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Vorwort

Vorwort

Das vorliegende Buch stellt sich als Ziel, zwischen der elementaren Schulmathematik
und der sogenannten héheren Mathematik eine Briicke zu schlagen, indem es einen
Stoff behandelt, der einerseits selbst noch weitgehend elementar dargestellt werden
kann, andererseits aber eine giinstige Gelegenheit bietet, den Leser in analytische Denk-
und Arbeitsweisen einzuflihren, die er sonst erst auf einer wesentlich hoheren Abstrak-
tionsstufe kennenlernt.

Diesen Stoff bilden die linearen Differenzengleichungen, wobei wir uns der Einfachheit
wegen auf Gleichungen bis zur Ordnung 2 beschranken, zumal die Losungen dieser
Gleichungen bereits das typische Verhalten der Gleichungen héherer Ordnung wider-
spiegeln.

Die Theorie dieser Differenzengleichungen lasst sich verhaltnismaBig kurz abhandeln, so
dass wir uns auf ihre Anwendungen konzentrieren, die vor allem der Numerischen Ma-
thematik entnommen werden. In der numerischen Praxis treten Differenzengleichungen
in der Regel als diskrete Approximationen fiir Differentialgleichungen auf.

Auf diesen Zusammenhang gehen wir hier jedoch explizit nicht ein, da an keiner Stelle
die Differential- und Integralrechnung und. nicht einmal der Grenzwertbegriff benutzt
werden soll, obwohl es mehrere Gelegenheiten gibt, wo der Schritt bis dahin nicht mehr
allzu groB ist. Der Verzicht auf Grenziibergange erfolgt im Hinblick auf die Tatsache,
dass numerische Verfahren heutzutage von digitalen Rechenautomaten ausgefiihrt wer-
den, die nur lber endlich viele Zahlen verfiigen, der klassische Grenzwertbegriff aber in
einem endlichen Zahlenbereich gegenstandslos bzw. trivial wird.

Statt dessen soll hier der Leser mit einigen iterativen und direkten Berechnungsverfahren
vertraut gemacht werden, die sich sowohl zur Handrechnung als auch zur Programmie-
rung auf einem Rechenautomaten eignen.

Dabei werden wir uns weniger mit Zahlenbeispielen befassen als vielmehr mit solchen
Beispielen, die auf leicht |6sbare Differenzengleichungen fiihren, so dass alle erforderli-
chen Rechenschritte vollstandig in Formeln ausgefiihrt werden kénnen. Diese Formeln
bieten uns einen guten Einblick in die Wirkungsweise der jeweiligen Algorithmen, und
da sie meistens einen oder mehrere Parameter enthalten, lassen sich durch Anderung
der Parameter die Vor- und Nachteile sowie die Grenzen der Algorithmen erkennen.
Kenntnisse hieriiber sind keineswegs nur fiir Mathematiker von Bedeutung, sondern
durchaus auch fiir Nutzer der Mathematik, da man nicht immer auf fertige Rechen-
programme zuriickgreifen kann, sondern sich oft an der Ermittlung des geeignetsten
Losungsweges selbst beteiligen muss.

Anlage und Zielstellung des Buches bringen es mit sich, dass vom Leser nach Mog-
lichkeit eine gewisse Gewandtheit in der "Buchstabenrechnung", d.h. im Umgang mit
algebraischen Ausdriicken, erwartet wird, wahrend sonst an Vorkenntnissen nicht einmal
der gesamte Schulstoff erforderlich ist.

Wer jedoch iiber diese Gewandtheit noch nicht verfiigt, kann sie sich bei der Durchar-
beitung des Buches erwerben, indem er wichtige Umformungen sorgfaltig nachrechnet
und dort, wo es notwendig erscheint, weitere Zwischenrechnungen selbstandig erganzt.
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Manchmal ist es auch nitzlich, die Formeln durch selbst gewahlte Zahlenbeispiele zu
iberpriifen.

Eine weitere Hilfe bieten die Ubungsaufgaben, die den behandelten Stoff nicht nur
festigen, sondern zum Teil auch vertiefen bzw. spatere Untersuchungen vorbereiten
sollen. Hinweise zu den Losungen findet man im Anhang.

Einen Uberblick iiber den Inhalt des Buches kann man aus der Einleitung sowie aus den
Bemerkungen am Anfang eines jeden Abschnittes entnehmen.

Bei der Lektiire ist es moglich, speziellere Ausfiihrungen bzw. etwas langere Rechnungen
zunachst einmal zu Uberspringen. Man kann sogar von vornherein mit einem spateren
Abschnitt beginnen, doch sollte dann wenigstens bei Rickverweisungen der bendtigte
Inhalt der vorhergehenden Abschnitte zur Kenntnis genommen werden. In das Litera-
turverzeichnis wurden nur solche Titel aufgenommen, die gleichfalls einen weitgehend
elementaren Charakter besitzen; weiterfiihrende Beitrage, erscheinen zu den behandel-
ten Themen laufend in den einschlagigen Fachzeitschriften.

Das Buch wurde bereits in einem Proseminar fiir Mathematikstudenten des dritten
Semesters als Vorlage benutzt, wobei natiirlich auf Grund des dort vorhandenen hohe-
ren Wissensstandes sowie an Hand der Zusatzliteratur verschiedene Untersuchungen in
abgekiirzter bzw. vertiefter Form durchgefiihrt werden konnten.

Diskussionen im Seminar, Bemerkungen von Herrn Prof. Dr. F. Rihs und Herrn Dr. J.
Bock sowie besonders zahlreiche Hinweise von Herrn Dr. H. Belkner fiihrten zu einer
Verbesserung des Textes, fiir die ich mich vielmals bedanken moéchte. Mein Dank gilt
auch Herrn Dr. W. Plischke fiir die Anfertigung der Abbildungsvorlagen und die Hilfe
beim Korrekturlesen sowie allen beteiligten Mitarbeitern des Verlages und der Druckerei
fur die geleistete Arbeit.

Rostock, im Friihjahr 1979

Lothar Berg
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Differenzengleichungen zweiter Ordnung sind fiir sich genommen eigentlich nicht so
interessant und wichtig, dass es sich lohnen wiirde, ihnen ein selbstandiges Buch zu
widmen. Jedoch erhalten sie dadurch eine Bedeutung, dass es mit ihrer Hilfe mog-
lich ist, einige Grundaufgaben der Numerischen Mathematik und ihrer Anwendungen
in weitgehend elementarer Weise zu erlautern und die zugehorigen Lésungsmethoden
explizit auszufiihren.

Man kann so bereits friihzeitig Begriffe, Probleme und Algorithmen kennenlernen, deren
Verstandnis ein spateres Eindringen in die Analysis vor- bereitet und erleichtert.

Im ersten Teil des Buches werden die Differenzengleichungen in der Form

Yn + AnYn—1 + bnyn—Q - fn (1)

geschrieben und bei vorgegebenen Anfangsbedingungen als Rekursionsformeln behan-
delt. Im zweiten Teil treten sie nach der Umbezeichnung v,, = 2,1 in der Form

Zn+1 + apzp + bnzn—l — fn (2)

auf und werden dort bei vorgegebenen Randwerten betrachtet, wobei sie in lineare
Gleichungssysteme iibergehen.

Nach einem einfiihrenden Abschnitt werden zunachst die spater benétigten analytischen
Losungsmethoden und qualitativen Eigenschaften der Losungen von (1) behandelt,
bevor im dritten Abschnitt auf die numerischen lterationsverfahren eingegangen wird.
Im vierten Abschnitt, der vom vorhergehenden unabhangig ist, werden dann auf der
Grundlage des zweiten Abschnitts Aufgaben der Mechanik behandelt, ohne die sonst
dort iiblichen Differentialgleichungen zu benutzen, sowie im letzten Paragraphen Auf-
gaben aus der Wahrscheinlichkeitsrechnung, nachdem die erforderlichen Grundbegriffe
bereitgestellt worden sind.

In den nachsten beiden Abschnitten, die ebenfalls von den beiden vorhergehenden un-
abhangig sind, werden drei verschiedene Losungsmethoden fiir die mit der Differen-
zengleichung (2) zusammenhéngenden Gleichungssysteme ausfiihrlich vorgefiihrt und
MaBnahmen zur Vermeidung starker Ungenauigkeiten, die bei der numerischen Auflo-
sung auftreten konnen, diskutiert.

Der vorletzte Abschnitt befasst sich mit der fiir praktische Anwendungen typischen Si-
tuation, dass ein theoretisch nicht lésbares liberbestimmtes Gleichungssystem vorliegt,
dessen Unlosbarkeit aber nur durch kleine Mess- oder Rundungsfehler in den Eingabeda-
ten zustande kommt. Hier wird eine "verallgemeinerte Losung" definiert und bestimmt,
die die widerspruchsvollen Gleichungen "moglichst gut" erfiillt und die Eingabefehler
weitgehend ausgleicht.

Im letzten Abschnitt wird ein kurzer Einblick in Operatormethoden gegeben, durch die
vorhergehende spezielle Uberlegungen in einen allgemeinen Rahmen gestellt werden,
der von groBer Tragweite ist. Von hier hat man einen gewissen Anschluss an das Buch
"Operatorenrechnung, |. Algebraische Methoden", VEB Deutscher Verlag der Wissen-
schaften, Berlin 1972, des Verfassers.
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Wahrend der Stoff am Anfang des Buches noch verhaltnismaBig breit dargelegt wird,
werden die Ausfiihrungen spater immer mehr gestrafft.

Besonders im zweiten Teil findet man Aussagen, deren Richtigkeit lediglich aus dem
Zusammenhang hervorgeht. Hier ist zu empfehlen, sich die erforderliche Argumentation
selbst zu erarbeiten. Auch schon im ersten Teil kann es fiir einen vollstandigen Beweis
erforderlich sein, beispielsweise noch zusatzlich das Prinzip der vollstandigen Induktion
heranzuziehen bzw. sich von der Umkehrbarkeit der einzelnen Beweisschritte zu (iber-
zeugen, sofern der Beweis eigentlich in der umgekehrten Reihenfolge hatte durchgefiihrt
werden missen.

Dies bedeutet, dass vom Leser in jedem Fall eine aktive Mitarbeit erwartet wird, von
der er selbst dann auch den groBeren Nutzen hat.

Wer bis in die Grundlagen der Mathematik hinabsteigen mochte, sei ausdriicklich auf
die Rechtfertigungssatze fiir die vollstandige Induktion, die induktive Definition sowie
fur die Existenz von Losungen einer Rekursionsformel bei G. Asser [16] verwiesen.

Die Bezeichnungen werden nicht starr beibehalten, sondern gewechselt, wenn dies fir
die weiteren Rechnungen vorteilhaft ist. Ein Beispiel hierfiir ist bereits der Ubergang
von (1) zu (2). Fur (1) werden spater im Fall konstanter Koeffizienten a,, = a, b, = b
und f, = 0 fur alle vorkommenden n (man schreibt dann auch f, = 0 und liest: f,
identisch gleich Null) Lésungen der Form

Yn = 1A + o\ (3)

ermittelt (vgl. (7.9)), wobei A1, Ay durch @ und b bestimmte feste Zahlen sind und ¢y, ¢o
beliebig gewahlt werden kénnen. Beim Ubergang von (1) zu (2) erhalt man wegen z,, =
Yn—1 diese Gleichung folgt aus 2,1 = y,, bei Ersetzung der ganzzahligen Veranderlichen
n durch n — 1) zunachst z, = chf_l + 02)\5‘_1. Da aber die Zahlen ¢, £ = 1,2,
willkirlich sind, kann man sie auch durch andere Zahlen ersetzen, beispielsweise durch
Ck:)\k-

Dann geht cx A7~ 1 in cp A ARt = ¢ AR liber, so dass auch die Gleichung (2) Lésungen
der Form
Zp = 1A} + Ca Ay (4)

besitzt (vgl. (19.3)). Spater werden wir den Ubergang von (3) zu (4) sowie analoge
Ubergange bei ahnlichen Gelegenheiten ohne erneuten Kommentar vollziehen, da der
aufmerksame Leser ohne weiteres erkennt, dass die ¢j in (3) und (4) nicht dieselben
sind.

Wie bereits aus den Beispielen (3) und (4) entnommen werden kann, haben Differenzen-
gleichungen im Gegensatz zu den sonst lblichen elementaren Bestimmungsgleichungen
unendlich viele Losungen.

Bei solchen nicht eindeutig losbaren Gleichungen ist es grundsatzlich von Interesse,
nicht nur irgendwelche "speziellen Losungen" zu kennen, sondern die Menge aller nur
moglichen Losungen, die als "allgemeine Losung" bezeichnet wird.

Bei den im Text folgenden Beispielen wird eine allgemeine Lésung stets wie in den Fal-
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len (3) und (4) durch einen Ausdruck dargestellt, der einen oder zwei willkirlich wahl-
bare Parameter enthalt, durch deren Festlegung man jede beliebige spezielle Losung
gewinnen kann. Insbesondere lassen sich auch ohne Miihe diejenigen Lésungen bestim-
men, die noch zusatzlichen Nebenbedingungen wie den bereits erwdhnten Anfangs- und
Randbedingungen geniigen.

Im zweiten Teil treten Elemente mit Doppelindizes wie g, auf. Hierbei handelt es sich
um Funktionen g,,, = g(n, m) von zwei ganzzahligen Veranderlichen n und m, so dass
man eigentlich g, ,, schreiben misste, da n und m nicht miteinander zu multiplizieren
sind.

Man benutzt aber bei Doppelindizes das trennende Komma nur dann, wenn mindes-
tens ein Index ein zusammengesetzter Ausdruck ist wie etwa im Fall g, 12 ,,, da sonst
die Bezeichnung zu schwerfallig ware. Eine andere Méglichkeit, den zweiten Index vom
ersten deutlich zu unterscheiden, besteht darin, ihn wie bei 2™ als oberen Index zu
schreiben, wobei er dann in Klammern gesetzt wird, um Verwechslungen mit einer Po-
tenz zu vermeiden.

Die Redewendung "fur alle n" bedeutet stets "fiir alle in dem Zusammenhang vorkom-
menden Zahlen n". Dabei kann jeder Leser den Zahlbegriff zugrunde legen, der ihm
gelaufig ist.

Sieht man von gelegentlich vorkommenden Irrationalzahlen, wie V2, 7 und log 4, ab,
so kommt man weitgehend mit rationalen Zahlen aus. Wer jedoch sogar die komplexen
Zahlen beherrscht, kann auf verschiedene Fallunterscheidungen und Einschrankungen
im Text verzichten, da diese lediglich gemacht wurden, um den reellen Zahlenbereich
nicht zu verlassen.

Selbstverstandlich sind unter Verwendung starkerer Hilfsmittel auch an anderen Stellen
Abkirzungen mdglich; so lassen sich beispielsweise die spateren Gleichungen (23.10)
mit Hilfe partieller Ableitungen in wenigen Zeilen herleiten, noch diirfte der statt dessen
geflihrte elementare Beweis auch seine Reize haben.
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Erster Teil. Rekursionsformeln

In den modernen Anwendungen der Mathematik hat man es immer weniger nur mit
einzelnen Zahlen zu tun. Besonders in der Datenverarbeitung treten vorwiegend ganze
Datensatze oder, wie man auch sagt, Zahlenfolgen auf, die entweder aus einer rein
mathematischen Problemstellung oder auch aus einer Serie von Messungen hervorge-
gangen sind. Es ist (blich, fir Zahlenfolgen die Indexschreibweise

a1,a9,asz, ...,n, ...

zu benutzen, wobei der Index n die Stellung des n-ten Gliedes a,, in der Folge angibt
und auch durch einen anderen Buchstaben ersetzt werden kann. Wir interessieren uns
hier zunachst fiir solche Zahlenfolgen, bei denen zwischen den Folgengliedern eine
bestimmte GesetzmaBigkeit besteht, aus der sich weitergehende Schlussfolgerungen
ziehen lassen.

Ein einfaches Beispiel fiir eine Zahlenfolge ist die Folge der ungeraden Zahlen
1,3,5,7,9,11, ...

Das allgemeine Glied der Folge lautet hier a,, = 2n—1, wobei n die Folge der natiirlichen
Zahlen 1,2, 3, ... durchlauft, d.h.

a] = 17(12 = 3,&3 = 5,...
Zwischen zwei benachbarten Gliedern dieser Folge besteht die Beziehung
n = Qpt1 + 2

die ein erstes Beispiel fiir eine Rekursionsformel ist.

Im folgenden sollen die einfachsten Klassen von Rekursionsformeln vorgestellt und einige
ihrer Eigenschaften und Anwendungsmoglichkeiten in der Numerischen Mathematik,
der Mechanik und der Wahrscheinlichkeitsrechnung besprochen werden.

Wer sich fiir weitere elementare Darstellungen tiber Rekursionsformeln interessiert, sei
auf die Biicher A. I. Markuschewitsch [12], N. N. Worobjow [14] und D. R. Dickinson
[8] verwiesen.

1 Diskrete Funktionen

Von einem allgemeinen Standpunkt aus gesehen, ist eine Folge nichts anderes als eine
diskrete Funktion, d.h. eine Funktion einer diskreten Veranderlichen. Eigentlich miissten
wir daher das n-te Folgenglied mit a(n) bezeichnen, durch die Indexschreibweise a,,
sparen wir aber die bei Funktionen lblichen Klammern ein.

Eine diskrete Funktion kann dadurch entstehen, dass sie von vornherein nur fiir diskrete
Werte n = 1,2, 3, ... definiert ist. Sie kann aber auch aus einer Funktion f(t) fiir eine
kontinuierliche (reelle) Veranderliche ¢ durch Abtastung hervorgegangen sein, indem
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von dieser Funktion die speziellen Werte a,, = f(n) oder allgemeiner a,, = f(to + nh)
fir n = 1,2, 3, ... herausgegriffen werden.

Letzteres ist etwa der Fall, wenn ein Zeitvorgang nicht laufend beobachtet, sondern nur
zu gewissen Zeitpunkten t,, =ty + nh im Abstand h gemessen wird (Abb. 1).

Ugr=

Abb. 1

ZweckmaBigerweise wird man zulassen, dass bei einer Zahlenfolge der Index n nicht
nur bei n = 1, sondern bei einer beliebigen ganzen Zahl beginnt, die positiv, negativ
oder auch gleich Null sein kann.

So lieBe sich die bereits erwdhnte Folge der ungeraden Zahlen auch in der Form
b, = 2n+ 1 mit n = 0,1,2,... darstellen, wobei zur vorhergehenden Schreibweise
der Zusammenhang b, = a,1 besteht. Eine solche additive Anderung von n um eine
ganze Zahl nennt man eine Indexverschiebung.

Der Kiirze wegen werden wir fiir das n-te Glied einer Folge (mit festem n) und fir die
durch dieses Glied bestimmte Folge (mit variablem n) dieselbe Bezeichnung benutzen,
da stets aus dem Zusammenhang hervorgeht, was gemeint ist. Aus dem Zusammen-
hang wird auch ersichtlich sein, ob der Index n nur endlich viele Werte durchlauft, oder
nach "rechts" hin (eventuell sogar nach "links" hin) keiner Beschrankung unterworfen
ist.

1.1 Rekursive Definitionen

Um uns mit dem Wesen von Rekursionsformeln vertraut zu machen, beginnen wir
mit einigen einfachen Beispielen. Dabei wollen wir zeigen, dass einige wohlbekannte
Definitionen, in denen eine natirliche Zahl n vorkommt, sich praziser fassen lassen,
wenn man sie in rekursiver Weise vornimmt.

Produkte. Die Multiplikation mit einer natiirlichen Zahl n > 2 ist bekanntlich nichts
anderes als eine wiederholte Addition, d.h., man definiert fiir eine beliebige Zahl a

20=a4+a, 3a=a+a+a, 4da=a+a+a+a
und allgemein, wenn man n Summanden a addiert,
no=a-+a++..4+a

Diese Definition fiir das Produkt na hat allerdings den Nachteil, dass die Punkte auf
der rechten Seite nicht klar ausdriicken, was gemeint ist. Daher geht man besser fol-
gendermaBen vor: Man definiert zunachst fiir den ersten Wert n = 1

la=a (1.1)

10
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und setzt dann fir beliebige natirliche Zahlen n > 1
na=(n—-1a+a (1.2)

Benutzt man die Definition (1.1), (1.2) nacheinander fir n = 2, n = 3, n = 4 usw.,
so erhalt man dieselben Ergebnisse wie zuvor:

20=a+a, 3a=2a+a=a+a+a, 4a=3a+a=a+a+a+a

Im Unterschied zur erstgenannten direkten Definition kann man jedoch mit Hilfe der
zweiten Definition das Produkt na an einer festen Stelle n nur dann berechnen, wenn
man die entsprechenden Produkte an den vorhergehenden Stellen bereits kennt. Aus
diesem Grunde spricht man hier und in analogen Fallen von einer rekursiven Definition.

Potenzen. Analog zum Vorhergehenden werden Potenzen einer beliebigen Zahl a # 0

durch

at=a, d*=aa, @ =aaa, ao*=aaaa

und allgemein bei n Faktoren durch

a’ = aa...a

als wiederholte Multiplikation eingefiihrt. Auch diesmal lassen sich die Punkte durch
eine rekursive Definition vermeiden, indem man fiir n = 0

a’ =1 (1.3)
und fir beliebige natlirliche Zahlen n
a® = a" la (1.4)

festlegt. Eine Probe fiir n = 2,2, 3,4, ... ergibt wieder die vorhergehenden Werte

ol =la=a, d*=aa, o =d’a=aaa, o =aa=aaaaq,..
Das Verhalten der Folge a" bei wachsendem n hangt wesentlich von a ab und kann fiir
a > 0 der Abb. 2 entnommen werden.

n
@ as1

! 1 i

1 s it 0 =1
i ""‘"‘——HO:Q-:'I

Abb 2 1 2 31 4 5n

In den beiden Fallen (1.2) und (1.4) lassen sich die Folgen tbrigens auch nach "links"
rekursiv fortsetzen, indem man ihre Definitionsgleichungen in der Form

(n—1)a=na—a bzw. a" ' =a"/a

11
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schreibt und hieraus mit Hilfe von (1.1) und (1.3) fir n = 1,0, -1, -2, ...

sowie furn =0, —1,—2, ...
atl=1/a, a?*=1/a* a*=1/d’ .

berechnet, wobei im letzten Fall natirlich a # 0 vorauszusetzen ist.

Binomialkoeffizienten. Ein drittes Beispiel liefert das Pascalsche Dreieck

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

das aus den sogenannten Binomialkoeffizienten gebildet wird. Man bezeichnet den in
der n-ten Zeile an k-ter Stelle stehenden Koeffizienten mit (Z’) wobei n und k von 0
an laufen (und k& < n ist). Beispielsweise stehen in der vierten Zeile die Binomialkoef-

T e B [ ()

Das Bildungsgesetz der Binomialkoeffizienten lasst sich folgendermaBen rekursiv be-
schreiben: Man wahlt als Randelemente im Pascalschen Dreieck

n n
— =1 1.5
fur alle n > 0 und setzt dann

o)==+ (1) o

firm > 1und 1 < k < n—1. Dies bedeutet, dass jede innere Zahl im Pascalschen Drei-
eck durch Addition der beiden unmittelbar schrag dariiber stehenden Zahlen entsteht,
also beispielsweise fiir n =5, k =3

10=6+4

Aus dem Pascalschen Dreieck entnimmt man sofort die Symmetrieeigenschaft
n n
— 1.7

12
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fur alle auftretenden n und k.

Das Beispiel der Binomialkoeffizienten ist insofern komplizierter als die beiden vorher-
gehenden, da in (1.6) die Rekursion in Bezug auf zwei Veranderliche durchzufiihren ist.
Der Name fir diese Zahlen kommt daher, dass sie als Koeffizienten in den binomischen
Formeln

(a+b)? = a* + 2ab + b7,

(a+b)* = a® + 3a®b + 3ab® + %,

(a+b)* = a* + 4a°b + 6a%0* + 4ab® + b*
usw. auftreten.

Aufgaben. 1. Die diskrete Funktion n! wird durch 0! = 1 und n! = n(n — 1)! fur
natirliche Zahlen n erklart. Man zeige, dass 5! = 120 ist.

n!

2. Man beweise die Darstellung (Z) = m
(n —k)!

1.2 Arithmetische und geometrische Folgen

Von Carl Friedrich GauB, dessen 200. Geburtstag im Jahre 1977 feierlich begangen
wurde, erzahlt man sich, dass er als Neunjahriger in der Schule die natiirlichen Zahlen
von 1 bis 100 addieren sollte. Dabei benutzte er eine Methode, die hier in etwas allge-
meinerer Form wiedergegeben wird.

Es seien m und n zwei ganze Zahlen mit m < n. Gesucht sei die Summe x der n—m+1
aufeinanderfolgenden ganzen Zahlen von m bis n, d.h.

r=m+m+1)+m+2)+...+n—-2)+(n—-1)+n
Schreibt man diese Zahlen in der umgekehrten Reihenfolge:
r=n+n—-1)4+n-2)+..+(m+2)+(m+1)+m

und addiert man zu jedem Summanden der ersten Gleichung den unmittelbar darunter
stehenden Summanden der zweiten Gleichung, so erhalt man auf der rechten Seite in
jedem einzelnen Fall den festen Wert n + m und daher fiir alle n —m + 1 Summanden
insgesamt

2¢ = (+m)(n —m + 1)

Somit ergibt sich fiir die gesuchte Summe x
1
m+m+1)+..+(n—1)+n= i(n—i—m)(n—m—i—l)
und speziell fir m =1

1
1+2—|—3+...—|—(n—1)—|—n:§(n—|—1)n (2.1)
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1.2 Arithmetische und geometrische Folgen

Fir n = 100 folgt hieraus unmittelbar das Ergebnis von GauB xz = 5050.

Arithmetische Folgen. Das vorhergehende Ergebnis lasst sich noch weiter verallgemei-
nern. Um dies zu zeigen, betrachten wir die Summe

y=a+ (a+d)+ (a+2d)+ ..+ (a +nd) (2.2)

wobei a und d beliebige Zahlen sein konnen und n eine natiirliche Zahl ist.

Die Glieder dieser Summe haben die Form a;, = a+ kd mit kK = 0;1,2, ..., n; sie bilden,
wie man sagt, eine arithmetische Folge. Eine arithmetische Folge lasst sich dadurch
charakterisieren, dass bei ihr die Differenz zweier benachbarter Folgenglieder

ap — AQp—1 — d
vom Folgenindex unabhangig ist. Bei dem Beispiel (2.1) ist d = 1:

Um jetzt y zu berechnen, brauchen wir nur zu beachten, dass auf der rechten Seite von
(2.2) nach Auflésung der Klammern (n + 1)-mal der Summand a vorkommt und der
Rest nach Ausklammerung von d gerade die linke Seite von (2.1) ist. Damit erhalten
wir

y=(n+1)a+ ;(n + 1)nd = ;(n +1)(2a + nd)

Betrachten wir noch die Beziehung ag+a,, = 2a-+nd, so finden wir fiir die arithmetische
Folge ay, = a + kd die Summenformel

1
ao—l—a1+...+an:§(n+1)(a0+an) (2.3)

In Worten: Die Summe einer arithmetischen Folge ist gleich der halben Gliederzahl,
multipliziert mit der Summe aus dem ersten und letzten Glied.

Dieser Satz lasst sich leicht im Spezialfall (2.1) bestatigen, wobei man ihn entweder
direkt anwenden kann oder nach Hinzunahme von ag = 0 als erstes Glied auf der linken
Seite von (2.1).

Geometrische Folgen. Haben die Glieder einer Folge die Form a;, = ag”, wobei a und
q beliebige nicht verschwindende Zahlen sind, so spricht man von einer geometrischen
Folge. Eine geometrische Folge ist dadurch charakterisierbar, dass bei ihr der Quotient
zweier benachbarter Folgenglieder

a

ak—1 N
vom Folgenindex unabhangig ist. Wir suchen jetzt fir eine geometrische Folge die
Summe
z=a+aq+ag®+ ...+ aq" ! + ag"

Im Fall ¢ = 1 ist offenbar z = (n + 1)a, und es handelt sich gleichzeitig um eine
arithmetische Folge mit d = 0. Somit konnen wir diesen Fall ausschlieBen und ¢ # 1
annehmen. Durch Multiplikation der Gleichung fiir z mit ¢ folgt

2q=aq+ag®+ ... +aq"t + aq” + ag™!
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1.3 Folgen und Summen

Bilden wir die Differenz der beiden vorhergehenden Gleichungen, so heben sich auf der

rechten Seite fast alle Glieder weg, und es bleibt nur
(1—¢)=a—ag"" =a(l—¢")

ibrig. Hieraus folgt nach Division durch 1—g (unter Beachtung von ¢ # 1) das Ergebnis

1 — qn+1

a+aq+aq2+...+aq”:a17_q (2.4)
Aufgaben. Man schreibe den periodischen Dezimalbruch 0,636363...
3. als formale unendliche Reihe a 4 aq + ag¢® + ...,
4. als Quotient zweier natlrlicher Zahlen.
1.3 Folgen und Summen
Beim Rechnen mit Summen aus mehreren Gliedern ist es zweckmaBig, das durch

> =am+ ami1 + o Fan1 + ay (3.1)

k=m

definierte Summenzeichen zu benutzen, wobei m < n vorauszusetzen ist. Man vermei-
det dadurch dhnlich wie in § 1.1 die Punkte auf der rechten Seite. Der Index &k wird
Summationsindex genannt, er hat auf den Wert der Summe keinen Einfluss und kann
durch einen beliebigen anderen Buchstaben (der in dem betrachteten Zusammenhang
noch nicht vorkommt) ersetzt werden.

Beispielsweise ist

n m+1 n
DAk =amy Y W= Gyt Qg1 ) G = Ape2 + o1 ay
k=m l=m m=n—2

und die vorhergehenden Gleichungen (2.1) und (2.4) lassen sich jetzt in der kiirzeren

Form
n

noo1 L 1-g
Zkzi(nﬁ%l)n : > aq =a———
k=0 k=0 —q

mit n > 0 schreiben. Um auch gewisse Grenzfalle zu erfassen, werden wir die Definition
(3.1) noch durch

> ap=0 imFall n—m=-1 (3.2)
k=m

erganzen. Als sehr niitzlich erweist sich der folgende

Aquivalenzsatz. Zwischen den Gliedern a; und der Summe
Sp= > a (3.3)
k=1

mit n > 0 besteht fiir n > 1 der Zusammenhang

Sp = Sp—_1 + Qn, so=0 (3.4)
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1.3 Folgen und Summen

und umgekehrt.

Beweis. 1°. Ist (3.3) gegeben, so folgt aus der Vereinbarung (3.2) sofort sp = 0.
Weiterhin folgt unter Beriicksichtigung von (3.1), (3.3) und

Sp—1 =01 +as+ ...+ an—1

die Gleichung s, = s,—1 + a,, so dass (3.4) bewiesen ist.
2°. Ist (3.4) gegeben, so gilt a,, = s,, — s,,1 und daher

n

kﬁ‘l 1= 3 o= 5500) = (51— 80) (52 = 1) b (50t = 502) + (50 001

Auf der rechten Seite heben sich aber die jeweils zweiten Glieder in den Klammern gegen
die entsprechenden ersten Glieder in den vorhergehenden Klammern weg, so dass nur
noch das erste Glied in den letzten Klammern s,, und das zweite Glied in den ersten
Klammern —s Ubrigbleibt, also

> ak = sk — S0 (3.5)
k=1

gilt. Wegen sy = 0 ist daher (3.3) bewiesen.

