ZAHLENTAFELN

ZAHLEN WERTE FORMELN

INHALTSVERZEICHNIS

TAFEL 1	Quadrate	2
TAFEL 2	Quadratwurzeln	4
TAFEL 3	n^3 , $\sqrt[3]{n}$, πn , $\frac{\pi}{4}n^2$, πn^2 , $\frac{\pi}{6}n^3$, $\frac{1}{n}$ und Primfaktorzerlegung für $n=1$ bis 100	ć
TAFEL 4	Primzahlen bis 1000	8
TAFEL 5	Maße 1. Gesetzliche Vorsätze für Vielfache und Teile von Grundeinheiten und von abgeleiteten Einheiten mit selbständigen Namen 2. Wichtige physikalisch-technische Maßeinheiten	8
TAFEL 6	Einige nichtmetrische Maße	12
TAFEL 7	Gesetzliche Grundlagen für den Arbeitsschutz	12
TAFEL 8	Physikalisch-technische Tafeln 1. Verschiedene Geschwindigkeiten 2. Schnittgeschwindigkeiten und Drehzahlen bei Werkzeugmaschinen 3. Drehzahlen in der Minute 4. Windstärke nach BEAUFORT 5. Einige bemerkenswerte Temperaturen 6. Physikalische Eigenschaften einiger fester Stoffe 7. Physikalische Eigenschaften einiger Flüssigkeiten	13
	8. Physikalische Eigenschaften einiger Gase 9. Berechnungsmassen von Lagergütern, Bodenarten, Baustoffen und Schüttgütern 10. Umrechnung von Kilowatt in Pferdestärke	
TAFEL 9	Aus der Landwirtschaft 1. Tausendkornnasse 2. Zusammensetzung von Stalldungarten 3. Düngungsbeispiele für einige landwirtschaftliche Kulturpftaneen in kg/ha	17
TAFEL 10	Geographische Tafeln 1. Fläche, Wohnbevölkerung und Bevölkerungsdichte der Deutschen Demokratischen Republik 2. Erdeile, Fläche und Bevölkerung 3. Meeresflächen 4. Gebiete und Bevölkerung der Länder 5. Inseln 6. Berge 7. Flüsse 8. Seen 9. Seekanäle 10. Entfernungen im Flugverkehr im Inland 11. Entfernungen im Flugverkehr mit dem Ausland 12. Kürzeste Verbindungen zwischen einigen Städten der DDR	18
TAFEL 11	Mathematische Zeichen, Sätze und Formeln 1. Mathematische Zeichen 2. Griechisches Alphabet 3. Runden von Zahlen 4. Arithmetik 5. Algebra 6. Geometrie 7. Graphische Darstellungen	25

I [000711]

Zahl	0	I	2	3	4	5	6	7	8	9
1,0	1,000	1,020	1,040	1,061	1,082	1,103	1,124	1,145	1,166	1,188
1,1	1,210	1,232	1,254	1,277	1,300	1,323	1,346	1,369	1,392	1,416
1,2	1,440	1,464	1,488	1,513	1,538	1,563	1,588	1,613	1,638	1,664
1,3	1,690	1,716	1,742	1,769	1,796	1,823	1,850	1,877	1,904	1,932
1,4	1,960	1,988	2,016	2,045	2,074	2,103	2,132	2,161	2,190	2,220
1,5	2,250	2,280	2,310	2,341	2,372	2,403	2,434	2,465	2,496	2,528
1,6	2,560	2,592	2,624	2,657	2,690	2,723	2,756	2,789	2,822	2,856
1,7	2,890	2,924	2,958	2,993	3,028	3,063	3,098	3,133	3,168	3,204
1,8	3,240	3,276	3,312	3,349	3,386	3,423	3,460	3,497	3,534	3,572
1,9	3,610	3,648	3,686	3,725	3,764	3,803	3,842	3,881	3,920	3,960
2,0	4,000	4,040	4,080	4,121	4,162	4,203	4,244	4,285	4,326	4,368
2,1	4,410	4,452	4,494	4,537	4,580	4,623	4,666	4,709	4,752	4,796
2,2	4,840	4,884	4,928	4,973	5,018	5,063	5,108	5,153	5,198	5,244
2,3	5,290	5,336	5,382	5,429	5,476	5,523	5,570	5,617	5,664	5,712
2,4	5,760	5,808	5,856	5,905	5,954	6,003	6,052	6,101	6,150	6,200
2,5	6,250	6,300	6,350	6,401	6,452	6,503	6,554	6,605	6,656	6,708
2,6	6,760	6,812	6,864	6,917	6,970	7,023	7,076	7,129	7,182	7,236
2,7	7,290	7,344	7,398	7,453	7,508	7,563	7,618	7,673	7,728	7,784
2,8	7,840	7,896	7,952	8,009	8,066	8,123	8,180	8,237	8,294	8,352
2,9	8,410	8,468	8,526	8,585	8,644	8,703	8,762	8,821	8,880	8,940
3,0	9,000	9,060	9,120	9,181	9,242	9,303	9,364	9,425	9,486	9,548
3,1	9,610	9,672	9,734	9,797	9,860	9,923	9,986	10,05	10,11	10,18
3,2	10,24	10,30	10,37	10,43	10,50	10,56	10,63	10,69	10,76	10,82
3,3	10,89	10,96	11,02	11,00	11,16	11,22	11,29	11,36	11,42	11,49
3,4	11,56	11,63	11,70	11,76	11,83	11,90	11,97	12,04	12,11	12,18
3,5	12,25	12,32	12,39	12,46	12,53	12,60	12,67	12,74	12,82	12,89
3,6	12,96	13,03	13,10	13,18	13,25	13,32	13,40	13,47	13,54	13,62
3,7	13,69	13,76	13,84	13,91	13,99	14,06	14,14	14,21	14,29	14,36
3,8	14,44	14,52	14,59	14,67	14,75	14,82	14,90	14,98	15,05	15,13
3,9	15,21	15,29	15,37	15,44	15,52	15,60	15,68	15,76	15,84	15,92
4,0	16,00	16,08	16,16	16,24	16,32	16,40	16,48	16,56	16,65	16.73
4,1	16,81	16,89	16,97	17,06	17,14	17,22	17,31	17,39	17,47	17,56
4,2	17,64	17,72	17,81	17,89	17,98	18,06	18,15	18,23	18,32	18,40
4,3	18,49	18,58	18,66	18,75	18,84	18,92	19,01	19,10	19,18	19,27
4,4	19,36	19,45	19,54	19,62	19,71	19,80	19,89	19,98	20,07	20,16
4,5	20,25	20,34	20,43	20,52	20,61	20,70	20,79	20,88	20,98	21,07
4,6	21,16	21,25	21,34	21,44	21,53	21,62	21,72	21,81	21,90	22,00
4,7	22,00	22,18	22,28	22,37	22,47	22,56	22,66	22,75	22,85	22,94
4,8	23,04	23,14	23,23	23,33	23,43	23,52	23,62	23,72	23,81	23,91
4,9	24,01	24,11	24,21	24,30	24,40	24,50	24,60	24,70	24,80	24,90
5,0	25,00	25,10	25,20	25,30	25,40	25,50	25,60	25,70	25,81	25,91
5,1	26,01	26,11	26,21	26,32	26,42	26,52	26,63	26,73	26,83	26,94
5,2	27,04	27,14	27,25	27,35	27,46	27,56	27,67	27,77	27,88	27,98
5,3	28,09	28,20	28,30	28,41	28,52	28,62	28,73	28,84	28,94	29,05
5,4	29,16	29,27	29,38	29,48	29,59	29,70	29,81	29,92	30,03	30,14
5,5	30,25	30,36	30,47	30,58	30,69	30,80	30,91	31,02	31,14	31,25
Zahl	0	1	2	3	4	5	6	7	8	9

Rückt das Komma in der Zahl um eine Stelle nach rechts (links), so rückt es in der Quadratzahl zwei Stellen nach rechts (links).

Quadrate der Zahlen 5,50 bis 10,09

Zahl	0	1	2	3	4	5	6	7	8	9
5,5	30,25	30,36	30,47	30,58	30,69	30,80	30,91	31,02	31,14	31,25
5,6	31,36	31,47	31,58	31,70	31,81	31,92	32,04	32,15	32,26	32,38
5,7	32,49	32,60	32,72	32,83	32,95	33,06	33,18	33,29	33,41	33,52
5,8	33,64	33,76	33,87	33,99	34,11	34,22	34,34	34,46	34,57	34,69
5,9	34,81	34,93	35,05	35,16	35,28	35,40	35,52	35,64	35,76	35,88
6,0	36,00	36,12	36,24	36,36	36,48	36,60	36,72	36,84	36,97	37,09
6,1	37,21	37,33	37,45	37,58	37,70	37,82	37,95	38,07	38,19	38,32
6,2	38,44	38,56	38,69	38,81	38,94	39,06	39,19	39,31	39,44	39,56
6,3	39,69	39,82	39,94	40,07	40,20	40,32	40,45	40,58	40,70	40,83
6,4	40,96	41,09	41,22	41,34	41,47	41,60	41,73	41,86	41,99	42,12
6,5	42,25	42,38	42,51	42,64	42,77	42,90	43,03	43,16	43,30	43,43
6,6	43,56	43,69	43,82	43,96	44,09	44,22	44,36	44,49	44,62	44,76
6,7	44,89	45,02	45,16	45,29	45,43	45,56	45,70	45,83	45,97	46,10
6,8	46,24	46,38	46,51	46,65	46,79	46,92	47,06	47,20	47,33	47,47
6,9	47,61	47,75	47,89	48,02	48,16	48,30	48,44	48,58	48,72	48,86
7,0	49,00	49,14	49,28	49,42	49,56	49,70	49,84	49,98	50,13	50,27
7,1	50,41	50,55	50,69	50,84	50,98	51,12	51,27	51,41	51,55	51,70
7,2	51,84	51,98	52,13	52,27	52,42	52,56	52,71	52,85	53,00	53,14
7,3	53,29	53,44	53,58	53,73	53,88	54,02	54,17	54,32	54,46	54,61
7,4	54,76	54,91	55,06	55,20	55,35	55,50	55,65	55,80	55,95	56,10
7,5	56,25	56,40	56,55	56,70	56,85	57,00	57,15	57,30	57,46	57,61
7,6	57,76	57,91	58,06	58,22	58,37	58,52	58,68	58,83	58,98	59,14
7,7	59,29	59,44	59,60	59,75	59,91	60,06	60,22	60,37	60,53	60,68
7,8	60,84	61,00	61,15	61,31	61,47	61,62	61,78	61,94	62,09	62,25
7,9	62,41	62,57	62,73	62,88	63,04	63,20	63,36	63,52	63,68	63,84
8,0	64,00	64,16	64,32	64,48	64,64	64,80	64,96	65,12	65,29	65,45
8,1	65,61	65,77	65,93	66,10	66,26	66,42	66,59	66,75	66,91	67,08
8,2	67,24	67,40	67,57	67,73	67,90	68,06	68,23	68,39	68,56	68,72
8,3	68,89	69,06	69,22	69,39	69,56	69,72	69,89	70,06	70,22	70,39
8,4	70,56	70,73	70,90	71,06	71,23	71,40	71,57	71,74	71,91	72,08
8,5	72,25	72,42	72,59	72,76	72,93	73,10	73,27	73,44	73,62	73,79
8,6	73,96	74,13	74,30	74,48	74,65	74,82	75,00	75,17	75,34	75,52
8,7	75,69	75,86	76,04	76,21	76,39	76,56	76,74	76,91	77,09	77,26
8,8	77,44.	77,62	77,79	77,97	78,15	78,32	78,50	78,68	78,85	79,03
8,9	79,21	79,39	79,57	79,74	79,92	80,10	80,28	80,46	80,64	80,82
9,0	81,00	81,18	81,36	81,54	81,72	81,90	82,08	82,26	82,45	82,63
9,1	82,81	82,99	83,17	83,36	83,54	83,72	83,91	84,09	84,27	84,46
9,2	84,64	84,82	85,01	85,19	85,38	85,56	85,75	85,93	86,12	86,30
9,3	86,49	86,68	86,86	87,05	87,24	87,42	87,61	87,80	87,98	88,17
9,4	88,36	88,55	88,74	88,92	89,11	89,30	89,49	89,68	89,87	90,06
9,5	90,25	90,44	90,63	90,82	91,01	91,20	91,39	91,58	91,78	91,97
9,6	92,16	92,35	92,54	92,74	92,93	93,12	93,32	93,51	93,70	93,90
9,7	94,09	94,28	94,48	94,67	94,87	95,06	95,26	95,45	95,65	95,84
9,8	96,04	96,24	96,43	96,63	96,83	97,02	97,22	97,42	97,61	97,81
9,9	98,01	98,21	98,41	98,60	98,80	99,00	99,20	99,40	99,60	99,80
10,0	100,0	100,2	100,4	100,6	100,8	101,0	101,2	101,4	101,6	101,8
Zahl		1	2	3	4	l 5	6	7	1 8	9

Beispiele: 4,63²=21,44 2,61²=6,812

46,3²=2144 0,261²=0,06812

4632=214 400 0,02612=0,000 6812

Quadratwurzeln der Zahlen 1,0 bis 50,9

Zahl	,0	,1	,2	,3	,4	,5	,6	,7	,8	,9
1	1,000	1,049	1,095	1,140	1,183	1,225	1,265	1,304	1,342	1,378
2	1,414	1,449	1,483	1,517	1,549	1,581	1,612	1,643	1,673	1,703
3	1,732	1,761	1,789	1,817	1,844	1,871	1,897	1,924	1,949	1,975
4	2,000	2,025	2,049	2,074	2,098	2,121	2,145	2,168	2,191	2,214
_5	2,236	2,258	2,280	2,302	2,324	2,345	2,366	2,387	2,408	2,429
6	2,449	2,470	2,490	2,510	2,530	2,550	2,569	2,588	2,608	2,627
7 8	2,646	2,665	2,683	2,702	2,720	2,739	2,757	2,775	2,793	2,811
8	2,828	2,846	2,864	2,881	2,898	2,915	2,933	2,950	2,966	2,983
9	3,000	3,017	3,033	3,050	3,066	3,082	3,098	3,114	3,130	3,146
10	3,162	3,178	3,194	3,209	3,225	3,240	3,256	3,271	3,286	3,302
11	3,317	3,332	3,347	3,362	3,376	3,391	3,406	3,421	3,435	3,450
12	3,464	3,479	3,493	3,507	3,521	3,536	3,550	3,564	3,578	3,592
13	3,606	3,619	3,633	3,647	3,661	3,674	3,688	3,701	3,715	3,728
14	3,742	3,755	3,768	3,782	3,795	3,808	3,821	3,834	3,847	3,860
15	3,873	3,886	3,899	3,912	3,924	3,937	3,950	3,962	3,975	3,987
16	4,000	4,012	4,025	4,037	4,050	4,062	4,074	4,087	4,099	4,111
17	4,123	4,135	4,147	4,159	4,171	4,183	4,195	4,207	4,219	4,231
18	4,243	4,254	4,266	4,278	4,290	4,301	4,313	4,324	4,336	4,347
19	4,359	4,370	4,382	4,393	4,405	4,416	4,427	4,438	4,450	4,461
20	4,472	4,483	4,494	4,506	4,517	4,528	4,539	4,550	4,561	4,572
21	4,583	4,593	4,604	4,615	4,626	4,637	4,648	4,658	4,669	4,680
22	4,690	4,701	4,712	4,722	4,733	4,743	4,754	4,764	4,775	4,785
23	4,796	4,806	4,817	4,827	4,837	4,848	4,858	4,868	4,879	4,889
24	4,899	4,909	4,919	4,930	4,940	4,950	4,960	4,970	4,980	4,990
25	5,000	5,010	5,020	5,030	5,040	5,050	5,060	5,070	5,079	5,089
26	5,099	5,109	5,119	5,128	5,138	5,148	5,158	5,167	5,177	5,187
27	5,196	5,206	5,215	5,225	5,235	5,244	5,254	5,263	5,273	5,282
28	5,292	5,301	5,310	5,320	5,329	5,339	5,348	5,357	5,367	5,376 5,468
29	5,385	5,394	5,404	5,413	5,422	5,431	5,441	5,450	5,459	
30	5,477	5,486	5,495	5,505	5,514	5,523	5,532	5,541	5,550	5,559
31	5,568	5,577	5,586	5,595	5,604	5,612	5,621	5,630	5,639	5,648
32	5,657	5,666	5,675	5,683	5,692	5,701	5,710	5,718	5,727	5,736
33	5,745	5,753	5,762	5,771	5,779	5,788	5,797	5,805	5,814	5,822
34	5,831	5,840	5,848	5,857	5,865	5,874	5,882	5,891	5,899	5,908
35	5,916	5,925	5,933	5,941	5,950	5,958	5,967	5,975	5,983	5,992
36	6,000	6,008	6,017	6,025	6,033	6,042	6,050	6,058	6,066	6,075
37	6,083	6,091	6,099	6,107	6,116	6,124	6,132	6,140	6,148	6,156
38	6,164	6,173	6,181	6,189	6,197	6,205	6,213	6,221	6,229	6,237
39 40	6,245	6,253	6,261	6,269	6,277	6,285	6,293	6,301	6,309	6,317
	6,325	6,332	6,340	6,348	6,356	6,364	6,372	6,380	6,387	6,395
41	6,403	6,411 6,488	6,419	6,427	6,434	6,442	6,450	6,458	6,465	6,473
42	6,481	6,565	6,496	6,504 6,580	6,512 6,588	6,519	6,527 6,603	6,535 6,611	6,542 6,618	6,550 6,62 6
43	6,557 6,633	6,641	6,573	6,656	6,663	6,595 6,671	6,678	6,686	6,693	6,701
44	6,708	6,716					<u>-</u>		6,768	
45			6,723	6,731	6,738	6,745	6,753	6,760		6,775
46	6,782 6,856	6,790	6,797	6,804	6,812	6,819	6,826	6,834	6,841	6,848
47 48	6,856 6,928	6,863 6,935	6,870 6,943	6,877 6,950	6,885	6,892 6,964	6,899 6,971	6,907 6,979	6,914	6,921 6,993
49	7,000	7,007	7,014	7,021	7,029	7,036	7,043	7,050	7,057	7,064
50	7,071	7,007	7,085	7,021	7,029	7,106		7,120	7,127	7,134
-										
Zahl	,0	,1	,2	,3	,4	,5	,6	,7	,8	,9

Rückt das Komma in der Zahl zwei Stellen nach rechts (links), so rückt es in der Quadratwurzel eine Stelle nach rechts (links).

