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Aus dem Vorwort zur russischen Ausgabe
Ungleichungen ersten Grades oder, wie man sie auch nennt, lineare Ungleichungen, sind
Ungleichungen der Gestalt

ax+ by + c ≥ 0

(der Einfachheit halber haben wir eine Ungleichung in den beiden Unbekannten x und
y aufgeschrieben).
Die Theorie der linearen Ungleichungssysteme ist zwar kein großes, aber ein recht inter-
essantes Teilgebiet der Mathematik. Dies liegt vornehmlich daran, dass sie geometrische
Sachverhalte beschreiben.

Wenn man nämlich Aufgaben, die auf lineare Ungleichungssysteme mit zwei bzw. drei
Unbekannten führen, in die Sprache der Geometrie überträgt, erhält man Aufgaben
über konvexe polygonale Bereiche in der Ebene bzw. über konvexe polyedrische Körper
im Raum. So verwandelt sich beispielsweise die Lehre von den konvexen Polyedern, die
seit den ältesten Zeiten ein Teilgebiet der Geometrie gewesen ist, in ein Teilgebiet der
Theorie der linearen Ungleichungssysteme.
Man findet in dieser Theorie aber auch Gebiete, die dem Algebraiker sehr nahe stehen.
Hierzu können wir z.B. die bemerkenswerte Analogie zwischen den Eigenschaften li-
nearer Ungleichungssysteme und denen linearer Gleichungssysteme rechnen (alles, was
damit im Zusammenhang steht, wurde schon seit langem und sehr eingehend unter-
sucht).

Bis in die jüngste Zeit hinein hätte man denken können, dass lineare Ungleichungen
stets Objekte bleiben würden, die zur sogenannten reinen Mathematik gehören. Das
änderte sich von Grund auf, als - beginnend in den vierziger Jahren dieses Jahrhunderts
- ein neues Teilgebiet der sogenannten angewandten Mathematik entstand, nämlich die
lineare Optimierung mit ihren wichtigen Anwendungen in Ökonomie und Technik.

Es zeigte sich bald, dass die lineare Optimierung lediglich ein (wenn auch sehr wichti-
ges) Teilgebiet der Theorie der linearen Ungleichungssysteme ist.

Diese Broschüre möchte den Leser mit verschiedenen Aspekten der Theorie der linearen
Ungleichungssysteme bekannt machen:
mit geometrischen Aspekten und, eng damit zusammenhängend, mit Lösungsmetho-
den, mit einigen rein algebraischen Eigenschaften und mit prinzipiellen Fragen der li-
nearen Optimierung.
Für die Lektüre des Büchleins werden keinerlei Kenntnisse vorausgesetzt, welche Ergeb-
nisse des Mathematikunterrichts der Schule überschreiten. Am Schluss des Büchleins
ist verwandte bzw. weiterführende Literatur angegeben.

Wir wollen einige Worte dem historischen Werdegang der Lehre von den linearen Un-
gleichungssystemen widmen. Obwohl man im Hinblick auf ihren Gegenstand annehmen
müsste, dass die Theorie der linearen Ungleichungssysteme zu den grundlegenden und
elementarsten Teilen der Mathematik gehört, hat man sich mit ihr bis in die jüngste
Vergangenheit recht wenig beschäftigt.
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Beginnend mit den letzten Jahren des vorigen Jahrhunderts erschienen hier und da Ar-
beiten, in denen Eigenschaften linearer Ungleichungssysteme beleuchtet wurden. Man
kann in diesem Zusammenhang die Namen solcher Mathematiker nennen wie H. Min-
kowski (einer der größten Mathematiker gegen Ende des vorigen und zu Anfang dieses
Jahrhunderts, besonders bekannt durch seine Arbeiten über konvexe Mengen und als
Begründer der "Minkowskischen Geometrie"), G.F. Voronoi (einer der Stammväter der
"Petersburger zahlentheoretischen Schule"), A. Haar (ein ungarischer Mathematiker,
der durch seine Arbeiten über "Integration auf Gruppen" bekannt geworden ist) und
H. Weyl (einer der hervorragendsten Mathematiker in der ersten Hälfte unseres Jahr-
hunderts).

Einige der von diesen Mathematikern erhaltenen Resultate fanden ihren Niederschlag
im vorliegenden Büchlein (ohne dass immer die Namen der Autoren genannt werden).

Die gegenwärtige intensive Entwicklung der Theorie der linearen Ungleichungssysteme
begann erst in den vierziger bis fünfziger Jahren dieses Jahrhunderts, als das stürmi-
sche Wachstum der angewandten Disziplinen (lineare, konvexe und andere Gebiete der
"mathematischen Optimierung", die sogenannte "Spieltheorie" usw.) ein vertieftes und
systematisches Studium der linearen Ungleichungen nötig machten.
Heute würde eine vollständige Liste der Arbeiten und Bücher über lineare Ungleichungen
wahrscheinlich hunderte verschiedener Titel und Autoren zählen.
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1 Einiges aus der analytischen Geometrie

1 Einiges aus der analytischen Geometrie
1.1 Operationen mit Punkten
Wir führen in der Ebene ein rechtwinkliges Koordinatensystem ein. Die Tatsache, dass
ein Punkt M in diesem System die Koordinaten x und y hat, werden wir wie folgt
schreiben:

M = (x, y) oder auch einfach M(x, y)

Die Existenz eines Koordinatensystems erlaubt es uns, für die Punkte der Ebene einige
Operationen einzuführen, und zwar die Addition von Punkten und die Multiplikation
eines Punktes mit einer Zahl.
Die Addition von Punkten wird auf folgende Weise definiert: Ist M1 = (x1, y1) und
M2 = (x2, y2), so sei

M1 +M2 = (x1 + x2, y1 + y2)

Hiermit wird die Addition von Punkten auf die Addition ihrer einzelnen Koordinaten
zurückgeführt.
Die geometrische Deutung dieser Operation ist sehr einfach (Abb. 1):

Abb 1:

Der PunktM1+M2 ist die vierte Ecke des Parallelogramms, das aus den Strecken OM1
und OM2 als nichtparallele Seiten gebildet wird (O ist der Koordinatenursprung). Die
übrigen Ecken des Parallelogramms sind M1, O und M2.
Dasselbe kann man auch anders sagen: Den PunktM1 +M2 erhält man aus dem Punkt
M2 durch eine Parallelverschiebung von M2 in Richtung der Strecke OM1 um soviel,
wie die Länge dieser Strecke beträgt.

Die Multiplikation des Punktes M(x, y) mit einer beliebigen Zahl k wird nach der
folgenden Regel durchgeführt:

kM = (kx, ky)

Die geometrische Deutung dieser Operation ist noch einfacher als bei der Addition:

Abb 2:
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1 Einiges aus der analytischen Geometrie

Für k > 0 liegt der Punkt M ′ = kM auf dem Strahl OM , wobei |OM ′| = k · |OM |
ist, bei k < 0 liegt der Punkt M ′ auf der Verlängerung des Strahles OM über den
Punkt O hinaus, wobei |OM ′| = k · |OM | ist (Abb. 2); dabei haben wir mit |OM |
bzw. |OM ′| die Länge der Strecke OM bzw. OM ′ bezeichnet.

Den Beweis für diese geometrische Deutung der beiden Operationen überlassen wir
dem Leser als Übungsaufgabe.1

Die von uns eingeführten Operationen sind sehr bequem, um geometrische Tatsachen
in die Sprache der Algebra zu übersetzen. Wir wollen einige Beispiele für eine derartige
Übersetzung angeben.

1. Die Strecke M1M2 besteht aus allen Punkten der Gestalt

s1M1 + s2M2

wobei s1, s2 zwei beliebige nichtnegative Zahlen mit der Summe 1 sind.

Hier wird die rein geometrische Tatsache, dass ein Punkt zu einer StreckeM1M2 gehört,
in Gestalt der algebraischen Beziehung M = s1M1 + s2M2 mit den oben angegebenen
Einschränkungen für s1 und s2 beschrieben.

Zum Beweis betrachten wir einen beliebigen Punkt M auf der Strecke M1M2. Wir
ziehen durch M Geraden, die zu OM2 und OM1 parallel sind, und erhalten den Punkt
N1 auf der Strecke ÖM1 und den Punkt N2 auf der Strecke OM2 (Abb. 3). Wir setzen

s1 = |M2M |
|M2M1|

, s2 = |M1M |
|M1M2|

die Zahlen s1 und s2 sind nichtnegativ und haben die Summe 1.

Abb. 3 und 4

Aus der Ähnlichkeit der entsprechenden Dreiecke erhalten wir

|ON1|
|OM1|

= |M2M |
|M2M1|

= s1 ,
|ON2|
|OM2|

= |M1M |
|M1M2|

= s2

1Wenn er nicht schon die Anfangsgründe der Vektorrechnung kennt. Vom Standpunkt der Vektor-
rechnung aus bedeuten unsere Operationen bekanntlich folgendes: Der Punkt M1 + M2 ist die
Spitze des Vektors −−−→OM1 +−−−→OM2, und der Punkt kM ist die Spitze des Vektors k · −−→OM (unter der
Bedingung, dass dieser Vektor im Punkt O beginnt).
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1 Einiges aus der analytischen Geometrie

woraus N1 = s1M1 und N2 = s2M2 folgt. Nun gilt M = n1 + N2 also M = s1M1 +
s2M2. Schließlich bemerken wir, dass dann, wenn der Punkt M die Strecke M1M2 in
der Richtung von M1 nach M2 durchläuft, die Zahl s2 alle Werte von 0 bis 1 annimmt.
Die Behauptung 1 ist damit bewiesen.

2. Jeder Punkt M der Geraden M1M2 kann in der Gestalt

tM1 + (1− t)M2

dargestellt werden, wobei t eine gewisse Zahl ist.

Falls der Punkt M auf der Strecke M1M2 liegt, folgt unsere Behauptung aus der oben
bewiesenen. Nun liegeM außerhalb der StreckeM1M2. Dann liegt entweder der Punkt
M , auf der Strecke MM2 (wie in Abb. 4), oder M2 liegt auf der Strecke MM1.
Nehmen wir etwa an, dass der erste Fall zutrifft, dann gilt nach dem Bewiesenen

M1 = sM + (1− s)M1 (0 < s1 < 1)

woraus
M = 1

s
M1 −

1− s
s

M2 = tM1 + (1− t)M2

mit t = 1
s folgt. Den Fall, dass M2 auf der Strecke MM : 1 liegt, überlassen wir dem

Leser zum Beweis.

3. Wächst der Parameter s von 0 bis ∞, so durchläuft der Punkt sB den Strahl OB2

und der Punkt A + sB den von A ausgehenden Strahl mit der Richtung OB. Fällt
s von 0 bis −∞, so durchlaufen die Punkte sB und A + sB Strahlen, die die oben
angegebenen ergänzen.

Als Beweis genügt ein Blick auf Abb. 5 und 6.

Abb. 5 und 6

Aus der Aussage 3 ergibt sich, dass bei einer Änderung von s von −∞ bis +∞ der
Punkt A+ sB die Gerade durch A, parallel zu OB, durchläuft.

Die Operationen "Addition" und "Multiplikation mit einer Zahl" kann man natürlich
auch zwischen Punkten des Raumes erklären. In diesem Fall gilt nach Definition

M1 +M2 = (x1 + x2, y1 + y2, z1 + z2) , kM = (kx, ky, kz)

2Es wird vorausgesetzt, dass der Punkt B vom Koordinatenursprung 0 verschieden ist.
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1 Einiges aus der analytischen Geometrie

Alle oben bewiesenen Aussagen sind offenbar auch im Raum richtig.

Zum Abschluss dieses Paragraphen treffen wir eine Übereinkunft, die es uns im folgen-
den ermöglichen wird, vieles klarer und kürzer zu formulieren. Sind nämlich K und L
zwei Punktmengen (in der Ebene oder im Raum), so wollen wir in Zukunft unter ihrer
"Summe"K + L die Menge aller Punkte K + L verstehen, wo K ein beliebiger Punkt
von K und L ein beliebiger Punkt von L ist.

In der Mathematik wird seit langem eine spezielle Schreibweise dafür verwendet, dass
ein Punkt einer gegebenen Menge angehört. Wenn wir also ausdrücken wollen, dass der
Punkt M in der Menge M liegt, werden wir M ∈ M schreiben (das Zeichen ∈ steht
dabei für "Element von"). Somit ist K + L die Menge aller Punkte K + L mit K ∈ K
und L ∈ L.

Wenn wir davon ausgehen, was die Addition von Punkten geometrisch bedeutet, so
können wir eine einfache Regel für die Addition der Punktmengen K und l aufstellen.
Sie lautet:
Für jeden Punkt K ∈ K bilde man die Menge, die aus L hervorgeht, wenn man L längs
der Strecke OK verschiebt. Danach vereinige man alle auf diese Weise gewonnenen
Mengen zu einer einzigen. Diese Menge ist dann K + L.
Wir wollen einige Beispiele betrachten.

1. Die Menge K bestehe aus genau einem Punkt K, während L eine beliebige Punkt-
menge sei. Die Menge K + L erhält man nun, wenn man die Menge L parallel zur
Strecke OK verschiebt (Abb. 7).

Abb. 7 und 8
Ist insbesondere L eine Gerade, so ist K + L eine zu L parallele Gerade. Geht dabei
die Gerade L durch den Koordinatenursprung, so ist K +L eine zu L parallele Gerade
durch den Punkt K (Abb. 8).

Abb. 9
2. Nun seien K und L zwei nichtparallele Strecken (in der Ebene oder im Raum); vgl.
Abb. 9.
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1 Einiges aus der analytischen Geometrie

Dann ist K + L ein Parallelogramm mit Seiten, die gleich und parallel zu K bzw. L
sind. Was erhält man, wenn K und L zueinander parallel sind?

3. Es sei K eine Ebene und L eine nicht zu ihr parallele Strecke. Dann besteht die
Menge K+L aus dem Teil des Raumes, der zwischen zwei zu K parallelen Ebenen liegt
(Abb. 10).

Abb. 10

4. Es seien K und L zwei in einer Ebenen liegende Kreise mit den Radien r1 bzw. r2
und den Mittelpunkten P1 bzw. P2.
Dann stellt K+L einen Kreis vom Radius r1 + r2 mit dem Mittelpunkt in P1 +P2 dar.
Dieser Kreis liegt in einer zu π parallelen Ebene (Abb. 11).

Abb. 11

1.2 Was bedeuten Gleichungen und Ungleichungen ersten
Grades mit zwei und drei Unbekannten geometrisch?

Wir betrachten eine Gleichung ersten Grades in den beiden Unbekannten x und y:

ax+ by + c = 0 (1)

Sehen wir x und y als Koordinaten für Punkte in einer Ebene an, so werden wir natürlich
fragen, was für eine Menge die Punkte in der Ebene bilden, deren Koordinaten die
Gleichung (1) erfüllen, d.h., was für eine Punktmenge durch Gleichung (1) definiert
wird.

Obgleich die Antwort dem Leser wahrscheinlich bekannt ist, formulieren wir sie: Die
durch die Gleichung (1) bestimmte Punkt- menge ist eine Gerade in der Ebene. Ist
nämlich b 6= 0, so können wir (1) auf die Form

y = kx+ p
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1 Einiges aus der analytischen Geometrie

bringen; diese Gleichung definiert bekanntlich eine Gerade. Ist hingegen b = 0, so führt
das auf die Gestalt x = h, und die Gleichung charakterisiert eine zur Ordinatenachse
parallele Gerade.

Die analoge Frage können wir in Bezug auf die Ungleichung

ax+ by + c ≥ 0 (2)

stellen: Welche Punktmenge wird in der Ebene durch die Ungleichung (2) definiert?

Abb. 12

Auch hier ist die Antwort sehr einfach. Ist b 6= 0, so führt die gegebene Ungleichung
auf eine der Formen

y ≥ kx+ p oder y ≤ kx+ p

Es ist nicht schwer zu verstehen, dass der ersten dieser Ungleichungen alle Punkte
genügen, die "oberhalb" der Geraden y = kx + p oder auch auf ihr liegen, und der
zweiten diejenigen, die "unterhalb" oder auf der Geraden y = kx + p zu finden sind
(Abb. 12).

Ist dagegen b = 0, so führt unsere Ungleichung auf eine der Ungleichungen

x ≥ h oder x ≤ h

der ersten genügen alle Punkte, die "rechts" von der Geraden x = h oder darauf liegen,
der zweiten alle diejenigen, die "links" von x = h oder auf dieser Geraden liegen (Abb.
13).

Abb. 13

Somit definiert die Gleichung (1) in der Koordinatenebene eine Gerade, die Ungleichung
(2) dagegen eine der beiden Halbebenen, in die diese Gerade die gesamte Ebene zerlegt
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1 Einiges aus der analytischen Geometrie

(von der Geraden selbst nehmen wir an, dass sie einer beliebigen der beiden durch sie
bestimmten Halbebenen angehört).

Wir wollen nun die analogen Fragen klären, die sich auf die Gleichung

ax+ by + cz + d = 0 (3)

und die Ungleichung
ax+ by + cz + d ≥ 0 (4)

beziehen, wobei x, y, z selbstverständlich als Punktkoordinaten im Raum erklärt wer-
den. Wie man leicht einsieht, erhält man als Resultat den folgenden

Satz. Die Gleichung (3) bestimmt im Raum eine Ebene, hingegen definiert die Un-
gleichung (4) einen der beiden Halbräume, in den diese Ebene den gesamten Raum
zerlegt (von der Ebene selbst wird angenommen, dass sie einem der beiden Halbräume
angehört, die durch sie bestimmt werden).

Beweis. Mindestens eine der drei Zahlen a, b, c sei von Null verschieden, zum Beispiel
sei c 6= 0. Dann führen wir Gleichung (3) über in

z = kx+ ly + p (5)

Mit L bezeichnen wir die Menge aller PunkteM(x, y, z), die der Gleichung (5) genügen.
Unser Ziel ist zu zeigen, dass L eine Ebene darstellt.
Wir wollen klären, welche Punkte von L der Koordinatenebene yOz angehören. Zu
diesem Zweck müssen wir in (5) x = 0 setzen. Wir erhalten

z = ly + p (6)

Also ist der Durchschnitt von L mit der Ebene yOz die Gerade u, die in dieser Ebene
durch die Gleichung (6) bestimmt wird (Abb. 14).

Abb. 14

Analog finden wir, dass der Durchschnitt von L mit der Ebene xOz eine Gerade v ist,
die in dieser Ebene durch die Gleichung

z = kx+ p (7)

definiert wird. Die beiden Geraden u und v gehen durch den Punkt P (0, 0, p).
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1 Einiges aus der analytischen Geometrie

Mit π wollen wir die Ebene bezeichnen, die die Geraden u und v enthält. Wir werden
beweisen, dass π zur Menge L gehört. Dazu reicht es aus, den folgenden Tatbestand
zu sichern:
Eine durch einen beliebigen Punkt A ∈ v gehende, zu u parallele Gerade liegt in L.

Zunächst suchen wir einen Punkt B derart, dass OB ‖ u ist 3. In der Ebene yOz
bestimmt die Gleichung z = ly + p die Gerade u, d.h., die Gleichung z = ly definiert
eine zu u parallele und durch den Koordinatenursprung verlaufende Gerade (in Abb. 14
ist diese gestrichelt).
Als B kann man den Punkt mit den Koordinaten y = 1, z = l wählen, der auf dieser
Geraden liegt. Ein beliebiger Punkt A ∈ v hat die Koordinaten x, 0, kx + p; der von
uns gewählte Punkt B besitzt die Koordinaten 0, 1, l. Eine zu u parallele, durch A
verlaufende Gerade besteht aus den Punkten

A+ sB = (x, 0, kx+ p) + s(0, 1, l) = (x, s, kx : +p+ sl)

wo s eine beliebige Zahl bedeutet (vgl. Aussage 3 aus Teil A).

Man prüft leicht nach, dass die Koordinaten jedes Punktes A + sB der Gleichung (5)
genügen, d.h., dass A+ sB ∈ L gilt. Damit ist bewiesen, dass die Ebene π vollständig
zur Menge L gehört.

