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Vorwort

Vorwort
Anschließend soll das Buch auch

noch gekauft werden, und die
Rezensionen sollen gut ausfallen.
Aus einem Vorwort von W. Gilde

Es dem potentiellen Käufer zu erleichtern und auch dem Rezensenten, ist unser Vorwort
gedacht. Das Thema "Extrema" kann sehr unterschiedliche Erwartungen auslösen, da
es ja auch in der Tat die unterschiedlichsten Gebiete berührt und verschiedenartigste
Methoden anspricht.

Unser Büchlein ist schon vom Umfang her viel zu klein, um die Vielfalt des Themas
auch nur annähernd wiederzugeben.
Worauf haben wir uns beschränkt? Welche Gründe, welche Zielstellung gab es dafür?

Unter den Methoden haben wir uns auf elementare Lösungsmethoden beschränkt. Unser
Ausblick auf Methoden der höheren Mathematik in den Kapiteln 5 und 6 knüpft bewusst
an die Kenntnisse des "Elementaren" an.
Gerade die Methoden der höheren Mathematik sind umfangreich in der Literatur dar-
gestellt und werden ausführlich in den unterschiedlichen Ausbildungsrichtungen gelehrt.
Das führt allerdings auch dazu, dass der Blick für das Elementare verstellt und mitunter
"mit Kanonen auf Spatzen geschossen" wird.
Auch sollte man bei allem Streben nach Allgemeinheit nie vergessen, "dass die bunte
Vielfalt der individuellen Probleme für die Vitalität der Mathematik entscheidend ist"
(Courant/Robbins).

Von solchen Überlegungen haben wir uns beim Schreiben der Kapitel 2, 3 und 4 leiten
lassen. Die Beschränkung auf elementare Methoden lässt es auch zu, dass sich schon
Schüler unserem Büchlein zuwenden können (und sollen!).

Schüler der 7. und 8. Klassen können durchaus das Wesentliche des Kapitels 2 erfas-
sen, bereits von Schülern der 9. und 10. Klassen können alle anderen Kapitel bearbeitet
werden. Das Büchlein könnte also einen Schüler über mehrere Jahre begleiten, es kann
selbständig durchgearbeitet oder 4 Vorwort von Lehrern in der außerunterrichtlichen
Tätigkeit verwendet werden.

Bei der Darstellung elementarer Methoden ging es uns nicht nur um eine Gegenüber-
stellung zu den Methoden der höheren Mathematik, unsere Ausführungen bezwecken
auch, die verschiedenen elementaren Methoden untereinander zu vergleichen, daher
findet man viele Aufgaben, die nach verschiedenen der vorgestellten Methoden gelöst
werden.
Überhaupt ist der Einsatz von Aufgaben ein von uns sehr massiv und bewusst gewähltes
Mittel, Kenntnisse zu vermitteln. Erfahrungen, die wir selbst in der außerunterrichtli-
chen Tätigkeit gesammelt haben, bestärkten uns darin, so vorzugehen.

Wenn wir auch kein Buch über die "Kunst des Aufgabenlösens" schreiben wollten, so
sind doch unsere diesbezüglichen Erfahrungen mit eingeflossen. Von den verschiedenen
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Vorwort

Prinzipien und Regeln der Heuristik spielen insbesondere eine Rolle

- das Analogieprinzip (Bezugnahme auf ähnliche Aufgaben, die vorher gelöst wurden,
als auch Fortsetzung durch weitere analog konstruierte Aufgaben),

- das Modellieren (d. h. das Finden eines geeigneten mathematischen Modells für das
gegebene Problem),

- das plausible Schließen.

Neben der Einschränkung bezüglich der Methoden war außerdem eine Reduzierung der
Stoffgebiete notwendig. So wird man leider beispielsweise aus der Zahlentheorie oder
Kombinatorik keine Aufgaben finden. Und obwohl wir die Geometrie besonders betont
haben, ist das von uns Gewählte nur ein kleiner Ausschnitt, Packungsprobleme etwa
fehlen auch.

Bezüglich der der Praxis entnommenen Aufgabenstellung muss natürlich deutlich ge-
sagt werden, dass es sich um sehr genau ausgewählte Probleme handelt, die gerade mit
den von uns vorgestellten Methoden behandelt werden können. Sie dienen also dazu, die
Verbreitung von Extremalproblemen in praktischen Aufgaben zu demonstrieren, dürfen
aber keineswegs zu der Vorstellung verführen, dass den Praxisproblemen stets so leicht
"beizukommen" ist.

Das Literaturverzeichnis verrät, wo wir Anregungen suchten und fanden und wo der
Leser weitere Entdeckungen wird machen können. Für einzelne Aufgaben Quellen an-
zugeben oder auf Autorschaft zu bestehen erschien uns nicht sinnvoll, da sich viele
Aufgaben kaum bis zu ihrer Primärquelle zurückverfolgen lassen. Auch Aufgaben, die
man glaubt selbst erfunden zu haben, könnten sich als "längst bekannt" herausstellen.

Für die vielfältigen und kritischen Hinweise danken wir Herrn Prof. Dr. Helmut Bausch.
Unser Dank gilt weiterhin Frau Helga Kirmse, die das Manuskript mit gewohnter Zu-
verlässigkeit schrieb, der Lektorin Erika Arndt für die gute Zusammenarbeit sowie dem
VEB Druckhaus "Maxim Gorki" für die sorgfältige Arbeit.

Potsdam, im Frühjahr 1986

Erhard Quaisser, Hans-Jürgen Sprengel
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1.1 Ist nicht alles ganz einfach?

1 Überall und immer Extrema
1.1 Ist nicht alles ganz einfach?

Was wäre zu wählen:
Der Beste unter den Schlechten zu sein

oder der Schlechteste unter den Besten?
F. Hebbel

Wäre diese Frage leicht zu beantworten, dann hätte Friedrich Hebbel sie wohl kaum
gestellt. Es ist auch keine Frage mathematischer Art, es geht um menschliche Eigen-
schaften und menschliches Verhalten. Wer möchte da einen sicheren Vergleich wagen.
Reelle Zahlen dagegen lassen sich vermittels der Ordnungsrelationen < oder ≤ einfach
vergleichen. In einer endlichen Menge von Zahlen findet man leicht die größte oder
auch die kleinste.

(1.1) •1 Man ermittle jeweils die kleinste und größte Zahl der folgenden Mengen:
a) A = {1; 0; 7; −3; 17; π; −23},
b) B = {4π; 12, 5;

√
158;

√
156}.

Im Fall a) "genügte ein Blick", bei b) auch, aber erst, nachdem wir die Zahlen durch
Rechnung auf eine vergleichbare Form gebracht hatten. Selbstverständlich können wir
dann auch die mittels reeller Zahlen (und Maßeinheiten) messbaren Größen - wie Län-
gen, Flächen und. Volumina in der Geometrie oder Kosten und Gewinne in der Öko-
nomie - miteinander vergleichen. Auch bei Entscheidungen von geringerer Bedeutung
kann man davon Gebrauch machen:
Einer der vielen Günstlinge Katharinas II. glaubte, eine Bibliothek seinem Stande gemäß
besitzen zu müssen und gab einem Buchhändler den Auftrag. "Was für Bücher befehlen
Euer Exzellenz?"-
"Ja, das müssen Sie wissen, gerade so wie bei der Kaiserin, kleine Bücher oben, große
unten!"2

Die bisher so einfach aussehende Aufgabe der Auswahl eines größten und kleinsten Ele-
mentes aus einer Menge wird schlagartig schwieriger, wenn es sich um eine Menge von
unendlich vielen Elementen handelt. Nicht nur, dass wir mit dem bloßen "Überschau-
en" die gefragten Elemente natürlich nicht mehr herausfinden können, es entsteht eine
prinzipiell neue Frage, die nach der Existenz.

Abb. 1.1

1Das Symbol • bedeutet, dass der Leser diese Aufgabe selbständig lösen soll. Sein Resultat kann er
dann mit den Hinweisen in Kapitel 7 vergleichen.

2nach K. J. Weber, Demokritos, Berlin 1984, S. 61
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1.2 Aus der Geschichte der Extremalaufgaben

(1.2) •∗ Man beweise, dass die Menge aller rationalen Zahlen r, für die 2 < r2 ≤ 3
gilt, weder eine größte noch eine kleinste Zahl enthält.

Sind in der Ebene zwei Strecken AB und CD wie in Abb. 1.1a gegeben, so existiert ein
Punktepaar (P1, Q1), welches den kürzesten Abstand zwischen zwei Punkten P und
Q mit P ∈ AB und Q ∈ CD aufzuweisen hat, und ein Punktepaar (P2, Q2), welches
den größten Abstand hat. (In unserem Beispiel sind diese Punktepaare sogar eindeutig
bestimmt.)

Denken wir uns die in Abb. 1.1b angedeutete Kurve k und die Gerade g "bis ins
Unendliche fortgesetzt", so ergibt sich ein Kurvenpaar, für welches weder ein kleinster
noch ein größter Abstand zwischen ihren Punkten existiert.

Der folgende Trugschluss zeigt, dass wir schnell einem Fehler aufsitzen können, wenn
wir die Existenz eines Extremums einfach voraussetzen.
Nehmen wir einmal (fälschlicherweise!) an, es existiere eine größte natürliche Zahl n.
Dann lässt sich daraus herleiten, dass die größte natürliche Zahl die Zahl 1 ist:

Denn wäre n > 1, dann folgte nach Multiplikation mit n, dass n2 > n gilt, d. h., das
Quadrat der natürlichen Zahl n (welches nach den Rechenregeln für natürliche Zahlen
ja wieder eine natürliche Zahl ist) wäre noch größer als die größte Zahl. Das ist ein
Widerspruch.
Da von den beiden "restlichen" Zahlen 0 und 1 die Zahl 1 die größere ist, ist folglich 1
die größte natürliche Zahl. Dieser Trugschluss sollte uns zur Vorsicht mahnen!

Wir werden öfter auf das Existenzproblem zurückkommen, allerdings in vielen Beispie-
len die Existenz auch als "gesichert" voraussetzen. Ein aufmerksames und kritisches
Mitdenken unserer Leser ist uns sehr wichtig.

1.2 Aus der Geschichte der Extremalaufgaben
Die ersten uns überlieferten Extremwertaufgaben3 stammen aus den "Elementen" des
Euklid4, und Euklid lebte bereits im 4. Jh. v. u. Z. in Alexandria. Dort hatten die Ptole-
mäer ein wissenschaftliches Zentrum mit einer berühmten Bibliothek einrichten lassen,
es war die Zeit, in der sich der Typ des "berufsmäßigen Wissenschaftlers" entwickelte.

Weitere Extremwertuntersuchungen ergaben sich für die Mathematiker des Altertums
im Zusammenhang mit dem isoperimetrischen Problem. Die Aufgabe besteht darin, mit
einer Kurve vorgegebener Länge eine Fläche größtmöglichen Inhalts einzuschließen.
Der Sage nach soll Dido schon im 9. Jh. v. u. Z. bei der Gründung Karthagos eine
Aufgabe aus diesem Problemkreis intuitiv gelöst haben:

Dido kaufte von den Einwohnern an der nordafrikanischen Küste eine Stück Land, "nicht
größer als was eine Ochsenhaut umspannen kann". Sie zerschnitt die Ochsenhaut in
feine schmale Streifen, aus denen sie eine lange Schnur drehte, mit dieser grenzte sie

3Vgl. [7], S. 463.
4Euklid von Alexandria (etwa 365 bis etwa 300 v. u. Z.), griechischer Mathematiker.
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1.2 Aus der Geschichte der Extremalaufgaben

dann am Ufer des Mittelmeeres ihr erworbenes Land gegenüber dem anderen ab. Wel-
che Form wählte sie? Den Halbkreis (mit seinem Mittelpunkt am Ufer)!

Um 180 v. u. Z. zeigte Zenodoros:

(1.3) Von allen regelmäßigen n-Ecken gleichen Umfangs besitzt das mit der größten
Eckenzahl den größten Flächeninhalt, und der Kreis übertrifft noch alle regelmäßigen
n-Ecke gleichen Umfangs bezüglich der Fläche.5

Auch in der Natur bemerkte man das "Extremalprinzip". Pappos von Alexandria, der
etwa um 320 u. Z. gelebt hat, verbindet in seinem Hauptwerk "Collectio"6, in dem er
wesentliche Erkenntnisse seiner Zeit zusammenfasste, die Darstellung des isoperimetri-
schen Problems mit einem Exkurs über die Weisheit der Biene:

"Es ist offensichtlich, dass Gott dem Menschen die beste und vollkommenste Vorstellung
von der Weisheit im allgemeinen und der mathematischen Wissenschaft im speziellen
verliehen hat, aber ein Teil dieser Dinge wies er gleichwohl einigen der vernunftlosen
Tiere zu."

Nach Pappos trifft das insbesondere auf die Bienen zu, "... indem sie zunächst die
Süßigkeiten der schönsten Blumen einsammeln, die auf der Erde wachsen, machen sie
daraus, zur Aufnahme des Honigs, die Gefäße, die wir Honigwaben nennen, gleich alle
und alle aneinander stoßend und von sechseckiger Form. Und dass sie dies ersonnen ha-
ben vermöge einer gewissen mathematischen Voraussicht, können wir auf die folgende
Weise schlussfolgern.
Notwendigerweise mussten sie sich überlegen, dass die Figuren alle aneinanderstoßen,
d. h., dass sie gemeinsame Seiten haben müssen, damit kein fremder Stoff in die Zwi-
schenräume eindringen und so die Reinheit ihres Erzeugnisses entwürdigen könnte. Nun
gibt es nur drei geradlinig begrenzte Figuren, die dieser Bedingung genügen, ich meine
reguläre Figuren, die gleiche Seiten und gleiche Winkel besitzen; die Bienen nämlich
würden keine Figuren haben wollen, die nicht einheitlich sind ...

Da es mithin drei Figuren gibt, die fähig sind, den gesamten Raum um einen Punkt
auszufüllen, wählten die Bienen vermöge ihrer instinktiven Weisheit zur Konstruktion
ihrer Honigwaben diejenige Figur, die die meisten Winkel hat, weil sie sich ausdachten,
dass diese mehr Honig aufnehmen kann als jede der beiden anderen.
Mithin, die Bienen kennen genau die Tatsache - die ihnen selbst Nutzen bringt -, dass
das Sechseck (der Fläche nach) größer ist als das Quadrat und das Dreieck und mehr
Honig aufnehmen kann beim selben Aufwand an Material, das bei der Konstruktion der
verschiedenen Figuren gebraucht wird. Wir jedoch, die wir einen größeren Teil Weisheit
als die Bienen in Anspruch nehmen, wollen ein Problem von noch weiterer Ausdehnung
untersuchen, das nämlich, dass von allen ebenen Figuren mit gleichen Seiten und glei-
chen Winkeln, die den gleichen Umfang haben, dasjenige mit der größeren Winkelzahl
stets größer ist und dass die größte ebene Figur unter allen denjenigen, die einen mit
den Polygonen gleichen Umfang besitzen, der Kreis ist."7

5Vgl. [16], S. 147.
6nach [16], S. 204/205
7aus [16], S. 227/228
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1.2 Aus der Geschichte der Extremalaufgaben

Die Mathematik des Mittelalters ist vergleichsweise arm an Untersuchungen über Ex-
trema.

Die bedeutendsten Arbeiten über solche Probleme aus der Zeit vor der eigentlichen
Erfindung der Differentialrechnung stammen von Pierre de Fermat (1601-1665). Er
gehörte zu der um die damalige Zeit rasch zunehmenden Gruppe von Liebhabern und
Amateuren, die sich außerhalb der Universitäten mit den Wissenschaften beschäftig-
ten. Von Beruf war er Jurist, hatte aber wohl bei seinem Gerichtspräsidenten keinen
sehr guten Stand, da dieser die durch das große Interesse an der Mathematik bewirkte
Ablenkung von den Amtspflichten nicht gerade gern sah.
Die Nachwelt denkt anders darüber und wäre wohl froh, wenn sich Fermat noch mehr
Zeit für die Mathematik genommen hätte und z. B. statt seiner berühmten Randnotiz
zur Methode des Diophantos (bezüglich ganzzahliger Lösungen von Gleichungen) lieber
etwas ausführlich gewesen wäre.

Auch zu seiner Studie "Über Maxima und Minima" erhielt Fermat Anregungen aus der
antiken Mathematik. Neben interessanten Aufgaben mathematischer Art wird hier auch
das Wirken von Extremalprinzipien in der Natur behauptet. Wir werden noch öfter auf
das Fermatsche Prinzip der Optik zurückkommen:

(1.4) Das Licht wählt zwischen zwei Punkten stets den Weg, auf dem es die minimale
Zeit benötigt.8

Zur Lösung von Extremalaufgaben benutzte Fermat eine Methode, die schon in etwa der
der Differentialrechnung entspricht. Während Fermat sich aber nur auf die Ermittlung
von Extrema bzw. spezielle Funktionen (vgl. auch Abschnitt 5.1) bezieht, wird dann
von Newton und Leibniz die Differentialrechnung als eine umfassende und weitreichende
Methode entwickelt.

I. Newton (1643-1727) als der bedeutendste Physiker seiner Zeit sucht die Bewegung
eines Teilchens zu beschreiben, für welches die Zeit und die Lage im Raum die variablen
Größen sind. Newton spricht von den "fließenden Größen" und nennt daher seine von
ihm entwickelte Methode "Fluxionsrechnung".
In seinem Werk "Philosophiae naturalis principia mathematica" (1687) wendet er die
Fluxionsrechnung auf drei große Gebiete an, darunter die Ermittlung von Extremwer-
ten.9

G. W. Leibniz (1646-1716), eines der letzten Universalgenies, war immer auf der Suche
nach universellen Methoden. Sein Zugang zur Differentialrechnung war geometrischer
Natur (vgl. Abschnitt 5.1), die von ihm eingeführten Symbole verwenden wir heute
noch. Die Differentialrechnung erwies sich als außerordentlich fruchtbar für die Ent-
wicklung der gesamten Mathematik, sie erwies sich auch als eine sehr weitreichende
Methode bezüglich der Lösung von Extremalaufgaben, allerdings nicht als Universal-
methode.

8Dieses ist die am häufigsten anzutreffende Formulierung, exakt muss allerdings von einer extremalen
Zeit gesprochen werden. Man vgl. dazu etwa Grimsehl, Lehrbuch der Physik, Bd. III, Leipzig 1955,
S. 144.

9Vgl. [17], S. 180.
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1.2 Aus der Geschichte der Extremalaufgaben

1696 stellte Johann Bernoulli10 das "Brachystochronenproblem", welsches wiederum
ganz neue Lösungsideen erforderte (vgl. Abschnitt 5.2).
In den dreißiger Jahren unseres Jahrhunderts traten verstärkt solche Extremalprobleme
auf, die sich von den bis dahin bekannten vor allem durch die Vielzahl der Nebenbedin-
gungen unterschieden, ihre Behandlung erforderte auch neue Methoden, wir sprechen
von Optimierungsproblemen. Grundlegende Arbeiten dazu wurden u. a. von dem sowje-
tischen Mathematiker L. V. Kantorovic11 veröffentlicht. Die Lösung von Optimierungs-
aufgaben bringt z. B. in der Wirtschaft großen Nutzen. Viele Optimierungsaufgaben
werden im Alltag aber noch gefühlsmäßig behandelt, z. B.:

(1.5) Es ist ein Stundenplan so zu gestalten, dass alle Schüler pro Tag ohne Freistunden
6 Stunden unterrichtet werden und einige weitere Nebenbedingungen über die Reihen-
folge von Stunden zu erfüllen sind (die man noch exakt formulieren müsste).

a) Wie muss dieser Plan aufgestellt werden, damit die Gesamtzahl der Freistunden aller
Lehrer am kleinsten wird?
b) Wie muss dieser Plan aufgestellt werden, damit das Maximum der Freistunden eines
jeden Lehrers minimal wird?

Nach diesem kurzen historischen Abriss ahnt man vielleicht auch, dass die Extremalauf-
gaben nicht nur als interessante Aufgaben innerhalb einer wirksamen Theorie auftreten,
sondern dass sie ursprünglich als Probleme, die die Praxis stellte, vor solchen Theorien
existierten und einen wesentlich fördernden Einfluss auf die Entwicklung entsprechender
Theorien und Methoden hatten.

10J. Bernoulli (1667-1748), Schweizer Mathematiker, wirkte in Genf, Paris, Groningen und Basel.
11Leonid V. Kantorovic, geb. 1912, Prof. in Leningrad.
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2.1 Streckenzüge kürzester Länge in der Ebene

2 Geometrische Extremwertaufgaben
2.1 Streckenzüge kürzester Länge in der Ebene

Habe einen guten Gedanken,
man borgt dir zwanzig.

M. v. Ebner-Eschenbach

"Von allen Linienstücken, die gleiche Endpunkte haben, ist die gerade Linie die Kürzes-
te" formulierte Archimedes. Diese Erkenntnis finden wir auch im Fermatschen Prinzip
der Optik wieder: Ist der Raum mit einem einheitlichen (homogenen) lichtdurchlässigen
Stoff gefüllt, so breitet sich das Licht in diesem Raum geradlinig aus.

Man könnte zunächst der Meinung sein, dass sich mit diesem einfachen Grundprinzip
nur sehr einfache Sachverhalte betrachten lassen. Die Behandlung der folgenden Pro-
bleme zeigt, dass man die obige Archimedische Erkenntnis günstig anwenden kann.

(2.1) Bei einem Staffelwettbewerb soll jeder Läufer vom Start S zu einer Wand w lau-
fen, dort anschlagen, weiter zum Mal M und von dort zurück nach S (siehe Abb. 2.1
a). An welcher Stelle muss er die Wand w berühren, damit sein Gesamtweg möglichst
klein wird?

Abb. 2.1

Bei dieser Aufgabe können wir die Strecke MS, deren Länge ja unabhängig von der
Lage von P ist, aus den Überlegungen ausklammern. Es interessiert nur die Länge des
Streckenzuges SPM .
Wenn sich das Fermatsche Prinzip übertragen lässt, dann müsste der Läufer sich so
bewegen, wie das Licht, das von S über eine spiegelnde Wand w nach M gelangt, d.
h., der Läufer müsste sich bis zur Wand w geradlinig auf das durch Spiegelung an w
erzeugte Bild M ′ von M zu bewegen!

Wir wollen diese Idee zu einem mathematisch einwandfreien Beweis gestalten:

IstM ′ das Bild vonM bei der Spiegelung an w, so gilt für jeden Punkt P ∈ w auf Grund
der Eigenschaften der Geradenspiegelung |PM | = |PM ′| und folglich |SP ] + |PM | =
|SP | + |PM ′|.
Für die Streckenzüge SPM ′ sind aber S und M ′ feste Punkte. Nach Archimedes ist
daher die "gerade Linie" von S nach M ′ über w die Kürzeste, d. h., der kürzeste
Streckenzug geht über denjenigen Punkt P0 ∈ w, der Schnittpunkt der Geraden gSM ′

mit w ist.
(Wir müssen also noch voraussetzen, dass die Wand w auch so lang ist, dass stets ein
solcher Schnittpunkt existiert.)

Eine Begründung kann auch mit Hilfe der Dreiecksungleichung gegeben werden: Wäre
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2.1 Streckenzüge kürzester Länge in der Ebene

P ein von P0 verschiedener Punkt auf w, dann würden S, P , M ′ ein Dreieck bilden,
und nach der Dreiecksungleichung wäre |SP | + |PM ′| > |SM ′| = |SP0| + |P0M

′|
(Abb. 2.1b).

Im Punkt P0 gilt übrigens wirklich das Reflexionsgesetz. Die Winkel mit den Größen α
und β′ (siehe Abb. 2.1 b) sind Scheitelwinkel, also ist α = β′. Nach den Eigenschaften
der Geradenspiegelung ist β′ gleich β; also stimmen auch α und β und damit der
"Einfallswinkel" α und der "Reflexionswinkel" β überein.

Wir wollen noch kurz bei den aufgezeigten geometrischen Sachverhalten verweilen.
Für alle von P0 verschiedene Punkte P auf der Geraden w gilt |SP |+ |PM | > |SP0|+
|P0M | (*).
Die Menge der Punkte Q, für die die Summe der Abstände zu S und M konstant und
gleich der Summe |SP0| + |P0M | ist, bildet eine Ellipse E, die durch P0, geht und bei
der S und M die Brennpunkte sind.12 (Abb. 2.1 c).

Auf Grund der Ungleichung (*) ist P0 der einzige gemeinsame Punkt der Geraden w
mit der Ellipse E, und damit ist w eine Tangente von E. Da nach unseren bisherigen
Darlegungen das Lot zu w durch P0 den Winkel SP0M halbiert, wird der Lichtstrahl
von S nach P0 so an der Ellipse reflektiert, dass er durch M geht.
Man erkennt nun, dass dies für jeden von S ausgehenden Lichtstrahl gilt, wenn man
die Ellipsentangente durch denjenigen Punkt legt, bei dem der Strahl von S aus auf
die Ellipse trifft (Abb. 2.1 c). Damit ist die Bezeichnung "Brenn"-Punkt für S und M
verständlich.

Abb. 2.2

Auch die nächste, unserem täglichen Leben entnommene Aufgabe hat mit Spiegeln zu
tun. An der Wand hängt ein Spiegel, in dem sich ein aufrecht stehender Mann mit der
Augenhöhe von a cm betrachtet. Das untere Ende des Spiegels sei h1 cm, das obere
Ende h2 cm über dem Fußboden; entsprechend der Realität können wir h1 < a < h2
annehmen. Der Mann stellt fest, dass er sich nicht ganz bis zu seinen Füßen betrachten
kann.

(2.2) Bei welchem Abstand vom Spiegel kann er den größten Teil seines Körpers im
Spiegel sehen?

Eine Spiegelung zeigt, dass sich der Mann bei gleicher Augenhöhe unabhängig vom
Abstand zum Spiegel immer nur von einer bestimmten Höhe an sehen kann. Der nicht
sichtbare Teil hat die konstante Höhe a− 2(a− h1) = 2h1 − a cm (Abb. 2.2).
Von diesem überraschenden Effekt kann man sich leicht durch einen Versuch überzeu-
gen.
12Zum Verständnis genügt, sich über die übliche Ortsdefinition einer Ellipse an Hand von Nachschla-

gewerken oder Kompendien zu informieren, z. B. [5], S. 192ff.
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2.1 Streckenzüge kürzester Länge in der Ebene

Bei der nächsten Aufgabenstellung helfen uns Spiegelungen an mehreren Geraden wei-
ter.

(2.3) Im Innern eines spitzen Winkels mit dem Scheitel S und den Schenkeln p und q
liege ein Punkt R. Man konstruiere zwei Punkte P0 ∈ p und Q0 ∈ q derart, dass der
Streckenzug RP0Q0R unter allen Streckenzügen RPQR mit P ∈ p und Q ∈ q mini-
male Länge hat. (Dabei gilt S /∈ p, q; dies ist eine vielfach zweckmäßige und übliche
Auffassung.)

Eine Lösung ergibt sich schnell, wenn wir entsprechend der Lösung von (2.1) zwei Re-
flexionen nutzen:

Die Spiegelbilder Rp und Rq des Punktes R bei der Spiegelung an p bzw. q sind fest;
also ist die kürzeste Verbindung zwischen beiden Punkten die Strecke RpRq. Diese
schneidet die Schenkel p in P0, und q in Q0. Dass RP0Q0R der gesuchte Streckenzug
minimaler Länge ist, folgt nun wiederum aus der Invarianz der Länge beim Spiegeln.
Doch halt! Ist unsere Lösung einwandfrei? Warum wurde in der Aufgabenstellung ein
spitzer Winkel vorausgesetzt?

Abb. 2.3
Abb. 2.3a suggeriert uns zwar die Existenz der Punkte P0, und Q0 bewiesen ist sie aber
noch nicht!

Nun gilt aber wegen der Invarianz der Winkelgrößen bei Spiegelungen |∠SR+, p| =
|∠SRp+, p| und |∠SR+, q <= |∠SRq+, q|. Da ∠p, q spitz ist, liegen nun p und q im
Innern des Winkels RpSRq. Folglich schneidet die Strecke RpRq tatsächlich die Halb-
geraden p und q.

Wir sind auf diese Existenzfrage darum so ausführlich eingegangen, weil die Existenz
eines Extremums keine Selbstverständlichkeit ist. Ein einfaches Beispiel mag das ver-
deutlichen.

(2.4) Gegeben sei eine Strecke AB. Man ermittle eine Strecke PQ größter Länge, deren
Endpunkte im Innern von AB liegen.

Eine solche Strecke gibt es nicht! Denn sind P0, Q0 verschiedene Punkte im Innern von
AB und liegt - was wir o. B. d. A. annehmen können - der Punkt P0 zwischen A und
Q0, dann gibt es einen Punkt P1 zwischen A und P0, und es gilt |P1Q0| > |P0Q0|. Das
heißt, zu jeder Strecke kann eine längere angegeben werden, deren Endpunkte ebenfalls
innere Punkte von AB sind.

In der Aufgabe (2.3) hatten wir zum Existenznachweis des Minimums die Spitzwinklig-
keit benutzt. Damit ist zunächst nicht gesagt, dass diese Voraussetzung dafür notwendig

12



2.1 Streckenzüge kürzester Länge in der Ebene

ist.

(2.5) Man untersuche die Aufgabenstellung aus (2.3) unter der Voraussetzung, dass
der Winkel ∠p, q ein rechter oder stumpfer ist.

Zur Lösung sei zunächst ∠p, q rechtwinklig. Dann liegt S in der Strecke RpRq; der
Punkt S ist sogar der Mittelpunkt dieser Strecke. Zu jedem Streckenzug RpP0Q0Rq

mit P0 ∈ p und Q0 ∈ q gibt es aber offenbar einen Punkt P1 zwischen S und P0
oder einen Punkt Q1 zwischen S und Q0 derart, dass der neue Streckenzug RpP1Q0Rq

oder RpP0Q1Rq kürzer als der alte ist (Abb. 2.3b). Es gibt also keinen Streckenzug
minimaler Länge.

Ist ∠p, q stumpfwinklig, dann liegen R, p und q nicht im Innern des Winkels ∠RpSRq,
und man erkennt in entsprechender Weise, dass kein Minimum existiert.

(2.6) • Im Innern eines Winkels ∠p, q liegen voneinander verschiedene Punkte A und
B. Man ermittle Punkte P0 ∈ p und Q0 ∈ q derart, dass der Streckenzug AP0Q0B
unter allen Streckenzügen dieser Art minimale Länge hat.

Für welche Größen des Winkels ∠p, q gibt es einen minimalen Streckenzug? Ändern sich
die Ergebnisse, wenn wir neben den Streckenzügen APQB die Streckenzüge AQPB
mit P ∈ p und Q ∈ q in die Betrachtung einbeziehen?

An die Aufgabe (2.3) lässt sich nun vorteilhaft eine Aufgabe anschließen, die in die
Aufgabengruppe über einbeschriebene Figuren mit extremalen Eigenschaften gehört.

(2.7) Gegeben ist ein spitzwinkliges Dreieck ABC. Diesem Dreieck ist ein Dreieck
P0Q0R0 so einzubeschreiben, dass es unter allen einbeschriebenen Dreiecken PQR ei-
nes mit minimalem Umfang ist. ("Einbeschrieben" bedeutet dabei, dass die Eckpunkte
auf dem Rand des vorgegebenen Dreiecks liegen.)

Unter allen möglichen Lösungswegen ergibt sich einer aus den Überlegungen zu (2.3).
Es sei R ein beliebiger, aber festgehaltener Punkt auf der Seite AB (Abb. 2.4a). Wir
konstruieren zu diesem festen Punkt R zwei Punkte P ′ ∈ CB+ und Q′ ∈ CA+ wie in
der Aufgabe (2.3) so, dass der Umfang des Dreiecks RP ′Q′ möglichst klein wird.

Abb. 2.4

Auf Grund der Spitzwinkligkeit des Dreiecks ABC sind P ′ und Q′ innere Punkte von
CB bzw. CA. Jetzt müssen wir noch untersuchen, wie sich der Umfang aller solcher
Dreiecke bei Veränderung der Lage des Punktes R auf der Seite AB ändert.
Der Umfang ist aber gerade die Länge der Strecke RaRB (Abb. 2.4a). Diese Strecke
ist eine Seite des Dreiecks RaCRb. Was verändert sich mit R an diesen Dreiecken, was
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bleibt unverändert?

Alle diese Dreiecke sind gleichschenklig, denn es gilt auf Grund der Spiegelungen
|CRa| = |CR| = |CRb|; alle diese Dreiecke haben bei C einen gleichgroßen Win-
kel, nämlich einen mit der Größe 2γ. (Siehe Lösung zu (2.3)!)
Für alle diese gleichschenkligen Dreiecke wird die Basis um so kleiner, je kleiner die
Länge der Schenkel, also |CR| ist.

Die Länge von CR ist aber genau dann minimal, wenn R der Fußpunkt des Lotes von
C auf die Seite AB ist. Wegen der 22 2. Geometrische Extremwertaufgaben Spitzwink-
ligkeit ist dieser Fußpunkt ein innerer Punkt der Strecke AB.
Ein Dreieck P0Q0R0 der gesuchten Art ergibt sich also genau dann, wenn R0 Höhen-
fußpunkt auf AB ist und die Punkte P0 und Q0 wie in (2.3) konstruiert werden.