Quadratwurzeln der Zahlen 50,0 bis 100,9

50 51 52	7,071	7,078								
52		7,070	7,085	7,092	7,099	7,106	7,113	7,120	7,127	7,134
	7,141	7,148	7,155	7,162	7,169	7,176	7,183	7,190	7,197	7,204
	7,211	7,218	7,225	7,232	7,239	7,246	7,253	7,259	7,266	7,273
53	7,280	7,287	7,294	7,301	7,308	7,314	7,321	7,328	7,335	7,342
.54	7,348	7,355	7,362	7,369	7,376	7,382	7,389	_7,396	7,403	7,409
55	7,416	7,423	7,430	7,436	7,443	7,450	7,457	7,463	7,470	7,477
56	7,483	7,490	7,497	7,503	7,510	7,517	7,523	7,530	7,537	7,543
57	7,550	7,556	7,563	7,570	7,576	7,583	7,589	7,596	7,603	7,609
58	7,616	7,622	7,629	7,635	7,642	7,649	7,655	7,662	7,668	7,675
59	7,681	7,688	7,694	7,701	7,707	7,714	7,720	7,727	7,733	7,740
60	7,746	7,752	7,759	7,765	7,772	7,778	7,785	7,791	7,797	7,804
61	7,810	.7,817	7,823	7,829	7,836	7,842	7,849	7,855	7,861	7,868
62	7,874	7,880	7,887	7,893	7,899	7,906	7,912	7,918	7,925	7,931
63	7,937	7,944	7,950	7,956	7,962	7,969	7,975	7,981	7,987	7,994
64	8,000	8,006	8,012	8,019	8,025	8,031	8,037	8,044	8,050	8,05 6
65	8,062	8,068	8,075	8,081	8,087	8,093	8,099	8,106	8,112	8,118
66	8,124	8,130	8,136	8,142	8,149	8,155	8,161	8,167	8,173	8,179
67	8,185	8,191	8,198	8,204	8,210	8,216	8,222	8,228	8,234	8,240
68	8,246	8,252	8,258	8,264	8,270	8,276	8,283	8,289	8,295	8,301
69	8,307	8,313	8,319	8,325	8,331	8,337	8,343	8,349	8,355	8,361
70	8,367	8,373	8,379	8,385	8,390	8,396	8,402	8,408	8,414	8,420
71	8,426	8,432	8,438	8,444	8,450	8,456	8,462	8,468	8,473	8,479
72	8,485	8,491	8,497	8,503	8,509	8,515	8,521	8,526	8,532	8,538
73	8,544	8,550	8,556	8,562	8,567	8,573	8,579	8,585	8,591	8,597
74	8,602	8,608	8,614	8,620	8,626	8,631	8,637	8,643	8,649	8,654
75	8,660	8,666	8,672	8,678	8,683	8,689	8,695	8,701	8,706	8,712
76	8,718	8,724	8,729	8,735	8,741	8,746	8,752	8,758	8,764	8,769
77	8,775	8,781	8,786	8,792	8,798	8,803	8,809	8,815	8,820	8,826
78	8,832 8,888	8,837 8,894	8,843 8,899	8,849 8,905	8,854 8,911	8,860	8,866	8,871	8,877	8,883
79						8,916	8,922	8,927	8,933	8,939
80	8,944	8,950	8,955	8,961	8,967	8,972	8,978	8,983	8,989	8,994
81	9,000	9,006	9,011	9,017	9,022	9,028	9,033	9,039	9,044	9,050
82	9,055	9,061	9,066	9,072	9,077	9,083	9,088	9,094	9,099	9,105
83	9,110 9,165	9,116	9,121 9,176	9,127 9,182	9,132 9,187	9,138	9,143 9,198	9,149 9,203	9,154	9,160 9,214
84										
85	9,220	9,225	9,230	9,236	9,241	9,247	9,252	9,257	9,263	9,268
86	9,274	9,279	9,284	9,290	9,295	9,301	9,306	9,311	9,317	9,322
87 88	9,327 9,381	9,333 9,386	9,338 9,391	9,343 9,397	9,349 9,402	9,354 9,407	9,359 9,413	9,365 9,418	9,370 9,423	9,375 9,429
89	9,301	9,439	9,445	9,450	9,455	9,460	9,466	9,410	9,423	9,482
90	9,487	9,492	9,497	9,503	9,508	9,513	9,518	9,524	9,529	9,534
										9,586
91	9,539	9,545	9,550 9,602	9,555 9,607	9,560 9,612	9,566 9,618	9,571 9,623	9,576 9,628	9,581 9,633	9,580
92 93	9,592 9,644	9,597 9,649	9,654	9,659	9,664	9,670	9,675	9,680	9,685	9,690
93	9,695	9,701	9,706	9,711	9,716	9,721	9,726	9,731	9,737	9,742
95	9,747	9,752	9,757	9,762	9,767	9,772	9,778	9,783	9,788	9,793
96	9,798	9,803	9,808	9,813	9,818	9,823	9,829	9,834	9,839	9,844
97	9,790	9,854	9,859	9,864	9,869	9,874	9,879	9,884	9,889	9,894
98	9,899	9,905	9,910	9,915	9,920	9,925	9,930	9,935	9,940	9,945
99	9,950	9,955	9,960	9,965	9,970	9,975	9,980	9,985	9,990	9,995
100	10,000		10,010	10,015		10,025		10,035	10,040	10,045
Zahl	,0	,ī	,2	,3	,4	,5	,6	,7	,8	,9

Beispiele: $\sqrt{8,8} = 2,966$ $\sqrt{0,088} = 0,2966$ $\sqrt{88} = 9,381$ $\sqrt{8800} = 93,81$

 n^3 , $\sqrt[3]{n}$, πn , $\frac{\pi}{4}n^2$, πn^2 , $\frac{\pi}{6}n^3$, $\frac{1}{n}$ und Primfaktorzerlegung für n=1 bis 50

n³	$\sqrt[3]{n}$	πn	$\frac{\pi}{4}n^2$	n	$\pi n^2 = \frac{1}{C}$	$\frac{\pi}{6}n^3$	$\frac{1}{n}$	Prim- faktoren von n
I	1,0000	3,1416	0,7854	1	3,1416	0.5236	1,000 000	<u> </u>
8	1,2599	6,2832	3,1416	2	12,566	4,1887		2
27	1,4422	9,4248	7,0686	3	28,274	14,137	0,333 333	3
64	1,5874	12,566	12,566	4	50,266	33,510	0,250 000	22
125	1,7100	15,708	19,635	5	78,540	65,449	0,200 000	5
216	1,8171	18,850	28,274	6	113,10	113,10	0,166 667	2 · 3
343	1,9129	21,991	38,485	7 8	153,94	179,59	0,142 857	2 ³
512 729	2,0000 2,0801	25,133 28,274	50,265 63,617	9	201,06 254,47	268,08 381,70	0,125 000 0,111 111	3 ²
1 000	2,1544	31,416	78,540	10	314,16	523,59	0,100 000	2 · 5
1 331	2,2240	34,558	95,033	11	380,13	696,90	0,000 000	-11
1 728	2,2894	37,699	113,10	12	452,39	904,76	0,083 333	22 . 3
2 197	2,3513	40,841	132,73	13	530,93	1 150,3	0,076 923	13
2 744	2,4101	43,982	153,94	14	615,75	1 436,7	0,071 429	2.7
3 375	2,4662	47,124	176,71	15	706,86	1 767,1	0,066 667	3 · 5
4 096	2,5198	50,265	201,06	16	804,25	2 144,6	0,062 500	24
4 913	2,5713	53,407	226,98	17	907,92	2 572,4	0,058 824	17
5 832	2,6207	56,549	254,47	18	1017,9	3 053,6	0,055 556	2 32
6 8 5 9	2,6684	59,690	283,53	_19_	1134,1	3 591,3	0,052 632	19
8 000	2,7144	62,832	314,16	20	1256,6	4 188,7	0,050 000	2 ² · 5
9 261	2,7589	65,973	346,36	21	1385,4	4 848,9	0,047 619	3 · 7
10 648	2,8020	69,115	380,13	22	1520,5	5 575,2	0,045 455	2 · 11
12 167	2,8439	72,257	415,48	23	1661,9	6 370,5	0,043 478	23
13 824	2,8845	75,398	452,39	_24_	1809,6	7 238,1	0,041 667	2 ³ · 3
15 625	2,9240	78,540	490,87	25	1963,5	8 181,1	0,040 000	5²
17 576	2,9625	81,681	530,93	26	2123,7	9 202,6	0,038 462	2 · 13
19 683	3,0000	84,823 87,965	572,56 615,75	27 28	2290,2 2463,0	10 306 11 494	0,037 037	3 ³ 2 ² · 7
21 952 24 389	3,0366 3,0723	91,106	660,52	29	2642,1	12 770	0,034 483	29
27 000	3,1072	94,248	706,86	30	2827,4	14 137	0,033 333	2 · 3 · 5
29 791	3,1414	97,389	754,77	31	3019,1	15 598	0,032 258	31
32 768	3,1748	100,53	804,25	32	3217,0	17 157	0,031 250	25
35 937	3,2075	103,67	855,30	33	3421,2	18 116	0,030 303	3 - 11
39 304	3,2396	106,81	907,92	_34	3631,7	20 579	0,029 412	2 · 17
42 875	3,2711	109,96	962,11	35	3848,5	22 449	0,028 571	5 · 7
46 656	3,3019	113,10	1017,9	36	4071,5	24 429	0,027 778	22 · 32
50 653	3,3322	116,24	1075,2	37	4300,8	26 521	0,027 027	37
54 872	3,3620	119,38	1134,1	38	4536,5	28 730	0,026 316	2 · 19
59 319	3,3912	122,52	1194,6	39 40	4778,4	31 059	0,025 641	3 · 13
64 000	3,4200	125,66	1256,6	41	5026,5	33 510	0,025 000	23 . 5
68 921 74 088	3,4482 3,4760	128,81	1320,3 1385,4	42	5281,0 5541,8	36 086 38 792	0,024 390 0,023 810	4I 2 · 3 · 7
79 507	3,5034	135,09	1452,2	43	5808,8	41 629	0,023 256	43
85 184	3,5303	138,23	1520,5	44	6082,1	44 601	0,022 727	2 ² · II
91 125	3,5569	141,37	1590,4	45	6361,7	47 712	0,022 222	3 ² · 5
97 336	3,5830	144,51	1661,9	46	6647,6	50 964	0,021 739	2 · 23
103 823	3,6088	147,65	1734,9	47	6939,8	54 360	0,021 277	47
110 592	3,6342	150,80	1809,6	48	7238,2	57 905	0,020 833	24 . 3
117 649	3,6593	153,94	1885,7	_49_	7543,0	61 601	0,020 408	72
125 000	3,6840	157,08	1963,5	50	7854,0	65 449	0,020 000	2 · 52

Anmerkung zu $\frac{1}{n}$: Perioden im Dezimalbruch sind auf 6 Stellen gerundet.

		ı	
•	ľ		
	٠	L	

n³	∛ <i>n</i>	πn = ' !	$\frac{\pi}{4} n^2 = A_c$	n	πn ³ :	$\frac{\pi}{6}$ n^3	<u>1</u>	Prim- faktoren von n
132 651	3,7084	160,22	2 042,8	51	8 171,3	69 454	0,019 608	3 · 17
140 608	3,7325	163,36	2 123,7	52	8 494,9	73 621	0,019 231	2º · 13
148 877	3,7563	166,50	2 206,2	53	8 824,7	77 950	0,018 868	53
157 464	3,7798	169,65	2 290,2	54	9 160,9	82 446	0,018 519	2 · 33
166 375	3,8030	172,79	2 375,8	_55_	9 503,3	87 112	0,018 182	5 · 11
175 616	3,8259	175,93	2 463,0	56	9 852,0	91 950	0,017 857	23 . 7
185 193	3,8485	179,07	2 551,8	57	10 207	96 965	0,017 544	3 19
195 112	3,8709	182,21	2 642,1	58	10 568	102 158	0,017 241	2 · 29
205 379	3,8930	185,35	2 734,0	_59_	10 936	107 534	0,016 949	59
216 000	3,9149	188,50	2 827,4	60_	11 310	113 095	0,016 667	22 · 3 · 5
226 981	3,9365	191,64	2 922,5	61	11 690	118 845	0,016 393	61
238 328	3,9579	194,78	3 019,1	62	12 076	124 786	0,016 129	2 · 31
250 047	3,9791	197,92	3 117,2	63	12 469	130 922	0,015 873	3 ² 7
262 144	4,0000	201,06	3 217,0	64	12 868	137 255	0,015 625	26
274 625	4,0207	204,20	3 318,3	65	13 273	143 790	0,015 385	5 · 13
287 496	4,0412	207,35	3 421,2	66	13 685	150 529	0,015 152	2 · 3 · 11
300 763	4,0615	210,49	3 525,7	67	14 103	157 476	0,014 925	67
314 432	4,0817	213,63	3 631,7	68	14 527	164 633	0,014 706	22 17
328 509	4,1016	216,77	3 739,3	-69	14 957	172 003	0,014 493	3 · 23
343 000	4,1213	219,91	3 848,5	70	I5 394	179 591	0,014 286	2 · 5 · 7
357 911	4,1408	223,05	3 959,2	71	15 837	187 398	0,014 085	71
373 248	4,1602	226,19	4 071,5	72	16 286	195 428	0,013 889	2 ³ · 3 ²
389 017	4,1793	229,34	4 185,4	73	16 742	203 685	0,013 699	73
405 224	4,1983	232,48	4 300,8	74	17 203	212 170	0,013 514	2 · 37
421 875	4,2172	235,62	4 417,9	75_	17 671	220 889	0,013 333	3 · 5 ² 2 ² · 10
438 976	4,2358	238,76	4 536,5 4 656,6	76	18 146 18 627	229 843	0,013 158	
456 533	4,2543	241,90 245,04	4 778,4	77 78	10 027	239 035	0,012 987	7 · 11 2 · 3 · 13
474 552 493 039	4,2727 4,2908	248,19	4 901,7	79	19 607	248 470 258 149	0,012 658	79
512 000	4,3089	251,33	5 026,5	80	20 106	268 077	0,012 500	2 ⁴ · 5
531 441	4,3267	254,47	5 153,0	81	20 612	278 256	0,012 346	34
551 368	4,3445	257,61	5 281,0	82	21 124	288 600	0,012 195	2 · 41
571 787	4,3621	260,75	5 410,6	83	21 642	299 381	0,012 048	83
592 704	4,3795	263,89	5 541,8	84	22 167	310 333	0,011 905	22 · 3 · 7
614 125	4,3968	267,04	5 674,5	85	22 698	321 548	0,011 765	5 · 17
636 056	4,4140	270,18	5 808,8	86	23 235	333 031	0,011 628	2 · 43
658 503	4,4310	273,32	5 944,7	87	23 779	344 784	0,011 494	3 · 29
681 472	4,4480	276,46	6 082,1	88	24 328	356 811	0,011 364	2 ³ 11
704 969	4,4647	279,60	6 221,1	89	24 895	369 113	0,011 236	89
729 000	4,4814	282,74	6 361,7	90	25 447	381 696	0,011 111	2 · 32 · 5
753 57I	4,4979	285,88	6 503,9	91	26 016	394 561	0,010 989	7 . 13
778 688	4,5144	289,03	6 647,6	92	26 590	407 712	0,010 870	22 · 23
804 357	4,5307	292,17	6 792,9	93	27 132	421 152	0,010 753	3 · 31
830 584	4,5468	295,31	6 939,8	94	27 759	434 884	0,010 638	2 · 47
857 375	4,5629	298,45	7 088,2	95_	28 353	448 911	0,010 526	5 · 19
884 736	4,5789	301,59	7 238,2	96	28 950	463 237	0,010 417	2 ⁵ · 3
912 673	4,5947	304,73	7 389,8	97	29 559	477 865	0,010 309	97 2 · 7 ²
941 192 970 299	4,6104 4,6261	307,88 311,02	7 543,0 7 697,7	98 99	30 172 30 791	492 797 508 037	0,010 204	32 . 11
				100				
1 000 000	4,6416	314,16	7 854,0	100	31 416	523 588	0,010 000	25"

5

Primzahlen bis 100	von 101 bis 200	201 300	301 400	401 500	501 600	601 700	701 800	801 900	901 1000
59 61 67 71 73 79 83 89	181 191 193 197 199			499					

Maße

Gesetzliche Vorsätze für Vielfache und Teile von Grundeinheiten und von abgeleiteten Einheiten mit selbständigen Namen

Vorsatz	Kurzzeichen	Bedeutung	
Тега	T	1 000 000 000 000	(1012) Einheiten
Giga	G	1 000 000 000	(IO ⁸) ,,
Mega	M	1 000 000	(106) ,,
Kilo	k	1 000	(103) ,,
Hekto	h	100	(10 ²) ,,
Deka	da	10	(10 ¹) ,,
Dezi	d	0,1	(10 ⁻¹) ,,
Zenti	c	0,01	(10 ⁻²) ,,
Milli	m	0,001	(10 ⁻³) ,,
Mikro	μ	0,000 001	(IO ⁻⁶) ,,
Nano	n	0,000 000 001	(10 ⁻⁸) ,,
Pico	l p	0,000 000 000 001	(10 ⁻¹²) ,,

Anmerkung: Nicht zu verwenden sind die Vorsätze bei Ar, Hektar, Minute, Stunde, Tag, technische und physikalische Atmosphäre, Grad Kelvin und Grad Celsius.