Wir müssen nun noch einen letzten Schritt ausführen, nämlich beweisen, dass L und π
zusammenfallen, d.h., dass kein Punkt außerhalb von π zur Menge L gehört.
Dazu betrachten wir drei Punkte: den in der Ebene π liegenden Punkt M(x0, y0, z0),
den "oberhalb" der Ebene π liegenden Punkt M ′(x0, y0, z0 + ε), ε > 0, und den
Punkt M ′′(x0, y0, z0 − ε), der "unterhalb"π liegt (Abb. 15). Wegen M ∈ π gilt z0 =
kx0 + ly0 + p und folglich

z0 + ε > kx0 + ly0 + p , z0 − ε < kx0 + ly0 + p

Abb. 15

Hieraus ist ersichtlich, dass die Koordinaten des Punktes M ′ die strenge Ungleichung

z > kx+ ly + p

und die Koordinaten des Punktes M ′′ die strenge Ungleichung

z < kx+ ly + p

3Diese Schreibweise bedeutet: OB parallel zu u.
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1 Einiges aus der analytischen Geometrie

erfüllen.
Somit gehören M ′ und M ′′ nicht zu L. Das beweist, dass L mit der Ebenen zusam-
menfällt. Außerdem folgt aus unseren Untersuchungen, dass die Menge aller Punkte,
die der Ungleichung

ax+ by + cz + d ≥ 0

genügen, einer der beiden Halbräume ist (der "obere" oder der "untere"), in die die
Ebene π den gesamten Raum zerlegt.
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2 Die geometrische Deutung linearer Ungleichungssysteme mit zwei oder drei
Unbekannten

2 Die geometrische Deutung linearer
Ungleichungssysteme mit zwei oder drei
Unbekannten

Gegeben sei das Ungleichungssystem

a1x+ b1y + c1 ≥ 0
a2x+ b2y + c2 ≥ 0
...
amx+ bmy + cm ≥ 0

 (1)

mit den beiden Unbekannten x und y.

Die erste Ungleichung im System definiert in der Koordinatenebene xOy eine Halbebene
Pi1, die zweite eine Halbebene Pi2 usw.
Erfüllt ein Zahlenpaar x, y alle Ungleichungen von (1), so gehört der entsprechende
Punkt M(x, y) allen Halbebenen Π1,Π2, ...,Πm zugleich an. Mit anderen Worten, der
Punkt M liegt im Durchschnitt (dem gemeinsamen Teil) besagter Halbebenen.

Man sieht leicht, dass der Durchschnitt endlich vieler Halbebenen ein gewisser polygo-
naler Bereich K ist. In Abb. 16 ist ein möglicher Bereich K abgebildet.

Abb. 16

Längs des Bandes des Bereichs sind Striche gezeichnet, die ins Innere des Bereichs wei-
sen. Sie zeigen gleichzeitig, auf welcher Seite der gegebenen Geraden die entsprechende
Halbebene liegt. Dasselbe wird auch durch die Pfeile angedeutet.

Der Bereich K heißt Lösungsbereich des Systems (1). Schon hier wollen wir bemer-
ken, dass der Lösungsbereich nicht beschränkt zu sein braucht. Wenn sich Halbebenen
schneiden, kann auch ein unbeschränkter Bereich auftreten, wie zum Beispiel der Be-
reich in Abb. 17.

Wenn wir betonen wollen, dass der Bereich K von Geradenstücken (oder ganzen Gera-
den) begrenzt wird, so sagen wir, K sei ein polygonaler Bereich (wir bemerken dazu,
dass wir bei beschränktem K einfach vom Lösungspolygon für das System (1) sprechen
werden).
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2 Die geometrische Deutung linearer Ungleichungssysteme mit zwei oder drei
Unbekannten

Abb. 17 und 18

Selbstverständlich kann es auch vorkommen, dass kein einziger Punkt existiert, der
gleichzeitig allen betrachteten Halbebenen angehört, d.h., dass K "leer" ist; das bedeu-
tet, dass das System (1) widersprüchlich ist. Einen solchen Fall zeigt Abb. 18.

Ein Lösungsbereich K ist stets konvex. Wir wollen daran erinnern, dass nach der all-
gemeinen Definition eine Punktmenge (in der Ebene oder im Raum) konvex genannt
wird, wenn sie mit je zwei Punkten A und B auch die ganze Strecke AB enthält.

Abb. 19

Abb. 19 zeigt den Unterschied zwischen konvexen und nicht konvexen Mengen. Dass
der Lösungsbereich K konvex ist, folgt aus der Art und Weise, wie er gebildet wurde.
Wir hatten ihn ja dadurch gewonnen, dass wir den Durchschnitt mehrerer Halbebenen
bildeten; jede Halbebene ist aber eine konvexe Menge.

Um jegliche Unklarheit über die Konvexität von K zu beseitigen, beweisen wir das
folgende Lemma.

Lemma. Der Durchschnitt beliebig vieler konvexer Mengen ist ebenfalls eine konvexe
Menge.

Beweis. Es seien K1 und K2 zwei konvexe Mengen und K ihr Durchschnitt.
Wir betrachten zwei beliebige in K gelegene Punkte A und B (Abb. 20). Nun gilt
A ∈ K1, B ∈ K1, und die Menge K1 ist konvex. Also liegt die Strecke AB in K1.
Ganz analog erhält man aber auch, dass die Strecke AB in K2 liegt.

Abb. 20
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2 Die geometrische Deutung linearer Ungleichungssysteme mit zwei oder drei
Unbekannten

Somit gehört AB gleichzeitig zu beiden Mengen K1 und K” also auch zu ihrem Durch-
schnitt K. Damit wurde bewiesen, dass K eine konvexe Menge ist.
Analoge Betrachtungen zeigen, dass der Durchschnitt beliebig vieler (nicht nur zweier)
konvexer Mengen eine konvexe Menge ist.

Der geometrische Ort aller Punkte, deren Koordinaten sämtliche Ungleichungen von
(1) erfüllen, d.h. der Lösungsbereich für das System (1), ist ein konvexer polygonaler
Bereich K. Man erhält ihn, wenn man den Durchschnitt aller Halbebenen bildet, die
den Ungleichungen im gegebenen System entsprechen.

Wir wenden uns nun dem Fall dreier Unbekannter zu und geben uns das System

a1x+ b1y + c1z + d1 ≥ 0
a2x+ b2y + c2z + d2 ≥ 0
...
amx+ bmy + cmz + dm ≥ 0

 (2)

vor. Wie wir aus § 1 wissen, bestimmt jede der hier aufgeschriebenen Ungleichungen
einen gewissen Halbraum. Daher wird man den durch das gegebene System definier-
ten Bereich als Durchschnitt (gemeinsamen Teil) von m Halbräumen auffassen. Der
Durchschnitt endlich vieler Halbräume ist aber ein konvexer polyedrischer Bereich K.
Abb. 21 liefert ein Beispiel für einen solchen Bereich mit m = 4.

Abb. 21

Bei diesem Beispiel ist der Bereich K ein gewöhnlicher Tetraeder (genauer, K besteht
aus allen Punkten, die im Innern und auf dem Rande des Tetraeders liegen).
Überhaupt ist es nicht schwer zu verstehen, dass man jedes konvexe Polyeder erhalten
kann, wenn man endlich viele Halbräume miteinander schneidet. Natürlich ist auch der
Fall möglich, dass der Bereich unbeschränkt ist (sich bis ins Unendliche erstreckt).

Abb. 22 und 23
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2 Die geometrische Deutung linearer Ungleichungssysteme mit zwei oder drei
Unbekannten

Ein Beispiel eines solchen Bereiches zeigt Abb. 22. Schließlich kann es auch vorkommen,
dass überhaupt keine Punkte existieren, die sämtlichen betrachteten Ungleichungen
genügen (das System (2) ist widersprüchlich). Dann ist der Bereich K leer. Diesen Fall
zeigt Abb. 23.

Wir wollen noch besonders auf den Fall eingehen, dass sich unter den Ungleichungen
(2) zwei finden, die die folgende Gestalt haben:

ax+ by + cz + d ≥ 0 , −ax− by − cz − d ≥ 0

Beide Ungleichungen können zu der einzigen Gleichung

ax+ by + cz + d = 0

zusammengefasst werden. Sie definiert im Raume eine Ebene π. Die restlichen Unglei-
chungen von (2) werden aus der Ebene π einen gewissen konvexen polygonalen Bereich
herausschneiden, welcher gerade Lösungsbereich für System (2) ist.

Wir sehen, dass als Spezialfall eines konvexen polyedrischen Bereichs im Raum ein
konvexer polygonaler Bereich in einer Ebene auftreten kann.
In Abb. 24 stellt der Bereich K ein Dreieck dar, das aus fünf Halbräumen gebildet wird:

Abb. 24

Zwei davon werden von der "horizontalen" Ebenen begrenzt, die restlichen drei Halb-
räume bilden als Durchschnitt das "vertikale" dreiseitige Prisma.

In Analogie zum Fall mit zwei Unbekannten nennen wir den Bereich K den Lösungs-
bereich für System (2). Wir wollen nochmals unterstreichen, dass der Bereich K als
Durchschnitt von Halbräumen notwendigerweise konvex ist.
Somit definiert System (2) im Raum einen konvexen polyedrischen Bereich K. Diesen
gewinnt man als Durchschnitt aller Halbräume, die den Ungleichungen im gegebenen
System entsprechen.
Ist der Bereich K beschränkt, so wird er einfach Lösungspolyeder für System (1) ge-
nannt.
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3 Die konvexe Hülle eines Punktsystems

3 Die konvexe Hülle eines Punktsystems
Wir stellen uns eine Ebene in Gestalt eines unendlichen Brettes vor, bei der in die
Punkte A1, A2, ..., Ap Holzpflöcke gesteckt seien. Wir fertigen uns eine Gummischlinge
an und dehnen diese so aus, dass sie alle Pflöcke umfasst (die gestrichelte Linie in Abb.
25).

Abb. 25 und 26
Danach lassen wir die Schlinge sich zusammenziehen, soweit das die von uns einge-
steckten Pflöcke erlauben. Die Menge aller Punkte, die von der Schlinge umfasst wird,
nachdem sie sich zusammengezogen hat, ist in Abb. 25 schraffiert. Sie stellt offensicht-
lich ein konvexes Polygon dar.
Wir nennen es die konvexe Hülle der Punkte A1, A2, ...An.

Liegen die Punkte A1, A2, ..., An nicht in einer Ebene, sondern im Raum, so kann man
sich ein ähnliches Experiment vorstellen, das praktisch allerdings recht schwierig durch-
zuführen ist. Wir wollen aber unserer Phantasie freien Lauf lassen und annehmen, es
sei uns gelungen, die Punkte A1, A2, ..., Ap in einen Sack aus einer straffen Gummihaut
einzuschließen.
Nun möge sich der Sack soweit zusammenziehen, bis einige dieser Punkte zu stören
beginnen. Schließlich wird der Moment eintreten, wo ein weiteres Zusammenziehen un-
möglich wird (Abb. 26).

Es ist ziemlich klar, dass der Sack in diesem Moment die Gestalt eines konvexen Poly-
eders annimmt, dessen Ecken irgendwelche der Punkte A1, A2, ..., Ap sind. Der Raum-
bereich, der von diesem Polyeder umfasst wird, heiße wiederum die konvexe Hülle des
Punktsystems A1, A2, ..., Ap.

Diese Definition für die konvexe Hülle ist zwar sehr anschaulich, aber vom Stand-
punkt "mathematischer Strenge" nicht völlig einwandfrei. Wir wollen diesen Begriff
jetzt streng definieren.

Es sei A1, A2, ..., Ap ein beliebiges System von Punkten (in der Ebene oder im Raum).
Wir betrachten alle möglichen Punkte der Gestalt

s1A1 + s2A2 + ...+ spAp (1)

wobei s1, s2, ..., sp geeignete nichtnegative Zahlen mit der Summe 1 sind:

s1s2...sp ≥ 0 und s1 + s2 + ...+ sp = 1 (2)
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3 Die konvexe Hülle eines Punktsystems

Definition. Eine Punktmenge der Gestalt (l) mit den Zusatzbedingungen (2) heißt kon-
vexe Hülle des Punktsystems A1, A2, ..., Ap und wird mit

〈A1, A2, ..., Ap〉

bezeichnet.

Damit wir uns davon überzeugen können, dass sich diese Definition von der vorherge-
henden nicht unterscheidet, betrachten wir zunächst die Fälle p = 2 und p = 3.
Ist p = 2, so sind uns zwei Punkte A1 und A2 gegeben. Die Menge 〈A1, A2〉 ist, wie
in § 1, Aussage 1 gezeigt wurde, die Strecke A1A2.
Ist p = 3, so sind uns die drei Punkte A1, A2 und A3 gegeben. Wir werden zeigen,
dass die Menge 〈A1, A2, A3〉 aus all den Punkten besteht, die im Inneren und auf den
Seiten des Dreiecks mit den Ecken A1, A2, A3 liegen.
Allgemein beweisen wir das folgende Lemma.

Lemma. Die Menge 〈A1, ..., Ap−1, Ap〉 besteht aus allen möglichen Strecken, die den
Punkt Ap mit den Punkten der 〈A1, ..., Ap−1〉 verbinden.

Beweis. Um weiterhin bequemer schreiben zu können, bezeichnen wir die Menge
〈A1, ..., Ap−1〉 mit Mp−1 und die Menge 〈A1, ..., Ap−1, Ap〉 mit Mp.
Wir betrachten einen beliebigen Punkt A ∈Mp: Er hat die Gestalt

A = s1A1 + ...+ sp−1Ap−1 + spAp

mit
s1, ..., sp ≥ 0 ; s1 + ...+ sp = 1

Ist sp = 0, so gilt A ∈Mp−1; also ist die Menge Mp−1 eine Teilmenge von Mp.
Ist sp = 1, so ist A = Ap; somit liegt der Punkt Ap in Mp. Also enthält Mp die
Menge Mp−1 und den Punkt Ap. Wir werden nun zeigen, dass jede Strecke A′Ap mit
A′ ∈Mp−1 ganz zu Mp gehört.

Ist A ein Punkt auf einer solchen Strecke, dann ist

A = tA′ + sAp (t, s ≥ 0; t+ s = 1)

Andererseits haben wir nach Definition des Punktes A′

A′ = t1A1 + ...+ tp−1Ap−1

t1, ..., tp−1 ≥ 0 ; t1 + ...+ tp−1 = 1
und folglich

A = tt1A1 + ...+ ttp−1Ap−1 + sAp

Wenn wir tt1 = s1, ..., ttp−1 = sp−1, s = sp setzen, erhalten wir (1), (2). Damit ist
A ∈Mp bewiesen. Also liegt jede der oben angegebenen Strecken vollständig in Mp.

Wir müssen nun noch nachprüfen, dass Mp„ keine Punkte außer solchen Strecken
enthält, d.h., dass jeder Punkt A aus Mp auf einer der betrachteten Strecken liegt.
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3 Die konvexe Hülle eines Punktsystems

Es sei also A ∈Mp. Dann gilt (1), (2). Wir können sp 6= 1 annehmen, denn sonst wäre
A = Ap und nichts weiter zu beweisen. Ist nun aber sp 6= 1, so ist s1 + ... + sp−1 =
1− sp > 0, und daher können wir schreiben:

A = (s1 + ...+ sp−1)
[

s1

s1 + ...+ sp−1
A1 + ...

sp−1

s1 + ...+ sp−1
Ap−1

]
+ spAp

Der in eckigen Klammern stehende Ausdruck bestimmt einen Punkt A′, der zu Mp−1
gehört, da die Koeffizienten von A1, ..., Ap−1 in diesem Ausdruck nichtnegativ sind und
die Summe 1 haben. Somit ist

A = (s1 + ...+ sp−1)A′ + spAp

Da die Koeffizienten von A′ und Ap ebenfalls nichtnegativ sind und die Summe 1 haben,
liegt der Punkt A auf der Strecke A′Ap. Damit ist der Beweis des Lemmas beendet.

Nun können wir leicht verstehen, dass die zu Beginn dieses Paragraphen gegebene
anschauliche Definition der konvexen Hülle und die danach folgende strenge Defini-
tion äquivalent sind. Denn welche der beiden Definitionen für die konvexe Hülle wir
auch zugrunde legen, in beiden Fällen gehen wir von der konvexen Hülle des Systems
a1, ..., Ap−1 zur konvexen Hülle des Systems A1, ..., Ap−1, Ap nach ein und derselben
Regel über:

Den Punkt Ap müssen wir mittels Strecken mit allen Punkten der konvexen Hülle für
A1, ..., Ap−1 verbinden (in der anschaulichen Definition der konvexen Hülle ist diese Re-
gel unmittelbar einsichtig, in der strengen Definition stellt sie den Inhalt des Lemmas
dar).
Ziehen wir nun in Betracht, dass wir nach beiden Definitionen für p = 2 ein und dieselbe
Menge erhalten, nämlich die Strecke A1A2, so wird die Äquivalenz beider Definitionen
offenbar.

Dabei ist der Terminus "konvexe Hülle" für uns noch nicht vollständig gerechtfertigt,
denn wir haben noch nicht gezeigt, dass die Menge 〈A1, A2, ..., Ap〉 stets konvex ist.
Dies holen wir sogleich nach.

Es seien A und B zwei beliebige Punkte dieser Menge:

A = s1A1 + s2A2 + ...+ spAp , B = t1A1 + t2A2 + ...+ tpAp

mit
s1, ..., sp, t1, ..., tp ≥ 0 , s1 + ...+ sp = t1 + ...+ tp = 1 (3)

Jeder Punkt C auf der Strecke AB hat die Gestalt

C = sA+ tB

mit
s, t ≥ 0 ; s+ t = 1 (4)
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4 Konvexe polyedrische Kegel

woraus

C = s(s1A1 + ...+ spAp) + t(t1A1 + ...tpAp) = (ss1 + tt1)A1 + ...+ (sspttp)Ap

folgt. Die als Koeffizienten bei A1, ..., Ap stehenden Zahlen sind nichtnegativ und haben
die Summe 1 (wie aus (3), (4) folgt). Das bedeutet, dass der Punkt C zur Menge
〈A1, ..., Ap〉 gehört, d.h., diese Menge ist konvex.

Im Zusammenhang damit ist leicht zu sehen, dass die Menge 〈A1, ..., Ap〉 die kleinste
unter allen konvexen Mengen ist, die die Ausgangspunkte A1, ..., Ap enthalten, d.h.,
dass sie in jeder solchen Menge enthalten ist. Diese Behauptung folgt unmittelbar aus
dem weiter oben bewiesenen Lemma und aus der Definition der konvexen Hülle.

Der oben angegebene Sachverhalt erklärt die Bezeichnung "konvexe Hülle". Gleichzeitig
gibt er noch eine Erklärung dafür, dass man die Menge 〈A1, ..., Ap〉 mit dem Verfahren
gewinnen kann, das am Anfang dieses Paragraphen beschrieben wurde.
Tatsächlich ist die Menge, die von einer Gummischlange (oder einem Sack) umschlossen
wird, nachdem sich diese soweit wie möglich um das Punktsystem A1, ..., Ap zusam-
mengezogen hat, gerade die kleinste konvexe Menge, die die vorgegebenen Punkte
enthält.

4 Konvexe polyedrische Kegel
Wir beginnen mit einer Definition.
Unter einem konvexen polyedrischen Kegel versteht man den Durchschnitt endlich vie-
ler Halbräume, deren begrenzende Ebenen durch mindestens einen gemeinsamen Punkt
gehen; ein solcher Punkt heißt Spitze des Kegels.

Zuerst werden wir zeigen, in welcher Beziehung der Begriff des konvexen polyedrischen
Kegels zu linearen Ungleichungssystemen steht. Wir beschränken uns auf den Spezial-
fall, dass eine Spitze des Kegels im Koordinatenursprung liegt. Das bedeutet, dass alle
begrenzenden Ebenen den Koordinatenursprung enthalten. Nun hat aber die Gleichung
einer Ebene, die durch den Koordinatenursprung geht, die Gestalt

ax+ by + cz = 0

(das freie Glied der Gleichung muss gleich Null sein, denn anderenfalls wäre (0, 0, 0)
keine Lösung). Also ist ein konvexer polyedrischer Kegel mit einer Spitze im Koordina-
tenursprung Lösungsbereich eines homogenen Ungleichungssystems:

a1x+ b1y + c1z ≥ 0
a2x+ b2y + c2z ≥ 0
...
amx+ bmy + cmz ≥ 0


Selbstverständlich gilt auch die Umkehrung: Der Lösungsbereich eines homogenen Un-
gleichungssystems stellt stets einen konvexen polyedrischen Kegel mit einer Spitze im
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4 Konvexe polyedrische Kegel

Koordinatenursprung dar.

