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Vorwort
In der elementaren Mathematik gibt es viele, manchmal schwierige und interessante
Aufgaben, die nicht mit irgendeinem Namen verknüpft sind, sondern eher den Charakter
einer Art "mathematischer Folklore" haben.
Solche Probleme finden sich in der umfangreichen populärwissenschaftlichen mathe-
matischen Literatur und in der mathematischen Unterhaltungsliteratur verstreut, indes
ist oft sehr schwer festzustellen, in welcher Sammlung gerade das eine oder andere
Problem erstmalig auftaucht.

Diese Aufgaben haben nicht selten einige Varianten; zuweilen lassen sich auch mehre-
re solcher Aufgaben zu einer einzigen, komplizierteren, vereinigen; umgekehrt zerfällt
manchmal eine Aufgabe in mehrere einfachere.
Mit einem Wort - es ist oft schwierig, anzugeben, wo die eine Aufgabe endet und die
andere anfängt. Richtiger wäre es vielleicht zu sagen, dass es sich bei jedem dieser
Probleme um kleine mathematische Theorien handelt, die ihre eigene Geschichte, Pro-
blematik und Methode haben - welche natürlich mit der Geschichte, der Problematik
und den Methoden der "großen Mathematik" eng zusammenhängen.

So verhält es sich auch mit der Theorie der Fibonaccischen Zahlen. Die Fibonaccischen
Zahlen entstanden aus der nun schon fast 700 Jahre alten berühmten "Kaninchenauf-
gabe" und bilden auch heute noch eines der interessantesten Kapitel der Elementarma-
thematik.
Probleme, die mit den Fibonaccischen Zahlen zusammenhängen, findet man in vie-
len allgemeinverständlichen mathematischen Werken; sie werden in mathematischen
Zirkeln der Schulen behandelt und den Teilnehmern mathematischer Olympiaden vor-
gelegt.

Das vorliegende Büchlein enthält eine Reihe von Problemen, die während des Studien-
jahres 1949/50 in einem mathematischen Zirkel für Schüler an der mit dem Leninorden
ausgezeichneten Leningrader Staatlichen Shdanow-Universität bearbeitet worden sind.
Den Wünschen der Teilnehmer des Zirkels entsprechend, wurde vor allem die zahlen-
theoretische Seite dieser Frage behandelt, die auch in unserer Broschüre eingehender
entwickelt wird.

Das Büchlein ist für Schüler der Oberklassen gedacht. Der Limesbegriff wird nur in den
Punkten 7 und 8 von § 3 benutzt.
Leser, die mit diesem Begriff nicht vertraut sind, können sie ohne Nachteil für das
Verständnis des Folgenden bei der Lektüre übergehen. Dasselbe gilt auch für die Bino-
mialkoeffizienten (Punkt 8 von § 1) und die Trigonometrie (Punkte 2 und 3 von § 4).
Die in dieser Broschüre behandelten Elemente der Teilbarkeitstheorie und der Theorie
der Kettenbrüche setzen beim Leser keine über den Rahmen des Schulunterrichts hin-
ausgehenden Vorkenntnisse voraus.
Lesern, die sich für die Struktur rekursiver Folgen interessieren, kann das kleine, aber
inhaltsreiche Büchlein von A.I. Markuschewitsch "Rekursive Folgen" (erscheint in die-
ser Reihe) empfohlen werden. Leser, die mehr über Zahlentheorie wissen wollen, mögen
entsprechende Kurse besuchen.

2



Vorwort zur zweiten russischen Ausgabe

Die Entwicklung der Mathematik in den eineinhalb Jahrzehnten, die seit dem Erschei-
nen der ersten Auflage dieses Büchleins verstrichen sind, zeigte neue Zusammenhänge
zwischen der Theorie der Fibonaccischen Zahlen und anderen mathematischen Theori-
en.
Am interessantesten sind davon die "Fibonaccischen Pläne" der Suchtheorie, deren
Beschreibung ein neuer Paragraph dieses Bändchens gewidmet ist. Zu bemerken ist
dabei, dass die Lektüre dieses Paragraphen schwieriger ist als die des übrigen Textes.
Jedoch erfordert auch er zu seinem Verständnis nur das Wissen, das in der Schule
vermittelt wird.

Von den anderen Änderungen, die in dieser zweiten Auflage vorgenommen wurden, ist
nur die Ergänzung des zweiten Beweises in § 3, Nr. 9, erwähnenswert.

N. N. Worobjow

Vorwort zur dritten russischen Ausgabe

Im Laufe der letzten Jahre erhöhte sich das Niveau der mathematischen Vorbildung der
sich für Mathematik interessierenden Schüler in erstaunlicher Weise. Daher hielt ich es
für möglich, in die dritte Auflage des Bändchens einige kompliziertere Untersuchungen
über die Teilbarkeit der Fibonaccischen Zahlen aufzunehmen.
Dies bedingte eine radikale Umarbeitung von § 2 und wesentliche Änderungen in § 1.
Zur bequemeren Lektüre wurde der neu aufgenommene Stoff meistens durch Kleindruck
gekennzeichnet, so dass der Leser, dem dieser Stoff zu schwierig erscheint, diese Stellen
zunächst überschlagen kann. Übrigens wird wie früher für alle Überlegungen nicht mehr
als das in der Schule vermittelte Wissen benötigt.
Ferner erfuhr der vierte Paragraph einige Ergänzungen. Außerdem wurden hier und. da
einige Änderungen stilistischer Art vorgenommen.

N. N. Worobjow
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Einleitung
1. Die Geschichte des Altertum ist reich an hervorragenden Mathematikern. Viele Er-
gebnisse der antiken Mathematik lassen uns heute noch den Scharfsinn ihrer Autoren
bewundern, und Namen wie Euklid, Archimedes, Heron sind jedem Gebildeten bekannt.

Anders steht es mit der Mathematik im Mittelalter. Außer Vieta, der jedoch erst im
16. Jahrhundert lebte, und einigen später lebenden Mathematikern wird im Mathe-
matikunterricht an den Schulen kaum ein Name eines Mathematikers aus dieser Zeit
genannt.
Das ist natürlich kein Zufall. Die mathematische Wissenschaft entwickelte sich in die-
ser Epoche außerordentlich langsam, und es gab damals nur sehr wenige bedeutende
Mathematiker.

Von um so größerem Interesse für uns ist daher das Werk "Liber abaci" des berühmten
italienischen Mathematikers Leonardo von Pisa, der bekannter ist unter seinem Bein-
amen Fibonacci (Fibonacci: Abkürzung von filius Bonacci, d.h. Sohn des Bonacci).
Dieses Buch, das im Jahre 1202 geschrieben wurde, ist uns in einer Abschrift aus dem
Jahre 1228 erhalten geblieben. Das "Liber abaci" ist ein umfangreiches Werk, das fast
das gesamte arithmetische und algebraische Wissen jener Zeit enthält.
Es spielte in der Entwicklung der Mathematik in Westeuropa im Laufe der folgenden
Jahrhunderte eine bemerkenswerte Rolle. Insbesondere wurden durch dieses Buch die
arabischen Ziffern in Europa bekannt.

Paare:
1

erster Monat:
2

zweiter Monat:
3

dritter Monat:
5

vierter Monat:
8

fünfter Monat:
13

sechster Monat:
21

siebenter Monat:
34

achter Monat:
55

neunter Monat:
89

zehnter Monat:
144

elfter Monat:
233

zwölfter Monat:
377

Mit dem Inhalt des "Liber Abbaci" werden wir durch zahlreiche
Aufgaben in dem vorliegenden Heftchen bekannt gemacht.
Wir wollen jetzt eine solche Aufgabe aus dem "Liber Abbaci"
betrachten, die sich auf den Seiten 123 und 124 der Hand-
schrift von 1228 findet.

"Wieviel Kaninchenpaare werden in einem Jahr von einem
Paar erzeugt ?"

"Jemand sperrt ein Kaninchenpaar in ein allseitig ummauer-
tes Gehege, um zu erfahren, wieviel Nachkommen dieses eine
Paar im Laufe eines Jahres haben werde. Es wird dabei vor-
ausgesetzt, jedes Kaninchenpaar bringe monatlich ein neues
Paar zur Welt, und die Kaninchen würden vom zweiten Mo-
nat nach ihrer Geburt an gebären.

Da das erste Paar noch im ersten Monat Nachkommen hat,
sind in diesem Monat zwei Paare vorhanden. Von ihnen ge-
biert ein Paar, nämlich das erste, auch im folgenden Monat,
so dass also im zweiten Monat drei Paare vorhanden sind.
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Von diesen haben zwei Paare im folgenden Monat Nachkommen, so dass im dritten
Monat schon zwei Kaninchenpaare geboren werden und die Gesamtzahl der Kaninchen-
paare in diesem Monat auf fünf anwächst.

Drei dieser fünf Paare vermehren sich noch im gleichen Monat, und die Anzahl der
Paare erreicht im vierten Monat acht.
Fünf davon erzeugen weitere fünf Paare, die zusammen mit den schon vorhandenen
acht Paaren 13 Paare im fünften Monat ergeben.

Fünf dieser Paare haben im gleichen Monat keine Nachkommen, die übrigen acht Paare
gebären.
Also sind im sechsten Monat 21 Paare vorhanden. Zusammen mit den 13 Paaren, die
im siebenten Monat geboren werden, ergeben sich 34 Paare. Dazu kommen im achten
Monat 21 Paare. Die Anzahl der Paare ist nun 89; sie wächst im zehnten Monat auf
144 an. Davon gehören im elften Monat 55 Paare nicht, so dass sich also in diesem
Monat bei einem Zuwachs von 89 Paaren die Zahl der Paare auf 233 erhöht.
Schließlich vermehren sich hiervon im zwölften und letzten Monat 144 Paare, so dass
also nach Ablauf eines Jahres 377 Paare vorhanden sind.

Mit Hilfe der Abbildung kann man sich noch einmal klarmachen, wie wir zu diesem
Resultat kommen. Wir addieren nämlich die erste Zahl zur zweiten, d.h. 1 zu 2, die
zweite zur dritten, die dritte zur vierten, die vierte zur fünften und so fort, bis wir die
zehnte zur elften Zahl addieren und so die Gesamtzahl der erwähnten Kaninchenpaare,
also 377, erhalten.
Wir können uns diesen Prozess schrittweise bis zu einer unendlichen Anzahl von Mo-
naten fortgesetzt denken."

2. Verlassen wir nun die Kaninchen und betrachten eine Zahlenfolge

u1, u2, u3, ... (1)

bei der jedes Glied gleich der Summe der zwei vorangehenden ist; d.h., für jedes n > 2
gelte

un = un−1 + un−2 (2)
Solche Folgen, bei denen jedes Glied eine gewisse Funktion vorangehender Glieder ist,
kommen in der Mathematik häufig vor; man nennt sie rekursive Folgen.
Den Prozess der Ermittlung der einzelnen Glieder dieser Folgen nennt man Rekursi-
onsverfahren und eine Gleichung der Form (2) Rekursionsformel. Die Grundlagen der
allgemeinen Theorie der rekursiven Folgen findet der Leser in dem schon erwähnten
Büchlein von Markuschewitsch (siehe Vorwort).

Wir bemerken zunächst, dass die Glieder einer Folge (1) mit Hilfe der Formel (2) al-
lein nicht eindeutig bestimmt werden können. Man kann beliebig viele verschiedene
Zahlenfolgen auf- stellen, die alle der Bedingung (2) genügen, z.B.:

2, 5, 7, 12, 19, 31, 50, ...,

1, 3, 4, 7, 11, 18, 29, ...,

− 1, −5, −6, −11, −17, ... usw.
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Die Bedingung (2) ist also zur eindeutigen Aufstellung der Folge (1) offensichtlich
zwar notwendig, aber nicht hinreichend; wir müssen daher noch einige ergänzende
Bedingungen angeben.
Man kann z.B. einige der ersten Glieder der Folge (1) vorgehen. Wie viele solcher
Glieder müssen aber mindestens gegeben sein, damit man alle folgenden Glieder unter
alleiniger Benutzung von (2) berechnen kann?

Wir finden, dass mit Hilfe von (2) nicht alle Glieder der Folge (1) zu ermitteln sind,
schon allein deshalb, weil es nicht zu jedem Glied zwei vorangehende Glieder gibt. So
steht vor dem ersten Glied der Folge überhaupt kein Glied der Folge, vor dem zweiten
nur ein einziges, nämlich u1.
Zur Berechnung von (1) mit Hilfe von (2) müssen wir also auf jeden Fall mindestens
die ersten beiden Glieder der Folge kennen.

Das ist aber offensichtlich auch hinreichend, um jedes beliebige Glied der Folge (1)
berechnen zu können. In der Tat lässt sich u3 als Summe der für u1 und u2 vorgegebenen
Werte darstellen; u4 findet man durch Addition von u2 zu dem soeben bestimmten u3,
u5 durch Addition der schon ermittelten Werte u3 und u4 usw., und so der Reihe nach
beliebig viele Glieder.
Indem man auf diese Weise immer von zwei benachbarten Gliedern zum nächstfolgenden
übergeht, kann man bis zu jedem Glied mit beliebig vorgegebenem Index gelangen und
es ausrechnen.

3. Wir wenden uns jetzt dem wichtigen Spezialfall einer Folge (1) zu, bei welchem
u1 = 1 und u2 = 1 sind. Die Bedingung (2) ermöglicht, wie soeben gezeigt wurde, die
sukzessive Berechnung aller Glieder dieser Folge. Wie man leicht nachprüft, sind die
ersten dreizehn Glieder die Zahlen

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377,

die uns schon bei der Lösung der Kaninchenaufgabe begegneten.
Zu Ehren des Verfassers dieser Aufgabe heißt nun die Folge (1) mit u1 = u2 = 1 die
Fibonaccische Folge, und ihre Glieder heißen Fibonaccische Zahlen.

Die Fibonaccischen Zahlen besitzen nun eine ganze Reihe interessanter und wichtiger
Eigenschaften, deren Untersuchung dieses Büchlein gewidmet ist.
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1 Einfachste Eigenschaften der Fibonaccischen Zahlen

1 Einfachste Eigenschaften der Fibonaccischen
Zahlen

1. Wir berechnen zunächst die Summe der ersten n Fibonaccischen Zahlen, indem wir
beweisen, dass

u1 + u2 + ... + un = un+2 − 1 (1.1)

ist. In der Tat gelten die Beziehungen

u1 = u3 − u2

u2 = u4 − u3

u3 = u5 − u4

...

un−1 = un+1 − un

un = un+2 − un+1

Durch gliedweise Addition aller dieser Gleichungen folgt

u1 + u2 + ... + un = un+2 − u2

und wir brauchen nur noch daran zu erinnern, dass u2 = 1 ist.

2. Die Summe der Fibonaccischen Zahlen mit ungeraden Indizes

u1 + u3 + ... + u2n−1 = u2n (1.2)

Zum Beweis dieser Gleichung schreiben wir

u1 = u2

u3 = u4 − u2

u5 = u6 − u4

...

u2n−1 = u2n − u2n−2

auf und erhalten durch gliedweise Addition dieser Gleichungen die Behauptung.

3. Die Summe der Fibonaccischen Zahlen mit geraden Indizes ist

u2 + u4 + ... + u2n = u2n+1 − 1 (1.3)

Auf Grund von Abschnitt 1 gilt

u1 + u2 + ... + u2n = u2n+2 − 1

Subtrahieren wir davon die Gleichung (1.2) gliedweise, so erhalten wir

u2 + u4 + ... + u2n = u2n+2 − 1 − u2n = u2n+1 − 1
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was zu beweisen war.
Subtrahieren wir ferner gliedweise (1.3) von (1.2), so folgt

u1 − u2 + u3 − u4 + ... + u2n−1 − u2n = −u2n−1 + 1 (1.4)

Wir addieren jetzt auf beiden Seiten dieser Gleichung u2n+1:

u1 − u2 + u3 − u4 + ... − u2n + u2n+1 = u2n + 1 (1.5)

Als Ausdruck für die alternierende Summe der Fibonaccischen Zahlen erhalten wir aus
(1.4) und (1.5) den folgenden:

u1 − u2 + u3 − u4 + ... + (−1)m+1um = (−1)m+1um−1 + 1 (1.6)

Der Ausdruck (1.6) stimmt nämlich für ungerade m, m = 2n+1, mit (1.5), für gerade
m, m = 2n, mit (1.4) überein.

4. Die Formeln (1.1) und (1.2) wurden durch gliedweise Addition einer Anzahl trivialer
Identitäten gewonnen. Als weiteres Beispiel für die Anwendung dieses Verfahrens möge
die Ableitung der Formel für die Summe der Quadrate der ersten n Fibonaccischen
Zahlen dienen:

u2
1 + u2

2 + ... + u2
n = unun+1 (1.7)

Wir bemerken, dass

ukuk+1 − uk−1uk = uk(uk+1 − uk−1)u2
k

ist. Addieren wir nun die Identitäten

u2
1 = u1u2

u2
2 = u2u3 − u1u2

u2
3 = u3u4 − u2u3

...

u2
n = unun+1 − un−1un

so erhalten wir (1.7).

5. Viele Beziehungen zwischen den Fibonaccischen Zahlen lassen sich bequem durch
vollständige Induktion beweisen.
Das Wesen der Methode der vollständigen Induktion1 (die oft auch als Methode der
mathematischen Induktion bezeichnet wird) besteht in folgendem: Zum Beweis dafür,
dass eine gewisse Aussage für jede natürliche Zahl zutrifft, genügt es zu zeigen:

a) dass sie für die Zahl 1 gilt;

b) dass unter der Annahme, die Aussage gelte für eine beliebig vorgegebene natürliche
1Vgl. auch das in derselben Reihe erscheinende Heft: I.S. Sominski, "Die Methode der vollständigen

Induktion".
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1 Einfachste Eigenschaften der Fibonaccischen Zahlen

Zahl n, stets auch ihre Gültigkeit für die Zahl n + 1 folgt.

Der Induktionsbeweis einer Behauptung, die für jede natürliche Zahl gelten soll, zerfällt
also in zwei Teile. Im ersten (meist verhältnismäßig einfachen) Teil weist man die
Gültigkeit der Behauptung für die Zahl 1 nach.
Die Gültigkeit der zu beweisenden Aussage für die Zahl 1 wird manchmal die Basis der
Induktion genannt.
Im zweiten Teil des Beweises, der in der Regel bedeutend schwieriger ist, nimmt man an,
die Behauptung gelte für eine ganz beliebige (aber fest gewählte) Zahl n, und folgert
aus dieser Annahme, der sogenannten Induktionsannahme, dass die Behauptung auch
für die Zahl n + 1 richtig ist. Den zweiten Teil des Beweises bezeichnet man auch als
Induktionsschluss (Schluss von n auf n + 1).

Eine eingehendere Darstellung der Methode der vollständigen Induktion und zahlreiche
Beispiele für ihre Anwendung findet man in der schon erwähnten Broschüre von I. S.
Sominski. So wird insbesondere die nachstehend angewandte Variante der Methode der
vollständigen Induktion mit dem Schluss "von n und n + 1 auf n + 2" in der Broschüre
von Sominski durch die Aufgaben 18 und 19 illustriert.

Manchmal wird auch eine Induktion "von allen Zahlen, die kleiner als n sind, auf n"
verwendet. Dabei ist es nicht notwendig, die Basis der Induktion besonders zu beweisen,
da, formal gesprochen, der Beweis für n−10 genau der Übergang von "allen" positiven
ganzen Zahlen <1 (die es gar nicht gibt) auf 1 ist.
Mit diesem Verfahren lässt sich beweisen, dass sich jede natürliche Zahl in Primfaktoren
zerlegen lässt.

Wir setzen voraus, dass sich alle Zahlen, die kleiner als ein gewisses n sind, in ein
Produkt von Primfaktoren zerlegen lassen. Ist n eine Primzahl, so ist sie selbst eine
Zerlegung von sich. Ist n keine Primzahl, so kann sie nach Voraussetzung als Produkt
von mindestens zwei Faktoren geschrieben werden, etwa n = n1n2 mit n1 ̸= 1 und
n2 ̸= 1. Dann ist n1 < n und n2 < n. Nach Induktionsvoraussetzung lassen sich sowohl
n1, als auch n2 in Primfaktoren zerlegen. Somit ist auch n in Primfaktoren zerlegbar.
Eine kompliziertere Variante des Induktionsbegriffs liegt dem Beweis des Satzes in § 2,
Nr. 36, zugrunde.

6. Eine der einfachsten Anwendungen der Idee der vollständigen Induktion auf die Fi-
bonaccischen Zahlen ist die Definition der Fibonaccischen Zahlen selbst. Die Definition
dieser Zahlen erfolgt, wie wir in der Einleitung erklärten, durch Vorgabe der ersten
beiden Fibonaccischen Zahlen u1 = 1 und u2 = 1 und durch induktiven Übergang von
un und un+2 auf un+2, der durch die Rekursionsformel

un + un+1 = un+2 (n = 1, 2, ...)

beschrieben wird.

Insbesondere folgt hieraus sofort, dass eine Folge, bei der die ersten beiden Glieder
gleich 1 sind und sich jedes der folgenden Glieder durch Addition der beiden vorherge-
henden ergibt, eine Fibonaccische Folge sein muss.
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1 Einfachste Eigenschaften der Fibonaccischen Zahlen

Als Beispiel dazu wollen wir die sogenannte "Springer-Aufgabe" untersuchen. Ein Sprin-
ger soll sich in einer Richtung längs eines in Felder aufgeteilten Streifens bewegen, indem
er sich bei jedem Sprung entweder in ein benachbartes Feld begibt oder über das Feld
herüberspringt.
Auf wieviel Arten gelangt er zu dem (n − 1)-ten Feld oder insbesondere vom ersten
zum n-ten Feld? (Wir wollen jene Sprünge als gleich ansehen, bei denen der Springer
in dieselben Felder kommt.)

Die gesuchte Zahl bezeichnen wir mit xn. Offenbar ist x1 = 1 (denn der Übergang vom
ersten Feld zum ersten Feld lässt sich nur auf eine Art verwirklichen, nämlich durch
Verzicht auf den Sprung) und x1 = 1 (der Übergang von ersten zum zweiten Feld ist
ebenfalls nur auf eine Art möglich, und zwar ist es der eine Sprung auf das benachbarte
Feld).

Wir nehmen nun an, der Springer beabsichtige, das (n + 2)-te Feld zu erreichen. Die
Gesamtanzahl der Sprünge ist hierbei nach Definition gleich xn+2.
Diese Sprünge lassen sich nun in zwei Klassen einteilen: in die mit dem Sprung in das
zweite Feld beginnende und die mit dem Sprung in das dritte Feld beginnende Klasse.
Aus dem zweiten Feld kann der Springer auf xn+1 Arten zum (n+2)-ten Feld gelangen,
aus dem dritten Feld auf xn Arten.
Also genügt die Folge der Zahlen x1, x2, ..., xn, ... der Rekursionsformel

xn + xn+1 = xn+2

und stimmt daher mit der Folge der Fibonaccischen Zahlen überein; es ist also xn = un.

7. Wir beweisen nun durch Induktion die folgende wichtige Formel:

un+m = un−1um + unum+1 (1.8)

Der Beweis dieser Formel wird durch Induktion nach m geführt. Für m = 1 hat unsere
Formel die Gestalt

un+1 = un−1u1 + unu2 = un−1 + un

was trivialerweise richtig ist. Für m = 2 ist die Gleichung (1.8) wegen

un+2 = un−1u2 + unu3 = un−1 + 2un = un−1 + un + un = un+1 + un

ebenfalls richtig. Damit ist der erste Teil des Beweises erbracht. Den Induktionsschluss
führen wir nun in folgender Form:
Unter der Annahme, die Formel (1.8) sei für m = k und für m = k+1 richtig, beweisen
wir, dass sie auch für m = k + 2 gilt. Es sei also

un+k = un−1uk + unuk+1 und un+k+1 = un−1uk+1 + unuk+2

Addieren wir diese beiden Gleichungen gliedweise, so erhalten wir

un+k+2 = un−1uk+2 + unuk+3

was zu zeigen war.
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Die Formel (1.8) lässt sich leicht mit Hilfe der Springer- Aufgabe interpretieren (und
sogar beweisen).
Die Gesamtzahl der Sprünge vom ersten ins (n + m)-te Feld ist nämlich gleich un+m.
Unter diesen Sprüngen sind sowohl solche, bei welchen der Springer über das n-te Feld
hinüberspringt, als auch solche, bei denen er auf das n-te Feld springt.

Bei den Sprüngen der ersten Klasse ist der Springer verpflichtet, das (n − 1)-te Feld zu
erreichen (er kann dies auf un−1 Arten tun), dann springt er auf das (n + 1)-te Feld
und schließlich auf die übrigen (n + m) − (n + 1) = m − 1 Felder (das ist auf um Arten
zu verwirklichen).
Folglich zählt die erste Klasse un−1um Möglichkeiten.

Analog erreicht der Springer bei den Sprüngen der zweiten Klasse das n-te Feld (das
ist auf un Arten möglich), wonach er zum (n + m)-ten Feld übergeht (auf eine der
um+1 Arten). Also gibt es in der zweiten Klasse unum+1 Möglichkeiten, womit Formel
(1.8) bewiesen ist.

8. Setzen wir in der Formel (1.8) m = n, so ergibt sich

u2n = un−1un + unun+1 oder u2n = un(un−1 + un+1) (1.9)

Aus (1.9) erkennt man, dass u2n durch un teilbar ist. Im folgenden Paragraphen bewei-
sen wir eine viel allgemeinere Aussage. Wegen

un = un+1 + un−1

kann man die Gleichung (1.9) auch in folgender Gestalt schreiben

u2n = (un+1 − un−1)(un+1 + un−1) oder u2n = u2
n+1 − u2

n−1

das heißt aber, dass die Differenz der Quadrate zweier Fibonaccischer Zahlen, deren
Indizes sich um 2 unterscheiden, wieder eine Fibonaccische Zahl ist. Analog beweist
man

u3n = u3
n+1 + u3

n − u3
n−1

(indem man m = 2n setzt).

9. Im folgenden wird uns die Formel

u2
n+1 = unun+2 + (−1)n (1.10)

sehr nützlich sein. Wir beweisen sie durch Induktion nach n. Für n = 1 nimmt die
Gleichung (1.10) die Form

u2
2 = u1u3 − 1

an, und das ist offenbar richtig. Wir nehmen nun die Formel (1.10) für ein gewisses n
als bewiesen an. Wir addieren auf beiden Seiten der Gleichung die Zahl unun+1 und
erhalten

u2
n + unun+1 = un−1un+1 + unun+1 + (−1)n+1

12



1 Einfachste Eigenschaften der Fibonaccischen Zahlen

oder
un(un + un+1) = un+1(un−1 + un) + (−1)n+1

oder
unun+2 = u2

n+1 + (−1)n+1

und schließlich
u2

n+1 = unun+2 + (−1)n+2

Damit ist der Induktionsschluss geführt und die Formel (1.10) für jedes natürliche n
bewiesen.

10. Ganz analog wie die soeben bewiesenen Eigenschaften der Fibonaccischen Zahlen
bestätigt man auch die folgenden:

u1u2 + u2u3 + u3u4 + ... + u2n−1u2n = u2
2n

u1u2 + u2u3 + u3u4 + ... + u2nu2n+1 = u2
2n+1 − 1

nu1 + (n − 1)u2 + (n − 2)u3 + ... + 2un−1 + un = un+4 − (n + 3)
u1 + 2u2 + 3u3 + ... + nun = nun+2 − un+3 + 2

Die Beweise möge der Leser selbst führen.

11. Nicht weniger bemerkenswert als die Fibonaccischen Zahlen sind die sogenannten
"Binomialkoeffizienten".
Die Koeffizienten von x in der Entwicklung von (1 + x)n, also

(x + 1)n =
n

0

 +
n

1

x +
n

2

x2 + ... +
n

n

xn (1.11)

heißen Binomialkoeffizienten. Offenbar sind die Zahlen
(

n
k

)
für alle positiven n und alle

nichtnegativen ganzen k < n eindeutig bestimmt.
Die Benutzung von Binomialkoeffizienten ist bei vielen mathematischen Überlegungen
überaus nützlich. Wir werden uns auch beim Studium der Fibonaccischen Zahlen ihrer
bedienen. Außerdem besteht zwischen den Binomialkoeffizienten und den Fibonacci-
schen Zahlen ein gewisser Zusammenhang, und wir werden einige Gesetzmäßigkeiten
angeben, die diesen beiden Klassen von Zahlen eigen sind.
Zur Vorbereitung geben wir einige Eigenschaften der Binomialkoeffizienten an.

Wir setzen in (1.11) n = 1 und finden sofort1
0

 =
1

1

 = 1

Außerdem gilt folgendes Lemma.