Die Gleichung (3.4) ist ein neues Beispiel fiir eine Rekursionsformel, von der wir einen
Spezialfall in anderer Bezeichnungsweise bereits kennengelernt haben. Sie driickt nichts
anderes aus als eine rekursive Definition der Summe (3.3 ), namlich

n n—1 0
dap =Y ar+ay, , > ar=0
k=1 k=1 k=1

fir n = 1,2,3,... Umgekehrt kann man (3.3) als Lésung der Rekursionsformel (3.4)
auffassen.

Der soeben bewiesene Aquivalenzsatz lasst sich in zweierlei Hinsicht anwenden. Ei-
nerseits kann eine beliebige Folge a,, mit n > 1 gegeben sein, dann kann man ihr
durch (3.4) die Folge der zugehdrigen Partialsummen zuordnen. Andererseits kann eine
beliebige Folge s,, mit n > 1 gegeben sein.

Dann kann man sie durch die Festlegung so = 0 erganzen und ihr durch a,, = s, —s,,—1
mit n > 1 eine neue Folge a,, zuordnen, durch die sich die gegebene Folge s,, als Summe
(3.3) darstellen lasst.

Der Aquivalenzsatz lasst sich auch auf den Fall sy # 0 verallgemeinern. Wie man
namlich ganz analog zum vorhergehenden Beweis aus (3.5) erkennt, sind dann die
Gleichungen

Sn = S0+ > ak und Sy = Sp_1 + an, (3.6,3.7)
k=1

fir n > 1 zueinander aquivalent, d. h., die eine Gleichung folgt aus der anderen.
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1.3 Folgen und Summen

Als Beispiel hierzu wollen wir zunachst zwei der im vorhergehenden Paragraphen auf-
gestellten Beziehungen iiberpriifen. Wahlen wir s, = 3(n + 1)n, so wird

1(n +1)n — 1n(n —1) =

Ap = Sp — Sp—-1 =
2 2

n+1

und wegen sy = 0 folgt (2.1) aus (3.3). Wahlen wir s,, = al_lq_q , SO wird

Ap =Sy — Sp—1 = Q
1—g¢q

und wegen sy = 0 folgt (2.4) aus (3.6).

Wahlen wir drittens s,, = (;ﬁ?) fir n > 1 mit einer beliebigen natirlichen Zahl m und

sp = 0, so erhalten wir wegen (1.6)

m-+n m+n—1 m+n—1
Ap = Sp — Sp—1 = - -
m+1 m+ 1 m

und aus (3.6) ergibt sich

" (m+k—1 m+n

= 3.8
() () 9
Fir m = 1 stellt (3.8) wieder die alte Formel (2.1) dar (vgl. Aufgabe 2). Dem Leser,
der mit dem Summenzeichen noch nicht so vertraut ist, sei ausdriicklich empfohlen,

sich alle Summenbeziehungen ausfiihrlich aufzuschreiben, um sich von ihrer Richtigkeit
zu lGberzeugen. Insbesondere moge er die Rechenregeln
n n n
Z ar + bk Z ag + Z by
k=m k=m k=m

fiir zwei beliebige Folgen ay, b,
n n
> cap=c ) ax
k=m k=m

fir eine beliebige von k£ unabhangige Zahl ¢ und

n

l
ak—Zak—i—Zak
m =m

k= k=l+1

fir eine beliebige natirliche Zahl [ mit m — 1 < [ < n verifizieren, die sich bei der
Handhabung des Summenzeichens als niitzlich erweisen.

Aufgaben. Man berechne fiir eine beliebige natiirliche Zahl n

5.3 1, 6. k§0(—1)k(g).
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1.4 Berechnung weiterer Summen

1.4 Berechnung weiterer Summen

Wahrend wir bei den Beispielen des vorhergehenden Paragraphen davon ausgegangen
sind, dass eine Folge s, gegeben ist und die durch (3.7) definierten a,, gesucht sind,
wollen wir jetzt den wichtigeren, aber auch komplizierteren Fall behandeln, dass die
Folgenglieder a,, gegeben und die zugehérigen Summen s,, gesucht sind.

Dabei sollen k£ und n stets natiirliche Zahlen sein und sy = 0. Bei den ersten Beispielen
versuchen wir, die gegebenen a;, durch geeignete Umformungen in Form einer Differenz

QA = Sk — Sk—1 (4.1)

darzustellen, um die gesuchte Summe zu ermitteln. Die letzten Beispiele werden dann
durch geeignete Umformungen auf die vorhergehenden zuriickgefiihrt.

1°. Es sei ar, = (k+ 1)k. Wegen (k +2) — (k — 1) = 3 kdnnen wir a;, in der Form

k+2)— (k-1 1 1
d. h. in der Form (4.1) mit s, = 3(k + 2)(k + 1)k, darstellen. Somit erhalten wir aus

dem Aquivalenzsatz von § 1.3 unmittelbar das Ergebnis

S (k4 1)k = ;(n+2)(n+ Dn (4.2)

k
2°. Wahlen wir a;, = (k+2)(k + 1)k, so fihrt wegen (k+3) — (k— 1) = 4 und daher
1 1
ag = Z<k +3)(k+2)(k+ 1)k — Z(k +2)(k+ 1)k(k—1)

eine ganz analoge Uberlegung zu dem Ergebnis

n

S (k + 20k + 1)k = i(n+3)(n+2(n+ n (4.3)
k=1

Wie man leicht sieht, lassen sich diese Beispiele auf dhnliche Summanden mit noch
mehr Faktoren verallgemeinern. Dabei entsteht dann bis auf einen konstanten Faktor
wieder die bereits bekannte Gleichung (3.8), die wegen

E+1\ (k+1)k n+2\  (n+2)(n+1)n)
2 /1.2 3 | 1-2-3

4 )~ 1.2-3-4

(Vgl. Aufgabe 2) fiir m = 2 bis auf den Faktor 1/2 in (4.2) und fiir m = 3 bis auf den
Faktor 1/6 in (4.3) lbergeht.

(n+3) (n+3)(n+2)(n+1)n

3°. Im Fall a = m fuhrt die sogenannte Partialbruchzerlegung

SR S NS Y U U T PR
(k+1k k Ek+1 k+1 k
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1.4 Berechnung weiterer Summen

zu der gewiinschten Zerlegung (4.1) mit s, = 1 — kT1 wobei die 1 hinzugefiigt wurde,

damit sy = 0 wird. Somit liefert der Aquivalenzsatz

i(ﬂll)k:l— L (4.4)

= n+1

Analog fiihrt die Partialbruchzerlegung

1_1<1_1>
(k+2k  2\k k+2

nach Division durch k + 1 zu dem Ergebnis

> o~ 2 5 o) (45)
S k+2)(k+ 1Dk 2\2 (n+2)(n+1) '
das sich ebenfalls auf Summanden mit noch mehr Faktoren verallgemeinern lasst.

4°. Als nichstes Beispiel betrachten wir den Fall a;, = k2, in dem es schwieriger ist,
die Zerlegung (4.1) zu finden. Daher gehen wir jetzt etwas anders vor. Wir schreiben
k* = (k+ 1)k — k. Fihren wir nun die Summation (iber k

S E=Y(k+1k-> k
k=1 k=1 k=1

durch, so kénnen wir auf der rechten Seite die bereits bekannten Ergebnisse (4.2) und
(2.1) benutzen, die uns unmittelbar

zi: n+2)( +1)n—;(n+1)n

liefern. Klammern wir auf der rechten Seite ¢ (n+1)n aus, so folgt wegen 2(n+2)—3 =
2n + 1 das Ergebnis

Z k? = 6 2n +1)(n+ 1)n (4.6)

5°. Ganz ahnlich kann man im Fall a; = k® vorgehen. Hier ist es am bequemsten, von
der Zerlegung
(k+2)(k+ 1)k = k> 4 3k + 2k

auszugehen und diese Gleichung nach k3 aufzuldsen:
k= (k+2)(k + 1)k — 3k* — 2k

Fihren wir jetzt die Summation lber k£ durch und beriicksichtigen auf der rechten Seite
die Gleichungen (4.3), (4.6) und (2.1), so finden wir

gnj n—|—2)(n—|—2)(n—|—1)n—;(2n—l—1)(n—|—1)n—(n—|—1)n
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1.4 Berechnung weiterer Summen

und wir brauchen die rechte Seite nur noch zu vereinfachen. Nach Ausklammerung des
Faktors i(n + 1)n gelangen wir auf Grund der Zwischenrechnung

(n+3)(n+2)—22n+1)—4=n*+n=(n+1)n
zu der bemerkenswerten Formel

kz; k= @(n + 1)n>2 (4.7)

die vor allem durch einen Vergleich mit der Formel (2.1) von Interesse ist.

Die bei den letzten beiden Beispielen benutzte Methode lasst sich ebenfalls auf hohere
Potenzen von k (ibertragen, allerdings werden dabei die erforderlichen Zwischenrech-
nungen immer umfangreicher.

Aufgaben. Man berechne fiir eine beliebige natiirliche Zahl n
7.2 k- k, 8. > (—1)Fk?
k=1 k=1
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2.5 Rekursionsformeln erster Ordnung

2 Anfangswertprobleme

Rekursionsformeln wie (3.7), d.h. s, = s,-1 + a,, haben die Besonderheit, dass die
S, durch die a,, nicht eindeutig bestimmt werden. Ausfiihrlich geschrieben lautet diese
Rekursionsformel flir n =1, n = 2, n = 3 usw.

81 = 8o + az, So = §1 + a9, S3 = S9 + ag

usw. In die Gleichungen fiir s,, kdnnen wir von n = 2 an auf den rechten Seiten die
zuvor berechneten Werte fur s,,_1 einsetzen, so dass wir

S1 =80+ a;
S9 = Sp + a1 + as
S3 = Sg + a1 + ag + as

usw. erhalten, d.h. wieder das alte Ergebnis (3.6). Der Wert fiir sy bleibt hier offen
(und lasst sich auch dann nicht bestimmen, wenn die Rekursionsformel fir n > 0
ausgenutzt wird), man nennt ihn den Anfangswert und kann ihn bei der Auflésung der
Rekursionsformel beliebig vorschreiben.

Im folgenden wollen wir uns mit der Auflosung von Anfangswertproblemen, d. h. mit der
Auflosung von Rekursionsformeln bei vorgeschriebenem Anfangswert, befassen, wobei
wir uns natlrlich auf die allereinfachsten Typen von Rekursionsformeln beschranken.
Anwendungen fiir die erarbeiteten Ergebnisse werden wir dann in den nachsten beiden
Abschnitten kennenlernen.

2.5 Rekursionsformeln erster Ordnung

Die zuvor betrachtete Rekursionsformel ist in abgeanderter Bezeichnungsweise ein Spe-
zialfall der allgemeinen linearen Rekursionsformel erster Ordnung

Yn = AQplYn—1 + fn (51)

da erstere aus (5.1) fir a, = 1 hervorgeht. Der Index n durchlauft hier wieder die
natirlichen Zahlen, die Folgen a,, f,, sind gegeben, und v, ist nach Vorgabe des An-
fangswertes y gesucht. Fiir f,, = 0 entsteht aus (5.1) der weitere Spezialfall

Ty = QpTp—1 (5.2)

wenn wir die gesuchte Folge mit x, bezeichnen. Im Fall f,, Z 0 heiBt die Gleichung
(5.1) eine inhomogene Rekursionsformel, und (5.2) heiBt die zugehoérige homogene Re-
kursionsformel oder auch homogene Gleichung.

Wir suchen zunachst die Losung der einfacheren homogenen Rekursionsformel (5.2).
Setzen wir schrittweise n = 1,2, 3 ein und berlicksichtigen wir ab n = 2 die vorherge-
henden Ergebnisse, so finden wir aus (5.2)

T1 = a1xp, T2 = A2X1 = A201Tp, I3 = A3T2 = A3G2a01T
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2.5 Rekursionsformeln erster Ordnung

Fihrt man dieses Verfahren weiter durch, so ergibt sich fiir die Lésung von (5.2) die
allgemeine Darstellung
Ty, = ApQp_1...020100 (5.3)

Einige Spezialfalle dieser Darstellung sollen jetzt genauer betrachtet werden.

1°. Wahlen wir zg = 0, so wird x,, = 0 fiir alle n. Diese Folge heiBt die triviale Losung
der homogenen Gleichung (5.2).

24°. Wahlen wir a,, = a von n unabhangig, so geht die Lésung (5.3) in
Ty, = a"Tg

tiber. Die Gleichung (5.2) ist in diesem Fall (bis auf die Bezeichnungsweise) nichts
anderes als die Gleichung (1.4), und die Potenzen an sind die eindeutig bestimmten
Lésungen dieser Rekursionsformel unter der Anfangsbedingung a® = 1.

3°. Wahlen wir a,, = n fir alle n, so erhalten wir unter der Anfangsbedingung zo = 1
die bereits durch die Aufgabe 1 eingefiihrte Folge x, = n!, gesprochen: n Fakultat.
Diese Folge besitzt daher nach (5.3) die explizite Darstellung

nl=nn-1)-...-3-2-1 (5.4)
und ihre ersten Werte lauten
11'=1,21=2,3!=6,4! =24,5! =120,6! = 720

Wir wenden uns jetzt der Lésung der inhomogenen Gleichung (5.1) zu, wobei wir
voraussetzen, dass alle Koeffizienten a,, # 0 sind (da andernfalls die Rekursionsformel
entartet). Setzen wir schrittweise n = 1,2, 3,4 und beriicksichtigen wir ab n = 2 wieder
die vorhergehenden Ergebnisse, so finden wir

y1=ayo + f1
Y2 = agaryo + azf1 + fo
Y3 = azasaryo + azaz f1 + azfa + f3
Y4 = a4a3a2a1yo + asazaz f1 + asazfo + asfs + fu
Aus diesen speziellen Werten kann man das allgemeine Bildungsgesetz fiir die gesuchte

Losung v, erkennen. Wir konnen y,, aber auch direkt berechnen, indem wir den vorlie-
genden Fall auf bereits geloste Spezialfalle zuriickfiihren.

Um dies zu zeigen, ziehen wir die Loésung x,, der Gleichung (5.2) mit zy = 1 heran.
Wegen a,, # 0 ist nach (5.3) auch z,, # 0 fiir alle n. Somit kénnen wir die Gleichung
(5.1) durch x,, dividieren und erhalten

Tn Tn Tn Tp—1 Tn

Yn _ GnYn—1 +@ _ Yn1 +@
wenn wir die aus (5.2) hervorgehende Beziehung x,,/a,, = x,_1 verwenden. Fiihren wir
weiterhin die Bezeichnung s,, = y,,/x,, ein, so nimmt diese Gleichung die Gestalt

In

Sp = Sp—1+ —
Ln
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2.5 Rekursionsformeln erster Ordnung

d. h. die Gestalt (3.7) mit a,, = f,,/z,, an. Nach (3.6) besitzt daher die Loésung s,, =
Yn/xy, die Darstellung
Yn Yo | =Sk
Z SR

AL AT
Tn 0 k=1Tk

und hieraus folgt nach Multiplikation mit x,, und Beachtung von xy = 1 die Lésung
von (5.1)
n
k
k=1 Lk
Wie man mit Hilfe von (5.3) leicht nachpriift, stimmt dieses Ergebnis fir n = 1,2,3,4
mit den zuvor berechneten Werten iberein. Fiir n = 0 ist (5.5) wegen (3.2) eine Iden-

titat, so dass der Wert 1 auf der rechten Seite willkirlich vorgeschrieben werden kann.
Zusammenfassend stellen wir fest:

Existenz- und Eindeutigkeitssatz. Die Rekursionsformel (5.1) mit a, # 0 fir alle n
hat bei beliebig vorgegebenem Anfangswert y, die eindeutig bestimmte Losung (5.5),
wobei z,, durch (5.3) mit xy = 1 gegeben ist.

AbschlieBend wollen wir auch in der Lésungsformel (5.5) einige Spezialisierungen vor-
nehmen, wobei wir uns auf den Fall beschranken, dass a,, = a von n unabhangig ist.
Dann lautet nach dem vorhergehenden Beispiel 2° die benotigte Losung der zugehérigen
homogenen Gleichung z,, = a”, und wegen a"/a* = a"~* erhalten wir aus (5.5)

Un=a"yo+ Y a"F fi (5.6)
=1

4°. Wahlen wir in (5.6) f,. = b* mit b # a, so erhalten wir wegen der aus (2.4) nach
Ersetzung von a, q, n durch a®~'b, b/a bzw. n — 1 hervorgehenden Beziehung

n 1 — (Q)n a® — "
n—kpk n—1 a
b prm— pum— b
];:1a a n 1_ g a—b

fir die Rekursionsformel
Yn = QYn—1 + b"
bei vorgegebenem Anfangswert 1, die Losung

a — b

a—>b

Yn = a"yo + b (5.7)

5°. Wahlen wir in (5.6) dagegen f, = a”, so erhalten wir unter Beachtung der Ubungs-
aufgabe 5 fiir die Rekursionsformel

Yn = QYp—1 + a"

bei gegebenem 1y, die Losung
Yn = (Yo +n)a” (5.8)
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2.6 Rekursionsformeln zweiter Ordnung

6°. Wahlen wir in (5.6) schlieBlich fi = b von k unabhangig, so folgt im Fall a # 1

n ek _nfl L 1 —am
da""b=> ba' =b
k=1 1=0 l—a

mit [ = n — k und daher flr die Rekursionsformel

n .

Die Richtigkeit dieser drei Ergebnisse lasst sich leicht auf direktem Wege verifizieren.

Aufgaben. Man |6se folgende Anfangswertprobleme:
9 Yo+ Y1 =2"yo =1, 10° Yo+ yp—1 =n*yo = 0.

2.6 Rekursionsformeln zweiter Ordnung

Durch Verallgemeinerung von (5.1) gelangen wir zu den linearen Rekursionsformeln
zweiter Ordnung, die wir in der Form

Yn + aYn—1 + byn—Q - fn (61)

schreiben. Im Fall b = 0 ergibt sich die bereits geloste Gleichung (5.1) (wenn wir a,,
durch —a ersetzen), so dass wir im folgenden b = 0 voraussetzen. Der Einfachheit
wegen nehmen wir zunachst an, dass die Koeffizienten a, b konstant sind, also nicht
vom Index n abhangen.

Die Gleichung (6.1) heiBt auch eine Differenzengleichung. Genau genommen wird sie
erst dann zu einer Rekursionsformel, wenn man noch zwei Anfangswerte vy und y_ vor-
gibt, die bendtigt werden, um die Losung v, aus (6.1) fir n = 1,2, 3, ... in eindeutiger
Weise rekursiv berechnen zu konnen.

Beispielsweise findet man fiir die ersten drei Werte nach kurzer Zwischenrechnung

y1 = f1 —ayo — by—1
Y2 = fo — afi — (¢ — b)yo — aby_1
ys = f3—afs — (> = b) fi — (a® — 2ab)yo — (a®b — b*)y_y

die formelmaBige Berechnung der folgenden Werte wird aber schon umstandlicher.

Aus diesem Grunde wenden wir uns wie im vorhergehenden Paragraphen zunachst der
zu (6.1) gehdrenden homogenen Gleichung

Ty + aTp_1+bxy_o=0 (6.2)

zu. Im Fall b = 0 wissen wir vom Beispiel 2° des vorhergehenden Paragraphen, dass
x, = (—a)" eine spezielle Losung ist. Deshalb fragen wir uns, ob es auch im Fall b =0
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2.6 Rekursionsformeln zweiter Ordnung

eine Losung von (6.2) gibt, die als Potenz einer gewissen Zahl A\ # 0 darstellbar ist.
Wir machen also den Losungsansatz

Ty = A (6.3)

wobei wir iiber A noch geeignet zu verfiigen haben. Durch Einsetzen von (6.3) in (6.2)
entsteht
A" aX "+ DA =0

und diese Gleichung muss fiir alle n erfillt sein, damit (6.3) eine Lésung von (6.2) ist.
Durch Ausklammerung von \"~2 folgt

N+ ar+b)A"2=0
und hieraus wegen A\ # 0
MA+al+b=0 (6.4)

Die Gleichung (6.4) heiBt die charakteristische Gleichung der Rekursionsformel (6.2).
Sie ist eine quadratische Gleichung und hat daher die Lésungen

1 1
A= 5(—@ + Va? — 4b) , Ay = S (—a — Va* — 4b) (6.5)

die Wurzeln der Gleichung genannt werden.

Im Fall a2 > 4b sind beide Wurzeln reell und voneinander verschieden, im Fall a? = 4b
sind die Wurzeln gleich, so dass es sich um eine Doppelwurzel handelt, wahrend im Fall
a® < 4b zwei konjugiert komplexe Wurzeln vorliegen (Abb. 3). Wegen b = 0 kann keine

Waurzel verschwinden.
.?\.2+a)\.+b T al<4b

a?=4b

N7
/1

Wollen wir Rechnungen mit komplexen Zahlen vermeiden, so interessieren uns nur die
reellen Wurzeln der charakteristischen Gleichung, die fur a? > 4b existieren, und uns fir
die homogene Gleichung (6.2) Lésungen vom Potenztyp (6.3) liefern. Im Fall a? > 4b
gibt es wegen \; # )\, sogar zwei verschiedene Losungen vom Potenztyp, namlich die
Losungen

>

~,
- T
(

Abb. 3

Ty = A] und Ty = A (6.6)

mit (6.5), im Fall a® = 4b gibt es genau eine Lésung vom Potenztyp, wahrend es im
Fall a® < 4b keine solche reelle Lésung gibt.
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2.6 Rekursionsformeln zweiter Ordnung

Als Beispiel erhalten wir fiir die Rekursionsformel
Ty — OTp_1 +6x,_0=0

wegen a = —5, b = 6 aus (6.5) nach kurzer Rechnung A\; = 3, Ay = 2 und daher aus
(6.6) die beiden Lésungen x,, = 3" sowie x,, = 2".

Diese Folgen kann man gleichzeitig als Losungen des zugehorigen Anfangswertproblems
mit den Anfangswerten zo = 1, x_1 = 1/3 bzw. g = 1, z_1 = 1/2 auffassen. Wie man
bei beliebigen Anfangswerten eine Lésung findet, werden wir im nachsten Paragraphen
besprechen.

Zuvor wollen wir jedoch wieder zur inhomogenen Gleichung (6.1) zuriickkehren und
auch hier durch geeignete Ansatze spezielle Losungen ermitteln. Dabei wollen wir uns
auf zwei Falle beschranken.

1°. Zunachst betrachten wir in (6.1) den Fall f,, = ¢" mit ¢ # 0, d.h. die Gleichung
Yn + aYn—1 + by =" (6.7)
Durch Abanderung von (6.3) versuchen wir, diese Gleichung durch den Ansatz
Yn ="'z (6.8)

mit demselben ¢ wie in (6.7) zu l6sen, wobei Uber z geeignet zu verfiigen ist. Durch
Einsetzen von (6.8) in (6.7 ) ergibt sich die Gleichung

Az +ac” b2 =

die fiir alle n erfiillt sein muss. Kiirzen wir aus dieser Gleichung ¢"~2 heraus, so tritt n
in der Gleichung nicht mehr auf, und es bleibt nach Ausklammerung von z nur noch
die Gleichung

(> 4+ ac+b)z = ¢

zu erfiillen. Diese Gleichung ist genau dann nach z auflosbar, wenn der Ausdruck in
den Klammern nicht gleich Null ist, wenn also ¢ nicht gleich einer Nullstelle \i, Ao der
charakteristischen Gleichung (6.4) ist. Ist diese Bedingung erfiillt, so erhalten wir sofort

C2

c2+ac+b
und daher aus dem Ansatz (6.8) die Losung

cn+2

Yn (6.9)

T Ztactb
der Rekursionsformel (6.7). Insbesondere entsteht im Fall ¢ = 1 die konstante Losung

1

e 6.10
l+a+0 ( )

Yn

von (6.7), falls 1 + a + b # 0 ist.
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2.7 Uberlagerung von Lésungen

2°. Wir wenden uns jetzt dem Fall zu, dass die rechte Seite f,, der Gleichung (6.1) ein
Polynom in n ist, und fragen uns, ob diese Gleichung dann auch eine Polynomldsung
besitzt. Um die Zwischenrechnungen iibersichtlich zu gestalten, begniigen wir uns dabei
mit einem speziellen Beispiel.
Der Fall, dass f,, eine Konstante ist, wurde im wesentlichen bereits durch die Herleitung
der Losung (6.10) erledigt, somit befassen wir uns mit dem nachsteinfachen Fall f,, = n,
d. h. mit der Gleichung
Yn + aYp_1 + bYn_o =n (6.11)
Wir machen den Ansatz
Yn = 211 + 29 (6.12)

und versuchen, die Konstanten z; und z3 nach Einsetzen in (6.11) aus
21n+ 2o +a(zin — 21 + 22) + b(z1n — 221 + 20) = n

so zu bestimmen, dass diese Gleichung fiir alle n erfillt ist. Zu diesem Zweck wenden
wir die Methode des Koeffizientenvergleichs an, d. h., wir ordnen die Gleichung nach
Potenzen von n und schreiben sie in der Form

[(14+a+b)z1 —1n+[(1+a+b)zg — (a+2b)z1] =0

Diese Gleichung kann aber nur dann fiir alle n gelten, wenn die in den eckigen Klammern
stehenden Ausdriicke beide verschwinden, wenn also

(I+a+0b)z =1 : (1+a+b)ze = (a+2b)z
ist. Im Fall 1 4 a + b # 0 folgt hieraus sofort

1 a—+ 2b

T 15 a0 0 T (0xatob)
und. damit aus (6.12) die Lésung von (6.11)

B n n a+ 2b
Cl+a+b (14+a+b)?

Yn (6.13)

Bei allen vorhergehenden Beispielen kann man sich durch eine Probe davon liberzeugen,
dass man unter den gemachten Voraussetzungen wirklich eine Losung erhalten hat.

Aufgaben. Man bestimme alle in n (hochstens) quadratischen Losungen der Gleichun-
gen
11° v, — 2yp—1 + Yp—2 =1, 12° yp, — Yn—2 =n

2.7 Uberlagerung von Lésungen

Im vorhergehenden Paragraphen haben wir nur spezielle Losungen der Gleichungen
(6.1) und (6.2) ermittelt. Jetzt wollen wir uns der Frage zuwenden, ob es auBer diesen
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2.7 Uberlagerung von Lésungen

Losungen noch weitere gibt, wobei wir uns sogleich auf die allgemeinere Differenzen-
gleichung
Yn + @nYp—1 + bnyan = fn (71)

mit beliebigen variablen Koeffizienten a,,, b,, und der zugehorigen homogenen Gleichung
Ty + aptn_1 + bpty_o =10 (7.2)
beziehen werden.

Uberlagerungssatz. 1°. Ist 4 eine Lésung von (7.1) und x,, eine Lésung von (7.2), so
ist auch ¥ + x,, eine Losung von (7.1).

2°. Sind z], und 2/ Lésungen von (7.2), so ist auch ¢y, +cox)! fiir beliebige Konstanten
c1, ¢y eine Loésung von (7.2).

Beweis. 1°. Es sei  eine Losung von (7.1), d.h. also

y:l, + any:;—l + bny;—Z = fn

Addieren wir hierzu die Gleichung (7.2), so folgt nach Zusammenfassung entsprechender
Glieder

(Y +20) + an(Yp-1 +Ta-1) + 0alY o + Tn2) = fa
d.h., y, =y} + x, ist ebenfalls eine Losung von (7.1).

2°. Es seien 2/, und x!/ Lésungen von (7.2), so dass also

/ / / 2 2 2
X, + ant, | +bpz, 1 =0 , T, +ant, | +bpzr, ;=0

gilt. Multiplizieren wir die erste Gleichung mit ¢; und die zweite mit co, so folgt durch
Addition der beiden entstehenden Gleichungen nach Zusammenfassung entsprechender
Glieder

(12, + c2xyy) + ap(c1),_y + 22y, _1) + bu(e12,_ + c22_5) = 0
d.h., x,, = 12, + cox!! ist ebenfalls eine Lésung von (7.2).
Aus dem Uberlagerungssatz ergeben sich sofort die

Folgerungen: 3°. Unter den Voraussetzungen des Uberlagerungssatzes ist
Yn = Yo + 12, + ozl (7.3)
stets eine Losung der inhomogenen Gleichung (7.1).

4°. Ist x,, eine Losung von (7.2) und c eine beliebige Konstante, so ist cx,, ebenfalls
eine Losung der homogenen Gleichung (7.2).

Zum Beweis von 3° braucht man nur 1° mit 2° zu kombinieren, zum Beweis von 4°
braucht man in 2° nur 2, = z//z, ¢; = ¢ und ¢o = 0 zu wahlen. Wahlt man auch noch
c¢ = 0, so erhalt man die triviale Losung der homogenen Gleichung.
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2.7 Uberlagerung von Lésungen

Die Bedeutung der vorhergehenden Aussagen besteht darin, dass sich mit ihrer Hilfe
aus speziellen Losungen, wie wir sie im vorhergehenden Paragraphen ermittelt haben,
stets weitere Losungen konstruieren lassen. Wie der nachste Satz zeigen wird, kann
man auf diesem Wege sogar alle Losungen finden.

Eindeutigkeitssatz. Unter den Voraussetzungen des Uberlagerungssatzes und der Zu-
satzvoraussetzung

o — ' jx) #£0 (7.4)
fur die Anfangswerte der Lésungen x, /" von (7.2) lasst sich jede Losung y,, von (7.1)
eindeutig in der Form (7.3) darstellen.

Beweis. Jede Losung y, von (7.1) ist durch diese Gleichung und ihre Anfangswerte
Yo,y—1 eindeutig bestimmt, denn man kann die Werte vy,, fir n = 1,2, 3, ... rekursiv
berechnen.

Der Satz ist daher bewiesen, wenn wir zeigen, dass es zu beliebig vorgegebenen An-
fangswerten 1o, y_1 unter den Losungen der Form (7.3) genau eine spezielle Lésung
mit denselben Anfangswerten gibt, wenn sich also in (7.3) die Konstanten ¢y, ¢cs in
eindeutiger Weise so bestimmen lassen, dass

ES / /! E3 / /!
Yo + 1T + 2Ty = Yo ; Y1+t ax_g +cxy =y

gilt. Dies ist ein System von zwei Gleichungen mit zwei Unbekannten, aus dem nach
der GauBschen Eliminationsmethode (vgl. § 11)

Y ! "
Igz_l/_m_lxo *\
(y—1—yZ1)xo—(Yo—y5)x_1
Y ! "
Lol_1—T_1Tg

(7.5)

L= (yo—y5)z” 1 —(y-1-y*1)zg
Cy =

hervorgeht, da die Nenner wegen (7.4) nicht verschwinden. Damit ist die Behauptung
bewiesen.

Unter den Voraussetzungen des Eindeutigkeitssatzes heiBt der Losungsausdruck (7.3)
mit den beiden willkiirlichen Konstanten ¢y, co die allgemeine Losung der Gleichung
(7.1). Die Frage, ob sich die Voraussetzung (7 .4) stets erfiillen lasst, beantwortet der
folgende

Existenzsatz. Es gibt stets eine Normalform der allgemeinen Losung (7.3), bei der die
dort auftretenden Folgen die Anfangswerte

/ 2

Yo = Y 1 = yo; xg =1, 2.,=0, z;=0, " =1 (7.6)

besitzen und bei der die Losung des zu (7.1) gehdrenden Anfangswertproblems mit
beliebig vorgegebenen Anfangswerten g, y_1

Yn = Yy + Yoy, + y_12,, (7.7)
lautet.