Als Beispiel eines konvexen polyedrischen Kegels kann ein konvexer Bereich im Raum
dienen, der nur eine Ecke im Punkt S hat, etwa eine unendliche konvexe Pyramide, die
keine Grundfläche besitzt und sich von der Spitze aus unbeschränkt fortsetzen lässt.
Abb. 27 zeigt eine solche vierseitige Pyramide.

Abb. 27
Es sind aber auch weniger interessante Fälle möglich:

1. Der Halbraum (Abb. 28a). Bei einem solchen "Kegel" kann jeder Punkt S ∈ π die
Rolle der Spitze spielen, dabei ist π die begrenzende Ebene des gegebenen Halbraumes.

2. Der Durchschnitt zweier Halbräume, deren berandende Ebenen sich in einer Geraden
l schneiden (Abb. 28b). Die Rolle der Spitze kann jeder Punkt S ∈ l spielen.

3. Die Ebene. Jede Ebene π im Raum kann offenbar als Durchschnitt zweier Halbräume
angesehen werden, die auf den verschiedenen Seiten von π liegen (Abb. 28c). Die Rolle
der Spitze kann in diesem Fall jeder Punkt S ∈ π spielen.

4. Die Halbebene (Abb. 28d). Als Spitze S kann jeder Punkt der berandenden Gerade
dienen.

Abb. 28
5. Die Gerade. Man kann jede Gerade l im Raum als Durchschnitt dreier Halbräume
erhalten, deren berandende Ebenen durch l gehen (Abb. 28e). Als Spitze S kann jeder
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4 Konvexe polyedrische Kegel

Punkt der Geraden l dienen.

6. Ein Winkel (kleiner als 180◦) in einer beliebigen Ebenen (Abb. 28f). Den Winkel
kann man erhalten, wenn man die Ebene π mit zwei Halbräumen schneidet (und zwar
wie ?).

7. Ein Strahl (Abb. 28g). Einen Strahl kann man als Durchschnitt einer Geraden mit
einem Halbraum ansehen. Die Spitze S ist der Anfang des Strahles.

8. Ein Punkt. Diesen "Kegel" kann man erhalten, wenn man den Durchschnitt eines
Strahles mit einem entsprechenden Halbraum nimmt (Abb. 28h).

Natürlich entsprechen unsere Beispiele 1 bis 8 (das eine in geringerem, das andere in
stärkerem Maße) nicht dem üblichen Gebrauch des Wortes "Kegel" , aber wir müssen
uns damit abfinden, wenn wir die zu Anfang dieses Paragraphen gegebene allgemeine
Definition eines konvexen polyedrischen Kegels beibehalten wollen.

Wir wollen nun kurz zeigen, dass mit den oben aufgezählten Mengen alle polyedrischen
konvexen Kegel im Raum erfasst werden.
Es bezeichne p die Anzahl der Halbräume, deren Durchschnitt der zu betrachtende
Kegel K ist. Ist p = 1, so ist die Behauptung richtig, denn dann ist K ein Halbraum.
Eine einfache Untersuchung, die der Leser selbst durchführen möge, zeigt, dass unsere
Behauptung, wenn sie für den Kegel wahr ist, den man durch Schneiden von p Halbräu-
men gewinnt, auch für den Kegel stimmt, welcher Durchschnitt von p+ 1 Halbräumen
ist. Hieraus folgt nach dem Prinzip der vollständigen Induktion, dass die Behauptung
für jedes p gilt.

Konvexe polyedrische Kegel besitzen viele interessante Eigenschaften. Der Rahmen un-
seres Büchleins gestattet uns nicht, in diese Thematik tiefer einzudringen; alles, was
wir darüber bringen wollen, ist teils in diesem Paragraphen, teils im § 9 enthalten.

Wir führen noch eine Definition oder - wenn man will - eine Bezeichnung ein.
Es seienB1, B2, ..., Bq beliebig, aber endlich viele Punkte (im Raum). Mit (B1, B2, ..., Bq)
bezeichnen wir die Menge aller Punkte der Gestalt

t1B1 + t2B2 + ...+ tqBq

mit beliebigen nichtnegativen Zahlen t1, t2, ..., tq.

Welche geometrische Bedeutung hat nun die Menge (B1, B2, ..., Bq)? Definitionsge-
mäß ist sie die Summe der Mengen (B1), (B2), ..., (Bq). Daher müssen wir zunächst
erklären, was eine Menge (B) darstellt, d.h. die Menge aller Punkte tB bei beliebigem
nichtnegativem t und fest gewähltem Punkt B. Jedoch ist die Antwort auf die letzte
Frage offensichtlich:

Ist B der Koordinatenursprung, so fällt (B) mit dem Ursprung zusammen. Anderenfalls
ist (B) der vom Koordinatenursprung ausgehende und durch den Punkt B verlaufende
Strahl. Nun wollen wir bemerken, dass die Summe aus einer beliebigen Menge und dem
Koordinatenursprung wieder dieselbe Menge ergibt.

23



4 Konvexe polyedrische Kegel

Daher ist klar, dass wir beim Studium der Menge (B1, B2, ..., Bq) nichts außer Acht
lassen, wenn wir annehmen, alle Punkte B1, B2, ..., Bq seien vom Koordinatenursprung
verschieden. Dann ist aber die Menge (B1, B2, ..., Bq) die Summe der Strahlen (B1),
(B2), ..., (Bq).

Diese Bemerkung bewirkt, dass das folgende Lemma fast trivial wird.

Lemma. Die Menge (B1, B2, ..., Bq−1, Bq) ist die Vereinigung derjenigen Strecken, die
jeden Punkt der Menge (B1, ..., Bq−1) mit jedem Punkt des Strahls (Bq) verbinden.

Der strenge Beweis des Lemmas verläuft nach demselben Schema wie der des analogen
Lemmas in § 3. Der Leser möge ihn selbständig durchführen.

Abb. 29

Ausgehend von diesem Lemma überlegt man sich leicht, dass (B1, B2) ein Winkel, eine
Gerade oder ein Strahl ist (Abb. 29a. b, c). Danach ist es einfach, festzustellen, dass
(B1, B2, B3) eine der folgenden Mengen ist:
eine unendliche dreiseitige Pyramide, eine Ebene, eine Halbebene. ein Winkel, eine Ge-
rade oder ein Strahl.

Nunmehr wird klar, dass zwischen den Mengen (B1, B2, ..., Bq) und konvexen poly-
edrischen Kegeln ein enger Zusammenhang bestehen muss. Und dieser Zusammenhang
besteht tatsächlich. Zur größeren Klarheit wollen wir die entsprechenden Aussagen in
zwei Sätzen formulieren.

Satz 1. Die Menge (B1, B2, ..., Bq) stimmt entweder mit dem gesamten Raum überein,
oder sie stellt einen konvexen polyedrischen Kegel mit Spitze im Koordinatenursprung
dar.

Abb. 30

Dass die Menge (B1, B2, ..., B1) wirklich mit dem gesamten Raum übereinstimmen
kann, zeigt ein Beispiel. Wir betrachten vier Punkte B1, B2, B3, B4, die so gelegen sein
sollen, dass die Strahlen (B1), (B2), (B3), (B4) paarweise stumpfe Winkel bilden (Abb.
30).
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4 Konvexe polyedrische Kegel

Jede der Mengen (B1, B2, B3), (B1, B2, B4), (B1, B3, B4), (B2, B3, B4) stellt eine un-
endliche dreiseitige Pyramide mit der Spitze im Koordinatenursprung dar. Die Menge
(B1, B2, B3, B4) enthält offenbar jede dieser Pyramiden. Die Vereinigung dieser Pyra-
miden ist aber der gesamte Raum.

Satz 2. Jeder konvexe polyedrische Kegel mit Spitze im Koordinatenursprung ist eine
Menge der Form (B1, B2, ..., Bq).

Beweis von Satz 1. Diesen Beweis führen wir nur in großen Zügen und bedienen uns
der Methode der vollständigen Induktion. Die Behauptung des Satzes gilt offenbar für
q = 1. Wir nehmen nun an, der Satz sei für Mengen der Gestalt (B1, ..., Bq) rich-
tig, und zeigen seine Gültigkeit für Mengen (B1, ..., Bq, Bq+1), indem wir uns auf die
Induktionsvoraussetzung stützen.
Nach Induktionsvoraussetzung ist (B1, ..., Bq) der gesamte Raum oder ein konvexer
polyedrischer Kegel in ihm. Im ersten Fall ist im wesentlichen nichts zu zeigen, denn
dann ist auch (B1, ..., Bq, Bq−1) der gesamte Raum.

Es gelte also der zweite Fall: (B1, ..., Bq) ist ein konvexer polyedrischer Kegel K. Nach
dem Lemma ist die Menge (B1, ..., Bq, Bq+1) die Vereinigung aller Strecken, die jeden
Punkt der Menge K mit jedem Punkt des Strahles (Bq+1) verbinden.
Wie aber schon früher gezeigt wurde, ist jeder konvexe polyedrische Kegel K entweder
eine unendliche konvexe Pyramide oder eine der Mengen 1 bis 8. Betrachtet man für
jeden dieser Fälle die oben angeführte Vereinigung der Strecken, so kann man sich
leicht davon überzeugen (der Leser führe das selbständig durch!), dass sie mit dem
gesamten Raum zusammenfallen oder wieder konvexe polyedrische Kegel sind.

Also ist der Satz für Mengen der Gestalt (B1), aber auch für solche wie (B1, ..., Bq, Bq+1)
richtig, weil wir die Gültigkeit der Aussage für (B1, ..., Bq) vorausgesetzt hatten. Hieraus
folgt, dass der Satz für jedes q gilt.

Beweis von Satz 2. Es sei K ein konvexer polyedrischer Kegel mit Spitze im Koordi-
natenursprung O. Wie wir schon sagten, ist K eine unendliche konvexe Pyramide oder
eine der Mengen 1 bis 8.
Es sei K eine Pyramide. Wir wählen auf jeder Kante einen Punkt. Dann erhalten wir ein
System von Punkten B1, B2, ..., Bq. Wir behaupten, dass die Menge (B1, B2, ..., Bq)
mit K übereinstimmt.

Abb. 31

Zum Beweis betrachten wir eine Ebene π, die alle Kanten von K schneidet. Wir erhalten
die Punkte B′1, B′2, ..., B′q (Abb. 31).
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4 Konvexe polyedrische Kegel

Offenbar ist
B′1 = k1B1, B′2 = k2B2, , ...B′q = kqBq (1)

mit gewissen nichtnegativen Zahlen k1, k2, ..., kq. Es sei nun B ein beliebiger vom Punkt
O verschiedener Pyramidenpunkt.

Der Strahl OB schneidet die Ebene π in einem Punkt B′. Offenbar liegt B′ in der
konvexen Hülle des Systems B1, B2, ..., Bq, und daher ist

B′ = s1B
′
1 + s2B

′
2,+...+ sqB

′
q

mit nichtnegativen Zahlen s1, s2, ..., sq, deren Summe gleich 1 ist. Berücksichtigen wir
nun (1), dann erhalten wir

B′ = s1k1B1 + s2k2B2,+...+ sqkqBq

und wenn wir noch B′ = kB (k > 0) beachten, finden wir

B = t1B1 + t2B2,+...+ tqBq

mit ti = siki

k (i = 1, 2, ..., q). Somit haben wir gezeigt, dass jeder Punkt B der Pyramide
K zur Menge (B1, B2, ..., Bq) gehört. Die Umkehrung (d.h., dass jeder Punkt der Menge
(B1, B2, ..., Bq) zu K gehört) ist klar. Also stimmen K und (B1, B2, ..., Bq) überein.

Der Fall, dass K eine der Mengen 1 bis 8 ist, lässt sich ohne Mühe bewältigen. Wir
überlassen ihn dem Leser.
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5 Der Lösungsbereich für ein Ungleichungssystem mit zwei Unbekannten

5 Der Lösungsbereich für ein Ungleichungssystem
mit zwei Unbekannten

Wir wollen unsere Aufgabe jetzt darin sehen, sämtliche Lösungen eines linearen Unglei-
chungssystems effektiv zu beschreiben.
In diesem Paragraphen wird diese Aufgabe für Systeme mit den beiden Unbekannten
x und y gelöst. Ungeachtet dessen, dass die Anzahl der Unbekannten nicht groß (und
sogar nur gleich 2) ist, wollen wir uns bemühen, solche Systeme von einem allgemei-
nen Standpunkt aus zu analysieren, damit wir die dabei erzielten Ergebnisse leicht auf
Systeme mit einer größeren Anzahl von Unbekannten übertragen können.

Letzten Endes lässt sich die Lösung eines beliebigen linearen Ungleichungssystems auf
das Lösen einer Reihe von linearen Gleichungssystemen zurückführen. Wir werden das
Lösen linearer Gleichungssysteme als etwas Einfaches, als eine elementare Aufgabe
betrachten und uns nicht verwirren lassen, wenn wir diese Aufgabe mehrere Male aus-
führen müssen, um die dargestellte Methode zu realisieren.

5.1 Notwendige Lemmata
Gegeben sei das Ungleichungssystem

a1x+ b1y + c1 ≥ 0
a2x+ b2y + c2 ≥ 0
...
amx+ bmy + cm ≥ 0

 (1)

Es erweist sich als zweckmäßig, gleichzeitig mit ihm das zugehörige homogene Unglei-
chungssystem

a1x+ b1y ≥ 0
a2x+ b2y ≥ 0
...
amx+ bmy ≥ 0

 (2)

sowie das entsprechende homogene Gleichungssystem

a1x+ b1y = 0
a2x+ b2y = 0
...
amx+ bmy = 0

 (3)

zu betrachten.

Den Lösungsbereich für System (1) werden wir in der Koordinatenebene xOy mit K,
den von System (2) mit K0 und den von System (3) mit L bezeichnen. Offenbar gilt
L ⊂ K0, wo das Symbol ⊂ "ist Teilmenge von" 4 bedeutet.

4Man darf das Symbol ⊂ nicht mit dem früher eingeführten ∈ verwechseln. Letzteres wird dann
angewendet, wenn es um die Zugehörigkeit eines Punktes zu einer Menge geht. Wenn wir den
Tatbestand aufschreiben wollen, dass eine Menge Teilmenge einer anderen ist, so werden wir das
Symbol ⊂ verwenden.
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5 Der Lösungsbereich für ein Ungleichungssystem mit zwei Unbekannten

Lemma 1. Es gilt die Teilmengenbeziehung

K + K0 ⊂ K

d.h., die Summe einer beliebigen Lösung des gegebenen Ungleichungssystems mit einer
beliebigen Lösung des entsprechenden homogenen Ungleichungssystems ist wiederum
Lösung des gegebenen Systems.

Beweis. Es sei A ein beliebiger Punkt aus K und B ein beliebiger Punkt aus K0. Dann
sind folgende Ungleichungen erfüllt:

a1xA + b1YA + c1 ≥ 0 und a1xB + b1yB ≥ 0
a2xA + b2YA + c2 ≥ 0 und a2xB + b2yB ≥ 0

...

amxA + bmYA + cm ≥ 0 und amxB + bmyB ≥ 0

Wenn wir nun jede links stehende Ungleichung zu der entsprechenden rechten addieren,
erhalten wir

a1(xA + xB) + b1(yA + yB) + c1 ≥ 0
a2(xA + xB) + b2(yA + yB) + c2 ≥ 0

...

am(xA + xB) + bm(yA + yB) + cm ≥ 0

Diese Ungleichungen lassen sich aber so deuten, dass das Zahlen- paar xA+xb, yA+yB,
d.h. die Koordinaten des Punktes A + B Lösung des Ausgangssystems (1) sind, d.h.,
es ist A+B ∈ K, womit das Lemma bewiesen ist.

Lemma 2. a) Gehört ein Strahl mit dem Anfangspunkt A ganz zur Menge K und ist P
ein beliebiger Punkt dieses Strahls, so ist P − A ∈ K0.

b) Gehört eine Gerade ganz zur Menge K und sind A und P zwei beliebige Punkte
dieser Geraden, so gilt P − A ∈ L.

Beweis. a) Wir bezeichnen den Punkt P − A mit B. Der von uns zu betrachtende
Strahl besteht aus Punkten der Gestalt

A+ sB (4)

mit beliebigem nichtnegativem s (Abb. 32).

Abb. 32
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5 Der Lösungsbereich für ein Ungleichungssystem mit zwei Unbekannten

Jeder dieser Punkte ist nach Voraussetzung Lösung des Systems (1), d.h.

a1(xA + sxB) + b1(yA + syB) + c1 ≥ 0
a2(xA + sxB) + b2(yA + syB) + c2 ≥ 0
...
am(xA + sxB) + bm(yA + syB) + cm ≥ 0

 (5)

Wir betrachten zum Beispiel die erste dieser Ungleichungen. Sie kann in der Gestalt

(a1xA + b1yA + c1) + s(a1xB + b1yB) ≥ 0

geschrieben werden. Da diese Ungleichung für jedes s ≥ 0 gilt, muss, wie man leicht
sieht, der Koeffizient von s nichtnegativ sein:

a1xB + b1yB ≥ 0

Analog kann man aus den anderen Ungleichungen von (5)

a2xB + b2yB ≥ 0 ... amxB + bmyB ≥ 0

erhalten. Daraus folgt, dass der Punkt B zur Menge K0 gehört.
Der Beweis von b) wird analog geführt. Die zu untersuchende Gerade besteht aus
Punkten der Form (4) mit beliebigem s. Daher sind die Ungleichungen (5) für beliebige
Werte von s erfüllt. Hieraus ergibt sich, dass der Koeffizient von s für jede dieser
Ungleichungen Null sein muss, d.h.

a1xB + b1yB = 0
a2xB + b2yB = 0

...

amxB + bmyB = 0

Folglich gilt B ∈ L, und das Lemma ist bewiesen. Man sieht leicht, dass Lemma 1 und
2 auch für Systeme mit mehreren Unbekannten gelten.

5.2 Der Fall eines normalen Ungleichungssystems (1)
Wir betrachten wiederum das Ungleichungssystem (1) und das ihm zugeordnete homo-
gene Gleichungssystem (3).
Das letzte hat die triviale Lösung x = 0, y = 0. Diese Lösung heißt Nulllösung. Es zeigt
sich, dass es, wenn man (1) untersuchen will, wichtig ist zu wissen, ob das System (3)
auch eine Nicht-Nulllösung besitzt. Im Zusammenhang damit bringen wir die Definition.

Ein lineares Ungleichungssystem heißt normal, wenn das zugeordnete lineare homogene
Gleichungssystem nur die Nulllösung besitzt.

Mit anderen Worten, ein Ungleichungssystem ist normal, falls die oben definierte Menge
L, d.h. der Lösungsbereich des zugeordneten Gleichungssystems, nur einen einzigen
Punkt enthält (den Koordinatenursprung).
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5 Der Lösungsbereich für ein Ungleichungssystem mit zwei Unbekannten

Selbstverständlich hat der Begriff des normalen Systems auch für eine beliebige Anzahl
von Unbekannten einen Sinn.
Es ist nicht schwer zu zeigen, dass ein lösbares Ungleichungssystem dann und nur dann
normal ist, wenn sein Lösungsbereich K keine Gerade enthält.

Ist nämlich das System normal, d.h. enthält die Menge L nur den Koordinatenursprung,
so enthält K keine Geraden.
Das folgt auch unmittelbar aus der zweiten Behauptung von Lemma 2. Ist dagegen
das System nicht normal, so enthält die Menge L mindestens einen vom Koordina-
tenursprung verschiedenen Punkt B. Selbstverständlich gehören auch alle Punkte kB
(k eine beliebige Zahl) zu L.5
In diesem Fall gehört aber nach Lemma 1 die Menge aller Punkte P + kB (k eine
beliebige Zahl) bei beliebig gewähltem Punkt P ∈ K (und ein solcher Punkt lässt sich
selbstverständlich finden, weil das System lösbar und daher der Bereich K nicht leer
ist) zu K.
Die konstruierte Menge ist, wie wir wissen, eine Gerade. Ist das System also nicht
normal, so enthält der Bereich K eine Gerade. Damit ist die obige Aussage vollständig
bewiesen.