Lemma: Es ist n

k

 +
 n

k + 1

 =
n + 1

k + 1



13



1 Einfachste Eigenschaften der Fibonaccischen Zahlen

Beweis. Es gilt
(1 + x)n+1 = (1 + x)n · (1 + x)

oder, wenn wir die Definition der Binomialkoeffizienten benutzen,(
n + 1

0

)
+
(

n + 1
1

)
x +

(
n + 1

2

)
x2 + ... +

(
n + 1
n + 1

)
xn+1 =

=
[(

n

0

)
+
(

n

1

)
x +

(
n

2

)
x2 + ... +

(
n

n

)
xn

]
(1 + x)

=
(

n

0

)
+
[(

n

0

)
+
(

n

1

)]
x +

[(
n

1

)
+
(

n

2

)]
x2 + ... +

[(
n

n − 1

)
+
(

n

n

)]
xn +

(
n

n

)
xn+1

Folglich ist (
n + 1

0

)
=
(

n

0

)
(

n + 1
1

)
=
(

n

0

)
+
(

n

1

)
...(

n + 1
k + 1

)
=
(

n

k

)
+
(

n

k + 1

)
...(

n + 1
n + 1

)
=
(

n

n

)

was zu beweisen war.
Aus diesem Lemma ergibt sich, dass die Binomialkoeffizienten mit Hilfe eines Rekursi-
onsprozesses berechnet werden können, der dem für die Fibonaccischen Zahlen ähnlich,
aber bedeutend komplizierter ist. Dies ermöglicht uns, Aussagen über die Binomialko-
effizienten durch Induktion verschiedener Art zu beweisen.

12. Wir ordnen die Binomialkoeffizienten in dem folgenden Schema, dem sog. Pascal-
schen Dreieck an:

(0
0

)(1
0

) (1
1

)(2
0

) (2
1

) (2
2

)(3
0

) (3
1

) (3
2

) (3
3

)
d.h.

Ausführlicher wird über die Haupteigenschaften des Pascalschen Dreiecks und der mit
ihm verknüpften Binomialkoeffizienten in der Broschüre von W. A. Uspenski, Das Pas-
calsche Dreieck, Moskau 1966 (in russischer Sprache), berichtet.2

Die Zeilen des Pascalschen Dreiecks werden im allgemeinen von oben nach unten num-
meriert, wobei die oberste Zeile, die nur aus einer Eins besteht, als nullte Zeile gezählt
wird.

2Vgl. auch die in derselben Reihe erschienene Broschüre von E. B. Dynkin und W. A. Uspenski,
Mathematische Unterhaltungen II, Kap. IV.
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1 Einfachste Eigenschaften der Fibonaccischen Zahlen

Aus dem Vorhergehenden folgt, dass die äußeren Glieder in jeder Zeile des Pascalschen
Dreiecks gleich 1 sind und jedes der übrigen Glieder durch Addition des unmittelbar
über ihm und des links von diesem stehenden Gliedes gebildet wird.

13. Die Formel (1.11) erlaubt uns, sofort zwei wichtige Beziehungen herzuleiten, die
die Binomialkoeffizienten einer Zeile des Pascalschen Dreiecks miteinander verknüpfen.
Setzen wir in (1.11) x = 1, so ergibt sich

2n =
n

0

 +
n

1

 +
n

2

 + ... +
n

n


setzen wir x = −1, so folgt

0 =
n

0

 −
n

1

 +
n

2

 − ... + (−1)n

n

n


14. Wir zeigen durch vollständige Induktion nach n die Richtigkeit der Beziehungn

k

 = n(n − 1)...(n + k + 1)
1 · 2 · ... · k

(1.12)

Diese Formel wird häufig zur Definition der Binomialkoeffizienten benutzt. Sie charak-
terisiert den Binomialkoeffizienten

(
n
k

)
als Anzahl der Kombinationen von n Elementen

zur k-ten Klasse. Wir gehen jedoch hier einen anderen, mehr formalen Weg, der im
gegebenen Fall vorzuziehen ist.

Wenn wir verabreden, dass das Produkt aus null Faktoren gleich 1 sein soll, so erhalten
wir für k = 0 aus (1.12) die uns schon bekannte Beziehung

(
n
0

)
= 1. Beachten wir

dies, so können wir uns auf den Fall k ≥ 1 beschränken.
Für n = 1 ist 1

1

 = 1
1 = 1

Nun gelte (1.12) für ein gewisses n und jedes k = 0, 1, ..., n. Wir betrachten die Zahl(
n+1

k

)
. Wegen k ≥ 1 können wirn + 1

k

 =
 n

k − 1

 +
n

k


oder, benutzen wir die Induktionsvoraussetzung (1.12), n

k − 1

 +
n

k

 = n(n − 1)...(n − k + 2)
1 · 2...(k − 1) + n(n − 1)...(n − k + 2)(n − k + 1)

1 · 2...(k − 1)k

= n(n − 1)...(n − k + 2)
1 · 2...(k − 1)

(
1 + n − k + 1

k

)

= n(n − 1)...(n − k + 2)
1 · 2...(k − 1) · k + n − k + 1

k

= (n + 1)n(n − 1)...(n − k + 2)
1 · 2...(k − 1)k =

n + 1
k


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1 Einfachste Eigenschaften der Fibonaccischen Zahlen

schreiben, und dies ist genau die Formel (1.12) für die Binomialkoeffizienten der fol-
genden, nämlich (n + 1)-ten Zeile des Pascalschen Dreiecks.

15. Wir ziehen nun im Pascalschen Dreieck Linien, die die Zeilen unter einem Winkel
von 45◦ schneiden, und nennen sie aufsteigende Diagonalen des Pascalschen Dreiecks.
Auf solchen Diagonalen liegen z. B. die Zahlen 1, 4, 3 oder 1, 5, 6, 1. Wir zeigen
nun, dass die Summe der Zahlen, die auf einer aufsteigenden Diagonalen liegen, eine
Fibonaccische Zahl ist.

Die erste, oberste aufsteigende Diagonale des Pascalschen Dreiecks besteht ebenso wie
die zweite nur aus der Eins. Zum Beweis unserer Aussage genügt es also zu zeigen,
dass die Summe aller Zahlen, welche der n-ten und der (n − 1)-ten Diagonale der Pas-
calschen Dreiecks angehören, gleich der Summe der Zahlen ist, die auf der (n + 2)-ten
Diagonale liegen.
Die n-te Diagonale enthält die Zahlenn − 1

0

,

n − 2
1

,

n − 3
2

, ...

die (n + 1)-te die Zahlenn

0

,

n − 1
1

,

n − 2
2

, ...

Die Summe aller dieser Zahlen schreiben wir in der Formn

0

 +
n − 1

0

 +
n − 1

1

 +
n − 2

1

 +
n − 2

2

 + ...

oder, berücksichtigen wir das Lemma aus Nr. 11,n + 1
0

 +
n

1

 +
n − 1

2

 + ...

Dies ist die Summe der Zahlen, die auf der (n + 2)-ten Diagonale des Pascalschen
Dreiecks liegen.

Aus dem eben Bewiesenen folgt auf Grund der Formel (1.1) sofort: Die Summe al-
ler Binomialkoeffizienten, die nicht unterhalb der n-ten aufsteigenden Diagonale des
Pascalschen Dreiecks (also einschließlich der n-ten Diagonale selbst) liegen, ist gleich
un+2 − 1.
Unter Benutzung der Formeln (1.2) bis (1.4) und ihnen ähnlicher lassen sich leicht
weitere Identitäten zwischen den Fibonaccischen Zahlen und den Binomialkoeffizienten
herleiten.

16. Bisher haben wir die Fibonaccischen Zahlen rekursiv, d.h. induktiv nach ihren
Indizes, bestimmt. Es zeigt sich aber, dass jede Fibonaccische Zahl auch unmittelbar
als Funktion ihres Index bestimmt werden kann.
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1 Einfachste Eigenschaften der Fibonaccischen Zahlen

Wir untersuchen dazu Zahlenfolgen u1, u2, ..., un, ..., die der Bedingung

un = un−2 + un−1 (1.13)

genügen. Alle diese Folgen nennen wir Lösungen der Gleichung (1.13).

Im folgenden sollen die Buchstaben V , V ′ und V ′′ beziehungsweise die Folgen

v1, v2, v3, ...

v′
1, v′

2, v′
3, ... bzw.

v′′
1 , v′′

2 , v′′
3 , ...

bezeichnen. Wir beweisen zunächst zwei einfache Hilfssätze.

Lemma 1. Ist V eine Lösung der Gleichung (1.13) und c eine beliebige Zahl, so ist auch
die Folge cV (d.h. die Folge cv1, cv2, cv3, ...) eine Lösung der Gleichung (1.13).

Beweis. Multiplizieren wir die Identität

vn = vn−2 + vn−1

mit c, so ergibt sich
cvn = cvn−2 + cvn−1

was zu beweisen war.

Lemma 2. Sind die Folgen V ′ und V ′′ Lösungen der Gleichung (1.13), so ist auch ihre
Summe V ′ + V ′′ (d.h. die Folge v′

1 + v′′
1 , v′

2 + v′′
2 , v′

3 + v′′
3 ,...) eine Lösung der Gleichung

(1.13).

Beweis. Die Voraussetzungen des Satzes besagen:

v′
n = v′

n−1 + v′
n−2 und v′′

n = v′′
n−1 + v′′

n−2

Wir addieren diese beiden Gleichungen seitenweise und erhalten

v′
n + v′′

n = (v′
n−1 + v′′

n−1) + (v′
n−2 + v′′

n−2)

Damit ist der Satz bewiesen.

Es seien nun V ′ und V ” zwei nichtproportionale Lösungen der Gleichung (1.13) (d.h.
zwei Lösungen dieser Gleichung, die so beschaffen sind, dass zu jedem beliebig vorge-
gebenen c immer ein Index n gefunden werden kann, für den v′

n

v′′
n

̸= c ist). Wir zeigen
nun, dass jede Folge V , die eine Lösung der Gleichung (1.13) ist, in der Form

c1V
′

1 + c2V
′′

2 (1.14)

dargestellt werden kann, wobei c1 und c2 gewisse Konstanten sind. Daher sagt man
auch, (1.14) sei die allgemeine Lösung der Gleichung (1.13).
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1 Einfachste Eigenschaften der Fibonaccischen Zahlen

Vorher beweisen wir noch folgendes: Sind V ′ und V ′′ zwei nichtproportionale Lösungen
der Gleichung (1.13), so gilt

v′
1

v′′
1

̸= v′
2

v′′
2

(1.15)

(d.h. die Eigenschaft der Folgen V ′ und V ′′, nichtproportional zu sein, lässt sich schon
an den ersten beiden Gliedern dieser Folgen nachweisen).
Der Beweis von (1.15) wird indirekt geführt. Dazu nehmen wir an, für zwei nichtpro-
portionale Lösungen V ′ und V ′′ der Gleichung (1.13) würde

v′
1

v′′
1

= v′
2

v′′
2

(1.16)

gelten. Durch Umformung dieser Proportion erhielten wir

v′
1 + v′

2
v′′

1 + v′′
2

= v′
2

v′′
2

oder, da ja V ′ und V ′′ Lösungen der Gleichung (1.13) sind,

v′
3

v′′
3

= v′
2

v′′
2

Analog könnte man (induktiv !) schließen, dass

v′
3

v′′
3

= v′
4

v′′
4

= ... = v′
n

v′′
n

= ...

gelten würde. Aus unserer Annahme (1.16) folgte also, dass die Folgen V ′ und V ′′

proportional wären, im Widerspruch zu unserer Voraussetzung. Damit ist die Richtigkeit
von (1.15) nachgewiesen.

Wir betrachten nun eine beliebige Folge V , die Lösung der Gleichung (1.13) ist. Dann
ist diese Folge, wie in Punkt 2 der Einleitung gezeigt wurde, durch Angabe ihrer ersten
beiden Glieder v1 und v2 eindeutig bestimmt.
Wir suchen nun ein c1 und ein c2, die den Gleichungen

c1v
′
1 + c2v

′′
1 = v1 , c1v

′
2 + c2v

′′
2 = v2 (1.17)

genügen. Nach Lemma 1 und 2 liefert dann die Summe c1V
′ + c2V

′′ gerade die Folge
V .

Wegen der Beziehung (1.15) lässt sich das Gleichungssystem (1.17) nach c1 und c2
auflösen, wie auch die Zahlen v1 und v2 beschaffen sein mögen:

c1 = v1v
′′
2 − v2v

′′
1

v′
1v

′′
2 − v′′

1v∗2
, c2 = v′

1v2 − v′
2v1

v′
1v

′′
2 − v′′

1v∗2

Aus der Relation (1.15) folgt, dass der Nenner von Null verschieden ist. Setzen wir die
für c1 und c2 errechneten Werte in (1.14) ein, so erhalten wir die gesuchte Darstellung
unserer Folge V .
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Es genügt also, zwei nichtproportionale Lösungen der Gleichung (1.13) zu kennen, um
alle ihre Lösungen angeben zu können.

Wir werden nun diese Lösungen mit Hilfe geometrischer Folgen bestimmen. Nach Lem-
ma 1 können wir uns bei unseren Betrachtungen auf solche Folgen beschränken, deren
erstes Glied gleich Eins ist. Wir betrachten also die Folge

1, q, q2, ...

Damit diese Reihe Lösung der Gleichung (1.13) ist, muss für jedes n die Bedingung

qn−2 + qn−1 = qn

erfüllt sein, d.h., wie sich durch Division durch qn−2 ergibt, die Bedingung

1 + q = q2 (1.18)

Die Wurzeln dieser quadratischen Gleichung, d.h. die Zahlen 1 +
√

5
2 und 1 −

√
5

2 sind
gerade die gesuchten Quotienten der Folge. Wir bezeichnen sie mit α bzw. β und
bemerken, dass für sie als Wurzeln der Gleichung (1.18) die Beziehungen 1 + α = α2,
1 + β = β2 und αβ = −1 gelten

Wir haben so zwei geometrische Folgen erhalten, die Lösungen der Gleichung (1.13)
sind. Daher sind alle Folgen der Gestalt

c1 + c2, c1α + c2β, c1α
2 + c2β

2, ... (1.19)

Lösungen der Gleichung (1.13). Da die beiden Folgen verschiedene Quotienten besitzen
(α ̸= β) und daher nichtproportional sind, liefert die Formel (1.19) für verschiedene c1
und c2 alle Lösungen der Gleichung (1.13).

Insbesondere muss uns die Formel (1.19) für gewisse c1 und c2 gerade die Fibonac-
cische Reihe liefern. Wie oben gezeigt wurde, ist dazu notwendig, c1 und c2 aus den
Gleichungen

c1 + c2 = u1 und c1α + c2β = u2

d.h. aus dem Gleichungssystem

c1 + c2 = 1 und c1
1 +

√
5

2 + c2
1 −

√
5

2 = 1

zu bestimmen. Lösen wir dieses System auf, so erhalten wir

c1 = 1 +
√

5
2
√

5
; c2 = −1 −

√
5

2
√

5
Daraus ergibt sich

un = c1α
n−1 + c2β

n−1 =

= 1 +
√

5
2
√

5

1 +
√

5
2

n−1

− 1 −
√

5
2
√

5

1 −
√

5
2

n−1
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1 Einfachste Eigenschaften der Fibonaccischen Zahlen

d.h.

un =

(
1+

√
5

2

)n

−
(

1−
√

5
2

)n

√
5

(1.20)

Die Formel (1.20) heißt nach dem Namen des Mathematikers, der sie erstmalig bewies,
die "Binetsche Formel".
Entsprechende Formeln lassen sich offensichtlich auch für die anderen Lösungen von
(1.13) finden. Der Leser möge für die im Abschnitt 2 der Einleitung angegebenen Folgen
die Formeln selbst herleiten.

17. Wir sahen, dass α2 = α + 1 ist. Deshalb kann jede ganze positive Potenz der Zahl
α in der Form aα + b mit ganzen Koeffizienten a und b dargestellt werden, nämlich

α3 = αα2 = α(α + 1) = α2 + α = α + 1 + α = 2α + 1
α4 = αα3 = α(2α + 1) = 2α2 + α = 2α + 2 + α = 3α + 2

usw. Wir zeigen (durch Induktion), dass

αn = unα + un−1

ist. Für n = 2, 3 ist es klar. Wir nehmen nun an, es sei

αk = ukα + uk−1 ; αk+1 = uk+1α + uk

Addieren wir diese Gleichungen seitenweise, so finden wir

αk + αk+1 = (uk + uk+1)α + (uk−1 + uk)

oder
αk+2 = uk+2α + uk+1

was zu beweisen war.

18. Mit Hilfe der Binetschen Formel kann man nun bequem viele Reihen summieren,
die mit Fibonaccischen Zahlen zusammenhängen.
Suchen wir beispielsweise einen Ausdruck für

u3 + u6 + u9 + ... + u3n

so ergibt sich

u3 + u6 + ... + u3n = α3 − β3
√

5
+ α6 − β6

√
5

+ ... + α3n − β3n

√
5

= 1√
5

(α3 + α6 + ... + α3n − β3 − β6 − ... − β3n)

oder, wenn man die hierin auftretenden geometrischen Reihen summiert,

u3 + u6 + ... + u3n = 1√
5

(
α3n+3 − α3

α3 − 1 − β3n+3 − β3

β3 − 1

)
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Nun gilt aber
α3 − 1 = α + α2 − 1 = α + α + 1 − 1 = 2α

und analog β3 − 1 = 2β. Daher gilt

u3 + u6 + ... + u3n = 1√
5

(
α3n+3 − α3

2α
− β3n+3 − β3

2β

)

oder umgeformt

u3 + u6 + ... + u3n = 1√
5

(
α3n+2 − α2 − β3n+2 + β2

2

)

= 1
2

(
α3n+2 − β3n+2

√
5

− α2 − β2
√

5

)
= 1

2(u3n+2 − u2) = u3n+2 − 1
2

19. Als weiteres Beispiel für die Anwendung der Binetschen Formel berechnen wir die
Summe der Kuben der ersten n Fibonaccischen Zahlen.
Wir bemerken zunächst:

u3
k =

(
αk − βk

√
5

)3

= 1
5

α3k − 3α2kβk + 3αkβ2k − β3k

√
5

= 1
5

(
α3k − β3k

√
5

− 3αkβk αk − βk

√
5

)
= 1

5(u3k − (−1)k3uk) = 1
5(u3k + (−1)k+13uk)

Daraus folgt

u3
1 + u3

2 + ... + u3
n = 1

5[(u3 + u6 + ... + u3n] + 3(u1 − u2 + u3 − ... + (−1)n+1un)]

oder unter Benutzung der Ergebnisse aus 18. und der Formel (1.6)

u3
1 + u3

2 + ... + u3
n = 1

5

(
u3n+2 − 1

2 + (−1)n+13un−1 + 3
)

= u3n+2 + (−1)n+16un−1 + 5
10

20. Wir erörtern nun die Frage wie schnell die Fibonaccischen Zahlen mit wachsenden
Indizes größer werden. Auch auf diese Frage gibt uns die Binetsche Formel eine völlig
erschöpfende Antwort. Man beweist nämlich leicht folgenden Satz.

Satz: Die Fibonaccische Zahl un ist die der Zahl αn
√

5 , d. h. dem n-ten Glied an der
geometrischen Folge, deren erstes Glied α√

5 und deren Quotient α ist, nächstgelegene
ganze Zahl.

Beweis: Offensichtlich genügt es zu zeigen, dass der absolute Betrag der Differenz von
un und an stets kleiner als 1

2 ist. Es gilt aber

|un − an| =
∣∣∣∣∣α

n − βn

√
5

− αn

√
5

∣∣∣∣∣ =
∣∣∣∣∣α

n − αn − βn

√
5

∣∣∣∣∣ = |β|n√
5

Wegen β = −0, 68... ist |β| < 1. Folglich ist für beliebiges n immer |β|n < 1 und
daher erst recht |β|√

5 < 1
2 (da ja

√
5 > 2). Damit ist der Satz bewiesen.
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Der Leser, der mit dem Begriff des Grenzwertes vertraut ist, bestätigt leicht die Glei-
chung

lim
n→∞ |un − an| = 0

deren Beweis nur wenig von dem soeben geführten abweicht.
Benutzen wir den oben bewiesenen Satz, so können wir die Fibonaccischen Zahlen auch
mit Hilfe einer Logarithmentafel berechnen.

Gesucht sei beispielsweise u14 (die Zahl u14 ist, wie man sich leicht überlegt, die Lösung
der Fibonaccischen Kaninchenaufgabe):

√
5 = 2, 2361 ; log

√
5 = 0, 34949 ; α = 1 +

√
5

2 = 1, 6180 ; log α = 0, 2089

log α14
√

5
= 14 · 0, 20898 − 0, 34949 = 2, 5762 ; α14

√
5

= 376, 9

Die zu 376,9 nächstgelegene ganze Zahl ist 377; das ist aber gerade unsere Zahl u14.

Bei der Berechnung von Fibonaccischen Zahlen mit sehr großem Index brauchen wir
nicht sämtliche Stellen zu berücksichtigen, die uns die Logarithmentafel angibt. Man
kann sich vielmehr mit den ersten Stellen begnügen, so dass man einen Näherungswert
erhält.

Zur Übung mag der Leser beweisen, dass un für n ≥ 17 höchstens n
4 und mindestens

n
5 Ziffern im Dezimalsystem besitzt. Aus wieviel Ziffern besteht die Zahl u1000?

21. Das Ergebnis aus Nr. 20 lässt sich noch verbessern. Zunächst beweisen wir den
folgenden Satz, der uns im weiteren nützlich sein wird.

Satz. Es gilt
αn−1/n

√
5

≤ un ≤ αn+1/n

√
5

Beweis. Wir beschränken uns auf den Beweis der linken Seite der Ungleichung; die
rechte Seite lässt sich analog nachweisen.
Da auf Grund der Binetschen Formel

un = 1√
5

(αn − βn)

gilt und ferner αβ = −1 ist, genügt es zu zeigen, dass

α1−1/n ≤ αn − 1/αn oder α2n−1/n ≤ α2n − 1

oder, nach Erheben in die n-te Potenz,

α2n2−1 ≤ (α2n − 1)n (1.21)

ist. Diese Ungleichung werden wir durch vollständige Induktion nach n beweisen.
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1 Einfachste Eigenschaften der Fibonaccischen Zahlen

Für n = 1 geht (1.21) über in
α ≤ α2 − 1

das gilt tatsächlich (sogar mit dem Gleichheitszeichen). Für n = 2 liefert (1.21) die
Ungleichung

α7 ≤ (α4 − 1)2 (1.22)
Sie lässt sich durch Ausrechnen überprüfen; jedoch kann man sie auch beweisen, indem
man die in Nr. 17 hergeleitete Beziehung benutzt. Es ist nämlich

α4 = 3α + 2
(α4 − 1)2 = (3α + 1)2 = 9α2 + 6α + 1 = 15α + 10

so dass (1.22) in der offenbar gültigen Gestalt

α7 = 13α + 8 ≤ 15α + 10

geschrieben werden kann. Schließlich folgt aus (1.21) für n = 3

α17 ≤ (α6 + 1)3

was sich analog nachprüfen lässt.
Wir nehmen nun an, es sei n > 2 und es gelte (1.21), und beweisen, dass

α2(n+1)2−1 ≤ (a2n+2 − 1)n+1

ist. Dazu genügt es zu zeigen, dass bei Vergrößern von n um 1 die rechte Seite von
(1.21) schneller wächst als die linke. Die linke Seite wächst dabei um das α4n+2-fache.
Die rechte Seite schätzen wir folgendermaßen ab. Es ist

(α2(n+1) − 1)n+1

(α2n − 1)n
= (α2(n+1) − 1)

α2(n+1) − 1
α2n − 1

n

Der letzte Bruch ist größer als α2; dabei ist

α2(n+1) − 1
α2n − 1 − α2 = α2n+2 − 1 − α2n+2 + α2

α2n − 1 = α2 − 1
α2n − 1

= 1
α2n−2 + α2n−4 + ... + α2 + 1 >

1
α2n−1

Folglich ist α2(n+1) − 1
α2n − 1

n

>

(
α2 + 1

α2n−1

)n

= α2n + n
α2n−2

α2n−1 + ...

die Punkte ersetzen positive Summanden. Da n > 2 vorausgesetzt war, ist dieser
Ausdruck größer als α2n+1. Das bedeutet

(α2(n+1) − 1)n+1

(α2n − 1)n
> (α2(n+1) − 1)(α2n + 1) = α4n+2 + α2n+2 − α2n − 1

= α4n+2 + α2n(α2 − 1) − 1 = α4n+2 + α2n+1 − 1 > α4n+2
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Also wächst die rechte Seite von (1.21) schneller als die linke. Damit ist der Satz
bewiesen.

22. Wir untersuchen noch eine Klasse von Folgen, die sich auf die Fibonaccischen
Zahlen stützen. Es sei x eine beliebige Zahl, und wir wollen die Summe

sn(x) = u1x + u2x
2 + ... + unxn

berechnen. Dazu benutzen wir die Binetsche Formel:

sn(x) = α − β√
5

x + α2 − β2
√

5
x2 + ... + αn − βn

√
5

xn

= 1√
5

(αx + α2x2 + ... + αnxn) − 1√
5

(βx + β2x2 + ... + βnxn) (1.23)

In jeder der runden Klammern steht die Summe einer geometrischen Reihe mit dem
Quotienten αx bzw. βx. Die bekannte Formel für die Summe einer geometrischen Reihe
gilt dann, wenn der Quotient der Reihe von 1 verschieden ist. Wenn er gleich 1 ist,
sind alle Glieder der Reihe einander gleich, so dass sich ihre Summe einfach berechnen
lässt.

Wir betrachten zunächst den Fall αx ̸= 1, βx ̸= 1, d.h., es sei x ̸= 1
α = −β und

x ̸= 1
β = −α. In diesen Fällen finden wir, wenn wir in (1.23) die geometrischen Reihen

summieren,
sn(x) = 1√

5
αn+1xn+1 − αx

αx − 1 − 1√
5

βn+1xn+1 − βx

βx − 1
oder, umgeformt,

sn(x) = 1√
5

(αn+1xn+1 − αx)(βx − 1) − (βn+1xn+1 − βx)(αx − 1)
αx − 1)(βx − 1)

bzw.

sn(x) = 1√
5

[
αn+1βxn+2 − αn+1xn+1 + αx

αβx2 − (α + β)x + 1 − αβn+1xn+2 − βn+1xn+1 + βx

αβx2 − (α + β)x + 1

]

Wir erinnern uns nun an die Beziehungen αβ = −1, α + β = 1 und α − β =
√

5 und
erhalten

sn(x) = 1√
5

x
√

5 − (αn − βn)xn+2 − (αn+1 − βn+1)xn+1

1 − x − x2

und schließlich
sn(x) = x − unxn+2 − un+1x

n+1

1 − x − x2 (1.24)

Insbesondere ergibt sich, wenn wir hier x = 1 setzen,

sn(1) = u1 + u2 + ... + un = 1 − un − un+1

−1 = un+2 − 1

was dem Ergebnis aus Nr. 1 entspricht.
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Für x = −1 folgt

sn(−1) = u1−u2+...+(−1)n−1un = −1 − un(−1)n+2 − un+1(−1)n+1

−1 = (−1)n+1un−1−1

[vgl. Formel (1.6)].

