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Vorwort
Im vorliegenden Band werden zunächst die Punkte und Linien untersucht, die zum
Stoffgebiet gehören, das in allen allgemeinbildenden Schulen behandelt wird. Der kurzen
Zusammenstellung der bekannten Lehrsätze mit ihren Beweisen folgt eine Ergänzung
durch elementargeometrische Beweisführungen, die auf einheitlichen Beweisprinzipien
beruhen. Ferner werden die Methoden der analytischen Geometrie, der Vektoralgebra
und der baryzentrischen Koordinaten herangezogen, um Sätze erneut zu beweisen.
Damit soll gezeigt werden, wie man mathematische Probleme von verschiedenen Seiten
betrachten und neue Wege in der Beweisführung beschreiten kann.

Im elementargeometrischen Teil erfährt dieser Stoff eine wesentliche Ergänzung durch
ausgewählte Forschungsergebnisse der modernen Mathematik des 19. und 20. Jahrhun-
derts.

Da die Arbeit keine erschöpfende Darstellung ist, findet der Leser Anregungen, selbst
nach neuen Sätzen und Beweisen zu forschen.

Zum Verständnis des elementargeometrischen Teiles sind die Kenntnisse der Absolven-
ten der polytechnischen Oberschule ausreichend. Das mathematische Bildungsgut der
erweiterten Oberschule in der analytischen Geometrie und Vektorrechnung befähigt zur
selbständigen Erarbeitung des gesamten Inhalts des Buches. Für die erforderlichen Er-
läuterungen zur Verwendung von Determinanten vergleiche man die Literaturhinweise.
So mag das Buch in erster Linie zum Selbststudium der mathematisch interessierten
Leser dienen, deren Vorbildung den genannten Anforderungen entspricht.

Auch der Fachlehrer wird Anregungen für seinen Unterricht und Stoff für mathematische
Arbeitsgemeinschaften darin finden. Die Lösung der eingestreuten Aufgaben dient der
Selbstkontrolle, der Wiederholung und Festigung des erarbeiteten Wissens.

Senftenberg, im Januar 1968

Emil Donath
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Inhaltsverzeichnis

Einleitung: Definitionen des Dreiecks
Ein Dreieck ist ein aus drei Strecken gebildeter geschlossener Linienzug. Zuweilen wird
der Begriff des Dreiecks genetisch definiert:
Ein Dreieck entsteht, wenn drei Geraden einander in drei Punkten schneiden.

Eine andere Definition, in der das Dreieck als Fläche aufgefasst wird, lautet:
Das Dreieck ist ein Teil der Ebene, der durch drei Strecken vollständig begrenzt ist.

Alle diese Definitionen werden in der mathematischen Literatur nebeneinander berück-
sichtigt, ohne dass Missverständnisse zu befürchten sind.

Unter den Vielecken nimmt das Dreieck insofern eine Sonderstellung ein, als seine Grö-
ße und Form durch die vorgegebene Länge der drei Seiten eindeutig bestimmt ist [das
ist nicht bei allen n-Ecken (n > 3) der Fall].
Auch alle Linien in und am Dreieck, die nach besonderen Vorschriften gezeichnet wer-
den, erhalten eine bestimmte Größe und Lage. Analytisch drückt sich dies dadurch aus,
dass alle Linien durch algebraische Formeln dargestellt werden können, die nur die Sei-
ten des Dreiecks enthalten.

Es sollen hier nun Punkte und Linien behandelt werden, deren Lage und. Eigenschaften
für das Dreieck spezifisch sind.
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1.1 Schnittpunktsätze

1 Die merkwürdigen Punkte und Linien des Dreiecks
in elementargeometrischer Betrachtung

Die allgemein bekannten merkwürdigen Punkte des Dreiecks sind die Schnittpunkte a)
der drei Winkelhalbierenden, b) der Halbierenden eines Innenwinkels und der der beiden
ihm nicht anliegenden Außenwinkel, c) der drei Mittelsenkrechten der Seiten, d) der
drei Seitenhalbierenden und e) der drei Höhen des Dreiecks.

1.1 Schnittpunktsätze
a) Die drei Halbierenden der Innenwinkel des Dreiecks schneiden einander in einem
Punkt, dem Mittelpunkt des dem Dreieck eingeschriebenen Kreises.

b) Die Halbierende eines Innenwinkels und die Halbierenden der beiden ihm nicht anlie-
genden Außenwinkel des Dreiecks schneiden einander in einem Punkt, dem Mittelpunkt
des Kreises, der eine Dreiecksseite und die Verlängerungen der beiden anderen Seiten
berührt.

c) Die drei Mittelsenkrechten der Dreiecksseiten schneiden einander in einem Punkt,
dem Mittelpunkt des dem Dreieck umgeschriebenen Kreises.

d) Die drei Seitenhalbierenden des Dreiecks schneiden einander in einem Punkt, dem
Schwerpunkt des Dreiecks. Er teilt jede Seitenhalbierende, von der Ecke aus gerechnet,
im Verhältnis 2:1.

e) Die drei Höhen eines Dreiecks schneiden einander in einem Punkt. Der Höhenschnitt-
punkt teilt die Höhen so, dass die Rechtecke aus den Abschnitten jeder Höhe einander
gleich sind.

Da die vorstehenden Sätze im Schulunterricht behandelt werden, wird auf die üblichen
Beweise verzichtet.

Aufgabe 1. Im Dreieck ABC (Abb. 1) sind die Halbierenden der Innen- und Außenwinkel
gezeichnet. Man benutze diese Figur zum Beweis des Satzes vom Höhenschnittpunkt.

Abb. 1, 2

In Abb. 2 sind im Dreieck ABC die Höhen BE und CF gezeichnet, ihr Schnittpunkt
H ist mit A verbunden. Man beweise mit Hilfe von Sätzen aus der Kreislehre, dass die
über H hinaus verlängerte Gerade senkrecht auf BC steht.
Man beweise auch den Zusatz zu Satz e).
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2.1 Der Satz des Menelaos

2 Ein einheitliches Beweisprinzip
Meist werden als Beweismittel Sätze der Symmetrie, der Kongruenz von Dreiecken,
Sätze von Parallelogrammen, Strahlensätze und Sätze aus der Kreislehre verwendet.
Damit steht auch die verschiedene Gestaltung der Beweise im Zusammenhang.
Hier soll ein einheitliches Beweisverfahren angewendet werden, das sich auf den Satz
des Ceva stützt. Als Hilfssatz wird zunächst der Satz des Menelaos bewiesen, dem
einige Definitionen vorausgeschickt werden.

Jede Gerade, die die Seiten des Dreiecks oder ihre Verlängerungen schneidet (Abb. 3
und 4), heißt Transversale dieses Dreiecks.

Abb. 3, 4
Die aufeinanderfolgenden Seitenabschnitte lauten mit den Bezeichnungen der Abbil-
dungen

AD,DB,BE,EC,CF, FA

Fasst man den ersten, dritten und fünften Abschnitt zusammen und ebenso den zweiten,
vierten und sechsten Abschnitt, so erhält man die beiden Gruppen nicht aneinanderlie-
gender Seitenabschnitte.
Man nennt sie auch alternierende Abschnitte der Seiten des Dreiecks. Das Verhältnis
der Maßzahlen der Abschnitte einer Seite nennt man ihr Teilungsverhältnis. Dieses soll
ein positives oder negatives Vorzeichen erhalten, je nachdem, ob es sich um eine innere
oder um eine äußere Teilung der Seite handelt.

2.1 Der Satz des Menelaos
Der Satz des Menelaos lautet:

Abb. 5, 6
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2.2 Der Satz des Ceva und seine Umkehrung

Schneidet eine Transversale eines Dreiecks, die nicht durch eine Ecke geht, die Drei-
ecksseiten oder ihre Verlängerungen, so hat der Quotient, der aus den Produkten der
Längen der alternierenden Abschnitte gebildet wird, den Wert -1:

AD ·BE · CF
DB · EC · FA

= −1

Beweis 1. Von A, B und C werden Lote l, m und n auf die Transversale gefällt. Die
Strahlensätze liefern dann

AD

DB
= m

l
,

BE

EC
= − l

n
,

CF

FA
= n

m

Multipliziert man die drei Gleichungen miteinander, so erhält man (Abb. 5)

AD ·BD · CF
DB · EC · FA

= −m · l · n
l · n ·m

= −1

Aufgabe 2. Man führe den Beweis für den Fall, dass die Transversale nur die Verlänge-
rungen der Dreiecksseiten schneidet (Abb. 6).

Abb. 7, 8

Aufgabe 3. Man beweise den Satz des Menelaos trigonometrisch und verwende dabei
die in Abb. 7 und 8 angegebenen Winkel.

2.2 Der Satz des Ceva und seine Umkehrung
Der Satz des Ceva lautet:

Die drei Ecktransversalen eines Dreiecks, die einander in einem Punkt innerhalb oder
außerhalb des Dreiecks schneiden, teilen die Dreiecksseiten so, dass die Produkte aus
den Längen der alternierenden Abschnitte gleich sind.

Beweis 1. Die alternierenden Abschnitte sind durch den gleichen Index gekennzeichnet.
Es ist also zu beweisen, dass

a1 · b1 · c1

a2 · b2 · c2
= 1

ist (Abb. 9).

Abb. 9
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2.2 Der Satz des Ceva und seine Umkehrung

Wendet man den Satz des Menelaos zweimal an, zuerst auf das Dreieck ABD mit der
Transversalen FC, dann auf das Dreieck ACD mit der Transversalen EB, so erhält
man

c1 · a ·m
c2 · a2 · n

= −1 und b2 · a ·m
b1 · a1 · n

= −1

Daraus folgt
c1 · a ·m
c2 · a2 · n

= b2 · a ·m
b1 · a1 · n

Division der Gleichungen durch a·m
n ergibt

c1

c2 · a2
= b2

b1 · a1
, d.h. a1 · b1 · c1

a2 · b2 · c2
= 1

w.z.b.w.

Abb. 10

Aufgabe 4. Man beweise den Satz, wenn der Schnittpunkt der Transversalen außerhalb
des Dreiecks liegt (Abb. 10).

Der Satz des Ceva kann auch ohne den Satz des Menelaos bewiesen werden:

Abb. 11

Beweis 2 (Abb. 11). Als Hilfslinien werden durch den Punkt D die Parallelen zu den
Seiten AB und AC bis zu den Transversalen gezogen: die Abschnitte seien k und l.
Die Abschnitte AP und PD seien mit n und m bezeichnet.
Die Strahlensätze liefern dann folgende Proportionen:

b1

k
= a

a1
,

k

b2
= m

n
,

c1

l
= n

m
,

l

c2
= a2

a

Multipliziert man diese Gleichungen, so folgt

b1 · k · c1 · l
k · b2 · l · c2

= a ·m · n · a2

a1 · n ·m · a
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2.2 Der Satz des Ceva und seine Umkehrung

Durch Kürzen und Ordnen erhält man
a1 · b1 · c1

a2 · b2 · c2
= 1

Aufgabe 5. Man führe den Beweis bei äußerer Lage des Schnittpunktes der Transver-
salen (man benutze Abb. 10).

Aufgabe 6. Man verwende zu einem weiteren Beweis des Satzes von Ceva die Proportion
△APB : △APC = h1 : h2 = a1 : a2 usw. (Abb. 12).

Abb. 12, 13

Aufgabe 7. Man gebe dem Lehrsatz des Ceva eine trigonometrische Fassung (Abb. 13):

sinα1 sin β1 sin γ1

sinα2 sin β2 sin γ2
= 1

Für unsere Zwecke ist die Umkehrung des Satzes von Ceva erforderlich, da bewiesen
werden soll, dass die im ersten Teil behandelten speziellen Transversalen durch einen
Punkt gehen.
Die Umkehrung des Satzes von Ceva lautet:

Werden durch die drei Ecktransversalen im Dreieck alle drei Seiten innen oder zwei
Seiten außen und die dritte innen so geteilt, dass die Produkte der alternierenden Ab-
schnitte der Seiten einander gleich sind, so schneiden die drei Ecktransversalen einander
in einem Punkt.

Bemerkung. Aus der Geometrie ist bekannt, dass jedem Teilpunkt einer innen oder au-
ßen geteilten Strecke ein und nur ein Teilverhältnis zugeordnet ist. Umgekehrt entspricht
einem bestimmten Teilverhältnis ein und nur ein Teilpunkt einer Strecke.
Liegt eine Strecke AB auf einer Geraden, so können alle Punkte der Geraden Teilpunkte
der Strecke sein. Die Teilverhältnisse durchlaufen entsprechend die reellen Zahlen von
−∞ bis +∞.

Beweis. Er wird indirekt geführt. Die Voraussetzung lautet

a1 · b1 · c1

a2 · b2 · c2
= 1

Dann gilt die Behauptung: Die drei Transversalen AD, BE und CF schneiden einander
in einem Punkt P .

Zwei der Transversalen schneiden einander stets in einem Punkt. AD und BE seien

10



2.2 Der Satz des Ceva und seine Umkehrung

diese Transversalen, P sei ihr Schnittpunkt. Angenommen, die dritte Transversale ginge
nicht durch den Punkt P . Dann gibt es eine andere Transversale von C aus, die durch
P geht, die Seite AB im Punkt F ′ trifft und auf ihr die Abschnitte c1 und c2 erzeugt.
Nach dem Satz des Ceva ist somit

a1 · b1 · c′
1

a2 · b2 · c′
2

= 1

Nach Voraussetzung ist aber
a1 · b1 · c1

a2 · b2 · c2
= 1

Also ist
a1 · b1 · c1

a2 · b2 · c2
= a1 · b1 · c′

1
a2 · b2 · c′

2

und nach Division durch a1·b1
a2·b2

folgt

c1

c2
= c′

1
c′

2
(*)

d.h., für die Teilpunkte F und F ′ ergibt sich das gleiche Teilverhältnis. Das ist ein
Widerspruch; denn jedem von F verschiedenen Teilpunkt ist ein anderes Teilverhältnis
zugeordnet. Also ist die Annahme falsch, und die drei Transversalen schneiden einander
im Punkt P .
Aus (*) ergibt sich durch korrespondierende Addition

c1 + c2

c′
1 + c′

2
= c1

c′
1

oder c

c
= c1

c1
(c1 + c2 = c′

1 + c′
2 = c)

Aus der letzten Gleichung folgt c1 = c′
1, d.h., die Teilpunkte F und F ′ stimmen überein,

und die Transversalen CF und CF ′ sind identisch. Dies bedeutet aber, dass CF durch
den Punkt P geht.

Die Umkehrung des Satzes von Ceva in geometrischer und trigonometrischer Fassung
kann nun als Beweismittel für alle Sätze über die merkwürdigen Punkte im Dreieck
dienen.

Abb. 14, 15

Aufgabe 8. Man beweist: die Sätze a) bis e) unter Verwendung beider Fassungen des
Satzes von Ceva (Abb. 14 bis 18).

Mit Hilfe des Satzes von Ceva können weitere acht merkwürdige Punkte des Dreiecks
gefunden werden.
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2.3 Die merkwürdigen Linien des Dreiecks

Abb. 16, 17

Aufgabe 9. a.) Man beweise unter Benutzung des Satzes von Ceva, dass die Eck-
transversalen nach den Berührungspunkten den dem Dreieck eingeschriebenen Kreises
einander in einem Punkt schneiden.

Abb. 18

b) Man zeige, dass diese Lagebeziehung auch für die drei Ecktransversalen gilt, die
nach den Berührungspunkten der Ankreise mit den Dreiecksseiten gezogen werden.

c) Man beweise, dass die drei Transversalen von B nach dem Berührungspunkt des
Ankreises um Oc auf der Verlängerung von CA über A hinaus, von C zu dem ent-
sprechenden Berührungspunkt auf der Verlängerung von BA über A hinaus und von
A nach dem Berührungspunkt des Inkreises mit der Seite a durch einen Punkt gehen
(drei Fälle!).

d) Man beweise, dass die drei Ecktransversalen nach den Berührungspunkten eines
der Ankreise auf einer Dreiecksseite und auf den Verlängerungen der beiden anderen
einander in einem Punkt schneiden (drei Fälle !).

2.3 Die merkwürdigen Linien des Dreiecks
Bekanntlich teilt der Schwerpunkt des Dreiecks, das ist der Schnittpunkt der drei Sei-
tenhalbierenden, diese Strecken von jeder Ecke zur Gegenseite im Verhältnis 2:1.

Der Schnittpunkt der drei Winkelhalbierenden des Dreiecks hat von den Dreiecksseiten
gleiche Abstände, ist also Mittelpunkt des Kreises, der die Seiten des Dreiecks berührt.
Man nennt ihn den dem Dreieck eingeschriebenen Kreis.

Der Schnittpunkt der Halbierenden eines Innenwinkels des Dreiecks und der beiden ihm
nicht anliegenden Außenwinkel ist Mittelpunkt eines Ankreises des Dreiecks.

Der Schnittpunkt der Mittelsenkrechten der Seiten des Dreiecks ist von den drei Ecken
gleich weit entfernt, also Mittelpunkt des dem Dreieck umgeschriebenen Kreises.
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2.3 Die merkwürdigen Linien des Dreiecks

Auch der Schnittpunkt der Höhen des Dreiecks hat eine besondere Eigenschaft, die nur
nicht so augenfällig ist wie die vorgenannten: Die Rechtecke aus den Abschnitten jeder
Höhe im Dreieck sind einander gleich.

Abb. 19

Beweis 1 (Abb. 19). Die Dreiecke AEH und BDH sind ähnlich (WW). Folglich ist
AH
HE = BH

HD oder AH ·HD = BH ·HE.
Entsprechend folgt aus der Ähnlichkeit der Dreiecke BHF und CHE die Gleichung
BH ·HE = CH ·HF . Daher ist AH ·HD = BH ·HE = CH ·HF .

Beweis 2. In jedem der drei Kreise, deren Durchmesser die Dreiecksseiten sind, bilden die
von den jeweiligen Endpunkten der Durchmesser ausgehenden Dreieckshöhen (da ihre
Fußpunkte nach dem Satz des Thales auch auf der betreffenden Kreisperipherie liegen)
zwei sich sehneidende Sehnen. Aus dem Satz, dass die Produkte der Abschnitte von
zwei sich schneidenden Kreissehnen gleich groß sind, folgt bei dreimaliger Anwendung
sofort die Behauptung.

Beweis 3 (Abb. 1’). Man zeichnet den Umkreis des Dreiecks ABC und verlängert die
Höhen über ihre Fußpunkte hinaus bis zum Kreis. Dabei wird bei jeder Höhe der untere
Abschnitt verdoppelt (Nachweis !).

Abb. 1’

Für die drei Sehnen mit ihrem Schnittpunkt gilt

ho
a · 2hu

a = ho
b · 2hu

b = ho
c · 2hu

c

d.h.
ho

a · hu
a = ho

b · hu
b = ho

c · hu
c

Beweis 4 (Abb. 2’). Dieser Beweis setzt die Verwendung der Relationen

ho
a = 2r cosα und

hu
a = ho

b cos γ = 2r cos β cos γ
voraus.
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2.3 Die merkwürdigen Linien des Dreiecks

Abb. 2’

Der Rechtecksinhalt
ho

a · hu
b = 4r2 cosα cos β cos γ

ergibt sich auch aus den Abschnitten der beiden anderen Höhen.
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3.1 Satz für die Ecktransversalen durch einen beliebigen Punkt

3 Eine Relation für die Ecktransversalen durch einen
beliebigen Punkt des Dreiecks

Es besteht auch eine allgemeine Relation für alle Ecktransversalen, die durch einen
Punkt gehen, der sowohl im Dreieck als auch außerhalb desselben liegen kann.

3.1 Satz für die Ecktransversalen durch einen beliebigen Punkt
Bildet man für jede von drei Ecktransversalen eines Dreiecks, die durch einen Punkt
gehen, den Quotienten am ihrem oberen Abschnitt und der ganzen Strecke, so hat die
Summe der drei Quotienten den konstanten Wert 2:

toa
ta

+ tob
tb

+ toc
tc

= 2

(ti ist die ganze Transversale, toi der obere Abschnitt von der Ecke bis zum Schnittpunkt
der Transversalen, tui der untere Abschnitt von diesem Schnittpunkt bis zum Schnitt
mit der Dreiecksseite; i = a, b, c).

Abb. 20

Beweis. Aus Abb. 20 folgt

Viereck ABPC + Dreieck BFC = △ABC = F

Nun ist

□ABPC + △BPC + □BCPA+ △CPA+ □CAPB + △APB = 3F (1)

Es ist
△BPC + △CPA+ △APB = F

Subtraktion ergibt

□ABPC + □BCPA+ □CAPB = 2F (2)

Durch Division von (2) durch F erhält man

ABPC

F
+ BCPA

F
+ CAPB

F
= 2

Wir berechnen nun den ersten Summanden (Abb. 20):

△ABC = 1
2aha, △BPC = 1

2ah2, □ABPC = 1
2a(ha − h2) = 1

2ah1
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3.1 Satz für die Ecktransversalen durch einen beliebigen Punkt

ABPC

F
=

1
2ah1
1
2aha

= h1

ha
= toa
ta

(Strahlensatz!)

Entsprechend erhält man für die anderen beiden Summanden

BCPA

F
= tob
tb

und CAPB

F
= toc
tc

Damit folgt
toa
ta

+ tob
tb

+ toc
tc

= 2

Abb. 21, 22

Aufgabe 9. Man beweise den Satz für den Fall, dass P a) auf einer Dreiecksseite (Abb.
21), b) außerhalb des Dreiecks (Abb. 22) liegt.
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4.1 Die Eulersche Gerade

4 Merkwürdige Linien im Dreieck
4.1 Die Eulersche Gerade
Die Schnittpunkte der Seitenhalbierenden, Höhen, Mittelsenkrechten und Winkelhal-
bierenden haben in jedem Dreieck eine eindeutig bestimmte Lage. Damit steht im
Zusammenhang, dass die drei zuerst genannten Punkte auf einer Geraden liegen, die
Eulersche Gerade genannt wird.
Die durch den Höhenschnittpunkt und den Mittelpunkt des Umkreises begrenzte Stre-
cke dieser Geraden wird durch den Schnittpunkt der Seitenhalbierenden, den Schwer-
punkt des Dreiecks, im Verhältnis 2: 1 geteilt.

Abb. 23

Beweis 1. Im Dreieck ABC (Abb. 23) sind die Höhen ha, und hb die Seitenhalbierenden
sa und sb und die Mittelsenkrechten ma und mb gezeichnet. Die zugehörigen Schnitt-
punkte sind H, S und M . Es soll nun bewiesen werden, dass diese Punkte auf einer
Geraden liegen.

Die Dreiecke ABH und EDM stimmen in ihren Winkeln überein, weil die Schenkel der
homologen Winkelpaare parallel und entgegengesetzt gerichtet sind: AH ∥ MD, als
Senkrechte auf BC, BH ∥ ME, als Senkrechte auf AC, AB ∥ ED und AB = 2ED;
die Verbindungsstrecke der Mitten zweier Dreiecksseiten ist parallel zur dritten Seite
und halb so groß wie diese.

Also ist △ABH ∼ △DEM (WW). In ähnlichen Dreiecken sind die homologen Seiten
proportional:

AH : DM = AB : DE = 2 : 1
Nun wird H mit M verbunden. Diese Gerade schneidet AD im Punkt S ′. Zu beweisen
ist, dass die Punkte S und S′ identisch sind.

Es ist △AHS′ ∼ △DMS′ (WW); denn es gilt ∠HAS′ = ∠MDS′, als Wechselwinkel
an geschnittenen Parallelen und ∠HS ′A = ∠MS′D, als Scheitelwinkel.

Da sich AH : DM wie 2:1 verhält, ist auch AS′ : DS′ = 2 : 1, d.h., die Seitenhalbie-
rende AD wird durch S′ im Verhältnis 2 : 1 geteilt. Die gleiche Teilung erfolgt durch
S. Also stimmen S und S′ überein, die Punkte H, S und M liegen in einer Geraden,
und es besteht die Proportion HS : SM = 2 : 1.

Beweis 2a. Liegen zwei ähnliche Dreiecke so, dass homologe Seiten einander paral-
lel laufen und gleiche bzw. entgegengesetzte Richtung besitzen, so befinden sich die
Dreiecke in Ähnlichkeitslage.
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4.1 Die Eulersche Gerade

Abb. 24

Verbindet man entsprechende Eckpunkte, so schneiden die Verbindungsgeraden einan-
der in einem Punkt, dem Ähnlichkeitspunkt der beiden Dreiecke. Die Geraden heißen
Ähnlichkeitsstrahlen.
Sie werden durch den Ähnlichkeitspunkt im Verhältnis zweier homologen Dreiecksseiten
geteilt. Sind die entsprechenden Seiten der Dreiecke parallel und gleich gerichtet, so ist
ein äußerer Ähnlichkeitspunkt vorhanden (Abb. 24), sind sie parallel und entgegenge-
setzt gerichtet, so existiert ein innerer Ähnlichkeitspunkt (Abb. 25). Nach diesen kurzen
Erklärungen folgt nun der Beweis.

Abb. 25a, b

In Abb. 23 befinden sich die Dreiecke AHB und DME in Ähnlichkeitslage, da die
homologen Seiten parallel und entgegengesetzt gerichtet sind. Die Ähnlichkeitsstrahlen
AD, BE und HM schneiden einander im Punkt S. Die Strahlen werden im Verhältnis
der homologen Seiten der ähnlichen Dreiecke geteilt. Es ist

AS : SD = BS : SE = HS : SM = AB : ED = 2 : 1

(nach dem Strahlensatz A und nach dem Satz von der Strecke, die die Mitten zweier
Dreiecksseiten verbindet).
Also liegen H, S und M auf einer Geraden, dem Ähnlichkeitsstrahl HM , der durch S
im Verhältnis 2: 1 geteilt wird.

Abb. 26
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4.2 Der Feuerbachsche Kreis

Beweis 2b (Abb. 26). Man zeichnet ein Dreieck ABC, halbiert die Seiten und verbindet
die Mittelpunkte D, E und F , Das Dreieck DEF ist dem Dreieck ABC ähnlich
(Beweis!) (WW).
Beide Dreiecke befinden sich in Ähnlichkeitslage. Die Seitenhalbierenden sind Ähnlich-
keitsstrahlen, und ihr Schnittpunkt S ist Ähnlichkeitspunkt.

Die Mittelsenkrechten im Dreieck ABC sind zugleich Höhen im Dreieck DEF (Beweis
!). Demnach sind die Punkte H und M entsprechende Höhenschnittpunkte in ähnlich
liegenden Dreiecken. Als solche liegen sie auf einem Ähnlichkeitsstrahl, der durch den
Ähnlichkeitspunkt S im Verhältnis entsprechender Dreiecksseiten, also wie 2 : 1 geteilt
wird.
Damit ist bewiesen, dass H, S und M auf einer Geraden liegen und dass HM im
Verhältnis 2 : 1 geteilt wird.

4.2 Der Feuerbachsche Kreis
Auf der Eulerschen Gerade liegt noch ein merkwürdiger Punkt des Dreiecks, nämlich
der Mittelpunkt des Kreises, auf dem neun ausgezeichnete Punkte des Dreiecks liegen.
Es sind die drei Mittelpunkte der Seiten, die drei Fußpunkte der Höhen und die drei
Mittelpunkte der oberen Höhenabschnitte.