Beweis. Wie wir bereits wissen, gibt es zu beliebig vorgegebenen Anfangswerten mit
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2.7 Uberlagerung von Lésungen

n = 0 und n = —1 genau eine Losung der Rekursionsformel zweiter Ordnung (7.1),
und dies trifft natirlich auch auf den Spezialfall der homogenen Gleichung (7.2) zu.
Folglich existieren die Lésungen mit den Anfangswerten (7 .6).

Setzen wir diese Werte in die linke Seite von (7.4) ein, so erhalten wir 1-1—0-0 =1,
und die Bedingung (7.4) ist erfiillt.

Setzen wir die Werte (7.6) in (7.5) ein, so erhalten wir ¢; = yg, c2 = y_1, und (7.3)
geht in (7.7) Gber, was zu beweisen war.

Ubrigens kann man sich auf Grund der Bedingungen (7.6) auch leicht direkt davon
iberzeugen, dass die Gleichung (7.7) fir n = 0 und n = —1 (&uBerlich) eine Identitat
ist.

Wie bereits angedeutet wurde, gelten die vorhergehenden Aussagen nicht nur fir die
inhomogene Gleichung (7.1), sondern auch fiir die zugehdrige homogene Gleichung
(7.2), da letztere ein Spezialfall von (7.1) mit f,, = 0 ist. Die spezielle Lésung v mit
verschwindenden Anfangswerten ist dann einfach die triviale Losung. Damit erhalten
wir zusammenfassend den

Struktursatz. 5°. Die allgemeine Losung der homogenen Gleichung (7.2) hat die Gestalt
T, = a1z, + com (7.8)

wobei x], und ! zwei spezielle Losungen dieser Gleichung mit (7.4) sind.

6°. Die allgemeine Losung der inhomogenen Gleichung (7.1) setzt sich aus einer be-
liebigen speziellen Losung v dieser Gleichung und der allgemeinen Lésung (7.8) der
zugehorigen homogenen Gleichung additiv zusammen (vgl. 1°).

Als erste Anwendung der vorhergehenden Ergebnisse kdnnen wir jetzt feststellen, dass
fur beliebige Konstanten ¢y, co neben (6.6) auch

Ty = AT + 2 A] (7.9)

Losung von (6.2) und neben (6.9) auch

Cn—|—2

= m + Cl)\? + Cg)\g (710)

Yn
Lésung von (6.7) ist. Im Fall a® > 4b handelt es sich in beiden Fallen sogar um
die allgemeine Losung, da dann A\ # X ist und somit fiir z;, = A}, 2/ = A} die

Ungleichung (7.4) wegen
_ A=A
Y 1 Y 1 —
2 A1A2

£0

erfullt ist.
Im Fall a® = 4b (# 0) haben wir wegen \; = Ay = —a/2 (vgl. (6.5)) durch (6.6) nur
eine einzige Losung =/, = (—a/2)" der Gleichung (6.2) bestimmt, die jetzt

2

Tp + aTp_1 + Zfﬂn—z =0 (7.11)
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2.8 Schwingende Lésungen

lautet. Durch eine einfache Rechnung kann man sich aber davon iiberzeugen, dass

zl =n(—a/2)" eine zweite Losung dieser Gleichung ist, die wegen z(, = 1, 2" = 2/a,

xy = 0 zugleich die Bedingung (7.4) erfillt. Folglich ist

T, = (1 + c2n) (—;)n (7.12)

die allgemeine Lésung der Gleichung (7.11) (vgl. § 27).

Aufgaben. 13. Man beweise: Hat die rechte Seite der Gleichung (7.1) die Form f,, =
c1fy +caf) und sind y!,, ! Losungen von (7.1), wenn man als rechte Seite f], bzw. f)

wahlt, so ist y, = c1y,, + coy, mit den vorhergehenden Konstanten ¢y, co eine Losung
von (7.1).

14. Fir die homogene Gleichung
1
Ty — <c+ ) Tp-1+Tp2=0
c

!, ! in der durch (7.6) festgelegten Normal-

n»n

mit ¢ # 0 bestimme man die Losungen x
form.

2.8 Schwingende Losungen

Nach der Erledigung des Falls a®> > 4b bei der homogenen Rekursionsformel zweiter
Ordnung (6.2), d. h. der Gleichung

Ty + apTp_1 + bpty_o =10 (8.1)

mit konstanten Koeffizienten a,b (und b # 0), wenden wir uns jetzt dem Fall a® < 4b
zu, ohne die dann nicht mehr reellen Wurzeln (6.5) der zugehdrigen charakteristischen
Gleichung zu verwenden. Dabei gehen wir in drei Etappen vor.

1°. Ein einfaches Beispiel fiir diesen Fall ist die Gleichung

Ty, = —Tp_2 (8.2)
die aus (8.1) fir a = 0, b = 1 entsteht. Ersetzen wir hier n durch n — 2, so folgt
Tp_9 = —Tp_q und nach Einsetzen in (8.2)

Tp = Tn—4

Diese Gleichung besagt, dass jede Losung von (8.2) eine periodische Folge mit der
Periode 4 ist. Insbesondere besitzt die Losungsfolge x/, mit den Anfangswerten x/, = 1,
x’ =0 fir n > 1 die Glieder

0,-1,0,1,0,—1,0,1,0, ...

und die Losungsfolge x// mit den Anfangswerten xj = 0, 2", = —1 besitzt fir n > 1
die Glieder
1,0,—1,0,1,0,—1,0,1, ...
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2.8 Schwingende Lésungen

Beide Losungen lassen sich mit Hilfe trigonometrischer Funktionen in der geschlossenen
Form

, nm , nm

Z, = COS — , T, = sin —
2 2

darstellen (Abb. 4a).

Abb. 4a

Abb. 4b

Da es sich bei diesen Losungen bis auf das Vorzeichen im zweiten Fall um die Normal-
formen mit (7.6) handelt und y bei einer homogenen Gleichung die triviale Lésung ist,
lautet die allgemeine Losung der Gleichung (8.2) nach (7.7)

nm nm

T = L0 COS - — T sin o (8.3)

wobei die Anfangswerte o, x_1 auf der rechten Seite beliebig vorgegeben werden kon-
nen (Abb. 4b).

2°. Das einleitende Beispiel legt uns die Frage nahe, ob die Koeffizienten a, b der
Gleichung (8.1) so gewahlt werden kdnnen, dass

I "o
T, = COSWn , x, = sinwn

mit einer beliebig vorgegebenen Zahl w Lésungen dieser Gleichung sind. Damit die
Bedingung (7.4) erfillt ist, haben wir wegen z{z” | — 2’ ;2] = — sin w vorauszusetzen,
dass

sinw # 0 (8.4)

ist, also w # km, wobei k eine ganze Zahl ist (andernfalls wére z die triviale Lésung).
Setzen wir in (8.1) fir x,, die Folge coswn ein, so erhalten wir fir a und b die Bestim-
mungsgleichung

coswn +acosw(n —1)+beosw(n —2) =0
Nach zweimaliger Anwendung des Additionstheorems

cos(a — f3) = cos acos 3 + sin asin 3
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2.8 Schwingende Lésungen

folgt
cos wn + a(cos wn cos w + sin wn sinw) + b(cos wn cos 2w + sinwn sin 2w) = 0
und nach Ausklammerung von coswn und sinwn
(1 4+ acosw + bcos2w) coswn + (asinw + bsin 2w) sinwn = 0

Diese Gleichung kann aber nur dann fiir alle n bestehen, wenn die Koeffizienten von
coswn und sin wn beide verschwinden, wenn also

1+ acosw+ bcos2w =0 ) asinw + bsin 2w = 0
gilt. Unter Beachtung der Verdoppelungsformeln
cos 2w = 2cos’w — 1 , sin 2w = 2sinw cosw

ergibt sich hieraus

1+ (a+2bcosw)cosw —b=0 : (@ + 2bcosw)sinw = 0
Wegen (8.4) folgt aus der zweiten Gleichung a = —2bcosw und daher aus der ersten
b=1,d. h.
a = —2cosw : b=1 (8.5)

Eine ganz analoge Berechnung zeigt, dass die Gleichung (8.1) mit den Koeffizienten
(8.5), d. h. die Gleichung

Ty — 2COSWTp_1 + Tpo =0 (8.6)

auch z,, = sinwn als Loésung hat, so dass diese Gleichung unter der Voraussetzung
(8.4) nach dem Struktursatz von § 7 die allgemeine Lésung

T, = C1 COSwWN + cysinwn (8.7)

besitzt. Diese Losung ist genau dann periodisch, wenn w wie in (8.3) zu 7 in einem
rationalen Verhaltnis steht. Fiir die Koeffizienten (8.5) gilt wegen (8.4)

a’> —4b =4cos’w —4 = —4sinw < 0

so dass die Gleichung (8.6) ein allgemeineres Beispiel als (8.2) zum Fall a® < 4b ist.

3°. Es bleibt jetzt nur noch die Lésung der Gleichung (8.1) im Fall a®> < 4b mit
b # 1 zu bestimmen. Wie wir sogleich sehen werden, lasst sich aber dieser Fall auf den
vorhergehenden mit b = 1 zurickfihren.

Aus a® < 4b folgt b > 0, so dass wir in (8.1) die Substitution x,, = v/0"z, durchfiihren
konnen. Diese liefert uns fiir z,, die Gleichung

Vbiz, +avVblz, |+ bz, 5 =0
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2.8 Schwingende Lésungen

oder, wenn wir den positiven Faktor v/b" kiirzen,

Zn + j[_)zn_l +2p-2=0 (8.8)

Wegen a® < 4b ist |a|/(2v/b) < 1, so dass die Gleichung

cosw = — (8.9)

2v/b

stets eine Losung w mit (8.4) besitzt. Damit hat die Gleichung (8.8) die Form (8.6),
und aus (8.7) erhalten wir die allgemeine Lésung von (8.8) in der Form

Zp = €1 COSWN + Co Sinwn

Machen wir jetzt die vorhergehende Substitution wieder riickgangig, so sehen wir, dass
die Gleichung (8.1) unter der Voraussetzung a* < 4b stets die allgemeine Lésung

Ty = \/b_”(q cos wn + ¢o sinwn) (8.10)

besitzt, wobei w aus (8.9) zu bestimmen ist. Diese Losungen stellen stets einen Schwin-
gungsvorgang dar, der fir b < 1 gedampft, fir b = 1 ungedampft, aber beschrankt und
fir b > 1 aufschaukelnd ist (Abb. 5).

VEﬂSﬂUI‘I

Abb. 5 |

Aufgaben. 15. Fiir die homogene Gleichung (8.1) mit a? < 4b bestimme man die Lo-

sungen x/, x! in der durch (7.6) festgelegten Normalform.

n»n

16. Man beweise: Ist x,, eine Losung der Rekursionsformel zweiter Ordnung z, +
b9 =0 mitb > 0, sosind z/, = w9, 1 und 2!/ = xo, Losungen der Rekursionsformel
erster Ordnung z,, + bz,_1 = 0.
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Iterationsverfahren

3 lterationsverfahren

Unter einem Fixpunkt einer gegebenen Funktion g versteht man eine Zahl x, die durch
diese Funktion auf sich selbst abgebildet wird, die also der Gleichung

r = g(r)

genligt. Geometrisch gesehen ist x ein Schnittpunkt der Kurve y = ¢(t) mit der Geraden
y =t (Abb. 6).

Abb. 6 x ' !

Bei komplizierteren Funktionen g ist es nicht moglich, die Fixpunkte durch explizite
Formeln zu berechnen. Die Numerische Mathematik hat jedoch Naherungsverfahren
entwickelt, mit deren Hilfe sich gesuchte Zahlen mit beliebiger Genauigkeit approximie-
ren lassen. Dies scheint zunachst ein Notbehelf zu sein, aber in praktischen Anwen-
dungen benoétigt man niemals "exakte" Werte, sondern immer nur Werte im Rahmen
zugelassener Toleranzen,

Besonders einfach sind Iterationsverfahren in ihrer Handhabung. Sie sind schon lange
im Gebrauch und auch im Rahmen der modernen Rechentechnik unentbehrlich.

Dabei geht man von einem weitgehend beliebig gewahlten Startwert z( als Ausgangs-
naherung fir den gesuchten Fixpunkt x aus und berechnet sich mit Hilfe der (im
allgemeinen nichtlinearen) Rekursionsformel erster Ordnung

Tn = g(Tn-1)

furn =1,2,3, ... weitere Werte x,,, die man die Iterierten von zy nennt.

Wird der Abstand zwischen den lterierten und dem Fixpunkt mit wachsendem n immer
kleiner, so iteriert man so lange, bis die vorgeschriebene Genauigkeit erreicht ist. Solche
Iterationsverfahren heiBen auch Verfahren der schrittweisen Annaherung oder Verfahren
der sukzessiven Approximation.

Sie haben die iiberaus angenehme Eigenschaft, dass sie selbstkorrigierend sind, d. h. die
laufenden kleinen Rundungsfehler und sogar einen groBeren Rechenfehler im weiteren
Verlauf der Iteration ausgleichen, da der verrechnete Wert als neuer Startwert der
nachfolgenden lterierten aufgefasst werden kann.

Als einleitendes Beispiel hierzu betrachten wir die einfache Fixpunktgleichung

r=0,1r4+0,3
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3.9 Berechnung von Quadratwurzeln

aus der durch Umstellung 0,92 = 0, 3 folgt, so dass die Losung = = 1/3 lautet. Aus
der zugehorigen lterationsvorschrift

Tp,=0,12,14+0,3

findet man fiir n = 1,2, 3, ..., wenn man als Startwert der Iteration xy = 0 wahlt, die
Iterierten
r1=0,3, x2=0,33, x3=0,333,...,

und diese sind gerade die endlichen Dezimalbruchnaherungen fiir den unendlichen De-
zimalbruch des Fixpunktes 1/3. Offenbar gibt es zu jeder vorgeschriebenen Genauigkeit
ein Glied der Iterationsfolge, das den Fixpunkt 1/3 mit dieser Genauigkeit annéhert.

Weitere Beispiele, Eigenschaften und Fehlerbetrachtungen werden wir in den nachsten
Paragraphen kennenlernen. Als zusétzliche Literatur wird N. J. Wilenkin [13] empfohlen
sowie H. Belkner [1].

3.9 Berechnung von Quadratwurzeln

Um den Leser mit Iterationsverfahren naher vertraut zu machen, soll als nachstes gezeigt
werden, wie man Quadratwurzeln auf iterativem Wege berechnen kann. Dabei werden
wir zugleich eine Gelegenheit haben, Ergebnisse aus dem vorhergehenden Abschnitt
anzuwenden.

Die Quadratwurzel aus 2 ist die positive Losung = = /2 der Gleichung
2t =2 (9.1)

Wollen wir v/2 iterativ berechnen, so miissen wir diese Gleichung zunichst auf die Form
einer Fixpunktgleichung, also auf die Form x = g(x) mit passender Funktion g bringen,
was auf mannigfache Art moglich ist.

Beispielsweise konnen wir eine beliebige Zahl a wahlen, auf beiden Seiten von (9.1) den
Summanden ax addieren, wodurch

x2—|—ax:a:l:+2

entsteht, und anschlieBend durch z + a dividieren. Dann erhalten wir fiir v/2 die Fix-

punktgleichung
ar + 2

r+a
bei der es sich wegen der Willkiirlichkeit von a genaugenommen um unendlich viele
Gleichungen handelt. Die Gleichung (9.2) heiBt eine iterationsfahige Umformung von
(9.1), wobei die zugehdrige Iterationsvorschrift

(9.2)

€Tr =

Ty = ——— (9.3)

lautet. Hieraus finden wir, wenn wir etwa @ = 1 und zo = 1 wahlen,

3 7 17 41 99

1’1:? 12:57 l’SZE, 174:@, 5135:%
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3.9 Berechnung von Quadratwurzeln

oder in Dezimalbruchannaherung mit acht Ziffern
x1 = 1,529 = 1,4; 23 = 1,4166666; x4 = 1,4137931; x5 = 1,4142857

wobei die ersten vier Dezimalen von aus bereits mit den entsprechenden Dezimalen von
V2 = 1,4142135... (ibereinstimmen.

Um die Abhangigkeit der Iterierten x,, von a und x( zu studieren, wollen wir anschlie-
Bend die Gleichung (9.3) explizit auflésen. Zu diesem Zweck machen wir den Ansatz
Ty, = Yn/Zn, durch den (9.3) in

Yn _ QYn—1 + 22n—1

Zn Yn—1 + azZp—1

iibergeht. Diese Gleichung ist sicher erfiillt, wenn Zahler und Nenner auf beiden Seiten
ubereinstimmen, wenn also

Yn = AYp—1 + 2271—1 5 Zn = Yn—1 + azp—1 (94)

gilt. Dies sind zwei Gleichungen mit zwei unbekannten Folgen, aus denen wir eine der
beiden Folgen eliminieren konnen. Eliminieren wir zunachst die Glieder z,,_1, so erhalten

wir (vgl. § 11)
2zp = ayn + (2 - a2)yn—1

oder nach einer Indexverschiebung
2201 = aYn-1+ (2 — a*)yn2

Setzen wir diesen Ausdruck in die erste der Gleichungen (9.4) ein, so entsteht fir v,
die Rekursionsformel zweiter Ordnung

Yn = QCLynfl + (2 - a2)yn72 (95)

wobei wir die Falle @ = 4-/2 ausschlieBen. Die zugehdrige charakteristische Gleichung
(6.4) lautet
M —2a\+ (a®* —2) =0

Sie hat die beiden Losungen
AMa=a+V2

so dass wir durch Einsetzen dieser Werte in (7.9) als Zwischenergebnis die allgemeine
Loésung von (9.5)
Yn = c1(a +V2)" + ca(a — V2)" (9.6)

erhalten. Wegen der aus der ersten Gleichung von (9.4) nach Indexverschiebung und
Umstellung hervorgehenden Gleichung

1

Zn = §(yn+1 - ayn)
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3.9 Berechnung von Quadratwurzeln

ergibt sich durch Einsetzen von (9.6)

1 n n
Zn = ﬁ[Cl(aJr V2)" = ca(a — V/2)"]

Im Fall z,, # 0 fir alle n erhalten wir fir die Loésung x,, = y,,/2, der Rekursionsformel
(9.3) die Darstellung

_ eala+V2)" + eaa— V2)"
= \/écl(a +V2)" — cy(a — v/2)"

der nach Kiirzung von ¢ (a + v/2)"

1 b" 24/ 2cb"”
an:\/§ +c _\/5 \/_C

1—cbn + 1 —cb (9.7)

mit

— 2 24/2

a+2 a++/2 1
Wahrend b durch die Koeffizienten der Rekursionsformel (9.3) festgelegt ist, hangt die
Konstante ¢ mit dem Anfangswert o # v/2 durch

1 — /2
:U():\/ﬁ_i_c xO\/_

bzw. c=—F7

I=c o+ V2
zusammen. Wie man nachpriifen kann, ergeben sich im Fall ¢« = zqg = 1 und damit
c=baus (9.7) fuirn = 1,2, 3,4, 5 wieder die weiter oben schon berechneten rationalen
Naherungswerte fiir die Irrationalzahl /2.

Aus der expliziten Darstellung (9.7) fiir die Iterierten z,, ist ersichtlich, dass letztere
sich genau dann mit wachsendem n dem Fixpunkt /2 nihern, wenn |b] < 1 ist (vgl.
Abb. 2), also wegen (9.8) a > 0 ist (vgl. Abb. 7).

b-%

/
A7 / VT a
: A

Abb. 7

Die Anniherung an /2 erfolgt bei gleichem Startwert 2y um so schneller, je kleiner
b ist, je naher a also bei /2 liegt. Fiir a < 0, also |b] > 1 (vgl. Abb. 7), kann man
sich Giberlegen, dass die Iterierten x,, dann den zweiten Fixpunkt z = —+/2 von (9.2)
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3.9 Berechnung von Quadratwurzeln

approximieren.

Zum Schluss wollen wir noch eine weitere iterationsfahige Umformung von (9.1) auf-
stellen, wobei wir uns sogar auf die allgemeinere Gleichung

v’ =a (9.9)

mit a > 0 beziehen, durch die 2 = /a als positive Lésung bestimmt ist. Dividieren wir
(9.9) durch 2z, so folgt /2 = a/2x, und addieren wir jetzt auf beiden Seiten z/2, so

entsteht die Fixpunktgleichung
r a
=—+ — 9.10
Tty (9.10)

(vgl. Abb. 8), zu der die Iterationsvorschrift

_ 0.11
S S (9-11)

gehort. Bei achtstelliger Rechnung findet man, vom Startwert xy = 1 ausgehend, fiir
die ersten finf Iterierten im Fall a = 2 bzw. a =9

a=2 a=29
I 2 5
T2 1,5 3,4
rs 1,4166666 3,0235294
ry4 1,4142156 3,0000915
rs 1,4142135 3,0000000

wobei die Rechnungen mit dem bulgarischen Taschenrechner elka 135 durchgefiihrt
wurden. In beiden Fallen wurden die Fixpunkte v/2 bzw. v/9 = 3 in den angegebenen
acht Stellen bereits nach funf Iterationsschritten erreicht, so dass das lterationsverfah-
ren als besonders effektiv bezeichnet werden kann.

'l
|
|

Abb. 8 B f

Aufgaben. 17. Man zeige, dass die z, aus (9.4) ebenfalls die Gleichung (9.5) erfiillen,
also

2y = 2a2p-1 + (2 — a*)2y_2 (9.12)

18. Man zeige, dass die z,, aus (9.3) auch die Rekursionsformel

(a® —2)"
Tp = Tp—1+ ——— Wy
Znin—1

mit Wo = Yoz—-1 — Y—-1%0 erfillen.
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3.10 Berechnung von Nullstellen

3.10 Berechnung von Nullstellen

Will man die Nullstellen einer Funktion f bestimmen, d.h. die Loésungen an der Glei-
chung

f(z)=0 (10.1)
ermitteln, so kann man folgendermaBen vorgehen: Zunachst bringe man die Gleichung
(10.1) durch geeignete Umformung auf eine iterationsfahige Form

v = g(x) (10.2)

bei der die Nullstellen (oder wenigstens eine Nullstelle) von f als Fixpunkte von g
erscheinen. Auf eine allgemeine Moglichkeit fiir eine solche Umformung werden wir
weiter unten eingehen.

Danach betrachte man nach Wahl eines Startwertes xy das zugehorige Iterationsver-
fahren

Ty = g(Tp-1) (10.3)

fur n = 1,2, 3, ... Vorausgesetzt werden muss natiirlich, dass die Funktion ¢ an den
auftretenden Stellen x,, 1 stets erklart ist. Die ersten Werte der lIterationsfolge z,
lauten, wenn wir sie jeweils durch x( ausdriicken,

r1 = g(xo), w2 =g(r1) = g(g(20)), x3=g(x2) = g(9(9(20)))
Wir unterscheiden jetzt zwei Falle, die besondere Namen tragen:

1°. Nahern sich die Iterierten (10.3) dem Fixpunkt z, sofern der Startpunkt z( der
Iteration hinreichend nahe bei z gewahlt wird, so heiBt der Fixpunkt x anziehend.

2°. Entfernen sich die lterierten (10.3) vom Fixpunkt x, wie nahe auch der Startpunkt
xq der Iteration bei x gewahlt wird (jedoch xy # ), so heiBt der Fixpunkt = abstoBend.

Beim Ubergang von (10.1) zu (10.2) hat man darauf zu achten, dass die gesuchte Wur-
zel x von (10.1) ein anziehender Fixpunkt von (10.2) wird.

Lineare Funktionen. Besonders libersichtlich sind die Verhaltnisse bei der linearen Funk-
tion

g(t)=at+0b
mit a # 0 und a # 1, der wir uns jetzt zuwenden wollen. Die Gleichung

r=ar+b (10.4)

hat offenbar die Losung = = b/(1 — a), so dass es genau einen Fixpunkt gibt. Die
zugehorige lterationsvorschrift (10.3) lautet

Ty, = aTp—1 + b

Sie ist eine Rekursionsformel erster Ordnung, die nach Beispiel 6° von § 5 die Losung

b b\
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3.10 Berechnung von Nullstellen

besitzt. Unter Beachtung des in Abb. 2 angedeuteten Verhaltens der Folge a” mit
wachsendem n erkennt man aus (10.5), dass der Fixpunkt b/(1 — a) fir |a] < 1
anziehend und fiir |a| > 1 abstoBend ist.

Y y=t Y y=t
y=at+b
S S S S
xf, _______________________
X3 - ——g
S T
: y=at+b
K.l —————————————
Xy b--
G
ﬁ e
1
|
P Hi
Xg TR P P t "J"x:l‘s;‘z % % T
Abb. 9a,b @ b)
v yat y y=at+b
y=t
)(1 F
X3! *a |
X5 {
o S |
X = s |
Xg -t T Kf——————— i
b - t :
X7 R Xgfom e i
1 I
yeatso T i
" I3 I :
4 1 i H
¥g X XKex¥e X3 X t Mt Xy X, t
Abb. 9C,d <) d)

Im Fall |a| < 1 des anziehenden Fixpunktes unterscheiden wir drei Unterfalle:

Ist 0 < a < 1undxz, <b/(1—a), sondhern sich die z,, von "links" her dem Fixpunkt,
d. h., die Folge x,, ist monoton wachsend (Abb. 9a).

Ist 0 < a < 1undz, >b/(1—a), so ndhern sich die z,, von "rechts" her dem Fixpunkt,
d. h., die Folge z,, ist monoton fallend (Abb. 9b).

Ist —1 < a < 0, so nahern sich die x,, abwechselnd von beiden Seiten her dem Fix-
punkt, d. h., die Folge z,, ist alternierend (Abb. 9c).

Die Anndherung an den Fixpunkt erfolgt um so schneller, je kleiner |a| ist. Im Fall
la| > 1 des abstoBenden Fixpunktes (Abb. 9d) I6sen wir die Gleichung (10.4) nach
dem auf der rechten Seite auftretenden x auf, d. h., wir gehen zu der neuen Fixpunkt-
gleichung © = x/a—b/a uber, fiir die der Fixpunkt b/(1—a) wegen |1/a| < 1 anziehend
ist. Damit haben wir diesen Fall auf den vorhergehenden zuriickgefiihrt.

Im Fall @ = —1 haben die Iterierten (10.5) die Periode 2, d. h., es gilt z,, = x,,_2, und
der Fixpunkt ist weder anziehend noch abstoBend.

Polynome. Die soeben bei der einfachen Gleichung (10.4) gewonnenen Erkenntnisse
sind auch fir allgemeinere Gleichungen typisch. Ist beispielsweise (10.1) eine Polynom-
gleichung wie

32° 4+ 1312% + 2397 + 47 =0 (10.6)

so kann man den Ubergang zur Fixpunktgleichung (10.2) dadurch vollziehen, dass man
das Polynom nach dem in dem linearen Glied 2392 vorkommenden = auflost:
 32® + 131a” +47

239

xr =
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3.10 Berechnung von Nullstellen

Hieraus entsteht die lterationsvorschrift

(3,1 + 131)22_| +47
239

Ty = — (10.7)
wobei die Klammern so gesetzt wurden, wie es fiir die praktische Durchfiihrung der
Rechnungen vorteilhaft ist. Vom Startwert g = 0 ausgehend, erhdlt man mit dem
bulgarischen Taschenrechner elka 135 bei 11 Iterationsschritten

n Tn Lp — Tp—1
1 -0,1966527 -0,1966527
2 -0,2177542 -0,0211015
3 -0,2225131 -0,0047589
4 -0,2236528 -0,0011397
5
6
7
8

-0,2239294 -0,0002766
-0,2239967 -0,0000673
-0,2240131 -0,0000164
-0,2240171 -0,0000040
9 -0,2240181 -0,0000010
10 -0,2240183 -0,0000002
11 -0,2240184 -0,0000001

und bei weiterer lteration andert sich das Ergebnis nicht mehr, so dass wir mit x =
—0, 2240184 bis auf Rundungsfehler, die die letzte Stelle beeinflussen konnten, eine
Wurzel von (10.6) in ihren ersten sechs Dezimalen berechnet haben. Aus der letzten
Spalte erkennt man, dass die Anndherung der z,, an den Fixpunkt monoton fallend
erfolgt und wie schnell diese Annaherung vor sich geht.

Der zuvor angegebene Ubergang von (10.6) zu (10.7) fiihrt nicht immer zu einem
anziehenden Fixpunkt, aber dann, wenn man die kleinste Nullstelle von (10.6) sucht
und der Koeffizient des Gliedes = groB genug ist.

Eine allgemeine Moglichkeit, von (10.1) zu einer brauchbaren Iterationsvorschrift zu
gelangen, bietet das folgende

Sekantenverfahren. Man wahle eine geeignete Zahl m # 0, dividiere (10.1) durch —m
und gehe zur aquivalenten Umformung

1
r=x— —f(x
= f(x)
Uber, zu der die lterationsvorschrift

Tp = Tpo1 — nllf(acnl) (10.8)

gehort. Dabei empfiehlt es sich, fiir m den Steigungsfaktor

L—&
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3.11 Zwei Gleichungen

der Sekante durch zwei Kurvenpunkte (&1, f(£1)), (&2, f(&2)) in der Nahe der gesuchten
Nullstelle t = x der Funktion y = f(¢) zu wahlen.

Die Motivation firr die Iterationsvorschrift (10.8) ergibt sich dadurch, dass ¢t = x,, die
Wourzel der Geradengleichung

Yy — f(xn—l) - m(t — xn—l)

durch den Kurvenpunkt (z,_1, f(x,—1)) ist und diese Gerade die Funktion y = f(t) in
der Umgebung der Nullstelle ¢ = = approximiert (Abb. 10).

y-fixg)=mi(t-x,)

Abb. 10

Fur das lterationsverfahren (10.8) sind verschiedene Varianten moglich, bei denen der
Faktor m bei jedem Iterationsschritt verandert wird, also ebenfalls von n abhangt:

1. Variante. Man wahle & = x,_1, & fest.
2. Variante. Man wahle & = 2,1, & = 2 _0.

Die zweite Variante ergibt eine Rekursionsformel zweiter Ordnung und bendtigt zwei
Startwerte zg, 71, sie steht zu der sogenannten Regula falsi in enger Beziehung. Ubrigens
lasst sich auch das Beispiel (9.11) als Spezialfall von (10.8) mit f(x) = 2? — a und
m = 2x,_1 deuten.

Aufgaben. Man beweise:

19. Ist g eine monoton wachsende Funktion, d. h., folgt aus 2’ < z” stets g(2') < g(z"),
und ist  ein Fixpunkt von g, so nahern sich die Iterierten (10.3) im Fall 2y < 27 < z
von "links" und im Fall < x1 < x( von "rechts" her dem Fixpunkt x.

20. Ist g eine monoton fallende Funktion, d. h., folgt aus o’ < 2" stets g(z') > g(2"),
und ist = ein Fixpunkt von g, so ndhern sich die lterierten (10.3) im Fall 2 < x2 < z
dem Fixpunkt x alternierend.

3.11 Zwei Gleichungen

Iterationsverfahren kann man auch verwenden, um mehrere Gleichungen mit mehreren
Unbekannten naherungsweise aufzulosen. Dies wollen wir jetzt an Hand des einfachen
linearen Systems von zwei Gleichungen mit zwei Unbekannten

ar —by =p : cx —dy =q (11.1)

zeigen. Zunachst fiihren wir jedoch eine geschlossene Losungsmethode vor.