Nun hätte man aber auch die gleiche Überlegung von einem zunächst fest gewählten
Punkt P ∈ BC aus anstellen können und wäre zu dem Ergebnis gekommen, dass P0
Höhenfußpunkt auf BC ist. Das gesuchte Dreieck ist also das Höhenfußpunktdreieck.13

Da in den Punkten P0, Q0 und R0 das Reflexionsgesetz erfüllt ist und die Höhen im
Dreieck ABC die Einfallslote darstellen, folgt aus unserer Überlegung noch:

(2.8) Die Höhen eines spitzwinkligen Dreiecks sind gleich den Winkelhalbierenden im
zugehörigen Höhenfußpunktdreieck (Abb. 2.4 b).

Zur Lösung der nächsten Aufgaben, die wir dem Leser empfehlen, können die bisherigen
Darlegungen sehr nützlich sein.

(2.9) • Man beschreibe einem Quadrat ein Quadrat minimalen Umfangs ein.

(2.10) • Im Innern eines Rechtecks ABCD liege ein Punkt O. Man bestimme unter
allen Streckenzügen OPQRSO mit P ∈ AB, Q ∈ BC, R ∈ CD, S ∈ DA einen
solchen minimaler Länge.

Die Lösung der letzten Aufgabe führt übrigens auch auf eine Lösung folgender Billard-
Aufgabe:

(2.10’) • Auf einem rechteckigen Billardtisch liegt eine Kugel. Wie ist diese zu stoßen,
damit sie jede Bande genau einmal berührt und danach zum Ausgangspunkt zurück-
rollt?

Neben den Geradenspiegelungen sind auch andere Bewegungen zur elementaren Lö-
sung von Extremwertaufgaben über Streckenzügen nützlich. Das wollen wir an einigen
Beispielen demonstrieren.

(2.11) Gegeben seien ein Streifen mit parallelen Randgeraden c und d sowie zwei Punkte
A und. B, die durch den Streifen voneinander getrennt liegen (Abb. 2.5). Man bestim-
me solche Punkte C ∈ c und D ∈ d, für die gCD ⊥ c ist und der Streckenzug ACDB

13Die Aufgabe (2.7) stammt von dem Italiener J. F. Fagano, und die von uns angegebene Lösung
entspricht weitgehend einer von Frater Gabriel-Marie, dem Verfasser des bedeutenden Buches
"Exercices de Geometrie".
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kleinste Länge hat.

Abb. 2.5

Diese Aufgabenstellung kann man sich wie folgt veranschaulichen: Auf zwei Seiten eines
breiten (geradlinig verlaufenden) Flusses liegen zwei Orte A und B. An welcher Stelle
des Flusses ist senkrecht zu seinen Ufern eine Brücke anzulegen, damit die Orte auf
dem kürzesten Wege verbunden werden können?

Zur Lösung betrachten wir zunächst zwei beliebige Punkte C ∈ c und D ∈ d mit
gCD ⊥ c (Abb. 2.5). Gedanklich können wir die Reihenfolge der Teilwege AC, CD und
DB vertauschen; gehen wir also zuerst von A aus einen CD entsprechenden Weg.
Das bedeutet, dass wir die Verschiebung −−→

CD auf A anwenden; sie bildet A auf einen
Punkt E ab (Abb. 2.5). Es ist |AC| = |ED|. Die Summe |AC|+ |DB| ist nun minimal
genau dann, wenn das für |ED| + |DB| zutrifft.

Der Punkt E liegt mit B auf verschiedenen Seiten von der Geraden d. Folglich schneidet
d die Strecke EB in einem Punkt D0, und ED0B ist unter allen Streckenzügen EDB
mit D ∈ d derjenige mit minimaler Länge.
Mit dem Bild C0 von D0 bei der Verschiebung −−→

DC erhalten wir nun offensichtlich die
Lösung AC0D0B der Aufgabe.

(2.12) Gegeben sei ein spitzwinkliges Dreieck ABC. Gesucht ist die Menge aller Punkte
P im Innern des Dreiecks, für die die Abstandssumme |AP | + |BP | + |CP | minimal
wird.

Die größere Schwierigkeit gegenüber den vorangegangenen Problemstellungen besteht
insbesondere darin, dass es sich diesmal nicht um einen Streckenzug handelt; die Stre-
cken gehen von einem Punkt aus. Um Anschluss an die Archimedische Formulierung zu
gewinnen, wäre ein Streckenzug mit festen Endpunkten und gleicher Länge zu finden.
Wir müssten also z. B. versuchen, die Strecke AP "zwischen BP und CP einzufügen".
Das schafft eine Drehung um A mit 60◦! (Vgl. Abb. 2.6.).

Abb. 2.6

Ist ρ eine Drehung um A mit 60◦, dann gilt |AP | = |PP ρ|, und damit ist die Stre-
cke AP "eingefügt". Der Streckenzug BPP ρCρ hat die Länge |AP | + |BP | + |CP |.
Überdies sind seine Endpunkte B und Cρ unabhängig von der Lage des Punktes P im
Innern des Dreiecks. Also muss P so gewählt werden, dass P und P ρ auf der Strecke
BCρ liegen, um Minimalität zu erreichen.
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Also muss notwendigerweise |∠CρP ρP | = |∠P ρPB| = 180◦ und wegen der Gleichsei-
tigkeit des Dreiecks APP ρ dann |∠APB| = 120◦ und |∠AP ρCρ| = |∠APC| = 120◦

und damit auch |∠PBC| = 120◦ sein.
Wenn es also Punkte P der gesuchten Art gibt, dann sind es diejenigen, von denen aus
jede der Dreiecksseiten unter einem Winkel von 120◦ erscheinen, bzw. diejenigen, die
"nach den Ecken einen regelmäßigen Dreistrahl senden", wie es etwas altmodisch, aber
anschaulich bei Sturm in [14], S. 58, heißt.

Konstruiert man über AC und BC nach außen jeweils ein gleichseitiges Dreieck und die
dazugehörigen Umkreise, so muss P nach dem Peripheriewinkelsatz auf diesen Kreisen
und außerdem im Innern des Dreiecks liegen. Ist der Winkel bei C - wie vorausgesetzt -
ein spitzer Winkel, so schneiden sich (wie man sich leicht überlegt) die beiden Umkreise
(außer in C noch) in einem Punkt P im Innern des Dreiecks.
Dieser Punkt P hat die oben beschriebenen Eigenschaften. Es existiert also ein solcher
Punkt P , und zwar eindeutig.

(2.13) • a) Ändert sich die Lösung der Aufgabe (2.12), wenn wir uns nicht auf die
inneren Punkte des Dreiecks beschränken?
b) Ändert sich die Lösung der Aufgabe (2.12), wenn wir die Voraussetzung der Spitz-
winkligkeit fallen lassen?

Die Aufgabe (2.12) ist eine der "strapaziertesten" Extremwertaufgaben. Sie ist schon
in der von Fermat 1629 veröffentlichten "Abhandlungen über Maxima und Minima"
enthalten.
Über Martin Mersenne gelangte sie - ohne Lösung - in die Hände der Galilei-Schüler
Cavalieri, Torricelli und Viviani. Nach Torricelli nennt man heute auch noch den Punkt
P den Torricellischen Punkt.

Im 19. Jh. beschäftigte sich auch der berühmte Geometer Jakob Steiner (1796-1863) in
seiner umfangreichen Abhandlung "Über Maximum und Minimum in der Ebene, auf der
Kugelfläche und im Raum überhaupt" mit dieser Aufgabe. Es ist nicht überraschend,
dass es sehr viele verschiedene Lösungen zu dieser Aufgabe gibt; in [12] findet man
eine weitere (und ein räumliches Analogon), auf eine andere kommen wir später noch
zu sprechen.

Wiederum regt eine solche Aufgabe an, ähnliche zu formulieren und zu untersuchen.
Wenn wir nun in der Aufgabe (2.12) das Dreieck durch ein n-Eck oder die Summe
durch eine Differenz ersetzen?

(2.14) • Gegeben ist in einer Ebene ε ein konvexes Viereck ABCD. Gesucht ist die
Menge aller Punkte P ∈ ε, für die die Abstandssumme |AP | + |BP | + |CP | + |DP |
minimal wird.

Ersetzt man in (2.14) das Viereck durch ein konvexes n-Eck (mit n ≥ 5), so lassen
sich im allgemeinen nur Näherungslösungen ermitteln. (Vgl. auch Abschnitt 3.4.)

(2.15) • Es sei ABC ein gleichseitiges Dreieck. Gesucht ist die Menge derjenigen
Punkte P , für die die Größe s = |AP | + |BP | − |CP | minimal wird.
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2.2 Kürzeste Streckenzüge und Linien im Raum
Fundament des zu Erreichenden

muss Erreichtes sein.
J. Brežan

Einige Problemstellungen und Aufgaben aus Abschnitt 2.1 lassen sich auf den Raum
übertragen, und es zeigt sich, dass gewisse Fragen hinsichtlich kürzester Streckenzüge
im Raum analog zu denen der ebenen Geometrie betrachtet werden können.
Ein Beispiel ist folgende Aufgabe

(2.16) Gegeben seien eine Ebene ε und zwei Punkte A und B, die im gleichen Halbraum
bezüglich ε liegen. Man bestimme diejenigen Punkte P ∈ ε, für die die Abstandssumme
|AP | + |PB| minimal ist.

Eine dazu analoge Aufgabenstellung in der ebenen Geometrie ist (2.1). Dort erzielten
wir eine Lösung mit Hilfe der Spiegelung an der Geraden w. Analog spiegeln wir hier
nun den Punkt B an der Ebene ε. Das Bild B′ und A liegen dann in verschiedenen
Halbräumen bezüglich ε, und deshalb schneidet ε die Strecke AB′ in einem Punkt P0
(Abb. 2.7).
Für jeden Punkt P ∈ ε gilt |PB| = |PB′| und damit |AP | + |PB| = |AP | + |PB′|.
Diese Längensumme ist nach der Dreiecksungleichung offensichtlich für den Fall P = P0
und nur für diesen minimal.

Abb. 2.7

Errichtet man auf ε in P0 das Lot, so liegt dieses zusammen mit den Punkten B, B′ und
A in einer gemeinsamen Ebene, in der nun wieder das "Reflexionsgesetz" ersichtlich ist
(Abb. 2.7).

Eine neue Frage entsteht, wenn wir in der Aufgabe (2.16) die Ebene durch eine Gerade
g ersetzen. Damit ein räumlicher Sachverhalt vorliegt, sollen A, B und die Gerade
g nicht in einer gemeinsamen Ebene liegen. Um eine einfache Veranschaulichung zu
ermöglichen, betrachten wir folgende konkrete Vorgabe

(2.17) Es sei ABCDEFGH ein Würfel. Man bestimme diejenigen Punkte P auf der
Geraden g = gEG, für die |AP | + |PB| minimal wird.

Dem Leser wird empfohlen, sich einen Schrägriss des Würfels vorzugeben und darin die
folgenden Überlegungen zur Lösung konstruktiv nachzuvollziehen. (Man kann dabei
sein räumliches Vor- und Darstellungsvermögen überprüfen.)

Es liegt nahe, auch hier die Aufgabenstellung in geeigneter Weise auf die kürzeste
Verbindung zweier Punkte zurückzuführen. Dies gelingt in diesem Fall aber nicht mit
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einer Spiegelung an der Geraden g. Hier hilft eine andere Bewegung des Raumes weiter.
Die Gerade g bildet den Rand zweier Halbebenen L und K, die den Punkt A bzw. B
enthält (Abb. 2.8 a).

Abb. 2.8

Nun kann durch eine Drehung um die Gerade g die Halbebene K in die zu L entge-
gengesetzte Halbebene L− übergeführt werden. Dabei ist |PB| = |PB′| für das Bild
B′ von B und für jeden Punkt P ∈ g. Nun ist nach dem gleichen Schluss wie bei der
Lösung von (2.1) der Schnittpunkt P0 von g mit AB′ der gesuchte Punkt.

Es lässt sich zeigen, dass die Winkelhalbierende w des Winkels ∠AP0B eine Senkrechte
zu der Geraden g durch P0 ist. Die zu w senkrechte Ebene η durch P0 enthält dann
die Gerade g.
Folglich wird der Lichtstrahl von A aus nach P0 so an der Ebene η reflektiert, dass er
weiter durch B geht.

In der Praxis lässt sich dieser Reflexionseffekt z. B. gut an blanken Fahrradspeichen
beobachten. Die Speiche besitzt auf Grund ihrer Dicke eine reflektierende Oberfläche,
die ausreicht, die Reflexion einer (punktförmigen) Lichtquelle zu beobachten. Besonders
deutlich sichtbar wird das bei einer Rotation des Rades.

Ausgehend von (2.17) stellt sich noch folgende Extremwertaufgabe

(2.18)∗ Es seien A, B zwei Punkte und g eine Gerade, die in keiner gemeinsamen
Ebene liegen. Für welche Punkte C im Innern der Strecke AB gibt es einen kürzesten
Streckenzug von A über einen Punkt der Geraden g nach C?

Wir gehen von den Überlegungen zur Lösung der Aufgabe (2.17) aus. (Siehe nochmals
Abb. 2.8a.) Zur Bestimmung des kürzesten Streckenzuges von A über einen Punkt auf
g nach einem beliebig vorgegebenen Punkt C auf der Verbindungsgeraden h der Punkte
A und B ist der Punkt C durch eine Drehung um die Gerade g in die Halbebenen H−

überzuführen.
Die Menge der so erhaltenen Bildpunkte C ′ kann keine Gerade sein. Eine solche Gerade
müsste entweder zu g parallel sein oder g schneiden. Im ersten Fall hätten alle Punkte
von h den gleichen Abstand zu g, und im zweiten Fall gäbe es einen Punkt auf der
Geraden h, der auf g liegt. Beide Fälle widersprechen der Voraussetzung, dass die
Geraden g und h = gAB windschief zueinander sind.

Welche Gestalt hat nun die Menge der Bilder C ′? Bei der Drehung der zu g windschiefen
Geraden h um die Gerade g entsteht ein einschaliges Hyperboloid14 mit der Achse g.
14Näheres findet man in leicht zugänglichen Fachbüchern, etwa [5], S. 199 und S. 597
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Der Schnitt dieser Fläche mit der Halbebene H− ergibt einen Ast einer Hyperbel (Abb.
2.8 b).

Bekanntlich gibt es genau zwei Punkte S ∈ h und R ∈ g, die den kürzesten Abstand je
zweier Punkte dieser Geraden bilden.. (Siehe etwa [12]) Für sie ist gRS ⊥ g, h. Demnach
ist das Bild S′ von S der Scheitel des Hyperbelbogens und R der Fußpunkt des Lotes
von S′ auf g (Abb. 2.8 b).
Die Aufgabe (2.18) besitzt also genau dann eine (und dann eindeutig bestimmte) Lö-
sung, wenn unter den Punkten auf dem Hyperbelbogen zwischen den Bildern A′ und
B′ von A und B ein Punkt mit dem kürzesten Abstand zu dem Punkt A existiert.

Beziehen wir die Aufgabe (2.18) auf die speziellen Vorgaben in (2.17), also g = gEG

und h = GAB, dann lässt sich auch ohne diese Betrachtungen eine Antwort rasch fin-
den.

Man kann aber auch von ebenen Problemstellungen ausgehen und durch Analogiebe-
trachtungen zu räumlichen gelangen. Wir wollen einmal die Aufgabe (2.6) entsprechend
variieren.
Anstelle des Winkels ∠p, q könnten zwei Halbebenen K und L mit gemeinsamer Rand-
geraden gewählt werden, die Punkte A und B wären durch zwei Punkte M und N im
Raum zu ersetzen. Spezialisieren wir nun diese sehr allgemeine Situation wiederum, so
gelangt man z. B. zu der folgenden Aufgabe.

Abb. 2.9

(2.19) Es sei ABCDEFGH ein Würfel, und K bzw. L seien diejenigen Halbebenen
mit der Randgeraden gAD, die den Punkt E bzw. B enthalten. Ferner seien M und N
die Mittelpunkte der Strecken EF bzw. CG.
Man ermittle Punkte R0 ∈ K und S0 ∈ L derart, dass der Streckenzug MR0S0N
unter allen Streckenzügen dieser Art minimale Länge hat. (Wir empfehlen dem Leser,
die Überlegungen zur Lösung schrittweise in einem Schrägriss konstruktiv darzustellen.)

Zur Lösung benutzen wir Analogiebetrachtungen. Wie in der Lösung zu (2.6) spiegeln
wir, jetzt aber M an der Ebene εADE und N an der Ebene εADB und erhalten die
Bildpunkte MK und NL (Abb. 2.9).
Für alle Punkte R ∈ K und S ∈ L gelten |MR| = |MKR| sowie |SN | = |SNL|.
Schneidet die Strecke MKNL die Halbebenen K und L in Punkten R0 und S0, dann ist
nun offenbar MR0S0N der gewünschte Streckenzug. Man überzeugt sich selbst davon,
dass diese Schnittpunkte hier existieren; sie lassen sich im Schrägriss leicht konstruieren
(Abb. 2.9).
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2.2 Kürzeste Streckenzüge und Linien im Raum

Wer Spaß daran findet, kann nun selbst räumliche Problemstellungen aus ebenen ab-
leiten.

Ein weiterer Aufgabentyp entsteht, wenn man nach kürzesten Wegen auf Oberflächen
von Körpern fragt, eine Problemstellung, die durchaus von großem praktischen Inter-
esse sein kann. Möchte jemand auf unserer Erde von Berlin nach Hanoi gelangen, so
interessiert kaum der kürzeste Weg durch unsere Erde hindurch, sondern wohl der auf
der Erdoberfläche.
Wir beginnen aber mit einer sehr viel einfacheren Aufgabe:

(2.20) Auf einem Würfel ABCDEFGH bestimme man die kürzesten Wege von A
nach G.

Abb. 2.10

Der geschlossene Streckenzug BCDHEFB zerlegt die Oberfläche des Würfels so
in zwei Teile, dass in jedem genau einer der Punkte A und G liegt (Abb. 2.10 a).
Folglich enthält jeder Weg auf der Oberfläche von A nach G einen Punkt P dieses
Streckenzuges.
Unter allen Wegen, die speziell über einen Punkt P der Strecke BC verlaufen, ist der
Streckenzug AP0G mit dem Mittelpunkt P0 von BC der kürzeste. Die Seitenflächen
ABCD und FBCG haben nämlich die Kante BC gemeinsam, und beide lassen sich
(durch eine Drehung um gBC) verebnen (Abb. 2.10 b). Dabei bleiben Weglängen inva-
riant.

Nun ergibt der Schnittpunkt P0 der Geraden durch A und G1, mit der Strecke BC,
also der Mittelpunkt dieser Strecke tatsächlich den kürzesten Weg.
Er hat die Länge a

√
5, wenn a die Kantenlänge des Würfels ist. - Entsprechendes gilt für

die Mitten der übrigen fünf Strecken von BCDHEFB. Es gibt also sechs Streckenzüge
als Kürzeste.

(2.21) • Man beantworte für einen Quader ABCDEFGH mit den Kantenlängen
|AB| = a, |AD| = b und |AE| = c, für die a < b < c gilt, die in (2.20) formulierte
Frage.

(2.22) • Es sei ABCDEFGH ein Würfel, und P sei
a) der Mittelpunkt der Seitenfläche ABCD bzw.
b) der Mittelpunkt der Kante AB.
Man bestimme diejenigen Punkte auf der Oberfläche des Würfels, die bezüglich der
Längenmessung auf der Oberfläche am weitesten von P entfernt sind.

Geschenkpackungen sind mitunter durch eine goldfarbene Gummischnur zur Zierde
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2.2 Kürzeste Streckenzüge und Linien im Raum

eingebunden. Eine solche Packung können wir als quaderförmig annehmen. Ferner neh-
men wir an, dass der Gummifaden nur einmal mit sich geknotet ist, also im ganzen
eine einzige Schleife bildet. Auf Grund seiner Elastizität wird der Gummifaden eine Lage
minimaler Länge einnehmen.
(Von Haftreibung wollen wir gänzlich absehen.)
Dann stellt sich hier offenbar wieder die Frage nach einem Streckenzug minimaler
Länge.

(2.23) Welche Lagen kann ein geschlossener Gummifaden einnehmen, der um einen
Würfel liegt, ohne sich zu überschneiden?

Der Würfel sei dabei als ideal glatt angenommen und die Elastizität des Gummifadens
so groß, dass dieser sich sogar auf einen Punkt zusammenziehen kann.
Zunächst ist einsichtig, dass der Gummifaden nicht allein auf drei Würfelseiten, al-
so auf drei paarweise benachbarten Seitenflächen liegen kann. Er würde sich auf die
gemeinsame Würfelecke zusammenziehen.

Abb. 2.11

Soll der Faden über vier Würfelseiten laufen, so kommen offenbar nur solche Seiten
in Betracht, die bei der Auffassung des Würfels als viereckiges gerades Prisma eine
Mantelfläche darstellen.
Eine solche Mantelfläche lässt sich in die Ebene abwickeln (Abb. 2.11 a). Der kürzeste
Streckenzug auf dieser Mantelfläche von einem Punkt P einer Kante, etwa AE, nach
P zurück muss parallel zu den Kanten der Grund- und Deckfläche verlaufen.
Es gibt drei verschiedene Sorten einer derartigen Lage des Gummifadens. Insgesamt
gibt es durch jeden (inneren) Punkt einer Seitenfläche des Würfels genau zwei derartige
Lagen des Gummifadens (Abb. 2.11 b).
Dies sind nicht alle Lagen!

Da man einen Würfel ABCDEFGH so mit einer Ebene schneiden kann, dass ein
Sechseck entsteht - etwa durch die Mitten der Kanten BC, CD, DH, HE, EF und
FB - , scheint eine Lage des Gummifadens mit minimaler Länge über alle Seitenflächen
des Würfels möglich.
In der Tat zeigt ein Netz des Würfels in der Art wie in der Abb. 2.11c, dass eine
solche Lage gerade bei einem Verlauf des Gummifadens parallel zu Diagonalen der
Seitenflächen eintritt. Demnach gibt es durch jeden (inneren) Punkt einer Seitenfläche
genau zwei derartige Lagen des Gummifadens. Er hat dabei die Länge 3

√
2a (> 4a).

Damit ist die Aufgabe (2.23) vollständig gelöst.

(2.24) • Man löse die in (2.23) gestellte Aufgabe für einen Quader mit verschieden
langen Kanten.
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Die Aufgaben (2.20) bis (2.24) konnten durch Verebnung, also auf Grund der mögli-
chen Abwicklung der Oberfläche des betrachteten Körpers in die Ebene einer einfachen
Lösung zugeführt werden.
Neben den Polyedern gibt es noch andere Körper dieser Art, z. B. Kreiszylinder oder
Kreiskegel.

(2.25) • Es sei P ein Punkt auf der Mantelfläche eines geraden Kreiskegels. Man
bestimme kürzeste Linien auf der Mantelfläche, die von P nach P führen, mit allen
Mantellinien einen gemeinsamen Punkt besitzen und die Spitze S des Kegels nicht ent-
halten.

Welche Rolle spielt die Größe des Öffnungswinkels α des Kegels (d. h. die Größe des
Winkels, den zwei gegenüberliegende Mantellinien bilden) bei der Lösung der Aufgabe?

Praktisch lässt sich hier mit einem Gummifaden eine Näherungslösung gewinnen.

Jetzt wenden wir uns der schon angedeuteten Frage nach den kürzesten Linien auf der
Oberfläche der Erde zu. Ihre Beantwortung spielt z. B. für Schiffs- und Flugverbindun-
gen eine große Rolle, nicht zuletzt aus ökonomischen Gründen.

In erster Näherung kann dabei die Oberfläche der Erde als Kugeloberfläche aufgefasst
werden. Da diese sich aber nicht auf eine Ebene abwickeln lässt15, kann die obige Frage
nicht wie bisher auf die Frage nach kürzesten Streckenzügen zurückgeführt werden.

Die kürzesten Linien lassen sich dennoch leicht beschreiben:
Eine kürzeste Verbindung zwischen zwei Punkten P und Q auf der Kugeloberfläche ist
ein Teil eines Großkreises der Kugel16, der P und Q enthält.17

Sind also P und Q zwei zueinander diametral gegenüberliegende Punkte, dann gibt es
unendlich viele kürzeste Verbindungen von P nach Q. (Wir können P und Q etwa als
Nord- und Südpol auffassen, und die Kürzesten sind dann die Meridianlinien.)
Andernfalls gibt es genau eine kürzeste Linie.

(2.26) • Es seien P und Q zwei Punkte auf der nördlichen Halbkugel. Man bestimme
einen kürzesten Rundkurs eines Flugzeuges, der von P zur Äquatorlinie und weiter über
Q zurück nach P führt. (Konkret könnten für P und Q z. B. die Städte Berlin und
Hanoi sowie ihre ganzzahligen Längen- und Breitengrade gewählt werden.)

Zur Lösung von Aufgaben dieser Art und einer Reihe anderer Fragestellung auf der
Kugelfläche ist die sphärische Trigonometrie entwickelt worden.

15Ein Beweis dafür wird mit Mitteln und Methoden der Differentialgeometrie geführt.
16Die Großkreise der Kugel können einfach als diejenigen Kurven verstanden werden, die als Schnitt

der Kugeloberfläche mit einer Ebene durch den Mittelpunkt der Kugel entstehen.
17Dieser Sachverhalt ist anschaulich klar und einfach; ein strenger Beweis wird im Rahmen der Dif-

ferentialgeometrie geführt.
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2.3 Extremale Flächen

2.3 Extremale Flächen
Das ist ein weites Feld,
von dem ihr da redet ...

A. Stifter

Isoperimetrische Aufgaben

Unter isoperimetrischen ebenen Figuren versteht man solche mit gleichem Umfang.
Eine isoperimetrische Aufgabe besteht im wesentlichen nun darin, unter allen Figuren,
die gewissen Bedingungen genügen und den gleichen Umfang besitzen, diejenigen mit
extremalem Flächeninhalt zu bestimmen.
Diese Aufgabenstellung kann in mancher Hinsicht noch modifiziert sein. Wir beginnen
mit einem einfachen Beispiel.

(2.27) Man bestimme unter allen Rechtecken mit dem gleichen Umfang diejenigen mit
dem größten Flächeninhalt.

Das Ergebnis lässt sich leicht erraten: das Quadrat. Einen Beweis für diese Behauptung
wird aber vielleicht nicht jeder gleich bei der Hand haben.
Wir gehen von unserer Vermutung aus!

Abb. 2.12

Der als konstant vorausgesetzte Umfang sei 4k. Dann existiert genau ein Quadrat mit
diesem Umfang. Wir zeigen, dass jedes Rechteck, welches den gleichen Umfang hat,
aber kein Quadrat ist, einen kleineren Flächeninhalt als dieses Quadrat hat. Betrachten
wir dazu Abb. 2.12!

Verlängern wir zwei der Quadratseiten um x, so müssen die beiden anderen um x
verringert werden. Der Flächeninhalt des Quadrates nimmt um x · k ab und um x · l
zu. Nun ist l aber kleiner k, also würde sich insgesamt der Flächeninhalt verringern.
Später lernen wir weitere Beweismöglichkeiten kennen. Gerade diese Aufgabe wird uns
ein treuer Begleiter durch verschiedene Kapitel bleiben.

(2.28) • Man zeige: Unter allen Dreiecken mit gegebenem Umfang u und gegebener
Seitenlänge c = |AB| hat das gleichschenklige Dreieck den größten Flächeninhalt.

Die grundlegende Voraussetzung, dass gleicher Umfang besteht, kann weitgehend mo-
difiziert vorliegen.
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Abb. 2.13

(2.29) An einer (hinreichend langen) Mauer soll ein rechteckiger Garten angelegt wer-
den. Zu einer Einzäunung stehen 32 m Maschendraht zur Verfügung. Wie erzielt man
eine möglichst große Gartenfläche? (Siehe Abb. 2.13a.)

Diese Aufgabe lässt sich auf zweierlei Weise auf die in (2.27) vorliegende Fragestellung
zurückführen. Halbieren wir die rechteckige Gartenfläche wie in Abb. 2.13 b angegeben,
so hat das Rechtecke BCNM offenbar den Umfang

2|BC| + 2
(1

2 |AB)
)

= |AB| + 2|BC|

also gleich der konstanten Maschendrahtlänge.
Nach (2.27) hat nun das Rechteck BCNM und damit das Rechteck ABCD genau
dann maximalen Flächeninhalt, wenn BCNM ein Quadrat und damit |AB| = 2|BC|
ist. Ein anderer Beweis ergibt sich, wenn man die "Gartenfläche" an der "Mauer" spiegelt
(vgl. Abb. 2.13 c).
Das entstehende Rechteck ABB′A′ hat dann den Umfang von 64 m und nach (2.27) ge-
nau dann maximalen Flächeninhalt, wenn es ein Quadrat ist, d. h., wenn |AB| = 2|BC|
gilt. Die maximale Gartenfläche hat also eine Größe von 16 m · 8 m = 128 m2.

Ebenfalls anschaulich sehr einleuchtend erscheint

(2.30) Unter allen ebenen konvexen Figuren mit konstantem Umfang besitzt der Kreis
den größten Flächeninhalt.

Doch ein Beweis ist keinesfalls so einfach zu führen. Erste Beweise hat erst Jacob Stei-
ner gegeben. Wir müssen hier auf nähere Beweisüberlegungen verzichten.

Unter Verwendung von (2.30) löse man

(2.31) • Es sei ∠p, q ein rechter Winkel. Wie ist ein (nicht notwendig geradliniger)
Schnitt vorgegebener Länge von einem Schenkel durch das Innere des Winkels bis zum
anderen Schenkel zu führen, damit ein möglichst großes Flächenstück abgetrennt wird?

Man könnte eine Vielzahl von Aufgaben angeben, die zu der von uns angesprochenen
Fragestellung gehören. Wir haben uns auf einige wenige beschränken müssen. In der
abschließenden Aufgabe ist nicht nur der Umfang konstant vorgegeben, sondern auch
seine Teile (Seiten), aus denen er sich zusammensetzt.

(2.31’)∗ • Gegeben sei ein konvexes Viereck ABCD mit den Seitenlängen a = 4, b = 3,
c = 3 und d = 2. Es ist der größtmögliche Flächeninhalt zu bestimmen, den dieses
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Viereck haben kann.

Eine Umkehrung der Aufgabenstellung

Es sei M eine vorgegebene Menge von ebenen Figuren, die einen Flächeninhalt und
einen Umfang besitzen. Ferner enthalte M mit jeder Figur auch alle dazu ähnlichen.
Ein Beispiel ist die Menge aller Rechtecke.

Bisher bestand die grundlegende Aufgabe darin, in der Menge M(U) von Figuren aus
M, die den gleichen Umfang U besitzen, diejenigen mit dem maximalen Flächeninhalt
zu bestimmen. Es sei Amax der maximale Flächeninhalt und Mmax(U) die Menge von
Figuren aus M(U) mit diesem Flächeninhalt.

Umgekehrt kann nun bezüglich der gleichen Menge M die Menge M(A) von Figuren
aus M betrachtet werden, die den gleichen Flächeninhalt A besitzen, und hier nach
denjenigen gefragt werden, die den kleinsten Umfang Umin besitzen; ihre Menge sei
entsprechend mit Mmin(A) bezeichnet. Wählen wir als vorgegebenen konstanten Flä-
cheninhalt gerade A = Amax, so gilt folgende generelle Aussage:

(2.32) Es ist Mmin(A) = Mmax(U) und Umin = U .

Ein Beweis kann leicht indirekt geführt werden. Gäbe es unter allen Figuren aus M
mit dem Flächeninhalt Amax eine solche Figur F , die einen Umfang u < Umin hätte,
dann gäbe es eine Zahl k > 1 mit u · k = U und eine zur Figur F ähnliche Figur F ′

mit dem Ähnlichkeitsfaktor k (etwa durch eine zentrische Streckung mit dem Faktor k
erzeugt), die auch in M liegt und den Umfang U besitzt (also zu M(U) gehört), deren
Flächeninhalt aber k2 · Amax > Amax ist.
Dies widerspricht aber der Voraussetzung, dass Amax der größte Flächeninhalt aller
Figuren aus M(U) ist.

Man bezeichnet zwei durch (2.32) in Beziehung gesetzte Aufgabenstellungen als zuein-
ander dual.
Mit Hilfe von (2.32) folgen aus (2.27) bzw. (2.30) unmittelbar:

(2.33) Unter allen Rechtecken mit gleichem Flächeninhalt besitzen die Quadrate den
kleinsten Umfang.

(2.34) Unter allen konvexen Figuren mit gleichem Flächeninhalt besitzt der Kreis den
kleinsten Umfang.

(2.35) • Unter allen Dreiecken mit gleichem Flächeninhalt besitzen die gleichseitigen
Dreiecke den kleinsten Umfang.

Wir sehen also, dass bei solchen Aufgaben die regelmäßigen Figuren favorisiert sind.
Das hilft uns mitunter, eine Vermutung zu finden, doch Vorsicht ist geboten!

Extremale Flächeninhalte

Die Bedingungen, unter denen ebene Figuren mit extremalem Flächeninhalt gesucht
werden, können auch von ganz anderer Art sein:
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(2.36) Es sei CDEF ein Quadrat. Wir legen durch E alle Geraden g, die sowohl die
Halbgerade CD+ in einem Punkt A als auch die Halbgerade CF+ in einem Punkt
B schneiden (Abb. 2.14 a). Für welche dieser Geraden hat das diesbezügliche Dreieck
ABC den kleinsten Flächeninhalt?

