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Vorwort

Im vorliegenden Band werden zunachst die Punkte und Linien untersucht, die zum
Stoffgebiet gehoren, das in allen allgemeinbildenden Schulen behandelt wird. Der kurzen
Zusammenstellung der bekannten Lehrsatze mit ihren Beweisen folgt eine Erganzung
durch elementargeometrische Beweisfiihrungen, die auf einheitlichen Beweisprinzipien
beruhen. Ferner werden die Methoden der analytischen Geometrie, der Vektoralgebra
und der baryzentrischen Koordinaten herangezogen, um Satze erneut zu beweisen.
Damit soll gezeigt werden, wie man mathematische Probleme von verschiedenen Seiten
betrachten und neue Wege in der Beweisfiihrung beschreiten kann.

Im elementargeometrischen Teil erfahrt dieser Stoff eine wesentliche Erganzung durch
ausgewahlte Forschungsergebnisse der modernen Mathematik des 19. und 20. Jahrhun-
derts.

Da die Arbeit keine erschopfende Darstellung ist, findet der Leser Anregungen, selbst
nach neuen Satzen und Beweisen zu forschen.

Zum Verstandnis des elementargeometrischen Teiles sind die Kenntnisse der Absolven-
ten der polytechnischen Oberschule ausreichend. Das mathematische Bildungsgut der
erweiterten Oberschule in der analytischen Geometrie und Vektorrechnung befahigt zur
selbstandigen Erarbeitung des gesamten Inhalts des Buches. Fir die erforderlichen Er-
lauterungen zur Verwendung von Determinanten vergleiche man die Literaturhinweise.
So mag das Buch in erster Linie zum Selbststudium der mathematisch interessierten
Leser dienen, deren Vorbildung den genannten Anforderungen entspricht.

Auch der Fachlehrer wird Anregungen fiir seinen Unterricht und Stoff fir mathematische
Arbeitsgemeinschaften darin finden. Die Losung der eingestreuten Aufgaben dient der
Selbstkontrolle, der Wiederholung und Festigung des erarbeiteten Wissens.

Senftenberg, im Januar 1968

Emil Donath
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Einleitung: Definitionen des Dreiecks

Ein Dreieck ist ein aus drei Strecken gebildeter geschlossener Linienzug. Zuweilen wird
der Begriff des Dreiecks genetisch definiert:
Ein Dreieck entsteht, wenn drei Geraden einander in drei Punkten schneiden.

Eine andere Definition, in der das Dreieck als Flache aufgefasst wird, lautet:
Das Dreieck ist ein Teil der Ebene, der durch drei Strecken vollstandig begrenzt ist.

Alle diese Definitionen werden in der mathematischen Literatur nebeneinander beriick-
sichtigt, ohne dass Missverstandnisse zu befiirchten sind.

Unter den Vielecken nimmt das Dreieck insofern eine Sonderstellung ein, als seine Gro-
Be und Form durch die vorgegebene Lange der drei Seiten eindeutig bestimmt ist [das
ist nicht bei allen n-Ecken (n > 3) der Fall].

Auch alle Linien in und am Dreieck, die nach besonderen Vorschriften gezeichnet wer-
den, erhalten eine bestimmte GroBe und Lage. Analytisch driickt sich dies dadurch aus,
dass alle Linien durch algebraische Formeln dargestellt werden kénnen, die nur die Sei-
ten des Dreiecks enthalten.

Es sollen hier nun Punkte und Linien behandelt werden, deren Lage und. Eigenschaften
fiir das Dreieck spezifisch sind.




1.1 Schnittpunktsatze

1 Die merkwiirdigen Punkte und Linien des Dreiecks
in elementargeometrischer Betrachtung

Die allgemein bekannten merkwiirdigen Punkte des Dreiecks sind die Schnittpunkte a)
der drei Winkelhalbierenden, b) der Halbierenden eines Innenwinkels und der der beiden
ihm nicht anliegenden AuBenwinkel, c) der drei Mittelsenkrechten der Seiten, d) der
drei Seitenhalbierenden und e) der drei Hohen des Dreiecks.

1.1 Schnittpunktsatze

a) Die drei Halbierenden der Innenwinkel des Dreiecks schneiden einander in einem
Punkt, dem Mittelpunkt des dem Dreieck eingeschriebenen Kreises.

b) Die Halbierende eines Innenwinkels und die Halbierenden der beiden ihm nicht anlie-
genden AuBenwinkel des Dreiecks schneiden einander in einem Punkt, dem Mittelpunkt
des Kreises, der eine Dreiecksseite und die Verlangerungen der beiden anderen Seiten
beriihrt.

c) Die drei Mittelsenkrechten der Dreiecksseiten schneiden einander in einem Punkt,
dem Mittelpunkt des dem Dreieck umgeschriebenen Kreises.

d) Die drei Seitenhalbierenden des Dreiecks schneiden einander in einem Punkt, dem
Schwerpunkt des Dreiecks. Er teilt jede Seitenhalbierende, von der Ecke aus gerechnet,
im Verhaltnis 2:1.

e) Die drei Hohen eines Dreiecks schneiden einander in einem Punkt. Der Hohenschnitt-
punkt teilt die Hohen so, dass die Rechtecke aus den Abschnitten jeder Hohe einander
gleich sind.

Da die vorstehenden Satze im Schulunterricht behandelt werden, wird auf die tiblichen
Beweise verzichtet.

Aufgabe 1. Im Dreieck ABC' (Abb. 1) sind die Halbierenden der Innen- und AuBenwinkel
gezeichnet. Man benutze diese Figur zum Beweis des Satzes vom Hohenschnittpunkt.

o A O

Abb. 1, 2 la . D ¢

In Abb. 2 sind im Dreieck ABC die Hohen BE und C'F' gezeichnet, ihr Schnittpunkt
H ist mit A verbunden. Man beweise mit Hilfe von Satzen aus der Kreislehre, dass die
iber H hinaus verlangerte Gerade senkrecht auf BC' steht.

Man beweise auch den Zusatz zu Satz e).




2.1 Der Satz des Menelaos

2 Ein einheitliches Beweisprinzip

Meist werden als Beweismittel Satze der Symmetrie, der Kongruenz von Dreiecken,
Satze von Parallelogrammen, Strahlensitze und Satze aus der Kreislehre verwendet.
Damit steht auch die verschiedene Gestaltung der Beweise im Zusammenhang.

Hier soll ein einheitliches Beweisverfahren angewendet werden, das sich auf den Satz
des Ceva stitzt. Als Hilfssatz wird zunachst der Satz des Menelaos bewiesen, dem
einige Definitionen vorausgeschickt werden.

Jede Gerade, die die Seiten des Dreiecks oder ihre Verlangerungen schneidet (Abb. 3
und 4), heiBt Transversale dieses Dreiecks.

A

Abb. 3, 4

Die aufeinanderfolgenden Seitenabschnitte lauten mit den Bezeichnungen der Abbil-

dungen
AD,DB,BE, EC,CF,FA

Fasst man den ersten, dritten und funften Abschnitt zusammen und ebenso den zweiten,
vierten und sechsten Abschnitt, so erhalt man die beiden Gruppen nicht aneinanderlie-
gender Seitenabschnitte.

Man nennt sie auch alternierende Abschnitte der Seiten des Dreiecks. Das Verhaltnis
der MaBzahlen der Abschnitte einer Seite nennt man ihr Teilungsverhaltnis. Dieses soll
ein positives oder negatives Vorzeichen erhalten, je nachdem, ob es sich um eine innere
oder um eine duBere Teilung der Seite handelt.

2.1 Der Satz des Menelaos

Der Satz des Menelaos lautet:




2.2 Der Satz des Ceva und seine Umkehrung

Schneidet eine Transversale eines Dreiecks, die nicht durch eine Ecke geht, die Drei-
ecksseiten oder ihre Verlangerungen, so hat der Quotient, der aus den Produkten der
Langen der alternierenden Abschnitte gebildet wird, den Wert -1:
AD-BE-CF
DB-EC-FA
Beweis 1. Von A, B und C' werden Lote [, m und n auf die Transversale gefallt. Die
Strahlensatze liefern dann

AD m BE [ CF n
DB~ 1 ECT w FA m
Multipliziert man die drei Gleichungen miteinander, so erhalt man (Abb. 5)
AD-BD-CF m-l-n
DB-EC-FA  l-n-m
Aufgabe 2. Man fiihre den Beweis fiir den Fall, dass die Transversale nur die Verlange-
rungen der Dreiecksseiten schneidet (Abb. 6).

Abb. 7,8 °

Aufgabe 3. Man beweise den Satz des Menelaos trigonometrisch und verwende dabei
die in Abb. 7 und 8 angegebenen Winkel.

2.2 Der Satz des Ceva und seine Umkehrung
Der Satz des Ceva lautet:

Die drei Ecktransversalen eines Dreiecks, die einander in einem Punkt innerhalb oder
auBerhalb des Dreiecks schneiden, teilen die Dreiecksseiten so, dass die Produkte aus
den Langen der alternierenden Abschnitte gleich sind.

Beweis 1. Die alternierenden Abschnitte sind durch den gleichen Index gekennzeichnet.
Es ist also zu beweisen, dass

aj - bl - C1 1
as - bg ) N
ist (Abb. 9).
A
Cy b
F
& <]
B % 0 & ¥
Abb. 9 i




2.2 Der Satz des Ceva und seine Umkehrung

Wendet man den Satz des Menelaos zweimal an, zuerst auf das Dreieck ABD mit der
Transversalen F'C', dann auf das Dreieck AC'D mit der Transversalen B, so erhalt

man

cL-a-m by-a-m

=—-1 und =—1
Co- QoM by-a;-n
Daraus folgt
cira-m _ by-a-m
Cy-as-m  br-ap-n
Division der Gleichungen durch “™ ergibt
c b ay-by-c
L= =2 cdh oy
C2 - a2 bi - ay as - by - co

w.z.b.w.

Abb. 10

Aufgabe 4. Man beweise den Satz, wenn der Schnittpunkt der Transversalen auBerhalb
des Dreiecks liegt (Abb. 10).

Der Satz des Ceva kann auch ohne den Satz des Menelaos bewiesen werden:

Abb. 11

Beweis 2 (Abb. 11). Als Hilfslinien werden durch den Punkt D die Parallelen zu den
Seiten AB und AC' bis zu den Transversalen gezogen: die Abschnitte seien k und .
Die Abschnitte AP und PD seien mit n und m bezeichnet.

Die Strahlensatze liefern dann folgende Proportionen:

ﬁ a k m 1

B n
E o a’ by n’ [ m Co
Multipliziert man diese Gleichungen, so folgt

bi-k-ci-l a-m-n-as

k-by-l-co ai-mn-m-a




2.2 Der Satz des Ceva und seine Umkehrung

Durch Karzen und Ordnen erhalt man

al-bl-cl_l
CLQ'bQ'CQ

Aufgabe 5. Man fiihre den Beweis bei auBerer Lage des Schnittpunktes der Transver-
salen (man benutze Abb. 10).

Aufgabe 6. Man verwende zu einem weiteren Beweis des Satzes von Ceva die Proportion
NAPB : AAPC = hy : hs = ay : ay usw. (Abb. 12).

2
LN

By
@ I - 2

Abb. 12, 13
Aufgabe 7. Man gebe dem Lehrsatz des Ceva eine trigonometrische Fassung (Abb. 13):

sin o sin By sin 1

, . : =1

sin ap sin P sin 9
Fir unsere Zwecke ist die Umkehrung des Satzes von Ceva erforderlich, da bewiesen
werden soll, dass die im ersten Teil behandelten speziellen Transversalen durch einen
Punkt gehen.
Die Umkehrung des Satzes von Ceva lautet:

Werden durch die drei Ecktransversalen im Dreieck alle drei Seiten innen oder zwei
Seiten auBen und die dritte innen so geteilt, dass die Produkte der alternierenden Ab-
schnitte der Seiten einander gleich sind, so schneiden die drei Ecktransversalen einander
in einem Punkt.

Bemerkung. Aus der Geometrie ist bekannt, dass jedem Teilpunkt einer innen oder au-
Ben geteilten Strecke ein und nur ein Teilverhaltnis zugeordnet ist. Umgekehrt entspricht
einem bestimmten Teilverhaltnis ein und nur ein Teilpunkt einer Strecke.

Liegt eine Strecke AB auf einer Geraden, so kénnen alle Punkte der Geraden Teilpunkte
der Strecke sein. Die Teilverhaltnisse durchlaufen entsprechend die reellen Zahlen von
—00 bis +o00.

Beweis. Er wird indirekt gefiihrt. Die Voraussetzung lautet

al-bl-cl_l
CLQ-bQ-CQ

Dann gilt die Behauptung: Die drei Transversalen AD, BE und C'F' schneiden einander
in einem Punkt P.

Zwei der Transversalen schneiden einander stets in einem Punkt. AD und BE seien
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2.2 Der Satz des Ceva und seine Umkehrung

diese Transversalen, P sei ihr Schnittpunkt. Angenommen, die dritte Transversale ginge
nicht durch den Punkt P. Dann gibt es eine andere Transversale von C' aus, die durch
P geht, die Seite AB im Punkt F” trifft und auf ihr die Abschnitte ¢; und ¢y erzeugt.
Nach dem Satz des Ceva ist somit

al-bl-c’l

=1
as - bQ . CIQ
Nach Voraussetzung ist aber
a1 -by-c
Lha g
as - bg *Co

Also ist ,
al-bl-cl al-bl-cl

CLQ'bQ'CQ CLQ'bQ'CIZ

und nach Division durch ‘“—21 folgt
a2-02

ca g *
co ()
d.h., fir die Teilpunkte ' und F” ergibt sich das gleiche Teilverhaltnis. Das ist ein
Widerspruch; denn jedem von F' verschiedenen Teilpunkt ist ein anderes Teilverhaltnis
zugeordnet. Also ist die Annahme falsch, und die drei Transversalen schneiden einander
im Punkt P.
Aus (*) ergibt sich durch korrespondierende Addition

c1+ co 1 c 1

—— =—  oder -=— (c1+ca=d+d=rc)
C1+C2 Cq C C1

Aus der letzten Gleichung folgt ¢; = ¢}, d.h., die Teilpunkte F' und F” stimmen Uberein,
und die Transversalen C'F' und C'F” sind identisch. Dies bedeutet aber, dass C'F" durch
den Punkt P geht.

Die Umkehrung des Satzes von Ceva in geometrischer und trigonometrischer Fassung
kann nun als Beweismittel fiir alle Satze tber die merkwiirdigen Punkte im Dreieck
dienen.

a
2

Abb. 14, 15

Aufgabe 8. Man beweist: die Satze a) bis e) unter Verwendung beider Fassungen des
Satzes von Ceva (Abb. 14 bis 18).

Mit Hilfe des Satzes von Ceva kdnnen weitere acht merkwiirdige Punkte des Dreiecks
gefunden werden.

11



2.3 Die merkwiirdigen Linien des Dreiecks

5 _
Abb. 16, 17 % & 2 A; ¢
Aufgabe 9. a.) Man beweise unter Benutzung des Satzes von Ceva, dass die Eck-
transversalen nach den Beriihrungspunkten den dem Dreieck eingeschriebenen Kreises
einander in einem Punkt schneiden.

Abb. 18

b) Man zeige, dass diese Lagebeziehung auch fiir die drei Ecktransversalen gilt, die
nach den Beriihrungspunkten der Ankreise mit den Dreiecksseiten gezogen werden.

c) Man beweise, dass die drei Transversalen von B nach dem Berithrungspunkt des
Ankreises um O, auf der Verlangerung von C'A iiber A hinaus, von C' zu dem ent-
sprechenden Beriihrungspunkt auf der Verlangerung von BA tber A hinaus und von
A nach dem Berilihrungspunkt des Inkreises mit der Seite a durch einen Punkt gehen
(drei Falle!).

d) Man beweise, dass die drei Ecktransversalen nach den Beriihrungspunkten eines
der Ankreise auf einer Dreiecksseite und auf den Verlangerungen der beiden anderen
einander in einem Punkt schneiden (drei Falle !).

2.3 Die merkwiirdigen Linien des Dreiecks

Bekanntlich teilt der Schwerpunkt des Dreiecks, das ist der Schnittpunkt der drei Sei-
tenhalbierenden, diese Strecken von jeder Ecke zur Gegenseite im Verhaltnis 2:1.

Der Schnittpunkt der drei Winkelhalbierenden des Dreiecks hat von den Dreiecksseiten
gleiche Abstédnde, ist also Mittelpunkt des Kreises, der die Seiten des Dreiecks beriihrt.
Man nennt ihn den dem Dreieck eingeschriebenen Kreis.

Der Schnittpunkt der Halbierenden eines Innenwinkels des Dreiecks und der beiden ihm
nicht anliegenden AuBenwinkel ist Mittelpunkt eines Ankreises des Dreiecks.

Der Schnittpunkt der Mittelsenkrechten der Seiten des Dreiecks ist von den drei Ecken
gleich weit entfernt, also Mittelpunkt des dem Dreieck umgeschriebenen Kreises.

12



2.3 Die merkwiirdigen Linien des Dreiecks

Auch der Schnittpunkt der Hohen des Dreiecks hat eine besondere Eigenschaft, die nur
nicht so augenfallig ist wie die vorgenannten: Die Rechtecke aus den Abschnitten jeder
Hohe im Dreieck sind einander gleich.

Abb.19 & O ‘

Beweis 1 (Abb. 19). Die Dreiecke AEH und BDH sind ahnlich (WW). Folglich ist
Al — BH oder AH-HD = BH - HE.

Entsprechend folgt aus der Ahnlichkeit der Dreiecke BHF und CHE die Gleichung
BH-HE =CH-HF.Daherist AH-HD =BH -HE=CH-HF.

Beweis 2. In jedem der drei Kreise, deren Durchmesser die Dreiecksseiten sind, bilden die
von den jeweiligen Endpunkten der Durchmesser ausgehenden Dreieckshéhen (da ihre
FuBpunkte nach dem Satz des Thales auch auf der betreffenden Kreisperipherie liegen)
zwei sich sehneidende Sehnen. Aus dem Satz, dass die Produkte der Abschnitte von
zwei sich schneidenden Kreissehnen gleich groB sind, folgt bei dreimaliger Anwendung
sofort die Behauptung.

Beweis 3 (Abb. 1'). Man zeichnet den Umkreis des Dreiecks ABC' und verlangert die
Hohen (iber ihre FuBpunkte hinaus bis zum Kreis. Dabei wird bei jeder Hohe der untere
Abschnitt verdoppelt (Nachweis !).

Abb. 1’
Fir die drei Sehnen mit ihrem Schnittpunkt gilt
hy - 2hy = hy - 2hy = hY - 2R

d.h.
he-hY = hO- b = h° - h"

Beweis 4 (Abb. 2'). Dieser Beweis setzt die Verwendung der Relationen

hy = 2rcos « und

hy = hj cosy = 2r cos [3 cos 7y

voraus.

13



2.3 Die merkwiirdigen Linien des Dreiecks

Abb. 2’

Der Rechtecksinhalt
h? - b = 4r? cos v cos f3 cos Y

ergibt sich auch aus den Abschnitten der beiden anderen Hohen.

14



3.1 Satz fiir die Ecktransversalen durch einen beliebigen Punkt

3 Eine Relation fiir die Ecktransversalen durch einen
beliebigen Punkt des Dreiecks

Es besteht auch eine allgemeine Relation fiir alle Ecktransversalen, die durch einen
Punkt gehen, der sowohl im Dreieck als auch auBerhalb desselben liegen kann.

3.1 Satz fiir die Ecktransversalen durch einen beliebigen Punkt

Bildet man fir jede von drei Ecktransversalen eines Dreiecks, die durch einen Punkt
gehen, den Quotienten am ihrem oberen Abschnitt und der ganzen Strecke, so hat die
Summe der drei Quotienten den konstanten Wert 2:

0 2

o
Zay by e 9
13 Le

[¢]
ta
(t; ist die ganze Transversale, t? der obere Abschnitt von der Ecke bis zum Schnittpunkt
der Transversalen, t{ der untere Abschnitt von diesem Schnittpunkt bis zum Schnitt
mit der Dreiecksseite; i = a, b, ¢).

B
Abb. 20 £ 4
Beweis. Aus Abb. 20 folgt

Viereck ABPC + Dreieck BFC = ANABC = F
Nun ist
OABPC + ABPC +0OBCPA+ ACPA+UOCAPB + AAPB =3F (1)

Es ist
ABPC + ANACPA+ NAPB =F

Subtraktion ergibt
UABPC +UOBCPA+UOCAPB =2F (2)

Durch Division von (2) durch F' erhalt man
ABPC N BCPA N CAPB
F F F

Wir berechnen nun den ersten Summanden (Abb. 20):

2

1 1 1 1
NABC = iaha, ABPC = 5@]12, OABPC = §a(ha - hQ) == Eahj]_

15



3.1 Satz fiir die Ecktransversalen durch einen beliebigen Punkt

ABPC  zahy  h 12

7 Lah, = i (Strahlensatz!)
Entsprechend erhalt man fir die anderen beiden Summanden
BCPA {7 q CAPB ¢
= un ==
F ty F te
Damit folgt
th 1 1,
ta  tp  te
&
A
A
P
Abb. 21,22 8 ¢ . 3 .

Aufgabe 9. Man beweise den Satz fiir den Fall, dass P a) auf einer Dreiecksseite (Abb.
21), b) auBerhalb des Dreiecks (Abb. 22) liegt.
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4.1 Die Eulersche Gerade

4 Merkwiirdige Linien im Dreieck

4.1 Die Eulersche Gerade

Die Schnittpunkte der Seitenhalbierenden, Hohen, Mittelsenkrechten und Winkelhal-
bierenden haben in jedem Dreieck eine eindeutig bestimmte Lage. Damit steht im
Zusammenhang, dass die drei zuerst genannten Punkte auf einer Geraden liegen, die
Eulersche Gerade genannt wird.

Die durch den Hohenschnittpunkt und den Mittelpunkt des Umkreises begrenzte Stre-
cke dieser Geraden wird durch den Schnittpunkt der Seitenhalbierenden, den Schwer-
punkt des Dreiecks, im Verhaltnis 2: 1 geteilt.

8

Abb. 23 .

Beweis 1. Im Dreieck ABC' (Abb. 23) sind die Hohen h,, und h; die Seitenhalbierenden
Sq und s, und die Mittelsenkrechten m, und my gezeichnet. Die zugehorigen Schnitt-
punkte sind H, S und M. Es soll nun bewiesen werden, dass diese Punkte auf einer
Geraden liegen.

Die Dreiecke ABH und EDM stimmen in ihren Winkeln Gberein, weil die Schenkel der
homologen Winkelpaare parallel und entgegengesetzt gerichtet sind: AH || M D, als
Senkrechte auf BC, BH || M E, als Senkrechte auf AC, AB || ED und AB = 2ED;
die Verbindungsstrecke der Mitten zweier Dreiecksseiten ist parallel zur dritten Seite
und halb so groB wie diese.

Also ist AABH ~ ADEM (WW). In dhnlichen Dreiecken sind die homologen Seiten
proportional:
AH:DM =AB:DE=2:1

Nun wird H mit M verbunden. Diese Gerade schneidet AD im Punkt S’. Zu beweisen
ist, dass die Punkte S und S’ identisch sind.

Esist AAHS' ~ ADMS’ (WW); denn es gilt ZHAS" = ZM DS’, als Wechselwinkel
an geschnittenen Parallelen und ZHS'A = ZMS’D, als Scheitelwinkel.

Da sich AH : DM wie 2:1 verhalt, ist auch AS’: DS’ =2 : 1, d.h., die Seitenhalbie-
rende AD wird durch S’ im Verhaltnis 2 : 1 geteilt. Die gleiche Teilung erfolgt durch
S. Also stimmen S und S’ iiberein, die Punkte H, S und M liegen in einer Geraden,
und es besteht die Proportion HS : SM =2 : 1.

Beweis 2a. Liegen zwei ahnliche Dreiecke so, dass homologe Seiten einander paral-
lel laufen und gleiche bzw. entgegengesetzte Richtung besitzen, so befinden sich die
Dreiecke in Ahnlichkeitslage.
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4.1 Die Eulersche Gerade

c{

Abb. 24 b)

Verbindet man entsprechende Eckpunkte, so schneiden die Verbindungsgeraden einan-
der in einem Punkt, dem Ahnlichkeitspunkt der beiden Dreiecke. Die Geraden heiBen
Ahnlichkeitsstrahlen.

Sie werden durch den Ahnlichkeitspunkt im Verhaltnis zweier homologen Dreiecksseiten
geteilt. Sind die entsprechenden Seiten der Dreiecke parallel und gleich gerichtet, so ist
ein duBerer Ahnlichkeitspunkt vorhanden (Abb. 24), sind sie parallel und entgegenge-
setzt gerichtet, so existiert ein innerer Ahnlichkeitspunkt (Abb. 25). Nach diesen kurzen
Erklarungen folgt nun der Beweis.

Abb. 25a, b

In Abb. 23 befinden sich die Dreiecke AHB und DME in Ahnlichkeitslage, da die
homologen Seiten parallel und entgegengesetzt gerichtet sind. Die Ahnlichkeitsstrahlen
AD, BE und HM schneiden einander im Punkt S. Die Strahlen werden im Verhaltnis
der homologen Seiten der dhnlichen Dreiecke geteilt. Es ist

AS:SD=BS:SE=HS:SM=AB:ED=2:1

(nach dem Strahlensatz A und nach dem Satz von der Strecke, die die Mitten zweier
Dreiecksseiten verbindet).

Also liegen H, S und M auf einer Geraden, dem Ahnlichkeitsstrahl H M, der durch S
im Verhaltnis 2: 1 geteilt wird.
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4.2 Der Feuerbachsche Kreis

Beweis 2b (Abb. 26). Man zeichnet ein Dreieck ABC', halbiert die Seiten und verbindet
die Mittelpunkte D, E und F, Das Dreieck DEF' ist dem Dreieck ABC' ahnlich
(Beweis!) (WW).

Beide Dreiecke befinden sich in Ahnlichkeitslage. Die Seitenhalbierenden sind Ahnlich-
keitsstrahlen, und ihr Schnittpunkt S ist Ahnlichkeitspunkt.

Die Mittelsenkrechten im Dreieck ABC' sind zugleich Hohen im Dreieck DEF (Beweis
1). Demnach sind die Punkte H und M entsprechende Hohenschnittpunkte in ahnlich
liegenden Dreiecken. Als solche liegen sie auf einem Ahnlichkeitsstrahl, der durch den
Ahnlichkeitspunkt S im Verhaltnis entsprechender Dreiecksseiten, also wie 2 : 1 geteilt
wird.

