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Aus dem Vorwort zur russischen Ausgabe

Ungleichungen ersten Grades oder, wie man sie auch nennt, lineare Ungleichungen, sind
Ungleichungen der Gestalt
ar+by+c>0

(der Einfachheit halber haben wir eine Ungleichung in den beiden Unbekannten x und
y aufgeschrieben).

Die Theorie der linearen Ungleichungssysteme ist zwar kein groBes, aber ein recht inter-
essantes Teilgebiet der Mathematik. Dies liegt vornehmlich daran, dass sie geometrische
Sachverhalte beschreiben.

Wenn man namlich Aufgaben, die auf lineare Ungleichungssysteme mit zwei bzw. drei
Unbekannten fiihren, in die Sprache der Geometrie libertragt, erhalt man Aufgaben
uber konvexe polygonale Bereiche in der Ebene bzw. liber konvexe polyedrische Korper
im Raum. So verwandelt sich beispielsweise die Lehre von den konvexen Polyedern, die
seit den altesten Zeiten ein Teilgebiet der Geometrie gewesen ist, in ein Teilgebiet der
Theorie der linearen Ungleichungssysteme.

Man findet in dieser Theorie aber auch Gebiete, die dem Algebraiker sehr nahe stehen.
Hierzu konnen wir z.B. die bemerkenswerte Analogie zwischen den Eigenschaften li-
nearer Ungleichungssysteme und denen linearer Gleichungssysteme rechnen (alles, was
damit im Zusammenhang steht, wurde schon seit langem und sehr eingehend unter-
sucht).

Bis in die jingste Zeit hinein hatte man denken konnen, dass lineare Ungleichungen
stets Objekte bleiben wiirden, die zur sogenannten reinen Mathematik gehoren. Das
anderte sich von Grund auf, als - beginnend in den vierziger Jahren dieses Jahrhunderts
- ein neues Teilgebiet der sogenannten angewandten Mathematik entstand, namlich die
lineare Optimierung mit ihren wichtigen Anwendungen in Okonomie und Technik.

Es zeigte sich bald, dass die lineare Optimierung lediglich ein (wenn auch sehr wichti-
ges) Teilgebiet der Theorie der linearen Ungleichungssysteme ist.

Diese Broschiire mochte den Leser mit verschiedenen Aspekten der Theorie der linearen
Ungleichungssysteme bekannt machen:

mit geometrischen Aspekten und, eng damit zusammenhangend, mit Lésungsmetho-
den, mit einigen rein algebraischen Eigenschaften und mit prinzipiellen Fragen der li-
nearen Optimierung.

Fir die Lektlre des Biichleins werden keinerlei Kenntnisse vorausgesetzt, welche Ergeb-
nisse des Mathematikunterrichts der Schule (iberschreiten. Am Schluss des Biichleins
ist verwandte bzw. weiterfiihrende Literatur angegeben.

Wir wollen einige Worte dem historischen Werdegang der Lehre von den linearen Un-
gleichungssystemen widmen. Obwohl man im Hinblick auf ihren Gegenstand annehmen
misste, dass die Theorie der linearen Ungleichungssysteme zu den grundlegenden und
elementarsten Teilen der Mathematik gehort, hat man sich mit ihr bis in die jlingste
Vergangenheit recht wenig beschaftigt.




Beginnend mit den letzten Jahren des vorigen Jahrhunderts erschienen hier und da Ar-
beiten, in denen Eigenschaften linearer Ungleichungssysteme beleuchtet wurden. Man
kann in diesesm Zusammenhang die Namen solcher Mathematiker nennen wie H. Min-
kowski (einer der groBten Mathematiker gegen Ende des vorigen und zu Anfang dieses
Jahrhunderts, besonders bekannt durch seine Arbeiten ber konvexe Mengen und als
Begriinder der "Minkowskischen Geometrie"), G.F. Voronoi (einer der Stammvater der
"Petersburger zahlentheoretischen Schule"), A. Haar (ein ungarischer Mathematiker,
der durch seine Arbeiten (iber "Integration auf Gruppen" bekannt geworden ist) und
H. Weyl (einer der hervorragendsten Mathematiker in der ersten Halfte unseres Jahr-
hunderts).

Einige der von diesen Mathematikern erhaltenen Resultate fanden ihren Niederschlag
im vorliegenden Biichlein (ohne dass immer die Namen der Autoren genannt werden).

Die gegenwartige intensive Entwicklung der Theorie der linearen Ungleichungssysteme
begann erst in den vierziger bis flinfziger Jahren dieses Jahrhunderts, als das stirmi-
sche Wachstum der angewandten Disziplinen (lineare, konvexe und andere Gebiete der
"mathematischen Optimierung", die sogenannte "Spieltheorie" usw.) ein vertieftes und
systematisches Studium der linearen Ungleichungen nétig machten.

Heute wiirde eine vollstandige Liste der Arbeiten und Biicher tber lineare Ungleichungen
wahrscheinlich hunderte verschiedener Titel und Autoren zahlen.
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1 Einiges aus der analytischen Geometrie

1 Einiges aus der analytischen Geometrie

1.1 Operationen mit Punkten

Wir fiihren in der Ebene ein rechtwinkliges Koordinatensystem ein. Die Tatsache, dass
ein Punkt M in diesem System die Koordinaten x und y hat, werden wir wie folgt

schreiben:
M = (x,y) oder auch einfach M(z,y)

Die Existenz eines Koordinatensystems erlaubt es uns, fiir die Punkte der Ebene einige
Operationen einzufiihren, und zwar die Addition von Punkten und die Multiplikation
eines Punktes mit einer Zahl.
Die Addition von Punkten wird auf folgende Weise definiert: Ist M; = (x1,y1) und
My = (z3,y2), so sei

My + My = (21 + x2,y1 + y2)

Hiermit wird die Addition von Punkten auf die Addition ihrer einzelnen Koordinaten
zurlickgefiihrt.
Die geometrische Deutung dieser Operation ist sehr einfach (Abb. 1):

M, + My

Abb 1:

Der Punkt M+ M, ist die vierte Ecke des Parallelogramms, das aus den Strecken O M;
und OM; als nichtparallele Seiten gebildet wird (O ist der Koordinatenursprung). Die
ubrigen Ecken des Parallelogramms sind M7, O und M,.

Dasselbe kann man auch anders sagen: Den Punkt M; + M5 erhalt man aus dem Punkt
My durch eine Parallelverschiebung von M in Richtung der Strecke OM; um soviel,
wie die Lange dieser Strecke betragt.

Die Multiplikation des Punktes M (x,y) mit einer beliebigen Zahl k& wird nach der

folgenden Regel durchgefiihrt:
kM = (kz, ky)

Die geometrische Deutung dieser Operation ist noch einfacher als bei der Addition:

. yA y4A
? j.w ! bt |
0 % 0 X 0 X
kM
Abb 2: (O<k<T) C&a-i1) (k<Q)
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Fir & > 0 liegt der Punkt M’ = kM auf dem Strahl OM, wobei |OM'| =k - |OM |
ist, bei & < 0 liegt der Punkt M’ auf der Verlangerung des Strahles OM Uber den
Punkt O hinaus, wobei |OM’| = k - |[OM]| ist (Abb. 2); dabei haben wir mit |OM |
bzw. |OM’| die Lange der Strecke OM bzw. OM’ bezeichnet.

Den Beweis fiir diese geometrische Deutung der beiden Operationen tberlassen wir
dem Leser als Ubungsaufgabe/T]

Die von uns eingefiihrten Operationen sind sehr bequem, um geometrische Tatsachen
in die Sprache der Algebra zu libersetzen. Wir wollen einige Beispiele fiir eine derartige
Ubersetzung angeben.

1. Die Strecke M; M, besteht aus allen Punkten der Gestalt
81M1 + 82M2

wobei s1, so zwei beliebige nichtnegative Zahlen mit der Summe 1 sind.

Hier wird die rein geometrische Tatsache, dass ein Punkt zu einer Strecke M M gehort,
in Gestalt der algebraischen Beziehung M = s1 M; + s9 My mit den oben angegebenen
Einschrankungen fiir s; und sy beschrieben.

Zum Beweis betrachten wir einen beliebigen Punkt M auf der Strecke M;M;. Wir
ziehen durch M Geraden, die zu OMs und OM; parallel sind, und erhalten den Punkt
N; auf der Strecke OM; und den Punkt Ny auf der Strecke O M, (Abb. 3). Wir setzen

(M| , _ [
| Mo M | ’ | My M|

81

die Zahlen s; und ss sind nichtnegativ und haben die Summe 1.

Abb.3und 4 0
Aus der Ahnlichkeit der entsprechenden Dreiecke erhalten wir

ONy| _ [ My M| . ON,| [ M M| .
OM;| — [MyMy| 5 OMs| — M M|~ 2

Wenn er nicht schon die Anfangsgriinde der Vektorrechnung kennt. Vom Standpunkt der Vektor-
rechnung aus bedeuten unsere Operationen bekanntlich folgendes: Der Punkt M; + M, ist die
Spitze des Vektors OM; + OMj, und der Punkt kM ist die Spitze des Vektors k- OM (unter der
Bedingung, dass dieser Vektor im Punkt O beginnt).
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woraus N1 = s1 My und Ny = s9 M, folgt. Nun gilt M = ny + Ny also M = s; My +
s9Ms5. SchlieBlich bemerken wir, dass dann, wenn der Punkt M die Strecke M Ms in
der Richtung von M; nach M, durchlauft, die Zahl s alle Werte von 0 bis 1 annimmt.
Die Behauptung 1 ist damit bewiesen.

2. Jeder Punkt M der Geraden M M5 kann in der Gestalt
tMy + (1 —t)Ms

dargestellt werden, wobei t eine gewisse Zahl ist.

Falls der Punkt M auf der Strecke M; M, liegt, folgt unsere Behauptung aus der oben
bewiesenen. Nun liege M auBerhalb der Strecke M; M. Dann liegt entweder der Punkt
M, auf der Strecke M My (wie in Abb. 4), oder M, liegt auf der Strecke M M.
Nehmen wir etwa an, dass der erste Fall zutrifft, dann gilt nach dem Bewiesenen

M1:8M—|—(1—S)M1 (0<81<1)
woraus

1—s
s

1
M= =M, — My = tM; + (1 — t) My
S

mit ¢ = % folgt. Den Fall, dass M, auf der Strecke M M : 1 liegt, tiberlassen wir dem
Leser zum Beweis.

3. Wichst der Parameter s von 0 bis 0o, so durchlauft der Punkt sB den Strahl OBJ
und der Punkt A + sB den von A ausgehenden Strahl mit der Richtung OB. Fallt
s von 0 bis —oo, so durchlaufen die Punkte sB und A + sB Strahlen, die die oben
angegebenen erganzen.

Als Beweis genligt ein Blick auf Abb. 5 und 6.

Abb.5und 6 0 ~ sB

Aus der Aussage 3 ergibt sich, dass bei einer Anderung von s von —oo bis +oo der
Punkt A + sB die Gerade durch A, parallel zu OB, durchlauft.

Die Operationen "Addition" und "Multiplikation mit einer Zahl" kann man natiirlich
auch zwischen Punkten des Raumes erklaren. In diesem Fall gilt nach Definition

My + My = (21 + z2,y1 + Y2, 21 + 22) , kM = (kx, ky, kz)

2Es wird vorausgesetzt, dass der Punkt B vom Koordinatenursprung 0 verschieden ist.
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Alle oben bewiesenen Aussagen sind offenbar auch im Raum richtig.

Zum Abschluss dieses Paragraphen treffen wir eine Ubereinkunft, die es uns im folgen-
den ermoglichen wird, vieles klarer und kiirzer zu formulieren. Sind namlich & und £
zwei Punktmengen (in der Ebene oder im Raum), so wollen wir in Zukunft unter ihrer
"Summe"R + £ die Menge aller Punkte K + L verstehen, wo K ein beliebiger Punkt
von R und L ein beliebiger Punkt von £ ist.

In der Mathematik wird seit langem eine spezielle Schreibweise dafiir verwendet, dass
ein Punkt einer gegebenen Menge angehort. Wenn wir also ausdriicken wollen, dass der
Punkt M in der Menge 9 liegt, werden wir M € 9 schreiben (das Zeichen € steht
dabei fir "Element von"). Somit ist & + £ die Menge aller Punkte K + L mit K € R
und L € £.

Wenn wir davon ausgehen, was die Addition von Punkten geometrisch bedeutet, so
konnen wir eine einfache Regel fiir die Addition der Punktmengen K und [ aufstellen.
Sie lautet:

Fir jeden Punkt K € K bilde man die Menge, die aus £ hervorgeht, wenn man £ langs
der Strecke OK verschiebt. Danach vereinige man alle auf diese Weise gewonnenen
Mengen zu einer einzigen. Diese Menge ist dann K 4 £.

Wir wollen einige Beispiele betrachten.

1. Die Menge R bestehe aus genau einem Punkt K, wahrend £ eine beliebige Punkt-
menge sei. Die Menge K + £ erhalt man nun, wenn man die Menge £ parallel zur
Strecke OK verschiebt (Abb. 7).

?K /ﬁ({%’ﬁ
/ /
/

/
/
/
/

/
/ / / 5
Abb. 7und 8 ¢ ¥

Ist insbesondere £ eine Gerade, so ist K + £ eine zu £ parallele Gerade. Geht dabei
die Gerade £ durch den Koordinatenursprung, so ist K + £ eine zu £ parallele Gerade
durch den Punkt K (Abb. 8).

Abb. 9

2. Nun seien R und £ zwei nichtparallele Strecken (in der Ebene oder im Raum); vgl.
Abb. 9.
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Dann ist R + £ ein Parallelogramm mit Seiten, die gleich und parallel zu K bzw. £
sind. Was erhalt man, wenn K und £ zueinander parallel sind?

3. Es sei K eine Ebene und £ eine nicht zu ihr parallele Strecke. Dann besteht die
Menge K+ £ aus dem Teil des Raumes, der zwischen zwei zu K parallelen Ebenen liegt

1@% s

4. Es seien K und £ zwei in einer Ebenen liegende Kreise mit den Radien r; bzw. r
und den Mittelpunkten P; bzw. Ps.

Dann stellt £ 4+ £ einen Kreis vom Radius r1 4+ r9 mit dem Mittelpunkt in P, + P, dar.
Dieser Kreis liegt in einer zu 7 parallelen Ebene (Abb. 11).

&
Abb. 11 0

1.2 Was bedeuten Gleichungen und Ungleichungen ersten
Grades mit zwei und drei Unbekannten geometrisch?

Wir betrachten eine Gleichung ersten Grades in den beiden Unbekannten x und y:
axr+by+c=0 (1)

Sehen wir x und y als Koordinaten fiir Punkte in einer Ebene an, so werden wir natirlich
fragen, was fiir eine Menge die Punkte in der Ebene bilden, deren Koordinaten die
Gleichung (1) erfillen, d.h., was fiir eine Punktmenge durch Gleichung (1) definiert
wird.

Obgleich die Antwort dem Leser wahrscheinlich bekannt ist, formulieren wir sie: Die
durch die Gleichung (1) bestimmte Punkt- menge ist eine Gerade in der Ebene. Ist
namlich b # 0, so kdnnen wir (1) auf die Form

y=kx+p
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bringen; diese Gleichung definiert bekanntlich eine Gerade. Ist hingegen b = 0, so fiihrt
das auf die Gestalt = h, und die Gleichung charakterisiert eine zur Ordinatenachse
parallele Gerade.

Die analoge Frage konnen wir in Bezug auf die Ungleichung
ar +by+c>0 (2)

stellen: Welche Punktmenge wird in der Ebene durch die Ungleichung (2) definiert?

Abb. 12

Auch hier ist die Antwort sehr einfach. Ist b # 0, so fiihrt die gegebene Ungleichung
auf eine der Formen

y>kr+p oder y<kx+p

Es ist nicht schwer zu verstehen, dass der ersten dieser Ungleichungen alle Punkte
genligen, die "oberhalb" der Geraden y = kx + p oder auch auf ihr liegen, und der
zweiten diejenigen, die "unterhalb" oder auf der Geraden y = kx + p zu finden sind
(Abb. 12).

Ist dagegen b = 0, so fiihrt unsere Ungleichung auf eine der Ungleichungen

z>h oder r<h

der ersten geniigen alle Punkte, die "rechts" von der Geraden x = h oder darauf liegen,
der zweiten alle diejenigen, die "links" von x = h oder auf dieser Geraden liegen (Abb.
13).

'S IR N P 4
\\\ \\ /// C
i A\. \\ ’ /'/ //
\\-. \ LY T4 P /'/
R PR M
LT NN //
N VA .
N A
N R \_\ N 7 // 5
L AW,
0 7 L
\_x<Ah 4‘x>,‘7 P
N N AN / & /
Abb. 13 g

Somit definiert die Gleichung (1) in der Koordinatenebene eine Gerade, die Ungleichung
(2) dagegen eine der beiden Halbebenen, in die diese Gerade die gesamte Ebene zerlegt

10
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(von der Geraden selbst nehmen wir an, dass sie einer beliebigen der beiden durch sie
bestimmten Halbebenen angehért).

Wir wollen nun die analogen Fragen klaren, die sich auf die Gleichung
ar +by+cz+d=0 (3)

und die Ungleichung
ar +by+cz+d>0 (4)

beziehen, wobei x, y, 2z selbstverstandlich als Punktkoordinaten im Raum erklart wer-
den. Wie man leicht einsieht, erhdlt man als Resultat den folgenden

Satz. Die Gleichung (3) bestimmt im Raum eine Ebene, hingegen definiert die Un-
gleichung (4) einen der beiden Halbrdume, in den diese Ebene den gesamten Raum
zerlegt (von der Ebene selbst wird angenommen, dass sie einem der beiden Halbraume
angehort, die durch sie bestimmt werden).

Beweis. Mindestens eine der drei Zahlen a, b, ¢ sei von Null verschieden, zum Beispiel
sei ¢ # 0. Dann fihren wir Gleichung (3) tber in

z=kx+ly+p (5)

Mit £ bezeichnen wir die Menge aller Punkte M (z, y, z), die der Gleichung (5) gentgen.
Unser Ziel ist zu zeigen, dass £ eine Ebene darstellt.

Wir wollen klaren, welche Punkte von £ der Koordinatenebene yOz angehodren. Zu
diesem Zweck miissen wir in (5) x = 0 setzen. Wir erhalten

z=ly+p (6)

Also ist der Durchschnitt von £ mit der Ebene yOz die Gerade u, die in dieser Ebene
durch die Gleichung (6) bestimmt wird (Abb. 14).

Abb. 14

Analog finden wir, dass der Durchschnitt von £ mit der Ebene 2O~z eine Gerade v ist,
die in dieser Ebene durch die Gleichung

z=kx+p (7)

definiert wird. Die beiden Geraden u und v gehen durch den Punkt P(0,0,p).

11
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Mit 7 wollen wir die Ebene bezeichnen, die die Geraden u und v enthalt. Wir werden
beweisen, dass m zur Menge £ gehort. Dazu reicht es aus, den folgenden Tatbestand
zu sichern:

Eine durch einen beliebigen Punkt A € v gehende, zu u parallele Gerade liegt in £.

Zunichst suchen wir einen Punkt B derart, dass OB || u ist | In der Ebene yOz
bestimmt die Gleichung z = ly + p die Gerade u, d.h., die Gleichung z = ly definiert
eine zu u parallele und durch den Koordinatenursprung verlaufende Gerade (in Abb. 14
ist diese gestrichelt).

