmte ”Grundkonstruktionen” zurückgeführt werden. Es sind dies hier im
wesentlichen die Konstruktionen mittels des rechtwinkligen Dreiecks und des Strahlensatzes sowie die
Konstruktion des geometrischen Mittels. Das wird durch die folgenden Umformungen erreicht:

c = 4
√
a4 + b4 =

√√
a4 + b4 =

√
a

√
a2 + b4

a2 =

√√√√
a

√
a2 +

(
b2

a

)2
=
√
a
√
a2 + x2
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mit x = b2

a , d.h. x
b = b

x .

Konstruktion: (Auf die Beschreibung der Grundkonstruktio-
nen wird verzichtet, da sie als bekannt vorausgesetzt werden
können.) Man konstruiere aus a und b die vierte Proportionale
mach a

b = b
x . Sei d die Hypotenuse des rechtwinkligen Dreiecks

mit den Katheten a und x; dann ist c das geometrische Mit-
tel aus a und d. Alle Konstruktionen sind stets und eindeutig
ausführbar (siehe Abbildung).

x

a
b

b a a

d
c

Aufgabe 27/69

S1

D

S2

A

B

Zwei von einem Punkt A ausgehende Strahlen werden an zwei Spiegeln S1
und S2 so reflektiert, dass sie sich in einem Punkt B schneiden. Die beiden
Spiegel stoßen im Punkt D aneinander. S1 sei fest, S2 sei um D drehbar.
Man bestimme durch Konstruktion die Stellung des Spiegels S2 so, dass
die beiden Strahlenwege gleich lang sind.

Bekanntlich ist der Strahlenweg von einem Punkt
A über einen Spiegel zu einem Punkt B gleich der
Entfernung AB′, wobei B′ der zu B in bezug auf den
Spiegel als Symmetrieachse symmetrische Punkt ist.
Man konstruiert daher zunächst den zu B bezüglich
S1 symmetrischen Punkt B′1. Der zu B bezüglich S2
symmetrische Punkt B′2 liegt dann nach den Voraus-
setzungen auf dem Kreis um A mit AB′1 als Radius. Da
B′2 symmetrisch zu B bezüglich S2 liegt und da D auf
S2 liegt, ist ferner DB = DB′2. Damit liegt B′2 auf dem
Kreis um D mit DB als Radius. Die gesuchte Stellung
von S2 ist demnach die Mittelsenkrechte von BB′2. S1

D

S2

A

B
B′1

B′2

In der Praxis tritt bei der Ermittlung des Schnittpunktes zweier Kreise mitunter eine Ungenauigkeit auf.
Man kann sie auf Grund der folgenden Überlegungen vermeiden:
DaB undB′1 symmetrisch bezüglich S1 sind undD auf S1 liegt, istDB = DB′1. DaB undB′2 symmetrisch
bezüglich S2 sind und D auf S2 liegt, ist DB = DB′2. Folglich liegen B′1 und B′2 auf einem Kreis um D.
Da sie ferner auch auf einem Kreis um A liegen, müssen sie symmetrisch bezüglich der Geraden durch A
und D sein. Man kann also B′2 als symmetrischen Punkt zu B′1 in Bezug auf die Gerade AD konstruieren.

Aufgabe 28/69
Gegeben sei ein Dreieck, dessen Seitenlängen eine arithmetische Folge erster Ordnung bilden. Man
beweise, dass dann der Inkreisradius gleich 1

3 einer der Dreieckshöhen ist.

Die Seiten des Dreiecks seien (ohne Beschränkung der Allgemeingültigkeit) a, b = a + d, c = a + 2d. A
sei der Flächeninhalt des Dreiecks. Dann gilt

A = ρ · a+ b+ c

2 = ρ · 3(a+ d)
2

Anderseits gilt
A = 1

2aha = 1
2(a+ d)hb = 1

2(a+ 2d)hc
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Durch Gleichsetzen folgt daraus 1
2 (a+d)hb = ρ 3(a+d)

2 und damit hb
3 = ρ. Der Inkreisradlus ist also gleich

einem Drittel der Höhe auf der mittleren Seite.

Lösung von Wolfgang Prinzing:

Wir gehen aus von der (als bewiesen vorausgesetzten) Beziehung

1
r

= 1
ha

+ 1
hb

+ 1
hc

und ersetzen ha und hc mit Hilfe der Gleichung a · ha = b · hb = c · hc; damit erhalten wir

1
r

= 1
hb

(
a+ b+ c

b

)
Setzen wir nun die Folge (a; b; c) = (a; a+ x; a+ 2x) ein, so ergibt sich

1
r

= 1
hb
· a+ a+ x+ a+ 2x

a+ x
= 3
hb

und damit r = 1
3hb.

Lösung von Friedrich Timme:

u

v

2v2u h

A B

C

DF

M

E

Ein Dreieck mit den Seitenlängen 2u, u + v und 2v genügt den
Bedingungen der Aufgabe; denn u + v ist arithmetisches Mittel
aus 2u und 2v, d.h., die Seitenlängen bilden eine arithmetische
Folge erster Ordnung.
Verbindet man den Teilpunkt D der Seite AB = u+v des Dreiecks
ABC (Abbildung) mit dem Punkt C, so ist CD Winkelhalbieren-
de im Dreieck, da D die Seite AB im Verhältnis der anliegenden
Seiten teilt.
Auf CD liegt also der Mittelpunkt M des Inkreises. Dann ist aber
auch AM Winkelhalbierende im Dreieck ADC, und es gilt

DM : MC = AD : AC = u : 2u = 1 : 2 oder DM : DC = 1 : 3

Nun ist ∠CFB = 90◦ (CF ist Höhe auf FB) und ∠MEB = 90◦ (der Radius des Inkreises steht senkrecht
auf der Dreieckseite). Also ist CF ‖ME oder h ‖ r.
Dann gilt nach dem Strahlensatz r : h = DM : DC = 1 : 3’ d.h. r = h

3 .
Damit ist die Behauptung bewiesen. Sie gilt natürlich nur für die Höhe auf der ”mittleren” Seite des
Dreiecks.

Aufgabe 29/69
Man beweise, dass für alle positiven Zahlen a; b; c die folgende Ungleichung gilt:

a+ b+ c ≤ ab

c
+ bc

a
+ ca

b

Es ist
abc(a+ b+ c) = a2bc+ b2ca+ c2ab = a2

√
b2c2 + b2

√
a2c2 + c2

√
b2a2

Daraus folgt

abc(a+ b+ c) ≤ a2 b
2 + c2

2 + b2
c2 + a2

2 + c2
b2 + a2

2

da das arithmetische Mittel x2+y2

2 zweier Zahlen x2 und y2 nie kleiner ist als ihr geometrisches Mittel√
x2y2. Damit folgt weiter

abc(a+ b+ c) ≤ a2v2 + b2c2 + c2a2 ≤ a2b2c2( 1
a2 + 1

b2
+ 1
c2

)
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und wegen abc > 0
a+ b+ c ≤ abc( 1

a2 + 1
b2

+ 1
c2

) = ab

c
+ bc

a
+ ca

b
Lösung von Eckart Keller:

Da Quadratzahlen (im Reellen) nicht negativ sind, gilt sicher die Ungleichung

(ab− ac)2 + (ab− bc)2 + (ac− bc)2 ≥ 0

Quadriert man aus, so ergibt sich nach Umformung .

a2b2 + b2c2 + a2c2 ≥ a2bc+ ab2c+ abc2

Nach Voraussetzung sind a; b; c positiv. Folglich erhält man durch Division mit abc:
ab

c
+ bc

a
+ ac

b
≥ a+ b+ c

Lösung von Günter Endtricht:

Für zwei positive Zahlen m und n gilt stets (m− n)2 ≥ 0, woraus sich

m2 + n2 ≥ 2mn ; m

n
+ n

m
≥ 2

ergibt. Somit ist

2a+ 2b+ 2c ≤
(
b

c
+ c

b

)
a+

(a
c

+ c

a

)
b+

(
a

b
+ b

a

)
d

a+ b+ c ≤ ab

c
+ ac

b
+ bc

a

Aufgabe 30/69
Mit Hilfe des kleinen Satzes von Fermat ist zu beweisen, dass ap− a stets durch 6p ohne Rest teilbar
ist, wenn a eine natürliche Zahl und p eine Primzahl mit p > 3 ist.

Es ist ap − a = a(ap−1 − 1). Nach dem kleinen Satz von Fermat ist ap−1 − 1 durch p ohne Rest teilbar,
wenn p eine Primzahl und a eine zu p teilerfremde natürliche Zahl ist. Demnach ist a(ap−1 − 1) sicher
durch p teilbar, wenn p Primzahl ist. Entweder sind nämlich a und p teilerfremd, so dass der kleine Satz
von Fermat anwendbar ist, oder a und p haben einen gemeinsamen Teiler; dieser kann aber wegen der
Primzahleigenschaft von p nur p selbst sein: a = k · p, wobei k eine natürliche Zahl ist.
Es bleibt also nachzuweisen, dass a(ap−1 − 1) stets auch durch 6 = 2 · 3 teilbar ist, wenn p eine Primzahl
oberhalb 3 ist. Entweder ist a gerade und damit durch 2 ohne Rest teilbar, oder a ist ungerade; dann ist
aber auch ap−1 ungerade, und ap−1 − 1 ist gerade, also durch 2 ohne Rest teilbar.
Entweder ist a durch 3 ohne Rest teilbar, oder a lässt beim Teilen durch 3 einen der Reste ±1. Da p > 3
ist, ist p ungerade und p − 1 gerade. Damit lässt im zweiten der beiden Falle ap−1 beim Teilen durch 3
den Rest 1 und ap−1 − 1 den Rest 0.
Wir haben gezeigt, dass unter den gegebenen Bedingungen stets einer der Faktoren von a(ap−1−1) durch
p, durch 2 und durch 3 ohne Rest teilbar ist. Da 2, 3 und p > 3 auf jeden Fall paarweise teilerfremd sind,
ist das Produkt auch durch 2 · 3 · p = 6p teilbar.

Aufgabe 31/69
Die Breiten des nördlichen Polarkreises und des nördlichen Wendekreises sind α = 66◦33′ bzw.
β = 23◦27′ nördlicher Breite.
Man beweise, dass der Abstand h der beiden Breitenkreisebenen gleich der Differenz der Radien r1
und r2 der beiden Kreise ist (wobei Kugelgestalt der Erde angenommen werde).

Der Radius der Erdkugel sei r. Dann gelten die Gleichungen

r1 = r cosα; r2 = r cosβ; h = r(sinα− sin β

Wegen
β = 90◦ − α; cosβ = sinα; α = 90◦ − β; cosα = sin β

ergibt sich r2 − r1 = r cosβ − r cosα = r(sinα− sin β) = h.
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r1

h

r2

N
B

A

M

D

EÄquator
r

Wendekreis

Polarkreis

βα

Aufgabe 32/69
Gesucht sind alle natürlichen Zahlen, die durch 7, 11 und 13 restlos teilbar sind und deren drei
Endziffern eine vorgegebene dreistellige natürliche Zahl q bilden.

Bekanntlich ist 7 ·11 ·13 = 1001. Die gesuchten Zahlen z lassen sich in der Form z = 1000x+ q mit x ≥ 0,
ganz, schreiben. Es gilt

1000x+ q ≡ −x+ q ≡ 0 (mod 1001)→ x ≡ q (mod 1001)

Das heißt aber nichts anderes als x = 1001n+ q mit n = 0, 1, 2, .... Somit ist zn = 1000(1001n+ q) + q =
1001(1000n + q). Die gesuchten Zahlen bilden also eine unendliche arithmetische Folge 1. Ordnung mit
dem Anfangsglied 1001q und der Differenz 1001000.

Aufgabe 33/69
Man beweise: Unter der Voraussetzung, dass a, b und c rationale Zahlen sind, ist die Determinante∣∣∣∣∣∣

a 2c 2b
b a 2c
c b a

∣∣∣∣∣∣
genau dann gleich null, wenn a, b und c gleich null sind.

Angenommen, es sei eine der Zahlen von null verschieden. Man sucht zunächst den Hauptnenner der drei
Zahlen a, b und c (da es sich um rationale Zahlen handelt, ist dies möglich), multipliziert die Zahlen a, b
und c mit diesem und teilt anschließend durch den größten gemeinsamen Teiler.
Man erhält auf diese Weise drei ganze Zahlen a′, b′ und c′, die keinen gemeinsamen Teiler haben. Die
Determinanten ∣∣∣∣∣∣

a 2c 2b
b a 2c
c b a

∣∣∣∣∣∣∣∣∣∣∣∣
a′ 2c′ 2b′
b′ a′ 2c′
c′ b′ a′

∣∣∣∣∣∣
sind hinsichtlich der Eigenschaft, null oder nicht null zu sein, äquivalent.
Es sei nun a′3 + 2b′3 + 4c′3 − 8a′b′c′ = 0. Ohne Beschränkung der Allgemeinheit sei a′ 6= 0. Von den
übrigen Summanden muss noch mindestens ein weiterer ungleich null sein — sämtliche der übrigen sind
aber gerade. Folglich muss auch a′ gerade sein: a′ = 2a′′. Damit folgt

8a′′3 + 2b′3 + 4c′3 − 16a′′b′c′ = 0 oder 4a′′3 + b′3 + 2c′3 − 8a′′b′c′ = 0

Analog schließt man daraus weiter, dass auch b′ und danach c′ gerade sein müssen. Dies ist aber ein
Widerspruch zu der oben getroffenen Feststellung, dass a′, b′ und c′ zueinander teilerfremd sind (nach
Konstruktion). Daraus folgt, dass die Annahme a′3 + 2b′3 + 4c′3 − 8a′b′c′ = 0 mit a′ 6= 0 falsch ist.
Entsprechend verläuft der Beweis für b′ 6= 0 bzw. c′ 6= 0. Dass die Behauptung für a = b = c = 0 richtig
ist, ist trivial.
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Aufgabe 34/69
Gesucht ist die kleinste, natürliche, vierstellige Zahl x (deren erste Ziffer nicht null ist) mit der
folgenden Eigenschaft:
Vertauscht man in x+ 1 die beiden mittleren Ziffern miteinander und streicht man anschließend die
letzte (vierte) Ziffer, so entsteht eine dreistellige Zahl y derart, dass x ohne Rest durch 11y teilbar
ist.

Es sei x = 1000a+ 100b+ 10c+ d mit a 6= 0. Man unterscheidet zwei Fälle:
1. d = 0; 1; 2; ...; 8. Dann ist y = 100a+ 10c+ b und es folgt die Gleichung

1000a+ 100b+ 10c+ d = 11k(100a+ 10b+ c)

und da das kleinste x gesucht ist, muss k = 1 sein; damit ergibt sich 100b+ d = 100a+ 100c+ 11b. Man
erkennt, dass d = b sein muss. Die resultierende Gleichung 9b = 10a + 10c ist für nichtnegative b und c
und positive a nicht lösbar.
2. d = 9. Dann ist y = 100a+ 10(c+ 1) + b und es folgt die Gleichung

1000a+ 100b+ 10c+ d = 11k(100a+ 10c+ 10 + b)

auch hier schließt man k = 1, folglich 100b+d = 100a+ 100c+ 110 + 11b. Auch in diesem Fall muss d = b
sein, und es ergibt sich wegen d = b = 9 die Gleichung 7 = a+ c.
Da die kleinste Zahl gesucht ist, folgert man a = 1, c = 6. Die gesuchte Zahl x ist damit x = 1960 (die
nächstgrößere Zahl wäre 2959).

Aufgabe 35/69
Gesucht ist eine natürliche Zahl n mit vierstelliger Dezimaldarstellung, die folgende Eigenschaften
besitzt:

1. Ihre Quersumme ist eine ungerade Quadratzahl.

2. Sie ist das Produkt von genau zwei verschiedenen Primzahlen.

3. Die Summe der beiden Primzahlen ist das Zehnfache der Zahl, die man erhält, wenn man bei
der Zahl n die Einerstelle und die Zehnerstelle streicht.

4. Die Differenz aus dem einen Primfaktor und dem Zehnfachen des anderen ist gleich der Zahl,
die man erhält, wenn man bei der Zahl n die Hunderterstelle und die Tausenderstelle streicht.

Da die Quersumme einer vierstelligen Zahl höchstens 36 betragen kann, kommt für n nur die Quersumme
25 in Frage; denn die Quersummen 1 und 9 stehen im Widerspruch zur Eigenschaft 2. Es sei nun n =
1000a + 100b + 10c + d, wobei a, b, c, d natürliche Zahlen mit 1 ≤ a ≤ 9, 0 ≤ b; c; d ≤ 9 sind. Aus den
angegebenen Eigenschaften ergibt sich ferner

n = p1 · p2 (Eigenschaft 2)
p1 + p2 = 10(10a+ b) (Eigenschaft 3)
p2 − 10p1 = 10c+ d (Eigenschaft 4)
a+ b+ c+ d = 25 (Eigenschaft 5)

Damit ergibt sich

n = p1p2 = 1000a+ 100b+ 10c+ d = 1p(p1 + p2) + (p2 − 10p1) = 11p2 → p1 = 11

Die gesuchte Zahl ist mithin durch 11 ohne Rest teilbar; das ist aber genau dann der Fall, wenn die
alternierende Quersumme durch 11 teilbar ist. Diese muss also -11 oder 0 oder +11 sein. Damit ergeben
sich die Systeme

a+ b+ c+ d = 25;−a+ b− c+ d = −11 (1)
a+ b+ c+ d = 25;−a+ b− c+ d = 0 (2)

a+ b+ c+ d = 25;−a+ b− c+ d = +11 (3)
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Das System (2) führt durch Addition der beiden Gleichungen sofort auf den Widerspruch, dass eine gerade
Zahl gleich einer ungeraden Zahl sei, kann also als nicht lösbar ausgeschieden werden.
Aus System(1) ergibt sich a+ c = 18; b+ d = 7, woraus a = c = 9 sowie die folgenden Werte für b und d
resultieren: b = 0; 1; 2; 3; 4; 5; 6; 7, d = 7; 6; 5; 4; 3; 2; 1; 0. Keine der sich daraus ergebenden Zahlen n hat
jedoch die geforderten Eigenschaften.
Aus System (3) folgt schließlich a + c = 7, b + d = 18 mit b = d = 9 und a = 1; 2; 3; 4; 5; 6; 7 sowie
c = 6; 5; 4; 3; 2; 1; 0. Von den daraus bildbaren Zahlen n weist nur n = 1969 alle geforderten Eigenschaften
auf.

Aufgabe 36/69
Gesucht ist eine natürliche, vierstellige Zahl mit den folgenden Eigenschaften:

1. Die Summe aus der Tausenderstelle und der Hunderterstelle ist gleich der Zahl, die sich ergibt,
wenn man in in der gesuchten Zahl die beiden mittleren Stellen streicht.

2. Diese Summe ist kleiner als das Doppelte der Zehnerstelle.

3. Genau einer der vier Stellenwerte ist eine Primzahl.

Es seien a, b, c und d die Tausender-, Hunderter-, Zehner- bzw. Einerstelle der gesuchten Zahl z. Dann
gilt zunächst

z = 1000a+ 100b+ 10c+ d

mit 1 ≤ a ≤ 9, 0 ≤ b; c; d ≤ 9, a, b, c, d ganz (a = 0 kann ausgeschlossen werden, da die Zahl z sonst
nicht echt vierstellig wäre). Aus der Bedingung 1 ergibt sich dann

a+ b = 10a+ d oder b = 9a+ d

Daraus folgt sofort a = 1, b = 9, d = 0. Da alle drei Zahlen keine Primzahlen sind, muss c = p nach
Bedingung 3 Primzahl sein. Aus Bedingung 2 folgt nun noch

a+ b < 2c = 2p; 10 < 2c = 2ß; 5 < c = p

Also ist c = p = 7. Damit ist z = 1970.

Lösung von Nguyenthitrong Hien Tarrago:

Die gesuchte zahl sei 1000a+ 100b+ 10c+ d. Dann gilt

a+ b = 10a+ d ; a+ b < 2c

Die Zahl c ist nicht größer als 9: c ≤ 9, also a+ b < 18, 10 + d ≤ 18.
Daraus folgt a = 1, d ≤ 8, b = 9 + d. Die Zahl b ist nicht größer als 9: b ≤ 9. Also ist b = 9 und d = 0.
Nunmehr gilt

1 + 9 < 2c ≤ 18 ; 5 < c ≤ 9

also c = 7 (c muss Primzahl sein, und 7 ist die einzige Primzahl zwischen 5 und 9).
Die gesuchte Zahl ist 1970.
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2.10 Aufgaben und Lösungen 1970

Aufgabe 1/70
In einem Dreieck ABC seien a, b und c die Maßzahlen der Seiten und sa, sb sowie sc die Maßzahlen
der entsprechenden Seitenhalbierenden. Man beweise, dass gilt

s2
a + s2

b + s2
c = 3

4(a2 + b2 + c2)

Die Winkel zwischen sc und c seien mit ϕ und 180◦ − ϕ derart bezeichnet, dass ϕ der Seite b, 280◦ − ϕ
der Seite a gegenüberliegt. Dann gilt nach dem Kosinussatz

b2 = c2

4 + s2
c − csc cosϕ, a2 = c2

4 + s2
c + csc cosϕ

Durch Addition folgt

a2 + b2 = c2

2 + 2s2
c und s2

c = a2

2 + b2

2 −
c2

4
Analog folgt für sb und sa: s2

b = a2

2 + c2

2 −
b2

4 ; s2
a = c2

2 + b2

2 −
a2

4
Durch Addition ergibt sich s2

a + s2
b + s2

c = 3
4 (a2 + b2 + c2).

Aufgabe 2/70
Man beweise, dass die Gleichung

3
√√

x2 + 1 + x− 3
√√

x2 + 1− x = a

für jedes ganze a genau eine reelle Lösung hat, die ganzzahlig ist!

Wir setzen
3
√√

x2 + 1 + x = m; 3
√√

x2 + 1− x = n

aus der gegebenen Gleichung folgt dann durch beiderseitiges Kubieren

a3 = (m− n)3 = m3 − 3m2n+ 3mn2 − n3 = 2x− 3 3
√

1a = 2x− 3a→ x = a3 + 3a
2

Da sich alle Schritte umkehren lassen, ist x = a3+3a
2 tatsächlich eine Lösung der Gleichung.

Der Ausdruck a3 + 3a ist in jedem Fall durch 2 teilbar; denn für a ≡ 0 (mod 2) ist a3 + 3a ≡ 0 (mod 2)
und für a ≡ 1 (mod 2) ist a3 + 3a ≡ 4 ≡ 0 (mod 2). Also ist x ganzzahlig für jedes ganze a.

Aufgabe 3/70
Es ist x0 = 1 und 0x = 0 für x 6= 0. Welchen Wert hat limx→0 x

x ?

Man berechnet zweckmäßig den natürlichen Logarithmus des Grenzwertes. Ist dieser gefunden, so kann
man daraus den Grenzwert selbst ermitteln. Es ist

ln lim
x→0

xx = lim
x→0

ln xx = lim
x→0

x · ln x = lim
x→0

ln x
x−1

Auf den Grenzwert ist der Satz von Bernoulli-L’Hospital anwendbar, da limx→0 ln x = − limx→0 x
−1 =

−∞ ist:
ln lim
x→0

xx = lim
x→0

x−1

x−2 = lim
x→0

(−x) = 0

Damit ist der Grenzwert limx→0 x
x = e0 = 1.
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Aufgabe 4/70
Von einem Dreieck ABC mit den Seiten a, b und c und den Höhen ha, hb und hc seien der von den
Seiten a und b eingeschlossene Winkel γ sowie die Strecken a+ b und ha + hb gegeben.
Man zeige, dass aus diesen drei Bestimmungsstücken das Dreieck nicht konstruierbar ist!

Ein Dreieck ist durch 3 voneinander unabhängige Stücke vollständig bestimmt. Wenn man zeigen kann,
dass γ, a+ b und ha + hb voneinander abhängig sind, ist der geforderte Beweis erbracht.
Es ist sin γ = a

hb
= b

ha
, also a = hb sin γ, b = ha sin γ. Daraus folgt a + b = (ha + hb) sin γ. Mit ha + hb

und γ ist also auch a+ b bestimmt. Die drei Stücke sind voneinander abhängig.

Aufgabe 5/70
Es ist zu beweisen, dass die Gleichung x2 − a2y2 = b mit a, b ganzzahlig, b > 0, höchstens endlich
viele ganzzahlige Lösungen (x; y) haben kann.

Es ist x2 − a2y2 = (x + ay)(x − ay) = b. Die Zahl b ist also Produkt zweier Faktoren f1 und f2. Ist b
Primzahl, so ist einer der Faktoren gleich 1, der andere gleich b. Ist b nicht Primzahl, so kann man b
auf endlich viele Weisen in ein Produkt aus zwei Faktoren zerlegen (das folgt aus der Tatsache, dass die
Primfaktorzerlegung von b eindeutig ist und nur endlich viele Faktoren enthält).
Für jede mögliche Zerlegung von b in zwei Faktoren ergeben sich demnach zwei Gleichungssysteme:

x+ ay = f1 x− ay = f2 (a)
x+ ay = f2 x− ay = f1 (b)

Die Lösungen sind

x = f1 + f2

2a y = f1 − f2

2a (a)

x = f1 + f2

2a y = f2 − f1

2a (b)

Sie sind genau dann ganzzahlig, wenn 2a Teiler von |f1 − f2| ist. Da jede Faktorenzerlegung höchstens
zwei Lösungen liefert und die Anzahl der Faktorenzerlegungen endlich ist, kann auch die Anzahl der
(ganzzahligen) Lösungen höchstens endlich sein.

Aufgabe 6/70
Man ermittle alle positiven reellen Zahlen x und y, die der Gleichung

loga y · logx y
(log2x y)2 = 9

2

Da die Zahl 1 als Basis eines Logarithmensystems ungeeignet ist und da log 1 = 0 für jede Basis ist,
scheiden zunächst x = 1 und y = 1 als Lösung aus. Für die weitere Untersuchung ist es zweckmäßig, alle
Logarithmen auf dieselbe Basis zu reduzieren. Dazu dient die Gleichung loga c = 1

logc a
. Damit ist

log2y · logx y
(log2x y)2 =

(logy 2x)2

logy 2 · logy x
=

(logy 2 + logy x)2

logy 2 · logy x
=

(
1 + logy x

logy 2

)2

logy x
logy 2

= 9
2

Substituiert man nun a = logy x
logy 2 , so ergibt sich

(1 + a)2

a
= 9

2 → a2 − 5
2a+ 1 = 0→ a1 = 2; a2 = 1

2

Aus a = logy x
logy 2 folgt weiter logy x = a · logy 2 = logy 2a und damit x = 2a.

Man erkennt, dass die Gleichung von y unabhängig ist, dass sie also für jedes positive reelle y außer y = 1
erfüllt ist. Mit den beiden für a ermittelten Werte ergibt sich x1 = 4 und x2 =

√
2.
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Aufgabe 7/70
Gesucht sind alle Primzahlen p, die der Gleichung c3 − c2 − 11c − 1452 = p für irgendein positives,
ganzzahliges c genügen.

Da jede Primzahl (bis auf die Reihenfolge) genau eine Darstellung als Produkt aus zwei Faktoren besitzt,
p = 1− p, liegt es nahe, den Term c3− c2− 11c− 1452 in ein Produkt aus zwei Faktoren zu zerlegen und
zu untersuchen, für welche Werte von c einer der Faktoren den Wert 1 annimmt. Wir setzen daher

c3 − c2 − 11c− 1452 = (c+ a)(c2 + a1c+ a0) = c3 + (a+ a1)c2 + (a0 + aa1)c+ aa0

Durch Koeffizientenvergleich ergibt sich a = −12, a1 = 11, a0 = 121, so dass sich die gesuchte Produktdar-
stellung zu p = (c−12)(c2+11c+121) ergibt. Es sind nun die Gleichungen c−12 = 1 und c2+11+121 = 1
zu lösen.
Die erste Gleichung liefert c = 13, die zweite hat keine reellen Lösungen. Demnach ist c = 13 der einzige
Wert, für den sich eine Primzahl ergibt: p = 433.

Aufgabe 8/70
Es ist zu beweisen, dass die Höhen jeden beliebigen spitzwinkligen Dreiecks gleichzeitig Winkelhal-
bierende im zugehörigen Fußpunktdreieck sind.

c

ab

A

A1

B

B1

C

C1

H

α1 β1

Wegen ]HA1B = ]HC1B = 90◦ ist das Viereck HA1BC1
ein Sehnenviereck; d.h., die Punkte H,A1, B und C1 liegen
auf einem Kreis mit dem Durchmesser BH.
Daraus folgt, dass ]HC1A1 = β1 ist, denn beide Winkel sind
Peripheriewinkel über der Sehne HA1.
Auf analoge Weise zeigt man, dass ]HC1B1 = α1 ist (Seh-
nenviereck HC1AB1). Die Schenkel der Winkel α1 und β1
stehen paarweise senkrecht aufeinander; demnach gilt α1 = β1
und mithin auch ]HC1A1 = ]HC1B1.

Das heißt aber nichts anderes, als dass die Höhe auf der Seite c den Winkel ]A1B1C1 halbiert. Durch
zyklische Vertauschung gilt dieser Beweis zugleich auch für die Höhen auf den Seiten a und b.

Aufgabe 9/70
Gesucht sind alle wachsenden arithmetischen Folgen 1.Ordnung aus 9 nichtnegativen ganzzahligen
Gliedern, bei denen das letzte Glied gleich dem Quadrat des zweiten ist.
Welche bemerkenswerte Eigenschaft hat eine davon?

Das Bildungsgesetz der arithmetischen Folge 1.Ordnung lautet an = a1 + (n− 1)d. Es ist also

a2 = a1 + d und a9 = a1 + 8d = (a1 + d)2 = a2
2

Aus dieser Gleichung ergibt sich die für d quadratische Gleichung mit den Lösungen

d2 − 2d(4− a1) + a2
1 − a1 = 0→ d1;2 = 4− a1 ±

√
16− 7a1

Da die Glieder der Folgen sämtlich ganzzahlig sein sollen, ist sowohl a1 als auch d ganzzahlig; in Frage
kommen für a1 demnach nur die Werte a11 = 0 und a12 = 1. Für d ergeben sich damit die möglichen
Werte d11 = 8, d12 = 0, d21 = 6, d22 = 0.
Die Werte d12 = d22 = 0 entfallen jedoch, da die gesuchten Folgen wachsend sein sollen, was d > 0
voraussetzt. Es sind demnach nur zwei Folgen mit den vorgegebenen Eigenschaften möglich, nämlich

{ak} = 0; 8; 16; 24; 32; 40; 48; 56; 64 und {ak} = 1; 7; 13; 19; 25; 31; 37; 43; 49

Die zweite von ihnen hat die besondere Eigenschaft, dass sie aus drei gleichmäßig verteilten Quadratzahlen
a1 = 1, a5 = 25, a9 = 49 und sechs Primzahlen a2 = 7, a3 = 13, a4 = 19, a5 = 31, a7 = 37, a8 = 43 besteht.
Das ist kein Zufall, sondern liegt an der Differenz d = 6 und an a1 = 1.
Bekanntlich lässt sich jede Primzahl in der Form p = 6k ± 1 darstellen, sofern p > 3 ist. Die betrachtete
Folge umfasst aber gerade die Zahlen der Form 6k + 1, woraus sich die Häufung der Primzahlen erklärt
(sie bleibt bestehen, wenn man die Folge über das 9. Glied hinaus fortsetzt).
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Aufgabe 10/70
In der Abbildung sind Grund-, Auf- und Seitenriss eines Körpers dargestellt. Man beschreibe diesen
Körper eindeutig in einem Satz und gebe eine Skizze in schräger Parallelprojektion.

Der Körper wird aus zwei kongruenten, einander
symmetrisch durchdringenden regulären Tetraedern
gebildet.

Aufgabe 11/70
In welchem Dreieck sind die Maßzahlen der Höhe hb und der Dreiecksseiten a, b und c in dieser
Reihenfolge vier aufeinanderfolgende ganze Zahlen?

Es sei β der von den Seiten a und c eingeschlossene Dreieckswinkel. Dann gilt nach dem Sinussatz bzw.
nach dem Kosinussatz

bhb = ac sin β und cosβ = a2 + c2 − b2

2ac
Daraus folgt

b2h2
b = a2c2 sin2 β = a2c2(1− cos2 β) = a2c2(1− (a2 + c2 + b2)2

4a2c2

Nun soll sein a = hb + 1, b = hb + 2, c = hb + 3. Setzt man diese Werte ein und vereinfacht man die
Gleichung, so ergibt sich (wegen hb 6= 0) h4

b + 8h3
b − 44h2

b − 48hb = 0 = h3
b + 8h2

b − 44hb − 48.
Durch sinnvolles Probieren findet man zunächst die Lösung hb = −2, die jedoch geometrisch keinen Sinn
hat, da hb > 0 gilt. Damit kann man jedoch die Gleichung weiter reduzieren.

h2
b − 10hb − 24 = 0→ hb = −2 (Doppellösung!) , hb = 12

Das gesuchte Dreieck hat also Seiten mit den Maßen a = 13 LE, b = 14 LE, c = 15 LE und die Höhe
hb = 12 LE.

Aufgabe 12/70
Ohne Verwendung der Differentialrechnung bestimme man den kleinsten und größten Wert der Funk-
tion

y = f(x) = 2− 2 cos2 x− sin x
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Man formt den Term 2− 2 cos2 x− sin x mit Hilfe bekannter Beziehungen der Goniometrie um:

y = f(x) = 2− 2 cos2 x− sin x = 2(1− cos2 x)− sin x = 2 sin2 x− sin x

Der größte Wert wird offensichtlich für sin x = −1 erreicht, da dann sin2 x = 1 und − sin x = 1 ist. Damit
ist fmax(x) = +3.
Zur Ermittlung des kleinsten Funktionswertes werden weitere Umformungen durchgeführt

y = f(x) = 2 sin2 x− sin x = 2(sin2 x− 1
2 sin x+ 1

16)− 1
8 = 2

(
sin x− 1

4

)2
− 1

8

Der kleinste Wert ergibt sich, wenn sin x− 1
4 = 0 ist. Es ist fmin = − 1

8 .

Aufgabe 13/70
Gesucht ist das rechtwinklige Dreieck, dessen Seitenlängen a, b, c sämtlich ganzzahlig sind und bei
kleinstmöglichem a der Relation 4a = b+c

2 genügen.
Dabei bezeichne a eine Kathete.

Ohne Beschränkung der Allgemeingültigkeit kann angenommen werden, dass c die Hypotenuse ist. Dann
gilt nach dem Lehrsatz des Pythagoras a2 = c2 − b2.
Andererseits folgt aus 4a = b+c

2 die Gleichung 8a = c+ b. Nun ist a2 = 8a · 1
8a = c2 − b2 = (c+ b)(c− b).

Damit ergibt sich das Gleichungssystem

c+ b = 8a ; c− b = 1
8a

das die Lösungen b = 63
16a und c = 65

16a hat. Auf Grund der Aufgabenstellung folgert man a = 16 LE,
b = 63 LE, c = 65 LE.

Aufgabe 14/70
Eine n-stellige Dualzahl habe die Quersumme m (wobei n und m natürliche Zahlen mit 1 ≤ m ≤ n
sind).
Wieviel solche Zahlen gibt es bei vorgegebenem n und m?

Im Dualsystem gibt es nur die Ziffern 0 und 1. Die Quersumme m entsteht also aus der Addition von
m Einsen, die übrigen n −m Ziffern der Dualzahl sind Nullen. Hinter der ersten Ziffer (von links), die
eine Eins sein muss, folgen in beliebiger Reihenfolge m − 1 Einsen und n − m Nullen. Die Anzahl der
Permutationen dieser Ziffern ist

P = (n− 1)!
(m− 1)!(n−m)! =

(
n− 1
m− 1

)
Dies ist zugleich die Anzahl der n-stelligen Dualzahlen mit der Quersumme m.
Beispiel: n = 10, m = 6. Es ist

(9
5
)

= 126, es gibt also 126 zehnstellige Dualzahlen mit der Quersumme 6.

Aufgabe 15/70
Man finde alle Primzahlen, die sowohl als Summe als auch als Differenz von je zwei Primzahlen
darstellbar sind.

Es sei p eine der gesuchten Primzahlen. Wenn sich p als Summe zweier Primzahlen darstellen lässt, gilt
sicher p > 2. Folglich ist p ungerade. Ist weiter p als Differenz zweier Primzahlen darstellbar, d.h., gilt
p = p1 − q1 wobei p1 und q1 ebenfalls Primzahlen sind, so folgt p1 > p, also ungerade.
Weiter folgt sofort, dass q1 gerade ist, da sonst p gerade wäre (Widerspruch zur obigen Feststellung).
Also ist q1 = 2, denn weitere gerade Primzahlen gibt es nicht.
Analog folgt aus p = p2 +q2, dass genau eine der beiden Primzahlen p2 und q2 gerade und demnach gleich
2 sein muss; ohne Beschränkung der Allgemeingültigkeit (wegen der Kommutativität der Addition) sei
dies q2. Dann gilt

p2 + 2 = p = p1 − 2
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Die gesuchten Primzahlen sind demnach mittlere Zahlen von Primzahltripeln.
Nach der Aufgabe 10/69 (Heft 4/1969) gibt es aber genau ein Primzahltripel, nämlich 3; 5; 7. Damit ist
p = 5 die einzige Primzahl, die sowohl als Summe als auch als Differenz zweier Primzahlen darstellbar
ist: 3 + 2 = 5 = 7− 2.

Aufgabe 16/70
Gegeben ist ein Dreieck mit den Seiten a, b und c sowie eine Strecke x beliebiger Länge.
Man zeige: Wenn A die kleinere der Strecken a und x, B die kleinere der Strecken b und x und C die
kleinere der Strecken c und x ist, so ist aus A, B und C mit Sicherheit ein Dreieck konstruierbar.

Zum Beweis genügt es, die Dreiecksungleichungen für A, B und C herzuleiten. Wir beweisen:

Aus a+ b > c folgt A+B > C

1. Angenommen, wenigstens eine der beiden Strecken A und B sei gleich x. Dann gilt A+B > x, außerdem
ist nach den Bedingungen der Aufgabe x ≥ C. Also folgt A+B > C.
2: Angenommen, keine der beiden Strecken A und B sei gleich x. Dann ist nach den Bedingungen der
Aufgabe A = a und B = b. Es folgt

A+B = a+ b > c ≥ C
Welche mögliche Annahme man auch trifft, in jedem Fall ist also die Dreiecksungleichung A + B > C
erfüllt. Durch zyklische Vertauschung erhält man auf die gleiche Weise die Ungleichungen B + C > A
und C +A > B. Daraus folgt die Existenz eines Dreiecks mit den Seiten A, B und C.

Aufgabe 17/70
Für welche natürlichen Zahlen n ist zn = 4n − 3n durch 7 teilbar?

E ist 4 ≡ −3 (mod 7). Folglich ist 41n ≡ (−3)n (mod 7). Für n = 2k ist

4n = 42k ≡ (−3)2k = 32k = 3n (mod 7)

und deshalb 4n − 3n ≡ 0 (mod 7).
Ist dagegen n = 2k + 1, so ist

4n = 42k+1 ≡ (−3)2k+1 = −32k+1 = −3n (mod 7)

Man erkennt, dass in diesem Fall 4n − 3n = −3n − 3n = −2 · 3n 6= 0 (mod 7) ist. Bildet man jedoch
4n+3n = −3n+3n ≡ 0 (mod 7), so erkennt man, dass in diesem Fall die Teilbarkeit durch 7 bei n = 2k+1
gegeben ist.

Aufgabe 18/70
Gesucht ist die Menge aller Paare von aufeinanderfolgenden natürlichen Zahlen, deren Quersummen
beide geradzahlig sind.

Die gesuchten Zahlenpaare haben die Form (n − 1, n)) mit n ∈ N (wobei N die Menge der natürlichen
Zahlen ist). Die Quersumme von n bezeichnen wir mit Q(n).
1. Wenn n eine von Null verschiedene Endziffer hat, unterscheiden sich die Quersummen von n− 1 und
n im 1: Q(n) = Q(n− 1) + 1. Beide Quersummen können also nicht zugleich geradzahlig sein.
2. Infrage kommen also nur Zahlen n, die als Endziffer 0 haben. Dann hat aber die Zahl n− 1 wenigstens
eine Endziffer 9.
Die Zahl n − 1 habe nun genau k Endziffern 9, so dass die (k + 1)-te Ziffer von rechts m 6= 9 ist. Dann
hat n genau k Endziffern 0 und die (k+ 1)-te Ziffer von rechts ist m+ 1 6= 0. Da alle übrigen Ziffern beim
Übergang von n− 1 zu n unverändert bleiben, gilt für die Quersummen

Q(n− 1)−Q(n) = 9k − 1

Ist nun k eine ungerade Zahl, so ist 9k− 1 geradzahlig, und die Quersummen sind entweder beide gerade
oder beide ungerade. Die Menge der gesuchten Zahlenpaare ist demnach

M = {(10ka− 1; 10ka) mit a, k ∈ N, a 6= 9 (mod 10) , Q(a) ≡ 0 (mod 2) , k ≡ 1 (mod 2)}
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Beispiele: (2419; 2420) a = 242, k = 1, Q(n) = 8, Q(n− 1) = 16
(160999; 161000) a = 161, k = 3, Q(n) = 8, Q(n− 1) = 34

Aufgabe 19/70
Ein Prisma mit n-eckiger Grundfläche habe 10n Diagonalen (Körper- und Flächendiagonalen).
Wie groß ist n?

Ein n-eckiges Prisma hat 2n Körperecken und 3n Kanten. Jede Ecke kann mit jeder anderen Ecke durch
eine Strecke verbunden werden, die entweder Kante oder Diagonale ist. Die Anzahl der Verbindungsstre-
cken ist

2n(2n− 1)
2 = n(2n− 1) = 2n2 − n

Folglich ist die Anzahl der Diagonalen 10n = 2n2 − n − 3n. Daraus ergibt sich die für n quadratische
Gleichung ohne Absolutglied: n2−7n = 0 mit den Lösungen n1 = 0, n2 = 7. Da es kein nulleckiges Prisma
gibt (der Variablenbereich für n ist n ≥ 3, ganz!), ist n = 7 einzige Lösung. Ein siebeneckiges Prisma hat
also insgesamt 70 Diagonalen.

Aufgabe 20/70
Sind in einem nicht überschlagenen, konvexen Viereck zwei gegenüberliegende Seiten gleichlang und
sind alle Winkel paarweise voneinander verschieden, so liegt der Schnittpunkt der Mittelsenkrechten
auf den beiden ungleich langen Seiten stets außerhalb des Vierecks.
Dieser Satz ist zu beweisen.

Wir führen den Beweis indirekt: Angenommen, der Schnittpunkt S der beiden Mittelsenkrechten h1 und
h2 auf den ungleich langen Seiten liegt innerhalb des Vierecks. Ohne Einschränkung der Allgemeinheit
kann man annehmen, die beiden Seiten AD und BC seien gleich lang, und h1 sowie h2 seien die Mittel-
senkrechten auf den Seiten AB bzw. CD. Es gilt dann AS = BS und DS = CS.
Wegen AD = BC stimmen damit die Dreiecke ASD und BSC in allen drei Seiten überein, d.h., sie sind
kongruent. Das bedeutet aber, dass sie auch in den Winkeln übereinstimmen:

]DAS = ]SBC und ]ADS = ]SCB

Es ist aber auch
]SAB = ]SBA und ]SCD = ]SDC

wegen der Gleichschenkligkeit der Dreiecke ABS und CDS. Daraus folgt, dass

]DAB = ]CBA und ]BCD = ]ADC

ist, mit anderen Worten, dass das Viereck im Widerspruch zur Voraussetzung zwei Paare gleicher Winkel
hat. Damit ist der Beweis geführt, dass S nicht im Inneren des Vierecks liegt.

Es bleibt noch zu prüfen, ob S auf einer Viereckseite liegen kann. Dieser Fall ist aber nur ein Son-
derfall des oben beschriebenen allgemeinen Falles Dreieck ABS beispielsweise ist zur Strecke entartet,
]SAB = ]SBA = 0) und somit in diesem enthalten.

Aufgabe 21/70
Man beweise: Wenn a1, a2, a3, b1, b2, b3 beliebige komplexe Zahlen sind, die den Gleichungen

a1 + a2 + a3 = b1 + b2 + b3

a2
1 + a2

2 + a2
3 = b21 + b22 + b23

a3
1 + a3

2 + a3
3 = b31 + b32 + b33

genügen, dann sind die Mengen {a1; a2; a3} und {b1; b2; b3} einander gleich.

Es gilt für beliebige komplexe Zahlen x, y, z die Gleichung

x2 + y2 + z2 = (x+ y + z)2 − 2(xy + xz + yz)
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Damit folgt aus den gegebenen Gleichungen (1) und (2)

a1a2 + a2a3 + a3a1 = b1b2 + b2b3 + b3b1 = q (4)

Weiter gilt
x3 + y3 + z3 = (x+ y + z)3 − 3(xy + yz + zx)(x+ y + z) + 6xyz

Mit (1) und (4) ergibt sich daraus a1a2a3 = b1b2b3 = r. Setzt man nun zur Abkürzung noch a1 +
a2 + a3 = b1 + b2 + b3 = p, so erkennt man, dass sowohl die ai als auch die bi die kubische Gleichung
x3 − px2 + qx − r = 0 erfüllen. Nach dem Fundamentalsatz der Algebra folgt damit unmittelbar die
Behauptung.
Bemerkung: Die Aufgabe lässt sich für Mengen {ai}, {bi} mit i = 1, 2, 3, ..., n verallgemeinern.

Aufgabe 22/70
Verbindet man benachbarte Seitenmitten eines regelmäßigen n-Ecks miteinander, so entsteht ein
neues regelmäßiges n-Eck, das dem ursprünglichen ähnlich ist. Es sei M A = A−A′ die Differenz der
Flächeninhalte beider n-Ecke.
Für welche n gilt M A = A

10?

Aus ∆A = A − A′ < A
10 folgt zunächst durch äquivalente Umformung A′

A > 9
10 . Weiter gilt: A =

n
2 r

2 sin 360◦
n (wobei mit r der Umkreisradius bezeichnet ist) und

A′ = n

2 r
′2 sin 360◦

n
also A′

A
= r′2

r2 >
9
19

Wegen r′ = r cos 360◦
n ergibt sich daraus cos2 360◦

2n > 9
10 , cos 360◦

2n > 0,9487, (da n ≥ 3 gilt, ist cos 360◦
2n > 0),

also 360◦
2n < 18,5◦.

Damit erhält man schließlich n ≥ 10 (wegen der Ganzzahligkeit von n).

Aufgabe 23/70
Man beweise den Tangenssatz

a+ b

a− b
=

tan α+β
2

tan α−β
2

mit geometrischen Mitteln!

A B

C

D
E

G

F

Es sei AC = DC,CF ⊥ AD,EG ‖ AB (Abbildung). Da
2]CAD = ]CAB + ]ABC ist (das Dreieck ADC ist gleich-
schenklig), gilt

]CAD = 1
2(α+ β) und damit ]DAB = 1

2(α− β)

Damit wird
tan α+β

2

tan α−β
2

=
CE
AE
EF
AE

= CE

EF
= CG

GB

Nun wird aber die Strecke DB durch den Punkt G nach einem Strahlensatz halbiert (DE : DA = 1 : 2 =
DG : DB), folglich ist

tan α+β
2

tan α−β
2

=
a+b

2
a−b

2
= a+ b

a− b

Aufgabe 24/70
Wie groß ist die Wahrscheinlichkeit, bei einem Wurf mit drei Würfeln die Augenzahl 12 zu erzielen?

Für die Berechnung der Wahrscheinlichkeit kann man die klassische Definition verwenden, da nur eine
endliche Anzahl von Möglichkeiten existiert. Es ist also der Quotient g

m aus der Anzahl g den günstigen
und der Anzahl m der möglichen Fälle zu bilden.
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Die Anzahl m der möglichen Fälle ist m = 63 = 216. Es handelt sich nämlich um alle Zusammenstellungen
der 6 Augenzahlen in Dreiergruppen mit Berücksichtigung der Anordnung, wobei Wiederholung auftritt
(also um Variationen von 6 Elementen zur 3. Klasse mit Wiederholung).
Die Anzahl g der günstigen Fälle ergibt sich aus der folgenden Überlegung: Günstig sind alle die Fälle, in
denen die Addition von drei natürlichen Zahlen zwischen 1 und 6 (einschließlich) die Summe 12 ergibt,
wobei die Reihenfolge zu beachten ist. Ohne Berücksichtigung der Reihenfolge ergeben sich zunächst die
folgenden Möglichkeiten:

1) 6 + 5 + 1 = 12 2) 6 + 4 + 2 = 12
3) 6 + 3 + 3 = 12 4) 5 + 5 + 2 = 12
5) 5 + 4 + 3 = 12 6) 4 + 4 + 4 = 12

Berücksichtigt man nun noch die Anordnung, so erkennt man: In den Fällen 1., 2. und 5. gibt es je genau
3! = 6 verschiedene Möglichkeiten, in den Fällen 3. und 4. je genau 3!

2! = 3 und im Fall 6. nur 1, Damit
ergibt sich g = 3 · 6 + 2 · 3 + 1 = 25 und es ist g

m = 25
216 ≈ 0,116.

Aufgabe 25/70
Man beweise, dass es keine arithmetische Folge erster Ordnung aus mehr als zwei Gliedern gibt, deren
Differenz d = 1000 ist und deren Glieder sämtlich Primzahlen sind.

Angenommen, es gäbe eine derartige Folge. Die ersten drei Glieder wären dann a1 = p, a2 = p+1000, a3 =
p + 2000, wobei p eine Primzahl wäre. Sicher ist p 6= 3; denn wäre p = 3, so wäre p2 = 1003 = 17 · 59
keine Primzahl (im Widerspruch zu den Bedingungen der Aufgabe).
Also ist a1 = p ≡ ±1 (mod 3).
Wegen 1000 ≡ 1 (mod 3), 2000 ≡ 2 (mod 3) folgt dann aber

a2 ≡ 0 (mod 3) oder a2 ≡ 2 (mod 3) und

a3 ≡ 1 (mod 3) oder a3 ≡ 0 (mod 3)

In jedem Fall ist also eines der Glieder a2 und a3 durch 3 teilbar, also keine Primzahl (im Widerspruch zu
den Bedingungen der Aufgabe). Da die Annahme stets zu einem Widerspruch führt, ist sie falsch. Damit
ist bewiesen, dass es keine derartige Folge gibt.

Aufgabe 26/70
Gesucht sind alle natürlichen Zahlen n, die genau 10 Teiler haben.

Die gesuchten Zahlen n können höchstens zwei voneinander verschiedene Primfaktoren p und q enthalten.
Man prüft nämlich leicht nach, dass bei drei voneinander verschiedenen Primfaktoren p, q und r sich acht
(falls alle in der ersten Potenz auftreten) oder mehr als 10 Teiler ergeben; bei mehr als vier Primfaktoren
ist die Teilerzahl auf jeden Fall größer als 10.
Enthält n genau einen Primfaktor p, so muss dieser in der 9. Potenz enthalten sein: n = p9. Die 10 Teiler
sind dann nämlich die 10 Potenzen p0, p1, p2, ..., p9.
Enthält n genau zwei voneinander verschiedene Primfaktoren p und q, so kann einer von ihnen nur in der
ersten Potenz auftreten. Wäre er nämlich in der k-ten Potenz mit k > 1 vorhanden, so würde er bereits
k + 1 Teiler liefern.
Da jeder dieser Teiler mit einem aus dem anderen Primfaktor resultierenden Teiler multipliziert wieder
einen Teiler von n liefert, muss die Anzahl der Teiler von n ein Vielfaches von k+ 1 sein. Damit kommen
aber als Exponenten der Primfaktoren p und q in unserem Fall nur 1 und 4 in Frage. Tatsächlich hat p4q
genau 10 Teiler.
Die gesuchten Zahlen n haben also die Primfaktorzerlegungen n = p9 und n = p4q mit p 6= q.

197



2.10 Aufgaben und Lösungen 1970

Aufgabe 27/70

Acht Geraden schneiden einander so in einem
Punkt, dass je zwei benachbarte Geraden einen
Winkel von π

8 einschließen. Auf einer beliebigen
dieser Geraden liege im Abstand a vom Schnitt-
punkt der Punkt P1.
Von ihm fälle man das Lot auf eine benachbar-
te Gerade, der Fußpunkt sei P2. Setzt man das
Verfahren von P2, P3, ... aus fort, so erhält man
einen Streckenzug (Abbildung nächste Seite), des-
sen Streckenzahl über alle Grenzen wächst.
Man ermittle die Länge dieses Streckenzuges.

a

P1

P2

P3
P4

P5

P6

P7
P8

Die Strecken bilden eine Folge, deren Glieder die Maßzahlen

a1 = a sin π8 ; a2 = a sin π8 cos π8 ; a3 = a sin π8 cos2 π

8 ... an = a sin π8 cosn π8

haben. Man erkennt, dass es sich um eine geometrische Folge mit dem Anfangsglied a1 = a sin π
8 und

dem Quotienten q = cos π8 handelt. Da |q| < 1 gilt, konvergiert die zugehörige Reihe, und es ist

s∞ =
a sin π

8
1− cos π8

Diesen Ausdruck kann man mit Hilfe der Halbwinkelformeln noch umformen. Es ist

sin π8 = 1√
2

√
1− cos π4 = 1

2

√
2−
√

2 ; cos π8 = 1√
2

√
1 + cos π4 = 1

2

√
2 +
√

2

Also ist

s∞ = a
√

2−
√

2
2−

√
2 +
√

2
= a

(
2
√

2−
√

2 +
√

4− 2
√

2 +
√

2 + 1
)

= a

(√
4 + 2

√
2 +
√

2 + 1
)

Aufgabe 28/70
Es seien a und b positive reelle Zahlen mit a, b 6= 1. Gesucht sind alle reellen Lösungen der Gleichung

[(logb x)− 1] · loga b = 1

Wegen loga b = 1
logb a

kann man die gegebene Gleichung wie folgt äquivalent umformen:

(logb x)− 1 = logb a→ logb x− logb a = 1→ logb
x

a
= 1

Daraus folgt unmittelbar x
a = b also x = ab.

Aufgabe 29/70
Es ist nachzuweisen, dass z = 1n + 2n + 3n + 4n genau dann ohne Rest durch 5 teilbar ist, wenn n
nicht ohne Rest durch 4 teilbar ist (wobei n eine natürliche Zahl bedeutet).

Wegen 3 ≡ −2 (mod 5) und 4 ≡ −1 (mod 5) ist

1n + 2n + 3n + 4n ≡ 1n + 2n + (−2)n + (−1)n (mod 5)
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Ist nun n = 4k (mit k natürliche Zahl), so folgt

1n + 2n + 3n + 4n ≡ 14k + 24k + (−2)4k + (−1)4k = 1k + 1k + 1k + 1k = 4 (mod 5)

(wegen 24 = 16 ≡ 1 (mod 5) und (−2)4 = 16 ≡ 1 (mod 5)). Ist also n durch 4 ohne Rest teilbar, so lässt
z beim Teilen durch 5 den Rest 4, ist also nicht ohne Rest durch 5 teilbar.
Es sei nun n = 4k +m mit m = 1; 2; 3. Dann ist

1n + 2n + (−2)n + (−1)n ≡ 14k+m + 24k+m + (−2)4k+m + (−1)4k+m (mod 5) =

= 1k · 1m + 1k · 2m + 1k · (−2)m + 1k · (−1)m = 1m + 2m + (−2)m + (−1)m (mod 5)

Mit m = 1 ergibt sich sofort z ≡ 0 (mod 5). Man prüft jedoch leicht nach, dass sich auch für m = 2 und
für m = 3 z ≡ 0 (mod 5) ergibt:

12 + 22 + (−2)2 + (−1)2 = 1 + 4 + 4 + 1 = 10 ≡ 0 (mod 5)

13 + 23 + (−2)3 + (−1)3 = 1 + 8− 8− 1 = 0 ≡ 0 (mod 5)

Damit ist die Behauptung bewiesen.

Aufgabe 30/70
Man beweise: Wenn p eine Primzahl, k und n natürliche Zahlen sind, dann folgt aus pk | n! sogar
(p!)k | n!.

Da n! das Produkt aller ganzen Zahlen von 1 bis n und p Primzahl ist, folgt aus p | n, dass n ≥ p ist; da
p Primzahl ist, muss nämlich p unter den Zahlen 1 bis n vorkommen.
Gilt pk | n, so müssen diese Zahlen auch die Vielfachen 2p, 3p, ..., kp enthalten, und es folgt n ≥ kp.
Damit ist n! das Produkt von wenigstens kp aufeinanderfolgenden ganzen Zahlen. Von diesen sind we-
nigstens k Zahlen durch p teilbar, wenigstens k durch p − 1, ebenso wenigstens k durch p − 2 usf. bis
p− p+ 2, p− p+ 1. Mithin enthält n! das Produkt p! mindestens k mal, das heißt aber (p!)k | n!.

Aufgabe 31/70
Man ermittle sämtliche gemeinsame Lösungen der beiden Gleichungen

3x4 + 13x3 + 20x2 + 17x+ 7 = 0
3x4 + x3 − 8x2 + 11x− 7 = 0

ohne ein Näherungsverfahren zu verwenden!

Subtrahiert man (2) von (1), so ergibt sich nach Division durch 2

6x3 + 14x2 + 3x+ 7 = 0 (I)

Durch Addition der beiden Gleichungen erhält man

6x4 + 14x3 + 12x2 + 28x = 0 (II)

Da x = 0 keine gemeinsame Lösung ist, kann man x 6= 0 setzen und (II) durch x dividieren:

6x3 + 14x2 + 12x+ 28 = 0 (III)

Subtrahiert man nunmehr (III) von (I), so folgt

−9x− 21 = 0 also x = −7
3

Wie die Probe zeigt, ist dieser Wert tatsächlich Lösung beider Gleichungen, und wie der Rechengang
ausweist, auch die einzige gemeinsame.
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Aufgabe 32/70
Man gebe die kleinste natürliche Zahl k an, die mit der Ziffer 7 beginnt (falls man sie im Dezimal-
system darstellt) und die folgende weitere Eigenschaft aufweist:
Streicht man die vorderste Ziffer 7 weg und hängt man sie hinten an, so ist die neu entstehende Zahl
z = 1

3k.

Wir schreiben k = 7 · 10x + a, wobei x und a natürliche Zahlen mit a < 10x sind. Auf Grund der
geforderten Eigenschaft gilt

k = 7 · 10x + a = 3(10a+ 7)
Daraus ergibt sich durch äquivalente Umformung

a = 7 · 10x

29 − 21
29

Nunmehr dividieren wir 7 ·10x durch 29; dabei bestimmen wir die Zahl x, indem wir die Division solange
fortsetzen, bis der Rest 21 auftritt. Damit wird nämlich a eine natürliche Zahl. Es ergibt sich

a = 241 379 310 344 827 586 206 896 551 und k = 7 241 379 310 344 827 586 206 896 551

Die Probe bestätigt die Richtigkeit.

Aufgabe 33/70
Es ist zu beweisen, dass gilt

lim
n→∞

n

2 sin 360◦

n
= π

Der Flächeninhalt An eines regelmäßigen n-Ecks ist:

An = n

2 r
2 sin 360◦

n

(wobei r der Radius des Umkreises ist). Der Flächeninhalt Au des Umkreises ist Au = πr2. Wächst die
Anzahl n der Ecken über alle Grenzen, so geht das n-Eck gegen den Umkreis; d.h., es gilt limn→∞An =
Au, also

lim
n→∞

n

2 r
2 sin 360◦

n
= πr2

Daraus folgt nach einem bekannten Grenzwertsatz (Grenzwert eines Produktes gleich Produkt der Grenz-
werte, vorausgesetzt die Existenz derselben) und da r 6= 0 sicher gilt:

lim
n→∞

n

2 sin 360◦

n
= π

Aufgabe 34/70
Von einer arithmetischen Folge 1. Ordnung sei bekannt, dass alle Glieder nichtnegative ganze Zahlen
sind. Genau 1 Glied ist einstellig, 9 Glieder sind zweistellig, 81 sind dreistellig und 819 sind vierstellig.
Man bestimme die Folge!

Die Folge sei {ai} mit i = 1; 2; ...; 910. Da alle ai ganzzahlig sind, ist auch d ganzzahlig, und wenn a1 die
kleinste Zahl der Folge ist (was ohne Beschränkung der Allgemeingültigkeit angenommen werden kann),
ist d > 0. Nach dem Bildungsgesetz der arithmetischen Folge 1. Ordnung ist ai = a1 + (i− 1)d. Aus den
Angaben der Aufgabe kann man nun die folgenden Ungleichungen aufstellen:

a2 = a1 + d ≥ 10 (1)
a10 = a1 + 9d ≤ 99 (2)

a92 = a1 + 91d ≥ 1000 (3)

Aus (1) und (2) folgt 8d ≤ 89, d ≤ 11. Aus (2) und (3) ergibt sich 82d ≥ 901, d > 10. Also ist d = 11. Aus
(2) folgt nun mit diesem Wert d = 11 sofort a1 ≤ 0; da aber alle Glieder nichtnegativ sind, ist a1 = 0.
Damit ist die Folge {ai} = {11(i− 1)} mit i = 1; 2; ..., 910 die gesuchte.
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Aufgabe 35/70
Man bestimme alle Tripel (x; y; z) aus natürlichen Zahlen mit kleinstmöglichem z, welche die Glei-
chung

1
x2 + 1

y2 = 1
z2

erfüllen.

Multipliziert man die gegebene Gleichung

1
x2 + 1

y2 = 1
z2 (1)

mit x2y2z2, so ergibt sich die Gleichung (yz)2 +(xz)2 = (xy)2. Durch Substitution u = yz, v = xz,w = xy
erhält man daraus u2 + v2 = w2 (3).
Da nach der Aufgabenstellung x, y und z natürliche Zahlen sein sollen, sind nach der Substitution auch
u, o und w natürliche Zahlen, und (u; v;w) ist ein pythagoreisches Tripel. Jeder Lösung der Gleichung
(1) lässt sich daher durch die Substitution eindeutig ein pythagoreisches Tripel zuordnen.
Um Lösungen von (1) in natürlichen Zahlen zu finden, kann man also von pythagoreischen Tripeln
ausgehen. Hat man ein solches Tripel gefunden, so liefert die Division von (3) mit u2v2w2 die Gleichung

1
v2w2 + 1

u2w2 = 1
u2v2

aus der man x = vw, y = uw, z = uv erhält. Die Zahl z nimmt offenbar genau dann den kleinstmöglichen
Wert an, wenn man in (3) das pythagoreische Tripel mit kleinstmöglichen Zahlen wählt, dies sind aber
die Tripel (3; 4; 5) und (4; 3; 5). Sie liefern die Lösungstripel (20; 15; 12) und (15; 20; 12) der Gleichung (1)
mit kleinstem z.

Aufgabe 36/70
Man beweise, dass in keinem Dreieck die Beziehung

(a+ b) cos γ + c = 0

gilt, wenn mit a, b und c die Dreieckseiten und mit γ der Winkel zwischen den Seiten a und b
bezeichnet sind.

Angenommen, die Behauptung (a + b) cos γ + c = 0 wäre richtig. Dann folgt cos γ = − c
a+b . Nach dem

Kosinussatz ist c2 = a2 + b2 − 2ab cos γ, also

c2 = a2 + b2 + 2abc
a+ b

oder c2 − 2ab
a+ b

c− (a2 + b2) = 0

Diese in c quadratische Gleichung hat die Lösungen c1 = a + b; c2 = −a
2+b2

a+b . Beide Lösungen stehen
jedoch im Widerspruch zu der Tatsache, dass c Dreieckseite ist (was c < a+ b und c > 0 bedingt). Also
ist die Annahme falsch, d.h., in keinem Dreieck gilt die Beziehung (a+ b) cos γ + c = 0.
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Aufgabe 1/71
Man bestimme das Dreieck maximalen Flächeninhaltes, das den Bedingungen 0 < a ≤ 2 ≤ b ≤ 4 <
c < 5 unterliegt.

Wir verwenden die Formel A = 1
2ab sin γ. Offensichtlich wird A maximal, wenn sowohl a als auch b als

auch sin γ maximal sind - vorausgesetzt, dass dann c der geforderten Bedingung genügt:

Amax = 1
2amaxbmax(sin γ)max = 1

2 · 2 · 4 · sin
π

2
Es ergibt sich also γ = π

2 , d.h., das Dreieck müsste rechtwinklig mit c als Hypotenuse sein. Es gilt also

c2 = a2 + b2 = 4 + 16 = 20→ c = 2
√

5

Da 4 < c = 2
√

5 < 5 gilt, ist mithin a = 2, b = 4, c = 2
√

5 einzige Lösung dieser Aufgabe.

Aufgabe 2/71
Man beweise: Bei einer kontinuierlich laufenden Uhr (d.h., die Zeiger springen nicht auf diskrete
Zifferblattstellen) mit Stunden-, Minuten- und Sekundenzeiger auf einer Achse können außerhalb des
Zeitpunktes 0 h 00 m 00 s die drei Zeiger niemals genau übereinanderstehen.

Wir bestimmen zunächst die Winkel xn zwischen der Richtung Achse - Zwölf und den sich deckenden
Minuten- und Stundenzeigern. Da eine Überdeckung beider Zeiger im Verlauf von 12 h genau 11 mal statt-
findet, hat der Stundenzeiger bei der n-ten Überdeckung n

1 360◦ überstrichen (dabei ist die Überdeckung
um 0 h 00 min 00 s als nullte Überdeckung bezeichnet). Die bis zur n-ten Überdeckung dieser beiden
Zeiger verstrichene Zeit beträgt 12

11n h. In dieser Zeit überstreicht der Sekundenzeiger einen Winkel von
12
11n · 60 · 360◦. (da er in jeder Stunde 60 volle Umläufe vollzieht).
Zieht man von diesem Winke] alle vollen Umläufe ab, so erhält man den Winkel, den der Sekundenzeiger
zum Zeitpunkt der Überdeckung von Stunden- und Minutenzeiger mit der Richtung Achse - Zwölf bildet;
angenommen, es seien k volle Umläufe. Dann 11 gilt für diesen Winkel:

12
11n · 60 · 360◦ − k · 360◦ = 1

11 · 360◦(720n− 11k)

Gleichheit beider Winkel bestünde genau dann, wenn

720n− 11k = n oder 719n = 11k

wäre. Man erkennt sofort, dass diese Gleichung nur für n = k = 0 bzw. für n = 11, k = 719 (ganzzahlig)
erfüllt ist. Beide Werte liefern aber den Winkel 0◦.

Aufgabe 3/71
Gesucht sind drei Lösungspaare (x; y) des Gleichungssystems

x2 sin y+1 + (sin y) 4
3
√

3x = 1
cos y − x = 0

Setzt man (2) in (1) ein, so erhält man

(cosx)2 sin y+1 + (sin y) 4
3
√

3 cos y = 1

Diese Gleichung ist sicher dann erfüllt, wenn entweder
1. cos y = 1 und sin y = 0 oder
2. cos y = 0 und sin y = 1 oder
3. 2 sin y + 1 = 2 und 4

3
√

3 cos y = 2
ist. Unter Verwendung von (2) ergibt sich aus 1. y = 0, x = 1; aus 2. y = π

2 , x = 0. Aus 3. folgt
sin y = 1

2 , cos y = 1
2
√

3 = x und damit y = π
6 , x = 1

2
√

3.
Drei Lösungspaare des gegebenen Gleichungssystems sind also (1; 0), (0; π2 ) und ( 1

2
√

3; π6 ).
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Aufgabe 4/71
Es ist zu zeigen, dass für jede gerade Zahl n, die Summe zweier Quadratzahlen ist, auch die Zahl n

2
Summe zweier Quadratzahlen ist.

Vorausgesetzt sei, dass n = 2k = a2 + b2 mit a; b; k ∈ N ist. Dann ist

n

2 = k
a2 + b2

2 = a2 + 2ab+ b2 + a2 − 2ab+ b2

4 =
(
a+ b

2

)2
+
(
a− b

2

)2

Wegen a2 + b2 = 2k ist entweder a = 2m1 und b = 2m2 oder a = 2m1 + 1 und b = 2m2 + 1 mit
m1;m2 ∈ N . Also ist entweder

n

2 = k = (m1 +m2)2 + (m1 −m2)2 oder n

2 = k = (2m1 + 2m2 + 2)2 + (2m1 − 2m2)2

Das heißt aber, n
2 ist Summe zweier Quadratzahlen.

Aufgabe 5/71
Man beweise, dass für natürliche Zahlen a, b, c, d > 0 die Ungleichung gilt

(ab+ cd)a+c ≥ (ab+ bc)a(ad+ cd)d

Stets ist das arithmetische Mittel aus natürlichen Zahlen nicht kleiner als das geometrische Mittel aus
diesen Zahlen.
Werden die Mittelwerte aus a+ c Zahlen errechnet, wobei a mal die Zahl b und c mal die Zahl d auftritt,
so nimmt dieser Satz die Form

ab+ cd

a+ c
≥ a+c√

b2dc

an. Durch äquivalente Umformung gewinnt man daraus schrittweise(
ab+ cd

a+ c

)a+c
≥ badc → (ab+ cd)a+c ≥ (a+ c)a+cbadc →

→ (ab+ cd)a+c ≥ (a+ c)aba + (a+ c)cdc → (ab+ cd)a+c ≥ (ab+ bc)a + (ad+ cd)c

Aufgabe 6/71
Die kubische Gleichung mit reellen Koeffizienten p, q und r

x3 + px2 + qx+ r = 0

habe drei reelle Lösungen. Welcher Bedingung müssen die Koeffizienten p, q und r genügen, wenn
die Lösungen Maßzahlen der Seiten eines ebenen Dreiecks sein sollen?

Die Lösungen der gegebenen Gleichung seien x1, x2, x3. Sollen sie Maßzahlen der Seiten eines ebenen
Dreiecks sein, so müssen sie die Dreiecksgleichungen erfüllen; es muss also gelten

x1 + x2 > x3; x2 + x3 > x1; x3 + x1 > x2

Damit gilt sicher
(x1 + x2 − x3)(x2 + x3 − x1)(x3 + x1 − x2) > 0

Bekanntlich gilt aber nach dem Vietaschen Wurzelsatz

x1 + x2 + x3 = −p; x1x2 + x2x3 + x3x1 = q; x1x2x3 = −r

Setzt man dies in die oben abgeleitete Ungleichung ein, so erhält man nach entsprechender Rechnung
p3 − 4pq + 8r > 0.
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Aufgabe 7/71
Es sei pn die n-te Primzahl. Gesucht sind alle i, für die gilt pi = 2i+ 1.

Es sei

p1 = 2 6= 2 · 1 + 1, p2 = 3 6= 2 · 2 + 1, p3 = 5 6= 2 · 3 + 1,
p4 = 7 6= 2 · 4 + 1, p5 = 11 = 2 · 5 + 1, p6 = 13 = 2 · 6 + 1, p7 = 17 6= 2 · 7 + 1

Wir behaupten nun, dass i = 5 und i = 6 die einzigen i sind, für die gilt pi = 2i+ 1. Es ist nämlich mit
k ≥ 0, ganz,

p7+k ≥ 17 + 2k = 2(7 + k) + 3 > 2(7 + k) + 1

Aufgabe 8/71
Es sei bekannt, dass das Polynom mit ganzen Koeffizienten a, b, c, d

P (m) = ax3 + bx2 + cx+ d

für beliebiges ganzes x durch 5 teilbar ist. Zu zeigen ist, dass dann alle Koeffizienten durch 5 teilbar
sind.

Wenn P (x) für alle ganzen Zahlen x durch 5 teilbar ist, so auch für x = 0: 5 | P (0) = d. Entsprechendes
gilt dann auch für x = 1 und für x = −1:

5 | P (1) = a+ b+ c+ d (1) ; 5 | P (−1) = −a+ b− c+ d

Damit gilt aber auch 5 | P (1) + P (−1) = 2(b + d), und wegen 5 | P (2) gilt 5 | (b + d), woraus mit 5 | d
folgt 5 | b. Ferner gilt dann

5 | P (2) = 8a+ 4b+ 2c+ d

unter Verwendung von 5 | b und 5 | d folgt daraus nach Subtraktion von 2 · P (1): 5 | 6a und damit 5 | a.
Schließlich folgt damit aus (1) unmittelbar auch 5 | c, womit die Behauptung bewiesen ist.

Aufgabe 9/71
Für welche reellen Zahlen a hat das Gleichungssystem

2x3 − 2ay3 = (a+ 1)2

x3 + ax2y + xy2 = 1

genau eine reelle Lösung (x; y) mit x = −y?

Durch die Forderung x = −y geht das System in die Gleichungen

2x3(a+ 1) = (a+ 1)2 ; x3(2− a) = 1

über. Die erste Gleichung ist sicher für a = −1 erfüllt. Es ergibt sich dann aus der zweiten Gleichung die
Lösung x = −y = 3

√
1
2 .

Für a 6= 1 geht die 1.Gleichung über in 2x3 = a+ 1 ; x3 = a+1
2 .

Setzt man in die 2.Gleichung ein, so ergibt sich nach kurzer Rechnung die in a quadratische Gleichung
a2 − a = 0 mit den Lösungen a = 0 und a = 1. Die entsprechenden Lösungen sind x = −y = 3

√
1
2 und

x = −y = 1.
Genau eine Lösung (x; y = −x) ergibt sich also für die Werte a1 = −1, a2 = 0 und a3 = +1.

Aufgabe 10/71
Es ist nachzuweisen, dass die beiden Produkte 505055 · 8808 und 808088 · 5505 einander gleich sind,
ohne dass die Produkte ausgerechnet werden. Das Beispiel ist: zu verallgemeinern.
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Man wendet das Kommutativgesetz und das Assoziativgesetz der Multiplikation an. Es ist

505055 · 8808 = 5 · 101011 · 8 · 1101 = 8 · 101011 · 5 · 1101 = 808088 · 5505

Verallgemeinerung: Es Xm eine m-stellige Zahl, die nur die Ziffern 1 und 0 enthält, und Yn eine n-stellige
Zahl, die ebenfalls nur die Ziffern 1 und 0 enthält. Ferner seien a und b zwei einstellige natürliche Zahlen.
Dann gilt stets

(aXm)(bYn) = aXmbYn = bXmaYn = (bXm)(aYn)

Wenn man in den Faktoren eines Produktes aus einer m-stelligen Zahl mit den Ziffern a und 0 und einer
n-stelligen Zahl mit den Ziffern a und b miteinander vertauscht, so ändert sich das Produkt nicht.
Weitere Verallgemeinerung: Sind a, b, c, d einstellige natürliche Zahlen, die der Gleichung ab = cd genügen,
so gilt (aXm)(bYn) = (cXm)(dYn).

Aufgabe 11/71
Für welche reellen Zahlen a hat die Gleichung

sin2 (ax)− cosx+ 1 = 0

genau eine Lösung?

Wegen sin2 ax ≥ 0 und cosx ≤ 1 muss gelten sin2 ax = 0 und cosx = 1. Damit kommen zunächst als
Lösungen in Frage ax = kπ;x = 2lπ mit k, l ganzzahlig. Daraus ergibt sich als Bedingung für a die
Gleichung a = k

2l .
Ist nun a eine reelle Zahl der Form k

2l , so hat die Gleichung beliebig viele, also nicht genau eine Lösung.
Ist a dagegen eine reelle Zahl der Form k

2l+1 , so ergibt sich x = 2lπ, also der Widerspruch 2l = 2l + 1;
d.h., es gibt keine Lösung.
Es bleibt noch der Fall, dass a eine irrationale Zahl ist. Dann wird die Gleichung durch den einzigen Wert
x = 0 befriedigt. Damit hat die Gleichung für alle irrationalen Zahlen a genau eine Lösung.

Aufgabe 12/71
Gegeben ist die Determinante einer Matrix vom Typ 3:

D =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
dabei seien die aik (i; k = 1,2,3) natürliche Zahlen. Es ist zu zeigen:
Wenn die Zahlen zi = 100ai1 + 10ai2 + ai3 jede ohne Rest durch eine Primzahl p mit p 6= 2; 5 teilbar
ist, so ist auch D ohne Rest durch p teilbar.

Wir benutzen zwei Eigenschaften der Determinante:
1. Multipliziert man eine Zeile (Spalte) der Matrix mit einer Zahl λ, so multipliziert man auch die
Determinante der Matrix mit λ.
2. Die Determinante einer Matrix ändert sich nicht, wenn man zu einer Zeile (Spalte) ein Vielfaches einer
anderen Zeile (Spalte) addiert.
Nach 1. ist

100D =

∣∣∣∣∣∣
100a11 a12 a13
100a21 a22 a23
100a31 a32 a33

∣∣∣∣∣∣
Nach 2. folgt

100D =

∣∣∣∣∣∣
100a11 + 10a12 + a13 a12 a13
100a21 + 10a22 + a23 a22 a23
100a31 + 10a22 + a23 a32 a33

∣∣∣∣∣∣
Nach Voraussetzung ist die 1. Spalte ohne Rest durch p teilbar. Damit ist aber auch 100D ohne Rest
durch p teilbar. Wegen p 6= 2; 5 sind 100 und p teilerfremd, also ist D durch p ohne Rest teilbar (dass D
eine ganze Zahl ist, folgt unmittelbar aus der Tatsache, dass die aik natürliche Zahlen sind).
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Aufgabe 13/71
Man gebe mit Hilfe einer modifizierten Quersumme eine Teilbarkeitsregel für Division durch 17 an,
die für bis zu sechsstellige Zahlen brauchbar ist.

Es lassen sich leicht die folgenden Kongruenzen ausrechnen:

100 ≡ +1 (mod 17), 101 ≡ −7 (mod 17), 102 ≡ −2 (mod 17)
103 ≡ −3 (mod 17), 104 ≡ +4 (mod 17), 105 ≡ +6 (mod 17)

Damit ergibt sich für eine höchstens sechsstellige Zahl z:

z = a5 · 105 + a4 · 104 + a3 · 103 + a2 · 102 + a1 · 10 + a0 =

= 6a5 + 4a4 − 3a3 − 2a2 − 7a1 + a0 (mod 17)

Man multipliziert also die Hunderttausenderstelle mit 6, die Zehntausenderstelle mit 4, die Tausenderstelle
mit -3, die Hunderterstelle mit -2, die Zehnerstelle mit -7 und die Einerstelle mit 1.
Die Summe der Produkte wird auf Teilbarkeit durch 17 (am einfachsten durch Division) überprüft; ihr
Rest ist gleich dem Rest der ursprünglichen Zahl z bei Division durch 17.

Aufgabe 14/71
Es ist zu beweisen, dass jede Primzahl P > 5 von der Form P = p+ k · 30 ist, wobei p eine Primzahl
mit 7 ≤ p ≤ 31 und k eine natürliche Zahl ist (k = 0 eingeschlossen).

Trivial ist, dass man jede natürliche Zahl N ≥ 2 in der Form N = n+ 30k darstellen kann, wobei n eine
natürliche Zahl mit 2 ≤ n ≤ 31 und k eine natürliche Zahl ist (k = 0 eingeschlossen).
Weiter ist jede natürliche Zahl n mit 2 ≤ n ≤ 31, die nicht Primzahl ist, durch 2 oder durch 3 oder durch
5 teilbar.
Ist nun n durch 2 oder durch 3 oder durch 5 teilbar, so ist auch N = n+ 30k durch 2 oder durch 3 oder
durch 5 teilbar, und N ist demnach nicht Primzahl. Daraus folgt sofort: Wenn N = P Primzahl ist, so
ist auch n = p Primzahl.
Die Umkehrung gilt nicht. Für k = p ·m (wobei m eine natürliche Zahl, m > 0 ist) gilt

N = p+ 30k = p+ 30pm = p(1 + 30m)

also ist N durch p und durch (1 + 30m) teilbar, mithin keine Primzahl.
Analog kann man beweisen, dass unter entsprechenden Voraussetzungen jede Primzahl P > 7 in der
Form P = p+ 210k darstellbar ist (mit 11 ≤ p ≤ 211).

Aufgabe 15/71
Die natürlichen Zahlen a und b seien in einem Zahlensystem mit der Basis n dargestellt. Dabei gehe
b aus a dadurch hervor, dass man die erste Ziffer a streicht und am Ende anfügt.
Man ermittle n und die kleinstmöglichen Zahlen a und b aus der Tatsache, dass a − b = 1211 ist
(wobei auch 1211 im System mit der Basis n dargestellt ist).

Hilfssatz: Eine in einem System der Basis n > 2 dargestellte natürliche Zahl x lässt beim Teilen durch
n− 1 denselben Rest wie ihre Quersumme.
Beweis des Hilfssatzes:
Es sei

x =
m∑
k=0

akn
k

Da nk beim Teilen durch n− 1 den Rest 1 lässt, ergibt aknk beim Teilen durch n− 1 den Rest 0 (wenn
ak = n−1 ist) oder den Rest ak. Die Summe der Reste aller Glieder unterscheidet sich also vom Rest der
Summe aller Glieder höchstens um ein Vielfaches von n− 1. Damit folgt unmittelbar die Behauptung.

Aus dem Hilfssatz folgt weiter der Satz: In jedem System der Basis n > 2 ist die Differenz zweier Zahlen,
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die aus den gleichen Ziffern bestehen, stets ohne Rest durch n|l teilbar. Dieser Satz trifft auf die Differenz
unserer Aufgabe zu.
Da 1211 die Quersumme 5 hat und 5 als Primzahl nur durch 5 und durch 1 teilbar ist, kommen nur
n1 − 1 = 1 und n2 − 1 = 5 mit n1 = 2 und n2 = 6 in Frage. Die Basis n1 = 2 scheidet aus, da im
Dualsystem die Ziffer 2 nicht vorkommt. Also ist n = n2 = 6.
Nun ist a = 1211 + b. Die Zahl a muss mindestens vierstellig sein; ihre erste Ziffer kann 1; 2; 3; 4; 5 sein.
Angenommen, sie wäre gleich 1; dann ist die letzte Ziffer von b ebenfalls gleich 1, und die letzte Ziffer von
a (vorletzte von b) ist 2. Fortsetzung des Verfahrens führt auf eine fünfstellige Zahl a, die möglicherweise
nicht die kleinste Zahl a ist.
Mit der Annahme, die erste Stelle von a wäre 2, ergibt sich a = 2043, b = 0432.

Aufgabe 16/71

Gegeben ist ein Quader mit den Kanten AB = a, AD = b und
AE = c (Abbildung). Gesucht sind
a) der Abstand der Ecke A von der Flächendiagonalen BD,
b) der Abstand der Kante AE von der Raumdiagonalen BH.

A

B

C

D

E

F

G

H

A B

CD

P

a) Die Dreiecke ABD und ABP sind nach dem Hauptähnlichkeitssatz
einander ähnlich (Abbildung). Daher gilt AP : AB = AD : BD und
e : a = b :

√
a2 + b2. Daraus folgt sofort

AP = e = ab√
a2 + b2

b) Der Abstand zwischen zwei zueinander windschiefen Geraden ist
gleich der Länge der Strecke, die auf beiden Geraden senkrecht steht. Die
Strecken AE und BH sind Teile zweier zueinander windschiefer Geraden.

Die Strecke AP steht senkrecht auf AE; denn AE verläuft senkrecht zur Ebene ABCD und damit zu
jeder Geraden durch A in dieser Ebene. Die Strecke BH liegt in der Diagonalebene BDHF , die senkrecht
auf der Ebene ABCD steht. Die Strecke AE und die Ebene BDHF sind also parallel zueinander.
Man denke nun eine Parallele zu AE durch P . Sie liegt in BDHF und ist nicht parallel zu BH. Infolge-
dessen hat sie einen Schnittpunkt S mit BH; eine Parallele zu AP durch S schneidet AE in T und steht
senkrecht auf AE und auf BH. Da APST ein Rechteck ist, folgt

ST = AP = e = ab√
a2 + b2

Überraschend an diesem Ergebnis ist, dass es unabhängig von der Kantenlänge c ist.

Aufgabe 17/71
Gesucht sind alle vierstelligen Zahlen mit der folgenden Eigenschaft:
Teilt man die vierstellige Zahl in der Mitte in zwei zweistellige Zahlen, bildet man die Summe dieser
beiden zweistelligen Zahlen und erhebt man die Summe ins Quadrat, so ergibt sich die gesuchte
vierstellige Zahl.

Die gesuchte Zahl sei n2, die beiden zweistelligen Zahlen seien x und y. Dann ist

n2 = 100x+ y = (x+ y)2

nach den Bedingungen der Aufgabenstellung. Daraus ergibt sich

n2 = 100x+ y, n2 = (x+ y)2, n = x+ y
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Durch Subtraktion der dritten von der ersten dieser drei Gleichungen erhält man n2−n = n(n−1) = 99x.
Das Produkt aus zwei aufeinanderfolgenden Zahlen n− 1 und n muss also durch 99 teilbar sein. Das ist
aber dann der Fall, wenn n oder n− 1 durch 99 = 9 · 11 teilbar ist oder wenn n durch 11 und n|1 durch
9 oder wenn n durch 9 und n− 1 durch 11 teilbar sind.
Da n2 vierstellig sein soll, muss n zweistellig sein, d.h. 10 ≤ n ≤ 99. Eine erste Lösung ist also

n = 99, x = 98, y = 1, n2 = 9801

Um weitere Lösungen zu finden, suchen wir unter den zweistelligen Zahlen diejenigen auf, die durch 9
oder durch 11 teilbar sind, und prüfen, ob n − 1 durch 11 bzw. durch 9 teilbar ist. Diese Bedingung
erfüllen aber nur

n = 45, n− 1 = 44, n2 = 2025 mit x = 20, y = 25

n = 55, n− 1 = 54, n2 = 3025 mit x = 30, y = 25

Es gibt also genau drei Zahlen 2025, 3025, 9801 mit der geforderten Eigenschaft.

Aufgabe 18/71
Für welche Werte von t hat das Gleichungssystem

x2n + y2n = 1000 , xn + yn = t

mit natürlichem n positive reelle Lösungen?

Es ist
xn + yn = t =

√
x2n + y2n + 2(xy)n =

√
1000 + 2(xy)n

Bezeichnet man mit Min t bzw. mit Max t den kleinsten bzw. den größten Wert, den t annehmen kann,
so gilt

Min t = Min
√

1000 + 2(xy)n =
√

1000

Max t = Max
√

1000 + 2(xy)n =
√

1000 + 2Max(xy)n

Nun ist bekanntlich das arithmetische Mittel aus nichtnegativen Zahlen nie kleiner als das geometrische
Mittel; daraus folgt

1000 = x2n + y2n ≥ 2
√
x2ny2n = 2(xy)n

Damit ist Max t =
√

1000 + 1000 =
√

2000.
Mithin hat das Gleichungssystem für alle t mit

10
√

10 =
√

1000 < t ≤
√

2000 = 20
√

5

positive reelle Lösungen. Die untere Grenze des Intervalls ist offen, da sie von t nur für x = 0 oder für
y = 0 angenommen werden kann; die obere Grenze wird für x = y angenommen, was unmittelbar aus
der Beziehung zwischen dem arithmetischen Mittel und dem geometrischen Mittel folgt.

Aufgabe 19/71
Zwei Personen A und B vertreiben sich die Zeit mit einem Glücksspiel. Den Einsatz soll derjenige
erhalten, der dabei als erster drei Gewinnpunkte erreicht (bei jedcm Spiel wird ein Gewinnpunkt
vergeben; ein Unentschieden eines Spiels ist unmöglich). Gewisse Umstände erfordern den Abbruch
beim Stande von 1 : 0 für A.
Wie ist der Einsatz unter den beiden Spieler zu verteilen?

Es geht darum, die Wahrscheinlichkeit zu ermitteln, mit der jeder der beiden Spieler gewinnt. Dazu sind
die möglichen Spielausgänge zu analysieren. Ein gangbarer Weg besteht in der Anwendung eines Wahr-
scheinlichkeitsbaumes, der die erforderlichen Überlegungen vereinfacht und auf ein Minimum beschränkt
(Abbildung).
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1 : 0

2 : 0

3 : 0 2 : 1

3 : 1 2 : 2

3 : 2 2 : 3

1 : 1

2 : 1

3 : 1 2 : 2

3 : 2 2 : 3

1 : 2

1 : 3 2 : 2

3 : 2 2 : 3

Daraus geht hervor: Die Chancen für A, nach zwei weiteren Spielen zu gewinnen, betragen 1
4 . Die Chancen

für A, nach drei weiteren Spielen zu gewinnen, sind gleich 2
6 der restlichen 3

4 , also 1
4 .

In 3
6 ·

3
4 = 3

8 der Fälle steht es nach drei weiteren Spielen unentschieden, die Hälfte davon sind für einen
Gewinn von A günstig, so dass A nach dem 4. Spiel noch die Gewinnchance 1

2 ·
3
8 = 3

16 hat. Da die
verschiedenen Möglichkeiten einander ausschließen, ist die Gewinnchance für A:

1
4 + 1

4 + 3
16 = 11

16
Entsprechend errechnet man die Chance für B zu

1
4 ·

3
4 + 2

6 ·
1
2 ·

3
4 = 5

16
Diesen Wert hätte man auch aus 1− 11

16 erhalten können. Der Gewinn ist also im Verhältnis 11 Teile für
A zu 5 Teile für B zu verteilen.

Aufgabe 20/71
Man bestimme alle Lösungen der goniometrischen Gleichung

sin70 x+ 1
13 cos13 x = 1

Für | sin x| = 1 ist sin70 x = 1 und cosx = 0, also auch 1
13 cos13 x = 0. Man erhält damit zunächst die

Lösungen
x0k = π

2 + kπ mit k = ±1;±2;±3; ...

Angenommen, es gäbe noch (wenigstens) eine weitere Lösung x1k. Dann gilt

x1k 6=
π

2 + kπ, | sin x1k| < 1, | cosx1k| ≤ 1

also auch
sin70 x1k < sin2 x1k; 1

13 cos13 x1k < cos2 x1k

Damit ist
sin70 x1k + 1

13 cos13 x1k < sin2 x1k + cos2 x1k = 1

im Widerspruch zur Annahme, die aus der Aufgabenstellung folgt. Die Lösung xk = π
2 + kπ ist also die

einzige.

Aufgabe 21/71
Gesucht sind zwei natürliche Zahlen mit vierstelliger Dezimaldarstellung, die folgende Eigenschaften
haben:

1. Ihre Differenz beträgt 1000.

2. Jede ist das Produkt von genau zwei voneinander verschiedenen Primzahlen.

3. Bei der kleineren der beiden Zahlen ist das Dreifache des einen Faktors um 8 größer, bei der
größeren um 8 kleiner als der andere Faktor.
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Auf Grund der Aufgabenstellung setzen wir

b− a = 1000 (1); a = x(3x+ 8); b = y(3y − 8);

x; y; (3x+ 8); (3y − 8) sind Primzahlen. Durch Einsetzen von a und b in (1) erhält man

y(3y − 8)− x(3x+ 8) = 1000; (x− y)(3y − 3x− 8) = 1000

Man überlegt sich, dass beide Klammern eine gerade Zahl darstellen. Darum setzen wir 1000 = u · v (u; v
gerade) und folgern aus (x+ y)(3y − 3x− 8) = uv das System

x+ y = u; 3y − 3x− 8 = v bzw. 3(x+ y) = 3u; 3(−x+ y) = v + 8

geben. Wir lesen ab 3u > v + 8 und errechnen x = 3u−(v+8)
6 und y = 3u+(v+8)

6 . Als Teiler von 1000
kommen auf Grund der angestellten Überlegungen u = 20; 50; 100; 250; 500 sowie v = 50; 20; 10; 4; 2 in
Betracht, so dass 3u = 60; 150; 300; 750; 1500 und v + 8 = 58; 28; 18; 12; 10 wäre. Daraus folgt

x = 1
3; 122

6 ; 47; 728
6 ; 1480

6
Nur x = 47 genügt den Bedingungen der Aufgabe. Als zugehöriges y bestimmt man y = 53 (Primzahl!).
Nunmehr errechnet man die beiden anderen Faktoren 3x+8 = 149 (Primzahl!), 3y−8 = 151 (Primzahl!).
Damit sind a = 47 · 149 = 7003 , b = 53 · 151 = 8003 die gesuchten Zahlen.

Aufgabe 22/71
Gegeben seien zwei Paare paralleler Geraden mit gleichen Abständen, die auch untereinander parallel
sind. Gesucht ist das Rechteck mit kleinstem Flächeninhalt, dessen vier Eckpunkte auf je einer der
vier Geraden liegt.

a

b

a

A

B

C

Um das gesuchte Rechteck zu finden, zeichnet man zunächst ein beliebi-
ges Rechteck, dessen vier Eckpunkte auf je einer der vier Geraden liegen
(Abbildung).
Die Fläche des Rechtecks wird durch die beiden inneren Geraden in
zwei Dreiecke mit der Höhe a und in ein Parallelogramm mit der
Höhe b zerlegt. Da sich durch eine Lageänderung der Eckpunkte keine
Höhe ändert, hängt die Fläche des Rechtecks unter den geforderten
Bedingungen ausschließlich von der Länge der Strecke AC ab.

Es gilt also, die Lage zu finden, bei der AC minimal wird. Das ist aber (aus Symmetriegründen) offenbar
genau dann der Fall, wenn das Dreieck ABC gleichschenklig ist, d.h., wenn die Seiten des Rechtecks die
parallelen Geraden unter einem Winkel von 45◦ schneiden.

Aufgabe 23/71
Man beweise, dass die Gleichung x4 + y4 = z2 außer der Triviallösung x = y = z = 0 keine Lösung
in natürlichen Zahlen hat.

Angenommen, die gegebene Gleichung hatte Lösungen in natürlichen Zahlen w; y; z. Dann würden x2, y2

und z2 ein pythagoreisches Tripel bilden, und es gälte

x2 = 2mn, y2 = m2 − n2, z = m2 + n2

(oder untereinander getauscht, was in der gegebenen Gleichung keinen wesentlichen Unterschied darstellt).
Aus x2 = 2mn folgt entweder 1.) n = 2k2m, oder 2.) m = 2k2n. Dabei ist k eine natürliche Zahl, k > 0.
Die erste Möglichkeit scheidet aus, da sich daraus y2 = m2 − 4k4m2 < 0 ergibt. Aus 2. folgt dann

x2 = 4k2n2, y2 = 4k4n2 − n2, z = 4k4n2 + n2

also x = 2kn, y = n
√

(2k2)2 − 1, z = n2(4k4 + 1).
Der Ausdruck

√
(2k2)2 − 1 wird aber für kein k ganzzahlig, da es bis auf das Paar (1; 0) kein Paar von

Quadratzahlen gibt, die sich nur um 1 voneinander unterscheiden. Damit ist die Annahme auf einen
Widerspruch geführt und somit widerlegt.
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Aufgabe 24/71
Man bestimme den größten gemeinsamen Teiler von 2n−1 − 1 und 2n+1 − 1 für n = 2; 3; ...!

Angenommen, der größte gemeinsame Teiler von 2n−1 − 1 und 2n+1 − 1 sei p. Dann ist

2n−1 − 1 = pk1; 2n+1 − 1 = pk2; also 2n−1 = pk1 + 1; 2n+1 = pk2 + 1

folglich pk2 + 1 = 4(pk1 + 1) = 4pk1 + 4. Daraus ergibt sich p(k2 − 4k1) = 3. Es ist also entweder p = 1
und k2 − 4k1 = 3 oder p = 3 und k2 − 3k1 = 1.
Es bleibt noch zu untersuchen, für welche n sich p = 1 bzw. p = 3 ergibt. Die Potenz 2m lässt beim Teilen
durch 3 den Rest 1, wenn m gerade, den Rest 1, wenn m ungerade ist (vgl. Aufgabe 35, Heft 2/1962).
Nun sind n − 1 und n + 1 entweder beide gerade, dann folgt p = 3, oder sie sind beide ungerade, dann
folgt p = 1. Damit kann man zusammenfassen: Ist n ungerade, so ist der größte gemeinsame Teiler von
2n−1− 1 und 2n+1− 1 die Zahl p = 3; ist n gerade, so ist der größte gemeinsame Teiler dieser Zahlen die
Zahl p = 1.

Aufgabe 25/71
Man beweise, dass für natürliche Zahlen n die Zahl

zn = 11n+1 + 122n−1

ohne Rest durch 133 teilbar ist!

Wir führen den Beweis durch vollständige Induktion.
1. Die Behauptung ist offensichtlich für n = 1 richtig: z1 = 112 + 121 = 133.
2. Ist die Behauptung für n = k richtig, so ist sie auch für n = k + 1 richtig:

zk+1 = 11k+2 +122k+1 = 11 ·11k+1 +144 ·122k−1 = 11(11k+1 +122k−1)−133 ·122k−1 = 11zk+133 ·122k−1

Der zweite Summand ist auf jeden Fall durch 133 teilbar; der erste Summand ist durch 133 teilbar, wenn
zk durch 133 teilbar ist. In diesem Fall ist also auch zk+1, durch 133 teilbar.
3. Damit ist die Behauptung für jedes n richtig.

Aufgabe 26/71
Es ist zu beweisen, dass die Summe aus den Quadraten der Abstände irgendeines Punktes auf dem
Umkreis von den Eckpunkten eines gleichseitigen Dreiecks unabhängig von der speziellen Lage des
Umkreispunktes konstant ist.

Wir legen das gleichseitige Dreieck mit dem Umkreisradius r so in ein rechtwinklig-kartesisches Koordi-
natensystem, dass der Umkreismittelpunkt M mit dem Ursprung zusammenfällt und der Punkt A auf
der positiven y-Achse liegt. Die Koordinaten der Eckpunkte sind dann

A(0; r), B

(
−11

2
√

3r;−1
2r
)
, C

(
11

2
√

3r;−1
2

)
Ferner sei P ein beliebiger Punkt auf dem Umkreis; für seine Koordinaten (x; y) gilt dann x2 + y2 = r2.
Die Summe aus den Quadraten der Abstände des Punktes P von den Eckpunkten A; B; C errechnet
man darin aus

x2 + (y − r)2 +
(
x+ 1

2
√

3r
)2

+
(
y + 1

2r
)2

+
(
x− 1

2
√

3r
)2

+
(
y + 1

2r
)2

= 6r2

Die Summe ist also konstant und nur vom Umkreisradius abhängig. Wird mit a die Seite des gleichseitigen
Dreiecks bezeichnet, so gilt bekanntlich r2 = 3a2 (was unmittelbar aus dem Kosinussatz folgt). Damit
kann man für die Summe auch 6r2 = 2a2 setzen.
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Aufgabe 27/71
Man beweise: Für keine natürliche Zahl n gibt es ein Paar (x; y) natürlicher Zahlen so, dass gilt

x2 + y2 = (n+ 4)!− 1

Wir führen einen Widerspruchsbeweis. Angenommen, für irgendein n gäbe es ein solches Paar (x; y), das
die Gleichung

x2 + y2 = (n+ 4)!− 1

erfüllt. Nun ist (n+4)! ≡ 0 (mod 4), da (n+4)! wegen n > 0 den Faktor 4 enthält. Also ist (n+4)!−1 ≡ 3
(mod 4). Nun lässt das Quadrat einer natürlichen Zahl beim Teilen durch 4 stets einen der Reste 0 und
1. Lässt nämlich die Zahl selbst den Rest 0 oder den Rest 2, so ist der Rest des Quadrats 0; lässt sie den
Rest 1 oder 3, so ist der Rest des Quadrats 1. Daher kann die Summe x2 + y2 beim Teilen durch 4 nur
einen der Beste 0; 1; 2 haben. Das ist aber ein Widerspruch zu (n+ 4)!− 1 ≡ 3 (mod 4).
Somit gibt es tatsächlich kein n mit den angegebenen Eigenschaften.

Aufgabe 28/71
In einem Rechteck mit den Seitenlängen a = 6 und b = 10 seien 16 Punkte beliebig verteilt. Man
beweise: Mindestens 2 dieser 16 Punkte haben einen Abstand voneinander, der kleiner als 2

√
2 ist!

Das gegebene Rechteck kann man in 15 Quadrate mit der Seitenlänge 2 unterteilen. Da 16 Punkte im
Rechteck verteilt sind, liegen in mindestens einem dieser 15 Quadrate 2 Punkte. Der Abstand dieser
beiden Punkte voneinander ist kleiner als die Quadratdiagonale 2

√
2.

Aufgabe 29/71
Es ist zu beweisen: Wenn α+ β + γ = π

2 ist, so ist tanα tan β + tan β tan γ + tanα tan γ = 1.

Aus α+ β + γ = π
2 folgt α+ β = π

2 − γ und damit

tanα · tan β + tan β · tan γ + tan γ · tanα = tanα · tan β + tan γ(tanα+ tan β) =

= tanα · tan β + tan
(π

2 − α− β
)

(tanα+ tan β) = tanα · tan β + cot (α+ β)(tanα+ tan β) =

= tanα · tan β + 1− tanα tan β
tanα+ tan β (tanα+ tan β) = tanα tan β + 1− tanα tan β = 1

wobei von dem Additionstheorem gebraucht wurde:

cot(x+ y) = cotx cot y − 1
cotx+ cot y = 1− tan x tan y − 1

tan x+ tan y

Aufgabe 30/71
Gegeben seien die Strecken a und b. Man beweise, dass es möglich ist, mit Zirkel und Lineal aus
ihnen die Strecke

c = 4
√
a4 + b4

zu konstruieren und man gebe eine kurze Konstruktionsbeschreibung!

Der geforderte Beweis ist geliefert, wenn der Ausdruck für c derart umgeformt wurde, dass höchstens
zweite Potenzen und höchstens zweite Wurzeln auftreten. Es gilt

c = 4
√
a4 + b4 =

√√
a4 + b4 =

√√
a4b2

b2
+ b4a2

a2 =

√√√√√√ab
√√√√(a√ab

b

)2

+
(
b
√
ab

a

)2

212



2.11 Aufgaben und Lösungen 1971

Konstruktionsbeschreibung: Die Strecke d =
√
ab konstruiert man mit Hilfe des Höhensatzes als Höhe im

rechtwinkligen Dreieck mit den Hypotenusenabschnitten a und b. Die Strecken x = ad
b und y = bd

a erhält
man über die Proportionen x : a = d : b und y : b = d : a unter Verwendung des Strahlensatzes.
Aus x und y konstruiert man nach dem Satz des Pythagoras die Strecke z =

√
x2 + y2 als Hypotenuse im

rechtwinkligen Dreieck mit den Katheten x und y. Schließlich konstruiert man noch c = 4
√
a4 + b4 =

√
dz

mit Hilfe des Höhensatzes als Höhe im rechtwinkligen Dreieck mit den Hypotenusenabschnitten d und z.

Aufgabe 31/71
Es ist zu beweisen, dass bei pythagoreischen Zahlentripeln die mittlere Zahl niemals geometrisches
Mittel der beiden anderen Zahlen sein kann.

Angenommen, es existiere ein Tripel (a; b; c) natürlicher Zahlen mit a2 + b2 = c2 und b =
√
ac. Dann gilt

a2 + ac = c2 und wegen c 6= 0 auch(a
c

)2
+ ac

c2
= 1 also

(a
c

)2
+ a

c
− 1 = 0

woraus
a

c
= −1

2 ±
1
2
√

5

folgt. Das heißt aber, das Verhältnis a : c ist nicht rational im Widerspruch zu der Annahme, a und c
wären natürliche Zahlen und demnach das Verhältnis a : c rational.

Aufgabe 32/71
Es sei m eine natürliche Zahl. Ist die Zahl z = (m− 1)! + 1 durch m ohne Rest teilbar, so ist m eine
Primzahl. Dieser Satz ist zu beweisen.

Wir führen den Beweis indirekt. Angenommen, z = (m− 1)! + 1 sei durch m ohne Rest teilbar, aber m
sei keine Primzahl. Dann gibt es wenigstens zwei natürliche Zahlen n1 und n2 mit 1 < n1;n2 < m so,
dass n1n2 = m ist.
Demnach ist (m−1)! durch jede dieser Zahlen ohne Rest teilbar (weil sie unter den Zahlen 2; 3; 4; ...;m−1
zu finden sind und weil

(m− 1)! =
m−1∏
i=1

i

ist). Ferner ist (m−1)!+1 durch jede dieser Zahlen ohne Rest teilbar, weil m = n1n2 Teiler von (m−1)!+1
ist. Dann muss aber auch die Differenz [(m− 1)! + 1]− (m− 1)! = 1 durch jede dieser Zahlen ohne Rest
teilbar sein, woraus folgt, dass n1;n2 = 1 ist, im Widerspruch zu 1 < n1;n2. Damit ist die Annahme
falsch und folglich die Behauptung richtig.

Aufgabe 33/71
Unter welchen Bedingungen existiert zu einem Tetraeder eine Kugel, die sämtliche Tetraederkanten
berührt (Verlängerungen ausgeschlossen)?

Die vier Eckpunkte des Tetraeders seien P1, P2, P3 und P4, die Länge der Kante PiPj (mit i, j = 1; 2; 3; 4)
sei aij . Die gesuchte Kugel schneidet (falls sie existiert) die Seitenflächen des Tetraeders in den Inkreisen
dieser Dreiecke. Die Inkreise berühren einander paarweise in je einem Kantenpunkt, der auf der Kante
PiPj mit Bij bezeichnet wird. Die Länge des Abschnitts P1B12 berechnet man

1. im Dreieck P1P2P3 zu P1B12 = a12+a13+a23
2 − a23

2. im Dreieck P1P2P4 zu P1B12 = a12+a14+a24
2 − a24

Gleichsetzung der rechten Seiten ergibt nach einigen Umformungen a13 + a24 = a14 + a23. Entsprechend
erhält man durch Berechnung der Strecke P1B13: a12 + a34 = a14 + a23.
Fasst man beide Gleichungen zusammen, so erhält man die notwendige Bedingung für die Existenz einer
sämtliche Tetraederkanten berührenden Kugel:

a12 + a34 = a13 + a24 = a14 + a23
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Die drei Summen der Längen von je zwei einander nicht schneidenden Kanten müssen sämtlich einander
gleich sein. Es ist nun noch zu zeigen, dass die Erfüllung dieser Bedingung auch hinreichend ist. Dies folgt
jedoch unmittelbar aus der Tatsache, dass alle durchgeführten Schlüsse und Umformungen umkehrbar
sind.

Aufgabe 34/71
Man beweise: Wenn

1
b+ c

,
1

c+ a
,

1
a+ b

drei aufeinanderfolgende Glieder einer arithmetischen Folge erster Ordnung sind, dann sind auch
a2, b2, c2 aufeinanderfolgende Glieder einer solchen Folge.

Nach Voraussetzung gilt
1

c+ a
=

1
b+c + 1

a+b
2

Daraus folgt durch äquivalente Umformung

2
c+ a

= a+ b+ b+ c

ab+ b2 + ac+ bc
→ 2ab+ 2b2 + 2ac+ 2bc = 2ac+ 2bc+ c2 + a2 + 2ab→ b2 = a2 + c2

2

Das heißt aber, a2, b2 und c2 sind aufeinanderfolgende Glieder einer arithmetischen Folge 1. Ordnung.

Aufgabe 35/71
Gegeben ist ein Kreis mit zwei aufeinander senkrecht stehenden, einander schneidenden Sehnen. Der
Schnittpunkt teilt die Sehnen in je zwei Abschnitte. Es ist zu beweisen: Sind a, b, c, d diese Abschnitte,
so ist (wobei r der Radius des gegebenen Kreises ist)

a2 + b2 + c2 + d2 = 4r2

x

y

A B

C

D

P

O

Ich zeichne den Kreis mit den Sehnen so in ein rechtwinkliges
Koordinatensystem, dass der Mittelpunkt des Kreises mit
dem Nullpunkt zusammenfällt und die Sehnen jeweils par-
allel zu einer Achse verlaufen (Abbildung). Für jeden Punkt
des Kreises gilt

x2 + y2 = r2, x = ±
√
r2 − y2, y = ±

√
r2 − x2

Dann gilt auch

AP = a = x+
√
r2 − y2, BP = b =

√
r2 − y2 − x

CP = c =
√
r2 − x2 − y, DP = d = y +

√
r2 − x2

Damit folgt nach kurzer Rechnung a2 + b2 + c2 + d2 = 4r2.

Koordinaten: A(−
√
r2 − y2; y), B(

√
r2 − y2; y), C(x;

√
r2 − x2), D(x;−

√
2 − x2), P (x; y)

Aufgabe 36/71
Auf einer Drehmaschine mit zentrisch spannendem Dreibackenfutter soll an einem kreisrunden Teil
mit dem Durchmesser d ein exzentrischer Ansatz mit kreisrundem Querschnitt gedreht werden.
Die Achse des Ansatzes soll zur Achse des Teils um e vorsetzt sein (Abbildung).

