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Vorwort

Vorwort

AnschlieBend soll das Buch auch

noch gekauft werden, und die
Rezensionen sollen gut ausfallen.
Aus einem Vorwort von W. Gilde

Es dem potentiellen Kaufer zu erleichtern und auch dem Rezensenten, ist unser Vorwort
gedacht. Das Thema "Extrema" kann sehr unterschiedliche Erwartungen auslésen, da
es ja auch in der Tat die unterschiedlichsten Gebiete beriihrt und verschiedenartigste
Methoden anspricht.

Unser Biichlein ist schon vom Umfang her viel zu klein, um die Vielfalt des Themas
auch nur annahernd wiederzugeben.
Worauf haben wir uns beschrankt? Welche Griinde, welche Zielstellung gab es dafiir?

Unter den Methoden haben wir uns auf elementare Losungsmethoden beschrankt. Unser
Ausblick auf Methoden der héheren Mathematik in den Kapiteln 5 und 6 kniipft bewusst
an die Kenntnisse des "Elementaren” an.

Gerade die Methoden der hoheren Mathematik sind umfangreich in der Literatur dar-
gestellt und werden ausfiihrlich in den unterschiedlichen Ausbildungsrichtungen gelehrt.
Das fiihrt allerdings auch dazu, dass der Blick fiir das Elementare verstellt und mitunter
"mit Kanonen auf Spatzen geschossen" wird.

Auch sollte man bei allem Streben nach Allgemeinheit nie vergessen, "dass die bunte
Vielfalt der individuellen Probleme fiir die Vitalitdit der Mathematik entscheidend ist"
(Courant/Robbins).

Von solchen Uberlegungen haben wir uns beim Schreiben der Kapitel 2, 3 und 4 leiten
lassen. Die Beschrankung auf elementare Methoden lasst es auch zu, dass sich schon
Schiiler unserem Biichlein zuwenden kénnen (und sollen!).

Schiiler der 7. und 8. Klassen kénnen durchaus das Wesentliche des Kapitels 2 erfas-
sen, bereits von Schiilern der 9. und 10. Klassen konnen alle anderen Kapitel bearbeitet
werden. Das Biichlein konnte also einen Schiiler (iber mehrere Jahre begleiten, es kann
selbstandig durchgearbeitet oder 4 Vorwort von Lehrern in der auBerunterrichtlichen
Tatigkeit verwendet werden.

Bei der Darstellung elementarer Methoden ging es uns nicht nur um eine Gegeniiber-
stellung zu den Methoden der hoheren Mathematik, unsere Ausfiihrungen bezwecken
auch, die verschiedenen elementaren Methoden untereinander zu vergleichen, daher
findet man viele Aufgaben, die nach verschiedenen der vorgestellten Methoden gelost
werden.

Uberhaupt ist der Einsatz von Aufgaben ein von uns sehr massiv und bewusst gewahltes
Mittel, Kenntnisse zu vermitteln. Erfahrungen, die wir selbst in der auBerunterrichtli-
chen Tatigkeit gesammelt haben, bestarkten uns darin, so vorzugehen.

Wenn wir auch kein Buch iiber die "Kunst des Aufgabenlésens" schreiben wollten, so
sind doch unsere diesbeziiglichen Erfahrungen mit eingeflossen. Von den verschiedenen
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Prinzipien und Regeln der Heuristik spielen insbesondere eine Rolle

- das Analogieprinzip (Bezugnahme auf dhnliche Aufgaben, die vorher geldst wurden,
als auch Fortsetzung durch weitere analog konstruierte Aufgaben),

- das Modellieren (d. h. das Finden eines geeigneten mathematischen Modells fiir das
gegebene Problem),

- das plausible SchlieBen.

Neben der Einschrankung beziiglich der Methoden war auBerdem eine Reduzierung der
Stoffgebiete notwendig. So wird man leider beispielsweise aus der Zahlentheorie oder
Kombinatorik keine Aufgaben finden. Und obwohl wir die Geometrie besonders betont
haben, ist das von uns Gewahlte nur ein kleiner Ausschnitt, Packungsprobleme etwa
fehlen auch.

Beziiglich der der Praxis entnommenen Aufgabenstellung muss natiirlich deutlich ge-
sagt werden, dass es sich um sehr genau ausgewahlte Probleme handelt, die gerade mit
den von uns vorgestellten Methoden behandelt werden kénnen. Sie dienen also dazu, die
Verbreitung von Extremalproblemen in praktischen Aufgaben zu demonstrieren, diirfen
aber keineswegs zu der Vorstellung verfiihren, dass den Praxisproblemen stets so leicht
"beizukommen" ist.

Das Literaturverzeichnis verrat, wo wir Anregungen suchten und fanden und wo der
Leser weitere Entdeckungen wird machen konnen. Fiir einzelne Aufgaben Quellen an-
zugeben oder auf Autorschaft zu bestehen erschien uns nicht sinnvoll, da sich viele
Aufgaben kaum bis zu ihrer Primarquelle zuriickverfolgen lassen. Auch Aufgaben, die
man glaubt selbst erfunden zu haben, kénnten sich als "langst bekannt" herausstellen.

Fir die vielfaltigen und kritischen Hinweise danken wir Herrn Prof. Dr. Helmut Bausch.
Unser Dank gilt weiterhin Frau Helga Kirmse, die das Manuskript mit gewohnter Zu-
verlassigkeit schrieb, der Lektorin Erika Arndt fiir die gute Zusammenarbeit sowie dem
VEB Druckhaus "Maxim Gorki" fiir die sorgfaltige Arbeit.

Potsdam, im Frithjahr 1986
Erhard Quaisser, Hans-Jirgen Sprengel
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1.1 Ist nicht alles ganz einfach?

1 Uberall und immer Extrema

1.1 Ist nicht alles ganz einfach?

Was ware zu wahlen:

Der Beste unter den Schlechten zu sein
oder der Schlechteste unter den Besten?
F. Hebbel

Ware diese Frage leicht zu beantworten, dann hatte Friedrich Hebbel sie wohl kaum
gestellt. Es ist auch keine Frage mathematischer Art, es geht um menschliche Eigen-
schaften und menschliches Verhalten. Wer mochte da einen sicheren Vergleich wagen.
Reelle Zahlen dagegen lassen sich vermittels der Ordnungsrelationen < oder < einfach
vergleichen. In einer endlichen Menge von Zahlen findet man leicht die groBte oder
auch die kleinste.

(1.1) 0E| Man ermittle jeweils die kleinste und groBte Zahl der folgenden Mengen:
a) A={1,0;7;,-3;17; m; —23},
b) B = {4m;12,5;/158; v/156 }.

Im Fall a) "geniigte ein Blick", bei b) auch, aber erst, nachdem wir die Zahlen durch
Rechnung auf eine vergleichbare Form gebracht hatten. Selbstverstandlich konnen wir
dann auch die mittels reeller Zahlen (und MaBeinheiten) messbaren GréBen - wie Lan-
gen, Flachen und. Volumina in der Geometrie oder Kosten und Gewinne in der Oko-
nomie - miteinander vergleichen. Auch bei Entscheidungen von geringerer Bedeutung
kann man davon Gebrauch machen:

Einer der vielen Giinstlinge Katharinas Il. glaubte, eine Bibliothek seinem Stande gemaB
besitzen zu miissen und gab einem Buchhandler den Auftrag. "Was fiir Biicher befehlen
Euer Exzellenz?"-

"Ja, das@mﬂssen Sie wissen, gerade so wie bei der Kaiserin, kleine Biicher oben, groBe
unten!"

Die bisher so einfach aussehende Aufgabe der Auswahl eines groBten und kleinsten Ele-
mentes aus einer Menge wird schlagartig schwieriger, wenn es sich um eine Menge von
unendlich vielen Elementen handelt. Nicht nur, dass wir mit dem bloBen "Uberschau-
en" die gefragten Elemente natiirlich nicht mehr herausfinden kdnnen, es entsteht eine
prinzipiell neue Frage, die nach der Existenz.

-7 bely
r/'/’ lA i - g
c=Q, a, D
Abb. 1.1 @ b)

!Das Symbol e bedeutet, dass der Leser diese Aufgabe selbstindig lésen soll. Sein Resultat kann er
dann mit den Hinweisen in Kapitel 7 vergleichen.
2nach K. J. Weber, Demokritos, Berlin 1984, S. 61




1.2 Aus der Geschichte der Extremalaufgaben

(1.2) * Man beweise, dass die Menge aller rationalen Zahlen r, fiir die 2 < r? < 3
gilt, weder eine groBte noch eine kleinste Zahl enthalt.

Sind in der Ebene zwei Strecken AB und C'D wie in Abb. 1.1a gegeben, so existiert ein
Punktepaar (P;, (1), welches den kiirzesten Abstand zwischen zwei Punkten P und
Q mit P € AB und Q € CD aufzuweisen hat, und ein Punktepaar (P, Q)2), welches
den groBten Abstand hat. (In unserem Beispiel sind diese Punktepaare sogar eindeutig
bestimmt.)

Denken wir uns die in Abb. 1.1b angedeutete Kurve k und die Gerade g "bis ins
Unendliche fortgesetzt", so ergibt sich ein Kurvenpaar, fiir welches weder ein kleinster
noch ein groBter Abstand zwischen ihren Punkten existiert.

Der folgende Trugschluss zeigt, dass wir schnell einem Fehler aufsitzen kénnen, wenn
wir die Existenz eines Extremums einfach voraussetzen.

Nehmen wir einmal (falschlicherweise!) an, es existiere eine groBte natirliche Zahl n.
Dann lasst sich daraus herleiten, dass die groBte natiirliche Zahl die Zahl 1 ist:

Denn ware n > 1, dann folgte nach Multiplikation mit n, dass n? > n gilt, d. h., das
Quadrat der natiirlichen Zahl n (welches nach den Rechenregeln fiir natirliche Zahlen
ja wieder eine natirliche Zahl ist) wéare noch groBer als die groBte Zahl. Das ist ein
Widerspruch.

Da von den beiden "restlichen" Zahlen 0 und 1 die Zahl 1 die groBere ist, ist folglich 1
die groBte natirliche Zahl. Dieser Trugschluss sollte uns zur Vorsicht mahnen!

Wir werden ofter auf das Existenzproblem zuriickkommen, allerdings in vielen Beispie-
len die Existenz auch als "gesichert" voraussetzen. Ein aufmerksames und kritisches
Mitdenken unserer Leser ist uns sehr wichtig.

1.2 Aus der Geschichte der Extremalaufgaben

Die ersten uns iiberlieferten Extremwertaufgaben| stammen aus den "Elementen" des
Euklid®, und Euklid lebte bereits im 4. Jh. v. u. Z. in Alexandria. Dort hatten die Ptole-
maer ein wissenschaftliches Zentrum mit einer berithmten Bibliothek einrichten lassen,
es war die Zeit, in der sich der Typ des "berufsmaBigen Wissenschaftlers" entwickelte.

Weitere Extremwertuntersuchungen ergaben sich fiir die Mathematiker des Altertums
im Zusammenhang mit dem isoperimetrischen Problem. Die Aufgabe besteht darin, mit
einer Kurve vorgegebener Lange eine Flache groBtmoglichen Inhalts einzuschlieBen.
Der Sage nach soll Dido schon im 9. Jh. v. u. Z. bei der Griindung Karthagos eine
Aufgabe aus diesem Problemkreis intuitiv gelost haben:

Dido kaufte von den Einwohnern an der nordafrikanischen Kiiste eine Stiick Land, "nicht
groBer als was eine Ochsenhaut umspannen kann". Sie zerschnitt die Ochsenhaut in
feine schmale Streifen, aus denen sie eine lange Schnur drehte, mit dieser grenzte sie

3Vgl. [7], S. 463.
“Euklid von Alexandria (etwa 365 bis etwa 300 v. u. Z.), griechischer Mathematiker.




1.2 Aus der Geschichte der Extremalaufgaben

dann am Ufer des Mittelmeeres ihr erworbenes Land gegeniiber dem anderen ab. Wel-
che Form wahlte sie? Den Halbkreis (mit seinem Mittelpunkt am Ufer)!

Um 180 v. u. Z. zeigte Zenodoros:

(1.3) Von allen regelmaBigen n-Ecken gleichen Umfangs besitzt das mit der groBten
Eckenzahl den groBten Flacheninhalt, und der Kreis iibertrifft noch alle regelmaBigen
n-Ecke gleichen Umfangs beziiglich der Flache[)

Auch in der Natur bemerkte man das "Extremalprinzip". Pappos von Alexandria, der
etwa um 320 u. Z. gelebt hat, verbindet in seinem Hauptwerk "Collectio"ﬂ in dem er
wesentliche Erkenntnisse seiner Zeit zusammenfasste, die Darstellung des isoperimetri-
schen Problems mit einem Exkurs (iber die Weisheit der Biene:

"Es ist offensichtlich, dass Gott dem Menschen die beste und vollkommenste Vorstellung
von der Weisheit im allgemeinen und der mathematischen Wissenschaft im speziellen
verliehen hat, aber ein Teil dieser Dinge wies er gleichwohl einigen der vernunftlosen
Tiere zu."

Nach Pappos trifft das insbesondere auf die Bienen zu, "... indem sie zunachst die
SiBigkeiten der schonsten Blumen einsammeln, die auf der Erde wachsen, machen sie
daraus, zur Aufnahme des Honigs, die GefaBe, die wir Honigwaben nennen, gleich alle
und alle aneinander stoBend und von sechseckiger Form. Und dass sie dies ersonnen ha-
ben vermoge einer gewissen mathematischen Voraussicht, konnen wir auf die folgende
Weise schlussfolgern.

Notwendigerweise mussten sie sich liberlegen, dass die Figuren alle aneinanderstoBen,
d. h., dass sie gemeinsame Seiten haben miissen, damit kein fremder Stoff in die Zwi-
schenraume eindringen und so die Reinheit ihres Erzeugnisses entwiirdigen konnte. Nun
gibt es nur drei geradlinig begrenzte Figuren, die dieser Bedingung gentigen, ich meine
regulare Figuren, die gleiche Seiten und gleiche Winkel besitzen; die Bienen namlich
wirden keine Figuren haben wollen, die nicht einheitlich sind ...

Da es mithin drei Figuren gibt, die fahig sind, den gesamten Raum um einen Punkt
auszufillen, wahlten die Bienen vermoge ihrer instinktiven Weisheit zur Konstruktion
ihrer Honigwaben diejenige Figur, die die meisten Winkel hat, weil sie sich ausdachten,
dass diese mehr Honig aufnehmen kann als jede der beiden anderen.

Mithin, die Bienen kennen genau die Tatsache - die ihnen selbst Nutzen bringt -, dass
das Sechseck (der Flache nach) groBer ist als das Quadrat und das Dreieck und mehr
Honig aufnehmen kann beim selben Aufwand an Material, das bei der Konstruktion der
verschiedenen Figuren gebraucht wird. Wir jedoch, die wir einen groBeren Teil Weisheit
als die Bienen in Anspruch nehmen, wollen ein Problem von noch weiterer Ausdehnung
untersuchen, das namlich, dass von allen ebenen Figuren mit gleichen Seiten und glei-
chen Winkeln, die den gleichen Umfang haben, dasjenige mit der groBeren Winkelzahl
stets groBer ist und dass die groBte ebene Figur unter allen denjenigen, die einen mit
den Polygonen gleichen Umfang besitzen, der Kreis ist."|Z|

5Vgl. [16], S. 147

®nach [16], S. 204/205
Taus [16], S. 227/228




1.2 Aus der Geschichte der Extremalaufgaben

Die Mathematik des Mittelalters ist vergleichsweise arm an Untersuchungen lber Ex-
trema.

Die bedeutendsten Arbeiten iiber solche Probleme aus der Zeit vor der eigentlichen
Erfindung der Differentialrechnung stammen von Pierre de Fermat (1601-1665). Er
gehorte zu der um die damalige Zeit rasch zunehmenden Gruppe von Liebhabern und
Amateuren, die sich auBerhalb der Universititen mit den Wissenschaften beschaftig-
ten. Von Beruf war er Jurist, hatte aber wohl bei seinem Gerichtsprasidenten keinen
sehr guten Stand, da dieser die durch das groBe Interesse an der Mathematik bewirkte
Ablenkung von den Amtspflichten nicht gerade gern sah.

Die Nachwelt denkt anders dariiber und ware wohl froh, wenn sich Fermat noch mehr
Zeit fiir die Mathematik genommen hatte und z. B. statt seiner beriihmten Randnotiz
zur Methode des Diophantos (beziiglich ganzzahliger Lésungen von Gleichungen) lieber
etwas ausfiihrlich gewesen ware.

Auch zu seiner Studie "Uber Maxima und Minima" erhielt Fermat Anregungen aus der
antiken Mathematik. Neben interessanten Aufgaben mathematischer Art wird hier auch
das Wirken von Extremalprinzipien in der Natur behauptet. Wir werden noch ofter auf
das Fermatsche Prinzip der Optik zuriickkommen:

(1.4) Das Licht wahlt zwischen zwei Punkten stets den Weg, auf dem es die minimale
Zeit benotigt [

Zur Lésung von Extremalaufgaben benutzte Fermat eine Methode, die schon in etwa der
der Differentialrechnung entspricht. Wahrend Fermat sich aber nur auf die Ermittlung
von Extrema bzw. spezielle Funktionen (vgl. auch Abschnitt 5.1) bezieht, wird dann
von Newton und Leibniz die Differentialrechnung als eine umfassende und weitreichende
Methode entwickelt.

|. Newton (1643-1727) als der bedeutendste Physiker seiner Zeit sucht die Bewegung
eines Teilchens zu beschreiben, fiir welches die Zeit und die Lage im Raum die variablen
GroBen sind. Newton spricht von den "flieBenden GroBen" und nennt daher seine von
ihm entwickelte Methode "Fluxionsrechnung".

In seinem Werk "Philosophiae naturalis principia mathematica" (1687) wendet er die
FIu%onsrechnung auf drei groBe Gebiete an, darunter die Ermittlung von Extremwer-
ten.

G. W. Leibniz (1646-1716), eines der letzten Universalgenies, war immer auf der Suche
nach universellen Methoden. Sein Zugang zur Differentialrechnung war geometrischer
Natur (vgl. Abschnitt 5.1), die von ihm eingefiihrten Symbole verwenden wir heute
noch. Die Differentialrechnung erwies sich als auBerordentlich fruchtbar fiir die Ent-
wicklung der gesamten Mathematik, sie erwies sich auch als eine sehr weitreichende
Methode beziiglich der Losung von Extremalaufgaben, allerdings nicht als Universal-
methode.

8Dieses ist die am haufigsten anzutreffende Formulierung, exakt muss allerdings von einer extremalen
Zeit gesprochen werden. Man vgl. dazu etwa Grimsehl, Lehrbuch der Physik, Bd. Ill, Leipzig 1955,
S. 144.

Vgl. [17], S. 180.




1.2 Aus der Geschichte der Extremalaufgaben

1696 stellte Johann Bernoull{’| das "Brachystochronenproblem", welsches wiederum
ganz neue Losungsideen erforderte (vgl. Abschnitt 5.2).

In den dreiBiger Jahren unseres Jahrhunderts traten verstarkt solche Extremalprobleme
auf, die sich von den bis dahin bekannten vor allem durch die Vielzahl der Nebenbedin-
gungen unterschieden, ihre Behandlung erforderte auch neue Methoden, wir sprechen
von Optimierungsproblemen. Grundlegende Arbeiten dazu wurden u. a. von dem sowje-
tischen Mathematiker L. V. Kantoroviﬂ veroffentlicht. Die Losung von Optimierungs-
aufgaben bringt z. B. in der Wirtschaft groBen Nutzen. Viele Optimierungsaufgaben
werden im Alltag aber noch gefiihlsmaBig behandelt, z. B.:

(1.5) Es ist ein Stundenplan so zu gestalten, dass alle Schiiler pro Tag ohne Freistunden
6 Stunden unterrichtet werden und einige weitere Nebenbedingungen lber die Reihen-
folge von Stunden zu erfillen sind (die man noch exakt formulieren miisste).

a) Wie muss dieser Plan aufgestellt werden, damit die Gesamtzahl der Freistunden aller
Lehrer am kleinsten wird?

b) Wie muss dieser Plan aufgestellt werden, damit das Maximum der Freistunden eines
jeden Lehrers minimal wird?

Nach diesem kurzen historischen Abriss ahnt man vielleicht auch, dass die Extremalauf-
gaben nicht nur als interessante Aufgaben innerhalb einer wirksamen Theorie auftreten,
sondern dass sie urspriinglich als Probleme, die die Praxis stellte, vor solchen Theorien
existierten und einen wesentlich fordernden Einfluss auf die Entwicklung entsprechender
Theorien und Methoden hatten.

10 Bernoulli (1667-1748), Schweizer Mathematiker, wirkte in Genf, Paris, Groningen und Basel.
111 eonid V. Kantorovic, geb. 1912, Prof. in Leningrad.




2.1 Streckenziige kiirzester Lange in der Ebene

2 Geometrische Extremwertaufgaben

2.1 Streckenziige kiirzester Lange in der Ebene

Habe einen guten Gedanken,
man borgt dir zwanzig.
M. v. Ebner-Eschenbach

"Von allen Linienstiicken, die gleiche Endpunkte haben, ist die gerade Linie die Kiirzes-
te" formulierte Archimedes. Diese Erkenntnis finden wir auch im Fermatschen Prinzip
der Optik wieder: Ist der Raum mit einem einheitlichen (homogenen) lichtdurchlassigen
Stoff gefiillt, so breitet sich das Licht in diesem Raum geradlinig aus.

Man konnte zunachst der Meinung sein, dass sich mit diesem einfachen Grundprinzip
nur sehr einfache Sachverhalte betrachten lassen. Die Behandlung der folgenden Pro-
bleme zeigt, dass man die obige Archimedische Erkenntnis glinstig anwenden kann.

(2.1) Bei einem Staffelwettbewerb soll jeder Laufer vom Start S zu einer Wand w lau-
fen, dort anschlagen, weiter zum Mal M und von dort zuriick nach S (siehe Abb. 2.1
a). An welcher Stelle muss er die Wand w beriihren, damit sein Gesamtweg moglichst
klein wird?

Abb. 2.1 @

Bei dieser Aufgabe konnen wir die Strecke MS, deren Lange ja unabhangig von der
Lage von P ist, aus den Uberlegungen ausklammern. Es interessiert nur die Lange des
Streckenzuges SPM.

Wenn sich das Fermatsche Prinzip tibertragen lasst, dann misste der Laufer sich so
bewegen, wie das Licht, das von S lber eine spiegelnde Wand w nach M gelangt, d.
h., der Laufer miisste sich bis zur Wand w geradlinig auf das durch Spiegelung an w
erzeugte Bild M’ von M zu bewegen!

Wir wollen diese Idee zu einem mathematisch einwandfreien Beweis gestalten:

Ist M’ das Bild von M bei der Spiegelung an w, so gilt fiir jeden Punkt P € w auf Grund
der Eigenschaften der Geradenspiegelung |PM| = |PM’| und folglich |SP]+ |PM| =
|SP|+ |PM'|.

Fur die Streckenziige SPM’' sind aber S und M’ feste Punkte. Nach Archimedes ist
daher die "gerade Linie" von S nach M’ iber w die Kiirzeste, d. h., der kiirzeste
Streckenzug geht iiber denjenigen Punkt Py € w, der Schnittpunkt der Geraden ggy
mit w ist.

(Wir miissen also noch voraussetzen, dass die Wand w auch so lang ist, dass stets ein
solcher Schnittpunkt existiert.)

Eine Begriindung kann auch mit Hilfe der Dreiecksungleichung gegeben werden: Ware

10



2.1 Streckenziige kiirzester Lange in der Ebene

P ein von P, verschiedener Punkt auf w, dann wirden S, P, M’ ein Dreieck bilden,
und nach der Dreiecksungleichung ware |SP| + |PM'| > |SM'| = |SPy| + |PoM’|
(Abb. 2.1b).

Im Punkt P, gilt Gbrigens wirklich das Reflexionsgesetz. Die Winkel mit den GroBen «
und ' (siehe Abb. 2.1 b) sind Scheitelwinkel, also ist & = 3. Nach den Eigenschaften
der Geradenspiegelung ist 3’ gleich (3; also stimmen auch « und 8 und damit der
"Einfallswinkel" @ und der "Reflexionswinkel" 3 iiberein.

Wir wollen noch kurz bei den aufgezeigten geometrischen Sachverhalten verweilen.
Fur alle von Py verschiedene Punkte P auf der Geraden w gilt |[SP|+ |PM| > |SPy|+
|[Fo M| (*).

Die Menge der Punkte @, fir die die Summe der Abstande zu S und M konstant und
gleich der Summe |SPy| + | Py M| ist, bildet eine Ellipse F, die durch Py, geht und bei
der S und M die Brennpunkte sind [ (Abb. 2.1 c).

Auf Grund der Ungleichung (*) ist PO der einzige gemeinsame Punkt der Geraden w
mit der Ellipse F/, und damit ist w eine Tangente von E. Da nach unseren bisherigen
Darlegungen das Lot zu w durch Py den Winkel SFPyM halbiert, wird der Lichtstrahl
von S nach Py so an der Ellipse reflektiert, dass er durch M geht.

Man erkennt nun, dass dies fiir jeden von S ausgehenden Lichtstrahl gilt, wenn man
die Ellipsentangente durch denjenigen Punkt legt, bei dem der Strahl von S aus auf
die Ellipse trifft (Abb. 2.1 c). Damit ist die Bezeichnung "Brenn"-Punkt fir S und M
verstandlich.

Abb. 2.2

Auch die nachste, unserem taglichen Leben entnommene Aufgabe hat mit Spiegeln zu
tun. An der Wand hangt ein Spiegel, in dem sich ein aufrecht stehender Mann mit der
Augenhohe von a cm betrachtet. Das untere Ende des Spiegels sei h; cm, das obere
Ende hy cm (iber dem FuBboden; entsprechend der Realitat konnen wir by < a < hs
annehmen. Der Mann stellt fest, dass er sich nicht ganz bis zu seinen FiiBen betrachten
kann.

(2.2) Bei welchem Abstand vom Spiegel kann er den groBten Teil seines Korpers im
Spiegel sehen?

Eine Spiegelung zeigt, dass sich der Mann bei gleicher Augenhéhe unabhangig vom
Abstand zum Spiegel immer nur von einer bestimmten Hohe an sehen kann. Der nicht
sichtbare Teil hat die konstante Hohe a — 2(a — hy) = 2h; — a cm (Abb. 2.2).

Von diesem (berraschenden Effekt kann man sich leicht durch einen Versuch liberzeu-
gen.

12Zum Verstindnis geniigt, sich iiber die iibliche Ortsdefinition einer Ellipse an Hand von Nachschla-
gewerken oder Kompendien zu informieren, z. B. [5], S. 192ff.
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2.1 Streckenziige kiirzester Lange in der Ebene

Bei der nachsten Aufgabenstellung helfen uns Spiegelungen an mehreren Geraden wei-
ter.

(2.3) Im Innern eines spitzen Winkels mit dem Scheitel S und den Schenkeln p und ¢
liege ein Punkt R. Man konstruiere zwei Punkte Py € p und )y € ¢ derart, dass der
Streckenzug RFPy(QoR unter allen Streckenziigen RPQR mit P € p und ) € ¢ mini-
male Lange hat. (Dabei gilt S ¢ p,q; dies ist eine vielfach zweckmaBige und tbliche
Auffassung.)

Eine Losung ergibt sich schnell, wenn wir entsprechend der Lésung von (2.1) zwei Re-
flexionen nutzen:

Die Spiegelbilder RP? und R? des Punktes R bei der Spiegelung an p bzw. ¢ sind fest;
also ist die kiirzeste Verbindung zwischen beiden Punkten die Strecke RPR?. Diese
schneidet die Schenkel p in Py, und g in Q)g. Dass RFPy(QQyR der gesuchte Streckenzug
minimaler Lange ist, folgt nun wiederum aus der Invarianz der Lange beim Spiegeln.
Doch halt! Ist unsere Losung einwandfrei? Warum wurde in der Aufgabenstellung ein
spitzer Winkel vorausgesetzt?

R'T

£
o

%

RP

Abb. 23 @ bl

Abb. 2.3a suggeriert uns zwar die Existenz der Punkte F, und )y bewiesen ist sie aber
noch nicht!

Nun gilt aber wegen der Invarianz der WinkelgroBen bei Spiegelungen |[ZSR*, p| =
|ZSRPT p| und |LSRT,q <= |ZSR",q|. Da Zp, q spitz ist, liegen nun p und ¢ im
Innern des Winkels RPSRY. Folglich schneidet die Strecke RP R? tatsachlich die Halb-
geraden p und gq.

Wir sind auf diese Existenzfrage darum so ausfiihrlich eingegangen, weil die Existenz
eines Extremums keine Selbstverstandlichkeit ist. Ein einfaches Beispiel mag das ver-
deutlichen.

(2.4) Gegeben sei eine Strecke AB. Man ermittle eine Strecke PQ groBter Lange, deren
Endpunkte im Innern von AB liegen.

Eine solche Strecke gibt es nicht! Denn sind Py, Qg verschiedene Punkte im Innern von
AB und liegt - was wir o. B. d. A. annehmen kénnen - der Punkt P, zwischen A und
(o, dann gibt es einen Punkt P; zwischen A und Py, und es gilt |P1Qo| > | PyQo|. Das
heiBt, zu jeder Strecke kann eine langere angegeben werden, deren Endpunkte ebenfalls
innere Punkte von AB sind.

In der Aufgabe (2.3) hatten wir zum Existenznachweis des Minimums die Spitzwinklig-
keit benutzt. Damit ist zunachst nicht gesagt, dass diese Voraussetzung dafiir notwendig
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2.1 Streckenziige kiirzester Lange in der Ebene

ist.

(2.5) Man untersuche die Aufgabenstellung aus (2.3) unter der Voraussetzung, dass
der Winkel Zp, q ein rechter oder stumpfer ist.

Zur Losung sei zunachst Zp, q rechtwinklig. Dann liegt S in der Strecke RPRY; der
Punkt S ist sogar der Mittelpunkt dieser Strecke. Zu jedem Streckenzug RPFPy(QyR?
mit Py € p und (Qy € q gibt es aber offenbar einen Punkt P; zwischen S und P,
oder einen Punkt (01 zwischen S und () derart, dass der neue Streckenzug RP P;(QyRY
oder RPPy(Q)1 R4 kiirzer als der alte ist (Abb. 2.3b). Es gibt also keinen Streckenzug
minimaler Lange.

Ist Zp, q stumpfwinklig, dann liegen R, p und ¢ nicht im Innern des Winkels Z RPS RY,
und man erkennt in entsprechender Weise, dass kein Minimum existiert.

(2.6) e Im Innern eines Winkels Zp, q liegen voneinander verschiedene Punkte A und
B. Man ermittle Punkte Py € p und )y € q derart, dass der Streckenzug AFPy,QoB
unter allen Streckenziigen dieser Art minimale Lange hat.

Fiir welche GroBen des Winkels /p, ¢ gibt es einen minimalen Streckenzug? Andern sich
die Ergebnisse, wenn wir neben den Streckenziigen APQB die Streckenziige AQPB
mit P € p und ) € q in die Betrachtung einbeziehen?

An die Aufgabe (2.3) lasst sich nun vorteilhaft eine Aufgabe anschlieBen, die in die
Aufgabengruppe (iber einbeschriebene Figuren mit extremalen Eigenschaften gehort.

(2.7) Gegeben ist ein spitzwinkliges Dreieck ABC'. Diesem Dreieck ist ein Dreieck
PyQo Ry so einzubeschreiben, dass es unter allen einbeschriebenen Dreiecken PQR ei-
nes mit minimalem Umfang ist. ("Einbeschrieben" bedeutet dabei, dass die Eckpunkte
auf dem Rand des vorgegebenen Dreiecks liegen.)

Unter allen méglichen Lésungswegen ergibt sich einer aus den Uberlegungen zu (2.3).
Es sei R ein beliebiger, aber festgehaltener Punkt auf der Seite AB (Abb. 2.4a). Wir
konstruieren zu diesem festen Punkt R zwei Punkte P’ € CB™ und Q' € CA™ wie in
der Aufgabe (2.3) so, dass der Umfang des Dreiecks RP'Q)" moglichst klein wird.

Abb. 24 © G 2

Auf Grund der Spitzwinkligkeit des Dreiecks ABC' sind P’ und @’ innere Punkte von
CB bzw. C'A. Jetzt miissen wir noch untersuchen, wie sich der Umfang aller solcher
Dreiecke bei Veranderung der Lage des Punktes R auf der Seite AB andert.

Der Umfang ist aber gerade die Lange der Strecke R*R” (Abb. 2.4a). Diese Strecke
ist eine Seite des Dreiecks R*C' R?. Was verandert sich mit R an diesen Dreiecken, was
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2.1 Streckenziige kiirzester Lange in der Ebene

bleibt unverandert?

Alle diese Dreiecke sind gleichschenklig, denn es gilt auf Grund der Spiegelungen
|ICR*| = |CR| = |CR?|; alle diese Dreiecke haben bei C' einen gleichgroBen Win-
kel, namlich einen mit der GroBe 2. (Siehe Losung zu (2.3)!)

Fir alle diese gleichschenkligen Dreiecke wird die Basis um so kleiner, je kleiner die
Lange der Schenkel, also |C'R] ist.

