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Vorwort

In der elementaren Mathematik gibt es viele, manchmal schwierige und interessante
Aufgaben, die nicht mit irgendeinem Namen verkniipft sind, sondern eher den Charakter
einer Art "mathematischer Folklore" haben.

Solche Probleme finden sich in der umfangreichen populdrwissenschaftlichen mathe-
matischen Literatur und in der mathematischen Unterhaltungsliteratur verstreut, indes
ist oft sehr schwer festzustellen, in welcher Sammlung gerade das eine oder andere
Problem erstmalig auftaucht.

Diese Aufgaben haben nicht selten einige Varianten; zuweilen lassen sich auch mehre-
re solcher Aufgaben zu einer einzigen, komplizierteren, vereinigen; umgekehrt zerfallt
manchmal eine Aufgabe in mehrere einfachere.

Mit einem Wort - es ist oft schwierig, anzugeben, wo die eine Aufgabe endet und die
andere anfangt. Richtiger ware es vielleicht zu sagen, dass es sich bei jedem dieser
Probleme um kleine mathematische Theorien handelt, die ihre eigene Geschichte, Pro-
blematik und Methode haben - welche natirlich mit der Geschichte, der Problematik
und den Methoden der "groBen Mathematik" eng zusammenhangen.

So verhalt es sich auch mit der Theorie der Fibonaccischen Zahlen. Die Fibonaccischen
Zahlen entstanden aus der nun schon fast 700 Jahre alten beriihmten "Kaninchenauf-
gabe" und bilden auch heute noch eines der interessantesten Kapitel der Elementarma-
thematik.

Probleme, die mit den Fibonaccischen Zahlen zusammenhangen, findet man in vie-
len allgemeinverstandlichen mathematischen Werken; sie werden in mathematischen
Zirkeln der Schulen behandelt und den Teilnehmern mathematischer Olympiaden vor-
gelegt.

Das vorliegende Biichlein enthalt eine Reihe von Problemen, die wahrend des Studien-
jahres 1949/50 in einem mathematischen Zirkel fiir Schiiler an der mit dem Leninorden
ausgezeichneten Leningrader Staatlichen Shdanow-Universitat bearbeitet worden sind.
Den Wiinschen der Teilnehmer des Zirkels entsprechend, wurde vor allem die zahlen-
theoretische Seite dieser Frage behandelt, die auch in unserer Broschiire eingehender
entwickelt wird.

Das Biichlein ist fiir Schiiler der Oberklassen gedacht. Der Limesbegriff wird nur in den
Punkten 7 und 8 von § 3 benutzt.

Leser, die mit diesem Begriff nicht vertraut sind, konnen sie ohne Nachteil fiir das
Verstandnis des Folgenden bei der Lektiire Gibergehen. Dasselbe gilt auch fiir die Bino-
mialkoeffizienten (Punkt 8 von § 1) und die Trigonometrie (Punkte 2 und 3 von § 4).
Die in dieser Broschiire behandelten Elemente der Teilbarkeitstheorie und der Theorie
der Kettenbriiche setzen beim Leser keine iiber den Rahmen des Schulunterrichts hin-
ausgehenden Vorkenntnisse voraus.

Lesern, die sich fiir die Struktur rekursiver Folgen interessieren, kann das kleine, aber
inhaltsreiche Biichlein von A.l. Markuschewitsch "Rekursive Folgen" (erscheint in die-
ser Reihe) empfohlen werden. Leser, die mehr tiber Zahlentheorie wissen wollen, mogen
entsprechende Kurse besuchen.




Vorwort zur zweiten russischen Ausgabe

Die Entwicklung der Mathematik in den eineinhalb Jahrzehnten, die seit dem Erschei-
nen der ersten Auflage dieses Biichleins verstrichen sind, zeigte neue Zusammenhéange
zwischen der Theorie der Fibonaccischen Zahlen und anderen mathematischen Theori-
en.

Am interessantesten sind davon die "Fibonaccischen Plane" der Suchtheorie, deren
Beschreibung ein neuer Paragraph dieses Bandchens gewidmet ist. Zu bemerken ist
dabei, dass die Lektiire dieses Paragraphen schwieriger ist als die des lbrigen Textes.
Jedoch erfordert auch er zu seinem Verstandnis nur das Wissen, das in der Schule
vermittelt wird.

Von den anderen Anderungen, die in dieser zweiten Auflage vorgenommen wurden, ist
nur die Erganzung des zweiten Beweises in § 3, Nr. 9, erwahnenswert.

N. N. Worobjow
Vorwort zur dritten russischen Ausgabe

Im Laufe der letzten Jahre erhohte sich das Niveau der mathematischen Vorbildung der
sich fir Mathematik interessierenden Schiiler in erstaunlicher Weise. Daher hielt ich es
fir moglich, in die dritte Auflage des Bandchens einige kompliziertere Untersuchungen
iiber die Teilbarkeit der Fibonaccischen Zahlen aufzunehmen.

Dies bedingte eine radikale Umarbeitung von § 2 und wesentliche Anderungen in § 1.
Zur bequemeren Lektiire wurde der neu aufgenommene Stoff meistens durch Kleindruck
gekennzeichnet, so dass der Leser, dem dieser Stoff zu schwierig erscheint, diese Stellen
zunachst iiberschlagen kann. Ubrigens wird wie friiher fiir alle Uberlegungen nicht mehr
als das in der Schule vermittelte Wissen bendtigt.

Ferner erfuhr der vierte Paragraph einige Erganzungen. AuBerdem wurden hier und. da
einige Anderungen stilistischer Art vorgenommen.

N. N. Worobjow
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Einleitung

1. Die Geschichte des Altertum ist reich an hervorragenden Mathematikern. Viele Er-
gebnisse der antiken Mathematik lassen uns heute noch den Scharfsinn ihrer Autoren
bewundern, und Namen wie Euklid, Archimedes, Heron sind jedem Gebildeten bekannt.

Anders steht es mit der Mathematik im Mittelalter. AuBer Vieta, der jedoch erst im
16. Jahrhundert lebte, und einigen spater lebenden Mathematikern wird im Mathe-
matikunterricht an den Schulen kaum ein Name eines Mathematikers aus dieser Zeit
genannt.

Das ist natiirlich kein Zufall. Die mathematische Wissenschaft entwickelte sich in die-
ser Epoche auBerordentlich langsam, und es gab damals nur sehr wenige bedeutende
Mathematiker.

Von um so groBerem Interesse fiir uns ist daher das Werk "Liber abaci" des beriihmten
italienischen Mathematikers Leonardo von Pisa, der bekannter ist unter seinem Bein-
amen Fibonacci (Fibonacci: Abkiirzung von filius Bonacci, d.h. Sohn des Bonacci).
Dieses Buch, das im Jahre 1202 geschrieben wurde, ist uns in einer Abschrift aus dem
Jahre 1228 erhalten geblieben. Das "Liber abaci" ist ein umfangreiches Werk, das fast
das gesamte arithmetische und algebraische Wissen jener Zeit enthalt.

Es spielte in der Entwicklung der Mathematik in Westeuropa im Laufe der folgenden
Jahrhunderte eine bemerkenswerte Rolle. Insbesondere wurden durch dieses Buch die
arabischen Ziffern in Europa bekannt.

Paare:
1
erster Monat: Mit dem Inhalt des "Liber Abbaci" werden wir durch zahlreiche
2 Aufgaben in dem vorliegenden Heftchen bekannt gemacht.
Zwe'ter3M°“at: Wir wollen jetzt eine solche Aufgabe aus dem "Liber Abbaci"
. , betrachten, die sich auf den Seiten 123 und 124 der Hand-
dritter Monat: ) )
5 schrift von 1228 findet.
ierter Monat: .. . . . .
e er8 ona "Wieviel Kaninchenpaare werden in einem Jahr von einem
fiinfter Monat: Paar erzeugt 7"
13 , _ _ . i
sechster Monat: Jemand sperrt ein Kaninchenpaar in ein allseitig ummauer-
21 tes Gehege, um zu erfahren, wieviel Nachkommen dieses eine
siebenter Monat: Paar im Laufe eines Jahres haben werde. Es wird dabei vor-
) 3:\1/I ausgesetzt, jedes Kaninchenpaar bringe monatlich ein neues
ac ter55 onat: Paar zur Welt, und die Kaninchen wiirden vom zweiten Mo-
neunter Monat-: nat nach ihrer Geburt an gebaren.
89 .
, Da das erste Paar noch im ersten Monat Nachkommen hat,
zehnter Monat: . ) ) ) )
144 sind in diesem Monat zwei Paare vorhanden. Von ihnen ge-
elfter Monat: biert ein Paar, namlich das erste, auch im folgenden Monat,
233 so dass also im zweiten Monat drei Paare vorhanden sind.
zwolfter Monat:
377
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Von diesen haben zwei Paare im folgenden Monat Nachkommen, so dass im dritten
Monat schon zwei Kaninchenpaare geboren werden und die Gesamtzahl der Kaninchen-
paare in diesem Monat auf fiinf anwachst.

Drei dieser fiinf Paare vermehren sich noch im gleichen Monat, und die Anzahl der
Paare erreicht im vierten Monat acht.

Finf davon erzeugen weitere fiinf Paare, die zusammen mit den schon vorhandenen
acht Paaren 13 Paare im fiinften Monat ergeben.

Finf dieser Paare haben im gleichen Monat keine Nachkommen, die (ibrigen acht Paare
gebaren.

Also sind im sechsten Monat 21 Paare vorhanden. Zusammen mit den 13 Paaren, die
im siebenten Monat geboren werden, ergeben sich 34 Paare. Dazu kommen im achten
Monat 21 Paare. Die Anzahl der Paare ist nun 89; sie wachst im zehnten Monat auf
144 an. Davon gehoéren im elften Monat 55 Paare nicht, so dass sich also in diesem
Monat bei einem Zuwachs von 89 Paaren die Zahl der Paare auf 233 erhoht.
SchlieBlich vermehren sich hiervon im zwdlften und letzten Monat 144 Paare, so dass
also nach Ablauf eines Jahres 377 Paare vorhanden sind.

Mit Hilfe der Abbildung kann man sich noch einmal klarmachen, wie wir zu diesem
Resultat kommen. Wir addieren namlich die erste Zahl zur zweiten, d.h. 1 zu 2, die
zweite zur dritten, die dritte zur vierten, die vierte zur funften und so fort, bis wir die
zehnte zur elften Zahl addieren und so die Gesamtzahl der erwdhnten Kaninchenpaare,
also 377, erhalten.

Wir konnen uns diesen Prozess schrittweise bis zu einer unendlichen Anzahl von Mo-
naten fortgesetzt denken."

2. Verlassen wir nun die Kaninchen und betrachten eine Zahlenfolge

Up, U, U3, ... (1)

bei der jedes Glied gleich der Summe der zwei vorangehenden ist; d.h., fiir jedes n > 2
gelte
Up = Up—1 + Up—2 (2)

Solche Folgen, bei denen jedes Glied eine gewisse Funktion vorangehender Glieder ist,
kommen in der Mathematik haufig vor; man nennt sie rekursive Folgen.

Den Prozess der Ermittlung der einzelnen Glieder dieser Folgen nennt man Rekursi-
onsverfahren und eine Gleichung der Form (2) Rekursionsformel. Die Grundlagen der
allgemeinen Theorie der rekursiven Folgen findet der Leser in dem schon erwahnten
Biichlein von Markuschewitsch (siehe Vorwort).

Wir bemerken zunachst, dass die Glieder einer Folge (1) mit Hilfe der Formel (2) al-
lein nicht eindeutig bestimmt werden kénnen. Man kann beliebig viele verschiedene
Zahlenfolgen auf- stellen, die alle der Bedingung (2) genugen, z.B.:

2,5,7,12,19,31, 50, ...,

1,3,4,7,11,18,29, ...,

—1,-5,—6,—11,—17,... usw.




Inhaltsverzeichnis

Die Bedingung (2) ist also zur eindeutigen Aufstellung der Folge (1) offensichtlich
zwar notwendig, aber nicht hinreichend; wir miissen daher noch einige erganzende
Bedingungen angeben.

Man kann z.B. einige der ersten Glieder der Folge (1) vorgehen. Wie viele solcher
Glieder miissen aber mindestens gegeben sein, damit man alle folgenden Glieder unter
alleiniger Benutzung von (2) berechnen kann?

Wir finden, dass mit Hilfe von (2) nicht alle Glieder der Folge (1) zu ermitteln sind,
schon allein deshalb, weil es nicht zu jedem Glied zwei vorangehende Glieder gibt. So
steht vor dem ersten Glied der Folge (iberhaupt kein Glied der Folge, vor dem zweiten
nur ein einziges, namlich wu;.

Zur Berechnung von (1) mit Hilfe von (2) missen wir also auf jeden Fall mindestens
die ersten beiden Glieder der Folge kennen.

Das ist aber offensichtlich auch hinreichend, um jedes beliebige Glied der Folge (1)
berechnen zu kénnen. In der Tat lasst sich u3 als Summe der fiir u; und uy vorgegebenen
Werte darstellen; u4 findet man durch Addition von us zu dem soeben bestimmten us,
us durch Addition der schon ermittelten Werte us und w4 usw., und so der Reihe nach
beliebig viele Glieder.

Indem man auf diese Weise immer von zwei benachbarten Gliedern zum nachstfolgenden
iibergeht, kann man bis zu jedem Glied mit beliebig vorgegebenem Index gelangen und
es ausrechnen.

3. Wir wenden uns jetzt dem wichtigen Spezialfall einer Folge (1) zu, bei welchem
u1 = 1 und ug = 1 sind. Die Bedingung (2) ermdglicht, wie soeben gezeigt wurde, die
sukzessive Berechnung aller Glieder dieser Folge. Wie man leicht nachpriift, sind die
ersten dreizehn Glieder die Zahlen

1,1,2,3,5,8,13,21, 34, 55,89, 144, 233, 377,

die uns schon bei der Lésung der Kaninchenaufgabe begegneten.
Zu Ehren des Verfassers dieser Aufgabe heiBt nun die Folge (1) mit uy = uy = 1 die
Fibonaccische Folge, und ihre Glieder heiBen Fibonaccische Zahlen.

Die Fibonaccischen Zahlen besitzen nun eine ganze Reihe interessanter und wichtiger
Eigenschaften, deren Untersuchung dieses Biichlein gewidmet ist.
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1 Einfachste Eigenschaften der Fibonaccischen
Zahlen

1. Wir berechnen zunachst die Summe der ersten n Fibonaccischen Zahlen, indem wir
beweisen, dass
UL+ U F oo F Uy = Upgo — 1 (1.1)

ist. In der Tat gelten die Beziehungen

Ul = U3z — U2
Ug = Ug — U3

U3 = Uy — Uy
Up—1 = Unp4+1 — Un
Up = Up+2 — Un+1
Durch gliedweise Addition aller dieser Gleichungen folgt
UL+ U2 + ... + Uy = Upgo — U2

und wir brauchen nur noch daran zu erinnern, dass uy = 1 ist.

2. Die Summe der Fibonaccischen Zahlen mit ungeraden Indizes
Ul + ug + ... +Ugp_1 = U9y (12)

Zum Beweis dieser Gleichung schreiben wir

Uy = Uz

Uz = Uqg — U2

Us = Ug — Uy

U2n—1 = U2n — U2n—2

auf und erhalten durch gliedweise Addition dieser Gleichungen die Behauptung.

3. Die Summe der Fibonaccischen Zahlen mit geraden Indizes ist

U + Uy + ... + Uy = Ugpyq — 1 (1.3)
Auf Grund von Abschnitt 1 gilt

U + U + ...+ Uy = Ugpq2 — 1
Subtrahieren wir davon die Gleichung (1.2) gliedweise, so erhalten wir

Ug + ug + ... + Uy = Uy — 1 — Uy = Uy — 1
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was zu beweisen war.
Subtrahieren wir ferner gliedweise (1.3) von (1.2), so folgt

Ul — U2 + U3 — Ug + ... + Uop—1 — Uy = —UQn,1+1 (14)
Wir addieren jetzt auf beiden Seiten dieser Gleichung g, 1:
Uy — U + Uz — Ug + ... — Uy + Uopy1 = Uy + 1 (15)

Als Ausdruck fiir die alternierende Summe der Fibonaccischen Zahlen erhalten wir aus
(1.4) und (1.5) den folgenden:

U] — U +U3 — Ug + ... + (_1)m—|—1um = (—1)m+1um_1 +1 (16)

Der Ausdruck (1.6) stimmt namlich fir ungerade m, m = 2n+1, mit (1.5), fiir gerade
m, m = 2n, mit (1.4) dberein.

4. Die Formeln (1.1) und (1.2) wurden durch gliedweise Addition einer Anzahl trivialer
Identitaten gewonnen. Als weiteres Beispiel fiir die Anwendung dieses Verfahrens moge
die Ableitung der Formel fiir die Summe der Quadrate der ersten n Fibonaccischen
Zahlen dienen:

w4+ ud U = Ut (1.7)

Wir bemerken, dass
_ 2
UpUp41 — Uk—1Uk = Uk (U1 — Up—1)Uj,
ist. Addieren wir nun die ldentitaten
"LL% = U1U2

ug = U2U3 — U1U2

Ug = U3zUq4 — U2U3

2
U, = UpUpt1 — Up—1Un
so erhalten wir (1.7).

5. Viele Beziehungen zwischen den Fibonaccischen Zahlen lassen sich bequem durch
vollstandige Induktion beweisen.

Das Wesen der Methode der vollstandigen Induktiorﬂ (die oft auch als Methode der
mathematischen Induktion bezeichnet wird) besteht in folgendem: Zum Beweis dafiir,
dass eine gewisse Aussage flir jede natiirliche Zahl zutrifft, geniigt es zu zeigen:

a) dass sie fiir die Zahl 1 gilt;

b) dass unter der Annahme, die Aussage gelte fiir eine beliebig vorgegebene natirliche

1Vgl. auch das in derselben Reihe erscheinende Heft: 1.S. Sominski, "Die Methode der vollstandigen
Induktion".
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Zahl n, stets auch ihre Giiltigkeit fir die Zahl n + 1 folgt.

Der Induktionsbeweis einer Behauptung, die fiir jede natiirliche Zahl gelten soll, zerfallt
also in zwei Teile. Im ersten (meist verhaltnismaBig einfachen) Teil weist man die
Glltigkeit der Behauptung fiir die Zahl 1 nach.

Die Giiltigkeit der zu beweisenden Aussage fiir die Zahl 1 wird manchmal die Basis der
Induktion genannt.

Im zweiten Teil des Beweises, der in der Regel bedeutend schwieriger ist, nimmt man an,
die Behauptung gelte fiir eine ganz beliebige (aber fest gewahlte) Zahl n, und folgert
aus dieser Annahme, der sogenannten Induktionsannahme, dass die Behauptung auch
fir die Zahl n + 1 richtig ist. Den zweiten Teil des Beweises bezeichnet man auch als
Induktionsschluss (Schluss von n auf n + 1).

Eine eingehendere Darstellung der Methode der vollstandigen Induktion und zahlreiche
Beispiele fiir ihre Anwendung findet man in der schon erwahnten Broschiire von I. S.
Sominski. So wird insbesondere die nachstehend angewandte Variante der Methode der
vollstandigen Induktion mit dem Schluss "von n und n+ 1 auf n 4 2" in der Broschiire
von Sominski durch die Aufgaben 18 und 19 illustriert.

Manchmal wird auch eine Induktion "von allen Zahlen, die kleiner als n sind, auf n"
verwendet. Dabei ist es nicht notwendig, die Basis der Induktion besonders zu beweisen,
da, formal gesprochen, der Beweis fiir n — 10 genau der Ubergang von "allen" positiven
ganzen Zahlen <1 (die es gar nicht gibt) auf 1 ist.

Mit diesem Verfahren lasst sich beweisen, dass sich jede natiirliche Zahl in Primfaktoren
zerlegen lasst.

Wir setzen voraus, dass sich alle Zahlen, die kleiner als ein gewisses n sind, in ein
Produkt von Primfaktoren zerlegen lassen. Ist n eine Primzahl, so ist sie selbst eine
Zerlegung von sich. Ist n keine Primzahl, so kann sie nach Voraussetzung als Produkt
von mindestens zwei Faktoren geschrieben werden, etwa n = ning mit ny # 1 und
no # 1. Dann ist n; < n und ny < n. Nach Induktionsvoraussetzung lassen sich sowohl
ny, als auch ng in Primfaktoren zerlegen. Somit ist auch n in Primfaktoren zerlegbar.
Eine kompliziertere Variante des Induktionsbegriffs liegt dem Beweis des Satzes in § 2,
Nr. 36, zugrunde.

6. Eine der einfachsten Anwendungen der Idee der vollstandigen Induktion auf die Fi-
bonaccischen Zahlen ist die Definition der Fibonaccischen Zahlen selbst. Die Definition
dieser Zahlen erfolgt, wie wir in der Einleitung erklarten, durch Vorgabe der ersten
beiden Fibonaccischen Zahlen u; = 1 und uy = 1 und durch induktiven Ubergang von
Uy und uy,49 auf u, 9, der durch die Rekursionsformel

Up + Up 1 = Upio (n=1,2,..)

beschrieben wird.

Insbesondere folgt hieraus sofort, dass eine Folge, bei der die ersten beiden Glieder
gleich 1 sind und sich jedes der folgenden Glieder durch Addition der beiden vorherge-
henden ergibt, eine Fibonaccische Folge sein muss.

10
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Als Beispiel dazu wollen wir die sogenannte "Springer-Aufgabe" untersuchen. Ein Sprin-
ger soll sich in einer Richtung langs eines in Felder aufgeteilten Streifens bewegen, indem
er sich bei jedem Sprung entweder in ein benachbartes Feld begibt oder liber das Feld
herliberspringt.

Auf wieviel Arten gelangt er zu dem (n — 1)-ten Feld oder insbesondere vom ersten
zum n-ten Feld? (Wir wollen jene Spriinge als gleich ansehen, bei denen der Springer
in dieselben Felder kommt.)

Die gesuchte Zahl bezeichnen wir mit x,,. Offenbar ist z; = 1 (denn der Ubergang vom
ersten Feld zum ersten Feld lasst sich nur auf eine Art verwirklichen, namlich durch
Verzicht auf den Sprung) und x; = 1 (der Ubergang von ersten zum zweiten Feld ist
ebenfalls nur auf eine Art moglich, und zwar ist es der eine Sprung auf das benachbarte

Feld).

Wir nehmen nun an, der Springer beabsichtige, das (n + 2)-te Feld zu erreichen. Die
Gesamtanzahl der Spriinge ist hierbei nach Definition gleich x,,1 5.

Diese Spriinge lassen sich nun in zwei Klassen einteilen: in die mit dem Sprung in das
zweite Feld beginnende und die mit dem Sprung in das dritte Feld beginnende Klasse.
Aus dem zweiten Feld kann der Springer auf z,, 41 Arten zum (n+-2)-ten Feld gelangen,
aus dem dritten Feld auf x,, Arten.

Also genlgt die Folge der Zahlen x1, xs, ..., x,, ... der Rekursionsformel

Tp + Tp41 = Tpy2
und stimmt daher mit der Folge der Fibonaccischen Zahlen (iberein; es ist also x,, = u,,.
7. Wir beweisen nun durch Induktion die folgende wichtige Formel:
Untm = Unp—1Upm + UpUpmiy (1.8)

Der Beweis dieser Formel wird durch Induktion nach m gefiihrt. Fir m = 1 hat unsere
Formel die Gestalt
Upy1 = Up—1U1 + UpU2 = Up—1 + Up

was trivialerweise richtig ist. Fir m = 2 ist die Gleichung (1.8) wegen
Uppo = Up—1U + UpU3z = Up—1 + 2Up = Up—1 + Up + Uy = Upy1 + Up

ebenfalls richtig. Damit ist der erste Teil des Beweises erbracht. Den Induktionsschluss
flithren wir nun in folgender Form:

Unter der Annahme, die Formel (1.8) sei fiir m = k und fiir m = k+1 richtig, beweisen
wir, dass sie auch fir m = k 4 2 gilt. Es sei also

Uptk = Up—1Uk + UnUk1 und Untk+1 = Up—1Uk4+1 + UpUk42
Addieren wir diese beiden Gleichungen gliedweise, so erhalten wir

Uptk+2 = Up—1Uk+2 + UpUg13

was zu zeigen war.

11
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Die Formel (1.8) lasst sich leicht mit Hilfe der Springer- Aufgabe interpretieren (und
sogar beweisen).

Die Gesamtzahl der Spriinge vom ersten ins (n + m)-te Feld ist namlich gleich w1 ,.
Unter diesen Spriingen sind sowohl solche, bei welchen der Springer liber das n-te Feld
hiniiberspringt, als auch solche, bei denen er auf das n-te Feld springt.

Bei den Spriingen der ersten Klasse ist der Springer verpflichtet, das (n — 1)-te Feld zu
erreichen (er kann dies auf w,_1 Arten tun), dann springt er auf das (n + 1)-te Feld
und schlieBlich auf die tibrigen (n+m) — (n+1) = m — 1 Felder (das ist auf u,, Arten
zu verwirklichen).

Folglich zahlt die erste Klasse u,,_1u,, Moglichkeiten.

Analog erreicht der Springer bei den Spriingen der zweiten Klasse das n-te Feld (das
ist auf u, Arten moglich), wonach er zum (n + m)-ten Feld tbergeht (auf eine der
Um+1 Arten). Also gibt es in der zweiten Klasse w,u,,1 Moglichkeiten, womit Formel
(1.8) bewiesen ist.

8. Setzen wir in der Formel (1.8) m = n, so ergibt sich
Uy = Up_1Up + Uplpi oder Uop = Up (Up—1 + Upt1) (1.9)

Aus (1.9) erkennt man, dass usg, durch u, teilbar ist. Im folgenden Paragraphen bewei-
sen wir eine viel allgemeinere Aussage. Wegen

Up = Up+1 + Up—1

kann man die Gleichung (1.9) auch in folgender Gestalt schreiben

2 2
Uop = (Unt1 — Un—1)(Unt1 + Up—1) oder Uy = Upyq — Up_y
das heiBt aber, dass die Differenz der Quadrate zweier Fibonaccischer Zahlen, deren
Indizes sich um 2 unterscheiden, wieder eine Fibonaccische Zahl ist. Analog beweist
man

3 3 3
U3n = Upy1 + Up — Up_q

(indem man m = 2n setzt).

9. Im folgenden wird uns die Formel
u721+1 = Uplnt2 + (—1)" (1.10)

sehr nitzlich sein. Wir beweisen sie durch Induktion nach n. Fir n = 1 nimmt die
Gleichung (1.10) die Form
us = ujuz — 1

an, und das ist offenbar richtig. Wir nehmen nun die Formel (1.10) fiir ein gewisses n
als bewiesen an. Wir addieren auf beiden Seiten der Gleichung die Zahl u,u, 1 und
erhalten

2 _ n+1
Uy + UpUpt1 = Up—1Upt1 + UpUpi1 + (—1)

12



1 Einfachste Eigenschaften der Fibonaccischen Zahlen

oder
Un (U, + U g1) = Un g1 (Un 1 + ) + (=1)"F
oder
Untpy2 = ui g + (—1)"F!
und schlieBlich
U721+1 = Uy io + (—1)"
Damit ist der Induktionsschluss gefiihrt und die Formel (1.10) fiir jedes natirliche n

bewiesen.

10. Ganz analog wie die soeben bewiesenen Eigenschaften der Fibonaccischen Zahlen
bestatigt man auch die folgenden:

UTU + UUS + USU4 + ... + U2p—_1U2y = u%n
ULU2 + UgUs + UsU4 + ... + UpUopt] = u%nH —1
nuy + (n — Dug + (n — 2)ug + ... + 2Up—1 + Up = Upyg — (n+ 3)
uy 4+ 2ug + 3us + ... + nup = NUp2 — Upsz + 2

Die Beweise moge der Leser selbst fiihren.

11. Nicht weniger bemerkenswert als die Fibonaccischen Zahlen sind die sogenannten
"Binomialkoeffizienten".
Die Koeffizienten von x in der Entwicklung von (1 + x)", also

(z+1)" = (g) + (T)H (Z):cz Fot (Z)x” (1.11)

heiBen Binomialkoeffizienten. Offenbar sind die Zahlen (Z) fur alle positiven n und alle
nichtnegativen ganzen k < n eindeutig bestimmt.