Abb. 2.14

Zunächst gibt es (genau) eine Gerade g′ durch E, die ein gleichschenkliges Dreieck
A′B′C ′ (mit |CA′| = |CB′|) liefert.
Wir zeigen nun, dass jedes andere Dreieck ABC einen größeren Flächeninhalt besitzt.

Ohne Beschränkung der Allgemeinheit können wir dazu voraussetzen, dass A′ zwischen
D und A liegt. Dann liegt B zwischen F und B′ (Abb. 2.14 a).
Nun schneidet die Parallele zur Geraden gCF durch A′ die Gerade g = gEA in einem
Punkt A0 zwischen E und A. Bei der Drehung um E mit 180◦ geht das Dreieck EA′A0
in das Dreieck EB′B über. Wegen

A(DAE) = A(DA′E) + A(EA′A0) + A(AA′A0)
A(FBE) = A(FB′E) − A(EB′B) und A(DA′E) = A(FB′E)

ist damit
A(DAE) + A(FBE) > A(DA′E) + A(FB′E)

und schließlich A(ABC) > A(A′B′C).

Die Vorgabe in der Aufgabenstellung (2.36) können wir auch so sehen, dass in einen
rechten Winkel mit dem Scheitel C ein Quadrat derart eingeschoben werden ist, dass
zwei seiner Seiten auf den Schenkeln des Winkels liegen.
Wir tauschen nun das Quadrat durch einen Kreis aus und formulieren eine (2.36)
entsprechende Aufgabe:

(2.37) Gegeben seien ein rechter Winkel mit dem Scheitel C und ein Kreis k, der
beide Schenkel des Winkels berührt. Für welche Geraden, die den Kreis berühren und
die Schenkel des Winkels in Punkten A und B schneiden, hat das Dreieck ABC den
kleinsten Flächeninhalt?

Zur Lösung kann vorteilhaft das Ergebnis von (2.36) verwendet werden. Zunächst gibt
es (genau) eine Tangente g′ an den Kreis, die beim Schnitt mit den Schenkeln ein
gleichschenkliges Dreieck A′B′C ′ (mit |CA′| = |CB′|) liefert (Abb. 2.14b).
Der Kreisberührungspunkt sei E. Jede andere Kreistangente g, die die Schenkel in A
und B schneidet, geht nicht durch E. Folglich schneidet die Parallele h durch E zu
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dieser Tangente g den Kreis, und damit hat das durch sie gebildete Dreieck A1B1C
einen kleineren Flächeninhalt als A(ABC).
Nach (2.36) ist aber außerdem A(A1B1C) > A(A′B′C). Also liefert die Tangente g′

das Minimum.

(2.38) • Man löse Aufgabe (2.37) für den Fall, dass der Winkel mit dem Scheitel C ′

spitz bzw. stumpf ist.

Häufig auch von praktischem Interesse (Materialausnutzung !) sind folgende Aufga-
benstellungen: Gegeben ist eine Figur, und in diese soll eine Figur vorgegebener Art
mit möglichst großem Flächeninhalt gelegt werden. Wir beginnen mit einem einfachen
Beispiel.

(2.39) Einem rechtwinkligen Dreieck ABC mit rechtem Winkel bei A ist ein Rechteck
PQRA mit maximalem Flächeninhalt einzubeschreiben, von dem zwei Seiten auf den
Katheten des Dreiecks liegen.

Abb. 2.15

Es liegt die Vermutung nahe, dass das Maximum genau dann vorliegt, wenn P , Q und
R die Mittelpunkte von AB, BC bzw. CA sind. Unter den verschiedenen Beweismög-
lichkeiten wählen wir die folgende:

Man spiegele für ein beliebiges Rechteck PQRA mit P ∈ AB, Q ∈ BC und R ∈ CA
die Gerade gBC an der Geraden gQP (Abb. 2.15a). Wegen gQR ⊥ gQP liefert die
Spiegelung an gQR das gleiche Bild h von gBC . Die Gerade h zerlegt das Recht-
eck APQR, und die Spiegelung der Teile an gQP bzw. gQR zeigt unmittelbar, dass
A(APQR) ≤ 1

2A(ABC) gilt und Gleichheit dann und nur dann besteht, wenn h durch
A geht, wenn also Q der Mittelpunkt von BC ist.

Auf diese Weise, nämlich durch Spiegelungen an Rechteckseiten, erkennt man leicht
die gegenüber (2.39) allgemeinere Aussage:

(2.40) Unter allen Rechtecken, die einem Dreieck ABC mit α, β ≤ 90◦ einbeschrieben
sind und die mit einer Seite auf AB liegen, besitzt dasjenige den größten Flächeninhalt,
das die Mittelpunkte von BC und CA als Ecken besitzt (vgl. Abb. 2.15 b).
Dieser Satz ergibt sich auch mit Hilfe von (2.39).

Unter den Voraussetzungen α, β < 90◦ zerlegt das Lot von C auf gAB das Dreieck
ABC in zwei rechtwinklige Dreiecke, und die dazu nach (2.39) gegebenen maximalen
Rechtecke ergeben zusammen ein dann maximales Rechteck der vorgegebenen Lage
(Abb. 2.15c).
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Da dieses maximale Rechteck einen halb so großen Flächeninhalt wie das zugrunde
liegende Dreieck besitzt, enthält jedes spitzwinklige Dreieck genau drei, jedes recht-
winklige Dreieck genau zwei und jedes stumpfwinklige Dreieck genau ein maximales
Rechteck, das mit einer Seite auf einer Dreiecksseite liegt.
Damit bleibt zunächst offen, ob bei einer anderen Lage des Rechtecks im Dreieck ABC
der Inhalt 1

2A(ABC) oder vielleicht sogar noch ein größerer erzielt werden könnte. Es
gilt jedoch:

(2.41) Einem Dreieck kann nur dann ein Rechteck mit maximalem Inhalt einbeschrie-
ben werden, wenn eine Rechteckseite auf einer Seite des Dreiecks liegt.

Dies ist an Hand der bereits oben benutzten Spiegelungen an den Rechteckseiten ein-
sichtig. Ist PQRS ein Rechteck und O ein Punkt in seinem Inneren, dann ergeben die
Spiegelungen von O an den Rechteckseiten ein Viereck O1O2O3O4 (Abb. 2.15 d), das
das vorgegebene Viereck umschreibt und einen doppelt so großen Flächeninhalt besitzt.
Jedes Dreieck mit der Ecke O1, auf dessen Seiten P und Q liegen und das das Viereck
PQRS umschreibt, muss einen größeren Inhalt als 2A(PQRS) besitzen.

Liegt dagegen O auf dem Rand des Rechtecks PQRS, so ergeben die Spiegelungen ein
doppelt so großes Dreieck, bei dem auf (wenigstens) einer Seite eine Seite des Vierecks
liegt.

(2.42) • Einem konvexen Viereck ABCD ist ein Parallelogramm mit maximalem Inhalt
einzubeschreiben, dessen Seiten parallel zu den Diagonalen des Vierecks sind.

(2.43) • Man zeige: a) Die Dreiecke, die einem Kreis einbeschrieben sind und den
größten Flächeninhalt besitzen, sind gleichseitig.
b) Die konvexen Vierecke, die einem Kreis einbeschrieben sind und den größten Flä-
cheninhalt besitzen, sind Quadrate.

(2.44) • Man zeige: a) Unter allen Dreiecken, die Tangentendreieck eines vorgegebenen
Kreises sind, sind die gleichseitigen diejenigen mit minimalem Inhalt.
b) Unter allen konvexen Vierecken, die Tangentenviereck eines vorgegebenen Kreises
sind, sind die Quadrate diejenigen mit kleinstem Inhalt.

Zum Beweis von (2.44 a) kann (2.38) benutzt werden!

(2.45) • Es seien ABC ein Dreieck und P , Q, R innere Punkte der Seiten AB, BC
bzw. CA. Man zeige, dass es unter allen Dreiecken PQR weder eines mit maximalem
noch eines mit minimalem Inhalt gibt.

2.4 Extremale Umfänge
Wir setzen jetzt ein Thema fort, welches mit den Aufgaben (2.1), (2.3), (2.5), (2.7),
(2.9) und (2.10) schon in Abschnitt 2.1 eine große Rolle spielte.

(2.46) Man bestimme unter allen Dreiecken, die einen vorgegebenen Kreis umschreiben,
diejenigen mit dem kleinsten Umfang.
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Eine Lösung erhält man leicht mit Hilfe von (2.44 a). Ist U = a + b + c der Umfang
des betrachteten Dreiecks und r der Radius des vorgegebenen Kreises, so ist A =
1
2r(a + b + c) = 1

2rU der Inhalt des Dreiecks. Demnach ist U minimal genau dann,
wenn A minimal ist. Und das ist nach (2.44 a) für gleichseitige Dreiecke der Fall.

(2.47) Man bestimme unter allen Dreiecken, deren Ecken auf einem vorgegebenen Kreis
liegen, diejenigen mit dem größten Umfang.

Zur Lösung wählen wir vorerst zwei Punkte A und B auf dem Kreis k und bestimmen
dazu die Punkte C auf dem Kreis, für die das Dreieck ABC den größten Umfang
besitzt.
Wir beschränken uns dabei zunächst auf eine Seite bezüglich der Geraden gAB. Trägt
man |BC| auf der Halbgeraden CA− von C aus ab, so erhält man einen Punkt B′, für
den |∠BB′A| = γ

2 ist (Abb. 2.16).

Abb. 2.16

Da für den Schnittpunkt M ′ der Mittelsenkrechten von AB mit dem Kreis k die Be-
ziehung |∠AM ′B| = γ gilt, liegt B′ auf dem Kreis k′ um M ′ durch A (und B).
Nun ist die Summe |AC| + |CB| = |AB′| offenbar genau dann maximal, wenn B′ auf
dem Kreis k′ dem Punkt A diametral gegenüber liegt, d. h., wenn C = M ′ und damit
|AC| = |BC| ist.

Hinsichtlich des Maximums ist von beiden Seiten bezüglich gAB offenbar nur eine solche
von Interesse, für die C und M nicht auf verschiedenen Seiten liegen.
Da für das Maximum bei einer festgehaltenen Seite nur ein gleichschenkliges Dreieck
in Frage kommt, haben die gleichseitigen (und zueinander kongruenten !) Dreiecke den
größten Umfang.

Abb. 2.17

(2.48)18 Abb. 2.17 zeigt ein Flächenstück, das aus der Fläche des Rechtecks ABCD
mit den Seitenlängen |AB| = |CD| = 2r und |BC| = |AD| = b mit b > r durch
Herausschneiden einer Halbkreisscheibe mit dem Durchmesser CD entstanden ist.
Man denke sich nun eine positive reelle Zahl A beliebig gegeben. Dann sind alle geordne-
ten Paare (r, b) positiver reeller Zahlen mit r < b zu ermitteln, für die das entsprechende
Flächenstück den Inhalt A und dabei möglichst kleinen Umfang hat.

18Aufgabe 10 10 43 B der OJM
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2.4 Extremale Umfänge

Ist b > r > 0, so ergibt sich eine Figur wie in Abb. 2.17. Für ihren Umfang U und
ihren Flächeninhalt A gilt

U = 2r + 2b+ πr und A = 2br − 1
2πr

2 (1,2)

Daraus folgt A = (U − 2r − πr)r − 1
2πr

2 und weiter

r2
(3

2π + 2
)

− Ur + A = 0 (3)

Diese quadratische Gleichung in r besitzt nach Voraussetzung eine Lösung. Dann muss
notwendig ihre Diskriminante nichtnegativ sein, d. h., es gilt

U2

(3π + 4)2 − 2A
3π + 4 ≥ 0

und folglich
U ≥

√
2A(3π + 4) (4)

Das Gleichheitszeichen in (4) gilt wegen (3) genau dann, wenn r = U
3π+4 ist, und unter

Beachtung von U =
√

2A(3π + 4) folgt aus dieser Gleichung

r =
√

2A
3π + 4 (5)

und schließlich
b =

√
2A

3π + 4(π + 1) = r(π + 1) (6)

Wählt man also zu vorgegebenem A (> 0) die Zahlen r und b gemäß (5) und (6), so
ergibt sich wegen b > r eine Figur, wie sie in der Aufgabe beschrieben ist. Zwischen
deren Inhalt A und Umfang U besteht die Relation U =

√
2A(3π + 4). Daher genügt

das Paar
(r, b) =

√ 2A
3π + 4 ,

√
2A

3π + 4(π + 1)


den Bedingungen der Aufgabe, und dies ist das einzige dieser Art.

Oder ist es einfacher, die zu dieser Aufgabe duale zu lösen?
Sehr ähnlich wird die Lösung zur folgenden Aufgabe sein:

(2.49)19 • Dirk erklärt Jürgen den Nutzen der Differentialrechnung an Hand der Lösung
der folgenden Aufgabe:
Es sei ABCDE ein ebenes konvexes Fünfeck derart, dass A, B, C, E die Eckpunkte
eines Rechtecks und C, D, E die Eckpunkte eines gleichseitigen Dreiecks bilden.
Als Flächeninhalt des Fünfecks ABCDE werde nun ein geeigneter Wert A vorgeschrie-
ben.
19Aufgabe 11 10 43 B der OJM
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2.4 Extremale Umfänge

Man ermittle, ob unter allen diesen Fünfecken eines von kleinstem Umfang U existiert.
Ist das der Fall, so berechne man für alle derartigen Fünfecke minimalen Umfangs den
Wert a : b, wobei |AB| = a und |BC| = b bedeutet.

Am nächsten Tage teilt Jürgen Dirk mit, dass er eine Lösung dieser Aufgabe ohne
Verwendung der Differentialrechnung gefunden habe.
Man gebe eine Lösung an, die Jürgen gefunden haben könnte.

Zum Abschluss noch eine Aufgabenstellung, in der der Umfang nur diskrete Werte an-
nehmen kann.

(2.50) • Man bestimme den minimalen und maximalen Umfang aller sogenannten
"Pentominos", d. h. aller einfachen n-Ecke, die sich aus fünf Einheitsquadraten zu-
sammensetzen lassen.
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3.1 Funktionen einer reellen Veränderlichen und ihre Extremwerte

3 Extrema von Funktionen
3.1 Funktionen einer reellen Veränderlichen und ihre

Extremwerte
Kommt ein Einfall völlig zwanglos,

ist er meistenteils belanglos;
jedes gute Resultat

braucht den ganzen Apparat.
W. Dege

Bei den im Kapitel 2 betrachteten Aufgaben veränderte sich mit der Lage von Punkten
oder der Form von Figuren die Maßzahl von Längen, Flächen oder Volumina. Könnten
wir nun diese Abhängigkeit durch eine Funktion erfassen, so ließe sich die spezielle ge-
suchte Situation, nämlich die, für die die Maßzahl extremal wird, aus den Extremwerten
der Funktion ablesen, falls man diese kennt!

Wir untersuchen das einmal an einem der einfachsten Beispiele, dem der Aufgabe (2.27).

Die Fläche A der Rechtecke lässt sich mittels der Seitenlängen x und z durch die Funk-
tion zweier(!) Veränderlicher x und z mit x > 0 und z > 0 als A(x, z) = x ·z angeben.
Die Nebenbedingung u = 2x + 2z = const gibt uns aber die Möglichkeit, eine der
beiden Variablen durch die andere zu ersetzen (und damit zu eliminieren):

z = u

2 − x und A(x) = x
(u

2 − x
)

Es ist also der größte Funktionswert der Funktion A(x) für x > 0 gesucht! Wie findet
man aber die Extremwerte einer Funktion?
Zunächst wollen wir exakt festlegen, worüber wir sprechen, wir definieren:

(3.1) Für alle Wertepaare (x, y) einer Menge f von reellen Zahlen x, y gelte: Wenn
(x, y1) ∈ f und (x, y2) ∈ f , dann folgt y1 = y2. Eine solche Menge f nennt man eine
reellwertige Funktion einer reellen Veränderlichen.20

Zur Beschreibung einer solchen Menge dient uns häufig eine Funktionsgleichung y =
f(x). Die Menge aller reellen Zahlen x, für die ein Funktionswert f(x) erklärt ist, heißt
Definitionsbereich D(f) der Funktion f . Die Menge aller y, für die ein x ∈ D(f) so
existiert, dass y = f(x) gilt, nennt man den Wertevorrat W (f) der Funktion f .

Abb. 3.1

20Zur ausführlichen Einführung des Funktionsbegriffes vgl. etwa [13].
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3.2 Funktionen zweiten und dritten Grades und ihre Extrema

(Mitunter sprechen wir dann auch kurz von der Funktion y = f(x).)

Wir suchen unter allen x ∈ D(f) diejenigen, für welche f(x) ∈ W (f) maximal oder
minimal wird. Solche Extremwerte nennen wir globale Extremwerte der Funktion f .

(3.2) Existiert ein x0 ∈ D(f) so, dass f(x0) ≥ f(x) (bzw. f(x0) ≤ f(x)) für alle
x ∈ D(f) gilt, so heißt f(x0) das globale Maximum (bzw. das globale Minimum) der
Funktion f .
(Im weiteren sprechen wir aber abkürzend vom Maximum oder Minimum.)

Bei vielen Anwendungen ist wichtig, dass D(f) durch die in der Aufgabenstellung
enthaltenen Bedingungen bestimmt wird.
Betrachten wir die in der Abb. 3.1 veranschaulichte Funktion f mit D(f) = [a, b], so
entnehmen wir dieser graphischen Darstellung, dass f für x0 = b das globale Maximum
und für x0 = xmin das globale Minimum annimmt.
In den Teilintervallen a ≤ x ≤ xmin und xmin ≤ x ≤ b verläuft die dargestellte Funktion
monoton. Es ist zu vermuten, dass das Monotonieverhalten in einem engen Zusammen-
hang mit den Extremwerten steht.

(3.3) Sind a, b ∈ D(f) und gilt für alle x1, x2 ∈ D(f) mit a ≤ x1 < x2 ≤ b die
Ungleichung f(x1) < f(x2) (bzw. f(x1) > f(x2)), so nennt man die Funktion f auf
dem Intervall a ≤ x ≤ b streng monoton wachsend (bzw. streng monoton fallend).

(3.4) • Man beweise: Jede auf einem abgeschlossenen Intervall a ≤ x ≤ b definierte
und dort streng monotone Funktion nimmt ihre Extremwerte in den Randpunkten des
Intervalls an. Ist dagegen eine streng monotone Funktion auf einem offenen Intervall
a < x < b definiert, so hat sie keine Extremwerte.

(3.5) • Man ermittle den größtmöglichen Definitionsbereich der Funktion f mit f(x) =√
1
x

− 1 und zeige, dass f zwar ein Minimum, aber kein Maximum besitzt.

Die linearen Funktionen f mit f(x) = mx + n haben also keine Extrema oder neh-
men diese, falls ihr Definitionsbereich auf ein abgeschlossenes Intervall a ≤ x ≤ b
eingeschränkt wird, in den Punkten a bzw. b an.

3.2 Funktionen zweiten und dritten Grades und ihre Extrema
Unser einführendes Beispiel (und viele andere auch) führt auf eine quadratische Funk-
tion.

(3.6) Satz. Eine für alle reellen Zahlen x definierte quadratische Funktion f (also
D(f) = R) mit f(x) = ax2 + px + q (a ̸= 0), nimmt genau an der Stelle x0 = −p

2
einen Extremwert an, und zwar für a > 0 ein Minimum und für a < 0 ein Maximum.

Beweis. Es gilt

ax2 + px+ q = a
(
x2 + p

a
x+ q

a

)
= a

[(
x+ p

a

)2
− p2

4a2 + q

a

]
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3.2 Funktionen zweiten und dritten Grades und ihre Extrema

Da − p2

4a2 + q
a eine Konstante ist, wird der Ausdruck

(
x+ p

a

)2
− p2

4a2 + q

a

genau dann minimal, wenn
(
x+ p

a

)2
minimal wird, d. h., wenn x0 = − p

2a gilt. Ist a > 0,
so ist demnach auch f(x) an dieser Stelle minimal, für a < 0 dagegen maximal.

Wir möchten nachdrücklich darauf aufmerksam machen, dass der Satz (3.6) für eine
auf einem endlichen Intervall definierte quadratische Funktion nicht gelten muss.

(3.6’) Wird der Definitionsbereich der quadratischen Funktion aus (3.6) auf ein abge-
schlossenes Intervall c ≤ x ≤ d eingeschränkt und gilt c ≤ x0 ≤ d mit x0 = −p

a ,
so existiert in x0 ein Minimum (bzw. Maximum), aber außerdem ein Maximum (bzw.
Minimum) in einem der Randpunkte des Intervalls.

Wir kommen auf unser einführendes Beispiel (2.27) zurück.
Die Funktion A(x) = x

(
u
2 − x

)
wird durch Ausmultiplizieren in die "Normalform"

A(x) = −x2 − u
2x übergeführt. Aus dem Text zu (2.27) ergibt sich der eingeschränkte

Definitionsbereich 0 ≤ x ≤ u. Aus dem Satz (3.6) und der Anmerkung (3.6’) folgt (wie
wir bereits anderweitig ermittelt hatten), dass für x0 = u

4 der Flächeninhalt maximal
wird.

(3.7) Man beschreibe einem Quadrat ein Quadrat minimalen Umfangs ein.

Diese bereits unter (2.9) formulierte Aufgabe wollen wir jetzt mit den bereitgestellten
Hilfsmitteln lösen.
In Abb. 3.2 ist die Seitenlänge des vorgegebenen Quadrates mit q bezeichnet.

Abb. 3.2

Soll das einbeschriebene Viereck ABCD auch ein Quadrat sein, so muss jede Seite
durch die Punkte A, B, C bzw. D in Abschnitte der Länge x und q−x geteilt werden.
Aus dem Satz des Pythagoras ergibt sich für den Umfang des einbeschriebenen Qua-
drates

U(x) = 4
√

(q − x)2 + x2 mit 0 ≤ x ≤ q

Da U(x) ≥ 0 gilt, wird U(x) genau dann minimal, wenn y(x) := U2(x)
16 minimal wird.

Es gilt y(x) = 2x2 − 2qx+ q2.
Die Anwendung unserer theoretischen Einsichten liefert uns ein Minimum an der Stel-
le x0 = q

2 , d. h., die Punkte A, B, C bzw. D müssen die Seitenmittelpunkte des
vorgegebenen Quadrats sein.
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3.2 Funktionen zweiten und dritten Grades und ihre Extrema

Auch bei diesem zweiten Beispiel war es nicht schwierig, die "zugehörige" quadratische
Funktion zu finden.

(3.8) • Man löse mit Hilfe von Satz (3.6) a) die Aufgabe (2.39), b) das zu (2.48) duale
Problem.

Weitere einfache Beispiele, die sich auf die Anwendung von Satz (3.6) zurückführen
lassen, findet man in [9], S. 11-18.

Die folgenden Beispiele sind u. a. auch darum wichtig, weil nicht gleich ersichtlich
ist, dass unser einfaches mathematisches Modell zutreffend ist; erst eine geeignete
Formalisierung wird das jeweils zeigen.

(3.9) Ein Betrieb bietet auf dem Weltmarkt ein Produkt zum Stückpreis A an. Er
stellt fest, dass er bei einem bestimmten Preisnachlass von ε (pro Stück) 100 Stück
von dem Produkt mehr absetzt. Welche höchste Gesamteinnahme kann der Betrieb
erzielen, wenn man annimmt, dass die Anzahl der mehr verkauften Stücke proportional
zum Preisnachlass wächst?

Zur Lösung der Aufgabe mittels einer Funktion müssen wir zunächst eine Variable
einführen, die die Veränderung geeignet erfasst. Der Betrieb will ja feststellen, wie oft
er den Preisnachlass vervielfachen muss, um eine Höchsteinnahme zu erzielen. Wir
führen daher x ≥ 0 als Vielfaches des Preisnachlasses ein.

Vor der Einführung des Preisnachlasses wurden s Stück mit der Einnahme s·A verkauft.
Nach der Einführung des (vervielfachten) Preisnachlasses x · ε werden (laut Annahme
der Aufgabenstellung) s+100 ·X Stück verkauft, jedes Stück erzielt aber nur den Preis
A− εx.
Die Gesamteinnahme g(x) beträgt also (s+100−x)(A−εx). Das Maximum von g(x)
ergibt sich nach (3.6) - man rechne das bitte nach - für

x0 = 100A− εs

200ε
es ergibt sich

g(x0) = (100A+ εs)2

400ε
Akzeptieren wir diese Werte als Ergebnis der gestellten Aufgabe, so haben wir "still-
schweigend" angenommen, dass auch x ≥ 0 gilt. Das ist aber nur für ε ≤ 100A

s der
Fall.
Da wir ja für die Konstanten A, s und ε keine Zahlen vorgegeben haben, können wir
nicht feststellen, ob tatsächlich x0 ≥ 0 gilt.

Ergibt sich also in einem konkreten Fall x0 < 0 nach der obigen Formel, so bedeutet das,
dass der Betrieb zwar bei einem Preisnachlass einen Mehrverkauf registrieren kann, aber
auch weniger Einnahmen erzielt. Die Gesamteinnahme ist in diesem Fall durch einen
"Mehrverkauf durch Preisnachlass" nicht zu erhöhen.
Das Maximum der quadratischen Funktion mit x ≥ 0 liegt in dem Randpunkt x0 = 0.
(Man zeichne sich einmal die Funktion g(x) für zwei solcher Art prinzipiell verschiedene
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3.2 Funktionen zweiten und dritten Grades und ihre Extrema

Fälle !).

Ebenfalls mit dem einfachen Mittel der quadratischen Funktion lässt sich ein Spezial-
fall der "Methode der Kleinsten Quadrate" behandeln. Diese Methode wird oft in der
Ausgleichs- und Fehlerrechnung gebraucht. Wir wollen das an einem Beispiel erläutern:

Unter Verwendung des Ohmschen Gesetzes U = R · I soll durch Messung von U und I
der Wert eines unbekannten Widerstandes R ermittelt werden. Da solche Messungen
von U und I stets ungenau sind, wird man mehrere Messungen durchführen, die dann
allerdings bei der Rechnung U

I verschiedene Werte für R ergeben. Wie wäre hier sinnvoll
ein Ausgleich zu schaffen?

Abb. 3.3

Trägt man die verschiedenen Messergebnisse (Ii, Ui) (i = 1, ..., n) in ein Koordinaten-
system ein, so würden sie im Idealfall nach dem Ohmschen Gesetz auf einer Geraden
liegen, im Realfall wird das aber nicht der Fall sein (vgl. Abb. 3.3).
Eine sinnvolle Forderung ist beispielsweise, die Gerade so zu legen, dass die Gesamt-
abweichung aller Punkte von der Geraden minimal wird. Unter der Gesamtabweichung
wird man die Summe aller Abweichungen verstehen; aber wie wollen wir die Abwei-
chung definieren?

Man könnte die Ordinatendifferenz wählen, die aber wäre vorzeichenbehaftet, und Ab-
weichungen "nach oben" und "nach unten" würden sich gegenseitig aufheben und in
der Gesamtabweichung fälschlicherweise eine große Genauigkeit vortäuschen.
Wählt man statt dessen den Betrag der Ordinatendifferenzen, könnte man diesen Man-
gel beseitigen, Beträge erfordern aber häufig viele Fallunterscheidungen beim weiteren
Arbeiten. Numerisch als sehr bequem erweist es sich, für die Abweichung das Quadrat
der Ordinatendifferenz einzuführen.

In unserem Beispiel heißt das, R ist so zu wählen, dass

f(R) =
n∑

i=1
(R · Ii − Ui)2

den minimalen Wert annimmt (n Anzahl der Messpunkte)!
Einfache Umformungen ergeben

f(R) =
 n∑

i=1
I2

i

R2 − 2
 n∑

i=1
IiUi

R +
n∑

i=1
U2

i

Das ist aber eine quadratische Funktion mit

a =
n∑

i=1
I2

i , p = −2
n∑

i=1
IiUi
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3.2 Funktionen zweiten und dritten Grades und ihre Extrema

deren Minimum nach (3.6) bei

R0 = − p

2a =

n∑
i=1

IiUi

n∑
i=1

I2
i

liegt.

Statt U = R · I wäre auch die Schreibweise y = f(x) = mx mit dem entsprechend
formulierten Resultat möglich. Das Spezielle des von uns betrachteten Falles besteht
darin, dass der Ausgleich durch eine Gerade erfolgt und überdies schon ein Punkt dieser
Geraden (nämlich der Ursprung des Koordinatensystems) festliegt.

Erstmalig wurde die "Methode der kleinsten Quadrate" von A. M. Legendre21 bei der
Berechnung von Kometenbahnen benutzt, C. F. Gauß22 begründete sie und begann
mit vertiefenden mathematischen Betrachtungen, heute gibt es allein zu dieser Metho-
de umfangreiche Bücher.23

Die folgende Aufgabe führt uns auf ganzrationale Funktionen höheren Grades.

(3.10) a) Gegeben sei durch y = f(x) = kx2 mit k > 0 und −t ≤ x ≤ t ein "Pa-
rabelsegment" (vgl. Abb. 3.4). Man beschreibe diesem Parabelsegment entsprechend
der Abb. 3.4 ein Rechteck so ein, dass es unter allen einbeschriebenen Rechtecken den
maximalen Flächeninhalt hat.
b) Bei Rotation des Parabelsegmentes (aus Teil a) um die y-Achse entsteht ein Rotati-
onsparaboloid. Man beschreibe diesem analog einen Zylinder maximalen Volumens ein
(siehe die Umschlagzeichnung).

Abb. 3.4

Welches Problem wird wohl die größeren Schwierigkeiten bereiten, das ebene oder das
räumliche?

Wir betrachten zunächst beide Probleme parallel. Eine Seite des Rechtecks bzw. der
Durchmesser des Zylinders habe die Länge 2x mit 0 ≤ x ≤ t. Die Höhe des Para-
belsegmentes beträgt kt2, die Höhe des Zylinders (bzw. zweite Seite des Rechtecks)
hat dann die Länge kt2 − kx2 = k(t2 − x2). diesem analog einen Zylinder maximalen
Volumens ein (siehe die Umschlagzeichnung).

21Adrien-Marie Legendre (1752-1833), französischer Mathematiker.
22Carl Friedrich Gauß (1777-1855), Professor in Göttingen, bedeutendster Mathematiker der Neuzeit.
23Beispielsweise J. W. Linnik; Methode der kleinsten Quadrate in moderner Darstellung, Deutscher

Verlag der Wissenschaften, Berlin 1961.
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3.2 Funktionen zweiten und dritten Grades und ihre Extrema

Zur Lösung der Aufgabe a) ist also das Maximum von fe(x) = 2x − k(t2 − x2) und
für die der Aufgabe b) das von fr(x) = πx2 · k(t2 − x2 zu bestimmen.

Die Existenz eines Maximums ist in beiden Fällen leicht einsichtig, da die Funktionswerte
in den Endpunkten 0 bzw. t des Definitionsbereiches verschwinden und die Funktions-
werte sich stetig ändern. Welches der Maxima ist aber einfacher zu ermitteln?

fe(x) ist eine Funktion dritten Grades und fr(x) sogar eine vierten Grades (man mul-
tipliziere aus!). Aber mit der Substitution z =: x2 erhalten wir für fr(x) eine Funktion
fr(z), die quadratisch in z ist und bei Anwendung von (3.6) z0 = t2

2 ergibt.
Wegen x0 > 0 und t > 0 folgt daraus, dass fr(x) das Maximum genau dann annimmt,
wenn der Zylinder einen Grundkreisradius von x0 =

√
2

2 t - womit auch 0 ≤ x ≤ t erfüllt
ist - und eine Höhe kt2

2 hat.

Um den schwierigeren Teil a.) der Aufgabe zu lösen, beschäftigen wir uns zunächst
allgemein mit der Extremwertermittlung von Funktionen f der Gestalt f(x) = ax3 +
bx2 + ex+ d und D(f) = R.

Wir betrachten zunächst die Nullstellen dieser Funktion.
Unter den Nullstellen der Funktion f verstehen wir diejenigen reellen Zahlen x0, für
die f(x0) = 0 gilt. Aus dem Fundamentalsatz der Algebra folgt, dass f höchstens
drei Nullstellen haben kann. Wir wollen hier als plausibel akzeptieren, dass immer eine
Darstellung

ax3 + bx2 + cx+ d = a(x− r)(x2 + px+ q) (*)

existiert.
Aus (*) folgt, dass f stets eine reelle Nullstelle (x0 = r) hat und weitere, falls reelle
Lösungen von x2 + px + q = 0 existieren. Der Spezialfall x2 + px + q = (x− s)2 mit
der "doppelten" Nullstelle x0 = s wird für uns eine wichtige Rolle spielen.

Abb. 3.5

Wir betrachten den Graphen der Funktion f mit

f(x) = a(x− r)(x− s)2, a > 0, r < s

Der in der Abb. 3.5a skizzierte Graph ergibt sich aus folgenden Überlegungen:

(1) f(r) = 0 und f(s) = 0,
(2) für alle x > r gilt f(x) > 0, und für alle x < r gilt f(x) < 0,
(3) verändert sich x "wenig", dann auch f(x), d. h., die Funktion ist für alle x stetig.24

24Vgl. [13], S. 53-56.
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Dann hat aber nach der Definition (3.2) die auf das Intervall [α, β] eingeschränkte
Funktion f an der Stelle s ein Minimum, wenn s > α > r und β > s gilt.

