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Vorwort

Vorwort
Das vorliegende Buch stellt sich als Ziel, zwischen der elementaren Schulmathematik
und der sogenannten höheren Mathematik eine Brücke zu schlagen, indem es einen
Stoff behandelt, der einerseits selbst noch weitgehend elementar dargestellt werden
kann, andererseits aber eine günstige Gelegenheit bietet, den Leser in analytische Denk-
und Arbeitsweisen einzuführen, die er sonst erst auf einer wesentlich höheren Abstrak-
tionsstufe kennenlernt.

Diesen Stoff bilden die linearen Differenzengleichungen, wobei wir uns der Einfachheit
wegen auf Gleichungen bis zur Ordnung 2 beschränken, zumal die Lösungen dieser
Gleichungen bereits das typische Verhalten der Gleichungen höherer Ordnung wider-
spiegeln.

Die Theorie dieser Differenzengleichungen lässt sich verhältnismäßig kurz abhandeln, so
dass wir uns auf ihre Anwendungen konzentrieren, die vor allem der Numerischen Ma-
thematik entnommen werden. In der numerischen Praxis treten Differenzengleichungen
in der Regel als diskrete Approximationen für Differentialgleichungen auf.
Auf diesen Zusammenhang gehen wir hier jedoch explizit nicht ein, da an keiner Stelle
die Differential- und Integralrechnung und. nicht einmal der Grenzwertbegriff benutzt
werden soll, obwohl es mehrere Gelegenheiten gibt, wo der Schritt bis dahin nicht mehr
allzu groß ist. Der Verzicht auf Grenzübergänge erfolgt im Hinblick auf die Tatsache,
dass numerische Verfahren heutzutage von digitalen Rechenautomaten ausgeführt wer-
den, die nur über endlich viele Zahlen verfügen, der klassische Grenzwertbegriff aber in
einem endlichen Zahlenbereich gegenstandslos bzw. trivial wird.

Statt dessen soll hier der Leser mit einigen iterativen und direkten Berechnungsverfahren
vertraut gemacht werden, die sich sowohl zur Handrechnung als auch zur Programmie-
rung auf einem Rechenautomaten eignen.
Dabei werden wir uns weniger mit Zahlenbeispielen befassen als vielmehr mit solchen
Beispielen, die auf leicht lösbare Differenzengleichungen führen, so dass alle erforderli-
chen Rechenschritte vollständig in Formeln ausgeführt werden können. Diese Formeln
bieten uns einen guten Einblick in die Wirkungsweise der jeweiligen Algorithmen, und
da sie meistens einen oder mehrere Parameter enthalten, lassen sich durch Änderung
der Parameter die Vor- und Nachteile sowie die Grenzen der Algorithmen erkennen.
Kenntnisse hierüber sind keineswegs nur für Mathematiker von Bedeutung, sondern
durchaus auch für Nutzer der Mathematik, da man nicht immer auf fertige Rechen-
programme zurückgreifen kann, sondern sich oft an der Ermittlung des geeignetsten
Lösungsweges selbst beteiligen muss.

Anlage und Zielstellung des Buches bringen es mit sich, dass vom Leser nach Mög-
lichkeit eine gewisse Gewandtheit in der "Buchstabenrechnung", d.h. im Umgang mit
algebraischen Ausdrücken, erwartet wird, während sonst an Vorkenntnissen nicht einmal
der gesamte Schulstoff erforderlich ist.
Wer jedoch über diese Gewandtheit noch nicht verfügt, kann sie sich bei der Durchar-
beitung des Buches erwerben, indem er wichtige Umformungen sorgfältig nachrechnet
und dort, wo es notwendig erscheint, weitere Zwischenrechnungen selbständig ergänzt.
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Manchmal ist es auch nützlich, die Formeln durch selbst gewählte Zahlenbeispiele zu
überprüfen.
Eine weitere Hilfe bieten die Übungsaufgaben, die den behandelten Stoff nicht nur
festigen, sondern zum Teil auch vertiefen bzw. spätere Untersuchungen vorbereiten
sollen. Hinweise zu den Lösungen findet man im Anhang.

Einen Überblick über den Inhalt des Buches kann man aus der Einleitung sowie aus den
Bemerkungen am Anfang eines jeden Abschnittes entnehmen.
Bei der Lektüre ist es möglich, speziellere Ausführungen bzw. etwas längere Rechnungen
zunächst einmal zu überspringen. Man kann sogar von vornherein mit einem späteren
Abschnitt beginnen, doch sollte dann wenigstens bei Rückverweisungen der benötigte
Inhalt der vorhergehenden Abschnitte zur Kenntnis genommen werden. In das Litera-
turverzeichnis wurden nur solche Titel aufgenommen, die gleichfalls einen weitgehend
elementaren Charakter besitzen; weiterführende Beiträge, erscheinen zu den behandel-
ten Themen laufend in den einschlägigen Fachzeitschriften.

Das Buch wurde bereits in einem Proseminar für Mathematikstudenten des dritten
Semesters als Vorlage benutzt, wobei natürlich auf Grund des dort vorhandenen höhe-
ren Wissensstandes sowie an Hand der Zusatzliteratur verschiedene Untersuchungen in
abgekürzter bzw. vertiefter Form durchgeführt werden konnten.
Diskussionen im Seminar, Bemerkungen von Herrn Prof. Dr. F. Rühs und Herrn Dr. J.
Bock sowie besonders zahlreiche Hinweise von Herrn Dr. H. Belkner führten zu einer
Verbesserung des Textes, für die ich mich vielmals bedanken möchte. Mein Dank gilt
auch Herrn Dr. W. Plischke für die Anfertigung der Abbildungsvorlagen und die Hilfe
beim Korrekturlesen sowie allen beteiligten Mitarbeitern des Verlages und der Druckerei
für die geleistete Arbeit.

Rostock, im Frühjahr 1979

Lothar Berg
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Einleitung

Einleitung
Differenzengleichungen zweiter Ordnung sind für sich genommen eigentlich nicht so
interessant und wichtig, dass es sich lohnen würde, ihnen ein selbständiges Buch zu
widmen. Jedoch erhalten sie dadurch eine Bedeutung, dass es mit ihrer Hilfe mög-
lich ist, einige Grundaufgaben der Numerischen Mathematik und ihrer Anwendungen
in weitgehend elementarer Weise zu erläutern und die zugehörigen Lösungsmethoden
explizit auszuführen.
Man kann so bereits frühzeitig Begriffe, Probleme und Algorithmen kennenlernen, deren
Verständnis ein späteres Eindringen in die Analysis vor- bereitet und erleichtert.

Im ersten Teil des Buches werden die Differenzengleichungen in der Form

yn + anyn−1 + bnyn−2 = fn (1)

geschrieben und bei vorgegebenen Anfangsbedingungen als Rekursionsformeln behan-
delt. Im zweiten Teil treten sie nach der Umbezeichnung yn = zn+1 in der Form

zn+1 + anzn + bnzn−1 = fn (2)

auf und werden dort bei vorgegebenen Randwerten betrachtet, wobei sie in lineare
Gleichungssysteme übergehen.

Nach einem einführenden Abschnitt werden zunächst die später benötigten analytischen
Lösungsmethoden und qualitativen Eigenschaften der Lösungen von (1) behandelt,
bevor im dritten Abschnitt auf die numerischen Iterationsverfahren eingegangen wird.
Im vierten Abschnitt, der vom vorhergehenden unabhängig ist, werden dann auf der
Grundlage des zweiten Abschnitts Aufgaben der Mechanik behandelt, ohne die sonst
dort üblichen Differentialgleichungen zu benutzen, sowie im letzten Paragraphen Auf-
gaben aus der Wahrscheinlichkeitsrechnung, nachdem die erforderlichen Grundbegriffe
bereitgestellt worden sind.

In den nächsten beiden Abschnitten, die ebenfalls von den beiden vorhergehenden un-
abhängig sind, werden drei verschiedene Lösungsmethoden für die mit der Differen-
zengleichung (2) zusammenhängenden Gleichungssysteme ausführlich vorgeführt und
Maßnahmen zur Vermeidung starker Ungenauigkeiten, die bei der numerischen Auflö-
sung auftreten können, diskutiert.
Der vorletzte Abschnitt befasst sich mit der für praktische Anwendungen typischen Si-
tuation, dass ein theoretisch nicht lösbares überbestimmtes Gleichungssystem vorliegt,
dessen Unlösbarkeit aber nur durch kleine Mess- oder Rundungsfehler in den Eingabeda-
ten zustande kommt. Hier wird eine "verallgemeinerte Lösung" definiert und bestimmt,
die die widerspruchsvollen Gleichungen "möglichst gut" erfüllt und die Eingabefehler
weitgehend ausgleicht.

Im letzten Abschnitt wird ein kurzer Einblick in Operatormethoden gegeben, durch die
vorhergehende spezielle Überlegungen in einen allgemeinen Rahmen gestellt werden,
der von großer Tragweite ist. Von hier hat man einen gewissen Anschluss an das Buch
"Operatorenrechnung, I. Algebraische Methoden", VEB Deutscher Verlag der Wissen-
schaften, Berlin 1972, des Verfassers.
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Während der Stoff am Anfang des Buches noch verhältnismäßig breit dargelegt wird,
werden die Ausführungen später immer mehr gestrafft.
Besonders im zweiten Teil findet man Aussagen, deren Richtigkeit lediglich aus dem
Zusammenhang hervorgeht. Hier ist zu empfehlen, sich die erforderliche Argumentation
selbst zu erarbeiten. Auch schon im ersten Teil kann es für einen vollständigen Beweis
erforderlich sein, beispielsweise noch zusätzlich das Prinzip der vollständigen Induktion
heranzuziehen bzw. sich von der Umkehrbarkeit der einzelnen Beweisschritte zu über-
zeugen, sofern der Beweis eigentlich in der umgekehrten Reihenfolge hätte durchgeführt
werden müssen.