Die Benutzung von Binomialkoeffizienten ist bei vielen mathematischen Uberlegungen
iberaus nutzlich. Wir werden uns auch beim Studium der Fibonaccischen Zahlen ihrer
bedienen. AuBerdem besteht zwischen den Binomialkoeffizienten und den Fibonacci-
schen Zahlen ein gewisser Zusammenhang, und wir werden einige GesetzmaBigkeiten
angeben, die diesen beiden Klassen von Zahlen eigen sind.

Zur Vorbereitung geben wir einige Eigenschaften der Binomialkoeffizienten an.

Wir setzen in (1.11) n = 1 und finden sofort

1 1
pu— pum— 1
AuBerdem gilt folgendes Lemma.

b)) =)
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1 Einfachste Eigenschaften der Fibonaccischen Zahlen

Beweis. Es gilt
142" =1 +2)" (1+2)
oder, wenn wir die Definition der Binomialkoeffizienten benutzen,

(n;l) " (fﬁl)ﬁ (n;l)xz+...+ (gﬁ)xw:
()i )= ()
(o)1)= )]+ ) )

(1+x)

T +

Folglich ist

was zu beweisen war.

Aus diesem Lemma ergibt sich, dass die Binomialkoeffizienten mit Hilfe eines Rekursi-
onsprozesses berechnet werden konnen, der dem fiir die Fibonaccischen Zahlen dhnlich,
aber bedeutend komplizierter ist. Dies ermoglicht uns, Aussagen tber die Binomialko-
effizienten durch Induktion verschiedener Art zu beweisen.

12. Wir ordnen die Binomialkoeffizienten in dem folgenden Schema, dem sog. Pascal-
schen Dreieck an:

1
0 11

(1) . 1 2 1

0 1 1 3 3 1

2 2 2 //

) 8 : LK

; ; ; (3) d.h 1/ 10 10 1

5
1 6 15 20 15 6 1
Ausfiihrlicher wird tiber die Haupteigenschaften des Pascalschen Dreiecks und der mit
ihm verknlpften Binomialkoeffizienten in der Broschiire von W. A. Uspenski, Das Pas-
calsche Dreieck, Moskau 1966 (in russischer Sprache), berichtet.E|

Die Zeilen des Pascalschen Dreiecks werden im allgemeinen von oben nach unten num-
meriert, wobei die oberste Zeile, die nur aus einer Eins besteht, als nullte Zeile gezahlt
wird.

2Vgl. auch die in derselben Reihe erschienene Broschiire von E. B. Dynkin und W. A. Uspenski,
Mathematische Unterhaltungen I, Kap. IV.

14



1 Einfachste Eigenschaften der Fibonaccischen Zahlen

Aus dem Vorhergehenden folgt, dass die duBeren Glieder in jeder Zeile des Pascalschen
Dreiecks gleich 1 sind und jedes der iibrigen Glieder durch Addition des unmittelbar
tber ihm und des links von diesem stehenden Gliedes gebildet wird.

13. Die Formel (1.11) erlaubt uns, sofort zwei wichtige Beziehungen herzuleiten, die
die Binomialkoeffizienten einer Zeile des Pascalschen Dreiecks miteinander verkniipfen.
Setzen wir in (1.11) x = 1, so ergibt sich

L 1 I R I A I
-~ \0 1 2/ 7 \n
setzen wir x = —1, so folgt

Q- ()

14. Wir zeigen durch vollstandige Induktion nach n die Richtigkeit der Beziehung

it

Diese Formel wird haufig zur Definition der Binomialkoeffizienten benutzt. Sie charak-
terisiert den Binomialkoeffizienten (Z) als Anzahl der Kombinationen von n Elementen
zur k-ten Klasse. Wir gehen jedoch hier einen anderen, mehr formalen Weg, der im
gegebenen Fall vorzuziehen ist.

Wenn wir verabreden, dass das Produkt aus null Faktoren gleich 1 sein soll, so erhalten
wir fir £ = 0 aus (1.12) die uns schon bekannte Beziehung (8) = 1. Beachten wir
dies, so konnen wir uns auf den Fall &k > 1 beschranken.

Firn =1 ist
1 1
:—:1

Nun gelte (1.12) fur ein gewisses n und jedes k = 0, 1, ..., n. Wir betrachten die Zahl
(";:1) Wegen k > 1 kénnen wir

()=

oder, benutzen wir die Induktionsvoraussetzung (1.12),

( n )+ (n) _nn=1).(n—k+2) nn—1)..(n—k+2n—k+1)

k—1) " \& 1-2..(k—1) 1-2..(k— 1)k
_nn—1).(n—k+2) n—k+1
B 1-2..(k—1) (H k )
~nn—1).(n—k+2) k+n—k+1
T 1-2..(k—1) k
_(n+nn—-1)..(n—k+2) [(n+1
B 1-2...(k—1k o\ k

15



1 Einfachste Eigenschaften der Fibonaccischen Zahlen

schreiben, und dies ist genau die Formel (1.12) fir die Binomialkoeffizienten der fol-
genden, namlich (n 4 1)-ten Zeile des Pascalschen Dreiecks.

15. Wir ziehen nun im Pascalschen Dreieck Linien, die die Zeilen unter einem Winkel
von 45° schneiden, und nennen sie aufsteigende Diagonalen des Pascalschen Dreiecks.
Auf solchen Diagonalen liegen z. B. die Zahlen 1, 4, 3 oder 1, 5, 6, 1. Wir zeigen
nun, dass die Summe der Zahlen, die auf einer aufsteigenden Diagonalen liegen, eine
Fibonaccische Zahl ist.

Die erste, oberste aufsteigende Diagonale des Pascalschen Dreiecks besteht ebenso wie
die zweite nur aus der Eins. Zum Beweis unserer Aussage genligt es also zu zeigen,
dass die Summe aller Zahlen, welche der n-ten und der (n — 1)-ten Diagonale der Pas-
calschen Dreiecks angehoren, gleich der Summe der Zahlen ist, die auf der (n + 2)-ten
Diagonale liegen.

Die n-te Diagonale enthalt die Zahlen

n—1 n—2 n—3
0 ’ 1 ’ 2 T
die (n + 1)-te die Zahlen
n n—1 n—2
0/’ 1 ’ 2 T
Die Summe aller dieser Zahlen schreiben wir in der Form
n L n—1 L n—1 N n—2 L n—2
0 0 1 1 2
oder, berlicksichtigen wir das Lemma aus Nr. 11,
n+1 L n n n—1 L
0 1 2

Dies ist die Summe der Zahlen, die auf der (n + 2)-ten Diagonale des Pascalschen
Dreiecks liegen.

+ ...

Aus dem eben Bewiesenen folgt auf Grund der Formel (1.1) sofort: Die Summe al-
ler Binomialkoeffizienten, die nicht unterhalb der n-ten aufsteigenden Diagonale des
Pascalschen Dreiecks (also einschlieBlich der n-ten Diagonale selbst) liegen, ist gleich
Up2 — 1.

Unter Benutzung der Formeln (1.2) bis (1.4) und ihnen &hnlicher lassen sich leicht
weitere |dentitaten zwischen den Fibonaccischen Zahlen und den Binomialkoeffizienten
herleiten.

16. Bisher haben wir die Fibonaccischen Zahlen rekursiv, d.h. induktiv nach ihren
Indizes, bestimmt. Es zeigt sich aber, dass jede Fibonaccische Zahl auch unmittelbar
als Funktion ihres Index bestimmt werden kann.
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1 Einfachste Eigenschaften der Fibonaccischen Zahlen

Wir untersuchen dazu Zahlenfolgen uq, us, ..., u,, ..., die der Bedingung

Up = Up—o + Up_1 (1.13)
geniigen. Alle diese Folgen nennen wir Losungen der Gleichung (1.13).
Im folgenden sollen die Buchstaben V', V/ und V" beziehungsweise die Folgen

V1, V2, Vs, ...
/ / /
’U1,1)2,U3,... bzw.
! 1
vl,v2,v3,
bezeichnen. Wir beweisen zunachst zwei einfache Hilfssatze.

Lemma 1. Ist V' eine Lésung der Gleichung (1.13) und ¢ eine beliebige Zahl, so ist auch
die Folge ¢V (d.h. die Folge cvy, cvg, cus, ...) eine Losung der Gleichung (1.13).

Beweis. Multiplizieren wir die ldentitat
Up = Up—2 + Up—1

mit ¢, so ergibt sich
CUp = CUp_2 + CUp_1

was zu beweisen war.

Lemma 2. Sind die Folgen V' und V" Lésungen der Gleichung (1.13), so ist auch ihre
Summe V' + V" (d.h. die Folge v} + v, v) + vl v5 +%,...) eine Lésung der Gleichung
(1.13).

Beweis. Die Voraussetzungen des Satzes besagen:
Up =Upy+ Uy und vp=up g 40,
Wir addieren diese beiden Gleichungen seitenweise und erhalten
U+ v = (Vpoy + Un_y) + (Vo + 05 )
Damit ist der Satz bewiesen.

Es seien nun V’ und V7 zwei nichtproportionale Lésungen der Gleichung (1.13) (d.h.
zwei Losungen dieser Gleichung, die so beschaffen sind, dass zu Jedem beliebig vorge-
gebenen ¢ immer ein Index n gefunden werden kann, fiir den ”,, # c ist). Wir zeigen
nun, dass jede Folge V/, die eine Losung der Gleichung (1.13) ist, in der Form

01‘/1/ + CQ‘/Z// (114)

dargestellt werden kann, wobei c; und co gewisse Konstanten sind. Daher sagt man
auch, (1.14) sei die allgemeine Losung der Gleichung (1.13).
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1 Einfachste Eigenschaften der Fibonaccischen Zahlen

Vorher beweisen wir noch folgendes: Sind V'’ und V" zwei nichtproportionale Lésungen
der Gleichung (1.13), so gilt

vy, v
J¢% (1.15)

(d.h. die Eigenschaft der Folgen V/ und V", nichtproportional zu sein, lasst sich schon
an den ersten beiden Gliedern dieser Folgen nachweisen).

Der Beweis von (1.15) wird indirekt gefiihrt. Dazu nehmen wir an, fiir zwei nichtpro-
portionale Losungen V'’ und V" der Gleichung (1.13) wiirde

vy

gelten. Durch Umformung dieser Proportion erhielten wir

/ / /
V]t Uy Uy
v+l oY

oder, da ja V' und V" Lésungen der Gleichung (1.13) sind,

vy Vg
vy vy

Analog koénnte man (induktiv !) schlieBen, dass

ol v,

gelten wiirde. Aus unserer Annahme (1.16) folgte also, dass die Folgen V' und V"
proportional waren, im Widerspruch zu unserer Voraussetzung. Damit ist die Richtigkeit
von (1.15) nachgewiesen.

Wir betrachten nun eine beliebige Folge V, die Losung der Gleichung (1.13) ist. Dann
ist diese Folge, wie in Punkt 2 der Einleitung gezeigt wurde, durch Angabe ihrer ersten
beiden Glieder v; und vy eindeutig bestimmt.

Wir suchen nun ein ¢; und ein ¢y, die den Gleichungen

/ " / 4
V] + cv] =1 : C1Vs + CoUy = Uy (1.17)

gentigen. Nach Lemma 1 und 2 liefert dann die Summe ¢; V' + o V" gerade die Folge
V.

Wegen der Beziehung (1.15) lasst sich das Gleichungssystem (1.17) nach ¢; und ¢
auflésen, wie auch die Zahlen v; und v9 beschaffen sein mogen:
V1V — vovy Vv — VhUy

Co —

Cl == =
vivy — v]vkg

vivy — v]vkg
Aus der Relation (1.15) folgt, dass der Nenner von Null verschieden ist. Setzen wir die
fir ¢; und ¢y errechneten Werte in (1.14) ein, so erhalten wir die gesuchte Darstellung
unserer Folge V.
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1 Einfachste Eigenschaften der Fibonaccischen Zahlen

Es geniigt also, zwei nichtproportionale Lésungen der Gleichung (1.13) zu kennen, um
alle ihre Losungen angeben zu koénnen.

Wir werden nun diese Losungen mit Hilfe geometrischer Folgen bestimmen. Nach Lem-
ma 1 kénnen wir uns bei unseren Betrachtungen auf solche Folgen beschranken, deren
erstes Glied gleich Eins ist. Wir betrachten also die Folge

17 q7 q27 cce
Damit diese Reihe Losung der Gleichung (1.13) ist, muss fiir jedes n die Bedingung

qn—2 T qn—l — qn
erfiillt sein, d.h., wie sich durch Division durch ¢" 2 ergibt, die Bedingung
l+q=¢ (1.18)

1+v5 1-+5
und

gerade die gesuchten Quotienten der Folge. Wir bezeichnen sie mit « bzw. $ und

bemerken, dass fiir sie als Wurzeln der Gleichung (1.18) die Beziehungen 1 + o = o?,

14+ B =p$%und a3 = —1 gelten

sind

Die Wurzeln dieser quadratischen Gleichung, d.h. die Zahlen

Wir haben so zwei geometrische Folgen erhalten, die Losungen der Gleichung (1.13)
sind. Daher sind alle Folgen der Gestalt

1+, caa+cef, ao’+eb . (1.19)

Losungen der Gleichung (1.13). Da die beiden Folgen verschiedene Quotienten besitzen
(a # ) und daher nichtproportional sind, liefert die Formel (1.19) fiir verschiedene ¢,
und ¢y alle Losungen der Gleichung (1.13).

Insbesondere muss uns die Formel (1.19) fir gewisse ¢; und co gerade die Fibonac-
cische Reihe liefern. Wie oben gezeigt wurde, ist dazu notwendig, ¢; und ¢y aus den
Gleichungen

1+ o =y und cra+ coff = us

d.h. aus dem Gleichungssystem
c Lt \/5 +c L= \/5
e 22
zu bestimmen. Loésen wir dieses System auf, so erhalten wir
1++5 1-+5
= 5 €2 = —
2v/5 2v/5

=1

c1+co=1 und

Daraus ergibt sich
_ n—1 n—1 __
Up = 1" + o =

C14VB (1B 1-VB (1-vE\"
25 2 25 2
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d.h.

14v5)" _ (1=v5)"
() () .

Die Formel (1.20) heiBt nach dem Namen des Mathematikers, der sie erstmalig bewies,
die "Binetsche Formel".

Entsprechende Formeln lassen sich offensichtlich auch fiir die anderen Lésungen von
(1.13) finden. Der Leser moge fiir die im Abschnitt 2 der Einleitung angegebenen Folgen
die Formeln selbst herleiten.

Up =

17. Wir sahen, dass o> = a + 1 ist. Deshalb kann jede ganze positive Potenz der Zahl
a in der Form aa + b mit ganzen Koeffizienten a und b dargestellt werden, namlich

& =adt=ala+)=c*+a=a+l+a=2a+1

at=ac’=aa+1)=20"+ta=2a+2+a=3a+2

usw. Wir zeigen (durch Induktion), dass
o' = upo + Uy

ist. Fir n = 2, 3 ist es klar. Wir nehmen nun an, es sei

2 k1
o = upa + up_q : o™ = up o+

Addieren wir diese Gleichungen seitenweise, so finden wir
k k+1 __
a4+ " = (up + ugp) o+ (ugp—1 + ug)

oder

k+2
QT = Up 200 + Upyl

was zu beweisen war.

18. Mit Hilfe der Binetschen Formel kann man nun bequem viele Reihen summieren,
die mit Fibonaccischen Zahlen zusammenhangen.
Suchen wir beispielsweise einen Ausdruck fur

U3—|—U6+U9—|—...+U3n
so ergibt sich
3 3 6 6 3n 3n
a’ — a’ — o’ —
d LA g
V5

1
= —(@+a+ .+ - —p - =5

V5

oder, wenn man die hierin auftretenden geometrischen Reihen summiert,

1 a3n+3 _ 043 53n+3 _ 53
JB( ad—1 Pl >

us + ug + ... +usg, =

U3+U6—|—...—|—U3n:
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Nun gilt aber
d—l=a+c’—1l=a+a+1—-1=2a

und analog 3% — 1 = 2/3. Daher gilt

1
U3+U6—|—...—|—U3n: <

NG

a3n+3 _ 043 5371—&-3 _ 53
20 28 )

oder umgeformt

1 a3n+2 o 042 . B3n+2 + 62
’LL3+U6++U3n:\/g< 2 )
1 <a3n—|—2 o 63n+2 a2 o 62> 1( ) Uspto — 1
= — — = —(Uu n — U = -
9 \/5 \/5 9 3n+2 2 9

19. Als weiteres Beispiel fiir die Anwendung der Binetschen Formel berechnen wir die
Summe der Kuben der ersten n Fibonaccischen Zahlen.
Wir bemerken zunachst:

; (ak_6k>3 1a3k_3a2kﬁk+3Qk62k_53k
U, = — —
‘ V5 5 V5
1 <a3k _B?)k

- (== T = = (130 = e+ (1))

D

o 30/66]6
Daraus folgt
1
u A us A U = g[(Ug 4 U A o Uz A+ 3(uy — ug +uz — A (—1)" )]

oder unter Benutzung der Ergebnisse aus 18. und der Formel (1.6)

I (uspio —1 Ugny2 + (—1)" T 6up_ +5

5 2

-1 n+1 . _
+ ( ) SUp_1 + 3> 10

ui’—l—u;’—k...—t—ui:(

20. Wir erortern nun die Frage wie schnell die Fibonaccischen Zahlen mit wachsenden
Indizes groBer werden. Auch auf diese Frage gibt uns die Binetsche Formel eine vollig
erschopfende Antwort. Man beweist namlich leicht folgenden Satz.

Satz: Die Fibonaccische Zahl u,, ist die der Zahl f‘/—; d. h. dem n-ten Glied a,, der

geometrischen Folge, deren erstes Glied v und deren Quotient « ist, nachstgelegene
ganze Zahl.

Beweis: Offensichtlich genligt es zu zeigen, dass der absolute Betrag der Differenz von
u, und a,, stets kleiner als % ist. Es gilt aber

an_ﬁn_ain an_an_ﬁn:|ﬁ|n
vh VB V5 Vb

Wegen 5 = —0,68... ist |3| < 1. Folglich ist fiir beliebiges n immer |5|™ < 1 und

daher erst recht % < 3 (da ja v/5 > 2). Damit ist der Satz bewiesen.

|un - an| =
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Der Leser, der mit dem Begriff des Grenzwertes vertraut ist, bestatigt leicht die Glei-
chung
i o, =] =0

deren Beweis nur wenig von dem soeben gefiihrten abweicht.
Benutzen wir den oben bewiesenen Satz, so kdnnen wir die Fibonaccischen Zahlen auch
mit Hilfe einer Logarithmentafel berechnen.

Gesucht sei beispielsweise u14 (die Zahl uy4 ist, wie man sich leicht lberlegt, die Losung
der Fibonaccischen Kaninchenaufgabe):

1++5
o = 2

V5 =2,2361 ; logvb=0,34949 =1,6180 ; loga =0,2089

ql4 o4
log ﬁ =14-0,20898 — 0, 34949 = 2,5762 ; % = 376,9

Die zu 376,9 nachstgelegene ganze Zahl ist 377; das ist aber gerade unsere Zahl 4.

Bei der Berechnung von Fibonaccischen Zahlen mit sehr groBem Index brauchen wir
nicht samtliche Stellen zu beriicksichtigen, die uns die Logarithmentafel angibt. Man
kann sich vielmehr mit den ersten Stellen begniigen, so dass man einen Naherungswert
erhalt.

Zur Ubung mag der Leser beweisen, dass u,, fiir n > 17 héchstens 7 und mindestens
¢ Ziffern im Dezimalsystem besitzt. Aus wieviel Ziffern besteht die Zahl w1000?

21. Das Ergebnis aus Nr. 20 lasst sich noch verbessern. Zunachst beweisen wir den
folgenden Satz, der uns im weiteren niitzlich sein wird.

Satz. Es gilt
n—1/n an+1/n

< Up S

VvV T V5

Beweis. Wir beschranken uns auf den Beweis der linken Seite der Ungleichung; die
rechte Seite lasst sich analog nachweisen.

Da auf Grund der Binetschen Formel

«

Up = \}5(@" - ")
gilt und ferner af = —1 ist, genligt es zu zeigen, dass
a7t < g - 1/a" oder Q2 < g
oder, nach Erheben in die n-te Potenz,
a1 < (a?r = 1) (1.21)

ist. Diese Ungleichung werden wir durch vollstandige Induktion nach n beweisen.
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Fir n =1 geht (1.21) dber in
a< a? —1

das gilt tatsachlich (sogar mit dem Gleichheitszeichen). Fir n = 2 liefert (1.21) die
Ungleichung
o < (ot —1)? (1.22)

Sie lasst sich durch Ausrechnen iiberpriifen; jedoch kann man sie auch beweisen, indem
man die in Nr. 17 hergeleitete Beziehung benutzt. Es ist namlich

ot =3a +2
(a* —1)* = Ba+ 1) =9a* + 6a + 1 = 15a + 10
so dass (1.22) in der offenbar giiltigen Gestalt
a’ =13a + 8 < 15a + 10
geschrieben werden kann. SchlieBlich folgt aus (1.21) fiir n = 3
QT < (a8 1)

was sich analog nachprifen lasst.
Wir nehmen nun an, es sei n > 2 und es gelte (1.21), und beweisen, dass

a2(n+1)2—1 < (a2n+2 . 1>n+1
ist. Dazu geniigt es zu zeigen, dass bei VergroBern von n um 1 die rechte Seite von

(1.21) schneller wachst als die linke. Die linke Seite wachst dabei um das a'"*2-fache.
Die rechte Seite schatzen wir folgendermaBen ab. Es ist

2(n+1 "
= (oD _ 1) (O‘()_l)

a?n — 1

(a2(n+1) . 1)n+1
(a2n _ 1)n

Der letzte Bruch ist groBer als o?; dabei ist

a2(n+1) -1 ) a/2n+2 —1— a2n+2 i (1/2 042 -1

- — o = —
a?n —1 an —1 an —1

1 1
a2n—2 +a2n—4 + ... +CY2 _1’_1 > a2n—1

Folglich ist

Q2+ _1\" ) 1 n ) q2n—2
_ n
a1 > (a —|—Q2n_1) =a +n + ...

die Punkte ersetzen positive Summanden. Da n > 2 vorausgesetzt war, ist dieser
Ausdruck groBer als a?"!. Das bedeutet

(a2(n+1) _ 1)n+1

( 5 1) - (&2(71—&-1) _ 1)((1/271 + 1) — oAnt2 + a2nt2 2
a2n — 1)n

_ a4n+2 + an(a2 _ 1) 1= CY4n+2 + a2n+1 1> O[4n+2
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Also wachst die rechte Seite von (1.21) schneller als die linke. Damit ist der Satz
bewiesen.

22. Wir untersuchen noch eine Klasse von Folgen, die sich auf die Fibonaccischen
Zahlen stiitzen. Es sei x eine beliebige Zahl, und wir wollen die Summe

Sp(x) = wiz + uga® + ... + upa”

berechnen. Dazu benutzen wir die Binetsche Formel:

O(—B 042—522 Oén—ﬁn

Splx) = x + o+ ...+
D="F T 75
= L(cw: +a%2? + ...+ 2" =
In jeder der runden Klammern steht die Summe einer geometrischen Reihe mit dem
Quotienten ax bzw. Sz. Die bekannte Formel fiir die Summe einer geometrischen Reihe
gilt dann, wenn der Quotient der Reihe von 1 verschieden ist. Wenn er gleich 1 ist,

sind alle Glieder der Reihe einander gleich, so dass sich ihre Summe einfach berechnen
lasst.

Wir betrachten zunachst den Fall ax # 1, fx # 1, d.h., es sei x # i = —f und
x # % = —a. In diesen Fallen finden wir, wenn wir in (1.23) die geometrischen Reihen
summieren,

x’l’b

(Bx + %% + ...+ ") (1.23)

1 ot — o 1 Bn+1xn+1 _ 5«’13

Sn(x):ﬁ ar —1 _ﬁ Br—1

oder, umgeformt,

1 (o™ lg" ™ — ax)(Bz — 1) — (B Ha™ — Ba)(ax — 1)

sn(2) = V5 ar —1)(fz —1)

bzw.

1 an+15$n+2 _ anJrlInJrl + ax OéﬂnJrlInJrQ _ BnJrlInJrl + BI

sn() = V5 afa? — (a+ p)r+1 afz® — (o + Bz +1

Wir erinnern uns nun an die Beziehungen af = —1, a+ 3 =1 und o — 5 = /5 und

erhalten
x\/g o (Ozn . 5n)xn+2 . (Ozn+1 o ﬁn+1)xn+1

1
=75 T
und schlieBlich

T — Upx" 2 — upy "t

sp(x) = (1.24)

1—a— 22
Insbesondere ergibt sich, wenn wir hier z = 1 setzen,
- Up — Un+t1

sp(l) =up +ug + ... +upy = _1 = Upyo — 1

was dem Ergebnis aus Nr. 1 entspricht.
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1 Einfachste Eigenschaften der Fibonaccischen Zahlen

Fir z = —1 folgt

$n(—1) = uy—ug+..+(=1)""u, = - = (=1)" My, -1

[vgl. Formel (1.6)].

Wir betrachten nun die lbrigen "Spezialfalle".

Es sei z = é = —f. Dann ist in (1.23) jedes Glied der ersten Reihe gleich 1 und die
Summe folglich gleich n. Bei der zweiten Reihe ergibt sich der Quotient zu —32. Also
ist

1 1 1 2 —1)" n+2
1 62 oo 62
- [ T - 0 )
Nun gelten die Beziehungen
1+52:2+5=2+1_2\/5: 5_2\/5

und

B2 148 _3-V5_B-V5(E+vE) _10-2V5

1+82 248 5-+5 (5—5)(5+5) 20

so dass wir schlieBlich

1 5—1 5—1
o (L) Vool (—1)”52“‘/— (1.25)
o V5 10 10
erhalten.
Nun betrachten wir noch den Fall z = % = —a. Dann ist in (1.23) der Quotient der

zweiten Reihe gleich 1, der der ersten Reihe gleich —a?, und es folgt

5 (;) _ \}5(—(@2 C a4 (=1 — )

Analog zum vorhergehenden Fall erhalten wir

1 1 [((—=1)ra® 2 —a? 1 (— 1) a? a?
Spl=] =— —n|l=—=(-1)"« — —n
B8) V5 1+ a? NG 1+a2 1+a?

und im Ergebnis

5 <1> _ YOt e VEEL (1.26)

3 10 10 NG

23. Wir untersuchen nun, wie sich die Summe s, (z) bei festem = und unbeschrankt
wachsendem n verhalt.
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1 Einfachste Eigenschaften der Fibonaccischen Zahlen

In (1.23) gehen wir zum Grenzwert fiir n — oo iber:

lim s,(z) = lim —=[(az + o?2? + ... + a"2") — (Bx + 22 + ... + B"z")]

1
n=oo n=—oo \/5 [<

= \}_ ,}LI%O(O“'E + a2t o) — \}5 nlg](f}lo(ﬁx + 322 + ... + B"z")
Hier stehen unter den beiden letzten Grenzwertzeichen Summen geometrischer Reihen.
Daher sind die Grenzwerte selbst die Summen der entsprechenden unendlichen geome-
trischen Reihen. Nun ist bekanntlich eine unendliche geometrische Reihe genau dann
konvergent, wenn ihr Quotient dem absoluten Betrag nach kleiner als 1 ist.

Bei den beiden uns interessierenden Reihen sind die Quotienten gleich ax bzw. Szx.
Hier ist |a| > |3|. Aus |ax| < 1 folgt deshalb |fz| < 1. Wenn also die Ungleichung
|ax| < 1 erfillt ist, existieren diese beiden Grenzwerte.

Der Grenzwert
lim s, (z) (1.27)

n—o0

existiert also fiir [z| < £, und wir wollen ihn mit s(x) bezeichnen. Zu seiner Berechnung
konnen wir die Formel (1.24) benutzen.
Zunachst bemerken wir, dass auf Grund des in Nr. 20 Gesagten

gilt. Deshalb ist

n 1.2

— 4+ 1] 2" = "= lim (ax)” + lim z"*?

