
THE 1989 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours

NO calculators are to be used.

Each question is worth seven points.

Question 1

Let x1, x2, . . . , xn be positive real numbers, and let

S = x1 + x2 + · · · + xn.

Prove that

(1 + x1)(1 + x2) · · · (1 + xn) ≤ 1 + S +
S2

2!
+

S3

3!
+ · · · +

Sn

n!
.

Question 2

Prove that the equation
6(6a2 + 3b2 + c2) = 5n2

has no solutions in integers except a = b = c = n = 0.

Question 3

Let A1, A2, A3 be three points in the plane, and for convenience, let A4 = A1, A5 = A2.
For n = 1, 2, and 3, suppose that Bn is the midpoint of AnAn+1, and suppose that Cn is
the midpoint of AnBn. Suppose that AnCn+1 and BnAn+2 meet at Dn, and that AnBn+1 and
CnAn+2 meet at En. Calculate the ratio of the area of triangle D1D2D3 to the area of triangle
E1E2E3.

Question 4

Let S be a set consisting of m pairs (a, b) of positive integers with the property that
1 ≤ a < b ≤ n. Show that there are at least

4m · (m − n2

4
)

3n

triples (a, b, c) such that (a, b), (a, c), and (b, c) belong to S.

Question 5

Determine all functions f from the reals to the reals for which

(1) f(x) is strictly increasing,
(2) f(x) + g(x) = 2x for all real x,

where g(x) is the composition inverse function to f(x). (Note: f and g are said to be composition
inverses if f(g(x)) = x and g(f(x)) = x for all real x.)
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THE 1990 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours

NO calculators are to be used.

Each question is worth seven points.

Question 1

Given triagnle ABC, let D, E, F be the midpoints of BC, AC, AB respectively and let G be
the centroid of the triangle.
For each value of ∠BAC, how many non-similar triangles are there in which AEGF is a cyclic
quadrilateral?

Question 2

Let a1, a2, . . . , an be positive real numbers, and let Sk be the sum of the products of a1, a2,
. . . , an taken k at a time. Show that

SkSn−k ≥
(

n

k

)2

a1a2 · · · an

for k = 1, 2, . . . , n − 1.

Question 3

Consider all the triangles ABC which have a fixed base AB and whose altitude from C is a
constant h. For which of these triangles is the product of its altitudes a maximum?

Question 4

A set of 1990 persons is divided into non-intersecting subsets in such a way that

1. No one in a subset knows all the others in the subset,

2. Among any three persons in a subset, there are always at least two who do not know each
other, and

3. For any two persons in a subset who do not know each other, there is exactly one person in
the same subset knowing both of them.

(a) Prove that within each subset, every person has the same number of acquaintances.

(b) Determine the maximum possible number of subsets.
Note: It is understood that if a person A knows person B, then person B will know person A;
an acquaintance is someone who is known. Every person is assumed to know one’s self.

Question 5

Show that for every integer n ≥ 6, there exists a convex hexagon which can be dissected into
exactly n congruent triangles.
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THE 1991 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours

NO calculators are to be used.

Each question is worth seven points.

Question 1

Let G be the centroid of triangle ABC and M be the midpoint of BC. Let X be on AB and Y
on AC such that the points X, Y , and G are collinear and XY and BC are parallel. Suppose
that XC and GB intersect at Q and Y B and GC intersect at P . Show that triangle MPQ is
similar to triangle ABC.

Question 2

Suppose there are 997 points given in a plane. If every two points are joined by a line segment
with its midpoint coloured in red, show that there are at least 1991 red points in the plane.
Can you find a special case with exactly 1991 red points?

Question 3

Let a1, a2, . . . , an, b1, b2, . . . , bn be positive real numbers such that a1 + a2 + · · · + an =
b1 + b2 + · · · + bn. Show that

a2
1

a1 + b1

+
a2

2

a2 + b2

+ · · · +
a2

n

an + bn

≥ a1 + a2 + · · · + an

2
.