Dies bedeutet, dass vom Leser in jedem Fall eine aktive Mitarbeit erwartet wird, von
der er selbst dann auch den größeren Nutzen hat.
Wer bis in die Grundlagen der Mathematik hinabsteigen möchte, sei ausdrücklich auf
die Rechtfertigungssätze für die vollständige Induktion, die induktive Definition sowie
für die Existenz von Lösungen einer Rekursionsformel bei G. Asser [16] verwiesen.

Die Bezeichnungen werden nicht starr beibehalten, sondern gewechselt, wenn dies für
die weiteren Rechnungen vorteilhaft ist. Ein Beispiel hierfür ist bereits der Übergang
von (1) zu (2). Für (1) werden später im Fall konstanter Koeffizienten an = a, bn = b
und fn = 0 für alle vorkommenden n (man schreibt dann auch fn ≡ 0 und liest: fn

identisch gleich Null) Lösungen der Form

yn = c1λ
n
1 + c2λ

n
2 (3)

ermittelt (vgl. (7.9)), wobei λ1, λ2 durch a und b bestimmte feste Zahlen sind und c1, c2
beliebig gewählt werden können. Beim Übergang von (1) zu (2) erhält man wegen zn =
yn−1 diese Gleichung folgt aus zn+1 = yn bei Ersetzung der ganzzahligen Veränderlichen
n durch n − 1) zunächst zn = c1λ

n−1
1 + c2λ

n−1
2 . Da aber die Zahlen ck, k = 1, 2,

willkürlich sind, kann man sie auch durch andere Zahlen ersetzen, beispielsweise durch
ckλk.

Dann geht ckλn−1
k in ckλkλn−1

k = ckλn
k über, so dass auch die Gleichung (2) Lösungen

der Form
zn = c1λ

n
1 + c2λ

n
2 (4)

besitzt (vgl. (19.3)). Später werden wir den Übergang von (3) zu (4) sowie analoge
Übergänge bei ähnlichen Gelegenheiten ohne erneuten Kommentar vollziehen, da der
aufmerksame Leser ohne weiteres erkennt, dass die ck in (3) und (4) nicht dieselben
sind.

Wie bereits aus den Beispielen (3) und (4) entnommen werden kann, haben Differenzen-
gleichungen im Gegensatz zu den sonst üblichen elementaren Bestimmungsgleichungen
unendlich viele Lösungen.
Bei solchen nicht eindeutig lösbaren Gleichungen ist es grundsätzlich von Interesse,
nicht nur irgendwelche "speziellen Lösungen" zu kennen, sondern die Menge aller nur
möglichen Lösungen, die als "allgemeine Lösung" bezeichnet wird.

Bei den im Text folgenden Beispielen wird eine allgemeine Lösung stets wie in den Fäl-
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len (3) und (4) durch einen Ausdruck dargestellt, der einen oder zwei willkürlich wähl-
bare Parameter enthält, durch deren Festlegung man jede beliebige spezielle Lösung
gewinnen kann. Insbesondere lassen sich auch ohne Mühe diejenigen Lösungen bestim-
men, die noch zusätzlichen Nebenbedingungen wie den bereits erwähnten Anfangs- und
Randbedingungen genügen.

Im zweiten Teil treten Elemente mit Doppelindizes wie gnm auf. Hierbei handelt es sich
um Funktionen gnm = g(n, m) von zwei ganzzahligen Veränderlichen n und m, so dass
man eigentlich gn,m schreiben müsste, da n und m nicht miteinander zu multiplizieren
sind.
Man benutzt aber bei Doppelindizes das trennende Komma nur dann, wenn mindes-
tens ein Index ein zusammengesetzter Ausdruck ist wie etwa im Fall gn+2,m, da sonst
die Bezeichnung zu schwerfällig wäre. Eine andere Möglichkeit, den zweiten Index vom
ersten deutlich zu unterscheiden, besteht darin, ihn wie bei z(m)

n als oberen Index zu
schreiben, wobei er dann in Klammern gesetzt wird, um Verwechslungen mit einer Po-
tenz zu vermeiden.

Die Redewendung "für alle n" bedeutet stets "für alle in dem Zusammenhang vorkom-
menden Zahlen n". Dabei kann jeder Leser den Zahlbegriff zugrunde legen, der ihm
geläufig ist.
Sieht man von gelegentlich vorkommenden Irrationalzahlen, wie

√
2, π und log 4, ab,

so kommt man weitgehend mit rationalen Zahlen aus. Wer jedoch sogar die komplexen
Zahlen beherrscht, kann auf verschiedene Fallunterscheidungen und Einschränkungen
im Text verzichten, da diese lediglich gemacht wurden, um den reellen Zahlenbereich
nicht zu verlassen.

Selbstverständlich sind unter Verwendung stärkerer Hilfsmittel auch an anderen Stellen
Abkürzungen möglich; so lassen sich beispielsweise die späteren Gleichungen (23.10)
mit Hilfe partieller Ableitungen in wenigen Zeilen herleiten, noch dürfte der statt dessen
geführte elementare Beweis auch seine Reize haben.
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Erster Teil. Rekursionsformeln

Erster Teil. Rekursionsformeln
In den modernen Anwendungen der Mathematik hat man es immer weniger nur mit
einzelnen Zahlen zu tun. Besonders in der Datenverarbeitung treten vorwiegend ganze
Datensätze oder, wie man auch sagt, Zahlenfolgen auf, die entweder aus einer rein
mathematischen Problemstellung oder auch aus einer Serie von Messungen hervorge-
gangen sind. Es ist üblich, für Zahlenfolgen die Indexschreibweise

a1, a2, a3, ..., an, ...

zu benutzen, wobei der Index n die Stellung des n-ten Gliedes an in der Folge angibt
und auch durch einen anderen Buchstaben ersetzt werden kann. Wir interessieren uns
hier zunächst für solche Zahlenfolgen, bei denen zwischen den Folgengliedern eine
bestimmte Gesetzmäßigkeit besteht, aus der sich weitergehende Schlussfolgerungen
ziehen lassen.

Ein einfaches Beispiel für eine Zahlenfolge ist die Folge der ungeraden Zahlen

1, 3, 5, 7, 9, 11, ...

Das allgemeine Glied der Folge lautet hier an = 2n−1, wobei n die Folge der natürlichen
Zahlen 1, 2, 3, ... durchläuft, d.h.

a1 = 1, a2 = 3, a3 = 5, ...

Zwischen zwei benachbarten Gliedern dieser Folge besteht die Beziehung

an = an+1 + 2

die ein erstes Beispiel für eine Rekursionsformel ist.

Im folgenden sollen die einfachsten Klassen von Rekursionsformeln vorgestellt und einige
ihrer Eigenschaften und Anwendungsmöglichkeiten in der Numerischen Mathematik,
der Mechanik und der Wahrscheinlichkeitsrechnung besprochen werden.
Wer sich für weitere elementare Darstellungen über Rekursionsformeln interessiert, sei
auf die Bücher A. I. Markuschewitsch [12], N. N. Worobjow [14] und D. R. Dickinson
[8] verwiesen.

1 Diskrete Funktionen
Von einem allgemeinen Standpunkt aus gesehen, ist eine Folge nichts anderes als eine
diskrete Funktion, d.h. eine Funktion einer diskreten Veränderlichen. Eigentlich müssten
wir daher das n-te Folgenglied mit a(n) bezeichnen, durch die Indexschreibweise an

sparen wir aber die bei Funktionen üblichen Klammern ein.
Eine diskrete Funktion kann dadurch entstehen, dass sie von vornherein nur für diskrete
Werte n = 1, 2, 3, ... definiert ist. Sie kann aber auch aus einer Funktion f(t) für eine
kontinuierliche (reelle) Veränderliche t durch Abtastung hervorgegangen sein, indem

9



1.1 Rekursive Definitionen

von dieser Funktion die speziellen Werte an = f(n) oder allgemeiner an = f(t0 + nh)
für n = 1, 2, 3, ... herausgegriffen werden.
Letzteres ist etwa der Fall, wenn ein Zeitvorgang nicht laufend beobachtet, sondern nur
zu gewissen Zeitpunkten tn = t0 + nh im Abstand h gemessen wird (Abb. 1).

Abb. 1

Zweckmäßigerweise wird man zulassen, dass bei einer Zahlenfolge der Index n nicht
nur bei n = 1, sondern bei einer beliebigen ganzen Zahl beginnt, die positiv, negativ
oder auch gleich Null sein kann.
So ließe sich die bereits erwähnte Folge der ungeraden Zahlen auch in der Form
bn = 2n + 1 mit n = 0, 1, 2, ... darstellen, wobei zur vorhergehenden Schreibweise
der Zusammenhang bn = an+1 besteht. Eine solche additive Änderung von n um eine
ganze Zahl nennt man eine Indexverschiebung.

Der Kürze wegen werden wir für das n-te Glied einer Folge (mit festem n) und für die
durch dieses Glied bestimmte Folge (mit variablem n) dieselbe Bezeichnung benutzen,
da stets aus dem Zusammenhang hervorgeht, was gemeint ist. Aus dem Zusammen-
hang wird auch ersichtlich sein, ob der Index n nur endlich viele Werte durchläuft, oder
nach "rechts" hin (eventuell sogar nach "links" hin) keiner Beschränkung unterworfen
ist.

1.1 Rekursive Definitionen
Um uns mit dem Wesen von Rekursionsformeln vertraut zu machen, beginnen wir
mit einigen einfachen Beispielen. Dabei wollen wir zeigen, dass einige wohlbekannte
Definitionen, in denen eine natürliche Zahl n vorkommt, sich präziser fassen lassen,
wenn man sie in rekursiver Weise vornimmt.