Damit ist bewiesen, dass H, S und M auf einer Geraden liegen und dass HM im
Verhaltnis 2 : 1 geteilt wird.

4.2 Der Feuerbachsche Kreis

Auf der Eulerschen Gerade liegt noch ein merkwiirdiger Punkt des Dreiecks, namlich
der Mittelpunkt des Kreises, auf dem neun ausgezeichnete Punkte des Dreiecks liegen.
Es sind die drei Mittelpunkte der Seiten, die drei FuBpunkte der Héhen und die drei
Mittelpunkte der oberen Hohenabschnitte.

Abb. 27

Im folgenden soll nacheinander bewiesen werden, dass die genannten Punkte auf einem
Kreis liegen und dass der Mittelpunkt dieses Kreises die Eulersche Strecke HM hal-
biert.

Der Kreis um AH als Durchmesser (Abb. 27) geht durch die FuBpunkte E und F' der
Hohen BE und C'F (Satz des Thales). Daher ist /ZFAH = ZFEH, als Peripheriewin-
kel iber dem Bogen F'H. Ebenso kann mit Hilfe des Kreises um HC' als Durchmesser
gezeigt werden, dass ZHCD = ZHED ist.

Da aber ZFAD = ZFCD ist (Beweis entweder mit Hilfe dhnlicher Dreiecke oder als
Peripheriewinkel im Kreis mit AC' als Durchmesser), ist /ZFEH = ZDEH.

Die Hohe BE im Dreieck ABC' ist demnach zugleich Winkelhalbierende im HohenfuB-
punktsdreieck DEF. Es ist /FED = 2/FFEH, und wegen /FEH = /FAH folgt
/FED =2/FAD.

Der Mittelpunkt L des oberen Abschnitts AH der Hohe AD ist Mittelpunkt des Kreises,
auf dem die Punkte A, F', H und E liegen. In diesem Kreis ist /FLH = 2/FAH
(der Zentriwinkel ist doppelt so groB wie der Peripheriewinkel iiber demselben Bogen).
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4.2 Der Feuerbachsche Kreis

Da aber /ZFED = 2/FAH ist, gilt Z/ZFLD = ZFED. Und da beide Winkel tber
demselben Bogen des Kreises stehen, der durch die FuBpunkte der Hohen im Dreieck
ABC geht, muss auch L auf der Peripherie dieses Kreises liegen.

Es gibt noch einen weiteren Winkel, der doppelt so groB ist wie ZBAD, namlich
/BKD. Der Punkt K ist der Mittelpunkt der Seite AB und zugleich Mittelpunkt des
Kreises, der durch die Punkte A, F, D und B geht.

In diesem Kreis ist der Zentriwinkel ZBK D doppelt so groB wie der Peripheriewinkel
/BED, der mit ihm auf dem Bogen BD steht. Wie bereits gezeigt, ist 2/BED =
/FED und daher /BKD = /FED.

Die Winkel FKD und BKD betragen zusammen als Nebenwinkel 180°. Weil die
Winkel BK D und F'ED einander gleich sind, gilt ZFKD + ZFED = 180°.

Also ist das Viereck FEDK ein Sehnenviereck, und der Punkt K liegt mit F', E und
D auf dem Kreis, der durch die FuBpunkte der Hohen bestimmt ist.

Wahlt man in dem Kreis um K mit dem Durchmesser AB den Winkel AKE als Zen-
triwinkel und den Winkel ADFE als Peripheriewinkel, die beide (iber dem Bogen AE
stehen, so lasst sich leicht zeigen, dass /FKE = ZFDE ist und dass deren Scheitel
auf dem Kreis liegen, der durch D, E und F' bestimmt ist.

Was fiir den Mittelpunkt des oberen Abschnitts der Hohe h, und fiir den Mittelpunkt
K die Seite AB gezeigt wurde, gilt auch fiir die lbrigen gleichartigen Punkte. Also
liegen die eingangs genannten Punkte des Dreiecks auf dem HohenfuBpunktskreis, der
auch Feuerbachscher Kreis genannt wird.

Es ist nun zu zeigen, dass der Mittelpunkt des Feuerbachschen Kreises auf der Euler-
schen Geraden liegt.

Beweis 1. EI, KF und DG sind Sehnen des Feuerbachschen Kreises. Aus der Kreis-
lehre ist bekannt, dass die Mittelsenkrechten der Sehnen eines Kreises einander im
Mittelpunkt desselben schneiden.

Wir betrachten zunachst das zur Sehne EI gehorige Viereck EIMH. EH und IM
sind Lote auf E'I und daher zueinander parallel. Ihnen lauft das Mittellot QN auf E1
ebenfalls parallel. Deshalb ist M H ein Trapez, dessen Mittellinie QN ist, die den
Schenkel HM - das ist die Eulersche Strecke - in N halbiert.

Nun ist diese Strecke auch Schenkel in den Trapezen KFHM und GDHM. Die
Mittellinien der drei Trapeze treffen im Punkt N auf den gemeinsamen Schenkel H M.
Also liegt der Mittelpunkt des Feuerbachschen Kreises auf der Eulerschen Strecke und
halbiert sie.

Beweis 2. Gegeben sei das Dreieck ABC' (Abb. 28). Verbindet man die Mitten der obe-
ren Hohenabschnitte in diesem Dreieck durch Gerade, so entsteht ein Dreieck A; B,
das dem Dreieck ABC &hnlich ist (Beweis !).

Die homologen Seiten verhalten sich wie 1 : 2. Da sie auch parallel verlaufen, befinden
sich beide Dreiecke in Ahnlichkeitslage mit dem Héhenschnittpunkt als Ahnlichkeits-
punkt.
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4.2 Der Feuerbachsche Kreis
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Abb. 28

Verbindet man die Mitten der Seiten des Dreiecks ABC' durch Gerade, so entsteht
das Dreieck DEF', das ebenfalls dem Dreieck ABC' ahnlich ist und sich mit ihm in

Ahnlichkeitslage befindet. Die homologen Seiten verhalten sich wie 1 : 2 (Beweis !).

Es lasst sich leicht zeigen, dass A A1 B1C; = ADEF ist und beide Dreiecke zueinander
dhnlich liegen. Der Ahnlichkeitspunkt ist der Mittelpunkt N des Feuerbachschen Krei-
ses. Die Ahnlichkeitsstrahlen A; D, B E und C, F verbinden entsprechende Eckpunkte,
die samtlich auf der Peripherie des Feuerbachschen Kreises liegen.

Sie sind Durchmesser dieses Kreises, weil die Peripheriewinkel, die iber ihnen stehen
LAIGD, /B1KE, ZCIF rechte Winkel sind (Satz des Thales).

Die Durchmesser schneiden einander im Mittelpunkt des Kreises, dem Ahnlichkeits-
punkt N. Das Teilungsverhaltnis der Ahnlichkeitsstrahlen ist 1 : 1. Da die Mittel-
senkrechten des Dreiecks ABC' zugleich Hohen im Dreieck DEF' sind, erscheinen die
Punkte H und M als ahnlich liegende Hohenschnittpunkte.

Als solche liegen sie auf dem Ahnlichkeitsstrahl H M, der durch den Ahnlichkeitspunkt
N halbiert wird. HM ist die Eulersche Strecke im Dreieck ABC'. Auf ihr liegt der
Mittelpunkt N des Feuerbachschen Kreises, der die Strecke HM halbiert.

Aufgabe 10. Man beweise, dass im Dreieck ABC' (Abb. 28) die Mittelsenkrechte DM
auf der Seite BC' halb so groB ist wie der obere Abschnitt AH der zur gleichen Dreiecks-
seite gehorigen Hohe und dass der Radius 7 des dem Dreieck ABC' umgeschriebenen
Kreises doppelt so groB ist wie der Radius, des Feuerbachschen Kreises.

A

Abb. 29 b

Beweis 3. Die Lage des Mittelpunkts des Feuerbachschen Kreises auf der Eulerschen
Geraden kann noch auf einem anderen Wege bestimmt werden (Abb. 29a)

Im Dreieck ABC werden die Mitten der Seiten D, E und F geradlinig verbunden. Dass
sich die Dreiecke ABC und DEF in Ahnlichkeitslage befinden, wurde bereits gezeigt.
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4.3 Das HoéhenfuBpunktsdreieck

Der Ahnlichkeitspunkt ist der Schnittpunkt der Seitenhalbierenden beider Dreiecke, von
denen je zwei entsprechende Punkte auf derselben Geraden liegen. (Man beweise, dass
die Seitenhalbierende AD auch die Seite EF halbiert.)

Im Dreieck ABC' liegen der Hohenschnittpunkt H, der Mittelpunkt des Umkreises M
und der Schnittpunkt der Seitenhalbierenden S auf der Eulerschen Geraden H M. Diese
Strecke wird durch S im Verhiltnis 2:1 geteilt.

Entsprechend liegen im Dreieck DEF' der Hohenschnittpunkt M, der Mittelpunkt des
Umbkreises N und der Schnittpunkt der Seitenhalbierenden S ebenfalls auf einer Euler-
schen Geraden M N. Diese Strecke wird durch S im Verhaltnis 2 : 1 geteilt.

Da eine Gerade durch zwei ihrer Punkte eindeutig bestimmt ist und die Punkte M und
N sowohl| im Dreieck ABC' als auch im Dreieck DEF' auf der Eulerschen Geraden
liegen, missen beide Geraden libereinstimmen. Also liegen H, N, S und M auf einer
Geraden, und es gelten die Proportionen:

NS:SM=1:2, SM:SH=1:2, NS:SM:SH=1:2:4

Hieraus und aus Abb. 29b ergibt sich die Proportion HN : NM = 3 : 3, d.h., dass der
Mittelpunkt N des Kreises, der dem Dreieck DEF' umgeschrieben ist - das ist aber
der Feuerbachsche Kreis -, auf der Eulerschen Strecke H M liegt und sie halbiert.

4.3 Das HohenfuBpunktsdreieck

Auf dem Feuerbachschen Kreis liegen neun besondere Punkte des Dreiecks, von denen
je drei als Eckpunkte eines Dreiecke angesehen werden konnen.

In Abb. 28 sind zwei von diesen Dreiecken gezeichnet, Dreieck A; B1C4 und Dreieck
DEF; beide sind kongruent. Der Inhalt jedes dieser Dreiecke ist gleich dem vierten Teil
des Dreiecks ABC' (Beweis !).

Zwischen dem HohenfuBpunktsdreieck und den beiden genannten Dreiecken bestehen
wesentliche Unterschiede. Dennoch ist es ebenso wie diese durch Form und Inhalt des
Dreiecks ABC' eindeutig bestimmt, d.h., dass seine Bestimmungsstiicke sowie sein
Inhalt durch die Stiicke des Dreiecks ABC' ausgedriickt werden konnen.

Zunachst sollen die Seiten des HohenfuBpunktsdreiecks aus den Seiten und Winkeln des
Dreiecks ABC berechnet werden (Abb. 30). Durch, die Hohen wird das Dreieck ABC
in drei Sehnenvierecke AFHE, BDHF und CEHD zerlegt, in denen die Seiten des
HohenfuBpunktsdreiecks Diagonalen sind.

Diese seien mit d; (i = 2,4,6) bezeichnet. Die anderen Diagonalen seien d; (j =
1,3,5). Die unteren Hoéhenabschnitte sind h{ (i = a,b,c). Nach dem Ptolemaischen
Lehrsatz ergeben sich folgende Gleichungen:

g'Cl—f—hg'bg:dl'dQ, hg-a1+hg-02:d3-d4, hz'b1+hg'a2:d5'd6
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4.3 Das HoéhenfuBpunktsdreieck

Abb. 30
Fir die b} (i = a, b, c) gilt

hy = dj sin au, hy = dy sin o, hy = dssin 3y
h, = d3sin 3, hy = ds sin s, hy = dssiny;

Diese Werte setzt man in die obigen drei Gleichungen ein und erhalt

Cldl sin a9 + del sin a1 = dl : dg
aidssin By + codssin 51 = d3 - dy
bids sin yo + asds siny; = ds - dg

Dividiert man die erste Gleichung durch d;, die zweite durch d3 und die dritte durch
ds, so folgt

dy = ¢18in g + by sin ag, dy = q1 sin By + ¢9 8in [y, dg = by sinys + as sin 1y

Nun ist aber a; = 75 = 90° — 3, /1 = as = 90° — v und 71 = (2 = 90° — .. Daher
erhalt man fir die Seiten des HohenfuBpunktsdreiecks

dy = 1 8in B + by sin ap = ¢1 sin aig + by sin y9 = ¢ cosy + by cos
dy = aysin~y; + cosin f1 = aq sin fs + cosin g = a1 cos a + ¢ cosy
dg = by sin a1 + ag siny; = by sinyy + ag sin Py = by cos f + ag cos «

Durch Addition der ersten und der letzten Spalten erhalt man
dy 4+ dy + dg = 25" = acosa + bcos 3+ ccosy

Setzt man a = 2rsina, b = 2rsin 8 und ¢ = 2rsiny und benutzt die Beziehung
2sin x cos x = sin 2x, so ergibt sich

25" = r(sin 2« + sin 28 + sin 2)
und hieraus folgt
25" = 4r sin asin B sin und s' = 2rsinasin Bsiny (1)

Nachdem die Seitensumme des HohenfuBpunktsdreiecks durch die Seiten und Win-
kel des Dreiecks ABC' dargestellt ist, soll nun der Inhalt des Dreiecks DEF durch
Bestimmungsstiicke des Dreiecks ABC' ausgedriickt werden.
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4.3 Das HoéhenfuBpunktsdreieck

Zunachst sei die Inhaltsformel fiir Dreiecke kurz hergeleitet:

F=s2tangtan§tanl
2 a 2

In Abb. 33 folgt als den Teildreiecken an den drei Ecken des Dreiecks ABC

p:(s—a)tang, p:(s—b)tang, p:(s—c)tang

Multiplikation dieser drei Gleichungen ergibt

3 (s — a)(s — b)(s — ) tan “tan > tan )
p°=(s—a)(s—0b)(s c)tanQtamatan2

Nun werden beide Seiten dieser Gleichung mit s3> multipliziert:

p*s? = s(s —a)(s —b)(s — c)s tangtanﬁ tang
a

Hieraus folgt

«Q
F3 :F252tan—tanétanl
a

und nach Division durch F?

F:s2tangtan§tanl
2 a 2

Wendet man diese Formel auf das Dreieck DEF an, so ergibt sich (Abb. 30)
AP 1 1 1
F" = s“tan §4FDE - tan §4DEF - tan §£EFD
Da aber

1 1
§ZFDE:’)/1:BQZQOO—OJ, iZDEF:Oq:’)/QZQOO—B

1
§AEFD:61:042:900—7

ist, erhalt man
F' = s cot accot B cot y

Hier wird (1) eingesetzt:

F' = 4r?sin? asin? B sin? y cot a cot B cot 7y (2)
Daraus folgt
F' = 4r? sin avsin 3 sin 7 cos o cos 3 cos (3)
oder 1
F = §r2 sin 2avsin 23 sin 2y (4)
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4.3 Das HoéhenfuBpunktsdreieck

Will man jedoch zu den Seiten a, b, ¢ gelangen, so schreibt man (3) in der Form

1
F' = 2—2rsina - 2rsin 3 - 2r sin y cos « cos 3 cos y
r

und erhalt ;
F' = ECosozcosﬁcosv
2r
und da ‘Z—bf = Fist,
F' = 2F cosacos 3 cosy (5)

Daraus geht hervor, dass Dreieck DEF vom Dreieck ABC' in Form und Inhalt abhan-
gig ist.

Aufgabe 11. a) Man berechne mit Hilfe der gewonnenen Formel den Inhalt des Hohen-
fuBpunktsdreiecks im gleichseitigen Dreieck und erlautere das Ergebnis.

b) Man fiihre die gleiche Rechnung fiir ein rechtwinkliges Dreieck durch.

c) Man berechne den Inhalt des HohenfuBpunktsdreiecks in einem gleichschenkligen
Dreieck mit dem Basiswinkel von 75°.

Die Seiten des HohenfuBpunktsdreiecks konnen auf einem anderen Wege durch den
Radius des dem Dreieck ABC' umgeschriebenen Kreises und die Winkel des Dreiecks
ausgedriickt werden.

Abb. 31

Im Dreieck ABC' (Abb. 31) sind die drei Hohen und der umgeschriebene Kreis gezeich-
net. H ist der Hohenschnittpunkt und M der Mittelpunkt des Umkreises. Zieht man
von B den Durchmesser BL und verbindet L mit A und C, so sind die Winkel BAL
und BCL gleich 90° (Satz des Thales).

Also sind AD, C'L und MK parallel als Senkrechte auf B('; ebenso sind LA und C'F
parallel als Senkrechte auf AB. Folglich ist AHC'L ein Parallelogramm und AH = LC.
Da LC = 2M K ist (Strahlensatz), erhalt man

AH =2MK = 2rcosa, (MK =rcosa).

AH ist der Durchmesser des Kreises, der durch A, F', H und E geht. Fir die Sehne
gilt die Relation
FE = AHsina = 2r cosasin a = rsin 2«

In gleicher Weise findet man

DF = 2rsin S cos 8 = rsin 20 ) DE = 2rsinycosy = rsin 2y
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4.3 Das HoéhenfuBpunktsdreieck

so dass sich
25" = r(sin 2a + sin 23 + sin 27) = 4r sin asin B siny

oder
s' = 2rsin asin B sin

ergibt. Fiir I erhalt man, wie schon vorher berechnet,
F' = o7 sin 2asin 23 sin 2y

Vertauscht man in Abb. 32 A und H, so ist Dreieck (A)BC' stumpfwinklig und (H)
Hohenschnittpunkt in diesem Dreieck.

AlH)

Abb.32 o 3

Die Umkreise der Dreiecke ABC und (A)BC sind gleich (Beweis!). Beide Dreiecke
haben das gleiche HohenfuBpunktsdreieck. Will man aus der Formel

s’ = 2rsin asin B sin~y

die fiir das spitzwinklige Dreieck gilt, die entsprechende Relation fiir des stumpfwinklige
Dreieck herleiten, so ist r beizubehalten, wahrend fiir die Winkel «, £, v die Winkel
des stumpfwinkligen Dreiecks oy, (1, 71 einzufiihren sind. Es ist a« = 180° — oy,
B =90° =, v=90° — 31. Somit erhalt man

s’ = 2rsin(180° — a) sin(90° — 71) sin(90° — 5)
oder
s’ = 2rsin ay cos By cos

und fur den Flacheninhalt
1
F' = —57“2 sin 2 sin 231 sin 4

(Beweis !).

Die Formeln fiir die Seitensumme des HohenfuBpunktsdreiecks sind fiir beide Arten
der Dreiecke verschieden, wahrend die Formeln fir den Inhalt sich nur im Vorzeichen
unterscheiden. Da jedoch 2a > 180° ist und daher sin 2« negativ wird, ergeben beide
Formeln einen positiven Wert. Man erlautere das an einem Zahlenbeispiel.

Aufgabe 12. Vorstehend wurden die Formeln fiir das stumpfwinklige Dreieck dadurch
gewonnen, dass man in die Formeln fiir das spitzwinklige Dreieck die Winkel des stumpf-
winkligen Dreiecks einfithrte. Man leite nun die Formeln fiir s’ und F”’ direkt aus der
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4.3 Das HoéhenfuBpunktsdreieck

Abbildung ab (man benutze Abb. 32).

Anleitung. Zum Nachweis der Gleichheit der Radien der Umkreise beider Dreiecke spie-
gele man Dreieck BHC an BC' und zeige, dass H’, das Spiegelbild von H, auf dem
Umbkreis durch A, B und C' liegt.

Man berechne die Seiten des Dreiecks DEF' wie beim spitzwinkligen Dreieck und be-
achte dabei, dass Z(A)BC = 1, Z(A)CB =, ZEFD = 2B, ZDEF = 2, und
ZFDFE = 2aq — 180° ist.

Wir begegnen hier einem Beispiel, wo eine fiir ein spitzwinkliges Dreieck geltende Re-
lation nicht in der gleichen Form fiir das stumpfwinklige Dreieck gilt. Im vorliegenden
Fall sind die Formeln fiir die Seitensumme des HoéhenfuBpunktsdreiecks verschieden,
wahrend die Inhaltsformeln sich nur im Vorzeichen unterscheiden.

Das HohenfuBpunktdreieck besitzt noch eine interessante Eigenschaft: Es ist das Drei-
eck mit dem kleinsten Umfang, das dem spitzwinkligen Dreieck ABC' eingeschrieben
werden kann. Einen Beweis mit elementaren Hilfsmitteln gab der bekannte ungarische
Mathematiker Fejer.

Man geht von einem beliebigen eingeschriebenen Dreieck DEF' aus, wobei D auf BC
fest angenommen ist, wahrend E auf AC und F' auf AB verschoben werden sollen
(Abb. 3').

Abb. 3

D wird sowohl an AC' als auch an AB als Symmetrieachsen gespiegelt. Man erhalt die
Punkte D; und D.. Es werden die symmetrischen Strecken ED = ED,, FD = F D,
und ADy = AD. = AD gezeichnet.

Da symmetrische Strecken mit der Symmietrieachse gleiche Winkel bilden, findet man
leicht, dass der Winkel Dy AD gleich 2« ist.

Der Streckenzug Dy EF' D, hat dieselbe Lange wie der Umfang des Dreiecks DEF'.
Verschiebt man F und F' auf den Dreiecksseiten b und ¢ so, dass sie auf der Geraden
Dy D. liegen, so erhalt man Dreieck DE’F’" mit dem kleinsten Umfang bei festliegender
Ecke D. Der Umfang u ist ebenso lang wie die Basis des gleichschenkligen Dreiecks
ADyD., mit dem Winkel 2a: an der Spitze.

,1 p
4K
Abb. 4' T ‘
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4.3 Das HoéhenfuBpunktsdreieck

Er ist noch nicht der kleinste von allen eingeschriebenen Dreiecken. Man verschiebt nun
die Ecke D so, dass sie FuBpunkt der kiirzesten Transversale durch die Ecke A wird.
Sie wird dann Hoéhe h, mit dem FuBpunkt H; (Abb. 4').

Die Spiegelpunkte von H; an den Seiten b und ¢ seien K und L, und K L schneidet
b und ¢ in Hy bzw. H3. Das Dreieck AK L mit dem Winkel 2« an der Spitze besitzt
demnach die kiirzesten Schenkel h, und daher auch die kiirzeste Basis, die ebensolang
wie der Umfang u des Dreiecks HiHyHj ist. Dieses ist, wie noch gezeigt wird, ein
HohenfuBpunktdreieck.

Man findet auch das Dreieck mit dem kleinsten Umfang, wenn man auf der Seite AC'
einen Punkt festlegt und dann zum HohenfuBpunkt H tibergeht. Auch die Konstrukti-
on mit Hilfe der Hohe A, fiihrt zu dem Dreieck mit dem kleinsten Umfang. Da in allen
drei Fallen das gleiche Dreieck entstehen muss, weil es nur eines mit dem kleinsten
Umfang im Dreieck ABC' geben kann, handelt es sich offensichtlich um das Hohen-
fuBpunktdreieck.

Aufgabe 1. Man kann beweisen, dass bei der ersten Konstruktion, in der H; als Ho-
henfuBpunkt festgelegt ist, die FuBpunkte der Hohen h; und h,. auf der Geraden KL
liegen.

Aufgabe 2. Man berechne den Umfang des eingeschriebenen Dreiecks Hi HyH3 mit
Hilfe des gleichschenkligen Dreiecks AK L mit AK = h, und dem Winkel K AL = 2«
und zeige die Ubereinstimmung des Ergebnisses mit dem in Gleichung (1), fiir 2s er-
rechneten Wert.

Losungen der Aufgaben

1" Unter Benutzung des fest angenommenen HoéhenfuBpunktes H; ist das Dreieck
H1EF mit dem kleinsten Umfang dem Dreieck ABC' eingeschrieben worden. Der Um-
fang ist ebensolang wie die Basis des gleichschenkligen Dreiecks LAK . Jeder Schenkel
ist gleich h,, der Winkel an der Spitze 2a.

Es soll bewiesen werden, dass E und F' die FuBpunkte der Hohen h; bzw. h. sind.

Es ist ZAKL = 90° — o, LZ/CAK = ZCAH; = 90° — «. Dann ist ZAFEL als
AuBenwinkel des Dreiecks AFK gleich 180° — a — v = .

Das Viereck ALBH, ist ein Sehnenviereck, weil

ZLAH, + ZLBH; = 2(90° — ) = 180°

ist. Sein Umkreis hat AB als Durchmesser. In diesem Kreis ist ZABL = 3 Periphe-
riewinkel. Auf dem gleichen Bogen AL steht auch der Winkel LE A, von dem gezeigt
wurde, dass er gleich 3 ist. Daher muss E' auf dem Umkreis liegen.

Betrachtet man nun die Peripheriewinkel iber dem Durchmesser AB, zu denen auch
/AFEB gehort, so muss dieser nach dem Thalessatz gleich 90° sein, und BE ist die
Hohe hy. Wir dirfen nun (entsprechend Hy) Hs anstelle von E setzen.

Analog lasst sich beweisen, dass F' und Hj identisch sind.

2. Dass H1HyHs (in Abb. 5": H;E'F') HohenfuBpunktsdreieck ist, kann man auch

28



4.4 Der Inkreis und die drei Ankreise des Dreiecks

dadurch beweisen, dass man seinen Umfang v = K L (= Basis des gleichschenkligen
Dreiecks AK L mit den Schenkeln h, und dem Winkel 2/ an der Spitze) berechnet
und mit dem schon berechneten Wert vergleicht.

Aus dem Dreieck AK L folgt

) 2ah,sina 4Fsina 2F
u = 2h,sina = = - = —
a 2r sin o T

T~

ST

LW

Abb. 5’
dabei ist F' der Inhalt und r der Umkreisradius des Dreiecks ABC'. Fur

F = 2r? sin asin B sin v
ist
u = 4rsin asin (8 sin 7y

wie in Gleichung (1), berechnet (u = 25').

4.4 Der Inkreis und die drei Ankreise des Dreiecks

Es wurde bereits erortert, wie die Mittelpunkte des Inkreises und der drei Ankreise des
Dreiecks gefunden werden. Abb. 33, die diese vier merkwiirdigen Punkte des Dreiecks
und die Kreise zeigt, ist in mannigfacher Beziehung aufschlussreich.