43



3.11 Zwei Gleichungen

GauBsche Eliminationsmethode. Multiplizieren wir etwa die erste Gleichung. von (11.1)
mit d und die zweite Gleichung mit b, so haben die entstehenden Gleichungen

adr — bdy = pd , bcx — bdy = bq

bei y einen gemeinsamen Koeffizienten. Somit folgt durch Differenzbildung

(ad — bc)x = pd — bq

und wir haben y eliminiert. Im Fall
ad —be # 0 (11.2)

folgt hieraus, wenn wir in analoger Weise auch z eliminieren,
c—a
e~ (11.3)

pd —bg
xr = et
ad — be ’ Y= ad —be
lteration in Gesamtschritten. Wollen wir das System (11.1) iterativ l6sen, so benétigen
wir zunachst eine iterationsfahige Umformung. Im Fall a # 0,d # 0 ist
c q

b p
T YTy

a

eine solche Umformung. Um die folgenden Formeln zu vereinfachen, setzen wir a =
d = 1, was keine weitere Einschrankung bedeutet, d. h., wir befassen uns mit dem
System

r=by+p , y=cxr—q (11.4)

Nach Wahl zweier Startwerte xg, 1y lasst sich diesem System die lterationsvorschrift
(11.5)

Tp = byn—l +p ) Yn = CTp—1 — ¢

zuordnen, die man ein Gesamtschrittverfahren nennt. Zur Lésung des Systems (11.5)

ersetzen wir in beiden Gleichungen n durch n — 1, so dass
Tp1=0byn2+p ,  Yn-1=CTn2—(

entsteht. Hieraus folgt durch Elimination der Iterierten mit dem Index n — 1

Ty = bcxy,_o+ (p — bq) , Yn = beyn_o + (cp — q) (11.6)
Es geniigt, diese Gleichungen nur fiir gerade n zu betrachten, dann sind sie wegen
2n — 2 = 2(n — 1) Rekursionsformeln erster Ordnung beziglich xy, bzw. ya, (vgl.

Aufgabe 16), und wir erhalten analog zu (10.5) die Ergebnisse

Yon = ?ibcc] + (yO - i]ibz) (bc)n
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3.11 Zwei Gleichungen

Fir die ungeraden Indizes ergibt sich nach kurzer Zwischenrechnung aus (11.5)

Panir = B2 4 b (g — 258 (be)"
Yont1 = 58 + ¢ (310 - ﬁ’iii) (be)”

Auf Grund des in Abb. 2 angedeuteten Verhaltens der Folge der Potenzen kénnen wir
abschlieBend feststellen:

Hat man als Startwerte o, yo fiir das Iterationsverfahren (11.5) nicht bereits den Fix-
punkt (11.3) mit @ = d = 1 gewahlt, so nahern sich die Iterierten x,y, genau dann
dem Fixpunkt, wenn |bc| < 1 ist, und die Annaherung erfolgt um so schneller, je kleiner
|bc| ist.

(11.8)

Im Fall |bc| > 1 entfernen sich die Iterierten von dem Fixpunkt, der Fall bc = 1 ist
wegen (11.2) und ad = 1 ausgeschlossen, und im Fall bc = —1 haben die Iterierten die
Periode 4. Im letzten Fall stehen die Geraden mit den Gleichungen (11.4) senkrecht
aufeinander.

lteration in Einzelschritten. Das Gleichungssystem (11.4) kann im Fall |bc| < 1 auch
durch ein etwas anderes lterationsverfahren gelost werden.

Hat man namlich aus der ersten der Gleichungen (11.5) den Wert z,, bestimmt, so kann
man in der zweiten Gleichung bei der Berechnung von v, an Stelle von z,,_1 bereits
den verbesserten Wert x,, benutzen, d. h. an Stelle von (11.5) die Iterationsvorschrift

Tp = byn—l +p ) Yn = CTp — (¢ (119)
verwenden, bei der man mit einem einzigen Startwert 3y auskommt. Dieses Verfahren

heiBt ein Einzelschrittverfahren.

Um die lterierten x,,, vy, geschlossen angeben zu konnen, eliminieren wir aus den Glei-
chungen (11.9) die Iterierte x,,, wobei die Gleichung

Yn = cbyn-1 + (cp — q) (11.10)
entsteht. Diese Rekursionsformel fiir y,, ist dieselbe wie die aus (11.6) hervorgehende
fir yo,,; somit kénnen wir aus (11.7) die Lésung

p—4q cp—4q

= - be)" 11.11

Yn 1—bc+<y0 l—bc)(c) ( )

entnehmen. Aus der ersten der Gleichungen (11.9) folgt hiermit nach kurzer Zwischen-
rechnung

p—>bg 1 <ﬁ cp — (Z:)
" PAC be)" 11.12
=T e T o\ T T ) (b0 (11.12)
(vgl. Abb. 11).
’ x=by+p
Yo
Y2
[
Yo -——-1—1-
;;% i gl o
o "
¥ [_' x O S T et
Abb. 11 X2 % %% XX Xs X3 X P
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3.12 Fehlerabschatzungen

Da die GroBenordnung des Fehlers zwischen den Iterierten und dem Fixpunkt (11.3)
mit @ = d = 1 durch die Potenz (bc)" bestimmt wird, zeigt ein Vergleich mit den
vorhergehenden Ergebnissen (11.7), (11.8), dass zumindest bei diesem Beispiel das
Gesamtschrittverfahren im wesentlichen die doppelte Anzahl von lterationsschritten
benotigt, um dieselbe Genauigkeit wie beim Einzelschrittverfahren zu erreichen.

Nichtlineare Gleichungen. Die vorhergehenden Uberlegungen dienten nur als Muster-
beispiel fiir die iterative Losung von Gleichungssystemen mit mehreren Unbekannten.
Hat man es an Stelle von (11.1) mit einem nichtlinearen System zu tun, so stehen
namlich solche geschlossenen Losungsformeln wie (11.3) nicht zur Verfigung, wahrend
die Iterationsverfahren auch dann anwendbar bleiben. Denken wir uns das System von
vornherein auf die iterationsfahige Form

a::g(:ﬁ,y) g y:h(l’,y) (1113)

gebracht, wobei g und h zwei bekannte Funktionen sind, so lautet das lterationsver-
fahren in Gesamtschritten

Ty = g(xn—h yn—l) ) Yn = h(xn—l, yn—l) (1114)

und das lterationsverfahren in Einzelschritten

xn - g(xn—la yn—l) 9 yn — h<xn, yn—l) (1115)

Bei nichtlinearen Funktionen g, h wird man die lterierten x,,, y,, kaum wie im vorherge-
henden Fall geschlossen angeben kénnen. Ihre Berechnung mit Hilfe eines Automaten
bietet jedoch keine Schwierigkeiten.

Es sei noch erwahnt, dass man die vorhergehenden Betrachtungen auch auf Gleichungs-
systeme mit mehr als zwei Gleichungen und Unbekannten tbertragen kann.

Aufgaben. Unter der Voraussetzung bc = 1 beweise man:
21. Im Fall p # bq ist das System (11.4) unlosbar.

22. Im Fall p = bq hat das Lésungspaar z, y von (11.4) die Form = = 2* + cyxg, y =
y* + coyo, wobei z*, y* ein spezielles Losungspaar, g, 1o ein nichttriviales Losungspaar
des zugehorigen homogenen Systems mit p = ¢ = 0 und ¢ eine beliebige Konstante

ist (vgl. § 7).

3.12 Fehlerabschatzungen

In den vorhergehenden drei Paragraphen haben wir lterationsverfahren betrachtet, bei
denen sich die lterierten x,, einer gesuchten Zahl x schrittweise annahern. Fir die
Anwendungen ist es wichtig, den Fehler |z, — x| abzuschatzen und nach Méoglichkeit
ein n zu berechnen, fiir das der Fehler eine zulassige Genauigkeitsschranke € > 0 nicht
ubersteigt. Haufig haben Fehlerabschatzungen die Form

|z, — x| < cq" (12.1)
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3.12 Fehlerabschatzungen

wobei ¢ eine positive Konstante ist und ¢ eine Konstante mit
0<g<1 (12.2)
In diesem Fall konnen wir die gewiinschte Genauigkeitsaussage
|z, — x| <e (12.3)

garantieren, sobald n die Ungleichung cq¢™ < ¢ oder ¢/e < (1/q)" erfiillt.
Durch Logarithmierung (mit einer beliebigen Basis groBer als 1) folgt hieraus, dass die
Ungleichung (12.3) fiir jede natirliche Zahl n mit

fu—

™0

0g
0g

<n (12.4)

—

Q=

erfillt ist.
Beispielsweise erhalten wir im Fall ¢ = 12, ¢ = 1/4, ¢ = 10~ bei Verwendung von
Zehner-Logarithmen wegen

log(12-10%) _ 4,079
logd 0,602

~ 6,775

dass (12.3) fiir n = 7 erfillt ist, da wir n natirlich so klein wie méglich wahlen werden.
Ist (12.1) mit einem kleineren ¢ oder mit einem kleineren ¢ erfiillt, so kommt man im
allgemeinen mit noch weniger lterationsschritten n aus.

Bei den vorhergehenden Beispielen (9.7), (10.5) und (11.12) sieht man sofort, dass
eine Fehlerabschatzung der Form (12.1) mit ¢ = |b|, |a| bzw. |bc| vorliegt, falls auch
(12.2) erfillt ist. Im Fall der allgemeinen Fixpunktgleichung (10.2), d. h.

r=g(x) (12.5)
mit dem zugehorigen Iterationsverfahren (10.3), d. h.

Ty, = g(Tp_1) (12.6)

gelangen wir zu der Fehlerabschatzung (12.1), wenn die Funktion ¢ fiir beliebige 2/, x”
einer Lipschitz-Bedingung

g(2") — g(2")] < gla" — 2" (12.7)

genligt, bei der die Lipschitz-Konstante ¢ die Ungleichung (12.2) erfiillt. Es gilt namlich
der folgende

Approximations- und Eindeutigkeitssatz. Es sei g eine Funktion mit ( 12.7) und (12.2).
Dann gilt tiber ihre Iterierten (12.6) bei hinreichend groBen n und (iber ihre Fixpunkte:

1°. Bei beliebigen Startwerten kommen sich die lterierten zweier Iterationsfolgen beliebig
nahe.
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3.12 Fehlerabschatzungen

2°. Bei beliebigem Startwert erfiillen die Iterierten die Gleichung (12.5) beliebig genau.
3°. Ein Fixpunkt von g lasst sich durch die lterierten beliebig genau approximieren.
4°. Die Funktion g besitzt hochstens einen Fixpunkt.

Beweis. 1°. Wir betrachten neben (12.6) eine zweite Iterationsfolge

Zn = 9(Zn-1) (12.8)
Durch Subtraktion von (12.6) ergibt sich z, — z,, = g(z,-1) — g(z,—1). Die Lipschitz-
Bedingung (12.7) lautet speziell fir 2’ = z, 1, 2" =z,

|g<zn—1> - g(xn—lﬂ S C.7’2:71—1 - xn—l‘

so dass wir
|Zn - mnl S C]|Z7L71 - xnfll

erhalten. Hieraus folgt firn = 1,2, ...
|21 — 21| < qlzo — mo|, |22 — x2| < qlz1 — 11| < q2|zo — Tp|, ...
und daher nach n Schritten
|2 — xn| < ¢"[20 — o (12.9)
Wegen (12.2) ist somit die erste Teilbehauptung bewiesen.

2°. Wahlen wir als Startwert von (12.8) zp = 1 = g(x0), so folgt rekursiv 2z, = z, 11 =
g(xy,). Damit erhalten wir als Spezialfall von (12.9)

|g(xn) o xn' S qn|x1 - SUO| (1210)

womit nach dem zuvor Gesagten die zweite Teilbehauptung bewiesen ist.

3°. Ist zyp = z ein Fixpunkt von g, so gilt wegen (12.5) und (12.8) z, = z fir alle n.
In diesem Spezialfall lautet (12.9)

|z — x| < ¢" |7 — 20| (12.11)
und dies ist nichts anderes als (12.1) mit ¢ = |x—xy|, d. h. unsere dritte Teilbehauptung.

4°. Ist jetzt auch zg = z ein Fixpunkt von g, so gilt x,, = z, und (12.11) geht firn =1
in
|z — 2| < qlx — 2|

oder (1 — q)|x — z| < 0 iber. Wegen (12.2) ist 1 — g > 0, so dass diese Ungleichung
nur fir z = z bestehen kann. Dies bedeutet aber die Eindeutigkeit des Fixpunktes.

Wie aus dem Beweis hervorgeht, ist es nicht nétig, dass die Lipschitz-Bedingung (12.7)
fur alle reellen Zahlen 2/, 2" erfiillt ist. Vielmehr geniigt es, wenn sie fiir alle Zahlen
eines Intervalls erfiillt ist, in dem die Iterierten und der gesuchte Fixpunkt liegen.
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3.12 Fehlerabschatzungen

Aus (12.11) ist ersichtlich, dass die Annaherung der x,, an x um so besser ist, je naher
der Startpunkt z bei z gewahlt wird bzw. je kleiner g in (12.7) ist. Im Satz wird nichts
dariiber ausgesagt, ob ein Fixpunkt existiert. Fiir praktische Anwendungen ist aber die
Aussage 2° vollig ausreichend.

Als Beispiel betrachten wir die Funktion g(t) = £ + £ mit a > 0, die zu der Fixpunkt-
gleichung (9.10) gehort. Wegen

ole') = gla) = (5 = s ) & = 2"

ist die Lipschitz-Bedingung (12.7) mit ¢ = 1/2 erfiillt, wenn wir die Veranderlichen
o', x” groBer als \/a/2 wahlen, da dann

I 1 a<1 a <1
2 2 2% 2 21" 2

Jist. Bei diesem Beispiel lasst sich sogar ¢ beliebig klein wahlen, wenn nur 2/, 2" hin-
reichend nahe bei \/a liegen.

Die vorhergehenden Uberlegungen lassen sich auch auf den Fall von § 11 iibertragen,
wenn man fiir Funktionen zweier Veranderlicher Lipschitz-Bedingungen der Form

l9(2"y") — 92", y")| < @1l — 2" + qaly’ — ¥
verwendet und die Lipschitz-Konstanten ¢;, g2 passend einschrankt.

Aufgaben. 23. Man zeige, dass die zur Iterationsvorschrift (10.7) gehdrende Funktion
g(t) = —(3t3+131t3+47) /239 im Intervall —1/2 < 2/, 2" < 0 der Lipschitz-Bedingung
(12.7) mit ¢ = 134/239 geniigt.

24. Man beweise: Besitzt ¢(t) die Lipschitz-Konstante ¢ und h(t) die Lipschitz- Kon-
stante p, so erfillt die zusammengesetzte Funktion g(h(t)) eine Lipschitz- Bedingung
mit der Lipschitz-Konstanten pg.
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4.13 Das Konstruktionsprinzip

4 Diskrete Modelle

Bei den praktischen Anwendungen der Mathematik hat man in der Regel diskrete Mess-
werte zu diskreten Endergebnissen zu verarbeiten. In komplizierteren Fallen geschieht
dies mit Hilfe eines kontinuierlichen mathematischen Modells, das zur Bearbeitung auf
einem Rechenautomaten dann nachtraglich diskretisiert wird. Viel natirlicher ist es
jedoch, sofort ein diskretes mathematisches Modell heranzuziehen, d. h. wie in dem
Schema der Abb. 12 vorzugehen.

diskrete | diskretes diskrete
MeDwerte Modell Endergebnisse

Abb. 12

Dies hat dann gleichzeitig den Vorteil, dass man kaum Hilfsmittel aus der hoheren
Mathematik benotigt. Als Nachteil muss man allerdings in Kauf nehmen, dass diskrete
Modelle nicht eindeutig bestimmt sind. Andererseits lasst sich die vorhandene Mehr-
deutigkeit ausnutzen, um zusatzliche Anforderungen zu stellen und zu erfiillen.

In den nachsten drei Paragraphen wollen wir ein diskretes Modell der Mechanik vor-
stellen, das nach einem einheitlichen Konstruktionsprinzip aufgebaut, symmetrisch und
besonders einfach ist. Zu diesem Modell gelangt man, wenn man den kontinuierli-
chen Zeitablauf diskretisiert, das Geschehen also nur in gewissen diskreten Zeitpunkten
to,t1,ta, ... abtastet (Abb. 1).

Im einfachsten Fall wird man die Zeitspanne At = t,,—t,_1 zwischen zwei benachbarten
Zeitpunkten von n unabhangig wahlen, so dass dann die Punkte

ti =t + At, ta=1to+2At, t3=1ty+ 3At,..

aquidistant sind, wir wollen uns aber nicht von vornherein auf diesen Fall einschran-
ken. Um das Wesentliche herausarbeiten zu kénnen, gehen wir jedoch nur auf den
eindimensionalen Fall ein, d. h., wir betrachten nur geradlinige Bewegungsablaufe und
Krafteinwirkungen. Der Kiirze wegen lassen wir dabei auch Dimensionsfragen auBer
acht. Die Darstellung lehnt sich eng an [5] an.

In dem letzten Paragraphen des Abschnitts behandeln wir ein diskretes Modell der
Wahrscheinlichkeitstheorie, deren Grundlagen in dem Buch B. W. Gnedenko und A. J.
Chintschin [10] dargestellt werden.

4.13 Das Konstruktionsprinzip

Zwischen den mechanischen GroBen Zeit t, Weg s, Geschwindigkeit v, Beschleunigung
a, Kraft F' und Arbeit W bestehen im einfachsten Fall die Grundgleichungen

s=wvt, v=at, W =Fs (13.1)

Dabei ist vorauszusetzen, dass die ersten Faktoren auf den rechten Seiten konstant
sind, wahrend die (ibrigen GroBen sich andern konnen.
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Lassen wir ¢ die diskreten Zeitpunkte t,,, n = 0,1, 2, ..., durchlaufen, so hangen auch
s, v und W von n ab, und wir erhalten an Stelle von (13.1) die Gleichungen

Sy = vtp, v, =at,, W,=Fs, (13.2)

Die erste Gleichung beschreibt eine gleichformige Bewegung bei konstanter Geschwin-
digkeit v, die zweite eine gleichféormig beschleunigte Bewegung bei konstanter Beschleu-
nigung a und die dritte die Arbeit langs des Wegs s,, bei einer konstanten Kraft F.
Da n variabel ist, kdnnen wir die Gleichungen (13.2) auch mit n — 1 an Stelle von n
aufschreiben, d. h.

Sp—1 = Ulp—1, Up—1 = Glp_1, Wi1=Fsyp
und wir erhalten durch Differenzbildung

Sp —Spn—-1 = U(tn_tn—l)a Up —Up—1 = a(tn_tn—l)y Wn_Wn—l = F(S_n_sn—l

(13.3)
firn = 1,2,3,... Wahrend aus den Gleichungen (13.2) folgt, dass fiir ty = 0 auch s,
vy sowie Wy verschwinden, brauchen letztere Anfangswerte in den Gleichungen (13.3)
nicht zu verschwinden, sondern stehen zur Anpassung an eine konkrete Aufgabenstel-
lung zur Verfligung.

Wir missen uns jetzt entscheiden, wie die Grundgleichungen (13.3) zu verandern sind,
wenn v, a und F' ebenfalls von der Zeit ¢,, und damit von n abhangen. Das einfachste
Modell erhalten wir, wenn wir diese GroBen einfach durch ihren n-ten Wert v,,, a,, bzw.
F,, ersetzen. Ebenso einfach ware es, den (n — 1)-ten Wert v,,_1,a,—1 bzw. F,,_; zu
wahlen.

In beiden Fallen wiirden aber die Gleichungen unsymmetrisch werden. Das einfachste
symmetrische Modell entsteht, wenn wir die arithmetischen Mittel £ (v, +vp—1), 3(an+

2
ap-1) bzw. %(F —n+ F,—1) wahlen, d. h. die Gleichungen (13.3) durch

1

Sp — Sp_1 = i(vn + V1) (tn — tno1) (13.4)
1
Uy — U] = i(an + ap1)(tn — th-1) (13.5)
1
W, —Wn,_1 = §<Fn + Fn_l)(sn — Sn_1) (136)

ersetzen. Sind die Zeitspannen At,, = t,, —t,,_1 klein, so stellen diese Gleichungen eine
gute Annaherung an die entsprechenden Gleichungen der klassischen Mechanik dar.
Multiplizieren wir die Gleichungen (13.4) und (13.5) "iber Kreuz", so erhalten wir
wegen der binomischen Formel

(Un + V1) (Vn — V1) = UEL - U%—l

nach Kiirzung des Faktors %Atn die Beziehung

UTQL — vifl = (an + ap—1)(Sn — Sp—1) (13.7)
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4.13 Das Konstruktionsprinzip

auf die wir weiter unten noch zurickkommen werden.

Mit dem Ubergang von den Gleichungen (13.3), in denen ein konstanter Faktor auftritt,
zu den entsprechenden Gleichungen (13.4) bis (13.6) mit veranderlichem Faktor ha-
ben wir ein einheitliches Grundprinzip zur Verallgemeinerung elementarer Gleichungen,
durch das unser diskretes Modell weitgehend bestimmt ist. Wie wir aber gleich sehen
werden, konnen wir dieses Prinzip keineswegs schrankenlos anwenden.

Erstens gibt es namlich Grundgleichungen der Mechanik wie
Jp =mu, K, = -mv? (13.8)

in denen m die Masse eines mit der Geschwindigkeit v,, im Zeitpunkt ¢,, sich bewegenden
Massenpunktes, J,, den Impuls und K, die kinetische Energie dieses Massenpunktes
bezeichnen, die auch fiir eine veranderliche Masse in ganz analoger Form gelten:

1 2

Jp, = myuu, , K, =-m,v

. (13.9)

n

In diesem Fall wiirde unser Modell erheblich von der klassischen Mechanik abweichen,
wenn wir die Gleichungen (13.8) nicht durch (13.9), sondern durch Anwendung des
vorhergehenden Konstruktionsprinzips auf veranderliche Massen (ibertragen wiirden.

Zweitens konnte es sein, dass eine gedankenlose Anwendung des Konstruktionsprinzips
dadurch zu einem Widerspruch fiihrt, dass eine physikalische GréBe in mehreren Glei-
chungen auftritt und durch die Ubertragung vom konstanten auf den variablen Fall bei
diesen Gleichungen unterschiedliche Ergebnisse entstehen. Um hierfiir ein Beispiel zu
geben, betrachten wir das Newtonsche Grundgesetz

F, = ma, (13.10)

das in dieser Form fiir konstante Massen m gilt. Aus (13.8) und (13.5) folgt

m
Jn - Jn—l - m(vn - Un—l) — E(an + an—l)(tn - tn—l)

so dass wir unter Beriicksichtigung von (13.10)
1
Jp — Jpo1 = §(Fn + Fn—l)(tn — tn—l) (1311)

erhalten. Diese Gleichung ist nichts anderes als die Verallgemeinerung der fiir eine
konstante Kraft F' = ma wegen (13.2) und (13.8) giiltigen Beziehung

Jn = Ft,

auf den variablen Fall mit Hilfe unseres Konstruktionsprinzips. Im vorliegenden Fall
haben wir es aber nicht willkiirlich angewandt, sondern (13.11) aus den vorhergehenden
Gleichungen hergeleitet.
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Ist auch die Masse m von der Zeit ¢, abhangig, so folgt aus (13.9) und (13.11)

1
My Uy, — My 1Vp—1 = §(Fn + Fo1)(ty — th-1) (13.12)

Diese Gleichung haben wir als Verallgemeinerung des Newtonschen Grundgesetzes auf
den Fall einer variablen Masse anzusehen, so dass wir im vorliegenden Fall nicht auch
noch auf (13.10) unser Konstruktionsprinzip anwenden konnen.

Veranderliche Massen kommen nicht nur in der Relativitatstheorie vor, sondern bei-
spielsweise auch beim Start einer Rakete, die durch die Verbrennung des Treibstoffs
laufend an Masse verliert.

Aufgaben. Man lése die Rekursionsformel (13.4)
25. bei gegebenen v, t, und sg nach s,, auf,
26. bei gegebenen s,,,t, und vy nach v, auf.

4.14 Erhaltungssatze

Das im vorhergehenden Paragraphen zur Aufstellung der (verallgemeinerten) Grund-
gleichungen unseres diskreten Modells der Mechanik benutzte Konstruktionsprinzip ist
scheinbar willkirlich ausgewahlt und konnte auch durch andere Konstruktionsvorschrif-
ten ersetzt werden. Wie wir aber gleich sehen werden, gelten in unserem Modell wichtige
Erhaltungssatze der Mechanik, so dass es allen anderen Modellen vorzuziehen ist, in
denen solche Satze nicht gelten.

Umwandlung der Arbeit. Eliminieren wir aus der Gleichung (13.6) fiir die Arbeit mit
Hilfe des Newtonschen Grundgesetzes (13.10) die Kraft, so erhalten wir

Wn - Wn—l = ﬂ;(an + an—l)(sn - Sn—l)

Hieraus folgt wegen der elementaren Umformung (13.7)

m 2

Wy —=Wy1 = 5(%21 — Up_y)
und unter Beachtung der Gleichung (13.8) fiir die kinetische Energie
Wy, —W,_1=K, — K,
Durch rekursive Anwendung dieser Gleichung finden wir (vgl. § 4)
W, —Wy =K, — Kj (14.1)

und diese Gleichung besagt, dass beider Beschleunigung eines Massenpunktes durch
eine Kraft die im Zeitintervall von t; bis t,, geleistete Arbeit gleich dem Zuwachs an
kinetischer Energie ist.

Energieerhaltungssatz. Eine Kraft heiBt konservativ, wenn sie (in dem hier betrachteten
eindimensionalen Fall) nur von dem Ort s, aber nicht von der Zeit ¢,, abhangt. Dies
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ist in der Mechanik immer dann der Fall, wenn kein Warmeaustausch stattfindet, wenn
also die Reibung nicht in Betracht gezogen wird.

Haben wir es mit einer konservativen Kraft zu tun, so ist der negative Wert der Arbeit
(bis auf eine additive Konstante, auf die es nicht ankommt), gleich der potentiellen
Energie U, d.h.

U,=-W, (14.2)

da umgekehrt die Arbeit durch Verringerung der potentiellen Energie zuriickgewonnen
werden kann. Die potentielle Energie wird auch kurz Potential genannt.

Eliminieren wir in (14.1) die Arbeit mit Hilfe von (14.2), so erhalten wir nach einer
Umstellung den Energieerhaltungssatz

K, + U, = Ko+ Uy (14.3)

d. h., bei konservativen Kraften ist die Summe aus kinetischer und potentieller Energie
konstant.

Impulserhaltungssatz. Wir betrachten jetzt neben der Masse m mit der Geschwindigkeit
v, noch eine weitere Masse m* mit der Geschwindigkeit v. Auf m moge von m* her
die Kraft F,, wirken, so dass nach dem Prinzip der Gleichheit von actio et reactio (lat.:
Wirkung und Gegenwirkung) auf m* von m her die Kraft F' = —F,, wirkt (Abb. 13).

A

mﬁv s
b 13 NS 7

Solche zwischen zwei Massen wirkende Krafte heiBen innere Krafte. Dabei ist es gleich-
gultig, ob die Kraftlibertragung in direkter Form durch eine elastische Verbindung oder
durch Fernwirkung iiber ein Kraftfeld erfolgt wie bei der Gravitation oder den elektro-
magnetischen Kraften. Wegen (13.11) gilt dann fiir die zugehdrigen Impulse
Jr—J5=—(Jn — Jo)

n

(vgl. Aufgabe 25), so dass nach einer Umstellung der Impulserhaltungssatz
In + J; = Jo+ Jg

oder wegen (13.8)
muy, +m*u, = muy + m*u; (14.4)

entsteht, der besagt, dass unter den getroffenen Annahmen der Gesamtimpuls (als
Summe der Einzelimpulse) zeitlich konstant bleibt.

Schwerpunktsatz. Es sei der Anfangsimpuls mvy + m*v} des aus den Massen m und
m* bestehenden Systems gleich Null. Dann verschwindet der Gesamtimpuls auch fiir
alle folgenden Zeitpunkte, wenn die Massen des Systems wie zuvor nur durch innere
Krafte untereinander in Wechselwirkung stehen, aber nicht durch zusatzlich duBere
Krafte beeinflusst werden. Insbesondere gilt also

mu, +m*v, = mu,—1 +mv,_; =0
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und daher auch
m(vy, + vp—1) + m* (v +vr 1) =0

Multiplizieren wir diese Gleichung mit %(tn —ty—1), so folgt durch zweimalige Anwen-
dung von (13.4)
m(sy, — Sp—1 +m*(s;, —s: 1) =0

Hieraus ergibt sich durch Umstellung

ms, +m*s, =ms,_1 +m*s;_,
und durch rekursive Auflosung
msy +m*s, =msg+m*s; (14.5)
Bekanntlich ist durch die Gleichung
(m+m*)z =ms+m"s* (14.6)

der gemeinsame Schwerpunkt = der Massen m und m™* definiert, sofern sie an den
Stellen s bzw. s* liegen (Abb. 14).

RN

Abb. 14 U

Folglich beinhaltet (14.5) den Schwerpunktsatz der Mechanik, dass bei einer Bewegung
zweier Massenpunkte, die nur durch innere Krafte bewirkt wird, die Lage des Schwer-
punkte sich nicht andert, wenn der Anfangsimpuls gleich Null ist, die Massen sich also
beispielsweise am Anfang in der Ruhelage befinden.

Aufgaben. Fiir ein System aus r Massenpunkten m*) (k=1,2,...,r), zwischen denen
nur innere Krafte Fj; von m® auf m® (k,l=1,2,...,7) wirken, formuliere man
27. den Impulserhaltungssatz, 28. den Schwerpunktsatz.

4.15 Anwendungen

Nachdem wir die wichtigsten Grundgleichungen der diskreten Mechanik aufgestellt ha-
ben, wollen wir jetzt an Hand von zwei einfachen Beispielen zeigen, wie mit ihrer Hilfe
mechanische Aufgaben gelost werden konnen.

Auf weitere Beispiele werden wir in § 24 zuriickkommen.

Der Wurf. Ein als Massenpunkt gedachter Korper werde zur Zeit tp = 0 am Ort s = 0
mit der Anfangsgeschwindigkeit vg > 0 senkrecht nach oben geworfen. Nach dem
Abwurf moge auf den Korper nur die Schwerkraft mit der konstanten Erdbeschleunigung
g wirken, wahrend vom Luftwiderstand und allen sonstigen moglichen Einwirkungen
abgesehen werden soll.

Bei senkrecht nach oben gerichteter s-Achse haben wir zu beriicksichtigen, dass die
Schwerkraft in die entgegengesetzte Richtung wirkt, also die Beschleunigung a,, = —g
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fur alle n lautet. Damit erhalten wir aus (13.5) die Gleichung v, —v,—1 = —g(t, —tn-1,
aus der durch Summation (vgl. § 3) wegen ¢, =0

Up = Vg — gtp (15.1)
hervorgeht. Setzen wir diesen Ausdruck fiir v, in (13.4) ein, so folgt

g
Sp — Sp—1 = vo(ty, — tn—1) — 5(15721 —t2_4)

und hieraus ergibt sich durch Summation wegen sp = 0,tp =0

Sn = Vot — gti (15.2)
Man beachte, dass beide Ergebnisse nur von t,,, nicht aber von der Wahl der vorherge-
henden Zeitpunkte abhangen. Die Gleichung (15.1) besagt, dass die Geschwindigkeit
linear abnimmt, wobei sie zum Zeitpunkt ¢, = vy/g verschwindet und danach ihre
Richtung andert.
Die Gleichung (15.2) besagt, dass der Weg eine quadratische Funktion der Zeit ist,
wobei die maximale Hohe s zur Zeit t,, = vy/g erreicht wird und den Wert

besitzt (Abb. 15).
Zur Zeit t, = 2vg/g ist s, = 0 und damit der Korper wieder am Ausgangspunkt
angelangt.