Als B kann man den Punkt mit den Koordinaten y = 1, z = [ wahlen, der auf dieser
Geraden liegt. Ein beliebiger Punkt A € v hat die Koordinaten z,0, kxz + p; der von
uns gewahlte Punkt B besitzt die Koordinaten 0,1,[. Eine zu u parallele, durch A
verlaufende Gerade besteht aus den Punkten

A+ sB = (2,0,kz +p) +s(0,1,1) = (z,s,kx : +p + sl)

wo s eine beliebige Zahl bedeutet (vgl. Aussage 3 aus Teil A).

Man prift leicht nach, dass die Koordinaten jedes Punktes A + sB der Gleichung (5)
geniigen, d.h., dass A+ sB € £ gilt. Damit ist bewiesen, dass die Ebene 7 vollstandig
zur Menge £ gehort.

Wir missen nun noch einen letzten Schritt ausfihren, namlich beweisen, dass £ und 7
zusammenfallen, d.h., dass kein Punkt auBerhalb von 7 zur Menge £ gehort.

Dazu betrachten wir drei Punkte: den in der Ebene 7 liegenden Punkt M (g, yo, 20),
den "oberhalb" der Ebene 7 liegenden Punkt M'(zg,yo,20 + €), € > 0, und den
Punkt M"(xo,y0, 20 — €), der "unterhalb"7 liegt (Abb. 15). Wegen M € 7 gilt zp =
kxy + lyo + p und folglich

20+e>krvo+ly+p 29— € < kxg+lyo+p

Abb. 15 ¥*

Hieraus ist ersichtlich, dass die Koordinaten des Punktes M’ die strenge Ungleichung
z>kr+ly+p
und die Koordinaten des Punktes M" die strenge Ungleichung

z<kx+ly+p

3Diese Schreibweise bedeutet: OB parallel zu u.

12
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erfillen.
Somit gehéren M’ und M” nicht zu £. Das beweist, dass £ mit der Ebenen zusam-
menfallt. AuBerdem folgt aus unseren Untersuchungen, dass die Menge aller Punkte,
die der Ungleichung

ar +by+cz+d>0

geniigen, einer der beiden Halbraume ist (der "obere" oder der "untere"), in die die
Ebene 7 den gesamten Raum zerlegt.

13
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2 Die geometrische Deutung linearer
Ungleichungssysteme mit zwei oder drei
Unbekannten

Gegeben sei das Ungleichungssystem

a1r +biy+c1 >0
asx + boy +co > 0

Am® + by + ¢ >0
mit den beiden Unbekannten x und y.

Die erste Ungleichung im System definiert in der Koordinatenebene xOy eine Halbebene
Py, die zweite eine Halbebene Piy usw.

Erfillt ein Zahlenpaar x,y alle Ungleichungen von (1), so gehort der entsprechende
Punkt M(x,y) allen Halbebenen IIy, Iy, ..., IT,,, zugleich an. Mit anderen Worten, der
Punkt M liegt im Durchschnitt (dem gemeinsamen Teil) besagter Halbebenen.

Man sieht leicht, dass der Durchschnitt endlich vieler Halbebenen ein gewisser polygo-
naler Bereich 8K ist. In Abb. 16 ist ein moglicher Bereich K abgebildet.

Abb. 16

Langs des Bandes des Bereichs sind Striche gezeichnet, die ins Innere des Bereichs wei-
sen. Sie zeigen gleichzeitig, auf welcher Seite der gegebenen Geraden die entsprechende
Halbebene liegt. Dasselbe wird auch durch die Pfeile angedeutet.

Der Bereich 8 heiBt Lésungsbereich des Systems (1). Schon hier wollen wir bemer-
ken, dass der Losungsbereich nicht beschrankt zu sein braucht. Wenn sich Halbebenen
schneiden, kann auch ein unbeschrankter Bereich auftreten, wie zum Beispiel der Be-
reich in Abb. 17.

Wenn wir betonen wollen, dass der Bereich £ von Geradenstiicken (oder ganzen Gera-
den) begrenzt wird, so sagen wir, 8 sei ein polygonaler Bereich (wir bemerken dazu,
dass wir bei beschranktem £ einfach vom Lésungspolygon fiir das System (1) sprechen
werden).

14
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yi

=Y

Z= e

Selbstverstandlich kann es auch vorkommen, dass kein einziger Punkt existiert, der
gleichzeitig allen betrachteten Halbebenen angehort, d.h., dass K "leer" ist; das bedeu-
tet, dass das System (1) widerspriichlich ist. Einen solchen Fall zeigt Abb. 18.

Abb. 17 und 18

Ein Losungsbereich K ist stets konvex. Wir wollen daran erinnern, dass nach der all-
gemeinen Definition eine Punktmenge (in der Ebene oder im Raum) konvex genannt
wird, wenn sie mit je zwei Punkten A und B auch die ganze Strecke AB enthilt.

."

Abb. 19

Abb. 19 zeigt den Unterschied zwischen konvexen und nicht konvexen Mengen. Dass
der Losungsbereich K konvex ist, folgt aus der Art und Weise, wie er gebildet wurde.
Wir hatten ihn ja dadurch gewonnen, dass wir den Durchschnitt mehrerer Halbebenen
bildeten; jede Halbebene ist aber eine konvexe Menge.

Um jegliche Unklarheit liber die Konvexitat von R zu beseitigen, beweisen wir das
folgende Lemma.

Lemma. Der Durchschnitt beliebig vieler konvexer Mengen ist ebenfalls eine konvexe
Menge.

Beweis. Es seien K, und K, zwei konvexe Mengen und K ihr Durchschnitt.

Wir betrachten zwei beliebige in & gelegene Punkte A und B (Abb. 20). Nun gilt
A € R,, B € R, und die Menge R, ist konvex. Also liegt die Strecke AB in ;.
Ganz analog erhalt man aber auch, dass die Strecke AB in R, liegt.

Abb. 20
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2 Die geometrische Deutung linearer Ungleichungssysteme mit zwei oder drei
Unbekannten

Somit gehort AB gleichzeitig zu beiden Mengen K, und K~ also auch zu ihrem Durch-
schnitt K. Damit wurde bewiesen, dass R eine konvexe Menge ist.

Analoge Betrachtungen zeigen, dass der Durchschnitt beliebig vieler (nicht nur zweier)
konvexer Mengen eine konvexe Menge ist.

Der geometrische Ort aller Punkte, deren Koordinaten samtliche Ungleichungen von
(1) erfillen, d.h. der Lésungsbereich fiir das System (1), ist ein konvexer polygonaler
Bereich &. Man erhalt ihn, wenn man den Durchschnitt aller Halbebenen bildet, die
den Ungleichungen im gegebenen System entsprechen.

Wir wenden uns nun dem Fall dreier Unbekannter zu und geben uns das System

ax+biy+cz+dy >0
asx + boy + coz +doy > 0

(2)

am® + by + ¢z + dyy >0

vor. Wie wir aus § 1 wissen, bestimmt jede der hier aufgeschriebenen Ungleichungen
einen gewissen Halbraum. Daher wird man den durch das gegebene System definier-
ten Bereich als Durchschnitt (gemeinsamen Teil) von m Halbraumen auffassen. Der
Durchschnitt endlich vieler Halbraume ist aber ein konvexer polyedrischer Bereich R.
Abb. 21 liefert ein Beispiel fiir einen solchen Bereich mit m = 4.

Abb. 21

Bei diesem Beispiel ist der Bereich £ ein gewdhnlicher Tetraeder (genauer, K besteht
aus allen Punkten, die im Innern und auf dem Rande des Tetraeders liegen).
Uberhaupt ist es nicht schwer zu verstehen, dass man jedes konvexe Polyeder erhalten
kann, wenn man endlich viele Halbraume miteinander schneidet. Naturlich ist auch der
Fall moglich, dass der Bereich unbeschrankt ist (sich bis ins Unendliche erstreckt).

A
A — ;
A~ X \
YT e
e B /
\ / "\_\
Abb. 22 und 23 Y
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2 Die geometrische Deutung linearer Ungleichungssysteme mit zwei oder drei
Unbekannten

Ein Beispiel eines solchen Bereiches zeigt Abb. 22. SchlieBlich kann es auch vorkommen,
dass (iberhaupt keine Punkte existieren, die samtlichen betrachteten Ungleichungen
geniigen (das System (2) ist widerspriichlich). Dann ist der Bereich R leer. Diesen Fall
zeigt Abb. 23.

Wir wollen noch besonders auf den Fall eingehen, dass sich unter den Ungleichungen
(2) zwei finden, die die folgende Gestalt haben:

ar+by+cz+d>0 , —axr —by—cz—d>0
Beide Ungleichungen konnen zu der einzigen Gleichung
ar+by+cz+d=0

zusammengefasst werden. Sie definiert im Raume eine Ebene 7. Die restlichen Unglei-
chungen von (2) werden aus der Ebene 7 einen gewissen konvexen polygonalen Bereich
herausschneiden, welcher gerade Losungsbereich fiir System (2) ist.

Wir sehen, dass als Spezialfall eines konvexen polyedrischen Bereichs im Raum ein
konvexer polygonaler Bereich in einer Ebene auftreten kann.
In Abb. 24 stellt der Bereich K ein Dreieck dar, das aus fiinf Halbraumen gebildet wird:

| A

Abb. 24 e

Zwei davon werden von der "horizontalen" Ebenen begrenzt, die restlichen drei Halb-
raume bilden als Durchschnitt das "vertikale" dreiseitige Prisma.

In Analogie zum Fall mit zwei Unbekannten nennen wir den Bereich & den Losungs-
bereich fiir System (2). Wir wollen nochmals unterstreichen, dass der Bereich £ als
Durchschnitt von Halbraumen notwendigerweise konvex ist.

Somit definiert System (2) im Raum einen konvexen polyedrischen Bereich &. Diesen
gewinnt man als Durchschnitt aller Halbraume, die den Ungleichungen im gegebenen
System entsprechen.

Ist der Bereich K beschrankt, so wird er einfach Losungspolyeder fiir System (1) ge-
nannt.
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3 Die konvexe Hiille eines Punktsystems

3 Die konvexe Hiille eines Punktsystems

Wir stellen uns eine Ebene in Gestalt eines unendlichen Brettes vor, bei der in die
Punkte A;, Ay, ..., A, Holzpflocke gesteckt seien. Wir fertigen uns eine Gummischlinge
an und dehnen diese so aus, dass sie alle Pflocke umfasst (die gestrichelte Linie in Abb.
25).

Abb. 25 und 26

Danach lassen wir die Schlinge sich zusammenziehen, soweit das die von uns einge-
steckten Pflocke erlauben. Die Menge aller Punkte, die von der Schlinge umfasst wird,
nachdem sie sich zusammengezogen hat, ist in Abb. 25 schraffiert. Sie stellt offensicht-
lich ein konvexes Polygon dar.

Wir nennen es die konvexe Hiille der Punkte Aq, A, ... A,,.

Liegen die Punkte Ay, A, ..., A, nicht in einer Ebene, sondern im Raum, so kann man
sich ein dhnliches Experiment vorstellen, das praktisch allerdings recht schwierig durch-
zufiihren ist. Wir wollen aber unserer Phantasie freien Lauf lassen und annehmen, es
sei uns gelungen, die Punkte A;, As, ..., A, in einen Sack aus einer straffen Gummihaut
einzuschlieBen.

Nun moge sich der Sack soweit zusammenziehen, bis einige dieser Punkte zu storen

beginnen. SchlieBlich wird der Moment eintreten, wo ein weiteres Zusammenziehen un-
moglich wird (Abb. 26).

Es ist ziemlich klar, dass der Sack in diesem Moment die Gestalt eines konvexen Poly-
eders annimmt, dessen Ecken irgendwelche der Punkte A;, A, ..., A, sind. Der Raum-
bereich, der von diesem Polyeder umfasst wird, heiBe wiederum die konvexe Hiille des
Punktsystems Aj, As, ..., Ap.

Diese Definition fur die konvexe Hulle ist zwar sehr anschaulich, aber vom Stand-
punkt "mathematischer Strenge" nicht vollig einwandfrei. Wir wollen diesen Begriff
jetzt streng definieren.

Es sei A, Ay, ..., A, ein beliebiges System von Punkten (in der Ebene oder im Raum).
Wir betrachten alle moglichen Punkte der Gestalt

SlAl + 82A2 —+ ...+ SpAp (1)
wobei 51, 59, ..., 5, geeignete nichtnegative Zahlen mit der Summe 1 sind:

$152...5p > 0 und s1+s2+...+s,=1 (2)
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3 Die konvexe Hiille eines Punktsystems

Definition. Eine Punktmenge der Gestalt (1) mit den Zusatzbedingungen (2) heiBt kon-
vexe Hiille des Punktsystems A;, Ay, ..., A, und wird mit

(A1, Ag, . Ap)

bezeichnet.

Damit wir uns davon iiberzeugen konnen, dass sich diese Definition von der vorherge-
henden nicht unterscheidet, betrachten wir zunachst die Falle p = 2 und p = 3.

Ist p = 2, so sind uns zwei Punkte A; und A, gegeben. Die Menge (A;, Ag) ist, wie
in § 1, Aussage 1 gezeigt wurde, die Strecke A;As.

Ist p = 3, so sind uns die drei Punkte A, As und Az gegeben. Wir werden zeigen,
dass die Menge (A, A, A3) aus all den Punkten besteht, die im Inneren und auf den
Seiten des Dreiecks mit den Ecken A;, Ay, A3 liegen.

Allgemein beweisen wir das folgende Lemma.

Lemma. Die Menge (A, ..., A,_1, A,) besteht aus allen mdéglichen Strecken, die den
Punkt A, mit den Punkten der (A, ..., A,_1) verbinden.

Beweis. Um weiterhin bequemer schreiben zu konnen, bezeichnen wir die Menge
(A1, ..., Ap—q) mit M,_, und die Menge (Ay, ..., 4,1, A,) mit M.
Wir betrachten einen beliebigen Punkt A € 91,,: Er hat die Gestalt

A= 81A1 + ..+ Sp—lAp—l -+ SpAp
mit
51,..,8p >0 ; s1+..+s,=1

Ist s, = 0, so gilt A € IM,_,; also ist die Menge 9M,_, eine Teilmenge von N,.

Ist s, = 1, so ist A = A,; somit liegt der Punkt A, in 9M,. Also enthalt 9, die
Menge 91,_, und den Punkt A,. Wir werden nun zeigen, dass jede Strecke A’A, mit
A e M,_, ganz zu M, gehort.

Ist A ein Punkt auf einer solchen Strecke, dann ist
A=tA"+sA, (t,s>0;t+s=1)
Andererseits haben wir nach Definition des Punktes A’
A =tA + .+t 1Ay

tl,...,tp_l >0 ; tl—l—...—l—tp_l =1

und folglich
A= ttlAl + ...+ ttp—lAp—l —+ SAp

Wenn wir tt; = s1,...,tt,—1 = sp_1,5 = s, setzen, erhalten wir (1), (2). Damit ist
A € M, bewiesen. Also liegt jede der oben angegebenen Strecken vollstandig in 9t,.

Wir miissen nun noch nachpriifen, dass 91,, keine Punkte auBer solchen Strecken
enthalt, d.h., dass jeder Punkt A aus 91, auf einer der betrachteten Strecken liegt.
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3 Die konvexe Hiille eines Punktsystems

Es sei also A € 9Mt,. Dann gilt (1), (2). Wir kdnnen s, # 1 annehmen, denn sonst ware
A = A, und nichts weiter zu beweisen. Ist nun aber s, # 1, so ist 51 + ... + 51 =
1 — s, > 0, und daher kénnen wir schreiben:

o1 Ap 4. ——p]
81+...+8p_1 81+...+Sp_1

A= (51 + ...+ Sp_1> Ap—l + SpAp

Der in eckigen Klammern stehende Ausdruck bestimmt einen Punkt A’, der zu 9,_,
gehort, da die Koeffizienten von A;, ..., A,_; in diesem Ausdruck nichtnegativ sind und
die Summe 1 haben. Somit ist

A= (s14 ..+ 5,-1)A + 5,4,

Da die Koeffizienten von A" und A, ebenfalls nichtnegativ sind und die Summe 1 haben,
liegt der Punkt A auf der Strecke A’A,,. Damit ist der Beweis des Lemmas beendet.

Nun koénnen wir leicht verstehen, dass die zu Beginn dieses Paragraphen gegebene
anschauliche Definition der konvexen Hiille und die danach folgende strenge Defini-
tion aquivalent sind. Denn welche der beiden Definitionen fiir die konvexe Hiille wir
auch zugrunde legen, in beiden Fallen gehen wir von der konvexen Hiille des Systems
ai, ..., Ap—1 zur konvexen Hille des Systems A;,..., A,_1, A, nach ein und derselben
Regel liber:

Den Punkt A, missen wir mittels Strecken mit allen Punkten der konvexen Hiille fiir
Ay, ..., Ay verbinden (in der anschaulichen Definition der konvexen Hiille ist diese Re-
gel unmittelbar einsichtig, in der strengen Definition stellt sie den Inhalt des Lemmas
dar).

Ziehen wir nun in Betracht, dass wir nach beiden Definitionen fiir p = 2 ein und dieselbe
Menge erhalten, namlich die Strecke A; A, so wird die Aquivalenz beider Definitionen
offenbar.

Dabei ist der Terminus "konvexe Hulle" fiir uns noch nicht vollstandig gerechtfertigt,
denn wir haben noch nicht gezeigt, dass die Menge (A, As, ..., A,) stets konvex ist.
Dies holen wir sogleich nach.

Es seien A und B zwei beliebige Punkte dieser Menge:
AZSlAl—l—SQAQ—l—...—f—SpAp y B:tlAl—l—tQAQ—f—...—l—tpAp

mit
81,...,Sp,t1,...,tp20 y 81+...+Sp:t1+...+tp:1 (3)
Jeder Punkt C auf der Strecke AB hat die Gestalt

C=sA+1tB

mit
s,;t>0 s+t=1 (4)
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4 Konvexe polyedrische Kegel

woraus
C = S(SlAl —+ ...+ SpAp) -+ t(tlAl + tpAp) = (SSl + ttl)Al + ...+ (sspttp)Ap

folgt. Die als Koeffizienten bei A, ..., A, stehenden Zahlen sind nichtnegativ und haben
die Summe 1 (wie aus (3), (4) folgt). Das bedeutet, dass der Punkt C' zur Menge
(A, ..., A,) gehort, d.h., diese Menge ist konvex.

Im Zusammenhang damit ist leicht zu sehen, dass die Menge (Aj, ..., A,) die kleinste
unter allen konvexen Mengen ist, die die Ausgangspunkte Ay, ..., A, enthalten, d.h.,
dass sie in jeder solchen Menge enthalten ist. Diese Behauptung folgt unmittelbar aus
dem weiter oben bewiesenen Lemma und aus der Definition der konvexen Hiille.

Der oben angegebene Sachverhalt erklart die Bezeichnung "konvexe Hille". Gleichzeitig
gibt er noch eine Erklarung dafiir, dass man die Menge (A, ..., A,) mit dem Verfahren
gewinnen kann, das am Anfang dieses Paragraphen beschrieben wurde.

Tatsachlich ist die Menge, die von einer Gummischlange (oder einem Sack) umschlossen
wird, nachdem sich diese soweit wie moglich um das Punktsystem A, ..., A, zusam-
mengezogen hat, gerade die kleinste konvexe Menge, die die vorgegebenen Punkte
enthalt.