Die Beriihrungspunkte der Kreise auf den Dreiecksseiten erzeugen auf diesen Abschnit-
te, deren Langen bereits im Unterricht der allgemeinbildenden Schulen berechnet wer-
den. Man bestatige folgende Relationen:

AFy = AF; =s—a , BF, = BD; =s—b,
AFy = AFy, = s , BF, =BDy; =s —c,
BFy,=BD3=s , AF, = AFE3 = s —c,
CEy,=CDy=s , AF3 = AE, = s — b,

CDi=CFE,=s—c , CDy=CFEy=5s5—0b,

CEs=CD3=s5—a , BF;=BDys=5s5—a

mit s = atbtc

Man leite auch die Inhaltsformel fur das Dreieck ABC'
F=p-s (1)

her.

29



4.4 Der Inkreis und die drei Ankreise des Dreiecks

In Abb. 33 sind die Dreiecke AF,0, AF50,, AE4O. und AF4O, einander ahnlich, da
sie sdmtlich neben dem Winkel § einen rechten Winkel enthalten (WW). Daher ergeben

sich die folgenden Beziehungen der Zeile A in Tabelle 1 (entsprechend findet man die
Gleichungen der Zeilen B und C):

‘ | 1 [l v V
Al L =0 =sb e g Q
s—a S Pc Pb
Tabelle 1 Bl £ —m _—s—c _s—a _ton0
s—b S Pa pe 2
C|l £ —p _s—a _ s tan 2
s—cC S Pb Pa 2

Abb. 33

Setzt man F' = ps als bekannt voraus, so folgt aus den Gleichungen Al = All, ferner
aus Bl = BIl und aus Cl = ClI

F = pu(s—a), F =py(s—c), F =ps—c) (2,3,4)

Aufgabe 13. Man leite die Formeln (2) bis (4) geometrisch her.

Um p durch die Seiten des Dreiecks auszudriicken, fasst man B | und B Il zusammen
und erhalt

ppa = (s = b)(s —¢) (*)
Aus A | und A Il folgt
ps = pa(s — a)
Multiplikation beider Gleichungen und Division durch p, ergibt

p’s = (s —a)(s —b)(s —c)

Hieraus folgt nach Division durch a und Ziehen der Quadratwurzel

AN [0 [ e

S
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4.4 Der Inkreis und die drei Ankreise des Dreiecks

Multipliziert man (5) mit s, so gewinnt man die Heronische Inhaltsformel des Dreiecks:

F:\/s(s—a)(s—b)(s—c) (6)

Diese Formel erhalt man auch, wenn beide Seiten der Gleichung (*) mit s(s — a)
multipliziert werden:

pspa(s —a) = s(s —a)(s —b)(s —¢)
oder wegen ps = p,(s —a) = F
F? =5(s—a)(s—b)(s — )

und daraus die Formel (6).
Die Berechnung der Winkel des Dreiecks aus den Seiten desselben soll nun fiir den
Winkel 5 entwickelt werden. Multipliziert man die Gleichungen A1 = AV und A Il =

AV, so ergibt sich
PPa —t 2 &
= tan” —
s(s —a) 2

Nach B I und B lll ist pp, = (s — b)(s — ¢), und man erhalt damit

a \l(s—b)(s—c)

tan — =
o s(s —a)

2

Im Dreieck AF;0 von Abb. 33 ist

2
. p . 9 O p
sm§: und sin® — =

p*+ (s —a)? 2 PP+ (s—a)?

Fiir p? setzt man den aus (5) folgenden Wert ein und erhilt

Sin2 g B (s—a)(s;b)(s—c)
2 (s—a)(s—b)(s—c) +(s—c)?

S

Erweitert man mit s und kirzt durch s — a, so ergibt sich

a0 (=B
2 (s=b)(s—c)+s(s—a)

Die Summe im Nenner betragt bc, wie man durch Ausrechnen leicht findet; also erhalt

man
e (s —b)(s—c)
== 8
i \/ be (®)
. - : 2a (s—a)?
In gleicher Weise findet man aus cos” § = e i

a s(s —a)
g 9
Ccos » (9)

31
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Aufgabe 14. Man zeige mit Hilfe vorstehender Formeln, dass

. 92 (0% 2 (0% . o «
sin® — +cos” — =1 ) sin — : cos — = tan —
2 2 2 2 2
ist. Man berechne sin & und cos o aus den Seiten des Dreiecks ABC..

Aufgabe 15. Man leite an Hand von (8) und (9) aus F' = lbcsina die Heronische
Inhaltsformel des Dreiecks her.

Weitere Inhaltsformeln fiir das Dreieck lassen sich aus den Gleichungen der Tabelle 1
leicht ermitteln. Aus A | und A Il folgt

ppe = (s —a)(s —b)

und aus A Il und A IV
Papy = S(s — c)

Multipliziert man die beiden Gleichungen miteinander, so erhalt man

pPapope = (s — a)(s —b)(s — ¢) = F

und daraus

F= PPaPbPc (10)
Alund AV ergibt p = (s —a)tan §, B 1 und B V ergibt p = (s—b)tang, Clund C
V ergibt p = (s — ¢) tan 4. Daraus folgt

B, v

3 _ (s—a)s—Db)(s— @ tan 2 tan L
p’=(s—a)(s—0b)(s c)tathalQQtan2

Nun multipliziert man beide Seiten der Gleichung mit s?:

p°s’p = s(s —a)(s — b)(s — c)stan % tan p tan
2 2 2
Es ist also 3
pzstangtaunQtamfzy (11)
Hieraus folgt leicht
s = ,f)(:o‘c;écotgcot;y (12)
Aus (11) und (12) ergeben sich wegen F' = ps die Inhaltsformeln
a B 2 o BT
stathatham2 : pcot200t200t2 (13,14)

Aufgabe 16. a) Man berechne p, aus A Il und A V und p aus A | und A V und zeige,
dass

pa—p:atang :4rsin2(; (15)

ist.

32



4.4 Der Inkreis und die drei Ankreise des Dreiecks

b) Man leite aus A Ill und A V und aus A IV und A V die Beziehung
Py + pe = acotg :47“(30823 (16)

her.
c) Man bilde die Summe von (15) und (16):

Pa+py+ pe—p=4r (17)
Aufgabe 17. a) Man bilde die Summe
Pa + p = 2r(cos § + cos ) (18)

b) Man zeige, dass

py — pe = 2r(cosy — cos 3) (19)
ist.
c) Man bilde die Summe von (18) und (19):

Pa+p+ py — pe = 4rcosy (20)

Da in der Gleichung (20), bei der p. mit negativem Vorzeichen versehen ist, auf der
rechten Seite der Winkel ~ auftritt, wird entsprechend, wenn p, bzw. p, negatives
Vorzeichen haben, auf der rechten Seite des Gleichheitszeichens der Winkel 5 bzw. «
auftreten.

Man erhalt also

Pa + pp — pe + p = 4rcosy
Pa — Pb+ pe+ p=4rcosf3
—pPa+ pp+ pe+p=4drcosa

Addition dieser drei Gleichungen ergibt

Pa+ po+ pe + 3p = 4r(cosa + cos f + cosy) = 4r(1 + 4sin (; sin g sin ;) (21)

Mit p, + p» + p. — p = 4r folgt daraus 4p = 167 sin C; sin g sing und damit

p = 4rsin C; sin g sin ; (22)

Nach Aufgabe 16b) ist pj + p. = 47 cos? ¢; entsprechend gilt p. + p, = 4r cos® £ und

2
pb + pa = 47 cos? 2. Die Addition der drei Gleichungen liefert

2(pa + po + pe) = 4r (COS2 g + cos® g + cos® g)
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4.4 Der Inkreis und die drei Ankreise des Dreiecks

Daraus folgt

Pa + Po+ pec=2r (cosQC;—Hjoszg—H:os2 g) =r <2C082§+2COSQ§—|—2(ZOSQ 7)

2
=r(l4+cosa+1+cosfB+ 1+ cosvy) =r(3+cosa+ cosf+ cosvy)
=r (4+4singsin§sin ;) =4r (1 +singsin§sin g) (23)

Mit (17) ergibt sich hieraus wieder die Gleichung (22).

Aufgabe 18. Man berechne p,, p, p. aus den nach (20) folgenden Relationen [es kdnnen
auch die Gleichungen (15) und (18) verwendet werden].

Wir berechnen nun s mit Hilfe von r und den Winkeln des Dreiecks. Es ist

1 1
s = §(a—l—b+ c) = 5(2rsina + 2rsin 8+ 2rsiny) = r(sina + sin 5 + sin )

= 4r cos = cos b cos » (24)
2 2 2

Aufgabe 19. Man zeige, dass das Produkt der Gleichungen (22) und (24) die bekannte
Inhaltsformel F' = 212 sin asin 3 sin v liefert.

Aufgabe 20. Man eliminiere aus (22) und (24) 4r, berechne p und s und bestatige
dadurch die Relationen (11) und (12).

Aufgabe 21. Man bilde die Produkte

(oo +pe)pa—p),  (petpa)po—p)s  (pat po)(pe—p)

Die Losung der Aufgabe 21 lautet

(6 +pe)(pa —p) = (petpa)(s—p) =% (patp)(pe—p) =c

(25,26,27)

2

Wir bilden nun das Produkt der drei Gleichungen:

a*b*c® = (py + pe)(Pa — ) (pe + pa)(po — P)(Pa + p1)(pe — p)

dividiert durch 1612 = (p, + py + p. — p)? [nach (17)] und erhilt wegen %< = F°

e V(0w + p) (pa — p)(pe + pa) (oo — ) (Pa + 1) (pc — p)

(28)
Pa + Pb+ Pc— P
Aufgabe 22. Man beweise, dass
pa — P)(po — p)(pe—p
p:« (s = p)pe = p) (29)
Pa T+ Po+ Pc— P

Ist und berechne s.
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4.4 Der Inkreis und die drei Ankreise des Dreiecks

Losung:

_ (o + 5) (5 + pe)
- J (P + pa)(pa + pv) + (pe — p) (30)

Wir formen nun die Gleichung (29) um, indem wir sie quadrieren und dann nach p

auflosen. Wir erhalten
PaPbPc (31)

" Papy + PoPe + Pape
Bildet man auf beiden Seiten die reziproken Werte, so erhalt man

1 1 1 1
-—= 4+ —+ — (31')
Y Pa  Pb Pc

Aufgabe 23. Man ersetze in (30) p durch den in (31) erhaltenen Wert und vereinfache
den Ausdruck.

Lésung: s = \/papy + pope + Pape (32)

Aufgabe 24. Man bestatige die Richtigkeit der Gleichungen (31) und (32) unter Be-
nutzung der fir die Produkte einzusetzenden Werte aus Tabelle 1.

Aus (31) und (32) ergeben sich die Inhaltsformeln des Dreiecks:

PaPbPc
= (33)
V PaPb + Pvpe + PapPe
F = pvpapo + pope + pape (34)
F— SPaPbPc _ PaPbPc (35)

PaPb + PbPe + PaPec S

Aufgabe 25. a) Man driicke den reziproken Wert von p durch die Radien der drei
Ankreise des Dreiecks aus, indem man von der Gleichung s =s—a+s—b+s—c
ausgeht.

b) Man berechne die reziproken Werte von p, p,, p» und p. aus den reziproken Werten
der drei Hohen des Dreiecks.

Anleitung. Man benutze die Relation s = § + g + 5 usw.

Fur die Berlihrungspunkte, die der Inkreis und die drei Ankreise des Dreiecks auf einer
Dreiecksseite erzeugen, bestehen interessante Lagebeziehungen. Sie sollen beziiglich
der Seite BC' untersucht werden. Man verwende hierbei Abb. 33.

Aufgabe 26. Man driicke die Lange folgender Strecken durch die Seiten des Dreiecks
aus: D1 Dy, D1Ds, D1Dy, DyDs, DoDy, D3Dy. Wir bezeichnen die Mitten von Dy D5
mit P, von D1 D4 mit (), von DyD3 mit R und von DyDy mit T'.

Wie lang sind die Strecken CP, CR, C'QQ und PT? Wo liegen die Mitten von DD,
und D3D4?

Wir beweisen nun noch eine Eigenschaft des Feuerbachschen Kreises.
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4.4 Der Inkreis und die drei Ankreise des Dreiecks

4 » Der Feuerbachsche Kreis beriihrt den Inkreis und die
drei Ankreise des Dreiecks.
= Dazu bendtigen wir folgenden
4
2 ; & ¢ Hilfssatz. Sind H; der HohenfuBpunkt, O; der Beriih-
o rungspunkt des Inkreises auf der Seite a, X der Schnitt-
punkt der Winkelhalbierenden von a mit der Seite a
und M; die Mitte von BC, so gilt (Abb. 34)
M X - MyHy = M,0?
Abb. 34

Beweis.

Es ist ABPX ~ ABPA (WW; denn es ist /BPX = /BPA und /PBX =
/PAB = %) Daraus folgt PX : PB = PB : PA, oder, da PB = PO ist,
PX : PO = PO : PA und nach dem Strahlensatz M;.X : NO = NO : RA oder
M1 X M101 = M101 . M1H1 und die Produktgleichung MlX : M1H1 = Mﬂ)%

Nun kann der oben formulierte Satz vom Feuerbachschen Kreis bewiesen werden. Im
Punkt M; (Abb. 35) ist die Tangente an den Feuerbachschen Kreis gezeichnet.

Abb. 35

Der Sehnentangentenwinkel RM; M, ist gleich ZMsMsM; = ~v und ZMyMC = 3,
also ZRMC' = 3 — . Ferner ist ZAXB = § + v, als AuBenwinkel des Dreiecks

AXC,und ZBXP =2(5+7) =a+27.
Es ist der Winkel der beiden Tangenten an den Inkreis XO und X P. Folglich ist

/PXC=180°— (a+2y)=a+f+y—a—-2y=0F—7
Und daher ist X P||M; R

Zeichnet man nun die Sekante M; P, die den Inkreis im Punkt () schneidet, so gilt
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nach dem Sekanten-Tangentensatz M P - M) = MlO%, und nach dem Hilfssatz ist
M X - M{H, = M,0?.

Also ist M1 P-M,Q) = M1 X -MyHy, d.h., die Punkte P, (), X und H; liegen auf einem
Kreis. In dem von diesen Punkten gebildeten Sehnenviereck ist ZHQP = /PXC =
B—~.Da aber ZH{(QQM; = 3—~ lber der Sehne H; M steht, die mit der Verlangerung
der Tangente RM; iber M; hinaus den Sehnentangentenwinkel 5 — ~ bildet, liegt @
auch auf dem Feuerbachschen Kreis.

Hierzu sei noch bemerkt, dass der Beriihrungspunkt zweier Kreise Ahnlichkeitspunkt
derselben ist, da sie sich in Ahnlichkeitslage befinden. Homologe Punkte liegen auf
denselben Ahnlichkeitsstrahlen, und Tangenten in solchen Punkten laufen parallel.

Aufgabe 27. Man beweise, dass der Ankreis um den Punkt O, mit dem Radius p,,
durch den Feuerbachschen Kreis im Punkt (), beriihrt wird.

Anleitung. M,Q, - M1 P, = MO?; ZH\XP, = ZH\Q,P,; Hy,Qq, My, Q liegen auf
dem Feuerbachschen Kreis.

Wir wollen nun einen zweiten Beweis fiir den Satz vom Feuerbachschen Kreis angeben.
Fir die Beriihrung mit dem Inkreis gelten folgende Relationen:

MO?* = r* — 2rp, OH? =2p* — 2rpy, MH? = 1% —drp,

1 1 1 2
FO? = §(M02+OH2) — FH? = Zrz —rp+pt= (27“—/))
(p1 ist der Radius des dem HohenfuBpunktsdreieck HyHyH : 3 eingeschriebenen Krei-
ses. Sein Mittelpunkt ist der Hohenschnittpunkt H. Die Bedeutung der anderen Be-

zeichnungen ist bekannt und aus Abb. 36 ersichtlich.)

Abb. 36

1. MO? =72 — 2rp.
ANOO3A ~ APBQ (WW). Daraus folgt p : AO = PB : 2r oder 2rp = AO - PB. Da
PB = PO ist, gilt

AO - PO = (r + OM)(r — OM) = r* — OM?
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(Potenz des Punktes O in Bezug auf den Umkreis des Dreiecks ABC). Also ist 2rp =
r?2 — MO? und damit die Behauptung bewiesen.

2. MH? = r? — 4rp.

/HyH\C = /LHH, = /BA'C = a.

AHLHy, ~ ABA'C (WW). Daher ist p; : HH; = A'C': 2r oder wegen A'C = AH
auch py : HH, = AH : 2r. Daraus folgt 2rp; = AH - HH; und

4rpy =2HH,-AH = HS - AH = (r + MH)(r — MH) = r* — M H*

Also gilt M H? = r* —4rp;, w. z. b. w.

3. OH? = 2p% 2rp;
Nach 2. ist

o2rp1 = AH - HHy = 2r cos a - 2r cos 3 cosy = 4r? cos a cos 3 cos

Aus den Inhaltsformeln ps = 2r?sinasin Bsin~y findet man unter Anwendung der
Additionstheoreme

pr(sin o + sin B + siny = 2r%sin asin Bsiny

a B v ea.a a f f .y 7
4pr cos — cos — cos — = 1677 sin — cos — sin — cos — sin — cos —
2 2 2 2 2 2 2 2 2

woraus

o a By
p = 4rsin — sin — sin —
2 2 2

folgt. Es muss also bewiesen werden, dass

OH? = 32r”sin® (; sin? g sin ; — 47?2 cos a cos 5 cos ¥
gilt. Man bestimmt die Katheten des rechtwinkligen Dreiecks, gebildet aus der Hypo-

tenuse OH und den beiden Katheten,
BO, — BH, = 4rsin§cos§sing —2rcosfsiny =m
p— HH, = 4rsingsin§sing —2rcosfcosy=n

und berechnet OH2 = m? + n?: Nach Quadrieren der Ausdriicke fiir m und n und
Zusammenfassung ergibt sich

OH? = 16r2sin? 2 sin? T 1672 sin 2 gin L cos 153 <cos é sin 7y + sin 5 coS 7) + 4r? cos? 3
2 2 2 2 2 2
Es ist

cosésin'y—ksinécosv:sin §_|_7 = CoS (a — 7)
2 2 2 2 2
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und damit nach Anwendung des Additionstheorems fiir den Kosinus

OH? = 16r? sin® C; sin? g 1672 sin® C; sin? g cos [
— 1672 sin g cos g sin g cos g cos 3 + 4r? cos® B

Mit cosff =1 — 251112% folgt nach Fortlassen der gleichen Glieder und Zusammenfas-
sung

2 B

OH? = 32r? sin® 2 Y sin ) sin? 5 + 477 cos B(cos 8 — sin a sin )

2

= 32r? sin’ 5 Y sin 5 sin’ 5 + 4r? cos [— cos(a + ) — sin asin 4]
Mit Hilfe des Additionstheorems fiir den Kosinus folgt
OH? = 32r%sin® (; sin? g sin? g — 4r? cos acos fcosy = 2p? — 2rpy
SchlieBlich folgt aus 1., 2. und 3.

1 1 1 1 ?
OF2:5(0M2+OH2)—FH2:§r2—rp+,02—7",01—17“2+7‘p1: <2r—p>

Diese Gleichung besagt, dass der Inkreis den Feuerbachschen Kreis von innen beriihrt;
denn die Zentrale F'O ist gleich der Differenz der Radien, ihre Verlangerung geht durch
den Beriihrungspunkt.

Aufgabe 28. Man fiihre den Beweis fiir den Ankreis um den Punkt O, mit den Radius
Pa-
Anleitung.

O M? = 1% + 2rp, , O H? = 2p? — 2rp,

1 1 2
MH?=7r*—4rpy, , FO.= 5(Mog +HOY) — FH* = <2r + pa>

5 Punkte und Linien des Dreiecks in neuerer
Forschung

Die bisher behandelten Satze und Beweise sind zum groBten Teil seit langem Bestandeteil
der elementaren Geometrie. Die moderne mathematische Forschung im neunzehnten
und zwanzigsten Jahrhundert bereicherte dieses Stoffgebiet durch eine groBe Zahl von
Entdeckungen interessanter Linien und Punkte des Dreiecks mit ihren Eigenschaften.
Einige von ihnen sollen im folgenden behandelt werden.
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5.1 Der Miquelsche Satz

5.1 Der Miquelsche Satz

Nimmt man auf jeder Seite eines gegebenen Dreiecks einen Punkt beliebig an und
zeichnet durch jede Ecke und die beiden Punkte, die auf den der Ecke benachbarten
Seiten liegen, Kreise, so gehen die drei Kreise durch einen Punkt, der Miquelscher Punkt
genannt wird (Abb. 37).

2] By

Ay
Abb. 37

Gegeben sei das Dreieck ABC'; auf jeder Seite sei ein Punkt beliebig angenommen.
Diese Punkte bezeichnen wir mit A;, By und C. Durch die Punkte A, Cy, By durch
B, C, Ay und durch C, Ay, By sind Kreise gezeichnet. Es soll nun bewiesen werden,
dass die drei Kreise einander in einem Punkt schneiden.

Die beiden Kreise durch A, By, Cy und durch B, Ay, Cy schneiden einander in C; und
P. AC,PB; ist ein Sehnenviereck, und deshalb ist ZC1PB; = 180° — «. Ebenso gilt
/C1PA; = 180° — 3. Es bleiben also fir ZA; P By, der beide Winkel zu 360° erganzt,

360° — (180° — ) — (180° — B) = o+ B3 = 180° — v

Das bedeutet aber, dass A; PB;C ein Sehnenviereck ist und der Kreis durch die Punkte
C, Ay und By auch durch P geht.

Verbindet man die Punkte Ay, By und C}, so erhdlt man ein Miquelsches Dreieck.
Da die Punkte Ay, B; und C; beliebig angenommen wurden, sind unbegrenzt viele
Miquelsche Punkte im Dreieck moglich.

Satz. Die Strecken, die den Miquelschen Punkt mit den drei Punkten A, By und C}
verbinden, bilden mit den Dreiecksseiten gleiche Winkel.

Betrachtet man P als Schnittpunkt der beiden Kreise, die durch die Ecken des Dreiecks
A und B verlaufen, soist ZAB; P = 180°—ZACP. Esist /ZBC1P = 180°— ZAC, P.
Folglich ist ZABP = /BCP. Da /BC1P = 180° — ZBA{P und ZCA P =
180° — ZBAlp iSt, ist éBCl_P = AOAIP

Damit ist der Satz bewiesen.

Es sei ausdriicklich darauf hingewiesen, dass in diesem Beweis nicht vorausgesetzt wur-
de, dass die Punkte ', A;, P, B; auf einem Kreis liegen. Aus der eben bewiesenen
Gleichheit der Winkel C A1 P und AB; P folgt ZCB1P+ ZCA; P = 180° und daraus,
dass C'A; P B ein Sehnenviereck ist. Dadurch wird der Satz, dass die drei Miquelschen
Kreise einander in einem Punkt schneiden, auf einem anderen Weg bewiesen.
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5.1 Der Miquelsche Satz

Zu einem Punkt P gehéren unbegrenzt viele Miquelsche Dreiecke; denn man kann z.B.
jeden Punkt der Seite BC' als Eckpunkt eines solchen Dreiecks wéhlen und die anderen
Ecken leicht bestimmen.

Bezeichnet man den Punkt auf BC' mit Ay, so hat man an PAs in P den Winkel
180° — 3 als gegeniiberliegenden Winkel zu $ und Winkel 180° — v als Gegenwinkel zu
~ anzutragen, um die Ecken Bs und C5 zu finden.

Ein Spezialfall liegt vor, wenn die Strecken PA;, PB; und PC auf den entsprechenden
Dreiecksseiten senkrecht stehen. Dann nennt man das Dreieck A B1C, FuBpunktsdrei-
eck des Punktes P in Bezug auf das Dreieck ABC' (Abb. 38).

Abb. 38

Alle dem Punkt P zugeordneten Miquelschen Dreiecke sind einander ahnlich.

Um diesen Satz zu beweisen, muss man zeigen, dass die genannten Dreiecke in den
entsprechenden Winkeln (ibereinstimmen. Es ist

/BPC =a+ LC1A1 By

Beweis. /BPC = ZBPA, + ZCPA;. Nun ist ZBPA, = ZBC1A; und LC1PA, =
ZC By Ay (Peripheriewinkel iiber demselben Bogen),

/BC1A, = LC1AA + ZC1 AL A, /CB1A = /B1AA + /B A A
(AuBenwinkelsatz)
Addiert man diese Gleichungen, so erhalt man Z/BPC = a+ £ZB1A;C4. Ebenso findet
man ZCPA = ﬁ + 40131141 und ZAPB = Y -+ éAlClBl.

Aufgabe 28. Man beweise, dass diese Relationen auch gelten, wenn P auBerhalb des
Dreiecks ABC' liegt.

Aus den letzten drei Gleichungen lassen sich die Winkel der dem Punkt P zugeordneten
Miquelschen Dreiecke berechnen. Man erhélt (i = 1,2,...,n)

Da die Winkel auf der rechten Seite des Gleichheitszeichens vom Dreieck ABC' und
der Lage des Punktes P bestimmt werden, sind alle Miquelschen Dreiecke ahnlich, weil
sie in ihren Winkeln (ibereinstimmen.

Man kann zum Beweis der Gleichheit der Winkel der Miquelschen Dreiecke auch Teil-
winkel des Dreiecks ABC verwenden, die ebenfalls durch die Lage des Punktes P
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5.1 Der Miquelsche Satz

eindeutig bestimmt sind. So ist Z/B;C1 P = a; und ZAC1 P = [35. Addiert man beide
Gleichungen, so erhalt man ZBC1 A1 = aq + [s.

Diese Beziehung gilt fiir jede Lage des Punktes C;. Also sind alle Winkel A;C;B;
(i = 1,2,....,n) gleich. Das gleiche kann man fir £A;B;C; und £B;A;C; zeigen.
Damit ist der Satz von der Ahnlichkeit der Miquelschen Dreiecke auf einem zweiten
Weg bewiesen.

Die Seiten des durch den Punkt P im Dreieck ABC' bestimmten FuBpunktsdreiecks
lassen sich durch die Abstande des Punktes P von den Ecken A, B und C, durch die
entsprechenden Dreiecksseiten a, b, ¢ und durch den Radius des dem Dreieck ABC
umgeschriebenen Kreises ausdriicken.