Abb. 27

Im folgenden soll nacheinander bewiesen werden, dass die genannten Punkte auf einem
Kreis liegen und dass der Mittelpunkt dieses Kreises die Eulersche Strecke HM hal-
biert.

Der Kreis um AH als Durchmesser (Abb. 27) geht durch die Fußpunkte E und F der
Höhen BE und CF (Satz des Thales). Daher ist ∠FAH = ∠FEH, als Peripheriewin-
kel über dem Bogen FH. Ebenso kann mit Hilfe des Kreises um HC als Durchmesser
gezeigt werden, dass ∠HCD = ∠HED ist.
Da aber ∠FAD = ∠FCD ist (Beweis entweder mit Hilfe ähnlicher Dreiecke oder als
Peripheriewinkel im Kreis mit AC als Durchmesser), ist ∠FEH = ∠DEH.

Die Höhe BE im Dreieck ABC ist demnach zugleich Winkelhalbierende im Höhenfuß-
punktsdreieck DEF . Es ist ∠FED = 2∠FEH, und wegen ∠FEH = ∠FAH folgt
∠FED = 2∠FAD.
Der Mittelpunkt L des oberen Abschnitts AH der Höhe AD ist Mittelpunkt des Kreises,
auf dem die Punkte A, F , H und E liegen. In diesem Kreis ist ∠FLH = 2∠FAH
(der Zentriwinkel ist doppelt so groß wie der Peripheriewinkel über demselben Bogen).
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4.2 Der Feuerbachsche Kreis

Da aber ∠FED = 2∠FAH ist, gilt ∠FLD = ∠FED. Und da beide Winkel über
demselben Bogen des Kreises stehen, der durch die Fußpunkte der Höhen im Dreieck
ABC geht, muss auch L auf der Peripherie dieses Kreises liegen.

Es gibt noch einen weiteren Winkel, der doppelt so groß ist wie ∠BAD, nämlich
∠BKD. Der Punkt K ist der Mittelpunkt der Seite AB und zugleich Mittelpunkt des
Kreises, der durch die Punkte A, E, D und B geht.
In diesem Kreis ist der Zentriwinkel ∠BKD doppelt so groß wie der Peripheriewinkel
∠BED, der mit ihm auf dem Bogen BD steht. Wie bereits gezeigt, ist 2∠BED =
∠FED und daher ∠BKD = ∠FED.

Die Winkel FKD und BKD betragen zusammen als Nebenwinkel 180◦. Weil die
Winkel BKD und FED einander gleich sind, gilt ∠FKD + ∠FED = 180◦.
Also ist das Viereck FEDK ein Sehnenviereck, und der Punkt K liegt mit F , E und
D auf dem Kreis, der durch die Fußpunkte der Höhen bestimmt ist.

Wählt man in dem Kreis um K mit dem Durchmesser AB den Winkel AKE als Zen-
triwinkel und den Winkel ADE als Peripheriewinkel, die beide über dem Bogen AE
stehen, so lässt sich leicht zeigen, dass ∠FKE = ∠FDE ist und dass deren Scheitel
auf dem Kreis liegen, der durch D, E und F bestimmt ist.

Was für den Mittelpunkt des oberen Abschnitts der Höhe ha und für den Mittelpunkt
K die Seite AB gezeigt wurde, gilt auch für die übrigen gleichartigen Punkte. Also
liegen die eingangs genannten Punkte des Dreiecks auf dem Höhenfußpunktskreis, der
auch Feuerbachscher Kreis genannt wird.

Es ist nun zu zeigen, dass der Mittelpunkt des Feuerbachschen Kreises auf der Euler-
schen Geraden liegt.

Beweis 1. EI, KF und DG sind Sehnen des Feuerbachschen Kreises. Aus der Kreis-
lehre ist bekannt, dass die Mittelsenkrechten der Sehnen eines Kreises einander im
Mittelpunkt desselben schneiden.
Wir betrachten zunächst das zur Sehne EI gehörige Viereck EIMH. EH und IM
sind Lote auf EI und daher zueinander parallel. Ihnen läuft das Mittellot QN auf EI
ebenfalls parallel. Deshalb ist IMH ein Trapez, dessen Mittellinie QN ist, die den
Schenkel HM - das ist die Eulersche Strecke - in N halbiert.

Nun ist diese Strecke auch Schenkel in den Trapezen KFHM und GDHM . Die
Mittellinien der drei Trapeze treffen im Punkt N auf den gemeinsamen Schenkel HM .
Also liegt der Mittelpunkt des Feuerbachschen Kreises auf der Eulerschen Strecke und
halbiert sie.

Beweis 2. Gegeben sei das Dreieck ABC (Abb. 28). Verbindet man die Mitten der obe-
ren Höhenabschnitte in diesem Dreieck durch Gerade, so entsteht ein Dreieck A1B1C1,
das dem Dreieck ABC ähnlich ist (Beweis !).

Die homologen Seiten verhalten sich wie 1 : 2. Da sie auch parallel verlaufen, befinden
sich beide Dreiecke in Ähnlichkeitslage mit dem Höhenschnittpunkt als Ähnlichkeits-
punkt.
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4.2 Der Feuerbachsche Kreis

Abb. 28

Verbindet man die Mitten der Seiten des Dreiecks ABC durch Gerade, so entsteht
das Dreieck DEF , das ebenfalls dem Dreieck ABC ähnlich ist und sich mit ihm in
Ähnlichkeitslage befindet. Die homologen Seiten verhalten sich wie 1 : 2 (Beweis !).

Es lässt sich leicht zeigen, dass △A1B1C1 ∼= △DEF ist und beide Dreiecke zueinander
ähnlich liegen. Der Ähnlichkeitspunkt ist der Mittelpunkt N des Feuerbachschen Krei-
ses. Die Ähnlichkeitsstrahlen A1D, B1E und C1F verbinden entsprechende Eckpunkte,
die sämtlich auf der Peripherie des Feuerbachschen Kreises liegen.
Sie sind Durchmesser dieses Kreises, weil die Peripheriewinkel, die über ihnen stehen
∠A1GD, ∠B1KE, ∠C1IF rechte Winkel sind (Satz des Thales).

Die Durchmesser schneiden einander im Mittelpunkt des Kreises, dem Ähnlichkeits-
punkt N . Das Teilungsverhältnis der Ähnlichkeitsstrahlen ist 1 : 1. Da die Mittel-
senkrechten des Dreiecks ABC zugleich Höhen im Dreieck DEF sind, erscheinen die
Punkte H und M als ähnlich liegende Höhenschnittpunkte.
Als solche liegen sie auf dem Ähnlichkeitsstrahl HM , der durch den Ähnlichkeitspunkt
N halbiert wird. HM ist die Eulersche Strecke im Dreieck ABC. Auf ihr liegt der
Mittelpunkt N des Feuerbachschen Kreises, der die Strecke HM halbiert.

Aufgabe 10. Man beweise, dass im Dreieck ABC (Abb. 28) die Mittelsenkrechte DM
auf der Seite BC halb so groß ist wie der obere Abschnitt AH der zur gleichen Dreiecks-
seite gehörigen Höhe und dass der Radius r des dem Dreieck ABC umgeschriebenen
Kreises doppelt so groß ist wie der Radius, des Feuerbachschen Kreises.

Abb. 29

Beweis 3. Die Lage des Mittelpunkts des Feuerbachschen Kreises auf der Eulerschen
Geraden kann noch auf einem anderen Wege bestimmt werden (Abb. 29a)
Im Dreieck ABC werden die Mitten der Seiten D, E und F geradlinig verbunden. Dass
sich die Dreiecke ABC und DEF in Ähnlichkeitslage befinden, wurde bereits gezeigt.
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4.3 Das Höhenfußpunktsdreieck

Der Ähnlichkeitspunkt ist der Schnittpunkt der Seitenhalbierenden beider Dreiecke, von
denen je zwei entsprechende Punkte auf derselben Geraden liegen. (Man beweise, dass
die Seitenhalbierende AD auch die Seite EF halbiert.)

Im Dreieck ABC liegen der Höhenschnittpunkt H, der Mittelpunkt des Umkreises M
und der Schnittpunkt der Seitenhalbierenden S auf der Eulerschen Geraden HM . Diese
Strecke wird durch S im Verhältnis 2:1 geteilt.
Entsprechend liegen im Dreieck DEF der Höhenschnittpunkt M , der Mittelpunkt des
Umkreises N und der Schnittpunkt der Seitenhalbierenden S ebenfalls auf einer Euler-
schen Geraden MN . Diese Strecke wird durch S im Verhältnis 2 : 1 geteilt.

Da eine Gerade durch zwei ihrer Punkte eindeutig bestimmt ist und die Punkte M und
N sowohl im Dreieck ABC als auch im Dreieck DEF auf der Eulerschen Geraden
liegen, müssen beide Geraden übereinstimmen. Also liegen H, N , S und M auf einer
Geraden, und es gelten die Proportionen:

NS : SM = 1 : 2, SM : SH = 1 : 2, NS : SM : SH = 1 : 2 : 4

Hieraus und aus Abb. 29b ergibt sich die Proportion HN : NM = 3 : 3, d.h., dass der
Mittelpunkt N des Kreises, der dem Dreieck DEF umgeschrieben ist - das ist aber
der Feuerbachsche Kreis -, auf der Eulerschen Strecke HM liegt und sie halbiert.

4.3 Das Höhenfußpunktsdreieck
Auf dem Feuerbachschen Kreis liegen neun besondere Punkte des Dreiecks, von denen
je drei als Eckpunkte eines Dreiecke angesehen werden können.
In Abb. 28 sind zwei von diesen Dreiecken gezeichnet, Dreieck A1B1C1 und Dreieck
DEF ; beide sind kongruent. Der Inhalt jedes dieser Dreiecke ist gleich dem vierten Teil
des Dreiecks ABC (Beweis !).

Zwischen dem Höhenfußpunktsdreieck und den beiden genannten Dreiecken bestehen
wesentliche Unterschiede. Dennoch ist es ebenso wie diese durch Form und Inhalt des
Dreiecks ABC eindeutig bestimmt, d.h., dass seine Bestimmungsstücke sowie sein
Inhalt durch die Stücke des Dreiecks ABC ausgedrückt werden können.

Zunächst sollen die Seiten des Höhenfußpunktsdreiecks aus den Seiten und Winkeln des
Dreiecks ABC berechnet werden (Abb. 30). Durch, die Höhen wird das Dreieck ABC
in drei Sehnenvierecke AFHE, BDHF und CEHD zerlegt, in denen die Seiten des
Höhenfußpunktsdreiecks Diagonalen sind.
Diese seien mit di (i = 2, 4, 6) bezeichnet. Die anderen Diagonalen seien dj (j =
1, 3, 5). Die unteren Höhenabschnitte sind hu

i (i = a, b, c). Nach dem Ptolemäischen
Lehrsatz ergeben sich folgende Gleichungen:

hu
b · c1 + hu

c · b2 = d1 · d2, hu
c · a1 + hu

a · c2 = d3 · d4, hu
a · b1 + hu

b · a2 = d5 · d6
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4.3 Das Höhenfußpunktsdreieck

Abb. 30

Für die hu
i (i = a, b, c) gilt

hu
b = d1 sinα2, hu

c = d1 sinα1, hu
c = d3 sin β2

hu
a = d3 sin β1, hu

a = d5 sin γ2, hu
b = d5 sin γ1

Diese Werte setzt man in die obigen drei Gleichungen ein und erhält

c1d1 sinα2 + b2d1 sinα1 = d1 · d2

a1d3 sin β2 + c2d3 sin β1 = d3 · d4

b1d5 sin γ2 + a2d5 sin γ1 = d5 · d6

Dividiert man die erste Gleichung durch d1, die zweite durch d3 und die dritte durch
d5, so folgt

d2 = c1 sinα2 + b2 sinα1, d4 = q1 sin β2 + c2 sin β1, d6 = b1 sin γ2 + a2 sin γ1

Nun ist aber α1 = γ2 = 90◦ − β, β1 = α2 = 90◦ − γ und γ1 = β2 = 90◦ − α. Daher
erhält man für die Seiten des Höhenfußpunktsdreiecks

d2 = c1 sin β1 + b2 sinα1 = c1 sinα2 + b2 sin γ2 = c1 cos γ + b2 cos β
d4 = a1 sin γ1 + c2 sin β1 = a1 sin β2 + c2 sinα2 = a1 cosα+ c2 cos γ
d6 = b1 sinα1 + a2 sin γ1 = b1 sin γ2 + a2 sin β2 = b1 cos β + a2 cosα

Durch Addition der ersten und der letzten Spalten erhält man

d2 + d4 + d6 = 2s′ = a cosα + b cos β + c cos γ

Setzt man a = 2r sinα, b = 2r sin β und c = 2r sin γ und benutzt die Beziehung
2 sin x cosx = sin 2x, so ergibt sich

2s′ = r(sin 2α + sin 2β + sin 2γ)

und hieraus folgt

2s′ = 4r sinα sin β sin γ und s′ = 2r sinα sin β sin γ (1)

Nachdem die Seitensumme des Höhenfußpunktsdreiecks durch die Seiten und Win-
kel des Dreiecks ABC dargestellt ist, soll nun der Inhalt des Dreiecks DEF durch
Bestimmungsstücke des Dreiecks ABC ausgedrückt werden.

23



4.3 Das Höhenfußpunktsdreieck

Zunächst sei die Inhaltsformel für Dreiecke kurz hergeleitet:

F = s2 tan α2 tan β
a

tan γ2

In Abb. 33 folgt als den Teildreiecken an den drei Ecken des Dreiecks ABC

ρ = (s− a) tan α2 , ρ = (s− b) tan β2 , ρ = (s− c) tan γ2

Multiplikation dieser drei Gleichungen ergibt

ρ3 = (s− a)(s− b)(s− c) tan α2 tan β
a

tan γ2

Nun werden beide Seiten dieser Gleichung mit s3 multipliziert:

ρ3s2 = s(s− a)(s− b)(s− c)s2 tan α2 tan β
a

tan γ2

Hieraus folgt
F 3 = F 2s2 tan α2 tan β

a
tan γ2

und nach Division durch F 2

F = s2 tan α2 tan β
a

tan γ2

Wendet man diese Formel auf das Dreieck DEF an, so ergibt sich (Abb. 30)

F ′ = s′2 tan 1
2∠FDE · tan 1

2∠DEF · tan 1
2∠EFD

Da aber
1
2∠FDE = γ1 = β2 = 90◦ − α,

1
2∠DEF = α1 = γ2 = 90◦ − β

1
2∠EFD = β1 = α2 = 90◦ − γ

ist, erhält man
F ′ = s′2 cotα cot β cot γ

Hier wird (1) eingesetzt:

F ′ = 4r2 sin2 α sin2 β sin2 γ cotα cot β cot γ (2)

Daraus folgt
F ′ = 4r2 sinα sin β sin γ cosα cos β cos γ (3)

oder
F ′ = 1

2r
2 sin 2α sin 2β sin 2γ (4)
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4.3 Das Höhenfußpunktsdreieck

Will man jedoch zu den Seiten a, b, c gelangen, so schreibt man (3) in der Form

F ′ = 1
2r2r sinα · 2r sin β · 2r sin γ cosα cos β cos γ

und erhält
F ′ = abc

2r cosα cos β cos γ

und da abc
4r = F ist,

F ′ = 2F cosα cos β cos γ (5)

Daraus geht hervor, dass Dreieck DEF vom Dreieck ABC in Form und Inhalt abhän-
gig ist.

Aufgabe 11. a) Man berechne mit Hilfe der gewonnenen Formel den Inhalt des Höhen-
fußpunktsdreiecks im gleichseitigen Dreieck und erläutere das Ergebnis.
b) Man führe die gleiche Rechnung für ein rechtwinkliges Dreieck durch.
c) Man berechne den Inhalt des Höhenfußpunktsdreiecks in einem gleichschenkligen
Dreieck mit dem Basiswinkel von 75◦.

Die Seiten des Höhenfußpunktsdreiecks können auf einem anderen Wege durch den
Radius des dem Dreieck ABC umgeschriebenen Kreises und die Winkel des Dreiecks
ausgedrückt werden.

Abb. 31

Im Dreieck ABC (Abb. 31) sind die drei Höhen und der umgeschriebene Kreis gezeich-
net. H ist der Höhenschnittpunkt und M der Mittelpunkt des Umkreises. Zieht man
von B den Durchmesser BL und verbindet L mit A und C, so sind die Winkel BAL
und BCL gleich 90◦ (Satz des Thales).

Also sind AD, CL und MK parallel als Senkrechte auf BC; ebenso sind LA und CF
parallel als Senkrechte auf AB. Folglich ist AHCL ein Parallelogramm und AH = LC.
Da LC = 2MK ist (Strahlensatz), erhält man

AH = 2MK = 2r cosα, (MK = r cosα).

AH ist der Durchmesser des Kreises, der durch A, F , H und E geht. Für die Sehne
gilt die Relation

FE = AH sinα = 2r cosα sinα = r sin 2α

In gleicher Weise findet man

DF = 2r sin β cos β = r sin 2β , DE = 2r sin γ cos γ = r sin 2γ
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4.3 Das Höhenfußpunktsdreieck

so dass sich

2s′ = r(sin 2α + sin 2β + sin 2γ) = 4r sinα sin β sin γ

oder
s′ = 2r sinα sin β sin γ

ergibt. Für F ′ erhält man, wie schon vorher berechnet,

F ′ = 1
2r

2 sin 2α sin 2β sin 2γ

Vertauscht man in Abb. 32 A und H, so ist Dreieck (A)BC stumpfwinklig und (H)
Höhenschnittpunkt in diesem Dreieck.

Abb. 32

Die Umkreise der Dreiecke ABC und (A)BC sind gleich (Beweis!). Beide Dreiecke
haben das gleiche Höhenfußpunktsdreieck. Will man aus der Formel

s′ = 2r sinα sin β sin γ

die für das spitzwinklige Dreieck gilt, die entsprechende Relation für des stumpfwinklige
Dreieck herleiten, so ist r beizubehalten, während für die Winkel α, β, γ die Winkel
des stumpfwinkligen Dreiecks α1, β1, γ1 einzuführen sind. Es ist α = 180◦ − α1,
β = 90◦ − γ1, γ = 90◦ − β1. Somit erhält man

s′ = 2r sin(180◦ − α1) sin(90◦ − γ1) sin(90◦ − β1)

oder
s′ = 2r sinα1 cos β1 cos γ1

und für den Flächeninhalt

F ′ = −1
2r

2 sin 2α1 sin 2β1 sin γ1

(Beweis !).
Die Formeln für die Seitensumme des Höhenfußpunktsdreiecks sind für beide Arten
der Dreiecke verschieden, während die Formeln für den Inhalt sich nur im Vorzeichen
unterscheiden. Da jedoch 2α > 180◦ ist und daher sin 2α negativ wird, ergeben beide
Formeln einen positiven Wert. Man erläutere das an einem Zahlenbeispiel.

Aufgabe 12. Vorstehend wurden die Formeln für das stumpfwinklige Dreieck dadurch
gewonnen, dass man in die Formeln für das spitzwinklige Dreieck die Winkel des stumpf-
winkligen Dreiecks einführte. Man leite nun die Formeln für s′ und F ′ direkt aus der
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4.3 Das Höhenfußpunktsdreieck

Abbildung ab (man benutze Abb. 32).

Anleitung. Zum Nachweis der Gleichheit der Radien der Umkreise beider Dreiecke spie-
gele man Dreieck BHC an BC und zeige, dass H ′, das Spiegelbild von H, auf dem
Umkreis durch A, B und C liegt.
Man berechne die Seiten des Dreiecks DEF wie beim spitzwinkligen Dreieck und be-
achte dabei, dass ∠(A)BC = β1, ∠(A)CB = γ1, ∠EFD = 2β1, ∠DEF = 2γ1 und
∠FDE = 2α1 − 180◦ ist.

Wir begegnen hier einem Beispiel, wo eine für ein spitzwinkliges Dreieck geltende Re-
lation nicht in der gleichen Form für das stumpfwinklige Dreieck gilt. Im vorliegenden
Fall sind die Formeln für die Seitensumme des Höhenfußpunktsdreiecks verschieden,
während die Inhaltsformeln sich nur im Vorzeichen unterscheiden.

Das Höhenfußpunktdreieck besitzt noch eine interessante Eigenschaft: Es ist das Drei-
eck mit dem kleinsten Umfang, das dem spitzwinkligen Dreieck ABC eingeschrieben
werden kann. Einen Beweis mit elementaren Hilfsmitteln gab der bekannte ungarische
Mathematiker Fejer.
Man geht von einem beliebigen eingeschriebenen Dreieck DEF aus, wobei D auf BC
fest angenommen ist, während E auf AC und F auf AB verschoben werden sollen
(Abb. 3’).

Abb. 3’

D wird sowohl an AC als auch an AB als Symmetrieachsen gespiegelt. Man erhält die
Punkte Db und Dc. Es werden die symmetrischen Strecken ED = EDb, FD = FDc

und ADb = ADc = AD gezeichnet.
Da symmetrische Strecken mit der Symmietrieachse gleiche Winkel bilden, findet man
leicht, dass der Winkel DbAD gleich 2α ist.

Der Streckenzug DbEFDc hat dieselbe Länge wie der Umfang des Dreiecks DEF .
Verschiebt man E und F auf den Dreiecksseiten b und c so, dass sie auf der Geraden
DbDc liegen, so erhält man Dreieck DE ′F ′ mit dem kleinsten Umfang bei festliegender
Ecke D. Der Umfang u ist ebenso lang wie die Basis des gleichschenkligen Dreiecks
ADbDc„ mit dem Winkel 2α an der Spitze.

Abb. 4’
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4.3 Das Höhenfußpunktsdreieck

Er ist noch nicht der kleinste von allen eingeschriebenen Dreiecken. Man verschiebt nun
die Ecke D so, dass sie Fußpunkt der kürzesten Transversale durch die Ecke A wird.
Sie wird dann Höhe ha mit dem Fußpunkt H1 (Abb. 4’).

Die Spiegelpunkte von H1 an den Seiten b und c seien K und L, und KL schneidet
b und c in H2 bzw. H3. Das Dreieck AKL mit dem Winkel 2α an der Spitze besitzt
demnach die kürzesten Schenkel ha und daher auch die kürzeste Basis, die ebensolang
wie der Umfang u des Dreiecks H1H2H3 ist. Dieses ist, wie noch gezeigt wird, ein
Höhenfußpunktdreieck.

Man findet auch das Dreieck mit dem kleinsten Umfang, wenn man auf der Seite AC
einen Punkt festlegt und dann zum Höhenfußpunkt H2 übergeht. Auch die Konstrukti-
on mit Hilfe der Höhe hc führt zu dem Dreieck mit dem kleinsten Umfang. Da in allen
drei Fällen das gleiche Dreieck entstehen muss, weil es nur eines mit dem kleinsten
Umfang im Dreieck ABC geben kann, handelt es sich offensichtlich um das Höhen-
fußpunktdreieck.

Aufgabe 1’. Man kann beweisen, dass bei der ersten Konstruktion, in der H1 als Hö-
henfußpunkt festgelegt ist, die Fußpunkte der Höhen hb und hc auf der Geraden KL
liegen.

Aufgabe 2’. Man berechne den Umfang des eingeschriebenen Dreiecks H1H2H3 mit
Hilfe des gleichschenkligen Dreiecks AKL mit AK = ha und dem Winkel KAL = 2α
und zeige die Übereinstimmung des Ergebnisses mit dem in Gleichung (1), für 2s er-
rechneten Wert.

Lösungen der Aufgaben

1’. Unter Benutzung des fest angenommenen Höhenfußpunktes H1 ist das Dreieck
H1EF mit dem kleinsten Umfang dem Dreieck ABC eingeschrieben worden. Der Um-
fang ist ebensolang wie die Basis des gleichschenkligen Dreiecks LAK. Jeder Schenkel
ist gleich ha, der Winkel an der Spitze 2α.

Es soll bewiesen werden, dass E und F die Fußpunkte der Höhen hb bzw. hc sind.
Es ist ∠AKL = 90◦ − α, ∠CAK = ∠CAH1 = 90◦ − α. Dann ist ∠AEL als
Außenwinkel des Dreiecks AEK gleich 180◦ − α− γ = β.
Das Viereck ALBH1 ist ein Sehnenviereck, weil

∠LAH1 + ∠LBH1 = 2(90◦ − β) = 180◦

ist. Sein Umkreis hat AB als Durchmesser. In diesem Kreis ist ∠ABL = β Periphe-
riewinkel. Auf dem gleichen Bogen AL steht auch der Winkel LEA, von dem gezeigt
wurde, dass er gleich β ist. Daher muss E auf dem Umkreis liegen.

Betrachtet man nun die Peripheriewinkel über dem Durchmesser AB, zu denen auch
∠AEB gehört, so muss dieser nach dem Thalessatz gleich 90◦ sein, und BE ist die
Höhe hb. Wir dürfen nun (entsprechend H1) H2 anstelle von E setzen.
Analog lässt sich beweisen, dass F und H3 identisch sind.

2’. Dass H1H2H3 (in Abb. 5’: H1EF ) Höhenfußpunktsdreieck ist, kann man auch
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4.4 Der Inkreis und die drei Ankreise des Dreiecks

dadurch beweisen, dass man seinen Umfang u = KL (= Basis des gleichschenkligen
Dreiecks AKL mit den Schenkeln ha und dem Winkel 2∠ an der Spitze) berechnet
und mit dem schon berechneten Wert vergleicht.
Aus dem Dreieck AKL folgt

u = 2ha sinα = 2aha sinα
a

= 4F sinα
2r sinα = 2F

r

Abb. 5’

dabei ist F der Inhalt und r der Umkreisradius des Dreiecks ABC. Für

F = 2r2 sinα sin β sin γ

ist
u = 4r sinα sin β sin γ

wie in Gleichung (1), berechnet (u = 2s′).

4.4 Der Inkreis und die drei Ankreise des Dreiecks
Es wurde bereits erörtert, wie die Mittelpunkte des Inkreises und der drei Ankreise des
Dreiecks gefunden werden. Abb. 33, die diese vier merkwürdigen Punkte des Dreiecks
und die Kreise zeigt, ist in mannigfacher Beziehung aufschlussreich.
Die Berührungspunkte der Kreise auf den Dreiecksseiten erzeugen auf diesen Abschnit-
te, deren Längen bereits im Unterricht der allgemeinbildenden Schulen berechnet wer-
den. Man bestätige folgende Relationen:

AF1 = AE1 = s− a , BF1 = BD1 = s− b,

AF2 = AE2 = s , BF2 = BD2 = s− c,

BF4 = BD3 = s , AF4 = AE3 = s− c,

CE4 = CD4 = s , AF3 = AE4 = s− b,

CD1 = CE1 = s− c , CD2 = CE2 = s− b,

CE3 = CD3 = s− a , BF3 = BD4 = s− a

mit s = a+b+c
2 .