4 Konvexe polyedrische Kegel

Wir beginnen mit einer Definition.

Unter einem konvexen polyedrischen Kegel versteht man den Durchschnitt endlich vie-
ler Halbraume, deren begrenzende Ebenen durch mindestens einen gemeinsamen Punkt
gehen; ein solcher Punkt heiBt Spitze des Kegels.

Zuerst werden wir zeigen, in welcher Beziehung der Begriff des konvexen polyedrischen
Kegels zu linearen Ungleichungssystemen steht. Wir beschranken uns auf den Spezial-
fall, dass eine Spitze des Kegels im Koordinatenursprung liegt. Das bedeutet, dass alle
begrenzenden Ebenen den Koordinatenursprung enthalten. Nun hat aber die Gleichung
einer Ebene, die durch den Koordinatenursprung geht, die Gestalt

ar +by+cz=0

(das freie Glied der Gleichung muss gleich Null sein, denn anderenfalls ware (0,0, 0)
keine Losung). Also ist ein konvexer polyedrischer Kegel mit einer Spitze im Koordina-
tenursprung Losungsbereich eines homogenen Ungleichungssystems:

a1x + by +c12 >0
asx + boy + coz > 0

@ + by + cpz > 0

Selbstverstandlich gilt auch die Umkehrung: Der Losungsbereich eines homogenen Un-
gleichungssystems stellt stets einen konvexen polyedrischen Kegel mit einer Spitze im
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4 Konvexe polyedrische Kegel

Koordinatenursprung dar.

Als Beispiel eines konvexen polyedrischen Kegels kann ein konvexer Bereich im Raum
dienen, der nur eine Ecke im Punkt S hat, etwa eine unendliche konvexe Pyramide, die
keine Grundflache besitzt und sich von der Spitze aus unbeschrankt fortsetzen lasst.
Abb. 27 zeigt eine solche vierseitige Pyramide.

Abb. 27

Es sind aber auch weniger interessante Falle moglich:

1. Der Halbraum (Abb. 28a). Bei einem solchen "Kegel" kann jeder Punkt S € 7 die
Rolle der Spitze spielen, dabei ist 7 die begrenzende Ebene des gegebenen Halbraumes.

2. Der Durchschnitt zweier Halbraume, deren berandende Ebenen sich in einer Geraden
[ schneiden (Abb. 28b). Die Rolle der Spitze kann jeder Punkt S € [ spielen.

3. Die Ebene. Jede Ebene 7 im Raum kann offenbar als Durchschnitt zweier Halbraume
angesehen werden, die auf den verschiedenen Seiten von 7 liegen (Abb. 28c). Die Rolle
der Spitze kann in diesem Fall jeder Punkt S € 7 spielen.

4. Die Halbebene (Abb. 28d). Als Spitze S kann jeder Punkt der berandenden Gerade
dienen.
§ LLELELT

a)

f ) n)
Abb. 28 ; J

5. Die Gerade. Man kann jede Gerade [ im Raum als Durchschnitt dreier Halbraume
erhalten, deren berandende Ebenen durch [ gehen (Abb. 28e). Als Spitze S kann jeder
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4 Konvexe polyedrische Kegel

Punkt der Geraden [ dienen.

6. Ein Winkel (kleiner als 180°) in einer beliebigen Ebenen (Abb. 28f). Den Winkel
kann man erhalten, wenn man die Ebene 7 mit zwei Halbraumen schneidet (und zwar
wie 7).

7. Ein Strahl (Abb. 28g). Einen Strahl kann man als Durchschnitt einer Geraden mit
einem Halbraum ansehen. Die Spitze S ist der Anfang des Strahles.

8. Ein Punkt. Diesen "Kegel" kann man erhalten, wenn man den Durchschnitt eines
Strahles mit einem entsprechenden Halbraum nimmt (Abb. 28h).

Natirlich entsprechen unsere Beispiele 1 bis 8 (das eine in geringerem, das andere in
starkerem MaBe) nicht dem ublichen Gebrauch des Wortes "Kegel" , aber wir miissen
uns damit abfinden, wenn wir die zu Anfang dieses Paragraphen gegebene allgemeine
Definition eines konvexen polyedrischen Kegels beibehalten wollen.

Wir wollen nun kurz zeigen, dass mit den oben aufgezahlten Mengen alle polyedrischen
konvexen Kegel im Raum erfasst werden.

Es bezeichne p die Anzahl der Halbraume, deren Durchschnitt der zu betrachtende
Kegel K ist. Ist p = 1, so ist die Behauptung richtig, denn dann ist K ein Halbraum.
Eine einfache Untersuchung, die der Leser selbst durchfiihren moge, zeigt, dass unsere
Behauptung, wenn sie fiir den Kegel wahr ist, den man durch Schneiden von p Halbrau-
men gewinnt, auch fiir den Kegel stimmt, welcher Durchschnitt von p + 1 Halbraumen
ist. Hieraus folgt nach dem Prinzip der vollstandigen Induktion, dass die Behauptung
fur jedes p gilt.

Konvexe polyedrische Kegel besitzen viele interessante Eigenschaften. Der Rahmen un-
seres Blichleins gestattet uns nicht, in diese Thematik tiefer einzudringen; alles, was
wir dariiber bringen wollen, ist teils in diesem Paragraphen, teils im § 9 enthalten.

Wir fiihren noch eine Definition oder - wenn man will - eine Bezeichnung ein.
Es seien By, Bs, ..., B, beliebig, aber endlich viele Punkte (im Raum). Mit (By, Bs, ..., B,)
bezeichnen wir die Menge aller Punkte der Gestalt

t1B1+tBy+ ...+ thq

mit beliebigen nichtnegativen Zahlen ¢y, %, ..., t,.

Welche geometrische Bedeutung hat nun die Menge (B, B2, ..., B;)? Definitionsge-
maB ist sie die Summe der Mengen (By), (B2), ..., (By). Daher miissen wir zunachst
erklaren, was eine Menge (B) darstellt, d.h. die Menge aller Punkte ¢ B bei beliebigem
nichtnegativem t und fest gewahltem Punkt B. Jedoch ist die Antwort auf die letzte
Frage offensichtlich:

Ist B der Koordinatenursprung, so féllt (B) mit dem Ursprung zusammen. Anderenfalls
ist (B) der vom Koordinatenursprung ausgehende und durch den Punkt B verlaufende
Strahl. Nun wollen wir bemerken, dass die Summe aus einer beliebigen Menge und dem
Koordinatenursprung wieder dieselbe Menge ergibt.
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4 Konvexe polyedrische Kegel

Daher ist klar, dass wir beim Studium der Menge (B, B, ..., B;) nichts auBer Acht
lassen, wenn wir annehmen, alle Punkte B, Bs, ..., B, seien vom Koordinatenursprung
verschieden. Dann ist aber die Menge (B, B, ..., B;) die Summe der Strahlen (B;),

(Ba2), ..., (By).
Diese Bemerkung bewirkt, dass das folgende Lemma fast trivial wird.

Lemma. Die Menge (B, Bs, ..., B,_1, B,) ist die Vereinigung derjenigen Strecken, die
jeden Punkt der Menge (B4, ..., B,—1) mit jedem Punkt des Strahls (B,) verbinden.

Der strenge Beweis des Lemmas verlauft nach demselben Schema wie der des analogen
Lemmas in § 3. Der Leser moge ihn selbstandig durchfiihren.

Abb. 29 5 7

Ausgehend von diesem Lemma (iberlegt man sich leicht, dass (Bj, B2) ein Winkel, eine
Gerade oder ein Strahl ist (Abb. 29a. b, ¢). Danach ist es einfach, festzustellen, dass
(B1, By, B3) eine der folgenden Mengen ist:

eine unendliche dreiseitige Pyramide, eine Ebene, eine Halbebene. ein Winkel, eine Ge-
rade oder ein Strahl.

Nunmehr wird klar, dass zwischen den Mengen (B, Bs, ..., B;) und konvexen poly-
edrischen Kegeln ein enger Zusammenhang bestehen muss. Und dieser Zusammenhang
besteht tatsachlich. Zur groBeren Klarheit wollen wir die entsprechenden Aussagen in
zwei Satzen formulieren.

Satz 1. Die Menge (By, B, ..., B,) stimmt entweder mit dem gesamten Raum (berein,
oder sie stellt einen konvexen polyedrischen Kegel mit Spitze im Koordinatenursprung
dar.

Abb. 30

Dass die Menge (B, Bo, ..., By) wirklich mit dem gesamten Raum (ibereinstimmen
kann, zeigt ein Beispiel. Wir betrachten vier Punkte By, By, B3, By, die so gelegen sein
sollen, dass die Strahlen (By), (B2), (Bs), (B4) paarweise stumpfe Winkel bilden (Abb.
30).
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4 Konvexe polyedrische Kegel

Jede der Mengen (Bl, BQ, Bg), (Bl, BQ, B4), (Bl, Bg, B4), (BQ, Bg, B4> stellt eine un-
endliche dreiseitige Pyramide mit der Spitze im Koordinatenursprung dar. Die Menge
(B1, By, Bs, By) enthalt offenbar jede dieser Pyramiden. Die Vereinigung dieser Pyra-
miden ist aber der gesamte Raum.

Satz 2. Jeder konvexe polyedrische Kegel mit Spitze im Koordinatenursprung ist eine
Menge der Form (B1, By, ..., B,).

Beweis von Satz 1. Diesen Beweis fiihren wir nur in groBen Ziigen und bedienen uns
der Methode der vollstandigen Induktion. Die Behauptung des Satzes gilt offenbar fiir
q¢ = 1. Wir nehmen nun an, der Satz sei fiir Mengen der Gestalt (B, ..., B,) rich-
tig, und zeigen seine Giiltigkeit fir Mengen (By, ..., By, By+1), indem wir uns auf die
Induktionsvoraussetzung stiitzen.

Nach Induktionsvoraussetzung ist (B, ..., B,) der gesamte Raum oder ein konvexer
polyedrischer Kegel in ihm. Im ersten Fall ist im wesentlichen nichts zu zeigen, denn
dann ist auch (Bj, ..., By, By—1) der gesamte Raum.

Es gelte also der zweite Fall: (By, ..., B,) ist ein konvexer polyedrischer Kegel &. Nach
dem Lemma ist die Menge (B4, ..., By, By+1) die Vereinigung aller Strecken, die jeden
Punkt der Menge & mit jedem Punkt des Strahles (B,41) verbinden.

Wie aber schon frither gezeigt wurde, ist jeder konvexe polyedrische Kegel K entweder
eine unendliche konvexe Pyramide oder eine der Mengen 1 bis 8. Betrachtet man fiir
jeden dieser Falle die oben angefiihrte Vereinigung der Strecken, so kann man sich
leicht davon iiberzeugen (der Leser fiihre das selbstiandig durch!), dass sie mit dem
gesamten Raum zusammenfallen oder wieder konvexe polyedrische Kegel sind.

Also ist der Satz fiir Mengen der Gestalt (B;), aber auch fiir solche wie (By, ..., By, Byt1)
richtig, weil wir die Gilltigkeit der Aussage firr (Bj, ..., B,) vorausgesetzt hatten. Hieraus
folgt, dass der Satz fir jedes ¢ gilt.

Beweis von Satz 2. Es sei R ein konvexer polyedrischer Kegel mit Spitze im Koordi-
natenursprung O. Wie wir schon sagten, ist K eine unendliche konvexe Pyramide oder
eine der Mengen 1 bis 8.

Es sei R eine Pyramide. Wir wahlen auf jeder Kante einen Punkt. Dann erhalten wir ein
System von Punkten B, By, ..., B;. Wir behaupten, dass die Menge (B, Bs, ..., By)
mit K Ubereinstimmt.

Abb. 31

Zum Beweis betrachten wir eine Ebene 7, die alle Kanten von £ schneidet. Wir erhalten
die Punkte Bj, By, ..., B, (Abb. 31).
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4 Konvexe polyedrische Kegel

Offenbar ist
Bi = k1B, Bg = k9 B>, ,...B; = k,B, (1)

mit gewissen nichtnegativen Zahlen kq, ko, ..., k. Es sei nun B ein beliebiger vom Punkt
O verschiedener Pyramidenpunkt.

Der Strahl OB schneidet die Ebene 7 in einem Punkt B’. Offenbar liegt B’ in der
konvexen Hiille des Systems By, By, ..., B, und daher ist

B' = s1B] + s9By, +... + qu;

mit nichtnegativen Zahlen sq, s9, ..., 54, deren Summe gleich 1 ist. Berlicksichtigen wir
nun (1), dann erhalten wir

B/ = Sllel + SkaBQ, +...+ Sq/{?qu
und wenn wir noch B’ = kB (k > 0) beachten, finden wir

B =1B) +tBy, +... + t,B,
mit t; = S'Tk‘ (i =1,2,...,q). Somit haben wir gezeigt, dass jeder Punkt B der Pyramide
R zur Menge (By, By, ..., B,) gehort. Die Umkehrung (d.h., dass jeder Punkt der Menge
(B, Ba, ..., By) zu 8 gehort) ist klar. Also stimmen £ und (B, By, ..., B;) Uberein.

Der Fall, dass K eine der Mengen 1 bis 8 ist, lasst sich ohne Miihe bewaltigen. Wir
iberlassen ihn dem Leser.
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5 Der Lésungsbereich fiir ein Ungleichungssystem mit zwei Unbekannten

5 Der Losungsbereich fiir ein Ungleichungssystem
mit zwei Unbekannten

Wir wollen unsere Aufgabe jetzt darin sehen, samtliche Losungen eines linearen Unglei-
chungssystems effektiv zu beschreiben.

In diesem Paragraphen wird diese Aufgabe fiir Systeme mit den beiden Unbekannten
x und y gelést. Ungeachtet dessen, dass die Anzahl der Unbekannten nicht groB (und
sogar nur gleich 2) ist, wollen wir uns bemiihen, solche Systeme von einem allgemei-
nen Standpunkt aus zu analysieren, damit wir die dabei erzielten Ergebnisse leicht auf
Systeme mit einer groBeren Anzahl von Unbekannten iibertragen kénnen.

Letzten Endes lasst sich die Losung eines beliebigen linearen Ungleichungssystems auf
das Losen einer Reihe von linearen Gleichungssystemen zuriickfiihren. Wir werden das
Losen linearer Gleichungssysteme als etwas Einfaches, als eine elementare Aufgabe
betrachten und uns nicht verwirren lassen, wenn wir diese Aufgabe mehrere Male aus-
fihren missen, um die dargestellte Methode zu realisieren.

5.1 Notwendige Lemmata
Gegeben sei das Ungleichungssystem

a1r +biy+c >0
asx + boy +co > 0
(1)
Am® + by + ¢ >0
Es erweist sich als zweckmaBig, gleichzeitig mit ihm das zugehorige homogene Unglei-
chungssystem
a1z + b1y >0
asx + by > 0
2)
am® + by >0

sowie das entsprechende homogene Gleichungssystem
air+biy=0
asx + boy = 0
@ + by = 0

zu betrachten.

Den Losungsbereich fiir System (1) werden wir in der Koordinatenebene xOy mit g,
den von System (2) mit &, und den von System (3) mit £ bezeichnen. Offenbar gilt
£ C R,, wo das Symbol C "ist Teilmenge von" E| bedeutet.

4Man darf das Symbol C nicht mit dem friiher eingefiihrten € verwechseln. Letzteres wird dann
angewendet, wenn es um die Zugehorigkeit eines Punktes zu einer Menge geht. Wenn wir den
Tatbestand aufschreiben wollen, dass eine Menge Teilmenge einer anderen ist, so werden wir das
Symbol C verwenden.
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5 Der Lésungsbereich fiir ein Ungleichungssystem mit zwei Unbekannten

Lemma 1. Es gilt die Teilmengenbeziehung
R+KR CR

d.h., die Summe einer beliebigen Lésung des gegebenen Ungleichungssystems mit einer
beliebigen Losung des entsprechenden homogenen Ungleichungssystems ist wiederum
Lésung des gegebenen Systems.

Beweis. Es sei A ein beliebiger Punkt aus 8 und B ein beliebiger Punkt aus K,. Dann
sind folgende Ungleichungen erfullt:

a1x4+01Yg+c1 >0 und airp + by > 0
LZQ{L'A-l-bQYA-I-CQ > 0 und a2$3+62y3 > 0

amxa+ b, Y4+ cpp >0 und amxp + bpyp >0

Wenn wir nun jede links stehende Ungleichung zu der entsprechenden rechten addieren,
erhalten wir

a1(xa+2xp)+bi(ya+yp)+c1 >0
as(xa+xp) +bo(ya +yp) +c2 >0

am(TA +2B) 4+ by (ya +yB) +cn >0

Diese Ungleichungen lassen sich aber so deuten, dass das Zahlen- paar x 4+, y4+y3,
d.h. die Koordinaten des Punktes A + B Ldsung des Ausgangssystems (1) sind, d.h.,
es ist A+ B € R, womit das Lemma bewiesen ist.

Lemma 2. a) Gehort ein Strahl mit dem Anfangspunkt A ganz zur Menge £ und ist P
ein beliebiger Punkt dieses Strahls, so ist P — A € R,.

b) Gehort eine Gerade ganz zur Menge £ und sind A und P zwei beliebige Punkte
dieser Geraden, so gilt P — A € £.

Beweis. a) Wir bezeichnen den Punkt P — A mit B. Der von uns zu betrachtende
Strahl besteht aus Punkten der Gestalt

A+ sB (4)

mit beliebigem nichtnegativem s (Abb. 32).

P
[
|
‘ 1
| |
j /_)B =P-A
e
L-"
Abb. 32 0
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5 Der Lésungsbereich fiir ein Ungleichungssystem mit zwei Unbekannten

Jeder dieser Punkte ist nach Voraussetzung Losung des Systems (1), d.h.

a1(za + srp) + bi(ya + syp) +c1 > 0
az(x4 + srp) + ba(ya + syp) +c2 > 0

(5)

am(zA + s2B) + bn(ya + syg) + ¢ >0

Wir betrachten zum Beispiel die erste dieser Ungleichungen. Sie kann in der Gestalt
(@174 + biya + 1) + s(map + biys) = 0

geschrieben werden. Da diese Ungleichung fiir jedes s > 0 gilt, muss, wie man leicht
sieht, der Koeffizient von s nichtnegativ sein:

aizp + biyp = 0
Analog kann man aus den anderen Ungleichungen von (5)
asrp + bayp > 0 amrB + bpyp > 0

erhalten. Daraus folgt, dass der Punkt B zur Menge R, gehort.

Der Beweis von b) wird analog gefiihrt. Die zu untersuchende Gerade besteht aus
Punkten der Form (4) mit beliebigem s. Daher sind die Ungleichungen (5) fiir beliebige
Werte von s erfiillt. Hieraus ergibt sich, dass der Koeffizient von s fiir jede dieser
Ungleichungen Null sein muss, d.h.

aixpg +biyg =0
asrp + boyp =0

amp + bmyB =0

Folglich gilt B € £, und das Lemma ist bewiesen. Man sieht leicht, dass Lemma 1 und
2 auch fiir Systeme mit mehreren Unbekannten gelten.

5.2 Der Fall eines normalen Ungleichungssystems (1)

Wir betrachten wiederum das Ungleichungssystem (1) und das ihm zugeordnete homo-
gene Gleichungssystem (3).