\/5 ) \/5 n%oo( ) n—>00

Wegen |az| < 1 muss |z| < 1 sein, so dass beide Grenzwerte gleich 0 sind. Aus
demselben Grund ist auch

lim u,z""? < lim <
n—oo n—oo

lim u, 12" =0
n—soo il

Folglich erhalten wir, wenn wir in (1.24) fiir n — oo zur Grenze ibergehen,

_ L — U2 — !
s(z) = lim s,(x) = lim 5
n—00 n—00 1—72—2x
. . x
= (:U — lim u,z""? — lim un+1x"+1> =
l—z—x n—00 n—00 l—z—x

Dieses Resultat lasst sich auch als Reihenentwicklung schreiben:

2 n €z
Ur + ugx”™ + ... +upx” + ... =
l—z—2

(1.28)

Lassen wir = verschiedene Werte annehmen, so erhalten wir verschiedene konkrete
Formeln, z.B. fur z = % die Formel

U1l (5] Unp
—+ =+..+—=+..=2
5ttt t
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24. Zu (1.28) kdénnen wir auch durch andere Uberlegungen gelangen. Wir schreiben
U + upr? + ..+ upx™ + ... = s(x) (1.29)

(dabei erinnern wir uns daran, dass der Ausdruck s(z) nur fir < L sinnvoll ist) und
multiplizieren (1.29) gliedweise mit x und mit 2. Das ergibt

w2 + ugr® 4 o+ up ™+ L= 2s(2) (1.30)

bzw.
wr® + ugxt + . upr™ 4L = 2%s() (1.31)

Dann subtrahieren wir (1.30) und (1.31) von (1.29) und fassen die Glieder mit gleichen
Potenzen von x zusammen:

i + (ug — )z + (ug — ug — uy)x® + (ug — ug — ug)a* + ...
4 (U — Up—1 — Up_2)x" + ... = (1 — . — 2°)s(z)

Die auf der linken Seite dieser Gleichung in runden Klammern stehenden Ausdriicke
sind offenbar gleich 0, so dass

r=(1—2—a%s(z)

und damit (1.28) folgt.

25. Bis jetzt haben wir stets vorausgesetzt, dass der Index n der Fibonaccischen Zahl
u, eine positive ganze Zahl ist. Jedoch lasst sich die grundlegende Rekursionsformel,
die die Fibonaccischen Zahlen definiert, auch in der Gestalt

Up—2 = Up — Up_1 (1.32)

schreiben. Sie kann dazu dienen, Fibonaccische Zahlen mit kleinerem Index durch solche
mit groBerem Index auszudriicken.
Setzen wir in (1.32) nacheinander n = 2,1,0, —1, ... ein, so finden wir

Uy = 0, U_1 = 1, U_9 = —]., U_3 = 2,

und allgemein
U_p = (=1)"u, (1.33)

wie wir uns leicht Gberzeugen konnen (der Beweis sei dem Leser iiberlassen).

Dieser einfache Ausdruck (1.33) fir eine Fibonaccische Zahl mit beliebigem ganzem
Index erlaubt, alle Untersuchungen dieser Fibonaccischen Zahlen auf die Fibonaccischen
Zahlen mit natdrlichen Indizes zurtckzufihren.

Zum Beispiel genligt es, wenn wir die Summe der n Fibonaccischen Zahlen

U—1,U-2y...; U_p
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berechnen wollen, die Summanden mit Hilfe von (1.33) umzuschreiben; die Summe ist

dann gleich

up — ug + ... + (=1)" ",

Dann erhalten wir, wenn wir (1.6) benutzen,
U Fu_gF Uy = (=" — 1= —u_py +1

Der sich auf die grundlegende Rekursionsformel fiir Fibonaccische Zahlen stiitzende
Induktionsbeweis mit dem Schluss "von n und n + 1 auf n + 2" kann jetzt im Zusam-
menhang mit der Beziehung (1.32) nach dem Schema "von n und n — 1 auf n — 2"
gefiihrt werden. Insbesondere lasst sich auf diese Art miihelos die wichtige Formel (1.8),

Up+m = Up—1Um + UpUm+1
fir beliebige ganze n und m beweisen.
26. Die fiir die Zahlen o und 3 grundlegenden Gleichungen
a2 — qn 4 gntl 7 grH2 — gn g gl

gelten nicht nur fiir positive ganze, sondern auch fiir alle ganzen n (fir gebrochene
n bleiben sie ebenfalls giiltig, jedoch werden wir darauf nicht eingehen). Daraus folgt
leicht, dass die Binetsche Formel

fur jedes ganze n gilt.
AbschlieBend sei bemerkt, dass sich auch das Ergebnis aus Nr. 17 (durch Induktion "in
entgegengesetzter Richtung") auf negative Werte des Index iibertragen lasst:

a "t =U_p o+ Uy (1.34)

Diese Gleichung lasst sich umformen in

(1) = (— 1)t

ﬁ + (_1)nun+1

d.h,
5n+1 — un—|—15 + Up,

AuBerdem kann (1.34) auf die Gestalt
a " = (=1)"  upa 4 (=1 up g

gebracht werden, d.h.

oder, umgeformt,

Untl = (—)"a™"— (1.35)
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2 Zahlentheoretische Eigenschaften der
Fibonaccischen Zahlen

1. Wir betrachten nun einige Teilbarkeitseigenschaften der Fibonaccischen Zahlen.
Satz. Ist n durch m teilbar, so ist auch u,, durch wu,, teilbar.

Beweis. Es sei n durch m teilbar, d.h. n = mk. Wir fuhren den Beweis durch Induktion
nach k.

Fir £ = 1 ist n = m. In diesem Fall ist u,, trivialerweise durch u,, teilbar. Wir nehmen
nun an, up,y sei durch u,, teilbar, und betrachten w,,(;1). Nun ist w1y = Unkrm:
und wegen Gleichung (1.8) gilt

Um(k+1) = Umk—1Um + Uk Um+1

Der erste Summand auf der rechten Seite dieser Gleichung ist durch w,, teilbar, der
zweite enthalt w,,; als Faktor, ist also nach Induktionsvoraussetzung ebenfalls durch
u,, teilbar, womit der Satz bewiesen ist.

2. Es sei nun eine beliebige ganze Zahl m gegeben. Gibt es wenigstens eine Fibonac-
cische Zahl u,,, die durch m teilbar ist, so lassen sich beliebig viele durch m teilbare
Fibonaccische Zahlen finden, etwa die Zahlen wus,,, U3, U4, ...

Es ist daher interessant, die Frage zu klaren, ob man zu einer beliebig vorgegebenen
Zahl m immer wenigstens eine durch sie teilbare Fibonaccische Zahl finden kann. Es
zeigt sich, dass das der Fall ist.

Es sei k der bei der Division von k durch m auftretende Rest. Wir bilden nun die Folge
aus den Paaren solcher Reste:

(T, Ua), (Us, Us), (U3, TWa)y vey Ty Up1)s - (2.1)

Nennen wir zwei derartige Paare (aq,b1) und (ag,bs) gleich, wenn a; = by und ay =
by ist, dann ist die Anzahl aller verschiedenen Restpaare, die bei Division durch m
auftreten, gleich m?.
Unter den ersten m? + 1 Gliedern der Folge (2.1) gibt es also mit Sicherheit solche, die
einander gleich sind.

Es sei (uy, ux+1) das erste Paar, das in der Folge (2.1) zum zweiten Mal auftritt. Wir
beweisen, dass dieses Paar das Paar (1, 1) ist. Wir schlieBen indirekt, nehmen also an,
das erste mehrfach auftretende Paar sei das Paar (g, Ui 1) mit k& > 1.

Dann gébe es in (2.1) ein Paar (u;, w;11), [ > k, das gleich dem Paar (uy, ux1) ware.
Da uj—1 = w41 — uwp und ug_1 = ugy1 — up sowie U1 = Ugyy und w; = Uy ware,
so waren auch die bei der Division von wu;_; und w,_; durch m auftretenden Reste
einander gleich, d.h, es ware u; 1 = Uy_1.

Daraus folgte aber, dass auch (uy_1,7) = (w1, ;) ware; das Paar (ug_1,7y) steht
jedoch in der Folge (2.1) vor dem Paar (uy, ux+1), und daher ware (uy, ug41) nicht das
erste mehrfach auftretende Paar, im Gegensatz zu unserer Annahme.
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Wir sehen also, dass die Annahme k& > 1 zu einem Widerspruch fiihrt, und dies besagt,
dass k = 1 ist.

Das Paar (1, 1) ist also in der Tat das erste in der Folge (2.1) mehrfach auftretende
Glied. Es mdge etwa an der t-ten Stelle stehen (in Ubereinstimmung mit dem Obigen
kénnen wir 1 < t << m? + 1 annehmen), d. h., es moge

(U, upr1) = (1, 1)

gelten. Das bedeutet, dass sowohl w; als auch wu;,; bei Division durch im den Rest 1
lassen. Folglich ist ihre Differenz durch m teilbar. Wegen

Ug—1 — Ut = Uj—1

dann also die (¢t — 1)-te Fibonaccische Zahl durch m teilbar.
Wir haben damit den folgenden Satz bewiesen:

Satz. Zu jeder vorgegebenen ganzen Zahl m lasst sich unter den ersten m? — 1 Fibo-
naccischen Zahlen immer wenigstens eine finden, die durch m teilbar ist.

Wir bemerken, dass der bewiesene Satz nichts dariiber aussagt, welche Fibonaccische
Zahl durch m teilbar ist. Er besagt lediglich, dass die erste durch m teilbare Fibonac-
cische Zahl nicht ibermaBig groB ist. Spater werden wir uns dieser Frage nochmals
zuwenden.

Da (1,1) das erste in (2.1) mehrfach auftretende Glied ist, lasst sich die Folge der
Reste, wenn wir mit %; beginnen, gleichsam von Anfang an wiederholen. Diese Folge
ist also periodisch. Zum Beispiel bilden im Fall m = 4 die Zahlen

1,1,2,3,1,0 (2.2)

in der Folge der Reste eine Periode. Die Periodenlange ist gleich 6.
Somit hat u,, bei Division durch 4 den Rest 1 im Fall n = 6k + 1, 6k + 2 oder 6k + 5,
den Rest 2 im Fall n = 6k 4+ 3 und den Rest 3 im Fall n = 6k + 4.

3. GroBes Interesse verdient die Frage nach der arithmetischen Natur der Fibonaccischen
Zahlen, d.h. die Frage nach ihren Teilern.

Wir zeigen, dass u, fiir zusammengesetztes und von 4 verschiedenes n eine zusam-
mengesetzte Zahl ist. (Dabei nennen wir eine Zahl "zusammengesetzt", wenn sie nicht
Primzahl ist; d. U.)

In der Tat kann man ein derartiges n immer in der Form n = nyny schreiben, wobei
1<ny <n,1<ng <nistund ny > 2 oder ny > 2 gilt.

Es sei etwa n; > 2. Dann ist nach dem soeben bewiesenen Satz u,, durch wu,, teilbar,
und es gilt ferner 1 < u,_; < u,. Damit ist gezeigt, dass u,, eine zusammengesetzte
Zahl ist.

4. Bevor wir in unseren Betrachtungen (iber die Fibonaccischen Zahlen fortfahren,
wollen wir uns einiger einfacher Tatsachen aus der Zahlentheorie erinnern.

Wir zeigen zunachst, wie man den groBten gemeinsamen Teiler zweier Zahlen a und b
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bestimmt.

Wir dividieren a durch b mit Rest. Der sich ergebende Quotient sei ¢y, der bei der
Division auftretende Rest r;. Dann gilt offensichtlich a = bgg+ 71 und 0 < r; < b. Far
a <bist qo=0.

Nun teilen wir weiter b durch r1 und bezeichnen den Quotienten mit ¢;, den Rest mit
r9. Dannist b=1r1q1 + 72 und 0 <19 < ry. Dary < bist, ist q; # 0.

Weiter finden wir bei Division von r1 durch 75 ein g2 # 0 und ein r3 mit der Eigenschaft
r1 = @are + r3 und 0 < r3 < ry. In dieser Weise setzen wir den Prozess fort.

Friher oder spater muss die Entwicklung einmal abbrechen, und wir haben eine Rei-
he ganzer positiver und untereinander verschiedener Zahlen 71,175,713, ... erhalten, die
samtlich kleiner als b sind. Die Anzahl der r; kann also b nicht lbersteigen, und der
Divisionsprozess muss spatestens nach dem b-ten Schritte abbrechen. Abbrechen kann
er aber nur dann, wenn einmal eine Division aufgeht, d.h. wenn der Rest gleich Null
wird und eine weitere Division daher nicht moglich ist.

Den soeben durchgefiihrten Prozess bezeichnet man allgemein als Euklidischen Algo-
rithmus. Bei Anwendung dieses Verfahrens auf die Zahlen a und b erhalten wir als
Ergebnis das folgende System von Identitaten:

a = bgy+
b=riq + o
Ty =T2q2 + 13
(2.3)
Tn—2 = Tn—1qn—1 + Tn
T'n—1 = Tnqn

Wir betrachten das letzte von Null verschiedene Glied in der Folge a,b, 1,79, ..., 7. Im
allgemeinen ist dieses Glied der Rest r,, aber im besonderen kann es auch die Zahl b
sein (wegen der Einheitlichkeit kann man b = r( setzen). Offenbar ist r,_; durch r,
teilbar.

Wir wenden uns nun in (2.3) der vorletzten Gleichung zu; die beiden Summanden rechts
und daher auch r,_5 sind durch r,, teilbar.

Ganz analog weist man schrittweise (induktiv !) nach, dass 7,3, 7,4, ... und schlieBlich
auch a und b durch r,, teilbar sind. Also ist r,, ein gemeinsamer Teiler von a und b.

Wir beweisen jetzt, dass r,, auch der groBte gemeinsame Teiler von a und b ist. Dazu
genligt es zu zeigen, dass jeder gemeinsame Teiler von a und b ein Teiler des Restes r,
ist.

Es sei d irgendein gemeinsamer Teiler von a und b. Aus der ersten Gleichung von (2.3)
ersieht man, dass d auch Teiler von r; sein muss. Dann ist d auf Grund der zweiten
Gleichung von (2.3) auch Teiler von 7.

Analog (durch Induktion !) beweisen wir, da r3,...,r,—1 und folglich auch r : n durch
d teilbar sind.

Wir haben also gezeigt, dass die Anwendung des Euklidischen Algorithmus auf die
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natirlichen Zahlen a und b immer auf den groBten gemeinsamen Teiler dieser Zahlen
fihrt. Diesen groBten gemeinsamen Teiler von a und b werden wir im folgenden mit
(a,b) bezeichnen.

Als Beispiel wollen wir (ugg, u15) = (6765,610) bestimmen:

6765 = 610 - 11 + 55,
610 = 55 - 11 + 5,
95 =5-11

Es ist also (ugg, u15) = 5 = us. Die Tatsache, dass der groBte gemeinsame Teller zweier
Fibonaccischer Zahlen wieder zu den Fibonaccischen Zahlen gehort, ist nicht zufallig.
Wir werden im folgenden zeigen, dass dies ganz allgemein der Fall ist.

5. In der Geometrie finden wir ein dem Euklidischen Algorithmus ahnliches Verfahren
bei der Bestimmung der gemeinsamen "MaBeinheit" zweier kommensurabler Strecken.

Betrachten wir also zwei Strecken; die eine habe die Lange a, die andere die Lange b.
Wir tragen die zweite Strecke so oft wie moglich auf der ersten ab (ist b > a, so ist dies
offenbar tiberhaupt nicht moglich) und bezeichnen die Lange des eventuell auftretenden
Bestes mit 1. Offenbar ist 1 < b.

Dann tragen wir die Strecke 71 so oft wie moglich auf der Strecke b ab und bezeichnen
den neu auftretenden Rest mit ro. Fahren wir in dieser Weise fort, so erhalten wir
schlieBlich eine Folge von Reststrecken, deren Lange offensichtlich immer kleiner wird.
Soweit besteht also vollstandige Ubereinstimmung mit dem Euklidischen Algorithmus.

Im folgenden jedoch unterscheidet sich das soeben beschriebene geometrische Verfahren
grundsatzlich vom Euklidischen Algorithmus fiir natiirliche Zahlen: Die Folge der Reste,
die sich beim Vergleich der Strecken ergeben, braucht nicht abzubrechen, da der Prozess
keine bestimmte Lange zu haben braucht. Das ist immer dann der Fall, wenn die
vorgegebenen Strecken inkommensurabel sind. Aus den Uberlegungen von Nr. 4 ergibt
sich also u.a., dass zwei Strecken, deren Lange sich durch ganze Zahlen ausdriicken
lassen, immer kommensurabel sind.

Wir leiten jetzt einige einfache Eigenschaften des groBten gemeinsamen Teilers zweier
Zahlen ab.

6. (a,bc) ist teilbar durch (a,b).

Beweis: b und daher auch bc ist durch (a,b) teilbar; (a,b) teilt aber auch a. Folglich
ist nach dem in Punkt 1 Bewiesenen auch (a, bc) durch (a,b) teilbar.

7. (ac,bc) = (a,b)c.

Beweis: Die Gleichungen (20) beschreiben das Verfahren der Bestimmung von (a,b).
Multiplizieren wir nun jede dieser Gleichungen mit ¢, so erhalten wir, wie man leicht
bestatigt, ein Gleichungssystem, das dem Euklidischen Algorithmus fiir die Zahlen ac
und bc entspricht. Der letzte nichtverschwindende Rest ist dann gleich 7, - ¢, d.h. gleich
(a,b) - c.
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8. Aus (a,c) = 1 folgt (a,bc) = (a,b). Es ist namlich nach den Ergebnissen von Punkt
3 (ab, bc) durch (a, be) teilbar. Aus Punkt 4 ergibt sich

(ab,bc) = (a,c)b=1-b=1>

Folglich ist b durch (a,bc) teilbar. Andererseits ist (a, bc) ein Teiler von a. Dann geht
(a,bc) nach Nr. 4 auch in (a,b) auf. Da aber nach Punkt Nr. 6 (a,b) auch ein Teiler
von (a, be) ist, folgt (a,b) = (a, bc).

Nun sei bc durch a teilbar. Das bedeutet (a,bc) = a. Ist dabei (a,c) = 1, so ist nach
dem eben Gesagten (a,b) = a, d.h., a ist Teiler von b.

Ist p eine Primzahl, so lasst sich entweder jede Zahl a durch p teilen, oder a und p
sind teilerfremd. Wenn also ein Produkt zweier Zahlen durch eine Primzahl p teilbar
ist, teilt dieses p nach dem Vorhergehenden wenigstens einen der beiden Faktoren.
Offenbar lasst sich diese Behauptung durch Induktion auf Produkte beliebig vieler Zah-
len tbertragen.

9. Wir fragen nun nach der Teilbarkeit der Binomialkoeffizienten.

Satz. Ist p eine Primzahl und & eine Zahl mit k£ # 0 und k # p, so ist G;) durch p
teilbar.

Beweis. Wir kennen aus § 1, Nr. 14, die Beziehung

(p) _plp—1)..(p—k+1)
k 12k

Da dieser Bruch in Wirklichkeit eine ganze Zahl ist, muss sein Zahler durch den Nenner
teilbar sein. Nun ist jeder Faktor des Nenners kleiner als p und daher durch p nicht teil-
bar, so dass sich nach dem Vorhergehenden der ganze Nenner nicht durch die Primzahl
p teilen lasst. Also ist der Nenner zu 2 teilerfremd.

Den Zahler fassen wir als Produkt der Zahl p mit der Zahl (p—1)...(p—k+1) auf. Dieses
Produkt lasst sich durch den Nenner teilen. Da die Zahl p und der Nenner teilerfremd
sind, muss der Nenner Teiler des zweiten Faktors, namlich Teiler von (p—1)...(p—k+1)
sein. Setzen wir

p—1)..p—k+1)=t-1-2-..-k
so ist (Z) = tp, was zu beweisen war.
10. Ist ¢ durch b teilbar, so ist (a,b) = (a + ¢, b).

Beweis: Die Anwendung des Euklidischen Algorithmus auf die Zahlen a und b fiihrt zu
dem Gleichungssystem (2.3). Wir wenden nun den Algorithmus auf die Zahlen a + ¢
und b an.

Da ¢ durch b teilbar ist, wir also ¢ in der Form ¢ = ¢1b schreiben konnen, liefert uns
der erste Schritt des Algorithmus die Gleichung

a+c=(q+c1)b+m
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Alle weiteren Schritte des Algorithmus fiihren uns nacheinander auf die zweite, dritte,
.. usw. Gleichung des Systems (2.3). Als letzter nichtverschwindender Rest erscheint
wie friher r,, woraus sich die Behauptung (a,b) = (a + ¢, b) ergibt.

Es sei dem Leser zur niitzlichen Ubung empfohlen, diesen Satz unter ausschlieBlicher
Verwendung der Ergebnisse der Nr. 6 bis 8, d.h. ohne wiederholte Anwendung des
Euklidischen Algorithmus und ohne Benutzung des Systems (2.3), zu beweisen.

11. Satz. Zwei benachbarte Fibonaccische Zahlen sind teilerfremd.

Beweis. Wir nehmen entgegen der Behauptung des Satzes an, u,, und u,; besidBen
irgendeinen gemeinsamen Teiler d > 1. Dann ware ihre Differenz u,; — u,, also
Up_1 = Ups1 — Up, durch d teilbar.

Analog zeigt man (durch Induktion!), dass auch w, 2, u,_3,... usw. und schlieBlich
uy durch d teilbar waren. Nun ist aber bekanntlich u; = 1 und daher sicher nicht
durch d > 1 teilbar. Damit ist unsere Annahme zum Widerspruch gefiihrt und der Satz
bewiesen.

12. Satz: Es gilt die Gleichung (U, un) = U ).

Beweis: Ohne Beschrankung der Allgemeinheit konnen wir m > n annehmen. Wir
wenden nun auf die Zahlen m und n den Euklidischen Algorithmus an:

m =nqgy+ 1 mit 0<r <n,
n=riq +re mit 0<ry <y,
1 = T9Qy + T3 mit 0<r3<ry,
T =T 1q—1 + 1 mit 0<r <ria,
L1 = Teqy

Wir wissen aber bereits, dass r; der groBte gemeinsame Teiler von m und n ist. Wir
konnen also wegen m = nqy + r1 schreiben:

(U, Un) = (Ungotr, UN) oder (U Un) = (Ungo—1Ur + UngoUr 41, Up)
und auf Grund der Ergebnisse der Nr. 1 und 10
(U, Un) = (Ungo—1Ury, Un)
wegen Nr. 11 und 8 erhalten wir hieraus:
(Uny Up) = (Upy, Uy
Analog beweist man
(Uryy Un) = (Upys ) 5 (g, Upy) = (U, ) 5 5 (U Uy ) = (U, Uy, )

Diese Gleichungen liefern zusammen:

(uma Un) = (urw u"“t71>

34



2 Zahlentheoretische Eigenschaften der Fibonaccischen Zahlen

und da 7, ein Teiler von r;_; ist, so dass auch wu,, , durch wu,, teilbar ist, folgt

(Un: unq) = U,

Erinnern wir uns schlieBlich, dass r; = (m,n) ist, so kommen wir zu dem verlangten
Ergebnis.

Insbesondere folgt aus dem soeben bewiesenen Satz die Umkehrung des Satzes von Nr.
1:

Ist u,, teilbar durch w,,, so ist auch n teilbar durch m.
In der Tat folgt aus der Teilbarkeit von u,, durch u,, nach Nr. 8

(U, Upy) = Uy (2.4)

Wie wir eben bewiesen haben, ist aber

Aus den Gleichungen (2.4) und (2.5) zusammen erhalten wir unmittelbar

Um = U(n,m)
d.h. m = (n,m); das bedeutet aber, dass n durch m teilbar ist.

13. Der Satz aus Nr. 1 und die Folgerung aus dem Satz in Nr. 12 ergeben zusammen:
U, ist dann und nur dann durch w,, teilbar, wenn n durch m teilbar ist.

Man kann also lber die Teilbarkeit von Fibonaccischen Zahlen Aussagen machen, indem
man die Teilbarkeit ihrer Indizes untersucht.

Wir gehen nun als Beispiel einige Teilbarkeitskriterien fiir Fibonaccische Zahlen an.
Darunter verstehen wir hier Kriterien, mit deren Hilfe man feststellen kann, ob eine
vorgegebene Fibonaccische Zahl durch irgendeine gegebene Zahl teilbar ist oder nicht.

Eine Fibonaccische Zahl ist dann und nur dann gerade (durch 2 teilbar), wenn ihr Index
durch 3 teilbar ist.

Eine Fibonaccische Zahl ist dann und nur dann durch 3 teilbar, wenn ihr Index durch
4 teilbar ist.

Eine Fibonaccische Zahl ist dann und nur dann durch 4 teilbar, wenn ihr Index durch
6 teilbar ist.

Eine Fibonaccische Zahl ist dann und nur dann durch 5 teilbar, wenn ihr Index durch
5 teilbar ist.

Eine Fibonaccische Zahl ist dann und nur dann durch 7 teilbar, wenn ihr Index durch
8 teilbar ist.

Diese und ahnliche Teilbarkeitskriterien kann der Leser mit Hilfe des zu Anfang die-
ses Punktes formulierten Satzes leicht selbst beweisen, indem er beziehungsweise die
dritten, vierten, sechsten, flinften, achten usw. Fibonaccischen Zahlen betrachtet.

Der Leser moge auch beweisen, dass keine Fibonaccische Zahl existiert, die bei Division
durch 8 den Rest 4 lasst, sowie die Tatsache, dass es keine ungerade Fibonaccische Zahl
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gibt, die durch 17 teilbar ist.

14. Im Laufe dieses Paragraphen stieBen wir oft auf Aussagen der Art "die Zahlen a
und b lassen bei Division durch m denselben Rest" oder, was im wesentlichen dasselbe
ist, "die Differenz @ — b ist durch m teilbar".

Wir missen lernen, mit diesen Begriffen sicher umzugehen und beide Aussagetypen
gleichzeitig zu verwenden. Wir werden deshalb, wie es in der Zahlentheorie iiblich ist,
diese Aussagen durch Formeln ausdriicken. Dazu missen wir uns einen "Kalkil" schaf-
fen.

Definition. Zwei Zahlen a und b heiBen kongruent modulo m, wenn a und b bei Division
durch m den gleichen Rest ergeben oder wenn a — b durch m teilbar ist. Anderenfalls
heiBen sie inkongruent modulo m. Die Kongruenz von a und b modulo m driickt man
durch die Schreibweise

a=b (modm)

aus. Die natiirliche Zahl m heiBt der Modul der Kongruenz.

Offenbar ist, wenn m einen Teiler von a bezeichnet,
a=0 (modm)
und umgekehrt.

15. Kongruenzen modulo derselben Zahl lassen sich - ahnlich wie Gleichungen - seiten-
weise addieren.

Lemma. Ist
a; =b;  (mod m),
as = by (mod m),
a, =b, (mod m)

sogilta; +as+ ... +a, =by +bs+ ... + b, (mod m).

Beweis. Die Voraussetzung besagt, dass m ein Teiler jeder der Differenzen
a1 — by, ay—"by, ..., a,—by,
und daher auch Teiler ihrer Summe
(a1 —b1)+ (ag—bo) + ...+ (an —by) d.h. (a1 +ag+...4+a,)— (b1 +ba+...+0by)

ist, was zu beweisen war.

16. In Nr. 9 zeigten wir, dass fiir eine Primzahl p und eine Zahl k (0 < & < p)

(i) =0 (mod p) (2.6)
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gilt. Diese Kongruenz lasst sich auch in der Form

(k i 1) =p (mod p) (2.7)

mit 0 < k < p — 1 schreiben.
Fir 0 < k < p— 1 gelten also beide Kongruenzen (2.6) und (2.7). Ihre Addition ergibt

p P _ p+1) _
(k) + <k+ 1) = (mod p) : (k+ 1) =0 (mod p)

d.h., in der (p + 1)-ten Zeile (p Primzahl) des Pascalschen Dreiecks sind alle Glieder
auBer vier (ndmlich den beiden duBersten rechten und linken) Gliedern durch p teilbar.
Es lasst sich auch leicht nachweisen, dass
1
(p+ )El (mod p)

p+1\_ (p+1) _ (p+1
0o/ 1 Ly p+1
17. Der Kongruenz (2.6) kann man auch die Gestalt

p—1 p—1) _ p—1
(k—1)+( i ):0 (mod p) oder (k—l)

-1
—(pk ) (mod p)
geben. Dies gilt fiir jedes k = 1,2, ...,p — 1. Das bedeutet:

p—1 p—1 p—1 p—1 p—1
= — = = — =..= (mod p)

0 1 2 3 p—1
Wegen (pal = 1 besagt die letzte Kongruenz, dass in der (p — 1)-ten Zeile des Pas-
calschen Dreiecks die erste, dritte, ... Zahl kongruent 1 und die zweite, vierte, ... Zahl

kongruent -1 modulo p ist.

ist.