Da die Punkte A, By, P, C; auf einem Kreis liegen, dessen Durchmesser AP ist, gilt

B1Cy = APsina. Esist a = 2rsin o und sina = o (2r ist der Durchmesser des dem

Dreieck ABC' umgeschriebenen Kreises). Somit ergibt sich

AP - BP b P
a’ ACy = , A1B, = ¢P-c
2r 2r 2r

B\Cy =

Diese Relationen lassen sich in folgendem Satz zusammenfassen:

Jede Seite eines Miquelschen FuBpunktsdreiecks beziiglich des Punktes P ist dem Pro-
dukt proportional, das gebildet wird aus dem Abstand des Punktes P von der entspre-
chenden Ecke des Dreiecks ABC' und der dieser Ecke gegeniiberliegenden Dreiecksseite.

Aufgabe 29. Man priife an geeigneten Konstruktionen,

a) ob einer oder mehrere der Punkte Ay, By, C; auf den Verlangerungen der Dreiecks-
seiten liegen konnen,

b) ob der Punkt P auch auBerhalb des Dreiecks ABC' liegen kann.

Aufgabe 30. Man beweise folgende Satze:

a) Verbindet man die Mittelpunkte der drei Miquelschen Kreise, so ist das entsprechende
Dreieck M;Ms;M3 dem gegebenen Dreieck ABC' ahnlich.

Anleitung. Man verwende zum Beweis den Satz von dem Zentriwinkel und den Peri-
pheriewinkeln iber demselben Kreisbogen.

b) Sind die Abstinde des Miquelschen Punktes P von den Ecken des Dreiecks ABC
gleich, so sind alle durch diesen Punkt bestimmten Miquelschen Dreiecke dem gege-
benen Dreieck ABC' dhnlich. (Der Punkt P ist zugleich Mittelpunkt des dem Dreieck
umgeschriebenen Kreises.)
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5.2 Die Simsonsche Gerade

5.2 Die Simsonsche Gerade

Im Zusammenhang mit den Betrachtungen tiber den Miquelschen Punkt und seine
Eigenschaften steht eine besondere gerade Linie, die man erhalt, wenn der Miquelsche
Punkt auf der Peripherie des Umkreises des Dreiecks ABC' liegt. Sie heiBt Simsonsche
Gerade. Man findet sie, wenn man von diesem besonders gelegenen Punkt P auf die
Dreiecksseiten Lote fallt. Ihre FuBpunkte bestimmen die Simsonsche Gerade (Abb. 39).

Um dies zu beweisen, wahlt man auf dem Umbkreis des Dreiecks ABC' einen Punkt P
und fallt von ihm Lote auf die Dreiecksseiten: PA;, PBy, PC. Fir jedes Miquelsche
Dreieck A;B;C gilt die Relation /By A1Cy = ZBPC — «.

Nun liegt P auf dem Kreis durch A, B, C, und es ist /BPC = ZBAC, also gleich
«. Folglich ist ZB1A1C7 = a — a = 0°, d.h., die Punkte Ay, By, C; liegen auf einer
Geraden.

Aufgabe 31. Man bestatige folgende Behauptungen:
a) Fallt der Punkt P auf eine Ecke des Dreiecks ABC, so ist die zugehdrige Simsonsche
Gerade die von der Ecke ausgehende Hohe des Dreiecks.

b) Ist der Punkt P der Endpunkt einen von einer Dreiecksecke gezogenen Durchmessers
des Umkreises, so ist die der Ecke gegeniiberliegende Seite die zugehorige Simsonsche
Gerade.

c) Man beweise, dass die FuBpunkte der Lote, die man von einem Punkt des Umkreises
eines Dreiecks auf die Seiten desselben fallt, auf einer Geraden liegen, zuerst mit Hilfe
des Scheitelwinkelsatzes und dann unter Verwendung des Satzes von Menelaos.

Losung der Aufgabe

1. Beweis. Man zeichnet auBer dem Umbkreis des Dreiecks ABC die Kreise mit den
Durchmessern AT, BT und C'T und erhalt vier Sehnenvierecke, in denen die gegen-
uberliegenden Winkel zusammen 180° betragen. Dann sind

ATlTTg = /ATC = 180° — 5 =a+7
Nun ist
/T\TC = LCTTs — (a+7) und  LT3TA= LCTTs — (a+7)

Daraus folgt
LTWTC = /T5TA
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5.3 Der Flicheninhalt des Miquelschen FuBpunktsdreiecks

Diese Winkel werden in Abb. 6" mit £; und 9 bezeichnet. Weiter ist
g1 = ZTlTQC und E9 = 4T3T2A

(Peripheriewinkelsatz!). Beide Winkel haben den Scheitelpunkt 75 gemeinsam, ihre
Schenkel sind paarweise entgegengesetzt gerichtet. Zwei von ihnen liegen auf einer
Dreiecksseite AC'. Dann missen nach dem Scheitelwinkelsatz die Schenkel 7775 und
15T, auch auf einer Geraden liegen.

2. Beweis. In allen bei folgendem Beweis benutzten Dreiecken liegt ein rechter Winkel.
Dann sind zwei Dreiecke ahnlich, wenn sie noch in einem spitzen Winkel (ibereinstim-
men.

Nach Abb. 6" ist £; = €5, wie oben bewiesen. Weiter ist 1 = @9 und ¥y = 19 (als
Peripheriewinkel Giber demselben Bogen). Daraus folgt

, TT, BT

ABTT) ~ NATT: = : d t ="

1 b (1 =9); ann is T - ToA

. T, CTy

ANCTTy ~ ABTT: = . — e Toe

CTT; 3 (o1 = p2); dann ist T~ B
TT: AT:

AATT; ~ ACTT, (g1 = €9); dann ist TT? — Tlci

Durch Multiplikation der drei Proportionen erhalt man

TT,-TT, - TT3; BT\ -CTy- ATy
TT, -TTs-TTy, ThA-T3B-TC

Hier wurden die MaBzahlen der Seitenabschnitte des Dreiecks ABC' verwendet, die
samtlich positiv genommen wurden. Beriicksichtigt man jedoch, dass der zweite Quoti-
ent das Produkt aus den Teilverhaltnissen der Dreiecksseiten ist, die durch die Punkte
T1, T und Tj geteilt werden, und das Teilverhaltnis % wegen der auBeren Teilung
das negative Vorzeichen erhalt, so wird das Produkt -1.

Nach der Umkehrung des Satzes von Menelaos liegen 17, T und T3 auf einer Geraden.

5.3 Der Flacheninhalt des Miquelschen FuBpunktsdreiecks

Es soll bewiesen werden, dass der Flacheninhalt des FuBpunktsdreiecks eines Punktes P
im Dreieck ABC' proportional ist der Potenz des Punktes P in Bezug auf den Umkreis
des Dreiecks ABC' (Abb. 40).
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5.3 Der Flicheninhalt des Miquelschen FuBpunktsdreiecks

Zum Beweis verwendet man folgende Relationen:
/BAC = ZBByC, /BPC = /ZPByC+ ZPCBs, /BPC = /ZB1AC1 +«

Die Potenz des Punktes P in Bezug auf den Umkreis des Dreiecks lautet (r+ M P)(r —
MP) = r2 — M P?. Der Flacheninhalt des Dreiecks ABC wird durch A symbolisiert;
er betragt

A = 2r%sin asin B siny

Abb. 40

Beweis. /BPC = Z/B1A1Ch1+a = /4BB,C + £ZBsCP
Also ist ZB1A1Cy = ZB>CP. Dann ist der Inhalt des FuBpunktsdreiecks A1 B1C}

1 1
F = §A1B1 . A101 sin ABlAlCl = iPC Sin’}/ -PB sinﬁsin ZBQCP

Nun ist im Dreieck PByC
sin ZBQCP . PBQ

sin Z/BBsC PC

Daraus folgt sin Z/ByC'P = F];%Q sin «; eingesetzt in den Wert fiir F' ergibt sich

1
F= §PB - PBsysin asin B siny

und wegen PB - PBy = r?> — M P? ist

1 2 _ ) p?
F = —(7‘2 _ MPQ) sinasinb’smry — Ti .

A
2 4r?

Folgerung. Der Inhalt des FuBpunktsdreiecks eines Punktes in Bezug auf das Dreieck
ABC' ist Null, wenn M P = r ist, also der Punkt auf der Peripherie des dem Dreieck
ABC' umgeschriebenen Kreises liegt (Simsonsche Gerade!).

Aufgabe 32. Man iiberlege sich, wenn der Inhalt des FuBpunktsdreiecks in einem ge-
gebenen Dreieck ABC am groBten wird. (Man betrachte M P dabei als veranderliche
GroBe.)

Aufgabe 33. Man zeige, dass die Inhaltsformel fiir das HohenfuBpunktsdreieck mit der
oben berechneten lbereinstimmt. (Man driicke die Potenz des Hohenschnittpunktes in
Bezug auf den Umkreis durch die entsprechenden Héhenabschnitte aus.)
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5.4 Der Lémoine-Grebesche Punkt

Um den Lémoineschen Punkt im Dreieck zu bestimmen, sind einige Vorbemerkungen
erforderlich. Im Dreieck ABC' (Abb. 41) sind die Seitenhalbierenden AM; und BM,
und die Winkelhalbierenden der Winkel o und (8 gezeichnet.

Abb. 41

Wird AM; an der Halbierenden des Winkels o und BM, an der Halbierenden des
Winkels 3 gespiegelt, so findet man die Spiegelbilder ANy bzw. BN,. Fiir eine Sei-
tenhalbierende hat man den Ausdruck Mediane gepragt und die zu ihr beziiglich der
Winkelhalbierenden symmetrisch gelegene Ecktransversale Symmediane genannt.

Jede zur Seite BC' parallele Strecke im Dreieck ABC' wird durch die Seitenhalbierende
ADM; halbiert, so z.B. die Strecke ED. Spiegelt man das Dreieck AED zugleich mit
der Medianen AM; an der Winkelhalbierenden w,, so erhalt man das Dreieck AE'D’,
indem ZAE'D' = 8 und ZAD'E" = ~ ist und D'E’ durch die Symmediane halbiert
wird.

D'E’ nennt man Antiparallele zu BC. Das Dreieck AD'E’ ist dem Dreieck ABC
ahnlich. Hieraus wird ersichtlich, wie man die Symmedianen in einem Dreieck zeichnen
kann.

Satz. Die drei Symmedianen eines Dreiecks schneiden sich in einem Punkt.

Beweis. Fur die Medianen eines Dreiecks, die sich in einem Punkt schneiden, gelten
nach dem Satz von Ceva die Relationen

77777 sin vy sin By sin 1y
222 ] oder : ' : =1 (1,2)
253 sin ap sin [ sin 9

Auch die Umkehrung des Satzes von Ceva wurde bereits bewiesen.

Da jede Symmediane durch Spiegelung der Mediane an der Halbierenden des Winkels
an der gleichen Ecke des Dreiecks entsteht, werden die Teilwinkel, in die jede Mediane
den Dreieckswinkel zerlegt, ebenfalls gespiegelt, d.h. in ihrer Lage vertauscht. Daher
gilt (2) auch fiir die drei Symmedianen, die einander in einem Punkt schneiden miissen.
Dieser Sachverhalt folgt im Gbrigen bereits aus der symmetrischen Lage der Medianen
und Symmedianen.

Der Schnittpunkt der Symmedianen des Dreiecks wird Lémoinescher oder Grebescher
Punkt genannt.

Satz. Die Abstande des Lémoineschen Punktes von den Seiten des Dreiecks sind den
zugehdrigen Seiten proportional: (Abb. 42).

KA KBy :KCi=a:b:c
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5.4 Der Lémoine-Grebesche Punkt

Bevor wir zum Beweis dieses Satzes kommen, soll ein Hilfssatz bewiesen werden.

A

8

My Ar £

Abb. 42

Hilfssatz. Die Abstande des Schwerpunktes eines Dreiecks von den Seiten sind den
zugehorigen Dreiecksseiten indirekt proportional.

Beweis. Jede Mediane teilt das Dreieck in zwei flachengleiche Teildreiecke (Beweis!).
Die drei Medianen teilen das Dreieck in drei flachengleiche Teildreiecke. Bezeichnet
man die Abstande des Schwerpunktes S von den Seiten des Dreiecks mit mq, mo, m3

so ergibt sich
2

a'mlzb'mQZC'mgng
(F bedeutet den Inhalts des Dreiecks ABC'). Daraus folgt
1 1
mi:mo=>b:a oder mip:imo = —: —
a b
1 1
Mo :M3g==cC:a oder Mo M3 = — : —
b ¢
Daraus ergibt sich
1 1 1
mp Mg M3 —= — >+ 1 —
a b c

Nun kann der oben formulierte Satz bewiesen werden. Ist K der Lémoinesche Punkt,
so ist /SACy; = /K AB;. Daher ist AASCy ~ ANAK By; denn auBer den gleichen
Winkeln liegt in jedem dieser Dreiecke ein rechter Winkel.

Folglich ist mg : KBy = AS : AK. Es ist ohne weiteres klar, dass AASBy ~ ANAKC}
ist (Beweis!).

Daraus folgt my : KC; = AS : AK, und beide Proportionen liefern mo : mg = KCi :
K By. Nach dem Hilfssatz ist mo : m3 = ¢ : b. Durch Zusammenfassung der beiden
letzten Gleichungen erhalt man KC1 : KBy = ¢ : b. Ebenso lasst sich zeigen, dass
KB;: KA; = b: aist. Damit ist bewiesen, dass

KA : KBy : KCi=a:b:c

gilt.
Fihrt man den Proportionalitatsfaktor p ein, so ergeben sich folgende Gleichungen:

KA, =p-a, KBy =p-b, KCi=p-c
Um p zu bestimmen, berechnet man den Inhalt des Dreiecks ABC'. Es ist

2F = KA, -a+ KBy -b+ KCy - ¢ = pla® + b* + %)
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5.5 Der Nagelsche Punkt

hieraus folgt

2F 2F

= und KA =0———F——
Py ye a2

Ebenso findet man K B; und K (.

Aufgabe 34. Man beweise, dass im rechtwinkligen Drei-
4 eck der Lémoinesche Punkt die zur Hypotenuse gezo-
5 gene Hohe halbiert.
G Anleitung. Man zeichne die Symmedianen von den
Scheiteln der spitzen Winkel.

A Satz. Der Lémoinesche Punkt ist der Schwerpunkt
seines eigenen FuBpunktsdreiecks (Abb. 43).

Hilfssatz. Im Dreieck ABC steht die Seitenhalbierende
A AD senkrecht auf der Seite B;C des FuBpunktsdrei-
Abb. 43 ecks des Punktes K.

Beweis. Die Punkte A, C, K, B1 liegen auf dem Kreis mit dem Durchmesser AK.
Daher ist ZABC, = LZAKC;. AuBer diesen Winkeln sind in den Dreiecken AB; P
und AKC; die Winkel KACY und PAB; einander gleich, weil die Mediane AD mit
der Seite b und die Symmediane mit der Seite ¢ gleiche Winkel bilden. Folglich ist
APABl ~ AKACl und daher ZAPBl = ZAOlK = 90°.

Beweis des Satzes.

AD wird tiber D hinaus um sich selbst verlangert bis zum Punkt A’. Dannist AB || C A’
und AB = CA'. Esist NANAC A" ~ AB{KC}, weil beide Dreiecke in den Winkeln tber-
einstimmen. Die Winkel sind gleich, weil ihre Schenkel paarweise senkrecht aufeinander
stehen.

Aus der Ahnlichkeit der Dreiecke folgt KBy : KC; = AC : AB. (Damit ist auf einem
zweiten Wege der Lehrsatz bewiesen, nach dem die Abstande des Punktes K von den
Dreiecksseiten den zugehdrigen Seiten proportional sind.) In beiden dhnlichen Dreiecken
stehen entsprechende Seiten senkrecht aufeinander.

Auch entsprechende Strecken in den Dreiecken befinden sich in der gleichen Lage zuein-
ander. So steht auf der Seitenhalbierenden C'D des Dreiecks AC' A" die Strecke A;As
senkrecht. Daher muss K A, Seitenhalbierende im Dreieck B1KC7 und A; K Ay eine
solche im Dreieck A;B;C} sein. Die beiden anderen Seitenhalbierenden im Dreieck
A1B1C sind B1K und C1 K und daher ist K der Schwerpunkt des FuBpunktsdreiecks
des Punktes K.

5.5 Der Nagelsche Punkt

Zeichnet man im Dreieck ABC die Ecktransversalen nach den Punkten, in denen die
drei Ankreise die Dreiecksseiten beriihren, so schneiden sie einander in einem Punkt,
der Nagelscher Punkt genannt wird.
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5.5 Der Nagelsche Punkt

A
Abb. 44 5-¢ 57

Der Beweis wurde als Aufgabe gestellt (Aufgabe 9b).
Die von A, B, C' einander folgenden, durch die Beriihrungspunkte der Ankreise erzeug-
ten Seitenabschnitte sind: s —b, s—a, s—c¢ s—b, s—a, s—c (Abb. 44). Der Quotient
aus den Produkten der alternierenden Abschnitte ist

(s =b)(s—c)(s—a) _
(s—a)(s—b)(s—c)
Nach der Umkehrung des Satzes von Ceva schneiden die drei Ecktransversalen nach

den Beriihrungspunkten der Ankreise auf den Gegenseiten im Dreieck einander in einem
Punkt.

Der Nagelsche Punkt steht in besonderer Beziehung zum Mittelpunkt O des dem Drei-
eck ABC eingeschriebenen Kreises sowie zum Schwerpunkt S des Dreiecks.

Die drei Punkte liegen auf einer Geraden, und die Strecke ON wird durch S im Ver-
haltnis 1 : 2 geteilt (Abb. 45).

¢
YH E A4 O

5
Abb. 45

Um diese Behauptung zu beweisen, zeigt man zunachst, dass AAHD ~ AOFEA; ist.
Der Inhalt des Dreiecks ABC' ist

1
F:p$:§a-ha

Wegen p = OF und h, = AH ergibt sich OF = g und AH = % Daraus folgt

AH 2s
OFE o (1)

Wir bilden nun das Verhéltnis . Esist EA; = & —(s—b) = %3¢, HD = BD— BH
und BD = s—c. Nach dem allgemeinen Satz des Pythagoras ist b* = a?>+c? —2a- BH

und damit BH = % Dann ist

a2+ -0 s(b—c) HD 2s
HD=5—c— - | _ 5 2
ST 2a a a0 EA; a (2)

49



5.5 Der Nagelsche Punkt

Aus (1) und (2) ergibt sich 4% = £2, d.h., in den Dreiecken AHD und OEA; sind
je zwei Seiten proportional: ZAHD = ZOEA; = 90°. Folglich sind beide Dreiecke

ahnlich, und es gilt AD || OA;.

Es soll nun gezeigt werden, dass ﬁ—g = % ist (Abb. 45). Im Beweis wird BD = s — ¢,

AG = s—cund CG = s—a gesetzt und beriicksichtigt, dass sin ZANB = sin /DN B
sowie sin ZAGB = sin ZCGB ist. Im Dreieck ABN ist AN : ¢ =sing : sin ZANB,
und im Dreieck DBN ist DN : (s — ¢) =sinv : sin ZANB.
Daraus folgt
AN -(s—c¢) singp
DN -¢  sine

Im Dreieck ABG ist (s —c¢) : ¢ = siny : sin ZAGB, und im Dreieck CBG ist
(s —a):a=sinvy :sin LZAGB. Daraus folgt

sin ¢

sin
Somit erhalt man g—% = ﬁ und weiter A]\ﬁ% = % oder ﬁ—g = % Aus den Bezie-

hungen AD : OA; =2s:aund AN : AD = a : s ergibt sich AN : OA; =2: 1.
Verbindet man O mit N und zeichnet die Seitenhalbierende AA;, so ist der Schnitt-
punkt S beider Geraden Scheitel eines Strahlenbiischels, in dem die Parallelenabschnitte
der Schneidenden des Bischels sich wie 2: 1 verhalten. Daher ist auch AS : SA; =
2 : 1. Also ist S der Schnittpunkt der Seitenhalbierenden des Dreiecks ABC, er liegt
ebenfalls auf der Geraden ON und teilt diese Strecke im Verhaltnis 1 : 2.

- a
- C

Verbindet man die Mitten A;, By, C; der Seiten des Dreiecks ABC, so erhalt man
das Dreieck A1 B;C, das dem Dreieck ABC' ahnlich ist. Beide Dreiecke befinden sich
in Ahnlichkeitslage mit S als Ahnlichkeitspunkt.

Entsprechende Ecken und andere Punkte, die fiir beide Dreiecke die gleiche Bedeutung
haben, liegen auf Ahnlichkeitsstrahlen. Das Ahnlichkeitsverhaltnis ist 2 : 1.

Nun liegen N, S und O auf einer Geraden, und es ist NS : SO = 2 : 1. Ist N der
Nagelscher Punkt im Dreieck ABC, so ist O Nagelscher Punkt im Dreieck A1 B,C}.
Wir kénnen somit folgenden Satz aussprechen:

Der Mittelpunkt des dem Dreieck ABC' eingeschriebenen Kreises ist zugleich der Na-
gelsche Punkt in dem Dreieck, dessen Ecken in den Mitten der Seiten des Dreiecks
ABC liegen.

Halbiert man die Abschnitte der Ecktransversalen von den Ecken des Dreiecks ABC'
bis zum Nagelschen Punkt und verbindet die Mittelpunkte, so erhalt man das Dreieck
Ay ByC5 das dem Dreieck A;B1C kongruent ist. Beide Dreiecke sind dem Dreieck
ABC i3hnlich. Je zwei von den drei Dreiecken befinden sich in Ahnlichkeitslage (Abb.
46).

Aufgabe 35. Man bestimme Ahnlichkeitspunkt und Verhaltnis entsprechender Strecken:
a) der Dreiecke ABC und A;B;C4, b) der Dreiecke ABC' und Ay ByCY, c) der Dreiecke
A1B101 und AQBQCQ.
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5.6 Der Spiekersche Kreis

8
Abb. 46\

5.6 Der Spiekersche Kreis

Wir betrachten die Dreiecke A;B1Cy und A3 ByC5 (Abb. 47).

Beide Dreiecke sind kongruent (SSS) und somit auch 3hnlich mit dem Ahnlichkeitsver-
haltnis 1 : 1. Da die entsprechenden Seiten parallel sind, befinden sich beide Dreiecke
in Ahnlichkeitslage.

4
Az
&, By
0
Q48
IR A
N \ fe
Abb. 47 ° R ¢

Die Verbindungsstrecken entsprechender Ecken A; und As, By und By, C7 und (5
schneiden einander im Ahnlichkeitspunkt, den wir mit 7" bezeichnen wollen. Er halbiert
die genannten Strecken. Da auch die Verbindungsstrecke der Nagelschen Punkte O
und N beider Dreiecke durch T halbiert wird und S diese Strecke im Verhaltnis 1 : 2
teilt, erhalt man die Proportionen (Abb. 48) OS : SN =1:2,OT : TN =1 : 1,
OS:58T=2:1und NT : NO =1:2.

Abb. 48 L - i

Ist S Ahnlichkeitspunkt der Dreiecke ABC und A;B;C; und gilt OS : ST = 2 : 1,
so hat 7" fir das Dreieck Ay B1C die gleiche Bedeutung wie O fiir das Dreieck ABC.
Also ist T" Mittelpunkt des dem Dreieck A;B;C eingeschriebenen Kreises.

Betrachtet man NV als Ahnlichkeitspunkt der Dreiecke ABC und A3 B>C5 und die Pro-
portion NO : NT = 2 : 1, so folgt, dass 1" auch Mittelpunkt des Inkreises des Dreiecks
AQBQCQ ist.

Da in den kongruenten Dreiecken die Inkreisradien als entsprechende Strecken gleich
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5.7 Der Brocardsche Punkt

sind, haben beide Dreiecke einen gemeinsamen eingeschriebenen Kreis. Je zwei Berlih-
rungspunkte des Kreises auf den entsprechenden Seiten liegen auf einem Ahnlichkeitss-
trahl, der durch T halbiert wird. Dieser gemeinsame Inkreis wird Spiekerscher Kreis
genannt.

Aufgabe 36. Man zeige, dass man 7" auch finden kann, wenn man durch A; die Parallele
zu AO zeichnet. Man benutze hierzu den Zweistrahl durch S, der durch die Parallelen

geschnitten wird, und beweise in diesem Zusammenhang, dass AT die Halbierende
des Winkels B A;CY ist.

Aufgabe 37. Man beweise, dass die Strecken NE, BoC5 und OA; einander in einem
Punkt schneiden.

Anleitung. Man betrachte N E als Ahnlichkeitsstrahl durch zwei entsprechende Beriih-
rungspunkte der Inkreise und beachte, dass der Zweistrahl EN und ED durch die
Parallelen OA; und AD geschnitten wird, wobei FA; = A1 D ist.

5.7 Der Brocardsche Punkt

Ein Brocardscher Punkt wird wie folgt konstruiert:

Gegeben sei das Dreieck ABC'. Durch die Punkte A und B wird der Kreis k; gezeichnet,
der AC als Tangente hat, durch B und C' der Kreis ks mit BA als Tangente und durch

C und A der Kreis k3 mit OB als Tangente. Die drei Kreise haben einen gemeinsamen
Schnittpunkt, den Brocardschen Punkt (Abb. 49).

Abb. 49

Im Dreieck ABC' gibt es noch einen weiteren Brocardschen Punkt. Man erhélt ihn,
wenn BC' Tangente an ki, C'A Tangente an ks und AB Tangente an k3 ist.
Zu beweisen ist, dass die drei Kreise einander in einem Punkt schneiden.

Die Kreise k1 und ko schneiden einander in den Punkten 2 und B. Der Sehnentangen-
tenwinkel C'A) ist gleich dem Peripheriewinkel ABS2. Dieser ist im Kreis ko Sehnentan-
gentenwinkel und gleich dem Peripheriewinkel BC2. Daraus folgt ZC'AQ) = ZBCS).
Der Kreis, der durch C' und 2 so gezeichnet wird, dass BC' Tangente wird, hat ZBC()
als Sehnentangentenwinkel und muss wegen der Gleichheit der Winkel BC2 und C AQ2
durch den Punkt A gehen und daher mit dem Kreis k3 identisch sein.

Damit ist bewiesen, dass sich die drei Brocardscher Kreise in einem Punkt schneiden.

Die drei gleichen Winkel heiBen Brocardsche Winkel und werden mit w bezeichnet.
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5.7 Der Brocardsche Punkt

Ein zweiter Beweis des soeben formulierten Problems stiitzt sich auf den Miquelschen
Satz (Abb. 37). Darin wird ausgesagt, dass die Kreise durch Ay, By, Cy, durch B, C},
A7 und durch C', A;, B; einander in einem Punkt schneiden.