Das letzte hat die triviale Losung © = 0, y = 0. Diese Losung heiBt Nulllésung. Es zeigt
sich, dass es, wenn man (1) untersuchen will, wichtig ist zu wissen, ob das System (3)
auch eine Nicht-Nulllésung besitzt. Im Zusammenhang damit bringen wir die Definition.

Ein lineares Ungleichungssystem heiBt normal, wenn das zugeordnete lineare homogene
Gleichungssystem nur die Nulllésung besitzt.

Mit anderen Worten, ein Ungleichungssystem ist normal, falls die oben definierte Menge
£, d.h. der Lésungsbereich des zugeordneten Gleichungssystems, nur einen einzigen
Punkt enthalt (den Koordinatenursprung).
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5 Der Lésungsbereich fiir ein Ungleichungssystem mit zwei Unbekannten

Selbstverstandlich hat der Begriff des normalen Systems auch fiir eine beliebige Anzahl
von Unbekannten einen Sinn.

Es ist nicht schwer zu zeigen, dass ein l6sbares Ungleichungssystem dann und nur dann
normal ist, wenn sein Losungsbereich K keine Gerade enthalt.

Ist namlich das System normal, d.h. enthalt die Menge £ nur den Koordinatenursprung,
so enthalt K keine Geraden.

Das folgt auch unmittelbar aus der zweiten Behauptung von Lemma 2. Ist dagegen
das System nicht normal, so enthélt die Menge £ mindestens einen vom Koordina-
tenursprung verschiedenen Punkt B. Selbstverstandlich gehoéren auch alle Punkte kB
(k eine beliebige Zahl) zu £f]

In diesem Fall gehort aber nach Lemma 1 die Menge aller Punkte P + kB (k eine
beliebige Zahl) bei beliebig gewahltem Punkt P € 8 (und ein solcher Punkt l&sst sich
selbstverstandlich finden, weil das System l6sbar und daher der Bereich K nicht leer
ist) zu R.

Die konstruierte Menge ist, wie wir wissen, eine Gerade. Ist das System also nicht
normal, so enthalt der Bereich £ eine Gerade. Damit ist die obige Aussage vollstandig
bewiesen.

In diesem Paragraphen untersuchen wir den Lésungsbereich eines normalen Systems (1),
setzen also voraus, dass dieses System I6sbar (der Bereich K nicht leer) und normal ist.

Zuerst folgt aus der Tatsache, dass der Bereich K keine Geraden enthalt, dass er gewiss
eine Ecke besitzt. Mit dem Begriff Ecke verbinden wir folgenden (der anschaulichen
Bedeutung des Wortes "Ecke" ahnlichen) Sinn.

Unter einer Ecke eines Bereiches £ verstehen wir einen solchen Punkt des Bereiches,
der fiir keine ganz in K gelegene Strecke ein innerer Punkt ist. Mit anderen Worten,
eine Ecke ist ein Punkt A € K mit der Eigenschaft, dass jede in K liegende und durch
den Punkt A gehende Strecke in diesem Punkt ihren Anfang oder ihr Ende haben muss
(Abb. 33a und b, wo der Punkt A eine der Ecken ist; in Abb. 33b ist der Bereich &
eine Strecke).

b)

Abb. 33

Wir wollen nun eingehender erklaren, weshalb die uns interessierende konvexe Menge
R Ecken besitzt. Liegt K auf einer Geraden, so ist es entweder ein einzelner Punkt oder
eine Strecke oder ein Strahl, und die Existenz einer Ecke ist offenbar.

Liegt R dagegen nicht auf einer Geraden, so betrachten wir den Rand dieser Menge.
Er besteht aus Strecken und Strahlen (vollstandige Geraden enthalt R nicht). Offenbar

>Geniigen die Zahlen z, 9, z, d.h. die Koordinaten von Punkt B, einem homogenen Gleichungssystem,
so geniigen auch die Zahlen kz, ky, kz, d.h. die Koordinaten des Punktes kB, diesem System.
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5 Der Lésungsbereich fiir ein Ungleichungssystem mit zwei Unbekannten

sind die Endpunkte jeder solchen Strecke und der Anfang eines Strahles Ecken von R.

Die Ecken des Bereiches KR aufzufinden bereitet keine besonderen Schwierigkeiten. Zu-
nachst bemerken wir, dass der i-ten Ungleichung im System in der Koordinatenebene
2Oy eine Halbebene entspricht, deren berandende Gerade [; durch die Gleichung

a;x +by+c¢; =0 (1=1,2,...,m)

definiert wird. Offenbar ist ein Punkt A aus dem Bereich & dann und nur dann eine
Ecke, wenn er auf zwei verschiedenen berandenden Geraden liegt.

Wir wollen ein aus zwei Gleichungen bestehendes Teilsystem des Gleichungssystems

air+biy+c =0
asx + boy + co = 0

(6)

am® + by + ¢ = 0
reguldr nennen, falls dieses Teilsystem eine eindeutige Losung (x,y) besitzt.

Aus der obigen Charakterisierung der Ecken ergibt sich nun das folgende Verfahren zum
Auffinden der Ecken eines Bereiches K.

Um samtliche Ecken aufzufinden, muss man die Lésungen aller regularen Teilsysteme
von System (6) suchen und daraus diejenigen auswéhlen, die das Ausgangssystem (1)
erfillen.

Da die Anzahl der regularen Teilsysteme die Zahl (7;1) nicht tberschreitet (die Zahl der
Kombinationen zu 2 Elementen aus m), kann auch die Anzahl der Ecken des Bereiches
R nicht groBer sein. Somit ist die Anzahl der Ecken endlich.

Bemerkung. Aus dem oben Gesagten folgt: Besitzt der Losungsbereich K eines normalen
Systems keine Ecke, so ist dieser Bereich leer, und das System hat keine Losungen (ist
widersprichlich).

Beispiel 1. Man finde samtliche Ecken des durch das Ungleichungssystem

r+y+1>0
r—2y—22>0
20 —y—42>0
definierten Bereiches R.
Lost man die Teilsysteme
r+y+1=0 r+y+1=0 r—2y—2=0
r—2y—2=0 2c—y—4=0 2¢—y—4=0

(sie erweisen sich samtlich als regulér), so findet man die drei Punkte

0,-1), (1,-2), (2,0)
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5 Der Lésungsbereich fiir ein Ungleichungssystem mit zwei Unbekannten

von denen nur der zweite und der dritte alle gegebenen Ungleichungen erfiillen. Das
bedeutet: Ecken des Bereiches £ sind die Punkte A;(1, —2) und A5(2,0).

Wir kehren zum System (1) zuriick. Es seien A;, Ao, ..., A, samtliche Ecken des Berei-
ches R. Die Menge (A, As, ..., A,) sei die konvexe Hiille des Punktsystems Ay, As, ..., 4,,.
Sie liegt ebenfalls in & (denn R ist ein konvexer Bereich). Dann gehért nach Lemma 1
aber auch die Menge

(A1, Ag, .. Ap) + R

zu K. Wir werden beweisen, dass diese Summe in Wirklichkeit mit & Ubereinstimmt,
d.h., dass der folgende Satz gilt.

Satz. Ist ein Ungleichungssystem normal, so gilt
R=(A1,A4:,..,A4) + K

wobei Ay, Ag, ..., A, samtliche Ecken des Bereiches £ sind.

Beweis. Es sei P ein beliebiger von den Ecken des Bereiches verschiedener Punkt des
Bereiches K. Die Gerade A;P schneidet den konvexen Bereich & entweder in einer
Strecke A; A (Abb. 34) oder in einem Strahl mit dem Anfangspunkt in A; (Abb. 35).
Im zweiten Fall ist P — A; € &, (Lemma 2) und folglich P € A; + &,.

Abb. 34 und 35

Im ersten Fall dagegen (iberlegen wir wie folgt: Liegt der Punkt A auf einer beschrankten
Kante A;A; des Bereiches £ (wie in Abb. 34), so gehort P zur konvexen Hiille der
Punkte Al) Ai, Aj.

Abb. 36

Liegt jedoch der Punkt A auf einer unbeschriankten Kante mit dem Anfang in der
Ecke A; (Abb. 36), so gilt nach Lemma 1 die Beziehung A € A; + R,; also P €
(A1, A;) + Ro. Auf diese Weise zeigt sich, dass der Punkt P in allen Féllen zur Menge
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(A1, Ay, ..., Ay) + R, gehort. Der Satz ist damit bewiesen.

Da uns das Verfahren zum Auffinden der Ecken schon bekannt ist, brauchen wir zur
volligen Beschreibung des Bereiches & nur noch zu wissen, wie man den Bereich R,
findet. Dieser ist aber der Losungsbereich des homogenen normalen Systems (2). Wir
gehen jetzt dazu lber, ihn zu beschreiben.

5.3 Das homogene normale Ungleichungssystem (2)

Jede Ungleichung aus (2) definiert eine Halbebene, deren berandende Gerade durch den
Koordinatenursprung geht. Der Durchschnitt aller dieser Halbebenen ist genau gleich
K.

In unserem Fall finden sich unter den berandenden Geraden mindestens zwei verschiede-
ne (das System (2) ist normal). Folglich fallt K, entweder mit dem Koordinatenursprung
zusammen (z = 0,y = 0) oder ist ein Strahl mit der Ecke im Koordinatenursprung
oder ein Winkel kleiner als 180° mit dem Scheitel im Koordinatenursprung.

Abb. 37 ¢

Kennt man zwei Punkte By und B,, die auf verschiedenen Schenkeln dieses Winkels
liegen (Abb. 37), so kann man samtliche Punkte des Winkels in der Gestalt

B = tlBl + thQ (8)

mit beliebigen nichtnegativen Zahlen ¢ und ¢5 beschreiben. Die Punkte B; und Bs sind
leicht zu finden, wenn man beachtet, dass jeder von ihnen a) zu R, gehort, d.h. dem
System (2) geniigt, und b) auf der Begrenzung von R, liegt, d.h. einer der Gleichungen
(3) geniigt. Ist &, ein Strahl, so haben wir anstelle von (8) die Gleichung

B=1tB (9)

wobei Bj ein beliebiger Punkt dieses Strahles (verschieden vom Ursprung) und ¢ eine
beliebige nichtnegative Zahl ist.

Beispiel 2. Man bestimme den Losungsbereich K, des Systems

r+y>0
r—2y>0 (10)
20—y >0

sowie den Losungsbereich K des Systems in Beispiel 1.
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Losung. Das System (10) ist normal: Die einzige Losung des entsprechenden homogenen
Gleichungssystems

r+y=20
r—2y=0 (11)
20—y =10

ist (0,0).

Wir wahlen einen von (0,0) verschiedenen Punkt, der die erste Gleichung aus (11)
erfillt, zum Beispiel den Punkt C'(—1,1). Durch eine einfache Probe lberzeugen wir
uns, dass der Punkt C' nicht samtlichen Ungleichungen (10) geniigt. Folglich gehort
weder er selbst noch ein (vom Ursprung O verschiedener) Punkt des Strahles OC' zu
Ro.

Betrachten wir den Punkt —C' (d.h. den Punkt (1, —1)), so finden wir, dass er zu &,
gehort. Also ist By = (1, —1). Der zweiten Gleichung geniigt der Punkt (2,1).
y A
7%
7
//, 2 (2r 1)

//'

>

Ko X
“,
81(1,—1)'%
Abb. 38

Er ist auch Losung des Systems (10), so dass By = (2, 1) ist. Der Bereich & (Abb. 38)
besteht aus den Punkten

t1B1 + 2By = tl(l, —1) —+ t2(2, 1) = <t1 + 2t9, —11 + tg)

mit beliebigen nichtnegativen Zahlen ¢, und 5.

Wenn wir uns dem Ungleichungssystem im Beispiel 1 zuwenden, bemerken wir, dass
das ihm zugeordnete homogene Ungleichungssystem zugleich das System (10) ist. Nach
dem oben bewiesenen Satz gilt aber

R = (41, A) + R,

mit A;(1, —2) und A2(2,0) als Ecken von R. Somit besteht K aus den Punkten (Abb.
39)

S(l, —2) -+ (1 - S)(Z, 0) -+ (tl + 2t2, —tl + tz) = (2 — S+ tl + 2t2, —25 — tl + tz)

wobei s eine beliebige Zahl aus dem Intervall [0, 1] ist und t;, t2 beliebige nichtnegative
Zahlen sind.
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Abb. 39 und 40

Beispiel 3. Man finde den Lésungsbereich von

20 —y >0
—4x +2y >0
r+y=>0

Wenn wir wie beim Beispiel 2 verfahren, finden wir nur einen Strahl (Abb. 40):
B =1t(1,2) = (t,2t) (t>0)
Beispiel 4. Man bestimme den Losungsbereich von

20 —y >0
r+y>0
—3z+y=>0

In diesem Fall hat keine der Gleichungen
20 —y = 0; x4y =0; —3r+y=0

eine Losung (auBer (0,0)), die alle gegebenen Ungleichungen erfiillt. Der Bereich &,
besteht nur aus dem einzigen Punkt (0,0), dem Koordinatenursprung.

5.4 Das Ungleichungssystem (1) sei nicht normal

Das bedeutet, dass der Lésungsbereich £ fiir das homogene Gleichungssystem (3) nicht
nur den Koordinatenursprung enthalt. Folglich definieren samtliche Gleichungen (3) in
der Ebene ein und dieselbe Gerade, und diese Gerade ist £.

GemaB Lemma 1 enthalt der Bereich & zusammen mit jedem seiner Punkte P die
Gerade P + £ (die durch den Punkt P gehende, zu £ parallele Gerade).

Wir betrachten eine zu £ nicht parallele Gerade €. Sofern wir wissen, welche Punkte
der Geraden ¥ zum Bereich K gehoren (die Menge dieser Punkte bezeichnen wir mit
£z), so kdnnen wir auch den Bereich 8 selbst finden, denn dann ist R = Rz + £ (Abb.
41).

Die Gleichung der Geraden £ ist ayx + byy = 0. In dieser Gleichung ist- mindestens
einer der Koeffizienten a; oder b; von Null verschieden, etwa by # 0.
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e

yA .
| '..'//
/ /-
/ ~
/ ~
/
o
Abb. 41 4

Dann kann man als zu £ nicht parallele Gerade ¥ die y-Achse wahlen (ihre Gleichung
ist z = 0). In diesem Fall ist die Menge R«, die wir jetzt mit R, bezeichnen wollen, der
Teil der y-Achse, der in R fallt.
Um diese Menge zu finden, muss man im System (1) z = 0 setzen. Dann erhalt man
das Ungleichungssystem
biy+c1 >0
>
bay +c2 >0 (12)
by + ¢m 2> 0

mit einer Unbekannten y, dessen Losung keinerlei Schwierigkeit bereitet.ﬂ Wir weisen
darauf hin, dass die Menge £, entweder die leere Menge (dann ist auch 8 leer) oder
ein Punkt oder eine Strecke oder ein Strahl sein kann (aber nicht die ganze y-Achse,
denn sonst ist K die ganze Ebene, was unmdglich ist).
Wenn wir diese Menge gefunden haben, dann kennen wir auch den Bereich K, denn es
ist

R=K/K + £ (13)
(falls £ nicht parallel zur y-Achse ist).
Beispiel 5. Man bestimme den Lésungsbereich fiir

r+y—1>0
—x—y+2>0
20 +2y+3 >0
Es ist leicht zu sehen, dass das gegebene System nicht normal und £ die (nicht zur

y-Achse parallele) Gerade
r+y=0

ist. Setzt man z = 0, so erhadlt man das System
y—12>0
—y+2>0
20+3 >0

®Wir bemerken, dass das (als Ungleichungssystem mit einer Unbekannten angesehene) System (12)
normal ist. Sonst hatte das ihm zugeordnete homogene System eine von Null verschiedene Lésung,
aber dann hatte auch das System (3) eine Lésung. die von (0, 0) verschieden ist.
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aus dem zu ersehen ist, dass K, (der Durchschnitt von & mit der y-Achse) die Strecke
mit den Enden C1(0,1) und C5(0,2) ist. Das bedeutet, K ist die Menge der Punkte
der Gestalt (Abb. 42)

(O7y) + <I7 —:L’) = ('7;73/ - I)

mit vollig beliebigem x und beliebigem y im Intervall von 1 bis 2.

Abb. 42

Zum Schluss wollen wir kurz auf einen Satz eingehen, der sich aus diesen Resultaten
ergibt. In dem von uns stets betrachteten zweidimensionalen Fall (es spielt sich alles in
einer Ebene ab) macht dieser Satz keinen besonderen Eindruck, und man sollte ihn eher
als Ausgangspunkt fiir eine Verallgemeinerung auf den "n-dimensionalen" Fall ansehen.
Das wird in § 7 untersucht.

Satz. Jeder (nichtleere) konvexe polygonale Bereich R in der Ebene kann als Summe
(A1, Ay, ..., Ay) + (B, Ba, ..., By) (14)

dargestellt werden.

Das erste Glied dieser Summe ist die konvexe Hiille eines Punktsystems A;, A, ..., A,
das zweite die Menge aller Punkte der Form t1By + t2 By + ... + t,B, mit beliebigen
nichtnegativen Zahlen ¢y, %, ..., t,.

Der Beweis des Satzes kann mit wenigen Worten gefiihrt werden.

Wir betrachten ein Ungleichungssystem, das K liefert. Ist dieses System normal, so
gilt die Gleichung (7). Nehmen wir an, dass in dieser Gleichung K, eine der Mengen
(B1, B2), (B1) oder (O) (der Koordinatenursprung) ist, so finden wir, dass unsere
Behauptung fiir ein normales System gilt.

Ist das System nicht normal, so gilt Gleichung (13), aus der ebenfalls die Darstellbarkeit
von R in der gewiinschten Form folgt. (Warum ?)

Stimmen alle Punkte Ay, A,, ..., A, mit dem Koordinatenursprung O Uiberein, so stimmt
auch die Menge (A1, As, ..., A,) mit O iberein. Dann bleibt von der Summe (14) nur
das zweite Glied.

Wenn andererseits die Punkte Bi, B, ..., B, mit O (bereinstimmen, so stimmt die
Menge (B, B, ..., By) ebenfalls mit O iiberein, und von der Summe (14) bleibt nur
noch das erste Glied.
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Abb. 43

Der umgekehrte Satz gilt ebenfalls, wenn auch mit einem Vorbehalt:

Satz. Jede Menge der Gestalt
(A1, Ag, ..., Ap) + (B1, Bo, ..., By)

in der Ebene ist die ganze Ebene oder ein konvexer polygonaler Bereich in ihr.

Der Beweis ist ziemlich einfach. Das zweite Glied, d.h. der Bereich R, = (B4, B, ..., By),
ist die gesamte Ebene oder eine Halbebene oder ein Winkel (kleiner als 180°) oder ein
Strahl oder ein Punkt (der Koordinatenursprung). Dagegen stellt das erste Glied

R = (A1, A9, .., Ay

ein konvexes Polygon der. Die Menge R, + K, kann man erhalten, wenn man K, einer
Parallelverschiebung langs der Strecke O K unterwirft (wobei K ein beliebiger Punkt
aus R, ist) und die Vereinigung der erhaltenen Mengen nimmt (Abb. 43).

Man sieht leicht, dass man dabei die ganze Ebene (das ist der Fall, wenn K, die ganze
Ebene ist) oder einen konvexen polygonalen Bereich in ihr gewinnt.
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6 Der Losungsbereich fiir ein System mit drei
Unbekannten

Nach der im vorangegangenen Paragraphen gegebenen griindlichen Analyse konnen wir
nun, wenn wir Systeme mit drei Unbekannten untersuchen, die notige Theorie auf ein
Minimum beschranken.