Die Lange von C'R ist aber genau dann minimal, wenn R der FuBpunkt des Lotes von
C auf die Seite AB ist. Wegen der 22 2. Geometrische Extremwertaufgaben Spitzwink-
ligkeit ist dieser FuBpunkt ein innerer Punkt der Strecke AB.

Ein Dreieck PyQQo Ry der gesuchten Art ergibt sich also genau dann, wenn Ry Hohen-
fuBpunkt auf AB ist und die Punkte Py und Qo wie in (2.3) konstruiert werden.

Nun hatte man aber auch die gleiche Uberlegung von einem zunichst fest gewahlten
Punkt P € BC aus anstellen kénnen und ware zu dem Ergebnis gekommen, dass Py
HohenfuBpunkt auf BC ist. Das gesuchte Dreieck ist also das Héhenfquunktdreieck.E

Da in den Punkten Fy, Qg und Ry das Reflexionsgesetz erfiillt ist und die Hohen im
Dreieck ABC die Einfallslote darstellen, folgt aus unserer Uberlegung noch:

(2.8) Die Hohen eines spitzwinkligen Dreiecks sind gleich den Winkelhalbierenden im
zugehorigen HohenfuBpunktdreieck (Abb. 2.4 b).

Zur Losung der nachsten Aufgaben, die wir dem Leser empfehlen, konnen die bisherigen
Darlegungen sehr nitzlich sein.

(2.9) e Man beschreibe einem Quadrat ein Quadrat minimalen Umfangs ein.

(2.10) e Im Innern eines Rechtecks ABCD liege ein Punkt O. Man bestimme unter
allen Streckenziigen OPQRSO mit P € AB, Q € BC, R € CD, S € DA einen
solchen minimaler Lange.

Die Losung der letzten Aufgabe fiihrt (ibrigens auch auf eine Losung folgender Billard-
Aufgabe:

(2.10") e Auf einem rechteckigen Billardtisch liegt eine Kugel. Wie ist diese zu stoBen,
damit sie jede Bande genau einmal beriihrt und danach zum Ausgangspunkt zuriick-
rollt?

Neben den Geradenspiegelungen sind auch andere Bewegungen zur elementaren Lo-
sung von Extremwertaufgaben iiber Streckenziigen nitzlich. Das wollen wir an einigen
Beispielen demonstrieren.

(2.11) Gegeben seien ein Streifen mit parallelen Randgeraden ¢ und d sowie zwei Punkte
A und. B, die durch den Streifen voneinander getrennt liegen (Abb. 2.5). Man bestim-
me solche Punkte C' € c und D € d, fiir die gop L cist und der Streckenzug ACDB

13Dje Aufgabe (2.7) stammt von dem ltaliener J. F. Fagano, und die von uns angegebene Lésung
entspricht weitgehend einer von Frater Gabriel-Marie, dem Verfasser des bedeutenden Buches
"Exercices de Geometrie".
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2.1 Streckenziige kiirzester Lange in der Ebene

kleinste Lange hat.

Abb. 2.5

Diese Aufgabenstellung kann man sich wie folgt veranschaulichen: Auf zwei Seiten eines
breiten (geradlinig verlaufenden) Flusses liegen zwei Orte A und B. An welcher Stelle
des Flusses ist senkrecht zu seinen Ufern eine Briicke anzulegen, damit die Orte auf
dem kiirzesten Wege verbunden werden konnen?

Zur Losung betrachten wir zunachst zwei beliebige Punkte C' € ¢ und D € d mit
gop L ¢ (Abb. 2.5). Gedanklich kénnen wir die Reihenfolge der Teilwege AC, C'D und
DB vertauschen; gehen wir also zuerst von A aus einen C'D entsprechenden Weg.
Das bedeutet, dass wir die Verschiebung @ auf A anwenden; sie bildet A auf einen
Punkt £ ab (Abb. 2.5). Esist |AC| = |ED|. Die Summe |AC|+|DB]| ist nun minimal
genau dann, wenn das fir |[ED| + |DB| zutrifft.

Der Punkt E liegt mit B auf verschiedenen Seiten von der Geraden d. Folglich schneidet
d die Strecke E'B in einem Punkt Dy, und EDyB ist unter allen Streckenziigen EDB
mit D € d derjenige mit minimaler Lange.

Mit dem Bild Cy von Dy bei der Verschiebung D? erhalten wir nun offensichtlich die
Losung ACyDyB der Aufgabe.

(2.12) Gegeben sei ein spitzwinkliges Dreieck ABC'. Gesucht ist die Menge aller Punkte
P im Innern des Dreiecks, fiir die die Abstandssumme |AP| + |BP|+ |C'P| minimal
wird.

Die groBere Schwierigkeit gegeniiber den vorangegangenen Problemstellungen besteht
insbesondere darin, dass es sich diesmal nicht um einen Streckenzug handelt; die Stre-
cken gehen von einem Punkt aus. Um Anschluss an die Archimedische Formulierung zu
gewinnen, ware ein Streckenzug mit festen Endpunkten und gleicher Lange zu finden.
Wir miissten also z. B. versuchen, die Strecke AP "zwischen BP und C'P einzufiigen".
Das schafft eine Drehung um A mit 60°! (Vgl. Abb. 2.6.).

Abb. 2.6

Ist p eine Drehung um A mit 60°, dann gilt |AP| = |PP”|, und damit ist die Stre-
cke AP "eingefiigt". Der Streckenzug BPPrCr hat die Lange |AP| + |BP| + |CP|.
Uberdies sind seine Endpunkte B und C” unabhangig von der Lage des Punktes P im
Innern des Dreiecks. Also muss P so gewahlt werden, dass P und P? auf der Strecke
BC? liegen, um Minimalitat zu erreichen.
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2.1 Streckenziige kiirzester Lange in der Ebene

Also muss notwendigerweise |Z/C?PPP| = |ZPPPB| = 180° und wegen der Gleichsei-
tigkeit des Dreiecks APP? dann |ZAPB| = 120° und |ZAPPC*| = |LAPC| = 120°
und damit auch [£ZPBC| = 120° sein.

Wenn es also Punkte P der gesuchten Art gibt, dann sind es diejenigen, von denen aus
jede der Dreiecksseiten unter einem Winkel von 120° erscheinen, bzw. diejenigen, die
"nach den Ecken einen regelmaBigen Dreistrahl senden", wie es etwas altmodisch, aber
anschaulich bei Sturm in [14], S. 58, heiBt.

Konstruiert man tiber AC' und BC nach auBen jeweils ein gleichseitiges Dreieck und die
dazugehorigen Umbkreise, so muss P nach dem Peripheriewinkelsatz auf diesen Kreisen
und auBerdem im Innern des Dreiecks liegen. Ist der Winkel bei C' - wie vorausgesetzt -
ein spitzer Winkel, so schneiden sich (wie man sich leicht iiberlegt) die beiden Umkreise
(auBer in C noch) in einem Punkt P im Innern des Dreiecks.

Dieser Punkt P hat die oben beschriebenen Eigenschaften. Es existiert also ein solcher
Punkt P, und zwar eindeutig.

(2.13) e a) Andert sich die Lésung der Aufgabe (2.12), wenn wir uns nicht auf die
inneren Punkte des Dreiecks beschranken?

b) Andert sich die Losung der Aufgabe (2.12), wenn wir die Voraussetzung der Spitz-
winkligkeit fallen lassen?

Die Aufgabe (2.12) ist eine der "strapaziertesten" Extremwertaufgaben. Sie ist schon
in der von Fermat 1629 veroffentlichten "Abhandlungen liber Maxima und Minima"
enthalten.

Uber Martin Mersenne gelangte sie - ohne Lésung - in die Hande der Galilei-Schiiler
Cavalieri, Torricelli und Viviani. Nach Torricelli nennt man heute auch noch den Punkt
P den Torricellischen Punkt.

Im 19. Jh. beschéftigte sich auch der beriihmte Geometer Jakob Steiner (1796-1863) in
seiner umfangreichen Abhandlung "Uber Maximum und Minimum in der Ebene, auf der
Kugelflache und im Raum Gberhaupt" mit dieser Aufgabe. Es ist nicht iiberraschend,
dass es sehr viele verschiedene Losungen zu dieser Aufgabe gibt; in [12] findet man
eine weitere (und ein rdumliches Analogon), auf eine andere kommen wir spater noch
zu sprechen.

Wiederum regt eine solche Aufgabe an, ahnliche zu formulieren und zu untersuchen.
Wenn wir nun in der Aufgabe (2.12) das Dreieck durch ein n-Eck oder die Summe
durch eine Differenz ersetzen?

(2.14) e Gegeben ist in einer Ebene ¢ ein konvexes Viereck ABC'D. Gesucht ist die

Menge aller Punkte P € ¢, fiir die die Abstandssumme |AP|+ |BP|+ |CP| + |DP)|
minimal wird.

Ersetzt man in (2.14) das Viereck durch ein konvexes n-Eck (mit n > 5), so lassen
sich im allgemeinen nur Naherungslosungen ermitteln. (Vgl. auch Abschnitt 3.4.)

(2.15) e Es sei ABC' ein gleichseitiges Dreieck. Gesucht ist die Menge derjenigen
Punkte P, fiir die die GroBe s = |AP| + |BP| — |C' P| minimal wird.
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2.2 Kiirzeste Streckenziige und Linien im Raum

Fundament des zu Erreichenden
muss Erreichtes sein.
J. Brezan

Einige Problemstellungen und Aufgaben aus Abschnitt 2.1 lassen sich auf den Raum
iibertragen, und es zeigt sich, dass gewisse Fragen hinsichtlich kiirzester Streckenziige
im Raum analog zu denen der ebenen Geometrie betrachtet werden kénnen.

Ein Beispiel ist folgende Aufgabe

(2.16) Gegeben seien eine Ebene ¢ und zwei Punkte A und B, die im gleichen Halbraum
beziiglich ¢ liegen. Man bestimme diejenigen Punkte P € ¢, fiir die die Abstandssumme
|AP| + |PB| minimal ist.

Eine dazu analoge Aufgabenstellung in der ebenen Geometrie ist (2.1). Dort erzielten
wir eine Losung mit Hilfe der Spiegelung an der Geraden w. Analog spiegeln wir hier
nun den Punkt B an der Ebene . Das Bild B’ und A liegen dann in verschiedenen
Halbraumen beziiglich &, und deshalb schneidet ¢ die Strecke AB’ in einem Punkt P
(Abb. 2.7).

Fir jeden Punkt P € ¢ gilt |PB| = |PB’| und damit |AP| + |PB| = |AP| + |PB’|.
Diese Langensumme ist nach der Dreiecksungleichung offensichtlich fiir den Fall P = B,

und nur fir diesen minimal.

Errichtet man auf ¢ in P, das Lot, so liegt dieses zusammen mit den Punkten B, B’ und
A in einer gemeinsamen Ebene, in der nun wieder das "Reflexionsgesetz" ersichtlich ist
(Abb. 2.7).

Abb. 2.7

Eine neue Frage entsteht, wenn wir in der Aufgabe (2.16) die Ebene durch eine Gerade
g ersetzen. Damit ein raumlicher Sachverhalt vorliegt, sollen A, B und die Gerade
g nicht in einer gemeinsamen Ebene liegen. Um eine einfache Veranschaulichung zu
ermoglichen, betrachten wir folgende konkrete Vorgabe

(2.17) Es sei ABCDEFGH ein Wirfel. Man bestimme diejenigen Punkte P auf der
Geraden g = ggg, fir die |AP| + |PB| minimal wird.

Dem Leser wird empfohlen, sich einen Schragriss des Wiirfels vorzugeben und darin die
folgenden Uberlegungen zur Lésung konstruktiv nachzuvollziehen. (Man kann dabei
sein raumliches Vor- und Darstellungsvermégen iberpriifen.)

Es liegt nahe, auch hier die Aufgabenstellung in geeigneter Weise auf die kirzeste
Verbindung zweier Punkte zuriickzufiihren. Dies gelingt in diesem Fall aber nicht mit
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2.2 Kiirzeste Streckenziige und Linien im Raum

einer Spiegelung an der Geraden g. Hier hilft eine andere Bewegung des Raumes weiter.
Die Gerade ¢ bildet den Rand zweier Halbebenen L und K, die den Punkt A bzw. B
enthalt (Abb. 2.8 a).

Abb. 28 9@

Nun kann durch eine Drehung um die Gerade g die Halbebene K in die zu L entge-
gengesetzte Halbebene L~ (bergefiihrt werden. Dabei ist |PB| = |PB’| fiir das Bild
B’ von B und fir jeden Punkt P € g. Nun ist nach dem gleichen Schluss wie bei der
Lésung von (2.1) der Schnittpunkt Py von g mit AB’ der gesuchte Punkt.

Es lasst sich zeigen, dass die Winkelhalbierende w des Winkels Z AP, B eine Senkrechte
zu der Geraden g durch P, ist. Die zu w senkrechte Ebene n durch P enthalt dann
die Gerade g.

Folglich wird der Lichtstrahl von A aus nach F, so an der Ebene 7 reflektiert, dass er
weiter durch B geht.

In der Praxis lasst sich dieser Reflexionseffekt z. B. gut an blanken Fahrradspeichen
beobachten. Die Speiche besitzt auf Grund ihrer Dicke eine reflektierende Oberflache,
die ausreicht, die Reflexion einer (punktformigen) Lichtquelle zu beobachten. Besonders
deutlich sichtbar wird das bei einer Rotation des Rades.

Ausgehend von (2.17) stellt sich noch folgende Extremwertaufgabe

(2.18)* Es seien A, B zwei Punkte und g eine Gerade, die in keiner gemeinsamen
Ebene liegen. Fiir welche Punkte C' im Innern der Strecke AB gibt es einen kiirzesten
Streckenzug von A (iber einen Punkt der Geraden g nach C?

Wir gehen von den Uberlegungen zur Lésung der Aufgabe (2.17) aus. (Siehe nochmals
Abb. 2.8a.) Zur Bestimmung des kiirzesten Streckenzuges von A iiber einen Punkt auf
g nach einem beliebig vorgegebenen Punkt C' auf der Verbindungsgeraden h der Punkte
A und B ist der Punkt C durch eine Drehung um die Gerade g in die Halbebenen H~
iiberzufiihren.

Die Menge der so erhaltenen Bildpunkte C’ kann keine Gerade sein. Eine solche Gerade
musste entweder zu ¢ parallel sein oder g schneiden. Im ersten Fall hatten alle Punkte
von h den gleichen Abstand zu g, und im zweiten Fall giabe es einen Punkt auf der
Geraden h, der auf g liegt. Beide Falle widersprechen der Voraussetzung, dass die
Geraden g und h = gap windschief zueinander sind.

Welche Gestalt hat nun die Menge der Bilder C’? Bei der Drehung der zu g windschiefen
Geraden h um die Gerade g entsteht ein einschaliges Hyperboloid@ mit der Achse g.

1“Naheres findet man in leicht zugénglichen Fachbiichern, etwa [5], S. 199 und S. 597
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Der Schnitt dieser Flache mit der Halbebene H ™ ergibt einen Ast einer Hyperbel (Abb.
2.8 b).

Bekanntlich gibt es genau zwei Punkte S € h und R € g, die den kiirzesten Abstand je
zweier Punkte dieser Geraden bilden.. (Siehe etwa [12]) Firr sie ist grs L g, h. Demnach
ist das Bild S’ von S der Scheitel des Hyperbelbogens und R der FuBpunkt des Lotes
von S’ auf g (Abb. 2.8 b).

Die Aufgabe (2.18) besitzt also genau dann eine (und dann eindeutig bestimmte) Lo-
sung, wenn unter den Punkten auf dem Hyperbelbogen zwischen den Bildern A’ und
B’ von A und B ein Punkt mit dem kiirzesten Abstand zu dem Punkt A existiert.

Beziehen wir die Aufgabe (2.18) auf die speziellen Vorgaben in (2.17), also g = gpa
und h = G 4p, dann lasst sich auch ohne diese Betrachtungen eine Antwort rasch fin-
den.

Man kann aber auch von ebenen Problemstellungen ausgehen und durch Analogiebe-
trachtungen zu rdumlichen gelangen. Wir wollen einmal die Aufgabe (2.6) entsprechend
variieren.

Anstelle des Winkels Zp, ¢ konnten zwei Halbebenen K und L mit gemeinsamer Rand-
geraden gewahlt werden, die Punkte A und B waren durch zwei Punkte M und N im
Raum zu ersetzen. Spezialisieren wir nun diese sehr allgemeine Situation wiederum, so
gelangt man z. B. zu der folgenden Aufgabe.

Abb. 2.9 /A

(2.19) Es sei ABCDEFGH ein Wirfel, und K bzw. L seien diejenigen Halbebenen
mit der Randgeraden g4p, die den Punkt E bzw. B enthalten. Ferner seien M und N
die Mittelpunkte der Strecken E'F bzw. CG.

Man ermittle Punkte Ry € K und Sy € L derart, dass der Streckenzug M RySoN
unter allen Streckenziigen dieser Art minimale Lange hat. (Wir empfehlen dem Leser,
die Uberlegungen zur Lésung schrittweise in einem Schriagriss konstruktiv darzustellen.)

Zur Losung benutzen wir Analogiebetrachtungen. Wie in der Losung zu (2.6) spiegeln
wir, jetzt aber M an der Ebene cspr und N an der Ebene €4pp und erhalten die
Bildpunkte M und N* (Abb. 2.9).

Fiir alle Punkte R € K und S € L gelten |MR| = |M¥R| sowie |SN| = |SNL|.
Schneidet die Strecke M X NZ die Halbebenen K und L in Punkten Ry und Sy, dann ist
nun offenbar M RySoN der gewiinschte Streckenzug. Man (iberzeugt sich selbst davon,
dass diese Schnittpunkte hier existieren; sie lassen sich im Schrégriss leicht konstruieren
(Abb. 2.9).
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Wer SpaB daran findet, kann nun selbst raumliche Problemstellungen aus ebenen ab-
leiten.

Ein weiterer Aufgabentyp entsteht, wenn man nach kiirzesten Wegen auf Oberflachen
von Korpern fragt, eine Problemstellung, die durchaus von groBem praktischen Inter-
esse sein kann. Mochte jemand auf unserer Erde von Berlin nach Hanoi gelangen, so
interessiert kaum der kiirzeste Weg durch unsere Erde hindurch, sondern wohl der auf
der Erdoberflache.

Wir beginnen aber mit einer sehr viel einfacheren Aufgabe:

(2.20) Auf einem Wiirfel ABCDEFGH bestimme man die kiirzesten Wege von A
nach G.

D & G,
B
A A B I3
Abb. 2.10 @ b)

Der geschlossene Streckenzug BCDHEF B zerlegt die Oberflaiche des Wiirfels so
in zwei Teile, dass in jedem genau einer der Punkte A und G liegt (Abb. 2.10 a).
Folglich enthalt jeder Weg auf der Oberfliche von A nach G einen Punkt P dieses
Streckenzuges.

Unter allen Wegen, die speziell iiber einen Punkt P der Strecke BC verlaufen, ist der
Streckenzug APyG mit dem Mittelpunkt Py von BC der kiirzeste. Die Seitenflachen
ABCD und FBCG haben namlich die Kante BC' gemeinsam, und beide lassen sich
(durch eine Drehung um gpc) verebnen (Abb. 2.10 b). Dabei bleiben Weglangen inva-
riant.

Nun ergibt der Schnittpunkt P, der Geraden durch A und G, mit der Strecke BC,
also der Mittelpunkt dieser Strecke tatsachlich den kiirzesten Weg.

Er hat die Lange av/5, wenn a die Kantenlange des Wiirfels ist. - Entsprechendes gilt fiir
die Mitten der lbrigen fiinf Strecken von BCDH EF' B. Es gibt also sechs Streckenziige
als Kiirzeste.

(2.21) e Man beantworte fir einen Quader ABCDEFGH mit den Kantenlangen
|AB| = a, |AD| = b und |AE| = ¢, fir die a < b < c¢ gilt, die in (2.20) formulierte
Frage.

(2.22) @ Es sei ABCDEFGH ein Wiirfel, und P sei

a) der Mittelpunkt der Seitenfliche ABC'D bzw.

b) der Mittelpunkt der Kante AB.

Man bestimme diejenigen Punkte auf der Oberfliche des Wiirfels, die beziiglich der
Langenmessung auf der Oberflaiche am weitesten von P entfernt sind.

Geschenkpackungen sind mitunter durch eine goldfarbene Gummischnur zur Zierde
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2.2 Kiirzeste Streckenziige und Linien im Raum

eingebunden. Eine solche Packung kénnen wir als quaderférmig annehmen. Ferner neh-
men wir an, dass der Gummifaden nur einmal mit sich geknotet ist, also im ganzen
eine einzige Schleife bildet. Auf Grund seiner Elastizitat wird der Gummifaden eine Lage
minimaler Lange einnehmen.

(Von Haftreibung wollen wir ganzlich absehen.)

Dann stellt sich hier offenbar wieder die Frage nach einem Streckenzug minimaler
Lange.

(2.23) Welche Lagen kann ein geschlossener Gummifaden einnehmen, der um einen
Wiirfel liegt, ohne sich zu tiberschneiden?

Der Wiirfel sei dabei als ideal glatt angenommen und die Elastizitat des Gummifadens
so groB, dass dieser sich sogar auf einen Punkt zusammenziehen kann.

Zunachst ist einsichtig, dass der Gummifaden nicht allein auf drei Wiirfelseiten, al-
so auf drei paarweise benachbarten Seitenflachen liegen kann. Er wiirde sich auf die
gemeinsame Wiirfelecke zusammenziehen.

DP H &
E ¢ 6 B _E 1 ) E} F_G
I.p | \, \‘\
? [ = o “"NNe 6
£ \\ .,
A B € D A |/ V A B \_
Abb. 2.11 o b) c) A DPH

Soll der Faden iiber vier Wiirfelseiten laufen, so kommen offenbar nur solche Seiten
in Betracht, die bei der Auffassung des Wiirfels als viereckiges gerades Prisma eine
Mantelflache darstellen.

Eine solche Mantelflache lasst sich in die Ebene abwickeln (Abb. 2.11 a). Der kiirzeste
Streckenzug auf dieser Mantelfliche von einem Punkt P einer Kante, etwa AE, nach
P zuriick muss parallel zu den Kanten der Grund- und Deckflache verlaufen.

Es gibt drei verschiedene Sorten einer derartigen Lage des Gummifadens. Insgesamt
gibt es durch jeden (inneren) Punkt einer Seitenflache des Wiirfels genau zwei derartige
Lagen des Gummifadens (Abb. 2.11 b).

Dies sind nicht alle Lagen!

Da man einen Wiirfel ABCDEFGH so mit einer Ebene schneiden kann, dass ein
Sechseck entsteht - etwa durch die Mitten der Kanten BC, CD, DH, HE, EF und
F'B -, scheint eine Lage des Gummifadens mit minimaler Lange liber alle Seitenflachen
des Wiirfels moglich.

In der Tat zeigt ein Netz des Wiirfels in der Art wie in der Abb. 2.11c, dass eine
solche Lage gerade bei einem Verlauf des Gummifadens parallel zu Diagonalen der
Seitenflachen eintritt. Demnach gibt es durch jeden (inneren) Punkt einer Seitenflache
genau zwei derartige Lagen des Gummifadens. Er hat dabei die Linge 3v/2a (> 4a).
Damit ist die Aufgabe (2.23) vollstandig gelost.

(2.24) e Man lose die in (2.23) gestellte Aufgabe fiir einen Quader mit verschieden
langen Kanten.
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Die Aufgaben (2.20) bis (2.24) konnten durch Verebnung, also auf Grund der mogli-
chen Abwicklung der Oberflache des betrachteten Korpers in die Ebene einer einfachen
Losung zugefiihrt werden.

Neben den Polyedern gibt es noch andere Korper dieser Art, z. B. Kreiszylinder oder
Kreiskegel.

(2.25) e Es sei P ein Punkt auf der Mantelfliche eines geraden Kreiskegels. Man
bestimme kiirzeste Linien auf der Mantelflache, die von P nach P fihren, mit allen
Mantellinien einen gemeinsamen Punkt besitzen und die Spitze .S des Kegels nicht ent-
halten.

Welche Rolle spielt die GréBe des Offnungswinkels o des Kegels (d. h. die GroBe des
Winkels, den zwei gegeniiberliegende Mantellinien bilden) bei der Lésung der Aufgabe?

Praktisch lasst sich hier mit einem Gummifaden eine Naherungslosung gewinnen.

Jetzt wenden wir uns der schon angedeuteten Frage nach den kiirzesten Linien auf der
Oberflache der Erde zu. lhre Beantwortung spielt z. B. fiir Schiffs- und Flugverbindun-
gen eine groBe Rolle, nicht zuletzt aus 6konomischen Griinden.

In erster Naherung kann dabei die Oberflache der Erde als Kugeloberflache aufgefasst
werden. Da diese sich aber nicht auf eine Ebene abwickeln Iéss, kann die obige Frage
nicht wie bisher auf die Frage nach kiirzesten Streckenziigen zuriickgefiihrt werden.

Die kiirzesten Linien lassen sich dennoch leicht beschreiben:

Eine kiirzeste Verbindung zwischen zwei Punkten P und () auf der Kugeloberflache ist
ein Teil eines GroBkreises der Kugel™® der P und Q enthilt[t]

Sind also P und () zwei zueinander diametral gegeniiberliegende Punkte, dann gibt es
unendlich viele kiirzeste Verbindungen von P nach Q. (Wir kénnen P und () etwa als
Nord- und Sidpol auffassen, und die Kiirzesten sind dann die Meridianlinien.)
Andernfalls gibt es genau eine kiirzeste Linie.

(2.26) e Es seien P und () zwei Punkte auf der nérdlichen Halbkugel. Man bestimme
einen kiirzesten Rundkurs eines Flugzeuges, der von P zur Aquatorlinie und weiter iiber
() zurick nach P fiihrt. (Konkret konnten fir P und @ z. B. die Stadte Berlin und
Hanoi sowie ihre ganzzahligen Langen- und Breitengrade gewahlt werden.)

Zur Losung von Aufgaben dieser Art und einer Reihe anderer Fragestellung auf der
Kugelflache ist die spharische Trigonometrie entwickelt worden.

15Ein Beweis dafiir wird mit Mitteln und Methoden der Differentialgeometrie gefiihrt.

16Die GroBkreise der Kugel kdnnen einfach als diejenigen Kurven verstanden werden, die als Schnitt
der Kugeloberflaiche mit einer Ebene durch den Mittelpunkt der Kugel entstehen.

17Djeser Sachverhalt ist anschaulich klar und einfach: ein strenger Beweis wird im Rahmen der Dif-
ferentialgeometrie gefiihrt.
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2.3 Extremale Flichen

2.3 Extremale Flachen

Das ist ein weites Feld,
von dem ihr da redet ...

A. Stifter

Isoperimetrische Aufgaben

Unter isoperimetrischen ebenen Figuren versteht man solche mit gleichem Umfang.
Eine isoperimetrische Aufgabe besteht im wesentlichen nun darin, unter allen Figuren,
die gewissen Bedingungen geniigen und den gleichen Umfang besitzen, diejenigen mit
extremalem Flacheninhalt zu bestimmen.

Diese Aufgabenstellung kann in mancher Hinsicht noch modifiziert sein. Wir beginnen
mit einem einfachen Beispiel.

(2.27) Man bestimme unter allen Rechtecken mit dem gleichen Umfang diejenigen mit
dem groBten Flacheninhalt.

Das Ergebnis lasst sich leicht erraten: das Quadrat. Einen Beweis fiir diese Behauptung
wird aber vielleicht nicht jeder gleich bei der Hand haben.
Wir gehen von unserer Vermutung aus!

o~

x>
e ——

—-—— e

Abb. 2.12 Tk x

Der als konstant vorausgesetzte Umfang sei 4k. Dann existiert genau ein Quadrat mit
diesem Umfang. Wir zeigen, dass jedes Rechteck, welches den gleichen Umfang hat,
aber kein Quadrat ist, einen kleineren Flacheninhalt als dieses Quadrat hat. Betrachten
wir dazu Abb. 2.12!

Verlangern wir zwei der Quadratseiten um z, so miissen die beiden anderen um x
verringert werden. Der Flacheninhalt des Quadrates nimmt um z - k£ ab und um z - [
zu. Nun ist [ aber kleiner k, also wiirde sich insgesamt der Flacheninhalt verringern.
Spater lernen wir weitere Beweismoglichkeiten kennen. Gerade diese Aufgabe wird uns
ein treuer Begleiter durch verschiedene Kapitel bleiben.

(2.28) e Man zeige: Unter allen Dreiecken mit gegebenem Umfang u und gegebener
Seitenlédnge ¢ = |AB]| hat das gleichschenklige Dreieck den groBten Flacheninhalt.

Die grundlegende Voraussetzung, dass gleicher Umfang besteht, kann weitgehend mo-
difiziert vorliegen.
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(2.29) An einer (hinreichend langen) Mauer soll ein rechteckiger Garten angelegt wer-
den. Zu einer Einzaunung stehen 32 m Maschendraht zur Verfiigung. Wie erzielt man
eine moglichst groBe Gartenflache? (Siehe Abb. 2.13a.)

Diese Aufgabe lasst sich auf zweierlei Weise auf die in (2.27) vorliegende Fragestellung
zuriickfiihren. Halbieren wir die rechteckige Gartenflache wie in Abb. 2.13 b angegeben,
so hat das Rechtecke BON M offenbar den Umfang

1
2|BC| + 2 (2]AB)> _ |AB| +2|BC]

also gleich der konstanten Maschendrahtlange.

Nach (2.27) hat nun das Rechteck BCNM und damit das Rechteck ABC'D genau
dann maximalen Flacheninhalt, wenn BCN M ein Quadrat und damit |AB| = 2|BC]|
ist. Ein anderer Beweis ergibt sich, wenn man die "Gartenflache" an der "Mauer" spiegelt
(vgl. Abb. 2.13 c).

Das entstehende Rechteck ABB’ A" hat dann den Umfang von 64 m und nach (2.27) ge-
nau dann maximalen Flacheninhalt, wenn es ein Quadrat ist, d. h., wenn |AB| = 2| BC|
gilt. Die maximale Gartenfliche hat also eine GroBe von 16 m - 8 m = 128 m?.

Ebenfalls anschaulich sehr einleuchtend erscheint

(2.30) Unter allen ebenen konvexen Figuren mit konstantem Umfang besitzt der Kreis
den groBten Flacheninhalt.

Doch ein Beweis ist keinesfalls so einfach zu fiihren. Erste Beweise hat erst Jacob Stei-
ner gegeben. Wir miissen hier auf nahere Beweisiiberlegungen verzichten.

Unter Verwendung von (2.30) lése man

(2.31) e Es sei Zp,q ein rechter Winkel. Wie ist ein (nicht notwendig geradliniger)
Schnitt vorgegebener Lange von einem Schenkel durch das Innere des Winkels bis zum
anderen Schenkel zu fiihren, damit ein moglichst groBes Flachenstiick abgetrennt wird?

Man konnte eine Vielzahl von Aufgaben angeben, die zu der von uns angesprochenen
Fragestellung gehoren. Wir haben uns auf einige wenige beschranken missen. In der
abschlieBenden Aufgabe ist nicht nur der Umfang konstant vorgegeben, sondern auch
seine Teile (Seiten), aus denen er sich zusammensetzt.

(2.31")* @ Gegeben sei ein konvexes Viereck ABC'D mit den Seitenlangen a = 4, b = 3,
¢ =3 und d = 2. Es ist der groBtmogliche Flacheninhalt zu bestimmen, den dieses
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Viereck haben kann.
Eine Umkehrung der Aufgabenstellung

Es sei 9 eine vorgegebene Menge von ebenen Figuren, die einen Flacheninhalt und
einen Umfang besitzen. Ferner enthalte 9)t mit jeder Figur auch alle dazu ahnlichen.
Ein Beispiel ist die Menge aller Rechtecke.

Bisher bestand die grundlegende Aufgabe darin, in der Menge 90t(U) von Figuren aus
2N, die den gleichen Umfang U besitzen, diejenigen mit dem maximalen Flacheninhalt
zu bestimmen. Es sei A, der maximale Flacheninhalt und 9.« (U) die Menge von
Figuren aus M (U) mit diesem Flacheninhalt.

Umgekehrt kann nun beziglich der gleichen Menge 97t die Menge 2t(A) von Figuren
aus 9 betrachtet werden, die den gleichen Flacheninhalt A besitzen, und hier nach
denjenigen gefragt werden, die den kleinsten Umfang Uy, besitzen; ihre Menge sei
entsprechend mit 9t,,;,(A) bezeichnet. Wahlen wir als vorgegebenen konstanten Fla-
cheninhalt gerade A = A,,., so gilt folgende generelle Aussage:

(2.32) Es ist Mupin(A) = Muax(U) und Ui = U.

Ein Beweis kann leicht indirekt gefiihrt werden. Gébe es unter allen Figuren aus 9
mit dem Flacheninhalt A,,.x eine solche Figur F', die einen Umfang u < U, hatte,
dann gabe es eine Zahl k > 1 mit u - k = U und eine zur Figur F' dhnliche Figur F’
mit dem Ahnlichkeitsfaktor k (etwa durch eine zentrische Streckung mit dem Faktor &
erzeugt), die auch in 21 liegt und den Umfang U besitzt (also zu 9(U) gehort), deren
Flacheninhalt aber k% - A, ux > Apax ist.