18. Kongruenzen modulo derselben Zahl kdnnen nicht nur addiert, sondern auch mul-
tipliziert werden.

Lemma. Ist a; =b; (mod m)

an =b, (mod m) (2.8)
so gilt
ajas...a, = bibs...b, (mod m) (2.9)

Beweis (durch vollstandige Induktion nach n). Fiir n = 1 ist die Aussage trivial. Wir
setzen voraus, dass sie fiir ein gewisses n > 1 richtig ist [d.h., dass (2.9) aus (2.8)
folgt], und figen zu (2.8) die Kongruenz

Upi1 = bpr1 (mod m) (2.10)
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hinzu. Die Kongruenzen (2.9) und (2.10) besagen, dass die Differenzen ajas...a, —
bibs...b, und a,1 — byy1 durch m teilbar sind. Folglich ist

a1as...a, = biby...b, + mT , Qi1 = bp_1 +mt
(T, t ganze Zahlen). Multiplizieren wir diese Gleichungen seitenweise, so ergibt sich
a103...ap0,+1 = bibo...byby 1 + m(b1by...bpt + by 1T + mTt)
In der runden Klammer steht eine ganze Zahl. Somit ist
a103...ap0,1+1 = bibe...byby 1 (mod m)
was zu beweisen war.

Aus dem bewiesenen Lemma lasst sich schlieBen, dass beide Seiten der Kongruenz in
eine beliebige nichtnegative Potenz erhoben werden konnen.

Als trivialer Spezialfall ergibt sich die folgende Tatsache: Das Produkt von Zahlen der
Form 4t + 1 hat ebenfalls die Form 4¢ + 1.
Sind namlich n Zahlen a4, as, ..., a, gegeben, so ist nach Voraussetzung

ap =1 (mod4), ay=1 (mod4), .. a,=1 (mod4)
woraus, wenn wir diese Kongruenzen seitenweise multiplizieren,
ajas...a, =1 (mod 4)
folgt.

19. Die Regel fiir das Kiirzen von Kongruenzen lautet so dhnlich wie bei Gleichungen;
eine Gleichung kann man durch jede von Null verschiedene Zahl, eine Kongruenz durch
jede zum Modul teilerfremde Zahl dividieren.

Lemma. Ist
ac =bc (mod m) (2.11)

mit (¢,m) = 1, so gilt
a=b (modm) (2.12)

Beweis. Die Differenz ac — bc = (a —b)c ist durch m teilbar [aufgrund von (2.11)], und
da (¢,m) = 1 ist, muss m Teiler von a — b sein, also (2.12) gelten.

20. Bei vielen Untersuchungen erweist sich die folgende Behauptung, der sogenannte
"Kleine Fermatsche Satz", als nitzlich.

Satz. Ist p eine Primzahl und a eine nicht durch p teilbare Zahl, so gilt
a?'=1 (mod p)
Beweis. Wir betrachten die Zahlen

a,2a,...,(p—1)a (2.13)
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Je zwei von ihnen sind inkongruent modulo p. Ware namlich
ka =la (mod p)
so folgte wegen (a,p) = 1 aufgrund von Nr. 19
k=1 (mod p)

d.h., p ware Teiler von k — [, was jedoch fiir 0 < k,l < p und k # [ unmoglich ist.

AuBerdem ist keine der betrachteten Zahlen (2.13) durch p teilbar, d. h., alle Zahlen
(2.13) haben bei Division durch p die von Null und voneinander verschiedenen Reste
1,72, .y Tp—1.

Nun gibt es p—1 Zahlen (2.13) und p— 1 von Null und voneinander verschiedene Reste
nach Division der Zahlen (2.13) durch p; folglich kommt nach Division der Zahlen (2.13)

durch p mit Rest jeder der Reste 1,2,...,p — 1 unter den Zahlen ry, 7, ...,7,—1 vor.
Also ist

a=71 (mod p)
2a =719 (mod p)

(p—1a=r,-1 (mod p)
Seitenweise Multiplikation dieser Kongruenzen ergibt
1-2-..-(p—1Da" ' =rre..rpqy  (mod p) (2.14)

Wie wir eben erwahnten, stimmen die Zahlen 71,79, ...,7,—1 mit den nur in anderer
Reihenfolge angeordneten Zahlen 1,2,...,p — 1 lberein. Folglich lasst sich (2.14) auf
die Form

1-2-..-(p=Da"'=1-2-...-(p—1) (mod p) (2.15)

bringen. Da das Produkt 1-2-...- (p—1) zu p teilerfremd ist, konnen wir die Kongruenz
(2.15) kiirzen und erhalten
a?'=1 (mod p)

Damit ist der Satz bewiesen.

21. In Nr. 2 haben wir gesehen, dass unter den Teilern der Fibonaccischen Zahlen alle
Zahlen auftreten. Jetzt wollen wir uns davon (iberzeugen, dass man die Fibonaccischen
Zahlen, deren Teiler eine bestimmte Form haben, in Klassen zusammenfassen kann.
Beispielsweise gilt der folgende Satz.ﬁ

Satz. Samtliche ungeraden Teiler einer Fibonaccischen Zahl mit ungeradem Index haben
die Form 4t + 1.

3Der Autor dankt einem Leningrader Leser, der sich fiir die Fibonaccischen Zahlen interessiert und
auf diesen Satz hingewiesen hat.
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Beweis. Die Formel (1.10) vgl. § 1, Nr. 9 - liefert fir ungerades n
U2 = Up_1Upi1 + 1
daraus folgt
Up 1 Up—9 — U2 = Up_1 (U1 + Up) — U2 = U2 | 4+ Uy 1y —u? = —1 (2.16)

Nun sei p (p # 2) ein Primteiler von u,,. Aus (2.16) folgt, dass u?_; + 1 durch u,, und
somit auch durch p teilbar ist. Folglich gilt

S

u; 1 =-—1 (mod p)

Wir erheben beide Seiten dieser Kongruenz in die (pgl)-te Potenz:

(u2 )(p—l)/2 — up:ll = (_1)(1)—1)/2 (mod p)

n—1 n

Ferner ist (u,_1,u,) = 1, so dass u,_1 nicht durch p dividiert werden kann. Das stimmt
genau mit den Voraussetzungen des Kleinen Fermatschen Satzes liberein und bedeutet
(vgl. Nr. 20)

W I=1 (mod p)

Also ist
(—D)PV2=1 (modp) dh (=P H2=1

Also muss % eine gerade Zahl und somit p von der Form 4t 4 1 sein.

Damit haben alle ungeraden Primteiler von w,, und folglich (vgl. den Schluss von Nr.
18) auch alle ihre Produkte, d. h. iberhaupt alle (vgl. § 1, Nr. 5) ungeraden Teiler von
u,, die Form 4t + 1.

22. Aufgrund der Definition der Kongruenz sind alle Zahlen, die nach Division durch
m denselben Rest lassen, zueinander kongruent modulo m. Dagegen sind Zahlen, die
nach Division durch m verschiedene Reste haben, inkongruent.

Der Rest nach Division durch m kann eine der Zahlen 1,2,...,m — 1 sein, so dass es
hochstens m modulo m inkongruente Zahlen gibt. Nun sei m eine ungerade Zahl, und
wir betrachten die m Zahlen

m—1 m-—3 m—3 m—1

— — ey, —1,0,1,2, ...
2 Y 2 Y Y 707 Y Y Y 2 Y 2

(2.17)

Je zwei von ihnen sind inkongruent modulo m (sonst misste ihre Differenz durch m
teilbar sein, aber deren Absolutbetrag ist kleiner als m und von Null verschieden).
Folglich ist jede Zahl zu einer der Zahlen (2.17) kongruent modulo m. Die Zahlen
(2.17) bilden das sogenannte absolut-kleinste Restsystem modulo m. Offenbar ist der
Absolutbetrag jedes der absolut-kleinsten Reste kleiner als der halbe Modul.

Fir gerades m lasst sich ebenfalls ein absolut-kleinstes Restsystem angeben. Es sieht
etwas anders aus als (2.17), und zwar
m—2 m-—4 m—2 m

— — oy —1,0,1, ——, —
2 Y 2 Y Y Y 72
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Wir gehen jedoch darauf nicht weiter ein, da wir es nicht bendtigen.

23. Es sei m eine ungerade und nicht durch 5 teilbare Zahl. Wir bilden dann das absolut-
kleinste Restsystem modulo m der Zahlen 5,2-5,3-5, ..., mT_l - 5. Beispielsweise lautet
dieses Restsystem fiir m = 21

5,10, —6,—1,4,9, -7, —2,3,8

Wir wollen nun klaren, wie die positiven und die negativen absolut-kleinsten Reste bei
verschiedenen m aufeinanderfolgen. Es wird sich zeigen, dass dies von der letzten Ziffer
der Zahl m (im Dezimalsystem) abhangt.

Lemma. Im Fall m = 10f + 1 wechseln die Vorzeichen im absolutkleinsten Restsystem
folgendermaBen: ¢ positive, t negative, t positive, ¢ negative, ¢ positive Reste.

Ist m = 10t + 3, so ergeben sich ¢ positive, t negative, t positive, t + 1 negative, t
positive Reste.

Fir m = 10t 4+ 7 weist das Restsystem ¢ positive, t + 1 negative, t 4+ 1 positive, t
negative, ¢ + 1 positive Reste auf.

Im Fall m = 10t+9 ergeben sich ¢ positive, t+1 negative, t+ 1 positive, t+ 1 negative,
t + 1 positive Reste.

Beweis. Jede dieser vier Behauptungen lasst sich einzeln durch Ausrechnen bestatigen.
Wir beschranken uns auf den Beweis der ersten Behauptung und iiberlassen die anderen
Beweise dem Leser.

Es sei also m = 10t + 1. Offenbar ist bk < mT_l fur k < t, so dass alle diese Zahlen
5k schon absolut-kleinste Reste modulo m sind. Ihre Anzahl ist gleich ¢, und der letzte
Rest ist 5t.

Wegen 5(t+1) > "1 ist der darauffolgende absolut-kleinste Rest negativ (er ist gleich
+5t +4).

Addieren wir zu diesem Rest ¢ — 1 Mal die Fiinf, so erhalten wir die ganze Serie der ¢
negativen Zahlen, die mit -1 endet. Dann folgt die positive Zahl 4, wonach sich noch
t —1 positive Zahlen (d.h. bis einschlieBlich 44 (¢ —1)-5 = 5t — 1) anschlieBen. Danach
erscheinen wieder negative Zahlen (von —5¢ + 3 bis -2; insgesamt ¢ Zahlen).
SchlieBlich erhalten wir die ¢ positiven Schlussglieder 3, ..., 5t — 2 des Restsystems. Da-

mit ist die erste Behauptung des Lemmas bewiesen.

An diesem Lemma interessiert uns ganz besonders die Tatsache, dass die Anzahl der
negativen Glieder im absolut-kleinsten Restsystem modulo m fiir m = 10t £+ 1 gerade
und fiir m = 10t 4+ 3 ungerade ist.

24. Lemma. Ist p eine Primzahl der Form 5t + 1, so ist 57-1/2 _1 durch p teilbar. Ist
p eine Primzahl der Form 5t + 2, so ist 57~1)/2 4+ 1 durch p teilbar.

Beweis. Es ist 5=¢r; (mod p)
2-5=eg9ry (mod p)

p—1
5 5= cpoyere-nz  (mod p)
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wobei g;7y die absolut-kleinsten Reste von k - 5 modulo p sind (r; > 0; g = £1 gibt
das Vorzeichen des Restes an).
Wir multiplizieren alle diese Kongruenzen seitenweise und erhalten

p—1

1-2..
2

: 5(p—1)/2 = 8162...8(27,1)/27’17“2...7”@,1)/2 (mod p) (2.18)
Bei den folgenden Uberlegungen stiitzen wir uns auf den Beweis des Kleinen Fermat-
schen Satzes.

Keine der positiven Zahlen 71,79, ...,7(,_1)/2 ist groBer als ’%1.

Gabe es unter diesen Zahlen gleiche, ware etwa r, = 1 (1 <kIl< %) so ware
bk = +5[ (mod p), also wegen (5,p) = 1 auch k = +I (mod p). Das ist aber wegen

—p<k—-Il<k+4+Il<p und k—1+#0

unméglich. Also mussen alle Zahlen rq, 72, ...,7(,-1)/2 voneinander verschieden sein, d.

h., sie stimmen mit den nur in anderer Reihenfolge angeordneten Zahlen 1,2, ...,%

uberein. Da alle diese Zahlen zu p teilerfremd sind, kénnen wir (2.18) durch ihr Produkt
1- 2...1%1 dividieren, und wir finden

5(=1/2 = €1€2...€(p—1)/2 (mod p)

Nun ziehen wir das Lemma aus Nr. 23 heran. Danach ist die Anzahl der im Produkt
€1€2...€(p—1)/2 enthaltenen negativen Faktoren gerade fiir p = 10¢ &= 1 (da p ungerade
ist, ist dies gleichbedeutend damit, dass p die Form 5¢ &+ 1 hat) und ungerade fiir
p = 10t =3 (d.h., p hat die Gestalt 5¢ + 2). Damit ist der Beweis beendet.

25. Nun konnen wir den grundlegenden Satz iiber die Teilbarkeit der Fibonaccischen
Zahlen durch eine Primzahl beweisen.

Satz. Hat eine Primzahl p die Form 5t 4+ 1, so ist sie Teiler von Up—1. Ist p = 5t = 2,
so ist p Teiler von 4.

Beweis. Zunachst sei p = 5t &+ 1. Nach der Binetschen Formel (1.20) ist
S

B 1+\/5 p—1 1_\/5 p—1
s T2 T2
Ll [1+< ;1)¢5+(p;1)<¢5>2+
o oo

1

oder, nach Vereinfachung,
. 1 p—]_ p—l —1 2 —1 (p—3)/2
w1 = = [( ) )+( ) ) 5+( : ) ; +...+(p_2) :
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Aufgrund des in Nr. 17 Gesagten sind alle hier auftretenden Binomialkoeffizienten kon-
gruent 1 modulo p. Also folgt

P Ly, 1 =201 +5+ ..+ 5732 (mod p)

und hieraus
5(P-1/2-1 _
Up—1 = 5 (mod p)
wenn wir die geometrische Reihe summieren und beriicksichtigen, dass 2°~1 = 1

(mod p) gilt. Nach Nr. 24 ist der Zahler des rechts stehenden Bruches und wegen
(p,2) = 1 auch der gesamte Bruch durch p teilbar.
Also ist p auch Teiler von wu,_1, so dass der erste Teil des Satzes bewiesen ist.

Wir wenden uns nun dem Fall p = 5¢ &= 2 zu. Dann erhalten wir, wieder mit Hilfe der
Binetschen Formel (1.20),

1 1 1 +1
(p—i— )-i—(p—; )-5—!—(29; )-52+...+(pp )-5(p_1)/2] (mod p)

Nach Nr. 16 lassen sich alle Summanden in der Klammer, auBer den beiden auBeren,

durch p teilen, und (pJ{l) = (p;?l) gibt nach Division durch p den Rest 1. Daher ist

1

Uptr] = —
Pl = 5

1
Upt1 = 5[1 + 5% V2] (mod p)

Wenden wir hierauf das Lemma aus Nr. 24 an, so erkennen wir, dass p Teiler von u,;
ist.

26. Nun sei die Fibonaccische Zahl w,,, aber keine der Fibonaccischen Zahlen < wu,,
durch eine gewisse Primzahl p teilbar. In diesem Fall nennen wir p einen zu u,, gehorigen
Teiler. Zum Beispiel ist 11 ein zu w9 gehoriger Teiler, 17 ein zu ug gehodriger Teiler
USW.

Es lasst sich zeigen, dass jede Fibonaccische Zahl auBer wuq, us, ug und 112 wenigstens
einen zugehorigen Teiler besitzt.

Der Beweis dieser Aussage erfordert (iberaus komplizierte Uberlegungen und nimmt
den Rest dieses Paragraphen in Anspruch. Dabei werden wir nach und nach weitere
Teilbarkeitseigenschaften der Fibonaccischen Zahlen herleiten.

27. Wir beginnen mit einigen allgemeinen zahlentheoretischen Untersuchungen.
Da wir aus Nr. 8 wissen, wann ein Produkt durch eine Primzahl teilbar ist, kdnnen wir
den sogenannten Satz iiber die Primfaktorzerlegung beweisen.

Satz. Jede natiirliche Zahl a lasst sich (bis auf die Anordnung der Faktoren) auf genau
eine Art in nicht notwendig verschiedene Primfaktoren zerlegen.

Beweis. Zunachst bemerken wir, dass so eine Zerlegung stets moglich ist. Das wurde
schon in § 1, Nr. 5, unmittelbar induktiv nachgewiesen. Zum Beweis der Eindeutigkeit
der Zerlegung betrachten wir zwei Zerlegungen der Zahl a in Primfaktoren:

pPip2...-Pr = & = q1G2-..q1
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Wir nehmen k£ < [ an. Die rechte Seite muss durch p; teilbar sein; also ist p; nach dem
in Nr. 8 Gesagten Teiler von mindestens einem der rechts auftretenden Faktoren. Es
sei etwa py ein Teiler von ¢;. Dies ist aber nur fiir p; = ¢; moglich, da ¢; eine Primzahl
ist. Wir konnen also kiirzen und erhalten

P2..-Pr = a=Qq2...q
Wiederholen wir diese Uberlegungen k-mal (Induktion!), d.h., beseitigen wir alle Fak-

toren auf der linken Seite, so gelangen wir zu der Gleichung

1= qry1.--qi

Das ist aber nur fiir gz 1 = ... = ¢ = 1 moglich, d.h., es existieren keine Primfaktoren
Qk+1, -+, q1- Damit ist der Satz bewiesen.

28. Fassen wir bei der Primfaktorzerlegung von a alle gleichen Faktoren zu Potenzen
zusammen, so erhalten wir

a = pl'ps..pek (2.19)
Diese Darstellung einer natiirlichen Zahl a heiBt die kanonische Zerlegung von a.

Manchmal ist es bei gewissen Uberlegungen von Nutzen, noch beliebige weitere Prim-
faktoren mit dem Exponenten 0 hinzuzufiigen.

29. Fiir die Teilbarkeit einer natiirlichen Zahl a mit der kanonischen Zerlegung (2.19)
durch die natirliche Zahl

b= p?lpgz...pg’“ (2.20)
ist offenbar notwendig und hinreichend, dass die Ungleichungen

fr<oar, Po<o, ..., Bl

erfiillt sind. (Insbesondere muss im Fall o;; = 0 auch f3; = 0 sein.)

Nun wollen wir noch einmal den gréBten gemeinsamen Teiler zweier oder mehrerer
Zahlen bestimmen.

Es seien aq, ao, ..., a,, beliebig gewahlte natiirliche Zahlen und p1, po, ..., pr Primzahlen,
die wenigstens eine der Zahlen aq,as, ..., a, teilen. Die kanonischen Zerlegungen der
ai, as, ..., a, lauten

a] = ptllnpgmmpglk
ag = p?zlpgmmpgzk
(2.21)
— 1nOnl On Qpk
an = pr™'py™...py

(samtliche Exponenten «;; sind nichtnegativ). Offenbar kann jeder gemeinsame Teiler d
der Zahlen ay, as, ..., a, in seiner kanonischen Zerlegung nur Primfaktoren p1, ps, ..., pk
enthalten:

4]
d= p‘{lpg?.‘pk’“
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2 Zahlentheoretische Eigenschaften der Fibonaccischen Zahlen

Dabei darf jeder Exponent §; nicht groBer sein als jeder der ihm entsprechenden Expo-
nenten «q;, iy, ...uy; bei p; in den kanonischen Zerlegungen von aq, as, ..., ay:

0 <oy, 0 S gy, e, 05 <o (2.22)

Ist dieser gemeinsame Teiler d zugleich der groBte gemeinsame Teiler, so missen die
Exponenten §; unter allen Zahlen, die den Ungleichungen (2.22) genigen, die groBten
sein. Das bedeutet, dass jedes ¢; einfach die kleinste der entsprechend gewahlten Zahlen
14, Ao, ...0y; Sein muss. Dafir schreiben wir

6’&' = min{ali, a9;, ...Oém'}

Den groBten gemeinsamen Teiler der Zahlen aq, as, ..., a, bezeichnen wir, ahnlich wie
im Fall zweier Zahlen, mit (aq, as, ..., a,).

30. In gewissem Sinne dual zum Begriff des groBten gemeinsamen Teilers ist der Begriff
des kleinsten gemeinsamen Vielfachen.

Offenbar muss jede Zahl, die durch die Zahlen ay, as, ..., a,, mit den kanonischen Zer-
legungen (2.21) teilbar ist, in ihrer kanonischen Zerlegung alle Primfaktoren aufweisen,
die in wenigstens einer der Zerlegungen (2.21) auftreten, d.h. die Zahlen py, po, ..., pi.
AuBerdem kénnen in die kanonische Zerlegung des gemeinsamen Vielfachen noch ir-
gendwelche "unwesentlichen" Faktoren eingehen. Somit muss die kanonische Zerlegung
jedes gemeinsamen Vielfachen m der Zahlen aq, as, ..., a,, die Gestalt

m = pi'py*.pprQ

haben; dabei bezeichnet () das Produkt aller "unwesentlichen" Primfaktoren. Offenbar
muss fir jedes i =1,.... k

Hi = Q1gy g = Q2 ey i 2> Ol (2.23)

gelten.

Ist m das kleinste gemeinsame Vielfache der Zahlen a4, ao, ..., a,, so muss der Faktor ()
offenbar gleich 1 sein, und alle Exponenten p; miissen die kleinsten derjenigen Zahlen
sein, die den Ungleichungen (2.23) genligen. Das bedeutet, dass jedes p; die groBte
der Zahlen 15y A5y oovy Ol ist:

w; = max{ay;, o;, ..., ani}
Das kleinste gemeinsame Vielfache der Zahlen ay, as, ..., a,, bezeichnen wir mit [ay, as, ...
31. Wir beweisen nun einen Hilfssatz.

Lemma. Fiir beliebige Zahlen oy, as, ..., o, gilt

max{ay, a9, ...,an} = a1 +as+ ... + ay
—min{ay, @} — min{ay, a3} — ... — min{a,_1, @, }
+ min{ay, ag, a3} + min{ay, ag, ayt + ...
+ min{ay, ag, ..., a,} (2.24)
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(In der zweiten Zeile stehen alle Minima zweier Zahlen, in der dritten Zeile alle Minima
dreier Zahlen, usw.)

Beweis. Ohne Einschrankung der Allgemeinheit konnen wir annehmen, dass die Zahlen
a1, Qg, ..., &y in nichtwachsender Reihenfolge angeordnet sind:

ap > oy > ... >y

Dann ist
max{ay, a9, ...,ap} = a1

Wir berechnen nun den Wert der rechten Seite von (2.24). Dazu tberlegen wir uns, wie
oft jede der Zahlen aq, as, ..., a, in ihr vorkommt. Dabei werden wir, wenn zwei Zahlen
a; und o gleich sind, diejenige als die kleinere auffassen, die den gréBeren Index hat
(offenbar hat diese Verabredung keinen Einfluss auf die GroBe der zu betrachtenden
Ausdriicke).

Wir erinnern daran, dass «; die groBte der zu untersuchenden Zahlen ist. Daher tritt
aq nur in der ersten Zeile der rechten Seite von (2.24) auf, und zwar nur ein einziges
Mal. Auf der rechten Seite von (2.24) ist also der Koeffizient von «; gleich 1.

Wir untersuchen nun, wie oft auf der rechten Seite von (2.24) ein gewisses «; (i > 1)
vorkommt. In der ersten Zeile steht es einmal.

In der zweiten und den darauffolgenden Zeilen bis zur i-ten Zeile einschlieBlich tritt es
nur in den Minima auf, in denen zusammen mit «; nur Zahlen mit kleineren Indizes als
stehen. In jeder j-ten Zeile (j < ¢) kommt «; folglich so oft vor, wie es Kombinationen
aus ¢ — 1 Zahlen ay, ag, ..., ;1 zur (j — 1)-ten Klasse gibt, also (JZ:D Mal; vgl. § 1,
Nr. 14. Die Zahl «; tritt somit insgesamt

— 1 — 1 — 1
IR Rl IR L Y
1 2 j—1
Mal auf. Aufgrund von § 1, Nr. 13, ist dieser Ausdruck gleich 0. Folglich ist die rechte

Seite von (2.24) gleich ay, d. h. gleich der linken Seite. Damit ist das Lemma bewiesen.

32. Wir benutzen nun das Bewiesene zur bequemeren Schreibweise des kleinsten ge-
meinsamen Vielfachen mehrerer Zahlen.

Satz. Es ist

aias...an (a1, as, az)(aasay)...
ay,az)(ay, as)...(an—1,an,)(a1, as, as, ayq)...

la1, a9, ..., an] = ( (2.25)

(Hier steht im Zahler das Produkt der Ausgangszahlen ay,as, ..., a, und der groBten
gemeinsamen Teiler aller moglichen Tripel, 5-tupel usw.; der Nenner ist das Produkt
aller groBten gemeinsamen Teiler der Paare, Quadrupel usw. der Ausgangszahlen.)

Beweis. Es sei p ein beliebiger Primfaktor in den kanonischen Zerlegungen gewisser
Zahlen aus ay, ao, ..., a,. Mit a; bezeichnen wir den Exponenten, mit welchem p in der
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2 Zahlentheoretische Eigenschaften der Fibonaccischen Zahlen

kanonischen Zerlegung von a; auftritt. Dann erscheint p auf der linken Seite von (2.25)
aufgrund von Nr. 30 mit dem Exponenten

max{ay, Qg ..., } (2.26)
auf der rechten Seite von (2.25) aufgrund von Nr. 29 mit dem Exponenten

max{ay, ag, ...,an} = a1 +as+ ... + ay
—min{ay, @} — min{ay, az} — ... — min{a,_1, @, }
+ min{o, ag, a3} + min{ay, ag, ay} + ...
+ min{ay, ag, ..., ay,} (2.27)

Mit Hilfe von Nr. 31 erkennen wir, dass die Ausdriicke (2.26) und (2.27) einander gleich
sind. Somit gibt es in den kanonischen Zerlegungen der rechten: und der linken Seite
von (2.25) dieselben Primfaktoren und dieselben Exponenten.

33. Wir kehren nun zum Studium der Teilbarkeitseigenschaften fiir Fibonaccische Zah-
len zuriick.

Lemma. Der Ausdruck
Umn—1 — UqT_l (228)

ist durch u? teilbar.

Beweis. Wir beweisen das Lemma durch vollstandige Induktion nach m. Fir m =1 ist
(2.28) gleich 0 und somit durch u?2 teilbar. Wir setzen nun voraus, dass (2.28) fiir ein
beliebiges m > 1 durch qu teilbar ist, und betrachten den Ausdruck

m+1 m—+1
u(erl)nfl —Up_1 = (umn—lun—l + Umn”n—l) — Up_—1

Nun ist nach Induktionsvoraussetzung
U1 = u™ ;  (mod u?)
und folglich
Uims1n—1 — Up ™y = Ul U1 + Uty — ul T (mod u?) (2.29)
Aus Nr. 1 folgt, dass u,, ein Teiler von wu,,, ist; also gilt
Uty =0 (mod u?)

und (2.29) geht lber in

U(m+1)n—1 — u™ =0 (mod u?)

Damit ist der Satz bewiesen.

34. Lemma. Der Ausdruck
Upn — Uy + Uy (2.30)
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ist durch u? teilbar.

Beweis (durch Induktion nach m). Fir m = 1 ist der Ausdruck (2.30) gleich 0 und
somit durch u3 teilbar. Wir setzen nun voraus, dass (2.30) fiir ein beliebiges m > 1
durch u‘:’L teilbar ist, und betrachten den Ausdruck

m+1 m+1 m+1 m—+1
u(m—l—l)n Uy 41 + Up_1 = Unmn—1Un + UmnUn+1 — Uy 41 +u

Nach Induktionsvoraussetzung gilt
U = ullyy —ull, (mod )
Folglich ist
U1 — Unitt U = U1t 4w (U —uty) =gt gt (mod wy)

oder

m+1 m+1 — m 3
Ut 1yn = Ungy T Uy~ = Upn—1Un + Uy’ 1 (Upg1 — Up—1)  (mod uj,)

oder

m+1

U(m+1)n — n+1 +un ™ = un (U1 —upy) - (mod )

Nach Nr. 33 ist die auf der rechten Seite in runden Klammern stehende Differenz durch
u? teilbar so dass sich die ganze rechte Seite durch u} teilen lasst, also kongruent 0
modulo u ist, was zu beweisen war.