Man leite auch die Inhaltsformel für das Dreieck ABC

F = ρ · s (1)

her.
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4.4 Der Inkreis und die drei Ankreise des Dreiecks

In Abb. 33 sind die Dreiecke AF1O, AF2Oa, AE4Oc und AF4Ob einander ähnlich, da
sie sämtlich neben dem Winkel α

2 einen rechten Winkel enthalten (WW). Daher ergeben
sich die folgenden Beziehungen der Zeile A in Tabelle 1 (entsprechend findet man die
Gleichungen der Zeilen B und C):

Tabelle 1

I II III IV V
A ρ

s−a = ρa

s = s−b
ρc

= s−c
ρb

= tan α
2

B ρ
s−b = ρb

s = s−c
ρa

= s−a
ρc

= tan β
2

C ρ
s−c = ρc

s = s−a
ρb

= s−b
ρa

= tan γ
2

Abb. 33

Setzt man F = ρs als bekannt voraus, so folgt aus den Gleichungen AI = AII, ferner
aus BI = BII und aus CI = CII

F = ρa(s− a), F = ρb(s− c), F = ρc(s− c) (2,3,4)

Aufgabe 13. Man leite die Formeln (2) bis (4) geometrisch her.

Um ρ durch die Seiten des Dreiecks auszudrücken, fasst man B I und B III zusammen
und erhält

ρρa = (s− b)(s− c) (*)

Aus A I und A II folgt
ρs = ρa(s− a)

Multiplikation beider Gleichungen und Division durch ρa ergibt

ρ2s = (s− a)(s− b)(s− c)

Hieraus folgt nach Division durch a und Ziehen der Quadratwurzel

ρ =
√

(s− a)(s− b)(s− c)
s

(5)
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Multipliziert man (5) mit s, so gewinnt man die Heronische Inhaltsformel des Dreiecks:

F =
√
s(s− a)(s− b)(s− c) (6)

Diese Formel erhält man auch, wenn beide Seiten der Gleichung (*) mit s(s − a)
multipliziert werden:

ρsρa(s− a) = s(s− a)(s− b)(s− c)

oder wegen ρs = ρa(s− a) = F

F 2 = s(s− a)(s− b)(s− c)

und daraus die Formel (6).
Die Berechnung der Winkel des Dreiecks aus den Seiten desselben soll nun für den
Winkel α

2 entwickelt werden. Multipliziert man die Gleichungen A I = A V und A II =
A V, so ergibt sich

ρρa

s(s− a) = tan2 α

2
Nach B I und B III ist ρρa = (s− b)(s− c), und man erhält damit

tan α2 =
√√√√(s− b)(s− c)

s(s− a) (7)

Im Dreieck AF1O von Abb. 33 ist

sin α2 = ρ√
ρ2 + (s− a)2

und sin2 α

2 = ρ2

ρ2 + (s− a)2

Für ρ2 setzt man den aus (5) folgenden Wert ein und erhält

sin2 α

2 =
(s−a)(s−b)(s−c)

s
(s−a)(s−b)(s−c)

s + (s− c)2

Erweitert man mit s und kürzt durch s− a, so ergibt sich

sin2 α

2 = (s− b)(s− c)
(s− b)(s− c) + s(s− a)

Die Summe im Nenner beträgt bc, wie man durch Ausrechnen leicht findet; also erhält
man

sin α2 =
√

(s− b)(s− c)
bc

(8)

In gleicher Weise findet man aus cos2 α
2 = (s−a)2

ρ2+(s−a)2

cos α2 =
√
s(s− a)

bc
(9)
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Aufgabe 14. Man zeige mit Hilfe vorstehender Formeln, dass

sin2 α

2 + cos2 α

2 = 1 , sin α2 : cos α2 = tan α2
ist. Man berechne sinα und cosα aus den Seiten des Dreiecks ABC.

Aufgabe 15. Man leite an Hand von (8) und (9) aus F = 1
2bc sinα die Heronische

Inhaltsformel des Dreiecks her.

Weitere Inhaltsformeln für das Dreieck lassen sich aus den Gleichungen der Tabelle 1
leicht ermitteln. Aus A I und A III folgt

ρρc = (s− a)(s− b)

und aus A II und A IV
ρaρb = s(s− c)

Multipliziert man die beiden Gleichungen miteinander, so erhält man

ρρaρbρc = s(s− a)(s− b)(s− c) = F 2

und daraus
F = √

ρρaρbρc (10)

A I und A V ergibt ρ = (s− a) tan α
2 , B I und B V ergibt ρ = (s− b) tan β

2 , C I und C
V ergibt ρ = (s− c) tan γ

2 . Daraus folgt

ρ3 = (s− a)(s− b)(s− c) tan α2 tan β2 tan γ2

Nun multipliziert man beide Seiten der Gleichung mit s2:

ρ2s2ρ = s(s− a)(s− b)(s− c)s tan α2 tan β2 tan γ2
Es ist also

ρ = s tan α2 tan β2 tan γ2 (11)

Hieraus folgt leicht
s = ρ cot α2 cot β2 cot γ2 (12)

Aus (11) und (12) ergeben sich wegen F = ρs die Inhaltsformeln

F = s2 tan α2 tan β2 tan γ2 , F = ρ2 cot α2 cot β2 cot γ2 (13,14)

Aufgabe 16. a) Man berechne ρa aus A II und A V und ρ aus A I und A V und zeige,
dass

ρa − ρ = a tan α2 = 4r sin2 α

2 (15)

ist.
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b) Man leite aus A III und A V und aus A IV und A V die Beziehung

ρb + ρc = a cot α2 = 4r cos2 α

2 (16)

her.
c) Man bilde die Summe von (15) und (16):

ρa + ρb + ρc − ρ = 4r (17)

Aufgabe 17. a) Man bilde die Summe

ρa + ρ = 2r(cos β + cos γ) (18)

b) Man zeige, dass
ρb − ρc = 2r(cos γ − cos β) (19)

ist.
c) Man bilde die Summe von (18) und (19):

ρa + ρ+ ρb − ρc = 4r cos γ (20)

Da in der Gleichung (20), bei der ρc mit negativem Vorzeichen versehen ist, auf der
rechten Seite der Winkel γ auftritt, wird entsprechend, wenn ρa bzw. ρb negatives
Vorzeichen haben, auf der rechten Seite des Gleichheitszeichens der Winkel β bzw. α
auftreten.
Man erhält also

ρa + ρb − ρc + ρ = 4r cos γ
ρa − ρb + ρc + ρ = 4r cos β

−ρa + ρb + ρc + ρ = 4r cosα

Addition dieser drei Gleichungen ergibt

ρa + ρb + ρc + 3ρ = 4r(cosα+ cos β + cos γ) = 4r(1 + 4 sin α2 sin β2 sin γ2) (21)

Mit ρa + ρb + ρc − ρ = 4r folgt daraus 4ρ = 16r sin α2 sin β2 sin γ2 und damit

ρ = 4r sin α2 sin β2 sin γ2 (22)

Nach Aufgabe 16b) ist ρb + ρc = 4r cos2 α
2 ; entsprechend gilt ρc + ρa = 4r cos2 β

2 und
ρb + ρa = 4r cos2 γ

2 . Die Addition der drei Gleichungen liefert

2(ρa + ρb + ρc) = 4r
(

cos2 α

2 + cos2 β

2 + cos2 γ

2

)
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4.4 Der Inkreis und die drei Ankreise des Dreiecks

Daraus folgt

ρa + ρb + ρc = 2r
(

cos2 α

2 + cos2 β

2 + cos2 γ

2

)
= r

(
2 cos2 α

2 + 2 cos2 β

2 + 2 cos2 γ

2

)
= r(1 + cosα + 1 + cos β + 1 + cos γ) = r(3 + cosα+ cos β + cos γ)

= r

(
4 + 4 sin α2 sin β2 sin γ2

)
= 4r

(
1 + sin α2 sin β2 sin γ2

)
(23)

Mit (17) ergibt sich hieraus wieder die Gleichung (22).

Aufgabe 18. Man berechne ρa, ρb, ρc aus den nach (20) folgenden Relationen [es können
auch die Gleichungen (15) und (18) verwendet werden].

Wir berechnen nun s mit Hilfe von r und den Winkeln des Dreiecks. Es ist

s = 1
2(a+ b+ c) = 1

2(2r sinα + 2r sin β + 2r sin γ) = r(sinα+ sin β + sin γ)

= 4r cos α2 cos β2 cos γ2 (24)

Aufgabe 19. Man zeige, dass das Produkt der Gleichungen (22) und (24) die bekannte
Inhaltsformel F = 2r2 sinα sin β sin γ liefert.

Aufgabe 20. Man eliminiere aus (22) und (24) 4r, berechne ρ und s und bestätige
dadurch die Relationen (11) und (12).

Aufgabe 21. Man bilde die Produkte

(ρb + ρc)(ρa − ρ), (ρc + ρa)(ρb − ρ), (ρa + ρb)(ρc − ρ)

Die Lösung der Aufgabe 21 lautet

(ρb + ρc)(ρa − ρ) = a2, (ρc + ρa)(ρb − ρ) = b2, (ρa + ρb)(ρc − ρ) = c2

(25,26,27)
Wir bilden nun das Produkt der drei Gleichungen:

a2b2c2 = (ρb + ρc)(ρa − ρ)(ρc + ρa)(ρb − ρ)(ρa + ρb)(ρc − ρ)

dividiert durch 16r2 = (ρa + ρb + ρc − ρ)2 [nach (17)] und erhält wegen abc
4r = F

F =
√

(ρb + ρc)(ρa − ρ)(ρc + ρa)(ρb − ρ)(ρa + ρb)(ρc − ρ)
ρa + ρb + ρc − ρ

(28)

Aufgabe 22. Man beweise, dass

ρ =
√√√√(ρa − ρ)(ρb − ρ)(ρc − ρ)

ρa + ρb + ρc − ρ
(29)

Ist und berechne s.
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Lösung:

s =
√√√√ (ρa + ρb)(ρb + ρc)

(ρc + ρa)(ρa + ρb) + (ρc − ρ) (30)

Wir formen nun die Gleichung (29) um, indem wir sie quadrieren und dann nach ρ
auflösen. Wir erhalten

ρ = ρaρbρc

ρaρb + ρbρc + ρaρc
(31)

Bildet man auf beiden Seiten die reziproken Werte, so erhält man

1
ρ

= 1
ρa

+ 1
ρb

+ 1
ρc

(31’)

Aufgabe 23. Man ersetze in (30) ρ durch den in (31) erhaltenen Wert und vereinfache
den Ausdruck.

Lösung: s = √
ρaρb + ρbρc + ρaρc (32)

Aufgabe 24. Man bestätige die Richtigkeit der Gleichungen (31) und (32) unter Be-
nutzung der für die Produkte einzusetzenden Werte aus Tabelle 1.

Aus (31) und (32) ergeben sich die Inhaltsformeln des Dreiecks:

F = ρaρbρc√
ρaρb + ρbρc + ρaρc

(33)

F = ρ
√
ρaρb + ρbρc + ρaρc (34)

F = sρaρbρc

ρaρb + ρbρc + ρaρc
= ρaρbρc

s
(35)

Aufgabe 25. a) Man drücke den reziproken Wert von ρ durch die Radien der drei
Ankreise des Dreiecks aus, indem man von der Gleichung s = s − a + s − b + s − c
ausgeht.
b) Man berechne die reziproken Werte von ρ, ρa, ρb und ρc aus den reziproken Werten
der drei Höhen des Dreiecks.

Anleitung. Man benutze die Relation s = a
2 + b

2 + c
2 usw.

Für die Berührungspunkte, die der Inkreis und die drei Ankreise des Dreiecks auf einer
Dreiecksseite erzeugen, bestehen interessante Lagebeziehungen. Sie sollen bezüglich
der Seite BC untersucht werden. Man verwende hierbei Abb. 33.

Aufgabe 26. Man drücke die Länge folgender Strecken durch die Seiten des Dreiecks
aus: D1D2, D1D3, D1D4, D2D3, D2D4, D3D4. Wir bezeichnen die Mitten von D1D3
mit P , von D1D4 mit Q, von D2D3 mit R und von D2D4 mit T .
Wie lang sind die Strecken CP , CR, CQ und PT? Wo liegen die Mitten von D1D2
und D3D4?

Wir beweisen nun noch eine Eigenschaft des Feuerbachschen Kreises.
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Abb. 34

Der Feuerbachsche Kreis berührt den Inkreis und die
drei Ankreise des Dreiecks.

Dazu benötigen wir folgenden

Hilfssatz. Sind H1 der Höhenfußpunkt, O1 der Berüh-
rungspunkt des Inkreises auf der Seite a,X der Schnitt-
punkt der Winkelhalbierenden von α mit der Seite a
und M1 die Mitte von BC, so gilt (Abb. 34)

M1X ·M1H1 = M1O
2
1

Beweis.
Es ist △BPX ∼ △BPA (WW; denn es ist ∠BPX = ∠BPA und ∠PBX =
∠PAB = α

2 ). Daraus folgt PX : PB = PB : PA, oder, da PB = PO ist,
PX : PO = PO : PA und nach dem Strahlensatz M1X : NO = NO : RA oder
M1 : X : M1O1 = M1O1 : M1H1 und die Produktgleichung M1X ·M1H1 = M102

1.

Nun kann der oben formulierte Satz vom Feuerbachschen Kreis bewiesen werden. Im
Punkt M1 (Abb. 35) ist die Tangente an den Feuerbachschen Kreis gezeichnet.

Abb. 35

Der Sehnentangentenwinkel RM1M2 ist gleich ∠M2M3M1 = γ und ∠M2M1C = β,
also ∠RM1C = β − γ. Ferner ist ∠AXB = α

2 + γ, als Außenwinkel des Dreiecks
AXC, und ∠BXP = 2

(
α
2 + γ

)
= α+ 2γ.

Es ist der Winkel der beiden Tangenten an den Inkreis XO und XP . Folglich ist

∠PXC = 180◦ − (α + 2γ) = α+ β + γ − α− 2γ = β − γ

Und daher ist XP ||M1R.

Zeichnet man nun die Sekante M1P , die den Inkreis im Punkt Q schneidet, so gilt
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nach dem Sekanten-Tangentensatz M1P · M1Q = M1O
2
1, und nach dem Hilfssatz ist

M1X ·M1H1 = M1O
2
1.

Also ist M1P ·M1Q = M1X ·M1H1, d.h., die Punkte P , Q, X und H1 liegen auf einem
Kreis. In dem von diesen Punkten gebildeten Sehnenviereck ist ∠H1QP = ∠PXC =
β−γ. Da aber ∠H1QM1 = β−γ über der Sehne H1M1 steht, die mit der Verlängerung
der Tangente RM1 über M1 hinaus den Sehnentangentenwinkel β − γ bildet, liegt Q
auch auf dem Feuerbachschen Kreis.

Hierzu sei noch bemerkt, dass der Berührungspunkt zweier Kreise Ähnlichkeitspunkt
derselben ist, da sie sich in Ähnlichkeitslage befinden. Homologe Punkte liegen auf
denselben Ähnlichkeitsstrahlen, und Tangenten in solchen Punkten laufen parallel.

Aufgabe 27. Man beweise, dass der Ankreis um den Punkt Oa mit dem Radius ρa,
durch den Feuerbachschen Kreis im Punkt Qa berührt wird.

Anleitung. M1Qa ·M1Pa = M1O
2
a1; ∠H1XPa = ∠H1QaPa; H1, Qa,M1, Q liegen auf

dem Feuerbachschen Kreis.

Wir wollen nun einen zweiten Beweis für den Satz vom Feuerbachschen Kreis angeben.
Für die Berührung mit dem Inkreis gelten folgende Relationen:

MO2 = r2 − 2rρ, OH2 = 2ρ2 − 2rρ1, MH2 = r2 − 4rρ1

FO2 = 1
2(MO2 +OH2) − FH2 = 1

4r
2 − rρ+ ρ2 =

(1
2r − ρ

)2

(ρ1 ist der Radius des dem Höhenfußpunktsdreieck H1H2H : 3 eingeschriebenen Krei-
ses. Sein Mittelpunkt ist der Höhenschnittpunkt H. Die Bedeutung der anderen Be-
zeichnungen ist bekannt und aus Abb. 36 ersichtlich.)

Abb. 36
1. MO2 = r2 − 2rρ.
△OO3A ∼ △PBQ (WW). Daraus folgt ρ : AO = PB : 2r oder 2rρ = AO ·PB. Da
PB = PO ist, gilt

AO · PO = (r +OM)(r −OM) = r2 −OM2
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(Potenz des Punktes O in Bezug auf den Umkreis des Dreiecks ABC). Also ist 2rρ =
r2 −MO2 und damit die Behauptung bewiesen.

2. MH2 = r2 − 4rρ1.
∠H2H1C = ∠LHH1 = ∠BA′C = α.
△HLH1 ∼ △BA′C (WW). Daher ist ρ1 : HH1 = A′C : 2r oder wegen A′C = AH
auch ρ1 : HH1 = AH : 2r. Daraus folgt 2rρ1 = AH ·HH1 und

4rρ1 = 2HH1 · AH = HS · AH = (r +MH)(r −MH) = r2 −MH2

Also gilt MH2 = r2 − 4rρ1, w. z. b. w.

3. OH2 = 2ρ2.2rρ1
Nach 2. ist

2rρ1 = AH ·HH1 = 2r cosα · 2r cos β cos γ = 4r2 cosα cos β cos γ

Aus den Inhaltsformeln ρs = 2r2 sinα sin β sin γ findet man unter Anwendung der
Additionstheoreme

ρr(sinα+ sin β + sin γ = 2r2 sinα sin β sin γ

4ρr cos α2 cos β2 cos γ2 = 16r2 sin α2 cos α2 sin β2 cos β2 sin γ2 cos γ2
woraus

ρ = 4r sin α2 sin β2 sin γ2
folgt. Es muss also bewiesen werden, dass

OH2 = 32r2 sin2 α

2 sin2 β

2 sin2 γ

2 − 4r2 cosα cos β cos γ

gilt. Man bestimmt die Katheten des rechtwinkligen Dreiecks, gebildet aus der Hypo-
tenuse OH und den beiden Katheten,

BO1 −BH1 = 4r sin α2 cos β2 sin γ2 − 2r cos β sin γ = m

ρ−HH1 = 4r sin α2 sin β2 sin γ2 − 2r cos β cos γ = n

und berechnet OH2 = m2 + n2: Nach Quadrieren der Ausdrücke für m und n und
Zusammenfassung ergibt sich

OH2 = 16r2 sin2 α

2 sin2 γ

2 − 16r2 sin α2 sin γ2 cos β
(

cos β2 sin γ + sin β2 cos γ
)

+ 4r2 cos2 β

Es ist
cos β2 sin γ + sin β2 cos γ = sin

(
β

2 + γ

)
= cos

(α
2 − γ

2

)
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und damit nach Anwendung des Additionstheorems für den Kosinus

OH2 = 16r2 sin2 α

2 sin2 γ

2 − 16r2 sin2 α

2 sin2 γ

2 cos β

− 16r2 sin α2 cos β2 sin γ2 cos γ2 cos β + 4r2 cos2 β

Mit cosβ = 1 − 2 sin2 β
2 folgt nach Fortlassen der gleichen Glieder und Zusammenfas-

sung

OH2 = 32r2 sin2 α

2 sin2 β

2 sin2 γ

2 + 4r2 cos β(cos β − sinα sin γ)

= 32r2 sin2 α

2 sin2 β

2 sin2 γ

2 + 4r2 cos β[− cos(α + γ) − sinα sin γ]

Mit Hilfe des Additionstheorems für den Kosinus folgt

OH2 = 32r2 sin2 α

2 sin2 β

2 sin2 γ

2 − 4r2 cosα cos β cos γ = 2ρ2 − 2rρ1

Schließlich folgt aus 1., 2. und 3.

OF 2 = 1
2(OM2 +OH2) − FH2 = 1

2r
2 − rρ+ ρ2 − rρ1 − 1

4r
2 + rρ1 =

(1
2r − ρ

)2

Diese Gleichung besagt, dass der Inkreis den Feuerbachschen Kreis von innen berührt;
denn die Zentrale FO ist gleich der Differenz der Radien, ihre Verlängerung geht durch
den Berührungspunkt.

Aufgabe 28. Man führe den Beweis für den Ankreis um den Punkt Oa mit den Radius
ρa.

Anleitung.
OaM

2 = r2 + 2rρa , OaH
2 = 2ρ2

a − 2rρ1

MH2 = r2 − 4rρ1 , FO2
a = 1

2(MO2
a +HO2

a) − FH2 =
(1

2r + ρa

)2

5 Punkte und Linien des Dreiecks in neuerer
Forschung

Die bisher behandelten Sätze und Beweise sind zum größten Teil seit langem Bestandteil
der elementaren Geometrie. Die moderne mathematische Forschung im neunzehnten
und zwanzigsten Jahrhundert bereicherte dieses Stoffgebiet durch eine große Zahl von
Entdeckungen interessanter Linien und Punkte des Dreiecks mit ihren Eigenschaften.
Einige von ihnen sollen im folgenden behandelt werden.
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5.1 Der Miquelsche Satz
Nimmt man auf jeder Seite eines gegebenen Dreiecks einen Punkt beliebig an und
zeichnet durch jede Ecke und die beiden Punkte, die auf den der Ecke benachbarten
Seiten liegen, Kreise, so gehen die drei Kreise durch einen Punkt, der Miquelscher Punkt
genannt wird (Abb. 37).

Abb. 37

Gegeben sei das Dreieck ABC; auf jeder Seite sei ein Punkt beliebig angenommen.
Diese Punkte bezeichnen wir mit A1, B1 und C1. Durch die Punkte A, C1, B1 durch
B, C1, A1 und durch C, A1, B1 sind Kreise gezeichnet. Es soll nun bewiesen werden,
dass die drei Kreise einander in einem Punkt schneiden.

Die beiden Kreise durch A, B1, C1 und durch B, A1, C1 schneiden einander in C1 und
P . AC1PB1 ist ein Sehnenviereck, und deshalb ist ∠C1PB1 = 180◦ − α. Ebenso gilt
∠C1PA1 = 180◦ − β. Es bleiben also für ∠A1PB1, der beide Winkel zu 360◦ ergänzt,

360◦ − (180◦ − α) − (180◦ − β) = α + β = 180◦ − γ

Das bedeutet aber, dass A1PB1C ein Sehnenviereck ist und der Kreis durch die Punkte
C, A1 und B1 auch durch P geht.
Verbindet man die Punkte A1, B1 und C1, so erhält man ein Miquelsches Dreieck.
Da die Punkte A1, B1 und C1 beliebig angenommen wurden, sind unbegrenzt viele
Miquelsche Punkte im Dreieck möglich.

Satz. Die Strecken, die den Miquelschen Punkt mit den drei Punkten A1, B1 und C1
verbinden, bilden mit den Dreiecksseiten gleiche Winkel.

Betrachtet man P als Schnittpunkt der beiden Kreise, die durch die Ecken des Dreiecks
A und B verlaufen, so ist ∠AB1P = 180◦−∠AC1P . Es ist ∠BC1P = 180◦−∠AC1P .
Folglich ist ∠AB1P = ∠BC1P . Da ∠BC1P = 180◦ − ∠BA1P und ∠CA1P =
180◦ − ∠BA1P ist, ist ∠BC1P = ∠CA1P .
Damit ist der Satz bewiesen.

Es sei ausdrücklich darauf hingewiesen, dass in diesem Beweis nicht vorausgesetzt wur-
de, dass die Punkte C, A1, P , B1 auf einem Kreis liegen. Aus der eben bewiesenen
Gleichheit der Winkel CA1P und AB1P folgt ∠CB1P +∠CA1P = 180◦ und daraus,
dass CA1PB1 ein Sehnenviereck ist. Dadurch wird der Satz, dass die drei Miquelschen
Kreise einander in einem Punkt schneiden, auf einem anderen Weg bewiesen.
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Zu einem Punkt P gehören unbegrenzt viele Miquelsche Dreiecke; denn man kann z.B.
jeden Punkt der Seite BC als Eckpunkt eines solchen Dreiecks wählen und die anderen
Ecken leicht bestimmen.
Bezeichnet man den Punkt auf BC mit A2, so hat man an PA2 in P den Winkel
180◦ − β als gegenüberliegenden Winkel zu β und Winkel 180◦ − γ als Gegenwinkel zu
γ anzutragen, um die Ecken B2 und C2 zu finden.
Ein Spezialfall liegt vor, wenn die Strecken PA1, PB1 und PC1 auf den entsprechenden
Dreiecksseiten senkrecht stehen. Dann nennt man das Dreieck A1B1C1 Fußpunktsdrei-
eck des Punktes P in Bezug auf das Dreieck ABC (Abb. 38).

Abb. 38

Alle dem Punkt P zugeordneten Miquelschen Dreiecke sind einander ähnlich.

Um diesen Satz zu beweisen, muss man zeigen, dass die genannten Dreiecke in den
entsprechenden Winkeln übereinstimmen. Es ist

∠BPC = α+ ∠C1A1B1

Beweis. ∠BPC = ∠BPA1 + ∠CPA1. Nun ist ∠BPA1 = ∠BC1A1 und ∠C1PA1 =
∠CB1A1 (Peripheriewinkel über demselben Bogen),

∠BC1A1 = ∠C1AA1 + ∠C1A1A, ∠CB1A1 = ∠B1AA1 + ∠B1A1A
(Außenwinkelsatz)

Addiert man diese Gleichungen, so erhält man ∠BPC = α+∠B1A1C1. Ebenso findet
man ∠CPA = β + ∠C1B1A1 und ∠APB = γ + ∠A1C1B1.

Aufgabe 28. Man beweise, dass diese Relationen auch gelten, wenn P außerhalb des
Dreiecks ABC liegt.

Aus den letzten drei Gleichungen lassen sich die Winkel der dem Punkt P zugeordneten
Miquelschen Dreiecke berechnen. Man erhält (i = 1, 2, ..., n)

∠BiAiCi = ∠BPC−α, ∠AiBiCi = ∠APC−β, ∠AiCiBi = ∠APB−γ,

Da die Winkel auf der rechten Seite des Gleichheitszeichens vom Dreieck ABC und
der Lage des Punktes P bestimmt werden, sind alle Miquelschen Dreiecke ähnlich, weil
sie in ihren Winkeln übereinstimmen.

Man kann zum Beweis der Gleichheit der Winkel der Miquelschen Dreiecke auch Teil-
winkel des Dreiecks ABC verwenden, die ebenfalls durch die Lage des Punktes P
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eindeutig bestimmt sind. So ist ∠B1C1P = α1 und ∠A1C1P = β2. Addiert man beide
Gleichungen, so erhält man ∠B1C1A1 = α1 + β2.
Diese Beziehung gilt für jede Lage des Punktes C1. Also sind alle Winkel AiCiBi

(i = 1, 2, ..., n) gleich. Das gleiche kann man für ∠AiBiCi und ∠BiAiCi zeigen.
Damit ist der Satz von der Ähnlichkeit der Miquelschen Dreiecke auf einem zweiten
Weg bewiesen.