Dies widerspricht aber der Voraussetzung, dass A,.. der groBte Flacheninhalt aller
Figuren aus M (U) ist.

Man bezeichnet zwei durch (2.32) in Beziehung gesetzte Aufgabenstellungen als zuein-
ander dual.
Mit Hilfe von (2.32) folgen aus (2.27) bzw. (2.30) unmittelbar:

(2.33) Unter allen Rechtecken mit gleichem Flacheninhalt besitzen die Quadrate den
kleinsten Umfang.

(2.34) Unter allen konvexen Figuren mit gleichem Flacheninhalt besitzt der Kreis den
kleinsten Umfang.

(2.35) e Unter allen Dreiecken mit gleichem Flacheninhalt besitzen die gleichseitigen
Dreiecke den kleinsten Umfang.

Wir sehen also, dass bei solchen Aufgaben die regelmaBigen Figuren favorisiert sind.
Das hilft uns mitunter, eine Vermutung zu finden, doch Vorsicht ist geboten!

Extremale Flacheninhalte

Die Bedingungen, unter denen ebene Figuren mit extremalem Flacheninhalt gesucht
werden, konnen auch von ganz anderer Art sein:
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(2.36) Es sei CDEF ein Quadrat. Wir legen durch E alle Geraden g, die sowohl die
Halbgerade C'D™ in einem Punkt A als auch die Halbgerade C'F'™ in einem Punkt
B schneiden (Abb. 2.14 a). Fiir welche dieser Geraden hat das diesbeziigliche Dreieck
ABC den kleinsten Flacheninhalt?

Abb. 2.14

Zunachst gibt es (genau) eine Gerade ¢’ durch F, die ein gleichschenkliges Dreieck
A'B'C" (mit |CA'| = |CB|) liefert.
Wir zeigen nun, dass jedes andere Dreieck ABC' einen groBeren Flacheninhalt besitzt.

Ohne Beschrankung der Allgemeinheit konnen wir dazu voraussetzen, dass A’ zwischen
D und A liegt. Dann liegt B zwischen F' und B’ (Abb. 2.14 a).

Nun schneidet die Parallele zur Geraden gor durch A’ die Gerade ¢ = g4 in einem
Punkt Ay zwischen E und A. Bei der Drehung um E mit 180° geht das Dreieck F A’ A
in das Dreieck EB’'B uber. Wegen

A(DAE) = A(DA’E) + A(EA/AO) + A(AA’AO)
A(FBE)= A(FB'E) — A(EB'B) und A(DA'E) = A(FB'E)
ist damit

A(DAE) + A(FBE) > A(DA'E) + A(FB'E)
und schlieBlich A(ABC) > A(A'B'C).

Die Vorgabe in der Aufgabenstellung (2.36) kénnen wir auch so sehen, dass in einen
rechten Winkel mit dem Scheitel C' ein Quadrat derart eingeschoben werden ist, dass
zwei seiner Seiten auf den Schenkeln des Winkels liegen.

Wir tauschen nun das Quadrat durch einen Kreis aus und formulieren eine (2.36)
entsprechende Aufgabe:

(2.37) Gegeben seien ein rechter Winkel mit dem Scheitel C' und ein Kreis k, der
beide Schenkel des Winkels bertihrt. Fir welche Geraden, die den Kreis beriihren und
die Schenkel des Winkels in Punkten A und B schneiden, hat das Dreieck ABC' den
kleinsten Flacheninhalt?

Zur Losung kann vorteilhaft das Ergebnis von (2.36) verwendet werden. Zunachst gibt
es (genau) eine Tangente ¢’ an den Kreis, die beim Schnitt mit den Schenkeln ein
gleichschenkliges Dreieck A’B'C" (mit |CA’| = |CB’|) liefert (Abb. 2.14b).

Der Kreisberiihrungspunkt sei E. Jede andere Kreistangente g, die die Schenkel in A
und B schneidet, geht nicht durch E. Folglich schneidet die Parallele A durch E zu
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dieser Tangente g den Kreis, und damit hat das durch sie gebildete Dreieck A1 BC
einen kleineren Flacheninhalt als A(ABC).

Nach (2.36) ist aber auBerdem A(A;B;C) > A(A'B'C). Also liefert die Tangente ¢
das Minimum.

(2.38) e Man lose Aufgabe (2.37) fiir den Fall, dass der Winkel mit dem Scheitel C’
spitz bzw. stumpf ist.

Haufig auch von praktischem Interesse (Materialausnutzung !) sind folgende Aufga-
benstellungen: Gegeben ist eine Figur, und in diese soll eine Figur vorgegebener Art
mit moglichst groBem Flacheninhalt gelegt werden. Wir beginnen mit einem einfachen
Beispiel.

(2.39) Einem rechtwinkligen Dreieck ABC' mit rechtem Winkel bei A ist ein Rechteck
PQRA mit maximalem Flacheninhalt einzubeschreiben, von dem zwei Seiten auf den
Katheten des Dreiecks liegen.

C
X
B A B
c)
Abb. 2.15

Es liegt die Vermutung nahe, dass das Maximum genau dann vorliegt, wenn P, () und
R die Mittelpunkte von AB, BC bzw. C'A sind. Unter den verschiedenen Beweismog-
lichkeiten wahlen wir die folgende:

Man spiegele fiir ein beliebiges Rechteck PQRA mit P € AB, Q € BCund Re CA
die Gerade gpc an der Geraden gop (Abb. 2.15a). Wegen gor L gop liefert die
Spiegelung an ggr das gleiche Bild h von gpc. Die Gerade h zerlegt das Recht-
eck APQR, und die Spiegelung der Teile an ggp bzw. ggr zeigt unmittelbar, dass
A(APQR) < L A(ABC) gilt und Gleichheit dann und nur dann besteht, wenn h durch
A geht, wenn also ) der Mittelpunkt von BC' ist.

Auf diese Weise, namlich durch Spiegelungen an Rechteckseiten, erkennt man leicht
die gegeniiber (2.39) allgemeinere Aussage:

(2.40) Unter allen Rechtecken, die einem Dreieck ABC' mit «, 5 < 90° einbeschrieben
sind und die mit einer Seite auf AB liegen, besitzt dasjenige den groBten Flacheninhalt,
das die Mittelpunkte von BC' und C'A als Ecken besitzt (vgl. Abb. 2.15 b).

Dieser Satz ergibt sich auch mit Hilfe von (2.39).

Unter den Voraussetzungen «, 5 < 90° zerlegt das Lot von C auf gap das Dreieck
ABC' in zwei rechtwinklige Dreiecke, und die dazu nach (2.39) gegebenen maximalen

Rechtecke ergeben zusammen ein dann maximales Rechteck der vorgegebenen Lage
(Abb. 2.15¢c).
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Da dieses maximale Rechteck einen halb so groBen Flacheninhalt wie das zugrunde
liegende Dreieck besitzt, enthalt jedes spitzwinklige Dreieck genau drei, jedes recht-
winklige Dreieck genau zwei und jedes stumpfwinklige Dreieck genau ein maximales
Rechteck, das mit einer Seite auf einer Dreiecksseite liegt.

Damit bleibt zunachst offen, ob bei einer anderen Lage des Rechtecks im Dreieck ABC'
der Inhalt %A(ABC’) oder vielleicht sogar noch ein groBerer erzielt werden konnte. Es
gilt jedoch:

(2.41) Einem Dreieck kann nur dann ein Rechteck mit maximalem Inhalt einbeschrie-
ben werden, wenn eine Rechteckseite auf einer Seite des Dreiecks liegt.

Dies ist an Hand der bereits oben benutzten Spiegelungen an den Rechteckseiten ein-
sichtig. Ist PQRS ein Rechteck und O ein Punkt in seinem Inneren, dann ergeben die
Spiegelungen von O an den Rechteckseiten ein Viereck 0102030, (Abb. 2.15 d), das
das vorgegebene Viereck umschreibt und einen doppelt so groBen Flacheninhalt besitzt.
Jedes Dreieck mit der Ecke Oq, auf dessen Seiten P und () liegen und das das Viereck
PQRS umschreibt, muss einen groBeren Inhalt als 2A(PQRS') besitzen.

Liegt dagegen O auf dem Rand des Rechtecks PQR.S, so ergeben die Spiegelungen ein
doppelt so groBes Dreieck, bei dem auf (wenigstens) einer Seite eine Seite des Vierecks
liegt.

(2.42) e Einem konvexen Viereck ABC'D ist ein Parallelogramm mit maximalem Inhalt
einzubeschreiben, dessen Seiten parallel zu den Diagonalen des Vierecks sind.

(2.43) e Man zeige: a) Die Dreiecke, die einem Kreis einbeschrieben sind und den
groBten Flacheninhalt besitzen, sind gleichseitig.

b) Die konvexen Vierecke, die einem Kreis einbeschrieben sind und den groBten Fla-
cheninhalt besitzen, sind Quadrate.

(2.44) e Man zeige: a) Unter allen Dreiecken, die Tangentendreieck eines vorgegebenen
Kreises sind, sind die gleichseitigen diejenigen mit minimalem Inhalt.

b) Unter allen konvexen Vierecken, die Tangentenviereck eines vorgegebenen Kreises
sind, sind die Quadrate diejenigen mit kleinstem Inhalt.

Zum Beweis von (2.44 a) kann (2.38) benutzt werden!

(2.45) e Es seien ABC' ein Dreieck und P, @, R innere Punkte der Seiten AB, BC
bzw. C'A. Man zeige, dass es unter allen Dreiecken PQR weder eines mit maximalem
noch eines mit minimalem Inhalt gibt.

2.4 Extremale Umfange

Wir setzen jetzt ein Thema fort, welches mit den Aufgaben (2.1), (2.3), (2.5), (2.7),
(2.9) und (2.10) schon in Abschnitt 2.1 eine groBe Rolle spielte.

(2.46) Man bestimme unter allen Dreiecken, die einen vorgegebenen Kreis umschreiben,
diejenigen mit dem kleinsten Umfang.
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Eine Losung erhalt man leicht mit Hilfe von (2.44 a). Ist U = a + b + ¢ der Umfang
des betrachteten Dreiecks und r der Radius des vorgegebenen Kreises, so ist A =
%r(a +b+c) = %TU der Inhalt des Dreiecks. Demnach ist U minimal genau dann,
wenn A minimal ist. Und das ist nach (2.44 a) fiir gleichseitige Dreiecke der Fall.

(2.47) Man bestimme unter allen Dreiecken, deren Ecken auf einem vorgegebenen Kreis
liegen, diejenigen mit dem groBten Umfang.

Zur Losung wahlen wir vorerst zwei Punkte A und B auf dem Kreis k& und bestimmen
dazu die Punkte C' auf dem Kreis, fiir die das Dreieck ABC' den groBten Umfang
besitzt.

Wir beschranken uns dabei zunachst auf eine Seite beziiglich der Geraden g4p5. Tragt
man |BC/| auf der Halbgeraden C' A~ von C' aus ab, so erhdlt man einen Punkt B’, fir

den |ZBB'A| = 7 ist (Abb. 2.16).

Abb. 2.16

Da fiir den Schnittpunkt M’ der Mittelsenkrechten von AB mit dem Kreis k die Be-
ziehung |[ZAM'B| =  gilt, liegt B" auf dem Kreis &' um M’ durch A (und B).

Nun ist die Summe |AC| + |CB| = |AB’| offenbar genau dann maximal, wenn B’ auf
dem Kreis k£’ dem Punkt A diametral gegeniber liegt, d. h., wenn C' = M’ und damit
|AC| = |BC ist.

Hinsichtlich des Maximums ist von beiden Seiten beziiglich g4 offenbar nur eine solche
von Interesse, fir die C' und M nicht auf verschiedenen Seiten liegen.

Da fiir das Maximum bei einer festgehaltenen Seite nur ein gleichschenkliges Dreieck
in Frage kommt, haben die gleichseitigen (und zueinander kongruenten !) Dreiecke den
groBten Umfang.

Abb. 2.17 A 2 B

(2.48)™| Abb. 2.17 zeigt ein Flachenstiick, das aus der Flache des Rechtecks ABCD
mit den Seitenlangen |AB| = |CD| = 2r und |BC| = |AD| = b mit b > r durch
Herausschneiden einer Halbkreisscheibe mit dem Durchmesser C'D entstanden ist.
Man denke sich nun eine positive reelle Zahl A beliebig gegeben. Dann sind alle geordne-
ten Paare (r, b) positiver reeller Zahlen mit r < b zu ermitteln, fiir die das entsprechende
Flachenstiick den Inhalt A und dabei moéglichst kleinen Umfang hat.

18Aufgabe 10 10 43 B der OJM
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2.4 Extremale Umfange

Ist b > r > 0, so ergibt sich eine Figur wie in Abb. 2.17. Fir ihren Umfang U und
ihren Flacheninhalt A gilt

1
U=2r+2b+mnr und A =2br — 57?7“2 (1,2)

Daraus folgt A = (U — 2r — 7r)r — 17r? und weiter

r2<27r+2>—Ur+A:O (3)

Diese quadratische Gleichung in r besitzt nach Voraussetzung eine Losung. Dann muss
notwendig ihre Diskriminante nichtnegativ sein, d. h., es gilt

U? 24
_ >0
(B3mr+4)2 3rm+4 —
und folglich
U > /24037 + 4) (4)
Das Gleichheitszeichen in (4) gilt wegen (3) genau dann, wenn r = ﬁ ist, und unter

Beachtung von U = /2A(37 + 4) folgt aus dieser Gleichung

[ 2A
"= 3T+ 4 (%)
b:,/3ff_4<w+1>:r<w+1> (6)

Wahlt man also zu vorgegebenem A (> 0) die Zahlen 7 und b gemaB (5) und (6), so
ergibt sich wegen b > r eine Figur, wie sie in der Aufgabe beschrieben ist. Zwischen
deren Inhalt A und Umfang U besteht die Relation U = /2A(3w + 4). Daher geniigt

das Paar
2A 2A
() - Wsﬂwﬁw%(””)

den Bedingungen der Aufgabe, und dies ist das einzige dieser Art.

und schlieBlich

Oder ist es einfacher, die zu dieser Aufgabe duale zu l6sen?
Sehr dhnlich wird die Losung zur folgenden Aufgabe sein:

(2.49)™ e Dirk erklart Jiirgen den Nutzen der Differentialrechnung an Hand der Lésung
der folgenden Aufgabe:

Es sei ABCDE ein ebenes konvexes Fiinfeck derart, dass A, B, C', E die Eckpunkte
eines Rechtecks und C', D, E die Eckpunkte eines gleichseitigen Dreiecks bilden.

Als Flacheninhalt des Fiinfecks ABC' D E werde nun ein geeigneter Wert A vorgeschrie-
ben.

Y9Aufgabe 11 10 43 B der OJM
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2.4 Extremale Umfange

Man ermittle, ob unter allen diesen Fiinfecken eines von kleinstem Umfang U existiert.
Ist das der Fall, so berechne man fiir alle derartigen Fiinfecke minimalen Umfangs den
Wert a : b, wobei |AB| = a und |BC| = b bedeutet.

Am nachsten Tage teilt Jirgen Dirk mit, dass er eine Losung dieser Aufgabe ohne
Verwendung der Differentialrechnung gefunden habe.
Man gebe eine Lésung an, die Jirgen gefunden haben kénnte.

Zum Abschluss noch eine Aufgabenstellung, in der der Umfang nur diskrete Werte an-
nehmen kann.

(2.50) e Man bestimme den minimalen und maximalen Umfang aller sogenannten
"Pentominos", d. h. aller einfachen n-Ecke, die sich aus fiinf Einheitsquadraten zu-
sammensetzen lassen.
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3.1 Funktionen einer reellen Verdnderlichen und ihre Extremwerte

3 Extrema von Funktionen

3.1 Funktionen einer reellen Veranderlichen und ihre
Extremwerte

Kommt ein Einfall vollig zwanglos,
ist er meistenteils belanglos;

jedes gute Resultat

braucht den ganzen Apparat.

W. Dege

Bei den im Kapitel 2 betrachteten Aufgaben veranderte sich mit der Lage von Punkten
oder der Form von Figuren die MaBzahl von Langen, Flachen oder Volumina. Konnten
wir nun diese Abhangigkeit durch eine Funktion erfassen, so lieBe sich die spezielle ge-
suchte Situation, namlich die, fur die die MaBzahl extremal wird, aus den Extremwerten
der Funktion ablesen, falls man diese kennt!

Wir untersuchen das einmal an einem der einfachsten Beispiele, dem der Aufgabe (2.27).

Die Flache A der Rechtecke lasst sich mittels der Seitenlangen x und z durch die Funk-
tion zweier(!) Veranderlicher x und z mit x > 0 und z > 0 als A(x, z) = z- 2 angeben.
Die Nebenbedingung v = 2x + 2z = const gibt uns aber die Moglichkeit, eine der
beiden Variablen durch die andere zu ersetzen (und damit zu eliminieren):

U
z=——z und A(x)zx(—:r:)
2 2
Es ist also der groBte Funktionswert der Funktion A(x) fir z > 0 gesucht! Wie findet

man aber die Extremwerte einer Funktion?
Zunachst wollen wir exakt festlegen, worliber wir sprechen, wir definieren:

(3.1) Fir alle Wertepaare (z,y) einer Menge f von reellen Zahlen z, y gelte: Wenn
(x,11) € f und (z,y92) € f, dann folgt y; = y>. Eine solche Menge f nennt man eine
reellwertige Funktion einer reellen Veranderlichen ]

Zur Beschreibung einer solchen Menge dient uns haufig eine Funktionsgleichung y =
f(zx). Die Menge aller reellen Zahlen z, fiir die ein Funktionswert f(x) erklart ist, heiBt
Definitionsbereich D(f) der Funktion f. Die Menge aller y, fiir die ein x € D(f) so
existiert, dass y = f(x) gilt, nennt man den Wertevorrat W (f) der Funktion f.

v

[ = I
[ s S -

%1

min

Abb. 3.1

20Zur ausfiihrlichen Einfiihrung des Funktionsbegriffes vgl. etwa [13].
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3.2 Funktionen zweiten und dritten Grades und ihre Extrema

(Mitunter sprechen wir dann auch kurz von der Funktion y = f(x).)

Wir suchen unter allen x € D(f) diejenigen, fiir welche f(x) € W(f) maximal oder
minimal wird. Solche Extremwerte nennen wir globale Extremwerte der Funktion f.

(3.2) Existiert ein g € D(f) so, dass f(zg) > f(x) (bzw. f(zo) < f(z)) fir alle
x € D(f) gilt, so heiBt f(zg) das globale Maximum (bzw. das globale Minimum) der
Funktion f.

(Im weiteren sprechen wir aber abkiirzend vom Maximum oder Minimum.)

Bei vielen Anwendungen ist wichtig, dass D(f) durch die in der Aufgabenstellung
enthaltenen Bedingungen bestimmt wird.

Betrachten wir die in der Abb. 3.1 veranschaulichte Funktion f mit D(f) = [a, b], so
entnehmen wir dieser graphischen Darstellung, dass f fir o = b das globale Maximum
und fiir o = xyi, das globale Minimum annimmt.

In den Teilintervallen a < x < zyi, und i < o < b verlauft die dargestellte Funktion
monoton. Es ist zu vermuten, dass das Monotonieverhalten in einem engen Zusammen-
hang mit den Extremwerten steht.

(3.3) Sind a,b € D(f) und gilt fir alle 21,29 € D(f) mit @ < 27 < 23 < b die
Ungleichung f(x1) < f(x2) (bzw. f(x1) > f(x2)), so nennt man die Funktion f auf
dem Intervall a < z < b streng monoton wachsend (bzw. streng monoton fallend).

(3.4) e Man beweise: Jede auf einem abgeschlossenen Intervall a < z < b definierte
und dort streng monotone Funktion nimmt ihre Extremwerte in den Randpunkten des
Intervalls an. Ist dagegen eine streng monotone Funktion auf einem offenen Intervall
a < x < b definiert, so hat sie keine Extremwerte.

(3.5) @ Man ermittle den groBtmoglichen Definitionsbereich der Funktion f mit f(z) =
/1
— — 1 und zeige, dass f zwar ein Minimum, aber kein Maximum besitzt.
x

Die linearen Funktionen f mit f(x) = max + n haben also keine Extrema oder neh-
men diese, falls ihr Definitionsbereich auf ein abgeschlossenes Intervall a < = < b
eingeschrankt wird, in den Punkten a bzw. b an.

3.2 Funktionen zweiten und dritten Grades und ihre Extrema

Unser einfiihrendes Beispiel (und viele andere auch) fiihrt auf eine quadratische Funk-
tion.

(3.6) Satz. Eine fiir alle reellen Zahlen = definierte quadratische Funktion f (also
D(f) = R) mit f(z) = aaz® + pzr + ¢ (a # 0), nimmt genau an der Stelle zy = —&
einen Extremwert an, und zwar fur a > 0 ein Minimum und fiur a < 0 ein Maximum.

Beweis. Es gilt

2 2
a:l:2+p:v+q:a(:r:2—|—px—|—q>:a[(a:—l—p> —p—i—ql
a a a
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3.2 Funktionen zweiten und dritten Grades und ihre Extrema

2
Da —f? +% eine Konstante ist, wird der Ausdruck

2
p>2 p* . q
x J— _—— R
( + a 4a? + a
2
genau dann minimal, wenn (ZL’ + g) minimal wird, d. h., wenn ¢ = —2% gilt. Ist a > 0,

so ist demnach auch f(z) an dieser Stelle minimal, fiir a < 0 dagegen maximal.

Wir méchten nachdriicklich darauf aufmerksam machen, dass der Satz (3.6) fir eine
auf einem endlichen Intervall definierte quadratische Funktion nicht gelten muss.

(3.6") Wird der Definitionsbereich der quadratischen Funktion aus (3.6) auf ein abge-
schlossenes Intervall ¢ < x < d eingeschrankt und gilt ¢ < zp < d mit zg = —g,

so existiert in zy ein Minimum (bzw. Maximum), aber auBerdem ein Maximum (bzw.
Minimum) in einem der Randpunkte des Intervalls.

Wir kommen auf unser einfiihrendes Beispiel (2.27) zuriick.

Die Funktion A(x) = x(% —35) wird durch Ausmultiplizieren in die "Normalform"

A(z) = —a® — Yx lbergefiihrt. Aus dem Text zu (2.27) ergibt sich der eingeschrinkte
Definitionsbereich 0 < x < u. Aus dem Satz (3.6) und der Anmerkung (3.6") folgt (wie
wir bereits anderweitig ermittelt hatten), dass fiir 7y = % der Flacheninhalt maximal
wird.

(3.7) Man beschreibe einem Quadrat ein Quadrat minimalen Umfangs ein.

Diese bereits unter (2.9) formulierte Aufgabe wollen wir jetzt mit den bereitgestellten
Hilfsmitteln l6sen.
In Abb. 3.2 ist die Seitenlange des vorgegebenen Quadrates mit ¢ bezeichnet.

Abb. 3.2

Soll das einbeschriebene Viereck ABC'D auch ein Quadrat sein, so muss jede Seite
durch die Punkte A, B, C bzw. D in Abschnitte der Lange x und ¢ — z geteilt werden.
Aus dem Satz des Pythagoras ergibt sich fiir den Umfang des einbeschriebenen Qua-
drates

U(x):4\/(q—x)2—i—x2 mit 0<z<gq

Da U(x) > 0 gilt, wird U(x) genau dann minimal, wenn y(z) := %g”) minimal wird.
Es gilt y(v) = 22% — 2qx + ¢°.

Die Anwendung unserer theoretischen Einsichten liefert uns ein Minimum an der Stel-
le xg = %, d. h., die Punkte A, B, C' bzw. D missen die Seitenmittelpunkte des
vorgegebenen Quadrats sein.
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3.2 Funktionen zweiten und dritten Grades und ihre Extrema

Auch bei diesem zweiten Beispiel war es nicht schwierig, die "zugehorige" quadratische
Funktion zu finden.

(3.8) @ Man lése mit Hilfe von Satz (3.6) a) die Aufgabe (2.39), b) das zu (2.48) duale
Problem.

Weitere einfache Beispiele, die sich auf die Anwendung von Satz (3.6) zuriickfithren
lassen, findet man in [9], S. 11-18.

Die folgenden Beispiele sind u. a. auch darum wichtig, weil nicht gleich ersichtlich
ist, dass unser einfaches mathematisches Modell zutreffend ist; erst eine geeignete
Formalisierung wird das jeweils zeigen.

(3.9) Ein Betrieb bietet auf dem Weltmarkt ein Produkt zum Stiickpreis A an. Er
stellt fest, dass er bei einem bestimmten Preisnachlass von ¢ (pro Stiick) 100 Stiick
von dem Produkt mehr absetzt. Welche hochste Gesamteinnahme kann der Betrieb
erzielen, wenn man annimmt, dass die Anzahl der mehr verkauften Stiicke proportional
zum Preisnachlass wachst?

Zur Losung der Aufgabe mittels einer Funktion missen wir zunachst eine Variable
einfiihren, die die Veranderung geeignet erfasst. Der Betrieb will ja feststellen, wie oft
er den Preisnachlass vervielfachen muss, um eine Hochsteinnahme zu erzielen. Wir
flihren daher x > 0 als Vielfaches des Preisnachlasses ein.

Vor der Einfiihrung des Preisnachlasses wurden s Stiick mit der Einnahme s- A verkauft.
Nach der Einfiihrung des (vervielfachten) Preisnachlasses x - ¢ werden (laut Annahme
der Aufgabenstellung) s+ 100- X Stiick verkauft, jedes Stiick erzielt aber nur den Preis
A —ex.

Die Gesamteinnahme g(x) betragt also (s+ 100 —xz)(A —ex). Das Maximum von g(z)
ergibt sich nach (3.6) - man rechne das bitte nach - fiir

100A — es
:]j = -
0 200¢
es ergibt sich
~ (100A +es)?
9(%0) = 502

Akzeptieren wir diese Werte als Ergebnis der gestellten Aufgabe, so haben wir "still-
schweigend" angenommen, dass auch = > 0 gilt. Das ist aber nur fiir ¢ < % der
Fall.

Da wir ja fiir die Konstanten A, s und ¢ keine Zahlen vorgegeben haben, kdnnen wir
nicht feststellen, ob tatsachlich xy > 0 gilt.

Ergibt sich also in einem konkreten Fall zy < 0 nach der obigen Formel, so bedeutet das,
dass der Betrieb zwar bei einem Preisnachlass einen Mehrverkauf registrieren kann, aber
auch weniger Einnahmen erzielt. Die Gesamteinnahme ist in diesem Fall durch einen
"Mehrverkauf durch Preisnachlass" nicht zu erhéhen.

Das Maximum der quadratischen Funktion mit x > 0 liegt in dem Randpunkt zy = 0.
(Man zeichne sich einmal die Funktion g(z) fiir zwei solcher Art prinzipiell verschiedene
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3.2 Funktionen zweiten und dritten Grades und ihre Extrema

Falle 1).

Ebenfalls mit dem einfachen Mittel der quadratischen Funktion lasst sich ein Spezial-
fall der "Methode der Kleinsten Quadrate" behandeln. Diese Methode wird oft in der
Ausgleichs- und Fehlerrechnung gebraucht. Wir wollen das an einem Beispiel erlautern:

Unter Verwendung des Ohmschen Gesetzes U = R - I soll durch Messung von U und [
der Wert eines unbekannten Widerstandes R ermittelt werden. Da solche Messungen
von U und [ stets ungenau sind, wird man mehrere Messungen durchfiihren, die dann
allerdings bei der Rechnung % verschiedene Werte fiir R ergeben. Wie ware hier sinnvoll
ein Ausgleich zu schaffen?

Abb. 3.3

Tragt man die verschiedenen Messergebnisse (1;, U;) (i = 1,...,n) in ein Koordinaten-
system ein, so wiirden sie im ldealfall nach dem Ohmschen Gesetz auf einer Geraden
liegen, im Realfall wird das aber nicht der Fall sein (vgl. Abb. 3.3).

Eine sinnvolle Forderung ist beispielsweise, die Gerade so zu legen, dass die Gesamt-
abweichung aller Punkte von der Geraden minimal wird. Unter der Gesamtabweichung
wird man die Summe aller Abweichungen verstehen; aber wie wollen wir die Abwei-
chung definieren?

Man koénnte die Ordinatendifferenz wahlen, die aber ware vorzeichenbehaftet, und Ab-
weichungen "nach oben" und "nach unten" wiirden sich gegenseitig aufheben und in
der Gesamtabweichung falschlicherweise eine groBe Genauigkeit vortauschen.

Wahlt man statt dessen den Betrag der Ordinatendifferenzen, kdnnte man diesen Man-
gel beseitigen, Betrage erfordern aber haufig viele Fallunterscheidungen beim weiteren
Arbeiten. Numerisch als sehr bequem erweist es sich, fiir die Abweichung das Quadrat
der Ordinatendifferenz einzufiihren.

In unserem Beispiel heiBt das, R ist so zu wahlen, dass

n

f(R)=>(R-I; = U;)*

i=1

den minimalen Wert annimmt (n Anzahl der Messpunkte)!
Einfache Umformungen ergeben

f(R) = (fo) R* -2 (ZfiUi) R+ U
i=1 i=1 i=1
Das ist aber eine quadratische Funktion mit

a=Y 1}, p=-2Y LU
=1 =1
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3.2 Funktionen zweiten und dritten Grades und ihre Extrema

deren Minimum nach (3.6) bei

o P _glfz‘Ui
0__?_ n

1

i
liegt.

Statt U = R - I ware auch die Schreibweise y = f(x) = max mit dem entsprechend
formulierten Resultat moglich. Das Spezielle des von uns betrachteten Falles besteht
darin, dass der Ausgleich durch eine Gerade erfolgt und liberdies schon ein Punkt dieser
Geraden (namlich der Ursprung des Koordinatensystems) festliegt.

Erstmalig wurde die "Methode der kleinsten Quadrate" von A. M. Legendrd®] bei der
Berechnung von Kometenbahnen benutzt, C. F. Gau@ begriindete sie und begann
mit vertiefenden mathematischen Betrachtungen, heute gibt es allein zu dieser Metho-
de umfangreiche Biicher ]

Die folgende Aufgabe fiihrt uns auf ganzrationale Funktionen hoheren Grades.

(3.10) a) Gegeben sei durch y = f(z) = ka?> mit k > 0 und —t < z < t ein "Pa-
rabelsegment" (vgl. Abb. 3.4). Man beschreibe diesem Parabelsegment entsprechend
der Abb. 3.4 ein Rechteck so ein, dass es unter allen einbeschriebenen Rechtecken den
maximalen Flacheninhalt hat.

b) Bei Rotation des Parabelsegmentes (aus Teil a) um die y-Achse entsteht ein Rotati-
onsparaboloid. Man beschreibe diesem analog einen Zylinder maximalen Volumens ein
(siehe die Umschlagzeichnung).

e i e

Abb. 3.4

Welches Problem wird wohl die groBeren Schwierigkeiten bereiten, das ebene oder das
raumliche?

Wir betrachten zunachst beide Probleme parallel. Eine Seite des Rechtecks bzw. der
Durchmesser des Zylinders habe die Lange 2x mit 0 < = < t. Die Hohe des Para-
belsegmentes betragt kt?, die Hohe des Zylinders (bzw. zweite Seite des Rechtecks)
hat dann die Lange kt? — kz? = k(t* — 2?). diesem analog einen Zylinder maximalen
Volumens ein (siehe die Umschlagzeichnung).

21 Adrien-Marie Legendre (1752-1833), franzésischer Mathematiker.

22Carl Friedrich GauB (1777-1855), Professor in Géttingen, bedeutendster Mathematiker der Neuzeit.

23Beispielsweise J. W. Linnik; Methode der kleinsten Quadrate in moderner Darstellung, Deutscher
Verlag der Wissenschaften, Berlin 1961.
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3.2 Funktionen zweiten und dritten Grades und ihre Extrema

Zur Lésung der Aufgabe a) ist also das Maximum von f.(z) = 2z — k(t* — 2?) und
fiir die der Aufgabe b) das von f,.(x) = mz? - k(t* — 22 zu bestimmen.

Die Existenz eines Maximums ist in beiden Fallen leicht einsichtig, da die Funktionswerte
in den Endpunkten 0 bzw. t des Definitionsbereiches verschwinden und die Funktions-
werte sich stetig andern. Welches der Maxima ist aber einfacher zu ermitteln?

fe(x) ist eine Funktion dritten Grades und f,(z) sogar eine vierten Grades (man mul-
tipliziere aus!). Aber mit der Substitution z =: 2% erhalten wir fiir f.(x) eine Funktion
fr(2), die quadratisch in z ist und bei Anwendung von (3.6) zy = % ergibt.

Wegen x¢ > 0 und ¢ > 0 folgt daraus, dass f,(x) das Maximum genau dann annimmt,
wenn der Zylinder einen Grundkreisradius von z( = @t - womit auch 0 < x <t erflllt

2
ist - und eine Hbéhe ’% hat.

Um den schwierigeren Teil a.) der Aufgabe zu lsen, beschaftigen wir uns zunachst
allgemein mit der Extremwertermittlung von Funktionen f der Gestalt f(z) = ax® +
bz? + ex +dund D(f) =R.

Wir betrachten zunachst die Nullstellen dieser Funktion.
Unter den Nullstellen der Funktion f verstehen wir diejenigen reellen Zahlen z, fir
die f(xg) = 0 gilt. Aus dem Fundamentalsatz der Algebra folgt, dass f hochstens
drei Nullstellen haben kann. Wir wollen hier als plausibel akzeptieren, dass immer eine
Darstellung

az® +bx? + cx +d = a(x — r)(2* + pr + q) (™)

existiert.