Der harmonische Oszillator. Ein Korper mit der Masse m moge an einer elastischen
Feder hangen (Abb. 16). Wird der Kérper aus der Ruhelage s = 0 um den Weg s
entfernt, so lautet die riicktreibende Kraft

F=—fs (15.4)

wobei f die Federkonstante ist, die von der Art und von dem Material der Feder
abhangt; f ist positiv, da die Kraft stets zur Ruhelage hin gerichtet ist.

%

Sh
%
]

? t s

Abb. 15,16

Es soll jetzt die Bewegung des Korpers in den aquidistanten Zeitpunkten ¢, = nAt
berechnet werden, wenn er sich zum Zeitpunkt ¢y = 0 in der Ruhelage befindet und
ihm durch einen StoB die Anfangsgeschwindigkeit vy erteilt wird.
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4.15 Anwendungen

Durch Elimination der Kraft aus dem Newtonschen Grundgesetz (13.10) und der Glei-
chung (15.4) zum Zeitpunkt ¢,, folgt

ma = —fs,

Mit Hilfe dieser Gleichung lasst sich aus (13.5) die Beschleunigung eliminieren, wobei

Up — Upoq = _Q{n(sn + sp,-1) At (15.5)

und nach einer Indexverschiebung

Upn—1 — Un—-2 = _%(Sn—l + 3n—2>At

entsteht. Durch Addition der beiden vorhergehenden Gleichungen folgt
Up — Up—g = —i(sn + 2851 + Sp—2)At (15.6)
2m

Andererseits ergibt sich aus der Gleichung (13.4), d. h.

1
nach Indexverschiebung die Gleichung
1
Sp—1 — Sn—2 = §<'Un71 + vn72>At

und durch Differenzbildung aus diesen beiden Beziehungen

1
Sp — 281 + Sp_9 = i(vn — Up_2) At

und daher unter Beriicksichtigung von (15.6)

Sp — 2871 + Sp_9 = —4{71(3,1 +25n — 1+ 5,_9)(At)?

so dass wir jetzt auch die Geschwindigkeit eliminiert haben. Mit der Abkiirzung

p= i(Alt)2 (15.8)

 4m
lasst sich diese Gleichung in der Form
(L4 p)sn —2(1 = p)sp—1+ (1 + p)sn—2 =10

oder
1—p

Sp—1+ Sp—o2 =0 15.9
T 2 (15.9)

Sy — 2
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schreiben. Zur Berechnung des Anfangswertes s; benutzen wir jetzt die Gleichungen
(15.5) und (15.7) fiir n = 1, die wegen sy = 0

fAt At
v — Uy = —%51 ) §1 = 7(1)1 + )

lauten. Hieraus entsteht durch Elimination von v; mit der Abkiirzung (15.8)

At
51 = — (15.10)
I+p
Wegen p > 0 ist
T
—| <1
I+p
so dass die Gleichung (15.9) die Gestalt (8.6) mit
1—p 4m— f(At)?
= = 15.11
Cos w [T p dm 1 f(A1)? (15.11)
besitzt. Wahlen wir 0 < w < 7, so lasst sich der Anfangswert (15.10) wegen
. 2,/p
S =vV1—cos2w=—/(1+p)2—(1-p2=_"Y"
nw =V = VP = (L= e =
auch in der Form A
s1= — 0 ginw = \/mvo sinw (15.12)
2./p f

,schreiben. Damit lautet die Lésung von (15.9) mit den Anfangswerten sy = 0 und

(15.12) nach (8.7)
Sp = \/71)0 sinwn (15.13)

Der Korper vollfithrt also eine harmonische Schwingung um die Ruhelage. Nach (15.11)
ist zwar die Frequenz dieser Schwingung von der gewahlten Zeitdifferenz At abhangig,
aber die Amplitude ist von dieser Wahl unabhangig.

Aufgaben. 29. Man zeige, dass (15.13) fiir hinreichend kleine At naherungsweise durch
m . ft
Sp A (| 7 vosiny/—t,
7

30. Man berechne die Bewegung des harmonischen Oszillators, wenn der Korper sich
zur Zeit tg = 0 in der Anfangslage so # 0 befindet und die Anfangsgeschwindigkeit
vo = 0 ist.

ersetzt werden kann.
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4.16 Zuverlassigkeit von Maschinen

Ein Ereignis heiBt zufallig, wenn es zwar kausal bedingt ist, aber nicht mit Notwendigkeit
eintreten muss. Als MaB fir die Sicherheit des Eintretens eines zufalligen Ergebnisses
hat man die Wahrscheinlichkeit p mit 0 < p < 1 eingefiihrt.

Einem Ereignis, das wahrscheinlicher ist als ein anderes, wird dabei eine groBere MaB-
zahl zugeordnet. Die Grenzfalle sind das unmégliche Ereignis mit der Wahrscheinlichkeit
p = 0 und das sichere Ereignis mit der Wahrscheinlichkeit p = 1.

Fihrt man eine Reihe von n Versuchen unter gleichbleibenden Bedingungen durch, bei
denen ein bestimmtes Ereignis F eintreten kann, so hat die Aussage "die Wahrschein-
lichkeit des Ereignisses F ist p" die konkrete Bedeutung, dass F in dieser Versuchsreihe
ungefahr np-mal eintritt, falls n hinreichend groB ist.

Fir die Wahrscheinlichkeitsrechnung sind die folgenden beiden Satze von grundlegen-
der Bedeutung.

Additionssatz. Sind p; und po die Wahrscheinlichkeiten zweier sich ausschlieBender Er-
eignisse I, E5, also zweier Ereignisse, die nicht gleichzeitig eintreten konnen, so lautet
die Wahrscheinlichkeit p fiir das Ereignis "E; oder Ej tritt ein", also die Wahrschein-
lichkeit dafiir, dass wenigstens eines der Ereignisse F1, E5 eintritt,

P =p1+Dp2 (16.1)

Multiplikationssatz. Ist F; ein Ereignis mit der Wahrscheinlichkeit p; und tritt das
Ereignis )5 unter der Bedingung, dass F; bereits eingetreten ist, mit der Wahrschein-
lichkeit p auf, so lautet die Wahrscheinlichkeit p fiir das Ereignis "sowohl E tritt ein als
auch FE,", also die Wahrscheinlichkeit dafiir, dass beide Ereignisse E7, Fy gleichzeitig
eintreten,

P = pip2 (16.2)
Eine einfache Folgerung aus dem Additionssatz bezieht sich auf

Das komplementare Ereignis. Zu einem Ereignis E definiert man als komplementares
Ereignis E das Ereignis "nicht E". Nach dem Additionssatz lautet die Wahrscheinlich-
keit p fir &

p=1-p (16.3)
da £ und E unvereinbar sind und "E oder E" das sichere Ereignis ist.

Durch wiederholte Anwendung von (16.1) ergibt sich weiterhin:

Die Laplacesche Formel. Sind bei einem Versuch genau n sich gegenseitig ausschlieBen-
de Ereignisse F1, ..., E,, moglich, die alle gleichwahrscheinlich sind, werden von diesen
m bestimmte Ereignisse ausgewahlt und ist £ das Ereignis dafiir, dass genau eines

dieser m Ereignisse eintritt, so lautet die Wahrscheinlichkeit p fir £
m

p= - (16.4)

Als Anwendung der Wahrscheinlichkeitstheorie wollen wir die Zuverlassigkeit einer ein-
satzbereiten Maschine untersuchen, d. h. ihre Eigenschaft, einwandfrei zu arbeiten.
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4.16 Zuverlassigkeit von Maschinen

Fallt die Maschine aus, so soll sie durch eine Reparatur wieder in den urspriinglichen
einsatzbereiten Zustand versetzt werden.

Vom Zeitpunkt ¢y = 0 an beobachten wir die Maschine in den Zeitpunkten ¢,, = nAt
mit aquidistantem Abstand At = t,,—t,,_1. Unter der Voraussetzung, dass die Maschine
im Zeitpunkt t¢,,_; arbeitet, sei p die Wahrscheinlichkeit dafiir, dass die Maschine auch
im Zeitpunkt ¢,, noch arbeitet.

Unter der Voraussetzung, dass die Maschine im Zeitpunkt £, _1 nicht arbeitet, sei ¢ die
Wahrscheinlichkeit dafiir, dass die Maschine auch im Zeitpunkt ¢, noch nicht wieder
arbeitsbereit ist.

Dabei setzen wir voraus, dass die soeben definierten Wahrscheinlichkeiten p und ¢ nur
vom Zeitintervall At, aber nicht von dem speziellen Zeitpunkt ¢, 1 abhangen. Dies
bedeutet insbesondere, dass wir die Stillstandszeiten, in denen die Maschine weder ar-
beitet noch repariert wird, aus der Betrachtung ausschlieBen.

Weiterhin sei p,, die Wahrscheinlichkeit dafiir, dass die Maschine im Zeitpunkt ¢,, arbei-
tet, dann ist nach (16.3) die Wahrscheinlichkeit dafir, dass die Maschine im Zeitpunkt
t,, nicht arbeitet, gleich 1 — p,,. Wir wollen uns jetzt liberlegen, dass p,, die Lésung des
Anfangswertproblems

pn=0p+q¢—p1+(1—-¢q), p=1 (16.5)

ist. Die Anfangsbedingung py = 1 ergibt sich aus der Voraussetzung, dass die Maschine
im Zeitpunkt ¢y arbeitet, pg also die Wahrscheinlichkeit fiir das sichere Ereignis ist. Das
Ereignis "die Maschine arbeitet im Zeitpunkt ¢,,_1 sowie im anschlieBenden Zeitintervall
bis t,," hat nach (16.2) die Wahrscheinlichkeit pp;,_1.

Das Ereignis "die Maschine arbeitet im Zeitpunkt t, 1 nicht, wird aber im anschlie-
Benden Zeitintervall bis ,, in den arbeitsbereiten Zustand versetzt" hat nach (16.2) die
Wahrscheinlichkeit (1 — ¢)(1 — p,—1).

Das Ereignis "die Maschine arbeitet im Zeitpunkt ¢," mit der Wahrscheinlichkeit p,
tritt ein, wenn eines der beiden zuvor genannten sich ausschlieBenden Ereignisse eintritt;
daher gilt nach dem Additionssatz

Pn=ppn-1+ (L —q)(1=pn—1)=(p+q—1)pp1+(1—q) (16.6)
was zu beweisen war.
Fir n = 1,2, 3 folgen aus der ersten Gleichung von (16.6) wegen py = 1 die Werte
pn=p, p=p+{1-q1-p
ps=p"+p(l=q)(1—p)+ (1 -q)(L—pp+(1-q)q(l-p)
wobei wir bei der Berechnung von p3 die Umformung
l—pp=(1-pp+q(l-p)

benutzt haben. Dieselben Werte kann man auch unter Beachtung des Additions- und
des Multiplikationssatzes aus dem Zustandsgraphen der Abb. 17 ablesen, bei dem A
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4.16 Zuverlassigkeit von Maschinen

"die Maschine arbeitet" und N "die Maschine arbeitet nicht" bedeutet. An den Kanten
wurden die Ubergangswahrscheinlichkeiten notiert, mit denen man die Wahrscheinlich-
keit des vorhergehenden Zustande multiplizieren muss, um die Wahrscheinlichkeit des
nachsten Zustande zu erhalten.

Abb.17 O 1 %z 3
Durch Spezialisierung von (5.9) mit y,, = pp, yo = 1

n+b1—a” b +1—a—bn
p 1—a 1—a 1—a

auf den vorliegenden Fall a = p+q — 1, b = 1 — g konnen wir die Lésung des
Anfangswertproblems (16.5) aber auch in der geschlossenen Form

1-— 11—
q n p

P — ) (16.7)

Pn
angeben. Aus 0 < p < 1und 0 < g < 1 folgt =1 < p+qg—1 < 1, so dass
der zweite Summand auf der rechten Seite von (16.7) beliebig klein wird (vgl. § 12).
Damit erhalten wir fiir hinreichend groBe n naherungsweise den von n unabhangigen
Wert p,, =~ k mit

l—gq

2+p+yq
der Bereitschaftskoeffizient genannt wird.
Die Aussage p, =~ k bedeutet, dass die Maschine in groBen Zeitrdumen etwa im k-
ten Teil des Zeitraums arbeitet. Aus diesem Grunde ist der Bereitschaftskoeffizient
eine wichtige Kennziffer fiir die Qualitdt der Maschine sowie fiir die Effektivitat der
Reparaturarbeit, und man hat in der Praxis durch geeignete MaBnahmen dafiir zu
sorgen, dass diese Kennziffer moglichst groB ist.

(16.8)

Im Fall p = ¢ hat der Bereitschaftskoeffizient den Wert p = 1/2. Eine VergroBerung
erreicht man, indem man p vergréBert oder wegen der Umformung
1—
p—1__ P
2—-p—yq

q verkleinert, was natirlich auch anschaulich véllig klar ist.
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4.16 Zuverlassigkeit von Maschinen

Aufgaben. 31. Man beweise: Die Wahrscheinlichkeit ¢, fiir das Ereignis "die Maschine
hat im Zeitraum von 0 bis ¢,, mindestens einen Ausfall" lautet ¢, = 1 — p", die Wahr-
scheinlichkeit fiir das Ereignis "die Maschine hat ihren ersten Ausfall im Zeitintervall

von t,_1 bis t," lautet p"~1 — p".

32. Man beweise und interpretiere die Gleichung ¢, — ¢ = (1 — Gim)@n—m flr beliebige
natirliche Zahlen m,n mit m < n.
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Zweiter Teil. GroBe Gleichungssysteme

Will man die vielschichtigen Zusammenhange, die in den Naturwissenschaften, der
Technik, der Okonomie oder der Landwirtschaft herrschen, mathematisch moglichst
genau erfassen, so muss man sie durch Systeme von vielen Gleichungen mit vielen Un-
bekannten beschreiben.

Mit der Auflésung von solchen groBen Gleichungssystemen wollen wir uns jetzt befas-
sen, wobei wir uns natirlich auf besonders Ubersichtliche Spezialfalle beschranken, die
aber schon einige wesentliche Erscheinungen erkennen lassen.

Theoretisch lassen sich die Losungsmethoden fiir zwei Gleichungen mit zwei Unbe-
kannten, die wir in § 11 kennengelernt haben, auch auf groBere Gleichungssysteme
ibertragen; dies ist beispielsweise in dem Buch K.-D. Drews [9] ausfiihrlich dargestellt
worden.

Bei der praktischen Durchfiihrung der Rechnungen treten aber eigentiimliche Schwie-
rigkeiten auf, die hauptsachlich daher kommen, dass bei den Zwischenrechnungen die
Rundungsfehler so stark anwachsen kénnen, dass ein vollig falsches Endergebnis ent-
steht. Aus diesem Grunde ist man gezwungen, neue Loésungsverfahren zu entwickeln,
die sich auch bei groBen Gleichungssystemen bewahren.

Im folgenden wollen wir vorwiegend auf Systeme der Form

a121 + 129 = fi
baz1 + agze + caz3 = fa
b3zy + agzg 4+ c3z4 = f3

bn_22N—3 + an—22N—2 + CN—22N—1 = [N_2
bn_1zn—2 +an—12N—1 + cN—12N = fn-1
bnzn—1+anzy = [N

von N Gleichungen mit N Unbekannten zy, 29, ..., 2,, eingehen, wobei a,, b,, ¢,,, f, fur
n =1,2,..., N vorgegebene reelle Zahlen sind (b; und cy treten zunichst noch nicht
auf) und N eine ebenfalls vorgegebene natiirliche Zahl groBer als 1 ist.

Die Besonderheit bei diesen Systemen besteht darin, dass in den einzelnen Gleichungen
nicht alle Unbekannten vorkommen, sondern hochstens drei mit benachbarten Indizes,
so das man sie auch tridiagonale Systeme nennt. Die Zahl N kann in der Praxis die
GroBenordnung von 100, 1000 oder auch 10000 haben.

Zunachst werden wir fiir solche Gleichungssysteme einfache Beispiele und Losungsme-
thoden kennenlernen, bei denen N eine beliebige natiirliche Zahl, insbesondere also
auch eine kleine Zahl wie etwa N = 3 (und im Grenzfall sogar N = 1) sein kann.
Danach werden wir uns mit den bereits erwahnten Schwierigkeiten fiir groBe N befas-
sen. Den Abschluss bilden etwas kompliziertere Beispiele und einige Ansatzpunkte fiir
eine abstraktere Darstellung mit Hilfe von Operatoren. Einen gewissen Uberblick iiber
allgemeine Operatormethoden findet man in [6] und [7].
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5 Randwertprobleme
Das zuvor angefiihrte Gleichungssystem lasst sich auch als Differenzengleichung
CnZn+1 + Ap2p + bnznfl - fn

n=1,2,..., N, schreiben, wenn man noch zusatzlich zg = 0, z,,,.1 = 0 fordert.

Die letzten beiden Bedingungen nennt man Randbedingungen, und das Problem, die
Differenzengleichung unter den angegebenen Randbedingungen zu l6sen, ein Randwert-
problem.

Im Unterschied zu den in § 6 und § 7 behandelten Anfangswertproblemen, bei denen
in der jetzigen Bezeichnungsweise die Anfangswerte z, z; vorzugeben sind und man
aus diesen und der Differenzengleichung im Fall ¢, # 0 die nachsten Werte 29, 23, ...
rekursiv berechnen kann, ist beim Randwertproblem die Berechnung der z, nur unter
Beriicksichtigung aller Gleichungen moglich.

Trotz dieses Unterschieds lassen sich aber auch bei der Losung von Randwertproblemen
einige der zuvor erhaltenen Ergebnisse nutzbringend verwenden. Bei der Behandlung
von Randwertproblemen ist es zweckmaBig, die vorhergehende Zahl N durch N —1 zu
ersetzen.

5.17 Beispiele

Zunachst wollen wir auf zwei Beispiele eingehen, die in natiirlicher Weise auf Randwert-
probleme und damit auf Gleichungssysteme fiihren. Diese Beispiele kniipfen unmittelbar
an die Anwendungen des vorhergehenden Abschnitts an.

Eine Irrfahrt. Bei der mikroskopischen Beobachtung kleinster Teilchen in einer Flissig-
keit oder in einem Gas erkennt man die Brownsche Molekularbewegung. Diese ist eine
zufallige Bewegung, die auch Irrfahrt genannt wird.

X
F

|-

Abb 18 D ‘i é - In—1 n n+l . N

Wir betrachten eine Irrfahrt unter folgenden idealisierten Annahmen:

Ein Teilchen moge sich auf den ganzzahligen Punkten n =0, 1,2, ..., N einer Geraden
zufallig bewegen, wobei es von einem Punkt n mit 0 < n < N zu den benachbarten
Punkten n — 1 bzw. n 4+ 1 jeweils mit der Wahrscheinlichkeit 1/2 (bergeben moge
(Abb. 18), bis es bei einem der Endpunkte 0 bzw. N angekommen ist, wo die Irrfahrt
beendet sein soll (absorbierender Band).

Es sei p, die Wahrscheinlichkeit dafiir, dass das Teilchen, vom Punkt n ausgehend,
nach endlich vielen Schritten den Punkt O erreicht. Da py die Wahrscheinlichkeit fiir
das sichere Ereignis, py die Wahrscheinlichkeit fiir das unmogliche Ereignis ist, gelten
nach § 16 die Randbedingungen

p=1  pv=0 (17.1)
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Fir 0 < n < N finden wir mit Hilfe des Additions- und des Multiplikationssatzes
ahnlich wie bei der Herleitung von (16.6) die Beziehung

1
Pn = §(pn—1 "‘pn—H) (17-2)

aus der durch Umstellung
P+l — 2Dn + D1 =10
hervorgeht. Nach (7.12) mit a = —2 hat diese Gleichung die allgemeine Losung
Pn = C1 + c2n (17.3)
und die spezielle Losung, die zugleich den Randbedingungen (17.1) geniigt, lautet
n
n — 1 ——
b N

(Abb. 19). Dieses Ergebnis ist sehr anschaulich. Ist beispielsweise N eine gerade Zahl
und wahlen wir n = N/2, also den Mittelpunkt des Intervalls (0, V), so ist p, =
1 —p, =1/2, d.h., beide Endpunkte werden mit gleicher Wahrscheinlichkeit erreicht.

Pn= T‘% i

Abb. 19 oz W

Auch die Tatsache, dass die Losungspunkte der Differenzengleichung (17.2) wie in Abb.
19 stets auf einer Geraden liegen, kann man sich leicht ohne Rechnung (lberlegen. Die
Gleichung (17.2) besagt namlich, dass der Funktionswert p,, an einer beliebigen Stelle
n gleich dem arithmetischen Mittel aus den Funktionswerten an den beiden Nachbar-
stellen n — 1 und n 4+ 1 ist, und nur eine lineare Funktion, d.h. eine Gerade, besitzt
diese Eigenschaft.

Eigenwertprobleme. Eine spezielle Klasse von Randwertproblemen bilden die homoge-
nen Randwertprobleme, bei denen sowohl die Differenzengleichung als auch die Rand-
bedingungen homogen sind. Solche homogenen Probleme besitzen stets die (identisch
verschwindende) triviale Losung.

Eine nichttriviale Losung eines homogenen Randwertproblems heiBt eine Eigenfunktion.

Eigenfunktionen sind nicht eindeutig bestimmt, sondern stets nur bis auf einen kon-
stanten Faktor (vgl. § 7, 4°). Im allgemeinen existieren keine Eigenfunktionen. Kommt
jedoch in der Gleichung oder den Randbedingungen ein Parameter vor, der sogenannte
Eigenwertparameter 1, so kann es sein, dass es fiir spezielle Werte dieses Parameters
Eigenfunktionen gibt. Diese Werte heien dann die Eigenwerte des Problems.

Die Berechnung von Eigenwerten ist von groBer technischer Bedeutung, da Eigenwer-
te in der Regel kritische Werte sind, bei denen eine unerwiinschte Abweichung vom
Normalfall eintritt, wahrend die triviale Losung die Ruhelage kennzeichnet.
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Beispielsweise lassen sich kritische Drehzahlen eines Motors, bei denen Resonanz auf-
tritt und es somit zu einer Resonanzkatastrophe kommen kann, oder kritische Lasten,
bei denen die Stabilitat eines Tragwerkes nicht mehr gewahrleistet ist und es zusam-
menbrechen kann, aus einem Eigenwertproblem berechnen. Da uns die Einzelheiten
eines solchen technischen Beispiels hier zu weit fiihren wiirden, wollen wir uns mit ei-
nem rein mathematischen Beispiel begniigen, ohne den Zusammenhang mit praktischen
Anwendungen genauer herauszuarbeiten.

Gegeben sei das Eigenwertproblem
Znt1— (2—p)zn + 2,21 =0 , 20=2y =0 (17.4)

Im Fall 0 < o < 4 ist die Differenzengleichung vom Typ (8.6), so dass nach (8.7) ihre
allgemeine Losung
Zp = €1 COSWN + Co Sinwn

mit cosw = 1 — p/2 lautet, wobei wir w auf das Intervall 0 < w < 7 einschranken
konnen, da die iibrigen Werte fiir w nichts Neues liefern. Wegen 2y = ¢4, folgt aus der
ersten Randbedingung in (17.4) ¢; = 0.

Die zweite Randbedingung zx = 0 ist daher erfiillt, wenn co sinwN = 0 ist. Dies kann
auf zwei verschiedene Arten moglich sein. Erstens kann auch ¢y = 0 sein; dann ist
2, = 0 fir alle n, und wir erhalten die triviale Losung. Da wir eine nichttriviale Lésung
suchen, bleibt zweitens nur der Fall librig, dass sinw/N = 0 ist. Diese Gleichung hat
die Losung

™
wka/{Z

N
mit ganzzahligem k, doch bendtigen wir wegen der Einschrankung 0 < wy < 7 nur die
Werte k = 1,2,..., N — 1. Wegen p = 2(1 — cosw) und 1 — cosw = 2sin®w/2 haben
wir somit die N — 1 Eigenwerte

) 7k
i = 4sin® <2N> (17.5)

k=1,2,...., N — 1, gefunden, zu denen die N — 1 Eigenfunktionen

Y

n

2F) — sin (;lm) (17.6)

gehoren, wenn wir etwa co = 1 setzen, da es auf die Konstante ¢y nicht ankommt. Die
finf Eigenfunktionen im Fall N = 6 sind in Abb. 20 dargestellt worden.

AbschlieBend wollen wir uns davon lberzeugen, dass es auBer den Eigenwerten (17.5)
keine weiteren gibt. Im Fall 1 = 0 hat die in (17.4) auftretende Differenzengleichung
wie in (17.3) die allgemeine Losung z, = c1 + con, die aber nur im Fall ¢; = ¢ =0
die Randbedingungen zy = 2z = 0 erfullt. Im Fall 4 = 4 hat die Differenzengleichung

Zn+1 + 22 + 2,1 =10

wegen (7.12) mit a = 2 die allgemeine Lésung z, = (c1 + con)(—1)", die aber die
Randbedingungen ebenfalls nur fiir c; = co = 0 erfiillen kann.
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In den ibrigen Fallen hat die charakteristische Gleichung (6.4) mit a = pn—2, b =1
wegen a? — 4b = p? — 4 > 0 zwei verschiedene reelle Lésungen A\, Ay # 1, —1, so
dass die Differenzengleichung nach (7.9) die

Zn

Abb. 20
allgemeine Losung
Zn = Cl)\? + 62/\121
besitzt. Damit die Randbedingungen erfiillt sind, muss
c—14+c =0 , cl)\{v+02>\§\[:0

und somit ¢; (A — A\J) = 0 gelten. Fiir zwei verschiedene reelle Zahlen A\, Ao # 1, —1
kann aber niemals AV = Aé\f sein, so dass ¢; = 0 und damit auch ¢y = 0 folgt.

Damit haben wir gezeigt, dass das Randwertproblem (17.4) auBerhalb des Intervalls
0 < p < 4 nur die triviale Lésung besitzt.

Aufgabe 33. Man l6se das Eigenwertproblem

Zng1 — (2= p)zn + 2p-1 = 0, 21 = <1 - > 20, zy =10

5.18 Variable Koeffizienten

Wir wenden uns jetzt dem allgemeinen Fall des beschriebenen Randwertproblems
Znt+1 + Qp2n + bpzn—1 = fn (181)

firm = 1,2,..., N — 1 mit zg = zy = 0 zu, wobei wir ohne Beschrankung der
Allgemeinheit den Koeffizienten von z,.1 gleich 1 gesetzt haben, da man andernfalls
die Gleichung nur durch ihn zu kiirzen braucht, bzw. N verkleinern kann.

Dabei setzen wir b,, = 0 fiir alle n voraus.
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5.18 Variable Koeffizienten

Die Wronskische Funktion. Zur bequemeren Ermittlung der Lésung von (18.1) ist es
zweckmaBig, die durch
Wy = TpYn+1 — Tnt1Yn (18.2)

definierte Wronskische Funktion w,, einzufiihren, die aus zwei Losungen z,,, v, der zu
(18.1) gehorenden homogenen Gleichung gebildet wird. Es gilt also
Tpi1 + ap®y + bprp—1 =0 ) Ynt+1 + anyn + bnyn—l =0 (183)

Multiplizieren wir die erste dieser Gleichungen mit —v,, und die zweite mit z,,, so folgt
nach Addition der entstehenden Gleichungen unter Beachtung von (18.2)

Wy = bnwnf 1

Hieraus ist ersichtlich: Ist wy = 0, so ist auch w, = 0 fir alle n. Ist wy # 0, so ist
wegen b, # 0 auch w,, # 0 fir alle n. Die Bedingung wy = 0 ist nichts anderes als die
Bedingung (7.4) in anderer Schreibweise.

Um uns festzulegen, wahlen wir fiir z,, und y, die speziellen Lésungen von (18.3), die
den Anfangsbedingungen
To = Oa Iy = la Yo = 07 Yy = 1 (184)

genitigen. Mit diesen Bedingungen sind x,, und y,, durch rekursive Auflésung von (18.3)
nach "rechts" bzw. nach "links" eindeutig bestimmt. Durch Einsetzen von (18.4) in
(18.2) folgt

Wo = —Yo ) WN-1 = —IN

Im Fall yo = 0 ist y,, wegen (18.4) eine Eigenfunktion, und Entsprechendes gilt dann
auch fir z,. Im folgenden wollen wir daher voraussetzen, dass das homogene Rand-
wertproblem keine Eigenfunktion besitzt.

Die Greensche Funktion. Zur Ldsung des Randwertproblems (18.1) mit zp = 2y = 0
suchen wir jetzt eine Funktion g¢,,, von zwei ganzzahligen Veranderlichen n, m, mit
deren Hilfe die Losung z,, fiir eine beliebige rechte Seite f,, in der Form

N—-1
”p = Z gnmfn (185)
m=1

dargestellt werden kann. Eine solche Funktion g,,, heiBt die Greensche Funktion des
Randwertproblems. Sie ist durch folgende Eigenschaften eindeutig bestimmt:

1°. gom = gnm =0 flirm=1,2,...,. N — 1,

2°. Gnt1m + AnGnm + bpgn—1,m = Onm flr alle n, m, wobei ¢,,,, das Kroneckersymbol

P 1 firn=m
10 farn £ m

ist.
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5.19 Konstante Koeffizienten

Beweis. Aus (18.5) erkennt man fiir n = 0 bzw. n = N, dass die Randbedingungen
20 = zy = 0 genau dann fir beliebige f, erfillt sind, wenn 1° gilt. Durch Einsetzen
von (18.5) in die linke Seite von (18.1) ergibt sich

N-1
Zn+1 + AnZp + bnzn—l - Z (gn+1,m + AnGnm + bngn—l,m)fm

m=1
und dieser Ausdruck ist fiir beliebige f,, genau dann gleich f,,, wenn 2° gilt.
Die Eindeutigkeit der Greenschen Funktion folgt schlieBlich daraus, dass die Differenz
zweier Greenscher Funktionen wegen 1° und 2° bei jedem festen m eine Losung des
zugehodrigen homogenen Randwertproblems ist, letzteres aber nach Voraussetzung nur
die triviale Losung besitzt.

Nach diesen Vorbereitungen zeigen wir, dass mit den vorhergehenden Bezeichnungen

InlYm

fuirn <m
Wm
_ YnTm

Gnm = { L= firn >m (18.7)
0 firn #m

eine explizite Darstellung fiir die gesuchte Greensche Funktion ist.

Beweis. Fiir n = 0 und n = N ist 1° offenbar wegen (18.4) erfillt. Fir n # m ist
wegen (18.3) auch 2° erfiillt, wobei die Falle n < m und n > m zu unterscheiden sind.