Produkte. Die Multiplikation mit einer natürlichen Zahl n ≥ 2 ist bekanntlich nichts
anderes als eine wiederholte Addition, d.h., man definiert für eine beliebige Zahl a

2a = a + a, 3a = a + a + a, 4a = a + a + a + a

und allgemein, wenn man n Summanden a addiert,

na = a + a + ... + a

Diese Definition für das Produkt na hat allerdings den Nachteil, dass die Punkte auf
der rechten Seite nicht klar ausdrücken, was gemeint ist. Daher geht man besser fol-
gendermaßen vor: Man definiert zunächst für den ersten Wert n = 1

1a = a (1.1)
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1.1 Rekursive Definitionen

und setzt dann für beliebige natürliche Zahlen n > 1

na = (n − 1)a + a (1.2)

Benutzt man die Definition (1.1), (1.2) nacheinander für n = 2, n = 3, n = 4 usw.,
so erhält man dieselben Ergebnisse wie zuvor:

2a = a + a, 3a = 2a + a = a + a + a, 4a = 3a + a = a + a + a + a

Im Unterschied zur erstgenannten direkten Definition kann man jedoch mit Hilfe der
zweiten Definition das Produkt na an einer festen Stelle n nur dann berechnen, wenn
man die entsprechenden Produkte an den vorhergehenden Stellen bereits kennt. Aus
diesem Grunde spricht man hier und in analogen Fällen von einer rekursiven Definition.

Potenzen. Analog zum Vorhergehenden werden Potenzen einer beliebigen Zahl a ̸= 0
durch

a1 = a, a2 = aa, a3 = aaa, a4 = aaaa

und allgemein bei n Faktoren durch

an = aa...a

als wiederholte Multiplikation eingeführt. Auch diesmal lassen sich die Punkte durch
eine rekursive Definition vermeiden, indem man für n = 0

a0 = 1 (1.3)

und für beliebige natürliche Zahlen n

an = an−1a (1.4)

festlegt. Eine Probe für n = 2, 2, 3, 4, ... ergibt wieder die vorhergehenden Werte

a1 = 1a = a, a2 = aa, a3 = a2a = aaa, a4 = a3a = aaaa, ...

Das Verhalten der Folge an bei wachsendem n hängt wesentlich von a ab und kann für
a > 0 der Abb. 2 entnommen werden.

Abb. 2

In den beiden Fällen (1.2) und (1.4) lassen sich die Folgen übrigens auch nach "links"
rekursiv fortsetzen, indem man ihre Definitionsgleichungen in der Form

(n − 1)a = na − a bzw. an−1 = an/a
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schreibt und hieraus mit Hilfe von (1.1) und (1.3) für n = 1, 0, −1, −2, ...

0a = 0, (−1)a = −a, (−2)a = −2a, (−3)a = −3a, ...

sowie für n = 0, −1, −2, ...

a−1 = 1/a, a−2 = 1/a2, a−3 = 1/a3, ...

berechnet, wobei im letzten Fall natürlich a ̸= 0 vorauszusetzen ist.

Binomialkoeffizienten. Ein drittes Beispiel liefert das Pascalsche Dreieck

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

das aus den sogenannten Binomialkoeffizienten gebildet wird. Man bezeichnet den in
der n-ten Zeile an k-ter Stelle stehenden Koeffizienten mit

(
n
k

)
, wobei n und k von 0

an laufen (und k ≤ n ist). Beispielsweise stehen in der vierten Zeile die Binomialkoef-
fizienten 4

0

 = 1,

4
1

 = 4,

4
2

 = 6,

4
3

 = 4,

4
4

 = 1

Das Bildungsgesetz der Binomialkoeffizienten lässt sich folgendermaßen rekursiv be-
schreiben: Man wählt als Randelemente im Pascalschen Dreieckn

0

 =
n

n

 = 1 (1.5)

für alle n ≥ 0 und setzt dannn

k

 =
n − 1

k − 1

 +
n − 1

k

 (1.6)

für n ≥ 1 und 1 ≤ k ≤ n−1. Dies bedeutet, dass jede innere Zahl im Pascalschen Drei-
eck durch Addition der beiden unmittelbar schräg darüber stehenden Zahlen entsteht,
also beispielsweise für n = 5, k = 3

10 = 6 + 4

Aus dem Pascalschen Dreieck entnimmt man sofort die Symmetrieeigenschaftn

k

 =
 n

n − k

 (1.7)
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1.2 Arithmetische und geometrische Folgen

für alle auftretenden n und k.
Das Beispiel der Binomialkoeffizienten ist insofern komplizierter als die beiden vorher-
gehenden, da in (1.6) die Rekursion in Bezug auf zwei Veränderliche durchzuführen ist.
Der Name für diese Zahlen kommt daher, dass sie als Koeffizienten in den binomischen
Formeln

(a + b)2 = a2 + 2ab + b2,

(a + b)3 = a3 + 3a2b + 3ab2 + b3,

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

usw. auftreten.

Aufgaben. 1. Die diskrete Funktion n! wird durch 0! = 1 und n! = n(n − 1)! für
natürliche Zahlen n erklärt. Man zeige, dass 5! = 120 ist.

2. Man beweise die Darstellung
n

k

 = n!
k!(n − k)! .

1.2 Arithmetische und geometrische Folgen
Von Carl Friedrich Gauß, dessen 200. Geburtstag im Jahre 1977 feierlich begangen
wurde, erzählt man sich, dass er als Neunjähriger in der Schule die natürlichen Zahlen
von 1 bis 100 addieren sollte. Dabei benutzte er eine Methode, die hier in etwas allge-
meinerer Form wiedergegeben wird.

Es seien m und n zwei ganze Zahlen mit m < n. Gesucht sei die Summe x der n−m+1
aufeinanderfolgenden ganzen Zahlen von m bis n, d.h.

x = m + (m + 1) + (m + 2) + ... + (n − 2) + (n − 1) + n

Schreibt man diese Zahlen in der umgekehrten Reihenfolge:

x = n + (n − 1) + (n − 2) + ... + (m + 2) + (m + 1) + m

und addiert man zu jedem Summanden der ersten Gleichung den unmittelbar darunter
stehenden Summanden der zweiten Gleichung, so erhält man auf der rechten Seite in
jedem einzelnen Fall den festen Wert n + m und daher für alle n − m + 1 Summanden
insgesamt

2x = (+m)(n − m + 1)

Somit ergibt sich für die gesuchte Summe x

m + (m + 1) + ... + (n − 1) + n = 1
2(n + m)(n − m + 1)

und speziell für m = 1

1 + 2 + 3 + ... + (n − 1) + n = 1
2(n + 1)n (2.1)

13



1.2 Arithmetische und geometrische Folgen

Für n = 100 folgt hieraus unmittelbar das Ergebnis von Gauß x = 5050.

Arithmetische Folgen. Das vorhergehende Ergebnis lässt sich noch weiter verallgemei-
nern. Um dies zu zeigen, betrachten wir die Summe

y = a + (a + d) + (a + 2d) + ... + (a + nd) (2.2)

wobei a und d beliebige Zahlen sein können und n eine natürliche Zahl ist.
Die Glieder dieser Summe haben die Form ak = a+kd mit k = 0; 1, 2, ..., n; sie bilden,
wie man sagt, eine arithmetische Folge. Eine arithmetische Folge lässt sich dadurch
charakterisieren, dass bei ihr die Differenz zweier benachbarter Folgenglieder

ak − ak−1 = d

vom Folgenindex unabhängig ist. Bei dem Beispiel (2.1) ist d = 1:

Um jetzt y zu berechnen, brauchen wir nur zu beachten, dass auf der rechten Seite von
(2.2) nach Auflösung der Klammern (n + 1)-mal der Summand a vorkommt und der
Rest nach Ausklammerung von d gerade die linke Seite von (2.1) ist. Damit erhalten
wir

y = (n + 1)a + 1
2(n + 1)nd = 1

2(n + 1)(2a + nd)

Betrachten wir noch die Beziehung a0+an = 2a+nd, so finden wir für die arithmetische
Folge ak = a + kd die Summenformel

a0 + a1 + ... + an = 1
2(n + 1)(a0 + an) (2.3)

In Worten: Die Summe einer arithmetischen Folge ist gleich der halben Gliederzahl,
multipliziert mit der Summe aus dem ersten und letzten Glied.

Dieser Satz lässt sich leicht im Spezialfall (2.1) bestätigen, wobei man ihn entweder
direkt anwenden kann oder nach Hinzunahme von a0 = 0 als erstes Glied auf der linken
Seite von (2.1).

Geometrische Folgen. Haben die Glieder einer Folge die Form ak = aqk, wobei a und
q beliebige nicht verschwindende Zahlen sind, so spricht man von einer geometrischen
Folge. Eine geometrische Folge ist dadurch charakterisierbar, dass bei ihr der Quotient
zweier benachbarter Folgenglieder

ak

ak−1
= q

vom Folgenindex unabhängig ist. Wir suchen jetzt für eine geometrische Folge die
Summe

z = a + aq + aq2 + ... + aqn−1 + aqn

Im Fall q = 1 ist offenbar z = (n + 1)a, und es handelt sich gleichzeitig um eine
arithmetische Folge mit d = 0. Somit können wir diesen Fall ausschließen und q ̸= 1
annehmen. Durch Multiplikation der Gleichung für z mit q folgt

zq = aq + aq2 + ... + aqn−1 + aqn + aqn+1

14



1.3 Folgen und Summen

Bilden wir die Differenz der beiden vorhergehenden Gleichungen, so heben sich auf der
rechten Seite fast alle Glieder weg, und es bleibt nur

z(1 − q) = a − aqn+1 = a(1 − qn+1)

übrig. Hieraus folgt nach Division durch 1−q (unter Beachtung von q ̸= 1) das Ergebnis

a + aq + aq2 + ... + aqn = a
1 − qn+1

1 − q
(2.4)

Aufgaben. Man schreibe den periodischen Dezimalbruch 0,636363...
3. als formale unendliche Reihe a + aq + aq2 + ...,
4. als Quotient zweier natürlicher Zahlen.