Bei der Masse und bei der Kraft werden die Vielfachen und Teile vom Gramm bzw. vom Pond abgeleitet. Es ist unzulässig, den Vorsatz "Kilo" ohne Einheit zu verwenden.

2. Wichtige physikalisch-technische Maßeinheiten

Nach der Tafel der gesetzlichen Einheiten vom 31. Oktober 1958

				
Maß für	Name der Einheit	Kurz- zeichen	Definition	Beziehung zur Grundeinheit
Länge l, L	Meter	m	Abstand der Mittelstriche der auf dem in- ternationalen Meterprototyp angebrach- ten Strichgruppen bei der Gleichgewichts- temperatur zwischen Eis und reinem, luftgesättigtem Wasser unter dem Druck einer physikalischen Atmosphäre	
Fläche	Quadrat- meter	m²	Fläche eines Quadrates von der Seiten- länge 1 m	$1 \ \mathbf{m}^2 = 1 \ \mathbf{m} \cdot 1 \ \mathbf{m}$
A, (F)	Ar Hektar	a ha	Das Ar hat 100 Quadratmeter Das Hektar hat 100 Ar	$1 a = 10^2 m^2$ $1 ha = 100 a = 10^4 m^2$
Volumen	Kubik- meter	m³	Volumen eines Würfels von der Kantenlänge 1 m	$1 \mathbf{m}^3 = 1 \mathbf{m} \cdot 1 \mathbf{m} \cdot 1 \mathbf{m}$
	Liter	1	Volumen von 1 kg reinen, luftfreien Wassers bei der maximalen Dichte unter dem Druck einer physikalischen Atmo- sphäre	1 l = 0,001000028 m ³ = 1,000028 · 10 ⁻³ m ³
Ebener Winkel	Radiant	rad	Ebener Winkel, für den das Verhältnis der Längen des zugehörigen Kreisbogens zu seinem Halbmesser gleich 1 ist	
α, β, γ	rechter Winkel, Rechter	L	Jeder der vier ebenen Winkel, die zwei einander unter gleichen Nebenwinkeln schneidende Geraden bilden	$I^{\perp} = \frac{\pi}{2}$ rad
	Grad	۰	goster Teil des Rechten	$ \begin{aligned} \mathbf{r}^{\circ} &= \frac{\mathbf{r}}{90} \\ \mathbf{r}' &= \frac{\mathbf{r}}{60} \end{aligned} $
	Minute	,	60ster Teil des Grades	$\mathbf{I}' = \frac{\mathbf{I}}{60}$
	Sekunde Neugrad, Gon	g	60ster Teil der Minute Der Neugrad oder das Gon ist der 100ste Teil des rechten Winkels	$I'' = \frac{I'}{60}$
Zeit	Sekunde	•	Teil eines astronomisch bestimmten Jahres (1900)	
ι, τ, z	Minute	min	Die Minute ist gleich 60 Sekunden	1 min = 60 s
·	Stunde	h	Die Stunde ist gleich 60 Minuten	I h = 60 min = 3600s
	Tag	d	Der Tag ist gleich 24 Stunden	I d = 24 h = 86400 s
Frequenz	Hertz	Hz	Frequenz eines periodischen Vorganges mit der Periodendauer 1 s Bei der Angabe von Umlauffrequenzen darf die Einheit Hertz als Umdrehung/Sekunde (Kurzzeichen U/s) bezeichnet werden	I Hz = I s ⁻¹

Maß für	Name der Einheit	Kurz- zeichen	Definition	Beziehung zur Grundeinheit
Ge- schwin- digkeit v, u, w	Meter/ Sekunde	m/s	Geschwindigkeit eines sich gleichmäßig bewegenden Körpers, der während der Zeit Is den Weg Im zurücklegt	$I m/s = I m s^{-1}$
Beschleu- nigung a, b, g	Meter/ Quadrat- sekunde	m/s²	Beschleunigung eines Körpers, dessen Geschwindigkeit sich während der Zeit Is gleichmäßig um Im/s ändert	$I\ m/s^2 = I\ m\ s^{-2}$
Masse	Kilo- gramm	kg	Masse des internationalen Kilogramm- prototyps	
<i>"</i> "	Gramm	g	1000ster Teil des Kilogramms	I g = I0 ⁻⁸ kg
	Tonne	t	1000 Kilogramm	I t = 103 kg
	Dezi- tonne	dt	¹/ ₁₀ Tonne	1 dt = 100 kg
Dichte ρ, d	Kilo- gramm/ Kubik- meter	kg/m³	Dichte eines homogenen Körpers, der bei der Masse 1 kg das Volumen 1 m³ einnimmt	$\rm r\; kg/m^3 = r\; m^{-3} kg$
	Kilo- gramm/ Kubik- dezimeter	kg/dm³	•	1000 kg/m ³ = 1 kg/dm ³
Kraft F, P, K	Newton	N	Kraft, die der Masse 1 kg die Beschleu- nigung 1 m/s² erteilt	$IN = Im kg s^{-2}$
r, r, x	Dyn	dyn	100 000ster Teil des Newton	1 dyn = 10 ⁻⁵ N = = 10 ⁻⁵ m kg s ⁻²
	Kilopond	kp	9,806 65 Newton	$1 \text{ kp} = 9,806 65 \text{ N} = 9,806 65 \text{ m kg s}^{-2}$
Druck p	Newton/ Quadrat- meter	N/m²	Druck einer gleichmäßig verteilten Kraft von 1 N auf die Fläche 1 m²	$1 \text{ N/m}^2 = 1 \text{ m}^{-1} \text{ kg s}^{-2}$
	Bar	bar	100 000 Newton/Quadratmeter	I bar = 10^5 N/m^2 = = $10^5 \text{ m}^{-1} \text{ kg s}^{-2}$
	tech- nische Atmo- sphäre	at	10 000 Kilopond/Quadratmeter	I at = 10^4 kp/m^2 = = 98 065,5 m ⁻¹ kg s ⁻²
	physika- lische Atmo- sphäre	atm	101 325 Newton/Quadratmeter	I atm = = 101 325 N/m ² = = 101 325 m ⁻¹ kg s ⁻²
	Torr	Torr	760ster Teil der physikalischen Atmo- sphäre	I Torr = $\frac{1}{760}$ atm = $\frac{101325}{760}$ m ⁻¹ kg s ⁻²

Maß für	Name der Einheit	Kurz- zeichen	Definition	Beziehung zur Grundeinheit
Arbeit ₩	Joule, Watt- sekunde, Newton- meter	J Ws Nm	Arbeit, die verrichtet wird, wenn sich der Angriffspunkt einer Kraft von 1 N in Richtung der Kraft um 1 m ver- schiebt	I J = I Ws = I Nm = = I m ² kg s ⁻²
	Erg	erg	10 000 000ster Teil des Joule	$I \text{ erg} = I0^{-7} \text{ J} =$ = $I0^{-7} \text{ m}^2 \text{ kg s}^{-2}$
	Kalorie	cal	4,186 8 Joule	I cal = 4,186 8 J = 4,186 8 m2 kg s-2
Leistung	Watt	w	Leistung von I J/s Die Pferdestärke (I PS = 75 kpm/s) ist gleich dem 735,498 75fachen eines Watt (bis auf weiteres zugelassen)	r W = r J/s = = r m ² kg s ⁻³
Elek- trische Strom- stärke	Ampere	A	Stärke eines zeitlich unveränderlichen elektrischen Stromes durch zwei geradlinige, parallele, unendlich lange Leiter, bei denen unter bestimmten Vorausetzungen die durch den Strom elektrodynamisch hervorgerufene Kraft im leeren Raum je 1 m Länge der Doppelleitung 2 · 10 ⁻⁷ m kg s ⁻² beträgt	
Elek- trische Span- nung	Volt	v	Spannung zwischen zwei Punkten eines homogenen, gleichmäßig temperierten metallischen Leiters, in dem bei einem zeitlich unveränderlichen Strom der Stärke I A zwischen den beiden Punk- ten eine Leistung von I W umgesetzt wird	I V = I W/A = = $I m^2 kg s^{-3} A^{-1}$
Elek- trischer Wider- stand	Ohm	Ω	Widerstand zwischen zwei Punkten eines homogenen, gleichmäßig tempe- rierten metallischen Leiters, durch den bei der Spannung I V zwischen den beiden Punkten ein zeitlich unveränder- licher Strom der Stärke I A fließt	$ \begin{array}{l} \mathbf{I} \ \Omega = \mathbf{I} \ \mathbf{V}/\mathbf{A} = \\ = \mathbf{I} \ \mathbf{m}^2 \ \mathbf{kg} \ \mathbf{s}^{-3} \ \mathbf{A}^{-2} \end{array} $
Kelvin- Tempe- ratur T, Θ , Y	Grad Kelvín	° K	Der 273,16ste Teil der thermodynami- schen Kelvin-Temperatur des Tripel- punktes von reinem Wasser	Bei Angabe von Tem- peraturdifferenzen werden Grad Kelvin und Grad Celsius durch Grad sowie K und C durch grd ersetzt.
Celsius- Tempe- ratur ι, ϑ, y	Grad Celsius	°c	o°C entspricht der Kelvin-Temperatur 273,15°K Der Grad Celsius ist bei Differenzen gleich dem Grad Kelvin	auton giù cistize

Längenmaße	Flächenmaße
I geographische Meile = 7,420 km = $= \frac{1}{15} \text{Å quatorial grad}$	I Morgen (preußisch) = 25,53 a I Acker (sächsisch) = 55,34 a I Desjatine ¹ (russ.) = 1,0925 ha
I Seemeile (sm) = 1852 m = $\frac{1}{60}$ Meridiangrad (Geschwindigkeit: I Knoten = I sm/h) (nur in der Luft- und Seefahrt zulässig)	Raummaße [(engl.) I Registertonne (intern.) = 100 Kubikfuß = 2,83 m³ (1 m³ = 0,353 Rgt.) I Scheffel = 54,061
I Saschen ¹ (russ.) = 2,134 m I Werst ¹ (russ.) = 500 Saschen = 1067 m	I Imperial Gallon = 4,544 l I amerik. Bushel = 35,242 l (Getreidemaß) I Barrel (amerik.) = 1,588 hl (Erdöl)
1 engl. Zoll (") = 25,400 mm	Massenmaße
I engl. Yard (Yd) = 0,9144 m I engl. Landmeile = 1609 m I Faden = 2 Yard (engl.) = 1,8288 m (Tiefenmaß)	I engl. Unze (oz) = 28,350 g I engl. Pfund (lb) = 0,4536 kg I engl. long-ton = 2240 lbs = 1016,05 kg I amerik. short-ton = 2000 lbs = 907,2 kg I Pud¹ (russ.) = 16,38 kg
(Tierennias)	11 uu (1uss.) — 10,30 kg

¹ In der Sowjetunion wurde nach der Großen Sozialistischen Oktoberrevolution das metrische System eingeführt. Es handelt sich also um ältere Maße. Pud ist in der Statistik noch üblich, z.B. bei der Angabe von Ernteerträgen.

Gesetzliche Grundlagen für den Arbeitsschutz

Gesetze und Verordnungen		Gesetzblatt der DDR		
desect and verorunangen	▼om	vom	Seite	
Verfassung der DDR, Art. 18	7. 10. 49	8. 10. 49	7	
Gesetzbuch der Arbeit	12. 4.61	GB1. I	27	
Verordnung zur Erhaltung und Förderung der Gesundheit der Werktätigen im Betrieb (Arbeitsschutzverordnung)	22. 9.62	GB1. I	27	
Verordnung über Arbeitszeit und Erholungsurlaub	29. 6.61	GB1. II	263	
Anordnung über die Organisierung des Arbeitsschutzes und der Sicherheitstechnik in den PGH	23. 10. 56	GBI. I	1208	
Arbeitsschutzanordnungen				
ASAO I — allgemeine Vorschrift	23. 7.52	7.8.52	1	
ASAO 3 — Schutzgüte von Maschinen, Werkzeugen und anderen Betriebsmitteln	1. 8.61	GB1. II	339	
ASAO 11 — Arbeitsräume, Fenster, Türen, Treppen, Beleuchtung, Heizung, Luken, Verkehrswege	22. 1.53	GBl. 16.2.53	273	
ASAO 20 - Erste Hilfe und Verhalten bei Unfällen	2. 7.56	GBI. I	559	
Gesetz über den Verkehr mit Giften	6. 9.50		977	
I. Durchführungsverordnung zum Gesetz über den Verkehr mit Giften	26. 11. 51		1108	
II. Durchführungsbestimmung zum Gesetz über den Verkehr mit Giften	27. 7.52	31. 7.52	629	
III. Durchführungsverordnung zum Gesetz über den Verkehr mit Giften	15. 10. 53	27. 11. 53	1169	
Gesetz zum Schutz vor Brandgefahren (Brandschutzgesetz)	18. 1.56	GB1. I	110	

Außerdem die einschlägigen Arbeitsschutzanordnungen.

Physikalisch-technische Tafeln

1. Verschiedene Geschwindigkeiten

Art	km/h	m/s	Art	km/h	m/s
Licht und elektrische		299,86 Mill.	Verkehrsflugzeug		
Wellen		i	TU 104, 114		
Erde um die Sonne		29 600	Reisegeschwindigkeit	800	222
Künstlicher Sonnen-		≥ 11 200	Höchstgeschwindigkeit	900	250
satellit		1	Flugzeug, Propeller-	1	-
Künstlicher Erdsatellit		≈ 8 500	Kolbentriebwerk	l	ł
Schall in Aluminium		5 100	Reisegeschwindigkeit	570	150
Schall in Glas		5 000	Höchstgeschwindigkeit	610	169
Ballistische Raketen		1800 3710	Personenkraftwagen	1	'
24-cm-Ferngeschosse		≦ I 700	Reisegeschwindigkeit	8o	22
Schall im Wasser	i	I 435	Schnellzug, Reisegeschw.	80	22
Flugzeug, Turbinen-Luft-			Personenzg. Reisegeschw.	30	8,3
strahlwerk (TL)	i	4	Ozean-Schnelldampfer	43	12
Jäger, Bomber (1963)	≦ 3000	≦ 867	Ozean-Frachtdampfer	15	4,2
Schall in Luft		332	Fischkutter	9	2,4
Schaii bouennähe,	1060	294	Fußgänger	5	1,4
Macn I				_	1

2. Schnittgeschwindigkeiten und Drehzahlen bet Werkzeugmaschinen

Die Schnittgeschwindigkeiten und Drehzahlen sind nach den Formeln vom Durchmesser des Werkstücks abhängig. Die Erfahrungswerte der Tabellen berücksichtigen zusätzlich u.a. die Art des Werkstoffes und seine Zugfestigkeit, den Vorschub, die Schnittiefe und die Art des Werkzeugs (unterschiedliche Hartmetallsorten, Hochleistungsarbeitsstahl, Schnellarbeitsstahl, Werkzeugstahl). Die oberen Grenzen der Schnittgeschwindigkeiten gelten für Werkstoffe geringer Festigkeit bei kleinem Vorschub und geringer Schnittiefe.