Fir n = m folgt schlieBlich durch Einsetzen von (18.7) in die linke Seite von 2° unter
Beachtung von (18.3) und (18.2)

1
gn+1,n + AnGnn + bngnfl,n - J(yn+lxn + (anxn + bnxnfl)yrﬂ

n

1
= —(Yn+1Zn — Tnt1Yn) = 1
Wn

und da fir n = m die beiden Gleichungen in (18.7) dasselbe besagen, ist alles gezeigt.

Zusammenfassend stellen wir fest, dass (18.5) mit (18.7) fiir beliebige rechte Seiten
fn eine Loésung des Randwertproblems (18.1) mit zy = zxy = 0 ist. Suchen wir eine
Losung der Gleichung (18.1) unter den Randbedingungen

2) = o : 2y =0 (18.8)

wobei « und [ beliebig vorgegebene Zahlen sind, so konnen wir diesen Fall dadurch
auf den vorhergehenden zuriickfiihren, dass wir f; durch f; — by« sowie fy_1 durch
fn_1— [ ersetzen und wieder die Lésung mit verschwindenden Randwerten bestimmen.

Aufgabe 34. Man berechne die Zahlen (18.7) im Fall N = 3.

5.19 Konstante Koeffizienten

Die vorhergehenden Ergebnisse sollen jetzt auf den Fall

Zni1 +az, + bz 1 = fn (19.1)
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5.19 Konstante Koeffizienten

n =1,2,...,N — 1, spezialisiert werden, bei dem also die Koeffizienten a,, und b,, in
(18.1) vom Index n unabhingig sind. Wir beschranken uns dabei auf den Fall a® < 4b,
in dem die zugehorige charakteristische Gleichung (6.4), d. h. die Gleichung

N +al+b=0
zwei reelle Wurzeln \q, A2 besitzt, und setzen auBer b # 0 auch noch a # 0 voraus.

Zwei verschiedene Wurzeln. Im Fall a*> > 4b sind die Wurzeln (6.5) voneinander (und
wegen b # 0 auch von Null) verschieden, und die zugehdrige homogene Gleichung

Zni1 +az, +bz,_1 =0 (19.2)
hat nach (7.9) die allgemeine Lésung
Zn = C1IA] + 2y (19.3)

Die speziellen Lésungen z,, = x,, und z, = y,, von (19.2) mit (18.4) lauten damit, wie
man durch Berechnung der Koeffizienten ¢y, co aus

61+CQZO y Cl>\1+62)\2:1
im ersten bzw.
Cl)\iv + CQ)\N =0 3 Cl)\iv_l + Cg)\év_l =1

im zweiten Fall leicht nachpriift,

A — \B AN N
n — , n — — — 194
x )\1 _ )\2 Y )\11 o )\2 1 ( )
Weiterhin folgt aus w,, = bw,,_1 und b = A\; Ay die Darstellung
wy, = AN AJwy (19.5)
und hieraus wegen wy = —1
n n>\1_N B )\Q_N

Setzen wir (19.4) und (19.6) in (18.7) ein, so erhalten wir nach Kiirzung von — X"~V A0 =N (\ 71—
Ayt fiir n < m bzw. —APAR (AT — A3 fiir n > m das gesuchte Ergebnis

AT =2 " =A™ "
— f <
oo =1 xR
nm — -m _ y—m n—N _ yn—N
TR Vi [ Y ) EVR

(A1 = A) (ALY = A )

Zur Kontrolle konnen wir den Fall N = 2 betrachten, wo wir

M-k 11
(oS VRISV WIS W
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5.19 Konstante Koeffizienten

erhalten und somit aus (18.5) die Losung 23 = fi/a von (19.1) mit n = 1 und
29 = 29 = 0, deren Richtigkeit man sofort bestatigt.

Eine Doppelwurzel. Im Fall a® = 4b hat die charakteristische Gleichung (6.4) nach (6.5)
die Doppelwurzel A = —a/2 und damit die Differenzengleichung (19.2) nach (7.12) die
allgemeine Losung

zn = (c1 + con) A" (19.8)

Fur die speziellen Losungen 2, = z, und 2, = y, von (19.2) mit (18.4) finden wir
daher
T, =0\t oy, = (N —n)A

und aus (19.5) mit A\; = Xy = ) folgt wegen wy = —yp = —NAV+!
Wy, = _N)\anNJrl
Setzen wir die gefundenen Ausdriicke wieder in (18.7) ein, so ergibt sich diesmal

] -n (1 — m) APl firn < m
rom = { —m (1 —i%) APl firn <m

Der Kontrollfall N = 2 liefert wie im vorhergehenden Fall das Ergebnis

1 1

A

Die homogene Gleichung. Als Anwendung betrachten wir jetzt den Fall, dass die ho-
mogene Gleichung (19.2) bei vorgegebenen Randwerten z, zy aufgeldst werden soll.
Nach der letzten Bemerkung im vorhergehenden Paragraphen kénnen wir statt dessen
die inhomogene Gleichung (19.1) mit

fi=—-bzy, fn,=—2n, [fn=0sonst (19.10)

und verschwindenden Randwerten aufldsen.

Im Fall a*> > 4b ergibt sich daher durch Einsetzen von (19.7) und (19.10) in (18.5)
unter Beachtung von b = M flir 0 <n < N

NN NN A — \p
TN N T (19.11)
Ganz analog entsteht im Fall a® = 4b unter Verwendung von (19.9)
n no -
2y = <1 - N> X'z + A" Ve (19.12)

Beide Ergebnisse finden wir jedoch viel einfacher, indem wir in den allgemeinen Lo-
sungen (19.3) und (19.8) die Konstanten ¢y, ¢y so bestimmen, dass diese Losungen
fir n = 0 und n = N vorgegebene Werte 2y bzw. zy annehmen, indem wir also die
Losungen c¢q, co des Systems

c1+ ey = 2 , 01)\{\7 + cz)év = 2N (19.13)

71



5.19 Konstante Koeffizienten

in (19.3) und die Losungen des Systems
C1 = 2y , (Cl + CQN))\N = ZN

in (19.8) einsetzen.

Wahlen wir zg = zy = 0, so folgt in beiden Fallen z, = 0 fiir alle n. Dies bedeutet,
dass es im Fall a? > 4b keine Eigenfunktionen gibt, wobei uns dieses Ergebnis fiir b = 1
bereits aus § 17 bekannt ist.

Aufgabe 35. Warum liefern (19.11) und (19.12) fiir n = 0 und n = N nicht verschwin-
dende Randwerte?
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6.20 Klassifizierung

6 Stabilitatsprobleme

Lost man das zum Randwertproblem (19.1) mit zp = zy = 0 gehoérende Gleichungs-
system (s. Seite 55) numerisch mit einem Eliminationsverfahren auf, so erhalt man in
einigen Fallen. die man "numerisch" stabil nennt, im Rahmen der benutzten Rechen-
genauigkeit die gewlinschte Losung, in anderen Fallen jedoch, die "numerisch" instabil
heiBen, fir groBere N vollig verfalschte Ergebnisse.

Der Grund fur dieses unterschiedliche Verhalten ist darin zu suchen, dass in den stabilen
Fallen die Rundungsfehler sich weitgehend wegheben, in den instabilen Fallen dagegen
bei den Zwischenrechnungen fortpflanzen und akkumulieren.

Ein einfaches Beispiel fiir numerische Instabilitat liefert bereits die Berechnung der
Losung vy, = 37" des Anfangswertproblems

10

Yn = Eyn—l — Yn—2,

Die Werte, die sich bei Benutzung des bulgarischen Taschenrechners elka 130 rekursiv
ergeben, wurden mit den ersten sieben Dezimalen der exakten Werte und den schnell
anwachsenden Fehlern in der folgenden Tabelle zusammengestellt:

y=1 y1=3

n Yn 3" Yn — 37" n Yn 3" Yn — 3"
1 0,3333333 0,3333333 0/2 011111110 0,1111111 -0,0000001
3 0,0370367 0,0370370 -0,0000003 | 4  0,0123446 0,0123456 -0,0000010
5 0,0041119 0,0041152 -0,0000033 | 6 0,0013617 0,0013717 -0,0000100
7 0,0004271 0,0004572 -0,0000301 | 8 0,0000619 0,0001524 -0,0000905
9 -0,0002208 0,0000508 -0,0002716 | 10 -0,0007979 0,0000169 -0,0008148
11 -0,0024388 0,0000056 -0,0024444 | 12 -0,0073314 0,0000018 -0,0073332
13 -0,0219992 0,0000006 -0,0219998 | 14 -0,0659992 0,0000002 -0,0659994
15 -0,1979981 0 -0,1979981

Wie man nachpriifen kann, sind die Fehler (bis auf eine gelegentliche Abweichung um
eine Dezimale in der letzten Stelle) nichts anderes als die zu 37! linear unabhiangige
Lésung —0, 1979981 - 3”15 der zu l6senden Differenzengleichung, wenn man sie, von
n = 15 beginnend, "riickwarts" durch fortlaufende Division durch 3 numerisch berech-
net (vgl. Aufgabe 36).

Ganz allgemein hangen bei Anfangs- oder Randwertproblemen die Stabilitatseigenschaf-
ten einer Differenzengleichung ausschlieBlich vom Verhalten der Lésungen der zugehori-
gen homogenen Gleichung ab. Somit wollen wir als nachstes verschiedene Moglichkeiten
des Verhaltens dieser Losungen analysieren, um bei Instabilitat daraus Schlussfolgerun-
gen fiir wirksame GegenmaBnahmen ziehen zu kénnen. Dabei verzichten wir auf eine
exakte Stabilitatsdefinition, denn es kommt uns nur darauf an, dem Leser ein gewisses
Gefuihl fir unterschiedliches Stabilitdtsverhalten zu vermitteln.

6.20 Klassifizierung

Wie bereits angekiindigt wurde, wollen wir jetzt das Verhalten der Losungen der ho-
mogenen Differenzengleichung

Zni1 +az, +bz,_1 =0 (20.1)
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6.20 Klassifizierung

n=1,2..,N—1, mita# 0, b# 0 bei vorgegebenen Randwerten zj, zy im einzelnen
diskutieren. Der Ubersichtlichkeit wegen beschranken wir uns auf den Fall a? > 4b, in
dem die Wurzeln (6.5) der zugehorigen charakteristischen Gleichung (6.4) voneinander
verschieden sind. Dabei ist es zweckmaBig, die Indizes dieser Wurzeln stets so zu wahlen,
dass

A1l < [Agf (20.2)
ist. Bei den Wurzeln (6.5) ist diese Ungleichung fiir a > 0 automatisch erfillt, fur
a < 0 vertauschen wir im folgenden die Indizes.

Die Losung (19.11) unseres Randwertproblems lasst sich auch in der Form
AN — AN BN P P,
2
1 — qN 0 1 — qN
mit ¢ = A1/ schreiben. Wegen (20.2) ist |q| < 1, so dass ¢V nach § 12 fiir hinreichend
groBe N beliebig klein wird. Damit lautet die Losung z, naherungsweise

Zn = (AT = AN M) 20 + AN = A VA 2w (20.3)

Zn — ZN

Wir machen jetzt drei Fallunterscheidungen.

1° [\ <1< |Ag.

In diesem Fall ist [A7| < 1, |Ap™Y| < 1 fir 0 < n < N, und A, A\ werden fiir
hinreichend groBe N beliebig klein, so dass wir (20.3) noch einmal niherungsweise zu

2p = /\71120 + )\g_NZN (204)

Zn

i
|
N n

Abb. 21

vereinfachen kénnen. Dies ist der stabile Fall, bei dem sich eine Anderung der Rand-
werte und damit auch eine durch Rundungsfehler hervorgerufene Stérung nur auf die
unmittelbar benachbarten Werte und noch dazu in abschwachender Tendenz fortpflan-
zen kann, wahrend sie sich in einer gewissen Entfernung vom Rand (die von der GroBe
der Betrage |A1|, | \2| abhéngt) nicht mehr bemerkbar macht (Abb. 21).

Im vorliegenden Fall kdnnen wir die Naherungslésung (20.4) auch dadurch finden, dass
wir in der allgemeinen Lésung (19.3) die Konstante ¢; aus zp = ¢;\Y und die Konstan-

te co aus zy = c2\Y bestimmen und dadurch die Aufldsung des Gleichungssystems
(19.13) umgehen.

2°. |>\1| < |)\2| < 1.
Fiir hinreichend groBe N und 0 < n < N wird diesmal [ANAS™V| < |¢|V mit ¢ =
A1/ A2, beliebig klein, so dass wir (20.3) zu

Zn = N2+ A V(A — A2y (20.5)
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6.20 Klassifizierung

vereinfachen kénnen, aber Ay wird beliebig groB. Dies bedeutet, dass sich zwar der
Randeinfluss vom Anfang n = 0 nach wie vor stabil verhalt, aber der Randeinfluss vom
Ende n = N des Intervalls (0, NV) in instabiler Weise auf die vorhergehenden Werte
einwirkt.

Der Deutlichkeit wegen wollen wir die Naherungswerte (20.5) von z, im Fall zp = 0,
zy = 1, Ay = 1/4, Ao = 1/2 und N = 5,10, 15 sowie 20 bis auf zwei Dezimalen
angeben:

n|z,beiN=5 z,bei N=10 2z, bei N=15 2z, bei N =20
0 0 0 0 0
1 8 256 8192 262144
2 6 192 6144 196608
3 3,5 112 3584 114688
4 1,88 60 1920 61440
5 0,97 31 992 31744
6 15,75 504 16128
7 7,94 254 8128
8 3,99 127,5 4080
9 2 63,88 2044
10 1 31,97 1023
11 16 511,75
12 8 255,94
13 4 127,99
14 2 64
15 1 32
16 16
17 8
18 4
19 2
20 1

Aus dieser Tabelle erkennt man deutlich das starke Anwachsen der ersten Werte von z,,
bei VergroBerung von N, wobei zu beachten ist, dass N = 20 ja noch keine besonders
groBe Zahl ist. Bei weiterer VergroBerung von N wachsen die Werte von z,, nach "links"
auch dann stark an, wenn man nicht bei zyy = 1, sondern bei einem verhaltnismaBig
kleinen Wert wie etwa 2z = 10~® beginnt, mit dem alle zum Fall zy = 1 gehorenden
Werte z,, zu multiplizieren sind.

3°.1< |)\1’ < |/\2|
Fiir hinreichend groBe N und 0 < n < N wird jetzt [A; VA7 < [g|Y mit ¢ = A/
beliebig klein, so dass

20 = MO =AMz + A V2 (20.6)

eine ausreichende Naherung fiir (20.3) und damit fir (19.11) ist, aber diesmal wird
A beliebig groB. Damit haben wir genau umgekehrte Verhiltnisse wie beim vorher-
gehenden Fall, d. h., es ist zwar der Randeinfluss vom Ende n = N stabil, aber der
Randeinfluss vom Anfang n = 0 des Intervalls (0, V') wirkt auf die folgenden Werte in
instabiler Weise ein.
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6.21 Faktorisierung

Die Naherungswerte (20.6) mit 20 = 1 und zy = 0 sind im Fall A\; = 2, Ay = 4 die-
selben wie zuvor, sofern ndurch N — n ersetzt wird, so dass wir sie nicht noch einmal
aufzuschreiben brauchen.

Im stabilen Fall 1° lassen sich die in der Darstellung (18.7) fiir die Greensche Funkti-
on auftretenden Folgen z,, v, ohne Schwierigkeiten aus (18.3) und (18.4) numerisch
berechnen. Nach (19.4) und (19.6) ergibt sich fiir groBe n bzw. N —n naherungsweise

MY Ny
M= Ay TS S P

Tp =

und damit aus (18.7) oder (19.7) naherungsweise

n—m
AQ

_{ S fuirn <m
gnm_

AT
S firm >m

Im stabilen Fall sind daher die Werte von g,,,, flir n = m nahezu konstant und verklei-
nern sich betragsmaBig bei wachsender Differenz |n — m].

Aufgabe 36. In welchen der drei vorhergehenden Falle sind die Lésungen der Differen-
zengleichung (20.1) bei vorgegebenen Anfangswerten zg, z; stabil, wenn man sie a)
nach "rechts" bzw. b) nach "links" fortsetzt?

6.21 Faktorisierung
Fir das Randwertproblem
Znal + anzn + bnzn_1 = fn, 20=2y=0 (21.1)

n = 1,2,....,N — 1, haben wir im Fall der Losbarkeit bereits die geschlossene Lo-
sungsdarstellung (18.5) mit (18.7) hergeleitet. Um noch eine andere Lésungsmethode
kennenzulernen, die sich leicht fiir einen Rechenautomaten programmieren lasst, gehen
wir von dem Ansatz

Up = QpUp—1 + fn ) Zn+l = ﬁnzn + Up (212)

aus und versuchen, die Folgen «,,, 3,, so zu bestimmen, dass z, nach Elimination der
Folge v,, eine Losung des Randwertproblems (21.1) wird. Durch Einsetzen des Aus-
drucks fiir v,, aus der ersten Gleichung in die zweite Gleichung von (21.2) entsteht

Zn+l = ﬁnzn + apvp_1 + fn

Setzen wir hier fiir v,,_; den aus der zweiten Gleichung von (21.2) durch Indexverschie-
bung entstehenden Ausdruck v,, 1 = 2z, — Bn_12,_1 €in, so folgt durch Umstellung

Zn+l1 — (Ofn + ﬁn)zn + anﬁnflznfl = fn

Damit diese Gleichung in die erste der Gleichungen (21.1) ibergeht, fordern wir fir
n=12..,N—-1

Qp + Bn = —an ) O‘nﬁn—l = bn (213)
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Um jetzt auch die Randbedingungen von (21.1) zu beriicksichtigen, bemerken wir zu-
nachst, dass die Bedingung 2y = 0 auch durch b; = 0 ersetzt werden kann, da die erste
der Gleichungen (21.1) in beiden Féllen fiir n = 1 dasselbe besagt und sonst sich diese
Abanderung nicht weiter auswirkt.

Erfillen wir jetzt die zweite der Gleichungen (21.3) fiir n = 1 durch a; = 0, so gelangen
wir zu folgendem Losungsalgorithmus.

Man berechne, von a; = 0 ausgehend, zunachst «,, (3, und v, rekursiv fir n =
1,2,...,N — 1 aus (21.3) und der ersten Gleichung von (21.2), d.h. aus

a; =0 B =—a v = fi
as = by/fh Po = —az — ay vy = fo + vy
az = bz/f B3 = —a3z — a3 vz = f3+ azvy

anN—1 = bel/ﬁNfz 5]\/71 = —aN-1 — ON-1 UN-1 = fo1 + aN_1UN_2

wobei die Gleichungen zeilenweise abzuarbeiten und die bereits berechneten Werte
jeweils zu benutzen sind. Beispielsweise erhalt man dabei in der zweiten Zeile die Werte

ag = be/p1, P2 = —as — ag, V2 = fo + vy

AnschlieBend berechne man, von zy = 0 ausgehend, aus der zweiten Gleichung von
(21.2) in der Form z, = (z,_1 — vp) /B, "rickwarts" firn =N — 1, N —2,...,1

EN—-1 = —UN71/5N71
EN—-2 = (ZN—1 - UN—2/5N—2

2= (22 —01/B

Offenbar ist dieser Algorithmus genau dann ausfiihrbar, wenn keiner der Werte (3,
verschwindet.

Ist diese Voraussetzung erfiillt, so ergeben die vorhergehenden Uberlegungen, dass die
berechneten Werte z,, das Randwertproblem (21.1) Iésen, wenn man von der im Fall
by = 0 uberfliissigen Bedingung 2y = 0 absieht. Das Wesentliche bei diesem Algorith-
mus besteht darin, dass die in (21.1) stehende Differenzengleichung zweiter Ordnung
hierbei auf das System der zwei Differenzengleichungen erster Ordnung (21.2) zuriick-
gefiihrt wird.

Dieser Vorgang wird auch Faktorisierung genannt, doch kann dieser Begriff erst in § 27
erklart werden. Nebenbei sei erwahnt, dass man zu dem Algorithmus auch durch eine
Ubertragung der GauBschen Eliminationsmethode aus § 11 auf den vorliegenden Fall
gelangen kann.

Konstante Koeffizienten. Sind die Koeffizienten a,, = a, b, = b = 0 in (21.1) von n
unabhangig (mit Ausnahme von b; = 0), so lassen sich die Rekursionsformeln (21.3)
geschlossen auflésen. Durch Elimination von «, erhalten wir zunachst aus (21.3)

n

ﬁnfl

B + +a, =0 (21.4)
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Dies ist eine nichtlineare Rekursionsformel erster Ordnung fiir (,,, die wir unter der

Anfangsbedingung 31 = —a flir n > 2 auflésen, so dass die Ausnahme b; = 0 nicht
weiter stort. Fiithren wir durch die Substitution
Upi1 = Bplin (21.5)

eine neue Folge u,, mit u; = 1 ein, so erhalten wir aus (21.4) nach Multiplikation mit
u1 = PBn_1un_1 die lineare Rekursionsformel zweiter Ordnung

Ups1 + @ty + by =0 (21.6)

mit den Anfangsbedingungen u; = 1, us = 31 = —a. Wir beschranken uns wieder auf
den Fall a* > 4b, in dem die allgemeine Lésung von (21.6) nach (7.9)

Up = CIA] + CoAy

mit (6.5) und willkirlichen Konstanten ¢, co lautet. Wegen us = —a = Ay + Ag ist
AP — A\
- 21.7
Un =N (21.7)

offenbar die spezielle Lésung von (21.6), die zugleich den Anfangsbedingungen geniigt.
Damit folgt aus (21.5) bzw. aus der zweiten Gleichung (21.3) wegen b = A1)\, das
gesuchte Ergebnis

AT =gt RN =M AL

n — 9 n — 21
S VSV “ N =\ (21.8)

Auf die geschlossene Losung der Gleichungen (21.2) gehen wir nicht weiter ein, da wir
das Ergebnis bereits aus (18.5), (19.7) kennen.

Zur Beurteilung der numerischen Stabilitdt unseres Losungsalgorithmus nehmen wir
jetzt wie in (20.2) || < |A2| an. Dann kann £, in (21.8) niemals verschwinden, und
die fir den Losungsalgorithmus erforderliche Voraussetzung ist stets erfiillt. Weiterhin
kann dann A} in (21.8) fiir groBe n im Vergleich zu A\J vernachlassigt werden, und wir
erhalten aus (21.8) naherungsweise

Oén:)\l ) 6”2>\2

Im stabilen Fall 1° von § 20, d. h. fiir |[A\1| < 1 < |\y|, lassen sich auch die Gleichungen
(21.2) stabil auflésen. Die zweite Gleichung von (21.2) wird namlich von "rechts" nach
"links" aufgelost, und die zugehdrige homogene Gleichung (21.5) hat bis auf einen
konstanten Faktor die fiir n > 0 nach "links" abklingende Lésung (21.7).

Entsprechend kann man zeigen (vgl. Aufgabe 37), dass die Losungen der zur ersten
Gleichung von (21.2) gehérenden homogenen Gleichung nach "rechts" hin abklingen.
Analog sieht man, dass im instabilen Fall 2° von § 20 die zweite und im instabilen Fall
3° von § 20 die erste der Gleichungen (21.2) numerisch instabil ist.

Aufgabe 37. Man zeige, dass v, = (\;' — A3')/(AT™ — A\y") die Lésung von v, =
apUp—1 mit (21.8) und v; = 1 ist. Wie kommt man auf die Gestalt von v,,?
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6.22 Regularisierung

Nach den beiden vorhergehenden Methoden zur Lésung des Randwertproblems
Znt+1 T apzn + bnzpn—1 = fn (221)

z0=2v=0,n=1,2,..., N — 1, wollen wir jetzt eine dritte Methode kennenlernen,
die sich in den instabilen Fallen bewahrt.

Diese besteht in der Zuriickfiihrung des Randwertproblems auf ein Anfangswertproblem,
wobei es zwei Moglichkeiten gibt, je nachdem, ob wir den linken oder den rechten
Randpunkt des Intervalls 0 < n; < N auszeichnen.

Es soll jetzt wieder b,, # 0 sein fiir alle n. Wir beginnen mit dem linken Randpunkt und
wahlen neben zy = 0 willkiirlich einen zweiten Anfangswert z1, beispielsweise z; = 0.
Die Losung der Rekursionsformel (22.1) mit diesen Anfangswerten bezeichnen wir mit
20 Im allgemeinen wird z](\(,)) # 0 sein, so dass 2(?) keine Lésung des Randwertpro-
blems ist. Als nachstes bestimmen wir rekursiv die Lésung 2/ der zu (22.1) gehérenden
homogenen Gleichung

2+ anzy, + bpz 1 =0 (22.2)

unter den Anfangsbedingungen 2z, = 0, 27 = 1. Wir setzen voraus, dass z,, keine
Eigenfunktion ist, also z/y # 0 ist. Nach dem Uberlagerungssatz von § 7 ist dann

(0)
2 = 20 — Z"fz; (22.3)
N

die gesuchte Losung des Randwertproblems.

Diese Losungsmethode ist eine Prazisierung der sogenannten SchieBmethode, bei der

man eine Folge von zusatzlichen Anfangswerten zgl),z@,zﬁ), ... fur die inhomogene

Gleichung (22.1) wahlt, die zugehérigen Losungen z{1), 2(2) 2(3) " berechnet, zu jedem

Anfangswert z%k) den zugehorigen Endwert z](\]f) beobachtet, aus der Anderung von z](\]f)

gegeniiber von z](\lffl) Rickschlisse liber eine giinstigere Wahl von zfﬂl) zieht und sich
auf diese Weise auf den gesuchten Endwert zy = 0 "einschieBt" (vgl. Abb. 22). Die
SchieBmethode wird vor allem bei nichtlinearen Randwertproblemen benutzt, bei denen

die prazisierte Form nicht anwendbar ist.

Abb. 22

Die zweite Méglichkeit besteht darin, z(*) aus z](\(,)) = 25\?)—1 = 0 und (22.1) sowie 2/, aus

2y =0, zy_; = 1 und (22.2) rekursiv nach "links" zu bestimmen, wobei wir analog
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zu (22.3) die Losungsdarstellung

2 = 20 — 0y (22.4)

flir unser Randwertproblem erhalten.

Konstante Koeffizienten. Bei Gleichungen (22.1) mit von n unabhangigen Koeffizienten
a, = a, b, = b wird man die erste Lésungsdarstellung (22.3) wahlen, wenn der instabile
Fall 2° von § 20 vorliegt, also |A;| < |A2] < 1 gilt, da dann das Anfangswertproblem
"von links nach rechts" stabil auflosbar ist, dagegen wahlt man die zweite Losungs-
darstellung (22.4), wenn der instabile Fall 3° von § 20 vorliegt, also 1 < |A;| < |Ag
gilt, da das Anfangswertproblem dann "von rechts nach links" stabil auflésbar ist (vgl.
Aufgabe 36).

Im Fall 1° von § 20, fiir den wir bereits zwei numerisch stabile Losungsmethoden kennen,
sind beide Lésungsdarstellungen (22.3) und (22.4) fiir groBe N numerisch instabil (vgl.
S. 85).

Wir wenden uns jetzt noch einmal etwas eingehender den soeben angefiihrten Fallen
2° und 3° von § 20 zu, in denen das Randwertproblem instabil ist. Im Fall 2° klingen
alle Lésungen der homogenen Gleichung (22.2) und damit auch z/, nach "rechts" ab,
d.h., zy ist fir groBe N sehr klein.

Damit wird aber das zweite Glied auf der rechten Seite von (22.3) im allgemeinen fiir
kleine n sehr groB sein und folglich auch die ganze rechte Seite, was der vorhandenen
Instabilitat entspricht. Insbesondere ist dies stets der Fall, wenn die in (22.3) auftre-
tenden GroBen nicht exakt, sondern nur numerisch bestimmt werden.

Andererseits kann es sein, dass das inhomogene Randwertproblem trotz der Instabili-
tat des zugehodrigen homogenen Problems eine Losung besitzt, die an keiner Stelle n
besonders groB ist. Wegen der vorhandenen Instabilitat ist es unmoglich, diese Losung
mit einer der vorhergehenden Methoden numerisch zu bestimmen.

Wir kénnen aber folgendes vereinbaren und den in (22.3) auftretenden Summanden
zT(LO), der sich aus einem Anfangswertproblem numerisch stabil bestimmen lasst, eine
regularisierte Losung des Randwertproblems nennen.

Diese regularisierte Losung hat folgende Eigenschaften. Im Fall 2° von § 20 erfiillt die
regularisierte Losung 2(?) des Randwertproblems die Differenzengleichung (22.1) sowie
die Randbedingung zy = 0, wahrend zx nicht zu verschwinden braucht.

Andert man den Anfangswert z§0) ab, so beeinflusst diese Anderung nur die Werte von
27(10) fir "kleine" n, nicht aber im Rahmen der Rechengenauigkeit die Werte von z(©)

n
fir "mittlere" und "groBe" n.

Dies bedeutet, dass die Werte der regularisierten Losung z(?) fiir "mittlere" und "groBe"
n < N — 1 numerisch stabil sind. Besitzt das Randwertproblem eine Loésung, die nir-
gends besonders groB ist, so ist diese Losung fir "mittlere" und "groBe" n im Rahmen
der Rechengenauigkeit gleich der regularisierten Losung z,(lo).

Welche Werte von n dabei schon "mittlere" genannt werden konnen, hangt von der
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GroBe der Wurzeln A, Ay der charakteristischen Gleichung (6.4) und damit von der
Schnelligkeit des Abklingens der Losungen (7.9) der homogenen Gleichung sowie von
der gewahlten Rechengenauigkeit ab. Die Richtigkeit der letzten der genannten Eigen-
schaften erkennt man aus (22.3); denn wird z, nirgends groB, also auch nicht firn = 1,
SO muss z](g) in (22.3) sehr klein, also im Rahmen der Rechengenauigkeit gleich Null
sein.

Ganz analoge Bemerkungen treffen auf den Fall 3° von § 20 zu. Die in (22.4) auftreten-
de regularisierte Losung erfillt dann (22.1) und z](\?) = 0, wobei 21(811 auch abgeandert
werden kann, und in den zuvor angefiihrten Eigenschaften hat man lediglich die Worte

"kleine" und "groBe" zu vertauschen.

Weiterhin kann man den Begriff der regularisierten Losung auch auf den Fall Gibertra-
gen, dass die zu (22.1) gehorenden Randwerte nicht verschwinden (vgl. Aufgabe 38).

AbschlieBend kehren wir zum Fall 1° von § 20 zuriick, in dem zwar das Randwertpro-
blem stabil ist, aber die zugehorigen Anfangswertprobleme instabil sind. Man kann jetzt
ganz analog fiir die Anfangswertprobleme eine regularisierte Losung definieren, indem
man eine der Anfangsbedingungen weglasst, zusatzlich eine Randbedingung willkirlich
wahlt und die stabile Losung dieses Randwertproblems regularisierte Losung des An-
fangswertproblems nennt.

Aufgabe 38. Man berechne fiir 0 < n < 100 die Lésung der Differenzengleichung
Znt1 — 62, +82n—1=3

a) unter den Randbedingungen zy = z190 = 1,

b) unter den gestérten Randbedingungen zg = 1 + 10710, 2199 = 1,

c) unter den Anfangsbedingungen z190 = 1, z99 = 0 (regularisierte Lésung des Rand-
wertproblems a)).
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7 ldentifikation

Wahrend wir bisher von einer gegebenen Differenzengleichung mit entsprechenden Ne-
benbedingungen ausgegangen sind und die zugehorige Losung gesucht haben, wollen
wir uns jetzt mit dem umgekehrten Problem befassen, bei dem die rechte Seite der
Differenzengleichung und die Losung gegeben sind und die linke Seite gesucht ist, d.
h. die Koeffizienten der Differenzengleichung.