Aus (*) folgt, dass f stets eine reelle Nullstelle (xy = r) hat und weitere, falls reelle
Losungen von 22 + px + g = 0 existieren. Der Spezialfall 22 + pz + ¢ = (z — 5)? mit
der "doppelten" Nullstelle 2y = s wird fiir uns eine wichtige Rolle spielen.

Y

Abb.35 © -

Wir betrachten den Graphen der Funktion f mit
f(x) =a(x —7r)(z — s)? a>0, r<s

Der in der Abb. 3.5a skizzierte Graph ergibt sich aus folgenden Uberlegungen:

(1) f(r) =0und f(s) =0,
(2) fur alle x > r gilt f(x) >0, und fiir alle z < r gilt f(x) <0,
(3) verdndert sich x "wenig", dann auch f(z), d. h., die Funktion ist fiir alle z stetig |

24v/g|. [13], S. 53-56.
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3.2 Funktionen zweiten und dritten Grades und ihre Extrema

Dann hat aber nach der Definition (3.2) die auf das Intervall [a, 5] eingeschrankte
Funktion f an der Stelle s ein Minimum, wenn s > o > r und § > s gilt.

Hat nun umgekehrt die Funktion f an der Stelle s im Inneren des Intervalls [«, /5] ein
Minimum, so lasst sich durch eine Verschiebung langs der Ordinatenachse um —h (vgl.
Abb. 3.5 b) unser gerade diskutierter Fall erzeugen. Analoges gilt fiir ein Maximum.
Wenn aus diesen Uberlegungen eine Methode zur Ermittlung der Extrema abgeleitet
werden soll, so muss insbesondere gezeigt werden, wie s und h zu ermitteln sind. Es
soll

ax® +bx* +cv+d—h=a(r —r)(z —s)
ax’® + bx® + cx +d — h = ax® — a(r + 2s)x? + as(s + 2r)x — ars® (**)

gelten. Da (**) fir alle x € D(f) gelten soll, miissen die Koeffizienten entsprechender
Potenzen von x (ibereinstimmen (Methode des Koeffizientenvergleichs):

b= —a(r+2s), c=as(s+ 2r), d—h=—ars®

wobei a, b, ¢ und d vorgegeben sind. Aus den ersten beiden Gleichungen sind r und s
zu ermitteln, aus der letzten dann h. Wir wollen das an unserem Beispiel (3.8 a) zeigen.

Wir suchen laut Aufgabenstellung das Maximum der Funktion
folz) = 2ka(t? — 2?) = —2ka® 4 022 + 2kt*z + 0

im Intervall 0 < =z < t. Um eine bessere Anpassung an die obige Darstellung zu
erreichen, ermitteln wir das Maximum der Funktion —f.(z) = +2kad — 2kt?x. Der
Koeffizientenvergleich ergibt

0= —2k(r + 2s), —2kt? = +2ks(s + 2r), h = 2krs?
Da k # 0 gilt, folgt aus der ersten Gleichung r = —2s und damit aus der zweiten
2kt? = 6ks®, d. h. s = % (mit 0 < s <t).

Damit ist die Extremalstelle s der Funktion — f.(z) gefunden!

Mit s berechnet man r und damit schlieBlich h. Das Maximum von f.(x) ist dann

3 . - -
—h = %t Diesen Wert ermitteln wir nochmals zur Kontrolle aus

3v3’
P B P AN
Jels) = 2k\/§ (t 3) - 3V3

Zur Festigung dieser Methode wende man sie selbstandig auf die nachste Aufgabe an.

(3.11) e Die Tragkraft eines Balkens von der Breite x und der Hoéhe y ist proportio-
nal dem Produkt zy?. Mit welchen Abmessungen muss man demnach einen Balken
maximaler Tragkraft aus einem Baumstamm ausschneiden, dessen Durchmesser d als
konstant angenommen wird?

Auch die in [9] angegebenen (und dort anders gelosten) Aufgaben 14 bis 18 kann man
nach der oben beschriebenen Methode |6sen.
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3.3 Die Funktion f(z) =z + ¢ und ihre Extreme

Schlag die Tir nicht ein -
sie lasst sich leicht mit dem Schliissel 6ffnen.
Sprichwort aus Dagestan

Bei der Fiille von Extremalproblemen ergeben sich natiirlich auch sehr viele verschiedene
Funktionen, mit denen man die Probleme beschreiben kann. Wir wollen aus dieser Fiille
noch eine Funktion herausgreifen und an verschiedenartigen Beispielen zeigen, welche
Bedeutung ihr zukommt.

(3.12) Fir alle von O verschiedenen reellen Zahlen z ist durch f(z) = z + ¢ mit
positivem d eine Funktion f definiert.
Wir betrachten zunachst einige Eigenschaften dieser Funktion:

Ersetzt man x durch —z, so gilt f(—z) = — f(x), d. h., die Funktion ist ungerade (vgl.
[13]), es geniigt daher im folgenden die Betrachtung von f fir x > 0. Die graphische
Darstellung von f lasst sich aus denen der Funktionen g(z) = z und h(z) = ¢ -
zumindest angenahert - durch Addition der Funktionswerte leicht ermitteln (vgl. Abb.

3.6).

A
x

2l

Abb. 3.6

Aus dieser graphischen Darstellung ist die Vermutung ersichtlich, dass die Funktion f
fir x > 0 genau an der Stelle xy das Minimum besitzt, an der sich die Graphen von
h(z) und g(x) schneiden.

Wir werden diese Vermutung spater beweisen. Zunachst wollen wir aber an Aufgaben
zeigen, dass verschiedenartigste Problemstellungen durch diese Funktion erfasst wer-
den. Wir I6sen nochmals - jetzt eben mit anderen Mitteln - die uns schon bekannten
Aufgaben (2.36) und (2.37):

Auf die Problemstellung (2.36) kann man gut den Strahlensatz anwenden. Setzt man
fur die Lange der Quadratseite o. B. d. A. |[CD| = 1 und fir die sich in Abhan-
gigkeit von der Lage der Geraden g verdndernde Streckenlinge |DA| = =z, so gilt
z:(1+z)=1:|BC|bzw. |BC| = 22 (Man iiberpriffe diese Angaben im Vergleich
mit Abb. 2.14a).

Den Flacheninhalt des Dreiecks ABC' konnen wir jetzt als Funktion von x angeben:

1 1(1+2)? 1 1

A(z) ist genau dann minimal, wenn der Wert der Funktion f(z) = z + 1 minimal
ist. Nach unserer Vermutung misste das fir o = 1 (in Ubereinstimmung mit dem
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3.3 Die Funktion f(x) =z + ¢ und ihre Extreme

friiheren Ergebnis) der Fall sein.

Im Beispiel (2.37) setzen wir 0. B. d. A. » = 1 und entsprechend zu der Lésung von
(2.37) |AD| = . (Vgl. Abb. 2.14b.) Um |BF| zu ermitteln, benutzen wir den Satz
des Pythagoras. Dabei ist zu beachten, dass |BE| = |BF| und |AB| = |AD| = z gilt:

-+ 1
x—1

(1+ )2+ (1+|BF|)? = (z + |BF|)? : |BF| =

Die Flache des Dreiecks ABC' denken wir uns zusammengesetzt aus den Flachen des
Quadrates C EM F und der Dreiecke AEM, AMG, MGB und BM F. Damit erhalten

wir schlieBlich
z+1

€r —

Alz) =14z +

Um eine Funktion vom Typ (3.12) zu erkennen, fithren wir noch eine Variablensubsti-
tution aus: z = — 1. (Aus Abb. 2.14 b ist ersichtlich, dass auch z positiv ist.) Damit
ergibt sich

z+2 2

Alz) =2+ z+ =2z+-+4+3
2

zZ

A(z) wird genau dann minimal, wenn z +§ minimal wird, wir haben also wieder den
Anschluss an (3.12) hergestellt.

(3.13) e Man I6se (2.48) unter Verwendung der Funktion (3.12).

(3.14) Elektrische Leistung: Die elektromotorische Kraft einer Stromquelle sei e, ihr
innerer Widerstand R;. Wie groB muss der duBere Widerstand = gewahlt werden, damit
die von der Stromquelle abgegebene Leistung N maximal wird?

Es gilt e = I(R;+2) und N = U - I, wenn I die Stromstérke und U die Spannung im
juBeren Stromkreis sind &
Daraus erhalt man unter Einbeziehung des Ohmschen Gesetzes

62.213

N=N(z)="——"—"—
( ) (RZ + $)2

Da e? konstant ist, nimmt N () mit > 0 genau an den Stellen einen maximalen Wert
(Rit+z)®

an, an denen (e maximal bzw der Kehrwert minimal wird!

e
Der Kehrwert R 2 p2
x x
wird aber genau dann minimal, wenn f(z) = :H—R?? minimal wird, da 2R; eine konstante
GroBe ist. Damit haben wir die Losung der Aufgabe auf die Betrachtung der Funktion

(3.12) mit d := R? zuriickgefiihrt.

(3.15) Lagerhaltungskosten: Eine Verkaufseinrichtung hat nach ihren Erfahrungen fiir
einen bestimmten Artikel einen Bedarf von 160 Stiick pro Monat. Der Artikel muss
angeliefert werden.

25Vgl. W. H. Westphal, Physik, Berlin 1939, S. 303.
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3.3 Die Funktion f(x) =z + ¢ und ihre Extreme

Die Transportkosten betragen pro Lieferung (unabhangig von der gelieferten Anzahl!)
30 M. Fir die angelieferten Artikel entstehen aber in der Verkaufseinrichtung Lager-
kosten von 1,50 M pro Stiick und Monat.

Welche Anzahl x des Artikels muss in welchen Abstidnden geliefert werden, damit die
Gesamtkosten moglichst niedrig sind? Es wird vorausgesetzt, dass der Bestand des
Artikels linear abnimmt.

Besteht eine Lieferung aus x Stiick, so sind z = % Lieferungen pro Monat nétig, um
den Bedarf zu decken, die Transportkosten pro Stiick betragen 3;—0 M. Will man die
Lagerkosten pro Stiick berechnen, so steht man vor der Schwierigkeit, dass man ja die
Lagerzeit eines einzelnen Stiickes nicht kennt.

Da aber vorausgesetzt ist, dass der Bestand des Artikels linear abnimmt, kann man fir
jedes Stiick die gleiche durchschnittliche Lagerzeit annehmen, diese ist halb so groB wie
die Zeit zwischen zwei Lieferungen, also i Monate. Da pro Monat Lagerkosten von
1,50 M pro Stiick entstehen, sind bei z Lieferungen im Durchschnitt % M pro Stiick

zu bezahlen.

Fir ein Stiick entstehen folglich in Abhangigkeit von = Gesamtkosten in Hoéhe von (in
M):

k(@zg 0,75

- 160"

Abb. 3.7 a)

Das Minimum dieser Funktion k(x) ist an der gleichen Stelle gelegen wie das der
Funktion

~ 160 - 4 4
flr) = "5 k) = 20

Bei einem Vergleich von f mit f aus (3.12) ergibt sich d = 6400, es ist aber auch zu
beachten, dass f nur fiir positive natiirliche Zahlen x erklart ist.

(3.16)* Lichtablenkung durch ein Prisma: Geht ein Lichtstrahl durch ein Prisma (mit
dem Brechungsindex n), so wird er an den Trennflachen nach dem Snelliusschen Bre-
chungsgesetz abgelenkt (vgl. Abb. 3.7a). Bei welchem Strahldurchgang ist die Ablen-
kung u am kleinsten?

Das Snelliussche Brechungsgesetz (welches wir spater noch aus dem Extremalprinzip
des Lichtes herleiten werden) lautet mit den Winkelbezeichnungen der Abb. 3.7a

sina = nsin bzw. sind = nsin~y (1)
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3.3 Die Funktion f(x) =z + ¢ und ihre Extreme

Da die Einfallslote g4p und ggp nach Definition senkrecht auf den Trennflachen stehen,
gilt n = 180° — ¢, und der Winkel u, der die Ablenkung beschreibt, ergibt sich zu
u=9+a—e.

Da ¢ ein konstanter Winkel ist, wird u genau dann minimal, wenn « + J minimal
wird. Dieses Extremalproblem versuchen wir mittels einer trigonometrischen Funktion
zu losen.

Die Winkel « und 9 sind wegen ihrer physikalischen Bedeutung spitz, also gilt 0 <
a+ 6 < 180°. In diesem Intervall ist die cos-Funktion monoton fallend. Folglich ist
a + d genau dann minimal, wenn cos(a + ) maximal ist.

Wir verwenden den Kosinussatz, um cos(a+0) zu berechnen. Dafiir benétigen wir eine
Hilfsabbildung, in der die Winkel o und ¢ und auch 3 und ~ geeignet eingetragen sind
(vgl. Abb. 3.7 b).

Wahlen wir |[EH| = 1 und |EF| = z, so ergibt sich aus (1) mit dem Sinussatz
|HG| =n und |FG| =z - n.
Unter zweimaliger Verwendung des Kosinussatzes erhalten wir schlieBlich

1+a2?— |HF?
) =
cos(a + 0) >
1
cos(a + 9) = 2*[1 + 2% —n? — n’z® + 2n*z cos(y + B)]
T
1
cos(a+9) = 7(1 —n?) (14 2%) 4+ n?cose (2)
T

Da n?cose konstant ist und n > 1 gilt, folgt aus (2), dass cos(a + &) genau dann
maximal wird, wenn f(z) = 1 + 2 minimal wird.

Nach diesen - z. T. recht anspruchsvollen - Beispielen fallt uns vielleicht ein weiteres
ein, welches wir schon betrachtet haben und das uns nun auch den Beweis unserer
Vermutung liefern wird, wir meinen (2.27).

Setzen wir in a + b = U fiir b den Wert % ein, so erhalten wir gerade, dass a + %
zu minimieren ist. (2.27) liefert aber das Minimum ag = by = /A fiir A > 0. Diese
geometrische Interpretation ist dabei immer moglich.

Ein zweiter Beweis arithmetischer Art ist auch sehr einfach. Wir ergdnzen mittels einer
Konstanten

f(x)—Q\/E:er;Z—Q\/E: (ﬁ—@) >0

Der kleinste Funktionswert ist 0, und er wird genau fiir zo = v/d angenommen. AuBer-
dem ergibt sich sofort f(xq) = 2V/d.

(3.17) e Man ermittle fiir die drei vorangegangenen Beispiele die Losungen.
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3.4 Angenaherte Berechnung von Extremwerten

Das Unzulangliche ist produktiv.
J. W. v. Goethe

Einerseits haben wir in den Abschnitten 3.2 und 3.3 gezeigt, welche Vielfalt von Extre-
malproblemen schon mit recht einfachen Funktionen zu lésen sind, andererseits muss
man erwarten, dass diese Funktionen keinesfalls ausreichen werden. Wir betrachten ein
einfaches Beispiel:

(3.18) An einem Fluss g soll fiir die Versorgung der drei Stadte A, B, C' ein Hafen H
eingerichtet werden. (Die Lagebeziehungen zwischen g, A, B und C' sind in Abb. 3.8a
(S. 64) angegeben.)

km

300 -
i Ty

D e ¥ i

100

| L ol 10 20 20 40 50 60 70 80 90 100 km
y,
Abb. 3.8 a) SR b)

An welcher Stelle muss H liegen, damit das "Wegenetz" AH + BH + C'H moglichst
kurz wird?

Diese Aufgabe erinnert uns an schon betrachtete. Wiirden wir A vernachlassigen, so
ware H = E, bei Vernachlassigung von B dagegen H = D zu wahlen (vgl. Abb. 3.8
a).

Beriicksichtigen wir C'H nicht, so ergibt sich H = R nach (2.1). Der Torricellische
Punkt T' (vgl. (2.12)) wiirde das Problem lésen, wenn iiberdies T' € g gelten wiirde.

Keiner der Punkte D, E, R oder T lést unser Problem (3.18)!
Versuchen wir, es mittels einer Funktion f zu erfassen: Es sei O der FuBpunkt des Lotes
von A auf g, x = |OH| [in km]. Dann ergibt sich aus dem Satz des Pythagoras

f(x) = [AH|+|BH|+|CH| = VaZ + 900+1/(z — 20) + 10000+1/(100 — )2 + 4900 (*¥)

Von der Funktion f mit der durch (*) gegebenen Funktionsgleichung suchen wir die
Minimalstelle wo im Intervall 0 < x < 100. Die Funktion f ist fiir alle reellen Zahlen
in diesem Intervall definiert.
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3.4 Angendherte Berechnung von Extremwerten

Jetzt nehmen wir an, dass ein solches zy in diesem Intervall eindeutig existiert, das
erscheint zwar nach unseren Vorbetrachtungen einleuchtend, ist aber nicht bewiesen.
Allerdings steht man gerade bei praxisbezogenen Aufgaben o6fter vor dieser Situation,
zunachst die Existenz und Eindeutigkeit eines Extremums annehmen zu miissen.

Wir kénnen das Minimum angenéhert aus dem Graphen f* von f(x) ablesen. Zur
Ermittlung von f* ermitteln wir Funktionswerte an einigen Stellen z; und tragen diese
in ein Koordinatensystem ein (vgl. Abb. 3.8 b).

In Abb. 3.8 b haben wir aus den Punkten e auf den Verlauf (gestrichelte Linie) von
f* geschlossen; einen Verlauf, wie ihn etwa die punktierte Linie charakterisiert, haben
wir damit ausgeschlossen. Wir nehmen also an, dass der Graph f* "parabeldhnlich"
verlauft, was fiir die Anwendung der folgenden Naherungsmethode von grundsatzlicher
Bedeutung ist. Allgemeiner und exakter sollten wir formulieren:

Der Graph f* ist (von unten gesehen) konvex. (Zur
Definition dieses Begriffes (4.3).)

Auf solche konvexen Kurven f* beziehen sich nun unse-
re Naherungslosungen. Charakteristisch fir alle solche
Naherungslosungen ist, dass wir uns schrittweise dem
gesuchten Wert nahern.

1. Moglichkeit: Wir lesen aus f* die ungefahre Lage
des Minimums ab und berechnen mit (*) die Funkti-
onswerte in der Umgebung.

In unserem Beispiel liegt die Minimalstelle etwa bei 30,
und es gilt f(20) ~ 242,4, f(30) =~ 241,9, f(40) =~
244,2. Folglich nehmen wir uns vor, noch f(25) und
f(35) zu berechnen. Da f(25) ~ 241,8 < f(30) ist,
gilt schon sicher 20 < zy < 30.

X=Xy st’*‘efbﬂxf:m_N/ 2. Moglichkeit: Eine konvexe Funktion lasst sich gut

X v angenahert durch eine quadratische Funktion f(z) =
@ az? 4 bz 4 ¢ mit der Minimalstelle 7, = —% ersetzen.
Das Verfahren besteht nun darin, f(z) durch eine Folge
von Parabeln in der Umgebung von wo immer besser
% anzunahern. Damit ist £y ~ x( zu erwarten.
Abb. 3.8 c

Eine Parabel ist eindeutig durch drei voneinander verschiedene Punkte, die auf dieser
Parabel liegen, bestimmt. Sind (x1,41), (22, 42), (73, ys3) diese Punkte, so muss

aa:%%—bxﬁ—c:yl, aa:§+bx2+c:y2, ax§+bx3+c:y3

gelten. Subtrahiert man die erste Gleichung sowohl von der zweiten als auch von der
dritten, so erhalt man

a(x% — :1:%) +b(xy —x1) = Y2 — Y1

a(r3 — 93%) +b(w3 —11) = Y3 — Y1
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3.4 Angendherte Berechnung von Extremwerten

Das ist ein lineares Gleichungssystem, aus dem sich eindeutig a und b und damit
Ty = _2% ermitteln lassen. In Abhangigkeit von den benutzten Umformungen erhalt
man eine Darstellung fiir zy in Abhangigkeit von den Koordinaten der drei die Parabel
bestimmenden Punkte. Fiir numerische Berechnungen (z. B. mit einem Taschenrech-
ner) ist die folgende Form giinstig:

T3 — X
== (0)

r3—T1  Y2—y1

200 = x1 + 22 +

Verwenden wir in unserem Beispiel 1 = 0, x5 = 50 und x3 = 100, so ergibt sich 7y ~
29, 5. Die nachste Naherungsparabel wird man demnach etwa durch x; = 20, x5 = 30
und x3 = 40 bestimmen. (0) liefert uns Ty ~ 26, 8. Da bei jedem Schritt die gleiche
Formel (0) benutzt wird, kann man sich wohl vorstellen, dass dieses Verfahren auf
einem Computer sehr schnell den gesuchten Wert mit beliebiger Genauigkeit ermittelt.

Die Realisierung auf einem Rechner ist auch wesentlich fir die

3. Moglichkeit: Die Beschreibung des Verfahrens geben wir durch den in Abb. 3.8 ¢
dargestellten Programmablaufplan (PAP).

Vertieft man sich in diesen PAP, so erkennt man seine Wirkungsweise. So wie in den
vorherigen Verfahren wird auch hier vorausgesetzt, dass ein Minimum an genau einer
Stelle wo existiert. Mit dem durch den PAP beschriebenen Algorithmus wird diese Stelle
wo mit vorgegebener Genauigkeit 8 berechnet.

Der Startwert x1 wird kleiner als xy gewahlt, z. B. ;1 = 0. Mit der Schrittweite d
lduft man nun auf die Minimalstelle zu bis man - durch Vergleich der Funktionswerte -
bemerkt, dass man diese bereits Uberschritten hat.

Jetzt lauft man mit der halben Schrittweite in die entgegengesetzte Richtung (d = —%).
Dieses "Pendeln" um die Minimalstelle xy wird so lange fortgesetzt, bis die Schrittweite
dem Betrag nach kleiner als die vorgegebene Zahl ¢ ist.

Man kann diesen PAP mit einem Taschenrechner abarbeiten. Wir haben ein entspre-
chendes BASIC-Programm fiir einen Kleinstrechner geschrieben.

Mit den Startwerten 7 = 0 und d = 5 und ¢ = 0,5 (bzw. £ = 0, 1) erreicht man
mit 15 (bzw. 20) Zyklusdurchlaufen (Zahlvariable V) jeweils nach einigen Sekunden
Rechenzeit g = 26 £ 0,5 (bzw. xg = 26,4 + 0, 1).

In beiden Fallen erhalt man den zugehorigen Funktionswert yy ~ 241, 74. Diese damit
erreichte Genauigkeit ist beziiglich des gestellten praktischen Problems (3.18) unan-
gemessen hoch. Richtet man den Hafen in etwa 26,5 km von O entfernt ein, so wird
das Wegenetz mit etwa 241,74 km minimale Lange haben. Der Leser vergleiche dieses
Ergebnis mit seinen Erwartungen an Hand von Abb. 3.8 a.

Wohlgemerkt ging es uns bei den obigen Darlegungen in erster Linie um die Demons-
tration prinzipieller Potenzen, die die numerischen Verfahren anbieten. Bei unseren drei
Verfahren handelte es sich stets um ein "durch die Anschauung gestiitztes Abtasten".
Man wird ahnen, dass die "héhere Mathematik" vielfaltigere und effektivere Methoden
zur Verfiigung stellt. Diese Hinweise sind auch bei dem abschlieBenden Beispiel zu be-
achten. Wir wahlen eine Aufgabe, deren "duale Formulierung" wir spater als Aufgabe
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(4.10) lésen werden:

(3.19) Man ermittle unter allen Quadern mit dem Umfang 4 diejenigen mit dem maxi-
malen Volumen.

Die Kantenlangen der Quader seien mit x,y und z bezeichnet. Dann gilt V =2 -y - 2
und z + y + z = 1. Daraus folgt

V=V(zy) =2yl -z -y

fir alle z,y mit z +y < 1.

Ein Maximum kann man nun schrittweise angenahert ermitteln, indem man abwechselnd
x und y fest wahlt.

Wir beginnen mit z = 0,5: V(0,5,y) = 0,5y(0,5 —y) ist die Funktionsgleichung einer
Parabel, deren Maximum nach (3.6) bei yo = 0, 25 liegt.

Wir wahlen folglich yo = 0,25 und betrachten V' (z,0,25) = 0,352(0, 75 — x), das ist
eine quadratische Funktion mit dem Maximum bei zg = 3.
4
ooaj
QT
2N
- \ 1
o

Abb. 3.9

V (%,y) hat ein Maximum bei y; = 1—56.

So fortfahrend erhalt man schlieBlich z,, =~ y, ~ % Daraus folgt z, ~ % Unter den
Quadern ist also (in Naherung) der Wirfel ein solcher mit maximalem Volumen.

Veranschaulicht man sich die Funktion V' (z, y) in einem raumlichen Koordinatensystem,
so kann man diesen Naherungsprozess gut verfolgen.

Aus der Darstellung der Funktion folgt auch die Existenz und Einzigkeit des Maximum
(vgl. Abb. 3.9).
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4 Ungleichungen und Extrema

4.1 Zusammenhange zwischen Funktionen und Ungleichungen

Nicht tberall, wo Wasser ist, sind Frdsche,
aber wo man Frosche hort, ist Wasser.
J. W. v. Goethe

Nimmt eine Funktion an einer Stelle einen Extremwert an, so lasst sich das wie in (3.2)
mittels einer Ungleichung beschreiben. Ordnet man umgekehrt einer Ungleichung eine
Funktion zu, so muss man mit Schlussfolgerungen vorsichtiger sein.

Jede Ungleichung in einer Variablen x iiber einer Teilmenge U der reellen Zahlen R,
kann man so umformen, dass sie die Gestalt

T(x)>0 (%) oder  T(z)>0 (%x)

annimmt. 7'(x) ist dabei ein Term in z, und (*) bzw. (**) wird immer nur von einer
bestimmten Menge L C U C R erfiillt. L ist die Losungsmenge der Ungleichung. (Bei
Beweisaufgaben wird haufig verlangt zu zeigen, dass eine vorgegebene Ungleichung fir
alle x € K mit vorgegebenem K gilt. Dann muss natiirlich K C L gelten.)

Nun kann man zunachst dem Term 7'(z) eine Funktion mit der Funktionsgleichung
y = T'(x) und dem Definitionsbereich D(T") = L zuordnen. Dann sind nach (*) bzw.
(**) alle Funktionswerte nichtnegativ bzw. positiv.

Kann man aber daraus schlieBen, dass die Funktion ein Minimum besitzt und dieses
den Wert 0 hat? Im Fall (**) werden wir sicher nicht so leicht zu diesem Fehlschluss
verleitet, denn hier besagt doch schon die Form der Ungleichung, dass der Wert 0 im
Wertevorrat der zugeordneten Funktion gar nicht auftritt. Ein einfaches Gegenbeispiel
ist auch schnell zur Hand:

Fir alle positiven z gilt ~ > 0, die Funktion mit y = - nimmt zwar beliebig kleine

Funktionswerte an, niemals aber den Wert 0[]

Leichter wird man im Fall (*) zu Fehlschlissen verleitet. Man beachte aber, dass man
haufig fir (**) auch (*) setzen kann. Wir hatten oben auch schreiben kénnen: Fiir alle
positiven z gilt 1 > 0.

Wird aber im Fall (*) der Wert O fiir wenigstens ein z angenommen, so besitzt die
Funktion 7" ein Minimum T'(z) = 0.

Aus (*) auf die Existenz eines Minimums zu schlieBen, ist also nur zuléssig, wenn man
gezeigt hat, dass ein zp mit T'(zym) = 0 existiert. Dieser gut zu beachtende Zusam-
menhang ist auch einer der Griinde dafiir, dass man in Aufgaben lber Ungleichungen
vom Typ (*) haufig ausdriicklich fordert:

"Man ermittle alle z, fiir die das Gleichheitszeichen gilt!" oder "Man beweise, dass das
Gleichheitszeichen angenommen wird!"

26|n Lehrbiichern der hdheren Mathematik fiihrt man den Begriff des Infimums ein. In unserem Beispiel
gilt inf 2 =0 fiir z > 0.
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Den soeben untersuchten Zusammenhang haben wir schon in Kapitel 3 benutzt: Aus
der offensichtlich fiir alle reellen Zahlen x giiltigen Ungleichung (z — 1)? > 0 folgt
x+ 1 —2 >0 fiir alle positiven z, und das Gleichheitszeichen gilt (genau) fir z = 1.
Die Funktion f(z) = z 4+ 2 — 2 mit D(f) = R7. hat also (genau) an der Stelle zp = 1
das Minimum f(1) = 0.

Alle diese Uberlegungen kann man leicht auf den Fall des Maximums iibertragen.
2
x4+ 1
Bei diesen Beispielen waren uns Ungleichungen fiir die Ermittlung der Extrema einer
Funktion nitzlich. Kann man auch in der umgekehrten Richtung den Zusammenhang

ausnutzen? Natirlich! Wir wollen zur lllustration eine sehr wichtige Ungleichung her-
leiten:

(4.1) e Man ermittle alle Extrema der Funktion f mit f(z) = und D(f) =R,

Wir kniipfen an unsere Ausfithrung lber die Methode der kleinsten Quadrate an. Er-
setzen wir dort die Symbole I; durch z;, U; durch y; und R durch m, so hat das gar
keinen Einfluss auf die Herleitung, man sieht auch, dass man x; und y; nicht auf die
positiven reellen Zahlen einschranken muss.

Die in m quadratische Funktion f mit f(m) =

> (mx; — y;)? hat nur nichtnegative
1=

2 Tl

Yai

Es gilt natirlich auch f(mg) > 0, bzw. - man setze ein und rechne einmal nach -

Funktionswerte, und ihr Minimum liegt bei my =

N2
J%@Q+zﬁzo

Da 3" a2 > 0 gilt, ist diese Ungleichung &quivalent mit

Yoy (Yaw)

Das Gleichheitszeichen gilt genau dann, wenn ein m so existiert, dass mxz; = y; fir
alle 7 gilt. (Das ist aus der obigen Darstellung von f(m) ersichtlich.) Wir fassen unser
Resultat zusammen:

(4.2) Die Cauchy-Schwarzsche Ungleichung: Fiir n Paare (x;,y;) beliebiger reeller Zah-
len gilt

Das Gleichheitszeichen in dieser Ungleichung gilt genau dann, wenn alle n Paare die
Gestalt (z;, max;) mit festem m haben.

Diese Art, Eigenschaften von Funktionen zur Ableitung von Ungleichungen auszunut-
zen, ist moglicherweise liberraschend, aber sehr wichtig und anregend.
Im folgenden gehen wir dazu von konvexen oder konkaven Funktionen aus.
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4.1 Zusammenhange zwischen Funktionen und Ungleichungen

(4.3) Eine Funktion y = f(z) heiBt ("von unten gesehen'"]) konvex (bzw. konkav) im
Intervall [a, b] genau dann, wenn beziglich des Graphen f* von f im Intervall fiir jede

beliebige Sehne AB mit A, B € f* der Bogen AB C f* unterhalb (bzw. oberhalb)
oder auf der Sehne liegt.

Insbesondere heiBt dabei die Funktion streng konvex bzw. streng konkav, wenn die
Bogen AB ganz unterhalb (bzw. oberhalb) der zugehédrigen Sehne AB liegen. (In Abb.
4.1a wurde eine streng konkave Funktion dargestellt.)

Der Begriff wurde von uns aus anschaulichen Griinden mit geometrischen Mitteln er-

klart ]

Aus der Definition folgt leicht folgende Eigenschaft.

(4.4) Ist y = f(x) eine im Intervall [a, b] streng konkave Funktion, so gilt fiir alle reelle
Zahlen 1,19 mit a < 1,29 < b und x; # 22 die Ungleichung

f(l’l)-gf(@) _ f<l’1 ;932) (1)

Wie man an Hand der Abb. 4.1 b sofort erkennt, hat der Mittelpunkt M der Sehne
AB die Koordinaten zj; = 322, gy = W und yys ist in der Tat nach

Voraussetzung kleiner als die y-Koordinate f (%) desjenigen Punktes N auf dem
Graphen der Funktion, der die gleiche xz-Koordinate wie der Punkt M hat.

Abb. 4.1

(Fur eine streng konvexe Funktion kehrt sich das Relationszeichen in (1) um.)

Ein Beispiel fiir eine streng konkave Funktion ist die Logarithmusfunktion y = log z,
und zwar im ganzen Definitionsbereich 0 < x < oo (Abb. 4.1 c).
Nach (4.4) gilt also fur alle voneinander verschiedenen reellen Zahlen z1, 25 > 0 die
Ungleichung
log x1 4 log x4 1+ X
< log —
2 2
und auf Grund des Monotonieverhaltens der Logarithmusfunktion folgt daraus die Un-
gleichung

log \/x129 =

1+ T2

2"Diese wenig exakt klingende Formulierung wurde von uns hinzugefiigt, da in den verschiedenen
Veroffentlichungen die Definitionen unterschiedlich, d. h. gerade entgegengesetzt sind. Die hier
gewahlte stimmt z. B. mit der in [5] gegebenen lberein. Im Mathematischen Wérterbuch, Bd. I,
S. 996, findet man den Begriff "Konvex von einer Seite": Verlauft eine ebene Kurve ... in einer
Umgebung des Berlihrungspunktes einer Tangente ... ganz auf deren einer Seite, so heiBt die Kurve
von dieser Seite konkav, von der entgegengesetzten Seite konvex.