Werkstoff	Schnittgesch $v = \frac{\pi \cdot D \cdot n}{1000}$	•		v = 60 l 1000 (in m/min)	Drehzahl Arbeitswelle $n = \frac{1000 \cdot v}{\pi \cdot d}$ (in U/min)	Schnitt- geschwindigkeit $v = \frac{\pi \cdot D \cdot n}{60\ 000}$ (in m/s)	Drehzahl Arbeitswelle $n = \frac{1000 \cdot v}{\pi \cdot d}$ (in U/min)
	Bohren bis	Drehen bis	Fräsen bis	Hobeln bis	bis	Schleifen bis	bis
Stahl, unleg.	11,2	20	12	7	45	25	3000
	35,5	870	30	42	1400	30	4000
Stahl, leg.	5,6	20	8				
	22,4	385	28				
Stahlguß	11,2	25	8	6,5			
	22,4	198	24	33			
Grauguß	11,2	22	6	6,5		20	
	22,4	100	22	50		30	
Kupfer	35,5		20				
	56		60				
Messing	28		25			20	
	56		60			30	
Aluminium-	45	1	100			15	
legierungen	112		400				
Magnesium-	45		250			15	
legierunge n	140 -		450				ľ
Preßstoff	18		25				
Hartgewebe	28		_				
Hartpapier			60				l
Werkzeug	Schnell- arbeitsstahl	Hartmetall	Schnell- arbeitsstahl	Schnell- arbeitsstahl			

8

3. Drehzahlen in der Minute

Gerät, Maschine, Maschinenteil	Drehzahl in U/min	Gerät, Maschine, Maschinenteil	Drehzahl in U/min
Pedale eines Fahrrades Räder eines Fahrrades	≈ 45 ≈ 110	Kurbelwelle eines LKW- Dieselmotors (bei Fahrt)	1400 bis 2000
Triebrad einer D-Zug- Lokomotive (90 km/h)	≈ 220	Kurbelwelle eines PKW- Ottomotors (bei Fahrt)	2500 bis 3600
Räder eines Personenzuges Schiffsschraube eines	≈ 180	Dampfturbine Wasserturbine, Langsam-	1500 bis 12 000
Dampfers	≈ 130	läufer	60 bis 125
Räder eines PKW (70 km/h)	≈ 450	—, Normalläufer	125 bis 225
Elektromotor	1200 bis 1400	, Schnelläufer	225 bis 1000
elektr. Generator	3000	Kreiselkompaß	20 000
Propeller eines Flugzeuges	1500	Ultrazentrifuge	500 000

4. Windstärke nach BEAUFORT

Wind- stärke	Bezeichnung	Bodenwind- geschw. in m/s	Auswirkung im Binnenland
0 1 2 3 4 5 6 7 8	Windstille leiser Zug leichte Brise schwache Brise mäßige Brise frische Brise starker Wind steifer Wind stürm. Wind	0 1 2 4 7 9 12 16	Rauch steigt senkrecht empor Zug der Rauchfahne zeigt Windrichtung an Wind im Gesicht fühlbar, Blättersäuseln Blätter und dünne Zweige dauernd bewegt Hebt Staub, Papier, bewegt Zweige, dünne Äste KI. Bäume schwanken; auf Binnenseen Schaumkämme Dicke Äste in Bewegung Bäume in Bewegung; Gehen gegen Wind behindert Bricht Zweige; Gehen gegen Wind erheblich behindert
9 10 11 12	Sturm schwerer Sturm orkanart. Sturm Orkan	23 26 31 35	Kleine Schäden an Dächern, Dachziegel abgehoben Entwurzelt Bäume, größere Schäden an Dächern Verbreitet Sturmschäden (in den mitteleuropäischen Binnenländern selten)

5. Einige bemerkenswerte Temperaturen

	in °C		in °C
Lichtbogen-Plasmabrenner Hochfrequenz-Plasmabrenner Elektrischer Lichtbogen unter	bis 50 000 bis 19 000	Holz- oder Torffeuer Weißglut von Stahl Gelbglut von Stahl	800 1300 bis 1400 ≈ 1000
Druck Oberfläche der Sonne Elektrischer Schmelzofen Flamme des Schweißbrenners	6000 5440 4000 2700	Hellrotglut von Stahl Dunkelrotglut von Stahl Dunkelbraunglut von Stahl Überhitzter Dampf einer	≈ 850 ≈ 680 ≈ 550
Faden in elektrischen Glüh- lampen Erstarrungspunkt des Platins	2300 1769	Lokomotive Zinnlot 30 (30 % Sn, 2 % Sb, 68 % Pb) Arbeitstemperatur	350 ° 249
Gasflamme des Bunsenbrenners Braunkohlenfeuer	1700 1300	Gesunder menschlicher Körper Tiefste erzielte Temperatur fast	37 -273

4	•
3	и
(υ

Stoff	Dichte in g/cm³	Elastizitāts- modul i. M. in kp/mm²	Lin. Aus- o dehnungs- o zahl bei ≈ 18°C	Schmelztemp. in °C bei 760 Torr	Siedetemp. in °C bei 760 Torr	Spez. Wärme bei ≈ 18°C in cal/g·grd	Wärme- leitfähigkeit in cal/cm·s·grd	Spez. elektr. Widerstand bei $\approx 18^{\circ}$ C in $\Omega \cdot m^2/m$
Aluminium, rein	2,70	6 900	23	659	2497	0,22	0,50	0,024
Blei	11,34	1 650	29	327	1752	0,03	0,08	o,188
Eisen, rein	7,86	21 500	11	1537	2735	0,11	0,20	0,10
Gold	19,3	7 850	04	1063	2960	0,03	0,74	0,020
Kupfer	8,93	12 550	16	1083	2600	0,09	0,94	0,0155
Platin	21,4	16 050	09	1773	4900	0,03	0,17	0,098
Messing	8,5	9 000	18	≈ 900	-	0,09	0,27	0,08
Schwefel	2,07	_	90	119	445	0,17	0,0006	- 1
Silber	10,50	7 500	20	961	2170	0,06	1,00	0,015
Zink, gewalzt	7,12	12 000	26	419	907	0,09	0,27	0,048
Zinn	7,28	4 500	23	232	2430	0,05	0,16	0,10
Fensterglas	i. M. 2,8	7 300	10	≈ 1400	_	0,21	0,70*	IO12**
Holz Faser	i. M. 0,7	I 350	08	-	-	0,51	0,15*	IO13**
Polyvinylchlorid (PVC)	1,38	_	80	- 1	_	-	0,30*	IO16**
Stahlbeton ≤ B 160	2,4	2 750	12	-	- 1	0,21	1,50*	0,0003
Ziegelmauerwerk	1,4	1 000	05			0,21	0,52*	

7. Physikalische Eigenschaften einiger Flüssigkeiten

8

Stoff	Dichte in g/cm ³	Kubische Aus- dehnungszahl bei ≈ 18°C	Schmelztemp. Siedetemp. bei 760 Torr in °C in °C		spez. Wärme bei ≈ 20°C in cal/g·grd	
Quecksilber	13,595	0,000 181	— 38,8	357	0,03	
Wasser (4°C)	1,00	0,000 18	0	100	1,00	
Athanol (Alkohol)	0,79	0,001 10	-114	78	0,56 (0°C)	
Benzol	0,88	0,001 06	5	80	0,41 (0°C)	
Kohlendisulfid	1,27	0,001 20	-112	46	0,24	

8. Physikalische Eigenschaften einiger Gase

8

Stoff	Dichte in g/cm³	Schmelztemp. bei 760 in °C		spez.Wärme c _p in cal/g·grd	Krit. Tem- peratur in °C	Kritischer Druck in kp/cm²	Verdamp- fungswärme in cal/g
Chlor	0,003 22	— 103	— 34	0,12	+ 144	79	62
Sauerstoff	0,001 429	219	- 183	0,22	118,8	51	51
Stickstoff	0,001 250 5	-210	— 196	0,25	-147,1	35	48
Luft(23T.0,77T.N)	0,001 29	-213	— 193	0,24	— 140,7	38	(50)
Wasserstoff	0,000 089 37	— 262	- 253	3,4	- 239,9	13,2	112
Ammoniak	0,007 714	- 78	- 33	0,50	+ 132,4	112	327
Äthin	0,001 170 9	170	— 104	0,40	+ 35,7	64	_
Kohlenoxid	0,001 250	- 205	- 192	0,25	— 140,2	36	_
Kohlendioxid	0,001 976 8	— 57	- 78	0,20	+ 31,0	75	142

Gegenstand	in kg/m³	Gegenstand	in kg/m³
Lagergüter		Großblöcke aus Schwerbeton	2200
Baumwolle, lufttrocken	1480	Hochbauklinker	1900
Bücher, Akten, geschichtet	850	Hochofenschlacke, Stückschlacke	1500
Fleischkonserven, I m hoch	1	Hochofenschaumschlacke	
gestapelt	500	(Hüttenbirns)	700
Getreidegarben, 4 m hoch gepackt	100	Hohlblocksteine aus Ziegelsplitt-	
Glas in Tafeln	2600	beton	1400
Gras, Klee	350	Kalk	1000
Heu, lose, 3 m hoch gepackt	70	Koksasche	700
Heu, gepreßt	170	Sandstein	2600
Kalk in Säcken	1000	Steine aus Natur- und Hüttenbims	1100
Mehl in Säcken, auf 1 m 4 Lagen	500	Vollziegel, Vormauerziegel	1800
Obst, geschichtet	350	Zement, lose	1200
Papier, geschichtet	350	Zement in Säcken	1600
Porzellan, gestapelt	1100	Zementklinker	1500
Schafwolle, lufttrocken	1320	Ziegelsand, -splitt, -schotter	1300
Torf, gepreßt in Ballen	300	California	
Zucker in Säcken	1610	Schüttgüter	
	·	Braunkohle	700
Bodenarten	i	Braunkohlenbriketts, geschüttet	800
Gartenerde, erdfeucht	1700	Braunkohlenbriketts, gestapelt	1300
Lehm und Ton	2100	Brennholz, gehackt	400
Sand, Kies, erdfeucht	1800	Getreide, Hülsenfrüchte	750
Steinschotter	1800	Grünfutter und Hackfrüchte, einge-	
Baustoffe		säuert	1000
	Ì	Kartoffeln, Rüben	750
Basalt, Gneis	3000	Kleie, Mehl	500
Bau- und Formgips	1250	Koks	500
Bauholz, Laubholz	800	Mineraldünger, außer Thomasmehl	1200
Bauholz, Nadelholz	600	Mist, lose geschüttet bis 2,5 m	1200
Beton aus Sand, Kies, Splitt	2200	Sägespäne, lose	150
Beton mit Stahleinlage	2400	Stapeldünger	1800
Birmssteinsand	700	Steinkohle, grubenfeucht	1000
Dachschiefer, Dolomit, Granit,		Thomasmehl	2200
Porphyr	2800	Zuckerrübentrockenschnitzel	300

10. Umrechnung von Kilowatt in Pferdestärke,

1 kW = 1,36 PS

1 PS == 736 W

kW	,0	,I	,2	,3	,4	,5	,6	,7	,8	,9
ı	1,36	1,50	1,63	1,77	1,90	2,04	2,18	2,31	2,45	2,58
2	2,72	2,86	2,99	3,13	3,26	3,40	3,54	3,67	3,81	3,94
3	4,08	4,21	4,35	4,49	4,62	4,76	4,89	5,03	5,17	5,30
4	5,44	5,57	5,71	5,85	5,98	6,12	6,25	6,39	6,53	6,66
5	6,80	6,93	7,07	7,21	7,34	7,48	7,61	7,75	7,89	8,02
6	8,16	8,29	8,43	8,57	8,70	8,84	8,97	9,11	9,25	9,38
7	9,52	9,65	9,79	9,93	10,1	10,2	10,3	10,5	10,6	10,7
8	10,9	11,0	11,1	11,3	11,4	11,6	11,7	11,8	12,0	12,1
9	12,2	12,4	12,5	12,6	12,8	12,9	13,1	13,2	13,3	13,5

Für Leistungen unter 1 und über 10 kW bzw. PS findet man die Umrechnung durch Kommaverschiebung. Beispiele: 0,25 kW \pm 0,34 PS; 150 kW \pm 204 PS; 45 PS \pm 33,1 kW.

Für genaue Rechnungen muß man mit dem Genauwert IPS = 735,49875W (Anordnung über die Tafel der gesetzlichen Einheiten) rechnen.

Aus der Landwirtschaft

1. Tausendkornmasse (Mittelwerte)

_		
9	Saatgut	g je 10 Körn

Saatgut	g je 1000 Körner	Saatgut	g je 1000 Körner	Saatgut	g je 1000 Körner
Weizen	45	Erbsen, klein	200	Rotklee	2,0
Roggen	35	Ackerbohnen, klein	525	Luzerne	2,25
Gerste	47,5	Mohn	0,45	Weidelgras	1,88
Hafer	37,5	Zucker-, Futterrüben	27,5	Lieschgras	0,50
Mais	360	Gelbe Lupinen	150	Wiesenrispe	0,20

2. Zusammensetzung von Stalldungarten

9

Dung vom	Wasser	Organische Substanz	Stickstoff N	Phosphor- säure P ₂ O ₅	Kali K ₂ O	Kalk CaO	Düngewirkung
Pferd	71,3	25,4	0,58	0,28	0,53	0,21	trocken, hitzig, wirkt schnell
Rind	77,5	20,3	0,34	0,16	0,40	0,31	kalt, wirkt langsam
Schaf	64,6	31,8	0,83	0,23	0,67	0,33	trocken, wirkt schnell
Schwein	72,4	25,8	0,45	0,19	0,60	0,08	naß, kalt, wirkt langsam

3. Düngungsbeispiele für einige landwirtschaftliche Kulturpflanzen in kg/ha

Kulturpflanze		Reinstickstoff	Reinphosphor- säure	Reinkali
Gruppe	Art			
Hackfrüchte, Getreide	Zuckerrüben	80120	60100	80160
und Körnermais	Kartoffeln	40 80	60100	80160
	Weizen	40 60	40… 70	60100
	Roggen	30 60	30⋯ 60	60100
	Wintergerste	40 60	40 70	60100
	Hafer	40 60	30⋯ 60	60100
	Körnermais	40 70	40 80	60100
Ölfrüchte	Winterraps	80120	50 80	80120
	Mohn	40 60	40 60	70100
Faserpflanzen	Lein	20 40	40 60	60120
Hülsenfrüchte	Erbsen	0 30	50 80	80120
	Bohnen	0 30	50 80	80120
	Wicken	0 20	40 60	80100
Futterpflanzen,	Luzerne	0 20	70 90	80140
Grünland	Klee-Gras-Gemenge	30 60	40⋯ 60	60 80
	Stoppelrüben	40 70	40⋯ 60	60100
	Wiese	20 80-	40 80	60120
	Weide	40120	40 90	60120

Geographische Tafeln

1. Fläche, Wohnbevölkerung und Bevölkerungsdichte der Deutschen Demokratischen Republik nach Bezirken am 1. Januar 1964 (Statistisches Jahrbuch der DDR 1964)

Bezirk	Katasterfläche in km²	Wohnbevölkerung	Bevölkerungsdichte je km²
Rostock	7 071	848 991	120
Schwerin	8 671	622 968	72
Neubrandenburg	10 927	652 624	60
Potsdam	12 565	1 152 741	92
Frankfurt	7 187	666 924	93
Cottbus	8 261	823 021	100
Magdeburg	11 527	I 374 373	119
Halle	8 771	1 965 383	224
Erfurt	7 325	1 249 186	171
Gera	4 005	728 774	182
Suhl	3 876	546 677	141
Dresden	6 738	1 880 011	279
Leipzig	4 962	1 512 847	305
Karl-Marx-Stadt	6 009	2 091 267	348
Hauptstadt Berlin	403	1 065 296	2643
DDR	108 298	17 181 083	159

2. Erdteile, Flächen und Bevölkerung 1962 (Statistisches Jahrbuch der DDR 1964)

Erdteil	Fläche in 10 ⁶ km²	Bevölkerung in Millionen 1962	Bevölkerungsdichte je km²
Welt insgesamt	148,4	3150	23
davon:			
Europa (ohne UdSSR)	5,0	434	88
Udssr	22,4	223	10
Asien (ohne UdSSR)	26,9	1780	66
Nordamerika (mit Mittelamerika)	24,2	276	11
Südamerika	17,8	153	9
Afrika	30,3	269	9
Australien und Ozeanien	8,6	17	2
Antarktika	13,2	0	•

3. Meeresflächen

Meeresfläche	Größe in km²	mittl. Tiefe in m	größte gemessene Tiefe in m
Stiller Ozean	165 250 000	4282	10 899
Atlantischer Ozean	82 440 000	3926	9 2 1 9
Indischer Ozean	73 440 000	3963	7 450
Mittelmeere	31 820 000	1290	6 504 .
Randmeere	8 100 000	870	3 939
Insgesamt rund	361 000 000	3800	

4. Gebiete und Bevölkerung der Länder

10

I	Land	Fläche in km²	Bevölkerun	g
			Jahr	in 1000
	Sämtliche Länder	135 262 000	1962	3 150 000
ı	darunter:			` `
ı	Europa			
ı	Albanien	28 748	1962	1 660
ı	Andorra	453	1962	10
ı	Belgien	30 507	1962	9 222
ı	Bulgarien	110 928	1962	8 045
1	Dänemark	43 043	1962	4 654
ı	DDR	108 299	1962	17 102
ı	Finnland	337 009	1963	4 544
ŀ	Frankreich	551 208	1963	47 840
ı	Griechenland	130 918	1962	8 451
ı	Großbritannien	244 030	1962	53 44 ¹
ı	Irland	70 280	1962	2 824
1	Island	103 000	1962	185
ı	Italien	301 225	1963	50 308
1	Jugoslawien	255 804	1963	19 097
ı	Liechtenstein	157	1961	17
ı	Luxemburg	2 586	1962	321
1	Monaco	1,49	1962	21
ı	Niederlande	33 612	1963	11 967
ı	Norwegen	323 917	1962	3 640
1	Osterreich	83 849	1962	7 128
ı	Polen	311 730	1962	30 484
1	Portugal (mit Azoren und Madeira) Rumänien	91 531	1962	8 913
1	San Marino	237 500 61	1962 1962	18 681
ı	Schweden	449 793	1962	17
1	Schweiz	449 793	1963	7 562 5 810
1	Spanien (mit Balearen und Kanarischen Inseln)	504 748	1963	31 077
1	Tschechoslowakei	127 859	1962	13 902
1	UdSSR	22 402 200	1963	224 800
1	Ungarn	93 030	1962	10 072
ı	Vatikanstadt	0,44	1961	100,2
ı	Westberlin	481	1962	2 180
ı	Westdeutschland	247 975	1962	54 758
1	Afrika			
ı	Algerien	2 381 741	1962	11 300
1	Angola (port.)	1 246 700	1962	4 936
1	Äthiopien	1 184 320	1962	21 000
1	Betschuanaland (brit.)	712 249	1962	335
1	Burundi	27 834	1962	2 600
1	Dahome	115 762	1962	2 200
1	Elfenbeinküste	322 463	1962	3 375
1	Gabun	267 000	1962	452
۱	Ghana	237 873	1962	7 244
ł	Guinea	245 857	1963	3 357
1	Kamerun	475 442	1962	4 326
1	Kenia	582 646	1962	8 676
1	Kongo (Léopoldville)	2 345 409	1962	14 797