Question 4

During a break, n children at school sit in a circle around their teacher to play a game. The
teacher walks clockwise close to the children and hands out candies to some of them according
to the following rule. He selects one child and gives him a candy, then he skips the next child
and gives a candy to the next one, then he skips 2 and gives a candy to the next one, then he
skips 3, and so on. Determine the values of n for which eventually, perhaps after many rounds,
all children will have at least one candy each.

Question 5

Given are two tangent circles and a point P on their common tangent perpendicular to the
lines joining their centres. Construct with ruler and compass all the circles that are tangent to
these two circles and pass through the point P .
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THE 1992 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours

NO calculators are to be used.

Each question is worth seven points.

Question 1

A triangle with sides a, b, and c is given. Denote by s the semiperimeter, that is s = (a+b+c)/2.
Construct a triangle with sides s − a, s − b, and s − c. This process is repeated until a triangle
can no longer be constructed with the side lengths given.
For which original triangles can this process be repeated indefinitely?

Question 2

In a circle C with centre O and radius r, let C1, C2 be two circles with centres O1, O2 and radii
r1, r2 respectively, so that each circle Ci is internally tangent to C at Ai and so that C1, C2 are
externally tangent to each other at A.
Prove that the three lines OA, O1A2, and O2A1 are concurrent.

Question 3

Let n be an integer such that n > 3. Suppose that we choose three numbers from the set
{1, 2, . . . , n}. Using each of these three numbers only once and using addition, multiplication,
and parenthesis, let us form all possible combinations.

(a) Show that if we choose all three numbers greater than n/2, then the values of these combi-
nations are all distinct.

(b) Let p be a prime number such that p ≤ √
n. Show that the number of ways of choosing three

numbers so that the smallest one is p and the values of the combinations are not all distinct is
precisely the number of positive divisors of p − 1.

Question 4

Determine all pairs (h, s) of positive integers with the following property:

If one draws h horizontal lines and another s lines which satisfy

(i) they are not horizontal,

(ii) no two of them are parallel,

(iii) no three of the h + s lines are concurrent,

then the number of regions formed by these h + s lines is 1992.

Question 5

Find a sequence of maximal length consisting of non-zero integers in which the sum of any
seven consecutive terms is positive and that of any eleven consecutive terms is negative.
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THE 1993 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours

NO calculators are to be used.

Each question is worth seven points.

Question 1

Let ABCD be a quadrilateral such that all sides have equal length and angle ABC is 60 deg.
Let l be a line passing through D and not intersecting the quadrilateral (except at D). Let E
and F be the points of intersection of l with AB and BC respectively. Let M be the point of
intersection of CE and AF .
Prove that CA2 = CM × CE.

Question 2

Find the total number of different integer values the function

f(x) = [x] + [2x] + [
5x

3
] + [3x] + [4x]

takes for real numbers x with 0 ≤ x ≤ 100.

Question 3

Let

f(x) = anxn + an−1x
n−1 + · · · + a0 and

g(x) = cn+1x
n+1 + cnxn + · · · + c0

be non-zero polynomials with real coefficients such that g(x) = (x+r)f(x) for some real number
r. If a = max(|an|, . . . , |a0|) and c = max(|cn+1|, . . . , |c0|), prove that a

c
≤ n + 1.

Question 4

Determine all positive integers n for which the equation

xn + (2 + x)n + (2 − x)n = 0

has an integer as a solution.

Question 5

Let P1, P2, . . . , P1993 = P0 be distinct points in the xy-plane with the following properties:

(i) both coordinates of Pi are integers, for i = 1, 2, . . . , 1993;

(ii) there is no point other than Pi and Pi+1 on the line segment joining Pi with Pi+1 whose
coordinates are both integers, for i = 0, 1, . . . , 1992.