Damit das Teil exzentrisch eingespannt wird, soll unter eine Spannbacke ein Metallzwischenstück
der Dicke z gelegt werden. Man bestimme z als Funktion von d und e: f = f(d; e)!
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z

d

e

60◦

60◦

z

d M2
M1

r2

r1

x1

y1

y

e

x

60◦

60◦

Wir stellen den Sachverhalt in einem
rechtwinklig-kartesischen Koordinaten-
system dar, wobei die Drehachse die
Zeichenebene im Nullpunkt des Koordi-
natensystems durchstoße; die Spannbacke,
die das Zwischenstück fasst, liege (ohne
Beschränkung der Allgemeingültigkeit) auf
der negativen x-Achse (Abbildung). Dann
liegt der Mittelpunkt M1 des Gesamtteils
auf der positiven x-Achse im Abstand e
vom Nullpunkt. Aus der Zeichnung erkennt
man, dass

z = r2 − r1 + e

ist, wobei r2 der Spannbackenabstand vom
Zentrum ist, r1 = d

2 . Es gilt also, r2 zu be-
stimmen. Dazu stehen die folgenden Glei-
chungen zur Verfügung:

K1 : (x1 − e)2 − y2
1 = r2

1 (1)
K2 : x2

1 + y2
1 = r2

2 (2)
y1

x1
= tan 60◦ (3)

Aus (3) folgt y1 = x1
√

3. Setzt man dies in (1) und (2) ein, so erhält man nach kurzer Rechnung

4x2
1 − 2x1e+ e2 − r2

1 = 0 (1a)
r2 = 2x1 (2a)

Aus (1a) ergibt sich
x1 = e

4 ±
1
4

√
4r2

1 − 3e2

Damit folgt
r2 = 1

2

(
e+

√
d2 − 3e2

)
(da r2 >

1
2e ist, entfällt der negative Wurzelwert). Folglich ist z = 1

2 (3e− d+
√
d2 − 3e2).

Zusatzbemerkung: Für ein auf diese Weise herzustellendes Teil muss r1 = d
2 > e sein.
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2.12 Aufgaben und Lösungen 1972

Aufgabe 1/72
Das Symbol ∗ kennzeichne eine Operation, die für natürliche Zahlen x; y folgendermaßen definiert
sei: x ∗ y = (x+ y)2.
Es ist zu prüfen, ob

a) die Operation kommutativ ist, d.h., ob gilt x ∗ y = y ∗ x,

b) die Operation assoziativ ist, d.h., ob gilt (x ∗ y) ∗ z = x ∗ (y ∗ z),

c) die Operation distributiv bezüglich der Addition ist, d.h. ob gilt x ∗ (y + z) = (x ∗ y) + (x ∗ z),

d) für die Operation ein neutrales Element existiert, d.h., ob es ein Element e gibt so, dass x ∗ e =
e ∗ x = x für jedes x und e eine natürliche Zahl ist.

Zu a) Es ist (x ∗ y)(x+ y)2 = (y + x)2 = y ∗ x, die Operation ist also kommutativ.
Zu b) Es ist

(x ∗ y) ∗ z = (x+ y)2 ∗ z = (x2 + 2xy + y2 + z2)2

und x ∗ (y ∗ z) = x ∗ (y + z)2 = (x2 + y2 + 2yz + z2)2

Man erkennt, dass im allgemeinen (x ∗ y) ∗ z 6= x ∗ (y ∗ z) ist. Die Operation ist also nicht assoziativ.
Zu c) Es ist

x ∗ (y + z) = (x+ y + z)2 und (x ∗ y) + (x ∗ z) = (x+ y)2 + (x+ z)2

Durch Ausrechnen der beiden rechten Seiten und Vergleich ergibt sich, dass die Operation nicht distributiv
bezüglich der Addition ist.
Zu d) Angenommen, es gäbe ein Element e so, dass x ∗ e = (x + e)2 = x für jedes x gilt. Dann müsste
die Gleichung x2 + 2xe+ e2 = x mit den Lösungen e1;2 = −x±

√
x gelten. Man erkennt aber sofort, dass

e von x anhängt und zudem nicht natürlich ist. Es existiert also kein neutrales Element.

Aufgabe 2/72
Aus drei Strecken mit den Maßzahlen a, b und c (a, b, c > 0) sei ein Dreieck konstruierbar. Man bewei-
se, dass man dann auch aus den Strecken mit den Maßzahlen a

a+1 ,
b
b+1 ,

c
c+1 ein Dreieck konstruieren

kann.

Es genügt der Nachweis, dass aus der Gültigkeit der Dreiecksungleichungen für a, b und c die Gültigkeit
der Dreiecksungleichungen für a

a+1 ,
b
b+1 ,

c
c+1 folgt. Nun ist

a

a+ 1 + b

b+ 1 = a+ b+ 2ab
1 + a+ b+ ab

= c

c+ 1 ·
(a+ b+ 2ab)(c+ 1)
(1 + a+ b+ a+ b)c >

>
c

c+ 1 ·
(a+ b)c+ abc+ a+ b+ 2ab

(a+ b)c+ abc+ c
>

c

c+ 1 ·
(a+ b)c+ abc+ c

(a+ b)c+ abc+ c
= c

c+ 1
(die letzte Ungleichung gilt wegen a+ b > c). Durch zyklische Vertauschung folgt auf die gleiche Weise

a

a+ 1 + c

c+ 1 >
b

b+ 1 und b

b+ 1 + c

c+ 1 >
a

a+ 1

Aufgabe 3/72
Gegeben seien die vier Scheitelpunkte einer Ellipse. Man konstruiere unter ausschließlicher Verwen-
dung von Zirkel und Lineal das der Ellipse umbeschriebene Quadrat.

Vorüberlegung: Aus Symmetriegründen müssen die Eckpunkte des gesuchten Quadrates auf den Sym-
metrieachsen der Ellipse liegen. Da man diese allein mit dem Lineal durch Verbinden der beiden Haupt-
scheitelpunkte bzw. der beiden Nebenscheitelpunkte finden kann, genügt es, den Radius eines Kreises zu
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finden, dessen Durchmesser Diagonale des gesuchten Quadrates ist.

Behauptung: Die halbe Diagonale des gesuchten Quadrates (der Radius des Kreises) ist gleich dem Ab-
stand von Haupt- und Nebenscheitel der Ellipse.
Beweis: Es seien a und b die beiden Halbachsen der Ellipse mit der Gleichung

b2x2 + a2y2 = a2b2

y = r − x ist die Gleichung einer Geraden, die im Punkt r die y-Achse schneidet und um 45◦ gegen die
x-Achse geneigt ist. Bestimmt man r so, dass diese Gerade Tangente an die Ellipse wird, so erhält man
nach Einsetzen der Geradengleichung in die Ellipsengleichung eine Doppellösung für x:

b2x2 + a2(r − x)2 = a2b2 → x1;2 = a2r

a2 + b2
±

√
a4r2 − a2(r2 − b2)(a2 + b2)

(a2 + b2)2

Damit sich tatsächlich eine Doppellösung ergibt, muss die Diskriminante null werden, d.h., es muss

a2r2 − (r2 − b2)(a2 + b2) = a2b2 − b2r2 + b4 = 0

r2 = a2 + b2 ; r =
√
a2 + b2

sein. Das aber ist die Behauptung.
Konstruktion: Man verbinde die Hauptscheitelpunkte durch eine Gerade und die Nebenscheitelpunkte
durch eine Gerade. Man schlage den Kreis um den Schnittpunkt der beiden Geraden, der den Abstand
zweier benachbarter Scheitelpunkte als Radius hat. Die Schnittpunkte dieses Kreises mit den beiden
Geraden sind die Eckpunkte des gesuchten Quadrates.

Aufgabe 4/72
Gegeben seien zwei einander schneidende Geraden g1 und g2, weiterhin auf g1 ein Punkt A. Gesucht
ist der Punkt X auf g1, für den der Abstand zur Geraden g2 gleich dem Abstand zu A ist.

B C

A
X

g2

g1

Angenommen, der Punkt X sei bereits gefunden (Abbil-
dung).
Der Schnittpunkt der in A auf g1 errichteten Senkrechten
mit g2 sei C, der Fußpunkt des Lotes von X auf g2
sei B. Dann gilt XA = XB, (Forderung der Aufgabe),
]XBC = ]XAC, (nach Konstruktion) XC = XC. Das
heißt, M BXC ∼=M AXQ, also AC = BC.

Damit ist die Konstruktion klar: Man errichtet in A die Senkrechte auf g1, die g2 in C schneidet, trägt
auf g2 von C aus in beiden Richtungen die Strecke CB = CA ab und errichtet in B die Senkrechte auf g2,
deren Schnittpunkt mit g1 der gesuchte Punkt X ist. Oder man halbiert die bei C von der Senkrechten
auf g1 und von g2 gebildeten Winkel, der Schnittpunkt der Winkelhalbierenden mit g1 ist der gesuchte
Punkt X (es existieren 2 Punkte X).

Aufgabe 5/72
Man bestimme alle natürlichen Zahlen n mit den folgenden Eigenschaften:

1. Die Zahl n ist das Produkt von genau drei verschiedenen Primzahlen, die je größer als 10 sind.

2. Die Zahl n kann man so als Produkt zweier natürlicher Zahlen darstellen, dass deren Summe
einmal 600, ein zweites Mal 240 ist.

Die drei Primfaktoren von n seien p1, p2 und p3, wobei gilt n = p1p2p3 und p1 6= p2, p2 6= p3, p1 6= p3,
p1; p2; p3 > 10. Dann lässt sich n sogar auf drei verschiedene Weisen als Produkt zweier natürlicher Zahlen
darstellen:

n = (p1p2)p3 = (p2p3)p1 = (p1p3)p2
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Ohne Beschränkung der Allgemeingültigkeit setzen wir (p1p2) + p3 = 600 und (p2p3) + p1 = 240.
Dann ist p1 = 240− p2p− 3, woraus wegen p1; p2; p3 > 10 sofort folgt p2; p3 < 23. Für p2 und p3 kommen
also nur die Primzahlen 11, 13, 17 und 19 in Frage. Da p1 ≥ 11 ist, folgt p2p3 ≤ 229 oder p2 ≤ 229

p−3 .
Für p3 = 19 erhält man daraus p2 ≤ 12, also p2 = 11 und damit p1 = 31; diese Werte befriedigen aber
nicht die zweite der gegebenen Gleichungen: (p1p2) + p3 = 360 6= 600.
Aus p3 = 17 folgt auf dieselbe Weise p2 ≤ 13, also p2 = 13 oder p2 = 11 mit p1 = 19 bzw. p1 = 53.
Durch Einsetzen in die Gleichung (p1p2) + p− 3 = 600 stellt man fest, dass p1 = 53; p2 = 11; p3 = 17 eine
Lösung ist.
Analog prüft man p3 = 13 (ergibt keine Lösung) und p3 = 11, wobei sich als zweite Lösung p1 = 31; p2 =
19; p3 = 11 ergibt. Da der Lösungsweg weitere Lösungen ausschließt, sind dies die einzigen. Die gesuchten
Zahlen sind also n1 = 53 · 11 · 17 = 9911 und n2 = 31 · 19 · 11 = 6479.

Aufgabe 6/72
In der Gleichung

cot(m cos (2πx)) =
√

3

ist der Koeffizient m > 0 so zu bestimmen, dass die Gleichung die Lösungen x1;2 = ± 1
6 hat. Ferner

sind alle übrigen Lösungen der Gleichung zu bestimmen.

Setzt man x1;2 = ± 1
6 in die gegebene Gleichung ein, so folgt

cot
(
m cos π3

)
=
√

3

da cos (−x) = cosx ist. Daraus erhält man weiter wegen cos π3 = 1
2 → cot m2 =

√
3, also m = π

3 .
Die Gleichung (1) nimmt damit die Gestalt

cot
(π

3 cos (2πx)
)

=
√

3

an. Aus ihr folgt
π

3 cos (2πx) = arccot(
√

3) = π

6 + kπ

mit k = 0;±1;±2; .... Durch Multiplikation mit 3
π ergibt sich damit cos (2πx) = 3k + 1

2 .
Wegen | cos (2πx)| ≤ 1 muss k = 0 sein, d.h. cos (2πx) = 1

2 , also 2πx = arccos 1
2 = ±π3 + 2nπ mit

n = 0;±1;±2; .... Damit folgt schließlich x = ± 1
6 + n.

Aufgabe 7/72
Es seien A, B, C und D vier verschiedene Punkte der Ebene, und es sei AB+CD = BC+AD. Man
beweise, dass die Strecken AB, BC, CD, DA ein nicht überschlagenes Viereck bilden.

Der Beweis wird indirekt geführt. Angenommen, das Viereck sei überschlagen, o.B.d.A. schneiden einan-
der die Seiten AD und BC in X. Nach der Dreiecksungleichung gilt dann AB + CD < (AX + DX) +
(BX + CX) = AD +BC im Widerspruch zur Voraussetzung. Damit ist die Behauptung bewiesen.

Aufgabe 8/72
Man bestimme alle reellen Zahlen a, für die die Gleichung

sin x+ sin (x+ a) + sin (x+ 2a) = 0

bei beliebigem reellem x gilt.

Durch Anwendung der Additionstheoreme wird die gegebene Gleichung in

sin (x+ a) · (1 + 2 cos a) = 0

äquivalent umgeformt. Da sin x+ a = 0 nicht für beliebiges reelles x gilt, muss 1 + 2 cos a = 0 sein, wenn
die Gleichung erfüllt sein soll. Daraus folgt sofort

cos a = −0,5→ a1 = 2
(

1
3 + k

)
π; a2 = 2

(
2
3 + k

)
π
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(wobei k eine beliebige ganze Zahl ist). Die Probe bestätigt die Richtigkeit.
Bemerkung: Diese Gleichung findet beim Dreiphasen-Wechselstrom ihre praktische Anwendung.

Aufgabe 9/72
Es seien a und b reelle Zahlen mit a 6= 0, |a| 6= 1. Gesucht sind alle Funktionen f(x), für die für jedes
reelle x 6= 0 die Beziehung gilt:

ax · f(x) + 1
ax
· f
(

1
x

)
= b

Da die Beziehung für alle reellen x 6= 0 gelten soll, muss sie auch für 1
x gelten:

a

x
· f( 1

x
) + x

a
· f(x) = b

Demnach ist

a

x
· f( 1

x
) + x

a
· f(x) = ax · f(x) + 1

ax
· f( 1

x
)→

[
xf(x)− 1

x
f( 1
x

)
]
· (a− 1

a
) = 0

Wegen |a| 6= 1 ist a− 1
a 6= 0 Damit folgt xf(x) = 1

xf( 1
x ). Setzt man dies in die geforderte Bedingung ein,

so erhält man
ax · f(x) + x

a
· f(x) = b→ f(x) = 1

x
· ab

a2 + 1
Eine Probe bestätigt die Richtigkeit des Ergebnisses.

Aufgabe 10/72
Man beweise, dass für zwei verschiedene reelle Zahlen x und y stets die Ungleichung gilt:

(cosx− cos y)2 + (sin x− sin y)2 < (x− y)2

Nach den Additionstheoremen gilt

(cosx− cos y)2 + (sin x− sin y)2 = (cos2 x+ sin2 x) + (cos2 y + sin2 y)− 2(cosx cos y + sin x sin y) =

= 2− 2 cos (x− y) = 4 sin2 x− y
2

(letzteres wegen 1 − cosx = 2 sin2 x
2 ). Nun hat die sin-Funktion die Eigenschaft | sin x| < |x| für x 6= 0;

wegen x 6= y ist x− y 6= 0 und es folgt

4 sin2 x− y
2 < 4

(
x− y

2

)2
= (x− y)2

Damit ist der Beweis geführt.

Aufgabe 11/72
Gesucht sind alle geometrischen Folgen {ak} mit ak = a1q

k−1, die den folgenden vier Bedingungen
genügen:
1. Die Glieder ak sind natürliche Zahlen.
2. Das 1. Glied a1 ist einstellig.
3. Das 11. Glied a11 ist sechsstellig.
4. Das 15. Glied a15 ist siebenstellig.

Eine geometrische Folge ist durch a1 und q (bis auf die Anzahl der Glieder) vollständig bestimmt. Es
genügt also, a1 und q zu ermitteln.
Aus der Bedingung 1 folgt sofort, dass auch q eine natürliche Zahl sein muss. Aus den Bedingungen 2
bis 4 ergibt sich zunächst, dass q > 1, also q ≥ 2 ist. Nach dem Bildungsgesetz für geometrische Folgen
ist ak

a1
= qk−1. Setzt man in diese Beziehung das größtmögliche a15 und das kleinstmögliche a1 ein, so

erhält man eine obere Grenze für q14; entsprechend ergibt sich eine untere Grenze für q14, wenn man das
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kleinstmögliche a15 und das größtmögliche a1 einsetzt.
Wegen 1 ≤ a1 ≤ 9 und 1000000 ≤ a15;≤ 9999999 ergibt sich für q14 damit die Abschätzung

9999999
1 ≥ q14 ≥ 1000000

9

woraus mit Hilfe logarithmischer Rechnung 3,2 ≥ q ≥ 2,3, also q = 3 folgt. Damit wird

a15 = a1 · q14 = a1 · 314 = 4782969a1

Damit a15 siebenstellig ist, muss demnach a1 entweder gleich 1 oder gleich 2 sein. Wäre nun a1 = 1, so
ergäbe sich a11 = 118098, also fünfstellig im Widerspruch zur Bedingung 3. Mit a1 = 2 dagegen ergibt
sich a11 = 118098.
Es gibt also genau eine derartige geometrische Folge mit a1 = 2, q = 3.

Aufgabe 12/72
Man untersuche, ob es eine reelle Zahl x gibt, mit

x =

√
lim
n→∞

(
1
n3 + 2

n2 −
1
n

)
· cot 1

n

Eine reelle Zahl x mit der geforderten Eigenschaft existiert genau dann, wenn

0 ≤ lim
n→∞

(
1
n3 + 2

n2 −
1
n

)
cot 1

n
<∞

gilt. Wir untersuchen also den Grenzwert. Dazu setzen wir 1
n = z, also n = 1

z . Mit n → ∞ geht z → 0.
Der Grenzwert nimmt damit die Gestalt an

lim
z→0

(z3 + 2z3 − z) cot z

Wir formen um:
lim
z→0

(z3 + 2z3 − z) cot z = lim
z→0

(z2 + 2z2 − 1) z

sin z cos z =

= lim
z→0

(z2 + 2z2 − 1) · lim
z→0

z

sin z · lim
z→0

cos z = (−1) · 1 · 1 = −1

Die (zugleich notwendige und hinreichende) Bedingung, dass der Grenzwert eine nichtnegative reelle Zahl
ist, ist also nicht erfüllt. Das heißt aber, es gibt keine reelle Zahl x mit der geforderten Eigenschaft.

Aufgabe 13/72
Gegeben sei das Dreieck ABC mit den Winkelhalbierenden AM und BN , deren Schnittpunkt P sei.
Von dem Dreieck ABC sei bekannt, dass AP = MP

√
3 und NP = BP (

√
3 − 1) ist. Gesucht sind

die Winkel des Dreiecks.

B

C A

M N
P

c

b

a

Es sei AB = c, BC = a, CA = b. Nach einem bekannten
Satz verhalten sich zwei Seiten eines Dreiecks zueinander wie
die von der Winkelhalbierenden auf der dritten Seite erzeug-
ten anliegenden Abschnitte. Demnach gilt im Dreieck ABM
(Abbildung)

c

BM
= AP

PM
=
√

3 ; BM = c√
3

Analog gilt für das Dreieck ABN : AN = c(
√

3−1). Im Dreieck
ABC ist nach demselben Satz

c

a
= AN

b−AN
; c

b
= BM

a−BM
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Setzt man in diese Gleichungen die oben für AN und BM gefundenen Werte ein, so erhält man nach
Auflösung a = c

√
3, b = 2c, woraus sofort folgt, dass a2 + b2 = c2 ist, d.h., das Dreieck ABC ist bei B

rechtwinklig. Dann ist aber

sinα = a

b
=
√

3
2 und damit α = π

3 ;β = π

6

(wobei mit α und β die Dreieckswinkel bei Abzw. B bezeichnet wurden).

Aufgabe 14/72
Gegeben seien vier Kreise mit gleichen Radien, die einander sämtlich in einem Punkt S schneiden.
Je zwei dieser Kreise heißen ”benachbart”, wenn bei Drehung eines Strahls um S ihre Mittelpunkte
unmittelbar nacheinander von dem Strahl überstrichen werden.
Man beweise: Die vier Schnittpunkte je zweier benachbarter Kreise bilden die Eckpunkte eines Par-
allelogramms.

B

C

A

D

S

Da die Radien der vier Kreise gleich sind, gilt nach dem
Peripheriewinkelsatz (Bezeichnungen gemäß Abbildung)

]ADS = ]ABS; ]SBC = ]CDS;

]DAS = ]DCS; ]SAB = ]SCB.

Daraus folgt:

]ABC = ]ABS + ]SBC = ]ADS + ]CDS = ]ADC
]BCD = ]SBC + ]DCS = ]SAB + ]DAS = ]DAB

Im Viereck ABCD sind also gegenüberliegende Winkel einander gleich. Das heißt aber nichts anderes,
als dass das Viereck ABCD ein Parallelogramm ist.

Aufgabe 15/72
Man beweise: Ist p eine von 2 verschiedene Primzahl und m eine beliebige natürliche Zahl, so ist die
Summe ohne Rest durch pm teilbar.

z =
pm∑
k=1

kp

Der Beweis ist geführt, wenn man die Summe so in Teilsummen zerlegen kann, dass für jeden Teilsum-
manden die Teilbarkeit durch pm sichtbar wird. Wegen p 6= 2, p Primzahl, ist pm sicher ungerade. Die
Zahl z setzt sich also aus einer ungeraden Anzahl von Summanden zusammen. Der letzte Summand (pm)p
ist trivialerweise durch pm teilbar.
Die verbleibende Anzahl der Summanden ist gerade; man kann sie paarweise zu Teilsummen zusammen-
fassen:

z =
pm∑
k=1

kp =

pm−1
2∑

k=1
[kp + (pm − k)p] + (pm)p

(Dabei wurden das erste und das vorletzte, das zweite und das drittletzte, ... Glied zusammengefasst.)
Man erkennt nun sofort, dass jeder Summand der letzten Summe durch pm teilbar ist; potenziert man
nämlich aus, so heben sich die Glieder kp auf, und jedes andere Glied enthält den Faktor pm in wenigstens
erster Potenz. Damit ist der Beweis geführt.

Aufgabe 16/72
In der Ebene sei die Strecke AB = 1 gegeben. Man finde die Menge aller der Punkte M , für die sich
die Längen der Strecken MA und MB durch ganze Zahlen ausdrücken lassen.
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Jeder Punkt M der gesuchten Menge bildet mit den Punkten A und B ein (möglicherweise entartetes)
Dreieck. Es gilt also die Dreiecksungleichung |MA − MB| ≤ AB = 1 (wobei das Gleichheitszeichen
genau dann gilt, wenn das Dreieck entartet ist). Da |MA − MB| nichtnegativ ist und entsprechend
der Aufgabenstellung nichtnegativ sein soll, sind nur die beiden Fälle möglich |MA − MB| = 0 und
|MA−MB| = 1.
Im ersten Fall ist MA = MB, woraus folgt, dass M auf der Mittelsenkrechten der Strecke AB liegt (mit
ganzzahligem Abstand zu A und B). Im zweiten Fall liegt M auf der Geraden durch A und B (ebenfalls
mit ganzzahligem Abstand zu A und B). Die gesuchte Menge enthält also zweifach abzählbar unendlich
viele Punkte.

Aufgabe 17/72
Gegeben sei ein Kreis, dessen Mittelpunkt unbekannt ist. Gesucht sind zwei beliebige, aber gleich-
lange Sehnen dieses Kreises ohne gemeinsamen Punkt, wobei zur Konstruktion nur das Lineal (ohne
Maßstab!) und ein einziger Zirkelschlag zugelassen sind.

Man schlägt mit dem Zirkel einen Hilfskreis um einen Punkt
außerhalb des gegebenen Kreises, der den gegebenen Kreis in
zwei Punkten S1 und S2 mit S1 6= S2 schneidet (Abbildung).

Auf dem außerhalb des gegebenen Kreises gelegenen Bogen
des Hilfskreises wählt man zwei beliebige Punkte A und B
mit A 6= B derart, dass die Geraden durch diese Punkte
und durch S1 bzw. S2 den gegebenen Kreis außerhalb des
Hilfskreises schneiden; die Schnittpunkte seien A1 und B1
(Geraden durch S1) bzw. A2 und B2 (Geraden durch S2). Die
Sehnen A1B1 und A2B2 sind gleichlang. A

B
S2

S1

A1

A2

B1

B2

Beweis: Es ist α = ]A1S1B1 = ]AS1B (Scheitelwinkel), α = ]AS2B (Peripheriewinkel über AB!), α =
]A2S2B2 (Scheitelwinkel). Also sind die Peripheriewinkel über den Sehnen A1B1 und A2B2 gleichgroß;
dann sind aber auch die Sehnen gleichgroß (Umkehrung des Peripheriewinkelsatzes).

Aufgabe 18/72
Man berechne die Summen

n∑
k=0

(
n

2k

)
und

n∑
k=0

(
n

2k + 1

)

Nach dem binomischen Satz ist

(1 + 1)n =
(
n

0

)
+
(
n

1

)
+
(
n

2

)
+ ...+

(
n

n

)
= 2n und

(1− 1)n =
(
n

0

)
−
(
n

1

)
+
(
n

2

)
− ...+ (−1)n

(
n

n

)
= 0

Ferner ist
(
n
k

)
= 0 für k > n. Addiert man beide Gleichungen, so ergibt sich

2
[(
n

0

)
+
(
n

2

)
+
(
n

4

)
+ ...+ ...

]
= 2

n∑
k=0

(
n

2k

)
= 2n

Durch Subtraktion folgt

2
[(
n

1

)
+
(
n

3

)
+
(
n

5

)
+ ...+ ...

]
= 2

n∑
k=0

(
n

2k + 1

)
= 2n

Es ist also
n∑
k=0

(
n

2k

)
=

n∑
k=0

(
n

2k + 1

)
= 2n−1
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Aufgabe 19/72
In einer Klasse einer EOS haben 75 % der Schüler die Zeitschrift ”Wissenschaft und Fortschritt”, 35
% die Zeitschrift ”Urania” abonniert.
Es ist der Wahrheitsgehalt der folgenden Aussagen festzustellen (wahr, falsch, nicht entscheidbar).

a) Alle Schüler der Klasse haben eine der beiden Zeitschriften, aber nicht beide abonniert. item Die
meisten der Schüler, die ”Urania” abonniert haben, sind auch Abonnenten von ”Wissenschaft und
Fortschritt”.

b) Der kleinere Teil der Abonnenten von ”Wissenschaft und Fortschritt” hat auch ”Urania” abonniert.

Hilfe bei der Analyse des Sachverhalts kann die Mengenlehre (in Verbindung mit der elementaren Logik)
geben. Es gibt zunächst zwei Möglichkeiten:
1. Die Durchschnittsmenge der beiden Abonnentenmengen ist leer,
2. die Durchschnittsmenge der beiden Abonnentenmengen ist nicht leer.
Die Möglichkeit 1 scheidet sofort aus, da in diesem Falle mehr als 100% der Schüler Abonnenten einer
der beiden Zeitschriften sein müssten, was offenbar unmöglich ist. Damit ist aber auch schon die Aussage
(a) als falsch erkannt.

Für die Möglichkeit 2 gibt es wieder zwei Fälle:
2a) Die (nicht leere) Durchschnittsmenge der beiden Abonnentenmengen ist gleich einer der beiden Abon-
nentenmengen,
2b) die (nicht leere) Durchschnittsmenge der beiden Abonnentenmengen ist nicht gleich einer der beiden
Abonnentenmengen (d.h., sie ist eine echte Teilmenge jeder der beiden Mengen).

M1 M2 M3 M1 ∩M2

Der Sachverhalt nach 2a) und 2b) ist in der Abbildung dargestellt; offenbar kann man aus den mitgeteilten
Tatsachen nicht entscheiden, welcher der beiden Fälle zutrifft. Damit folgt: (b) ist nicht entscheidbar, (c)
ist auf jeden Fall wahr.

Aufgabe 20/72
In einer orientierten Ebene fallen die Spitzen C1 und C2 von zwei gleichsinnig umlaufenden, einander
ähnlichen gleichschenkligen Dreiecken A1B1C1 und A2B2C2 zusammen.
Man beweise: Verbindet man die Mittelpunkte A′ und B′ der Verbindungsstrecken A1A2 und B1B2
miteinander und mit C ′ = C1 = C2, so erhält man ein Dreieck A′B′C ′, das den gegebenen Dreiecken
ähnlich ist.

Wir bezeichnen ]A1CB1 = ]A2CB2 (Abbildung) und drehen beide Dreiecke um den Punkt C um den
Winkel γ (durch die Orientierung der Ebene und die Festlegung des Umlaufsinns für die Dreiecke sind
das Vorzeichen des Winkels γ und die Richtung der Drehung eindeutig festgelegt).
Bei dieser Drehung finden die folgenden Übergänge statt:

A1 → B1;A2 → B2;A1A2 → B1B2;A′ → B′;CA′ → CB′

d.h., das Dreieck A′B′C ist gleichschenklig. Ferner geht CA′ bei dieser Drehung in CB′ über, also ist
]A′CB′ = γ. Demnach ist das Dreieck A′B′C den gegebenen Dreiecken ähnlich.
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A1

B1

C = C1 = C2

A2

B2

A′
B′

Aufgabe 21/72
Gegeben sei die Gleichung x4 +x3 +x2 +(62−k)x+k = 0 mit den reellen Lösungen xi (i = 1; 2; 3; 4).
Welche reellen Werte kann k annehmen, wenn

1
x1

+ 1
x2

+ 1
x3

+ 1
x4

> 5

sein soll?

Es ist
1
x1

+ 1
x2

+ 1
x3

+ 1
x4

= x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4

x1x2x3x4

Stellt man ein Polynom 4. Grades in der Form x4 + px3 + qx2 + rx+ s dar, so gilt für die Nullstellen xi
dieses Polynoms nach dem Wurzelsatz des Vieta

x1x2x3x4 = s ; x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 = −r

In unserem Falle ist s = k, r = 62− k. Also gilt
1
x1

+ 1
x2

+ 1
x3

+ 1
x4

= k − 62
k

> 5

Wir unterscheiden nun zwei Fälle:
a) k > 0, dann führt die Lösung der Ungleichung auf einen Widerspruch: k−62

k > 5, k < − 31
2 .

b) k < 0, k−62
k > 5, k > − 31

2 .
(der Fall k = 0 ist nicht möglich, da dann nach dem Wurzelsatz des Vieta xi = 0 für wenigstens ein i und
damit die Bildung der 1

xi
nicht möglich wäre).

Der Definitionsbereich für k ist also unter der geforderten Bedingung − 31
2 < k < 0.

Aufgabe 22/72
Man beweise: Es existieren keine ganzen Zahlen ak mit k = 0; l; 2; ...;n so, dass das Polynom

P (x)a0 + a1x+ a2x
2 + ...+ anx

n

für x = 12 den Wert 3 und für x = 7 den Wert 2 annimmt.

Angenommen, es gäbe ein Polynom P (x) der geforderten Art, dann wäre P (12)−P (7) = 1. Andererseits
ist P (12)− P (7) = a1(12− 7) + ...+ an(12n − 7n).
Da nun 12 ≡ 7 ≡ 2 (mod 5) und damit 12k ≡ 7k ≡ 2k (mod 5) ist, folgt 12k − 7k ≡ 0 (mod 5) für alle
natürlichen Zahlen k.
Das heißt also, dass P (12)− P (7) einmal gleich 1, zum anderen aber durch 5 teilbar wäre. Das aber ist
ein Widerspruch, woraus unmittelbar die Richtigkeit der Behauptung folgt.

Aufgabe 23/72
Es bedeute [d] die größte ganze Zahl x mit x ≤ d. Zu zeigen ist, dass[

n

paqb

]
≥
[

n

pa+c

]
·
[
pc

qb

]
für alle positiven reellen Zahlen n, p, q, a, b, c gilt.
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Es sei
n

pa+c = x+ α mit x =
[

n

pa+c

]
; 0 < α < 1

pc

qb
= y + β mit y =

[
pc

qb

]
; 0 < β < 1

Dann ist[
n

paqb

]
=
[

n

pa+c ·
pc

qb

]
= [(x+ α)(y + β)] = xy + [yα+ xβ + αβ] > xy =

[
n

pa+c

]
·
[
pc

qb

]

Aufgabe 24/72
Man bestimme im Bereich der natürlichen Zahlen sämtliche Lösungen des Gleichungssystems(

y + 1
x+ 1

)
−
(

y

x+ 1

)
= 6(

x

x− 2

)
· 2
x− 1 +

(
y

y − 1

)
· 1
y

= 3

Wegen
(
n

n−k
)

=
(
n
k

)
kann man die zweite der gegebenen Gleichungen in der Form(

x

2

)
· 2
x− 1 +

(
y

1

)
· 1
y

= 3

schreiben, woraus mit (
x

2

)
= x(x− 1)

2 ;
(
y

1

)
= y

folgt
2x(x− 1)
2(x− 1) + x

y
= 3

Offensichtlich ist x 6= 1 und y 6= 1; damit ergibt sich x = 2 als einzige Lösung für x. Setzt man diesen
Wert in die erste Gleichung ein, so ergibt sich(

y + 1
3

)
−
(
y

3

)
= 6 ; (y + 1)y(y − 1)

6 − y(y − 1)(y − 2)
6 = 6

woraus die in y quadratische Gleichung y2 − y − 12 = 0 folgt. Die Lösungen sind y1 = 4 und y2 = −3,
von denen aber nur y1 = 4 im Lösungsbereich liegt. Tatsächlich erfüllen x = 2 und y = 4 das gegebene
Gleichungssystem (wie eine Probe bestätigt).

Aufgabe 25/72
Gegeben sind zwei Geraden a und b, die einander unter einem spitzen Winkel schneiden, und ein im
”spitzen Winkelraum” liegender Punkt C. Man konstruiere ein Dreieck ABC derart, dass A auf a
und B auf b liegt und der Umfang minimal ist.

Sind Ca und Cb die zu C bezüglich a und b symmetrischen
Punkte, so gilt für jeden Punkt A auf a bzw. B auf b, dass
CA = CaA bzw. CB = CbB ist. Der Streckenzug CABC
(Umfang des Dreiecks ABC) ist also längengleich dem Stre-
ckenzug CaABCb. Dieser wird aber offenbar genau dann ein
Minimum, wenn A und B auf der Verbindungsstrecke CaCb
liegen. (Abbildung)

Konstruktionsbeschreibung: Man konstruiert in bekannter
Weise die zu C bezüglich a und b symmetrischen Punkte Ca
und Cb; die Verbindungsstrecke CaCb schneidet a bzw. b in
den fehlenden Punkten A bzw. B des gesuchten Dreiecks.

A

B

C

Ca

Cb

a

b

225



2.12 Aufgaben und Lösungen 1972

Aufgabe 26/72
Gegeben seien zwei Zahlenfolgen {ak} und {bk} mit

ak = 42k+1 + 4k+1 + 7 und bk = 42k+1 − 4k+1 + 7

Man zeige, dass für natürliches k ak oder kk ein Vielfaches von 5 ist!

Wenn ak oder bk ein Vielfaches von 5 ist, so ist akbk ohne Rest durch 5 teilbar und umgekehrt. Nun ist

akbk =
(
42k+1 + 7 + 4k+1) (42k+1 + 7− 4k+1) =

(
42k+1 + 7

)2 − (4k+1)2 =

= 42k+1(42k+1 + 14− 4) + 49 = 4 · 16k(4 · 16k + 1) + 49
Nun ist 16 ≡ 1 (mod 5), also auch 16k ≡ 1 (mod 5). Wegen 10 ≡ 0 (mod 5) und 49 ≡ 4 (mod 5) folgt

akbk ≡ 4 · 1 · (4 · 1 + 0) + 4 (mod 5) ≡ 20 (mod 5) ≡ 0 (mod 5)

Damit ist der Beweis geführt.

Aufgabe 27/72
Gesucht sind alle natürlichen Zahlen m und n, für die die Proportion gilt:(

n+ 1
m+ 1

)
:
(
n+ 1
m

)
:
(
n+ 1
m− 1

)
= 5 : 5 : 3

Wir betrachten zunächst die erste der Proportionen:(
n+ 1
m+ 1

)
:
(
n+ 1
m

)
= (n+ 1)!m!(n−m+ 1)!

(m+ 1)!(n−m)!(n+ 1)! = n−m+ 1
m+ 1 = 1

Daraus folgt n = 2m. Die zweite Proportion liefert(
n+ 1
m

)
:
(
n+ 1
m− 1

)
= (n+ 1)!(m− 1)!(n−m+ 2)!

m!(n−m+ 1)!(n+ 1)! = n−m+ 2
m

= 5
3

Setzt man n = 2m in diese letzte Relation ein, so ergibt sich m+2
m = 5

3 , also m = 3 und damit n = 6. Wie
der Lösungsweg zeigt, ist dies die einzige Lösung.

Aufgabe 28/72
Welche Zahl ist größer, 99! oder 3399?

Durch vollständige Induktion beweisen wir, dass für jede natürliche Zahl n gilt n! >
(
n
3
)n. Für n = 99

folgt daraus die Behauptung 99! > 3399.
1 Für n = 1 gilt 1! > 1

3 =
( 1

3
)1.

2. Gilt für irgend ein k, dass k! >
(
k
3
)k ist, so gilt auch

(k + 1)! = k!(k + 1) >
(
k

3

)k
(k + 1) =

(
k + 1

3

)k+1 3kk

(k + 1)k =
(
k + 1

3

)k+1 3(
1 + 1

k

)k > (k + 1
3

)k+1

(die letzte Ungleichung folgt aus der Tatsache, dass der Nenner des letzten Bruches bekanntlich für
wachsende k monoton wachsend gegen e < 3 strebt, also immer kleiner als 3 ist, womit der Bruch selbst
größer als 1 ist). Damit ist der Beweis geliefert.

Aufgabe 29/72
Gegeben sei das Dreieck ABC mit unterschiedlich langen Seiten, wobei AC die kürzeste sei. Auf den
Seiten AB und CB liegen im Abstand AC von A und C die Punkte A′ bzw. C ′. Der Punkt P sei der
Schnittpunkt der Diagonalen im Viereck AA′C ′C. Es ist zu beweisen, dass unter diesen Bedingungen
die Flächen der Dreiecke Aa′P und CC ′P niemals gleich sein können.
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A B

C

A′

C ′
P

Angenommen, die beiden Flächen wären gleichgroß. Dann gälte

1
2AP · PA

′ sin]APA′ = 1
2CP · PC

′ sin]CPC ′

Wegen ]APA′ = ]CPV ′ (beide sind Scheitelwinkel, Abbildung) folgt
daraus

AP · PA′ = CP · PC ′ ; AP

CP
= PC ′

PA′

Die beiden Dreiecke stimmen also in einem Winkel und im Verhältnis der anliegenden Seiten überein,
d.h., sie sind einander ähnlich. Da sie zudem in einer Seite übereinstimmen; es ist AA′ = CC ′ = AC,
sind sie sogar kongruent. Daraus folgt AP = CP und PA′ = PC ′.
Das heißt aber, das Dreieck APC ist gleichschenklig mit der Basis AC, woraus ]PAC = ]PCA folgt.
Aus der Kongruenz ergibt sich weiter ]PAA′ = ]PCC ′. Damit ist

]BAC = ]A′AP + ]PAC = ]C ′CP]PCA = ]BCA

Das heißt aber wieder nichts anderes als AB = BC im Widerspruch zur Bedingung ”mit unterschiedlich
langen Seiten”. Also ist die Annahme falsch, die Flächen sind verschieden groß.

Aufgabe 30/72
Man beweise, dass für alle reellen Zahlen a, b mit ab > 0 die Ungleichung

a4 + 2a3b− 6a2b2 + 2ab3 + b4 > 0

erfüllt ist.

Ist wenigstens eine der beiden Zahlen a, b (etwa a) gleich 0, so ist

a4 + 2a3b− 6a2b2 + 2ab3 + b4 = b4 > 0

Für a, b 6= 0 gilt, da das harmonische Mittel nie größer als das quadratische Mittel ist,

2|a||b|
|a|+ |b| ≤

√
|a|2 + |b|2

2

Durch Quadrieren (beide Seiten der Ungleichung sind positiv !) und Multiplikation mit 2(|a|+ |b|)2 > 0
folgt daraus

8a2b2 ≤ (a2 + b2)(a2 + b2 + 2|a||b|) = (a2 + b2)(a+ b)2

(wegen ab > 0 ist |a| · |b| = ab). Durch Ausmultiplizieren und Subtrahieren von 8a2b2 ergibt sich sofort
die Behauptung.

Aufgabe 31/72
Man beweise: Erfüllten die reellen Zahlen a, b, c, d die vier Ungleichungen

a+ b+ c+ d > 0,
ab+ ac+ ad+ bc+ bd+ cd > 0,

abc+ abd+ acd+ bcd > 0,
abcd > 0

so sind a, b, c, d positive Zahlen.

Wir setzen p = a+ b+ c+ d > 0,
q = ab+ ac+ ad+ bc+ bd+ cd > 0,

r = abc+ abd+ acd+ bcd > 0,
s = abcd > 0
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Dann sind a, b, c, d die Lösungen der Gleichung x4 − px3 + qx2 − rx + s = 0 (nach dem Vietaschen
Wurzelsatz). Angenommen, wenigstens eine der Zahlen (etwa a) sei nicht positiv; dann ist wegen abcd > 0
diese Zahl sogar negativ. Damit folgt

a4 > 0; −p3 > 0; qa2 > 0; s > 0

also x4− px3 + qx2− rx+ s > 0 im Widerspruch zum Wurzelsatz des Vieta. Also ist die Annahme falsch,
d.h., keine der Zahlen a, b, c, d ist nicht positiv - jede der Zahlen a, b, c, d ist positiv!

Aufgabe 32/72
Ist n eine natürliche Zahl mit der Quersumme m, so ist die Differenz n −m bekanntlich stets ohne
Rest durch 9 teilbar.
Es erhebt sich die Frage, ob umgekehrt jede durch 9 teilbare Zahl k ≤ 900 eine Darstellung der Form
n−m besitzt?

Wenn es für jede durch 9 teilbare Zahl k ≤ 900 eine solche Darstellung gibt, dann muss n < 1000 sein;
denn aus k = n−m folgt k +m = n, für eine vierstellige Zahl n ist aber m ≤ 36.
Es sei also n = 100n2 + 10n1 + n0, wobei n2, n1 und n : 0 natürliche Zahlen zwischen 0 und 9 (beide
einschließlich) sind. Dann ist m = n2 + n1 + n0, also

k = n−m = 99n2 + 9n1 ; k

9 = n−m
9 = 11n2 + n1

Demnach kann man diejenigen Zahlen k nicht in der Form n −m darstellen, deren 9. Teil nicht in der
Form 11n2 + n1 mit n1;n2 ≤ 9, natürlich darstellbar ist. Das sind aber genau die Zahlen, bei denen n1
oder n2 gleich 10 wäre, also

10; 21; 32; 43; 54; 65; 76; 87; 98; 109; 110

mit k = 90; 189; 288; 387; 486; 585; 684; 783; 882; 981; 990 (die letzten beiden angegebenen Zahlen entspre-
chen bereits nicht mehr der Aufgabenstellung).

Aufgabe 33/72
Man finde alle positiven ganzzahligen Lösungen (a; b; k) des Systems

a = bk+1 (1) ; ab = ba (2)

Trivial ist die Lösung a = b = 1, k beliebig. Um weitere Lösungen zu finden, setzt man (1) in (2) ein. Es
folgt

(bk+1)b = b(b
k+1) ; bb

k+1
= b(b

k+1)

also b(k + 1) = bk+1 = b · bk’ k + 1 = bk (wegen b 6= 0). Damit ist b = k
√
k + 1.

Für k = 1 ist offenbar b = 2 und damit a = 4. Eine Lösung ist also (a; b; k) = (4; 2; 1). Dass dies auch die
einzige nicht triviale ist, ergibt folgende Überlegung:
Es ist

1 < k+1
√
k + 2 < k

√
k + 1

Da k ≥ 1 ist, ist, nämlich k + 2 > 1 und damit auch jede Wurzel aus k + 2. Ferner ist(
1 + 1

k + 1

)k
<

(
1 + 1

k

)k
< e < k + 1

für k ≥ 2 (für k = 1 ergibt sich die Gültigkeit der Ungleichung unmittelbar durch Nachrechnen). Daraus
folgt (

k + 2
k + 1

)k
< k + 1 → (k + 2)k < (k + 1)k(k + 1) = (k + 1)k+1

k(k+1)
√

(k + 2)k < k(k+1)
√

(k + 1)k+1 → k+1
√
k + 2 > k

√
k + 1
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Aufgabe 34/72
Man zeige, dass für alle natürlichen Zahlen n die Zahl k = 462n − 122n durch 1972 teilbar ist.

Es ist
k = 462n − 122n = 22n(232n − 62n) = 4n[(23n)2 − (6n)2] = 4n(23n + 6n)(23n − 6n)

Die Zahl k ist also sicher durch 4 teilbar. Weiter ist

23n − 6n = (17 + 6)n − 6n =
n∑
i=0

(
n

i

)
17i6n−i − 6n =

n∑
i=1

(
n

i

)
17i6n−i

d.h., die Zahl k ist durch 17 teilbar. Schließlich ist

23n − 6n = (29− 6)n − 61n =
n∑
i=0

(
n

i

)
29i6n−i − 6n =

n∑
i=1

(
n

i

)
29i6n−i

d.h., die Zahl k ist durch 29 teilbar. Damit ist aber k durch 4 · 17 · 29 = 1972 teilbar.

Aufgabe 35/72
Man beweise, dass 19731973 − (1 + 9 + 7 + 3) keine Primzahl ist!

Es ist

z = 19731973 − (1 + 9 + 7 + 3) = 19731973 − 20 ≡ (−1)1973 − (−1) ≡ (−1)− (−1) ≡ 0 (mod 3)

Oder:

z = 19731973 − (1 + 9 + 7 + 3) = 19731973 − 20 ≡ (−1)1973 − (−1) ≡ (−1)− (−1) ≡ 0 (mod 7)

Das heißt, 19731973|(1 + 9 + 7 + 3) ist sowohl durch 3 als auch durch 7 teilbar, also keinesfalls Primzahl.

Aufgabe 36/72
Gesucht sind alle vierstelligen Primzahlen mit; den folgenden Eigenschaften:

1. Alle Ziffern der dezimalen Darstellung sind voneinander verschieden.

2. Zerlegt man die Zahl in der Mitte in zwei zweistellige Zahlen, so sind beide Zahlen Primzahlen,
deren jede die Quersumme 10 hat.

3. Die letzten beiden Stellen sind; jede für sich; ebenfalls Primzahlen.

Wir ermitteln zunächst diejenigen zweistelligen Zahlen, deren Quersumme 10 ist:

19; 28; 37; 46; 55; 64; 73; 82; 91

Unter ihnen sind nur drei Primzahlen: 19; 37; 73.
Da 1 und 9 keine Primzahlen sind, kommen als zweite der zweistelligen Primzahlen nur 37 und 73 in
Frage. Dann muss wegen Bedingung 1 die erste der beiden zweistelligen Primzahlen die Zahl 19 sein. Es
wären also zunächst die beiden Zahlen 1937 und 1973 als Lösung möglich; 1937 ist aber keine Primzahl:
1937 = 13 · 449. Damit bleibt als einzige Lösung die Primzahl 1973.
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2.13 Aufgaben und Lösungen 1973

Aufgabe 1/73
Fällt man in einem gegebenen Kreisausschnitt von einem beliebigen Punkt des Bogens Lote auf die
den Ausschnitt begrenzenden Radien, so ist der Abstand der Fußpunkte voneinander unabhängig von
der Wahl des Punktes. Man beweise diesen Satz!

M

A

B

P

X

Y

Es sei P der beliebige Punkt des Bogens, X und Y seien die
Fußpunkte der Lote (Abbildung). Ferner seien A und B die
Schnittpuukte der über X bzw. Y hinaus verlängerten Lote
mit dem Umfang des Kreises um den Mittelpunkt M mit dem
Radius r des Kreisausschnittes. Dann gilt

1. PX
PA = PY

PB = 1
2 , da ]PXM = ]AXM = 90◦ = ]PYM =

]BYM , AM = PM = BM = r ist (Kongruenz der Dreiecke
AXM und PXM ′ bzw. BYM und PYM). Demnach gilt (nach
einem Strahlensatz): XY = 1

2AB.

Weiter gilt 2. ]XPY = 180◦ − ]XMY =konstant. (nach dem Winkelsummensatz im Viereck). Also ist
auch AB konstant und unabhängig von der Lage des Punktes P . Aus 1. und 2. folgt unmittelbar die
Behauptung.

Aufgabe 2/73
Man zeige, dass 971130 + 97065 keine Quadratzahl ist!

Es ist
971130 = (97165)2 < n = 971130 + 97065 und

n = 971130 + 97065 < (97165)2 + 2 · 97165 + 1

Das heißt aber, n liegt zwischen den Quadraten der zwei aufeinanderfolgenden natürlichen Zahlen 97165

und 97165 + 1, kann also nicht selbst Quadrat einer natürlichen Zahl sein.

Aufgabe 3/73
Es ist zu untersuchen, für welche reelle Zahl a das Gleichungssystem

x2 + y2 = z ; x+ y + z = a

genau eine reelle Lösung (x; y; z) hat. Diese Lösung ist zu finden.

In dem gegebenen System treten die Variablen x und y symmetrisch auf. Deshalb ist für die geforderte
Eindeutigkeit der Lösung notwendig, dass x = y ist. (da sonst mit x = x0, y = y0, z = z0 auch x = y0,
y = x0, z = z0 Lösung wäre). Damit nimmt das System die Form

2x2 = z ; 2x+ z = a

an. Durch Elimination von z folgt 2x2 + 2x − a = 0. Damit auch diese Gleichung nur eine einzige
reelle Lösung hat, ist notwendig, dass die Diskriminante D = 2a+1

4 = 0 ist. Daraus folgt unmittelbar
a = − 1

2 ;x = − 1
2 und weiter y = − 1

2 , z = 1
2 .

Aufgabe 4/73
Einem Kreis sei ein regelmäßiges Dreieck ABC einbeschrieben, CD sei eine Sehne des Kreises, die
die Dreieckseite AB schneidet. Man beweise, dass unter diesen Voraussetzungen AB+BD = CD ist.

Man ziehe zu CD eine Parallele durch B, die die Verlängerung von AD in E schneidet. Dann gilt:

1. ]BED = ]CDA, (Winkel an geschnittenen Parallelen); ]CDA = ]CBA, (Peripheriewinkel über
AC), also ]BED = ]CBA = 60◦.
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2. ]CDA = ]CBA = 60◦, (Peripheriewinkel über AC), ]BDC = ]BCA = 60◦, (Peripheriewinkel über
BC) also ]EDB = 180◦ − ]CDA− ]BDC = 60◦.

Das heißt aber, das Dreieck BED ist gleichseitig, es ist DE = BE = BD. Weiter folgt daraus, dass
M ABE ∼= CBD ist. Beide Dreiecke stimmen nämlich in zwei Seiten und dem eingeschlossenen Winkel
überein: AB = BC, BE = BD, ]CBD = 60◦ + ]ABD = ]ABE.
Demnach ist CA = AE = AD +DE = AD +BD.

Aufgabe 5/73
Man bestimme alle Primzahlen der Form p = x4 + 4y4, wobei x und y natürliche Zahlen sind.

Es ist
p = x3 + 4y4 = (x2 + 2y2)2 − (2xy)2 = (x2 + 2y2 − 2xy)(x2 + 2y2 + 2xy)

Da p Primzahl sein soll, muss einer der beiden Faktoren gleich 1, der andere gleich p sein.
Wegen

x2 + 2y2 − 2xy < x2 + 2y2 + 2xy und 1 < p ist x2 + 2y2 − 2xy = 1

Nun ist

x2 + 2y2 − 2xy = x2 − 2xy + y2 + y2 = (x− y)2 + y2 also 0 ≤ (x− y)2 = 1− y2

woraus entweder x = 1; y = 0 oder x = 1; y = 1 folgt. Die Lösung x = 1; y = 0 kommt nicht in Frage,
da sich daraus p = 1 ergäbe und 1 keine Primzahl ist. Die Lösung x = 1, y = 1 führt auf p = 5. In der
Tat ist p = 5 Primzahl und somit die einzige, da alle anderen Zahlen; wie aus dem Rechengang folgt;
zusammengesetzte Zahlen wären.

Aufgabe 6/73
Man gebe alle reellen Lösungen des Gleichungssystems an:

x2 + y2 = 8 (1)
x2y2 − z2 = 16 (2)

sin (x2 − 2y) = z (3)

Angenommen, (x; y; z) sei eine reelle Lösung. Dann gilt sicher (x− y)2 ≥ 0, also 8 = x2 + y2 ≥ 2xy und
(x+ y)2 ≥ 0, also 8 = x2 + y2 ≥ −2xy; folglich |xy| ≤ 4 und x2y2 ≤ 16.
Wegen (2) ist aber x2y2 = 16 + z2, damit folgt z = 0, wodurch man aus (1) und (2) x2 = y2 = 4 erhält.
Als Lösungen kommen also nur in Frage (2; 2; 0), (2;−2; 0)’ (−2; 2; 0), (−2;−2; 0).
Für (2;−2; 0) und (−2;−2; 0) ist (3) nicht erfüllt; es ist nämlich 2π < 8 = x2−2y < 3π, also sin (x2 − 2y) 6=
0 = z.
Für die beiden anderen Tripel sind aber alle Gleichungen erfüllt. Damit sind (2; 2; 0) und (−2; 2; 0) die
einzigen Lösungen des Gleichungssystems.

Aufgabe 7/73
Es ist zu beweisen: Fällt man von einem beliebigen Punkt auf dem Umkreis eines Dreiecks Lote auf
die Dreiecksseiten (bzw. deren Verlängerungen), so liegen die Fußpunkte der Lote auf einer Geraden.

M

A
B

C

P

F1

F2

F3

Wie verwenden die Bezeichnungen der Abbildung. Da ABPC
ein Sehnenviereck ist, gilt ]BPC = 180◦ − α.
Da ]AF1P+]AF3P = 90◦−90◦ = 180◦ ist, ist auch AF1PF3
ein Sehnenviereck: ]F1PF3 = 180◦ − α.
Demnach ist ]BPC = ]F1PF3 und ]F1PB = ]F3PC. Da
]CF2P + ]CF3P = 180◦ gilt, ist auch CF2PF3 ein Sehnen-
viereck, und nach dem Peripheriewinkelsatz gilt ]CF2F3 =
]CPF3.
Entsprechend folgt ]BF2F1 = ]BPF1.
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Da die Punkte B, F2 und C auf einer Geraden liegen und die Winkel BF2F1 und CF2F3 ihrer Lage nach
Scheitelwinkel und einander gleich sind, liegen auch F1, F2 und F3 auf einer Geraden.

Aufgabe 8/73
Man beweise, dass die Ungleichung

ln x1 + ln x2 + ...+ ln xn + lnn! ≤ n[ln (x1 + 2x2 + ...+ nx)− lnn]

für beliebige positive, reelle Zahlen x1;x2; ...;xn (mit n ≥ 1) gilt. Wann gilt das Gleichheitszeichen?

Bekanntlich gilt für beliebige positive reelle Zahlen y1; y2; ...; yn (n ≥ 1) die Ungleichung

n
√
y1y2y3...yn ≤

1
n

(y1 + y2 + y3 + ...+ yn)

wobei Gleichheit genau für y1 = y2 = ... = yn eintritt.
Setzt man yi = ixi (i = 1; 2; ...;n), so folgt

n
√
x1x2x3...xn · n! ≤ 1

n
(x1 + 2x2 + 3x3 + ...+ nxn)

Durch Logarithmieren der beiden (positiven!) Seiten der Ungleichung zur Basis e folgt nun

ln n
√
x1x2x3...xn · n! ≤ ln

[
1
n

(x1 + 2x2 + 3x3 + ...+ nxn)
]

1
n

ln (x1x2x3...xn · n!) ≤ ln (x1 + 2x2 + 3x3 + ...+ nxn)− lnn

ln x1 + ln x2 + ln x3 + ...+ ln xn + lnn! ≤ n[ln (x1 + 2x2 + 3x3 + ...+ nxn)− lnn]

Gleichheit gilt genau für x1 = 2x2 = ... = nxn.

Aufgabe 9/73
Man bestimme das Minimum der Funktion y = x10 − 1 −

√
2x10 − 1 ohne dazu Hilfsmittel der

Differentialrechnung zu verwenden.

Wir führen den Parameter t =
√

2x10 − 1 ein. Dann ist

x10 = t2 + 1
2 ; y = t2 + 1

2 − 1− t = (t− 1)2 − 2
2

Offensichtlich wird wegen (t − 1)2 ≥ 0 das Minimum für t − 1 = 0, also für t = 1 angenommen. Dieser
Wert ist tatsächlich möglich, es ergibt sich x1;2 = ±1; ymin = −1.

Aufgabe 10/73
Gegeben sei eine natürliche Zahl n, die in dezimaler Schreibweise k-stellig sei. 300 dieser k Stellen
seien mit Einsen besetzt, der Rest mit Nullen. Man beweise, dass n keine Quadratzahl ist.

Da die Quersumme q der natürlichen Zahl n sich als Summe von 300 Einsen ergibt, ist q = 300. Daraus
folgt, dass n zwar durch 3, nicht aber durch 9 teilbar ist.
Da jede Quadratzahl jeden Primfaktor in gerader Potenz enthält, ist damit bereits bewiesen, dass n keine
Quadratzahl ist.

Aufgabe 11/73
Ein Eisenbahnzug fährt an einem Kilometerstein mit einer zweistelligen Kilometerzahl vorüber. Nach
der Zeit ∆t1 fährt er an einem weiteren Kilometerstein vorbei, auf dem die gleichen Ziffern mit
vertauschter Reihenfolge stehen.
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Schließlich trifft er nach der weiteren Zeit ∆t2 = ∆t2 auf einen dritten Kilometerstein, dessen Angabe
gleich der ersten Zahl mit dazwischengesetzter Null ist.
Die Durchschnittsgeschwindigkeiten v1 und v2 während der Zeiten ∆t1 bzw. ∆t2 sind die gleichen:
v − 1 = v2.
Wie lauten die Zahlen auf den Kilometersteinen?

Da v1 = v2 und ∆t1 = ∆t2 ist, gilt ∆s1 = v1∆t1 = v2∆t2 = ∆s2.
d.h., die beiden Strecken zwischen den drei Kilometersteinen sind einander gleich. Die Zahlen auf den
Kilometersteinen bilden also eine arithmetische Folge 1. Ordnung.
Bezeichnet man mit 10a + b die erste Zahl (1 ≤ a ≤ 9, 0 ≤ b ≤ 9, a, b ganz), so ist nach den Angaben
der Aufgabe 10b+ a die zweite (woraus sofort b 6= 0 folgt) und 100a+ b die dritte, und es gilt

100a+ b− 10b− a = 10b+ a− 10b− b→ b = 6a

Wegen der getroffenen Einschränkungen für a und b kommt als Lösung dieser diophantischen Gleichung
nur a = 1, b = 6 in Frage. Die Zahlen an den Kilometersteinen sind demnach 16, 61, 106 (die Differenz
ist 45).

Aufgabe 12/73
Man zeige, dass es kein Polynom P (x) zweiten Grades gibt, das die folgenden Bedingungen erfüllt:

P (x) ≡ 0 (mod 8) für x ≡ 1 (mod 2) (1)
P (x) ≡ 1 (mod 8) für x ≡ 0 (mod 2) (2)

Wir nehmen an, es gäbe ein Polynom P (x) = ax2 + bx+ c, dass die Bedingungen (1) und (2) der Aufgabe
erfüllt. Für x = 0 gilt dann

ax2 + bx+ c ≡ c ≡ 1 (mod 8)

für x = 1 bzw. x = −1 ergibt sich

a+ b+ c ≡ a+ b+ 1 ≡ 0 (mod 8) ; a− b+ c ≡ a− b+ 1 ≡ 0 (mod 8)

also 2a+ 2 ≡ 0 (mod 8), a+ 1 ≡ 0 (mod 4), a ≡ −1 (mod 4) (1) und 2b ≡ 0 (mod 8) (2).
Für x = 2 erhält man 4a+ 2b+ 1 ≡ 1 (mod 8) und mit Hilfe von (2): 4a ≡ 0 (mod 8) (3).
Die Kongruenzen (1) und (3) stellen aber einen Widerspruch dar (nach (1) ist a ungerade, nach (3) aber
gerade). Demnach ist die Annahme falsch; es gibt kein Polynom mit den geforderten Eigenschaften.

Aufgabe 13/73
Gegeben sei das Dreieck ABC mit den Seiten a, b und c. Gesucht ist das gleichseitige Dreieck PQR
so, dass QR ‖ a ist und P auf a, Q auf b, R auf c liegt.

A

B CP

QR

P ′

Q′R′

Man konstruiert zunächst ein dem gesuch-
ten Dreieck ähnliches Dreieck P ′Q′R′ so, dass
Q′R′ ‖ a ist und Q′ auf b, R′ auf c liegt.
Durch eine Ähnlichkeitstransformation mit dem
Ähnlichkeitszentrum A überführt man dieses Dreieck
in das gesuchte.

Konstruktionsbeschreibung: 1. Ziehe zu a eine Parallele,
die b in Q′ und c in R′ schneidet.

2. Konstruiere über Q′R′ in bekannter Weise nach der Seite, auf der a liegt, das gleichseitige Dreieck
Q′R′P ′.
3. Der Schnittpunkt der Geraden AP ′ mit a ist P .
4. Die Schnittpunkte der Parallelen durch P zu P ′Q′ und P ′R′ mit b bzw. c sind Q bzw. R (Abbildung)
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Aufgabe 14/73
Es seien a und b je eine der zehn Ziffern 0; 1; ...; 9. Wieviele verschiedene Zahlen der Form ababab sind
möglich? Welche Primzahlen sind Teiler jeder dieser Zahlen?

Da man für jede der beiden Variablen a und b zehn verschiedene Ziffern einsetzen kann, gibt es insgesamt
102 = 100 verschiedene Möglichkeiten (Anzahl der Variationen von n = 10 Elementen zur 2. Klasse mit
Wiederholung).
Darunter befindet sich auch die Zahl 000 000. Abgesehen von diesem Trivialfall ist die kleinste dieser
Zahlen die Zahl 010 101; alle anderen Zahlen sind Vielfache dieser Zahl, enthalten also auch die in ihr
enthaltenen Primfaktoren. Die Primfaktorzerlegung von 010 101 liefert

010101 = 3 · 7 · 13 · 37

Die nichttrivialen Zahlen enthalten also sämtlich die Primzahlen 3; 7; 13; 37 als Teiler.

Aufgabe 15/73

Wieviele verschiedene Streckenzüge sind notwendig, wenn
man das in der Abbildung dargestellte Muster nachzeich-
nen will, ohne eine Strecke zweimal zu zeichnen?

Das Muster stellt einen Graphen mit insgesamt 18 Knoten und 41 Kanten dar. Da in 10 Knoten eine
ungerade Anzahl von Kanten zusammentrifft, sind mindestens 5 Streckenzüge notwendig; jeder dieser 10
Knoten ist nämlich entweder Anfangs- oder Endpunkt eines Streckenzuges.
Dass nicht mehr als 5 Streckenzüge erforderlich sind, beweist man durch Angabe von 5 Streckenzügen,
durch die das Muster nachgezeichnet wird. Dazu denken wir uns die Knoten zeilenweise von links nach
rechts und von oben nach unten nummeriert. Die Streckenzüge werden durch Angabe der Knotennummern
dargestellt.
1.Zug: 1-5-9-13-17-14-11-7-3-6-9-12-15-16-17-18-11-4-3-2-1-8-9-10-11
2.Zug: 4-7-10-13-16-12-8-5-2-6-10-14-18
3.Zug: 2-9-16
4.Zug: 3-10-17
5.Zug: 8-15
Selbstverständlich leisten auch andere Streckenzüge das Verlangte. Es sind also genau 5 Züge erforderlich.

Aufgabe 16/73 Man beweise ohne Hilfsmittel der Differentialrechnung, dass für beliebiges reelles c
die Ungleichungen gelten:

1
2 ≤ sin4 x+ cos4 x ≤ 1

Es ist

sin4 x+ cos4 x = (sin2 x+ cos2 x)2 − 2 sin2 x cos2 x = 12 − 1
2(2 sin x cosx)2 = 1− 1

2 sin2 (2x)

Wegen 0 ≤ sin2 (2x) ≤ 1 folgt daraus sofort

1
2 ≤ 1− 1

2 sin2 (2x) = sin4 x+ cos4 x ≤ 1

Die Grenzen werden offensichtlich für die Werte x1 = π
2 ( 1

2 +k) (untere Grenze), x2 = 1
2kπ (obere Grenze),

k = 0;±1;±2; ... angenommen.
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Aufgabe 17/73

f(x) =
5∑
k=0

akx
k

ein Polynom 5.Grades. Man bestimme ganzzahlige Koeffizienten ak > 0 derart, dass höchstens einer
von ihnen durch 120 teilbar ist, f(x) aber für alle ganzzahligen x >= 1 durch 120 teilbar ist.

Es ist 120 = 2 · 3 · 4 · 5. Das Polynom ist sicher dann für alle ganzzahligen x ≥ 1 durch 120 teilbar, wenn
man es als ein Produkt von 5 aufeinanderfolgenden positiven, ganzen Zahlen darstellen kann. Unter 5
aufeinanderfolgenden ganzen, positiven Zahlen ist nämlich stets wenigstens eine durch 2, wenigstens eine
durch 3, wenigstens eine durch 4 und genau eine durch 5 teilbar. Damit bietet sich eine Darstellung der
Form

f1(x) = x(x+ 1)(x+ 2)(x+ 3)(x+ 4) + a0 oder f2(x) = (x+ 1)(x+ 2)(x+ 3)(x+ 4)(x+ 5)

an. Man erhält
f1(x) = x5 + 10x4 + 35x3 + 50x2 + 24x+ 120

(a0 = 120 ergibt sich aus der Überlegung, dass a0 durch 120 teilbar sein muss),

f2(x) = x5 + 15x4 + 85x3 + 225x2 + 274x+ 120

Einen allgemeinen Ansatz erhält man mit

fn(x) = (x+ n+ 1)(x+ n+ 2)(x+ n+ 3)(x+ n+ 4)(x+ n+ 5)

mit n als nichtnegativer, ganzer Zahl.

Aufgabe 18/73
Man finde die Menge aller der Punkte in einer Ebene, von denen aus zwei gegebene Kreise der Ebene
unter gleichen Winkeln erscheinen.

M1 M2 TaTi

P

Q′1

Q′′1

Q′2

Q′′2

M1 und M2 seien die Mittelpunkte der gegebenen Kreise, r1 und r2 entsprechend ihre Radien (Abbildung).
Zieht man von einem Punkt P der gesuchten Punktmenge die Tangenten PQ′1, PQ′′1 und PQ′2, PQ′′2 an
die beiden Kreise, so gilt nach Voraussetzung

α = ]Q′1PQ′′1 = ]Q′2PQ′′2 bzw. α

2 = ]Q′1PM1)]Q′2PM2

Da außerdem noch ]M1Q
′
1P = ]M2Q

′
2P = 90◦ ist, folgt, dass M M1Q

′
1P ∼M M2Q

′
2P ist. In ähnlichen

Dreiecken ist das Verhältnis homologer Strecken gleich, deshalb gilt

PM1 : PM2 = r1 : r2

Die Menge aller der Punkte, deren Abstände zu zwei gegebenen Punkten M1 und M2 in einem festen
Verhältnis k = r1 : r2 stehen, ist aber der Kreis des Apollonius mit TiTa als Durchmesser, wobei Ti und
Ta die Strecke M1M2 innen und außen im Verhältnis r1 : r2 teilen.
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Umgekehrt genügen alle Punkte dieses Kreises den gegebenen Bedingungen, sofern sie nicht im Inneren
oder auf der Peripherie eines der gegebenen Kreise liegen. Somit stellt dieser Kreis die gesuchte Punkt-
menge dar.

Aufgabe 19/73
Man bestimme alle Primzahlen p, für P = 20p2 + 1 eine Primzahl ist.

Für jede natürliche Zahl n gilt n ≡ 0 (mod 3) oder n ≡ ±1 (mod 3). Gilt n ≡ ±1 (mod 3)’ so gilt auch
n2 ≡ 1 (mod 3), 20n2 ≡ 20 ≡ −1 (mod 3) und damit 20n2 + 1 ≡ 0 (mod 3).
Wenn es also ein p gibt, so dass P = 20p2 + 1 eine Primzahl ist, so muss p ≡ 0 (mod 3) sein.
Einzige Primzahl p mit dieser Eigenschaft ist p = 3. Tatsächlich ist P = 20 · 33 + 1 = 181 eine Primzahl.

Aufgabe 20/73
Gegeben sind ein Kreis mit dem Radius r und ein dem Kreis einbeschriebenes regelmäßiges n-Eck.
Gesucht ist die Summe aus den Quadraten der Abstände eines beliebigen Punktes A auf der Peripherie
des Kreises von den Eckpunkten des n-Ecks.

Wir betrachten zunächst den Fall, dass n = 2k gerade ist. Dann gibt es zu jedem Eckpunkt Pm des n-Ecks
einen diametral gegenüberliegenden Punkt Pm+k (m ≤ k). Die Punkte Pm, Pm+k, A bilden demnach ein
Dreieck über dem Durchmesser, nach dem Satz des Thales also ein bei A rechtwinkliges Dreieck. Demnach
ist:

AP 2
m +AP 2

m+k = 4r2

Damit folgt für die Summe aller Abstandsquadrate (da k = n
2 derartige Punktpaare existieren) S =

4kr2 = 2nr2.
Ist nun n = 2k+1 ungerade, so bildet man zunächst ein regelmäßiges 2n-Eck’ indem man jeweils zwischen
zwei Ecken eine weitere einfügt. Für dieses 2n-Eck ergibt sich auf die gleiche Weise S = 4nr2. Kehrt man
nunmehr zum n-Eck zurück, so ist diese Summe zu halbieren. Es gilt also allgemein S = 2nr2.

Aufgabe 21/73
Man bestimme ein Polynom P (x) kleinsten Grades mit ganzzahligen Koeffizienten, das für ungerad-
zahliges x stets durch 8 teilbar ist. Dabei soll P (x) nicht für jedes ganzzahlige x durch 2 teilbar.

Zunächst ist klar, dass kein lineares Polynom die in der Aufgabe gestellten Bedingungen erfüllt. Setzt
man nämlich in der Kongruenz ax+ b ≡ 0 (mod 8) nacheinander x = 1 und x = −1, so erhält man

a+ b ≡ 0 (mod 8) ; −a+ b ≡ 0 (mod 8)

woraus a ≡ b ≡ 0 (mod 4) folgt. Das heißt aber, dass das Polynom für beliebiges ganzzahliges x durch 2
teilbar ist.
Zum Auffinden eines Polynoms 2. Grades mit den geforderten Eigenschaften benutzen wir die folgende
Tatsache: Es ist

12 ≡ (−1)2 ≡ 32 ≡ (−3)2 ≡ 1 (mod 8)

D.h., das Quadrat einer jeden ungeraden Zahl lässt beim Teilen durch 8 den Rest 1. Demnach gilt für
das Polynom

P (x) = x2 − c2 ≡ 0 (mod 8)

wenn x und c ungerade Zahlen sind. Für gerade Zahlen x ist aber x2 ≡ 0 (mod 2), für ungerade Zahlen c
gilt c2 ≡ 1 (mod 2). Folglich ist das Polynom P (x) = x2− c2 mit ungeradem c nicht für alle ganzzahligen
x durch 2 teilbar.

Aufgabe 22/73
Es ist zu beweisen, dass für jede natürliche Zahl n > 2 gilt

5! | n6 − 2n5 − n2 + 2n
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Es ist

n6 − 2n5 − n2 + 2n = n5(n− 2)− n(n− 2) = (n− 2)(n5 − n) = (n− 2)(n− 1)n(n+ 1)(n2 + 1)

Nun kann man folgende Teilbarkeitsbetrachtungen anstellen:
1. Nach dem Satz von Format gilt 5 | (n5 − n).
2. Von den vier aufeinanderfolgenden Zahlen (n− 2),(n− 1),n,(n+ 1) sind genau zwei durch zwei teilbar
davon genau eine sogar durch 4, wenigstens eine ist durch 3 teilbar.
Daraus folgt, dass n6 − 2n5 − n2 + 2n durch 2 · 3 · 4 · 5 = 5! teilbar ist.

Aufgabe 23/73
Man beweise: Wenn das Dreieck ABC mit den Seiten AB = c, BC = a, CA = b bei C einen stumpfen
Innenwinkel hat, dann hat die Gleichung c = a sin x+ b cosx keine Lösung in reellen Zahlen x.

Es sei γ der Innenwinkel bei C. Dann gilt nach dem Kosinussatz c2 = a2 + b2 − 2ab cos γ.
Wegen γ > π

2 ist cos γ < 0, also c2 > a2 + b2 und c√
a2+b2 > 1. Andererseits folgt aus c = a sin x+ b cosx,

dass
c√

a2 + b2
= a√

a2 + b2
sin x+ b√

a2 + b2
cosx

ist. Nun kann man setzen

a√
a2 + b2

= cosϕ ; b√
a2 + b2

= sinϕ

denn es ist cos2 ϕ+ sin2 ϕ = 1 Dann ergibt sich aber

c√
a2 + b2

= cosϕ sin x+ sinϕ cosx = sinϕ+ x > 1

Die letzte Ungleichung gilt aber für kein reelles x und ϕ. Demnach hat die Gleichung keine reelle Lösung
x.

Aufgabe 24/73
Eine Funktion f(x) habe die folgenden Eigenschaften:

1. Für reelle x ist f(x) > 0.

2. Für reelle xi ist f(x1 + x2) = 2 · f(x1)f(x2).

3. Es ist f(2) = 2.

Man bestimme die Funktionswerte f(1), f(0), f(3) und f(6)! Um welche Funktion handelt es sich?

Wegen 2 = f(2) = f(1 + 1) = 2 · f(1) · f(1) ergibt sich sofort [f(1)]2 = 1, woraus wegen f(x) > 0 folgt,
dass f(1) = 1 ist.
Auf analoge Weise folgt 1 = f(1) = f(1+0) = 2 ·f(1) ·f(0), also f(0) = 0,5. Weiter gilt f(3) = f(2+1) =
2 · f(2) · f(1) = 4, f(6) = f(3 + 3) = 2 · f(3) · f(3) = 32.

Skizziert man aus den berechneten Worten den Kurvenverlauf, so kommt man zu der Vermutung, dass
es sich bei der Funktion um eine Exponentialfunktion a · bx handeln könnte.
Tatsächlich gilt für eine solche Funktion für reelle x stets f(x) > 0 (Eigenschaft 1). Weiter gilt für sie

f(x1 + x2) = a · bx1+x2 = a · bx1 · bx2 = 1
2 · a · b

x1 · a · bx2 = c · f(x1) · f(x2)

Setzt man c = 1
a = 2, also a = 0,5, so ist auch die Eigenschaft 2 erfüllt. Es bleibt also nur noch

nachzuprüfen, ob Eigenschaft 3 bei einer solchen Funktion auftreten kann:
0,5 · b2 = 2 führt sofort zu b = 2. Die gesuchte Funktion ist also f(x) = 0,5 · 2x. Einsetzen der Werte 0,
1, 3 und 6 für x bestätigt die Richtigkeit.
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Aufgabe 25/73
Man zeige, dass die Funktion

f(x) = x10 − x9 + x4 − x+ 1

keine reelle Nullstellen hat!

Für x < 0 sind alle Glieder der Summe positiv, es ist also f(x) > 0. Für x = 0 und x = 1 ist f(x) = 1 > 0
(wie man durch Einsetzen leicht nachprüft). Es verbleiben für mögliche reelle Nullstellen daher nur noch
die Intervalle 0 < x < 1 und 1 < x.
Es gilt, für die Untersuchung beider Intervalle geeignete Darstellungen der Funktion zu finden. Wenn
0 < x < 1 gilt, so ist sicher (1− xn) > 0 und xn > 0. Man versucht also, f(x) in eine Summe derartiger
Summanden oder in eine Summe aus Produkten derartiger Faktoren zu zerlegen:

f(x) = x10 − x9 + x4 − x+ 1 = x10 + x4(1− x5) + (1− x) > 0

Wenn 1 < x gilt, ist sicher xn > 0 und (xn−1) > 0. Also sucht man nach einer entsprechenden Zerlegung:

f(x) = x10 − x9 + x4 − x+ 1 = x9(x− 1) + x(x3 − 1) + 1 > 0

somit ist bewiesen, dass f(x) > 0 für jedes x ist, dass also f(x) = 0 für kein reelles x gilt.

Aufgabe 26/73
Man konstruiere ein bei C rechtwinkliges Dreieck ABC aus den Strecken AC = b und c − a (wobei
c = AB, a = BC ist)!

Nach dem pythagoreischen Lehrsatz gilt für das rechtwinklige Dreieck ABC:

b2 = c2 − a2 = (c+ a)(c− a)

Daraus folgt
c+ a

b
= b

c− a
Nach dem Strahlensatz konstruiert man die Strecke c+a als vierte Proportionale aus den Strecken b und
c − a. Wegen 2c = (c + a) + (c − a) kann man c durch Halbieren der Summe der Strecken (c + a) und
(c− a) erhalten. Damit ist die Konstruktion des Dreiecks ABC in bekannter Weise möglich.
Die Konstruktion ist stets ausführbar, wenn (c− a) < b ist; anderenfalls ist c ≥ a+ b, und die Dreiecks-
ungleichung ist nicht erfüllt.

Aufgabe 27/73
Gegeben seien n positive Zahlen a1; a2; ...; an, so dass

n∏
i=1

ai = 1

ist. Man beweise, dass dann gilt
n∏
i=1

(1 + ai) ≥ 2n

Vorausgesetzt wird der Satz über die Beziehung zwischen dem arithmetischen und dem geometrischen
Mittel aus n positiven Zahlen ai (mit i = 1; 2; ...;n):

1
n

n∑
i=1

ai ≥ n

√√√√ n∏
i=1

ai

Daraus folgt
1
2(1 + ai) ≥

√
1 · ai ; (1 + ai) ≥ 2

√
ai also
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n∏
i=1

(1 + ai) ≥
n∏
i=1

2
√
ai = 2n

n∏
i=1

√
ai = 2n

√√√√ n∏
i=1

ai = 2n

Aufgabe 28/73
Für welche reellen Zahlen a und b hat die Gleichung

a

b− x
− x

b+ x
= 1

genau eine reelle Lösung x = 2?

Löst man die gegebene Gleichung nach x auf, so ergibt sich

x1;2 = 1
4(b− a±

√
a2 − 10ab+ 9b2

Wenn genau eine Lösung existieren soll, muss die Diskriminante gleich null sein, woraus folgt, dass
entweder a = b oder a = 9b ist. Für a = b wäre x = 0, damit kommt nur a = 9b in Frage. Daraus erhalten
wir

x = 1
4(b− 9b) = −2b = 2

also b = 1, a = −9. Demnach hat die gegebene Gleichung für a = −9, b = 1 genau die Lösung x = 2.
Eine Probe bestätigt die Richtigkeit.

Aufgabe 29/73
Gegeben sei das Dreieck ABC. Auf der Strecke AB liege ein beliebiger Punkt D, durch den zwei
Dreiecke ADC und BDC bestimmt sind.
Man beweise, dass das Verhältnis der Umkreisradien dieser Dreiecke konstant ist, also nicht von der
Lage des Punktes D abhängt.

M1

M2

A B

C

D

ϕ 180◦ − ϕ

360◦ − 2ϕ

2ϕ

R1
R2

Wir wählen die Bezeichnungen gemäß der Abbildung. Dann gilt

]AM1C = 2ϕ ; ]BM2C = 360◦ − 2ϕ

(nach dem Satz über Peripherie- und Zentriwinkel) und damit

2R1

b
= sinϕ; 2R2

a
= sin (180◦ − ϕ) = sinϕ also 2R1

b
= 2R2

a

Daraus folgt unmittelbar R1 : R2 = b : a für jede beliebige Lage von D.

Aufgabe 30/73
Gegeben sind zwei Strecken a und b. Man konstruiere ein Rechteck ABCD so, dass a sein Umfang
und b Durchmesser des Umkreises ist.
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E D D′ C = C′

A

A′

B

B′

F

M

M ′

Angenommen, das Rechteck ABCD sei bereits konstruiert, durch
den Punkt A sei eine Gerade gelegt, die mit den Rechteckseiten
Winkel von 45◦ bildet (Abbildung). Dann gilt mit den Bezeich-
nungen der Abbildung

ED +DC = AD +DC = a

2 ; FB +BC = AB +BC = a

2

Damit ist die Konstruktion klar:

1. Man konstruiert ein gleichschenklig-rechtwinkliges Dreieck mit den Katheten a
2 .

2. Man schlägt um den Scheitelpunkt des rechten Winkels einen Kreis mit b als Radius. Ein Schnittpunkt
mit der Hypotenuse ist A.
3. Man fällt von A die Lote auf die Katheten. Ihre Fußpunkte sind B und D. Der Scheitelpunkt des
rechten Winkels ist C.

Determination: Ist b < a
4
√

2, so schneidet der Kreis um C die Hypotenuse nicht und es existiert kein
Rechteck mit der geforderten Eigenschaft.
Ist b = a

4
√

2, so existiert genau ein Rechteck, das ein Quadrat ist. Ist a
4
√

2 < b < a
2 , so schneidet der

Kreis um C die Hypotenuse genau zweimal; es entstehen zwei Rechtecke, die (bis auf die Bezeichnungen)
kongruent sind.
Ist b > a

2 , so schneidet der Kreis um C die Hypotenuse nicht und es existiert kein Rechteck.

Aufgabe 31/73
Gesucht sind alle Primzahlen p, für die p4 − 1 nicht durch 15 teilbar ist.

Wenn p4− 1 nicht durch 15 teilbar sein soll, so darf es nicht durch 3 oder nicht durch 5 teilbar sein. Nun
gilt für jede natürliche Zahl n 6= 0 mod 3, dass n ≡ ±1 mod 3 und demnach n4 ≡ 1 mod 3, n4 − 1 ≡ 0
mod 3 ist.
Entsprechend gilt für jede natürliche Zahl n 6= 0 mod 5, dass n ≡ ±1 mod 5 oder n ≡ ±2 mod 5. in
jedem Fall also n4 ≡ 1 mod 5 und damit n4 − 1 ≡ 0 mod 5 ist. Daraus folgt unmittelbar, dass nur die
Primzahlen p1 = 3 und p2 = 5 als Lösung in Frage kommen. Die Probe beweist, dass diese beiden Zahlen
tatsächlich das Verlangte leisten.

Aufgabe 32/73
Zu konstruieren ist ein Dreieck aus den Höhen ha und hb und der Winkelhalbierenden wγ (wobei die
übliche Bezeichnungsweise verwendet wird.)

A

B

C

D

E

F

G H ′

wγ

hb

ha

p2 p3 p1
Angenommen, das Dreieck sei bereits konstruiert. Dann gilt (Ab-
bildung)

AD

DB
= AG

BH
= AC

BC
= b

a
= ha
hb

wegen p1 ‖ p2 ‖ p3, Strahlensatz, Satz über das Verhältnis der von
der Winkelhalbierenden erzeugten Seitenabschnitte und wegen
a · ha = b · hb = 2A.
Daraus folgt die Konstruktion:
1. Zeichne im Abstand h : a ein Parallelenpaar p1 und p2!
2. Zeichne zwischen p1 und p2 eine Parallele p3 so, dass der
Abstand von p1 sich zum Abstand von p2 wie ha : hb verhält.

3. Wähle auf p1 beliebig den Punkt C und schlage um C den Kreis mit dem Radius CD = wγ . Die
Schnittpunkte mit p3 sind D bzw. D′.
4. Trage in C an CD den von CD und p1 gebildeten spitzen Winkel so an, dass der freie Schenkel nicht
mit p1 zusammenfällt. Der Schnittpunkt des freien Schenkels mit p2 ist A.
5. Ziehe durch A und D die Gerade; ihr Schnittpunkt mit p1 ist B.
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Determination: Der Punkt D′ liefert ein kongruentes Dreieck mit entgegengesetztem Umlaufsinn. Die
Konstruktion ist immer ausführbar, wenn wγ > ha · hb : (ha + hb) ist; genau dann entsteht nämlich ein
Punkt D mit ]DCB < 90◦. Bis auf die erwähnte Kongruenz ist die Konstruktion dann auch immer
eindeutig.

Aufgabe 33/73
Die diophantische Gleichung ax + by = c mit a; b; c;x; y ganzzahlig und ggT (a,b) = 1 habe zwei
Lösungen (x1; y1) und (x2; y2), für die gilt x1 = x2 + 1.
Man zeige, dass dann gilt |b| = 1 und |a| = |y2 − y1|.

Nach Aufgabenstellung gelten die drei Gleichungen

ax1 + by1 = c (1)
ax2 + by2 = c (2)

x1 − x2 = 1

Subtrahiert man (2) von (1) und setzt man (3) ein, so ergibt sich

a(x1 − x2) + b(y1 − y2) = a+ b(y1 − y2) = 0 also b(y2 − y1) = a

Wegen (a, b) = 1 folgt sofort |b| = 1 und |y2 − y1| = |a|.

Aufgabe 34/73
Bei welchem der fünf platonischen Körper ist es möglich, alle Kanten in einem Zug (ohne Wiederho-
lung einer Kante) zu durchlaufen?

Die Aufgabe stellt eine Variante des bekannten ”Königsberger Brückenproblems” dar. Ist n die Anzahl
der Ecken des Körpers, so gilt als Bedingung für die Lösbarkeit:
Fall 1: Ausgangspunkt und Endpunkt des Kantenzuges fallen zusammen; dann müssen alle Ecken von
einer geradzahligen Anzahl von Kanten gebildet werden.
Fall 2: Ausgangspunkt und Endpunkt des Kantenzugs fallen nicht zusammen; dann müssen genau n− 2
Ecken von einer geradzahligen Anzahl von Kanten gebildet werden.
Da bei einem platonischen Körper alle Ecken untereinander gleichberechtigt sind, kommt Fall 2 nicht in
Frage. Der einzige platonische Körper, der die Bedingung des Falles 1 erfüllt, ist das Oktaeder (jede Ecke
wird von vier Kanten gebildet).

Aufgabe 35/73
Es ist zu beweisen, dass es zu jeder natürlichen Zahl n eine Zahl der Gestalt 111...111000...000 gibt,
die durch n teilbar ist.

Wir betrachten die n+ 1 Zahlen 1; 11; 111; ...; 111...1 (wobei die letzte n+ 1 Stellen habe). Da es genau n
verschiedene Restklassen mod 11 gibt, befinden sich unter diesen n+ 1 Zahlen genau zwei, die derselben
Restklasse mod n angehören.
Es seien dies a und b, wobei ohne Beschränkung der Allgemeingültigkeit a > b sei. Dann ist die Zahl
a− b ohne Rest durch n teilbar. Außerdem hat a− b die gewünschte Form. War nämlich a k-stellig und
b m-stellig (mit m < k nach Voraussetzung), so enthält a − b zunächst k − m Stellen, die mit Einsen
besetzt sind, und anschließend m mit Nullen besetzte Stellen.

Aufgabe 36/73
Aus einer Urne, in der sich insgesamt 53 schwarze und weiße Kugeln befinden, werden willkürlich vier
Kugeln gezogen.
Dabei werden gezogene Kugeln nicht in die Urne zurückgelegt. Wieviel Kugeln jeder Sorte müssten
in der Urne sein, wenn die Wahrscheinlichkeit dafür, dass entweder vier schwarze Kugeln oder zwei
schwarze und zwei weiße Kugeln gezogen werden, einander gleich sein sollen?
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Angenommen, in der Urne seien a schwarze und b = 53−a weiße Kugeln. Dann ist die Wahrscheinlichkeit
dafür, dass vier schwarze Kugeln gezogen werden,

W4s =
(
a
4
)(53

4
) = a · (a− 1) · (a− 2) · (a− 3)

53 · 52 · 51 · 50

die Wahrscheinlichkeit dafür, dass zwei schwarze und zwei weiße Kugeln gezogen werden,

W2s2w =
(

4
2

) (
a
2
)(
b
2
)(53

2
)(51

2
) = 6 · a · (a− 1) · b · (b− 1)

53 · 52 · 51 · 50

(der Faktor
(4

2
)

= 6 ergibt sich aus der Tatsache, dass die Kombination der schwarzen und weißen Kugeln
auf

(4
2
)

= 6 verschiedene Weisen möglich ist).
Ist nun a ≤ 1, so ist W4s = 0 und W2s2w = 0, also W4s = W2s2w. Wir untersuchen nun den Fall a ≥ 2.
Aus W4s = W2s2w folgt

a · (a− 1) · (a− 2) · (a− 3) = 6a(a− 1)b(b− 1)→ (a− 2)(a− 3) = 6(53− a)(52− a)

Daraus ergibt sich die quadratische Gleichung a2 − 125a + 3306 = 0, die im Bereich 2 ≤ a ≤ 53 nur die
Lösung a = 38 hat. Für b erhält man damit b = 15.
Die Wahrscheinlichkeiten sind also genau dann gleich, wenn entweder weniger als zwei oder genau 38
schwarze Kugeln in der Urne sind.
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2.14 Aufgaben und Lösungen 1974

Aufgabe 1/74
Man bestimme alle natürlichen Zahlen n, für die der Term

T (n) = n2 + (n+ 1)2 + (n+ 2)2 + (n+ 3)2

ohne Rest durch 10 teilbar ist.

Offensichtlich ist T (n) für beliebiges n stets ohne Rest durch 2 teilbar, da stets genau zwei der vier
aufeinanderfolgenden Zahlen n, (n+ 1), (n+ 2), (n+ 3) gerade und genau zwei ungerade sind; die Summe
der Quadrate ist also stets eine gerade Zahl. Damit genügt es, zu untersuchen, für welche natürlichen
Zahlen n der Term T (n) ohne Rest durch 5 teilbar ist.
Ist n ≡ k (mod 5), so ist

T (n) ≡ k2 + (k + 1)2 + (k + 2)2 + (k + 3)2 ≡ 4k2 + 12k + 14 ≡ −k2 + 2k − 1 ≡ −(k − 1)2 (mod 5)

Daraus folgt unmittelbar, dass k = 1 sein muss, wenn T (n) ≡ 0 (mod 5) sein soll. Es sind also alle
natürlichen Zahlen n der Form n = 5m + 1 mit m als natürlicher Zahl und nur diese Elemente der
Lösungsmenge.

Aufgabe 2/74
Es sind alle Rechtecke mit folgender Eigenschaft zu finden: Die Seitenlängen kann man durch ganze
Zahlen ausdrücken, deren Summe zahlenmäßig gleich der Fläche des Rechtecks ist.

Bezeichnet man die Seitenlängen des Rechtecks mit x und y, so führt die Bedingung der Aufgabe auf die
diophantische Gleichung 2x+ 2y = xy. Daraus folgt

x = 2y
y − 2 = 2 + 4

y − 2

Damit x ganzzahlig wird, muss 4 = k(y−2) sein, wobei k und y−2 ganze Zahlen sind; ferner muss y > 0
sein. Wegen x > 0 scheidet auch y = 1 aus, wegen y − 2 <> 0 auch y = 2. Damit verbleiben
1. y = 3 mit x = 6
2. y = 4 mit x = 4
3. y = 6 mit x = 3
Für y > 6 wird x nicht ganzzahlig. Es existieren also genau zwei verschiedene Rechtecke mit der gefor-
derten Eigenschaft:
1.) Seitenlängen 3 und 6 und 2.) Seitenlängen 4 und 4 (Quadrat)

Aufgabe 3/74
Gesucht ist eine quadratische Matrix vom Typ 3 mit folgender Eigenschaft:
1. Ihre Elemente sind aufeinanderfolgende ganze Zahlen.
2. Die Matrix stellt ein magisches Quadrat dar.
3. Die Determinante der Matrix ist gleich null.

Entsprechend der Bedingung 1 seien die Elemente der Matrix k − 4, k − 3, ..., k,...k + 3, k + 4, wobei k
eine noch zu bestimmende ganze Zahl ist. Die Summe dieser neun aufeinanderfolgenden ganzen Zahlen
ist 9k.
Die Zeilensumme, die Spaltensumme und die Diagonalensumme muss stets, unabhängig von der Zeilen-
bzw. Spaltennummer 1

3 · 9k = 3k sein (Bedingung 2). Damit kann man die folgende Anordnung der
Elemente finden: k − 3 k + 2 k + 1

k + 4 k k − 4
k − 1 k − 2 k + 3


Die Determinante D dieser Matrix ergibt sich nach der bekannten Regel zu D = 72k. Soll D = 0 sein,
so muss k = 0 sein (Bedingung 3). Damit erhält man schließlich als eine Matrix, die die gestellten
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Bedingungen erfüllt −3 +2 +1
+4 0 −4
−1 −2 +3


Aus ihr gehen durch Symmetrie (Vertauschen der ersten und dritten Zeile bzw. Spalte, Spiegelung an den
Diagonalen) oder durch Drehung noch sieben weitere hervor.

Aufgabe 4/74
In einem rechtwinklig-kartesischen Koordinatensystem sei eine Kurve durch die Gleichung

√
x+√y =

√
12

gegeben. Gesucht sind alle Punkte der Kurve mit ganzzahligen Koordinaten.

Offensichtlich sind die Koordinaten x1 = 0, y1 = 12 und x2 = 12, y2 = 0 ganzzahlige Lösungen der
gegebenen Gleichung, also erfüllen die Punkte P1/0; 12) und P2(12; 0) die gestellte Bedingung. Um weitere
Punkte zu finden, lösen wir die Gleichung nach y auf.

√
y =
√

12−
√
x (1)

y = 12− 4
√

3x+ x (2)

Aus (1) folgt bereits 0 ≤ x; y ≤ 12, aus (2) folgt (wegen der geforderten Ganzzahligkeit von y), dass
√

3x
eine ganze Zahl ist, also 3x = k2 mit k ∈ N . Dann muss aber k ein Vielfaches von 3 sein. Daher kommen
nur k = 0, k = 3 und k = 6 in Frage.
Für k > 6 ergäbe sich x > 12. Für k = 0 und k = 6 ergeben sich die bereits bekannten Punkte P1 und
P2, für k = 3 folgt x3 = 3, y3 = 3 und somit P3(3; 3).

Aufgabe 5/74
Es sei n eine natürliche Zahl. Wieviel Stellen hinter dem Komma (ohne nachfolgende Nullen) hat die
Zahl 4−n?

Die Aufgabe ist gelöst, wenn es gelingt, die Zahl 4−n als Produkt aus einer natürlichen Zahl (die nicht
durch 10 teilbar ist) und einer Zehnerpotenz mit negativem Exponenten zu schreiben. Zehnerpotenzen
enthalten die Primfaktoren 2 und 5 stets in gleicher Anzahl.
Damit bietet sich die folgende Zerlegung an:

4−n = 2−2n = 2−2n · 5−2n · 52n = 52n · 10−2n

Da Potenzen von 5 den Primfaktor 2 nicht enthalten, ist keine Potenz von 5 durch 10 teilbar (jede Potenz
von 5 endet mit 5 als letzter Stelle).
Folglich hat die Zahl 4−n genau 2n Stellen hinter dem Komma.

Aufgabe 6/74
Es ist zu beweisen, dass aus der Gültigkeit der Beziehung

x+ 1
x

= 2 cos y (1)

die Gültigkeit der Beziehung folgt

xn + 1
xn

= 2 cos (ny) (2)

Löst man die Gleichung (1) nach x auf, so erhält man zwei komplexe Lösungen

x1;2 = cos y ± i sin y

Nach dem Satz von Moivre ist
xn1;2 = cos (ny)± i sin (ny)
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Setzt man dies in Gleichung (2) ein, so ergibt sich

xn + 1
xn

= cos (ny)± i sin (ny) + 1
cos (ny)± i sin (ny) =

= cos (ny)± i sin (ny) + cos (ny)∓ i sin (ny)
cos2 (ny) + sin2 (ny)

= 2 cos (ny)

Aufgabe 7/74
Man beweise, dass für p 6= 3 der Term 14p2 + 1 keine Primzahl liefert.

Ist p 6= 3, so ist p ≡ ±1 (mod 3), also p2 ≡ +1 (mod 3).
Damit ist 14p2 + 1 ≡ 14 · 1 + 1 ≡ 15 ≡ 0 (mod 3).
Der Term 14p2 + 1 ist also für p 6= 3 stets durch 3 ohne Rest teilbar, mithin keine Primzahl.

Aufgabe 8/74
Gegeben sei ein Dreieck ABC mit ]BAC = α 6= 90◦, ]ABC = β 6= 90◦. Man beweise, dass

tanα
tan β = c2 + a2 − b2

c2 + b2 − a2

Wir bezeichnen die Höhe auf c mit h, die Projektionen von a bzw. b auf c mit p bzw. q. Dann gilt

tanα
tanβ

=
h
q

h
p

= p

q
= a cosβ
b cosα

Mit Hilfe des Kosinussatzes erhält man

cosα = b2 + c2 − a2

2bc ; cosβ = c2 + a2 − b2

2ac

Damit folgt
tanα
tan β =

c2+a2−b2

2c
c2+b2−a2

2c
= c2 + a2 − b2

c2 + b2 − a2

Aufgabe 9/74
Gesucht ist der Grenzwert derjenigen Zahlenfolge {an}, die folgende Eigenschaften hat:

1. an = bn
cn

2. b1; c1 sind natürliche Zahlen

3. bn+1 = 2bn

4. cn+1 = bn + cn

Es ist
an+1 = bn+1

cn+1
= 2bn
bn + cn

= bn + cn + bn − cn
bn + cn

= 1 + bn − cn
bn + cn

Wegen der Eigenschaften 2. und 3. ist die Folge {bn} monoton wachsend; wegen der Eigenschaften 2., 3.
und 4. ist die Folge {cn} monoton wachsend, also auch die Folge {bn+ cn}. Aus den Eigenschaften 3. und
4. folgt weiter

cn+1 − bn+1 = bn + cn − 2bn = cn − bn
da diese Beziehung für beliebiges n gilt, folgt cn − bn = konstant. Damit ist

an+1 = 1 + konstant
bn + cn

und lim
n→∞

an+1 = lim
n→∞

an = 1
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Aufgabe 10/74
Gesucht sind alle reellen Zahlen x, für die die folgende Gleichung gilt:

sin (π lg x) + cos (π lg x) = 1

Wir setzen π · lg x = α. Dann nimmt die Gleichung die Gestalt sinα+ cosα = 1 an. Die Lösungen dieser
goniometrischen Gleichung sind α1 = 2kπ und α2 = (2k + 1

2 )π.
(wobei k die Menge der ganzen Zahlen durchläuft). Daraus folgt

lg x1 = 2k; lg x2 = 2k + 1
2 also x1 = 102k = 100k;x2 = 102k+0,5 = 100k

√
10

Aufgabe 11/74
Gegeben sind zwei konzentrische Kreise K1 und K2 mit den Radien r1 und r2 sowie ein reguläres
n-Eck, dessen Umkreis K1 ist. Es ist zu beweisen, dass die Summe aus den Quadraten der Abstände
eines beliebigen Punktes P auf K2 von den Eckpunkten des n-Ecks unabhängig von der speziellen
Lage des Punktes P ist.

Ohne Beschränkung der Allgemeingültigkeit liege der gemeinsame Mittelpunkt der beiden Kreise im
Koordinatenursprung und die Koordinaten des k-ten Eckpunktes pk seien Pk

(
r1 cos 2kπ

n ; r1 sin 2pπ
n

)
. Die

Koordinaten von P sind P (x; y) und es gilt x2 + y2 = r2
2.

r2
1 cos2 2kπ

n
+ r2

1 sin2 2kπ
n

= r2
1

Zur Abkürzung setzen wir ϕk = 2kπ
n . Für die gesuchte Summe ergibt sich

n∑
k=1

[(x− r1 cosϕk)2 + (y − r1 sinϕk)2] =
n∑
k=1

[(x2 + y2)− 2r1(cosϕk + sinϕk) + r2
1(cos2 ϕk) + sin2 ϕk] =

n∑
k=1

[(r2
1 + r2

2)− 2r1(cosϕk + sinϕk)] =
n∑
k=1

(r2
1 + r2

2)− 2r1

n∑
k=1

(cosϕk + sinϕk) = n(r2
1 + r2

2)

Es ist nämlich
n∑
k=1

(cosϕk + sinϕk) = 0

für n >= 2. Man kann (cosϕk; sinϕk) als die Komponenten von n Einheitsvektoren deuten, die den Kreis
in n gleiche Teile zerlegen (d.h., je zwei benachbarte Vektoren schließen stets den gleichen Winkel ϕ = 2π

n
ein).
Die Summe dieser n Einheitsvektoren ist aber stets gleich dem Nullvektor, woraus folgt, dass die Summen
der Komponenten je gleich null sind. Damit ist die Behauptung bewiesen.

Aufgabe 12/74
Es sei f(x) = x3 +ax2 + bx+ c ein Polynom mit reellen Koeffizienten. Man zeige, dass die Bedingung
a2 − 3b < 0 hinreichend für die Existenz komplexer Nullstellen von f(x) ist.

Die Nullstellen von f(x) seien x1,x2,x3. Nach dem Satz von Vieta gilt

x1 + x2 + x3 = −a ; x1x− 2 + x2x3 + x3x1 = b

Somit ist

a2 − 3b = x2
1 + x2

2 + x2
3 − x1x2 − x2x3 − x3x1 = 1

2[(x1 − x2)2 + (x2 − x3)2 + (x3 − x1)2]

Sind alle xi reell, so ist die rechte seite dieser Gleichung nicht negativ, d.h. a2 − 3b >= 0. Deshalb folgt
aus a2 − 3b < 0 die Existenz komplexer Nullstellen.
Zusatz: Dass die Bedingung nicht notwendig ist, erkennt man leicht an Gegenbeispielen. So hat

f(x) = x3 − 4x2 + 5x = 0
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die komplexen Nullstellen x1;2 = 2± i, es ist aber a2 − 3b = 1 > 0.

Aufgabe 13/74
Für welche positiven reellen Zahlen a und b hat das Gleichungssystem

(y − a)2 = 1− x2 ; x2 = by

genau drei reelle Lösungen?

y

x

a = r = 1

a < 1

a > 1
r = 1

−1 1

Die Gleichung (1) ist die Gleichung eines Kreises mit dem
Radius 1, dessen Mittelpunkt in a auf der y-Achse liegt;
die Gleichung 2 stellt die Gleichung einer Parabel mit dem
Scheitel im Ursprung dar (vgl. Abbildung). Aus der Abbil-
dung erkennt man, dass genau drei Lösungen genau dann
existieren, wenn a = r = 1 ist (ist a > 1, so existieren 4
oder 2 oder keine Lösung; ist 0 < a < 1, so existieren 2
Lösungen).
Daraus ergibt sich: (y − 1)2 = 1− by. Die Lösung dieser in
y quadratischen Gleichung führt auf y1 = 0, y2;3 = 2 − b
mit x1 = 0, x2;3 = ±

√
(2− b)b.

Damit x2;3 reell wird, ist notwendig und hinreichend, dass
b ≤ 2 ist. Für b = 2 ergäbe sich jedoch x2;3 = 0, so dass die-
ser Fall ausgeschlossen werden muss. Das Gleichungssystem
hat also für a = 1, b < 2 genau drei reelle Lösungen.

Aufgabe 14/74
Man konstruierte ein Rechteck P1P2P3P4 mit dem Seitenverhältnis m : n, dessen drei Eckpunkte P1,
P2, P3 beziehungsweise auf den drei gegebenen Parallelen p1, p2, p3 liegen.

Mit dik sei der Abstand der Parallelen pi und pk bezeichnet,
und o.B.d.A. sei d13 der größte der Abstände dik (d.h., p2
liege zwischen p1 und p3). Dann teilt p2 die Diagonale P1P3
innen im Verhältnis d12 : d23 nach einem Strahlensatz.
Man konstruiert ein dem gesuchten Rechteck P1P2P3P4
ähnliches Rechteck P ′1P

′
2P
′
3P
′
4 und teilt die Diagonale P ′1P ′3

innen durch den Teilpunkt T ′ im Verhältnis d12 : d23.
Die Verbindungsstrecke P ′2T

′ trägt man beliebig auf der
Parallelen p2 ab; man zeichnet über P ′2T

′ das Rechteck
P ′1P

′
2P
′
3P
′
4.

Schließlich führt man mit P ′2 (oder T ′) als
Ähnlichkeitszentrum eine Ähnlichkeitstransformation so
durch, dass P1 auf 1 und P3 auf p3 zu liegen kommen.

p1 p2 p3

P1

P2

P3

P4

T

Aufgabe 15/74
Es ist zu beweisen: Erfüllen die reellen Zahlen a, b, c, x, y, z die Bedingungen

a2 + b2 + c2 = 1 ; x2 + y2 + z2 = 1

so gilt |ax+ by + cz| ≤ 1.

Sind ~a = a~i+ b~j + c~k und ~b = x~i+ y~j + z~k zwei Einheitsvektoren, so gilt

|~a| =
√
a2 + b2 + c2 = 1 = |~b| =

√
x2 + y2 + z2

sowie
|~a •~b| = |ax+ by + cz| = |~a||~b| cos (~a;~b) = cos (~a;~b) ≤ 1
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Aufgabe 16/74
Gegeben sei ein beliebiges Dreieck ABC. Über der Seite AB sei ein beliebiges Parallelogramm ABDE
errichtet, über der Seite BC ein beliebiges Parallelogramm BCFG. Der Schnittpunkt von DE und
FC sei H.
Man beweise: Die Summe der Flächeninhalte beider Parallelogramme ist gleich dem Flächeninhalt
des Parallelogramms über der Seite AC, dessen zweite Seite gleich der Strecke BH und dieser parallel
ist.

A

B

C

D

EF

G

H

B′

E′F ′
H ′

Man ziehe durch A und C Parallelen zu BH, die Schnitt-
punkte mit DE und FG seien E′ bzw. F ′ (vgl. Abbil-
dung). Dann gilt

AE′ = BH = CF ′; A(ABDE) = A(ABHE′);

A(BCFG) = A(BCF ′H)

(die Parallelogramme haben jeweils gleiche Grundlinie
und gleiche Höhe; mit A ist der Flächeninhalt des betref-
fenden Parallelogramms bezeichnet). Ferner ist ACF ′E′
das dritte Parallelogramm, dessen Fläche gleich der Sum-
me aus den Flächeninhalten der beiden anderen Paralle-
logramme sein soll.
Der Schnittpunkt der Geraden durch B und H mit E′F ′
sei H ′, mit AC werde er mit B′ bezeichnet. Dann gilt

A(ABHE′) = A(AB′H ′E′); A(BCF ′H) = A(B′CF ′H ′) also auch

A(ABDE) = A(AB′H ′E′); A(BCFG) = A(B′CF ′H ′) mithin

A(ABDE) +A(BCFG) = A(AB′H ′E′) +A(B′CF ′H ′) = A(ACF ′E′)

Aufgabe 17/74
Man beweise, dass für den Flächeninhalt A(ABC) eines rechtwinkligen Dreiecks ABC gilt:
A(ABC) = m · n, wenn mit m und n, die vom Berührungspunkt des Inkreises erzeugten Hypo-
tenusenabschnitte bezeichnet sind.

A B

C

M

m

m

n

n

ρρ

ρ

ρ

ρ

Ist M der Mittelpunkt des Inkreises, so gilt

A(ABC) = A(ABM) +A(BCM) +ACAM)

Ohne Beschränkung der Allgemeingültigkeit sei das Dreieck bei
C rechtwinklig; wir verwenden die üblichen Bezeichnungen (vgl.
Abbildung). Dann ist

A(ABM) = cρ

2 ; A(BCM) = aρ

2 ; A(CAM) = bρ

2
also A(ABC) = ρ

2 (a+ b+ c).
Nun ist aber c = m + n und (wegen der Gleichheit der Tangenten vom gleichen Punkt an einen Kreis
und wegen der Rechtwinkligkeit bei C: a = n+ ρ; b = m+ ρ. Damit folgt

A(ABC) + ρ

2(2m+ 2n+ 2ρ) = ρ(m+ n+ ρ)

Weiter ist nach dem pythagoreischen Lehrsatz

c2 = (m+ n)2 = a2 + b2 = (n+ ρ)2 + (m+ ρ)2

woraus nach kurzer Rechnung folgt
ρ(m+ n+ rho))m · n

Setzt man (2) in (1) ein, so ergibt sich die Behauptung.
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Aufgabe 18/74
Man beweise mittels vollständiger Induktion, dass

10n−1∑
i=0

2Q(i) = 1023n

für jedes natürliche n gilt, wenn Q(i) die Quersumme der Zahl i bezeichnet.