Zusammen mit dem Ausgangssystem

amr+biy+ciz+d >0

am® + by + ¢z + diyy, >0
betrachten wir wiederum, wie in § 5, die beiden Systeme

a1 x + by +c12 >0

am® + by + ¢z > 0

und
ax +biy+cz=0

(3)

Am® + by + ¢z =0

Den Lésungsbereich fiir das System (1) bezeichnen wir wieder mit K, den fiir (2) mit K,
und den fir (3) mit £. Verwenden wir die friher eingefiihrte Terminologie, so kdnnen
wir sagen, dass K ein konvexer polyedrischer Bereich im Raum und K, ein konvexer
polyedrischer Kegel ist. Die Lemmata 1 und 2 aus § 5 gelten, wie schon bemerkt, auch
hier.

6.1 Das Ungleichungssystem (1) sei normal

Dann enthalt der Bereich & keine Geraden; folglich muss er mindestens eine Ecke
besitzen. Lage namlich K in einer Ebene (das ist tatsachlich moglich, wie in § 2 bemerkt
wurde), so ware K ein konvexer polygonaler Bereich in der Ebene, der keine Geraden
enthalt, also, wie in § 5, Teil B bewiesen wurde, sicher Ecken besitzen muss.

Liegt dagegen der Bereich K nicht in einer Ebene, so betrachten wir seinen Rand. Er
besteht aus ebenen Flachen, die samtlich Ecken besitzen miissen, weil sie polygonale
Bereiche darstellen, die keine Geraden enthalten.

Es ist aber leicht einzusehen, dass eine Ecke einer beliebigen Seitenflache zugleich auch
Ecke des Bereiches R ist.

In jeder Ecke A eines Bereiches K stoBen mindestens drei berandende Ebenen zu-
sammen, fiir die der Punkt A der einzige gemeinsame Punkt ist. Ware das namlich
nicht der Fall, so wiirden samtliche berandende Ebenen, die durch A gehen, entweder
zusammenfallen, oder sie hatten eine gemeinsame Gerade.

Dann wiirde aber eine hinreichend kleine, durch A gehende und in der gemeinsamen
berandenden Ebene oder auf der gemeinsamen berandenden Geraden liegende Strecke
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zu R gehoren, was der Definition einer Ecke widerspricht.

Diese Bemerkungen veranlassen uns, das in § 5, Teil B beschriebene Eckensuchverfahren
etwas zu modifizieren. Wir verstehen jetzt unter einem reguldren Teilsystem nicht ein
Teilsystem aus zwei, sondern eines aus drei Gleichungen des Systems

amr+biy+ciz+dy =0

(4)

am® + by + ez + dy, =0

falls die Losung (z,y, z) dieses Teilsystems eindeutig ist. Dann bleibt das Eckensuch-
verfahren genau dasselbe wie vorher:

Um samtliche Ecken des Bereiches £ zu finden, muss man die Losungen aller regularen
Teilsysteme des Systems (4) bestimmen und unter ihnen diejenigen aussondern, die das
Ausgangssystem (1) erfillen.

Auch der Satz aus § 5, Teil B bleibt in Kraft. Die zum Beweis notwendigen Anderun-
gen sind offensichtlich. Ferner bleibt die Bemerkung, dass ein normales System keine
Losungen besitzt, wenn der Bereich K keine Ecken hat, ebenfalls richtig.

Beispiel 1. Man bestimme die Ecken des Bereiches K, der durch das Ungleichungssystem

2r+y+z—1 >0
r+2y+2z—-1 >0 (5)
r+y+2z—-1 >0
t+y+z—1 >0

definiert wird.
In diesem Fall lautet das entsprechende homogene Gleichungssystem:

2r+y+2—1 =0
r+2y+z2—1 =0 (5)
r+y+22—1 =0
r+y+z—1 =0

Lost man es, so ergibt sich, das (0,0, 0) die einzige Losung ist. Das System (5) ist also
normal.

Um die Ecken aufzusuchen, miissen wir alle aus drei Gleichungen bestehenden Teilsys-
teme des Systems (5') betrachten:

2v+y+z2—1 =0 2x+y+2—1 =0
r+2y+z—1 = r+2y+z2z—1 =0
r+y+22—1 =0 r+y+z2z—1 =0
2r+y+2—1 =0 r+2y+z—1 =0
r+y+2z—1 = r+y+2z2—1 =0
r+y+z2z—1 =0 r+y+z2z—-—1 =0
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Wenn wir die nétigen Rechnungen ausfiihren, finden wir, dass samtliche Teilsysteme
regular sind; ihre Losungen sind die Punkte
111
- == 0,0,1 0,1,0 1,0,0
(111): @O0 OLo. (100
von denen nur der erste dem System (5) nicht geniigt. Folglich lauten die Ecken des

Bereiches R:
A1(1,0,0), A5(0,1,0), As(0,0,1)

6.2 Das homogene Ungleichungssystem (2) sei normal

Jede Ungleichung aus (2) definiert einen Halbraum, dessen berandende Ebene durch
den Koordinatenursprung geht.

In unserem Falle ist der Durchschnitt der berandenden Ebenen ein einziger Punkt, und
zwar der Koordinatenursprung (System (2) ist normal!) Mit anderen Worten, die Menge
R,, der Lésungsbereich des Systems (2), ist ein konvexer polyedrischer Kegel mit einer
einzigen Spitze.

Aus der in § 4 gegebenen Aufzahlung der konvexen polyedrischen Kegel folgt, dass in
unserem Fall K, entweder eine unendliche konvexe Pyramide oder ein ebener Winkel
oder ein Strahl oder schlieBlich ein Punkt (der Koordinatenursprung) ist. Den letzten
Fall lassen wir einstweilen beiseite. In allen tbrigen Fallen haben wir

R = (By, By, ..., By)

wobei By, By, ..., B, irgendwelche Punkte sind, die jeweils auf einer Kante des Kegels
Ro (vgl. § 4, Satz 2) gewahlt wurden.

Solche Punkte kann man finden, wenn man von folgenden Erwagungen ausgeht. Jeder
von ihnen gehdrt a) zu K, d.h. erfiillt System (2), und b) zur Schnittlinie zweier
verschiedener Seiten, d.h. erfiillt zwei nichtproportionald’| Gleichungen aus System (3).

Wenn der Punkt (0,0, 0) der einzige den Bedingungen a) und b) geniigende Punkt ist,
fallt der Bereich K, mit dem Koordinatenursprung zusammen.

Beispiel 2. Man bestimme den Losungsbereich K, fiir das System

2c+y+z2 >0
r+2y+z >0 (6)
r+y+2z >0
r+y+z >0

und ferner den Losungsbereich R fiir das System in Beispiel 1.
1.5ex] Zuerst bemerken wir, dass das System (6) zu dem Ungleichungssystem (5) aus

"Zwei Gleichungen ax + by + ¢z = 0 und a’z + b'y + ¢’z = 0 nennen wir nichtproportional, wenn

von den GréBen %,b—l’,,ﬁ mindestens zwei verschieden sind. In diesem Fall schneiden sich die

entsprechenden Ebenen in einer Geraden (sind die GroBen samtlich einander gleich, so sind die
Ebenen parallel).
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Beispiel 1 gehort; (6) ist ndmlich das dem System (5) entsprechende homogene System.
Folglich ist das System (6) normal.
Im gegebenen Fall kann man auf sechs verschiedene Arten ein System aus zwei nicht-
proportionalen Gleichungen bilden:

r+2y+z >0 2c+y+2 >0 2c+y+2 >0
r+y+2z >0 r+y+2z >0 r+y+z >0

2c+y+z2 >0 r+2y+z >0 r+y+2z >0
r+2y+z >0 r+y+z >0 r+y+z >0

Fir jedes dieser sechs Systeme wahlen wir zwei von Null verschiedene Losungen: (z, y, 2)
und (—z,—y, —z). Zum Beispiel kann man fir das erste System (3,—1,—1) und
(—3,1,1) nehmen. Nur die erste dieser Losungen erfiillt die Ungleichungen (6). Hieraus
erhalten wir den Punkt By = (3, —1, —1).

Verfahrt man analog mit den restlichen fiinf Systemen, so findet man die Punkte By =
(—=1,3,—1) und Bs = (—1,—1,3). Somit besteht der Bereich K, aus Punkten der
Gestalt

t1By + tgBy + tsBs = (3t1 — ty — tg, —ty + 3ty — t3, —t1 — to + 3t3)

mit beliebigen nichtnegativen Zahlen %4, to, t5.

Wir wenden uns nun dem Ungleichungssystem (5) aus Beispiel 1 zu. Wie schon bemerkt,
ist das ihm zugeordnete homogene System gerade das System (6). Folglich hat der
Bereich K die Gestalt

(A1, Ag, As) + Ro

und besteht aus den Punkten

$1A71 + s9Ao + s3A3 + 181 + t9 By + 383
= 51(17 0, 0) + 32<07 1, O) + 33(07 0, 1) + t1<37 —1, _1) + t2(_17 3, _1) + t3(_17 —1, 3)
= (Slgtl — tQ — tg, S9 — tl -+ 3t2 — t3, S§3 — tl — t2 + 3t3)

mit beliebigen nichtnegativen Zahlen ¢, t9, t3 und nichtnegativen s1, s9, s3 deren Sum-
me 1 ist.

6.3 Das Ungleichungssystem (1) sei nicht normal

Das bedeutet, dass der Losungsbereich £ fiir das homogene Gleichungssystem (3)
Punkte enthalt, die vom Koordinatenursprung verschieden sind. Da £ ein Durchschnitt
von Ebenen ist, sind zwei Falle moglich:

1. £ ist eine Gerade. Nach Lemma 1 enthalt der Bereich zusammen mit jedem seiner
Punkte P die Gerade P + £. Wir betrachten eine zu £ nicht parallele Ebene ¥.
Wenn wir wissen, welche Punkte der Ebene ¥ zum Bereich & gehoren (wir bezeichnen
die Menge dieser Punkte mit Rg), so kénnen wir auch den Bereich 8 selbst finden,
denn dann ist & = Rz + £.
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Abb. 44

Nun kann man stets, wie auch die Gerade £ gelegen ist, als zu ihr nichtparallele Ebene
¢ eine der Koordinatenebenen x Py, Oz oder yOz wahlen.

Nehmen wir zum Beispiel an, £ sei nicht parallel zur Ebene yOz. Wir nehmen diese
Ebene als ‘T. In diesem Fall ist die Menge £z, die wir nun mit £, ; bezeichnen werden,
der Teil der Ebene yOz, der in den Bereich R fallt (Abb. 44). Um diese Menge zu finden,
muss man im System (1) x = 0 setzen. Dann erhalten wir das Ungleichungssystenﬁ

biy+ciz+dy >0

(7)

by + cmz + dpy >0

das mit Methoden gelost werden kann, die in § 5 entwickelt wurden.
Wenn wir die Menge K, ; bestimmt haben, kénnen wir

R=Ry,+ R (8)

schreiben (falls die Gerade £ zur Ebene yOz nicht parallel ist), womit der Bereich £
vollstandig beschrieben ist.

Bemerkung. Ist die Menge R,; leer, so ist auch R leer. Das bedeutet, dass das System
(1) widerspriichlich ist.

Beispiel 3. Man bestimme den Losungsbereich K fiir das System

—2z+y+z2—-1>20
—3r—y+4z—1>0 (9)
—xr—2y+32>0

Wir betrachten das zugeordnete homogene Gleichungssystem

—2r+y+2z=0
—3r—y+42=0 (10)
—xr—2y+3z=0

Wenn wir es l6sen wollen, stellen wir fest, dass die dritte Gleichung eine Folge der
ersten beiden ist, so dass sich das System auf die ersten beiden Gleichungen reduziert.
Die Menge £ ihrer Losungen ist die Gerade, in der sich die Ebenen

—2r+y+z2=0 und —3r—y+42=0

8Das System (7) ist, wie man unschwer erkennt, schon normal.
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schneiden.

Wir wahlen einen Punkt B auf der Geraden £, der vom Koordinatenursprung verschie-
den ist. Dazu geniigt es, drei Zahlen z, y, z (die nicht gleichzeitig Null sind) zu suchen,
die den ersten beiden Gleichungen des Systems (10) gentigen. Wir nehmen zum Beispiel
1,1, 1.

Somit ist £ die Gerade OB mit B = (1,1, 1).

Es ist leicht zu sehen, dass die Gerade £ nicht parallel zur Koordinatenebene yOz ist.
Setzen wir im System (9) x = 0, so erhalten wir das System

y+z—1 >0
—y+4z—-1 >0
—2y + 3z >0

mit den beiden Unbekannten y und z, das normal ist. Seinen Losungsbereich & ; kann
man mit der in § 5 dargelegten Methode auffinden. Nachdem wir die notwendigen
Rechnungen durchgefiihrt haben, finden wir, dass K die Menge ist, die nur aus dem
Punkt A (%, %) (in der Ebene yOz) besteht. Folglich besteht der gesuchte Bereich &
aus allen Punkten der Gestalt

3 2 3 2
A+tB = =, = t(1,1,1)=(t,t+ -, t + =
+ <07575>+ (7 ) ) (7 +57 +5>

wobei ¢ eine beliebige nichtnegative Zahl ist (der Bereich R ist eine zu £ parallele
Gerade).

2. £ ist eine Ebene. Dann nehmen wir als schneidende Menge T eine nicht zu dieser
Ebene parallele Gerade. Insbesondere kann man eine der Koordinatenachsen wahlen.
Wir nehmen zum Beispiel an, dass die z-Achse nicht parallel zu £ ist, und nehmen sie
als 3. Um die Menge RK;, den Teil der z-Achse zu finden, der in K hineinfallt, missen
wir im System (1) = = 0,y = 0 setzen. Dann erhalten wir das Ungleichungssystem

cz+dy >0

(11)

cmz+d, >0

das ohne Schwierigkeiten gelost werden kann.ﬂ Ist die Menge R;, gefunden, so kénnen
wir (vgl. Abb. 45)

schreiben (falls die Ebene £ nicht parallel zur z-Achse ist), womit K vollstandig be-
schrieben ist.

Bemerkung. Ist die Menge &, leer, so ist £ leer. In diesem Fall ist System (1) wider-
sprichlich.

9System (11) ist normal.
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Abb. 45 ¥
Beispiel 4. Man bestimme den Losungsbereich R fiir das System

r—y+z+1 20} (13)

—r+y—z2+2 >0

Im vorliegenden Fall hat das zugeordnete homogene Gleichungssystem die Gestalt

r—y+z =0
AR (19

Hier ist die zweite Gleichung eine Folge der ersten, deshalb ist der Losungsbereich des
Systems (14) die durch die Gleichung

r—y+z=0

definierte Ebene £. Man sieht leicht, dass diese Ebene die z-Achse in einem einzigen
Punkt schneidet, also nicht parallel zu ihr ist.

Wir suchen nun die Menge ;.

Setzen wir im System (13) x = 0,y = 0, so erhalten wir das System

z+1 >0
—z+2 >0
aus dem
—1<2<2 (15)

folgt. Somit ist K die Menge &; + £, die aus den Punkten der Gestalt
(O7O7Z> + ($>y7—$+y> = (x,y,z—x+y)

besteht, wobei = und y beliebig sind und z die Ungleichung (15) erfiillt.

Wir beenden diesen Paragraphen mit der Formulierung zweier Satze, die eine Verallge-
meinerung der letzten beiden Satze aus § 5 auf den dreidimensionalen Fall darstellen.
Die einzige Anderung, die dafiir in der Formulierung bei dem in Erinnerung gerufenen
Satz von § 5 durchgefiihrt werden muss. besteht darin, dass das Wort "Ebene" durch
das Wort "Raum" zu ersetzen ist.
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Satz. Jeder (nichtleere) konvexe polyedrische Bereich im Raum kann als Summe
(A1, Ag, ..., Ay + (By, Ba, ..., By)

dargestellt werden.

Satz. Jede Menge der Gestalt
(Ay, Ag, ..., A)) + (By, By, ..., By)

im Raum ist entweder der ganze Raum oder ein konvexer polyedrischer Bereich darin.
Die Beweise der beiden Satze sind fast wortliche Wiederholungen der Beweise der
entsprechenden Satze im zweidimensionalen Fall. Wir (iberlassen sie dem Leser.
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7 Lineare Ungleichungssysteme mit mehreren
Unbekannten

In den vorhergehenden Paragraphen konzentrierten wir unsere Aufmerksamkeit auf Un-
gleichungssysteme mit zwei oder drei Unbekannten. Diese Beschrankung wurde in der
Hauptsache durch zwei Umstande diktiert: erstens dadurch, dass die Untersuchung die-
ser Systeme unkompliziert ist und ganz im Rahmen der "Schulmathematik" liegt, und
zweitens (und das ist im vorliegenden Fall wesentlicher) dadurch, dass die Lésung der-
artiger Systeme einen anschaulichen geometrischen Sinn hat (Punkte in einer Ebene
oder im Raum).

In den Anwendungen (zum Beispiel auf lineare Optimierungsprobleme) treten jedoch
Ungleichungssysteme auf, bei denen die Anzahl n der Unbekannten groBer als 3 ist.
Sie mit Schweigen zu libergeben, hieBe die Darstellung der Probleme sehr diirftig zu
gestalten. Daher wollen wir, allerdings nur kurz, darstellen, wie die Lage bei beliebigem
n > 3 ist.

Zur geometrischen Deutung linearer Ungleichungssysteme mit n Unbekannten miissen
wir uns dem sogenannten n-dimensionalen Raum zuwenden.

Wir beginnen damit, dass wir die entsprechenden Begriffe definieren, wobei wir uns auf
die allernétigsten beschranken.

Unter einem Punkt im n-dimensionalen Raum versteht man eine geordnete Menge von
n Zahlen
L1,T2, ..y Tp

die man die Koordinaten nennt. Das Motiv fiir diese Definition ist der fiir die analytische
Geometrie grundlegende Tatbestand, dass ein Punkt in der Ebene durch ein Zahlenpaar
und im Raume durch ein Zahlentripel charakterisiert wird. Statt zu sagen, "der Punkt
M habe die Koordinaten z1, xo, ..., z,", werden wir im folgenden M = (x4, xo, ..., z,)
oder einfach M (z1, xs, ..., z,,) schreiben. Der Punkt (0,0, ...,0) heiBt Koordinatenur-
sprung oder einfach Ursprung.

Zuerst wollen wir sagen, was unter einer "Strecke"im n-dimensionalen Raum zu verste-
hen ist. GemaB § 1 kann im gewohnlichen Raum die Strecke M1M> als Menge aller
Punkte der Gestalt

s1 My + so My

mit beliebigen nichtnegativen Zahlen sq, sy deren Summe 1 ist, charakterisiert werden.

Im n-dimensionalen Raum verwenden wir diese Charakterisierung als Definition der
Strecke. Genauer, sind

/ / / / i 1 1 "

M'(z7, 25, ..., x)) und M" (27, x5, ..., x])

zwei beliebige Punkte im n-dimensionalen Raum, dann wird die Menge aller Punkte
den Form

sSM' + s"M" = (2 + "2, s'aly + "y, ..., s'al, + §"2l)) (1)

47



7 Lineare Ungleichungssysteme mit mehreren Unbekannten

mit zwei beliebigen nichtnegativen Zahlen s, s”, deren Summe gleich 1 ist, die Strecke
M'M" genannt. Fiir s = 1, s” = 0 erhalten wir den Punkt M’ fiir s =0,s” = 1 den
Punkt M".