Die Seiten des durch den Punkt P im Dreieck ABC bestimmten Fußpunktsdreiecks
lassen sich durch die Abstände des Punktes P von den Ecken A, B und C, durch die
entsprechenden Dreiecksseiten a, b, c und durch den Radius des dem Dreieck ABC
umgeschriebenen Kreises ausdrücken.
Da die Punkte A, B1, P , C1 auf einem Kreis liegen, dessen Durchmesser AP ist, gilt
B1C1 = AP sinα. Es ist a = 2r sinα und sinα = a

2r (2r ist der Durchmesser des dem
Dreieck ABC umgeschriebenen Kreises). Somit ergibt sich

B1C1 = AP · a
2r , A1C1 = BP · b

2r , A1B1 = CP · c
2r

Diese Relationen lassen sich in folgendem Satz zusammenfassen:

Jede Seite eines Miquelschen Fußpunktsdreiecks bezüglich des Punktes P ist dem Pro-
dukt proportional, das gebildet wird aus dem Abstand des Punktes P von der entspre-
chenden Ecke des Dreiecks ABC und der dieser Ecke gegenüberliegenden Dreiecksseite.

Aufgabe 29. Man prüfe an geeigneten Konstruktionen,
a) ob einer oder mehrere der Punkte A1, B1, C1 auf den Verlängerungen der Dreiecks-
seiten liegen können,
b) ob der Punkt P auch außerhalb des Dreiecks ABC liegen kann.

Aufgabe 30. Man beweise folgende Sätze:
a) Verbindet man die Mittelpunkte der drei Miquelschen Kreise, so ist das entsprechende
Dreieck M1M2M3 dem gegebenen Dreieck ABC ähnlich.
Anleitung. Man verwende zum Beweis den Satz von dem Zentriwinkel und den Peri-
pheriewinkeln über demselben Kreisbogen.

b) Sind die Abstände des Miquelschen Punktes P von den Ecken des Dreiecks ABC
gleich, so sind alle durch diesen Punkt bestimmten Miquelschen Dreiecke dem gege-
benen Dreieck ABC ähnlich. (Der Punkt P ist zugleich Mittelpunkt des dem Dreieck
umgeschriebenen Kreises.)
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5.2 Die Simsonsche Gerade

Abb. 39

Im Zusammenhang mit den Betrachtungen über den Miquelschen Punkt und seine
Eigenschaften steht eine besondere gerade Linie, die man erhält, wenn der Miquelsche
Punkt auf der Peripherie des Umkreises des Dreiecks ABC liegt. Sie heißt Simsonsche
Gerade. Man findet sie, wenn man von diesem besonders gelegenen Punkt P auf die
Dreiecksseiten Lote fällt. Ihre Fußpunkte bestimmen die Simsonsche Gerade (Abb. 39).

Um dies zu beweisen, wählt man auf dem Umkreis des Dreiecks ABC einen Punkt P
und fällt von ihm Lote auf die Dreiecksseiten: PA1, PB1, PC1. Für jedes Miquelsche
Dreieck A1B1C1 gilt die Relation ∠B1A1C1 = ∠BPC − α.
Nun liegt P auf dem Kreis durch A, B, C, und es ist ∠BPC = ∠BAC, also gleich
α. Folglich ist ∠B1A1C1 = α − α = 0◦, d.h., die Punkte A1, B1, C1 liegen auf einer
Geraden.

Aufgabe 31. Man bestätige folgende Behauptungen:
a) Fällt der Punkt P auf eine Ecke des Dreiecks ABC, so ist die zugehörige Simsonsche
Gerade die von der Ecke ausgehende Höhe des Dreiecks.

b) Ist der Punkt P der Endpunkt einen von einer Dreiecksecke gezogenen Durchmessers
des Umkreises, so ist die der Ecke gegenüberliegende Seite die zugehörige Simsonsche
Gerade.

c) Man beweise, dass die Fußpunkte der Lote, die man von einem Punkt des Umkreises
eines Dreiecks auf die Seiten desselben fällt, auf einer Geraden liegen, zuerst mit Hilfe
des Scheitelwinkelsatzes und dann unter Verwendung des Satzes von Menelaos.

Lösung der Aufgabe

1. Beweis. Man zeichnet außer dem Umkreis des Dreiecks ABC die Kreise mit den
Durchmessern AT , BT und CT und erhält vier Sehnenvierecke, in denen die gegen-
überliegenden Winkel zusammen 180◦ betragen. Dann sind

∠T1TT3 = ∠ATC = 180◦ − β = α + γ

Nun ist

∠T1TC = ∠CTT3 − (α + γ) und ∠T3TA = ∠CTT3 − (α + γ)

Daraus folgt
∠T1TC = ∠T3TA
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Abb. 6’

Diese Winkel werden in Abb. 6’ mit ε1 und ε2 bezeichnet. Weiter ist

ε1 = ∠T1T2C und ε2 = ∠T3T2A

(Peripheriewinkelsatz!). Beide Winkel haben den Scheitelpunkt T2 gemeinsam, ihre
Schenkel sind paarweise entgegengesetzt gerichtet. Zwei von ihnen liegen auf einer
Dreiecksseite AC. Dann müssen nach dem Scheitelwinkelsatz die Schenkel T1T2 und
T3T2 auch auf einer Geraden liegen.

2. Beweis. In allen bei folgendem Beweis benutzten Dreiecken liegt ein rechter Winkel.
Dann sind zwei Dreiecke ähnlich, wenn sie noch in einem spitzen Winkel übereinstim-
men.
Nach Abb. 6’ ist ε1 = ε2, wie oben bewiesen. Weiter ist φ1 = φ2 und ψ1 = ψ2 (als
Peripheriewinkel über demselben Bogen). Daraus folgt

△BTT1 ∼ △ATT2 (ψ1 = ψ2); dann ist TT1

TT2
= BT1

T2A

△CTT2 ∼ △BTT3 (φ1 = φ2); dann ist TT2

TT3
= CT2

T3B

△ATT3 ∼ △CTT1 (ε1 = ε2); dann ist TT3

TT1
= AT3

T1C

Durch Multiplikation der drei Proportionen erhält man

TT1 · TT2 · TT3

TT2 · TT3 · TT1
= BT1 · CT2 · AT3

T2A · T3B · T1C
= 1

Hier wurden die Maßzahlen der Seitenabschnitte des Dreiecks ABC verwendet, die
sämtlich positiv genommen wurden. Berücksichtigt man jedoch, dass der zweite Quoti-
ent das Produkt aus den Teilverhältnissen der Dreiecksseiten ist, die durch die Punkte
T1, T2 und T3 geteilt werden, und das Teilverhältnis AT3

T3B wegen der äußeren Teilung
das negative Vorzeichen erhält, so wird das Produkt -1.
Nach der Umkehrung des Satzes von Menelaos liegen T1, T2 und T3 auf einer Geraden.

5.3 Der Flächeninhalt des Miquelschen Fußpunktsdreiecks
Es soll bewiesen werden, dass der Flächeninhalt des Fußpunktsdreiecks eines Punktes P
im Dreieck ABC proportional ist der Potenz des Punktes P in Bezug auf den Umkreis
des Dreiecks ABC (Abb. 40).
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Zum Beweis verwendet man folgende Relationen:

∠BAC = ∠BB2C, ∠BPC = ∠PB2C +∠PCB2, ∠BPC = ∠B1A1C1 +α

Die Potenz des Punktes P in Bezug auf den Umkreis des Dreiecks lautet (r+MP )(r−
MP ) = r2 − MP 2. Der Flächeninhalt des Dreiecks ABC wird durch ∆ symbolisiert;
er beträgt

∆ = 2r2 sinα sin β sin γ

Abb. 40

Beweis. ∠BPC = ∠B1A1C1 + α = ∠BB2C + ∠B2CP
Also ist ∠B1A1C1 = ∠B2CP . Dann ist der Inhalt des Fußpunktsdreiecks A1B1C1

F = 1
2A1B1 · A1C1 sin∠B1A1C1 = 1

2PC sin γ · PB sin β sin∠B2CP

Nun ist im Dreieck PB2C
sin∠B2CP

sin∠BB2C
= PB2

PC

Daraus folgt sin∠B2CP = P B2
P C sinα; eingesetzt in den Wert für F ergibt sich

F = 1
2PB · PB2 sinα sin β sin γ

und wegen PB · PB2 = r2 −MP 2 ist

F = 1
2(r2 −MP 2) sinα sin β sin γ = r2 −MP 2

4r2 · ∆

Folgerung. Der Inhalt des Fußpunktsdreiecks eines Punktes in Bezug auf das Dreieck
ABC ist Null, wenn MP = r ist, also der Punkt auf der Peripherie des dem Dreieck
ABC umgeschriebenen Kreises liegt (Simsonsche Gerade!).

Aufgabe 32. Man überlege sich, wenn der Inhalt des Fußpunktsdreiecks in einem ge-
gebenen Dreieck ABC am größten wird. (Man betrachte MP dabei als veränderliche
Größe.)

Aufgabe 33. Man zeige, dass die Inhaltsformel für das Höhenfußpunktsdreieck mit der
oben berechneten übereinstimmt. (Man drücke die Potenz des Höhenschnittpunktes in
Bezug auf den Umkreis durch die entsprechenden Höhenabschnitte aus.)
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5.4 Der Lémoine-Grebesche Punkt
Um den Lémoineschen Punkt im Dreieck zu bestimmen, sind einige Vorbemerkungen
erforderlich. Im Dreieck ABC (Abb. 41) sind die Seitenhalbierenden AM1 und BM2
und die Winkelhalbierenden der Winkel α und β gezeichnet.

Abb. 41

Wird AM1 an der Halbierenden des Winkels α und BM2 an der Halbierenden des
Winkels β gespiegelt, so findet man die Spiegelbilder AN1 bzw. BN2. Für eine Sei-
tenhalbierende hat man den Ausdruck Mediane geprägt und die zu ihr bezüglich der
Winkelhalbierenden symmetrisch gelegene Ecktransversale Symmediane genannt.

Jede zur Seite BC parallele Strecke im Dreieck ABC wird durch die Seitenhalbierende
AM1 halbiert, so z.B. die Strecke ED. Spiegelt man das Dreieck AED zugleich mit
der Medianen AM1 an der Winkelhalbierenden wα, so erhält man das Dreieck AE ′D′,
in dem ∠AE ′D′ = β und ∠AD′E ′ = γ ist und D′E ′ durch die Symmediane halbiert
wird.
D′E ′ nennt man Antiparallele zu BC. Das Dreieck AD′E ′ ist dem Dreieck ABC
ähnlich. Hieraus wird ersichtlich, wie man die Symmedianen in einem Dreieck zeichnen
kann.

Satz. Die drei Symmedianen eines Dreiecks schneiden sich in einem Punkt.

Beweis. Für die Medianen eines Dreiecks, die sich in einem Punkt schneiden, gelten
nach dem Satz von Ceva die Relationen

a
2 · b

2 · c
2

a
2 · b

2 · c
2

= 1 oder sinα1 sin β1 sin γ1

sinα2 sin β2 sin γ2
= 1 (1,2)

Auch die Umkehrung des Satzes von Ceva wurde bereits bewiesen.
Da jede Symmediane durch Spiegelung der Mediane an der Halbierenden des Winkels
an der gleichen Ecke des Dreiecks entsteht, werden die Teilwinkel, in die jede Mediane
den Dreieckswinkel zerlegt, ebenfalls gespiegelt, d.h. in ihrer Lage vertauscht. Daher
gilt (2) auch für die drei Symmedianen, die einander in einem Punkt schneiden müssen.
Dieser Sachverhalt folgt im übrigen bereits aus der symmetrischen Lage der Medianen
und Symmedianen.

Der Schnittpunkt der Symmedianen des Dreiecks wird Lémoinescher oder Grebescher
Punkt genannt.

Satz. Die Abstände des Lémoineschen Punktes von den Seiten des Dreiecks sind den
zugehörigen Seiten proportional: (Abb. 42).

KA1 : KB1 : KC1 = a : b : c
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5.4 Der Lémoine-Grebesche Punkt

Bevor wir zum Beweis dieses Satzes kommen, soll ein Hilfssatz bewiesen werden.

Abb. 42

Hilfssatz. Die Abstände des Schwerpunktes eines Dreiecks von den Seiten sind den
zugehörigen Dreiecksseiten indirekt proportional.

Beweis. Jede Mediane teilt das Dreieck in zwei flächengleiche Teildreiecke (Beweis!).
Die drei Medianen teilen das Dreieck in drei flächengleiche Teildreiecke. Bezeichnet
man die Abstände des Schwerpunktes S von den Seiten des Dreiecks mit m1,m2,m3
so ergibt sich

a ·m1 = b ·m2 = c ·m3 = 2
3F

(F bedeutet den Inhalts des Dreiecks ABC). Daraus folgt

m1 : m2 = b : a oder m1 : m2 = 1
a

: 1
b

m2 : m3 = c : a oder m2 : m3 = 1
b

: 1
c

Daraus ergibt sich
m1 : m2 : m3 = 1

a
: 1
b

: 1
c

Nun kann der oben formulierte Satz bewiesen werden. Ist K der Lémoinesche Punkt,
so ist ∠SAC2 = ∠KAB1. Daher ist △ASC2 ∼ △AKB1; denn außer den gleichen
Winkeln liegt in jedem dieser Dreiecke ein rechter Winkel.
Folglich ist m3 : KB1 = AS : AK. Es ist ohne weiteres klar, dass △ASB2 ∼ △AKC1
ist (Beweis!).

Daraus folgt m2 : KC1 = AS : AK, und beide Proportionen liefern m2 : m3 = KC1 :
KB1. Nach dem Hilfssatz ist m2 : m3 = c : b. Durch Zusammenfassung der beiden
letzten Gleichungen erhält man KC1 : KB1 = c : b. Ebenso lässt sich zeigen, dass
KB1 : KA1 = b : a ist. Damit ist bewiesen, dass

KA1 : KB1 : KC1 = a : b : c

gilt.
Führt man den Proportionalitätsfaktor p ein, so ergeben sich folgende Gleichungen:

KA1 = p · a, KB1 = p · b, KC1 = p · c

Um p zu bestimmen, berechnet man den Inhalt des Dreiecks ABC. Es ist

2F = KA1 · a+KB1 · b+KC1 · c = p(a2 + b2 + c2)
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hieraus folgt

p = 2F
a2 + b2 + c2 und KA1 = a

2F
a2 + b2 + c2

Ebenso findet man KB1 und KC1.

Abb. 43

Aufgabe 34. Man beweise, dass im rechtwinkligen Drei-
eck der Lémoinesche Punkt die zur Hypotenuse gezo-
gene Höhe halbiert.
Anleitung. Man zeichne die Symmedianen von den
Scheiteln der spitzen Winkel.

Satz. Der Lémoinesche Punkt ist der Schwerpunkt
seines eigenen Fußpunktsdreiecks (Abb. 43).

Hilfssatz. Im Dreieck ABC steht die Seitenhalbierende
AD senkrecht auf der Seite B1C1 des Fußpunktsdrei-
ecks des Punktes K.

Beweis. Die Punkte A, C1, K, B1 liegen auf dem Kreis mit dem Durchmesser AK.
Daher ist ∠AB1C1 = ∠AKC1. Außer diesen Winkeln sind in den Dreiecken AB1P
und AKC1 die Winkel KAC1 und PAB1 einander gleich, weil die Mediane AD mit
der Seite b und die Symmediane mit der Seite c gleiche Winkel bilden. Folglich ist
△PAB1 ∼ △KAC1 und daher ∠APB1 = ∠AC1K = 90◦.

Beweis des Satzes.
AD wird überD hinaus um sich selbst verlängert bis zum Punkt A′. Dann ist AB ∥ CA′

und AB = CA′. Es ist △ACA′ ∼ △B1KC1, weil beide Dreiecke in den Winkeln über-
einstimmen. Die Winkel sind gleich, weil ihre Schenkel paarweise senkrecht aufeinander
stehen.
Aus der Ähnlichkeit der Dreiecke folgt KB1 : KC1 = AC : AB. (Damit ist auf einem
zweiten Wege der Lehrsatz bewiesen, nach dem die Abstände des Punktes K von den
Dreiecksseiten den zugehörigen Seiten proportional sind.) In beiden ähnlichen Dreiecken
stehen entsprechende Seiten senkrecht aufeinander.

Auch entsprechende Strecken in den Dreiecken befinden sich in der gleichen Lage zuein-
ander. So steht auf der Seitenhalbierenden CD des Dreiecks ACA′ die Strecke A1A2
senkrecht. Daher muss KA2 Seitenhalbierende im Dreieck B1KC1 und A1KA2 eine
solche im Dreieck A1B1C1 sein. Die beiden anderen Seitenhalbierenden im Dreieck
A1B1C1 sind B1K und C1K und daher ist K der Schwerpunkt des Fußpunktsdreiecks
des Punktes K.

5.5 Der Nagelsche Punkt
Zeichnet man im Dreieck ABC die Ecktransversalen nach den Punkten, in denen die
drei Ankreise die Dreiecksseiten berühren, so schneiden sie einander in einem Punkt,
der Nagelscher Punkt genannt wird.
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Abb. 44

Der Beweis wurde als Aufgabe gestellt (Aufgabe 9b).
Die von A, B, C einander folgenden, durch die Berührungspunkte der Ankreise erzeug-
ten Seitenabschnitte sind: s− b, s−a, s− c s− b, s−a, s− c (Abb. 44). Der Quotient
aus den Produkten der alternierenden Abschnitte ist

(s− b)(s− c)(s− a)
(s− a)(s− b)(s− c) = 1

Nach der Umkehrung des Satzes von Ceva schneiden die drei Ecktransversalen nach
den Berührungspunkten der Ankreise auf den Gegenseiten im Dreieck einander in einem
Punkt.

Der Nagelsche Punkt steht in besonderer Beziehung zum Mittelpunkt O des dem Drei-
eck ABC eingeschriebenen Kreises sowie zum Schwerpunkt S des Dreiecks.
Die drei Punkte liegen auf einer Geraden, und die Strecke ON wird durch S im Ver-
hältnis 1 : 2 geteilt (Abb. 45).

Abb. 45

Um diese Behauptung zu beweisen, zeigt man zunächst, dass △AHD ∼ △OEA1 ist.
Der Inhalt des Dreiecks ABC ist

F = ρs = 1
2a · ha

Wegen ρ = OE und ha = AH ergibt sich OE = F
s und AH = 2F

a . Daraus folgt

AH

OE
= 2s

a
(1)

Wir bilden nun das Verhältnis HD
EA1

. Es ist EA1 = a
2 − (s− b) = b−c

2 , HD = BD−BH

und BD = s−c. Nach dem allgemeinen Satz des Pythagoras ist b2 = a2 +c2 −2a ·BH
und damit BH = a2+c2−b2

2a . Dann ist

HD = s− c− a2 + c2 − b2

2a = s(b− c)
a

also HD

EA1
= 2s

a
(2)
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5.5 Der Nagelsche Punkt

Aus (1) und (2) ergibt sich AH
OE = HD

EA1
, d.h., in den Dreiecken AHD und OEA1 sind

je zwei Seiten proportional: ∠AHD = ∠OEA1 = 90◦. Folglich sind beide Dreiecke
ähnlich, und es gilt AD ∥ OA1.

Es soll nun gezeigt werden, dass AN
AD = a

s ist (Abb. 45). Im Beweis wird BD = s − c,
AG = s−c und CG = s−a gesetzt und berücksichtigt, dass sin∠ANB = sin∠DNB
sowie sin∠AGB = sin∠CGB ist. Im Dreieck ABN ist AN : c = sinφ : sin∠ANB,
und im Dreieck DBN ist DN : (s− c) = sinψ : sin∠ANB.
Daraus folgt

AN · (s− c)
DN · c

= sinφ
sinψ

Im Dreieck ABG ist (s − c) : c = sinφ : sin∠AGB, und im Dreieck CBG ist
(s− a) : a = sinψ : sin∠AGB. Daraus folgt

(s− c) · a
(s− a) · c

= sinφ
sinψ

Somit erhält man AN
DN = a

s−a und weiter AN
AN+DN = a

s oder AN
AD = a

s . Aus den Bezie-
hungen AD : OA1 = 2s : a und AN : AD = a : s ergibt sich AN : OA1 = 2 : 1.
Verbindet man O mit N und zeichnet die Seitenhalbierende AA1, so ist der Schnitt-
punkt S beider Geraden Scheitel eines Strahlenbüschels, in dem die Parallelenabschnitte
der Schneidenden des Büschels sich wie 2: 1 verhalten. Daher ist auch AS : SA1 =
2 : 1. Also ist S der Schnittpunkt der Seitenhalbierenden des Dreiecks ABC, er liegt
ebenfalls auf der Geraden ON und teilt diese Strecke im Verhältnis 1 : 2.

Verbindet man die Mitten A1, B1, C1 der Seiten des Dreiecks ABC, so erhält man
das Dreieck A1B1C1, das dem Dreieck ABC ähnlich ist. Beide Dreiecke befinden sich
in Ähnlichkeitslage mit S als Ähnlichkeitspunkt.
Entsprechende Ecken und andere Punkte, die für beide Dreiecke die gleiche Bedeutung
haben, liegen auf Ähnlichkeitsstrahlen. Das Ähnlichkeitsverhältnis ist 2 : 1.
Nun liegen N , S und O auf einer Geraden, und es ist NS : SO = 2 : 1. Ist N der
Nagelscher Punkt im Dreieck ABC, so ist O Nagelscher Punkt im Dreieck A1B1C1.
Wir können somit folgenden Satz aussprechen:

Der Mittelpunkt des dem Dreieck ABC eingeschriebenen Kreises ist zugleich der Na-
gelsche Punkt in dem Dreieck, dessen Ecken in den Mitten der Seiten des Dreiecks
ABC liegen.

Halbiert man die Abschnitte der Ecktransversalen von den Ecken des Dreiecks ABC
bis zum Nagelschen Punkt und verbindet die Mittelpunkte, so erhält man das Dreieck
A2B2C2 das dem Dreieck A1B1C1 kongruent ist. Beide Dreiecke sind dem Dreieck
ABC ähnlich. Je zwei von den drei Dreiecken befinden sich in Ähnlichkeitslage (Abb.
46).

Aufgabe 35. Man bestimme Ähnlichkeitspunkt und Verhältnis entsprechender Strecken:
a) der Dreiecke ABC und A1B1C1, b) der Dreiecke ABC und A2B2C2, c) der Dreiecke
A1B1C1 und A2B2C2.
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Abb. 46

5.6 Der Spiekersche Kreis
Wir betrachten die Dreiecke A1B1C1 und A2B2C2 (Abb. 47).
Beide Dreiecke sind kongruent (SSS) und somit auch ähnlich mit dem Ähnlichkeitsver-
hältnis 1 : 1. Da die entsprechenden Seiten parallel sind, befinden sich beide Dreiecke
in Ähnlichkeitslage.

Abb. 47

Die Verbindungsstrecken entsprechender Ecken A1 und A2, B1 und B2, C1 und C2
schneiden einander im Ähnlichkeitspunkt, den wir mit T bezeichnen wollen. Er halbiert
die genannten Strecken. Da auch die Verbindungsstrecke der Nagelschen Punkte O
und N beider Dreiecke durch T halbiert wird und S diese Strecke im Verhältnis 1 : 2
teilt, erhält man die Proportionen (Abb. 48) OS : SN = 1 : 2, OT : TN = 1 : 1,
OS : ST = 2 : 1 und NT : NO = 1 : 2.

Abb. 48

Ist S Ähnlichkeitspunkt der Dreiecke ABC und A1B1C1 und gilt OS : ST = 2 : 1,
so hat T für das Dreieck A1B1C1 die gleiche Bedeutung wie O für das Dreieck ABC.
Also ist T Mittelpunkt des dem Dreieck A1B1C1 eingeschriebenen Kreises.

Betrachtet man N als Ähnlichkeitspunkt der Dreiecke ABC und A2B2C2 und die Pro-
portion NO : NT = 2 : 1, so folgt, dass T auch Mittelpunkt des Inkreises des Dreiecks
A2B2C2 ist.

Da in den kongruenten Dreiecken die Inkreisradien als entsprechende Strecken gleich
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sind, haben beide Dreiecke einen gemeinsamen eingeschriebenen Kreis. Je zwei Berüh-
rungspunkte des Kreises auf den entsprechenden Seiten liegen auf einem Ähnlichkeitss-
trahl, der durch T halbiert wird. Dieser gemeinsame Inkreis wird Spiekerscher Kreis
genannt.

Aufgabe 36. Man zeige, dass man T auch finden kann, wenn man durch A1 die Parallele
zu AO zeichnet. Man benutze hierzu den Zweistrahl durch S, der durch die Parallelen
geschnitten wird, und beweise in diesem Zusammenhang, dass A1T die Halbierende
des Winkels B1A1C1 ist.

Aufgabe 37. Man beweise, dass die Strecken NE, B2C2 und OA1 einander in einem
Punkt schneiden.

Anleitung. Man betrachte NE als Ähnlichkeitsstrahl durch zwei entsprechende Berüh-
rungspunkte der Inkreise und beachte, dass der Zweistrahl EN und ED durch die
Parallelen OA1 und AD geschnitten wird, wobei EA1 = A1D ist.

5.7 Der Brocardsche Punkt
Ein Brocardscher Punkt wird wie folgt konstruiert:

Gegeben sei das Dreieck ABC. Durch die Punkte A und B wird der Kreis k1 gezeichnet,
der AC als Tangente hat, durch B und C der Kreis k2 mit BA als Tangente und durch
C und A der Kreis k3 mit OB als Tangente. Die drei Kreise haben einen gemeinsamen
Schnittpunkt, den Brocardschen Punkt (Abb. 49).

Abb. 49

Im Dreieck ABC gibt es noch einen weiteren Brocardschen Punkt. Man erhält ihn,
wenn BC Tangente an k1, CA Tangente an k2 und AB Tangente an k3 ist.
Zu beweisen ist, dass die drei Kreise einander in einem Punkt schneiden.

Die Kreise k1 und k2 schneiden einander in den Punkten Ω und B. Der Sehnentangen-
tenwinkel CAΩ ist gleich dem Peripheriewinkel ABΩ. Dieser ist im Kreis k2 Sehnentan-
gentenwinkel und gleich dem Peripheriewinkel BCΩ. Daraus folgt ∠CAΩ = ∠BCΩ.
Der Kreis, der durch C und Ω so gezeichnet wird, dass BC Tangente wird, hat ∠BCΩ
als Sehnentangentenwinkel und muss wegen der Gleichheit der Winkel BCΩ und CAΩ
durch den Punkt A gehen und daher mit dem Kreis k3 identisch sein.
Damit ist bewiesen, dass sich die drei Brocardscher Kreise in einem Punkt schneiden.

Die drei gleichen Winkel heißen Brocardsche Winkel und werden mit ω bezeichnet.
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5.7 Der Brocardsche Punkt

Ein zweiter Beweis des soeben formulierten Problems stützt sich auf den Miquelschen
Satz (Abb. 37). Darin wird ausgesagt, dass die Kreise durch A1, B1, C1, durch B, C1,
A1 und durch C, A1, B1 einander in einem Punkt schneiden.
Denkt man sich die Punkte A1, B1 und C1 auf den Seiten des Dreiecks so verschoben,
dass A1 mit C, B1 mit A und C1 mit B zusammenfallen, so muss der Kreis durch A,
B1, C1 die Seite AC, der Kreis durch B, C1, A1 die Seite BA und der Kreis durch C,
A1, B1 die Seite CB zur Tangente haben. Für die Miquelschen Kreise ist bewiesen,
dass sie einander in einem Punkt schneiden.
Da sie in diesem Fall zugleich Brocardsche Kreise darstellen, gilt diese Aussage auch
für Sie.