Wir betrachten nun die übrigen "Spezialfälle".
Es sei x = 1

α = −β. Dann ist in (1.23) jedes Glied der ersten Reihe gleich 1 und die
Summe folglich gleich n. Bei der zweiten Reihe ergibt sich der Quotient zu −β2. Also
ist

sn

( 1
α

)
= 1√

5
(n + (β2 − β4 + ... + (−1)n−1β2n)) = 1√

5

(
n + β2 − (−1)nβn+2

1 + β2

)

= 1√
5

(
n + β2

1 + β2 − (−1)nβ2n β2

1 + β2

)

Nun gelten die Beziehungen

1 + β2 = 2 + β = 2 + 1 −
√

5
2 = 5 −

√
5

2
und

β2

1 + β2 = 1 + β

2 + β
= 3 −

√
5

5 −
√

5
= (3 −

√
5)(5 +

√
5)

(5 −
√

5)(5 +
√

5)
= 10 − 2

√
5

20
so dass wir schließlich

sn

( 1
α

)
= n√

5
+

√
5 − 1
10 − (−1)nβ2n

√
5 − 1
10 (1.25)

erhalten.
Nun betrachten wir noch den Fall x = 1

β = −α. Dann ist in (1.23) der Quotient der
zweiten Reihe gleich 1, der der ersten Reihe gleich −α2, und es folgt

sn

( 1
β

)
= 1√

5
(−(α2 − α4 + ... + (−1)n−1α2n) − n)

Analog zum vorhergehenden Fall erhalten wir

sn

( 1
β

)
= 1√

5

((−1)nα2n+2 − α2

1 + α2 − n

)
= 1√

5

(
(−1)nα2n α2

1 + α2 − α2

1 + α2 − n

)

und im Ergebnis

sn

( 1
β

)
= (−1)n

√
5 + 1
10 α2n −

√
5 + 1
10 − n√

5
(1.26)

23. Wir untersuchen nun, wie sich die Summe sn(x) bei festem x und unbeschränkt
wachsendem n verhält.
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In (1.23) gehen wir zum Grenzwert für n → ∞ über:

lim
n→∞ sn(x) = lim

n→∞
1√
5

[(αx + α2x2 + ... + αnxn) − (βx + β2x2 + ... + βnxn)]

= 1√
5

lim
n→∞(αx + α2x2 + ... + αnxn) − 1√

5
lim

n→∞(βx + β2x2 + ... + βnxn)

Hier stehen unter den beiden letzten Grenzwertzeichen Summen geometrischer Reihen.
Daher sind die Grenzwerte selbst die Summen der entsprechenden unendlichen geome-
trischen Reihen. Nun ist bekanntlich eine unendliche geometrische Reihe genau dann
konvergent, wenn ihr Quotient dem absoluten Betrag nach kleiner als 1 ist.
Bei den beiden uns interessierenden Reihen sind die Quotienten gleich αx bzw. βx.
Hier ist |α| > |β|. Aus |αx| < 1 folgt deshalb |βx| < 1. Wenn also die Ungleichung
|αx| < 1 erfüllt ist, existieren diese beiden Grenzwerte.
Der Grenzwert

lim
n→∞ sn(x) (1.27)

existiert also für |x| < 1
α , und wir wollen ihn mit s(x) bezeichnen. Zu seiner Berechnung

können wir die Formel (1.24) benutzen.
Zunächst bemerken wir, dass auf Grund des in Nr. 20 Gesagten

un ≤ αn

√
5

+ 1

gilt. Deshalb ist

lim
n→∞ unxn+2 ≤ lim

n→∞

(
αn

√
5

+ 1
)

xn+2 = x2
√

5
lim

n→∞(αx)n + lim
n→∞ xn+2

Wegen |αx| < 1 muss |x| < 1 sein, so dass beide Grenzwerte gleich 0 sind. Aus
demselben Grund ist auch

lim
n→∞ un+1x

n+1 = 0

Folglich erhalten wir, wenn wir in (1.24) für n → ∞ zur Grenze übergehen,

s(x) = lim
n→∞ sn(x) = lim

n→∞
x − unxn+2 − un+1x

n+1

1 − x − x2

= 1
1 − x − x2

(
x − lim

n→∞ unxn+2 − lim
n→∞ un+1x

n+1
)

= x

1 − x − x2

Dieses Resultat lässt sich auch als Reihenentwicklung schreiben:

u1x + u2x
2 + ... + unxn + ... = x

1 − x − x2 (1.28)

Lassen wir x verschiedene Werte annehmen, so erhalten wir verschiedene konkrete
Formeln, z.B. für x = 1

2 die Formel

u1

2 + u2

22 + ... + un

2n
+ ... = 2
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1 Einfachste Eigenschaften der Fibonaccischen Zahlen

24. Zu (1.28) können wir auch durch andere Überlegungen gelangen. Wir schreiben

u1x + u2x
2 + ... + unxn + ... = s(x) (1.29)

(dabei erinnern wir uns daran, dass der Ausdruck s(x) nur für x < 1
α sinnvoll ist) und

multiplizieren (1.29) gliedweise mit x und mit x2. Das ergibt

u1x
2 + u2x

3 + ... + unxn+1 + ... = xs(x) (1.30)

bzw.
u1x

3 + u2x
4 + ... + unxn+2 + ... = x2s(x) (1.31)

Dann subtrahieren wir (1.30) und (1.31) von (1.29) und fassen die Glieder mit gleichen
Potenzen von x zusammen:

u1x + (u2 − u1)x2 + (u3 − u2 − u1)x3 + (u4 − u3 − u2)x4 + ...

+ (un − un−1 − un−2)xn + ... = (1 − x − x2)s(x)

Die auf der linken Seite dieser Gleichung in runden Klammern stehenden Ausdrücke
sind offenbar gleich 0, so dass

x = (1 − x − x2)s(x)

und damit (1.28) folgt.

25. Bis jetzt haben wir stets vorausgesetzt, dass der Index n der Fibonaccischen Zahl
un eine positive ganze Zahl ist. Jedoch lässt sich die grundlegende Rekursionsformel,
die die Fibonaccischen Zahlen definiert, auch in der Gestalt

un−2 = un − un−1 (1.32)

schreiben. Sie kann dazu dienen, Fibonaccische Zahlen mit kleinerem Index durch solche
mit größerem Index auszudrücken.
Setzen wir in (1.32) nacheinander n = 2, 1, 0, −1, ... ein, so finden wir

u0 = 0, u−1 = 1, u−2 = −1, u−3 = 2, ...

und allgemein
u−n = (−1)n+1un (1.33)

wie wir uns leicht überzeugen können (der Beweis sei dem Leser überlassen).

Dieser einfache Ausdruck (1.33) für eine Fibonaccische Zahl mit beliebigem ganzem
Index erlaubt, alle Untersuchungen dieser Fibonaccischen Zahlen auf die Fibonaccischen
Zahlen mit natürlichen Indizes zurückzuführen.

Zum Beispiel genügt es, wenn wir die Summe der n Fibonaccischen Zahlen

u−1, u−2, ..., u−n
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berechnen wollen, die Summanden mit Hilfe von (1.33) umzuschreiben; die Summe ist
dann gleich

u1 − u2 + ... + (−1)n−1un

Dann erhalten wir, wenn wir (1.6) benutzen,

u−1 + u−2 + ... + u−n = (−1)n+1un−1 − 1 = −u−n+1 + 1

Der sich auf die grundlegende Rekursionsformel für Fibonaccische Zahlen stützende
Induktionsbeweis mit dem Schluss "von n und n + 1 auf n + 2" kann jetzt im Zusam-
menhang mit der Beziehung (1.32) nach dem Schema "von n und n − 1 auf n − 2"
geführt werden. Insbesondere lässt sich auf diese Art mühelos die wichtige Formel (1.8),

un+m = un−1um + unum+1

für beliebige ganze n und m beweisen.

26. Die für die Zahlen α und β grundlegenden Gleichungen

αn+2 = αn + αn+1 , βn+2 = βn + βn+1

gelten nicht nur für positive ganze, sondern auch für alle ganzen n (für gebrochene
n bleiben sie ebenfalls gültig, jedoch werden wir darauf nicht eingehen). Daraus folgt
leicht, dass die Binetsche Formel

un = αn − βn

√
5

für jedes ganze n gilt.
Abschließend sei bemerkt, dass sich auch das Ergebnis aus Nr. 17 (durch Induktion "in
entgegengesetzter Richtung") auf negative Werte des Index übertragen lässt:

α−n = u−nα + u−n−1 (1.34)

Diese Gleichung lässt sich umformen in

(−1)nβn = (−1)nun
1
β

+ (−1)nun+1

d.h,
βn+1 = un+1β + un

Außerdem kann (1.34) auf die Gestalt

α−n = (−1)n−1unα + (−1)nun+1

gebracht werden, d.h.
(−1)nα−n = un+1 − unα

oder, umgeformt,
un+1

un
− α = (−1)nα−n 1

un
(1.35)
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2 Zahlentheoretische Eigenschaften der
Fibonaccischen Zahlen

1. Wir betrachten nun einige Teilbarkeitseigenschaften der Fibonaccischen Zahlen.

Satz. Ist n durch m teilbar, so ist auch un durch um teilbar.

Beweis. Es sei n durch m teilbar, d.h. n = mk. Wir führen den Beweis durch Induktion
nach k.
Für k = 1 ist n = m. In diesem Fall ist un trivialerweise durch um teilbar. Wir nehmen
nun an, umk sei durch um teilbar, und betrachten um(k+1). Nun ist um(k+1) = umk+m;
und wegen Gleichung (1.8) gilt

um(k+1) = umk−1um + umkum+1

Der erste Summand auf der rechten Seite dieser Gleichung ist durch um teilbar, der
zweite enthält umk als Faktor, ist also nach Induktionsvoraussetzung ebenfalls durch
um teilbar, womit der Satz bewiesen ist.

2. Es sei nun eine beliebige ganze Zahl m gegeben. Gibt es wenigstens eine Fibonac-
cische Zahl un, die durch m teilbar ist, so lassen sich beliebig viele durch m teilbare
Fibonaccische Zahlen finden, etwa die Zahlen u2n, u3n, u4n, ...

Es ist daher interessant, die Frage zu klären, ob man zu einer beliebig vorgegebenen
Zahl m immer wenigstens eine durch sie teilbare Fibonaccische Zahl finden kann. Es
zeigt sich, dass das der Fall ist.
Es sei k der bei der Division von k durch m auftretende Rest. Wir bilden nun die Folge
aus den Paaren solcher Reste:

⟨u1, u2⟩, ⟨u2, u3⟩, ⟨u3, u4⟩, ..., ⟨un, un+1⟩, ... (2.1)

Nennen wir zwei derartige Paare ⟨a1, b1⟩ und ⟨a2, b2⟩ gleich, wenn a1 = b1 und a2 =
b2 ist, dann ist die Anzahl aller verschiedenen Restpaare, die bei Division durch m
auftreten, gleich m2.
Unter den ersten m2 + 1 Gliedern der Folge (2.1) gibt es also mit Sicherheit solche, die
einander gleich sind.

Es sei ⟨uk, uk+1⟩ das erste Paar, das in der Folge (2.1) zum zweiten Mal auftritt. Wir
beweisen, dass dieses Paar das Paar ⟨1, 1⟩ ist. Wir schließen indirekt, nehmen also an,
das erste mehrfach auftretende Paar sei das Paar ⟨uk, uk+1⟩ mit k > 1.
Dann gäbe es in (2.1) ein Paar ⟨ul, ul+1⟩, l > k, das gleich dem Paar ⟨uk, uk+1⟩ wäre.
Da ul−1 = ul+1 − ul und uk−1 = uk+1 − uk sowie ul+1 = uk+1 und ul = uk wäre,
so wären auch die bei der Division von ul−1 und uk−1 durch m auftretenden Reste
einander gleich, d.h, es wäre ul−1 = uk−1.

Daraus folgte aber, dass auch ⟨uk−1, uk⟩ = ⟨ul−1, ul⟩ wäre; das Paar ⟨uk−1, uk⟩ steht
jedoch in der Folge (2.1) vor dem Paar ⟨uk, uk+1⟩, und daher wäre ⟨uk, uk+1⟩ nicht das
erste mehrfach auftretende Paar, im Gegensatz zu unserer Annahme.
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Wir sehen also, dass die Annahme k > 1 zu einem Widerspruch führt, und dies besagt,
dass k = 1 ist.

Das Paar (1, 1) ist also in der Tat das erste in der Folge (2.1) mehrfach auftretende
Glied. Es möge etwa an der t-ten Stelle stehen (in Übereinstimmung mit dem Obigen
können wir 1 < t << m2 + 1 annehmen), d. h., es möge

⟨ut, ut+1⟩ = ⟨1, 1⟩

gelten. Das bedeutet, dass sowohl ut als auch ut+1 bei Division durch im den Rest 1
lassen. Folglich ist ihre Differenz durch m teilbar. Wegen

ut−1 − ut = ui−1

dann also die (t − 1)-te Fibonaccische Zahl durch m teilbar.
Wir haben damit den folgenden Satz bewiesen:

Satz. Zu jeder vorgegebenen ganzen Zahl m lässt sich unter den ersten m2 − 1 Fibo-
naccischen Zahlen immer wenigstens eine finden, die durch m teilbar ist.

Wir bemerken, dass der bewiesene Satz nichts darüber aussagt, welche Fibonaccische
Zahl durch m teilbar ist. Er besagt lediglich, dass die erste durch m teilbare Fibonac-
cische Zahl nicht übermäßig groß ist. Später werden wir uns dieser Frage nochmals
zuwenden.

Da (1,1) das erste in (2.1) mehrfach auftretende Glied ist, lässt sich die Folge der
Reste, wenn wir mit ut beginnen, gleichsam von Anfang an wiederholen. Diese Folge
ist also periodisch. Zum Beispiel bilden im Fall m = 4 die Zahlen

1, 1, 2, 3, 1, 0 (2.2)

in der Folge der Reste eine Periode. Die Periodenlänge ist gleich 6.
Somit hat un bei Division durch 4 den Rest 1 im Fall n = 6k + 1, 6k + 2 oder 6k + 5,
den Rest 2 im Fall n = 6k + 3 und den Rest 3 im Fall n = 6k + 4.

3. Großes Interesse verdient die Frage nach der arithmetischen Natur der Fibonaccischen
Zahlen, d.h. die Frage nach ihren Teilern.
Wir zeigen, dass un für zusammengesetztes und von 4 verschiedenes n eine zusam-
mengesetzte Zahl ist. (Dabei nennen wir eine Zahl "zusammengesetzt", wenn sie nicht
Primzahl ist; d. Ü.)
In der Tat kann man ein derartiges n immer in der Form n = n1n2 schreiben, wobei
1 < n1 < n, 1 < n2 < n ist und n1 > 2 oder n2 > 2 gilt.
Es sei etwa n1 > 2. Dann ist nach dem soeben bewiesenen Satz un durch un1 teilbar,
und es gilt ferner 1 < un−1 < un. Damit ist gezeigt, dass un eine zusammengesetzte
Zahl ist.

4. Bevor wir in unseren Betrachtungen über die Fibonaccischen Zahlen fortfahren,
wollen wir uns einiger einfacher Tatsachen aus der Zahlentheorie erinnern.

Wir zeigen zunächst, wie man den größten gemeinsamen Teiler zweier Zahlen a und b
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bestimmt.

Wir dividieren a durch b mit Rest. Der sich ergebende Quotient sei q0, der bei der
Division auftretende Rest r1. Dann gilt offensichtlich a = bq0 + r1 und 0 ≤ r1 < b. Für
a < b ist q0 = 0.
Nun teilen wir weiter b durch r1 und bezeichnen den Quotienten mit q1, den Rest mit
r2. Dann ist b = r1q1 + r2 und 0 ≤ r2 < r1. Da r1 < b ist, ist q1 ̸= 0.
Weiter finden wir bei Division von r1 durch r2 ein q2 ̸= 0 und ein r3 mit der Eigenschaft
r1 = q2r2 + r3 und 0 ≤ r3 < r2. In dieser Weise setzen wir den Prozess fort.

Früher oder später muss die Entwicklung einmal abbrechen, und wir haben eine Rei-
he ganzer positiver und untereinander verschiedener Zahlen r1, r2, r3, ... erhalten, die
sämtlich kleiner als b sind. Die Anzahl der ri kann also b nicht übersteigen, und der
Divisionsprozess muss spätestens nach dem b-ten Schritte abbrechen. Abbrechen kann
er aber nur dann, wenn einmal eine Division aufgeht, d.h. wenn der Rest gleich Null
wird und eine weitere Division daher nicht möglich ist.

Den soeben durchgeführten Prozess bezeichnet man allgemein als Euklidischen Algo-
rithmus. Bei Anwendung dieses Verfahrens auf die Zahlen a und b erhalten wir als
Ergebnis das folgende System von Identitäten:

a = bq0 + r1

b = r1q1 + r2

r1 = r2q2 + r3

... (2.3)
rn−2 = rn−1qn−1 + rn

rn−1 = rnqn

Wir betrachten das letzte von Null verschiedene Glied in der Folge a, b, r1, r2, ..., rn. Im
allgemeinen ist dieses Glied der Rest rn, aber im besonderen kann es auch die Zahl b
sein (wegen der Einheitlichkeit kann man b = r0 setzen). Offenbar ist rn−1 durch rn

teilbar.

Wir wenden uns nun in (2.3) der vorletzten Gleichung zu; die beiden Summanden rechts
und daher auch rn−2 sind durch rn teilbar.
Ganz analog weist man schrittweise (induktiv !) nach, dass rn−3, rn−4, ... und schließlich
auch a und b durch rn teilbar sind. Also ist rn ein gemeinsamer Teiler von a und b.

Wir beweisen jetzt, dass rn auch der größte gemeinsame Teiler von a und b ist. Dazu
genügt es zu zeigen, dass jeder gemeinsame Teiler von a und b ein Teiler des Restes rn

ist.
Es sei d irgendein gemeinsamer Teiler von a und b. Aus der ersten Gleichung von (2.3)
ersieht man, dass d auch Teiler von r1 sein muss. Dann ist d auf Grund der zweiten
Gleichung von (2.3) auch Teiler von r2.
Analog (durch Induktion !) beweisen wir, da r3, ..., rn−1 und folglich auch r : n durch
d teilbar sind.

Wir haben also gezeigt, dass die Anwendung des Euklidischen Algorithmus auf die
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natürlichen Zahlen a und b immer auf den größten gemeinsamen Teiler dieser Zahlen
führt. Diesen größten gemeinsamen Teiler von a und b werden wir im folgenden mit
(a, b) bezeichnen.

Als Beispiel wollen wir (u20, u15) = (6765, 610) bestimmen:

6765 = 610 · 11 + 55,

610 = 55 · 11 + 5,

55 = 5 · 11

Es ist also (u20, u15) = 5 = u5. Die Tatsache, dass der größte gemeinsame Teller zweier
Fibonaccischer Zahlen wieder zu den Fibonaccischen Zahlen gehört, ist nicht zufällig.
Wir werden im folgenden zeigen, dass dies ganz allgemein der Fall ist.

5. In der Geometrie finden wir ein dem Euklidischen Algorithmus ähnliches Verfahren
bei der Bestimmung der gemeinsamen "Maßeinheit" zweier kommensurabler Strecken.

Betrachten wir also zwei Strecken; die eine habe die Länge a, die andere die Länge b.
Wir tragen die zweite Strecke so oft wie möglich auf der ersten ab (ist b > a, so ist dies
offenbar überhaupt nicht möglich) und bezeichnen die Länge des eventuell auftretenden
Bestes mit r1. Offenbar ist r1 < b.
Dann tragen wir die Strecke r1 so oft wie möglich auf der Strecke b ab und bezeichnen
den neu auftretenden Rest mit r2. Fahren wir in dieser Weise fort, so erhalten wir
schließlich eine Folge von Reststrecken, deren Länge offensichtlich immer kleiner wird.
Soweit besteht also vollständige Übereinstimmung mit dem Euklidischen Algorithmus.

Im folgenden jedoch unterscheidet sich das soeben beschriebene geometrische Verfahren
grundsätzlich vom Euklidischen Algorithmus für natürliche Zahlen: Die Folge der Reste,
die sich beim Vergleich der Strecken ergeben, braucht nicht abzubrechen, da der Prozess
keine bestimmte Länge zu haben braucht. Das ist immer dann der Fall, wenn die
vorgegebenen Strecken inkommensurabel sind. Aus den Überlegungen von Nr. 4 ergibt
sich also u.a., dass zwei Strecken, deren Länge sich durch ganze Zahlen ausdrücken
lassen, immer kommensurabel sind.

Wir leiten jetzt einige einfache Eigenschaften des größten gemeinsamen Teilers zweier
Zahlen ab.

6. (a, bc) ist teilbar durch (a, b).

Beweis: b und daher auch bc ist durch (a, b) teilbar; (a, b) teilt aber auch a. Folglich
ist nach dem in Punkt 1 Bewiesenen auch (a, bc) durch (a, b) teilbar.

7. (ac, bc) = (a, b)c.

Beweis: Die Gleichungen (20) beschreiben das Verfahren der Bestimmung von (a, b).
Multiplizieren wir nun jede dieser Gleichungen mit c, so erhalten wir, wie man leicht
bestätigt, ein Gleichungssystem, das dem Euklidischen Algorithmus für die Zahlen ac
und bc entspricht. Der letzte nichtverschwindende Rest ist dann gleich rn ·c, d.h. gleich
(a, b) · c.
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8. Aus (a, c) = 1 folgt (a, bc) = (a, b). Es ist nämlich nach den Ergebnissen von Punkt
3 (ab, bc) durch (a, bc) teilbar. Aus Punkt 4 ergibt sich

(ab, bc) = (a, c)b = 1 · b = b

Folglich ist b durch (a, bc) teilbar. Andererseits ist (a, bc) ein Teiler von a. Dann geht
(a, bc) nach Nr. 4 auch in (a, b) auf. Da aber nach Punkt Nr. 6 (a, b) auch ein Teiler
von (a, bc) ist, folgt (a, b) = (a, bc).

Nun sei bc durch a teilbar. Das bedeutet (a, bc) = a. Ist dabei (a, c) = 1, so ist nach
dem eben Gesagten (a, b) = a, d.h., a ist Teiler von b.
Ist p eine Primzahl, so lässt sich entweder jede Zahl a durch p teilen, oder a und p
sind teilerfremd. Wenn also ein Produkt zweier Zahlen durch eine Primzahl p teilbar
ist, teilt dieses p nach dem Vorhergehenden wenigstens einen der beiden Faktoren.
Offenbar lässt sich diese Behauptung durch Induktion auf Produkte beliebig vieler Zah-
len übertragen.

9. Wir fragen nun nach der Teilbarkeit der Binomialkoeffizienten.

Satz. Ist p eine Primzahl und k eine Zahl mit k ̸= 0 und k ̸= p, so ist
(

p
k

)
durch p

teilbar.

Beweis. Wir kennen aus § 1, Nr. 14, die Beziehungp

k

 = p(p − 1)...(p − k + 1)
1 · 2 · ... · k

Da dieser Bruch in Wirklichkeit eine ganze Zahl ist, muss sein Zähler durch den Nenner
teilbar sein. Nun ist jeder Faktor des Nenners kleiner als p und daher durch p nicht teil-
bar, so dass sich nach dem Vorhergehenden der ganze Nenner nicht durch die Primzahl
p teilen lässt. Also ist der Nenner zu 2 teilerfremd.

Den Zähler fassen wir als Produkt der Zahl p mit der Zahl (p−1)...(p−k+1) auf. Dieses
Produkt lässt sich durch den Nenner teilen. Da die Zahl p und der Nenner teilerfremd
sind, muss der Nenner Teiler des zweiten Faktors, nämlich Teiler von (p−1)...(p−k+1)
sein. Setzen wir

(p − 1)...(p − k + 1) = t · 1 · 2 · ... · k

so ist
(

p
k

)
= tp, was zu beweisen war.

10. Ist c durch b teilbar, so ist (a, b) = (a + c, b).

Beweis: Die Anwendung des Euklidischen Algorithmus auf die Zahlen a und b führt zu
dem Gleichungssystem (2.3). Wir wenden nun den Algorithmus auf die Zahlen a + c
und b an.
Da c durch b teilbar ist, wir also c in der Form c = c1b schreiben können, liefert uns
der erste Schritt des Algorithmus die Gleichung

a + c = (q0 + c1)b + r1
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Alle weiteren Schritte des Algorithmus führen uns nacheinander auf die zweite, dritte,
... usw. Gleichung des Systems (2.3). Als letzter nichtverschwindender Rest erscheint
wie früher rn, woraus sich die Behauptung (a, b) = (a + c, b) ergibt.

Es sei dem Leser zur nützlichen Übung empfohlen, diesen Satz unter ausschließlicher
Verwendung der Ergebnisse der Nr. 6 bis 8, d.h. ohne wiederholte Anwendung des
Euklidischen Algorithmus und ohne Benutzung des Systems (2.3), zu beweisen.

11. Satz. Zwei benachbarte Fibonaccische Zahlen sind teilerfremd.

Beweis. Wir nehmen entgegen der Behauptung des Satzes an, un und un+1 besäßen
irgendeinen gemeinsamen Teiler d > 1. Dann wäre ihre Differenz un+1 − un, also
un−1 = un+1 − un, durch d teilbar.
Analog zeigt man (durch Induktion!), dass auch un−2, un−3, ... usw. und schließlich
u1 durch d teilbar wären. Nun ist aber bekanntlich u1 = 1 und daher sicher nicht
durch d > 1 teilbar. Damit ist unsere Annahme zum Widerspruch geführt und der Satz
bewiesen.

12. Satz: Es gilt die Gleichung (um, un) = u(m,n).

Beweis: Ohne Beschränkung der Allgemeinheit können wir m > n annehmen. Wir
wenden nun auf die Zahlen m und n den Euklidischen Algorithmus an:

m = nq0 + r1 mit 0 ≤ r1 < n,

n = r1q1 + r2 mit 0 ≤ r2 < r1,

r1 = r2q2 + r3 mit 0 ≤ r3 < r2,

...

rt−2 = rt−1qt−1 + rt mit 0 ≤ rt < rt−1,

tt−1 = rtqt

Wir wissen aber bereits, dass rt der größte gemeinsame Teiler von m und n ist. Wir
können also wegen m = nq0 + r1 schreiben:

(um, un) = (unq0+r1, un) oder (um, un) = (unq0−1ur + unq0ur1+1, un)

und auf Grund der Ergebnisse der Nr. 1 und 10

(um, un) = (unq0−1ur1, un)

wegen Nr. 11 und 8 erhalten wir hieraus:

(um, un) = (ur1, un)

Analog beweist man

(ur1, un) = (ur2, ur1) ; (ur2, ur1) = (ur3, ur2) ; ... ; (urt−1, urt−2) = (urt, urt−1)

Diese Gleichungen liefern zusammen:

(um, un) = (urt, urt−1)
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und da rt, ein Teiler von rt−1 ist, so dass auch urt−1 durch urt teilbar ist, folgt

(urt, urt−1) = urt

Erinnern wir uns schließlich, dass rt = (m, n) ist, so kommen wir zu dem verlangten
Ergebnis.
Insbesondere folgt aus dem soeben bewiesenen Satz die Umkehrung des Satzes von Nr.
1:

Ist un teilbar durch um, so ist auch n teilbar durch m.
In der Tat folgt aus der Teilbarkeit von un durch um nach Nr. 8

(un, um) = um (2.4)

Wie wir eben bewiesen haben, ist aber

(un, um) = u(n,m) (2.5)

Aus den Gleichungen (2.4) und (2.5) zusammen erhalten wir unmittelbar

um = u(n,m)

d.h. m = (n, m); das bedeutet aber, dass n durch m teilbar ist.

13. Der Satz aus Nr. 1 und die Folgerung aus dem Satz in Nr. 12 ergeben zusammen:
un ist dann und nur dann durch um teilbar, wenn n durch m teilbar ist.

Man kann also über die Teilbarkeit von Fibonaccischen Zahlen Aussagen machen, indem
man die Teilbarkeit ihrer Indizes untersucht.

Wir gehen nun als Beispiel einige Teilbarkeitskriterien für Fibonaccische Zahlen an.
Darunter verstehen wir hier Kriterien, mit deren Hilfe man feststellen kann, ob eine
vorgegebene Fibonaccische Zahl durch irgendeine gegebene Zahl teilbar ist oder nicht.

Eine Fibonaccische Zahl ist dann und nur dann gerade (durch 2 teilbar), wenn ihr Index
durch 3 teilbar ist.
Eine Fibonaccische Zahl ist dann und nur dann durch 3 teilbar, wenn ihr Index durch
4 teilbar ist.
Eine Fibonaccische Zahl ist dann und nur dann durch 4 teilbar, wenn ihr Index durch
6 teilbar ist.
Eine Fibonaccische Zahl ist dann und nur dann durch 5 teilbar, wenn ihr Index durch
5 teilbar ist.
Eine Fibonaccische Zahl ist dann und nur dann durch 7 teilbar, wenn ihr Index durch
8 teilbar ist.

Diese und ähnliche Teilbarkeitskriterien kann der Leser mit Hilfe des zu Anfang die-
ses Punktes formulierten Satzes leicht selbst beweisen, indem er beziehungsweise die
dritten, vierten, sechsten, fünften, achten usw. Fibonaccischen Zahlen betrachtet.
Der Leser möge auch beweisen, dass keine Fibonaccische Zahl existiert, die bei Division
durch 8 den Rest 4 lässt, sowie die Tatsache, dass es keine ungerade Fibonaccische Zahl
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gibt, die durch 17 teilbar ist.

14. Im Laufe dieses Paragraphen stießen wir oft auf Aussagen der Art "die Zahlen a
und b lassen bei Division durch m denselben Rest" oder, was im wesentlichen dasselbe
ist, "die Differenz a − b ist durch m teilbar".
Wir müssen lernen, mit diesen Begriffen sicher umzugehen und beide Aussagetypen
gleichzeitig zu verwenden. Wir werden deshalb, wie es in der Zahlentheorie üblich ist,
diese Aussagen durch Formeln ausdrücken. Dazu müssen wir uns einen "Kalkül" schaf-
fen.

Definition. Zwei Zahlen a und b heißen kongruent modulo m, wenn a und b bei Division
durch m den gleichen Rest ergeben oder wenn a − b durch m teilbar ist. Anderenfalls
heißen sie inkongruent modulo m. Die Kongruenz von a und b modulo m drückt man
durch die Schreibweise

a ≡ b (mod m)
aus. Die natürliche Zahl m heißt der Modul der Kongruenz.

Offenbar ist, wenn m einen Teiler von a bezeichnet,

a ≡ 0 (mod m)

und umgekehrt.

15. Kongruenzen modulo derselben Zahl lassen sich - ähnlich wie Gleichungen - seiten-
weise addieren.

Lemma. Ist

a1 ≡ b1 (mod m),
a2 ≡ b2 (mod m),

...

an ≡ bn (mod m)

so gilt a1 + a2 + ... + an ≡ b1 + b2 + ... + bn (mod m).

Beweis. Die Voraussetzung besagt, dass m ein Teiler jeder der Differenzen

a1 − b1, a2 − b2, ..., an − bn

und daher auch Teiler ihrer Summe

(a1 −b1)+(a2 −b2)+ ...+(an −bn) d.h. (a1 +a2 + ...+an)−(b1 +b2 + ...+bn)

ist, was zu beweisen war.