Land	Fläche in km²	Bevölkerung	3
		Jahr	in 1 000
Kongo (Brazzaville)	342 000	1962	820
Liberia	111 370	1962	1 310
Libyen	1 759 540	1962	I 244
Madagaskar	595 790	1962	5 730
Malawi	119 311	1962	2 980
Mali	1 204 021	1962	4 305
Marokko	443 680	1962	12 230
Mauretanien	1 085 805	1962	770
Moçambique (port.)	783 030	1962	6 750
Niger	1 267 000	1962	3 100
Nigeria	923 772	1963	37 213
Obervolta	274 200	1962	4 550
Rwanda	26 338	1962	2 780
Sambia	746 256	1963	3 410
Senegal	197 161	1962	3 280
Sierra Leone	72 326	1962	2 500
Somalia	637 661	1962	2 000
Südafrika	1 223 409	1962	16 640
Südrhodesien (brit.)	389 362	1962	3 940
Sudan	2 505 823	1962	12 470
Tansania	939 704	1962	9 880
Togo	56 600	1963	1 559
Tschad	1 284 000	1962	2 750
Tunesien	125 180	1962	4 295
Uganda	239 640	1962	7 016
VAR	1 000 000	1962	27 303
Zentralafrika	617 000	1962	1 250
Nordamerika			
Dominikanische Republik	48 734	1963	3 334
Grönland (dän.)	2 175 600	1961	35
Guatemala	108 889	1963	4 095
Haiti	27 750	1962	4 346
Honduras	112 088	1962	1 950
Jamaika	11 425	1962	1 641
Kanada	9 976 177	1963	18 928
Kuba	114 524	1963	7 203
Mexiko	1 972 546	1963	38 416
Nikaragua	148 000	1962	1 578
Panama	74 470	1962	1 139
Portoriko (Puerto Rico) (USA)	8 897	1962	2 458
El Salvador	21 393	1962	2810
USA	9 363 389	1963	189 278
Südamerika	ļ		
Argentinien	2 776 656	1962	21 416
Bolivien	1 098 581	1962	3 549
Brasilien	8 511 965	1963	77 521
Chile	741 767	1962	8 001
Ekuador	270 670	1963	4 726
Kolumbien	1 138 338	1962	14 769
Paraguay	406 752	1963	1 903
Peru	1 285 215	1962	11 511
Uruguay	186 926	1962	2 889
Venezuela	912 050	1963	8 144

Land	Fläche in km²	Bevölkerung		
		Jahr	in 1000	
Asien				
Afghanistan	650 000	1962	14 68	
Burma	678 033	1963	23 66	
Ceylon	65 610	1962	10 44	
China	9 597 000	1957	656 63	
Indien	3 265 594	1962	452 00	
Indonesien	1 900 000	1962	98 50	
Irak	448 742	1962	6 73	
Iran	1 648 000	1962	21 22	
Israel	20 700	1963	2 38	
Japan	369 661	1963	95 90	
Jemen	195 000	1960	5 00	
Jordanien	96 610	1962	1 72	
Kambodscha	172 511	1962	5 75	
Korea (Nord-)	121 193	1960	10 78	
Korea (Süd-)	98 500	1963	27 23	
Laos	236 800	1962	189	
Libanon	10 400	1962	172	
Malaysia	333 215	1962	10 22	
Mongolische Volksrepublik	1 565 000	1962	100	
Nepal	140 798	1962	9 56	
Pakistan	946 719	1962	96 55	
Philippinen	299 681	1962	29 69	
Saudi-Arabien	1 600 000	1962	7 00	
Syrien	184 479	1962	5 0 6	
Thailand	514 000	1962	28 00	
Türkei	780 576	1963	30 25	
Vietnam (Nord-)	158 750	1960	15 91	
Vietnam (Süd-)	170 806	1962	14 92	
Zypern	9 251	1963	58	
Australien				
Australien	7 704 159	1962	10 70	
Neuseeland	268 676	1962	2 48	
Westsamoa	2 927	1962	11	

5. Inseln

Name	Fläche in km²	Name	Fläche in km²	Name	Fläche in km²
Europa		Kreta	8 373	Afrika	
Britische Hauptinsel	219 805	Seeland	6 8 3 5	Madagaskar	590 000
Island	102 810	Mallorca	3 411	Madagaskai	390 000
Irland	82 459	Gotland	2 960	Amerika	i
Nowaja Semlja,	48 200	Ösel	2 710	Amerika	l
Nordinsel		Rügen	926	Grönland	2 170 000
Spitzbergen, West-	39 500	Usedom	445	Baffin-Land	512 183
insel		Asien	1	Kuba	114 449
Nowaja Semlja,	33 200	Asien	1	Neufundland	95 827
Südinsel		Kalimantan	737 018		, ,,
Sizilien	25 462	Sumatra	424 979	Australien	
Sardinien	23 818	Hondo	228 000	•	
Spitzbergen,		Sulawesi	179 416	Neuguinea (Irian)	771 900
Nordostinsel	15 000	Java	126 650	Neuseeld., Südinsel	150 525
Korsika	8 720	Luzón	104 647	Neuseeld., Nordinsel	114 295

6. Berge

Name	Hõhe in m	Name	Hõhe in m
Europa Mont Blanc, Savoyer Alpen Monte Rosa, Walliser Alpen Matterhorn, Walliser Alpen Finsteraarhorn, Berner Alpen Ortler, Rätische Alpen Groß-Glockner, Hohe Tauern Mulhacén, Sierra Nevada Pic d'Aneto, Pyrenäen Ätna, Sizilien Dachstein, Salzburger Alpen Zugspitze, Wettersteingebirge Mussala, Rila-Gebirge Olymp, Pindus Gerlachovský Štit, Hohe Tatra Nebelhorn, Allgäuer Alpen Feldberg, Schwarzwald Fichtelberg, Erzgebirge Brocken, Harz Asien Mount Everest (Tschomolungma), Himalaja Tschogori, Karakorum Kantschindschunga, Himalaja Nanga Parbat, Himalaja Nanga Parbat, Himalaja		Elbrus, Kaukasus Demawend, Elbursgebirge Ararat, Armenisches Hochland Afrika Kilimandscharo Kenia Meru, Tanganjika Ras Daschan, Äthiopien Toubkal, Marokkanischer Atlas Nordamerika Mount McKinley, Alaska Mount Whitney, Sierra Nevada Mount Rainier, Kaskadengebirge Mittelamerika Pik de Orizaba, Sierra Madre Popocatépetl, Sierra Madre Nevado de Colima, Mexiko Südamerika Aconcagua, Anden, Argentinien Huascaran, Anden, Peru Chimborazo, Anden, Ekuador	
Pik Kommunismus, Pamir Pik Pobedy, Tienschan Pik Lenin, Transalai-Gebirge	7495 7439 7127	Australien, Ozeanien Carstenszspitze, Neuguinea Mauna Kea, Hawaii	5030 4208

7. Flüsse

Name	Länge in km	Name	Länge in km	Name	Länge in km
Europa Wolga Donau Ural Dnepr Don Petschora Nördliche Dwina Dnestr Rhein Elbe Weichsel (Wisła) Loire Oder Main Weser Saale Sorce	3688 2850 2534 2285 1967 1789 1500 1411 1320 1144 1090 1020 912 524 440 427 398	Neckar Havel Werra Isar Aller Asien Ob-Irtysch Jenissei Jangtsekiang Mekong Amur Lena Hwangho Indus Brahmaputra Syr-Darja	371 337 293 263 260 über 2500 5300 5200 4500 4350 4260 4200 3200 2900 2860	Ganges Amu-Darja Afrika Nil-Kagera Kongo Niger Amerika Mississippi-Missouri Amazonas Rio de la Plata-Paraná Mackenzie Yukon Sankt-Lorenz-Strom Colorado River Rio Grande del Norte	2700 2540 über 4000 6671 4377 4160 über 2500 6418 6280 4700 3780 3185 3138 2900
Ems	371	Euphrat	2760	Orinoco	2736

8. Seen

10

Name	Fläche in km²	Höhe ü. M. in m	Größte Tiefe in m	Name	Fläche in km²	Höhe ü. M. in m	Größte Tiele in m
Europa Ladogasee Onegasee Vänersee Saimaseen Peipussee Vättersee Inarisee Segosero Belosero Päijännesee Ilmensee Mälarsee Plattensee (Balaton) Genfer See Bodensee Müritz Asien	18 180 9 549 5 330 4 000 3 583 1 869 1 280 1 100 9 53 5 590 581 538 115	5 39 44 76 31 88 118 109 122 78 18 0,8 106	230 124 98 58 15 119 90 99 20 93 8 64 11 310 252 33	Balchaschsee Issyk-kul Chubssugul Totes Meer Afrika Victoriasee Tanganjikasee Njassasee Tschad Amerika Oberer See Huronsee Michigansee Gr. Bärensee Gr. Bärensee Eriesee Winnipegsee Ontariosee	17 300 6 200 3 400 980 68 800 31 900 30 800 16 000 82 382 59 573 58 000 31 068 22 919 25 735 24 331 10 521	274 1574 1600 — 394 1132 780 464 295 183 177 177 103 119 175 213 75	20 425 270 399 79 1435 706 12 393 223 290 > 90 > 140 64 19
Kaspisches Meer Aralsee Baikalsee	424 300 63 800 31 500	- 26 50 460	1000 68 1741	Titicacasee Gr. Salzsee Poopósee	6 900 4 700 2 530	3812 1283 3700	272 11

9. Seekanäle

10

Name	Erdteil	Länge in km	Mittlere Tiefe	Mittlere	Breite Sohle	Verbindung	Erbaut in
		in Kin	in m	Spiegel in m	in m		den Jahren
Nord-Ostsee-Kanal	Europa	98	11,3	102,0	44	Nord- und Ostsee	1887/1895
Kanal von Korinth	Europa	6,3	8	24,6	21	Ion. u. Äg. Meer	1881/1893
Suezkanal	Asien-Afrika	165,8	10,5	80/135	45/100	Mittelm. u.Ind.Oz.	1859/1869
Panamakanal	Amerika	81,1	12,5	91/305	90/200	Atlant. u.StillerOz.	1881/1914

19. Entfernungen im Flugverkehr im Inland

10

Flugstrecken	Entfernung in km	. Flugzeit1 in Stunden (IL 14)	
Berlin Leipzig	143	0 h 27 min	
Berlin — Erfurt	257	o h 48 min	
Berlin — Dresden	209	0 h 48 min	
Berlin — Barth	310	o h 58 min	
Berlin — Heringsdorf	220	o h 50 min	
Erfurt — Dresden	209	0 h 40 min	
Erfurt — Barth	545	Ih 42 min	
Erfurt Heringsdorf	430	I h 30 min	
Dresden — Barth	433	I h 21 min	
Dresden Heringsdorf	386	I h 15 min	
Leipzig — Heringsdorf	342	I h Io min	

¹ Die angegebenen Flugzeiten sind Erfahrungswerte.

10

Fiugstrecken •	Entfernung in km	Flugzeit ¹ in Stunden IL 14	IL 18
Berlin — Moskau	1642	5 h 10 min	2 h 50 min
Berlin — Warschau	563	1 h 45 min	I h o7 min
Berlin — Prag	318	I h oo min	o h 41 min
Berlin — Budapest	831	2 h 37 min	1 h 38 min
Berlin — Belgrad	1134	3 h 32 min	2 h 00 min
Berlin — Bukarest	1457	4 h 32 min	2 h 22 min
Berlin — Tirana	1591	4 h 56 min	2 h 37 min
Berlin — Kogalniceanu	1634	5 h o5 min	2 h 38 min
Berlin — Sofia	1535	4 h 48 min	2 h 30 min
Berlin — Varna	1643	5 h o8 min	2 h 39 min
Berlin — Tatri	885	2 h 46 min	-
Berlin — Bratislava	655	2 h o3 min	
Berlin — Kopenhagen	456	1 h 26 min	0 h 59 min
Berlin — Stockholm	965	3 h or min	1 h 48 min
Berlin — Helsinki	1344	4 h 11 min	2 h 23 min
Berlin — Oslo	915	2 h 52 min	
Leipzig — Kopenhagen	608	1 h 54 min	I h I3 min
Leipzig — Stockholm	1117	3 h 30 min	I h 40 min

12. Kürzeste Verbindungen zwischen einigen Städten der DDR für Bahn und Straße in Kilometern

	Berlin	Cottbus	Dresden	Erfurt	Frankfurt/O	Gera	Halle	Karl-Marx-Stadt	Leipzig	Magdeburg	Neubrandenburg	Potsdam	Rostock	Saßnitz	Schwerin	Suhi	Wismar
Berlin		128	196	287	90	232	166	232	168	148	133	29	236	281	213	348	244
Cottbus	118	\	101	298	85	226	206	170	176	233	261	148	364	409	341	367	372
Dresden	144	189		280	186	136	146	72	111	228	329	206	432	479	394	276	432
Erfurt	270	265	239		326	87	121	167	124	173	420	267	442	563	370	71	397
Frankfurt/O	81	73	193	338		266	232	255	202	220	202	119	305	337	303	395	334
Gera	240	22 I	163	90	294	\	75	65	64	175	365	203	444	515	372	150	403
Halle	162	174	158	109	247	92	\	110	35	82	299	144	351	447	279	190	333
Karl-Marx-Stadt	210	165	80	174	238	84		/									416
Leipzig				117					•								34I
Magdeburg				167						•							
Neubrandenburg												•					
Potsdam		-	-	267								,	· · ·				
Rostock				428	-				-			-	•			-	56
Saßnitz	-			550		-		-				-		•			
Schwerin	-			357											•	436	
Suhl				65													467
Wismar	247	362	429	389	328	400	310	425	344	225	152	235	57	180	32	454	

Anleitung: Die oberhalb der Diagonalen liegende Tabelle enthält die Anzahl der Straßenkilometer, die unterhalb der Diagonalen befindliche Tabelle die Anzahl der Bahnkilometer.

Mathematische Zeichen, Sätze und Formeln

1. Mathematische Zeichen nach TGL 0-1302 (8.62)

Art des Zeichens	Zeichen	Sprechweise, Erläuterung
Ordnungs- zeichen	, a ₁ , a ₂ , a', a",	Komma; Dezimalzeichen. Beim Trennen von Gruppen bei größeren Zahlen sind weder Komma noch Punkt, sondern nur Zwischenräume in Dreiergruppen zu verwenden. Beispiel: 300 486,538 79 a eins, a zwei; Unterscheidung durch Indizes a Strich, a zwei Strich; Unterscheidung durch hochgestellte
		Striche
Gleichheit, Ungleichheit u.a.	" # ~ ≈ < \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	gleich nicht gleich, ungleich proportional, z. B. $l \sim r$ angenähert, nahezu gleich (rund, etwa), z. B. $\pi \approx 3.14^{1}$ entspricht, z. B. 3 kg $\cong 5$,— MDN kleiner als größer als kleiner oder gleich, höchstens gleich größer oder gleich, mindestens gleich
Elementare Rechen- operationen	+ - · × - /:	plus minus Punkt als Malzeichen steht in Zeilenmitte. Beim Rechnen mit Variablen kann das Zeichen fortgelassen werden. durch, geteilt durch, zu. In Formeln meist waagerechter Bruchstrich. Die Zeichen "/" und ";" zur Platzersparnis. Das Zeichen "/" wird in manchen Fällen auch "je" gesprochen, z.B. 5 m/s "5 Meter je Sekunde" Prozent, vom Hundert Promille, vom Tausend runde, eckige, geschweifte, spitze Klammer auf und zu
Geometrische Zeichen	:: # ⊥ △ ≃ ~ × \(\frac{AB}{AB}\)	parallel nicht parallel rechtwinklig zu, senkrecht auf Dreieck kongruent ähnlich Winkel, z.B. $\not< ABC$ ist der Winkel zwischen BA und BC Strecke AB Bogen AB
Algebra	$\begin{vmatrix} a^2 \\ \sqrt{-2} \\ f(x_0) \end{vmatrix}$	a hoch zwei (oder a Quadrat) Wurzel (Quadratwurzel) aus Wert der Funktion f an der Stelle x_0

¹⁾ Bei der Verwendung von Dezimalbrüchen bedeutet \approx , daß der Fehler kleiner als eine halbe Einheit der letzten ausgeschriebenen Dezimale ist. Beispiel: $\pi \approx 3,14159 \approx 3,1416 \approx 3,142 \approx 3,14$.

2. Griechisches Alphabet

Buchs	tabe	Name	Buchstabe		Name	Buchst	tabe	Name
groß	klein _.		groß	klein		groß	klein	
Α Β Γ Δ Ε Ζ Η	α β γ δ ε ζ η	alpha beta gamma delta epsilon zeta eta theta	I К Л М N Ξ О П	ι λ μ ν ξ ο π	jota kappa lambda my ny xi omikron pi	P Σ T Y Φ X Ψ	ρ σ,ς τ υ φ χ ψ	rho sigma tau ypsilon phi chi psi omega

3. Das Runden von Zahlen

nach TGL 0-1333 (7. 62)

Große Zahlen muß man häufig runden, und zwar so, daß der Unterschied zwischen genauem und gerundetem Wert möglichst klein wird und höchstens die Hälfte der letzten geltenden Stelle beträgt.