Prove that for some i, 0 ≤ i ≤ 1992, there exists a point Q with coordinates (qx, qy) on the line
segment joining Pi with Pi+1 such that both 2qx and 2qy are odd integers.
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THE 1994 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours

NO calculators are to be used.

Each question is worth seven points.

Question 1

Let f : R → R be a function such that

(i) For all x, y ∈ R,
f(x) + f(y) + 1 ≥ f(x + y) ≥ f(x) + f(y),

(ii) For all x ∈ [0, 1), f(0) ≥ f(x),

(iii) −f(−1) = f(1) = 1.

Find all such functions f .

Question 2

Given a nondegenerate triangle ABC, with circumcentre O, orthocentre H, and circumradius
R, prove that |OH| < 3R.

Question 3

Let n be an integer of the form a2 + b2, where a and b are relatively prime integers and such
that if p is a prime, p ≤ √

n, then p divides ab. Determine all such n.

Question 4

Is there an infinite set of points in the plane such that no three points are collinear, and the
distance between any two points is rational?

Question 5

You are given three lists A, B, and C. List A contains the numbers of the form 10k in base
10, with k any integer greater than or equal to 1. Lists B and C contain the same numbers
translated into base 2 and 5 respectively:

A B C
10 1010 20
100 1100100 400
1000 1111101000 13000
...

...
...

Prove that for every integer n > 1, there is exactly one number in exactly one of the lists B or
C that has exactly n digits.
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THE 1995 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours

NO calculators are to be used.

Each question is worth seven points.

Question 1

Determine all sequences of real numbers a1, a2, . . . , a1995 which satisfy:

2
√

an − (n − 1) ≥ an+1 − (n − 1), for n = 1, 2, . . . 1994,

and
2
√

a1995 − 1994 ≥ a1 + 1.

Question 2

Let a1, a2, . . . , an be a sequence of integers with values between 2 and 1995 such that:

(i) Any two of the ai’s are realtively prime,
(ii) Each ai is either a prime or a product of primes.

Determine the smallest possible values of n to make sure that the sequence will contain a prime
number.

Question 3

Let PQRS be a cyclic quadrilateral such that the segments PQ and RS are not parallel.
Consider the set of circles through P and Q, and the set of circles through R and S. Determine
the set A of points of tangency of circles in these two sets.

Question 4

Let C be a circle with radius R and centre O, and S a fixed point in the interior of C. Let
AA′ and BB′ be perpendicular chords through S. Consider the rectangles SAMB, SBN ′A′,
SA′M ′B′, and SB′NA. Find the set of all points M , N ′, M ′, and N when A moves around the
whole circle.

Question 5

Find the minimum positive integer k such that there exists a function f from the set Z of all
integers to {1, 2, . . . k} with the property that f(x) Ó= f(y) whenever |x − y| ∈ {5, 7, 12}.
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THE 1996 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours

NO calculators are to be used.

Each question is worth seven points.

Question 1

Let ABCD be a quadrilateral AB = BC = CD = DA. Let MN and PQ be two segments
perpendicular to the diagonal BD and such that the distance between them is d > BD/2, with
M ∈ AD, N ∈ DC, P ∈ AB, and Q ∈ BC. Show that the perimeter of hexagon AMNCQP
does not depend on the position of MN and PQ so long as the distance between them remains
constant.

Question 2

Let m and n be positive integers such that n ≤ m. Prove that

2nn! ≤ (m + n)!

(m − n)!
≤ (m2 + m)n .

Question 3

Let P1, P2, P3, P4 be four points on a circle, and let I1 be the incentre of the triangle P2P3P4;
I2 be the incentre of the triangle P1P3P4; I3 be the incentre of the triangle P1P2P4; I4 be the
incentre of the triangle P1P2P3. Prove that I1, I2, I3, I4 are the vertices of a rectangle.