Denkt man sich die Punkte A;, B; und C; auf den Seiten des Dreiecks so verschoben,
dass A; mit C, B; mit A und C; mit B zusammenfallen, so muss der Kreis durch A,
B, C die Seite AC, der Kreis durch B, C, A; die Seite BA und der Kreis durch C,
Ay, By die Seite C'B zur Tangente haben. Fiir die Miquelschen Kreise ist bewiesen,
dass sie einander in einem Punkt schneiden.

Da sie in diesem Fall zugleich Brocardsche Kreise darstellen, gilt diese Aussage auch
fur Sie.

Aufgabe 38. Man konstruiere in einem gegebenen Dreieck ABC den Brocardschen
Punkt. (Die Lésung der Aufgabe ergibt sich aus der Definition des Brocardschen Punk-
tes.)

I &)

Abb. 50

Zu einer zweiten Konstruktion des Brocardschen Punktes fiihrt folgende Uberlegung
(Abb. 50).

Gegeben seien das Dreieck ABC' und der Brocardsche Punkt €2; weiter sei ZQBC' = w.
Durch A ist die Parallele zu BC' gezeichnet und Bf) liber 2 hinaus bis zum Schnitt
mit der Parallelen verlangert. Der Schnittpunkt P ist mit C' verbunden, und durch A,
), C ist der Brocardsche Kreis k3 gezeichnet.

Esist LZAPB = w (Beweis!) und ZACQ = w. Also gilt ZAPQ = ZACSQ, und P muss
auf dem Brocardschen Kreis k3 liegen (Satz von den Peripheriewinkeln). Da ferner AB
Tangente an den Brocardschen Kreis k3 ist, ist ZAPC = « (Sehnentangentenwinkel-
satz). Weiter ist ZC AP = ~. Dann muss ZACP = {3 sein.

Aus der Lagebeziehung dieses Winkels zu dem Peripheriewinkel 5 im Umkreis des Drei-
ecks ABC folgt, dass C'P Tangente an diesen Kreis im Punkt C' ist. Somit kann P
auch durch diese Tangente und die Parallele durch A zu BC' gefunden werden, und )
lasst sich dann leicht ermitteln.

Aufgabe 39. Man konstruiere in Anlehnung an die obigen Ausfiihrungen den Brocard-
schen Punkt im Dreieck ABC'.
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5.8 Der Brocardsche Winkel

Der Brocardsche Winkel ist in jedem Dreieck eindeutig bestimmt; denn er lasst sich als
Funktion der Winkel oder der Seiten des gegebenen Dreiecks darstellen. Aus Abb. 50
folgt

cot w = cot a + cot 5 + cot y

Im Dreieck BLP ist cotw = %. Und wegen BL. = BH + HC'+ CL und AH = PL

ist
BH CH CL

AR T Am T PL
(Man beweise, dass ZPCL = « ist.)

cot w lasst sich auch durch die Seiten und den Flacheninhalt des Dreiecks ABC' aus-
driicken.

Der Kosinussatz liefert die Gleichungen

cotw = = cos 3 + cot v + cot «

2bc - cosa = b + & — a?

2ca - cos = + a% — b?
2ab - cosy = a® + b* — 2
Werden diese Gleichungen addiert, die Summanden auf der linken Seite der Gleichung

der Reihe nach mit sin a;, sin 8 bzw. sin  erweitert und der Flacheninhalt des Dreiecks
ABC mit A bezeichnet, so erhalt man

2bc - sin v cos « n 2ca - sin B cos 3 n 2ab - sin~y cosy
sin « sin (3 sin 7y
= 4A - cot oo +4A - cot B+ 4A - coty = a® + b* + 2

Also ist 2 22
cot a + cot 8 + cot v = a—|—4A+c

und damit
a2+ b+ 2
4A

cotw =

5.9 Zwei Dreiecke zum Brocardschen Punkt

Abb. 51
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Verlangert man die Brocardschen Strecken AS2, BS) und C(Q iiber €2 hinaus bis zum
Schnitt mit dem Umkreis des Dreiecks ABC, so ist das durch A;B;C; bestimmte

Dreieck dem gegebenen Dreieck kongruent, und der Brocardsche Punkt im Dreieck
ABC entspricht dem Punkt 2" im Dreieck A;B1Cy (Abb. 51).

Aufgabe 40. Man beweise die Kongruenz der Dreiecke ABC' und A, B;C4.

P R 7 N
Anleitung. Die Bogen AA;, BBy, C'CYy sind einander gleich. Dann ist AA1A1Ap =
N TN
BB; + A1 B und daher AB = A, By usw.
Aufgabe 41. Man beweise die folgenden Relationen
a) 4AQA1 = Q, lAlQB =7, 43031 = B

b) BQ = sﬁﬁi sin w,

C) BQ _ & _ sin(y—w)
CQ "~ ab  sinw

d) WsA _ bsinw (@)2
WsB ~ asin(y—w) =~ \c¢

5.10 Die Brocardschen FuBpunktsdreiecke

Fallt man vom Brocardschen Punkt €2 Lote auf die Seiten des Dreiecks, so sind die
FuBpunkte der Lote Ecken einem Brocardschen FuBpunktsdreiecks. Es gibt zwei solcher
FuBpunktsdreiecke, namlich das zum Punkt € und das zum Punkt €)' gehérige.

Das Brocardsche FuBpunktsdreieck (Q1(Q02()3 ist dem gegebenen Dreieck ABC' dhnlich
(Abb. 52).

1. Beweis. Aus der Ahnlichkeit gleichliegender Teildreiecke folgt die Ahnlichkeit der
ganzen Dreiecke. Zum Beweis werden die drei Sehnenvierecke AQ12Q)3, BQ->Q2()1 und
CQgQQQ benutzt.

Wegen £0Q1Q32 = ZQ1AQ2 und ZACS) = w muss auch ZQ1Q3) = LACS) sein.
Ferner ist ZQ3Q12 = ZQ3AQ. Also ist AQ1Q3Q ~ AACQ (WW).

Abb. 52
Entsprechend beweist man, dass AQ2Q1€) ~ ABAQ und AQ30Q:) ~ ACBS) ist.
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5.10 Die Brocardschen FuBpunktsdreiecke

Daraus folgt AQ1Q2Q3 ~ AABC.

2. Beweis. Es ist 203012 = ZQ3AQ = a — w und ZQ2Q:1€) = ZQ2BS) = w; die
Addition ergibt ZQ3Q1Q)2 = .

Ebenso beweist man die Relationen ZQ1Q2Q3 = [ und ZQ2Q3()1 = =y, woraus die
Ahnlichkeit der Dreiecke Q1Q2Q3 und ABC folgt (WW). Das Ahnlichkeitsverhltnis
ist sinw : 1. Im rechtwinkligen Dreieck AQ1€) ist ()12 : AC) = sinw. Dreht man Drei-
eck Q1Q2Q3 um Q im Uhrzeigersinn, bis ()1 auf AQ2 fallt, so liegen Q2 auf QB und Q3
auf QC'; denn jeder Strahl QQ; (i = 1,2, 3) hat sich um den Winkel 90° — w gedreht.
Beide Dreiecke befinden sich nun in Ahnlichkeitslage mit €2 als Ahnlichkeitspunkt, und
€s gl't QQl QA = Q1Q2 :AB =sinw : 1.

Aus der Ahnlichkeitslage beider Dreiecke folgt weiter, dass ZQ1Q3) = £Q2Q:§) =
ZQ30Q2€) = w ist. Die Dreiecke ABC' und Q1Q2(Q3 haben demnach den Brocardschen
Punkt €2 gemeinsam.

Samtliche zwischen den Dreiecken ()1Q2@Q3 und ABC' bewiesenen Relationen lassen
sich auf die Dreiecke Q]Q5Q% und ABC iibertragen, deren Ahnlichkeitszentrum € ist.

Aus dem gleichen Ahnlichkeitsverhaltnis der entsprechenden Dreiecksseiten in beiden
Fallen folgt die Kongruenz der Dreiecke ()1Q2Q3 und Q1Q5Q%. In kongruenten Dreie-
cken sind als entsprechende Strecken die Radien der Umkreise gleich, und man erhalt
r1 = r9 = rsinw, wobei r den Radius des dem Dreieck ABC' umgeschriebenen Kreises
bezeichnet.

Bezeichnet man mit M; den Mittelpunkt des Umkreises des Dreiecks (01(Q2()3 und mit
M, den Mittelpunkt des Umkreises des Dreiecks @} Q5Q%, so gilt

MiQy = MyQy = M1Qs = MeQ4 = M1Q3 = M@

Zieht man die Mittelsenkrechten der Strecken @105, Q205 und Q3Q)}, so schneiden
diese einander im Mittelpunkt M’ der Strecke Q€Y, und man erhélt die Relationen

M'Qr=MQ,;, MQy=MQ; MQ;=MQ,

Daraus und aus den vorher ermittelten Gleichungen folgt, dass die Punkte My, M und
M’ identisch sind.

M’ ist also Mittelpunkt des Kreises, der beiden Dreiecken QQ1Q2Q3 und QQ5Q% zu-
gleich umgeschrieben ist. Dann ist Dreieck M) gleichschenklig mit dem Winkel 2w
an der Spitze und den Basiswinkeln 90° — w.

Verbindet man @3 mit @), so lauft diese Strecke der Seite BC' parallel, denn ZAQ,Q;3
ist gleich dem Winkel ABC. Im Sehnenviereck QQ3Q5Q10Q)> ist namlich ZQ3Q5Q =
180° — /3 und daher ZAQ,Q3 = 3. Die Ecktransversale von A durch den Mittelpunkt
von Q3% ist eine Mediane des Dreiecks ABC.

Verbindet man jedoch Q1 mit @}, so ist diese Strecke antiparallel zu BC’; denn

ZAQ Q1 = [ und LZAQ1Q] = . Im Sehnenviereck Q1Q Q302 ist LZQ1Q1Q3 =
180° — 3, also ZAQ Q1 = 5.
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Die Ecktransversale von A durch den Mittelpunkt der Strecke 1@ ist eine Symme-
diane und geht durch den Lemoine-Grebeschen Punkt des Dreiecks ABC'.

5.11 Die Lémoineschen Kreise

Der Lémoinesche Punkt ist der Schnittpunkt der von den Ecken des Dreiecks ABC
gezogenen Symmedianen. Sie halbieren alle zu den Gegenseiten gezogenen Antiparal-
lelen.

Zeichnet man nun durch den Lémoineschen Punkt K die Antiparallelen zu den Drei-
ecksseiten, so bestimmen ihre Schnittpunkte mit den Seiten des Dreiecks einen Kreis,
dessen Mittelpunkt der Lémoinesche Punkt K ist (Abb. 53).

Abb. 53

P,Q; (i = 1,2,3) sind die drei Antiparallelen durch den Punkt K, der jede von ihnen hal-
biert. Auf Grund der Definition der Antiparallelen ist /K P,(Q3 = o und ZK Q3P = «,
also Dreieck K P»Q)3 gleichschenklig und dem Dreieck K Q)2 P5 kongruent (SWS). Das
Viereck ()2 P3 P>()3 ist wegen der Gleichheit der einander halbierenden Diagonalen P()
und P3Q3 ein Rechteck. Seine Eckpunkte liegen auf dem Kreis, dessen Mittelpunkt K
ist.

Aufgabe 42. Man beweise, dass auch P; und () auf demselben Kreis liegen.

Aufgabe 43. Man beweise, dass P3P, und (Q2()3 senkrecht auf BC', P, P; und Q301
senkrecht auf C'A und P, P, und Q1()2 senkrecht auf AB stehen.

Im Dreieck P3Q3Ps ist Po(Q3 = P3()3cosa = dcos «; dabei bezeichnet d den Durch-
messer des Lémoineschen Kreises. Ebenso findet man P3(); = dcos (8 und PQy =
d cosy. Aus diesen Gleichungen folgt

PyQs : P3sQ1 : PiQQ2 = cosa : cosf3: cosry

Die vom Lémoineschen Kreis aus den Seiten des Dreiecks ABC' herausgeschnittenen
Sehnen sind den Kosinusfunktionen der gegeniiberliegenden Dreieckswinkel proportio-
nal. Daher wird dieser Lémoinesche Kreis auch "Kosinuskreis" genannt.

Verbindet man alle P;, ebenso alle Q; (i = 1,2, 3), so entstehen zwei Dreiecke P P> P;
und Q1Q2Q3 (Abb. 54), die beide dem Dreieck ABC' &hnlich sind (WW); denn die
Schenkel jedes ihrer Winkel stehen auf zwei Seiten des Dreiecks ABC' senkrecht.
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5.11 Die Lémoineschen Kreise

Abb. 54

Also ist ZPg_PlPQ = «, ZP1P2P3 = B und ZP2P3P1 =7 sowie ZQ3Q1Q2 = «,
£Q1Q2Qs = 5 und £Q2Q5Q1 =  (Beweis!).

Ahnlichkeitszentrum der Dreiecke P; P, P3 und (Q1(Q2Q)3 ist K. Wahlt man K als Dreh-
zentrum und dreht eines der beiden Dreiecke um 180°, so werden beide zur Deckung
gebracht (Beweis!), sind also kongruent.

Eine merkwiirdige Eigenschaft besitzt sowohl Dreieck P, P P5 als auch Dreieck Q1 Q2Q)s.
Der Miquelsche Punkt des Dreiecks ABC, der durch die Punkte P;, P, und P; be-
stimmt wird, ist sowohl Brocardscher Punkt fiir das Dreieck P, P, P5 als auch fiir das
Dreieck ABC.

Beweis. Die Miquelschen Kreise haben APy, BP, bzw. C' P als Durchmesser (Thales-
Kreise), und jede Seite des Dreiecks P, P, P5 ist Tangente an einen der drei Miquelschen
Kreise.

Daher schneiden die Kreise einander im Brocardschen Punkt 2 des Dreiecks P, Py Ps.
LPyPQ), ZP3P$) und ZP; P5€) sind die Brocardschen Winkel w.

Verbindet man Q mit A, so ist ZPiQQA = 90° (Thales-Satz) und £LP, P2 = ZP AL,
weil beide den ZAP;) zu 90° erganzen. Also ist £/ P AQ) = w.

Entsprechend findet man leicht, dass ZP2B{) = w und ZP3CQ) = w und daher )
auch Brocardscher Punkt des Dreiecks ABC ist.

Der Punkt €2 ist Ahnlichkeitszentrum der Dreiecke ABC' und P, P, P5. Wahlt man € als
Drehzentrum und dreht Dreieck P, P,P3; im Sinne des Uhrzeigers um den Winkel von
900, so bringt man beide Dreiecke in Ahnlichkeitslage. Entsprechende Punkte liegen
auf demselben Ahnlichkeitsstrahl, also die Ecken A und P;, B und P und C und P,
ferner die Mittel punkte der Umkreise beider Dreiecke M und K.

Q’Q
KM
Abb. 55 &

Das Ahnlichkeitsverhaltnis kann mit Hilfe des bei €2 rechtwinkligen Dreiecks QP A mit
/P AQ) = w bestimmt werden, in dem die beiden Strecken QA und QP; Katheten
sind.
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Es besteht die Beziehung P2 : AQ = tanw : 1 oder P, = AQ) - tanw, ebenso gilt
KQ = MSQ - tanw (Abb. 55).
Aus dieser letzten Gleichung folgt, da ZKQM = 90° ist, ZKMQ) = w.

Werden diese Ausfiihrungen auf die Dreiecke ABC und Q1Q2Q)3 libertragen, so er-
halt man entsprechende Relationen und den zweiten Brocardschen Punkt €. Es ist
LKOYM =90°, KQ = M) -tanw, ZKMSQ) = w, also ZQMQ) = 2w.

Ist » Radius des Umkreises des Dreiecks ABC, so ist r-tan w Radius des Lémoineschen
Kreises.

Aus Abb. 55 folgt, dass die Brocardschen Punkte eines Dreiecks auf der Peripherie des
Kreises liegen, der die Strecke KM als Durchmesser hat. Er wird Brocardscher Kreis
genannt. Die Punkte 2 und ' liegen symmetrisch zum Durchmesser KM, der die
Verbindungsstrecke Q€Y in M’ halbiert und senkrecht auf ihr steht.

Es ist also QM = QM - sinw und Q' M’ = Q'M - sinw. Somit sind M’ und M ho-
mologe Punkte in den Brocardschen FuBpunktsdreiecken Q1Q2Q3, Q}Q5Q% und dem
diesen ahnlichen Dreieck ABC. Da M der Mittelpunkt des dem Dreieck ABC' umge-
schriebenen Kreises ist, haben die beiden kongruenten FuBpunktsdreiecke beziiglich der
Brocardschen Punkte einen gemeinsamen Umkreis mit dem Mittelpunkt M’. Damit ist
der noch ausstehende Beweis erbracht.

Abb. 56

Ein anderer Lémoinescher Kreis wird nach folgender Vorschrift konstruiert (Abb. 56):
Durch den Lémoineschen Punkt K des Dreiecks ABC' werden Parallele zu den Seiten
gezeichnet. lhre Schnittpunkte mit den Dreiecksseiten werden mit P;Q; (i = 1,2,3)
bezeichnet.

Sie liegen auf einem Kreis, dessen Mittelpunkt M, die Strecke halbiert, die den Punkt
K mit dem Mittelpunkt M des dem Dreieck ABC' umgeschriebenen Kreises verbindet.

Zunachst wird bewiesen, dass P3()> und BC, Pi(Q3 und AC, P,(Q; und AB antiparallel
sind. Die Ecktransversalen des Dreiecks ABC, die einander in dem . Lémoineschen
Punkt K schneiden, halbieren alle Antiparallelen zu den Dreiecksseiten, die den Ecken
gegenlberliegen, von denen die Transversalen ausgehen.

Daher muss z.B. die Strecke P;3()-, die als Diagonale im Parallelogramm AP;K Q)
durch die Diagonale AK halbiert wird, zur Seite BC' antiparallel sein. Das gleiche folgt
leicht fir P53 und C'A sowie fir P>()1 und AB.
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Die antiparallelen Strecken P30, P13 und P>(Q); sind dem Radius des im letzten
Abschnitt behandelten Lémoineschen Kreises gleich, dessen Mittelpunkt der Punkt K
ist. Die Antiparallelen durch K sind Durchmesser dieses Kreises.

Nach dem Strahlensatz verhalt sich z.B. die Strecke P3()5 zu dem ihr parallelen Durch-
messer wie 1:2. Entsprechendes gilt auch fir Pi(Q3 und P>()q. Also ist jede dieser
Antiparallelen gleich dem Radius des Lémoineschen Kreises mit K als Mittelpunkt, d.
h.

Py = PiQ3 = PQ1=mn

Nun soll bewiesen werden, dass die Punkte P;Q; (i = 1,2, 3) auf einem Kreis liegen. Da
P3Q)- antiparallel zu BC' verlauft, ist ZAQoP3 = 7, dann ist ZQoPsK = ~y; (Winkel
an Parallelen) und ZP,(QQ2P; = a + 3 (Nebenwinkelsatz).

Ebenso lasst sich mit Hilfe von P;(Q)3, antiparallel zu C'A, zeigen, dass /PQ3K =~
und 4Q3P1Q2 =a+ ﬁ ist.

Da die Summen der gegeniiberliegenden Winkel im Viereck P3Q2 P13 180° betragen,
ist das betrachtete Viereck ein Sehnenviereck, und seine Eckpunkte liegen auf einem
Kreis. Nun lasst sich leicht beweisen, dass auch Qo P, Q3 P> sowie P;(Q2P3()1 auf dem
gleichen Kreis liegen.

Aufgabe 44. Man beweise, dass die gegeniiberliegenden Winkel in beiden Vierecken
180° betragen.

Liegen die Punkte P;,Q; (i = 1,2,3) auf einem Kreis, so haben die Mitten der glei-
chen Sehnen P3()5, P13 und P>(); gleiche Abstiande vom Mittelpunkt dieses Kreises.
Die Mittelpunkte der drei Sehnen liegen somit auf einem Kreis, der zum ersten Kreis
konzentrisch ist.

Den Mittelpunkt der beiden Kreise findet man durch Zeichnen der Mittelsenkrechten
zu den genannten Sehnen, die einander in einem Punkt M; schneiden miissen. Der
Radius dieses zweiten Kreises ist gleich dem halben Radius des dem Dreieck ABC
umgeschriebenen Kreises.

Um dies zu beweisen, verbindet man die Mitten der drei Sehnen Ay, B;, C; miteinander
und erhélt ein Dreieck, das dem Dreieck ABC' 3hnlich liegt. Der Ahnlichkeitspunkt ist
K, und das Ahnlichkeitsverhaltnis ist KA, : KA=1:2.

Dann liegen auch die Mittelpunkte der Umkreise beider Dreiecke auf einem Ahnlich-
keitsstrahl; und da KM, : KM =1 : 2 sein muss, wird KM durch M; halbiert.

Die Radien der Kreise, die als homologe Strecken parallel laufen, verhalten sich ebenfalls
wie 1 : 2. Also ist M1 A; = 5, wobei r den Radius des dem Dreieck ABC' umgeschrie-
benen Kreises bezeichnet. In dem rechtwinkligen Dreieck A M;P3 ist AiM; = 3,
APy =5 und P3sMy = 1o (dabei ist ro der Radius des Kreises durch die Punkte P;Q;

und r; der Radius des zuvor behandelten Lémoineschen Kreises). Folglich ist

1
ry = 5\/7“2 +r?

Der durch den Mittelpunkt M7 und den Radius 5 bestimmte Lémoinesche Kreis teilt
jede Seite des Dreiecks ABC' in drei Abschnitte, die sich wie die Quadrate der Drei-
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ecksseiten in ganz bestimmter Folge verhalten, z.B.
BQs: Q3P : PoC =% : a?: b?
Beweis. Multipliziert man die Beziehungen
BQs:BP,=c:a , KQs3:Q3Ps=c:a

und beachtet, dass K()3 = BP; ist, so ergibt sich

BQg : Q3P2 = 02 : CL2 (1)
Aus
KPQZQgPQZb:a , CPQZClebZCL
folgt in gleicher Weise
CP,: CQy = b*: a? (2)

(1) und (2) zusammen liefern die Behauptung.

Die durch den Lémoineschen Kreis mit Mittelpunkt M7 und Radius 5 aus den Drei-
ecksseiten herausgeschnittenen Sehnen verhalten sich wie die Kuben der zugehorigen
Dreiecksseiten:

PQQg . Png . P1Q2 = CLS : bg . 03

Beweis. Aus den Proportionen
Q3P2:KP2:a:b, KPQiKle(IZb, KQ1:P3Q1:a:b

folgt durch Multiplikation
Q3P2 . Png = CL3 . b3
Ahnlich erhalt man P3Q; : PiQs = b® : ¢ und damit die Behauptung.

Verbindet man die Punkte P; (i = 1,2, 3) miteinander und ebenso die Punkte @Q); so
entstehen zwei Dreiecke P, P, P3; und (Q1(Q02Q)s.

Aufgabe 45. Man beweise die Kongruenz der beiden Dreiecke P, P>P3; und (Q1Q2Q)3
und ihre Ahnlichkeit mit dem Dreieck ABC.

Anleitung. Man beachte, dass entsprechende Winkel in den kongruenten Dreiecken
iiber gleichen Kreisbogen stehen, zu denen auch gleiche Sehnen gehéren. /P, P3P,
und ZP;Q2 P, = « stehen (iber demselben Kreisbogen.

Das Ahnlichkeitsverhiltnis 1 : 2 cosw liefert die Relation

1
rog = —\/r2 4+ 1} oder 1y = ;\/1+tan2w: T

2 2cosw
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5.12 Zwei Dreiecke im Brocardschen Kreis

5.12 Zwei Dreiecke im Brocardschen Kreis

Dem Brocardschen Kreis mit dem Durchmesser K M (Abb. 55) kénnen zwei verschie-
dene Dreiecke nach bestimmten Vorschriften eingezeichnet werden. Das erste dieser
Dreiecke findet man, wenn man an die Seiten des Dreiecks ABC' in ihren Endpunkten
nach innen die gleichen Winkel von der GroBe w antragt (w ist der Brocardsche Winkel
fur das Dreieck ABC).

Die Schnittpunkte der freien Schenkel der an jede Seite angetragenen Winkel sind die
Ecken D, E, F des ersten Brocardschen Dreiecks (Abb. 57). Die Dreiecke BCD, ACE
und ABF sind gleichschenklig und wegen der gleichen Basiswinkel einander dhnlich. D
liegt zugleich mit M, dem Mittelpunkt des dem Dreieck A BC' umgeschriebenen Kreises,
auf der Mittelsenkrechten der Seite BC', deren Mittelpunkt M; ist. Die Strecke DM,
ist gleich %a tan w.

Das Lot vom Lémoineschen Punkt K auf BC'ist gleich K K; = %a%. Dacotw =

% ist, erhalt man K K| = %atan w. Also sind K K1 und DM, gleich und parallel,
K DMK, ist ein Rechteck, die Gerade KD ist der Dreiecksseite BC' parallel und

LMDK = 90°.

Nach dem Satz des THALES liegt somit D auf dem Kreis mit K M als Durchmesser.
Analog lasst sich beweisen, dass £/ und F' ebenfalls auf diesem Kreis liegen. Es ist der

Brocardsche Kreis, auf dem auch die Brocardschen Punkte €2 und €' liegen.
Die Dreiecke ABC und DEF sind einander ahnlich.

Wir haben bewiesen, dass KD || BC ist. Ebenso lasst sich zeigen, dass K E' || AC und
KF || AB ist. Weiter ist /ZFDE = /FKE (Peripheriewinkelsatz) und /FKE =
/BAC, weil ihre Schenkel paarweise parallel und gleichgerichtet sind.

Dann ist auch ZFDE = /BAC. Da ZFKD und ZABC' einander zu 180° ergan-
zen und die gleiche Beziehung zwischen ZFK D und ZFEB besteht, ist ZFED =
ZABC'. Die Dreiecke ABC und DEF sind also wegen der Gleichheit zweier Winkel
ahnlich. Die Ecktransversalen AD, BE und CF' schneiden einander in einem Punkt.
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5.12 Zwei Dreiecke im Brocardschen Kreis

Zum Beweis dieses Satzes zeichnet man die Transversalen AK und AD. Beide schnei-
den BC', und zwar die Transversale durch K in P; und die durch D in (). Verlangert
man K D beiderseits bis zum Schnitt mit den Dreiecksseiten und ist G der Schnittpunkt
auf AB und H der Schnittpunkt auf AC', so liegen G und H auf dem Lémoineschen
Kreis, der zum Brocardschen Kreis konzentrisch ist.