1. Durch Nachrechnen bestätigt man leicht, dass die Gleichung für n = 0 gilt. Für n = 1 ist 10n − 1 = 9
und Q(i) = i für i = 0; 1,...; 9, also

10n−1∑
i=0

2Q(i) =
9∑
i=0

2i = 1023

sie ist also auch für n = 1 gültig.
2. Angenommen, die Gleichung gilt für irgend ein n = k:

10k−1∑
i=0

2Q(i) = 1023k

Nun sei ik die erste Ziffer den (gegebenenfalls mit Hilfe von vorgesetzten Nullen) (k + 1)-stellig ge-
schriebenen Zahl i. Dann ist i = 10k · ik + r, wobei r alle höchstens k-stelligen Zahlen durchläuft, und
Q(i) == ik +Q(r). Damit ist

10k+1−1∑
i=0

2Q(i) =
9∑

ik=0

10k−1∑
r=0

2ik+Q(r) =
9∑

ik=0
2ik

10k−1∑
r=0

2Q(r)

In diesem letzten Ausdruck ist der erste Faktor; wie oben ermittelt, gleich 1023, der zweite ist nach der
Induktionsannahme gleich 1023k. Demnach gilt die Gleichung unter der Voraussetzung, dass sie für k
gilt, auch für k + 1. Damit ist aber bewiesen, dass sie für jedes natürliche n gilt.

Aufgabe 19/74
Man bestimme alle Lösungen der Gleichung ab + 7 = c, wobei a, b und c Primzahlen sind.

Sicher gilt für c, dass c > 7, also auch c > 2 ist. Damit ist; die Existenz wenigstens einer Lösung
vorausgesetzt; c eine ungerade Primzahl. Da die Summe zweier ungerader Zahlen stets gerade ist, muss
ab gerade sein. Damit kommt nur a = 2 in Frage.
Da 7 ≡ 1 (mod 3) gilt, muss ab = 2b 6= −1 (mod 3) sein, da sonst c ≡ 0 (mod 3) und wegen c > 7
somit keine Primzahl wäre. Wegen a = 2 ≡ −1 (mod 3) kann b nicht ungerade sein; es ist nämlich
(−1)2k+1 ≡ −1 (mod 3). Damit verbleibt für b als einzige Möglichkeit b = 2.
Tatsächlich ergibt sich für a = 2, b = 2 für c eine Primzahl: 22 + 7 = 11. Damit ist die einzige Lösung
a = 2, b = 2, c = 11.

Aufgabe 20/74
Gegeben sind zwei Kreise mit verschiedenen Radien, so dass sich die Kreise in zwei verschiedenen
Punkten schneiden. Durch einen der Schnittpunkte ist eine Gerade so zu konstruieren, dass die Kreise
auf ihr zwei gleich lange Sehnen ausschneiden.

Es seien k1 und k2 die gegebenen Kreise, A und B deren Schnittpunkte (Abbildung). Als Konstruktions-
hilfsmittel verwenden wir die Zentralsymmetrie.
Sei z.B. A der Schnittpunkt, durch den die gesuchte Gerade verlaufen soll. Dann konstruiert man zu
einem der beiden Kreise, etwa k2, mit A als Symmetriezentrum den zentralsymmetrischen Kreis k3. Auf
allen durch A verlaufenden Geraden werden (aus Symmetriegründen) von k2 und k3 gleichlange Sehnen
ausgeschnitten; speziell auch auf der Geraden, die durch den Schnittpunkt C zwischen k1 und k3 verläuft.
Diese Gerade ist die gesuchte.
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C

A

B

M1

M2

M3

K1

K2

K3

Es bleibt noch nachzuweisen, dass ein von A ver-
schiedener Schnittpunkt C der Kreise k1 und k3 exis-
tiert. Angenommen, k1 und k3 würden einander in A
berühren (so dass A = C wäre); dann würden die Mit-
telpunkte M1, M2 und M3 der drei Kreise und Punkt
A auf ein und derselben Geraden liegen, also würde
auch k2 den Kreis k1 berühren; im Widerspruch zur
Voraussetzung der Aufgabe.

Aufgabe 21/74
In einem Dreieck seien u der Umfang, r der Umkreisradius und A der Flächeninhalt. Man zeige, dass
stets gilt:

u3

rA
≥ 108

Es seien a, b und c die Seiten des Dreiecks, α, β und γ die ihnen gegenüberliegenden Winkel. Dann gilt

A = 1
2bc sinα; a

2r sinα also A = abc

4r
Nach der bekannten Ungleichung über das arithmetische und geometrische Mittel gilt ferner

a+ b+ c

3 = u

3 ≥
3
√
abc

Folglich ist u3 ≥ 27abc = 27 · 4Ar. Daraus folgt unmittelbar die Behauptung
u3

r ·A
≥ 108

Aufgabe 22/74
Auf verschiedenen Seiten eines geradlinig verlaufenden Kanals mit parallelen Ufern liegen in ver-
schiedenen Abständen und nicht auf gleicher Höhe zwei Orte A und B. Gesucht ist die kürzeste
Verbindung zwischen A und B so, dass der Kanal rechtwinklig gekreuzt wird.

Da die Kanalufer parallel sind, ist die Länge des senkrecht zu den Ka-
nalufern verlaufenden Verbindungsabschnitts unabhängig von der Lage
gleich der Kanalbreite. Die Lage der schräg zum Kanal verlaufenden
Abschnitte findet man durch die folgende Überlegung:

Hätte der Kanal die Breite Null, so wäre die kürzeste Verbindung zwi-
schen A und B die Strecke AB. Wir bezeichnen mit ua und ub die
Kanalufer, die A bzw. B am nächsten liegen. Denkt man sich nun ub
senkrecht zu sich selbst bis ua verschoben, so verschiebt sich damit B
um die Kanalbreite senkrecht zum Kanal in Richtung des Kanals nach
B′ (Abbildung).

A

B

UA

UB

B′

k

k

ub

ua

Die Strecke AB′ bestimmt die Richtung der schräg zum Kanal verlaufenden Abschnitte. Es sei Ua der
Schnittpunkt dieser Strecke mit ua. Dann verläuft die gesuchte kürzeste Verbindung von A bis Ua ge-
radlinig, von Ua senkrecht zum Kanalufer bis zum Schnittpunkt Ub mit ub und von da geradlinig (und
parallel zu AUa) nach B.

Aufgabe 23/74
Man ermittle sämtliche reellen Lösungen der Gleichung[

x3] = [x]4

(wobei mit [x] die größte ganze Zahl bezeichnet ist, die nicht größer als x ist).
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Zunächst erkennt man, dass die Gleichung für 0 ≤ x ≤ 1 erfüllt ist; denn für 0 ≤ x < 1 ist [x] = 0, also
auch [x]4 = 0, und 0 ≤ x3 < 1, also auch [x3] = 0, und für x = 1 ist x3 = 1, [x] = 1, [x3] = [x]4 = 1.
Dass für x < 0 keine Lösung existiert, ergibt sich aus folgender Überlegung: Für x < 0 ist x3 < 0, [x3] < 0,
aber [x]4 > 0.
Als weitere Lösungen kommen also nur Werte x > 1 in Frage. Um sie zu finden, setzen wir x = [x] + α
mit 0 ≤ α < 1. Dann ist

[x]4 = [([x] + α)3] < [([x] + 1)]3

Diese Ungleichung hat außer für [x] = 0 und [x] = 1 nur für [x] = 2 eine Lösung; denn setzt man
[x] = 3 + C (wobei C eine nichtnegative ganzzahlige Konstante ist), so folgt

C4 + 11C3 + 42C2 + 60C + 17 < 0

also ein Widerspruch.
Setzt man nun der Reihe nach [x] = 1 und [x] = 2, so ergibt sich
1. 14 ≤ (1 + α)3 < 2, also 1 ≤ 1 + α ≤ 3

√
2

2. 24 ≤ (2 + α)3 < 24 + 1, also 2 3
√

2 ≤ 2 + α < 3
√

17
Die Lösungen lauten somit

0 ≤ x < 3
√

2 ; 2 3
√

2 ≤ x < 3
√

17

Aufgabe 24/74
Man beweise, dass keine Zahl der Form 4n(4k+3) mit n; k ∈ N als Summe zweier Quadrate natürlicher
Zahlen darstellbar ist!

Angenommen, es gäbe zwei natürliche Zahlen x und y derart, dass x2 +y2 = 4n(4k+3) gilt. Dann müssen
x und y beide gerade sein, weil nämlich die Quadrate ungerader Zahlen stets beim Teilen durch 4 den
Rest 1 lassen, die rechte Seite der Gleichung aber durch 4 teilbar ist. Damit sind aber x2 und y2 beide
durch 4 teilbar, und es gilt

x2
1 + y2

1 = 4n−1(4k + 3)

wobei x = 2x1; y = 2y1 gilt. Diesen Schluss kann man n mal durchführen, und man erhält dann mit
x = 2nxn, y = 2nyn

x2
n + y2

n = 40(4k + 3))4k + 3

Die rechte Seite dieser Gleichung lässt beim Teilen durch 4 den Rest 3; dieser Rest kann aber in der
Summe zweier Quadratzahlen nie auftreten, da Quadratzahlen beim Teilen durch 4 nur die Reste 0 oder
1 lassen, die Summe zweier Quadratzahlen also nur die Reste 0, 1 oder 2 ermöglicht. Damit ist die
Annahme auf einen Widerspruch geführt und somit die Behauptung bewiesen.

Aufgabe 25/74
Es sind die Maße aller Zylinder anzugeben, bei denen die Maßzahlen von Radius und Höhe natürliche
Zahlen sind und bei denen Oberfläche und Volumen den Maßzahlen nach übereinstimmen.

Bezeichnet man die Maßzahlen von Radius und Höhe mit r bzw. mit h, wobei r, h > 0, r, h ∈ N gilt, so
erfordert die Aufgabe die Gültigkeit der Gleichung

πr2h = 2πr(r + h)

Daraus ergibt sich sofort
rh = 2r + 2h→ r = 2h

h− 2 = 2 + 4
h− 2

Damit r eine natürliche Zahl wird, ist notwendig und hinreichend, dass h einen der Werte 6, 4 oder 3
annimmt. Es gibt also drei Zylinder der geforderten Art:
a) h1 = 6; r1 = 3; V1 = 54π = O1
b) h2 = 4; r2 = 4; V2 = 64π = O2
c) h3 = 3; r3 = 6; V3 = 108π = O3
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Aufgabe 26/74
Es sei ABC ein bei A rechtwinkliges Dreieck mit den Seiten a, b und c (wobei die Seiten den gleichbe-
zeichneten Ecken gegenüberliegen). Welche Werte kann das Verhältnis der Seitenhalbierenden sc : sb
annehmen?

Nach dem Lehrsatz des Pythagoras ergeben sich die Längen der Seitenhalbierenden zu

sb =
√

1
4b

2 + c2 ; sc =
√

1
4c

2 + b2

Das Verhältnis sc : sb ist dann
sc
sb

=
√

4b2 + c2

b2 + 4c2

Kürzt man den Radikanden mit c2 und führt man das Verhältnis λ = b
c ein (wobei 0 < λ < ∞ wegen

b > 0, c > 0 gilt), so folgt
sc
sb

=
√

4λ2 + 1
λ2 + 4 =

√
4− 15

λ2 + 4

Für λ → 0 ergibt sich sc : sb →
√

4− 15
4 = 1

2 . Für λ → ∞ folgt sc : sb →
√

4 = 2. Damit ist
1
2 < sc : sb < 2.

Aufgabe 27/74
Nach Wieferichs Beweis der Waringschen Vermutung kann man jede Zahl als Summe von höchstens
neun Kuben darstellen. Man zeige, dass jedes Vielfache von 6 schon durch höchstens vier Kuben
darstellbar ist!

Es ist

6x = 3x+ 3x = x3 + 3x2 + 3x+ 1 + x3 − 3x2 + 3x− 1− 2x3 = (x+ 1)3 + (x− 1)3 − x3 − x3

Aufgabe 28/74
Man beweise: Ist a eine irrationale Zahl, so ist die Funktion y = cos (ax) + cosx nicht periodisch.

Angenommen, y sei periodisch mit der Periode T . Dann gilt

cos (ax) + cosx = cos (a(x+ T )) + cos (x+ T )

Insbesondere ergibt sich für x = 0 (die Relation muss für jedes beliebige x gelten)

cos 0 + cos 0 = cos (aT )) + cosT = 2

Daraus folgt, dass
1.) cos (aT ) = 1 mit aT = 2kπ,
2.) cosT = 1 mit T = 2mπ,
k;m ∈ G, ist. Dann aber ist a = aT

T = k
m , d.h., a ist als Quotient zweier ganzer Zahlen eine rationale

Zahl im Widerspruch zur Voraussetzung der Aufgabenstellung. Demnach ist die Annahme falsch, y ist
nicht periodisch.

Aufgabe 29/74
Gesucht sind alle Kegel, bei denen die Maßzahlen von Radius, Höhe und Mantellinie natürliche Zahlen
sind und bei denen die Maßzahlen von Oberfläche und Volumen einander gleich sind.

Bezeichnet man die Maßzahlen von Radius, Höhe und Mantellinie mit r, h bzw. s, wobei r, h, s ∈ N und
r, h, s > 0 gilt, so erfordert die Aufgabenstellung die Gültigkeit der Gleichung

1
3πr

2h = πr(r + s)
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mit der Nebenbedingung r2 + h2s2. Daraus ergibt sich

rh

3 = r + s→ rh− 3r = 3s→ r2h2 − 6r2h− 9h2 = 0

und wegen h 6= 0
r2h− 6r2 − 9h = 0→ r2 = 9h

h− 6 = 9 + 54
h− 6

Damit r2 eine natürliche Zahl wird, muss k = h − 6 ein Teiler von 54 Sein. In Frage kommen also die
Werte k = 1; 2; 3; 6; 9; 18; 27; 54 mit h = 7; 8; 9; 12; 15; 24; 33; 60.
Von ihnen liefert aber nur k = 2 mit h = 8 eine Quadratzahl r2, so dass auch r eine natürliche Zahl
wird. Es gibt also genau einen derartigen Kegel, dessen Maßzahlen r = 6, h = 8, s = 10 sind. Bei ihm ist
V = O = 96π.

Aufgabe 30/74
Es sind alle Paare dreistelliger natürlicher Zahlen (x; y) gesucht, die die folgenden Eigenschaften
haben:

1. Die Zahlen eines Paares unterscheiden sich in den letzten beiden Stellen genau durch die Rei-
henfolge der Ziffern.

2. Die Differenz x− y beträgt 18.

3. Jede der beiden Zahlen eines Paares ist das Produkt von genau zwei je zweistelligen Primzahlen.

Sind x = 100x1 + 10x− 2 + x3 und y = 100y1 + 10y2 + y3 die beiden Zahlen eines der gesuchten Paare,
so gilt nach Bedingung 1: y2 = x3 und y3 = x2.
Nach Bedingung 2 gilt

x− y = 100x1 + 10x2 + x3 − (100y1 + 10y2 + y3) = 100(x1 − y1) + 9(x2 − x3) = 18

Dividiert man beide Seiten der letzten Gleichung durch 9, so ergibt sich

11(x1 − y1) + 1
9(x1 − y1) + x2 − x3 = 2

Diese Gleichung ist aber nur dann ganzzahlig mit einstelligen Werten für x1, x2, x3, y1 lösbar, wenn
x1 = y1 ist. Dann folgt weiter x2 = x3 + 2.
Nach Bedingung 3 müssen x2 und x3 ungerade und ungleich 5 sein. Damit kommen nur x3 = 1;x2 = 3
und x3 = 7;x2 = 9 in Frage. Außerdem muss nach Bedingung 3 die Quersumme x1 + x2 + x3 6= 0 (mod
3) sein; da x2 + x1 ≡ 1 (mod 3) ist, gilt also x1 6= 2 (mod 3). Damit kann x1 die Werte 1; 3; 4; 6; 7; 9
annehmen. In Betracht kommen also zunächst die 12 Zahlenpaare

(131; 113), (197; 179), (331; 313), (397; 379), (431; 413), (497; 479)
(631; 613), (697; 679), (731; 713), (797; 779), (931; 913), (997; 979)

Aus ihnen scheidet man zunächst (etwa mit Hilfe einer Primzahltabelle) alle die Zahlenpaare aus, bei
denen wenigstens eine Zahl selbst Primzahl ist. Sie widersprechen nämlich der Bedingung 3. Es verbleiben
dann nur noch die Paare

(697; 679), (731; 713), (931; 913)

Zerlegt man die Zahlen dieser Paare in ihre Primfaktoren, so stellt man fest, dass das Paar (731; 713)
das einzige Paar ist, das die Bedingung 3 erfüllt.

Aufgabe 31/74
Man zeige, dass das Produkt aus den Ziffern einer mehrstelligen natürlichen Zahl n stets kleiner ist
als die Zahl n selbst.
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Es sei
m∑
i=0

ai · 10i mit m > 1. Dann gilt wegen ai ≤ 9 für jedes i:

m∏
i=0

ai = am

m−1∏
i=0

ai ≤ am
m∏
i=0

9 = am · 9m < am · 10m ≤
m∑
i=0

ai · 10i

Aufgabe 32/74
Für welche natürlichen Zahlen n ist z = 4n + 44 + 48 eine Quadratzahl?

Die Zahl z = 4n + 44 + 48 ist genau dann Quadratzahl, wenn die Zahl z′ = 4k + 4 + 1 = (2k)2 + 28 + 1
mit k = n− 4 Quadratzahl ist. Es ist nämlich z = 44 · z′ = 162 · z′. Der Ansatz

z′ = (2k)2 + 28 + 1 = (2k)2 + 2 · 27 + 1 = (2k + 1)2

liefert zunächst k = 7, n = 11 als Lösung. Nun ist noch nachzuprüfen, ob ein anderer Ansatz weitere
Lösungen liefern kann.
Angenommen, es gäbe ein m mit

(2k)2 + 28 + 1 = m; k 6= 7

dann wäre m sicher ungerade: m = 2r + 1, wobei r eine natürliche Zahl ist. Also gilt

(2k)2 + 28 + 1 = (2r + 1)2 = 4r + 4r + 1; (2k−1)2 + 26 = r(r + 1)

Die rechte Seite der Gleichung ist ein Produkt aus zwei aufeinanderfolgenden Zahlen, also muss auch die
linke Seite als ein solches Produkt darstellbar sein. Man prüft durch Rechnung leicht nach, dass dies für
k ≤ 4 nicht möglich ist. Für k > 4 folgt

(2k−1)2 + 26 = 26(22k−8 + 1); also r = 26 = 22k−8; k = 7

im Widerspruch zur Annahme. Demnach ist n = 11 die einzige Zahl, für die z eine Quadratzahl ist.

Aufgabe 33/74
Gegeben sei ein konvexes, sonst aber beliebiges Viereck ABCD. Gesucht ist der geometrische Ort
aller der Punkte P im Inneren des Vierecks, für die die Vierecke ABPD und BCDP flächengleich
sind.

A B

C

D

P1

Zuerst sucht man einen Punkt P1, der der gestellten Forderung ent-
spricht. Man findet ihn als Mittelpunkt der Diagonalen AC (Abbil-
dung). Es ist nämlich

M AP1D =M P1CD und M ABP1 =M BCP1

(wobei das Gleichheitszeichen die Flächengleichheit bedeutet),
da die, entsprechenden Dreiecke stets gleiche Grundlinie und die
gleiche Höhe haben.

Durch eine Verschiebung des Punktes P , auf der Parallelen zur Diagonale BD durch P1 wird der
Flächeninhalt des Dreiecks BDP1 nicht verändert, da sich Grundlinie und Höhe nicht ändern. Das heißt,
der gesuchte geometrische Ort ist; die Parallele zur Diagonale BD durch den Mittelpunkt der Diagonale
AC, soweit die Parallele im Inneren des Vierecks ABCD verläuft.

Aufgabe 34/74
Man wähle eine mindestens zweistellige natürliche Zahl n, deren dezimale Darstellung keine Null
enthält. Vertauscht man in ihr beliebig die Stellen, so ergibt sich eine zweite natürliche Zahl n′.
Streicht man in der Differenz n−n′ eine Ziffer, so kann man aus der Summe der verbliebenen Ziffern
die gestrichene ermitteln. Wie ist das möglich?
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Es sei n ≡ k (mod 9) mit k ∈ G, 0 ≤ k ≤ 8. Dann ist auch n′ ≡ k (mod 9). Dies folgt unmittelbar aus der
Tatsache, dass sich beim Vertauschen der Ziffern die Quersumme nicht ändert; es ist also Q(n) = Q(n′),
wobei Q(n) die Quersumme der Zahl n bezeichnet. Bekanntlich gilt aber stets Q(n) ≡ n (mod 9). Damit
ergibt sich sofort n− n′ ≡ 0 (mod 9), also

Q(n− n′) = 9m

mit m ∈ G. Ist z die gestrichene Ziffer und S die Summe der verbliebenen Ziffern, so gilt demnach

S + z = Q(n− n′) = 9m ; z = 9m− S

Man kann also die gestrichene Ziffer ermitteln, indem man die Summe S von der nächstgrößeren durch
9 teilbaren Zahl subtrahiert (von der nächstgrößeren deshalb, weil 0 < z ≤ 9 gilt).

Aufgabe 35/74
Für die Koeffizienten ai der Gleichung x2 + a2x

2 + a1x+ a0 = 0 gelte

a2a1

a0
< 9

Man zeige, dass dann nicht alle Lösungen der Gleichung positiv reell sind.

Sind x1, x2 und x3 die Lösungen der Gleichung, so gilt nach dem Wurzelsatz von Vieta

x1 + x2 + x3 = −a2

x1x2 + x2x3 + x3x1 = a1

x1x2x3 = −a0

also
(x1 + x2 + x3) · x1x2 + x2x3 + x3x1

x1x2x3
= (x1 + x2 + x3) ·

(
1
x1

+ 1
x2

+ 1
x3

)
=

= 3 +
(
x1

x2
+ x2

x1

)
+
(
x2

x3
+ x3

x2

)
+
(
x3

x1
+ x1

x3

)
= a2a1

a0
< 9

Sind nun alle xi (i = 1; 2; 3) positiv reell, so gilt wegen a
b + b

a ≥ 2 positive reelle a; b

a2a1

a0
≥ 3 + 2 + 2 + 2 = 9

im Widerspruch zur Voraussetzung.

Aufgabe 36/74
Es seien (x; y) Paare reeller Zahlen. Man stelle die Abbildung

{(m; y) : y = x+ 4 für 0 ≤ x < 2;
0 ≤ y ≤ 6 für x = 2;

(x− 5)2 + (y − 4)2 = 4; y = 4−
√

7− x2 + 6x für 3 ≤ x ≤ 7;
y = 6 und y = 2x− 16 für 8 ≤ x ≤ 11;

4 ≤ y ≤ 6 für x = 12;
y = 6 und (x− 14)2 + (y − 2,5)2 = 6,25 für 12 ≤ x ≤ 16,5}

in einem rechtwinklig-kartesischen Koordinatensystem graphisch dar!
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x

y

5

5 10 15
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2.15 Aufgaben und Lösungen 1975

Aufgabe 1/75
Gegeben sei das Polynom P (x) = x3 + px+ q, dessen Koeffizienten p, q reell sind, und es sei q 6= 0.
Es ist zu beweisen: Sind alle Nullstellen des Polynoms reell, so ist p < 0.

Sind x1, x2, x3 die Nullstellen des gegebenen Polynoms, so gilt nach dem Wurzelsatz des Vieta:

x1 + x2 + x3 = 0 ; x1x2 + x2x3 + x3x1 = p

Daraus folgt
(x1 + x2 + x3)2 = 0 ; x2

1 + x2
2 + x2

3 + 2p = 0

Da x1, x2, x3 sämtlich reell sind und (wegen q 6= 0) x1, x2, x3 6= 0 gilt, ist x2
1 + x2

2 + x2
3 > 0. Daraus folgt

unmittelbar die Behauptung, dass p < 0 ist.

Aufgabe 2/75
Man bestimme alle nicht negativen ganzen Zahlen m und n, die der Gleichung 3·2m+1 = n2 genügen.

Aus der gegebenen Gleichung folgt durch äquivalente Umformung

3 · 2m = n2 − 1 = (n+ 1)(n− 1)

Da die linke Seite der Gleichung gerade ist (falls m 6= 0), müssen sowohl n + 1 als auch n - 1 gerade
sein; also ist die linke Seite der Gleichung in ein Produkt aus zwei geraden Faktoren zu zerlegen. Wir
unterscheiden nun zwei Fälle:
Fall 1: n+ 1 = 3 · 2x; n− 1 = 2y
Fall 2: n+ 1 = 2x; n− 1 = 3 · 2y
wobei in beiden Fällen x + y = m gilt. Aus den zweiten Gleichungen folgt jeweils n = 2y + 1 bzw.
n = 3 · 2y + 1. Dies, in die ersten Gleichungen eingesetzt, liefert
Fall 1: 2y + 2 = 3 · 2x; 2y−1 + 1 = 3 · 2x−1

Fall 2: 3 · 2y + 2 = 2x; 3 · 2y−1 + 1 = 2x−1 − 1
In jeder der beiden Gleichungen ist eine Seite ungerade; folglich muss es auch die andere Seite sein. Das
ist aber genau dann der Fall, wenn 2x−1 = 1 (Fall 1) bzw. 2y−1 = 1 (Fall 2) ist. Daraus folgt
Fall 1: x = 1; y = 2 ; Fall 2: y = 1; x = 3. Damit ergibt sich m = 3;n = 5 bzw. m = 4; n = 7.
Es bleibt noch der oben zunächst ausgeschlossene Fall m = 0 zu untersuchen. Für ihn folgt aus der
gegebenen Gleichung die dritte Lösung m = 0; n = 2.

Aufgabe 3/75
Gegeben sei ein Dreieck mit den Seiten a, b, c (wobei a ≥ b ≥ c sei) und dem Flächeninhalt A. Man
zeige, dass b ≥

√
2A gilt.

Es ist A = 1
2ab sin γ und nach dem Sinussatz a = b sinα

sin β , also

A = 1
2b

2 sinα sin γ
sin β → b2 = 2A sin β

sinα sin γ

Nun gilt sinα ≤ 1, also 1
sinα ≥ 1, sin β

sin γ ≥ 1 (wegen b
c = sin β

sin γ und b ≥ c). Damit folgt unmittelbar

b3 = 2A sin β
sinα sin γ ≥ 2A→ b ≥

√
2A

Aufgabe 4/75
Es seien hc die Höhe auf der Hypotenuse c und ρ der Inkreisradius eines bei C rechtwinkligen Dreiecks
ABC. Man beweise, dass dann gilt

2 < hc
ρ
≤ 1 +

√
2
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Wird mit A die Fläche des Dreiecks bezeichnet, so gilt

A = 1
2chc = 1

2ρ(a+ b+ c) also hc
ρ

= a+ b+ c

c
= 1 + a+ b

c

Wegen der Gültigkeit der Dreiecksungleichung ist a+b
c > 1. Damit folgt unmittelbar der erste Teil der

Behauptung
hc
ρ

= 1 + a+ b

c
> 2

(dies gilt übrigens für jedes Dreieck, da bei der Beweisführung von der Rechtwinkligkeit kein Gebrauch
gemacht wurde). Ferner folgt aus (a− b)2 = a2 − 2ab+ b2 ≥ 0, dass

a2 + b2 ≥ 2ab ; (a+ b)2 = a2 + 2ab+ b2 ≤ 2(a2 + b2)

Nach dem Lehrsatz des Pythagoras gilt aber in einem bei C rechtwinkligen Dreieck a2 + b2 = c2. Folglich
gilt (a+ b)2 ≤ 2c2, d.h. a+ b ≤ c

√
2.

Damit folgt aber der zweite Teil der Behauptung:

hc
ρ

= 1 + a+ b

c
≤ 1 +

√
2

Aufgabe 5/75
Gesucht sind alle Tripel (x; y; z) von Primzahlen, für die die Gleichung x+y

x−y = z gilt.

Aus der gegebenen Gleichung folgt:
1) x > y (aus x > y folgt z < 0, aus x = y folgt, dass z nicht existiert)
2) z 6= 2 (aus z = 2 folgt x + y = 2x − 2y, also x = 3y im Widerspruch zur Forderung, dass x und y
Primzahlen sein sollen).
Wegen z 6= 2 ist z = 2k + 1 mit k ∈ N . Daraus folgt

x+ y = (2k + 1)(x− y) = 2kx+ x− 2ky − y → 2kx = 2(k + 1)xy → x = y + y

k

Da x als Primzahl ganzzahlig und y ebenfalls Primzahl ist, kommen für k zunächst nur die Werte k = 1 und
k = y in Frage. Der Wert k = 1 entfällt, da sich damit x = 2y im Widerspruch zur Primzahleigenschaft
von x und y ergäbe.
Für k = y folgt x = y+1. Die einzigen aufeinanderfolgenden Primzahlen sind aber 2 und 3, so dass y = 2
und x = 3 sein müssten. Tatsächlich ergibt sich für diese beiden Werte auch z als Primzahl:

z = x+ y

x− y
= 5

Das Tripel (x; y; z) = (3; 2; 5) ist also das einzige, das die geforderten Bedingungen erfüllt.

Aufgabe 6/75
Ein Gärtner will 25 Rosen so auf eine Fläche verteilen, dass in 15 Reihen je 5 Rosen stehen. Dabei
sollen die Rosen rotationssymmetrisch so angeordnet werden, dass mehr als 3

4 davon weniger als
halb so weit vom Symmetriezentrum entfernt sind wie die äußersten und dass das Symmetriezentrum
selbst unbepflanzt bleibt. Wie ist eine solche Anordnung möglich?

1. Die Anzahl der Symmetrieachsen muss ein echter Teller der Rosenanzahl außerhalb des Symme-
triezentrums sein. Da 5 der einzige echte Teiler von 25 ist, muss man die fünfstrahlige Symmetrie
wählen.

2. Es sollen mehr als 3
4 der Rosen, also mindestens 19, innerhalb eines Kreises angeordnet werden,

dessen Radius kleiner ist als der halbe Abstand der äußersten Rosen vom Zentrum. Aus Symme-
triegründen muss diese Anzahl ebenfalls den Teiler 5 haben, sie beträgt also 20.

3. Daraus folgt, dass man zunächst 5 Rosen als ”äußerste” in Form eines regelmäßigen Fünfecks
anordnen wird und dass die Seiten des Fünfecks nicht mit weiteren Rosen bepflanzt werden dürfen.
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4.
Es liegt damit nahe, die 5 Diagonalen des Fünfecks als die ersten 5 Reihen anzusehen. Ihre 5 Schnitt-
punkte liegen innerhalb des unter 2. angeführten Kreises (wie man durch Rechnung bestätigen
kann). Bepflanzt man diese Schnittpunkte, so liegen auf jeder Fünfeckdiagonalen (Pentagramm-
seite) bereits 4 Rosen (1.Abbildung). Außerdem legt jede der äußeren Rosen mit der ihr ge-
genüberliegenden inneren eine neue Reihe fest (Pentagrammdiagonale).

5. Setzt man auf jeden Schnittpunkt einer Pentagrammseite mit einer Pentagrammdiagonalen eine
Rose, so werden die Pentagrammseiten zu Reihen ”komplettiert”’ die Pentagrammdiagonalen sind
dann Träger von je 3 Rosen (Abbildung 2).

6. Damit hat man mit 15 Rosen 5 komplette Reihen und 5 noch nicht komplette Reihen erzielt.

7. Wählt man die 53 Rosen auf den Schnittpunkten der Pentagrammseiten untereinander oder die
5 Rosen auf den Schnittpunkten der Pentagrammseiten mit den Pentagrammdiagonalen als Aus-
gangspunkte einer ähnlichen (verkleinerten) Figur, so kann man 5 weitere komplette Reihen erzielen,
wobei 10 weitere Rosen benötigt werden.

Die Aufgabe ist gelöst, wenn dabei die nichtkompletten Reihen
der größeren Figur durch die nichtkompletten Reihen der klei-
neren Figur zu kompletten Reihen ergänzt werden. Tatsächlich
trifft dies zu (wie man an Hand der Symmetrieeigenschaften
leicht nachweisen kann).
Es gibt also zwei (nicht wesentlich verschiedene) Varianten der
Lösung, von denen eine in Abbildung 3 dargestellt ist.
Lässt man auch nur eine der gestellten Bedingungen weg, so
ergeben sich weitere, wesentlich verschiedene Lösungen.

Aufgabe 7/75
Es sei p = ABC eine in dekadischer Schreibweise dargestellte dreistellige Zahl, wobei 0 ≤ A,B,C ≤ 9,
A,B,C natürlich gilt, also A, B, C die Ziffern der entsprechenden Stellen angeben. Es ist zu beweisen:
Wenn p = ABC durch 37 teilbar ist, dann sind auch die Zahlen q = BCA und r = CAB durch 37
teilbar.

Wenn p = ABC durch 37 teilbar ist, so gilt

p = 100A+ 10B + C = 37k

wobei k eine ganze Zahl ist. Damit ist weiter

q = 100B + 10C +A = 1000A+ 100B + 10C − 999A = 10p− 999A = 37(10k − 27A)
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(wegen 999 = 37 · 27) und

r = 100C + 10A+B = 10000A+ 1000B + 100C − 9990A− 999B =

= 100p− 999(10A+B) = 37[100k − 27(10A+B)]

Damit sind auch q und r durch 37 teilbar.

Aufgabe 8/75
Es ist zu beweisen, dass die Zahl 23 · 52n + 102 · 27n für jede ungerade natürliche Zahl n durch 1975
teilbar ist.

Die Behauptung ist richtig für n = 1, wie man durch Nachrechnen leicht bestätigt. Angenommen, die
Behauptung gelte für n = 2k + 1. Dann gilt

23 · 522k+3 + 102 · 272k+3 = 522 · 23 · 522k+1 + 272 · 102 · 272k+1 = 2704 · 23 · 522k+1 + 729 · 102 · 272k+1 =

= 729 ·23 ·522k+1 +729 ·102 ·272k+1 +1975 ·23 ·522k+1 = 729 ·(23 ·522k+1 +102 ·272k+1)+1975 ·23 ·522k+1

Der erste Summand ist nach der Induktionsannahme durch 1975 teilbar, der zweite, weil er den Faktor
19759 enthält.
Also folgt aus der Induktionsannahme, dass die Behauptung auch für n = 2k + 3 = 2(k + 1) + 1 gilt.
Damit ist die Behauptung für alle ungeraden natürlichen Zahlen n bewiesen.

Aufgabe 9/75
Man ermittle, ohne das Integral zu berechnen, den Grenzwert

lim
x→0

1
x

x∫
0

t sin tdt

Ist F (t) =
∫
t · sin tdt eine Stammfunktion von t · sin t, so nimmt der Grenzwert die Gestalt

lim
x→0

F (x)− F (0)
x− 0

an. Man erkennt, dass der Grenzwert des Differenzenquotienten von F (x) an der Stelle x = 0 zu bilden
ist; das ist aber der Differentialquotient der Funktion F (x) an der Stelle x = 0, also F ′(x)|x=0. Da F (x)
Stammfunktion von x sin x ist, gilt F ′(x)x sin x. Damit ist der gesuchte Grenzwert

x sin x|x=0 = 0

Anmerkung: Dieses Verfahren kann man für jeden Grenzwert der Gestalt

lim
x→0

x∫
0
f(t)dt

x

anwenden, auch wenn das Integral nicht elementar auswertbar ist.

Aufgabe 10/75
Gegeben sei eine regelmäßige Pyramide mit quadratischer Grundfläche. Jede Seitenfläche schließe mit
der Grundfläche den Winkel α ein. In diese Pyramide werden zwei Kugeln so einbeschrieben, dass
eine Kugel alle fünf Flächen der Pyramide, die andere aber die vier Seitenflächen der Pyramide und
die Oberfläche der ersten Kugel berührt.
In welchem Verhältnis stehen die Volumina der beiden Kugeln zueinander?

Bezeichnet man den Radius der größeren Kugel mit R und den Radius der kleineren Kugel mit r, so gilt
für das gesuchte Verhältnis

V2 : V1 = 4
3r

3π : 4
3R

3π = r3 : R3
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A

M1

M2

B

C

S

Z

α

α

R

r

h

In der Abbildung (Schnittzeichnung) erkennt man die Gültigkeit
der folgenden Beziehungen:

R

h−R
= r

h− 2R− r = cosα

(es ist M SM1B ∼M SM2C ∼M SAZ nach dem
Hauptähnlichkeitssatz; jedes dieser Dreiecke enthält den Win-
kel ZSA und einen rechten Winkel; daraus folgt auch die
Übereinstimmung im dritten Winkel α. Aus diesen Beziehungen
erhält man nach kurzer Rechnung

R = h
cosα

1 + cosα ; r = h
cosα(1− cosα)

(1 + cosα)2

Damit ergibt sich das gesuchte Verhältnis zu( r
R

)3
=
(

1− cosα
1 + cosα

)3
= tan6 α

2

Aufgabe 11/75
Gesucht sind alle positiven dreistelligen Zahlen mit der folgenden Eigenschaft: Multipliziert man die
Zahl mit der Zahl, die sich durch Umkehrung der Ziffernfolge ergibt, so erhält man ein sechsstelliges
Produkt, das mit zwei Nullen endet.

Die gesuchten Zahlen können nicht mit einer Null enden, da sich sonst keine sechsstellige Zahl als Produkt
ergäbe. Das größte Produkt, das nach der gegebenen Vorschrift mit einer auf null endenden Zahl gebildet
werden kann, ist nämlich 990 · 099 < 990 · 100 = 99000 < 100000.
Da das Produkt durch 100 teilbar ist, muss einer der beiden Faktoren durch 25, der andere durch 4 teilbar
sein. Einer der beiden Faktoren endet daher mit 25 oder mit 75 (da 50 nicht in Frage kommt), bei dem
anderen sind die letzten beiden Stellen durch 4 teilbar. Bezeichnet man mit x die erste Stelle des ersten
Faktors, so kann man zunächst folgende Produkte festlegen:

(1) x25 · 52x ; (2) x75 · 75x

Man erkennt, dass im Fall (1) x = 4 oder x = 8 ist, im Fall (2) x = 2 oder x = 6. Damit erhält man die
folgenden Zahlen: (1) 425, 524, 825, 528; (2) 275, 572, 675, 756.

Aufgabe 12/75
Man beweise die Gültigkeit der Ungleichung

∑
a

∑
ai+1

i

(
∑
ai + 1)

∑
ai
> n

√∏
ai

für n positive reelle Zahlen ai, wobei n > 2 ist.

Der Beweis ist geführt, wenn bewiesen ist, dass

(
∑
ai)
∑

ai+1

(
∑
ai + 1)

∑
ai
>

∑
ai

3

ist. Es ist nämlich für n > 2: ∑
ai

3 ≥
∑
ai
n
≥ n

√∏
ai

(die letzte Ungleichung nach dem Satz über das arithmetische und das geometrische Mittel). Setzt man
in (1)

∑
ai = x, so nimmt die zu beweisende Ungleichung die Gestalt

xx+1

(x+ 1)x ≥
x

3

261



2.15 Aufgaben und Lösungen 1975

an. Wegen xx+1 = xx · x und x > 0 reduziert sie sich weiter zu

xx

(x+ 1)x ≥
1
3 woraus

(x+ 1)x

xx
=
(
x+ 1
x

)x
=
(

1 + 1
x

)x
< 3

folgt. Die letzte Ungleichung ist aber sicher erfüllt, da bekanntlich die Funktion (1 + 1
x )x von unten

gegen die Basis e der natürlichen Logarithmen konvergiert. Da alle Schritte umkehrbar sind, ist damit
der Beweis erbracht.

Aufgabe 13/75
Es seien n und m natürliche Zahlen. In welchem Zahlensystem mit der Basis k gilt, dass m beim
Teilen durch n denselben Rest lässt wie die Quersumme Q(m)?

In jedem Zahlensystem mit der Basis k gilt

m =
r∑
i=0

10i(k) · ai

mit ai = 0; 1; 2; ...; k − 1 (wobei 10(k) die Darstellung der Zahl k im System mit der Basis k ist) und

Q(m) =
r∑
i=0

ai

Ist nun k = 10(k) ≡ 1 (mod n) oder, was dasselbe besagt, k = 10(k))n · s+ 1 mit s ∈ N ’ so ist

m =
r∑
i=0

10i(k) · ai ≡
r∑
i=0

ai (mod n) ≡ Q(m) (mod n)

Die ”Quersummen-Teilbarkeitsregel” für n gilt also genau dann, wenn die Basis des Zahlensystems um 1
größer ist als ein s-faches von n.
Zusatz: Speziell im dekadischen System gilt die Quersummen-Teilbarkeitsregel für n = 3 und für n = 9,
da 10 = 3 · 3 + 1 und 10 = 1 · 9 + 1 ist.

Aufgabe 14/75
Gesucht sind alle Lösungen der Gleichung a2x+axbx = b2x, wobei a und b positive reelle Zahlen sind.
Welche zusätzliche Bedingung muss für a und b gelten?

Aus a2x + axbx = b2x folgt wegen a 6= 0 durch Division mit a2x und nach äquivalenter Umformung

b2x

a2x −
bx

ax
− 1 = 0 ;

[(
b

a

)x]2

−
(
b

a

)x
− 1 = 0

Setzt man ( ba )x = z, so nimmt die Gleichung die Gestalt z2 − z − 1 = 0 mit der Lösung

z =
(
b

a

)x
= 1 +

√
5

2

an (wegen z > 0 entfällt die zweite Lösung). Daraus folgt durch Logarithmieren

x ln b

a
= ln 1 +

√
5

2 ; x = ln (1 +
√

5)− ln 2
ln b− ln a

Es existiert also genau eine Lösung unter der Bedingung, dass a 6= b ist (da sonst der Nenner gleich null
wäre).
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Aufgabe 15/75
Man zeige für das gleichseitige Dreieck ABC und einen beliebigen Punkt P derselben Ebene die
Gültigkeit der Ungleichung PA ≤ PB + PC.

A

B = C′ C

P

P ′

Zum Beweis drehe man die zu untersuchende Figur um den Punkt
A um 60◦ im Uhrzeigersinn. Dabei geht C in B über, P in P ′

(Abbildung), und es ist AP = AP ′ und ]PAP ′ = 60◦.
Daraus folgt, dass das Dreieck PAP ′ gleichseitig ist. Also gilt
AP = PP ′.
Ferner ist P ′B = PC (das folgt aus der Drehung). Wegen der
Gültigkeit der Dreiecksungleichung gilt nun PB + P ′B ≥ PP ′,
damit PB + PC ≥ PA.
Das Gleichheitszeichen gilt nur für bestimmte, entartete Dreiecke
PP ′B, nämlich dann, wenn B auf der Verbindungsstrecke PP ′

liegt.

Aufgabe 16/75
Gegeben seien ein Winkel ϕ < 180◦ mit dem Scheitel O und ein fester Punkt M innerhalb des
Winkelraums. Eine veränderliche Gerade g durchM schneide die Schenkel des Winkels in den Punkten
A und B. Man beweise, dass dann

1
F (AMO) + 1

F (BMO) = konstant

gilt, wobei mit F (XMO) der Flächeninhalt des Dreiecks XMO bezeichnet ist.

A

B

O

M

M ′

M ′′

ϕ

Wir beweisen die Behauptung für einen spitzen Winkel ϕ. Der
Beweis für einen rechten oder einen stumpfen Winkel ϕ verläuft
analog. Es ist (Abbildung)

F (AMO) = 1
2 ·OA ·MM ′ ; F (BMO) = 1

2 ·OB ·MM ′′

Damit ist dann

1
F (AMO) + 1

F (BMO) = 2
OA ·MM ′

+ 2
OB ·MM ′′

= 2(OB ·MM ′′ +AO ·MM ′)
OA ·MM ′ ·OB ·MM ′′

Nun ist aber
OB ·MM ′′ +OA ·MM ′ = 2F (ABO) = OA ·OB · sinϕ

Setzt man dies oben ein, so ergibt sich

1
F (AMO) + 1

F (BMO) = 2 ·OA ·OB sinϕ
OA ·OB ·MM ′ ·MM ′′

= 2 sinϕ
MM ′ ·MM ′′

= konstant

weil sinϕ, MM ′ und MM ′′ konstant sind.

Aufgabe 17/75
Gegeben ist die Funktion

y = 2 cos2 x− 3
√

3 cosx− sin2 x+ 5

Gesucht sind diejenigen Werte von x, für die y einen Extremwert annimmt. Die Aufgabe ist ohne
Verwendung der Differentialrechnung zu lösen!

Wegen sin2 x = 1− cos2 x kann man die gegebene Funktion auch in der Form

y = 3 cos2 x− 3
√

3 cosx+ 4

263



2.15 Aufgaben und Lösungen 1975

darstellen. Daraus ergibt sich

y =
(√

3 cosx− 3
2

)2
− 9

4 + 4 =
(√

3 cosx− 3
2

)2
+ 7

4

An dieser Form der Darstellung erkennt man sofort:
1. Der Funktionswert y wird minimal, wenn der Klammerausdruck gleich null ist, also für x = 2kπ ± π

6 ,
es ist ymin = 7

4 .
2. Der Funktionswert y wird maximal, wenn der Betrag des Klammerausdrucks maximal ist, also für
x = π(2k + 1) und es ist

ymax =
(
−
√

3− 3
2

)2
+ 7

4 = 7 + 3
√

3

In beiden Fällen ist k irgendeine ganze Zahl.

Aufgabe 18/75
Man ermittle sämtliche Tripel reeller Lösungen (x; y; z) der Gleichung

x2 + y4 + z6 + 14 = 2x+ 4y2 + 6z3

Durch Umformung ergibt sich aus der gegebenen Gleichung

x2 − 2x+ 1− y4 − 4y + 4 + z6 − 6z + 9 = 0→ (x− 1)2 + (y2 − 2)2 + (z3 − 3)2 = 0

Eine Summe von Quadraten reeller Zahlen ist genau dann gleich null, wenn jedes Quadrat gleich null ist.
Damit folgt

x = 1 ; y = ±
√

2 ; z
3
√

3

Es existieren also die beiden Lösungstripel (1;
√

2; 3
√

3) und (1;−
√

2; 3
√

3).

Aufgabe 19/75
Wie viele fünfstellige natürliche Zahlen mit je fünf unterschiedlichen Ziffern haben die Quersumme
18?
(Anmerkung: Vierstellige Zahlen mit einer vorgesetzten Null sollen nicht als fünfstellig gelten.)

Zunächst stellt man lexikographisch (im Sinne der Ordnung den natürlichen Zahlen) alle steigenden
Folgen von fünf Ziffern mit der Summe 18 auf:

0 1 2 6 9
0 1 2 7 8
0 1 3 5 9
0 1 3 6 8
0 1 4 5 8
0 1 4 6 7
0 2 3 4 9

0 2 3 5 8
0 2 3 6 7
0 2 4 5 7
0 3 4 5 6
1 2 3 4 8
1 2 3 5 7
1 2 4 5 6

Jede dieser 14 Folgen kann man 5! = 120 mal permutieren, so dass man 14 · 120 = 1680 verschiedene
Folgen aus fünf verschiedenen Ziffern mit der Summe 18 erhält. Bei der Bildung der fünfstelligen Zahlen
sind alle Folgen zu streichen, die mit der Ziffer 0 beginnen. Das sind die ersten elf der obigen Aufstellung,
bei denen die jeweils folgenden vier Ziffern 4! = 24 mal permutierbar sind.
Somit entfallen 11 ·24 = 264 Folgen bei der Bildung der fünfstelligen Zahlen. Es gibt also 1416 fünfstellige
Zahlen mit unterschiedlichen Ziffern und der Quersumme 18.

Aufgabe 20/75
Die Seiten eines Dreiecks seien mit a, b, c, der Umfang mit u, der Umkreisradius mit R und der
Inkreisradius mit r bezeichnet. Man beweise, dass die beiden Ungleichungen äquivalent sind:

R2 ≥ abc

u
und R2 ≥ 4r2
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Es gilt für den Flächeninhalt A des Dreiecks

A = abc

4R = ru

2

Also ist abc
u = 2rR. Gilt nun R2 ≥ abc

u = 2rR so gilt wegen R > 0 auch R ≥ 2r und R2 ≥ 4r2.
Gilt aber R2 ≥ 4r2, so folgt wegen R > 0: R > 2r und

R2 ≥ 2rR = abc

u

Jede der beiden Ungleichungen folgt also aus der anderen; das heißt aber nichts anderes, als dass sie
äquivalent sind.

Aufgabe 21/75
Gegeben ist das Quadrat M1M2M3M4 mit der Seitenlänge 2a. In der Ebene des Quadrate liege ein
beliebiger Punkt P . Mit li sei der Abstand PMi bezeichnet (i = 1; 2; 3; 4).

1. Gesucht ist die Menge der Punkte P , für die gilt

4∑
i=1

l4i = 4na4

wobei n eine nicht negative reelle Zahl ist.

2. Für welches kleinste n ist die gesuchte Menge nicht leer?

3. Die Menge ist für n = 13 und für n = 24 konkret anzugeben.

Das Quadrat liege o.B.d.A. so in einem rechtwinklig-kartesischen Koordinatensystem, dass der Mittel-
punkt im Ursprung und die Eckpunkte auf den Achsen liegen. Die Koordinaten der Eckpunkte sind
dann

M1(a
√

2; 0) ; M2(0; a
√

2) ; M3(−a
√

2; 0) ; M4(0;−a
√

2)

die Koordinaten des Punktes P seien P (x; y). Dann gilt (wobei zur Abkürzung a
√

2 = u gesetzt ist)

4∑
i=1

l4i = [(x− u)2 + y2]2 + [x2 + (y − u)2]2 + [(x+ u)2 + y2]2 + [x2 + (y + u)2]2 =

= [x2 − 2xu+ u2 + y2]2 + [x2 + y2 − 2yu+ u2]2 + [x2 + 2xu+ u2 + y2]2 + [x2 + y2 + 2yu+ u2]2

Jede der eckigen Klammern enthält den Term x2 + y2 + u2. Setzt man dafür w, so folgt

4∑
i=1

l4i = (w − 2xu)2 + (w − 2yu)2 + (w + 2xu)2 + (w + 2yu)2

woraus sich nach kurzer Rechnung

4∑
i=1

l4i = 4w2 + 8u2(x2 + y2) = 4w2 + 8u2(w − u2) = 4w2 + 8u2w − 8u4 = 4na4

ergibt. Die Lösung der sich daraus ergebenden quadratischen Gleichung

w2 + 2u2w − 2u4 − na4 = 0

ist (wegen w ≥ 0)
w =

√
3u4 + na4 − u2 = x2 + y2 + u2

mit u = a
√

2
x+ y =

√
12a4 + na4 + 4a2 = a2(

√
12 + n− 4)

265



2.15 Aufgaben und Lösungen 1975

Die gesuchte Punktmenge ist also der Kreis um den Koordinatenursprung mit dem Radius r = a
√√

12 + n− 4.
Damit r reell wird, ist notwendig und hinreichend, dass n ≥ 4 ist. Das kleinste n ist also n = 4; für diesen
Wert ergibt sich r = 0, also P (x; y) = P (0; 0) als einziges Element der Menge.
Für n = 13 ergibt sich r = a, also der Inkreis, für n = 24 ergibt sich r = a

√
2, also der Umkreis des

Quadrats.

Aufgabe 22/75
Wie viele verschiedene Dreiecke gibt es, bei denen die Maßzahl des Umfangs 50 ist und die Maßzahlen
der Seiten natürliche Zahlen sind?

Es seien a; b; c die Seiten des Dreiecks, wobei (o.B.d.A.) a ≥ b ≥ c sei. Aus a+ b+ c = 50 und a < b+ c
folgt dann 3a ≥ 50, also

50
3 ≤ a < 25 und c ≥ 50− 2a

Wegen der geforderten Ganzzahligkeit von a; b; c kommen für a nur die 8 Werte 17; 18; 19; ...; 24 in Frage.
Für c ergeben sich die folgenden Variationsmöglichkeiten (wobei mit n(a) deren Anzahl bezeichnet ist):

a c n(a)
17 16 1
18 14...16 3
19 12...15 4
20 10...15 6
21 8...14 7
22 6...14 9
23 4...13 10
24 2...13 12

Bei jeder Variationsmöglichkeit für c ergibt sich b eindeutig aus b = 50− a− c. Es gibt also insgesamt

24∑
a=17

n(a) = 52

verschiedene Dreiecke. Unter ihnen können nämlich nicht zwei gleiche sein, da in jedem Fall a größte und
c kleinste Seite ist. Es gilt also stets a ≥ b ≥ c.
Zusatz: Wie man sich leicht überzeugt, ist das Bildungsgesetz für n(a):

n(a) = 1
4 [6a− 97 + (−1)a]

Aufgabe 23/75
Es ist zu beweisen, dass die Gleichung

5∑
i=1

1
a2
i

= 1

keine Lösung in natürlichen Zahlen ai hat.

Angenommen, die Gleichung habe Lösungen in natürlichen Zahlen ai und es sei (o.B.d.A.) a1 = min ai.
Dann ist

1
a2

1
= max 1

a2
i

und damit

5∑
i=1

1
a2
i

= 1 <
5∑
i=1

1
a2

1
= 5
a2

1

also a2
1 ≤ 5, a1 = 2. Daraus folgt

5∑
i=2

1
a2
i

= 3
4
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Nun sei a2 = min ai für i ≥ 2 (ebenfalls o.B.d.A.). Dann folgt

5∑
i=2

1
a2
i

= 3
4 ≤

5∑
i=2

1
a2

2
= 4
a2

2

also a2
2 ≤ 16

3 , a2 = 2.
Setzt man diese Schlüsse fort, so ergibt sich a3 = 2, a4 = 2 und damit 1

a2
5

= 0, womit die Annahme auf
einen Widerspruch führt. Damit ist die Annahme widerlegt.

Aufgabe 24/75
Aus einer Tabelle der Fakultäten will jemand den Wert für 20! entnehmen. Dabei stellt er fest, dass
zwei Ziffern unleserlich sind:

20! = 2 • •2902008176640000

Wie kann man die unleserlichen Ziffern ermitteln, ohne das Produkt auszurechnen?

Zur Lösung der Aufgabe kann man die Tatsache verwenden, dass 20! durch 9 und durch 11 ohne Rest
teilbar ist. Bezeichnet man mit Q(n) die Quersumme und mit QA(n) die alternierende Quersumme einer
natürlichen Zahl n, so gilt bekanntlich

Q(n) ≡ n (mod 9) ; QA(n) ≡ n (mod 11)

Nun ist (wobei mit x und y die fehlenden Ziffern bezeichnet sind)

Q(20!) = 47 + x+ y ≡ x+ y − 7 (mod 9) QA(20!) = 1− x+ y ≡ 1− x+ y (mod 11)

Wegen Q(20!) ≡ 0 (mod 9) und QA(20!) ≡ 0 (mod 11) folgt x+ y ≡ 7 (mod 9), x− y ≡ 1 (mod 11).
Da x und y einstellige natürliche Zahlen sind (einschließlich 0), folgt aus der ersten dieser beiden Kon-
gruenzen entweder x + y = 7 oder x + y = 16, aus der zweiten x = y + 1. Man erhält also die beiden
Gleichungssysteme

x+ y = 7 ; x− y = 1
x+ y = 16 ; x− y = 1

Nur das erste davon hat natürliche Zahlen (x; y) als Lösung: (x; y) = (4; 3). Damit ergibt sich 20! =
2432902008176640000.

Aufgabe 25/75
Gesucht sind alle zweistelligen natürlichen Zahlen, deren Quadrat gleich der 3. Potenz aus der Summe
ihrer Ziffern ist.

Die zweistellige Zahl sei 10a + b = z′ mit a 6= 0; a,b ≤ 9, a, b natürlich. Dann lautet die Bedingung der
Aufgabe:

z = (10a+ b)2 = (a+ b)3 = z

Die Zahl z ist also gleichzeitig Quadratzahl und Kubikzahl einer natürlichen Zahl, die Zahl z’ demnach
Kubikzahl einer natürlichen Zahl. Die einzigen zweistelligen Kubikzahlen sind z′1 = 27 und z′2 = 64. Beim
Überprüfen ergibt sich, dass nur z′1 = 27 die geforderten Bedingungen erfüllt: 272 = 729 = (2 + 7)2.

Lösung von Dr. Sander:

Die Ziffern seien x und y mit 1 ≤ x ≤ 9, 0 ≤ y ≤ 9; dann gilt

(10 + x+ y)2 = (x+ y)3 → 10x+ y = (x+ y)
√
x+ y

Da x und y natürliche Zahlen sind, muss der Radikand eine Quadratzahl sein; weiter folgt daraus, dass
4 ≤ x + y ≤ 18 ist. Aus x + y = 4 folgt x = 0, also scheidet diese Möglichkeit aus. Es verbleiben die
Möglichkeiten:

x+ y = 9 ; x+ y = 16
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mit
(10x+ y)2 = 729, 10x+ y = 27 und (10x+ y)2 = 4096, 10x+ y = 64

wobei nur die erste die Bedingungen der Aufgabe erfüllt.
Die einzige Zahl mit den geforderten Eigenschaften ist also die Zahl 27.

Aufgabe 26/75
Gegeben ist ein konvexes Viereck ABCD, bei dem sich die Verlängerungen der Seiten AB = a und
CD = b unter einem rechten Winkel schneiden. Die Mittelpunkte der Diagonalen AC und BD seien
E bzw. F . Es ist zu beweisen, dass unter diesen Voraussetzungen gilt:

EF 2 = 1
4(AB2 + CD2)

A B

C

D

E

F

G

Verbindet man die Punkte E und F mit dem Halbierungspunkt G
der Seite BC (Abbildung), so kann man die Strahlensätze anwen-
den; es ist

EG ‖ AB und EG = 1
2AB ; FG ‖ CD und FG = 1

2CD

Damit ist aber ]EFG = 90◦, und es gilt

EF 2 = EG2 + FG2 =
(

1
2AB

)2
+
(

1
2CD

)2
= 1

4(AB2 + CD2)

Lösung von Barbara Nöller:

D

~a

A

~b

B~cC

~e

~d

Wir betrachten die Seiten und Diagonalen des Vierecks als Vekto-
ren und verwenden die Bezeichnungen nach der Abbildung.
Dann gilt

~a− 1
2
~d+ ~e− 1

2
~b = ~0 ; ~c+ 1

2
~d+ ~e+ 1

2
~b = ~0

Addiert man beide Gleichungen„ so folgt ~a+ ~c = −2~e.
Multipliziert man diese Gleichungen mit sich selbst skalar, so er-
gibt sich

a2 + c2 + 2ac = 4e2

wegen ~a ⊥ ~c ist ~a~c = 0. Damit erhält man sofort 1
4 (a2 + c2) = e2.

Aufgabe 27/75
Man beweise, dass die Gleichung x2 − 777y2 = 6 keine ganzzahligen Lösungen besitzt!

Da für jede ganze Zahl a entweder a ≡ 0 (mod 2) oder a ≡ 1 (mod 2) gilt, ist entweder a2 ≡ 0 (mod 4)
oder a2 ≡ 1 (mod 4). Damit folgt für

x2 − 777y2 ≡ 0 (mod 4), wenn x ≡ y (mod 2) oder

x2 − 777y2 ≡ 1 (mod 4), wenn x ≡ 1; y ≡ 0 (mod 2) oder

x2 − 777y2 ≡ 3 (mod 4), wenn x ≡ 0; y ≡ 1 (mod 2)

ist. Weitere Fälle sind nicht möglich. Da aber 6 ≡ 2 (mod 4) gilt, ist die Gleichung nicht in ganzen Zahlen
lösbar.

Lösung von Erwin Huth:

Wählt man als Modul die Zahl 7, so gilt

x ≡ ±1 oder x ≡ ±2 oder x ≡ ±3 also

x2 ≡ 1 oder x2 ≡ 4 oder x2 ≡ 9 ≡ 2
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Wegen 777y2 ≡ 0 kann damit die linke Seite der Gleichung auf keinen Fall kongruent 6 sein, was aber
erforderlich wäre, wenn die Gleichung ganzzahlige Lösungen hätte.

Lösung von Hans-Jürgen Pohle:

Die Gleichung kann man in der folgenden Weise umformen:

x2 − 777y2 = x2 − 729y2 − 48y2 = 6
x2 − (27y)2 − 48y2 = 6

Weitere Umformung liefert
(x− 27y)(x+ 27y) = 6(1 + 8y)2

Die rechte Seite der Gleichung ist durch 2, nicht aber durch eine höhere Potenz von 2 teilbar. Die linke
Seite ist genau dann durch 2 teilbar, wenn x und y beide gerade oder beide ungerade sond; dann sind
aber beide Faktoren durch 2 und die linke Seite der Gleichung damit durch 4 teilbar.
Folglich hat die gegebene Gleichung keine ganzzahligen Lösungen.

Aufgabe 28/75
Es ist die Gleichung zu lösen:

3
√

1 + lg tan x+ 3
√

1− lg tan x = 2

Erhebt man beide Seiten der gegebenen Gleichung in die dritte Potenz, so erhält man nach Vereinfachung
und Ausklammern die Gleichung

3
√

1− lg2 tan x( 3
√

1 + lg tan x+ 3
√

1− lg tan x = 2

Der Klammerausdruck ist gleich der linken Seite der gegebenen Gleichung, also folgt

3
√

1− lg2 tan x = 1→ lg tan x = 0→ tan x = 1→ x = π

4 + kπ

(wobei k irgendeine ganze Zahl ist).

Aufgabe 29/75
Es sei (x+ y + z)(x− y + z) = x2 + y2 + z2. Man zeige, dass unter dieser Voraussetzung die Zahlen
x, y und z eine geometrische Folge bilden!

Multipliziert man die linke Seite der gegebenen Gleichung aus, so erhält man

(x+ y + z)(x− y + z) = x2 − y2 + z2 + 2xz = x2 + y2 + z2

Daraus folgt 2xz = 2y2 und |y| =
√
xz. Die Zahl y ist also das geometrische Mittel der Zahlen x und z.

Das aber ist ein Kriterium dafür, dass x, y und z eine geometrische Folge bilden.

Aufgabe 30/75
Gegeben sei ein beliebiges rechtwinkliges Dreieck, auf dessen Seiten beliebige, aber einander ähnliche
Dreiecke errichtet wurden.
Man zeige, dass die Fläche des Dreiecks über der Hypotenuse gleich der Summe der Dreiecksflächen
über den Katheten ist (wobei unter ”Fläche” der Flächeninhalt zu verstehen ist).
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A

B C

c b

a

hc hb

ha

Der rechte Winkel des Dreiecks möge bei C liegen. Man
entnehme die Bezeichnungen der Abbildung. Auf Grund der
Ähnlichkeit gilt

hc
c

= hb
b

= ha
a

= λ

Daraus folgt hc = λc, hb = λb, ha = λa. Für die Summe der
Dreiecksflächen über den Katheten gilt

S = 1
2aha + 1

2bh− b = 1
2(a2λ+ b2λ) = 1

2λc
2 = 1

2chc

Der letzte Term gibt aber die Fläche des Dreiecks über der
Hypotenuse c an.

Aufgabe 31/75
Gegeben seien eine Gerade g und zwei beliebige Kreise, deren Mittelpunkte auf verschiedenen Seiten
von g liegen.
Zu konstruieren ist ein Quadrat so, dass zwei gegenüberliegende Eckpunkte auf g, die beiden anderen
Eckpunkte je auf einem der beiden Kreise liegen.

g

Da die Diagonalen eines Quadrats aufeinander senkrecht
stehen und einander halbieren, liegen die beiden nicht
auf g fallenden Eckpunkte des Quadrates symmetrisch
bezüglich g. Daraus folgt:
Der Eckpunkt auf einem Kreis liegt auch auf dem zum
zweiten Kreis bezüglich g symmetrisch liegenden Kreis.
Damit ergibt sich die Konstruktion:

Man spiegelt einen der beiden Kreise an g. Jeder Schnitt-
punkt dieses gespiegelten Kreises mit dem zweiten Kreis
ist Eckpunkt eines gesuchten Quadrates. Das Lot von ihm
auf g wird über g hinaus um sich selbst verlängert, der
Endpunkt ist der gegenüberliegende Eckpunkt.

Die weitere Konstruktion ist klar (Abbildung). Die Determination ergibt sich unmittelbar aus der Anzahl
der existierenden Schnittpunkte.

Aufgabe 32/75
Gesucht ist die kleinste Primzahl p, für die gilt

p+ 1 ≡ 0 (mod 2); p+ 1 ≡ 0 (mod 3); p+ 1 ≡ 0 (mod 4);

p+ 1 ≡ 0 (mod 5); p+ 1 ≡ 0 (mod 6);

Wegen p+ 4 ≡ 0 (mod 5) muss die Einerstelle der gesuchten Primzahl p eine 1 sein (wäre sie 6, so wäre
p keine Primzahl).
Damit ist aber p+ 1 ≡ 0 (mod 2) automatisch erfüllt, so dass diese Bedingung nicht mehr berücksichtigt
werden muss. Aus der Bedingung p + 5 ≡ 0 (mod 6) folgt wegen p + 5 ≡ p − 1 ≡ 0(mod 6), dass in der
Menge der höchstens zweistelligen Primzahlen nur die Primzahlen 31 und 61 in Frage kommen. Für beide
gilt p+ 2 ≡ 0 (mod 3), aber nur p = 61 erfüllt auch die Bedingung p+ 3 ≡ 0 (mod 4). Damit ist p = 61
die kleinste Primzahl mit den geforderten Eigenschaften.

Lösung von Wolfgang Moldenhauer:

Infolge der letzten beiden Bedingungen gibt es natürliche Zahlen m und n derart, dass p + 5 = 5n und
p+ 5 = 6m gilt. Subtraktion der ersten von der zweiten Gleichung liefert

1 = 6m− 5n

Also ist 5n ≡ −1 mod 6 ≡ 5 mod 6, n ≡ 1 mod 6. Für n = 1 folgt p = 1, also keine Primzahl, n = 7
liefert p = 31, was gegen die dritte Bedingung verstößt.
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Dagegen ergibt sich n = 13, dass p = 61 ist, was, wie die Probe zeigt, Lösung ist.

Lösung von Bruno Hanisch:

Aus den Kongruenzen p+ 4 ≡ 0 mod 5 und p+ 5 ≡ 0 mod 6 folgen die Kongruenzen

6p+ 24 ≡ 0 mod 30 ; 5p+ 25 ≡ 0 mod 30

Durch Subtraktion erhalten wir p−1 ≡ 0 mod 30. Also muss die Bedingung p = 30k+1 (k ∈ N) erfüllen.
Die Zahl p1 = 31 erfüllt nicht die Kongruenz p1 + 3 ≡ 0 mod 4, dagegen erfüllt p2 = 61 alle geforderten
Kongruenzen. Folglich ist p2 = 61 die kleinste Primzahl, die alle geforderten Kongruenzen erfüllt.
Weitere Primzahlen mit diesen Eigenschaften sind 181, 241, 421, 541, 601, 661, ...

Lösung von Karl-Bernd Dinter:

Aus den Kongruenzen folgen

p+ 1 ≡ 0 mod 2 → p− 1 = 2a → a = 1
2(p− 1)

p+ 2 ≡ 0 mod 3 → p− 1 = 3b → b = 1
3(p− 1)

p+ 3 ≡ 0 mod 4 → p− 1 = 4c → c = 1
4(p− 1)

p+ 4 ≡ 0 mod 5 → p− 1 = 5d → d = 1
5(p− 1)

p+ 5 ≡ 0 mod 6 → p− 1 = 6e → e = 1
6(p− 1)

wobei a, b, c, d, e ganze Zahlen sind.
Daraus ergibt sich unmittelbar, dass p − 1 gemeinschaftliches Vielfaches von 2, 3, 4, 5 und 6 sein muss.
Das kleinste gemeinschaftliche Vielfache dieser Zahlen ist 60.
Tatsächlich ist p = 60+1 = 61 Primzahl und somit die kleinste Primzahl, die die geforderten Eigenschaften
besitzt.

Aufgabe 33/75
Man beweise die Gültigkeit der Ungleichung

n∏
i=1

(
1 + 1

i(i+ 2)

)
< 2

Es ist
n∏
i=1

[
1 + 1

i(i+ 2)

]
=

n∏
i=1

(i+ 1)2

i(i+ 2) = (n+ 1)!2 · 2!
n!(n+ 2)! = 2n!(n+ 1)!(n+ 1)

n!(n+ 1)!(n+ 2) = 2n+ 1
n+ 2 < 2n+ 2

n+ 2 = 2

Lösung von Uwe Quasthoff:

Ich behaupte, dass das gesuchte Produkt der Wert

2− 2
n+ 2 = 2n+ 1

n+ 2

hat. Den Weise für diese Behauptung führe ich mit Hilfe der vollständigen Induktion.
Für n = 1 ist die Behauptung richtig: 1 + 1

1·3 = 2− 2
3 .

Angenommen, sie sei für n = k richtig:

k∏
i=1

(
1 + 1

i(i+ 2)

)
= 2k + 1

k + 2

Dann folgt durch Multiplikation mit

1 + 1
(k + 1)(k + 3) = (k + 2)2

(k + 1)(k + 3)
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k+1∏
i=1

(
1 + 1

i(i+ 2)

)
= 2k + 1

k + 2 ·
(k + 2)2

(k + 1)(k + 3) = 2k + 2
k + 3

Gilt die Behauptung für n = k, so gilt sie also auch für n = k + 1, und wegen der Richtigkeit für n = 1
gilt sie für alle natürlichen Zahlen n. Da weiterhin

2− 2
n+ 2 < 2

für alle natürlichen Zahlen n gilt, ist die Behauptung der Aufgabe bewiesen.

Aufgabe 34/75
Sind in einem rechtwinkligen Dreieck die Katheten mit a und b, die Hypotenuse mit c und die Höhe
auf der Hypotenuse mit hc bezeichnet, so gilt a+ b < c+ hc. Man beweise diesen Satz!

Allgemein gilt (a + b)2 = a2 + 2ab + b2 (1). Im rechtwinkligen Dreieck mit der Hypotenuse c und den
Katheten a und b gilt der Satz des Pythagoras a2 + b2 = c2 (2).
Schließlich folgt aus der Formel für den Flächeninhalt eines Dreiecks A = 1

2gh speziell für das rechtwinklige
Dreieck mit der Hypotenuse c und den Katheten a und b: ab = chc (3). Setzt man (2) und (3) in (1) ein,
so folgt

(a+ b)2 = c2 + 2chc < c2 + 2chc + h2
c = (c+ hc)2

also a+ b < c+ hc.

Aufgabe 35/75
Gesucht sind alle Dreiecke mit den Seiten a, b, c und den Winkeln α, β, γ (übliche Bezeichnungsweise),
die folgende Bedingungen erfüllen :
l. Es ist a = 9 Längeneinheiten, b und c sind ganzzahlige Vielfache der Längeneinheit.
2. Es ist α = 2β.

Die abgedruckte Aufgabe war durch einen Druckfehler unlösbar. In korrigierter Form wurde die Aufgabe
als 10/76 im Aprilheft 1976 erneut gestellt.

Aufgabe 36/75
Man wähle eine beliebige zweistellige Primzahl mit der Quersumme 10 und subtrahiere von ihr so
oft die Zahl 18, bis die Differenz zwischen 10 und 20 liegt. Die Differenz vervierfache man! Vor dieses
Produkt setze man die Differenz!
Wie viele ”Ausgangszahlen”für die Rechnung gibt es, und warum ist das Ergebnis eindeutig?

Zweistellige Zahlen mit der Quersumme 10 sind die Zahlen 19; 28; 37; 46; 55; 64; 73; 82; 91. Unter diesen
sind nur drei Primzahlen: 19; 37; 73.
Da die Primzahl bereits zwischen 10 und 20 liegt, ist nach den Anweisungen der Aufgabe nullmal die Zahl
18 zu subtrahieren. Bei den beiden anderen Ausgangswerten führt die einmalige bzw. dreimalige Subtrak-
tion der Zahl 18 auf das gleiche Zwischenergebnis 19. Von diesem eindeutig bestimmten Zwischenergebnis
ausgehend erhält man als Endergebnis die Zahl 1976.

Beantwortung der Zusatzfrage: Es gibt also drei mögliche Ausgangszahlen für die Rechnung. Das Er-
gebnis ist trotzdem eindeutig, weil alle drei Zahlen die gleiche Kongruenz mod 19 haben:

10 ≡ 1 ≡ 37 ≡ 1 ≡ 73 ≡ 1 (mod 18)

und weil es zwischen 11 und 20 genau eine Zahl mit dieser Kongruenz mod 18 gibt.

272



2.16 Aufgaben und Lösungen 1976

2.16 Aufgaben und Lösungen 1976

Aufgabe 1/76
Es sei P ein konvexes Polyeder mit f Flächen und k Kanten. Man beweise die Gültigkeit der Unglei-
chung 3f ≤ 2k.
In welchem Fall gilt die Gleichheit?

Wir betrachten zunächst alle konvexen Polyeder, die ausschließlich von Dreiecksflächen begrenzt werden.
Es sei f die Anzahl der Begrenzungsflächen. Da jede Fläche von genau drei Kanten begrenzt wird und
jede Kante genau zwei Flächen angehört, ist die Anzahl k der Kanten

k = 3f
2 also 3f = 2k

Wenn nun ein konvexes Polyeder wenigstens eine Fläche mit mehr als drei Ecken besitzt, so kann man
diesen Fall auf den ersten zurückführen. Man kann nämlich auf jeder Fläche, die nicht Dreiecksfläche ist,
eine Pyramide so errichten, dass auch das neue Polyeder konvex ist. Dabei nimmt die Zahl der Flächen
und die Zahl der Kanten um die gleiche Anzahl a zu. Damit gilt

3(f + a) = 2(k + a) ; 3f + a = 2k

wegen a > 0 also 3f < 2k. Damit ist der Beweis geführt, die Gleichheit gilt für alle die konvexen Polyeder,
die nur von Dreiecksflächen begrenzt sind.

Aufgabe 2/76
Man bestimme alle ganzen Zahlen x; y’ die der Gleichung 3x− 2y = 1 genügen!

Durch äquivalente Umformung folgt aus der gegebenen Gleichung

3x = 2y + 1 ; 3x − 3 = 2y − 2 ; 3(3x−1 − 1) = 2(2y−1 − 1)

Diese Gleichung ist sicher erfüllt, wenn 3x−1− 1 = 0 und 2y−1− 1 = 0 ist. Daraus folgt die erste Lösung:
x = 1, y = 1. Die Probe bestätigt die Richtigkeit. Gilt

3x−1 − 1 6= 0 und 2y−1 − 1 6= 0

so kann wegen der Eindeutigkeit der Primfaktorzerlegung nur

3x−1 − 1 = 2 und 2y−1 − 1 = 3

sein (die Möglichkeit negativer Faktoren wird durch die Tatsache ausgeschlossen, dass die Exponential-
funktion ax für x ≥ 0 stets größer als 1 ist; vorausgesetzt a > 1. Dann folgt 3x−1 = 3 und 2y−1 = 4, also
x = 2 und y = 3.
Auch für dieses Paar bestätigt die Probe die Richtigkeit. Weitere Lösungen sind auf Grund des Lösungsganges
ausgeschlossen.

Aufgabe 3/76
Man zeige, dass für alle natürlichen Zahlen n und für alle reellen Zahlen xi mit i = 1; 2; 3; ...;n und
0 ≤ xi ≤ 1 die Ungleichung gilt:

1
x1x2...xn

+ 1
(1− x1)(1− x2)...(1− xn) ≥ 2n+1

Sicher gilt (2xi − 1)2 ≥ 0 für jedes i. Daraus folgt 1 ≥ 4(1− xi)xi und wegen xi > 0, 1− xi > 0 auch

1
xi(1− xi)

≥ 4 = 22

Damit gilt auch
n∏
i=1

1
xi(1− xi)

≥
n∏
i=1

22 ;
n∏
i=1

1
xi
·
n∏
i=1

1
1− xi

≥ 22n
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√√√√ n∏
i=1

1
xi
·
n∏
i=1

1
1− xi

≥ 2n

Nach der Ungleichung zwischen dem arithmetischen und dem geometrischen Mittel folgt

1
2 ·
(

n∏
i=1

1
xi

+
n∏
i=1

1
1− xi

)
≥

√√√√ n∏
i=1

1
xi
·
n∏
i=1

1
1− xi

≥ 2n

also
n∏
i=1

1
xi

+
n∏
i=1

1
1− xi

≥ 2n+1

Aufgabe 4/76
Es ist zu beweisen, dass die Gleichung x3 + ax − b = 0 für reelle a; b und b > 0 eine und nur eine
positive Wurzel hat.

Es seien x1, x2, x3 die Wurzeln der gegebenen Gleichung. Nach dem Satz des Vieta gilt dann

x1x2 + x2x3 + x3x1 = 0 (1)
x1x2x3 = b > 0 (2)

Es gibt nun zwei Möglichkeiten:

1. Alle drei Wurzeln sind reell. Dann folgt aus (1), dass sie nicht sämtlich positiv, aber auch nicht
sämtlich negativ sein können. Sonst wären nämlich alle drei Summanden positiv, und die Summe
könnte nicht gleich null sein. Aus (2) folgt dann sofort, dass genau eine Wurzel positiv und genau
zwei Wurzeln negativ sind.

2. Nicht alle drei Wurzeln sind reell. Dann sind zwei Wurzeln konjugiert komplex und eine reell.
O.B.d.A. seien x1 = α + βi und x2 = α − βi mit reellen α, β und β 6= 0 die beiden konjugiert
komplexen Wurzeln. Dann nimmt (2) die Gestalt

(α+ βi)(α− βi)x3 = (α2 + β2)x3 = b > 0

an. Daraus folgt wegen α2 + β2 > 0 sofort, dass x3 > 0 ist. Also ist auch in diesem Fall genau eine
Wurzel positiv.

Lösung von Frank-Reiner Schöps:

Für die Gleichung
xn + ax− b = 0

folgt nach der Descartschen Regel für
1. a > 0: Die Vorzeichen der Koeffizienten sind +, +, −, d.h., es liegt ein Vorzeichenwechsel vor; also
existiert genau eine positive Wurzel.
2. a < 0: Die Vorzeichen der Koeffizienten sind +, −, −, d.h., wiederum ein Vorzeichenwechsel und damit
ebenfalls eine positive Wurzel.
Der Fall a = 0 erledigt sich analog.

Lösung von Jörg Hutschenreiter:

Ich untersuche die Nullstellen der überall stetigen Funktion

f(x) = xn + ax− b mit b > 0, n ∈ N, n > 1

Wegen f(0) = −b < 0 und lim
x→∞

f(x) = +∞ > 0 hat die Funktions mindestens eine positive Nullstelle.
Angenommen, sie besäße mehr als eine positive Nullstelle, dann hätte sie wenigstens drei. Nach dem Satz
von Rolle liegt zwischen je zwei Nullstellen ein Extremum. (Im Fall einer Doppelnullstelle ist diese selbst
das Extremum.)
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Damit folgt, dass f(x) im Positiven wenigstens zwei Extrema hat, für die bekanntlich gilt

f ′(x) = nxn−1 + a = 0 ; xn−1 = −a
n

Die letzte Gleichung hat aber in den reellen Zahlen x höchstens eine positive Lösung. Folglich ist die
Annahme falsch, d.h., f(x) hat genau eine positive Nullstelle.

Lösung von Günter Herrmann:

x

y f1(x) = x3

f2(x) = −ax+ b; (a = 0)

f2(x) = −ax+ b; (a > 0)

f2(x) = −ax+ b; (a < 0)

b

Die kubische Gleichung

x3 + ax− b = 0 (1)

liegt in der reduzierten Form vor, die sich auch einfache
Weise graphisch diskutieren läasst.
Setzt man x3 = y, so zerfällt die Gleichung (1) in die
beiden Gleichungen

y = x3 (2) ; y = −ax+ b (3)

Die Gleichung (2) stellt eine rein kubische Parabel
dar, die Gleichung (3) eine Gerade. Die Abszissen der
Schnittpunkte der Geraden und der Parabel sind die
Wurzeln der Gleichung (1) (siehe Abbildung).

Unabhängig von der Größe a gehen alle Geraden (3) durch den Punkt (0; b > 0). Für positive a ergibt
sich eine (für zunehmende x) fallende Gerade, für negative a eine steigende, für a = 0 eine Parallele zur
x-Achse.
Aus der Abbildung ist zu erkennen, dass alle Geraden (3) die Parabel im positiven Bereich einmal, und
nur einmal, schneiden.
Damit ist gezeigt, dass für b > 0 die kubische Gleichung (1) für alle reellen Werte a genau eine positive
Wurzel hat.

Aufgabe 5/76
Man beweise: In jedem konvexen Viereck gilt die Ungleichung u

2 < s < u, wobei mit u der Umfang
und mit s die Summe der Diagonalenlängen bezeichnet ist.

Bezeichnet man die Ecken des Vierecks mit A, B, C und D und den Schnittpunkt der Diagonalen mit S,
so folgt aus der Gültigkeit der Dreiecksungleichungen

AB +BC > AC; AD + CD > AC; BC + CD > BD; AD +AB > BD

Durch Addition dieser Ungleichungen folgt sofort

2(AB +BC + CD +DA) = 2u > 2(AC +BD) = 2s

also u > s. Weiter folgt; ebenfalls aus der Gültigkeit der Dreiecksungleichungen;

AS +BC > AB; AS +DS > AD; BS + CS > BC; CS +DS > CD

Ebenfalls durch Addition folgt daraus

2(AS +BS + CS +DS) = 2s > AB +BC + CD +DA = u also s >
u

2

Lösung von Rainer Mück:

Durch die Eckpunkte des konvexen VierecksABCD lege man Parallelen zu den nicht in diesen Eckpunkten
endenden Diagonalen. Man erhält dadurch ein Parallelogramm EFGH, dem das Viereck einbeschrieben
ist.
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C

B

A

D

H G

FE

N M

LK

Halbiert man die Seiten des konvexen Vierecks ABCD, so
erhält man die Eckpunkte KLMN eines dem Viereck ein-
beschriebenen Parallelogramms. Dass die Seiten des ein-
beschriebenen Vierecks paarweise den Diagonalen parallel
sind, folgt unmittelbar aus den Strahlensätzen.

Aus den Strahlensätzen folgt auch

KL = MN = BC

2 ; LM = MK = AC

2

Der Umfang eines einbeschriebenen Gebildes ist stets kleiner als der Umfang eines umbeschriebenen
Gebildes. Somit gilt, wobei mit UXY ZW der Umfang eines Vierecks XY ZW bezeichnet ist:

UKLMN < UABCD < UEFGH

Wegen UKLMN = AC +BD und UEFGH = 2(AC +BD) folgt direkt

AC +BD < UABCD < 2(AC +BD) → u

2 < AC +BC < u

Aufgabe 6/76
Man finde die Basis x des Zahlensystems, in dem die Gleichung gilt: (211)2

x = (100021)x.

Nach Definition gilt

(211)x = 2x2 + x+ 1 ; (100021)x = x5 + 2x+ 1

Demnach nimmt die gegebene Gleichung die Gestalt

(2x2 + x+ 1)2 = x5 + 2x+ 1

an. Dieser Gleichung ist die Gleichung

x2(x3 − 4x2 − 4x− 5) = 0

äquivalent. Da x = 0 als Basis eines Zahlensystems nicht in Frage kommt, sind die ganzzahligen Lösungen
der Gleichung

x3 − 4x2 − 4x− 5 = 0

zu untersuchen. Da x | x3, x | 4x, x | 4x, x | 0 folgt x |. Die Teiler ±1 scheiden für eine Basis eines Zah-
lensystems ebenfalls aus, so dass nur ±5 verbleiben. Die Probe bestätigt davon nur die Zahl +5. Durch
Polynomdivision von x3−4x2−4x−5 durch x−5 erhält man das Polynom x2 +x+1, das keine (reellen)
Nullstellen hat. Als einzige Lösung verbleibt damit x = 5. Es gilt die Gleichung (211)2

5 = (100021)5.

Lösung von Rosita Haase:

Das Produkt 211·211 soll 100021 im betrachteten Zahlensystem ergeben. Nach der ”herkömmlichen”Methode
erhält man

211 * 211
---------

211
211

422
---------

44521

Vergleicht man 44521 mit 100021, so stellt man fest, dass 2 + 1 + 2 = 5 = 0+ Zehnerübertrag ist. Folglich
liegt die Basis 5 vor.
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Aufgabe 7/76
Gesucht ist die kleinste natürliche Zahl n mit der Eigenschaft, dass sowohl die Quersumme Q(n) der
Zahl n als auch die Quersumme Q(n+ 1) des Nachfolgers von n durch 5 teilbar ist.

Die Zahl n muss an letzter Stelle die Ziffer 9 haben; denn bei jeder anderen Ziffer wäre Q(n+l) = Q(n)+1,
und es könnten nicht sowohl Q(n) als auch Q(n+ 1) durch 5 teilbar sein.
Es sei nun n = 10a + 9, wobei a eine natürliche Zahl mit a > 0 ist. Man überlegt sich leicht, dass auch
die Zahl a an der letzten Stelle die Ziffer 9 haben muss; denn sonst wäre Q(n+ 1) = Q(a) + 1 = Q(n)− 8
wegen Q(n) = Q(a) + 9. Folglich ist a = 10b+ 9 mit b 6= 0, natürlich, also n = 100b+ 99.
Analog überlegt man sich, dass b an letzter Stelle eine 9 hat, da sich sonst Q(n+1) = Q(b)+1 = Q(n)−17
ergibt. Es ist also b = 10c+ 9 und damit n = 1000c+ 999.
Die Fortsetzung der Überlegung führt zu c = 10d+ 9 mit n = 10000d+ 9999 und Q(n+ 1) = Q(d) + 1 =
Q(n)− 35. Hier bricht die Kette ab. Man erkennt nämlich, dass Q(n) und Q(n+ 1) stets beide entweder
durch 5 teilbar sind oder nicht teilbar sind, wenn genau die letzten vier Ziffern der Zahl n sämtlich 9
sind.
Als kleinste natürliche Zahl mit der geforderten Eigenschaft erhält man damit n = 49999. Es ist Q(n) = 40
und Q(n+ 1) = 5.

Aufgabe 8/76
Es sei log90 3 = a, log90 5 = b. Man berechne daraus log90 8 = f(a; b).

Es gilt log90 8 = 3 · log90 2 (1) und

log90 90 = log90(2 · 32 · 5) = log90 2 + 2 · log90 3 + log90 5 = 1 also

log90 2 = 1− 2 · log90 3− log90 5 = 1− 2a− b (2)

Aus (1) und (2) folgt sofort log90 8 = 3(1− 2a− b)

Aufgabe 9/76
Die Maßzahlen der Winkel eines Dreiecks seien α, β, γ. Man zeige, dass man aus den Strecken der
Länge sinα, sin β, sin γ ein Dreieck konstruieren kann!

Offenbar muss man beweisen, dass sinα, sin β, sin γ die Dreiecksungleichungen erfüllen.
Es gilt

sin γ = sin 180◦ − α− β = sinα+ β = sinα cosβ + cosα sin β

Da cosα ≤ 1 und cosβ ≤ 1 und nicht beide gleichzeitig gleich 1 gilt, folgt

sin γ < sinα+ sin β

Aus Symmetriegründen kann man α, β, γ in dieser Ungleichung zyklisch vertauschen; damit ist die
Behauptung bewiesen.

Aufgabe 10/76
Gesucht sind alle Dreiecke ABC mit den Seiten a, b, c und den Winkeln α, β, γ (übliche Bezeich-
nungsweise), die folgende Bedingungen erfüllen:

1. Es ist a = 9 Längeneinheiten, b und c sind ganzzahlige Vielfache der Längeneinheit.
2. Es ist β = 2α

Aus β = 2α folgt γ = π − 3α, damit 0 < α < π
3 . Ferner folgt daraus

sin β = sin 2α = 2 sinα cosα
sin γ = sin π − 3α = sin 3α = sinα(4 cos2 α− 1)
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Nach dem Sinussatz ergibt sich
b = a

sin β
sinα = 9 · 2 cosα LE

c = a
sin γ
sinα = 9 · (4 cos2 α− 1) LE = [(6 cosα)2 − 9] LE

Wegen 0 < α < π
3 ist 1

2 < cosα < 1. Folglich gilt für jedes α: 4 cos2 α − 1 > 0’ also c > 0. Damit nun
c ganzzahlig wird, ist notwendig und hinreichend, dass 6 cosα ganzzahlig ist, dass also cosα = p

6 mit
3 < p < 6’ p ganzzahlig gilt. Dann ist nämlich c = (p2 − 9) LE, und auch b = 3p wird ganzzahlig. Es gibt
also genau 2 Lösungen:

p1 = 4; cosα1 = 4
6; b1 = 12 LE ; c1 = 7 LE

p2 = 5; cosα2 = 5
6; b2 = 15 LE ; c2 = 16 LE

Aufgabe 11/76
Man beweise die Richtigkeit der Äquivalenz

a = b = c⇔ a2 + b2 + c2 + d2 = bc+ ca+ ab

Die Richtung von links nach rechts bedarf keines Kommentars; sie ist durch Einsetzen unmittelbar veri-
fiziert.
Beweis der Richtung von rechts nach links: Aus

a2 + b2 + c2 = bc+ ca+ ab folgt

2a2 + 2b2 + 2c2 − 2bc− 2ca− 2ab = 0 ; (a− b)2 + (b− c)2 + (c− a)2 = 0

Die Summe von Quadraten reeller Zahlen ist genau dann gleich null, wenn jedes Quadrat gleich null ist.
Damit ergibt sich

a− b = 0→ a = b; b− c = 0→ b = c; c− a = 0→ c = a also a = b = c

Aufgabe 12/76
Frau Quidam erzählt: ”Mein Mann, ich und unsere vier Kinder haben sämtlich am gleichen Tag
Geburtstag. An unserem letzten Geburtstag addierten wir unsere Alterszahlen, und wir erhielten
unsere Hausnummer. Als wir sie multiplizierten, ergab sich der Kilometerstand unseres Trabants vor
der letzten Generalüberholung: 180 523.”
Wie alt sind die sechs Quidams? Welche Hausnummer haben sie?

Um die Alterszahlen zu finden, zerlegt man das Produkt 180523 zunächst in seine Primfaktoren: 180523 =
7 · 17 · 37 · 41.
Dabei stellt man fest, dass nur vier Faktoren vorhanden sind. Also müssen noch zwei Faktoren ergänzt
werden; diese beiden Faktoren können wegen der Ganzzahligkeit nur 1 sein: 180523 = 1 · 1 · 7 · 17 · 37 · 41.
Demnach haben Quidams Zwillinge im Alter von 1 Jahr sowie Kinder von 7 und 17 Jahren, die Ehegatten
sind 37 und 41 Jahre alt.
Weitere rechnerisch mögliche Lösungen wie 180523 = 1 · 1 · 1 · 119 · 37 · 41 scheiden aus biologischen
Gründen aus. Die Hausnummer ergibt sich damit zu 1 + 1 + 7 + 17 + 37 + 41 = 104.

Aufgabe 13/76
Man beweise: Für alle positiven reellen Zahlen ai gilt:

n∑
i=1

ai ·
n∑
i=1

1
ai
≥ n2
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Bekanntlich ist das geometrische Mittel positiver reeller Zahlen nie größer als ihr arithmetisches Mittel.
Es gilt also

1
n

n∑
i=1

ai ≥ n

√√√√ n∏
i=1

ai und 1
n

n∑
i=1

1
ai
≥ n

√√√√ n∏
i=1

1
ai

Daraus folgt
n∑
i=1

ai ≥ n n

√√√√ n∏
i=1

ai und
n∑
i=1

1
ai
≥ n n

√√√√ n∏
i=1

1
ai

Multipliziert man die letzten beiden Ungleichungen, so folgt sofort die Behauptung.

Aufgabe 14/76
Gegeben sei die Menge aller rechtwinkligen Dreiecke ABC über einer (konstanten) Hypotenuse AB =
c. Es ist zu beweisen:
Verlängert man bei jedem dieser Dreiecke eine Kathete über C hinaus um die andere Kathete, so
liegen die Endpunkte dieser Verlängerungen sämtlich auf dem gleichen Kreisbogen.

A B

C

B′

45◦

c

b
a

a Wir bezeichnen den Endpunkt der Verlängerung von AC = b
mit B′ (Abbildung). Wegen CB′ = CB ist das Dreieck BCB′

gleichschenklig; wegen ]ACB = ]B′CB = 90◦ ist es bei C
rechtwinklig. Daraus folgt, dass ]BB′C = 45◦ unabhängig von
der Lage von C ist. Damit ist auch ]AB′B = 45◦, und die Be-
hauptung folgt aus der Umkehrung des Peripheriewinkelsatzes.

Aufgabe 15/76
Welche natürlichen Zahlen n sind als Summe aufeinanderfolgender natürlicher Zahlen darstellbar,
welche nicht?

Es sei n eine natürliche Zahl, die als Summe aufeinanderfolgender natürlicher Zahlen darstellbar ist. Dann
gilt

n =
r∑
i=0

(k + i) =
r∑
i=0

k +
r∑
i=0

i = (r + 1)k + 1
2(r + 1)r = (r + 1)(k + r

2) = 1
2(r + 1)(2k + r)

mit k; r ∈ N . Ist r = 2s mit s ∈ N , so ist n = (2s + 1)(k + s) ist r = 2s + 1 mit s ∈ N , so ist
n = (s+ 1)(2k + 2s+ 1).
In jedem Fall enthält n einen ungeraden Faktor. Damit ist eine notwendige Bedingung dafür gefunden,
dass n als Summe aufeinanderfolgender natürlicher Zahlen darstellbar ist. Es muss noch geprüft werden,
ob diese Bedingung auch hinreichend ist. Angenommen, n enthalte einen ungeraden Faktor 2t + 1 mit
t ∈ N : n = (2t+ 1)p. Ist p ≥ 1, so ist

m = (2t+ 1)p =
+t∑
i=−t

(p+ i)

eine Summe aufeinanderfolgender natürlicher Zahlen. Es ist nämlich

+t∑
i=−t

(p+ i) =
2t∑
i=0

(p− t+ i) =
2t∑
i=0

(p− t) +
2t∑
i=0

i = (2t+ 1)(p− t) + 1
2(2t+ 1)(2t) = (2t+ 1)p

Ist t > p, so ist

n = (2t+ 1)p =
2p−1∑
i=0

(t− p+ 1 + i)
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eine Summe aufeinanderfolgender natürlicher Zahlen. Es ist nämlich
2p−1∑
i=0

(t− p+ 1 + i) =
2p−1∑
i=0

(t− p+ 1) +
2p−1∑
i=0

i = 2p(t− p+ 1) + 1
2(2p)(2p− 1) = (2t+ 1)p

Damit ist gezeigt, dass genau die natürlichen Zahlen als Summe aufeinanderfolgender natürlicher Zahlen
darstellbar sind, die einen ungeraden Faktor enthalten. Daraus folgt, dass alle Potenzen der Basis 2 nicht
als eine solche Summe darstellbar sind.

Aufgabe 16/76
Gegeben sei die Gleichung x3 − 4x2 − 17x + a0 = 0, von der bekannt ist, dass die Summe zweier
Lösungen gleich 1 ist. Gesucht ist a0.

Nach dem Satz des Vieta gilt x1 + x2 + x3 = 4, wobei die xi die Lösungen der Gleichung sind. O.B.d.A.
sei x1 + x2 = 1. Dann folgt x3 = 3. Setzt man diesen Wert in die gegebene Gleichung ein, so erhält man

27− 4 · 9− 17 · 3 + a0 = 0

und damit sofort a0 = 60.

Aufgabe 17/76
Man bestimme alle nichtnegativen ganzen Zahlen i, m und n’ für die 2l + 2m = n! gilt.

Zunächst ist offensichtlich, dass sich für n = 0 und für n = 1 keine Lösungen ergeben. Für n1 = 2 erhält
man l1 = 0, m1 = 0, für n2 = 3 ist l21 = m22 = 1 und l22 = m21 = 2; und schließlich ergibt sich für
n3 = 4, dass l31 = m32 = 3, l32 = m31 = 4 ist. Es wird nun behauptet, dass für n > 4 keine Lösungen
existieren.
Beweis dieser Behauptung:
Für n > 4 gilt 15 | n!. Nun sei o.B.d.A. (wegen der Symmetrie in l und m) l > m. Wegen

2l + 2m = 2m · (2l−m + 1)

gilt demnach 15 | 2l−m + 1. Daraus folgt, dass 2l−m ≡ 4 (mod 5) ist. Das gilt genau für l −m = 4k + 2
mit k ∈ N .
Weiter folgt daraus, dass 2l−m ≡ 2 (mod 3) ist. Das wiederum gilt genau für l −m = 2k + 1 mit k ∈ N .
Dies ist jedoch ein Widerspruch; denn l−m kann nicht gleichzeitig gerade (4k+2) und ungerade (2k+1)
sein.

Aufgabe 18/76
Gegeben seien ein Kreisring und in ihm n Kreise derart, dass jeder von ihnen den inneren und den
äußeren Begrenzungskreis und zwei weitere Kreise berührt. Wie groß ist n, wenn das Verhältnis aus
der Kreisringfläche A1 und der Summe der n Kreisflächen A2 gleich

√
2 ist?

Es sei r1 der Radius des äußeren Begrenzungskreises und r2 der Radius des inneren. Dann gilt

A1 = (r2
1 − r2

2)π ; A2 = n

[
1
4(r1 − r2)2π

]
Daraus folgt

A1

A2
= 4(r1 + r2)(r1 − r2)
n(r1 − r2)(r1 − r2) = 4(r1 + r2)

n(r1 − r2) =
√

2

Die Mittelpunkte der n Kreise liegen auf den Eckpunkten eines regelmäßigen n-Ecks. Verbindet man
dessen Ecken mit dem Mittelpunkt des Kreisringes, so erhält man n kongruente gleichschenklige Dreiecke
mit der Schenkellänge 1

2 (r1 + r2) und der Basislänge (r1 − r2); der Winkel α zwischen den Schenkeln ist
360◦
n . Damit folgt

1
2 (r1 − r2)
1
2 (r1 + r2)

= sin α2 = sin 180◦

n
= r1 − r2

r1 + r2
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Setzt man dies oben ein, so ergibt sich

4
n · sin 180◦

n

=
√

2 ; n · sin 180◦

n
= 2
√

2

Diese Gleichung hat offensichtlich eine Lösung für n = 4 : 4 · sin 45◦ = 2
√

2. Es ist noch zu zeigen, dass
dies die einzige Lösung ist.
Man rechnet leicht nach, dass n = 1; 2; 3 keine Lösungen sind. Dass es für n ≥ 5 keine Lösungen geben
kann, beweist man folgendermaßen:
Bekanntlich wächst die Funktion sin x

x für x→∞ streng monoton und es ist lim
x→∞

sin x
x = 1.

Dann wächst auch die Funktion π sin x
x streng monoton und es ist

lim
x→∞

π sin x
x

= π

Setzt man x = π
n , so nimmt die Funktion die Gestalt

n · sin π
n

= n · sin 180◦

n

an. Aus der strengen Monotonie folgt nun sofort, dass für n > 4 keine weitere Lösung existieren kann.

Aufgabe 19/76
Bei einem Würfelspiel mit 6 Würfeln sollen nur diejenigen Würfe gewertet werden, bei denen min-
destens eine 1 oder mindestens eine 5 oder mindestens 3 gleiche (beliebige) Zahlen auftreten.
Wie groß ist die Wahrscheinlichkeit dafür, dass keine Wertung erfolgt?

Bei jedem Wurf mit 6 Würfeln, von denen jeder die Augenzahlen von 1 bis 6 zeigen kann, sind insgesamt
66 = 46656 Variationen möglich. Die Anzahl der Möglichkeiten für ungünstige Fälle findet man durch die
folgende Überlegung:
Ungewertet bleiben die Fälle, in denen höchstens 2mal die Augenzahl 2 oder 3 oder 4 oder 6 eintritt, also
(zunächst ohne Berücksichtigung der Reihenfolge):

2 2 3 3 4 4 2 2 3 3 6 6 2 2 4 4 6 6 3 3 4 4 6 6
2 2 3 3 4 6 2 2 3 4 4 6 2 3 3 4 4 6 2 2 3 4 6 6
2 3 4 4 6 6 2 3 3 4 6 6

Die ersten 4 dieser Kombinationen können wegen der Gleichheit von je zwei Zahlen je auf 6!
2!·2!·2! = 90

Arten zustande kommen, die restlichen 6 auf 6!
2!·2!·1!·1! = 180 Arten. Damit ist die Anzahl der ungünstigen

Fälle 4 · 90 + 6 · 180 = 1440 und die Wahrscheinlichkeit für einen nicht gewerteten Wurf beträgt

1440
46656 = 5

162 ≈ 0,0309 ≈ 3,1%

Aufgabe 20/76
Man beweise, dass für n > 2 die Ungleichung 5n > 4n + 3n gilt, ohne dabei das Prinzip der
vollständigen Induktion zu verwenden!

Es ist

32 + 44 = 52 ; 1 =
(

3
5

)2
+
(

4
5

)2

Wegen 3
5 < 1 und 4

5 < 1 ist dann(
3
5

)2
·
(

3
5

)n−2
+
(

4
5

)2
·
(

4
5

)n−2
< 1

Durch Multiplikation mit 5n folgt die Behauptung 3n + 4n < 5n.

281



2.16 Aufgaben und Lösungen 1976

Aufgabe 21/76

Man berechne das Produkt:
n∏
i=1

i∑
j=1

j2.

Bekanntlich gilt
i∑

j=1
j2 = 1

6 i(i+ 1)(2i+ 1). Daher ist

n∏
i=1

i∑
j=1

j2 =
n∏
i=1

1
6 i(i+ 1)(2i+ 1) =

n∏
i=1

(i+ 1) ·
n∏
i=1

1
12 ·

n∏
i=1

2i(2i+ 1) =

= (n+ 1)! · 1
12n

2n+1∏
i=1

i = 1
12n (n+ 1)!(2n+ 1)!

Aufgabe 22/76
Man beweise, dass die Gleichung

b2x2 + (b2 + c2 − a2)x+ c2 = 0

keine reellen Lösungen hat, wenn a, b, c die Maßzahlen der Seiten eines Dreiecks sind!

Das Auftreten des Klammerausdrucks (b2 + c2− a2) lässt es naheliegend erscheinen, den Kosinussatz der
ebenen Trigonometrie zu verwenden. Aus a2 = b2 + c2 − 2bc cosα folgt b2 + c2 − a2 = 2bc cosα. Damit
nimmt die gegebene Gleichung die Gestalt

b2x2 + 2bcx cosα+ c2 = 0 oder x2 + 2c
b
x cosα+

(c
b

)2
= 0

an. Die Lösungen sind
x1;2 = −c

b

(
cosα±

√
cos2 α− 1

)
Wegen 0 < α < 180◦ ist cos2 α < 1. Daraus folgt, dass die Lösungen nicht reell sind.

Aufgabe 23/76
Man bestimme alle reellen Zahlentripel {a; b; c} für die a; b; c die drei Lösungen der Gleichung x3 −
abx2 + bcx− ca = 0 sind.

Wenn ein Tripel {a; b; c} Lösung der gegebenen Gleichung ist, dann gilt nach dem Wurzelsatz des Vieta

a+ b+ c = ab (1)
ab+ bc+ ca = bc (2)

abc = ac (3)

Aus (3) folgt (4) a = 0 oder (5) b = 1 oder (6) c = 0. Wir untersuchen diese drei Fälle getrennt:
1.Fall: a = 0. Dann folgt aus (1) b = −c, beliebig.
2.Fall: b = 1. Dann folgt aus (1) c = −1, aus (2) a beliebig.
3.Fall: c = 0. Dann folgt aus (1) a+ b = ab, aus (2) ab = 0 also insgesamt a = b = 0.
Damit erfüllen die folgenden Tripel die gegebene Gleichung:

1. {a; b; c} = {0; y;−y}
2. {a; b; c} = {y; 1;−1}

3. {a; b; c} = {0; 0; 0}

wobei in jedem Fall y eine reelle Zahl ist.
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Aufgabe 24/76
Es ist zu beweisen: Sind im Raum n = 2k Punkte (k ∈ N) derart gegeben, dass keine drei Punkte auf
derselben Geraden liegen, so sind zwischen diesen Punkten höchstens k2 Verbindungsstrecken möglich,
ohne dass diese Strecken ein Dreieck mit Eckpunkten aus der gegebenen Punktmenge bilden.

Man denke sich die Punkte von i = 1 bis i = n = 2k durchnummeriert und verbinde jeden Punkt P2i−1
mit jedem Punkt P2i.
Da die gegebene Punktmenge genau k Punkte P2i−1 und genau k Punkte P2i enthält, entstehen auf
diese Weise genau k2 Verbindungsstrecken. Unter ihnen sind keine drei, die ein Dreieck mit Eckpunkten
Pi bilden. Wäre das nämlich der Fall, so müssten entweder zwei Punkte mit geradem oder zwei Punkte
mit ungeradem Index miteinander verbunden sein, das ist aber auf Grund der Konstruktionsvorschrift
ausgeschlossen.

Damit ist bewiesen, dass mindestens k2 Verbindungsstrecken mit der festgelegten Einschränkung möglich
sind. Es ist noch zu beweisen, dass es nicht mehr als k2 solche Strecken gibt.
Dazu zeigen wir zunächst, dass nur ein solche Konstruktion wie eben beschrieben k2 Strecken liefert, jede
andere Konstruktion dagegen weniger.
Wäre nämlich eine andere Konstruktion mit k2 den Bedingungen der Aufgabe entsprechenden Strecken
möglich, so müssten von wenigstens einem Punkt mehr oder von einem Punkt weniger als k Strecken
ausgehen.
Jede Erhöhung der von einem Punkt ausgehenden Streckenzahl um 1 bedingt aber die Verbindung zweier
Punkte, deren Indizes entweder beide gerade oder beide ungerade sind. Damit keine Dreiecke entstehen,
müssen sämtliche anderen Strecken entfallen, die von einem dieser beiden Punkte ausgehen. Die Anzahl
der Verbindungsstrecken wäre als k2 − k + 1 < k2 (für k > 1).

Damit ist zugleich bewiesen: Sind zwischen n = 2k Punkten k2 Verbindungsstrecken derart gegeben, dass
keine drei ein Dreieck bilden, so ist eine Indizierung möglich, die der oben gegebenen Konstruktionsvor-
schrift entspricht, und jede weitere eingefügte Strecke würde entweder zwei Punkte mit geradem oder
zwei Punkte mit ungeradem Index verbinden, also zu einem Dreieck führen. Daraus folgt, dass k2 die
Höchstzahl der Verbindungsstrecken ist.

Aufgabe 25/76
Man löse die Gleichung sin4 x+ cos7 x = 1 für reelle Zahlen x.

Wegen
sin4 x = (sin2 x)2 = (1− cos2 x)2

folgt aus der Gleichung nach kurzer Rechnung

sin4 x+ cos7 x = 1→ cos2 x(cos5 x+ cos2 x− 2) = 0

1. Diese Gleichung ist erfüllt für cosx = 0, x = π
2 + kπ, sin x = ±1. Die Probe bestätigt die Richtigkeit.

2. Diese Gleichung ist erfüllt für cos5 x+cos2 x−2 = 0. Wegen cosx ≤ 1, cos5 x ≤ 1 kann diese Gleichung
nur für cosx = 1, x = 2kπ, sin x = 0 erfüllt sein. Die Probe bestätigt die Richtigkeit.

Aufgabe 26/76
Gesucht sind alle Quadrupel (p1; p2; p3; p4) von Primzahlen, die das Gleichungssystem erfüllen:

p2
1 + p2

2 = p3 (1) ; p2
1 − p2

2 = p4 (2)

Wären beide Primzahlen p1 und p2 ungerade, so könnte p4 als gerade Primzahl nur p4 = 2 sein und es
wäre

p2
1 − p2

2 = (p1 + p2)(p1 − p2) = 2

Daraus würde folgen: p1 + p2 = 2, p1 − p2 = 1; dieses Gleichungssystem ist aber nicht in ganzen Zahlen
(erst recht nicht in Primzahlen) lösbar. Folglich ist von den Primzahlen p1 und p2 genau eine gerade und

283



2.16 Aufgaben und Lösungen 1976

genau eine ungerade.
Wegen p4 > 0 muss p2 = 2 sein. Damit nimmt (2) die Gestalt

p2
1 − 22 = (p1 + 2)(p1 − 2) = p4

an. Daraus folgt p1 + 2 = p4, p1 − 2 = 1. Also ist p1 = 3, p4 = 5. Aus (1) ergibt sich dann weiter

p2
1 + p2

2 = 9 + 4 = 13 = p3

Das Quadrupel (p1, p2, p3, p4) = (3, 2, 13, 5) ist also das einzige, das das Gleichungssystem erfüllt.

Aufgabe 27/76
Man zeige, dass das Polynom

f(x) =
n∑
i=0

xi

i!

für gegebenes n keine mehrfachen Nullstellen besitzt!