Dies sind die Endpunkte der Strecke M'm”. Die iibrigen Punkte der Strecke (die man
fur s’ > 0,s” > 0 erhalt) heiBen innere Punkte der Strecke.

Von den weiteren Begriffen, die sich auf den n-dimensionalen Raum beziehen, brauchen
wir den Begriff der Hyperebene.

Damit wird der Begriff der Ebene im gewohnlichen dreidimensionalen Raum verallge-
meinert. Die Vorsilbe "Hyper" hat hier einen wohlbestimmten Sinn. Im n-dimensionalen
Raum sind namlich "Ebenen" verschiedener Typen méglich: eindimensionale "Ebenen”
(sie werden Geraden genannt), zweidimensionale "Ebenen" usw., schlieBlich (n — 1)-
dimensionale "Ebenen", und gerade diese werden "Hyperebenen" genannt.

Definition. Unter einer Hyperebene im n-dimensionalen Raum versteht man die Gesamt-
heit der Punkte M(x1, 2, ...,x,), deren Koordinaten eine Gleichung ersten Grades

a1r1 + asxs + ... +apxy, +0=0 (2)

erfillen, wobei mindestens eine der Zahlen (Koeffizienten) a4, as, ..., a, von Null ver-
schieden ist.

Fir n = 3 nimmt Gleichung (2) die Gestalt a;zy + asxs + asxs + b = 0 an. Das ist
nichts anderes als die Gleichung einer Ebene im gewohnlichen Raum (hier wurden die
Koordinaten mit x1, x5, x3 und nicht wie gewohnlich mit x,y, z bezeichnet).

Durch eine Hyperebene (2) wird der ganze n-dimensionale Raum in zwei Teile geteilt:
in den Bereich, in dem die Ungleichung

a1, + asxo + ... +apx, +b>0 (3)
und in denjenigen, in dem
1Ty + asxo + ... +apxr, +b <0 (4)

erfillt ist. Diese Bereiche heiBen Halbraume. Somit teilt jede Hyperebene den ganzen
Raum in zwei Halbraume, deren Durchschnitt sie ist.

Der Begriff des konvexen Korpers lasst sich ebenfalls auf den n-dimensionalen Fall
verallgemeinern. Eine Punktmenge im n-dimensionalen Raum heiBt konvex, wenn sie
mit je zweien ihrer Punkte M’ und M” auch die ganze Strecke M’'M" enthilt.

Es lasst sich leicht zeigen, dass jeder Halbraum eine konvexe Menge ist. Die Punkte
M'(x), 2, ..., x)) und M7 (2 2, ..., x!") mogen etwa dem Halbraum (3) angehoren.

Wir beweisen, dass dann auch jeder Punkt M der Strecke M’'M" diesem Halbraum
angehort.

Die Koordinaten des Punktes M lassen sich in der Gestalt (1) oder, was dasselbe ist,
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in der Form

ry = sr) + (1 — s)a,

x9 = sxh+ (1 — s)ab,

r, = sv + (1 —s)z!

(0 < s < 1) darstellen. Setzen wir diese Ausdriicke in die linke Seite von (3) ein, so
erhalten wir

ar(sxy + (1 — 8)xy) + as(sah + (1 — 8)xs) + ... + ap(szl, + (1 — s)z”) + b
= s(a17) + asxhy + ... + ap)) + (1 — s)(a12] + agxhy + ... + az))

dabei haben wir die Zahl b durch die Summe sb+ (1 — s)b ersetzt, und dieser Ausdruck
ist gleich
slarx] + ...+ apz), + 0] + (1 — 8)[arz] + ... + a2 b]

Jede der beiden Summen in den eckigen Klammern ist nichtnegativ, weil die beiden
Punkte M’ und M” im Halbraum (3) liegen. Folglich ist auch der ganze Ausdruck
nichtnegativ (denn es ist s > 0 und (1 —s) > 0). Somit ist gezeigt, dass der Punkt M
zum Halbraum (3) gehort, d.h., dass dieser Halbraum konvex ist.

Hiernach ist es nicht schwer zu verstehen, welche geometrische Terminologie man bei
linearen Ungleichungssystemen mit n Unbekannten zu verwenden hat. Gegeben sei das
System

ai1xr, + asxs + ... +apx, +a >0

r12x1 + o+ ... + ey, +¢ >0

Jede dieser Ungleichungen definiert einen Halbraum, das System also einen Bereich &
im n-dimensionalen Raum. (Wenn das System widerspriichlich ist, ist & leer.) Dieser
Bereich ist der Durchschnitt endlich vieler Halbraume und. somit konvex.

In Analogie zum dreidimensionalen Fall nennen wir einen Bereich im n-dimensionalen
Raum, welcher Durchschnitt endlich vieler Halbraume ist, einen konvexen polyedrischen
Bereich und, wenn dieser Durchschnitt eine beschrankte Menge ist, einfach konvexes
Polyeder.

Hier ist der Begriff "beschrankte Menge" in dem Sinne zu verstehen, dass die abso-
luten Betrage der Koordinaten aller Punkte des betrachteten Bereiches eine gewisse
Konstante ¢ nicht iiberschreiten:

21 < €, 2l <

fur alle Punkte des gegebenen Bereiches.

Somit ist die Gesamtheit der Punkte im n-dimensionalen Raum, deren Koordinaten dem
System (5) gentigen, ein konvexer polyedrischer Bereich &, namlich der Durchschnitt
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7 Lineare Ungleichungssysteme mit mehreren Unbekannten

aller Halbraume, die den Ungleichungen des gegebenen Systems entsprechen.

Wir wiederholen, dass wir diesen Bereich ein konvexes Polyeder nennen, wenn er be-
schrankt ist.

Die Methode der expliziten Beschreibung eines Bereiches K, die wir in § 5 fiir Systeme
mit zwei Unbekannten und in § 6 fiir Systeme mit drei Unbekannten betrachteten, kann
mit entsprechenden Anderungen auf den Fall von n Unbekannten iibertragen werden.
Allerdings werden wir darauf nicht eingehen, da eine erschopfende Darstellung sehr viel
Platz erfordern wiirde. AuBerdem ist diese Methode bei einer groBeren Anzahl von Un-
bekannten wenig effektiv: Sie bringt einen ibermaBig groBen Rechenaufwand mit sich.

Es ist bemerkenswert, dass die allgemeinen Satze iiber die Konstruktion konvexer po-
lyedrischer Mengen im dreidimensionalen Raum auch fiir den n-dimensionalen Raum
gultig bleiben, wenn auch die Beweise komplizierter sind. Wir beschranken uns auf die
Formulierung dieser Satze und die dazu nétigen Erklarungen.

Satz 1. Die konvexe Hiille jedes endlichen Systems von Punkten A;, As, ..., A, ist ein
konvexes Polyeder.

Um die Bedeutung dieses Satzes hervortreten zu lassen, weisen wir auf folgendes hin:
Es geht hier um den Zusammenhang zwischen zwei auf ganz verschiedene Arten defi-
nierten Typen von Mengen; die konvexe Hiille des Systems der Punkte A;, As, ..., A,
die mit (A, Ao, ..., A,) bezeichnet wird, ist als Menge aller Punkte der Gestalt

SlAl —+ SQAQ + ...+ Squ

mit nichtnegativen Zahlen sy, so, ..., 54, deren Summe 1 ist, definiert, wahrend konvexe
Polyeder beschrankte Bereiche sind, die sich als Durchschnitt endlich vieler Halbraume
ergeben.

Im zwei- und im dreidimensionalen Raum ist Satz 1 anschaulich klar (aus der anschau-
lichen Bedeutung der konvexen Hiille), im mehrdimensionalen Fall ist er keinesfalls
offensichtlich und muss bewiesen werden.

Satz 1' (Umkehrung zu Satz 1). Jedes konvexe Polyeder ist die konvexe Hiille eines
endlichen Punktsystems.

Man kann sogar noch mehr behaupten: Jedes konvexe Polyeder stimmt mit der kon-
vexen Hiille seiner Ecken tberein. Die Definition einer Ecke ist genau dieselbe wie im
zweidimensionalen Fall (eine Ecke ist ein Punkt des Polyeders, der nicht innerer Punkt
einer ganz im Polyeder enthaltenen Strecke ist). Man kann zeigen, dass die Anzahl der
Ecken stets endlich ist.

Satz 2. Jede Menge der Gestalt (B, B, ..., B;) stimmt entweder mit dem ganzen
Raum (berein oder ist ein konvexer polyedrischer Kegel mit einer Spitze im Koordina-
tenursprung.

Wir erinnern daran, dass das Symbol (B, By, ..., B,) die Menge aller Punkte bezeich-
net, die sich in der Form
tlBl + t2B2 + ...+ thq
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7 Lineare Ungleichungssysteme mit mehreren Unbekannten

mit nichtnegativen Zahlen ¢1, s, ..., t, darstellen lassen. Ein konvexer polyedrischer Ke-
gel wird als Durchschnitt endlich vieler Halbraume definiert, deren berandende Hyper-
ebenen einen gemeinsamen Punkt haben (die Spitze des Kegels). Die Giiltigkeit von
Satz 2 im dreidimensionalen Raum wurde in Satz 1 von § 4 nachgewiesen.

Satz 2" Jeder konvexe polyedrische Kegel mit einer Spitze im Koordinatenursprung
kann in der Form (B, Bs, ..., B,) dargestellt werden.

Die Gliltigkeit fir den dreidimensionalen Fall wurde in Satz 2 von § 4 bewiesen.

Satz 3. Jeder konvexe polyedrische Bereich kann als Summe
(A1, Ay, ..., Ay) + (B, Ba, ..., By)

dargestellt werden.

Satz 3" Jede Summe der angegebenen Art ist entweder der ganze Raum oder ein
konvexer polyedrischer Bereich.
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8 Unlosbare Systeme

Bisher interessierten uns vorzugsweise solche Ungleichungssysteme, die mindestens eine
Losung besitzen (die losbar sind). Die entsprechenden Bereiche (in der Ebene oder im
Raum) stellten nichtleere Punktmengen dar.

Was unlosbare Systeme betrifft, so konnte man deren Studium auf den ersten Blick
als unnotige Beschaftigung ansehen; es kommt einem zunachst unwahrscheinlich vor,
dass solche Systeme hinreichend interessant sind und eine gehaltvolle Theorie liefern
konnten. Aber das ist tatsachlich nur "auf den ersten Blick" so.

In Wirklichkeit ist die Sache ganz anders: Die Eigenschaften unlosbarer Systeme sind
nicht nur an sich von Interesse, sondern sie liefern auch den Schliissel zum Verstandnis
einer ganzen Reihe wichtiger Tatsachen. So wird zum Beispiel der Hauptsatz der linea-
ren Optimierung (der Dualitatssatz, vgl. § 10) letzten Endes aus einigen Eigenschaften
unlosbarer Systeme hergeleitet.

Wir betrachten ein beliebiges lineares Ungleichungssystem. Der bequemeren Schreib-
weise halber werden wir einstweilen annehmen, die Anzahl der Unbekannten sei gleich 3,
obgleich sich unsere Ausfiihrungen gleichermaBen auch auf Systeme mit n Unbekannten
ibertragen lassen.

Es sei also das System

ax +biy+ciz+dy >0
asx + boy 4+ coz +do > 0 (1)

am® + by + ez + dp >0

gegeben. Wir multiplizieren beide Seiten der ersten Ungleichung von (1) mit einer
nichtnegativen Zahl k;, beide Seiten der zweiten mit einer nichtnegativen Zahl k5 usw.,
und addieren die so entstehenden Ungleichungen. So kommen wir zu der Ungleichung

(1{31(11 + ]{Zzag + ...+ ]{?mCLm>CE’ —+ (l{flbl + ]{?262 + ...+ kmbm)y
+(/~€101 + kQCQ + ...+ kmCm)Z -+ kldl -+ kgdg + ...+ kmdm =0 (2)

die wir Linearkombination der Ungleichungen (1) nennen.
Es kann vorkommen, dass sich eine Linearkombination der Ungleichungen (1) als Un-
gleichung der Form

0-240-y+0-24+d>0 (3)

herausstellt, wobei d eine negative Zahl ist (nach Division durch d1 erhalt man die
Ungleichung —1 > 0). Es ist klar, dass kein System von Werten fiir die Unbekannten
eine solche Ungleichung erfiillen kann. Daher ist das System (1) im betrachteten Fall
unldsbar (die Ungleichungen sind unvertraglich).

Es ist durchaus bemerkenswert, dass auch die Umkehrung dieser Aussage gilt:

Ist das System (1) unldsbar, so hat eine geeignete Linearkombination seiner Unglei-
chungen die Gestalt (3).
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8 Unlésbare Systeme

Diese Aussage beweisen wir gleich in allgemeiner Form (d.h. fiir Systeme mit mehreren
Unbekannten), vorher aber geben wir folgende

Definition. Die Ungleichung
ar +by+cz+d>0

soll unlosbar heiBen, wenn es kein System von Werten fiir die Unbekannten gibt, das
sie erfullt.

Offenbar hat jede unldsbare Ungleichung die Gestalt (3) mit d < 0 (warum 7). Die
Aussage, die wir beweisen wollen, kann man nun als folgenden Satz formulieren.

Satz liber unlosbare Ungleichungssysteme. Ist ein lineares Ungleichungssystem unlosbar,
so gibt es eine geeignete Linearkombination dieser Ungleichungen, die eine unlésbare
Ungleichung ist.

Beweis. Wir fuhren den Beweis durch Induktion Uber die Anzahl n der Unbekannten in
unserem System.
Fir n = 1 lautet das System:

(111‘—1—6120
CLQSC—f—bQZO

(4)

amx + b, >0

Man kann annehmen, alle Koeffizienten a4, as, ..., a,, seien von Null verschieden. Ware
namlich zum Beispiel a; = 0, so hatte die erste Ungleichung die Gestalt 0-z + b; > 0.
Ist die Zahl b; nichtnegativ, so kann man diese Ungleichung weglassen, ist sie jedoch
negativ, so ist schon die erste Ungleichung des Systems unlésbar, und dann ist nichts
mehr zu beweisen.

So diirfen wir also annehmen, keine der Zahlen a4, ao, ..., a,, sei Null. Man sieht leicht,
dass sich unter diesen Zahlen sowohl positive als auch negative befinden missen:
Hatten namlich alle angegebenen Zahlen ein und dasselbe Vorzeichen, waren sie zum
Beispiel positiv, so konnte man das System (4) auf die Form

r> b
Z T
x>
Z T
x > —bm
Z “a.

bringen, es ware also l6sbar.
Wir nehmen nun, um etwas Bestimmtes vor Augen zu haben, an, die ersten k der
Zahlen aq, as, ..., a,, seien positiv und die Gbrigen m — k negativ. Dann ist das System
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8 Unlésbare Systeme

(4) aquivalent mit dem System

x>
i
b
x > k
= T
T < b1 (5)
- Ak41
r< —bm
S

Unter den Zahlen —%, .

im System (5) die ersten k Ungleichungen einfach durch die erste Ungleichung ersetzt
werden.

Analog wahlen wir unter den Zahlen —zi—i, - —2—’:1 die kleinste, sagen wir —2—2; dann
konnen die restlichen m — k Ungleichungen des Systems (5) analog durch die entspre-
chende Ungleichung ersetzt werden. Somit ist das System (4) aquivalent dem aus den

beiden Ungleichungen

. —2—: wahlen wir die groBte; dies sei etwa —%. Dann konnen

bl bm
r > —— ; r < —
aq A
entstehenden System; dieses System ist sicher unlosbar, wenn
bl bm
- > — 6
o (6)
gilt. Aus (6) ergibt sich
bnar = biay <0 (7)

(man muss berticksichtigen, dass a; > 0 und a,, < 0 gilt).
Multipliziert man nun die erste Ungleichung von (4) mit der positiven Zahl —a,, und
die letzte mit der positiven Zahl a; und bildet dann die Summe, so erhalt man die
Ungleichung

0-z+ (bpay — bray,) >0

die wegen (7) unlésbar ist. Somit gilt der Satz in Systemen mit einer Unbekannten.

Wir nehmen nun an, die Behauptung des Satzes gelte fiir Ungleichungssysteme mit n—1
Unbekannten, und beweisen unter dieser Voraussetzung ihre Giiltigkeit fiir Systeme mit

n Unbekannten.

Gegeben sei ein unlosbares lineares Ungleichungssystem mit den Unbekannten xq, xo, ..., ;.
Wir betrachten eine beliebige Ungleichung des Systems. Sie habe die Gestalt

a1x1+ ... + ap_1Tp—1+ apx, +b >0
oder, nachdem das Glied a,x, auf die rechte Seite gebracht wurde,
a1r1+ ... +ap-1¢,-1+b> —a,x,

Ist a,, = 0, so lassen wir diese Ungleichung unverandert. Ist a,, < 0, so dividieren
wir beide Seiten der Ungleichung durch die positive Zahl —a,,, dann ergibt sich die
Ungleichung

ayry + ...+ a, (T +b >,
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8 Unlésbare Systeme

Bei a,, > 0 dividieren wir beide Seiten der Ungleichung durch a,, und erhalten

—(ajr + ...+ a,_qryg +b) > —x,

Multipliziert man jede Ungleichung des Ausgangssystems mit einer geeigneten positiven
Zahl, so erhalt man ein diesem aquivalentes System der Form

> Ln,
> T,

Lns

(AVARAVARRVS
|

8 8
3 3

VIV IV
o o |
8
3

Vv
o

wobei Py, ..., P,, Q1,...,Qq, R, ..., R, Ausdriicke

sind (also x,, nicht enthalten).

der Gestalt a1x1 + ...ap_1Tp—1 + b

Nach Voraussetzung ist das Ausgangssystem unldsbar. Infolgedessen ist auch System
(8) unlésbar. Daraus folgt dann, dass das System

Py
By
Ry

R,

> Q1,

> Qq;
> 0,

> 0,

mit den Unbekannten xy, ..., 2,1 unldsbar ist (der obere Teil dieses Systems besteht
aus Ungleichungen der Gestalt P, > ()g, « eine beliebige Zahl unter 1,2,...,p und 3
eine beliebige Zahl unter 1,2, ..., q. Ware namlich das System (9) lésbar, so bedeutete

das, dass flir gewisse Werte

0

der Unbekannten die (Zahlen-)Ungleichungen

=
-
B
R’
-

T

> QY

> QY;
>0,

>0

- Y

0
.y Tn—1 = J,‘n_l
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gelten wiirden, wobei PO der Wert von Pa bei 21 = 29, ...,1, 1 = 29 _ ist (analoge
Bedeutung haben (Q% und RY). Somit wiére jede der Zahlen QY, ..., Q) nicht gréBer
als jede der Zahlen P/, ..., P). In diesem Fall findet man aber sicher eine Zahl z}), die

zwischen allen Zahlen @Y, ..., Q) und allen Zahlen PP, ..., P} liegt (Abb. 46):

0 0 0 0 0 0
P>z, > QY Py >, > Q,
Xp
0 A0 o o 0 o 0
Abb. 46 & 4 4% A fx & &
Die sich hieraus ergebenden Ungleichungen
Py > af,
Py =
Q) > —a)
—QS > —20
zeigen zusammen mit
Ry >0,
R) >0,
dass das System der Werte
0 0 0
T] =]y, Tp_1 = Tpy_q, Tp = T,

eine Losung des Systems (8) ist, was der Voraussetzung, das System (8) sei unlésbar,
widerspricht.