28 Andere Moglichkeiten der Begriffserklarung sind die mittels der Differentialrechnung oder eben der
von uns nun abzuleitenden Ungleichungen.
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4.1 Zusammenhange zwischen Funktionen und Ungleichungen

fir alle reellen Zahlen x1, x5 > 0 mit x1 # xo.

Dies ist die bekannte Aussage, dass das geometrische Mittel zweier verschiedener po-
sitiver reeller Zahlen stets kleiner als ihr arithmetisches Mittel ist.

Der Satz (4.4) |asst sich verallgemeinern:

(4.5) Ist y = f(x) eine im Intervall [a, b] streng konkave Funktion und sind x1, x, ,...,
x,, beliebige reelle Zahlen aus dem Intervall, die nicht alle gleich sind, dann gilt

f(w1) + flxo) + ...+ fl2,) < f(I1+$2+~--+In>
n n

(3)

Diese Ungleichung (3) heiBt (spezielle) Jensensche Ungleichung. (Fir n = 2 ergibt sich
(1))

Zum Beweis benutzen wir aus der analytischen Geometrie die Aussage, dass die Koor-
dinaten xg,ys des Schwerpunktes von n (Massen-) Punkten M;(z1,y1), Ma(x2,y2),
ey My (2, y,) bestimmt sind durc}‘@

1+ 29+ ... +x, Y1 +y2 + ... +yn
IS: , yS:

n n

Die behauptete Ungleichung (3) ist aus geometrischer Sicht nun leicht zu begriinden.
Wir konnen o. B. d. A. davon ausgehen, dass 1 < 9 < ... < z, ist und dass hier
wenigstens drei verschiedene reelle Zahlen vorliegen.

Abb. 4.2

Die Punkte M (z1,y1), Ma(z2,y2), ... Mp(2n,yn) mit y; = f(x;) (i = 1,...,n) liegen
auf dem Graph der Funktion und bilden nach Voraussetzung die Ecken eines konvexen
Vielecks (Abb. 4.2). Der Schwerpunkt S(zs,ys) dieser Figur liegt in ihrem Innern und
demnach unterhalb desjenigen Punktes N des Graphen, der die gleiche z-Koordinate

T, = Bt e der Schwerpunkt S besitzt ; also gilt
r1+2x9o+ ...+
ys < f < n)
n
d. h.

f(w1) + flx2) + ...+ fl2n) < f(9€1+$2+.-~+513n>
n n

Ist die Funktion y = f(x) streng konvex - wie z. B. y = z* im Intervall —co < < 00
oder y = tanx im Intervall 0 < 2 < & -, dann ist nach den bisherigen Uberlegungen

f(z1) + flzo) + . + flzn) S f($1+$2+---+l’n>
n n

(3)

2Siehe dazu etwa [5], S. 319.
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4.1 Zusammenhange zwischen Funktionen und Ungleichungen

als Jensensche Ungleichung zu verstehen, wobei wieder wenigstens zwei der Zahlen
x1, ..., T, voneinander verschieden sein miissen.

Wahlen wir wieder als Beispiel die streng konkave Logarithmusfunktion, so erhalten wir
aus dem Satz (4.5) als Folgerung:

logzi + logxo + ... + log x,, (:cl—}—xg—l—...—l—:cn)
< log
n n

und damit

1 +x9+ ...+, (4)
n

fir alle positiven reellen Zahlen x4, ..., z,, von denen wenigstens zwei voneinander ver-
schieden sind 7

Dies ist der Satz vom geometrischen und arithmetischen Mittel; die Ungleichung (2)
ist ein Spezialfall von (4).

VT T Ty <

Eine weitere niitzliche Ungleichung folgt aus (4.5) mit Hilfe der Potenzfunktion y = 2™
(m > 2, ganzzahlig). Diese Funktion ist fir 0 < x < oo streng konvex. Also gilt fiir
alle reellen Zahlen x4, ...,x,, > 0, von denen wenigstens zwei voneinander verschieden
sind, die Ungleichung

oty S <x1—|—x2—|—.._—|—g;n)m
n

(5)

n
bzw.

(5)

Dem auf der rechten Seite von (5') stehenden Term nennt man das "m-te Potenzmittel

der Zahlen x4, ..., z,".

1+ x4+ ... + 2, - n\%$1+xz+..-+$n

n n

Aus unseren bisherigen Betrachtungen folgt auch:

(4.6) Die Ungleichungen (1), (2), (3), (3'), (4), (5) und (5") sind genau dann durch
Gleichungen zu ersetzen, wenn alle z; paarweise gleich sind, bzw. in den Fallen (1), (3)
und (3") auch dann, wenn f(z) eine lineare Funktion ist (die also weder streng konkav
noch streng konvex ist).

Die Satze (4.4) und (4.5) wie auch die Ungleichungen (2), (4) und (5) im besonderen
finden vielfaltige Anwendungen. Wir konnen das hier nur an einigen wenigen Aufga-
ben zeigen. Zunachst stehen trigonometrische Funktionen im Mittelpunkt, im nachsten
Kapitel dann speziell die Ungleichung (4).

Abb. 4.3 o
30Eine andere Herleitung von (4) findet man z. B. in [9], S. 21 fF.
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4.1 Zusammenhange zwischen Funktionen und Ungleichungen

Wir beginnen mit der Losung der uns schon bekannten Aufgabe (2.43a). Zunachst iber-
lege sich der Leser, dass der Flacheninhalt des einbeschriebenen Dreiecks sicher noch
vergroBert werden kénnte, wenn der Mittelpunkt M des Umkreises nicht im Inneren
des Dreiecks liegt.

Danach kann man mit den Bezeichnungen der Abb. 4.3a und unter Verwendung des
"Flachensatzes" den Inhalt eines einbeschriebenen Dreiecks angeben:

1 1 1
Ap = —r?sind + 57“2 sine + 57“2

5 sinn

1
Ap = §r2(sin5 +sine + sinn)

mit 6 + ¢ + n = 27. Der Inhalt Ax wird nun genau dann maximal, wenn s = sind +
sin € + sinn maximal wird. Da nach den Voriiberlegungen jeder der Winkel §,c und n
kleiner als 7 und die Funktion y = sinx im Intervall [0, 7| streng konkav ist, gilt nach
(3) und (4.6)

1 )

g(siné +sine + sinn) = sin otedn

d. h.

o 3
<3.sin>— =>V3
S SlIl3 2\/_

Wesentlich ist, dass das Maximum fiir s und damit fir Ax genau dann angenommen
wird, wenn 6 = e = n = 120° gilt, d. h., wenn das Dreieck gleichseitig ist.

(4.7) Es sei Ax der Flacheninhalt eines Dreiecks und Ay der Inhalt des zugehérigen
Inkreises. Man bestimme das Maximum des Verhaltnisses ¢ = Q—Z.
Fir welche Dreiecke liegt dieses Extremum vor?

Zur Losung gehen wir von bekannten trigonometrischen Sachverhalten aus. Entspre-
chend den in Abb. 4.3b angegebenen Bezeichnungen gilt A;, = 7p? sowie

1 1 1
Apn =2 <2p2 cot (; + 5,02 cot g + §p2 cot g) = p2 <cot g + cot g + cot g)

und damit
T

8 04
cot%+cot§—|—cot§

Nun ist ¢ maximal genau dann, wenn ¢ := cot § + cot g + cot 3 minimal ist.

Die WinkelgroBen %,g und 3 liegen zwischen 0 und 7, und in dem Intervall (0, 7) ist

die Funktion y = cot x streng konvex. Nach (3') gilt dann

3 3

* cot 2 +cot 2+ cot 2 oy By
qa 2 2 2 > cot % :COtg:\/g

wenn wenigstens zwei der drei WinkelgroBen «;, 3, v voneinander verschieden sind. Nach

(4.6) gilt % =V3nurfira=p=v= 5. Folglich ist gmax = ﬁ ~ 0, 60; und dieses

Maximum liegt fir die gleichseitigen Dreiecke und nur fiir diese vor.
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4.1 Zusammenhange zwischen Funktionen und Ungleichungen

(4.8) Es seien «, 3, die GroBen der Innenwinkel eines Dreiecks. Fiir welche Dreiecke
ist
sin a + sin 3 + sin vy
sina - sin 3 - sin~y

maximal?

Wegen sin «, sin 3, siny > 0 gilt nach (4) zunachst

sina+sinﬁ+sin7)3

sin asin [ siny < < 3

wobei das Gleichheitszeichen wegen (4.6) fiir sin v = sin § = siny steht. Also ist

sinoz+sin5—|—sin’y> 27

sina-sinf-siny — (sina +sin g + sinvy)?
Da die Funktion y = sinx im Intervall 0 < x < 7 streng konkav ist, gilt

3
sina+sinﬁ+sin’y§3-sin<a+§ﬂ> :3-sin§:3-\é_

wobei das Gleichheitszeichen hier nur fir o = 8 = v = % steht. Folglich ist

sin o + sin 8 + sin vy < 27

=4
sina -sinf3-siny <3_\/§>2

und Gleichheit besteht nur fiir die gleichseitigen Dreiecke.
Wir verwenden das gewonnene Resultat weiter:

Sind R und p die Radien des Um- bzw. Inkreises eines Dreiecks, so gilt fiir den Fla-
cheninhalt A des Dreiecks bekanntlich (Abb. 4.3 c):

1 1
A= iab siny = 5(2Rsin @)(2R sin 3) sin v = 2R?sin a:sin B siny

sowie 1
A= §p(a +b+c) = SQR(sinoz + sin 8 + sin )

Daraus folgt
R 1sina+sinf +siny

p 2 sina-sinf-sinvy

Das Ergebnis aus (4.8) hat dann zur Folge, dass

L
p

ist und Gleichheit nur fiir gleichseitige Dreiecke besteht.

Diese Extremalaussage fiir Dreiecke kann auch elementargeometrisch gewonnen werden,
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4.2 Das Lésen von Extremalaufgaben unter Verwendung der Ungleichung (iber das
arithmetische und geometrische Mittel

wenn man von einem Dreieck ABC' zu den Mitten A’, B, C’ der Seiten BC,CA, AB
ibergeht, die ein zum Dreieck ABC' 4hnliches Dreieck (mit dem Ahnlichkeitsfaktor %
bilden (vgl. [12]).

(4.9) e Es sei Ap der Flacheninhalt eines Dreiecks und Aj, der Inhalt des zugehdrigen
Umbkreises. Man bestimme fiir alle Dreiecke das Minimum des Verhaltnisses p = ﬁ—z.
Fiir welche Dreiecke liegt dieses Extremum vor?

Kombiniert man die Ergebnisse von (4.7) und (4.9), so kann man wiederum die Un-
gleichung R > 2p ableiten.

4.2 Das Losen von Extremalaufgaben unter Verwendung der
Ungleichung iiber das arithmetische und geometrische
Mittel

Wenn man dem Faden nachgeht,
findet man auch den Knauel.
M. de Cervantes

Genau besehen haben wir die Ungleichung (2) in Abschnitt 4.1 schon benutzt, z. B.
bei der Losung von (2.27) oder dem zugehdrigen dualen Problem (2.33).

r+x - . . .
! 2 > /x4 die linke Seite als ein Viertel

des Umfangs eines Rechtecks mit den Seitenlangen x; und x5, dann stellt die rechte
Seite die Wurzel aus dem Flacheninhalt dieses Rechteckes dar. Ist nun eine dieser Seiten
konstant, so ist der Term der anderen Seite durch diese Konstante (nach unten oder
oben) beschrankt, das Gleichheitszeichen gilt jeweils fiir das Extremum. Man beachte,
wie sich die Dualitat der Problemstellungen in der Ungleichung widerspiegelt!

Interpretiert man in der Ungleichung

Eine analoge Aufgabenstellung fiir den Raum erfordert kaum zusatzliche Uberlegungen.

Abb. 4.4

(4.10) Quaderférmige Pakete, die ein vorgegebenes Volumen V' haben, sollen mit Bind-
faden (wie in Abb. 4.4 angegeben) verschniirt werden. Welche Gestalt miissen die Pa-
kete haben, damit moglichst wenig Bindfaden verbraucht wird?

Die Kantenlangen des Quaders seien x1, x2, x3. Die benétigte Bindfadenlange ist dann
4(x1 + 2 + 3), sie wird genau dann minimal, wenn % minimal wird.
Nach der Ungleichung (4) aus Abschnitt 4.1 gilt aber

T+ ro + T3

> YT ay T3
3 = 3

und das Gleichheitszeichen gilt fiir den Fall x1 = x5 = 3.
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4.2 Das Lésen von Extremalaufgaben unter Verwendung der Ungleichung (iber das
arithmetische und geometrische Mittel

Unabhangig von der Wahl der Belegung der Variablen gilt stets x1 - 5 - x3 = V/, also
kann die linke Seite nie kleiner als v/V werden, das Minimum wird fiir r1 = T9 = T3,
d. h. fir eine Wiirfelform angenommen.

Maochte man fir Dreiecke entsprechende Resultate (wie in (2.28) bzw. (2.35)) erzielen,
so ist eine Formel notig, die den Flacheninhalt in Abhangigkeit von allen drei Seiten
angibt, das ist gerade die Heronsche Formel

A:\/s(s—a)(s—b)(s—c) mit s:;(a+b+0) (*)

Ist nun beispielsweise A unter der Annahme s = const zu maximieren, so ergibt sich
die Losung etwa wie folgt: (*) ist aquivalent mit

d€2:7@—ax&—m@—@

Aus der Ungleichung (4) ergibt sich mit 21 = s —a, 19 =s—b, x3=s—¢

5 s—a+s—b+s—c 1
\/(S—a)(s—b)(s—c) < 3 =38

das arithmetische Mittel erweist sich somit wieder als konstant. Folglich wird das geo-
metrische Mittel und damit auch A maximal genau fir s —a =s—b = s —¢, d.h. fir
a=b=c.

Aus

o] A2 2
y A < il))s folgt A<V3 (;) (**)

s
Hatten wir statt dieser beiden Beispiele die zugehorigen dualen betrachtet, so hatte
das offensichtlich keinen wesentlichen Unterschied gemacht.

Die nachste Aufgabe schlieBt an das letzte Beispiel an.

(4.11) Wir betrachten alle Tetraeder mit den Kantenlangen a, b, ¢, d, e, f, fur die
A+ b+ +d e+ fP=q= const (0)

gilt. Man ermittle unter diesen Tetraedern alle diejenigen, fiir die der Oberflacheninhalt
maximal wird, und gebe diesen maximalen Inhalt an.@

Es seien z,y, z die Seitenlangen irgendeines der vier Dreiecke der Tetraederoberflache.
Wegen (**) gilt fir diese Dreiecksflache

s2 V3 x+y+z\?
a=vay =Y ()
<V3 9 4 3
Jetzt benutzen wir, um Anschluss an (0) zu erhalten, die Ungleichung (5). Wir erhalten
2 2 .2 2
A< \/§<x+y+z) _ V3aP 4yt 42
-4 3 -4 3
31Diese Aufgabe wurde aus OJM 211246 A abgeleitet.
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4.2 Das Lésen von Extremalaufgaben unter Verwendung der Ungleichung (iber das
arithmetische und geometrische Mittel

Das Gleichheitszeichen gilt an beiden Stellen genau fiir z = y = 2!

Addieren wir die vier Ungleichungen (die sich fiir die vier Dreiecke der Tetraedero-
berfliche ergeben) mit den entsprechenden Bezeichnungen, so erhalten wir fiir die
Tetraederoberflache

1
O < \f-3(2a2+2b2+...+2f2) :?q

Das Gleichheitszeichen gilt nur, wenn es in jeder der Ungleichungen gilt; bei dem ge-
suchten Tetraeder handelt es sich also um ein regelmaBiges Tetraeder mit a = % seine
V3

6!

(4.12) o* Lasst sich die gleiche Frage wie in (4.11) fiir Oktaeder (konvexe Polyeder
mit acht dreieckigen Seitenflachen und % = 12 Kanten) und fiir Ikosaeder (konvexe
Polyeder mit 20 dreieckigen Seitenflachen und # = 30 Kanten) stellen? Zu welchem
Resultat gelangt man hier gegebenenfalls?

Oberflache betragt Omax =

Setzt man in (2) 1 = x und 2y = %, so erhalt man z +% > 2v/d, wobei das

Gleichheitszeichen nur fiir 21 = x5, d. h. fir z = V/d gilt.
Damit haben wir wiederum ein bekanntes Resultat gefunden, namlich das, auf dem der
gesamte Abschnitt 3.3 aufbaute.

Lasst sich nun von der nur geringfigig (?) anderen Funktion f mit

f(:v):a:—I—;z, x>0, a= constunda >0

das Minimum - falls (iberhaupt eines existiert - ermitteln?

Der Versuch, in (2) 21 = z und 2 = 5 zu setzen, liefert x 4+ % > 2\/g und schlagt
damit fehl. Warum?

Mit der Veranderung des Arguments = andert sich nicht nur der Wert der linken Seite
der erhaltenen Ungleichung, sondern auch der der rechten Seite. Damit liefert also keine
der Seiten eine feste Schranke fiir die andere. Unsere mehrfach mit Erfolg praktizierte
Methode ist wohl doch nicht so universell anwendbar.

Vielleicht lasst sie sich noch einmal retten, analysieren wir den Fehlschlag!

Das Scheitern des Versuchs ist doch wesentlich daran erkennbar, dass das geometrische
Mittel keine konstante GroBe darstellt. Das liegt aber z. B. daran, dass in dem Produkt
x - -5 der Faktor x nur einmal statt zweimal vorkommt.

Koénnten wir erreichen, dass er ein zweites Mal auftritt? Dann miisste = auch im arith-
metischen Mittel zweimal als Summand enthalten sein. Was noch nicht ist, kann in dem
Fall geschaffen werden: z = %:1; + %x ist die zunachst als Trick erscheinende Losung
des Problems. Es gilt unter Verwendung von (4) mit n =3

T a a
RSB SO
2 22 \/;

+a_1+1~|_a>33
T Tt Tt T =

LIRS
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4.2 Das Lésen von Extremalaufgaben unter Verwendung der Ungleichung (iber das
arithmetische und geometrische Mittel

wobei das Gleichheitszeichen nach (4.6) nur fir o =
gilt. Der minimale Funktionswert ist

r = %, d. h fir g = /2a

N

@ _ g e
Va2 4

denn fiir alle anderen z - das beweist unsere Herleitung - gilt f(z) > f(z0).

f(ﬂﬁo):\g/%Jr

Wir verallgemeinern dieses gewonnene Resultat:

(4.13) Gegeben sei eine Funktion f mit der Funktionsgleichung f(z) = Az + &,
m € N*, und dem Definitionsbereich D(f) = R . Es seien A und a fest vorgegebene
positive Konstanten. Man ermittle das Minimum dieser Funktion.

Die Losung finden wir im Prinzip wie oben. Wir zerlegen Az in m Summanden %x In
A

m

A L> (m+1) ™ </\> ‘a
xm m
am

und das Gleichheitszeichen gilt nach (4.6) genau fur %az = &, d. h firzg = ™ N

(4)istdannn=m+1, 21 =29=... =241 =
aus (4)

x und z, = -55. Damit ergibt sich

Der minimale Funktionswert ist

o) = 4 (2) o

m

(Zur Kontrolle setze man A = 1 und m = 2.)
Mit diesen Vorbereitungen konnen wir eine recht anspruchsvolle Aufgabe |6sen:

(4.14)* Gegeben sei eine Funktion f von drei reellen Veranderlichen x,y, z mit der
Funktionsgleichung

b c
R
a, b, c seien fest vorgegebene positive Konstanten, m, n und p seien positive natiirliche
Zahlen.

Unter den Nebenbedingungen, dass x, y, z positiv sind und die Summe x 4y + 2z einen

konstanten Wert k hat, ermittle man das Minimum von f(z,y, 2).

a
f(xvyaz):xim—i— P

Bei den Versuchen, eine Losung zu finden, muss man sich natiirlich insbesondere fragen,
wie die Nebenbedingungen x + y + 2 = const einzubeziehen ist. Wir benutzen einen
Trick, der der Euler-Lagrangeschen Multiplikatorenmethode der hoheren Mathematik
entlehnt ist.

Ist A eine (positive) Konstante, so ist auch A(z + y + z) konstant, und die Funktion

nimmt genau dann ihr Minimum an, wenn das fiir f(z,y, z) der Fall ist. Es gilt aber

a b c
g(x,y,z):Ax+xfm+)\y+yfn+>\z+§
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4.2 Das Lésen von Extremalaufgaben unter Verwendung der Ungleichung (iber das
arithmetische und geometrische Mittel

AuBerdem sind alle Voraussetzungen erfiillt, um das Ergebnis aus (4.13) anzuwenden.
Die Funktion g(z,y, z) und damit auch f(x,y, z) wird demnach genau fiir das Tripel

(0, Yo, 20) mit
[am [bn cp
To = ™ 7 _ il . 2o = "
0 A\ Yo b\ 0 )\

minimal, und f (g, yo, z0) ist der zugehdrige minimale Funktionswert. (Einschrankend
ist anzumerken, dass unser Ergebnis statt der vorgegebenen Konstanten k die Konstante
A enthalt. Der Zusammenhang zwischen beiden wird durch die Gleichung

o (LT LR
A * A i A

Wir kehren jetzt zu der Art und Weise zuriick, in der wir die Aufgabe (4.13) gelost
haben. Dieser "Trick einer geschickten Zerlegung" wird sich wohl noch &fter anwenden
lassen. Wir wahlen als Beispiel die Aufgabe (3.11). Laut Aufgabenstellung ist die GroBe
auf unter der Nebenbedingung 2% + > = d? = const zu maximieren. Die Versuche,
(4.6) direkt anzuwenden, scheitern:

angegeben.)

x + 2y
3

2 2
:1:—|—y>
9 =

r?y? =xy  oder Vryy <

Es wird aber xy? genau dann maximal, wenn (7y?)? = 2?y* maximal wird. Dieses
Produkt orientiert auf ein geometrisches Mittel, im zugeordneten arithmetischen Mittel
miissten 22 und y? stehen. Da aber y im Produkt in einer hoheren Potenz vorkommt,
miisste sich y? aus mehreren Summanden zusammensetzen.

Wenn man dem Faden nachgeht, findet man auch den Knauel! Wir finden

\3/1x2y4 _ \?/xQ , lyz _ lyz < 2+ 3y + 57 _ x? +
4 2 2° = 3 3

d. h., J322y* wird genau dann maximal, wenn 2% = 142 bzw. y = /2 gilt. Fiir diesen
maximalen Wert ist

1 22
st 9,4 __ ¢
1Y T3

4°
bzw. 2yt = —
zw 7y o

ablesbar.
In [9], S. 24-28, und [12], S. 74/75 beispielsweise, findet man weitere Aufgaben, die
auf diese Art gelost werden, hochste Zeit, aus dem Trick eine Methode zu machen:

(4.15) Das Produkt p = z§'x52. 2Fn sei fiir alle n-Tupel positiver reeller Zahlen z;
konstant.

Die k; (i = 1,2,...,n) seien von 0 verschiedene natiirliche Zahlen. Unter all diesen
n-Tupeln ist dasjenige zu ermitteln, fiir welches die Summe

S =ai1x1 + asx2 + ... + anxy
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4.2 Das Lésen von Extremalaufgaben unter Verwendung der Ungleichung (iber das
arithmetische und geometrische Mittel

minimal wird. Die a; (¢ = 1,2,...,n) sind dabei positive reelle Zahlen.

Die Losung dieser Aufgabe umfasst die von vielen speziellen Aufgaben. Wir nehmen die
geschickte Zerlegung ein fir alle Male vor: Betrachten wir die Darstellung

ai a2 Gp
s=k-—x1+ky—a90+..+k, —2x
1 kl 1 2 /{32 2 n kn n
mit ¢t := ki + ko + ... + k,, so lasst sich s auffassen als Summe von insgesamt ¢

Summanden der Gestalt :w; (i=1,2,...,n).

s ist gleichzeitig zu interpretieren als das ¢-fache des arithmetischen Mittels dieser ¢
Summanden. Das zugehorige geometrische Mittel enthalt dann insgesamt ¢ Faktoren
der Gestalt 7*; jeder dieser Faktoren tritt k;-mal auf. Nach (4) und (4.6) gilt

a\ M g\ o\
s>t —) 2 (=2) R (2] ke
- <k1> ! <k2> ? (k) "
al kl a2 k2 a kn
s>t —=] (=) .. [=2 Akt gk gk
B (m) (1@) (k) Lo

Mit der als giiltig vorausgesetzten Bedingung heilt das

al k/‘l CLQ k2 a k'n
>t —| (=] =) -y
v = <k1> (@) (kn) VP

Die rechte Seite dieser Ungleichung ist also eine von den x; unabhangige Konstante. s
kann den Wert k dieser Konstanten nicht unterschreiten; nach (4.6) nimmt sie diesen
Wert k genau dann an, wenn alle £ Summanden untereinander gleich sind.

Da jeweils k; Summanden nach Konstruktion einander gleich sind, bleibt die Bedingung

El‘l = %1‘2 = ... = ai:(} (*)

kl k2 kn
=ty =l () (22 )
k; ! ky ko T\ k,
_k:’t al kl (ZQ k2 an kn %k

Mit (**) sind alle z; des n-Tupels (x1, 29, ..., x,) eindeutig bestimmt. Fiir diese z; gilt
(*), und damit ist das Minimum von s ermittelt, und zwar eindeutig.

d. h.

(4.16) o Gegeben sei die Bedingung, dass die Summe
S =a1x1 + agxo + ... + apxy

fur alle n-Tupel positiver reeller Zahlen z; konstant ist. Die a; (i = 1,2,...,n) seien
positive reelle Zahlen. Unter all diesen n-Tupeln ist dasjenige zu ermitteln, fiir welches
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4.3 Variationen zum Thema

das Produkt p = z§'2%?...2% maximal wird. Die k; (i = 1,2, ...,n) sind dabei von 0

verschiedene natiirliche Zahlen.

Anmerkungen. Die Aussagen (4.15) und (4.16) lassen sich auch auf den Fall iibertragen,
dass die k; positive rationale Zahlen sind. Einen solchen Fall kann man namlich durch
geeignetes Potenzieren auf (4.15) oder (4.16) fiihren.

Weiterhin ist zu beachten, dass ein Teil der x; auch durch % T
bzw. dass solche Terme fiir die obigen x; stehen. L

2

¢ u. a. ersetzbar ist

(4.17) @ Man stelle fest, inwieweit sich die vorher betrachteten Aufgaben des Abschnitts
4.2 als Spezialfalle der allgemeinen Probleme (4.15) bzw. (4.16) erweisen.

(4.18) @ Man l6se die Aufgaben (2.29), (2.39) und (2.48) unter Verwendung von (4.15)
bzw. (4.16).

(4.19) @ Man formuliere ein zu (2.27) raumliches Analogon und beweise es.

(4.20) e Man beweise : Unter allen geraden Doppelkegeln, die ein vorgegebenes Volu-
men haben, kommt der kleinste Oberflacheninhalt denjenigen Kegeln zu, deren Man-
tellinien von dem Beriihrungskreis der dem Doppelkegel einbeschriebenen Kugel im
Verhaltnis 2 : 1 geteilt werden.

(4.21) e Man ermittle alle Punkte im Innern eines gegebenen Dreiecks (bzw. Tetra-
eders), fiur die das Produkt ihrer Abstinde von den Seiten (bzw. Flachen) maximal
wird.

4.3 Variationen zum Thema

Ein Prinzip, das unbedingt alles erklaren will,
erklart in Wirklichkeit nichts.
A. Daltschew

Naturlich haben wir uns im letzten Abschnitt bemiiht, einen Trick durch eine Methode
zu ersetzen. Andererseits ist es aber verfehlt, nun wiederum alles "Uber einen Leisten
schlagen" zu wollen.

Gerade die virtuose Anwendung der zur Verfiigung stehenden Mittel macht den Meister
aus. Erproben wir unsere Meisterschaft an einer Aufgabe!

(4.22) 1,9, x3, 24 seien reelle Zahlen, und es gelte 0 < 1 < x2 < 23 < 4.
a) Man beweise, dass dann die folgende Ungleichung gilt:

\/($4—I3)2+1+\/($3—l‘2)2+1+ \/(1762 —z1)*+12> \/($4—I1)2+32
b) In welchen Fallen gilt das Gleichheitszeichen?

Zunachst betrachte man sorgfaltig die Terme in (*). Welche Besonderheit fallt auf? Es
gilt
(1‘4 — xg) + ($3 — 1’2) + ($2 — :L‘l) =Ty — X1 (**)
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4.3 Variationen zum Thema

Die Summanden auf der linken Seite von (*) kénnen wir als Funktionswerte f(z) der
Funktion f mit f(z) = v/22 4+ 1 auffassen und erhalten wegen (**) an Stelle von (*)
dann

F(za) + f(23) + f(22) > /(24 + 23 + 22)2 + 32

Und da uns auf der rechten Seite im Radikand eine 1 statt der 32 lieber wire, dividieren
wir die gesamte Ungleichung durch 3:

2

f(z4) + f(23) + f(22) > \/(24 + 23 + Zz) f1f (24 + 23+ Z2> (%)
3 3 3

Da mit z; = x; — x;—1 (i = 4,3,2) die Ungleichung (***) aquivalent mit (*) ist,

ware Teil a) schon bewiesen, wenn wir nachgewiesen hatten, dass auf f die Jensensche

Ungleichung anwendbar ist! Dann miisste nach (4.5) bei Vergleich von (3) und (3') mit
(***) die Funktion f mit f(z) = V22 + 1 fir z > 0 konvex sein. Trifft das zu?

Wir kdnnen uns nicht nur von unserem Wunsch leiten lassen.
Die Funktion g(z) = 2% + 1 ist konvex, muss dann aber auch f(z) = ,/g(z) konvex

sein? Wer das leichten Herzens bejaht, der sollte auch folgende Uberlegung bedenken:
h(z) = v/z + 1 ist konkav, vielleicht auch f(z) = h(2?)?

Hilft uns die graphische Darstellung bei der Entscheidungsfindung? (Wohlgemerkt, wir
sprechen von einer Entscheidungshilfe, nicht von einem Beweis!)
Fir z > 0 gilt

2=V2<V2+1<V2+224+1=2+1

Das bedeutet, dass der Graph der Funktion f fiir alle z zwischen den beiden y = z und
y = z + 1 zugeordneten (zueinander parallelen) Geraden verlauft (vgl. Abb. 4.5a). Da
ist wahrlich wenig Platz, ein ausgepragtes Verhalten zu registrieren!

i
3_______________76
o
//
.
2 // é
B 8
Y ;// 3 %
A i
A 42 At/ Al
X, X X X
b)
Abb. 4.5

Dieses Beispiel macht uns nachdriicklich auf eine Problematik aufmerksam, die wir
bisher umgangen haben. Bei Verwendung der von uns unter geometrischen Gesichts-
punkten vorgenommenen Definition (4.3) nahmen wir an, von einem Graphen f* zu
wissen, ob ihm die Eigenschaft "konvex" oder "konkav" zukommt. Und bei den bisher
benutzten Funktionen (f(z) = lgz, f(z) = 2™, m € N, f(z) = tanz, f(z) = V7 -
jeweils fiir "geeignete" Intervalle) haben wir diese Kenntnis einfach vorausgesetzt. Wie
lasst sich aber die "Konvexitat" beweisen?

Betrachten wir nochmals die Definition (4.3) und den Satz (4.4): 322 und f(xl);’f(“)
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4.3 Variationen zum Thema

sind stets die Koordinaten des Mittelpunktes der "zugehérigen" Sehne. Gilt nun fiir alle
Paare (x1,x2) mit a < x; < b und 71 < x5 die Ungleichung

f(l”l)‘zl—f(lé) < f<x1‘g$2> (1)

dann besagt das doch gerade, dass jeder Sehnenmittelpunkt oberhalb des Graphen f*
liegt. Dann muss aber auch die gesamte Sehne oberhalb von f* liegen. Denn wiirde
ein Teil einer Sehne unterhalb von f* verlaufen, so existierte auch eine Sehne, deren
Mittelpunkt unterhalb von f* liegen wiirde. Damit ist gezeigt, dass aus der Giiltigkeit
von (1') die strenge Konvexitat folgt (bzw. aus (1) in (4.4) die Eigenschaft "streng
konkav").

Wir wenden diese Erkenntnis auf unser Beispiel an: Angenommen, es sei der Graph f*
von f(z) = v/22+ 1 nicht streng konvex, dann existiert wenigstens ein Paar (21, 22)
mit z; < zo und

bzw.

<Z1 —QF 22> S f=) ;L f(22)

\/(Z1+22)2+1> 2+1+4+4/25+1

2 2

bzw.

Ve + 22 44> 2+ 1423 +1

Da beide Seiten dieser letzten Ungleichung positiv sind, diirfen wir quadrieren:

(1422 +4> 22+ 142/(22+ 1) (23 +1) + 22+ 1
2129+ 12> \/(z% +1)(25+1)
(z122 +1)* > (2] + 1)(25+)

2 2
22129 2 21 + 25

bzw. 0 > (21 — 22)?. Das ist aber ein Widerspruch zu der Voraussetzung, dass 21, 2
verschiedene reelle Zahlen sind. Folglich gilt fiir alle Paare (21, z2) mit z; < 25 die Un-
gleichung (1'), die strenge Konvexitat ist nachgewiesen, die Aufgabe (4.22a) ist nach
den vorbereitenden Betrachtungen gelost.