Question 4

The National Marriage Council wishes to invite n couples to form 17 discussion groups under
the following conditions:

1. All members of a group must be of the same sex; i.e. they are either all male or all female.

2. The difference in the size of any two groups is 0 or 1.

3. All groups have at least 1 member.

4. Each person must belong to one and only one group.

Find all values of n, n ≤ 1996, for which this is possible. Justify your answer.

Question 5

Let a, b, c be the lengths of the sides of a triangle. Prove that

√
a + b − c +

√
b + c − a +

√
c + a − b ≤

√
a +

√
b +

√
c ,

and determine when equality occurs.
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THE 1997 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours

NO calculators are to be used.

Each question is worth seven points.

Question 1 Given

S = 1 +
1

1 + 1
3

+
1

1 + 1
3

+ 1
6

+ · · · +
1

1 + 1
3

+ 1
6

+ · · · + 1
1993006

,

where the denominators contain partial sums of the sequence of reciprocals of triangular num-
bers (i.e. k = n(n + 1)/2 for n = 1, 2, . . . , 1996). Prove that S > 1001.

Question 2 Find an integer n, where 100 ≤ n ≤ 1997, such that

2n + 2

n

is also an integer.

Question 3 Let ABC be a triangle inscribed in a circle and let

la =
ma

Ma

, lb =
mb

Mb

, lc =
mc

Mc

,

where ma, mb, mc are the lengths of the angle bisectors (internal to the triangle) and Ma, Mb,
Mc are the lengths of the angle bisectors extended until they meet the circle. Prove that

la
sin2 A

+
lb

sin2 B
+

lc
sin2 C

≥ 3,

and that equality holds iff ABC is an equilateral triangle.

Question 4 Triangle A1A2A3 has a right angle at A3. A sequence of points is now defined by
the following iterative process, where n is a positive integer. From An (n ≥ 3), a perpendicular
line is drawn to meet An−2An−1 at An+1.

(a) Prove that if this process is continued indefinitely, then one and only one point P is interior
to every triangle An−2An−1An, n ≥ 3.

(b) Let A1 and A3 be fixed points. By considering all possible locations of A2 on the plane, find
the locus of P .

Question 5 Suppose that n people A1, A2, . . ., An, (n ≥ 3) are seated in a circle and that Ai

has ai objects such that
a1 + a2 + · · · + an = nN,

where N is a positive integer. In order that each person has the same number of objects, each
person Ai is to give or to receive a certain number of objects to or from its two neighbours
Ai−1 and Ai+1. (Here An+1 means A1 and An means A0.) How should this redistribution be
performed so that the total number of objects transferred is minimum?
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THE 1998 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours

NO calculators are to be used.

Each question is worth seven points.

Question 1

Let F be the set of all n-tuples (A1, . . . , An) such that each Ai is a subset of {1, 2, . . . , 1998}.
Let |A| denote the number of elements of the set A. Find

∑

(A1,...,An)∈F

|A1 ∪ A2 ∪ · · · ∪ An|.

Question 2

Show that for any positive integers a and b, (36a + b)(a + 36b) cannot be a power of 2.

Question 3

Let a, b, c be positive real numbers. Prove that

(1 +
a

b
)(1 +

b

c
)(1 +

c

a
) ≥ 2 · (1 +

a + b + c
3
√

abc
)

Question 4

Let ABC be a triangle and D the foot of the altitude from A. Let E and F lie on a line passing
through D such that AE is perpendicular to BE, AF is perpendicular to CF , and E and F
are different from D. Let M and N be the midpoints of the segments BC and EF , respectively.
Prove that AN is perpendicular to NM .

Question 5

Find the largest integer n such that n is divisible by all positive integers less than 3
√

n.
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THE 1999 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours

NO calculators are to be used.

Each question is worth seven points.

Question 1

Find the smallest positive integer n with the following property: there does not exist an arith-
metic progression of 1999 real numbers containing exactly n integers.