16. In Nr. 9 zeigten wir, dass für eine Primzahl p und eine Zahl k (0 < k < p)p

k

 ≡ 0 (mod p) (2.6)
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gilt. Diese Kongruenz lässt sich auch in der Form p

k + 1

 ≡ p (mod p) (2.7)

mit 0 < k < p − 1 schreiben.
Für 0 < k < p − 1 gelten also beide Kongruenzen (2.6) und (2.7). Ihre Addition ergibtp

k

 +
 p

k + 1

 ≡ (mod p) ,

p + 1
k + 1

 ≡ 0 (mod p)

d.h., in der (p + 1)-ten Zeile (p Primzahl) des Pascalschen Dreiecks sind alle Glieder
außer vier (nämlich den beiden äußersten rechten und linken) Gliedern durch p teilbar.
Es lässt sich auch leicht nachweisen, dassp + 1

0

 ≡
p + 1

1

 ≡
p + 1

p

 ≡
p + 1

p + 1

 ≡ 1 (mod p)

ist.

17. Der Kongruenz (2.6) kann man auch die Gestaltp − 1
k − 1

 +
p − 1

k

 ≡ 0 (mod p) oder
p − 1

k − 1

 ≡ −
p − 1

k

 (mod p)

geben. Dies gilt für jedes k = 1, 2, ..., p − 1. Das bedeutet:p − 1
0

 ≡ −
p − 1

1

 ≡
p − 1

2

 ≡ −
p − 1

3

 ≡ ... ≡
p − 1

p − 1

 (mod p)

Wegen
(

p−1
0

)
= 1 besagt die letzte Kongruenz, dass in der (p − 1)-ten Zeile des Pas-

calschen Dreiecks die erste, dritte, ... Zahl kongruent 1 und die zweite, vierte, ... Zahl
kongruent -1 modulo p ist.

18. Kongruenzen modulo derselben Zahl können nicht nur addiert, sondern auch mul-
tipliziert werden.

Lemma. Ist a1 ≡ b1 (mod m)
a2 ≡ b2 (mod m)

...

an ≡ bn (mod m) (2.8)

so gilt
a1a2...an ≡ b1b2...bn (mod m) (2.9)

Beweis (durch vollständige Induktion nach n). Für n = 1 ist die Aussage trivial. Wir
setzen voraus, dass sie für ein gewisses n > 1 richtig ist [d.h., dass (2.9) aus (2.8)
folgt], und fügen zu (2.8) die Kongruenz

an+1 ≡ bn+1 (mod m) (2.10)

37



2 Zahlentheoretische Eigenschaften der Fibonaccischen Zahlen

hinzu. Die Kongruenzen (2.9) und (2.10) besagen, dass die Differenzen a1a2...an −
b1b2...bn und an+1 − bn+1 durch m teilbar sind. Folglich ist

a1a2...an = b1b2...bn + mT , an+1 = bn−1 + mt

(T , t ganze Zahlen). Multiplizieren wir diese Gleichungen seitenweise, so ergibt sich

a1a2...anan+1 = b1b2...bnbn+1 + m(b1b2...bnt + bn+1T + mTt)

In der runden Klammer steht eine ganze Zahl. Somit ist

a1a2...anan+1 ≡ b1b2...bnbn+1 (mod m)

was zu beweisen war.

Aus dem bewiesenen Lemma lässt sich schließen, dass beide Seiten der Kongruenz in
eine beliebige nichtnegative Potenz erhoben werden können.

Als trivialer Spezialfall ergibt sich die folgende Tatsache: Das Produkt von Zahlen der
Form 4t + 1 hat ebenfalls die Form 4t + 1.
Sind nämlich n Zahlen a1, a2, ..., an gegeben, so ist nach Voraussetzung

a1 ≡ 1 (mod 4), a2 ≡ 1 (mod 4), ..., an ≡ 1 (mod 4)

woraus, wenn wir diese Kongruenzen seitenweise multiplizieren,

a1a2...an ≡ 1 (mod 4)

folgt.

19. Die Regel für das Kürzen von Kongruenzen lautet so ähnlich wie bei Gleichungen;
eine Gleichung kann man durch jede von Null verschiedene Zahl, eine Kongruenz durch
jede zum Modul teilerfremde Zahl dividieren.

Lemma. Ist
ac ≡ bc (mod m) (2.11)

mit (c, m) = 1, so gilt
a ≡ b (mod m) (2.12)

Beweis. Die Differenz ac − bc = (a − b)c ist durch m teilbar [aufgrund von (2.11)], und
da (c, m) = 1 ist, muss m Teiler von a − b sein, also (2.12) gelten.

20. Bei vielen Untersuchungen erweist sich die folgende Behauptung, der sogenannte
"Kleine Fermatsche Satz", als nützlich.

Satz. Ist p eine Primzahl und a eine nicht durch p teilbare Zahl, so gilt

ap−1 ≡ 1 (mod p)

Beweis. Wir betrachten die Zahlen

a, 2a, ..., (p − 1)a (2.13)
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Je zwei von ihnen sind inkongruent modulo p. Wäre nämlich

ka ≡ la (mod p)

so folgte wegen (a, p) = 1 aufgrund von Nr. 19

k ≡ l (mod p)

d.h., p wäre Teiler von k − l, was jedoch für 0 < k, l < p und k ̸= l unmöglich ist.

Außerdem ist keine der betrachteten Zahlen (2.13) durch p teilbar, d. h., alle Zahlen
(2.13) haben bei Division durch p die von Null und voneinander verschiedenen Reste
r1, r2, ..., rp−1.
Nun gibt es p−1 Zahlen (2.13) und p−1 von Null und voneinander verschiedene Reste
nach Division der Zahlen (2.13) durch p; folglich kommt nach Division der Zahlen (2.13)
durch p mit Rest jeder der Reste 1, 2, ..., p − 1 unter den Zahlen r1, r2, ..., rp−1 vor.
Also ist

a ≡ r1 (mod p)
2a ≡ r2 (mod p)

...

(p − 1)a ≡ rp−1 (mod p)

Seitenweise Multiplikation dieser Kongruenzen ergibt

1 · 2 · ... · (p − 1)ap−1 ≡ r1r2...rp−1 (mod p) (2.14)

Wie wir eben erwähnten, stimmen die Zahlen r1, r2, ..., rp−1 mit den nur in anderer
Reihenfolge angeordneten Zahlen 1, 2, ..., p − 1 überein. Folglich lässt sich (2.14) auf
die Form

1 · 2 · ... · (p − 1)ap−1 ≡ 1 · 2 · ... · (p − 1) (mod p) (2.15)

bringen. Da das Produkt 1 ·2 · ... ·(p−1) zu p teilerfremd ist, können wir die Kongruenz
(2.15) kürzen und erhalten

ap−1 ≡ 1 (mod p)

Damit ist der Satz bewiesen.

21. In Nr. 2 haben wir gesehen, dass unter den Teilern der Fibonaccischen Zahlen alle
Zahlen auftreten. Jetzt wollen wir uns davon überzeugen, dass man die Fibonaccischen
Zahlen, deren Teiler eine bestimmte Form haben, in Klassen zusammenfassen kann.
Beispielsweise gilt der folgende Satz.3

Satz. Sämtliche ungeraden Teiler einer Fibonaccischen Zahl mit ungeradem Index haben
die Form 4t + 1.

3Der Autor dankt einem Leningrader Leser, der sich für die Fibonaccischen Zahlen interessiert und
auf diesen Satz hingewiesen hat.
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Beweis. Die Formel (1.10) vgl. § 1, Nr. 9 - liefert für ungerades n

u2
n = un−1un+1 + 1

daraus folgt

un−1un−2 − u2
n = un−1(un−1 + un) − u2

n = u2
n−1 + un−1un − u2

n = −1 (2.16)

Nun sei p (p ̸= 2) ein Primteiler von un. Aus (2.16) folgt, dass u2
n−1 + 1 durch un und

somit auch durch p teilbar ist. Folglich gilt

u2
n−1 ≡ −1 (mod p)

Wir erheben beide Seiten dieser Kongruenz in die
(

p−1
2

)
-te Potenz:

(u2
n−1)(p−1)/2 = up−1

n−1 ≡ (−1)(p−1)/2 (mod p)

Ferner ist (un−1, un) = 1, so dass un−1 nicht durch p dividiert werden kann. Das stimmt
genau mit den Voraussetzungen des Kleinen Fermatschen Satzes überein und bedeutet
(vgl. Nr. 20)

up−1
n−1 ≡ 1 (mod p)

Also ist
(−1)(p−1)/2 ≡ 1 (mod p) d.h. (−1)(p−1)/2 = 1

Also muss p−1
2 eine gerade Zahl und somit p von der Form 4t + 1 sein.

Damit haben alle ungeraden Primteiler von un und folglich (vgl. den Schluss von Nr.
18) auch alle ihre Produkte, d. h. überhaupt alle (vgl. § 1, Nr. 5) ungeraden Teiler von
un die Form 4t + 1.

22. Aufgrund der Definition der Kongruenz sind alle Zahlen, die nach Division durch
m denselben Rest lassen, zueinander kongruent modulo m. Dagegen sind Zahlen, die
nach Division durch m verschiedene Reste haben, inkongruent.

Der Rest nach Division durch m kann eine der Zahlen 1, 2, ..., m − 1 sein, so dass es
höchstens m modulo m inkongruente Zahlen gibt. Nun sei m eine ungerade Zahl, und
wir betrachten die m Zahlen

−m − 1
2 , −m − 3

2 , ..., −1, 0, 1, 2, ...,
m − 3

2 ,
m − 1

2 (2.17)

Je zwei von ihnen sind inkongruent modulo m (sonst müsste ihre Differenz durch m
teilbar sein, aber deren Absolutbetrag ist kleiner als m und von Null verschieden).
Folglich ist jede Zahl zu einer der Zahlen (2.17) kongruent modulo m. Die Zahlen
(2.17) bilden das sogenannte absolut-kleinste Restsystem modulo m. Offenbar ist der
Absolutbetrag jedes der absolut-kleinsten Reste kleiner als der halbe Modul.

Für gerades m lässt sich ebenfalls ein absolut-kleinstes Restsystem angeben. Es sieht
etwas anders aus als (2.17), und zwar

−m − 2
2 , −m − 4

2 , ..., −1, 0, 1, ...
m − 2

2 ,
m

2
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Wir gehen jedoch darauf nicht weiter ein, da wir es nicht benötigen.

23. Es sei m eine ungerade und nicht durch 5 teilbare Zahl. Wir bilden dann das absolut-
kleinste Restsystem modulo m der Zahlen 5, 2 · 5, 3 · 5, ..., m−1

2 · 5. Beispielsweise lautet
dieses Restsystem für m = 21

5, 10, −6, −1, 4, 9, −7, −2, 3, 8
Wir wollen nun klären, wie die positiven und die negativen absolut-kleinsten Reste bei
verschiedenen m aufeinanderfolgen. Es wird sich zeigen, dass dies von der letzten Ziffer
der Zahl m (im Dezimalsystem) abhängt.

Lemma. Im Fall m = 10t + 1 wechseln die Vorzeichen im absolutkleinsten Restsystem
folgendermaßen: t positive, t negative, t positive, t negative, t positive Reste.
Ist m = 10t + 3, so ergeben sich t positive, t negative, t positive, t + 1 negative, t
positive Reste.
Für m = 10t + 7 weist das Restsystem t positive, t + 1 negative, t + 1 positive, t
negative, t + 1 positive Reste auf.
Im Fall m = 10t+9 ergeben sich t positive, t+1 negative, t+1 positive, t+1 negative,
t + 1 positive Reste.

Beweis. Jede dieser vier Behauptungen lässt sich einzeln durch Ausrechnen bestätigen.
Wir beschränken uns auf den Beweis der ersten Behauptung und überlassen die anderen
Beweise dem Leser.

Es sei also m = 10t + 1. Offenbar ist 5k ≤ m−1
2 für k ≤ t, so dass alle diese Zahlen

5k schon absolut-kleinste Reste modulo m sind. Ihre Anzahl ist gleich t, und der letzte
Rest ist 5t.
Wegen 5(t+1) > m−1

2 ist der darauffolgende absolut-kleinste Rest negativ (er ist gleich
+5t + 4).
Addieren wir zu diesem Rest t − 1 Mal die Fünf, so erhalten wir die ganze Serie der t
negativen Zahlen, die mit -1 endet. Dann folgt die positive Zahl 4, wonach sich noch
t−1 positive Zahlen (d.h. bis einschließlich 4+(t−1) ·5 = 5t−1) anschließen. Danach
erscheinen wieder negative Zahlen (von −5t + 3 bis -2; insgesamt t Zahlen).
Schließlich erhalten wir die t positiven Schlussglieder 3, ..., 5t − 2 des Restsystems. Da-
mit ist die erste Behauptung des Lemmas bewiesen.

An diesem Lemma interessiert uns ganz besonders die Tatsache, dass die Anzahl der
negativen Glieder im absolut-kleinsten Restsystem modulo m für m = 10t ± 1 gerade
und für m = 10t ± 3 ungerade ist.

24. Lemma. Ist p eine Primzahl der Form 5t ± 1, so ist 5)p−1)/2 − 1 durch p teilbar. Ist
p eine Primzahl der Form 5t ± 2, so ist 5(p−1)/2 + 1 durch p teilbar.

Beweis. Es ist 5 ≡ ε1r1 (mod p)
2 · 5 ≡ ε2r2 (mod p)

...

p − 1
2 · 5 ≡ ε(p−1)/2r(p−1)/2 (mod p)
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wobei εkrk die absolut-kleinsten Reste von k · 5 modulo p sind (rk > 0; εk = ±1 gibt
das Vorzeichen des Restes an).
Wir multiplizieren alle diese Kongruenzen seitenweise und erhalten

1 · 2...
p − 1

2 · 5(p−1)/2 ≡ ε1ε2...ε(p−1)/2r1r2...r(p−1)/2 (mod p) (2.18)

Bei den folgenden Überlegungen stützen wir uns auf den Beweis des Kleinen Fermat-
schen Satzes.

Keine der positiven Zahlen r1, r2, ..., r(p−1)/2 ist größer als p−1
2 .

Gäbe es unter diesen Zahlen gleiche, wäre etwa rk = rl

(
1 ≤ k, l ≤ p−1

2

)
, so wäre

5k ≡ ±5l (mod p), also wegen (5, p) = 1 auch k ≡ ±l (mod p). Das ist aber wegen

−p < k − l < k + l < p und k − l ̸= 0

unmöglich. Also müssen alle Zahlen r1, r2, ..., r(p−1)/2 voneinander verschieden sein, d.
h., sie stimmen mit den nur in anderer Reihenfolge angeordneten Zahlen 1, 2, ..., p−1

2
überein. Da alle diese Zahlen zu p teilerfremd sind, können wir (2.18) durch ihr Produkt
1 · 2...p−1

2 dividieren, und wir finden

5(p−1)/2 ≡ ε1ε2...ε(p−1)/2 (mod p)

Nun ziehen wir das Lemma aus Nr. 23 heran. Danach ist die Anzahl der im Produkt
ε1ε2...ε(p−1)/2 enthaltenen negativen Faktoren gerade für p = 10t ± 1 (da p ungerade
ist, ist dies gleichbedeutend damit, dass p die Form 5t ± 1 hat) und ungerade für
p = 10t ± 3 (d.h., p hat die Gestalt 5t ± 2). Damit ist der Beweis beendet.

25. Nun können wir den grundlegenden Satz über die Teilbarkeit der Fibonaccischen
Zahlen durch eine Primzahl beweisen.

Satz. Hat eine Primzahl p die Form 5t ± 1, so ist sie Teiler von up−1. Ist p = 5t ± 2,
so ist p Teiler von up+1.

Beweis. Zunächst sei p = 5t ± 1. Nach der Binetschen Formel (1.20) ist

up−1 = 1√
5


1 +

√
5

2

p−1

−
1 −

√
5

2

p−1
= 1√

5
1

2p−1

1 +
p − 1

1

√
5 +

p − 1
2

(
√

5)2 + ...

+
p − 1

p − 1

(
√

5)p−1 − 1 +
p − 1

1

√
5 −

p − 1
2

(
√

5)2 + ... −
p − 1

p − 1

(
√

5)p−1


oder, nach Vereinfachung,

up−1 = 1
2p−2

p − 1
1

 +
p − 1

3

 · 5 +
p − 1

5

 · 52 + ... +
p − 1

p − 2

 · 5(p−3)/2

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Aufgrund des in Nr. 17 Gesagten sind alle hier auftretenden Binomialkoeffizienten kon-
gruent 1 modulo p. Also folgt

2p−1up−1 ≡ 2[1 + 5 + ... + 5(p−3)/2] (mod p)

und hieraus
up−1 ≡ 5(p−1)/2−1 − 1

2 (mod p)

wenn wir die geometrische Reihe summieren und berücksichtigen, dass 2p−1 ≡ 1
(mod p) gilt. Nach Nr. 24 ist der Zähler des rechts stehenden Bruches und wegen
(p, 2) = 1 auch der gesamte Bruch durch p teilbar.
Also ist p auch Teiler von up−1, so dass der erste Teil des Satzes bewiesen ist.

Wir wenden uns nun dem Fall p = 5t ± 2 zu. Dann erhalten wir, wieder mit Hilfe der
Binetschen Formel (1.20),

up+1 = 1
2p

p + 1
1

 +
p + 1

3

 · 5 +
p + 1

5

 · 52 + ... +
p + 1

p

 · 5(p−1)/2
 (mod p)

Nach Nr. 16 lassen sich alle Summanden in der Klammer, außer den beiden äußeren,
durch p teilen, und

(
p+1

1

)
=
(

p+1
p

)
gibt nach Division durch p den Rest 1. Daher ist

up+1 = 1
2[1 + 5(p−1)/2] (mod p)

Wenden wir hierauf das Lemma aus Nr. 24 an, so erkennen wir, dass p Teiler von up+1
ist.

26. Nun sei die Fibonaccische Zahl un, aber keine der Fibonaccischen Zahlen < un

durch eine gewisse Primzahl p teilbar. In diesem Fall nennen wir p einen zu un gehörigen
Teiler. Zum Beispiel ist 11 ein zu u10 gehöriger Teiler, 17 ein zu u9 gehöriger Teiler
usw.

Es lässt sich zeigen, dass jede Fibonaccische Zahl außer u1, u2, u6 und u12 wenigstens
einen zugehörigen Teiler besitzt.
Der Beweis dieser Aussage erfordert überaus komplizierte Überlegungen und nimmt
den Rest dieses Paragraphen in Anspruch. Dabei werden wir nach und nach weitere
Teilbarkeitseigenschaften der Fibonaccischen Zahlen herleiten.

27. Wir beginnen mit einigen allgemeinen zahlentheoretischen Untersuchungen.
Da wir aus Nr. 8 wissen, wann ein Produkt durch eine Primzahl teilbar ist, können wir
den sogenannten Satz über die Primfaktorzerlegung beweisen.

Satz. Jede natürliche Zahl a lässt sich (bis auf die Anordnung der Faktoren) auf genau
eine Art in nicht notwendig verschiedene Primfaktoren zerlegen.

Beweis. Zunächst bemerken wir, dass so eine Zerlegung stets möglich ist. Das wurde
schon in § 1, Nr. 5, unmittelbar induktiv nachgewiesen. Zum Beweis der Eindeutigkeit
der Zerlegung betrachten wir zwei Zerlegungen der Zahl a in Primfaktoren:

p1p2...pk = a = q1q2...ql
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Wir nehmen k ≤ l an. Die rechte Seite muss durch p1 teilbar sein; also ist p1 nach dem
in Nr. 8 Gesagten Teiler von mindestens einem der rechts auftretenden Faktoren. Es
sei etwa p1 ein Teiler von q1. Dies ist aber nur für p1 = q1 möglich, da q1 eine Primzahl
ist. Wir können also kürzen und erhalten

p2...pk = a = q2...ql

Wiederholen wir diese Überlegungen k-mal (Induktion!), d.h., beseitigen wir alle Fak-
toren auf der linken Seite, so gelangen wir zu der Gleichung

1 = qk+1...ql

Das ist aber nur für qk+1 = ... = ql = 1 möglich, d.h., es existieren keine Primfaktoren
qk+1, ..., ql. Damit ist der Satz bewiesen.

28. Fassen wir bei der Primfaktorzerlegung von a alle gleichen Faktoren zu Potenzen
zusammen, so erhalten wir

a = pα1
1 pα2

2 ...pαk
k (2.19)

Diese Darstellung einer natürlichen Zahl a heißt die kanonische Zerlegung von a.
Manchmal ist es bei gewissen Überlegungen von Nutzen, noch beliebige weitere Prim-
faktoren mit dem Exponenten 0 hinzuzufügen.

29. Für die Teilbarkeit einer natürlichen Zahl a mit der kanonischen Zerlegung (2.19)
durch die natürliche Zahl

b = pβ1
1 pβ2

2 ...pβk

k (2.20)

ist offenbar notwendig und hinreichend, dass die Ungleichungen

β1 ≤ α1, β2 ≤ α2, ..., βk ≤ αk

erfüllt sind. (Insbesondere muss im Fall αi = 0 auch βi = 0 sein.)

Nun wollen wir noch einmal den größten gemeinsamen Teiler zweier oder mehrerer
Zahlen bestimmen.

Es seien a1, a2, ..., an beliebig gewählte natürliche Zahlen und p1, p2, ..., pk Primzahlen,
die wenigstens eine der Zahlen a1, a2, ..., an teilen. Die kanonischen Zerlegungen der
a1, a2, ..., an lauten

a1 = pα11
1 pα12

2 ...pα1k
k

a2 = pα21
1 pα22

2 ...pα2k
k

... (2.21)
an = pαn1

1 pαn2
2 ...pαnk

k

(sämtliche Exponenten αij sind nichtnegativ). Offenbar kann jeder gemeinsame Teiler d
der Zahlen a1, a2, ..., an in seiner kanonischen Zerlegung nur Primfaktoren p1, p2, ..., pk

enthalten:
d = pδ1

1 pδ2
2 ...pδk

k
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Dabei darf jeder Exponent δi nicht größer sein als jeder der ihm entsprechenden Expo-
nenten α1i, α2i, ...αni bei pi in den kanonischen Zerlegungen von a1, a2, ..., an:

δi ≤ α1i, δi ≤ α2i, ..., δi ≤ αni (2.22)

Ist dieser gemeinsame Teiler d zugleich der größte gemeinsame Teiler, so müssen die
Exponenten δi unter allen Zahlen, die den Ungleichungen (2.22) genügen, die größten
sein. Das bedeutet, dass jedes δi einfach die kleinste der entsprechend gewählten Zahlen
α1i, α2i, ...αni Sein muss. Dafür schreiben wir

δi = min{α1i, α2i, ...αni}

Den größten gemeinsamen Teiler der Zahlen a1, a2, ..., an bezeichnen wir, ähnlich wie
im Fall zweier Zahlen, mit (a1, a2, ..., an).

30. In gewissem Sinne dual zum Begriff des größten gemeinsamen Teilers ist der Begriff
des kleinsten gemeinsamen Vielfachen.
Offenbar muss jede Zahl, die durch die Zahlen a1, a2, ..., an mit den kanonischen Zer-
legungen (2.21) teilbar ist, in ihrer kanonischen Zerlegung alle Primfaktoren aufweisen,
die in wenigstens einer der Zerlegungen (2.21) auftreten, d.h. die Zahlen p1, p2, ..., pk.
Außerdem können in die kanonische Zerlegung des gemeinsamen Vielfachen noch ir-
gendwelche "unwesentlichen" Faktoren eingehen. Somit muss die kanonische Zerlegung
jedes gemeinsamen Vielfachen m der Zahlen a1, a2, ..., an die Gestalt

m = pµ1
1 pµ2

2 ..pµk

k Q

haben; dabei bezeichnet Q das Produkt aller "unwesentlichen" Primfaktoren. Offenbar
muss für jedes i = 1, ..., k

µi ≥ α1i, µi ≥ α2i, ..., µi ≥ αni (2.23)

gelten.
Ist m das kleinste gemeinsame Vielfache der Zahlen a1, a2, ..., an, so muss der Faktor Q
offenbar gleich 1 sein, und alle Exponenten µi müssen die kleinsten derjenigen Zahlen
sein, die den Ungleichungen (2.23) genügen. Das bedeutet, dass jedes µi die größte
der Zahlen α1i, α2i, ..., αni ist:

µi = max{α1i, α2i, ..., αni}

Das kleinste gemeinsame Vielfache der Zahlen a1, a2, ..., an bezeichnen wir mit [a1, a2, ..., an].

31. Wir beweisen nun einen Hilfssatz.

Lemma. Für beliebige Zahlen α1, α2, ..., αn gilt

max{α1, α2, ..., αn} = α1 + α2 + ... + αn

− min{α1, α2} − min{α1, α3} − ... − min{αn−1, αn}
+ min{α1, α2, α3} + min{α1, α2, α4} + ...

± min{α1, α2, ..., αn} (2.24)
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(In der zweiten Zeile stehen alle Minima zweier Zahlen, in der dritten Zeile alle Minima
dreier Zahlen, usw.)

Beweis. Ohne Einschränkung der Allgemeinheit können wir annehmen, dass die Zahlen
α1, α2, ..., αn in nichtwachsender Reihenfolge angeordnet sind:

α1 ≥ α2 ≥ ... ≥ αn

Dann ist
max{α1, α2, ..., αn} = α1

Wir berechnen nun den Wert der rechten Seite von (2.24). Dazu überlegen wir uns, wie
oft jede der Zahlen α1, α2, ..., αn in ihr vorkommt. Dabei werden wir, wenn zwei Zahlen
αi und αj gleich sind, diejenige als die kleinere auffassen, die den größeren Index hat
(offenbar hat diese Verabredung keinen Einfluss auf die Größe der zu betrachtenden
Ausdrücke).

Wir erinnern daran, dass α1 die größte der zu untersuchenden Zahlen ist. Daher tritt
α1 nur in der ersten Zeile der rechten Seite von (2.24) auf, und zwar nur ein einziges
Mal. Auf der rechten Seite von (2.24) ist also der Koeffizient von α1 gleich 1.

Wir untersuchen nun, wie oft auf der rechten Seite von (2.24) ein gewisses αi (i > 1)
vorkommt. In der ersten Zeile steht es einmal.
In der zweiten und den darauffolgenden Zeilen bis zur i-ten Zeile einschließlich tritt es
nur in den Minima auf, in denen zusammen mit αi nur Zahlen mit kleineren Indizes als
stehen. In jeder j-ten Zeile (j ≤ i) kommt αi folglich so oft vor, wie es Kombinationen
aus i − 1 Zahlen α1, α2, ..., αj−1 zur (j − 1)-ten Klasse gibt, also

(
i−1
j−1

)
Mal; vgl. § 1,

Nr. 14. Die Zahl αi tritt somit insgesamt

1 −
i − 1

1

 +
i − 1

2

 − ... ±
i − 1

j − 1


Mal auf. Aufgrund von § 1, Nr. 13, ist dieser Ausdruck gleich 0. Folglich ist die rechte
Seite von (2.24) gleich α1, d. h. gleich der linken Seite. Damit ist das Lemma bewiesen.

32. Wir benutzen nun das Bewiesene zur bequemeren Schreibweise des kleinsten ge-
meinsamen Vielfachen mehrerer Zahlen.

Satz. Es ist

[a1, a2, ..., an] = a1a2...an(a1, a2, a3)(a1a2a4)...
(a1, a2)(a1, a3)...(an−1, an)(a1, a2, a3, a4)...

(2.25)

(Hier steht im Zähler das Produkt der Ausgangszahlen a1, a2, ..., an und der größten
gemeinsamen Teiler aller möglichen Tripel, 5-tupel usw.; der Nenner ist das Produkt
aller größten gemeinsamen Teiler der Paare, Quadrupel usw. der Ausgangszahlen.)

Beweis. Es sei p ein beliebiger Primfaktor in den kanonischen Zerlegungen gewisser
Zahlen aus a1, a2, ..., an. Mit α1 bezeichnen wir den Exponenten, mit welchem p in der
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kanonischen Zerlegung von ai auftritt. Dann erscheint p auf der linken Seite von (2.25)
aufgrund von Nr. 30 mit dem Exponenten

max{α1, α2, ..., αn} (2.26)

auf der rechten Seite von (2.25) aufgrund von Nr. 29 mit dem Exponenten

max{α1, α2, ..., αn} = α1 + α2 + ... + αn

− min{α1, α2} − min{α1, α3} − ... − min{αn−1, αn}
+ min{α1, α2, α3} + min{α1, α2, α4} + ...

± min{α1, α2, ..., αn} (2.27)

Mit Hilfe von Nr. 31 erkennen wir, dass die Ausdrücke (2.26) und (2.27) einander gleich
sind. Somit gibt es in den kanonischen Zerlegungen der rechten: und der linken Seite
von (2.25) dieselben Primfaktoren und dieselben Exponenten.

33. Wir kehren nun zum Studium der Teilbarkeitseigenschaften für Fibonaccische Zah-
len zurück.

Lemma. Der Ausdruck
umn−1 − um

n−1 (2.28)
ist durch u2

n teilbar.

Beweis. Wir beweisen das Lemma durch vollständige Induktion nach m. Für m = 1 ist
(2.28) gleich 0 und somit durch u2

n teilbar. Wir setzen nun voraus, dass (2.28) für ein
beliebiges m > 1 durch u2

n teilbar ist, und betrachten den Ausdruck

u(m+1)n−1 − um+1
n−1 = (umn−1un−1 + umnun−1) − um+1

n−1

Nun ist nach Induktionsvoraussetzung

umn−1 ≡ um
n−1 (mod u2

n)

und folglich

u(m+1)n−1 − um+1
n−1 ≡ um

n−1un−1 + umnun − um+1
n−1 (mod u2

n) (2.29)

Aus Nr. 1 folgt, dass un ein Teiler von umn ist; also gilt

umnun ≡ 0 (mod u2
n)

und (2.29) geht über in

u(m+1)n−1 − um+1
n−1 ≡ 0 (mod u2

n)

Damit ist der Satz bewiesen.