Aufgabe 38. Man konstruiere in einem gegebenen Dreieck ABC den Brocardschen
Punkt. (Die Lösung der Aufgabe ergibt sich aus der Definition des Brocardschen Punk-
tes.)

Abb. 50

Zu einer zweiten Konstruktion des Brocardschen Punktes führt folgende Überlegung
(Abb. 50).
Gegeben seien das Dreieck ABC und der Brocardsche Punkt Ω; weiter sei ∠ΩBC = ω.
Durch A ist die Parallele zu BC gezeichnet und BΩ über Ω hinaus bis zum Schnitt
mit der Parallelen verlängert. Der Schnittpunkt P ist mit C verbunden, und durch A,
Ω, C ist der Brocardsche Kreis k3 gezeichnet.

Es ist ∠APB = ω (Beweis!) und ∠ACΩ = ω. Also gilt ∠APΩ = ∠ACΩ, und P muss
auf dem Brocardschen Kreis k3 liegen (Satz von den Peripheriewinkeln). Da ferner AB
Tangente an den Brocardschen Kreis k3 ist, ist ∠APC = α (Sehnentangentenwinkel-
satz). Weiter ist ∠CAP = γ. Dann muss ∠ACP = β sein.
Aus der Lagebeziehung dieses Winkels zu dem Peripheriewinkel β im Umkreis des Drei-
ecks ABC folgt, dass CP Tangente an diesen Kreis im Punkt C ist. Somit kann P
auch durch diese Tangente und die Parallele durch A zu BC gefunden werden, und Ω
lässt sich dann leicht ermitteln.

Aufgabe 39. Man konstruiere in Anlehnung an die obigen Ausführungen den Brocard-
schen Punkt im Dreieck ABC.
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5.8 Der Brocardsche Winkel
Der Brocardsche Winkel ist in jedem Dreieck eindeutig bestimmt; denn er lässt sich als
Funktion der Winkel oder der Seiten des gegebenen Dreiecks darstellen. Aus Abb. 50
folgt

cotω = cotα+ cot β + cot γ

Im Dreieck BLP ist cotω = BL
P L . Und wegen BL = BH +HC +CL und AH = PL

ist
cotω = BH

AH
+ CH

AH
+ CL

PL
= cos β + cot γ + cotα

(Man beweise, dass ∠PCL = α ist.)
cotω lässt sich auch durch die Seiten und den Flächeninhalt des Dreiecks ABC aus-
drücken.
Der Kosinussatz liefert die Gleichungen

2bc · cosα = b2 + c2 − a2

2ca · cos β = c2 + a2 − b2

2ab · cos γ = a2 + b2 − c2

Werden diese Gleichungen addiert, die Summanden auf der linken Seite der Gleichung
der Reihe nach mit sinα, sin β bzw. sin γ erweitert und der Flächeninhalt des Dreiecks
ABC mit ∆ bezeichnet, so erhält man

2bc · sinα cosα
sinα + 2ca · sin β cos β

sin β + 2ab · sin γ cos γ
sin γ

= 4∆ · cotα+ 4∆ · cot β + 4∆ · cot γ = a2 + b2 + c2

Also ist
cotα+ cot β + cot γ = a2 + b2 + c2

4∆
und damit

cotω = a2 + b2 + c2

4∆

5.9 Zwei Dreiecke zum Brocardschen Punkt

Abb. 51
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5.10 Die Brocardschen Fußpunktsdreiecke

Verlängert man die Brocardschen Strecken AΩ, BΩ und CΩ über Ω hinaus bis zum
Schnitt mit dem Umkreis des Dreiecks ABC, so ist das durch A1B1C1 bestimmte
Dreieck dem gegebenen Dreieck kongruent, und der Brocardsche Punkt im Dreieck
ABC entspricht dem Punkt Ω′ im Dreieck A1B1C1 (Abb. 51).

Aufgabe 40. Man beweise die Kongruenz der Dreiecke ABC und A1B1C1.

Anleitung. Die Bogen AA1, BB1, CC1 sind einander gleich. Dann ist AA1A1AB =
BB1 + A1B und daher AB = A1B1 usw.

Aufgabe 41. Man beweise die folgenden Relationen

a) ∠AΩA1 = α, ∠A1ΩB = γ, ∠BΩB1 = β

b) BΩ = AB
sin β sinω,

c) BΩ
CΩ = c2

ab = sin(γ−ω)
sin ω

d) W3A
W3B = b sin ω

a sin(γ−ω) =
(

b
c

)2

5.10 Die Brocardschen Fußpunktsdreiecke
Fällt man vom Brocardschen Punkt Ω Lote auf die Seiten des Dreiecks, so sind die
Fußpunkte der Lote Ecken einem Brocardschen Fußpunktsdreiecks. Es gibt zwei solcher
Fußpunktsdreiecke, nämlich das zum Punkt Ω und das zum Punkt Ω′ gehörige.
Das Brocardsche Fußpunktsdreieck Q1Q2Q3 ist dem gegebenen Dreieck ABC ähnlich
(Abb. 52).

1. Beweis. Aus der Ähnlichkeit gleichliegender Teildreiecke folgt die Ähnlichkeit der
ganzen Dreiecke. Zum Beweis werden die drei Sehnenvierecke AQ1ΩQ3, BQ2ΩQ1 und
CQ3ΩQ2 benutzt.
Wegen ∠Q1Q3Ω = ∠Q1AΩ und ∠ACΩ = ω muss auch ∠Q1Q3Ω = ∠ACΩ sein.
Ferner ist ∠Q3Q1Ω = ∠Q3AΩ. Also ist △Q1Q3Ω ∼ △ACΩ (WW).

Abb. 52

Entsprechend beweist man, dass △Q2Q1Ω ∼ △BAΩ und △Q3Q2Ω ∼ △CBΩ ist.
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5.10 Die Brocardschen Fußpunktsdreiecke

Daraus folgt △Q1Q2Q3 ∼ △ABC.

2. Beweis. Es ist ∠Q3Q1Ω = ∠Q3AΩ = α − ω und ∠Q2Q1Ω = ∠Q2BΩ = ω; die
Addition ergibt ∠Q3Q1Q2 = α.

Ebenso beweist man die Relationen ∠Q1Q2Q3 = β und ∠Q2Q3Q1 = γ, woraus die
Ähnlichkeit der Dreiecke Q1Q2Q3 und ABC folgt (WW). Das Ähnlichkeitsverhältnis
ist sinω : 1. Im rechtwinkligen Dreieck AQ1Ω ist Q1Ω : AΩ = sinω. Dreht man Drei-
eck Q1Q2Q3 um Ω im Uhrzeigersinn, bis Q1 auf AΩ fällt, so liegen Q2 auf ΩB und Q3
auf ΩC; denn jeder Strahl ΩQi (i = 1, 2, 3) hat sich um den Winkel 90◦ − ω gedreht.
Beide Dreiecke befinden sich nun in Ähnlichkeitslage mit Ω als Ähnlichkeitspunkt, und
es gilt ΩQ1 : ΩA = Q1Q2 : AB = sinω : 1.

Aus der Ähnlichkeitslage beider Dreiecke folgt weiter, dass ∠Q1Q3Ω = ∠Q2Q1Ω =
∠Q3Q2Ω = ω ist. Die Dreiecke ABC und Q1Q2Q3 haben demnach den Brocardschen
Punkt Ω gemeinsam.

Sämtliche zwischen den Dreiecken Q1Q2Q3 und ABC bewiesenen Relationen lassen
sich auf die Dreiecke Q′

1Q
′
2Q

′
3 und ABC übertragen, deren Ähnlichkeitszentrum Ω ist.

Aus dem gleichen Ähnlichkeitsverhältnis der entsprechenden Dreiecksseiten in beiden
Fällen folgt die Kongruenz der Dreiecke Q1Q2Q3 und Q′

1Q
′
2Q

′
3. In kongruenten Dreie-

cken sind als entsprechende Strecken die Radien der Umkreise gleich, und man erhält
r1 = r2 = r sinω, wobei r den Radius des dem Dreieck ABC umgeschriebenen Kreises
bezeichnet.
Bezeichnet man mit M1 den Mittelpunkt des Umkreises des Dreiecks Q1Q2Q3 und mit
M2 den Mittelpunkt des Umkreises des Dreiecks Q′

1Q
′
2Q

′
3, so gilt

M1Q1 = M2Q
′
2 = M1Q2 = M2Q

′
3 = M1Q3 = M2Q

′
1

Zieht man die Mittelsenkrechten der Strecken Q1Q
′
2, Q2Q

′
3 und Q3Q

′
1, so schneiden

diese einander im Mittelpunkt M ′ der Strecke ΩΩ′, und man erhält die Relationen

M ′Q1 = M ′Q′
2, M ′Q2 = M ′Q′

3, M ′Q3 = M ′Q′
1

Daraus und aus den vorher ermittelten Gleichungen folgt, dass die Punkte M1, M2 und
M ′ identisch sind.
M ′ ist also Mittelpunkt des Kreises, der beiden Dreiecken Q1Q2Q3 und Q′

1Q
′
2Q

′
3 zu-

gleich umgeschrieben ist. Dann ist Dreieck MΩΩ′ gleichschenklig mit dem Winkel 2ω
an der Spitze und den Basiswinkeln 90◦ − ω.

Verbindet man Q3 mit Q′
2, so läuft diese Strecke der Seite BC parallel, denn ∠AQ′

2Q3
ist gleich dem Winkel ABC. Im Sehnenviereck Q3Q

′
2Q1Q2 ist nämlich ∠Q3Q

′
2Q1 =

180◦ − β und daher ∠AQ′
2Q3 = β. Die Ecktransversale von A durch den Mittelpunkt

von Q3Q
′
2 ist eine Mediane des Dreiecks ABC.

Verbindet man jedoch Q1 mit Q′
1, so ist diese Strecke antiparallel zu BC; denn

∠AQ′
1Q1 = β und ∠AQ1Q

′
1 = γ. Im Sehnenviereck Q1Q

′
1Q3Q2 ist ∠Q1Q

′
1Q3 =

180◦ − β, also ∠AQ′
1Q1 = β.
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Die Ecktransversale von A durch den Mittelpunkt der Strecke Q1Q
′
1 ist eine Symme-

diane und geht durch den Lemoine-Grebeschen Punkt des Dreiecks ABC.

5.11 Die Lémoineschen Kreise
Der Lémoinesche Punkt ist der Schnittpunkt der von den Ecken des Dreiecks ABC
gezogenen Symmedianen. Sie halbieren alle zu den Gegenseiten gezogenen Antiparal-
lelen.
Zeichnet man nun durch den Lémoineschen Punkt K die Antiparallelen zu den Drei-
ecksseiten, so bestimmen ihre Schnittpunkte mit den Seiten des Dreiecks einen Kreis,
dessen Mittelpunkt der Lémoinesche Punkt K ist (Abb. 53).

Abb. 53

PiQi (i = 1, 2, 3) sind die drei Antiparallelen durch den PunktK, der jede von ihnen hal-
biert. Auf Grund der Definition der Antiparallelen ist ∠KP2Q3 = α und ∠KQ3P2 = α,
also Dreieck KP2Q3 gleichschenklig und dem Dreieck KQ2P3 kongruent (SWS). Das
Viereck Q2P3P2Q3 ist wegen der Gleichheit der einander halbierenden Diagonalen P2Q2
und P3Q3 ein Rechteck. Seine Eckpunkte liegen auf dem Kreis, dessen Mittelpunkt K
ist.

Aufgabe 42. Man beweise, dass auch P1 und Q1 auf demselben Kreis liegen.

Aufgabe 43. Man beweise, dass P3P2 und Q2Q3 senkrecht auf BC, P1P3 und Q3Q1
senkrecht auf CA und P2P1 und Q1Q2 senkrecht auf AB stehen.

Im Dreieck P3Q3P2 ist P2Q3 = P3Q3 cosα = d cosα; dabei bezeichnet d den Durch-
messer des Lémoineschen Kreises. Ebenso findet man P3Q1 = d cos β und P1Q2 =
d cos γ. Aus diesen Gleichungen folgt

P2Q3 : P3Q1 : P1Q2 = cosα : cos β : cos γ

Die vom Lémoineschen Kreis aus den Seiten des Dreiecks ABC herausgeschnittenen
Sehnen sind den Kosinusfunktionen der gegenüberliegenden Dreieckswinkel proportio-
nal. Daher wird dieser Lémoinesche Kreis auch "Kosinuskreis" genannt.

Verbindet man alle Pi, ebenso alle Qi (i = 1, 2, 3), so entstehen zwei Dreiecke P1P2P3
und Q1Q2Q3 (Abb. 54), die beide dem Dreieck ABC ähnlich sind (WW); denn die
Schenkel jedes ihrer Winkel stehen auf zwei Seiten des Dreiecks ABC senkrecht.
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Abb. 54

Also ist ∠P3P1P2 = α, ∠P1P2P3 = β und ∠P2P3P1 = γ sowie ∠Q3Q1Q2 = α,
∠Q1Q2Q3 = β und ∠Q2Q3Q1 = γ (Beweis!).
Ähnlichkeitszentrum der Dreiecke P1P2P3 und Q1Q2Q3 ist K. Wählt man K als Dreh-
zentrum und dreht eines der beiden Dreiecke um 180◦, so werden beide zur Deckung
gebracht (Beweis!), sind also kongruent.

Eine merkwürdige Eigenschaft besitzt sowohl Dreieck P1P2P3 als auch DreieckQ1Q2Q3.
Der Miquelsche Punkt des Dreiecks ABC, der durch die Punkte P1, P2 und P3 be-
stimmt wird, ist sowohl Brocardscher Punkt für das Dreieck P1P2P3 als auch für das
Dreieck ABC.

Beweis. Die Miquelschen Kreise haben AP1, BP2 bzw. CP3 als Durchmesser (Thales-
Kreise), und jede Seite des Dreiecks P1P2P3 ist Tangente an einen der drei Miquelschen
Kreise.
Daher schneiden die Kreise einander im Brocardschen Punkt Ω des Dreiecks P1P2P3.
∠P2P1Ω, ∠P3P2Ω und ∠P1P3Ω sind die Brocardschen Winkel ω.
Verbindet man Ω mit A, so ist ∠P1ΩA = 90◦ (Thales-Satz) und ∠P2P1Ω = ∠P1AΩ,
weil beide den ∠AP1Ω zu 90◦ ergänzen. Also ist ∠P1AΩ = ω.
Entsprechend findet man leicht, dass ∠P2BΩ = ω und ∠P3CΩ = ω und daher Ω
auch Brocardscher Punkt des Dreiecks ABC ist.

Der Punkt Ω ist Ähnlichkeitszentrum der Dreiecke ABC und P1P2P3. Wählt man Ω als
Drehzentrum und dreht Dreieck P1P2P3 im Sinne des Uhrzeigers um den Winkel von
90◦, so bringt man beide Dreiecke in Ähnlichkeitslage. Entsprechende Punkte liegen
auf demselben Ähnlichkeitsstrahl, also die Ecken A und P1, B und P2 und C und P3,
ferner die Mittel punkte der Umkreise beider Dreiecke M und K.

Abb. 55

Das Ähnlichkeitsverhältnis kann mit Hilfe des bei Ω rechtwinkligen Dreiecks ΩP1A mit
∠P1AΩ = ω bestimmt werden, in dem die beiden Strecken ΩA und ΩP1 Katheten
sind.
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Es besteht die Beziehung P1Ω : AΩ = tanω : 1 oder P1Ω = AΩ · tanω, ebenso gilt
KΩ = MΩ · tanω (Abb. 55).
Aus dieser letzten Gleichung folgt, da ∠KΩM = 90◦ ist, ∠KMΩ = ω.

Werden diese Ausführungen auf die Dreiecke ABC und Q1Q2Q3 übertragen, so er-
hält man entsprechende Relationen und den zweiten Brocardschen Punkt Ω′. Es ist
∠KΩ′M = 90◦, KΩ′ = MΩ′ · tanω, ∠KMΩ′ = ω, also ∠ΩMΩ′ = 2ω.
Ist r Radius des Umkreises des Dreiecks ABC, so ist r ·tanω Radius des Lémoineschen
Kreises.

Aus Abb. 55 folgt, dass die Brocardschen Punkte eines Dreiecks auf der Peripherie des
Kreises liegen, der die Strecke KM als Durchmesser hat. Er wird Brocardscher Kreis
genannt. Die Punkte Ω und Ω′ liegen symmetrisch zum Durchmesser KM , der die
Verbindungsstrecke ΩΩ′ in M ′ halbiert und senkrecht auf ihr steht.
Es ist also ΩM ′ = ΩM · sinω und Ω′M ′ = Ω′M · sinω. Somit sind M ′ und M ho-
mologe Punkte in den Brocardschen Fußpunktsdreiecken Q1Q2Q3, Q′

1Q
′
2Q

′
3 und dem

diesen ähnlichen Dreieck ABC. Da M der Mittelpunkt des dem Dreieck ABC umge-
schriebenen Kreises ist, haben die beiden kongruenten Fußpunktsdreiecke bezüglich der
Brocardschen Punkte einen gemeinsamen Umkreis mit dem Mittelpunkt M ′. Damit ist
der noch ausstehende Beweis erbracht.

Abb. 56

Ein anderer Lémoinescher Kreis wird nach folgender Vorschrift konstruiert (Abb. 56):
Durch den Lémoineschen Punkt K des Dreiecks ABC werden Parallele zu den Seiten
gezeichnet. Ihre Schnittpunkte mit den Dreiecksseiten werden mit PiQi (i = 1, 2, 3)
bezeichnet.
Sie liegen auf einem Kreis, dessen Mittelpunkt M1 die Strecke halbiert, die den Punkt
K mit dem Mittelpunkt M des dem Dreieck ABC umgeschriebenen Kreises verbindet.

Zunächst wird bewiesen, dass P3Q2 und BC, P1Q3 und AC, P2Q1 und AB antiparallel
sind. Die Ecktransversalen des Dreiecks ABC, die einander in dem . Lémoineschen
Punkt K schneiden, halbieren alle Antiparallelen zu den Dreiecksseiten, die den Ecken
gegenüberliegen, von denen die Transversalen ausgehen.
Daher muss z.B. die Strecke P3Q2, die als Diagonale im Parallelogramm AP3KQ2
durch die Diagonale AK halbiert wird, zur Seite BC antiparallel sein. Das gleiche folgt
leicht für P1Q3 und CA sowie für P2Q1 und AB.
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5.11 Die Lémoineschen Kreise

Die antiparallelen Strecken P3Q2, P1Q3 und P2Q1 sind dem Radius des im letzten
Abschnitt behandelten Lémoineschen Kreises gleich, dessen Mittelpunkt der Punkt K
ist. Die Antiparallelen durch K sind Durchmesser dieses Kreises.
Nach dem Strahlensatz verhält sich z.B. die Strecke P3Q2 zu dem ihr parallelen Durch-
messer wie 1:2. Entsprechendes gilt auch für P1Q3 und P2Q1. Also ist jede dieser
Antiparallelen gleich dem Radius des Lémoineschen Kreises mit K als Mittelpunkt, d.
h.

P3Q2 = P1Q3 = P2Q1 = r1

Nun soll bewiesen werden, dass die Punkte PiQi (i = 1, 2, 3) auf einem Kreis liegen. Da
P3Q2 antiparallel zu BC verläuft, ist ∠AQ2P3 = γ, dann ist ∠Q2P3K = γ; (Winkel
an Parallelen) und ∠P1Q2P3 = α+ β (Nebenwinkelsatz).
Ebenso lässt sich mit Hilfe von P1Q3, antiparallel zu CA, zeigen, dass ∠P1Q3K = γ
und ∠Q3P1Q2 = α+ β ist.
Da die Summen der gegenüberliegenden Winkel im Viereck P3Q2P1Q3 180◦ betragen,
ist das betrachtete Viereck ein Sehnenviereck, und seine Eckpunkte liegen auf einem
Kreis. Nun lässt sich leicht beweisen, dass auch Q2P1Q3P2 sowie P1Q2P3Q1 auf dem
gleichen Kreis liegen.

Aufgabe 44. Man beweise, dass die gegenüberliegenden Winkel in beiden Vierecken
180◦ betragen.

Liegen die Punkte PiQi (i = 1, 2, 3) auf einem Kreis, so haben die Mitten der glei-
chen Sehnen P3Q2, P1Q3 und P2Q1 gleiche Abstände vom Mittelpunkt dieses Kreises.
Die Mittelpunkte der drei Sehnen liegen somit auf einem Kreis, der zum ersten Kreis
konzentrisch ist.
Den Mittelpunkt der beiden Kreise findet man durch Zeichnen der Mittelsenkrechten
zu den genannten Sehnen, die einander in einem Punkt M1 schneiden müssen. Der
Radius dieses zweiten Kreises ist gleich dem halben Radius des dem Dreieck ABC
umgeschriebenen Kreises.

Um dies zu beweisen, verbindet man die Mitten der drei Sehnen A1, B1, C1 miteinander
und erhält ein Dreieck, das dem Dreieck ABC ähnlich liegt. Der Ähnlichkeitspunkt ist
K, und das Ähnlichkeitsverhältnis ist KA1 : KA = 1 : 2.
Dann liegen auch die Mittelpunkte der Umkreise beider Dreiecke auf einem Ähnlich-
keitsstrahl; und da KM1 : KM = 1 : 2 sein muss, wird KM durch M1 halbiert.

Die Radien der Kreise, die als homologe Strecken parallel laufen, verhalten sich ebenfalls
wie 1 : 2. Also ist M1A1 = r

2 , wobei r den Radius des dem Dreieck ABC umgeschrie-
benen Kreises bezeichnet. In dem rechtwinkligen Dreieck A1M1P3 ist A1M1 = r

2 ,
A1P3 = r1

2 und P3M1 = r2 (dabei ist r2 der Radius des Kreises durch die Punkte PiQi

und r1 der Radius des zuvor behandelten Lémoineschen Kreises). Folglich ist

r2 = 1
2
√
r2 + r2

1

Der durch den Mittelpunkt M1 und den Radius r2 bestimmte Lémoinesche Kreis teilt
jede Seite des Dreiecks ABC in drei Abschnitte, die sich wie die Quadrate der Drei-
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5.11 Die Lémoineschen Kreise

ecksseiten in ganz bestimmter Folge verhalten, z.B.

BQ3 : Q3P2 : P2C = c2 : a2 : b2

Beweis. Multipliziert man die Beziehungen

BQ3 : BP1 = c : a , KQ3 : Q3P3 = c : a

und beachtet, dass KQ3 = BP1 ist, so ergibt sich

BQ3 : Q3P2 = c2 : a2 (1)

Aus
KP2 : Q3P2 = b : a , CP2 : CQ1 = b : a

folgt in gleicher Weise
CP2 : CQ1 = b2 : a2 (2)

(1) und (2) zusammen liefern die Behauptung.

Die durch den Lémoineschen Kreis mit Mittelpunkt M1 und Radius r2 aus den Drei-
ecksseiten herausgeschnittenen Sehnen verhalten sich wie die Kuben der zugehörigen
Dreiecksseiten:

P2Q3 : P3Q1 : P1Q2 = a3 : b3 : c3

Beweis. Aus den Proportionen

Q3P2 : KP2 = a : b, KP2 : KQ1 = a : b, KQ1 : P3Q1 = a : b

folgt durch Multiplikation
Q3P2 : P3Q1 = a3 : b3

Ähnlich erhält man P3Q1 : P1Q2 = b3 : c3 und damit die Behauptung.

Verbindet man die Punkte Pi (i = 1, 2, 3) miteinander und ebenso die Punkte Qi so
entstehen zwei Dreiecke P1P2P3 und Q1Q2Q3.

Aufgabe 45. Man beweise die Kongruenz der beiden Dreiecke P1P2P3 und Q1Q2Q3
und ihre Ähnlichkeit mit dem Dreieck ABC.

Anleitung. Man beachte, dass entsprechende Winkel in den kongruenten Dreiecken
über gleichen Kreisbogen stehen, zu denen auch gleiche Sehnen gehören. ∠P1P3P2
und ∠P1Q2P2 = α stehen über demselben Kreisbogen.

Das Ähnlichkeitsverhältnis 1 : 2 cosω liefert die Relation

r2 = 1
2
√
r2 + r2

1 oder r2 = r

2

√
1 + tan2 ω = r

2 cosω
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5.12 Zwei Dreiecke im Brocardschen Kreis

5.12 Zwei Dreiecke im Brocardschen Kreis
Dem Brocardschen Kreis mit dem Durchmesser KM (Abb. 55) können zwei verschie-
dene Dreiecke nach bestimmten Vorschriften eingezeichnet werden. Das erste dieser
Dreiecke findet man, wenn man an die Seiten des Dreiecks ABC in ihren Endpunkten
nach innen die gleichen Winkel von der Größe ω anträgt (ω ist der Brocardsche Winkel
für das Dreieck ABC).

Abb. 57

Die Schnittpunkte der freien Schenkel der an jede Seite angetragenen Winkel sind die
Ecken D, E, F des ersten Brocardschen Dreiecks (Abb. 57). Die Dreiecke BCD, ACE
und ABF sind gleichschenklig und wegen der gleichen Basiswinkel einander ähnlich. D
liegt zugleich mitM , dem Mittelpunkt des dem Dreieck ABC umgeschriebenen Kreises,
auf der Mittelsenkrechten der Seite BC, deren Mittelpunkt M1 ist. Die Strecke DM1
ist gleich 1

2a tanω.

Das Lot vom Lémoineschen Punkt K auf BC ist gleich KK1 = 1
2a

4F
a2+b2+c2 . Da cotω =

a2+b2+c2

4F ist, erhält man KK1 = 1
2a tanω. Also sind KK1 und DM1 gleich und parallel,

KDM1K1 ist ein Rechteck, die Gerade KD ist der Dreiecksseite BC parallel und
∠MDK = 90◦.

Nach dem Satz des THALES liegt somit D auf dem Kreis mit KM als Durchmesser.
Analog lässt sich beweisen, dass E und F ebenfalls auf diesem Kreis liegen. Es ist der
Brocardsche Kreis, auf dem auch die Brocardschen Punkte Ω und Ω′ liegen.
Die Dreiecke ABC und DEF sind einander ähnlich.

Wir haben bewiesen, dass KD ∥ BC ist. Ebenso lässt sich zeigen, dass KE ∥ AC und
KF ∥ AB ist. Weiter ist ∠FDE = ∠FKE (Peripheriewinkelsatz) und ∠FKE =
∠BAC, weil ihre Schenkel paarweise parallel und gleichgerichtet sind.
Dann ist auch ∠FDE = ∠BAC. Da ∠FKD und ∠ABC einander zu 180◦ ergän-
zen und die gleiche Beziehung zwischen ∠FKD und ∠FEB besteht, ist ∠FED =
∠ABC. Die Dreiecke ABC und DEF sind also wegen der Gleichheit zweier Winkel
ähnlich. Die Ecktransversalen AD, BE und CF schneiden einander in einem Punkt.
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5.12 Zwei Dreiecke im Brocardschen Kreis

Zum Beweis dieses Satzes zeichnet man die Transversalen AK und AD. Beide schnei-
den BC, und zwar die Transversale durch K in P1 und die durch D in Q1. Verlängert
man KD beiderseits bis zum Schnitt mit den Dreiecksseiten und ist G der Schnittpunkt
auf AB und H der Schnittpunkt auf AC, so liegen G und H auf dem Lémoineschen
Kreis, der zum Brocardschen Kreis konzentrisch ist.
Daher ist KG = DH. Nach dem Strahlensatz muss dann auch BP1 = CQ1 sein.
Ebenso ergeben sich für die beiden anderen Dreiecksseiten die Gleichungen CP2 = AQ2
undAP3 = BQ3. Aus diesen drei Gleichungen findet man nach Abb. 57 die Beziehungen
CP1 = BQ1, AP2 = CQ2 und BP3 = AQ3. Für die durch den Lémoineschen Punkt
gehenden Transversalen AP1, BP2 und CP3 gilt nach dem Satz von Ceva

AP3 ·BP1 · CP2

BP3 · CP1 · AP2
= 1

und unter Benutzung der oben gefundenen Relationen ergibt sich

BQ3 · CQ1 · AQ2

AQ3 ·BQ1 · CQ2
= 1

Somit schneiden die Transversalen AQ1, BQ2 und CQ3 einander in einem Punkt.