Question 2

Let a1, a2, ... be a sequence of real numbers satisfying ai+j ≤ ai + aj for all i, j = 1, 2, ... Prove
that

a1 +
a2

2
+

a3

3
+ · · · +

an

n
≥ an

for each positive integer n.

Question 3

Let Γ1 and Γ2 be two circles intersecting at P and Q. The common tangent, closer to P , of Γ1

and Γ2 touches Γ1 at A and Γ2 at B. The tangent of Γ1 at P meets Γ2 at C, which is different
from P , and the extension of AP meets BC at R. Prove that the circumcircle of triangle PQR
is tangent to BP and BR.

Question 4

Determine all pairs (a, b) of integers with the property that the numbers a2 + 4b and b2 + 4a
are both perfect squares.

Question 5

Let S be a set of 2n+1 points in the plane such that no three are collinear and no four concyclic.
A circle will be called good if it has 3 points of S on its circumference, n−1 points in its interior
and n − 1 points in its exterior. Prove that the number of good circles has the same parity as
n.
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12th Asian Pacific Mathematics Olympiad

March 2000 

Time allowed: 4 hours. 

No calculators to be used. 

Each question is worth 7 points. 

1. Compute the sum 

3101

2
0 1 3 3

i

i i i

x
S

x x=

=
− +

∑  for 
101

i

i
x = .

2. Given the following triangular arrangement of circles: 

Each of the numbers 1, 2, …, 9 is to be written into one of these circles, so that each circle 

contains exactly one of these numbers and 

(i) the sums of the four numbers on each side of the triangle are equal; 

(ii) the sums of the squares of the four numbers on each side of the triangle are equal. 

Find all ways in which this can be done. 

3. Let ABC be a triangle. Let M and N be the points in which the median and the angle bisector, 

respectively, at A meet the side BC. Let Q and P be the points in which the perpendicular at N

to NA meets MA and BA, respectively, and O the point in which the perpendicular at P to BA

meets AN produced. Prove that QO is perpendicular to BC.

4. Let n, k be given positive integers with n > k. Prove that  

1 !

1 ( ) !( )! ( )

n n

k n k k n k

n n n

n k n k k n k k n k− −
⋅ < <

+ − − −
.

5. Given a permutation 0 1( , , , )na a a  of the sequence 0, 1, …, n. A transposition of ia  with 

ja  is called legal if 0ia =  for 0i > , and 1 1i ja a
−

+ = . The permutation 0 1( , , , )na a a  is 

called regular if after a number of legal transpositions it becomes (1, 2, , , 0)n . For which 

numbers n is the permutation (1, , 1, , 3, 2, 0)n n −  regular? 

END OF PAPER



THE 2001 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours

NO calculators are to be used.

Each question is worth seven points.

Problem 1.

For a positive integer n let S(n) be the sum of digits in the decimal representation of n. Any
positive integer obtained by removing several (at least one) digits from the right-hand end of
the decimal representation of n is called a stump of n. Let T (n) be the sum of all stumps of n.
Prove that n = S(n) + 9T (n).

Problem 2.

Find the largest positive integer N so that the number of integers in the set {1, 2, . . . , N} which
are divisible by 3 is equal to the number of integers which are divisible by 5 or 7 (or both).

Problem 3.

Let two equal regular n-gons S and T be located in the plane such that their intersection is a
2n-gon (n ≥ 3). The sides of the polygon S are coloured in red and the sides of T in blue.

Prove that the sum of the lengths of the blue sides of the polygon S ∩ T is equal to the sum of
the lengths of its red sides.

Problem 4.

A point in the plane with a cartesian coordinate system is called a mixed point if one of its
coordinates is rational and the other one is irrational. Find all polynomials with real coefficients
such that their graphs do not contain any mixed point.

Problem 5.

Find the greatest integer n, such that there are n + 4 points A, B, C, D, X1, . . . , Xn in the
plane with AB Ó= CD that satisfy the following condition: for each i = 1, 2, . . . , n triangles
ABXi and CDXi are equal.
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THE 2002 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours

NO calculators are to be used.