In diesem Paragraphen untersuchen wir den Lösungsbereich eines normalen Systems (1),
setzen also voraus, dass dieses System lösbar (der Bereich K nicht leer) und normal ist.

Zuerst folgt aus der Tatsache, dass der Bereich K keine Geraden enthält, dass er gewiss
eine Ecke besitzt. Mit dem Begriff Ecke verbinden wir folgenden (der anschaulichen
Bedeutung des Wortes "Ecke" ähnlichen) Sinn.

Unter einer Ecke eines Bereiches K verstehen wir einen solchen Punkt des Bereiches,
der für keine ganz in K gelegene Strecke ein innerer Punkt ist. Mit anderen Worten,
eine Ecke ist ein Punkt A ∈ K mit der Eigenschaft, dass jede in K liegende und durch
den Punkt A gehende Strecke in diesem Punkt ihren Anfang oder ihr Ende haben muss
(Abb. 33a und b, wo der Punkt A eine der Ecken ist; in Abb. 33b ist der Bereich K
eine Strecke).

Abb. 33

Wir wollen nun eingehender erklären, weshalb die uns interessierende konvexe Menge
K Ecken besitzt. Liegt K auf einer Geraden, so ist es entweder ein einzelner Punkt oder
eine Strecke oder ein Strahl, und die Existenz einer Ecke ist offenbar.
Liegt K dagegen nicht auf einer Geraden, so betrachten wir den Rand dieser Menge.
Er besteht aus Strecken und Strahlen (vollständige Geraden enthält K nicht). Offenbar

5Genügen die Zahlen x, y, z, d.h. die Koordinaten von Punkt B, einem homogenen Gleichungssystem,
so genügen auch die Zahlen kx, ky, kz, d.h. die Koordinaten des Punktes kB, diesem System.
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5 Der Lösungsbereich für ein Ungleichungssystem mit zwei Unbekannten

sind die Endpunkte jeder solchen Strecke und der Anfang eines Strahles Ecken von K.

Die Ecken des Bereiches K aufzufinden bereitet keine besonderen Schwierigkeiten. Zu-
nächst bemerken wir, dass der i-ten Ungleichung im System in der Koordinatenebene
xOy eine Halbebene entspricht, deren berandende Gerade li durch die Gleichung

aix+ biy + ci = 0 (i = 1, 2, ...,m)

definiert wird. Offenbar ist ein Punkt A aus dem Bereich K dann und nur dann eine
Ecke, wenn er auf zwei verschiedenen berandenden Geraden liegt.

Wir wollen ein aus zwei Gleichungen bestehendes Teilsystem des Gleichungssystems

a1x+ b1y + c1 = 0
a2x+ b2y + c2 = 0
...
amx+ bmy + cm = 0

 (6)

regulär nennen, falls dieses Teilsystem eine eindeutige Lösung (x, y) besitzt.

Aus der obigen Charakterisierung der Ecken ergibt sich nun das folgende Verfahren zum
Auffinden der Ecken eines Bereiches K.
Um sämtliche Ecken aufzufinden, muss man die Lösungen aller regulären Teilsysteme
von System (6) suchen und daraus diejenigen auswählen, die das Ausgangssystem (1)
erfüllen.

Da die Anzahl der regulären Teilsysteme die Zahl
(
m
2

)
nicht überschreitet (die Zahl der

Kombinationen zu 2 Elementen aus m), kann auch die Anzahl der Ecken des Bereiches
K nicht größer sein. Somit ist die Anzahl der Ecken endlich.

Bemerkung. Aus dem oben Gesagten folgt: Besitzt der Lösungsbereich K eines normalen
Systems keine Ecke, so ist dieser Bereich leer, und das System hat keine Lösungen (ist
widersprüchlich).

Beispiel 1. Man finde sämtliche Ecken des durch das Ungleichungssystem

x+ y + 1 ≥ 0
x− 2y − 2 ≥ 0
2x− y − 4 ≥ 0

definierten Bereiches K.
Löst man die Teilsysteme

x+ y + 1 = 0 x+ y + 1 = 0 x− 2y − 2 = 0
x− 2y − 2 = 0 2x− y − 4 = 0 2x− y − 4 = 0

(sie erweisen sich sämtlich als regulär), so findet man die drei Punkte

(0,−1), (1,−2), (2, 0)
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5 Der Lösungsbereich für ein Ungleichungssystem mit zwei Unbekannten

von denen nur der zweite und der dritte alle gegebenen Ungleichungen erfüllen. Das
bedeutet: Ecken des Bereiches K sind die Punkte A1(1,−2) und A2(2, 0).

Wir kehren zum System (1) zurück. Es seien A1, A2, ..., Ap sämtliche Ecken des Berei-
ches K. Die Menge 〈A1, A2, ..., Ap〉 sei die konvexe Hülle des PunktsystemsA1, A2, ..., Ap.
Sie liegt ebenfalls in K (denn K ist ein konvexer Bereich). Dann gehört nach Lemma 1
aber auch die Menge

〈A1, A2, ..., Ap〉+ K0

zu K. Wir werden beweisen, dass diese Summe in Wirklichkeit mit K übereinstimmt,
d.h., dass der folgende Satz gilt.

Satz. Ist ein Ungleichungssystem normal, so gilt

K = 〈A1, A2, ..., Ap〉+ K0

wobei A1, A2, ..., Ap sämtliche Ecken des Bereiches K sind.

Beweis. Es sei P ein beliebiger von den Ecken des Bereiches verschiedener Punkt des
Bereiches K. Die Gerade A1P schneidet den konvexen Bereich K entweder in einer
Strecke A1A (Abb. 34) oder in einem Strahl mit dem Anfangspunkt in A1 (Abb. 35).
Im zweiten Fall ist P − A1 ∈ K0 (Lemma 2) und folglich P ∈ A1 + K0.

Abb. 34 und 35

Im ersten Fall dagegen überlegen wir wie folgt: Liegt der Punkt A auf einer beschränkten
Kante AiAj des Bereiches K (wie in Abb. 34), so gehört P zur konvexen Hülle der
Punkte A1, Ai, Aj.

Abb. 36

Liegt jedoch der Punkt A auf einer unbeschränkten Kante mit dem Anfang in der
Ecke Ai (Abb. 36), so gilt nach Lemma 1 die Beziehung A ∈ Ai + K0; also P ∈
〈A1, Ai〉+ K0. Auf diese Weise zeigt sich, dass der Punkt P in allen Fällen zur Menge
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〈A1, A2, ..., Ap〉+ K0 gehört. Der Satz ist damit bewiesen.

Da uns das Verfahren zum Auffinden der Ecken schon bekannt ist, brauchen wir zur
völligen Beschreibung des Bereiches K nur noch zu wissen, wie man den Bereich K0

findet. Dieser ist aber der Lösungsbereich des homogenen normalen Systems (2). Wir
gehen jetzt dazu über, ihn zu beschreiben.

5.3 Das homogene normale Ungleichungssystem (2)
Jede Ungleichung aus (2) definiert eine Halbebene, deren berandende Gerade durch den
Koordinatenursprung geht. Der Durchschnitt aller dieser Halbebenen ist genau gleich
K0.

In unserem Fall finden sich unter den berandenden Geraden mindestens zwei verschiede-
ne (das System (2) ist normal). Folglich fällt K0 entweder mit dem Koordinatenursprung
zusammen (x = 0, y = 0) oder ist ein Strahl mit der Ecke im Koordinatenursprung
oder ein Winkel kleiner als 180◦ mit dem Scheitel im Koordinatenursprung.

Abb. 37

Kennt man zwei Punkte B1 und B2, die auf verschiedenen Schenkeln dieses Winkels
liegen (Abb. 37), so kann man sämtliche Punkte des Winkels in der Gestalt

B = t1B1 + t2B2 (8)

mit beliebigen nichtnegativen Zahlen t1 und t2 beschreiben. Die Punkte B1 und B2 sind
leicht zu finden, wenn man beachtet, dass jeder von ihnen a) zu K0 gehört, d.h. dem
System (2) genügt, und b) auf der Begrenzung von K0 liegt, d.h. einer der Gleichungen
(3) genügt. Ist K0 ein Strahl, so haben wir anstelle von (8) die Gleichung

B = tB1 (9)

wobei B1 ein beliebiger Punkt dieses Strahles (verschieden vom Ursprung) und t eine
beliebige nichtnegative Zahl ist.

Beispiel 2. Man bestimme den Lösungsbereich K0 des Systems

x+ y ≥ 0
x− 2y ≥ 0 (10)
2x− y ≥ 0

sowie den Lösungsbereich K des Systems in Beispiel 1.
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Lösung. Das System (10) ist normal: Die einzige Lösung des entsprechenden homogenen
Gleichungssystems

x+ y = 0
x− 2y = 0 (11)
2x− y = 0

ist (0, 0).
Wir wählen einen von (0, 0) verschiedenen Punkt, der die erste Gleichung aus (11)
erfüllt, zum Beispiel den Punkt C(−1, 1). Durch eine einfache Probe überzeugen wir
uns, dass der Punkt C nicht sämtlichen Ungleichungen (10) genügt. Folglich gehört
weder er selbst noch ein (vom Ursprung O verschiedener) Punkt des Strahles OC zu
K0.

Betrachten wir den Punkt −C (d.h. den Punkt (1,−1)), so finden wir, dass er zu K0

gehört. Also ist B1 = (1,−1). Der zweiten Gleichung genügt der Punkt (2, 1).

Abb. 38

Er ist auch Lösung des Systems (10), so dass B2 = (2, 1) ist. Der Bereich K (Abb. 38)
besteht aus den Punkten

t1B1 + t2B2 = t1(1,−1) + t2(2, 1) = (t1 + 2t2,−t1 + t2)

mit beliebigen nichtnegativen Zahlen t1 und t2.

Wenn wir uns dem Ungleichungssystem im Beispiel 1 zuwenden, bemerken wir, dass
das ihm zugeordnete homogene Ungleichungssystem zugleich das System (10) ist. Nach
dem oben bewiesenen Satz gilt aber

K = 〈A1, A2〉+ K0

mit A1(1,−2) und A2(2, 0) als Ecken von K. Somit besteht K aus den Punkten (Abb.
39)

s(1,−2) + (1− s)(2, 0) + (t1 + 2t2,−t1 + t2) = (2− s+ t1 + 2t2,−2s− t1 + t2)

wobei s eine beliebige Zahl aus dem Intervall [0, 1] ist und t1, t2 beliebige nichtnegative
Zahlen sind.
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Abb. 39 und 40

Beispiel 3. Man finde den Lösungsbereich von

2x− y ≥ 0
−4x+ 2y ≥ 0

x+ y ≥ 0

Wenn wir wie beim Beispiel 2 verfahren, finden wir nur einen Strahl (Abb. 40):

B = t(1, 2) = (t, 2t) (t ≥ 0)

Beispiel 4. Man bestimme den Lösungsbereich von

2x− y ≥ 0
x+ y ≥ 0

−3x+ y ≥ 0

In diesem Fall hat keine der Gleichungen

2x− y = 0; x+ y = 0; −3x+ y = 0

eine Lösung (außer (0, 0)), die alle gegebenen Ungleichungen erfüllt. Der Bereich K0

besteht nur aus dem einzigen Punkt (0, 0), dem Koordinatenursprung.

5.4 Das Ungleichungssystem (1) sei nicht normal
Das bedeutet, dass der Lösungsbereich L für das homogene Gleichungssystem (3) nicht
nur den Koordinatenursprung enthält. Folglich definieren sämtliche Gleichungen (3) in
der Ebene ein und dieselbe Gerade, und diese Gerade ist L.

Gemäß Lemma 1 enthält der Bereich K zusammen mit jedem seiner Punkte P die
Gerade P + L (die durch den Punkt P gehende, zu L parallele Gerade).
Wir betrachten eine zu L nicht parallele Gerade T. Sofern wir wissen, welche Punkte
der Geraden T zum Bereich K gehören (die Menge dieser Punkte bezeichnen wir mit
KT), so können wir auch den Bereich K selbst finden, denn dann ist K = KT +L (Abb.
41).
Die Gleichung der Geraden L ist a1x + b1y = 0. In dieser Gleichung ist- mindestens
einer der Koeffizienten a1 oder b1 von Null verschieden, etwa b1 6= 0.
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Abb. 41

Dann kann man als zu L nicht parallele Gerade T die y-Achse wählen (ihre Gleichung
ist x = 0). In diesem Fall ist die Menge KT, die wir jetzt mit Ky bezeichnen wollen, der
Teil der y-Achse, der in K fällt.
Um diese Menge zu finden, muss man im System (1) x = 0 setzen. Dann erhält man
das Ungleichungssystem

b1y + c1 ≥ 0
b2y + c2 ≥ 0
...
bmy + cm ≥ 0

 (12)

mit einer Unbekannten y, dessen Lösung keinerlei Schwierigkeit bereitet.6 Wir weisen
darauf hin, dass die Menge Ky entweder die leere Menge (dann ist auch K leer) oder
ein Punkt oder eine Strecke oder ein Strahl sein kann (aber nicht die ganze y-Achse,
denn sonst ist K die ganze Ebene, was unmöglich ist).
Wenn wir diese Menge gefunden haben, dann kennen wir auch den Bereich K, denn es
ist

K = Ky + L (13)
(falls L nicht parallel zur y-Achse ist).

Beispiel 5. Man bestimme den Lösungsbereich für

x+ y − 1 ≥ 0
−x− y + 2 ≥ 0
2x+ 2y + 3 ≥ 0

Es ist leicht zu sehen, dass das gegebene System nicht normal und L die (nicht zur
y-Achse parallele) Gerade

x+ y = 0
ist. Setzt man x = 0, so erhält man das System

y − 1 ≥ 0
−y + 2 ≥ 0
2y + 3 ≥ 0

6Wir bemerken, dass das (als Ungleichungssystem mit einer Unbekannten angesehene) System (12)
normal ist. Sonst hätte das ihm zugeordnete homogene System eine von Null verschiedene Lösung,
aber dann hätte auch das System (3) eine Lösung. die von (0, 0) verschieden ist.
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aus dem zu ersehen ist, dass Ky (der Durchschnitt von K mit der y-Achse) die Strecke
mit den Enden C1(0, 1) und C2(0, 2) ist. Das bedeutet, K ist die Menge der Punkte
der Gestalt (Abb. 42)

(0, y) + (x,−x) = (x, y − x)

mit völlig beliebigem x und beliebigem y im Intervall von 1 bis 2.

Abb. 42

Zum Schluss wollen wir kurz auf einen Satz eingehen, der sich aus diesen Resultaten
ergibt. In dem von uns stets betrachteten zweidimensionalen Fall (es spielt sich alles in
einer Ebene ab) macht dieser Satz keinen besonderen Eindruck, und man sollte ihn eher
als Ausgangspunkt für eine Verallgemeinerung auf den "n-dimensionalen" Fall ansehen.
Das wird in § 7 untersucht.

Satz. Jeder (nichtleere) konvexe polygonale Bereich K in der Ebene kann als Summe

〈A1, A2, ..., Ap〉+ (B1, B2, ..., Bq) (14)

dargestellt werden.

Das erste Glied dieser Summe ist die konvexe Hülle eines Punktsystems A1, A2, ..., Ap,
das zweite die Menge aller Punkte der Form t1B1 + t2B2 + ... + tqBq mit beliebigen
nichtnegativen Zahlen t1, t2, ..., tq.

Der Beweis des Satzes kann mit wenigen Worten geführt werden.
Wir betrachten ein Ungleichungssystem, das K liefert. Ist dieses System normal, so
gilt die Gleichung (7). Nehmen wir an, dass in dieser Gleichung K0 eine der Mengen
(B1, B2), (B1) oder (O) (der Koordinatenursprung) ist, so finden wir, dass unsere
Behauptung für ein normales System gilt.
Ist das System nicht normal, so gilt Gleichung (13), aus der ebenfalls die Darstellbarkeit
von K in der gewünschten Form folgt. (Warum ?)

Stimmen alle Punkte A1, A2, ..., Ap mit dem Koordinatenursprung O überein, so stimmt
auch die Menge 〈A1, A2, ..., Ap〉 mit O überein. Dann bleibt von der Summe (14) nur
das zweite Glied.
Wenn andererseits die Punkte B1, B2, ..., Bq mit O übereinstimmen, so stimmt die
Menge (B1, B2, ..., Bq) ebenfalls mit O überein, und von der Summe (14) bleibt nur
noch das erste Glied.
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5 Der Lösungsbereich für ein Ungleichungssystem mit zwei Unbekannten

Abb. 43

Der umgekehrte Satz gilt ebenfalls, wenn auch mit einem Vorbehalt:

Satz. Jede Menge der Gestalt

〈A1, A2, ..., Ap〉+ (B1, B2, ..., Bq)

in der Ebene ist die ganze Ebene oder ein konvexer polygonaler Bereich in ihr.

Der Beweis ist ziemlich einfach. Das zweite Glied, d.h. der Bereich K0 = (B1, B2, ..., Bq),
ist die gesamte Ebene oder eine Halbebene oder ein Winkel (kleiner als 180◦) oder ein
Strahl oder ein Punkt (der Koordinatenursprung). Dagegen stellt das erste Glied

K1 = 〈A1, A2, ..., Ap〉

ein konvexes Polygon der. Die Menge K1 + K0 kann man erhalten, wenn man K0 einer
Parallelverschiebung längs der Strecke OK1 unterwirft (wobei K1 ein beliebiger Punkt
aus K1 ist) und die Vereinigung der erhaltenen Mengen nimmt (Abb. 43).

Man sieht leicht, dass man dabei die ganze Ebene (das ist der Fall, wenn K0 die ganze
Ebene ist) oder einen konvexen polygonalen Bereich in ihr gewinnt.
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6 Der Lösungsbereich für ein System mit drei
Unbekannten

Nach der im vorangegangenen Paragraphen gegebenen gründlichen Analyse können wir
nun, wenn wir Systeme mit drei Unbekannten untersuchen, die nötige Theorie auf ein
Minimum beschränken.
Zusammen mit dem Ausgangssystem

a1x+ b1y + c1z + d1 ≥ 0
...
amx+ bmy + cmz + dm ≥ 0

 (1)

betrachten wir wiederum, wie in § 5, die beiden Systeme

a1x+ b1y + c1z ≥ 0
...
amx+ bmy + cmz ≥ 0

 (2)

und
a1x+ b1y + c1z = 0
...
amx+ bmy + cmz = 0

 (3)

Den Lösungsbereich für das System (1) bezeichnen wir wieder mit K, den für (2) mit K0

und den für (3) mit L. Verwenden wir die früher eingeführte Terminologie, so können
wir sagen, dass K ein konvexer polyedrischer Bereich im Raum und K0 ein konvexer
polyedrischer Kegel ist. Die Lemmata 1 und 2 aus § 5 gelten, wie schon bemerkt, auch
hier.

6.1 Das Ungleichungssystem (1) sei normal
Dann enthält der Bereich K keine Geraden; folglich muss er mindestens eine Ecke
besitzen. Läge nämlich K in einer Ebene (das ist tatsächlich möglich, wie in § 2 bemerkt
wurde), so wäre K ein konvexer polygonaler Bereich in der Ebene, der keine Geraden
enthält, also, wie in § 5, Teil B bewiesen wurde, sicher Ecken besitzen muss.

Liegt dagegen der Bereich K nicht in einer Ebene, so betrachten wir seinen Rand. Er
besteht aus ebenen Flächen, die sämtlich Ecken besitzen müssen, weil sie polygonale
Bereiche darstellen, die keine Geraden enthalten.
Es ist aber leicht einzusehen, dass eine Ecke einer beliebigen Seitenfläche zugleich auch
Ecke des Bereiches K ist.

In jeder Ecke A eines Bereiches K stoßen mindestens drei berandende Ebenen zu-
sammen, für die der Punkt A der einzige gemeinsame Punkt ist. Wäre das nämlich
nicht der Fall, so würden sämtliche berandende Ebenen, die durch A gehen, entweder
zusammenfallen, oder sie hätten eine gemeinsame Gerade.
Dann würde aber eine hinreichend kleine, durch A gehende und in der gemeinsamen
berandenden Ebene oder auf der gemeinsamen berandenden Geraden liegende Strecke
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6 Der Lösungsbereich für ein System mit drei Unbekannten

zu K gehören, was der Definition einer Ecke widerspricht.