Daher ist KG = DH. Nach dem Strahlensatz muss dann auch BP; = C(@Q; sein.
Ebenso ergeben sich fiir die beiden anderen Dreiecksseiten die Gleichungen C' P, = AQ)»
und APy = B(@3. Aus diesen drei Gleichungen findet man nach Abb. 57 die Beziehungen
CP, = BQy, AP, = CQy und BP3; = A(Q)3. Fur die durch den Lémoineschen Punkt
gehenden Transversalen AP;, BP, und CP;5 gilt nach dem Satz von Ceva

APy-BP,-CP,
BP;-CP, - APy

1

und unter Benutzung der oben gefundenen Relationen ergibt sich

BQ3-CQ1-AQy _ ]
AQ3z - BQy - CQ2

Somit schneiden die Transversalen AQ1, BQ und C'Q)3 einander in einem Punkt.

Die Konstruktion eines zweiten Brocardschen Dreiecks ist aus Abb. 58 ersichtlich. Zeich-
net man in einem gegebenen Dreieck ABC durch A und B den Kreis, der die Seite
AC in A beriihrt, und durch A und C den Kreis, der AB in A berlhrt, so erhalt man
mit dem Schnittpunkt GG der beiden Kreise einen Eckpunkt des zweiten Brocardschen
Dreiecks GHI. Die Ecken H und I werden auf entsprechende Weise bestimmt.

Um zu beweisen, dass G auf dem Brocardschen Kreis liegt, ist zu zeigen, dass K auf
AG liegt und dass ZKGM = 90° ist.

Abb. 58

Hilfssatz. Der Mittelpunkt M des dem Dreieck ABC' umgeschriebenen Kreises liegt
auf dem Kreis, der durch die Punkte B, GG und C bestimmt ist.

Beweis. ZBAG ist Sehnentangentenwinkel im Kreis durch A, G und C und daher gleich
dem Peripheriewinkel AC'G im gleichen Kreis. Die gleiche Beziehung besteht zwischen
LCAG und ZABG im Kreis durch die Punkte A, G und B. Also ist NAAGB ~ NAGC
(WW) und ZABG + £/BAG = LCAG + ZBAG = « und daher ZAGB = 180° — a.
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5.13 Der Steinersche Punkt

Ebenso zeigt man, dass ZAGC = 180° — «, also
ZBGC = 360° — (180° — a) — (180° — ) = 2«x

ist. Im Umbkreis des Dreiecks ABC' ist der Zentriwinkel BMC' gleich dem doppelten
zugehorigen Umfangswinkel BAC, also Z/BMC = 2/BAC.

Uber BC stehen zwei Winkel von gleicher GréBe 2a.. Somit liegen die Punkte B, G,
M und C auf einem Kreis. Da ABMC' gleichschenklig ist mit dem Winkel 2« an der
Spitze, ist ZMCB = 90° — a.

Im Sehnenviereck BGMC' liegt diesem Winkel der Winkel BGM gegeniiber; so gilt
/ZBGM = 180° — (90° — «) = 90° + . Nun lasst sich ZAGM berechnen:

ZAGM = 360° — ZAGB — Z/BGM = 360° — (180° — o) — (90° + o) = 90°

Da hiernach M Gsenkrecht auf AG steht, ist G der Mittelpunkt der durch A und G
gezeichneten Sehne des Umbkreises des Dreiecks ABC'.

SchlieBlich ist noch zu zeigen, dass der Punkt K auf AG liegt. Die Abstande des
Punktes G von den Dreiecksseiten b und ¢, hy bzw. h,., sind Hohen in den dhnlichen
Dreiecken AGB und CGA.

Die Hohen verhalten sich wie die zugehorigen Dreiecksseiten, d.h. hy : h, = b : c. Es
wurde schon bewiesen, dass sich die Abstande des Lémoineschen Punktes K von den
Dreiecksseiten verhalten wie die entsprechenden Seiten, hier also KBy : KC; =b: ¢
(B und C; sind die FuBpunkte der Lote von K auf die Seiten b und c).

Daraus folgt, dass K und G auf demselben Strahl durch den Punkt A liegen missen.
Damit ist bewiesen, dass ZKGM = 90° ist, dass also der Punkt GG auf dem Brocard-
schen Kreis liegt. Dasselbe lasst sich leicht fiir die Punkte H und I zeigen.

Aufgabe 46. Wie kann man die Eckpunkte der Brocardschen Dreiecke auf anderen
Wegen bestimmen, wenn man zuvor die Punkte K und M ermittelt ?

5.13 Der Steinersche Punkt

In Abb. 57 sind das Dreieck ABC', der Brocardsche Kreis, das erste Brocardsche Dreieck
und der dem Dreieck ABC' umgeschriebene Kreis gezeichnet.

Satz. Zeichnet man durch A die Parallele zu F'E, durch B die Parallele zu D und
durch C' die Parallele zu ED, so schneiden die drei Parallelen einander im Punkt S,
der auf der Peripherie des Umkreises des Dreiecks ABC' liegt. Der Punkt S heiBt
Steinerscher Punkt.

Es ist zu beweisen, dass die genannten Parallelen einander in einem Punkt schneiden
und dass der Punkt auf dem Kreis durch A, B und C' liegt.

Wir betrachten zunachst die Geraden AS und B.S. Sie bilden den Winkel ASB, der
gleich dem Winkel DF'E ist, weil die Schenkel beider Winkel paarweise parallel und
entgegengesetzt gerichtet sind. Da Z/DFFE = # ist, ist auch ZASB = ZACB, und
beide Winkel stehen iiber dem Bogen AB des Umbkreises des Dreiecks ABC'. Daher
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5.13 Der Steinersche Punkt

liegt S auf der Peripherie dieses Kreises.

Nun ist noch zu zeigen, dass die Gerade C'S mit der Parallelen zu E D durch den Punkt
C identisch ist.

Da der Punkt S auf dem Umkreis des Dreiecks ABC' liegt, ist /BSC = /BAC = «
als Peripheriewinkel (iber demselben Bogen. ZF'DFE ist auch gleich dem Winkel o und
daher gleich ZBSC'. Bei diesen gleichen Winkeln sind die Schenkel DF' und SB nach
Konstruktion parallel und gleichgerichtet.

Folglich missen auch die zweiten Schenkel DE und SC' parallel und gleichgerichtet
sein. Somit ist der Satz vom Steinerschen Punkt bewiesen.
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6.1 Die vier bekannten Punkte des Dreiecks

6 Untersuchung der merkwiirdigen Punkte und
Linien des Dreiecks mit den Methoden der
analytischen Geometrie

Voraussetzung fiir das Verstandnis dieses Kapitels ist der in der Erweiterten Oberschu-
le behandelte Stoff der analytischen Geometrie. Leser, die mit dem Stoffgebiet nicht

vertraut sind, seien auf die im Anhang angegebene Literatur verwiesen, insbesondere
die Werke Nr. [2], [3], [11] und [12].

6.1 Die vier bekannten Punkte des Dreiecks

Zunachst werden die Kriterien fiir den Fall bestimmt, dass drei durch ihre Gleichungen
gegebenen Geraden einander in einem Punkt schneiden, sowie die Kriterien dafiir, dass
drei gegebene Punkte auf einer Geraden liegen.

Wir betrachten zunachst den ersten Fall. Die Geraden seien gegeben durch ihre allge-
meinen Gleichungen
a; v +by+c =0 (1=1,2,3)

a) Zwei Gleichungen werden zu einem Gleichungssystem mit zwei Variablen zusam-
mengefasst. Die Losung dieses Systems liefert die Koordinaten des Schnittpunktes der
beiden Geraden. Erfiillen die gefundenen Koordinaten auch die dritte Gleichung, so
schneiden die Geraden einander in einem Punkt.

b) Setzt man also die Werte

. — C1 bl aq b1 und Yy = — ap C aq bl
B ca ba| | ax by B az € az by
in die dritte Gleichung ein, so erhalt man
ca b ay ¢ ar b 0
—a — c
Sley by lay e Slay b
oder
by a ar G ar b
as — + c3 =0
by az € az by

Dieser Ausdruck lasst sich als dreireihige Determinante schreiben:

ap b1 o
a9 bQ Cy | = 0
as bs c3

Die Determinante enthélt in jeder Zeile die Koeffizienten einer der drei Gleichungen.
Sie verschwindet, wenn die drei Geraden einander in einem Punkt schneiden.

c) Setzt man a;x + by + ¢; = G; (1 = 1,2, 3), so werden die drei Geraden durch die
Gleichungen G; = 0, G2 = 0 und G3 = 0 symbolisiert. Addition der ersten beiden
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6.1 Die vier bekannten Punkte des Dreiecks

Gleichungen liefert G + G5 = 0. Diese Gleichung wird nur von den Koordinaten des
Schnittpunktes S der beiden Geraden erfillt, d.h.,

(CLl —f—(lg)l’—l— (bl —|—b2)y—|—01 + o = 0

ist die Gleichung einer Geraden, die nur den Schnittpunkt S der Geraden G; = 0 und
GG = 0 mit ihnen gemein hat. Multipliziert man G und G5 mit beliebigen konstanten
Zahlen, m und n, so bezeichnen sie dieselben Geraden, und man erhalt mG{+nGy =0
oder G1 + >G5 = 0. Setzt man .- = ), so ergibt sich

Gi1+ MGy =0 (m, n, A heiBen Parameter) (1)

Lasst man )\ alle Werte des Kontinuums der reellen Zahlen durchlaufen, so erhalt man
alle Geraden durch einen gemeinsamen Schnittpunkt S, d.h., (1) ist die Gleichung eines
Strahlenbiischels mit dem Trager S.

Betrachtet man mG, + nGGo = 0 als eine dritte Gerade, so kann diese die Gleichung
(G5 = 0 besitzen, die sich von mG7 +nG9 = 0 nur durch einen konstanten Faktor, den
wir mit —[ bezeichnen wollen, unterscheidet:

mG1 +nGy = —1G3

Daraus folgt
mG1 +nGy +1G3 =0 (2)

Fir m =n =1 =1 erhalten wir
Gi+Gy+Gy3=0 (2a)

es darf aber kein Summand gleich Null werden. In beiden Fallen schneiden die drei
Geraden G; =0 (i = 1,2, 3) einander in einem Punkt.

Damit drei Geraden G; = 0, G2 = 0 und GG3 = 0 einander in einem Punkt schneiden,
ist notwendig und hinreichend,

a) dass die Koordinaten des Schnittpunktes zweier Geraden die Gleichung der dritten
Geraden identisch erfiillen oder

b) dass die Determinante aus den Koeffizienten der drei Gleichungen verschwindet oder

c) dass mG1 + nGy + (G identisch verschwindet (m, n, [ dirfen nicht Null, kdnnen
jedoch gleich +1 sein).

Wir untersuchen nun, wann drei Punkte auf einer Geraden liegen.

a) Durch je zwei Punkte einer Ebene ist eine Gerade bestimmt. Sind die Koordinaten
der Punkte gegeben, so lautet die Gleichung der Geraden

_ Y2 — U

r—x
932—561( 1)

Yy—u

Hat der dritte Punkt die Koordinaten x3,y3, so miissen diese, falls der Punkt auf der
Geraden liegt, die angegebene Gleichung erfiillen.
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6.1 Die vier bekannten Punkte des Dreiecks

b) Liegen drei Punkte Pi(x1,y1), Po(22,y2) und Ps(xs3,y3) auf einer Geraden, dann
ist der Inhalt des Dreiecks, das durch diese drei Punkte gebildet wird, gleich Null, d.h.,
das Dreieck ist zu einer Geraden ausgeartet:

;[Il(?ﬁ —y3) + 22(yz — y1) + x3(y1 —y2)] =0

Aufgabe 47. Man forme die Inhaltsformel des Dreiecks auf die Gleichung
Y2 — U
Tro9 — X1

Ys = = (z3 — 1) um.
c) Da man die Inhaltsformel des Dreiecks als dreireihige Determinante schreiben kann,
liegen drei Punkte auf einer Geraden, wenn die folgende Determinante verschwindet:

1 oy 1
x2 Y2 1]|=0
x3 y3 1

Sie enthélt in der ersten und zweiten Spalte die Koordinaten der drei Punkte.

Dafiir, dass drei Punkte Py(x1,y1), Pa(x2,y2), Ps(x3,ys3) einer Ebene in einer Geraden
liegen, ist notwendig und hinreichend:

a) dass die Gleichung, die durch die Koordinaten zweier Punkte bestimmt wird, durch
die des dritten Punktes identisch erfillt wird oder

b) dass der Inhalt des Dreiecks, das die drei Punkte als Ecken hat, gleich Null wird:

;[Il(yz —y3) + 22(ys —y1) + 23(y1 —y2)] =0

oder
c) dass die aus den Koordinaten der drei Punkte gebildete dreireihige Determinante
verschwindet:

1 oy 1

xo Y2 1|=0

r3 ys 1

Wir wollen nun die Kriterien in einigen Beispielen und Aufgaben anwenden. Zunachst
wird gezeigt, dass die drei Hohen des Dreiecks einander in einem Punkt schneiden.
Zur besseren Veranschaulichung legen wir das Dreieck P; P, P5 in den ersten Quadranten
des Koordinatensystems (Abb. 59).

Abb. 59
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6.2 Beweise mit Hilfe der Hesseschen Normalform

Die Koordinaten der Punkte P, werden durch x;,y; (i = 1,2, 3) bezeichnet. Das hat
den Vorteil, dass in allen vier Fallen nur eine Gleichung der betreffenden Geraden entwi-
ckelt zu werden braucht. Durch zyklische Vertauschung der Indizes ergeben sich daraus
die Gleichungen der anderen beiden Geraden.

Die Hohe durch den Punkt P; steht senkrecht auf der Seite P, P3, die die Richtungskon-

stante my = % hat. Dann ist die Richtungskonstante der Hohe gleich moy = —ﬁ,
d.h. my = —-L. Die Gleichung der Hhe lautet also
To — I3
Yy—yr=— (x — 1)
Y2 — Y3
oder

(w2 —@3)(z — 21) + (¥2 — y3)(y —y1) =0
Durch zyklische Vertauschung der Indizes erhalt man auch die Héhen von den Ecken

P, und Pj3. Die Summe der drei Gleichungen ist identisch Null. Also schneiden die drei
Hohen des Dreiecks einander in einem Punkt.

Aufgabe 48. Man beweise die entsprechenden Satze fiir die Mittelsenkrechten und die
Seitenhalbierenden, des Dreiecks.

6.2 Beweise mit Hilfe der Hesseschen Normalform

Das Kriterium fiir den gemeinsamen Schnittpunkt der Winkelhalbierenden erfordert
umfangreiche Rechnungen, wenn man dazu von der allgemeinen Form der Geradenglei-
chung

ar+by+c=0

ausgeht. Einfacher gestaltet sich der Beweis bei Verwendung der Hesseschen Normal-
form der Geradengleichung.
Wir bezeichnen die Gleichungen der Dreiecksseiten g; mit N(g;) = 0, wobei

N(g;) = xcosp; +ysing; —p; =0

ist (i = 1,2,3).
A
/
03 D
2 N 2
PZKJA
Abb. 60 B

Da ein Punkt P, der nicht auf der Geraden

rcosp +ysing —p =10
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6.2 Beweise mit Hilfe der Hesseschen Normalform

liegt, von ihr den Abstand
d=xgcosp+ ypsiny —p

hat und die Abstande jedes Punktes der Winkelhalbierenden von den beiden Sehenkeln
gleich sind, lauten die Gleichungen der drei Winkelhalbierenden

N(g1) — N(g2) =0, N(g2) —N(g3s) =0, N(g3s) —N(g1)=0

Da die Summe der linken Seiten Null ergibt, ist der Satz von den Winkelhalbierenden
bewiesen.

Aufgabe 49. Man fiihre den Beweis fiir die Halbierenden eines Innenwinkels und der

entsprechenden AuBenwinkel eines Dreiecks (Abb.60).
!

p’
e o
dz
i’%>\
&az JNp b m m =y

Aufgabe 50. Man fiihre den Beweis mit Hilfe der Hesseschen Normalfort der Geraden-
gleichung a) fir die Hohen (Abb. 61) und b) fiir die Seitenhalbierenden des Dreiecks
(Abb. 62).

Abb. 61, 62

Anleitung. a) Man beachte, dass dy : d3 = cos ag : cos ay ist und damit
dy cos ag = d3 cos ag
b) Es gilt
dy : d3 = sin a3 @ sin ag oder dy sin avg = d3 sin a3

Den Mittelpunkt des dem Dreieck umgeschriebenen Kreises findet man auch, wenn
man an die Seiten in ihren Endpunkten nach der Innenseite die Komplemente der ge-
geniiberliegenden Dreieckswinkel antragt. Je zwei Schenkel der drei gleichschenkligen
Dreiecke fallen zu einer Ecktransversalen zusammen, und die drei Transversalen treffen
einander im Mittelpunkt des Kreises.

Aufgabe 51. Man benutze diese Tatsache zur Aufstellung der Gleichungen der Eck-
transversalen und zum Beweis des Satzes von der Ermittlung des Mittelpunktes des
Umbkreises.

Anleitung. Die drei Gleichungen sind mit einem geeigneten konstanten Faktor zu mul-
tiplizieren, damit ihre Summe identisch Null wird.

Ohne Beschrankung der Allgemeinheit kann das Dreieck im folgenden so in das recht-
winklige Koordinatenkreuz gelegt werden, dass Py Py vom Ursprung aus auf die x-Achse
fallt, wodurch sich die Rechnung vereinfacht (Abb. 63).
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6.3 Die Eulersche Gerade

Palxp:Y2)

R(0.0) 7 Polxyi0)

Abb. 63

Aufgabe 52. Man stelle die Gleichungen a) der drei Hohen, b) der drei Mittelsenkrech-
ten, c) der drei Seitenhalbierenden, d) der drei Winkelhalbierenden auf, berechne die
Koordinaten der Schnittpunkte und wende in jedem Fall die drei Kriterien an, durch
die bewiesen wird, dass jeweils drei Geraden durch einen Punkt gehen.

Anleitung. d) Man bilde die Hessesche Normalform aus der allgemeinen Form der Ge-
radengleichungen der Dreiecksseiten. Es ist

ar+by+c
Va2 + 02

6.3 Die Eulersche Gerade

Drei Punkte liegen auf einer Geraden,

0

a) wenn der Inhalt des Dreiecks, das durch die Punkte bestimmt wird, verschwindet,
b) wenn die entsprechende Determinante gleich Null wird,

c) wenn die Koordinaten eines der gegebenen Punkte die Gleichung der Geraden erfiillen,
die durch die beiden anderen Punkte bestimmt ist.

Jedes dieser drei Kriterien kann zum Beweis der genannten Eigenschaft der drei Punkte
dienen.

Im vorliegenden Fall handelt es sich um den Héhenschnittpunkt H mit den Koordinaten
Ty = To, Yp = (xl_y% den Schnittpunkt S der Seitenhalbierenden des Dreiecks mit

den Koordinaten x, = #5355, y, = % und um den Mittelpunkt des Umkreises des
2_ —
Dreiecks mit den Koordinaten x,, = % Ym = %wm)m

Aufgabe 53. Man beweise unter Anwendung der drei Kriterien, dass die genannten
Punkte auf einer Geraden, der Eulerschen Geraden, liegen.

6.4 Der Feuerbachsche Kreis

Die Mittelpunkte der Seiten eines Dreiecks, die FuBpunkte der Hohen und die Mit-
telpunkte der oberen Hohenabschnitte liegen auf einem Kreis, dem Feuerbachschen
Kreis.

Die allgemeine Kreisgleichung lautet

(= a)” + (y = b)* =1
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6.4 Der Feuerbachsche Kreis

Abb. 64

Aufgabe 54. Man berechne die Koordinaten a, b des Mittelpunktes des Kreises, wenn
der Kreis durch die drei Punkte P;(x;,vy;) (i = 1,2,3) geht.

Aufgabe 55. Man setze zur Bestimmung der Mittelpunktskoordinaten des Feuerbach-
schen Kreises die Koordinaten der Mittelpunkte der Dreiecksseiten M, (%, 0),

M, (2522 2, Ms (%2,%2) ein (Abb. 64).

Aufgabe 56. Man bilde die Kreisgleichung und berechne r durch Einsetzen von M (%, O)
in diese.
Aufgabe 57. Man zeige, dass die Koordinaten (z3,0) des FuBpunktes der Hohe auf

PyP; und die des Mittelpunktes ihres oberen Abschnittes <x2, M%W die Glei-

chung des Feuerbachschen Kreises erfiillen, die Punkte also auf dem Feuerbachschen
Kreis liegen.

Aufgabe 58. Man berechne den Radius des dem Dreieck Py P; P, umgeschriebenen Krei-
ses und vergleiche seine Lange mit dem des Feuerbachschen Kreises.

Aufgabe 59. Man beweise, dass der Mittelpunkt des Feuerbachschen Kreises auf der
Eulerschen Geraden liegt und die Strecke H M halbiert.
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7.1 Die Seitenhalbierenden

7 Merkwiirdige Punkte und Linien des Dreiecks in
der Vektoralgebra

Wie auch im vorigen Kapitel werden die Grundbegriffe der Vektorrechnung vorausge-
setzt. Leser, denen solche Kenntnisse fehlen, konnen sich in den unter Nr. [7], [8], [11]
und [12] in den Literaturhinweisen angegebenen Werken informieren.

7.1 Die Seitenhalbierenden

In den Beweisen mit Methoden der Vektorrechnung treten folgende Begriffe und Ver-
knipfungen von Vektoren auf: Addition und Subtraktion von Vektoren, das skalare und
das vektorielle Produkt von Vektoren, lineare Abhangigkeit und lineare Unabhangig-
keit von Vektoren, die Gleichung der Geraden und das Kriterium fiir die Lage von drei
Punkten in einer Geraden.

In allen zu beweisenden Satzen schneiden drei Geraden einander in einem Punkt. In
den Beweisen der Vektoralgebra werden zuerst zwei Vektoren, die einander schneiden,
operativ zusammengefasst.

Durch weitere Rechnung wird dann gezeigt, dass die gleichen Eigenschaften, die sich
fiir die beiden Vektoren ergeben, auch fiir den zugehorigen dritten Vektor gelten. Am
Beispiel der Seitenhalbierenden des Dreiecks ABC' sei dieses Beweisverfahren erlautert.

Die Seitenhalbierenden des Dreiecks schneiden einander in einem Punkt.

Abb. 65
1. Beweis. In Abb. 65 ist a+ b+ ¢ =0 (1)

;:)\EzA(c—k;a) ; U=uﬁ=u<a+lb>

2
Im Dreieck ABS ist ¢+t = ¢ oder

c+u<a+;b>:>\<c+;a> (2)

Wegen ¢ = —a — b erhalt man

1 1
—a— bl =N —-a— -
a b+u<a+2b> ( a b+2a>

1 1
—a+pa+ 5)\a:b—§ub+)\b

(—1+u+;)\>a:<1—;u—)\>b (3)
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a und b sind linear unabhéngig. Die Gleichung (3) wird also nur erfillt, wenn die
Koeffizienten verschwinden. Aus den sich ergebenden Gleichungen lassen sich A und p
wie folgt berechnen:

Aus —1+u+%)\:0und 1—%M—A:0folgt)\:%und,u:%. Nimmt man an,
dass BE und CF einander in 5’ schneiden, und setzt 1/ = ,uﬁ und 3 = Vﬁ, SO

findet man in ahnlicher Weise = v = % Die Punkte S und S’ stimmen also (berein.

Aufgabe 60. Man beweise denselben Satz, wenn das Dreieck durch die Endpunkte von
drei Ortsvektoren im Raum bestimmt ist, die von einem Punkt ausgehen (Abb. 66).

Abb. 66
Anleitung. Man gehe aus von den Gleichungen der drei Seitenhalbierenden

I3+
2

o +13
2

r+1x2 >
— I3

—xz), zc:zc3+A( 5

ZC:ZC1+)\< —ZC1>7 I:I2+M<
und berechne ihren Schnittpunkt gy. Die vorher veranderlichen Parameter nehmen fiir rg
bestimmte Werte an. Man berechne A und x4 und beachte dabei, dass die drei Vektoren

1, L2, I3 im Raum linear unabhangig sind.
Ein weiterer Beweis dieses Satzes kann mit Hilfe des Vektorproduktes gefiihrt werden.

3. Beweis. Alle Vektoren liegen in der durch das Dreieck bestimmten Ebene. Eine Ecke
des Dreiecks ist Anfangspunkt der Ortsvektoren p; und po. Dann bestimmt %1 den
Mittelpunkt von pq, B2 den von ps und B1FE2 den Mittelpunkt von py — py — 1.

Die beiden Seitenhalbierenden p; — 22 und py — %1 schneiden einander in einem Punkt.

2
Dieser Punkt ist der Endpunkt des Ortsvektors ¢ (Abb. 67).

/]
Abb. 67 £

Pz

Es soll nun gezeigt werden, dass die Vektoren ¢ und W in einer Geraden liegen, dass
also ihr Vektorprodukt gleich Null wird. Es ist

(£ =p1) x (91—1;2>=0 und  (r—p2) ¥ <p2—‘2>:o

74



7.2 Die Héhen

weil in jedem Fall beide Vektoren in einer Geraden liegen. Werden beide Produkte
berechnet und addiert, so ergibt sich, wenn man noch beachtet, dass

P2 Xp1  P1 X P2

2 2

ist,

p1+Pp2y\ P1+ P2
2 )‘” 2

Also sind r und ’31;—”2 kollinear, und die drei Seitenhalbierenden schneiden einander in
einem Punkt.

IX(P1+P2)—<2C><

7.2 Die Hohen

Aufgabe 61. Man beweise, dass die drei Hohen eines Dreiecks einander in einem Punkt
schneiden (Abb. 68).

Anleitung. Man benutze die skalaren Produkte (r — ps) - p; =0 und (z —p1) - p2 = 0.
Man deute das Ergebnis.

Abb. 68, 69 ¢

Aufgabe 62. Man beweise den Satz von Aufgabe 61 an Hand der Abb. 69.
Anleitung. Esist h.- ¢+ by - b= 0. Man setze h, =b+zrund h =1 —c.

7.3 Die Mittelsenkrechten der Seiten
Aufgabe 63. Man beweise den Satz von den Mittelsenkrechten im Dreieck (Abb. 70).

Abb. 70

Anleitung. Man zeige, dass das skalare Produkt der Gleichungen r —3 =b und r+3 =
2n,, die Beziehung 1> — 32 = 0, also |z| = |3] ergibt.

Ebenso findet man |3] = |p| und aus den letzten beiden Gleichungen [¢| = |y|. Man
bilde §? — x> = 2¢ - 0 und deute dieses Ergebnis.
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7.4 Die Winkelhalbierenden

7.4 Die Winkelhalbierenden

Aufgabe 64. Man beweise, dass die drei Winkelhalbierenden im Dreieck einander in
einem Punkt schneiden (Abb. 71).