35. Es sei p eine Primzahl. Wie wir schon in Nr. 1 bewiesen haben, ist wu, ein Teiler
von Uy,. Daher kénnen beim Ubergang von u,, zu Uy, erstens neue Primteiler auftreten
und zweitens sich die Exponenten bei den alten Primteilern von w,, vergréBern.

Wir beweisen nun einen Satz, aus dem folgt, dass sich nur bei p und sonst bei keinem
anderen Primteiler von u,, der Exponent vergroBern kann. Im Fall p # 2 erhoht sich
der Exponent bei p nur um 1, im Fall p = 2 um nicht mehr als 2.

Satz. Ist ¢ ein von p verschiedener Primteiler von u,,, so ist w,,/u, nicht durch ¢ teilbar.
Ist p ein ungerader Primteiler von w,, (also p # 2), so ist u,,/u, durch p, aber nicht
durch p? teilbar.

Ist w,, durch 4 teilbar, so ist us,/u, durch 2, aber nicht durch 4 teilbar.

Ist u,, durch 2, aber nicht durch 4 teilbar, so ist ug,/u, durch 4, aber nicht durch 8
teilbar.

Beweis. In dem Lemma aus Nr. 34 ersetzen wir m durch p. Dann ist der Ausdruck
Upp — ub 1 +ub ; durch u} teilbar. Nun ist u,, ein Teiler von w,,p (vgl. Nr. 1), und
es gilt
s =y = (e — )]+ )
n+1 n—1 — n+1 Un—1 n+1 un+1un i i u

= up(u n+1—|—un 1un 1+ +ub” )

Folglich ist die Differenz

Unp,
—2 ( n+1 + un 1un 1+ ...+ u ) (231)

Unp
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durch 2 teilbar.
Erstens folgt hieraus, dass sich die Differenz (2.31) durch w,, teilen lasst. Das bedeutet
unp o p— 1

” _un+1+un+1un1+ U,
n

(mod uy,) (2.32)

Nun ist offenbar
Upt+1 = Up—1  (mod uy,)

und damit ergibt sich aus (2.32)

Unp _

= n+1+un+1 + . +“n+1 (mod uy,)
n

Da auf der rechten Seite p gleiche Summanden stehen, muss also

S0 = b} (mod uy)
Un

gelten. Somit muss jeder gemeinsame Teiler der Zahlen w,,,/u, und w, auch p teilen
und umgekehrt. Das bedeutet

(T?un> = (p, un)

n

Ist jetzt ¢ ein von p verschiedener Primteiler von u,,, so ist (p, u,,) nicht durch ¢ teilbar.
Folglich ist auch (T?“n) nicht durch ¢ teilbar.

Da die Zahl ¢ ein Teiler von u,, ist, kann sie nicht Teiler von uy,,/u, sein. Damit ist
der erste Teil des Satzes bewiesen.

Zweitens folgt aus der Teilbarkeit der Differenz (2.31) durch w2 die Giiltigkeit der
Kongruenz

U
n
Wir setzen
Uns1 =71p+ 7" (mod p2) ) Un—1 =7r2p+ 7" (mod PQ)

mit 0 < 7y, 79,7, 7" < p. Da die Differenz wu, 1 — u,_1 gleich u,, also durch p teilbar
ist, missen die Reste ' und 7" einander gleich sein; deshalb setzen wir v/ = " = r.
Dabei ist  # 0, da p weder u,,_1 noch u, teilt.

Damit erhalten wir

u
P = (rp )P (rp )P rp 1) 4o (rip )P R (rop ) 4 L

n

+(rop+7)P" (mod p?)
Auf der rechten Seite dieser Kongruenz losen wir die Klammern auf und lassen die
durch p? teilbaren Summanden fort. Das Glied

(rip + )P (rop + 7)F!
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ergibt dabei den Ausdruck

— k k—1
(p : )Tlprp—k—lrk—l _l_rp—k( } >T2prk—2 _|_Tp—k,rk:—1

oder
(p k)prirP™2 + (k — D)prorP™2 4 pP~1
Summieren wir ihn Gber alle £ =1, ..., p, so finden wir

p(p—1)
2

Unp _ p(p—1)
Up 2

prlrp_z + p?“grp_2 + prp_l (mod p2) (2.33)

Firp # 2 ist % eine ganze Zahl. Daher lassen sich die ersten beiden Summanden auf
der rechten Seite von (2.33) durch p? dividieren, und wir erhalten
Unp — prP~t (mod p?)
Up
SchlieBlich kdnnen wir 7P~1 —1 nach dem Kleinen Fermatschen Satz (vgl. Nr. 20) durch
p und infolgedessen pr?~! — p durch p? teilen. Damit folgt
Unp,
— =p (mod p?)
Un
d. h., unp/un gibt bei Division durch p? den Rest p, ist also durch p, aber nicht durch
p? teilbar, womit der zweite Teil des Satzes bewiesen ist.

Nun sei p = 2. Die Kongruenz (2.33) nimmt dann die Gestalt

U — o 4+ 7)  (mod 4) (2.34)

Up,

an. Ist 4 ein Teiler von u,, so erkennen wir an der Folge der Reste (2.2), dass in diesem
Fall sowohl u,_1 als auch u,; bei Division durch 4 den Rest 1 lassen. Also ist in
diesem Fall 1 = ro = 0, aber » = 1, und (2.34) geht iber in

U2n

—— =2 d 4
=3 (mod 4

damit ist der dritte Teil des Satzes bewiesen.

Nun sei 4 nicht Teiler von w,. Die Folge (2.2) zeigt, dass dann 1 = 0, ro = 1 und
r =1 ist. Deshalb geht (2.34) tber in

Uon

— =0 d4

2120 (mod 4)
Jetzt bleibt noch zu zeigen, dass us, /u,, sich nicht durch 8 teilen lasst. Wére es doch
der Fall, so lieBe sich namlich us,, durch 16 dividieren. Aber dann miisste nach dem in
Nr. 13 angegebenen Satz 2n durch 12, d. h. n durch 6 teilbar sein.
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Hieraus folgt seinerseits, dass ug, also 8, ein Teiler von u,, ist, und das ist ein Wider-
spruch zur Annahme (dass namlich u,, noch nicht einmal durch 4 teilbar ist).
Damit ist der Satz vollstandig bewiesen.

36. Jetzt konnen wir uns unmittelbar mit dem Beweis fir die Existenz zugehoriger
Teiler beschaftigen.

Satz. Jede Fibonaccische Zahl mit Ausnahme von w1, us, ug und w2 besitzt wenigstens
einen zugehorigen Teiler.

Beweis. Wir betrachten die Fibonaccische Zahl u,,. Die kanonische Zerlegung des Index
n sei

Q] Qg
n=p;py’..Dy

Wir nehmen nun die Fibonaccischen Zahlen

ul,u%,...,ul (2.35)

Pl Pk

und bilden ihr kleinstes gemeinsames Vielfaches M. Auf Grund von Nr. 32 ist

UrUun. . Un (un,un,Un>
P1 P2 Pl P1 P2 p3
M =

(un,un> (u n ,un> <un,un,UN,un)
LAN Pk—1" Pk p1° p2° P37 P4

Da nun fiir beliebige r und verschiedene iy, is, ..., i,

(%j”v%ﬁww%ﬂ) U ) T Ut
i1 io ir Pi; ’pi2 R i1Pig ir
gilt, folgt
UurUun .. UnU_n__...
M _ P1 P2 P P1P2P3
Un Un .. U_n U n ..
P1P2  P1P3 PLk—1Pk  P1P2P3P4

Die Zahl w,, ist durch alle Zahlen Un,Ur, ..., Un teilbar, daher auch durch deren
1 k

kleinstes gemeinsames Vielfaches M; also muss

n,
P2

Uy, = Mt

sein. Jeder Primteiler von M teilt eine der Zahlen (2.35) und ist daher kein zu w,
gehoriger Teiler. Folglich muss sich ¢ durch alle zu u,, gehorigen Teiler dividieren lassen.
Nach dem Satz aus Nr. 35 kénnen von allen Primteilern von wu,,, die nicht gleichzeitig
zu u,, gehorige Teiler sind, in t etwa nur die Zahlen pq, po, ..., pi auftreten, wobei jede
dieser Zahlen in ¢ mit einem Exponenten < 1 auftritt, mit Ausnahme der Zwei, die den
Exponenten 2 haben kann.

Wenn wir die Ungleichung
t> 2p1p2. Pk

bewiesen haben, werden wir die Existenz von zugehorigen Teilern der Fibonaccischen
Zahl wu,, untersuchen (das Kreuz unter der Zwei bedeutet hier und im folgenden, dass
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diese Zwei nur dann zu beriicksichtigen ist, wenn unter den Zahlen py, po, ..., px schon
eine Zwei auftritt).
Wie zeigen also die Giiltigkeit der Ungleichung

pipz  P1P3 PL_1P;  P1P2p3PL
t= > 2p1p2---Dk
UrUn ... UnU_n__ ... X
Pl P2 P P1P2P3
Aus § 1, Nr. 21, wissen wir, dass
1 1 1 1
Q" <wuy < =t

Vi T TA

gilt. Werden alle Fibonaccischen Zahlen im Zahler des Bruches durch %a”_% und im

Nenner des Bruches durch %a”*i ersetzt, so verkleinert sich der Wert des Bruches.

Beweisen wir also die obige Ungleichung mit dem kleineren Wert des Bruches, so
beweisen wir sogar noch etwas mehr als notwendig.

2k
Wir ersetzen also die Fibonaccischen Zahlen, kirzen mit (\}5> und erhalten

L _n__ pipo n_ Pk—1Pk n __P1P2pP3P4
QT wqpirz T n Pk-1Pk " (yP1p2p3pa o
P no P2 n | Pk _n__ 4 P1P2P3 >2p1p2---pk
QPt bz Pk M QPieeps
oder
11 1,1 1 _
Oé”( p1 P2 pp Tpipz T Pr_ipn  Pipaps )
> 2 ...
Oé%(1+p1+p2+...+pk+p1p2+‘--+Pk71Pk+P1p2p3+'“) Xp1p2 P
oder

an(l—%) (1_5)..(1—%)—%(1+p1)(1+192)-~(1+p’“) = %ppo...pk

oder, indem wir logarithmieren,
1 1 1 1

n{l——)(1——|..(1—— ] —==(1+p)(1+p2)...(1 + pr) > log, 2p1p2...pk
b1 b2 Pk n x

Erinnern wir uns an die kanonische Darstellung von n, so konnen wir dieser Ungleichung
die Gestalt
pr+lpp+1 pp+1

ST pg"' >1oga%p1p2...pk

a1—1 as—1

P (o1 — D)ps2H(pa — 1)t pr — 1) —

geben. Es ist iiblich, den Ausdruck p$*~*(p; — 1)...pzk_1(pk — 1) mit p(n) zu be-
zeichnen und Eulersche Funktion zu nennen. Sie besitzt viele wichtige und interessante
Eigenschaften. Mit Hilfe der Eulerschen Funktion schreiben wir die Ungleichung in der
folgenden Form:

pr+1pa+1 pp+1
! 2 e i a— 1+ log, 2p1p2...pk (2.36)
D2 Dy, %

p(n) >

(051

P1
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Wir missen nun nachpriifen, fiir welche ganzen positiven n die Ungleichung (2.36)
erfillt ist. Wir werden diese Werte "gut" nennen zum Unterschied von den "schlechten",
fur welche (2.36) nicht gilt.

Offenbar haben die Fibonaccischen Zahlen w,, wenn n "gut" ist, zugehorige Teiler.
Diese Umkehrung braucht aber nicht zu gelten: Die Giiltigkeit der Ungleichung (2.36)
ist nur eine hinreichende, aber durchaus keine notwendige Bedingung fiir die Existenz
zu u,, gehoriger Teiler.

Daher miissen wir zusatzlich Gberpriifen, welche Fibonaccischen Zahlen mit "schlech-
ten" Indizes (es gibt 10 solcher Zahlen) zugehorige Teiler besitzen. Dabei werden wir
feststellen, dass sechs dieser zehn Zahlen zugehdrige Teiler haben, aber vier (ndmlich
die im Satz genannten) nicht.

Man sieht "mit einem Blick", dass sich die linke Seite von (2.36) mit wachsendem n
schneller vergroBert als die rechte. Daher ist anzunehmen, dass die Ungleichung (2.36)
nur fir kleine n nicht erfillt ist. Nun &ndern sich beide Seiten von (2.36) bei wachsen-
dem n (beraus unregelmaBig, so dass irgendein unmittelbarer Induktionsbeweis kaum
moglich ist.

Folglich muss nach einem bestimmten Programm vorgegangen werden. Wir nehmen
ein Schema, das die natiirlichen Zahlen schrittweise erfasst und bei dem man von einer
guten Zahl nur zu einer guten gelangen kann. Sind von einem bestimmten Schritt an
alle Zahlen gut, so sind dann alle weiteren Zahlen ebenfalls gut. Folglich miissen alle
schlechten Zahlen schon vor diesem Schritt erfasst worden sein.

Der Leser wird bemerken, dass diese Methode ebenfalls eine der Varianten des Induk-
tionsbeweises ist.

Vorbereitend beweisen wir die folgenden drei Behauptungen:

1. Es seien p1,pa, ..., Pk, ... die nach ihrer GroBe geordneten Primzahlen (d.h. p; = 2,
p2 = 3 usw.). Dann ist, wenn die Zahl n = pypy...p; gut und pi1 > 3 ist, die Zahl

pip2...PkPL+1 ebenfalls gut.
In diesem Fall ist

n=mppz-pr >  en)=pE1—-pz—1)...(pr — 1)

und nach Voraussetzung muss

(p1—1)(pa—1).(pr—1) > (1 + 1) (1 + 1) (1 + 1) Hlog, 2pipa-pe (2.37)
b1 P2 Dk x

gelten. Um die entsprechende Ungleichung fiir das Produkt pips...pr_1pk aufzuschrei-
ben, brauchen wir nur den ersten Summanden auf der rechten Seite von (2.37) mit
1+ ]ﬁﬂ < 2 zu multiplizieren und zum zweiten Summanden das Glied log,, pr+1 hin-
zuzufligen.
Nun ist die Zahl pyps...pr — 1 zu jeder der Primzahlen pq, po, ..., pi teilerfremd. Folglich
ist jeder Primteiler ¢ dieser Zahl groBer als jede der Zahlen py, ps, ..., pr und demnach
nicht kleiner als p.1. Das bedeutet

Pk+1 < P1P2---Dk

53



2 Zahlentheoretische Eigenschaften der Fibonaccischen Zahlen

und erst recht
Pit+1 < 2p1D2...Pk

daher ist
log, pr+1 < log, 2p1pa...pi

Das Hinzufiigen von log, pr+1 zum zweiten Summanden vergroBert diesen also um
weniger als das Doppelte. Insgesamt kann sich die rechte Seite also hochstens aufs
Doppelte vergroBern, wahrend die linke Seite mit pri1 — 1 > 2 multipliziert wird.
Somit folgt aus (2.37)

1

1 1
(pl — 1)(]% — 1)(]?]“_1 + 1) > (1 -+ ) <1 + > <1 + > —I—loga 2p1---pkpk+1
b Pk Pr+1

womit die Behauptung bewiesen ist.

2. Ist n = pips...pi, wobei p1, ps, ..., pi. beliebige voneinander verschiedene Primzahlen
sind und n eine gute Zahl ist, und ist ¢ eine beliebige, von pi, ps, ..., pr verschiedene
Primzahl mit ¢ > p1, so ist ¢ps...pr ebenfalls eine gute Zahl.

In diesem Fall hat die Ungleichung (2.36) wieder die Form (2.37). Ersetzen wir hier

p1 durch ¢, so ist es das gleiche, als wiirden wir die linke Seite von (2.37) mit z%
1

multiplizieren, auf der rechten Seite den ersten Summanden mit ;ji multiplizieren
P1

und zum zweiten Summanden das Glied log,, % hinzufiigen.

Wegen ¢ > p; wird der erste Summand bei der Multiplikation verkleinert. Ferner ist
4 > 1, also <=L > 4 ynd somit

D1 p1—1 D1

—1
a >logai

p1—1 D1

Die rechte Seite von (2.37) ist groBer als 1 (schon dadurch, dass alle Primzahlen,
beginnend mit 2, gréBer als a? sind). Die linke Seite ist, da sie groBer als die rechte
ist, ebenfalls groBer als 1. Wenn wir also die linke Seite (die groBer als 1 ist) mit einer
Zahl > 1 multiplizieren, zur rechten Seite aber eine kleinere Zahl hinzufiigen, so bleibt
die Ungleichung (2.37) auf jeden Fall giiltig.

ar+1, a2 Qg

3. Ist p{*p32...pp* eine gute Zahl, so ist p{* ™ p5*...pp" ebenfalls gut.
Zum Beweis genligt die Bemerkung, dass sich, wenn in der Ungleichung

pr+1lpe+1 pp+1
P o + log,, gplpg...pk

o1—1

P (o — D)ps2 Hpa — 1) gt e — 1) >

die Exponenten oy durch die groBere Zahl oy + 1 ersetzt werden, die linke Seite vergro-
Bert, wahrend sich die rechte verkleinert. Folglich kann bei einer solchen Umformung
eine gute Zahl nur wieder in eine gute tibergehen.

Somit kristallisieren sich in unserem Schema drei Operationen heraus, mit deren Hilfe
man von einer natirlichen Zahl zu einer anderen lbergehen kann; wichtig ist dabei,
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dass man, geht man von einer guten Zahl aus, nur wieder zu einer guten Zahl gelangt.

Mit Hilfe der ersten Operation wird die Folge 1, 2, 6, 30, 210, ... konstruiert; die zweite
Operation ersetzt in der Zahl, deren kanonische Zerlegung nur erste Potenzen enthalt,
jeden Primteiler durch einen groBeren (dieser Austausch geschieht so, dass jeweils die
nachste, in der kanonischen Zerlegung noch nicht aufgetretene Primzahl eingesetzt
wird); die dritte Operation vergroBert einen Exponenten in der kanonischen Zerlegung
um 1.

Als Ergebnis dieser Operation erhalten wir, wenn wir mit 1 beginnen, alle natiirlichen
Zahlen. Einige Zahlen treten mehr als einmal auf, aber das spielt fiir uns keine Rolle.
Wichtig ist, dass jede Zahl wenigstens einmal vorkommt.

Wir beginnen nun, nach diesem Schema die natiirlichen Zahlen durchzugehen, und
benutzen zuerst die erste Operation.
Die Zahl 1 ist schlecht, da fiir sie die Ungleichung (2.36) die Form

1>1+10ga2=1+10ga1=1

annimmt, was offensichtlich falsch ist (dem Produkt natiirlicher Zahlen, das null Fak-
toren enthalt, geben wir den Wert 1).

Die erste Operation, angewendet auf 1, ergibt 2. Fiir diese Zahl ist die Ungleichung
3 3
1> §+loga2 = §+loga4

falsch; die Zahl 2 ist demzufolge ebenfalls schlecht.

Schlecht sind auch die folgenden Zahlen 6 und 30, denn mit ihnen folgen die Unglei-
chungen

+log, 12 =2 +log, 12
e(30) =8< = - — +log, 60 ~ 2,4+ 8,5

2
Dagegen erweist sich die Zahl 2-3-5-7 = 210 schon als gut, denn es ist tatsachlich

7
3 46 8
210) > 48 =~ - - _

2+ log, 420 4 2,74 12,5

Daher sind alle weiteren Zahlen, die man mit Hilfe der ersten Operationen erhalt, gut.

Wir wenden nun die zweite und die dritte Operation auf die schlechte Zahl 2 an. Das
ergibt 3 bzw. 4, ebenfalls schlechte Zahlen:

1
@(3):2<§+10ga3%1,3+2,3

3
4,0(4):2<§—|—10ga4%1,5+2,9
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Die Anwendung der Operationen auf die Zahl 3 ergibt 5 bzw. 9, wobei die Zahl 5, wie
sich leicht nachpriifen lasst, schlecht, die Zahl 9 aber gut ist.

Weitere Transformationen der 9 interessieren uns also nicht. Von der Zahl 5 gelangt
man durch die zweite Operation zu 7, durch die dritte zu 25; beide Zahlen sind gut.
Daher sind auch alle folgenden Zahlen gut und brauchen nicht untersucht zu werden.

Die dritte Operation, angewandt auf 4, ergibt die gute Zahl 8.
Also liefern die zweite und die dritte Operation aus der Zahl 2 die schlechten Zahlen
3, 4 und 5; alle tbrigen Zahlen sind gut.

Nun betrachten wir die Zahl 6. Die zweite Operation ergibt die schlechte Zahl 10, auf
die die guten Zahlen 20 und 15 und die schlechte Zahl 14 folgen. Aus 14 kommen
nur gute Zahlen, und zwar 21 und 22 (zweite Operation) sowie 28 und 98 (dritte
Operation).

Die dritte Operation, auf 6 angewandst, liefert die schlechte Zahl 12 und die gute Zahl
18. Aus 12 folgen mit Hilfe der dritten Operation die guten Zahlen 24 und 36; die
zweite Operation ist auf 12 nicht anwendbar, da 12 durch das Quadrat der Primzahl 2
teilbar ist.

SchlieBlich sind alle aus 30 folgenden Zahlen (namlich 210, 42 und 60) gute Zahlen.

b, b
6o %;g@//@/

pou
S
ta
i
G
o
T)
Gy
&
%
S

AN

Diese Ergebnisse haben wir in Abb. 1 Ulbersichtlich angeordnet. Wir haben also die
schlechten Zahlen

Abb. 1

1,2,3,4,5,6,10,12, 14, 30
erhalten, denen die Fibonaccischen Zahlen
1,1,2,3,5,8,55,144, 377, us

entsprechen. Zu us, uyg, us, w19 bzw. ui4 gehorige Teiler sind offenbar die Zahlen 2, 3,
5, 11 bzw. 29. Man koénnte sich, wenn man die Fibonaccischen Zahlen bis ugy und
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ihre Primfaktorzerlegungen aufschreibt, unmittelbar von der Existenz auch eines zu usg
gehorigen Teilers liberzeugen.

Jedoch ist dies nicht notig. Der Satz aus Nr. 24 besagt namlich, dass usg durch 31
teilbar ist (denn 31 ist eine Primzahl der Form 5¢ + 1). Andererseits sind weder ug = 8
noch ui9 = 55 noch u;5 = 610 durch 31 teilbar; folglich ist 31 ein zu ugy gehoriger
Teiler.

Somit bleiben nur noch die Zahlen u; = 1, us = 1, ug = 8 und w19 = 144 lbrig, die
offenbar keine zugehodrigen Teiler besitzen.
Damit ist der formulierte Satz bewiesen.

37. Als "Gegengewicht" zu den vier Fibonaccischen Zahlen ohne zugehérige Teiler gibt
es Fibonaccische Zahlen, die mehrere zugehoérige Teiler besitzen.

Zum Beispiel sind die Zahlen 37 und 113 zu w9 gehorige Teiler, die Zahlen 53 und 109
zu ugy gehorige Teiler. Wie viele Fibonaccische Zahlen mit zwei und mehr zugehoérigen
Teilern es gibt, ist vollig unklar.

Es entsteht nun natiirlich die Frage, wie groB der Index n einer Fibonaccischen Zahl
ist, deren zugehoriger Teiler gleich einer vorgegebenen Primzahl p ist.

Aus Nr. 25 folgt n < p—1imFallp=5t+1und n < p+1im Fall p = 5t +2. Jedoch
ist bis jetzt noch keine Formel bekannt, aus der man bei gegebenem p den Index n der
entsprechenden Fibonaccischen Zahl ablesen kann.

In Nr. 3 wurde bewiesen, dass alle Fibonaccischen Zahlen mit zusammengesetzten
Indizes, auBer u,4, selbst zusammengesetzt sind. Die Umkehrung gilt jedoch nicht, wie
das Beispiel 119 = 4181 = 37 - 113 zeigt.

In diesem Zusammenhang interessiert die Frage, ob es endlich oder abzahlbar viele
Primzahlen in der Fibonaccischen Folge gibt, mit anderen Worten, ob es unter den
Primzahlen in der Fibonaccischen Folge eine groBte gibt oder nicht. Dieses Problem ist
heute aber noch weit von seiner Losung entfernt.
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3 Fibonaccische Zahlen und Kettenbriiche

1. Wir betrachten den Ausdruck

1
qo + 1 (3.1)
q1 + 1
g2 + 1

qs + 71

an
Die Zahlen q1, q2, q3, ..., g, sollen hier ganz und positiv sein, gy hingegen eine nicht-
negative ganze Zahl. Zum Unterschied von den Zahlen ¢1, 2, ..., ¢, darf also gy auch

gleich Null sein. Diese Besonderheit der Zahl gy wollen wir immer beachten und sie
deshalb nicht jedesmal von neuem hervorheben.

Den Ausdruck (3.1) bezeichnet man als Kettenbruch und die Zahlen qo, ¢1, g2, ..., qn
als Teilnenner dieses Bruches, gy auch als Anfangsglied.

Kettenbriiche werden in den verschiedensten Gebieten der Mathematik angewandt. Dem
Leser, der sich eingehender mit ihnen beschaftigen will, sei das Buch von A. J. Chinchin
"Kettenbriiche") empfohlen

Der Prozess der Verwandlung einer Zahl m in einen Kettenbruch heiBt Entwicklung
dieser Zahl in einen Kettenbruch.
Wir wollen nun sehen, wie man bei einer solchen Entwicklung eines gewohnlichen Bru-
ches 7 die Teilnenner findet. Zu diesem Zweck wenden wir den Euklidischen Algorithmus
auf die Zahlen a und b an:
a = bgy + 11,
b=riq1+rs,
T1 = T2q2 + T3,
(3.2)
Tn—2 = Tn—1qn—1 + Tn,
T'n—1 = Tnqn

Die erste dieser Gleichungen liefert uns

Cl_ +7“1_ +1
1

Aus der zweiten Gleichung des Systems (3.2) folgt aber

bl T9 ].
r T ™
T2

*In der deutschen Literatur: C. Knochendéppel, Von den Kettenbriichen und den diophantischen
Gleichungen, Volk und Wissen, Berlin-Leipzig 1948, O. Perron, Irrationalzahlen, W.de Gruyter Air
& Co., 1939. und O. Perron. Kettenbriiche, B. G. Teubner, Leipzig 1929
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so dass
1

1

Q+ —
T

T2

= qo

SR

gilt. Aus der dritten Gleichung von (3.2) erhalten wir

™ T3 1
— =@+ — =0+ —
T2 T2 T2
r3
und daher
a 1
p D L
q1 1
QP+ —
T2
T3

Fihren wir diesen Prozess bis zu Ende durch (Induktion), so erhalten wir, wie leicht zu
sehen ist, die Gleichung

T =g+
p D 1
Q1+

q + 1

a3+ 71
S

dn
Aus dem Euklidischen Algorithmus selbst folgt ¢, > 1. (Ware namlich ¢, = 1, so ware
rn = Tn—1 und dann ware r,,_o durch r,_q teilbar, d.h., der ganze Algorithmus wiirde
schon einen Schritt eher abbrechen.)
An Stelle von g,, kdnnen wir also auch den Ausdruck (g, — 1) +% betrachten, d.h. wir
konnen (g, — 1) als vorletzten und 1 als letzten Teilnenner ansehen. Diese Festsetzung
wird sich im folgenden als sehr nitzlich erweisen.

2. Jeder rationale Bruch % lasst sich in einen Kettenbruch entwickeln. Wir zeigen,
dass diese Entwicklung eindeutig ist, d.h., dass bei zwei gleichen Kettenbriichen die
entsprechenden Teilnenner gleich sein missen.