Angenommen, das gegebene Polynom hätte eine mindestens zweifache Nullstelle x0. Dann wäre

f(x) =
n∑
i=0

xi

i! = (x− x0)2+mϕ(x)

wobei m ≥ 0,m ∈ N gilt und ϕ(x) ein Polynom (n-m-2)-ten Grades ist. Differenziert man f(x) nach x,
so erhält man

f ′(x) =
n−1∑
i=0

xi

i! = (2 +m)(x− x0)1+mϕ(x) + (x− x0)2+mϕ′(x)

Man erkennt, dass x0 auch Nullstelle von f ′(x) ist. Dann ist aber x0 auch Nullstelle von

f(x)− f ′(x) = xn

n!

Einzige Nullstelle von xn

n! ist x0 = 0. Nun ist aber x0 = 0 offensichtlich nicht Nullstelle von f(x) im
Widerspruch zur Annahme. Damit folgt die Behauptung.

Aufgabe 28/76
In einem Dreieck mit den Winkeln α, β, γ und den ihnen gegenüberliegenden Seiten a, b, c gelte

tanα · tan β = 3 ; tan β · tan γ = 6

Man berechne die Winkel α, β, γ sowie die Seitenverhältnisse a
c und b

c .

Es ist
tan γ = tan (180◦ − α− β) = − tan (α+ β) = − tanα+ tan β

1− tanα tan β
Damit erhalten die gegebenen Gleichungen die Gestalt

tanα tan β = 3 (1)

tan β tanα+ tan β
1− tanα tan β = −6 (2)

Löst man dieses Gleichungssystem, so erhält man

tanα = 1; tan β = 3; tan γ = 2

(negative tan-Werte entfallen, da 0◦ < α, β, γ ≤ 90◦ gilt). Damit folgt α = 45◦, β = 71,56◦, γ = 63,43◦
(bei Verwendung einer fünfstelligen Tafel).
Nach dem Sinussatz gilt

a

b
= sinα

sin β ; a

c
= sinα

sin γ
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Aus
sin2 x = tan2 x

1 + tan2 x

und sinα, sin β, sin γ > 0 ergibt sich

a

b
=

√
tan2 α(1 + tan2 β)
tan2 β(1 + tan2 α)

=

√
1 · (1 + 9)
9 · (1 + 1) =

√
10
18 ≈ 0,745

a

c
=

√
tan2 α(1 + tan2 γ)
tan2 γ(1 + tan2 α)

=

√
1 · (1 + 4)
4 · (1 + 1) =

√
5
18 ≈ 0,791

Aufgabe 29/76
Für den Transport von 416 Personen stehen Omnibusse mit 7, 21 und 31 Sitzplätzen zur Verfügung.
Der Transport soll mit der geringsten Anzahl von Fahrten durchgeführt werden, wobei jedoch kein
Sitzplatz frei bleiben soll. Welche Omnibusse sind mit wieviel Fahrten einzusetzen?

Wir bezeichnen mit x, y bzw. z die Anzahl der Fahrten, die der Bus mit 7, 21 bzw. 31 Plätzen ausführen
muss. Dann gelten die folgenden Beziehungen:

7x+ 21y + 31z = 416 ; x+ y + z ⇒ min ; x; y; z ∈ N

Dividiert man die Gleichung durch 7, so ergibt sich

x+ 3y + 4z + 3
7z = 59 + 3

7

Daraus folgt sofort: Soll kein Platz frei bleiben, so muss z ≡ 1 (mod 7) sein, also z = 7k + 1 mit k ∈ N .
Setzt man dies in die Gleichung ein, so ergibt sich nach äquivalenter Umformung x+ 3y + 31k = 55.
Offensichtlich würde k = 0 nicht zum Minimum für die Summe x + y + z führen. Also ist k = 1, z = 8.
Damit erhält man x + 3y = 24, woraus man sofort erkennt, dass für x = 0, y = 8 sich das Minimum für
die Summe ergibt.
Es sind also je 8 Fahrten mit den Omnibussen für 21 und 31 Personen erforderlich, der Omnibus für 7
Personen wird nicht eingesetzt.

Aufgabe 30/76
Man bestimme alle Paare (n;m) natürlicher Zahlen, die der Gleichung 4n + 65 = 9m genügen.

Wir formen die Gleichung äquivalent so um, dass sie als Gleichung zwischen Produkten erscheint. Aus
4n + 65 = 9m folgt

9m − 4n = 65 = 32m − 22n = (3m − 2n)(3m + 2n) = 5 · 13

Da 3m + 2n > 3m − 2n, folgt 3m − 2n = 5; 3m + 2n = 13.
Durch einfache Rechnung ergibt sich daraus n = m = 2 als Lösung. Die Probe bestätigt die Richtigkeit.
Die Möglichkeit, 65 = 1 · 65 zu wählen, scheidet aus, da sich daraus kein ganzzahliges m ergibt. Damit
ist die angegebene Lösung die einzige.

Aufgabe 31/76
Man bestimme alle ganzzahligen Paare (x; y) die der Gleichung 16x2 + 2xy + y2 = 85 genügen.

Es ist
85 = 16x2 + 2xy + y2 = 15x2 + (x+ y)2 >= 15x2 >= 0

also ist x2 ≤ 85
15 < 6, x2 ∈ {0; 1; 4}.

Da sich aus der gegebenen Gleichung für x2 = 4 ganzzahlige Werte für y ergeben, gilt x1 = 2, x2 = −2.
Für x2 = 4 folgt (x+ y)2 = 25, d.h., x+ y = ±5 und damit y11 = 3, y12 = −7, y21 = 7, y22 = −3.
Die Gleichung hat also die vier Paare (2; 3), (2;−7), (−2; 7), (−2;−7) als Lösung.
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Aufgabe 32/76
Man beweise: Haben die Seitenflächen eines Tetraeders sämtlich den gleichen Umfang, so sind sie
kongruent.

a1

a2
a3

a4

a5 a6

Wir verwenden die Bezeichnungen der Abbildung. Nach der Voraus-
setzung gilt dann:

a1 + a2 + a3 = a2 + a4 + a6

a1 + a2 + a3 = a3 + a4 + a5

a1 + a2 + a3 = a5 + a6 + a1

Aus diesen Gleichungen folgt

a1 + a3 = a4 + a6 (1)
a1 + a2 = a4 + a5 (2)
a2 + a3 = a5 + a6 (3)

Durch Addition dieser Gleichungen folgt a1 + a− 2 + a3 = a4 + a5 + a6.
Subtrahiert man von dieser Gleichung die Gleichungen (1), (2) und (3), so ergibt sich a2 = a5, a3 =
a6, a1 = a4. Damit stimmen die vier Dreiecke in den Seiten überein, sie sind also kongruent.

Aufgabe 33/76
Man beweise: Ist (a; b; c) ein (paarweise) teilerfremdes pythagoreisches Zahlentripel und b ungerade,
so sind

u =
√
c+ b

2 und v =
√
c− b

2
natürliche Zahlen.

Es sei (a; b; c) ein (paarweise) teilerfremdes pythagoreisches Zahlentripel mit ungeradem b. Dann ist sicher
a gerade. Wäre nämlich a ungerade, so wäre c2 ≡ 2 (mod 4) wegen a2 ≡ b2 ≡ 1 (mod 4) im Widerspruch
zu der Tatsache, dass für keine natürliche Zahl n gilt n2 ≡ 2 (mod 4). Damit ist auch c ungerade, die
Summe c+ b und die Differenz c− b sind gerade. Man setze nun

c+ b

2 = x ; c− b
2 = y

Wegen c− b > 0, c+ b ≡ c− b ≡ 0 (mod 2) sind x und y natürliche Zahlen, die wegen der Teilerfremdheit
von b und c ebenfalls teilerfremd sind (aus x = km; y = kn mit natürlichen Zahlen k;m;n würde folgen
c = k(m+ n), b = k(m− n)). Es gilt dann c = x+ y ; b = x− y und wegen a2 + b2 = c2 ist

a =
√
c2 − b2 =

√
(x+ y)2 − (x− y)2 = 2√xy

Daraus folgt, dass xy eine Quadratzahl ist. Aus der Teilerfremdheit von x und y folgt weiter, dass sowohl
x als auch y selbst Quadratzahl ist. Würde nämlich wenigstens eine dieser beiden Zahlen einen Primfaktor
in ungerader Potenz enthalten, so wäre das Produkt keine Quadratzahl, weil dieser Primfaktor wegen der
Teilerfremdheit nicht in der anderen Zahl vorkommen kann. Es sind also

u =
√
c+ b

2 =
√
x ; v =

√
c− b

2 = √y

natürliche Zahlen.

Aufgabe 34/76
In einem Dreieck mit den Seiten a, b und c sowie der Höhe hc auf c gelte 2a2− 3ab+ 2b2 = chc.
Man bestimme die den Seiten a, b und c gegenüberliegenden Winkel α, β, γ.
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Es ist

chc = 2a2 − 3ab+ 2b2 = 2a2 − 4ab+ 2b2 + ab = 2(a2 − 2ab+ b2) + ab = 2(a− b)2 + ab

Wegen sin γ ≤ 1 gilt ab ≥ ab sin γ = 2A = chc (wobei mit A der Flächeninhalt bezeichnet ist). Damit
folgt

ch− c = 2(a− b)2 + ab ≥ 2(a− b)2 + chc also 0 ≥ (a− b)2

Da andererseits (a− b)2 ≥ 0 gilt, folgt a = b und daraus α = β. Das Dreieck ist demnach gleichschenklig.
Setzt man a = b in die vorausgesetzte Gleichung ein, so folgt

chc = 2a2 − 3ab+ 2b2 = 2a2 − 3a2 + 2a2 = a2

Aus chc = 2A = a2 sin γ ergibt sich nunmehr sofort sin γ = 1, also γ = π
2 . Damit ist α = β = π

4 , das
Dreieck ist rechtwinklig-gleichschenklig.

Aufgabe 35/76
Gegeben seien Kantenmodelle regulärer Tetraeder, bei denen die Kanten mit sechs Farben unter-
schiedlich gefärbt seien. Zwei derartige Modelle sollen als gleich gelten, wenn man sie so aufstellen
kann, dass die Paare paralleler Kanten gleiche Farbe haben. Wie viele verschiedene Modelle sind
möglich?

1

2
3

6

4 5

Die sechs Farben seien mit den Zahlen 1; 2; 3; 4; 5; 6 bezeichnet.
Mit den gleichen Zahlen bezeichne man die entsprechend eingefärbten Kanten. Ferner sei die Reihenfolge
der Kanten gemäß der ersten Abbildung festgelegt. Da man den Stahl eines jeden Modells in die Lage
des Stabes 1 der Abbildung hängen kann, genügt es, zur Ermittlung der gesuchten Anzahl die Zahlen 2
bis 6 zu permutieren.
Es gibt 5! = 120 Permutationen. Immer je zwei dieser 120 Modelle kann man in kongruente Parallelstel-
lung (Gleichheit im Sinne dieser Aufgabe) bringen. Man verbinde z.B. im Modell mit der Kantenfolge
(1;m;n; p; q; r) die Mittelpunkte der Kanten 1 und r miteinander und drehe das Modell um diese Ver-
bindungsgerade um 180◦ (Abbildung 2).

1

m
n

r

p q

1

p
q

r

m n

Man erhält die neue Kantenfolge (1; p; q;m;n; r). Somit sind die beiden Modelle (1;m;n; p; q; r) und
(1; p; q;m;n; r) im Sinne der Aufgabe gleich.
Ergebnis: Es gibt 60 verschiedene Modelle.
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Aufgabe 36/76
Man beweise, dass die Zahl

z =
1977∑
i=1

i1977

keine Primzahl ist!

Wir betrachten die Zahl z modulo 3. Es ist

z =
1977∑
i=1

i1977 = 11977 + 21977 + 31977 + ...+ 19771977 ≡

≡ 11977 + (−1)1977 + 01977 + ...+ 11977 + (−1)1977 + 01977 ≡ 1− 1 + 0 + ...+ 1− 1 + 0 ≡ 0 (mod 3)

Also ist z durch 3 ohne Rest teilbar und damit keine Primzahl.
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2.17 Aufgaben und Lösungen 1977

Aufgabe 1/77
Man beweise: Wenn cos (α+ β) = 0 ist, dann gilt sin (α+ 2β) = sinα.

Aus
cos (α+ β) = cosα cosβ − sinα sin β = 0 folgt cosα cosβ = sinα sin β (1)

Aus sin (α+ 2β) = sinα cos 2β + cosα sin 2β folgt mit cos 2β = 1− 2 sin2 β, sin 2β = 2 sin β cos beta:

sinα+ 2β = sinα− 2 sinα sin2 β + cosα(2 sin β cosβ) (2)

Setzt man (1) in (2) ein, so folgt unmittelbar die Behauptung sinα+ 2β = sinα.

Aufgabe 2/77
Man beweise, dass in jedem rechtwinkligen Dreieck das Quadrat über der Hypotenuse mindestens so
groß wie die vierfache Dreiecksfläche ist!

Es seien a und b die Katheten, c die Hypotenuse und A der Flächeninhalt des rechtwinkligen Dreiecks.
Sicher gilt

(a− b)2 ≥ 0 ; a2 + b2 ≥ 2ab
Wegen a2 + b2 = c2 und 1

2ab = A folgt sofort die zu beweisende Ungleichung c2 ≥ 4A. Gleichheit gilt für
a = b, also für gleichschenklige Dreiecke.

Aufgabe 3/77
Auf wieviel Nullen endet die Zahl 1000! ?

Die Frage der Aufgabe ist identisch mit der Frage, wie oft in dem Produkt 1000! der Faktor 10 = 2 · 5
enthalten ist. Es gilt also, die Anzahl der Primfaktorpaare (2; 5) zu ermitteln. Dazu ermitteln wir die
Anzahlen A2 und A5 der Primfaktoren 2 bzw. 5, die kleinere von beiden ist die gesuchte.
Die Anzahl Ap der Primfaktoren p in dem Produkt n! = 1 · 2 · 3 · ... · n ist

Ap =
∑
k=1

[
n

pk

]
wobei mit [x] die größte ganze Zahl a ≤ x bezeichnet ist.
Jeder einzelne Summand dieser Summe gibt nämlich die Anzahl der Zahlen ik mit 1 ≤ ik ≤ n an, die
den Primfaktor p wenigstens k mal enthalten. (Ist k > logp n = lgn

lg p , so ist pk > n, also n
pk
< 1 und damit[

n
pk

]
= 0.)

Aus p1 > p2 folgt nun n
pk1 = n

pk−2 für jedes k und damit Ap1 < Ap2. Also ist A5 die gesuchte Zahl:

A5 =
[

1000
5

]
+
[

1000
25

]
+
[

1000
125

]
+
[

1000
625

]
= 200 + 40 + 8 + 1 = 249

Das Produkt 1000! endet demnach auf 249 Nullen.

Aufgabe 4/77
Man beweise: In jedem rechtwinkligen Dreieck ist der Flächeninhalt gleich dem Produkt aus dem
arithmetischen und dem geometrischen Mittel der beiden Hypotenusenabschnitte, die von der Höhe
auf der Hypotenuse erzeugt werden.

In jedem rechtwinkligen Dreieck mit den Katheten a und b, der Hypotenuse c und den von der Höhe auf
der Hypotenuse erzeugten Abschnitten p und q gilt nach dem Kathetensatz:

a2 = pc = p(p+ q) ; a =
√
p(p+ q)

b2 = qc = q(p+ q) ; b =
√
q(p+ q)
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wenn p die Projektion von a und q die Projektion von b und c ist. Der Flächeninhalt A berechnet sich
nach der Formel

A = 1
2ab = 1

2
√
p(p+ q)

√
q(p+ q) = 1

2
√

(p+ q)2√pq = p+ q

2
√
pq

Damit ist A das Produkt aus dem arithmetischen und dem geometrischen Mittel von p und q.

Aufgabe 5/77
Für welche natürlichen Zahlen x gilt: 3x ≡ 1 (mod 13)?

Durch Probieren findet man

30 ≡ 1 (mod 13) ; 31 6= 1 (mod 13)

32 6= 1 (mod 13) ; 33 ≡ 1 (mod 13)

Man kann vermuten, dass die Kongruenz für x = 3k (k ∈ N) gilt.
Behauptung: 3x ≡ 1 (mod 13) gilt genau für x = 3k mit k ∈ N .
Beweis durch vollständige Induktion:
1. Die Behauptung gilt für k = 0 und für k = 1, wie man durch Ausrechnen bestätigt.
2. Angenommen, die Behauptung gilt für irgendein k ∈ N : 33k ≡ 1 (mod 13). Dann gilt

33(k+1) = 33k+3 = 33 · 33k ≡ 27 · 1 ≡ 1 (mod 13)

wegen 27 ≡ 1 (mod. 13). Damit ist bewiesen, dass die Behauptung für alle x = 3k mit k ∈ N gilt.
Es ist noch zu zeigen, dass sie für alle x = 3k ± 1 nicht gilt!
1. Es ist 33±1 6= 1 (mod 13), wie man durch Ausrechnen bestätigt.
2. Angenommen, es gelte für irgendein k ∈ N : 33k±1 6= 1 (mod 13). Dann gilt

33k+3±1 = 33 · 33k±1 = 27 · 33k±1 ≡ 1 · 33k±1 = 33k±1 6= 1 (mod 13)

Aufgabe 6/77
Man zeige, dass für reelle a; b mit 0 < b ≤ a die Ungleichungskette gilt:

a− b
a
≤ ln a

b
≤ a− b

b

Dass die Behauptung für b = a gilt, ist unmittelbar nachprüfbar. Wir nehmen deshalb b < a an.
Die Funktion f(x) = ln x ist für x > 0 überall stetig und differenzierbar. Man kann also auf jedes Intervall
[b; a] mit b < a den Mittelwertsatz der Differentialrechnung anwenden. Nach diesem Satz existiert ein c
mit b < c < a derart, dass

f(a)− f(b) = f ′(c) · (a− b)

ist. Speziell für f(x) = ln x folgt damit

ln a− ln b = ln a
b

= 1
c
· (a− b)

Wegen c > b folgt daraus sofort ln a
b <

a−b
b und wegen c < a: ln a

b >
a−b
a . Da die Gleichheit für a = b

eintritt, ist damit die Behauptung bewiesen.

Aufgabe 7/77
Man beweise, dass es kein Zahlensystem mit der Basis x gibt (x ∈ N, x > 1), in dem die Zahl (10004)x
Primzahl ist.

Nach Definition gilt (10004)x = x4 + 4 mit x ∈ N , x > 1. Nun ist

x4 + 4 = x4 + 4x2 + 4− 4x2 = (x2 + 2)2 − (2x)2 = (x2 + 2x+ 2)(x2 − 2x+ 2)
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Angenommen, (10004)x = x4 + 4 wäre Primzahl; dann müsste der kleinere der beiden Faktoren gleich 1
sein: x2 − 2x+ 2 = 1.
Diese Gleichung hat die Doppellösung x1;2 = 1. Damit ergibt sich ein Widerspruch; denn es ist x > 1
vorausgesetzt (es existiert kein Zahlensystem mit der Basis 1). Daraus folgt unmittelbar die Richtigkeit
der Behauptung.

Aufgabe 8/77
Gesucht sind alle echt fünfstelligen natürlichen Zahlen z (also 10000 ≤ z < 100000) mit folgenden
Eigenschaften:

1. Jede Ziffer kommt höchstens einmal vor.

2. Die Quersumme ist 10.

3. Addiert man zu der Zahl z die Zahl z′’ die aus den gleichen Ziffern wie z, jedoch in umgekehrter
Reihenfolge besteht, so enthält die Summe nur gleiche Ziffern.

Da jede Ziffer höchstens einmal vorkommen darf und die Quersumme 10 sein soll, können in z nur die
Ziffern 0; 1; 2; 3; 4 vorkommen. Wäre nämlich eine Ziffer größer als 4, so wäre auch die Quersumme größer
als 10, oder es müsste wenigstens eine Ziffer doppelt vorkommen. Da bei der Addition von z und z′

keine Zehnerübertragung vorkommen kann (im ungünstigen Fall ergibt sich 4 + 3 = 7), ist Q(z + z′) =
Q(z) + Q(z′) = 2Q(z) = 20 (wobei mit Q(x) die Quersumme der Zahl x bezeichnet ist). Da z + z′

fünfstellig ist und aus gleichen Ziffern besteht, muss diese Ziffer sich aus der Division 20 : 5 zu 4 ergeben.
Es ist also z + z′ = 44444.
Es sei nun zn die an n-ter Stelle stehende Ziffer von z. Dann muss wegen der Bedingung 3 gelten

zn + z6−n = 4

insbesondere folgt daraus z3 = 2. Damit verbleiben für z die folgenden Möglichkeiten

z1 = 10243 z2 = 14203 z3 = 30241 z4 = 34201
z5 = 41230 z6 = 43210

Die Probe bestätigt die Richtigkeit (für z′ war die ”echte” Fünfstelligkeit nicht gefordert).

Aufgabe 9/77
Gegeben sei eine nicht konstante arithmetische Folge 1. Ordnung mit 6 Gliedern, die sämtlich Prim-
zahlen sind.
Man beweise, dass der Absolutbetrag der Differenz aus zwei aufeinanderfolgenden Gliedern der Folge
nicht kleiner als 30 ist!

Wir bezeichnen die Glieder der Folge mit p; p + d; p + 2d; p + 3d; p + 4d; p + 5d. Sicher ist p ungerade;
denn wäre p gerade, so wäre p = 2 (einzige gerade Primzahl) und damit wären p + 2d = 2(1 + d) und
p+ 4d = 2(1 + 2d) ebenfalls gerade und damit keine Primzahlen.
Zur Beweisführung geben wir einige Eigenschaften von d an:

1. Sicher ist d ≡ 0 (mod 2), denn aus d ≡ 1 (mod 2) würde wegen p ≡ 1 (mod 2) folgen, dass
p+ 3d ≡ p+ 5d ≡ 0 (mod 2) ist. Das ist aber ein Widerspruch zur Primzahleigenschaft von p+ 3d
und p+ 5d.

2. Sicher ist d ≡ 0 (mod 3); denn wäre d ≡ 1 (mod 3), so wäre p+3d ≡ 0 (mod 3) für p = 3, p+4d ≡ 0
(mod 3) für p ≡ −1 (mod 3) und p+ 2d ≡ 0 (mod 3) für p ≡ 1 (mod 3), wäre d ≡ −1 (mod 3), so
wären entsprechend p+ 3d, p+ 2d, p+ 4d ≡ 0 (mod 3). In jedem Fall entsteht als ein Widerspruch
zur Primzahleigenschaft wenigstens eines der Glieder.

3. Sicher ist d ≡ 0 (mod 5). Der Beweis dafür verläuft völlig analog. Damit folgt d ≡ 0 (mod 30).
Wegen d 6= 0 ergibt sich daraus |d| ≥ 30.

Bemerkung: Tatsächlich existiert eine Folge mit den angegebenen Eigenschaften und d = 30: 7; 37; 67;
97; 127; 157.
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Aufgabe 10/77
Man bestimme alle Lösungen der Gleichung

3∑
i=1

1
xi

= 1

in natürlichen Zahlen xi, für die gilt xi ≥ xj , wenn i > j ist.

Wegen x3 ≥ x2 ≥ x1 ist x1 > 1 und

1 = 1
x1

+ 1
x2

+ 1
x3
≤ 1
x1

+ 1
x1

+ 1
x1

= 3
x1

also x1 ≤ 3. Demnach sind zwei Fälle möglich:
1. x1 = 2. Dann nimmt die gegebene Gleichung die Gestalt

1
2 + 1

x2
+ 1
x3

= 1

an. Man schließt weiter
1
2 = 1

x2
+ 1
x3
≤ 1
x2

+ 1
x2

= 2
x2

woraus x2 ≤ 4 folgt. Das führt zu den beiden Lösungen x1 = 2;x2 = 3;x3 = 6 und x1 = 2;x2 = 4;x3 = 4.
2. x1 = 3. Analog erhält man

1
3 + 1

x2
+ 1
x3

= 1

Daraus schließt man
2
3 = 1

x2
+ 1
x3
≤ 1
x2

+ 1
x2

= 2
x2

woraus sofort x2 = x3 = 3 folgt. Damit hat man als dritte Lösung x1 = x2 = x3 = 3. Weitere Lösungen
kann es auf Grund des Lösungsweges nicht geben.

Aufgabe 11/77
Wie groß ist die Wahrscheinlichkeit dafür, dass beim Würfeln mit einem gewöhnlichen (einwandfreien)
Würfel der zweite Wurf eine höhere Augenzahl hat als der erste?

Die Wahrscheinlichkeit für zwei Würfe mit gleicher Augenzahl beträgt 1
6 , die Wahrscheinlichkeit für zwei

Würfe mit verschiedenen Augenzahlen ist 5
6 .

Da beide Würfe ”gleichberechtigt” sind, ist die gesuchte Wahrscheinlichkeit gleich der Hälfte von 5
6 , also

gleich 5
12 .

Aufgabe 12/77
Gesucht sind (bis auf Ähnlichkeit) alle Dreiecke, bei denen die Tangenswerte der Innenwinkel sämtlich
ganzzahlig sind.

Wir beweisen zunächst den Hilfssatz: Ist α+ β + γ = 180◦, so ist

tanα+ tan β + tan γ = tanα tan β tan γ

Beweis: Wegen γ = 180◦ − (α+ β) ist

tan γ = tan[180◦ − (α+ β)] = − tan (α+ β) = − tanα+ tan β
1− tanα tan β

Damit ist
tanα+ tan β + tan γ = tanα+ tan β − tanα+ tan β

1− tanα tan β =

292



2.17 Aufgaben und Lösungen 1977

= tanα tan β · (−1) · tanα+ tan β
1− tanα tan β = tanα tan β tan γ

Nun setzen wir zur Vereinfachung tanα = x, tan β = y, tan γ = z und lösen die diophantische Gleichung

x+ y + z = xyz

in ganzen Zahlen (wobei wegen des Winkelsummensatzes höchstens ein Wert negativ und kein Wert gleich
null sein kann). Zuerst zeigen wir, dass kein Wert negativ ist. Angenommen (o.B.d.A.), sei z negativ: z < 0.
Dann folgt

x+ y = xyz − z = z(xy − 1) > 0

(wegen x > 0, y > 0), also xy − 1 < 0 wegen z < 0. Mithin ist xy < 1. Diese Ungleichung ist aber nicht
in ganzen Zahlen lösbar.
Es sei nun z = 1. Dann folgt

x+ y + 1 = xy → y + 1 = xy − x = x(y − 1)→ x = y + 1
y − 1 = 1 + 2

y − 1

(wobei y 6= 1 vorausgesetzt ist; man erkennt leicht, dass für z = 1, y = 1 kein x existiert). Diese Gleichung
liefert x = 3 für y = 2 und x = 2 für y = 3, weitere ganzzahlige Lösungen hat sie nicht. Eine Lösung ist
also das Tripel (1; 2; 3), wobei die Reihenfolge keine Rolle spielt.
Man überlegt sich leicht, dass dies auch die einzige Lösung ist. Wäre nämlich ein Tangenswert größer
als 3, so müsste (wegen der Monotonie der Tangensfunktion im betrachteten Bereich und wegen des
Winkelsummensatzes) wenigstens einer der beiden anderen Tangenswerte kleiner sein als 1 bzw. 2. Als
einziges ganzzahliges Tripel käme dann ein Tripel (1; 1; 3 + ∆) in Frage (mit ∆ ∈ N).
Die Gleichung 1 + 1 + (3 + ∆) = 1 · 1 · (3 + ∆) führt jedoch zum Widerspruch 2 = 0.
Damit ist als einzige Lösung (bis auf die Reihenfolge) das Tripel (tanα; tan β; tan γ) = (1; 2; 3) mit den
Winkeln

(α;β; γ) = (45◦; 63,43◦; 71,56◦)

ermittelt. Es gibt also (bis auf Ähnlichkeit) genau ein Dreieck mit ausschließlich ganzzahligen Tangens-
werten der Innenwinkel.

Aufgabe 13/77
Gegeben sei ein Winkel von 17◦. Mit Zirkel und Lineal konstruiere man daraus einen Winkel von 11◦.

Man konstruiere einen Winkel von 45◦ als Basiswinkel eines gleichschenklig-rechtwinkligen Dreiecks und
subtrahiere von ihm zweimal den gegebenen Winkel von 17◦. Der Rest ist der gesuchte Winkel von 11◦.

Aufgabe 14/77
Es seien a, b, c von null verschiedene natürliche Zahlen. Man zeige, dass es keine mehrstelligen
Primzahlen p, q, r gibt, die der Gleichung genügen:

p2a + qb = r2c

Nach Voraussetzung sind p, q und r mehrstellig, also nicht gleich 3 und als Primzahlen demnach nicht
durch 3 teilbar. Dann gilt

r2c = (r2)c ≡ 1 (mod 3) (1)
p2a = (p2)a ≡ 1 (mod 3) (2)

qb 6= 0 (mod 3) (3)

aus (2) und (3) folgt
p2a + qb 6= 1 (mod 3)

womit sich ein Widerspruch zu (1) ergibt. Damit folgt sofort die Behauptung.
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Aufgabe 15/77
Auf welche Weise kann man die Zahl 92 in zwei Summanden natürlicher Zahlen zerlegen, von denen
der eine durch 5 teilbar ist und der andere bei Division mit 7 den Rest 3 lässt?

Seien x und y die gesuchten Summanden. Dann ist

x+ y = 92 (1) ; x = 5k ; y = 7l + 3 (1′)

mit k; l ∈ N . Aus (1) und (1’) folgt 5k + 7l = 89.
Wir betrachten die Gleichung (2) mod 5 und mod 7 und erhalten

2l ≡ 4 (mod 5); 5k ≡ 5 (mod 7); l ≡ 2 (mod 5) k ≡ 1 (mod 7)

also l = 2 + 5t1 und k = 1 + 7t2 mit t1; t2 ∈ N . Setzen wir dies in (2) ein, so folgt

35(t1 + t2) = 70→ t1 + t2 = 2

Damit ergeben sich die folgenden drei Möglichkeiten:

t1 = 0; t2 = 2; k = 2; l = 15; x = 75; y = 17
t1 = 1; t2 = 1; k = 7; l = 8; x = 40; y = 52
t1 = 2; t2 = 0; k = 12; l = 1; x = 5; y = 87

Wie die Probe zeigt, sind die Paare (75; 17), (40; 52), (5; 87) Lösung.

Aufgabe 16/77
In einem Dreieck mit den Seiten a, b, c, den ihnen gegenüberliegenden Winkeln α, β, γ und den
Höhen ha, hb bzw. hc gelte ha ≥ a und hb ≥ b. Wie groß sind die Winkel?

Aus ha ≥ a, hb ≥ b folgt ha
a ≥ 1 und hb

b ≥ 1. Wegen 0 ≤ sin γ = ha
a = hb

b ≤ 1 gilt

1 ≥ sin2 γ = ha
a
· hb
b
≥ 1

also sin2 γ = 1, sin γ = 1, γ = 90◦.
Das Dreieck ist demnach rechtwinklig mit der Hypotenuse c. In jedem rechtwinkligen Dreieck fällt eine
Höhe auf einer Kathete mit der anderen Kathete zusammen. Es ist also ha = b;hb = a. Daraus und aus
ha ≥ a;hb ≥ b folgt b ≥ a ≥ b, mithin a = b.
Das Dreieck ist demnach nicht nur rechtwinklig, sondern auch gleichschenklig. Folglich ist α = β = 45◦.

Aufgabe 17/77
Es ist zu beweisen: Sind p1, p2, p3 drei Primzahlen mit pi > 3, von denen zwei ein Primzahlzwillings-
paar bilden, so ist das Produkt

3∏
i=1

(pi − 1) = P

durch ein Vielfaches von 48 ohne Rest teilbar.

Bekanntlich lässt sich jede Primzahl p > 3 in einer der Formen p = 6m ± 1, m ∈ N,m ≥ 1 darstellen.
Beweis: Angenommen, der Satz gelte nicht. Dann wäre p in einer der Formen 6m, 6m±2, 6m+3 darstellbar.
In jedem dieser Fälle wäre p aber durch 2 oder durch 3 ohne Rest teilbar und somit nicht Primzahl. Der
Satz ist nicht umkehrbar!)
O.B.d.A. seien p1 und p2 das Zwillingspaar. Dann gilt

p1 = 6m1 − 1; p2 = 6m1 + 1; p3 = 6m2 ± 1

1.) Es sei p3 = 6m2 + 1. Dann gilt

P =
3∏
i=1

(pi − 1) = (6m1 − 2) · 6m1 · 6m2 = 24m1(3m1 − 1) · 3m2
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2.) Es sei p3 = 6m2 − 1. Dann gilt

P =
3∏
i=1

(pi − 1) = (6m1 − 2) · 6m1 · (6m2 − 2) = 24m1(3m1 − 1) · (3m2 − 1)

In jedem Fall ist P ohne Rest durch 24 teilbar. Da entweder m1 oder 3m1 − 1 gerade ist, folgt, dass P
sogar durch 24 · 2 = 48 ohne Rest teilbar ist.
Wegen m2 ≥ 1 ist sowohl 3m2 als auch 3m2 − 1 größer als 1: 3m2 => 1 bzw. 3m2 − 1 = k > 1, also ist
P = 48k mit k > 1, womit der Beweis geführt ist.

Aufgabe 18/77
Gegeben sei ein zylindrisches Becherglas der Höhe H. Der (homogene) Mantel habe die Masse M , die
Masse des Bodens werde vernachlässigt. Das Glas sei mit einer (homogenen) Flüssigkeit der Masse
mH bis zum Rand gefüllt, aus einer Öffnung im Boden tropfe die Flüssigkeit jedoch bis zur völligen
Leerung aus.
Gesucht sind eine Funktion, die die Lage des Schwerpunktes in Abhängigkeit von der Füllstandshöhe
h angibt, sowie der kleinste Abstand desselben vom Boden.

Wegen der Homogenität und der Symmetrie liegt der Schwerpunkt auf der Achse des Zylinders, so dass
seine Lage durch die Angabe der Höhe s über dem Boden vollständig bestimmt ist.
Ebenfalls wegen der Homogenität liegt der Schwerpunkt des Mantels in der Höhe 0,5H, der Schwerpunkt
der Flüssigkeit in der Höhe 0,5h über dem Boden (wobei 0 ≤ h ≤ H gilt).
Die Masse der Flüssigkeit bei der Füllstandshöhe h ist m = h

HmH . Für die beiden Momente MG und
MF (bezogen auf den Boden) gilt

MG = M · 0,5H = 0,5HM ; MF = m · 0,5h = 0,5h
2

H
·mH

das Gesamtmoment ergibt sich dann zu

MG +MF = 0,5HM + 0,5h
2

H
mH = 1

2H (H2M + h2mH)

Dividiert man das Gesamtmoment durch die Gesamtmasse, so erhält man den Abstand s des Schwerpunkts
vom Boden:

s = f(h) =
1

2H (H2M + h2mH)
M + h

HmH

= 0,5H
2M + h2mH

HM + hmH

Für h = 0 und für h = H erhält man damit (wie wegen der Symmetrie nicht anderes zu erwarten)

s0 = sH = f(0) = f(H) = 0,5H

Mögliche Extremwertstellen der Funktion erhält man durch Nullsetzen der 1. Ableitung, wobei es genügt,
den Zähler gleich null zu setzen:

s′ = f ′(h) = mH

2 · h
2mH + 2hHM −H2M

(HM + hmH)2

h2mH + 2hHM −H2M = 0→ hE = H

mH

(√
M(M +mH)−M

)
(da eine negative Füllstandshöhe sinnlos ist, entfällt der negative Wurzelwert). Daraus folgt

sE = f(hE) = HM

mH

(√
1 + mH

M
− 1
)

Dass dieser Wert das Minimum ist, kann man auf verschiedene Weise bestätigen:
1. durch Überprüfen der 2. Ableitung; es ist f ′′(hE) > 0;
2. durch die Feststellungen, dass a) sE = f(hE) < 0,5H = f(0) = f(H) und b) f(h) stetig ist.
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Aufgabe 19/77
Man beweise: Es gibt unendlich viele natürliche Zahlen mit der Eigenschaft, dass Quersumme und
Querprodukt übereinstimmen.

Enthält die dezimale Darstellung einer natürlichen Zahl m Zweien und 2m − 2m Einsen und sonst keine
Zahlen, so gilt für die Quersumme QS und für das Querprodukt QP :

QS = 2m+ 2m − 2m = 2m ; QP = 2m · 12m−2m = 2m

Also gilt für eine solche natürliche Zahl QS = QP . Da m eine beliebige natürliche Zahl ist und es unendlich
viele natürliche Zahlen gibt, ist damit der Beweis bereits erbracht.

Aufgabe 20/77
Man beweise die Gültigkeit der Ungleichung für reelle a ≥ 1:

3
√
a+ 1− 3

√
a < 3
√
a− 3
√
a− 1

Aus der gegebenen Ungleichung folgt durch äquivalente Umformungen

3
√
a+ 1 + 3

√
a− 1 < 2 3

√
a ; 3

√
1 + 1

a
+ 3

√
1− 1

a
< 2

Nun gilt

1 + 1
a

= 1 + 3
3a < 1 + 3

3a + 3
9a2 + 1

27a3 = (1 + 1
3a )3 also 3

√
1 + 1

a
< 1 + 1

3a

und

1− 1
a

= 1− 3
3a < 1− 3

3a + 3
9a2 −

1
27a3 = (1− 1

3a )3 also 3

√
1− 1

a
< 1− 1

3a

(wegen 3
a2 = 1

3a2 >
1

27a3 für a ≥ 1). Damit ergibt sich

3

√
1 + 1

a
+ 3

√
1− 1

a
< 1 + 1

3a + 1− 1
3a = 2

Aufgabe 21/77
Man beweise, dass ein Dreieck genau dann gleichseitig ist, wenn für seine Seiten a, b, c gilt

(a− b)2 = (b− c)2 = (c− a)2 (1)

O.B.d.A. setzen wir a = b+ d, b = c+ e mit d, e ∈ R. Dann nimmt die Beziehung (1) die Gestalt

d2 = e2(−d− e)2 = d2 + 2de+ e2

an. Daraus gewinnt man das (äquivalente) Gleichungssystem

2de+ e2 = e(2d+ e) = 0 (2) ; 2de+ d2 = d(2e+ d) = 0 (3)

Dieses System ist genau für d = e = 0 erfüllt (wovon man sich leicht durch die Probe überzeugt). Die
Beziehung (1) gilt also genau dann, wenn d = e = 0, also wenn a = b = c ist.

Aufgabe 22/77
Auf welche Weise kann man einen Würfel so in 6 Pyramiden zerlegen, dass sich deren Volumina wie
1 : 2 : 3 : 4 : 5 : 6 verhalten?
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Haben die gesuchten Pyramiden sämtlich die gleiche Grundfläche, so ist das Verhältnis der Volumina
gleich dem Verhältnis der Höhen.
Es liegt daher nahe, die sechs Seitenflächen des Würfels als die sechs Grundflächen der Pyramiden zu
wählen. Es genügt dann, einen geeigneten Punkt S (die gemeinsame Spitze aller Pyramiden) im Inneren
des Würfels zu finden; die Verbindungsstrecken von S mit den Würfelecken sind die Seitenkanten der
(vierseitigen) Pyramiden.
Bekanntlich ergänzen bei einem Spielwürfel die Augenzahlen gegenüberliegender Würfelseiten einander
zu 7. Nummeriert man die Würfelflächen in gleicher Weise und teilt man den Abstand gegenüberliegender
Würfelflächen im Verhältnis der anliegenden Seitennummern, so werden durch die Teilpunkte drei parallel
zu den Würfelflächen liegende Ebenen festgelegt.
Ihr gemeinsamer Schnittpunkt ist S, und die dazugehörenden Höhen erfüllen (nach Konstruktion) die
geforderte Bedingung.

Aufgabe 23/77
Bei einem Fußballturnier, an dem vier Mannschaften A, B, C und D teilnahmen und bei dem je-
de Mannschaft genau einmal gegen jede andere Mannschaft spielte, ergab sich nach Abschluss der
folgende Stand:

Platz Mannschaft gewonnen unentschieden verloren Tore
1. A 2 1 0 4:1
2. B 2 0 1 4:1
3. C 0 2 1 1:2
4. D 0 1 2 0:5

Man ermittle die Resultate der sechs Spiele!

Folgende Überlegungen führen zum Ziel:

1. Die Mannschaft B hat ein Spiel verloren. Da C und D kein Spiel gewonnen haben, war der Sieger
dieses Spiels die Mannschaft A.
Da B nur 1 Verlusttreffer hatte, liegt fest, dass das Spiel AB mit 1 : 0 bzw. BA mit 0 : 1 ausging.

2. Die Mannschaft C hat zwei unentschiedene Spiele; die Gegner in diesen Spielen können nur A und
D gewesen sein. Da D kein Tor erzielt hat, ist das Spiel CD mit 0 : 0 ausgegangen. Weiter folgt,
dass das Ergebnis des Spiels AC 1 : 1 war; wäre es nämlich 0 : 0 gewesen, so hätte C sein ”Plustor”
im Spiel gegen B erzielen müssen, B hat aber nur einen Gegentreffer ”kassiert”; im Spiel gegen A.

3. Das Verlustspiel von C war demnach das Spiel gegen B; wegen der Torbilanz von C war das Resultat
0 : 1.

4. Es bleiben noch die Spiele AD und BD offen, die D verloren hat. Aus den Torbilanzen ergibt sich
dafür eindeutig: AD 2 : 0, BD 3 : 0.

Damit erhält man die folgende Ergebnistabelle:

AB 1 : 0 AC 1 : 1 AD 2 : 0
BC 1 : 0 BD 3 : 0 CD 0 : 0

Aufgabe 24/77
Gegeben seien n Brüche ai

bi
(i = 1; 2; 3; ...;n)’ die sämtlich in einem beliebigen Intervall I = [a; b]

liegen und deren Nenner bi sämtlich positiv sind. Man zeige, dass dann auch der nachfolgende Bruch
in I liegt:

n∑
i=1

ai

n∑
i=1

bi

Nach Voraussetzung gilt für alle i: a ≤ ai
bi
≤ b, daraus folgt wegen bi > 0: a · bi ≤ ai ≤ b · bi und damit

n∑
i=1

a · bi ≤
n∑
i=1

ai ≤
n∑
i=1

b · bi ; a

n∑
i=1

bi ≤
n∑
i=1

ai ≤ b
n∑
i=1

bi
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a ≤

n∑
i=1

ai

n∑
i=1

bi

≤ b

da mit bi > 0 erst recht gilt
n∑
i=1

bi > 0.

Aufgabe 25/77
Es ist zu beweisen: Sind a, b, c die Maßzahlen eines Dreiecks, so gilt a2 < 2(b2 + c2).
Ferner ist zu zeigen, dass der Absolutbetrag der Differenz zwischen den beiden Seiten der Ungleichung
beliebig klein werden kann.

Aus der Gültigkeit der Dreiecksungleichung a < b+ c folgt sofort

a2 < (b+ c)2 = b2 + 2bc+ c2 < 2(b2 + c2)

Wegen (b− c)2 = b2 − 2bc+ c2 ≥ 0 ist nämlich 2bc ≤ b2 + c2.
Es sei nun das Dreieck ABC mit den Seiten a, b, c (übliche Bezeichnungsweise) ein gleichschenkliges
Dreieck mit b = c. Dann gilt

b2 = a2

4 + h2
a ; c2 = a2

4 + h2
a

und die zu beweisende Ungleichung nimmt die Gestalt a2 < a2 + 4h2
a an; der Absolutbetrag der Differenz

aus den beiden Seiten der Ungleichung ist 4h2
a. Man erkennt sofort, dass er gegen null geht, wenn ha

gegen null geht (d.h., für ein entartetes gleichschenkliges Dreieck wird die bewiesene Ungleichung zur
Gleichung).

Aufgabe 26/77
Man schreibe auf jedes Feld eines Schachbrettes die Anzahl, der verschiedenen Wege, auf denen es
von einem auf dem Feld A1 befindlichen Turm erreicht werden kann (wobei sich der Turm nur in der
Richtung der Brettseiten und nicht rückwärts bewegen darf).
Wieso ist das auf diese Weise entstehende Zahlenfeld ein Teil des Pascalschen Dreiecks?

1. Die Felder A1...A8 und A1..H1, sind auf je einem Weg erreichbar (insbesondere A1 durch Nichtbewe-
gen).
2. Die Anzahl der möglichen Wege zum Feld [m;n] ist die Summe aus den Anzahlen der Wege zum Feld
[(m − 1);n] und zum Feld [m; (n − 1)] (wobei anstelle der Buchstaben A...H ebenfalls die Zahlen 1...8
gesetzt sind).
Dieselben Bedingungen führen zu den Binominalkoeffizienten und damit zum Aufbau des Pascalschen
Dreiecks.

Aufgabe 27/77
Man bestimme die größte natürliche Zahl z, die aus 10 verschiedenen Ziffern besteht (im dekadischen
Positionssystem) und durch 11 teilbar ist.

Es sei
z = 109a+ 108b+ 107c+ 106d+ 105e+ 104f + 103g + 102h+ 10i+ k

mit a; b; ...; k ∈ N , a; b; ...; k ≤ 9, a 6= b 6= ... 6= k die gesuchte Zahl. Dann gelten auf Grund der gestellten
Bedingungen die Gleichungen

a+ b+ c+ d+ e+ f + g + h+ i+ k = 45
a− b+ c− d+ e− f + g − h+ i− k = 11n

(n ∈ G). Durch Addition und Subtraktion dieser beiden Gleichungen und anschließende Division mit 2
erhält man daraus

a+ c+ e+ g + i = 22 + 5n+ n+ 1
2

b+ d+ f + h+ k = 22− 5n− n− 1
2
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Wegen der Ganzzahligkeit der Summen auf den linken Seiten der Gleichungen ist n ungerade: n = 2m+1,
m ∈ G. Wegen

10 ≤ a+ c+ e+ g + i ≤ 35 ; 10 ≤ b+ d+ f + h+ k ≤ 35

ist m = 0. Daraus folgt

q + c+ e+ g + i = 28 ; b+ d+ f + h+ k = 17

Wir wählen nun; um die Maximalitätsbedingung zu erfüllen; die Ziffern mit höherem Stellenwert möglichst
groß und erhalten dadurch schrittweise

a = 9 c+ e+ g + h = 19 b = 8 d+ f + h+ k = 9
c = 7 e+ g + i = 12 d = 6 f + h+ k = 3
e = 5 g + i = 7 f = 2 h+ k = 1
g = 4 i = 3 h = 1 k = 0

Damit ergibt sich z = 9876524130. Die Probe bestätigt die Teilbarkeit durch 11.

Aufgabe 28/77
Man gebe für die quadratische Funktion f(x) = ax2+bx+c mit reellen Koeffizienten a; b; c (a 6= 0) eine
notwendige und hinreichende Bedingung dafür an, dass für genau eine reelle Zahl x0 gilt f(x0) = x0.

Die Aufgabenstellung ist gleichbedeutend mit der Frage, unter welcher Bedingung die Gleichung x0 =
ax2

0 + bx0 + c genau eine Lösung hat. Äquivalente Umformung liefert

x2
0 + b− 1

a
x0 + c

a
= 0 ; D =

(
b− 1

2a

)2
− c

a
= 0

also (b− 1)2 = 4ac.
Da alle Schlüsse auch in umgekehrter Richtung gültig sind, ist diese Bedingung zugleich notwendig und
hinreichend. Man prüft leicht nach, dass sich x0 = 1−b

2a ergibt.

Aufgabe 29/77
Es ist zu beweisen, dass für beliebige positiv-reelle Zählen n und k die Ungleichung(ne

k

)k
≤ en

gilt (wobei e die Basis der natürlichen Logarithmen ist).

Wir untersuchen zum Beweis die für x ∈ R+ definierte Funktion f(x) = ln x+1−x (wobei R+ die Menge
der positiv-reellen Zahlen bedeutet). Es ist

f ′(x) = 1
x
− 1 ; f ′′(x) = − 1

x2

Aus (1) folgt f ′(x) 6= 0 für x 6= 1, f ′(x) = 0 für x = 1, aus (2) folgt f ′′(x) < 0 für jedes x aus dem
Definitionsbereich. Also ist f(1) = 0 das absolute Maximum der Funktion und somit

f(x) = ln x+ 1− x ≤ 0

Ist nun n, k ∈ R+, so ist auch x = n
k ∈ R

+. Folglich gilt

ln n
k

+ 1 ≤ n

k
→ k

(
ln n
k

+ ln e
)
≤ n→ ln

(ne
k

)k
≤ n→

(ne
k

)k
≤ en

(wegen der strengen Monotonie der Logarithmus- bzw. der Exponentialfunktion).
Die Ungleichung gilt auch (wie man durch Einsetzen bestätigt) für n = 0, k 6= 0. Sie gilt sogar für alle
n ∈ R, k ∈ R, sofern nur n

k ≥ 0 gilt (also wenn k 6= 0 und sgnn = sgn k ist); dann ist nämlich n
k = n ≥ 0.
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2.17 Aufgaben und Lösungen 1977

Aufgabe 30/77
Gesucht ist ein geordnetes Quadrupel von vier höchstens zweistelligen Primzahlen pi mit i = 1; 2; 3; 4,
das folgende Bedingungen erfüllt:

1. Es ist p1 < p2 < p3 < p4.

2. p3 und p4 bilden ein Primzahl-Zwillingspaar.

3. Die Summe der beiden kleineren Primzahlen ist gleich dem arithmetischen Mittel der beiden
größeren und gleich dem doppelten Quadrat einer fünften Primzahl.

4. Das Produkt p1 · p2 ist maximal.

Man bilde die Tripel (p1; p2; 100p3 + p4) und (p1; p2; 100p3 + p1p2)!

Aus 2. folgt unter Berücksichtigung von 1.: p3 = p4 + 2. Aus 3. folgt p3+p4
2 > 2p2

5 also

p3 + p4 = 2p4 + 2 = 2(p4 + 1) = 4p2
5 → p4 + 1 = 2p2

5

Wegen p4 < 100 ist p5 ≤ 7. Es ergeben sich zunächst folgende Möglichkeiten:
p5 p4 p3
2 7 9 entfällt (9 = 32)
3 17 19
5 49 entfällt (49 = 72)
7 97 99 entfällt (99 = 32 · 11

Damit liegen p4 = 17, p3 = 19 fest. Für p1 und p2 gilt nunmehr nach 3.: p1 + p2 = 18.
also p1 = 5, p2 = 13 oder p1 = 7, p2 = 11. Wegen 7 · 11 > 5 · 13 (Bedingung 4.) ist p1 = 7, p2 = 11
(unter Berücksichtigung von 1.). Das Primzahlquadrupel ist also (7; 11; 19; 17), und die gesuchten Tripel
sind (7.11.1917) und (7.11.1977).

Aufgabe 31/77
Man zerlege die Zahl 100 auf alle möglichen Weisen so in eine Summe aus vier natürlichen Zahlen,
dass die folgende Bedingung erfüllt ist:
Wird zum ersten Summanden eine natürliche Zahl addiert, vom zweiten Summanden dieselbe Zahl
subtrahiert, der dritte Summand mit dieser Zahl multipliziert und der vierte Summand durch sie
dividiert, so sind die Resultate sämtlich einander gleich.

Es seien a, b, c, d vier natürliche Zahlen, die den Bedingungen der Aufgabe genügen. Dann gelten die
folgenden Gleichungen:

a+ b+ c+ d = 100 ; a+ x = b− x = cx = d

x

wobei x ebenfalls eine natürliche Zahl und x 6= 0 ist. Aus den zweiten Gleichungen erhält man

2cx = a+ x+ b− x = a+ b ; d = cx2

Setzt man dies in die erste Gleichung ein, so ergibt sich

2cx+ c+ cx2 = c(x2 + 2x+ 1) = c(x+ 1)2 = 100

Da 100 = 102 ist, muss auch c eine Quadratzahl sein. Wir zerlegen daher die Zahl 100 auf alle möglichen
Weisen in ein Produkt aus zwei Quadratzahlen:

100 = 102 · 12 = 52 · 22

Demnach kommen die Zahlen c1 = 1; c2 = 4; c3 = 25; c4 = 100 mit x1 = 9;x2 = 4;x3 = 1, x4 = 0 in Frage,
wobei x4 = 0 und damit c4 = 100 sofort ausscheiden. Für c1 = 1, x1 = 9 folgt a1 = 0, b1 = 18, d1 = 81,
die übrigen Werte c2 = 4, x2 = 4 und c3 = 25, x3 = 1 liefern a2 = 12, b2 = 20, d2 = 64 bzw. a3 = 24, b3 =
26, d3 = 25. Damit existieren genau drei derartige Zerlegungen:

0 + 18 + 1 + 81 = 100 ; 12 + 20 + 4 + 64 = 100 ; 24 + 26 + 25 + 25 = 100
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2.17 Aufgaben und Lösungen 1977

Aufgabe 32/77
Von einem rechtwinkligen Dreieck seien der Umfang U und der Umkreisradius r bekannt. Man be-
rechne daraus die Fläche A!

Wir bezeichnen die beiden Katheten mit k1 und k2 und die Hypotenuse mit h. Nach dem Satz des Thales
gilt h = 2r, nach dem Satz des Pythagoras gilt

k2
1 + k2

2 = h2 = 4r2

Weiter ist k1 + k2 = u− h = u− 2r. Durch Quadrieren folgt aus dieser Gleichung

k2
1 + 2k1k2 + k2

2 = u2 + 4ur + 4r2 → 2k1k2 = u2 − 4ur

Wegen A = 1
2k1k2 folgt daraus A = 1

4u
2 − ur = u( 1

4u− r).

Aufgabe 33/77
Man beweise, dass die Gleichung ak + al = am für a ∈ N ; a ≥ 3 keine Lösung (k; l;m) im Bereich der
natürlichen Zahlen hat!

Angenommen, es existiere eine Lösung (k; l;m) mit k; l;m ∈ N . Dann ist sicher k; l < m (wegen 0 <
ak; al < am). O.B.d.A. sei k < l also l = k + x mit x ∈ N .
Ferner sei m = l+y = k+x+y mit y ∈ N . Dann nimmt die gegebene Gleichung die Gestalt ak +ak+z =
ak+x+y an. Wegen ak > 0 ist sie der Gleichung 1 + ax = ax+y äquivalent.
Weitere (äquivalente) Umformungen führen zu

ax+y − ax = 1 ; ax(ay − 1) = 1

Da ax; ay ∈ N nach Voraussetzung gilt, folgt daraus ax = 1 und ay = 2.
Speziell ay = 2 ist aber für a ≥ 3 und y ∈ N nicht lösbar. Dieser Widerspruch zeigt, dass die Annahme
falsch ist und somit keine Lösung im Bereich der natürlichen Zahlen existiert.

Aufgabe 34/77
Gegeben sei ein bei C rechtwinkliges Dreieck ABC mit den Katheten a und b (wobei b > a sei) und
der Hypotenuse c. Auf AC = b sei ein Punkt D so festgelegt, dass AD = BD ist. Man beweise, dass
dann gilt

cos]ADB = a2 − b2

c2

Fällt man von D auf c das Lot (der Fußpunkt sei E), so erkennt man, dass M ADE ∼M ABC ist (beide
Dreiecke enthalten je einen rechten Winkel und haben den Winkel α bei A gemeinsam). Daraus folgt

]ADE = ]ABC = β ; ]ADB = 2β

cos]ADB = cos 2β = cos2 β − sin2 β = a2

c2
− b2

c2
= a2 − b2

c2

Aufgabe 35/77
Wie viele nichtnegative reelle Nullstellen hat die Funktion

y = f(x) = x− 1978 sin πx

Zerlegt man die Funktion y = f(x) = x − 1978 sin πx in die beiden Teilfunktionen y1 = f1(x) = x und
y2 = f2(x) = 1978 sin πx, so läuft die Aufgabenstellung auf die Frage hinaus, wie oft y1 = y2 ist.
Denkt man sich die beiden Funktionen f1 und f2 graphisch dargestellt, so liefert f1 eine unter 45◦
ansteigende, durch den Nullpunkt verlaufende Gerade, f2 dagegen eine Sinuskurve mit der Amplitude
1978.
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2.17 Aufgaben und Lösungen 1977

Es ist offensichtlich, dass die Gerade die Sinuskurve in jeder Periode genau zweimal schneidet, sofern
0 ≤ x ≤ 1978 gilt.
Für x > 1978 existieren keine Schnittpunkte, da y1 > 1978, y2 ≤ 1978 gilt.
Zur Lösung genügt es also, die Anzahl n der Perioden von f2 im Intervall [0; 1978] zu ermitteln und diese
zu verdoppeln. Da die Sinusfunktion die Periodenlänge 2π hat, ergibt sich für f2(x) die Periodenlänge 2.
Die Anzahl k = 2n der nicht negativen Nullstellen von y = f(x) = x− 1978 sin πx ist also

k = 2n = 1978− 0
2 · 2 = 1978

(die erste davon liegt bei x0 = 0).

Aufgabe 36/77
Gesucht ist die kleinste natürliche Zahl n > 1, so dass

zn = 1977 + n462

durch 1978 teilbar ist.

Wegen 1977 ≡ −1 (mod 1978) muss n462 ≡ 1 (mod 1978) sein. Da 1978 ≡ 0 (mod 2) ist, muss n ≡ 1
(mod 2) sein. Also ist (wegen n > 1) n ≥ 3.
Die Primfaktorzerlegung von 1978 liefert 1978 = 2 · 23 · 43, die Primfaktorzerlegung von 462 ergibt
462 = 2 · 3 · 7 · 11.
Daraus kann man folgende Darstellungen ableiten:

462 = 1 · 462 = 22 · 21 = 42 · 11 = (2− 1) · 462 = (23− 1) · 21 = (43− 1) · 11

Es ist also
n462 = (n2−1)462 = (n23−1)21 = (n43−1)11

Nach dem kleinen Satz von Fermat ist aber ap−1 ≡ 1 (mod p), wenn p eine Primzahl und a nicht durch
p teilbar ist. Da 2, 23 und 43 Primzahlen sind und die kleinste in Frage kommende Zahl 3 durch keine
dieser drei Primzahlen teilbar ist, gilt

3 ≡ 1 (mod 2) ; 322 ≡ 1 (mod 23) ; 342 ≡ 1 (mod 43)

damit auch
3462 ≡ 1 (mod 2) ; (322)21 ≡ 1 (mod 23) ; (342)11 ≡ 1 (mod 43)

3462 ≡ 1 (mod 2) ; 3462 ≡ 1 (mod 23) ; 3462 ≡ 1 (mod 43)

Da 2, 23 und 43 als Primzahlen (paarweise) teilerfremd sind, folgt schließlich

3462 ≡ 1 (mod 2 · 23 · 43) ≡ 1 (mod 1978)

Damit ist n = 3 die gesuchte Zahl. 3462 ist eine 221stellige Zahl, die mit 269 beginnt und mit 9 endet.
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2.18 Aufgaben und Lösungen 1978

Aufgabe 1/78
Gesucht sind vier aufeinanderfolgende natürliche Zahlen, deren Produkt gleich 110 355 024 ist.

Es sei n die kleinste der gesuchten vier natürlichen Zahlen; dann sind n+ 1, n+ 2 und n+ 3 die übrigen,
und es soll gelten

n(n+ 1)(n+ 2)(n+ 3) = n4 + 6n3 + 11n2 + 6n = 110355024 ≈ 108

Man erkennt unmittelbar:
1. Es ist n ≈ 4

√
108 = 102.

2. Wegen 110355024 6= 0 (mod 5) gilt n 6= 0 (mod 5), n+ 1 6= 0 (mod 5), n+ 2 6= 0 (mod 5) und n+ 3 6= 0
(mod 5). Also ist n ≡ 1 (mod 5).
Damit liegt es nahe, zu prüfen, ob n = 101 die Bedingung erfüllt. Tatsächlich ergibt sich

101 · 102 · 103 · 104 = 110355024

womit die Lösung gefunden ist.

Aufgabe 2/78
Man ermittle die Anzahl A(n) der mindestens zweistelligen natürlichen Zahlen (in dezimaler Schreib-
weise), die die folgende Eigenschaft haben:
Jede Stelle mit höherem Stellenwert ist kleiner als jede Stelle mit kleinerem Stellenwert.

Die größte Zahl mit der geforderten Eigenschaft ist offensichtlich die Zahl 123 456 789. Daraus erhält man
alle in Frage kommenden Zahlen mit 9 − i Stellen, indem man in ihr i beliebige Stellen streicht (wobei
i ∈ N, 0 ≤ i ≤ 7 gilt). Das ist auf

(9
i

)
verschiedene Weisen möglich. Die gesuchte Anzahl A(n) ergibt sich

also als Summe der Binomialkoeffizienten
(9
i

)
mit 0 ≤ i ≤ 7:

A(n) =
7∑
i=0

(
9
i

)
= 1 + 9 + 36 + 84 + 126 + 126 + 84 + 36 = 502.

Aufgabe 3/78
Es ist die Gleichung xlg x = 100x für reelle Zahlen x zu lösen!

Aus der gegebenen Gleichung folgt durch beiderseitiges Logarithmieren und Anwenden der Logarithmen-
gesetze

lg xlg x = lg 100x→ lg x · lg x = lg 100 + lg x→ lg2 x = lg x+ lg 2→

lg2 x− lg x− 2 = 0

Diese in lg x quadratische Gleichung hat die Lösungen

lg x1 = 0,5 +
√

0,25 + 2 = 2 ; x1 = 100

lg x2 = 0,5−
√

0,25 + 2 = −1 ; x2 = 0,1

Die Probe bestätigt die Richtigkeit.

Aufgabe 4/78
Man beweise: Sind die Größen a; b; c die Seitenlängen eines ebenen Dreiecks, so gilt die Ungleichung

a4 + b4 + c4 < 2(a2b2 + a2c2 + b2c2)

Aus der Voraussetzung folgt a > 0; b > 0; c > 0 und a+ b > c; a+ c > b; b+ c > a.
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2.18 Aufgaben und Lösungen 1978

Damit ist auch a+ b+ c > 0; a+ b− c > 0; a− b+ c > 0;−a+ b+ c > 0.
Multipliziert man die letzten vier Ungleichungen sämtlich miteinander, so folgt die Behauptung:

(a+ b+ c)(a+ b− c)(a− b+ c)(−a+ b+ c) = −a4 − b4 − c4 + 2(a2b2 + a2c2 + b2c2) > 0 also

a4 + b4 + c4 < 2(a2b2 + a2c2 + b2c2)

Aufgabe 5/78
Man beweise, dass es nicht möglich ist, Primzahlen als Summen aus aufeinanderfolgenden ungeraden
natürlichen Zahlen darzustellen!

Zum Beweis zeigen wir, dass jede Summe von aufeinanderfolgenden ungeraden natürlichen Zahlen min-
destens einen echten Teiler hat und somit keine Primzahl sein kann.
Es sei 2n+ 1 mit n ∈ N die kleinste ungerade Zahl einer solchen Summe S mit k > 1 Summanden.
Dann ist

S = (2n+ 1) + (2n+ 3) + ...+ (2n+ 2k − 1)

Nach der Formel für die arithmetische Reihe 1. Ordnung ist S = (2n + k) · k. Jede Summe von k
aufeinanderfolgenden ungeraden natürlichen Zahlen hat also mindestens den echten Teiler k (wobei k > 1
vorausgesetzt wurde) und kann deshalb keine Primzahl sein.

Aufgabe 6/78
Man beweise, dass für jede natürliche Zahl n die nachfolgende Zahl eine ganze Zahl ist:

1
n+ 1

(
2n
n

)

Für natürliche Zahlen n und k gilt bekanntlich(
n

k

)
= n!
k!(n− k)!

Daraus ergibt sich

1
n+ 1

(
2n
n

)
= 1
n+ 1 ·

(2n)!
n!n! = (2n)!

(n+ 1)!n! = 1
n
· (2n)!

(n+ 1)!(n− 1)! = 1
n

(
2n
n+ 1

)

n

(
2n
n

)
= (n+ 1)

(
2n
n+ 1

)
Bekanntlich sind die Binomialkoeffizienten für natürliche n, k ganze Zahlen, und sicher ist (n, n+ 1) = 1.
Folglich ist, n Teiler von

( 2n
n+1
)

und (n+ 1) Teiler von
(2n
n

)
.

Aufgabe 7/78
Gesucht ist die kleinste natürliche Zahl der Form 2n − 1 (mit n ∈ N,n > 0), die ohne Rest durch
1001 teilbar ist.

Wegen 1001 = 7 · 11 · 13 muss 2n− 1 ohne Rest durch 7, durch 11 und durch 13 teilbar sein. Mit anderen
Worten: Es muss

2n ≡ 1 (mod 7) ; 2n ≡ 1 (mod 11) ; 2n ≡ 1 (mod 13)

gelten. Nun ist 23 = 8 ≡ 1 (mod 7); also ist n ≡ 0 (mod 3). Ferner ist 25 = 32 ≡ −1 (mod 11), folglich
210 ≡ 1 (mod 11) und demnach n ≡ 0 (mod 10).
Schließlich gilt 26 = 64 ≡ −1 (mod 13), also 212 ≡ 1 (mod 13), mithin n ≡ 0 (mod 12). Aus all dem folgt
n ≡ 0 (mod 60) und wegen der Minimalitätsforderung n = 60.
Die Zahl 250− 1 = 1152921504606846975 ist also die kleinste natürliche Zahl der Form 2n− 1, die restlos
durch 1001 teilbar ist.
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Aufgabe 8/78
Man beweise: Sind a, b und x positive reelle Zahlen, für die ab = x2 gilt, so gilt (a+ x)(b+ x) ≥ 4x2.

Wegen ab = x2 gilt b = 1
ax

2. Die zu beweisende Ungleichung nimmt damit die Gestalt

(a+ x)
(

1
a
x2 + x

)
≥ 4x2

an; aus ihr gewinnt man durch Ausmultiplizieren und schrittweises äquivalentes Umformen

x2 + 1
a
x3 + ax+ x2 ≥ 4x2 → ax+ x2 + a2 + ax ≥ 4ax

x2 − 2ax+ a2 = (x− a)2 ≥ 0

Die letzte Ungleichung ist für reelle a, x sicher stets erfüllt. Da unter der Voraussetzung a,x > 0 alle
Schritte umkehrbar sind, folgt aus ihrer Gültigkeit die Gültigkeit der zu beweisenden Ungleichung.

Aufgabe 9/78
Man beweise, dass kein Paar rationaler Zahlen (x; y) existiert, das die Gleichung erfüllt:

arctan x+ arctan y = π

3

Angenommen, es existiert ein Paar rationaler Zahlen (x; y), das die gegebene Gleichung erfüllt. Wir setzen
α = arctan x;β = arctan y, also x = tanα; y = tan β und es gilt α+ β = π

3 .

tanα+ β = tanα+ tan β
1− tanα tan β = x+ y

1− xy = tan π3 =
√

3

Da x und y (nach Annahme) rationale Zahlen sein sollen, sind auch x+ y, xy, 1− xy und x+y
1−xy rationale

Zahlen. Damit folgt aber aus der Annahme ein Widerspruch; denn
√

3 ist irrational. Folglich ist die
Annahme falsch, und damit ist die Richtigkeit der Behauptung bewiesen.

Aufgabe 10/78
Gesucht sind alle Tripel natürlicher Zahlen (a; b; c) mit folgenden Eigenschaften:

1. Keine der Zahlen a; b; c ist Primzahl.
2. Die Summe a+ b+ c liegt zwischen 1900 und 2000: 1900 ≤ a+ b+ c+ ≤ 2000
3. Das Produkt abc liegt zwischen 7600 und 8000: 7600 ≤ abc ≤ 8000
4. Die Summe aller in den Zahlen a; b; c auftretenden Ziffern ist 30, wobei in keiner Zahl eine Ziffer
mehrfach vorkommt (was nicht bedeutet, dass keine Ziffer in verschiedenen Zahlen mehrfach auftreten
könnte).
5. Es ist a ≤ b ≤ c.

Wegen Bedingung 3 ist a; b; c > 0. Wäre a ≥ 4, so wäre wegen 5. auch b ≥ 4 und damit abc ≥ 16c,
also (wegen 3.) c ≤ 500; dann wären aber nach 5. auch a; b ≤ 500 und die Summe a + b + c ≤ 1500
im Widerspruch zu 2. Also kommt für a nur a = 1 in Frage (wegen 1. scheiden a = 2 und a = 3 als
Primzahlen aus). Damit nehmen die Bedingungen 2 und 3 die folgende Gestalt an:

1988 ≤ b+ c ≤ 1999 (2′) ; 7600 ≤ bc ≤ 8000 (3′)

Wäre nun b ≥ 9, so wäre nach 3’. c ≤ 888 und damit b+ c ≤ 2c ≤ 1776 im Widerspruch zu 2’. Also kann
b nur die Werte 1; 4; 6; 8 annehmen (die Werte 2; 3; 5; 7 scheiden als Primzahlen aus).
Durch Einsetzen von b = 1; 6; 8 in 2’. und 3’. erhält man Widersprüche:

b = 1: 1898 ≤ c ≤ 1998, 7600 ≤ c ≤ 8000;
b = 6: 1893 ≤ c ≤ 1993, 1266 ≤ c ≤ 1334;
b = 8: 1891 ≤ c ≤ 1991, 950 ≤ c ≤ 1000;
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2.18 Aufgaben und Lösungen 1978

Also muss b = 4 sein, was zu 1895 ≤ c ≤ 1995, 1900 ≤ c ≤ 2000, also zu 1900 ≤ c ≤ 1995 führt.
Für die beiden noch fehlenden Ziffern x und y von c ergibt sich nach Bedingung 4 die Gleichung 1 +
4 + 1 + 9 + x + y = 30, d.h., x + y = 15, wobei x; y ∈ N , x; y ≤ 9 gilt. Also kommen für c die Zahlen
c = 1969, c = 1978, c = 1987 in Betracht. Die Zahl 1969 entfällt jedoch wegen des doppelten Auftretens
der Ziffer 9 (Bedingung 4), während 1987 als Primzahl entfällt. Damit gibt es nur ein Tripel (a.b.c), das
alle Bedingungen erfüllt: (a.b.c) = (1.4.1978).

Aufgabe 11/78
Ein Mathematiker schreibt einem anderen: ”In diesem Jahr werde ich 100 Jahre alt, im nächsten
200.”
Offenbar beziehen sich die Altersangaben nicht auf das Dezimalsystem. Wie alt ist der Mathematiker?

Es sei x die Basis des Systems für die erste, y die Basis des Systems für die zweite Altersangabe. Dann ist
zur Lösung der Aufgabe die diophantische Gleichung x2 +1 = 2y2 bzw. x2 = 2y2−1 mit x; y ∈ N, x; y > 1
zu lösen.
Aus biologischen Gründen gilt sicher y < 9 (da sonst 2y2 = 162 wäre, dieses Alter aber mit an Sicherheit
grenzender Wahrscheinlichkeit ausgeschlossen werden kann). Es genügt also, die Zahlen y = 2 bis y = 8
daraufhin zu untersuchen, ob 2y2 − 1 eine Quadratzahl ist.
Dabei stellt man fest, dass sich nur für y = 5 eine natürliche Zahl x als Lösung der Gleichung ergibt:
x = 7. Der Mathematiker wird also in diesem Jahr 100(7) = 49(10) Jahre alt, im nächsten 200(5) = 5010.

Aufgabe 12/78
Auf die Frage, wie alt er sei, antwortet jemand, dass er im Jahr x2 genau x Jahre alt war. In welchem
Jahr ist er geboren?

Das Geburtsjahr sei a. Dann gilt (wenn man voraussetzt, dass das Alter mindestens 1 Jahr und höchstens
120 Jahre beträgt) sicher

1858 < a+ x = x2 < 1978 also 43,1... =
√

1858 < x <
√

1978 = 44,7...

Damit folgt sofort x = 44, x2 = 1936, a = x2 − x = 1892.

Aufgabe 13/78
Es ist zu beweisen: Sind p und q die beiden Projektionen zweier Dreieckseiten auf die dritte und α
sowie β die beiden der dritten Seite anliegenden Winkel (α;β 6= 90◦), so gilt für den Flächeninhalt
A des Dreiecks A = 1

2pq(tanα+ tan β).

Es sei hc die Höhe, deren Fußpunkt auf der Seite c die Projektionen p und q erzeugt. Dann gilt

A = 1
2chc = 1

2/p+ q)hc = 1
2(phc + qhc)

Wegen hc
p = tan β, hc

q = tanα folgt hc = p tan β = q tanα und damit

A = 1
2(pq tanα+ pq tan β) = 1

2pq(tanα+ tan β)

Aufgabe 14/78
Man beweise die Regel für die Teilbarkeit einer natürlichen Zahl durch 7: Eine natürliche Zahl n ist
genau dann ohne Rest durch 7 teilbar, wenn der Absolutbetrag der Differenz aus dem Doppelten der
Einerstelle und der nach Abtrennen der Einerstelle verbleibenden Zahl durch 7 teilbar ist.

Es sei n = 10z + e, wobei e die Ziffer in der Einerstelle und z die nach dem Abtrennen der Einerstelle
verbleibende Zahl ist (e ∈ N mit 0 ≤ e ≤ 9, z ∈ N).
Wegen ggT (2, 7) = 1 ist n genau dann durch 7 ohne Rest teilbar, wenn 2n = 20z + 2e = 21z + 2e − z
durch 7 ohne Rest teilbar ist. Wegen 7 | 21z ist die Teilbarkeit von |2e − z| notwendig und hinreichend
dafür, dass 2n und damit n restlos durch 7 teilbar ist.
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Aufgabe 15/78
1. Gegeben sei ein Kreisring, in den n Kreise derart einbeschrieben sind, dass jeder Kreis die innere
und die äußere Ringbegrenzung sowie zwei benachbarte Kreise berührt. Gesucht ist das Verhältnis
aus der Summe der Kreisflächen und der Kreisringfläche.

2. Entsprechend ist die Aufgabe für das Verhältnis a) der Oberflächen, b) der Volumina bei einem
Kreistorus zu lösen, in den n Kugeln in der gleichen Weise einbeschrieben sind.

3. Man bilde in jedem Fall den Grenzwert des Verhältnisses für n→∞.

1) Ist Ak die Summe der Kreisflächen und r der Radius der einbeschriebenen Kreise, so gilt Ak = nr2π.
Bezeichnet man mit R den mittleren Radius des Kreisrings, so gilt wegen der Berührungsbedingungen
für die Fläche AR des Kreisrings

AR = [(R+ r)2 − (R− r)2]π = 4Rrπ und r

R
= sin 2π

2n = sin π
n

Damit ergibt sich
Ak
AR

= nr2π

4Rrπ = 1
4n sin π

n

2a) Nun sei Ak die Summe der Kugeloberflächen, AT die Torusoberfläche. Dann gilt

Ak = n · 4r2π ; AT = 2Rπ · 2rπ = 4Rrπ2

(nach der 1. Guldinschen Regel). Damit folgt

Ak
AT

= 4r2πn

4Rrπ2 = n

π
sin π

n

(da auch hier gilt r
R = sin π

n )
2b) Ist Vk die Summe der Kugelvolumina und VT das Torusvolumen, so gilt

Vk = n · 4
3r

3π ; VT = 2Rπ · r2π = 2Rr2π2

(nach der 2. Guldinschen Regel). Damit ergibt sich

Vk
VT

=
4
3r

3πn

2Rr2π2 = 2n
3π sin π

n

3) Für die drei Grenzwerte ergibt sich

lim
n→∞

1
4n · sin

π

n
= lim
n→∞

π

4
sin x
x

= π

4

lim
n→∞

n

π
· sin π

n
= lim
n→0

sin x
x

= 1 ; lim
n→∞

2n
3π · sin

π

n
= lim
n→0

2
3

sin x
x

= 2
3

wobei π = nx gesetzt wurde.
Überraschend ist an diesen Ergebnissen, dass sich im ersten Fall ein transzendenter, im zweiten und
dritten Fall dagegen algebraische (sogar rationale) Werte ergeben.

Aufgabe 16/78
Es ist zu beweisen, dass kein konvexes Sechseck mehr als drei spitze Innenwinkel haben kann.

Die Innenwinkelsumme in jedem n-Eck beträgt (n− 2) · 180◦.
Beweis:
Man kann das n-Eck in n Dreiecke zerlegen, indem man von einem beliebigen Punkt im Inneren des n-
Ecks Geraden zu jedem Eckpunkt zieht. Aus dem Winkelsummensatz des Dreiecks folgt dann unmittelbar
die Behauptung.
Angenommen, es existiere ein konvexes Sechseck mit wenigstens vier spitzen Innenwinkeln. Dann gilt für
die Summe s der vier spitzen Winkel: s < 360◦.
Für die Summe s der restlichen zwei Winkel gilt dann s = 720◦ − s > 360◦.
Damit folgt, dass wenigstens einer der beiden restlichen Innenwinkel größer als 180◦ ist. Das widerspricht
aber der Forderung, dass das Sechseck konvex sein soll. Also ist die Annahme falsch; es existiert kein
konvexes Sechseck mit mehr als drei spitzen Innenwinkeln.
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Aufgabe 17/78
Von der Gleichung xn + px − q = 0, n ≥ 2, sei bekannt, dass sie eine positive rationale Lösung hat
und dass p und q Primzahlen sind. Man bestimme die Lösung sowie p und q!

Ist x0 die positive rationale Lösung der gegebenen Gleichung so kann man x0 in der Form x0 = r
s mit

r; s ∈ N und ggT (r,s) = 1 darstellen, und es gilt

xn0 + px0 − y = rn

sn
+ p

r

s
− q = 0 oder rn + prsn−1 − qsn = 0

Da ggT (r, s) = 1 ist, folgt daraus, dass r ein Vielfaches von s ist, und es gilt s = 1, also r = x0, und die
Gleichung reduziert sich auf

xn0 + px0 − q = 0 ; x0 = r ∈ N ; x0(xn−1
0 + p) = q

Da xn−1
0 + p > 1 ist, folgt aus der Primzahleigenschaft von q, dass x0 = 1 ist. Somit ergibt sich

xn−1
0 + p = 1 + p = q

Die einzigen aufeinanderfolgenden Primzahlen sind p = 2 und q = 3. Die Probe mit x0 = 1, p = 2, q = 3
bestätigt die Richtigkeit.

Aufgabe 18/78
Man bestimme den größten gemeinsamen Teiler aller Zahlen z, die sich in der Form z = n4m+1 − n
mit m;n ∈ N darstellen lassen!

Für n = 1, m beliebig ist c = 0; die kleinste nichttriviale Zahl z erhält man für n = 2, m = 1 als
z = 25−2 = 30. Mithin kann der gesuchte größte gemeinsame Teiler höchstens gleich 30 = 2 ·3 ·5 sein. Es
ist nun zu untersuchen, welche dieser drei Primfaktoren 2; 3; 5 für alle n und m Teiler von z sind. Dazu
schreiben wir z in der Gestalt

z = n(n4m − 1)

Offensichtlich ist der Primfaktor 2 in jedem z enthalten; denn entweder ist n gerade, oder es ist n4m − 1
gerade. Entweder ist n ≡ 0 (mod 3), oder es gilt n ≡ ±1 (mod 3). Im letzten Fall ist n2 ≡ 1 (mod 3),
damit n4m ≡ 1 (mod 3) und damit n4m− 1 ≡ 0 (mod 3). Das heißt also, in jedem Fall ist der Primfaktor
3 in z enthalten.
Analog schließt man: Entweder ist n ≡ 0 (mod 5), oder es ist n ≡ ±1 (mod 5) oder ≡ ±2 (mod 5), also
n2 ≡ ±1 (mod 5), n4m ≡ 1 (mod 5) und damit n4m − 1 ≡ 0 (mod 5). Also ist auch der Primfaktor 5 in
jedem z enthalten. Damit ergibt sich, dass der größte gemeinsame Teiler aller Zahlen z, die sich in der
Form z = n4m+1 − n mit n;m ∈ N darstellen lassen, die Zahl 30 ist.

Aufgabe 19/78
Man beweise: Das Quadrat über der Raumdiagonale eines Quaders ist mindestens gleich der Hälfte
der Quadratoberfläche.

Die Kanten des Quaders seien a, b und c, seine Raumdiagonale sei d. Sicher gilt

(a− b)2 + (a− c)2 + (b− c)2 ≥ 0→ a2 + b2 + c2 ≥ ab+ ac+ bc

Nun ist d2 = a2 +b2 +c2 und AO = 2ab+2ac+2bc (wobei mit AO die Oberfläche des Quaders bezeichnet
ist). Damit folgt sofort die Behauptung.

Aufgabe 20/78
Man bestimme alle Paare natürlicher Zahlen (m;n), die der Gleichung genügen:

n∑
i=1

i! = m2
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Wegen
4∑
i=1

i! = 33 und i! ≡ 0 (mod 10), wenn i > 4, ist für n > 4

n∑
i=1

i! ≡ 3 (mod 10)

Da für m2 stets gilt m2 ≡ 3 (mod 10), kann es für n > 4 keine Lösungen geben (Quadratzahlen können
nur die Einerstelle 0 oder 1 oder 4 oder 5 oder 6 oder 9 haben). Durch Probieren mit n = 1; 2; 3; 4 erhält
man die Paare (n1;m1) = (1; 1) und (n2;m2) = (3; 3). Weitere Lösungen kann es offenbar nicht geben.

Aufgabe 21/78
Man zeige, dass das Produkt P für jede natürliche Zahl n eine ungerade natürliche Zahl ist!

P = (n+ 1)(n+ 2)...(2n+ 1)
2n

Es ist

P = (n+ 1)(n+ 2)...(2n+ 1)
2n = (2n+ 1)!

2n · n! = (2n+ 1)!
2n · 1 · 2 · 3 · ... · n = (2n+ 1)!

2 · 4 · ... · 2n = 1 · 3 · ... · (2n+ 1)

P ist also das Produkt aller ungeraden Zahlen von 1 bis 2n+1 und damit selbst eine ungerade natürliche
Zahl.

Aufgabe 22/78
Es sei ABCD ein einem Kreis einbeschriebenes Quadrat, P sei ein beliebiger Punkt auf dem Kreis-
bogen zwischen A und B. Man beweise, dass PC und PD den Winkel APB dritteln!

Die zu den Sehnen AD, DC und CB gehörenden Zentriwinkel sind sämtlich gleich 90◦. Daher hat jeder
Peripheriewinkel über diesen Sehnen die Größe von 45◦; insbesondere auch die Winkel ADP , DPC und
CPB.

Aufgabe 23/78
Für welche Dreiecke mit den Seiten a, b, c gilt: a4 + b4 + c4 = a2b2 + b2c2 + c2a2

Bekanntlich gilt für x; y ≥ 0 der Satz vom arithmetischen und geometrischen Mittel. (1) Damit ist

a4

2 + b4

2 ≥
√
a4b4 = a2b2 ; a4

2 + c4

2 ≥ a
2c2 ; b4

2 + c4

2 ≥ b
2c2

Addition ergibt
a4 + b4 + c4 ≥ a2b2 + a2c2 + b2c2

Nun steht in (1) das Gleichheitszeichen genau dann, wenn x = y. Damit folgt: In (2) gilt das Gleichheits-
zeichen genau für a = b = c; die gegebene Beziehung gilt also für alle gleichseitigen Dreiecke und nur für
diese.

Aufgabe 24/78
Es ist zu beweisen, dass kein Glied der Folge {ak} = {11; 111; 1111; 11111; ...} das Quadrat einer
natürlichen Zahl x ist.

Angenommen die Folge {ak} enthielte ein Glied an, das Quadrat einer natürlichen Zahl x wäre. Da alle
Glieder der Folge ungerade Zahlen sind, ist dann auch x ungerade, d.h., es gilt x = 2m− 1 mit m ∈ N ,
und es ist

an =
n+1∑
i=0

10i = (2m− 1)2 = 4m2 − 4m+ 1 ; an − 1 = 10
n∑
i=0

10i = 4m2 − 4m = 4m(m− 1)
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Daraus folgt

5
n∑
i=0

10i = 2m(m− 1)

Die linke Seite der Gleichung ist ein Produkt aus zwei ungeraden natürlichen Zahlen; die rechte Seite
dagegen enthält den Faktor 2. Dieser Widerspruch zeigt, dass die Annahme falsch ist.

Aufgabe 25/78
Man ermittle alle Paare ganzer Zahlen (m;n), die der Gleichung

√
2n + 1 = m genügen.

Wenn es Paare ganzer Zahlen (m;n) gibt, die der gegebenen Gleichung genügen, so gilt offenbar m;n > 0
(m > 0 folgt aus der Definition der Wurzel, n > 0 folgt aus der Ganzzahligkeit von m).
Aus der gegebenen Gleichung folgt durch äquivalentes Umformen

2n = m2 − 1 = (m+ 1)(m− 1)

Da die linke Seite der Gleichung eine Potenz der Basis 2 ist, muss dies auch für die rechte Seite gelten.
Folglich sind die Faktoren (m + 1) und (m − 1) selbst Potenzen der Zahl 2, die sich um 2 voneinander
unterscheiden. Die einzigen Potenzen der Zahl 2, die sich um 2 voneinander unterscheiden, sind 21 = 2
und 22 = 4. Gilt nämlich 2α − 2β = 2 für α, β > 0, so folgt

2β(2α−β − 1) = 2→ 2β−1(2α−β − 1)1

Diese Gleichung ist aber nur erfüllt für 2β−1 = 1, 2α−β − 1 = 1, also für β = 1, α = 2.
Damit ergibt sich m = 3, n = 3, also das Paar (3; 3) als einzige Lösung.

Aufgabe 26/78
Sind a, b und c die Seiten eines ebenen Dreiecks mit dem Flächeninhalt A, so gilt die Ungleichung
A < 1

2
3
√
abc

2.
Man beweise die Richtigkeit dieser Behauptung!

Bezeichnet man (wie üblich) die den Seiten a, b, c gegenüberliegenden Winkel mit α, β, γ, so gelten die
Gleichungen

A = 1
2ab sin γ = 1

2bc sinα = 1
2ac sin β

Daraus folgt
A3 = 1

8a
2b2c2 sinα sin β sin γ

Wegen sinα ≤ 1, sin β ≤ 1, sin γ ≤ 1 (wobei das Gleichheitszeichen für höchstens eine der drei Unglei-
chungen gilt), ergibt sich damit die Behauptung

A <
1
2

3
√

(abc)2

Aufgabe 27/78

Es ist zu zeigen, dass für jede natürliche Zahl n gilt
[

n∑
k=0

(
n

k

)]2

=
n∑
k=0

(
n

k

)
· 3k

Es gilt der binomische Satz

(a+ b)n =
n∑
k=0

(
n

k

)
an−kbk

Speziell folgt daraus für a = 1, b = 1:

(1 + 1)n =
n∑
k=0

(
n

k

)
1n−k1k =

n∑
k=0

(
n

k

)
= 2n
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und für a = 1, b = 3:

(1 + 3)n =
n∑
k=0

(
n

k

)
1n−k3k =

n∑
k=0

(
n

k

)
· 3k = 4n

Damit folgt sofort [
n∑
k=0

(
n

k

)]2

= (2n)2 = 22n = 4n =
n∑
k=0

(
n

k

)
· 3k

Aufgabe 28/78
Man beweise: Jede ungerade natürliche Zahl n ≥ 3 ist als harmonisches Mittel zweier verschiedener
natürlicher Zahlen darstellbar.

Der Beweis ist geliefert, wenn gezeigt ist: Zu jeder ungeraden natürlichen Zahl n ≥ 3 existieren zwei
natürliche Zahlen a und b mit a 6= b, die die Gleichung

1
n

= 1
2

(
1
a

+ 1
b

)
erfüllen. Äquivalente Umformungen dieser Gleichung (Auflösung nach a) liefern a = bn

2b−n . Setzt man nun
b = na (wegen n ≥ 3 ist dann sicher b 6= a), so folgt

a = n2a

2na− n = na

2a− 1 ; a = n+ 1
2

Da n nach Voraussetzung ungerade ist, folgt, dass a eine natürliche Zahl ist. Damit ist auch b = na = nn+1
2

eine natürliche Zahl. Eine Probe bestätigt, dass die Gleichung

1
n

= 1
2

(
1
n+1

2
+ 1
n · n+1

2

)
für alle ungeraden natürlichen Zahlen n ≥ 3 eine wahre Aussage darstellt.

Aufgabe 29/78
Man zeige (ohne die Potenz auszurechnen), dass die Fermatzahl F5 = 225 + 1 ohne Rest durch 641
teilbar ist!

Wegen 641 = 640 + 1 = 27 · 5 + 1 gilt

27 · 5 ≡ −1 (mod 641)

(27 · 5)4 = 228 · 54 = 228 · 625 = 228 · (641− 16) = 228 · 641− 228 · 24 ≡ −232 ≡ 1 (mod 641)

Daraus folgt sofort die Behauptung:

232 = 225
≡ −1 (mod 641) ; 225

+ 1 ≡ 0 (mod 641)

Aufgabe 30/78
Man beweise, dass für alle reellen Zahlen x > 0 die Ungleichung x

√
x < 1,45 gilt!

Es ist ln x
√
x = 1

x ln x. Zum Beweis der Behauptung untersuchen wir die für alle reellen Zahlen x > 0
definierte Funktion

f(x) = 1
x

ln x

auf ihr globales Maximum. Es ist
f ′(x) = x−2(1− ln x)

Einzige Nullstelle von f ′(x) ist x0 = e. Da

f ′′(x) = −x−3(3− 2 ln x)→ f ′′(e) = −e−3 < 0
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gilt, ist x0 Stelle eines Maximums von f(x); da keine weitere Extremwertstelle existiert, gilt für alle reellen
x > 0 die Ungleichung

ln x
√
x = 1

x
ln x ≤ 1

e
ln e = 1

e

Daraus folgt unmittelbar die Behauptung
x
√
x ≤ e
√
e = 1,444667861... < 1,45

Aufgabe 31/78
Man ermittle alle Primzahlen pl; p2; p3, die die Gleichung pp2

1 + pp1
2 = p3 erfüllen.

Sicher ist p3 nicht die kleinste der gesuchten Primzahlen und damit nicht gerade. Daraus folgt, dass
entweder p1 oder p2 gerade und damit gleich 2 ist. Wegen der Symmetrie in p1 und p2 kann man o.B.d.A.
p1 = 2 setzen. Die gegebene Gleichung nimmt damit die Gestalt

2p2 + p2
2 = p3

an. Wegen p2 ≥ 3 ist 2p2 +p2
2 ≥ 23 +32 = 17. Offensichtlich hat man damit bereits eine Lösung gefunden:

p1 = 2, p2 = 3, p3 = 17.
Es erhebt sich die Frage, ob es noch weitere Lösungen gibt. Wegen p2 > 3, ungerade, kann man p2 = 2d+1
(mit d ∈ N, d > 1) setzen. Dann ist

2p2 = 22d+1 = 2 · 22d = 2 · 4d ≡ 2 · 1d ≡ 2 (mod 3)

Ferner ist p2 ≡ ±1 (mod 3), also p2
2 ≡ 1 (mod 3). Damit folgt

p3 = 2p2 + p2
2 ≡ 2 + 1 ≡ 0 (mod 3)

was im Widerspruch zur Primzahleigenschaft von p3 steht. Demnach ist die gefundene Lösung die einzige.

Aufgabe 32/78
Man bestimme alle reellen Lösungen der Gleichung 2 sin2 (πx+ y) cos

(
y + π

2

)
= x2 + 1

x2

Wegen x2 + 1
x2 ≥ 2 (die Summe zweier positiver, zueinander reziproker Zahlen ist nie kleiner als 2) und

2 sin2 (πx+ y) cos (y + π

2 ) ≤ 2

folgt sofort

x2 + 1
x2 = 2 ; x = ±1 ; sin2 (y ± π) = 1 ; cos (y + π

2 ) = 1

Aus der letzten dieser Gleichungen ergibt sich y = 3π
2 + 2kπ mit k = 0;±1;±2; ... Tatsächlich ist

sin2 ( 3π
2 ± π ± 2kπ) = 1.

Aufgabe 33/78
Man bestimme den Grenzwert lim

n→∞
n
√
an + bn, wobei a und b beliebige positive reelle Zahlen mit

a ≥ b sind.

Aus 0 < b ≤ a folgt 0 < bn ≤ an. Also gilt

an < an + bn ≤ 2an ; a <
n
√
an + bn ≤ a n

√
2

a = lim
n→∞

a ≤ lim
n→∞

n
√
an + bn ≤ lim

n→∞
a
n
√

2 = a

wegen lim
n→∞

n
√
a = 1. Daraus folgt unmittelbar

lim
n→∞

n
√
an + bn = a
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Aufgabe 34/78
Auf einem gewöhnlichen Schachbrett kann man bekanntlich einen Springer so ziehen, dass er jedes
Feld genau einmal betritt und auf das Ausgangsfeld zurückkehrt. Das ist auf verschiedene Weisen
möglich.
Auf wie viele verschiedene Weisen ist das auf einem (hypothetischen) Schachbrett mit 9 · 9 = 81
Feldern möglich?

Soll der Springer alle Felder betreten und zum Ausgangsfeld zurückkehren, so muss er genau 81mal
gezogen werden. Bei jedem Zug wechselt er die Farbe des Feldes, so dass er nach einer ungeraden Zahl
von Zügen stets auf der Farbe sieht, die nicht gleich der Farbe des Ausgangsfeldes ist.
Damit ist bereits gezeigt, dass er nach 81 Zügen nicht auf dem Ausgangsfeld stehen kann. Die Zahl der
möglichen verschiedenen Weisen ist also null!

Aufgabe 35/78
In der UdSSR ist es üblich, in den Stadtverkehrsmitteln nach dem Abreißen des Fahrschein-
Kontrollabschnittes zu prüfen, ob man einen ”Glücksfahrschein” hat. Dies ist dann der Fall, wenn die
Quersumme der ernten drei Stellen gleich der Quersumme der letzten drei Stellen der sechsstelligen
Kontrollzahl ist.
Wie groß ist die Wahrscheinlichkeit dafür, dass ein ”Glücksfahrschein” die Quersummen 7 hat?

Die Zahl 7 kann man auf genau acht verschiedene Weisen in drei Summanden zerlegen:

7+0+0 (l) 6+1+0 (2) 5+2+0 (3) 5+1+1 (4)
4+3+0 (5) 6+2+1 (6) 3+3+1 (7) 3+2+2 (8)

Die (ungeordneten) Tripel (l), (4), (7) und (8) enthalten je eine Ziffernwiederholung, für sie ist folglich
die Bildung von je drei geordneten Tripeln möglich, während es für die (ungeordneten) Tripel (2), (3),
(5) und (6) je sechs sind. Folglich gibt es insgesamt 3 · 4 + 6 · 4 = 36 geordnete Tripel mit der Quersumme
7.
Da es insgesamt 1000 Varianten für dreistellige Ziffernkombinationen gibt (000...999), ist die Wahrschein-
lichkeit für die Quersumme 7 in einer dieser Kombinationen gleich 0,036.
Da das Ereignis eines ”Glücksfahrscheins” mit der Quersumme 7 ein zusammengesetztes Ereignis ist, das
aus dem logischen Produkt zweier unabhängiger (gleicher) Teilereignisse besteht, ist dessen Wahrschein-
lichkeit gleich dem Quadrat der Wahrscheinlichkeit jedes der Teilereignisse, also 0,0362 = 0,001296.

Aufgabe 36/78
Man wähle irgendeine 1979stellige natürliche Zahl a, die durch 9 teilbar ist, und bilde die Quersumme
z aus der Quersumme y der Quersumme x von a. Wie groß ist z?

Ist eine Zahl a durch 9 teilbar, so ist auch die Quersumme Q(a) dieser Zahl durch 9 teilbar. Daraus folgt,
das x, y und z durch 9 teilbar sind. Weiter gilt:
x ≤ 9 · 1979 = 17811; das heißt, x ist höchstens fünfstellig.
Damit ergibt sich weiter
y ≤ 9 · 5 = 45; das heißt, für y kommen nur die Zahlen 9; 18; 27; 36; 45 in Frage. In jedem Falle ist damit
z = 9.
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Aufgabe 1/79
Gegeben sei ein regelmäßiges Fünfeck ABCDE mit dem Mittelpunkt M . Es sei P ein Punkt auf der
Strecke EA, Q sei ein Punkt auf der Strecke AB. Man zeige:
Existiert für das Viereck MPQA ein Umkreis, so ist die Summe der Strecken PA und AQ gleich der
Seitenlänge des Fünfecks.

Der Beweis ist geführt, wenn gezeigt ist, dass das Dreieck AQM kongruent dem Dreieck EPM ist. Nun
folgt aus der Regelmäßigkeit des Fünfecks

MA = ME ; ]MAQ = ]MEP

Ferner folgt aus der Tatsache, dass das Viereck MPAQ ein Sehnenviereck ist ]MPA+]MQA = 180◦.
Andererseits gilt (da Nebenwinkel) ]MPA+ ]EPM = 180◦. Damit ergibt sich, unmittelbar ]MQA =
]EPM .
Die beiden Dreiecke stimmen also in einer Seite und in den entsprechenden Winkeln überein und sind
somit kongruent.

Aufgabe 2/79
Man beweise, dass die Zahl A = 1 + 2m + 4m mit m = 2n, n ∈ N durch 7 ohne Rest teilbar ist.

Es ist
A = 1 + 2m + 4m = 1 + 2m(1 + 2m) (∗)

Für n = 0,m = 20 = 1 gilt 2m = 21 = 2 ≡ 2 (mod 7)’ also

A ≡ 1 + 2(1 + 2) ≡ 7 ≡ 0 (mod 7) (1)

Die Behauptung ist also für n = 0 richtig. Für n = 1,m = 21 = 2 gilt 2m = 22 = 4 ≡ 4 (mod 7)’ also

a ≡ 1 + 4(1 + 4) ≡ 21 ≡ 0 (mod 7) (2)

Die Behauptung ist also auch für n = 1 richtig. Wegen

22n+1
= 22n·2 = (22)2n = (2 · 2)2n = 22n · 22n

ergibt sich nun für 22n ≡ 2 (mod 7), dass 22n+1 ≡ 4 (mod 7) ist; für 22n ≡ 4 (mod 7) folgt 22n+1 ≡ 16 ≡ 2
(mod 7). Aus (*) ergibt sich demnach stets eine der Kongruenzen (1) oder (2), womit die Behauptung
für alle n ∈ N bewiesen ist.

Aufgabe 3/79
Man beweise, dass für jede natürliche Zahl n ≥ 2 die Ungleichung n! <

(
n+1

2
)n gilt?

Die gegebene Ungleichung ist der Ungleichung

n
√
n! = n

√
1 · 2 · 3 · ... · n < n+ 1

2
äquivalent. Nach dem Satz über das arithmetische und das geometrische Mittel ist aber

n
√

1 · 2 · 3 · ... · n < 1 + 2 + 3 + ...+ n

n

Der Beweis ist erbracht, wenn gezeigt ist, dass die rechten Seiten der beiden Ungleichungen übereinstimmen.
Tatsächlich gilt für die Summe einer arithmetischen Folge 1. Ordnung von aufeinanderfolgenden natürlichen
Zahlen

1 + 2 + 3 + ...+ n = (1 + n) · n2 = n+ 1
2 · n

also
1 + 2 + 3 + ...+ n

n
= n+ 1

2
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Aufgabe 4/79
Ist ABCDE ein konvexes Fünfeck mit dem Umfang u und der Summe d der Diagonalenlängen, so
gilt 0,5d < u < d. Diese Behauptung ist zu beweisen!

Zunächst beweisen wir die linke Ungleichung 0,5d < u der Kette. Nach der Dreiecksungleichung gilt

AC < AB +BC; BD < BC + CD; CE < CD +DE;

DA < DE + EA; EB < EA+AB

Durch Addition dieser fünf Ungleichungen folgt d < 2u, also 0,5d < u.
Zum Beweis der rechten Ungleichung bezeichnen wir die Schnittpunkte der Diagonalen wie folgt: BD mit
CE: A′; CE mit AD: B′; DA mit EB: C ′, EB mit AC: D′ und AC mit BD: E′.
Ebenfalls nach der Dreiecksungleichung gilt nun

AB < AD′ +BD′; BC < BE′ + CE′; CD < CA′ +DA′

DE < DB′ + EB′; EA < EC ′ +AC ′

Durch Addition dieser fünf Ungleichungen folgt

u < AD′ +BD′ +BE′ + CE′ + CA′ +DA′ +DB′ + EB′ + EC ′ +AC ′ ≤ d

Aufgabe 5/79

Man berechne die Summe! sn = 1− 1
2! −

2
3! −

3
4! − ...−

n− 1
n!

Berechnet man S1, S2, ..., S5 nummerisch, so erhält man

S1 = 1; S2 = 1
2; S3 = 1

6; S4 = 1
24; S5 = 1

120
Daraus ergibt sich die Vermutung, dass Sn = 1

n! sein könnte. Wenn dies zutrifft, so ist

Sn+1 = Sn −
n

(n+ 1)! = 1
n! −

n

(n+ 1)! = n+ 1− n
(n+ 1)! = 1

(n+ 1)!

Damit ist zugleich die Vermutung auf dem Weg der vollständigen Induktion bewiesen; denn die Behaup-
tung gilt für n = 1; 2; ...; 5, und aus der Gültigkeit für irgend ein n folgt die Gültigkeit für n+ 1.

Aufgabe 6/79
Es ist zu beweisen: Ist n ≥ 1 eine natürliche Zahl, so ist die Zahl 111...1555...56 mit n Einsen und
n− 1 Fünfen das Quadrat einer natürlichen Zahl.

Nach den Bedingungen der Aufgabe ist

11...155...56 =
2n−1∑
i=n

10i + 5
n−1∑
i=1

10i + 6 =
2n−1∑
i=n

10i + 5
n−1∑
i=0

10i + 1 =
2n−1∑
i=0

10i + 4
n−1∑
i=0

10i + 1

Die beiden Summen sind endliche geometrische Reihen mit dem Anfangsglied a0 = 100 = 1 und dem
Quotienten q = 10. Ihre Gliederzahl ist 2n bzw. n. Damit folgt

2n−1∑
i=0

10i = 102n − 1
10− 1 = 102n − 1

9 ;
n−1∑
i=0

10i = 10n − 1
10− 1 = 10n − 1

9

Daraus ergibt sich nach kurzer Rechnung

11...155...56 = 102n − 1
9 + 4 · 10n − 1

9 + 1 =
(

10n + 2
3

)2

Der Beweis ist geführt, wenn gezeigt ist, dass 10n + 2 ohne Rest durch 3 teilbar ist. Dies ist tatsächlich
der Fall: denn die Quersumme von 10n ist 1, von 10n + 2 demnach 3.
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Aufgabe 7/79
Man beweise (ohne Verwendung der Differentialrechnung) den Satz: Unter allen Sehnenvierecken
eines gegebenen Kreises hat das Quadrat den größten Flächeninhalt.

Zunächst ist festzustellen, dass es zu jedem überschlagenen Sehnenviereck ein flächengrößeres nicht
überschlagenes Sehnenviereck gibt. Der Beweis ist also geführt, wenn die Richtigkeit des Satzes für nicht
überschlagene Sehnenvierecke gezeigt ist.
Für ein nicht überschlagenes SehnenviereckABCD gilt (wobei mit FABCD, FABC , FABD die Flächeninhalte
der entsprechenden Figuren und mit E und F die Fußpunkte der Lote von B bzw. D auf AC bezeichnet
sind):

FABCD = FABC + FABD = 1
2AC ·BE + 1

2AC ·DF = 1
2AC · (BE +DF ) ≤ 1

2 · 2r · 2r = 2r2

Das Maximum 2r2 wird genau dann angenommen, wenn sowohl AC = 2r als auch BE +DF = 2r, also
A und C sowie B und D Endpunkte von Durchmessern sind. Wegen BE ⊥ AC und DF ⊥ AC ist dann
auch AC ⊥ BD; d.h., das Sehnenviereck hat gleichgroße, aufeinander senkrecht stehende Diagonalen, die
einander halbieren. Es ist also ein Quadrat.

Aufgabe 8/79
Man bestimme alle Primzahlen a, b, c, d, für die die folgenden Gleichungen gelten: a + b = c und
2a+ b = d.

Da d = 2a + b > 2a > 2 ist, muss d ungerade sein. Da 2a eine gerade Zahl ist, folgt b ungerade. Wegen
c = a+ b > b ist auch c ungerade und damit a = c− b gerade. Also ist a = 2.
Von den Primzahlen b, b + 2 = c und b + 4 = d ist nun genau eine durch 3 teilbar. Dies kann nur die
kleinste der drei Primzahlen sein. Also ist b = 3.
Damit ergibt sich c = 5, d = 7. Nach dem Lösungsweg ist daher (2; 3; 5; 7) das einzige Lösungsquadrupel.

Aufgabe 9/79
Es ist die Gültigkeit der Ungleichung für alle natürlichen Zahlen n ≥ 2 zu beweisen:

n∏
i=2

(
1 + 1

i2

)
< 2

Wegen i4 − 1 = (i2 + 1)(i2 − 1) < i4 ist

1 + 1
i2

= i2 + 1
i2

<
i2

i2 − 1 also

n∏
i=2

(
1 + 1

i2

)
=

n∏
i=2

i2 + 1
i2

<

n∏
i=2

i2

i2 − 1 =
n∏
i=2

i2

(i+ 1)(i− 1) =

= (n!)2

(n− 1)! (n+1)!
2

= 2n!n!
(n− 1)!(n+ 1)! = 2n

n+ 1 < 2

für jede natürliche Zahl n ≥ 2.

Aufgabe 10/79
Man zeige, dass für beliebige natürliche Zahlen n ≥ 2 die Ungleichung logn (n+ 1) > logn+1 (n+ 2)
gilt.

Aus 1 + 1
n > + 1

n+1 folgt wegen der Monotonie der Logarithmusfunktion

log(n+1)
n+ 1
n

> log(n+1)
n+ 2
n+ 1
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Andererseits ist
logn

n+ 1
n

> log(n+1)
n+ 1
n

Aus diesen beiden Ungleichungen ergibt sich

logn
n+ 1
n

> log(n+1)
n+ 2
n+ 1 ; logn (n+ 1)− logn n > log(n+1) (n+ 2)− log(n+1) (n+ 1)

was wegen logn n = log(n+1) (n+ 1) = 1 unmittelbar die Behauptung ergibt.

Aufgabe 11/79
Man beweise: Sind a, b, c die Seitenlängen eines rechtwinkligen Dreiecks mit der Hypotenuse c, so
gilt für jede natürliche Zahl n > 2 die Ungleichung an + bn < cn.

Da c Hypotenuse ist, gilt a < c und b < c, damit auch a
c < 1 und b

c < 1 und schließlich auch

an−2

cn−2 < 1 und bn−2

cn−2 < 1

(mit n > 2). Wegen a2, b2 > 0 folgt daraus

an−2

cn−2 · a
2 = an

cn−2 < a2 und bn−2

cn−2 · b
2 = bn

cn−2 < b2

Addiert man diese beiden Ungleichungen, so erhält man

an

cn−2 + bn

cn−2 < a2 + b2 = c2

Daraus ergibt sich durch Multiplikation mit cn−2 > 0 die Behauptung an + bn < cn−2 · c2 = cn.

Aufgabe 12/79 Es sind alle positiven Zahlen x und y zu bestimmen, die den beiden Gleichungen
genügen:

xx+y = y6 ; yx+y = x12y6

Durch Multiplikation der beiden Gleichungen ergibt sich

(xy)x+y = (xy)12

Diese Gleichung ist sicher genau dann erfüllt, wenn a) x + y = 12 oder b) xy = 1 ist. (Für x + y 6= 12
und xy 6= 1 gibt es offensichtlich keine Lösung.)
a) Setzt man x + y = 12 in die erste Gleichung ein, so ergibt sich y = x2. Damit folgt aus x + y = 12
die in x quadratische Gleichung x2 + x− 12 = 0 mit den Lösungen x1 = 3, x2 = −4. Also ergibt sich das
Paar (x; y) = (3; 9) als Lösung.
b) Aus xy = 1 folgt y = 1

x und damit aus der ersten Gleichung

xx+ 1
x = x−6

Da x + 1
x > 0 gilt, bleibt als Lösung nur (x; y) = (1; 1). Die Paare (3; 9) und (1; 1) sind Lösungen des

Systems, wie die Probe bestätigt.

Aufgabe 13/79
Es sind alle natürlichen Zahlen x und y zu bestimmen, für die die Gleichung 5x − 2y = 3 gilt.