1.3 Folgen und Summen
Beim Rechnen mit Summen aus mehreren Gliedern ist es zweckmäßig, das durch

n∑
k=m

= am + am+1 + ... + an−1 + an (3.1)

definierte Summenzeichen zu benutzen, wobei m ≤ n vorauszusetzen ist. Man vermei-
det dadurch ähnlich wie in § 1.1 die Punkte auf der rechten Seite. Der Index k wird
Summationsindex genannt, er hat auf den Wert der Summe keinen Einfluss und kann
durch einen beliebigen anderen Buchstaben (der in dem betrachteten Zusammenhang
noch nicht vorkommt) ersetzt werden.
Beispielsweise ist

n∑
k=m

ak = am,
m+1∑
l=m

al = am + am+1,
n∑

m=n−2
am = an−2 + an−1 + an

und die vorhergehenden Gleichungen (2.1) und (2.4) lassen sich jetzt in der kürzeren
Form

n∑
k=0

k = 1
2(n + 1)n ,

n∑
k=0

aqk = a
1 − qn+1

1 − q

mit n ≥ 0 schreiben. Um auch gewisse Grenzfälle zu erfassen, werden wir die Definition
(3.1) noch durch

n∑
k=m

ak = 0 im Fall n − m = −1 (3.2)

ergänzen. Als sehr nützlich erweist sich der folgende

Äquivalenzsatz. Zwischen den Gliedern ak und der Summe

sn =
n∑

k=1
ak (3.3)

mit n ≥ 0 besteht für n ≥ 1 der Zusammenhang

sn = sn−1 + an, s0 = 0 (3.4)
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1.3 Folgen und Summen

und umgekehrt.

Beweis. 1◦. Ist (3.3) gegeben, so folgt aus der Vereinbarung (3.2) sofort s0 = 0.
Weiterhin folgt unter Berücksichtigung von (3.1), (3.3) und

sn−1 = a1 + a2 + ... + an−1

die Gleichung sn = sn−1 + an, so dass (3.4) bewiesen ist.

2◦. Ist (3.4) gegeben, so gilt an = sn − sn1 und daher
n∑

k=1
ak =

n∑
k=1

(sk − sk−1) = (s1 − s0) + (s2 − s1) + ... + (sn−1 − sn−2) + (sn − sn−1)

Auf der rechten Seite heben sich aber die jeweils zweiten Glieder in den Klammern gegen
die entsprechenden ersten Glieder in den vorhergehenden Klammern weg, so dass nur
noch das erste Glied in den letzten Klammern sn und das zweite Glied in den ersten
Klammern −s0 übrigbleibt, also

n∑
k=1

ak = sk − s0 (3.5)

gilt. Wegen s0 = 0 ist daher (3.3) bewiesen.

Die Gleichung (3.4) ist ein neues Beispiel für eine Rekursionsformel, von der wir einen
Spezialfall in anderer Bezeichnungsweise bereits kennengelernt haben. Sie drückt nichts
anderes aus als eine rekursive Definition der Summe (3.3 ), nämlich

n∑
k=1

ak =
n−1∑
k=1

ak + an ,
0∑

k=1
ak = 0

für n = 1, 2, 3, ... Umgekehrt kann man (3.3) als Lösung der Rekursionsformel (3.4)
auffassen.

Der soeben bewiesene Äquivalenzsatz lässt sich in zweierlei Hinsicht anwenden. Ei-
nerseits kann eine beliebige Folge an mit n ≥ 1 gegeben sein, dann kann man ihr
durch (3.4) die Folge der zugehörigen Partialsummen zuordnen. Andererseits kann eine
beliebige Folge sn mit n ≥ 1 gegeben sein.
Dann kann man sie durch die Festlegung s0 = 0 ergänzen und ihr durch an = sn −sn−1
mit n ≥ 1 eine neue Folge an zuordnen, durch die sich die gegebene Folge sn als Summe
(3.3) darstellen lässt.

Der Äquivalenzsatz lässt sich auch auf den Fall s0 ̸= 0 verallgemeinern. Wie man
nämlich ganz analog zum vorhergehenden Beweis aus (3.5) erkennt, sind dann die
Gleichungen

sn = s0 +
n∑

k=1
ak und sn = sn−1 + an (3.6,3.7)

für n ≥ 1 zueinander äquivalent, d. h., die eine Gleichung folgt aus der anderen.
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1.3 Folgen und Summen

Als Beispiel hierzu wollen wir zunächst zwei der im vorhergehenden Paragraphen auf-
gestellten Beziehungen überprüfen. Wählen wir sn = 1

2(n + 1)n, so wird

an = sn − sn−1 = 1
2(n + 1)n − 1

2n(n − 1) = n

und wegen s0 = 0 folgt (2.1) aus (3.3). Wählen wir sn = a1−qn+1

1−q , so wird

an = sn − sn−1 = a
qn − qn+1

1 − q
= aqn

und wegen s0 = 0 folgt (2.4) aus (3.6).

Wählen wir drittens sn =
(

m+n
m+1

)
für n ≥ 1 mit einer beliebigen natürlichen Zahl m und

s0 = 0, so erhalten wir wegen (1.6)

an = sn − sn−1 =
m + n

m + 1

 −
m + n − 1

m + 1

 =
m + n − 1

m


und aus (3.6) ergibt sich

n∑
k=1

m + k − 1
m

 =
m + n

m + 1

 (3.8)

Für m = 1 stellt (3.8) wieder die alte Formel (2.1) dar (vgl. Aufgabe 2). Dem Leser,
der mit dem Summenzeichen noch nicht so vertraut ist, sei ausdrücklich empfohlen,
sich alle Summenbeziehungen ausführlich aufzuschreiben, um sich von ihrer Richtigkeit
zu überzeugen. Insbesondere möge er die Rechenregeln

n∑
k=m

(ak + bk) =
n∑

k=m

ak +
n∑

k=m

bk

für zwei beliebige Folgen ak, bk,
n∑

k=m

cak = c
n∑

k=m

ak

für eine beliebige von k unabhängige Zahl c und

n∑
k=m

ak =
l∑

k=m

ak +
n∑

k=l+1
ak

für eine beliebige natürliche Zahl l mit m − 1 ≤ l ≤ n verifizieren, die sich bei der
Handhabung des Summenzeichens als nützlich erweisen.

Aufgaben. Man berechne für eine beliebige natürliche Zahl n

5.
n∑

k=0
1, 6.

n∑
k=0

(−1)k
(

n
k

)
.
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1.4 Berechnung weiterer Summen

1.4 Berechnung weiterer Summen
Während wir bei den Beispielen des vorhergehenden Paragraphen davon ausgegangen
sind, dass eine Folge sn gegeben ist und die durch (3.7) definierten an gesucht sind,
wollen wir jetzt den wichtigeren, aber auch komplizierteren Fall behandeln, dass die
Folgenglieder an gegeben und die zugehörigen Summen sn gesucht sind.
Dabei sollen k und n stets natürliche Zahlen sein und s0 = 0. Bei den ersten Beispielen
versuchen wir, die gegebenen ak durch geeignete Umformungen in Form einer Differenz

ak = sk − sk−1 (4.1)

darzustellen, um die gesuchte Summe zu ermitteln. Die letzten Beispiele werden dann
durch geeignete Umformungen auf die vorhergehenden zurückgeführt.

1◦. Es sei ak = (k + 1)k. Wegen (k + 2) − (k − 1) = 3 können wir ak in der Form

ak = (k + 2) − (k − 1)
3 (k + 1)k = 1

3(k + 2)(k + 1)k − 1
2(k + 1)k(k − 1)

d. h. in der Form (4.1) mit sk = 1
3(k + 2)(k + 1)k, darstellen. Somit erhalten wir aus

dem Äquivalenzsatz von § 1.3 unmittelbar das Ergebnis
n∑

k=1
(k + 1)k = 1

3(n + 2)(n + 1)n (4.2)

2◦. Wählen wir ak = (k + 2)(k + 1)k, so führt wegen (k + 3) − (k − 1) = 4 und daher

ak = 1
4(k + 3)(k + 2)(k + 1)k − 1

4(k + 2)(k + 1)k(k − 1)

eine ganz analoge Überlegung zu dem Ergebnis
n∑

k=1
(k + 2(k + 1)k = 1

4(n + 3)(n + 2(n + 1)n (4.3)

Wie man leicht sieht, lassen sich diese Beispiele auf ähnliche Summanden mit noch
mehr Faktoren verallgemeinern. Dabei entsteht dann bis auf einen konstanten Faktor
wieder die bereits bekannte Gleichung (3.8), die wegenk + 1

2

 = (k + 1)k
1 · 2 ,

n + 2
3

 = (n + 2)(n + 1)n)
1 · 2 · 3n + 3

4

 = (n + 3)(n + 2)(n + 1)n
1 · 2 · 3 · 4

(Vgl. Aufgabe 2) für m = 2 bis auf den Faktor 1/2 in (4.2) und für m = 3 bis auf den
Faktor 1/6 in (4.3) übergeht.

3◦. Im Fall ak = 1
(k+1)k führt die sogenannte Partialbruchzerlegung

1
(k + 1)k = 1

k
− 1

k + 1 =
(

1 + 1
k + 1

)
−
(

1 − 1
k

)
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1.4 Berechnung weiterer Summen

zu der gewünschten Zerlegung (4.1) mit sk = 1 − 1
k+1 , wobei die 1 hinzugefügt wurde,

damit s0 = 0 wird. Somit liefert der Äquivalenzsatz
n∑

k=1

1
(k + 1)k = 1 − 1

n + 1 (4.4)

Analog führt die Partialbruchzerlegung

1
(k + 2)k = 1

2

(1
k

− 1
k + 2

)

nach Division durch k + 1 zu dem Ergebnis
n∑

k=1

1
(k + 2)(k + 1)k = 1

2

(1
2 − 1

(n + 2)(n + 1)

)
(4.5)

das sich ebenfalls auf Summanden mit noch mehr Faktoren verallgemeinern lässt.