Hier konnte jemand einwenden, dass an Stelle des Konvexitatsnachweises in der "glei-
chen Art" auch sofort (*) bewiesen werden konnte. Man versuche es! Das Auftreten
des dritten Summanden in (*) erhoht den Aufwand betrachtlich. Weiterhin spricht fiir
unser Vorgehen, dass es auch ohne AufwandsvergroBerung auf den Fall n (n > 3) re-
eller Zahlen 0 < 21 < x5 < ... < &, und damit n Summanden in (*) anwendbar ist.

Da f(z) streng konvex ist, kann in (1') das Relationszeichen "<" nur dann durch "="
ersetzt werden, wenn zo = 23 = 24 bzw. 19 — 21 = x3 — x92 = x4 — x3 gilt, d. h., wenn
die z; dquidistant liegen. Damit ist auch Teil b) gelost.

Haben wir nicht trotz der Verwendung graphischer Darstellungen die elementaren geo-
metrischen Methoden aus dem Auge verloren? Einseitigkeit ist vieler Fehler Anfang!
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4.4 Die Methode der konkurrierenden Punkte

Vt2 + 12 kann auch die Aufforderung sein, an den Satz des Pythagoras zu denken.
Tragen wir doch einfach einmal alle zugehérigen Dreiecke in ein Koordinatensystem ein
(vgl. Abb. 4.5 b). (*) entspricht dann die Ungleichung

l = |AlBQ‘ + ‘A2B3| + |A3B4’ Z ’A10|

Erinnern wir uns an das Kapitel 2.1!

Ein Streckenzug Ay Bo B3 B mit B} = C wire zu finden. Wegen |AsBy| = |A3Bs| =
|A4B4| = 1 ist das aber leicht zu erreichen (vgl. Abb. 4.5¢).

Der Streckenzug A; By B4B) hat nun nach Konstruktion die Lange 1, und nach Ab-
schnitt 2.1 ist die geradlinige Verbindung von A; mit C' die Kiirzeste. Damit ist die
Ungleichung [ > |A;C/| bewiesen.

Das Gleichheitszeichen gilt nur, wenn By und Bj in der Strecke A;C liegen. In diesem
Fall miissen die z; voneinander gleichen Abstand haben. (Strahlensatz !).

(4.23) o Man beweise, dass fiir alle reellen Zahlen a, b und c

Va+e2+02+ /(a—c)?+02>2/a2 12

gilt.

(4.24) e Man beweise, dass fir alle reellen Zahlen x1, xo, ..., z,, und y1, 92, ..., Yn

n—1
> \/(332 — Tip1)? + (Yi — Yig1)? > \/(901 —20)? + (Y1 — Yn)?
i=1

gilt.

4.4 Die Methode der konkurrierenden Punkte

Da gehen sie in tiefem Schweigen,
wohin? Das wird sich spater zeigen.
W. Busch

Wollen wir Extremalaufgaben mit Hilfe einer Funktion einer reellen Veranderlichen 16-
sen, so missen wir zumindest eine zuzuordnende Funktion finden. Das Extremalproblem
ist dann in Abhéngigkeit von einer Veranderlichen formuliert. (Wir erinnern an die Bei-
spiele in Kapitel 3!)

Enthielt das urspriingliche Problem mehrere Veranderliche, so mussten diese bis auf
eine mittels der in der Aufgabe enthaltenen Nebenbedingungen eliminiert werden. In
Abschnitt 4.2 sahen wir, wie man u. U. durch geschickte Anwendung von Ungleichungen
mit mehreren Variablen arbeiten kann.

Das Geschick bestand darin, die Nebenbedingungen in die Ungleichung "einzubauen".
In diesem Abschnitt werden jetzt Variable dadurch eingefiihrt, dass zwei Punkte in ihrer
Beziehung zueinander betrachtet werden.

32 Aufgabe 19 10 36 der OJM
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4.4 Die Methode der konkurrierenden Punkte

Der Vergleich des "Angebots", welches jeder dieser Punkte beziiglich des Extremums
macht, lasst sich mit einer Ungleichung erfassen. Es werden also verschiedene der bereits
betrachteten Methoden zur Anwendung kommen, in ihrer Gesamtheit aber doch etwas
Neues ergeben.

Wir wollen diese Methode der konkurrierenden Punkte®3] zunichst an einer uns schon
bekannten Aufgabe, namlich (2.12), demonstrieren.

Abb. 4.6 ©

Um die Punkte minimaler Abstandssumme von den Eckpunkten (wir wissen schon, dass
es genau einen gibt) zu finden, lassen wir zwei Punkte M und O zueinander in Konkur-
renz treten. lhre Lage in der Ebene beziiglich der Punkte A, B und C beschreiben wir
durch Winkel, wie das in Abb. 4.6a angegeben ist. Ohne Beschrankung der Allgemein-
heit liege O im Innern des Winkels ZAM B. Mit Hilfe trigonometrischer Berechnungen
erhalt man leicht

|IMA| =|0A|cosa+ |[MO|cosu (1)
|MB| = |OB|cos 3+ |[MO|cosv (2)
|IMC| =|0C|cosvy+ |MO|cosw (3)

Addiert man die Gleichungen (1), (2) und (3), so ergibt sich

IMA| +|MB| + |MC| = |OA| cos a + |OB| cos 8 + |OC| cosy
+ |MO|(cosu + cosv + cos w). (4)

Wir suchen nun fiir den Punkt M eine ausgezeichnete Lage. Gibt es einen Punkt M
so, dass fiir jeden Punkt O (# M) die Klammer cosu + cos v + cos w gleich 0 ist? Fur
einen solchen Punkt M wiirde dann namlich aus (4)

IMA|+|MB|+ |[MC| = |0OA|cosa + |OB| cos § + |OC| cosy

folgen, und da der Kosinus eines Winkels dem Betrag nach hochstens 1 ist, wiirde fiir
alle Punkte O
|MA|+ |MB|+ |MC| < |OA|+|0OB| + |0C|

und, da man den Fall a = 8 = v = 90° noch ausschlieBen kann, die Minimalitatsei-
genschaft
IMA|+ |MB|+ |MC| < |OA| 4+ |OB| + |OC]| (*)

33Das ist unseres Wissens keine in der Literatur dafiir iibliche Bezeichnung.
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4.4 Die Methode der konkurrierenden Punkte

gelten.

Wenden wir uns also der obigen Frage zu. Bei der von uns o. B. d. A. angenommenen
Lage von O gilt mit z := |ZAMB| und y := |[ZAMC|,dass v =x —uund w = y+u
ist, folglich

cos U + cos v + cosw = cos u + cos(x — u) + cos(y + u) (5)
Mit Additionstheoremen ergibt sich aus (5)

COS U + COS VU + COSW = COS U + COS T COS U + Sin & sin u + cos Yy cos u + sin y sin u

cosu + cosv + cosw = cosu(1l + cos x + cosy) + sinu(sinx + siny) (6)

Soll nun immer cosu + cosv + cosw = 0 gelten, so ist das nur moglich, wenn 1 +
cosz + cosy = 0 und sinz — siny = 0 gilt. Denn sonst kénnte man ja mit O den
Wert des Winkels von u so andern, dass die rechte Seite von (6) verschiedene Werte
annimmt.

Aus sin z = sin 3y folgt x = y; oder x = 180° — y. Gleichzeitig soll aber

cosx +cosy = —1 (7)

gelten, d.h. z > 90° und y > 90°; es kann also nur x = y gelten und wegen (7)
xr =y = 120°. Damit existiert tatsachlich genau ein solcher Punkt M, fiir den (*) gilt.
Seine Lage ist genau so fixiert, wie uns das schon bekannt ist.

Mochte man eine Methode mit Hilfe von Beispielen erlautern, so wird ein Beispiel
sicher nicht ausreichen. Unser zweites Beispiel kann man in verschiedenen Einkleidungen
anbieten.

(4.25) In Abb. 4.6 b stelle die Gerade g die Trennlinie zwischen dem Festland und dem
Wasser dar. Ein Sportler soll in moglichst kurzer Zeit von einem Startpunkt A auf dem
Festland die Insel B im Wasser erreichen. Seine Geschwindigkeit auf dem Festland sei
vy, im Wasser v,. Es gelte v; > ;.

An welchem Punkt auf g muss er vom Laufen zum Schwimmen wechseln?

Da er schneller lauft als schwimmt, wird der Sportler sicherlich nicht einen insgesamt
geradlinigen Weg von A nach B planen. Aber wird nun der Punkt () oder der Punkt
P glinstiger sein?

Es konkurrieren also wieder zwei Punkte miteinander, ihr Abstand sei |z| # 0. Liegt P
rechts von (), so sei x positiv, sonst negativ. Wir berechnen nun die Wege |AP| und
|PB| unter Einbeziehung von konstanten GroBen und der GroBen I, s und x:

|AP|?> = |EP” + |AE|* = (JEQ| + z)* + I* — |[EQ|* = I + 2|EQ|z + 2*

120 - (52 0

Entsprechend ergibt sich
QF 2 QF 2
|PB|2 = (3 — | . |x> + (1 — <| i |> ) (2)
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4.4 Die Methode der konkurrierenden Punkte

Da |[EQ| <l und |QF| < s fur @Q # E, F gilt, folgt aus (1), (2)

l l

|AP| > 1 + und  |PB| > s —

Fir die zu minimierende Gesamtzeit ¢ folgt daraus

AP PB [ E F
(WP PR Ly s (1EGL 0P,
v Vs v Vs [ S - Vg

(3)

Jetzt stellen wir wieder die Frage, ob sich die Lage des einen Punktes so fixieren lasst,
dass die Ungleichung (3) unabhéngig von der Lagebeziehung zwischen P und @), also
[EQ|l |QF

l-v, s-wy

unabhangig von zu wird. Es misste der Punkt dass = 0 gilt. Ist das stets

moglich?

Unsere Bedingungsgleichung ist fir () # F' dquivalent mit v; : vg = % : |QSF‘, d.h.

v Vs = cosa’ :cos 3F (4)

Wird @ so gewahlt, dass (4) gilt, dann folgt aus (3), dass die Gesamtzeit ¢ auf einem
Weg liber P # () stets groBer als tg = % + = ist. AQB ist dann der Streckenzug, der
in der kiirzesten Zeit zuriickgelegt wird. )

Fiir vorgegebenes v; und v, existiert nun genau ein () im Inneren der Strecke E'F, so
dass (4) gilt: Fir den angenommenen Fall E = @ gilt o* = 90° und damit cos a* = 0,
cos 5% # 0.

Bewegt sich ) von E nach F', so wird o* kleiner und 5* groBer, d. h., der Zahler des

Bruches gg:g wachst, und der Nenner wird kleiner. Nahert sich () dem Punkt F', so
cosa’”

wird cos 3* beliebig klein, cos 57 It folglich eine monoton wachsende und sich stetig
andernde GroBe zwischen 0 und oo. Der vorgegebene Wert - wird an genau einer Stelle
angenommen.

Das betrachtete Problem lasst sich auch physikalisch beschreiben: Gehen wir von dem
Prinzip (1.4) aus, so muss sich fiir die Lichtausbreitung beim Ubergang von einem
Medium in ein anderes ebenfalls die Brechung des Lichtstrahles ergeben.

Fur das Verhaltnis der Lichtgeschwindigkeiten in den beiden Medien schreiben wir
das Brechungsverhaltnis n, an Stelle von a* und 3* wahlen wir den Einfallswinkel o
und den Brechungswinkel 3 (vgl. Abb. 4.6 c). Statt (4) erhalten wir das Snelliussche
Brechungsgesetz)@

sina:sinff=n

Der Hollander Willebrord Snell van Royen fand das Gesetz um 1618. Fermat bewies es,
ausgehend von dem Prinzip (1.4), in etwa in der oben angegebenen Art.

34Vg|. Grimsehl, Lehrbuch der Physik, Bd. Ill, S. 31.
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5.1 Extrema und infinitesimale Methoden

5 Ein Ausblick auf Methoden der hoheren
Mathematik

5.1 Extrema und infinitesimale Methoden

Ein Genre, meine ich, hat seine eigene Nase.
Man soll ihr folgen und nicht versuchen,

sie mit Gewalt irgendwo hineinzustecken.

P. Hacks

Wie bereits mehrfach erklart und praktiziert, wollen wir elementare Vorgehensweisen in
den Mittelpunkt unserer Betrachtungen stellen. In diesem Abschnitt mochten wir aber
einen kurzen Einblick in Moglichkeiten geben, die die Differentialrechnung eroffnet.
Mittel und Methoden aus diesem Bereich werden traditionell zur "héheren Mathematik"
gezahlt. Wir wollen an Hand geometrisch anschaulicher Betrachtungen eine Vorstellung
von den grundlegenden Ideen vermitteln.

Bereits in Kapitel 3 haben wir gesehen, dass sich gegebenenfalls Extremalaufgaben
durch Funktionen erfassen und einer Losung zufiihren lassen. In diesem Fall werden
die urspriinglichen Sachverhalte und Zusammenhange durch die Eigenschaften einer
reellwertigen Funktion widergespiegelt. Uns interessierten speziell die Extremwerte.

Es sei nun f eine iber einem Intervall a < x < b definierte Funktion. Folgende Erklarung
ist anschaulich sofort einsichtig (Abb. 5.1a):

(5.1) Die Funktion f besitzt im Intervall (a,b) an der Stelle x, ein relatives Maximum
bzw. Minimum genau dann, wenn fiir jede beliebig kleine Zahl ¢ > 0 gilt, dass

f(z) < f(zo) fur alle rg—e<x<m+€E Mtz Fx
bzw.

f(z) > f(xo) fur alle rg—e<zx<m+€E Mtz F

ist.
Dieser Begriff des relativen Extremums ist von dem in (3.2) eingefiihrten Begriff des
absoluten Extremums zu unterscheiden.

fix)

4N

Abb. 5.1 xoe % X0 x

Wie man an Hand der Abb. 5.1 erkennt, ist selbstverstandlich nicht jedes relative Ma-
ximum (bzw. Minimum) ein globales Maximum (bzw. Minimum).
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5.1 Extrema und infinitesimale Methoden

Fir eine sehr groBe Klasse von Funktionen ist die Differentialrechnung ein ausgezeich-
netes Instrument, die relativen Extrema zu ermitteln. Diese Formulierung lasst aber
auch schon ahnen, dass diese Methode nicht auf jede Funktion anwendbar sein wird.
Das "Ziinglein an der Waage" ist die Existenz einer Tangente in einem Punkt an den
Graphen f*. Wir kennen den Begriff "Tangente an einem Kreis im Punkt Fy", lasst
sich dieser Begriff auf andere Kurven tibertragen?

Diese Frage ist so leicht nicht zu beantworten, hangt eben unlosbar mit dem Komplex
zusammen, den wir gerade erst erklaren wollen.

Ist ¢ die Tangente in P, an den Kreis k, so ist uns gelaufig, dass sich eine Sehne gp,p
oder gp-p, der Lage dieser Tangente £ um so starker nahert, je dichter P bzw. P* bei
Py liegen (vgl. Abb. 5.2a). Lasst sich nun fiir eine beliebige Kurve f* die Tangente an
f*in Py auch als "Grenzlage" einer Folge von Sehnen festlegen?

.

c)

Im Falle des Graphen einer Funktion dritten Grades (vgl. Abb. 5.2 b) scheint es so. In
dem durch Abb. 5.20 gegebenen Beispiel dagegen ist wohl auf diese Art keine Tangente
im Punkt P, eindeutig zu bestimmen.

Es ist nach diesen etwas vagen Vorbetrachtungen anzunehmen, dass fiir eine Klasse von
Funktionen f in jedem Punkt Py € f* eine Tangente an f* existiert, solche Funktionen
nennen wir differenzierbare Funktionen.

Wenn aber an f* Tangenten existieren, dann konnen wir die relativen Extreme. folgen-
dermaBen charakterisieren:

(5.2) Besitzt der Graph f* der Funktion f im Punkt (z¢,y0) eine waagerecht (also
zur x-Achse parallel) verlaufende Tangente ¢ und ist in jedem beliebig kleinen Intervall
(xg — &,x0 + €) der Graph f eine streng konvexe (bzw. streng konkave) Kurve, so hat
die Funktion f an der Stelle ¢ ein relatives Minimum (bzw. Maximum).

Nun bleibt zu klaren, wie man zu einer vorgegebenen Funktion f an der Stelle z( die
Tangente (an den Graphen f*) - ihre 102 5. Ein Ausblick auf Methoden der héheren
Mathematik Existenz vorausgesetzt - ermitteln kann. Wir betrachten neben dem zu z
gehorigen Punkt Py von f* (also dem Punkt mit den Koordinaten xy und f(z()) einen
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5.1 Extrema und infinitesimale Methoden

benachbarten Punkt P des Graphen f* mit den Koordinaten xo+ h und f(xo+ h) mit
h >0 (Abb. 5.2 d).
Die Verbindungsgerade von Py und P - eine Sekante von f* - hat dann den Anstieg

f(zo+h) — f(x0) :f(170+h)—f(5130) (*)
($0+h)—330 h

Mit kleiner werdendem h nahert sich der Punkt P dem Punkt P, die Sekante nahert
sich der Tangente ¢ und damit der Anstieg der Sekante dem der Tangente!

Die neue Qualitat dieser Art von Betrachtungen driickt sich darin aus, dass A "infini-
tesimal klein wird", "gegen 0 geht". Solche Art der Betrachtungen wurde schon von
Fermat (intuitiv?) benutzt und von Newton und Leibniz zur Differentialrechnung ent-
wickelt. In der exakten Terminologie der Differentialrechnung ist zu formulieren:

Hat der Quotient (*) fir jede NulIfoIgeﬁ, die h durchlauft, den gleichen Grenzwert,
dann hat f* an der Stelle x( eine Tangente, die diesen Grenzwert als Anstieg besitzt.
Man sagt dann, dass die Funktion f an der Stelle x( differenzierbar ist, und bezeichnet
den Grenzwert mit f’(xq); in kurzer mathematischer Bezeichnung ist also

f(xo+h) — f(x0)
h

f'(x0) heiBt der Differentialquotient oder die Ableitung der Funktion f an der Stelle
Zy.

/ R E
Jao) = iy

Wir betrachten dazu ein Beispiel, eine Funktion, die bereits in Kapitel 3 naher unter-
sucht wurde, und werden sehen, dass man in einfachen Fallen auch ohne umfassende
Kenntnisse aller Begriffe schon Wesentliches erfassen kann.

(5.3) Man bestimme fiir die Funktion f mit f(z) = 2? und D(f) = R an der Stelle
xo den Anstieg der Tangente, falls er existiert.

Wir bilden zunéchst den Quotienten (*)

flzo+h) — f(zo) _ (zo+h)* —af _ 2woh+ 1

h h h

Wahlen wir nun h beliebig klein, so nahern wir uns beliebig gut dem Wert 2x(. Exakt
ausgedriickt:

:2.CIL'0—|—h

Fir jede Nullfolge von h hat 2xy + h den gleichen Grenzwert, namlich 2x¢; also ist

f(zo) = 22

Damit ist gezeigt, dass der Graph f* der Funktion f mit f(z) = 2% an jeder Stelle z
eine Tangente besitzt und diese Tangente den Anstieg 2z hat.

(5.3") Fiir eine lineare Funktion f mit f(x) = max+n ergibt sich offensichtlich f'(xy) =

35Hinsichtlich einer prazisen Fassung der Begriffe "Nullfolge" und "Grenzwert" sei auf leicht zugéng-
liche Fachliteratur, etwa [5], verwiesen.
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m.

(5.4) e Man zeige, dass fiir die Funktion f mit f(z) = x3 an jeder Stelle zq die
Ableitung f'(xq) gleich 3z3 ist.

Man kann in gleicher Weise wie zur Lésung von (5.3) noch zeigen:

(5.5) e Sind die Funktionen f und g an der Stelle x differenzierbar, so auch die
Funktion p und k mit p(z) = f(z)+g(x) und k(x) = af(x) (mit a # 0), und es gilf>]

p'(xo) = f'(zo) +g'(x0) ,  K(20) =a- f(x0)
Jetzt wenden wir uns der Betrachtung der relativen Extrem zu.

Verkniipfen wir unsere Erkenntnisse mit (5.2), so folgt, dass fiir die Existenz eines
relativen Minimums oder Maximums an der Stelle wo die Bedingung f'(zo) = 0 (vor-
ausgesetzt, f'(zg) existiert) notwendig ist.

Betrachten wir beispielsweise f(x) = 2% an der Stelle 2o = 0 (Abb. 5.3), dann erkennt
man, dass diese Bedingung nicht hinreichend ist.

ya

Abb. 5.3

WeiB man aber bereits, dass in einem Intervall (a,b) genau ein (relatives) Extremum
existiert, und ergibt die Lésung von f'(zg) = 0 genau ein xy € (a,b), so reicht die
erste Ableitung zur Ermittlung der Extremstelle aus. Wir illustrieren dieses Verfahren
einmal an der Funktion f mit

f(@) = ar® 4+ ba* + cx +d

aus Abschnitt 3.2.
Unter Verwendung von (5.3), (5.3"), (5.4) und (5.5) ergibt sich sofort

f'(z0) = 3ax? + 2bxy + ¢

Die quadratische Gleichung 3az? + 2bxz¢ + ¢ = 0 hat aber héchstens zwei reelle Lé-
sungen. Damit hat eine ganzrationale Funktion dritten Grades hochstens zwei relative
Extrema. Sind xq und Z; die reellen Lésungen obiger Gleichung, so kénnen nur xy und
To Extremstellen sein.

Gilt 29 € (a,b) und Tg ¢ (a,b) und ist bekannt, dass in (a,b) ein Extremum liegt,
so liegt es an der Stelle (. Fiir die Lésung von (3.10a) war ein z mit 0 < z < t so

36\Weitere Regeln fiir das Ableiten findet der Leser bereits in allen Nachschlagebiichern, die Anfange
der Differentialrechnung enthalten (u. a. auch in Tafelwerken fir Mathematik).
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5.1 Extrema und infinitesimale Methoden

gesucht, dass f.(x) = —2ka? + 2kt?>z maximal wird. Die Existenz einer Extremalstelle
war einsichtig. Es gilt
fi(x) = —6kz* 4 2kt?

e
fi (o) = —6kx3 + 2kt* = 0 ergibt 29 = % und Ty = —%, aber nur zp = % liegt
im betrachteten Intervall und muss folglich die Extremalstelle sein.

Auch auf die in Abschnitt 3.3 betrachtete Funktion f(z) = z + ¢ lsst sich die neue
Methode gut anwenden:
d

Wegen (5.3") und (5.5) benétigen wir nur noch den Differentialquotienten fir g(z) = ¢
Nach (*) bilden wir

d d —dh
9(@o+h) —g(®0) _ zth ~w _ @thew _  —d
L h h (xo + h)xo
Wiederum ist die Existenz des Grenzwertes leicht einzusehen:
d
9/(550> = —;(2)

Damit gilt f/(z9) = 1 — % und f’(29) = 0 genau dann, wenn 2y = £+/d ist. Das in
0
Abschnitt 3.3 fiir zo > 0 gesuchte Minimum muss also an der Stelle 2y = v/d liegen.

Diese einfachen Beispiele lassen schon vermuten, welche auBerordentlich zugkraftige
Methode fiir die Losung von Extremwertaufgaben mit der Differentialrechnung zur
Verfligung steht.

Hinzu kommt, dass bei der Einbeziehung "hoherer Ableitungen" auch hinreichende
Bedingungen fiir die Existenz der Extrema angebbar sind. AuBerdem lasst sich diese
Methode fiir den Fall mehrerer Veranderlicher modifizieren.

Trotzdem sollte man keine der Methoden voreilig zur universellen Methode kronen.
Wer aufmerksam tiefer eindringt, wird auch Grenzen sehen. Uberdies hingt es stark
von der konkreten Aufgabe ab, ob eine elementare Methode oder eine aus der "hoheren
Mathematik" die elegantere ist. Man lése einmal die Aufgabe (2.1) mittels der Diffe-
rentialrechnung, was durchaus moglich ist!

Jedes Genre hat eben seine eigene Nase, man muss sie nicht tiberall hineinstecken!

Bedeutende Arbeiten lber Extremwerte aus der Zeit vor der eigentlichen Erfindung
der Differentialrechnung stammen von Fermat. In einer 1629 vorgelegten Sammlung
von Abhandlungen iiber Maxima und Minimﬂ und in spateren Arbeiten gibt er eine
allgemeine Methode fiir die Bestimmung von Extremwerten an.

Da sie eine erstaunliche Ahnlichkeit mit den vorangegangenen einfiihrenden Betrach-
tungen zur Differentialrechnung hat, wollen wir hier eines der Beispiele mitteilen:

Eine Strecke B ist so zu teilen, dass das Rechteck A - (B — A) ein Maximum wird. (In
funktionaler und heutiger Beschreibung wiirde diese Aufgabe lauten:

37In deutscher Sprache herausgegeben in "Ostwalds Klassiker der exakten Wissenschaften", Nr. 238
(Leipzig 1934).
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5.2 Das Problem der Brachystochrone

Zu einer vorgegebenen Zahl b > 0 bestimme man das Maximum der Funktion f(z) =
z(b—z) (mit 0 < z < b). Diese Aufgabe haben wir zu Beginn von Kapitel 3 - ausgehend
von einer geometrischen Fragestellung - bereits behandelt.)

Fermat setzt nun fiir den einen Teil von B (namlich A) den Ausdruck A + F und hat
fur den zweiten Teil (B — A) dann B — A — E zu setzen.

"... das aus den beiden Abschnitten gebildete Rechteck (ist) gleich BA — A% + BE —
2AF — E?, dies ist niherungsweise gleichzusetzen dem obigen Rechteck BA — A2
Nach Wegfall der gemeinsamen Glieder erhilt man BE ~ 2AFE + E?.

Wird alles durch E dividiert, so bleibt B ~ 2A + E. Wird E gestrichen, so ergibt sich
B = 2A. Also ist zur Lésung der Aufgabe B zu halbieren." ([17], S. 175.)

In Bezug zu unseren einfliihrenden Betrachtungen tber Differentialrechnung bildet also
Fermat
f(x+h)=(x+h)(b—(z+h)) =br — 2° + bh — 2zh — h?

setzt dies naherungsweise gleich
f(z) =z(b— ) = bx — 2*
setzt also
f(x+h) — f(z) = bh — 2xh — h?
naherungsweise gleich 0 und dividiert durch h:

flz+h) - f(x)

Y =b—2x—h

0~

und erhalt daraus fir h = 0 die Lésung z = g

Sein Verfahren besteht allgemeiner gesagt darin, dass er f(x+h) und f(h) ndherungs-
weise gleichsetzt und nach Beseitigung der gemeinsamen Glieder auf beiden Seiten
durch h bzw. eine Potenz von h dividiert, bis auf einer Seite kein Glied mehr h als
Faktor enthalt. Danach werden alle Glieder gestrichen, die noch irgendwie h enthalten.
Die ubrigbleibende Gleichung ergibt den gesuchten z-Wert.

Es ist bemerkenswert, dass Fermat in entsprechender Weise das Tangentenproblem be-
handelt, also die Aufgabe, an eine Kurve in einem beliebigen Punkt die Tangente zu
legen. Seine Methode reichte jedoch nur fiir eine gewisse Klasse von Kurven (Funktio-
nen) aus.

5.2 Das Problem der Brachystochrone

Das Problem der Brachystochrone hat Johann Bernoulli 1696 gestellt, und es besteht
in folgender Aufgabe:

(5.6) Ein Massepunkt gleitet ohne Reibung ldngs einer Kurve - allein auf Grund der
Schwerkraft - von einem Punkt A zu einem tiefer gelegenen Punkt B (Abb. 5.4a). Fir
welche Kurve, die A und B verbindet, wird die Laufzeit am kirzesten?
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| A
o Lo\ !
l 2\ 3d
=
| G~
3
Abb. 5.4a, b 9 b

Dies ist offensichtlich auch eine Extremwertaufgabe. Aber sie ist im Vergleich zu denen,
die man mit Hilfe der Differentialrechnung lésen kann, von anderer Art.

Wahrend vorher die GroBe, deren Maximum oder Minimum man bestimmen wollte, von
einer (oder mehreren) Variablen abhing, sich also durch eine Funktion darstellen lieB,
hangt hier die betrachtete GroBe, die Laufzeit, von dem ganzen Verlauf der Kurven ab.
Dagegen ist das bereits angesprochene isoperimetrische Problem (vgl. Abschnitt 2.3)
von ahnlicher Art, denn es sucht z. B. unter allen einfach geschlossenen, ebenen (und
konvexen) Kurven mit gleicher Lange nach denjenigen, die die groBte Flache umfassen.

Man sieht ein, dass das gleitende Teilchen auf verschiedenen Bahnkurven durchaus ver-
schiedene Zeiten bendtigen wird. Doch welche leistet das Gewiinschte. Diese Aufgabe
war eine Herausforderung zur damaligen Zeit (und von J. Bernoulli, der eine Lésung
gefunden hatte, wohl auch so angelegt).

Im folgenden geben wir den Grundgedanken einer originellen Lésung von Jakob Ber-
noulli®8 wieder.

Aus der Mechanik ist bekannt, dass die Geschwindigkeit v eines Massepunktes, der von
A aus langs irgendeiner Kurve nach unten fillt, proportional zu v/h ist, wobei h die
Fallhéhe angibt. Bei geeigneter Wahl der physikalischen Einheiten kdnnen wir v = v/h
setzen.

Jakob Bernoulli dachte sich den Raum zwischen A und B in viele diinne horizontale
Schichten mit der Dicke d zerlegt (Abb. 5.4b).

Es wird nun angenommen, dass sich die Geschwindigkeit des Massepunktes nicht kon-
tinuierlich, sondern nur an den Schichtgrenzen sprunghaft andert; in der ersten Schicht
sei die Geschwindigkeit v; = V/d, in der zweiten Schicht dann vy = v/2d usw.

In jeder Schicht selbst verlauft die Bahn des Teilchens geradlinig.

Die gesamte Bahnkurve von A nach B ist dann ein Streckenzug. Das Originelle an Jakob
Bernoullis Losung bestand darin, diese Bahn mit dem Weg zu vergleichen, den das Licht
von A nach B nehmen wiirde, wenn es sich auf Grund verschiedener Brechungsindizes
in den einzelnen homogenen Schichten mit unterschiedlicher Geschwindigkeit bewegen
wiirde. Das Licht bewegt sich nach dem Snelliusschen Brechungsgesetz, wie wir das in
Abschnitt 4.4 abgeleitet haben. Es gilt z. B.

sinayq : v1 = sinay : vy

38 Jakob Bernoulli (1655-1705), Schweizer Mathematiker und Physiker, wirkte in Basel, altester Bruder
von Johann Bernoulli.
39F(ir die Fallgeschwindigkeit gilt bekanntlich v = g-t = \/2g - h, wobei g die Erdbeschleunigung ist.

74



5.2 Das Problem der Brachystochrone

wobei v; und vy die Lichtgeschwindigkeiten in den Schichten 1 und 2 sind. Allgemein

gilt
sina;  sinag sin ay,

N A (*)

wobei «a;, der Winkel zwischen der Strecke (des Polygons) in der n-ten Schicht und der
Senkrechten zu der Schichtgrenze ist. ("Einfallswinkel" beim Ubergang von der n-ten
zur (n + 1)-ten Schicht).

Fur die weiteren Konsequenzen wird von der Vorstellung ausgegangen, dass sich, wenn
die Schichtdicke d immer kleiner und die Anzahl der Schichten folglich immer groBer
gewahlt wird, die Losung des angenaherten Problems der Losung des urspriinglichen
Problems beliebig nahekommt.

Da sich bei dieser Grenzwertbetrachtung an der Giiltigkeit von (*) nichts adndert, hat
Bernoulli auf folgende Eigenschaft der Losungskurve f* geschlossen:

Ist P irgendein Punkt der Kurve f*, h sein Hohenunterschied zu A und o der Winkel
zwischen der Tangente an f* durch P und der Vertikalen, so ist Sm}? eine Konstante.
Eine Kurve mit einer derartigen Eigenschaft war den Mathematikern damals bereits

bekannt; sie ist eine Zykloide.

Abb. 5.4¢c

Man kann sie recht einfach mechanisch erzeugen und entsprechend geometrisch be-
schreiben. Lasst man einen Kreis auf einer Geraden (ohne zu gleiten) abrollen, so be-
schreibt ein Punkt auf dem Kreisrand eine solche Kurve (Abb. 5.4 c); sie wird deshalb
treffend auch Rollkurve genannt.

Das Ergebnis war damals lberraschend, denn eine solche Kurve stand auf Grund ihres
Zusammenhangs mit mechanischen Problemen im Mittelpunkt des Interesses, insbeson-
dere spielte sie bei der Konstruktion eines idealen Pendels eine groBe Rolle (Huygens
hatte entdeckt, dass ein Massepunkt, der unter der Schwerkraft ohne Reibung langs
einer Zykloide schwingt, eine von der Amplitude dieser Bewegung unabhangige Schwin-
gungsdauer besitzt.)

Bernoullis Uberlegung - wie schon die von Fermat eingangs vorgestellte - ist aus heutiger
Sicht keineswegs streng.