Hat nun umgekehrt die Funktion f an der Stelle s im Inneren des Intervalls [α, β] ein
Minimum, so lässt sich durch eine Verschiebung längs der Ordinatenachse um −h (vgl.
Abb. 3.5 b) unser gerade diskutierter Fall erzeugen. Analoges gilt für ein Maximum.
Wenn aus diesen Überlegungen eine Methode zur Ermittlung der Extrema abgeleitet
werden soll, so muss insbesondere gezeigt werden, wie s und h zu ermitteln sind. Es
soll

ax3 + bx2 + cx+ d− h = a(x− r)(x− s)2

ax3 + bx2 + cx+ d− h = ax3 − a(r + 2s)x2 + as(s+ 2r)x− ars2 (**)

gelten. Da (**) für alle x ∈ D(f) gelten soll, müssen die Koeffizienten entsprechender
Potenzen von x übereinstimmen (Methode des Koeffizientenvergleichs):

b = −a(r + 2s), c = as(s+ 2r), d− h = −ars2

wobei a, b, c und d vorgegeben sind. Aus den ersten beiden Gleichungen sind r und s
zu ermitteln, aus der letzten dann h. Wir wollen das an unserem Beispiel (3.8 a) zeigen.

Wir suchen laut Aufgabenstellung das Maximum der Funktion

fe(x) = 2kx(t2 − x2) = −2kx3 + 0x2 + 2kt2x+ 0

im Intervall 0 ≤ x ≤ t. Um eine bessere Anpassung an die obige Darstellung zu
erreichen, ermitteln wir das Maximum der Funktion −fe(x) = +2kx3 − 2kt2x. Der
Koeffizientenvergleich ergibt

0 = −2k(r + 2s), −2kt2 = +2ks(s+ 2r), h = 2krs2

Da k ̸= 0 gilt, folgt aus der ersten Gleichung r = −2s und damit aus der zweiten
2kt2 = 6ks2, d. h. s = 1√

3 (mit 0 ≤ s ≤ t).
Damit ist die Extremalstelle s der Funktion −fe(x) gefunden!

Mit s berechnet man r und damit schließlich h. Das Maximum von fe(x) ist dann
−h = 4kt3

3
√

3 . Diesen Wert ermitteln wir nochmals zur Kontrolle aus

fe(s) = 2k 1√
3

(
t2 − t2

3

)
= 4kt3

3
√

3
Zur Festigung dieser Methode wende man sie selbständig auf die nächste Aufgabe an.

(3.11) • Die Tragkraft eines Balkens von der Breite x und der Höhe y ist proportio-
nal dem Produkt xy2. Mit welchen Abmessungen muss man demnach einen Balken
maximaler Tragkraft aus einem Baumstamm ausschneiden, dessen Durchmesser d als
konstant angenommen wird?

Auch die in [9] angegebenen (und dort anders gelösten) Aufgaben 14 bis 18 kann man
nach der oben beschriebenen Methode lösen.
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3.3 Die Funktion f (x) = x + d
x und ihre Extreme

Schlag die Tür nicht ein -
sie lässt sich leicht mit dem Schlüssel öffnen.

Sprichwort aus Dagestan

Bei der Fülle von Extremalproblemen ergeben sich natürlich auch sehr viele verschiedene
Funktionen, mit denen man die Probleme beschreiben kann. Wir wollen aus dieser Fülle
noch eine Funktion herausgreifen und an verschiedenartigen Beispielen zeigen, welche
Bedeutung ihr zukommt.

(3.12) Für alle von 0 verschiedenen reellen Zahlen x ist durch f(x) = x + d
x mit

positivem d eine Funktion f definiert.
Wir betrachten zunächst einige Eigenschaften dieser Funktion:

Ersetzt man x durch −x, so gilt f(−x) = −f(x), d. h., die Funktion ist ungerade (vgl.
[13]), es genügt daher im folgenden die Betrachtung von f für x > 0. Die graphische
Darstellung von f lässt sich aus denen der Funktionen g(x) = x und h(x) = d

x -
zumindest angenähert - durch Addition der Funktionswerte leicht ermitteln (vgl. Abb.
3.6).

Abb. 3.6
Aus dieser graphischen Darstellung ist die Vermutung ersichtlich, dass die Funktion f
für x > 0 genau an der Stelle x0 das Minimum besitzt, an der sich die Graphen von
h(x) und g(x) schneiden.

Wir werden diese Vermutung später beweisen. Zunächst wollen wir aber an Aufgaben
zeigen, dass verschiedenartigste Problemstellungen durch diese Funktion erfasst wer-
den. Wir lösen nochmals - jetzt eben mit anderen Mitteln - die uns schon bekannten
Aufgaben (2.36) und (2.37):

Auf die Problemstellung (2.36) kann man gut den Strahlensatz anwenden. Setzt man
für die Länge der Quadratseite o. B. d. A. |CD| = 1 und für die sich in Abhän-
gigkeit von der Lage der Geraden g verändernde Streckenlänge |DA| = x, so gilt
x : (1 + x) = 1 : |BC| bzw. |BC| = 1+x

x . (Man überprüfe diese Angaben im Vergleich
mit Abb. 2.14a).
Den Flächeninhalt des Dreiecks ABC können wir jetzt als Funktion von x angeben:

A(x) = 1
2 |AC| · |BC| = 1

2
(1 + x)2

x
= 1

2

(
x+ 1

x

)
+ 1

A(x) ist genau dann minimal, wenn der Wert der Funktion f(x) = x + 1
x minimal

ist. Nach unserer Vermutung müsste das für x0 = 1 (in Übereinstimmung mit dem
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früheren Ergebnis) der Fall sein.

Im Beispiel (2.37) setzen wir o. B. d. A. r = 1 und entsprechend zu der Lösung von
(2.37) |AD| = x. (Vgl. Abb. 2.14b.) Um |BF | zu ermitteln, benutzen wir den Satz
des Pythagoras. Dabei ist zu beachten, dass |BE| = |BF | und |AB| = |AD| = x gilt:

(1 + x)2 + (1 + |BF |)2 = (x+ |BF |)2 , |BF | = x+ 1
x− 1

Die Fläche des Dreiecks ABC denken wir uns zusammengesetzt aus den Flächen des
Quadrates CEMF und der Dreiecke AEM , AMG, MGB und BMF . Damit erhalten
wir schließlich

A(x) = 1 + x+ x+ 1
x− 1

Um eine Funktion vom Typ (3.12) zu erkennen, führen wir noch eine Variablensubsti-
tution aus: z = x− 1. (Aus Abb. 2.14 b ist ersichtlich, dass auch z positiv ist.) Damit
ergibt sich

A(z) = 2 + z + z + 2
z

= z + 2
z

+ 3

A(z) wird genau dann minimal, wenn z + 2
z minimal wird, wir haben also wieder den

Anschluss an (3.12) hergestellt.

(3.13) • Man löse (2.48) unter Verwendung der Funktion (3.12).

(3.14) Elektrische Leistung: Die elektromotorische Kraft einer Stromquelle sei e, ihr
innerer Widerstand Ri. Wie groß muss der äußere Widerstand x gewählt werden, damit
die von der Stromquelle abgegebene Leistung N maximal wird?

Es gilt e = I(Ri + x) und N = U · I, wenn I die Stromstärke und U die Spannung im
äußeren Stromkreis sind.25

Daraus erhält man unter Einbeziehung des Ohmschen Gesetzes

N = N(x) = e2x

(Ri + x)2

Da e2 konstant ist, nimmt N(x) mit x > 0 genau an den Stellen einen maximalen Wert
an, an denen x

(Ri+x)2 maximal bzw der Kehrwert (Ri+x)2

x minimal wird!
Der Kehrwert

(Ri + x)2

x
= R2

i

x
+ 2Ri + x

wird aber genau dann minimal, wenn f(x) = x+R2
i

x minimal wird, da 2Ri eine konstante
Größe ist. Damit haben wir die Lösung der Aufgabe auf die Betrachtung der Funktion
(3.12) mit d := R2

i zurückgeführt.

(3.15) Lagerhaltungskosten: Eine Verkaufseinrichtung hat nach ihren Erfahrungen für
einen bestimmten Artikel einen Bedarf von 160 Stück pro Monat. Der Artikel muss
angeliefert werden.
25Vgl. W. H. Westphal, Physik, Berlin 1939, S. 303.
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Die Transportkosten betragen pro Lieferung (unabhängig von der gelieferten Anzahl!)
30 M. Für die angelieferten Artikel entstehen aber in der Verkaufseinrichtung Lager-
kosten von 1,50 M pro Stück und Monat.
Welche Anzahl x des Artikels muss in welchen Abständen geliefert werden, damit die
Gesamtkosten möglichst niedrig sind? Es wird vorausgesetzt, dass der Bestand des
Artikels linear abnimmt.

Besteht eine Lieferung aus x Stück, so sind z = 160
x Lieferungen pro Monat nötig, um

den Bedarf zu decken, die Transportkosten pro Stück betragen 30
x M. Will man die

Lagerkosten pro Stück berechnen, so steht man vor der Schwierigkeit, dass man ja die
Lagerzeit eines einzelnen Stückes nicht kennt.
Da aber vorausgesetzt ist, dass der Bestand des Artikels linear abnimmt, kann man für
jedes Stück die gleiche durchschnittliche Lagerzeit annehmen, diese ist halb so groß wie
die Zeit zwischen zwei Lieferungen, also 1

2z Monate. Da pro Monat Lagerkosten von
1,50 M pro Stück entstehen, sind bei z Lieferungen im Durchschnitt 0,75

z M pro Stück
zu bezahlen.

Für ein Stück entstehen folglich in Abhängigkeit von x Gesamtkosten in Höhe von (in
M):

k(x) = 30
x

+ 0, 75
160 x

Abb. 3.7

Das Minimum dieser Funktion k(x) ist an der gleichen Stelle gelegen wie das der
Funktion

˜f(x) = 160 · 4
3 k(x) = 6400

x
+ x

Bei einem Vergleich von f̃ mit f aus (3.12) ergibt sich d = 6400, es ist aber auch zu
beachten, dass f nur für positive natürliche Zahlen x erklärt ist.

(3.16)* Lichtablenkung durch ein Prisma: Geht ein Lichtstrahl durch ein Prisma (mit
dem Brechungsindex n), so wird er an den Trennflächen nach dem Snelliusschen Bre-
chungsgesetz abgelenkt (vgl. Abb. 3.7a). Bei welchem Strahldurchgang ist die Ablen-
kung u am kleinsten?

Das Snelliussche Brechungsgesetz (welches wir später noch aus dem Extremalprinzip
des Lichtes herleiten werden) lautet mit den Winkelbezeichnungen der Abb. 3.7a

sinα = n sin β bzw. sin δ = n sin γ (1)
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Da die Einfallslote gAD und gBD nach Definition senkrecht auf den Trennflächen stehen,
gilt η = 180◦ − ε, und der Winkel u, der die Ablenkung beschreibt, ergibt sich zu
u = δ + α− ε.
Da ε ein konstanter Winkel ist, wird u genau dann minimal, wenn α + δ minimal
wird. Dieses Extremalproblem versuchen wir mittels einer trigonometrischen Funktion
zu lösen.

Die Winkel α und δ sind wegen ihrer physikalischen Bedeutung spitz, also gilt 0 <
α + δ < 180◦. In diesem Intervall ist die cos-Funktion monoton fallend. Folglich ist
α + δ genau dann minimal, wenn cos(α + δ) maximal ist.
Wir verwenden den Kosinussatz, um cos(α+δ) zu berechnen. Dafür benötigen wir eine
Hilfsabbildung, in der die Winkel α und δ und auch β und γ geeignet eingetragen sind
(vgl. Abb. 3.7 b).

Wählen wir |EH| = 1 und |EF | = x, so ergibt sich aus (1) mit dem Sinussatz
|HG| = n und |FG| = x · n.
Unter zweimaliger Verwendung des Kosinussatzes erhalten wir schließlich

cos(α+ δ) = 1 + x2 − |HF |2

2x
cos(α + δ) = 1

2x [1 + x2 − n2 − n2x2 + 2n2x cos(γ + β)]

cos(α + δ) = 1
2x(1 − n2)(1 + x2) + n2 cos ε (2)

Da n2 cos ε konstant ist und n > 1 gilt, folgt aus (2), dass cos(α + δ) genau dann
maximal wird, wenn f(x) = 1

x + x minimal wird.

Nach diesen - z. T. recht anspruchsvollen - Beispielen fällt uns vielleicht ein weiteres
ein, welches wir schon betrachtet haben und das uns nun auch den Beweis unserer
Vermutung liefern wird, wir meinen (2.27).
Setzen wir in a + b = U für b den Wert A

a ein, so erhalten wir gerade, dass a + A
a

zu minimieren ist. (2.27) liefert aber das Minimum a0 = b0 =
√
A für A > 0. Diese

geometrische Interpretation ist dabei immer möglich.

Ein zweiter Beweis arithmetischer Art ist auch sehr einfach. Wir ergänzen mittels einer
Konstanten

f(x) − 2
√
d = x+ d

x
− 2

√
d =

√
x−

√
d

x

2

≥ 0

Der kleinste Funktionswert ist 0, und er wird genau für x0 =
√
d angenommen. Außer-

dem ergibt sich sofort f(x0) = 2
√
d.

(3.17) • Man ermittle für die drei vorangegangenen Beispiele die Lösungen.
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3.4 Angenäherte Berechnung von Extremwerten
Das Unzulängliche ist produktiv.

J. W. v. Goethe

Einerseits haben wir in den Abschnitten 3.2 und 3.3 gezeigt, welche Vielfalt von Extre-
malproblemen schon mit recht einfachen Funktionen zu lösen sind, andererseits muss
man erwarten, dass diese Funktionen keinesfalls ausreichen werden. Wir betrachten ein
einfaches Beispiel:

(3.18) An einem Fluss g soll für die Versorgung der drei Städte A, B, C ein Hafen H
eingerichtet werden. (Die Lagebeziehungen zwischen g, A, B und C sind in Abb. 3.8a
(S. 64) angegeben.)

Abb. 3.8

An welcher Stelle muss H liegen, damit das "Wegenetz" AH + BH + CH möglichst
kurz wird?

Diese Aufgabe erinnert uns an schon betrachtete. Würden wir A vernachlässigen, so
wäre H = E, bei Vernachlässigung von B dagegen H = D zu wählen (vgl. Abb. 3.8
a).
Berücksichtigen wir CH nicht, so ergibt sich H = R nach (2.1). Der Torricellische
Punkt T (vgl. (2.12)) würde das Problem lösen, wenn überdies T ∈ g gelten würde.
Keiner der Punkte D, E, R oder T löst unser Problem (3.18)!
Versuchen wir, es mittels einer Funktion f zu erfassen: Es sei O der Fußpunkt des Lotes
von A auf g, x = |OH| [in km]. Dann ergibt sich aus dem Satz des Pythagoras

f(x) = |AH|+|BH|+|CH| =
√
x2 + 900+

√
(x− 20)2 + 10000+

√
(100 − x)2 + 4900 (*)

Von der Funktion f mit der durch (*) gegebenen Funktionsgleichung suchen wir die
Minimalstelle wo im Intervall 0 ≤ x ≤ 100. Die Funktion f ist für alle reellen Zahlen
in diesem Intervall definiert.
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Jetzt nehmen wir an, dass ein solches x0 in diesem Intervall eindeutig existiert, das
erscheint zwar nach unseren Vorbetrachtungen einleuchtend, ist aber nicht bewiesen.
Allerdings steht man gerade bei praxisbezogenen Aufgaben öfter vor dieser Situation,
zunächst die Existenz und Eindeutigkeit eines Extremums annehmen zu müssen.

Wir können das Minimum angenähert aus dem Graphen f∗ von f(x) ablesen. Zur
Ermittlung von f∗ ermitteln wir Funktionswerte an einigen Stellen x; und tragen diese
in ein Koordinatensystem ein (vgl. Abb. 3.8 b).

In Abb. 3.8 b haben wir aus den Punkten • auf den Verlauf (gestrichelte Linie) von
f∗ geschlossen; einen Verlauf, wie ihn etwa die punktierte Linie charakterisiert, haben
wir damit ausgeschlossen. Wir nehmen also an, dass der Graph f∗ "parabelähnlich"
verläuft, was für die Anwendung der folgenden Näherungsmethode von grundsätzlicher
Bedeutung ist. Allgemeiner und exakter sollten wir formulieren:

Abb. 3.8 c

Der Graph f∗ ist (von unten gesehen) konvex. (Zur
Definition dieses Begriffes (4.3).)
Auf solche konvexen Kurven f∗ beziehen sich nun unse-
re Näherungslösungen. Charakteristisch für alle solche
Näherungslösungen ist, dass wir uns schrittweise dem
gesuchten Wert nähern.

1. Möglichkeit: Wir lesen aus f∗ die ungefähre Lage
des Minimums ab und berechnen mit (*) die Funkti-
onswerte in der Umgebung.
In unserem Beispiel liegt die Minimalstelle etwa bei 30,
und es gilt f(20) ≈ 242, 4, f(30) ≈ 241, 9, f(40) ≈
244, 2. Folglich nehmen wir uns vor, noch f(25) und
f(35) zu berechnen. Da f(25) ≈ 241, 8 < f(30) ist,
gilt schon sicher 20 < x0 < 30.

2. Möglichkeit: Eine konvexe Funktion lässt sich gut
angenähert durch eine quadratische Funktion f(x) =
ax2 + bx+ c mit der Minimalstelle x̃0 = − b

2a ersetzen.
Das Verfahren besteht nun darin, f(x) durch eine Folge
von Parabeln in der Umgebung von wo immer besser
anzunähern. Damit ist x̃0 ≈ x0 zu erwarten.

Eine Parabel ist eindeutig durch drei voneinander verschiedene Punkte, die auf dieser
Parabel liegen, bestimmt. Sind (x1, y1), (x2, y2), (x3, y3) diese Punkte, so muss

ax2
1 + bx1 + c = y1, ax2

2 + bx2 + c = y2, ax2
3 + bx3 + c = y3

gelten. Subtrahiert man die erste Gleichung sowohl von der zweiten als auch von der
dritten, so erhält man

a(x2
2 − x2

1) + b(x2 − x1) = y2 − y1

a(x2
3 − x2

1) + b(x3 − x1) = y3 − y1
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Das ist ein lineares Gleichungssystem, aus dem sich eindeutig a und b und damit
x̃0 = − b

2a ermitteln lassen. In Abhängigkeit von den benutzten Umformungen erhält
man eine Darstellung für x0 in Abhängigkeit von den Koordinaten der drei die Parabel
bestimmenden Punkte. Für numerische Berechnungen (z. B. mit einem Taschenrech-
ner) ist die folgende Form günstig:

2x̃0 = x1 + x2 + x3 − x2

1 − x2−x1
x3−x1

· y3−y1
y2−y1

(0)

Verwenden wir in unserem Beispiel x1 = 0, x2 = 50 und x3 = 100, so ergibt sich x̃0 ≈
29, 5. Die nächste Näherungsparabel wird man demnach etwa durch x1 = 20, x2 = 30
und x3 = 40 bestimmen. (0) liefert uns x̃0 ≈ 26, 8. Da bei jedem Schritt die gleiche
Formel (0) benutzt wird, kann man sich wohl vorstellen, dass dieses Verfahren auf
einem Computer sehr schnell den gesuchten Wert mit beliebiger Genauigkeit ermittelt.

Die Realisierung auf einem Rechner ist auch wesentlich für die

3. Möglichkeit: Die Beschreibung des Verfahrens geben wir durch den in Abb. 3.8 c
dargestellten Programmablaufplan (PAP).

Vertieft man sich in diesen PAP, so erkennt man seine Wirkungsweise. So wie in den
vorherigen Verfahren wird auch hier vorausgesetzt, dass ein Minimum an genau einer
Stelle wo existiert. Mit dem durch den PAP beschriebenen Algorithmus wird diese Stelle
wo mit vorgegebener Genauigkeit 8 berechnet.

Der Startwert x1 wird kleiner als x0 gewählt, z. B. x1 = 0. Mit der Schrittweite d
läuft man nun auf die Minimalstelle zu bis man - durch Vergleich der Funktionswerte -
bemerkt, dass man diese bereits überschritten hat.
Jetzt läuft man mit der halben Schrittweite in die entgegengesetzte Richtung (d = −d

2).
Dieses "Pendeln" um die Minimalstelle x0 wird so lange fortgesetzt, bis die Schrittweite
dem Betrag nach kleiner als die vorgegebene Zahl ε ist.

Man kann diesen PAP mit einem Taschenrechner abarbeiten. Wir haben ein entspre-
chendes BASIC-Programm für einen Kleinstrechner geschrieben.
Mit den Startwerten x1 = 0 und d = 5 und ε = 0, 5 (bzw. ε = 0, 1) erreicht man
mit 15 (bzw. 20) Zyklusdurchläufen (Zählvariable N) jeweils nach einigen Sekunden
Rechenzeit x0 = 26 ± 0, 5 (bzw. x0 = 26, 4 ± 0, 1).
In beiden Fällen erhält man den zugehörigen Funktionswert y0 ≈ 241, 74. Diese damit
erreichte Genauigkeit ist bezüglich des gestellten praktischen Problems (3.18) unan-
gemessen hoch. Richtet man den Hafen in etwa 26,5 km von O entfernt ein, so wird
das Wegenetz mit etwa 241,74 km minimale Länge haben. Der Leser vergleiche dieses
Ergebnis mit seinen Erwartungen an Hand von Abb. 3.8 a.

Wohlgemerkt ging es uns bei den obigen Darlegungen in erster Linie um die Demons-
tration prinzipieller Potenzen, die die numerischen Verfahren anbieten. Bei unseren drei
Verfahren handelte es sich stets um ein "durch die Anschauung gestütztes Abtasten".
Man wird ahnen, dass die "höhere Mathematik" vielfältigere und effektivere Methoden
zur Verfügung stellt. Diese Hinweise sind auch bei dem abschließenden Beispiel zu be-
achten. Wir wählen eine Aufgabe, deren "duale Formulierung" wir später als Aufgabe
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(4.10) lösen werden:

(3.19) Man ermittle unter allen Quadern mit dem Umfang 4 diejenigen mit dem maxi-
malen Volumen.

Die Kantenlängen der Quader seien mit x, y und z bezeichnet. Dann gilt V = x · y · z
und x+ y + z = 1. Daraus folgt

V = V (x, y) = xy(1 − x− y)

für alle x, y mit x+ y < 1.
Ein Maximum kann man nun schrittweise angenähert ermitteln, indem man abwechselnd
x und y fest wählt.
Wir beginnen mit x = 0, 5: V (0, 5, y) = 0, 5y(0, 5−y) ist die Funktionsgleichung einer
Parabel, deren Maximum nach (3.6) bei y0 = 0, 25 liegt.
Wir wählen folglich y0 = 0, 25 und betrachten V (x, 0, 25) = 0, 35x(0, 75 − x), das ist
eine quadratische Funktion mit dem Maximum bei x0 = 3

8 .

Abb. 3.9

V
(

3
8 , y

)
hat ein Maximum bei y1 = 5

16 .
So fortfahrend erhält man schließlich xn ≈ yn ≈ 1

3 . Daraus folgt zn ≈ 1
3 . Unter den

Quadern ist also (in Näherung) der Würfel ein solcher mit maximalem Volumen.
Veranschaulicht man sich die Funktion V (x, y) in einem räumlichen Koordinatensystem,
so kann man diesen Näherungsprozess gut verfolgen.
Aus der Darstellung der Funktion folgt auch die Existenz und Einzigkeit des Maximum
(vgl. Abb. 3.9).
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4 Ungleichungen und Extrema
4.1 Zusammenhänge zwischen Funktionen und Ungleichungen

Nicht überall, wo Wasser ist, sind Frösche,
aber wo man Frösche hört, ist Wasser.

J. W. v. Goethe

Nimmt eine Funktion an einer Stelle einen Extremwert an, so lässt sich das wie in (3.2)
mittels einer Ungleichung beschreiben. Ordnet man umgekehrt einer Ungleichung eine
Funktion zu, so muss man mit Schlussfolgerungen vorsichtiger sein.
Jede Ungleichung in einer Variablen x über einer Teilmenge U der reellen Zahlen R,
kann man so umformen, dass sie die Gestalt

T (x) ≥ 0 (∗) oder T (x) > 0 (∗∗)

annimmt. T (x) ist dabei ein Term in x, und (*) bzw. (**) wird immer nur von einer
bestimmten Menge L ⊆ U ⊆ R erfüllt. L ist die Lösungsmenge der Ungleichung. (Bei
Beweisaufgaben wird häufig verlangt zu zeigen, dass eine vorgegebene Ungleichung für
alle x ∈ K mit vorgegebenem K gilt. Dann muss natürlich K ⊆ L gelten.)

Nun kann man zunächst dem Term T (x) eine Funktion mit der Funktionsgleichung
y = T (x) und dem Definitionsbereich D(T ) = L zuordnen. Dann sind nach (*) bzw.
(**) alle Funktionswerte nichtnegativ bzw. positiv.

Kann man aber daraus schließen, dass die Funktion ein Minimum besitzt und dieses
den Wert 0 hat? Im Fall (**) werden wir sicher nicht so leicht zu diesem Fehlschluss
verleitet, denn hier besagt doch schon die Form der Ungleichung, dass der Wert 0 im
Wertevorrat der zugeordneten Funktion gar nicht auftritt. Ein einfaches Gegenbeispiel
ist auch schnell zur Hand:

Für alle positiven x gilt 1
x > 0, die Funktion mit y = 1

x nimmt zwar beliebig kleine
Funktionswerte an, niemals aber den Wert 0.26

Leichter wird man im Fall (*) zu Fehlschlüssen verleitet. Man beachte aber, dass man
häufig für (**) auch (*) setzen kann. Wir hätten oben auch schreiben können: Für alle
positiven x gilt 1

x ≥ 0.

Wird aber im Fall (*) der Wert 0 für wenigstens ein x angenommen, so besitzt die
Funktion T ein Minimum T (xmin) = 0.
Aus (*) auf die Existenz eines Minimums zu schließen, ist also nur zulässig, wenn man
gezeigt hat, dass ein x0 mit T (xmin) = 0 existiert. Dieser gut zu beachtende Zusam-
menhang ist auch einer der Gründe dafür, dass man in Aufgaben über Ungleichungen
vom Typ (*) häufig ausdrücklich fordert:

"Man ermittle alle x, für die das Gleichheitszeichen gilt!" oder "Man beweise, dass das
Gleichheitszeichen angenommen wird!"
26In Lehrbüchern der höheren Mathematik führt man den Begriff des Infimums ein. In unserem Beispiel

gilt inf 1
x = 0 für x > 0.
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4.1 Zusammenhänge zwischen Funktionen und Ungleichungen

Den soeben untersuchten Zusammenhang haben wir schon in Kapitel 3 benutzt: Aus
der offensichtlich für alle reellen Zahlen x gültigen Ungleichung (x − 1)2 ≥ 0 folgt
x+ 1

x − 2 ≥ 0 für alle positiven x, und das Gleichheitszeichen gilt (genau) für x = 1.
Die Funktion f(x) = x+ 1

x − 2 mit D(f) = R∗
+ hat also (genau) an der Stelle x0 = 1

das Minimum f(1) = 0.

Alle diese Überlegungen kann man leicht auf den Fall des Maximums übertragen.

(4.1) • Man ermittle alle Extrema der Funktion f mit f(x) = x2

x4 + 1 und D(f) = R.

Bei diesen Beispielen waren uns Ungleichungen für die Ermittlung der Extrema einer
Funktion nützlich. Kann man auch in der umgekehrten Richtung den Zusammenhang
ausnutzen? Natürlich! Wir wollen zur Illustration eine sehr wichtige Ungleichung her-
leiten:

Wir knüpfen an unsere Ausführung über die Methode der kleinsten Quadrate an. Er-
setzen wir dort die Symbole Ii durch xi, Ui durch yi und R durch m, so hat das gar
keinen Einfluss auf die Herleitung, man sieht auch, dass man xi und yi nicht auf die
positiven reellen Zahlen einschränken muss.
Die in m quadratische Funktion f mit f(m) =

n∑
i=1

(mxi − yi)2 hat nur nichtnegative

Funktionswerte, und ihr Minimum liegt bei m0 =
∑
xiyi∑
x2

i

.

Es gilt natürlich auch f(m0) ≥ 0, bzw. - man setze ein und rechne einmal nach -

−(∑xiyi)2∑
x2

i

+
∑

y2
i ≥ 0

Da ∑x2
i > 0 gilt, ist diese Ungleichung äquivalent mit

∑
x2

i ·
∑

y2
i ≥

(∑
xiyi

)2

Das Gleichheitszeichen gilt genau dann, wenn ein m so existiert, dass mxi = yi für
alle i gilt. (Das ist aus der obigen Darstellung von f(m) ersichtlich.) Wir fassen unser
Resultat zusammen:

(4.2) Die Cauchy-Schwarzsche Ungleichung: Für n Paare (xi, yi) beliebiger reeller Zah-
len gilt

n∑
i=1

x2
i ·

n∑
i=1

y2
i ≥

 n∑
i=1

xiyi

2

Das Gleichheitszeichen in dieser Ungleichung gilt genau dann, wenn alle n Paare die
Gestalt (xi,mxi) mit festem m haben.

Diese Art, Eigenschaften von Funktionen zur Ableitung von Ungleichungen auszunut-
zen, ist möglicherweise überraschend, aber sehr wichtig und anregend.
Im folgenden gehen wir dazu von konvexen oder konkaven Funktionen aus.
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4.1 Zusammenhänge zwischen Funktionen und Ungleichungen

(4.3) Eine Funktion y = f(x) heißt ("von unten gesehen"27) konvex (bzw. konkav) im
Intervall [a, b] genau dann, wenn bezüglich des Graphen f∗ von f im Intervall für jede
beliebige Sehne AB mit A,B ∈ f∗ der Bogen AB ⊆ f∗ unterhalb (bzw. oberhalb)
oder auf der Sehne liegt.

Insbesondere heißt dabei die Funktion streng konvex bzw. streng konkav, wenn die
Bögen AB ganz unterhalb (bzw. oberhalb) der zugehörigen Sehne AB liegen. (In Abb.
4.1a wurde eine streng konkave Funktion dargestellt.)
Der Begriff wurde von uns aus anschaulichen Gründen mit geometrischen Mitteln er-
klärt.28

Aus der Definition folgt leicht folgende Eigenschaft.

(4.4) Ist y = f(x) eine im Intervall [a, b] streng konkave Funktion, so gilt für alle reelle
Zahlen x1, x2 mit a < x1, x2 < b und x1 ̸= x2 die Ungleichung

f(x1) + f(x2)
2 < f

(x1 + x2

2

)
(1)

Wie man an Hand der Abb. 4.1 b sofort erkennt, hat der Mittelpunkt M der Sehne
AB die Koordinaten xM = x1+x2

2 , yM = f(x1)+f(x2)
2 , und yM ist in der Tat nach

Voraussetzung kleiner als die y-Koordinate f
(

x1+x2
2

)
desjenigen Punktes N auf dem

Graphen der Funktion, der die gleiche x-Koordinate wie der Punkt M hat.

Abb. 4.1
(Für eine streng konvexe Funktion kehrt sich das Relationszeichen in (1) um.)

Ein Beispiel für eine streng konkave Funktion ist die Logarithmusfunktion y = log x,
und zwar im ganzen Definitionsbereich 0 < x < ∞ (Abb. 4.1 c).
Nach (4.4) gilt also für alle voneinander verschiedenen reellen Zahlen x1, x2 > 0 die
Ungleichung

log √
x1x2 = log x1 + log x2

2 < log x1 + x2

2
und auf Grund des Monotonieverhaltens der Logarithmusfunktion folgt daraus die Un-
gleichung

√
x1x2 <

x1 + x2

2 (2)
27Diese wenig exakt klingende Formulierung wurde von uns hinzugefügt, da in den verschiedenen

Veröffentlichungen die Definitionen unterschiedlich, d. h. gerade entgegengesetzt sind. Die hier
gewählte stimmt z. B. mit der in [5] gegebenen überein. Im Mathematischen Wörterbuch, Bd. I,
S. 996, findet man den Begriff "Konvex von einer Seite": Verläuft eine ebene Kurve ... in einer
Umgebung des Berührungspunktes einer Tangente ... ganz auf deren einer Seite, so heißt die Kurve
von dieser Seite konkav, von der entgegengesetzten Seite konvex.

28Andere Möglichkeiten der Begriffserklärung sind die mittels der Differentialrechnung oder eben der
von uns nun abzuleitenden Ungleichungen.
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4.1 Zusammenhänge zwischen Funktionen und Ungleichungen

für alle reellen Zahlen x1, x2 > 0 mit x1 ̸= x2.
Dies ist die bekannte Aussage, dass das geometrische Mittel zweier verschiedener po-
sitiver reeller Zahlen stets kleiner als ihr arithmetisches Mittel ist.
Der Satz (4.4) lässt sich verallgemeinern:

(4.5) Ist y = f(x) eine im Intervall [a, b] streng konkave Funktion und sind x1, x2, ,...,
xn beliebige reelle Zahlen aus dem Intervall, die nicht alle gleich sind, dann gilt

f(x1) + f(x2) + ...+ f(xn)
n

< f
(x1 + x2 + ...+ xn

n

)
(3)

Diese Ungleichung (3) heißt (spezielle) Jensensche Ungleichung. (Für n = 2 ergibt sich
(1).)