34. Lemma. Der Ausdruck
umn − um

n+1 + um
n−1 (2.30)
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ist durch u3
n teilbar.

Beweis (durch Induktion nach m). Für m = 1 ist der Ausdruck (2.30) gleich 0 und
somit durch u3

n teilbar. Wir setzen nun voraus, dass (2.30) für ein beliebiges m > 1
durch u3

n teilbar ist, und betrachten den Ausdruck

u(m+1)n − um+1
n+1 + um+1

n−1 = umn−1un + umnun+1 − um+1
n+1 + um+1

n−1

Nach Induktionsvoraussetzung gilt

umn ≡ um
n+1 − um

n−1 (mod u3
n)

Folglich ist

u(m+1)n − um+1
n+1 + um+1

n−1 ≡ umn−1un + un+1(um
n+1 − um

n−1) − um+1
n+1 + um+1

n−1 (mod u3
n)

oder

u(m+1)n − um+1
n+1 + um+1

n−1 ≡ umn−1un + um
n−1(un+1 − un−1) (mod u3

n)

oder
u(m+1)n − um+1

n+1 + um+1
n−1 ≡ un(umn−1 − um

n−1) (mod u3
n)

Nach Nr. 33 ist die auf der rechten Seite in runden Klammern stehende Differenz durch
u2

n teilbar, so dass sich die ganze rechte Seite durch u3
n teilen lässt, also kongruent 0

modulo u3
n ist, was zu beweisen war.

35. Es sei p eine Primzahl. Wie wir schon in Nr. 1 bewiesen haben, ist un ein Teiler
von unp. Daher können beim Übergang von un zu unp erstens neue Primteiler auftreten
und zweitens sich die Exponenten bei den alten Primteilern von un vergrößern.
Wir beweisen nun einen Satz, aus dem folgt, dass sich nur bei p und sonst bei keinem
anderen Primteiler von un der Exponent vergrößern kann. Im Fall p ̸= 2 erhöht sich
der Exponent bei p nur um 1, im Fall p = 2 um nicht mehr als 2.

Satz. Ist q ein von p verschiedener Primteiler von un, so ist unp/un nicht durch q teilbar.
Ist p ein ungerader Primteiler von un (also p ̸= 2), so ist unp/un durch p, aber nicht
durch p2 teilbar.
Ist un durch 4 teilbar, so ist u2n/un durch 2, aber nicht durch 4 teilbar.
Ist un durch 2, aber nicht durch 4 teilbar, so ist u2n/un durch 4, aber nicht durch 8
teilbar.

Beweis. In dem Lemma aus Nr. 34 ersetzen wir m durch p. Dann ist der Ausdruck
unp − up

n+1 + up
n+1 durch u3

n teilbar. Nun ist un ein Teiler von unpp (vgl. Nr. 1), und
es gilt

up
n+1 − up

n−1 = (un+1 − un−1)(up−1
n+1 + up−2

n+1un−1 + ... + up−1
n−1)

= un(up−1
n+1 + up−2

n−1un−1 + ... + up−1
n−1)

Folglich ist die Differenz
unp

un
− (up−1

n+1 + up−2
n−1un−1 + ... + up−1

n−1) (2.31)
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durch u2
n teilbar.

Erstens folgt hieraus, dass sich die Differenz (2.31) durch un teilen lässt. Das bedeutet
unp

un
≡ up−1

n+1 + up−2
n+1un−1 + ... + up−1

n−1 (mod un) (2.32)

Nun ist offenbar
un+1 ≡ un−1 (mod un)

und damit ergibt sich aus (2.32)
unp

un
≡ up−1

n+1 + up−1
n+1 + ... + up−1

n+1 (mod un)

Da auf der rechten Seite p gleiche Summanden stehen, muss also
unp

un
≡ pup−1

n+1 (mod un)

gelten. Somit muss jeder gemeinsame Teiler der Zahlen unp/un und un auch p teilen
und umgekehrt. Das bedeutet (

unp

un
, un

)
= (p, un)

Ist jetzt q ein von p verschiedener Primteiler von un, so ist (p, un) nicht durch q teilbar.
Folglich ist auch

(
unp

un
, un

)
nicht durch q teilbar.

Da die Zahl q ein Teiler von un ist, kann sie nicht Teiler von unp/un sein. Damit ist
der erste Teil des Satzes bewiesen.

Zweitens folgt aus der Teilbarkeit der Differenz (2.31) durch u2
n die Gültigkeit der

Kongruenz
unp

un
≡ up−1

n+1 + up−2
n+1un−1 + ... + up−1

n−1 (mod p2)

Wir setzen

un+1 ≡ r1p + r′ (mod p2) , un−1 ≡ r2p + r′′ (mod p2)

mit 0 ≤ r1, r2, r′, r′′ < p. Da die Differenz un+1 − un−1 gleich un, also durch p teilbar
ist, müssen die Reste r′ und r′′ einander gleich sein; deshalb setzen wir r′ = r′′ = r.
Dabei ist r ̸= 0, da p weder un−1 noch un+1 teilt.
Damit erhalten wir

unp

un
≡ (r1p + r)p−1 + (r1p + r)p−2(r2p + r) + ... + (r1p + r)p−k(r2p + r)k−1 + ...

+ (r2p + r)p−1 (mod p2)

Auf der rechten Seite dieser Kongruenz lösen wir die Klammern auf und lassen die
durch p2 teilbaren Summanden fort. Das Glied

(r1p + r)p−k(r2p + r)k−1

49



2 Zahlentheoretische Eigenschaften der Fibonaccischen Zahlen

ergibt dabei den Ausdruckp − k

1

r1prp−k−1rk−1 + rp−k

k − 1
1

r2prk−2 + rp−krk−1

oder
(p¯k)pr1r

p−2 + (k − 1)pr2r
p−2 + rp−1

Summieren wir ihn über alle k = 1, ..., p, so finden wir

unp

un
≡ p(p − 1)

2 pr1r
p−2 + p(p − 1)

2 pr2r
p−2 + prp−1 (mod p2) (2.33)

Für p ̸= 2 ist p−1
2 eine ganze Zahl. Daher lassen sich die ersten beiden Summanden auf

der rechten Seite von (2.33) durch p2 dividieren, und wir erhalten

unp

un
≡ prp−1 (mod p2)

Schließlich können wir rp−1 −1 nach dem Kleinen Fermatschen Satz (vgl. Nr. 20) durch
p und infolgedessen prp−1 − p durch p2 teilen. Damit folgt

unp

un
≡ p (mod p2)

d. h., unp/un gibt bei Division durch p2 den Rest p, ist also durch p, aber nicht durch
p2 teilbar, womit der zweite Teil des Satzes bewiesen ist.

Nun sei p = 2. Die Kongruenz (2.33) nimmt dann die Gestalt

u2n

un
≡ 2(r1 + r2 + r) (mod 4) (2.34)

an. Ist 4 ein Teiler von un, so erkennen wir an der Folge der Reste (2.2), dass in diesem
Fall sowohl un−1 als auch un+1 bei Division durch 4 den Rest 1 lassen. Also ist in
diesem Fall r1 = r2 = 0, aber r = 1, und (2.34) geht über in

u2n

un
≡ 2 (mod 4)

damit ist der dritte Teil des Satzes bewiesen.

Nun sei 4 nicht Teiler von un. Die Folge (2.2) zeigt, dass dann r1 = 0, r2 = 1 und
r = 1 ist. Deshalb geht (2.34) über in

u2n

un
≡ 0 (mod 4)

Jetzt bleibt noch zu zeigen, dass u2n/un sich nicht durch 8 teilen lässt. Wäre es doch
der Fall, so ließe sich nämlich u2n durch 16 dividieren. Aber dann müsste nach dem in
Nr. 13 angegebenen Satz 2n durch 12, d. h. n durch 6 teilbar sein.
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Hieraus folgt seinerseits, dass u6, also 8, ein Teiler von un ist, und das ist ein Wider-
spruch zur Annahme (dass nämlich un noch nicht einmal durch 4 teilbar ist).
Damit ist der Satz vollständig bewiesen.

36. Jetzt können wir uns unmittelbar mit dem Beweis für die Existenz zugehöriger
Teiler beschäftigen.

Satz. Jede Fibonaccische Zahl mit Ausnahme von u1, u2, u6 und u12 besitzt wenigstens
einen zugehörigen Teiler.

Beweis. Wir betrachten die Fibonaccische Zahl un. Die kanonische Zerlegung des Index
n sei

n = pα1
1 pα2

2 ...pαk
k

Wir nehmen nun die Fibonaccischen Zahlen

u n
p1

, u n
p2

, ..., u n
pk

(2.35)

und bilden ihr kleinstes gemeinsames Vielfaches M . Auf Grund von Nr. 32 ist

M =
u n

p1
u n

p2
...u n

pk

(
u n

p1
, u n

p2
, u n

p3

)
...(

u n
p1

, u n
p2

)
...
(

u n
pk−1

, u n
pk

)(
u n

p1
, u n

p2
, u n

p3
, u n

p4

)
...

Da nun für beliebige r und verschiedene i1, i2, ..., ir(
u n

pi1
, u n

pi2
, ..., u n

pir

)
= u( n

pi1
, n

pi2
,..., n

pir

) = u n
pi1 pi2 ...pir

gilt, folgt
M =

u n
p1

u n
p2

...u n
pk

u n
p1p2p3

...

u n
p1p2

u n
p1p3

...u n
pk−1pk

u n
p1p2p3p4

...

Die Zahl un ist durch alle Zahlen u n
p1

, u n
p2

, ..., u n
pk

teilbar, daher auch durch deren
kleinstes gemeinsames Vielfaches M ; also muss

um = Mt

sein. Jeder Primteiler von M teilt eine der Zahlen (2.35) und ist daher kein zu un

gehöriger Teiler. Folglich muss sich t durch alle zu un gehörigen Teiler dividieren lassen.
Nach dem Satz aus Nr. 35 können von allen Primteilern von un, die nicht gleichzeitig
zu un gehörige Teiler sind, in t etwa nur die Zahlen p1, p2, ..., pk auftreten, wobei jede
dieser Zahlen in t mit einem Exponenten ≤ 1 auftritt, mit Ausnahme der Zwei, die den
Exponenten 2 haben kann.

Wenn wir die Ungleichung
t > 2

×
p1p2...pk

bewiesen haben, werden wir die Existenz von zugehörigen Teilern der Fibonaccischen
Zahl un untersuchen (das Kreuz unter der Zwei bedeutet hier und im folgenden, dass
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diese Zwei nur dann zu berücksichtigen ist, wenn unter den Zahlen p1, p2, ..., pk schon
eine Zwei auftritt).
Wie zeigen also die Gültigkeit der Ungleichung

t =
unu n

p1p2
u n

p1p3
...u n

pk−1pk
u n

p1p2p3p4
...

u n
p1

u n
p2

...u n
pk

u n
p1p2p3

...
> 2

×
p1p2...pk

Aus § 1, Nr. 21, wissen wir, dass

1√
5

αn− 1
n ≤ un ≤ 1√

5
αn+ 1

n

gilt. Werden alle Fibonaccischen Zahlen im Zähler des Bruches durch 1√
5αn− 1

n und im
Nenner des Bruches durch 1√

5αn+ 1
n ersetzt, so verkleinert sich der Wert des Bruches.

Beweisen wir also die obige Ungleichung mit dem kleineren Wert des Bruches, so
beweisen wir sogar noch etwas mehr als notwendig.

Wir ersetzen also die Fibonaccischen Zahlen, kürzen mit
(

1√
5

)2k

und erhalten

αn− 1
n α

n
p1p2

− p1p2
n α

n
pk−1pk

− pk−1pk
n α

n
p1p2p3p4

− p1p2p3p4
n ...

α
n
p1

+ p1
n α

n
p2

+ p2
n ...α

n
pk

+ pk
n α

n
p1p2p3

+ p1p2p3
n ...

> 2
×
p1p2...pk

oder
α

n
(

1− 1
p1

− 1
p2

−...− 1
pk

+ 1
p1p2

+...+ 1
pk−1pk

− 1
p1p2p3

−...
)

α
1
n (1+p1+p2+...+pk+p1p2+...+pk−1pk+p1p2p3+...) > 2

×
p1p2...pk

oder
α

n
(

1− 1
p1

)(
1− 1

p2

)
...
(

1− 1
pk

)
− 1

n (1+p1)(1+p2)...(1+pk)
> 2

×
p1p2...pk

oder, indem wir logarithmieren,

n

(
1 − 1

p1

)(
1 − 1

p2

)
...

(
1 − 1

pk

)
− 1

n
(1 + p1)(1 + p2)...(1 + pk) > logα 2

×
p1p2...pk

Erinnern wir uns an die kanonische Darstellung von n, so können wir dieser Ungleichung
die Gestalt

pα1−1
1 (p1 − 1)pα2−1

2 (p2 − 1)...pαk−1
k (pk − 1) − p1 + 1

pα1
1

p2 + 1
pα2

2
...

pk + 1
pαk

k

> logα 2
×
p1p2...pk

geben. Es ist üblich, den Ausdruck pα1−1
1 (p1 − 1)...pαk−1

k (pk − 1) mit φ(n) zu be-
zeichnen und Eulersche Funktion zu nennen. Sie besitzt viele wichtige und interessante
Eigenschaften. Mit Hilfe der Eulerschen Funktion schreiben wir die Ungleichung in der
folgenden Form:

φ(n) >
p1 + 1

pα1
1

p2 + 1
pα2

2
...

pk + 1
pαk

k

+ logα 2
×
p1p2...pk (2.36)
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Wir müssen nun nachprüfen, für welche ganzen positiven n die Ungleichung (2.36)
erfüllt ist. Wir werden diese Werte "gut" nennen zum Unterschied von den "schlechten",
für welche (2.36) nicht gilt.

Offenbar haben die Fibonaccischen Zahlen un, wenn n "gut" ist, zugehörige Teiler.
Diese Umkehrung braucht aber nicht zu gelten: Die Gültigkeit der Ungleichung (2.36)
ist nur eine hinreichende, aber durchaus keine notwendige Bedingung für die Existenz
zu un gehöriger Teiler.
Daher müssen wir zusätzlich überprüfen, welche Fibonaccischen Zahlen mit "schlech-
ten" Indizes (es gibt 10 solcher Zahlen) zugehörige Teiler besitzen. Dabei werden wir
feststellen, dass sechs dieser zehn Zahlen zugehörige Teiler haben, aber vier (nämlich
die im Satz genannten) nicht.

Man sieht "mit einem Blick", dass sich die linke Seite von (2.36) mit wachsendem n
schneller vergrößert als die rechte. Daher ist anzunehmen, dass die Ungleichung (2.36)
nur für kleine n nicht erfüllt ist. Nun ändern sich beide Seiten von (2.36) bei wachsen-
dem n überaus unregelmäßig, so dass irgendein unmittelbarer Induktionsbeweis kaum
möglich ist.
Folglich muss nach einem bestimmten Programm vorgegangen werden. Wir nehmen
ein Schema, das die natürlichen Zahlen schrittweise erfasst und bei dem man von einer
guten Zahl nur zu einer guten gelangen kann. Sind von einem bestimmten Schritt an
alle Zahlen gut, so sind dann alle weiteren Zahlen ebenfalls gut. Folglich müssen alle
schlechten Zahlen schon vor diesem Schritt erfasst worden sein.
Der Leser wird bemerken, dass diese Methode ebenfalls eine der Varianten des Induk-
tionsbeweises ist.

Vorbereitend beweisen wir die folgenden drei Behauptungen:

1. Es seien p1, p2, ..., pk, ... die nach ihrer Größe geordneten Primzahlen (d.h. p1 = 2,
p2 = 3 usw.). Dann ist, wenn die Zahl n = p1p2...pk gut und pk+1 > 3 ist, die Zahl
p1p2...pkpk+1 ebenfalls gut.
In diesem Fall ist

n = p1p2...pk , φ(n) = (p1 − 1)(p2 − 1)...(pk − 1)

und nach Voraussetzung muss

(p1−1)(p2−1)...(pk −1) >

(
1 + 1

p1

)(
1 + 1

p2

)
...

(
1 + 1

pk

)
+logα 2

×
p1p2...pk (2.37)

gelten. Um die entsprechende Ungleichung für das Produkt p1p2...pk−1pk aufzuschrei-
ben, brauchen wir nur den ersten Summanden auf der rechten Seite von (2.37) mit
1 + 1

pk+1
< 2 zu multiplizieren und zum zweiten Summanden das Glied logα pk+1 hin-

zuzufügen.
Nun ist die Zahl p1p2...pk −1 zu jeder der Primzahlen p1, p2, ..., pk teilerfremd. Folglich
ist jeder Primteiler q dieser Zahl größer als jede der Zahlen p1, p2, ..., pk und demnach
nicht kleiner als pk+1. Das bedeutet

pk+1 < p1p2...pk
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und erst recht
pk+1 < 2p1p2...pk

daher ist
logα pk+1 < logα 2p1p2...pk

Das Hinzufügen von logα pk+1 zum zweiten Summanden vergrößert diesen also um
weniger als das Doppelte. Insgesamt kann sich die rechte Seite also höchstens aufs
Doppelte vergrößern, während die linke Seite mit pk+1 − 1 > 2 multipliziert wird.
Somit folgt aus (2.37)

(p1 − 1)...(pk − 1)(pk+1 + 1) >

(
1 + 1

p1

)
...

(
1 + 1

pk

)(
1 + 1

pk+1

)
+ logα 2p1...pkpk+1

womit die Behauptung bewiesen ist.

2. Ist n = p1p2...pk, wobei p1, p2, ..., pk beliebige voneinander verschiedene Primzahlen
sind und n eine gute Zahl ist, und ist q eine beliebige, von p1, p2, ..., pk verschiedene
Primzahl mit q > p1, so ist qp2...pk ebenfalls eine gute Zahl.

In diesem Fall hat die Ungleichung (2.36) wieder die Form (2.37). Ersetzen wir hier
p1 durch q, so ist es das gleiche, als würden wir die linke Seite von (2.37) mit q−1

p1−1

multiplizieren, auf der rechten Seite den ersten Summanden mit 1+ 1
q

1+ 1
p1

multiplizieren
und zum zweiten Summanden das Glied logα

q
p1

hinzufügen.
Wegen q > p1 wird der erste Summand bei der Multiplikation verkleinert. Ferner ist
q
p1

> 1, also q−1
p1−1 > q

p1
und somit

q − 1
p1 − 1 > logα

q

p1

Die rechte Seite von (2.37) ist größer als 1 (schon dadurch, dass alle Primzahlen,
beginnend mit 2, größer als α2 sind). Die linke Seite ist, da sie größer als die rechte
ist, ebenfalls größer als 1. Wenn wir also die linke Seite (die größer als 1 ist) mit einer
Zahl > 1 multiplizieren, zur rechten Seite aber eine kleinere Zahl hinzufügen, so bleibt
die Ungleichung (2.37) auf jeden Fall gültig.

3. Ist pα1
1 pα2

2 ...pαk
k eine gute Zahl, so ist pα1+1

1 pα2
2 ...pαk

k ebenfalls gut.

Zum Beweis genügt die Bemerkung, dass sich, wenn in der Ungleichung

pα1−1
1 (p1 − 1)pα2−1

2 (p2 − 1)...pαk−1
k (pk − 1) >

p1 + 1
pα1

1

p2 + 1
pα2

2
...

pk + 1
pαk

k

+ logα 2
×
p1p2...pk

die Exponenten α1 durch die größere Zahl α1 +1 ersetzt werden, die linke Seite vergrö-
ßert, während sich die rechte verkleinert. Folglich kann bei einer solchen Umformung
eine gute Zahl nur wieder in eine gute übergehen.

Somit kristallisieren sich in unserem Schema drei Operationen heraus, mit deren Hilfe
man von einer natürlichen Zahl zu einer anderen übergehen kann; wichtig ist dabei,
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dass man, geht man von einer guten Zahl aus, nur wieder zu einer guten Zahl gelangt.

Mit Hilfe der ersten Operation wird die Folge 1, 2, 6, 30, 210, ... konstruiert; die zweite
Operation ersetzt in der Zahl, deren kanonische Zerlegung nur erste Potenzen enthält,
jeden Primteiler durch einen größeren (dieser Austausch geschieht so, dass jeweils die
nächste, in der kanonischen Zerlegung noch nicht aufgetretene Primzahl eingesetzt
wird); die dritte Operation vergrößert einen Exponenten in der kanonischen Zerlegung
um 1.
Als Ergebnis dieser Operation erhalten wir, wenn wir mit 1 beginnen, alle natürlichen
Zahlen. Einige Zahlen treten mehr als einmal auf, aber das spielt für uns keine Rolle.
Wichtig ist, dass jede Zahl wenigstens einmal vorkommt.

Wir beginnen nun, nach diesem Schema die natürlichen Zahlen durchzugehen, und
benutzen zuerst die erste Operation.
Die Zahl 1 ist schlecht, da für sie die Ungleichung (2.36) die Form

1 > 1 + logα 2
×

= 1 + logα 1 = 1

annimmt, was offensichtlich falsch ist (dem Produkt natürlicher Zahlen, das null Fak-
toren enthält, geben wir den Wert 1).

Die erste Operation, angewendet auf 1, ergibt 2. Für diese Zahl ist die Ungleichung

1 >
3
2 + logα 2

×
= 3

2 + logα 4

falsch; die Zahl 2 ist demzufolge ebenfalls schlecht.

Schlecht sind auch die folgenden Zahlen 6 und 30, denn mit ihnen folgen die Unglei-
chungen

φ(6) = 2 <
3
2 · 4

3 + logα 12 = 2 + logα 12

φ(30) = 8 <
3
2 · 4

3 · 6
5 + logα 60 ≈ 2, 4 + 8, 5

Dagegen erweist sich die Zahl 2 · 3 · 5 · 7 = 210 schon als gut, denn es ist tatsächlich

φ(210) > 48 = 3
2 · 4

3 · 6
5 · 8

7 + logα 420 ≈ 2, 7 + 12, 5

Daher sind alle weiteren Zahlen, die man mit Hilfe der ersten Operationen erhält, gut.

Wir wenden nun die zweite und die dritte Operation auf die schlechte Zahl 2 an. Das
ergibt 3 bzw. 4, ebenfalls schlechte Zahlen:

φ(3) = 2 <
4
3 + logα 3 ≈ 1, 3 + 2, 3

φ(4) = 2 <
3
2 + logα 4 ≈ 1, 5 + 2, 9
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Die Anwendung der Operationen auf die Zahl 3 ergibt 5 bzw. 9, wobei die Zahl 5, wie
sich leicht nachprüfen lässt, schlecht, die Zahl 9 aber gut ist.
Weitere Transformationen der 9 interessieren uns also nicht. Von der Zahl 5 gelangt
man durch die zweite Operation zu 7, durch die dritte zu 25; beide Zahlen sind gut.
Daher sind auch alle folgenden Zahlen gut und brauchen nicht untersucht zu werden.

Die dritte Operation, angewandt auf 4, ergibt die gute Zahl 8.
Also liefern die zweite und die dritte Operation aus der Zahl 2 die schlechten Zahlen
3, 4 und 5; alle übrigen Zahlen sind gut.

Nun betrachten wir die Zahl 6. Die zweite Operation ergibt die schlechte Zahl 10, auf
die die guten Zahlen 20 und 15 und die schlechte Zahl 14 folgen. Aus 14 kommen
nur gute Zahlen, und zwar 21 und 22 (zweite Operation) sowie 28 und 98 (dritte
Operation).
Die dritte Operation, auf 6 angewandt, liefert die schlechte Zahl 12 und die gute Zahl
18. Aus 12 folgen mit Hilfe der dritten Operation die guten Zahlen 24 und 36; die
zweite Operation ist auf 12 nicht anwendbar, da 12 durch das Quadrat der Primzahl 2
teilbar ist.
Schließlich sind alle aus 30 folgenden Zahlen (nämlich 210, 42 und 60) gute Zahlen.

Abb. 1

Diese Ergebnisse haben wir in Abb. 1 übersichtlich angeordnet. Wir haben also die
schlechten Zahlen

1, 2, 3, 4, 5, 6, 10, 12, 14, 30

erhalten, denen die Fibonaccischen Zahlen

1, 1, 2, 3, 5, 8, 55, 144, 377, u30

entsprechen. Zu u3, u4, u5, u10 bzw. u14 gehörige Teiler sind offenbar die Zahlen 2, 3,
5, 11 bzw. 29. Man könnte sich, wenn man die Fibonaccischen Zahlen bis u30 und
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ihre Primfaktorzerlegungen aufschreibt, unmittelbar von der Existenz auch eines zu u30
gehörigen Teilers überzeugen.
Jedoch ist dies nicht nötig. Der Satz aus Nr. 24 besagt nämlich, dass u30 durch 31
teilbar ist (denn 31 ist eine Primzahl der Form 5t + 1). Andererseits sind weder u6 = 8
noch u10 = 55 noch u15 = 610 durch 31 teilbar; folglich ist 31 ein zu u30 gehöriger
Teiler.

Somit bleiben nur noch die Zahlen u1 = 1, u2 = 1, u6 = 8 und u12 = 144 übrig, die
offenbar keine zugehörigen Teiler besitzen.
Damit ist der formulierte Satz bewiesen.

37. Als "Gegengewicht" zu den vier Fibonaccischen Zahlen ohne zugehörige Teiler gibt
es Fibonaccische Zahlen, die mehrere zugehörige Teiler besitzen.
Zum Beispiel sind die Zahlen 37 und 113 zu u19 gehörige Teiler, die Zahlen 53 und 109
zu u27 gehörige Teiler. Wie viele Fibonaccische Zahlen mit zwei und mehr zugehörigen
Teilern es gibt, ist völlig unklar.

Es entsteht nun natürlich die Frage, wie groß der Index n einer Fibonaccischen Zahl
ist, deren zugehöriger Teiler gleich einer vorgegebenen Primzahl p ist.
Aus Nr. 25 folgt n ≤ p−1 im Fall p = 5t±1 und n ≤ p+1 im Fall p = 5t±2. Jedoch
ist bis jetzt noch keine Formel bekannt, aus der man bei gegebenem p den Index n der
entsprechenden Fibonaccischen Zahl ablesen kann.

In Nr. 3 wurde bewiesen, dass alle Fibonaccischen Zahlen mit zusammengesetzten
Indizes, außer u4, selbst zusammengesetzt sind. Die Umkehrung gilt jedoch nicht, wie
das Beispiel u19 = 4181 = 37 · 113 zeigt.
In diesem Zusammenhang interessiert die Frage, ob es endlich oder abzählbar viele
Primzahlen in der Fibonaccischen Folge gibt, mit anderen Worten, ob es unter den
Primzahlen in der Fibonaccischen Folge eine größte gibt oder nicht. Dieses Problem ist
heute aber noch weit von seiner Lösung entfernt.
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3 Fibonaccische Zahlen und Kettenbrüche
1. Wir betrachten den Ausdruck

q0 +
1

q1 +
1

q2 +
1

q3 +
1

. . . +
1
qn

(3.1)

Die Zahlen q1, q2, q3, ..., qn sollen hier ganz und positiv sein, q0 hingegen eine nicht-
negative ganze Zahl. Zum Unterschied von den Zahlen q1, q2, ..., qn darf also q0 auch
gleich Null sein. Diese Besonderheit der Zahl q0 wollen wir immer beachten und sie
deshalb nicht jedesmal von neuem hervorheben.

Den Ausdruck (3.1) bezeichnet man als Kettenbruch und die Zahlen q0, q1, q2, ..., qn

als Teilnenner dieses Bruches, q0 auch als Anfangsglied.
Kettenbrüche werden in den verschiedensten Gebieten der Mathematik angewandt. Dem
Leser, der sich eingehender mit ihnen beschäftigen will, sei das Buch von A. J. Chinchin
"Kettenbrüche") empfohlen.4

Der Prozess der Verwandlung einer Zahl m in einen Kettenbruch heißt Entwicklung
dieser Zahl in einen Kettenbruch.
Wir wollen nun sehen, wie man bei einer solchen Entwicklung eines gewöhnlichen Bru-
ches a

b die Teilnenner findet. Zu diesem Zweck wenden wir den Euklidischen Algorithmus
auf die Zahlen a und b an:

a = bq0 + r1,

b = r1q1 + r2,

r1 = r2q2 + r3,

... (3.2)
rn−2 = rn−1qn−1 + rn,

rn−1 = rnqn

Die erste dieser Gleichungen liefert uns
a

b
= q0 + r1

b
= q0 +

1
b

r1

Aus der zweiten Gleichung des Systems (3.2) folgt aber
b1

r
= q1 + r2

r1
= q1 +

1
r1

r2
4In der deutschen Literatur: C. Knochendöppel, Von den Kettenbrüchen und den diophantischen

Gleichungen, Volk und Wissen, Berlin-Leipzig 1948, O. Perron, Irrationalzahlen, W.de Gruyter Air
& Co., 1939. und O. Perron. Kettenbrüche, B. G. Teubner, Leipzig 1929
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so dass
a

b
= q0

1

q1 +
1
r1

r2

gilt. Aus der dritten Gleichung von (3.2) erhalten wir

r1

r2
= q2 + r3

r2
= q2 +

1
r2

r3

und daher
a

b
= q0

1

q1 +
1

q2 +
1
r2

r3

Führen wir diesen Prozess bis zu Ende durch (Induktion), so erhalten wir, wie leicht zu
sehen ist, die Gleichung

a

b
= q0 +

1

q1 +
1

q2 +
1

q3 +
1

. . . +
1
qn

Aus dem Euklidischen Algorithmus selbst folgt qn > 1. (Wäre nämlich qn = 1, so wäre
rn = rn−1 und dann wäre rn−2 durch rn−1 teilbar, d.h., der ganze Algorithmus würde
schon einen Schritt eher abbrechen.)
An Stelle von qn können wir also auch den Ausdruck (qn − 1) + 1

1 betrachten, d.h. wir
können (qn − 1) als vorletzten und 1 als letzten Teilnenner ansehen. Diese Festsetzung
wird sich im folgenden als sehr nützlich erweisen.