Ist y > 1, so ist 2y ≡ 0 (mod 4). Wegen 5x ≡= 1 (mod 4) wäre dann 5x− 2y ≡ 1− 0 ≡ 1 6= 3 (mod 4).
Daraus folgt, dass es für y > 1 keine Lösung gibt. Für y = 1 nimmt die gegebene Gleichung die Gestalt
5x− 2 = 3 an, aus der sofort x = 1 folgt. Also ist (x; y) = (1; 1) das einzige Lösungspaar.
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Aufgabe 14/79
Man beweise: Sind a, b, c die Seitenlängen eines beliebigen Dreiecks, so gilt die Ungleichungskette

3
2 ≤

a

b+ c
+ b

a+ c
+ c

a+ b
< 3

Die rechte Ungleichung folgt unmittelbar aus der Gültigkeit der Dreiecksungleichungen. Wegen a <
b+ c, b < a+ c, c < a+ b ist nämlich

a

b+ c
< 1 ; b

a+ c
< 1 ; c

b+ a
< 1

und damit
a

b+ c
< + b

a+ c
+ c

b+ a
< 3

Zum Beweis der linken Ungleichung gehen wir von der Ungleichung zwischen dem arithmetischen und
dem harmonischen Mittel aus, wobei wir über die Summen (a+ b), (b+ c), (c+ a) mitteln:

3
1
b+c < + 1

a+c + 1
b+a
≤ 1

3 [(a+ b) + (b+ c) + (c+ a)]

Äquivalente Umformungen dieser Ungleichung liefern

1 ≤ 2
9

(
1 + c

a+ b
+ 1 + a

b+ c
+ 1 + b

c+ a

)
→ 3

2 ≤
c

a+ b
+ a

b+ c
+ b

c+ a

Aufgabe 15/79
Gesucht sind alle natürlichen Zahlen n mit der Eigenschaft, dass sowohl n + 100 als auch n − 100
Quadrate natürlicher Zahlen sind.

Aus der geforderten Eigenschaft folgen die Gleichungen n+ 100 = x2 und n− 100 = y2 mit x; y;n ∈ N .
Durch Subtraktion der zweiten von der ersten Gleichung ergibt sich daraus

200 = x2 − y2 = (x|y)(x+ y)

Man kann also alle möglichen Zahlen x; y finden, indem man die Zahl 200 auf alle möglichen Weisen in
ein Produkt aus zwei natürlichen Faktoren f1 und f2 zerlegt und das Gleichungssystem

x− y = f1 ; x+ y = f2

löst. Da seine Lösungen x = 0,5(f1 + f2), y = 0,5(f2 − f1) sind, folgt, dass f1 und f2 entweder beide
geradzahlig oder beide ungeradzahlig sind (da sonst x; y /∈ N gälte). Somit kommen nur die Zerlegungen

200 = 2 · 100 = 4 · 50 = 10 · 20

in Frage. Daraus ergeben sich die folgenden Lösungen:

f1 f2 x y n
2 100 51 49 250
4 50 27 23 62
10 20 15 5 12

Die Probe bestätigt die Richtigkeit, der Lösungsweg schließt weitere Lösungen aus.

Aufgabe 16/79
Man zeige, dass die Gleichung x2 − y2p = 1 für jede natürliche Zahl p rationale Lösungen x; y hat.

Die gegebene Gleichung x2 − y2p = 1 ist äquivalent den Gleichungen

x2 − 1 = y2p ; (x+ 1)(x− 1) = y · y · p
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Setzt man x+ 1 = yp, x− 1 = y, falls p 6= 1, so erhält man

x = p+ 1
p− 1 ; y = 2

p− 1

also rationale Lösungen. Ist p = 1, so nimmt die gegebene Gleichung die Gestalt x2−y2 = 1 an. In diesem
Fall ist x = c

a , y = b
a eine Lösung, wenn (a; b; c) ein pythagoreisches Zahlentripel ist. Dann ist nämlich

x2 − y2 =
( c
a

)2
−
(
b

a

)2
= 1

wegen a2 = c2 − b2. Damit ist die Behauptung bewiesen.
Zusatz: Betrachtet man die Zahl Null als natürliche Zahl, so ist sicher x = 1, y ∈ R ein rationales
Lösungspaar (wobei mit R die Menge der rationalen Zahlen bezeichnet ist).

Aufgabe 17/79
Man untersuche ohne numerische Rechnung, welche der beiden Zahlen eπ und πe die größere ist!

Bekanntlich wächst die Funktion y = f1(x) = x für x > 1 stärker als die Funktion y = f2(x) = ln x.
Beweis für diese Behauptung: Es ist f ′2(x) = x−1 < 1 = f ′1(x) für x > 1.
Daraus folgt’ sofort wegen e < π

e

ln e <
π

ln π → e · ln π < π · ln e→ ln πe < ln eπ

und wegen der Monotonie der ln-Funktion πe < eπ.

Aufgabe 18/79
Die Maßzahlen des Inkreisradius und der Seiten seien bei einem Dreieck ganzzahlige Glieder einer
arithmetischen Folge 1. Ordnung. Wie groß sind sie, wenn sie so klein wie möglich sind?

Angenommen, es gibt ein Dreieck, bei dem die Maßzahlen des Inkreisradius r und der Seiten a, b, c
aufeinanderfolgende Glieder einer arithmetischen Folge 1. Ordnung sind. Dann ist sicher der Inkreisradius
das kleinste Glied (der Inkreisradius ist kleiner als jede Seite).
O.B.d.A. sei a < b < c. (Hier und im folgenden seien mit r, a, b, c die Maßzahlen der entsprechenden
Strecken bezeichnet.)
Dann ist

a = r + d ; b = r + 2d ; c = r + 3d

wobei d die Differenz der arithmetischen Folge ist. Bekanntlich gilt nun für den Inkreisradius

r =
√

(s− a)(s− b)(s− c)
s

mit s = a+ b+ c

2

also
s = 3r + 6d

2 = 3
2(r + 2d) ; s− a = 1

2(r + 4d)

s− b = 1
2(r + 2d) ; s− c = 1

2r

Damit folgt

r =

√
r+4d

2 · r+2d
2 · r2

3 r+2d
2

= 1
2

√
r2 + 4rd

3

und 12r2 = r2 + 4rd, 11
4 r = d.

Damit bei ganzzahligem r auch a, b und c ganzzahlig werden, ist notwendig und hinreichend, dass d
ganzzahlig ist. Das ist aber genau dann der Fall, wenn r ≡ 0 (mod 4) ist. Das kleinstmögliche r ergibt
sich dann zu r = 4, für d folgt dann d = 11, und für die Seiten folgt a = 15, b = 26, c = 37. Tatsächlich
erfüllen diese Werte auch die Dreiecksungleichungen.
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Aufgabe 19/79
Es gibt Primzahlen p1k für die gilt, dass p2k = p1k + 100 ebenfalls Primzahl ist (Beispiele: p1k =
3; p1k = 7; p1k = 13).
Es ist zu beweisen, dass für p1k > 3 keine Primzahl p2k größere Zahl eines Primzahl-Zwillingspaares
ist.

Primzahl-Zwillingspaare haben bekanntlich die Gestalt (p = 6m−1; q = 6m+1) mit m ∈ N . Die größere
Zahl eines Primzahl-Zwillingspaares lässt also beim Teilen durch 3 stets den Rest 1: q ≡ 1 (mod 3).
Nun ist wegen p1k > 3 auch p1k ≡ 1 (mod 3), wenn p2k Primzahl ist [wäre nämlich p1k ≡ −1 (mod 3), so
wäre p2k ≡ −1 + 100 = 99 ≡ 0 (mod 3) und damit keine Primzahl].
Daraus folgt

p2k ≡ 1 + 100 = 101 ≡ 2 (mod 3)

Das steht aber im Widerspruch zu q ≡ 1 (mod 3), woraus die Behauptung folgt.

Aufgabe 20/79
Gegeben seien eine Gerade g und zwei Punkte A und B, die nicht auf g, aber in der gleichen Halbebene
liegen. Man ermittle alle Punkte Ci auf g, für die g Tangente an den Umkreis des Dreiecks ABCi ist.

Angenommen, die Aufgabe wäre bereits gelöst. Es sei gAB die durch A und B bestimmte Gerade, P ihr
Schnittpunkt mit g. Dann gilt nach dem Sehnen-Tangenten-Satz: PA · PB = PC2

i .
Andererseits gilt nach dem Höhensatz in jedem rechtwinkligen Dreieck mit den Hypotenusenabschnitten
PA und PB (wobei P der Fußpunkt des Lotes c auf die Hypotenuse ist): PA · PB = h2

Man findet also PCi als Höhe eines rechtwinkligen Dreiecks mit den Hypotenusenabschnitten PA und
PB.
Konstruktion nach dem Satz des Thales: Man verlängere ABP über P hinaus um BP bis B′, schlage über
AB′ den Thaleskreis und errichte in P die Senkrechte auf AB′. Ihr Schnittpunkt mit dem Thaleskreis sei
D.
Nun schlage man mit PD als Radius um P einen Kreis. Seine Schnittpunkte mit g sind die gesuchten
Punkte Ci.
Offensichtlich gibt es deren im allgemeinen zwei. Die Konstruktion versagt, wenn gAB ‖ g ist, da dann
kein Schnittpunkt P existiert. In diesem Fall ist offensichtlich, dass Ci auf der Mittelsenkrechten von AB
liegen muss, also ihr Schnittpunkt mit g ist. Im besonderen existiert also nur ein Punkt Ci.

Aufgabe 21/79
Es sind alle Tripel (x; y; z) positiver reeller Zahlen zu bestimmen, die den beiden Bedingungen
genügen:

x+ y + z = π (1) ; sin2 x+ sin2 y = sin2 z (2)

Wegen x; y; z > 0 und (1) gilt 0 < x; y; z < π. Die Zahlen x; y; z können also (im Bogenmaß gemessene)
Winkel ebener Dreiecke sein. Werden die gegenüberliegenden Seiten mit a; b bzw. c bezeichnet, so gilt
nach dem Sinussatz

sin x : sin y = a : c und sin y : sin z = b : c

woraus sich

sin2 x+ sin2 y =
(a
c

)2
sin2 z +

(
b

c

)2
sin2 z = a2 + b2

c2
sin2 z

ergibt. Aus (2) folgt damit
a2 + b2

c2
= 1 ; a2 + b2 = c2

d.h., es handelt sich um ein rechtwinkliges Dreieck mit der Hypotenuse c. Dann ist aber z = 0,5π, sin z = 1
und wegen (1) auch x + y = 0,5π. Offenbar sind für alle Tripel (x; y; z) mit x + y = z = 0,5π auch die
Bedingungen (1) und (2) erfüllt, so dass damit alle Tripel gefunden sind.
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Aufgabe 22/79
Es ist zu beweisen: Aus a+ b+ c = 0 folgt a3 + b3 + c3 = 3abc.

Wenn a+ b+ c = 0 ist, so ist a+ b = −c und damit

(a− b)3 = (−c)3 = a2 + 3a2b+ 3ab2 + b3 = a3 + 3ab(a+ b) + b3 = a3 − 3abc+ b3

also a3 + b3 + c3 = 3abc.

Aufgabe 23/79
Gegeben sei die Folge

{ak} =

√
2 +

√
2 +
√

2 + ...

(k Wurzeln). Man ermittle den Grenzwert lim
k→∞

{ak}.

Zunächst ist zu prüfen, ob die Folge {ak} einen Grenzwert z hat. Offensichtlich ist sie streng monoton
wachsend, da sich beim Übergang von ak zu ak+1 der Radikand vergrößert. Es genügt also, zu prüfen,
ob sie eine obere Schranke hat.
Behauptung: Die Zahl 2 ist obere Schranke der Folge {ak}.
Beweis: 1. Es ist a1 =

√
2 < 2.

2. Aus ak < 2 folgt ak+1 =
√

2 + ak <
√

2 + 2 = 2. Also gilt für jedes ak: ak < 2.
Damit ist die Existenz des Grenzwertes z gesichert. Dann gilt aber

lim
k→∞

ak+1 = lim
k→∞

ak = z

Daraus folgt
z =
√

2 + z → z2 − z − 2 = 0→ z1;2 = 0,5± 1,5
Wegen z > 0 entfällt z2. Es ist demnach lim

k→∞
ak = 2

Aufgabe 24/79
Gegeben sei ein Schachbrett mit n2-Feldern, die in üblicher Weise schwarz und weiß gefärbt seien (falls
n ungerade ist, seien die Eckfelder schwarz). A(n) sei die Anzahl der Möglichkeiten, n gleichfarbige
Türme so anzuordnen, dass kein Turm das Feld eines anderen beherrscht; B(n) sei die Anzahl der
entsprechenden Möglichkeiten, wenn die Türme nur auf schwarzen Feldern stehen dürfen.
Es ist zu zeigen, dass das Verhältnis A(n) : B(n) für beliebiges natürliches n > 1 stets eine natürliche
Zahl ist.

Offensichtlich gilt A(n) = n! (Für den ersten Turm hat man in einer Reihe n Anordnungsmöglichkeiten,
für den zweiten Turm in einer Reihe nur noch n − 1 usf. bis zum n-ten, für den es n − (n − 1) = 1
Möglichkeit gibt).
Für B(n) ist eine Fallunterscheidung erforderlich:
1) n sei gerade. Dann gilt, dass B(n) =

(
n
2 !
)2 ist (für den ersten Turm hat man in einer Reihe n

2
Anordnungsmöglichkeiten, für den zweiten ebenfalls, für den dritten und vierten n−2

2 usf.)
2) n sei ungerade. Wird n um 1 vermindert, so liegt Fall 1 vor:

B(n− 1) =
(
n− 1

2 !
)2

Diese Anzahl ist für B(n) mit n+1
2 zu multiplizieren:

B(n) =
(
n− 1

2 !
)2
· n+ 1

2

Also gilt für das Verhältnis A(n) : B(n) entweder

A(n)
B(n) = n!(

n
2 !
)2 = n!

n
2 !(n− n

2 )! =
(
n
n
2

)
oder A(n)

B(n) = n!(
n−1

2 !
)2 · n+1

2

= n!
n−1

2 !(n− n−1
2 )!

=
(

n
n−1

2

)
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In jedem Fall gilt, dass das Verhältnis A(n) : B(n) ein Binomialkoeffizient natürlicher Zahlen und damit
eine natürliche Zahl ist. (Bemerkung: Die Behauptung gilt sogar für den trivialen Fall n = 1.)

Aufgabe 25/79
Man bestimme alle Paare (a; b) natürlicher Zahlen, bei denen die Differenz der Quadrate gleich 1000
ist.

Nach der Aufgabenstellung sind Paare natürlicher Zahlen a und b gesucht, für die die Gleichung

a2 − b2 = (a+ b)(a− b) = 1000

gilt. Wir zerlegen die Zahl 1000 auf alle möglichen Weisen in ein Produkt mit zwei natürlichen Zahlen
als Faktoren:

1000 = 1000 · 1 = 500 · 2 = 250 · 4 = 200 · 5 = 125 · 8 = 100 · 10 = 50 · 20 = 40 · 25

Es müssen also die beiden Gleichungen a+ b = t1, a− b = t2 erfüllt sein, wobei die Faktoren mit t1 (der
größere) und mit t2 (der kleinere) bezeichnet wurden. Ihre Lösungen sind

a = t1 + t2
2 ; b = t1 − t2

2
Damit a und b natürliche Zahlen sind, müssen t1 und t2 beide gerade oder beide ungerade sein. Folg-
lich kommen für die Lösung der Aufgabe nur die Zerlegungen t11 = 500, t21 = 2, t12 = 250, t22 =
4, t13 = 100, t23 = 10, t14 = 50, t24 = 20 in Frage. Damit erhält man als Lösung die vier Paare
(251; 249), (127; 123), (55; 45), (35; 15). Durch die Probe bestätigt man die Richtigkeit.

Aufgabe 26/79
Durch den Eckpunkt A eines konvexen Vierecks ist eine Gerade zu legen, die das Viereck in zwei
flächengleiche Teile zerlegt.

A
B

C

D

E

F

Angenommen, die Aufgabe wäre bereits gelöst, und
o.B.d.A. wäre der Flächeninhalt des Dreiecks ACD größer
als der Flächeninhalt des Dreiecks ABC (Abbildung).
Dann schneidet die gesuchte Gerade die Viereckseite CD
in einem Punkt F . Es sei nun E der Schnittpunkt der
Parallelen durch B zu AC mit der Verlängerung von CD.
Dann ist das Dreieck AEC flächengleich dem Dreieck
ABC; damit ist das Dreieck AEF flächengleich dem
Viereck ABCF .

Aus dieser Feststellung ergibt sich die Konstruktion der gesuchten Geraden, die gefunden ist, wenn der
Punkt F ermittelt wurde. Da die Dreiecke AEF und AFD nach der Aufgabenstellung flächengleich sein
sollen, ist F der Halbierungspunkt der Strecke DE.

Konstruktionsbeschreibung: Die Parallele zu AC durch B wird mit der Verlängerung von CD zum Schnitt
gebracht; der Schnittpunkt ist E. Die Strecke ED wird halbiert; der Halbierungspunkt ist F . Die Gerade
durch A und F ist die gesuchte.
Falls der Flächeninhalt des Dreiecks ABC größer ist als der des Dreiecks ACD, vertauscht man die
Bezeichnungen der Eckpunkte B und D; damit ist die Aufgabe auf den vorherigen Fall zurückgeführt.

Aufgabe 27/79
Man beweise: Ist bei der Zahl z = 111...111 die Anzahl der Stellen ein Vielfaches von 66, so ist z ein
Vielfaches von 363.

Wegen 363 = 3 ·112 kann man die Teilbarkeit von z durch 363 beweisen, indem man die Teilbarkeit von z
durch 3 und durch 112 nachweist. Die Teilbarkeit durch 3 folgt sofort aus der Teilbarkeit der Quersumme
Q(z) = 66k mit k ∈ N (nach Voraussetzung gilt für die Anzahl n der Stellen n = 66k, jede Stelle ist mit
1 besetzt).

322



2.19 Aufgaben und Lösungen 1979

Wir weisen nun zunächst nach, dass z durch 11 teilbar ist. Es ist

z

11 = 111...111
11 = 1010...10 = z

mit n− 1 = 66k − 1 Stellen, wobei 33k Stellen mit 1 und 33k − 1 Stellen mit 0 in regelmäßigem Wechsel
besetzt sind. Dass die Division aufgeht, folgt aus der Geradzahligkeit von n = 66k (die alternierende
Quersumme Qa(z) wird damit gleich null).
Der Beweis ist vollständig, wenn gezeigt ist, dass z restlos durch 11 teilbar ist. Dazu bilden wir die
alternierende Quersumme Q(z). Da in z 33k Stellen mit 1 und 33k − 1 Stellen mit 0 in regelmäßigem
Wechsel besetzt sind, gilt Q(z) = 33k. Aus der Teilbarkeit von Qa(z) durch 11 folgt die Teilbarkeit von
z durch 11. Damit ist unter der getroffenen Voraussetzung z durch 3 · 11 · 11 = 363 ohne Rest teilbar.

Aufgabe 28/79
Es sind alle Primzahlpaare (p;P ) zu ermitteln, die der Gleichung P = 14p2 + 1 genügen.

Für p = 2 ist 14p2 + 1 = 57, also keine Primzahl.
Für p = 3 ist 14p2 + 1 = 127 = P . Demnach ist (p;P ) = (3; 127) eines der gesuchten Paare.
Ist p > 3, so ist p = 3k ± 1 mit k ∈ N ; k > 1, also

14p2 + 1 = 14(3k ± 1)2 + 1 = 14(9k2 ± 6k + 1) + 1 = 126k2 ± 84k + 15 = 3(42k2 ± 28k + 5)

Daraus folgt, dass 14p2 +1 keine Primzahl ist. Damit ist das gefundene Paar (p;P ) = (3; 127) das einzige.

Aufgabe 29/79
Welche Glieder der Folge {ak} = {8; 88; 888; 8888; ...} sind Quadratzahlen?

Das allgemeine Bildungsgesetz der Folge ist

ak = 8(10k−1 + 10k−2 + ...+ 101 + 100) = 8
k−1∑
i=0

10i = 8 · 10k − 1
9

Offensichtlich ist a1 keine Quadratzahl. Für k ≥ 2 gilt nun

10k ≡ 0 (mod 25) ; 10k − 1 ≡ −1 ≡ 99 (mod 25)

10k − 1
9 ≡ 11 (mod 25) ; 8 · 10k − 1

9 ≡ 88 ≡ 13 (mod 25)

Man prüft aber leicht nach, dass 13 unter den Quadraten der Reste beim Teilen durch 25 nicht vorkommt,
d.h., kein Glied der Folge ist Quadratzahl.

Aufgabe 30/79
Man löse das folgende System diophantischer Gleichungen

135x1 + 100x2 − x3 = −4 (1)
97x1 + 132x2 − x4 = 20 (2)

7x1 + 193x2 − x4 = 0 (3)

mit den Bedingungen x1;x2;x3;x4 ∈ N , x2 ≤ 30 und bilde die Tripel (x1;x2, x3) und (x1;x2, x4).

Es bietet sich zunächst die Subtraktion (2)-(3) zur Elimination von x4 an. Dadurch ergibt sich 90x1 −
61x2 = 20, woraus sofort x2 ≡ 0 (mod 10), also x2 = 10k mit k = 0; 1; 2; 3 folgt (k > 3 entfällt wegen
x2 ≤ 30). Damit erhält man

90x1 − 610k = 20→ x1 = 61k + 2
9 = 6k + 7k + 2

9
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also (wegen x1 ∈ N) k = 1, x2 = 10, x1 = 7. Mit diesen Werten erhält man aus Gleichung (1)

x3 = 135 · 7 + 100 · 10 + 4 = 1949

und aus einer der Gleichungen (2) oder (3): x4 = 1979. Die gesuchten Tripel sind also (7.10.1949) und
(7.10.1979).

Aufgabe 31/79
In der Folge der natürlichen Zahlen gibt es Primzahlen, die unmittelbarer Nachfolger des Quadrates
einer natürlichen Zahl sind.
Beispiele: 2 = 12 + 1, 5 = 22 + 1, 17 = 42 + 1, 37 = 62 + 1.
Man beweise, dass im Gegensatz dazu keine Primzahl (ausgenommen die Primzahl 3) das Quadrat
einer natürlichen Zahl als unmittelbaren Nachfolger hat!

Den Beweis der Behauptung führen wir indirekt. Angenommen, es gäbe eine Primzahl p 6= 3, deren
Nachfolger das Quadrat einer natürlichen Zahl n sei. Dann gilt

p+ 1 = n2 ; p = n2 − 1 = (n− 1)(n+ 1)

Aus der Primzahleigenschaft von p folgt unmittelbar, dass der kleinere der beiden Faktoren n + 1 und
n− 1 gleich 1, der größere aber gleich p sein muss: n− 1 = 1 , n+ 1 = p. Daraus folgt sofort n = 2 und
p = 3 als einzige Lösung im Widerspruch zu der Annahme p 6= 3.
Die Annahme ist also falsch. Das heißt, keine Primzahl außer 3 hat als unmittelbaren Nachfolger das
Quadrat einer natürlichen Zahl.

Aufgabe 32/79
Es gilt 9 · 45 = 405. Für welche Produkte aus einer einstelligen und einer zweistelligen Zahl gilt, dass
man sie durch Einfügen einer Null zwischen die erste und die zweite Stelle des zweistelligen Faktors
erhält?

Es seien a der einstellige Faktor, 10b + c der zweistellige, wobei a; b; c ∈ N , 1 ≤ b; c ≤ 9, 2 ≤ a ≤ 9 gilt.
Dann ist (nach den Bedingungen der Aufgabe) die folgende diophantische Gleichung zu lösen:

a(10b+ c) = 100b+ c

Stellt man diese Gleichung nach b um, so erhält man

b = c(a− 1)
10(10− a)

Da der Nenner des Bruches auf der rechten Seite dieser Gleichung den Faktor 10 enthält, ist entweder
(1) c gerade und a− 1 = 5, also a = 6, oder (2) c = 5, a− 1 gerade. Aus (1) folgt dann sofort b = c

8 , also
c = 8, b = 1. Tatsächlich gilt 6 · 18 = 108.
Aus (2) ergibt sich

b = a− 1
2(10− a)

Setzt man diese Werte für a ein, so erhält man nur für a = 7 und für a = 9 ganzzahlige Werte für b:

a = 7 : b = 6
2 · 3 = 1 ; a = 9 : b = 8

2 · 1 = 4

Auch hier bestätigt die Probe: 7 ·15 = 105, 9 ·45 = 405. Es gibt also genau drei Produkte der geforderten
Art.

Aufgabe 33/79 Man zeige, dass für alle positiven reellen Zahlen x; y mit x+ y = 1 die Ungleichung
gilt: (

1 + 1
x

)(
1 + 1

y

)
≥ 9
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Es ist (
1 + 1

x

)(
1 + 1

y

)
= 1 + 1

x
+ 1
y

+ 1
xy

= 1 + x+ y

xy
+ 1
xy

= 1 + 2
xy

(∗)

wegen x+ y = 1. Nach der Beziehung zwischen dem arithmetischen und dem geometrischen Mittel gilt

x+ y

2 = 1
2 ≥
√
xy ; 1

4 ≥ xy → 4 ≤ 1
xy

Daraus folgt mit (*) die Behauptung(
1 + 1

x

)(
1 + 1

y

)
= 1 + 2

xy
≥ 1 + 2 · 4 = 9

Aufgabe 34/79

Es sei xi ∈ {+1;−1} mit i = 1; 2; 3; ...; 1980 und
1980∏
i=1

xi > 0.

Man beweise, dass dann gilt:
990∏
i=1

x2i−1x2i 6= 0

Durch einen Druckfehler (Behauptung ist eine Summe kein Produkt) wurde die Aufgabe unlösbar. Daher
wurde sie als Aufgabe 10/80 erneut gestellt.

Aufgabe 35/79
Im vergangenen Jahr ergab sich mein Alter als Quersumme meines Geburtsjahres. Wie alt war ich?

Die größte Quersumme eines Jahres seit der Zeitenwende ist 1+8+9+9 = 27. Also bin ich im vergangenen
Jahr 1979 höchstens 27 Jahre alt gewesen und damit frühestens 1952 geboren.
Es sei nun 1900 + 10a+ b mit a; b ∈ N , 0 ≤ a, b ≤ 9 mein Geburtsjahr. Dann gilt für mein Alter

1979− (1900 + 10a+ b) = 1 + 9 + a+ b also 11a+ 2b = 69

Diese diophantische Gleichung ist leicht lösbar:

a = 6 + 3− 2b
11

woraus sofort b = 7, a = 5 folgt (es ist 3− 2b ≡ 0 mod 11, also 2b ≡ 3 mod 11; wegen 0 ≤ b ≤ 9 kommt
einzig b = 7 in Frage).
Ich bin also im Jahre 1957 geboren und hatte 1979 ein Alter von 1 + 9 + 5 + 7 = 22 Jahren. Wie die
Lösung zeigt, ist das Ergebnis eindeutig.

Aufgabe 36/79
Man löse die Gleichung (

4k
k

)
· k2 =

(
4k
k + 1

)
· (k + 1)

mit k ∈ N, k > 0, und berechne für die gefundene(n) Lösung(en) den Wert der beiden Terme.

Es ist (
4k
k

)
· k2 = (4k)!k2

k! · (3k)! ;
(

4k
k + 1

)
· (k + 1) = (4k)!(k + 1)

(k + 1)! · (3k − 1)!
Daher kann man die gegebene Gleichung in der Form

(4k)!k2

k! · (3k)! = (4k)!(k + 1)
(k + 1)! · (3k − 1)!
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schreiben. Nun kann man weiter äquivalent umformen:

k2

k! · (3k)! = (k + 1)
(k + 1)! · (3k − 1)! = 1

k! · (3k − 1)!

k2 = (3k)!
(3k − 1)! = 3k

Daraus folgt wegen k > 0 sofort k = 3. Setzt man dies in die gegebene Gleichung ein, so erhält man(
12
9

)
· 9 =

(
12
4

)
· 4 ; 12 · 11 · 10

1 · 2 · 3 · 9 = 12 · 11 · 10 · 9
1 · 2 · 3 · 4 · 4 = 1980
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2.20 Aufgaben und Lösungen 1980

Aufgabe 1/80
Es sei P ein innerer Punkt eines gleichseitigen Dreiecks mit der Seite a; ferner gelten die folgenden
Beziehungen: PA = x, PB = y, PC = z; A, B, C seien die Eckpunkte des Dreiecks. Man beweise,
dass die Ungleichungen gelten: 1,5a < x+ y + z+ < 2a.

Die linke Ungleichung folgt sofort aus der Gültigkeit der Dreiecksungleichung. Es ist nämlich

x+ y > AB = a ; y + z > BC = a ; z + x > CA = a

Addiert man diese drei Ungleichungen, so ergibt sich

2(x+ y + z) > 3a ; x+ y + z > 1,5a

Zum Beweis der rechten Ungleichung ziehen wir durch P eine Parallele zu AB, die BC in D und CA in
E schneidet. Das Dreieck DCE ist dann ebenfalls gleichseitig und habe die Seitenlänge t, der Punkt P
teilt die Seite ED in die beiden Abschnitte EP = u und PD = v. Weiter gilt dann AE = BD = a − t.
Nun folgt aus der Gültigkeit der Dreiecksungleichung

x < AE + EP = a− t+ u ; y < BD + PD = a− t+ v

Ferner ist sicher z < t (im Dreieck EPC ist ]EPC der größte Winkel; entsprechend im Dreieck DPC
]DPC; dem größeren Winkel liegt aber die größere Seite gegenüber). Addiert man diese drei Unglei-
chungen, so erhält man

x+ y + z < 2a− t+ u+ v = 2a

wegen u+ v = t.

Aufgabe 2/80
Es sind alle Primzahlen p zu ermitteln, die der Gleichung 2p+ 1 = m3 mit m ∈ N genügen.

Da 2p+ 1 eine ungerade Zahl ist, muss; vorausgesetzt, es existiert ein m ∈ N mit 2p+ 1 = m3; auch m
ungerade sein: m = 2k + 1 mit k ∈ N . Damit ergibt sich

2p+ 1 = (2k + 1)3 = 8k3 + 12k2 + 6k + 1→ p = k(4k2 + 6k + 3)

Nun ist p laut Voraussetzung eine Primzahl; daraus folgt, dass entweder k = 1 und 4k2 + 6k + 3 = p
oder k = p und 4k2 + 6k + 3 = 1 ist. Die letzte (in k quadratische) Gleichung hat aber im Bereich der
natürlichen Zahlen keine Lösung. Daher ist k = 1, p = 4k2 + 6k + 3 = 13 und somit m = 3.
Es gibt also genau eine Primzahl p mit der geforderten Eigenschaft: p = 13.

Aufgabe 3/80
Man finde alle nicht konstanten, überall stetigen Funktionen f mit f(x) = f(2x) für alle reellen
Zahlen x.

Angenommen, es gibt eine Funktion mit den geforderten Eigenschaften. Da f eine nicht konstante Funk-
tion sein soll, existiert sicher eine reelle Zahl x1 für die gilt f(x1) 6= f(0). Aus f(x) = f(2x) folgt aber
auch f(x) = f(x2 ) und damit

f(x1) = f
(x1

2

)
= f

(x1

4

)
= ... = f

(x1

2n
)

Bildet man nun die Grenzwerte lim
n→∞

f
(
x1
2n
)

und lim
n→0

f(x), die wegen der Stetigkeit sicher existieren, so
gilt einerseits

lim
n→∞

f
(x1

2n
)

= lim
n→∞

f(x1) = f(x1)

andererseits
lim
n→∞

f
(x1

2n
)

= lim
z→0

f(z) = f(0)
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(mit z = x1
2n ). Daraus folgt f(x1) = f(0) im Widerspruch zu f(x1) 6= f(0). Also ist die Annahme falsch,

es gibt demnach keine Funktion mit den geforderten Eigenschaften.
Zusatz: Lässt man konstante Funktionen zu, so zeigt sich, dass genau diese die übrigen Forderungen
erfüllen. Verzichtet man auf die Forderung nach Stetigkeit, so erfüllt z.B. die Funktion f(x) = sgn2(x)
die übrigen Forderungen (es ist sgn x = 1 für x > 0, sgn x = 0 für x = 0 und sgn(x) = −1 für x < 0).

Aufgabe 4/80
Man beweise die Gültigkeit der Ungleichung für alle reellen Zahlen x > 0: ex > 1 + ln (1 + x).

Es ist für x > 0

ex =
∞∑
i=0

xi

i! = 1 + x+ x2

2! + ... > 1 + x

d.h. ex − 1 > x. Aus der strengen Monotonie der Exponentialfunktion folgt dann

ee
x−1

> ex > 1 + x ; ln ee
x−1

= ex − 1 > ln 1 + x

und somit ex > 1 + ln (1 + x).

Aufgabe 5/80
Wieviele natürliche Zahlen gibt es, deren Darstellung im Dezimalsystem genau aus den Ziffern 1; 2;
3; 4; 5; 6; 7; 8 besteht (wobei jede auch nur ein Mal auftritt) und die restlos durch 11 teilbar sind?

Bekanntlich gilt die Regel: Eine natürliche Zahl n ist genau dann restlos durch 11 teilbar, wenn ihre
alternierende Quersumme QA(n) restlos durch 11 teilbar ist.
Bezeichnet man die Summe der vier in QA(n) mit Pluszeichen versehenen Glieder mit s1 die Summe der
übrigen vier Glieder mit s2, so gelten die beiden Gleichungen

s1 + s2 = Q(n) = 36 (1) ; s1 − s2 = QA(n) = 11k (2)

(k ∈ G). Der kleinste Wert, den die Summen s1 und s2 annehmen können, ist 1 + 2 + 3 + 4 = 10, der
größte ist 5 + 6 + 7 + 8 = 26. Damit gilt 10 ≤ s1 ≤ 26 (3).
Addiert bzw. subtrahiert man (1) und (2), so erhält man

2s1 = 36 + 11k ; 2s2 = 36− 11k (4)

woraus sofort folgt, dass k gerade ist. Aus (3) und (4) ergibt sich weiter

20 ≤ s1 = 36 + 11k ≤ 52 ; −16 ≤ 11k ≤ 16

Da k geradzahlig ist, wird diese Ungleichung nur für k = 0 erfüllt. Die beiden Gleichungen (4) ergeben
dann s1 = 18, s2 = 18. Es gibt nun die folgenden Möglichkeiten, die Summen s1 und s2 zu bilden:

s1 s2 s1 s2
1+2+7+8 3+4+5+6 1+3+6+8 2+4+5+7
1+4+5+8 2+3+6+7 1+4+6+7 2+3+5+8
2+3+6+7 1+4+5+8 2+4+5+7 1+3+6+8
2+3+5+8 1+4+6+7 3+4+5+6 1+2+7+8

Da man in jeder der beiden Summen die Anordnung auf 4! verschiedene Weisen wählen kann, ergeben
sich insgesamt 8 · 4! · 4! = 4608 verschiedene Zahlen mit der geforderten Eigenschaft.

Aufgabe 6/80
Man konstruiere ein rechtwinkliges Dreieck aus dessen Hypotenuse AB und dem Punkt D, in dem
die Halbierende des rechten Winkels die Hypotenuse schneidet!

Zur Lösung verwenden wir einen Hilfssatz: In jedem Dreieck halbiert jede Winkelhalbierende den Um-
kreisbogen über der gegenüberliegenden Seite.
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Der Beweis folgt unmittelbar aus dem Peripheriewinkelsatz. Ist nämlich ABC das Dreieck und B′ der
Schnittpunkt, den die Halbierende des Winkels ABC auf dem Umkreisbogen über AC erzeugt, so gilt:
]ACB′ = ]ABB′ (gemeinsame Sehne AB′); ]ABB′ = ]B′BC (BB’ ist Halbierende); ]B′BC =
]CAB′ (gemeinsame Sehne CB′), also ]ACB′ = ]CAB′.
Daraus folgt AB′ = CB′ und damit Bogen AB′ = Bogen CB′. Durch zyklische Vertauschung ergibt sich
der Beweis für die übrigen Winkel.
Damit ergibt sich die folgende Konstruktion:
1. Man schlage über AB als Durchmesser einen Kreis. Auf ihm liegt der Punkt C (Satz des Thales).
2. Man errichte auf AB die Mittelsenkrechte. Ihre Schnittpunkte mit dem Kreis seien N und N ′.
3. Man ziehe Geraden durch D und N bzw. N ′. Ihre Schnittpunkte mit dem Thaleskreis sind C bzw. C ′.
Die Aufgabe ist (bis auf Achsensymmetrie bezüglich AB) stets eindeutig lösbar, wenn D im Inneren von
AB liegt.

Aufgabe 7/80
Man beweise: In jedem rechtwinkligen Dreieck mit den Katheten a und b und der Hypotenuse c gilt
die Ungleichung a+ b ≤ c

√
2. In welchem Fall gilt das Gleichheitszeichen?

Sicher gilt die Identität
(a+ b)2

2 + (a− b)2

2 = a2 + b2

Wegen (a− b)2 ≥ 0 folgt daraus (a+ b)2 ≤ 2(a2 + b2). Da a und b Katheten eines rechtwinkligen Dreiecks
mit der Hypotenuse c sind, gilt a2 + b2 = c2 und damit

(a+ b)2 ≤ 2c2 ; a+ b ≤ c
√

2

Ist a = b, so ist (a − b)2 = 0, und es gilt in der zu beweisenden Ungleichung das Gleichheitszeichen. Ist
dagegen a 6= b, so folgt a+ b < c

√
2.

Aufgabe 8/80
Gesucht sind alle natürlichen Zahlen n mit den folgenden Eigenschaften:

1. Es ist n = p1 · p2; das Produkt zweier (echt) zweistelligen Primzahlen p1 und p2.

2. Für die Quersumme Q(n) gilt Q(n) = p1 mit p1 < p2.

3. Die Einerstellen von p1 und p2 sind einander gleich.

4. Auch p1 ± 6 ist (echt) zweistellige Primzahl.

Da p1 und p2 zweistellige Primzahlen sind, ist n offenbar höchstens vierstellig. Daraus folgt Q(n) ≤ 4 ·9 =
36. Wegen Q(n) = p1 folgt sogar Q(n) = p1 ≤ 31.
Es kommen also für p1 nur die sieben Primzahlen 11; 13; 17; 19; 23; 29; 31 in Frage. Wegen Bedingung 4
entfallen davon sogleich die fünf Primzahlen 11; 13; 19; 29 und 31, so dass nur p11 = 17 und p12 = 23
verbleiben.
Wegen der Gleichheit der Einerstellen kommen als p21 nur die Primzahlen 37; 47; 67 und 97, für p22 nur
43; 53; 73 und 83 in Betracht. Von den damit zur Diskussion stehenden Paaren scheidet man mit Hilfe
von Q(n) = Q(p1 · p2) = p1 durch Probieren rasch sechs Paare aus. Tatsächlich erfüllen die beiden dann
noch verbleibenden Paare p11 = 17; p21 = 37 und p12 = 23; p22 = 73 alle Bedingungen der Aufgabe:

17 · 37 = 629 = n1; Q(n1) = 6 + 2 + 9 = 17; 17 + 6 = 23; 17− 6 = 11
23 · 73 = 1679 = n2; Q(n2) = 1 + 6 + 7 + 9 = 23; 23 + 6 = 29; 23− 6 = 17

Es gibt also genau zwei natürliche Zahlen n1 = 629 und n2 = 1679 mit den geforderten Eigenschaften.

Aufgabe 9/80
Für welche reellen Zahlen x bilden die Zahlen loga 2, loga (2x − 1), loga (2x + 3) eine arithmetische
Folge 1. Ordnung?
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Wir unterscheiden zwei Fälle:
1. Die Folge sei wachsend. Das heißt, 2x − 1 > 2; 2x > 3;x > log2 3. Dann ist

loga (2x + 3)− loga (2x − 1) = loga (2x − 1)− loga 2

loga
2x + 3
2x − 1 = loga

2x − 1
2 → 2x + 3

2x − 1 = 2x − 1
2

(wegen der Monotonie der log-Funktion). Setzt man u = 2x’ so nimmt die letzte Gleichung die Gestalt

u+ 3
u− 1 = u− 1

2

an; ihre Lösungen sind u1 = 5, u2 = −1. Die Lösung u2 entfällt wegen u = 2x > 0. Aus u = 2x = 5 folgt
nun x = log2 5 > log2 3 als Lösung.
2. Die Folge sei fallend. Das heißt, 2x − 1 < 2; 2x < 3;x < log2 3. Dann ist

loga (2x + 3)− loga 2 = loga 2− loga (2x − 1)

Durch analoge Rechnung folgt daraus
u+ 3

2 = 2
u− 1

mit u = −1 + 2
√

2, x = log2 (2
√

2− 1) als zweiter Lösung. (Der dritte, theoretisch mögliche Fall einer
konstanten Folge scheidet offensichtlich wegen 2x − 1 6= 2x + 3 sofort aus.) Die Probe bestätigt die
Richtigkeit der Ergebnisse.

Aufgabe 10/80

Es sei xi ∈ {+1;−1} mit i = 1; 2; 3; ...; 1980 und
1980∏
i=1

xi > 0. Man beweise, dass dann gilt:

990∑
i=1

x2i−1x2i 6= 0

Wegen
1980∏
i=1

xi > 0 ist die Anzahl der negativen ai gerade. Weiter ist x2i−1x2i = ±1. Angenommen es

gälte
990∑
i=1

x2i−1x2i = 0

Dann müsste die Summe je zur Hälfte aus positiven und negativen Summanden bestehen, woraus folgt,
dass die Anzahl der negativen ai ungerade ist im Widerspruch zu der oben getroffenen Feststellung (in den
445 negativen Summanden ist je genau ein xi negativ, in jedem der 445 positiven Summanden entweder
kein oder genau zwei xi). Also ist die Annahme falsch; die Summe ist nicht gleich null.

Aufgabe 11/80 Man beweise, dass für jede natürliche Zahl n ≥ 1 die Ungleichung gilt:

n∑
k=1

1
k
> ln (n+ 1)

Bekanntlich ist die Folge {ak} =
{(

1 + 1
k

)k} streng monoton wachsend, und ihr Grenzwert für k → ∞
ist e. Demnach gilt für jedes k ≥ 1 (

1 + 1
k

)k
=
(
k + 1
k

)k
< e

Durch Logarithmieren folgt daraus

k ln k + 1
k

= k[ln (k + 1)− ln k] < ln e = 1→ ln (k + 1)− ln k < 1
k
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und durch Summieren
n∑
k=1

[ln (k + 1)− ln k] <
n∑
k=1

1
k

Nun ist aber (u.a. wegen ln 1 = 0)
n∑
k=1

[ln (k + 1)− ln k] =
n∑
k=1

ln (k + 1)−
n∑
k=1

ln k =
n+1∑
k=2

ln k −
n∑
k=2

ln k = ln (n+ 1)

womit der Beweis geführt ist.

Aufgabe 12/80
Ein gewisser Herr Quidam macht über sein Alter die folgenden Angaben:
1. Mein Geburtsjahr kann man als doppeltes Produkt aus drei aufeinanderfolgenden natürlichen Zah-
len darstellen.
2. Wenn ich 36 Jahre alt sein werde, kann man die Jahreszahl als vierfaches Produkt aus drei auf-
einanderfolgenden natürlichen Zahlen darstellen.
3. Die größte Zahl des Tripels unter 2. ist mit der kleinsten Zahl des Tripels unter 1. identisch.
Es ist zu beweisen, dass dies ein Aprilscherz ist!

Bezeichnet man das Geburtsjahr mit x, dann gelten nach den Bedingungen der Aufgabe die folgenden
Gleichungen:

x = 2a(a+ 1)(a+ 2) = 2a3 + 6a2 + 4a
x+ 36 = 4(a− 2)(a− 1)a = 4a3 − 12a2 + 8a

(wobei mit a die kleinste Zahl des Tripels unter 1. bzw. die größte Zahl des Tripels unter 2. bezeichnet
wurde). Subtraktion der ersten von der zweiten Gleichung führt (nach Subtraktion von 36) auf die in a
kubische Gleichung

a3 − 9a2 + 2a− 18 = 0
Nach dem Wurzelsatz des Vieta müssen ganzzahlige Lösungen Teiler des absoluten Gliedes sein; von den
in Frage kommenden Zahlen ±1, ±2, ±3, ±6, ±9, ±18 erfüllt nur a = 9 die Probe.
Eine andere Möglichkeit zur Lösung der Gleichung ist die Produktdarstellung

a3 − 9a2 + 2a− 18 = (a2 + 2)(a− 9) = 0

Damit ergibt sich das Geburtsjahr zu x = 2 · 9 · 10 · 11 = 1980.
Ein Neugeborenes dürfte wohl kaum in der Lage sein, derartige Angaben über sein Alter zu machen! (Es
stimmt aber: 2016 = 1980 + 36 = 4 · 7 · 8 · 9.

Aufgabe 13/80
Aus einer beliebig gewählten natürlichen Zahl n1 bilde man eine natürliche Zahl n2, indem man eine
dreistellige natürliche Zahl ”anhängt”. Für welche Zahlen n ist die Summe s = n1 + n2 restlos durch
77 teilbar?

Es ist n2 = 1000n1 + n, also s = n1 + n2 = 1001n1 + n. Da 1001 = 7 · 11 · 13 restlos durch 77 = 7 · 11
teilbar ist, ergibt sich die Teilbarkeit von s genau dann, wenn n durch 77 teilbar ist.
Damit erhält man die folgenden 11 dreistelligen Zahlen n:

154; 231; 308; 385; 462; 539; 616; 693; 770; 847; 924

Lässt man auch ”unecht dreistellige” Zahlen gelten, so erfüllt auch 077 die Bedingung; wird darüber hinaus
die Zahl Null in die Menge der natürlichen Zahlen einbezogen, so ist auch n = 000 zu berücksichtigen, so
dass man maximal 13 Zahlen n anführen kann.

Aufgabe 14/80
Es ist zu beweisen, dass die Summe 100101102...199 + 800801802...899 ohne Rest durch 999 teilbar
ist!
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Wir verwenden die folgende Teilbarkeitsregel für 999, die analog zur Teilbarkeitsregel für 9 gilt:
Der Rest, den eine Zahl heim Teilen durch 999 lässt, ist gleich dem Rest, den die Summe aller dreistelligen
Zahlen lässt, in die man die Zahl von der Einerstelle her einteilen kann (wobei Darstellung im Dezimal-
system vorausgesetzt wird und Leerstellen mit gelten).
Wegen

99∑
i=0

(100 + i) = 100 + 199
2 · 100 = 14950 und

99∑
i=0

(800 + i) = 800 + 899
2 · 100 = 84950

ist die Summe der beiden Reste gleich 99900; demnach ist die Summe 100101102...199 + 800801802...899
ohne Rest durch 999 teilbar, wenn die verwendete Teilbarkeitsregel richtig ist. Der geforderte Beweis ist
damit auf den Beweis der Teilbarkeitsregel reduziert.
Es seien ai; bi; ci; i;n natürliche Zahlen (wobei die Zahl 0 als natürliche Zahl gelte) und ai; bi; ci ≤ 9.
Sicher gilt 103 ≡ 1 (mod 999). Daraus folgt

103i ≡ 1i ≡ 1 (mod 999) ; (100ai + 10bi + ci) · 103i ≡ (100ai + 10bi + ci) (mod 999)

Aus der Summierung beider Seiten über alle i folgt sofort die o.a. Teilbarkeitsregel.

Aufgabe 15/80
Gegeben seien 2n positive, reelle Zahlen ai; bi mit i = 1; 2; 3; ...;n und

n∑
i=1

ai =
n∑
i=1

bi = 1. Man beweise

n∑
i=1

a2
i

bi
≥ 1

Da Quadrate reeller Zahlen stets nichtnegativ sind, gilt sicher (ai−bi)2 ≥ 0. Daraus folgt durch äquivalente
Umformungen (u.a. wegen bi > 0)

a2
i ≥ 2aibi − b2i = bi(2ai − bi)→

a2
i

bi
≥ 2ai − bi

und wegen
n∑
i=1

ai =
n∑
i=1

bi = 1:

n∑
i=1

a2
i

bi
≥

n∑
i=1

(2ai − bi) = 2
n∑
i=1

ai −
n∑
i=1

bi = 2− 1 = 1

Aufgabe 16/80
Man beweise die Richtigkeit der folgenden Behauptung: Dividiert man eine Primzahl durch 24, so ist
der Rest entweder 1 oder eine Primzahl.

Der Rest r, den eine Primzahl p bei Division durch 24 lässt, ist; offenbar ungerade (außer für p = 2; r = 2
ist Primzahl) und nicht durch 3 teilbar (außer für p = 3; r = 3 ist Primzahl), da sonst p durch 2 bzw. 3
teilbar und somit keine Primzahl wäre.
Ferner ist 0 < r < 24. Folglich kommen bei p > 3 für r nur die Zahlen 1; 3; 5; 7; 11; 13; 17; 19; 23 in Frage;
dies sind aber (außer 1) sämtlich Primzahlen.

Aufgabe 17/80 Man beweise die Gültigkeit der Ungleichung für alle reellen Zahlen x:(
x+ 1

2 sin (2x)
)(

x− 1
2 sin (2x)

)
≥ sin4 x
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Angenommen, die zu beweisende Ungleichung wäre falsch. Dann gälte

(x+ 0,5 sin (2x))(x− 0,5 sin (2x)) = x2 − 0,25 sin2 (2x) = x2 − 0,25(2 sin x cosx)2 =

= x2 − sin2 x cos2 x = x2 − sin2 x(1− cos2 x) = x2 − sin2 x+ sin4 x < sin4 x

also x2 < sin2 x und |x| < | sin x| im Widerspruch zu der Tatsache, dass |x| ≥ | sin x| für jede reelle Zahl x
gilt (wobei Gleichheit genau für x = 0 eintritt). Bei den Umformungen wurde von folgenden Identitäten
Gebrauch gemacht:

sin (2x) = 2 sin x cosx ; cos2 x = 1− sin2x

Aufgabe 18/80
Gesucht sind alle reellen Zahlen x, die der Gleichung für beliebige reelle Zahlen a genügen:

loga2+4 (2a4x2 − 60a4x+
√

9x2 − 27x− 7289) = loga2+16 (ax2 + 6x− 7379)

Wenn die gesuchten Zahlen x der Gleichung für beliebige reelle Zahlen a genügen sollen, müssen sie sie
speziell auch für a = 0 erfüllen:

log4

√
9x2 − 27x− 7289 = log16 (8x2 + 6x− 7379)

Nun folgt aus der bekannten Umrechnungsformel loga x = logb x
logb a

für b = a2:

loga x = loga2 x

loga2 a
= loga2 x

1
2

= 2 loga2 x = loga2 x2

Also ist
log4

√
9x2 − 27x− 7289 = log16 (9x2 − 27x− 7289)

Damit ist (1) äquivalent (2):

9x2 − 27x− 7289 = (8x2 + 6x− 7379)→ x2 − 33x+ 90 = 0→ x1 = 30;x2 = 3

Nur x1 besteht die Probe für alle reellen Zahlen a: loga2+4 1 = loga2+16 1 = 0.

Aufgabe 19/80
Man ermittle alle Lösungen der Gleichung p2 + 576 = n2, wobei p eine beliebige Primzahl und n eine
beliebige natürliche Zahl bedeuten.

Aus p2 + 576 = n2 folgt
p2 = n2 − 576 = n2 − 242 = (n− 24)(n+ 24)

Aus der Eindeutigkeit der Primfaktorzerlegung folgt wegen n− 24 6= n+ 24 daraus

n− 24 = 1→ n = 25 ; p2 = n+ 24→ p2 = 25 + 25 = 49 = 72

woraus sich mit p = 7 tatsächlich eine Primzahl ergibt. Der Lösungsweg schließt weitere Möglichkeiten
aus. Daher ist (p;n) = (7; 25) das einzige Lösungspaar.

Aufgabe 20/80
Gesucht ist eine Menge von Funktionen f , die der Gleichung f(x+ 1) = c · f(x) für jede reelle Zahl
x genügen (wobei c eine positive reelle Konstante ist).

Wenn f(x + 1) = c · f(x) für jede reelle Zahl x gelten soll, so muss die Gleichung speziell auch für
x = 0; 1; 2; 3; ... erfüllt sein. Es ist also

f(1) = c · f(0)
f(2) = c · f(1) = c2 · f(0)
f(3) = c · f(2) = c3 · f(0)

...

f(n) = c · f(n− 1) = cn · f(0)
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Es wird vermutet, dass f(x) = cn · f(0) ist. Tatsächlich gilt

f(x+ 1) = cx+1 · f(0) = c · cx · f(0) = c · f(x)

Mit f(0) = a ergibt sich die gesuchte Menge M zu

M = {f | f(x) = a · cx mit a; c;x ∈ P und c > 0}

(wobei mit P die Menge der reellen Zahlen bezeichnet wurde).
Nachbemerkung: Es wurde nicht gezeigt, dass außer der angegebenen Menge keine weitere existiert; das
aber ist in der Aufgabenstellung auch nicht gefordert!

Aufgabe 21/80
Man beweise den Satz: Ein ebenes Dreieck ist genau dann spitzwinklig, wenn die Ungleichung
tanα · tan β > 1 für jedes Winkelpaar α, β gilt.

1) Das Dreieck sei spitzwinklig. Dann gelten die Ungleichungen

0 < (α;β; γ = π − α− β) < π

2
also π

2 < α+ β < π sowie

0 < [tanα; tan β; tan γ = tan (π − α− β) = − tan (α+ β)]

folglich auch
tan (α+ β) = tanα+ tan β

1− tanα tan β < 0

Wegen tanα; tan β > 0 ist auch tanα+ tan β > 0; damit folgt sofort

1− tanα tan β < 0→ tanα tan β > 1

2) Es gelte tanα tan β > 1 > 0. Dann gilt sicher tanα; tan β > 0 (da sonst tanα; tan β < 0, also α;β > π
2

gelten müsste, was aber dem Winkelsummensatz widerspricht). Dann sind aber alle Schlüsse unter 1.
umkehrbar, d.h., es folgt tan γ > 0, also 0 < α;β; γ < π

2 , das Dreieck ist spitzwinklig.

Aufgabe 22/80
Man verwandle die Fläche eines regulären Pentagramms in ein flächengleiches Quadrat (wobei nur
Zirkel und Lineal als Konstruktionshilfsmittel zugelassen sind)!

Verbindet man die konkaven Ecken des Pentagramms mit dem Mittelpunkt (dieser ist mit dem Lineal
konstruierbar als Schnittpunkt der Strecken, die eine konkave Ecke mit der gegenüberliegenden konvexen
Ecke verbinden), so zerlegt man das Pentagramm in fünf Drachenvierecke. Große Diagonale dieser Dra-
chenvierecke ist der Umkreisradius (Verbindungsstrecke Mittelpunkt - konvexe Ecke); kleine Diagonale
ist die Verbindungsstrecke zweier benachbarter konkaver Ecken.
Der Flächeninhalt jedes dieser Drachenvierecke ist gleich dem halben Produkt aus den beiden Diagona-
len. Man kann also den Flächeninhalt des Pentagramms als Rechteck darstellen, dessen eine Seite der
Umkreisradius des Pentagramms und dessen andere Seite das 2,5fache der Verbindungsstrecke zweier
benachbarter konkaver Ecken ist. Dieses Rechteck ist offensichtlich mit Zirkel und Lineal konstruierbar.
Die Verwandlung des Rechtecks in ein flächengleiches Quadrat ist mit Hilfe des Höhensatzes (oder des
Kathetensatzes) möglich.

Danach ergäbe sich die folgende Konstruktionsbeschreibung:
1. Konstruiere den Mittelpunkt des Pentagramms!
2. Trage auf einer beliebigen Geraden den Umkreisradius des Pentagramms als Strecke AB ab!
3. Trage auf dieser Geraden die 2,5fache Verbindungsstrecke zweier benachbarter konkaver Ecken als
Strecke BC so ab, dass B zwischen A und C liegt.
4. Schlage über AC den Thaleskreis!
5. Errichte in B auf AC die Senkrechte! Ihr Schnittpunkt mit dem Thaleskreis sei D.
6. Konstruiere ein Quadrat mit der Seite BD! Dieses Quadrat hat den gleichen Flächeninhalt wie das
Pentagramm.
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Aufgabe 23/80
Man beweise, dass die Zahl 1110 − 1 restlos durch 600 teilbar ist; ohne die Potenz auszurechnen.

Für jede reelle Zahl a > 0 gilt

a10 − 1 = (a2 − 1)(a8 + a6 + a3 + a2 + 1)

Speziell für a = 11 folgt daraus sofort a2 − 1 = 112 − 1 = 120, also ist 1110 − 1 restlos durch 120 teilbar
(1).
Ferner lässt 11x für jede ganze Zahl x > 0 beim Teilen durch 10 stets den Rest 1; also lässt 118 + 116 +
114 + 112 + 1 beim Teilen durch 10 den Rest 5, ist demnach restlos durch 5 teilbar (2). Aus (1) und (2)
folgt: 1110 − 1 ist restlos durch 120 · 5 = 600 teilbar.

Aufgabe 24/80
Es ist eine hinreichende, von n unabhängige Bedingung für die natürliche Zahl a anzugeben, durch
die garantiert wird, dass die Zahl z = n8 + a für keine natürliche Zahl n eine Primzahl ist.

Sicher ist z = n8 + a genau dann keine Primzahl, wenn z in ein Produkt aus zwei natürlichen Zahlen
b; c > 1 zerlegbar ist:

z = n8 + a = b · c
Um zu untersuchen, unter welcher Bedingung dies möglich ist, formen wir z um:

z = n8 + a = n8 + 2n4√a+ a− 2n4√a = (n4 +
√
a)2 − (n2

√
2
√
a)2 =

=
(
n4 +

√
a+ n2

√
2
√
a

)(
n4 +

√
a− n2

√
2
√
a

)
Beide Faktoren sind sicher dann natürliche Zahlen, wenn sowohl

√
a als auch

√
2
√
a natürliche Zahlen

sind und wenn der kleinere der beiden Faktoren mindestens gleich 1 ist. Wir setzen daher√
2
√
a = k ∈ N → 2

√
a = k2 → a = 0,25k4

Damit a selbst eine natürliche Zahl ist, muss k gerade sein: k = 2m,m ∈ N . Dann ist a = 4m4,√
2
√
a = 2m und folglich

z = n8 + a = n8 + 4m4 = (n4 + 2m2 + 2n2m)(n4 + 2m2 − 2n2m) =

= (n4 + 2n2m+m2 +m2)(n4 − 2n2m+m2 +m2) = [(n2 +m2)2 +m2][(n2 −m2)2 +m2]
Der kleinere der beiden Faktoren ist [(n2 −m2)2 +m2]; er ist sicher dann größer als 1, wenn m > 1 ist.
Daraus folgt:
Die Zahl z = n8 + a ist sicher dann für keine natürliche Zahl n eine Primzahl, wenn a = 4m4 mit
m ∈ N,m ≥ 1 ist. Da nicht gezeigt wurde, dass keine andere als die verwendete Faktorenzerlegung
existiert, kann diese Bedingung nicht als notwendig angesehen werden.

Aufgabe 25/80
Man beweise, dass die Gleichung x2 + px + q = 0 keine ganzzahligen Lösungen hat, wenn p und q
Primzahlen sind und p 6= 3; q 6= 2 ist.

Die Gleichung x2 + px + q = 0 hat die (im allgemeinen komplexen) Lösungen x1 und x2. Für diese gilt
der Wurzelsatz des Vieta:

x1 + x2 = −p (1) ; x1x2 = q (2)
Angenommen, eine Lösung sei ganzzahlig; wegen (1) ist dann auch die zweite Lösung ganzzahlig. Aus
(2) folgt o.B.d.A. |x1| = 1, |x2| = q, also −p = x1 + x2 = ±1± q oder (da p und q als Primzahlen beide
positiv sind) p = q ± 1. Daraus erhält man unmittelbar p = 2, q = 3 oder p = 3, q = 2. Da die Gleichung
x2 + 2x+ 3 = 0 keine reellen und damit erst recht keine ganzzahligen Nullstellen hat, folgt daraus die zu
beweisende Behauptung.
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Aufgabe 26/80
Gegeben ist eine Ebene, in der alle Punkte entweder schwarz oder rot gefärbt seien. Man weise die
Existenz wenigstens eines gleichseitigen Dreiecks in dieser Ebene nach, dessen Eckpunkte sämtlich
die gleiche Farbe haben!

Es sei ABC ein gleichseitiges Dreieck in der gegebenen Ebene. Dann sind zwei Fälle möglich: 1. Die
Punkte A, B und C haben sämtlich die gleiche Farbe. Dann ist die Existenz bereits nachgewiesen.
2. Die Punkte A, B und C haben nicht sämtlich die gleiche Farbe. O.B.d.A. seien A und B schwarz, C
sei rot. Wir halbieren nun die Strecke AB durch D, die Strecke BC durch E und die Strecke CA durch
F . Nun sind zwei weitere Fälle möglich:

2.1. D ist schwarz. Haben E und F gleiche Farbe, so hat entweder das Dreieck DEF schwarze oder das
Dreieck CEF rote Eckpunkte; haben sie verschiedene Farben, so hat entweder das Dreieck ADF oder
das Dreieck DBE schwarze Ecken. Auch für diesen Fall ist die Existenz nachgewiesen, da alle Dreiecke
(nach Konstruktion) gleichseitig sind.
2.2. D ist rot. Sind E und F rot, so hat das (gleichseitige) Dreieck DEF gleichfarbige Ecken; ist wenigstens
einer der Punkte E und F schwarz, so spiegele man D an der Strecke AC bzw. BC, auf der der schwarze
Punkt liegt, nach D′. Dann hat entweder AFD′ (falls F schwarz ist) oder BED′ (falls E schwarz ist)
nur schwarze Ecken oder CDD′ nur rote.
Man prüft leicht nach, dass auch diese Dreiecke (nach Konstruktion) gleichseitig sind. Also ist auch in
diesem Fall die Existenz erwiesen.
Da die Fallunterscheidung vollständig ist, existiert in jedem Fall wenigstens ein gleichseitiges Dreieck mit
gleichgefärbten Ecken.

Aufgabe 27/80
Es sind alle reellen Zahlen x zu ermitteln, für die die Funktion minimal wird

f(x) =
√
x+ 4

√
x− 4 +

√
x− 4

√
x− 4

Es gilt die Identität
x± 4

√
x− 4 ≡ (2±

√
x− 4)2

Damit kann man f(x) in der Form

f(x) = |2 +
√
x− 4|+ |2−

√
x− 4|

schreiben. Für 4 ≤ x ≤ 8 ist
√
x− 4 ≤ 2 (für x < 4 ist

√
x− 4 nicht reell). Damit ist

f(x) = 2 +
√
x− 4 + 2−

√
x− 4 = 4

Für x > 8 ist
√
x− 4 > 2. Daraus folgt

f(x) = 2 +
√
x− 4− (2−

√
x− 4) = 2

√
x− 4 > 4

Demnach ist fmin(x) = 4 für alle x mit 4 ≤ x ≤ 8.

Aufgabe 28/80
Man widerlege die Behauptung, dass das Polynom P (x) = 1 · x5 − 4 · x4 + 1 · x3 − 9 · x2 + 8 · x − 1
fünf reelle Nullstellen habe!

Angenommen, das Polynom P (x) habe fünf reelle Nullstellen xi (i = 1; 2; ...; 5). Dann gilt sicher xi > 0
für jedes i (die Koeffizienten der Glieder ungeraden Grades sind positiv, die der Glieder geraden Grades
sind negativ; für xi < 0 wäre also P (xi) < 0). Damit gilt nach dem Satz über das arithmetische und das
geometrische Mittel

1
5

5∑
i=1

xi ≥ 5

√√√√ 5∏
i=1

xi
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Ferner gilt nach dem Wurzelsatz des Vieta:

5∑
i=1

xi = 4 ;
5∏
i=1

= 1

Damit folgt der Widerspruch
1
5 · 4 ≥

5
√

1 = 1

womit die Annahme widerlegt ist.

Aufgabe 29/80
Man beweise: In jedem pythagoreischen Zahlentripel (a; b; c) ist wenigstens eine der drei natürlichen
Zahlen a; b; c restlos durch 5 teilbar.

Wir verwenden zum Beweis den Satz: Das Quadrat einer natürlichen Zahl lässt beim Teilen durch 5 einen
der Beste 0, 1 oder 4.
Beweis dieses Satzes: Es sei n = 5s+ r eine natürliche Zahl, wobei r = 0; 1; 2; 3; 4 sei. Dann ist

n2 = (5s+ r)2 = 25s2 + 10rs+ r2 = 5(4s2 + 2rs) + r2

mit r2 = 0; 1; 4; 9; 16 ≡ 0; 1; 4; 4; 1 (mod 5).
Nun nehmen wir an, keine der beiden Zahlen a und b wäre restlos durch 5 teilbar. Nach dem bewiesenen
Satz heißt das:

a2 ≡ ±1 (mod 5) ; b2 ≡ ±1 (mod 5)

(wegen 4 ≡ −1 (mod 5)). Hätten nun die beiden Reste gleiche Vorzeichen, so wäre c2 ≡ ±2 (mod 5)
im Widerspruch zum bewiesenen Satz. Also haben sie verschiedene Vorzeichen. Damit folgt aber c2 ≡ 0
(mod 5); d.h., c ist restlos durch 5 teilbar.

Aufgabe 30/80
Ein Fünfeck setze sich aus einem Rechteck mit den Seiten a und b und einem gleichseitigen Dreieck
mit der Seite a zusammen.
Ohne Verwendung der Differentialrechnung ermittle man den maximalen Flächeninhalt A bei gege-
benem Umfang U und den minimalen Umfang U bei gegebenem Flächeninhalt A!

Es ist U = 3a+ 3b und A = ab+ 0,25a2√3. Eliminiert man aus diesen Gleichungen die Seite b, so erhält
man (nach äquivalenten Umformungen) die in a quadratische Gleichung

a2 − 2U
6−
√

3
a+ 4A

6−
√

3
= 0

mit den Lösungen

x1;2 = 1
6−
√

3

[
U ±

√
U2 − 4A(6−

√
3
]

Damit a reell wird, muss

U2 − 4A(6−
√

3) ≥ 0→ A ≤ U2

4(6−
√

3
→ U ≥

√
4A(6−

√
3)

sein. Offensichtlich ist damit

Amax = U2

4(6−
√

3)
≈ 0,0586U2 ; Umin =

√
4A(6−

√
3) ≈ 4,13

√
A

Aufgabe 31/80
Gegeben sei die in x quadratische Gleichung x2 + px+ 2 = 0 mit p ∈ N , und es seien x1 und x2 die
Lösungen dieser Gleichung. Es sind alle p zu ermitteln, für die x2

1 + x2
2 Primzahl ist.
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Nach dem Wurzelsatz des Vieta gilt für die Lösungen x1;x2 der quadratischen Gleichung x2 +px+2 = 0:
x1 + x2 = −p und x1x2 = 2. Nun ist

x2
1 + x2

2 = (x1 + x2)2 − 2x1x2 = (−p)2 − 4 = p2 − 4 = (p− 2)(p+ 2)

Dieser Ausdruck kann höchstens dann Primzahl sein, wenn der kleinere der beiden Faktoren gleich 1, also
wenn p = 3 ist. Tatsächlich ist dann

x2
1 + x2

2 = (3− 2(3 + 2) = 5

Primzahl (die Lösungen x1;2 sind dann

x1;2 = −3
2 ±

√
9
4 − 2→ x1 = −1;x2 = −2

Aufgabe 32/80
Es ist zu beweisen: Aus sin (α+ β) = 0 folgt cos (α+ 2β) = cosα.

Aus sin (α+ β) = 0 folgt α+ β = kπ mit k = ±1;±2;±3; ... also β = kπ − α. Dann ist aber

cos (α+ 2β) = cos (α+ 2kπ − 2α) = cos (2kπ − α) = cos (2kπ) cosα+ sin (2kπ) sinα = cosα

wegen cos (2kπ) = 1, sin (2kπ) = 0.

Aufgabe 33/80
Es sei f eine für alle reellen Zahlen x stetige Funktion, für die gilt f [f(x)] = x. Man beweise, dass
unter dieser Voraussetzung mindestens eine reelle Zahl x0 existiert, für die f(x0) = x0 gilt.

Angenommen, es gäbe keine Zahl x0, für die f(x0) = x0 gilt. Dann gilt wegen der Stetigkeit von f
entweder überall f(x) < m oder überall f(x) > x.
Im ersten Fall ist dann f [f(x)] < f(x) < x, im zweiten Fall gilt f [f(x)] > f(x) > x. Beides widerspricht
aber der Voraussetzung f [f(x)] = x. Also ist die Annahme falsch, und damit ist die Richtigkeit der
Behauptung bewiesen.

Aufgabe 34/80
Man ermittle s40 einer arithmetischen Reihe 1.Ordnung mit:
1. a1 = 10a+ b = x mit a; b ∈ N ; 1 ≤ a ≤ 9; 0 ≤ b ≤ 9,
2. a40 = 10c+ d = y mit c; d ∈ N ; 0 ≤ c; d ≤ 9,

3. s40 =
40∑
i=1

ai = 1000a+ 100b+ 10c+ d

Es ist sn = (a1 + an) · n2 ’ also

s41 = (10a+ b+ 10c+ d) · 20 = 1000a+ 100b+ 10c+ d

Daraus folgt die diophantische Gleichung 800a+ 80b− 190c− 19d = 0, die man auch in der Form

80(10a+ b) = 19(10c+ d) ; 80x = 19y

schreiben kann (x; y ∈ N , 10 ≤ x; y ≤ 100). Es ergibt sich y = 4x + 4x
19 , also x ≡ 0 (mod 19). Es sei

nun x = 19k mit k ∈ N, k ≥ 1. Dann ist y = 4 · 19k + 4k = 8ok. Nur k = 1 liefert ein y aus dem
Definitionsbereich. Damit ist

x = 10a+ b = 19; y = 10c+ d = 80 ; a = 1, b = 9, c = 8, d = 0

und folglich s40 = 1980 die einzige Lösung.
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Aufgabe 35/80
Gesucht sind alle vierstelligen natürlichen Zahlen n mit folgenden Eigenschaften :
1. Das Quadrat der zweiten Ziffer ist gleich der Zahl n1, die man erhält, wenn man in n die ersten
zwei Stellen streicht.
2. Die Quersumme Q(n) ist gleich der Zahl n2, die man erhält, wenn man in n die letzten zwei Stellen
streicht.
3. Die Summe aus den Zahlen n1 und n2 ist 100.

Es sei n = 1000a + 100b + 10c + d mit a; b; c; d ∈ N ’ 0 ≤ a, b; c; d ≤ 9. Dann ist n1 = 10c + d und
n2 = 10a+ b, und es gilt

nach Bedingung 1: b2 = 10c+ d (1)
nach Bedingung 2: a+ b+ c+ d = 10a+ b also c+ d = 9a (2)
nach Bedingung 3: 10a+ b+ 10c+ d = 100 (3)

Wegen c + d ≤ 18 folgt aus (2) sofort a = 1 oder a = 2. Die Möglichkeit a = 2 scheidet jedoch aus,
da sie c = d = 9 voraussetzt, was im Widerspruch zu (1) steht (b2 = 99 ist für keine natürliche Zahl b
erfüllt). Also ist a = 1 und die Beziehungen (2) und (3) nehmen die Gestalt an:

c+ d = 9 (2′) ; b+ 9c = 81 (3′)

Damit ist entweder b = 0, c = 9, d = 0 oder b = 9, c = 8, d = 1. Die erste Möglichkeit steht erneut im
Widerspruch zu (1). Damit existiert genau eine Zahl n mit den geforderten Eigenschaften: n = 1981. Die
Probe bestätigt die Richtigkeit.

Aufgabe 36/80
Gesucht ist die kleinste natürliche Zahl n, für die gilt

n ≡ 1 (mod 2); n ≡ 1 (mod 3); n ≡ 1 (mod 5); n ≡ 0 (mod 7); n ≡ 1 (mod 11)

Wegen n ≡ 0 (mod 7) ist n in der Form n = 7k, k ∈ N , darstellbar. Wegen

n ≡ 1 (mod 2) und 7 ≡ 1 (mod 2) ist k = 1 (mod 2) (1)
n ≡ 1 (mod 3) und 7 ≡ 1 (mod 3) ist k = 1 (mod 3) (2)
n ≡ 1 (mod 5) und 7 ≡ 2 (mod 5) ist k = 3 (mod 5) (3)

n ≡ 1 (mod 11) und 7 ≡ 7 (mod 11) ist k = 8 (mod 11) (4)

Wir nehmen an, die kleinste Zahl k wäre höchstens dreistellig:

k = 100a2 + 10a1 + a0

mit 0 ≤ a0; a1; a2 ≤ 9, a1; a2; a3 ∈ N . Dann ist wegen (3) a0 = 3 oder a0 = 8, wegen (1) ist a1 6= 8, also
folgt a1 = 3. Nach (4) gilt dann

a2 − a1 + 3 = 11s+ 8 ; a2 − a1 = 11s+ 5 (5)

(s ∈ G). Aus 0 ≤ a1; a2 ≤ 9 folgt −9 ≤ a2 − a1 = 11s + 5 ≤ 9. Diese Ungleichungen sind nur für s = 0
und für s = −1 erfüllt. Damit ergibt sich aus (5) a2 = a1 + 5 ≥ 5 oder a2 = a1 − 6 ≤ 3.
Da wir die kleinste Zahl k suchen, probieren wir zunächst die kleineren Werte für a2, also a2 = 0; 1; 2; 3.
Es ergibt sich dann a1 = 6; 7; 8; 9 und k = 63; 173; 283; 393. Von diesen k-Werten erfüllt nur k = 283 die
Bedingung (2). Man erhält daraus n = 7 · 283 = 1981.
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Aufgabe 1/81
Man bestimme alle Paare (n;m) nichtnegativer ganzer Zahlen, für die gilt:

n∑
i=1

i = 25m + 2

Für m = 0 ergibt sich n = 2. Ist m ≥ 1; so ist 25m + 2 ≡ 7 (mod 10) und
n∑
i=1

i ≡ 1; 3; 5; 6; 8 (mod 10), d.

h., es gibt keine weitere Lösung.

Aufgabe 2/81

Es sei n =
k∑
i=0

10iai > 0 mit 0 ≤ ai ≤ 9; ai ∈ N eine (k+1)-stellige natürliche Zahl und Q(n) =
k∏
i=0

ai

ihr ”Querprodukt”. Wie groß ist die Anzahl r der höchstens (k+1)-stelligen natürlichen Zahlen n, bei
denen Q(n) Primzahl ist?

Wenn Q(m) Primzahl sein soll, muss genau ein ai eine der vier einstelligen Primzahlen 2; 3; 5 oder 7 sein,
für die restlichen ai dagegen gilt ai = 1. Mit jeder dieser vier einstelligen Primzahlen können folglich s
s-stellige Zahlen m gebildet werden (1 ≤ s ≤ k + 1), da die einstellige Primzahl an jeder der 3 Stellen
stehen kann. Demnach gilt für die gesuchte Zahl r

r = 4 ·
k+1∑
s=1

s = 4 · (k + 1)(k + 2)
2 = 2(k + 1)(k + 2)

Aufgabe 3/81
Es sei P (x) ein reelles Polynom beliebigen Grades mit ganzzahligen Koeffizienten, und es seien sowohl
P (0) als auch P (1) ungerade ganze Zahlen. Man weise nach, dass unter diesen Voraussetzungen P (x)
keine ganzzahligen Nullstellen hat.

Angenommen, es gäbe eine ganze Zahl g so, dass P (g) = 0 ist. Dann gilt nach dem Hauptsatz der Algebra
P (x) = (x− g)Q(x), mit Q(x) als Polynom mit ganzzahligen Koeffizienten. Damit folgt

P (0) = (−g)Q(0) ; P (1) = (1− g)Q(1)

Nach Voraussetzung sind P (0) und P (1) beide ungerade; da ein Produkt genau dann ungerade ist, wenn
keiner seiner Faktoren gerade ist, folgt damit, dass sowohl g als auch 1 − g ungerade sein müssen. Dies
ist aber ein Widerspruch; denn ist
1) g = 2k − 1 mit k ∈ G, so folgt 1− g = 2− 2k = 2(1− k)’2) 1− g = 2k − 1 mit k ∈ G, so folgt g = 2− 2k = 2(1− k).
In jedem Fall ist also entweder g oder 1−g gerade. Dieser Widerspruch beweist, dass die Annahme falsch
ist, d.h., dass P (x) keine ganzzahligen Nullstellen hat.

Aufgabe 4/81
Es seien 100 natürliche Zahlen ak mit 1 ≤ k ≤ 100 gegeben. Man beweise, dass eine Summe

n∑
i=j

ai mit 1 ≤ j ≤ n ≤ 100

existiert, die ohne Rest durch 100 teilbar ist!

Wir bilden alle Summen
n∑
i=1

ai, wobei n die natürlichen Zahlen von 1 bis 100 durchlaufe. Es sind dies

genau 100 Summen sn. Entweder ist unter ihnen eine Summe sk, die ohne Rest durch 100 teilbar ist,
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oder dies ist nicht der Fall.
Dann aber lassen wenigstens zwei Summen sl und sm beim Teilen durch 100 den gleichen Rest r, und die
Summe s101 = sl − sm ist ohne Rest durch 100 teilbar (wobei O.B.d.A. sl > sm angenommen wurde).
Es ist noch nachzuweisen, dass s101 tatsächlich eine Summe der Art

n∑
i=j

ai mit 1 ≤ j ≤ 100

ist. Aus sl =
l∑
i=1

ai, sm =
m∑
i=1

ai folgt

sl − sm =
l∑
i=1

ai −
m∑
i=1

ai =
l∑

i=m+1
ai

Wegen 1 ≤ m < l ≤ 100 ist 1 < m + 1 ≤ l (m < 1 folgt aus sm < sl). Wegen sl > sM ist außerdem
sl − sm > 0, womit alles gezeigt ist.

Aufgabe 5/81
Man beweise: Es existieren unendlich viele Primzahlen p, die bei Division durch 3 den Rest 2 lassen.

Als bekannt setzen wir voraus, dass die Anzahl der Primzahlen unendlich ist. Der Beweis ist dann geführt,
wenn gezeigt ist, dass sich aus jeder ungeraden Primzahl eine neue Primzahl konstruieren lässt, die größer
ist und die bei Division durch 3 den Rest -2 lässt.
Alle Primzahlen (ausgenommen die Primzahl 3) lassen bei Division durch 3 entweder den Rest 1 oder
den Rest 2 (da beim Rest 0 die Zahl durch 3 teilbar und somit nicht Primzahl wäre). Es sei nun pk die
k-te Primzahl in der Primzahlfolge (k ≥ 2). Wir bilden daraus eine neue Zahl P :

P = p1 +
k∏
i=2

pi = 2 + 3 · 5 · 7 · ... · pk

Es gibt zwei Möglichkeiten:
1. P ist Primzahl. Wegen P > pk und P ≡ 2 (mod 3) ist dann der Beweis bereits erbracht.
2. P ist keine Primzahl. Dann ist P eindeutig in Primfaktoren zerlegbar:

P =
∏
j

q
αj
j

wobei offensichtlich qj 6= pi für alle i; j, also speziell qj > pk für alle j gilt. Ferner gilt wegen P ≡ 2 (mod
3), dass qj ≡ 2 (mod 3) für mindestens ein j (genauer: für eine ungerade Anzahl von qj mit ungeradem
αj ; aber das ist hier unwesentlich) ist.
Wären nämlich alle pj ≡ 1 (mod 3), so wäre auch P ≡ 1 (mod 3). Da die Fallunterscheidung vollständig
ist, wurde gezeigt, dass aus der Existenz einer Primzahl pk ≥ 3 stets die Existenz wenigstens einer
weiteren, größeren Primzahl folgt, die bei Division durch 3 den Rest 2 lässt. Damit folgt aber sogar die
Existenz unendlich vieler derartiger Primzahlen.

Aufgabe 6/81
Gegeben sei ein beliebiges Parallelogramm P1P2P3P4. Seine vier Seiten werden im mathematisch
positiven Drehsinn um ihre Mittelpunkte gedreht, bis sie senkrecht auf den Ausgangslagen stehen.
Dabei gehen die Punkte Pi in die Punkte P ′i bzw. P ′′i über. Man beweise: Die Vierecke P ′1P ′2P ′3P ′4
und P ′′1 P

′′
2 P
′′
3 P
′′
4 sind Quadrate.

Es sei M der Mittelpunkt des Parallelogramms P1P2P3p4, Mi seien die Mittelpunkte der Seiten PiPi+1
(wobei hier und im folgenden stets i+ k = i+ k − 4 zu setzen ist, falls i+ k > 4 sein sollte).
Da die Winkel MMiP

′
i = π

2 + ϕ sämtlich einander gleich sind (wobei mit ϕ der kleinere der beiden
Winkel zwischen den Parallelogrammseiten bezeichnet ist) und da MiP

′
i = MiPi = MMi+1 (mithin auch

MMi = Mi+1Pi+1 ist, sind die vier Dreiecke MP ′iMi sämtlich einander kongruent nach SWS. Daraus

341



2.21 Aufgaben und Lösungen 1981

folgt MP ′1 = MP ′2 = MP ′3 = MP ′4, d.h., die vier Punkte P ′i liegen auf einem Kreis mit dem Mittelpunkt
M ; das Viereck P ′1P ′2P ′3P ′4 ist also ein Sehnenviereck.
Nun ist weiter

]MiMP ′i + ]MiP
′
iM = π − ]MMiP

′
i = π −

(π
2ϕ
)

= π

2 − ϕ

und entweder

]P ′iMP ′i+1 = ]MiMMi+1 − (]MiMP ′i + ]MiP
′
iM) = π − ϕ−

(π
2 − ϕ

)
= π/2

oder
]P ′iMP ′i+1 = ]MiMMi+1 + (]MiMP ′i + ]MiP

′
iM) = ϕ+

(π
2 − ϕ

)
= π/2

in jedem Fall also ]P ′iMP ′i+1 = π
2 , d.h., die Bögen P ′iP

′
i+1 und damit die Sehnen P ′iP

′
i+1 sind sämtlich

einander gleich, das Sehnenviereck P ′1P ′2P ′3P ′4 ist also ein Quadrat.
Analog führt man den Beweis für das Viereck P ′′1 P ′′2 P ′′3 P ′′4 .

Aufgabe 7/81
Man beweise, dass in jedem konvexen Elfeck stets wenigstens zwei Diagonalen einen Richtungsunter-
schied von weniger als 5◦ haben!

Als bekannt setzen wir die Formel für die Anzahl k der Diagonalen in einem konvexen n—Eck voraus:
k = 0,5n(n− 3).
Danach existieren im konvexen Elfeck genau k = 44 Diagonalen.
Wir wählen nun in der Ebene des Elfecks einen beliebigen Punkt P und verschieben die Diagonalen
parallel zu sich selbst so, dass sie sämtlich durch diesen Punkt gehen. Ihre Richtung wird dadurch nicht
geändert. Den Vollwinkel um P teilen sie aber in 44 · 2 = 88 Teile.
Jeder dieser Teile gibt den Richtungsunterschied zweier ”benachbarter” Diagonalen an (der gleich null
ist, falls zwei Diagonalen parallel sein sollten). Es können nun nicht alle diese Richtungsunterschiede
mindestens gleich 5◦ sein; sonst wäre nämlich ihre Summe mindestens gleich 88·5◦ = 440◦ im Widerspruch
zu der Tatsache, dass der Vollwinkel 360◦ beträgt. Damit ist die Behauptung bewiesen.

Aufgabe 8/81
Man beweise die Gültigkeit der Ungleichung

1
2 ·

3
4 ·

5
6 · ... ·

99
100 <

1
10

Wir betrachten die Produkte

x = 1
2 ·

3
4 ·

5
6 · ... ·

99
100 und y = 2

4 ·
4
5 ·

6
7 · ... ·

100
101

Beide Produkte haben gleich viele Faktoren, und jeder k-te Faktor von y ist größer als der k-te Faktor
von x. Folglich gilt x < y. Daraus folgt

x2 < xy = 1
2 ·

2
3 ·

3
4 ·

4
5 · ... ·

100
101 = 1

101

Damit ergibt sich unmittelbar x <
√

1
101 <

1
10 .

Aufgabe 9/81
Man ermittle alle (geordneten) Paare (x; y) reeller Zahlen, die das Gleichungssystem erfüllen:

1− xy = ln (xy) (1) ; x+ 3y = 4 (2)

Wir betrachten zunächst nur die Gleichung (1) und setzen zur Vereinfachung xy = z: 1− z = ln z.
Für 0 < z < 1 ist 1− z > 0 und ln z < 0’ für z = 1 ist 1− z = 0 und ln z = 0, für z > 1 ist 1− z < 0 und
ln z > 0, für z ≤ 0 ist ln z nicht reell bzw. nicht existent.
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Also ist z = xy = 1 die einzige Lösung dieser Gleichung. Daraus folgt sofort y = x−1; in Gleichung (2)
eingesetzt, folgt nach Multiplikation mit x−1 6= 0 die in x quadratische Gleichung

x2 − 4x+ 3 = 0

mit den Lösungen x1 = 3 und x2 = 1. Aus ihnen folgen y1 = 3−1 und y2 = 1. Damit erfüllen genau die
Paare (3; 1

3 ) und (−1; 1) das gegebene Gleichungssystem. Die Probe bestätigt die Richtigkeit.

Aufgabe 10/81
Gesucht sind 5 verschiedene dreistellige Zahlen, die (im Dezimalsystem) mit denselben voneinander
verschiedenen drei Ziffern darstellbar sind und deren Summe 1209 beträgt.

Aus drei verschiedenen Ziffern kann man 3! = 6 verschiedene Zahlen darstellen. Bezeichnet man die
Stellen einer von ihnen mit a; b; c (1 ≤ a; b; c ≤ 9, a; b; c ∈ N , a 6= b, b 6= c, c 6= a), so sind dies

100a+ 10b+ c 100a+ 10c+ b 100b+ 10a+ c
100b+ 10c+ a 100c+ 10a+ b 100c+ 10b+ a

Ihre Summe ist 222(a+ b+ c). Nach der Aufgabenstellung gilt nun die diophantische Gleichung

222(a+ b+ c)− x = 1209

wobei x die sechste der sechs dreistelligen Zahlen ist. Aus ihr folgt durch äquivalente Umformung

a+ b+ c = 5 + 99 + x

222 = 5 + k

mit k = 99+x
222 ∈ N . Da 123 ≤ x ≤ 987 gilt (wegen a 6= b, a 6= c, c 6= b), ist 1 ≤ k ≤ 4 und a + b + c =

5 + k ≤ 9.
Für x ergeben sich damit zunächst vier Möglichkeiten: x1 = 123;x2 = 345;x3 = 567;x4 = 789, von denen
jedoch nur x = 123 die letzte Ungleichung erfüllt: 1 + 2 + 3 = 5 + 1 ≤ 9.
Daraus ergeben sich die fünf gesuchten Zahlen zu 132, 213, 231, 312, 321. Tatsächlich ist 132 + 213 +
231 + 312 + 321 = 1209.

Aufgabe 11/81
Gesucht ist die kleinste Potenz 11n (n ∈ N,n > 0) in dekadischer Schreibweise, die auf die Ziffernfolge
001 endet.

Es ist

11n = (10 + 1)n =
n∑
i=0

(
n

i

)
· 10i =

(
n

0

)
· 100 +

(
n

1

)
· 101 + ...+

(
n

n

)
· 10n

Man erkennt: Alle Glieder dieser Summe mit Ausnahme der ersten drei enthalten den Faktor 103 = 1000.
Da das erste Glied der Summe gleich 1 ist, muss(

n

k

)
· 101 +

(
n

2

)
· 102 = 10n+ 50n(n− 1) = 1000k

mit minimalem n und k ∈ N , k ≥ 1 eine sowohl notwendige als auch hinreichende Bedingung dafür sein,
dass n die Forderungen der Aufgabe erfüllt. Aus dieser Gleichung folgt

n+ 5n(n− 1) = 100k

Da entweder n oder n − 1 gerade ist, ist 5n(n − 1) restlos durch 10 teilbar. Damit muss auch n restlos
durch 10 teilbar sein: n = 10m, m ∈ N , minimal. Die Gleichung nimmt damit die Gestalt

10m+ 50m(10m− 1) = 100k → m+ 5m(10m− 1) = 10k

an. Die rechte Seite dieser Gleichung ist restlos durch 5 teilbar, also muss auch die linke Seite restlos
durch 5 teilbar sein. Daraus folgt, dass m durch 5 teilbar ist: m = 5s, s ∈ N , minimal. Die Gleichung
lautet dann

5s+ 25s(50s− 1) = 10k → s+ 5s(50s− 1) = 2k

343



2.21 Aufgaben und Lösungen 1981

Offensichtlich erfüllt s = 1 diese Gleichung: 1 + 5(50 − 1) = 246 = 2 · 123 = 2k. Aus s = 1 folgt
m = 5s = 5, n = 10m = 50. Die Potenz 1150 endet also (in dekadischer Schreibweise) auf 001, und es
gibt keine kleinere Potenz von 11 mit dieser Eigenschaft.

Aufgabe 12/81
Es seien ai mit i = 1; 2; 3; ...;n reelle Zahlen (n ≥ 2) mit 0 < ai ≤ ai+1. Man zeige, dass dann gilt

1
n− 1

n−1∑
i=1

ai ≤
1
n

n∑
i=1
≤ 1
n− 1

n∑
i=2

Es ist
1
n

n∑
i=1

ai = n− 1
n(n+ 1)

n∑
i=1

ai = 1
n− 1

n∑
i=1

ai −
1

n(n− 1)

n∑
i=1

ai =

= 1
n− 1

n−1∑
i=1

ai + an
n− 1 −

1
n(n− 1)

n∑
i=1

ai ≥
1

n− 1

n−1∑
i=1

ai + an
n− 1 −

n · an
n(n− 1) = 1

n− 1

n−1∑
i=1

ai

und
1
n

n∑
i=1

ai = n− 1
n(n+ 1)

n∑
i=1

ai = 1
n− 1

n∑
i=1

ai −
1

n(n− 1)

n∑
i=1

ai =

= a1

n− 1 + 1
n− 1

n∑
i=2

ai −
1

n(n− 1)

n∑
i=1

ai ≥
a1

n− 1 + 1
n− 1

n∑
i=2

ai −
n · a1

n(n− 1) = 1
n− 1

n∑
i=2

ai

Aufgabe 13/81
Auf die Frage nach dem Alter ihrer drei Kinder antwortete eine Mathematikerin: ”Die Summe ihrer
ganzen Alterszahlen ergibt unsere Hausnummer, das Produkt derselben ist 72, und um das Ergebnis
eindeutig zu machen, erwähne ich noch, dass mein jüngstes Kind ein Mädchen ist.”
Wie alt sind die Kinder? Dem Fragenden war die Hausnummer bekannt.

Ohne Rücksicht auf biologische Möglichkeiten kann man die Zahl 72 auf die folgenden Weisen in ein
Produkt aus drei Faktoren zerlegen:
1 · 1 · 72, 1 · 2 · 36, 1 · 3 · 24, 1 · 4 · 18, 1 · 6 · 12, 1 · 8 · 9’ 2 · 2 · 18, 2 · 3 · 12, 2 · 4 · 9, 2 · 6 · 6, 3 · 3 · 8, 3 · 4 · 6.
Da der Fragende die Hausnummer kannte, hätte er mit ihrer Hilfe aus diesen 12 Möglichkeiten die richtige
herausfinden können, wenn die Hausnummer nicht mehrmals als Summe aufträte. Tatsächlich haben die
Faktorenzerlegungen 2 · 6 · 6 und 3 · 3 · 8 die gleiche Faktorensumme 14, so dass bei dieser Hausnummer
noch keine Eindeutigkeit besteht.
Diese wird durch die Bemerkung über das jüngste Kind herbeigeführt. Die Kinder sind demnach 2 Jahre
(ein Mädchen) und 6 Jahre (Zwillinge) alt.

Aufgabe 14/81
In einer Ebene seien gleichseitige DreieckeDi mit den Seitenlängen ai = 2i−1, i = 1; 2; 3; ... längs einer
Geraden g so angeordnet, dass der ”rechte” Eckpunkt des Dreiecks Dk mit dem ”linken” Eckpunkt
des Dreiecks Dk+1 zusammenfällt und dass die dritten Eckpunkte sämtlich in der gleichen von g
erzeugten Halbebene liegen. Man bestimme die Kurve, auf der die dritten Eckpunkte liegen!

Legt man ein rechtwinklig-kartesisches Koordinatensystem so in die Ebene, dass die Abszissenachse (x-
Achse) mit der Geraden g zusammenfällt und die Ordinatenachse (y-Achse) durch den linken Eckpunkt
des Dreiecks D1 geht, so haben die dritten Dreieckspunkte Pk die Koordinaten

Pk[xk; yk] = Pk

[
k(k − 1) + 1

2; 1
2
√

3(2k − 1)
]

Offensichtlich besteht zwischen den Abszissen und den Ordinaten ein Zusammenhang der Art y2 = f(x).
Ein entsprechender Ansatz

y2 =
[

1
2
√

3(2k − 1)
]2

= 3
(
k2 − k + 1

4

)
= f

(
k2 − k + 1

4

)

344



2.21 Aufgaben und Lösungen 1981

führt zu der Gleichung y2 = 3(x− 1
4 ), also zur Gleichung einer Parabel mit den Brennpunktkoordinaten

(1; 0), deren Achse mit der Abszissenachse zusammenfällt.

Aufgabe 15/81
Es ist der Satz, zu beweisen: Für jede natürliche Zahl n ≥ 2 ist

k =
(

1 + 2n− 3
1

)(
1 + 2n− 5

3

)
...

(
1 + 1

2n− 1

)
eine restlos durch n teilbare natürliche Zahl.

Man kann k in der Form

k =
n−1∏
i=1

(
1 + 2n− 2i− 1

i

)
=
n−1∏
i=1

2n− i− 1
i

schreiben. Durch Erweitern mit (n− 1)! erhält man

k =
n−1∏
i=1

(n− 1)!(2n− i− 1)
(n− 1)!i = (2n− 2)!

(n− 1)(n− 1)! =
(

2n− 2
n− 1

)
damit ist k als Binomialkoeffizient darstellbar und demnach eine natürliche Zahl. Es bleibt noch zu zeigen,
dass k restlos durch n teilbar ist. Nun ist(

2n− 2
n− 1

)
= (2n− 2)!

(n− 1)(n− 1)! = (2n− 1)!
n!(n− 1)! ·

n

2n− 1 =
(

2n− 1
n

)
· n

2n− 1

Da n und 2n− 1 zueinander teilerfremd sind, muss n als Faktor in
(2n−2
n−1

)
enthalten sein.

Aufgabe 16/81
Man bestimme alle geordneten Paare natürlicher Zahlen (n;m), die der Gleichung 2n + 65 = m2

genügen!

Für ungerades n gilt 2n ≡ ±2 (mod 10), also ist 2m + 65 ≡ (5 ± 2) (mod 10) und damit kein Quadrat
einer natürlichen Zahl [für die Quadrate natürlicher Zahlen gilt bekanntlich stets eine der Kongruenzen
m2 ≡ 0; 1; 4; 5; 6; 9 (mod 10)]. Demnach existiert für ungerades n keine Lösung.
Es sei nun n = 2k mit k ∈ N . Dann gilt

2n < 2n + 65 = 22k + 65 = (2k)2 + 2 · 25 + 1

Man erkennt leicht, dass für k > 5 folgt

(2k)2 + 2 · 25 + 1 < (2k)2 + 2 · 2k + 1 = (2k + 1)2

Damit ergibt sich für k > 5 die folgende Ungleichungskette:

2n = (2k)2 < 2n + 65 < (2k + 1)2

Damit liegt m2 = 2n + 65 zwischen den Quadraten zweier aufeinanderfolgender natürlicher Zahlen, kann
also nicht selbst Quadrat einer natürlichen Zahl sein.
Die Untersuchung der Fälle k = 0; 1; 2; 3; 4; 5 liefert die beiden Lösungen (n1 = 2k1;m1) = (4; 9) ,
(n2 = 2k2;m2) = (10; 33). Die Probe bestätigt die Richtigkeit.

Aufgabe 17/81
Es sei a die 144-stellige natürliche Zahl, die (in dezimaler Schreibweise) ausschließlich mit der Ziffer
1 dargestellt wird. Man gebe 8 verschiedene Primfaktoren von a an!

Offensichtlich ist die Quersumme von a gleich 144 und die alternierende Quersumme gleich 0. Daraus
folgt (nach bekannten Teilbarkeitsregeln), dass a restlos durch 3 und durch 11 teilbar ist. Damit sind
zwei Primfaktoren von a gefunden: p1 = 3; p2 = 11.
Die übrigen 6 Primfaktoren kann man mit Hilfe des kleinen Satzes von Fermat finden. Dieser Satz sagt:
Es ist xp−1 ≡ 1 (mod p), wenn p Primzahl und ggT (x; p) = 1 ist. Speziell für x = 10 folgt
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106 ≡ 1 (mod 7) 10144 = (106)24 ≡ 1 (mod 7)
1012 ≡ 1 (mod 13) 10144 = (1012)12 ≡ 1 (mod 13)
1016 ≡ 1 (mod 17) 10144 = (1016)9 ≡ 1 (mod 17)
1018 ≡ 1 (mod 19) 10144 = (1018)8 ≡ 1 (mod 19)
1036 ≡ 1 (mod 37) 10144 = (1036)4 ≡ 1 (mod 37)
1072 ≡ 1 (mod 73) 10144 = (1072)2 ≡ 1 (mod 73)

Nun ist aber 10144 − 1 = 9
143∑
i=0

10i = 9a (dies folgt aus der Summenformel für die endliche geometrische

Reihe
n−1∑
i=0

x · qi = x · q
n − 1
q − 1

mit x = 1, q = 10, n = 144). Da 9 einerseits und die Primzahlen p3 = 7, p4 = 13, p5 = 17, p6 = 19,
p7 = 37 und p8 = 73 andererseits teilerfremd sind, m.a.W., da ggT (9,pi) = 1 für i = 3; 4; ...; 8 gilt, folgt,
dass diese Primzahlen Primfaktoren von a sind.

Aufgabe 18/81
Man beweise die Gültigkeit der Ungleichung

(x− 1)
√
x

(x+ 1)2 ≤ 1
4

für jede nichtnegative reelle Zahl x. Für welche x-Werte gilt die Gleichheit?

Setzt, man x−1
x+1 = sinα (was bei x ≥ 0 wegen −1 ≤ x−1

x+1 ≤ 1 möglich ist), so gilt

cosα =
√

1− sin2 α =

√
1−

(
x− 1
x+ 1

)2
= 2

√
x

x+ 1

Damit ist
(x− 1)

√
x

(x+ 1)2 = 1
2 sinα cosα = 1

4 sin (2α) < 1
4

wegen sin (2α) ≤ 1. Gleichheit gilt für sin 2α = 1, also für sinα = 0,5
√

2, x−1
x+1 = 0,5

√
2, x = 3 + 2

√
2 ≈

5,83.

Aufgabe 19/81
Man beweise die Gültigkeit der Ungleichung 3

√
1 + x + 3

√
1− x < 2 für alle reellen Zahlen x mit

0 < x ≤ 1.

Substituiert man

1 + x = (1 + u)3 = 1 + 3u+ 3u2 + u3 ; 1− x = (1 + v)3 = 1− 3v + 3v2 − v3

mit 0 < u, v ≤ 1, und addiert man diese beiden Gleichungen, so ergibt sich

2 = 2 + 3(u− v) + 3(u2 + v2) + u3 − v3

0 = (u− v)(3 + u2 + uv + v2) + 3(u2 + v2)

Da 3(u2 + v2) > 0, 3 + u2 + uv + v2 > 0 (wegen u,v > 0) gilt, ist diese Gleichung nur für (u − v) < 0
erfüllt. Damit ist

3
√

1 + x+ 3
√

1− x = 1 + u+ 1− v = 2 + (u− v) < 2

Aufgabe 20/81
Man bestimme alle natürlichen Zahlen n, für die n3 + 1 = 4p gilt; dabei bedeute p eine Primzahl.
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Die gegebene Gleichung ist äquivalent der Gleichung p = 0,25(n3 + 1). Damit p ganzzahlig wird, muss
n3 ≡ −1 (mod 4), also auch n ≡ −1 (mod 4) sein. Wir setzen daher n = 4t− 1 mit t ∈ N . Dann ist

p = 0,25(n3 + 1) = 0,25[(4t− 1)3 + 1] = 0,25(64t3 − 48t2 + 12t− 1 + 1) =

16t3 − 12t2 + 3t = t(16t2 − 12t+ 3)

Wenn p Primzahl sein soll, ist notwendig, dass einer der beiden Faktoren gleich 1 ist.
1. Es sei t = 1. Dann ist 12 − 12 + 3 = 7 tatsächlich eine Primzahl p, und es ist n = 4t − 1 = 3. Damit
ist eine Lösung gefunden.
2. Es sei 16t2−12t+3 = 1. Diese (in t quadratische) Gleichung liefert keine ganzzahligen Werte für t = p.
Folglich ist das Paar n = 3, p = 7 die einzige Lösung.

Aufgabe 21/81
Gegeben sei ein ebenes, gleichseitiges Dreieck ABC. Man ermittle die Menge aller der Punkte P in
der Ebene des Dreiecks, für die gilt AP 2 +BP 2 = CP 2.

Wir wählen ein rechtwinklig-kartesisches Koordinatensystem so, dass die Punkte A,B und C die folgenden
Koordinaten haben: A(−0,5; 0); B(0,5; 0), C(0; 0,5

√
3).

Offensichtlich ist dann AB = BC = CA = 1. Der (variable) Punkt P habe die Koordinaten P (x; y).
Dann gilt

AP 2 = (x+ 0,5)2 + y2 ; BP 2 = (x− 0,5)2 + y2 ; CP 2 = x2 + (y − 0,5
√

3)2

und damit
AB2 +BP 2 = 2x2 + 2y2 + 0,5 = CP 2 = x2 + y2 − y

√
3 + 0,75

Daraus folgt weiter
x2 + y2 + y

√
3− 0,25 = 0→ x2 + (y + 0,5

√
3)2 = 1

Die gesuchte Punktmenge ist also ein Kreis mit dem Mittelpunkt M(0;−0,5
√

3) und dem Radius r = 1.
Die Punkte A und B liegen auf dem Kreis, der Mittelpunkt M liegt symmetrisch zum Punkt C bezüglich
AB.

Aufgabe 22/81
Gesucht sind alle natürlichen Zahlen n, die der Gleichung p3

2− 2 = p1 ·n genügen; dabei ist p1; p2 ein
Primzahl-Zwillingspaar.

Da p1; p2 ein Primzahl-Zwillingspaar ist, gilt p2 = p1 + 2 und damit

p3
2 − 2 = (p1 + 2)3 − 2 = p3

1 + 6p2
1 + 12p1 + 8− 2 = p1

(
p2

1 + 6p1 + 12 + 6
p1

)
= p1 · n

Da n ∈ N ist, folgt 6
p1
∈ N , also p1 = 2 oder p1 = 3. Die erste Möglichkeit entfällt; sonst wäre

nämlich p2 = p1 + 2 = 4 im Widerspruch zur Primzahleigenschaft von p2. Dagegen liefert p1 = 3 den
Primzahlzwilling p2 = 5, und es ist

n = 32 + 6 · 3 + 12 + 6
3 = 41

Die Probe bestätigt die Richtigkeit. Damit existiert genau eine natürliche Zahl n, die der gegebenen
Gleichung genügt (sie ist zudem ebenfalls Primzahl).

Aufgabe 23/81
Man bestimme alle reellwertigen Funktionen f , die für alle reellen Zahlen x definiert sind und die
Bedingung

f(x− x0) = f(x) + f(x0)− 2xx0 + 1

für beliebige reelle Zahlen x und x0 erfüllen.
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Wenn die gestellte Bedingung für beliebige reelle Zahlen x und x0 gelten soll, muss sie speziell auch für
x0 = 0 gelten. Dann nimmt sie die Gestalt

f(x) = f(x) + f(0) + 1 (1)

an, woraus sofort f(0) = −1 folgt. Sie muss weiter für x0 = X gelten; daraus folgt

f(x− x) = f(0) = 2f(x)− 2x2 + 1 (2)

(1) und (2) liefern
2f8x)− 2x2 + 1 = −1→ f(x) = x2 − 1

Tatsächlich ist dann

f(x− x0) = (x− x0)2 − 1 = x2 − 2xx0 + x2
0 − 1 = x2 − 1 + x2

0 − 1− 2xx+1 = f(x) + f(x0)− 2xx0 + 1

Aus der Herleitung folgt, dass f(x) = x2 − 1 die einzige Funktion ist, die die in der Aufgabe gestellten
Bedingungen erfüllt.

Aufgabe 24/81
Man zeige: Gilt für n positive reelle Zahlen ai (i = 1; 2; ...;n)

n∏
i=1

ai = 1 , so ist
n∏
i=1

(1 + ai) ≥ 2n

Wir führen die folgende vereinfachende Schreibweise ein:
n∏
i=1

=
∏

x

Unter der Voraussetzung
∏
a = 1 ist∏

(1 + a) = 1∏
a
·
∏

(1 + a) =
∏(

1 + 1
a

)
also

[∏
(1 + a)

]2
=
∏

(1 + a)
∏(

1 + 1
a

)
=
∏

(1 + a)
(

1 + 1
a

)
=
∏(

2 + a+ 1
a

)
Wegen x+ 1

x ≥ 2 für positive reelle Zahlen x gilt[∏
(1 + a)

]2
=
∏(

2 + a+ 1
a

)
≥
∏

4 = 4n

und damit ∏
(1 + a) =

n∏
i=1

(1 + ai) ≥ 2n

Aufgabe 25/81
Man beweise, dass die Gleichung 2x3 − 7y = 1 keine ganzzahligen Lösungspaare (x; y) hat!

Angenommen, es gäbe ein ganzzahliges Lösungspaar (x; y) der Gleichung 2x2 − 7y = 1.
Dann muss wegen 7y ≡ 0 (mod 7) gelten, dass 2x3 ≡ 1 (mod 7), also x3 ≡ 4 (mod 7) ist. Dies ist aber ein
Widerspruch zu der Tatsache, dass x3 ≡ 0 (mod 7) für x ≡ 0 (mod 7) und x3 ≡ ±1 (mod 7) für x 6= 0
(mod 7), also x3 6= 4 (mod 7) für jede ganze Zahl x ist.
Damit ist die Annahme widerlegt.

Aufgabe 26/81
Es seien p und q zwei ungerade Primzahlen. Man beweise: Es gibt kein Tripel (a; b; c) paarweise
teilerfremder natürlicher Zahlen a; b; c mit a+ b = q, für das die Gleichung ap + bp = cp gilt.
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Angenommen, es existiere ein Tripel (a; b; c) paarweise teilerfremder natürlicher Zahlen a; b; cmit a+b = q,
für das die Gleichung ap + bp = cp gilt. Nun ist (bekanntlich)

ap + bp = (a+ b)(ap−1 − ap−2b+ ap−3b2 ± ...+ bp−1) = q(ap−1 − ap−2b+ ap−3b2 ± ...+ bp−1)

Also ist ap + bp = cp restlos durch q teilbar. Da q Primzahl ist, folgt, dass sogar c restlos durch q teilbar,
mithin q ≤ c ist.
Weiter gilt für p > 1, dass cp = ap + bp < (a+ b)p = qp’ also c < q ist.
Damit folgt aus der Annahme der Widerspruch q ≤ c < q. Demnach ist die Annahme falsch und damit
die Behauptung in der Aufgabenstellung richtig.

Aufgabe 27/81
Welche Werte nimmt die Funktion y = sin (x8 − x6 − x4 + x2) an, wenn x eine ganze Zahl ist?

Wir zeigen, dass das Polynom
P (x) = x8 − x6 − x4 + x2

für jede ganze Zahl x restlos durch 180 teilbar ist. Daraus folgt dann sofort, dass

y = sin (x8 − x6 − x4 + x2) = sin (k · 180◦) = 0

für jede ganze Zahl x ist (wobei auch k eine ganze Zahl bedeutet). Es ist

P (x) = x8 − x6 − x4 + x2 = [(x− 1)x(x+ 1)]2(x2 + 1)

In der eckigen Klammer steht das Produkt dreier aufeinanderfolgender ganzer Zahlen. Unter ihnen ist
wenigstens eine durch 2 und genau eine durch 3 ohne Rest teilbar; folglich ist der Term in der eckigen
Klammer ohne Rest durch 2 · 3 = 6 und damit sein Quadrat durch 36 teilbar.
Weiter ist entweder eine der drei aufeinanderfolgenden ganzen Zahlen restlos durch 5 teilbar, oder es gilt
x ≡ ±2 (mod 5) (wie man leicht nachprüft). Im ersten Fall ist das Quadrat des Terms in der eckigen
Klammer sogar durch 36 · 25 = 900 = 5 · 180 teilbar; im zweiten Fall ist x2 ≡ 4 ≡ −1 (mod 5) und damit
x2 + 1 ≡ 0 (mod 5). Dann ist aber P (x) restlos durch 36 · 5 = 180 teilbar (w.z.b.w.).

Aufgabe 28/81
Gegeben sei eine Menge von flächengleichen Dreiecken ABC mit gleicher Seite AB. Man ermittle
daraus das Dreieck ABC mit dem kleinsten Umfang U , ohne dazu Hilfsmittel der Differentialrechnung
zu verwenden!