Diese Bemerkungen veranlassen uns, das in § 5, Teil B beschriebene Eckensuchverfahren
etwas zu modifizieren. Wir verstehen jetzt unter einem regulären Teilsystem nicht ein
Teilsystem aus zwei, sondern eines aus drei Gleichungen des Systems

a1x+ b1y + c1z + d1 = 0
...
amx+ bmy + cmz + dm = 0

 (4)

falls die Lösung (x, y, z) dieses Teilsystems eindeutig ist. Dann bleibt das Eckensuch-
verfahren genau dasselbe wie vorher:

Um sämtliche Ecken des Bereiches K zu finden, muss man die Lösungen aller regulären
Teilsysteme des Systems (4) bestimmen und unter ihnen diejenigen aussondern, die das
Ausgangssystem (1) erfüllen.

Auch der Satz aus § 5, Teil B bleibt in Kraft. Die zum Beweis notwendigen Änderun-
gen sind offensichtlich. Ferner bleibt die Bemerkung, dass ein normales System keine
Lösungen besitzt, wenn der Bereich K keine Ecken hat, ebenfalls richtig.

Beispiel 1. Man bestimme die Ecken des Bereiches K, der durch das Ungleichungssystem

2x+ y + z − 1 ≥ 0
x+ 2y + z − 1 ≥ 0
x+ y + 2z − 1 ≥ 0
x+ y + z − 1 ≥ 0

 (5)

definiert wird.
In diesem Fall lautet das entsprechende homogene Gleichungssystem:

2x+ y + z − 1 = 0
x+ 2y + z − 1 = 0
x+ y + 2z − 1 = 0
x+ y + z − 1 = 0

 (5’)

Löst man es, so ergibt sich, das (0, 0, 0) die einzige Lösung ist. Das System (5) ist also
normal.
Um die Ecken aufzusuchen, müssen wir alle aus drei Gleichungen bestehenden Teilsys-
teme des Systems (5’) betrachten:

2x+ y + z − 1 = 0
x+ 2y + z − 1 = 0
x+ y + 2z − 1 = 0


2x+ y + z − 1 = 0
x+ 2y + z − 1 = 0
x+ y + z − 1 = 0


2x+ y + z − 1 = 0
x+ y + 2z − 1 = 0
x+ y + z − 1 = 0


x+ 2y + z − 1 = 0
x+ y + 2z − 1 = 0
x+ y + z − 1 = 0


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6 Der Lösungsbereich für ein System mit drei Unbekannten

Wenn wir die nötigen Rechnungen ausführen, finden wir, dass sämtliche Teilsysteme
regulär sind; ihre Lösungen sind die Punkte(1

4 ,
1
4 ,

1
4

)
, (0, 0, 1), (0, 1, 0), (1, 0, 0)

von denen nur der erste dem System (5) nicht genügt. Folglich lauten die Ecken des
Bereiches K:

A1(1, 0, 0), A2(0, 1, 0), A3(0, 0, 1)

6.2 Das homogene Ungleichungssystem (2) sei normal
Jede Ungleichung aus (2) definiert einen Halbraum, dessen berandende Ebene durch
den Koordinatenursprung geht.
In unserem Falle ist der Durchschnitt der berandenden Ebenen ein einziger Punkt, und
zwar der Koordinatenursprung (System (2) ist normal!) Mit anderen Worten, die Menge
K0, der Lösungsbereich des Systems (2), ist ein konvexer polyedrischer Kegel mit einer
einzigen Spitze.

Aus der in § 4 gegebenen Aufzählung der konvexen polyedrischen Kegel folgt, dass in
unserem Fall K0 entweder eine unendliche konvexe Pyramide oder ein ebener Winkel
oder ein Strahl oder schließlich ein Punkt (der Koordinatenursprung) ist. Den letzten
Fall lassen wir einstweilen beiseite. In allen übrigen Fällen haben wir

K0 = (B1, B2, ..., Bq)

wobei B1, B2, ..., Bq irgendwelche Punkte sind, die jeweils auf einer Kante des Kegels
K0 (vgl. § 4, Satz 2) gewählt wurden.
Solche Punkte kann man finden, wenn man von folgenden Erwägungen ausgeht. Jeder
von ihnen gehört a) zu K0, d.h. erfüllt System (2), und b) zur Schnittlinie zweier
verschiedener Seiten, d.h. erfüllt zwei nichtproportionale7 Gleichungen aus System (3).

Wenn der Punkt (0, 0, 0) der einzige den Bedingungen a) und b) genügende Punkt ist,
fällt der Bereich K0 mit dem Koordinatenursprung zusammen.

Beispiel 2. Man bestimme den Lösungsbereich K0 für das System

2x+ y + z ≥ 0
x+ 2y + z ≥ 0
x+ y + 2z ≥ 0
x+ y + z ≥ 0

 (6)

und ferner den Lösungsbereich K für das System in Beispiel 1.
1.5ex] Zuerst bemerken wir, dass das System (6) zu dem Ungleichungssystem (5) aus

7Zwei Gleichungen ax + by + cz = 0 und a′x + b′y + c′z = 0 nennen wir nichtproportional, wenn
von den Größen a

a′ ,
b
b′ ,

c
c′ mindestens zwei verschieden sind. In diesem Fall schneiden sich die

entsprechenden Ebenen in einer Geraden (sind die Größen sämtlich einander gleich, so sind die
Ebenen parallel).
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6 Der Lösungsbereich für ein System mit drei Unbekannten

Beispiel 1 gehört; (6) ist nämlich das dem System (5) entsprechende homogene System.
Folglich ist das System (6) normal.
Im gegebenen Fall kann man auf sechs verschiedene Arten ein System aus zwei nicht-
proportionalen Gleichungen bilden:

x+ 2y + z ≥ 0
x+ y + 2z ≥ 0

}
2x+ y + z ≥ 0
x+ y + 2z ≥ 0

}
2x+ y + z ≥ 0
x+ y + z ≥ 0

}

2x+ y + z ≥ 0
x+ 2y + z ≥ 0

}
x+ 2y + z ≥ 0
x+ y + z ≥ 0

}
x+ y + 2z ≥ 0
x+ y + z ≥ 0

}

Für jedes dieser sechs Systeme wählen wir zwei von Null verschiedene Lösungen: (x, y, z)
und (−x,−y,−z). Zum Beispiel kann man für das erste System (3,−1,−1) und
(−3, 1, 1) nehmen. Nur die erste dieser Lösungen erfüllt die Ungleichungen (6). Hieraus
erhalten wir den Punkt B1 = (3,−1,−1).
Verfährt man analog mit den restlichen fünf Systemen, so findet man die Punkte B2 =
(−1, 3,−1) und B3 = (−1,−1, 3). Somit besteht der Bereich K0 aus Punkten der
Gestalt

t1B1 + t2B2 + t3B3 = (3t1 − t2 − t3,−t1 + 3t2 − t3,−t1 − t2 + 3t3)

mit beliebigen nichtnegativen Zahlen t1, t2, t3.

Wir wenden uns nun dem Ungleichungssystem (5) aus Beispiel 1 zu. Wie schon bemerkt,
ist das ihm zugeordnete homogene System gerade das System (6). Folglich hat der
Bereich K die Gestalt

〈A1, A2, A3〉+ K0

und besteht aus den Punkten

s1A1 + s2A2 + s3A3 + t1B1 + t2B2 + t3B3

= s1(1, 0, 0) + s2(0, 1, 0) + s3(0, 0, 1) + t1(3,−1,−1) + t2(−1, 3,−1) + t3(−1,−1, 3)
= (s13t1 − t2 − t3, s2 − t1 + 3t2 − t3, s3 − t1 − t2 + 3t3)

mit beliebigen nichtnegativen Zahlen t1, t2, t3 und nichtnegativen s1, s2, s3 deren Sum-
me 1 ist.

6.3 Das Ungleichungssystem (1) sei nicht normal
Das bedeutet, dass der Lösungsbereich L für das homogene Gleichungssystem (3)
Punkte enthält, die vom Koordinatenursprung verschieden sind. Da L ein Durchschnitt
von Ebenen ist, sind zwei Fälle möglich:

1. L ist eine Gerade. Nach Lemma 1 enthält der Bereich zusammen mit jedem seiner
Punkte P die Gerade P + L. Wir betrachten eine zu L nicht parallele Ebene T.
Wenn wir wissen, welche Punkte der Ebene T zum Bereich K gehören (wir bezeichnen
die Menge dieser Punkte mit KT), so können wir auch den Bereich K selbst finden,
denn dann ist K = KT + L.

42



6 Der Lösungsbereich für ein System mit drei Unbekannten

Abb. 44

Nun kann man stets, wie auch die Gerade L gelegen ist, als zu ihr nichtparallele Ebene
T eine der Koordinatenebenen xPy, xOz oder yOz wählen.
Nehmen wir zum Beispiel an, L sei nicht parallel zur Ebene yOz. Wir nehmen diese
Ebene als T. In diesem Fall ist die Menge KT, die wir nun mit Ky,z bezeichnen werden,
der Teil der Ebene yOz, der in den Bereich K fällt (Abb. 44). Um diese Menge zu finden,
muss man im System (1) x = 0 setzen. Dann erhalten wir das Ungleichungssystem8

b1y + c1z + d1 ≥ 0
...
bmy + cmz + dm ≥ 0

 (7)

das mit Methoden gelöst werden kann, die in § 5 entwickelt wurden.
Wenn wir die Menge Ky,z bestimmt haben, können wir

K = Ky,z + K (8)

schreiben (falls die Gerade L zur Ebene yOz nicht parallel ist), womit der Bereich K
vollständig beschrieben ist.

Bemerkung. Ist die Menge Kyz leer, so ist auch K leer. Das bedeutet, dass das System
(1) widersprüchlich ist.

Beispiel 3. Man bestimme den Lösungsbereich K für das System

−2x+ y + z − 1 ≥ 0
−3x− y + 4z − 1 ≥ 0
−x− 2y + 3z ≥ 0

 (9)

Wir betrachten das zugeordnete homogene Gleichungssystem

−2x+ y + z = 0
−3x− y + 4z = 0
−x− 2y + 3z = 0

 (10)

Wenn wir es lösen wollen, stellen wir fest, dass die dritte Gleichung eine Folge der
ersten beiden ist, so dass sich das System auf die ersten beiden Gleichungen reduziert.
Die Menge L ihrer Lösungen ist die Gerade, in der sich die Ebenen

−2x+ y + z = 0 und − 3x− y + 4z = 0
8Das System (7) ist, wie man unschwer erkennt, schon normal.
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6 Der Lösungsbereich für ein System mit drei Unbekannten

schneiden.
Wir wählen einen Punkt B auf der Geraden L, der vom Koordinatenursprung verschie-
den ist. Dazu genügt es, drei Zahlen x, y, z (die nicht gleichzeitig Null sind) zu suchen,
die den ersten beiden Gleichungen des Systems (10) genügen. Wir nehmen zum Beispiel
1, 1, 1.
Somit ist L die Gerade OB mit B = (1, 1, 1).

Es ist leicht zu sehen, dass die Gerade L nicht parallel zur Koordinatenebene yOz ist.
Setzen wir im System (9) x = 0, so erhalten wir das System

y + z − 1 ≥ 0
−y + 4z − 1 ≥ 0
−2y + 3z ≥ 0


mit den beiden Unbekannten y und z, das normal ist. Seinen Lösungsbereich Ky,z kann
man mit der in § 5 dargelegten Methode auffinden. Nachdem wir die notwendigen
Rechnungen durchgeführt haben, finden wir, dass K die Menge ist, die nur aus dem
Punkt A

(
3
5 ,

2
5

)
(in der Ebene yOz) besteht. Folglich besteht der gesuchte Bereich K

aus allen Punkten der Gestalt

A+ tB =
(

0, 3
5 ,

2
5

)
+ t(1, 1, 1) =

(
t, t+ 3

5 , t+ 2
5

)

wobei t eine beliebige nichtnegative Zahl ist (der Bereich K ist eine zu L parallele
Gerade).

2. L ist eine Ebene. Dann nehmen wir als schneidende Menge T eine nicht zu dieser
Ebene parallele Gerade. Insbesondere kann man eine der Koordinatenachsen wählen.
Wir nehmen zum Beispiel an, dass die z-Achse nicht parallel zu L ist, und nehmen sie
als Z. Um die Menge Kz, den Teil der z-Achse zu finden, der in K hineinfällt, müssen
wir im System (1) x = 0, y = 0 setzen. Dann erhalten wir das Ungleichungssystem

c1z + d1 ≥ 0
...

cmz + dm ≥ 0

 (11)

das ohne Schwierigkeiten gelöst werden kann.9 Ist die Menge Kz, gefunden, so können
wir (vgl. Abb. 45)

K = Kz + L

schreiben (falls die Ebene L nicht parallel zur z-Achse ist), womit K vollständig be-
schrieben ist.

Bemerkung. Ist die Menge Kz leer, so ist K leer. In diesem Fall ist System (1) wider-
sprüchlich.

9System (11) ist normal.
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Abb. 45

Beispiel 4. Man bestimme den Lösungsbereich K für das System

x− y + z + 1 ≥ 0
−x+ y − z + 2 ≥ 0

}
(13)

Im vorliegenden Fall hat das zugeordnete homogene Gleichungssystem die Gestalt

x− y + z = 0
−x+ y − z = 0

}
(14)

Hier ist die zweite Gleichung eine Folge der ersten, deshalb ist der Lösungsbereich des
Systems (14) die durch die Gleichung

x− y + z = 0

definierte Ebene L. Man sieht leicht, dass diese Ebene die z-Achse in einem einzigen
Punkt schneidet, also nicht parallel zu ihr ist.
Wir suchen nun die Menge Kz.
Setzen wir im System (13) x = 0, y = 0, so erhalten wir das System

z + 1 ≥ 0
−z + 2 ≥ 0

}

aus dem
−1 ≤ z ≤ 2 (15)

folgt. Somit ist K die Menge Kz + L, die aus den Punkten der Gestalt

(0, o, z) + (x, y,−x+ y) = (x, y, z − x+ y)

besteht, wobei x und y beliebig sind und z die Ungleichung (15) erfüllt.

Wir beenden diesen Paragraphen mit der Formulierung zweier Sätze, die eine Verallge-
meinerung der letzten beiden Sätze aus § 5 auf den dreidimensionalen Fall darstellen.
Die einzige Änderung, die dafür in der Formulierung bei dem in Erinnerung gerufenen
Satz von § 5 durchgeführt werden muss. besteht darin, dass das Wort "Ebene" durch
das Wort "Raum" zu ersetzen ist.
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6 Der Lösungsbereich für ein System mit drei Unbekannten

Satz. Jeder (nichtleere) konvexe polyedrische Bereich im Raum kann als Summe

〈A1, A2, ..., Ap〉+ (B1, B2, ..., Bq)

dargestellt werden.

Satz. Jede Menge der Gestalt

〈A1, A2, ..., Ap〉+ (B1, B2, ..., Bq)

im Raum ist entweder der ganze Raum oder ein konvexer polyedrischer Bereich darin.
Die Beweise der beiden Sätze sind fast wörtliche Wiederholungen der Beweise der
entsprechenden Sätze im zweidimensionalen Fall. Wir überlassen sie dem Leser.
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7 Lineare Ungleichungssysteme mit mehreren
Unbekannten

In den vorhergehenden Paragraphen konzentrierten wir unsere Aufmerksamkeit auf Un-
gleichungssysteme mit zwei oder drei Unbekannten. Diese Beschränkung wurde in der
Hauptsache durch zwei Umstände diktiert: erstens dadurch, dass die Untersuchung die-
ser Systeme unkompliziert ist und ganz im Rahmen der "Schulmathematik" liegt, und
zweitens (und das ist im vorliegenden Fall wesentlicher) dadurch, dass die Lösung der-
artiger Systeme einen anschaulichen geometrischen Sinn hat (Punkte in einer Ebene
oder im Raum).

In den Anwendungen (zum Beispiel auf lineare Optimierungsprobleme) treten jedoch
Ungleichungssysteme auf, bei denen die Anzahl n der Unbekannten größer als 3 ist.
Sie mit Schweigen zu übergeben, hieße die Darstellung der Probleme sehr dürftig zu
gestalten. Daher wollen wir, allerdings nur kurz, darstellen, wie die Lage bei beliebigem
n > 3 ist.

Zur geometrischen Deutung linearer Ungleichungssysteme mit n Unbekannten müssen
wir uns dem sogenannten n-dimensionalen Raum zuwenden.
Wir beginnen damit, dass wir die entsprechenden Begriffe definieren, wobei wir uns auf
die allernötigsten beschränken.

Unter einem Punkt im n-dimensionalen Raum versteht man eine geordnete Menge von
n Zahlen

x1, x2, ..., xn

die man die Koordinaten nennt. Das Motiv für diese Definition ist der für die analytische
Geometrie grundlegende Tatbestand, dass ein Punkt in der Ebene durch ein Zahlenpaar
und im Raume durch ein Zahlentripel charakterisiert wird. Statt zu sagen, "der Punkt
M habe die Koordinaten x1, x2, ..., xn", werden wir im folgenden M = (x1, x2, ..., xn)
oder einfach M(x1, x2, ..., xn) schreiben. Der Punkt (0, 0, ..., 0) heißt Koordinatenur-
sprung oder einfach Ursprung.

Zuerst wollen wir sagen, was unter einer "Strecke"im n-dimensionalen Raum zu verste-
hen ist. Gemäß § 1 kann im gewöhnlichen Raum die Strecke M1M2 als Menge aller
Punkte der Gestalt

s1M1 + s2M2

mit beliebigen nichtnegativen Zahlen s1, s2 deren Summe 1 ist, charakterisiert werden.
Im n-dimensionalen Raum verwenden wir diese Charakterisierung als Definition der
Strecke. Genauer, sind

M ′(x′1, x′2, ..., x′n) und M ′′(x′′1, x′′2, ..., x′′n)

zwei beliebige Punkte im n-dimensionalen Raum, dann wird die Menge aller Punkte
den Form

s′M ′ + s′′M ′′ = (s′x′1 + s′′x′′1, s
′x′2 + s′′x′′2, ..., s

′x′n + s′′x′′n) (1)
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mit zwei beliebigen nichtnegativen Zahlen s′, s′′, deren Summe gleich 1 ist, die Strecke
M ′M ′′ genannt. Für s′ = 1, s′′ = 0 erhalten wir den Punkt M ′, für s′ = 0, s′′ = 1 den
Punkt M ′′.
Dies sind die Endpunkte der Strecke M ′m′′. Die übrigen Punkte der Strecke (die man
für s′ > 0, s′′ > 0 erhält) heißen innere Punkte der Strecke.

Von den weiteren Begriffen, die sich auf den n-dimensionalen Raum beziehen, brauchen
wir den Begriff der Hyperebene.
Damit wird der Begriff der Ebene im gewöhnlichen dreidimensionalen Raum verallge-
meinert. Die Vorsilbe "Hyper" hat hier einen wohlbestimmten Sinn. Im n-dimensionalen
Raum sind nämlich "Ebenen" verschiedener Typen möglich: eindimensionale "Ebenen"
(sie werden Geraden genannt), zweidimensionale "Ebenen" usw., schließlich (n − 1)-
dimensionale "Ebenen", und gerade diese werden "Hyperebenen" genannt.

Definition. Unter einer Hyperebene im n-dimensionalen Raum versteht man die Gesamt-
heit der Punkte M(x1, x2, ..., xn), deren Koordinaten eine Gleichung ersten Grades

a1x1 + a2x2 + ...+ anxn + b = 0 (2)

erfüllen, wobei mindestens eine der Zahlen (Koeffizienten) a1, a2, ..., an von Null ver-
schieden ist.

Für n = 3 nimmt Gleichung (2) die Gestalt a1x1 + a2x2 + a3x3 + b = 0 an. Das ist
nichts anderes als die Gleichung einer Ebene im gewöhnlichen Raum (hier wurden die
Koordinaten mit x1, x2, x3 und nicht wie gewöhnlich mit x, y, z bezeichnet).

Durch eine Hyperebene (2) wird der ganze n-dimensionale Raum in zwei Teile geteilt:
in den Bereich, in dem die Ungleichung

a1x1 + a2x2 + ...+ anxn + b ≥ 0 (3)

und in denjenigen, in dem

a1x1 + a2x2 + ...+ anxn + b ≤ 0 (4)

erfüllt ist. Diese Bereiche heißen Halbräume. Somit teilt jede Hyperebene den ganzen
Raum in zwei Halbräume, deren Durchschnitt sie ist.