Zum Beweis benutzen wir aus der analytischen Geometrie die Aussage, dass die Koor-
dinaten xS, yS des Schwerpunktes von n (Massen-) Punkten M1(x1, y1), M2(x2, y2),
..., Mn(xn, yn) bestimmt sind durch29

xS = x1 + x2 + ...+ xn

n
, yS = y1 + y2 + ...+ yn

n

Die behauptete Ungleichung (3) ist aus geometrischer Sicht nun leicht zu begründen.
Wir können o. B. d. A. davon ausgehen, dass x1 ≤ x2 ≤ ... ≤ xn ist und dass hier
wenigstens drei verschiedene reelle Zahlen vorliegen.

Abb. 4.2

Die Punkte M1(x1, y1), M2(x2, y2), ..., Mn(xn, yn) mit yi = f(xi) (i = 1, ..., n) liegen
auf dem Graph der Funktion und bilden nach Voraussetzung die Ecken eines konvexen
Vielecks (Abb. 4.2). Der Schwerpunkt S(xs, yS) dieser Figur liegt in ihrem Innern und
demnach unterhalb desjenigen Punktes N des Graphen, der die gleiche z-Koordinate
xs = x1+x2+...+xn

n wie der Schwerpunkt S besitzt ; also gilt

yS < f
(x1 + x2 + ...+ xn

n

)
d. h.

f(x1) + f(x2) + ...+ f(xn)
n

< f
(x1 + x2 + ...+ xn

n

)
Ist die Funktion y = f(x) streng konvex - wie z. B. y = x2 im Intervall −∞ < x < ∞
oder y = tan x im Intervall 0 < x < pi

2 -, dann ist nach den bisherigen Überlegungen

f(x1) + f(x2) + ...+ f(xn)
n

> f
(x1 + x2 + ...+ xn

n

)
(3’)

29Siehe dazu etwa [5], S. 319.
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4.1 Zusammenhänge zwischen Funktionen und Ungleichungen

als Jensensche Ungleichung zu verstehen, wobei wieder wenigstens zwei der Zahlen
x1, ..., xn voneinander verschieden sein müssen.

Wählen wir wieder als Beispiel die streng konkave Logarithmusfunktion, so erhalten wir
aus dem Satz (4.5) als Folgerung:

log x1 + log x2 + ...+ log xn

n
< log

(x1 + x2 + ...+ xn

n

)
und damit

n
√
x1 · x2 · ... · xn <

x1 + x2 + ...+ xn

n
(4)

für alle positiven reellen Zahlen x1, ..., xn von denen wenigstens zwei voneinander ver-
schieden sind.30

Dies ist der Satz vom geometrischen und arithmetischen Mittel; die Ungleichung (2)
ist ein Spezialfall von (4).

Eine weitere nützliche Ungleichung folgt aus (4.5) mit Hilfe der Potenzfunktion y = xm

(m ≥ 2, ganzzahlig). Diese Funktion ist für 0 ≤ x < ∞ streng konvex. Also gilt für
alle reellen Zahlen x1, ..., xn ≥ 0, von denen wenigstens zwei voneinander verschieden
sind, die Ungleichung

xm
1 + xm

2 + ...+ xm
n

n
>
(x1 + x2 + ...+ xn

n

)m

(5)

bzw.
x1 + x2 + ...+ xn

n
< m

√
x1 + x2 + ...+ xn

n
(5’)

Dem auf der rechten Seite von (5’) stehenden Term nennt man das "m-te Potenzmittel
der Zahlen x1, ..., xn".

Aus unseren bisherigen Betrachtungen folgt auch:

(4.6) Die Ungleichungen (1), (2), (3), (3’), (4), (5) und (5’) sind genau dann durch
Gleichungen zu ersetzen, wenn alle xi paarweise gleich sind, bzw. in den Fällen (1), (3)
und (3’) auch dann, wenn f(x) eine lineare Funktion ist (die also weder streng konkav
noch streng konvex ist).

Die Sätze (4.4) und (4.5) wie auch die Ungleichungen (2), (4) und (5) im besonderen
finden vielfältige Anwendungen. Wir können das hier nur an einigen wenigen Aufga-
ben zeigen. Zunächst stehen trigonometrische Funktionen im Mittelpunkt, im nächsten
Kapitel dann speziell die Ungleichung (4).

Abb. 4.3
30Eine andere Herleitung von (4) findet man z. B. in [9], S. 21 ff.
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4.1 Zusammenhänge zwischen Funktionen und Ungleichungen

Wir beginnen mit der Lösung der uns schon bekannten Aufgabe (2.43a). Zunächst über-
lege sich der Leser, dass der Flächeninhalt des einbeschriebenen Dreiecks sicher noch
vergrößert werden könnte, wenn der Mittelpunkt M des Umkreises nicht im Inneren
des Dreiecks liegt.
Danach kann man mit den Bezeichnungen der Abb. 4.3a und unter Verwendung des
"Flächensatzes" den Inhalt eines einbeschriebenen Dreiecks angeben:

A∆ = 1
2r

2 sin δ + 1
2r

2 sin ε+ 1
2r

2 sin η

A∆ = 1
2r

2(sin δ + sin ε+ sin η)

mit δ + ε + η = 2π. Der Inhalt A∆ wird nun genau dann maximal, wenn s = sin δ +
sin ε+ sin η maximal wird. Da nach den Vorüberlegungen jeder der Winkel δ, ε und η
kleiner als π und die Funktion y = sin x im Intervall [0, π] streng konkav ist, gilt nach
(3) und (4.6)

1
3(sin δ + sin ε+ sin η) = sin δ + ε+ η

3
d. h.

s ≤ 3 · sin 2π
3 = 3

2
√

3

Wesentlich ist, dass das Maximum für s und damit für A∆ genau dann angenommen
wird, wenn δ = ε = η = 120◦ gilt, d. h., wenn das Dreieck gleichseitig ist.

(4.7) Es sei A∆ der Flächeninhalt eines Dreiecks und Ak der Inhalt des zugehörigen
Inkreises. Man bestimme das Maximum des Verhältnisses q = Ak

A∆
.

Für welche Dreiecke liegt dieses Extremum vor?

Zur Lösung gehen wir von bekannten trigonometrischen Sachverhalten aus. Entspre-
chend den in Abb. 4.3b angegebenen Bezeichnungen gilt Ak = πρ2 sowie

A∆ = 2
(1

2ρ
2 cot α2 + 1

2ρ
2 cot β2 + 1

2ρ
2 cot γ2

)
= ρ2

(
cot α2 + cot β2 + cot γ2

)

und damit
q = π

cot α
2 + cot β

2 + cot γ
2

Nun ist q maximal genau dann, wenn q∗ := cot α
2 + cot β

2 + cot γ
2 minimal ist.

Die Winkelgrößen α
2 ,

β
2 und γ

2 liegen zwischen 0 und π
2 , und in dem Intervall (0, π

2 ) ist
die Funktion y = cot x streng konvex. Nach (3’) gilt dann

q∗

3 =
cot α

2 + cot β
2 + cot γ

2
3 > cot

 α
2 + β

2 + γ
2

3

 = cot π6 =
√

3

wenn wenigstens zwei der drei Winkelgrößen α, β, γ voneinander verschieden sind. Nach
(4.6) gilt q∗

3 =
√

3 nur für α = β = γ = π
3 . Folglich ist qmax = π

3
√

3 ≈ 0, 60; und dieses
Maximum liegt für die gleichseitigen Dreiecke und nur für diese vor.
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4.1 Zusammenhänge zwischen Funktionen und Ungleichungen

(4.8) Es seien α, β, γ die Größen der Innenwinkel eines Dreiecks. Für welche Dreiecke
ist

sinα + sin β + sin γ
sinα · sin β · sin γ

maximal?

Wegen sinα, sin β, sin γ > 0 gilt nach (4) zunächst

sinα sin β sin γ ≤
(sinα + sin β + sin γ

3

)3

wobei das Gleichheitszeichen wegen (4.6) für sinα = sin β = sin γ steht. Also ist

sinα + sin β + sin γ
sinα · sin β · sin γ ≥ 27

(sinα + sin β + sin γ)2

Da die Funktion y = sin x im Intervall 0 < x < π streng konkav ist, gilt

sinα + sin β + sin γ ≤ 3 · sin
(
α + β + γ

3

)
= 3 · sin π3 = 3 ·

√
3

2

wobei das Gleichheitszeichen hier nur für α = β = γ = π
3 steht. Folglich ist

sinα + sin β + sin γ
sinα · sin β · sin γ ≤ 27(

3 ·
√

3
2

)2 = 4

und Gleichheit besteht nur für die gleichseitigen Dreiecke.
Wir verwenden das gewonnene Resultat weiter:

Sind R und ρ die Radien des Um- bzw. Inkreises eines Dreiecks, so gilt für den Flä-
cheninhalt A des Dreiecks bekanntlich (Abb. 4.3 c):

A = 1
2ab sin γ = 1

2(2R sinα)(2R sin β) sin γ = 2R2 sinα sin β sin γ

sowie
A = 1

2ρ(a+ b+ c) = ρ

22R(sinα+ sin β + sin γ)

Daraus folgt
R

ρ
= 1

2
sinα + sin β + sin γ
sinα · sin β · sin γ

Das Ergebnis aus (4.8) hat dann zur Folge, dass

R

ρ
≥ 2

ist und Gleichheit nur für gleichseitige Dreiecke besteht.

Diese Extremalaussage für Dreiecke kann auch elementargeometrisch gewonnen werden,

54



4.2 Das Lösen von Extremalaufgaben unter Verwendung der Ungleichung über das
arithmetische und geometrische Mittel

wenn man von einem Dreieck ABC zu den Mitten A′, B′, C ′ der Seiten BC,CA,AB
übergeht, die ein zum Dreieck ABC ähnliches Dreieck (mit dem Ähnlichkeitsfaktor 1

2
bilden (vgl. [12]).

(4.9) • Es sei A∆ der Flächeninhalt eines Dreiecks und Ak der Inhalt des zugehörigen
Umkreises. Man bestimme für alle Dreiecke das Minimum des Verhältnisses p = Ak

A∆
.

Für welche Dreiecke liegt dieses Extremum vor?

Kombiniert man die Ergebnisse von (4.7) und (4.9), so kann man wiederum die Un-
gleichung R ≥ 2ρ ableiten.

4.2 Das Lösen von Extremalaufgaben unter Verwendung der
Ungleichung über das arithmetische und geometrische
Mittel

Wenn man dem Faden nachgeht,
findet man auch den Knäuel.

M. de Cervantes

Genau besehen haben wir die Ungleichung (2) in Abschnitt 4.1 schon benutzt, z. B.
bei der Lösung von (2.27) oder dem zugehörigen dualen Problem (2.33).
Interpretiert man in der Ungleichung x1 + x2

2 ≥
√
x1x2 die linke Seite als ein Viertel

des Umfangs eines Rechtecks mit den Seitenlängen x1 und x2, dann stellt die rechte
Seite die Wurzel aus dem Flächeninhalt dieses Rechteckes dar. Ist nun eine dieser Seiten
konstant, so ist der Term der anderen Seite durch diese Konstante (nach unten oder
oben) beschränkt, das Gleichheitszeichen gilt jeweils für das Extremum. Man beachte,
wie sich die Dualität der Problemstellungen in der Ungleichung widerspiegelt!

Eine analoge Aufgabenstellung für den Raum erfordert kaum zusätzliche Überlegungen.

Abb. 4.4

(4.10) Quaderförmige Pakete, die ein vorgegebenes Volumen V haben, sollen mit Bind-
faden (wie in Abb. 4.4 angegeben) verschnürt werden. Welche Gestalt müssen die Pa-
kete haben, damit möglichst wenig Bindfaden verbraucht wird?

Die Kantenlängen des Quaders seien x1, x2, x3. Die benötigte Bindfadenlänge ist dann
4(x1 + x2 + x3), sie wird genau dann minimal, wenn x1+x2+x3

3 minimal wird.
Nach der Ungleichung (4) aus Abschnitt 4.1 gilt aber

x1 + x2 + x3

3 ≥ 3
√
x1 · x2 · x3

und das Gleichheitszeichen gilt für den Fall x1 = x2 = x3.
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4.2 Das Lösen von Extremalaufgaben unter Verwendung der Ungleichung über das
arithmetische und geometrische Mittel

Unabhängig von der Wahl der Belegung der Variablen gilt stets x1 · x2 · x3 = V , also
kann die linke Seite nie kleiner als 3

√
V werden, das Minimum wird für x1 = x2 = x3,

d. h. für eine Würfelform angenommen.

Möchte man für Dreiecke entsprechende Resultate (wie in (2.28) bzw. (2.35)) erzielen,
so ist eine Formel nötig, die den Flächeninhalt in Abhängigkeit von allen drei Seiten
angibt, das ist gerade die Heronsche Formel

A =
√
s(s− a)(s− b)(s− c) mit s = 1

2(a+ b+ c) (*)

Ist nun beispielsweise A unter der Annahme s = const zu maximieren, so ergibt sich
die Lösung etwa wie folgt: (*) ist äquivalent mit

3

√
A2

s
= 3
√

(s− a)(s− b)(s− c)

Aus der Ungleichung (4) ergibt sich mit x1 = s− a, x2 = s− b, x3 = s− c

3
√

(s− a)(s− b)(s− c) ≤ s− a+ s− b+ s− c

3 = 1
3s

das arithmetische Mittel erweist sich somit wieder als konstant. Folglich wird das geo-
metrische Mittel und damit auch A maximal genau für s− a = s− b = s− c, d.h. für
a = b = c.
Aus

3

√
A2

s
≤ 1

3s folgt A ≤
√

3
(s

3

)2
(**)

Hätten wir statt dieser beiden Beispiele die zugehörigen dualen betrachtet, so hätte
das offensichtlich keinen wesentlichen Unterschied gemacht.
Die nächste Aufgabe schließt an das letzte Beispiel an.

(4.11) Wir betrachten alle Tetraeder mit den Kantenlängen a, b, c, d, e, f , für die

a2 + b2 + c2 + d2 + e2 + f2 = q = const (0)

gilt. Man ermittle unter diesen Tetraedern alle diejenigen, für die der Oberflächeninhalt
maximal wird, und gebe diesen maximalen Inhalt an.31

Es seien x, y, z die Seitenlängen irgendeines der vier Dreiecke der Tetraederoberfläche.
Wegen (**) gilt für diese Dreiecksfläche

A ≤
√

3s
2

9 =
√

3
4

(x+ y + z

3

)2

Jetzt benutzen wir, um Anschluss an (0) zu erhalten, die Ungleichung (5). Wir erhalten

A ≤
√

3
4

(x+ y + z

3

)2
≤

√
3

4
x2 + y2 + z2

3
31Diese Aufgabe wurde aus OJM 211246 A abgeleitet.

56



4.2 Das Lösen von Extremalaufgaben unter Verwendung der Ungleichung über das
arithmetische und geometrische Mittel

Das Gleichheitszeichen gilt an beiden Stellen genau für x = y = z!
Addieren wir die vier Ungleichungen (die sich für die vier Dreiecke der Tetraedero-
berfläche ergeben) mit den entsprechenden Bezeichnungen, so erhalten wir für die
Tetraederoberfläche

O ≤
√

3
4 · 1

3(2a2 + 2b2 + ...+ 2f2) =
√

3
6 q

Das Gleichheitszeichen gilt nur, wenn es in jeder der Ungleichungen gilt; bei dem ge-
suchten Tetraeder handelt es sich also um ein regelmäßiges Tetraeder mit a =

√
q

6 seine

Oberfläche beträgt Omax =
√

3
6 q.

(4.12) •* Lässt sich die gleiche Frage wie in (4.11) für Oktaeder (konvexe Polyeder
mit acht dreieckigen Seitenflächen und 8·3

2 = 12 Kanten) und für Ikosaeder (konvexe
Polyeder mit 20 dreieckigen Seitenflächen und 20·3

2 = 30 Kanten) stellen? Zu welchem
Resultat gelangt man hier gegebenenfalls?

Setzt man in (2) x1 = x und x2 = d
x , so erhält man x + d

x ≥ 2
√
d, wobei das

Gleichheitszeichen nur für x1 = x2, d. h. für x =
√
d gilt.

Damit haben wir wiederum ein bekanntes Resultat gefunden, nämlich das, auf dem der
gesamte Abschnitt 3.3 aufbaute.

Lässt sich nun von der nur geringfügig (?) anderen Funktion f mit

f(x) = x+ a

x2 , x > 0, a = const und a > 0

das Minimum - falls überhaupt eines existiert - ermitteln?

Der Versuch, in (2) x1 = x und x2 = a
x2 zu setzen, liefert x + a

x2 ≥ 2
√

a
x und schlägt

damit fehl. Warum?
Mit der Veränderung des Arguments x ändert sich nicht nur der Wert der linken Seite
der erhaltenen Ungleichung, sondern auch der der rechten Seite. Damit liefert also keine
der Seiten eine feste Schranke für die andere. Unsere mehrfach mit Erfolg praktizierte
Methode ist wohl doch nicht so universell anwendbar.

Vielleicht lässt sie sich noch einmal retten, analysieren wir den Fehlschlag!
Das Scheitern des Versuchs ist doch wesentlich daran erkennbar, dass das geometrische
Mittel keine konstante Größe darstellt. Das liegt aber z. B. daran, dass in dem Produkt
x · a

x2 der Faktor x nur einmal statt zweimal vorkommt.

Könnten wir erreichen, dass er ein zweites Mal auftritt? Dann müsste x auch im arith-
metischen Mittel zweimal als Summand enthalten sein. Was noch nicht ist, kann in dem
Fall geschaffen werden: x = 1

2x + 1
2x ist die zunächst als Trick erscheinende Lösung

des Problems. Es gilt unter Verwendung von (4) mit n = 3

x+ a

x2 = 1
2x+ 1

2x+ a

x2 ≥ 3 · 3

√
x

2 · x2 · a
x2 = 3 · 3

√
a

4
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wobei das Gleichheitszeichen nach (4.6) nur für 1
2x = 1

2x = a
x2 , d. h. für x0 = 3

√
2a

gilt. Der minimale Funktionswert ist

f(x0) = 3
√

2a+ a
3
√

4a2
= 3 · 3

√
a

4
denn für alle anderen x - das beweist unsere Herleitung - gilt f(x) > f(x0).

Wir verallgemeinern dieses gewonnene Resultat:

(4.13) Gegeben sei eine Funktion f mit der Funktionsgleichung f(x) = λx + a
xm ,

m ∈ N∗, und dem Definitionsbereich D(f) = R∗
+. Es seien λ und a fest vorgegebene

positive Konstanten. Man ermittle das Minimum dieser Funktion.

Die Lösung finden wir im Prinzip wie oben. Wir zerlegen λx in m Summanden λ
mx. In

(4) ist dann n = m+ 1, x1 = x2 = ... = xn−1 = λ
mx und xn = a

xm . Damit ergibt sich
aus (4)

λx+ a

xm
≥ (m+ 1) m+1

√√√√( λ
m

)m

· a

und das Gleichheitszeichen gilt nach (4.6) genau für λ
mx = a

xm , d. h. für x0 = m+1

√
am

λ
.

Der minimale Funktionswert ist

f(x0) = (m+ 1) m+1

√√√√( λ
m

)m

· a

(Zur Kontrolle setze man λ = 1 und m = 2.)

Mit diesen Vorbereitungen können wir eine recht anspruchsvolle Aufgabe lösen:

(4.14)* Gegeben sei eine Funktion f von drei reellen Veränderlichen x, y, z mit der
Funktionsgleichung

f(x, y, z) = a

xm
+ b

yn
+ c

zp

a, b, c seien fest vorgegebene positive Konstanten, m, n und p seien positive natürliche
Zahlen.
Unter den Nebenbedingungen, dass x, y, z positiv sind und die Summe x+ y+ z einen
konstanten Wert k hat, ermittle man das Minimum von f(x, y, z).

Bei den Versuchen, eine Lösung zu finden, muss man sich natürlich insbesondere fragen,
wie die Nebenbedingungen x + y + z = const einzubeziehen ist. Wir benutzen einen
Trick, der der Euler-Lagrangeschen Multiplikatorenmethode der höheren Mathematik
entlehnt ist.
Ist λ eine (positive) Konstante, so ist auch λ(x+ y + z) konstant, und die Funktion

g(x, y, z) = λ(x+ y + z) + f(x, y, z)

nimmt genau dann ihr Minimum an, wenn das für f(x, y, z) der Fall ist. Es gilt aber

g(x, y, z) = λx+ a

xm
+ λy + b

yn
+ λz + c

zp
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Außerdem sind alle Voraussetzungen erfüllt, um das Ergebnis aus (4.13) anzuwenden.
Die Funktion g(x, y, z) und damit auch f(x, y, z) wird demnach genau für das Tripel
(x0, y0, z0) mit

x0 = m+1

√
am

λ
, y0 = n+1

√
bn

λ
, z0 = p+1

√
cp

λ

minimal, und f(x0, y0, z0) ist der zugehörige minimale Funktionswert. (Einschränkend
ist anzumerken, dass unser Ergebnis statt der vorgegebenen Konstanten k die Konstante
λ enthält. Der Zusammenhang zwischen beiden wird durch die Gleichung

m+1

√
am

λ
+ n+1

√
bn

λ
+ p+1

√
cp

λ
= k

angegeben.)

Wir kehren jetzt zu der Art und Weise zurück, in der wir die Aufgabe (4.13) gelöst
haben. Dieser "Trick einer geschickten Zerlegung" wird sich wohl noch öfter anwenden
lassen. Wir wählen als Beispiel die Aufgabe (3.11). Laut Aufgabenstellung ist die Größe
auf unter der Nebenbedingung x2 + y2 = d2 = const zu maximieren. Die Versuche,
(4.6) direkt anzuwenden, scheitern:

x2 + y2

2 ≥
√
x2y2 = xy oder 3

√
xyy ≤ x+ 2y

3

Es wird aber xy2 genau dann maximal, wenn (xy2)2 = x2y4 maximal wird. Dieses
Produkt orientiert auf ein geometrisches Mittel, im zugeordneten arithmetischen Mittel
müssten x2 und y2 stehen. Da aber y im Produkt in einer höheren Potenz vorkommt,
müsste sich y2 aus mehreren Summanden zusammensetzen.
Wenn man dem Faden nachgeht, findet man auch den Knäuel! Wir finden

3

√
1
4x

2y4 = 3

√
x2 · 1

2y
2 · 1

2y
2 ≤

x2 + 1
2y

2 + 1
2y

2

3 = x2 + y2

3

d. h., 3
√

1
4x

2y4 wird genau dann maximal, wenn x2 = 1
2y

2 bzw. y =
√

2x gilt. Für diesen
maximalen Wert ist

3

√
1
4x

2y4 = d2

3 bzw. x2y4 = 4d6

27

ablesbar.
In [9], S. 24-28, und [12], S. 74/75 beispielsweise, findet man weitere Aufgaben, die
auf diese Art gelöst werden, höchste Zeit, aus dem Trick eine Methode zu machen:

(4.15) Das Produkt p = xk1
1 x

k2
2 ...x

kn
n sei für alle n-Tupel positiver reeller Zahlen xi

konstant.
Die ki (i = 1, 2, ..., n) seien von 0 verschiedene natürliche Zahlen. Unter all diesen
n-Tupeln ist dasjenige zu ermitteln, für welches die Summe

s = a1x1 + a2x2 + ...+ anxn
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minimal wird. Die ai (i = 1, 2, ..., n) sind dabei positive reelle Zahlen.

Die Lösung dieser Aufgabe umfasst die von vielen speziellen Aufgaben. Wir nehmen die
geschickte Zerlegung ein für alle Male vor: Betrachten wir die Darstellung

s = k1 · a1

k1
x1 + k2 · a2

k2
x2 + ...+ kn · an

kn
xn

mit t := k1 + k2 + ... + kn, so lässt sich s auffassen als Summe von insgesamt t
Summanden der Gestalt ai

ki
xi (i = 1, 2, ..., n).

s ist gleichzeitig zu interpretieren als das t-fache des arithmetischen Mittels dieser t
Summanden. Das zugehörige geometrische Mittel enthält dann insgesamt t Faktoren
der Gestalt ai

ki
xi jeder dieser Faktoren tritt ki-mal auf. Nach (4) und (4.6) gilt

s ≥ t

√√√√(a1

k1

)k1

xk1
1

(
a2

k2

)k2

xk2
2 ...

(
an

kn

)kn

xkn
n

s ≥ t
t

√√√√(a1

k1

)k1

·
(
a2

k2

)k2

...

(
an

kn

)kn

· t
√
xk1

1 · xk2
2 ...x

kn
n

Mit der als gültig vorausgesetzten Bedingung heißt das

s ≥ t
t

√√√√(a1

k1

)k1

·
(
a2

k2

)k2

...

(
an

kn

)kn

· t
√
p

Die rechte Seite dieser Ungleichung ist also eine von den xi unabhängige Konstante. s
kann den Wert k dieser Konstanten nicht unterschreiten; nach (4.6) nimmt sie diesen
Wert k genau dann an, wenn alle t Summanden untereinander gleich sind.
Da jeweils ki Summanden nach Konstruktion einander gleich sind, bleibt die Bedingung

a1

k1
x1 = a2

k2
x2 = ... = an

kn
xn (*)

zu erfüllen. Gilt (*), so folgt für jedes i (i = 1, 2, ..., n)

s = t
ai

ki
xi = t

t

√√√√(a1

k1

)k1

·
(
a2

k2

)k2

...

(
an

kn

)kn

· p

d. h.

xi = ki

ai

t

√√√√(a1

k1

)k1

·
(
a2

k2

)k2

...

(
an

kn

)kn

· p (**)

Mit (**) sind alle xi des n-Tupels (x1, x2, ..., xn) eindeutig bestimmt. Für diese xi gilt
(*), und damit ist das Minimum von s ermittelt, und zwar eindeutig.

(4.16) • Gegeben sei die Bedingung, dass die Summe

s = a1x1 + a2x2 + ...+ anxn

für alle n-Tupel positiver reeller Zahlen xi konstant ist. Die ai (i = 1, 2, ..., n) seien
positive reelle Zahlen. Unter all diesen n-Tupeln ist dasjenige zu ermitteln, für welches
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das Produkt p = xk1
1 x

k2
2 ...x

kn
n maximal wird. Die ki (i = 1, 2, ..., n) sind dabei von 0

verschiedene natürliche Zahlen.

Anmerkungen. Die Aussagen (4.15) und (4.16) lassen sich auch auf den Fall übertragen,
dass die ki positive rationale Zahlen sind. Einen solchen Fall kann man nämlich durch
geeignetes Potenzieren auf (4.15) oder (4.16) führen.
Weiterhin ist zu beachten, dass ein Teil der xi auch durch 1

xi
, x2

i u. a. ersetzbar ist
bzw. dass solche Terme für die obigen xi stehen.

(4.17) • Man stelle fest, inwieweit sich die vorher betrachteten Aufgaben des Abschnitts
4.2 als Spezialfälle der allgemeinen Probleme (4.15) bzw. (4.16) erweisen.

(4.18) • Man löse die Aufgaben (2.29), (2.39) und (2.48) unter Verwendung von (4.15)
bzw. (4.16).

(4.19) • Man formuliere ein zu (2.27) räumliches Analogon und beweise es.

(4.20) • Man beweise : Unter allen geraden Doppelkegeln, die ein vorgegebenes Volu-
men haben, kommt der kleinste Oberflächeninhalt denjenigen Kegeln zu, deren Man-
tellinien von dem Berührungskreis der dem Doppelkegel einbeschriebenen Kugel im
Verhältnis 2 : 1 geteilt werden.

(4.21) • Man ermittle alle Punkte im Innern eines gegebenen Dreiecks (bzw. Tetra-
eders), für die das Produkt ihrer Abstände von den Seiten (bzw. Flächen) maximal
wird.

4.3 Variationen zum Thema
Ein Prinzip, das unbedingt alles erklären will,

erklärt in Wirklichkeit nichts.
A. Daltschew

Natürlich haben wir uns im letzten Abschnitt bemüht, einen Trick durch eine Methode
zu ersetzen. Andererseits ist es aber verfehlt, nun wiederum alles "über einen Leisten
schlagen" zu wollen.
Gerade die virtuose Anwendung der zur Verfügung stehenden Mittel macht den Meister
aus. Erproben wir unsere Meisterschaft an einer Aufgabe!

(4.22) x1, x2, x3, x4 seien reelle Zahlen, und es gelte 0 < x1 < x2 < x3 < x4.
a) Man beweise, dass dann die folgende Ungleichung gilt:√

(x4 − x3)2 + 1 +
√

(x3 − x2)2 + 1 +
√

(x2 − x1)2 + 1 ≥
√

(x4 − x1)2 + 32

b) In welchen Fällen gilt das Gleichheitszeichen?

Zunächst betrachte man sorgfältig die Terme in (*). Welche Besonderheit fällt auf? Es
gilt

(x4 − x3) + (x3 − x2) + (x2 − x1) = x4 − x1 (**)
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4.3 Variationen zum Thema

Die Summanden auf der linken Seite von (*) können wir als Funktionswerte f(z) der
Funktion f mit f(z) =

√
z2 + 1 auffassen und erhalten wegen (**) an Stelle von (*)

dann
f(z4) + f(z3) + f(z2) ≥

√
(z4 + z3 + z2)2 + 32

Und da uns auf der rechten Seite im Radikand eine 1 statt der 32 lieber wäre, dividieren
wir die gesamte Ungleichung durch 3:

f(z4) + f(z3) + f(z2)
3 ≥

√(z4 + z3 + z2

3

)2
+ 1 = f

(z4 + z3 + z2

3

)
(***)

Da mit zi = xi − xi−1 (i = 4, 3, 2) die Ungleichung (***) äquivalent mit (*) ist,
wäre Teil a) schon bewiesen, wenn wir nachgewiesen hätten, dass auf f die Jensensche
Ungleichung anwendbar ist! Dann müsste nach (4.5) bei Vergleich von (3) und (3’) mit
(***) die Funktion f mit f(z) =

√
z2 + 1 für z ≥ 0 konvex sein. Trifft das zu?

Wir können uns nicht nur von unserem Wunsch leiten lassen.
Die Funktion g(z) = z2 + 1 ist konvex, muss dann aber auch f(z) =

√
g(z) konvex

sein? Wer das leichten Herzens bejaht, der sollte auch folgende Überlegung bedenken:
h(z) =

√
z + 1 ist konkav, vielleicht auch f(z) = h(z2)?

Hilft uns die graphische Darstellung bei der Entscheidungsfindung? (Wohlgemerkt, wir
sprechen von einer Entscheidungshilfe, nicht von einem Beweis!)
Für z ≥ 0 gilt

z =
√
z2 <

√
z2 + 1 ≤

√
z2 + 2z + 1 = z + 1

Das bedeutet, dass der Graph der Funktion f für alle z zwischen den beiden y = z und
y = z + 1 zugeordneten (zueinander parallelen) Geraden verläuft (vgl. Abb. 4.5a). Da
ist wahrlich wenig Platz, ein ausgeprägtes Verhalten zu registrieren!

Abb. 4.5

Dieses Beispiel macht uns nachdrücklich auf eine Problematik aufmerksam, die wir
bisher umgangen haben. Bei Verwendung der von uns unter geometrischen Gesichts-
punkten vorgenommenen Definition (4.3) nahmen wir an, von einem Graphen f∗ zu
wissen, ob ihm die Eigenschaft "konvex" oder "konkav" zukommt. Und bei den bisher
benutzten Funktionen (f(x) = lg x, f(x) = xm, m ∈ N, f(x) = tan x, f(x) =

√
x -

jeweils für "geeignete" Intervalle) haben wir diese Kenntnis einfach vorausgesetzt. Wie
lässt sich aber die "Konvexität" beweisen?

Betrachten wir nochmals die Definition (4.3) und den Satz (4.4): x1+x2
2 und f(x1)+f(x2)

2
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4.3 Variationen zum Thema

sind stets die Koordinaten des Mittelpunktes der "zugehörigen" Sehne. Gilt nun für alle
Paare (x1, x2) mit a ≤ xi ≤ b und x1 < x2 die Ungleichung

f(x1) + f(x2)
2 > f

(x1 + x2

2

)
(1’)

dann besagt das doch gerade, dass jeder Sehnenmittelpunkt oberhalb des Graphen f∗

liegt. Dann muss aber auch die gesamte Sehne oberhalb von f∗ liegen. Denn würde
ein Teil einer Sehne unterhalb von f∗ verlaufen, so existierte auch eine Sehne, deren
Mittelpunkt unterhalb von f∗ liegen würde. Damit ist gezeigt, dass aus der Gültigkeit
von (1’) die strenge Konvexität folgt (bzw. aus (1) in (4.4) die Eigenschaft "streng
konkav").