Each question is worth seven points.

Problem 1.

Let a1, a2, a3, . . . , an be a sequence of non-negative integers, where n is a positive integer. Let

An =
a1 + a2 + · · · + an

n
.

Prove that
a1!a2! . . . an! ≥ (⌊An⌋!)n ,

where ⌊An⌋ is the greatest integer less than or equal to An, and a! = 1 × 2 × · · · × a for a ≥ 1
(and 0! = 1). When does equality hold?

Problem 2.

Find all positive integers a and b such that

a2 + b

b2 − a
and

b2 + a

a2 − b

are both integers.

Problem 3.

Let ABC be an equilateral triangle. Let P be a point on the side AC and Q be a point on
the side AB so that both triangles ABP and ACQ are acute. Let R be the orthocentre of
triangle ABP and S be the orthocentre of triangle ACQ. Let T be the point common to the
segments BP and CQ. Find all possible values of ∠CBP and ∠BCQ such that triangle TRS
is equilateral.

Problem 4.

Let x, y, z be positive numbers such that

1

x
+

1

y
+

1

z
= 1.

Show that √
x + yz +

√
y + zx +

√
z + xy ≥ √

xyz +
√

x +
√

y +
√

z.

Problem 5.

Let R denote the set of all real numbers. Find all functions f from R to R satisfying:
(i) there are only finitely many s in R such that f(s) = 0, and
(ii) f(x4 + y) = x3f(x) + f(f(y)) for all x, y in R.
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THE 2003 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours

NO calculators are to be used.

Each question is worth seven points.

Problem 1.

Let a, b, c, d, e, f be real numbers such that the polynomial

p(x) = x8 − 4x7 + 7x6 + ax5 + bx4 + cx3 + dx2 + ex + f

factorises into eight linear factors x − xi, with xi > 0 for i = 1, 2, . . . , 8. Determine all possible
values of f .

Problem 2.

Suppose ABCD is a square piece of cardboard with side length a. On a plane are two parallel
lines ℓ1 and ℓ2, which are also a units apart. The square ABCD is placed on the plane so that
sides AB and AD intersect ℓ1 at E and F respectively. Also, sides CB and CD intersect ℓ2 at
G and H respectively. Let the perimeters of △AEF and △CGH be m1 and m2 respectively.
Prove that no matter how the square was placed, m1 + m2 remains constant.

Problem 3.

Let k ≥ 14 be an integer, and let pk be the largest prime number which is strictly less than k.
You may assume that pk ≥ 3k/4. Let n be a composite integer. Prove:

(a) if n = 2pk, then n does not divide (n − k)!;

(b) if n > 2pk, then n divides (n − k)!.

Problem 4.

Let a, b, c be the sides of a triangle, with a + b + c = 1, and let n ≥ 2 be an integer. Show that

n
√

an + bn +n
√

bn + cn +n
√

cn + an < 1 +
n
√

2

2
.

Problem 5.

Given two positive integers m and n, find the smallest positive integer k such that among any
k people, either there are 2m of them who form m pairs of mutually acquainted people or there
are 2n of them forming n pairs of mutually unacquainted people.
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THE 2004 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours

NO calculators are to be used.

Each question is worth seven points.

Problem 1.

Determine all finite nonempty sets S of positive integers satisfying

i + j

(i, j)
is an element of S for all i, j in S,

where (i, j) is the greatest common divisor of i and j.

Problem 2.

Let O be the circumcentre and H the orthocentre of an acute triangle ABC. Prove that the
area of one of the triangles AOH, BOH and COH is equal to the sum of the areas of the other
two.

Problem 3.

Let a set S of 2004 points in the plane be given, no three of which are collinear. Let L denote
the set of all lines (extended indefinitely in both directions) determined by pairs of points from
the set. Show that it is possible to colour the points of S with at most two colours, such that
for any points p, q of S, the number of lines in L which separate p from q is odd if and only if
p and q have the same colour.