4◦. Als nächstes Beispiel betrachten wir den Fall ak = k2, in dem es schwieriger ist,
die Zerlegung (4.1) zu finden. Daher gehen wir jetzt etwas anders vor. Wir schreiben
k2 = (k + 1)k − k. Führen wir nun die Summation über k

n∑
k=1

k2 =
n∑

k=1
(k + 1)k −

n∑
k=1

k

durch, so können wir auf der rechten Seite die bereits bekannten Ergebnisse (4.2) und
(2.1) benutzen, die uns unmittelbar

n∑
k=1

k2 = 1
3(n + 2)(n + 1)n − 1

2(n + 1)n

liefern. Klammern wir auf der rechten Seite 1
6(n+1)n aus, so folgt wegen 2(n+2)−3 =

2n + 1 das Ergebnis
n∑

k=1
k2 = 1

6(2n + 1)(n + 1)n (4.6)

5◦. Ganz ähnlich kann man im Fall ak = k3 vorgehen. Hier ist es am bequemsten, von
der Zerlegung

(k + 2)(k + 1)k = k3 + 3k2 + 2k

auszugehen und diese Gleichung nach k3 aufzulösen:

k3 = (k + 2)(k + 1)k − 3k2 − 2k

Führen wir jetzt die Summation über k durch und berücksichtigen auf der rechten Seite
die Gleichungen (4.3), (4.6) und (2.1), so finden wir

n∑
k=1

k3 = 1
4(n + 2)(n + 2)(n + 1)n − 1

2(2n + 1)(n + 1)n − (n + 1)n
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1.4 Berechnung weiterer Summen

und wir brauchen die rechte Seite nur noch zu vereinfachen. Nach Ausklammerung des
Faktors 1

4(n + 1)n gelangen wir auf Grund der Zwischenrechnung

(n + 3)(n + 2) − 2(2n + 1) − 4 = n2 + n = (n + 1)n

zu der bemerkenswerten Formel
n∑

k=1
k3 =

(1
2(n + 1)n

)2
(4.7)

die vor allem durch einen Vergleich mit der Formel (2.1) von Interesse ist.
Die bei den letzten beiden Beispielen benutzte Methode lässt sich ebenfalls auf höhere
Potenzen von k übertragen, allerdings werden dabei die erforderlichen Zwischenrech-
nungen immer umfangreicher.

Aufgaben. Man berechne für eine beliebige natürliche Zahl n

7.
n∑

k=1
k! · k, 8.

n∑
k=1

(−1)kk2
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2.5 Rekursionsformeln erster Ordnung

2 Anfangswertprobleme
Rekursionsformeln wie (3.7), d.h. sn = sn−1 + an, haben die Besonderheit, dass die
sn durch die an nicht eindeutig bestimmt werden. Ausführlich geschrieben lautet diese
Rekursionsformel für n = 1, n = 2, n = 3 usw.

s1 = s0 + a1, s2 = s1 + a2, s3 = s2 + a3

usw. In die Gleichungen für sn können wir von n = 2 an auf den rechten Seiten die
zuvor berechneten Werte für sn−1 einsetzen, so dass wir

s1 = s0 + a1

s2 = s0 + a1 + a2

s3 = s0 + a1 + a2 + a3

usw. erhalten, d.h. wieder das alte Ergebnis (3.6). Der Wert für s0 bleibt hier offen
(und lässt sich auch dann nicht bestimmen, wenn die Rekursionsformel für n ≥ 0
ausgenutzt wird), man nennt ihn den Anfangswert und kann ihn bei der Auflösung der
Rekursionsformel beliebig vorschreiben.

Im folgenden wollen wir uns mit der Auflösung von Anfangswertproblemen, d. h. mit der
Auflösung von Rekursionsformeln bei vorgeschriebenem Anfangswert, befassen, wobei
wir uns natürlich auf die allereinfachsten Typen von Rekursionsformeln beschränken.
Anwendungen für die erarbeiteten Ergebnisse werden wir dann in den nächsten beiden
Abschnitten kennenlernen.

2.5 Rekursionsformeln erster Ordnung
Die zuvor betrachtete Rekursionsformel ist in abgeänderter Bezeichnungsweise ein Spe-
zialfall der allgemeinen linearen Rekursionsformel erster Ordnung

yn = anyn−1 + fn (5.1)

da erstere aus (5.1) für an = 1 hervorgeht. Der Index n durchläuft hier wieder die
natürlichen Zahlen, die Folgen an, fn sind gegeben, und yn ist nach Vorgabe des An-
fangswertes y0 gesucht. Für fn ≡ 0 entsteht aus (5.1) der weitere Spezialfall

xn = anxn−1 (5.2)

wenn wir die gesuchte Folge mit xn bezeichnen. Im Fall fn ̸≡ 0 heißt die Gleichung
(5.1) eine inhomogene Rekursionsformel, und (5.2) heißt die zugehörige homogene Re-
kursionsformel oder auch homogene Gleichung.

Wir suchen zunächst die Lösung der einfacheren homogenen Rekursionsformel (5.2).
Setzen wir schrittweise n = 1, 2, 3 ein und berücksichtigen wir ab n = 2 die vorherge-
henden Ergebnisse, so finden wir aus (5.2)

x1 = a1x0, x2 = a2x1 = a2a1x0, x3 = a3x2 = a3a2a1x0
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2.5 Rekursionsformeln erster Ordnung

Führt man dieses Verfahren weiter durch, so ergibt sich für die Lösung von (5.2) die
allgemeine Darstellung

xn = anan−1...a2a1a0 (5.3)
Einige Spezialfälle dieser Darstellung sollen jetzt genauer betrachtet werden.

1◦. Wählen wir x0 = 0, so wird xn ≡ 0 für alle n. Diese Folge heißt die triviale Lösung
der homogenen Gleichung (5.2).

24◦. Wählen wir an = a von n unabhängig, so geht die Lösung (5.3) in

xn = anx0

über. Die Gleichung (5.2) ist in diesem Fall (bis auf die Bezeichnungsweise) nichts
anderes als die Gleichung (1.4), und die Potenzen an sind die eindeutig bestimmten
Lösungen dieser Rekursionsformel unter der Anfangsbedingung a0 = 1.

3◦. Wählen wir an = n für alle n, so erhalten wir unter der Anfangsbedingung x0 = 1
die bereits durch die Aufgabe 1 eingeführte Folge xn = n!, gesprochen: n Fakultät.
Diese Folge besitzt daher nach (5.3) die explizite Darstellung

n! = n(n − 1) · ... · 3 · 2 · 1 (5.4)

und ihre ersten Werte lauten

1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120, 6! = 720

Wir wenden uns jetzt der Lösung der inhomogenen Gleichung (5.1) zu, wobei wir
voraussetzen, dass alle Koeffizienten an ̸= 0 sind (da andernfalls die Rekursionsformel
entartet). Setzen wir schrittweise n = 1, 2, 3, 4 und berücksichtigen wir ab n = 2 wieder
die vorhergehenden Ergebnisse, so finden wir

y1 = a1y0 + f1

y2 = a2a1y0 + a2f1 + f2

y3 = a3a2a1y0 + a3a2f1 + a3f2 + f3

y4 = a4a3a2a1y0 + a4a3a2f1 + a4a3f2 + a4f3 + f4

Aus diesen speziellen Werten kann man das allgemeine Bildungsgesetz für die gesuchte
Lösung yn erkennen. Wir können yn aber auch direkt berechnen, indem wir den vorlie-
genden Fall auf bereits gelöste Spezialfälle zurückführen.

Um dies zu zeigen, ziehen wir die Lösung xn der Gleichung (5.2) mit x0 = 1 heran.
Wegen an ̸= 0 ist nach (5.3) auch xn ̸= 0 für alle n. Somit können wir die Gleichung
(5.1) durch xn dividieren und erhalten

yn

xn
= anyn−1

xn
+ fn

xn
= yn−1

xn−1
+ fn

xn

wenn wir die aus (5.2) hervorgehende Beziehung xn/an = xn−1 verwenden. Führen wir
weiterhin die Bezeichnung sn = yn/xn ein, so nimmt diese Gleichung die Gestalt

sn = sn−1 + fn

xn
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2.5 Rekursionsformeln erster Ordnung

d. h. die Gestalt (3.7) mit an = fn/xn an. Nach (3.6) besitzt daher die Lösung sn =
yn/xn die Darstellung

yn

xn
= y0

x0
+

n∑
k=1

fk

xk

und hieraus folgt nach Multiplikation mit xn und Beachtung von x0 = 1 die Lösung
von (5.1)

yn = xny0 + x0
n∑

k=1

fk

xk
(5.5)

Wie man mit Hilfe von (5.3) leicht nachprüft, stimmt dieses Ergebnis für n = 1, 2, 3, 4
mit den zuvor berechneten Werten überein. Für n = 0 ist (5.5) wegen (3.2) eine Iden-
tität, so dass der Wert y0 auf der rechten Seite willkürlich vorgeschrieben werden kann.
Zusammenfassend stellen wir fest:

Existenz- und Eindeutigkeitssatz. Die Rekursionsformel (5.1) mit an ̸= 0 für alle n
hat bei beliebig vorgegebenem Anfangswert y0 die eindeutig bestimmte Lösung (5.5),
wobei xn durch (5.3) mit x0 = 1 gegeben ist.

Abschließend wollen wir auch in der Lösungsformel (5.5) einige Spezialisierungen vor-
nehmen, wobei wir uns auf den Fall beschränken, dass an = a von n unabhängig ist.
Dann lautet nach dem vorhergehenden Beispiel 2◦ die benötigte Lösung der zugehörigen
homogenen Gleichung xn = an, und wegen an/ak = an−k erhalten wir aus (5.5)

yn = any0 +
n∑

k=1
an−kfk (5.6)

4◦. Wählen wir in (5.6) fk = bk mit b ̸= a, so erhalten wir wegen der aus (2.4) nach
Ersetzung von a, q, n durch an−1b, b/a bzw. n − 1 hervorgehenden Beziehung

n∑
k=1

an−kbk = an−1n
1 −

(
b
a

)n

1 − b
a

= b
an − bn

a − b

für die Rekursionsformel
yn = ayn−1 + bn

bei vorgegebenem Anfangswert y0 die Lösung

yn = any0 + b
an − bn

a − b
(5.7)

5◦. Wählen wir in (5.6) dagegen fk = ak, so erhalten wir unter Beachtung der Übungs-
aufgabe 5 für die Rekursionsformel

yn = ayn−1 + an

bei gegebenem y0 die Lösung
yn = (y0 + n)an (5.8)
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2.6 Rekursionsformeln zweiter Ordnung

6◦. Wählen wir in (5.6) schließlich fk = b von k unabhängig, so folgt im Fall a ̸= 1
n∑

k=1
an−kb =

n−1∑
l=0

bal = b
1 − an

1 − a

mit l = n − k und daher für die Rekursionsformel

yn = ayn−1 + b

bei gegebenem y0 die Lösung

yn = any0 + b
1 − an

1 − a
(5.9)

Die Richtigkeit dieser drei Ergebnisse lässt sich leicht auf direktem Wege verifizieren.