Wir wenden diese Erkenntnis auf unser Beispiel an: Angenommen, es sei der Graph f∗

von f(z) =
√
z2 + 1 nicht streng konvex, dann existiert wenigstens ein Paar (z1, z2)

mit z1 < z2 und

(z1 + z2

2

)
≥ f(z1) + f(z2)

2 bzw.
√(z1 + z2

2

)2
+ 1 ≥

√
z2

1 + 1 +
√
z2

2 + 1
2

bzw. √
(z1 + z2)2 + 4 ≥

√
z2

1 + 1 +
√
z2

2 + 1

Da beide Seiten dieser letzten Ungleichung positiv sind, dürfen wir quadrieren:

(z1 + z2)2 + 4 ≥ z2
1 + 1 + 2

√
(z2

1 + 1)(z2
2 + 1) + z2

2 + 1
z1z2 + 1 ≥

√
(z2

1 + 1)(z2
2 + 1)

(z1z2 + 1)2 ≥ (z2
1 + 1)(z2

2+)
2z1z2 ≥ z2

1 + z2
2

bzw. 0 ≥ (z1 − z2)2. Das ist aber ein Widerspruch zu der Voraussetzung, dass z1, z2
verschiedene reelle Zahlen sind. Folglich gilt für alle Paare (z1, z2) mit z1 < z2 die Un-
gleichung (1’), die strenge Konvexität ist nachgewiesen, die Aufgabe (4.22a) ist nach
den vorbereitenden Betrachtungen gelöst.

Hier könnte jemand einwenden, dass an Stelle des Konvexitätsnachweises in der "glei-
chen Art" auch sofort (*) bewiesen werden könnte. Man versuche es! Das Auftreten
des dritten Summanden in (*) erhöht den Aufwand beträchtlich. Weiterhin spricht für
unser Vorgehen, dass es auch ohne Aufwandsvergrößerung auf den Fall n (n ≥ 3) re-
eller Zahlen 0 < x1 < x2 < ... < xn und damit n Summanden in (*) anwendbar ist.

Da f(z) streng konvex ist, kann in (1’) das Relationszeichen "<" nur dann durch "="
ersetzt werden, wenn z2 = z3 = z4 bzw. x2 − x1 = x3 − x2 = x4 − x3 gilt, d. h., wenn
die xi äquidistant liegen. Damit ist auch Teil b) gelöst.

Haben wir nicht trotz der Verwendung graphischer Darstellungen die elementaren geo-
metrischen Methoden aus dem Auge verloren? Einseitigkeit ist vieler Fehler Anfang!
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√
t2 + 12 kann auch die Aufforderung sein, an den Satz des Pythagoras zu denken.

Tragen wir doch einfach einmal alle zugehörigen Dreiecke in ein Koordinatensystem ein
(vgl. Abb. 4.5 b). (*) entspricht dann die Ungleichung

l := |A1B2| + |A2B3| + |A3B4| ≥ |A1C|

Erinnern wir uns an das Kapitel 2.1!

Ein Streckenzug A1B2B′
3B

′
4 mit B′

4 = C wäre zu finden. Wegen |A2B2| = |A3B3| =
|A4B4| = 1 ist das aber leicht zu erreichen (vgl. Abb. 4.5c).
Der Streckenzug A1B2B′

3B
′
4 hat nun nach Konstruktion die Länge 1, und nach Ab-

schnitt 2.1 ist die geradlinige Verbindung von A1 mit C die Kürzeste. Damit ist die
Ungleichung l ≥ |A1C| bewiesen.
Das Gleichheitszeichen gilt nur, wenn B2 und B′

3 in der Strecke A1C liegen. In diesem
Fall müssen die xi voneinander gleichen Abstand haben. (Strahlensatz !).

(4.23) •32 Man beweise, dass für alle reellen Zahlen a, b und c√
(a+ c)2 + b2 +

√
(a− c)2 + b2 ≥ 2

√
a2 + b2

gilt.

(4.24) • Man beweise, dass für alle reellen Zahlen x1, x2, ..., xn und y1, y2, ..., yn

n−1∑
i=1

√
(xi − xi+1)2 + (yi − yi+1)2 ≥

√
(x1 − xn)2 + (y1 − yn)2

gilt.

4.4 Die Methode der konkurrierenden Punkte
Da gehen sie in tiefem Schweigen,

wohin? Das wird sich später zeigen.
W. Busch

Wollen wir Extremalaufgaben mit Hilfe einer Funktion einer reellen Veränderlichen lö-
sen, so müssen wir zumindest eine zuzuordnende Funktion finden. Das Extremalproblem
ist dann in Abhängigkeit von einer Veränderlichen formuliert. (Wir erinnern an die Bei-
spiele in Kapitel 3!)
Enthielt das ursprüngliche Problem mehrere Veränderliche, so mussten diese bis auf
eine mittels der in der Aufgabe enthaltenen Nebenbedingungen eliminiert werden. In
Abschnitt 4.2 sahen wir, wie man u. U. durch geschickte Anwendung von Ungleichungen
mit mehreren Variablen arbeiten kann.

Das Geschick bestand darin, die Nebenbedingungen in die Ungleichung "einzubauen".
In diesem Abschnitt werden jetzt Variable dadurch eingeführt, dass zwei Punkte in ihrer
Beziehung zueinander betrachtet werden.
32Aufgabe 19 10 36 der OJM
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4.4 Die Methode der konkurrierenden Punkte

Der Vergleich des "Angebots", welches jeder dieser Punkte bezüglich des Extremums
macht, lässt sich mit einer Ungleichung erfassen. Es werden also verschiedene der bereits
betrachteten Methoden zur Anwendung kommen, in ihrer Gesamtheit aber doch etwas
Neues ergeben.
Wir wollen diese Methode der konkurrierenden Punkte33 zunächst an einer uns schon
bekannten Aufgabe, nämlich (2.12), demonstrieren.

Abb. 4.6

Um die Punkte minimaler Abstandssumme von den Eckpunkten (wir wissen schon, dass
es genau einen gibt) zu finden, lassen wir zwei Punkte M und O zueinander in Konkur-
renz treten. Ihre Lage in der Ebene bezüglich der Punkte A, B und C beschreiben wir
durch Winkel, wie das in Abb. 4.6a angegeben ist. Ohne Beschränkung der Allgemein-
heit liege O im Innern des Winkels ∠AMB. Mit Hilfe trigonometrischer Berechnungen
erhält man leicht

|MA| = |OA| cosα + |MO| cosu (1)
|MB| = |OB| cos β + |MO| cos v (2)
|MC| = |OC| cos γ + |MO| cosw (3)

Addiert man die Gleichungen (1), (2) und (3), so ergibt sich

|MA| + |MB| + |MC| = |OA| cosα + |OB| cos β + |OC| cos γ
+ |MO|(cosu+ cos v + cosw). (4)

Wir suchen nun für den Punkt M eine ausgezeichnete Lage. Gibt es einen Punkt M
so, dass für jeden Punkt O (̸= M) die Klammer cosu+ cos v+ cosw gleich 0 ist? Für
einen solchen Punkt M würde dann nämlich aus (4)

|MA| + |MB| + |MC| = |OA| cosα + |OB| cos β + |OC| cos γ

folgen, und da der Kosinus eines Winkels dem Betrag nach höchstens 1 ist, würde für
alle Punkte O

|MA| + |MB| + |MC| ≤ |OA| + |OB| + |OC|

und, da man den Fall α = β = γ = 90◦ noch ausschließen kann, die Minimalitätsei-
genschaft

|MA| + |MB| + |MC| < |OA| + |OB| + |OC| (*)

33Das ist unseres Wissens keine in der Literatur dafür übliche Bezeichnung.
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4.4 Die Methode der konkurrierenden Punkte

gelten.
Wenden wir uns also der obigen Frage zu. Bei der von uns o. B. d. A. angenommenen
Lage von O gilt mit x := |∠AMB| und y := |∠AMC|, dass v = x−u und w = y+u
ist, folglich

cosu+ cos v + cosw = cosu+ cos(x− u) + cos(y + u) (5)

Mit Additionstheoremen ergibt sich aus (5)

cosu+ cos v + cosw = cosu+ cos x cosu+ sin x sin u+ cos y cosu+ sin y sin u
cosu+ cos v + cosw = cosu(1 + cos x+ cos y) + sin u(sin x+ sin y) (6)

Soll nun immer cosu + cos v + cosw = 0 gelten, so ist das nur möglich, wenn 1 +
cos x + cos y = 0 und sin x − sin y = 0 gilt. Denn sonst könnte man ja mit O den
Wert des Winkels von u so ändern, dass die rechte Seite von (6) verschiedene Werte
annimmt.
Aus sin x = sin 3y folgt x = y; oder x = 180◦ − y. Gleichzeitig soll aber

cos x+ cos y = −1 (7)

gelten, d.h. x > 90◦ und y > 90◦; es kann also nur x = y gelten und wegen (7)
x = y = 120◦. Damit existiert tatsächlich genau ein solcher Punkt M , für den (*) gilt.
Seine Lage ist genau so fixiert, wie uns das schon bekannt ist.

Möchte man eine Methode mit Hilfe von Beispielen erläutern, so wird ein Beispiel
sicher nicht ausreichen. Unser zweites Beispiel kann man in verschiedenen Einkleidungen
anbieten.

(4.25) In Abb. 4.6 b stelle die Gerade g die Trennlinie zwischen dem Festland und dem
Wasser dar. Ein Sportler soll in möglichst kurzer Zeit von einem Startpunkt A auf dem
Festland die Insel B im Wasser erreichen. Seine Geschwindigkeit auf dem Festland sei
vl, im Wasser vs. Es gelte vl > vs.
An welchem Punkt auf g muss er vom Laufen zum Schwimmen wechseln?

Da er schneller läuft als schwimmt, wird der Sportler sicherlich nicht einen insgesamt
geradlinigen Weg von A nach B planen. Aber wird nun der Punkt Q oder der Punkt
P günstiger sein?

Es konkurrieren also wieder zwei Punkte miteinander, ihr Abstand sei |x| ̸= 0. Liegt P
rechts von Q, so sei x positiv, sonst negativ. Wir berechnen nun die Wege |AP | und
|PB| unter Einbeziehung von konstanten Größen und der Größen l, s und x:

|AP |2 = |EP |2 + |AE|2 = (|EQ| + x)2 + l2 − |EQ|2 = l2 + 2|EQ|x+ x2

=
(
l + |EQ|x

l

)2
+ x2

1 −
(

|EQ|
l

)2 (1)

Entsprechend ergibt sich

|PB|2 =
(
s− |QF |x

s

)2
+ x2

1 −
(

|QF |
l

)2 (2)
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4.4 Die Methode der konkurrierenden Punkte

Da |EQ| < l und |QF | < s für Q ̸= E,F gilt, folgt aus (1), (2)

|AP | > l + |EQ|x
l

und |PB| > s− |QF |x
l

Für die zu minimierende Gesamtzeit t folgt daraus

t = |AP |
vl

+ |PB|
vs

>
l

vl
+ s

vs
+
(

|EQ|
l · vl

− |QF |
s · vs

)
x (3)

Jetzt stellen wir wieder die Frage, ob sich die Lage des einen Punktes so fixieren lässt,
dass die Ungleichung (3) unabhängig von der Lagebeziehung zwischen P und Q, also

unabhängig von zu wird. Es müsste der Punkt dass |EQ|
l · vl

− |QF |
s · vs

= 0 gilt. Ist das stets
möglich?

Unsere Bedingungsgleichung ist für Q ̸= F äquivalent mit vl : vs = |EQ|
l : |QF |

s , d.h.

vl : vs = cosα∗ : cos β∗ (4)

Wird Q so gewählt, dass (4) gilt, dann folgt aus (3), dass die Gesamtzeit t auf einem
Weg über P ̸= Q stets größer als tQ = l

v + s
vs

ist. AQB ist dann der Streckenzug, der
in der kürzesten Zeit zurückgelegt wird.
Für vorgegebenes vl und vs existiert nun genau ein Q im Inneren der Strecke EF , so
dass (4) gilt: Für den angenommenen Fall E = Q gilt α∗ = 90◦ und damit cosα∗ = 0,
cos β∗ ̸= 0.
Bewegt sich Q von E nach F , so wird α∗ kleiner und β∗ größer, d. h., der Zähler des
Bruches cos α∗

cos β∗ wächst, und der Nenner wird kleiner. Nähert sich Q dem Punkt F , so
wird cos β∗ beliebig klein, cos α∗

cos β∗ ist folglich eine monoton wachsende und sich stetig
ändernde Größe zwischen 0 und ∞. Der vorgegebene Wert vl

vs
wird an genau einer Stelle

angenommen.

Das betrachtete Problem lässt sich auch physikalisch beschreiben: Gehen wir von dem
Prinzip (1.4) aus, so muss sich für die Lichtausbreitung beim Übergang von einem
Medium in ein anderes ebenfalls die Brechung des Lichtstrahles ergeben.
Für das Verhältnis der Lichtgeschwindigkeiten in den beiden Medien schreiben wir
das Brechungsverhältnis n, an Stelle von α∗ und β∗ wählen wir den Einfallswinkel α
und den Brechungswinkel β (vgl. Abb. 4.6 c). Statt (4) erhalten wir das Snelliussche
Brechungsgesetz)34

sinα : sin β = n

Der Holländer Willebrord Snell van Royen fand das Gesetz um 1618. Fermat bewies es,
ausgehend von dem Prinzip (1.4), in etwa in der oben angegebenen Art.

34Vgl. Grimsehl, Lehrbuch der Physik, Bd. III, S. 31.
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5.1 Extrema und infinitesimale Methoden

5 Ein Ausblick auf Methoden der höheren
Mathematik

5.1 Extrema und infinitesimale Methoden
Ein Genre, meine ich, hat seine eigene Nase.

Man soll ihr folgen und nicht versuchen,
sie mit Gewalt irgendwo hineinzustecken.

P. Hacks

Wie bereits mehrfach erklärt und praktiziert, wollen wir elementare Vorgehensweisen in
den Mittelpunkt unserer Betrachtungen stellen. In diesem Abschnitt möchten wir aber
einen kurzen Einblick in Möglichkeiten geben, die die Differentialrechnung eröffnet.
Mittel und Methoden aus diesem Bereich werden traditionell zur "höheren Mathematik"
gezählt. Wir wollen an Hand geometrisch anschaulicher Betrachtungen eine Vorstellung
von den grundlegenden Ideen vermitteln.

Bereits in Kapitel 3 haben wir gesehen, dass sich gegebenenfalls Extremalaufgaben
durch Funktionen erfassen und einer Lösung zuführen lassen. In diesem Fall werden
die ursprünglichen Sachverhalte und Zusammenhänge durch die Eigenschaften einer
reellwertigen Funktion widergespiegelt. Uns interessierten speziell die Extremwerte.

Es sei nun f eine über einem Intervall a < x < b definierte Funktion. Folgende Erklärung
ist anschaulich sofort einsichtig (Abb. 5.1a):

(5.1) Die Funktion f besitzt im Intervall (a, b) an der Stelle x0 ein relatives Maximum
bzw. Minimum genau dann, wenn für jede beliebig kleine Zahl ε > 0 gilt, dass

f(x) < f(x0) für alle x0 − ε < x < x0 + ε mit x ̸= x0

bzw.
f(x) > f(x0) für alle x0 − ε < x < x0 + ε mit x ̸= x0

ist.
Dieser Begriff des relativen Extremums ist von dem in (3.2) eingeführten Begriff des
absoluten Extremums zu unterscheiden.

Abb. 5.1

Wie man an Hand der Abb. 5.1 erkennt, ist selbstverständlich nicht jedes relative Ma-
ximum (bzw. Minimum) ein globales Maximum (bzw. Minimum).
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Für eine sehr große Klasse von Funktionen ist die Differentialrechnung ein ausgezeich-
netes Instrument, die relativen Extrema zu ermitteln. Diese Formulierung lässt aber
auch schon ahnen, dass diese Methode nicht auf jede Funktion anwendbar sein wird.
Das "Zünglein an der Waage" ist die Existenz einer Tangente in einem Punkt an den
Graphen f∗. Wir kennen den Begriff "Tangente an einem Kreis im Punkt P0", lässt
sich dieser Begriff auf andere Kurven übertragen?

Diese Frage ist so leicht nicht zu beantworten, hängt eben unlösbar mit dem Komplex
zusammen, den wir gerade erst erklären wollen.
Ist t die Tangente in P0, an den Kreis k, so ist uns geläufig, dass sich eine Sehne gP0P

oder gP ∗P0 der Lage dieser Tangente t um so stärker nähert, je dichter P bzw. P ∗ bei
P0 liegen (vgl. Abb. 5.2a). Lässt sich nun für eine beliebige Kurve f∗ die Tangente an
f∗ in P0 auch als "Grenzlage" einer Folge von Sehnen festlegen?

Abb. 5.2

Im Falle des Graphen einer Funktion dritten Grades (vgl. Abb. 5.2 b) scheint es so. In
dem durch Abb. 5.20 gegebenen Beispiel dagegen ist wohl auf diese Art keine Tangente
im Punkt P0 eindeutig zu bestimmen.
Es ist nach diesen etwas vagen Vorbetrachtungen anzunehmen, dass für eine Klasse von
Funktionen f in jedem Punkt P0 ∈ f∗ eine Tangente an f∗ existiert, solche Funktionen
nennen wir differenzierbare Funktionen.
Wenn aber an f∗ Tangenten existieren, dann können wir die relativen Extreme. folgen-
dermaßen charakterisieren:

(5.2) Besitzt der Graph f∗ der Funktion f im Punkt (x0, y0) eine waagerecht (also
zur x-Achse parallel) verlaufende Tangente t und ist in jedem beliebig kleinen Intervall
(x0 − ε, x0 + ε) der Graph f eine streng konvexe (bzw. streng konkave) Kurve, so hat
die Funktion f an der Stelle c0 ein relatives Minimum (bzw. Maximum).

Nun bleibt zu klären, wie man zu einer vorgegebenen Funktion f an der Stelle x0 die
Tangente (an den Graphen f∗) - ihre 102 5. Ein Ausblick auf Methoden der höheren
Mathematik Existenz vorausgesetzt - ermitteln kann. Wir betrachten neben dem zu x0
gehörigen Punkt P0 von f∗ (also dem Punkt mit den Koordinaten x0 und f(x0)) einen
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5.1 Extrema und infinitesimale Methoden

benachbarten Punkt P des Graphen f∗ mit den Koordinaten x0 +h und f(x0 +h) mit
h > 0 (Abb. 5.2 d).
Die Verbindungsgerade von P0 und P - eine Sekante von f∗ - hat dann den Anstieg

f(x0 + h) − f(x0)
(x0 + h) − x0

= f(x0 + h) − f(x0)
h

(*)

Mit kleiner werdendem h nähert sich der Punkt P dem Punkt P0, die Sekante nähert
sich der Tangente t und damit der Anstieg der Sekante dem der Tangente!

Die neue Qualität dieser Art von Betrachtungen drückt sich darin aus, dass h "infini-
tesimal klein wird", "gegen 0 geht". Solche Art der Betrachtungen wurde schon von
Fermat (intuitiv?) benutzt und von Newton und Leibniz zur Differentialrechnung ent-
wickelt. In der exakten Terminologie der Differentialrechnung ist zu formulieren:

Hat der Quotient (*) für jede Nullfolge35, die h durchläuft, den gleichen Grenzwert,
dann hat f∗ an der Stelle x0 eine Tangente, die diesen Grenzwert als Anstieg besitzt.
Man sagt dann, dass die Funktion f an der Stelle x0 differenzierbar ist, und bezeichnet
den Grenzwert mit f ′(x0); in kurzer mathematischer Bezeichnung ist also

f ′(x0) = lim
h→0

f(x0 + h) − f(x0)
h

f ′(x0) heißt der Differentialquotient oder die Ableitung der Funktion f an der Stelle
x0.

Wir betrachten dazu ein Beispiel, eine Funktion, die bereits in Kapitel 3 näher unter-
sucht wurde, und werden sehen, dass man in einfachen Fällen auch ohne umfassende
Kenntnisse aller Begriffe schon Wesentliches erfassen kann.

(5.3) Man bestimme für die Funktion f mit f(x) = x2 und D(f) = R an der Stelle
x0 den Anstieg der Tangente, falls er existiert.

Wir bilden zunächst den Quotienten (*)

f(x0 + h) − f(x0)
h

= (xo + h)2 − x2
0

h
= 2x0h+ h2

h
= 2x0 + h

Wählen wir nun h beliebig klein, so nähern wir uns beliebig gut dem Wert 2x0. Exakt
ausgedrückt:

Für jede Nullfolge von h hat 2x0 + h den gleichen Grenzwert, nämlich 2x0; also ist

f ′(x0) = 2x0

Damit ist gezeigt, dass der Graph f∗ der Funktion f mit f(x) = x2 an jeder Stelle x0
eine Tangente besitzt und diese Tangente den Anstieg 2x0 hat.

(5.3’) Für eine lineare Funktion f mit f(x) = mx+n ergibt sich offensichtlich f ′(x0) =
35Hinsichtlich einer präzisen Fassung der Begriffe "Nullfolge" und "Grenzwert" sei auf leicht zugäng-

liche Fachliteratur, etwa [5], verwiesen.
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m.

(5.4) • Man zeige, dass für die Funktion f mit f(x) = x3 an jeder Stelle x0 die
Ableitung f ′(x0) gleich 3x2

0 ist.

Man kann in gleicher Weise wie zur Lösung von (5.3) noch zeigen:

(5.5) • Sind die Funktionen f und g an der Stelle x0 differenzierbar, so auch die
Funktion p und k mit p(x) = f(x) +g(x) und k(x) = af(x) (mit a ̸= 0), und es gilt36

p′(x0) = f ′(x0) + g′(x0) , k′(x0) = a · f ′(x0)

Jetzt wenden wir uns der Betrachtung der relativen Extrem zu.

Verknüpfen wir unsere Erkenntnisse mit (5.2), so folgt, dass für die Existenz eines
relativen Minimums oder Maximums an der Stelle wo die Bedingung f ′(x0) = 0 (vor-
ausgesetzt, f ′(x0) existiert) notwendig ist.
Betrachten wir beispielsweise f(x) = x3 an der Stelle x0 = 0 (Abb. 5.3), dann erkennt
man, dass diese Bedingung nicht hinreichend ist.

Abb. 5.3

Weiß man aber bereits, dass in einem Intervall (a, b) genau ein (relatives) Extremum
existiert, und ergibt die Lösung von f ′(x0) = 0 genau ein x0 ∈ (a, b), so reicht die
erste Ableitung zur Ermittlung der Extremstelle aus. Wir illustrieren dieses Verfahren
einmal an der Funktion f mit

f(x) = ax3 + bx2 + cx+ d

aus Abschnitt 3.2.
Unter Verwendung von (5.3), (5.3’), (5.4) und (5.5) ergibt sich sofort

f ′(x0) = 3ax2
0 + 2bx0 + c

Die quadratische Gleichung 3ax2
0 + 2bx0 + c = 0 hat aber höchstens zwei reelle Lö-

sungen. Damit hat eine ganzrationale Funktion dritten Grades höchstens zwei relative
Extrema. Sind x0 und x0 die reellen Lösungen obiger Gleichung, so können nur x0 und
x0 Extremstellen sein.
Gilt x0 ∈ (a, b) und x0 /∈ (a, b) und ist bekannt, dass in (a, b) ein Extremum liegt,
so liegt es an der Stelle x0. Für die Lösung von (3.10a) war ein x mit 0 < x < t so
36Weitere Regeln für das Ableiten findet der Leser bereits in allen Nachschlagebüchern, die Anfänge

der Differentialrechnung enthalten (u. a. auch in Tafelwerken für Mathematik).
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gesucht, dass fe(x) = −2kx3 + 2kt2x maximal wird. Die Existenz einer Extremalstelle
war einsichtig. Es gilt

f ′
e(x) = −6kx2 + 2kt2

f ′
e(x0) = −6kx2

0 + 2kt2 = 0 ergibt x0 = t√
3 und x0 = − t√

3 , aber nur x0 = t√
3 liegt

im betrachteten Intervall und muss folglich die Extremalstelle sein.

Auch auf die in Abschnitt 3.3 betrachtete Funktion f(x) = x + d
x lässt sich die neue

Methode gut anwenden:
Wegen (5.3’) und (5.5) benötigen wir nur noch den Differentialquotienten für g(x) = d

x .
Nach (*) bilden wir

g(x0 + h) − g(x0)
h

=
d

x0+h − d
x0

h
=

−dh
(x0+h)x0

h
= −d

(x0 + h)x0

Wiederum ist die Existenz des Grenzwertes leicht einzusehen:

g′(x0) = − d

x2
0

Damit gilt f ′(x0) = 1 − d
x2

0
und f ′(x0) = 0 genau dann, wenn x0 = ±

√
d ist. Das in

Abschnitt 3.3 für x0 > 0 gesuchte Minimum muss also an der Stelle x0 =
√
d liegen.

Diese einfachen Beispiele lassen schon vermuten, welche außerordentlich zugkräftige
Methode für die Lösung von Extremwertaufgaben mit der Differentialrechnung zur
Verfügung steht.
Hinzu kommt, dass bei der Einbeziehung "höherer Ableitungen" auch hinreichende
Bedingungen für die Existenz der Extrema angebbar sind. Außerdem lässt sich diese
Methode für den Fall mehrerer Veränderlicher modifizieren.

Trotzdem sollte man keine der Methoden voreilig zur universellen Methode krönen.
Wer aufmerksam tiefer eindringt, wird auch Grenzen sehen. Überdies hängt es stark
von der konkreten Aufgabe ab, ob eine elementare Methode oder eine aus der "höheren
Mathematik" die elegantere ist. Man löse einmal die Aufgabe (2.1) mittels der Diffe-
rentialrechnung, was durchaus möglich ist!

Jedes Genre hat eben seine eigene Nase, man muss sie nicht überall hineinstecken!

Bedeutende Arbeiten über Extremwerte aus der Zeit vor der eigentlichen Erfindung
der Differentialrechnung stammen von Fermat. In einer 1629 vorgelegten Sammlung
von Abhandlungen über Maxima und Minima37 und in späteren Arbeiten gibt er eine
allgemeine Methode für die Bestimmung von Extremwerten an.
Da sie eine erstaunliche Ähnlichkeit mit den vorangegangenen einführenden Betrach-
tungen zur Differentialrechnung hat, wollen wir hier eines der Beispiele mitteilen:

Eine Strecke B ist so zu teilen, dass das Rechteck A · (B −A) ein Maximum wird. (In
funktionaler und heutiger Beschreibung würde diese Aufgabe lauten:
37In deutscher Sprache herausgegeben in "Ostwalds Klassiker der exakten Wissenschaften", Nr. 238

(Leipzig 1934).
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Zu einer vorgegebenen Zahl b > 0 bestimme man das Maximum der Funktion f(x) =
x(b−x) (mit 0 < x < b). Diese Aufgabe haben wir zu Beginn von Kapitel 3 - ausgehend
von einer geometrischen Fragestellung - bereits behandelt.)

Fermat setzt nun für den einen Teil von B (nämlich A) den Ausdruck A+ E und hat
für den zweiten Teil (B − A) dann B − A− E zu setzen.
"... das aus den beiden Abschnitten gebildete Rechteck (ist) gleich BA−A2 +BE −
2AE − E2, dies ist näherungsweise gleichzusetzen dem obigen Rechteck BA − A2.
Nach Wegfall der gemeinsamen Glieder erhält man BE ≈ 2AE + E2.
Wird alles durch E dividiert, so bleibt B ≈ 2A+E. Wird E gestrichen, so ergibt sich
B = 2A. Also ist zur Lösung der Aufgabe B zu halbieren." ([17], S. 175.)

In Bezug zu unseren einführenden Betrachtungen über Differentialrechnung bildet also
Fermat

f(x+ h) = (x+ h)(b− (x+ h)) = bx− x2 + bh− 2xh− h2

setzt dies näherungsweise gleich

f(x) = x(b− x) = bx− x2

setzt also
f(x+ h) − f(x) = bh− 2xh− h2

näherungsweise gleich 0 und dividiert durch h:

0 ≈ f(x+ h) − f(x)
h

= b− 2x− h

und erhält daraus für h = 0 die Lösung x = b
2 .

Sein Verfahren besteht allgemeiner gesagt darin, dass er f(x+h) und f(h) näherungs-
weise gleichsetzt und nach Beseitigung der gemeinsamen Glieder auf beiden Seiten
durch h bzw. eine Potenz von h dividiert, bis auf einer Seite kein Glied mehr h als
Faktor enthält. Danach werden alle Glieder gestrichen, die noch irgendwie h enthalten.
Die übrigbleibende Gleichung ergibt den gesuchten x-Wert.

Es ist bemerkenswert, dass Fermat in entsprechender Weise das Tangentenproblem be-
handelt, also die Aufgabe, an eine Kurve in einem beliebigen Punkt die Tangente zu
legen. Seine Methode reichte jedoch nur für eine gewisse Klasse von Kurven (Funktio-
nen) aus.

5.2 Das Problem der Brachystochrone
Das Problem der Brachystochrone hat Johann Bernoulli 1696 gestellt, und es besteht
in folgender Aufgabe:

(5.6) Ein Massepunkt gleitet ohne Reibung längs einer Kurve - allein auf Grund der
Schwerkraft - von einem Punkt A zu einem tiefer gelegenen Punkt B (Abb. 5.4a). Für
welche Kurve, die A und B verbindet, wird die Laufzeit am kürzesten?
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Abb. 5.4a, b

Dies ist offensichtlich auch eine Extremwertaufgabe. Aber sie ist im Vergleich zu denen,
die man mit Hilfe der Differentialrechnung lösen kann, von anderer Art.
Während vorher die Größe, deren Maximum oder Minimum man bestimmen wollte, von
einer (oder mehreren) Variablen abhing, sich also durch eine Funktion darstellen ließ,
hängt hier die betrachtete Größe, die Laufzeit, von dem ganzen Verlauf der Kurven ab.
Dagegen ist das bereits angesprochene isoperimetrische Problem (vgl. Abschnitt 2.3)
von ähnlicher Art, denn es sucht z. B. unter allen einfach geschlossenen, ebenen (und
konvexen) Kurven mit gleicher Länge nach denjenigen, die die größte Fläche umfassen.

Man sieht ein, dass das gleitende Teilchen auf verschiedenen Bahnkurven durchaus ver-
schiedene Zeiten benötigen wird. Doch welche leistet das Gewünschte. Diese Aufgabe
war eine Herausforderung zur damaligen Zeit (und von J. Bernoulli, der eine Lösung
gefunden hatte, wohl auch so angelegt).
Im folgenden geben wir den Grundgedanken einer originellen Lösung von Jakob Ber-
noulli38 wieder.

Aus der Mechanik ist bekannt, dass die Geschwindigkeit v eines Massepunktes, der von
A aus längs irgendeiner Kurve nach unten fällt, proportional zu

√
h ist, wobei h die

Fallhöhe angibt.39 Bei geeigneter Wahl der physikalischen Einheiten können wir v =
√
h

setzen.

Jakob Bernoulli dachte sich den Raum zwischen A und B in viele dünne horizontale
Schichten mit der Dicke d zerlegt (Abb. 5.4b).
Es wird nun angenommen, dass sich die Geschwindigkeit des Massepunktes nicht kon-
tinuierlich, sondern nur an den Schichtgrenzen sprunghaft ändert; in der ersten Schicht
sei die Geschwindigkeit v1 =

√
d, in der zweiten Schicht dann v2 =

√
2d usw.

In jeder Schicht selbst verläuft die Bahn des Teilchens geradlinig.

Die gesamte Bahnkurve von A nachB ist dann ein Streckenzug. Das Originelle an Jakob
Bernoullis Lösung bestand darin, diese Bahn mit dem Weg zu vergleichen, den das Licht
von A nach B nehmen würde, wenn es sich auf Grund verschiedener Brechungsindizes
in den einzelnen homogenen Schichten mit unterschiedlicher Geschwindigkeit bewegen
würde. Das Licht bewegt sich nach dem Snelliusschen Brechungsgesetz, wie wir das in
Abschnitt 4.4 abgeleitet haben. Es gilt z. B.

sinα1 : v1 = sinα2 : v2

38Jakob Bernoulli (1655-1705), Schweizer Mathematiker und Physiker, wirkte in Basel, ältester Bruder
von Johann Bernoulli.

39Für die Fallgeschwindigkeit gilt bekanntlich v = g · t =
√

2g · h, wobei g die Erdbeschleunigung ist.
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wobei v1 und v2 die Lichtgeschwindigkeiten in den Schichten 1 und 2 sind. Allgemein
gilt

sinα1√
d

= sinα2√
2d

= ... = sinαn√
nd

= ... (*)

wobei αn der Winkel zwischen der Strecke (des Polygons) in der n-ten Schicht und der
Senkrechten zu der Schichtgrenze ist. ("Einfallswinkel" beim Übergang von der n-ten
zur (n+ 1)-ten Schicht).

Für die weiteren Konsequenzen wird von der Vorstellung ausgegangen, dass sich, wenn
die Schichtdicke d immer kleiner und die Anzahl der Schichten folglich immer größer
gewählt wird, die Lösung des angenäherten Problems der Lösung des ursprünglichen
Problems beliebig nahekommt.
Da sich bei dieser Grenzwertbetrachtung an der Gültigkeit von (*) nichts ändert, hat
Bernoulli auf folgende Eigenschaft der Lösungskurve f∗ geschlossen:

Ist P irgendein Punkt der Kurve f∗, h sein Höhenunterschied zu A und α der Winkel
zwischen der Tangente an f∗ durch P und der Vertikalen, so ist sin α√

h
eine Konstante.