Anleitung. Auf den Schenkeln des von den Vektoren a und b gebildeten Winkels sind
vom Scheitelpunkt aus die Einheitsvektoren ¢, und e, gezeichnet (Abb. 72).

Abb. 71, 72

Ihre Summe ¢, + ¢; bestimmt die Richtung der Winkelhalbierenden. Ihr Vektor ist

o =m(e +e)—m<a+b>
- a b) — a b

Man berechne tv/3 und tv, und verbinde sie mit a zu einer Gleichung, aus der die
Faktoren m und n bestimmt werden kénnen. Nun lasst sich aus tvg und ¢ der Vektor
0 ermitteln, von dem man zeigen kann, dass er mit tv, identisch ist.

Aufgabe 65. Man beweise, dass die Halbierenden eines Innenwinkels und der beiden
ihm nicht anliegenden AuBenwinkel einander in einem Punkt schneiden.

7.5 Die Eulersche Gerade

Im Dreieck liegen der Hohenschnittpunkt, der Schnittpunkt der Seitenhalbierenden und
der Schnittpunkt der Mittelsenkrechten der Seiten auf einer Geraden.

Dieser Satz lasst sich mit den Hilfsmitteln der Vektorrechnung auf verschiedene Art
beweisen.

Ein Kriterium fir diese Eigenschaft der genannten Punkte liefert die Gleichung der
Geraden. Liegen die Endpunkte A, B und X dreier Vektoren, die von demselben Punkt
O ausgehen, auf einer Geraden, so gilt (Abb. 73)

r=a+ Ab—a)

A ] xfc)

wl &+ % (<)

Abb. 73 0

Setzt man X = C' und ¢ = ¢, so ergibt sich

(1—XNa+Ab—c=o0
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7.5 Die Eulersche Gerade

Da die Punkte A, B und X beliebig gewahlt werden konnen, gilt diese letzte Gleichung
allgemein. Wir bringen sie nun auf die Form

tha+tb+t3c=o0 (1)
Fur die Koeffizienten der Vektoren gilt (1 — A) + A — 1 = 0, oder allgemein
th+ta+1t3=0 (2)

Kann umgekehrt die Gleichung (1) fiir drei Vektoren a, b und ¢ gebildet werden und
ist zugleich die Nebenbedingung (2) erfiillt, so liegen die drei Endpunkte der Vektoren
auf einer Geraden (Beweis !).

Ein zweites Kriterium liefert die Summe der Betrage der drei Vektorprodukte, |a X
b| + |b X ¢| + |c x a|, die gleich Null wird, wenn die Endpunkte der Vektoren auf einer
Geraden liegen (Abb. 73).

Da der Betrag des Vektorprodukts den doppelten Inhalt des durch die Vektoren auf-
gespannten Dreiecks bedeutet, stellen £|a x b| und 3|¢ x a| die Inhalte der Dreiecke

OAB und OBC, das Produkt %|c X a| den mit -1 multiplizierten Inhalt des Dreiecks
OC'A dar. Die Summe der drei Betrage ist Null.

Liegen A, B und C nicht in einer Geraden, so ergibt die Rechnung den Inhalt des aus
diesen drei Punkten gebildeten Dreiecks.

¥

g

Abb. 74

a) Anwendung des ersten Kriteriums (Abb. 74). Das durch die Vektoren p; und ps
aufgespannte Dreieck ist so in das Koordinatensystem gelegt, dass eine Ecke in den
Koordinatenursprung fallt und eine Seite auf der z-Achse liegt.
Es sind der Hohenschnittpunkt H, der Schwerpunkt S und der Mittelpunkt des Um-
kreises M ermittelt. Zu beweisen ist, dass diese drei Punkte auf einer Geraden liegen.
. . )
Die von O ausgehenden Vektoren sind 04H) =, O? =nund OM =3;.
Wir zerlegen die Vektoren in ihre Komponenten und erhalten
. Ty — T1)x1, T+ Ta, . T2, 2 (29 —x1)271
T
A1 3 3 2 23/1

Die Koordinaten der Vektoren ¢, 1 und 3 lassen sich mit den Mitteln der analytischen
Geometrie leicht berechnen. Es ist

. Ty — X1)x1. 1+ X2, .
t1;+tgq+t33:1[x11+(21)1 _3[ 1 214_@]
Y1 3 3
x 2 (z9 —x1)T
T E N i k)
2 2y1
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7.5 Die Eulersche Gerade

also
r—3n+23=0

Da auch die Nebenbedingung t| +ty +t3 =1 — 3+ 2 = 0 erfiillt ist, liegen H, S und
M auf einer Geraden.

Nunistz—9—29+23 =0, r— 9 = S_}} und 2(y — 3) = 2]\@. Setzt man diese

Werte ein, so ergibt sich STL}—Qm = 0 oder STT—} = 2]\73?, d.h., HM ist durch S im
Verhiltnis 2:1 geteilt.

b) Das zweite Kriterium fiir die oben angegebene Eigenschaft der Punkte H, S und M
im Dreieck ist die Bedingung

T x gl + [y x5 +[zxx/=0

Die Zerlegung der Vektoren r, vy und 3 in einem rechtwinkligen Koordinatensystem
lautet

r=xiit+ 22, Y=yt ), =2+ 29
Fir das Produkt ¢ x t) = (21i + 22)) X (y1i + y2j) ergibt sich
1y (i X 1) + 21y2(i X j) + 2291 ( X 1) + 22920 X )
Wegenixi=jxj=oundixj=¢ jxi=—*tist
Xy = (r1y2 — T201)¢ und [t X 9| = 21Y2 — T2

Entsprechend sind die anderen Produkte zu bilden.
Verwenden wir hier nun speziell die Komponentenzerlegung, die wir bereits in a) benutzt
haben, so ergibt sich fiir die absoluten Betrage der Produkte

ryr (1 4+ x2) (e — 1) 21

X n| = —
exyl=— 3
Tt [y (22— x)my Tay1
X 3| = 5 - -
3 2 2y1 6
5% 1] = ra(x2 —x1)a1 - [y1 (- x1)x1]
217 2 211

Die Addition liefert [z x |+ |9+ 3| + [3 x| =0, d.h., H, S und M liegen auf einer
Geraden.
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8.1 Addition und Subtraktion von Punkten

8 Merkwiirdige Punkte des Dreiecks und ihre
baryzentrischen Koordinaten

Ferdinand Mobius gab in seiner Arbeit "Der baryzentrische Kalkil" (Leipzig 1827) einen
Algorithmus an, der geeignet ist, die Kollinearitat gewahlter Punkte im Dreieck und ihre
Lage auf der jeweiligen Geraden zu bestimmen. Dazu benutzte Moébius baryzentrische
Koordinaten. Im folgenden sollen diese Koordinaten definiert und in einigen Beispielen
angewendet werden.

Zunachst definieren wir Verkniipfungen von Punkten und Strecken, die Mobius Additi-
on, Subtraktion und Multiplikation nennt.

8.1 Addition und Subtraktion von Punkten

In Analogie zu der Zusammenlegung parallel und in gleicher Richtung wirkender Krafte
in der Physik werden die mit den Gewichten x1 und x5 versehenen Punkte E; und Ej
folgendermaBen addiert (Abb. 75):

k3 (xy +.irz 4 2 £z
L

Abb. 75

r1E1 + 29Fs = (1‘1 + :L’Q)P (1)

Der Punkt P mit der Summe z; + z2 der Gewichte teilt die Strecke £ E5 innen im
Verhaltnis E1P : PE2 = T2 . I1.

Ist z.B. 29 = 2 und x; = 5, so geht (1) lber in 5E; + 2E5 = 7P (Abb. 76), und das
Verhaltnis lautet £/ P : PEy = 2 : 5.

56 7P 26,
Abb. 76  — ; =

Aus der Addition der Punkte folgt sofort die Subtraktion; denn aus (1) folgt (Abb. 75)
(azl + Z’Q)P —x1E1 = 29Fs (2)

Der Punkt x5 F», der die Differenz darstellt, teilt die Strecke £ P auBen im Verhaltnis
E1E2 . EQP = (.I'l + 332) LI, Far 1 = 5 und T — 2 ist wieder TP — 5E1 = 2E2
(Abb. 76).
Bildet man die Differenz der GréBen x;E7 und x9FE5, so lautet die Subtraktionsformel
(Abb. 77)

Abb, 77 IO g
IlEl — $2E2 = (Il — :Ug)P (23)

Bei der Subtraktion wird zunachst der Fall 1 E; —1E, ausgeschlossen, weil in diesem Fall
P als "uneigentlicher Punkt" unbegrenzt weit von E; und E5 entfernt liegen misste.
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8.2 Produkte von Punkten

Um aber fir diese Differenz einen endlichen Wert zu erhalten, definieren wir nach
Mobius £y — E» als Vektor EsEj:

-
B, — Ey = EyF) (3)

Aufgabe 66. Man stelle die Parallele hierzu in der Vektorrechnung dar und veranschau-
liche sie.

8.2 Produkte von Punkten

Als duBeres Produkt zweier Punkte A und B bezeichnen wir die GroBe [AB]. Es wird

definiert als linienfliichtiger Vektor f@ d.h. als ein Vektor, der an eine Tragergerade
gebunden ist und auf ihr beliebig verschoben werden darf. Dagegen kann man den freien
Vektor beliebig parallel zu sich selbst verschieben.

[AB] = AB (1)

Der Vektor [BA] hat die gleiche Lange wie [AB], ist aber entgegengesetzt gerichtet,
d.h.
[BA) = —[AB] ©)

Vertauscht man in dem Produkt [AA] die Faktoren, so ergibt sich nach (2) [AA] =
—[AA]. Diese Gleichung kann nur gelten, wenn [AA] = o (o Nullvektor) ist.

Das Produkt [AB~A], in dem ein Punkt A mit einem freien Vektor zu multiplizieren
ist, liefert wegen [AA] = o

[AB — A} = [AB] - [AA] = [AB] (3)

also einen linienfliichtigen Vektor. Die Multiplikation geniigt dem distributiven Gesetz.
[ABC] ist das auBere Produkt dreier Punkte und bedeutet geometrisch den Flachenin-
halt des Parallelogramms, das durch die drei Punkte A, B und C' bestimmt wird (Abb.
78).

-

Abb. 78 85777

Das Dreieck ABC hat den halben Flicheninhalt des Parallelogramms, also §[ABC].
Wir multiplizieren nun den Punkt A mit zwei freien Vektoren und erhalten

[AB — AC — A] = [ABC] — [AAC] — [ABA]| + [AAA] = [ABC] (4)

d.h. das Parallelogramm. Es lasst sich leicht die Ahnlichkeit mit dem Vektorprodukt
a X b nachweisen. Bekanntlich bedeutet absin(a;b)e. einen Vektor, dessen Betrag
gleich dem Inhalt des durch die Vektoren a und b aufgespannten Parallelogramms ist.
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8.3 Der Begriff der baryzentrischen Koordinaten

8.3 Der Begriff der baryzentrischen Koordinaten

Wahlt man drei beliebige in einer Ebene gelegene Punkte, die nicht in einer Geraden
liegen, so lasst sich jeder Punkt dieser Ebene durch die drei Punkte linear darstellen,
wenn sie mit geeigneten Gewichten versehen werden.

&

Abb. 79

Gegeben sei ein Dreieck Ey EyE3 (Abb. 79). In dem Dreieck werde ein Punkt P ange-
nommen, durch den die Ecktransversalen £ P;, Fs P, und E3P; gezogen sind. Werden
die Ecken des Dreiecks mit geeigneten Gewichten x1, xo bzw. x3 versehen, so bestim-
men sie den Punkt P der Ebene des Dreiecks, der als physikalischer Schwerpunkt des
Systems betrachtet werden kann, in dem also die Gewichte x1, x9, 3 vereinigt erschei-
nen. Es gilt

2P = x1Ey + 29Fy + x3F3 mit T =T+ x9 + T3 (1)
oder
P = $1E1 + JZ‘QEQ + $3E3 mit 1+ T2+ T3 = 1 (1a)

Beweis. In dem Bezugsdreieck E EsFE3 erhalt man durch Punktaddition
Toly + x3F3 = (29 + x3) P

Damit sind die Gewichte z2 und x3 in ihrem Schwerpunkt vereinigt. Um alle drei
Gewichte in einem Punkt zu vereinen, sind noch E; und P; zu addieren, und man
erhalt

$1E1—|—($2—|—$3)P1 = (561—|—$2+CC3)P oder x1E 1 +xoFs+a3ks = ($1+1’2+$3)P =P

wie (1). Durch geeignete Anderung der den Punkten E1, E5, E3 zugeordneten Gewichte
lasst sich jeder beliebige Punkt der Ebene darstellen, in der das Dreieck E EsFEs liegt.
Die Gewichte z1, xo und 3 heiBen auch homogene Koordinaten des Punktes P.
Mébius nennt sie baryzentrische Koordinaten, weil sie den Schwerpunkt des Bezugssys-
tems bestimmen.

Die Anwendungsmoglichkeit der baryzentrischen Koordinaten wollen wir an Hand des
Beweises der Relation beziiglich der Ecktransversalen im Dreieck zeigen.

In Abb. 79 sind durch einen beliebigen Punkt P im Dreieck E; EsFE5 die Ecktransver-
salen gezeichnet. Es ist

P =x1FE1 +x9Fy+23FE3 mit r1+r9+a3=1
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8.4 Teilflaichen des Dreiecks als baryzentrische Koordinaten eines beliebigen Punktes
des Dreiecks

Durch Punktaddition findet man

(w2 + 23) P1 = 22 By + x3F3 (2)
(:L’g + xl)Pg =21 F + x3F3 (3)
(:L’l + Ig)Pg =x1E1 4+ x9F)s (4)

Bildet man die Differenz aus x P und zE, so ergibt sich

ZE‘(P — El) = IQEQ + {L'3E3 — .CIZ'QEl — $3E1
= (w9 + x3) P, — (22 + 23) E7 (wegen (2), 5)
= (g + x3) (P — E1)

—_—
Setzt man fur P — E4 den Vektor Elﬁ und fur P, — E7, den Vektor E1 P, so erhalt
man x P = (x9 + x3) E1 P oder

EyP
IR s (6)
E1P1 Wi
Ebenso erhalt man
EQP . T3+ X1 ) EgP . xr1 + X9 (7 8)
E2P2 N T ’ E3P3 B X ,

Durch Addition von (6) bis (8) ergibt sich

E1P EQP E3P o 2(561 + 2o + !L’g)

— —9
E1P1 * E2P2 * E3P3 i

und weiter
PP PP PPy

E\ P i Ey Py - EsPs -

1

8.4 Teilflachen des Dreiecks als baryzentrische Koordinaten
eines beliebigen Punktes des Dreiecks

Als Gewichte, durch die die Ecken des Bezugsdreiecks E FsE3 belegt werden, lassen
sich auch mit homogener Masse gleichmaBig belegte Teilflichen dieses Dreiecks ver-
wenden. Da die Gewichte dieser Teilflachen derem Inhalt proportional sind, setzt man
fur x; (1 = 1,2,3) den Inhalt entsprechender Teilflachen des Dreiecks Ey EsFEs.
Zunachst untersuchen wir, welche Flachen den Ecken E; (i = 1,2, 3) zuzuordnen sind.
Fir das Dreieck E1EoFE3 mit P als gewahltem Schwerpunkt gilt

P =x1FE| +29Fy + x3F3 mit T1+ 29 +r3=1 (1)

Das auBere Produkt dieser Gleichung mit [Fs E3] ergibt wegen [Fy By Fs] = [E3EyE3| =
0
[PEQEg] == l‘l[ElEQEg] (2)
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8.5 Die baryzentrischen Koordinaten bestimmter Punkte des Dreiecks

Multipliziert man (1) noch mit [E} Es| sowie mit [E} E»], so findet man
[PElEg] = 332[E1E2E3] und [PElEQ] = 333[E1E2E3] (3,4)
Aus (2), (3) und (4) folgt

_ [PE:E; _ [PE\E; _ [PEE

= E1EyEs)’ 2= E\EyE3)’ = E\EyEs|

Durch Einsetzen in (1) und Multiplikation mit [E; EyE3) ergibt sich
|EVEsEs|P = [PEyEs|Ey + [PEV\Es|Ey + [PE L Es] E3 (1a)

Diese Gleichung wird noch durch 2 dividiert. Dann bedeutet die dem Punkt P zuge-
ordnete Flache das Bezugsdreieck F4FEsFE3, das im folgenden mit A bezeichnet wird.
Die den Ecken E; zugeordneten Teildreiecke werden durch P und die beiden anderen
Ecken des Dreiecks bestimmt.

Wir sind nun in der Lage, fir die merkwiirdigen Punkte eines Dreiecks ABC' die bary-
zentrischen Koordinaten, also die Teilflachen des Dreiecks zu bestimmen.

8.5 Die baryzentrischen Koordinaten bestimmter Punkte des
Dreiecks

a) Der Mittelpunkt des dem Dreieck ABC' eingeschriebenen Kreises (Abb. 80).

Die Teildreiecke haben die Flicheninhalte 1ap, $bp und jcp. Die Gleichung (1a) aus
Abschnitt 4 liefert somit

1 1 1
ps -0 = —apA+ =bpB + —cpC (1)
2 2 2
mit %ap+ %bp + %cp = ps. * Division durch p und Multiplikation mit 2 ergibt
25-0 =aA+bB+cC (1a)

Ahnliche Uberlegungen fiihren zu den Gleichungen fiir die Mittelpunkte der drei Ankreise
des Dreiecks ABC"

2(s —a)Oy = (—aA) + bB + cC (2)
2(s = b)Op = aA + (=bB) + cC (3)
2(s —¢)O. = aA+bB + (—cC) (4)

Nicht fir alle merkwiirdigen Punkte im Dreieck lassen sich die Dreiecksseiten allein
als homogene Koordinaten verwenden. Aber alle in Betracht kommenden Teildreiecke
konnen durch Seiten und Winkel des Bezugsdreiecks, zu denen noch der Radius des
dem Dreieck umgeschriebenen Kreises tritt, ausgedriickt werden.
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8.5 Die baryzentrischen Koordinaten bestimmter Punkte des Dreiecks

2\ :

Mit Hilfe der Beziehung p = 4rsin § sin g sin 3 ergibt sich aus der Gleichung (1a) von
Abschnitt 4 nach Division durch 2r
A

o O = asingsingsin gA—kbsingsingsin gB—kcsingsingsin ;C’ (5)

Abb. 80,81 4

b) Der Mittelpunkt des dem Dreieck ABC umgeschriebenen Kreises.
Aus Abb. 81 sehen wir, dass der Inhalt des Dreiecks BMC' gleich %ar sin ZM BC' ist;
und wegen ZMBC = 90° — « ist Dreieck BMC gleich jarsin(90° — ) oder

1
ABMC = §ar COS (v

Ahnlich erhilt man

1 1
ANCMA = §br cos 3 und NAMB = SCT cos Y

Das sind die baryzentrischen Koordinaten des Punktes M, seine Gleichung lautet

2A
— M =acosaA+bcos BB + ccosyC (6)
,

c) Der Schwerpunkt des Dreiecks ABC' (Abb. 82).

A

Abb. g2’ # ¢

Der Schwerpunkt des Dreiecks ist der Schnittpunkt der Seitenhalbierenden S. Da jede
Seitenhalbierende durch S im Verhaltnis AS : SA; = 2 : 1 geteilt wird, ist jede Hohe
im Teildreieck gleich dem dritten Teil der zugehorigen Seitenhohe im Dreieck ABC'.
Daher ist auch jedes Teildreieck gleich dem dritten Teil des Dreiecks ABC'.

Aus ABSC = %a : %ha erhalt man wegen

he = bsiny = ¢sin § = 2rsin S sin vy

1
ABSC = 307 sin (3 sin 7y
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8.5 Die baryzentrischen Koordinaten bestimmter Punkte des Dreiecks

Ahnlich ergibt sich

1 1
ACSA = gbr sin 7y sin « , NASB = 3CT sin o sin 3
und weiter
3A : : . : :
— - S=asinfsiny- A+ bsinysina- B+ csinasinf - C (7)
r

d) Der Hohenschnittpunkt (Abb. 83).

Abb. 83 8 €

Zur Inhaltsberechnung der Teildreiecke verwendet man die Formel

2 . .

a” sin B sin vy

F=—"—/——
2sin «

die eine Seite und alle Winkel des Dreiecks ABC' enthalt. Im Teildreieck BHC ist
/ZHBC =90° — v, ZHCB =90° — §3, /BHC =B+~

der Inhalt ist also
a?sin(90° — B3) sin(90° — )
2sin(8 + )

Wegen sin(90° — 3) = cos 3, sin(90° — ) = cos~y und sin(f + ) = sin « erhélt man

ABHC =

2
ABHC = © cos 3 cos

2sin «

Setzt man a = 2rsinq, so findet man ABHC = arcos 3 cos~y. Hieraus und aus
den entsprechenden Formeln fiir die anderen Teildreiecke AC'HA = br cos~y cos a und
NAHB = crcosacos 3 folgt

A
—-H =acosfcosy-A+bcosycosa- B+ ccosacosf-C (8)
r

e) Der Mittelpunkt des Feuerbachschen Kreises (Abb. 84).

Zur Inhaltsberechnung des Teildreiecks BFC' wird der Winkel BDF' benoétigt. Um
diesen Winkel zu finden, berechnen wir ZHAM . Es ist

ZHAM = ZBAM — ZBAI = (90° — ) — (90° — 8) =  —
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8.5 Die baryzentrischen Koordinaten bestimmter Punkte des Dreiecks

Abb. 84

Nun ist aber ZIPD = ZHAM = 3 —~; denn es gilt PF || AM (Beweis!). Dann ist
ZFDB = 90° — (5 — ). Der Durchmesser des Fuerbachschen Kreises ist gleich dem
Radius des dem Dreieck ABC' umgeschriebenen Kreises, also F'D = 5

Somit ist ar
ABFCzZsin[%o (B—7)] = Zacos(ﬁ 20|

und entsprechend
ACFA = Zb cos(f8 — ) : ANAFB = chos(oa - B)

Dadurch sind die baryzentrischen Koordinaten des Punktes F' bestimmt, und es gilt

47"A F=acos(f—7)-A+bcos(y—a)-B+ccos(a— ) -C (9)

f) Der Nagelsche Punkt (Abb. 85).

A
%
Ry
B c
Abb. 85 K P
Es wurde bereits bewiesen, dass flg % ist. Daraus folgt
AD — AN s—a d ND s—a
— r —_— =
AD s T UAD T s

sS—a ha,(S*CL)

Durch Anwendung des Strahlensatzes ergibt sich hl = und somit h; =

Erweitern wir mit py, so ergibt sich (vgl. Tabelle 1)

ha(s —a)py _ 7 B

hy =
! Pb S 2 2
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8.5 Die baryzentrischen Koordinaten bestimmter Punkte des Dreiecks

Der Inhalt des Dreiecks BN (' ist gleich

;ahl ;ah tan g tan 5= = ANABC - tan g tan g

Setzt man

AABC = 2r?sin asin A siny = 82 sin v sin g cos g sin g cos ;
und 27 sin @ = a, so ergibt sich nach kurzer Rechnung

ABNC = 4rasin® é sin? 5

und A 5 2 5

4—T-N—asm = sin® —A—l—bsm §sm §B—{—Csm §sm — (10)

Abb. 86

g) Der Mittelpunkt des Spiekerschen Kreises (Abb. 86).

Im Dreieck ABC sind die Dreiecke M; My M;z und Ny N9 N3 gezeichnet. M; (i = 1,2, 3)
sind die Mitten der Dreiecksseiten a, b und ¢ und N; die Mitten der Strecken AN, BN
und C'N von den Ecken des Dreiecks zum Nagelschen Punkt.

Die gezeichneten Dreiecke sind kongruent und dem Dreieck ABC' ahnlich. Das Ahn-
lichkeitsverhaltnis betragt 1 : 2. Daher verhalten sich alle entsprechenden Strecken in
den Dreiecken M;MsMsz und N1 Ny N3 zu denen im Dreieck ABC wie 1 : 2, und der
Radius T'R = p; des dem Dreieck M;MsMs eingeschriebenen Kreises, der zugleich der
Inkreis des Dreiecks N1 /Ny Nj ist, ist gleich der Halfte von p, dem Radius des Inkreises
von Dreieck ABC'.

Nun lasst sich in dem Teildreieck BT'C die Hohe T'(Q) bestimmen. Es ist

1
TR=3p,  ZTMiR= ‘;‘ /MyM, B = ~

Dann ist 3 3
«Q o gl oP — 7
/TMB=— = - = == =90"—/—
1 5 +7v=90 5 5 +7v=90 5
Es ist TR
TQ = TM; sin (900 — 6”) und  TM; = —
2 sin 5
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8.5 Die baryzentrischen Koordinaten bestimmter Punkte des Dreiecks

also ) 5
—

spcos =71

T = 2" 2

sm%

Fir p = 47 sin § sin g sin 3 erhalt man [vgl.(22)]

B—
2

TQ = 2rsin g sin g oS

Der Inhalt des Teildreiecks ist dann

ABTC’:arsinésinlcosﬁ_fy
2 2 2

Durch zyklische Vertauschung der Seiten und Winkel findet man

ACTA = brsin 7 sin i COos r—«a und
2 2 2
AATB:crsingsinécosa_B und
2 2 2
und schlieBlich die Gleichung
A _ _ _
—T = asin é sin J cos b 7A—i—bsim 7 sin & Cos i aB—csin i sin é cos a 50
r 2 2 2 2 2 2 2 2 2
A
b7
&,
M
Abb. 87 7T W um =

h) Der Lémoinesche Punkt (Abb. 87).
Der Lémoinesche Punkt K (Schnittpunkt der Symmedianen im Dreieck ABC') hat von
der Seite a den Abstand KA; = 5 tanw (dabei ist w der Brocardsche Winkel des
Dreiecks ABC' und ,
Also ist ABKC = % tanw oder ABK(C' = grsinatanw Die beiden anderen Teilfla-
chen sind leicht zu errechnen, und die Gleichung mit den baryzentrischen Koordinaten
fir den Punkt K lautet

2A : . .

o K =asinatanw- A+ bsinftanw - B + csinytanw - C (12)
K ist der Mittelpunkt des Lémoineschen Kreises, der auch Kosinuskreis genannt wird
(vgl. Abb. 53).

i) Der Mittelpunkt des zweiten Lémoineschen Kreises (Abb. 87).