Aufgaben. Man löse folgende Anfangswertprobleme:
9◦ yn + yn−1 = 2n; y0 = 1, 10◦ yn + yn−1 = n2; y0 = 0.

2.6 Rekursionsformeln zweiter Ordnung
Durch Verallgemeinerung von (5.1) gelangen wir zu den linearen Rekursionsformeln
zweiter Ordnung, die wir in der Form

yn + ayn−1 + byn−2 = fn (6.1)

schreiben. Im Fall b = 0 ergibt sich die bereits gelöste Gleichung (5.1) (wenn wir an

durch −a ersetzen), so dass wir im folgenden b = 0 voraussetzen. Der Einfachheit
wegen nehmen wir zunächst an, dass die Koeffizienten a, b konstant sind, also nicht
vom Index n abhängen.

Die Gleichung (6.1) heißt auch eine Differenzengleichung. Genau genommen wird sie
erst dann zu einer Rekursionsformel, wenn man noch zwei Anfangswerte y0 und y−1 vor-
gibt, die benötigt werden, um die Lösung yn aus (6.1) für n = 1, 2, 3, ... in eindeutiger
Weise rekursiv berechnen zu können.
Beispielsweise findet man für die ersten drei Werte nach kurzer Zwischenrechnung

y1 = f1 − ay0 − by−1

y2 = f2 − af1 − (a2 − b)y0 − aby−1

y3 = f3 − af2 − (a2 − b)f1 − (a3 − 2ab)y0 − (a2b − b2)y−1

die formelmäßige Berechnung der folgenden Werte wird aber schon umständlicher.

Aus diesem Grunde wenden wir uns wie im vorhergehenden Paragraphen zunächst der
zu (6.1) gehörenden homogenen Gleichung

xn + axn−1 + bxn−2 = 0 (6.2)

zu. Im Fall b = 0 wissen wir vom Beispiel 2◦ des vorhergehenden Paragraphen, dass
xn = (−a)n eine spezielle Lösung ist. Deshalb fragen wir uns, ob es auch im Fall b = 0
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2.6 Rekursionsformeln zweiter Ordnung

eine Lösung von (6.2) gibt, die als Potenz einer gewissen Zahl λ ̸= 0 darstellbar ist.
Wir machen also den Lösungsansatz

xn = λn (6.3)

wobei wir über λ noch geeignet zu verfügen haben. Durch Einsetzen von (6.3) in (6.2)
entsteht

λn + aλn−1 + bλn−2 = 0

und diese Gleichung muss für alle n erfüllt sein, damit (6.3) eine Lösung von (6.2) ist.
Durch Ausklammerung von λn−2 folgt

(λ2 + aλ + b)λn−2 = 0

und hieraus wegen λ ̸= 0
λ2 + aλ + b = 0 (6.4)

Die Gleichung (6.4) heißt die charakteristische Gleichung der Rekursionsformel (6.2).
Sie ist eine quadratische Gleichung und hat daher die Lösungen

λ1 = 1
2(−a +

√
a2 − 4b) , λ2 = 1

2(−a −
√

a2 − 4b) (6.5)

die Wurzeln der Gleichung genannt werden.

Im Fall a2 > 4b sind beide Wurzeln reell und voneinander verschieden, im Fall a2 = 4b
sind die Wurzeln gleich, so dass es sich um eine Doppelwurzel handelt, während im Fall
a2 < 4b zwei konjugiert komplexe Wurzeln vorliegen (Abb. 3). Wegen b = 0 kann keine
Wurzel verschwinden.

Abb. 3

Wollen wir Rechnungen mit komplexen Zahlen vermeiden, so interessieren uns nur die
reellen Wurzeln der charakteristischen Gleichung, die für a2 ≥ 4b existieren, und uns für
die homogene Gleichung (6.2) Lösungen vom Potenztyp (6.3) liefern. Im Fall a2 > 4b
gibt es wegen λ1 ̸= λ2 sogar zwei verschiedene Lösungen vom Potenztyp, nämlich die
Lösungen

xn = λn
1 und xn = λn

2 (6.6)

mit (6.5), im Fall a2 = 4b gibt es genau eine Lösung vom Potenztyp, während es im
Fall a2 < 4b keine solche reelle Lösung gibt.
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2.6 Rekursionsformeln zweiter Ordnung

Als Beispiel erhalten wir für die Rekursionsformel

xn − 5xn−1 + 6xn−2 = 0

wegen a = −5, b = 6 aus (6.5) nach kurzer Rechnung λ1 = 3, λ2 = 2 und daher aus
(6.6) die beiden Lösungen xn = 3n sowie xn = 2n.
Diese Folgen kann man gleichzeitig als Lösungen des zugehörigen Anfangswertproblems
mit den Anfangswerten x0 = 1, x−1 = 1/3 bzw. x0 = 1, x−1 = 1/2 auffassen. Wie man
bei beliebigen Anfangswerten eine Lösung findet, werden wir im nächsten Paragraphen
besprechen.

Zuvor wollen wir jedoch wieder zur inhomogenen Gleichung (6.1) zurückkehren und
auch hier durch geeignete Ansätze spezielle Lösungen ermitteln. Dabei wollen wir uns
auf zwei Fälle beschränken.

1◦. Zunächst betrachten wir in (6.1) den Fall fn = cn mit c ̸= 0, d.h. die Gleichung

yn + ayn−1 + byn−2 = cn (6.7)

Durch Abänderung von (6.3) versuchen wir, diese Gleichung durch den Ansatz

yn = cnz (6.8)

mit demselben c wie in (6.7) zu lösen, wobei über z geeignet zu verfügen ist. Durch
Einsetzen von (6.8) in (6.7 ) ergibt sich die Gleichung

cnz + acn−1z + bcn−2z = cn

die für alle n erfüllt sein muss. Kürzen wir aus dieser Gleichung cn−2 heraus, so tritt n
in der Gleichung nicht mehr auf, und es bleibt nach Ausklammerung von z nur noch
die Gleichung

(c2 + ac + b)z = c2

zu erfüllen. Diese Gleichung ist genau dann nach z auflösbar, wenn der Ausdruck in
den Klammern nicht gleich Null ist, wenn also c nicht gleich einer Nullstelle λ1, λ2 der
charakteristischen Gleichung (6.4) ist. Ist diese Bedingung erfüllt, so erhalten wir sofort

z = c2

c2 + ac + b

und daher aus dem Ansatz (6.8) die Lösung

yn = cn+2

c2 + ac + b
(6.9)

der Rekursionsformel (6.7). Insbesondere entsteht im Fall c = 1 die konstante Lösung

yn = 1
1 + a + b

(6.10)

von (6.7), falls 1 + a + b ̸= 0 ist.
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2.7 Überlagerung von Lösungen

2◦. Wir wenden uns jetzt dem Fall zu, dass die rechte Seite fn der Gleichung (6.1) ein
Polynom in n ist, und fragen uns, ob diese Gleichung dann auch eine Polynomlösung
besitzt. Um die Zwischenrechnungen übersichtlich zu gestalten, begnügen wir uns dabei
mit einem speziellen Beispiel.
Der Fall, dass fn eine Konstante ist, wurde im wesentlichen bereits durch die Herleitung
der Lösung (6.10) erledigt, somit befassen wir uns mit dem nächsteinfachen Fall fn = n,
d. h. mit der Gleichung

yn + ayn−1 + byn−2 = n (6.11)

Wir machen den Ansatz
yn = z1n + z2 (6.12)

und versuchen, die Konstanten z1 und z2 nach Einsetzen in (6.11) aus

z1n + z2 + a(z1n − z1 + z2) + b(z1n − 2z1 + z2) = n

so zu bestimmen, dass diese Gleichung für alle n erfüllt ist. Zu diesem Zweck wenden
wir die Methode des Koeffizientenvergleichs an, d. h., wir ordnen die Gleichung nach
Potenzen von n und schreiben sie in der Form

[(1 + a + b)z1 − 1]n + [(1 + a + b)z2 − (a + 2b)z1] = 0

Diese Gleichung kann aber nur dann für alle n gelten, wenn die in den eckigen Klammern
stehenden Ausdrücke beide verschwinden, wenn also

(1 + a + b)z1 = 1 , (1 + a + b)z2 = (a + 2b)z1

ist. Im Fall 1 + a + b ̸= 0 folgt hieraus sofort

z1 = 1
1 + a + b

, z2 = a + 2b

(1 + a + b)2

und. damit aus (6.12) die Lösung von (6.11)

yn = n

1 + a + b
+ a + 2b

(1 + a + b)2 (6.13)

Bei allen vorhergehenden Beispielen kann man sich durch eine Probe davon überzeugen,
dass man unter den gemachten Voraussetzungen wirklich eine Lösung erhalten hat.

Aufgaben. Man bestimme alle in n (höchstens) quadratischen Lösungen der Gleichun-
gen
11◦ yn − 2yn−1 + yn−2 = 1, 12◦ yn − yn−2 = n

2.7 Überlagerung von Lösungen
Im vorhergehenden Paragraphen haben wir nur spezielle Lösungen der Gleichungen
(6.1) und (6.2) ermittelt. Jetzt wollen wir uns der Frage zuwenden, ob es außer diesen
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2.7 Überlagerung von Lösungen

Lösungen noch weitere gibt, wobei wir uns sogleich auf die allgemeinere Differenzen-
gleichung

yn + anyn−1 + bnyn−2 = fn (7.1)
mit beliebigen variablen Koeffizienten an, bn und der zugehörigen homogenen Gleichung

xn + anxn−1 + bnxn−2 = 0 (7.2)

beziehen werden.

Überlagerungssatz. 1◦. Ist y∗
n eine Lösung von (7.1) und xn eine Lösung von (7.2), so

ist auch y∗
n + xn eine Lösung von (7.1).

2◦. Sind x′
n und x′′

n Lösungen von (7.2), so ist auch c1x
′
n+c2x

′′
n für beliebige Konstanten

c1, c2 eine Lösung von (7.2).