Also ist das System (9) unlosbar. Da die Anzahl der Unbekannten in diesem System
gleich n — 1 ist, kann darauf die Induktionsannahme angewendet werden. Das bedeu-
tet, dass sich eine geeignete Linearkombination der Ungleichungen (9) als unlésbare
Ungleichung darstellen lasst.

Es ist leicht einzusehen, dass jede Ungleichung aus (9) eine Linearkombination von
Ungleichungen aus (8) ist: Addiert man namlich einfach die Ungleichungen P, > z,
und. —Qp > —x, aus (8), so erhdlt man P, — Qs > 0 oder P, > (s, d.h. eine
Ungleichung aus (9).

Folglich ist eine bestimmte Linearkombination von Ungleichungen aus (8) ebenfalls
eine unlosbare Ungleichung. Hieraus folgt aber, dass eine Linearkombination der Un-
gleichungen des Ausgangssystems eine unlésbare Ungleichung ist. Damit ist der Satz
bewiesen.

Der Unlosbarkeitssatz fiir lineare Ungleichungssysteme ist nur ein Ausdruck der weit-
gehenden Analogie, die zwischen den Eigenschaften linearer Ungleichungssysteme und
denen linearer Gleichungssysteme besteht. Wir wollen einmal versuchen, in der Formu-
lierung des Satzes das Wort "Ungleichung" durch das Wort "Gleichung" zu ersetzen;
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8 Unlésbare Systeme

dann erhalten wir folgende Aussage:

Ist ein lineares Gleichungssystem unlésbar, so ist eine gewisse Linearkombination dieser
Gleichungen eine unlosbare Gleichung.

Es zeigt sich, dass diese Aussage richtig ist.

In etwas anderer Form wird sie als Satz von Kronecker-Capelle bezeichnet und in den
Vorlesungen iber lineare Algebra bewiesen (so nennt man die Disziplin der Mathema-
tik, in der die linearen Operationen, d.h. Operationen, die der Punktaddition und der
Punktmultiplikation mit einer Zahl im n-dimensionalen Raume ahnlich sind, untersucht
werden).

Ubrigens ist es zum vollen Verstiandnis des oben Gesagten nétig, den Begriff der Line-
arkombination zu prazisieren. Eine Linearkombination von Gleichungen wird auf dem-
selben Wege konstruiert wie eine Linearkombination von Ungleichungen, lediglich mit
dem Unterschied, dass man die gegebenen Gleichungen mit passenden, nicht nur mit
nichtnegativen Zahlen multiplizieren darf.

Unlésbar nennt man wie im Fall von Ungleichungen eine Gleichung, die keine Losungen
besitzt. Es ist nicht schwer zu zeigen, dass eine unlosbare Gleichung auf die folgende
Form gebracht werden kann:

O-214+0-294+...40-2,+b=0

wobei b eine von Null verschiedene Zahl ist (nach Dividieren beider Seiten durch b
erhalten wir die "Gleichung" 1 = 0).

Besonders wichtig ist ein Spezialfall des Satzes lber unlésbare Ungleichungssysteme,
und zwar der, bei dem das gegebene System Ungleichungen der Gestalt

21 >0,29>0,....,2, >0 (10)

enthalt. Bezeichnet man den (brigen Teil des Systems mit (S), so kann man sagen,
das Problem besteht darin, alle nichtnegativen (d.h. die Bedingungen (10) erfiillenden)
Losungen des Systems (.S) zu bestimmen.

Wenn dieses Problem keine Lésungen besitzt, liefert nach dem oben bewiesenen Satz
eine Linearkombination der Ungleichungen des Systems (S)

ar1 + asxs + ... + apxy, +a >0 (11)
als Summe mit einer Linearkombination der Ungleichungen von (10),
kix1 + koxo + ... + kpx,, >0 (k1, ko, ..., ky, nichtnegativ)
die unlosbare Ungleichung
O-z14+40-294+...40-2,+c >0
mit einer negativen Zahl c. Folglich ist

alz—klSO,agz—k‘g§0,...,an:—k‘n§0, a<0
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Wir formulieren das gewonnene Resultat als spezielle Aussage.

Folgerung aus dem Satz iiber unlésbare Systeme.

Besitzt ein Ungleichungssystem keine nichtnegativen Losungen, so ist eine Linearkombi-
nation dieser Ungleichungen eine Ungleichung der Gestalt (11), wobei alle Koeffizienten
ai, as, ..., a, nicht positiv sind und das freie Glied a negativ ist.

Eine andere wichtige Folgerung aus dem Satz ist der Zusammenhang, den man zwischen
einem gegebenen Ungleichungssystem und einem anderen System feststellen kann, in
dem neben Ungleichungen auch Gleichungen vorkommen. Wir erlautern diesen Zusam-
menhang am Beispiel des Systems (1) (mit den drei Unbekannten z,v, 2).

Ist das System (1) unldsbar, so hat eine Linearkombination (2) seiner Ungleichungen die
Form (3) mit d < 0. Das bedeutet, dass nichtnegative Zahlen ki, ko, ..., k;,, existieren,
fir die

kiay + keao + ... + kpa,, =0,
k1b1 + kobs + ... + kb, = 0,
kici + koco + ... + ke, = 0,
kidy + kodo + ... + kpd,, <0

gilt. Mit anderen Worten heiBt dies, dass das gemischte System

a1y + agy2 + ... + apym =0
biyr + bayo + ... + by =10
ayr+ ey + ... +epym =0
diyr +dayo + ... +dpy, = —1 (1)
Y1 >0
Y2 >0
Ym >0

das aus Gleichungen und Ungleichungen besteht, die Losung y; = Ak1, yo = ko, ..
Y = Mk, besitzt [

1

Ist also das System (1) unlésbar, so ist System (1') I6sbar. Umgekehrt gilt diese Aussage
natiirlich ebenfalls (ist System (1') losbar, so ist (1) unlésbar), denn die Losbarkeit
des Systems (1') bedeutet, dass eine Linearkombination der Ungleichungen (1) die
unlésbare Ungleichung —1 > 0 ergibt.

10Dje Zahl X\ wird so gewahlt, dass gilt:

1
diky + doky + ... + dokom

dy(Nky) + da(Ak2) + oo+ d (M) = =1, dh. A=
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9 Duale polyedrische Kegel

In § 4 haben wir versprochen, konvexe polyedrische Kegel spater noch etwas genauer
zu studieren. Wir wollen das nun tun.

Wie friiher bewiesen wurde, ist im dreidimensionalen Raum jeder konvexe polyedrische
Kegel mit einer Spitze im Koordinatenursprung Losungsbereich eines gewissen homo-
genen linearen Ungleichungssystems mit drei Unbekannten

ar + by +c1z2>0
asT + by + oz > 0

(1)
amx + by +cmz >0
Zugleich mit dem System sei eine einzelne Ungleichung
ar +by+cz >0 (2)
gegeben.

Wir sagen, die Ungleichung (2) sei aus dem System (1) ableitbar, falls jedes System von
Werten fiir die Unbekannten x, y, z, das dem System (1) geniigt, auch der Ungleichung
(2) genugt.

Selbstverstandlich ist jede Ungleichung, welche Linearkombination der Ungleichungen
(1) ist, aus dem System (1) ableitbar. Gilt aber auch die Umkehrung? Es erweist sich,
dass dies zutrifft.

Satz 1. Eine homogene Ungleichung (2), die aus dem homogenen System (1) ableitbar
ist, kann als Linearkombination der Ungleichungen (1) dargestellt werden.

Beweis. Damit wir im folgenden unsere Schreibweise vereinfachen kénnen, bezeichnen

wir die linken Seiten der ersten, zweiten, ..., m-ten Ungleichung des Systems (1) mit
Py, Py, ..., P,, und die linke Seite der Ungleichung (2) mit P. Also ist uns das System
P >0
>
et 1)
P,>0
sowie die Ungleichung
P>0 (2)

gegeben, welche aus (1) ableitbar ist. Es soll bewiesen werden, dass diese Ungleichung
als Linearkombination der Ungleichungen (1) darstellbar ist.

Da sich die Ungleichung P > 0 aus dem System (1) ableiten lasst, ist die Gleichung
P = —1 mit dem System unvereinbar, d.h., das gemischte System

P >0
P, >0

P,>0
P=-1
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ist unlésbar. Wir wollen versuchen, darauf den Satz (iber unlésbare Systeme anzuwen-
den. Selbstverstandlich geht das nicht unmittelbar, denn dieser Satz bezieht sich auf
Systeme, die lediglich aus Ungleichungen bestehen. Dagegen befindet sich in dem Sys-
tem (3) auch noch die Gleichung P = —1. Jedoch ist diese Gleichung selbst dquivalent
zum System

P>-1 : P+1>0
P<_1 } oder, was dasselbe ist P_1>0 }
also ist das System (3) aquivalent dem System

P >0
P, >0
P >0 (4)
P+1>0
—-P—-12>0

das sich infolge von (3) als unldsbar erweist.

Nach dem Satz (iber unlésbare Systeme ist eine geeignete Linearkombination der Un-
gleichungen von (4) eine unlésbare Ungleichung.

Mit anderen Worten, es existieren nichtnegative Zahlen ki, ko, ..., k,, derart, dass die
Ungleichung

kiPy+ koPy + ... 4+ kP + kit (P 4+ 1) + kppo(—P — 1) >0
(nach Einfithrung geeigneter Summanden) die Form
0-z24+0-y4+0-24+d>0
mit einer negativen Zahl d hat. Folglich gilt
kiPy + koPy + ... + kP + (k1 — ka2)P=0-24+0-y+0-2

und die Zahl k,, 11 — k00 = d ist negativ. Hieraus erhalten wir

k kim
P=—"1 P 4+..+

—Pm
km+2 - km—l—l km—l—Q - km—l—l

wobei die bei Py, ..., P, stehenden Faktoren nichtnegativ sind.
Das bedeutet offenbar, dass die Ungleichung (2) eine Linearkombination der Unglei-
chungen (1) ist, was bewiesen werden sollte.

Dieser Satz ist auch von selbstandigem Interesse, aber noch interessanter ist sein geo-
metrischer Inhalt. Um den Leser damit bekannt zu machen, missen wir einen Abstecher
in die analytische Geometrie machen; jedoch ist dieser Abstecher ebenso elementar wie
die wenigen Tatsachen aus der analytischen Geometrie, die wir bisher verwendet haben.
Es seien

A(za,ya,z4) ., Blxp,ys, 2B)

zwei vom Koordinatenursprung O verschiedene Punkte im Raum.
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Abb. 47

Wir wenden auf das Dreieck OAB (Abb. 47) den Kosinussatz an, nach welchem das
Quadrat einer beliebigen Dreiecksseite gleich der Differenz der Summe der Quadrate
der beiden anderen Seiten und dem doppelten Produkt dieser Seiten mit dem Kosinus
des eingeschlossenen Winkels ist.

In unserem Fall gilt

|AB]* = |OA* + |OB|? — 2|OA| - |OB| - cos ¢ (2)
wobei varphi der Winkel zwischen den Strecken OA und OB ist. Nun ist aber
[OA* = 2l +yi + 24
(OB = 2% + yp + 2
|AB|* = (x4 — 2p)” + (ya — yB)* + (24 — 2B)°
so dass wir aus (5) die Beziehung
—2(waxp +yays + zazp) = —2|0A] - [OB] - cos ¢ (6)

erhalten. Der Winkel ¢ wird nur dann nicht spitz sein, wenn cos ¢ < 0 ist. Hieraus und
aus (6) ergibt sich:

Der Winkel zwischen den Strecken OA und OB ist dann und nur dann nicht spitz,
wenn

TATB +Yayp + zazp <0
ist.
Wir wollen fiir das Folgende vereinbaren, den auf der linken Seite dieser Ungleichung
stehenden Ausdruck, das sogenannte Skalarprodukt, kurz mit (A, B) zu bezeichnen:
(A, B) = z4%p + yays + 242B
Dann koénnen wir sagen:

Der Winkel zwischen den Strecken OA und OB ist dann und nur dann nicht spitz,
wenn gilt:

(A,B) <0

Damit erschopfen sich eigentlich auch die fiir das Weitere nétigen Tatsachen aus der
analytischen Geometrie. Wir erwdhnen zum Schluss noch eine Eigenschaft des Skalar-
produkts (A, B):
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9 Duale polyedrische Kegel

Es ist fir beliebige k1, ko
(k1 A1 + koAy, B) = k1(A1, B) + kao(As, B) (7)
Der Beweis ist fast offensichtlich: Da der Punkt k1 A; 4+ k2 As die Koordinaten
k1za, + kax ay; k1ya, + koya,; k1za, + koza,
hat, gilt

(k1AL + koAg, B) = (kixa, + koxay)zp + (k1ya, + koyas)ys + (k1za, + koza,)2n
= ki(xa,2B +ya,yB + 24,2B) + k2(2 2,28 + YA,YB + 24,2B)
= kl(Al, B) + kg(AQ, B)

SchlieBlich wenden wir uns dem Hauptthema dieses Paragraphen zu, den konvexen po-
lyedrischen Kegeln im Raum. GemaB der in § 4 gegebenen Definition wird der Durch-
schnitt endlich vieler Halbraume, deren berandende Ebenen durch einen Punkt S gehen,
ein konvexer polyedrischer Kegel mit Spitze in S genannt.

Das typischste Beispiel fiir einen konvexen polyedrischen Kegel ist bekanntlich die un-
endliche konvexe Pyramide. Im weiteren Teil dieses Paragraphen wollen wir vorausset-
zen, dass S mit dem Koordinatenursprung O zusammenfallt.

Der vom Koordinatenursprung verschiedene Punkt B habe folgende Eigenschaft:

Die Strecke OB bilde einen nicht spitzen Winkel mit jeder Strecke O A, wobei A ein
beliebiger Punkt des betrachteten Kegels R sei. Einen solchen Punkt B kann man stets
finden; dafiir reicht es zum Beispiel aus, durch die Spitze des Kegels eine Ebene 7 derart
zu legen, dass sich der ganze Kegel in einem der beiden von dieser Ebene definierten
Halbraume liegt (Abb. 48).

Abb. 48 und 49

Dann besteht das im anderen Halbraum auf die Ebene 7 gefallte Lot aus Punkten B
der gewiinschten Art.

Wir betrachten die Gesamtheit aller Punkte B, die die oben geforderte Eigenschaft
besitzen, vervollstandigen diese Gesamtheit noch durch einen weiteren Punkt, namlich
den Koordinatenursprung, und bezeichnen die gewonnene Menge mit £*. Wir beweisen
zunachst das folgende Lemma:
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Lemma. K* ist ebenfalls ein konvexer polyedrischer Kegel (zur lllustration vgl. Abb.
49).

Beweis. Nach Satz 2 aus § 4 ist jeder konvexe polyedrisehe Kegel R eine Menge der
Gestalt (A, As, ..., A;,) (im angegebenen Satz waren die Bezeichnungen etwas anders:
anstelle von A;, Ay, ..., Ay, wurde dort By, By, ..., B, geschrieben). Das bedeutet, dass
man jeden Punkt A € K in der Form

A=tA1+tA + ... +t, A,

mit nichtnegativen Zahlen tq, 1o, ..., t,, darstellen kann. Gehort der Punkt B zu K*, so
ist der Winkel zwischen der Strecke OB und einer beliebigen Strecke OA, A € R, nicht
spitz, d.h., es ist

(A,B) <0 firalle Aing

Wegen
(A,B) =t1(A1, B) + t2(A2, B) + ... + t; (A, B)

(vgl. Formel (7)) haben wir im vorliegenden Fall
t1(A1, B) + to(Ag, B) + ... + t(An, B) <0 (8)
fur beliebige t1, 1o, ..., t,, gewahlt. Insbesondere gilt
(A1,B) <0,(A2,B) <0,...., (A, B) <0 (9)

Jedoch ist auch umgekehrt, wenn die Ungleichungen (9) gelten, fiir beliebige nichtne-
gative t1, 1o, ..., t,,, die Ungleichung (8) richtig, d.h., dann ist B € R*.
Also liegt der Punkt B genau dann in 8%, wenn die Ungleichungen (9) erfiillt sind.

Wir bezeichnen die Koordinaten der Punkte A; mit a;,b;,¢; (i = 1,2,...,m) und die
Koordinaten des Punktes B mit z, vy, z.
Dann kénnen wir die Bedingungen (9) wie folgt schreiben:

air+biy+c12<0
asx + boy 4+ oz < 0 (10)
Am® + by + ez <0

Der Punkt B liegt genau dann in der Menge K*, wenn seine Koordinaten z, y, 2 samt-
liche Ungleichungen (10) erfillen. Mit anderen Worten

RK* ist der Lésungsbereich des Systems (10).

Da das System (10) homogen ist, ist sein Losungsbereich ein konvexer polyedrischer
Kegel im Raum. Folglich ist 8" ein konvexer polyedrischer Kegel, was bewiesen werden
sollte.

Somit haben wir gelernt, jedem konvexen polyedrischen Kegel £ einen neuen konvexen
polyedrischen Kegel K% zuzuordnen. Dieser Kegel 8" besteht aus samtlichen Punkten
B, fir welche die Strecke OB nicht spitze Winkel mit jeder beliebigen Strecke OA.
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9 Duale polyedrische Kegel

A € R, bildet.
Man nennt 8 den zu K dualen Kegel.

Nun entsteht natiirlich die Frage: Was fiir einen Kegel stellt der zu K* duale Kegel dar,
d.h., was kann man (iber die Menge (R")"* aussagen?

Aus der Definition des Kegels 8* folgt direkt, dass die Menge (R*)* die Ausgangsmenge
£ enthalten muss (warum 7).

Jedoch ist durchaus nicht klar, ob diese beiden Mengen etwa zusammenfallen. Mehr
noch, wenn man versucht, diesen Sachverhalt durch geometrische Betrachtungen zu
prifen, berzeugt man sich davon, dass er nicht einfach ist. Wie dem auch sei, zum
Beweis, dass (K*)* und K zusammenfallen, wahlen wir einen algebraischen Weg, der
auf Satz 1 beruht. Wie aus dem nachstehenden Beweis ersichtlich wird, besteht der
geometrische Inhalt von Satz 1 fiir Systeme mit drei Unbekannten im wesentlichen in
der Gleichung (R*)* = R.

Wir beweisen nun den folgenden Satz.

Satz 2. Es sei R ein konvexer polyedrischer Kegel. Dann stimmen die Mengen (&*)*
und K lberein.

Dasselbe kann man auch anders sagen, vielleicht sogar durchsichtiger. Wir bezeichnen
den Kegel 8 mit R, und den Kegel £ mit K,. Offenbar behauptet der Satz dann:

Ist R = R,, so gilt & = K,.

Oder: Ist ein Kegel dual zu einem zweiten, so ist es auch der zweite zum ersten, d.h.,
die Dualitatsbeziehung ist symmetrisch.

Beweis von Satz 2. Es sei C(a,b,c) ein beliebiger Punkt der Menge (8*)*. Fur jeden
Punkt B(z,y,z) € 8 muss die Ungleichung (B, C) < 0 erfillt sein, d. h.

ar +by+cz >0 (11)

Die Zugehorigkeit des Punktes B zur Menge K* bedeutet aber, wie oben gezeigt wurde,
dass die Ungleichungen (10) erfillt sein missen. Also muss jede Lésung (z,y, z) des
Systems (10) auch die Ungleichung (11) erfiillen. Mit anderen Worten: Die Ungleichung
(11) ist aus System (10) ableitbar.