Die Konstruktion eines zweiten Brocardschen Dreiecks ist aus Abb. 58 ersichtlich. Zeich-
net man in einem gegebenen Dreieck ABC durch A und B den Kreis, der die Seite
AC in A berührt, und durch A und C den Kreis, der AB in A berührt, so erhält man
mit dem Schnittpunkt G der beiden Kreise einen Eckpunkt des zweiten Brocardschen
Dreiecks GHI. Die Ecken H und I werden auf entsprechende Weise bestimmt.

Um zu beweisen, dass G auf dem Brocardschen Kreis liegt, ist zu zeigen, dass K auf
AG liegt und dass ∠KGM = 90◦ ist.

Abb. 58

Hilfssatz. Der Mittelpunkt M des dem Dreieck ABC umgeschriebenen Kreises liegt
auf dem Kreis, der durch die Punkte B, G und C bestimmt ist.

Beweis. ∠BAG ist Sehnentangentenwinkel im Kreis durch A, G und C und daher gleich
dem Peripheriewinkel ACG im gleichen Kreis. Die gleiche Beziehung besteht zwischen
∠CAG und ∠ABG im Kreis durch die Punkte A, G und B. Also ist △AGB ∼ △AGC
(WW) und ∠ABG+∠BAG = ∠CAG+∠BAG = α und daher ∠AGB = 180◦ −α.
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5.13 Der Steinersche Punkt

Ebenso zeigt man, dass ∠AGC = 180◦ − α, also

∠BGC = 360◦ − (180◦ − α) − (180◦ − α) = 2α

ist. Im Umkreis des Dreiecks ABC ist der Zentriwinkel BMC gleich dem doppelten
zugehörigen Umfangswinkel BAC, also ∠BMC = 2∠BAC.
Über BC stehen zwei Winkel von gleicher Größe 2α. Somit liegen die Punkte B, G,
M und C auf einem Kreis. Da △BMC gleichschenklig ist mit dem Winkel 2α an der
Spitze, ist ∠MCB = 90◦ − α.
Im Sehnenviereck BGMC liegt diesem Winkel der Winkel BGM gegenüber; so gilt
∠BGM = 180◦ − (90◦ − α) = 90◦ + α. Nun lässt sich ∠AGM berechnen:

∠AGM = 360◦ − ∠AGB − ∠BGM = 360◦ − (180◦ − α) − (90◦ + α) = 90◦

Da hiernach MGsenkrecht auf AG steht, ist G der Mittelpunkt der durch A und G
gezeichneten Sehne des Umkreises des Dreiecks ABC.

Schließlich ist noch zu zeigen, dass der Punkt K auf AG liegt. Die Abstände des
Punktes G von den Dreiecksseiten b und c, hb bzw. hc, sind Höhen in den ähnlichen
Dreiecken AGB und CGA.
Die Höhen verhalten sich wie die zugehörigen Dreiecksseiten, d.h. hb : hc = b : c. Es
wurde schon bewiesen, dass sich die Abstände des Lémoineschen Punktes K von den
Dreiecksseiten verhalten wie die entsprechenden Seiten, hier also KB1 : KC1 = b : c
(B1 und C1 sind die Fußpunkte der Lote von K auf die Seiten b und c).
Daraus folgt, dass K und G auf demselben Strahl durch den Punkt A liegen müssen.
Damit ist bewiesen, dass ∠KGM = 90◦ ist, dass also der Punkt G auf dem Brocard-
schen Kreis liegt. Dasselbe lässt sich leicht für die Punkte H und I zeigen.

Aufgabe 46. Wie kann man die Eckpunkte der Brocardschen Dreiecke auf anderen
Wegen bestimmen, wenn man zuvor die Punkte K und M ermittelt ?

5.13 Der Steinersche Punkt
In Abb. 57 sind das Dreieck ABC, der Brocardsche Kreis, das erste Brocardsche Dreieck
und der dem Dreieck ABC umgeschriebene Kreis gezeichnet.

Satz. Zeichnet man durch A die Parallele zu FE, durch B die Parallele zu FD und
durch C die Parallele zu ED, so schneiden die drei Parallelen einander im Punkt S,
der auf der Peripherie des Umkreises des Dreiecks ABC liegt. Der Punkt S heißt
Steinerscher Punkt.

Es ist zu beweisen, dass die genannten Parallelen einander in einem Punkt schneiden
und dass der Punkt auf dem Kreis durch A, B und C liegt.

Wir betrachten zunächst die Geraden AS und BS. Sie bilden den Winkel ASB, der
gleich dem Winkel DFE ist, weil die Schenkel beider Winkel paarweise parallel und
entgegengesetzt gerichtet sind. Da ∠DFE = γ ist, ist auch ∠ASB = ∠ACB, und
beide Winkel stehen über dem Bogen AB des Umkreises des Dreiecks ABC. Daher
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liegt S auf der Peripherie dieses Kreises.

Nun ist noch zu zeigen, dass die Gerade CS mit der Parallelen zu ED durch den Punkt
C identisch ist.
Da der Punkt S auf dem Umkreis des Dreiecks ABC liegt, ist ∠BSC = ∠BAC = α
als Peripheriewinkel über demselben Bogen. ∠FDE ist auch gleich dem Winkel α und
daher gleich ∠BSC. Bei diesen gleichen Winkeln sind die Schenkel DF und SB nach
Konstruktion parallel und gleichgerichtet.
Folglich müssen auch die zweiten Schenkel DE und SC parallel und gleichgerichtet
sein. Somit ist der Satz vom Steinerschen Punkt bewiesen.
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6.1 Die vier bekannten Punkte des Dreiecks

6 Untersuchung der merkwürdigen Punkte und
Linien des Dreiecks mit den Methoden der
analytischen Geometrie

Voraussetzung für das Verständnis dieses Kapitels ist der in der Erweiterten Oberschu-
le behandelte Stoff der analytischen Geometrie. Leser, die mit dem Stoffgebiet nicht
vertraut sind, seien auf die im Anhang angegebene Literatur verwiesen, insbesondere
die Werke Nr. [2], [3], [11] und [12].

6.1 Die vier bekannten Punkte des Dreiecks
Zunächst werden die Kriterien für den Fall bestimmt, dass drei durch ihre Gleichungen
gegebenen Geraden einander in einem Punkt schneiden, sowie die Kriterien dafür, dass
drei gegebene Punkte auf einer Geraden liegen.

Wir betrachten zunächst den ersten Fall. Die Geraden seien gegeben durch ihre allge-
meinen Gleichungen

aix+ biy + ci = 0 (i = 1, 2, 3)
a) Zwei Gleichungen werden zu einem Gleichungssystem mit zwei Variablen zusam-
mengefasst. Die Lösung dieses Systems liefert die Koordinaten des Schnittpunktes der
beiden Geraden. Erfüllen die gefundenen Koordinaten auch die dritte Gleichung, so
schneiden die Geraden einander in einem Punkt.

b) Setzt man also die Werte

xs = −
∣∣∣∣∣ c1 b1
c2 b2

∣∣∣∣∣ :
∣∣∣∣∣ a1 b1
a2 b2

∣∣∣∣∣ und ys = −
∣∣∣∣∣ a1 c1
a2 c2

∣∣∣∣∣ :
∣∣∣∣∣ a1 b1
a2 b2

∣∣∣∣∣
in die dritte Gleichung ein, so erhält man

−a3

∣∣∣∣∣ c1 b1
c2 b2

∣∣∣∣∣ − b3

∣∣∣∣∣ a1 c1
a2 c2

∣∣∣∣∣ + c3

∣∣∣∣∣ a1 b1
a2 b2

∣∣∣∣∣ = 0

oder
a3

∣∣∣∣∣ b1 c1
b2 c2

∣∣∣∣∣ − b3

∣∣∣∣∣ a1 c1
a2 c2

∣∣∣∣∣ + c3

∣∣∣∣∣ a1 b1
a2 b2

∣∣∣∣∣ = 0

Dieser Ausdruck lässt sich als dreireihige Determinante schreiben:∣∣∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣∣∣ = 0

Die Determinante enthält in jeder Zeile die Koeffizienten einer der drei Gleichungen.
Sie verschwindet, wenn die drei Geraden einander in einem Punkt schneiden.

c) Setzt man aix + biy + ci = Gi (i = 1, 2, 3), so werden die drei Geraden durch die
Gleichungen G1 = 0, G2 = 0 und G3 = 0 symbolisiert. Addition der ersten beiden
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Gleichungen liefert G1 + G2 = 0. Diese Gleichung wird nur von den Koordinaten des
Schnittpunktes S der beiden Geraden erfüllt, d.h.,

(a1 + a2)x+ (b1 + b2)y + c1 + c2 = 0

ist die Gleichung einer Geraden, die nur den Schnittpunkt S der Geraden G1 = 0 und
G2 = 0 mit ihnen gemein hat. Multipliziert man G1 und G2 mit beliebigen konstanten
Zahlen, m und n, so bezeichnen sie dieselben Geraden, und man erhält mG1 +nG2 = 0
oder G1 + n

mG2 = 0. Setzt man n
m = λ, so ergibt sich

G1 + λG2 = 0 (m,n, λ heißen Parameter) (1)

Lässt man λ alle Werte des Kontinuums der reellen Zahlen durchlaufen, so erhält man
alle Geraden durch einen gemeinsamen Schnittpunkt S, d.h., (1) ist die Gleichung eines
Strahlenbüschels mit dem Träger S.
Betrachtet man mG1 + nG2 = 0 als eine dritte Gerade, so kann diese die Gleichung
G3 = 0 besitzen, die sich von mG1 +nG2 = 0 nur durch einen konstanten Faktor, den
wir mit −l bezeichnen wollen, unterscheidet:

mG1 + nG2 = −lG3

Daraus folgt
mG1 + nG2 + lG3 = 0 (2)

Für m = n = l = 1 erhalten wir

G1 +G2 +G3 = 0 (2a)

es darf aber kein Summand gleich Null werden. In beiden Fällen schneiden die drei
Geraden Gi = 0 (i = 1, 2, 3) einander in einem Punkt.
Damit drei Geraden G1 = 0, G2 = 0 und G3 = 0 einander in einem Punkt schneiden,
ist notwendig und hinreichend,

a) dass die Koordinaten des Schnittpunktes zweier Geraden die Gleichung der dritten
Geraden identisch erfüllen oder

b) dass die Determinante aus den Koeffizienten der drei Gleichungen verschwindet oder

c) dass mG1 + nG2 + lG3 identisch verschwindet (m, n, l dürfen nicht Null, können
jedoch gleich ±1 sein).

Wir untersuchen nun, wann drei Punkte auf einer Geraden liegen.

a) Durch je zwei Punkte einer Ebene ist eine Gerade bestimmt. Sind die Koordinaten
der Punkte gegeben, so lautet die Gleichung der Geraden

y − y1 = y2 − y1

x2 − x1
(x− x1)

Hat der dritte Punkt die Koordinaten x3, y3, so müssen diese, falls der Punkt auf der
Geraden liegt, die angegebene Gleichung erfüllen.
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b) Liegen drei Punkte P1(x1, y1), P2(x2, y2) und P3(x3, y3) auf einer Geraden, dann
ist der Inhalt des Dreiecks, das durch diese drei Punkte gebildet wird, gleich Null, d.h.,
das Dreieck ist zu einer Geraden ausgeartet:

1
2[x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)] = 0

Aufgabe 47. Man forme die Inhaltsformel des Dreiecks auf die Gleichung
y3 − y1 = y2 − y1

x2 − x1
(x3 − x1) um.

c) Da man die Inhaltsformel des Dreiecks als dreireihige Determinante schreiben kann,
liegen drei Punkte auf einer Geraden, wenn die folgende Determinante verschwindet:∣∣∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣∣∣ = 0

Sie enthält in der ersten und zweiten Spalte die Koordinaten der drei Punkte.

Dafür, dass drei Punkte P1(x1, y1), P2(x2, y2), P3(x3, y3) einer Ebene in einer Geraden
liegen, ist notwendig und hinreichend:

a) dass die Gleichung, die durch die Koordinaten zweier Punkte bestimmt wird, durch
die des dritten Punktes identisch erfüllt wird oder

b) dass der Inhalt des Dreiecks, das die drei Punkte als Ecken hat, gleich Null wird:

1
2[x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)] = 0

oder
c) dass die aus den Koordinaten der drei Punkte gebildete dreireihige Determinante
verschwindet: ∣∣∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣∣∣ = 0

Wir wollen nun die Kriterien in einigen Beispielen und Aufgaben anwenden. Zunächst
wird gezeigt, dass die drei Höhen des Dreiecks einander in einem Punkt schneiden.
Zur besseren Veranschaulichung legen wir das Dreieck P1P2P3 in den ersten Quadranten
des Koordinatensystems (Abb. 59).

Abb. 59

68



6.2 Beweise mit Hilfe der Hesseschen Normalform

Die Koordinaten der Punkte Pi werden durch xi, yi (i = 1, 2, 3) bezeichnet. Das hat
den Vorteil, dass in allen vier Fällen nur eine Gleichung der betreffenden Geraden entwi-
ckelt zu werden braucht. Durch zyklische Vertauschung der Indizes ergeben sich daraus
die Gleichungen der anderen beiden Geraden.

Die Höhe durch den Punkt P1 steht senkrecht auf der Seite P2P3, die die Richtungskon-
stante m1 = y2−y3

x2−x3
hat. Dann ist die Richtungskonstante der Höhe gleich m2 = −x2−x3

y2−y3
,

d.h. m2 = − 1
m1

. Die Gleichung der Höhe lautet also

y − y1 = −x2 − x3

y2 − y3
(x− x1)

oder
(x2 − x3)(x− x1) + (y2 − y3)(y − y1) = 0

Durch zyklische Vertauschung der Indizes erhält man auch die Höhen von den Ecken
P2 und P3. Die Summe der drei Gleichungen ist identisch Null. Also schneiden die drei
Höhen des Dreiecks einander in einem Punkt.

Aufgabe 48. Man beweise die entsprechenden Sätze für die Mittelsenkrechten und die
Seitenhalbierenden, des Dreiecks.

6.2 Beweise mit Hilfe der Hesseschen Normalform
Das Kriterium für den gemeinsamen Schnittpunkt der Winkelhalbierenden erfordert
umfangreiche Rechnungen, wenn man dazu von der allgemeinen Form der Geradenglei-
chung

ax+ by + c = 0
ausgeht. Einfacher gestaltet sich der Beweis bei Verwendung der Hesseschen Normal-
form der Geradengleichung.
Wir bezeichnen die Gleichungen der Dreiecksseiten gi mit N(gi) = 0, wobei

N(gi) ≡ x cosφi + y sinφi − pi = 0

ist (i = 1, 2, 3).

Abb. 60

Da ein Punkt P0, der nicht auf der Geraden

x cosφ+ y sinφ− p = 0
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6.2 Beweise mit Hilfe der Hesseschen Normalform

liegt, von ihr den Abstand

d = x0 cosφ+ y0 sinφ− p

hat und die Abstände jedes Punktes der Winkelhalbierenden von den beiden Sehenkeln
gleich sind, lauten die Gleichungen der drei Winkelhalbierenden

N(g1) −N(g2) = 0, N(g2) −N(g3) = 0, N(g3) −N(g1) = 0

Da die Summe der linken Seiten Null ergibt, ist der Satz von den Winkelhalbierenden
bewiesen.

Aufgabe 49. Man führe den Beweis für die Halbierenden eines Innenwinkels und der
entsprechenden Außenwinkel eines Dreiecks (Abb.60).

Abb. 61, 62

Aufgabe 50. Man führe den Beweis mit Hilfe der Hesseschen Normalfort der Geraden-
gleichung a) für die Höhen (Abb. 61) und b) für die Seitenhalbierenden des Dreiecks
(Abb. 62).

Anleitung. a) Man beachte, dass d2 : d3 = cosα3 : cosα2 ist und damit

d2 cosα2 = d3 cosα3

b) Es gilt

d2 : d3 = sinα3 : sinα2 oder d2 sinα2 = d3 sinα3

Den Mittelpunkt des dem Dreieck umgeschriebenen Kreises findet man auch, wenn
man an die Seiten in ihren Endpunkten nach der Innenseite die Komplemente der ge-
genüberliegenden Dreieckswinkel anträgt. Je zwei Schenkel der drei gleichschenkligen
Dreiecke fallen zu einer Ecktransversalen zusammen, und die drei Transversalen treffen
einander im Mittelpunkt des Kreises.

Aufgabe 51. Man benutze diese Tatsache zur Aufstellung der Gleichungen der Eck-
transversalen und zum Beweis des Satzes von der Ermittlung des Mittelpunktes des
Umkreises.

Anleitung. Die drei Gleichungen sind mit einem geeigneten konstanten Faktor zu mul-
tiplizieren, damit ihre Summe identisch Null wird.

Ohne Beschränkung der Allgemeinheit kann das Dreieck im folgenden so in das recht-
winklige Koordinatenkreuz gelegt werden, dass P0P1 vom Ursprung aus auf die x-Achse
fällt, wodurch sich die Rechnung vereinfacht (Abb. 63).
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6.3 Die Eulersche Gerade

Abb. 63

Aufgabe 52. Man stelle die Gleichungen a) der drei Höhen, b) der drei Mittelsenkrech-
ten, c) der drei Seitenhalbierenden, d) der drei Winkelhalbierenden auf, berechne die
Koordinaten der Schnittpunkte und wende in jedem Fall die drei Kriterien an, durch
die bewiesen wird, dass jeweils drei Geraden durch einen Punkt gehen.

Anleitung. d) Man bilde die Hessesche Normalform aus der allgemeinen Form der Ge-
radengleichungen der Dreiecksseiten. Es ist

ax+ by ± c

∓
√
a2 + b2 = 0

6.3 Die Eulersche Gerade
Drei Punkte liegen auf einer Geraden,

a) wenn der Inhalt des Dreiecks, das durch die Punkte bestimmt wird, verschwindet,

b) wenn die entsprechende Determinante gleich Null wird,

c) wenn die Koordinaten eines der gegebenen Punkte die Gleichung der Geraden erfüllen,
die durch die beiden anderen Punkte bestimmt ist.

Jedes dieser drei Kriterien kann zum Beweis der genannten Eigenschaft der drei Punkte
dienen.
Im vorliegenden Fall handelt es sich um den Höhenschnittpunkt H mit den Koordinaten
xh = x2, yh = (x1−x2)x2

y2
, den Schnittpunkt S der Seitenhalbierenden des Dreiecks mit

den Koordinaten xs = x1−x3
3 , ys = y2

3 und um den Mittelpunkt des Umkreises des
Dreiecks mit den Koordinaten xm = x1

2 , ym = y2
2−(x1−x2)x2

2y2
.

Aufgabe 53. Man beweise unter Anwendung der drei Kriterien, dass die genannten
Punkte auf einer Geraden, der Eulerschen Geraden, liegen.

6.4 Der Feuerbachsche Kreis
Die Mittelpunkte der Seiten eines Dreiecks, die Fußpunkte der Höhen und die Mit-
telpunkte der oberen Höhenabschnitte liegen auf einem Kreis, dem Feuerbachschen
Kreis.
Die allgemeine Kreisgleichung lautet

(x− a)2 + (y − b)2 = r2
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6.4 Der Feuerbachsche Kreis

Abb. 64

Aufgabe 54. Man berechne die Koordinaten a, b des Mittelpunktes des Kreises, wenn
der Kreis durch die drei Punkte Pi(xi, yi) (i = 1, 2, 3) geht.

Aufgabe 55. Man setze zur Bestimmung der Mittelpunktskoordinaten des Feuerbach-
schen Kreises die Koordinaten der Mittelpunkte der Dreiecksseiten M1

(
x1
2 , 0

)
,

M2
(

x1+x2
2 , y2

2

)
, M3

(
x2
2 ,

y2
2

)
ein (Abb. 64).

Aufgabe 56. Man bilde die Kreisgleichung und berechne r durch Einsetzen vonM1
(

x1
2 , 0

)
in diese.

Aufgabe 57. Man zeige, dass die Koordinaten (x2, 0) des Fußpunktes der Höhe auf
P0P1 und die des Mittelpunktes ihres oberen Abschnittes

(
x2,

y2
2+(x1−x2)x2

2y2

)
die Glei-

chung des Feuerbachschen Kreises erfüllen, die Punkte also auf dem Feuerbachschen
Kreis liegen.

Aufgabe 58. Man berechne den Radius des dem Dreieck P0P1P2 umgeschriebenen Krei-
ses und vergleiche seine Länge mit dem des Feuerbachschen Kreises.

Aufgabe 59. Man beweise, dass der Mittelpunkt des Feuerbachschen Kreises auf der
Eulerschen Geraden liegt und die Strecke HM halbiert.
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7.1 Die Seitenhalbierenden

7 Merkwürdige Punkte und Linien des Dreiecks in
der Vektoralgebra

Wie auch im vorigen Kapitel werden die Grundbegriffe der Vektorrechnung vorausge-
setzt. Leser, denen solche Kenntnisse fehlen, können sich in den unter Nr. [7], [8], [11]
und [12] in den Literaturhinweisen angegebenen Werken informieren.

7.1 Die Seitenhalbierenden
In den Beweisen mit Methoden der Vektorrechnung treten folgende Begriffe und Ver-
knüpfungen von Vektoren auf: Addition und Subtraktion von Vektoren, das skalare und
das vektorielle Produkt von Vektoren, lineare Abhängigkeit und lineare Unabhängig-
keit von Vektoren, die Gleichung der Geraden und das Kriterium für die Lage von drei
Punkten in einer Geraden.

In allen zu beweisenden Sätzen schneiden drei Geraden einander in einem Punkt. In
den Beweisen der Vektoralgebra werden zuerst zwei Vektoren, die einander schneiden,
operativ zusammengefasst.
Durch weitere Rechnung wird dann gezeigt, dass die gleichen Eigenschaften, die sich
für die beiden Vektoren ergeben, auch für den zugehörigen dritten Vektor gelten. Am
Beispiel der Seitenhalbierenden des Dreiecks ABC sei dieses Beweisverfahren erläutert.

Die Seitenhalbierenden des Dreiecks schneiden einander in einem Punkt.

Abb. 65

1. Beweis. In Abb. 65 ist a + b + c = o (1)

x = λ
−−→
AD = λ

(
c + 1

2a
)

, y = µ
−−→
BE = µ

(
a + 1

2b
)

Im Dreieck ABS ist c + y = x oder

c + µ

(
a + 1

2b
)

= λ

(
c + 1

2a
)

(2)

Wegen c = −a − b erhält man

−a − b + µ

(
a + 1

2b
)

= λ

(
−a − b + 1

2a
)

−a + µa + 1
2λa = b − 1

2µb + λb(
−1 + µ+ 1

2λ
)
a =

(
1 − 1

2µ− λ

)
b (3)
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7.1 Die Seitenhalbierenden

a und b sind linear unabhängig. Die Gleichung (3) wird also nur erfüllt, wenn die
Koeffizienten verschwinden. Aus den sich ergebenden Gleichungen lassen sich λ und µ
wie folgt berechnen:

Aus −1 + µ + 1
2λ = 0 und 1 − 1

2µ − λ = 0 folgt λ = 2
3 und µ = 2

3 . Nimmt man an,
dass −−→

BE und −→
CF einander in S′ schneiden, und setzt y′ = µ

−−→
BE und z = ν

−→
CF , so

findet man in ähnlicher Weise µ = ν = 2
3 . Die Punkte S und S′ stimmen also überein.

Aufgabe 60. Man beweise denselben Satz, wenn das Dreieck durch die Endpunkte von
drei Ortsvektoren im Raum bestimmt ist, die von einem Punkt ausgehen (Abb. 66).

Abb. 66

Anleitung. Man gehe aus von den Gleichungen der drei Seitenhalbierenden

x = x1 + λ
(x2 + x3

2 − x1

)
, x = x2 + µ

(x3 + x1

2 − x2

)
, x = x3 + λ

(x1 + x2

2 − x3

)

und berechne ihren Schnittpunkt x0. Die vorher veränderlichen Parameter nehmen für x0
bestimmte Werte an. Man berechne λ und µ und beachte dabei, dass die drei Vektoren
x1, x2, x3 im Raum linear unabhängig sind.

Ein weiterer Beweis dieses Satzes kann mit Hilfe des Vektorproduktes geführt werden.

3. Beweis. Alle Vektoren liegen in der durch das Dreieck bestimmten Ebene. Eine Ecke
des Dreiecks ist Anfangspunkt der Ortsvektoren p1 und p2. Dann bestimmt p1

2 den
Mittelpunkt von p1, p2

2 den von p2 und p1+p2
2 den Mittelpunkt von p2 − p1 − x.

Die beiden Seitenhalbierenden p1 − p2
2 und p2 − p1

2 schneiden einander in einem Punkt.
Dieser Punkt ist der Endpunkt des Ortsvektors x (Abb. 67).

Abb. 67

Es soll nun gezeigt werden, dass die Vektoren x und p1+p2
2 in einer Geraden liegen, dass

also ihr Vektorprodukt gleich Null wird. Es ist

(x − p1) ×
(
p1 − p2

2

)
= o und (x − p2) ×

(
p2 − p1

2

)
= o
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7.2 Die Höhen

weil in jedem Fall beide Vektoren in einer Geraden liegen. Werden beide Produkte
berechnet und addiert, so ergibt sich, wenn man noch beachtet, dass

p2 × p1

2 = −p1 × p2

2
ist,

x × (p1 + p2) −
(
x × p1 + p2

2

)
= x × p1 + p2

2 = o

Also sind x und p1+p2
2 kollinear, und die drei Seitenhalbierenden schneiden einander in

einem Punkt.

7.2 Die Höhen
Aufgabe 61. Man beweise, dass die drei Höhen eines Dreiecks einander in einem Punkt
schneiden (Abb. 68).

Anleitung. Man benutze die skalaren Produkte (x − p2) · p1 = 0 und (x − p1) · p2 = 0.
Man deute das Ergebnis.

Abb. 68, 69

Aufgabe 62. Man beweise den Satz von Aufgabe 61 an Hand der Abb. 69.

Anleitung. Es ist hc · c + hb · b = 0. Man setze hc = b + x und hb = x − c.