Solche Umkehrprobleme treten in den Anwendungen immer mehr in den Vordergrund.
Man spricht hierbei von einer Identifikation der Differenzengleichung bzw. des durch
sie beschriebenen technischen Systems.

Bei der Differenzengleichung (19.1)
Zn+1 + azp + bzp-1 = fn

mit konstanten Koeffizienten, auf die wir uns ausschlieBlich beschranken wollen, ist das
Identifikationsproblem relativ einfach, da hier nur die konstanten Parameter a und b
bestimmt werden missen, so dass man in diesem Fall von einer Parameteridentifikation
spricht.

Theoretisch gesehen, braucht man zur Bestimmung der Unbekannten a und b lediglich
die Differenzengleichung fiir zwei verschiedene Werte von n zu benutzen und die beiden
Gleichungen (sofern sie voneinander unabhangig sind) nach a und b aufzulésen.

Dieses Vorgehen setzt jedoch voraus, dass die verwendete Losung z,, und die zugehorige
rechte Seite f, exakt bekannt sind.

In den Anwendungen kennt man jedoch fiir z, und f,, nur Messwerte, die mit Fehlern
behaftet sind, so dass man auch die Koeffizienten a und b nur mit Fehlern erhalt. Leider
stellt es sich heraus, dass die Fehler bei den Koeffizienten sehr groB werden konnen und
stark davon abhangen, welche zwei Gleichungen man zur Bestimmung von a und b
heranzieht (instabiler Fall).

Aus diesem Grunde werden wir uns zunachst mit einem Fehlerausgleichsverfahren be-
fassen, das sich dann auch bei der Bestimmung von Anfangswerten in der diskreten
Mechanik als niitzlich erweisen wird, bevor wir auf die ldentifikation von Differenzen-
gleichungen zuriickkommen werden. Mehr iiber die Fehlerrechnung findet man bei H.
Hansel [11] sowie bei H. Richter und V. Mammitzsch [15].

7.23 Die Methode der kleinsten Quadrate

Durch eine lineare Gleichung mit einer Unbekannten x
axr = f

ist z im Fall a # 0 eindeutig zu z = f/a bestimmt. Ein System von n > 1 Gleichungen
mit einer einzigen Unbekannten z,

ar = f1, axr=fo, .., ax=[, (23.1)
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hat im allgemeinen keine Losung, da die k-te Gleichung dieses Systems mit 1 < k£ <n
im Fall a; # 0 die Lésung x = fi/ay besitzt und diese Losungen im allgemeinen von
k abhangen. Man nennt daher (23.1) ein iiberbestimmtes System.

Ahnlich wie im vorhergehenden Paragraphen kann man jetzt nach einer verallgemei-
nerten Losung fragen und darunter hier eine Zahl x verstehen, die die Gleichungen
(23.1) "moglichst gut" erfiillt, wobei dieser Begriff noch naher zu prazisieren ist. Dies
geschieht durch die

GauBsche Methode. Man bestimme die verallgemeinerte Losung x so, dass die Summe
der Fehlerquadrate

Q=" (arx — fr)’ (23.2)
k=1
moglichst klein ist. Dabei wird vorausgesetzt, dass mindestens ein aj # 0 ist.

Zur Losung dieses Problems formen wir () zunachst um. Nach Auflésung der Klammern
nimmt () die Gestalt
Q= Az> — Bz +C

mit
A=Y"ai, B=Yafi, C=>Y ft (23.3)
k=1 k=1 k=1
an oder nach Ermittlung der quadratischen Erganzung
1 B?
= —(Az — B)* - 23.4
Q=4(Az=B)"+C~—— (23.4)

Hieraus ist ersichtlich, dass ) genau dann minimal wird, wenn z = B/A (vgl. Abb. 3)
oder wegen (23.3)

3 ar fx
-

(23.5)

r = n

1

2
&
wird. Damit haben wir die verallgemeinerte Losung zu des Systems (23.1) im Sinne der
GauBschen Methode der kleinsten Fehlerquadrate gefunden. Besitzt (23.1) eine Losung

im Gblichen Sinne, so geht (23.5) natiirlich in diese Losung tiber.

Betrachten wir an Stelle des Systems (23.1) das System
xT=x, T=2x9 .. T=21I, (23.6)

mit xx = fi/ax fiur alle k, das aus (23.1) durch Division der k-ten Gleichung durch
ay, hervorgeht, so liefert die GauBsche Methode als verallgemeinerte Losung von (23.6)
das arithmetische Mittel

1
T = ﬁ(x1+1:2+...+:1:n)

da wir in (23.5) nur a; = 1 und fj = x) zu setzen brauchen (vgl. Abb. 23).
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Abb. 23 T T n

Dieses arithmetische Mittel benutzt man bekanntlich in der Praxis, wenn man bei-
spielsweise einen Widerstand R mit Hilfe des Ohmschen Gesetzes R = U/ bestimmen
Will, fiir verschiedene Spannungen U, die zugehorigen Stromstérken I,, misst und den
Einfluss der Messfehler auf die Einzelergebnisse Ry = Uy /1) durch eine Mittelbildung
ausgleicht.

Als Nebenprodukt erhalten wir aus den vorhergehenden Betrachtungen die

Cauchysche Ungleichung. Fiir beliebige reelle Zahlen a,,, b, gilt
n 2 n n
(Z akbk) S Z ai Z bl2 (23.7)
k=1 k=1 =1

Dabei steht das Gleichheitszeichen genau dann, wenn alle ay = 0 sind oder es eine
Konstante x gibt mit b, = axx fir alle k.

Beweis. Da der Fall a; = 0 trivial ist, nehmen wir an, dass mindestens ein a; # 0 ist.
Aus (23.2) folgt 0 < @, so dass (23.4) mit z = B/A folglich 0 < C' — B?/A oder
wegen A > 0 schlieBlich B? < AC liefert.

Wegen (23.3) ist dies gerade die Ungleichung (23.7), wenn wir f; = by setzen. In
diesen Ungleichungen steht das Gleichheitszeichen genau dann, wenn ) = 0 ist, wenn
also wegen (23.2) by, = fr = apx gilt fur alle £.

Fir spatere Anwendungen benoétigen wir die GauBsche Methode noch fir

Gleichungen mit zwei Unbekannten. Unter dem verallgemeinerten Losungspaar (z,y)
der n Gleichungen
apx + bry = fi (23.8)

k =1,2,...,n, verstehen wir dasjenige Zahlenpaar (z,y), fir das
Q=" (arx +bry — fr)? (23.9)
=1

moglichst klein wird. Die Falle, in denen a; = 0 oder by = a2z fiir eine feste Konstante
z gilt, schlieBen wir aus, da sie auf den bereits erledigten Fall (23.1) hinauslaufen. Unter
dieser Voraussetzung lautet die verallgemeinerte Losung von (23.8)

BD — EF AE -~ FB
_ = 23.1
"Tap-rr - YT AD - (23.10)
mit (23.3) und
D=8, E=Ybfi, F=> ab (23.11)
k=1 k=1 k=1
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Beweis. Zunachst bemerken wir, dass wegen der Cauchyschen Ungleichung (23.7) und
unserer Voraussetzung 2 < AD ist, so dass die Quotienten (23.10) einen Sinn haben.
Durch Auflésung der Klammern in (23.9) und Beriicksichtigung der Bezeichnungen
(23.3) und (23.11) folgt fur ) die Darstellung

Q = Az?> — 2Bz + C + Dy* — 2Ey + 2Fxy
Wir versuchen jetzt, neue Konstanten a, b, ..., f, g so zu bestimmen, dass () die Form
Q=(ax+by—c)*+(de+ey— f)?+yg (23.12)
erhalt oder nach Auflésung der Klammern und Umordnung
Q = (a®+d*)x? + (> +e2)y? 4+ 2(ab+ de)xy — 2(ac+df )z — 2(be+ef )y + g+ + 2

Durch Vergleich mit der vorhergehenden Darstellung fiir ) finden wir die Beziehungen

A=a®+ d, D =1? + e,
B = ac+ df, E =bc+ ef, (23.13)
C=g+c+f? F = ab+ de.

Dies ist ein unterbestimmtes Gleichungssystem von sechs Gleichungen fiir die sieben
Unbekannten a, ..., g, das stets losbar ist. Die Losung bendtigen wir aber gar nicht
explizit. Aus (23.12) ist ersichtlich, dass () genau dann minimal wird, wenn

ar +by =c : de+ey=f

ist. Nach der Eliminationsmethode von § 11 hat dieses System die Losung

ce — fb af —dc
— = 23.14
YT ae—db ’ Y= e —db (23.14)

sofern die Nenner nicht verschwinden. Wir brauchen jetzt nur noch zu zeigen, dass die
Behauptungen (23.10) mit den Losungen (23.14) ibereinstimmen. Dies lasst sich aber
unter Benutzung der Beziehungen (23.13) durch elementare Umformungen nachweisen.
Vgl. hierzu die

Aufgabe 39. Man verifiziere die Gleichungen
AD—F?% = (ae—db)?, BD—EF = (ce—fb)(ae—db), AE—FDB = (af—dc)(ae—db)

7.24 Beispiele aus der Mechanik

Zur Anwendung der vorhergehenden Ergebnisse behandeln wir jetzt zwei Aufgabenstel-
lungen, bei denen wir zum Teil auf die Darlegungen im Abschnitt IV zuriickgreifen.

Regressionsgeraden. Zwischen zwei Veranderlichen moge ein linearer Zusammenhang
bestehen. Um einen konkreten Fall im Auge zu haben, seien diese Veranderlichen die
Zeit t und der Weg s. Dann gilt bei einer gleichférmigen Bewegung

s=uvt+u (24.1)
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Die Geschwindigkeit v und die Anfangslage u seien unbekannt und sollen durch Messung
des Weges s zu verschiedenen Zeitpunkten ¢ ermittelt werden. Wir wahlen willkiirlich
die Zeitpunkte t;, k = 1,2, ...,n, die nicht dquidistant zu sein brauchen, und messen
die zugehorigen Wege sy.

Wegen der Messfehler liegen die Punkte (¢, si) in der , s-Ebene im allgemeinen nicht
genau auf einer Geraden. Unsere Aufgabe besteht jetzt darin, diejenige Gerade zu finden,
die sich im Sinne der GauBschen Methode der kleinsten Fehlerquadrate moglichst gut
der Punktmenge (tg, sx), K = 1,2, ...,n, angleicht (vgl. die spatere Abb. 24), d. h., wir
suchen die verallgemeinerte Losung (u, v) des Giberbestimmten Gleichungssystems

U+ tpv = sg

Dieses System hat die Form (23.8) mit ay, = 1, by = tg, fx = Sk, T = u, y = v, SO
dass seine Losung die Gestalt (23.10) besitzt. Fihren wir die 100 VII. Identifikation
Mittelwerte

7—

St fj (24.2)

k=1
ein, so finden wir aus (23.3) und (23.11) die Be2|ehungen A=n, F=nt, B=ns
und

S|

n n
AD —F2 =n S 8 — 0P =n S (2 + 240 + 1) Z ty —1)?
k=1 k=1 =1
n
AE — FB—nZtksk—ths —nZtksk—tks—tsk—Fts —nZtk—t (s —3)
k=1 k=1 k=1

Damit ergibt sich aus (23.10) mit y = v fiir den sogenannten Regressionskoeffizienten
die Darstellung

v =Fk=L - (24.3)

und wegen
ABD — AEF  (ABD — BF?) — (AEF — BF?)
AD - F2 AD — F?

fir den zweiten Koeffizienten x = u

nu = Ax = = B — yF =n(s — vt)

u=35—vt

Die mit diesen Koeffizienten gebildete Gerade nennt man Regressionsgerade. Sie lasst
sich auch in der Form
s—35=uv(t—1)

mit (24.2) und (24.3) schreiben, so dass sie stets durch den Schwerpunkt (Z,3) geht.
Die Grundgleichung der Mechanik. Wir kehren jetzt zu unserem diskreten Modell der
Mechanik zuriick, in dem mehrere Grundgleichungen die Form

1
Yn — Yn—-1 = i(zn + Zn—l)Ax (244)
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mit Ax = x,,—x,_1 haben (vgl. (13.4) bis (13.6) sowie (13.11)). Der Einfachheit wegen
nehmen wir im folgenden stets an, dass Ax eine von n unabhangig gewahlte, bekannte
positive Konstante ist. Dann kann man die Gleichung (24.4) verwenden, um entweder
bei bekannten z, die y, oder umgekehrt bei bekannten y,, die z, zu berechnen. Im
ersten Fall erhalten wir durch Summation (vgl. Aufgabe 25)

1 n
Yn = Yo + 52 2k + 21 Aw
und hieraus fiirn > 1
1 n—1
Yn = Yo + i(zo + z2p) Az + > zpAx (24.5)
k=1
Im zweiten Fall erhalten wir aus der Umstellung
Ay,
n n—1 — 2
Zn T Zn—1 Ay

mit Ay, = ¥, — yn—1 nach Einsetzen in die Identitat
Zn Zo—’rz ) k2k+2k_1)

die Gleichung (vgl. Aufgabe 26)

—k Ayk

Zn = <_1)n30+22(_ Ar
k=1

und hieraus fir n > 1 wegen

n

é(—l)”myk = S ()" g — ) = ki(—l)"’fyk + é(—

k=1

nach Zusammenfassung der Summanden mit 1 < k < n — 1 die Darstellung

= ()0 + o (w( 1>“yo+2z<—1>“yk) (24.6)

Bestimmung von Anfangswerten. In den beiden soeben behandelten Fallen ist die ge-
suchte Folge nur bis auf ihren Anfangswert durch die gegebene Folge bestimmt. Bei
einer konkreten physikalischen Aufgabenstellung wird jedoch auch stets der Anfangs-
wert yo in (24.5) vorgegeben.

So ist o im Fall (13.4) die Anfangslage s, im Fall (13.5) die Anfangsgeschwindigkeit
v, im Fall (13.6) die am Anfang bereits vorhandene Arbeit 1, und im Fall (13.11)
der Anfangsimpuls .Jy. Bei sy und W}, gibt man meistens den Wert 0 vor, sofern keine
anderen Griinde dagegen sprechen.

Anders ist es bei der Gleichung (24.6). Hier liefert die konkrete physikalische Aufga-
benstellung keine Anhaltspunkte zur Bestimmung von 2, so dass wir eine zusatzliche
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7.24 Beispiele aus der Mechanik

Uberlegung anstellen miissen. Da bekannt ist, dass im physikalischen Bereich der Natur
im allgemeinen Optimalzusténde realisiert werden, diirfte es sinnvoll sein, zy nach der
Methode der kleinsten Quadrate zu bestimmen. Wir fordern daher, dass

Q= zn: rkz,% (24.7)
k=1

moglichst klein sein soll, wobei die r; positive Gewichte sind, (iber die wir noch verfiigen
konnen. Je nach der Wahl der rk und nach der Wahl von n erhalten wir natiirlich
unterschiedliche zp und damit unterschiedliche Modelle der Mechanik. Eine andere
Argumentation zur Bestimmung von Anfangswerten findet man in [5].

Wir bringen jetzt hierfiir einige Beispiele, wobei wir die Abkiirzung

1 n—1
Gn = — (yn +(=1D)"yo+2 > (—1)”_kyk> furn>1 (24.8)
Ax i1

und go = 0 benutzen, so dass (24.6) fir n > 0 wie folgt lautet:
zn = (=1)"20 + 2q, (24.9)

1°. Wahlen wir n = 0, so wird (24.7) fiir zo = 0 minimal.

2°. Wahlen wir n =1 und ro = 1 = 1, so lautet (24.7)
Q= 25 + (20 — 201)°

und wird nach (23.5) fiir zo = ¢; minimal, d. h. wegen (24.8) und (24.9) fur

Ayl

20 = ~1 Az ( )

3°. Wahlen wirn =2 und ro =ry =1, r; = 2, so wird

Q = 25+ 2(20 — 201)* + (20 + 2¢2)°
nach (23.5) und (24.8) fir
1 3Ay1 — Ayg

— g — —(y = 2 TI= 24.11
20 = q1 2612 O ( )

minimal, wobei nach (24.9)

1
Z1=Q1+§Q2 ; Z2=q + zq2

folgt.

Quadratische Funktionen. Ist y,, = o + n + yn? wie s,, bei dem in § 15 behandelten
Wurf eine quadratische Funktion, die fiir v = 0 die lineare und fir v = § = 0 die
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7.24 Beispiele aus der Mechanik

konstante Funktion als Spezialfall enthalt, so findet man aus (24.6) unter Beachtung
von Aufgabe 8

27/7 -
o { 20 + =an fiir gerade n (24.12)

2 (B+7n) — 2 fir ungerade n
! (B + 2yn)
- n
Az i

wird (die hohlen Kreise der Abb. 24). Im Fall 2° folgt aus (24.10) zy = (8 + v)/Ax,
so dass (24.12) in die Funktion

Zn =

%x(ﬁ + v+ 2yn) fir gerade n
Az (B —7+2yn) fir ungerade n

ibergeht, die fiir y = 0 um die im Fall 3° ermittelte Gerade schwankt (die vollen Kreise
der Abb. 24).

Zn

Zy

plax o i L

Abb. 24  Wiaxz

Im Fall v = 0 erhalten wir wie zuvor die konstante Funktion z, = §/Az, wahrend
(24.12) sonst fiir v = 0, 29 # 8/Ax eine periodische Funktion ist (Abb. 25).

Abb. 25

Im Fall 1°, in dem 2o = 0 ist, wird (24.12) lediglich fir v = 3 = 0 konstant, und zwar
zn = 0.

Aufgabe 40. Man zeige, dass (23.12) im Fall der Regressionsgeraden den minimalen
Wert . .
= Z Sk — 5 Z tk — t
k=1 k=1
besitzt.
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7.25 Bestimmung von Losungen

Von einer diskreten Funktion z; sei bekannt, dass sie die Gestalt
Nk k
2L = CIA] + Ca)g (25.1)

besitzt, die reellen Zahlen ¢;, \; j = 1,2, seien jedoch unbekannt. Von z;, mogen die
Messwerte zg, 21, ..., 2,11 Mit n > 3 vorliegen.

Setzen wir diese Werte in (25.1) ein, so entsteht fiir die vier Unbekannten ¢;, \; ein
iiberbestimmtes Gleichungssystem, von dem wir mit der Methode der kleinsten Qua-
drate eine verallgemeinerte Losung suchen, bei der die Messfehler ausgeglichen werden.

Der vorliegende Fall ist jedoch wesentlich komplizierter als alle vorhergehenden Falle, da
wir es einerseits mit vier Unbekannten zu tun haben und andererseits die Gleichungen
(25.1) fir k& > 1 nichtlinear sind. Wie wir aber gleich sehen werden, lasst sich dieses
Problem auf zwei lineare Ausgleichsverfahren fiir jeweils zwei Unbekannte zuriickfiih-
ren.

Bestimmung der \;. Wie wir wissen (vgl. etwa (19.2) und (19.3)), treten diskrete
Funktionen der Form (25.1) als Lésungen von Differenzengleichungen der Gestalt

211 +azg +bzp1 =0 (25.2)

auf. Setzen wir hier fir £ = 1,2,...,n die Messwerte ein, so haben wir es zunachst
mit einem linearen Ausgleichsproblem fiir die beiden Koeffizienten a, b zu tun. Mit den

Umbezeichnungen x = a, y = b, ap = 2, by = 211, fr = —zr11 erhalten wir daher
aus (23.10)
BD — EF AE — FB
- = b= — 25.
““AD-F2 AD — F? (253)

und aus (23.3) sowie (23.11)

n

n n
2
A=z, B=—> zpzk1, E=—=> 212k

C:A—Fzzbﬂ—z%, D:A—f—zg—z2 F=—B+ 2021 — Znzns1

n?

Andern sich die Werte z;, stark, indem sie mit wachsendem k& recht groB bzw. recht klein
werden, so ist es zweckmaBig, diese Anderungen durch geeignete positive Gewichte 7},
auszugleichen, d.h. die Ausgleichsrechnung auf die aus (25.2) folgende Gleichung

TEZEQ + TEZE—1M = —TE2E+1

anzuwenden. Das Ergebnis hat dann wieder die Form (25.3), wobei in (23.3) und (23.11)
jetzt ap = iz, by = rrzp_1, fr = —Tr2Ke1 zu setzen ist. Eine sinnvolle Wabhl fir die

Gewichte r;, lautet .

T =
| 21| + 2] + 261

(25.4)

Im Fall 25, # 0 fur 1 < k& < n kann man aber auch einfacher r; = 1/|zx| wahlen.
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7.25 Bestimmung von Lésungen

Nach der Identifikation der zu z; gehorenden homogenen Differenzengleichung finden
wir im Fall a? > 4b, auf den wir uns beschrinken wollen, die Zahlen \;, Ay aus der zu-
gehorigen charakteristischen Gleichung (6.4). In dieser quadratischen Gleichung driickt
sich die Nichtlinearitat des urspriinglichen Problems aus. Die Lésungen der charakte-
ristischen Gleichung lauten nach (6.5)

1 1
/\1=§(—a—|— va2—4b) , )\2=§(—a—va2—4b)

mit (25.3), so dass der erste Teil unseres Problems erledigt ist.

Bestimmung der ¢;. Nachdem wir die A; bestimmt haben, ist (25.1) bei gegebenen
2 fir k= 0,1,...,n 4+ 1 jetzt nur noch ein lineares Ausgleichsproblem fiir die beiden
Unbekannten c;, co. Setzen wir & = c1, y = c2, ap = pp\}, by = pe)s, fr = prze mit
geeigneten positiven Gewichten pyg, so geht (25.1) in (23.8) tber, und die zugehorige
verallgemeinerte Losung lautet nach (23.10)

_ BD-EF  AE-FB
T AD_F2 0 T Ap_p?

wenn wir in den Koeffizienten (23.3) und (23.11) fiir ay, by, fi die soeben angegebenen
Ausdriicke einsetzen und gleichzeitig beachten, dass k in den Summen von 0 bis n+1 zu
laufen hat (sofern wir nicht auf die Werte 2y und z,1 verzichten). Insbesondere finden
wir nach (2.4) fir Fim Fall pp = 1 wegen A\ Ay = b mit (25.3) den geschlossenen
Ausdruck

1

n+1 n+1 1 — pnt2
F:Zakbk:Zbk:7
k=0 k=0 1-b

fir b # 1, wahrend fir b = 1 offenbar F' = n + 2 wird. Im allgemeinen wird man aber
die Gewichte pj in ahnlicher Weise festlegen wie zuvor die Gewichte 7.

Es sei bemerkt, dass die soeben durchgefiihrte zweimalige lineare Ausgleichsrechnung
zwar nicht dasselbe Ergebnis wie die eigentlich erforderliche nichtlineare Ausgleichs-
rechnung liefert, Testrechnungen zeigen aber, dass die Ergebnisse zufriedenstellend
ausfallen, wenn man bei den Koeffizienten (25.3) die Gewichte (25.4) benutzt und bei
der Berechnung von ¢; und ¢y analog vorgeht.

Die Voraussetzung iiber die Gestalt (25.1) der diskreten Funktion zj ist immer erfiillt,
wenn von vornherein bekannt ist, dass z; Losung einer Differenzengleichung zweiter
Ordnung (mit a? > 4b) ist. Ist hieriiber nichts bekannt, so kann man natiirlich trotzdem
die Konstanten A; und c; auf die vorhergehende Weise berechnen und nachtraglich
feststellen, wie gut die rechte Seite von (25.1) die linke approximiert.

Ein anderes FehlermaB. Das GauBsche quadratische FehlermaB (23.2) zur Bestimmung
der verallgemeinerten Losung des Systems (23.1)

fur £k = 1,2,...,n kann auch durch ein anderes MaB ersetzt werden, beispielsweise
durch

M= |axe — fil (25.6)
k=1
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7.25 Bestimmung von Lésungen

Wahlen wir der Einfachheit wegen n = 2, so erkennen wir aus Abb. 26, dass M diesmal
fur

fl/al fur |CL1’ > |CL2|
= - 25.7
’ { fo/as fiir |ar] < |as] (257)
minimal wird, wahrend x fiir |a1| = |as| jeden Wert zwischen fi/a; und fo/as (ein-

schlieBlich dieser Werte) annehmen kann.

Y

Abb 26 filaq lefc;g X

Diese Methode wollen wir jetzt verwenden, um die in § 22 eingefiihrte regularisierte
Losung eines Randwertproblems naher zu charakterisieren. An Stelle von (22.3) be-
trachten wir die Losung

Zn = zs)) —+ xz;l
der Differenzengleichung (22.1) mit den Anfangsbedingungen 2y = 0, 21 = z. Wie

wir wissen, erhalten wir fiir x = —z](\?)/zg, die Losung des interessierenden Randwert-
problems, allerdings kann diese Losung im instabilen Fall verhaltnismaBig groBe Werte
annehmen.
In Anlehnung an eine ldee des sowjetischen Mathematikers A. N. Tichonov bestimmen
wir jetzt nach Einflihrung eines positiven Regularisierungsparameters o die Zahl x so,
dass

M = |z](\(,)) + 22| + oz|z§0) + z2]] (25.8)
moglichst klein wird. Diese Forderung bedeutet zwischen den beiden im instabilen Fall
2° von § 20 im allgemeinen unvereinbaren Bedingungen, dass namlich einerseits zy = 0
und andererseits z; (und damit auch alle folgenden z,) nicht zu groB sein sollen, einen
Kompromiss, wobei dieser Kompromiss durch die Wahl von « gesteuert wird.
Wegen z§0) und 2§ = 1 nimmt die GroBe M nach (25.7) im Fall a > |z}y| ihren
minimalen Wert fir

r=0 (25.9)

an. Da aber 2y in dem betrachteten instabilen Fall fiir groBe N einen kleinen Wert
hat, ist die Ungleichung fiir « fiir alle sinnvollen Werte « erfiillt, und wir sehen, dass
die in § 22 bestimmte regularisierte Losung 27(10) fir diese « durch die Forderung der
Minimalitat von (25.8) eindeutig bestimmt ist.

Eine ganz entsprechende Uberlegung kann fiir die regularisierte Lésung 2(%) aus (22.4)
im instabilen Fall 3° von § 20 durchgefiihrt werden.

Aufgabe 41. Man bestimme z so, dass an Stelle von (25.8)
Q = (29 + z2))? + az?
moglichst klein wird, und vergleiche das Ergebnis mit (25.9).
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8 Operatormethoden

Will man die zuvor fiir Differenzengleichungen zweiter Ordnung durchgefiihrten Uber-
legungen auf Differenzengleichungen hoherer Ordnung lbertragen, so stoBt man auf
keine prinzipiellen Schwierigkeiten. Es werden lediglich die Formeln entsprechend lan-
ger, so dass der Schreibaufwand ansteigt.

Um diesen Schreibaufwand zu verringern, fiihrt man zweckmaBigerweise geeignete Ab-
kirzungen ein, die sich auch schon bei der Behandlung von Differenzengleichungen
zweiter Ordnung als niitzlich erweisen, da man mit ihrer Hilfe einige der zuvor durch-
gefiihrten Umformungen iibersichtlicher gestalten kann.

Bei diesen Abkiirzungen handelt es sich in erster Linie um die Einfiihrung von soge-
nannten Operatoren sowie von Rechenoperationen mit diesen Operatoren. AuBerlich
gesehen stimmen diese Rechenoperationen im wesentlichen mit der zuvor bereits be-
nutzten "Buchstabenrechnung" der Algebra (iberein, so dass wir uns scheinbar auf einem
vertrauten Gebiet bewegen.

Die Buchstaben haben aber jetzt eine ganz andere Bedeutung, so dass wir uns in Wirk-
lichkeit auf einer hoheren Abstraktionsstufe befinden.

Aus diesem Grunde wurde auch davon Abstand genommen, Operatoren friihzeitig ein-
zufithren und zu verwenden, wie es beispielsweise in den Artikeln [3] und [4] versucht
wurde. Doch soll abschlieBend jetzt ein gewisser Einblick in das Gebiet der Operato-
renrechnung gegeben werden, der auf die genannten Artikel aufbaut.

Operatoren. Ein Operator A ist eine eindeutige Abbildung von einer Menge D, dem
Definitionsbereich des Operators, in eine Menge W, den Werte- oder Bildbereich des
Operators, bei der jedem Element x € D genau ein Element y € W zugeordnet wird,
fir das

y = Ax

geschrieben wird (Abb. 27).

Abb. 27

Ein Operator ist daher nichts anderes als eine abstrakte Funktion, wo bei den Bil-
dern A(z) des Operators lediglich die bei Funktionen iiblichen Klammern weggelassen
werden.

Die Elemente von D heiBen Operanden, und bei der Bildung von Ax sagen wir, A wird
auf x angewendet. Wahrend die Mengen D und W bei klassischen Funktionen stets
Zahlenmengen sind, konnen sie bei Operatoren weitgehend beliebige Mengen sein.
Fir unsere Zwecke hier geniigt es, wenn wir als Elemente der Mengen D und W dis-
krete Funktionen x,,, vy, im Sinne von Abschnitt | wahlen, deren Argumente n von Fall
zu Fall festzulegen sind.
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Nach einer kurzen Darlegung der grundlegenden Begriffe und Eigenschaften werden wir
die Anwendung von Operatoren bei Differenzengleichungen sowie bei Gleichungssys-
temen erlautern, wobei wir uns natiirlich auf einige wenige Andeutungen beschranken
missen. Wer etwas mehr iiber die dabei auftretenden speziellen Operatoren wissen
mochte, moge sich dariiber an Hand der Biicher D. R. Dickinson [8] bzw. H. Belkner
[2] informieren (vgl. auch [6] und [7]).

8.26 Grundbegriffe

Die Wirkungsweise eines Operators kann man am besten durch ein Blockdiagramm
schematisieren, wobei eine Eingangsfunktion x, auf einen Block einwirkt und durch
einen im Block sich befindenden oder gedachten Mechanismus in eine Ausgangsfunktion
fr umgewandelt wird (Abb. 28), fiir die wir

fn = Ay (26.1)

schreiben.

Xn fn

Abb. 28

Praktische Beispiele fiir solche Blocke oder Systeme mag der Leser sich selbst (iberlegen
(vgl. die spatere Abb. 32). Zwei Operatoren A und B heiBen gleich, geschrieben A = B,
wenn fiir jede diskrete Funktion z,, die Bilder gleich sind, also Az, = Bz, gilt.

Abb. 29 S e

Multiplikation. Fir zwei Operatoren A und B kann man durch die Reihenschaltung der
Abb. 29 ein Produkt AB definieren. Darunter versteht man denjenigen Operator, der

eine diskrete Funktion z,, in
(AB)x,, = A(Bz,) (26.2)

abbildet, wobei die linke Seite durch die rechte definiert wird und die Klammern auf
der rechten Seite die Reihenfolge der Abarbeitung angeben.
Im allgemeinen ist AB # BA,; gilt jedoch AB = BA, so heiBen die Operatoren A und
B vertauschbar. Das Produkt von drei Operatoren A, B, C' ist in dieser Reihenfolge
durch

(ABC)z, = A(B(Cxy,)) (26.3)

erklart (Abb. 30), und ganz entsprechend lasst sich das Produkt von beliebig vielen
Operatoren einfiihren.