Nach dem frither bewiesenen Satz 1 ist dies nur dann moglich, wenn die Ungleichung
(11) Linearkombination der Ungleichungen (10) ist, d.h. falls

(a’7 b7 C) = tl(a'la bl? Cl) + t2(a27 b262) + ...+ tm(ama bm7 Cm)
mit nichtnegativen Zahlen tq, %o, ..., t,, gilt. Nun bedeutet aber diese Gleichung, dass
C =t1A1 +t2As + ... + t,, A,

gilt, d.h., dass der Punkt C' zum Kegel 8 gehort. Also gehort jeder in (R*)* liegende
Punkt C' zu R.

Das Umgekehrte hatten wir schon festgestellt, d.h., dass & zu (8*)* gehort. Folglich
ist & = (R*)* und der Satz bewiesen.
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10 Der Dualitatssatz der linearen Optimierung

Die lineare Optimierung ist ein relativ neues Gebiet in der angewandten Mathematik,
das sich in den letzten flinfzehn bis zwanzig Jahren im Zusammenhang mit der Lésung
verschieden- artiger 6konomischer Aufgaben entwickelt hat.

In der Regel sind Aufgaben, die uns in der Okonomie und besonders im Bereich der
Wirtschaftsplanung begegnen, Extremalprobleme, bei denen die vorteilhafteste Variante
gesucht wird.

Wenn wir die reale Situation vereinfachen (und sogar zuspitzen), kénnen wir zum Bei-
spiel annehmen, dass in einem Betrieb, der zwei verschiedenartige Typen von Werk-
stiicken ausstoBt, die Produktionskapazitat der Montageabteilung 100 Werkstiicke vom
ersten oder 300 vom zweiten Typ pro Tag betragt. Gleichzeitig sei die Abteilung fiir
technische Kontrolle nicht in der Lage, am Tag mehr als 150 Werkstiicke (gleich wel-
chen Typs) zu priifen.

Es sei weiterhin bekannt, dass ein Werkstlick des ersten Typs doppelt so teuer ist wie
ein Werkstiick des zweiten.

Unter diesen Bedingungen ist ein Produktionsplan aufzustellen (d.h. wie viele Werk-
stiicke vom ersten Typ und wie viele vom zweiten téglich zu produzieren sind), der dem
Betrieb maximalen Gewinn sichert.

Bis in die jingste Vergangenheit bestand die einzige Methode zur Loésung derartiger
Probleme in einer gewohnlichen Schatzung, in einer Losung "liber den Daumen" oder
aber in einer Durchmusterung aller moglichen Varianten, um die beste herauszufinden.
Heute hat sich alles geandert.

Im letzten Jahrzehnt wurde die Produktion in einem solchen Grade komplizierter, dass
ein einfaches Durchmustern von Varianten unmoglich wurde. Es traten so viele Fakto-
ren auf, die die Losung beeinflussten, dass die Zahl der Varianten in vielen Fallen in die
Milliarden ging.

Im Zusammenhang damit wuchs das Interesse an mathematischen Methoden in der
Okonomie stark an. Den Prozess der "Mathematisierung der Okonomie" férderte die
Entwicklung der Rechentechnik, insbesondere das Aufkommen elektronischer Rechen-
automaten.

Wir kehren nun zu unserem Beispiel zuriick. Der gesuchte Plan fiir die Anzahl der zu
produzierenden Stiicke wird durch zwei nichtnegative ganze Zahlen x,y (z die An-
zahl der Werkstiicke des ersten Typs, y die des zweiten) gegeben, welche folgenden
Bedingungen genligen miisse

1. 3z +y < 300,
2. x +y < 150,
3. 2z 4+ y maximal

Djese Bedingung stammt aus der Montageabteilung. Man kann namlich anstelle eines Werkstiickes
des ersten Typs in der Abteilung drei Werkstiicke des zweiten herstellen. Die Gesamtproduktion
der Abteilung betragt bei Werkstiicken des zweiten Typs 3x + y Stiick, und diese Zahl darf 300
nicht Gberschreiten.
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Mit anderen Worten, aus den nichtnegativen ganzzahligen Losungen des Systems

32 +y < 300
} 1)

r+y <150

muss man eine bestimmen, die den groBten Wert der linearen Funktion
f=2r+y

liefert.

Fihrt man in der Ebene ein rechtwinkliges Koordinatensystem xQOy ein, so wird die
Menge der Lésungen des Systems (1) durch das in Abb. 50 schraffierte Polygon gebildet.
Anhand dieser Zeichnung kann man feststellen, dass die Losung des Problems der Punkt
P(75,75), also eine der Ecken des Polygons ist.

Abb. 50

Wir betrachten die Gerade 2x + y = ¢ (c eine Zahl) und bezeichnen sie mit [.. Mit
wachsendem ¢ wird die Gerade [. "nach oben" verschoben (und bleibt dabei parallel zu
ihrer Ausgangslage).

Der groBte c-Wert, fiir den die Gerade [. noch gemeinsame Punkte mit dem schraffierten
Polygon hat, ist derjenige c-Wert, fiir den diese Gerade durch den Punkt P geht. Folglich
nimmt die Funktion 2z + y ihren groBten Wert (im Vergleich zu ihren Werten in den
ibrigen Polygonpunkten) in diesem Punkt an.

Unser Beispiel ist natiirlich sehr primitiv, aber trotz allem gibt es eine Vorstellung vom
Charakter linearer Optimierungsprobleme. In jedem solchen Problem wird gefordert,
den maximalen (oder minimalen) Wert einer linearen Funktion in n Variablen

f=acax+cxs+ ... 4+ chay

unter der Bedingung zu finden, dass diese Variablen einem linearen Ungleichungssystem
genligen (darunter sind auch diejenigen Ungleichungen, die aussagen, dass die Varia-
blen nichtnegativ sind: 1 > 0; o > 0; ...; x,, > 0.

Die Losungsmethoden fiir lineare Optimierungsprobleme wurden bis heute sehr griind-
lich ausgearbeitet. Die meisten sind vollig elementar und kdnnen natirlich im Rahmen
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der "Schulmathematik" gebracht werden. Im wesentlichen handelt es sich hier um einen
groBen und, wie wir heute sehen, erstaunlich wichtigen Teil der elementaren Algebra,
der sich mit der Untersuchung linearer Gleichungs- und Ungleichungssysteme beschaf-
tigt.

Zu den Aufgaben dieses Biichleins gehort es nicht, die Grundlagen der linearen Optimie-
rung darzulegen. Mit dieser Disziplin befassen sich heute viele Biicher und Broschiiren,
darunter auch eine Anzahl popularer. Wir werden hier nur ein Teilgebiet streifen, namlich
das von der mathematischen Seite her wesentlichste, das sogenannte Dualitatsprinzip.

Zuerst formulieren wir das lineare Optimierungsproblem in allgemeiner Form. Gegeben
sei das System
a11r1 + a2 + ... + a1, Ty + 01 >0
2171 + a22%2 + ... + a2y Ty + by > 0 2)

Am1T1 + AmaT2 + ... + GppTy + bm > 0

von m linearen Ungleichungen mit n UnbekanntenE sowie eine gewisse lineare Funktion
f=cx+coxs+ ... + chay

Unter allen nichtnegativen (z1 > 0; 22 > 0;...;x, > 0) Losungen des Systems (2) soll
eine solche gefunden werden, die der Funktion f den groBtmoglichen Wert gibt, die -
wie man sagt - die Funktion f maximiert.

Diese Aufgabe werden wir Ausgangsproblem (oder Problem A) nennen.
Wir verbinden mit dem Problem A ein neues, welches wir das zu Problem A duale
Problem oder (Problem A’) nennen werden:

Gegeben seien das System

a1yr +a1y2 + ... + am1Ym +c1 <0
a19y1 + a29ys + ... + Amoym + co <0 (2

ain + ao2nY2 + ...+ AmnYm + Cn S 0

von n linearen Ungleichungen mit m Unbekannten und die lineare Funktion

¢ =Dbiy1 + baya + ... + by,

Unter allen nichtnegativen Losungen des Systems (2') soll eine solche gefunden wer-
den, die der Funktion ¢ den kleinstmoglichen Wert erteilt, d.h., die die Funktion ¢
minimiert.

Vergleichen wir die Probleme A und A’, so bemerken wir folgendes:

1. Der Koeffizient der j-ten Unbekannten in der i-ten Ungleichung von (2) ist derselbe

12lm System (2) wird folgende Bezeichnung verwendet: Der Koeffizient; der j-ten Unbekannten in
der i-ten Ungleichung wird mit a;; bezeichnet.
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wie der Koeffizient der i-ten Unbekannten in der j-ten Ungleichung von (2').

2. Die freien Glieder in den Ungleichungen des einen Problems stimmen mit den Koef-
fizienten der Unbekannten in der linearen Funktion des anderen Problems (iberein.

3. Im Ungleichungssystem von Problem A sind samtliche Ungleichungen vom Typ >=,
und in diesem Problem soll f sein Maximum annehmen. Im Ungleichungssystem von
Problem A’ dagegen sind alle Ungleichungen vom Typ < 0, dafiir aber soll ¢ minimiert
werden.

Ein grundlegender Satz der linearen Optimierung ist das sogenannte Dualitatstheorem.
Es lautet folgendermaBen:

Dualitatstheorem. Besitzt das Ausgangsproblem eine Losung, so hat auch das zu ihm
duale eine Losung. Dabei ist das Maximum der Funktion f gleich dem Minimum der
Funktion ¢:

max f = min ¢

Wir werden diesen Satz dadurch beweisen, dass wir ihn auf die Frage nach der Losbarkeit
eines Ungleichungssystems zurtickfiihren.
Damit man dem Beweis besser folgen kann, fiihren wir ihn in mehreren Etappen.

Etappe 1. Lemma. Ist 20, ..., 2¥ eine nichtnegative Lésung von (2) und 37, ...,4° eine
nichtnegative Lésung von (2'), so besteht zwischen den Werten der Funktionen f und
¢ fir diese Losungen der durch folgende Ungleichung ausgedriickte Zusammenhang:

fo < 9o

Beweis. Wir betrachten die Ungleichungen von (2), wobei anstelle von z, ..., z,, die
Werte 20, ..., 20 eingesetzt wurden. Die erste Ungleichung multiplizieren wir mit ¢,
die zweite mit Y usw., danach addieren wir samtliche erhaltenen Ungleichungen und
gelangen zu

(auy?x(l) + ...+ amnyglxg) + bly(l) + ...+ bmy% >0

(Wir miissen beriicksichtigen, dass wir die Ungleichungen mit nichtnegativen Zahlen
multiplizieren. Daher dndern sich die Vorzeichen bei den Ungleichungen nicht.) Genau
so multiplizieren wir die erste Ungleichung von (2') mit 29, die zweite mit 23 usw. und
addieren:

(a2 + .+ @y’ 2?) + 12 + e <0

In beiden Fallen steht in den Klammern ein Ausdruck, der gleich der Summe der Glieder
agyix) Gber allei = 1,...,m; j = 1,...,n. Folglich sind die Ausdriicke in den Klammern
identisch. Dann ist aber

a1zl 4 . A cpxd < by 4 A by

oder fo < ¢y. Das Lemma ist damit bewiesen.

Etappe 2. Die Probleme A und A’ werden auf die Losung eines gewissen Ungleichungs-
systems zuriickgefiihrt.
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Wir betrachten das folgende "kombinierte" Ungleichungssystem:

a1121 + ... + ATy +by >0
A 1T1 + . + QGnTh +b,, >0
anyr + .+ amiYm +c1 <0 (S)

a1nY1 + ...+ AmnYm +cn S 0
c1x1 + ... + cpxy, —biy1 — .. — by, >0

Wie hieraus hervorgeht, besteht es aus den Systemen (2), (2') und der Ungleichung
f—¢ > 0. Die Unbekannten im System (S) sind 1, ..., p; Y1, ..., Ym (insgesamt n+m
Unbekannte).

Wir stellen zuerst folgenden Sachverhalt fest:

Besitzt das System (S) die nichtnegative Losung 29, ...,2%, 49 ... 40, so liefern die
Zahlen 29, ..., 2% die Lésung von Problem A und die Zahlen 39, ...,¢% die Lésung von
Problem A’, wobei fy = ¢y gilt.

Wir wollen hier ein wenig verweilen, um die prinzipielle Rolle dieser Aussage zu unter-
streichen. Darin ist bemerkenswert, dass sich ein lineares Optimierungsproblem, d.h. ein
Maximierungsproblem, auf die Losung eines linearen Ungleichungssystems ohne jegliche
Maximierungsforderung reduziert.

Allerdings ist natiirlich die Losung von (S) (im Bereich nichtnegativer Werte fiir die
Unbekannten) durchaus nicht leichter als diejenige des Ausgangsproblems der linearen
Optimierung (Problem A) ; allein schon die Tatsache dieser Reduktion ist sehr inter-
essant.

Nunmehr wollen wir die Behauptung beweisen. Zunachst ist klar, dass die Zahlen
29, ..., 29 nichtnegativ sind und dem System (2) geniigen; analog sind auch die Zahlen
Y, ...,y0 nichtnegativ und geniigen (2'). AuBerdem gilt fiir diese Zahlen die Unglei-

chung
Jo = 9o

(die sich aus der letzten Ungleichung von (S) ergibt). Andererseits haben wir nach dem
Lemma

fo < 9o

also gilt fo = ¢o.
Ist ferner x1, ..., z,, eine beliebige nichtnegative Losung des Systems (2), so haben wir
wiederum nach dem Lemma

I < oo

Setzen wir hier ¢g = fy, so erhalten wir f < f, woraus folgt, dass f, maximaler Wert
fur f ist.

Ist analog dazu y1, ..., ¥, eine beliebige nichtnegative Losung von System (2'), so haben
wir nach dem Lemma

Jo< o
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Setzen wir fy = ¢q, so erhalten wir ¢y < ¢, d.h., ¢ ist minimaler Wert fiir ¢. Damit
ist die oben formulierte Aussage bewiesen.

Etappe 3. Vollendung des Beweises.
Wir haben nun noch das folgende zu zeigen: Besitzt das Problem A eine Loésung, so
hat das System (S) eine nichtnegative Losung, denn dann gilt, wie vorher bewiesen,

fo = ¢o, d.h. max f = min ¢.

Wir fiihren den Beweis indirekt, d.h., wir nehmen an, das System (S) besitze keine
nichtnegativen Losungen. Jedoch verfiigen wir in diesem Fall iiber eine Folgerung aus
dem Satz iber unlésbare Systeme (§ 8). Zwar bezog sich diese Folgerung auf ein
System, das nur aus Ungleichungen > 0 bestand, wahrend wir auch Ungleichungen
< 0 vor uns haben. Aber diese Voraussetzung ist leicht zu erfillen, wenn wir (S) wie
folgt schreiben:

a11x] + ... + a1pnTy +by >0

Am1T1 + ... + Gpn Ty +b,, > 0
—any1 — - — Apu1Ym —c1 =0 (S")
—ai1pY1 — -« — AmpYm  —Cp Z 0

c1x1 + ... +cpxy, —b1y1 — ... — by >0

Nehmen wir also an, das System (S') besitze keine nichtnegativen Lésungen. Nach
der Folgerung aus dem Satz (iber unlosbare Systeme gibt es nicht-negative Zahlen
Kty ooy oy L1y ooy by, s (insgesamt m +n + 1 Zahlen), so dasg™|

annkr+ ... + amik,, +c15 <0

arnki + ... + apnkm + cns <0

—a11l1 — ... alnln — blS S 0
(3)
—am1ly — ... — amnln — bys <0
biki+ ...+ bnk,, —c1ly —...—cpl, <0 (4)

Wir zeigen zunachst, dass die Zahl s von Null verschieden ist.
Nehmen wir namlich an, das ware nicht der Fall, d.h., es ware s = 0, so betrachten wir
eine nichtnegative Lésung 29, ..., 2% von (2) und eine nichtnegative Lésung 9, ..., 4%

von (2).
Wenn wir wie beim Beweis des Lemmas vorgehen, finden wir

(a1 k12 + ...+ apnkal) + biky + ...+ bk, >0

13Dje Zahlen ky, ..., ks U1, ..., In, 5 sind zugleich dieselben, mit denen wir die erste, zweite, ..., (m-+n-+
1)-te Ungleichung im System (S’) multiplizieren, um (nach Addition) die unlésbare Ungleichung
a1y + ... + anxy, + aiyr + ... + al,Yym + d > 0 zu erhalten, wobei aq, ..., ay,a},...,al, < 0 sind
und d eine negative Zahl ist.
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Der in Klammern stehende Ausdruck ist aber nicht positiv (das zeigt sich, wenn wir die
erste Ungleichung aus (3) mit 210, die zweite mit 23 usw. multiplizieren und danach
die Addition ausfiihren).
Hieraus ergibt sich

biki + ...+ bk, >0 (5)

Analog finden wir
(a1l + .. 4 apnlayl) + c1ly + ...+ cply, <0

Da der Ausdruck in Klammern nicht negativ ist (was sich zeigt, wenn wir die erste
Ungleichung aus (3') mit 49, die zweite mit 49 usw. multiplizieren und danach addieren),
folgt

cly +...+¢ul, <0 (6)

Die Ungleichungen (5) und (6) widersprechen aber (4).
km

Also ist s nicht gleich Null. In diesem Fall folgt aus (3), dass die Zahlen %
nichtnegative Lésung des Systems (2) bilden, ferner aus (3'), dass die Zahlen 2, ...,
I» “eine nichtnegative Lésung des Systems (2') darstellen, und aus (4), dass fiir diese
Losung ¢ — f < 0 gilt.

eine

Das aber widerspricht dem Lemma. Also erhielten wir aus der Annahme, das System
(S) besitze keine nichtnegativen Losungen, einen Widerspruch. Folglich existiert eine
solche Loésung, und damit ist das Dualitatstheorem bewiesen.

Beispiel. Man bestimme den maximalen Wert der Funktion
f=2x0+ 1223

unter der Bedingung, dass die Variablen 1, x5, x3 nichtnegativ sind und den Unglei-
chungen

r1—x9—2x3+2>0

—$1—$2—4£U3—|—]. 20 }

genugen.
Losung. Wir bezeichnen die gestellte Aufgabe mit A. Die zu ihr duale Aufgabe (Aufgabe

A’) muss wie folgt formuliert werden:
Man bestimme den minimalen Wert der Funktion

¢ =2y1+ Y2

unter der Bedingung, dass die Variablen 31,42 312 nichtnegativ sind und den Unglei-
chungen
Y1 — Y2 <0
1 — 12 +2<0 (7)
—y1 —4y2 +12 <0

genugen.
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Abb. 51

Die Aufgabe A’ kann man graphisch l6sen. wenn man in der Koordinatenebene y; Oy»
den Losungsbereich von (7) einzeichnet. Das wurde in Abb. 5| getan.

In dieser Zeichnung ist auch zu sehen, dass die Funktion ¢ ihren kleinsten Wert im
Punkt (0,3) annimmt. Das ist eine Ecke des Bereiches. Dieser Wert ist gleich -3.
Nach dem Dualitatstheorem muss das Maximum von f ebenfalls gleich -3 sein.
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