2. Jeder rationale Bruch a
b lässt sich in einen Kettenbruch entwickeln. Wir zeigen,

dass diese Entwicklung eindeutig ist, d.h., dass bei zwei gleichen Kettenbrüchen die
entsprechenden Teilnenner gleich sein müssen.

Zum Beweis wählen wir zwei Kettenbrüche ω und ω′. Ihre Teilnenner seien q0, q1, q2, ...
bzw. q′

0, q′
1, q′

2, .... Wir zeigen, dass aus der Voraussetzung ω = ω′ die Beziehungen
q0 = q′

0, q1 = q′
1, q2 = q′

2 ... folgen.
Da q0 der ganze Teil der Zahl ω und q′

0, der ganze Teil der Zahl ω′ ist, gilt q0 = q′
0.

Ferner lassen sich die Kettenbrüche ω und ω′ in der Gestalt

q0 + 1
ω1

bzw. q′
0 + 1

ω′
1
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darstellen, wobei ω1 und ω′
1 ebenfalls Kettenbrüche sind. Aus ω = ω′ und q0 = q′

0 folgt,
dass auch ω1 = ω′

1 sein muss. Also sind auch die ganzen Teile q1 und q′
1 der Zahlen ω1

bzw. ω′
1 einander gleich.

Setzen wir diese Überlegungen fort (Induktion!), so können wir uns davon überzeugen,
dass q2 = q′

2, q3 = q′
3 ... gelten muss.

3. Es sei
ω = q0 +

1

q1 +
1

q2 +
1

. . . +
1
qn

(3.3)

irgendein Kettenbruch. Wir betrachten nun die folgenden Zahlen:

q0, q0 + 1
q1

, q0 +
1

q1 +
1
q2

, ...

Diese Zahlen, in Form gewöhnlicher unkürzbarer (reduzierter) Brüche geschrieben:
P0

Q0
= q0

1
P1

Q1
= q0 + 1

q1

P2

Q2
= q0 +

1

q1 +
1
q2

...

Pn

Qn
= ω

nennt man die Näherungsbrüche des Kettenbruches ω.
Wir bemerken, dass der Übergang von Pk

Qk
zu Pk+1

Qk+1
erfolgt, indem man den letzten

Teilnenner qk der im Näherungsbruch vorkommt, durch qk + 1
qk+1

ersetzt.

3. Eine wichtige Rolle in der Theorie der Kettenbrüche spielt der nachstehende Hilfssatz.

Lemma. Für jeden Kettenbruch (3.3) gelten die folgenden Beziehungen:

Pk+1 = Pkqk+1 + Pk−1 (3.4)
Qk+1 = Qkqk+1 + Qk−1 (3.5)

Pk+1Qk − PkQk+1 = (−1)k (3.6)

Wir beweisen alle diese Relationen gleichzeitig durch Induktion nach k.
Zunächst beweisen wir sie für k = 1:

P1

Q1
= q0 + 1

q1
= q0q1 + 1

q1

60



3 Fibonaccische Zahlen und Kettenbrüche

Da die Zahlen q0q1 + 1 und q1 teilerfremd sind, ist der Bruch q0q1+1
q1

unkürzbar. Der
Bruch P1

Q1
ist definitionsgemäß unkürzbar. Gleiche unkürzbare Brüche haben aber gleiche

Zähler und gleiche Nenner.
Also ist P1 = q0q1 + 1 und Q1 = q1.

P2

Q2
= q0 +

1

q1 +
1
q2

= q0(q1q2 + 1) + q2

q1q2 + 1 (3.7)

Der größte gemeinsame Teiler der Zahlen q0(q1q2 + 1) + q2 und q1q2 + 1 ist nach § 2,
Nr. 10, gleich (q2, q1q2 + 1), und auf Grund desselben Satzes gleich (q2, 1), also gleich
1. Der auf der rechten Seite der Gleichung (3.7) stehende Bruch ist also unkürzbar,
und daher gilt

P2 = q0(q1q2 + 1) + q2 = (q0q1 + 1)q2 + q0 = P1q2 + P0

und
Q2 = q1q2 + 1 = Q1q2 + Q0

Die Gleichung
P2Q1 − P1Q2 = (−1)1

lässt sich ohne Schwierigkeit nachweisen.
Damit ist der erste Teil des Induktionsbeweises erbracht.

Wir nehmen nun an, die Gleichungen (3.4), (3.5) und (3.6) seien richtig, und betrachten
den Näherungsbruch

Pk+1

Qk+1
= Pkqk+1 + Pk−1

Qkqk+1 + Qk+1

Der Übergang von Pk+1
Qk+1

zu Pk+2
Qk+2

erfolgt, wie früher bemerkt wurde, indem man qk+1 in
dem Ausdruck für Pk+1

Qk+1
durch qk+1 + 1

qk+2
ersetzt.

Da qk+1 in den Formeln für Pk, Qk, Pk−1, Qk−1 nicht vorkommt, erhalten wir so

Pk+2

Qk+2
=

Pk

(
qk+1 + 1

qk+2

)
+ Pk−1

Qk

(
qk+1 + 1

qk+2

)
+ Qk−1

oder unter Beachtung unserer Induktionsvoraussetzungen (3.4) und (3.5)

Pk+2

Qk+2
= Pk+1qk+2 + Pk

Qk+1qk+2 + Qk
(3.8)

Wir beweisen nun, dass der auf der rechten Seite von (3.8) stehende Bruch unkürzbar
ist. Dazu genügt es zu zeigen, dass Zähler und Nenner teilerfremd sind.
Wir nehmen an, die Zahlen Pk+1qk+2 + Pk und Qk+1qk+2 + Qk hätten irgendeinen
gemeinsamen Teiler d > 1. Dann wäre auch der Ausdruck

(Pk+1qk+2 + Pk)Qk+1 − (Qk+1qk+2 + Qk)Pk+1
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durch d teilbar. Nach unserer Induktionsannahme (3.6) ist dieser Ausdruck aber gleich
(−1)k+1, kann also nicht durch d teilbar sein.
Folglich ist die rechte Seite von (3.8) unkürzbar, und (3.8) ist eine Identität zweier
unkürzbarer Brüche. Also folgt

Pk+2 = Pk+1qk+2 + Pk und Qk+2 = Qk+1qk+2 + Qk

Es bleibt nun noch zu zeigen, dass

Pk+2Qk+1 − Pk+1Qk+2 = (−1)k+1 (3.9)

gilt. Nach dem eben Bewiesenen ist aber

Pk+2Qk+1 − Pk+1Qk+2 = Pk+1qk+2Qk+1 + PkQk+1 − Pk+1qk+2Qk+1 − Pk+1Qk

und (3.9) folgt unmittelbar aus der Induktionsannahme (3.6). Damit ist der Indukti-
onsschluss geführt und der Hilfssatz bewiesen.

Folgerung:
Pk + 1
Qk+1

− Pk

Qk
= (−1)k

QkQk+1
(3.10)

Der Beweis liegt auf der Hand.
Da die Teilnenner von Kettenbrüchen ganze positive Zahlen sind, folgt aus dem eben
bewiesenen Hilfssatz

P0 < P1 < P2 < ... , Q0 < Q1 < Q2 < ... (3.11)

Diese einfache, aber wichtige Bemerkung werden wir im weiteren noch präzisieren.

5. Wir verwenden nun den Hilfssatz aus Nr. 4 zur Beschreibung aller Kettenbrüche,
deren Teilnenner gleich 1 sind. Für solche Brüche gilt der folgende interessante Satz.

Satz: Hat ein Kettenbruch n Teilnenner, die sämtlich gleich 1 sind, so ist dieser Bruch
gleich un+1

un
.

Beweis: Wir wollen einen Kettenbruch mit n Teilnennern, deren jeder gleich 1 ist, mit
αn bezeichnen. Offensichtlich sind

α1, α2, ..., αn

aufeinanderfolgende Näherungsbrüche von αn. Es sei

αk = Pk

Qk

Wegen
α1 = 1 = 1

1 und α2 = 1 + 1
1 = 2

1
ist P1 = 1 und P2 = 2. Ferner ist Pn+1 = Pnqn+1 + Pn − 1 = Pn + Pn−1.
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Daher gilt (man vergleiche § 1, Nr. 6) Pn = un+1. Analog ergibt sich Q1 = 1, Q2 = 1
und Qn+1 = Qnqn+1 + Qn−1 = Qn + Qn+1 und daraus Qn = un. Folglich ist

αn = un+1

un
(3.12)

Der Leser vergleiche dieses Ergebnis mit den Formeln (1.10) und (3.6).

6. Gegeben seien zwei Kettenbrüche ω und ω′:

ω = q0 +
1

q1 +
1

q2 + ...

; ω′ = q′
0 +

1

q′
1 +

1
q′

2 + ...

mit
q′

0 ≥ q0 , q′
1 ≥ q1 , q′

2 ≥ q2 , ... (3.13)
Die Näherungsbrüche von ω bezeichnen wir mit

P0

Q0
,

P1

Q1
,

P2

Q2
, ...

die Näherungsbrüche von ω′ mit

P ′
0

Q′
0

,
P ′

1
Q′

1
,

P ′
2

Q′
2

, ...

Aus den Ergebnissen des Satzes von Nr. 4 ersieht man leicht, dass wegen (3.13)

P ′
0 ≥ P0, P ′

1 ≥ P1, P ′
2 ≥ P2 , ... und Q′

0 ≥ Q0, Q′
1 ≥ Q1, Q′

2 ≥ Q2 , ...

gilt.
Der kleinste Wert, den ein Teilnenner annehmen kann, ist offensichtlich 1. Sind also
alle Teilnenner irgendeines Kettenbruches gleich 1, so wachsen die Zähler und Nenner
seiner Näherungsbrüche langsamer als die Zähler und Nenner der Näherungsbrüche
jedes anderen Kettenbruches.

Wir schätzen nun ab, um wieviel langsamer dieses Anwachsen geschieht. Abgesehen
von den Kettenbrüchen, deren sämtliche Teilnenner gleich 1 sind, wachsen offensichtlich
Zähler und Nenner der Näherungsbrüche derjenigen Kettenbrüche am langsamsten an,
bei denen einer der Teilnenner den Wert 2 hat, während alle anderen gleich 1 sind.
Solche Kettenbrüche hängen nun, wie der folgende Satz lehrt, ebenfalls mit den Fibo-
naccischen Zahlen zusammen.

Lemma: Der Kettenbruch ω habe die Teilnenner q0, q1, q2, ..., qn und es gelte

q0 = q1 = q2 = ... = qi−1 = qi+1 = ... = qn = 1 , qi = 2 (i ̸= 0)

Dann ist
ω = ui+1un−i+3 + uiun−i+1

uiun−i+3 + ui−1un−i+1
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Der Beweis dieses Satzes wird durch Induktion nach i geführt.
Ist i = 1, so gilt für jedes n:

ω = 1 +
1

2 +
1

1 +
1

. . . + 1
1︸ ︷︷ ︸

n−1 Teilnenner

oder wegen anfangs Bewiesenen,

ω = 1 +
1

2 +
1

αn−1

= 1 +
1

2 +
un−1

un

= 1 +
1

2un + un−1

un

= 1 + un

un+2
= un+2 + un

un+2

und schließlich, wenn wir noch, wie vorausgesetzt, u0 = 0 setzen,

ω = u2un+2 + u1un

u1un+2 + u0un

Der erste Teil des Induktionsbeweises ist damit erbracht. Wir nehmen nun an, es gelte
für jedes n:

1 +
1

1 +
1

. . . + 1 +
1

2 +
1

αn−i︸ ︷︷ ︸
i Teilnenner

= ui+1un−i+3 + uiun−i+1

uiun−i+3 + ui−1un−i+1
(3.14)

Wir betrachten den Kettenbruch 1 +
1

1 +
1

. . . + 1 +
1

2 +
1

αn−i−1︸ ︷︷ ︸
i+1 Teilnenner

.

Dieser Kettenbruch kann offensichtlich auch so aufgefasst werden

1 +
1

1 +
1

. . . + 1 +
1

2 +
1

αn−i−1︸ ︷︷ ︸
i Teilnenner

(3.15)

Der Kettenbruch, der in (3.15) in der Klammer steht, ist nach Formel (3.14) gleich
ui+1un−i+2 + uiun−i

uiun−i+2 + ui−1un−i
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Der gesamte Bruch (3.15) ist also gleich

1 + 1
ui+1un−i+2+uiun−i

uiun−i+2+ui−1un−i

= (ui + ui+1)un−i+2 + (ui−1 + ui)un−i

uiun−i+2 + ui−1un−i

= ui+2un−i+2 + ui+1un−i

uiun−i+2 + ui−1un−i

Damit ist der Induktionsschluss geführt und der ganze Satz bewiesen.

Folgerung: Es seien nicht alle Teilnenner eines Kettenbruches ω gleich 1; ferner sei
q0 ̸= 0 und die Anzahl der von 1 verschiedenen Teilnenner sei mindestens n. Schreibt
man ω in der Form eines gewöhnlichen Bruches P

Q , so erhält man

P ≥ ui+1un−i+3 + uiun−i+1 > ui+1un−i+2 + uiun−i+2 = un+2

und analog Q > un+1.

Eine wesentliche Rolle spielt dabei natürlich der Hilfssatz aus Nr. 4, auf Grund dessen
wir beim Prozess des "Abbaus" eines Kettenbruches in einen gewöhnlichen Bruch nur
unkürzbare Brüche erhalten. Daher lassen sich Zähler und Nenner des erhaltenen Bru-
ches nicht durch Kürzen verkleinern.

6. Aus den Betrachtungen von Nr. 6 können wir den nachstehenden Satz folgern, der
auf die besondere Stellung der Fibonaccischen Zahlen in Bezug auf den Euklidischen
Algorithmus hinweist.

Satz: Die Anzahl der Schritte bei der Anwendung des Euklidischen Algorithmus auf die
Zahlen a und b ist für beliebiges a gleich n − 1, wenn b = un, und für jedes a kleiner
als n − 1, wenn b < un ist.

Beweis: Der erste Teil des Satzes lässt sich recht leicht beweisen. Es genügt für a die
auf b folgende Fibonaccische Zahl, also un+1 einzusetzen. Dann gilt

un+1

un
= αn

Der Kettenbruch αn hat n Teilnenner, d.h., der Euklidische Algorithmus für die Zahlen
a und b bricht nach n − 1 Schritten ab.

Wir, beweisen nun den zweiten Teil des Satzes indirekt, d.h., wir nehmen an, die Anzahl
der Schritte des Algorithmus wäre nicht kleiner als n − 1.
Wir entwickeln den Quotienten a

b in einen Kettenbruch ω. Offensichtlich hätte ω nicht
weniger als n Teilnenner (nämlich einen mehr, als der Euklidische Algorithmus Schritte
hat). Da b keine Fibonaccische Zahl ist, sind nicht alle Teilnenner von ω gleich 1, und
nach der Folgerung aus dem Satz in Punkt 5 wäre b > un. Das steht aber im Wider-
spruch zur Voraussetzung unseres Satzes

Der eben bewiesene Satz besagt, dass der auf benachbarte Fibonaccische Zahlen an-
gewandte Euklidische Algorithmus in gewissem Sinne "am längsten"ist.
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8. Einen Ausdruck der Form

q0 +
1

q1 +
1

q2 +
1

. . . +
1

qn +
1
. . .

(3.16)

bezeichnet man als unendlichen Kettenbruch. Die Definitionen und Ergebnisse der vor-
hergehenden Punkte lassen sich in natürlicher Weise auch auf solche unendliche Ket-
tenbrüche ausdehnen. Sei

P0

Q0
,

P1

Q1
, ... ,

Pn

Qn
, ... (3.17)

die - offensichtlich unendliche - Folge der Näherungsbrüche des Bruches (3.16). Wir
wollen zeigen, dass diese Folge einen Grenzwert besitzt.
Dazu betrachten wir die Teilfolgen

P0

Q0
,

P2

Q2
, ... ,

P2n

Q2n
, ... (3.18)

und
P1

Q1
,

P3

Q2
, ... ,

P2n+1

Q2n+1
, ... (3.19)

Wegen (3.10) und (3.11) gilt

P2n+2

Q2n+2
− P2n

Q2n
= P2n+2

Q2n+2
− P2n+1

Q2n+1
+ P2n+1

Q2n+1
− P2n

Q2n
= −1

Q2n+2Q2n+1
+ 1

Q2n+1Q2n
> 0

Die Folge (3.18) ist also wachsend. Analog folgt aus

P2n+3

Q2n+3
− P2n+1

Q2n+1

−1
Q2n+3Q2n+2

+ 1
Q2n+2Q2n+1

< 0

dass (3.19) eine abnehmende Folge ist.
Die Glieder der Folge (3.18) sind sämtlich größer als die Glieder der Folge (3.19).
Betrachten wir nämlich die Zahlen

P2n

Q2n
und P2m+1

Q2m+1

und geben wir eine ungerade Zahl k vor, die sowohl größer als 2n als auch größer als
2m + 1 ist, so ergibt sich aus (3.10), dass

Pk

Qk
>

Pk+1

Qk+1
(3.20)
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gilt; aus der Tatsache, dass (3.18) eine wachsende und (3.19) eine fallende Folge ist,
folgt

Pn+1

Qn+1
>

P2n

Q2n
und Pk

Qk
<

P2m+1

Q2m+1
(3.21,3.22)

Vergleichen wir (3.20), (3.21) und (3.22), so erhalten wir gerade

P2n

Q2n
<

P2m+1

Q2m+1

Wegen (3.10) und (3.11) gilt∣∣∣∣∣Pn+1

Qn+1
− Pn

Qn

∣∣∣∣∣ = 1
Qn+1Qn

<
1
n2

für wachsendes n strebt demnach der Absolutbetrag der Differenz des (n + 1)-ten und
n-ten Näherungsbruches gegen Null.
Aus all dem Gesagten kann man schließen, dass die Folgen (3.18) und (3.19) ein und
denselben Grenzwert besitzen, der offensichtlich auch Grenzwert von (3.17) ist. Diesen
Grenzwert bezeichnet man als den Wert des unendlichen Kettenbruches (3.16).

In Nr. 2 haben wir die Eindeutigkeit der Entwicklung einer rationalen Zahl in einen Ket-
tenbruch bewiesen. Da bei den dort angestellten Überlegungen nicht die Endlichkeit der
betrachteten Kettenbrüche verwendet wurde, haben wir gleichzeitig nachgewiesen, dass
jede reelle (und nicht nur rationale) Zahl als Wert nur eines einzigen Kettenbruches
erscheinen kann.

Da sich eine rationale Zahl immer in einen endlichen Kettenbruch entwickeln lässt, so
folgt aus dem soeben Bewiesenen, dass die Entwicklung einer rationalen Zahl in einen
unendlichen Kettenbruch nicht möglich ist. Daher ist der Wert eines unendlichen Ket-
tenbruches stets eine irrationale Zahl.

Die Theorie der Entwicklung irrationaler Zahlen in Kettenbrüche ist ein inhaltlich tief-
gehendes Gebiet der Zahlentheorie, das interessante Resultate birgt. Wir können hier
nicht näher auf diese Theorie eingehen, sondern wollen uns nur mit einem Beispiel be-
gnügen, das mit den Fibonaccischen Zahlen zusammenhängt.

9. Gesucht ist der Wert des unendlichen Kettenbruches

1 +
1

1 +
1

1 +
1
. . .

(3.23)

Wir haben oben bewiesen, dass dieser Wert gleich lim
n→∞ αn ist, und wollen diesen Grenz-

wert nun berechnen.
Wie schon in § 1, Nr. 20, festgestellt wurde, ist un gleich der zu αn√

5 nächstgelegenen
ganzen Zahl. Also gilt

un = αn√
5

+ θn
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wobei |θn| < 1
2 für jedes n gilt. Daher gilt nach Nr. 5

lim
n→∞ αn = lim

n→∞
un+1

un
= lim

n→∞

αn+1
√

5 + θn+1
αn√

5 + θn
= lim

n→∞
α + θn+1

√
5

αn

1 + θn

√
5

αn

=
lim

n→∞

(
α + θn+1

√
5

αn

)
lim

n→∞

(
1 + θn

√
5

αn

)

Nun ist aber θn+1
√

5 beschränkt (der Absolutbetrag ist kleiner als 2), während αn für
n → ∞ unbegrenzt wächst (wegen α > 1). Also ist

lim
n→∞

θn+1
√

5
αn

= 0

Aus den gleichen Gründen ist auch

lim
n→∞

θn

√
5

αn
= 0

und wir erhalten
lim

n→∞ αn = α

Der Wert des Kettenbruches (3.23) kann auch ohne Binetsche Formel und ohne Grenz-
übergänge berechnet werden. (Für uns ist es in bekanntem Sinne "hinreichend", dass
wir in Nr. 2 eine induktive Überlegung durchführten, die nicht nur endliche Kettenbrü-
che benutzt, sondern auch ihre Grenzwerte, nämlich unendliche Kettenbrüche.)

Dazu schreiben wir den Kettenbruch (3.23) in der Form

1 + 1
x

Offenbar ist hier x selbst wieder ein Kettenbruch (3.23), so dass

x = 1 + 1
x

gilt, woraus

x2 − x − 1 = 0 also x = 1 ±
√

5
2 (3.24)

folgt. Da der Wert von (3.23) eine nichtnegative Zahl ist, muss er gleich der positiven
Wurzel der Gleichung (3.24) sein, also gleich 1+

√
5

2 , und das ist genau der Wert von α.

Der bewiesene Satz besagt, dass die Quotienten benachbarter Fibonaccischer Zahlen
bei wachsenden Indizes gegen α streben. Das kann zur angenäherten Berechnung der
Zahl α benutzt werden (vgl. die Berechnung von un in § 1, Nr. 20 und ebenfalls Formel
1.35).
Der dabei auftretende Fehler ist gering, selbst wenn man kleine Fibonaccische Zahlen
verwendet. Zum Beispiel ist

u10

u9
= 55

34 = 1, 6176
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auf 4 Stellen genau, während der genaue Wert von α gleich 1,6180 ist. Wie man sieht,
ist also der Fehler kleiner als 0,1%.

Übrigens ist der Fehler bei der angenäherten Berechnung irrationaler Zahlen mit Hilfe
der Näherungsbrüche ihrer Kettenbruchentwicklungen gerade bei der Zahl α am größ-
ten.
Jede andere Zahl wird durch ihre Näherungsbrüche in gewissem Sinne "genauer" ap-
proximiert als α. Wir können aber auf diesen Sachverhalt nicht näher eingehen, obwohl
er äußerst interessant ist.
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4 Die Fibonaccischen Zahlen und die Geometrie
1. Wir wollen eine gegebene Strecke AB der Länge 1 (Abb. 2) so in zwei Abschnitte
teilen, dass der größere Abschnitt die mittlere Proportionale zwischen dem kleineren
Abschnitt und der ganzen Strecke ist.

Die gesuchte Länge des größeren Streckenabschnittes bezeichnen wir mit x. Offensicht-
lich wird dann die Länge des kleineren Abschnittes gleich 1 − x, und aus der in der
Aufgabe angegebenen Bedingung erhalten wir die Proportion

1
x

= x

1 − x
(4.1)

und daraus
x2 = 1 − x (4.2)

Die Gleichung (4.2) hat die positive Wurzel −1+
√

5
2 , so dass die Proportion (4.1) die

Gestalt
1
x

= 2
−1 +

√
5

= 2(1 +
√

5)
(−1 +

√
5)(1 +

√
5)

= 1 +
√

5
2 = α

annimmt. Eine solche Teilung (durch den Punkt C1) bezeichnet man als "stetige Tei-
lung" oder als "Goldenen Schnitt".

Verwendet man die negative Wurzel der Gleichung (4.2), so ergibt sich der Punkt C2,
der, wie aus Abb. 2 ersichtlich ist, nicht auf der Strecke AB liegt. (In der Geometrie
spricht man hier von äußerer Teilung.) Man zeigt leicht, dass wir es auch hierbei mit
dem Goldenen Schnitt zu tun haben:

C2B

AB
= AB

C2A
= α

2. Der Punkt, der eine Strecke im Goldenen Schnitt teilt, lässt sich mühelos konstru-
ieren.
Es sei |AB| = 1. In A errichten wir die Senkrechte und wählen darauf im Abstand 1

2
von A einen Punkt, den wir mit E bezeichnen; es ist also |AE| = 1

2 (Abb. 3).

Dann ist

|EB| =

√√√√1 +
(1

2

)2
=

√
5

2
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Ziehen wir um E als Mittelpunkt einen Kreis durch A, so schneidet dieser die Strecke
EB in einem Punkt D. Damit ist

|BD| =
√

5 − 1
2

Schließlich ziehen wir durch D den Kreis mit dem Zentrum in B und finden dadurch
auf AB den gesuchten Punkt C1. Den Punkt C2 für die äußere Teilung kann man aus
der Bedingung |AC2| = |BC1| bestimmen.

2. Dem Goldenen Schnitt begegnet man in der Geometrie ziemlich häufig.
Bei dem einem Halbkreis einbeschriebenen Quadrat (vgl. Abb. 4) beispielsweise teilt
der Punkt C die Strecke AB im Goldenen Schnitt.

Einem Kreis vom Radius R sei ein regelmäßiges Zehneck einbeschrieben (Abb. 5). Die
Seite am a10 hat bekanntlich die Länge

2R sin 360◦

2 · 10

d.h. 2R sin 18◦. Berechnen wir einmal ein 18◦. Auf Grund bekannter trigonometrischer
Formeln erhalten wir:

sin 36◦ = 2 sin 18◦ cos 18◦ , cos 36◦ = 1 − 2 sin2 18◦

so dass
sin 72◦ = 4 sin 18◦ · cos 18◦(1 − 2 sin2 18◦) (4.3)

gilt. Wegen sin 72◦ = cos 18◦ ̸= 0 folgt aus (4.3)

1 = 4 sin 18◦(1 − 2 sin2 18◦)

daher ist sin 18◦ eine der Wurzeln der Gleichung

1 = 4x(1 − 2x2) bzw. 8x3 − 4x2 + 1 = 0

Zerlegen wir deren linke Seite in Faktoren, so erhalten wir

(2x − 1)(4x2 + 2x − 1) = 0
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und daraus
x1 = 1

2; x2 = −1 +
√

5
4 ; x3 = 1 +

√
5

4
Da sin 18◦ positiv und von 1

2 verschieden ist, muss sin 18◦ =
√

5−1
4 sein.

Bei dieser Gelegenheit geben wir eine Beziehung an, die wir in Nr. 4 benötigen:

cos 36◦ = 1 − 2 sin2 18◦ = 1 − 2 1
4α2 = 1 − 2

α2 = 2α2 − 1
2α2 = 2 + 2α − 1

2α2

= 2α + 1
2α2 = α2

2α2 = α

2
Daher ist

a10 = 2R

√
5 − 1
4 = R

√
5 − 1
2 = R

α
Mit anderen Worten, a10 ist gleich dem größeren Teil des nach dem Goldenen Schnitt
geteilten Radius.

Zur praktischen Berechnung von a10 kann man α durch das Verhältnis benachbarter
Fibonaccischer Zahlen ausdrücken (§ 1, Nr. 20, oder § 3, Nr. 9) und angenähert a10
gleich 8

13R oder sogar schon gleich 5
8R setzen.

4. Wir wollen nun ein regelmäßiges Fünfeck betrachten. Seine Diagonalen beschreiben
ein regelmäßiges sternförmiges Fünfeck (Abb. 6).

Der Winkel AFD ist gleich 108◦, der Winkel ADF gleich
36◦. Nach dem Sinussatz folgt:

|AD|
|AF |

= sin 108◦

sin 36◦ = sin 72◦

sin 36◦ = 2 cos 36◦ = 21 +
√

5
4 = α

Da offensichtlich |AF | = |AC| ist, gilt

|AD|
|AF |

= |AD|
|AC|

= α

d.h., der Punkt C teilt die Strecke AD nach dem Goldenen
Schnitt.

Nach Definition des Goldenen Schnittes ist dann auch
|AC|
|CD|

= α

Berücksichtigen wir |AB| = |CD|, so erhalten wir:
|AC|
|AB|

= |AB|
|BC|

= α

Aus diesem Grunde ist unter den Strecken |BC|, |AB|, |AC|, |AD| jede Strecke α-mal
so groß wie die vorhergehende. Der Leser möge beweisen, dass auch

|AD|
|AE|

= α
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gilt.