Sie enthalt eine Reihe von Annahmen, die zu rechtfertigen, zu begriinden sind; so z.
B., dass liberhaupt eine Losungskurve f* existiert und dass sich das Polygon der wirk-
lichen Lésung nahern muss. Doch derartige Uberlegungen sind einleuchtend, anregend
und mathematisch sinnvoll, und gerade das waren und sind Impulse fiir die Weiterent-
wicklung der Mathematik.
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5.2 Das Problem der Brachystochrone

Die Mathematiker Euler@ und Lagrang entwickelten eine allgemeine Methode fiir
die Losung von Extremalaufgaben, bei denen die Veranderliche nicht eine einzelne nu-
merische Variable, sondern eine ganze Funktion (oder ein System von Funktionen) ist.
Diese neue Methode wird Variationsrechnung genannt. Wesentlichen Anteil beim Auf-
und Ausbau dieser Disziplin haben Weierstrass (1815-1897), Ostrogradski (1801-1861)
und Caratheodory (1873-1950).

Diese Theorie liefert stets zum Ziele fiihrende Verfahren. Naheres wiirde bei weitem
den angelegten Rahmen dieses Biichleins sprengen.

40l eonhard Euler (1707-1783), Schweizer Mathematiker und Physiker, wirkte in Berlin und St. Pe-
tersburg (heute Leningrad).
41 ouis Joseph Lagrange (1736-1813), franzosischer Mathematiker, wirkte in Turin, Berlin und Paris.
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6.1 Die neue Autfgabenstellung

6 Ein Einblick in Optimierungsprobleme

Vielleicht lasst sich eine weitlaufige Materie
durch nichts kiirzer erschopfen als durch Beyspiele.
W. L. Wekherlin

6.1 Die neue Aufgabenstellung

Optimierung, Optimum, optimal sind wieder neue Worter, bringen sie aber auch einen
neuen Inhalt? Sehen wir in Worterbiichern nach, so finden wir fiir Optimum etwa "das
Beste", "das Glinstigste". Steckt dahinter - mathematisch gesehen - nicht doch wieder
ein Maximum oder Minimum?

Das schon, und die Trennung zwischen Extremalproblemen und Optimierungsaufgaben
kann nicht scharf vollzogen werden. Allerdings unterscheiden sich die fiir die Optimie-
rung typischen Aufgabenstellungen, die ja auch die Entwicklung dieses Teilgebietes der
Mathematik wesentlich auslosten, deutlich von unseren bisher betrachteten Extremal-
problemen.

Wir wollen das an einem Beispiel zeigen.

Eines der ersten Probleme, welches in der bisher kurzen Geschichte der mathematischen
Optimierung geldst wurde, ist das von Hitchcock®™] (1941) und Kantorovic (1942) un-
abhangig voneinander formulierte Transportproblem:

(6.1) n Lieferanten L; mit der Lieferkapazitat a; > 0 (i = 1,...,n) liefern an k Ver-
braucher V; mit dem Bedarf b; > 0 (j = 1,..., k) ein und dasselbe Produkt P.

Der Transport einer Einheit des Produktes P vom Lieferanten L; zum Verbraucher
V; kostet c¢;; Geldeinheiten. Die Mengen z;; des Produktes P, die von L; nach V;
transportiert werden, sind so zu ermitteln, dass die Gesamtkosten fiir alle Transporte
moglichst gering werden.

Die Lieferanten konnten z. B. Braunkohletagebaue sein, die Verbraucher Kraftwerke,
wir haben die Situation in Abb. 6.1 angedeutet.

Abb. 6.1 Y

Dieser deutliche Bezug zu einem praktischen Problem, zu 6konomischen Interessen ist
ein wesentliches Charakteristikum fiir Optimierungsaufgaben. Die mathematische Op-
timierung ist ein sehr schones Beispiel dafiir, wie ganz konkrete Bediirfnisse der Praxis

*2Frank Lauren Hitchcock (1875-1957), amerikanischer Mathematiker.
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die Mathematiker herausfordern, neue Methoden zu entwickeln.

Bei dem Transportproblem wird das Minimum fiir die Kosten gesucht, das Vorgehen
ist also das nach dem Prinzip des geringsten Aufwandes, bei anderen Optimierungsauf-
gaben, die auf dem Prinzip des groBten Effektes (der groBten Produktivitat) beruhen,
ist das Maximum einer GroBe gesucht. Bei geeigneten Festlegungen sind die nach dem
einen oder anderen Prinzip formulierten Aufgabenstellungen wiederum zueinander dual
(vgl. Abschnitt 2.3).

Wir wollen nun die Aufgabe (6.1) mit mathematischen Mitteln beschreiben:

Die Gesamtkosten y ergeben sich als Summe aus allen Einzelkosten
n k
CijTij; (Z: 1,,71,]: 1,,[’6) d. h. y:ZZCUIZ]
i=1j=1

Dabei gilt ;; > 0, die Nichtnegativitatsbedingung. Die Funktion y = f(x;;) nennen
wir die Zielfunktion.

Im Zusammenhang mit der Kopplung an die Praxisbediirfnisse ist einsichtig, dass die
Anzahl der Variablen, von denen der Funktionswert y abhangt, sehr groB ist, dies ist ein
weiteres Charakteristikum. Wir haben zwar auch in unseren vorangegangenen Kapiteln
den Fall mehrerer Variablen betrachtet (z. B. in (4.5) oder (4.14)), dort aber erwies
sich dieser Fall nicht gerade als der typische.

Ein weiteres Charakteristikum sind die Nebenbedingungen. Auch Extremalaufgaben ent-
halten Nebenbedingungen, und zwar als typischen Bestandteil!

Man denke nur an die Ermittlung des minimalen Umfangs bei vorgegebenem Inhalt
oder die Einbeschreibung einer Figur mit extremalen Eigenschaften in eine andere vor-
gegebene Figur. Nebenbedingungen in Form von Gleichungen dienten haufig dazu, die
urspriingliche Anzahl der Variablen zu reduzieren. Wie lassen sich die Nebenbedingun-
gen fir das Transportproblem (6.1) formulieren?

Jeder Lieferant L; kann nicht mehr von dem Produkt P abgeben, als seine Lieferkapa-

zitdt a; angibt. Ein Lieferant L; liefert an die k Verbraucher V; insgesamt die Menge
k

> x;j. Es muss also beriicksichtigt werden, dass fiir jedes i (i =1, ...,n)

j=1

k
doxip < a
j=1
gilt; das ist ein System von n Ungleichungen!

Aus dem Anspruch der Verbraucher V;, die ihren Bedarf b; exakt erfiillt sehen méchten,
ergibt sich das System der k& Gleichungen

k
> T = b
j=1

Die Nebenbedingungen haben also die Struktur vieler Gleichungen bzw. Ungleichungen,
ein fir die meisten Optimierungsaufgaben typisches Erscheinungsbild.
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Alle diese Besonderheiten erforderten auch besondere Losungsmethoden. In den nachs-
ten beiden Abschnitten wollen wir eine erste Vorstellung von solchen Methoden ver-
mitteln.

6.2 Der lineare Fall ist der einfachste

Bisher sind fiir die Losung einiger Aufgabentypen Verfahren entwickelt worden. We-
gen der im allgemeinen sehr groBen Anzahl von Variablen ist die Anwendung dieser
Verfahren an die moderne Rechentechnik gebunden. Wir wollen aber nun hier nicht
solche Verfahren vorstellen, geschweige denn anwenden, sondern nur grundlegende Ide-
en erlautern, auf denen diese Verfahren beruhen. Merkwiirdigerweise eignen sich dafiir
Beispielaufgaben, die nur wenige Variable benutzen.

(6.2) Innerhalb einer festgelegten Zeit ¢ stellt ein Betrieb die beiden Produkte P, und
P5 aus den Grundstoffen M und M* her. Fir die Herstellung des Produktes P; wird
auBerdem eine Spezialmaschine bendtigt, die in der Zeit ¢t hochstens acht Einheiten des
Produktes erzeugen kann.

Die weiteren Produktionsbedingungen werden durch die folgende Tabelle und deren
Erlauterung beschrieben:

Produkt | prod. Einheiten | Preis | Grundstoff
M M*

P1 I 1,2 2,5 3

P2 T 1 3,5 2

vorhandene Menge 35 30

Der Preis ist dabei in Geldeinheiten pro produzierter Einheit angegeben. Die Spalten
"Grundstoff" geben an, wieviel eines jeden Grundstoffes (in ein und derselben Mengen-
einheit) fur die Erzeugung einer Einheit der Produkte benétigt werden und wieviel von
jedem Grundstoff zur Verfiigung steht.

Wie viele Einheiten sind von jedem der Produkte zu erzeugen, damit der beim Verkauf
aller Produkte erzielte Betrag am groBten wird?

Zur Losung dieser Aufgabe suchen wir zunachst ein diesem Sachverhalt dquivalentes
mathematisches Modell. Der beim Verkauf erzielte Betrag sei y. Dann gilt:

Yy = f($1,$2) = 172371 + 9 (1)

ist die Zielfunktion, und (x1,x2) ist so zu ermitteln, dass y maximal wird. Die Neben-
bedingungen lauten wegen der in der Aufgabenstellung vorgegebenen Beschrankungen

2,521 + 3,519 < 35 (2)
311 + 2x5 < 30 (3)

Da die produzierten Einheiten keine negativen GroBen sein konnen, muss auch die
Nichtnegativitatsbedingung
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erfillt sein. Unter allen Wertepaaren (z1,x2) reeller Zahlen, die die Bedingungen (2)
bis (5) erfillen, sind diejenigen gesucht, fiir die der Wert von y aus (1) maximal wird.

Da es sich nur um zwei Variable handelt, konnen wir diese Aufgabenstellung graphisch
beziiglich eines 1, xo-Koordinatensystems veranschaulichen.

Wir tragen zunachst die der Gleichung 2, 5x1+ 3, 5x9 = 35 entsprechende Gerade g ein.
Alle Punkte (x1, z2), die mit ihren Koordinaten die Ungleichung (2) erfiillen, liegen dann
in der durch g und den Ursprung bestimmten Halbebene H,); entsprechend ordnen wir
der Ungleichung (3) bzw. (4) die Halbebenen H sy bzw. H 4 zu (vgl. Abb. 6.2).

Abb. 6.2

Punkte, deren Koordinaten (2), (3) und (4) gleichzeitig erfiillen, liegen im Durchschnitt
dieser drei Halbebenen. Die Ungleichung (5) besagt, dass nur die Punkte im ersten Qua-
dranten in Betracht kommen.

In unserem Beispiel ergibt sich, dass nur solche (z1,z2) die Funktion (1) maximie-
ren konnen, die auf dem Rand oder im Inneren eines konvexen Fiinfecks liegen; diese
Punktmenge B nennen wir daher Zulassigkeitsbereich.

Jetzt betrachten wir alle (z1,x2), fiir die die Funktion (1) einen vorgegebenen Wert n
annimmt, also 1,2z + z9 = n gilt. Die zugehorigen Punkte liegen auf der Geraden
ro = —1,2x1 4+ n.

Fir jedes n ergibt sich eine solche Gerade, die parallel zu jeder anderen dieser Art ist
(Abb. 6.2).

Verschieben wir also eine solche Gerade in eine zu ihr parallele, so verandert sich das
zugehorige n, d. h. der zu maximierende Funktionswert. Folglich verschieben wir so,
dass n wachst, allerdings muss auf der betrachteten Geraden immer mindestens ein
Punkt von B liegen.

In unserem Beispiel liefert die Strich-Punkt-Gerade (in Abb. 6.2) das Optimum. Sowohl
der maximale Funktionswert y,.x als auch die zu produzierenden Einheiten 1, xo las-
sen sich aus der graphischen Darstellung ablesen.

Natirlich lassen sich z1 und x5 auch als Schnittpunktskoordinaten von Geraden berech-
nen und daraus schlieBlich .. Es ergibt sich 1 ~ 6,36, x9 ~ 5,45, ymax ~ 13, 09.
Sowohl die graphische Darstellung als auch die rechnerische Kontrolle ergibt, dass in
diesem Fall die Realisierung der optimalen Losung die vorhandene Menge beider Grund-
stoffe aufbraucht, die Spezialmaschine aber nicht voll auslastet.
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Was kann man aus diesem sehr speziellen Beispiel fiir den allgemeinen Fall an Erkennt-
nissen gewinnen?

Jede der Nebenbedingungen und auch die Nichtnegativitatsbedingung wird durch eine
lineare Ungleichung beschrieben und daher in der Veranschaulichung durch eine Halb-
ebene wiedergegeben, fiir den Fall von drei Variablen z1, x5, x5 wiirde einer solchen
Ungleichung ein Halbraum entsprechen.

Ist der Durchschnitt aller Halbebenen (bzw. Halbradume) eine nichtleere und beschrankte
Menge, so lasst sich zeigen, dass diese Menge - der Zulassigkeitsbereich - ein konvexes
n-Eck (bzw. konvexes Polyeder) ist.

Ist die Zielfunktion linear, so wird sie durch eine Geradenschar (bzw. Ebenenschar)
charakterisiert. Aus dieser Schar wird nun diejenige Gerade (bzw. Ebene) ausgewahlt,
fur die y = f(x1,z2) (bzw. y = f(x1, 29, x3)) maximal wird.

Diese Gerade (bzw. Ebene) hat aber wegen der Konvexitat des Zulassigkeitsbereiches
B mit B nur Randpunkte gemeinsam. Daraus folgt, dass man bei Kenntnis aller Eck-
punkte von B die optimale Lésung ermitteln kann, denn die Anzahl der Eckpunkte ist
endlich!

Das alles ist keine exakte Herleitung, aber bei einer solchen geometrischen Veranschau-
lichung gut "einsichtig". Auch fiir mehr Variable, also hohere Dimensionen, ergibt sich
aus der Linearitat der Nebenbedingungen die Konvexitat von B und damit aus der
Linearitat der Zielfunktion die Erkenntnis, dass die Losung unter den endlich vielen
Eckpunkten von B zu suchen ist.

(Das muss Ubrigens nicht bedeuten, dass die Losung durch genau einen Eckpunkt
reprasentiert wird. Man vergleiche dazu die Aufgabe 6.3b) !)

Das alles lasst sich zwar nicht mehr n-dimensional vorstellen, aber exakt herleiten
(vgl. etwa [4]). Auf diesen grundsatzlichen Uberlegungen basieren auch Verfahren zur
Berechnung der Lésung. Am bekanntesten ist das Simplexverfahren.

Bei diesem Verfahren beginnt man mit einem Startelement, welches einem Eckpunkt
von B entspricht. Ein - rein rechnerisch durchzufiihrender - Simplexschritt erzeugt aus
diesem Startelement ein neues, welches wieder einem Eckpunkt von B entspricht.

Bei einem solchen Schritt wachst aber, solange die optimale Lésung noch nicht erreicht
ist, auch der Wert der Zielfunktion. Mit diesem Verfahren steuert man also zielstrebig
auf die Losung zu und erreicht sie nach endlich vielen Schritten, ohne alle der zwar
endlich vielen, meistens aber doch sehr vielen Eckpunkte von B beriicksichtigen zu
miissen.

Ist die Zielfunktion einer Optimierungsaufgabe linear und werden iiberdies die Neben-
bedingungen durch ein System linearer (Un)gleichungen beschrieben, so sprechen wir
von einer linearen Optimierungsaufgabe. Sind die Variablen dieser Aufgabe Variable
tiber der Menge der nichtnegativen reellen Zahlen, so kann man eine solche Aufgabe
prinzipiell nach dem Simplexverfahren losen.

(6.3) @ Man verandere die Aufgabe (6.2) wie folgt:
a) An Stelle der produzierten Einheiten x1, x5 seien Stiickzahlen x1, x5 gesetzt, d. h.,
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es seien nur natirliche Zahlen fir x, x5 zuldssig ("ganzzahlige" Optimierung). Man
zeige, dass es falsch ist, von der fiir (6.2) gefundenen Lésung auf das "nachstgelegene"
ganzzahlige Paar (6, 5) als Losung zu schlieBen!

b) Man I6se die Aufgabe (6.2) fiir den Fall, dass lediglich der Preis 1,2 in 1,5 abgeéndert
wird!

Gibt man die "Linearitat" auf, so bereiten die entstehenden Aufgaben zumeist betracht-
liche Schwierigkeiten. Man ist also gut beraten, seine Schritte in das nichtlineare Gebiet
behutsam zu setzen.

Bedenken wir nochmals, wie sich die Linearitat auswirkte. Neben der Einfachheit der
Operationen mit linearen Termen war es insbesondere die Konvexitat von B und die "La-
gebeziehung"zwischen B und einer die Zielfunktion charakterisierenden Kurvenschar,
die Losungsprinzipien suggerierte.

Liegen nichtlineare Nebenbedingungen vor, die aber wiederum einen konvexen Zulas-
sigkeitsbereich erzeugen, und eine lineare Zielfunktion, so wird man vielleicht ahnlich
wie in (6.2) vorgehen kénnen.

(6.4) @ Man ermittle den maximalen Funktionswert der Funktion y = f(z1,22) =
a - x1 + T2 unter den Bedingungen 2% + 23 <8, 0 <7 < 2,5 und 0 < 25 < 2,5 fiir
a=20,1;1;10.

Das folgende Beispiel wird man kaum in Lehrbiichern der Optimierung finden. Wir ha-
ben es dennoch ausgewahlt. Es ist ndmlich das uns bereits bekannte Beispiel (2.27),
und es bietet einen sehr einfachen Fall einer nichtlinearen Zielfunktion an.

Man sieht daran vielleicht auch, wie flieBend die Grenzen zwischen den Teilgebieten
sind.

(6.5) Unter allen Rechtecken mit den Seitenlangen 1 und x4, deren Umfang einen vor-
gegebenen Wert 2c¢ nicht tiberschreitet, ist dasjenige mit dem maximalen Flacheninhalt
zu ermitteln.

Zielfunktion: y = f(x1,22) = x1 - oo
Nichtnegativitatsbedingung: x1 > 0, 9 > 0;
Nebenbedingung: 1 + x5 < ¢

Ersichtlich ist, dass die Zielfunktion nichtlinear ist und die geringe Veranderung des
Textes in (6.5) gegentiber den urspriinglichen Aufgabenstellungen (2.27) so gewahlt
wurde, dass sich fiir die Nebenbedingung wieder eine Ungleichung ergibt.

Abb. 6.3

Wir gehen prinzipiell wie in Beispiel (6.2) vor. Die die Zielfunktion charakterisierende
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Kurvenschar ist jetzt aber eine Schar von Hyperbeln (:UQ = l%) fur deren Schnittpunk-

te S mit der Geraden x5 = z; die Gleichung |OS| = n - v/2 gilt (vgl. Abb. 6.3). Da
der Graph einer solchen Hyperbel (von unten) konvex ist (vgl. (4.3)), lasst sich unser
obiges Vorgehen der Verschiebung wiederum anwenden.

Unter obiger Nebenbedingung wird n fiir diejenige Hyperbel maximal, die mit der Ge-
raden xy + o = c genau einen Punkt gemeinsam hat. Dieser aus der graphischen
Darstellung ablesbare Punkt lasst sich auch rechnerisch ermitteln:

Aus w1 + x5 = c und zg = - folgt ) + ;- = ¢ bzw. 22 —cxy+n=0.

. . . : 2
Diese quadratische Gleichung hat genau dann genau eine Nullstelle, wenn & —n =0

gilt, d. h.n = % und damit z; = § und weiter x5 = 5. Fir das gesuchte Rechteck gilt
also r1 = x9.

Auch die folgende Aufgabe, die der 18. Olympiade Junger Mathematiker der DDR
entnommen ist, lasst sich nach den bisher vermittelten Methoden |6sen.

(6.6) o Es sei M die Menge aller Tripel (x1,z2,x3) von reellen Zahlen, fir die die
folgenden Ungleichungen erfiillt sind:

55[171 + X3 < 54, 55[172 + 3 < 54, 551’1 — 4373 Z 4
55[172 - 4{133 > 4, T3 > —1

Man untersuche, ob fiir die Funktion
y = f(x1,29,73) = 7 + 23 + 73

ein Tripel (71,72, T3) € M so existiert, dass fir alle Tripel (z1,z2,23) € M die
Ungleichung
f(ThT?vTif) Z f(CCl,LEQ,i’g)

gilt. Ist dies der Fall, so ermittle man hierzu f(Z1, T2, T3).

6.3 Ein Beispiel der dynamischen Optimierung

Betrachten wir die Produktion in einem Betrieb als einen in der Zeit ¢ ablaufenden
Prozess, so spielte dieser Prozesscharakter allerdings in Beispiel (6.2) keine Rolle.

Bei der Beobachtung der Produktion Gber einen langeren Zeitraum wird dagegen der
Prozesscharakter sehr deutlich. Die zu einem frithen Zeitpunkt erzielten Resultate ha-
ben wesentlichen Einfluss auf spatere Situationen. Ein Betrieb plant seine Produktion
z. B. fiir mehrere Jahre, er legt aber nach jedem Jahr eine Zwischenbilanz vor.

Schon diese Einteilung legt es nahe, die Produktion als einen Mehrstufenprozess an-
zusehen und die Optimierung des gesamten Prozesses auf die der einzelnen Stufen
zuriickzufithren. Grundsatzlich gilt dabei, dass keine Stufe isoliert betrachtet werden
darf.

Erzielt ein Betrieb z. B. im ersten Jahr einen sehr groBen Gewinn dadurch, dass er alle
Mittel fiir den Kauf von Rohstoffen einsetzt und die vorhandenen Maschinen - ohne
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Riicksicht auf VerschleiB - mit voller Leistung fahren lasst, so wird moglicherweise im
zweiten Jahr wegen ausfallender Maschinen, die wegen fehlender Finanzen nicht er-
neuert werden konnen, die Leistung extrem niedrig sein. Verniinftig erscheint folgendes
Prinzip:

Ein Prozess wird in endlich viele Stufen unterteilt, und jede Stufe wird unter Beriick-
sichtigung der nachfolgenden Stufen optimiert. Dieses Prinzip nennen wir dynamische
Optimierung. Dann existiert unter allen Stufen genau eine, die ohne Blick in die Zu-
kunft optimiert werden darf, namlich die letzte! Die dynamische Optimierung erfolgt
daher immer entgegengesetzt dem Zeitablauf.

Um eine allererste Vorstellung zu vermitteln, betrachten wir ein Beispiel zum sogenann-
ten Verteilungsproblem [¥]

(6.7) Fir zwei Industriezweige | und Il sind die Investitionen fir drei Jahre, unter fol-
genden Annahmen zu planen:

- Werden die Mittel x im Zweig | investiert, so bringen sie jahrlich den Gewinn f;(x) =
22, und durch die Ausgaben reduzieren sich die urspriinglichen Mittel auf 0, 75a.

- Werden die Mittel x im Zweig Il investiert, so bringen sie jahrlich den Gewinn
frr(z) = 222, und durch die Ausgaben reduzieren sich die urspriinglichen Mittel auf
0, 3x.

- Der Anfangsbestand zp an Mitteln ist unter diesen Bedingungen fiir jedes Jahr der
Planperiode auf die Zweige | und Il so aufzuteilen, dass der Gesamtgewinn moglichst
groB wird.

Zur Loésung dieses Problems gehen wir von der letzten Stufe aus. Nach dem zweiten
Jahr sei der Bestand an Mitteln z5. Die Mittel, die davon im dritten Jahr im Zweig |
eingesetzt werden, seien x3, fir den Zweig Il stehen dann noch die Mittel zo — x3 zur
Verfligung. Es muss natiirlich

0 S xs S z9 (1)

gelten. Fir den Gesamtgewinn des dritten Jahres ergibt sich nach den Voraussetzungen
Gy = 13 + 2(20 — 13)? = 323 + 42ow3 + 223

d. h., G3 ist in Abhangigkeit von x3 iiber dem abgeschlossenen Intervall (1) eine Parabel
mit positivem Leitkoeffizienten.

Deren Maximum liegt aber nach (3.6") auf dem Rand des Intervalls (1)! Welcher Rand-
punkt ergibt den groBeren Wert?

Dies ist der fiir z3 = 0! Folglich werden alle Mittel z5 im dritten Jahr im Zweig |l
investiert! Der Gesamtgewinn des dritten Jahres ist damit 223.

Welche Mittel zo stehen aber nach dem zweiten Jahr zur Verfiigung? Sind x5 und
z1 — X9 die im zweiten Jahr investierten Mittel, so haben diese sich auf zo = 0, 7529 +
0,3(z1 — x2) reduziert. (z; ist dabei der Bestand an Mitteln nach dem ersten Jahr.)

4vgl. [15], S. 61ff.
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Mit Hilfe dieser Uberlegungen kénnen wir nun den Gesamtgewinn G 3 der letzten
beiden Jahre maximieren:

Gzyg == :1:% -+ 2(21 - .CC2>2 + 22%

Gas = 3,50505 — 3,462,709 + 2, 1827

Wiederum unter Bezug auf (3.6") muss man sich fiir x5 = 0 oder x5 = z; entscheiden.
Setzt man diese beiden Moglichkeiten ein, so ergibt sich das Maximum 2,182% fiir
T = 0.

Fur das erste Jahr ergibt sich analog

z1 = 0,453x1 + 0, 32 und

Gio3 = 22+ 2(z9 — 21)% + 2, 1823 bzw. Gia3 ~ 3, 44x% — 3, 4129m1 + 2, 202[2)

Die Entscheidung nach (3.6") liefert jetzt z1 = z;. Damit haben wir die optimale
Investitionsstrategie gefunden!

Im ersten Jahr missen alle Mittel im Zweig | investiert werden, im zweiten und dritten
Jahr wird nur im Zweig Il investiert.

Der Gesamtgewinn betragt ~ 2,2322, und nach drei Jahren steht noch ein Rest von
~ 0,072y an Investitionsmitteln zur Verfligung.

(6.8) ® Wie lautet die optimale Investitionsstrategie, wenn man bei dem Problem (6.7)
fur m Jahre mit m > 3 zu planen hat?

Mit unseren acht "Beyspielen" haben wir die "weitldufige Materie" der Optimierung nun
keineswegs erschopft, aber hoffentlich einen ersten Eindruck von der "Weitlaufigkeit"
vermittelt.
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7 Losungen und Losungshinweise

Es lohnt nicht, einen Fehler zu machen,
wenn keiner ihn bemerkt.
P. Tille

(1.1) a) Kleinste Zahl: -23; groBte Zahl: 17 ; b) Kleinste Zahl; 1/156; groBte Zahl:
158.

(1.2) Angenommen, es existiert eine rationale Zahl 7, so dass fir alle r mit 2 <
r? < 3 auch 2 < 12, < r? gilt. Zwischen den zwei rationalen Zahlen 2 und 72,

liegen aber beliebig viele rationale Zahlen, unter diesen befinden sich auch Quadrate
rationaler Zahlen, z. B.

2

rim — (2rmin — ) = (Tmin — :1:)2

(fir hinreichend kleines positives rationales x). Das ergibt aber einen Widerspruch zur
Annahme, dass r,;, die kleinste derartige Zahl ist.

Es gibt keine rationale Zahl r mit 7> = 3. Gabe es also eine groBte rationale Zahl 7.y
mit rmax < 3, dann misste . < 3 gelten. Diese Annahme kann man analog zu
obigen Ausfiihrungen zum Widerspruch fiihren.

(2.6) Man verfahre analog zu (2.3). Statt R sowohl an p als auch an ¢ zu spiegeln,
spiegle man A an p und B an ¢. Die Bilder seien A’ und B’, und S sei wiederum der
Scheitel des Winkels /p, q.

Dann gibt es nach den gleichen Uberlegungen wie zu (2.3) (genau) eine Lésung P € p,
Qo € q, wenn (und nur wenn) die GroBe des Winkels ZA’SB’ kleiner als 180° und p,
g im Innern von £ : A'’SB’ liegen. Damit die Aufgabe also stets I6sbar ist, muss
|Zp, q| = 60° sein (vgl. dazu Abb. 7.1).

Abb. 7.1

Von den Streckenziigen APQ) B und AQ P B ist im allgemeinen - falls sie beide existieren
- einer kiirzer als der andere. Dann ist der Streckenzug minimaler Lange eindeutig
bestimmt.

Gilt B € gga, so sind dagegen diese Streckenziige von gleicher Lange; die Aufgabe hat
dann fir spitze Winkel Zp, ¢ genau zwei Losungen, fir nichtspitze Winkel Zp, q keine
Losung.

(2.9) Es sei PQRS ein dem Quadrat ABC'D entsprechend Abb. 7.2 einbeschriebenes
Quadrat. Dann geht bei der Drehung um den Mittelpunkt M des Quadrats ABC'D
mit 90° das Dreieck SAP in das Dreieck PB() lber, und damit ist PM() ein gleich-
schenkliges Dreieck mit rechtem Winkel bei M.
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Abb. 7.2

Nun ist offenbar der Umfang des Quadrate PQRS genau dann minimal, wenn |PQ)|
minimal und damit nach dem Vorangegangenen die Lange |M P| minimal ist. Unter
allen Punkten P aus AB leistet dies der Mittelpunkt dieser Seite. (Entsprechende
Lagen haben dann @, R und S.)

Eine weitere Losung ergibt die bisherige Methode mit Geradenspiegelungen.

(2.10) Man spiegle O, O’, O” und O an den durch die Rechtecksseiten bestimm-
ten Geraden entsprechend Abb. 7.3 und verbinde zunachst O’V mit O. Wegen der
Langeninvarianz der Spiegelung und der Giiltigkeit des Reflexionsgesetzes gilt:

|OP| =|0OP'], |OP| + |PQ| = Q0"
|OP| + |PQ| +|QR| = |[RO"|,  |OP|+|PQ|+ |QR| +|RS| = |SO"|

S muss auf OOV liegen. Uberdies ist dann gso || gop und damit O € SP. Dies fiihrt
zur Losung von (2.10"). (Auf eine Determination gehen wir hier nicht ein.)

Abb. 7.3

(2.13) a) Man (iberzeuge sich davon, dass die fiir (2.12) vorgestellte Lésung auch auf
einen beliebigen Punkt P der Ebene als Ausgangspunkt anwendbar ist, aber wieder
einen Punkt im Inneren als Losung der Aufgabe ergibt. Die Losung andert sich also
nicht.

b) Die Losung zu (2.12) lasst erkennen, dass sie auch fiir stumpfwinklige Dreiecke gilt,
deren stumpfe Winkel kleiner als 120° sind.

Es sei 0. B. d. A. der Winkel bei C' mindestens 120°. Dann gilt fiir alle Punkte P # C
die Relation |AP| + |BP|+ |CP| > |AC| + |BC|.

(2.14) Fir den Schnittpunkt der Diagonalen wird die Abstandssumme minimal! (Beweis
indirekt unter Verwendung der Dreiecksungleichung.)

(2.15) Wir konnen durch eine Drehung wie zur Losung der Aufgabe (2.12) (vgl. Abb.
2.6) zu einer vorteilhaften Einsicht kommen.

Da ABC ein gleichseitiges Dreieck ist, gibt es eine Drehung p um A mit 60°, bei der
C? = B ist. Es sei P ein von A und B verschiedener Punkt. Wegen |P’P| = |AP)|,
|P?B| = |PC| und der Dreiecksungleichung beziiglich P?, P, B gilt |AP| + |BP| >
|C'P|. Fir P = A, B gilt speziell |AP| + |BP| = |CP|.
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Also ist das Minimum von s = |AP| + |BP| — |CP| gleich 0.

Gilf*| |AP| +|BP| = |CP| und P # A, B, so miissen - wie man sich naher iiberlegt -
P und C auf verschiedenen Seiten beziiglich g4p liegen, und es muss P € PPB sein.
Dannist |£ : APB| = 180°—60° = 120°, und demnach liegt P auf dem Umkreisbogen
des Dreiecks ABC' zwischen A und B.

Umgekehrt ist s = 0 fiir alle Punkte dieses Kreisbogens (einschlieBlich A und B).

(2.21) Man kann zunichst einmal der Losung von (2.20) folgen.

Wir betrachten zuerst alle Wege, die von A nach G iiber einen Punkt der Kante BC

verlaufen. Der kiirzeste dieser Wege hat die Lange /(a + ¢)? + b? (vgl. Abb. 2.10a, b).

Der kiirzeste aller Wege von A nach G lber einen Punkt der Kante BF hat die Lange
(a+0)2 + ¢ und der iber einen Punkt der Kante F'F' die Lange /(b + ¢)2 + a2

Diese Langen lassen sich leicht vergleichen, da sich die Radikanden nur um ein Glied

2xy mit x,y € {a,b, c} unterscheiden.

D

Abb. 7.4

Wegen a < b < c ist demnach die Lange y/(a + b)? + ¢? die kiirzeste. Damit gibt es
genau zwei Streckenziige als kiirzeste Wege, namlich APG und AQG, mit P € BF
und |BP|: |PF|=a:bbzw. Q € DH und |DQ|: |DH|=a:b.

(2.22) Unter dem Abstand zweier Punkte P und @ auf der Wiirfeloberflache ist das
Minimum der Weglangen von P nach () zu verstehen; dies wird hier durch einen Stre-

ckenzug realisiert. Eine Verebnung der Wiirfeloberflache fiihrt auch hier zur Loésung
(vgl. Abb. 7.4).

a) Der Mittelpunkt @ der P gegeniiberliegenden Wiirfelfliche EFGH hat von P
offensichtlich den Abstand 2a, wobei er die Kantenldnge des Wiirfels ist. Die vier Stre-
ckenziige Uber die Mittelpunkte der Seitenflichen ABFE bzw. BCGF bzw. CDHG
bzw. DAF H sind die kiirzesten Wege von P nach Q).