Eine Kurve mit einer derartigen Eigenschaft war den Mathematikern damals bereits
bekannt; sie ist eine Zykloide.

Abb. 5.4c

Man kann sie recht einfach mechanisch erzeugen und entsprechend geometrisch be-
schreiben. Lässt man einen Kreis auf einer Geraden (ohne zu gleiten) abrollen, so be-
schreibt ein Punkt auf dem Kreisrand eine solche Kurve (Abb. 5.4 c); sie wird deshalb
treffend auch Rollkurve genannt.

Das Ergebnis war damals überraschend, denn eine solche Kurve stand auf Grund ihres
Zusammenhangs mit mechanischen Problemen im Mittelpunkt des Interesses, insbeson-
dere spielte sie bei der Konstruktion eines idealen Pendels eine große Rolle (Huygens
hatte entdeckt, dass ein Massepunkt, der unter der Schwerkraft ohne Reibung längs
einer Zykloide schwingt, eine von der Amplitude dieser Bewegung unabhängige Schwin-
gungsdauer besitzt.)

Bernoullis Überlegung - wie schon die von Fermat eingangs vorgestellte - ist aus heutiger
Sicht keineswegs streng.
Sie enthält eine Reihe von Annahmen, die zu rechtfertigen, zu begründen sind; so z.
B., dass überhaupt eine Lösungskurve f∗ existiert und dass sich das Polygon der wirk-
lichen Lösung nähern muss. Doch derartige Überlegungen sind einleuchtend, anregend
und mathematisch sinnvoll, und gerade das waren und sind Impulse für die Weiterent-
wicklung der Mathematik.
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5.2 Das Problem der Brachystochrone

Die Mathematiker Euler40 und Lagrange41 entwickelten eine allgemeine Methode für
die Lösung von Extremalaufgaben, bei denen die Veränderliche nicht eine einzelne nu-
merische Variable, sondern eine ganze Funktion (oder ein System von Funktionen) ist.
Diese neue Methode wird Variationsrechnung genannt. Wesentlichen Anteil beim Auf-
und Ausbau dieser Disziplin haben Weierstrass (1815-1897), Ostrogradski (1801-1861)
und Caratheodory (1873-1950).
Diese Theorie liefert stets zum Ziele führende Verfahren. Näheres würde bei weitem
den angelegten Rahmen dieses Büchleins sprengen.

40Leonhard Euler (1707-1783), Schweizer Mathematiker und Physiker, wirkte in Berlin und St. Pe-
tersburg (heute Leningrad).

41Louis Joseph Lagrange (1736-1813), französischer Mathematiker, wirkte in Turin, Berlin und Paris.
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6.1 Die neue Aufgabenstellung

6 Ein Einblick in Optimierungsprobleme
Vielleicht lässt sich eine weitläufige Materie

durch nichts kürzer erschöpfen als durch Beyspiele.
W. L. Wekherlin

6.1 Die neue Aufgabenstellung
Optimierung, Optimum, optimal sind wieder neue Wörter, bringen sie aber auch einen
neuen Inhalt? Sehen wir in Wörterbüchern nach, so finden wir für Optimum etwa "das
Beste", "das Günstigste". Steckt dahinter - mathematisch gesehen - nicht doch wieder
ein Maximum oder Minimum?

Das schon, und die Trennung zwischen Extremalproblemen und Optimierungsaufgaben
kann nicht scharf vollzogen werden. Allerdings unterscheiden sich die für die Optimie-
rung typischen Aufgabenstellungen, die ja auch die Entwicklung dieses Teilgebietes der
Mathematik wesentlich auslösten, deutlich von unseren bisher betrachteten Extremal-
problemen.
Wir wollen das an einem Beispiel zeigen.

Eines der ersten Probleme, welches in der bisher kurzen Geschichte der mathematischen
Optimierung gelöst wurde, ist das von Hitchcock42 (1941) und Kantorovic (1942) un-
abhängig voneinander formulierte Transportproblem:

(6.1) n Lieferanten Li mit der Lieferkapazität ai ≥ 0 (i = 1, ..., n) liefern an k Ver-
braucher Vj mit dem Bedarf bj ≥ 0 (j = 1, ..., k) ein und dasselbe Produkt P .
Der Transport einer Einheit des Produktes P vom Lieferanten Li zum Verbraucher
Vj kostet cij Geldeinheiten. Die Mengen xij des Produktes P , die von Li nach Vj

transportiert werden, sind so zu ermitteln, dass die Gesamtkosten für alle Transporte
möglichst gering werden.

Die Lieferanten könnten z. B. Braunkohletagebaue sein, die Verbraucher Kraftwerke,
wir haben die Situation in Abb. 6.1 angedeutet.

Abb. 6.1

Dieser deutliche Bezug zu einem praktischen Problem, zu ökonomischen Interessen ist
ein wesentliches Charakteristikum für Optimierungsaufgaben. Die mathematische Op-
timierung ist ein sehr schönes Beispiel dafür, wie ganz konkrete Bedürfnisse der Praxis

42Frank Lauren Hitchcock (1875-1957), amerikanischer Mathematiker.
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6.1 Die neue Aufgabenstellung

die Mathematiker herausfordern, neue Methoden zu entwickeln.

Bei dem Transportproblem wird das Minimum für die Kosten gesucht, das Vorgehen
ist also das nach dem Prinzip des geringsten Aufwandes, bei anderen Optimierungsauf-
gaben, die auf dem Prinzip des größten Effektes (der größten Produktivität) beruhen,
ist das Maximum einer Größe gesucht. Bei geeigneten Festlegungen sind die nach dem
einen oder anderen Prinzip formulierten Aufgabenstellungen wiederum zueinander dual
(vgl. Abschnitt 2.3).
Wir wollen nun die Aufgabe (6.1) mit mathematischen Mitteln beschreiben:

Die Gesamtkosten y ergeben sich als Summe aus allen Einzelkosten

cijxij (i = 1, ..., n; j = 1, ..., k) d. h. y =
n∑

i=1

k∑
j=1

cijxij

Dabei gilt xij ≥ 0, die Nichtnegativitätsbedingung. Die Funktion y = f(xij) nennen
wir die Zielfunktion.

Im Zusammenhang mit der Kopplung an die Praxisbedürfnisse ist einsichtig, dass die
Anzahl der Variablen, von denen der Funktionswert y abhängt, sehr groß ist, dies ist ein
weiteres Charakteristikum. Wir haben zwar auch in unseren vorangegangenen Kapiteln
den Fall mehrerer Variablen betrachtet (z. B. in (4.5) oder (4.14)), dort aber erwies
sich dieser Fall nicht gerade als der typische.
Ein weiteres Charakteristikum sind die Nebenbedingungen. Auch Extremalaufgaben ent-
halten Nebenbedingungen, und zwar als typischen Bestandteil!

Man denke nur an die Ermittlung des minimalen Umfangs bei vorgegebenem Inhalt
oder die Einbeschreibung einer Figur mit extremalen Eigenschaften in eine andere vor-
gegebene Figur. Nebenbedingungen in Form von Gleichungen dienten häufig dazu, die
ursprüngliche Anzahl der Variablen zu reduzieren. Wie lassen sich die Nebenbedingun-
gen für das Transportproblem (6.1) formulieren?

Jeder Lieferant Li kann nicht mehr von dem Produkt P abgeben, als seine Lieferkapa-
zität ai angibt. Ein Lieferant Li liefert an die k Verbraucher Vj insgesamt die Menge

k∑
j=1

xij. Es muss also berücksichtigt werden, dass für jedes i (i = 1, ..., n)

k∑
j=1

xij ≤ ai

gilt; das ist ein System von n Ungleichungen!
Aus dem Anspruch der Verbraucher Vj, die ihren Bedarf bj exakt erfüllt sehen möchten,
ergibt sich das System der k Gleichungen

k∑
j=1

xij = bj

Die Nebenbedingungen haben also die Struktur vieler Gleichungen bzw. Ungleichungen,
ein für die meisten Optimierungsaufgaben typisches Erscheinungsbild.
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Alle diese Besonderheiten erforderten auch besondere Lösungsmethoden. In den nächs-
ten beiden Abschnitten wollen wir eine erste Vorstellung von solchen Methoden ver-
mitteln.

6.2 Der lineare Fall ist der einfachste
Bisher sind für die Lösung einiger Aufgabentypen Verfahren entwickelt worden. We-
gen der im allgemeinen sehr großen Anzahl von Variablen ist die Anwendung dieser
Verfahren an die moderne Rechentechnik gebunden. Wir wollen aber nun hier nicht
solche Verfahren vorstellen, geschweige denn anwenden, sondern nur grundlegende Ide-
en erläutern, auf denen diese Verfahren beruhen. Merkwürdigerweise eignen sich dafür
Beispielaufgaben, die nur wenige Variable benutzen.

(6.2) Innerhalb einer festgelegten Zeit t stellt ein Betrieb die beiden Produkte P1 und
P2 aus den Grundstoffen M und M∗ her. Für die Herstellung des Produktes P1 wird
außerdem eine Spezialmaschine benötigt, die in der Zeit t höchstens acht Einheiten des
Produktes erzeugen kann.
Die weiteren Produktionsbedingungen werden durch die folgende Tabelle und deren
Erläuterung beschrieben:

Produkt prod. Einheiten Preis Grundstoff
M M∗

P1 x1 1,2 2,5 3
P2 x2 1 3,5 2

vorhandene Menge 35 30

Der Preis ist dabei in Geldeinheiten pro produzierter Einheit angegeben. Die Spalten
"Grundstoff" geben an, wieviel eines jeden Grundstoffes (in ein und derselben Mengen-
einheit) für die Erzeugung einer Einheit der Produkte benötigt werden und wieviel von
jedem Grundstoff zur Verfügung steht.
Wie viele Einheiten sind von jedem der Produkte zu erzeugen, damit der beim Verkauf
aller Produkte erzielte Betrag am größten wird?

Zur Lösung dieser Aufgabe suchen wir zunächst ein diesem Sachverhalt äquivalentes
mathematisches Modell. Der beim Verkauf erzielte Betrag sei y. Dann gilt:

y = f(x1, x2) = 1, 2x1 + x2 (1)

ist die Zielfunktion, und (x1, x2) ist so zu ermitteln, dass y maximal wird. Die Neben-
bedingungen lauten wegen der in der Aufgabenstellung vorgegebenen Beschränkungen

2, 5x1 + 3, 5x2 ≤ 35 (2)
3x1 + 2x2

2 ≤ 30 (3)
x1 ≤ 8 (4)

Da die produzierten Einheiten keine negativen Größen sein können, muss auch die
Nichtnegativitätsbedingung

xi ≥ 0 (i = 1, 2) (5)
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6.2 Der lineare Fall ist der einfachste

erfüllt sein. Unter allen Wertepaaren (x1, x2) reeller Zahlen, die die Bedingungen (2)
bis (5) erfüllen, sind diejenigen gesucht, für die der Wert von y aus (1) maximal wird.

Da es sich nur um zwei Variable handelt, können wir diese Aufgabenstellung graphisch
bezüglich eines x1, x2-Koordinatensystems veranschaulichen.

Wir tragen zunächst die der Gleichung 2, 5x1+3, 5x2 = 35 entsprechende Gerade g ein.
Alle Punkte (x1, x2), die mit ihren Koordinaten die Ungleichung (2) erfüllen, liegen dann
in der durch g und den Ursprung bestimmten Halbebene H(2); entsprechend ordnen wir
der Ungleichung (3) bzw. (4) die Halbebenen H(3) bzw. H(4) zu (vgl. Abb. 6.2).

Abb. 6.2

Punkte, deren Koordinaten (2), (3) und (4) gleichzeitig erfüllen, liegen im Durchschnitt
dieser drei Halbebenen. Die Ungleichung (5) besagt, dass nur die Punkte im ersten Qua-
dranten in Betracht kommen.

In unserem Beispiel ergibt sich, dass nur solche (x1, x2) die Funktion (1) maximie-
ren können, die auf dem Rand oder im Inneren eines konvexen Fünfecks liegen; diese
Punktmenge B nennen wir daher Zulässigkeitsbereich.
Jetzt betrachten wir alle (x1, x2), für die die Funktion (1) einen vorgegebenen Wert n
annimmt, also 1, 2x1 + x2 = n gilt. Die zugehörigen Punkte liegen auf der Geraden
x2 = −1, 2x1 + n.
Für jedes n ergibt sich eine solche Gerade, die parallel zu jeder anderen dieser Art ist
(Abb. 6.2).

Verschieben wir also eine solche Gerade in eine zu ihr parallele, so verändert sich das
zugehörige n, d. h. der zu maximierende Funktionswert. Folglich verschieben wir so,
dass n wächst, allerdings muss auf der betrachteten Geraden immer mindestens ein
Punkt von B liegen.
In unserem Beispiel liefert die Strich-Punkt-Gerade (in Abb. 6.2) das Optimum. Sowohl
der maximale Funktionswert ymax als auch die zu produzierenden Einheiten x1, x2 las-
sen sich aus der graphischen Darstellung ablesen.

Natürlich lassen sich x1 und x2 auch als Schnittpunktskoordinaten von Geraden berech-
nen und daraus schließlich ymax. Es ergibt sich x1 ≈ 6, 36, x2 ≈ 5, 45, ymax ≈ 13, 09.
Sowohl die graphische Darstellung als auch die rechnerische Kontrolle ergibt, dass in
diesem Fall die Realisierung der optimalen Lösung die vorhandene Menge beider Grund-
stoffe aufbraucht, die Spezialmaschine aber nicht voll auslastet.
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Was kann man aus diesem sehr speziellen Beispiel für den allgemeinen Fall an Erkennt-
nissen gewinnen?

Jede der Nebenbedingungen und auch die Nichtnegativitätsbedingung wird durch eine
lineare Ungleichung beschrieben und daher in der Veranschaulichung durch eine Halb-
ebene wiedergegeben, für den Fall von drei Variablen x1, x2, x3 würde einer solchen
Ungleichung ein Halbraum entsprechen.
Ist der Durchschnitt aller Halbebenen (bzw. Halbräume) eine nichtleere und beschränkte
Menge, so lässt sich zeigen, dass diese Menge - der Zulässigkeitsbereich - ein konvexes
n-Eck (bzw. konvexes Polyeder) ist.

Ist die Zielfunktion linear, so wird sie durch eine Geradenschar (bzw. Ebenenschar)
charakterisiert. Aus dieser Schar wird nun diejenige Gerade (bzw. Ebene) ausgewählt,
für die y = f(x1, x2) (bzw. y = f(x1, x2, x3)) maximal wird.
Diese Gerade (bzw. Ebene) hat aber wegen der Konvexität des Zulässigkeitsbereiches
B mit B nur Randpunkte gemeinsam. Daraus folgt, dass man bei Kenntnis aller Eck-
punkte von B die optimale Lösung ermitteln kann, denn die Anzahl der Eckpunkte ist
endlich!

Das alles ist keine exakte Herleitung, aber bei einer solchen geometrischen Veranschau-
lichung gut "einsichtig". Auch für mehr Variable, also höhere Dimensionen, ergibt sich
aus der Linearität der Nebenbedingungen die Konvexität von B und damit aus der
Linearität der Zielfunktion die Erkenntnis, dass die Lösung unter den endlich vielen
Eckpunkten von B zu suchen ist.
(Das muss übrigens nicht bedeuten, dass die Lösung durch genau einen Eckpunkt
repräsentiert wird. Man vergleiche dazu die Aufgabe 6.3b) !)

Das alles lässt sich zwar nicht mehr n-dimensional vorstellen, aber exakt herleiten
(vgl. etwa [4]). Auf diesen grundsätzlichen Überlegungen basieren auch Verfahren zur
Berechnung der Lösung. Am bekanntesten ist das Simplexverfahren.

Bei diesem Verfahren beginnt man mit einem Startelement, welches einem Eckpunkt
von B entspricht. Ein - rein rechnerisch durchzuführender - Simplexschritt erzeugt aus
diesem Startelement ein neues, welches wieder einem Eckpunkt von B entspricht.
Bei einem solchen Schritt wächst aber, solange die optimale Lösung noch nicht erreicht
ist, auch der Wert der Zielfunktion. Mit diesem Verfahren steuert man also zielstrebig
auf die Lösung zu und erreicht sie nach endlich vielen Schritten, ohne alle der zwar
endlich vielen, meistens aber doch sehr vielen Eckpunkte von B berücksichtigen zu
müssen.

Ist die Zielfunktion einer Optimierungsaufgabe linear und werden überdies die Neben-
bedingungen durch ein System linearer (Un)gleichungen beschrieben, so sprechen wir
von einer linearen Optimierungsaufgabe. Sind die Variablen dieser Aufgabe Variable
über der Menge der nichtnegativen reellen Zahlen, so kann man eine solche Aufgabe
prinzipiell nach dem Simplexverfahren lösen.

(6.3) • Man verändere die Aufgabe (6.2) wie folgt:
a) An Stelle der produzierten Einheiten x1, x2 seien Stückzahlen x1, x2 gesetzt, d. h.,
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es seien nur natürliche Zahlen für x1, x2 zulässig ("ganzzahlige" Optimierung). Man
zeige, dass es falsch ist, von der für (6.2) gefundenen Lösung auf das "nächstgelegene"
ganzzahlige Paar (6, 5) als Lösung zu schließen!
b) Man löse die Aufgabe (6.2) für den Fall, dass lediglich der Preis 1,2 in 1,5 abgeändert
wird!

Gibt man die "Linearität" auf, so bereiten die entstehenden Aufgaben zumeist beträcht-
liche Schwierigkeiten. Man ist also gut beraten, seine Schritte in das nichtlineare Gebiet
behutsam zu setzen.
Bedenken wir nochmals, wie sich die Linearität auswirkte. Neben der Einfachheit der
Operationen mit linearen Termen war es insbesondere die Konvexität von B und die "La-
gebeziehung"zwischen B und einer die Zielfunktion charakterisierenden Kurvenschar,
die Lösungsprinzipien suggerierte.
Liegen nichtlineare Nebenbedingungen vor, die aber wiederum einen konvexen Zuläs-
sigkeitsbereich erzeugen, und eine lineare Zielfunktion, so wird man vielleicht ähnlich
wie in (6.2) vorgehen können.

(6.4) • Man ermittle den maximalen Funktionswert der Funktion y = f(x1, x2) =
a · x1 + x2 unter den Bedingungen x2

1 + x2
2 ≤ 8, 0 ≤ x1 ≤ 2, 5 und 0 ≤ x2 ≤ 2, 5 für

a = 0, 1; 1; 10.

Das folgende Beispiel wird man kaum in Lehrbüchern der Optimierung finden. Wir ha-
ben es dennoch ausgewählt. Es ist nämlich das uns bereits bekannte Beispiel (2.27),
und es bietet einen sehr einfachen Fall einer nichtlinearen Zielfunktion an.
Man sieht daran vielleicht auch, wie fließend die Grenzen zwischen den Teilgebieten
sind.

(6.5) Unter allen Rechtecken mit den Seitenlängen x1 und x2, deren Umfang einen vor-
gegebenen Wert 2c nicht überschreitet, ist dasjenige mit dem maximalen Flächeninhalt
zu ermitteln.

Zielfunktion: y = f(x1, x2) = x1 · x2
Nichtnegativitätsbedingung: x1 ≥ 0, x2 ≥ 0;
Nebenbedingung: x1 + x2 ≤ c

Ersichtlich ist, dass die Zielfunktion nichtlinear ist und die geringe Veränderung des
Textes in (6.5) gegenüber den ursprünglichen Aufgabenstellungen (2.27) so gewählt
wurde, dass sich für die Nebenbedingung wieder eine Ungleichung ergibt.

Abb. 6.3

Wir gehen prinzipiell wie in Beispiel (6.2) vor. Die die Zielfunktion charakterisierende
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6.3 Ein Beispiel der dynamischen Optimierung

Kurvenschar ist jetzt aber eine Schar von Hyperbeln
(
x2 = n

x1

)
, für deren Schnittpunk-

te S mit der Geraden x2 = x1 die Gleichung |OS| = n ·
√

2 gilt (vgl. Abb. 6.3). Da
der Graph einer solchen Hyperbel (von unten) konvex ist (vgl. (4.3)), lässt sich unser
obiges Vorgehen der Verschiebung wiederum anwenden.

Unter obiger Nebenbedingung wird n für diejenige Hyperbel maximal, die mit der Ge-
raden x1 + x2 = c genau einen Punkt gemeinsam hat. Dieser aus der graphischen
Darstellung ablesbare Punkt lässt sich auch rechnerisch ermitteln:
Aus x1 + x2 = c und x2 = n

x1
folgt x1 + n

x1
= c bzw. x2

1 − cx1 + n = 0.
Diese quadratische Gleichung hat genau dann genau eine Nullstelle, wenn c2

4 − n = 0
gilt, d. h. n = c2

4 und damit x1 = c
2 und weiter x2 = c

2 . Für das gesuchte Rechteck gilt
also x1 = x2.

Auch die folgende Aufgabe, die der 18. Olympiade Junger Mathematiker der DDR
entnommen ist, lässt sich nach den bisher vermittelten Methoden lösen.

(6.6) • Es sei M die Menge aller Tripel (x1, x2, x3) von reellen Zahlen, für die die
folgenden Ungleichungen erfüllt sind:

55x1 + x3 ≤ 54, 55x2 + x3 ≤ 54, 55x1 − 4x3 ≥ 4
55x2 − 4x3 ≥ 4, x3 ≥ −1

Man untersuche, ob für die Funktion

y = f(x1, x2, x3) = x2
1 + x2

2 + x2
3

ein Tripel (x1, x2, x3) ∈ M so existiert, dass für alle Tripel (x1, x2, x3) ∈ M die
Ungleichung

f(x1, x2, x3) ≥ f(x1, x2, x3)
gilt. Ist dies der Fall, so ermittle man hierzu f(x1, x2, x3).

6.3 Ein Beispiel der dynamischen Optimierung
Betrachten wir die Produktion in einem Betrieb als einen in der Zeit t ablaufenden
Prozess, so spielte dieser Prozesscharakter allerdings in Beispiel (6.2) keine Rolle.
Bei der Beobachtung der Produktion über einen längeren Zeitraum wird dagegen der
Prozesscharakter sehr deutlich. Die zu einem frühen Zeitpunkt erzielten Resultate ha-
ben wesentlichen Einfluss auf spätere Situationen. Ein Betrieb plant seine Produktion
z. B. für mehrere Jahre, er legt aber nach jedem Jahr eine Zwischenbilanz vor.

Schon diese Einteilung legt es nahe, die Produktion als einen Mehrstufenprozess an-
zusehen und die Optimierung des gesamten Prozesses auf die der einzelnen Stufen
zurückzuführen. Grundsätzlich gilt dabei, dass keine Stufe isoliert betrachtet werden
darf.

Erzielt ein Betrieb z. B. im ersten Jahr einen sehr großen Gewinn dadurch, dass er alle
Mittel für den Kauf von Rohstoffen einsetzt und die vorhandenen Maschinen - ohne
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Rücksicht auf Verschleiß - mit voller Leistung fahren lässt, so wird möglicherweise im
zweiten Jahr wegen ausfallender Maschinen, die wegen fehlender Finanzen nicht er-
neuert werden können, die Leistung extrem niedrig sein. Vernünftig erscheint folgendes
Prinzip:

Ein Prozess wird in endlich viele Stufen unterteilt, und jede Stufe wird unter Berück-
sichtigung der nachfolgenden Stufen optimiert. Dieses Prinzip nennen wir dynamische
Optimierung. Dann existiert unter allen Stufen genau eine, die ohne Blick in die Zu-
kunft optimiert werden darf, nämlich die letzte! Die dynamische Optimierung erfolgt
daher immer entgegengesetzt dem Zeitablauf.

Um eine allererste Vorstellung zu vermitteln, betrachten wir ein Beispiel zum sogenann-
ten Verteilungsproblem.43

(6.7) Für zwei Industriezweige I und II sind die Investitionen für drei Jahre, unter fol-
genden Annahmen zu planen:

- Werden die Mittel x im Zweig I investiert, so bringen sie jährlich den Gewinn fI(x) =
x2, und durch die Ausgaben reduzieren sich die ursprünglichen Mittel auf 0, 75x.

- Werden die Mittel x im Zweig II investiert, so bringen sie jährlich den Gewinn
fII(x) = 2x2, und durch die Ausgaben reduzieren sich die ursprünglichen Mittel auf
0, 3x.

- Der Anfangsbestand z0 an Mitteln ist unter diesen Bedingungen für jedes Jahr der
Planperiode auf die Zweige I und II so aufzuteilen, dass der Gesamtgewinn möglichst
groß wird.

Zur Lösung dieses Problems gehen wir von der letzten Stufe aus. Nach dem zweiten
Jahr sei der Bestand an Mitteln z2. Die Mittel, die davon im dritten Jahr im Zweig I
eingesetzt werden, seien x3, für den Zweig II stehen dann noch die Mittel z2 − x3 zur
Verfügung. Es muss natürlich

0 ≤ x3 ≤ z2 (1)

gelten. Für den Gesamtgewinn des dritten Jahres ergibt sich nach den Voraussetzungen

G3 = x2
3 + 2(z2 − x3)2 = 3x2

3 + 4z2x3 + 2z2
2

d. h., G3 ist in Abhängigkeit von x3 über dem abgeschlossenen Intervall (1) eine Parabel
mit positivem Leitkoeffizienten.
Deren Maximum liegt aber nach (3.6’) auf dem Rand des Intervalls (1)! Welcher Rand-
punkt ergibt den größeren Wert?

Dies ist der für x3 = 0! Folglich werden alle Mittel z2 im dritten Jahr im Zweig II
investiert! Der Gesamtgewinn des dritten Jahres ist damit 2z2

2 .
Welche Mittel z2 stehen aber nach dem zweiten Jahr zur Verfügung? Sind x2 und
z1 − x2 die im zweiten Jahr investierten Mittel, so haben diese sich auf z2 = 0, 75x2 +
0, 3(z1 − x2) reduziert. (z1 ist dabei der Bestand an Mitteln nach dem ersten Jahr.)
43Vgl. [15], S. 61ff.
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Mit Hilfe dieser Überlegungen können wir nun den Gesamtgewinn G2,3 der letzten
beiden Jahre maximieren:

G2,3 = x2
2 + 2(z1 − x2)2 + 2z2

2

G2,3 = 3, 505x2
2 − 3, 46z1x2 + 2, 18z2

1

Wiederum unter Bezug auf (3.6’) muss man sich für x2 = 0 oder x2 = z1 entscheiden.
Setzt man diese beiden Möglichkeiten ein, so ergibt sich das Maximum 2, 18z2

1 für
x2 = 0.
Für das erste Jahr ergibt sich analog

z1 = 0, 453x1 + 0, 3z0 und

G1,2,3 = x2
1 + 2(z0 −x1)2 + 2, 18z2

1 bzw. G1,2,3 ≈ 3, 44x2
1 − 3, 41z0x1 + 2, 20z2

0

Die Entscheidung nach (3.6’) liefert jetzt x1 = z0. Damit haben wir die optimale
Investitionsstrategie gefunden!
Im ersten Jahr müssen alle Mittel im Zweig I investiert werden, im zweiten und dritten
Jahr wird nur im Zweig II investiert.

Der Gesamtgewinn beträgt ≈ 2, 23z2
0 , und nach drei Jahren steht noch ein Rest von

≈ 0, 07z0 an Investitionsmitteln zur Verfügung.

(6.8) • Wie lautet die optimale Investitionsstrategie, wenn man bei dem Problem (6.7)
für m Jahre mit m > 3 zu planen hat?

Mit unseren acht "Beyspielen" haben wir die "weitläufige Materie" der Optimierung nun
keineswegs erschöpft, aber hoffentlich einen ersten Eindruck von der "Weitläufigkeit"
vermittelt.
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7 Lösungen und Lösungshinweise
Es lohnt nicht, einen Fehler zu machen,

wenn keiner ihn bemerkt.
P. Tille

(1.1) a) Kleinste Zahl: -23; größte Zahl: 17 ; b) Kleinste Zahl;
√

156; größte Zahl:√
158.

(1.2) Angenommen, es existiert eine rationale Zahl rmin, so dass für alle r mit 2 <
r2 ≤ 3 auch 2 < r2

min ≤ r2 gilt. Zwischen den zwei rationalen Zahlen 2 und r2
min

liegen aber beliebig viele rationale Zahlen, unter diesen befinden sich auch Quadrate
rationaler Zahlen, z. B.

r2
min − x(2rmin − x) = (rmin − x)2

(für hinreichend kleines positives rationales x). Das ergibt aber einen Widerspruch zur
Annahme, dass rmin die kleinste derartige Zahl ist.
Es gibt keine rationale Zahl r mit r2 = 3. Gäbe es also eine größte rationale Zahl rmax
mit rmax ≤ 3, dann müsste rmax < 3 gelten. Diese Annahme kann man analog zu
obigen Ausführungen zum Widerspruch führen.

(2.6) Man verfahre analog zu (2.3). Statt R sowohl an p als auch an q zu spiegeln,
spiegle man A an p und B an q. Die Bilder seien A′ und B′, und S sei wiederum der
Scheitel des Winkels ∠p, q.
Dann gibt es nach den gleichen Überlegungen wie zu (2.3) (genau) eine Lösung P0 ∈ p,
Q0 ∈ q, wenn (und nur wenn) die Größe des Winkels ∠A′SB′ kleiner als 180◦ und p,
q im Innern von ∠ : A′SB′ liegen. Damit die Aufgabe also stets lösbar ist, muss
|∠p, q| = 60◦ sein (vgl. dazu Abb. 7.1).

Abb. 7.1

Von den Streckenzügen APQB und AQPB ist im allgemeinen - falls sie beide existieren
- einer kürzer als der andere. Dann ist der Streckenzug minimaler Länge eindeutig
bestimmt.
Gilt B ∈ gSA, so sind dagegen diese Streckenzüge von gleicher Länge; die Aufgabe hat
dann für spitze Winkel ∠p, q genau zwei Lösungen, für nichtspitze Winkel ∠p, q keine
Lösung.

(2.9) Es sei PQRS ein dem Quadrat ABCD entsprechend Abb. 7.2 einbeschriebenes
Quadrat. Dann geht bei der Drehung um den Mittelpunkt M des Quadrats ABCD
mit 90◦ das Dreieck SAP in das Dreieck PBQ über, und damit ist PMQ ein gleich-
schenkliges Dreieck mit rechtem Winkel bei M .
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Abb. 7.2

Nun ist offenbar der Umfang des Quadrate PQRS genau dann minimal, wenn |PQ|
minimal und damit nach dem Vorangegangenen die Länge |MP | minimal ist. Unter
allen Punkten P aus AB leistet dies der Mittelpunkt dieser Seite. (Entsprechende
Lagen haben dann Q, R und S.)
Eine weitere Lösung ergibt die bisherige Methode mit Geradenspiegelungen.

(2.10) Man spiegle O, O′, O′′ und O′′′ an den durch die Rechtecksseiten bestimm-
ten Geraden entsprechend Abb. 7.3 und verbinde zunächst OIV mit O. Wegen der
Längeninvarianz der Spiegelung und der Gültigkeit des Reflexionsgesetzes gilt:

|OP | = |OP ′|, |OP | + |PQ| = |QO′′|
|OP | + |PQ| + |QR| = |RO′′′|, |OP | + |PQ| + |QR| + |RS| = |SOIV |

S muss auf OOIV liegen. Überdies ist dann gSO ∥ gOP und damit O ∈ SP . Dies führt
zur Lösung von (2.10’). (Auf eine Determination gehen wir hier nicht ein.)

Abb. 7.3

(2.13) a) Man überzeuge sich davon, dass die für (2.12) vorgestellte Lösung auch auf
einen beliebigen Punkt P der Ebene als Ausgangspunkt anwendbar ist, aber wieder
einen Punkt im Inneren als Lösung der Aufgabe ergibt. Die Lösung ändert sich also
nicht.

b) Die Lösung zu (2.12) lässt erkennen, dass sie auch für stumpfwinklige Dreiecke gilt,
deren stumpfe Winkel kleiner als 120◦ sind.
Es sei o. B. d. A. der Winkel bei C mindestens 120◦. Dann gilt für alle Punkte P ̸= C
die Relation |AP | + |BP | + |CP | > |AC| + |BC|.

(2.14) Für den Schnittpunkt der Diagonalen wird die Abstandssumme minimal! (Beweis
indirekt unter Verwendung der Dreiecksungleichung.)

(2.15) Wir können durch eine Drehung wie zur Lösung der Aufgabe (2.12) (vgl. Abb.
2.6) zu einer vorteilhaften Einsicht kommen.
Da ABC ein gleichseitiges Dreieck ist, gibt es eine Drehung ρ um A mit 60◦, bei der
Cρ = B ist. Es sei P ein von A und B verschiedener Punkt. Wegen |P ρP | = |AP |,
|P ρB| = |PC| und der Dreiecksungleichung bezüglich P ρ, P , B gilt |AP | + |BP | ≥
|CP |. Für P = A,B gilt speziell |AP | + |BP | = |CP |.
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Also ist das Minimum von s = |AP | + |BP | − |CP | gleich 0.
Gilt44 |AP | + |BP | = |CP | und P ̸= A,B, so müssen - wie man sich näher überlegt -
P und C auf verschiedenen Seiten bezüglich gAB liegen, und es muss P ∈ P ρB sein.
Dann ist |∠ : APB| = 180◦−60◦ = 120◦, und demnach liegt P auf dem Umkreisbogen
des Dreiecks ABC zwischen A und B.
Umgekehrt ist s = 0 für alle Punkte dieses Kreisbogens (einschließlich A und B).