Der Begriff des konvexen Körpers lässt sich ebenfalls auf den n-dimensionalen Fall
verallgemeinern. Eine Punktmenge im n-dimensionalen Raum heißt konvex, wenn sie
mit je zweien ihrer Punkte M ′ und M ′′ auch die ganze Strecke M ′M ′′ enthält.
Es lässt sich leicht zeigen, dass jeder Halbraum eine konvexe Menge ist. Die Punkte
M ′(x′1, x′2, ..., x′n) und M ′′(x′′1, x′′2, ..., x′′n) mögen etwa dem Halbraum (3) angehören.
Wir beweisen, dass dann auch jeder Punkt M der Strecke M ′M ′′ diesem Halbraum
angehört.

Die Koordinaten des Punktes M lassen sich in der Gestalt (1) oder, was dasselbe ist,
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in der Form

x1 = sx′1 + (1− s)x′′1,
x2 = sx′2 + (1− s)x′′2,
...

xn = sx′n + (1− s)x′′n

(0 ≤ s ≤ 1) darstellen. Setzen wir diese Ausdrücke in die linke Seite von (3) ein, so
erhalten wir

a1(sx′1 + (1− s)x′′1) + a2(sx′2 + (1− s)x′′2) + ...+ an(sx′n + (1− s)x′′n) + b

= s(a1x
′
1 + a2x

′
2 + ...+ anx

′
n) + (1− s)(a1x

′′
1 + a2x

′′
2 + ...+ anx

′′
n)

dabei haben wir die Zahl b durch die Summe sb+(1−s)b ersetzt, und dieser Ausdruck
ist gleich

s[a1x
′
1 + ...+ anx

′
n + b] + (1− s)[a1x

′′
1 + ...+ anx

′′
nb]

Jede der beiden Summen in den eckigen Klammern ist nichtnegativ, weil die beiden
Punkte M ′ und M” im Halbraum (3) liegen. Folglich ist auch der ganze Ausdruck
nichtnegativ (denn es ist s ≥ 0 und (1− s) ≥ 0). Somit ist gezeigt, dass der Punkt M
zum Halbraum (3) gehört, d.h., dass dieser Halbraum konvex ist.

Hiernach ist es nicht schwer zu verstehen, welche geometrische Terminologie man bei
linearen Ungleichungssystemen mit n Unbekannten zu verwenden hat. Gegeben sei das
System

a1x1 + a2x2 + ...+ anxn + a ≥ 0
b1x1 + b2x2 + ...+ bnxn + b ≥ 0
...
x1x1 + c2x2 + ...+ cnxn + c ≥ 0

 (5)

Jede dieser Ungleichungen definiert einen Halbraum, das System also einen Bereich K
im n-dimensionalen Raum. (Wenn das System widersprüchlich ist, ist K leer.) Dieser
Bereich ist der Durchschnitt endlich vieler Halbräume und. somit konvex.

In Analogie zum dreidimensionalen Fall nennen wir einen Bereich im n-dimensionalen
Raum, welcher Durchschnitt endlich vieler Halbräume ist, einen konvexen polyedrischen
Bereich und, wenn dieser Durchschnitt eine beschränkte Menge ist, einfach konvexes
Polyeder.
Hier ist der Begriff "beschränkte Menge" in dem Sinne zu verstehen, dass die abso-
luten Beträge der Koordinaten aller Punkte des betrachteten Bereiches eine gewisse
Konstante c nicht überschreiten:

|x1| ≤ c, ..., |xn| ≤ c

für alle Punkte des gegebenen Bereiches.

Somit ist die Gesamtheit der Punkte im n-dimensionalen Raum, deren Koordinaten dem
System (5) genügen, ein konvexer polyedrischer Bereich K, nämlich der Durchschnitt
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aller Halbräume, die den Ungleichungen des gegebenen Systems entsprechen.

Wir wiederholen, dass wir diesen Bereich ein konvexes Polyeder nennen, wenn er be-
schränkt ist.
Die Methode der expliziten Beschreibung eines Bereiches K, die wir in § 5 für Systeme
mit zwei Unbekannten und in § 6 für Systeme mit drei Unbekannten betrachteten, kann
mit entsprechenden Änderungen auf den Fall von n Unbekannten übertragen werden.
Allerdings werden wir darauf nicht eingehen, da eine erschöpfende Darstellung sehr viel
Platz erfordern würde. Außerdem ist diese Methode bei einer größeren Anzahl von Un-
bekannten wenig effektiv: Sie bringt einen übermäßig großen Rechenaufwand mit sich.

Es ist bemerkenswert, dass die allgemeinen Sätze über die Konstruktion konvexer po-
lyedrischer Mengen im dreidimensionalen Raum auch für den n-dimensionalen Raum
gültig bleiben, wenn auch die Beweise komplizierter sind. Wir beschränken uns auf die
Formulierung dieser Sätze und die dazu nötigen Erklärungen.

Satz 1. Die konvexe Hülle jedes endlichen Systems von Punkten A1, A2, ..., Aq ist ein
konvexes Polyeder.

Um die Bedeutung dieses Satzes hervortreten zu lassen, weisen wir auf folgendes hin:
Es geht hier um den Zusammenhang zwischen zwei auf ganz verschiedene Arten defi-
nierten Typen von Mengen; die konvexe Hülle des Systems der Punkte A1, A2, ..., Aq
die mit 〈A1, A2, ..., Aq〉 bezeichnet wird, ist als Menge aller Punkte der Gestalt

s1A1 + s2A2 + ...+ sqAq

mit nichtnegativen Zahlen s1, s2, ..., sq, deren Summe 1 ist, definiert, während konvexe
Polyeder beschränkte Bereiche sind, die sich als Durchschnitt endlich vieler Halbräume
ergeben.

Im zwei- und im dreidimensionalen Raum ist Satz 1 anschaulich klar (aus der anschau-
lichen Bedeutung der konvexen Hülle), im mehrdimensionalen Fall ist er keinesfalls
offensichtlich und muss bewiesen werden.

Satz 1’ (Umkehrung zu Satz 1). Jedes konvexe Polyeder ist die konvexe Hülle eines
endlichen Punktsystems.

Man kann sogar noch mehr behaupten: Jedes konvexe Polyeder stimmt mit der kon-
vexen Hülle seiner Ecken überein. Die Definition einer Ecke ist genau dieselbe wie im
zweidimensionalen Fall (eine Ecke ist ein Punkt des Polyeders, der nicht innerer Punkt
einer ganz im Polyeder enthaltenen Strecke ist). Man kann zeigen, dass die Anzahl der
Ecken stets endlich ist.

Satz 2. Jede Menge der Gestalt (B1, B2, ..., Bq) stimmt entweder mit dem ganzen
Raum überein oder ist ein konvexer polyedrischer Kegel mit einer Spitze im Koordina-
tenursprung.

Wir erinnern daran, dass das Symbol (B1, B2, ..., Bq) die Menge aller Punkte bezeich-
net, die sich in der Form

t1B1 + t2B2 + ...+ tqBq
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mit nichtnegativen Zahlen t1, t2, ..., tq darstellen lassen. Ein konvexer polyedrischer Ke-
gel wird als Durchschnitt endlich vieler Halbräume definiert, deren berandende Hyper-
ebenen einen gemeinsamen Punkt haben (die Spitze des Kegels). Die Gültigkeit von
Satz 2 im dreidimensionalen Raum wurde in Satz 1 von § 4 nachgewiesen.

Satz 2’. Jeder konvexe polyedrische Kegel mit einer Spitze im Koordinatenursprung
kann in der Form (B1, B2, ..., Bq) dargestellt werden.

Die Gültigkeit für den dreidimensionalen Fall wurde in Satz 2 von § 4 bewiesen.

Satz 3. Jeder konvexe polyedrische Bereich kann als Summe

〈A1, A2, ..., Ap〉+ (B1, B2, ..., Bq)

dargestellt werden.

Satz 3’. Jede Summe der angegebenen Art ist entweder der ganze Raum oder ein
konvexer polyedrischer Bereich.
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8 Unlösbare Systeme
Bisher interessierten uns vorzugsweise solche Ungleichungssysteme, die mindestens eine
Lösung besitzen (die lösbar sind). Die entsprechenden Bereiche (in der Ebene oder im
Raum) stellten nichtleere Punktmengen dar.
Was unlösbare Systeme betrifft, so könnte man deren Studium auf den ersten Blick
als unnötige Beschäftigung ansehen; es kommt einem zunächst unwahrscheinlich vor,
dass solche Systeme hinreichend interessant sind und eine gehaltvolle Theorie liefern
könnten. Aber das ist tatsächlich nur "auf den ersten Blick" so.

In Wirklichkeit ist die Sache ganz anders: Die Eigenschaften unlösbarer Systeme sind
nicht nur an sich von Interesse, sondern sie liefern auch den Schlüssel zum Verständnis
einer ganzen Reihe wichtiger Tatsachen. So wird zum Beispiel der Hauptsatz der linea-
ren Optimierung (der Dualitätssatz, vgl. § 10) letzten Endes aus einigen Eigenschaften
unlösbarer Systeme hergeleitet.

Wir betrachten ein beliebiges lineares Ungleichungssystem. Der bequemeren Schreib-
weise halber werden wir einstweilen annehmen, die Anzahl der Unbekannten sei gleich 3,
obgleich sich unsere Ausführungen gleichermaßen auch auf Systeme mit n Unbekannten
übertragen lassen.
Es sei also das System

a1x+ b1y + c1z + d1 ≥ 0
a2x+ b2y + c2z + d2 ≥ 0
...
amx+ bmy + cmz + dm ≥ 0

 (1)

gegeben. Wir multiplizieren beide Seiten der ersten Ungleichung von (1) mit einer
nichtnegativen Zahl k1, beide Seiten der zweiten mit einer nichtnegativen Zahl k2 usw.,
und addieren die so entstehenden Ungleichungen. So kommen wir zu der Ungleichung

(k1a1 + k2a2 + ...+ kmam)x+ (k1b1 + k2b2 + ...+ kmbm)y
+(k1c1 + k2c2 + ...+ kmcm)z + k1d1 + k2d2 + ...+ kmdm = 0 (2)

die wir Linearkombination der Ungleichungen (1) nennen.
Es kann vorkommen, dass sich eine Linearkombination der Ungleichungen (1) als Un-
gleichung der Form

0 · x+ 0 · y + 0 · z + d ≥ 0 (3)

herausstellt, wobei d eine negative Zahl ist (nach Division durch d1 erhält man die
Ungleichung −1 ≥ 0). Es ist klar, dass kein System von Werten für die Unbekannten
eine solche Ungleichung erfüllen kann. Daher ist das System (1) im betrachteten Fall
unlösbar (die Ungleichungen sind unverträglich).
Es ist durchaus bemerkenswert, dass auch die Umkehrung dieser Aussage gilt:

Ist das System (1) unlösbar, so hat eine geeignete Linearkombination seiner Unglei-
chungen die Gestalt (3).
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Diese Aussage beweisen wir gleich in allgemeiner Form (d.h. für Systeme mit mehreren
Unbekannten), vorher aber geben wir folgende

Definition. Die Ungleichung

ax+ by + cz + d ≥ 0

soll unlösbar heißen, wenn es kein System von Werten für die Unbekannten gibt, das
sie erfüllt.

Offenbar hat jede unlösbare Ungleichung die Gestalt (3) mit d < 0 (warum ?). Die
Aussage, die wir beweisen wollen, kann man nun als folgenden Satz formulieren.

Satz über unlösbare Ungleichungssysteme. Ist ein lineares Ungleichungssystem unlösbar,
so gibt es eine geeignete Linearkombination dieser Ungleichungen, die eine unlösbare
Ungleichung ist.

Beweis. Wir führen den Beweis durch Induktion über die Anzahl n der Unbekannten in
unserem System.
Für n = 1 lautet das System:

a1x+ b1 ≥ 0
a2x+ b2 ≥ 0
...
amx+ bm ≥ 0

 (4)

Man kann annehmen, alle Koeffizienten a1, a2, ..., am seien von Null verschieden. Wäre
nämlich zum Beispiel a1 = 0, so hätte die erste Ungleichung die Gestalt 0 · x+ b1 ≥ 0.
Ist die Zahl b1 nichtnegativ, so kann man diese Ungleichung weglassen, ist sie jedoch
negativ, so ist schon die erste Ungleichung des Systems unlösbar, und dann ist nichts
mehr zu beweisen.

So dürfen wir also annehmen, keine der Zahlen a1, a2, ..., am sei Null. Man sieht leicht,
dass sich unter diesen Zahlen sowohl positive als auch negative befinden müssen:
Hätten nämlich alle angegebenen Zahlen ein und dasselbe Vorzeichen, wären sie zum
Beispiel positiv, so könnte man das System (4) auf die Form

x ≥ − b1
a1

x ≥ − b2
a2

...
x ≥ − bm

am


bringen, es wäre also lösbar.
Wir nehmen nun, um etwas Bestimmtes vor Augen zu haben, an, die ersten k der
Zahlen a1, a2, ..., am seien positiv und die übrigen m− k negativ. Dann ist das System
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(4) äquivalent mit dem System

x ≥ − b1
a1

...
x ≥ − bk

ak

x ≤ − bk+1
ak+1

...
x ≤ − bm

am


(5)

Unter den Zahlen − b1
a1
, ...,− bk

ak
wählen wir die größte; dies sei etwa − b1

a1
. Dann können

im System (5) die ersten k Ungleichungen einfach durch die erste Ungleichung ersetzt
werden.
Analog wählen wir unter den Zahlen − bk+1

ak+1
, ...,− bm

am
die kleinste, sagen wir − bm

am
; dann

können die restlichen m− k Ungleichungen des Systems (5) analog durch die entspre-
chende Ungleichung ersetzt werden. Somit ist das System (4) äquivalent dem aus den
beiden Ungleichungen

x ≥ − b1

a1
, x ≤ bm

am
entstehenden System; dieses System ist sicher unlösbar, wenn

− b1

a1
>
bm
am

(6)

gilt. Aus (6) ergibt sich
bma1 − b1am < 0 (7)

(man muss berücksichtigen, dass a1 > 0 und am < 0 gilt).
Multipliziert man nun die erste Ungleichung von (4) mit der positiven Zahl −am und
die letzte mit der positiven Zahl a1 und bildet dann die Summe, so erhält man die
Ungleichung

0 · x+ (bma1 − b1am) ≥ 0
die wegen (7) unlösbar ist. Somit gilt der Satz in Systemen mit einer Unbekannten.

Wir nehmen nun an, die Behauptung des Satzes gelte für Ungleichungssysteme mit n−1
Unbekannten, und beweisen unter dieser Voraussetzung ihre Gültigkeit für Systeme mit
n Unbekannten.
Gegeben sei ein unlösbares lineares Ungleichungssystem mit den Unbekannten x1, x2, ..., xn.
Wir betrachten eine beliebige Ungleichung des Systems. Sie habe die Gestalt

a1x1 + ...+ an−1xn−1 + anxn + b ≥ 0

oder, nachdem das Glied anxn auf die rechte Seite gebracht wurde,

a1x1 + ...+ an−1xn−1 + b ≥ −anxn

Ist an = 0, so lassen wir diese Ungleichung unverändert. Ist an < 0, so dividieren
wir beide Seiten der Ungleichung durch die positive Zahl −an, dann ergibt sich die
Ungleichung

a′1x1 + ...+ a′n−1xn−1 + b′ ≥ xn
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Bei an > 0 dividieren wir beide Seiten der Ungleichung durch an und erhalten

−(a′1x1 + ...+ a′n−1xn−1 + b′) ≥ −xn

Multipliziert man jede Ungleichung des Ausgangssystems mit einer geeigneten positiven
Zahl, so erhält man ein diesem äquivalentes System der Form

P1 ≥ xn,
P2 ≥ xn,
...
Pp ≥ xn;
−Q1 ≥ −xn,
−Q2 ≥ −xn,
...
−Qq ≥ −xn,
R1 ≥ 0,
R2 ≥ 0,
...
Rr ≥ 0,



(8)

wobei P1, ..., Pp, Q1, ..., Qq, R1, ..., Rr Ausdrücke der Gestalt a1x1 + ...an−1xn−1 + b
sind (also xn nicht enthalten).

Nach Voraussetzung ist das Ausgangssystem unlösbar. Infolgedessen ist auch System
(8) unlösbar. Daraus folgt dann, dass das System

P1 ≥ Q1,
...
Pp ≥ Qq;
R1 ≥ 0,
...
Rr ≥ 0,


(9)

mit den Unbekannten x1, ..., xn−1 unlösbar ist (der obere Teil dieses Systems besteht
aus Ungleichungen der Gestalt Pα ≥ Qβ, α eine beliebige Zahl unter 1, 2, ..., p und β
eine beliebige Zahl unter 1, 2, ..., q. Wäre nämlich das System (9) lösbar, so bedeutete
das, dass für gewisse Werte

x1 = x0
1, ..., xn−1 = x0

n−1

der Unbekannten die (Zahlen-)Ungleichungen

P 0
1 ≥ Q0

1,
...
P 0
p ≥ Q0

q;
R0

1 ≥ 0,
...
R0
r ≥ 0,


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gelten würden, wobei P 0
α der Wert von Pα bei x1 = x0

1, ..., xn−1 = x0
n−1 ist (analoge

Bedeutung haben (Q0
β und R0

γ). Somit wäre jede der Zahlen Q0
1, ..., Q

0
q nicht größer

als jede der Zahlen P 0
1 , ..., P

0
p . In diesem Fall findet man aber sicher eine Zahl x0

n, die
zwischen allen Zahlen Q0

1, ..., Q
0
q und allen Zahlen P 0

1 , ..., P
0
p liegt (Abb. 46):

P 0
1 ≥ x0

n ≥ Q0
1 ... P 0

p ≥ x0
n ≥ Q0

q

Abb. 46

Die sich hieraus ergebenden Ungleichungen

P 0
1 ≥ x0

1,
...
P 0
p ≥ x0

n;
−Q0

1 ≥ −x0
n

...
−Q0

q ≥ −x0
n


zeigen zusammen mit

R0
1 ≥ 0,

...
R0
r ≥ 0,


dass das System der Werte

x1 = x0
1, ..., xn−1 = x0

n−1, xn = x0
n

eine Lösung des Systems (8) ist, was der Voraussetzung, das System (8) sei unlösbar,
widerspricht.
Also ist das System (9) unlösbar. Da die Anzahl der Unbekannten in diesem System
gleich n − 1 ist, kann darauf die Induktionsannahme angewendet werden. Das bedeu-
tet, dass sich eine geeignete Linearkombination der Ungleichungen (9) als unlösbare
Ungleichung darstellen lässt.

Es ist leicht einzusehen, dass jede Ungleichung aus (9) eine Linearkombination von
Ungleichungen aus (8) ist: Addiert man nämlich einfach die Ungleichungen Pα ≥ xn
und. −Qβ ≥ −xn aus (8), so erhält man Pα − Qβ ≥ 0 oder Pα ≥ Qβ, d.h. eine
Ungleichung aus (9).
Folglich ist eine bestimmte Linearkombination von Ungleichungen aus (8) ebenfalls
eine unlösbare Ungleichung. Hieraus folgt aber, dass eine Linearkombination der Un-
gleichungen des Ausgangssystems eine unlösbare Ungleichung ist. Damit ist der Satz
bewiesen.

Der Unlösbarkeitssatz für lineare Ungleichungssysteme ist nur ein Ausdruck der weit-
gehenden Analogie, die zwischen den Eigenschaften linearer Ungleichungssysteme und
denen linearer Gleichungssysteme besteht. Wir wollen einmal versuchen, in der Formu-
lierung des Satzes das Wort "Ungleichung" durch das Wort "Gleichung" zu ersetzen;
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dann erhalten wir folgende Aussage:

Ist ein lineares Gleichungssystem unlösbar, so ist eine gewisse Linearkombination dieser
Gleichungen eine unlösbare Gleichung.

Es zeigt sich, dass diese Aussage richtig ist.
In etwas anderer Form wird sie als Satz von Kronecker-Capelle bezeichnet und in den
Vorlesungen über lineare Algebra bewiesen (so nennt man die Disziplin der Mathema-
tik, in der die linearen Operationen, d.h. Operationen, die der Punktaddition und der
Punktmultiplikation mit einer Zahl im n-dimensionalen Raume ähnlich sind, untersucht
werden).