Abb. 30
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Aus (26.3) erkennt man sofort, dass das Operatorprodukt assoziativ ist, d. h., fir
beliebige Operatoren A, B, C gilt

A(BC) = (AB)C

so dass wir im folgenden bei Produkten die Klammern weglassen konnen.
Fir Operatorprodukte mit gleichen Faktoren benutzen wir die Potenzschreibweise, die
wir wie in § 1 durch

A™ = A™L4, A’ =1

fur m = 1,2, 3, ... rekursiv definieren konnen, wobei I der durch
Iz, = x, (26.4)

fir alle Operanden x,, erklarte Einheitsoperator ist.

o e e e e e )

Xn

Abb. 31 ' s

Addition. Durch die Parallelschaltung der Abb. 31 bzw. durch die Formel
(A+ B)x, = Az, + Bz, (26.5)

fir beliebige diskrete Funktionen x,, lasst sich fiir zwei Operatoren A und B auch eine
Summe A+ B definieren. Da die Addition auf der rechten Seite von (26.5) kommutativ
und assoziativ ist, gilt auch fiir die Operatoraddition das Kommutativgesetz

A+B=B+A (26.6)
sowie das Assoziativgesetz
A+(B+C)=(A+B)+C (26.7)
Da durch mehrfache Anwendung von (26.2) und (26.5)
((A+ B)C)x, = (A+ B)(Cxy,) = A(Cxy,) + B(Cxy,)

und
(AC + BC)x,, = (AC)x,, + (BC)xy, = A(Cxy) + B(Cxy)

gilt und die rechten Seiten fiir beliebige diskrete Funktionen z,, dasselbe beinhalten,
erkennen wir auch die Richtigkeit des rechtsseitigen Distributivgesetzes

(A+ B)C = AC + BC (26.8)
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Lineare Operatoren. Ein Operator A heiBt linear, wenn er fiir beliebige diskrete Funk-
tionen x},, xn” und fir beliebige reelle Zahlen ¢, ¢, die Eigenschaft

A1), + coxl)) = c1 Azl + co Azl (26.9)
besitzt. Fir einen linearen Operator A gilt wegen
(A(B+())x, = A(Bxy, + Cxy) = ABx,, + ACx,, = (AB + AC)x,
wobei x,, eine beliebige diskrete Funktion ist, auch das linksseitige Distributivgesetz
A(B+C)=AB+ AC (26.10)

Beispiele fiir lineare Operatoren bilden die reellen Zahlen ¢, wenn man die Anwendung
dieser Operatoren auf eine diskrete Funktion x,, durch die gewohnliche Multiplikation
cx,, erklart. In der Technik ist ein Zahlenoperator C' = ¢ im Fall ¢ > 1 ein Verstarker
und im Fall ¢ = —1 ein Kommutator mit der Eigenschaft (—1)x,, = —z,, (Abb. 32a, b).
Im Fall ¢ = 1 erhalten wir den Einheitsoperator I und im Fall ¢ = 0 den annullierenden
Operator mit der Eigenschaft

Ox, =0

fir alle Operanden z,,, wobei die Null auf der rechten Seite die identisch verschwin-
dende Funktion bezeichnet. Lineare Operatoren A sind stets mit Zahlenoperatoren ¢
vertauschbar, da aus (26.9) mit ¢; = ¢ und ¢o = 0 unmittelbar Ac = cA folgt. Sie
besitzen die identisch verschwindende Funktion z,, = 0 als Fixpunkt, d. h.

A0 =0 (26.11)

wie aus (26.9) fiir ¢; = ¢ = 0 ersichtlich ist.

%‘ Verstarker - -

a)

A A

b)

% Gleichrichter m
Abb. 32

[3)]
Ein Beispiel fiir einen nichtlinearen Operator ist der durch
Az, = |z,

definierte Gleichrichter A (Abb. 32c), da er die Eigenschaft A(—x,) = Az, besitzt,
wahrend fir einen linearen Operator A wegen (26.9) mit ¢; = —1, ¢; = 0 stets
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A(—x,) = —Ax, gilt.

Verallgemeinerte Inversen. Ein Operator R heiBt eine verallgemeinerte Inverse von A,
wenn eine der Gleichungen

AR=1, RA=1I, ARA=A, RAR=R (26.12)

erfillt ist. Genauer gesagt, heit R eine Rechtsinverse, Linksinverse, innere Inverse
oder auBere Inverse von A, wenn die erste, zweite, dritte bzw. vierte der Gleichungen
erfillt ist. Ist R Rechts- und zugleich Linksinverse, so heiBt R einfach Inverse von A;
ist R innere und zugleich auBere Inverse, so heiBt R auch reflexive Inverse von A.
Trivialerweise ist R = 0 auBere Inverse eines jeden Operators.

Besitzt A eine Rechtsinverse R und eine Linksinverse L, so ist LAR = R = L. Dies
bedeutet, dass eine Inverse, sofern sie existiert, stets eindeutig bestimmt ist.

Fiir die Inverse von A benutzt man die Bezeichnung A~!. Existiert A~!, so folgt aus
ARA = A durch Multiplikation mit A~! von links und von rechts, dass es dann auBer
A~ keine weitere innere Inverse von A gibt.

Analog sieht man: Ist R Rechts- oder Linksinverse von A, so ist R auch eine reflexive
Inverse von A.

Projektoren. Ein linearer Operator P heiBt ein Projektor, wenn
P*=P (26.13)

ist. Triviale Projektoren sind der Einheitsoperator I und der annullierende Operator 0.
Ein weiterer Projektor ist der durch

Pz, = x (26.14)

fur alle n erklarte Operator P, er heiBt Anfangswertprojektor.

Ist P ein Projektor, so ist wegen (I — P)*> = [ —2P + P? = [ — P auch der Operator
I — P ein Projektor.

Ist R eine verallgemeinerte Inverse von A, so gilt wegen (26.12) stets

ARAR=AR , RARA=RA

d.h., die Operatoren AR und RA sind dann im linearen Fall stets Projektoren und nach
dem soeben Bewiesenen auch die Operatoren

P=1-RA , Q=1-AR (26.15)
Offenbar gilt fiir lineare Operatoren stets
AP = QA , PR = RQ (26.16)

und es ist AP = QA = 0, falls R innere Inverse von A ist, und PR = R(Q = 0,
falls R auBere Inverse von A ist. Ist R Rechtsinverse von A, so ist () = 0, und ist R
Linksinverse von A, so ist P = 0.

Aufgabe 42. Man beweise: Ist Ry eine Rechts- bzw. Linksinverse von A, fir k =
1,2,...,m, dann ist R,,...RoR; eine Rechts- bzw. Linksinverse von A;A,...A,,.
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8.27 Losung linearer Operatorgleichungen

Eine beliebige Gleichung zur Bestimmung einer diskreten Funktion z,, lasst sich mit
Hilfe eines geeigneten Operators A stets in der Form

Az = fn (27.1)

schreiben. Im folgenden wollen wir uns aber ausschlieBlich auf lineare Operatoren be-
schranken, fir die dann auch die Operatorgleichung (27.1) linear heiBt. Insbesondere
heiBt (27.1) dann fir f,, # 0 eine inhomogene und fir f,, = 0 eine homogene Glei-
chung, und es gilt iber die Losungen von (27.1) in Verallgemeinerung von § 7 der

Struktursatz. 1°. Die homogene Gleichung hat stets die identisch verschwindende tri-
viale Losung.

2°. Sind !, und x!/ zwei Lésungen der homogenen Gleichung, so ist fiir beliebige Kon-
stanten ¢y, ¢ auch ¢1z), + coxl) eine Losung der homogenen Gleichung.

3°. Ist z* eine Losung von (27.1) und z(9) eine Losung der zugehdrigen homogenen
Gleichung, so ist z,, =z + 2(9) eine Lésung der inhomogenen Gleichung (27.1).

4°. Sind x,, und % zwei beliebige Lésungen von (27.1), so ist 2(9) = 2, —z* stets eine
Losung der zugehorigen homogenen Gleichung.

Beweis. Die Behauptung 1° folgt aus (26.11), 2° aus (26.9) und die letzten beiden
Behauptungen aus Az, = Az’ + Az") = f, +0 = f, bzw. Az = Az, — Az} =
fon—fn=0.

Losbarkeitsaussagen. Der Operator A moge eine (lineare) verallgemeinerte Inverse R
besitzen. Dann gilt:

5°. Ist R eine Rechtsinverse von A, so besitzt (27.1) mindestens eine Lésung x,.
6°. Ist R eine Linksinverse von A, so besitzt (27.1) hochstens eine Losung ;.

7°. Ist y, die allgemeine Losung von

Apyn - an (27'2)

mit (26.15), so ist
xn = Py, + Rf, (27.3)

die allgemeine Lésung von (27.1).

8°. Ist R eine innere Inverse von A, so ist

Qfn=0 (27.4)

eine notwendige und hinreichende Losbarkeitsbedingung fiir (27.1), und (27.3) ist mit
beliebigem v, die allgemeine Losung von (27.1).

Beweis. 5°. Im Fall AR = [ ist x,, = Rf, stets eine Losung von (27.1).
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8.27 Lésung linearer Operatorgleichungen

6°. Im Fall RA = I folgt aus (27.1) durch Anwendung von R, dass jede Losung die
Gestalt x,, = Rf,, besitzt.

7°. Durch Anwendung von ) auf (27.1) folgt wegen (26.16) die Gleichung (27.2) mit
Yn = Tp, und durch Anwendung von R auf (27.1) folgt wegen (26.15) die Gleichung
(27.3) mit y,, = x,,. Umgekehrt folgt aus (27.3) durch Anwendung von A und Beach-
tung von (27.2) sowie von (26.15)

AGz, = APy, + ARf, = (Q+ AR)f, = f

8°. Im Fall AP = QA = 0 folgt aus (27.2) einerseits (27.4) und andererseits, dass v,
in (27.2) beliebig gewahlt werden kann. Damit ist der Satz bewiesen. Im Fall 7° kann
man fir R etwa eine duBere Inverse wahlen, obwohl dies nicht notwendig ist.

Folgerungen. 9°. Die allgemeine Losung der homogenen Gleichung Az, = 0 lautet,
falls R innere Inverse von A ist, z,, = Py, (vgl. (27.3) mit f,, = 0).

10°. Existiert die Inverse A1, so besitzt (27.1) die eindeutig bestimmte Lésung z,, =
A7t f, (vgl. 5° und 6°).

Verschiebungsoperatoren. Ein wichtiger linearer Operator ist der durch
Vi, =x,-1 (27.5)

definierte Verschiebungsoperator V', wobei x,, eine beliebige Folge ist, deren Argumente
n jetzt die Menge aller ganzen Zahlen durchlaufen soll. Die Potenzen von V/,

Vi, =V(Va,) =V, 1 =1,

und allgemeiner
V™, = Tpnem (27.6)

sind ebenfalls Verschiebungsoperataren (Abb. 33).

|
|
1
1
1
|
1
|
!
I
1
|
1

)

I

I

|

i ] ) H | | !

2 3 4 n

Abb.33 ' °

Dabei hat die Gleichung (27.6) fiir beliebige ganze Zahlen m einen Sinn, so dass
insbesondere die Inverse V! mit V 'z, = x,,; existiert. Es sei bemerkt, dass das
bereits in § 13 benutzte Symbol A nichts anderes als ein Operator ist, der mit V' und
dem Einheitsoperator [ = 1 durch A =1 — V' zusammenhangt.

Die homogene Gleichung erster Ordnung

(1—-aV)x,=0 (27.7)
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8.27 Lésung linearer Operatorgleichungen

wobei « eine nicht verschwindende reelle Zahl ist, hat die allgemeine Losung z,, = a"x
(vgl. § 5, 2°). Deshalb kann A = 1 —a/V' nach der vorhergehenden Folgerung 10° keine
Inverse besitzen. Wohl aber hat A eine Rechtsinverse R mit

Enj ak f firn >0
k=1
0
— > o™ Ff firn<0
k=n+1

wobei man die Werte fir n > 0 aus (5.6) ablesen kann und die Werte fiir n < 0
sich analog ergeben. Wie man nachrechnen kann, besitzt der durch (26.15) definierte
zugehorige Projektor P die Eigenschaft Px,, = a"xg, so dass er fir « = 1 in den
Anfangswertprojektor (26.14) iibergeht.

Die homogene Gleichung zweiter Ordnung

(1+aV +bV3z, =0 (27.9)

mit konstanten Koeffizienten a, b und b # 0 lasst sich auf den vorhergehenden Fall
zurlickfithren, wenn wir die Faktorisierung

L+aV +bVi=(1—aV)(1-BV) (27.10)

durchfiihren, wobei «, 5 die Wurzeln der zu (27.9) gehdrenden charakteristischen Glei-
chung
N 4al+b=0

sind, die wir als reell annehmen. Da die Operatoren A =1 —aV und B =1 — gV
miteinander vertauschbar sind, ergibt sich aus (27.10), dass sowohl x,, = o™ als auch
x, = " Loésungen von (27.9) sind und daher nach 2° auch z,, = 1" + 28" mit
beliebigen Konstanten ¢y, cs.

Im Fall & # /3 haben wir damit die allgemeine Lésung von (27.9) gefunden (vgl. (7.9)).
Im Fall a = (8 erhalten wir nach Einfiihrung der Hilfsfunktion

v, = (1—aV)x, (27.11)

aus (27.9) und (27.10) die Gleichung (1 — aV)v, = 0 und damit die Zwischenlésung
vy, = ca”. Aus (27.11) finden wir dann mit Hilfe von (27.8) und 5° die weitere Losung
x, = cna™ und damit nach 2° die allgemeine Lésung von (27.9)

xn = (c1 + cn)a”
die wir (in anderer Bezeichnungsweise) auch schon in (7.12) angegeben haben.
Betrachten wir an Stelle von (27.9) die Gleichung mit variablen Koeffizienten
(14 ap,V + b, V3, =0
so fiilhrt der Faktorisierungsansatz

(1+a,V+b,V?) =(1—a,V)(1—B,V) (27.12)
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8.28 Vektoren und Matrizen

wegen
(1 - anV)(l - an) =1- (O'/n + ﬁn)v + O‘nﬁn—lv2

auf die bereits bekannten Gleichungen (21.3) zur Bestimmung von «,, (5,,. Dabei wurde
die Gleichung V5, = B,-1V benutzt, bei der man 3, und 3, 1 als Operatoren mit
der gewohnlichen Multiplikation aufzufassen hat. Diese Gleichung zeigt, dass V' und (3,
und damit auch die Faktoren in (27.12) nicht vertauschbar sind.

Aufgabe 43. Man beweise: Sind A und B lineare Operatoren, so sind auch
a) AB, b) A+ B und, falls A~! existiert, c) A~! lineare Operatoren.

8.28 Vektoren und Matrizen

Wahrend wir im vorhergehenden Paragraphen diskrete Funktionen z,, betrachtet haben,
die fir alle ganzzahligen Werte n definiert waren, wollen wir jetzt naher auf diskrete
Funktionen eingehen, die nur fiir endlich viele Argumentwerte erklart sind.

Solche Funktionen heiBen Vektoren und die Funktionswerte dieser Funktionen ihre Ko-
ordinaten. Bei Vektoren ist es tblich, auf die Angabe des Arguments n zu verzichten,
so dass wir im folgenden fiir x,, einfach x schreiben werden.

Der Einfachheit wegen beschranken wir uns im weiteren auf den zweidimensionalen Fall,
dass n nur die Werte 1 und 2 durchlauft, die Vektoren also nur zwei Koordinaten besit-
zen, da man an diesem Spezialfall bereits alles Wesentliche erlautern kann, was dann
analog auch fiir groBe n gilt. Fir solche Vektoren z, y, f benutzen wir die Schreibweise

I n i
Tr = s = , =
<~”32> Y <?Jz> / (fz)
die besagen soll, dass x die Koordinaten x1, xo besitzt und es bei den tbrigen Vektoren
analog ist. Die Vektoren (28.1) dirfen nicht mit den eingefiihrten Binomialkoeffizien-
ten verwechselt werden. Als diskrete Funktionen lassen sich Vektoren ohne weiteres

addieren und mit einer Zahl ¢ multiplizieren, wobei diese Operationen koordinatenweise
vorzunehmen sind (vgl. Abb. 34), d. h.

()l )=(a) ()=
- = , =
2 Y2 To + Y2 T2 CX2

Abb. 34 @

Auch die Gleichheit zweier Vektoren ist koordinatenweise zu verstehen. Der Vektor x
mit den Koordinaten 1 = x9 = 0 heillt der Nullvektor.
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8.28 Vektoren und Matrizen

Ein beliebiger linearer Operator A, der eine Abbildung zwischen (zweidimensionalen)
Vektoren bewirkt, muss bei Anwendung auf x stets ein Ergebnis der Form

Az = ( (1T Ty ) (28.1)

asri + a4x2

mit gewissen Zahlen aq, ..., a4 liefern, da der Operator in beiden Koordinaten linear
sein muss. Die Zahlen aq, ..., a4 hangen natirlich von dem speziellen Operator A ab
und bestimmen ihn in eindeutiger Weise. Die Gleichung (28.2) legt es nahe, analog zu
der Vektorschreibweise (28.1) fiir den linearen Operator A mit (28.2) und fiir einen
entsprechenden Operator B die Schreibweise

o ar ao . bl b2
ae(mm) L me(n ) e
einzufithren. Die auf den rechten Seiten der Gleichungen (28.3) stehenden Ausdriicke
heiBen Matrizen, und die Zahlen, aus denen die Matrizen gebildet werden, die Elemente

der Matrizen.
Spezielle Beispiele liefern uns die Matrizen

() o () me(8) me(09) o

mit
. I . 0 . I . 0
]:1:—(@), O:I:—<O>, Plzc—<0>, ng—<x2>

I ist die Einheitsmatrix, O die Nullmatrix, und die Matrix Pj ist fir &k = 1,2 jeweils

ein Projektor auf die entsprechende Komponente des Vektors, der als Operand auftritt
(vgl. Abb. 35 sowie § 26).

%2 T P,

X

A

Abb. 35 %

Rechnungen mit Matrizen. Aus der Definition (26.5) fir die Addition von Operatoren
folgt fiir die Addition von Matrizen

ap as b1 bQ . a1 + b1 as + bg
<a3 a4>+<b3 b4>_<a3+b3 a4+b4> (28.5)
und aus der Definition (26.2) fiir die Multiplikation entsprechend
ap ap b by \ _ [ a1by + agbs aiby + asby (28.6)
as a4 by by asby + asbs asby + asby '
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8.28 Vektoren und Matrizen

Speziell ergibt sich noch aus (26.2) fiir die Multiplikation mit einer Zahl ¢

c( ap as ) _ ( ca; cag ) (28.7)
az Qa4 caz Ccaqg

(vgl. Aufgabe 44). Matrizenprodukte sind im allgemeinen nicht vertauschbar, wie das

CENED-CY -

zeigt. Fithren wir die Bezeichnungen

0 1 00
(o) = (1)
ein, so lassen sich die vorhergehenden Gleichungen wegen (28.4) in der Form AR = P,
RA = P, schreiben, aus der durch erneute Anwendung von (28.6) ARA = P A =
APQIA, RARIRP1=P2R=RfO|gt

Damit ist gezeigt, dass die Matrizen A und R zueinander reflexiv invers sind, wobei die
zugehorigen Projektoren (26.15) wegen Py + P, = 1

P=pP ., Q=P

lauten.
Vektoren und Matrizen sind geeignet, um Gleichungssysteme

a1x1 + asry = fi : asry + agxe = fo (28.9)
in der Kurzform Az = f schreiben zu kénnen. Da das System (28.9) im Fall
d = ayay — azas # 0 (28.10)

nach (11.3) die eindeutig bestimmte Losung

T = 1(@4]’1 —axfo) Ty = 1(—a:afl + a1 fo)

d d
besitzt, konnen wir jetzt sagen, dass die Matrix A unter der Voraussetzung (28.10)
eine Inverse besitzt, und zwar bei Verwendung der Eigenschaft (28.7)

1 as —a
Afl —— 4 2
d < —az @ )

Weiterhin ist es jetzt moglich, die Aufgabe 22 als Spezialfall der Eigenschaft 3° oder
auch 8° von § 27 zu behandeln, worauf wir aber nicht weiter eingehen wollen. Bei den
Matrizen (28.8) ist die Bedingung (28.10) nicht erfiillt, so dass wir uns dort mit verall-
gemeinerten Inversen begniigen miissen. Beispiele fiir eine Rechts- oder Linksinverse,
die nicht sogar Inverse ist, gibt es im Bereich der Matrizen (28.3) nicht.
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8.28 Vektoren und Matrizen

Verschiedene Bereiche. Bisher haben wir uns ausschlieBlich mit Operatoren befasst, bei
denen Definitions- und Bildbereich libereinstimmen. Im allgemeinen ist diese Voraus-
setzung jedoch nicht erfiillt.

Die vorhergehenden Uberlegungen lassen sich auf den allgemeineren Fall iibertragen,
wenn man darauf achtet, dass bei der Addition A + B die Operatoren A und B einen
gemeinsamen Definitionsbereich und einen gemeinsamen Bildbereich besitzen und dass
bei der Multiplikation AB der Bildbereich des zweiten Faktors B im Definitionsbereich
des ersten Faktors A enthalten ist.

Hierfiir wollen Wir jetzt abschlieBend einige Beispiele anfiihren, wobei wir uns nach wie
vor auf zweidimensionale Vektoren und die zugehdrigen Matrizen (28.3) beschranken.

Neben den Vektoren (28.1), die wir jetzt als Spaltenvektoren bezeichnen, fiihren wir
die Zeilenvektoren

OéZ(al Cl2> ) 5:(171 bz)

ein, die sich von den Spaltenvektoren lediglich in der zeilenweisen Anordnung der Ko-
ordinaten unterscheiden. Die Addition und die Multiplikation mit einer Zahl ist auch
hier wieder koordinatenweise auszufiihren, d. h.

(al a2)+(61 b2>:<a1+b1 CL2—|—bQ>

c<a1 CLQ):(Cal caz)

Zwischen Spalten- und Zeilenvektoren erklaren wir die folgenden beiden Produkte:

al a1b1 a1b2 aj
<a2>(b1 bg):<a2b1 a2b2> . (b b2)<a2>:a1b1+a2b2 (28.12)

wobei das Ergebnis im ersten Fall eine Matrix und im zweiten Fall eine Zahl ist. Fassen
wir bei den Produkten (28.12) jeweils den ersten Faktor als Operator und den zweiten
als Operanden auf, so haben wir es hier mit Beispielen zu tun, bei denen die Operanden
und die Bilder unterschiedlichen Mengen angehoren. Ein weiteres Beispiel dieser Art
lautet

wobei ¢ eine reelle Zahl ist.

Wie man zeigen kann, lassen sich die Produkte (28.12) auch als Operatorprodukte
auffassen, wenn man auf den linken Seiten auch die zweiten Faktoren als Operatoren
deutet und sie auf zulassige Operanden anwendet.
Wahlt man dann

a1by + asby =1 (2813)

was auf mannigfache Art moglich ist, so liefertfa = 1, wobei a der zu « gehorende
Spaltenvektor ist, ein Beispiel dafiir, dass a Rechtsinverse von 5 und somit 3 Linksin-
verse von a ist. Bei diesen Operatoren gibt es im Gegensatz zu den zuvor betrachteten

104
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Matrizen keine Inversen, da a5 nach (28.12) niemals die Einheitsmatrix darstellen kann.
Es lasst sich aber erreichen, dass a3 eine symmetrische Matrix wird, bei der a1by = asb;
gilt, woraus in Verbindung mit (28.13)

a2
5 b2 -

b il %2
1 p— p—
at + a3

= — 28.14
a? + a3 ( )

folgt. Die spezielle verallgemeinerte Inverse 5 von a mit den Koordinaten (28.14) heiBt
die Moore-Penrose-Inverse von a.

Die vorhergehenden Ergebnisse veranschaulichen insbesondere die Eigenschaften 5° und
6° von § 27, da die Gleichung

(@ @)(I1>:f (28.15)

mit einer gegebenen Zahl f unterbestimmt und die Gleichung

ai S
r =
() =(2)
mit einer gesuchten Zahl x tberbestimmt ist. Multipliziert man die letzte Gleichung

formal mit der Moore-Penrose-Inversen /3 von a, so entsteht wegen (28.14) gerade die
verallgemeinerte Losung (23.5) mit n = 2 der Vektorgleichung (28.15).

Aufgabe 44. Man beweise die drei Gleichungen (28.5) bis (28.7).
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9 Losungshinweise

1.5!=5-4-3-2-1.

2. Fir k = 0 und k = n stimmt die Behauptung wegen (1.5). Fir die tibrigen & folgt
sie wegen (1.6) aus

n\ [(n-—1 n—1\ (n—1)! (n—1)!
(k)_(k—l)+< k )_(k—l)!(n—k)!+k!(n—k—1)!

_ |
/;v?n —1/2;) (k+(n—k) = k!(an B
nach dem Prinzip der vollstandigen Induktion.
3. a= 155, 4 = 15
"=
5.n+1
6. (1—1)" = 0; fur ungerade n kann man den Beweis auch mit Hilfe von (1.7) fiihren.
7. (n+ 1! —1
8. (—1)"in(n +1).
0. (1) + 27+
10. 3n(n+ 1) (vgl. Aufgabe 8).
11. 1n + c1n + co mit beliebigen Konstanten ¢y, co

12. tn(n 4 2) + c mit einer beliebigen Konstante c.

13. Man multipliziere y;, + ay,,_; + by,,_o = f, mit ¢; und y! + ay,_, + by, _, = f/
mit co, anschlieBend addiere man die Ergebnisse.

1+n

/I __ ¢ —cC "N __c 2
14. z], a1 Ty = 1C2 " fir 2 £ 1;
zh = (n+1)c", 2 = —nc"! fir & =1
;o nsinw(ntl) n—+1sinwn
15. @, = V"= =, 1y, = — VOt e

16. xop41 + bxop—1 = 0, 29y + bxop—2 =0

17. Man eliminiere in (9.4) zunachst y,,_;, ersetze n durch n — 1 und eliminiere aus
dem Ergebnis mit Hilfe der zweiten Gleichung von (9.4) nochmals y,,_1

18. Man fiihre die Hilfsfunktion w,, = ¥,2n,—1 — Yn—12x €in, leite fir diese aus (9.5) und
(9.12) die Gleichung w,, = (a®—2)w,_1 her und dividiere die Lésung w,, = (a*—2)"wyq

dieser Gleichung durch z,z, 1

19. Ausz, 1 < x, < x folgt g(zn_1) < g(x,

) < g(x), d. h. x;, < x4 < x. Aus
T < Ty < Tp— folgt g(x) < g(@n) < g(zp—1), d. h. 2

< Tpt1 < T
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20. Aus 29,9 < T9, < z folgt g(xon—2) > g(x2,) > g(z), d. h. < Z9p 11 < Top—1,
durch nochmalige Anwendung von g folgt g(z) > g(zon11) > g(x2,-1), d. h. 29, <
Top42 < T

21. Aus der Losbarkeit von (11.4) folgt p = x — by = bq

22. Man wahle etwa z* =p, y* =0; xg = b, yp = 1

23. Man benutze g(2) — g(2") = — 55 (3(z" + /2" + 2"?) + 131(2 + 2")) (2’ — ")
24. [g(h(z")) — g(h(z"))| < glh(2’) — h(z")| < pgla’ — 2"

25. s, = 59 + %I;—:l(z)k + vp—1)(tk — tr—1)

26. vy, = (—1)"vg + 2 k;(—U”"“%

27. Z m! ) (k) — i m(k)vék), wobei v( ) die Geschwindigkeit von m®) zur Zeit t,
k=1
bedeutet

28. Z m(’“)sg“) = XTI m(k)s(()k) bei verschwindendem Anfangsimpuls.
k=1 k=1

29. wrsinw &~ 2,/p = \/%At
30. s, = spcoswn

31. Das komplementare Ereignis "die Maschine hat in keinem der n Zeitrdume von t;_4
bis t;, k = 1,...,n, einen Ausfall' hat nach dem Multiplikationssatz die Wahrschein-
lichkeit 1 — ¢, = p". Wegen des zweiten Ereignisses vgl. Aufgabe 32 mit m =n —1

32. p" —p" = p™(1 — pn — m). Man berechne die Wahrscheinlichkeit fiir das Ereignis
"die Maschine hat ihren ersten Ausfall im Zeitintervall von t,, bis ¢," einerseits mit
Hilfe des Additionssatzes und andererseits mit Hilfe des Multiplikationssatzes, wobei
es im zweiten Fall nur auf die Lange des Intervalle von ¢,, bis t;, nicht aber auf den
Anfangspunkt t,, ankommt.

33. ju, = 4sin® (QZNlﬂ) z,(lk) = 4 cos (2’2“]\, 7'('71) k=1,2,...N

34. gi11 = agd, gi2 = —d, go1 = —bzd, goo = ald mit d = 1/(@1@2 — b2)

35. In 2z, = —gn1b2y — gn,N—12N Wurde fiir g,,; die zweite und fiir g, ny_; die erste der
Darstellungen (19.7) bzw. (19.9) benutzt, diese gelten aber nicht in den Grenzfallen
n=20bzw. n = N.

36. a) 2%, b) 3Y
37. u, =1/v_,, ist eine Lésung von (21.6) und vy = g

38.a) z, =1, b) 2, ® 1+10710(27 — 47799 ¢) 2, = 1+4"79 — 279 Man beachte,
dass 4% = 3,2-10% ist und 2798 = 3,2 . 1073,

107



8.28 Vektoren und Matrizen

39. AD — F? = (a® + d?)(b* + €?) — (ab+ de)* = a®b* + a*e* + d*b* + d*e* — a?b* —
2abde — d*e? = (ae — db)? usw.

40. Aus den beiden mittleren Gleichungen von (23.13) folgt ¢ = % (Be — Ed), f =
%x(aE — bB) mit A = ae — bd.

Folglich ist mit (23.10)

A+ 2= 5 (B2 + b)) + E*(d* + a*) — 2BE(ed + ab)) =

= 4 (B?D + E?A - 2EBF) = Z(BD - EF) + E(EA—- BF) =

= Br + Ey = 372%— 7AEZBFy = 3724— i(AD—F2)y2

und wegen A =n, y =v,
AD—F>=n Y (ty —1)?, AC — B>=n Y. (s; — 5)?
k=1 k=1

gilt

g=0C—-c*—f?>= i(AC’—B2 —(AD - F>)y?) = ¥ (sg —35)> —v? X (tp — 1)?
k=1 k=1

41. x = —25\9)2’5\;/(04 + 22) ~ 0, falls « nicht zu klein gewahlt wird.

42. Aus Ap Ry, = 1 furk =1,...,m folgt (Ay...An)(Rp...R1) = I, aus R Ay = I folgt
(R R1) (A1 Ap) =1

43. a) AB(aixy, + by,) = A(aBx, + bBy,) = aABx, + bABy,,

b) (A+ B)(ax, + by,) = A(ax, + by,) + B(az, + by,) = a(A+ B)x, +b(A+ B)yp,
c) Ar, = fn, Ay, = g, haben die Lésungen x,, = A~ f,, y, = A~ lg,. Hieraus folgt
A(az, +by,) = af,+bg, und somit A~ (af,+bg,) = ax, +by, = aA~'f, +bA g,

44. Man wende beide Seiten der zu verifizierenden Gleichung auf einen beliebigen Spal-
tenvektor z an und iiberzeuge sich von der Gleichheit der jeweiligen Ergebnisse.
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