Beweis. 1◦. Es sei y∗
n eine Lösung von (7.1), d.h. also

y∗
n + any∗

n−1 + bny∗
n−2 = fn

Addieren wir hierzu die Gleichung (7.2), so folgt nach Zusammenfassung entsprechender
Glieder

(y∗
n + xn) + an(y∗

n−1 + xn−1) + bn(y∗
n−2 + xn−2) = fn

d.h., yn = y∗
n + xn ist ebenfalls eine Lösung von (7.1).

2◦. Es seien x′
n und x′′

n Lösungen von (7.2), so dass also

x′
n + anx′

n−1 + bnx′
n−1 = 0 , x′′

n + anx′′
n−1 + bnx′′

n−1 = 0

gilt. Multiplizieren wir die erste Gleichung mit c1 und die zweite mit c2, so folgt durch
Addition der beiden entstehenden Gleichungen nach Zusammenfassung entsprechender
Glieder

(c1x
′
n + c2x

′′
n) + an(c1x

′
n−1 + c2x

′′
n−1) + bn(c1x

′
n−2 + c2x

′′
n−2) = 0

d.h., xn = c1x
′
n + c2x

′′
n ist ebenfalls eine Lösung von (7.2).

Aus dem Überlagerungssatz ergeben sich sofort die

Folgerungen: 3◦. Unter den Voraussetzungen des Überlagerungssatzes ist

yn = y∗
n + c1x

′
n + c2x

′′
n (7.3)

stets eine Lösung der inhomogenen Gleichung (7.1).

4◦. Ist xn eine Lösung von (7.2) und c eine beliebige Konstante, so ist cxn ebenfalls
eine Lösung der homogenen Gleichung (7.2).

Zum Beweis von 3◦ braucht man nur 1◦ mit 2◦ zu kombinieren, zum Beweis von 4◦

braucht man in 2◦ nur x′
n = x′′

nx, c1 = c und c2 = 0 zu wählen. Wählt man auch noch
c = 0, so erhält man die triviale Lösung der homogenen Gleichung.
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2.7 Überlagerung von Lösungen

Die Bedeutung der vorhergehenden Aussagen besteht darin, dass sich mit ihrer Hilfe
aus speziellen Lösungen, wie wir sie im vorhergehenden Paragraphen ermittelt haben,
stets weitere Lösungen konstruieren lassen. Wie der nächste Satz zeigen wird, kann
man auf diesem Wege sogar alle Lösungen finden.

Eindeutigkeitssatz. Unter den Voraussetzungen des Überlagerungssatzes und der Zu-
satzvoraussetzung

x′
0x

′′
−1 − x′

−1x
′′
0 ̸= 0 (7.4)

für die Anfangswerte der Lösungen x′
n, x′′

n von (7.2) lässt sich jede Lösung yn von (7.1)
eindeutig in der Form (7.3) darstellen.

Beweis. Jede Lösung yn von (7.1) ist durch diese Gleichung und ihre Anfangswerte
y0, y−1 eindeutig bestimmt, denn man kann die Werte yn für n = 1, 2, 3, ... rekursiv
berechnen.
Der Satz ist daher bewiesen, wenn wir zeigen, dass es zu beliebig vorgegebenen An-
fangswerten y0, y−1 unter den Lösungen der Form (7.3) genau eine spezielle Lösung
mit denselben Anfangswerten gibt, wenn sich also in (7.3) die Konstanten c1, c2 in
eindeutiger Weise so bestimmen lassen, dass

y∗
0 + c1x

′
0 + c2x

′′
0 = y0 , y∗

−1 + c1x
′
−1 + c2x

′′
−1 = y−1

gilt. Dies ist ein System von zwei Gleichungen mit zwei Unbekannten, aus dem nach
der Gaußschen Eliminationsmethode (vgl. § 11)

c1 = (y0−y∗
0)x′′

−1−(y−1−y∗
−1)x′′

0
x′

0x′′
−1−x′

−1x′′
0

c2 = (y−1−y∗
−1)x′

0−(y0−y∗
0)x′

−1
x′

0x′′
−1−x′

−1x′′
0

 (7.5)

hervorgeht, da die Nenner wegen (7.4) nicht verschwinden. Damit ist die Behauptung
bewiesen.

Unter den Voraussetzungen des Eindeutigkeitssatzes heißt der Lösungsausdruck (7.3)
mit den beiden willkürlichen Konstanten c1, c2 die allgemeine Lösung der Gleichung
(7.1). Die Frage, ob sich die Voraussetzung (7 .4) stets erfüllen lässt, beantwortet der
folgende

Existenzsatz. Es gibt stets eine Normalform der allgemeinen Lösung (7.3), bei der die
dort auftretenden Folgen die Anfangswerte

y∗
0 = y∗

−1 = y0; x′
0 = 1, x′

−1 = 0, x′′
0 = 0, x′′

−1 = 1 (7.6)

besitzen und bei der die Lösung des zu (7.1) gehörenden Anfangswertproblems mit
beliebig vorgegebenen Anfangswerten y0, y−1

yn = y∗
n + y0x

′
n + y−1x

′′
n (7.7)

lautet.

Beweis. Wie wir bereits wissen, gibt es zu beliebig vorgegebenen Anfangswerten mit
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2.7 Überlagerung von Lösungen

n = 0 und n = −1 genau eine Lösung der Rekursionsformel zweiter Ordnung (7.1),
und dies trifft natürlich auch auf den Spezialfall der homogenen Gleichung (7.2) zu.
Folglich existieren die Lösungen mit den Anfangswerten (7 .6).
Setzen wir diese Werte in die linke Seite von (7.4) ein, so erhalten wir 1 · 1 − 0 · 0 = 1,
und die Bedingung (7.4) ist erfüllt.
Setzen wir die Werte (7.6) in (7.5) ein, so erhalten wir c1 = y0, c2 = y−1, und (7.3)
geht in (7.7) über, was zu beweisen war.

Übrigens kann man sich auf Grund der Bedingungen (7.6) auch leicht direkt davon
überzeugen, dass die Gleichung (7.7) für n = 0 und n = −1 (äußerlich) eine Identität
ist.

Wie bereits angedeutet wurde, gelten die vorhergehenden Aussagen nicht nur für die
inhomogene Gleichung (7.1), sondern auch für die zugehörige homogene Gleichung
(7.2), da letztere ein Spezialfall von (7.1) mit fn ≡ 0 ist. Die spezielle Lösung y∗

n mit
verschwindenden Anfangswerten ist dann einfach die triviale Lösung. Damit erhalten
wir zusammenfassend den

Struktursatz. 5◦. Die allgemeine Lösung der homogenen Gleichung (7.2) hat die Gestalt

xn = c1x
′
n + c2x

′′
n (7.8)

wobei x′
n und x′′

n zwei spezielle Lösungen dieser Gleichung mit (7.4) sind.

6◦. Die allgemeine Lösung der inhomogenen Gleichung (7.1) setzt sich aus einer be-
liebigen speziellen Lösung y∗

n dieser Gleichung und der allgemeinen Lösung (7.8) der
zugehörigen homogenen Gleichung additiv zusammen (vgl. 1◦).

Als erste Anwendung der vorhergehenden Ergebnisse können wir jetzt feststellen, dass
für beliebige Konstanten c1, c2 neben (6.6) auch

xn = c1λ
n
1 + c2λ

n
2 (7.9)

Lösung von (6.2) und neben (6.9) auch

yn = cn+2

c2 + ac + b
+ c1λ

n
1 + c2λ

n
2 (7.10)

Lösung von (6.7) ist. Im Fall a2 > 4b handelt es sich in beiden Fällen sogar um
die allgemeine Lösung, da dann λ1 ̸= λ2 ist und somit für x′

n = λn
1 , x′′

n = λn
2 die

Ungleichung (7.4) wegen
λ−1

2 − λ−1
1 = λ1 − λ2

λ1λ2 ̸= 0

erfüllt ist.
Im Fall a2 = 4b (̸= 0) haben wir wegen λ1 = λ2 = −a/2 (vgl. (6.5)) durch (6.6) nur
eine einzige Lösung x′

n = (−a/2)n der Gleichung (6.2) bestimmt, die jetzt

xn + axn−1 + a2

4 xn−2 = 0 (7.11)
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lautet. Durch eine einfache Rechnung kann man sich aber davon überzeugen, dass
x′′

n = n(−a/2)n eine zweite Lösung dieser Gleichung ist, die wegen x′
0 = 1, x′′

−1 = 2/a,
x′′

0 = 0 zugleich die Bedingung (7.4) erfüllt. Folglich ist

xn = (c1 + c2n)
(

−a

2

)n

(7.12)

die allgemeine Lösung der Gleichung (7.11) (vgl. § 27).

Aufgaben. 13. Man beweise: Hat die rechte Seite der Gleichung (7.1) die Form fn =
c1f

′
n + c2f

′′
n und sind y′

n, y′′
n Lösungen von (7.1), wenn man als rechte Seite f ′

n bzw. f ′′
n

wählt, so ist yn = c1y
′
n + c2y

′′
n mit den vorhergehenden Konstanten c1, c2 eine Lösung

von (7.1).

14. Für die homogene Gleichung

xn −
(

c + 1
c

)
xn−1 + xn−2 = 0

mit c ̸= 0 bestimme man die Lösungen x′
n, x′′

n in der durch (7.6) festgelegten Normal-
form.

2.8 Schwingende Lösungen
Nach der Erledigung des Falls a2 ≥ 4b bei der homogenen Rekursionsformel zweiter
Ordnung (6.2), d. h. der Gleichung

xn + anxn−1 + bnxn−2 = 0 (8.1)

mit konstanten Koeffizienten a, b (und b ̸= 0), wenden wir uns jetzt dem Fall a2 < 4b
zu, ohne die dann nicht mehr reellen Wurzeln (6.5) der zugehörigen charakteristischen
Gleichung zu verwenden. Dabei gehen wir in drei Etappen vor.