Übrigens ist es zum vollen Verständnis des oben Gesagten nötig, den Begriff der Line-
arkombination zu präzisieren. Eine Linearkombination von Gleichungen wird auf dem-
selben Wege konstruiert wie eine Linearkombination von Ungleichungen, lediglich mit
dem Unterschied, dass man die gegebenen Gleichungen mit passenden, nicht nur mit
nichtnegativen Zahlen multiplizieren darf.
Unlösbar nennt man wie im Fall von Ungleichungen eine Gleichung, die keine Lösungen
besitzt. Es ist nicht schwer zu zeigen, dass eine unlösbare Gleichung auf die folgende
Form gebracht werden kann:

0 · x1 + 0 · x2 + ...+ 0 · xn + b = 0

wobei b eine von Null verschiedene Zahl ist (nach Dividieren beider Seiten durch b
erhalten wir die "Gleichung" 1 = 0).

Besonders wichtig ist ein Spezialfall des Satzes über unlösbare Ungleichungssysteme,
und zwar der, bei dem das gegebene System Ungleichungen der Gestalt

x1 ≥ 0, x2 ≥ 0, ..., xn ≥ 0 (10)

enthält. Bezeichnet man den übrigen Teil des Systems mit (S), so kann man sagen,
das Problem besteht darin, alle nichtnegativen (d.h. die Bedingungen (10) erfüllenden)
Lösungen des Systems (S) zu bestimmen.
Wenn dieses Problem keine Lösungen besitzt, liefert nach dem oben bewiesenen Satz
eine Linearkombination der Ungleichungen des Systems (S)

a1x1 + a2x2 + ...+ anxn + a ≥ 0 (11)

als Summe mit einer Linearkombination der Ungleichungen von (10),

k1x1 + k2x2 + ...+ knxn ≥ 0 (k1, k2, ..., kn nichtnegativ)

die unlösbare Ungleichung

0 · x1 + 0 · x2 + ...+ 0 · xn + c ≥ 0

mit einer negativen Zahl c. Folglich ist

a1 = −k1 ≤ 0, a2 = −k2 ≤ 0, ..., an = −kn ≤ 0, a < 0
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Wir formulieren das gewonnene Resultat als spezielle Aussage.

Folgerung aus dem Satz über unlösbare Systeme.
Besitzt ein Ungleichungssystem keine nichtnegativen Lösungen, so ist eine Linearkombi-
nation dieser Ungleichungen eine Ungleichung der Gestalt (11), wobei alle Koeffizienten
a1, a2, ..., an nicht positiv sind und das freie Glied a negativ ist.

Eine andere wichtige Folgerung aus dem Satz ist der Zusammenhang, den man zwischen
einem gegebenen Ungleichungssystem und einem anderen System feststellen kann, in
dem neben Ungleichungen auch Gleichungen vorkommen. Wir erläutern diesen Zusam-
menhang am Beispiel des Systems (1) (mit den drei Unbekannten x, y, z).

Ist das System (1) unlösbar, so hat eine Linearkombination (2) seiner Ungleichungen die
Form (3) mit d < 0. Das bedeutet, dass nichtnegative Zählen k1, k2, ..., km existieren,
für die

k1a1 + k2a2 + ...+ kmam = 0,
k1b1 + k2b2 + ...+ kmbm = 0,
k1c1 + k2c2 + ...+ kmcm = 0,
k1d1 + k2d2 + ...+ kmdm < 0

gilt. Mit anderen Worten heißt dies, dass das gemischte System

a1y1 + a2y2 + ...+ amym = 0
b1y1 + b2y2 + ...+ bmym = 0
c1y1 + c2y2 + ...+ cmym = 0
d1y1 + d2y2 + ...+ dmym = −1
y1 ≥ 0
y2 ≥ 0
...
ym ≥ 0



(1’)

das aus Gleichungen und Ungleichungen besteht, die Lösung y1 = λk1, y2 = λk2, ...,
ym = λkm besitzt.10

Ist also das System (1) unlösbar, so ist System (1’) lösbar. Umgekehrt gilt diese Aussage
natürlich ebenfalls (ist System (1’) lösbar, so ist (1) unlösbar), denn die Lösbarkeit
des Systems (1’) bedeutet, dass eine Linearkombination der Ungleichungen (1) die
unlösbare Ungleichung −1 ≥ 0 ergibt.

10Die Zahl λ wird so gewählt, dass gilt:

d1(λk1) + d2(λk2) + ...+ dm(λkm) = −1, d.h. λ = − 1
d1k1 + d2k2 + ...+ dmkm
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9 Duale polyedrische Kegel
In § 4 haben wir versprochen, konvexe polyedrische Kegel später noch etwas genauer
zu studieren. Wir wollen das nun tun.

Wie früher bewiesen wurde, ist im dreidimensionalen Raum jeder konvexe polyedrische
Kegel mit einer Spitze im Koordinatenursprung Lösungsbereich eines gewissen homo-
genen linearen Ungleichungssystems mit drei Unbekannten

a1x+ b1y + c1z ≥ 0
a2x+ b2y + c2z ≥ 0
...
amx+ bmy + cmz ≥ 0

 (1)

Zugleich mit dem System sei eine einzelne Ungleichung

ax+ by + cz ≥ 0 (2)

gegeben.

Wir sagen, die Ungleichung (2) sei aus dem System (1) ableitbar, falls jedes System von
Werten für die Unbekannten x, y, z, das dem System (1) genügt, auch der Ungleichung
(2) genügt.
Selbstverständlich ist jede Ungleichung, welche Linearkombination der Ungleichungen
(l) ist, aus dem System (1) ableitbar. Gilt aber auch die Umkehrung? Es erweist sich,
dass dies zutrifft.

Satz 1. Eine homogene Ungleichung (2), die aus dem homogenen System (1) ableitbar
ist, kann als Linearkombination der Ungleichungen (1) dargestellt werden.

Beweis. Damit wir im folgenden unsere Schreibweise vereinfachen können, bezeichnen
wir die linken Seiten der ersten, zweiten, ..., m-ten Ungleichung des Systems (1) mit
P1, P2, ..., Pm und die linke Seite der Ungleichung (2) mit P . Also ist uns das System

P1 ≥ 0
P2 ≥ 0
...
Pm ≥ 0

 (1)

sowie die Ungleichung
P ≥ 0 (2)

gegeben, welche aus (1) ableitbar ist. Es soll bewiesen werden, dass diese Ungleichung
als Linearkombination der Ungleichungen (1) darstellbar ist.
Da sich die Ungleichung P ≥ 0 aus dem System (1) ableiten lässt, ist die Gleichung
P = −1 mit dem System unvereinbar, d.h., das gemischte System

P1 ≥ 0
P2 ≥ 0
...
Pm ≥ 0
P = −1


(3)
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ist unlösbar. Wir wollen versuchen, darauf den Satz über unlösbare Systeme anzuwen-
den. Selbstverständlich geht das nicht unmittelbar, denn dieser Satz bezieht sich auf
Systeme, die lediglich aus Ungleichungen bestehen. Dagegen befindet sich in dem Sys-
tem (3) auch noch die Gleichung P = −1. Jedoch ist diese Gleichung selbst äquivalent
zum System

P ≥ −1
P ≤ −1

}
oder, was dasselbe ist P + 1 ≥ 0

−P − 1 ≥ 0

}

also ist das System (3) äquivalent dem System

P1 ≥ 0
P2 ≥ 0
...
Pm ≥ 0
P + 1 ≥ 0
−P − 1 ≥ 0


(4)

das sich infolge von (3) als unlösbar erweist.
Nach dem Satz über unlösbare Systeme ist eine geeignete Linearkombination der Un-
gleichungen von (4) eine unlösbare Ungleichung.
Mit anderen Worten, es existieren nichtnegative Zahlen k1, k2, ..., km derart, dass die
Ungleichung

k1P1 + k2P2 + ...+ kmPm + km+1(P + 1) + km+2(−P − 1) ≥ 0

(nach Einführung geeigneter Summanden) die Form

0 · x+ 0 · y + 0 · z + d ≥ 0

mit einer negativen Zahl d hat. Folglich gilt

k1P1 + k2P2 + ...+ kmPm + (km+1 − km+2)P = 0 · x+ 0 · y + 0 · z

und die Zahl km+1 − km+2 = d ist negativ. Hieraus erhalten wir

P = k1

km+2 − km+1
P1 + ...+ km

km+2 − km+1
Pm

wobei die bei P1, ..., Pm stehenden Faktoren nichtnegativ sind.
Das bedeutet offenbar, dass die Ungleichung (2) eine Linearkombination der Unglei-
chungen (1) ist, was bewiesen werden sollte.

Dieser Satz ist auch von selbständigem Interesse, aber noch interessanter ist sein geo-
metrischer Inhalt. Um den Leser damit bekannt zu machen, müssen wir einen Abstecher
in die analytische Geometrie machen; jedoch ist dieser Abstecher ebenso elementar wie
die wenigen Tatsachen aus der analytischen Geometrie, die wir bisher verwendet haben.
Es seien

A(xA, yA, zA) , B(xB, yB, zB)
zwei vom Koordinatenursprung O verschiedene Punkte im Raum.
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Abb. 47

Wir wenden auf das Dreieck OAB (Abb. 47) den Kosinussatz an, nach welchem das
Quadrat einer beliebigen Dreiecksseite gleich der Differenz der Summe der Quadrate
der beiden anderen Seiten und dem doppelten Produkt dieser Seiten mit dem Kosinus
des eingeschlossenen Winkels ist.
In unserem Fall gilt

|AB|2 = |OA|2 + |OB|2 − 2|OA| · |OB| · cosϕ (2)

wobei varphi der Winkel zwischen den Strecken OA und OB ist. Nun ist aber

|OA|2 = x2
A + y2

A + z2
A

|OB|2 = x2
B + y2

B + z2
B

|AB|2 = (xA − xB)2 + (yA − yB)2 + (zA − zB)2

so dass wir aus (5) die Beziehung

−2(xAxB + yAyB + zAzB) = −2|OA| · |OB| · cosϕ (6)

erhalten. Der Winkel ϕ wird nur dann nicht spitz sein, wenn cosϕ ≤ 0 ist. Hieraus und
aus (6) ergibt sich:

Der Winkel zwischen den Strecken OA und OB ist dann und nur dann nicht spitz,
wenn

xAxB + yAyB + zAzB ≤ 0
ist.

Wir wollen für das Folgende vereinbaren, den auf der linken Seite dieser Ungleichung
stehenden Ausdruck, das sogenannte Skalarprodukt, kurz mit (A,B) zu bezeichnen:

(A,B) = xAxB + yAyB + zAzB

Dann können wir sagen:

Der Winkel zwischen den Strecken OA und OB ist dann und nur dann nicht spitz,
wenn gilt:

(A,B) ≤ 0
Damit erschöpfen sich eigentlich auch die für das Weitere nötigen Tatsachen aus der
analytischen Geometrie. Wir erwähnen zum Schluss noch eine Eigenschaft des Skalar-
produkts (A,B):
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Es ist für beliebige k1, k2

(k1A1 + k2A2, B) = k1(A1, B) + k2(A2, B) (7)

Der Beweis ist fast offensichtlich: Da der Punkt k1A1 + k2A2 die Koordinaten

k1xA1 + k2xA2; k1yA1 + k2yA2; k1zA1 + k2zA2

hat, gilt

(k1A1 + k2A2, B) = (k1xA1 + k2xA2)xB + (k1yA1 + k2yA2)yB + (k1zA1 + k2zA2)zB
= k1(xA1xB + yA1yB + zA1zB) + k2(xA2xB + yA2yB + zA2zB)
= k1(A1, B) + k2(A2, B)

Schließlich wenden wir uns dem Hauptthema dieses Paragraphen zu, den konvexen po-
lyedrischen Kegeln im Raum. Gemäß der in § 4 gegebenen Definition wird der Durch-
schnitt endlich vieler Halbräume, deren berandende Ebenen durch einen Punkt S gehen,
ein konvexer polyedrischer Kegel mit Spitze in S genannt.
Das typischste Beispiel für einen konvexen polyedrischen Kegel ist bekanntlich die un-
endliche konvexe Pyramide. Im weiteren Teil dieses Paragraphen wollen wir vorausset-
zen, dass S mit dem Koordinatenursprung O zusammenfällt.

Der vom Koordinatenursprung verschiedene Punkt B habe folgende Eigenschaft:
Die Strecke OB bilde einen nicht spitzen Winkel mit jeder Strecke OA, wobei A ein
beliebiger Punkt des betrachteten Kegels K sei. Einen solchen Punkt B kann man stets
finden; dafür reicht es zum Beispiel aus, durch die Spitze des Kegels eine Ebene π derart
zu legen, dass sich der ganze Kegel in einem der beiden von dieser Ebene definierten
Halbräume liegt (Abb. 48).

Abb. 48 und 49

Dann besteht das im anderen Halbraum auf die Ebene π gefällte Lot aus Punkten B
der gewünschten Art.

Wir betrachten die Gesamtheit aller Punkte B, die die oben geforderte Eigenschaft
besitzen, vervollständigen diese Gesamtheit noch durch einen weiteren Punkt, nämlich
den Koordinatenursprung, und bezeichnen die gewonnene Menge mit K∗. Wir beweisen
zunächst das folgende Lemma:

62



9 Duale polyedrische Kegel

Lemma. K∗ ist ebenfalls ein konvexer polyedrischer Kegel (zur Illustration vgl. Abb.
49).

Beweis. Nach Satz 2 aus § 4 ist jeder konvexe polyedrisehe Kegel K eine Menge der
Gestalt (A1, A2, ..., Am) (im angegebenen Satz waren die Bezeichnungen etwas anders:
anstelle von A1, A2, ..., Am wurde dort B1, B2, ..., Bq geschrieben). Das bedeutet, dass
man jeden Punkt A ∈ K in der Form

A = t1A1 + t2A2 + ...+ tmAm

mit nichtnegativen Zahlen t1, t2, ..., tm darstellen kann. Gehört der Punkt B zu K∗, so
ist der Winkel zwischen der Strecke OB und einer beliebigen Strecke OA, A ∈ K, nicht
spitz, d.h., es ist

(A,B) ≤ 0 für alle AinK

Wegen
(A,B) = t1(A1, B) + t2(A2, B) + ...+ tm(Am, B)

(vgl. Formel (7)) haben wir im vorliegenden Fall

t1(A1, B) + t2(A2, B) + ...+ tm(Am, B) ≤ 0 (8)

für beliebige t1, t2, ..., tm gewählt. Insbesondere gilt

(A1, B) ≤ 0, (A2, B) ≤ 0, ..., (Am, B) ≤ 0 (9)

Jedoch ist auch umgekehrt, wenn die Ungleichungen (9) gelten, für beliebige nichtne-
gative t1, t2, ..., tm die Ungleichung (8) richtig, d.h., dann ist B ∈ K∗.
Also liegt der Punkt B genau dann in K∗, wenn die Ungleichungen (9) erfüllt sind.

Wir bezeichnen die Koordinaten der Punkte Ai mit ai, bi, ci (i = 1, 2, ...,m) und die
Koordinaten des Punktes B mit x, y, z.
Dann können wir die Bedingungen (9) wie folgt schreiben:

a1x+ b1y + c1z ≤ 0
a2x+ b2y + c2z ≤ 0
...
amx+ bmy + cmz ≤ 0

 (10)

Der Punkt B liegt genau dann in der Menge K∗, wenn seine Koordinaten x, y, z sämt-
liche Ungleichungen (10) erfüllen. Mit anderen Worten

K∗ ist der Lösungsbereich des Systems (10).

Da das System (10) homogen ist, ist sein Lösungsbereich ein konvexer polyedrischer
Kegel im Raum. Folglich ist K∗ ein konvexer polyedrischer Kegel, was bewiesen werden
sollte.
Somit haben wir gelernt, jedem konvexen polyedrischen Kegel K einen neuen konvexen
polyedrischen Kegel K∗ zuzuordnen. Dieser Kegel K∗ besteht aus sämtlichen Punkten
B, für welche die Strecke OB nicht spitze Winkel mit jeder beliebigen Strecke OA.
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A ∈ K, bildet.

Man nennt K∗ den zu K dualen Kegel.

Nun entsteht natürlich die Frage: Was für einen Kegel stellt der zu K∗ duale Kegel dar,
d.h., was kann man über die Menge (K∗)∗ aussagen?
Aus der Definition des Kegels K∗ folgt direkt, dass die Menge (K∗)∗ die Ausgangsmenge
K enthalten muss (warum ?).

Jedoch ist durchaus nicht klar, ob diese beiden Mengen etwa zusammenfallen. Mehr
noch, wenn man versucht, diesen Sachverhalt durch geometrische Betrachtungen zu
prüfen, überzeugt man sich davon, dass er nicht einfach ist. Wie dem auch sei, zum
Beweis, dass (K∗)∗ und K zusammenfallen, wählen wir einen algebraischen Weg, der
auf Satz 1 beruht. Wie aus dem nachstehenden Beweis ersichtlich wird, besteht der
geometrische Inhalt von Satz 1 für Systeme mit drei Unbekannten im wesentlichen in
der Gleichung (K∗)∗ = K.
Wir beweisen nun den folgenden Satz.

Satz 2. Es sei K ein konvexer polyedrischer Kegel. Dann stimmen die Mengen (K∗)∗
und K überein.

Dasselbe kann man auch anders sagen, vielleicht sogar durchsichtiger. Wir bezeichnen
den Kegel K mit K1 und den Kegel K∗ mit K2. Offenbar behauptet der Satz dann:

Ist K∗1 = K2, so gilt K∗2 = K1.

Oder: Ist ein Kegel dual zu einem zweiten, so ist es auch der zweite zum ersten, d.h.,
die Dualitätsbeziehung ist symmetrisch.

Beweis von Satz 2. Es sei C(a, b, c) ein beliebiger Punkt der Menge (K∗)∗. Für jeden
Punkt B(x, y, z) ∈ K∗ muss die Ungleichung (B,C) ≤ 0 erfüllt sein, d. h.

ax+ by + cz ≥ 0 (11)

Die Zugehörigkeit des Punktes B zur Menge K∗ bedeutet aber, wie oben gezeigt wurde,
dass die Ungleichungen (10) erfüllt sein müssen. Also muss jede Lösung (x, y, z) des
Systems (10) auch die Ungleichung (11) erfüllen. Mit anderen Worten: Die Ungleichung
(11) ist aus System (10) ableitbar.

Nach dem früher bewiesenen Satz 1 ist dies nur dann möglich, wenn die Ungleichung
(11) Linearkombination der Ungleichungen (10) ist, d.h. falls

(a, b, c) = t1(a1, b1, c1) + t2(a2, b2c2) + ...+ tm(am, bm, cm)

mit nichtnegativen Zahlen t1, t2, ..., tm gilt. Nun bedeutet aber diese Gleichung, dass

C = t1A1 + t2A2 + ...+ tmAm

gilt, d.h., dass der Punkt C zum Kegel K gehört. Also gehört jeder in (K∗)∗ liegende
Punkt C zu K.
Das Umgekehrte hatten wir schon festgestellt, d.h., dass K zu (K∗)∗ gehört. Folglich
ist K = (K∗)∗ und der Satz bewiesen.
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10 Der Dualitätssatz der linearen Optimierung
Die lineare Optimierung ist ein relativ neues Gebiet in der angewandten Mathematik,
das sich in den letzten fünfzehn bis zwanzig Jahren im Zusammenhang mit der Lösung
verschieden- artiger ökonomischer Aufgaben entwickelt hat.

In der Regel sind Aufgaben, die uns in der Ökonomie und besonders im Bereich der
Wirtschaftsplanung begegnen, Extremalprobleme, bei denen die vorteilhafteste Variante
gesucht wird.
Wenn wir die reale Situation vereinfachen (und sogar zuspitzen), können wir zum Bei-
spiel annehmen, dass in einem Betrieb, der zwei verschiedenartige Typen von Werk-
stücken ausstößt, die Produktionskapazität der Montageabteilung 100 Werkstücke vom
ersten oder 300 vom zweiten Typ pro Tag beträgt. Gleichzeitig sei die Abteilung für
technische Kontrolle nicht in der Lage, am Tag mehr als 150 Werkstücke (gleich wel-
chen Typs) zu prüfen.
Es sei weiterhin bekannt, dass ein Werkstück des ersten Typs doppelt so teuer ist wie
ein Werkstück des zweiten.