Die Verebnung langs der Kanten BC und F'G (Abb. 7.4) zeigt klar, dass die vier
diesbeziiglichen "Abstandskreis"-Teile auf der Flache EF'GH mit dem Radius 2a diese
Seitenflache tiberdecken dass es von P aus also keinen groBeren Abstand gibt und alle
von () verschiedenen Punkte einen kleineren Abstand von P besitzen.

b) In entsprechender Weise erkennt man, dass der Mittelpunkt () von GH der von P
am weitesten entfernte ist.

(2.24) Die Uberlegungen zu (2.23) kénnen entsprechend fiir den Quader mit ungleich
langen Kantenlangen Gibernommen werden. Stabile Lagen des Gummifadens verlaufen
auch hier parallel zu den Quaderkanten oder parallel zu den Diagonalen der Seitenfla-
chen.

“\/on hier an vgl. mit der Aufgabe 17 12 24 der OJM.
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Abb. 7.5

(2.25) Wir schlitzen den Kegelmantel langs der Mantellinie durch P auf und kdnnen
dann verebnen (Abb. 7.5 b). Jeder Weg von P nach P ist dann nach der Verebnung
ein gleichlanger Weg in einem Kreissektor von P nach P, (Abb. 7.5 b). Der kiirzeste
Weg in der Verebnung ist die Verbindungsstrecke PP;. Da der Weg nicht iiber die
Spitze S des Kegels gefiihrt werden darf, existiert das Minimum genau dann, wenn
|ZPSPy| < 180° ist.

Dies ist aquivalent mit 27r < 7s, also mit sin% = g < % d. h. mit o < 60°, wobei
a der Offnungswinkel des Kegels ist,  der Radius des Grundkreises und s die Lange
einer Mantellinie (Abb. 7.5).

Klebt man den Kreissektor mit der Strecke PP, wieder zu einem Kegelmantel zusam-
men, so erhalt man den rdumlichen Verlauf des minimalen Weges. (Haufig ist man von
diesem Ergebnis iiberrascht!)

(2.26) Man "spiegelt" @ am Aquator, d. h., man wahlt denjenigen Punkt Q' auf
der siidlichen Halbkugel, der mit ) auf dem gleichen Meridian liegt und den gleichen
Abstand zum Aquator hat.

Ist ' nicht diametral gegeniiberliegend zu P, dann gibt es genau einen GroBkreis durch
P und @', und einer der Bégen von P nach ()’ ist der kiirzere. Dessen Schnittpunkt R
mit dem Aquator ergibt die Lésung. - Sind dagegen P und Q' diametral gegeniiberlie-
gend, so leistet nun offenbar jeder Punkt R des Aquators das Gewiinschte.

Abb. 7.6

(2.28) Zur Lésung benutzen wir elementare Eigenschaften der Ellipse, auf die wir
bereits im Zusammenhang mit der Lésung zur Aufgabe (2.1) zu sprechen kamen. Auf
Grund der Voraussetzungen ist die Summe der Seitenldnge a = |BC| und b = |AC|
konstant, und demnach liegt C' auf einer Ellipse mit den Brennpunkten A und B.

Den groBten Abstand von der Symmetrieachse g4p haben diejenigen Ellipsenpunkte,
die auf der Mittelsenkrechten von AB liegen (Abb. 7.6a). Wegen Fp = % und kon-
stantem C' liegt hier ein Dreieck mit dem groBten Flacheninhalt vor. Andere Methoden

zur Losung stehen spater zur Verfligung, beispielsweise:

Nach Voraussetzung gibt es ein gleichschenkliges Dreieck ABC), mit |[AB| = ¢ und

|ACy| = |BCy| = “5°. Fiir jeden Punkt C, der beziiglich g4p auf der gleichen Seite
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wie () liegt, gilt A(ABC) = A(ABC)) genau dann, wenn C' auf der Parallelen h zu
gap durch Cj liegt.

Nach der Losung zu (2.1) ist fir jeden Punkt C' € h, der von Cj verschieden ist, der
Streckenzug ACB langer als der Streckenzug ACyB (Abb. 7.6 b), d. h., unter allen
Dreiecken mit gleichem Flacheninhalt und gleicher Seite AB ist das gleichschenklige
Dreieck dasjenige mit dem kleinsten Umfang. Mit Hilfe des Satzes (2.32) folgt daraus
die Behauptung.

Abb. 7.7

(2.31) Da Zp, q ein rechter Winkel ist, lasst sich die durch Schnitt der Winkelflache
gegebene Figur F' an den Tragergeraden der Schenkel p und ¢ so spiegeln, dass eine
beziiglich des Scheitels O von Zp, q zentralsymmetrische Figur F entsteht (Abb. 7.7).
Diese Figur hat einen konstanten Umfang, namlich das Vierfache der Lange der Schnitt-
kurve, und wir konnen in Hinblick auf die Aufgabenstellung o. B. d. A. davon ausgehen,
dass I} konvex ist.

Nach dem Satz (2.30) hat F} und damit F' maximalen Flacheninhalt, wenn F} eine
Kreisflache, also wenn der Schnitt um O kreisférmig ist.

Abb. 7.8 A T ass

(2.31’) ¢ sei der von den Seiten mit den Langen a =4 und b = 3 und 1) der von den
Seiten mit den Langen ¢ = 3 und d = 2 eingeschlossene Winkel (Abb. 7.8). A sei der
Flacheninhalt des Vierecks.
Dann ergibt der Flachensatz 24 = 12sin ¢+6 sin ¢. Berechnet man die Diagonalenlan-
ge |AC| mittels a, b und ¢ und andererseits mittels ¢, d und ) nach dem Kosinussatz,
so erhalt man 25 — 24 cos p = 13 — 12 cos 1. Nach elementaren Vereinfachungen und
dem Quadrieren erhalt man

A2
9 = 4sin? o + 4sin @ sin ¥ + sin® ¥

und
1 = 4cos® p — 4 cos @ costh + cos>

Die Addition dieser beiden Gleichungen ergibt bei Verwendung von Formeln der Trigo-
nometrie
A2

g = 4(1 — cos(p +v))
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Damit wird %2 maximal fir cos(¢ + 1) = —1, d. h. fur ¢ + 1 = 180°, und es gilt
Apax = 64/2. Das Viereck ist Sehnenviereck.

(2.35) Zunichst folgt aus (2.28), dass unter allen Dreiecken mit gleichem Umfang die
gleichseitigen Dreiecke den groBten Flacheninhalt besitzen. Nach (2.32) folgt daraus
dann die duale Aussage, d. h. die Behauptung.

(2.38) Die Losung lasst sich entsprechend (2.37) fiir einen spitzen oder stumpfen
Winkel gestalten. - Es gibt wiederum genau eine Tangente ¢’ an den Kreis, die beim
Schnitt mit den Schenkeln des Winkels ein gleichschenkliges Dreieck A’B'C” (mit
|CA’| = |CB'|) liefert. Der Kreisberithrungspunkt sei E; er ist der Mittelpunkt von
A'B’.

Jede andere Gerade durch E, die ebenfalls die Schenkel schneidet, ergibt ein Dreieck
mit einem groBeren Flacheninhalt. (Der Beweis kann entsprechend zu (2.36) gefiihrt
werden!) Und dies gilt nun erst recht fir jede von ¢’ verschiedene Tangente an den
Kreis.

(2.42) Angeregt durch die Losung von (2.40) mit Hilfe des Spezialfalls (2.39), beschaf-
tigen wir uns zunachst mit folgender Frage:

Abb. 7.9 °
Es sei OAB ein Dreieck. Fiir welche Punkte P € AB hat das Parallelogramm ODPE
mit D € OA und E € BO maximalen Fliacheninhalt?

Ist P der Mittelpunkt Py von AB, dann gilt offenbar A(ODPE) = A(OAB). Ist
P # Py und o. B. d. A. ein Punkt zwischen A und Py (Abb. 7.9), dann geht bei
der Spiegelung an P der Punkt A in einen Punkt A’ zwischen P und B lber. Das
Parallelogramm mit den aufeinanderfolgenden Ecken O, D, D’ hat nun - wie man an
Hand dieser Spiegelung sofort einsieht - einen kleineren Flacheninhalt als das Dreieck
OAB, aber den doppelten des Parallelogramms ODPE, d. h., es ist A(ODPE) <
%A(OAB).

Demnach liegt das Maximum fir P = P, vor.

Mit diesem Hilfssatz ergibt sich nun leicht, dass die Mittelpunkte der Vierecksseiten
das gesuchte Maximum bilden. O ist dann der Schnittpunkt der Diagonalen.

(2.43) a) Ist das Dreieck nicht gleichseitig, etwa |BC| # |C'A|, dann kann bei fest-
gehaltener Seite AB zu einem von C' verschiedenen Kreispunkt D mit |[BD| = |DA|
und A(ABD) > A(ABC), also zu einem flachengréBeren gleichschenkligen Dreieck
Ubergegangen werden.

Dies leistet derjenige Schnittpunkt D der Mittelsenkrechte von AB mit dem Kreis, der
mit C auf der gleichen Seite beziiglich g4p liegt.

b) beweist man in analoger Weise.
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(2.44) a.) Ist das Tangentendreieck ABC' nicht gleichseitig, etwa |AB| # |AC|, so
gibt es nach (2.38) ein Tangentendreieck AB'C’ mit A(AB'C") < A(ABC).
b) beweist man nun entsprechend.

(2.45) Zu jeder noch so kleinen FlacheninhaltsgroBe konnen bei festem Punkt P im
Innern von AB stets so nahe an C' liegende Punkte @ und R aus dem Innern von BC
bzw. C'A gewahlt werden, dass A(PQR) kleiner als die vorgegebene GroBe ist.

my.

A
Abb.7.10 @ 2

A(PQR) = 0 ist jedoch nicht moglich. Andererseits ist offenbar stets A(PQR) <
A(ABC), aber zu jeder FlacheninhaltsgroBe F' < A(ABC) gibt es stets P, @, R
vorgegebener Lage mit A(PQR) > F’; die Punkte P, @), R konnen ja beliebig nahe an
A, B bzw. C gewahlt werden (Abb. 7.10a).

(2.49) Fiir das Finfeck ABCDE gilt (Abb. 7.10b)
1
A:ab+1a2\/§ und U =3a+2b (2)

Aus, der Existenz eines Fiinfecks folgt, dass die aus (1) und (2) sich ergebende Gleichung

s 20 - 4A
6—+v3 6—+/3

in a eine Losung besitzt; und daraus folgt tiber die Diskriminante

U > 2\/A(6 —V3) (3)

Fir U = 24/A(6 — /3) hat die obige quadratische Gleichung in a nur die Lésung

a= ﬁ, und aus dieser Gleichung folgt

=0

a

A A
6—+/3 6—+/3

Gibt es also ein Fiinfeck der gesuchten Art, bei dem sogar die Gleichheit in (3) gilt, so
bestehen (4) und (5).

Umgekehrt lasst sich nun leicht zeigen, dass ein Fiinfeck ABC DE mit (4) und (5) den
Flacheninhalt A und minimalen Umfang besitzt.

a=2 und b= (3—3) (4,5)

(2.50) Insgesamt gibt es zwolf verschiedene (d. h. inkongruente) Pentominos. Be-
stimmt man diese, so lasst sich die Aufgabe leicht durch "Auszahlen" ermitteln. Man
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erhalt ein recht merkwiirdiges Ergebnis: elf der zwolf Pentominos haben trotz verschie-
dener Formen den gleichen Umfang 12.
Eines der Pentominos hat den Umfang 10. Damit ist das Maximum 12, das Minimum
10 (und "etwas anderes" gibt es nicht!).

(3.4) Die Funktion f sei auf [a,b] streng monoton wachsend. Dann gilt nach (3.3):
Wenn a < z1 < 22 < b, dann f(x1) < f(x2) < f(b). Nach (3.2) bedeutet dies, dass
f(b) das Maximum ist.

Analoge Betrachtungen fithren zum Minimum f(a). (Fir eine streng monoton fallende
Funktion "kehren sich die Relationszeichen um".)

Fir ein offenes Intervall a < x < b filhrt man die Annahme eines Extremums an der
Stelle xy etwa wie in (1.2) zum Widerspruch.

(3.5) Wegen = # 0 und % — 1 > 0 ergibt sich der groBtmogliche Definitionsbereich
{z:0<x <1} Aus 21 < x4 folgt 3711 >L1 L_ 1> x% — 1 und schlieBlich

xo! x1

1 1
\l—1>\l—1
I T2

d. h., f(z) ist streng monoton fallend. Aus (3.4) folgt damit die Existenz eines Mini-
mums f(1) = 0 an der Stelle 2o = 1 und die Nichtexistenz eines Maximums.

2. Losung. Da ein Wurzelwert stets nichtnegativ ist, kann sein Minimum nicht kleiner
als 0 sein. Der Wert 0 wird aber im vorgegebenen Fall fiir xty = 1 angenommen. An-
genommen, die Funktion f hatte an der Stelle 1 mit 1 > x; > 0 ein Maximum M,
dann gilt 0 < 23 < 7 < 1 mit

1 1 1
2
= =—-1=|—-1-\|—+1>M
f(x1) \lx% Jﬂﬁ \J$1+
im Widerspruch zur Annahme.

(3.8) a) Wir bezeichnen |AP| = |RQ| mit z. Dann ist fir A(APQR) = z(|AC| —
|RC|) mit x > 0 das Maximum gesucht. Nach dem Strahlensatz (vgl. Abb. 2.15a) gilt
|AC]
|AB]

x:|AB| = |RC| : |AC] bzw. |RC| ==z

Damit erhalten wir
|AC|

JAB]
Nach (3.6), (3.6') hat A(APQR) genau an der Stelle zy = @ > 0 ein Maximum,

d. h., P ist Mittelpunkt von AB, und wegen des Strahlensatzes sind auch R bzw. )
Mittelpunkte von AC' bzw. BC.

A(APQR) = z - |AC| — 2*

b) Wir benutzen die Gleichungen (1) und (2). Da in der dualen Aufgabe U als konstant
anzunehmen und fir A das Maximum zu ermitteln ist, l6sen wir (1) nach 2b auf und
setzen in (2) ein! Es ergibt sich A = Ur — (2 + 37”) r? mit r > 0.
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Nach (3.6), (3.6') erhalt man ein Maximum fir A genau fir

U
3m+4

o =

Das zugehorige by ergibt sich aus 2bg = U — 2ry — wrg zu

T+ 1

by = .
0 3m+4

(3.11) Nach dem Satz des Pythagoras gilt 22 + y?> = d? bzw. y?> = d? — 22. Die
Tragkraft T lasst sich als Funktion T'(x) = x(d* — %) der Variablen x erfassen. Fiir
diese Funktion dritten Grades haben die Koeffizienten a bzw. ¢ die Werte -1 bzw. d?,
die anderen Koeffizienten sind 0.

Fir (**) gilt speziell

— 2+ d?x — h = =23 + (r + 2s5)2* — s(s 4+ 2r)x + 15’

Mittels Koeffizientenvergleich ergibt sich r = —2s, d* = 3s% und h = 2s%. Dabei ist
ro = s die Extremalstelle und h der Extremalwert: s = ?d, h="Tp.x = %\/gd?’.

(3.13) Wir gehen wieder von den Formeln (1) und (2) aus. Wir schreiben (1) in der
Gestalt U = (2 + m)r + 20.

Soll (3.12) Verwendung finden, so miisste sich b als b = ¢ + er darstellen lassen; das
ist aber mittels (2) méglich! (2) ist dquivalent zu (2') 2b = 2 + Zr.

Damit folgt

3 A 2U d
U=12+— — bzw. = —
< +27r>7“+ rA 1430 T+r
mit d = ﬁéﬂ d.h., :75- bzw. U wird genau fir r = % minimal. Setzt man diesen

Wert in (2') fir T e|n so erhalt man den zugehdrigen Wert von b.

(3.17) a) Zu (3.14): Fiir den iuBeren Widerstand z = v/d = /R? = R; (da R; > 0)

) 2 ) )
wird % minimal und damit N maximal.

b) Zu (3.15): Eine Lieferung umfasst /6400 = 80 Stiick. Es miissen demnach in
Abstanden von einem halben Monat die Lieferungen erfolgen.

c) Zu (3.16): f(x) wird minimal fir z = 1, d. h., es gilt |[EF| = 1 und |FG| = u.
Dann ist aber das Viereck EFGH in Abb. 3.7b ein Drachenviereck, d. h. &« = ¢ und
B = ~. Aus Abb. 3.7a ist ersichtlich, dass der Strahlendurchgang symmetrisch erfolgen
muss.

(4.1) Fiir alle reellen Zahlen x ist > > 0 und 2> +1 > 1 > 0:

Demnach ist stets f(z) > 0 und f(z) = 0 & 22 = 0 & x = 0. Die Funktion hat also

fir = 0 das Minimum f(z) = 0. AuBerdem gilt (*) (u —1)? > 0 bzw. u®> +1 > 2u

und damit 2% +1 > 22x2, wenn man u durch 22 ersetzt. Daraus folgt (wegen z'+1 > 0)
x 1

die Ungleich < =
ie Ungleichung ——— S
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Da die Gleichheit in (*) genau fiir u = 1 gilt, hat f(z) genau an den Stellen x mit
* = 1, also bei v = 1 und z = —1 das Maximum. (Betrachtet man 775, so kann man

die Ergebnisse aus Abschnitt 3.3 benutzen.)

(4.9) Es sei M der Mittelpunkt und R der Radius des Umkreises. Mit den ublichen
Bezeichnungen gilt |/ BMC| = 2a, |ZCMA| = 28, |ZAMB| = 2 (Peripheriewin-
kelsatz !) und damit

1
Ap = §R2(Sin 2+ sin 23 4 sin 2) (Flachensatz)

Mit A = mR? folgt
1 1. _ :
— = —(sin2a + sin 23 + sin 2)
p 27

und p wird genau dann minimal, wenn % maximal wird.

Das Dreieck sei nicht stumpfwinklig. Dann gelten die Ungleichungen 0 < 2,23, 27y <

180°. In diesem Intervall ist die sin-Funktion konkav, folglich gilt nach (4.5)

200 + 28 + 2
3

sin 2a + sin 23 + sin 2y = 3sin

d. h. 1 =2sin120° = %. Das Gleichheitszeichen gilt nach (4.6) nur fir das gleich-

4\/§7r

9
Ist das Dreieck ABC' stumpfwinklig mit v > 90°, so existiert fiir den gleichen Umkreis
- also bei festem A - ein spitzwinkliges Dreieck A’B’C' mit groBerem Flacheninhalt.
(A’ bzw. B’ sind dabei die Bilder von A bzw. B bei Spiegelung an M.) Folglich kann
Pmin Nicht fir stumpfwinklige Dreiecke angenommen werden.

1
p

seitige Dreieck mit pyin, =

(4.12) Die Betrachtungen zur Lésung von (4.11) kdénnen entsprechend auf konvexe
Oktaeder und konvexe lkosaeder iibertragen werden. Maximalitat liegt genau dann vor,
wenn der Korper regelmaBig ist. In diesem Fall ist dann Oy, = 1—23q fur Oktaeder und

Opmax = %q fur lkosaeder.

kis

(4.16) Analog zur Lésung von (4.15) erhélt man das Maximum von p fiir z; =

(i=1,..,n)mitt =k +ko+ ..+ kp;

D))
Pmax = () N ETTERE B
t ay an
(4.17) Bei (4.10) ist (4.15) mit k; = 1 fiir alle @ anwendbar. In (4.11) wird auBerdem
die Ungleichung (5) bendtigt, ebenso in (4.12). Bei (4.18) ist (4.15) mit n = 2,

k1 = m und ky = 1 anzuwenden, bei (4.14) kann man dann entsprechend (4.15) auf
die Funktion g(z,vy, z) - aber eben nicht auf f(z,y, z) - anwenden.

(4.18) a) Zu (2.29): ky = ko =1, a1 =1, ag = 2, s = 64 m. Mit (4.16) ergibt sich
T1 = Qmax = 32 M, 9 = bpax = 16 m.
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b) Zu (2.39): Ist P ein beliebiger Punkt im Innern der Strecke AB, so gilt |[AP|+|PB| =
|AB| = s. Ist 1 = |AP| und x5 die zweite Rechtecksseite, so folgt bei Benutzung des

Strahlensatzes 1 + |‘A0|x2 |AB].

Mit Bezug auf (4.16) gilt also a1 = 1, ay = %, ki = ko = 1. 21 - ©9 wird maximal

far

|AB| 1 |AC||AB| 1
Z|AB d = —|AC

1o~ oMBlL unda = o =54l

c) Zu (2.48): Nach (1) und (2) gilt A = 1 - 3 mit ; = r und 23 = 2b — Jr und

somit

Ir1 =

3
U= (2—|—27T)561+562

d. h.,in (415) gilt by = ks =1, a1 =2+ 3m, ao=1,p=A, s=U und t = 2. Aus
(**) ergibt sich

2 [itsm, 4+ 37
T = ZW. To =
LR V) [ 2 2

A

Aus x5 und x1 = r errechnet man das gesuchte b.

(4.19) Als Analogon wahlen wir: Man bestimme unter allen Quadern mit gleicher
Oberflache O diejenigen mit dem groBten Volumen V.

Sind die Kantenlangen a, b und ¢, so ist also das Produkt abc unter der Nebenbedingung
s =9 = ab+bc+ca = const zu maximieren. Wir benutzen folglich (4.16) und setzen
x1 = ab, 19 = be, x5 = ca und p = V2 = z12023.

Mit dem Resultat von (4.16) ergibt sich sofort, dass nur der Wiirfel die Problemstellung

erfullt.

(4.20) Mit den iiblichen Bezeichnungen gilt V' = 27r*h und O = 27rv/r? + h2. Da
O zu minimieren ist, kann man versuchen, (4.15) anzuwenden. Dann miisste aber eine
Summe auftreten.
Diese Forderung erfiillt
5= O—Q = r2(r? + h?) = r* 4 r2h?
472
(O wird genau dann minimal, wenn s minimal wird.) Wir setzen 21 = r% und x5 = r2h?.

2
Die Bedingung V' = const ergibt dann V' = gwx%ﬂxéﬂ. Um ganzzahlige k; zu erhalten,

potenzieren wir.
4
Esist p = (3£) = 223 In (415) gilt nun ay = apy = 1, ky = 1, ky = 2, t = 3.
3V

Aus (**) ist 1 =
us (**) ist x4 1 (27T

Bedeutung von z; und zo ergibt die letzte Gleichung h = +/2r. Daraus folgt aber
schon die Behauptung! (Der Leser fertige sich bitte eine Skizze an.)

)4 und xo = 2x; ablesbar. Mit der oben eingefiihrten

(4.21) Wir betrachten zunachst das ebene Problem. a; (i = 1,2, 3) seien die Langen
der Seiten ¢ des Dreiecks, x; die Abstande eines Punktes P von den Seiten i.
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Um eventuell (4.16) anwenden zu kdnnen, ist eine Summe s = ajx1 + asxs + asxs
gesucht, die fir alle (x1,x9,23) konstant ist. Die zufallige Ubereinstimmung in den
Bezeichnungen erweist sich inhaltlich als richtig.

Bezeichnen x; die Abstande und a; die Seitenlangen, so ist fiir jeden Punkt P im Inneren
des Dreiecks s der doppelte Flacheninhalt des Dreiecks. Nach (4.16) ergibt sich das
Maximum fir x; = %

Ein zugehoriger Punkt Pp. zerlegt also mit den von ihm ausgehenden "Eckpunktss-
trahlen" das Dreieck in drei inhaltsgleiche Dreiecke. Da sich die Schwerlinien im Dreieck
im Verhaltnis 2 : 1 teilen, ist der Schwerpunkt gerade ein solcher Punkt. Da sich aber
fir jeden anderen Punkt die Ecktransversalen in anderen Verhaltnissen teilen, gibt es

auch nur diesen einen Punkt.

Fir das analoge raumliche Problem lauft lediglich 7 von 1 bis 4, und die a; sind Fla-
cheninhalte.

(4.23) Wir wahlen entsprechend dem Anliegen unseres Abschnitts eine Lésung durch
geometrische Interpretation. Da nur quadratische Terme in den Radikanden auftreten
und bei Ersetzung von ¢ durch —c wieder die gegebene Ungleichung entsteht, kann
man sich auf nichtnegative a, b, ¢ beschranken.

F'
Abb. 7.11 a) b)

Wir betrachten ein rechtwinkliges Dreieck ABC mit dem rechten Winkel bei C' und
|BC| = a, |AC| = b (vgl. Abb. 7.11a).

Wir tragen auf gpc zwei Punkte D und E so ein, dass D # E und |DB| = |[EB| = ¢
gilt. Durch F' erganzen wir EAD zu einem Parallelogramm EADF'. Nach dem Satz
von Pythagoras gilt

|BA| = Va? + b2, |IDA| = \/(a — ¢)? + b2, |EA| = \(a+c)2+b2 (¥

Da B der Diagonalenmittelpunkt des Parallelogramms EF DA ist, gilt nach der Drei-
ecksungleichung, angewandt auf das Dreieck AF'D, |DA| + |FD| > 2|BA|. Wegen
(*) und |FD| = |FA| folgt daraus die Behauptung.

Im Falle, dass einige der GroBen a, b oder ¢ gleich 0 sind, tritt einer der moglichen
"Entartungsfalle" ein.

(4.24) (x;,y;) sei der Punkt P, im kartesischen z,y-Koordinatensystem. Dann gilt
nach dem Satz des Pythagoras und den Grundlagen der Koordinatengeometrie

|PiPi1| = \/(fb’z’ — Ziy1)? + (Ui — Yir1)? und
PP = \J(r — @) + (1 — )’
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Die linke Seite der Ungleichung in (4.24) entspricht damit der Lange eines Polygon-
zuges Py, P, ..., P,, die rechte Seite dagegen der kiirzesten Entfernung zwischen den
Endpunkten des Polygonzuges (Abb. 7.11 b).

Nach Archimedes’ Grundsatz ist damit die Aufgabe gel0st.

(5-4)
f(zo+h) = (wg + h)* = 2§ + 323h + 3xh* + B?
f(zo+h) — f(xo) = 3xih + 3xoh?® + h?
J(wo + h) f(20) = 3x7 4 3x0h + h?
f'(x) = hm(S:IJO + 3z0h + h?) = 3z}
(5.5)
p(xo+h) —p(xo) _ f(xo+h) + g(wo +h) — f(x0) — g(20)
h h
~ f(xo+h) — f(xo) n g(xo + h) — g(wo)
B h h

Da nach Voraussetzung f'(zg) und ¢'(x¢) existieren, existiert auch der Grenzwert p’(x)
der linken Seite.

Die Giiltigkeit von k'(xg) = af’(x¢) beweist man de facto durch "Ausklammern von
a". (Bei diesen Ableitungen wurden "intuitiv" Rechenregeln fiir Grenzwerte benutzt.)

(6.3) a) Fir (6;5) hat die Zielfunktion den Wert f(6;5) = 12,2, fir (8;3) dagegen
den groBten Wert f(8;3) = 12,6. AuBerdem erfillt (8;3) die Nebenbedingungen (2),
(3) und (4), wie man leicht nachrechnet, und die Nichtnegativitadtsbedingung (5).

b) In Abb. 6.2 dndert sich lediglich der Anstieg der Geraden, die sich aus der Zielfunktion
ergeben. Diese Geraden liegen aber jetzt so, dass sie mit dem Eckpunkt (6, 36; 5, 45)
auch den Eckpunkt (8;3) des Zulassigkeitsbereiches gemeinsam haben. Ldsung des
Optimierungsproblems sind alle (1, x2) mit 6,36 < x; <8 und 25 = 15 — 1, 5x7.
Fir alle diese Paare ist der Wert der Zielfunktion der maximale und betragt 15.

(6.4) Fir a =0,1;1; 10 ergeben sich (in der angegebenen Reihenfolge) die maximalen
Funktionswerte 2,632; 4;: ~ 26,323.

(6.6) Bei dieser Aufgabe ist zwar keine Nichtnegativitatsbedingung gestellt, die ge-
gebenen Ungleichungen erzeugen aber wieder einen konvexen Zulassigkeitsbereich in
der Gestalt einer vierseitigen Pyramide. Die Eckpunkte dieser Pyramide sind (0,0, —1),
(1,0,-1), (1,1,-1), (0,1,—1) und (%,,10).

Da fiir jeden Wert yo > 0 der Zielfunktion die Gleichung yo = z7 + 23 + 3 einer
Kugelflache mit dem Mittelpunkt (0,0,0) und dem Radius /7o entspricht, ist die Kugel
mit dem groBten Radius gesucht, auf deren Oberflache wenigstens noch ein Punkt der

Pyramide liegt.

Diese Kugelflache geht dann durch den am weitesten von (0,0, 0) entfernten Eckpunkt

98



Losungen und Losungshinweise

der Pyramide, das ist der Punkt (%, %, 10); es folgt f(71,%2,T3) = 101, 28.

(6.8) Fir die ersten m — 2 Jahre sind alle Mittel im Zweig |, fiir die letzten beiden
Jahre im Zweig Il zu investieren.

99



Literatur

Literatur

[1] BOLTJANSKI, W. G., und I. M. JAGLOM, Geometrische Extremwertaufgaben. In:
Enzyklopadie der Elementarmathematik, Band V, VEB Deutscher Verlag der Wissen-
schaften, Berlin 1971, S. 261-338 (Ubersetzung aus dem Russischen).

[2] COURANT, R., und H. ROBBINS, Was ist Mathematik?. Springer- Verlag, Berlin-
Gottingen-Heidelberg 1962, Kap. VII.

[3] DORRIE, H., Ein neues elementares Verfahren zur Lésung von Extremwertaufgaben.
Zeitschrift fir den math. u. naturw. Unterr. aller Schulgattungen 50 (1919), 153-177;
Nachdruck in: Der Mathematikunterricht 18 (1972) 5, 23-51, Ernst Klett Verlag Stutt-

gart.

[4] KAISER, H., Numerische Mathematik und Rechentechnik Il. - MfL Bd. 10, VEB
Deutscher Verlag der Wissenschaften, Berlin 1980, Kap. 7.

[5] Kleine Enzyklopadie Mathematik. VEB Bibliographisches Institut, 10. Aufl. Leipzig
1977

[6] LANGER, K., Extremwertaufgaben in der Geometrie mit elementarer Losung. Di-
plomarbeit, PH Potsdam 1983.

[7] MULLER, M., Zur Geschichte der Extremalaufgaben. Mathematik in der Schule 4
(1966), 463-478, T77-782.

[8] NAGIBIN, F. F, Extrema. Moskau 1966. (russisch)

[9] NATANSON, I. P., Einfachste Maxima- und Minima-Aufgaben. 7. Aufl., VEB Deut-
scher Verlag der Wissenschaften, Berlin 1975 (Ubersetzung aus dem Russischen), MSB
Nr. 15.

[10] POLYA, G., Mathematik und plausibles Schliessen, Bd. 1. Birkhauser Verlag, Basel
und Stuttgart 1969, Kap. VII-X.

[11] QUAISSER, E., Bewegungen in der Ebene und im Raum. VEB Deutscher Verlag
der Wissenschaften, Berlin 1983, MSB Nr. 116.

[12] QUAISSER, E., und H.-J. SPRENGEL, Raumliche Geometrie. VEB Deutscher Ver-
lag der Wissenschaften, Berlin 1981, MSB Nr. 103.

[13] SPRENGEL, H.-J., und O. WILHELM, Funktionen und Funktionalgleichungen.
VEB Deutscher Verlag der Wissenschaften, Berlin 1984, MSB Nr. 114.

[14] STURM, R., Maxima und Minima in der elementaren Geometrie. B. G. Teubner
Verlag, Leipzig und Berlin 1910.

[15] WENTZEL, J. S., Elemente der dynamischen Optimierung. B. G. Teubner, Ver-
lagsgesellschaft, Leipzig 1966.

[16] WUSSING, H., Mathematik in der Antike, B. G. Teubner, Verlagsgesellschaft,
Leipzig 1962.

[17] WUSSING, H., Vorlesungen zur Geschichte der Mathematik. MfL Bd. 13, VEB
Deutscher Verlag der Wissenschaften, Berlin. 1979.

100



Erkldrung verwendeter Symbole

Erklarung verwendeter Symbole

AB
|AB|
JgAB

ABC...Y Z

AB*
Zp,q
LABC
1Zp, q|
gllh
A(F)
f(z)

RY
N

N*
(a.1)
a,1)
OJM

Strecke mit den Endpunkten A und B

Lange der Strecke AB (bzw. deren MaBzahl)
Verbindungsgerade der Punkte A und B

Streckenzug (ABUBC U ...UY Z)

Halbgerade (mit dem Scheitel A, die B enthilt)
Winkel mit den Schenkeln (Halbgeraden) p und ¢
Winkel mit den Schenkeln BA™ und BC'*

GroBe des Winkels Zp, g (bzw. deren MaBzahl)
Gerade g ist parallel zur Geraden h

Inhalt der Figur F' (bzw. dessen MaBzahl)

Wert der Funktion f an der Stelle x

Menge der reellen Zahlen

Menge der positiven reellen Zahlen

Menge der natiirlichen Zahlen

Menge der positiven natirlichen Zahlen, N* = N\ {0}
offenes Intervall, d. h. Menge aller reellen Zahlen x mita < x < b
abgeschlossenes Intervall ([a,b] = (a,b) U {a,b})
Olympiaden Junger Mathematiker der DDR

Aufgabe, die selbstandig zu losen ist

bezeichnet etwas schwierigere Probleme
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