Da die Dreiecke ABC sämtlich die gleiche Seite AB und den gleichen Flächeninhalt F haben, sind auch
ihre Höhen auf AB gleich. Das heißt, die Punkte C liegen auf einer Parallelen zu AB.
Wir spiegeln B an dieser Parallelen nach B′. Es ist dann

BC = B′C → U = AB +BC + CA = AB +B′C + CA

Der Umfang wird offenbar genau dann minimal, wenn B′C + CA minimal wird, also wenn C auf der
Strecke AB′ liegt (dies folgt sofort aus der Gültigkeit der Dreiecksungleichungen für das Dreieck AB′C).
Dann aber gilt

]CAB + ]CB′B = 90◦ ; ]ABC + ]CB′B = 90◦

Subtrahiert man eine dieser beiden Gleichungen von der anderen, so ergibt sich ]CAB = ]ABC’ d.h.,
das Dreieck ABC ist gleichschenklig mit AC = BC. Da der Gedankengang umkehrbar ist, folgt, dass der
Umfang genau dann ein Minimum ist, wenn das Dreieck gleichschenklig mit AB als Basis ist.

Aufgabe 29/81
Gesucht sind alle (echt) dreistelligen Zahlen, bei denen die Summe aus den i-ten Potenzen der i-ten
Stelle (von links her gezählt) gleich der ursprünglichen Zahl ist.

349



2.21 Aufgaben und Lösungen 1981

Die gesuchten Zahlen haben die Gestalt n = 100a+ 10b+ c mit a; b; c ∈ N , 1 ≤ a ≤ 9, 0 ≤ b; e ≤ 9. Nach
den Bedingungen der Aufgabe gilt die Gleichung

a+ b2 + c2 = 100a+ 10b+ c bzw. c3 − c = (c− 1)c(c+ 1) = 99a+ b(10− b)

Der Term b(10−b) kann nur die Werte 0; 9; 16; 21; 24; 25 annehmen; da die linke Seite dieser Gleichung als
Produkt dreier aufeinanderfolgender natürlicher Zahlen darstellbar ist, ist sie und damit auch die rechte
Seite restlos durch 3 teilbar, und die Zahlen 16 und 25 entfallen.
Wegen a ≥ 1, b(10− b) ≥ 0 ist c3 − c ≥ 99, c3 > 99, also c > 5. Man kann nun die fünf Möglichkeiten für
c durchprobieren

c c3 − c a b(10− b) b
5 120 1 21 3; 7
6 210 2 12 entfällt
7 336 3 39 entfällt
8 504 5 9 1; 0
9 720 7 27 entfällt

Es gibt also vier derartige Zahlen: n1 = 135, n2 = 175, n3 = 518, n4 = 598.

Aufgabe 30/81
Man bestimme alle Paare reeller Zahlen (x; y), die den Gleichungen genügen:

xey + x2e2y = 6 ; xe−y + x2e−2y = 20

Wir setzen xey = α und xe−y = β. Die gegebenen Gleichungen nehmen dann die Gestalt

α+ α2 = 6 ; β + β2 = 20

an. Ihre Lösungen sind α1 = 2, α2 = −3, β1 = 4, β2 = 5. Aus

αβ = xey · xe−y = x2 ; α

β
= xey

xe−y
= e2y

folgt, dass

x = ±
√
αβ ; y = 1

2 ln α
β

= ln
√
α

β
(∗)

genau dann reell sind, wenn αβ ≥ 0 und α
β > 0 gilt. Damit ergibt sich aus den Gleichungen (*) und aus

den ermittelten Werten für α und β

x11;12 = ±2
√

2 ; y1 = 1
2 ln 2

4 = − ln
√

2

x21;22 = ±
√

15 ; y2 = 1
2 ln −3
−5 = ln 0,6

Von den nunmehr möglichen 4 Paaren erfüllen nur die Paare

(x11; y1) = (2
√

2;− ln
√

2) ≈ (2,828;−0,347) und (x22; y2) = (−
√

15; ln 0,6) ≈ (−3,873;−0,255)

die Probe.

Aufgabe 31/81
Gesucht sind alle pythagoreischen Zahlentripel (a; b; c), für die auch (c; ab; 4a−b) ein pythagoreisches
Zahlentripel ist.

Nach Voraussetzung gilt

a2 + b2 = c2 (1)
c2 + a2b2 = 16a2 − 8ab+ b2 (2)
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Setzt man (1) in(2) ein, so erhält man

a2 + b2 + a2b2 = 16a2 − 8ab+ b2 → 15a2 − a2b2 − 8ab = 0→ a = 8b
15− b2

Da aus b > 3 folgt a < 0, kommt nur b = 3 in Frage (die Zahlen 1 und 2 können bekanntlich nicht Zahlen
eines pythagoreischen Tripels sein). Dann ist aber a = 4 und c = 5. Tatsächlich ist (5; 4 ·3 = 12; 4 ·4−3 =
13) ein pythagoreisches Tripel. Das Tripel (4; 3; 5) ist damit das einzige der geforderten Art.

Aufgabe 32/81
Man gebe eine sowohl notwendige als auch hinreichende Bedingung für die natürliche Zahl n an,
die garantiert, dass die Gleichung x + y + xy = n genau eine Lösung in natürlichen Zahlen x; y mit
0 ≤ x < y hat.

Ist x1; y1 eine Lösung, so gilt mit x1 + y1 + x1y1 = n auch

1 + x1 + y1 + x1y1 = (1 + x1)(1 + y1) = n+ 1

Jede Zerlegung von n + 1 in ein Produkt aus zwei Faktoren liefert eine Lösung. Genau eine Lösung
existiert also genau dann, wenn n + 1 auf genau eine Weise in ein Produkt aus zwei verschiedenen
Faktoren zerlegbar ist. Notwendig und hinreichend ist dafür, dass n + 1 Primzahl oder Quadrat einer
Primzahl ist: n+ 1 = 1 · (n+ 1).
Wegen x < y ist dann (1+x1) = 1 und (1+y1) = n+1, also x = 0 und y = n. Die Zerlegung (1+x1) = p
und (1 + y1) = p (p Primzahl, p2 = n− 1) kommt nämlich wegen x < y nicht in Frage.

Aufgabe 33/81
Man beweise die Richtigkeit der Behauptung

cos 20◦ · cos 40◦ · cos 80◦ = 1
8

ohne einen der Kosinus zahlenmäßig zu ermitteln!

Es ist sin 160◦ = sin 20◦. Wegen sin 160◦ = sin 2 · 80◦ = 2 sin 80◦ cos 80◦ ist also

2 sin 80◦ cos 80◦ = sin 20◦

Entsprechend folgt mit sin 80◦ = 2 sin 40◦ cos 40◦

4 sin 40◦ cos 40◦ cos 80◦ = sin 20◦

und mit sin 40◦ = 2 sin 20◦ cos 20◦

8 sin 20◦ cos 20◦ cos 40◦ cos 80◦ = sin 20◦

Nach Division mit 8 sin 20◦ 6= 0 folgt daraus die Behauptung

cos 20◦ cos 40◦ cos 80◦ = 1
8

Aufgabe 34/81
Man ermittle alle Paare (a; b) natürlicher Zahlen a und b, für die gilt a2 − b2 = 1981.

Es ist
a2 − b2 = (a− b)(a+ b) = 1981 = 1 · 7 · 283

Wegen a− b < a+ b (b 6= 0, wie man sich leicht überzeugt) folgt entweder

a− b = 1 ; a+ b = 1981 ; a = 991 ; b = 990 oder

a− b = 7 ; a+ b = 283 ; a = 145 ; b = 138
Die Probe bestätigt die Richtigkeit. Demnach existieren genau zwei Paare, die die gestellte Bedingung
erfüllen: (a1; b1) = (991 : 990), (a2; b2) = (145; 138).
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Aufgabe 35/81
In einer Schauvitrine sind 60 (nicht notwendig reguläre) konvexe Polyeder ausgestellt, die ausschließ-
lich Dreiecke als Begrenzungsflächen haben. Die Summe ihrer Eckenzahlen ist 1111. Man bestimme
die Gesamtzahl der Begrenzungsflächen.

Nach dem Eulerschen Polyedersatz gilt e+f−k = 2 (wobei mit e die Anzahl der Ecken, mit f die Anzahl
der Begrenzungsflächen und mit k die Anzahl der Kanten eines Polyeders bezeichnet sind). Sind speziell
alle Begrenzungsflächen Dreiecke, so ist (da jede Fläche von 3 Kanten begrenzt wird und jede Kante 2
Flächen angehört): 2k = 3f .
Setzt man dies in den Polyedersatz ein, so folgt nach kurzer Rechnung: f = 2e− 4.
Nach den Bedingungen der Aufgabe ist dann

60∑
i=1

fi =
60∑
i=1

(2ei − 4) = 2
60∑
i=1

ei − 4
60∑
i=1

i = 2 · 1111− 4 · 60 = 1982

Aufgabe 36/81
Gegeben ist das Kryptogramm abcd = bba · d, wobei a; b; c; d Ziffern im dekadischen Positionssystem
bedeuten (gleiche Buchstaben bedeuten gleiche, verschiedene Buchstaben verschiedene Ziffern).
Man ermittle alle Lösungen des Kryptogramms.

Das Kryptogramm stellt nichts anderes dar als die Gleichung

1000a+ 100b+ 10c+ d = (110b+ a)d = 110bd+ ad

mit a; b; c; d ∈ N , 1 ≤ a; b; d ≤ 9, 0 ≤ c ≤ 9. Aus ihr folgt sofort

d ≡ ad (mod 10)

also
d(a− 1) ≡ 0 (mod 10)

Die Kongruenz ist erfüllt, wenn
1. a = 1, d beliebig,
2. a = 6, d gerade,
3. a ungerade, d = 5
ist.
Betrachten wir zunächst Fall 3. Mit d = 5 nimmt die Gleichung die Gestalt

1000a+ 100b+ 10c+ 5 = 550b+ 5a ; 199a+ 2c+ 1 = 90b

an. Probieren mit a = 1; 3; 5; 7; 9 liefert keine Werte für b und c aus dem Definitionsbereich. Damit kommt
Fall 3 nicht in Frage.
Gehen wir zum Fall 2 über. Mit a = 6 nimmt die Gleichung die Gestalt

6000 + 100b+ 10c+ d = 110bd+ 6d ; 1200 + 20b+ 2c = 22bd+ d

an. Probieren mit d = 2; 4; 6; 8 liefert nur für d = 2 Werte aus dem Definitionsbereich für b und c; es ergibt
sich jedoch b = 6 = a im Widerspruch zur Voraussetzung, so dass auch Fall 2 nicht in Frage kommt.
Bleibt noch Fall 1 zu untersuchen. Mit a = 1 nimmt die Gleichung die Gestalt

1000 + 100b+ 10c+ d = 110bd+ d ; 100 + 10b+ c = 11bd

an. Da die rechte Seite der letzten Gleichung restlos durch 11 teilbar ist, gilt dies auch für die linke Seite,
und aus der bekannten Teilbarkeitsregel für 11 folgt

1− b+ c ≡ 0 (mod 11)

wegen 0 ≤ b; c ≤ 9 gilt sogar 1− b+ c = 0’ also c = b− 1. Damit folgt

100 + 10b+ c = 100 + 10b+ b− 1 = 99 + 11b = 11bd→ d = 1 + 9
b

Diese Gleichung liefert für b1 = 3 und für b2 = 9 Werte für d aus dem Definitionsbereich: d1 = 4, d2 = 2.
Da sich in beiden Fällen auch für c ”brauchbare” Werte ergeben, nämlich c1 = 2 und c2 = 8, gibt es
genau zwei Lösungen des Kryptogramms: 1324 = 331 · 4, 1982 = 991 · 2.
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2.22 Aufgaben und Lösungen 1982

Aufgabe 1/82
Von 100 Papierbögen wurde eine nicht bekannte Anzahl in je 10 Teile zerschnitten. Danach zählte
man die Papierblätter; man ermittelte die Anzahl 864. Es ist zu beweisen, dass beim Zählen ein
Fehler unterlaufen ist.

Wird ein Papierbogen in 10 Teile zerschnitten, so ändert sich die Anzahl um 9. Die Anzahl der Blätter
nach dem Zerschneiden muss also beim Teilen durch 9 denselben Rest lassen wie die Anzahl vor dem
Zerschneiden. Da

100 ≡ 1 (mod 9), aber 864 ≡ 0 (mod 9)
gilt, ist mit Sicherheit ein Fehler unterlaufen. Vermutlich wurde 1 Blatt übersehen, oder es sind 8 Blatt
zuviel gezählt werden (die übrigen noch in Frage kommenden Fehler sind nicht sehr wahrscheinlich).

Aufgabe 2/82
Gesucht, sind alle Paare von Primzahlen (p1; p2) mit p1 ≤ p2, für die gilt (4p1)2 + (4p2)2 = 100000.

Die gegebene Gleichung ist äquivalent der Gleichung

p2
1 + p2

2 = 6250

1) p1 6= 2, da p2
2 = 6246 keine natürliche Zahl p2, geschweige denn eine Primzahl p2 liefert.

2) p1 = 3 liefert p2
2 = 6241, p2 = 79. Da 79 tatsächlich Primzahl ist, wurde damit ein erstes Lösungspaar

ermittelt: (p11; p21) = (3; 79).
3) Ist p1 > 3, so ist bekanntlich p1 ≡ ±1 (mod 6), also p2

1 ≡ 1 (mod 6). Wegen p2 ≥ p1 gilt das gleiche
auch für p2. Damit folgt

p2
1 + p2

2 ≡ 1 + 1 = 2 (mod 6)
Da andererseits 6250 ≡ 4 (mod 6) gilt, kann es kein weiteres Lösungspaar geben.

Aufgabe 3/82
Man beweise, dass für jedes ebene Dreieck mit den Seiten a, b und c und den ihnen gegenüberliegenden
Winkeln α, β, γ die Gleichung gilt:

√
a sinα+

√
b sin β +

√
c sin γ =

√
(sinα+ sin β + sin γ)(a+ b+ c)

Nach dem Sinussatz der ebenen Trigonometrie gilt

sinα
a

= sin β
b

= sin γ
g

= k

Daraus folgt sinα = ak, sin β = bk, sin γ = ck und damit
√
a sinα+

√
b sin β +

√
c sin γ = a

√
k + b

√
k + c

√
k =
√
k(a+ b+ c) (1)

sinα+ sin β + sin γ = ak + bk + ck = k(a+ b+ c) ; k = sinα+ sin β + sin γ
a+ b+ c

(2)

Setzt man (2) in (1) ein, so ergibt sich die Behauptung:

√
a sinα+

√
b sin β +

√
c sin γ =

√
k(a+ b+ c) =

√
sinα+ sin β + sin γ

a+ b+ c
(a+ b+ c) =

=
√

(sinα+ sin β + sin γ)(a+ b+ c)

Aufgabe 4/82
Man beweise: Das Produkt aus den drei von Null verschiedenen natürlichen Zahlen eines jeden py-
thagoreischen Zahlentripels ist durch die Summe dieser Zahlen ohne Rest teilbar.
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Aus a2 + b2 = c2 mit a; b; c ∈ N folgt

a2 + b2 − c2 = 0 ; (a+ b)2 − c2 = 2ab

(a+ b− c)(a+ b+ c) = 2ab ; (a+ b− c)c
2 = abc

a+ b+ c

(wegen a+ b+ c 6= 0 und c
2 6= 0). Der Term abc

a+b+c ist genau dann ganzzahlig, wenn der Term (a+ b− c)c
eine, gerade Zahl ist. Nun ist stets a + b − c eine gerade Zahl. Ist nämlich c gerade, so ist auch c2 und
folglich a2 + b2 gerade, also sind a und b entweder beide gerade oder beide ungerade; ist dagegen c
ungerade, so auch c2 und folglich ist genau eine der beiden Zahlen a und b ungerade und damit a + b
ungerade. In jedem Fall ist also (a+ b− c)c eine gerade Zahl und damit

(a+ b− c)c
2 = abc

a+ b+ c

eine ganze Zahl.

Aufgabe 5/82
Man ermittle alle Trapeze ABCD mit folgenden Eigenschaften:
1. Die Länge c der Seite CD ist eine ganze Anzahl von Längeneinheiten LE.
2. Die Länge der Seite AB ist um 3 LE größer als die Länge c der dazu parallelen Seite CD.
3. Die Länge d der Seite DA ist um 1 LE, die Länge b der Seite BC um 2 LE größer als c.
4. ]BAD = 90◦

Es gilt offenbar c ∈ N (nach Bedingung 1), a = c+ 3 (nach Bedingung 2), b = c+ 2 und d = c+ 1 (nach
Bedingung 3); dabei ist LE vernachlässigt.
Es seien nun E und F die Fußpunkte der Lote von C bzw. D auf AB, und es sei AF = x, EB = y,
CE = DF = h. Dann ist wegen FE = CD = c

AB = AF + FE + EB = x+ c+ y = c+ 3

also y = 3− x und

DA2 − x2 = h2 = (c+ 1)2 − x2 ; BC2 − (3− x)2 = h2 = (c+ 2)2 − (3− x)2

(c+ 1)2 − x2 = (c+ 2)2 − (3− x)2

Löst man diese Gleichung nach c auf, so erhält man x = 1− c
3 .

Die Bedingung 4 impliziert x ≥ 0. Wegen c ∈ N ist dann 1 ≤ c ≤ 3, und es gibt damit drei Trapeze der
geforderten Art:
1) c = 1, a = 4, b = 3, d = 2, x = 0,666...
2) c = 2, a = 5, b = 4, d = 3, x = 0,333...
3) c = 3, a = 6, b = 5, d = 4, x = 0
Zusatz: Wollte man mit c = 0 auch das Dreieck als ”entartetes” Trapez zulassen, so wäre x = 1, a =
3, b = 2, d = 1. Man erkennt, dass dann sogar das Dreieck (zur Strecke) entartet.

Aufgabe 6/82
Gegeben ist die Ungleichung |x| + |y| ≤ n mit n ∈ N, x; y ∈ G (wobei mit G die Menge der ganzen
Zahlen bezeichnet ist). Man bestimme die Anzahl der geordneten Lösungspaare (x; y).

Wir ersetzen die Ungleichungen |x| + |y| ≤ n mit n ∈ N , x; y ∈ G durch die Menge aller Gleichungen
|x|+ |y| = k mit k ∈ N ’ 0 ≤ k ≤ n, x; y ∈ G.
Offensichtlich ist ein Paar (x; y) genau dann Lösung der gegebenen Ungleichung, wenn es Lösung einer
dieser Gleichungen ist. Die gestellte Aufgabe ist damit auf die Aufgabe reduziert, die Anzahl der Lösungen
zu bestimmen, die jede dieser Gleichungen hat.
Ist k = 0, so ist das Paar (x = 0; y = 0) die einzige Lösung. Ist 0 < k ≤ n, so unterscheiden wir zwei
Fälle:

1. Es sei ein Paarelement gleich null. Dann ist das andere Paarelement gleich ±k. Es gibt in diesem
Fall also die vier Lösungen (x = 0; y = ±k), (x = ±k; y = 0).
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2. Es sei kein Paarelement gleich null. Dann kann das eine Paarelement die Werte ±1; ±2; ±3; ...;
±(k− 1), das andere die Werte ±(k− 1); ±(k− 2); ...; ±1 durchlaufen. Da vorzeichenmäßig jeweils
vier Kombinationen möglich sind, ergeben sich damit 4(k − 1) Lösungen.

Für 0 < k ≤ 11 sind also für jedes k insgesamt 4 + 4(k − 1) = 4k Lösungen möglich. Durch Summieren
ergibt sich die Gesamtzahl aller Lösungen zu

1 +
n∑
k=1

4k = 1 + 4
n∑
k=1

k = 1 + 4(n+ 1)n
2 = n2 + (n+ 1)2

Aufgabe 7/82
Es seien a; b; c; d vier von null verschiedene reelle Zahlen, für die die Gleichungen

a+ b

c
= a+ c

b
= b+ c

a
= d

gelten. Man ermittle alle möglichen Werte von d.

Aus
a+ b

c
= a+ c

b
= b+ c

a
= d

folgen die Gleichungen

a+ b = cd ; a+ c = bd ; b+ c = ad

Durch seitenweise Addition erhält man daraus 2(a+ b+ c) = d(a+ b+ c).
Es gibt nun zwei Möglichkeiten:
1. a+ b+ c = 0. Es folgt a+ b = −c; a+ c = −b; b+ c = −a und damit

a+ b

c
= a+ c

b
= b+ c

a
= −c

c
= −b

b

−a
a

= 1 = d

2. a+ b+ c 6= 0. Dann ergibt sich sofort d = 2. Die möglichen Werte für d sind also d1 = −1 und d2 = 2.

Aufgabe 8/82
Man bestimme die kleinste Zahl n, die im Dezimalsystem die Form

n =
k∑
i=1

102i−1x+
k∑
i=0

102iy

hat (x; y ∈ N , 0 < x ≤ 9, 0 ≤ y ≤ 9’ x 6= y, k > 0) und die restlos durch 264 teilbar ist.

Wegen 264 = 23 · 3 · 11 muss für n nach den bekannten Teilbarkeitsregeln gelten:

3 | k(x+ y) (1)
8 | 101y + 10x (2)

11 | k(x− y) (3)

Aus (3) folgt sofort wegen x ≤ 9, x 6= y, y ≤ 9, dass 11 | k. Da die kleinste Zahl n gesucht ist, probieren
wir zunächst mit k = 11.
Dann gilt nach (1) 3 | (x+ y). Kleinstes x ist x = 1; dann wäre y = 2 oder y = 5 oder y = 8, aber keine
dieser Kombinationen erfüllt die Bedingung (2). Dagegen ergibt sich mit x = 2, y = 4 (y = 1 scheidet
ebenfalls aus) ein brauchbares Paar: 8 | 101 · 4 + 10·)424. Damit ist die Lösung gefunden:

n =
k∑
i=0

102i+1 · 2 +
k∑
i=0

102i · 4 = 24242424...24
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Aufgabe 9/82
Volumen und Oberfläche einer Kugel seien zahlenmäßig einander gleich. Wie groß ist unter dieser
Voraussetzung die Oberfläche eines der Kugel einbeschriebenen Würfels?

Ist r der Radius der Kugel, so gilt nach der Voraussetzung

4
3πr

3 = 4πr2 ; r = 3 LE

(wobei mit LE die Längeneinheit bezeichnet ist). Für die Seitenlänge a des der Kugel mit dem Radius r
einbeschriebenen Würfels gilt

a = 2
3
√

3r = 2
√

3

(dies folgt sofort aus der Tatsache, dass die Raumdiagonale des Würfels gleich dem Durchmesser der
Kugel ist:

√
3a = d = 2r).

Damit gilt für die Oberfläche A des Würfels: A = 6a2 = 6 · (2
√

3(2= 72 LE2.

Aufgabe 10/82
Die Kante eines Würfels sei die Raumdiagonale eines Quaders mit den Kantenlängen a, b und c. In
welchem Verhältnis stehen die Kantenlängen des Quaders zueinander, wenn das Würfelvolumen das
3
√

3-fache des Quadervolumens ist?

Die Kantenlänge des Würfels ist d =
√
a2 + b2 + c2 für die Volumina ergibt sich damit

(
√
a2 + b2 + c2)3 = 3

√
3abc =

√
27abc→ (a2 + b2 + c2)3 = 33 · a2b2c2

a2 + b2 + c2 = 3 3√
a2b2c2 → a2 + b2 + c2

3 = 3√
a2b2c2

Es ist also das arithmetische Mittel der drei nichtnegativen Zahlen a2, b2 und c2 gleich ihrem geometrischen
Mittel. Das ist genau dann den Fall, wenn diese Zahlen sämtlich einander gleich sind. Dann und nur dann
sind aber auch ihre nichtnegativen Wurzeln einander gleich. Es gilt also a = b = c, der Quader ist ebenfalls
ein Würfel.

Aufgabe 11/82
Man bestimme alle geordneten Quadrupel (k; l;m;n) positiver ganzer Zahlen k, l,m, n, für die fol-
gende Gleichung gilt: k2l − 4 = mn.

Die Gleichung hat unendlich viele triviale Lösungen. Sie wird nämlich sicher von der zweiparametrischen
Lösungsschar

(k; l;m = k2l − 4;n = 1)
mit k, l ∈ N ; k > 2 erfüllt. Die Frage nach der Existenz nichttrivialer Lösungen ist schnell zu entscheiden,
wenn m Primzahl ist. Dann gilt nämlich

k2l − 4 = (kl − 2)(kl + 2) = mn = mαmn−α

mit α ∈ N,mα 6= mn−α wegen kl − 2 < kl + 2. O.B.d.A. sei mα < mn−α, also α < n− α, 2α < n. Dann
ist

kl + 2
kl − 2 = 1 + 4

kl − 2 = mn−α

mα
= mn−2α ∈ N

Folglich ist kl = 3 oder kl = 4 oder kl = 6. Davon liefert nur kl = 6 eine nichttriviale Lösung: (k; l;m;n) =
(6; 1; 2; 5).
Ist m keine Primzahl, so ist n sicher ungerade; denn aus k2l − 4 = m2r mit r ∈ N folgt, dass sich
zwei Quadratzahlen k2l und m2r um genau 4 unterscheiden, was bekanntlich unmöglich ist. Es sei nun
n = 2r + 1 mit r ∈ N . Dann müsste

k2l = m2r+1 + 4 = m2r
(
m+ 4

m2r

)
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eine Quadratzahl sein. Damit der Klammerausdruck ganzzahlig wird, kann m2r nur die Werte 1, 2 oder
4 annehmen. Es müsste also m = 1 und r beliebig oder m beliebig und r = 0 oder m = 2 und r = 1 sein.
Für m = 1 und m = 2 ergeben sich aber keine Quadratzahlen. Für r = 0 ist n = 1’ und damit erhält
man die bereits erwähnten trivialen Lösungen. Weitere nichttriviale Lösungen folgen aus trivialen, wenn
k = s2 mit s ∈ N ist.

Aufgabe 12/82
Man beweise die Richtigkeit der folgenden Behauptung: Sind fünf Punkte einer Ebene so gegeben,
dass keine drei davon auf einer Geraden liegen; so kann man stets vier von ihnen auswählen, die
Eckpunkte eines konvexen Vierecks sind.

Wir bezeichnen die Punkte mit Pi (i = 1; 2; ...; 5) so, dass P1, P2, P3 und P4 Eckpunkte eines nicht
überschlagenen Vierecks sind (das ist, da keine drei Punkte auf einer Geraden liegen, sicher möglich). Es
gibt nun zwei Möglichkeiten:
1) Das Viereck P1P2P3P4 ist konvex. Dann ist der Beweis bereits geführt.
2) Das Viereck P1P2P3P4 ist nicht konvex. Da keine drei Punkte auf einer Geraden liegen, muss dann
einer der vier Eckpunkte im Inneren des Dreiecks liegen, das von den übrigen drei Eckpunkten gebildet
wird; O.B.d.A. sei dies P4. Es gibt nun wieder zwei Möglichkeiten:
2.1) P5 liegt außerhalb des Dreiecks P1P2P3. Dann schneidet die Strecke P4P5 eine der Dreieckseiten.
O.B.d.A. sei dies P1P2.
Dann bilden P1P2 und P4P5 die Diagonalen eines konvexen Vierecks P1P5P2P4, da zwei Strecken genau
dann Diagonalen eines konvexen Vierecks sind, wenn sie einen inneren Schnittpunkt haben.
2.2) P5 liegt nicht außerhalb des Dreiecks P1P2P3. Da keine drei Punkte auf einer Geraden liegen, folgt,
dass P5 im Inneren dieses Dreiecks liegt. Dann liegt es aber auch im Inneren eines der Teildreiecke P1P2P4,
P1P3P4 oder P2P3P4 (weil P5 auch nicht auf P1P4, P2P4 und P3P4 liegen kann).
O.B.d.A. liege P5 im Dreieck P1P2P4. Dann schneidet P5P3 entweder die Strecke P1P4 oder die Strecke
P2P4 innen. In beiden Fällen erhält man; analog zu 2.1; das Diagonalenpaar eines konvexen Vierecks.
Da die Fallunterscheidung vollständig ist, wurde der geforderte Beweis erbracht.

Aufgabe 13/82
Durch welche Funktion y = f(x) werden die Glieder der Folge {yk} = {3; 8; 13; 18; ...} den Gliedern
der Folge {xk} = {2; 5; 8; 11; ...} zugeordnet?

Es ist xk = 2 + 3(k− 1) und yk = 3 + 5(k− 1). Eliminiert man daraus die Gliednummer k, so erhält man
5(xk − 2) = 3(yk − 3) also für jedes k

y = 5
3x−

1
3 = f(x)

Aufgabe 14/82
Man bestimmte alle Tripel (x; y; z) ganze Zahlen x; y; z’ welche die Gleichung erfüllen:

xy

z
+ yz

x
+ xz

y
= 3

Aus der gegebenen Gleichung folgt durch Multiplikation

(xy)2 + (yz)2 + (zx)2

3 = xyz

Da die linke Seite der Gleichung mit Sicherheit positiv ist, folgt xyz > 0 und damit (wegen der geforderten
Ganzzahligkeit) sogar xyz ≥ 1. Nach der bekannten Beziehung zwischen dem arithmetischen und dem
geometrischen Mittel gilt ferner

xyz = (xy)2 + (yz)2 + (zx)2

3 = 3
√

(xy)2 · (yz)2 · (zx)2

Wegen xyz > 0 folgt daraus 1 ≥ 3
√
xyz, also auch 1 ≥ xyz. Damit ist aber xyz = 1. Wegen der

Ganzzahligkeit ist dann |x| = |y| = |z| = 1, und es ergeben sich die folgenden Lösungen:

(x1; y1; z1) = (1; 1; 1) ; (x2; y2; z2) = (1;−1;−1)
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(x3; y3; z3) = (−1; 1;−1) ; (x4; y4; z4) = (−1;−1; 1)

(aus xyz > 0 folgt nämlich, dass entweder keiner oder genau zwei der drei Werte x; y; z negativ sind).

Aufgabe 15/82
Man beweise: Gilt in einem bei C rechtwinkligen Dreieck ABC mit den Katheten a und b, der
Hypotenuse c und den ihnen gegenüberliegenden Winkeln α, β, γ, dass cosα = tanα ist, so bilden
die Maßzahlen der Höhe hc auf c und der Seiten a, b und c eine geometrische Folge.

Nach Voraussetzung ist tanα = a
b = cosα = b

c , also a = b cosα, b = c cosα.
Ferner gilt (wegen M ABC ∼ M BCD), wobei D der Fußpunkt der Höhe hc auf c ist) ]DCB =
]CAB = α, also hc = a cosα. Damit ist q = cosα der Quotient der Folge

{hc = aq, a = bq, b = cq, c}

Aufgabe 16/82
In einer Ebene seien zwei (nicht zusammenfallende) Punkte A und B festgelegt. Gegeben sei die
Menge aller Dreiecke ABC dieser Ebene (wobei die Eckpunkte im mathematisch positiven Drehsinn
bezeichnet seien), für die ]BCA = γ =konstant gilt. Gesucht ist die Menge der Inkreismittelpunkte
M .

Ist M der Inkreismittelpunkt eines Dreiecks, so gilt nach dem Winkelsummensatz

]BMA+ ]MAB + ]ABM = 180◦

Da der Inkreismittelpunkt der Schnittpunkt der Winkelhalbierenden ist, gilt

]MAB = 1
2]CAB = 1

2α ; ]ABM = 1
2]ABC = 1

2β

also
]BMA+ 1

2α+ 1
2β = 180◦ oder ]BMA = 180◦ − 1

2(α+ β)

Nach dem Winkelsummensatz ist aber α+ β = 180◦ − γ,

]BMA = 180◦ − 1
2(180◦ − γ) = 90◦ − 1

2γ = konstant

Damit liegt M nach dem Peripheriewinkelsatz auf dem Kreisbogen durch A und B mit dem Peripherie-
winkel ϕ = 90◦ + 1

2γ, der in derselben (von der Geraden durch A und B erzeugten) Halbebene liegt wie
C. Die gesuchte Menge ist also dieser Kreisbogen. Für den Radius r dieses Kreisbogens gilt

AB

2r = c

2r = sin
(

90◦ − 1
2γ
)

= cos γ2 =
√

1 + cos γ
2 → r = c

2

√
2

1 + cos γ

Zusatz: Ist Q der Mittelpunkt dieses Kreisbogens, so gilt

]BQA = 360◦ − ]AQB = 360◦ − 2]BMA = 360◦ − 2(90◦ + γ

2 ) = 180◦ − γ = α+ β

Das Viereck AQBC ist also ein Sehnenviereck (die Summe gegenüberliegender Winkel beträgt 180◦).
Daraus folgt, dass Q auf dem gemeinsamen Umkreis der Dreiecke ABC liegt. Aus Symmetriegründen
halbiert Q den Kreisbogen BA.

Aufgabe 17/82
Man finde alle zweistelligen natürlichen Zahlen n, die gleich dem Quadrat ihrer Quersumme sind.

Es sei n = 10a1 + a2 mit 0 ≤ a1; a2 ≤ 9, a1; a2 ∈ N eine solche Zahl und q = a1 + a2 ihre Quersumme.
Dann ist wegen a2 = q − a1

q2 = 10a1 + a2 = 9a1 + q also q2 − q = q(q − 1) = 9a1
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Das Produkt zweier aufeinanderfolgender natürlicher Zahlen ist genau dann durch 9 teilbar, wenn einer
der beiden Faktoren durch 9 teilbar ist. Da weiter 0 ≤ a1 ≤ 9 gilt, ist

q = 9, q − 1 = 8 = a1, a2 = q − a1 = 1 oder q = 1, q − 1 = 0 = a1, a2 = q − a1 = 1

q = 0, a1 = 0, a2 = 0 scheidet als trivial aus. Die Probe bestätigt, dass n1 = 81 und n2 = 01 tatsächlich
Lösungen der Aufgabe sind (wobei man wohl n2 = 01 als nicht ”echt” zweistellig ausscheiden wird).

Aufgabe 18/82
Es ist zu beweisen: Gilt für eine natürliche Zahl n die Kongruenz (n− 1)! + 1 ≡ 0 (mod n), so ist n
eine Primzahl.

Widerspruchsbeweis: Die Voraussetzung sagt nichts anderes, als dass n ein Teiler von (n − 1)! + 1 ist.
Angenommen, eine natürliche Zahl n erfülle die Voraussetzung und sei nicht Primzahl.
Dann gibt es sicher eine natürliche Zahl t mit 1 < t < n, die (echter) Teiler von n und damit auch von
(n− 1)! + 1 ist. Andererseits sind alle natürlichen Zahlen k mit k < n, also speziell auch k = t, Teiler von
(n− 1)!. Damit kann k = t nicht Teiler von (n− 1)! + 1 sein.
Die Annahme, n sei keine Primzahl, führt also auf den Widerspruch, dass es eine natürliche Zahl t gibt,
die zugleich Teiler und Nichtteiler derselben Zahl (n− 1)! + 1 ist. Folglich ist die Annahme falsch, n ist
also Primzahl.

Aufgabe 19/82
Man löse die Gleichung 25x − 30x = 36x+0,5.

Wegen
25x − 30x = 36x+0,5 = 36x

√
36 = 6 · 36x

liegt es nahe, zunächst die Gleichung durch 36x 6= 0 zu dividieren. Man erhält damit

25x

36x −
30x

36x =
[(

5
6

)2
]x
−
(

5
6

)x
= 6

und mit der Substitution
( 5

6
)x = t ergibt sich die in t quadratische Gleichung t2 − t − 6 = 0 mit den

Lösungen t1;2 = 0,5± 2,5, von denen wegen t > 0 nur t1 = 3 in Frage kommt. Daraus folgt

x = logz 3 = lg 3
lg z = lg 3

lg 5− lg 6 ≈ −6,03

mit z = 5
6 .

Aufgabe 20/82
Es seien x; y; z drei reelle Zahlen, die der Ungleichung x2 + xy + xz < 0 genügen. Man zeige, dass
dann die Ungleichung y2 > 4xz gilt!

Angenommen, es wäre y2 ≤ 4xz. Dann gälte xz ≥ 0,25y2
’ und es folgt aus der Voraussetzung

0 > x2 + xy + xz ≥ x2 + xy + 0,25y2 = (x+ 0,5y)2

Dies ist aber ein Widerspruch zu der Tatsache, dass Quadrate reeller Zahlen stets nichtnegativ sind. Also
ist die Annahme falsch; d.h., es gilt y2 > 4xz.

Aufgabe 21/82
Gesucht sind alle (in dekadischer Schreibweise) vierstelligen Zahlen mit der Ziffernfolge {a; b; c; d}
mit a; b; c; d ∈ N , 1 ≤ a ≤ 9, 0 ≤ b; c; d ≤ 9, deren sechsfaches die Ziffernfolge {a; a; c; b; d} hat.
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Nach der Aufgabenstellung gilt

6(1000a+ 100b+ 10c+ d) = 11000a+ 100c+ 10b+ d

oder (nach entsprechender Umformung): 5d = 10(500a+ 4c− 59b).
Daraus folgt sofort, dass d eine gerade Zahl ist: d = 2e mit e ∈ N , 0 ≤ e ≤ 4; damit nimmt die Gleichung
die Gestalt

e = 500a+ 4c− 59b oder 59b = 500a+ 4c− e

an. Wegen a ≥ 1 muss 59b ≥ 496, also b > 8 sein. Mithin ist b = 9, 531 = 500a+ 4c− e.
Da 4c− e < 100 ist, folgt a = 1 und daraus

31 = 4c− e ; c = 7 + 3 + e

4

Damit ergibt sich e = 1, d = 2, c = 8. Tatsächlich ist 6 · 1982 = 11892.

Aufgabe 22/82
Nina und Sascha haben Pilze gesammelt, Nina sagt zu Sascha: ”Die eine Hälfte meiner Pilze sind
Steinpilze, die andere Rotkappen und Birkenpilze. Mathematisch interessant ist aber, dass das Pro-
dukt aus der Anzahl der Steinpilze, der Anzahl der Rotkappen und der Anzahl der Birkenpilze gleich
dem Quadrat aus der Summe ist.”
Da antwortet Sascha: ”Das ist seltsam - dasselbe trifft bei mir zu. Nur ich habe eine Rotkappe mehr
als du.”
Wie viele Pilze der verschiedenen Sorten hat jedes der beiden Kinder?

Wir bezeichnen mit x; die Anzahl der Steinpilze in Ninas Korb, mit y die der Rotkappen und mit z die
der Birkenpilze. Dann gilt nach Ninas Angaben das folgende diophantische Gleichungssystem:

x = y + z ; xyz = (x+ y + z)2

(x; y; z ∈ N) das durch Einsetzen auf die Gleichung

(y + z)yz = [2(y + z)]2

reduziert wird. Wegen y + z 6= 0 ist diese der Gleichung yz = 4y + 4z äquivalent. Löst man nach y auf,
so ergibt sich wegen z 6= 4 (wie man durch Einsetzen nachprüft)

y = 4z
z − 4 = 4 + 16

z − 4

Diese Gleichung liefert die folgenden Tripel:

z y x z y x
0 0 0 (entfällt) 5 20 25
6 12 18 8 8 16
12 6 18 20 5 25

Da Sascha eine Rotkappe mehr als Nina hat, muss Nina 5 Rotkappen und Sascha 6 haben. Folglich
hat Nina 20 Birkenpilze und 25 Steinpilze (insgesamt also 50 Pilze), Sascha hat 12 Birkenpilze und 18
Steinpilze (insgesamt 36).

Aufgabe 23/82
In einer Ebene seien zwei Punkte A und B gegeben. Unter ausschließlicher Verwendung des Zirkels
konstruiere man zwei Punkte C und D derart, dass ABCD ein Quadrat mit der Seite AB = a ist.

Die Aufgabe ist gelöst, wenn es gelungen ist, die Strecke AC = a
√

2 zu konstruieren. Dann nämlich findet
man den Punkt C als Schnittpunkt der Kreise um A mit a

√
2 um B mit a = AB als Radien sowie den

Punkt D als den nicht mit B zusammenfallenden Schnittpunkt der Kreise um A und C mit a = AB als
Radius. Bis auf den Umlaufsinn ist damit die Lösung eindeutig.
Um AC = a

√
2 zu finden, führen wir eine Hilfskonstruktion durch.
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Ausgehend von B konstruieren wir Hilfspunkte B2, B3, B4 und B5 derart, dass BB2 = B2B3 = B3B4 =
B4B5 = AB = a ist und B2, B3, B4, B5 in dieser Reihenfolge auf der durch A und B verlaufenden
Geraden liegen. Dies ist möglich, indem man gleichseitige Dreiecke ABA1, A1BA2, A2BB2, A2B2A3,
A3B2B3, A3B3A4, A4B3B4, A4B4A5, A4B4B5 konstruiert. Danach schlägt man
1. den Kreis K1 um A mit r1 = AB5 = 5a
2. den Kreis K2 um B3 mit r2 = AB4 = 4a
3. den Kreis K3 um B4 mit r3 = AB3 = 3a.
Einer der Schnittpunkte von K1 und K2 sei P , der Schnittpunkt von K1 und K3’ der in derselben Halb-
ebene wie P liegt, sei Q.

Behauptung: PQ = a
√

2
Beweis: Wir denken uns A als Ursprung eines rechtwinklig-kartesischen Koordinatensystems, dessen Ab-
szissenachse mit der Geraden durch A und B zusammenfällt und das so orientiert ist, dass P und Q
positive Koordinaten haben.
Dann hat P die Koordinaten xP = 3a, yP = 4a (wegen AP = 5a ist M AB3P bei B3 rechtwinklig), Q
hat die Koordinaten xQ = 4a, yQ = 3a (aus dem gleichen Grund ist M AB4Q bei B4 rechtwinklig). Nach
der Formel für den Abstand zweier Punkte ist dann

PQ =
√

(4a− 3a)2 + (3a− 4a)2 =
√
a2 + (−a)2 = a

√
2

Damit ist die Aufgabe gelöst.

Aufgabe 24/82

Es sei k+ 1 eine Primzahl mit k > 2. Man beweise, dass dann S =
4k−1∑
i=0

19i ohne Rest durch 8(k+ 1)

teilbar ist!

Anmerkung: Die Einschränkung k+ 1 6= 19 wurde in der ursprünglichen Aufgabenstellung versehent-
lich weggelassen.

Es ist

18S = (19− 1)S = 19
4k−1∑
i=0

19i −
4k−1∑
i=0

19i =
4k−1∑
i=0

19i+1 −
4k−1∑
i=0

19i =
4k∑
i=0

19i −
4k−1∑
i=0

19i =

=
4k∑
i=0

19i −
4k−1∑
i=1

19i − 190 = 194k − 1 = (192k − 1)(192k + 1) = (19k + 1)(19k − 1)(192k + 1)

also
S = (19k + 1)(19k − 1)(192k + 1)

2 · 32

Da 19 ungerade ist, sind auch 19k und 192k ungerade, folglich sind 19k − 1, 19k + 1 und 192k + 1 gerade;
da 19k − 1 und 19k + 1 zwei aufeinanderfolgende gerade Zahlen sind, ist sogar genau eine von beiden
durch 4 teilbar.
Daraus folgt, dass der Zähler des Bruches ohne Rest durch 16 und damit S ohne Rest durch 8 teilbar
ist. Ferner lässt 19 beim Teilen durch 9 den Rest 1, also auch 19k, und damit ist 19k − 1 restlos durch
9 = 3 · 2 teilbar. Da k+ 1 Primzahl ist, folgt schließlich aus dem kleinen Satz von Fermat, für k+ 1 6= 19,
dass

19k ≡ 1 (mod k+1) ; 19k − 1 ≡ 0 (mod k+1)

ist. Wegen k > 2, k + 1 > 3 und k + 1 Primzahl, ist der größte gemeinsame Teiler von k + 1 und 9 gleich
1; folglich ist S auch durch k+1 ohne Rest teilbar. Da auch 8 und k + 1 den größten gemeinsamen Teiler
1 haben, ist die Richtigkeit der Behauptung bewiesen:

S = 8(k + 1) · g =
4k+1∑
i=0

19i

wobei g eine ganze Zahl ist.
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Aufgabe 25/82
Man löse die Gleichung 3

√
24 + x+ 2

√
12− x = 6, wobei x eine reelle Zahl sei!

Wir setzen, um die dritte Wurzel zu eliminieren; 3
√

24 + x = a, also 24 + x = a3, x = a3 − 24, 12 − x =
36− a3. Dann nimmt die gegebene Gleichung die Gestalt

a+
√

36− a3 = 6 oder
√

36− a3 = 6− a

an. Durch Quadrieren folgt daraus

36− a3 = 36− 12a+ a2 ; a(a2 + a− 12) = 0

mit den Lösungen a1 = 0, a2,3 = −0,5± 3,5. Daraus ergibt sich x1 = −24, x2 = 3, x3 = −88. Von diesen
Werten erfüllen jedoch nur x1 = −24 und x2 = 3 die Probe. Demnach ist L = {x | x = −24;x = 3}.

Aufgabe 26/82
Man bestimme alle Glieder der Folge

{ak} =
{

k∑
i=0

9 · 10i
}

= {9; 99; 999; ...}

die man als Summe aus drei Quadraten natürlicher Zahlen x; y; z darstellen kann!

Außer für a0 und a1 gilt für alle Glieder der Folge

ak ≡ (1000− 1) ≡ −1 ≡ 7 (mod 8)

Gilt nun für irgend eine natürliche Zahl n

n ≡ 0; 1; 2; 3; 4; 5; 6; 7 (mod 8)

so gilt für n2

n2 ≡ 0; 1; 4; 1; 0; 1; 4; 1 (mod 8)

Damit gilt für die Stimme aus den Quadraten dreier natürlicher Zahlen sicher eine der folgenden Kon-
gruenzen mod 8:

0 + 0 + 0 ≡ 0 0 + 0 + 1 ≡ 1 0 + 0 + 4 ≡ 4 0 + 1 + 1 ≡ 2 0 + 1 + 4 ≡ 5
0 + 4 + 4 ≡ 0 1 + 1 + 1 ≡ 3 1 + 1 + 4 ≡ 6 1 + 4 + 4 ≡ 1 4 + 4 + 4 ≡ 4

Keinesfalls tritt einer Summe auf, die kongruent 7 (mod 8) ist. Damit erfüllen höchstens die Glieder
a0 = 9 und a1 = 99 die Bedingungen der Aufgabe. Tatsächlich ist

9 = 02 + 02 + 32 = 12 + 22 + 22 ; 99 = 12 + 72 + 72 = 52 + 52 + 72

Aufgabe 27/82
Gegeben sei ein spitzwinkliges Dreieck ABC mit den Seiten a, b, c und den Winkeln α, β, γ (übliche
Bezeichnungsweise). Gesucht ist der Punkt P auf der Seite c, für den die Summe der Abstände von
den beiden anderen Seiten ein Minimum ist.

Wir wählen einen beliebigen Punkt P (x) auf c, der von A den Abstand x (0 ≤ x ≤ c) und von B den
Abstand c−x hat. Ist da der Abstand dieses Punktes von der Seite a, db der Abstand von der Seite b, so
gilt

sinα = db
x

; sin β = da
c− x

also
da + db = (c− x) sin β + x sinα = c sin β + x(sinα− sin β)

Die Summe da + db hängt also linear von x ab. Wir unterscheiden nun 3 Fälle:
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1. α > β: Dann ist auch sinα > sin β (wegen 0◦ < α;β < 90◦), sinα − sin β > 0, und das Minimum
wird für x = 0 angenommen.

2. α = β: Dann ist die Summe konstant wegen sinα = sin β, sinα − sin β = 0 und es gibt kein
Minimum.

3. α < β: Dann ist sinα < sin β, sinα− sin β < 0 und das Minimum wird für maximales x angenom-
men: x = c

Ergebnis: Der Punkt P fällt auf A, wenn α > β, auf B, wenn α < β, er existiert nicht, wenn α = β (im
letzten Fall könnte man auch sagen, jeder Punkt von AB = c erfülle die Bedingung).

Aufgabe 28/82
Man ermittle alle Primzahlpaare (p; q), für die

(
p
q

)
ebenfalls Primzahl ist!

Wegen
(
p
q

)
= 1 für p = q,

(
p
q

)
= 0 für p < q muss p > q sein. Für p > q enthält

(
p
q

)
im Zähler den

Primfaktor p, im Nenner dagegen nicht.
Folglich ist

(
p
q

)
restlos durch p teilbar. Die Bedingung der Aufgabe ist also genau dann erfüllt, wenn(

p
q

)
= p ist. Nun ist (

p

q

)
= p(p− 1)(p− 2)...(p− q + 1)

1 · 2 · ... · q = p

genau dann, wenn
(p− 1)(p− 2)...(p− q + 1) = q!

ist. Aus der Eindeutigkeit der Primfaktorzerlegung folgt, dass die von 1 verschiedenen Faktoren auf der
rechten und der linken Seite der Gleichung paarweise einander gleich sind:

p− q + 1 = 2, ..., p− 1 = q

Also ist p = q + 1. Diese Gleichung ist (in Primzahlen p; q) nur für q = 2, p = 3 lösbar. Tatsächlich ist(
p

q

)
=
(

3
2

)
=
(

3
1

)
= 3

Weitere Lösungen kann es auf Grund des Lösungswegs nicht geben.

Aufgabe 29/82
Man bestimme alle Möglichkeiten, die Zahl 1000 als Summe aufeinanderfolgender natürlicher Zahlen
darzustellen.

Nach der Aufgabenstellung soll gelten
n∑
i=0

(a+ i) = 1000 =
n∑
i=0

a+
n∑
i=0

i = (n+ 1)a+ n(n+ 1)
2 = 0,5(n+ 1)(2a+ n)

Sicher ist genau einer der beiden Faktoren gerade; denn ist n gerade, so ist 2a + n gerade und n + 1
ungerade, und ist n ungerade, so ist 2a + n ungerade und n + 1 gerade. Daraus folgt, dass der gerade
Faktor sogar durch 16 teilbar ist (da 2000 durch 16 teilbar ist).
Aus 2000 = 24 · 53 ergeben sich damit die Zerlegungen

2000 = 16 · 125 ; 2000 = 80 · 25 ; 2000 = 400 · 5

Da a ≥ 1, ist 2a+ n > n+ 1. Demnach kommen für n die Werte n1 = 4, n2 = 15 und n3 = 24 in Frage.
Sie liefern a1 = 198, a2 = 55 und a3 = 28. Tatsächlich ist

202∑
i=198

i =
70∑
i=55

i =
55∑
i=28

i = 1000

und auf Grund der obigen Argumentation kann es keine weiteren Möglichkeiten geben.
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Aufgabe 30/82
Man berechne das Produkt

Pn =
n∏
i=0

(
22i + 1

)
Probeweises Einsetzen von n = 0; 1; 2; 3 liefert

p0 = 3 = 4− 1 = 22 − 1 = 221
− 1

p1 = 15 = 16− 1 = 24 − 1 = 222
− 1

p2 = 255 = 256− 1 = 28 − 1 = 223
− 1

p3 = 65535 = 65536− 1 = 216− 1 = 224
− 1

Dies führt zu der Vermutung, dass

pn =
n∏
i=0

(22i + 1) = 22n+1
− 1

sei. Die Vermutung ist bestätigt (als richtig bewiesen), wenn gezeigt ist, dass aus der Richtigkeit für n = k
die Richtigkeit für n = k + 1 folgt (Prinzip der vollständigen Induktion). Setzt man voraus, dass

pk =
k∏
i=0

(22i + 1) = 22k+1
− 1

ist, so folgt tatsächlich

pk+1 =
k+1∏
i=0

(22i + 1) =
k∏
i=0

(22i + 1)(22k+1
+ 1) = (22k+1

− 1)(22k+1
+ 1) = (22k+2

− 1)

Da sich der Induktionsanfang aus dem probeweisen Einsetzen ergab, ist der Beweis erbracht.

Aufgabe 31/82
In einem spitzwinkligen Dreieck betrage eine Seite 3 LE, eine andere Seite 9 LE (wobei mit LE die
Längeneinheit bezeichnet ist). Von der dritten Seite sei bekannt, dass sie eine ungerade ganze Zahl
von Längeneinheiten enthält. Man ermittle diese Anzahl.

Es sei x die gesuchte (ungerade) Anzahl der Längeneinheiten. Aus dem Kosinussatz der ebenen Trigono-
metrie folgt wegen der Spitzwinkligkeit des Dreiecks sofort

x2 < 32 + 92 → x2 < 90→ x ≤ 9

92 < 32 + x2 → 72 < x2 → x ≥ 9
Also ist x = 9, das Dreieck ist gleichschenklig.

Aufgabe 32/82
Gesucht sind alle Primzahlen p, für die z = 2p + p2 ebenfalls Primzahl ist.

Für p = 2 ist z > 2 offenbar gerade, also keine Primzahl.
Für p = 3 gilt z = 23 + 32 = 17. Damit ist eine der gesuchten Zahlen gefunden.
Für p > 3 gilt stets p ≡ ±1 (mod 3), also p2 ≡ 1 (mod 3). Weiter gilt für p > 3, dass p ungerade, also in
der Form p = 2k + 1, k ∈ N, k > 1 darstellbar ist. Dann gilt

2p = 22k+1 = 2 · 22k = 2 · 4k ≡ 2 (mod 3)

wegen 4 ≡ 1 (mod 3), 4k ≡ 1k ≡ 1 (mod 3). Damit ist für p > 3

z ≡ 2 + 1 ≡ 0 (mod 3)

also keine Primzahl. Folglich ist p = 3 die einzige Primzahl mit der geforderten Eigenschaft.
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Aufgabe 33/82
Man beweise: Zu jeder natürlichen Zahl n > 1 gibt es wenigstens eine natürliche Zahl m in der Gestalt
m = 111...111000...000, die restlos durch n teilbar ist (wobei die Anzahl der mit 1 belegten Stellen
nicht gleich der Anzahl der mit 0 belegten Stellen sein muss). Für n = 1 ist die Behauptung trivial.

Wir betrachten die n + 1 natürlichen Zahlen k1 = 1; k2 = 11; k3 = 111; ...; kn+1 = 111...111 (wobei die
letzte n+ 1 Stellen hat). Da beim Teilen durch n genau n voneinander verschiedene Reste möglich sind,
folgt, dass unter ihnen mindestens zwei beim Teilen durch n den gleichen Rest lassen. Es seien dies die
beiden Zahlen ki und kj ’ wobei (o.B.d.A.) i > j, also auch ki > kj sei. Dann ist die Differenz

ki − kj = 111...111︸ ︷︷ ︸
i Stellen

− 111...111︸ ︷︷ ︸
j Stellen

= 111...111000...000︸ ︷︷ ︸
i-j Einsen j Nullen

= m

offensichtlich von der geforderten Gestalt, und sie ist restlos durch n teilbar; denn aus ki ≡ kj (mod n)
folgt sofort

ki − kj ≡ kj − kj = 0 (mod n)

Aufgabe 34/82
Herr X teilt über das Alter seiner Verwandten folgendes mit:

1. Meine Mutter ist doppelt so alt wie ich.
2. Mein Vater ist um die Quersumme meines Alters älter als meine Mutter.
3. Das Alter meiner jüngsten Tante erhält man als Summe aus dem Alter meiner Mutter und meinem
Einer-Zehner-vertauschten Alter.
4. Meine älteste Tante ist um die Quersumme meines Alters älter als die jüngste Tante.
5. Mein Onkel ist ein Jahr älter als meine älteste Tante und feiert einen ”runden” Geburtstag. 6. Alle
meine Verwandten sind jünger als 100 Jahre.

Wie alt sind die sechs Personen?

Herr X sei 10a+ b Jahre alt (a; b ∈ N , 0 ≤ a, b ≤ 9). Dann ist das Alter
1. seiner Mutter 20a+ b
2. seines Vaters 20a+ 2b+ a+ b = 21a+ 3b
3. seiner jüngsten Tante 20a+ 2b+ 10b+ a = 21a+ 12b
4. seiner ältesten Tante 21a+ 12b+ a+ b = 22a+ 13b
5. seines Onkels 22a + 13 + b + 1 = 10k mit k ∈ N , k ≥ 2 (da sicher a und b nicht beide gleich 0 sind),
k < 10.
Aus 5. folgt

22a+ 13b = 10k − 1 = 10(k − 1) + 9

Da 22a stets eine gerade Zahl ist, muss b eine ungerade Zahl sein. Aus der sechsten Angabe folgt, dass
22a < 100, also a ≤ 4 ist.
Aus der letzten Gleichung ergibt sich außerdem, dass 2a + 3b = 9 oder 2a + 3b = 19 oder 2a + 3b = 29
ist. Damit sind zunächst die folgenden Kombinationen möglich: 1. a = 0, b = 3: (entfällt aus biologischem
Grund),
2. a = 1, b = 9: (entfällt wegen k > 10)
3. a = 2, b = 5: (entfällt wegen k = 10)
4. a = 3, b = 1: (ist Lösung!)
5. a = 4, b = 7; (entfällt wegen k > 10).
Herr X ist also 31 Jahre alt, seine Mutter 62, sein Vater 66, seine jüngste Tante 75, die älteste Tante 79,
und der Onkel feiert den 80.Geburtstag.

Aufgabe 35/82
In einer Ebene seien ein Einheitskreis und 1983 Punkte Ai (i = 1; 2; 3; ...; 1983) beliebig vorgegeben.
Es ist zu beweisen, dass es auf der Peripherie dieses Einheitskreises beliebig viele Punkte Pk gibt, für
die die Summe der Abstände von den Punkten Ai mindestens gleich 1983 ist.
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Es seien P1 und P2 zwei einander diametral gegenüberliegende Punkte auf der Peripherie des gegebenen
Einheitskreises. Nach der Dreiecksungleichung gilt dann für jedes i

P1P2 = 2 ≤ P1Ai + P2Ai

(wobei Gleichheit genau dann auftritt, wenn Ai auf P1P2 liegt; was nach dem Aufgabentext nicht ausge-
schlossen ist). Daraus folgt

1983∑
i=1

P1P2 =
1983∑
i=1

2 = 2 · 1983 ≤
1983∑
i=1

(P1Ai + P2Ai) =
1983∑
i=1

P1Ai +
1983∑
i=1

P2Ai

Ist der erste Summand des letzten Terms mindestens gleich 1983, so ist P1 ein Punkt, für den die
Behauptung gilt. Ist er dagegen kleiner als 1983, so ist der zweite Summand größer als 1983, und P2
ist ein solcher Punkt. In jedem Fall erfüllt also einer der beiden Punkte P1 und P2 die Behauptung;
da das Punktepaar (P1;P2) beliebig gewählt werden kann, existieren beliebig viele Punkte Pk deren
Abstandssumme von den Ai mindestens gleich 1983 ist.

Aufgabe 36/82
Es ist Silvester, wenige Minuten vor Mitternacht. Auf einer Uhr kann man die folgenden Feststellun-
gen treffen:

1. Der Stundenzeiger und die Verbindungslinie der Zeigerspitzen sind die Katheten eines rechtwink-
ligen Dreiecks, dessen Hypotenuse der Minutenzeiger ist.
2. Die Seitenlängen dieses Dreiecks (in cm gemessen) sind ganzzahlig und paarweise zueinander
teilerfremd.
3. Für den Umfang U und den Flächeninhalt A dieses Dreiecks gilt A : U = A : U = 1 cm.
4. Die kleinste Seite des Dreiecks ist die Verbindungslinie der Zeigerspitzen.

Wie lange dauert noch das alte Jahr?

Es sei a die Länge des Stundenzeigers, b der Abstand der Zeigerspitzen und c die Länge des Minutenzeigers
in cm. Dann gilt
1. a2 + b2 = c2, also c =

√
a2 + b2

2. 0,5ab : (a+ b+ c) = 1, also ab = 2(a+ b+ c).
Durch Einsetzen folgt

ab = 2(a+ b+
√
a2 + b2)

Löst man diese Gleichung nach a auf, so erhält man (wegen b 6= 0): a = 4 + 8
b−4 .

Wegen a ∈ N ist 5 ≤ b ≤ 12 und es ergeben sich Lösungen nur für
b1 = 5 b2 = 6 b3 = 8 b4 = 12
a1 = 12 a2 = 8 a3 = 6 a4 = 6
c1 = 13 c2 = 10 c3 = 10 c4 = 10

Die Forderung nach (paarweiser) Teilerfremdheit schließt die Lösungen (a2; b2; c2) und (a3; b3; c3) aus.
Ferner entfällt (a4; b4; c4) wegen Bedingung 4. Damit bleibt nur die Lösung a1 = 12 cm; b2 = 5 cm;
c2 = 13 cm übrig.
Bezeichnet man nun den Winkel, den der Minutenzeiger bis 24.00 Uhr zu überstreichen hat, mit ϕ1 und
den entsprechenden Winkel des Stundenzeigers mit ϕ2, so gilt

tan (ϕ1 − ϕ2) = 5
12 ;ϕ1 = arctan 5

12 + ϕ2 (1) ϕ1 = 12ϕ2;ϕ2 = 1
12ϕ1 (2)

also
ϕ1 = arctan 5

12 + 1
12ϕ1 wird ϕ1 = 12

11 arctan 5
12

Da für die Winkelgeschwindigkeit ω1 des Minutenzeigers gilt

ω1 = 2πh−1 = 2π
3600s

−1 = ∆ϕ
∆t

folgt für die Zeit
∆t = ∆ϕ

ω1
= ϕ1

ω1
≈ 246,8 s = 4 min 6,8 s
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2.23 Aufgaben und Lösungen 1983

Aufgabe 1/83
Auf einer Würfelecke sitzt eine mathematisch geschulte Raupe. Sie will alle Wege längs der Kanten
ausprobieren, die zur diametral gegenüberliegenden Ecke führen, ohne dabei eine Ecke zweimal an-
zulaufen.
Um eine Kante zu durchkriechen, benötigt sie einen Tag; nachts ruht sie. Am Ziel angekommen,
rutscht sie in der folgenden Nacht auf der Würfeldiagonalen, zum Ausgangspunkt zurück, um am
folgenden Morgen einen neuen Weg zu beginnen.
Sie startet am Morgen des 1. 1. 1983. Am Morgen welchen Tages ist sie wieder am Ausgangspunkt,
nachdem sie alle Wege durchkroch?

Der Würfel habe in einem rechtwinklig-kartesischen Koordinatensystem die EckpunkteA(0; 0,0),B(1; 0,0),
C(1; 1; 0), D(0; 1; 0), E(0; 0; 1), F (1; 0,1), G(1; 1; 1) und H(0; 1; 1). Aus Symmetriegründen genügt es,
zunächst die Anzahl der Wege zu ermitteln, die mit der Kante AB beginnen, da sich für die mit AC oder
AE beginnenden Wege die gleiche Anzahl ergibt.
Von B aus ist die Fortsetzung auf zwei ”symmetrischen” Wegen möglich: BC oder BF . Wir betrachten
BC. Es gibt die folgenden Wege:

AB −BC − CG 3 Kanten
AB −BC − CD −DH −HG 5 Kanten

AB −BC − CD −DH −HE − EF − FG 7 Kanten

Es sind also 6 Wege mit je 3 Kanten, 6 Wege mit je 5 Kanten und 6 Wege mit je 7 Kanten möglich,
insgesamt müsste die Raupe demnach 6(3+5+7) = 90 Kanten durchkriechen. Dazu benötigt sie 90 Tage;
am Morgen des 91.Tages, also am 1.April 1983, ist sie ”nach getaner Arbeit” wieder am Ausgangspunkt
angekommen.

Aufgabe 2/83
Gesucht sind alle natürlichen Zahlen n, für die 3n in dezimaler Schreibweise genau 0,5n Stellen hat?

Nach der Aufgabe soll gelten
3n = m · 100,5n−1

wobei m die rationale Zahl mit 0,5n − 1 Stellen nach dem Komma, 1 ≤ m < 10 ist. Daraus folgt durch
Logarithmieren

n lg 3 = 0,5n− 1 + lgm
2n lg 3 ≥ n− 2

2 ≥ n− 2n lg 3 = n(1− 2 lg 3)

Da 1− 2 lg 3 = 0,045... > 0 ist, ergibt sich daraus

n ≤ 2
1− 2 lg 3 = 43,...

Da 0,5n ganzzahlig sein muss, erfüllen alle geraden natürlichen Zahlen n = 2i mit i ∈ N, 1 ≤ i ≤ 21
die Forderungen der Aufgabe. Eine Überprüfung mit einem Taschenrechner entsprechender Kapazität
bestätigt die Richtigkeit:

342 = 1,... · 1020 ; 344 = 9,... · 1020

d.h., bis i = 21, n = 42 gilt die Bedingung, ab i = 22, n = 44 gilt sie nicht mehr.

Aufgabe 3/83
Für welche natürlichen Zahlen n gilt, dass der Flächeninhalt A2n des regulären 2n-Ecks gleich dem
doppelten Flächeninhalt An des regulären n-Ecks mit gleichem Umkreisradius ist?.
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Es sei r der Umkreisradius. Dann gilt für den Flächeninhalt Ak des regulären k-Ecks

Ak = k

2 r
2 sin 2π

k

und für das Verhältnis A2n
An

= 2

A2n

An
= 2 =

2n
2 r

2 sin 2π
2n

n
2 r

2 sin 2π
n

= 2
sin π

n

sin 2π
n

=
2 sin π

n

2 sin π
n cos πn

= 1
cos πn

also cos πn = 1
2 gilt n ∈ N . Damit ist n = 3 einzige Lösung. Tatsächlich ist

A3 = 3
2r

2 sin 2π
3 ; A6 = 6

2r
2 sin 2π

6 = 2A3

wegen sin 2π
6 = sin π

3 = sin 2π
3 .

Aufgabe 4/83
Man zeige:

1. Es existiert ein ebener Schnitt durch einen Würfel so, dass die Schnittfigur ein Fünfeck ist.

2. Kein als Schnittfigur einer Ebene mit einem Würfel entstandenes Fünfeck ist regulär.

Um 1. zu zeigen, genügt es, ein solches Fünfeck anzugeben. Dazu betrachten wir in einem dreidimen-
sionalen rechtwinkligen kartesischen Koordinatensystem den Einheitswürfel mit den Eckpunkten (0; 0,0),
(1; 0,0), (1; 1; 0), (0; 1; 0), (0; 0; 1), (1; 0,1), (1; 1; 1) und (0; 1; 1) sowie die Ebene 2x+ 2y − 3z = 0.
Man prüft (durch Einsetzen) leicht nach, dass diese Ebene den Würfel in den 5 Kanten- bzw. Eckpunkten
(0; 0; 0), (1; 0; 2

3 ), (0; 1; 2
3 ), (1; 1

2 ; 1), ( 1
2 ; 1; 1) schneidet. Da diese 5 Punkte in einer Ebene, aber nicht 3 von

ihnen auf der gleichen Geraden liegen, bilden sie ein ebenes Fünfeck.
Um 2. zu zeigen, nehmen wir an, es gäbe ein reguläres Fünfeck als ebene Schnittfigur. Die fünf Seiten
dieses Fünfecks müssen dann genau fünf verschiedenen Flächen des Würfels angehören. Unter diesen 5
Flächen sich sicher zwei Paar zueinander paralleler Flächen. Werden zwei zueinander parallele Flächen
von einer dritten Fläche geschnitten, so sind die Schnittgeraden ebenfalls zueinander parallel. Daraus
folgt, dass das Schnittfünfeck zwei Paare zueinander paralleler Seiten hat und somit nicht reguläre sein
kann, im Widerspruch zur Annahme.

Aufgabe 5/83

Es sei n =
5∑
i=0

ai · 10i eine 6stellige natürliche Zahl, wobei 0 ≤ ai ≤ 9, ai ∈ N sei, und Q(n) =
5∑
i=0

ai

ihre Quersumme, und es gelte: 1. ai > ak für i > k ; 2. 1098 < nQ(n) < 1099.
Welche Zahlen n erfüllen diese Bedingungen?

Wegen der strengen Monotonie der Logarithmusfunktion im Intervall (0; +∞) folgt aus der 2. Bedingung
98 < Q(n) lnn < 99 und wegen Q(n) > 0

98
Q(n) < lgn < 99

Q(n) (1)

Wegen der 1. Bedingung gilt für n: 543210 < n < 987644; 5,7 < lnn < 6,0. Aus (1) und und (2) folgen

98
Q(n) < 6,0 und 5,7 < 99

Q(n)

also 16,3 < Q(n) und Q(n) < 17,4. Wegen Q(n) ∈ N ist demnach Q(n) = 17. Aus (1) folgt dann

5,75 < 98
17 < lgn < 99

17 < 5,83

und damit 575439 < n < 676083. In diesem Intervall gibt es sechs Zahlen, die Bedingung 1 erfüllen:
654321; 654320; 654310; 654210; 653210; 643210.
Von ihnen hat aber nur n = 653210 die geforderte Quersumme 17.

368



2.23 Aufgaben und Lösungen 1983

Aufgabe 6/83
In jedem Rechteck schneiden die Winkelhalbierenden einander in vier Punkten, die ein Quadrat
aufspannen (ist das Rechteck ein Quadrat, so fallen diese vier Punkte zusammen).
Der Flächeninhalt AQ dieses Quadrates ist als Funktion des Seitenverhältnisses x = a : b darzustellen
(wobei a > b, b konstant sei). Für welches Seitenverhältnis ist die Quadratfläche AQ gleich der
Rechteckfläche AR?

Es sei ABCD das Rechteck, und die Seiten seien AB = CD = a, BC = DA = b. Ferner sei A′ der
Schnittpunkt der Winkelhalbierenden durch A und B; entsprechend seien B′, C ′ und D′ die Schnittpunkte
der Winkelhalbierenden durch B und C bzw. C und D bzw. D und A. Dann gilt

AA′ = BA′ = CC ′ = DC ′ = a

2
√

2 und AD′ = DD′ = BB′ = CB′ = b

2
√

2

also
A′B′ = AA′ − CB′ = a

2
√

2− b

2
√

2 = 1
2
√

2(a− b)

Setzt man a = bx mit x > 1, so gilt für den Flächeninhalt AQ des Quadrates

AQ = 1
2b

2(x− 1)2 = f(x)

Für den Flächeninhalt AR des Rechtecks gilt AR = ab = b2x. Durch Gleichsetzen erhält man (u.a. wegen
b 6= 0)

b2x = 1
2b

2(x− 1)2 → 0 = x2 − 4x+ 1→ x1;2 = 2±
√

3

Wegen x > 1 entfällt x2. Die Gleichheit tritt also nur für x = a : b = 2 +
√

3 ≈ 3,73 ein.

Aufgabe 7/83
In einem rechtwinkligen Dreieck seien die Seitenlängen ganzzahlige Vielfache der Längeneinheit. Au-
ßerdem gelte, dass der Umfang zahlenmäßig gleich dem Flächeninhalt ist. Man ermittle alle derartigen
Dreiecke!

Werden die Katheten der gesuchten Dreiecke mit a und b, die Hypotenuse mit c bezeichnet, so gilt nach
der Aufgabenstellung
1. a; b; c ∈ N
2. a2 + b2 = c2, also c =

√
a2 + b2

3. a+ b+ c = 0,5ab Eliminiert man aus den Gleichungen die Hypotenuse c und löst man die entstehende
diophantische Gleichung nach a auf, so erhält man

a = 4 + 8
b− 4

Wegen a; b ∈ N sind nur die Lösungen b1 = 12, a1 = 5, b2 = 8, a2 = 6, b3 = 6, a3 = 8, b4 = 5, a4 = 12
möglich. Wegen der Symmetrie der Gleichungen in a und b entfallen davon die letzten beiden. Es gibt
also genau 2 Dreiecke der gesuchten Art:
1. a1 = 5; b1 = 12, c1 = 13 mit a1 + b1 + c1 = 30 = 0,5a1b1
2. a2 = 6; b2 = 8, c2 = 10 mit a2 + b2 + c2 = 24 = 0,5a2b2

Aufgabe 8/83
Wie viele restlos durch 4 teilbare natürliche Zahlen kann man aus den 9 Ziffern 1; 2; 3; 4; 5; 6; 7; 8; 9
bilden, wenn in jeder Zahl jede dieser Ziffern genau einmal vorkommen soll (dekadische Schreibweise
vorausgesetzt)?

Eine natürliche Zahl n ist (bekanntlich) genau dann restlos durch 4 teilbar, wenn dies für die Zahl gilt,
die aus den letzten beiden Stellen besteht. Aus den gegebenen Ziffern kann man 16 zweistellige Zahlen
bilden, die durch 4 teilbar sind:

12; 16; 24; 28; 32; 36; 48; 52; 56; 64; 68; 72; 76; 84 : 92; 96
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Vor jede dieser 16 Zahlen kann man die restlichen 7 Ziffern auf 7! verschiedene Weisen anordnen. Folglich
gilt für die Anzahl k der möglichen Zahlen k = 7! · 16 = 8! · 2 = 80640.

Aufgabe 9/83 Man ermittle Maximum und Minimum der Funktionen

y = x1x2 ±
√

(1− x1)2(1− x2)2

für |x1| ≤ 1, |x2| ≤ 1, ohne Hilfsmittel der Differentialrechnung zu verwenden!

Wegen |x1| ≤ 1, |x2| ≤ 1 sind die Substitutionen x1 = sinα, x2 = sin β möglich. Es ergibt sich damit

y = sinα sin β ±
√

(1− sin2 α)(1− sin2 β) = sinα sin β ± cosα cosβ = ± cosα∓ β

Aus dem Wertevorrat der cos-Funktion folgt −1 ≤ yleq1. Bei

y = x1x2 +
√

(1− x2
1)(1− x2

2)

stellt sich das Maximum für x1 = x2 ein, das Minimum für x1 = −x2 = ±1. Gilt das Minuszeichen, so
ergibt sich das Maximum bei x1 = x2 = −1, das Minimum bei x1 = −x2.

Aufgabe 10/83
Gegeben sei ein gerader Kreiskegelstumpf, dessen Mantellinien um 60◦ gegen die Grundfläche ge-
neigt seien und für dessen Grund- und Deckfläche die Beziehung AG = 4AD gilt. Zwischen einem
Randpunkt P der Grundfläche und einem Randpunkt Q der Deckfläche sei ein Gummifaden straff
gespannt.
Wie lang kann der Gummifaden höchstens sein, wenn er die Mantelfläche nirgends verlassen soll?

Da der Gummifaden straff gespannt sein soll, wird er auf dem Mantel die kürzeste Verbindung markieren.
Da der Kegelstumpfmantel längentreu in die Ebene abwickelbar ist, ist diese kürzeste Verbindung in der
Abwicklung die Strecke PO. Die Abwicklung des Kegelstumpfmantels ist ein Kreisringausschnitt. Sind
rG und rD die Radien von Grund- bzw. Deckfläche, so gilt wegen

AG = r2
Gπ = 4AD = 4r2

Dπ → rG = 2rD

Bezeichnet man weiter mit sG die Mantellinie des Kegelstumpfes und mit sD die des Ergänzungskegels,
so gilt

rG
sG + sD

= rD
sD

= cos 60◦ = 1
2

also sD = 2rD = rG = sG. Für den Zentriwinkel α der Abwicklung gilt

α

360◦ = rG
sG + sD

= 1
2

also α = 180◦. Die Abwicklung des Kegelstumpfmantels besteht demnach aus zwei konzentrischen Halb-
kreisen mit den Radien sG = rG und 2sG = 2rG. Verbindungsstrecke zwischen äußeren und innerem
Halbkreis, die ganz im Halbkreisring verläuft, ist die Tangente von einem beliebigen Punkt P des äußeren
Halbkreises an den inneren (der Punkt P ist so zu wählen, dass diese Tangente existiert). Sie hat (nach
dem Lehrsatz des Pythagoras) die Länge

l =
√

(2sG)2 − s2
G = sG

√
3 = 2rG

√
3

Aufgabe 11/83
Gesucht sind alle natürlichen Zahlen n, bei denen die Summe s aus den echten Teilern gleich 39 ist.

Zunächst grenzen wir die Zahl der verschiedenen Primfaktoren von n nach oben ab. Angenommen, n
enthielte drei verschiedene Primfaktoren: n = pk1p

l
2p
m
3 . Bereits die kleinste derartige Zahl (n = 2·3·5 = 30)
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enthält aber die Teiler 2; 3; 5; 6; 10 und 15 und hat damit die Teilersumme s = 41 > 39.
Folglich kann n höchstens zwei verschiedene Primfaktoren p1 und p2 enthalten. Es kommt damit nur
n = pk1p

l
2 mit k ≥ 0 in Frage.

Grenzen wir weiter k und l ein. Für k = l = 2 liefern schon die kleinsten Primzahlen p1 = 2; p2 = 3 die
Teilersumme s = 51 > 39; folglich muss wenigstens einer der beiden Exponenten kleiner als 2 sein. Ist
k = l = 1, so ist s = p1 + p2 = 39 genau dann, wenn einer der Primfaktoren gleich 2 und der andere
gleich 37 ist. Damit ist eine Lösung gefunden: n = 2 · 37 = 74.
Es sind nun noch die Fälle

n = pk1p2 (1) und n = pk1 (2)

(also l = 1, k > 1 und l = 0, k > 1) zu untersuchen.
Zu (1): Es ist

s = p1 + p2
1 + ...+ pk1 + p2 + p1p2 + p2

1p2 + ...+ pk−1
1 p2 = (p1 + p2

1 + ...+ pk−1
1 )(1 + p2) + p2 + pk1 > pk1

Folglich kommen wegen p2 ≥ 2 nur Primzahlpotenzen pk1 < 37 in Frage. Es sind dies 22, 23, 24, 25, 32,
33, 52.
Für p1 = 2, k = 2 ergibt sich p2 = 11 und als zweite Lösung n = 22 · 11 = 44. Die übrigen Potenzen
liefern keine Primzahl p2.
Zu (2): Es ist

s = p1 + p2
1 + ...+ pk1 = p1(1 + p1 + p2

1 + ...+ pk−2
1 ) = 39 = 3 · 13

Wegen p1 < (1 + p1 + p2
1 + ... + pk−2

1 ) kommt nur p1 = 3 in Frage. Tatsächlich ist s = 3 + 9 + 27 = 39.
Damit ist n = 34 = 81 die dritte Lösung. Es gibt also drei Zahlen, die die geforderte Bedingung erfüllen:
n1 = 44, n2 = 74, n3 = 81.

Aufgabe 12/83
Man beweise, dass alle Zahlen der Folge {ak} = {49; 4489; 444889; ...} (Bildungsvorschrift: Es wird
jedes mal die Zahl 48 ”in die Mitte eingefügt”) Quadrate natürlicher Zahlen sind.

Es ist

444...444︸ ︷︷ ︸
n

888..889︸ ︷︷ ︸
n−1

= 4 · 111...111︸ ︷︷ ︸
n

·10n + 8 · 111...111︸ ︷︷ ︸
n

+1 = 4 · 10n − 1
9 · 10n + 8 · 10n − 1

9 · 10n + 9
9 =

= 4 · 102n + 4 · 10n + 1
9 =

(
2 · 10n + 1

3

)2

Da 10 ≡ 1 (mod 3), folgt 10n ≡ 1 (mod 3), 2 · 10n ≡ 2(mod 3) und schließlich 2 · 10n + 1 ≡ 0 (mod 3).
Also ist die Basis der Potenz eine natürliche Zahl.

Aufgabe 13/83
Gesucht sind alle Tripel (a; b; c) positiver ganzer Zahlen mit c > 1, die der diophantischen Gleichung
a2c − b2c = 665 genügen.

Wegen
a2c − b2c = (ac − bc)(ac + bc) = 665 = 1 · 5 · 7 · 19

und wegen ac − bc < ac + bc kommen nur die folgenden Möglichkeiten in Frage:

1. ac − bc = 1 ac + bc = 5 · 7 · 19 = 665
2. ac − bc = 5 ac + bc = 7 · 19 = 133
3. ac − bc = 7 ac + bc = 5 · 19 = 95
4. ac − bc = 19 ac + bc = 5 · 7 = 35

Die ersten drei Gleichungssysteme liefern keine Lösungen in ganzen Zahlen. Das vierte System ergibt
ac = 27, bc = 8, also a = 3, b = 2, c = 3. Tatsächlich ist 36 − 26 = 729− 64 = 665. Das einzige Tripel ist
also (3; 2; 3).
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Aufgabe 14/83
In einem rechtwinkligen Dreieck ABC mit der Hypotenuse AB und dem Thaleskreis-Mittelpunkt M
schneide die Mittelsenkrechte auf der Hypotenuse die Kathete AC bzw. deren Verlängerung im Punkt
K und die Kathete BC bzw. deren Verlängerung im Punkt L. Das Dreieck ist aus den gegebenen
Strecken MK und ML zu konstruieren.

Eine Analysisfigur zeigt, dass M AMK ∼ M LMB ist (MB ⊥ MK, BL ⊥ AK, folglich ]MBL =
]MKA; ]BML = ]AMK = 90◦).
Daraus folgt KM : AM = MB : ML. Wegen AM = MB = r (Radius des Thaleskreises) ergibt sich
daraus, dass r mittlere Proportionale zu MK und ML ist. Man kann also r = 0,5AB konstruieren als
Höhe eines rechtwinkligen Dreiecks auf der Hypotenuse mit den Hypotenusenabschnitten MK und ML.

Damit ergibt sich die folgende Konstruktionsbeschreibung:
1. Lege auf einer Geraden drei Punkte K ′, M ′ und L′ so fest, dass K ′M ′ = KM und M ′L′ = ML ist
und M ′ zwischen K ′ und L′ liegt!
2. Schlage über K ′L′ den Thaleskreis!
3. Errichte in M ′ auf K ′L′ die Senkrechte! Ihr Schnittpunkt mit dem Thaleskreis sei P . Es ist M ′P = r.
4. Lege auf einer Geraden die Punkte A, B und M so fest, dass AM = BM = r und A 6= B ist!
5. Errichte in M die Senkrechte auf AB und lege auf ihr die Strecken MK und ML so fest, dass beide
in derselben von der Geraden AB erzeugten Halbebene liegen!
6. Lege durch B und L sowie durch A und K je eine Gerade! Sie schneiden einander im Dreieckspunkt
C.
Alle Konstruktionsschritte sind stets und eindeutig ausführbar.

Aufgabe 15/83
Man zeige, dass für alle natürlichen Zahlen n gilt: 133 ist Teiler von Tn = 11n+2 + 122n+1.

Wir führen den Beweis mit Hilfe der vollständigen Induktion.
1. Die Behauptung gilt offenbar für n = 0:

T0 = 112 + 121 = 121 + 12 = 133

2. Angenommen, die Behauptung gilt für irgend ein n = k:

Tk = 11k+2 + 122k+1 = 133 · tk mit tk ∈ N

Dann ist

Tk+1 = 11k+3 + 122k+3 = 11 · 11k+2 + 122 · 122k+1 = 11 · 11k+2 + 11 · 122k+1 + 133 · 122k+1 =

= 11(11k+2 + 122k+1) + 133 · 122k+1 = 11 · Tk + 133 · 122k+1 = 11 · 133tk + 133 · 122k+1 =
= 133(11tk + 122k+1) = 133 · tk+1

(tk+1 ∈ N). Aus der Teilbarkeit für n = k folgt also die Teilbarkeit für n = k+ 1. Wegen 1. gilt dann die
Behauptung für alle natürlichen Zahlen n.

Aufgabe 16/83
Es ist zu beweisen: In jedem rechtwinkligen Dreieck ABC mit dem Umkreisradius R und dem
Inkreisradius r gilt: R

r ≥
√

2 + 1.

In jedem Dreieck mit den Seiten a, b, c und dem Inkreisradius r gilt (wie man sich an einer Skizze
klarmacht)

1
2r(a+ b+ c) = A also r = 2A

a+ b+ c

(dabei ist mit A der Flächeninhalt des Dreiecks bezeichnet). Ist das Dreieck rechtwinklig und c die
Hypotenuse, so gilt

ab = 2A also r = ab

a+ b+ c
und R = c

2
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(nach dem Satz des Thales). Damit ist

R

r
= c(a+ b+ c)

2ab = 1
2

[
c√
ab
· a+ b√

ab
+ c2

ab

]
= 1

2

[√
a2 + b2

ab
+ a+ b√

ab
+ a2 + b2

ab

]

Nun gilt stets (a − b)2 ≥ 0, also a2 + b2 ≥ 2ab und für ab > 0: a2+b2

ab ≥ 2, entsprechend auch a+b√
ab
≥ 2.

Daraus folgt
R

r
≥ 1

2(2
√

2 + 2) =
√

2 + 1

Aufgabe 17/83
Gesucht sind alle Lösungen (x; y; z) in natürlichen Zahlen x; y; z des Gleichungssystems:

2x2 − 2y2 − 3z + 5949 = 0 (1)
lg2 y2 + lg y(x−1)(x−y) + (x− y)2 = 0 (2)

lg y(y−x) + x− y = 0 (3)

Aus der Gleichung (3) folgt durch äquivalente Umformung

(x− y) lg y = x− y

Diese Gleichung ist sicher genau dann erfüllt, wenn entweder 1. lg y = 1, also y = 10, oder 2. x− y = 0,
also y = x ist.
Wir unterscheiden daher zwei Fälle und setzen diese beiden Werte für y in die Gleichungen (1) und (2)
ein.
1. y = 10:

2x2 − 200− 3z − 5949 = 0→ 2x2 − 3z + 5749 = 0 (1a)
lg2 100 + lg 10(x−1)(x−10) + (x− 10)2 = 0→ 2x2 − 31x+ 114 = 0 (2a)

Von den Lösungen der in x quadratischen Gleichung (2a) ist nur x = 6 eine natürliche Zahl. Dieser Wert
in (1a) eingesetzt, liefert z = 1892,3...’ also keine natürliche Zahl.
2. y = x:

2x2 − 2x2 − 3z − 5949 = 0→ z = 1983 (1b)
lg2 x2 + lg x(x−1)(x−x) + (x− x) = 0→ lg2 x2 = 0→ x = 1 (2b)

Die einzige Lösung ist (x; y; z) = (1; 1; 1983).

Aufgabe 18/83
Bekanntlich existiert auf der Erdoberfläche wenigstens ein Punkt (nämlich der Südpol) mit der fol-
genden Eigenschaft:
Geht man von ihm aus eine Strecke a nach Norden, dann dieselbe Strecke a nach Osten (oder Westen)
und schließlich die Strecke a nach Süden, so kommt man zum Ausgangspunkt zurück.
Es ist zu untersuchen, welche weiteren Punkte auf der Erdoberfläche dieselbe Eigenschaft haben
(dabei soll a = 0,5πR gelten; R sei der Radius der als Kugel angenommenen Erde).

Es ist unmittelbar einzusehen, dass jene Punkte der Erdoberfläche (außerhalb des Südpols) die geforderte
Eigenschaft haben, die um die Strecke a südlich eines Breitenkreises mit dem Umfang a liegen.
Dann fallen nämlich Anfangs- und Endpunkt der Ost-West-Bewegung zusammen und damit auch die in
Nord-Süd-Richtung verlaufenden Bewegungen, während in den anderen Fällen kein geschlossener ”Stre-
ckenzug” entsteht (sonst müssten nämlich durch einen nicht mit einem Pol zusammenfallenden Punkt
zwei verschiedene Meridiane verlaufen).
Der Breitenkreis mit dem Umfang a = 0,5Rπ hat den Radius r = a

2π = 0,25R und wird durch

|ϕr| = arccos r
R

= arccos 0,25 ≈ 75,5◦

angegeben. Wegen cosϕr = cos (−ϕr) gibt es also zunächst zwei derartige Breitenkreise mit ϕr1 = 75,5◦;
ϕr2 = −75,5◦ (nördliche und südliche Breite).
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Den Breitenkreis, auf dem die fraglichen Punkte liegen, erhält man, wenn man um ∆ϕ = a
R ·

180◦
π = 90◦

nach Süden ”geht” ϕ = ϕr −∆ϕ.
Dies ist jedoch nur bei ϕr1 möglich:

ϕ1 = 75,5◦ − 90◦ = −14,5◦

(für ϕ2 würde sich ϕ2 = −75,5◦ − 90◦ = −165,5◦ ergeben; offensichtlich muss aber −90◦ < ϕ < 90◦
gelten). Also erfüllen alle Punkte die geforderte Bedingung, die auf dem Kreis 14,5◦ südlicher Breite
liegen.
Lässt man auch mehrmalige ”Umrundung” zu, so ergeben sich aus

r = a

2kπ mit k ∈ N, k > 1

weitere Werte ϕrk = arccos 1
4k .

Aufgabe 19/83
Man beweise den Satz: In jedem rechtwinkligen Dreieck ist die Summe aus Inkreis- und Umkreisradius
gleich dem arithmetischen Mittel der Katheten.

Es sei ABC ein rechtwinkliges Dreieck mit den Katheten a, b, der Hypotenuse c, den Winkeln α, β, γ, dem
Umkreisradius r und dem Inkreisradius ρ (übliche Bezeichnungsweise). Ferner seien M der Mittelpunkt
des Inkreises. D, E und F die Berührungspunkte des Inkreises mit den Seiten c, a bzw. b. Dann gilt

AD

ρ
+ BD

ρ
= cot α2 + cot β2 = 2r

ρ
(1)

(wegen 2r = c nach dem Satz des Thales)
BE

ρ
+ CE

ρ
= cot β2 + cot γ2 = cot β2 + 1 = a

ρ
(2)

CF

ρ
+ AF

ρ
= cot γ2 + cot α2 = 1 + cot α2 = b

ρ
(3)

(wegen cot γ2 = cot 45◦ = 1). Aus (2) und (3) folgt

cot α2 = b

ρ
− 1 ; cot β2 = a

ρ
− 1

Setzt man dies in (1) ein, so ergibt sich
b

ρ
− 1 + a

ρ
− 1 = 2r

ρ
→ a+ b

2 = r + ρ

Aufgabe 20/83
Gesucht sind alle Tripel aufeinanderfolgender gerader oder ungerader Zahlen, bei denen die Summe
aus den Quadraten eine (in dekadischer Schreibweise echt) vierstellige Zahl mit vier gleichen Ziffern
ist.

Wird die mittlere Zahl des Tripels mit a bezeichnet, so ist die kleinere a− 2 und die größere a+ 2, und
es gilt nach der Aufgabenstellung

(a− 2)2 + a2 + (a+ 2)2 = 1111x

mit x ∈ N, 1 ≤ x ≤ 9, also

3a2 + 8 = 1111x ; a =
√

370x− 2 + x− 2
3

Da a ∈ N , muss x − 2 = 3k mit k ∈ N sein; folglich kommen für x nur die Werte x1 = 2, x2 = 5 und
x3 = 8 in Frage. Von diesen Werten liefert aber nur x2 = 5 eine natürliche Zahl a:

a =
√

370 · 5− 1 =
√

1849 = 43

Es gibt also nur ein Tripel, das die Forderung der Aufgabe erfüllt: (41; 43; 45). Die Probe bestätigt die
Richtigkeit.
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Aufgabe 21/83
Es ist zu beweisen: Jede natürliche Zahl n > 27 ist in der Form n = 5k + 8m darstellbar, wobei k
und m natürliche Zahlen sind (mit 0 ∈ N).

Offenbar gilt 28 = 4 · 5 + 1 · 8. Für jede natürliche Zahl n ≥ 28 gibt es sicher eine Darstellung

n = 28 + 5p+ q

mit p ∈ N , q = 0; 1; 2; 3; 4. Wegen

0 = 0 · 5 + 0 · 8 1 = (−3) · 5 + 2 · 8 2 = 2 · 5 + (−1) · 8
3 = (−1) · 5 + 1 · 8 4 = (−4) · 5 + 3 · 8

kann man q darstellen als q = 5s + 8t mit s = −4;−3;−1; 0; 2 und t = −1; 0; +1; +2; +3. Damit gilt
4 + s ≥ 0 und 1 + t ≥ 0, also ist 28 + q = (4 + s) · 5 + (1 + t) · 8 als 28 + q = 5u+ 8v darstellbar, wobei u
und v natürliche Zahlen sind.
Wegen p ≥ 0 gilt dies dann auch für n = 28 + 5p+ q:

n = 28 + 5p+ q = 5u+ 5p+ 8v = 5(u+ p) + 8v = 5k + 8v

Aufgabe 22/83
Es sei n eine natürliche Zahl, die (im Dezimalsystem) mit 150 Ziffern 4 und k Ziffern 0 (k ∈ N)
dargestellt wird, Man beweise, dass n keine Quadratzahl ist!

Für die Quersumme Q(n) der Zahl n gilt Q(n) = 150 · 4 + k · 0 = 600.
Die Quersumme von n ist also durch 3, aber nicht durch 9 = 32 teilbar. Damit enthält n den Primfaktor
3 in ungerader Anzahl; die Zahl n kann folglich nicht Quadratzahl sein.

Aufgabe 23/83
Man löse das Gleichungssystem für beliebige reelle Zahlen x; y; z:

x+ y + sin2 z = 12 (1) ; xy = 36 (2)

Aus (1) folgt wegen sin2 z ≥ 0 die Ungleichung x+ y ≤ 12. (1a) Weiter gilt

(
√
x−√y)2 = x− 2√xy + y ≥ 0

und mit xy = 36
x− 2

√
36 + y ≥ 0→ x+ y ≥ 12 (2a)

Aus (1a) und (2a) folgt x+ y = 12, y = 12− x. In (2) eingesetzt, ergibt sich die quadratische Gleichung
x2 − 12x − 36 = 0 mit der Doppellösung x = 6. Es folgt weiter y = 6, sin2 z = 0, z = kπ mit k ∈ G. Es
existiert also genau eine Lösungsschar x = 6, y = 6, z = pπ mit k ∈ G.

Aufgabe 24/83
Es seien p1 und p2 zwei benachbarte Primzahlen mit p1 < p2 und f(x) ein Polynom n-ten Grades
in x mit ganzzahligen Koeffizienten ai (i = 0; 1; 2; ...;n). Man bestimme p1 und p2 aus f(p1) = 1234
und f(p2) = 4321.

Aus f(x) =
n∑
i=0

aix
i folgt

f(p2)− f(p1) =
n∑
i=0

aip
i
2 −

n∑
i=0

aip
i
1 =

n∑
i=0

ai(pi2 − pi1) = 4321− 1234 = 3087
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Nun ist stets ak − bk restlos durch a− b teilbar (der Beweis folgt unmittelbar aus

(a− b)
k−1∑
i=0

ak−1−ibi = ak − bk

durch Ausmultiplizieren); folglich ist auch pi2 − pi1 und damit

n∑
i=0

ai(pi2 − pi1) = 3087

durch p2−p1 teilbar. Da eine ungerade Zahl niemals durch eine gerade Zahl restlos teilbar ist, folgt, dass
p2 − p1 ungerade ist.
Demnach können p1 und p2 nicht beide ungerade sein. Damit verbleibt als einzige Möglichkeit p1 = 2
(wegen p1 < p2) und p2 = 3 (p1 und p2 sind benachbarte Primzahlen).

Aufgabe 25/83
Es ist die Gültigkeit der Ungleichung für beliebige positive ganze Zahlen n zu beweisen:

n∑
k=1

1
k2 < 2

Für k ≥ 2 gilt
k−2 < k−1(k − 1)−1 = (k − 1)−1 − k−1

Folglich ist
n∑
k=1

1
k2 = 1 +

n∑
k=2

1
k2 < 1 +

n∑
k=2

1
k(k − 1) = 1 +

n∑
k=2

1
k − 1 −

n∑
k=2

1
k

=

= 1 +
n−1∑
k=1

1
k
−

(
−1 +

n−1∑
k=1

1
k

+ 1
n

)
= 2− 1

n
< 2

für n ≥ 2. Für n = 1 ist die Summe gleich 1 < 2.

Aufgabe 26/83
Wie viele (echt) vierstellige natürliche Zahlen gibt es, die durch 11 teilbar sind und deren Quersumme
ebenfalls durch 11 teilbar ist?

Eine natürliche Zahl ist bekanntlich genau dann restlos durch 11 teilbar, wenn dies für ihre alternierende
Quersumme zutrifft. Ist

x = 1000a3 + 100a2 + 10a1 + a0

eine Zahl, die die in der Aufgabe gestellten Bedingungen erfüllt (ai ∈ N für i = 0; 1; 2; 3, 0 ≤ ai ≤ 9 für
i = 0; 1; 2 und 1 ≤ a3 ≤ 9), so gilt also

a3 − a2 + a1 − a0 = 11r und a3 + a2 + a1 + a0 = 11m

mit r ∈ {−1; 0; +1} und m ∈ {+1; +2; +3}. Durch Addition und Subtraktion erhält man daraus

a3 + a1 = 5,5(m+ r) ; a2 − a0 = 5,5(m− r)

Daraus folgt unmittelbar m ≡ r (mod 2) wegen ai ∈ N . Also sind folgende Paare (r;m) möglich:
(−1; 1), (−1; 3), (0; 2), (1; 1), (1,3). Aus ihnen ergeben sich fünf Gleichungssysteme:

a3 + a1 = 0 a2 + a0 = 11
a3 + a1 = 11 a2 + a0 = 22
a3 + a1 = 11 a2 + a0 = 11
a3 + a1 = 11 a2 + a0 = 0
a3 + a1 = 22 a2 + a0 = 11
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Nur das dritte und das vierte System haben Lösungen im Definitionsbereich der ai. Damit a3 + a1 = 11
gilt, muss a3; a1 > 1 sein.
Es sind also die Paare (a3; a1) = (2; 9), (3; 8), (4; 7), (5; 6), (6; 5), (7; 4), (8; 3) und (9; 2) möglich.
Aus dem dritten System ergeben sich die gleichen Möglichkeiten für (a2; a0)’ aus dem vierten System kann
nur a2 = a0 = 0 folgen, so dass bei 8 Möglichkeiten für (a3; a1) neun für (a2; a0) existieren. Insgesamt
existieren damit 8 · 9 = 72 Zahlen der geforderten Art.

Aufgabe 27/83
Auf einer Ebene sind 9 Punkte so angeordnet, dass 4 von ihnen die Eckpunkte eines Quadrats bilden,
4 die Quadratseiten halbieren und der neunte den Mittelpunkt dieser Figur markiert.
Gesucht ist der längste geschlossene Streckenzug, der alle Punkte verbindet, ohne dass eine Verbin-
dung doppelt durchlaufen wird. Dabei sind nur Strecken zulässig, die parallel zu Quadratseiten oder
-diagonalen verlaufen.

Der vollständige Graph (d h. der Graph, der alle zulässigen ”Kanten” enthält) hat 8 Knoten ungerader
und einen Knoten gerader Valenz.
Voraussetzung für einen geschlossenen Streckenzug ohne Wiederholung ist, dass kein Knoten ungerader
Valenz existiert. Es müssen also mindestens 4 Strecken derart entfernt werden (da jede Streichung einer
Strecke 2 Knoten in der Valenz um je 1 mindert), dass 8 Knoten ungerader Valenz ihre Valenz um je 1
ändern; der Knoten gerader Valenz muss dabei gerade Valenz behalten.
Da wir den längsten Streckenzug suchen, streichen wir 1. nicht mehr als 4 Strecken und 2. nur parallel
zu Quadratseiten liegende (da diagonal verlaufende stets länger sind).
Die zu streichenden Strecken müssen auch so liegen, dass sie nicht am Knoten gerader Valenz und nicht
mehr als eine an einem Knoten ungerader Valenz anliegen. Bezeichnet man die Knoten zeilenweise von
links nach rechts mit 1 − 2 − 3, 4 − 5 − 6, 7 − 8 − 9, so entspräche z.B. der folgende Streckenzug den
Forderungen der Aufgabe: 1− 2− 5− 4− 2− 6− 5− 3− 6− 8− 5− 9− 8− 4− 7− 5− 1.

Im Jahr 1983 wurden nur neun Hefte ”Wissenschaft und Fortschritt” und somit 27 Mathematikaufgaben
veröffentlicht.
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2.24 Aufgaben und Lösungen 1984
Ab 1984 wurden monatlich zwei Mathematikaufgaben veröffentlicht.

Aufgabe 1/84
Man löse in reellen Zahlen x die Gleichung 1984lg x = 2 · 19842 − xlg 1984.

Die gegebene Gleichung ist ein Spezialfall der Gleichung

alg x = 2a2 − xlga (1)

Es gilt
lg alg x = lg x · lg a = lg xlg a

Also ist wegen der Eineindeutigkeit der lg-Funktion

alg x = xlg a

Damit ist (1) der Gleichung
alg x = 2a2 − alg x

äquivalent. Durch weitere äquivalente Umformung folgt

2alg x = 2a2 ; lg x = 2

und damit x = 100 als eindeutige Lösung unabhängig vom Parameter a.

Aufgabe 2/84
Gegeben ist ein Kreis mit dem Durchmesser d = 2r = AB. Eine zu AB senkrechte Gerade schneidet
den Durchmesser in P und den Kreis in C und D. Die Umfänge der Dreiecke APC und BPD
verhalten sich zueinander wie

√
3 : 1.

Wie groß ist das Verhältnis AP : PB?

Wenn sich die Umfänge der zueinander ähnlichen Dreiecke wie
√

3 : 1 verhalten, so verhalten sich die
Flächeninhalte wie 3 : 1. Folglich gilt

0,5 ·AP · PC : 0,5 ·BP · PD = 3 : 1

Wegen PC = PD (aus Symmetriegründen) folgt sofort AP : PB = 3 : 1.

Aufgabe 3/84
Es seien a und b ganze Zahlen, und die Summe c = a2 + b2 sei ohne Rest durch 231 teilbar. Man
beweise, dass dann c sogar durch 53361 teilbar ist.

Es ist 231 = 3 · 7 · 11. Für das Quadrat x2 einer ganzen Zahl x gilt, wie man durch Ausrechnen leicht
feststellt

x2 ≡ 0 (mod 3) x2 ≡ 0 (mod 7) x2 ≡ 0 (mod 11)
oder x2 ≡ 1 (mod 3) x2 ≡ 1 (mod 7) x2 ≡ 1 (mod 11)
oder x2 ≡ 4 (mod 7) x2 ≡ 4 (mod 11)
oder x2 ≡ 2 (mod 7) x2 ≡ 9 (mod 11)
oder x2 ≡ 5 (mod 11)
oder x2 ≡ 3 (mod 11)

Daraus folgt, dass eine Summe aus zwei Quadratzahlen genau dann restlos durch 3 · 7 · 11 = 231 teilbar
ist, wenn dies für jede der beiden Quadratzahlen gilt. Dann sind sie aber sogar durch

32 · 72 · 112 = 2312 = 53361

ohne Rest teilbar, und daraus folgt die Teilbarkeit der Summe.
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Aufgabe 4/84 Gesucht sind alle rationalen Lösungen (x; y) der Gleichung

4x2y2 − 4x2y − x2 + 4x = 2

Da offensichtlich x 6= 0 gilt, ist die Division mit x2 möglich. Äquivalente Umformungen ergeben dann

4y2 − 4y = 1− 4x−1 + 2x−2 → 4y2 − 4y + 1 = 2(1− 2x−1 + x−2)

(2y − 1)2 = 2(1− x−1)2 → |2y − 1| =
√

2|1− x−1|

Es gibt nun zwei Möglichkeiten:
1. Es ist 1 − x−1 = 0, also x = 1. Dann ist auch 2y − 1 = 0, also y = 0,5. Damit ist eine Lösung
(x = 1; y = 0,5) gefunden.
2. Es ist 1− x−1 6= 0. Dann ergibt sich durch Division

|2y − 1|
|1− x−1|

=
∣∣∣∣ (2y − 1)x

x− 1

∣∣∣∣ =
√

2

Wären nun x und y beide rational, so wären auch der Term auf der linken Seiten der Gleichung und damit
auch

√
2 rational. Dies ist aber ein Widerspruch zu der bekannten Tatsache, dass

√
2 eine irrationale Zahl

ist. Demnach ist das Paar (1; 0,5) die einzige rationale Lösung.

Aufgabe 5/84
Man beweise die Richtigkeit der Behauptung: Für jedes beliebige ebene Dreieck mit den Seiten a, b,
c und dem halben Umfang s gilt die Ungleichung

1
s− a

+ 1
s− b

+ 1
s− c

≥ 9
s

Für beliebige positive reelle Zahlen x; y; z gilt die Ungleichung zwischen dem harmonischen und dem
arithmetischen Mittel:

3
(

1
x

+ 1
y

+ 1
z

)−1
≤ x+ y + z

3
Mit

x = 1
s− a

= 2
a+ b+ c− 2a = 2

b+ c− a
> 0

y = 1
s− b

= 2
a+ b+ c− 2b = 2

a+ c− b
> 0

z = 1
s− c

= 2
a+ b+ c− 2c = 2

a+ b− c
> 0

liefert diese Ungleichung

3
s− a+ s− b+ s− c

= 3
s
≤ 1

3

(
1

s− a
+ 1
s− b

+ 1
s− ac

)
Multipliziert man mit 3, so folgt die Behauptung(

1
s− a

+ 1
s− b

+ 1
s− ac

)
≥ 9
s

Aufgabe 6/84
Gesucht sind alle (evtl. auch nichtreellen) Lösungen des Gleichungssystems

16x2 − 30xy + 9y2 = 0 ; −xy + 3y2 = 6
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Da die erste Gleichung des Systems homogen ist und außerdem x; y <> 0 gilt (Probe!), kann man die
erste Gleichung durch x2 oder durch y2 dividieren. Man erhält mit z = x

y bzw. z = y
x

16z2 − 30z + 9 = 0 bzw. 9z2 − 30z + 16 = 0

mit den Lösungen
z1 = 3

2; z2 = 3
8 bzw. z1 = 8

3; z2 = 2
3

Daraus folgt x1 = 1,5y1, x2 = 0,375y2. Setzt man dies in die zweite Gleichung ein, so ergibt sich

3y2
1 − 1,5y2

1 = 6 ; 3y2
2 − 0,375y2

2 = 6 also

y1 = ±2, y2 = ± 4
7
√

7, und damit x1 = ±3, x2 = ± 3
14
√

7. Es existieren also genau vier Lösungen, die
sämtlich reell sind.

Aufgabe 7/84
Ein Mann erzählt: ”Das Geburtsjahr meines Enkels ist ein Produkt xy zweier natürlicher Zahlen x
und y. Im Jahre x2 wird er x Jahre alt sein.”
In welchem Jahr ist der Enkel geboren?

Nach den Angaben des Großvaters gilt x2 = xy+ x. Wegen (offensichtlich) x 6= 0 folgt daraus y = x− 1.
Ferner ist 1984 ≥ xy = x(x− 1) = x2 − x,

45 >
√

1984 ≥
√
x(x− 1) ≈ x

Es kommen also für x Werte in der Nähe von 45 in Frage. Werte x > 45, y > 44 führen auf xy ≥ 2070 >
1984 und entfallen damit.
Werte x ≤ 44, y ≤ 43 ergeben xy ≤ 1982 und entfallen aus biologischem Grund (der noch lebende
Großvater hätte ein in unserem Land ungewöhnlich hohes Alter). Demnach ist x = 45, y = 44 und das
Geburtsjahr des Enkels xy = 1980. Gesteht man dem Großvater ein Alter von mehr als 120 Jahren zu,
so käme auch 1892 in Frage (dies wird aber durch den Aufgabentext ”... wird er ... sein” ausgeschlossen).

Aufgabe 8/84
Klaus soll gegen Peter und Rolf abwechselnd Schach spielen und einen Preis gewinnen, wenn er von
drei Partien zwei aufeinanderfolgende gewonnen hat. Er schätzt Peter spielstärker ein als Rolf.
Gegen wen wird er zuerst antreten? Die Wahl liegt bei ihm!

Es seine pP und pR die Wahrscheinlichkeiten, mit denen Klaus gegen Peter bzw. Rolf gewinnt, pi die
Wahrscheinlichkeit für Sieg in der i-ten Partie (i = 1; 2; 3). Es gibt nun die folgenden einander ausschlie-
ßenden Möglichkeiten für den Gewinn de Preises.
1. Gewinn der ersten beiden Partien (die dritte kann entfallen).
2. Verlust der ersten, Gewinn der zweiten und der dritten Partie.
Da man die Spielergebnisse als voneinander unabhängig betrachten kann, gilt für die Wahrscheinlichkeit
p eines Preisgewinns

p = p1 · p2 + (1− p1) · p2 · p3 = p1 · p2 + p2 · p3 − p1 · p2 · p3

Spielt Klaus in der ersten Partie gegen Peter, so ist

p = pP · pR + pR · pP − pP · pR · pP = pR · pP · (2− pP )

spielt er zuerst gegen Rolf, so ist

p = pR · pP + pP · pR − pR · pP · pR = pR · pP · (2− pR)

Da Klaus die Spielstärke Peters höher einschätzt als die von Rolf, ist pP < pR und damit 2−pP > 2−pR.
Die Gewinnchancen für Klaus werden damit (auf den ersten Blick überraschend!) größer, wenn er zuerst
gegen die spielstärkeren Peter antritt.
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Aufgabe 9/84
Man bestimme alle Paare (x; y) ganzer Zahlen, die der Gleichung genügen:

x2y + xy2 = 2xy + x+ y + 1

Es ist
x2y + xy2 = xy(x+ y) = 2xy + x+ y + 1

Setzt man xy = a, x+ y = b, so nimmt die Gleichung die Gestalt

ab = 2a+ 2b+ 1 oder b = 2a+ 1
a− 1 = 2 + 3

a− 1

an (da offensichtlich a = 1 keine Lösung liefert). Damit b ganzzahlig wird, kommen für a nur die Werte
a1 = −2, a2 = 0, a3 = 2 und a4 = 4 in Betracht. Für b ergeben sich daraus die Werte b1 = 1, b2 =
−1, b3 = 5 und b4 = 3. Es sind nun die vier Gleichungssysteme

xy = ai ; x+ y = bi

mit i = 1; 2; 3; 4 im ganzen Zahlen x; y zu lösen. Von ihnen haben nur die ersten zwei ganzzahlige Lösungen
(x; y), und es ist

1.) x11 = y12 = −1 ; x12 = y11 = 2
2.) x21 = y22 = 0 ; x22 = y21 = −1

Damit sind die vier Paare (−1; 0), (0;−1), (2;−1), (−1; 2) Lösung der gegebenen Gleichung. Weitere
Lösungen kann es auf Grund des Lösungsverfahrens nicht geben.