(2.21) Man kann zunächst einmal der Lösung von (2.20) folgen.
Wir betrachten zuerst alle Wege, die von A nach G über einen Punkt der Kante BC
verlaufen. Der kürzeste dieser Wege hat die Länge

√
(a+ c)2 + b2 (vgl. Abb. 2.10a, b).

Der kürzeste aller Wege von A nach G über einen Punkt der Kante BF hat die Länge√
(a+ b)2 + c2 und der über einen Punkt der Kante EF die Länge

√
(b+ c)2 + a2.

Diese Längen lassen sich leicht vergleichen, da sich die Radikanden nur um ein Glied
2xy mit x, y ∈ {a, b, c} unterscheiden.

Abb. 7.4

Wegen a < b < c ist demnach die Länge
√

(a+ b)2 + c2 die kürzeste. Damit gibt es
genau zwei Streckenzüge als kürzeste Wege, nämlich APG und AQG, mit P ∈ BF
und |BP | : |PF | = a : b bzw. Q ∈ DH und |DQ| : |DH| = a : b.

(2.22) Unter dem Abstand zweier Punkte P und Q auf der Würfeloberfläche ist das
Minimum der Weglängen von P nach Q zu verstehen; dies wird hier durch einen Stre-
ckenzug realisiert. Eine Verebnung der Würfeloberfläche führt auch hier zur Lösung
(vgl. Abb. 7.4).

a) Der Mittelpunkt Q der P gegenüberliegenden Würfelfläche EFGH hat von P
offensichtlich den Abstand 2a, wobei er die Kantenlänge des Würfels ist. Die vier Stre-
ckenzüge über die Mittelpunkte der Seitenflächen ABFE bzw. BCGF bzw. CDHG
bzw. DAFH sind die kürzesten Wege von P nach Q.
Die Verebnung längs der Kanten BC und FG (Abb. 7.4) zeigt klar, dass die vier
diesbezüglichen "Abstandskreis"-Teile auf der Fläche EFGH mit dem Radius 2a diese
Seitenfläche überdecken dass es von P aus also keinen größeren Abstand gibt und alle
von Q verschiedenen Punkte einen kleineren Abstand von P besitzen.

b) In entsprechender Weise erkennt man, dass der Mittelpunkt Q von GH der von P
am weitesten entfernte ist.

(2.24) Die Überlegungen zu (2.23) können entsprechend für den Quader mit ungleich
langen Kantenlängen übernommen werden. Stabile Lagen des Gummifadens verlaufen
auch hier parallel zu den Quaderkanten oder parallel zu den Diagonalen der Seitenflä-
chen.

44Von hier an vgl. mit der Aufgabe 17 12 24 der OJM.
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Abb. 7.5

(2.25) Wir schlitzen den Kegelmantel längs der Mantellinie durch P auf und können
dann verebnen (Abb. 7.5 b). Jeder Weg von P nach P ist dann nach der Verebnung
ein gleichlanger Weg in einem Kreissektor von P nach P1 (Abb. 7.5 b). Der kürzeste
Weg in der Verebnung ist die Verbindungsstrecke PP1. Da der Weg nicht über die
Spitze S des Kegels geführt werden darf, existiert das Minimum genau dann, wenn
|∠PSP1| < 180◦ ist.
Dies ist äquivalent mit 2πr < πs, also mit sin α

2 = r
s <

1
2 , d. h. mit α < 60◦, wobei

α der Öffnungswinkel des Kegels ist, r der Radius des Grundkreises und s die Länge
einer Mantellinie (Abb. 7.5).

Klebt man den Kreissektor mit der Strecke PP1 wieder zu einem Kegelmantel zusam-
men, so erhält man den räumlichen Verlauf des minimalen Weges. (Häufig ist man von
diesem Ergebnis überrascht!)

(2.26) Man "spiegelt" Q am Äquator, d. h., man wählt denjenigen Punkt Q′ auf
der südlichen Halbkugel, der mit Q auf dem gleichen Meridian liegt und den gleichen
Abstand zum Äquator hat.
Ist Q′ nicht diametral gegenüberliegend zu P , dann gibt es genau einen Großkreis durch
P und Q′, und einer der Bögen von P nach Q′ ist der kürzere. Dessen Schnittpunkt R
mit dem Äquator ergibt die Lösung. - Sind dagegen P und Q′ diametral gegenüberlie-
gend, so leistet nun offenbar jeder Punkt R des Äquators das Gewünschte.

Abb. 7.6

(2.28) Zur Lösung benutzen wir elementare Eigenschaften der Ellipse, auf die wir
bereits im Zusammenhang mit der Lösung zur Aufgabe (2.1) zu sprechen kamen. Auf
Grund der Voraussetzungen ist die Summe der Seitenlänge a = |BC| und b = |AC|
konstant, und demnach liegt C auf einer Ellipse mit den Brennpunkten A und B.
Den größten Abstand von der Symmetrieachse gAB haben diejenigen Ellipsenpunkte,
die auf der Mittelsenkrechten von AB liegen (Abb. 7.6a). Wegen F∆ = c·hc

2 und kon-
stantem C liegt hier ein Dreieck mit dem größten Flächeninhalt vor. Andere Methoden
zur Lösung stehen später zur Verfügung, beispielsweise:

Nach Voraussetzung gibt es ein gleichschenkliges Dreieck ABC0, mit |AB| = c und
|AC0| = |BC0| = u−c

2 . Für jeden Punkt C, der bezüglich gAB auf der gleichen Seite
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wie C0 liegt, gilt A(ABC) = A(ABC0) genau dann, wenn C auf der Parallelen h zu
gAB durch C0 liegt.

Nach der Lösung zu (2.1) ist für jeden Punkt C ∈ h, der von C0 verschieden ist, der
Streckenzug ACB länger als der Streckenzug AC0B (Abb. 7.6 b), d. h., unter allen
Dreiecken mit gleichem Flächeninhalt und gleicher Seite AB ist das gleichschenklige
Dreieck dasjenige mit dem kleinsten Umfang. Mit Hilfe des Satzes (2.32) folgt daraus
die Behauptung.

Abb. 7.7

(2.31) Da ∠p, q ein rechter Winkel ist, lässt sich die durch Schnitt der Winkelfläche
gegebene Figur F an den Trägergeraden der Schenkel p und q so spiegeln, dass eine
bezüglich des Scheitels O von ∠p, q zentralsymmetrische Figur F1 entsteht (Abb. 7.7).
Diese Figur hat einen konstanten Umfang, nämlich das Vierfache der Länge der Schnitt-
kurve, und wir können in Hinblick auf die Aufgabenstellung o. B. d. A. davon ausgehen,
dass F1 konvex ist.

Nach dem Satz (2.30) hat F1 und damit F maximalen Flächeninhalt, wenn F1 eine
Kreisfläche, also wenn der Schnitt um O kreisförmig ist.

Abb. 7.8

(2.31’) φ sei der von den Seiten mit den Längen a = 4 und b = 3 und ψ der von den
Seiten mit den Längen c = 3 und d = 2 eingeschlossene Winkel (Abb. 7.8). A sei der
Flächeninhalt des Vierecks.
Dann ergibt der Flächensatz 2A = 12 sinφ+6 sinψ. Berechnet man die Diagonalenlän-
ge |AC| mittels a, b und φ und andererseits mittels c, d und ψ nach dem Kosinussatz,
so erhält man 25 − 24 cosφ = 13 − 12 cosψ. Nach elementaren Vereinfachungen und
dem Quadrieren erhält man

A2

9 = 4 sin2 φ+ 4 sinφ sinψ + sin2 ψ

und
1 = 4 cos2 φ− 4 cosφ cosψ + cos2 ψ

Die Addition dieser beiden Gleichungen ergibt bei Verwendung von Formeln der Trigo-
nometrie

A2

9 = 4(1 − cos(φ+ ψ))
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Damit wird A2

9 maximal für cos(φ + ψ) = −1, d. h. für φ + ψ = 180◦, und es gilt
Amax = 6

√
2. Das Viereck ist Sehnenviereck.

(2.35) Zunächst folgt aus (2.28), dass unter allen Dreiecken mit gleichem Umfang die
gleichseitigen Dreiecke den größten Flächeninhalt besitzen. Nach (2.32) folgt daraus
dann die duale Aussage, d. h. die Behauptung.

(2.38) Die Lösung lässt sich entsprechend (2.37) für einen spitzen oder stumpfen
Winkel gestalten. - Es gibt wiederum genau eine Tangente g′ an den Kreis, die beim
Schnitt mit den Schenkeln des Winkels ein gleichschenkliges Dreieck A′B′C ′ (mit
|CA′| = |CB′|) liefert. Der Kreisberührungspunkt sei E; er ist der Mittelpunkt von
A′B′.
Jede andere Gerade durch E, die ebenfalls die Schenkel schneidet, ergibt ein Dreieck
mit einem größeren Flächeninhalt. (Der Beweis kann entsprechend zu (2.36) geführt
werden!) Und dies gilt nun erst recht für jede von g′ verschiedene Tangente an den
Kreis.

(2.42) Angeregt durch die Lösung von (2.40) mit Hilfe des Spezialfalls (2.39), beschäf-
tigen wir uns zunächst mit folgender Frage:

Abb. 7.9

Es sei OAB ein Dreieck. Für welche Punkte P ∈ AB hat das Parallelogramm ODPE
mit D ∈ OA und E ∈ BO maximalen Flächeninhalt?

Ist P der Mittelpunkt P0 von AB, dann gilt offenbar A(ODPE) = 1
2A(OAB). Ist

P ̸= P0 und o. B. d. A. ein Punkt zwischen A und P0 (Abb. 7.9), dann geht bei
der Spiegelung an P der Punkt A in einen Punkt A′ zwischen P und B über. Das
Parallelogramm mit den aufeinanderfolgenden Ecken O, D, D′ hat nun - wie man an
Hand dieser Spiegelung sofort einsieht - einen kleineren Flächeninhalt als das Dreieck
OAB, aber den doppelten des Parallelogramms ODPE, d. h., es ist A(ODPE) <
1
2A(OAB).
Demnach liegt das Maximum für P = P0 vor.

Mit diesem Hilfssatz ergibt sich nun leicht, dass die Mittelpunkte der Vierecksseiten
das gesuchte Maximum bilden. O ist dann der Schnittpunkt der Diagonalen.

(2.43) a) Ist das Dreieck nicht gleichseitig, etwa |BC| ̸= |CA|, dann kann bei fest-
gehaltener Seite AB zu einem von C verschiedenen Kreispunkt D mit |BD| = |DA|
und A(ABD) > A(ABC), also zu einem flächengrößeren gleichschenkligen Dreieck
übergegangen werden.
Dies leistet derjenige Schnittpunkt D der Mittelsenkrechte von AB mit dem Kreis, der
mit C auf der gleichen Seite bezüglich gAB liegt.
b) beweist man in analoger Weise.
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(2.44) a.) Ist das Tangentendreieck ABC nicht gleichseitig, etwa |AB| ̸= |AC|, so
gibt es nach (2.38) ein Tangentendreieck AB′C ′ mit A(AB′C ′) < A(ABC).
b) beweist man nun entsprechend.

(2.45) Zu jeder noch so kleinen Flächeninhaltsgröße können bei festem Punkt P im
Innern von AB stets so nahe an C liegende Punkte Q und R aus dem Innern von BC
bzw. CA gewählt werden, dass A(PQR) kleiner als die vorgegebene Größe ist.

Abb. 7.10

A(PQR) = 0 ist jedoch nicht möglich. Andererseits ist offenbar stets A(PQR) <
A(ABC), aber zu jeder Flächeninhaltsgröße F < A(ABC) gibt es stets P , Q, R
vorgegebener Lage mit A(PQR) > F ; die Punkte P , Q, R können ja beliebig nahe an
A, B bzw. C gewählt werden (Abb. 7.10a).

(2.49) Für das Fünfeck ABCDE gilt (Abb. 7.10b)

A = ab+ 1
4a

2√3 und U = 3a+ 2b (2)

Aus, der Existenz eines Fünfecks folgt, dass die aus (1) und (2) sich ergebende Gleichung

a2 − 2U
6 −

√
3
a+ 4A

6 −
√

3
= 0

in a eine Lösung besitzt; und daraus folgt über die Diskriminante

U ≥ 2
√
A(6 −

√
3) (3)

Für U = 2
√
A(6 −

√
3) hat die obige quadratische Gleichung in a nur die Lösung

a = U
6−

√
3 , und aus dieser Gleichung folgt

a = 2
√√√√ A

6 −
√

3
und b = (3 −

√
3)
√√√√ A

6 −
√

3
(4,5)

Gibt es also ein Fünfeck der gesuchten Art, bei dem sogar die Gleichheit in (3) gilt, so
bestehen (4) und (5).
Umgekehrt lässt sich nun leicht zeigen, dass ein Fünfeck ABCDE mit (4) und (5) den
Flächeninhalt A und minimalen Umfang besitzt.

(2.50) Insgesamt gibt es zwölf verschiedene (d. h. inkongruente) Pentominos. Be-
stimmt man diese, so lässt sich die Aufgabe leicht durch "Auszählen" ermitteln. Man
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erhält ein recht merkwürdiges Ergebnis: elf der zwölf Pentominos haben trotz verschie-
dener Formen den gleichen Umfang 12.
Eines der Pentominos hat den Umfang 10. Damit ist das Maximum 12, das Minimum
10 (und "etwas anderes" gibt es nicht!).

(3.4) Die Funktion f sei auf [a, b] streng monoton wachsend. Dann gilt nach (3.3):
Wenn a ≤ x1 < x2 ≤ b, dann f(x1) < f(x2) ≤ f(b). Nach (3.2) bedeutet dies, dass
f(b) das Maximum ist.
Analoge Betrachtungen führen zum Minimum f(a). (Für eine streng monoton fallende
Funktion "kehren sich die Relationszeichen um".)

Für ein offenes Intervall a < x < b führt man die Annahme eines Extremums an der
Stelle x0 etwa wie in (1.2) zum Widerspruch.

(3.5) Wegen x ̸= 0 und 1
x − 1 ≥ 0 ergibt sich der größtmögliche Definitionsbereich

{x : 0 < x ≤ 1}. Aus x1 < x2 folgt 1
x1
> 1

x2
, 1

x1
− 1 > 1

x2
− 1 und schließlich√√√√ 1

x1
− 1 >

√√√√ 1
x2

− 1

d. h., f(x) ist streng monoton fallend. Aus (3.4) folgt damit die Existenz eines Mini-
mums f(1) = 0 an der Stelle x0 = 1 und die Nichtexistenz eines Maximums.

2. Lösung. Da ein Wurzelwert stets nichtnegativ ist, kann sein Minimum nicht kleiner
als 0 sein. Der Wert 0 wird aber im vorgegebenen Fall für x0 = 1 angenommen. An-
genommen, die Funktion f hätte an der Stelle x1 mit 1 > x1 > 0 ein Maximum M ,
dann gilt 0 < x2

1 < x1 < 1 mit

f(x2
1) =

√√√√ 1
x2

1
− 1 =

√√√√ 1
x1

− 1 ·
√√√√ 1
x1

+ 1 > M

im Widerspruch zur Annahme.

(3.8) a) Wir bezeichnen |AP | = |RQ| mit x. Dann ist für A(APQR) = x(|AC| −
|RC|) mit x ≥ 0 das Maximum gesucht. Nach dem Strahlensatz (vgl. Abb. 2.15a) gilt

x : |AB| = |RC| : |AC| bzw. |RC| = x · |AC|
|AB|

Damit erhalten wir
A(APQR) = x · |AC| − x2 · |AC|

|AB|

Nach (3.6), (3.6’) hat A(APQR) genau an der Stelle x0 = |AB|
2 > 0 ein Maximum,

d. h., P ist Mittelpunkt von AB, und wegen des Strahlensatzes sind auch R bzw. Q
Mittelpunkte von AC bzw. BC.

b) Wir benutzen die Gleichungen (1) und (2). Da in der dualen Aufgabe U als konstant
anzunehmen und für A das Maximum zu ermitteln ist, lösen wir (1) nach 2b auf und
setzen in (2) ein! Es ergibt sich A = Ur −

(
2 + 3π

2

)
r2 mit r > 0.
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Nach (3.6), (3.6’) erhält man ein Maximum für A genau für

r0 = U

3π + 4

Das zugehörige b0 ergibt sich aus 2b0 = U − 2r0 − πr0 zu

b0 = π + 1
3π + 4 · U

(3.11) Nach dem Satz des Pythagoras gilt x2 + y2 = d2 bzw. y2 = d2 − x2. Die
Tragkraft T lässt sich als Funktion T (x) = x(d2 − x2) der Variablen x erfassen. Für
diese Funktion dritten Grades haben die Koeffizienten a bzw. c die Werte -1 bzw. d2,
die anderen Koeffizienten sind 0.
Für (**) gilt speziell

−x3 + d2x− h = −x3 + (r + 2s)x2 − s(s+ 2r)x+ rs2

Mittels Koeffizientenvergleich ergibt sich r = −2s, d2 = 3s2 und h = 2s3. Dabei ist
x0 = s die Extremalstelle und h der Extremalwert: s =

√
3

3 d, h = Tmax = 2
9
√

3d3.

(3.13) Wir gehen wieder von den Formeln (1) und (2) aus. Wir schreiben (1) in der
Gestalt U = (2 + π)r + 2b.
Soll (3.12) Verwendung finden, so müsste sich b als b = c

r + er darstellen lassen; das
ist aber mittels (2) möglich! (2) ist äquivalent zu (2’) 2b = A

r + π
2r.

Damit folgt
U =

(
2 + 3

2π
)
r + A

r
bzw. 2U

4 + 3π = r + d

r

mit d = 2A
4+3π , d.h., 2U

4+3π bzw. U wird genau für r = 2A
4+3π minimal. Setzt man diesen

Wert in (2’) für T ein, so erhält man den zugehörigen Wert von b.

(3.17) a) Zu (3.14): Für den äußeren Widerstand x =
√
d =

√
R2

i = Ri (da Ri > 0)
wird e2

N minimal und damit N maximal.

b) Zu (3.15): Eine Lieferung umfasst
√

6400 = 80 Stück. Es müssen demnach in
Abständen von einem halben Monat die Lieferungen erfolgen.

c) Zu (3.16): f(x) wird minimal für x = 1, d. h., es gilt |EF | = 1 und |FG| = u.
Dann ist aber das Viereck EFGH in Abb. 3.7b ein Drachenviereck, d. h. α = δ und
β = γ. Aus Abb. 3.7a ist ersichtlich, dass der Strahlendurchgang symmetrisch erfolgen
muss.

(4.1) Für alle reellen Zahlen x ist x2 ≥ 0 und x2 + 1 ≥ 1 > 0:
Demnach ist stets f(x) ≥ 0 und f(x) = 0 ⇔ x2 = 0 ⇔ x = 0. Die Funktion hat also
für x = 0 das Minimum f(x) = 0. Außerdem gilt (*) (u − 1)2 ≥ 0 bzw. u2 + 1 ≥ 2u
und damit x4+1 ≥ 2x2, wenn man u durch x2 ersetzt. Daraus folgt (wegen x4+1 > 0)

die Ungleichung x2

x4 + 1 ≤ 1
2 .
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Da die Gleichheit in (*) genau für u = 1 gilt, hat f(x) genau an den Stellen x mit
x2 = 1, also bei x = 1 und x = −1 das Maximum. (Betrachtet man 1

f(x) , so kann man
die Ergebnisse aus Abschnitt 3.3 benutzen.)

(4.9) Es sei M der Mittelpunkt und R der Radius des Umkreises. Mit den üblichen
Bezeichnungen gilt |∠BMC| = 2α, |∠CMA| = 2β, |∠AMB| = 2γ (Peripheriewin-
kelsatz !) und damit

A∆ = 1
2R

2(sin 2α + sin 2β + sin 2γ) (Flächensatz)

Mit AK = πR2 folgt
1
p

= 1
2π (sin 2α + sin 2β + sin 2γ)

und p wird genau dann minimal, wenn 1
p maximal wird.

Das Dreieck sei nicht stumpfwinklig. Dann gelten die Ungleichungen 0 ≤ 2α, 2β, 2γ ≤
180◦. In diesem Intervall ist die sin-Funktion konkav, folglich gilt nach (4.5)

sin 2α + sin 2β + sin 2γ = 3 sin 2α + 2β + 2γ
3

d. h. 1
p = 3

2π sin 120◦ = 3
√

3
4π . Das Gleichheitszeichen gilt nach (4.6) nur für das gleich-

seitige Dreieck mit pmin = 4
√

3π
9 .

Ist das Dreieck ABC stumpfwinklig mit γ > 90◦, so existiert für den gleichen Umkreis
- also bei festem AK - ein spitzwinkliges Dreieck A′B′C mit größerem Flächeninhalt.
(A′ bzw. B′ sind dabei die Bilder von A bzw. B bei Spiegelung an M .) Folglich kann
pmin nicht für stumpfwinklige Dreiecke angenommen werden.

(4.12) Die Betrachtungen zur Lösung von (4.11) können entsprechend auf konvexe
Oktaeder und konvexe Ikosaeder übertragen werden. Maximalität liegt genau dann vor,
wenn der Körper regelmäßig ist. In diesem Fall ist dann Omax =

√
3

12 q für Oktaeder und
Omax =

√
3

30 q für Ikosaeder.

(4.16) Analog zur Lösung von (4.15) erhält man das Maximum von p für xi = kis
ait

(i = 1, ..., n) mit t = k1 + k2 + ...+ kn;

pmax =
(s
t

)k

·
(
k1

a1

)k

· ... ·
(
kn

an

)k

(4.17) Bei (4.10) ist (4.15) mit ki = 1 für alle i anwendbar. In (4.11) wird außerdem
die Ungleichung (5) benötigt, ebenso in (4.12). Bei (4.18) ist (4.15) mit n = 2,
k1 = m und k2 = 1 anzuwenden, bei (4.14) kann man dann entsprechend (4.15) auf
die Funktion g(x, y, z) - aber eben nicht auf f(x, y, z) - anwenden.

(4.18) a) Zu (2.29): k1 = k2 = 1, a1 = 1, a2 = 2, s = 64 m. Mit (4.16) ergibt sich
x1 = amax = 32 m, x2 = bmax = 16 m.
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b) Zu (2.39): Ist P ein beliebiger Punkt im Innern der StreckeAB, so gilt |AP |+|PB| =
|AB| = s. Ist x1 = |AP | und x2 die zweite Rechtecksseite, so folgt bei Benutzung des
Strahlensatzes x1 + |AB|

|AC|x2 = |AB|.
Mit Bezug auf (4.16) gilt also a1 = 1, a2 = |AB|

|AC| , k1 = k2 = 1. x1 · x2 wird maximal
für

x1 = 1 · |AB|
1 · 2 = 1

2 |AB| und x2 = |AC|
|AB|

· |AB|
2 = 1

2 |AC|

c) Zu (2.48): Nach (1) und (2) gilt A = x1 · x2 mit x1 = r und x2 = 2b − π
2r und

somit
U =

(
2 + 3

2π
)
x1 + x2

d. h., in (4.15) gilt k1 = k2 = 1, a1 = 2 + 3
2π, a2 = 1, p = A, s = U und t = 2. Aus

(**) ergibt sich

x1 = 2
4 + 3π

√
4 + 3π

2 A bzw. x2 =
√

4 + 3π
2 A

Aus x2 und x1 = r errechnet man das gesuchte b.

(4.19) Als Analogon wählen wir: Man bestimme unter allen Quadern mit gleicher
Oberfläche O diejenigen mit dem größten Volumen V .
Sind die Kantenlängen a, b und c, so ist also das Produkt abc unter der Nebenbedingung
s = O

2 = ab+ bc+ ca = const zu maximieren. Wir benutzen folglich (4.16) und setzen
x1 = ab, x2 = bc, x3 = ca und p = V 2 = x1x2x3.
Mit dem Resultat von (4.16) ergibt sich sofort, dass nur der Würfel die Problemstellung
erfüllt.

(4.20) Mit den üblichen Bezeichnungen gilt V = 2
3πr

2h und O = 2πr
√
r2 + h2. Da

O zu minimieren ist, kann man versuchen, (4.15) anzuwenden. Dann müsste aber eine
Summe auftreten.
Diese Forderung erfüllt

s = O2

4π2 = r2(r2 + h2) = r4 + r2h2

(O wird genau dann minimal, wenn s minimal wird.) Wir setzen x1 = r4 und x2 = r2h2.
Die Bedingung V = const ergibt dann V = 2

3πx
1/4
1 x

1/2
2 . Um ganzzahlige ki zu erhalten,

potenzieren wir.
Es ist p =

(
3V
2π

)4 = x1x
2
2. In (4.15) gilt nun a1 = a2 = 1, k1 = 1, k2 = 2, t = 3.

Aus (**) ist x1 = 3

√√√√1
4

(3V
2π

)
4 und x2 = 2x1 ablesbar. Mit der oben eingeführten

Bedeutung von x1 und x2 ergibt die letzte Gleichung h =
√

2r. Daraus folgt aber
schon die Behauptung! (Der Leser fertige sich bitte eine Skizze an.)

(4.21) Wir betrachten zunächst das ebene Problem. ai (i = 1, 2, 3) seien die Längen
der Seiten i des Dreiecks, xi die Abstände eines Punktes P von den Seiten i.
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Um eventuell (4.16) anwenden zu können, ist eine Summe s = a1x1 + a2x2 + a3x3
gesucht, die für alle (x1, x2, x3) konstant ist. Die zufällige Übereinstimmung in den
Bezeichnungen erweist sich inhaltlich als richtig.

Bezeichnen xi die Abstände und ai die Seitenlängen, so ist für jeden Punkt P im Inneren
des Dreiecks s der doppelte Flächeninhalt des Dreiecks. Nach (4.16) ergibt sich das
Maximum für xi = s

3ai
.

Ein zugehöriger Punkt Pmax zerlegt also mit den von ihm ausgehenden "Eckpunktss-
trahlen" das Dreieck in drei inhaltsgleiche Dreiecke. Da sich die Schwerlinien im Dreieck
im Verhältnis 2 : 1 teilen, ist der Schwerpunkt gerade ein solcher Punkt. Da sich aber
für jeden anderen Punkt die Ecktransversalen in anderen Verhältnissen teilen, gibt es
auch nur diesen einen Punkt.

Für das analoge räumliche Problem läuft lediglich i von 1 bis 4, und die ai sind Flä-
cheninhalte.

(4.23) Wir wählen entsprechend dem Anliegen unseres Abschnitts eine Lösung durch
geometrische Interpretation. Da nur quadratische Terme in den Radikanden auftreten
und bei Ersetzung von c durch −c wieder die gegebene Ungleichung entsteht, kann
man sich auf nichtnegative a, b, c beschränken.

Abb. 7.11
Wir betrachten ein rechtwinkliges Dreieck ABC mit dem rechten Winkel bei C und
|BC| = a, |AC| = b (vgl. Abb. 7.11a).
Wir tragen auf gBC zwei Punkte D und E so ein, dass D ̸= E und |DB| = |EB| = c
gilt. Durch F ergänzen wir EAD zu einem Parallelogramm EADF . Nach dem Satz
von Pythagoras gilt

|BA| =
√
a2 + b2, |DA| =

√
(a− c)2 + b2, |EA| =

√
(a+ c)2 + b2 (*)

Da B der Diagonalenmittelpunkt des Parallelogramms EFDA ist, gilt nach der Drei-
ecksungleichung, angewandt auf das Dreieck AFD, |DA| + |FD| ≥ 2|BA|. Wegen
(*) und |FD| = |EA| folgt daraus die Behauptung.
Im Falle, dass einige der Größen a, b oder c gleich 0 sind, tritt einer der möglichen
"Entartungsfälle" ein.

(4.24) (xi, yi) sei der Punkt Pi im kartesischen x, y-Koordinatensystem. Dann gilt
nach dem Satz des Pythagoras und den Grundlagen der Koordinatengeometrie

|PiPi+1| =
√

(xi − xi+1)2 + (yi − yi+1)2 und
|P1Pn| =

√
(x1 − xn)2 + (y1 − yn)2
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Die linke Seite der Ungleichung in (4.24) entspricht damit der Länge eines Polygon-
zuges P1, P2, ..., Pn, die rechte Seite dagegen der kürzesten Entfernung zwischen den
Endpunkten des Polygonzuges (Abb. 7.11 b).
Nach Archimedes’ Grundsatz ist damit die Aufgabe gelöst.

(5.4)

f(x0 + h) = (x0 + h)3 = x3
0 + 3x2

0h+ 3x0h
2 + h3

f(x0 + h) − f(x0) = 3x2
0h+ 3x0h

2 + h3

f(x0 + h) − f(x0)
h

= 3x2
0 + 3x0h+ h2

f ′(x0) = lim
h→0

(3x2
0 + 3x0h+ h2) = 3x2

0

(5.5)

p(x0 + h) − p(x0)
h

= f(x0 + h) + g(x0 + h) − f(x0) − g(x0)
h

= f(x0 + h) − f(x0)
h

+ g(x0 + h) − g(x0)
h

Da nach Voraussetzung f ′(x0) und g′(x0) existieren, existiert auch der Grenzwert p′(x0)
der linken Seite.
Die Gültigkeit von k′(x0) = af ′(x0) beweist man de facto durch "Ausklammern von
a". (Bei diesen Ableitungen wurden "intuitiv" Rechenregeln für Grenzwerte benutzt.)

(6.3) a) Für (6; 5) hat die Zielfunktion den Wert f(6; 5) = 12, 2, für (8; 3) dagegen
den größten Wert f(8; 3) = 12, 6. Außerdem erfüllt (8; 3) die Nebenbedingungen (2),
(3) und (4), wie man leicht nachrechnet, und die Nichtnegativitätsbedingung (5).

b) In Abb. 6.2 ändert sich lediglich der Anstieg der Geraden, die sich aus der Zielfunktion
ergeben. Diese Geraden liegen aber jetzt so, dass sie mit dem Eckpunkt (6, 36; 5, 45)
auch den Eckpunkt (8; 3) des Zulässigkeitsbereiches gemeinsam haben. Lösung des
Optimierungsproblems sind alle (x1, x2) mit 6, 36 ≤ x1 ≤ 8 und x2 = 15 − 1, 5x1.
Für alle diese Paare ist der Wert der Zielfunktion der maximale und beträgt 15.

(6.4) Für a = 0, 1; 1; 10 ergeben sich (in der angegebenen Reihenfolge) die maximalen
Funktionswerte 2,632; 4; ≈ 26,323.

(6.6) Bei dieser Aufgabe ist zwar keine Nichtnegativitätsbedingung gestellt, die ge-
gebenen Ungleichungen erzeugen aber wieder einen konvexen Zulässigkeitsbereich in
der Gestalt einer vierseitigen Pyramide. Die Eckpunkte dieser Pyramide sind (0, 0,−1),
(1, 0,−1), (1, 1,−1), (0, 1,−1) und

(
4
5 ,

4
5 , 10

)
.

Da für jeden Wert y0 > 0 der Zielfunktion die Gleichung y0 = x2
1 + x2

2 + x2
3 einer

Kugelfläche mit dem Mittelpunkt (0, 0, 0) und dem Radius √
y0 entspricht, ist die Kugel

mit dem größten Radius gesucht, auf deren Oberfläche wenigstens noch ein Punkt der
Pyramide liegt.

Diese Kugelfläche geht dann durch den am weitesten von (0, 0, 0) entfernten Eckpunkt
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der Pyramide, das ist der Punkt
(

4
5 ,

4
5 , 10

)
; es folgt f(x1, x2, x3) = 101, 28.

(6.8) Für die ersten m − 2 Jahre sind alle Mittel im Zweig I, für die letzten beiden
Jahre im Zweig II zu investieren.
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Erklärung verwendeter Symbole

Erklärung verwendeter Symbole
AB Strecke mit den Endpunkten A und B
|AB| Länge der Strecke AB (bzw. deren Maßzahl)
gAB Verbindungsgerade der Punkte A und B
ABC...Y Z Streckenzug (AB ∪BC ∪ ... ∪ Y Z)
AB+ Halbgerade (mit dem Scheitel A, die B enthält)
∠p, q Winkel mit den Schenkeln (Halbgeraden) p und q
∠ABC Winkel mit den Schenkeln BA+ und BC+

|∠p, q| Größe des Winkels ∠p, q (bzw. deren Maßzahl)
g ∥ h Gerade g ist parallel zur Geraden h
A(F ) Inhalt der Figur F (bzw. dessen Maßzahl)
f(x) Wert der Funktion f an der Stelle x
R Menge der reellen Zahlen
R∗

+ Menge der positiven reellen Zahlen
N Menge der natürlichen Zahlen
N∗ Menge der positiven natürlichen Zahlen, N∗ = N \ {0}
(a, b) offenes Intervall, d. h. Menge aller reellen Zahlen x mit a < x < b
[a, b] abgeschlossenes Intervall ([a, b] = (a, b) ∪ {a, b})
OJM Olympiaden Junger Mathematiker der DDR
• Aufgabe, die selbständig zu lösen ist
* bezeichnet etwas schwierigere Probleme
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