7.3 Die Mittelsenkrechten der Seiten
Aufgabe 63. Man beweise den Satz von den Mittelsenkrechten im Dreieck (Abb. 70).

Abb. 70

Anleitung. Man zeige, dass das skalare Produkt der Gleichungen x− z = b und x+ z =
2nb die Beziehung x2 − z2 = 0, also |x| = |z| ergibt.
Ebenso findet man |z| = |y| und aus den letzten beiden Gleichungen |x| = |y|. Man
bilde y2 − x2 = 2c · d und deute dieses Ergebnis.
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7.4 Die Winkelhalbierenden

7.4 Die Winkelhalbierenden
Aufgabe 64. Man beweise, dass die drei Winkelhalbierenden im Dreieck einander in
einem Punkt schneiden (Abb. 71).

Anleitung. Auf den Schenkeln des von den Vektoren a und b gebildeten Winkels sind
vom Scheitelpunkt aus die Einheitsvektoren ea und eb gezeichnet (Abb. 72).

Abb. 71, 72

Ihre Summe ea + eb bestimmt die Richtung der Winkelhalbierenden. Ihr Vektor ist

w = m(ea + eb) = m

(
a

a
+ b

b

)

Man berechne wβ und wγ und verbinde sie mit a zu einer Gleichung, aus der die
Faktoren m und n bestimmt werden können. Nun lässt sich aus wβ und c der Vektor
d ermitteln, von dem man zeigen kann, dass er mit wα identisch ist.

Aufgabe 65. Man beweise, dass die Halbierenden eines Innenwinkels und der beiden
ihm nicht anliegenden Außenwinkel einander in einem Punkt schneiden.

7.5 Die Eulersche Gerade
Im Dreieck liegen der Höhenschnittpunkt, der Schnittpunkt der Seitenhalbierenden und
der Schnittpunkt der Mittelsenkrechten der Seiten auf einer Geraden.
Dieser Satz lässt sich mit den Hilfsmitteln der Vektorrechnung auf verschiedene Art
beweisen.

Ein Kriterium für diese Eigenschaft der genannten Punkte liefert die Gleichung der
Geraden. Liegen die Endpunkte A, B und X dreier Vektoren, die von demselben Punkt
O ausgehen, auf einer Geraden, so gilt (Abb. 73)

x = a + λ(b − a)

Abb. 73

Setzt man X = C und x = c, so ergibt sich

(1 − λ)a + λb − c = o
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7.5 Die Eulersche Gerade

Da die Punkte A, B und X beliebig gewählt werden können, gilt diese letzte Gleichung
allgemein. Wir bringen sie nun auf die Form

t1a + t2b + t3c = o (1)

Für die Koeffizienten der Vektoren gilt (1 − λ) + λ− 1 = 0, oder allgemein

t1 + t2 + t3 = 0 (2)

Kann umgekehrt die Gleichung (1) für drei Vektoren a, b und c gebildet werden und
ist zugleich die Nebenbedingung (2) erfüllt, so liegen die drei Endpunkte der Vektoren
auf einer Geraden (Beweis !).

Ein zweites Kriterium liefert die Summe der Beträge der drei Vektorprodukte, |a ×
b| + |b × c| + |c × a|, die gleich Null wird, wenn die Endpunkte der Vektoren auf einer
Geraden liegen (Abb. 73).
Da der Betrag des Vektorprodukts den doppelten Inhalt des durch die Vektoren auf-
gespannten Dreiecks bedeutet, stellen 1

2 |a × b| und 1
2 |c × a| die Inhalte der Dreiecke

OAB und OBC, das Produkt 1
2 |c × a| den mit -1 multiplizierten Inhalt des Dreiecks

OCA dar. Die Summe der drei Beträge ist Null.

Liegen A, B und C nicht in einer Geraden, so ergibt die Rechnung den Inhalt des aus
diesen drei Punkten gebildeten Dreiecks.

Abb. 74
a) Anwendung des ersten Kriteriums (Abb. 74). Das durch die Vektoren p1 und p2
aufgespannte Dreieck ist so in das Koordinatensystem gelegt, dass eine Ecke in den
Koordinatenursprung fällt und eine Seite auf der x-Achse liegt.
Es sind der Höhenschnittpunkt H, der Schwerpunkt S und der Mittelpunkt des Um-
kreises M ermittelt. Zu beweisen ist, dass diese drei Punkte auf einer Geraden liegen.
Die von O ausgehenden Vektoren sind −−→

OH = x, −→
OS = y und −−→

OM = z.
Wir zerlegen die Vektoren in ihre Komponenten und erhalten

x = x1i + (x2 − x1)x1

y1
j, y = x1 + x2

3 i + y1

3 j, z = x2

2 i + y2
1 − (x2 − x1)x1

2y1
j

Die Koordinaten der Vektoren x, y und z lassen sich mit den Mitteln der analytischen
Geometrie leicht berechnen. Es ist

t1x + t2y + t3z = 1
[
x1i + (x2 − x1)x1

y1
j

]
− 3

[x1 + x2

3 i + y1

3 j
]

+ 2
[
x2

2 x + y2
1 − (x2 − x1)x1

2y1
j

]
= 0
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7.5 Die Eulersche Gerade

also
x − 3y + 2z = 0

Da auch die Nebenbedingung t1 + t2 + t3 = 1 − 3 + 2 = 0 erfüllt ist, liegen H, S und
M auf einer Geraden.

Nun ist x − y − 2y + 2z = o, x − y = −→
SH und 2(y − z) = 2−−→

MS. Setzt man diese
Werte ein, so ergibt sich −→

SH − 2−−→
MS = o oder −→

SH = 2−−→
MS, d.h., HM ist durch S im

Verhältnis 2:1 geteilt.

b) Das zweite Kriterium für die oben angegebene Eigenschaft der Punkte H, S und M
im Dreieck ist die Bedingung

|x × y| + |y × z| + |z × x| = 0

Die Zerlegung der Vektoren x, y und z in einem rechtwinkligen Koordinatensystem
lautet

x = x1i + x2j, y = y1i + y2j, z = z1i + z2j

Für das Produkt x × y = (x1i + x2j) × (y1i + y2j) ergibt sich

x1y1(i × i) + x1y2(i × j) + x2y1(j × i) + x2y2(j × j)

Wegen i × i = j × j = o und i × j = k, j × i = −k ist

x × y = (x1y2 − x2y1)k und |x × y| = x1y2 − x2y1

Entsprechend sind die anderen Produkte zu bilden.
Verwenden wir hier nun speziell die Komponentenzerlegung, die wir bereits in a) benutzt
haben, so ergibt sich für die absoluten Beträge der Produkte

|x × y| = x1y1

3 − (x1 + x2)(x2 − x1)x1

3y1

|y × z| = x1 + x2

3

[
y1

2 − (x2 − x1)x1

2y1

]
− x2y1

6

|z × x| = x2(x2 − x1)x1

2y1
− x1

[
y1

2 − (x2 − x1)x1

2y1

]

Die Addition liefert |x × y| + |y + z| + |z × x| = 0, d.h., H, S und M liegen auf einer
Geraden.

78



8.1 Addition und Subtraktion von Punkten

8 Merkwürdige Punkte des Dreiecks und ihre
baryzentrischen Koordinaten

Ferdinand Möbius gab in seiner Arbeit "Der baryzentrische Kalkül" (Leipzig 1827) einen
Algorithmus an, der geeignet ist, die Kollinearität gewählter Punkte im Dreieck und ihre
Lage auf der jeweiligen Geraden zu bestimmen. Dazu benutzte Möbius baryzentrische
Koordinaten. Im folgenden sollen diese Koordinaten definiert und in einigen Beispielen
angewendet werden.

Zunächst definieren wir Verknüpfungen von Punkten und Strecken, die Möbius Additi-
on, Subtraktion und Multiplikation nennt.

8.1 Addition und Subtraktion von Punkten
In Analogie zu der Zusammenlegung parallel und in gleicher Richtung wirkender Kräfte
in der Physik werden die mit den Gewichten x1 und x2 versehenen Punkte E1 und E2
folgendermaßen addiert (Abb. 75):

Abb. 75

x1E1 + x2E2 = (x1 + x2)P (1)

Der Punkt P mit der Summe x1 + x2 der Gewichte teilt die Strecke E1E2 innen im
Verhältnis E1P : PE2 = x2 : x1.
Ist z.B. x2 = 2 und x1 = 5, so geht (1) über in 5E1 + 2E2 = 7P (Abb. 76), und das
Verhältnis lautet E1P : PE2 = 2 : 5.

Abb. 76

Aus der Addition der Punkte folgt sofort die Subtraktion; denn aus (1) folgt (Abb. 75)

(x1 + x2)P − x1E1 = x2E2 (2)

Der Punkt x2E2, der die Differenz darstellt, teilt die Strecke E1P außen im Verhältnis
E1E2 : E2P = (x1 + x2) : x1. Für x1 = 5 und x2 = 2 ist wieder 7P − 5E1 = 2E2
(Abb. 76).
Bildet man die Differenz der Größen x1E1 und x2E2, so lautet die Subtraktionsformel
(Abb. 77)

Abb. 77

x1E1 − x2E2 = (x1 − x2)P (2a)

Bei der Subtraktion wird zunächst der Fall 1E1−1E2 ausgeschlossen, weil in diesem Fall
P als "uneigentlicher Punkt" unbegrenzt weit von E1 und E2 entfernt liegen müsste.
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8.2 Produkte von Punkten

Um aber für diese Differenz einen endlichen Wert zu erhalten, definieren wir nach
Möbius E1 − E2 als Vektor −−−→

E2E1:

E1 − E2 = −−−→
E2E1 (3)

Aufgabe 66. Man stelle die Parallele hierzu in der Vektorrechnung dar und veranschau-
liche sie.

8.2 Produkte von Punkten
Als äußeres Produkt zweier Punkte A und B bezeichnen wir die Größe [AB]. Es wird
definiert als linienflüchtiger Vektor −→

AB, d.h. als ein Vektor, der an eine Trägergerade
gebunden ist und auf ihr beliebig verschoben werden darf. Dagegen kann man den freien
Vektor beliebig parallel zu sich selbst verschieben.

[AB] = −→
AB (1)

Der Vektor [BA] hat die gleiche Länge wie [AB], ist aber entgegengesetzt gerichtet,
d.h.

[BA] = −[AB] (2)

Vertauscht man in dem Produkt [AA] die Faktoren, so ergibt sich nach (2) [AA] =
−[AA]. Diese Gleichung kann nur gelten, wenn [AA] = o (o Nullvektor) ist.
Das Produkt [AB¯A], in dem ein Punkt A mit einem freien Vektor zu multiplizieren
ist, liefert wegen [AA] = o

[AB − A] = [AB] − [AA] = [AB] (3)

also einen linienflüchtigen Vektor. Die Multiplikation genügt dem distributiven Gesetz.
[ABC] ist das äußere Produkt dreier Punkte und bedeutet geometrisch den Flächenin-
halt des Parallelogramms, das durch die drei Punkte A, B und C bestimmt wird (Abb.
78).

Abb. 78

Das Dreieck ABC hat den halben Flächeninhalt des Parallelogramms, also 1
2 [ABC].

Wir multiplizieren nun den Punkt A mit zwei freien Vektoren und erhalten

[AB − AC − A] = [ABC] − [AAC] − [ABA] + [AAA] = [ABC] (4)

d.h. das Parallelogramm. Es lässt sich leicht die Ähnlichkeit mit dem Vektorprodukt
a × b nachweisen. Bekanntlich bedeutet ab sin(a; b)ec einen Vektor, dessen Betrag
gleich dem Inhalt des durch die Vektoren a und b aufgespannten Parallelogramms ist.

80



8.3 Der Begriff der baryzentrischen Koordinaten

8.3 Der Begriff der baryzentrischen Koordinaten
Wählt man drei beliebige in einer Ebene gelegene Punkte, die nicht in einer Geraden
liegen, so lässt sich jeder Punkt dieser Ebene durch die drei Punkte linear darstellen,
wenn sie mit geeigneten Gewichten versehen werden.

Abb. 79

Gegeben sei ein Dreieck E1E2E3 (Abb. 79). In dem Dreieck werde ein Punkt P ange-
nommen, durch den die Ecktransversalen E1P1, E2P2 und E3P3 gezogen sind. Werden
die Ecken des Dreiecks mit geeigneten Gewichten x1, x2 bzw. x3 versehen, so bestim-
men sie den Punkt P der Ebene des Dreiecks, der als physikalischer Schwerpunkt des
Systems betrachtet werden kann, in dem also die Gewichte x1, x2, x3 vereinigt erschei-
nen. Es gilt

xP = x1E1 + x2E2 + x3E3 mit x = x1 + x2 + x3 (1)

oder
P = x1E1 + x2E2 + x3E3 mit x1 + x2 + x3 = 1 (1a)

Beweis. In dem Bezugsdreieck E1E2E3 erhält man durch Punktaddition

x2E2 + x3E3 = (x2 + x3)P1

Damit sind die Gewichte x2 und x3 in ihrem Schwerpunkt vereinigt. Um alle drei
Gewichte in einem Punkt zu vereinen, sind noch E1 und P1 zu addieren, und man
erhält

x1E1+(x2+x3)P1 = (x1+x2+x3)P oder x1E1+x2E2+x3E3 = (x1+x2+x3)P = xP

wie (1). Durch geeignete Änderung der den Punkten E1, E2, E3 zugeordneten Gewichte
lässt sich jeder beliebige Punkt der Ebene darstellen, in der das Dreieck E1E2E3 liegt.
Die Gewichte x1, x2 und x3 heißen auch homogene Koordinaten des Punktes P .
Möbius nennt sie baryzentrische Koordinaten, weil sie den Schwerpunkt des Bezugssys-
tems bestimmen.

Die Anwendungsmöglichkeit der baryzentrischen Koordinaten wollen wir an Hand des
Beweises der Relation bezüglich der Ecktransversalen im Dreieck zeigen.

In Abb. 79 sind durch einen beliebigen Punkt P im Dreieck E1E2E3 die Ecktransver-
salen gezeichnet. Es ist

xP = x1E1 + x2E2 + x3E3 mit x1 + x2 + x3 = x
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des Dreiecks

Durch Punktaddition findet man

(x2 + x3)P1 = x2E2 + x3E3 (2)
(x3 + x1)P2 = x1E1 + x3E3 (3)
(x1 + x2)P3 = x1E1 + x2E2 (4)

Bildet man die Differenz aus xP und xE1, so ergibt sich

x(P − E1) = x2E2 + x3E3 − x2E1 − x3E1

= (x2 + x3)P1 − (x2 + x3)E1 (wegen (2), 5)
= (x2 + x3)(P1 − E1)

Setzt man für P − E1 den Vektor −−→
E1P und für P1 − E1, den Vektor −−−→

E1P1, so erhält
man xE1P = (x2 + x3)E1P1 oder

E1P

E1P1
= x2 + x3

x
(6)

Ebenso erhält man

E2P

E2P2
= x3 + x1

x
; E3P

E3P3
= x1 + x2

x
(7, 8)

Durch Addition von (6) bis (8) ergibt sich

E1P

E1P1
+ E2P

E2P2
+ E3P

E3P3
= 2(x1 + x2 + x3)

x
= 2

und weiter
PP1

E1P1
+ PP2

E2P2
+ PP3

E3P3
= 1

8.4 Teilflächen des Dreiecks als baryzentrische Koordinaten
eines beliebigen Punktes des Dreiecks

Als Gewichte, durch die die Ecken des Bezugsdreiecks E1E2E3 belegt werden, lassen
sich auch mit homogener Masse gleichmäßig belegte Teilflächen dieses Dreiecks ver-
wenden. Da die Gewichte dieser Teilflächen derem Inhalt proportional sind, setzt man
für xi (i = 1, 2, 3) den Inhalt entsprechender Teilflächen des Dreiecks E1E2E3.
Zunächst untersuchen wir, welche Flächen den Ecken Ei (i = 1, 2, 3) zuzuordnen sind.
Für das Dreieck E1E2E3 mit P als gewähltem Schwerpunkt gilt

P = x1E1 + x2E2 + x3E3 mit x1 + x2 + x3 = 1 (1)

Das äußere Produkt dieser Gleichung mit [E2E3] ergibt wegen [E2E2E3] = [E3E2E3] =
0

[PE2E3] = x1[E1E2E3] (2)
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Multipliziert man (1) noch mit [E1E3] sowie mit [E1E2], so findet man

[PE1E3] = x2[E1E2E3] und [PE1E2] = x3[E1E2E3] (3,4)

Aus (2), (3) und (4) folgt

x1 = [PE2E3

E1E2E3]
, x2 = [PE1E3

E1E2E3]
, x3 = [PE1E2

E1E2E3]

Durch Einsetzen in (1) und Multiplikation mit [E1E2E3] ergibt sich

[E1E2E3]P = [PE2E3]E1 + [PE1E3]E2 + [PE1E2]E3 (1a)

Diese Gleichung wird noch durch 2 dividiert. Dann bedeutet die dem Punkt P zuge-
ordnete Fläche das Bezugsdreieck E1E2E3, das im folgenden mit ∆ bezeichnet wird.
Die den Ecken Ei zugeordneten Teildreiecke werden durch P und die beiden anderen
Ecken des Dreiecks bestimmt.

Wir sind nun in der Lage, für die merkwürdigen Punkte eines Dreiecks ABC die bary-
zentrischen Koordinaten, also die Teilflächen des Dreiecks zu bestimmen.

8.5 Die baryzentrischen Koordinaten bestimmter Punkte des
Dreiecks

a) Der Mittelpunkt des dem Dreieck ABC eingeschriebenen Kreises (Abb. 80).

Die Teildreiecke haben die Flächeninhalte 1
2aρ,

1
2bρ und 1

2cρ. Die Gleichung (1a) aus
Abschnitt 4 liefert somit

ρs ·O = 1
2aρA+ 1

2bρB + 1
2cρC (1)

mit 1
2aρ+ 1

2bρ+ 1
2cρ = ρs. * Division durch ρ und Multiplikation mit 2 ergibt

2s ·O = aA+ bB + cC (1a)

Ähnliche Überlegungen führen zu den Gleichungen für die Mittelpunkte der drei Ankreise
des Dreiecks ABC:

2(s− a)Oa = (−aA) + bB + cC (2)
2(s− b)Ob = aA+ (−bB) + cC (3)
2(s− c)Oc = aA+ bB + (−cC) (4)

Nicht für alle merkwürdigen Punkte im Dreieck lassen sich die Dreiecksseiten allein
als homogene Koordinaten verwenden. Aber alle in Betracht kommenden Teildreiecke
können durch Seiten und Winkel des Bezugsdreiecks, zu denen noch der Radius des
dem Dreieck umgeschriebenen Kreises tritt, ausgedrückt werden.
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8.5 Die baryzentrischen Koordinaten bestimmter Punkte des Dreiecks

Abb. 80, 81

Mit Hilfe der Beziehung ρ = 4r sin α
2 sin β

2 sin γ
2 ergibt sich aus der Gleichung (1a) von

Abschnitt 4 nach Division durch 2r

∆
2r ·O = a sin α2 sin β2 sin γ2A+ b sin α2 sin β2 sin γ2B + c sin α2 sin β2 sin γ2C (5)

b) Der Mittelpunkt des dem Dreieck ABC umgeschriebenen Kreises.
Aus Abb. 81 sehen wir, dass der Inhalt des Dreiecks BMC gleich 1

2ar sin∠MBC ist;
und wegen ∠MBC = 90◦ − α ist Dreieck BMC gleich 1

2ar sin(90◦ − α) oder

△BMC = 1
2ar cosα

Ähnlich erhält man

△CMA = 1
2br cos β und △AMB = 1

2cr cos γ

Das sind die baryzentrischen Koordinaten des Punktes M , seine Gleichung lautet

2∆
r

·M = a cosαA+ b cos βB + c cos γC (6)

c) Der Schwerpunkt des Dreiecks ABC (Abb. 82).

Abb. 82

Der Schwerpunkt des Dreiecks ist der Schnittpunkt der Seitenhalbierenden S. Da jede
Seitenhalbierende durch S im Verhältnis AS : SA1 = 2 : 1 geteilt wird, ist jede Höhe
im Teildreieck gleich dem dritten Teil der zugehörigen Seitenhöhe im Dreieck ABC.
Daher ist auch jedes Teildreieck gleich dem dritten Teil des Dreiecks ABC.
Aus △BSC = 1

2a · 1
3ha erhält man wegen

ha = b sin γ = c sin β = 2r sin β sin γ

△BSC = 1
3ar sin β sin γ
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Ähnlich ergibt sich

△CSA = 1
3br sin γ sinα , △ASB = 1

3cr sinα sin β

und weiter

3∆
r

· S = a sin β sin γ · A+ b sin γ sinα ·B + c sinα sin β · C (7)

d) Der Höhenschnittpunkt (Abb. 83).

Abb. 83

Zur Inhaltsberechnung der Teildreiecke verwendet man die Formel

F = a2 sin β sin γ
2 sinα

die eine Seite und alle Winkel des Dreiecks ABC enthält. Im Teildreieck BHC ist

∠HBC = 90◦ − γ, ∠HCB = 90◦ − β, ∠BHC = β + γ

der Inhalt ist also
△BHC = a2 sin(90◦ − β) sin(90◦ − γ)

2 sin(β + γ)
Wegen sin(90◦ − β) = cos β, sin(90◦ − γ) = cos γ und sin(β + γ) = sinα erhält man

△BHC = a2 cos β cos γ
2 sinα

Setzt man a = 2r sinα, so findet man △BHC = ar cos β cos γ. Hieraus und aus
den entsprechenden Formeln für die anderen Teildreiecke △CHA = br cos γ cosα und
△AHB = cr cosα cos β folgt

∆
r

·H = a cos β cos γ · A+ b cos γ cosα ·B + c cosα cos β · C (8)

e) Der Mittelpunkt des Feuerbachschen Kreises (Abb. 84).

Zur Inhaltsberechnung des Teildreiecks BFC wird der Winkel BDF benötigt. Um
diesen Winkel zu finden, berechnen wir ∠HAM . Es ist

∠HAM = ∠BAM − ∠BAI = (90◦ − γ) − (90◦ − β) = β − γ
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Abb. 84

Nun ist aber ∠IPD = ∠HAM = β − γ; denn es gilt PF ∥ AM (Beweis!). Dann ist
∠FDB = 90◦ − (β − γ). Der Durchmesser des Fuerbachschen Kreises ist gleich dem
Radius des dem Dreieck ABC umgeschriebenen Kreises, also FD = 1

2r.
Somit ist

△BFC = ar

4 sin[90◦ − (β − γ)] = r

4a cos(β − γ)

und entsprechend

△CFA = r

4b cos(β − γ) , △AFB = r

4c cos(α− β)

Dadurch sind die baryzentrischen Koordinaten des Punktes F bestimmt, und es gilt

4∆
r

· F = a cos(β − γ) · A+ b cos(γ − α) ·B + c cos(α− β) · C (9)

f) Der Nagelsche Punkt (Abb. 85).

Abb. 85

Es wurde bereits bewiesen, dass AN
AD = a

s ist. Daraus folgt

AD − AN

AD
= s− a

s
oder ND

AD
= s− a

s

Durch Anwendung des Strahlensatzes ergibt sich h1
ha

= s−a
s und somit h1 = ha(s−a)

s .
Erweitern wir mit ρb, so ergibt sich (vgl. Tabelle 1)

h1 = ha(s− a)
ρb

ρb

s
= ha tan γ2 tan β2
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Der Inhalt des Dreiecks BNC ist gleich

1
2ah1 = 1

2aha tan β2 tan γ2 = △ABC · tan β2 tan γ2
Setzt man

△ABC = 2r2 sinα sin β sin γ = 8r2 sinα sin β2 cos β2 sin γ2 cos γ2
und 2r sinα = a, so ergibt sich nach kurzer Rechnung

△BNC = 4ra sin2 β

2 sin2 γ

2
und

∆
4r ·N = a sin2 β

2 sin2 γ

2A+ b sin2 γ

2 sin2 α

2B + c sin2 α

2 sin2 β

2C (10)

Abb. 86

g) Der Mittelpunkt des Spiekerschen Kreises (Abb. 86).
Im Dreieck ABC sind die Dreiecke M1M2M3 und N1N2N3 gezeichnet. Mi (i = 1, 2, 3)
sind die Mitten der Dreiecksseiten a, b und c und Ni die Mitten der Strecken AN , BN
und CN von den Ecken des Dreiecks zum Nagelschen Punkt.
Die gezeichneten Dreiecke sind kongruent und dem Dreieck ABC ähnlich. Das Ähn-
lichkeitsverhältnis beträgt 1 : 2. Daher verhalten sich alle entsprechenden Strecken in
den Dreiecken M1M2M3 und N1N2N3 zu denen im Dreieck ABC wie 1 : 2, und der
Radius TR = ρ1 des dem Dreieck M1M2M3 eingeschriebenen Kreises, der zugleich der
Inkreis des Dreiecks N1N2N3 ist, ist gleich der Hälfte von ρ, dem Radius des Inkreises
von Dreieck ABC.

Nun lässt sich in dem Teildreieck BTC die Höhe TQ bestimmen. Es ist

TR = 1
2ρ, ∠TM1R = α

2 , ∠M3M1B = γ

Dann ist
∠TM1B = α

2 + γ = 90◦ − β

2 − γ

2 + γ = 90◦β − γ

2
Es ist

TQ = TM1 sin
(

90◦ − β − γ

2

)
und TM1 = TR

sin α
2
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also
TQ =

1
2ρ cos β−γ

2
sin α

2

Für ρ = 4r sin α
2 sin β

2 sin γ
2 erhält man [vgl.(22)]

TQ = 2r sin β2 sin γ2 cos β − γ

2
Der Inhalt des Teildreiecks ist dann

△BTC = ar sin β2 sin γ2 cos β − γ

2
Durch zyklische Vertauschung der Seiten und Winkel findet man

△CTA = br sin γ2 sin α2 cos γ − α

2 und

△ATB = cr sin α2 sin β2 cos α− β

2 und

und schließlich die Gleichung

∆
r

·T = a sin β2 sin γ2 cos β − γ

2 A+b sin γ2 sin α2 cos γ − α

2 B−c sin α2 sin β2 cos α− β

2 C

Abb. 87

h) Der Lémoinesche Punkt (Abb. 87).
Der Lémoinesche Punkt K (Schnittpunkt der Symmedianen im Dreieck ABC) hat von
der Seite a den Abstand KA1 = a

2 tanω (dabei ist ω der Brocardsche Winkel des
Dreiecks ABC und
Also ist △BKC = a2

4 tanω oder △BKC = a
2r sinα tanω Die beiden anderen Teilflä-

chen sind leicht zu errechnen, und die Gleichung mit den baryzentrischen Koordinaten
für den Punkt K lautet

2∆
r

·K = a sinα tanω · A+ b sin β tanω ·B + c sin γ tanω · C (12)

K ist der Mittelpunkt des Lémoineschen Kreises, der auch Kosinuskreis genannt wird
(vgl. Abb. 53).

i) Der Mittelpunkt des zweiten Lémoineschen Kreises (Abb. 87).