Ist beim Runden auf eine gewisse Stellenzahl die erste Stelle, die nicht mehr geschrieben werden soll, eine 5 und folgt auf sie noch wenigstens eine von o verschiedene Ziffer oder ist die erste nicht mehr geschriebene Stelle eine Ziffer größer als 5, so wird die Ziffer der letzten zu schreibenden Stelle um 1 erhöht; es wird aufgerundet.

Beispiel für das Aufrunden auf zwei Stellen nach dem Komma: 3,356 87 ≈ 3,36; 9,495 001 ≈ 9,50.

Ist beim Runden auf eine gewisse Stellenzahl die nicht mehr zu schreibende Stelle eine Ziffer kleiner als 5, so bleibt die letzte zu schreibende Stelle unverändert; es wird abgerundet.

Beispiel für das Abrunden auf zwei Stellen nach dem Komma: 3,353 91 ≈ 3,35.

Folgt auf die letzte zu schreibende Stelle eine 5 und auf diese keine von Null verschiedene Ziffer, so wird aufgerundet, wenn der 5 eine ungerade Zahl vorangeht $(3\frac{3}{3} = 3,375 \approx 3,58)$, und abgerundet, wenn der 5 eine gerade Zahl vorangeht $(3,385 \approx 3,38)$ (Geradezahlregel).

4. Arithmetik

4.1. Das dekadische oder Zehnersystem

Das Zehnersystem ist auf dem Stellenwert aufgebaut (Positionssystem). In jeder Dekade werden die gleichen (arabischen) Ziffern

verwendet. So bedeutet 1963 (Eintausendneunhundertdreiundsechzig) gleich 1000 + 900 + 60 + 3. Beim Schreiben von Zahlen mit sehr vielen Ziffern läßt man, vom Komma aus nach rechts und links gezählt, nach je drei Ziffern einen kleinen Abstand.

Beispiel: 38 417 196,243 517 2; gelesen: Achtunddreißig Millionen vierhundertsiebzehntausend einhundertsechsundneunzig Komma zwei-vier-drei fünf-eins-sieben zwei.

- 4.2. Teilbarkeitsregeln; Primfaktoren; kleinstes gemeinschaftliches Vielfaches Die Teilbarkeitsregeln gelten für beliebige positive ganze Zahlen. Damit die Aussagen über die letzten Stellen immer richtig sind, denkt man sich gegebenenfalls vor der ganzen Zahl die erforderliche Anzahl Nullen, z. B. 16 = 016; 8 = 08 = 008.
- I. Jede Zahl, deren letzte Ziffer eine gerade Zahl ist, ist eine gerade Zahl und daher durch 2 teilbar.
 Beispiel:

368; 8 ist eine gerade Zahl, also ist 368 durch 2 teilbar; 368:2 = 184.

Eine Zahl ist genau dann durch 4 teilbar, wenn die aus den letzten beiden Ziffern in der gegebenen Reihenfolge gebildete Zahl durch 4 teilbar ist.

Allgemeiner gill: Bei der Division durch 4 läßt jede Zahl denselben Rest wie die aus den beiden letzten Ziffern in der gegebenen Reihenfolge gebildete Zahl. Insbesondere sind alle ganzen Zahlen, deren letzte zwei Ziffern Nullen sind (reine Hunderter), stets durch 4 teilbar.

Beispiele:

- 1. 728; 28 ist durch 4 teilbar, also ist 728 durch 4 teilbar; 728 : 4 = 182.
- 2. 937; 37 läßt bei der Division durch 4 den Rest 1; 937: 4 = 234 Rest 1.
- 3. 8 600; die letzten beiden Ziffern sind Nullen, also läßt sich 8 600 durch 4 dividieren; 8 600 : 4 = 2 150.
- Eine Zahl ist genau dann durch 8 teilbar, wenn die aus den letzten drei Ziffern in der gegebenen Reihenfolge gebildete Zahl durch 8 teilbar ist.

Allgemeiner gilt: Bei der Division durch 8 läßt jede Zahl denselben Rest wie die aus den drei letzten Ziffern in der gegebenen Reihenfolge gebildete Zahl.

Insbesondere sind alle ganzen Zahlen, deren letzte drei Ziffern Nullen sind (reine Tausender), stets durch 8 teilbar.

Beispiele:

- I. I 984; 984 ist durch 8 teilbar, also ist I 984 durch 8 teilbar, I 984: 8 = 248.
- 2. 2 995; 995 läßt bei der Division durch 8 den Rest 3, also läßt 2995 bei der Division durch 8 den Rest 3; 2 995 : 8 = 374 Rest 3.
- 3. 33 000; die letzten drei Ziffern sind Nullen, also ist 33 000 durch 8 teilbar: 33 000 : 8=4 125.
- 4. Eine Zahl ist genau dann durch 3 teilbar, wenn ihre Quersumme durch 3 teilbar ist.
 Allgemeiner gilt: Bei der Division durch 3 läßt jede Zahl denselben Rest wie ihre Quersumme.

Beispiele:

- 1. 738; 7 + 3 + 8 = 18 ist durch 3 teilbar, also ist 738 durch 3 teilbar; 738 : 3 = 246.
- 2. \$33; 8+3+3=14 läßt bei der Division durch 3 den Rest 2, also läßt 833 bei der Division durch 3 den Rest 2; 833:3=277 Rest 2.
- 5. Eine Zahl ist genau dann durch 9 teilbar, wenn ihre Quersumme durch 9 teilbar ist.

Allgemeiner gilt: Bei der Division durch 9 läßt jede Zahl denselben Rest wie ihre Quersumme.

Beispiele:

- 1. 0 630; 0 + 6 + 3 + 0 = 27 ist durch 0 teilbar, also ist 0 630 durch 0 teilbar; 0 630; 0 = 1 071.
- 2. 18 679; x + 8 + 6 + 7 + 9 = 31 läßt bei der Division durch 9 den Rest 4; also läßt auch 18 679 bei der Division durch 9 den Rest 4; 18 679: 9 = 2 075 Rest 4.
- 6. Eine Zahl ist genau dann durch 5 teilbar, wenn ihre letzte Ziffer eine 5 oder eine 0 ist.
- Allgemeiner gilt: Bei der Division durch 5 läßt jede Zahl denselben Rest wie die Zahl, die durch ihre letzte Ziffer bezeichnet wird.

Beispiele:

- 1. 765; die letzte Ziffer ist eine 5, also ist 765 durch 5 teilbar; 765: 5 = 153.
- 2. 868; die letzte Ziffer 8 läßt bei der Division durch 5 den Rest 3; also läßt auch 868 bei der Division durch 5 den Rest 3; 868 : 5 = 173 Rest 3.
- 7. Eine Zahl ist genau dann durch 10 teilbar, wenn ihre letzte Ziffer eine Null ist.

Allgemeiner gilt: Bei der Division durch 10 läßt jede Zahl einen Rest, der so groß ist wie die Zahl, die durch ihre letzte Ziffer bezeichnet wird.

Beispiele:

- 1. 79 810; die letzte Ziffer ist 0, also ist 79 810 durch 10 teilbar; 79 810 : 10 = 7981.
- 2. 923; die letzte Ziffer ist 3, also läßt 923 bei der Division durch 10 den Rest 3; 923: 10 = 92 Rest 3.

Eine Zahl ist genau dann durch 25 teilbar, wenn die aus den beiden letzten Ziffern in der gegebenen Reihenfolge gebildete Zahl durch 25 teilbar ist.

Allgemeiner gill: Eine Zahl läßt bei der Division durch 25 denselben Rest wie die aus den beiden letzten Ziffern in der gegebenen Reihenfolge gebildete Zahl.

Insbesondere sind alle ganzen Zahlen, deren letzte beiden Ziffern Nullen sind (reine Hunderter), durch 25 teilbar.

Beispiele:

- 1. 7 875; 75 ist durch 25 teilbar, also ist 7 875 durch 25 teilbar; 7 875; 25 = 315.
- 2. 7 938; 38 läßt bei der Division durch 25 den Rest 13, also läßt 7 938 bei der Division durch 25 den Rest 13; 7 938: 25 = 317 Rest 13.
- 3. 8 300; die letzfen zwei Ziffern sind Nullen, also läßt sich 8 300 durch 25 teilen; 8 300 : 25 = 332.
- o. Eine Zahl ist genau dann durch 11 teilbar, wenn ihre Ouerdifferenz durch 11 teilbar ist.

Allgemeiner gilt: Bei der Division durch 11 läßt jede Zahl denselben Rest wie ihre Querdifferenz.

Anmerkung: Bei der Bildung der Querdifferenz immer mit der letzten Ziffer beginnen!

Beispiele:

- 1. 4 025 362 Querdifferenz: 2 6 + 3 5 + 2 0 + 4 = 0. 0 ist durch 11 teilbar. Daher ist auch 4 025 362 durch 11 teilbar.
 - 4 025 362 : 11 = 365 942
- 2. 7 161 Ouerdifferenz: 1 6 + 1 7 = -11.
 - II ist durch II teilbar. Daher ist auch 7 161 durch II teilbar.
- 7 161 : 11 = 651
- 3. 172 913 Querdifferenz: 3 1 + 9 2 + 7 1 = 15. Da 15 durch 11 geteilt den Rest 4 ergibt, gilt dies auch für 172 913. Es ist 172 913: 11 = 15 719 Rest 4.
- 4. 529 361 Querdifferenz: 1 6 + 3 9 + 2 5 = -14. Da 14 = -22 + 8 ist, läßt 14 bei der Division durch 11 den Rest 8. Das gleiche gilt für 529 361. Es ist 529 361: 11 = 48 123 Rest 8.

Bei sehr großen Zahlen kann man die Dreier-, Neuner- und eventuell auch die Elferregel mehrmals hintereinander anwenden.

Beispiel:

Welchen Rest läßt die Zahl 58 794 368 785 921 777 839 bei der Division durch 9?

Läsung

Sie läßt denselben Rest wie ihre Ouersumme

$$9+3+8+\ldots+8+5=123$$

Diese läßt aber wiederum denselben Rest wie ihre Quersumme 3 + 2 + 1 = 6.

Ergebnis:

58 794 368 785 921 777 839 läßt bei der Division durch 9 den Rest 6;

58 794 368 785 921 777 839 : 9 = 6 532 707 642 880 197 537 Rest 6.

Primzahlen sind natürliche Zahlen, die genau zwei Teiler haben: I und sich selbst, z.B. 31 (vgl. Tafel 4, Primzahlen bis I 000).

ı ist keine Primzahl, da sie nur einen Teiler besitzt. Jede Primzahl, die Teiler einer gegebenen natürlichen Zahl ist, heißt Primfaktor der gegebenen Zahl.

Jede natürliche Zahl größer als I besitzt eine einzige Primfaktorzerlegung. Das ist eine Zerlegung der Zahl in Produkte von Primzahlpotenzen.

Kleinstes gemeinschaftliches Vielfaches (k.g. V.) einer Menge natürlicher Zahlen ist die kleinste ganze Zahl, die durch jede Zahl der Menge teilbar ist.

Man erhält das k. g. V. aus der Primfaktorenzerlegung der Zahlen der Menge in folgender Weise: Von allen Potenzen jeder auftretenden Primzahl wird die jeweils höchste ausgesucht. Das Produkt dieser Primzahlpotenzen ist das k. g. V.

Beispiel: $18 = 2 \cdot 3^2$; $20 = 2^2 \cdot 5$; $24 = 2^3 \cdot 3$; k. g. V.: $2^3 \cdot 3^2 \cdot 5 = 360$.

4.3. Grundrechenoperationen

4.3.1. Bezeichnungen

11

Stufe	Bezeichnung der Rechenoperation	Bezeichnung der Glieder und des Ergebnisses	Beispiel	
I	Addition (addieren)	Summand plus Summand ist gleich Summe $a+b=c$	3 + 8 = 11	
	Umkehrung: Subtraktion (subtrahieren)	Minuend minus Subtrahend ist gleich Differenz $c-b=a$	25-7=18	
2	Multiplikation (multiplizieren). Im Falle natürlicher Zahlen kann man die Multiplikation als wiederholte Addition gleicher Summanden er- klären	Faktor mal Faktor ist gleich Produkt $a \cdot b = c$	7 · 8 = 56	
	Umkehrung: Division (dividieren)	Dividend durch Divisor ist gleich Quotient $c:b=a$ $(b \neq 0)$	72:8=9	
3	Potenzieren (potenzieren mit einer natürlichen Zahl \(\geq 2 \) als Expo- nenten). Eine Potenz entsteht durch wiederholtes Multiplizieren gleicher Faktoren	Basis hoch Exponent ist gleich Potenz $a^b=c$	43 = 64	
	I. Umkehrung: Wurzelziehen (radizieren)	b-te Wurzel aus dem Radi- kanden gleich Wert der b-ten Wurzel: $rac{b}{\sqrt{c}} = a$	∛8 = 2	
		[hierin ist b ($b > r$, natürlich) der Wurzelexponent, c ($c \ge 0$) der Radikand und a ($a \ge 0$) der Wurzelwert]. Der Wurzelexponent 2 wird meistens weggelassen.	√16 = 4	

4.3.2. Gesetze der Addition und Multiplikation

11

Kommutationsgesetz	a+b=b+a $12+2=2+12$	$a \cdot b = b \cdot a$ $12 \cdot 2 = 2 \cdot 12$
Assoziationsgesetz	a + (b + c) = (a + b) + c $3 + (4 + 2) = (3 + 4) + 2$ $3 + 6 = 7 + 2$	$a \cdot (b \cdot c) = (a \cdot b) \cdot c$ $3 \cdot (4 \cdot 2) = (3 \cdot 4) \cdot 2$ $3 \cdot 8 = 12 \cdot 2$
Distributionsgesetz	$a \cdot (b + c) = ab + ac$ $3 \cdot (4 + 2) = 3 \cdot 4 + 3 \cdot 2$ $3 \cdot 6 = 12 + 6$	

Addition	(+a) + (+b) = +a + b	Multi- plikation	$(+a)\cdot(+b)=+ab$
	(+a) + (-b) = +a - b		$(+a)\cdot(-b)=-ab$
	(-a) + (+b) = -a + b		$(-a)\cdot(+b)=-ab$
	(-a)+(-b)=-a-b		$(-a)\cdot(-b)=+ab$
Subtraktion	(+a) - (+b) = +a - b	Division (b = 0)	$(+a):(+b)=+\frac{a}{b}$
	(+a)-(-b)=+a+b		$(+a):(-b)=-\frac{a}{b}$
	(-a)-(+b)=-a-b		$(-a):(+b)=-\frac{a}{b}$
	(-a)-(-b)=-a+b		$(-a):(-b)=+\frac{a}{b}$

4.3.4. Regeln für das Rechnen mit Summen (Differenzen) (a, b, c und d sind beliebige Zahlen)

Addieren von Klammerausdrücken	a + (b + c) = a + b + c; a + (b - c) = a + b - c.
Subtrahieren von Klammer- ausdrücken	a - (b + c) = a - b - c; $a - (b - c) = a - b + c;$ $a - (-b + c) = a + b - c;$ $a - (-b - c) = a + b + c.$
Multiplizieren von Klammer- ausdrücken	$a \cdot (b+c) = ab + ac;$ $a \cdot (b-c) = ab - ac.$
	$(a + b) \cdot (c + d) = ac + ad + bc + bd;$ $(a + b) \cdot (c - d) = ac - ad + bc - bd;$ $(a - b) \cdot (c + d) = ac + ad - bc - bd;$ $(a - b) \cdot (c - d) = ac - ad - bc + bd.$
Sonderfall: Binomische Formeln	$(a \pm b)^2 = a^2 \pm 2ab + b^2;$ $(a + b) \cdot (a - b) = a^2 - b^2.$
Division von Klammerausdrücken ($c \neq o$)	$(a+b): c = \frac{a}{c} + \frac{b}{c};$ $(a-b): c = \frac{a}{c} - \frac{b}{c}.$