Note: A line ℓ separates two points p and q if p and q lie on opposite sides of ℓ with neither
point on ℓ.

Problem 4.

For a real number x, let ⌊x⌋ stand for the largest integer that is less than or equal to x. Prove
that

⌊

(n − 1)!

n(n + 1)

⌋

is even for every positive integer n.

Problem 5.

Prove that
(a2 + 2)(b2 + 2)(c2 + 2) ≥ 9(ab + bc + ca)

for all real numbers a, b, c > 0.
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XVII Asian Pacific Mathematics Olympiad

Time allowed : 4 hours

Each problem is worth 7 points

∗ The contest problems are to be kept confidential until they are posted on the official APMO

website. Please do not disclose nor discuss the problems over the internet until that date.

No calculators are to be used during the contest.

Problem 1. Prove that for every irrational real number a, there are irrational real numbers
b and b′ so that a+ b and ab′ are both rational while ab and a+ b′ are both irrational.

Problem 2. Let a, b and c be positive real numbers such that abc = 8. Prove that

a2
√

(1 + a3)(1 + b3)
+

b2
√

(1 + b3)(1 + c3)
+

c2
√

(1 + c3)(1 + a3)
≥

4

3
.

Problem 3. Prove that there exists a triangle which can be cut into 2005 congruent
triangles.

Problem 4. In a small town, there are n×n houses indexed by (i, j) for 1 ≤ i, j ≤ n with
(1, 1) being the house at the top left corner, where i and j are the row and column indices,
respectively. At time 0, a fire breaks out at the house indexed by (1, c), where c ≤ n

2
.

During each subsequent time interval [t, t+1], the fire fighters defend a house which is not
yet on fire while the fire spreads to all undefended neighbors of each house which was on
fire at time t. Once a house is defended, it remains so all the time. The process ends when
the fire can no longer spread. At most how many houses can be saved by the fire fighters?
A house indexed by (i, j) is a neighbor of a house indexed by (k, ℓ) if |i− k|+ |j − ℓ| = 1.

Problem 5. In a triangle ABC, points M and N are on sides AB and AC, respectively,
such that MB = BC = CN . Let R and r denote the circumradius and the inradius of the
triangle ABC, respectively. Express the ratio MN/BC in terms of R and r.
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Problem 1. Let n be a positive integer. Find the largest nonnegative real number f(n)
(depending on n) with the following property: whenever a1, a2, . . . , an are real numbers
such that a1 + a2 + · · ·+ an is an integer, there exists some i such that | ai −

1

2
| ≥ f(n).

Problem 2. Prove that every positive integer can be written as a finite sum of distinct
integral powers of the golden mean τ = 1+

√

5

2
. Here, an integral power of τ is of the form

τ i, where i is an integer (not necessarily positive).

Problem 3. Let p ≥ 5 be a prime and let r be the number of ways of placing p checkers
on a p× p checkerboard so that not all checkers are in the same row (but they may all be
in the same column). Show that r is divisible by p 5. Here, we assume that all the checkers
are identical.

Problem 4. Let A,B be two distinct points on a given circle O and let P be the midpoint
of the line segment AB. Let O1 be the circle tangent to the line AB at P and tangent to
the circle O. Let ℓ be the tangent line, different from the line AB, to O1 passing through
A. Let C be the intersection point, different from A, of ℓ and O. Let Q be the midpoint
of the line segment BC and O2 be the circle tangent to the line BC at Q and tangent to
the line segment AC. Prove that the circle O2 is tangent to the circle O.

Problem 5. In a circus, there are n clowns who dress and paint themselves up using a
selection of 12 distinct colours. Each clown is required to use at least five different colours.
One day, the ringmaster of the circus orders that no two clowns have exactly the same set
of colours and no more than 20 clowns may use any one particular colour. Find the largest
number n of clowns so as to make the ringmaster’s order possible.