Aufgabe 10/84
Man beweise die Richtigkeit des folgenden Satzes: Die Gleichung 2n + 1 = k2m+3 hat keine Lösung
in natürlichen Zahlen k; m; n.

Angenommen, es gäbe eine Lösung k;m;n ∈ N der Gleichung

2n + 1 = k2m+3

Dann ist k mit Sicherheit ungerade: k = 2l+ 1, l ∈ N , l ≥ 1, da 2 gerade und damit 2n + 1 ungerade und
außerdem 2n + 1 ≥ 3 ist (n = 0 liefert offenbar keine Lösung). Die Gleichung nimmt damit die Gestalt

2n + 1 = (2l + 1)2m+3 = (2l)2m+3 + (2m+ 3)(2l)2m+2 + ...+ (2m+ 3)(2l) + 1

an. Daraus folgt

2n = 2l[(2l)2m+2 + (2m+ 3)(2l)2m+1 + ...+ 2m+ 3]
2n−1 = l[(2l)2m+2 + (2m+ 3)(2l)2m+1 + ...+ 2m+ 3]

Die eckige Klammer auf der rechten Seite der letzten Gleichung ist ungerade (alle Summanden bis auf
den letzten sind gerade, der letzte ist ungerade) und größer als 1. Die linke Seite dagegen enthält aus-
schließlich Faktoren 2.
Damit führt die Annahme auf einen Widerspruch zum Satz über die Eindeutigkeit der Primfaktorzer-
legung; sie ist also falsch, und damit ist das Gegenteil richtig: Es gibt keine Lösung k;m;n ∈ N der
Gleichung.

Aufgabe 11/84
Einem Dreieck ABC sei ein Quadrat DEFG derart einbeschrieben, dass die Punkte D und E auf
der Seite AB, F auf der Seite BC und G auf der Seite AC liegen. Man bestimme das Maximum
des Quotienten Q = A(ABC)

A(DEFG) , wobei mit A(X) die Fläche der Figur X bezeichnet ist. Für welche
Dreiecke wird das Maximum angenommen?
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Es sei H der Fußpunkt der Höhe auf AB und x die Quadratseite. Weiter sei c = AB und h = HC. Dann
gilt

A(ABC) = 0,5ch ; A(DEFG) = x2

Aus der Ähnlichkeit der Dreiecke FEB und CHB (beide sind rechtwinklig und haben den gleichen Winkel
bei B) folgt

x : EB = h : HB also EB · h = x ·HB (1)
Analog folgt aus der Ähnlichkeit der Dreiecke GAD und CAH

x : AD = h : AH also AD · h = x ·AH (2)

Addiert man (1) und (2), so ergibt sich

h(AD + EB) = h(c− x) = x(AH +HB) = x · c→ x = ch

c+ h

Damit folgt für Q

Q = x2 : ch2 =
(

ch

c+ h

)2
: ch2 = 0,5

( √
ch

0,5(c+ h)

)2

Da das geometrische Mittel zweier positiver Zahlen nie größer ist als ihr arithmetisches Mittel, ist der
Bruch in der letzten Klammer höchstens gleich 1. Es ist also Q ≤ 0,5 und die Gleichheit tritt genau dann
ein, wenn h = c ist.

Aufgabe 12/84
Gesucht ist diejenige Lösung der Gleichung

1
x2 + 1

y2 = 1
z2

in natürlichen Zahlen x; y; z, für die das Produkt xyz minimal ist.

Angenommen x; y; z seien Lösung der gegebenen Gleichung. Dann folgt durch Multiplikation mit x2y2 6= 0
die Gleichung

x2 + y2 = x2y2z−2

Da x2; y2 ∈ N , ist auch x2y2z−2 = n2 ∈ N und man kann das Tripel (x; y;n) in der Form (x0d; y0d;n0d)
darstellen, wobei (x0; y0; z0) ein pythagoreisches Grundtripel und d ∈ N, d 6= 0 ist. Damit folgt

n2 = n2
0d

2 = x2y2z−2 = x2
0d

2y2
0d

2z−2 ; z = x0y0n
−1
0 d

Wegen der paarweisen Teilerfremdheit von x0; y0;n0 (pythagoreische Grundtripel) muss n0 Teiler von d
sein: d = n0d

′ mit d′ ∈ N, d′ 6= 0.
Demnach ist xyz = (x0y0n0)2d′3 genau dann minimal, wenn d′ = 1 gilt und x0; y0; z0 die kleinsten Zahlen
sind, die in einem pythagoreischen Grundtripel auftreten können: x0 = 3, y0 = 4 (bzw.umgekehrt),
n0 = d = 5 und damit (x; y; z) = (x0d; y0d; z0d = x0y0) = (3 · 5; 4 · 5; 3 · 4) = (15; 20; 12) bzw. (20; 15; 12)
(wegen der Symmetrie in x und y). Tatsächlich ist

15−2 + 20−2 = 12−2

Aufgabe 13/84
Man berechne die Summe aller derjenigen natürlichen Zahlen, die in ihrer dezimalen Darstellung jede
der fünf Ziffern 1; 2; 3; 4; 5 genau einmal enthalten.

Da in der dezimalen Darstellung der zu summierenden Zahlen jede der fünf Zahlen 1; 2; 3; 4; 5 genau
einmal enthalten ist, gibt es n = 5! = 120 derartige Zahlen. Denkt man sich diese Zahlen untereinander
geschrieben, so kommt jede dieser Ziffern in jeder Spalte 5!

5 = 4! = 24mal vor. Folglich gilt für die Summe
Si der einzelnen Spalten

Si = 24
5∑
k=1

k = 24 · 15 = 360
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und für die gesuchte Summe S

S =
5∑
i=1

Si · 10i−1 = 360
5∑
i=1

10i−1 = 360105 − 1
10− 1 = 3999960

Aufgabe 14/84
Für welche natürlichen Zahlen n existiert kein Polyeder mit genau n Kanten?

1. Feststellung: Für alle geraden Zahlen n ≥ 6 existiert ein Polyeder mit genau n Kanten.
Beweis: Es sei n = 2k, k ∈ N , k ≥ 3. Jede k-seitige Pyramide hat genau k Kanten der Grundfläche zur
Spitze; damit hat jede k-seitige Pyramide mit k ≥ 3 genau n = 2k ≥ 6 Kanten.

2. Feststellung: Für alle ungeraden Zahlen n ≥ 9 existiert ein Polyeder mit genau n Kanten.
Beweis: Es sei n = 2k+ 1, k ∈ N , k ≥ 4. Für jede (k− 1)-seitige Pyramide gilt die Feststellung 1; sie hat
also genau 2k − 2 Kanten. Schneidet man durch einen ebenen Schnitt eine Ecke an der Grundfläche ab,
so treten 3 neue Kanten auf. Damit hat die ”verstümmelte” Pyramide genau n = 2k− 2 + 3 = 2k+ 1 ≥ 9
Kanten.

3. Feststellung: Für n < 6 existiert kein Polyeder mit genau n Kanten.
Beweis: Jede Fläche enthält mindestens 3 Kanten, jedes Polyeder enthält mindestens 4 Flächen, jede
Kante gehört genau 2 Flächen an. Die minimale Kantenzahl ist also nmin = 3·4

2 = 6.

4. Feststellung: Es ist noch die Existenz eines Polyeders mit genau 7 Kanten zu überprüfen. Angenommen,
es gäbe ein solches Polyeder. Nach dem Eulerschen Polyedersatz gilt f+e = k+2, für k = 7 also f+e = 9.
Da f ≥ 4 ist, gilt e ≤ 5.
Es gibt nur ein Polyeder mit f = 4, das Tetraeder, bei ihm ist e = 4 und damit e+ f = 8 6= 9. Vergrößert
man die Flächenzahl um 1, so ergibt sich entweder eine vierseitige Pyramide mit e = 5, k = 8, oder ein
Pyramidenstumpf (bei dem Grund- und Deckfläche nicht notwendig parallel sind) mit e = 6, k = 9. In
keinem Fall ist k = 7.
Es ist auch unmittelbar einzusehen (Folgerung aus dem Polyedersatz), dass jede weitere Vergrößerung
der Flächenzahl zu einer Vergrößerung der Kantenzahl führt.
Ergebnis: Für die natürlichen Zahlen n < 6 und n = 7 existiert kein Polyeder mit genau n Kanten.

Aufgabe 15/84
In einem Trapez ABCD mit AB ‖ CD und BC = DA seien auf BC und DA zwei Punkte E und F
so festgelegt, dass EC = FA ist.
Man beweise: EF ist genau dann minimal, wenn EF Mittelparallele ist.

Es seien M und N die Halbierungspunkte von BC bzw. DA. Wir konstruieren das zu ABCD bezüglich
N zentralsymmetrische Trapez ADB′C ′. Dabei sind M’, E’ und F’ die zu M, E bzw. F bezüglich N
zentralsymmetrischen Punkte.
Es sei nun G der Punkt auf B′C ′ für den gilt B′G = C ′E′ = CE = AF = DF ′. Dann ist sicher

GF = E′F ′ = EF und GF + EF = 2EF ≥ GF ′E = M ′NM = 2NM

Das Minimum wird offensichtlich genau dann angenommen, wenn der Streckenzug GFE auf einer Geraden
liegt, d.h., wenn F = F ′ = N und E = M , E′ = M ′ = G ist. Dann aber ist EF = NM , w.z.b.w.

Aufgabe 16/84
Gesucht sind alle Paare (p; q) von Primzahlen, für die P = p2 + q2 − 167 und Q = p2 − q2 + 167
ebenfalls Primzahlen sind.

Ist p = q = 3, so ist P < 0. Folglich ist mindestens eine der Primzahlen p und q nicht gleich 3. Wir
untersuchen daher 3 Fälle:

1. Es sei p = 3, q 6= 3. Dann gilt P = q2 − 158 > 0, Q = 176− q2 > 0 also 158 < q2 < 176 und q = 13.
Damit ist eine Lösung (p1; q1) = (3; 13) gefunden (die Probe bestätigt die Richtigkeit).
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2. Es sei p 6= 3, q = 3. Dann gilt P = p2 − 158 > 0 und Q = p2 + 158 > 0. Da p 6= 3, ist p ≡ ±1 (mod
3), p2 ≡ 1 (mod 3). Folglich ist Q ≡ 1 + 158 ≡ 0 (mod 3) und damit niemals Primzahl. Dieser Fall
ist also nicht möglich.

3. Es sei p 6= 3, q 6= 3 also p2 ≡ q2 ≡ 1 (mod 3). Dann ist

P ≡ 1 + 1− 167 ≡ 0 (mod 3 ; also P = 3 ; p2 + q2 = P + 167 = 170

woraus p; q < 13 folgt. Von den nunmehr noch in Frage kommenden 16 Wertepaaren (p; q =
2; 5; 7; 11) genügt nur das Paar (p2; q2) = (11; 7) beiden Gleichungen. Damit erfüllen genau die
beiden Paare (p1; q1) = (3; 13) und (p2; q2) = (11; 7) die Bedingungen der Aufgabe.

Aufgabe 17/84
Es sei a eine 1984stellige natürliche Zahl, die durch 3 teilbar ist. Weiter seien b die Quersumme von
a, c die Quersumme von b und d die Quersumme von c. Welche Werte kann d annehmen?

Wenn eine Zahl durch 3 teilbar ist, so ist auch ihre Quersumme durch 3 teilbar. Also sind mit a und b,
c und d durch 3 teilbar. Offenbar gelten für b, c und d die folgenden Abschätzungen:

b ≤ 9 · 1984 = 17856; c < 9 + 9 + 9 + 9 = 36; d < 2 + 9 = 11

Damit kommen für d nur die Werte d1 = 3; d2 = 6; d3 = 9 in Frage.

Aufgabe 18/84
Gesucht sind alle rechtwinkligen Dreiecke mit ganzzahligen Seitenlängen, bei denen die Zahlenwerte
von Flächeninhalt und Umfang übereinstimmen.

Nach dem Aufgabentext werden alle pythagoreischen Zahlentripel (a; b; c) gesucht, für die gilt

ab

2 = a+ b+ c

(dabei spielt eine Vertauschung von a und b keine Rolle). Bekanntlich erhält man alle pythagoreischen
Tripel (a; b; c) durch den Ansatz

a = k(m2 − n2) ; b = 2kmn ; k(m2 + n2)

mit k;m ∈ N, k;m;n <> 0. Setzt man dies ein, so ergibt sich

k(m2 − n2) · 2kmn
2 = k(m2 − n2) + 2kmn+ k(m2 + n2)→ k2(m− n)(m+ n)mn = 2km(m+ n)

bzw. wegen (m+ n); k;m;m 6= 0

k(m− n)n = 2→ m = n+ 2
kn

Damit m ∈ N gilt, muss kn = 1 oder kn = 2, also k1 = 1, n1 = 1, k2 = 1, n2 = 2 oder k3 = 2, n3 = 1 sein.
Dann aber ist m1 = m2 = 3,m3 = 2 und es folgt

a1 = 8 b1 = 6 c1 = 10
a2 = 5 b2 = 12 c2 = 13
a3 = 6 b3 = 8 c3 = 10

Man erkennt, dass die dritte Lösung (bis auf die unwesentliche Vertauschung von a und b) mit der ersten
übereinstimmt. Die Aufgabe hat (wie die Probe bestätigt) demnach genau zwei wesentlich voneinander
verschiedene Lösungen.

Aufgabe 19/84
Unter welcher Bedingung kann man in zwei konzentrische Kreise K1 und K2 ein Dreieck derart
einbeschreiben, dass der größere Kreis Umkreis und der kleinere Kreis Inkreis des Dreiecks ist?
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Genau dann, wenn der Umkreis und der Inkreis eines Dreiecks konzentrisch sind, fallen ihre Mittelpunkte,
also der Schnittpunkt der Mittelsenkrechten und der Schnittpunkt der Winkelhalbierenden, zusammen.
Daraus folgt, dass das Dreick gleichseitig ist.
Damit fällt auch der Schnittpunkt der Seitenhalbierenden mit dem Mittelpunkt der konzentrischen Kreise
zusammen. Da die Seitenhalbierenden einander dritteln, gilt für das Verhältnis der Radien von In- und
Umkreis ρ bzw. r: ρ : r = 0,5 und r = 2ρ.
Damit ist die gesuchte Bedingung gefunden: Der Radius der größeren Kreises muss gleich dem doppelten
Radius des kleineren Kreises sein. Sie ist sowohl notwendig als auch hinreichend.

Aufgabe 20/84
Es sind alle Quadrupel (p1; p2; p3; p4) von Primzahlen pi zu ermitteln, die Lösung der Gleichung
p2

1 + p2
2 + p2

3 + p2
4 = 999 sind (Rechengeräte sind zur Lösung nicht zugelassen!).

1. Wegen 999 ≡ 1 (mod 2) ist die Anzahl der ungeraden Primzahlen im Quadrupel ungerade. Wäre nun
genau ein pi ungerade (o.B.d.A. sie dies p4), so wäre p1 = p2 = p3 = 2. Die Gleichung

22 + 22 + 22 + p2
4 = 999

liefert aber keine Primzahl p4. Folglich sind genau 3 Primzahlen ungerade und eine (o.B.d.A. p1) gleich
2. Die gegebene Gleichung ist damit auf die Gleichung reduziert

p2
2 + p2

3 + p2
4 = 986

2. Wegen 995 ≡ 2 (mod 3) und p2
i ≡ 1 (mod 3) für pi 6= 3 folgt, dass für genau ein pi (o.B.d.A. p2) gilt

pi = 3. Die gegebene Gleichung ist damit auf die Gleichung reduziert

p2
3 + p2

4 = 986

3. Wegen 986 ≡ 1 (mod 5) und p2
i ≡ ±1 (mod 5) für pi 6= 5 folgt, dass für genau ein pi (o.B.d.A. p3) gilt

pi = 5. Die gegebene Gleichung ist damit auf die Gleichung

p2
4 = 961

mit der Lösung p4 = 31 reduziert. Tatsächlich ist p4 Primzahl.
4. Es gibt also ein Grundquadrupel (p1; p2; p3; p4) = (2; 3; 5; 31). Nimmt man auf die Reihenfolge kei-
ne Rücksicht, so gibt es also (wie der Lösungsweg zeigt) keine weiteren Lösungen. Wird dagegen die
Reihenfolge als erheblich angesehen, so ergeben sich aus dem Grundquadrupel durch Permutation noch
4!− 1 = 23 weitere (abgeleitete) Quadrupel.

Aufgabe 21/84
Es seien q1 = p2

1, q2 = p2
2 und q3 = p2

3 die Quadrate beliebiger mehrstelliger Primzahlen pi und
q eine Zahl, die man durch Aneinanderreihen der Ziffern der qi in beliebiger Reihenfolge unter
Berücksichtigung ihrer Mehrfachheit erhält. Man beweise, dass q keine Primzahl ist.

Da für i = 1; 2; 3 nach Voraussetzung gilt pi > 10, gilt auch pi 6= 0 (mod 3) und damit qi ≡ 1 (mod 3).
Damit folgt für die Quersummen Q(qi) ≡ 1 (mod 3) und

Q(q) = Q(q1) +Q(q2) +Q(q3) ≡ 3 ≡ 0 (mod 3)

d.h., dass q restlos durch 3 teilbar ist. Da sicher q > 3 ist, folgt, dass q keine Primzahl sein kann.

Aufgabe 22/84
Gegeben sei die Menge aller Folgen {xk(n)}’ die der Rekursionsformel

xk+1(n) = 2xk(n) + 1; x0(n) = 2n

mit n ∈ N genügen. Man zeige, dass jede ungerade natürliche Zahl 2i + 1 (i = 0; 1; 2; ...) in genau
einer dieser Folgen enthalten ist.
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Es ist xk(n) = (2n+ 1) · 2k − 1, wie man durch vollständige Induktion beweist:
1. x0(n) = (2n+ 1) · 20 − 1 = 2n,
2. xk+1(n) = 2xk(n) + 1 = 2[(2n+ 1) · 2k − 1] + 1 = (2n+ 1) · 2k+1 − 2 + 1 = (2n+ 1) · 2k+1 − 1.
Es sei nun xk(n) = 2i+ 1 (i = 0; 1; 2; ...). Dann folgt

xk(n) + 1 = 2i+ 2 = (2n+ 1) · 2k ; 2(ik + 1) = (2n+ 1) · 2k

Aus dieser Gleichung kann man die Zahlen n und k eindeutig (wegen n; k ∈ N) bestimmen: Man dividiert
2(i+ 1) durch die höchste als Faktor enthaltene Zahl 2k. Der Quotient ist 2n+ 1.
Beispiel: Für 2i+ 1 = 71, i = 35 gilt

2(i+ 1) = 2 · 36 = 2(n+ 1) · 2k.

Es folgt k = 3, n = 4 und x0 = 8, x1 = 2x0 + 1 = 17, x2 = 35, x3 = 71, x4 = 143, ...

Aufgabe 23/84
Es ist zu beweisen: Für alle natürlichen Zahlen n ist zn = 2n · 1985 als Summe aus den Quadraten
zweier natürlicher Zahlen darstellbar.

Die Behauptung ist offenbar richtig für n = 0; z0 = 20 ·1985 = 1985 = 49 ·1936 = 72 +442. Wenn bewiesen
werden kann, dass aus der Gültigkeit der Behauptung für irgendein n = k die Gültigkeit für n = k + 1
folgt, ist der geforderte Beweis erbracht. Angenommen, die Behauptung gelte für irgend ein n = k

zk = 2k · 1985 = x2 + y2

mit x; y ∈ N . Dann ist

zk+1 = 2k+1 · 1985 = 2 · 2k · 1985 = 2x2 + 2y2 = x2 + 2xy + y2 + x2 − 2xy + y2 =

= (x+ y)2 + (x− y)2 = x′2 + y′2

ebenfalls als Summe aus den Quadraten zweier natürlicher Zahlen darstellbar, da mit x; y ∈ N auch
x′ = x+ y; y′ = x− y ∈ N gilt.

Aufgabe 24/84
Man ermittle alle (im dekadischen System) vierstelligen natürlichen Zahlen n, die folgende Bedin-
gungen erfüllen:

1. Die Quersumme ist 23.
2. Die alternierende Quersumme ist -5.
3. Das Querprodukt ist 360.
4. Die Summe aus den an erster und an dritter Stelle stehenden Ziffern ist gleich der Ziffer an der
zweiten Stelle.

Angenommen, es gäbe (wenigstens) eine Zahl

n = 103a+ 102b+ 10c+ d

welche die gestellten Bedingungen erfüllt (a; b; c; d ∈ N, a; b; c; d ≤ 9). Dann gelten die folgenden Glei-
chungen

a+ b+ c+ d = 23 (1)
a− b+ c− d = −5 (2)

abcd = 360 (3)
a− b+ c = 0 (4)

Durch Addition von (1) und (2) folgt mit (4): a+ c = 9 = b (5) und durch Einsetzen aus (1) d = 5, aus
(3) ac = 8 (6).
Wegen a; c ∈ N ergibt sich aus (5) und (6) sofort a1 = 1, c1 = 8 und a2 = 8, c2 = 1. Die Probe bestätigt,
dass die beiden Zahlen n1 = 1985 und n2 = 8915 alle gestellten Bedingungen erfüllen. Weitere Zahlen n
kann es auf Grund des Lösungsweges nicht geben.
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2.25 Aufgaben und Lösungen 1985

Aufgabe 1/85
Man finde alle Lösungen der Gleichung 3x + 4x = 5x in reellen Zahlen x.

1. Feststellung: x1 = 2 ist Lösung.
2. Feststellung: Die gegebene Gleichung ist der Gleichung(

3
5

)x
+
(

4
5

)x
− 1 = 0

äquivalent.
3. Feststellung: Die Funktion y = ax mit 0 < a < 1 ist streng monoton fallend. Demzufolge ist auch die
Funktion

y =
(

3
5

)x
+
(

4
5

)x
− 1

eine streng monoton fallende Funktion.
4. Feststellung: Eine streng monotone Funktion nimmt jeden Wert höchstens einmal an. Sie hat demnach
auch höchstens eine Nullstelle. Damit ist x1 = 2 die einzige Lösung.

Aufgabe 2/85
Man konstruiere ein Dreieck ABC aus der Höhe hc auf der Seite AB = c, der Seitenhalbierenden sc
der Seite c und der Winkelhalbierenden wγ des Winkels γ = ]ACB!

Wir bezeichnen mit D den Fußpunkt der Höhe hc auf c, mit E den Endpunkt der Winkelhalbierenden
wγ auf c, mit F den Halbierungspunkt von c, mit M den Mittelpunkt des Umkreises und mit G den
Schnittpunkt der verlängerten Winkelhalbierenden wγ mit dem Umkreis. Dann gelten die folgenden Fest-
stellungen:
1. Das Teildreieck CDF ist konstruierbar aus hc, sc und ]CDF = 90◦ nach ssw, vorausgesetzt sc > hc
(dem größten Winkel liegt die größte Seite gegenüber).
2. Das Teildreieck CDE ist konstruierbar aus hc, wγ und ]CDF = 90◦ nach ssw, vorausgesetzt wγ > hc
(dem größten Winkel liegt die größte Seite gegenüber).
3. Es ist AG = BG nach dem Peripheriewinkelsatz (]ACE = ]ACG = ]ECB = ]GCB = 0,5γ,
demnach auch ]GAB = ]ABG nach dem Peripheriewinkelsatz. Damit ist M AFG ∼=M BFG nach sss;
also ist ]AFG = ]BFG = 90◦ (Nebenwinkel).
4. Das Hilfsdreieck EFG ist konstruierbar aus EF = DF −DE, ]EFG = ]CED (Scheitelwinkel) und
]AFG = ]EFG = 90◦ nach wsw.
5. Der Punkt M ist konstruierbar als Schnittpunkt der Senkrechten auf DF in F (Mittelsenkrechte von
c) mit der Mittelsenkrechten von CG.
6. Der Umkreis ist konstruierbar als Kreis um M mit dem Radius r = MC = MG.
7. Die Dreieckspunkte A und B sind konstruierbar als Schnittpunkte der Geraden durch D, E und F mit
dem Umkreis.

Determination: Unter 1. wurde sc > hc, unter 2. wγ > hc vorausgesetzt. Da die Winkelhalbierende die
Gegenseite im Verhältnis der anliegenden Seiten teilt, muss die Konstruktion unter 4. so durchgeführt
werden, dass E zwischen D und F liegt. Demnach muss sogar sc > wγ > hc gelten. Sind diese Voraus-
setzungen erfüllt, so sind alle Konstruktionen (bis auf den Umlaufsinn) eindeutig ausführbar.
Die Konstruktionsbeschreibung ergibt sich aus den Feststellungen.

Aufgabe 3/85
In einem ebenen Dreieck mit den Seiten a, b und c sollen die Maßzahlen der Seiten eine nichtkonstante
arithmetische Folge l. Ordnung bilden (O.B.d.A. sei a < b < c). Die Differenz sei d (also d > 0). Für
welche Verhältnisse d : a ist das Dreieck 1. spitzwinklig, 2. rechtwinklig, 3. stumpfwinklig?

Aus dem Kosinussatz folgt
1) a2 + b2 = a2 + (a+ d)2 > c2 = (a+ 2d)2 für spitzwinklige, (1)
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2) a2 + b2 = a2 + (a+ d)2 = c2 = (a+ 2d)2 für rechtwinklige, (2)
3) a2 + b2 = a2 + (a+ d)2 < c2 = (a+ 2d)2 für stumpfwinklige (3)
Dreiecke. Es folgt weiter

3d2 + 2ad− a2 ≤
≥ 0;

(
d

a

)2
+ 2d

3a −
1
3
≤
≥ 0

(wobei < für (1), = für (2) und > für (3) gilt). Die Lösung dieser im Verhältnis d : a quadratischen
Ungleichungen bzw. Gleichung liefert (negative Werte entfallen!)
1) für spitzwinklige Dreiecke 0 < d : a < 1 : 3,
2) für rechtwinklige Dreiecke d : a = 1 : 3,
3) für stumpfwinklige Dreiecke 1 : 3 < d : a.
Da in jedem Fall auch die Dreiecksungleichungen erfüllt sein müssen, gilt zudem a+b = a+a+d = 2a+d >
c = a+ 2d, also a > d, d : a < 1. Dies beschränkt für stumpfwinklige Dreiecke auf 1 : 3 < d : a < 1.

Aufgabe 4/85
Man ermittle den Wert des Terms

cos 20◦ · cos 40◦ · cos 60◦ · cos 80◦

ohne Tabellen, Rechengeräte oder ähnliches zu Hilfe zu nehmen!

Es sei
cos 20◦ · cos 40◦ · cos 60◦ · cos 80◦ = x ; sin 20◦ · sin 40◦ · sin 60◦ · sin 80◦ = y

Durch Multiplizieren folgt daraus

2 sin 20◦ cos 20◦ · 2 sin 40◦ cos 20◦ · 2 sin 60◦ cos 60◦ · 2 sin 80◦ cos 80◦ = 16xy

und wegen 2 sin a cos a = sin (2a), sin 180◦ − a = sin a und y 6= 0

sin 40◦ · sin 80◦ · sin 60◦ · sin 20◦ = 16xy = y → 16x = 1

Also ist
x = cos 20◦ · cos 40◦ · cos 60◦ · cos 80◦ = 0,0625

Aufgabe 5/85
Gegeben sei ein Kreis mit dem Mittelpunkt M , dem Radius r und einer Sehne AB = s. Um wieviel
muss man AB über B hinaus verlängern, wenn die vom Endpunkt E der Verlängerung an den Kreis
gelegte Tangente die Länge t haben soll?

Es sei BE = x. Nach dem Sehnen-Tangentensatz gilt

t2 = (x+ s)x also x3 + xs− t2 = 0→ x = 0,5(
√
s2 + 4t2 − s)

(wegen x > 0 kommt die zweite Lösung nicht in Frage.

Aufgabe 6/85
Wieviele verschiedene reelle Lösungen hat das Gleichungssystem

x2 + y = a ; x+ y2 = a

in Abhängigkeit vom Parameter a?

Durch Subtraktion einer Gleichung von der anderen und nachfolgender Umformung erhält man

x2 + y − x− y2 = 0→ (x− y)(x+ y − 1) = 0

Ein Produkt ist genau dann gleich null, wenn wenigstens ein Faktor gleich null ist: 1. x = y, 2. x = 1− y.
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Setzt man dies in eine der gegebenen Gleichungen ein, so ergibt sich y2 + y = a bzw. y2 − y + 1 = 0. Die
Lösungen dieser in y quadratischen Gleichungen sind

y = −0,5±
√
a+ 0,25 bzw. y = 0,5±

√
a− 0,75

Reelle Lösungen ergeben sich nur für a ≥ 0,25 und im 2.Fall für a ≥ 0,75. Das System hat somit keine
reellen Lösungen für a < −0,25, genau eine reelle Lösung für a = −0,25, genau zwei reelle Lösung für
−0,25 < a ≤ 0,75 und genau vier reelle Lösungen für a > 0,75, wobei die Mehrfachheit von Lösungen
unberücksichtigt blieb.

Aufgabe 7/85
Der etwas zerstreute Mathematiker A klagt seinem Kollegen B: ”Ich habe meine Safenummer verges-
sen; ich weiß nur noch, dass ihre Ziffernfolge symmetrisch war und dass sie gleich dem Quadrat aus
dem Geburtsjahr eines Gelehrten der neueren Zeit war, aber nicht mehr, von wem.”
Nach kurzer Überlegung antwortet B: ”Das kann nicht sein, du musst dich irren!”
Welche Überlegung hatte er angestellt?

Legt man den Beginn der ”neueren Zeit” (großzügig) mit etwa 1450 fest, so gilt für die gesuchte Zahl x
die Ungleichungskette

2 · 106 < 14502 < x < 19842 < 4 · 106

Da die Ziffernfolge symmetrisch ist, müsste die letzte Stelle von x eine 2 oder eine 3 sein. Das ist aber
ein Widerspruch zu der Tatsache, dass keine Quadratzahl auf 2 oder 3 endet.
Beweis für diese Behauptung:
Es sei x = 10a+ b mit a; b ∈ N , b ≤ 9. Dann ist x2 = 100a2 + 20ab+ b2; die letzte Stelle von x2 wir also
von b2 eindeutig bestimmt. Nun ist für

b = 0; 1; 2; 3; 4; 5; 6; 7; 8; 9
b2 = 0; 1; 4; 9; 16; 25; 36; 49; 64; 81

in keinem Fall also 2 oder 3.

Aufgabe 8/85
Man ermittle die kleinste natürliche Zahl n, die sowohl als Summe von 10 als auch als Summe von
794 aufeinanderfolgenden (nicht notwendig natürlichen) ganzen Zahlen darstellbar ist!

Für die Summe n = sk von k aufeinanderfolgenden ganzen Zahlen gilt bekanntlich 2sk = k(2a+ k − 1),
wobei a die kleinste der k ganzen Zahlen ist. Demnach ist die doppelte Summe restlos durch k teilbar.
In unserem Falle ist sie sowohl durch 10 als auch durch 794 teilbar, also ein gemeinsames Vielfaches von
10 und 794; wegen der Minimalität von n = sk ist sie sogar das kleinste gemeinsame Vielfache:

2n = 2sk = 2 · 5 · 397 = 3970 ; n = sk = 5 · 397 = 1985

Tatsächlich ist

1985 =
203∑
i=194

i =
399∑

i=−394
i

Aufgabe 9/85
Gegeben seien zwei einander ähnliche, rechtwinklige Dreiecke, die dem gleichen Kreis ein- bzw. um-
beschrieben sind. Man ermittle das minimale Ähnlichkeitsverhältnis k > 1!

1. Wegen k > 1 ist k das Verhältnis der Streckenlängen aus dem umbeschriebenen Dreieck zu den ent-
sprechenden Streckenlängen des einbeschriebenen Dreiecks.
2. Geht eine Kathetenlänge des einbeschriebenen Dreiecks gegen null, so geht die entsprechende Kathe-
tenlänge des umbeschriebenen Dreiecks gegen r (wobei r der Radius des Kreises ist). Demnach gilt in
diesem Falle k →∞.
3. Aus Symmetriegründen tritt ein Extremwert von k im Falle des gleichschenkligen Dreiecks auf; wegen
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2. ist dies das gesuchte Minimum.
4. Für die Höhe h auf der Hypotenuse gilt im Falle des gleichschenkligen Dreiecks
a) für das einbeschriebene Dreieck he = 4
b) für das umbeschriebene Dreieck hu = r(1 +

√
2)

(wie man an einer Skizze mit Hilfe der Sätze von Thales und Pythagoras leicht erkennt). Damit erhält
man

k = hu : he = 1 +
√

2 ≈ 2,41...

Aufgabe 10/85
Gesucht sind alle Quadrupel (n1;n2;n3;n4) natürlicher Zahlen ni (i = 1; 2; 3; 4) mit n1 < n2 < n3 <
n4 (wobei 0 ∈ N sei), für die

z = n1! · n2! · n3! · n4!− 32

eine Quadratzahl ist.

Ist n4 ≥ 5, so enthält n4! die Primfaktoren 2 und 5. Damit ist

z = n1!n2!n3!n4!− 32 ≡ 0− 32 ≡ 8 (mod 10)

Nun gilt aber (10a + b)2 ≡ b2 (mod 10) für a; b ∈ N . Ist b = 0; 1; 2; 3; 4; 5; 6; 7; 8; 9, so ist b2 ≡
0; 1; 4; 9; 6; 5; 6; 9; 4; 1 (mod 10).
In keinem Fall gilt also b2 ≡ 8 (mod 10). Demnach ist n4 ≤ 4. Damit kommen zunächst nur die folgenden
fünf Quadrupel in Frage:

(0; 1; 2; 3), (0; 1; 2; 4), (0; 1; 3; 4), (0; 2; 3; 4), (1; 2; 3; 4)

Die Probe weist aus, dass das erste und das dritte Quadrupel entfallen. Die Lösungsmenge enthält also
drei Elemente: (0; 1 : 2; 4), (0; 2; 3; 4) und (1; 2; 3; 4).

Aufgabe 11/85
Es sei n ∈ N , n ≡ 0 (mod 9). Man beweise, dass dann n2 durch drei verschiedene Summen aus je
drei Quadralen natürlicher Zahlen darstellbar ist (wobei die Zahl Null ausgenommen sei).

Aus n ≡ 0 (mod 9) folgt n = 9k mit k ∈ N,n2 = 81k2. Wegen

91 = 82 + 42 + 12 = 72 + 42 + 42 = 62 + 62 + 32

folgt sofort die Behauptung

81k2 = 64k2 + 16k2 + k2 = (8k)2 + (4k)2 + k2 = 49k2 + 16k2 + 16k2 = (7k)2 + (4k)2 + (4k)2 =

= 36k2 + 36k2 + 9k2 = (6k)2 + (6k)2 + (3k)2

Aufgabe 12/85
Welchen Rest lässt das Polynom P (x) = xn − xn−1 mit n ∈ N , n 6= 0 bei der Division durch das
Polynom Q(x) = (x− 1)2?

Da Q(x) vom zweiten Grade ist, muss der Rest R(x) linear sein: R(x) = a1x + a0 mit reellen Zahlen
a1, a0. Es gilt also

P (x) = (x− 1)2P1(x) + a1x+ a0

wobei P1(x) ein Polynom (n− 2)-ten Grades in x ist. Für x = 1 folgt

P (1) = 0 · P1(1) + a1 + a0 = 0

also a0 = −a1. Durch Differenzieren erhält man außerdem

P ′(x) = 2(x− 1)P1(x) + (x− 1)2P ′1(x) + a1 = nxn−1 − (n− 1)xn−2

Setzt man darin x = 1, so ergibt sich P ′(1) = a1 = n− (n− 1) = 1. Damit ist R(x) = x− 1.
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Aufgabe 13/85
Es seien x1, x2’ m und n ganze Zahlen und m kein Teiler von n. Ferner seien y1 und y2 reelle Zahlen,
und es gelte

x2 = x1 +m ; y2 = y1 + n

Man zeige: Es gibt keine quadratische Funktion y = f(x) = x2 +bx+c mit ganzzahligen Koeffizienten
b und c derart, dass f(x1) = y1 und f(x2) = y2 gilt.

Angenommen, es gäbe eine solche Funktion y = f(x) = ax2 + bx + c mit ganzzahligen Koeffizienten a
und b. Dann wäre

y2 − y1 = f(x2)− f(x1) = (ax2
2 + bx2 + c)− (ax2

1 + bx1 + c) = a(x2
2 − x2

1) + b(x2 − x1) =

= (x2 − x1)[a(x2 + x1) + b] = m[a(x2 + x1) + b] = n

Wegen der Ganzzahligkeit von a, b, x1, und x2 wäre also n durch m teilbar im Widerspruch zur Voraus-
setzung. Damit ist die Annahme falsch und die Behauptung richtig.

Aufgabe 14/85
Man ermittle alle Primzahl-Zwillingspaare (p1; p2) der Form p1 = 2p−1, p2 = 2p+ 1, bei denen auch
p eine Primzahl ist!

Von den drei aufeinanderfolgenden natürlichen Zahlen 2p− 1, 2p und 2p+ 1 ist mit Sicherheit genau eine
durch 3 teilbar.
1. Es sei dies p1 = 2p− 1. Wegen der Primzahleigenschaft von p1 ist dann

p1 = 2p− 1 = 3 ; p = 2 ; p2 = 2p+ 1 = 5

Damit ist das Paar (p11; p21) = (3; 5) als Element der Lösungsmenge gefunden.
2. Es sei dies 2p. Wegen der Primzahleigenschaft von p ist dann

p = 3 ; p1 = 2p− 1 = 5 ; p2 = 2p+ 1 = 7

und es ist das Paar (p12; p22) = (5; 7) als Element der Lösungsmenge gefunden.
3. Es sei dies p = 2p + 1. Wegen der Primzahleigenschaft von p2 ist dann p2 = 2p + 3 und p = 1
im Widerspruch zur geforderten Primzahleigenschaft von p. Diese Möglichkeit scheidet also aus. Da die
Fallunterscheidung vollständig ist, kann es keine weiteren Elemente der Lösungsmenge geben.

Aufgabe 15/85
Es seien durch die Zahlen a; b; c die Seitenlängen eines Dreiecks mit dem Umfang U und durch a2;
b2; c2 die Seitenlängen eines Dreiecks mit dem Umfang U ′ gegeben. Man ermittle die untere Grenze
des Verhältnisses U2 : U ′!

Nach den Dreiecksungleichungen gilt a+ b > c, b+ c > a, c+ a > b, also

c(a+ b) > c2 ; a(b+ c) > a2 ; b(c+ a) > b2

c(a+ b+ c) > 2c2 ; a(a+ b+ c) > 2a2 ; b(c+ a+ b) > 2b2

Durch Addition der drei Ungleichungen erhält man

a(a+ b+ c) + b(a+ b+ c) + c(a+ b+ c) = (a+ b+ c)2 > 2(a2 + b2 + c2)

Wegen a+ b+ c = U und a2 + b2 + c2 = U ′ folgt sofort U2 > 2U ′ und U2 : U ′ > 2. (wegen U ′ 6= 0). Die
untere Grenze von U2 : U ′ (die nicht angenommen wird) ist also 2.

Aufgabe 16/85
Man beweise die Gültigkeit der Fermatschen Behauptung
”Die Gleichung an + bn = cn hat für positive ganze Zahlen a; b; c;n mit n > 2 keine Lösung”
für den speziellen Fall, dass a; b; c;n Primzahlen sind!
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Angenommen, es gäbe eine Lösung der geforderten Art. Dann sind drei Fälle zu unterscheiden:

1. Sind a und b beide gerade, so ist a = b = 2 wegen der Primzahleigenschaft von a und b und folglich

an + bn = 2n + 2n = 2n+1 = cn

also c = n
√

2n+1 = 2 · n
√

2 /∈ N .

2. Sind a und b beide ungerade, so sind auch an und bn beide ungerade. Damit ist cn als Summe zweier
ungerader Zahlen gerade. Da außerdem wegen a; b > 2 auch an+ bn = cn > 2 gilt , ist c sicher keine
Primzahl.

3. Ist genau eine der beiden Zahlen a; b gerade (O.B.d.A. sei dies a), so ist diese wegen der Primzahlei-
genschaft gleich 2: a = 2. Die Gleichung an + b1n = 2n + bn = cn ist dann äquivalent der Gleichung
cn − bn = 2n.
Nun ist andererseits

cn − bn = (c− b)(cn−1b0 + cn−2b1 + ...+ c0bn−1)
Da b; c;n wegen ihrer Primzahleigenschaft ungerade sind, (b; c;n > 2 ist vorausgesetzt), stellt die
zweite Klammer eine Summe aus einer ungeraden Anzahl ungerader Summanden dar, ist also unge-
rade. Damit kann cn−bn nicht gleich 2n sein (Satz über die Eindeutigkeit der Primfaktorzerlegung).

Jeder der drei Fälle führt also auf einen Widerspruch zur Annahme. Da die Fallunterscheidung vollständig
ist, wurde damit die Annahme widerlegt.

Aufgabe 17/85
Man bestimme alle Tripel (x; y; z) natürlicher Zahlen x; y; z (wobei 0 ∈ N sei), die der Gleichung
5x! = y! + z! + 1 genügen.

1. Ist x = 0 oder x = 1, so ist x! = 1 und die Gleichung reduziert sich auf die Gleichung 4 = y! + z!.
Diese Gleichung ist durch Probieren sehr schnell zu lösen: y = z = 2. Damit sind zwei Tripel gefunden:
(x1; y1; z1) = (0; 2; 2) und (x2; y2; z2) = (1; 2; 2).
2. Ist x > 1, so enthält x! den Faktor 2; damit ist 5x! ≡ 0 (mod 10), also y! + z! ≡ 9 (mod 10).
Sicher ist demnach genau einer der beiden Summanden y! und z! ungerade. Wegen der Symmetrie der
Gleichung bzw. der Kongruenz in y und z kann man o.B.d.A. annehmen, es sei dies y!. Da y! für y > 1
den Faktor 2 enthält, ist dann y! = 1 und damit z! ≡ 8 (mod 10).
Dies ist aber nicht möglich; denn es ist 2! = 2, 3! = 6, 4! = 24 und x! ≡ 0 (mod 10) für x ≥ 5. Daraus
folgt, dass es keine weiteren Tripel der geforderten Art gibt.

Aufgabe 18/85
Einem Kreis sei ein regelmäßiges n-Eck einbeschrieben, dessen Seiten von Halbkreisbögen überspannt
sind. Welches n-Eck erfüllt die Bedingung, dass die Summe der von den Halbkreisbögen und den
zugehörigen Umkreisbögen begrenzten sichelförmigen Flächen gleich der n-Ecksfläche ist?

Die Summe 5 der sichelförmigen Flächen ergibt sich als Summe aus der n-Ecksfläche An und n. Halb-
kreisflächen mit dem Radius der halben n-Eckseite a, vermindert um die Umkreisfläche r2π des n-Ecks
(wobei r der Umkreisradius ist):

S = An + n · 1
2 ·
(a

2

)2
π − r2π

Da S = An sein soll, folgt 1
8na

2π = r2π und wegen a = 2r sin π
n und r2π 6= 0 schließlich n sin2 π

n = 2.
Nun bildet die linke Seite dieser Gleichung für n ≥ 3 eine streng monoton fallende Folge (wie man z.B.
mit der 1.Ableitung der Funktion y = x sin2 π

x nachweisen kann). Deshalb nimmt sie von n = 3 an jeden
Wert, speziell auch den Wert 2, höchstens einmal an. Probieren liefert schnell n = 4. Das gesuchte n-Eck
ist also das Quadrat.

Aufgabe 19/85
Es sei p eine Primzahl; deren k Stellen (in dezimaler Schreibweise) sämtlich gleich 1 sind. Man
beweise, dass dann k ebenfalls eine Primzahl ist. (Wie das Beispiel 111 zeigt, ist diese Behauptung
nicht umkehrbar.)
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Es sei

p =
k−1∑
i=0

10i)10k − 1
9

eine Zahl, die den Voraussetzungen der Behauptung entspricht. Angenommen, k sei keine Primzahl; d.h.,
es gelte k = ab mit a; b ∈ N , a; b > 1. Dann gilt (10a− 1) | (10ab− 1) (wie man z.B. durch Partialdivision
leicht nachprüft). Damit gilt auch

10a − 1
9 | 10ab − 1

9 = 10k − 1
9 = p

Da a > 1 gilt, ist (10a − 1) : 9 eine natürliche Zahl n > 1; da b ≥ 1 gilt, ist ab > a. Demnach hat p einen
echten Teiler n: 1 < n < p; n | p.
Damit ist p keine Primzahl im Widerspruch zur Voraussetzung. Folglich ist die Annahme, k sei eine
Primzahl, falsch.

Aufgabe 20/85
Es sei ABCDE ein regelmäßiges Fünfeck und F der Schnittpunkt der Diagonalen AC und BD. Man
berechne das Verhältnis DF : BF .

Wir benutzen den Hilfssatz: ”Die von einem Eckpunkt eines regelmäßigen Fünfecks ausgehenden Diago-
nalen dritteln den Fünfeckswinkel”.
Beweis des Hilfssatzes:
Es sei ABCDE ein regelmäßiges Fünfeck. Wegen BC = CD = DE sind die Winkel BAC,CAD,DAE
Peripheriewinkel des Fünfeck-Umkreises über gleichen Sehnen. Folglich gilt nach dem Peripheriewinkel-
satz

]BAC = ]CAD = ]DAE

Wegen ]BAC + ]CAD + ]DAE = ]BAE ist

]BAC = ]CAD = ]DAE = 1
3]BAE = 36◦

Durch zyklische Vertauschung folgt die Behauptung für alle Ecken. Nach dem Hilfssatz ist AF Halbie-
rende des Winkels BAD im Dreieck ABD. Nach einem bekannten Satz teilt die Winkelhalbierende die
gegenüberliegende Seite im Verhältnis der beiden anliegenden Seiten. Folglich ist DF : BF = AD : AB.
Nach dem Sinussatz gilt aber

AD : AB = sin]DBA : sin]BDA = sin 72◦ : sin 36◦ = 2 cos 36◦

wegen sin 72◦ = 2 sin 36◦ cos 36◦. Damit ist DF : BF = 2 cos 36◦ ≈ 1,618.

Aufgabe 21/85
Zu zwei reellen Zahlen a und b sind alle dritten reellen Zahlen xi derart zu bestimmen, dass die
drei Produkte aus einer der drei Zahlen und der Summe der beiden anderen eine arithmetische Folge
1.Ordnung bilden.

Mit dem Ansatz
a(b+ xi) = b(a+ xi) + d = xi(a+ b) + 2d

ergibt sich für die Differenz d der arithmetischen Folge und die gesuchten reellen Zahlen xi

d = a2b− ab2

2a− b ; xi = d

a− b
= ab

2a− b

Aufgabe 22/85
Es ist zu beweisen: Für jede natürliche Zahl n existiert ein Intervall von n natürlichen Zahlen, das
keine Primzahl enthält (n ≥ 2 vorausgesetzt).
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Man erhält ein Intervall von n aufeinanderfolgenden natürlichen Zahlen, in dem keine Primzahl vorkommt,
wenn man zu allen Zahlen des Intervalls [2; (n+ 1)] das doppelte Produkt aller ungeraden Zahlen dieses
Intervalls addiert.
Dann ist nämlich jede ungerade Zahl des so gebildeten Intervalls offensichtlich durch die entsprechende
ungerade Zahl des ursprünglichen Intervalls teilbar, und die geraden Zahlen des neuen Intervalls sind
sämtlich größer als 2 und damit ebenfalls keine Primzahlen.
Das neue Intervall enthält also n aufeinanderfolgende natürliche Zahlen, von denen keine eine Primzahl
ist.
Beispiel: Man erhält für n = 5 aus dem Intervall [2; 6] durch Addition von 2 · 3 · 5 = 30 das Intervall
[32; 36], das 5 natürliche Zahlen, aber keine Primzahl enthält.
Bemerkung: Die auf diese Weise gebildeten Intervalle enthalten nicht immer die kleinsten Zahlen. So ist
für n = 5 auch das Intervall [24; 28] eine Lösung.

Aufgabe 23/85
Gegeben sei die n-stellige natürliche Zahl zn = 1985!. Man bilde daraus die natürliche Zahl zn−1,
indem man die Einerstelle von zn streicht und von der verbleibenden (n−1)-stelligen Zahl subtrahiert.
Das Verfahren setze man solange fort, bis sich eine einstellige Zahl z ergibt. Wie groß ist z?

Wegen zn = 1985! > 11! ist zn mit Sicherheit restlos durch 11 teilbar. Es sei nun zk = 10a + b mit
a; b ∈ N , 0 ≤ b ≤ 9 eine nach der Aufgabenvorschrift gebildete und restlos durch 11 teilbare Zahl. Dann
ist

zk−1 = a− b = 11a− zk
sicher ebenfalls durch 11 teilbar. Daraus folgt (nach dem Prinzip der vollständigen Induktion - rückläufig
angewendet), dass alle zk speziell auch z, restlos durch 11 teilbar sind. Da z zudem einstellig ist, kann
nur z = 0 gelten.

Aufgabe 24/85
Es sei ein Rechteck ABCD mit einem inneren Punkt P gegeben. Man ermittle PA in Abhängigkeit
von PB, PC und PD.
Welchen Wert erhält man für PB = 33 LE, PC = 28 LE, PD = 41 LE?

Wir bezeichnen die Lote von P auf die Seiten AB, BC, CD und DA mit m bzw. n, o und p. Dann gilt
nach dem Lehrsatz des Pythagoras

AP 2 = m2 + p2; PB2 = m2 + n2; PC2 = n2 + o2; PD2 = o2 + p2

und demnach

AP 2 + PC2 = (m2 + p2) + (n2 + o2) = (m2 + n2) + (p2 + o2) = PB2 + PD2

also AP 2 = PB2 + PD2 − PC2 und

AP =
√
PB2 + PD2 − PC2 =

√
332 + 412 − 282 =

√
1996 LE
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Aufgabe 1/86
Gesucht ist die kleinste natürliche Zahl n, die das Produkt von 3 Primfaktoren p1; p2; p3 ist und es
gilt: p3 = 55 · p1 · p2 + 1 und p3 > p2 > p1.

Mit Sicherheit gilt p3 > 3. Damit ist p3 ungerade und es folgt, dass p3−1 = 55 ·p1 ·p2 gerade ist. Demnach
ist wenigstens eine der beiden Primzahlen p1 und p2, gerade; O.B.d.A. (wegen der Symmetrie in p1 und
p2) sei dies p1 = 2. Damit ergibt sich p3 = 110 · p2 + 1.
Das Produkt p1p2p3 wird genau dann minimal, wenn die einzelnen Faktoren minimal sind. Wir probieren
deshalb mit p2 = 2 beginnend die Primzahlen p2 daraufhin durch, ob 110 · p2 + 1 eine Primzahl liefert.
Für p2 = 2 ergibt sich p3 = 221 = 13 ·17, also keine Primzahl. Dagegen liefert bereits p2 = 3 die Primzahl
p3 = 331. Das gesuchte Produkt ist also p− 1p2p3 = 2 · 3 · 331 = 1986.

Aufgabe 2/86
Eine Zahlenfolge sei durch ak = 3ak−1 + 2ak−2 mit ai ∈ N für jedes i ∈ N ; k ≥ 3; a1 ≥ 1; a2 ≥ a1
gegeben. Man zeige, dass dann gilt: ak > 2k−2.

Wir beweisen zunächst, dass {ak} streng monoton wächst. Nach Voraussetzung ist a2 > a1; a3 = 3a2 −
2a1 > 3a2 = a2. Ist nun ak > ak−1 für irgend ein k ≥ 3, so folgt ak+1 = 3ak − 2ak−1 > 3ak − 2ak = ak.
Nach dem Prinzip der vollständigen Induktion gilt also für jedes k, dass ak > ak−1 ist.
Daraus folgt, dass ak−ak−1 > 0 ist. Aus der Ganzzahligkeit von ak und ak−1 folgt sogar, dass ak−ak−1 ≥ 1
für jedes k gilt. Aus ak = 3ak−1 − 2ak−2 folgt nun für k ≥ 3

ak − ak−1 = 2ak−1 − 2ak−2
ak − ak−1

ak−1 − ak−2
= 2 und damit

n∏
k=3

ak − ak−1

ak−1 − ak−2
= an − an−1

a2 − a1
= 2n−2

Durch äquivalente Umformung ergibt sich daraus, wegen a2 − a1 ≥ 1; an−1 > 0

an = an−1 + 2n−2(a2 − a1) > 2n−2

Aufgabe 3/86
Man beweise: Es gibt keine Menge aus n voneinander verschiedenen Primzahlen pi (i = 1; 2; 3; ...;n)
derart, dass die Gleichung

n∑
i=1

paii = c

mit natürlichen Zahlen ai und c erfüllt wird.

Es ist
n∑
i=1

paii = 1
pa1

1
+ 1
pa2

2
+ ...+ 1

pann
=
pa2

2 pa3
3 ...pann + pa1

1 pa3
3 ...pann + ...+ pa1

1 pa2
2 ...p

an−1
n−1

pa1
1 pa2

2 ...pann

Im letzten Bruch ist der Nenner durch pa1
1 teilbar, der Zähler jedoch nicht (wegen der Verschiedenheit

der pi enthält der erste Summand den Faktor pa1
1 nicht). Folglich ist der Bruch nicht mit pa1

1 kürzbar und
damit keine ganze, erst recht keine natürliche Zahl.

Aufgabe 4/86
Man ermittle ein Verfahren, mit dessen Hilfe man jede Kubikzahl als Differenz aus den Quadraten
zweier natürlicher Zahlen darstellen kann, und entwickle daraus eine Formel für die Summe der ersten
n Kubikzahlen!
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Es soll gelten k3 = a2
k − b2k mit k; ak; bk ∈ N , also k2 · k = (ak + bk)(ak − bk). Damit kann man

k2 = ak + bk, k = ak − bk setzen. Daraus folgt

ak = k2 + k

2 = k(k + 1)
2 ; bk = k2 − k

2 = k(k − 1)
2

Da jedes Produkt aus zwei aufeinanderfolgenden natürlichen Zahlen gerade ist, folgt, dass ak und bk
ganzzahlig sind. Nun gilt für jedes k, dass bk+1 = (k+1)k

2 = ak ist. Daraus folgt

n∑
k=1

k3 =
n∑
k=1

(a2
k − b2k) =

n∑
k=1

a2
k −

n∑
k=1

b2k = a2
n +

n−1∑
k=1

a2
k −

n∑
k=2

b2k − b21 =

= a2
n +

n−1∑
k=1

a2
k −

n−1∑
k=1

b2k + 0 = a2
n +

n−1∑
k=1

a2
k −

n−1∑
k=1

a2
k = a2

n =
(
n(n+ 1)

2

)2
= n2(n+ 1)2

4

Aufgabe 5/86
Gesucht sind alle Paare reeller Zahlen (x; y), die der Gleichung genügen:

2 sin (2πx2 + y) =
√

2(x2 + x−2)

Wegen sinα ≤ 1 ist 2 sin (2πx2 + y) ≤ 2. Wegen x2 + x−2 ≥ 2 ist
√

2(x2 + x−2) ≥
√

2 · 2 = 2. Daraus
folgt

2 sin (2πx2 + y) =
√

2(x2 + x−2) = 2

also sin (2πx2 + y) = 2 und x2 + x−2 = 2. Aus der letzten Gleichung folgt x2 = ±1;x = ±1 (nichtreelle
Werte entfallen!)’ und damit ergibt sich aus der vorletzten Gleichung

sin (2πx2 + y) = sin (y ± 2π) = sin y = 1; y = (0,5± 2k)π

mit k ∈ N . Es erfüllen also alle Paare (x; y) mit x = ±1; y = (0,5± 2k)π die Gleichung.

Aufgabe 6/86
Es ist die Anzahl 2 der natürlichen Zahlen zu bestimmen, bei denen die Folge der Ziffern (im deka-
dischen System von links beginnend) streng monoton wächst.

Die größte Zahl mit der geforderten Eigenschaft ist offensichtlich die Zahl 123456789. Aus ihr gewinnt
man alle übrigen durch Streichen von 1 bis 7 Ziffern (nach Definition muss eine streng monotone Folge
mindestens zwei Glieder enthalten). Nun ist aber die Anzahl der Zahlen, die man durch Streichen von k
Ziffern erhält (0 ≤ k ≤ 9), gleich

(9
2
)
. Somit gilt für die Zahl z:

z =
7∑
k=0

(
9
k

)
=

9∑
k=0

(
9
k

)
−
(

9
8

)
−
(

9
9

)
=

9∑
k=0

(
9
k

)
− 10

Aus dem binomischen Lehrsatz (a + b)n =
n∑
k=0

(
n
k

)
an−kbk folgt für a = b = 1 und n = 9 schließlich

z =
9∑
k=0

(9
k

)
− 10 = 29 − 10 = 502.

Aufgabe 7/86
In einem Dreieck mit den Seiten a, b und c gelte für den Flächeninhalt

A = 0,5(a2 − ab+ b2)

Wie groß sind die Seiten?
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Nach der Aufgabenstellung ist

2A = (a2 − ab+ b2) = (a2 − 2ab+ b2) + ab = (a− b)2 + ab ≥ ab

wegen (a − b)2 ≥ 0. Andererseits gilt für jedes Dreieck mit den Seiten a, b und dem eingeschlossenen
Winkel γ: 2A = ab sin γ ≤ ab wegen sin γ ≤ 1. Aus beiden Ungleichungen folgt sofort

ab ≤ 2A ≤ ab also 2A = ab; sin γ = 1; γ = 90◦; a = b

Folglich ist das Dreieck gleichschenklig-rechtwinklig mit α = β = 45◦’ γ = 90◦ und es gilt a = b, c = a
√

2.

Aufgabe 8/86
Es ist zu beweisen, dass

2 +

√
2 +

√
2 +
√

2 + ... =

√
12 +

√
12 +

√
12 + ...

ist (wobei als Wurzeln nur nichtnegative Werte gelten)!

Es sei x = 2 +
√

2 +
√

2 +
√

2... und y =
√

12 +
√

12 +
√

12.... Dann folgt

√
x =

√
2 +

√
2 +

√
2 +
√

2...→ x = 2 +
√
x→

√
x = x− 2

y2 = 12 +

√
12 +

√
12 +

√
12...→ y2 = 12 + y → y2 − y − 12 = 0

Diese Gleichungen haben (im nichtnegativen Bereich) die Lösungen x = y = 4, w.z.b.w.

Aufgabe 9/86
Gesucht sind alle Tripel (x; y; z) natürlicher Zahlen x; y; z, die folgende Bedingungen erfüllen:

1. Die Summe der drei Zahlen ist 107.

2. Mindestens zwei der drei Zahlen sind Quadrate natürlicher Zahlen.

3. Mindestens zwei der drei um 13 verminderten Zahlen sind Quadrate natürlicher Zahlen.

Nach dem Dirichletschen Schubfachprinzip gilt für mindestens eine der drei Zahlen (O.B.d.A. sei dies x):
x = k2

1 und x− 13 = k2
2 mit k1; k2 ∈ N , daraus folgt k2

1 − k2
2 = 13, also k2

1 = 49 = x; k2
2 = 36 als einzige

Lösung (man prüft leicht nach, dass für k1 < 7 keine Lösung existiert; für k2 > 6 wird die Differenz
benachbarter Quadratzahlen stets größer als 13, erst recht die nicht benachbarter).
Es sei nun y die zweite Zahl, die, um 13 vermindert, ebenfalls Quadratzahl ist. Dann gilt wegen x+y+z =
107 und x = 49

y + z = 58; y = 58− z → y − 13 = k2
3

mit k3 ∈ N ’ also y−13 = k2
3 = 58−13−z = 45−z, d.h. z = 45−k2

3. Damit gilt k2
3 ≤ 36; k3 ≤ 6 wegen z ≥ 0.

Es wären also die 7 Zahlen k3 = 0; 1; 2; ...; 6 daraufhin zu überprüfen, ob sich y oder z als Quadratzahl
ergibt. Offensichtlich ist dies nur für k31 = 3; z1 = 36; y1 = 22 und für k32 = 6; z2 = 9, y2 = 49 der Fall. Es
gibt also (bis auf die Reihenfolge) genau zwei derartige Tripel: (x; y; z) = (49; 22; 36), (x; y; z) = (49; 49; 9).
Beim zweiten Tripel sind sogar alle drei Zahlen Quadrate.

Aufgabe 10/86
Es seien a;n ∈ N und n ≥ 2. Welchen Rest lässt an beim Teilen durch (a+ 1)?

Es ist

an = [(a+ 1)− 1]n =
n∑
k=0

(
n

k

)
(a+ 1)n−k(−1)k

Alle Glieder der Summe mit Ausnahme des letzten enthalten den Faktor (a + 1). Der Rest R wird also
vom letzten Glied (−1)n bestimmt: Es ist R = 1 für gerades n und R = −1 für ungerades n.
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Aufgabe 11/86

Man zeige, dass jede mehrstellige natürliche Zahl n =
k∑
i=0

ai · 10i größer ist als ihr Querprodukt

Q(n) =
k∏
i=0

ai (mit ai ∈ N ; ai ≤ 9; ak > 0).

Es ist

n =
k∑
i=0

ai · 10i = ak · 10k +
k−1∑
i=0

ai · 10i > ak · 10k > ak · 9k = ak ·
k∏
i=1

9 ≥ ak ·
k−1∏
i=1

ai =
k∏
i=0

ai = Q(n)

Aufgabe 12/86

Für wie viele natürliche Zahlen n =
3∑
i=0

10iai, mit ai ∈ N ; 1 ≤ a3 ≤ 9; 0 ≤ a0; a1; a2 ≤ 9 gilt ai ≤ aj

für i < j?

Wir untersuchen zunächst, wieviele derartige Zahlen für a2 = k existieren (k ∈ N, 0 ≤ k ≤ 9). Offensicht-
lich kann a1 mit k+ 1 Werten (die Null eingeschlossen) belegt werden; für jede dieser Belegungen gibt es
a1 + 1 Belegungen von a0. Demnach ist die Anzahl der dreistelligen Zahlen mit a2 = k, die die gestellte
Bedingung erfüllen, gleich

k∑
a1=0

(a1 + 1) = 1
2(k + 2)(k + 1) = 1

2(k2 + 3k + 2)

Da a3 auf 10−k verschiedene Weisen wählbar ist und jede davon mit jeder Wahl von k kombiniert werden
kann, ergibt sich die Gesamtzahl zu

9∑
k=0

(10− k) · 1
2 · (k

2 + 3k + 2) =
9∑
k=0

1
2(−k3 + 7k2 + 28k + 20) = 715

In dieser Anzahl ist auch n = 0000 enthalten. Schließt man diese Zahl als nicht vierstellig aus, so beträgt
die Gesamtzahl der möglichen Zahlen n nur 714.

Aufgabe 13/86
Es ist zu beweisen: Ist eine sechsstellige natürliche Zahl ohne Rest durch die Zahlen 1; 11; 13; 27
oder 37 teilbar, so ist auch jede durch zyklische Vertauschung der Ziffern entstehende natürliche Zahl
durch diese Zahlen restlos teilbar (dekadisches System vorausgesetzt).

Es sei a · 105 + b · 104 + c · 103 + d · 102 + e · 10 + f mit a; b; c; d; e; f ∈ N ; 1 ≤ a ≤ 9; 0 ≤ b; c; d; e; f ≤ 9
eine Zahl mit der vorausgesetzten Eigenschaft. Dann hat auch das 10fache dieser Zahl

a · 106 + b · 105 + c · 104 + d · 103 + e · 102 + f · 10 = b · 105 + c · 104 + d · 103 + e · 102 + f · 10 + a+ 999999a

diese Eigenschaft. Wegen 999999a = 7 · 11 · 13 · 27 · 37a gilt dies dann auch für die natürliche Zahl
b · 105 + c · 104 + d · 103 + e · 102 + f · 10 + a.

Aufgabe 14/86
Es seien N die Menge der natürlichen Zahlen und P die Menge der Primzahlen. Gesucht sind alle
Lösungstripel (x; y; z) mit x; y ∈ P ; z ∈ N der Gleichung

x+ y

x− y
= z
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Wegen z = x+y
x−y = 1 + 2y

x−y ∈ N ist auch 2y
x−y ∈ N . Folglich ist x − y ein Teiler von 2y. Wegen der

Primzahleigenschaft von y gibt es nur 4 Möglichkeiten:

1) x − y = 1, x = y + 1. Das heißt, x und y sind aufeinanderfolgende Zahlen; wegen der Primzahlei-
genschaft von x und y ist das nur für y = 2, x = 3 möglich. Es folgt z = 5 ∈ P ⊂ N .
2) x− y = 2, x = y + 2. Dann ist z = x+y

x−y = 2y+2
2 = y + 1. Lösungstripel ergeben sich für alle Primzahl-

Zwillingspaare, wobei y die kleinere der beiden Primzahlen ist und z die dazwischenliegende natürliche
Zahl.
3) x− y = y, x = 2y. Das heißt, x /∈ P , dieser Fall ist also unmöglich.
4) x− y = 2y, x = 3y. Entspricht Fall 3.
Ergänzung: Setzt man x ∈ N statt x ∈ P voraus, so ergeben auch der 3. und 4. Fall Lösungen:
3) (2y; y; 3) mit y ∈ P .
4) (3y; y; 2) mit y ∈ P .
Interessant ist, dass in beiden Fällen z konstant (und eine Primzahl) ist.

Aufgabe 15/86
Man beweise: Sind bei einem Tetraeder die gegenüberliegenden Kanten gleich lang, so stehen die drei
Verbindungsstrecken gegenüberliegender Kantenmitten senkrecht auf den zugehörigen Kanten.

Es seien A, B, C, D die Ecken des Tetraeders und AB = CD,BC = DA,CA = BD. Ferner seien E
und F die Halbierungspunkte der Kanten AB und CD. Dann gilt M ACD ∼=M BCD, wegen CA =
BD,DA = BC und CD = CC. Daraus folgt AF = BF , d.h., das Dreieck FAB ist gleichschenklig.
Aus Symmetriegründen steht dann die Halbierende EF der Seite AB senkrecht auf dieser Seite. Analog
verläuft der Beweis für die übrigen Kanten.

Aufgabe 16/86
Die Winkelhalbierenden eines Parallelogrammes bestimmen ein weiteres Parallelogramm. Man er-
mittle das Verhältnis aus den Flächeninhalten dieses und des ursprünglichen Parallelogramms.

Es seien a und b zwei aneinanderstoßende Seiten des ursprünglichen Parallelogramms und 2α ≤ 90◦ der
Winkel zwischen ihnen. Ferner seien x und y zwei aneinanderstoßende Seiten des von den Winkelhalbie-
renden gebildeten Parallelogramms. Dann gilt, wie man sich an einer Skizze verdeutlicht

x = a sinα− b sinα = (a− b) sinα ; y = a cosα− b cosα = (a− b) cosα

Für den Schnittwinkel ϕ zweier nichtparalleler Winkelhalbierenden gilt wegen des Winkelsummensatzes
für ebene Dreiecke

α+ 0,5(180◦ − 2α) + ϕ = 180◦ → ϕ = 90◦

d.h., das sich ergebende Parallelogramm ist ein Rechteck. Damit folgt für seinen Flächeninhalt A2:

A2 = xy = (a− b)2 sinα cosα = 0,5(a− b)2 sin (2α)

Für den Flächeninhalt A1 des ursprünglichen Parallelogramms gilt A1 = ab sin (2α). Damit folgt

A2 : A1 = 0,5(a− b)2 sin (2α)
ab sin (2α) = (a− b)2

ab

Bemerkung: Legt man anstelle der (Innen-)Winkelhalbierenden die Außenwinkelhalbierenden zugrunde,
so folgt analog A2 : A1 = (a+ b)2 : (2ab).

Aufgabe 17/86
Einem Kreis mit dem Radius r sei ein gleichschenkliges Trapez umbeschrieben, bei dem die Längen
der zueinander parallelen Seiten im Verhältnis 1 : 4 stehen. Man gebe den Flächeninhalt des Trapezes
in Abhängigkeit von r an!
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Bezeichnet man die parallelen Seiten AB und CD des Trapezes mit a bzw. c, die Höhe mit h, so gilt für
den Flächeninhalt I

I = 0,5(a+ c)h = 0,5(4c+ c)− 2r = 5rc
Es kommt nun darauf an, c in Abhängigkeit von r anzugeben. Es seien E, F und G die Berührungspunkte
des Inkreises mit den Seiten AB, BC bzw. CD und H der Fußpunkt des Lotes von C auf AB. Dann gilt
nach dem Lehrsatz des Pythagoras

HC2 = 4r2 = BC2 −HB2 = (BF + FC)2 − (EB − EH)2 = (BE +GC)2 − (BE −GC)2

(da BF = BE,FC = GC als Tangentenabschnitte vom gleichen Punkt aus und EH = GC)

= (0,5a+ 0,5c)2 − (0,5a− 0,5c)2 = (2c+ 0,5c)2 − (2c− 0,5c)2 = 6,25c2 − 2,25c2 = 4c2

Also ist r = c und damit I = 5r2.

Aufgabe 18/86
Es ist die kleinste Zahl n ∈ N mit folgenden Eigenschaften zu ermitteln:
Ihre Einerstelle (in dezimaler Schreibweise) ist 7. Streicht man diese und setzt man sie als höchste
Stelle voran, so ergibt sich 5n.

Es sei n = 10a+ 7mit a ∈ N und a 6= 0. Die Zahl a habe b Stellen mit b ∈ N und b 6= 0. Damit können
die Bedingungen der Aufgabe in folgenden Gleichungen dargestellt werden:

5n = 5(10a+ 7) = 7 · 10b + 8; 49a+ 35 = 7 · 10b; 7a = 10b − 5; a = 1
7(10b − 5)

Daraus folgt 10b ≡ 5 (mod 7). Es ist also (wegen der Minimalität von a) die kleinste Potenz von 10 zu
suchen, die beim Teilen durch 7 den Rest 5 lässt. Durch systematisches Probieren findet man schnell
b = 5, 105 − 5 = 99995 = 7 · 14285, a = 14285 und n = 142857. Tatsächlich ist 714285 = 5 · 142857.
Zusatz: Zunächst (auf den ersten Blick) überrascht, dass sich die Perioden der Brüche 1

7 und 5
7 ergeben.

Bei tieferem Eindringen erklärt sich dies mit den Eigenschaften der Periode dieser Brüche.

Aufgabe 19/86
Man suche, ohne irgendwelche Hilfsmittel zu verwenden, alle (im dekadischen System echt) vierstel-
ligen natürlichen Zahlen, die Quadrat einer natürlichen Zahl sind und bei denen sowohl die ersten
beiden Stellen als auch die letzten beiden Stellen einander gleich sind.

Die gesuchten natürlichen Zahlen n sind von der Form

n = 1100a+ 11b = 11(100a+ b) = k2

mit a; b; k ∈ N, a; b ≤ 9; a; k > 0.
Offensichtlich ist n durch 11 teilbar. Dann ist auch k durch 11 teilbar, und damit ist n = k2 sogar durch
112 teilbar. Daraus folgt weiter die Teilbarkeit von 100a+ b durch 11. Nach der Teilbarkeitsregel für die
Zahl 11 ist dann auch a+ b durch 11 teilbar, und wegen a; b ≤ 9; a > 0 gilt a+ b = 11, b = 11− a. Damit
ist

n = 11(100a+ b) = 11(100a+ 11− a) = 11(99a+ 11) = 112(9a+ 1) = k2

Demnach ist 9a+ 1 = m2 mit m ∈ N,m > 0. Probiert man die möglichen a-Werte durch (a = 1; 2; ...; 9),
so stellt man fest, dass nur a = 7 eine Quadratzahl liefert: m2 = 9 · 7 + 1 = 64 = 82. Also existiert genau
eine Zahl n mit der geforderten Eigenschaft: n = 7744 = 882.

Aufgabe 20/86
Es sind alle Paare (x; y) reeller Zahlen x und y zu ermitteln, für die die beiden Gleichungen erfüllt
sind:

x4 + y4 = 12(x2 + y2)− 6x2y2 + 16 (1)
xy = 3 (2)
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Aus (2) folgt 4xy = 4 · 3 = 12. Setzt man dies in (1) ein, so ergibt sich

x4 + y4 = 4xy(x2 + y2)− 6x2y2 + 16

und nach äquivalenter Umformung (x− y)4 = 16. Daraus erhält man als reelle Zwischenlösungen

x− y = 2 und x− y = −2 (3a; b)

Wegen (2) gilt x; y 6= 0; damit folgt aus (2) y = 3
x . Setzt man dies in (3a;b) ein, so ergeben sich die beiden

Gleichungen x− 3
x = 2 und x− 3

x = 2, d.h.

x2 − 2x− 3 = 0 und x2 + 2x− 3 = 0→ x11 = −1;x12 = 3;x21 = −3;x22 = 1

Aus (2) folgt dann y11 = −3; y12 = 1; y21 = −1; y22 = 3.
Die Lösungsmenge ist also L = {(−1;−3); (3; 1); (−3;−1); (1; 3)}.

Aufgabe 21/86
Gegeben sei die Folge {ak} mit k ∈ N ; a0 = 1 und ak+1 = ak + 1

ak
. Man zeige, dass nur die ersten

beiden Glieder natürliche Zahlen sind!

Es ist a0 = 1; a1 = 2; a2 = 5
2 ; a3 = 29

10 , ..., ak = pk
qk

,

ak+1 = ak + 1
k

= pk
qk

+ qk
pk

= p2
k + q2

k

pkqk
, ...

mit pk; qk ∈ N , wobei man o.B.d.A. (pk, qk) = 1 voraussetzen kann.
Angenommen, ak+1 wäre eine natürliche Zahl. Dann gilt pkqk | p2

k + q2
k, wegen pk | p2

k und qk | q2
k folgt

pk | q2
k und qk | p2

k. Da (pk, qk) = 1 vorausgesetzt war, ergibt sich daraus pk = qk = 1 und damit
ak = a0 = 1, ak+1 = a1 = 2.

Aufgabe 22/86
Man beweise: Die Gleichung x2 + x2 = 3z2 hat außer der trivialen Lösung (x; y; z) = (0; 0; 0) keine
Lösung in natürlichen Zahlen x; y; z.

Angenommen, die gegebene Gleichung habe eine nichttriviale Lösung (x; y; z) 6= (0; 0; 0). Da 3z2 ≡ 0
(mod 3), gilt dann auch x2 + y2 ≡ 0 (mod 3) und somit x ≡ y ≡ 0 (mod 3). Ist nämlich x 6= 0 (mod 3)
oder y 6= 0 (mod 3), so gilt x2 ≡ 1 (mod 3) oder y2 ≡ 1 (mod 3) und x2 +y2 ≡ 1 (mod 3) oder x2 +y2 ≡ 2
(mod 3), in keinem Fall also x2 + y2 ≡ 0 (mod 3).
Es sei also x = 3rk; y = 3sl mit k; l; r; s ∈ N , k; l; r; s > 0, k; l 6= 0 (mod 3). Dann ist

x2 + y2 = 32rk2 + 32sl2 = 3z2; 32r−1k2 + 32s−1l2 = z2 ≡ 0 (mod 3)

also z ≡ 0 (mod 3): z = 3tm; z2 = 32tm2 mit m; t ∈ N , m; t > 0’ m 6= 0 (mod 3),

32r−1k2 + 32s−1l2 = 32tm2

Dies ist aber ein Widerspruch zum Satz über die Eindeutigkeit der Primfaktorzerlegung; denn auf der
rechten Seite der letzten Gleichung tritt der Primfaktor 3 mit geradem Exponenten auf, auf der linken
dagegen mit ungeradem.
Beweis für die letzte Behauptung:
O.B.d.A. sei r ≤ s. Dann gilt

32r−1k3 + 32s−1l2 = 32r−1(k2 + 32(s−r)l2)

Nun gilt wegen k; l 6= 0 (mod 3), k2 ≡ l2 ≡ 1 (mod 3) mit Sicherheit (k2 + 32(s−r)l2) 6= 0 (mod 3). Da
die Annahme auf einen Widerspruch führt, ist sie falsch. Damit ist Ihre Verneinung richtig, q.e.d.
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Aufgabe 23/86
Auf einer Silvesterfeier sind insgesamt 23 Personen anwesend. Nach Mitternacht behauptet ein Gast,
jeder der Anwesenden habe mit genau elf Personen angestoßen. Man überprüfe diese Behauptung!

Nach jedem Anstoßen erhöht sich für genau zwei der Anwesenden die Anzahl der Personen, mit denen er
angestoßen hat, um je genau eins. Im vorliegenden Fall müssten die Gläser also genau 0,5 · 23 · 11 = 126,5
mal geklungen haben. Das ist aber offensichtlich nicht möglich.

Aufgabe 24/86
Man ermittle den größten gemeinsamen Teiler a von b = 1987 + 2 und c = 86 · 1986 + 9, ohne den
Euklidischen Algorithmus zu verwenden!

Wir verwenden den Hilfssatz: ”Ist a ∈ N gemeinsamer Teiler von b ∈ N und c ∈ N , so ist a auch ein
Teiler der Differenz d = |xb− yc| mit x; y ∈ N .
Beweis des Hilfssatzes:
Es erfülle a ∈ N die Voraussetzungen des Hilfssatzes. Dann gilt b = ma und c = na mit m;n ∈ N und
mit x; y ∈ N auch

d = |xb− yc| = |xam− yan| = |(xm− yn) · a| = |xm− yn| · |a| = |xm− yn| · 8

(Der Satz ist nicht umkehrbar, wie das Beispiel b = 19, c = 13, a = 2 zeigt).
Wir setzen nun b = 1987 + 2 = 19 · 1986 + 2, c = 86 · 1986 + 9, x = 86, y = 19 und erhalten damit

d = |86 · (19 · 1986 + 2)− 19 · (86 · 1986 + 9)| = |172− 171| = 1

Also ist nur a = 1 gemeinsamer Teiler von b und c. Damit ist a = 1 zugleich auch größter gemeinsamer
Teiler von b und c.
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Aufgabe 1/87 Es seien α, β und γ die Innenwinkel eines ebenen Dreiecks. Man beweise, dass dann
die Ungleichung gilt:

sinα sin β sin γ > cosα cosβ cos γ

Ist das Dreieck nicht spitzwinklig, so ist die Behauptung trivial (jeder Sinus ist positiv, von den Kosinus
ist genau einer negativ oder gleich Null). Es genügt also, den Beweis für spitzwinklige Dreiecke zu führen.
In diesem Fall ist die zu beweisende Ungleichung wegen cosα cosβ cos γ > 0 äquivalent der Ungleichung
tanα tan β tan γ > 1. Nun gilt

tan γ = tan 180◦ − α− β = − tanα+ β = tanα+ tan β
tanα tan β − 1 > 0

wegen γ < 90◦. Also ist tanα tan β > 1. Analog folgt tan β tan γ > 1 und tanα tan γ > 1. Damit ist
tanα tan β tan γ > 1’ und wegen tanα; tan β; tan γ > 0 folgt daraus die Behauptung.

Aufgabe 2/87
Man ermittle alle Lösungen des Gleichungssystems

p1 + p2 = pm3 ; p1 − p2 = pn3

wobei die pi (i = 1; 2; 3) Primzahlen und m sowie n natürliche Zahlen sind. Welche Werte können m
und n annehmen?

Durch Addition der beiden gegebenen Gleichungen folgt

2p1 = pn3 (pm−n3 + 1)

(wegen p1 + p2 > p1 − p2 ist sicher m− n > 0). Aus der Eindeutigkeit der Primfaktorzerlegung und der
Primzahleigenschaft von p1 ergeben sich genau drei Möglichkeiten:

1. pn3 = p1; es folgt p2 = 0 im Widerspruch zu p2 > 0.

2. pn3 = 1. wegen p3 ≥ 1 ist n = 0 und es folgt p1 − p2 = 1, damit p1 = 3; p2 = 2 und aus der ersten
Gleichung p1 + p2 = 5 = pm3 ’ also p3 = 5,m = 1.

3. pn3 = 2, p3 = 2, n = 1, p1 = 2m−1 + 1. Aus der zweiten Gleichung folgt p2 = 2m−1 − 1. Von den
drei aufeinanderfolgenden natürlichen Zahlen 2m−1 − 1, 2m−1 und 2m−1 + 1 ist genau eine durch 3
teilbar; mit Sicherheit ist dies nicht 2m−1. Wäre nun p1 = 3, so wäre p2 = 1 im Widerspruch zu
p2 ≥ 2. Demnach gilt p2 = 3, p1 = 5,m = 3.

Es gibt folglich genau zwei Lösungen: p11 = 3, p21 = 2, p31 = 5 mit m1 = 1, n1 = 0 und p12 = 5, p22 =
3, p32 = 2 mit m = 3, n = 1. Die Probe bestätigt die Richtigkeit, der Lösungsweg schließt weitere
Lösungen aus.

Aufgabe 3/87
Gesucht ist die kleinste positive reelle Zahl r, für die die Gleichungen

r = p+ q ; (r + 1)2 = (p+ 1)2 + (q + 1)2

mit positiven reellen Zahlen p und q gelten. Man gebe p und q an!

Durch Einsetzen folgt

(p+ q + 1)2 = (p+ 1)2 + (q + 1)2 ; pq = 0,5

Wegen p; q > 0 gilt die Ungleichung zwischen dem arithmetischen und dem geometrischen Mittel:

0,5(p+ q) = 0,5r ≥ √pq = 0,5
√

2

Also ist die kleinste positive reelle Zahl r =
√

2. Aus der Gleichheit der beiden Mittel folgt p = q = 0,5r =
0,5
√

2.
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Aufgabe 4/87
Gegeben sei eine Menge M aus 9 voneinander verschiedenen natürlichen Zahlen xi mit 1 ≤ xi ≤ 60,
i = 1; 2; ...; 9.
S(T ) bezeichne für jede Teilmenge T von M die Summe der in T enthaltenen Zahlen, sofern T nicht
leer ist (die Vereinbarung S(∅) := 0 wirkt ordnungserhaltend; d.h., für beliebige Teilmengen T1 und
T2 gilt: T1 ⊆ T2 ⇒ S(T1) ≤ S(T2)).
Man beweise, dass es wenigstens zwei disjunkte Teilmengen T1 und T2 gibt, für die S(T1) = S(T2)
gilt.

Eine Menge aus k verschiedenen Elementen enthält genau

k∑
λ=0

(
k

λ

)
= 2k

verschiedene Teilmengen. Demnach gibt es für die gegebene Menge M genau 29 = 512 verschiedene
Teilmengen. Es gilt M ⊆M und

S(M) =
9∑
i=1

xi ≤
60∑

ν=52
ν = 504

und damit folgt für alle Teilmengen T die Beschränkung 0 ≤ S(T ) ≤ 504.
Daraus ergibt sich bereits, dass unter den 512 Teilmengen (wenigstens) zwei (nicht notwendig disjunkte)
Teilmengen T1 und T2 existieren, für die S(T1) = S(T2) gilt. Angenommen T1 und T2 seien nicht disjunkt;
dann bilden wir die beiden Teilmengen

T ′1 = T1 \ (T1 ∩ T2) = T1 \ T2 und T ′2 = T2 \ (T1 ∩ T2) = T2 \ T1

Sie sind offensichtlich disjunkt, und da aus T1 und T2 die gleichen Elemente entfernt wurden, gilt auch
für T ′1 und T ′2: S(T ′1) = S(T ′2).

Aufgabe 5/87
Man ermittle alle im Dezimalsystem (echt) dreistelligen Zahlen z ∈ N , die im Zahlensystem mit der
Basis n ∈ N durch genau n Ziffern 1 dargestellt werden.

Nach der Aufgabenstellung gilt

100 ≤ z =
n∑
i=0

ni = nn − 1
n− 1 ≈ n

n − 1 < 1000

und damit n ≈ 5 (wie man durch Probieren schnell findet). Für n = 4 ergibt sich z = 85 < 100, für
n = 5 folgt z = 781 und für n = 6 schließlich z = 9331 > 1000. Wegen der Monotonie der Funktion
f(n) = nn−1

n−1 kommt als Lösung daher nur n = 5, z = 781 in Frage.

Tatsächlich ist z = 781 = 625 + 125 + 25 + 5 + 1 =
5∑
i=0

5i.

Aufgabe 6/87
Es sei ABCD ein Rechteck mit AD = BC = a und AB = CD = b = 3a. Mit E sei der Punkt auf
CD bezeichnet, für den DE = 2a = 2EC gilt. Die Winkelhalbierende von ]EAC schneide CD im
Punkt F . Man beweise, dass ]FAB = 22,5◦ ist!

Spiegelt man das Rechteck an der Seite AB, so gehen die Punkte C, D, E und F in die Punkte C ′, D′,
E′ bzw. F ′ über, und es ist

AD′ = AD = EC = E′C ′ = BC = BC ′ = a und D′E′ = DE = 2a

CC ′ = BC +BC ′ = 2a und ]AD′E′ = ]E′C ′C = 90◦
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Daraus folgt M AD′E′ ∼=M E′C ′C, also AE′ = E′C und

]AE′C = ]D′E′C ′ − (]D′E′A+ ]C ′E′C) = ]D′E′C ′ − (]D′E′A+ ]E′AD′) = 180◦ − 90◦ = 90◦

Das Dreieck AE′C ist also gleichschenklig-rechtwinklig; damit ist ]E′AC = 45◦. Nun ist

]FAF ′ = ]E′AC − ]E′AF ′ + ]FAC = 45◦ − ]E′AF ′ + ]EAF = 45◦

(wegen ]FAC = ]EAF und ]EAF = ]E′AF ′) und damit ]FAB = 0,5 · ]FAGF ′ = 22,5◦.

Aufgabe 7/87
Man untersuche, wieviele Wege der Länge 7 auf den Kanten eines Einheitswürfels von einer vorgege-
benen Ecke zur diametral gegenüberliegenden Ecke führen; dabei darf keine Kante mehrmals (auch
nicht in umgekehrter Richtung!) durchlaufen werden (für Ecken gilt diese Einschränkung nicht).

Die Ecken des Würfels seien mit A;B;C;D;E;F ;G;H derart bezeichnet, dass ABCD eine Würfelfläche
ist und dass AG, BH, CE bzw. DF Raumdiagonalen sind.
Ausgangspunkt sei A, Endpunkt sei G. Von A aus gibt es 3 (aus Symmetriegründen) gleichwertige Wege;
wir verfolgen den nach B (und multiplizieren das Ergebnis mit 3). Von B aus führen 2 gleichwertige
Wege weiter; wir gehen nach C (und multiplizieren das Ergebnis mit 2). Hier können wir wieder 2 Wege
einschlagen, die aber nicht gleichwertig sind: CG oder CD.

1. CG führt nach einem Wege der Länge 3 zum Ziel. Für einen Weg der Länge 7 muss man noch eine
Seitenfläche umlaufen. Da die Flächen GFBC und GCDH zum doppelten Durchlauf von Kanten führen
würden, kann man den Weg nur längs der dritten Seitenfläche fortsetzen. Damit sind 2 zulässige Wege
gefunden: ABCGFEHG und ABCGHEFG.
2. Wir prüfen CD.
2.1. ABCDHG hat nur die Länge 5; ein ”Umweg” über EF führt zum 3. zulässigen Weg: ABCDHEFG.
2.2. ABCDAE liefert zwei weitere Möglichkeiten: ABCDAEFG und ABCDAEHG.
Damit werden über ABC 5 zulässige Wege ermittelt. Es gibt also über AB 2 · 5 = 10 zulässige Wege und
damit insgesamt 3 · 10 = 30.

Aufgabe 8/87
Man ermittle alle reellen Lösungen der Gleichung 5x − 3y = 2.

Wegen 2 = 5− 3 und 3; 5 6= 0 ist die gegebene Gleichung der Gleichung

5(5x−1 − 1) = 3(3y−1 − 1)

äquivalent. Da die rechte Seite dieser Gleichung den Faktor 3 enthält, muss ihn auch die linke Seite
enthalten: 5x−1 − 1 = 3k1 mit k1 reell. Entsprechend folgt 3y−1 − 1 = 5k2 mit k2 reell.
Die Probe liefert k1 = k2 = k. Damit sind die beiden Gleichungen

5x−1 − 1 = 3k ; 3y−1 − 1 = 5k

zu lösen. Es ergibt sich
x = ln 3k + 1

ln 5 + 1 ; y = ln 5k + 1
ln 3 + 1

wobei 3k + 1 > 0, also k > −0,333... ist.

Aufgabe 9/87
Man berechne die Summe S aller der (im dezimalen Positionssystem) dreistelligen natürlichen Zahlen,
die mit voneinander verschiedenen Ziffern 1; 2; 3; ...; 9 dargestellt werden.

Da die Ziffern voneinander verschieden sein sollen, hat man für die erste Stelle 9, für die zweite 8 und für
die dritte 7 Möglichkeiten der Wahl, wenn man eine der fraglichen Zahlenbilden will.
Es gibt also 9 ·8 ·7 = 504 derartige Zahlen (Variation von 9 Elementen zur 3. Klasse ohne Wiederholung).
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Da die 9 Ziffern an jeder Stelle gleich häufig auftreten, ist jede Ziffer an jeder Stelle (9 · 8 · 7) : 9 = 56 mal
zu finden. Demnach gilt für die gesuchte Summe S

S = 100 · 56 ·
9∑
i1

i+ 10 · 56 ·
9∑
i1

i+ 1 · 56 ·
9∑
i1

i = 111 · 56 ·
9∑
i1

i = 279720

Aufgabe 10/87
Man bestimme alle Tripel (x; y; z) reeller Zahlen x, y und z, die das Gleichungssystem erfüllen:

x+ y + z = 1 (1)
x2 + y2 + z2 = 1 (2)
x3 + y3 + z3 = 1 (3)

Offensichtlich sind die Tripel (1; 0; 0), (0; 1; 0) und (0; 0; 1) Lösungen des Gleichungssystems (Probe!).
Wegen (2) gehen für x; y; z 6= 1 die Ungleichungen 0 ≤ x2; y2; z2 < 1.
Daraus folgt 0 ≤ |x|; |y|; |z| < 1.
Aus a ≤ |a| und aus 0 ≤ |a| < 1 folgt a3 ≤ |a3| = a2|a| < a2. Damit gilt für x; y; z 6= 1 die Ungleichung

x3 + y3 + z3 < x2 + y2 + z2 = 1

Folglich sind in diesem Fall die Gleichungen

x2 + y2 + z2 = 1 und x3 + y3 + z3 = 1

nie gleichzeitig erfüllt. Die unter 1. aufgeführten Tripel sind also die einzigen Lösungen des Gleichungs-
systems.

Aufgabe 11/87
Wieviele Klebefalze sind (mindestens) erforderlich, wenn ein einfach zusammenhängendes ebenes
Netz eines konvexen Polyeders mit f Flächen und 9 Ecken zum Körper ”zusammengeklebt” werden
soll?

Das Netz besteht aus f konvexen Polygonen, die an (f −1) Kanten miteinander verbunden sind. (Beweis
für diese Behauptung: Die ersten beiden Polygone sind durch genau eine Kante miteinander verbunden;
jedes weitere Polygon hat genau eine Kante mit einem der bereits vorhandenen Polygone gemeinsam.)
Nach dem Eulerschem Polyedersatz gilt für die Anzahl k der Kanten k = e+ f − 2. Für die Anzahl n der
notwendigen Falze gilt

n = k − (f − 1) = k − f + 1 = e+ f − 2− f + 1 = e− 1

Es überrascht, dass n nur von der Eckenzahl e, nicht aber von der Flächenzahl f oder der Kantenzahl k
abhängt. Speziell für das Tetraeder gilt n = 3, für das Oktaeder n = 5 und für das Hexaeder n = 7.

Aufgabe 12/87
Aus einem Tripel (a0; b0; c0) positiver reeller Zahlen a0; b0; c0 bilden wir eine Folge von Tripeln
(ak; bk; ck) nach dem Bildungsgesetz

ak = ak−1bk−1; bk = bk−1ck−1; ck = ck−1ak−1

Man beweise: Ist die Tripelfolge periodisch, so enthält eine Periode höchstens 6 verschiedene Tripel.

Die Produkte aus den Zahlen eines Tripels bilden die Folge

{xk} = {akbkck} = {(a0b0c0)2k}

wie man durch vollständige Induktion beweist:
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1. Es ist x0 = a0b0c0 = (a0b0c0))20

2. Aus xk = (akbkck) = (a0b0c0)2k folgt

xk+1 = (ak+1bk+1ck+1) = (akbk · bkck · ckak) = (akbkck)2 =
[
(a0b0c0)2k

]2
= (a0b0c0)2k+1

Wenn die Tripelfolge periodisch ist, so gilt dies auch für die Produktfolge {xk}.
Es gelte nun für ein k > 1, dass (ak; bk; ck) = (a0; b0; c0) ist. Dann gilt also xk = akbkck = (a0b0c0)2k =
a0b0c0 und wegen 2k 6= 1 folgt daraus a0b0c0 = 1, c0 = a−1

0 b−1
0 . Dann sind die ersten sieben Glieder der

Tripelfolge (wobei der Index 0 der Einfachheit halber weggelassen ist)

(a; b; a−1b−1); (ab; a−1; b−1); (b; a−1b−1; a); (a−1; b−1; ab); (a−1b−1; a; b); (b−1; ab; a−1); (a; b; a−1b−1)

Man erkennt, dass das siebente Glied gleich dem ersten ist.

Aufgabe 13/87
Die Funktion f(x) = x3 − x2 + x+ r hat für keine reelle Zahl r drei reelle Nullstellen. Man beweise
die Richtigkeit dieser Behauptung!

Angenommen, die gegebene Funktion hätte drei reelle Nullstellen x1;x2;x3. Dann gelten nach dem Satz
des Vieta die Gleichungen

x1 + x2 + x3 = 1 ; x1x2 + x2x3 + x3x1 = 1

Daraus folgt

(x1 + x2 + x3)2 = 1 = x2
1 + x2

2 + x2
3 + 2(x1x2 + x1x3 + x2x3) = x2

1 + x2
2 + x2

3 + 2→ x2
1 + x2

2 + x2
3 = −1

Nun sind aber nach Voraussetzung x1;x2;x3 reelle Zahlen; damit gilt x2
1;x2

2;x2
3 ≥ 0 und es folgt −1 =

x2
1 + x2

2 + x2
3 ≥ 0.

Dieser offensichtliche Widerspruch zeigt, dass die Annahme falsch ist. Damit ist die Behauptung in der
Aufgabe richtig.

Aufgabe 14/87
Es gelte die Gleichung

2n+1
n∏
i=0

cos 2iα = 1

mit n ∈ N,α ≥ 0, reell. Man ermittle die kleinste Zahl α, die diese Gleichung erfüllt (abhängig von
n).

Aus sin 2ϕ = 2 sinϕ cosϕ folgt für sinϕ 6= 0 die Beziehung 2 cosϕ = sin 2ϕ
sinϕ . Man prüft leicht nach, dass

für α = kπ mit k ∈ N die gegebene Gleichung nicht erfüllt ist. Mit 2α = ϕ 6= kπ gilt dann

2n+1
n∏
i=0

cos 2iα =
n∏
i=0

[2 cos (2iα)] =
n∏
i=0

sin (2i+1α)
sin (2iα) = sin 2n+1α)

sinα

Die gegebene Gleichung ist also für 2iα 6= kπ der Gleichung sin (2n+1α) = sinα äquivalent. Die kleinste
Zahl α > 0 erhält man offenbar, wenn 0 < α < 0,5π gilt, d.h. für

sinα = sin (2n+1α) < 0

Es sind nun zwei Fälle zu unterscheiden:
1. 2n+1α1 = π − α1 + 2pπ und 2. 2n+1α2 = α2 + 2(q + 1)π mit p; q ∈ N . Daraus folgt

α1 = π + 2pπ
2n+1 + 1 → α1min = π

2n+1 + 1

α2 = 2π + 2(q + 1)π
2n+1 − 1 → α2min = 2π

2n+1 − 1
Wegen π < 2kπ und 2n+1 + 1 > 2n+1 − 1 gilt für jedes n ∈ N sicher α1min < α2min. Damit ist α1min die
gesuchte Zahl.
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Aufgabe 15/87
Man bestimme alle Primzahlen p1’ für die

p2 = p1 + 2n; p3 = p1 + 2n+1; p4 = np1 − 3

ebenfalls Primzahlen sind. Welche Werte kann n annehmen?

Wäre p1 = 2, so wären p2 und p3 gerade Zahlen und wegen p3 > p2 > p1 keine Primzahlen. Also ist
p1 ≥ 3.
Wegen p2 = p1+2n, p3 = p1+2n+1 = p1+2·2n = p2+2n bilden die Primzahlen p1; p2; p3 eine arithmetische
Folge 1. Ordnung mit der Differenz d = 2n 6= 3k (k ∈ N). Damit ist genau eine dieser Primzahlen durch
3 teilbar und damit (wegen der Primzahleigenschaft) gleich 3. Wegen p3 > p2 > p1’ kann dies nur p1 sein:
p1 = 3.
Es folgt p4 = np1−3 = n·3−3 = 3(n|1). Aus der Primzahleigenschaft von p4 folgt sofort p4 = 3, n−1 = 1,
also n = 2, p2 = 7, p3 = 11. Damit ist eine Lösung gefunden. Wegen der Zwangsläufigkeit der Herleitung
ist dies auch die einzige.

Aufgabe 16/87
Es ist zu zeigen, dass kein Polynom n-ten Grades P (x) mit ganzzahligen Koeffizienten ai (i ∈ N ; 0 ≤
i ≤ n) existiert, für das P (7) = 5 und P (15) = 9 gilt.

Angenommen, es existiere ein Polynom n-ten Grades P (x) mit ganzzahligen Koeffizienten ai (i ∈ N, 0 ≤
i ≤ n), für das P (7) = 5 und P (15) = 9 gilt. Dann folgt

P (15)− P (7) = 4 =
n∑
i=0

15iai −
n∑
i=0

7iai =
n∑
i=0

(15i − 7i)ai

Nun gilt sicher (a − b) | (ak − bk) mit a; b; k ∈ N , und damit (15 − 7) | (15i − 7i) für jedes i. Wegen
15− 7 = 8 ergibt sich daraus der Widerspruch

8 |
n∑
i=0

(15i − 7i)ai = 4

Damit ist die Annahme widerlegt.

Aufgabe 17/87
Man ermittle alle Paare (p; q) von Primzahlen p und q, die folgende Bedingungen erfüllen:

1. Ihre Summe P ist ebenfalls Primzahl.

2. Das Produkt aus den drei Primzahlen p; q;P ist durch 10 teilbar.

Folgende Feststellungen führen zur Lösung:
1. Wegen der Kommutativität von Addition und von Multiplikation ist mit p1; q1) auch (p2 = q1; q2 = p1)
Lösung.
2. Wegen der Eindeutigkeit der Primfaktorzerlegung müssen unter den Primzahlen p; q;P = p + q die
Primzahlen 2 und 5 vorkommen.
3. Offensichtlich ist P > 2. Folglich ist p = 2 (bzw. q = 2).
4. Es verbleiben die Möglichkeiten q = 5 (bzw. p = 5), P = 7 und P = 5, q = 3 (bzw. p = 3).
Es existieren also die Lösungen (2; 3), (3; 2), (2; 5), (5; 2). Weitere Lösungen sind durch den Lösungsweg
ausgeschlossen (Vollständigkeit der Fallunterscheidung).

Aufgabe 18/87
Man beweise: Eine natürliche Zahl n > 8 ist genau dann Primzahl, wenn n nicht als Summe aus
wenigstens drei Gliedern einer nicht konstanten arithmetischen Folge 1. Ordnung aus natürlichen
Zahlen darstellbar Ist (dabei sei die Zahl 0 keine natürliche Zahl).
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Es sei {ak} eine nicht konstante arithmetische Folge 1. Ordnung aus natürlichen Zahlen ak > 0. Dann ist
ak = a1 + (k − 1)d mit a1; k; d ∈ N \ {0} ihr Bildungsgesetz, und für die Summe sr von r Gliedern gilt

sr = ra1 + 0,5r(r − 1)d = r[a1 + 0,5(r − 1)d]

Da alle Glieder natürliche Zahlen sind, ist auch sr, eine natürliche Zahl. Es sei nun r ≥ 3. Wir unter-
scheiden zwei Fälle:
1. r = 2m mit m ∈ N ;m ≥ 2: sr = m[2a1 + (2m− 1)d]
2. r = 2m+ 1 mit m ∈ N ;m ≥ 1: sr = (2m− 1)(a1 +md)
In jedem Fall ist sr ein Produkt aus natürlichen Zahlen, und jeder Faktor ist größer als 1. Damit kann
n = sr keine Primzahl sein.
Es sei nun n = uv mit u; v ∈ N, 1 < u ≤ v keine Primzahl. Wir unterscheiden wieder zwei Fälle:
1. u > 2. Dann setze man r = u, d = 2, v = a1 + u− 1, also a1 = v+ 1− u. Damit ist n als sr darstellbar.
2. u = 2. Man setze r = 4; d = 1; v = 2a1 +3, also a1 = 0,5(v−3). Wegen v = 2a1+3 ist v ungerade; ferner
ist wegen n = uv = 2v > 8 sicher v > 4. Damit ist a1 ∈ N ; a1 ≥ 1 und n wiederum als sr darstellbar.

Aufgabe 19/87
Welche natürlichen Zahlen n kann man nicht in der Form n = x2 + 2y2 + 3z2 mit x; y; z ∈ N
darstellen?

Alle natürlichen Zahlen n kann man in der Form n = 8k ± r mit k ∈ N , r ∈ {0; 1; 2; 3; 4} darstellen.
Damit gilt

n2 = 64k2 ± 16kr + r2 ≡ r2 (mod 16)
mit r2 ≡ 0; 1; 4; 9 (mod 16). Es sei nun

x2 ≡ p (mod 16), 2y2 ≡ q (mod 16), 3z2 ≡ s (mod 16)

für beliebige x; y; z ∈ N ; dann gilt
p ≡ 0; 1; 4; 9 (mod 16), q ≡ 0; 2; 8 (mod 16), s ≡ 0; 3; 11; 12 (mod 16).
Bildet man die 4·3·4 = 48 möglichen Summen p+q+s, so stellt man fest, dass die Kongruenz p+q+s ≡ 10
(mod 16) keine Lösung hat. Somit kann man die natürlichen Zahlen n = 16k + 10, k ∈ N nicht in der
angeführten Form darstellen.
Damit sind nicht alle derartigen Zahlen erfasst, aber das war in der Aufgabe auch nicht gefordert.

Aufgabe 20/87
In einem Zahlensystem mit der Basis n ∈ N ’ n ≥ 10 sei die Zahl z = 123546789 gegeben. Man
beweise, dass z keine Primzahl ist!

Der Beweis ist geführt, wenn gezeigt ist, dass z durch eine Zahl m ∈ N ; 2 ≤ m < z teilbar ist. Wir
untersuchen die Teilbarkeit durch 3 mittels einer vollständigen Fallunterscheidung. Es gilt

z = n8 + 2n7 + 3n6 + 5n5 + 4n4 + 6n3 + 7n2 + 8n+ 9

1. Ist n ≡ 0 (mod 3), so sind alle Summanden durch 3 teilbar, mithin auch z als deren Summe.
2. Ist n ≡ 1 (mod 3), so gilt nk ≡ 1 (mod 3) für jedes k ∈ N .
Damit ist für die Teilbarkeit durch 3 die Quersummenregel anwendbar: Q(z) = 45 ≡ 0 (mod 3). Also ist
z durch 3 teilbar.
3. Ist n ≡ −1 (mod 3), so ist n2k ≡ 1 (mod 3) und n2k−1 ≡ −1 (mod 3) für jedes k ∈ N . Damit ist die
Regel über die alternierende Quersumme für die Teilbarkeitsuntersuchung anwendbar:

Qa(z) = 1− 2 + 3− 5 + 4− 6 + 7− 8 + 9 = 3 ≡ 0 (mod 3)

Also ist auch in diesem Fall z durch 3 teilbar. Da z mit Sicherheit größer als 3 ist, folgt, dass z keine
Primzahl ist.

Aufgabe 21/87
In einem ebenen Dreieck seien zwei der drei Seitenhalbierenden gegeben. Dadurch ist das Dreieck in
drei Teildreiecke und ein Viereck zerlegt. Welchen Anteil an der Fläche des Gesamtdreiecks hat die
Vierecksfläche?
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Wir betrachten zunächst die drei Teildreiecke, die sich ergeben, wenn der Schnittpunkt der drei Seiten-
halbierenden mit den drei Ecken verbunden wird. Ihre Fläche beträgt je 1

3 der Gesamtfläche, da ihre
Höhen sich zur Dreieckshöhe (auf der jeweiligen Seite) nach dem Strahlensatz wie die Abschnitte der
Seitenhalbierenden verhalten; diese dritteln jedoch bekanntlich einander.
Die Fläche des Vierecks setzt sich nun aus zwei Hälften solcher Teildreiecke zusammen (wie man sich an
einer Skizze leicht klar macht) und beträgt damit ebenfalls 1

3 der Gesamtfläche.

Aufgabe 22/87
Gesucht ist die kleinste Zahl n ∈ N , bei der die Quersumme eine dreistellige Primzahl p3 ist. Die
Quersumme dieser Zahl p3 sei eine zweistellige Primzahl p2 und schließlich sei deren Quersumme eine
einstellige ungerade Primzahl p1.

1. Feststellung: Für die Quersumme Q(n3) einer beliebigen dreistelligen Zahl n3 ∈ N gilt Q(n3) ≤ 3 · 9 =
27.
2. Feststellung: Für die Quersumme Q(p2) der zweistelligen Primzahl p2 gilt Q(p2) = 5 oder Q(p2) = 7,
da Q(p2) = 3 im Widerspruch zur Primzahleigenschaft von p2 steht. Aus Q(p2) = 5 folgt p2 = 23 oder
p2 = 41. Aus Q(p2) = 7 folgt p2 = 43 oder p2 = 61. Wegen p2 = Q(n3) ≤ 27 verbleibt nur p2 = 23 mit
p1 = Q(p2) = 5.
3. Feststellung: Die kleinste dreistellige Zahl n3 ∈ N mit der Quersumme Q(n3) = p2 = 23 ist n3 = 599.
Tatsächlich ist diese Zahl Primzahl.
4. Feststellung: Wegen Q(n) = n3 = p3 = 599 = 66 · 9 + 5 hat die Zahl

n = 5 · 1066 + 9 ·
65∑
i=0

10i ∈ N

die Quersumme Q(n) = p3 = 599. Tatsächlich ist n auch die kleinste Zahl mit dieser Quersumme; denn
für jede Zahl m ∈ N mit m < n gilt zwangsläufig Q(m) < (n) = 599.

Aufgabe 23/87
Es gibt Primzahlen pi, die folgende Eigenschaften haben:

1. Sie sind (in dezimaler Schreibweise) echt vierstellig.

2. Ihre Quersumme ist Q(pi) = 25.

3. Addiert man zu ihnen 4, so ergibt sich eine ”Spiegelzahl”.

Unter einer ”Spiegelzahl” sei eine Zahl zu verstehen, deren Ziffernfolge bezüglich einer gedachten
Mittellinie symmetrisch ist. Man bestimme alle derartigen Primzahlen pi!