Zum Beweis wahlen wir zwei Kettenbriiche w und . lhre Teilnenner seien qq, q1, g2, ...
bzw. q{, q}, G5, -... Wir zeigen, dass aus der Voraussetzung w = «' die Beziehungen
d = 90, @1 = ¢4, @2 = qj ... folgen.
Da ¢ der ganze Teil der Zahl w und ¢, der ganze Teil der Zahl ' ist, gilt gy = .
Ferner lassen sich die Kettenbriiche w und w’ in der Gestalt

1 /

1
qo + — bzw. qo+ —
w1 Wi
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darstellen, wobei wy und w) ebenfalls Kettenbriiche sind. Aus w = w’ und gy = ¢, folgt,
dass auch w; = wj sein muss. Also sind auch die ganzen Teile ¢; und ¢} der Zahlen w;
bzw. w] einander gleich.

Setzen wir diese Uberlegungen fort (Induktion!), so kénnen wir uns davon liberzeugen,
dass g2 = ¢}, q3 = ¢4 ... gelten muss.

3. Es sei
1
w=qo+ 1 (3.3)
q1 + 1
q2 + 71
an
irgendein Kettenbruch. Wir betrachten nun die folgenden Zahlen:
1 1
qo0, qo + —, qo + )
qQ 1
q1+ —
a2

Diese Zahlen, in Form gewohnlicher unkiirzbarer (reduzierter) Briiche geschrieben:

D _ @

Qo 1

P +1

Q1 0 q1

Py N 1

QQ_QO 1
Q1+ —

q2

P,

— =W

Qn

nennt man die Naherungsbriiche des Kettenbruches w.
Wir bemerken, dass der Ubergang von % zu S’Z—i erfolgt, indem man den letzten

Teilnenner ¢; der im Naherungsbruch vorkommt, durch ¢, + ﬁ ersetzt.
3. Eine wichtige Rolle in der Theorie der Kettenbriiche spielt der nachstehende Hilfssatz.
Lemma. Fiir jeden Kettenbruch (3.3) gelten die folgenden Beziehungen:

Pyt = PrQeyr + Pr (3.4)
Q1 = Qrr+1 + Qi1 (3.5)
Pyi1Qr — PiQps1 = (—1)*

Wir beweisen alle diese Relationen gleichzeitig durch Induktion nach k.
Zunachst beweisen wir sie fir k = 1:
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Da die Zahlen ¢yq1 + 1 und ¢; teilerfremd sind, ist der Bruch %ﬁ“ unkirzbar. Der

Bruch 511 ist definitionsgemaB unkiirzbar. Gleiche unkirzbare Briiche haben aber gleiche
Zahler und gleiche Nenner.
Also ist P = qoq1 + 1 und (1 = q1.

Py 1 qo(qiqe + 1)+ g2
0 1 q1q2 + 1 (37)

Der groBte gemeinsame Teiler der Zahlen go(q1g2 + 1) + g2 und q1g2 + 1 ist nach § 2,
Nr. 10, gleich (g2, ¢1g2 + 1), und auf Grund desselben Satzes gleich (g2, 1), also gleich
1. Der auf der rechten Seite der Gleichung (3.7) stehende Bruch ist also unkiirzbar,
und daher gilt

Py =qo(qigo + 1) + @2 = (qoq1 + 1)g2 + g0 = Pigo + Py

und
Qr=qqp+1=0Qi19+ Qo

Die Gleichung
PQ1 — PiQy = (—1)"

lasst sich ohne Schwierigkeit nachweisen.
Damit ist der erste Teil des Induktionsbeweises erbracht.

Wir nehmen nun an, die Gleichungen (3.4), (3.5) und (3.6) seien richtig, und betrachten

den Naherungsbruch
Pov1 Piuqre1r + P

Qr+1 B QrQe+1 + Qr+1

Der Ubergang von g’zfl zu 5’;:2 erfolgt, wie frither bemerkt wurde, indem man g1 in

dem Ausdruck fir 5’Z—i durch qr41 + ﬁ ersetzt.
Da gi+1 in den Formeln fir Py, Qp, Pr_1, Qr_1 nicht vorkommt, erhalten wir so

Pepo B (grs1 + ﬁ) + Pr—1
Qrv2  Q (C]k+1 + -1 ) + Q-1

qk+4-2

oder unter Beachtung unserer Induktionsvoraussetzungen (3.4) und (3.5)

P o _ Pri1qryo + Py
Qrr2  Qre1Gio + Qk

(3.8)

Wir beweisen nun, dass der auf der rechten Seite von (3.8) stehende Bruch unkirzbar
ist. Dazu genligt es zu zeigen, dass Zahler und Nenner teilerfremd sind.

Wir nehmen an, die Zahlen Pi1qiio + P und Qri1qiio + Qr hatten irgendeinen
gemeinsamen Teiler d > 1. Dann ware auch der Ausdruck

(Per1@rt2 + Pr) Qg1 — (Qrr1qrt2 + Qr) Prgr
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durch d teilbar. Nach unserer Induktionsannahme (3.6) ist dieser Ausdruck aber gleich
(=1)%*1, kann also nicht durch d teilbar sein.

Folglich ist die rechte Seite von (3.8) unkiirzbar, und (3.8) ist eine Identitat zweier
unkirzbarer Briiche. Also folgt

Pryo = Priiqryo + Py und Qrt2 = Qrr1qr+2 + Qk

Es bleibt nun noch zu zeigen, dass

Pe2Qri1 — Pry1Qryo = (—1)F (3.9)

gilt. Nach dem eben Bewiesenen ist aber

PrioQri1 — Piv1Qit2 = Pror1Grr2Qrr1 + PrQri1 — Piv1@i12Qi+1 — P Qk

und (3.9) folgt unmittelbar aus der Induktionsannahme (3.6). Damit ist der Indukti-
onsschluss gefiihrt und der Hilfssatz bewiesen.

Folgerung:
Pk+1 P,  (—1)F
Qr+1 Qr  QrQry1
Der Beweis liegt auf der Hand.

Da die Teilnenner von Kettenbriichen ganze positive Zahlen sind, folgt aus dem eben
bewiesenen Hilfssatz

(3.10)

Ph<P<P<.. , QO<Q1<Q2<... (311)

Diese einfache, aber wichtige Bemerkung werden wir im weiteren noch prazisieren.

5. Wir verwenden nun den Hilfssatz aus Nr. 4 zur Beschreibung aller Kettenbriiche,
deren Teilnenner gleich 1 sind. Fiir solche Briiche gilt der folgende interessante Satz.

Satz: Hat ein Kettenbruch n Teilnenner, die samtlich gleich 1 sind, so ist dieser Bruch
gleich “=t,

Beweis: Wir wollen einen Kettenbruch mit n Teilnennern, deren jeder gleich 1 ist, mit
o, bezeichnen. Offensichtlich sind

aq, A2, ..., Op

aufeinanderfolgende Naherungsbriiche von «,,. Es sei

Qr

093
Wegen
1

oq 7 un [e%) +1 1

ist P, =1und P, =2. Fernerist P,+1 = P,gni1 + Pn—1= P, + P,_1.
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Daher gilt (man vergleiche § 1, Nr. 6) P, = u,41. Analog ergibt sich Q1 =1, Q2 =1
und Qni1 = Qnqni1 + Qn_1 = Qn + Qny1 und daraus Q,, = u,. Folglich ist

Up+1
a, = (312)

Der Leser vergleiche dieses Ergebnis mit den Formeln (1.10) und (3.6).

6. Gegeben seien zwei Kettenbriiche w und W'
1 ) 1
Ww=qo+ ——7— ; Ww=q+t———

1
+

mit
% >q a>qa @G> G e (3.13)

Die Naherungsbriiche von w bezeichnen wir mit

i) Ll )

Qo @1 ’ Q2 T
die Naherungsbriiche von ' mit

By Py Py

Q Qv Q

Aus den Ergebnissen des Satzes von Nr. 4 ersieht man leicht, dass wegen (3.13)

Py>PFy, P,>P, P,>P ,.. und Q;>Qy, Q1>Q1, Q3>Qs ,..
gilt.

Der kleinste Wert, den ein Teilnenner annehmen kann, ist offensichtlich 1. Sind also
alle Teilnenner irgendeines Kettenbruches gleich 1, so wachsen die Zahler und Nenner
seiner Naherungsbriiche langsamer als die Zahler und Nenner der Naherungsbriiche
jedes anderen Kettenbruches.

Wir schatzen nun ab, um wieviel langsamer dieses Anwachsen geschieht. Abgesehen
von den Kettenbriichen, deren samtliche Teilnenner gleich 1 sind, wachsen offensichtlich
Zahler und Nenner der Naherungsbriiche derjenigen Kettenbriiche am langsamsten an,
bei denen einer der Teilnenner den Wert 2 hat, wahrend alle anderen gleich 1 sind.
Solche Kettenbriiche hangen nun, wie der folgende Satz lehrt, ebenfalls mit den Fibo-
naccischen Zahlen zusammen.

Lemma: Der Kettenbruch w habe die Teilnenner qo, q1, g2, ..., ¢, und es gelte

W= =¢@=...=¢-1=¢+1=...=¢,=1 , ¢ =2 (17&0)

Dann ist
_ Uit 1Up—i43 + Uilp—it]

UiUp—j+3 + Uj—1Up—i+1

63



3 Fibonaccische Zahlen und Kettenbriiche

Der Beweis dieses Satzes wird durch Induktion nach ¢ gefiihrt.
Ist i = 1, so gilt fir jedes n:

w=1+
2+
I+

1
+%

n—1 Teilnenner

oder wegen anfangs Bewiesenen,

1 1 1
w=lg =1 =1 oy M 2l
91 1 9 Up—1 2uy + Up—1 Up+-2 Un+4-2
Qp—1 Up Unp,

und schlieBlich, wenn wir noch, wie vorausgesetzt, uy = 0 setzen,

_ Uglpy + UUy

UL Up+2 + UpUp

Der erste Teil des Induktionsbeweises ist damit erbracht. Wir nehmen nun an, es gelte
fur jedes n:

1 Ui Upy—it s + WUy —;
1 + _ 1+1Un—i4+3 1 Un—i+1 (314)
1 Uilp—i+3 + Ui—1Up—+1
1+ 1
L+ 1+
2+
Qn—z
1 Teilnenner
1
Wir betrachten den Kettenbruch 1 + N
1
+ . 1
1+ :
2+
Qp—i—1
i+1 Teilnenner
Dieser Kettenbruch kann offensichtlich auch so aufgefasst werden
1
1+ ; (3.13)
1
' L+ 1+ L
' 1
24+
Qp—i—1

i Teilnenner

Der Kettenbruch, der in (3.15) in der Klammer steht, ist nach Formel (3.14) gleich

Ujp1Up—i+2 F+ Uilp—;
Ujlp—i+2 + Ui—1Up—j
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Der gesamte Bruch (3.15) ist also gleich

1+ 1 _ (Wi + Wi 1)Un—i+2 + (W1 + i) Un—;
UjUp—i4+2 + Wi—1Up—;

Uit Un—i+2+UiUn—;
Ui Up—i42FUi—1Un—i

U 2Up—i42 T Uit 1Up—j
Ujlp—i+2 + Ui—1Up—j

Damit ist der Induktionsschluss gefiihrt und der ganze Satz bewiesen.

Folgerung: Es seien nicht alle Teilnenner eines Kettenbruches w gleich 1; ferner sei
qo # 0 und die Anzahl der von 1 verschiedenen Teilnenner sei mindestens n. Schreibt
man w in der Form eines gewohnlichen Bruches P 5o erhalt man

P 2 Ui 1Un i3 + Uiy 11 > Uip1Up—i12 + Uilly—j12 = Upi2

und analog @ > 1.

Eine wesentliche Rolle spielt dabei natiirlich der Hilfssatz aus Nr. 4, auf Grund dessen
wir beim Prozess des "Abbaus" eines Kettenbruches in einen gewohnlichen Bruch nur
unkirzbare Briiche erhalten. Daher lassen sich Zahler und Nenner des erhaltenen Bru-
ches nicht durch Kirzen verkleinern.

6. Aus den Betrachtungen von Nr. 6 konnen wir den nachstehenden Satz folgern, der
auf die besondere Stellung der Fibonaccischen Zahlen in Bezug auf den Euklidischen
Algorithmus hinweist.

Satz: Die Anzahl der Schritte bei der Anwendung des Euklidischen Algorithmus auf die
Zahlen a und b ist fiir beliebiges a gleich n — 1, wenn b = u,,, und fiir jedes a kleiner
alsn—1, wenn b < u,, ist.

Beweis: Der erste Teil des Satzes lasst sich recht leicht beweisen. Es geniigt fiir a die
auf b folgende Fibonaccische Zahl, also u,1 einzusetzen. Dann gilt

Up+1
Unp,

:@n

Der Kettenbruch a,, hat n Teilnenner, d.h., der Euklidische Algorithmus fiir die Zahlen
a und b bricht nach n — 1 Schritten ab.

Wir, beweisen nun den zweiten Teil des Satzes indirekt, d.h., wir nehmen an, die Anzahl
der Schritte des Algorithmus ware nicht kleiner als n — 1.

Wir entwickeln den Quotienten % in einen Kettenbruch w. Offensichtlich hatte w nicht
weniger als n Teilnenner (ndmlich einen mehr, als der Euklidische Algorithmus Schritte
hat). Da b keine Fibonaccische Zahl ist, sind nicht alle Teilnenner von w gleich 1, und
nach der Folgerung aus dem Satz in Punkt 5 ware b > u,,. Das steht aber im Wider-
spruch zur Voraussetzung unseres Satzes

Der eben bewiesene Satz besagt, dass der auf benachbarte Fibonaccische Zahlen an-
gewandte Euklidische Algorithmus in gewissem Sinne "am langsten"ist.
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8. Einen Ausdruck der Form

qo + (3.16)

q +
q +

_ 1

1

bezeichnet man als unendlichen Kettenbruch. Die Definitionen und Ergebnisse der vor-
hergehenden Punkte lassen sich in natiirlicher Weise auch auf solche unendliche Ket-
tenbriiche ausdehnen. Sei

Hooo B P
Q = Q@ T Qn
die - offensichtlich unendliche - Folge der Naherungsbriiche des Bruches (3.16). Wir

wollen zeigen, dass diese Folge einen Grenzwert besitzt.
Dazu betrachten wir die Teilfolgen

(3.17)

Fo Py Pay,
o2 , 3.18
QO QQ QQn ( )
und p P P
Lo =, (3.19)
@1 (2 Q2n+1
Wegen (3.10) und (3.11) gilt
Ponya Pon Ponya Papgr | Ponir Pop —1 1 0

- = — — = + >
Qa2 Q2n Qa2 Q2np1 Qantr G Qan2Qonir Q2n+102n
Die Folge (3.18) ist also wachsend. Analog folgt aus

P, P 1 1
2n+3 . 2n+1 + < 0

Q2n+3 Q2n+1 Q2n+3Q2n+2 Q2n+2Q2n+1

dass (3.19) eine abnehmende Folge ist.
Die Glieder der Folge (3.18) sind samtlich groBer als die Glieder der Folge (3.19).
Betrachten wir namlich die Zahlen

P P
2n und 2m+41

Q2n Q2m+1

und geben wir eine ungerade Zahl k vor, die sowohl groBer als 2n als auch groBer als
2m + 1 ist, so ergibt sich aus (3.10), dass

Py - Pyt
Qr  Qrs1

(3.20)
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gilt; aus der Tatsache, dass (3.18) eine wachsende und (3.19) eine fallende Folge ist,
folgt

P, B, P B,
SIS 2 und k<g

Qn—!—l Q?n @ Q2m+1
Vergleichen wir (3.20), (3.21) und (3.22), so erhalten wir gerade

P2n P2m—|—1
<
QZn Q2m+1

(3.21,3.22)

Wegen (3.10) und (3.11) gilt

Pt P 11
QnJrl Qn QnJrlQn n?

fir wachsendes n strebt demnach der Absolutbetrag der Differenz des (n + 1)-ten und
n-ten Naherungsbruches gegen Null.

Aus all dem Gesagten kann man schlieBen, dass die Folgen (3.18) und (3.19) ein und
denselben Grenzwert besitzen, der offensichtlich auch Grenzwert von (3.17) ist. Diesen
Grenzwert bezeichnet man als den Wert des unendlichen Kettenbruches (3.16).

In Nr. 2 haben wir die Eindeutigkeit der Entwicklung einer rationalen Zahl in einen Ket-
tenbruch bewiesen. Da bei den dort angestellten Uberlegungen nicht die Endlichkeit der
betrachteten Kettenbriiche verwendet wurde, haben wir gleichzeitig nachgewiesen, dass
jede reelle (und nicht nur rationale) Zahl als Wert nur eines einzigen Kettenbruches
erscheinen kann.

Da sich eine rationale Zahl immer in einen endlichen Kettenbruch entwickeln lasst, so
folgt aus dem soeben Bewiesenen, dass die Entwicklung einer rationalen Zahl in einen
unendlichen Kettenbruch nicht moglich ist. Daher ist der Wert eines unendlichen Ket-
tenbruches stets eine irrationale Zahl.

Die Theorie der Entwicklung irrationaler Zahlen in Kettenbriiche ist ein inhaltlich tief-
gehendes Gebiet der Zahlentheorie, das interessante Resultate birgt. Wir konnen hier
nicht naher auf diese Theorie eingehen, sondern wollen uns nur mit einem Beispiel be-
gnugen, das mit den Fibonaccischen Zahlen zusammenhangt.

9. Gesucht ist der Wert des unendlichen Kettenbruches

1
1+ — (3.23)

1
1+

1
1+ —

Wir haben oben bewiesen, dass dieser Wert gleich nh_>nolo o, ist, und wollen diesen Grenz-
wert nun berechnen.
Wie schon in § 1, Nr. 20, festgestellt wurde, ist u,, gleich der zu % nachstgelegenen

ganzen Zahl. Also gilt
Qn

74_6”
V5

Up =
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wobei |6,,| < % fur jedes n gilt. Daher gilt nach Nr. 5

an+1 + 9
. . Un+1 . n+1
lim o, = lim Dl T
n—oo

a+ Y5 lim (a +e )
n—oo g, nSoo o + 0 nlﬁoo 1 0.,\/5 - . 0,5
\/5 n + nh_I)l(;lO 1 + ,&n

« n

Nun ist aber 6,,111/5 beschrinkt (der Absolutbetrag ist kleiner als 2), wahrend o fiir
n — oo unbegrenzt wichst (wegen a > 1). Also ist

0n+1\/5 _

lim 0
n—o0 o
Aus den gleichen Griinden ist auch
On
lim V5 =0

n—o0 an
und wir erhalten

lim " = «
n—oo

Der Wert des Kettenbruches (3.23) kann auch ohne Binetsche Formel und ohne Grenz-
iberginge berechnet werden. (Fiir uns ist es in bekanntem Sinne "hinreichend", dass
wir in Nr. 2 eine induktive Uberlegung durchfiihrten, die nicht nur endliche Kettenbrii-
che benutzt, sondern auch ihre Grenzwerte, namlich unendliche Kettenbriiche.)

Dazu schreiben wir den Kettenbruch (3.23) in der Form
1
1+ =
x
Offenbar ist hier x selbst wieder ein Kettenbruch (3.23), so dass
1
r=1+—
T

gilt, woraus

22—z —-1=0 also T =

(3.24)

folgt. Da der Wert von (3.23) eine nichtnegative Zahl ist, muss er gleich der positiven

Wurzel der Gleichung (3.24) sein, also gleich 1*—2\/5 und das ist genau der Wert von «.

Der bewiesene Satz besagt, dass die Quotienten benachbarter Fibonaccischer Zahlen
bei wachsenden Indizes gegen « streben. Das kann zur angenaherten Berechnung der
Zahl « benutzt werden (vgl. die Berechnung von w,, in § 1, Nr. 20 und ebenfalls Formel
1.35).

Der dabei auftretende Fehler ist gering, selbst wenn man kleine Fibonaccische Zahlen

verwendet. Zum Beispiel ist
Uu10 55
— =—=1,6176
Ug 34 ’
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auf 4 Stellen genau, wahrend der genaue Wert von « gleich 1,6180 ist. Wie man sieht,
ist also der Fehler kleiner als 0,1%.

Ubrigens ist der Fehler bei der angenaherten Berechnung irrationaler Zahlen mit Hilfe
der Naherungsbriiche ihrer Kettenbruchentwicklungen gerade bei der Zahl o am groB-
ten.

Jede andere Zahl wird durch ihre Naherungsbriiche in gewissem Sinne "genauer" ap-
proximiert als «v. Wir kénnen aber auf diesen Sachverhalt nicht naher eingehen, obwohl
er auBerst interessant ist.
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4 Die Fibonaccischen Zahlen und die Geometrie

1. Wir wollen eine gegebene Strecke AB der Lange 1 (Abb. 2) so in zwei Abschnitte
teilen, dass der groBere Abschnitt die mittlere Proportionale zwischen dem kleineren
Abschnitt und der ganzen Strecke ist.

& e s

Die gesuchte Lange des groBeren Streckenabschnittes bezeichnen wir mit x. Offensicht-
lich wird dann die Lange des kleineren Abschnittes gleich 1 — x, und aus der in der
Aufgabe angegebenen Bedingung erhalten wir die Proportion

1 T

i 4.1

T l1—=x ( )
und daraus

?=1—z (4.2)

Die Gleichung (4.2) hat die positive Wurzel _1%\/5 so dass die Proportion (4.1) die

Gestalt
1 2 2(1++/5) 1++5
= =

r 145 (—1+VB)(1++v6) 2
annimmt. Eine solche Teilung (durch den Punkt C}) bezeichnet man als "stetige Tei-
lung" oder als "Goldenen Schnitt".

Verwendet man die negative Wurzel der Gleichung (4.2), so ergibt sich der Punkt Cj,
der, wie aus Abb. 2 ersichtlich ist, nicht auf der Strecke AB liegt. (In der Geometrie
spricht man hier von duBerer Teilung.) Man zeigt leicht, dass wir es auch hierbei mit
dem Goldenen Schnitt zu tun haben:

CoB AB

72202,

AB  (5A
2. Der Punkt, der eine Strecke im Goldenen Schnitt teilt, l1asst sich mihelos konstru-

ieren.
Es sei |[AB| = 1. In A errichten wir die Senkrechte und wahlen darauf im Abstand

von A einen Punkt, den wir mit E bezeichnen; es ist also |AE| = 1 (Abb. 3).
£
D

Dann ist
1\?> 5
EB| = 4|1 — ] = -—
BBl =1+ (3) =%
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Ziehen wir um FE als Mittelpunkt einen Kreis durch A, so schneidet dieser die Strecke
EB in einem Punkt D. Damit ist

V5 —1
2

|BD| =

SchlieBlich ziehen wir durch D den Kreis mit dem Zentrum in B und finden dadurch
auf AB den gesuchten Punkt C;. Den Punkt Cj fiir die duBere Teilung kann man aus
der Bedingung |ACy| = |BCY| bestimmen.

2. Dem Goldenen Schnitt begegnet man in der Geometrie ziemlich haufig.
Bei dem einem Halbkreis einbeschriebenen Quadrat (vgl. Abb. 4) beispielsweise teilt
der Punkt C' die Strecke AB im Goldenen Schnitt.

Einem Kreis vom Radius R sei ein regelmaBiges Zehneck einbeschrieben (Abb. 5). Die
Seite am a1g hat bekanntlich die Lange

360°

2R si
sin o5

d.h. 2R sin 18°. Berechnen wir einmal ein 18°. Auf Grund bekannter trigonometrischer
Formeln erhalten wir:

sin 36° = 2sin 18° cos 18° , cos36° =1 — 2sin® 18°

so dass
sin 72° = 45in 18° - cos 18°(1 — 2sin? 18°) (4.3)

gilt. Wegen sin 72° = cos 18° # 0 folgt aus (4.3)
1 = 4sin18°(1 — 2sin? 18°)
daher ist sin 18° eine der Wurzeln der Gleichung
1 = 4z(1 — 22%) bzw. 813 — 422 +1=0
Zerlegen wir deren linke Seite in Faktoren, so erhalten wir

(22 —1)(42® +22 —1) =0
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und daraus
T e e V4 FRNN U o4
1 — 27 2 — 4 ) 3 — 4
Da sin 18° positiv und von % verschieden ist, muss sin 18° = % sein.

Bei dieser Gelegenheit geben wir eine Beziehung an, die wir in Nr. 4 bendtigen:

c0s36° = 1 — 2sin?18° =1 9 L —1_ 2 _20°-1_ 242-1
42 o2 2002 2002
_20z+1_ a? o«
T 202 202 2
Daher ist
a10:2R\/5_1:R\/5_1:E
4 2 o

Mit anderen Worten, ayq ist gleich dem groBeren Teil des nach dem Goldenen Schnitt
geteilten Radius.

Zur praktischen Berechnung von a9 kann man « durch das Verhaltnis benachbarter
Fibonaccischer Zahlen ausdriicken (§ 1, Nr. 20, oder § 3, Nr. 9) und angenahert aqg
gleich %R oder sogar schon gleich %R setzen.

4. Wir wollen nun ein regelmaBiges Fiinfeck betrachten. Seine Diagonalen beschreiben
ein regelmaBiges sternformiges Fiinfeck (Abb. 6).

Der Winkel AF D ist gleich 108°, der Winkel ADF' gleich
36°. Nach dem Sinussatz folgt:

|AD|  sin108°  sin72° 5 s 36° 21-+\/5
= = = ZCOS == =«
|AF|  sin36°  sin36° 4
A ) ¢ )

Da offensichtlich |AF| = |AC] ist, gilt

|AD| |AD|
AF| ~ ac) — “
d.h., der Punkt C teilt die Strecke AD nach dem Goldenen
Schnitt.
Nach Definition des Goldenen Schnittes ist dann auch
|AC|
jcp| — “
Beriicksichtigen wir |[AB| = |C'D|, so erhalten wir:
|AC|  |AB|

AB| ~ |BC| ~
Aus diesem Grunde ist unter den Strecken |BC|, |AB|, |AC|, |AD| jede Strecke a-mal
so groBB wie die vorhergehende. Der Leser moge beweisen, dass auch
|AD|
[ap| ~ "
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gilt.

5. In ein Rechteck mit den Seiten a und b zeichnen wir moglichst groBe Quadrate ein
(Abb. 7).

L)

Die Betrachtungen in § 2, Nr. 5, zeigen, dass dieser Prozess, falls a und b ganz sind, dem
Euklidischen Algorithmus fiir @ und b entspricht. Die Anzahl der Quadrate von gleicher
GroBe ist daher gleich den entsprechenden Teilnennern der Kettenbruchentwicklung von
a

7 (§3, Nr. 1).

Zerlegen wir ein Rechteck, dessen Seiten sich wie benachbarte Fibonaccische Zahlen
verhalten, auf die beschriebene Weise in Quadrate (Abb. 8), so sind nach § 3, Nr. 3
alle Quadrate - auBer den beiden kleinsten - von verschiedener GroBe.

Da die Seiten all dieser Quadrate gleich uq, us, ..., u, sind, ist ihr gesamter Flacheninhalt
offenbar gleich
u%—ku%—f—...—kui

Das stimmt aber mit dem Flacheninhalt u,u,,.1 des von uns zerlegten Rechtecks liber-
ein. Damit ist fiir jedes n

2 2 2
Uy + Uy + ...+ Uy, = UpUpg

und wir haben einen neuen, diesmal geometrischen Beweis der Behauptung aus § 1,
Nr. 4, erhalten.

Abb. 8,9 . 2 F ¢

Das Verhaltnis der beiden Rechteckseiten sei cv. (Solche Rechtecke wollen wir der Kiirze
halber "harmonische Rechtecke" nennen.) Wir beweisen nun:
Zeichnet man in ein harmonisches Rechteck ein moglichst groBes Quadrat ein (Abb.
9), so erhalt man als Rest wieder ein harmonisches Rechteck.
Nach Voraussetzung gilt

[AB|

4p] "
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ferner ist |AD| = |AE| = |EF|, da AEF D ein Quadrat ist. Also ist

|EF| _ |AB|—|EB| _ ,
= =a"—1
|EB| |EB|

Wegen o — 1 = « folgt schlieBlich

|EF]
— =
|EB|

I
I

m

Abb.10 veranschaulicht, wie ein harmonisches Rechteck "fast ganz" durch die Quadrate
[, I, 1l, . . . ausgeschopft werden kann. Dabei ist die Figur, die nach Einzeichnung
eines weiteren Quadrates verbleibt, jedesmal ein harmonisches Rechteck.