Der Mittelpunkt des zweiten Lémoineschen Kreises L ist der Mittelpunkt der Strecke
KM, die den Lémoineschen Punkt K mit dem Mittelpunkt M des Umkreises des
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8.5 Die baryzentrischen Koordinaten bestimmter Punkte des Dreiecks

Dreiecks ABC' verbindet. Die Strecken K A; und M M, senkrecht zu der Dreiecksseite
a, sind parallel und bestimmen das Trapez K Ay M; M, dessen Mittellinie LL; die Hohe
in dem Teildreieck BLC' ist. Man findet LL; als arithmetisches Mittel von K A; und
MM, also LL; = %(KAl + MM;), und wegen KA, = §tanw und MM, = § cota

Ist

(12

1
LL, = Za(tanw + cot @) und ABLC = g(tanw + cot @)

oder, da a = 2rsin « ist,

ABLC = Zr(sin atanw + cos o)

Hieraus ergibt sich nun

4A
— - L =a(sinatanw + cos @) A + b(sin f tan w + cos §) B + ¢(siny tan w + cosy)C

r
(15)
j) Die Brocardschen Punkte.

Aufgabe 67. Man suche die baryzentrischen Koordinaten fiir die Brocardschen Punkte
Q und Q' auf.

Abb. 88

a’?sin Bsiny
2sin
ordnete Teildreieck kommen die Seite a und die Winkel w und § —w (bzw. v —w) und

der gegeniiberliegende Winkel 180° — 3 (bzw. 180° — ) in Anwendung (Abb. 88).

Anleitung. Man verwende die Inhaltsformel F' = . Fir das der Ecke A zuge-

Die Lage der Punkte, fiir die in den Formeln (5) bis (13) die baryzentrischen Koordina-
ten festgelegt wurden, ist in dem elementargeometrischen Abschnitt genau bestimmt
worden.

Es wurde dort auch gezeigt, dass ausgewahlte Punkte auf Geraden liegen. Diese Tat-
sachen lassen sich bestatigen, wenn zu den sich ergebenden Additionen von Punkten
die baryzentrischen Koordinaten (5) bis (13) verwendet werden.

Aufgabe 68. a) Man zeige, dass die Punkte H, F, S und M, die auf der Eulerschen
Geraden liegen, folgende Gleichungen erfiillen (Abb. 89):

H+M=2F H+2M=3S, M+2F=3S und H+3S=4F

Abb. 89 - L { 5
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8.5 Die baryzentrischen Koordinaten bestimmter Punkte des Dreiecks

b) Man stelle die Parallele zwischen der Punktaddition und der Addition der Ortsvek-
toren an Hand der Summen in a) der (Abb. 90).

Abb. 90 0
Die Punkte O, S, T und N liegen auf einer Geraden.
Aufgabe 69. Man bestatige die Richtigkeit der Beziehungen
O+N=2T, O+2T'=3S, N+4+20=3S und N+435=4T
und deute sie geometrisch (Abb. 91).

f [ =

Abb. 91 ¢

Aufgabe 70. Der Mittelpunkt der Strecke €2 ist das Zentrum des den beiden Brocard-
schen FuBpunktsdreiecken umgeschriebenen Kreises. Man bestimme seine baryzentri-
schen Koordinaten.
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8.5 Die baryzentrischen Koordinaten bestimmter Punkte des Dreiecks

9 Losungen der Aufgaben

1 a. Der Beweis des Satzes von den Winkelhalbierenden im Dreieck wird vorausgesetzt
(Abb. 1). Es ist 0,0, L O.C, OO, L O,A und O.O,perpO,B. Die Winkelhalbie-
renden im Dreieck ABC' sind Hohen im Dreieck O,0,0,. Somit gilt die Aussage von
den Winkelhalbierenden auch von den Héhen im Dreieck.

lb.ZFAH = /FFH; /ZFEB = ZFCB; also ist ZBAD = ZFCB und ABDA ~
ABFC. Daher muss ZBDA = ZBFC = 90° sein (Abb. 2).

Zusatz zu Satz e). Die Hohen betrachtet man als Sehnen in den Kreisen mit den
Durchmessern a und b.

2.Vgl. Abb.6. 48 = —m BE — L CF _ 1 350
AD-BD-CF
DB-EC-FA

3. Vgl. Abb. 7 und 8. Der Sinussatz fiihrt zu
AD-EB-CF  singpsinysine ]
FA-DB-FEC  sintysinesing

4. Vgl. Abb. 10. Im Dreieck ABFE betrachten wir die Transversale F'C' und im Dreieck
C' BE die Transversale AD; dann ist

C1 (m + n)b1 (m + n)azbz a1b1(31
= oder =1
(bl + bg)an al(bl + bQ)?”L CLQbQCQ
5. Vgl. Abb. 10. Es gilt L =5, @ —min b _n_ @ _ b 3o
lCQl{?Clg o bl(m + n)nb a2b202 1
cilark — bn(m +n)by ’ aibie;

6. Vgl. Abb. 12.
a1b101 . NAPB - ABPC - ACPA .

agbacy  ACPA-AAPB-ABPC
7. Abb. 13. Man setze in die Losung von Aufgabe 6

1 1
ANAPB = itgc sinay = itgc sin [y

und entsprechende Ausdriicke fir ABPC und ACPA ein. Dann erhalt man

1 . 1 . 1 . . . .
stacsinay - 5tpasin By - 5tebsiny;  sinag sin By sinyg

— =1
%tgb sin arg - %tgc sin 3y - %tga sinyy  sin aeg sin [y sin 9

8. Winkelhalbierende:
ga_ch_aa_ b,
as bbby ¢ ey a

arbije;  cab

=—=1
asbocs  bea
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8.5 Die baryzentrischen Koordinaten bestimmter Punkte des Dreiecks

b) Der trigonometrische Beweis ist trivial.

Seitenhalbierende :
a) Der geometrische Beweis ist einfach.
b) Man berechnet die Inhalte der Teildreiecke, von denen je zwei gleich sind,

1
—cS, Sin o = —bs, sin oy
2 2

usw., multipliziert die drei Gleichungen miteinander und dividiert beide Seiten durch
%abcsasbsc.

Hohen:
a) Aus ahnlichen Dreiecken findet man Z—; = 5
ergibt sich daraus

=

4 & — b ynd durch Multiplikation
2 &

<
)

a1b161 1

asbaca

b) Man benutze die Gleichheit der Winkel ay = 79, 81 = ag, 11 = Pe.

Mittelsenkrechte :

Die Mittelsenkrechten im Dreieck ABC sind Hbhen in dem Dreieck, dessen Ecken die
Mitten der Dreiecksseiten sind. Fiir die Hohen ist der Satz bereits bewiesen, folglich
gilt er auch fir die Mittelsenkrechten im Dreieck ABC' (Abb. 17).

Beide Beweisformen des Satzes von Ceva sind anwendbar, wenn man die Ecktransver-
salen AM = t,, BM = t, und CM = t. benutzt (Abb. 18). Die trigonometrische
Form lautet

sin psin i sin e )

sin  sin ¥ sin €
Fir den geometrischen Beweis benutze man die Relationen

BD sing CE sinyy AF  sine CD sine AE sing BF  siny

te, sing’ 1 siny’  t. sina’ i, siny’ 1 sina’ t. sin 3
(s=a)(s=b)(s—c) _
9. a) (s—a)(s=b)(s—c) — 1
b) % = 1 Diesen Punkt nennt man auch den Nagelschen Punkt.
s(s—c)(s—=b) __
o e
d) s(s—a)(s—b) =1
9.a) B0+ AF | CF — 1 4 40 =2 (Abb.21).
b) (Abb. 22)
BP n AP n CP  AABC+ AAPC _ ANABC — ABPC . NABC — AAPB
BB,  AA,  CCp ANABC ANABC ANABC
_ 3AABC + AAPC — MAPB - ABPC
N ANABC B

10. Abb. 28. Es befinden sich in Ahnlichkeitslage:
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8.5 Die baryzentrischen Koordinaten bestimmter Punkte des Dreiecks

a) AABC und AA;B1C, Ahnlichkeitspunkt H, Ahnlichkeitsverhiltnis 2 : 1, also
HA:HA, =2:1;

b) AA1B1Cy und AFED, Ahnlichkeitspunkt N, Ahnlichkeitsverhaltnis 1 : 1, Hohen-
schnittpunkte H und M; alsoist MD : HA=1:2.

Nach a.) ist MA: NA—1=1r:r; =2 :1, dh., der Radius des Umkreises des
Dreiecks ABC' ist doppelt so groB wie der des Feuerbachschen Kreises.

11.a) F' = %\/3,b) F' =0, c) F' = Lb*(2v/3 - 3) = La’V3.
13. Abb. 33. 2AAOEy —2ABCO, = pas — paa = pa(s — a)

14. a) und b) sind durch Einsetzen zu bestatigen.
2
) sina = %\/s(s —a)(s—b)(s—c)

d)
Cosa:s(s—a)—(s—b)(s—c) :23(s—a)_1
bc be
:s(s—a)+(3—b)(s—c) :2(5—6)(3—0) :1_2($—b)(s—c)
bc bc bc

15. Man benutze die Losung von Aufgabe 14c und forme um:

;bcsina = \/s(s —a)(s—=b)(s—c)=F

22. Neben p, — p bestimme man noch p, — p und p. — p. Dann ist

. a .

(pa — p)(pp — p)(pe — p) = 43r® sin? — sin® B sin? J
2 2 2

Nach (17) ist

Pa+ py+ pe—p=4r
und somit [vgl. (22)]

(Pa = p)(oo — P)(pe = p) _ (4r)? sin® % sin? b sin? 1 = I

Pa+ Pb+ Pc— P 2 2 2

25. a) Man dividiere durch

F = ps = pu(s —a) = py(s —b) = pe(s — ¢)

o ha by b
26. D1Dy = b—c¢, DDy = ¢, CP = %€, D\D3 = b, D:Dy = b, CR = %2,
DiDy=c, DsDy=b+c, CQ =% PT =c.
Die Mitten von DD und von D3 D, fallen mit dem Mittelpunkt der Seite a zusammen.
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8.5 Die baryzentrischen Koordinaten bestimmter Punkte des Dreiecks

Abb. 92
28. P liegt innerhalb (Abb. 92):

o = ZBPC—ZClAlBl y ﬁ = ZCPA—ZAlBlcl y Y= ZAPB—ZBlclAl

Abb. 93
P liegt auBerhalb (Abb. 93)
o = éBPC—f—éclAlBl y ﬁ = —ZCPA—FAAIBlOl 5 Y= AAPB—FlBlClAl

Bei gleicher Benennung von Winkel und Dreieck wird der entgegengesetzte Umlaufsinn
bei AuBenlage von P durch das entgegengesetzte Vorzeichen gekennzeichnet.

Berechnung von ZB{C; Ay bei AuBenlage von P:

£LBC1A) = £LBCYP — LA ChP = £B1AP — LA BP (1)

Es ist {LDAP + /DPA=/DBC + /Z/DCB (Beweis!)
LDAP — /DBC = /ZDCB — ZDPA

/ByAP — /A,BP = /DCB — /DPA (2)

Aus (1) und (2) folgt
ZBlClAl =7 — /APB

29. Die verschiedenen Lagen sind moglich.

Abb. 94, 95
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8.5 Die baryzentrischen Koordinaten bestimmter Punkte des Dreiecks

30. Abb. 94. a.) Die Ecken von AC;C5C5 sind Scheitel dreier Zentriwinkel, die den
Peripheriewinkeln in den gleichen Kreisen gleich sind, weil diese (iber den doppelten
Kreisbogen stehen: AABC ~ ACCC5 (WW).

b) Es lasst sich leicht zeigen, dass in diesem Falle das Miquelsche FuBpunktsdreieck dem
AABC' ahnlich ist und daher auch alle durch den Punkt P bestimmten Miquelschen
Dreiecke (Abb. 95).

31. a) Fallt beispielsweise P mit A zusammen, so sind die Lote von P auf die Seiten
b und ¢ zu Punkten entartet, die in A liegen. Das dritte Lot, die Hohe h,, ist die
Simsonsche Gerade.

b) Zwei Lote von P aus auf die Dreiecksseiten treffen zwei Ecken des Dreiecks. Die sie
verbindende Dreiecksseite ist die Simsonsche Gerade.

32. Wenn der Miquelsche Punkt mit dem Umkreismittelpunkt zusammenfallt, d.h.,
wenn M P = 0 ist.

33.

r2 — M P?

12— MP? = h,-2h, = 8% cos a cos [ cos 7 , 12
,

= 2 cos acos B cosy

F' = 2cosacosfcosy - 2rsinasin fsiny = 57“2 sin 2a sin 23 sin 2y

34. Im rechtwinkligen Dreieck sind die Antiparallelen, die den Scheiteln der spitzen
Winkel benachbart sind, der Hypotenusenhohe parallel, die daher von den Symmedianen
halbiert wird (Abb. 96).

Abb. 96 4

35. a) Ahnlichkeitspunkt T', Verhaltnis 2 : 1 (Abb. 47),
b) Ahnlichkeitspunkt N, Verhaltnis 2 : 1,
c) Ahnlichkeitspunkt T, Verhaltnis 1 : 1.

86. Abb. 47. T bzw. O sind die Mittelpunkte der Inkreise der ahnlichliegenden Drei-
ecke A;B1Cy und ABC'. Daher ist AO || A;T (Verbindungsstrecken entsprechender
Punkte), und es gilt AO: ;T =2:1.

AO und AT sind Halbierende der Winkel o bzw. .

37. Abb.47. (), sei der Schnittpunkt von B>C5 und NE; NE ist Ahnlichkeitsstrahl.
(21 und E sind entsprechende Beriihrungspunkte der Inkreise.

EA; = DA, (Beweis!), OA; || AD. OA; schneidet EN in Q'; EQ' : QN =1:1
(Strahlensatz). Da auch EQ; : Q1N = 1: 1 ist, fallt Q" mit 1 zusammen.

40. Beide Dreiecke stimmen in den drei Winkeln und im Umkreisradius r (iberein. Daraus
folgt ihre Kongruenz.
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41. a) AuBenwinkelsatz, b) Sinussatz, c) aus b) folgt

BQ  csiny ¢ sin(y —w)

CQ  asinfB  ab sinw

d) Aus 34 = Sirf(igi’w) und W38 — :iﬁgzjrfj; folgt der in der Aufgabe angegebene Aus-
druck.

42. Abb. 53. K P;()1 und K P;Q3 sind gleichschenklige Dreiecke (Gleichheit der Basis-
winkel). Daraus ergibt sich die Gleichheit der Strecken

KQy=KP;=KP, = KQs3

43. Es handelt sich um drei Rechtecke, bei denen je eine Seite in einer Dreiecksseite
liegt, auf der dann zwei Rechtecksseiten senkrecht stehen.

44. Die Beweise ergeben sich leicht analog dem Beweis, der der Aufgabe vorausgeht.

45. Abb. 56. /P P3Py = «, ZQ3Q20Q1 = «, LPoPiPy = B, ZQ1Q3Q2 = B,

LPsP Py =7y, LQ21 Q3 =7
Daraus folgt die Kongruenz bzw. Ahnlichkeit.

46. Abb. 58. Kreis mit M K als Durchmesser und Ecktransversalen durch K. lhre
zweiten Schnittpunkte mit dem Kreis sind die Ecken des Brocardschen Dreiecks.

47. Es ist
21(y2 — y3) + x2(ys — y1) + 23(y1 —y2) =0
Addition von x1y; — x1y1 und geeignete Zusammenfassung der Produkte ergibt
(y —y1)(z2 — 21) = (y2 — y1)(x — 1)
48. a) Mittelsenkrechte:

1

(z2 — z3)z + (Y2 — y3)y — 5(933 — a5 +y;—y5) =0

b) Seitenhalbierende:
(y2 +y3 — 2y1) (7 — 21) — (22 + 23 — 271)(y — ¥1) = 0

Die beiden fehlenden Gleichungen ergeben sich durch zyklische Vertauschung der Indi-
zes. Die Summe der drei linken Seiten ist in jedem Fall gleich Null.

49.

N(g1) — N(g2) =0, N(g2) + N(g3) =0, N(g3) +N(g1) =0

Multiplikation der letzten Gleichung mit -1 und Addition der drei Gleichungen liefert
auch auf der linken Seite Null.
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50. a) Hohen:
N(gs)cosas — N(ga)cosaa =0 , N(g2)cosaz — N(g1)cosa; =0

N(g1)cosay — N(g3)cosag =0
Die Summe der linken Seite ist Null. b) Seitenhalbierende:

N(g2)sinas — N(g3)sinag =0 , N(g3)sinag— N(g;)sina; =0

N(g1)sinag — N(g2)sinag =0

Die Summe der linken Seite ist Null.

LY
¥
Qb

Abb. 97 %

51. Abb. 97. Ecktransversale zum Umkreiszentrum:
N(g2)cosag — N(g3)cosas =0 , N(g3)cosay — N(g1)cosag =0

N(g1)cosas — N(gz)cosay =0

Multipliziert man diese Gleichungen der Reihe nach mit cos a1, cos ay bzw. cos ag und

addiert sie, so ergibt sich auf der linken Seite Null.
52. a) Die Hohen des Dreiecks:
rT—x9=0

(1 —x2)T —yy2 = 0
ToT — Yoy — x122 = 0

Die Koordinaten des gemeinsamen Schnittpunktes sind

(x1 — x9) o
Y2

Ts = T2 ) Ys =

b) Die Gleichungen der Mittelsenkrechten der Seiten:

2 —x21=0
2z — x2)T — 20y — 23+ 22+ 2 =0
2x97 + 290y — :c% — y% =0
Die Koordinaten des Schnittpunktes sind

T y% - (951 - 3?2)332
Ty = — 3 Ys =
AT
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c) Die Gleichungen der Seitenhalbierenden:

20w — 2x9y + 1y — x1Y2 = 0 (1)
—Yo¥ + 22y + 11y =0 (2)
—Y2r + 2y — 221y + T1y2 = 0 (3)

Die Koordinaten des Schnittpunktes sind

_ + X2 Y2
3 Y

d) Die Gleichungen der Winkelhalbierenden:

Ts

Yo — T2y Yo + (21 — T2)y — 212 _ 0 (1)
V3 + 3 VB + (1 — 22)?
T+ (x1 —x -
Y2 (21 2)y 21y2+y:O )
VI3 + (21— 2)
. ny - $2y — O (3)

VT3 + 5

Setzt man \/x% + 43 = a und \/y§ + (x1 — 22)? = b, so erhalt man die Koordinaten
des Schnittpunktes in der vereinfachten Form:

~ wi(a+x9) Ty

a4+ b+x ’ a4+ b+ 1

Aus der Zusammenstellung ersieht man leicht, dass die Summe der drei Gleichungen
unter Beriicksichtigung der angedeuteten erlaubten Multiplikation in jedem Fall Null
ist. Auch die aus den Koeffizienten von je drei Gleichungen gebildete dreireihige De-
terminante verschwindet. Die berechneten Schnittpunktskoordinaten erfiillen jede der
zugehorigen drei Gleichungen.

53. a) Einsetzen in die Inhaltsformel fiir das Dreieck ergibt

3(xy — x9)xe — y% y% —3(x1 — x9)x9 N 3(xy — x9)x9 — y%

20\ = 19 +(r1+ T2 1 =0
6y ( ) 6y 6y
b)
To (m;?)m 1
D=| nin £ 11=0
oy Y—(m—w)rr 4
2 2y2

c) Die Gleichung der Geraden HM:

(11 — 29)20 Y3 — 3(w1 — X9) 7o

y — == xr — xQ
Yo Ya(x1 — 219) ( )
wird durch , = 322 und y, = £ identisch erfillt.
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54.

_ (@) (2 —ys) + (@3 +45)(ys — y1) + (23 + 45) (1 — 12)
2[r1(y2 — y3) + 22(y3 — y1) + 23(y1 — ¥2)]

(7 + 93) (w2 — 23) + (3 + 43) (23 — 1) + (23 + v3) (21 — 22)
2[y1(za — w3) + ya(ws — 71) + ys(@1 — 22)]

b:

55.
a_a:1+2:1:2 b_xg(xl—x2)+y§

4 ’ 4y2

56.

955\ 2 . 2\ 2
R A y_I2($1 x2) + 3 _ 2
4 4y?

(23 + y3) Y5 + (21 — x2)?] 2
1633

57. Die Gleichung wird identisch erfillt.
58. Der Radius R des Umkreises des Dreiecks PP, P3 folgt aus

(23 + y3)[y5 + (21 — 22)°]

R =
4y3

zu R = 2r.

59. Die Gleichung der Geraden H M und die Koordinaten des Mittelpunktes des Feu-
erbachschen Kreises konnen aus Aufgabe 53 ¢ und Aufgabe 55 entnommen werden.
Der Mittelpunkt der Strecke H M ist gegeben durch die Formeln £:322 ynd yh;ym. Es
ergeben sich die in Aufgabe 55 berechneten Koordinaten

_ _ (21 — @2)79 T o y% — (21 — z2) o
Th=Ta, Y=l W= Y =
Y2 2 2
60. Es ist
1 1 11
2" 7 2" TR et
Daraus ergibt sich A = 2, py = 2, p, = Btts

61. Abb. 68. (t—p2) L p1, (t—p1) L po. Man bildet die skalaren Produkte, subtrahiert
und erhdlt r- (p — 1 —p2) =0, d.h. ¢ L (p1 — p2).

62. Abb. 69.

he-c+bp-b=(b+p)-c+(r—c)-b=b-c+r-c+r-b—c-b
=t (c+b) =1 (~a) =0
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wegen a+ b+ ¢ =0, d.h. ¢ L a. 63. Abb. 70.
r—3=b,  3—-vp=a  r+iz=2m,  j+p=2n,
Pt =m-0=0, F-pP=2,0a=0, [[= [35]=1l
also |z] = |y|.
p—3=c¢,  9+3=20, 9 +P=20-¢

Die linke Seite dieser Gleichung ist Null, also ist auch 20 - ¢ = 0, und da weder ? noch
¢ den Nullvektor darstellen, ist 0 L ¢.
Die Mittelsenkrechten n,, n, und 9 schneiden einander in einem Punkt.

64. Abb. 98. Im Dreieck ABC gilt

a+b+c=o0 10 (a c) 10 b _a a-+to 10
= = m _— = =N _— — =
) B a c ) v b a ) vy B
Man findet m = afbic und n = afbbJrC. Setzt man diese Werte in die vorstehende
Gleichung ein, so erhalt man
N ca — ac w0 _ab—ba B be — cb
P atbre " at+bte T a+b+ec

Es ist 9 = ¢+ tvg. Man berechne tv,, und w3 aus ¢+ tvg = w,, wenn o, = r (i - %)
und tog = m (g - %) gesetzt wird.
65.
o = ca — ac ma/:—bc—cb o) — ab — ba
a+c—0b a+c—0b T a+c—b
o’ und 7/ sind AuBenwinkel an den Ecken A bzw. C. «, 3,7 und ~,a’, 3 liefern
analoge Werte.

& F &

5 .ﬂ_a" w C

Abb. 98, 99
66. a) 1 F1 + w9 Fy == (21 + x9) P, in Vektorschreibweise

1€ + 129Cy = (acl + IQ)SB , ¢+ 2

(€, — &)=  (Abb. 99)

l‘l—f-[I}Q

b) x1E1 — 29Fy = (x1 — x9) P, in Vektorschreibweise
1’1@31 - IQQEQ == (ZEl - ZL’Q)‘B (Abb 100)
E5Ey wird durch P auBen im Verhaltnis x1 : x5 geteilt. Es ist

|€1 _€2| . |$B—€1| = (Il —LL’Q)ZJ?Q
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Daraus folgt

12| €1 — &f = (71 — 22) P — & : 1€ — 12€ = (71 — 72)P
S— S—
e) E1 — E2 = EQEl. @1 - @2 = E2E1 (Abb 101)
£ &
5? [7 Z2 P
” V = 7
Abb. 100, 101 ¢ o

67.

éQ _ asmasm‘wsm(ﬁ —w) A4 bsmﬁsm‘wsm(fy —w) B4+ csm’ysm%usm(a —w) C

r sin 3 sin 7y sin «v

éQ’ _ asmozsm'wsm(y —w) A bsmﬁsm%usm(a —w) B+ csmysm%usm(ﬁ —w) C
r sin y sin « sin 8

68. a) Bei der Summierung der baryzentrischen Koordinaten werden die Additionstheo-
reme der Winkel angewendet. Dabei ist zu beachten, dass o + 5 + v = 180° und

5+ g + 3 =90° ist, beispielsweise cos v = — cos(3 + ), sin ﬂ% = cos §.

b) Abb. 90.
H+M:2F—>h+;(m—f)):f oder h+m = 2f
H+2M:3S—>f)+§(m—b):5 oder h+2m = 3s
H+2F=35—>m—|—§(f—m):5 oder  m+2f=3s
H+3$=4F—>h+i(5—h):f oder b+ 35 = 4f

69. Die Rechnungen erfolgen wie in Aufgabe 68a.

70. a) Man benutze die Ergebnisse von Aufgabe 67 und driicke cot § + cot v durch die

Gleichung cot w = cot a 4 cot 3 + cot 7y aus.
Es ergibt sich

M, = QTA[asinwsin(oH—w) - A+ bsinwsin(f +w) - B+ csinwsin(y + w) - C]

b) M; kann auch aus den baryzentrischen Koordinaten von K und M errechnet werden.

Abb. 102
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Es ist (Abb. 102)

KM, : MiM = sin®w : cos®w
(M; — K) cos*w = (M — M) sin®w
M; = Msin®w + K cos® w

Ergebnis wie zu a).

Bemerkung. Die baryzentrischen Koordinaten von M; sind die Inhalte der Dreiecke
BM,C, CM;A und AM;B. Sie lassen sich auch direkt berechnen (vgl. Abb. 52 und
55).
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10 Literaturhinweise

Die Satze tiber die Hohen, die Seitenhalbierenden, die Winkelhalbierenden des Dreiecks
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[6] Jahnke, E., Vorlesungen iiber Vektorenrechnung, B. G. Teubner Verlagsgesellschaft,
Leipzig 1905. (Hier ist auch die Darstellung der baryzentrischen Koordinaten enthal-
ten.)
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[8] Lagally, M., Vorlesungen iiber Vektorrechnung, 7.Aufl., Akademische Verlagsgesell-
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1964.
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lagsgesellschaft, Leipzig 1962.

Crantz, P., und M. Hauptmann, Planimetrie, 10. Aufl., B. G. Teubner Verlagsgesell-
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Aufl., VEB Deutscher Verlag der Wissenschaften, Berlin 1972 (Ubersetzung aus dem
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