Unter diesen Bedingungen ist ein Produktionsplan aufzustellen (d.h. wie viele Werk-
stücke vom ersten Typ und wie viele vom zweiten täglich zu produzieren sind), der dem
Betrieb maximalen Gewinn sichert.
Bis in die jüngste Vergangenheit bestand die einzige Methode zur Lösung derartiger
Probleme in einer gewöhnlichen Schätzung, in einer Lösung "über den Daumen" oder
aber in einer Durchmusterung aller möglichen Varianten, um die beste herauszufinden.
Heute hat sich alles geändert.

Im letzten Jahrzehnt wurde die Produktion in einem solchen Grade komplizierter, dass
ein einfaches Durchmustern von Varianten unmöglich wurde. Es traten so viele Fakto-
ren auf, die die Lösung beeinflussten, dass die Zahl der Varianten in vielen Fällen in die
Milliarden ging.

Im Zusammenhang damit wuchs das Interesse an mathematischen Methoden in der
Ökonomie stark an. Den Prozess der "Mathematisierung der Ökonomie" förderte die
Entwicklung der Rechentechnik, insbesondere das Aufkommen elektronischer Rechen-
automaten.

Wir kehren nun zu unserem Beispiel zurück. Der gesuchte Plan für die Anzahl der zu
produzierenden Stücke wird durch zwei nichtnegative ganze Zahlen x, y (x die An-
zahl der Werkstücke des ersten Typs, y die des zweiten) gegeben, welche folgenden
Bedingungen genügen müssen11

1. 3x+ y ≤ 300,
2. x+ y ≤ 150,
3. 2x+ y maximal

11Diese Bedingung stammt aus der Montageabteilung. Man kann nämlich anstelle eines Werkstückes
des ersten Typs in der Abteilung drei Werkstücke des zweiten herstellen. Die Gesamtproduktion
der Abteilung beträgt bei Werkstücken des zweiten Typs 3x + y Stück, und diese Zahl darf 300
nicht überschreiten.
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Mit anderen Worten, aus den nichtnegativen ganzzahligen Lösungen des Systems

3x+ y ≤ 300
x+ y ≤ 150

}
(1)

muss man eine bestimmen, die den größten Wert der linearen Funktion

f = 2x+ y

liefert.
Führt man in der Ebene ein rechtwinkliges Koordinatensystem xOy ein, so wird die
Menge der Lösungen des Systems (1) durch das in Abb. 50 schraffierte Polygon gebildet.
Anhand dieser Zeichnung kann man feststellen, dass die Lösung des Problems der Punkt
P (75, 75), also eine der Ecken des Polygons ist.

Abb. 50

Wir betrachten die Gerade 2x + y = c (c eine Zahl) und bezeichnen sie mit lc. Mit
wachsendem c wird die Gerade lc "nach oben" verschoben (und bleibt dabei parallel zu
ihrer Ausgangslage).
Der größte c-Wert, für den die Gerade lc noch gemeinsame Punkte mit dem schraffierten
Polygon hat, ist derjenige c-Wert, für den diese Gerade durch den Punkt P geht. Folglich
nimmt die Funktion 2x + y ihren größten Wert (im Vergleich zu ihren Werten in den
übrigen Polygonpunkten) in diesem Punkt an.

Unser Beispiel ist natürlich sehr primitiv, aber trotz allem gibt es eine Vorstellung vom
Charakter linearer Optimierungsprobleme. In jedem solchen Problem wird gefordert,
den maximalen (oder minimalen) Wert einer linearen Funktion in n Variablen

f = c1x1 + c2x2 + ...+ cnxn

unter der Bedingung zu finden, dass diese Variablen einem linearen Ungleichungssystem
genügen (darunter sind auch diejenigen Ungleichungen, die aussagen, dass die Varia-
blen nichtnegativ sind: x1 ≥ 0; x2 ≥ 0; ...; xn ≥ 0.

Die Lösungsmethoden für lineare Optimierungsprobleme wurden bis heute sehr gründ-
lich ausgearbeitet. Die meisten sind völlig elementar und können natürlich im Rahmen
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der "Schulmathematik" gebracht werden. Im wesentlichen handelt es sich hier um einen
großen und, wie wir heute sehen, erstaunlich wichtigen Teil der elementaren Algebra,
der sich mit der Untersuchung linearer Gleichungs- und Ungleichungssysteme beschäf-
tigt.

Zu den Aufgaben dieses Büchleins gehört es nicht, die Grundlagen der linearen Optimie-
rung darzulegen. Mit dieser Disziplin befassen sich heute viele Bücher und Broschüren,
darunter auch eine Anzahl populärer. Wir werden hier nur ein Teilgebiet streifen, nämlich
das von der mathematischen Seite her wesentlichste, das sogenannte Dualitätsprinzip.

Zuerst formulieren wir das lineare Optimierungsproblem in allgemeiner Form. Gegeben
sei das System

a11x1 + a12x2 + ...+ a1nxn + b1 ≥ 0
a21x1 + a22x2 + ...+ a2nxn + b2 ≥ 0
...
am1x1 + am2x2 + ...+ amnxn + bm ≥ 0

 (2)

vonm linearen Ungleichungen mit n Unbekannten12 sowie eine gewisse lineare Funktion

f = c1x1 + c2x2 + ...+ cnxn

Unter allen nichtnegativen (x1 ≥ 0;x2 ≥ 0; ...;xn ≥ 0) Lösungen des Systems (2) soll
eine solche gefunden werden, die der Funktion f den größtmöglichen Wert gibt, die -
wie man sagt - die Funktion f maximiert.

Diese Aufgabe werden wir Ausgangsproblem (oder Problem A) nennen.
Wir verbinden mit dem Problem A ein neues, welches wir das zu Problem A duale
Problem oder (Problem A’) nennen werden:

Gegeben seien das System

a11y1 + a21y2 + ...+ am1ym + c1 ≤ 0
a12y1 + a22y2 + ...+ am2ym + c2 ≤ 0
...
a1ny1 + a2ny2 + ...+ amnym + cn ≤ 0

 (2’)

von n linearen Ungleichungen mit m Unbekannten und die lineare Funktion

φ = b1y1 + b2y2 + ...+ bmym

Unter allen nichtnegativen Lösungen des Systems (2’) soll eine solche gefunden wer-
den, die der Funktion φ den kleinstmöglichen Wert erteilt, d.h., die die Funktion φ
minimiert.

Vergleichen wir die Probleme A und A’, so bemerken wir folgendes:

1. Der Koeffizient der j-ten Unbekannten in der i-ten Ungleichung von (2) ist derselbe

12Im System (2) wird folgende Bezeichnung verwendet: Der Koeffizient; der j-ten Unbekannten in
der i-ten Ungleichung wird mit aij bezeichnet.
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wie der Koeffizient der i-ten Unbekannten in der j-ten Ungleichung von (2’).

2. Die freien Glieder in den Ungleichungen des einen Problems stimmen mit den Koef-
fizienten der Unbekannten in der linearen Funktion des anderen Problems überein.

3. Im Ungleichungssystem von Problem A sind sämtliche Ungleichungen vom Typ ≥=,
und in diesem Problem soll f sein Maximum annehmen. Im Ungleichungssystem von
Problem A’ dagegen sind alle Ungleichungen vom Typ ≤ 0, dafür aber soll φ minimiert
werden.

Ein grundlegender Satz der linearen Optimierung ist das sogenannte Dualitätstheorem.
Es lautet folgendermaßen:

Dualitätstheorem. Besitzt das Ausgangsproblem eine Lösung, so hat auch das zu ihm
duale eine Lösung. Dabei ist das Maximum der Funktion f gleich dem Minimum der
Funktion φ:

max f = minφ

Wir werden diesen Satz dadurch beweisen, dass wir ihn auf die Frage nach der Lösbarkeit
eines Ungleichungssystems zurückführen.
Damit man dem Beweis besser folgen kann, führen wir ihn in mehreren Etappen.

Etappe 1. Lemma. Ist x0
1, ..., x

0
n eine nichtnegative Lösung von (2) und y0

1, ..., y
0
n eine

nichtnegative Lösung von (2’), so besteht zwischen den Werten der Funktionen f und
φ für diese Lösungen der durch folgende Ungleichung ausgedrückte Zusammenhang:

f0 ≤ φ0

Beweis. Wir betrachten die Ungleichungen von (2), wobei anstelle von x1, ..., xn die
Werte x0

1, ..., x
0
n eingesetzt wurden. Die erste Ungleichung multiplizieren wir mit y0

1,
die zweite mit y0

2 usw., danach addieren wir sämtliche erhaltenen Ungleichungen und
gelangen zu

(a11y
0
1x

0
1 + ...+ amny

0
mx

0
n) + b1y

0
1 + ...+ bmy

0
m ≥ 0

(Wir müssen berücksichtigen, dass wir die Ungleichungen mit nichtnegativen Zahlen
multiplizieren. Daher ändern sich die Vorzeichen bei den Ungleichungen nicht.) Genau
so multiplizieren wir die erste Ungleichung von (2’) mit x0

1, die zweite mit x0
2 usw. und

addieren:
(a11y

0
1x

0
1 + ...+ amny

0
mx

0
n) + c1x

0
1 + ...+ cmx

0
n ≤ 0

In beiden Fällen steht in den Klammern ein Ausdruck, der gleich der Summe der Glieder
aijy

0
i x

0
j über alle i = 1, ...,m; j = 1, ..., n. Folglich sind die Ausdrücke in den Klammern

identisch. Dann ist aber

c1x
0
1 + ...+ cnx

0
n ≤ b1y

0
1 + ...+ bmy

0
m

oder f0 ≤ φ0. Das Lemma ist damit bewiesen.

Etappe 2. Die Probleme A und A’ werden auf die Lösung eines gewissen Ungleichungs-
systems zurückgeführt.
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Wir betrachten das folgende "kombinierte" Ungleichungssystem:

a11x1 + ...+ a1nxn +b1 ≥ 0
...

am1x1 + ...+ amnxn +bm ≥ 0
a11y1 + ...+ am1ym +c1 ≤ 0
...
a1ny1 + ...+ amnym +cn ≤ 0

c1x1 + ...+ cnxn −b1y1 − ...− bmym ≥ 0


(S)

Wie hieraus hervorgeht, besteht es aus den Systemen (2), (2’) und der Ungleichung
f−φ ≥ 0. Die Unbekannten im System (S) sind x1, ..., xn; y1, ..., ym (insgesamt n+m
Unbekannte).
Wir stellen zuerst folgenden Sachverhalt fest:

Besitzt das System (S) die nichtnegative Lösung x0
1, ..., x

0
n, y0

1, ..., y
0
m, so liefern die

Zahlen x0
1, ..., x

0
n die Lösung von Problem A und die Zahlen y0

1, ..., y
0
m die Lösung von

Problem A’, wobei f0 = φ0 gilt.

Wir wollen hier ein wenig verweilen, um die prinzipielle Rolle dieser Aussage zu unter-
streichen. Darin ist bemerkenswert, dass sich ein lineares Optimierungsproblem, d.h. ein
Maximierungsproblem, auf die Lösung eines linearen Ungleichungssystems ohne jegliche
Maximierungsforderung reduziert.

Allerdings ist natürlich die Lösung von (S) (im Bereich nichtnegativer Werte für die
Unbekannten) durchaus nicht leichter als diejenige des Ausgangsproblems der linearen
Optimierung (Problem A) ; allein schon die Tatsache dieser Reduktion ist sehr inter-
essant.

Nunmehr wollen wir die Behauptung beweisen. Zunächst ist klar, dass die Zahlen
x0

1, ..., x
0
n nichtnegativ sind und dem System (2) genügen; analog sind auch die Zahlen

y0
1, ..., y

0
m nichtnegativ und genügen (2’). Außerdem gilt für diese Zahlen die Unglei-

chung
f0 ≥ φ0

(die sich aus der letzten Ungleichung von (S) ergibt). Andererseits haben wir nach dem
Lemma

f0 ≤ φ0

also gilt f0 = φ0.
Ist ferner x1, ..., xn eine beliebige nichtnegative Lösung des Systems (2), so haben wir
wiederum nach dem Lemma

f ≤ φ0

Setzen wir hier φ0 = f0, so erhalten wir f ≤ f0 woraus folgt, dass f0 maximaler Wert
für f ist.

Ist analog dazu y1, ..., ym eine beliebige nichtnegative Lösung von System (2’), so haben
wir nach dem Lemma

f0 ≤ φ
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Setzen wir f0 = φ0, so erhalten wir φ0 ≤ φ, d.h., φ ist minimaler Wert für φ. Damit
ist die oben formulierte Aussage bewiesen.

Etappe 3. Vollendung des Beweises.
Wir haben nun noch das folgende zu zeigen: Besitzt das Problem A eine Lösung, so
hat das System (S) eine nichtnegative Lösung, denn dann gilt, wie vorher bewiesen,
f0 = φ0, d.h. max f = minφ.

Wir führen den Beweis indirekt, d.h., wir nehmen an, das System (S) besitze keine
nichtnegativen Lösungen. Jedoch verfügen wir in diesem Fall über eine Folgerung aus
dem Satz über unlösbare Systeme (§ 8). Zwar bezog sich diese Folgerung auf ein
System, das nur aus Ungleichungen ≥ 0 bestand, während wir auch Ungleichungen
≤ 0 vor uns haben. Aber diese Voraussetzung ist leicht zu erfüllen, wenn wir (S) wie
folgt schreiben:

a11x1 + ...+ a1nxn +b1 ≥ 0
...

am1x1 + ...+ amnxn +bm ≥ 0
−a11y1 − ...− am1ym −c1 ≥ 0
...
−a1ny1 − ...− amnym −cn ≥ 0

c1x1 + ...+ cnxn −b1y1 − ...− bmym ≥ 0


(S’)

Nehmen wir also an, das System (S’) besitze keine nichtnegativen Lösungen. Nach
der Folgerung aus dem Satz über unlösbare Systeme gibt es nicht-negative Zahlen
k1, ..., km, l1, ..., ln, s (insgesamt m+ n+ 1 Zahlen), so dass13

a11k1 + ...+ am1km + c1s ≤ 0
...

a1nk1 + ...+ amnkm + cns ≤ 0

 (3)

−a11l1 − ...− a1nln − b1s ≤ 0
...

−am1l1 − ...− amnln − bms ≤ 0

 (3’)

b1k1 + ...+ bmkm − c1l1 − ...− cnln < 0 (4)
Wir zeigen zunächst, dass die Zahl s von Null verschieden ist.
Nehmen wir nämlich an, das wäre nicht der Fall, d.h., es wäre s = 0, so betrachten wir
eine nichtnegative Lösung x0

1, ..., x
0
n von (2) und eine nichtnegative Lösung y0

1, ..., y
0
m

von (2’).

Wenn wir wie beim Beweis des Lemmas vorgehen, finden wir

(a11k1x
0
1 + ...+ amnkmx

0
n) + b1k1 + ...+ bmkm ≥ 0

13Die Zahlen k1, ..., km, l1, ..., ln, s sind zugleich dieselben, mit denen wir die erste, zweite, ..., (m+n+
1)-te Ungleichung im System (S’) multiplizieren, um (nach Addition) die unlösbare Ungleichung
a1x1 + ... + anxn + a′

1y1 + ... + a′
mym + d ≥ 0 zu erhalten, wobei a1, ..., an, a

′
1, ..., a

′
m ≤ 0 sind

und d eine negative Zahl ist.
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Der in Klammern stehende Ausdruck ist aber nicht positiv (das zeigt sich, wenn wir die
erste Ungleichung aus (3) mit x10, die zweite mit x0

2 usw. multiplizieren und danach
die Addition ausführen).
Hieraus ergibt sich

b1k1 + ...+ bmkm ≥ 0 (5)

Analog finden wir

(a11l1y
0
1 + ...+ amnlny

0
m) + c1l1 + ...+ cnln ≤ 0

Da der Ausdruck in Klammern nicht negativ ist (was sich zeigt, wenn wir die erste
Ungleichung aus (3’) mit y0

1, die zweite mit y0
2 usw. multiplizieren und danach addieren),

folgt
c1l1 + ...+ cnln ≤ 0 (6)

Die Ungleichungen (5) und (6) widersprechen aber (4).
Also ist s nicht gleich Null. In diesem Fall folgt aus (3), dass die Zahlen k1

s , ...,
km

s eine
nichtnegative Lösung des Systems (2) bilden, ferner aus (3’), dass die Zahlen l1

s , ...,
ln
s eine nichtnegative Lösung des Systems (2’) darstellen, und aus (4), dass für diese
Lösung φ− f < 0 gilt.

Das aber widerspricht dem Lemma. Also erhielten wir aus der Annahme, das System
(S) besitze keine nichtnegativen Lösungen, einen Widerspruch. Folglich existiert eine
solche Lösung, und damit ist das Dualitätstheorem bewiesen.

Beispiel. Man bestimme den maximalen Wert der Funktion

f = 2x2 + 12x3

unter der Bedingung, dass die Variablen x1, x2, x3 nichtnegativ sind und den Unglei-
chungen

x1 − x2 − x3 + 2 ≥ 0
−x1 − x2 − 4x3 + 1 ≥ 0

}

genügen.

Lösung. Wir bezeichnen die gestellte Aufgabe mit A. Die zu ihr duale Aufgabe (Aufgabe
A’) muss wie folgt formuliert werden:
Man bestimme den minimalen Wert der Funktion

φ = 2y1 + y2

unter der Bedingung, dass die Variablen y1, y2 312 nichtnegativ sind und den Unglei-
chungen

y1 − y2 ≤ 0
−y1 − y2 + 2 ≤ 0
−y1 − 4y2 + 12 ≤ 0

 (7)

genügen.
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Abb. 51

Die Aufgabe A’ kann man graphisch lösen. wenn man in der Koordinatenebene y1Oy2
den Lösungsbereich von (7) einzeichnet. Das wurde in Abb. 5l getan.
In dieser Zeichnung ist auch zu sehen, dass die Funktion φ ihren kleinsten Wert im
Punkt (0,3) annimmt. Das ist eine Ecke des Bereiches. Dieser Wert ist gleich -3.
Nach dem Dualitätstheorem muss das Maximum von f ebenfalls gleich -3 sein.

72



10 Der Dualitätssatz der linearen Optimierung

Literatur
Boseck, H., Einführung in die Theorie der linearen Vektorräume, 3. Aufl., VEB Deut-
scher Verlag der Wissenschaften, Berlin 1973.

Brehmer, S., und H. Belkner, Einführung in die analytische Geometrie und lineare Al-
gebra, 3. Aufl., VEB Deutscher Verlag der Wissenschaften, Berlin 1972.

Kréko, B., Lehrbuch der linearen Optimierung, 6. Aufl., VEB Deutscher Verlag der
Wissenschaften, Berlin 1973.

Piehler, J., Einführung in die lineare Optimierung, 4. Aufl., BSB B. G. Teubner, Leipzig
1970.

Smirnow, W. I., Lehrgang der höheren Mathematik, Teil III/1, 7. Aufl., VEB Deutscher
Verlag der Wissenschaften, Berlin 1973 (Übersetzung aus dem Russischen).

Tschernikow, S. N., Lineare Ungleichungen, VEB Deutscher Verlag der Wissenschaften,
Berlin 1971 (Übersetzung aus dem Russischen).

73


	Einiges aus der analytischen Geometrie
	Operationen mit Punkten
	Was bedeuten Gleichungen und Ungleichungen ersten Grades mit zwei und drei Unbekannten geometrisch?

	Die geometrische Deutung linearer Ungleichungssysteme mit zwei oder drei Unbekannten
	Die konvexe Hülle eines Punktsystems
	Konvexe polyedrische Kegel
	Der Lösungsbereich für ein Ungleichungssystem mit zwei Unbekannten
	Notwendige Lemmata
	Der Fall eines normalen Ungleichungssystems (1)
	Das homogene normale Ungleichungssystem (2)
	Das Ungleichungssystem (1) sei nicht normal

	Der Lösungsbereich für ein System mit drei Unbekannten
	Das Ungleichungssystem (1) sei normal
	Das homogene Ungleichungssystem (2) sei normal
	Das Ungleichungssystem (1) sei nicht normal

	Lineare Ungleichungssysteme mit mehreren Unbekannten
	Unlösbare Systeme
	Duale polyedrische Kegel
	Der Dualitätssatz der linearen Optimierung