-	•	
п		
	B	

Formänderung	Erweitern Kürzen	Werden Zähler umd Nenner eines Bruches mit dem gleichen Faktor multipliziert, so stellen der ursprüngliche und der erweiterte Bruch die gleiche Zahl dar. $\frac{a}{b} = \frac{am}{bm}(m \pm \mathbf{e}; \mathbf{b} \pm \mathbf{e})$ Werden Zähler und Nenner eines	$\frac{2}{9} \text{ erweitert mit 4 ergibt}$ $\frac{2 \cdot 4}{9 \cdot 4} = \frac{8}{36}$ $\frac{2}{9} = \frac{8}{36}$
	Kurzen	Werder Lame und Menner eines Bruches durch den gleichen Divisor dividiert, so stellen der ursprüngliche und der gekürzte Bruch die gleiche Zahl dar. $\frac{a}{b} = \frac{a : n}{b : n} (b \neq 0; n \neq 0)$	$\frac{8}{36} \text{ gekürzt mit 4 ergibt}$ $\frac{8:4}{36:4} = \frac{2}{9}$ $\frac{8}{36} = \frac{2}{9}$
Addition	man die Si meinsamen	ige Brüche werden addiert, indem imme der Zähler bildet und den ge-Nenner beibehält. $\frac{a+c}{b}~(b\neq 0)$	$\frac{1}{7} + \frac{2}{7} = \frac{1+2}{7} = \frac{3}{7}$
	dieren dure gemacht w	unige Brüche müssen vor dem Ad- ch Änderung ihrer Form gleichnamig erden. $\frac{ad}{bd} + \frac{bc}{bd} = \frac{ad+bc}{bd}(b \neq 0; d \neq 0)$	$\frac{3}{8} + \frac{3}{10} = \frac{3 \cdot 10}{8 \cdot 10} + \frac{3 \cdot 8}{10 \cdot 8} =$ $= \frac{30 + 24}{80} = \frac{54}{80} = \frac{27}{40}$
	der Zahlen Die Brüche in Brüche $\frac{a}{b} = \frac{am}{g};$ Für die Su $\frac{a}{b} + \frac{c}{d} = 0$ Dieses Ve	nter Benutzung des k. g.V.: Das k. g.V. b und d sei g ($b = 0$; $d = 0$; $g = 0$). $\frac{a}{b}$ und $\frac{c}{d}$ werden durch Erweitern mit dem Nenner g umgeformt: $\frac{c}{d} = \frac{c \cdot n}{g}$. mme erhält man: $\frac{am}{g} + \frac{cn}{g} = \frac{am + cn}{g}$. erfahren erfordert häufig weniger wand, da g vielfach kleiner ist als bd .	$\frac{\frac{3}{8} + \frac{3}{10};}{\text{kgV von 8 und 10 ist 40.}}$ $\frac{\frac{3}{8} + \frac{3}{10} = \frac{3 \cdot 5}{8 \cdot 5} + \frac{3 \cdot 4}{10 \cdot 4} = \frac{15 + 12}{40} = \frac{27}{40}$
Subtraktion	es gilt	uf die Addition zurückführen, denn $rac{a}{b}+rac{(-c)}{d}$ $(b \neq 0; d \neq 0).$	$\begin{vmatrix} \frac{7}{3} - \frac{2}{5} = \frac{7}{3} + \frac{(-2)}{5} = \\ = \frac{35 + (-6)}{15} = \frac{29}{15} \end{vmatrix}$
Multiplikation	Gemeine Brüche werden miteinander multipliziert, indem man jeweils die Zähler und die Nenner miteinander multipliziert. $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d} (b \neq 0; d \neq 0)$		$\frac{4}{5} \cdot \frac{3}{5} = \frac{4 \cdot 3}{5 \cdot 5} = \frac{12}{25}$
Division	Ein gemeiner Bruch wird durch einen gemeinen Bruch dividiert, indem man den Dividenden mit dem Kehrwert des Divisors multipliziert. $\frac{a}{b}:\frac{c}{d}=\frac{a}{b}\cdot\frac{d}{c}=\frac{a\cdot d}{b\cdot c}(b\neq 0;c\neq 0;d\neq 0)$		$\frac{7}{8} : \frac{5}{6} = \frac{7}{8} \cdot \frac{6}{5} =$ $= \frac{7 \cdot 6}{8 \cdot 5} = \frac{4^2}{40}$

Allgemeines

A sei ein Ausdruck.

A(x) bedeute, daß in diesem Ausdruck x vorkommt.

Hat man zwei Ausdrücke A_1 und A_2 , von denen einer x enthält oder die beide x enthalten, so bedeutet die Gleichung

$$(*) A_1(x) = A_2(x)$$

lösen, alle Zahlen zu finden, für die man, wenn man sie für x in $A_1(x)$ und $A_2(x)$ einsetzt, auf beiden Seiten den gleichen Wert erhält.

Falls es solche Zahlen gibt, nennt man jede von ihnen eine Lösung der Gleichung.

Um die Lösungen zu finden, nimmt man zunächst an, daß die gegebene Gleichung eine Lösung $x = x_0$ besitzt und setzt x_0 an Stelle von x in die gegebene Gleichung ein.

Oft führen folgende Schritte zum Ziel: I. Man beseitigt etwa vorhandene Nenner, indem man beide Seiten der Gleichung mit dem k.g.V. der Nenner multipliziert.

- 2. Man faßt auf beiden Seiten der entstandenen Gleichung jeweils die Glieder, in denen x. auftritt, und die Glieder, in denen x_0 nicht auftritt, so weit wie möglich zusammen.
- 3. Man formt die Gleichung so um, daß x0 nur auf einer Seite vorkommt. Will man beispielsweise die Glieder, in denen xo auftritt, auf der linken und die Glieder, in denen x_0 nicht auftritt, auf der rechten Gleichungsseite haben, so beseitigt man auf der rechten Gleichungsseite die Glieder, in denen xo auftritt, und auf der linken Gleichungsseite die Glieder, in denen x_0 nicht auftritt. Glieder kann man auf einer Gleichungsseite besei-

tigen, indem man auf beiden Seiten der Gleichung die entgegengesetzten addiert.

Beispiele

$$A = x + \frac{3m - n}{m}$$

$$A(x) = \frac{2x - a}{n} - (x + a)$$

$$A_1(x) = \frac{x-2}{3};$$

$$A_2(x) = \frac{2x-6}{3} - (2x-1)$$

1.
$$\frac{x-2}{3} = \frac{2x-6}{2} - (2x-1)$$

$$\frac{3x-6}{3x-4}=\frac{3}{4}$$

3.
$$5x-7 = 3x-1+2(x-1)$$

4.
$$\frac{3x-2}{2x+1} = 1 + \frac{3x-9}{6x+3}$$

1.
$$\frac{x_0-2}{3}=\frac{2x_0-6}{2}-(2x_0-1)$$

$$2. \ \frac{3x_0-6}{2x_0-4}=\frac{3}{4}$$

3.
$$5x_0 - 7 = 3x_0 - 1 + 2(x_0 - 1)$$

4.
$$\frac{3x_0-2}{2x_0+1}=1+\frac{3x_0-9}{6x_0+3}$$

1.
$$\frac{x_0 - 2}{3} = \frac{2x_0 - 6}{2} - (2x_0 - 1) | \cdot 6$$
$$2x_0 - 4 = 6x_0 - 18 - 12x_0 + 6$$

$$2 \cdot \frac{3x_0 - 6}{2x_0 - 4} = \frac{3}{4} \mid \cdot 2(2x_0 - 4)$$

$$6x_0 - 12 = 3x_0 - 6$$

4.
$$\frac{3x_0 - 2}{2x_0 + 1} = 1 + \frac{3x_0 - 9}{6x_0 + 3} | \cdot (6x_0 + 3)$$
$$9x_0 - 6 = 6x_0 + 3 + 3x_0 - 9$$

1.
$$2x_0-4=-6x_0-12$$

3.
$$5x_0 - 7 = 5x_0 - 3$$

4.
$$9x_0 - 6 = 9x_0 - 6$$

1.
$$2x_0 - 4 = -6x_0 - 12 \mid +4; +6x_0 8x_0 = -8$$

2.
$$6x_0 - 12 = 3x_0 - 6 \mid + 12; - 3x_0$$

3.
$$5x_0-7=5x_0-3|+7;-5x_0$$

4.
$$9x_0 - 6 = 9x_0 - 6 \mid +6; -9x_0$$

Läßt sich die gegebene Gleichung auf diese Weise auf die Form

$$(**) ax_0 = b$$

bringen, wobei a und b beliebige Zahlen bedeuten, so unterscheidet man zwei Fälle:

I.
$$a \neq 0$$
; 2. $a = 0$.

Im Fall 1. ist
$$x_0 = \frac{b}{a}$$

Im Fall 2. bestehen wieder zwei Möglichkeiten:

2.1.
$$b \neq 0$$
; 2.2. $b = 0$.

Im Fall 2.1. kann die Gleichung (**) für keinen Wert von x erfüllt sein, denn ein Produkt aus Zahlen kann nicht von Null verschieden sein, wenn ein Faktor Null ist, d.h., die Ausgangsgleichung besitzt keine Lösung.

Im Fall 2.2. ist die Gleichung (**) für jeden Wert von x erfüllt.

Um im Fall I. festzustellen, ob der gefundene Wert von x_0 auch Lösung ist, kann man diesen in (*) einsetzen und dadurch feststellen, ob die Gleichung erfüllt wird.

Im Fall 2.2. führt das Einsetzen zu einem Teilergebnis, es lassen sich jedoch nicht alle Zahlen einsetzen.

Hat eine Gleichung die Form

$$\frac{x}{a} = \frac{b}{c}$$
 bzw. $\frac{a}{x} = \frac{b}{c}$,

so wird sie häufig in der Form

$$x:a=b:c$$
 bzw. $a:x=b:c$

geschrieben und als Proportion bezeichnet.

1. $x_0 = -\frac{8}{8}$; $x_0 = -1$

2.
$$x_0 = \frac{6}{3}$$
; $x_0 = 2$

3. $0 x_0 = 4$

Die Gleichung

$$5x - 7 = 3x - 1 + 2(x - 1)$$

hat keine Lösung.

4. $0x_0 = 0$

Alle Zahlen x_0 erfüllen diese Gleichung.

Linke Seite:

$$\frac{-1-2}{3} = \frac{-3}{3} = -1;$$

rechte Seite:

$$\frac{2(-1)-6}{2} - [2\cdot(-1)-1]$$

$$= \frac{-2-6}{2} - (-3)$$

$$= \frac{-8}{2} + 3 = -4 + 3 = -1.$$

Vergleich: -1 = -1.

Also ist x = -1 Lösung, und zwar die einzige.

- 2. Setzt man $x_0 = 2$ ein, so ist der Ausdruck auf der linken Seite sinnlos. Die gegebene Gleichung hat keine Lösung.
- 4. Für x₀ = 0 linke Seite:

$$\frac{3 \cdot 0 - 2}{2 \cdot 0 + 1} = \frac{-2}{1} = -2;$$

...... C.:...

$$1 + \frac{3 \cdot 0 - 9}{6 \cdot 0 + 3} = 1 + \frac{-9}{3} = 1 - 3 = -2;$$

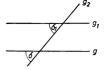
Vergleich: -2 = -2

Also ist x = 0 eine Lösung, aber nicht die einzige.

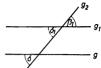
Setzt man $x_0=-\frac{1}{2}$, so ist der Ausdruck auf der linken Seite sinnlos, also ist $x_0=-\frac{1}{2}$ keine Lösung der Gleichung. Alle Fälle dieser Art lassen sich durch Nullsetzen der vorkommenden Nenner leicht bestimmen.

5.2. Prozent- und Zinsrechnung

Kurzzeichen	G Grundwert P Prozentwert p Prozentsatz	G Grundbetrag Z Zinsen p Zinssatz für 1 Jahr	
Grundproportion	P:p=G:100	Z:p=G: 100 Zinsen für mehrere Jahre $t:$ Zinsen für Tage t innerhalb eines Jahres:	$Z = \frac{G \cdot p}{100} \cdot t$ $Z = \frac{G \cdot p}{100} \cdot \frac{t}{360}$


6. Geometrie

6.1. Begriffe, Grundlagen


Punkt, Gerade	Durch einen Punkt gibt es beliebig viele Gerade (Büschel). Durch zwei Punkte gibt es nur eine Gerade. Kürzeste Verbindungslinie zweier Punkte ist die Strecke.
Winkel	Ein Winkel wird von zwei Strahlen, den Schenkeln, mit gemeinsamem An- fangspunkt, dem Scheitel, gebildet.
Winkelmaß	Vollkreisbogen entspricht 360°. $\mathbf{r}^{\circ} = \mathbf{r}$ (360 Vollkreisbogen.
Winkel- bezeich- nungen	spitz ($\alpha < 90^{\circ}$); rechter (R oder $\lfloor , \alpha = 90 \rangle$; stumpf ($90^{\circ} < \alpha < 180^{\circ}$); gestreckt ($\alpha = 180^{\circ}$); überstumpf ($180^{\circ} < \alpha < 360^{\circ}$).
Winkel zwischen zwei Geraden	Nebenwinkel $(\alpha + \gamma = 180^{\circ})$ Scheitelwinkel $(\alpha = \beta, \gamma = \delta)$
Parallele Geraden	Parallele Geraden schneiden einander nicht, sie haben überall den gleichen Abstand voneinander. Zeichnen von Parallelen mit Hilfe eines Zeichendreiecks.

Winkel an parallelen Geraden

 δ und δ_1 sind Stufenwinkel. Stufenwinkel sind einander gleich.

 δ und β_1 sind Wechselwinkel. Wechselwinkel sind einander gleich.

 δ und γ_1 sind entgegengesetzt liegende Winkel. Entgegengesetzt liegende Winkel er-

Winkel am Kreis

Zentriwinkel

Der Scheitel liegt im Kreismittelpunkt.

Peripheriewinkel

Der Scheitel liegt auf der Peripherie des Kreises, beide Schenkel liegen auf Sekanten und schneiden den Kreis nochmals.

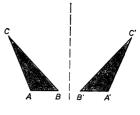
gänzen einander zu 180°.

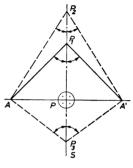
Der Scheitel liegt auf der Peripherie des Kreises, ein Schenkel liegt auf einer Tangente, die im Scheitel an den Kreis gelegt ist, der andere liegt auf einer Sekante und schneidet den Kreis nochmals.

- ∝ Zentriwinkel
- γ Peripheriewinkel γ' Sehnen-Tangenten - Winkel

Sätze:

- Jeder Peripheriewinkel eines Kreises ist halb so groß wie der Zentriwinkel über demselben Bogen.
- Alle Peripheriewinkel eines Kreises über einem festen Bogen sind einander gleich.
- 3. Jeder Peripheriewinkel im Halbkreis ist ein Rechter (Satz des THALES).
- 4. Von den beiden Peripheriewinkeln über einer Kreissehne ist der größere gleich dem größeren Sehnen-Tangentenwinkel, der kleinere gleich dem kleineren Sehnen-Tangentenwinkel.


Symmetrie der Ebene


Zwei ebene Figuren, die sich beim Umklappen um eine Gerade (Achse) decken, nennt man in bezug auf diese Gerade zueinander achsensymmetrisch (spiegeigleich).

Zwei ebene Figuren, die sich durch Drehen um 180° um einen Punkt ineinander überführen lassen, nennt man zueinander punktsymmetrisch (zentralsymmetrisch) gelegen.

Sätze:

- Die Abstände jedes Punktes der Symmetrieachse von zwei zu ihr symmetrisch gelegenen Punkten sind einander gleich.
- Jeder Punkt, der von zwei gegebenen Punkten gleich weit entfernt ist, liegt auf der Symmetrieachse zu diesen Punkten.
- 3. Verbindet man einen Punkt der Symmetrieachse mit zwei zu ihr symmetrisch gelegenen Punkten, so sind die beiden Winkel zwischen den Verbindungsstrecken und der Achse einander gleich.
- 4. Zu zwei Punkten gibt es genau eine Symmetrieachse.
- Die Symmetrieachse zu zwei Punkten halbiert die Verbindungsstrecke dieser Punkte und steht auf ihr senkrecht.

6.2. Dreiecke

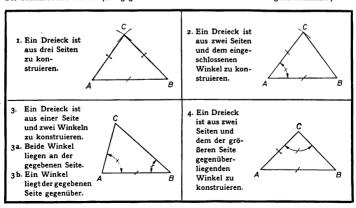
6.2.1. Bezeichnungen nach Seiten und Winkeln

Bezeichnung	Erklärung	Bezeichnung	Erklärung
gleichseitig	Sämtliche Seiten sind einander gleich.	spitzwinklig	Ein Dreieck mit drei spitzen Winkeln.
gleich• schenklig	Zwei Seiten sind einander gleich.	recht- winklig	Ein Winkel ist ein Rechter.
ungleich- schenklig	Alle drei Seiten sind paarweise ungleich lang.	stumpf- winklig	Ein Winkel ist stumpf.

6.2.2. Bezeichnung der Seiten in besonderen Dreiecken

Art	Bezeichnung	
rechtwinklig	Die dem rechten Winkel gegenüberliegende Seite heißt Hypotenuse. Die Katheten schließen den rechten Winkel ein.	
gleichschenklig	Schenkel: gleich lange Seiten; Basis, Grundlinie: die dritte Seite; Basiswinkel: Winkel zwischen Basis und Schenkeln; Winkel an der Spitze: Winkel zwischen Schenkeln.	

6.2.3. Eigenschaften und Beziehungen zwischen Seiten und Winkeln


Art	Bezeichnung
gleichschenkliges Dreieck	Achsensymmetrisch zur Mittelsenkrechten auf der Basis; die Symmetrieachse halbiert die Basis und den Winkel an der Spitze. Die Basiswinkel sind einander gleich.
beliebiges Dreieck	Die Summe zweier Seiten ist stets größer als die dritte Seite. Die Differenz zweier Seiten ist stets kleiner als die dritte Seite. Die Winkelsumme beträgt immer 180°. Die Summe der Außenwinkel beträgt immer 360°. Jeder Außenwinkel ist gleich der Summe der beiden nicht anliegenden Innenwinkel.

6.2.4. Dreieckskonstruktionen, Grundkonstruktionen

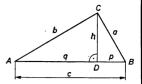
Es sind drei geeignete Stücke erforderlich.

Weg: Überlegungsfigur - Überlegung - Zeichnung (Konstruktion) - Beschreibung

Die Grundkonstruktionen. (Die gegebenen Stücke sind durch einen Strich gekennzeichnet.)

6.2.5. Geometrische Örter (in der Ebene)

Wenn alle Punkte einer Linie eine Bedingung erfüllen, die für keinen Punkt außerhalb dieser Linie zutrifft, dann bezeichnet man diese Linie als geometrischen Ort aller Punkte, die dieser Bedingung genügen.