Der Mittelpunkt des zweiten Lémoineschen Kreises L ist der Mittelpunkt der Strecke
KM , die den Lémoineschen Punkt K mit dem Mittelpunkt M des Umkreises des
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Dreiecks ABC verbindet. Die Strecken KA1 und MM1, senkrecht zu der Dreiecksseite
a, sind parallel und bestimmen das Trapez KA1M1M , dessen Mittellinie LL1 die Höhe
in dem Teildreieck BLC ist. Man findet LL1 als arithmetisches Mittel von KA1 und
MM1, also LL1 = 1

2(KA1 +MM1), und wegen KA1 = a
2 tanω und MM1 = a

2 cotα
ist

LL1 = 1
4a(tanω + cotα) und △BLC = a2

8 (tanω + cotα)

oder, da a = 2r sinα ist,

△BLC = a

4r(sinα tanω + cosα)

Hieraus ergibt sich nun

4∆
r

· L = a(sinα tanω + cosα)A+ b(sin β tanω + cos β)B + c(sin γ tanω + cos γ)C
(15)

j) Die Brocardschen Punkte.

Aufgabe 67. Man suche die baryzentrischen Koordinaten für die Brocardschen Punkte
Ω und Ω′ auf.

Abb. 88

Anleitung. Man verwende die Inhaltsformel F = a2 sin β sin γ
2 sin α . Für das der Ecke A zuge-

ordnete Teildreieck kommen die Seite a und die Winkel ω und β−ω (bzw. γ−ω) und
der gegenüberliegende Winkel 180◦ − β (bzw. 180◦ − γ) in Anwendung (Abb. 88).

Die Lage der Punkte, für die in den Formeln (5) bis (13) die baryzentrischen Koordina-
ten festgelegt wurden, ist in dem elementargeometrischen Abschnitt genau bestimmt
worden.
Es wurde dort auch gezeigt, dass ausgewählte Punkte auf Geraden liegen. Diese Tat-
sachen lassen sich bestätigen, wenn zu den sich ergebenden Additionen von Punkten
die baryzentrischen Koordinaten (5) bis (13) verwendet werden.

Aufgabe 68. a) Man zeige, dass die Punkte H, F , S und M , die auf der Eulerschen
Geraden liegen, folgende Gleichungen erfüllen (Abb. 89):

H +M = 2F, H + 2M = 3S, M + 2F = 3S und H + 3S = 4F

Abb. 89
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b) Man stelle die Parallele zwischen der Punktaddition und der Addition der Ortsvek-
toren an Hand der Summen in a) der (Abb. 90).

Abb. 90

Die Punkte O, S, T und N liegen auf einer Geraden.

Aufgabe 69. Man bestätige die Richtigkeit der Beziehungen

O +N = 2T, O + 2T = 3S, N + 2O = 3S und N + 3S = 4T

und deute sie geometrisch (Abb. 91).

Abb. 91

Aufgabe 70. Der Mittelpunkt der Strecke ΩΩ′ ist das Zentrum des den beiden Brocard-
schen Fußpunktsdreiecken umgeschriebenen Kreises. Man bestimme seine baryzentri-
schen Koordinaten.
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9 Lösungen der Aufgaben
1 a. Der Beweis des Satzes von den Winkelhalbierenden im Dreieck wird vorausgesetzt
(Abb. 1). Es ist OaOb ⊥ OcC‚ ObOc ⊥ OaA und OcOaperpObB. Die Winkelhalbie-
renden im Dreieck ABC sind Höhen im Dreieck OaObOc. Somit gilt die Aussage von
den Winkelhalbierenden auch von den Höhen im Dreieck.

1 b. ∠FAH = ∠FEH; ∠FEB = ∠FCB; also ist ∠BAD = ∠FCB und △BDA ∼
△BFC. Daher muss ∠BDA = ∠BFC = 90◦ sein (Abb. 2).
Zusatz zu Satz e). Die Höhen betrachtet man als Sehnen in den Kreisen mit den
Durchmessern a und b.

2. Vgl. Abb.6. AD
DB = −m

l , BE
EC = − l

n , CF
F A = − n

m , also

AD ·BD · CF
DB · EC · FA

= −1

3. Vgl. Abb. 7 und 8. Der Sinussatz führt zu

AD · EB · CF
FA ·DB · EC

= sinφ sinψ sin ϵ
sinψ sin ϵ sinφ = −1

4. Vgl. Abb. 10. Im Dreieck ABE betrachten wir die Transversale FC und im Dreieck
CBE die Transversale AD; dann ist

c1(m+ n)b1

(b1 + b2)c2n
= (m+ n)a2b2

a1(b1 + b2)n
oder a1b1c1

a2b2c2
= 1

5. Vgl. Abb. 10. Es gilt l
c1

= b1
b , c2

l = m+n
n , k

a1
= n

m+n , a2
k = b

b2
, also

lc2ka2

c1la1k
= b1(m+ n)nb
bn(m+ n)b2

,
a2b2c2

a1b1c1
= 1

6. Vgl. Abb. 12.
a1b1c1

a2b2c2
= △APB · △BPC · △CPA

△CPA · △APB · △BPC
= 1

7. Abb. 13. Man setze in die Lösung von Aufgabe 6

△APB = 1
2t

o
ac sinα1 = 1

2t
o
bc sin β2

und entsprechende Ausdrücke für △BPC und △CPA ein. Dann erhält man
1
2t

o
ac sinα1 · 1

2t
o
ba sin β1 · 1

2t
o
cb sin γ1

1
2t

o
ab sinα2 · 1

2t
o
bc sin β2 · 1

2t
o
ca sin γ2

= sinα1 sin β1 sin γ1

sinα2 sin β2 sin γ2
= 1

8. Winkelhalbierende:
a) a1

a2
= c

b
,
b1

b2
= a

c
,
c1

c2
= b

a
, also

a1b1c1

a2b2c2
= cab

bca
= 1
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b) Der trigonometrische Beweis ist trivial.

Seitenhalbierende :
a) Der geometrische Beweis ist einfach.
b) Man berechnet die Inhalte der Teildreiecke, von denen je zwei gleich sind,

1
2csa sinα1 = 1

2bsa sinα2

usw., multipliziert die drei Gleichungen miteinander und dividiert beide Seiten durch
1
8abcsasbsc.

Höhen:
a) Aus ähnlichen Dreiecken findet man a1

c2
= c

a , b1
a2

= a
b , c1

b2
= b

c , und durch Multiplikation
ergibt sich daraus

a1b1c1

a2b2c2
= 1

b) Man benutze die Gleichheit der Winkel α1 = γ2, β1 = α2, γ1 = β2.

Mittelsenkrechte :
Die Mittelsenkrechten im Dreieck ABC sind Höhen in dem Dreieck, dessen Ecken die
Mitten der Dreiecksseiten sind. Für die Höhen ist der Satz bereits bewiesen, folglich
gilt er auch für die Mittelsenkrechten im Dreieck ABC (Abb. 17).
Beide Beweisformen des Satzes von Ceva sind anwendbar, wenn man die Ecktransver-
salen AM = ta‚ BM = tb und CM = tc benutzt (Abb. 18). Die trigonometrische
Form lautet

sinφ sinψ sin ϵ
sinφ sinψ sin ϵ = 1

Für den geometrischen Beweis benutze man die Relationen

BD

ta
= sinφ

sin β ,
CE

tb
= sinψ

sin γ ,
AF

tc
= sin ϵ

sinα,
CD

ta
= sin ϵ

sin γ ,
AE

tb
= sinφ

sinα,
BF

tc
= sinψ

sin β

9. a) (s−a)(s−b)(s−c)
(s−a)(s−b)(s−c) = 1

b) (s−b)(s−a)(s−c)
(s−a)(s−b)(s−c) = 1 Diesen Punkt nennt man auch den Nagelschen Punkt.

c) s(s−c)(s−b)
s(s−c)(s−b) = 1

d) s(s−b)(s−a)
s(s−a)(s−b) = 1

9’. a) BP
BP + AP

AC + CP
AC = 1 + AC

AC = 2. (Abb.21).
b) (Abb. 22).

BP

BB1
+ AP

AA1
+ CP

CC1
= △ABC + △APC

△ABC
− △ABC − △BPC

△ABC
+ △ABC − △APB

△ABC

= 3△ABC + △APC − △APB − △BPC

△ABC
= 2

10. Abb. 28. Es befinden sich in Ähnlichkeitslage:
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a) △ABC und △A1B1C1, Ähnlichkeitspunkt H, Ähnlichkeitsverhältnis 2 : 1, also
HA : HA1 = 2 : 1;
b) △A1B1C1 und △FED, Ähnlichkeitspunkt N , Ähnlichkeitsverhältnis 1 : 1, Höhen-
schnittpunkte H und M ; also ist MD : HA = 1 : 2.
Nach a.) ist MA : NA − 1 = r : r1 = 2 : 1, d.h., der Radius des Umkreises des
Dreiecks ABC ist doppelt so groß wie der des Feuerbachschen Kreises.

11. a) F ′ = a2

16
√

3, b) F ′ = 0‚ c) F ′ = 1
16b

2(2
√

3 − 3) = 1
16a

2√3.

13. Abb. 33. 2△AOaE2 − 2△BCOa = ρas− ρaa = ρa(s− a)

14. a) und b) sind durch Einsetzen zu bestätigen.
c) sinα = 2

bc

√
s(s− a)(s− b)(s− c)

d)

cosα = s(s− a) − (s− b)(s− c)
bc

= 2s(s− a)
bc

− 1

= s(s− a) + (s− b)(s− c)
bc

= 2(s− b)(s− c)
bc

= 1 − 2(s− b)(s− c)
bc

15. Man benutze die Lösung von Aufgabe 14c und forme um:

1
2bc sinα =

√
s(s− a)(s− b)(s− c) = F

22. Neben ρa − ρ bestimme man noch ρb − ρ und ρc − ρ. Dann ist

(ρa − ρ)(ρb − ρ)(ρc − ρ) = 43r3 sin2 α

2 sin2 β

2 sin2 γ

2

Nach (17) ist
ρa + ρb + ρc − ρ = 4r

und somit [vgl. (22)]

(ρa − ρ)(ρb − ρ)(ρc − ρ)
ρa + ρb + ρc − ρ

= (4r)2 sin2 α

2 sin2 β

2 sin2 γ

2 = ρ2

25. a) Man dividiere durch

F = ρs = ρa(s− a) = ρb(s− b) = ρc(s− c)

Es ist 1
ρ

= 1
ρa

+ 1
ρb

+ 1
ρc

b) 1
ρ

= 1
ha

+ 1
hb

+ 1
hc

26. D1D2 = b − c, D2D3 = c, CP = a−c
2 , D1D3 = b, D2D4 = b, CR = a−b

2 ,
D1D4 = c, D3D4 = b+ c, CQ = a+b

2 , PT = c.
Die Mitten von D1D2 und von D3D4 fallen mit dem Mittelpunkt der Seite a zusammen.
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Abb. 92

28. P liegt innerhalb (Abb. 92):

α = ∠BPC−∠C1A1B1 , β = ∠CPA−∠A1B1C1 , γ = ∠APB−∠B1C1A1

Abb. 93

P liegt außerhalb (Abb. 93)

α = ∠BPC+∠C1A1B1 , β = −∠CPA+∠A1B1C1 , γ = ∠APB+∠B1C1A1

Bei gleicher Benennung von Winkel und Dreieck wird der entgegengesetzte Umlaufsinn
bei Außenlage von P durch das entgegengesetzte Vorzeichen gekennzeichnet.

Berechnung von ∠B1C1A1 bei Außenlage von P :

∠B1C1A1 = ∠B1C1P − ∠A1C1P = ∠B1AP − ∠A1BP (1)

Es ist ∠DAP + ∠DPA = ∠DBC + ∠DCB (Beweis!)
∠DAP − ∠DBC = ∠DCB − ∠DPA

∠B1AP − ∠A1BP = ∠DCB − ∠DPA (2)

Aus (1) und (2) folgt
∠B1C1A1 = γ − ∠APB

29. Die verschiedenen Lagen sind möglich.

Abb. 94, 95
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30. Abb. 94. a.) Die Ecken von △C1C2C3 sind Scheitel dreier Zentriwinkel, die den
Peripheriewinkeln in den gleichen Kreisen gleich sind, weil diese über den doppelten
Kreisbogen stehen: △ABC ∼ △C1C2C3 (WW).
b) Es lässt sich leicht zeigen, dass in diesem Falle das Miquelsche Fußpunktsdreieck dem
△ABC ähnlich ist und daher auch alle durch den Punkt P bestimmten Miquelschen
Dreiecke (Abb. 95).

31. a) Fällt beispielsweise P mit A zusammen, so sind die Lote von P auf die Seiten
b und c zu Punkten entartet, die in A liegen. Das dritte Lot, die Höhe ha, ist die
Simsonsche Gerade.

b) Zwei Lote von P aus auf die Dreiecksseiten treffen zwei Ecken des Dreiecks. Die sie
verbindende Dreiecksseite ist die Simsonsche Gerade.

32. Wenn der Miquelsche Punkt mit dem Umkreismittelpunkt zusammenfällt, d.h.,
wenn MP = 0 ist.

33.

r2−MP 2 = ha ·2ha = 8r2 cosα cos β cos γ ,
r2 −MP 2

4r2 = 2 cosα cos β cos γ

F ′ = 2 cosα cos β cos γ · 2r2 sinα sin β sin γ = 1
2r

2 sin 2α sin 2β sin 2γ

34. Im rechtwinkligen Dreieck sind die Antiparallelen, die den Scheiteln der spitzen
Winkel benachbart sind, der Hypotenusenhöhe parallel, die daher von den Symmedianen
halbiert wird (Abb. 96).

Abb. 96

35. a) Ähnlichkeitspunkt T , Verhältnis 2 : 1 (Abb. 47),
b) Ähnlichkeitspunkt N , Verhältnis 2 : 1,
c) Ähnlichkeitspunkt T , Verhältnis 1 : 1.

86. Abb. 47. T bzw. O sind die Mittelpunkte der Inkreise der ähnlichliegenden Drei-
ecke A1B1C1 und ABC. Daher ist AO ∥ A1T (Verbindungsstrecken entsprechender
Punkte), und es gilt AO : A1T = 2 : 1.
AO und A1T sind Halbierende der Winkel α bzw. α1.

37. Abb.47. Q1 sei der Schnittpunkt von B2C2 und NE; NE ist Ähnlichkeitsstrahl.
Q1 und E sind entsprechende Berührungspunkte der Inkreise.
EA1 = DA1 (Beweis!)‚ OA1 ∥ AD. OA1 schneidet EN in Q′; EQ′ : Q′N = 1 : 1
(Strahlensatz). Da auch EQ1 : Q1N = 1 : 1 ist, fällt Q′ mit Q1 zusammen.

40. Beide Dreiecke stimmen in den drei Winkeln und im Umkreisradius r überein. Daraus
folgt ihre Kongruenz.
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41. a) Außenwinkelsatz, b) Sinussatz, c) aus b) folgt

BΩ
CΩ = c sin γ

a sin β = c2

ab
= sin(γ − ω)

sinω

d) Aus W3A
b = sin ω

sin(α+ω) und W3B
a = sin(γ−ω)

sin(α+ω) folgt der in der Aufgabe angegebene Aus-
druck.

42. Abb. 53. KP3Q1 und KP1Q3 sind gleichschenklige Dreiecke (Gleichheit der Basis-
winkel). Daraus ergibt sich die Gleichheit der Strecken

KQ1 = KP3 = KP1 = KQ3

43. Es handelt sich um drei Rechtecke, bei denen je eine Seite in einer Dreiecksseite
liegt, auf der dann zwei Rechtecksseiten senkrecht stehen.

44. Die Beweise ergeben sich leicht analog dem Beweis, der der Aufgabe vorausgeht.

45. Abb. 56. ∠P1P3P2 = α, ∠Q3Q2Q1 = α, ∠P2P1P3 = β‚ ∠Q1Q3Q2 = β,
∠P3P2P1 = γ, ∠Q2Q1Q3 = γ.
Daraus folgt die Kongruenz bzw. Ähnlichkeit.

46. Abb. 58. Kreis mit MK als Durchmesser und Ecktransversalen durch K. Ihre
zweiten Schnittpunkte mit dem Kreis sind die Ecken des Brocardschen Dreiecks.

47. Es ist
x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2) = 0

Addition von x1y1 − x1y1 und geeignete Zusammenfassung der Produkte ergibt

(y − y1)(x2 − x1) = (y2 − y1)(x− x1)

48. a) Mittelsenkrechte:

(x2 − x3)x+ (y2 − y3)y − 1
2(x2

2 − x3
3 + y2

2 − y3
3) = 0

b) Seitenhalbierende:

(y2 + y3 − 2y1)(x− x1) − (x2 + x3 − 2x1)(y − y1) = 0

Die beiden fehlenden Gleichungen ergeben sich durch zyklische Vertauschung der Indi-
zes. Die Summe der drei linken Seiten ist in jedem Fall gleich Null.

49.

N(g1) −N(g2) = 0, N(g2) +N(g3) = 0, N(g3) +N(g1) = 0

Multiplikation der letzten Gleichung mit -1 und Addition der drei Gleichungen liefert
auch auf der linken Seite Null.
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50. a) Höhen:

N(g3) cosα3 −N(g2) cosα2 = 0 , N(g2) cosα2 −N(g1) cosα1 = 0

N(g1) cosα1 −N(g3) cosα3 = 0
Die Summe der linken Seite ist Null. b) Seitenhalbierende:

N(g2) sinα2 −N(g3) sinα3 = 0 , N(g3) sinα3 −N(g1) sinα1 = 0

N(g1) sinα1 −N(g2) sinα2 = 0
Die Summe der linken Seite ist Null.

Abb. 97

51. Abb. 97. Ecktransversale zum Umkreiszentrum:

N(g2) cosα3 −N(g3) cosα2 = 0 , N(g3) cosα1 −N(g1) cosα3 = 0

N(g1) cosα2 −N(g2) cosα1 = 0
Multipliziert man diese Gleichungen der Reihe nach mit cosα1, cosα2 bzw. cosα3 und
addiert sie, so ergibt sich auf der linken Seite Null.

52. a) Die Höhen des Dreiecks:

x− x2 = 0 (1)
(x1 − x2)x− yy2 = 0 (2)
x2x− y2y − x1x2 = 0 (3)

Die Koordinaten des gemeinsamen Schnittpunktes sind

xs = x2 , ys = (x1 − x2)x2

y2

b) Die Gleichungen der Mittelsenkrechten der Seiten:

2x− x1 = 0 (1)
2(x1 − x2)x− 2y2y − x2

1 + x2
2 + y2

2 = 0 (2)
2x2x+ 2y2y − x2

2 − y2
2 = 0 (3)

Die Koordinaten des Schnittpunktes sind

xs = x1

2 , ys = y2
2 − (x1 − x2)x2

2y2
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c) Die Gleichungen der Seitenhalbierenden:

2y2x− 2x2y + x1y − x1y2 = 0 (1)
−y2x+ x2y + x1y = 0 (2)

−y2x+ x2y − 2x1y + x1y2 = 0 (3)

Die Koordinaten des Schnittpunktes sind

xs = x1 + x2

3 , ys = y2

3
d) Die Gleichungen der Winkelhalbierenden:

y2x− x2y√
x2

2 + y2
2

+ y2x+ (x1 − x2)y − x1y2√
y2

2 + (x1 − x2)2
= 0 (1)

y2x+ (x1 − x2)y − x1y2√
y2

2 + (x1 − x2)2
+ y = 0 (2)

y − y2x− x2y√
x2

2 + y2
2

= 0 (3)

Setzt man
√
x2

2 + y2
2 = a und

√
y2

2 + (x1 − x2)2 = b, so erhält man die Koordinaten
des Schnittpunktes in der vereinfachten Form:

xs = x1(a+ x2)
a+ b+ x1

, ys = x1y2

a+ b+ x1

Aus der Zusammenstellung ersieht man leicht, dass die Summe der drei Gleichungen
unter Berücksichtigung der angedeuteten erlaubten Multiplikation in jedem Fall Null
ist. Auch die aus den Koeffizienten von je drei Gleichungen gebildete dreireihige De-
terminante verschwindet. Die berechneten Schnittpunktskoordinaten erfüllen jede der
zugehörigen drei Gleichungen.

53. a) Einsetzen in die Inhaltsformel für das Dreieck ergibt

2∆ = x2
3(x1 − x2)x2 − y2

2
6y2

+(x1 +x2)
y2

2 − 3(x1 − x2)x2

6y2
+x1

3(x1 − x2)x2 − y2
2

6y2
= 0

b)

D =

∣∣∣∣∣∣∣∣∣
x2

(x1−x2)x2
y2

1
x1+x2

3
y2
3 1

x1
2

y2
2−(x1−x2)x2

2y2
1

∣∣∣∣∣∣∣∣∣ = 0

c) Die Gleichung der Geraden HM :

y − (x1 − x2)x2

y2
= y2

2 − 3(x1 − x2)x2

y2(x1 − 2x2)
(x− x2)

wird durch xs = x1+x2
3 und ys = y2

3 identisch erfüllt.
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54.

a = (x2
1 + y2

2)(y2 − y3) + (x2
2 + y2

2)(y3 − y1) + (x2
3 + y2

3)(y1 − y2)
2[x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)]

b = (x2
1 + y2

2)(x2 − x3) + (x2
2 + y2

2)(x3 − x1) + (x2
3 + y2

3)(x1 − x2)
2[y1(x2 − x3) + y2(x3 − x1) + y3(x1 − x2)]

55.
a = x1 + 2x2

4 , b = x2(x1 − x2) + y2
2

4y2

56. (
x− x1 + 2x2

4

)2
+
(
y − x2(x1 − x2) + y2

2
4y2

)2

= r2

(x2
2 + y2

2)[y2
2 + (x1 − x2)2]
16y2

2
= r2

57. Die Gleichung wird identisch erfüllt.

58. Der Radius R des Umkreises des Dreiecks P0P1P3 folgt aus

R2 = (x2
2 + y2

2)[y2
2 + (x1 − x2)2]
4y2

2

zu R = 2r.

59. Die Gleichung der Geraden HM und die Koordinaten des Mittelpunktes des Feu-
erbachschen Kreises können aus Aufgabe 53 c und Aufgabe 55 entnommen werden.
Der Mittelpunkt der Strecke HM ist gegeben durch die Formeln xh+xm

2 und yh+ym

2 . Es
ergeben sich die in Aufgabe 55 berechneten Koordinaten

xh = x2, yh = (x1 − x2)x2

y2
, xm = x1

2 , ym = y2
2 − (x1 − x2)x2

2y2

60. Es ist

1 − λ− 1
2µ = 0, 1 − 1

2λ− µ = 0, 1
2λ− 1

2µ = 0

Daraus ergibt sich λ = 2
3 , µ = 2

3 , xs = x1+x2+x3
3 .

61. Abb. 68. (x−p2) ⊥ p1, (x−p1) ⊥ p2. Man bildet die skalaren Produkte, subtrahiert
und erhält x · (p − 1 − p2) = 0, d.h. x ⊥ (p1 − p2).

62. Abb. 69.

hc · c + hb · b = (b + x) · c + (x − c) · b = b · c + x · c + x · b− c · b
= x · (c + b) = x · (−a) = 0
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wegen a + b + c = o, d.h. x ⊥ a. 63. Abb. 70.

x − z = b, z − y = a, x + z = 2nb, z + y = 2na,

x2 − z2 = 2nb · b = 0, z2 − y2 = 2na · a = 0, |x| = |z|, |z| = |y|

also |x| = |y|.

y − z = c, y + z = 2d, y2 + x2 = 2d · c

Die linke Seite dieser Gleichung ist Null, also ist auch 2d · c = 0, und da weder d noch
c den Nullvektor darstellen, ist d ⊥ c.
Die Mittelsenkrechten na, nb und d schneiden einander in einem Punkt.

64. Abb. 98. Im Dreieck ABC gilt

a + b + c = o, wβ = m
(a
a

− c

c

)
, wγ = n

(
b

b
− a

a

)
, a + wγ = wβ

Man findet m = ac
a+b+c und n = ab

a+b+c . Setzt man diese Werte in die vorstehende
Gleichung ein, so erhält man

wβ = ca − ac

a+ b+ c
, wγ = ab − ba

a+ b+ c
, d = bc − cb

a+ b+ c

Es ist d = c+wβ. Man berechne wα und wβ aus c+wβ = wα, wenn wα = r
(
c
c − b

b

)
und wβ = m

(
a
a − c

c

)
gesetzt wird.

65.
wβ = ca − ac

a+ c− b
, wα′ = −bc − cb

a+ c− b
, wγ′ = ab − ba

a+ c− b

α′ und γ′ sind Außenwinkel an den Ecken A bzw. C. α, β′, γ′ und γ, α′, β′ liefern
analoge Werte.

Abb. 98, 99

66. a) x1E1 + x2E2 == (x1 + x2)P , in Vektorschreibweise

x1E1 + x2E2 = (x1 + x2)P , E1 + x2

x1 + x2
(E2 − E1) = P (Abb. 99)

b) x1E1 − x2E2 = (x1 − x2)P , in Vektorschreibweise

x1E1 − x2E2 = (x1 − x2)P (Abb. 100)

E2E1 wird durch P außen im Verhältnis x1 : x2 geteilt. Es ist

|E1 − E2| : |P − E1| = (x1 − x2) : x2
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Daraus folgt

x2|E1 − E2| = (x1 − x2)|P − E1| , x1E1 − x2E2 = (x1 − x2)P

e) E1 − E2 = −−−→
E2E1. E1 − E2 = −−−→

E2E1 (Abb. 101).

Abb. 100, 101

67.
∆
r

Ω = a sinα sinω sin(β − ω)
sin β · A+ b sin β sinω sin(γ − ω)

sin γ ·B + c sin γ sinω sin(α− ω)
sinα · C

∆
r

Ω′ = a sinα sinω sin(γ − ω)
sin γ · A+ b sin β sinω sin(α− ω)

sinα ·B + c sin γ sinω sin(β − ω)
sin β · C

68. a) Bei der Summierung der baryzentrischen Koordinaten werden die Additionstheo-
reme der Winkel angewendet. Dabei ist zu beachten, dass α + β + γ = 180◦ und
α
2 + β

2 + γ
2 = 90◦ ist, beispielsweise cosα = − cos(β + γ), sin β+γ

2 = cos α
2 .

b) Abb. 90.

H +M = 2F → h + 1
2(m − h) = f oder h + m = 2f

H + 2M = 3S → h + 2
3(m − h) = s oder h + 2m = 3s

H + 2F = 3S → m + 2
3(f − m) = s oder m + 2f = 3s

H + 3S = 4F → h + 3
4(s − h) = f oder h + 3s = 4f

69. Die Rechnungen erfolgen wie in Aufgabe 68a.

70. a) Man benutze die Ergebnisse von Aufgabe 67 und drücke cot β+ cot γ durch die
Gleichung cotω = cotα + cot β + cot γ aus.
Es ergibt sich

M1 = r

2∆[a sinω sin(α + ω) · A+ b sinω sin(β + ω) ·B + c sinω sin(γ + ω) · C]

b) M1 kann auch aus den baryzentrischen Koordinaten von K und M errechnet werden.

Abb. 102
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Es ist (Abb. 102)

KM1 : M1M = sin2 ω : cos2 ω

(M1 −K) cos2 ω = (M −M1) sin2 ω

M1 = M sin2 ω +K cos2 ω

Ergebnis wie zu a).

Bemerkung. Die baryzentrischen Koordinaten von M1 sind die Inhalte der Dreiecke
BM1C, CM1A und AM1B. Sie lassen sich auch direkt berechnen (vgl. Abb. 52 und
55).
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