5. In ein Rechteck mit den Seiten a und b zeichnen wir möglichst große Quadrate ein
(Abb. 7).

Die Betrachtungen in § 2, Nr. 5, zeigen, dass dieser Prozess, falls a und b ganz sind, dem
Euklidischen Algorithmus für a und b entspricht. Die Anzahl der Quadrate von gleicher
Größe ist daher gleich den entsprechenden Teilnennern der Kettenbruchentwicklung von
a
b (§ 3, Nr. 1).

Zerlegen wir ein Rechteck, dessen Seiten sich wie benachbarte Fibonaccische Zahlen
verhalten, auf die beschriebene Weise in Quadrate (Abb. 8), so sind nach § 3, Nr. 3
alle Quadrate - außer den beiden kleinsten - von verschiedener Größe.

Da die Seiten all dieser Quadrate gleich u1, u2, ..., un sind, ist ihr gesamter Flächeninhalt
offenbar gleich

u2
1 + u2

2 + ... + u2
n

Das stimmt aber mit dem Flächeninhalt unun+1 des von uns zerlegten Rechtecks über-
ein. Damit ist für jedes n

u2
1 + u2

2 + ... + u2
n = unun+1

und wir haben einen neuen, diesmal geometrischen Beweis der Behauptung aus § 1,
Nr. 4, erhalten.

Abb. 8,9

Das Verhältnis der beiden Rechteckseiten sei α. (Solche Rechtecke wollen wir der Kürze
halber "harmonische Rechtecke" nennen.) Wir beweisen nun:
Zeichnet man in ein harmonisches Rechteck ein möglichst großes Quadrat ein (Abb.
9), so erhält man als Rest wieder ein harmonisches Rechteck.
Nach Voraussetzung gilt

|AB|
|AD|

= α
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ferner ist |AD| = |AE| = |EF |, da AEFD ein Quadrat ist. Also ist

|EF |
|EB|

= |AB| − |EB|
|EB|

= α2 − 1

Wegen α2 − 1 = α folgt schließlich

|EF |
|EB|

= α

Abb.10 veranschaulicht, wie ein harmonisches Rechteck "fast ganz" durch die Quadrate
I, II, III, . . . ausgeschöpft werden kann. Dabei ist die Figur, die nach Einzeichnung
eines weiteren Quadrates verbleibt, jedesmal ein harmonisches Rechteck.

Der Leser vergleiche diese Überlegungen mit denen in
§ 3, Nr. 5 und 9.

Wir bemerken noch folgendes: Zeichnet man in ein
Quadrat ein harmonisches Rechteck I und die Qua-
drate II und III ein (s. Abb.11), so erweist sich das
verbleibende Rechteck ebenfalls als ein harmonisches
Rechteck. Die Durchführung des Beweises sei dem
Leser überlassen.

7. Auch in der Natur spielen bei der Anordnung gleichartiger Gegenstände die Fibo-
naccischen Zahlen eine Rolle.
In verschiedenen spiralförmigen Anordnungen lassen sich zwei Scharen von Spiralen
unterscheiden. Bei der einen winden sich die Spiralen im Uhrzeigersinn, bei der anderen
in entgegengesetzter Richtung. Die Anzahl der Spiralen beider Scharen erweisen sich
oft als benachbarte Fibonaccische Zahlen.

Betrachten wir einen jungen Kiefernzweig, so lässt sich leicht feststellen, dass seine
Nadeln in zwei Spiralen angeordnet sind, die von rechts unten nach links oben gehen.
Gleichzeitig bilden sie drei Spiralen, die von links unten nach rechts oben verlaufen.
Bei vielen Zapfen sind die Schuppen in drei Spiralen angeordnet, die sich um die Achse
des Zapfens winden. Außerdem sind die Spiralen in fünf Spiralen angeordnet, die sich
in der entgegengesetzten Richtung um die Achse winden.
Bei großen Zapfen lassen sich 5 und 8 und sogar 8 und 13 Spiralen beobachten. Auch
kann man solche Spiralen bei der Ananas finden; gewöhnlich sind es dort 8 und 13.

Bei vielen Korbblütlern (z. B. der Margerite oder der Kamille) bemerkt man eine spi-
ralförmige Anordnung der einzelnen Blüten in Blütenstände. Die Anzahl der Spiralen
ist hier 13 in der einen und 21 in der anderen Richtung oder sogar 21 bzw. 34.
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Besonders viele Spiralen treten bei der Anordnung der Samen großer Sonnenblumen
auf. Ihre Anzahl kann 55 in der einen und 89 in der anderen Richtung sein.

8. Harmonische Rechtecke sehen "wohlproportioniert" aus und wirken gefällig. Gegen-
stände dieser Gestalt erweisen sich auch als bequem im Gebrauch. Daher gibt man
vielen unserer "rechteckigen" Gebrauchsgegenstände - wie Büchern, Streichholzschach-
teln, Koffern usw. - diese Form.

Verschiedene idealistische Philosophen des Altertums und des Mittelalters leiteten aus
der augenfälligen Schönheit der harmonischen Rechtecke und anderer Figuren, in denen
der Goldene Schnitt Verwendung findet, ästhetische und sogar philosophische Prinzipien
ab.
Mit Hilfe des Goldenen Schnittes und einiger anderer Zahlenverhältnisse versuchten sie,
die Erscheinungen in der Natur und im gesellschaftlichen Leben zu erklären.

Unter Benutzung der Zahl α selbst und ihrer Näherungsbrüche erfanden sie mystische
"Operationen" verschiedener Art.
Solche "Theorien" haben mit Wissenschaft natürlich nicht das geringste zu tun.

9. Wir beschließen unsere Betrachtungen mit einem kleinen geometrischen Scherz. Wir
"beweisen" nämlich anschaulich, dass 64 = 65 ist.
Dazu nehmen wir ein Quadrat mit der Seitenlänge 8 und zerlegen es so in vier Teile,
wie Abb. 12 zeigt.

Abb. 12,13

Diese vier Teile setzen wir zu einem Rechteck mit den Seitenlängen 13 und 5 zusammen
(Abb. 11).
Das Rechteck hat also den Flächeninhalt 65.

Für diese auf den ersten Blick rätselhafte Erscheinung findet man leicht eine Erklä-
rung. Die Punkte A, B, C, D in Abb. 13 liegen nämlich in Wirklichkeit gar nicht auf
einer Geraden, sondern bilden vielmehr die Eckpunkte eines Parallelogramms, dessen
Flächeninhalt gerade gleich der einen "überzähligen" Einheit ist.
Dieser verblüffende, aber falsche "Beweis" einer wissenschaftlich falschen Aussage (sol-
che "Beweise" nennt man Sophismen) kann noch anschaulicher und überzeugender
durchgeführt werden, wenn man an Stelle des Quadrates mit der Seitenlänge 8 ein
Quadrat nimmt, dessen Seitenlänge gleich irgendeiner Fibonaccischen Zahl mit hinrei-
chend großem geradem Index, u2n, ist.

Wir zerlegen dieses Quadrat wieder (Abb. 14) und formen aus seinen Teilen ein Recht-
eck (Abb.15).
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Abb. 14,15

Die nicht ausgefüllte Fläche in Form eines Parallelogramms, das sich längs der Diagonale
unseres Rechtecks hinzieht, hat nach den Ausführungen von § 1, Nr. 9, einen Inhalt,
der gleich 1 ist. Die größte Breite, d.h. die Höhe dieses Parallelogramms, ist, wie man
leicht bestätigt, gleich

1√
u2

2n + u2
2n−2

Nehmen wir also ein Quadrat mit der Seitenlänge 21 cm und "verwandeln" es in ein
Rechteck mit den Seiten 34 cm und 13 cm, so ist die Hohe des auftretenden Paralle-
logramms

1√
212 + 82 cm

d.h. ungefähr 0,4 mm, also für das Auge kaum wahrnehmbar.
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5 Die Fibonaccischen Zahlen und die Suchtheorie
1.5 Bekanntlich hat ein Kraftfahrzeug bei verschieden hohen Geschwindigkeiten un-
terschiedlichen Benzinverbrauch. Dabei ist es von Interesse, welche Geschwindigkeit in
Bezug auf den Benzinverbrauch "optimal" ist, d.h., bei welcher Geschwindigkeit am
wenigsten Kraftstoff verbraucht wird.
Wir können annehmen, dass die Kurve, die den Benzinverbrauch pro Kilometer in Ab-
hängigkeit von der Geschwindigkeit des Fahrzeugs angibt, die in Abb. 16 gezeigte Form
hat; zunächst sinkt der Verbrauch auf ein gewisses Minimum ab, um dann mit weiterer
Erhöhung der Geschwindigkeit ständig (in der Mathematik sagt man "monoton") zu
steigen.

Obwohl diese Kurve, die zunächst abfällt und dann ansteigt, für alle Kraftfahrzeu-
ge praktisch gleich verläuft, kann ihre genaue Form sogar für Kraftfahrzeuge gleichen
Typs etwas variieren, da diese Kurve von den spezifischen Eigenarten des Motors, vom
Grad der Abnutzung seiner Teile usw. abhängt.
Insbesondere kann sich auch das Minimum in Abb. 16 in ziemlich breiten Grenzen
bewegen.

Wir nehmen jetzt einmal an, wir verreisen mit dem Auto in eine Gegend, in der es keine
Tankstellen gibt. Damit es uns möglich ist, die größte Entfernung zurückzulegen, ohne
zu tanken, müssen wir hinreichend genau die Geschwindigkeit bestimmen, die einem
minimalen Kraftstoffverbrauch entspricht.
Diese Geschwindigkeit wird oft die ökonomischste Geschwindigkeit genannt.

Die ökonomischste Geschwindigkeit eines Kraftfahrzeuges lässt sich selbstverständlich
durch einen Versuch bestimmen, indem man mit verschiedenen Geschwindigkeiten be-
stimmte Wegstrecken zurücklegt, deren Charakter und Beschaffenheit für die beabsich-
tigte Reiseroute typisch sind, und jedes Mal den Benzinverbrauch misst.
Da diese Beschäftigung nicht gerade befriedigend ist, denkt man natürlich über Fol-
gendes nach:
Wie viele Versuche genügen, um die ökonomischste Geschwindigkeit mit vorgegebener
Genauigkeit zu bestimmen?
Bei welchen Geschwindigkeiten ist der Benzinverbrauch zu bestimmen?

5Die Suchtheorie wurde im 2. Weltkrieg für militärische Zwecke entwickelt und wird auch heute
überwiegend im Militärwesen benutzt. Es ist jedoch an der Zeit, sie für friedliche Zwecke, z. B.
zum Auffinden von Fischschwärmen im Meer, zu erschließen. (Anm. d. Red.)
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Diesen Fragen analog sind die beiden folgenden: Wie organisiert man eine bestimmte
Anzahl von Versuchen, um mit vorgegebener Genauigkeit die ökonomischste Geschwin-
digkeit zu finden? Welches ist die größte Genauigkeit?
Dabei wollen wir unter der Bestimmung der ökonomischsten Geschwindigkeit mit vor-
gegebener Genauigkeit ε jene Geschwindigkeit verstehen, bei der der wahre Wert der
ökonomischsten Geschwindigkeit zwischen v − ε und v + ε liest (d.h. bei der der Fehler
nicht größer als ε ist).

Wir können als bekannt voraussetzen, dass die ökonomischste Geschwindigkeit unseres
Autos zwischen Grenzen v′ und v′′ liegt. Für v′ bzw. v′′ ist die Geschwindigkeit zu
nehmen, die nicht größer bzw. nicht kleiner als die ökonomischste Geschwindigkeit ist.
(Zum Beispiel kann v′ die niedrigste Geschwindigkeit sein, bei der der Motor gerade
noch arbeitet, und v′′ die Höchstgeschwindigkeit des betreffenden Autos.)

2. Ausgehend von dem eben beschriebenen konkreten Beispiel wollen wir das folgende
mathematische Problem betrachten.
Von einer Funktion f(x) sei uns nur bekannt, dass sie von einem gegebenen x′ bis
zu einem gewissen unbekannten Wert x abnimmt und zwischen diesem x und einem
gegebenen x′′ wieder wächst (Abb. 17). Insbesondere wollen wir zulassen, dass der
unbekannte Wert x in Wirklichkeit mit einem der Endpunkte des betrachteten Intervalls,
nämlich mit x′ oder x′′ übereinstimmt.

Abb. 17,18

Offenbar ist dann die Funktion ständig wachsend (Abb. 18) bzw. ständig fallend (Abb.
19). Selbstverständlich ist vorher unbekannt, ob einer dieser Fälle eintritt. Im Punkt
x = x nimmt die Funktion f(x) ihren kleinsten Wert oder ihr Minimum f(x) an. Vom
Punkt x sagt man dann, dass in ihm die Funktion ihr Minimum erreicht. Er wird oft
auch der minimierende Punkt der Funktion genannt.

Abb. 19

Wir werden im folgenden nur solche Funktionen betrachten, bei denen nach dem Wach-
sen kein Abfallen folgt. Solche Funktionen nennen wir kurz Funktionen mit einem Mi-
nimum.
In diesem Paragraphen wollen wir untersuchen, ob es möglich ist, den minimierenden
Punkt einer Funktion f mit einem Minimum genau zu bestimmen. Dass f eine Funktion
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mit nur einem Minimum ist, setzen wir im folgenden stets voraus, ohne es ausdrücklich
zu erwähnen. Klar ist, dass - nach entsprechenden Änderungen - das über die Minima
dieser Funktionen Gesagte auch für Maxima gilt.

3. An dem betrachteten Problem sowie an analogen Problemen sind drei Faktoren
wesentlich: das zu erreichende Ziel; die Möglichkeiten, dieses Ziel zu erreichen; die
Bedingungen, die dabei zu beachten sind.
In unserem Fall ist das Ziel die Erhöhung der Genauigkeit bei der Bestimmung des
minimierenden Punktes, d.h. die Verkleinerung des Fehlers bei der Berechnung dieses
Punktes.

Die Möglichkeiten, dieses Ziel zu erreichen, sind die verschiedenen Arten der Bestim-
mung einer gewissen Anzahl von Werten der Funktion f (Berechnung, Messung oder
einfach Raten) in beliebigen Punkten und in dem Größenvergleich dieser Werte.
Die Bedingungen, die dabei zu beachten sind, bestehen hier in der Größe des Definiti-
onsbereichs der Funktion f , d.h. in der Länge L der Strecke zwischen x′ und x′′.
Entsprechend dem Gesagten hat jede konkrete Suchaufgabe drei Aspekte.

1. Inwieweit ist das gesteckte Ziel unter den gegebenen Möglichkeiten und Bedingungen
zu realisieren?

Dies bedeutet bei dem behandelten Problem folgendes. Es sind n aufeinanderfolgende
Werte der Funktion f zu bestimmen, wobei die Punkte, in denen f bestimmt wird, be-
liebig gewählt werden können. In welchen Punkten muss man die Werte der Funktion
bestimmen, damit der Punkt x mit der größten Genauigkeit erreicht wird, und wie groß
ist diese Genauigkeit?

2. Über welche Möglichkeiten muss man verfügen, um das gesteckte Ziel unter den
gegebenen Bedingungen realisieren zu können?

In unserem Problem kann diese Frage folgendermaßen konkretisiert werden. Wir wollen
den die Funktion f minimierenden Punkt x mit gegebener Genauigkeit ε bestimmen,
d.h., wir wollen ein solches x finden, dass x zwischen x − ε und x + ε liegt. Wie viele
Berechnungen der Werte von f sind dazu notwendig, und wie sind diese Berechnungen
zu organisieren?

3. Unter welchen Bedingungen genügen die vorhandenen Möglichkeiten, um das ge-
steckte Ziel zu realisieren?

In unserem Fall geht es darum, das größte Intervall L (d.h. den größten Wert der Diffe-
renz x′′ − x′) aufzusuchen, für das eine Methode existiert, mit deren Hilfe man den die
Funktion f minimierenden Punkt bei n Beobachtungen mit vorgegebener Genauigkeit
e bestimmen kann.

4. Streng genommen haben wir es jetzt nicht mit einem Problem, sondern mit zwei
Problemen zu tun.
Beim ersten Problem müssen der minimierende Punkt x und der Wert f(x) bestimmt
werden. Beim zweiten Problem ist nur der Punkt x selbst interessant, und der Wert
f(x) ist unwesentlich.
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In der ersten Aufgabe (wir wollen sie die Aufgabe A nennen) sind unsere Ziele weiter
gesteckt als in der zweiten (Aufgabe B).
Daher ist natürlich zu erwarten, dass bei den vorhandenen Möglichkeiten und Bedingun-
gen die Ziele der Aufgabe A in geringerem Maße realisierbar sind als die der Aufgabe B
(bei gegebenem n und L ergibt sich in Aufgabe B ein kleineres ε als in Aufgabe A); dass
zur Realisierung der Ziele beider Aufgaben mit gleicher Genauigkeit und unter gleichen
Bedingungen die Aufgabe A mehr Möglichkeiten erfordert (bei gleichem Fehler ε und
gleicher Intervalllänge L ist in Aufgabe A im allgemeinen ein größeres n notwendig);
dass die gleiche Realisierung der Ziele bei gleichen Möglichkeiten in Aufgabe A leichtere
Bedingungen verlangt (gleiche ε und n sind in Aufgabe A nur mit kleineren Werten von
L als in Aufgabe B zu erzielen).

5. Um die formulierten Probleme mathematisch zu verdeutlichen, muss der folgende
wichtige Umstand erklärt werden.
Wir setzen voraus, dass uns die Möglichkeiten interessieren, wie der minimierende Punkt
x mit der Genauigkeit ε im Intervall der Länge L bestimmt werden kann (offenbar
können wir als Anfangspunkt dieses Intervalls den Punkt 0 und als Endpunkt den Punkt
L nehmen).
Wir nehmen an, dass wir die Aufgabe A lösen, d. h., dass uns sowohl x als auch
f(x) interessiert. Der Punkt x sei auf folgende Art bestimmt worden. Wir nehmen ein
beliebiges x zwischen 0 und L und bestimmen den Wert von f in den Punkten x − ε,
x und x + ε, d.h., wir berechnen die Größen

f(x − ε), f(x), f(x + ε)

(Abb. 20). Trotz der Willkür bei der Wahl von x nehmen wir an, dass x−ε nichtnegativ
ist, so dass der Wert von f(x − ε) tatsächlich berechnet werden kann; analog setzen
wir x + ε ≤ L. Insgesamt kann man

f(x − ε) > f(x) < f(x + ε)

schreiben: das bedeutet, dass die im Punkt x − ε fallende Funktion f beim Übergang
zu x + ε zu wachsen beginnt.

Abb. 20
Aber der Übergang vom Fallen zum Wachsen ist unbedingt mit dem Durchgang durch
einen kleinsten Wert verknüpft. Im vorliegenden Fall wird dieser kleinste Wert von f in
einem gewissen Punkt x erreicht, der zwischen x − ε und x + ε liegt.

Daher ist der Abstand zwischen x und x nicht größer als ε und x ist genau der Nä-
herungswert von x, den wir suchen. In diesem Fall wird das gesuchte x durch drei
Beobachtungen bestimmt. So - wohlgemerkt - kann es sein.
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Eine Garantie, das es tatsächlich so ist, haben wir jedoch nicht. Ist die Länge L des
Intervalls groß und ε klein, so ist das Eintreten dieser Erscheinung kaum zu erwarten.
Dagegen ist es sehr wahrscheinlich, dass die Funktion f bei drei Beobachtungen ver-
hältnismäßig große Werte annimmt und ihr Minimum irgendwo anders erreicht. Infol-
gedessen können drei Beobachtungen ausreichen oder auch nicht.

Wir benötigen also einen Plan, der unbedingt zur Bestimmung von x mit der Ge-
nauigkeit ε führt, unabhängig davon, wo dieser Punkt x wirklich liegt. Solche Pläne
existieren.
Wir wollen z. B. systematisch die Werte

f(0), f(ε), f(2ε); ... (5.1)

der Funktion f berechnen, und zwar bis zu einem solchen f(rε), dass (r + 1)ε größer
als L ist (Abb. 21).

Abb. 21

Offenbar ist derjenige Wert kε, für den die Funktion in der Folge (5.1) ihr Minimum
erreicht, der gesuchte.

Das Wesen der zu lösenden Aufgaben besteht darin, dass wir nicht einfach einen Plan
aufstellen, der uns in allen und insbesondere in den ungünstigen Fällen den Wert x mit
vorgegebener Genauigkeit angibt, sondern den ökonomischsten dieser Pläne, d.h. den
Plan, der unter den allerschlechtesten Bedingungen der beste ist.
Die schlechtesten Bedingungen sind solche, bei denen die Anzahl der zu berechnenden
Werte von f maximal ist.
Analog ist der ökonomischste Plan derjenige, der das gesteckte Ziel mit einer minimalen
Anzahl von Berechnungen der Werte von f erreicht. Daher heißt der unter schlechtesten
Bedingungen beste Plan ein Minimum-Maximum-Plan. Wir werden einen solchen Plan
optimal nennen.

Die Gesamtheit der Schritte, die in einem optimalen Plan vorgeschrieben sind (sowohl
in dieser als auch in jeder anderen analogen Aufgabe), kann man charakterisieren als
kleinste zweckmäßige Auswahl des sich vor uns "verbergenden" Minimums der Funktion,
das "gerade nicht dort anzutreffen ist, wo wir es suchen".
Das eben Gesagte hat weder mit Mystik noch mit Aberglauben zu tun, sondern ist nur
eine Charakterisierung des besten Vorgehens unter schlechtesten Bedingungen.

6. Es ist wichtig zu bemerken, dass es nicht für jede Suchaufgabe optimale Pläne gibt.
So existiert z. B. für die Aufgabe B kein optimaler Plan.
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Um das zu zeigen, setzen wir L = 2 und n = 2. Welche Genauigkeit ε können wir
dabei garantieren?

Die Endpunkte des betrachteten Intervalls seien 0 und 2. Wir nehmen ein beliebig
kleines positives α und berechnen die Werte der Funktion f in den Punkten 1 − α und
1 + α. Ist dabei

f(1 − α) ≤ f(1 + α)
so muss der gesuchte minimierende Punkt x zwischen 0 und 1 + α liegen; ist

f(1 − α) ≥ f(1 + α)

so liegt x zwischen 1 − α und 2. Wir setzen im ersten Fall

x = 1 + α

2

im zweiten Fall
x = (1 − α) + 2

2 = 3 − α

2
Im ungünstigsten Fall unterscheidet sich das zu bestimmende x von dem wahren mini-
mierenden Punkt der Funktion f um 1+α

2 .
Strebt α gegen 0, so verkleinert sich der Fehler. Jedoch kann α nicht gleich 0 sein (da
dann die Punkte 1 − αund 1 + α zusammenfallen und der Vergleich des Wertes von
f(1−α) mit dem notwendigerweise ihm gleichen - weil in demselben Punkt berechneten
- Wert von f(1 + α) uns keine Information liefert).
Daher ist der Fehler stets größer als 1

2 , obwohl er beliebig nahe bei 1
2 liegen kann.

Jeder positive Wert α bestimmt hier einen gewissen Plan. Je näher α bei 0 liegt, desto
besser ist dieser Plan. Da zu jedem α > 0 eine noch kleinere positive Zahl zu finden
ist, gibt es zu jedem Plan einen noch besseren. Folglich existiert bei der Aufgabe B kein
optimaler Plan.

Jedoch gibt es bei der Aufgabe B "fast optimale" Pläne, die sich auf Resultate beziehen,
welche sich nur unbedeutend verbessern lassen. Genauer gesagt, zu jeder Zahl γ > 0
existiert ein solcher Plan Pγ, dass kein anderer Plan den durch Pγ gegebenen Fehler
um mehr als γ verkleinern kann.6

7. Der durch die Folge (5.1) beschriebene Plan für ein ε, das hinreichend klein im
Vergleich zur Länge L des betrachteten Intervalls ist, ist nicht optimal. Halten wir uns
an diesen Plan, so müssen wir im ungünstigsten Fall alle r Rechnungen ausführen. Wir
versuchen jedoch, anders vorzugehen. Wir werden nur die folgenden Glieder von (5.1)
berechnen:

f(0), f(2ε), f(4ε), ...

wir finden in der so erhaltenen Folge das kleinste der Glieder (das sei etwa f(2kε)) und
berechnen die beiden Werte f((2k − 1)ε) und f((2k + 1)ε). Derjenige der drei Werte

6Im Gegensatz zur Aufgabe B gibt es für die Aufgabe A stets einen optimalen Plan, wie in Nr. 10
gezeigt wird. (Anm. d. Red.)
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(2k − 1)ε, 2kε und (2k + 1)ε der Veränderlichen, für den der Wert der Funktion f der
kleinste der Werte

f((2k − 1)ε), f(kε), f((2k + 1)ε)

ist, muss offenbar x mit der Genauigkeit ε sein.
Dieser neue Plan führt unter schlechtesten Bedingungen nach etwa r

2 + 2 Berechnun-
gen zum Ziel. Für große r ist diese Zahl wesentlich kleiner als die beim ersten Plan
erforderliche Anzahl von Berechnungen.

Der erste Plan ist also nicht optimal. Aber auch den zweiten Plan kann man bei diesen
Ausgangsbedingungen im allgemeinen nicht als optimal ansehen.
Jedoch unterscheidet sich der zweite Plan vom ersten durch einen überaus wesentlichen
Gesichtspunkt: Die Punkte, in denen Funktionswerte auf jeden Fall berechnet werden,
lassen sich im voraus nur teilweise planen, während sich die übrigen Punkte durch
Vergleich der schon berechneten Funktionswerte ergeben.

Intuitiv ist völlig klar, dass die Wahl der besten Schritte stets mit der Ausnutzung
der Information verknüpft sein muss, die man über die Resultate der schon vorher
durchgeführten Schritte erhält.
Der zweite Plan ist in dieser Beziehung vollkommener als der erste. Aber auch er lässt
im allgemeinen weitere Vervollkommnungen zu, wodurch wir letzten Endes zu einem
optimalen Plan gelangen.
Natürlich ist bei der Lagebestimmung des Minimums einer Funktion jeder neu erhal-
tene Funktionswert mit einem der bei den vorhergehenden Beobachtungen erhaltenen
Werten zu vergleichen.

Die Wahl des Punktes, in dem die darauffolgende Messung vorgenommen wird, oder die
Entscheidung, ob die Messungen abgebrochen werden, hängt daher erstens von jenen
Punkten ab, in denen wir schon Funktionswerte berechnet haben, und zweitens von
den berechneten Funktionswerten selbst.

Offenbar ist dieser Prozess der sukzessiven Berechnung der Werte von f vollstän-
dig bestimmt durch ein Gesetz, das für jedes k ≥ 0 bei beliebiger Wahl der Punkte
x1, x2, ..., xk und der Werte von f in diesen Punkten entscheidet, ob der Punkt xk + 1
als x genommen und die Beobachtungen der Funktion f abgebrochen werden sollen
oder nicht. Dieses Gesetz heißt oft Entscheidungsfunktion.

Jeder Plan bestimmt eine gewisse Entscheidungsfunktion. Umgekehrt bestimmt jede
Entscheidungsfunktion einen gewissen Plan. Insbesondere ist die Entscheidungsfunk-
tion eine genaue formelmäßige Beschreibung des Planes. Zum Beispiel ordnet dieje-
nige Funktion, die den ersten der eben betrachteten Pläne bestimmt, jeder Zahl k
(0 ≤ k < r) den Punkt (k + 1)ε zu, während die Zahl r den Prozess beendet.
Der Begriff der Entscheidungsfunktion gehört zu den wichtigsten Begriffen der moder-
nen Mathematik. Bedauerlicherweise ist die genaue Definition dieses Begriffs ziemlich
umfangreich und kann deshalb hier nicht eingeführt werden.

8. Das Ziel eines Planes P bestehe darin, den Punkt x, der die Funktion f minimiert,
in einem Intervall der Länge L mit Hilfe von n Beobachtungen so genau wie möglich
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zu bestimmen. Einen solchen Plan werden wir im folgenden n-schrittig nennen.
Unter den Bedingungen eines gewissen n-schrittigen Planes P möge es gelingen, den
Punkt x im Intervall der Länge L mit der Genauigkeit ε zu bestimmen.
Diese Genauigkeit hängt vom Plan P selbst, aber auch von n und L ab. Daher können
wir sie als Funktion von P , n und L auffassen und für die Aufgabe A mit τA

P (n, L), für
die Aufgabe B mit τB

P (n, L) bezeichnen.

Unter τP (n, L) werden wir dann einen beliebigen (aber innerhalb einer Untersuchung
stets den gleichen) der Ausdrücke τA

P (n, L) und τB
P (n, L) verstehen.

Der n-schrittige Plan P0 zur Bestimmung des Minimums von f im Intervall der Länge
L ist in Aufgabe A optimal, wenn τA

P0(n, L) nicht größer ist als τA
P (n, L) für einen

beliebigen anderen Plan P , d.h.