Der Leser vergleiche diese Uberlegungen mit denen in
§ 3, Nr. 5 und 9.

n Wir bemerken noch folgendes: Zeichnet man in ein

Quadrat ein harmonisches Rechteck | und die Qua-
I drate Il und Il ein (s. Abb.11), so erweist sich das
verbleibende Rechteck ebenfalls als ein harmonisches
Rechteck. Die Durchfilhrung des Beweises sei dem
Leser liberlassen.

7. Auch in der Natur spielen bei der Anordnung gleichartiger Gegenstande die Fibo-
naccischen Zahlen eine Rolle.

In verschiedenen spiralformigen Anordnungen lassen sich zwei Scharen von Spiralen
unterscheiden. Bei der einen winden sich die Spiralen im Uhrzeigersinn, bei der anderen
in entgegengesetzter Richtung. Die Anzahl der Spiralen beider Scharen erweisen sich
oft als benachbarte Fibonaccische Zahlen.

Betrachten wir einen jungen Kiefernzweig, so lasst sich leicht feststellen, dass seine
Nadeln in zwei Spiralen angeordnet sind, die von rechts unten nach links oben gehen.
Gleichzeitig bilden sie drei Spiralen, die von links unten nach rechts oben verlaufen.
Bei vielen Zapfen sind die Schuppen in drei Spiralen angeordnet, die sich um die Achse
des Zapfens winden. AuBerdem sind die Spiralen in fiinf Spiralen angeordnet, die sich
in der entgegengesetzten Richtung um die Achse winden.

Bei groBen Zapfen lassen sich 5 und 8 und sogar 8 und 13 Spiralen beobachten. Auch
kann man solche Spiralen bei der Ananas finden; gewodhnlich sind es dort 8 und 13.

Bei vielen Korbbliitlern (z. B. der Margerite oder der Kamille) bemerkt man eine spi-
ralformige Anordnung der einzelnen Bliiten in Bliitenstande. Die Anzahl der Spiralen
ist hier 13 in der einen und 21 in der anderen Richtung oder sogar 21 bzw. 34.
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Besonders viele Spiralen treten bei der Anordnung der Samen groBer Sonnenblumen
auf. lhre Anzahl kann 55 in der einen und 89 in der anderen Richtung sein.

8. Harmonische Rechtecke sehen "wohlproportioniert" aus und wirken gefallig. Gegen-
stande dieser Gestalt erweisen sich auch als bequem im Gebrauch. Daher gibt man
vielen unserer "rechteckigen" Gebrauchsgegenstande - wie Biichern, Streichholzschach-
teln, Koffern usw. - diese Form.

Verschiedene idealistische Philosophen des Altertums und des Mittelalters leiteten aus
der augenfalligen Schonheit der harmonischen Rechtecke und anderer Figuren, in denen
der Goldene Schnitt Verwendung findet, asthetische und sogar philosophische Prinzipien
ab.

Mit Hilfe des Goldenen Schnittes und einiger anderer Zahlenverhaltnisse versuchten sie,
die Erscheinungen in der Natur und im gesellschaftlichen Leben zu erklaren.

Unter Benutzung der Zahl « selbst und ihrer Naherungsbriiche erfanden sie mystische
"Operationen" verschiedener Art.
Solche "Theorien" haben mit Wissenschaft natiirlich nicht das geringste zu tun.

9. Wir beschlieBen unsere Betrachtungen mit einem kleinen geometrischen Scherz. Wir
"beweisen" namlich anschaulich, dass 64 = 65 ist.

Dazu nehmen wir ein Quadrat mit der Seitenlange 8 und zerlegen es so in vier Teile,
wie Abb. 12 zeigt.

| |
i
Abb. 12,13 ¢

Diese vier Teile setzen wir zu einem Rechteck mit den Seitenlangen 13 und 5 zusammen
(Abb. 11).
Das Rechteck hat also den Flacheninhalt 65.

Fir diese auf den ersten Blick ratselhafte Erscheinung findet man leicht eine Erkla-
rung. Die Punkte A, B, C, D in Abb. 13 liegen namlich in Wirklichkeit gar nicht auf
einer Geraden, sondern bilden vielmehr die Eckpunkte eines Parallelogramms, dessen
Flacheninhalt gerade gleich der einen "(iberzdhligen" Einheit ist.

Dieser verbliffende, aber falsche "Beweis" einer wissenschaftlich falschen Aussage (sol-
che "Beweise" nennt man Sophismen) kann noch anschaulicher und iberzeugender
durchgefiihrt werden, wenn man an Stelle des Quadrates mit der Seitenlange 8 ein
Quadrat nimmt, dessen Seitenldnge gleich irgendeiner Fibonaccischen Zahl mit hinrei-
chend groBem geradem Index, usgy,, ist.

Wir zerlegen dieses Quadrat wieder (Abb. 14) und formen aus seinen Teilen ein Recht-
eck (Abb.15).
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Uzpn

tan-2

”Jn -2

UEE-‘]

Abb. 14,15

Die nicht ausgefiillte Flache in Form eines Parallelogramms, das sich langs der Diagonale
unseres Rechtecks hinzieht, hat nach den Ausfiihrungen von § 1, Nr. 9, einen Inhalt,
der gleich 1 ist. Die groBte Breite, d.h. die Hohe dieses Parallelogramms, ist, wie man

leicht bestatigt, gleich
1

/0,2 2
Uy + UDp—2

Nehmen wir also ein Quadrat mit der Seitenlange 21 cm und "verwandeln" es in ein
Rechteck mit den Seiten 34 cm und 13 cm, so ist die Hohe des auftretenden Paralle-
logramms

1
——— CIm
V212 + 82

d.h. ungefahr 0,4 mm, also fiir das Auge kaum wahrnehmbar.
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5 Die Fibonaccischen Zahlen und die Suchtheorie

1| Bekanntlich hat ein Kraftfahrzeug bei verschieden hohen Geschwindigkeiten un-
terschiedlichen Benzinverbrauch. Dabei ist es von Interesse, welche Geschwindigkeit in
Bezug auf den Benzinverbrauch "optimal" ist, d.h., bei welcher Geschwindigkeit am
wenigsten Kraftstoff verbraucht wird.

Wir kénnen annehmen, dass die Kurve, die den Benzinverbrauch pro Kilometer in Ab-
hangigkeit von der Geschwindigkeit des Fahrzeugs angibt, die in Abb. 16 gezeigte Form
hat; zunachst sinkt der Verbrauch auf ein gewisses Minimum ab, um dann mit weiterer
Erhéhung der Geschwindigkeit standig (in der Mathematik sagt man "monoton") zu
steigen.

Obwohl diese Kurve, die zunachst abfillt und dann ansteigt, fiir alle Kraftfahrzeu-
ge praktisch gleich verlauft, kann ihre genaue Form sogar fiir Kraftfahrzeuge gleichen
Typs etwas variieren, da diese Kurve von den spezifischen Eigenarten des Motors, vom
Grad der Abnutzung seiner Teile usw. abhangt.

Insbesondere kann sich auch das Minimum in Abb. 16 in ziemlich breiten Grenzen

bewegen.

Geschwindigkert

krafistoffvarbrouch

Wir nehmen jetzt einmal an, wir verreisen mit dem Auto in eine Gegend, in der es keine
Tankstellen gibt. Damit es uns moglich ist, die groBte Entfernung zuriickzulegen, ohne
zu tanken, miissen wir hinreichend genau die Geschwindigkeit bestimmen, die einem
minimalen Kraftstoffverbrauch entspricht.

Diese Geschwindigkeit wird oft die 6konomischste Geschwindigkeit genannt.

Die 6konomischste Geschwindigkeit eines Kraftfahrzeuges lasst sich selbstverstandlich
durch einen Versuch bestimmen, indem man mit verschiedenen Geschwindigkeiten be-
stimmte Wegstrecken zuriicklegt, deren Charakter und Beschaffenheit fiir die beabsich-
tigte Reiseroute typisch sind, und jedes Mal den Benzinverbrauch misst.

Da diese Beschaftigung nicht gerade befriedigend ist, denkt man natdirlich tiber Fol-
gendes nach:

Wie viele Versuche genligen, um die 6konomischste Geschwindigkeit mit vorgegebener
Genauigkeit zu bestimmen?

Bei welchen Geschwindigkeiten ist der Benzinverbrauch zu bestimmen?

°Die Suchtheorie wurde im 2. Weltkrieg fiir militirische Zwecke entwickelt und wird auch heute
Uberwiegend im Militdrwesen benutzt. Es ist jedoch an der Zeit, sie fiir friedliche Zwecke, z. B.
zum Auffinden von Fischschwirmen im Meer, zu erschlieBen. (Anm. d. Red.)
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Diesen Fragen analog sind die beiden folgenden: Wie organisiert man eine bestimmte
Anzahl von Versuchen, um mit vorgegebener Genauigkeit die 6konomischste Geschwin-
digkeit zu finden? Welches ist die groBte Genauigkeit?

Dabei wollen wir unter der Bestimmung der 6konomischsten Geschwindigkeit mit vor-
gegebener Genauigkeit € jene Geschwindigkeit verstehen, bei der der wahre Wert der
okonomischsten Geschwindigkeit zwischen v — ¢ und v + ¢ liest (d.h. bei der der Fehler
nicht groBer als ¢ ist).

Wir konnen als bekannt voraussetzen, dass die 6konomischste Geschwindigkeit unseres
Autos zwischen Grenzen v und v” liegt. Fir v’ bzw. v” ist die Geschwindigkeit zu
nehmen, die nicht groBer bzw. nicht kleiner als die 6konomischste Geschwindigkeit ist.
(Zum Beispiel kann v die niedrigste Geschwindigkeit sein, bei der der Motor gerade
noch arbeitet, und v” die Hochstgeschwindigkeit des betreffenden Autos.)

2. Ausgehend von dem eben beschriebenen konkreten Beispiel wollen wir das folgende
mathematische Problem betrachten.

Von einer Funktion f(x) sei uns nur bekannt, dass sie von einem gegebenen z’ bis
zu einem gewissen unbekannten Wert & abnimmt und zwischen diesem T und einem
gegebenen x” wieder wachst (Abb. 17). Insbesondere wollen wir zulassen, dass der
unbekannte Wert T in Wirklichkeit mit einem der Endpunkte des betrachteten Intervalls,
namlich mit 2’ oder 2" bereinstimmt.

/!

¢

Sl e

I
l |
1 |
|
: i
i |
i L

x X n

ig; bom o —

Abb. 17,18

Offenbar ist dann die Funktion standig wachsend (Abb. 18) bzw. standig fallend (Abb.
19). Selbstverstandlich ist vorher unbekannt, ob einer dieser Falle eintritt. Im Punkt
x = T nimmt die Funktion f(z) ihren kleinsten Wert oder ihr Minimum f(Z) an. Vom
Punkt T sagt man dann, dass in ihm die Funktion ihr Minimum erreicht. Er wird oft
auch der minimierende Punkt der Funktion genannt.
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Abb. 19

Wir werden im folgenden nur solche Funktionen betrachten, bei denen nach dem Wach-
sen kein Abfallen folgt. Solche Funktionen nennen wir kurz Funktionen mit einem Mi-
nimum.

In diesem Paragraphen wollen wir untersuchen, ob es moglich ist, den minimierenden
Punkt einer Funktion f mit einem Minimum genau zu bestimmen. Dass f eine Funktion
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mit nur einem Minimum ist, setzen wir im folgenden stets voraus, ohne es ausdriicklich
zu erwahnen. Klar ist, dass - nach entsprechenden Anderungen - das liber die Minima
dieser Funktionen Gesagte auch fiir Maxima gilt.

3. An dem betrachteten Problem sowie an analogen Problemen sind drei Faktoren
wesentlich: das zu erreichende Ziel; die Moglichkeiten, dieses Ziel zu erreichen; die
Bedingungen, die dabei zu beachten sind.

In unserem Fall ist das Ziel die Erhohung der Genauigkeit bei der Bestimmung des
minimierenden Punktes, d.h. die Verkleinerung des Fehlers bei der Berechnung dieses
Punktes.

Die Moglichkeiten, dieses Ziel zu erreichen, sind die verschiedenen Arten der Bestim-
mung einer gewissen Anzahl von Werten der Funktion f (Berechnung, Messung oder
einfach Raten) in beliebigen Punkten und in dem GroBenvergleich dieser Werte.

Die Bedingungen, die dabei zu beachten sind, bestehen hier in der GroBe des Definiti-
onsbereichs der Funktion f, d.h. in der Lange L der Strecke zwischen x’ und z”.
Entsprechend dem Gesagten hat jede konkrete Suchaufgabe drei Aspekte.

1. Inwieweit ist das gesteckte Ziel unter den gegebenen Moglichkeiten und Bedingungen
zu realisieren?

Dies bedeutet bei dem behandelten Problem folgendes. Es sind n aufeinanderfolgende
Werte der Funktion f zu bestimmen, wobei die Punkte, in denen f bestimmt wird, be-
liebig gewahlt werden konnen. In welchen Punkten muss man die Werte der Funktion
bestimmen, damit der Punkt T mit der groBten Genauigkeit erreicht wird, und wie groB3
ist diese Genauigkeit?

2. Uber welche Méglichkeiten muss man verfiigen, um das gesteckte Ziel unter den
gegebenen Bedingungen realisieren zu kénnen?

In unserem Problem kann diese Frage folgendermaBen konkretisiert werden. Wir wollen
den die Funktion f minimierenden Punkt T mit gegebener Genauigkeit ¢ bestimmen,
d.h., wir wollen ein solches = finden, dass T zwischen x — ¢ und z + ¢ liegt. Wie viele
Berechnungen der Werte von f sind dazu notwendig, und wie sind diese Berechnungen
zu organisieren?

3. Unter welchen Bedingungen geniigen die vorhandenen Moglichkeiten, um das ge-
steckte Ziel zu realisieren?

In unserem Fall geht es darum, das groBte Intervall L (d.h. den groBten Wert der Diffe-
renz " — z') aufzusuchen, fiir das eine Methode existiert, mit deren Hilfe man den die
Funktion f minimierenden Punkt bei n Beobachtungen mit vorgegebener Genauigkeit
e bestimmen kann.

4. Streng genommen haben wir es jetzt nicht mit einem Problem, sondern mit zwei
Problemen zu tun.

Beim ersten Problem missen der minimierende Punkt T und der Wert f(%) bestimmt
werden. Beim zweiten Problem ist nur der Punkt Z selbst interessant, und der Wert
f(x) ist unwesentlich.
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In der ersten Aufgabe (wir wollen sie die Aufgabe A nennen) sind unsere Ziele weiter
gesteckt als in der zweiten (Aufgabe B).

Daher ist natiirlich zu erwarten, dass bei den vorhandenen Moglichkeiten und Bedingun-
gen die Ziele der Aufgabe A in geringerem MaBe realisierbar sind als die der Aufgabe B
(bei gegebenem n und L ergibt sich in Aufgabe B ein kleineres ¢ als in Aufgabe A); dass
zur Realisierung der Ziele beider Aufgaben mit gleicher Genauigkeit und unter gleichen
Bedingungen die Aufgabe A mehr Moglichkeiten erfordert (bei gleichem Fehler £ und
gleicher Intervalllange L ist in Aufgabe A im allgemeinen ein groBeres n notwendig);
dass die gleiche Realisierung der Ziele bei gleichen Moglichkeiten in Aufgabe A leichtere
Bedingungen verlangt (gleiche € und n sind in Aufgabe A nur mit kleineren Werten von
L als in Aufgabe B zu erzielen).

5. Um die formulierten Probleme mathematisch zu verdeutlichen, muss der folgende
wichtige Umstand erklart werden.

Wir setzen voraus, dass uns die Moglichkeiten interessieren, wie der minimierende Punkt
Z mit der Genauigkeit ¢ im Intervall der Lange L bestimmt werden kann (offenbar
konnen wir als Anfangspunkt dieses Intervalls den Punkt 0 und als Endpunkt den Punkt
L nehmen).

Wir nehmen an, dass wir die Aufgabe A losen, d. h., dass uns sowohl Z als auch
f(T) interessiert. Der Punkt T sei auf folgende Art bestimmt worden. Wir nehmen ein
beliebiges x zwischen 0 und L und bestimmen den Wert von f in den Punkten z — ¢,
z und z + €, d.h., wir berechnen die GroBen

flx—e), [f(x), [flzte)

(Abb. 20). Trotz der Willkir bei der Wahl von z nehmen wir an, dass x —¢ nichtnegativ
ist, so dass der Wert von f(x — ¢) tatsachlich berechnet werden kann; analog setzen
wir z + ¢ < L. Insgesamt kann man

flx—e)> f(z) < f(z +¢)

schreiben: das bedeutet, dass die im Punkt z — ¢ fallende Funktion f beim Ubergang
zu x + € zu wachsen beginnt.

1

1
|

Abb. 20 X-E XX X*E

Aber der Ubergang vom Fallen zum Wachsen ist unbedingt mit dem Durchgang durch

einen kleinsten Wert verkniipft. Im vorliegenden Fall wird dieser kleinste Wert von f in

einem gewissen Punkt T erreicht, der zwischen x — ¢ und x + ¢ liegt.

1
1
1
1
1
H

Daher ist der Abstand zwischen x und Z nicht groBer als ¢ und x ist genau der Na-
herungswert von z, den wir suchen. In diesem Fall wird das gesuchte T durch drei
Beobachtungen bestimmt. So - wohlgemerkt - kann es sein.
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Eine Garantie, das es tatsachlich so ist, haben wir jedoch nicht. Ist die Lange L des
Intervalls groB und ¢ klein, so ist das Eintreten dieser Erscheinung kaum zu erwarten.
Dagegen ist es sehr wahrscheinlich, dass die Funktion f bei drei Beobachtungen ver-
haltnismaBig groBe Werte annimmt und ihr Minimum irgendwo anders erreicht. Infol-
gedessen konnen drei Beobachtungen ausreichen oder auch nicht.

Wir benotigen also einen Plan, der unbedingt zur Bestimmung von T mit der Ge-
nauigkeit ¢ fihrt, unabhangig davon, wo dieser Punkt = wirklich liegt. Solche Plane
existieren.

Wir wollen z. B. systematisch die Werte

f0), fle), f@2e); .. (5.1)

der Funktion f berechnen, und zwar bis zu einem solchen f(r¢), dass (r + 1)e groBer
als L ist (Abb. 21).

(- ) P B e

Abb. 21 ¢

Offenbar ist derjenige Wert ke, fir den die Funktion in der Folge (5.1) ihr Minimum
erreicht, der gesuchte.

Das Wesen der zu l6senden Aufgaben besteht darin, dass wir nicht einfach einen Plan
aufstellen, der uns in allen und insbesondere in den unglinstigen Fallen den Wert = mit
vorgegebener Genauigkeit angibt, sondern den 6konomischsten dieser Plane, d.h. den
Plan, der unter den allerschlechtesten Bedingungen der beste ist.

Die schlechtesten Bedingungen sind solche, bei denen die Anzahl der zu berechnenden
Werte von f maximal ist.

Analog ist der 6konomischste Plan derjenige, der das gesteckte Ziel mit einer minimalen
Anzahl von Berechnungen der Werte von f erreicht. Daher heiBt der unter schlechtesten
Bedingungen beste Plan ein Minimum-Maximum-Plan. Wir werden einen solchen Plan
optimal nennen.

Die Gesamtheit der Schritte, die in einem optimalen Plan vorgeschrieben sind (sowohl
in dieser als auch in jeder anderen analogen Aufgabe), kann man charakterisieren als
kleinste zweckmaBige Auswahl des sich vor uns "verbergenden" Minimums der Funktion,
das "gerade nicht dort anzutreffen ist, wo wir es suchen".

Das eben Gesagte hat weder mit Mystik noch mit Aberglauben zu tun, sondern ist nur
eine Charakterisierung des besten Vorgehens unter schlechtesten Bedingungen.

6. Es ist wichtig zu bemerken, dass es nicht fiir jede Suchaufgabe optimale Plane gibt.
So existiert z. B. fiir die Aufgabe B kein optimaler Plan.
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Um das zu zeigen, setzen wir L = 2 und n = 2. Welche Genauigkeit ¢ kénnen wir
dabei garantieren?

Die Endpunkte des betrachteten Intervalls seien 0 und 2. Wir nehmen ein beliebig
kleines positives o und berechnen die Werte der Funktion f in den Punkten 1 — v und
1+ a. Ist dabei

f1-a) < f(1+a)

so muss der gesuchte minimierende Punkt T zwischen 0 und 1 + « liegen; ist
fl—a) = f(1+a)

so liegt T zwischen 1 — av und 2. Wir setzen im ersten Fall

14+«
2

T =

im zweiten Fall
. 1l-a)+2 33—«
a’; = =

2 2

Im unglinstigsten Fall unterscheidet sich das zu bestimmende & von dem wahren mini-
mierenden Punkt der Funktion f um HTO‘

Strebt « gegen 0, so verkleinert sich der Fehler. Jedoch kann « nicht gleich 0 sein (da
dann die Punkte 1 — aund 1 4+ o zusammenfallen und der Vergleich des Wertes von
f(1—a) mit dem notwendigerweise ihm gleichen - weil in demselben Punkt berechneten
- Wert von f(1+ «) uns keine Information liefert).

Dabher ist der Fehler stets groBer als % obwohl er beliebig nahe bei % liegen kann.

Jeder positive Wert o bestimmt hier einen gewissen Plan. Je naher « bei 0 liegt, desto
besser ist dieser Plan. Da zu jedem « > 0 eine noch kleinere positive Zahl zu finden
ist, gibt es zu jedem Plan einen noch besseren. Folglich existiert bei der Aufgabe B kein
optimaler Plan.

Jedoch gibt es bei der Aufgabe B "fast optimale" Plane, die sich auf Resultate beziehen,
welche sich nur unbedeutend verbessern lassen. Genauer gesagt, zu jeder Zahl v > 0
existiert ein solcher Plan P,, dass kein anderer Plan den durch P, gegebenen Fehler
um mehr als  verkleinern kann.ﬁ

7. Der durch die Folge (5.1) beschriebene Plan fiir ein ¢, das hinreichend klein im
Vergleich zur Lange L des betrachteten Intervalls ist, ist nicht optimal. Halten wir uns
an diesen Plan, so miissen wir im ungtinstigsten Fall alle » Rechnungen ausfiihren. Wir
versuchen jedoch, anders vorzugehen. Wir werden nur die folgenden Glieder von (5.1)
berechnen:

fQ0), f(2e),  [f(4e),

wir finden in der so erhaltenen Folge das kleinste der Glieder (das sei etwa f(2ke)) und
berechnen die beiden Werte f((2k — 1)) und f((2k + 1)e). Derjenige der drei Werte

®lm Gegensatz zur Aufgabe B gibt es fiir die Aufgabe A stets einen optimalen Plan, wie in Nr. 10
gezeigt wird. (Anm. d. Red.)
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(2k — 1)e, 2ke und (2k + 1)e der Veranderlichen, fiir den der Wert der Funktion f der
kleinste der Werte

f(2k =1)e),  flke), f((2k+1)e)

ist, muss offenbar Z mit der Genauigkeit ¢ sein.

Dieser neue Plan fiihrt unter schlechtesten Bedingungen nach etwa 5 + 2 Berechnun-
gen zum Ziel. Fir groBe r ist diese Zahl wesentlich kleiner als die beim ersten Plan
erforderliche Anzahl von Berechnungen.

Der erste Plan ist also nicht optimal. Aber auch den zweiten Plan kann man bei diesen
Ausgangsbedingungen im allgemeinen nicht als optimal ansehen.

Jedoch unterscheidet sich der zweite Plan vom ersten durch einen (iberaus wesentlichen
Gesichtspunkt: Die Punkte, in denen Funktionswerte auf jeden Fall berechnet werden,
lassen sich im voraus nur teilweise planen, wahrend sich die tbrigen Punkte durch
Vergleich der schon berechneten Funktionswerte ergeben.

Intuitiv ist vollig klar, dass die Wahl der besten Schritte stets mit der Ausnutzung
der Information verkniipft sein muss, die man iiber die Resultate der schon vorher
durchgefiihrten Schritte erhalt.

Der zweite Plan ist in dieser Beziehung vollkommener als der erste. Aber auch er lasst
im allgemeinen weitere Vervollkommnungen zu, wodurch wir letzten Endes zu einem
optimalen Plan gelangen.

Natdrlich ist bei der Lagebestimmung des Minimums einer Funktion jeder neu erhal-
tene Funktionswert mit einem der bei den vorhergehenden Beobachtungen erhaltenen
Werten zu vergleichen.

Die Wahl des Punktes, in dem die darauffolgende Messung vorgenommen wird, oder die
Entscheidung, ob die Messungen abgebrochen werden, hangt daher erstens von jenen
Punkten ab, in denen wir schon Funktionswerte berechnet haben, und zweitens von
den berechneten Funktionswerten selbst.

Offenbar ist dieser Prozess der sukzessiven Berechnung der Werte von f vollstan-
dig bestimmt durch ein Gesetz, das fiir jedes £ > 0 bei beliebiger Wahl der Punkte
X1, X2, ..., £ und der Werte von f in diesen Punkten entscheidet, ob der Punkt xk + 1
als T genommen und die Beobachtungen der Funktion f abgebrochen werden sollen
oder nicht. Dieses Gesetz heiBt oft Entscheidungsfunktion.

Jeder Plan bestimmt eine gewisse Entscheidungsfunktion. Umgekehrt bestimmt jede
Entscheidungsfunktion einen gewissen Plan. Insbesondere ist die Entscheidungsfunk-
tion eine genaue formelmaBige Beschreibung des Planes. Zum Beispiel ordnet dieje-
nige Funktion, die den ersten der eben betrachteten Plane bestimmt, jeder Zahl &
(0 <k <) den Punkt (k + 1)e zu, wahrend die Zahl  den Prozess beendet.

Der Begriff der Entscheidungsfunktion gehort zu den wichtigsten Begriffen der moder-
nen Mathematik. Bedauerlicherweise ist die genaue Definition dieses Begriffs ziemlich
umfangreich und kann deshalb hier nicht eingefiihrt werden.

8. Das Ziel eines Planes P bestehe darin, den Punkt 7, der die Funktion f minimiert,
in einem Intervall der Lange L mit Hilfe von n Beobachtungen so genau wie moglich
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zu bestimmen. Einen solchen Plan werden wir im folgenden n-schrittig nennen.

Unter den Bedingungen eines gewissen n-schrittigen Planes P moge es gelingen, den
Punkt Z im Intervall der Lange L mit der Genauigkeit ¢ zu bestimmen.

Diese Genauigkeit hangt vom Plan P selbst, aber auch von n und L ab. Daher kénnen
wir sie als Funktion von P, n und L auffassen und fiir die Aufgabe A mit 74 (n, L), fiir
die Aufgabe B mit 75 (n, L) bezeichnen.

Unter 7p(n, L) werden wir dann einen beliebigen (aber innerhalb einer Untersuchung
stets den gleichen) der Ausdriicke 74 (n, L) und 75 (n, L) verstehen.

Der n-schrittige Plan Py zur Bestimmung des Minimums von f im Intervall der Lange
L ist in Aufgabe A optimal, wenn 77 (n, L) nicht groBer ist als 7/}(n, L) fiir einen
beliebigen anderen Plan P, d.h.

Th(n, L) < 75 (n, L)
Das lasst sich auch in der Gestalt
Th(n,L) = m];n mh(n, L) (5.2)

schreiben.

Die Zahl 773 (n, L) ist nicht fiir den Plan charakteristisch, sondern fiir die Aufgabe selbst
(ndmlich fir die Aufgabe, in n Schritten den minimierenden Punkt der Funktion f im
Intervall der Lange L zu finden). Daher hangt die Zahl nicht von irgendeinem Plan ab,
sondern nur von n und L und kann daher einfach mit 74(n, L) bezeichnet werden.

Unter den Bedingungen der Aufgabe B ist die Sache etwas komplizierter. Hier gibt es,
wie wir schon sahen, keinen optimalen Plan, der unter schlechtesten Bedingungen den
kleinsten Fehler garantiert.

Jedoch existiert ein solcher Fehler, an den man dicht genug heran gehen kann, sobald
man einen geeigneten Plan wahlt. Dieser Fehler, den wir den Grenzfehler nennen wollen,
hangt ebenfalls nur von den Bedingungen der Aufgabe ab. Daher bezeichnen wir ihn
mit 78(n, L). Jeder andere Plan P fiihrt zu einem groBeren Fehler,

8(n, L) < 5 (n, L)
und somit kénnen wir hier keine zu (5.2) analoge Gleichung angeben.