Mittel- senkrechte	Die Mittelsenkrechte zu einer Strecke \overline{AB} (Symmetrieachse) istder geometrische Ort für alle die Punkte, die von den Punkten A und B den gleichen A bstand haben.
zwei Parallelen	Der geometrische Ort für alle Punkte, die von einer Geraden g den Abstand a ($a > 0$) haben, sind die beiden Parallelen zu g im Abstand a .
Winkel- halbierende	Die Winkelhalbierende ist der geometrische Ort für alle Punkte, die von den Schenkeln eines Winkels den gleichen Abstand haben.
Kreis	Die Kreislinie um M mit dem Radius r ist der geometrische Ort für alle Punkte, die von dem festen Punkt M den gleichen Abstand r haben.
Thaleskreis	Die beiden Halbkreise über einer Strecke \overline{AB} sind der geometrische Ort für die Spitzen aller rechtwinkligen Dreiecke, die diese Strecke als Hypotenuse haben.
Ortskreis	Jeder Kreisbogen über der Strecke \overline{AB} ist geometrischer Ort für alle Punkte C , die auf ein und derselben Seite der Geraden durch A und B liegen und für die die Winkel ACB den gleichen von C unabhängigen Wert haben.

6.2.6. Besondere Linien und Punkte im Dreieck

Winkel- halbierende	Die Winkelhalbierenden der Dreieckswinkel w_a,w_β,w_γ schneiden einander in einem Punkt, dem Mittelpunkt M_w des Inkreises.	C Was A B
Höhen	Die Höhen h_a , h_b , h_c sind die Lote von jedem Dreieckspunkt auf die gegenüberliegende Seite. Die Höhen schneiden einander in einem Punkt. Sie verhalten sich umgekehrt wie die dazugehörigen Seiten. $h_a: h_a: h_c: h_c: e: b: a$	ne ne
Seiten- halbierende	Die Verbindungslinie der Ecken eines Dreiecks mit den Mitten der jeweils gegenüberliegenden Seite sind die Seitenhalbierenden s_a , s_b , s_c . Die drei Seitenhalbierenden schneiden einander in einem Punkt, dem Schwerpunkt S des Dreiecks. Der Schwerpunkt teilt jede Seitenhalbierende im Verhältnis I:2, und zwar liegen die zwei Teile jeweils zwischen dem Eckpunkt und dem Schwerpunkt.	A C B
Mittel- senkrechte	Die Mittelsenkrechten der drei Dreieckseiten schneiden einander in einem Punkt, dem Mittelpunkt $m{P}$ des Umkreises.	A PRO B

Satz des Pythagoras In jedem rechtwinkligen Dreieck ist das Quadrat über der Hypotenuse flächengleich der Summe der Quadrate über beiden Katheten:

$$c^2=a^2+b^2.$$

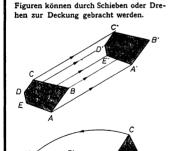
Umkehrung des Satzes des Pythagoras Gilt für die Seiten eines Dreiecks ABC $c^2=a^2+b^2$, so ist der der Seite c gegenüberliegende Winkel ein Rechter.

Kathetensatz, Satz des EUKLID Im rechtwinkligen Dreieck ist das Quadrat über einer Kathete flächengleich dem Rechteck aus der Hypotenuse und der Projektion der Kathete auf diese:

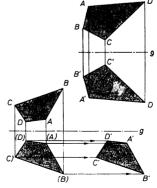
$$b^2=cq;\ a^2=cp.$$

Höhensatz

Im rechtwinkligen Dreieck ist das Quadrat über der Höhe flächengleich dem Rechteck aus den Projektionen der Katheten auf die Hypotenuse:


$$h^2 = p \cdot q$$
.

6.2.8. Kongruenz


Ebene Figuren sind deckungsgleich oder kongruent (≅), wenn sie sich in irgendeiner Weise vollständig zur Deckung bringen lassen. Seiten, Winkel oder Punkte, die sich dann decken, nennt man gleichliegend.

gleichsinnig kongruent

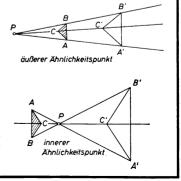
ngruent ungleichsinnig kongruent

Figuren können durch Spiegelung und u. U. auch nach einer Schiebung (Schubspiegelung) zur Deckung gebracht werden.

6.2.9. Kongruenzsätze

Kurzzeichen	Satz .	
	Dreiecke sind kongruent,	
SSS	wenn sie in den drei Seiten übereinstimmen,	
sws	wenn sie in zwei Seiten und dem eingeschlossenen Winkel übereinstimmen,	
sww	wenn sie in einer Seite und zwei gleichliegenden Winkeln übereinstimmen,	
ssw	wenn sie in zwei Seiten und dem der größeren Seite gegen- überliegenden Winkel übereinstimmen.	

6.2.10. Sätze zur Ähnlichkeit


Zwei ebene Figuren sind einander ähnlich (\sim), wenn sie ohne Rücksicht auf ihre Größe gleiche Form haben.

Satz	
Zwei Dreiecke sind zueinander ähnlich,	
wenn sie in zwei entsprechenden Seitenverhältnissen übereinstimmen,	
wenn sie in zwei gleichliegenden Winkeln übereinstimmen,	
wenn sie im Verhältnis zweier Seiten und dem von ihnen einge- schlossenen Winkel übereinstimmen,	
wenn sie im Verhältnis zweier Seiten und dem Gegenwinkel der größeren Seite übereinstimmen.	

6.2.11. Ähnlichkeitslage

Wenn zwei zueinander ähnliche Dreiecke so liegen, daß die Verbindungsgeraden entsprechender Eckpunkte durch einen gemeinsamen Punkt P gehen und die gleichliegenden Seiten parallel laufen, so befinden sich die Figuren in Ähnlichkeitslage. P heißt der Ähnlichkeitspunkt, die durch P verlaufenden Geraden die Ähnlichkeitsgeraden.

Je nachdem ob P auf den Ähnlichkeitsgeraden innerhalb oder außerhalb der entsprechenden Abschnitte liegt, spricht man vom inneren oder äußeren Ähnlichkeitspunkt.

6.3. Vierecke (ohne überschlagene Vierecke)

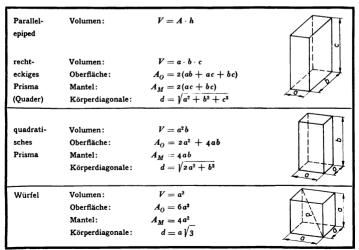
Trapez, beliebig	Zwei Seiten (Grundseiten) sind zueinander parallel.	D C B		
Parallelo- gramm	Trapez, bei dem je zwei gegenüber- liegende Seiten parallel und daher auch gleich lang sind.	a B		
Rechteck	Parallelogramm mit vier gleichen Winkeln.	D C C		
Rhombus	Parallelogramm mit vier gleich langen Seiten.	D C		
Quadrat	Rechteck mit vier gleich langen Seiten.	D C C		
	Im Parallelogramm ist die Summe benachbarter Winkel gleich 180°; gegenüberliegende Winkel sind gleich groß; die Diagonalen halbieren einander.			
Drachen- viereck	Viereck mit zwei Paaren gleich langer benachbarter Seiten.	A C		
Rhombus	Drachenviereck mit vier gleich langen Seiten.	B		
Quadrat	Drachenviereck mit vier gleichen Winkeln.			
Im Drachenviereck stehen die Diagonalen aufeinander senkrecht.				

6.4. Der Kreis

6.4.1. Kreis und Kreisteile, Bezeichnungen

Teil	Erklärung	
Sekante	auch Schneidende; Gerade, die einen Kreis (in zwei Punkten) schneidet	Sekante
Sehne	Teil der Sekante, der innerhalb des Kreises liegt	
Durchmesser	Sehne durch den Kreismittelpunkt	2
Radius	auch Halbmesser, eine vom Mit- telpunkt ausgehende Hälfte des Durchmessers	Sehne Sehne
Tangente	auch Berührende, Gerade, die den Kreis berührt	/
Segment	auch Kreisabschnitt, wird durch Kreisbogen und Sehne begrenzt	Krelsabschnitt
Sektor	auch Kreisausschnitt, wird durch zwei sich nicht deckende Radien und Kreisbogen begrenzt	
Halbkreis	Sonderfall, in dem Kreisabschnitt und Kreisausschnitt ineinander übergehen	Kreisaus - schnitt
Kreisring	wird durch zwei Kreise mit gleichem Mittelpunkt, aber verschiedenen Radien gebildet (konzentrische Kreise)	
Kreissichel	wird von zwei Kreisbögen begrenzt	

6.4.2. Sätze zum Kreis mit Sehne und Tangente


Sehne	Die Mittelsenkrechte auf jeder Kreissehne geht durch den Kreismittel- punkt. Die größere von zwei Sehnen hat den kleineren Abstand vom Kreis- mittelpunkt. Gleich lange Sehnen haben gleichen Abstand vom Kreismittelpunkt.	
Tangente	Die Tangente an einen Kreis bildet im Berührungspunkt mit dem Halbmesser des Kreises einen rechten Winkel. Die Tangentenabschnitte von einem Punkt außerhalb des Kreises an diesen sind einander gleich. Die Zentrale (Verbindungslinie von einem Punkt außerhalb des Kreises mit dem Mittelpunkt) von einem Punkt P halbiert die Berührungssehne und den Winkel zwischen beiden Tangenten.	

6.5. Flächeninhalt, Umfang u.a. bei ebenen Gebilden

Dreieck	beliebig	$A = \frac{g \cdot h_0}{2} = \frac{a \cdot h_a}{2} = \frac{b \cdot h_b}{2} = \frac{c \cdot h_c}{2}$ $A = \sqrt{s (s - a) (s - b) (s - c)}$ $u = a + b + c; s = \frac{u}{2}$	g g
	rėcht- winklig	$(\gamma = 90^{\circ})$ $A = \frac{a \cdot b}{2}; h_c = \sqrt{p \cdot q}; c^2 = a^2 + b^2$	q p
	gleich- seitig	$A = \frac{a^2}{4} \sqrt{3}; \ h = \frac{a}{2} \sqrt{3}; \ u = 3a$	0 2
Viereck	Trapez	$A = \frac{g + g_1}{2}h; m = \frac{g + g_1}{2}$ $u = g_1 + g_2 + b + d$	
	Par- allelo- gramm	$A = g \cdot h_g; u = 2(g+b)$	b g
	Recht- eck	$A = a \cdot b; \ u = 2(a + b); \ e = \sqrt{a^2 + b^2}$	0
	Quadrat	$A=a^2;\;\;u=4a;\;e=a\sqrt{2}$	0

Vielecke	Bestimmung des Flächeninhalts nach der Dreiecksmethode: Man zerlegt das Vieleck durch Diagonalen in Dreiecke, mißt jeweils eine Sefte und die zugehörige Höhe und berechnet aus den einzelnen Teilflächen den Inhalt der Ge- samtfläche.	A B C
Kreis Kreis- ausschnitt	$u = \pi d = 2\pi r; A = \frac{\pi}{4} d^2 = \pi r^2$ $A = \frac{\pi d^2 a}{1440^{\circ}} = \frac{\pi r^2 a}{360^{\circ}}$	
Kreisring	$A = \frac{\pi}{4} (d_1^2 - d_2^2)$ $= \frac{\pi}{4} (d_1 + d_2) (d_1 - d_2)$ $= \pi (r_1^2 - r_2^2) = \pi (r_1 + r_2) (r_1 - r_2)$	2 d2

6.6. Mantel, Oberfläche, Volumen von Körpern

Kreiszvlinder

 $V = \frac{\pi}{4} d^2 h = \pi r^2 h$ Volumen:

Oberfläche: $A_0 = \pi \left(dh + \frac{d^2}{2} \right)$

 $= 2\pi r(r+h)$

 $A_{rr} = \pi dh = 2\pi rh$ Mantel:

Hohlzylinder

Volumen: $V = \frac{\pi}{4} h(d_1 + d_2) \times$

 $=\pi h (r_1+r_2)\times$ $\times (r_1 - r_2)$

Pyramide

Volumen: $V = \frac{1}{2} A_G \cdot h$

reguläres Tetraeder

 $V=\frac{a^3}{2}\sqrt{2}$ Volumen:

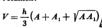
Oberfläche: $A_0 = a^2 \sqrt{3}$

reguläres

Volumen: Oktaeder

(von acht gleichseitigen

 $V = \frac{a^3}{2} \sqrt{\frac{a}{2}}$ Oberfläche:


Volumen:

Dreiecken $A_0 = 2a^2 \sqrt{3}$ begrenzt)

Pyramidenstumpf

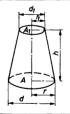
Volumen:

Kreiskegel

 $V = \frac{1}{12} \pi d^2 h = \frac{1}{2} \pi r^2 h$ Volumen:

Oberfläche: $A_0 = \frac{\pi}{4} d(d+4s) = \pi r(r+s)$

 $A_{M} = \frac{\pi}{2} ds = \pi rs$ Mantel:

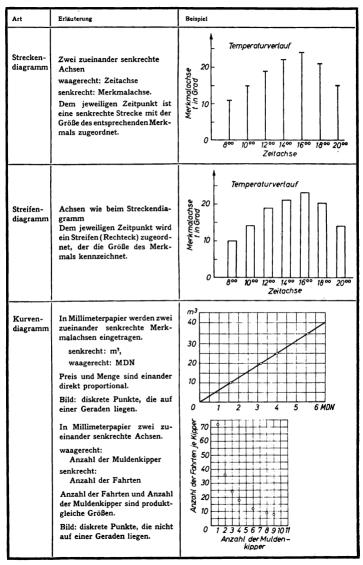

Kegelstumpf

 $V = \frac{\pi}{12} h (d^2 + d_1^2 + d d_1)$

 $= \frac{\pi}{2} h (r^2 + r_1^2 + r r_1)$

 $A_0 = \pi (r^2 + r_1^2 + s(r + r_1))$ Oberfläche:

 $A_M = \pi s(r+r_1)$ Mantel:


Kugel

 $V = \frac{1}{6} \pi d^3 = \frac{4}{2} \pi r^3$ Volumen:

Oberfläche: $A_0 = \pi d^2 = 4\pi r^2$

7. Graphische Darstellung

Recht-Zwei einander rechtwinklig winkliges schneidende Geraden bilden ein y-Achse Koordi-Achsenkreuz. natenwaagerecht: x-Achse. 4 π 1 Abszissenachse system 3 senkrecht: v · Achse. Ordinatenachse 2 P(2,15) Schnittpunkt: Koordinatenursprung, Koordinatenanfangspunkt -4 -3 -2 -1 0 Achsen teilen die Ebene in vier Quadranten, im Gegenuhrzeigersinn als I, II, III und IV bezeichnet. *111* IV - 3 leder Punkt der Ebene wird durch seine Koordinaten x und v eindeutig festgelegt. Schreibweise P(x; y), z. B. P(z; 1,5)Lineare Die lineare Funktion heißt auch Funktion Funktion ersten Grades. Beispiel $y = \frac{1}{3}x + 3$ +.3 +3 +3 Form: y = mx + n; m ist der Richtungsfaktor, n ist der Abschnitt auf der y-Achse y=mx+0 ım=2 .3 y = mx: Geradenbüschel durch den Koordinatenursprung 1 m=-2 n=1 $y = \frac{1}{2}x + n$ Schar paralleler Geraden $y = \frac{1}{2}x + n$

8. Darstellende Geometrie (Einführung)

Zweck: Räumliche Gegenstände auf der Zeichenebene maßstabgerecht abzubilden

	Palintaria	A
Grundriß (Draufsicht)	Bild eines Körpers in der Zeichenebene. Alle Punkte und Kanten werden senkrecht auf die Zeichen- oder Standebene projiziert. Projektion des Punktes P in die Grundrißebene: P' (1. Projektion).	B C D
	Sichtbare Kanten zeichnet man als Vollinien; unsichtbare Kanten zeichnet man als Strichlinien.	c g
Aufriß (Ansicht)	Bild eines Körpers in einer zur Zeichenebene senkrechten Ebene. Die Aufrißebene (-tafel) steht senkrecht zur Grundrißebene (tafel-), der Standebene. Der Aufriß läßt die Höhe der abgebildeten Punkte über der Grundrißtafel erkennen. Projektion des Punktes P in die Aufrißebene: P" (2. Projektion). Dadurch, daß man die Aufrißebene nach hinten in die Grundriß-(Zeichen-) ebene klappt, treffen beide Ebenen in der (Riß-) Achse x zusammen. Die Projektionen ein und desselben Punktes liegen auf der zur Achse senkrechten Ordnungslinie.	ρ' e ₂ β' e ₁
Kreuzriß	Bild eines Körpers in einer zur Grund- und Aufrißebene senkrechten Ebene. Der Kreuzriß (Seitenriß) entsteht als dritter Riß, wenn eine räumliche, recht- winklige Ecke in die Zeichenebene geklappt wird. Ein Punkt P hat in den drei Ebenen die Projektionen P', P" und P'''.	e ₂ p'' e ₃ p'' e ₄ p'' e ₇

Bearbeitet von Dr. Gustav Beyrodt Vom Ministerium für Volksbildung der Deutschen Demokratischen Republik als Lehrmaterial für die allgemeinbildende polytechnische Oberschule bestätigt.

Redaktion: Siegmar Kubicek, Karlheinz Martin und Peter Pfeiffer

Redaktionsschluß: 2. November 1964 Zeichnungen: Ingrid Schäfer

ES 11 G . Bestell-Nr. 00 07 11-2 . Lizenz-Nr. 203 . 1000/64 (DN)

Satz: B. G. Taubner, Leipzig (III/18/154)

Druck: VEB Fachbuchdruck Naumburg (Saale) IV/26/14

000711-2 0.70 MDN