Für die Primzahlen pi gilt nach Eigenschaft 1:

pi = 1000ai + 100bi + 10ci + di

mit ai; bi; ci; di ∈ N , 0 < ai ≤ 9, 0 ≤ bi; ci; di ≤ 9. Als Einerstelle di einer Primzahl kommen nur die
Zahlen di = 1, d2 = 3, d3 = 7 und d4 = 9 in Frage.
Aus der Eigenschaft 3 folgen a1 = 5, a2 = 7, a3 − 10 = 7 + 4 − 10 = 1 und a4 − 10 = 9 + 4 − 10 = 3
(der Zehnerübertrag kann sich nicht bis ai fortsetzen, da sonst a3 = 0 im Widerspruch zur 1. oder
a4 = 2, b4 = c4 = 9 im Widerspruch zur 2. Eigenschaft wäre). Damit haben die in Betracht kommenden
Zahlen die Gestalt

p1 = 5000 + 100b1 + 10c1 + 1
p2 = 7000 + 100b2 + 10c2 + 3
p3 = 1000 + 100b3 + 10c3 + 7
p4 = 3000 + 100b4 + 10c4 + 9
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Die Möglichkeit p1 entfällt, weil aus Eigenschaft 2 folgt, dass b1 + c1 = 19 wäre im Widerspruch zu
b1 + c1 ≤ 9 + 9 = 18. Ferner entfällt auch p2’ weil nach derselben Eigenschaft b2 + c2 = 15 sein müsste,
aus Eigenschaft 3 aber b2 = c2 folgt.
Aus Eigenschaft 2 folgt nun b3 +c3 = 17, b4 +c4 = 13, und aus Eigenschaft 3 (wegen des Zehnerübertrags)
bi = ci + 1. Damit ist b3 = 9, c3 = 8, p3 = 1987; b4 = 7, c4 = 6, p4 = 3769.
Tatsächlich sind beide Zahlen Primzahlen.
Zusatz: Streicht man in der Eigenschaft 1 das Wort ”echt”, so erfüllt auch pi = 0997 die Bedingungen
der Aufgabe. Aus der Eigenschaft 2 kann man leicht weitere Lösungen ausschließen.

Aufgabe 24/87
Für welche Primzahlen p besitzt das Gleichungssystem

x+ log2 y = 11p (1)
2p− log2 p = 11− z (2)
z + log2 y = x− 8 (3)

ganzzahlige Lösungstripel (x; y; z) und wie lauten diese?

Wir nehmen an, das Gleichungssystem sei ganzzahlig lösbar und (x; y; z) sei ein derartiges Lösungstripel.
Nach Gleichung (2) folgen dann, da 11− z = g eine ganze Zahl ist, die Gleichungen

2p− g = log2 p ; p = 22p−g = g′

wobei auch g′ eine ganze Zahl ist. Da p Primzahl ist, muss p = 2 und damit g = 3 sein. Aus Gleichung
(2) folgt nun sofort z = 8. Damit nehmen die Gleichungen (1) und (3) die Gestalt

x+ log2 y = 22 ; log2 y = x− 16

an. Substitution der zweiten in der ersten Gleichung liefert x = 19. Damit ergibt sich schließlich

log2 y = 3 ; y = 23 = 8

also das ganzzahlige Lösungstripel (19; 8; 8) des Gleichungssystems.
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2.28 Aufgaben und Lösungen 1988

Aufgabe 1/88
Es seien x die Quersumme von 19888891, y die Quersumme von x und z die Quersumme von y. Man
gebe z an!

Zunächst schränken wir die Quersummen nach oben ein. Wegen 19888891 < 100008891 ist die Stellenzahl
von 19888891 kleiner als 1 + lg 100008891 = 1 + 8891 · lg 10000 = 1 + 8891 · 4 = 35565.
Da für alle Ziffern ai von 19888891 gilt ai ≤ 9, ist x < 35565 · 9 = 320085. Die Zahl mit der größten
Quersumme im Intervall [0; 320085] ist 299999. Damit folgt y ≤ 47. Für z ergibt sich daraus z ≤ 12, da
39 die Zahl mit der größten Quersumme im Intervall [0; 47] ist.
Nun verwenden wir den Satz: Eine Zahl n und ihre Quersumme lassen beim Teilen durch 9 den gleichen
Rest.
Beweis: 1. Der Satz gilt für n = 1.
2. Angenommen, der Satz gilt für n = k ≥ 1, dann gilt er auch für n = k + 1. Sind nämlich die letzten i
Stellen (i ≥ 0) von k mit 9 besetzt, so werden diese beim Übergang zu k + 1 zu 0, und die erste von 9
verschiedene Stelle vergrößert sich um 1.
Die Quersumme von k + 1 ist demnach von der von k um 1− i · 9 ≡ 9 (mod 9) verschieden, ihr Rest ist
also auch um 1 vergrößert.
Aus diesem Satz folgt wegen 19888891 ≡ (−1)8891 ≡ (−1) ≡ 8 (mod 9) (es ist 1988 = 221 · 9 − 1) auch
x ≡ y ≡ z ≡ 8 (mod 9). Wegen z ≤ 12 kommt damit für z nur die Zahl 8 in Frage: z = 8.

Aufgabe 2/88
Gesucht sind die kleinsten zwei natürlichen Zahlen n, die Summe sowohl von zwei als auch von drei
aufeinanderfolgenden Quadratzahlen sind.

Nach dem Aufgabentext gilt

n = (m− 1)2 +m2 + (m+ 1)2 = k2 + (k + 1)2

mit n;m; k ∈ N,n;m; k ≥ 1. Man erkennt rasch, dass sich mit m = k = 1 eine (allerdings triviale) Lösung
ergibt: n = 02 + 12 + 22 = 12 + 22 = 5
Offensichtlich ist dies die kleinste Zahl mit der geforderten Eigenschaft. Um die nächstgrößere zu finden,
formen wir um: 2k(k + 1) = 3m2 + 1.
Wegen 3m2 + 1 ≡ 1 (mod 3) ist k ≡ 1 (mod 3), also k = 3s + 1 mit s ∈ N . Substitution und weitere
Umformung liefern

6s(s+ 1) + 1 = m2 ; m =
√

6s(s+ 1) + 1

Wenn n minimal sein soll, müssen auch m; k; s minimal sein. Wir probieren daher, beginnend mit dem
kleinsten Wert, die s-Werte daraufhin durch, ob sie natürliche m-Werte liefern.
Für s = 0 erhält man die bereits ermittelte (triviale) Lösung; für s = 1; 2; 3 ist m nicht natürlich, aber
für s = 4 ergibt sich m = 11, k = 13 und

n = 102 + 112 + 122 = 132 + 142 = 365

Zweierlei überrascht an diesem Ergebnis: 1. Man erhält fünf aufeinanderfolgende Quadratzahlen (man
kann nachweisen, dass dieser Fall einmalig ist).
2. Es ergibt sich die Anzahl der Tage in einem Normaljahr.
Zusatz: Die nächstgrößeren n sind n = 1082 + 1092 + 1102 = 1332 + 1342 = 35645 und n = 10782 +
10792 + 10802 = 13212 + 13222 = 3492725.

Aufgabe 3/88
Es ist zu beweisen, dass die Gleichung a2 + b2 = ck für alle natürlichen Zahlen k > 0 ganzzahlige
Lösungstripel (a; b; c) hat.

Die Behauptung ist trivial für k = 1 (sie folgt aus der unbeschränkten Ausführbarkeit der Addition) und
für k = 2 (jedes pythagoreische Tripel ist Lösung).
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Es sei nun n ∈ N,n > 2, und die Behauptung sei richtig für alle k < n. Dann existiert sicher ein
Lösungstripel (a; b; c) für die Gleichung a2 + b2 = cn−2.
Multipliziert man beide Seiten mit c2 > 0, so folgt

a2c2 + b2c2 = cn

Damit ist das Tripel (ac; bc; c) Lösung der Gleichung (mit a; b; c ∈ N gilt wegen der unbeschränkten
Ausführbarkeit der Multiplikation auch ac; bc ∈ N). Nach dem Prinzip der vollständigen Induktion ist
damit der geforderte Beweis erbracht.

Aufgabe 4/88
Man bestimmte alle ganzzahligen Lösungen der Gleichung x2 + y2 = (x− y)3

1. Offensichtlich ist x = y = 0 eine Lösung.
2. Es sei nun x2 + y2 6= 0. Dann ist x2 + y2 = (x − y)3 > 0. Wir setzen x − y = a > 0, also y = x − a.
Durch Einsetzen und Umformen erhält man

x2 + (x− a)2 = a3 → x1;2 = a

2 (1±
√

2a− 1)

Wenn x eine ganze Zahl sein soll, muss 2a − 1 eine ungerade Quadratzahl sein: 2a − 1 = (2m − 1)2 mit
m ∈ N,m ≥ 0, also a = 2m2 − 2m+ 1. Man erhält damit für m ∈ N

x1 = 0,5(2m2 − 2m+ 1)(1 + 2m− 1) = m(2m2 − 2m+ 1)

x2 = 0,5(2m2 − 2m+ 1)(1− 2m+ 1) = (1−m)(2m2 − 2m+ 1)

y1 = m(2m2 − 2m+ 1)− (2m2 − 2m+ 1) = (m− 1)(2m2 − 2m+ 1) = −x2

y2 = (2m2 − 2m+ 1)(1−m)− (2m2 − 2m+ 1) = (−m)(2m2 − 2m+ 1) = −x1

Aufgabe 5/88
Man beweise: Ist n eine (in dekadischer Schreibweise) 30-stellige Zahl, bei der alle Stellen ausschließ-
lich mit 1 oder mit 8 (in beliebiger Anordnung) besetzt sind, so ist n keine Primzahl.

Wir beweisen zunächst, dass die Zahl

k =
29∑
i=0

10i = 111...111 (30 Stellen)

durch 7 teilbar ist: Es ist 1001 = 143 · 7. Dann ist r = 1001 · 111 = 111111 ebenfalls durch 7 teilbar und
damit auch

k =
29∑
i=0

10i = (1024 + 1018 + 1012 + 106 + 100) · r

Wird nun in k an s-ter Stelle von hinten die Ziffer 1 durch die Ziffer 8 ersetzt, so ändert sich k um den
Summanden (8 − 1) · 10s−1 = 7 · 10s−1. Demnach bleibt die Zahl ns = k + 7 · 10s−1 durch 7 teilbar; ns
ist also keine Primzahl.
Da diese Überlegung für jede natürliche Zahl s gilt, ist der Beweis für n geführt.

Aufgabe 6/88
Man ermittle alle dreistelligen natürlichen Zahlen n, deren Querprodukt Qp(n) = 120 ist und deren
Quersumme Qs(n) = 2m eine Zweierpotenz mit m ∈ N ist.

Es ist Qp(n) = 120 in drei Faktoren f1, f2 und f3 mit fi ∈ N, 0 < fi ≤ 9 für i = 1; 2; 3 zu zerlegen.
Aus der Primfaktorzerlegung von 120 = 23 · 3 · 5 folgt sofort, dass für ein i (o.B.d.A. sei dies i = 3) gilt
fi = 5. Dann verbleiben für f1 und f2 zwei Möglichkeiten:
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f11 = 8, f21 = 3 und f12 = 4, f22 = 6.
Nur für die erste Möglichkeit gilt

Qs(n) = f11 + f21 + f3 = 8 + 3 + 5 = 16 = 2m mit m = 4 ∈ N

die zweite Möglichkeit dagegen liefert

Qs(n) = f12 + f22 + f3 = 4 + 6 + 5 = 15 6= 2m mit m = 4 ∈ N

sie scheidet also aus. Damit sind die Ziffern von n mit 3; 5 und 8 festgelegt. Ihre 3! = 6 Permutationen
ergeben 6 Werte für n: 358; 385; 538; 583; 835; 853.

Aufgabe 7/88
Man ermittle alle Paare (m;n) mit m;n ∈ N , für die p = m3 + n3 Primzahl ist!

Es gilt
p = m3 + n3 = (m+ n)3 − 3mn(m+ n) = (m+ n)(m2 −mn+ n2)

Da p Primzahl ist, muss einer der beiden Faktoren gleich 1 sein; wegen m + n > 1 (m = 0 oder n = 0
liefert keine Primzahl p) ist

m2 −mn+ n2 − 1 = (m− n)2 +mn ≥ mn ≥ 1

Daraus folgt: Nur m = n = 1 liefert eine Primzahl p = 13 + 13 = 2.

Aufgabe 8/88 Gesucht ist die um 8 vergrößerte Anzahl aller geordneten Paare (x; y) ganzer Zahlen
x und y, die Lösung der Ungleichungen

8 ·
√

8 + 8 + 8 + 8
8 ≤ |x|+ |y| ≤ 8 · 8 ·

√
8 + 8 +

√
8 + 8 + 8 + 8

8

sind. Man füge hinter die erste und hinter die zweite Stelle je einen Punkt ein!

Vereinfachung der gegebenen Ungleichungen liefert

41 ≤ |x|+ |y| ≤ 269

Wir untersuchen, wieviele geordnete Paare die Ungleichung |x| + |y| ≤ n mit n ∈ N erfüllen. Für y = 0
gibt es 2n+ 1 verschiedene Werte für x (also auch 2n+ 1 verschiedene geordnete Paare).
Wächst bzw. verringert sich y um 1, so verringert sich die Anzahl der möglichen x-Werte jeweils um 2,
für |y| = n ist nur x = 0 möglich. Folglich gibt es für y 6= 0 genau

2 · (2n− 1 + 2n− 3 + ...+ 3 + 1) = 2n2

x-Werte. Damit hat die betrachtete Ungleichung insgesamt 2n2 + 2n+ 1 = n2 + (n+ 1)2 geordnete Paare
als Lösung. Daraus folgt:
Die Ungleichung |x|+ |y| ≤ 269 hat 2692 + 2702 = 145261 Lösungspaare, die Ungleichung |x|+ |y| ≤ 40
hat 402 + 412 = 3281 Lösungspaare. Die gesuchte Zahl ist dann 145261− 3281 + 8 = 141988.
Einfügen der Punkte ergibt 1. 4. 1988.

Aufgabe 9/88
Man beweise, dass die Funktion

f(x) = xn + an−1x
n−1 + ...+ a1x− 1

mit ai ∈ G für i = 1; 2; ...;n1 keine rationale Nullstelle hat, falls f(±1) 6= 0 ist (G sei die Menge der
ganzen Zahlen).
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Wir nehmen an, die gegebene Funktion f(x) habe unter den getroffenen Voraussetzungen eine rationale
Nullstelle p

q mit p ∈ G, q ∈ N, p; q 6= 0 und (p, q) = 1. Dann würde folgen

pn + an−1p
n−1q + ....a1pq

n−1 − qn = 0

und damit p ≡ 0 (mod q), wegen (p, q) = 1 und q > 0 also q = 1. Demnach gelte

pn + an−1p
n−1 + ....a1p− 1 = 0

woraus p = ±1 folgt. Damit wäre p
q = ±1 und f(pq ) = f(±1) = 0 im Widerspruch zur Voraussetzung

f(±1) 6= 0. Folglich ist die Annahme falsch, und damit ist die Behauptung in der Aufgabenstellung
richtig.

Aufgabe 10/88
Gesucht sind alle Zahlen n ∈ N , die folgende Eigenschaften haben:

1. Die dekadische Darstellung erfordert genau drei paarweise voneinander verschiedene Ziffern a,
b und c.

2. Dabei treten a und b genau c-mal auf; c dagegen tritt (a− b)-mal auf.

3. Quersumme und Querprodukt von n sind einander gleich.

Aus der 1. Bedingung folgt a; b; c ∈ N, a; b; c ≤ 9, aus der 3. a; b; c > 0. Die drei Bedingungen kann man
in der folgenden Gleichung zusammenfassen:

ac+ bc+ c(a− b) = acbcca−b → 2 = ac−1bcca−b−1

Aus der Eindeutigkeit der Primfaktorzerlegung folgt, dass einer der Faktoren auf der rechten Seite der
letzten Gleichung gleich 2 und 2 gleich 1 sein müssen.
Fallunterscheidung:
1. ac−1 = 2 liefert a = 2, c = 2 im Widerspruch zur 1. Bedingung.
2. bc = 2 ergibt b = 2, c = 1. Dann gilt wegen der 1. Bedingung a ≥ 3. Daraus folgt n1 = 321, n2 =
4211, n3 = 52111, n4 = 621111, n5 = 7211111, n6 = 82111111, n7 = 921111111.
3. ca−b−1 = 2 mit ac−1 = 1 und bc = 1. Wegen c > 1 müsste a = b = 1 sein im Widerspruch zur 1.
Bedingung.
Damit sind die unter 2. gefundenen Zahlen sowie alle Zahlen, die durch Permutation der Ziffern aus
ihnen hervorgehen, die einzigen, die die Bedingungen der Aufgabe erfüllen (die Fallunterscheidung ist
vollständig). Es sind 238 Zahlen.

Aufgabe 11/88
Man ermittle alle natürlichen Zahlen n, für die n4 + 4 eine Primzahl ist!

Man erkennt rasch, dass sich für n = 1 die Primzahl 5 ergibt: 14 + 4 = 5. Es gilt nun

p = n4 + 4 = n4 + 4n2 + 4− 4n2 = (n2 + 2)2 − (2n)2 = (n2 + 2− 2n)(n2 + 2 + 2n)

Wenn p die Primzahl sein soll, muss der kleinere der beiden Faktoren gleich 1 sein: (n2 + 2− 2n) = 1 und
(n2 − 2n+ 1) = (n− 1)2 = 0, d.h. n = 1. Also ist n = 1 die einzige Lösung.

Aufgabe 12/88
Gegeben sei ein Quadrupel (p1; p2; p3; p4) von Primzahlen pi, die folgende Bedingungen erfüllen:
1. Die pi sind (im Dezimalsystem) mindestens dreistellig.
2. Es ist p2 = p1 +m; p3 = p2 +m, p4 = p3 +m mit m ∈ N,m ≥ 1.
3. Die höchsten Stellen von m sind sämtlich restlos durch m teilbar.
Man beweise, dass dann gilt:

m! | 2(p2
4 − p2

1)
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Folgende Überlegungen führen zur Lösung:
Da die höchsten Stellen der pi einstellig und restlos durch m teilbar sind, ist auch m einstellig: m ≤ 9.
Wegen m = p2 − p1 ist m ≡ 0 (mod 2) als Differenz zweier ungerader Zahlen. Wegen p2 ≡ p1 +m (mod
3), p3 = p1 + 2m ≡ p1 −m (mod 3) und p1 ≡ ±1 (mod 3) ist nur m ≡ 0 (mod 3) möglich. Damit folgt
m = 6.
Damit ist pi+1 ≡ p1 + i (mod 5) für i = 1; 2; 3. Daraus folgt p1 ≡ 1 (mod 5), p4 ≡ 4 (mod 5) und
p4 + p1 ≡ 0 (mod 5). Es ist (p4 + p1) = 2p1 + 3m = 2p1 + 18 = 2(p1 + 9) und (da p1 ungerade ist)
p4 + p1 ≡ 0 (mod 4).
Damit folgt p4 + p1 ≡ 0 (mod 20) oder p4 + p1 = 4 · 5 · k mit k ∈ N, k ≥ 1.
Weiter ist p4 − p1 = p1 + 3mp1 = 3m = 3 · 6. Nun folgt

2(p2
4 − p2

1) = 2(p4 − p1)(p4 + p1) = 2 · 3 · 6 · 4 · 5 · k = 6!k = k ·m!

also m! | 2(p2
4 − p2

1), w.z.b.w.
Zusatz: Aufgabengemäße Quadrupel sind z.B. (601; 607; 613; 619), (641; 647; 653; 659), (6311; 6317;
6323; 6329) und (6361; 6367; 6373; 6379).

Aufgabe 13/88
Man ermittle alle Paare (p; q) von Primzahlen p und q, für die gilt:

3p2 + 6p = 2q2 + 7q

Von zwei Parabeln mit verschiedenen Koeffizienten der quadratischen Glieder wächst die mit dem größeren
stärker. Daraus folgt sofort: Wenn die gegebene Gleichung Lösungen hat, so ist q > p. Wir schreiben die
Gleichung in der Form

3p(p+ 2) = q(2q + 7)
Aus der Eindeutigkeit der Primfaktorzerlegung ergeben sich nun drei Fälle:
1. q = 3; es folgt p(p+ 2) = 13. Da 13 nicht in zwei Faktoren p und p+ 2 zerlegt werden kann, scheidet
dieser Fall aus.
2. q = p; es folgt q = p = 0 oder q = p = 1. Da 0 und 1 keine Primzahlen sind, scheidet auch dieser Fall
aus.
3. q = p + 2 (wegen q > p kann p + 2 kein Vielfaches von q sein); es folgt p = 11, q = 13 als einziges
Lösungspaar.

Aufgabe 14/88
Gesucht ist die kleinste Zahl n ∈ N , bei der sowohl die Quersumme q(n) als auch die Quersumme
q(n+ 1) des Nachfolgers n+ 1 durch 11 teilbar ist.

Die gesuchte Zahl n muss auf wenigstens eine Ziffer 9 enden, da sich andernfalls die Quersumme beim
Übergang von n auf n + 1 um 1 ändern würde und damit nicht beide Quersummen durch 11 teilbar
wären. Man kann n also in der Form

n = a · 10i +
i−1∑
k=0

9 · 10k

mit a; i ∈ N, i > 0 darstellen. Dann gilt die folgende Gleichung: q(n+ 1) = q(n)− 9i+ 1.
Soll mit q(n) auch q(n+ 1) durch 11 teilbar sein, so muss auch 9i− 1 durch 11 teilbar sein. Die kleinste
Zahl i, die dies leistet, ist i = 5 : 9 · 5− 1 = 44 = 4 · 11. Damit ist q(n) = q(a) + 5 · 9 ≥ 55, d.h. q(a) ≥ 10.
Die kleinste Zahl a, deren Quersumme nicht kleiner als 10 ist, ist a = 19. Dann wäre n = 1999999, n+1 =
2000000 und damit q(n+1) = 2 nicht durch 11 teilbar. Die nächste in Frage kommende Zahl a ist a = 28.
Mit ihr ergibt sich n = 2899999, q(n) = 55, n+ 1 = 2900000, q(n+ 1) = 11.
Der Lösungsweg schließt kleinere Zahlen für n aus.

Aufgabe 15/88
In einem Dreieck mit den Seiten a, b und c und der Höhe h auf b gelte für den Inkreisradius ρ = 1

3h.
Man zeige, dass dann die Seitenlängen eine arithmetische Folge 1. Ordnung bilden!
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Für den Flächeninhalt F des Dreiecks gilt

F = 1
2bh = 1

2ρ(a+ b+ c)

Mit ρ = 1
3h folgt daraus nach äquivalenter Umformung 3b = a+ b+ c, b = a+c

2 . Das heißt, die Länge der
Seite b ist arithmetisches Mittel der beiden anderen Seitenlängen. Demnach bilden die drei Seitenlängen
eine arithmetische Folge 1. Ordnung.
Zusatz: Man überlegt sich leicht, dass ρ = 1

3h auch im gleichseitigen Dreieck gilt. In diesem Fall gilt für
die konstante Differenz d zwischen benachbarten Gliedern der arithmetischen Folge d = 0, d.h., die Folge
ist konstant.

Aufgabe 16/88
Es sei P (x) ein Polynom n-ten Grades, das bei Division durch (x− 1) den Rest 1, bei Division durch
(x− 2) den Rest 2 und bei Division durch (x− 3) den Rest 3 lässt.
Welchen Rest lässt es bei Division durch (x− 1)(x− 2)(x− 3)?

Nach der Aufgabenstellung ist für i = 1; 2; 3

P (x) = (x− i)Qi(x) + i

wobei die Qi(x) Polynome vom Grad n− 1 sind. Für x = i folgt daraus P (i) = i. Andererseits ist

P (x) = (x− 1)(x− 2)(x− 3)Q(X) +R(x)

wobei Q(x) ein Polynom vom Grad n−3 und R(x) ein Polynom höchstens 2. Grades ist. Setzt man darin
x = i, so folgt; da für jedes i ein Faktor zu Null wird; P (i) = R(i). Damit ist R(i) = i: R(1) = 1, R(2) =
2, R(3) = 3.
Da R(x) höchstens 2. Grades ist, führt man den Ansatz R(x) = a2x

2 + a1x + a0 mit x = 1; 2; 3 durch
(wenn man nicht erkennt, dass R(x) = x diese Werte liefert):

a2 + a1 + a0 = 1; 4a2 + 2a1 + a0 = 2; 9a2 + 3a1 + a0 = 3

Die Lösung dieses Gleichungssystems liefert a2 = a0 = 0, a1 = 1.
Es ist also R(x) = x der gesuchte Rest.

Aufgabe 17/88
Man ermittle alle dreistelligen natürlichen Zahlen n, die gleich dem Fünffachen ihres Querprodukts
sind!

Es sei n = 100a+ 10b+ c = 5abc mit a; b; c ∈ N, a; b; c ≤ 9. Da n 6= 0, ist a; b; c 6= 0. Offensichtlich ist n
restlos durch 5 teilbar. Damit folgt sofort wegen c 6= 0, dass c = 5 ist:

n = 100a+ 10b+ 5 = 25ab

Division mit 5 ergibt 20a+ 2b+ 1 = 5ab. Folglich ist 2b+ 1 restlos durch 5 teilbar. Damit kommen für b
die Werte b1 = 2 und b2 = 7 in Frage. Da mit b1 = 2 das fünffache Querprodukt, also n, durch 10 teilbar
wäre im Widerspruch zu c = 5, verbleibt nur b2 = b = 7. Somit ist 20a+ 15 = 35a und a = 1.
Es gibt also genau eine Zahl n mit der geforderten Eigenschaft: n = 175 (die Probe bestätigt die Rich-
tigkeit).

Aufgabe 18/88
Es sei f(n) = (n−1)!

n mit n ∈ N,n > 0.
Man beweise, dass f(n) mit einer Ausnahme genau dann eine ganze Zahl ist, wenn n keine Primzahl
ist! Für welche Zahl n gilt die Ausnahme?
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1. Die Zahl n ∈ N,n > 0 sei Primzahl. Dann enthält n keinen Faktor u ∈ N, 1 < u ≤ n − 1. Daher ist
(n− 1)! nicht durch n teilbar. f(n) ist in diesem Fall also keine ganze Zahl.
2. Die Zahl n ∈ N,n > 0 sei keine Primzahl.
2.1. Es sei n = 1. Dann ist f(n) = 0!

1 = 1 eine ganze Zahl.
2.2. Es sei n > 1. Dann ist n = u · v mit u; v ∈ N, 1 < u; v < n und, vorausgesetzt n ist kein Primzahl-
quadrat, u 6= v.
2.2.1. Es sei n kein Primzahlquadrat. Dann sind u und v beide Faktoren von (n− 1)!, mithin ist (n− 1)!
restlos durch u und durch v und damit auch durch n teilbar. Folglich ist f(n) eine ganze Zahl.
2.2.2. Es sei n = p2 ein Primzahlquadrat. Ist p > 2, so ist 2p ≤ p2 − 1 = n− 1 und wegen p < p2 sind p
und 2p beide, also auch p2 Faktoren von (n− 1)!. Demnach ist (n− 1)! restlos durch p2 = n teilbar, und
damit ist f(n) eine ganze Zahl.
Ist dagegen p = 2, n = p2 = 4, so versagt dieser Schluss wegen 2p = 4 > p2 − 1 = 3. Es ist f(4) = 3!

4 = 3
2

keine ganze Zahl.
Es wurde gezeigt:
1. Ist n Primzahl, so ist f(n) keine ganze Zahl.
2. Ist n keine Primzahl und n 6= 4, so ist f(n) eine ganze Zahl.
3. Ist n = 4, so ist f(n) keine ganze Zahl. Also ist f(n) mit Ausnahme von n = 4 genau dann eine ganze
Zahl, wenn n keine Primzahl ist.

Aufgabe 19/88
Es sei P (x; y) ein Punkt auf dem Einheitskreis mit rationalen Koordinaten x; y.
Man zeige, dass dann der Term

√
0,5 + xy eine irrationale Zahl liefert!

Da P auf dem Einheitskreis liegt, gilt x2 + y2 = 1. Da x und y rational sind, gilt x+ y 6= 0 (denn sonst
würde folgen, dass x = −y = ±0,5

√
2 ist). Damit ergibt sich

(x+ y)2 = x2 + 2xy + y2 = 1 + 2xy → |x+ y| =
√

1 + 2xy

0,5
√

2 · |x+ y| = 0,5 ·
√

2 ·
√

1 + 2xy =
√

0,5 + xy

Die linke Seite der letzten Gleichung ist irrational. Folglich gilt dies auch für die rechte Seite.

Aufgabe 20/88
Gegeben sei das Intervall [1; 10n] ⊂ N,n ∈ N,n ≥ 1. Echte Teilmengen dieses Intervalls sind die
Menge M1 der darin enthaltenen geraden Zahlen sowie die Menge M2 derjenigen Zahlen in ihm, die
(in dezimaler Schreibweise) ohne die Ziffer 1 dargestellt werden.
Welche der Teilmengen M1 und M2 enthält mehr Elemente?

Die Anzahl der geraden Zahlen im Intervall [2; 10n] ist 5 · 10n. Die Anzahl der ohne Ziffer 1 dargestellten
Zahlen dieses Intervalls erhält man durch die folgende Überlegung:
Offenbar gibt es acht einstellige natürliche Zahlen ohne Ziffer 1. Aus jeder von ihnen kann man durch
Anhängen einer der Ziffern 0; 2; 3; ...; 9 insgesamt 8 ·9 zweistellige Zahlen der geforderten Art bilden. Setzt
man diesen Gedankengang fort, so erhält man die Anzahl der k-stelligen Zahlen ohne Ziffer 1 zu 8 · 9k−1

und die Anzahl aller Zahlen dieser Art im gegebenen Intervall durch die Summe
n∑
k=1

8 · 9k−1 = 9n − 1

Es ist nun zu untersuchen, ob 9n − 1 oder 5 · 10n−1 größer ist. Sicher ist 91 − 1 = 8 > 5 · 101−1 = 5. Da
aber von zwei Exponentialfunktionen mit verschiedenen Basen die mit der größeren Basis stärker wächst,
gibt es sicher ein k ∈ N so, dass 9n − 1 < 5 · 10n−1, wenn n ≥ k ist.
Gilt nun 9n ≤ 5 · 10n−1, so gilt sicher erst recht 9n − 1 < 5 · 10n−1. Wegen der strengen Monotonie der
ln-Funktion ist die Ungleichung 9n ≤ 5 · 10n−1 äquivalent der Ungleichung

n ln 9 ≤ n ln 10 + ln 5− ln 10 = n ln 10− ln 2→ n ≥ ln 2
ln 10− ln 9 > 6,5

Mindestens für n ≥ 7 enthält also die Teilmenge M2 mehr Elemente als die Teilmenge M1. Eine
Überprüfung mit n = 6 ergibt, dass für n = 6, also auch für n ≤ 6 die Teilmenge M1 mehr Elemente
enthält.
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Aufgabe 21/88
Man zeige, dass das Produkt aus drei aufeinanderfolgenden natürlichen Zahlen (außer im trivialen
Fall 0; 1; 2) nicht gleich der dritten Potenz einer natürlichen Zahl ist!

Angenommen, es gäbe drei aufeinanderfolgende natürliche Zahlen (n − 1), n und (n − 1) derart, dass
(n− 1)n(n+ 1) = k3 mit k ∈ N ist. Zum Ausschluss des trivialen Falls sei n ≥ 2. Dann ist k > 1, und es
folgt

(n− 1)n(n+ 1) = n3 − n = k3 → n3 − k3 = (n− k)(n2 + nk + k2) = n (∗)

Wegen n > 1 ist n > k, also (n − k) ≥ 1, und wegen k > 1 ist (n2 + nk + k2) > n. Daraus folgt
(n− k)(n2 + nk + k2) > 1 · n = n.
Dies steht im Widerspruch zu (*). Also ist die Annahme falsch und damit folgt die Richtigkeit der
Behauptung.

Aufgabe 22/88
Man ermittle alle Paare (p;n), in denen p eine Primzahl und n eine natürliche Zahl ist und für die
die Lösungen der Gleichung

x2 + 2(pn + 2)x+ p2n = 0

ganzzahlig sind!

Wenn die Gleichung ganzzahlige Losungen x1, x2 hat, so gilt nach dem Wurzelsatz des Vieta

−(x1 + x2) = 2pn + 4; x1x2 = p2n

Aus der 2.Gleichung folgt, dass x1 und x2 gleiche Vorzeichen haben, aus der ersten Gleichung, dass
x1;x2 < 0 gilt. Damit folgt aus der Eindeutigkeit der Primfaktorzerlegung x1 = −pk;x2 = −pl mit
k; l ∈ N, k + l = 2n.
O.B.d.A. sei l ≤ k. Dann gilt (wegen pl 6= 0)

pk + pl = 2pn + 4 (∗); pk−l + 1 = 2pn−l + 4
pl

Aus der Ganzzahligkeit der Potenzen von p folgt pl | 4. Damit sind drei Fälle zu unterscheiden:

1. pl = 1, also l = 0, k = 2n. Die Gleichung (*) nimmt die Gestalt p2n + 1 = 2pn + 4 an. Als Lösung
ergibt sich pn = 3, also p = 3, n = 1. Die Probe bestätigt die Richtigkeit dieser Lösung.

2. pl = 2, also l = 1, p = 2, k = 2n − 1. Aus der Gleichung (*) folgt p2n−1 + 2 = 2pn + 4. Diese
Gleichung hat keine ganzzahligen Lösungen pn.

3. pl = 4, also p = 2, l = 2, k = 2n− 2. Es ergibt sich analog 22n−2 + 4 = 2 · 2n + 4, also n = 3. Auch
diese Lösung wird durch die Probe bestätigt.

Da die Fallunterscheidung vollständig ist, gibt es als Lösungen genau die Paare (3; 1) und (2; 3).

Aufgabe 23/88
Man ermittle alle Primzahl-Zwillingspaare (p1; p2), für die

P = p2
1 − p1p2 + p2

2

entweder Primzahl oder eine Potenz xy mit x; y ∈ N, x; y > 1 ist!

Rechnet man (2; 3) unter die Primzahl-Zwillingspaare, so ist P = 22− 2 · 3 + 32 = 7 eine Lösung. Für das
Primzahl-Zwillingspaar (3; 5) ergibt sich mit P = 32 − 3 · 5 + 52 = 19 ebenfalls eine Lösung.
Ist p > 5, so gilt für jedes Primzahl-Zwillingspaar (p1; p2), dass p1 = 6n− 1, p2 = 6n+ 1 mit n ∈ N ist.
Damit folgt

P = (6n− 1)2 − (6n− 1)(6n+ 1) + (6n+ 1)2 = 3(12n+ 1)
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Also ist P > 3 durch 3 teilbar und folglich keine Primzahl. Da der zweite Faktor (12n2 +1) mit Sicherheit
nicht durch 3 teilbar ist, enthält P den Primfaktor 3 nur in erster Potenz. Demnach kann P auch keine
Potenz xy mit x; y ∈ N, x; y > 1 sein; denn jede Potenz xy mit x; y ∈ N enthält jeden Primfaktor in y-ter
Potenz. Außer den bereits ermittelten Lösungen gibt es also keine weiteren.

Aufgabe 24/88
Es ist das folgende Gleichungssystem zu lösen. Dabei seien n1 und n2 natürliche Zahlen, die pi(i =
1,2,...,6) seien Primzahlen.

n1 = p2
1p2p3 (1)

n2 = n1 + 1 = p2
4p5p6 (2)

p2 = p3 − p6
1 (3)

p3 = p1p
3
4 + p6 (4)

p5 = p2 + p1p4 (5)
p6 = p2

1 + p2 + p1p4 (6)

Aus den Gleichungen (1) und (2) folgt, dass eine der sechs Primzahlen gerade sein muss. Aus (3) folgt,
dass dies nur p1 oder p2 sein kann, und aus (4) ergibt sich, dass dies p1 ist: p1 = 2. Setzt man dies in die
Gleichungen (3)...(6) ein, so ergibt sich

p2 = p3 − 64 (3a), p3 = 2p3
4 + p6 (4a)

p5 = p2 + 2p4 (5a), p6 = 4 + p2 + 2p4 (6a)

Mit (4a) eliminiert man p3 aus (3a):

p2 = 2p3
4 + p6 − 64 (3b)

mit (3 b) scheidet man p2 und p6 aus (6a) aus; nach Umformung folgt

p4(p2
4 + 1) = 30 (6b)

Die Primfaktoren von 30 sind 2, 3 und 5; durch Probieren findet man schnell p4 = 3, und das System
nimmt die folgende Gestalt an:

p2 = p3 − 64 (3c), p3 = p6 + 54 (4c)

p5 = p2 + 6 (5c), p6 = p2 + 10 (6c)

Durch Einsetzen von (1) in (2) erhält man n2 = p2
1p2p3 + 1 = p2

4p5p6 (2b) mit den bereits gefundenen
Werten für p1 und p4, und durch Einsetzen von (3c)...(6c) in (2b) ergibt sich daraus nach Umformen die
in p2 quadratische Gleichung

p2
2 − 22,4p2 + 107,8 = 0

mit der einzigen ganzzahligen Lösung p2 = 7. Aus (3c) folgt dann p3 = 71, aus (5c) p5 = 13 und aus (6c)
bzw. (4c) p6 = 17. Schließlich erhält man mit den gefundenen 6 Primzahlen aus (1) und (2)

n1 = 22 · 7 · 71 = 1988, n2 = 32 · 13 · 17 = 1989 = n1 + 1
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2.29 Aufgaben und Lösungen 1989

Aufgabe 1/89
Gesucht sind alle Paare (p1; p2) von (im Dezimalsystem) zweistelligen Primzahlen p1 und p2 mit
p1 < p2, die folgende Bedingungen erfüllen:

1. Weder die Einer- noch die Zehnerstellen von p1 und p2 sind Primzahlen.

2. Die Zehnerstellen von p1 und p2 sind nicht durch 3 teilbar.

3. Die Summe p1 + p2 ist weder durch 10 noch durch 13 teilbar.

Da p1 und p2 Primzahlen sind, kommen für ihre Einerstellen nur die Zahlen 1; 3; 7; 9 in Frage. Nach
Bedingung 1 entfallen 3 und 7. Für die Zehnerstellen verbleiben nach den Bedingungen 1 und 2 nur
die Zahlen 1; 4; 8. Damit können p1 und p2 die Werte 11; 19; 41; 89 annehmen (49 und 81 sind keine
Primzahlen!).
Wegen p1 < p2 erfüllen demnach nur die Paare (11; 19), (11; 41), (11; 89), (41; 89) die Bedingungen 1 und
2. Von ihnen erfüllt nur das Paar (19; 89) auch die Bedingung 3, es ist somit die einzige Lösung der
Aufgabe.

Aufgabe 2/89
Man suche natürliche Zahlen n, für die näherungsweise gilt:

n∑
i=1

1√
i

= 1989

Zunächst versuchen wir, ein Intervall [n1;n2] zu finden, in dem mit Sicherheit Näherungslösungen der
gegebenen Gleichung liegen. Für jede natürliche Zahl i ≥ 1, gilt

1√
i

= 2
2
√
i
>

2
√
i+ 1 +

√
i

= 2(
√
i+ 1−

√
i)

1√
i

= 2
2
√
i
<

2
√
i− 1 +

√
i

= 2(
√
i−
√
i− 1)

Daraus folgt
n∑
n=1

2(
√
i+ 1−

√
i) = 2(

√
n+ 1− 1) <

n∑
i=1

1√
i
<

n∑
i=1

2(
√
i−
√
i− 1) = 2

√
n

Setzt man nun 2(
√
n1 + 1−1) = 1988 und 2√n2 = 1990, so erhält man nach Auflösung dieser Gleichungen

n1 = 990024 und n2 = 990025.
Da sich beide Werte nur um 1 unterscheiden, sind beide als Näherungswerte anzusehen: Für n = n1 =
990024 ist die Summe etwas zu klein, für n = n2 = 990025 dagegen etwas zu groß.

Aufgabe 3/89
Es seien A der Flächeninhalt und u = a+ b+ c der Umfang eines Dreiecks mit den Seitenlängen a, b
und c. Man ermittle das Maximum des Verhältnisses z = A

u2 .
Für welche Dreiecke wird es angenommen?

Nach der heronischen Dreiecksformel gilt A2 = s(s− a)(s− b)(s− c), wobei s = u
2 , also u = 2s ist. Nach

dem Satz über das geometrische und das arithmetische Mittel gilt

3

√
A2

s
= 3
√

(s− a)(s− b)(s− c) ≤ s− a+ s− b+ s− c
3 = s

3
Daraus folgt

A2

s
≤ s3

27 , A2 ≤ s4

27 = u4

16 · 27 ,
A

u2 ≤
1

12
√

3
=
√

3
36
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Da in der Ungleichung die Gleichung genau dann gilt, wenn a = b = c ist, wird das Maximum beim
gleichseitigen Dreieck angenommen.

Aufgabe 4/89
Es seien p; q; p2 + q2; 2p+ q2 sämtlich Primzahlen. Man ermittle p und q sowie das Produkt

q2(p2 + q2)(2p2 + q2)

Wäre q = 2, so wäre 2p2 + q2 ≡ 0 (mod 2) und wegen 2p2 + q2 > 2 keine Primzahl. Also ist q ≥ 3, und
damit ist q ≡ q2 ≡ 1 (mod 2). Wäre p ≥ 3, so wären p ≡ p2 ≡ 1 (mod 2) und p2 + q2 ≡ 0 (mod 2), wegen
p2 + q2 > 2 also keine Primzahl. Demnach muss p = 2 sein. Für q = 3 ergibt sich

p2 + q2 = 13; 2p2 + q2 = 17; q2(p2 + q2)(2p2 + q2) = 1989

Wäre q > 3, so wäre q ≡ ±1 (mod 3), q2 ≡ 1 (mod 3) und damit 2p2 + q2 ≡ 8 + 1 ≡ 0 (mod 3), also
wegen 2p2 + q2 > 3 keine Primzahl. Damit ist die gefundene Lösung die einzige.

Aufgabe 5/89
Man bestimme alle Paare (n; k) mit n; k ∈ N , die der Gleichung n!− 56k + 10n = 0 genügen!

Wegen 56k ≡ 0 (mod 7) muss 10n ≡ −n! (mod 7) sein. Da 10n 6= 0 (mod 7) gilt, muss auch n! 6= 0 (mod
7), also n < 7 sein.
Prüft man die Zahlen n = 0; 1; 2; 3; 4; 5; 6 bezüglich der Kongruenz 10n ≡ −n! (mod 7), so stellt man fest,
dass sie nur von n1 = 4 und n2 = 6 erfüllt wird.
Aus der gegebenen Gleichung erhält man die zugehörigen Werte für k. Es existieren also genau zwei Paare
(n; k): (n1; k1) = (4; 179), (n2; k2) = (6; 17870).

Aufgabe 6/89
Man beweise: Im Dualsystem gibt es unter den Zahlen 11; 111; 1111; ... keine Potenz ak mit a; k ∈
N, a; k > 1.

Die im Dualsystem als 11; 111; 1111; ... dargestellten Zahlen kann man im Dezimalsystem durch
n−1∑
i=0

2i

mit n > 1 darstellen. Angenommen, es wäre

n−1∑
i=0

2i = 2n − 1 = ak

mit a; k ∈ N, a; k > 1. Dann wäre a sicher ungerade, und es folgt ak − 1 = 2n − 2 = 2(2n−1 − 1). Die
Differenz ak−1 = (a−1)(ak−1 +ak−2 + ...+ 1) wäre also durch 2, aber nicht durch 4 teilbar. Da wegen a
ungerade a−1 gerade ist, folgt, dass der Faktor (ak−1 +ak−2 + ...+1) ungerade ist. Da er aus k ungeraden
Summanden besteht, ist k ungerade: k ≥ 3. Dann ist aber

2n = ak + 1 = (a+ 1){(ak−1 + ak−2 + (ak−3 − ak−4) + ...+ 1}

Die geschweifte Klammer enthält k ungerade Glieder und ist wegen k ungerade selbst ungerade. Als Teiler
von 2n muss sie demnach gleich 1 sein. Also wäre 2n = ak + 1 = (a+ 1) · 1. Daraus folgt schließlich k = 1

im Widerspruch zur Voraussetzung k > 1. Die Annahme ist also falsch, die Summe
n−1∑
i=0

2i kann für n > 1

keine Potenz ak mit a; k ∈ N, a; k > 1 sein.

Aufgabe 7/89
Es sind alle ganzen Zahlen x zu ermitteln, für die f(x) = x5 − x+ 5 eine Primzahl ist!
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Es ist x5 − x = x(x4 − 1) = x(x2 − 1)(x2 + 1) ≡ 0 (mod 5). Ist nämlich x 6= 0 (mod 5), so ist sicher
entweder x2 ≡ 1 (mod 5) oder x2 ≡ −1 (mod 5). Damit ist f(x) = x5−x+5 genau dann Primzahl, wenn
x5 − x = 0 ist. Die reellen Lösungen dieser Gleichung sind x1 = −1, x2 = 0 und x3 = 1; für jeden dieser
Werte und nur für diese ist f(x) = 5. Andere ganzzahlige x-Werte liefern f(x) = 5g mit einer ganzen
Zahl g 6= 0.

Aufgabe 8/89
Jede Zahl n ∈ N mit einer geraden Anzahl echter Dezimalstellen kann man ”in der Mitte” trennen,
wodurch zwei Zahlen n1;n2 ∈ N entstehen.
Man ermittle alle geraden Zahlen n, die der Bedingung n = (n1 + 2)(n2 + 2) genügen!

Wir bezeichnen mit 2m, m ∈ N,m ≥ 1 die Anzahl der Dezimalstellen von n. Dann ist n in der Form
n = 10mn1 + n2 mit 10m−1 ≤ n < 10m darstellbar. Wegen n ≡ 0 (mod 2) muss n2 ≡ 0 (mod 2), also
n2 = 2k mit k ∈ N, k ≥ 1 sein. Die Bedingung der Aufgabe führt damit auf die Gleichung

n = 10mn1 + n2 = 10mn1 + 2k = (n1 + 2)(n2 + 2) = (n1 + 2)(2k + 2)

oder, äquivalent umgeformt, (5 cot 10m−1 − k − 1)n1 = k + 2.
Wegen k;n1 ∈ N ist 5 · 10m−1 − k − 1 = M > 0, und damit ist die Gleichung nach n1 auflösbar:

n1 = k + 2
M

= −1 + 5 · 10m−1 + 1
M

Nun ist n1 ≥ 10m−1, also n1 + 1 = 5·10m−1+1
M ≥ 10m−1 + 1. Daher ist M < 5. Da 4 die Zahl 5 · 10m−1 + 1

nicht teilt, gilt sogar M ≤ 3. Man braucht also nur die Werte M = 1,M = 2,M = 3 auf Lösungen zu
überprüfen.

1. M = 5 · 10m−1 − k − 1 = 1 liefert sofort k = 5 · 10m−1 − 2, n1 = k + 2. Für jedes m ∈ N,m ≥ 1
existiert eine Lösung:

m k n1 n2 n (n1 + 2)(n2 + 2)
1 3 5 6 56 = 7 · 8
2 48 50 96 5096 = 52 · 98
3 498 500 996 550996 = 502 · 998

2. M = 5 · 10m−1 − k − 1 = 2 ergibt k = 5 · 10m−1 − 3, n1 = k+2
2 . Man erkennt, dass k ≡ 0

(mod 2) sein muss, da sonst nicht n1 ∈ N wäre. Das ist aber nur für m = 1 möglich. Folglich ist
k = 2, n1 = 2, n2 = 4, n = 24.

3. Aus M = 5 · 10m−1 − k − 1 = 3 folgt k = 5 · 10m−1 − 4, n1 = k+2
3 . Analog zu 1. erhält man aus

diesen Gleichungen für jedes m ∈ N,m ≥ 1 eine Lösung:

m k n1 n2 n (n1 + 2)(n2 + 2)
1 1 1 2 12 = 3 · 4
2 46 16 92 1692 = 18 · 94
3 496 166 992 166992 = 168 · 994

Es existieren also zwei abzählbar unendliche Lösungsmengen sowie eine einzelne Lösung.

Aufgabe 9/89
Man ermittle alle nicht negativen reellen Zahlen x, die der Gleichung genügen:

3
√
x+ 4
√
x = 6 6

√
x

Man erkennt schnell, dass x = 0 eine Lösung der Gleichung ist. Für das Folgende kann man daher x 6= 0
voraussetzen. Division der Gleichung durch 6

√
x liefert unter Anwendung der Gesetze über das Rechnen

mit Wurzeln
12√
x2 + 12

√
x = 6

Diese in 12
√
x quadratische Gleichung hat die Lösungen 12

√
x = −0,5± 2,5. Wegen 12

√
x > 0 ist 12

√
x2, x =

212 = 4096. Es gibt also zwei Lösungen: x1 = 0, x2 = 4096.
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Aufgabe 10/89
Es sind wenigstens zwei der vier Primzahlen p1; p2; p3; p4 mit p1 < p2; p3; p4 zu ermitteln, für die
P = pp2

1 + p2p4
3 Primzahl sein kann.

Sind p1 und p3 beide ungerade, so ist P in jedem Fall gerade and wegen P > 2 keine Primzahl. Folglich
gilt wegen p1 < p3, dass p1 = 2 ist. Für p3 gilt p3 ≥ 3. Wir unterscheiden zwei Fälle:

1. p3 > 3. Dann ist

P = 2p2 + p2p4
3 ≡ (−1)p2 + (±1)2p4 ≡ (−1)p2 + (+1)p4 ≡ 0 (mod 3)

da p2; p4 ≥ 3, also ungerade sind. Wegen P > 3 ist P keine Primzahl.

2. p3 = 3. Dann ist
P = 2p2 + 32p4 = 2p2 + 9p4

Damit folgt: Wenn das Primzahlquadrupel (p1; p2; p3; p4) mit p1 < p2; p3; p4 seine Primzahl P = pp2
1 +p2p4

3
liefern soll, muss p1 = 2 und p3 = 3 sein. Tatsächlich ergibt sich mit p2 = 5, p4 = 3 die Primzahl
P = 25 + 32·3 = 761.

Aufgabe 11/89
Gesucht sind alle Paare (n; k) natürlicher Zahlen n und k, für die gilt: Die Summe aus den Quadraten
von n und von seinen k unmittelbaren Vorgängern ist gleich der Summe aus den Quadraten der k
unmittelbaren Nachfolger von n.

Nach dem Text der Aufgabe soll gelten

k∑
i=0

(n− i)2
k∑
i=1

(n+ i)2

k∑
i=0

n2 − 2n
k∑
i=0

i+
k∑
i=0

i2 =
k∑
i=1

n2 + 2n
k∑
i=1

i+
k∑
i=1

i2

wegen
k∑
i=0

n2 = n2 +
k∑
i=1

n2,
k∑
i=0

i =
k∑
i=1

i und
k∑
i=0

i2 =
k∑
i=1

i2 folgt daraus nach äquivalenter Umformung

n2 = 4n
k∑
i=1

i = 4nk(k + 1)
2 = 2nk(k + 1)

Nun ist sicher n 6= 0, da sonst die unmittelbaren Vorgänger keine natürlichen Zahlen wären. Damit
ergibt sich n = 2k(k + 1). Es existieren also unendlich viele Paare (n; k) mit (n; k) = [2k(k + 1); k] mit
k ∈ N, k ≥ 1.

Aufgabe 12/89
Bei welchen Dreiecken mit ganzzahligen Seitenlängen a, b, c, bei denen b die Quersumme von a und
c =
√

2a− b (zahlenmäßig) ist, gilt für die größte Höhe hmax > 0,5 · (a+ 1)?

Es gelten mit n ∈ N ;n > 0 die folgenden Abschätzungen:

10n−1 ≤ a ≤ 10n − 1, 1 ≤ b ≤ 9n,
√

2 · 10n−1 − 9n ≤ c ≤
√

2 · 10n − 3

Aus der Gültigkeit der Dreiecksungleichungen folgt nun

10n−1 ≤ a < b+ c ≤ 9n+
√

2 · 10n − 3

Die Probe weist aus, dass diese Ungleichung sicher für n = 1 und n = 2 erfüllt ist, nicht aber für n = 3.
Da mit wachsendem n ihre linke Seite schneller wächst als die rechte, folgt, dass kein weiteres n die
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Ungleichung erfüllt. Demnach kommen für a höchstens zweistellige Werte in Frage: a = 10x + y mit
x; y ∈ N, 0 ≤ x; y ≤ 9;x+ y 6= 0. Dann ist b = x+ y und

c =
√

2a− b =
√

2(10x+ y)− (x+ y) =
√

19x+ y

Wiederum aus der Gültigkeit der Dreiecksungleichungen folgt

a = 10x+ y < b+ c = x+ y +
√

19x+ y, 9x <
√

19x+ y ≤
√

19x+ 9, 81x2 ≤ 19x+ 9

Offensichtlich ist diese Ungleichung nur für x = 0 erfüllt. Das heißt, a ist einstellig, und es gilt b = a, c =√
2a− b =

√
2a− a =

√
a. Damit c ganzzahlig wird, muss a eine Quadratzahl sein: a ∈ {1; 4; 9}.

1. Aus a = 1 folgt b = 1, c = 1. Das Dreieck ist gleichseitig, seine Höhe h = 1
2
√

3 < 1+1
2 , es ist nicht

Lösung der Aufgabe.
2. Aus a = 4 folgt b = 4, c =

√
4 = 2. Das Dreieck ist gleichschenklig mit der Basis c = 2. Wegen ha < c

und hb < c ist hc = hmax =
√

42 − 11 > 3 > 4+1
2 . Das Dreieck erfüllt die Bedingung der Aufgabe.

3. Aus a = 9 folgt analog zu 2. b = 9, c = 3, hc = hmax =
√

92 − 1,52 > 8 > 9+1
2 . Auch dieses Dreieck

erfüllt die Bedingung der Aufgabe.

Aufgabe 13/89
Man beweise die Richtigkeit des Satzes: Für jede Zahl n ∈ N,n > 0 gilt, dass das geometrische Mittel
aller ihrer positiven Teiler (einschließlich der trivialen) gleich

√
n ist.

Die Zahl n ∈ N habe k Teiler ai mit i ∈ N, 0 < i ≤ k. Zu jedem Teiler ai existiert eineindeutig ein
Komplementärteiler n

ai
(der gleich ai sein kann). Mit P sei das Produkt aller Teiler bezeichnet. Dann gilt

P 2 =
(

k∏
i=1

ai

)2

=
k∏
i=1

ai ·
k∏
i=1

ai =
k∏
i=1

ai ·
k∏
i=1

n

ai
=

k∏
i=1

ai ·
n

ai
=

k∏
i=1

n = nk

Zieht man die 2k-te Wurzel, so folgt die Behauptung: k
√
P =

√
n.

Aufgabe 14/89
Gegeben sei ein Parallelogramm ABCD mit E als Halbierungspunkt der Seite CD. In welchem
Verhältnis teilt die Verbindungslinie BE die Diagonale AC?

Es sei M der Diagonalschnittpunkt des Parallelogramms. Wir betrachten das Dreieck DBC. In ihm sind
CM und BE Seitenhalbierende (CM : Im Parallelogramm halbieren die Diagonalen einander; BE: nach
Voraussetzung).
Ist S der Schnittpunkt der Seitenhalbierenden, so gilt CS : SM = 2 : 1 (nach dem Satz ”Im Dreieck teilt
der Schnittpunkt der Seitenhalbierenden diese im Verhältnis 2 : 1”). Dann gilt aber

CS : SA = 2 : (1 + 3) = 2 : 4 = 1 : 2 oder AS : SC = 2 : 1

Das heißt, BE drittelt die Diagonale AC.

Aufgabe 15/89
Man bestimme alle natürlichen Zahlen n, die der Gleichung n! + 1 = (10n+ 1)2 genügen!

Folgende Überlegungen führen rasch zum Ziel:
1. Für n = 1 ist 1! + 1 < (10 · 1 + 1)2

2. Da die Fakultätsfunktion stärker wächst als die Quadratfunktion, kann es höchstens eine Lösung geben.
3. Wegen 10 · 9 · 8 > 101 und 7 · 6 · 5 > 101 gilt sicher 10! + 1 > (10 · 10 + 1)2. Daraus folgt: Wenn die
Gleichung eine Lösung n ∈ N hat, ist 1 < n < 10.
4. Wir schachteln n ein, indem wir die in Frage kommenden Intervalle jeweils (etwa) halbieren. Für n = 5
ist 5! + 1 < (10 · 5 + 1)2, also gilt 5 < n < 10. Für n = 7 ist 7! + 1 = 5041 = 712 = (10 · 7 + 1)2. Demnach
ist n = 7 die (einzige) Lösung der gegebenen Gleichung.
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Aufgabe 16/89
Gesucht sind alle arithmetischen Folgen 1. Ordnung, bei denen alle Glieder ganzzahlig sind und
das 1., das 3. und das 4. Glied mit den gleich nummerierten Gliedern einer geometrischen Folge
übereinstimmen.

Wenn es eine Folge {ak} gibt, die den Bedingungen der Aufgabe genügt, so ist ihr Bildungsgesetz ak = a1+
(k−1)d, wobei a1 und d ganze Zahlen sind; weiter existiert dann eine Folge {gk} mit dem Bildungsgesetz
gk = g1 · qk−1, g1 6= 0, und es gelten die Gleichungen

a1 = g1 6= 0; a3 = a1 + 2d = g3 = g2
1 (1); a4 = a1 + 3d = g4 = g1q

3 (2)

Aus (1) folgt d = 0,5a1(q2 − 1) (3). Setzt man dies in (2) ein; so erhält man wegen a1 = g1 6= 0 die in q
kubische Gleichung q3 − 1,5q2 + 0,5 = 0 mit den Lösungen q1 = q2 = 1, q3 = −0,5.
Aus (3) ergibt sich dann d1 = d2 = 0, d3 = −0,375a1. Die Doppellösung liefert also den Trivialfall der
konstanten Folgen mit ganzzahligem 0. Die Lösung q = −0,5, d = −0,375a1 erfordert a1 ≡ 0 (mod 8),
also a1 = 8a mit einer beliebigen ganzen Zahl a 6= 0, damit d ganzzahlig wird. Es ist dann d = −3a, und
die gesuchten (nichttrivialen) Folgen haben das Bildungsgesetz ak = 8a − 3(k − 1)a = a(11 − 3k) mit
einer beliebigen ganzen Zahl a 6= 0.
Zusatz: Die entsprechende geometrische Folge hat dann das Bildungsgesetz gk = 8a(−0,5)k−1 und es ist
a1 = 8a = g1, a3 = 2a = g3, a4 = −a = g4.

Aufgabe 17/89
Gegeben seien eine Gerade g und ein Punkt P außerhalb von g. Gesucht ist die Menge aller Punkte
Q in der von g und P aufgespannten Ebene, für die es einen Punkt R auf der Geraden g derart gibt,
dass das Dreieck QPR gleichseitig ist.

Wir drehen die durch g und P bestimmte Ebene mit P als Drehzentrum um 60◦ im mathematisch
positiven und negativen Drehsinn. Dadurch ergeben sich die Bildgeraden g′ und g′′.
Behauptung: Alle Punkte Q ∈ g′ ∪ g′′ und nur diese bilden die gesuchte Menge.
Beweis: Es sei zunächst Q ∈ g′ (bzw. g′′). Man macht die Drehung rückgängig, so geht g′ (bzw. g′′) in g
und Q in einen Punkt R ∈ g über. Wegen ]OPR = 60◦ und QP = PR ist das Dreieck gleichseitig. Ist
Q dagegen ein Punkt, für den Q /∈ g′ und Q /∈ g′′ gilt, so geht bei der Rückdrehung zwar g′ bzw. g′′ in g
über, aber Q in einen Punkt R /∈ g. Ist also das Dreieck OPR gleichseitig sowie Q /∈ g′ und Q /∈ g′′, so
ist R /∈ g.

Aufgabe 18/89
Es ist zu beweisen, dass 299 + 1 ohne Rest durch 683 teilbar ist.

Wir verwenden den Hilfssatz: ”Wenn eine Zahl n ∈ N restlos durch eine Zahl k ∈ N teilbar ist, so ist sie
auch durch jeden Faktor von k restlos teilbar.” (Der Beweis ist trivial: Ist k = a·bmit a; b ∈ N, 1 < a; b < k,
und gilt k | n’ so gilt n = k ·m = a · b ·m mit m ∈ N , also a | n.)
Der geforderte Beweis ist demnach geführt, wenn gezeigt ist, dass n = 299 + 1 ohne Rest durch ein
Vielfaches von 683 teilbar ist. Dabei liegt es nahe, ein Vielfaches zu suchen, das als Summe aus einer
Potenz von 2 und 1 darstellbar ist.
Nun ist 3 ·683 = 2049 = 211 +1 und 299 +1 : (211 +1) = 288−277 +266−255 +244−233 +222−211 +1 ∈ N .

Aufgabe 19/89
Man schreibe alle Lösungen der Gleichung

x4 − (2D +R− 4)x3 +D(d+ 2R− 8)x2 −D2(R− 4)x = 0

mit D + 4 < R < 4 in nicht fallender Folge ohne zwischengesetzte Interpunktionszeichen auf!

Offensichtlich ist x1 = 0 eine Wurzel der Gleichung. Für x 6= 0 gilt

x3 − (2D +R− 4)x2 +D(D + 2R− 8)x−D2(R− 4) = 0
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Nach dem Wurzelsatz des Vieta kann man x2 = x3 = D,x4 = R − 4 vermuten. Die Probe bestätigt die
Richtigkeit der Vermutung. Wegen D + 4 < R < 4 folgt weiter D < R− 4 < 0, und damit ist DDR− 40
die Lösung der Aufgabe.

Aufgabe 20/89
Man ermittle alle Tripel (x; y; z) natürlicher Zahlen x, y, z, für die die Gleichung x+ y+ z+ 2 = xyz
gilt.

Da die Gleichung in den Variablen symmetrisch ist, setzen wir zunächst y = x+a, z = x+ b mit a; b ∈ N .
Die Gleichung nimmt dann die Gestalt an:

x+ x+ a+ x+ b+ 2 = x(x+ a)(x+ b), 3x+ a+ b+ 2 = x3 + (a+ b)x2 + abx

1. Sei x = 1. Dann folgt nach Vereinfachung ab = 4’ also a = 1 und b = 4 oder a = b = 2 (a = 4 und
b = 1 stellt nur eine Vertauschung von y und z dar und wird später erfasst), und wir erhalten die ersten
Lösungen (die durch die Probe bestätigt werden):
1.1. x = 1; y = 2; z = 5 und 1.2. x = 1; y = 3; z = 3.
2. Sei x = 2. Dann folgt nach Vereinfachung 3(a+ b) + 2ab = 0. Diese Gleichung ist für a; b ∈ N nur mit
a = b = 0 erfüllbar, und wir erhalten die (durch die Probe bestätigte) dritte Lösung: x = 2; y = 2; z = 2.
3. Sei x ≥ 3, also x = 3 + c mit c ∈ N . Dann folgt nach Vereinfachung 0 = 16 + f(a; b; c), wobei
f(a; b; c) ≥ 0 gilt. Diese Gleichung ist für kein Tripel (a; b; c) mit a; b; c ∈ N erfüllbar. Damit existiert
keine Lösung für x ≥ 3.
Da x = 0 offenbar keine Lösung liefert, sind damit (bis auf die Reihenfolge) alle Tripel gefunden. Durch
Vertauschen ergeben sich insgesamt 10 Lösungen:
(1; 2; 5), (1; 5; 2), (2; 1; 5), (2; 5; 1), (5; 1; 2), (5; 2; 1), (1; 3; 3), (3; 1; 3), (3; 3; 1), (2; 2; 2).

Lösung von Katrin Böhme:

Man kann leicht nachprüfen, dass keine der Zahlen x, y, z gleich null sein kann. Weiterhin können auch
nicht zwei der Zahlen gleichzeitig gleich 1 sein.
O.B.d.A. nehmen wir x ≤ y ≤ z an. Dann gilt x ≥ 1 und y ≥ 2 sowie

x+ y + z + 2 = xyz → y + z + 2 = x(yz − 1) → y + z + 2
yz − 1 = x ≥ 1 (1)

y + z + 2 ≥ yz − 1 → z + 3 ≥ y(z − 1) → z + 3
z − 1 ≥ y ≥ 2 (2)

z + 3 ≥ 2z − 2 → 5 ≥ z

Damit ist die Lösungsmenge eingeschränkt:
Die größte der drei Zahlen x, y, z ist nicht größer als 5. Mit Hilfe von (1) und (2) ergeben sich nun die
Lösungen

(x = 1, y = 3, z = 3), (x = 1, y = 2, z = 5), (x = 2, y = 2, z = 2)

sowie die daraus folgenden Permutationen.

Lösung von Karsten Wolter:

1. x = y = z = 0 ist keine Lösungen.
2. Die Annahme x > 2, y > 2, z > 2 (also x = 2 + x, y = 2 + y, z = 2 + z mit x, y, z > 0) führt auf einen
Widerspruch.
3. Aus der Symmetrie der Gleichungen bezüglich x, y und z folgt die Symmetrie der Lösungen.
Damit sind o.B.d.A. nur folgende zwei Fälle zu untersuchen:

1. z = 1: Es folgt y = x+3
x−1 . Ganzzahlige (natürliche!) Lösungen existieren nur für x = 2, y = 5; x = 3, y =

3; x = 5, y = 2.

2. z = 2: Es folgt y = x+4
2x−1 . Ganzzahlige (natürliche!) Lösungen existieren nur für x = 1, y = 5;

x = 2, y = 2; x = 5, y = 1.
Aus 3. folgen durch Permutation insgesamt 10 Lösungen.

Lösung von Gerhard Fritzsche:
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Zunächst sei x ≤ y ≤ z angenommen. Sicher ist x 6= 0, da die Annahme x = 0 auf einen Widerspruch
führt. Ebenso führt die Annahme x = y = 1 auf einen Widerspruch.
Es sei (x; y; z) eine Lösung der Gleichung. Wird nun eine der Zahlen x, y, z um 1 vergrößert, so wächst
die linke Seite um 1, die rechte dagegen um das Produkt der beiden anderen Zahlen, also um mehr als
1. Wenn also, ausgehend von der Lösung (x; y; z), eine weitere Lösung gefunden werden soll, so muss
mindestens eine der Zahlen vergrößert und eine andere verkleinert werden.

Zunächst werde x = y = z gesetzt, Dann folgt 3x + 2 = x3, und diese Gleichung hat die Lösung x = 2
und x = −1 (Doppellösung).
Folglich ist (x; y; z) = (2; 2; 2) ein Lösung.
Beim Übergang zu weiteren Lösungen muss mindestens eine der Zahlen kleiner als 2 sein. Angenommen,
es sei dies x = 1.
Wir setzen y = z und erhalten die Gleichung 2y + 3 = y2 mit den Lösungen y = z = 3 und y = z = −1.
Folglich ist (x; y; z) = (1; 3; 3) eine Lösung.

Falls weitere Lösungen existieren, muss y < 3, z > 3 gelten. Da x = y = 1 ausgeschlossen ist, bleibt nur
y = 2. Man erhält z + 5 = 2z, also z = 5. Das ergibt die dritte Lösung (x; y; z) = (1; 2; 5).
Das Verfahren ist damit erschöpft, weitere Lösungen können nicht existieren. Lässt man nunmehr die
Annahme x ≤ y ≤ z fallen, so erhält man durch Permutation insgesamt 10 Lösungstripel.

Aufgabe 21/89
Man beweise: Ist n eine ungerade natürliche Zahl, so sind in der Dezimalbruchentwicklung von (

√
26+

5)n die ersten n Stellen nach dem Komma mit Nullen besetzt.

Zur Lösung verwenden wir einen Hilfssatz: ”Sind a; b;n ∈ N und n ungerade, so haben in dem Term
(a + b)n − (a − b)n die Potenzen von a sämtlich gerade Exponenten.” Der Beweis folgt unmittelbar aus
dem binomischen Lehrsatz. Aus diesem Hilfssatz folgt, dass

(
√

26 + 5)n − (
√

26− 5)n = k ∈ N

Nun gilt
k < (

√
26 + 5)n = k + (

√
26− 5)n.

Aus (
√

26 + 5)(
√

26− 5) = 1 folgt weiter

(
√

26− 5) = (
√

26 + 5)−1 < (
√

25 + 5)−1 = 10−1

Demnach ist (
√

26 + 5)n = k + (
√

26− 5)n < k + 10−n, w.z.b.w.

Aufgabe 22/89
Es ist das Gleichungssystem

x+ yz = y + xz = z + xy = a

für eine fest vorgegebene reelle Zahl a in Tripeln (x; y; z) reeller Zahlen x; y; z zu lösen!

1. Da das System in den Variablen x; y; z symmetrisch ist, sind mit einem Lösungstripel (xi; yi; zi) auch
alle seine Permutationen Lösungstripel.

2. Aus der ersten Gleichung folgt durch äquivalente Umformung x − y = z(x − y). Diese Gleichung ist
genau für x = y oder für z = 1 erfüllt.

2.1. Es sei zunächst x = y. Dann nimmt das System die Gestalt x + zx = z + x2 = a an. Mit der
Substitution z = a− x2 folgt x+ (a− x2)x = a, also x3 − x(a+ 1) + a = 0. Offensichtlich ist x1 = 1 eine
Lösung dieser kubischen Gleichung. Damit ergibt sich ein erstes Lösungstripel: (x11; y11; z11) = (1; 1; a−1).
Durch Permutation folgen daraus zwei weitere, wenn a = 2 ist: (x12; y12; z12) = (1; a−1; 1), (x13; y13; z13) =
(a− 1; 1; 1).
Durch Partialdivision mit x− 1 folgt aus der kubischen Gleichung die quadratische x2 + x− a = 0, also
x = a− x2 = z.
Die reellen Lösungen dieser Gleichung sind x2 = 0,5(

√
4a+ 1 − 1);x3 = −0,5(

√
4a+ 1 + 1), wobei

a ≥ −0,2 vorauszusetzen ist (andernfalls existieren keine reellen Lösungen; im Falle der Gleichheit ist
x2 = x3). Damit erhält man xi = yi = zi für i = 2; 3 und die beiden Lösungstripel (x2; y2; z2) =
(x2;x2;x2), (x3; y3; z3) = (−x2;−x2;−x2). Für a = 2 ist x2 = x11.
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2.2. Es sei nun z = 1. Dann nimmt das System die Gestalt x+ y = 1 + xy = a an. Mit der Substitution
y = a− x folgt 1 + x(a− x) = a’ also x2 − ax+ a− 1 = 0.
Die Lösungen dieser Gleichung liefern nochmals Tripel (x1i; y1i; z1i), ergeben also nichts Neues.
Damit existieren genau 5 Tripel, wenn a > −0,25; a 6= 2, genau 4 Tripel, wenn a = −0,25 und genau 3
Tripel, wenn a < −0,25 ist. Ist a = 2, so existieren genau 2 Tripel.

Aufgabe 23/89
Eine Folge sei durch das Bildungsgesetz

ak = p · k · (k + 1) + 1

gegeben, wobei p eine Primzahl und k > 0 ist. Das 7. Glied sei das Quadrat einer Primzahl P . Man
ermittle alle möglichen Paare (p;P ).

Aus a7 = p · 7 · 8 + 1 = P 2 folgt P 2 − 1 = 56p. Sicher ist P > 3. Dann ist P ≡ ±1 (mod 3) und P 2 ≡ 1
(mod 3), also P 2 − 1 ≡ 0 (mod 3).
Wegen 56 6= 550 (mod 3) folgt p ≡ 0 (mod 3) und damit (wegen der Primzahleigenschaft von p) p =
3, P 2 = 3 · 56 + 1 = 169, P = 13. Also ist (p;P ) = (3; 13) das einzig mögliche Paar.

Aufgabe 24/89
Es sei n ∈ N eine im Dezimalsystem echt vierstellige Zahl; ihre Darstellung im Positionssystem mit
der Basis b 6= 10 (b ∈ N, b ≥ 2) ist 1549.
Diese Darstellung unterscheidet sich von der im Dezimalsystem genau an den beiden mittleren Stellen.
Man berechne b und n.

Es seien a1; a2 ∈ N, 0 ≤ a1; a2 ≤ 9 die unbekannten Ziffern der beiden mittleren Stellen im Dezimalsystem
und b = 10 + k mit einer ganzen Zahl k ≥ 1 (da in der Darstellung im b-System die Ziffer 9 vorkommt,
gilt b > 9 und wegen b 6= 10 sogar b ≥ 11). Dann gilt die Gleichung

n = 1000 + 100a2 + 10a1 + 9 = (10 + k)3 + 5(10 + k)2 + 4(10 + k) + 9

Vereinfacht und durch 10 dividiert, ergibt sich

10a2 + a1 = 3k2 + 40k + 54 + k3 + 5k2 + 4
10

Damit die linke Seite dieser Gleichung zweistellig bleibt, muss k < 2, also k = 1 sein. Damit ist 10a2+a1 =
98; b = 11 und n = 1989.
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2.30 Aufgaben und Lösungen 1990

Aufgabe 1/90
Ein Ehepaar gab eine Silvesterparty mit n Gästen (n ∈ N,n < 100). Wenn jeder der Anwesenden
mit jedem anderen genau einmal angestoßen hätte, wären die Gläser genau m-mal erklungen. (m =
k2, k ∈ N).
Wieviele Gäste waren anwesend?

Auf der Party waren n + 2 Personen anwesend. Die Anzahl der ”Anstöße” ist damit m = k2 = 0,5(n +
2)(n+ 1). Da (n+ 2) und (n+ 1) zueinander teilerfremd sind, folgt, dass entweder 0,5(n+ 2) und (n+ 1)
oder 0,5(n + 1) und (n + 2) Quadratzahlen sein müssen, wenn m Quadratzahl sein soll. Man muss also
prüfen, ob für 1 ≤ n < 100 (es wird wenigstens ein Gast vorausgesetzt)
1. die ungeraden Quadratzahlen (n+ 2) eine Quadratzahl 0,5(n+ 1) oder
2. die ungeraden Quadratzahlen (n+ 1) eine Quadratzahl 0,5(n+ 2) liefern.
Eine Überprüfung mit n = 7; 8; 23; 24; 47; 48; 79; 80 ergibt, dass zwei Lösungen existieren:
n1 = 7, n1 + 2 = 9 = 32, 0,5(n1 + 1) = 4 = 22 und n2 = 48, n2 + 1 = 49 = 72, 0,5(n2 + 2) = 25 = 52. Es
waren also entweder 7 oder 48 Gäste anwesend.

Aufgabe 2/90
Das Viereck ABCD mit den festliegenden Seiten AB = a,BC = b, CD = c und DA = d sowie
den noch nicht bestimmten Winkeln ]DAB = α,]ABC = β,]BCD = γ und ]CDA = δ sei ein
Tangentenviereck.
Welche Bedingungen müssen die Seiten erfüllen, wenn es zugleich ein Sehnenviereck sein soll?

In einem Tangentenviereck sind bekanntlich die Summen der gegenüberliegenden Seiten einander gleich.
Demnach gilt a+c = b+d. In einem Sehnenviereck ist bekanntlich die Summe gegenüberliegender Winkel
gleich 180◦. Es muss also gelten α+ γ = β + δ = 180◦.
Nun gilt für die Diagonalen AC und BD nach dem Kosinussatz

AC2 = a2 + b2 − 2ab cosβ = c2 + d2 − 2cd cos δ = c2 + d2 + 2cd cos δ

(wegen δ = 180◦ − β) und

BD2 = a2 + d2 − 2ad cosα = b2 + c2 − 2bc cos γ = b2 + c2 + 2bc cosα

(wegen γ = 180◦ − α). Daraus folgt

cosα = a2 + d2 − b2 − c2

2(ad+ bc) ; cosβ = a2 + b2 − c2 − d2

2(ab+ cd)

Reelle Lösungen für α und β und damit für γ und δ existieren genau dann, wenn∣∣∣∣a2 + d2 − b2 − c2

2(ad+ bc)

∣∣∣∣ ≤ 1 ;
∣∣∣∣a2 + b2 − c2 − d2

2(ab+ cd)

∣∣∣∣ ≤ 1

ist. Dass dies tatsächlich realisierbar ist, zeigt das Beispiel des Quadrates, aber auch das Drachenviereck
mit 2a = b = c = 2d u.a.

Aufgabe 3/90 Es ist zu untersuchen, ob es Polynome m-ten Grades

P (n) =
m∑
i=0

ain
i

mit ganzzahligen Koeffizienten ai gibt, bei denen für jede natürliche Zahl n (0 eingeschlossen) die
Kongruenz gilt:

|3n − P (0)| ≡ 0 (mod 8)
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Es ist P (0) = a0. Da 3n ≡ (2 ± 1) (mod 8) ist (je nachdem, ob n gerade oder ungerade ist), kann die
Kongruenz

|3n − P (0)| ≡ |(2± 1)− a0| ≡ 0 (mod 8)
für kein n ∈ N und kein P (n) erfüllt werden. Lautete die linke Seite der Kongruenz jedoch |3n − P (n)|,
so wäre

3n = (2 + 1)n =
n∑
k=0

(
n

k

)
2n−k =

n−3∑
k=0

(
n

k

)
2n−k + 2n2 + 1

und für n ≥ 3 gilt
n−3∑
k=0

(
n

k

)
2n−k = 8

n−3∑
k=0

(
n

k

)
2n−k−3 ≡ 0 (mod 8)

Deshalb ist sicher P ∗(n) = 2n2 + 1 ein Polynom, das die Bedingungen der Aufgabe erfüllt (dies gilt auch
für n = 0; 1; 2, wie man durch Ausrechnen leicht nachprüft). Addiert man zu P ∗(n) das 8fache eines

Polynoms i-ten Grades P ∗∗(n) =
l∑
i=0

bin
i mit ganzen Koeffizienten bi’ so wird diese Kongruenz nicht

verändert:

P (n) = 2n2 + 1 + 8
l∑
i=0

bin
i

(bi ganz). Es gilt für jede natürliche Zahl n die Kongruenz

|3n − P (n)| =

∣∣∣∣∣8
n−3∑
k=0

(
n

k

)
2n−k−3 − 8

l∑
i=0

bin
i

∣∣∣∣∣ ≡ 0 (mod 3)

Aufgabe 4/90
Es sei a eine reelle Zahl. Man löse das folgende Gleichungssystem in reellen Zahlen x, y, z. Welche
Werte von a sind ausgeschlossen?

ax+ y + z = 1
x+ ay + z = a

x+ y + az = a2

Offensichtlich muss a 6= 1 sein, dafür a = 1 die drei Gleichungen ineinander übergehen und damit das
System unbestimmt ist. Addiert man die drei Gleichungen, so erhält man (a+ 2)(x+ y+ z) = 1 + a+ a2.
Offensichtlich muss a 6= −2 sein, da a = −2 auf den Widerspruch 0 = 3 führt. Wegen a+ 2 6= 0 ist diese
Gleichung

x+ y + z = 1 + a+ a2

a+ 2
äquivalent. Subtrahiert man diese Gleichung von jeder Gleichung des gegebenen Systems, so erhält man
(mit a reell, a 6= 1, a 6= 2)

x = −a+ 1
a+ 2; y = 1

a+ 2; z = (a+ 1)2

a+ 2

Aufgabe 5/90
Wenn eine Primzahl p in der Form p = an+ bn mit a; b;n ∈ N, a; b;n > 1 darstellbar ist, muss n = 2k
mit k ∈ N, k > 0 sein.
Man beweise die Richtigkeit dieser Behauptung!

Wir beweisen die Richtigkeit der äquivalenten Aussage: ”Wenn eine natürliche Zahl p in der Form p =
an + bn mit a; b;n ∈ N, a; b;n > 1 darstellbar und n 6= 2k mit k ∈ N, k > 0 ist, kann p nicht Primzahl
sein”.
Genau dann, wenn n 6= 2k mit k ∈ N ; k > 0 ist, enthält die Primfaktorenzerlegung von n wenigstens
einen ungeraden Faktor u = 2m+ 1 mit m ∈ N ;m ≥ 1: n = u · v mit v ∈ N ; v > 0, und es folgt

p = an + bn = auv + buv = (av)u + (bv)v = Au +Bu

431



2.30 Aufgaben und Lösungen 1990

Nun ist jedes Polynom Au +Bu mit ungeradem u sicher restlos durch A+B teilbar:

p = Au +Bu = (A+B)(Au−1 −Au−2B +Au−3B2 +−...Bu−1)

Dabei ist A + B 6= 1 (wegen A = av > 1 und B = bv > 1 bei a; b; v ∈ N ; a; b > 1’ v > 0) und
A+B < p = Au +Bu (wegen A < Au und B < Bu bei A;B;u ∈ N ; A;B > 1, u > 1). Also ist von p ein
echter Teiler abspaltbar, p kann damit nicht Primzahl sein.

Aufgabe 6/90
Welche Bedingungen müssen die reellen Konstanten a; b > 0 erfüllen, wenn die Funktion

f(x) = ax − bx

a− b

für x0 ≥ 0 ein Maximum haben soll?

Wegen der Symmetrie bezüglich a und b genügt es, die Funktion a > b zu untersuchen. Da ein konstanter
Faktor 1

a−b keinen Einfluss auf Existenz und Lage von Extremwertstellen hat, kann man die Funktion
f(x) = ax−bx

a−b in unserem Fall durch die Funktion ϕ(x) = ax − bx ersetzen. Notwendig für die Existenz
von Extremwerten an Stellen x0 ist

ϕ′(x0) = ax0 ln a− bx0 ln b = 0 also x0 =
ln ln b

ln a
ln a− ln b

Ist nun a > 1 und a > b, so ist (wegen der strengen Monotonie der ln-Funktion) ln a > ln b und damit
ln b
ln a < 1, also ln ln b

ln a < 0, ln a − ln b > 0 und folglich x0 < 0 im Widerspruch zur Forderung der Aufgabe
x0 ≥ 0. Demnach muss 0 < a; b1 gelten.
Für f(x) = ax−bx

a−b folgt damit als notwendige Bedingung für die Existenz eines Maximums, dass 0 <
a; b < 1 gilt.

Aufgabe 7/90
Drei Mathematiker sitzen am Abend in fröhlicher Runde beisammen. Einer von ihnen sagt: ”Soeben
waren es noch h Stunden, m Minuten und s Sekunden bis Mitternacht, wobei h, m und s drei
Primzahlen sind, die der Gleichung 3s = h + m genügen.” Darauf antwortet der zweite: ”Auch die
Anzahl der Minuten bis Mitternacht war eine Primzahl.” Und der dritte sagt nach einem Blick auf
den Taschenrechner: ”Sogar die Anzahl der Sekunden war Primzahl.”
Wie spät war es?

Folgende Überlegungen führen zur Lösung:
1. Sicher ist h ≤ 7, da man sonst nicht ”am Abend” sagen dürfte.
2. Sicher ist eine der drei Primzahlen h, m und s gerade. Wäre dies s, so wäre 3s = 6 = h + m, also
h = m = 3, und die Anzahl der Minuten bis Mitternacht wäre 60h + m = 183, also keine Primzahl.
Demnach ist s ≥ 3 und entweder h = 2 oder m = 2 (der Fall s = h = m = 2 scheidet offensichtlich aus).
3. Wäre m = 2, so wäre auf keinen Fall die Anzahl der Minuten bis Mitternacht 60h+ 2 eine Primzahl.
Also ist h = 2 und m ≥ 3.
4. Sicher ist m < 60. Wegen h = 2 und 3s = h+m muss m+ 2 durch 3 teilbar sein. Es kommen also für
m nur die Primzahlen 7; 13; 19; 31; 37 und 43 in Frage. Für m = 43 ergibt sich für s keine Primzahl, und
für m = 13 ist die Anzahl der Minuten bis Mitternacht gleich 133 = 7 · 19, also keine Primzahl.
5. Es verbleiben nur noch die Möglichkeiten m1 = 7,m2 = 19,m3 = 31 und m4 = 37. Für die Anzahlen
Si der Sekunden bis Mitternacht ergeben sich S1 = 7623 = 32 · 7 · 112, S2 = 8347 = 17 · 491, S3 = 9071 =
47 · 193 und S4 = 9433. Nur S4 ist Primzahl.
6. Damit ergibt sich als Zeitpunkt 2 h 37 min 13 s vor Mitternacht. Es war 21 h 22 min 47 s.

Aufgabe 8/90
Es sei n eine im Dezimalsystem echt m-stellige (m ≥ 2) natürliche Zahl, die restlos durch 11 teilbar
ist. Durch Umkehr der Ziffernfolge entsteht aus ihr die (nicht notwendig echt m-stellige) natürliche
Zahl n′. Wie viele Summen n+ n′ sind restlos durch 11 teilbar?
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Durch Umkehr der Ziffernfolge ändert sich die alternierende Quersumme höchstens um das Vorzeichen.
Daher ist mit n stets auch n′ und folglich auch die Summe n+n′ restlos durch 11 teilbar. Es gibt demnach
ebenso viele restlos durch 11 teilbare Summen n+n′, wie es restlos durch 11 teilbare m-stellige natürliche
Zahlen n gibt. Für deren Anzahl l gilt

l =
[

10m

11

]
−
[

10m−1

11

]
= 9 · 10m−1 + (−1)m

11

Dabei bedeutet
[
a
b

]
den ganzen Anteil des Bruches a

b .

Aufgabe 9/90
Es seien a, b und c die Seitenlängen eines ebenen Dreiecks. Man beweise:
Gilt a4 + b4 = c4, so ist das Dreieck spitzwinklig.

Wenn für die Seitenlängen a, b und c eines ebenen Dreiecks die Gleichung a4 + b4 = c4 gilt, ist c die
größte Seite des Dreiecks und demzufolge der ihr gegenüberliegende Winkel γ der größte Winkel.
Angenommen, das Dreieck wäre nicht spitzwinklig. Dann gälte nach dem Kosinussatz c2 ≥ c2+2ab cos γ =
a2 + b2 (wegen cos γ ≤ 0; es gilt π

2 ≤ γ < π). Daraus folgt

c4 ≥ (a2 + b2)2 = a4 + 2a2b2 + b4 > a4 + b4

Wenn also das Dreieck nicht spitzwinklig ist, dann ist a4 + b4 < c4 im Widerspruch zur Voraussetzung
a4 + b4 = c4. Damit ist die Annahme falsch; das Dreieck ist spitzwinklig.
Zusatz: Die Bedingung a4 +b4 = c4 ist für die Spitzwinkligkeit hinreichend, aber nicht notwendig. Es gibt
spitzwinklige Dreiecke, für die sie nicht gilt, z.B. das gleichseitige Dreieck. Ein Beispiel für ein Dreieck,
in dem sie gilt, ist das gleichschenklige mit a = b = 3, c = 4

√
162.

Aufgabe 10/90
Welche Tripel (x; y; z) von Primzahlen genügen der Gleichung x3 − y3 − z3 = 6y(y + 2)?

Da die rechte Seite der Gleichung sicher positiv ist, muss auch die linke Seite positiv sein. Also ist
x > y; z ≥ 2. Da die rechte Seite der Gleichung sicher gerade ist, muss auch die linke Seite gerade sein.
Also ist entweder y = 2, z ≥ 3 oder y ≥ 3, z = 2. Sei zunächst y = 2, z ≥ 3. Dann nähme die Gleichung
nach Umformung die Gestalt

x3 − z3 = (x− z)(x2 + xz + z2) = 56 = 7 cot 8

an. Aus der Eindeutigkeit der Primfaktorzerlegung folgt entweder

x2 + xz + z2 = 7, x− z = 8 oder x2 + xy + z2 = 8, x− z = 7

Diese Gleichungssysteme haben jedoch keine rationalen Zahlen, erst recht keine Primzahlen x; z als
Lösung. Folglich gilt y ≥ 3, z = 2. Damit nimmt das Gleichungssystem die Gestalt

x3 = y3 + 6y2 + 12y + 8 = y3 + 3y2 · 2 + 3y2 · 22 + 23 = (y + 2)2

an, woraus sofort x = y + 2 folgt. Demnach sind alle Tripel (x; y = x − 2; z = 2) Lösung, wenn x und
y = x− 2 Primzahlzwillinge sind (wobei y die kleinere der beiden Primzahlen ist).

Aufgabe 11/90
Gegeben seien zwei Würfel mit den Kantenlängen a LE und b LE (a 6= b, a; b > 0), bei denen die
Differenzen der Rauminhalte und der Grundflächeninhalte zahlenmäßig einander gleich sind.
Welche Bedingung müssen a und b erfüllen?

Es soll gelten a3 − b3 = a2 − b2’ und wegen a 6= b folgt daraus

a2 + ab+ b2 = a+ b, a = 1
2(1− b±

√
1− 3b2 + 2b) = 1

2(1− b±
√

(1− b)(3b+ 1))

Die Kante a wird genau dann reell, wenn 1 − b ≥ 0, also 0 ≤ b ≤ 1 ist; wegen a; b > 0 entfallen jedoch
b = 0 und b = 1. Demnach muss 0 < b < 1 sein. Da die Ausgangsgleichung in a und b symmetrisch ist,
muss für a die gleiche Bedingung gelten: 0 < a; b < 1.

433



2.30 Aufgaben und Lösungen 1990

Aufgabe 12/90
Man bestimme alle Tripel (x, y, z) nichtnegativer ganzer Zahlen x, y und z, die der diophantischen
Gleichung 3x + 4y + 5z = 30 genügen und deren Summe s = x + y + z eine Primzahl ist, durch
logisches Schließen (der Lösungsweg über systematisches Probieren ist also ausgeschlossen!).

Ist (x,y,z) mit x; y; z ≥ 0 und ganzzahlig ein Lösungstripel der gegebenen diophantischen Gleichung, so
gilt für die Summe s = x+y+z wegen 3s ≤ 3x+4y+5z = 30 und 5s ≥ 3x+4y+5z = 30 die Ungleichung
6 ≤ s ≤ 10.
Wegen der Primzahleigenschaft von s folgt daraus s = 7 = x + y + z. Subtrahiert man 3s bzw. 4s von
der gegebenen Gleichung, so erhält man y = 9− 2z, x = z − 2.
Wegen x, y ≥ 0 folgt nun 2 ≤ z ≤ 4. Damit erhält man die drei Lösungstripel (0; 5; 2), (1; 3; 3) und
(2; 1; 4). Die Probe bestätigt, dass alle drei Tripel die Bedingungen der Aufgabe erfüllen.

Aufgabe 13/90
Man ermittle alle Lösungen des Gleichungssystems

p2
1 + p2

2 = p3(p1 + p2) (1) ; p1p2p3 − 8 = p4 (2)

in Primzahlen pi(i = 1; 2; 3; 4).

Zunächst beschränken wir uns auf die Lösung der Gleichung (1). Es ist

p2
1 + p2

2 = (p1 + p2)2 − 2p1p2 = p3(p1 + p2)

wegen der Ganzzahligkeit der pi und wegen p1 + p2 > 0 gilt p1 + p2) | 2p1p2. Von den 7 möglichen Fällen
kann man 4 schnell ausscheiden:
1. p1 + p2 6= 2, da p1; p2 ≥ 2.
2. p1 + p2 6= p1, da p2 > 0.
3. p1 + p2 6= p2, da p1 > 0.
4. p1 +p2 6= 2p1p2, da aus p1 +p2 = 2p1p2 folgt p2 = p1(2p2−1) und sich damit wegen p1 > 1, 2p2−1 > 1
keine Primzahl p2 ergäbe.
Es verbleiben demnach die Möglichkeiten
5. p1 + p2 = 2p1; es folgt p1 = p2 und aus (1) p1 = p2 = p3;
6. p1 + p2 = 2p2 (Folgerung wie unter 5.);
7. p1 + p2 = p1p2, p2 = p1(p2 − 1) mit p2 = p1 = p3 = 2 (Spezialfall von 5. und 6.),
Also ist in jedem möglichen Fall p1 = p2 = p3 = p. Damit nimmt die Gleichung (2) die Gestalt p3−8 = p4

an. Nun ist
p3 − 8 = (p− 2)(p2 + 2p+ 4)

höchstens dann eine Primzahl, wenn ein Faktor gleich 1 ist. Wegen (p2 +2p+4) > 1 kann dies nur (p−2)
sein: p− 2 = 1, p = 3.
Damit folgt aber p3 − 8 = 33 − 8 = 19 = p4. Es existiert also genau eine Lösung des Systems: p1 = p2 =
p3 = 3, p4 = 19.

Aufgabe 14/90
Gegeben sei ein gleichseitiges Bogendreieck, dessen Bogen einander in den Ecken tangieren. Wie groß
ist sein Flächeninhalt A, wenn der Bogenradius r = 1 LE beträgt?

Zieht man durch jede Ecke des Bogendreiecks eine Senkrechte auf der Bogentangente, so entsteht ein
gleichseitiges Dreieck mit der Seitenlänge a = 2r = 2 LE. Der gesuchte Flächeninhalt ergibt sich dann als
Differenz aus dem Flächeninhalt AD = r2√3 =

√
3 LE2 des Dreiecks und der Summe der Flächeninhalte

AS = 1
6r

2π = π
6 LE2 von drei Kreissektoren mit dem Radius r = 1 LE und dem Zentriwinkel α = 60◦:

A = AD − 3AS =
(√

3− 3 · π6

)
=
(√

3− π

2

)
FE ≈ 0,161 FE
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Aufgabe 15/90
Es ist zu untersuchen, ob die Gleichung 3n = 104m+ 1 mit m;n ∈ N,m;n > 0 Lösungen hat!

Im dekadischen System existieren 104 verschiedene Möglichkeiten für die letzten vier Stellen einer Zahl.
Also gibt es unter 104 + 1 Potenzen der Zahl 3 wenigstens zwei verschiedene, die mit den gleichen vier
Ziffern enden. Es seien dies 3k und 3l mit k; l ∈ N , wobei O.B.d.A. 0 < k < l sei. Dann gilt

3l − 3k = 3k(3l−k − 1) = 104r

mit r ∈ N, r > 0. Da 3k und 104 (außer 1) keinen gemeinsamen Teiler haben, ist 3k Teiler von r: r = 3km
mit m ∈ N,m > 0. Damit folgt

3k(3k−l − 1 = 104r = 1043k ·m

und wegen 3k 6= 0 mit l − k = n > 0: 3n − 1 = 104m mit m;n ∈ N,m;n > 0.

Aufgabe 16/90
Gesucht sind alle Primzahlen pi = 1000 + i mit der Quersumme Q(pi) = 4 (dabei sei i die Nummer
der Primzahl in der nach der Größe geordneten Primzahlfolge).

Die i-te Primzahl kann nicht kleiner sein als die i-te ungerade Zahl, da 1 keine und 2 die einzige gerade
Primzahl ist:

pi = 1000 + i ≥ 2i− 1 also i ≤ 1001

Demnach ist pi ≤ 2001; wegen 3 | 2001 und 2 | 2000 gilt sogar pi ≤ 1999. Damit ist i ≤ 999; sind a0, a1
und a2 die Dezimalziffern von i, so gilt

i = 100a2 + 10a1 + a0; a2 + a1 + a0 = 3

Die Möglichkeiten a0 = 0 und a0 = 2 entfallen, da sonst pi durch 2 teilbar und somit keine Primzahl
wäre; auch a0 = 3 entfällt, da daraus a2 = a1 = 0, pi = 1003 = 17 · 59 folgt. Also ist a0 = 1, a2 +a 1 = 2.
Damit verbleiben 3 Möglichkeiten: 1) a2 = 0; a1 = 2; pi = 1021 = p21 (entfällt, da p21 = 73),
2) a2 = 1; a1 = 1; pi = 1111 = 11 · 101 (entfällt),
3) a2 = 2; a1 = 0; pi = 1201 = p201 (entfällt, da p197 = 1201).
Da weitere Möglichkeiten durch den Lösungsweg ausgeschlossen sind, existiert keine Lösung der Aufgabe.

Aufgabe 17/90
Es ist zu beweisen, dass die reellen Zahlen x; y; z genau dann positiv sind, wenn für sie die Unglei-
chungen gelten:

x+ y + z > 0 (1)
xy + yz + xz > 0 (2)

xyz > 0 (3)

Wenn die Zahlen x; y; z sämtlich positiv sind, gelten die Ungleichungen trivialerweise. Es ist also nur zu
zeigen, dass wenigstens eine Ungleichung nicht gilt, wenn nicht alle dieser Zahlen positiv sind.
1. ist eine dieser Zahlen gleich null, so gilt (3) nicht.
2. Ist eine ungerade Anzahl dieser Zahlen negativ, so gilt (3) nicht.
3. Sind genau 2 dieser Zahlen negativ (O.B.d.A. seien dies y und z), so folgt aus der Gültigkeit von (1)
die Ungleichung x > −(y + z) (1a), aus der Gültigkeit von (2) die Ungleichung yz > −x(y + z) (2a).
Durch Einsetzen von (1a) in (2a) ergibt sich

yz > x(−(y + z)) > (−y(y + z))(−(y + z)) = (y + z)2 = y2 + 2yz + z2 → 0 > y2 + yz + z2 > 0

(die Zahlen y2; yz; z2 sind mit Sicherheit positiv). Also führt die Annahme, (1) und (2) würden gelten,
auf einen Widerspruch; mindestens eine dieser beiden Ungleichungen gilt also nicht.
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Aufgabe 18/90
Man ermittle alle (im Dezimalsystem) vierstelligen Zahlen mit folgender Eigenschaft: Multipliziert
man sie mit der Zahl, die genau dieselben Ziffern in umgekehrter Reihenfolge enthält, so ergibt sich
eine durch 1000 teilbare achtstellige Zahl.

Folgende Überlegungen führen zum Ziel:
1. Da das Produkt achtstellig sein soll, können die gesuchten Zahlen nicht auf null enden.
2. Da das Produkt durch 1000 teilbar sein soll, muss ein Faktor durch 125, nicht aber durch 250 (wegen
1.)’ der andere durch 8 teilbar sein.
3. Demnach hat die Hälfte der gesuchten Zahlen die Gestalt

1000a+ 125 oder 1000a+ 375 oder 1000a+ 625 oder 1000a+ 875

mit a ∈ N, 0 < a ≤ 9. 4. Für den zweiten Faktor ergibt sich dann

5210 + a oder 5730 + a oder 5260 + a oder 5780 + a.

5. Damit für die zweiten Faktoren die Teilbarkeit durch 8 erzielt wird, muss in den ersten beiden Fällen
a = 6, in den letzten beiden Fällen a = 4 sein.
6. Damit erfüllen die folgenden 8 Zahlen die gestellte Bedingung:
6125; 6375; 4625; 4875; 5216; 5736; 5264; 5784. Durch den Lösungsweg sind weitere Zahlen ausgeschlossen.

Aufgabe 19/90
Das Polynom P (x) = x3 + 7x2 + 4x+ c habe drei reelle Nullstellen. Man zeige, dass es kein Intervall
der Länge 6 gibt, in dem alle drei Nullstellen liegen.

Die vorausgesetzten drei Nullstellen seien x1, x2 und x3 mit x1 ≤ x2 ≤ x3. Dann ist

(x3 − x2)(x2 − x1) = x1x2 + x2x3 − x1x3 − x2
2 ≥ 0

durch äquivalente Umformung folgt daraus

x2
1+x2

2+x2
3−x1x2+x2x3−x3x1 ≤ x2

3+x2
1−2x3x1 → (−x1−x2−x3)2−3(x1x2+x2x3+x3x1) ≤ (x3−x1)2

Nach dem Wurzelsatz des Vieta ist −x1 − x2 − x3 = 7 und x1x2 + x2x3 + x3x1 = 4. Damit nimmt die
letzte Ungleichung die Gestalt

72 − 3 · 4 = 37 ≤ (x3 − x1)2

an. Durch Radizieren folgt die Behauptung: 6 <
√

37 ≤ x3 − x1.

Aufgabe 20/90
Man zeige, dass die Ungleichung

√
1 +
√

2 +
√

3 + ...+
√
n <

1
4n(n+ 3)

für jede natürliche Zahl n > 1 gilt!

Die gegebene Ungleichung kann man in der Form
n∑
i=1

√
i · 1 < 1

4n(n+ 3)

schreiben. Nach der Ungleichung zwischen dem arithmetischen und dem geometrischen Mittel gilt
√
i · 1 ≤

i+1
2 , wobei das Gleichheitszeichen genau für i = 1 gilt. Demnach ist

n∑
i=1

√
i · 1 <

n∑
i=1

i+ 1
2 = 1

2

(
n+ 1

2 n+ n

)
= 1

4n(n+ 3)
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Ende 1990 wurden die Mathematikaufgaben der Zeitschrift ”Wissenschaft und Fortschritt” eingestellt.
Daher gibt es keine offiziellen Lösungsvorschläge für die Aufgaben 21/90 bis 24/90.

Aufgabe 21/90
Es sei f(x) ein Polynom mit ganzzahligen Koeffizienten, das an 5 voneinander verschiedenen ganzzah-
ligen Stellen xi (i = 1; ...; 5) den Wert f(xi) = p annimmt (wobei p eine Primzahl ist). Man beweise,
dass f(x) keine ganzzahligen Nullstellen hat!

Lösung von StrgAltEntf:

Besäße f(x) eine ganzzahlige Nullstelle, ließe sich von f(x) ein linearer Faktor abspalten:

f(x) = g(x) · h(x), wobei g(x) = x− b

Die fünf Werte g(xi) sind alle verschieden. Da f(xi) = g(xi) · h(xi) = p, kommen für g(xi) aber nur die
vier Zahlen 1, -1, p und −p infrage. Dies ist ein Widerspruch.
Damit kann f(x) keine ganzzahligen Nullstellen besitzen.

Aufgabe 22/90
Man ermittle alle im Dezimalsystem vierstelligen natürlichen Zahlen n mit folgenden Eigenschaften:
1. Alle Ziffern ai und die Quersumme Q von n sind Primzahlen.
2. Es gilt n = Q · P + 2, wobei P das Querprodukt von n ist.

Lösung von Kitaktus:

Wären alle vier Ziffern von n ungerade oder wären zwei Ziffern gleich 2 und die anderen ungerade, dann
wäre Q gerade und mindestens 4 und daher keine Primzahl.
Da alle Ziffern von n Primzahlen sind, sind also nur zwei Fälle möglich
a) Genau eine Ziffer ist 2, die anderen sind ungerade Primzahlen, also 3, 5 oder 7.
b) Genau drei Ziffern sind 2, die andere ist eine ungerade Primzahlen, also 3, 5 oder 7.

Im Fall b) ist Q höchstens 2 + 2 + 2 + 7 = 13 und P ist höchstens 2 · 2 · 2 · 7 = 56. QP + 2 ist daher
höchstens 13 · 56 + 2 = 730 und daher nicht vierstellig.
Es bleibt also Fall a)

Da eine der vier Ziffer gerade ist, ist auch P und damit auch QP + 2 gerade. Die letzte Ziffer von n ist
also 2.
Die ersten drei Ziffern sind also mindestens 3. Es gilt daher 3332 ≤ n = QP + 2, also 3330 ≤ QP . Wegen
Q ≤ 7+7+7+2 = 23 folgt daraus P ≥ 145. Das Produkt der drei ungeraden Ziffern muss also mindestens
73 sein. Ordnet man diese drei Ziffern der Größe nach, so entfallen die Fälle 333, 335, 337. Es bleiben
355, 357, 377, 555, 557, 577 und 777.
Wir berechnen nun für alle diese Fälle Q, P und QP + 2

Ziffern Q P QP + 2
355 15 150 2252
357 17 210 3572
377 19 294 5588
555 17 250 4252
557 19 350 6652
577 21 490 10292
777 23 686 15778

Nur für die Ziffern 3, 5, 7 besteht QP + 2 = 3572 aus lauter Primzahlen. Offensichtlich erfüllt 3572 alle
Bedingungen der Aufgabe und ist daher die einzige Lösung.

Aufgabe 23/90
Gesucht ist die kleinste natürliche Zahl n > 1000 mit folgenden Eigenschaften:
1. Die Ziffernfolge von n ist symmetrisch.
2. Die Primfaktorzerlegung von n enthält genau zwei Primfaktoren p1 und p2 in 1. Potenz.
3. Bei Division durch p1 lässt p2 den Rest 5.
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2.30 Aufgaben und Lösungen 1990

Lösung von Kitaktus:

Die Zahl 1991 = 11 · 181 mit p1 = 181 und p2 = 11 erfüllt wegen 181 = 16 · 11 + 5 alle Bedingungen der
Aufgabe. Wir zeigen nun, dass dies die kleinste Lösung ist.
Angenommen, es gäbe eine kleinere solche Zahl n > 1000. Dann ist n vierstellig und hat die Dezimaldar-
stellung 1yy1 mit y ∈ {0,1,...,8}. Es gilt:

• 1001 = 7 · 11 · 13. Entfällt, da drei Primfaktoren mit Vielfachheit 1.

• 1111 = 11 · 101. Entfällt, da 11 6≡ 5 (mod 101) und 101 ≡ 2 6≡ 5 (mod 11).

• 1221 = 3 · 11 · 37. Entfällt, da drei Primfaktoren mit Vielfachheit 1.

• 1331 = 11 · 11 · 11. Entfällt, da kein Primfaktoren mit Vielfachheit 1.

• 1441 = 11 · 131. Entfällt, da 11 6≡ 5 (mod 131) und 131 ≡ 10 6≡ 5 (mod 11).

• 1551 = 3 · 11 · 47. Entfällt, da drei Primfaktoren mit Vielfachheit 1.

• 1661 = 11 · 151. Entfällt, da 11 6≡ 5 (mod 151) und 151 ≡ 8 6≡ 5 (mod 11).

• 1771 = 7 · 11 · 23. Entfällt, da drei Primfaktoren mit Vielfachheit 1.

• 1881 = 32 · 11 · 19. Entfällt, da 11 6≡ 5 (mod 19) und 19 ≡ 8 6≡ 5 (mod 11).

Es gibt also keine Zahl < 1991, die die Bedingungen der Aufgabe erfüllt. 1991 ist demnach die kleinste
solche Zahl.

Anmerkung:
Die Bedingung 2. ist mehrdeutig formuliert. Ist gemeint, dass n genau zwei Primteiler hat und diese in
Vielfachheit 1 auftreten, oder, dass n genau zwei Primteiler mit Vielfachheit 1 hat, eventuell aber weitere
Primteiler mit höherer Vielfachheit?
Im ersten Fall ist 1881 = 32 · 11 · 19 ausgeschlossen, im zweiten Fall nicht.
Bei der ersten Interpretation kann man auch ohne Fallunterscheidung zeigen, dass für y nur der Wert 9
in Frage kommt.

Aufgabe 24/90

P R O S T
- N E U

J A H R

Es sind alle Belegungen der 11 Variablen mit allen 10 Ziffern 0, ..., 9 zu finden, die eine richtige
Rechnung ergeben. Zur Beschränkung der Lösungsmenge wird festgelegt: Die Ziffern für E und H
werden bei der Angabe des Silvesterdatums benötigt.

Lösung von Kitaktus:

Führende Nullen sind unzulässig. Wegen PROST = JAHR +NEU ≤ 9999 + 999 = 10998 kann P nur
1 und R nur 0 sein. Außerdem muss dann J = 9 sein.
Wegen R = 0 folgt auch T = U (Einerziffer).

Die Ziffern E und H werden zur Angabe des Silvesterdatums benötigt. Das ist der 31.12. E und H
müssen daher 1, 2 oder 3 sein. S ist dann E +H (ein Zehnerübertrag ist weder auf der Einer- noch auf
der Zehnerstelle möglich). Für E, H und S ergeben sich die Möglichkeiten

E H S E H SE H S
1 1 2 1 2 3 1 3 4
2 1 3 2 2 4 2 3 5
3 1 4 3 2 5 3 3 6

Zum Schluss muss noch A + N = 10 + O gelten (Hunderterziffer mit notwendigem Übertrag für die
Tausenderziffer). Damit sind für ANO folgende Fälle möglich:
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A N O A N O A N O A N O A N O
1 9 0 2 8 0 2 9 1 3 7 0 3 8 1
3 9 2 4 6 0 4 7 1 4 8 2 4 9 3
5 5 0 5 6 1 5 7 2 5 8 3 5 9 4
6 4 0 6 5 1 6 6 2 6 7 3 6 8 4
6 9 5 7 3 0 7 4 1 7 5 2 7 6 3
7 7 4 7 8 5 7 9 6 8 2 0 8 3 1
8 4 2 8 5 3 8 6 4 8 7 5 8 8 6
8 9 7 9 1 0 9 2 1 9 3 2 9 4 3
9 5 4 9 6 5 9 7 6 9 8 7 9 9 8

Die neun Lösungen für EHS lassen sich beliebig mit den 45 Lösungen für ANO kombinieren. T = U
kann einen beliebigen Wert annehmen.

Möglicherweise ist die Aufgabe so gemeint, dass auch alle Ziffern 0,...,9 mindestens einmal vorkommen
müssen.
Da es 11 Buchstaben sind und T = U ist, müssen alle Ziffern ansonsten paarweise verschieden sein. Für
E und H kommen dann nur noch 2 und 3 bzw. 3 und 2 in Frage und S ist somit 5.
Belegt sind damit R = 0, P = 1, E,H = 2 und 3, S = 5, J = 9. Für A, N , O und T = U bleiben noch
die Ziffern 4, 6, 7 und 8.

Wegen A+N = 10 +O ist 10 +O höchstens 8+7=15 und O damit gleich 4. A und N sind dann 6 und
8. Für T = U bleibt noch die 7 übrig.
Es gibt also genau vier Lösungen:

R = 0, P = 1, E = 2, H = 3, O = 4, S = 5, A = 6, T = U = 7, N = 8, J = 9
R = 0, P = 1, E = 2, H = 3, O = 4, S = 5, N = 6, T = U = 7, A = 8, J = 9
R = 0, P = 1, H = 2, E = 3, O = 4, S = 5, A = 6, T = U = 7, N = 8, J = 9
R = 0, P = 1, H = 2, E = 3, O = 4, S = 5, N = 6, T = U = 7, A = 8, J = 9
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