τA
P0(n, L) ≤ τA

P (n, L)

Das lässt sich auch in der Gestalt

τA
P0(n, L) = min

P
τA

P (n, L) (5.2)

schreiben.
Die Zahl τA

P0(n, L) ist nicht für den Plan charakteristisch, sondern für die Aufgabe selbst
(nämlich für die Aufgabe, in n Schritten den minimierenden Punkt der Funktion f im
Intervall der Länge L zu finden). Daher hängt die Zahl nicht von irgendeinem Plan ab,
sondern nur von n und L und kann daher einfach mit τA(n, L) bezeichnet werden.

Unter den Bedingungen der Aufgabe B ist die Sache etwas komplizierter. Hier gibt es,
wie wir schon sahen, keinen optimalen Plan, der unter schlechtesten Bedingungen den
kleinsten Fehler garantiert.
Jedoch existiert ein solcher Fehler, an den man dicht genug heran gehen kann, sobald
man einen geeigneten Plan wählt. Dieser Fehler, den wir den Grenzfehler nennen wollen,
hängt ebenfalls nur von den Bedingungen der Aufgabe ab. Daher bezeichnen wir ihn
mit τB(n, L). Jeder andere Plan P führt zu einem größeren Fehler,

τB(n, L) < τB
P (n, L)

und somit können wir hier keine zu (5.2) analoge Gleichung angeben.

Wir greifen etwas vor und sagen, dass alle manchmal recht komplizierten Überlegungen
dieses Paragraphen darin gipfeln, explizite Ausdrücke für τA(n, L) und τB(n, L) zu
finden, nämlich

τA(n, L) = L

un+2
, τB(n, L) = L

2un+1
(5.3,5.4)

Damit gestattet der Verzicht auf das Auffinden des Minimums einer Funktion die Erhö-
hung der Genauigkeit bei der Bestimmung des minimierenden Punktes um den Faktor
2un+1
un+2

. Für hinreichend große n liegt dieser Quotient auf Grund von § 1, Nr. 20, nahe
bei 2

α = 1, 236; das entspricht einer Vergrößerung der Genauigkeit um etwa 23%.
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9. Es ist klar, dass bei allen weiteren Untersuchungen nicht jede der Zahlen L und ε für
sich, sondern das Verhältnis von L und ε wichtig ist. Dieses Verhältnis ist der relative
Fehler von x.
Ist es uns gegeben, so können wir, indem wir auf geeignete Weise die Einheit auf der
x-Achse (d.h. die Einheit zur Messung der Intervalllänge) festlegen, eine der Zahlen L
und ε völlig willkürlich wählen.
Diese Überlegung führt zu einer überaus lehrreichen Schlussfolgerung.

Eine Änderung des Maßstabs längs der x-Achse zieht sowohl eine Änderung der ZahlL
nach sich, die die Intervalllänge angibt, als auch des Fehlers bei der Bestimmung des ge-
suchten Punktes nach einem beliebigen Plan P . Mit anderen Worten, für jedes positive
λ gilt

τP (n, λL) = λτP (n, L) (5.5)

Genauso bleibt ein Plan optimal, wenn wir bei seiner Beschreibung die Lagen der Punkte
im Intervall nicht im absoluten, sondern relativen Längenmaß angeben. Nach einer
solchen Änderung bei der Beschreibung eines Planes bleiben optimale Pläne optimal
und nichtoptimale Pläne nichtoptimal.

Daraus folgt unmittelbar, dass eine gleichmäßige Dehnung (oder Zusammenziehung)
des Intervalls, in dem sich die Funktion f ändert, nur eine "Ähnlichkeitstransformation"
des optimalen Planes bewirkt, ohne dass seine Optimalität gestört wird.
Das bedeutet, dass die in (5.5) auftretenden Fehler τP (n, λL) und τP (n, L) nicht nur
bei Realisierung irgendeines Planes gemacht werden, sondern auch bei Anwendung von
Plänen, die durch Ähnlichkeitstransformationen aus einem Plan hervorgegangen sind.

10. Nach all diesen ziemlich verwickelten vorbereitenden Überlegungen wollen wir einen
optimalen Plan für die Aufgabe A suchen und die Formeln (5.3) und (5.4) beweisen.

Lemma. Für alle n ≥ 1 und alle L existiert ein n-schrittiger Plan zum Aufsuchen des
Punktes x, in dem die Funktion f (mit einem Minimum) im Intervall der Länge L nach
n Schritten ihr Minimum erreicht, wobei der Plan folgende Eigenschaften besitzt:

1. Bei jedem Schritt wird ein gewisses Intervall [x′, x′′] betrachtet.

2. Beim ersten Schritt wird der Wert der Funktion f in einem der Punkte un

un+2
L oder

un+1
un+2

L berechnet.

3. Zu Beginn jedes der folgenden Schritte mit der Nummer k (d.h. für 1 < k ≤ n) ist
der Wert von f in einem der beiden Punkte

x1 = x′ + un

un+2
(x′′ − x′) und x2 = x′ + un+1

un+2
(x′′ − x′) (5.6)

bekannt.

4. Beim k-ten Schritt (1 < k ≤ n) wird der Wert im anderen der beiden Punkte (5.6)
berechnet.

5. Beim k-ten Schritt (1 < k ≤ n) sind die Zahlen f(x1) und f(x2) zu vergleichen; im
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Fall f(x1) ≤ f(x2) ist beim (k + 1)-ten Schritt das Intervall [x′, x2], im Fall f(x1) ≥
f(x2) das Intervall [x1, x′′] zu betrachten.

Beweis (durch vollständige Induktion nach n).
Für n = 1 haben wir es offenbar mit dem Intervall zwischen 0 und L zu tun; der Wert
der Funktion wird im Punkt u1

u3
L = L

2 berechnet.
Weitere Schritte gibt es in diesem Fall nicht.

Wir setzen nun voraus, dass die Existenz eines gewissen n-schrittigen Planes (n > 1)
mit den im Hilfssatz geforderten Eigenschaften von uns für ein beliebiges Intervall schon
bewiesen wurde.
Wir beschäftigen uns nun mit der Aufstellung des uns interessierenden (n+1)-schrittigen
Planes unter Beachtung der Voraussetzung des Hilfssatzes. Wir werden bei jedem
Schritt ein gewisses Intervall [x′, x′′] untersuchen.

Der erste Schritt sei die Wahl des Punktes x1 = un+1
un+3

L, der zweite Schritt die Wahl
des Punktes x2 = un+2

un+3
L und der Vergleich der Funktionswerte f(x1) und f(x2).

Im Fall f(x1) ≤ f(x2) betrachten wir das Intervall zwischen 0 und x2 (hier spielt 0
bzw. x2 die Rolle von x′ bzw. x′′), im Fall f(x1) > f(x2) das Intervall zwischen x1 und
L (hier spielt x1 bzw. L die Rolle von x′ bzw. x′′).
Die Länge des betrachteten Intervalls ist in beiden Fällen gleich un+2

un+3
L.

Nach Ausführung dieser beiden Schritte befinden wir uns in Bezug auf das zu be-
trachtende Intervall unter genau denselben Bedingungen wie bei der Realisierung des
n-schrittigen Prozesses nach Ausführung des ersten Schrittes.
Im Intervall der Länge un+2

un+3
ist nämlich der Wert der Funktion f in demjenigen Punkt

bekannt, der von einem der Endpunkte des Intervalls den Abstand un+1
un+3

L hat. Daher
können wir zu diesem n-schrittigen Prozess "übergehen" und ihn bis zu Ende durch-
führen.

Auf Grund der Induktionsannahme können wir voraussetzen, dass für die letzten n
Schritte die Voraussetzungen 3, 4 und 5 erfüllt sind. Folglich bleiben nur die Bedingun-
gen zu Beginn des zweiten Schrittes und die Ausführung dieses Schrittes zu untersuchen.
Nun hat offenbar der Punkt un

un+3
L die Form des ersten Ausdrucks (5.6) für k = 2, wenn

statt n überall n+1 gesetzt wird; die Rolle des zweiten Ausdrucks in der entsprechenden
Situation spielt der von uns zu wählende Punkt un+2

un+3
L.

Damit ist der Hilfssatz bewiesen.

11. Wir werden den n-schrittigen Plan, dessen Existenz in Nr. 10 bewiesen wurde, den
n-schrittigen Fibonaccischen Plan oder kurz den Plan Φn nennen.

Satz. 1. Der Plan Φn ist der einzige optimale n-schrittige Plan.
2. Es ist τA

Φn
(n, L) = L

un+2
.

Beweis (durch vollständige Induktion nach n).
Wir betrachten zunächst den einschrittigen Plan, der darin besteht, für x einen gewissen
Punkt x̃ aus dem Intervall [x′, x′′] zu wählen. Offenbar kann hier der Fehler unter
ungünstigsten Bedingungen die größere der Zahlen x′′ − x̃ und x̃ − x′ erreichen.
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Sind diese Zahlen voneinander verschieden, so ist dieser maximale Fehler größer als
L
2 ; sind sie gleich, so ist der maximale Fehler gleich L

2 . Somit ist Φ1 ein optimaler
einschrittiger Plan, und es gilt

τA
Φ1(n, L) = L

2 = L

u3

Für n = 2 haben wir es mit dem Plan Φ2 zu tun, der aus der Berechnung und dem
Vergleich der Funktionswerte f

(
1
3L
)

und f
(

2
3L
)
2 besteht sowie aus der Wahl des

Punktes

1
3L im Fall f

(1
3L

)
≤ f

(2
3L

)
2
3L im Fall f

(1
3L

)
> f

(1
3L

)

als x. Der maximale Fehler bei der Bestimmung des wahren Wertes x ist hier, wie man
leicht sieht, gleich L

3 = L
u4

:

τA
Φ2(n, L) = L

u4

Jede andere Wahl des Punktes führt auf größere Fehler.
Wir setzen nun voraus, dass der Fibonaccische Plan Φn die im Satz geforderten Eigen-
schaften besitze, und betrachten den (n + 1)-schrittigen Plan.

Wir führen im Plan Φn+1 die ersten beiden Beobachtungen der Funktion f durch und
vergleichen zwei der gefundenen Werte. Das wenden wir auf das Intervall der Länge
un+2
un+3

L aus dem Plan an, in dem der Wert von f in einem Punkt bekannt ist; dadurch
ergibt sich im ungünstigsten Fall der Fehler

τA
Φn

(
n,

un+2

un+3
L

)
= un+2

un+3
τA

Φn
(n, L) = un+2

un+3

L

un+2
= L

un+3

Folglich ist
τA

Φn+1(n + 1, L) = L

un+3

Wir müssen noch zeigen, dass der Plan Φn+1 optimal ist. Dazu berechnen wir die
Werte von f in zwei willkürlich gewählten Punkten x̃1 und x̃2 (wir wollen x̃1 < x̃2
annehmen). Der Vergleich der Werte f(x̃1) und f(x̃2) führt auf die Suche nach dem
Punkt x entweder im Intervall [0, x̃2] oder [x̃1, L]. Ist

x̃1 <
un+1

un+3
L

so gelingt es uns im Fall f(x̃1) > f(x̃2), nach einem gewissen n-schrittigen Plan den
minimierenden Punkt von f im Intervall der Länge L− x̃1 zu finden, also einer größeren
Länge als

L − un+1

un+3
L = un+3 − un+1

un+3
L = un+2

un+3
L
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Sogar wenn die Lage des Punktes x̃2 in diesem Intervall am günstigsten ist, erweist sich
der Fehler bei der Bestimmung auf Grund der Induktionsannahme größer als L

un+3
.

Analoge Überlegungen zeigen, dass der Plan, der durch Wahl eines gewissen Punktes

x̃2 >
un+2

un+3
L

beginnt, unter entsprechenden ungünstigen Bedingungen ebenfalls zu einem größeren
Fehler bei der Bestimmung von x führt als der Plan Φn+1.

Es sei nun
x̃1 >

un+1

un+3
L

Befindet sich x in Wirklichkeit zwischen 0 und x̃1, so bleiben uns zur Lagebestimmung
dieses Punktes n − 1 Beobachtungen, und die Länge des Intervalls, das diesen Punkt
enthält, ist größer als un+1

un+3
L. Das bedeutet, dass sogar der (unter diesen Bedingungen

nach Voraussetzung optimale) Plan Φn−1, einen Fehler verursacht, der größer ist als

τA
Φn−1

(
n − 1,

un+1

un+3

)
L = un+1

un+3
τA

Φn−1(n − 1, L) = un+1

un+3

L

un+1
= L

un+3

Analog behandelt man den Fall
x̃2 >

un+2

un+3
L

Folglich ist der Plan Phin+1 optimal und der Satz bewiesen.

Der einzige die Funktion f minimierende Punkt kann also mit Hilfe von n Beobach-
tungen im Intervall der Länge L mit einer Genauigkeit ≤ L

un+2
bestimmt werden.

Daher genügen n Beobachtungen, um den die Funktion f minimierenden Punkt mit
einer Genauigkeit ≤ ε in einem Intervall zu bestimmen, das nicht länger als εun+2 ist.
Um sicher zu sein, dass der die Funktion f minimierende Punkt im Intervall der Länge
L mit einer Genauigkeit ≤ ε bestimmt wird, ist es notwendig, eine solche Anzahl n von
Beobachtungen durchzuführen, dass

un+1 ≤ L

ε
≤ un+2

Damit haben wir alle Fragen aus Nr. 3 beantwortet.

12. Die Lösung der Aufgabe B lässt sich mühelos aus der oben angegebenen Lösung
der Aufgabe A herleiten.
Gegeben sei ein Intervall der Länge L. Auf ihm führen wir die ersten n − 2 Schritte des
Fibonaccischen Planes Φn−1 aus. Dadurch gelangen wir zu einem Intervall der Länge

3L
un+1

mit den Endpunkten x′ und x′′ und mit einem bekannten Wert von f in einem
der Punkte

x1 = x′ + L

un+1
oder x2 = x′ + 2L

un+1
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Wir beschränken uns auf den ersten dieser beiden Fälle (der zweite lässt sich analog
behandeln).
Es sei uns also f(x1) bekannt. Wir wählen dann eine beliebige Zahl γ, deren Absolut-
betrag kleiner als L

un+1
sei, berechnen f(x2 −γ) [das ist der (n−1)-te berechnete Wert

der Funktion f ] und vergleichen f(x1) und f(x2 − γ).
Ist f(x1) ≤ f(x2 − γ) (Abb. 22), so muss x offenbar zwischen x′ und x2 − γ liegen.
Wir berechnen

f

(
x′ + (x2 − γ)

2

)
= f

(
x1 − γ

2

)
(das ist der letzte, n-te berechnete Wert von f).

Abb. 22

Ist dabei
f
(

x1 − γ

2

)
≤ f(x1)

(Fall × in Abb. 22), so liegt x zwischen x′ und x1. Wir setzen x = x′+x1
2 . Der Fehler

bei der Bestimmung von x ist nicht größer als die Hälfte des Abstandes von x′ und x1,
d.h. L

2un+1
. Ist aber

f
(

x1 − γ

2

)
> f(x1)

(Fall ◦ in Abb. 22), so liegt x zwischen x1 − γ
2 und x2 − γ. Wir setzen

x = 1
2

[(
x1 − γ

2

)
+ (x2 − γ)

]

und erhalten einen Fehler, der nicht größer ist als

1
2

[
(x2 − γ) −

(
x1 − γ

2

)]
= 1

2

(
x2 − x1 − γ

2

)
= x2 − x1

2 − γ

4 = L

2un+1
− γ

4

Nun sei f(x1) > f(x2 − γ) (Abb. 23). Dann liegt x zwischen x1 und x′′.

Abb. 23

Wir berechnen jetzt f(x2), den letzten berechneten Wert von f . Ist

f(x2 − γ) ≤ f(x2)
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(Fall ◦ in Abb. 23), so liegt x zwischen x1 und x2; wir wählen x = 1
2(x1 + x2) und

lassen einen Fehler zu, der höchstens gleich 1
2(x2 − x1) = L

2un+1
ist.

Ist schließlich
f(x2 − γ) > f(x2)

(Fall × in Abb. 23), so liegt x zwischen x2 −γ und x′′. Wir setzen x = 1
2(x′′ +(x2 −γ))

und bringen es zu einem Fehler, der nicht größer ist als

1
2(x′′ − (x2 − γ)) = 1

2

(
L

un+1
+ γ

)
= L

2un+1
+ γ

2

In dem für uns ungünstigsten Fall kann somit der Fehler für γ > 0 den Wert L
2un+1

+ γ
2

und für γ < 0 den Wert L
2un+1

− γ
4 erreichen.

Da sich jedoch die Zahl γ beliebig wählen lässt, kann der Fehler beliebig nahe bei L
2un+1

liegen.
Wir müssen uns nun noch davon überzeugen, dass der Fehler nicht verkleinert werden
kann.

Die Abweichung von dem beschriebenen Plan in einem der ersten n − 2 Schritte kann,
wie aus dem Satz von Nr. 11 ersichtlich ist, nur zu einer Vergrößerung des Intervalls
führen, in dem der minimierende Punkt durch die darauffolgenden Messungen bestimmt
werden soll, und somit zur Vergrößerung des maximalen Fehlers.
Es bleibt nachzuprüfen, ob die in den letzten beiden Schritten auszuführenden Opera-
tionen optimal sind.

Zunächst kann die Abweichung von den beschriebenen Operationen darin bestehen,
dass nicht der Mittelpunkt des Intervalls, in dem der Punkt tatsächlich liegt, als x
gewählt wird, sondern ein anderer Punkt.
Dies führt dazu, dass der mögliche Fehler gleich dem größeren Teil des Intervalls wird,
also wächst. Folglich muss genau der Mittelpunkt des Intervalls gewählt werden.

Ferner kann zur letzten Bestimmung von f ein Punkt gewählt werden, der nicht in der
Nähe des Punktes x1 (bzw. x2) liegt. Dann vergrößert sich der mögliche Fehler sogar
proportional dem Abstand zwischen diesen beiden Punkten.
Schließlich führt die Wahl des Punktes, in dem f zum letzten Mal bestimmt wird, in
einiger Entfernung von x2 (bzw. von x1) zu denselben Schlussfolgerungen.

Also kann eine Abweichung vom beschriebenen Plan den möglichen Fehler nicht kleiner
als L

2un+1
machen. Damit ist die Aufgabe B gelöst.

Wir überlassen es dem Leser, die Antworten auf die übrigen in Nr. 3 gestellten Fragen
im Fall der Aufgabe B selbst zu finden.

13. In den vorhergehenden Abschnitten wurde die Beschreibung des Planes begleitet
von Verschärfungen der Aufgabenstellung, von Formulierungen, die mit dem Begriff
"optimal" verknüpft sind, und von Begründungen, weshalb der zu konstruierende Plan
optimal ist.
Alle diese Abweichungen von der direkten Beschreibung sind unveräußerliche Elemente
jeder mathematischen Überlegung, deren Ziel es ist, nicht nur den Prozess anzugeben,
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sondern auch zu beweisen, dass dieser Prozess gerade der uns interessierende ist.

Im Zusammenhang damit ist in vielen Fällen eine genaue Beschreibung der Operationen
wesentlich, während die ganze Beweisführung für diese Operationen völlig unwichtig
ist. Dies ist dann der Fall, wenn zum Beispiel nach Lösung der Aufgabe tatsächlich die
Realisierung dieser Lösung beabsichtigt ist.
In diesen Fällen ist es zur Realisierung der Lösung in der Praxis notwendig, nicht so
sehr die Richtigkeit der Lösung mathematisch zu begründen, als vielmehr genaue Vor-
schriften für ihre Verwirklichung anzugeben.

Der Plan für die genaueste Bestimmung des Punktes x, der im Intervall [x′, x′′] die
Funktion f unter den Bedingungen der Aufgabe A und unter den eben beschriebenen
"praktischen" Zielen minimiert, erinnert an den Plan zur Bestimmung einer Pflanze
nach botanischen Gesichtspunkten (auch die Bestimmung einer Pflanze ist eine Such-
aufgabe!).
Dieser Plan hat die folgende Form (wenn am Ende eines Punktes kein Hinweis darauf
steht, zu welchem Punkt übergegangen werden soll, gehe man zum nächstfolgenden
Punkt über):

1◦. Vergleiche 1 und n:
a) ist n = 1, gehe nach 2◦;
b) ist n > 1, gehe nach 4◦.
2◦. Berechne x = x1+x2

2 ,
3◦. Berechne f(x); danach ist der Prozess beendet.
4◦. Berechne x1 = x′ + un

un+2
(x′′ − x′) und x2 = x′ + un+1

un+2
(x′′ − x′)

5◦. Berechne f(x1) und f(x2).
6◦. Vergleiche 2 und n:
a) ist n = 2, gehe nach 7◦;
b) ist n > 2, gehe nach 10◦.
7◦. Vergleiche f(x1) und f(x2):
a) ist f(x1) ≤ f(x2), gehe nach 8◦;
b) ist f(x1) > f(x2), gehe nach 9◦.
8◦. Setze x = x1 und beende den Prozess.
9◦, Setze x = x2 und beende den Prozess.
10◦. Vergleiche f(x1) und f(x2):
a) ist f(x1 ≤ f(x2), gehe nach 11◦;
b) ist f(x1) > f(x2), gehe nach 14◦.
11◦. Ersetze x2 durch x′′, x1 durch x2, n − 1 durch n.
12◦. Berechne x1 = x′ + un

un+2
(x′′ − x′).

13◦. Berechne f(x1) und gehe nach 6◦.
14◦. Ersetze x1 durch x′, x2 durch x1, n − 1 durch n.
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Abb. 24

15◦. Berechne x2 = x′ + un+1
un+2

(x′′ − x′).

16◦. Berechne f(x2) und gehe nach 6◦.

14. Obwohl die formelmäßige Fassung des optimalen Planes zur Bestimmung des Mini-
mums der Funktion f absolut genau ist und nicht willkürlich abgeändert werden kann
und bei Anwendung auf eine beliebige konkrete Funktion, ein Intervall [x′, x′′] und eine
Zahl n eine völlig exakte Folge von Operationen vorschreibt, ist sie ziemlich verwirrend
und unübersichtlich.
Daher bringen wir den eben beschriebenen Plan in ein graphisches Schema (Abb. 24).
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Schemata dieser Art werden Flussdiagramme genannt. Die Aufstellung des Flussdia-
gramms für einen Rechenprozess ist gewöhnlich die erste Etappe bei der Aufstellung
eines Programms zur Durchführung von Rechnungen auf elektronischen Ziffernrechen-
automaten.

15. Wir bringen zum Abschluss ein Beispiel für die Anwendung des in Nr. 13 und 14
beschriebenen Planes, und zwar wollen wir mit Hilfe von fünf Berechnungen im Intervall
[1, 2] den Punkt x finden, der die Funktion

f(x) = 1
x

+
√

x

minimiert.
Zur Vorbereitung ist folgende Bemerkung wichtig. Um den Punkt zu finden, der eine
analytisch gegebene Funktion minimiert bzw. maximiert (d.h. eine Funktion, die durch
eine Formel gegeben ist, welche es erlaubt, den Wert der Funktion zu berechnen), sind
oft die Methoden der Suchtheorie nicht geeignet, sondern man greift dann besser zu
den zweckmäßigeren Verfahren der Differentialrechnung.
Daher hat das folgende Beispiel nur illustrativen Charakter.

Mit Hilfe der Differentialrechnung erhält man in diesem Fall mühelos x = 3
√

4 =
1, 5874011...; mit Hilfe der Suchtheorie gelingt uns jedoch nur eine wesentlich gröbere
Näherung.

Ist uns aber über die Funktion nichts bekannt (außer dass sie nicht mehr abnimmt,
nachdem sie einmal angefangen hat zuzunehmen) oder sind die Ausdrücke, durch die
die Funktion gegeben ist, zu kompliziert, so versagen die Methoden der Differential-
rechnung, während sich die Suchtheorie als nützliches Instrument erweist.

1◦. Der Vergleich von n = 5 und 1 ergibt n ̸= 1, also gehen wir nach 4◦.
4◦. Wir berechnen

x1 = x′ + un

un+2
(x′′ − x′) = 1 + 5

13(2 − 1) = 1, 38461

x2 = x′ + un+1

un+2
(x′′ − x′) = 1 + 8

13(2 − 1) = 1, 61538

5◦. Wir berechnen

f(x1) = 1
x1

+ √
x1 = f(1, 38461) = 0, 72222 + 1, 17670 = 1, 89892

f(x2) = 1
x2

+ √
x2 = f(1, 61538) = 0, 61905 + 1, 27098 = 1, 89003

6◦. Der Vergleich von n = 5 und 2 ergibt n = 2, also gehen wir nach 10◦.
10◦. Der Vergleich von f(x1) = 1, 89892 und f(x2) = 1, 89002 ergibt f(x1) > f(x2),
also gehen wir nach 14◦.
14◦. Wir setzen x1 → x′ = 1, 38461, x2 → x1 = 1, 61538, n = 4.
15◦. Wir berechnen

x2 = x′ + un+1

un+2
(x′′ − x′) = 1, 38461 + 5

8(2 − 1, 38461) = 1, 76927
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16◦. Wir berechnen

f(x2) = 1
x2

+ √
x2 = f(1, 76927) = 0, 56522 + 1, 33012 = 1, 89534

und gehen nach 6◦.
6◦. Wir vergleichen n = 4 und 2; wegen n ̸= 2 gehen wir nach 10◦.
10◦. Wir vergleichen f(x1) = 1, 89002 und f(x2) = 1, 89534; wegen f(x1) ≤ f(x2)
gehen wir nach 11◦.
11◦. Wir setzen x2 → x′′ = 1, 76923, x1 → x2 = 1, 61638, n = 3.
12◦. Wir berechnen

x1 = x′ + un

un+2
(x′′ − x′) = 1, 38461 + 2

5(1, 76923 − 1, 38461) = 1, 58346

13◦. Wir berechnen

f(x1) = 1
x1

+ √
x1 = f(1, 58346) = 0, 65000 + 1, 24035 = 1, 89035

und gehen nach 6◦.
6◦ Wir vergleichen n = 3 und 2; wegen n ̸= 2 gehen wir nach 10◦.
10◦. Wir vergleichen f(x1) = 1, 89035 und f(x2) = 1, 89003; wegen f(x1) > f(x2)
gehen wir nach 14◦.
14◦. Wir setzen x1 → x′ = 1, 53846, x2 → x1 = 1, 61538, n = 2.
15◦. Wir berechnen

x2 = x′ + un+1

un+2
(x′′ − x′) = 1, 53846 + 2

3(1, 76923 − 1, 53846) = 1, 69231

16◦. Wir berechnen

f(x2) = 1
x2

+ √
x2 = f(1, 69231) = 0, 59091 + 1, 30089 = 1, 89170

und gehen nach 6◦.
6◦. Der Vergleich von n und 2 ergibt n = 2, also gehen wir nach 7◦.
7◦. Wir vergleichen f(x1)1, 89003 und f(x2) = 1, 89170; wegen f(x1) ≤ f(x2) gehen
wir nach 8◦.
8◦. Wir setzen x = 1, 61538.

Auf Grund des Satzes aus Nr. 11 unterscheidet sich der für x gefundene Wert von dem
wahren Wert des minimierenden Punktes um nicht mehr als 1

un+2
= 1

u7
= 1

13 = 0, 077.
In Wirklichkeit ist dieser Fehler noch kleiner, nämlich 0,028. Wir bemerken noch, dass
sich das Minimum der Funktion f , also 1,89003, von dem wahren Wert, nämlich

f( 3
√

4) = 3
2

3
√

2 = 1, 88988

nur um 0,00015 unterscheidet. Damit lassen sich also die Werte von x mit einer gerin-
geren Genauigkeit berechnen als die Werte von f .
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Für sich allein enthält diese Berechnung nichts Erstaunliches. Die x-Werte können wir
mit der gleichen Grenzgenauigkeit finden, mit der unter unseren Bedingungen der mi-
nimierende Punkt x berechnet wird (bekanntlich ist diese Genauigkeit gleich 1

un+2
). Die

Werte der Funktion f müssen mit einer solchen Genauigkeit berechnet werden, dass
beim Vergleich von Wertepaaren dieser Funktion die Unterscheidung des kleineren und
des größeren Wertes in jedem dieser Paare möglich ist.

Wenn sich in Wirklichkeit. zwei Werte f(a) und f(b) stark voneinander unterscheiden
und dieser Unterschied schon bei grober Berechnung von f(a) und f(b) bemerkbar
ist, können wir also diese Werte mit kleiner Genauigkeit berechnen. Wenn dagegen die
Werte f(a) und f(b) nahe beieinanderliegen, ist die Untersuchung, welcher der beiden
Werte der größere ist, mit großer Genauigkeit durchzuführen.

Da wir von vornherein (bis zur Beendigung der Rechnung) nicht wissen, um wieviel sich
die miteinander zu vergleichenden Funktionswerte unterscheiden, können wir Schiff-
bruch erleiden und sie mit ungenügender Genauigkeit berechnen, wodurch es uns nicht
möglich ist zu entscheiden, welcher der beiden Werte der größere ist. In diesem Fall
muss man die Rechnung mit größerer Genauigkeit wiederholen, wobei verschärfte Be-
dingungen eingehalten werden müssen.

Das eben Gesagte zeigt, wie notwendig es ist, die Genauigkeit eines Rechenprozesses zu
verbessern. Jedoch sind diese Probleme sehr kompliziert und mit der Thematik dieses
Büchleins nicht unmittelbar verknüpft.
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