Wir greifen etwas vor und sagen, dass alle manchmal recht komplizierten Uberlegungen
dieses Paragraphen darin gipfeln, explizite Ausdriicke fir 74(n, L) und 75(n, L) zu
finden, namlich

L

L
TA(TL,L) = , TB(n,L) =
Upt2 2Up 41

(5.3,5.4)

Damit gestattet der Verzicht auf das Auffinden des Minimums einer Funktion die Erho-
hung der Genauigkeit bei der Bestimmung des minimierenden Punktes um den Faktor

%. Fir hinreichend groBe n liegt dieser Quotient auf Grund von § 1, Nr. 20, nahe

bei % = 1, 236; das entspricht einer VergroBerung der Genauigkeit um etwa 23%.
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9. Es ist klar, dass bei allen weiteren Untersuchungen nicht jede der Zahlen L und ¢ fiir
sich, sondern das Verhaltnis von L und ¢ wichtig ist. Dieses Verhaltnis ist der relative
Fehler von 7.

Ist es uns gegeben, so kdnnen wir, indem wir auf geeignete Weise die Einheit auf der
x-Achse (d.h. die Einheit zur Messung der Intervalllinge) festlegen, eine der Zahlen L
und ¢ vollig willkirlich wahlen.

Diese Uberlegung fiihrt zu einer iiberaus lehrreichen Schlussfolgerung.

Eine Anderung des MaBstabs langs der x-Achse zieht sowohl eine Anderung der ZahlL
nach sich, die die Intervalllange angibt, als auch des Fehlers bei der Bestimmung des ge-
suchten Punktes nach einem beliebigen Plan P. Mit anderen Worten, fiir jedes positive
A gilt

Tp(n,A\L) = Atp(n, L) (5.5)

Genauso bleibt ein Plan optimal, wenn wir bei seiner Beschreibung die Lagen der Punkte
im Intervall nicht im absoluten, sondern relativen LangenmaB angeben. Nach einer
solchen Anderung bei der Beschreibung eines Planes bleiben optimale Plane optimal
und nichtoptimale Plane nichtoptimal.

Daraus folgt unmittelbar, dass eine gleichmaBige Dehnung (oder Zusammenziehung)
des Intervalls, in dem sich die Funktion f adndert, nur eine "Ahnlichkeitstransformation"
des optimalen Planes bewirkt, ohne dass seine Optimalitat gestort wird.

Das bedeutet, dass die in (5.5) auftretenden Fehler 7p(n, AL) und 7p(n, L) nicht nur
bei Realisierung irgendeines Planes gemacht werden, sondern auch bei Anwendung von
Planen, die durch Ahnlichkeitstransformationen aus einem Plan hervorgegangen sind.

10. Nach all diesen ziemlich verwickelten vorbereitenden Uberlegungen wollen wir einen
optimalen Plan fiir die Aufgabe A suchen und die Formeln (5.3) und (5.4) beweisen.

Lemma. Fir alle n > 1 und alle L existiert ein n-schrittiger Plan zum Aufsuchen des
Punktes Z, in dem die Funktion f (mit einem Minimum) im Intervall der Lange L nach
n Schritten ihr Minimum erreicht, wobei der Plan folgende Eigenschaften besitzt:

1. Bei jedem Schritt wird ein gewisses Intervall [z, 2”] betrachtet.

2. Beim ersten Schritt wird der Wert der Funktion f in einem der Punkte u“—izL oder
ZZ—EL berechnet.

3. Zu Beginn jedes der folgenden Schritte mit der Nummer & (d.h. fir 1 < k < n) ist
der Wert von f in einem der beiden Punkte

r=a + —n (2" — 2" und @y = o + F (2" — 2" (5.6)
Un+9 Un+-2

bekannt.

4. Beim k-ten Schritt (1 < k& < n) wird der Wert im anderen der beiden Punkte (5.6)
berechnet.

5. Beim k-ten Schritt (1 < k£ < n) sind die Zahlen f(z1) und f(x2) zu vergleichen; im
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Fall f(x1) < f(x9) ist beim (k + 1)-ten Schritt das Intervall [z, z5], im Fall f(z1) >
f(z2) das Intervall [z1,2"] zu betrachten.

Beweis (durch vollstandige Induktion nach n).

Fir n = 1 haben wir es offenbar mit dem Intervall zwischen 0 und L zu tun; der Wert
der Funktion wird im Punkt Z—;L = g berechnet.

Weitere Schritte gibt es in diesem Fall nicht.

Wir setzen nun voraus, dass die Existenz eines gewissen n-schrittigen Planes (n > 1)
mit den im Hilfssatz geforderten Eigenschaften von uns fiir ein beliebiges Intervall schon
bewiesen wurde.

Wir beschaftigen uns nun mit der Aufstellung des uns interessierenden (n+1)-schrittigen
Planes unter Beachtung der Voraussetzung des Hilfssatzes. Wir werden bei jedem
Schritt ein gewisses Intervall [z, "] untersuchen.

Der erste Schritt sei die Wahl des Punktes x; = “"“L der zweite Schritt die Wahl
des Punktes 29 = “”+2L und der Vergleich der Funktlonswerte f(z1) und f(z2).

Im Fall f(z) < f(xz) betrachten wir das Intervall zwischen 0 und x5 (hier spielt O
bzw. x5 die Rolle von 2’ bzw. z”), im Fall f(z1) > f(xz2) das Intervall zwischen x; und
L (hier spielt 1 bzw. L die Rolle von 2’ bzw. z").

Die Lange des betrachteten Intervalls ist in beiden Fallen gleich Z:—iiL.

Nach Ausfiihrung dieser beiden Schritte befinden wir uns in Bezug auf das zu be-
trachtende Intervall unter genau denselben Bedingungen wie bei der Realisierung des
n-schrittigen Prozesses nach Ausfiihrung des ersten Schrittes.

Im Intervall der Lange “"Ii ist namlich der Wert der Funktion f in demjenigen Punkt
bekannt, der von einem der Endpunkte des Intervalls den Abstand “L{)L hat. Daher
konnen wir zu diesem n-schrittigen Prozess "{ibergehen" und ihn bis zu Ende durch-
fihren.

Auf Grund der Induktionsannahme kdnnen wir voraussetzen, dass fur die letzten n
Schritte die Voraussetzungen 3, 4 und 5 erfiillt sind. Folglich bleiben nur die Bedingun-
gen zu Beginn des zweiten Schrittes und die Ausfiihrung dieses Schrittes zu untersuchen.
Nun hat offenbar der Punkt ;*=L die Form des ersten Ausdrucks (5.6) fur k = 2, wenn
statt n Gberall n+1 gesetzt erd die Rolle des zweiten Ausdrucks in der entsprechenden
Situation spielt der von uns zu wahlende Punkt ZZiiL

Damit ist der Hilfssatz bewiesen.

11. Wir werden den n-schrittigen Plan, dessen Existenz in Nr. 10 bewiesen wurde, den
n-schrittigen Fibonaccischen Plan oder kurz den Plan ®,, nennen.

Satz. 1. Der Plan ®,, ist der einzige optimale n-schrittige Plan.
2. Esist 4 (n,L) = -2

Un42 "

Beweis (durch vollstandige Induktion nach n).

Wir betrachten zunachst den einschrittigen Plan, der darin besteht, fiir T einen gewissen
Punkt  aus dem Intervall [/, 2"] zu wahlen. Offenbar kann hier der Fehler unter
ungiinstigsten Bedingungen die groBere der Zahlen 2" — & und & — 2/ erreichen.
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Sind diese Zahlen voneinander verschieden, so ist dieser maximale Fehler groBer als
%; sind sie gleich, so ist der maximale Fehler gleich % Somit ist ®; ein optimaler
einschrittiger Plan, und es gilt

L L
A
Ty, (n, L) = 97 us
Fir n = 2 haben wir es mit dem Plan ®; zu tun, der aus der Berechnung und dem
Vergleich der Funktionswerte f (%L) und f (%L)2 besteht sowie aus der Wahl des
Punktes

;L im Fall  f (;L) <f (§L>

gL im Fall f (;L) > f (;L)

als T. Der maximale Fehler bei der Bestimmung des wahren Wertes T ist hier, wie man

leicht sieht, gleich 5 = -

L

A

L)=—

7@2017 ) Uy

Jede andere Wahl des Punktes fiihrt auf groBere Fehler.

Wir setzen nun voraus, dass der Fibonaccische Plan ®,, die im Satz geforderten Eigen-

schaften besitze, und betrachten den (n + 1)-schrittigen Plan.

Wir fiihren im Plan &, die ersten beiden Beobachtungen der Funktion f durch und
vergleichen zwei der gefundenen Werte. Das wenden wir auf das Intervall der Lange
Unt2 [, qus dem Plan an, in dem der Wert von f in einem Punkt bekannt ist; dadurch

Un+

ergfbt sich im ungtinstigsten Fall der Fehler

Un+2 Un+2 Upq2 L L
iy (n, L) = T4 (n, L) = =
Un+3 Un+3 Up+43 Up4-2 Un+3

Folglich ist

A
T, (n+1,L) = s
Wir missen noch zeigen, dass der Plan &, optimal ist. Dazu berechnen wir die
Werte von f in zwei willkirlich gewahlten Punkten Z; und Zy (wir wollen &7 < I
annehmen). Der Vergleich der Werte f(#;) und f(Z2) fiihrt auf die Suche nach dem
Punkt T entweder im Intervall [0, o] oder [Z1, L]. Ist

Unp+1 I
Unp+3

T <

so gelingt es uns im Fall f(Z1) > f(Z2), nach einem gewissen n-schrittigen Plan den
minimierenden Punkt von f im Intervall der Lange L —; zu finden, also einer groBeren
Lange als
u Upt3 — U u
I — n+1[/:: n+3 n+1[/:: n+2L

Un+3 Un+3 Un+3
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5 Die Fibonaccischen Zahlen und die Suchtheorie

Sogar wenn die Lage des Punktes 5 in diesem Intervall am giinstigsten ist, erweist sich
der Fehler bei der Bestimmung auf Grund der Induktionsannahme groBer als %ﬁ

Analoge Uberlegungen zeigen, dass der Plan, der durch Wahl eines gewissen Punktes

- Un+4-2
To > n+L

Un+3

beginnt, unter entsprechenden ungiinstigen Bedingungen ebenfalls zu einem groBeren
Fehler bei der Bestimmung von ¥ fiihrt als der Plan ®,, 4.

Es sei nun

- Un41
T > "L

Unp+3

Befindet sich T in Wirklichkeit zwischen 0 und 1, so bleiben uns zur Lagebestimmung
dieses Punktes n — 1 Beobachtungen, und die Lange des Intervalls, das diesen Punkt
enthalt, ist groBer als z;—:L Das bedeutet, dass sogar der (unter diesen Bedingungen
nach Voraussetzung optimale) Plan ®,,_1, einen Fehler verursacht, der groBer ist als

A Un+1 _ Unt1 4 _upyr L L
T . (n -1, > L = T(I,TH(n —1,L) = =
Unp+3 Unp+3 Un+3 Un+1 Unp+3
Analog behandelt man den Fall
- Un+2
Ty > nt L
Un+3

Folglich ist der Plan Phi, 1 optimal und der Satz bewiesen.

Der einzige die Funktion f minimierende Punkt kann also mit Hilfe von n Beobach-

tungen im Intervall der Lange L mit einer Genauigkeit < %ﬂ bestimmt werden.

Daher genligen n Beobachtungen, um den die Funktion f minimierenden Punkt mit
einer Genauigkeit < € in einem Intervall zu bestimmen, das nicht langer als cu,, .o ist.
Um sicher zu sein, dass der die Funktion f minimierende Punkt im Intervall der Lange
L mit einer Genauigkeit < € bestimmt wird, ist es notwendig, eine solche Anzahl n von
Beobachtungen durchzufiihren, dass

o |

Un+1 S S Up+2

Damit haben wir alle Fragen aus Nr. 3 beantwortet.

12. Die Losung der Aufgabe B lasst sich miihelos aus der oben angegebenen Losung
der Aufgabe A herleiten.

Gegeben sei ein Intervall der Lange L. Auf ihm fiihren wir die ersten n — 2 Schritte des
Fibonaccischen Planes ®,,_; aus. Dadurch gelangen wir zu einem Intervall der Lange
ug—il mit den Endpunkten 2’ und z” und mit einem bekannten Wert von f in einem
der Punkte

, 2L

oder To =x +
Unp+1 Un+1

1= +
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5 Die Fibonaccischen Zahlen und die Suchtheorie

Wir beschranken uns auf den ersten dieser beiden Falle (der zweite lasst sich analog
behandeln).

Es sei uns aIso f(z ) bekannt Wir wahlen dann eine beliebige Zahl ~, deren Absolut-
- (x9 —7y) [das ist der (n — 1)-te berechnete Wert
der Funktion f] und verglelchen f(z1) und f(zy — 7).

Ist f(x1) < f(z2 — ) (Abb. 22), so muss T offenbar zwischen 2z’ und x5 — =y liegen.

Wir berechnen o )
x L2 —7 g
(45 s

(das ist der letzte, n-te berechnete Wert von f).

T S ———

et ]

MR M e mee

3

XN X x*

22
|

Abb. 22 ¥

Ist dabei

f(m - ;) < f(z1)

(Fall x in Abb. 22), so liegt T zwischen z’ und z;. Wir setzen T = % Der Fehler
bei der Bestimmung von T ist nicht gréBer als die Halfte des Abstandes von 2’ und 1,
d.h. ﬁ Ist aber

f (fm - g) > f(x1)

(Fall o in Abb. 22), so liegt T zwischen x1 — 3 und x5 — 7. Wir setzen

und erhalten einen Fehler, der nicht groBer ist als

S Y | Y PP . e e
2 [\ T 2\ T 2 4 Qupyy 4

Nun sei f(x1) > f(x2 — ) (Abb. 23). Dann liegt T zwischen x; und z”.

o i R e

R

xl’

T——————8
i ¥

o3¢

Abb. 23 ¥ % %7

Wir berechnen jetzt f(x2), den letzten berechneten Wert von f. Ist

flz2 —7) < f(z2)
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5 Die Fibonaccischen Zahlen und die Suchtheorie

(Fall o in Abb. 23), so liegt T zwischen z; und z3; wir wahlen T = %(:{:1 + x2) und

lassen einen Fehler zu, der héchstens gleich (2 — 21) = 52— ist.
. . n+1
Ist schlieBlich

fwg =) > f(a2)

(Fall x in Abb. 23), so liegt T zwischen x —~ und z”. Wir setzen T =
und bringen es zu einem Fehler, der nicht groBer ist als

1, ., 1/ L L y
2(:1: (22 =) = 2 (Un+1 +7>  2ung "2

(2" +(22—7))

N[ —

In dem fiir uns ungiinstigsten Fall kann somit der Fehler fiir v > 0 den Wert

. L . 1 .
und fiir v < 0 den Wert Sy 4 erreichen.

Da sich jedoch die Zahl v beliebig wahlen lasst, kann der Fehler beliebig nahe bei
liegen.

Wir missen uns nun noch davon tiberzeugen, dass der Fehler nicht verkleinert werden
kann.

+3

2un+1

L
2un+1

Die Abweichung von dem beschriebenen Plan in einem der ersten n — 2 Schritte kann,
wie aus dem Satz von Nr. 11 ersichtlich ist, nur zu einer VergroBerung des Intervalls
fihren, in dem der minimierende Punkt durch die darauffolgenden Messungen bestimmt
werden soll, und somit zur VergroBerung des maximalen Fehlers.

Es bleibt nachzupriifen, ob die in den letzten beiden Schritten auszufiihrenden Opera-
tionen optimal sind.

Zunachst kann die Abweichung von den beschriebenen Operationen darin bestehen,
dass nicht der Mittelpunkt des Intervalls, in dem der Punkt tatsachlich liegt, als =
gewahlt wird, sondern ein anderer Punkt.

Dies fiihrt dazu, dass der mogliche Fehler gleich dem groBeren Teil des Intervalls wird,
also wachst. Folglich muss genau der Mittelpunkt des Intervalls gewahlt werden.

Ferner kann zur letzten Bestimmung von f ein Punkt gewahlt werden, der nicht in der
Nihe des Punktes x1 (bzw. z5) liegt. Dann vergroBert sich der mogliche Fehler sogar
proportional dem Abstand zwischen diesen beiden Punkten.

SchlieBlich fiihrt die Wahl des Punktes, in dem f zum letzten Mal bestimmt wird, in
einiger Entfernung von x5 (bzw. von z1) zu denselben Schlussfolgerungen.

Also kann eine Abweichung vom beschriebenen Plan den moglichen Fehler nicht kleiner
als 2uf+1 machen. Damit ist die Aufgabe B gelost.
Wir lberlassen es dem Leser, die Antworten auf die tibrigen in Nr. 3 gestellten Fragen

im Fall der Aufgabe B selbst zu finden.

13. In den vorhergehenden Abschnitten wurde die Beschreibung des Planes begleitet
von Verscharfungen der Aufgabenstellung, von Formulierungen, die mit dem Begriff
"optimal" verkniipft sind, und von Begriindungen, weshalb der zu konstruierende Plan
optimal ist.

Alle diese Abweichungen von der direkten Beschreibung sind unverauBerliche Elemente
jeder mathematischen Uberlegung, deren Ziel es ist, nicht nur den Prozess anzugeben,
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5 Die Fibonaccischen Zahlen und die Suchtheorie

sondern auch zu beweisen, dass dieser Prozess gerade der uns interessierende ist.

Im Zusammenhang damit ist in vielen Fallen eine genaue Beschreibung der Operationen
wesentlich, wahrend die ganze Beweisfiihrung fiir diese Operationen véllig unwichtig
ist. Dies ist dann der Fall, wenn zum Beispiel nach Lésung der Aufgabe tatsachlich die
Realisierung dieser Losung beabsichtigt ist.

In diesen Fallen ist es zur Realisierung der Losung in der Praxis notwendig, nicht so
sehr die Richtigkeit der Losung mathematisch zu begriinden, als vielmehr genaue Vor-
schriften fiir ihre Verwirklichung anzugeben.

Der Plan fiir die genaueste Bestimmung des Punktes 7, der im Intervall [z, 2"] die
Funktion f unter den Bedingungen der Aufgabe A und unter den eben beschriebenen
"praktischen" Zielen minimiert, erinnert an den Plan zur Bestimmung einer Pflanze
nach botanischen Gesichtspunkten (auch die Bestimmung einer Pflanze ist eine Such-
aufgabe!).

Dieser Plan hat die folgende Form (wenn am Ende eines Punktes kein Hinweis darauf
steht, zu welchem Punkt (bergegangen werden soll, gehe man zum nachstfolgenden
Punkt dber):

1°. Vergleiche 1 und n:
a) ist n = 1, gehe nach 2°;
b) ist n > 1, gehe nach 4°.

2°. Berechne 7 = #1322,
3°. Berechne f(7); danach ist der Prozess beendet.

o ) Un (] o L Ungd (M
4°. Berechne 1 = 2’ + ;2 (2" — 2') und @y = 2’ 4 2 (2" — )

5°. Berechne f(z1) und f(z3).

6°. Vergleiche 2 und n:

) ist n = 2, gehe nach 7°;

b) ist n > 2, gehe nach 10°.

7°. Vergleiche f(x1) und f(x2):

a) ist f(xz1) < f(x2), gehe nach 8°;

b) ist f(x1) > f(x2), gehe nach 9°.

8°. Setze T = x; und beende den Prozess.
0°, Setze T = x5 und beende den Prozess.
10°. Vergleiche f(x1) und f(z3):

a) ist f(z1 < f(z2), gehe nach 11°;

b) ist f(z1) > f(z2), gehe nach 14°.

11°. Ersetze x5 durch 2”, 21 durch x5, n — 1 durch n.

12°. Berechne z1 = o’ + -2 (2" — 2').
Un+2

13°. Berechne f(z1) und gehe nach 6°.

14°. Ersetze x1 durch 2/, x5 durch 1, n — 1 durch n.
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fO
n=1
Jg neifn
)
z° 40 u
— x'+x" Xf = x'+ _u.-'?_(xﬂ_x?
x= 2 T+2
X2= X'+ Un+f (X”"Xﬂ
Upez
3° 5° p
flxy
Ende 50
- n=12
Jja nein
70 10°
‘ Fx) £F (xg) ) flx) $7(xy)
Ja nern Ja nein
3 A )
8° ge 11° | 4
X =xy X=x, Xg=x" Xy—=x'
Ende Ende Y~z Xg=¥1
n-1—-n f1-1—=n
A
420 15° i
' Bt ) + An_
r!: X+ ﬂ::*z()\‘ "'X) XZ'X ‘f'u—;éa Xj
v g 1
130 16
fix) fixy)

Abb. 24
15°. Berechne o = o/ + %= (2" — 2/).
Un+2

16°. Berechne f(x2) und gehe nach 6°.

14. Obwohl die formelmaBige Fassung des optimalen Planes zur Bestimmung des Mini-
mums der Funktion f absolut genau ist und nicht willkiirlich abgeandert werden kann
und bei Anwendung auf eine beliebige konkrete Funktion, ein Intervall [z, "] und eine
Zahl n eine vollig exakte Folge von Operationen vorschreibt, ist sie ziemlich verwirrend
und unibersichtlich.

Daher bringen wir den eben beschriebenen Plan in ein graphisches Schema (Abb. 24).

92



5 Die Fibonaccischen Zahlen und die Suchtheorie

Schemata dieser Art werden Flussdiagramme genannt. Die Aufstellung des Flussdia-
gramms fiir einen Rechenprozess ist gewohnlich die erste Etappe bei der Aufstellung
eines Programms zur Durchfiihrung von Rechnungen auf elektronischen Ziffernrechen-
automaten.

15. Wir bringen zum Abschluss ein Beispiel fiir die Anwendung des in Nr. 13 und 14
beschriebenen Planes, und zwar wollen wir mit Hilfe von fiinf Berechnungen im Intervall
[1,2] den Punkt Z finden, der die Funktion

fe) ==+ Vi

minimiert.

Zur Vorbereitung ist folgende Bemerkung wichtig. Um den Punkt zu finden, der eine
analytisch gegebene Funktion minimiert bzw. maximiert (d.h. eine Funktion, die durch
eine Formel gegeben ist, welche es erlaubt, den Wert der Funktion zu berechnen), sind
oft die Methoden der Suchtheorie nicht geeignet, sondern man greift dann besser zu
den zweckmaBigeren Verfahren der Differentialrechnung.

Daher hat das folgende Beispiel nur illustrativen Charakter.

Mit Hilfe der Differentialrechnung erhilt man in diesem Fall miihelos 7 = /4 =
1,5874011...; mit Hilfe der Suchtheorie gelingt uns jedoch nur eine wesentlich grobere
Naherung.

Ist uns aber iiber die Funktion nichts bekannt (auBer dass sie nicht mehr abnimmt,
nachdem sie einmal angefangen hat zuzunehmen) oder sind die Ausdriicke, durch die
die Funktion gegeben ist, zu kompliziert, so versagen die Methoden der Differential-
rechnung, wahrend sich die Suchtheorie als niitzliches Instrument erweist.

1°. Der Vergleich von n = 5 und 1 ergibt n # 1, also gehen wir nach 4°.
4°. Wir berechnen

5
=2+ ( — o) =14 —(2—1) = 1,38461
Un+2 13
o Un+1, n no__ 8 _
To =1a + (" —2")=1+-—=(2—1)=1,61538
Up+2 13
5°. Wir berechnen
1
f(z1) = — + /o1 = f(1,38461) = 0,72222 4+ 1,17670 = 1,89892
T
1

f(z2) = — + /z2 = f(1,61538) = 0,61905 + 1,27098 = 1, 89003
L2

6°. Der Vergleich von n =5 und 2 ergibt n = 2, also gehen wir nach 10°.

10°. Der Vergleich von f(z1) = 1,89892 und f(x2) = 1,89002 ergibt f(x1) > f(x2),
also gehen wir nach 14°.

14°. Wir setzen 21 — o’/ = 1,38461, 9 — x1 = 1,61538, n = 4.

15°. Wir berechnen

0 5
Untl (o _ 4') = 1,38461 + 2(2 - 1,38461) = 1,76027

r9 =1a +
Un+2
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16°. Wir berechnen

1
flas) = — + /@3 = f(1,76927) = 0,56522 + 1,33012 = 1,89534
T2

und gehen nach 6°.

6°. Wir vergleichen n = 4 und 2; wegen n # 2 gehen wir nach 10°.

10°. Wir vergleichen f(z1) = 1,89002 und f(x2) = 1,89534; wegen f(x1) < f(x9)
gehen wir nach 11°.

11°. Wir setzen z9 — 2" = 1,76923, ©1 — 29 = 1,61638, n = 3.

12°. Wir berechnen

Up,
=1 +

2
(2" — x/) = 1,38461 + 5(1, 76923 — 1,38461) = 1, 58346
Unp+42

13°. Wir berechnen

1
f(gj1> = — 4+ = f(l, 58346) = 0,65000 + 1, 24035 = 1,89035
X1

und gehen nach 6°.

6° Wir vergleichen n = 3 und 2; wegen n # 2 gehen wir nach 10°.

10°. Wir vergleichen f(x;) = 1,89035 und f(z2) = 1,89003; wegen f(z1) > f(z2)
gehen wir nach 14°.

14°. Wir setzen 21 — 2/ = 1,53846, 9 — 11 = 1,61538, n = 2.

15°. Wir berechnen

. 2
vy =2’ + (o — o) = 1,53846 + 5 (1,76923 — 1,53846) = 1, 60231
Up+4-2

16°. Wir berechnen

1
Flas) = — + a2 = f(1,69231) = 0,59091 + 1, 30089 = 1,89170
X2

und gehen nach 6°.

6°. Der Vergleich von n und 2 ergibt n = 2, also gehen wir nach 7°.

7°. Wir vergleichen f(21)1,89003 und f(z3) = 1,89170; wegen f(z1) < f(z2) gehen
wir nach 8°.

8°. Wir setzen T = 1,61538.

Auf Grund des Satzes aus Nr. 11 unterscheidet sich der fiir Z gefundene Wert von dem
wahren Wert des minimierenden Punktes um nicht mehr als — S = u% =0,077.
In Wirklichkeit ist dieser Fehler noch kleiner, namlich 0,028. er bemerken noch dass

sich das Minimum der Funktion f, also 1,89003, von dem wahren Wert, namlich

f(V4) = 2{75: 1,88988

nur um 0,00015 unterscheidet. Damit lassen sich also die Werte von = mit einer gerin-
geren Genauigkeit berechnen als die Werte von f.

94



5 Die Fibonaccischen Zahlen und die Suchtheorie

Fir sich allein enthalt diese Berechnung nichts Erstaunliches. Die x-Werte konnen wir
mit der gleichen Grenzgenauigkeit finden, mit der unter unseren Bedingungen der mi-
nimierende Punkt = berechnet wird (bekanntlich ist diese Genauigkeit gleich ﬁ“) Die
Werte der Funktion f miissen mit einer solchen Genauigkeit berechnet werden, dass
beim Vergleich von Wertepaaren dieser Funktion die Unterscheidung des kleineren und

des groBeren Wertes in jedem dieser Paare moglich ist.

Wenn sich in Wirklichkeit. zwei Werte f(a) und f(b) stark voneinander unterscheiden
und dieser Unterschied schon bei grober Berechnung von f(a) und f(b) bemerkbar
ist, konnen wir also diese Werte mit kleiner Genauigkeit berechnen. Wenn dagegen die
Werte f(a) und f(b) nahe beieinanderliegen, ist die Untersuchung, welcher der beiden
Werte der groBere ist, mit groBer Genauigkeit durchzufiihren.

Da wir von vornherein (bis zur Beendigung der Rechnung) nicht wissen, um wieviel sich
die miteinander zu vergleichenden Funktionswerte unterscheiden, kénnen wir Schiff-
bruch erleiden und sie mit ungentigender Genauigkeit berechnen, wodurch es uns nicht
moglich ist zu entscheiden, welcher der beiden Werte der groBere ist. In diesem Fall
muss man die Rechnung mit groBerer Genauigkeit wiederholen, wobei verscharfte Be-
dingungen eingehalten werden missen.

Das eben Gesagte zeigt, wie notwendig es ist, die Genauigkeit eines Rechenprozesses zu
verbessern. Jedoch sind diese Probleme sehr kompliziert und mit der Thematik dieses
Bilichleins nicht unmittelbar verkniipft.
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