1◦. Ein einfaches Beispiel für diesen Fall ist die Gleichung

xn = −xn−2 (8.2)

die aus (8.1) für a = 0, b = 1 entsteht. Ersetzen wir hier n durch n − 2, so folgt
xn−2 = −xn−4 und nach Einsetzen in (8.2)

xn = xn−4

Diese Gleichung besagt, dass jede Lösung von (8.2) eine periodische Folge mit der
Periode 4 ist. Insbesondere besitzt die Lösungsfolge x′

n mit den Anfangswerten x′
n = 1,

x′
−1 = 0 für n ≥ 1 die Glieder

0, −1, 0, 1, 0, −1, 0, 1, 0, ...

und die Lösungsfolge x′′
n mit den Anfangswerten x′′

0 = 0, x′′
−1 = −1 besitzt für n ≥ 1

die Glieder
1, 0, −1, 0, 1, 0, −1, 0, 1, ...
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2.8 Schwingende Lösungen

Beide Lösungen lassen sich mit Hilfe trigonometrischer Funktionen in der geschlossenen
Form

x′
n = cos nπ

2 , x′′
n = sin nπ

2
darstellen (Abb. 4a).

Abb. 4a

Abb. 4b

Da es sich bei diesen Lösungen bis auf das Vorzeichen im zweiten Fall um die Normal-
formen mit (7.6) handelt und y∗

n bei einer homogenen Gleichung die triviale Lösung ist,
lautet die allgemeine Lösung der Gleichung (8.2) nach (7.7)

xn = x0 cos nπ

2 − x−1 sin nπ

2 (8.3)

wobei die Anfangswerte x0, x−1 auf der rechten Seite beliebig vorgegeben werden kön-
nen (Abb. 4b).

2◦. Das einleitende Beispiel legt uns die Frage nahe, ob die Koeffizienten a, b der
Gleichung (8.1) so gewählt werden können, dass

x′
n = cos ωn , x′′

n = sin ωn

mit einer beliebig vorgegebenen Zahl ω Lösungen dieser Gleichung sind. Damit die
Bedingung (7.4) erfüllt ist, haben wir wegen x′

0x
′′
−1 − x′

−1x
′′
0 = − sin ω vorauszusetzen,

dass
sin ω ̸= 0 (8.4)

ist, also ω ̸= kπ, wobei k eine ganze Zahl ist (andernfalls wäre x′′
n die triviale Lösung).

Setzen wir in (8.1) für xn die Folge cos ωn ein, so erhalten wir für a und b die Bestim-
mungsgleichung

cos ωn + a cos ω(n − 1) + b cos ω(n − 2) = 0

Nach zweimaliger Anwendung des Additionstheorems

cos(α − β) = cos α cos β + sin α sin β
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2.8 Schwingende Lösungen

folgt

cos ωn + a(cos ωn cos ω + sin ωn sin ω) + b(cos ωn cos 2ω + sin ωn sin 2ω) = 0

und nach Ausklammerung von cos ωn und sin ωn

(1 + a cos ω + b cos 2ω) cos ωn + (a sin ω + b sin 2ω) sin ωn = 0

Diese Gleichung kann aber nur dann für alle n bestehen, wenn die Koeffizienten von
cos ωn und sin ωn beide verschwinden, wenn also

1 + a cos ω + b cos 2ω = 0 , a sin ω + b sin 2ω = 0

gilt. Unter Beachtung der Verdoppelungsformeln

cos 2ω = 2 cos2 ω − 1 , sin 2ω = 2 sin ω cos ω

ergibt sich hieraus

1 + (a + 2b cos ω) cos ω − b = 0 , (a + 2b cos ω) sin ω = 0

Wegen (8.4) folgt aus der zweiten Gleichung a = −2b cos ω und daher aus der ersten
b = 1, d. h.

a = −2 cos ω , b = 1 (8.5)

Eine ganz analoge Berechnung zeigt, dass die Gleichung (8.1) mit den Koeffizienten
(8.5), d. h. die Gleichung

xn − 2 cos ωxn−1 + xn−2 = 0 (8.6)

auch xn = sin ωn als Lösung hat, so dass diese Gleichung unter der Voraussetzung
(8.4) nach dem Struktursatz von § 7 die allgemeine Lösung

xn = c1 cos ωn + c2 sin ωn (8.7)

besitzt. Diese Lösung ist genau dann periodisch, wenn ω wie in (8.3) zu π in einem
rationalen Verhältnis steht. Für die Koeffizienten (8.5) gilt wegen (8.4)

a2 − 4b = 4 cos2 ω − 4 = −4 sin2 ω < 0

so dass die Gleichung (8.6) ein allgemeineres Beispiel als (8.2) zum Fall a2 < 4b ist.

3◦. Es bleibt jetzt nur noch die Lösung der Gleichung (8.1) im Fall a2 < 4b mit
b ̸= 1 zu bestimmen. Wie wir sogleich sehen werden, lässt sich aber dieser Fall auf den
vorhergehenden mit b = 1 zurückführen.
Aus a2 < 4b folgt b > 0, so dass wir in (8.1) die Substitution xn =

√
bnzn durchführen

können. Diese liefert uns für zn die Gleichung
√

bnzn + a
√

bn−1zn−1 +
√

bnzn−2 = 0
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2.8 Schwingende Lösungen

oder, wenn wir den positiven Faktor
√

bn kürzen,

zn + a√
b
zn−1 + zn−2 = 0 (8.8)

Wegen a2 < 4b ist |a|/(2
√

b) < 1, so dass die Gleichung

cos ω = − a

2
√

b
(8.9)

stets eine Lösung ω mit (8.4) besitzt. Damit hat die Gleichung (8.8) die Form (8.6),
und aus (8.7) erhalten wir die allgemeine Lösung von (8.8) in der Form

zn = c1 cos ωn + c2 sin ωn

Machen wir jetzt die vorhergehende Substitution wieder rückgängig, so sehen wir, dass
die Gleichung (8.1) unter der Voraussetzung a2 < 4b stets die allgemeine Lösung

xn =
√

bn(c1 cos ωn + c2 sin ωn) (8.10)

besitzt, wobei ω aus (8.9) zu bestimmen ist. Diese Lösungen stellen stets einen Schwin-
gungsvorgang dar, der für b < 1 gedämpft, für b = 1 ungedämpft, aber beschränkt und
für b > 1 aufschaukelnd ist (Abb. 5).

Abb. 5

Aufgaben. 15. Für die homogene Gleichung (8.1) mit a2 < 4b bestimme man die Lö-
sungen x′

n, x′′
n in der durch (7.6) festgelegten Normalform.

16. Man beweise: Ist xn eine Lösung der Rekursionsformel zweiter Ordnung xn +
bxn−2 = 0 mit b > 0, so sind z′

n = x2n+1 und z′′
n = x2n Lösungen der Rekursionsformel

erster Ordnung zn + bzn−1 = 0.
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Iterationsverfahren

3 Iterationsverfahren
Unter einem Fixpunkt einer gegebenen Funktion g versteht man eine Zahl x, die durch
diese Funktion auf sich selbst abgebildet wird, die also der Gleichung

x = g(x)

genügt. Geometrisch gesehen ist x ein Schnittpunkt der Kurve y = g(t) mit der Geraden
y = t (Abb. 6).

Abb. 6

Bei komplizierteren Funktionen g ist es nicht möglich, die Fixpunkte durch explizite
Formeln zu berechnen. Die Numerische Mathematik hat jedoch Näherungsverfahren
entwickelt, mit deren Hilfe sich gesuchte Zahlen mit beliebiger Genauigkeit approximie-
ren lassen. Dies scheint zunächst ein Notbehelf zu sein, aber in praktischen Anwen-
dungen benötigt man niemals "exakte" Werte, sondern immer nur Werte im Rahmen
zugelassener Toleranzen.

Besonders einfach sind Iterationsverfahren in ihrer Handhabung. Sie sind schon lange
im Gebrauch und auch im Rahmen der modernen Rechentechnik unentbehrlich.
Dabei geht man von einem weitgehend beliebig gewählten Startwert x0 als Ausgangs-
näherung für den gesuchten Fixpunkt x aus und berechnet sich mit Hilfe der (im
allgemeinen nichtlinearen) Rekursionsformel erster Ordnung

xn = g(xn−1)

für n = 1, 2, 3, ... weitere Werte xn, die man die Iterierten von x0 nennt.
Wird der Abstand zwischen den Iterierten und dem Fixpunkt mit wachsendem n immer
kleiner, so iteriert man so lange, bis die vorgeschriebene Genauigkeit erreicht ist. Solche
Iterationsverfahren heißen auch Verfahren der schrittweisen Annäherung oder Verfahren
der sukzessiven Approximation.

Sie haben die überaus angenehme Eigenschaft, dass sie selbstkorrigierend sind, d. h. die
laufenden kleinen Rundungsfehler und sogar einen größeren Rechenfehler im weiteren
Verlauf der Iteration ausgleichen, da der verrechnete Wert als neuer Startwert der
nachfolgenden Iterierten aufgefasst werden kann.

Als einleitendes Beispiel hierzu betrachten wir die einfache Fixpunktgleichung

x = 0, 1x + 0, 3
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3.9 Berechnung von Quadratwurzeln

aus der durch Umstellung 0, 9x = 0, 3 folgt, so dass die Lösung x = 1/3 lautet. Aus
der zugehörigen Iterationsvorschrift

xn = 0, 1xn−1 + 0, 3

findet man für n = 1, 2, 3, ..., wenn man als Startwert der Iteration x0 = 0 wählt, die
Iterierten

x1 = 0, 3, x2 = 0, 33, x3 = 0, 333, ...,

und diese sind gerade die endlichen Dezimalbruchnäherungen für den unendlichen De-
zimalbruch des Fixpunktes 1/3. Offenbar gibt es zu jeder vorgeschriebenen Genauigkeit
ein Glied der Iterationsfolge, das den Fixpunkt 1/3 mit dieser Genauigkeit annähert.

Weitere Beispiele, Eigenschaften und Fehlerbetrachtungen werden wir in den nächsten
Paragraphen kennenlernen. Als zusätzliche Literatur wird N. J. Wilenkin [13] empfohlen
sowie H. Belkner [1].

3.9 Berechnung von Quadratwurzeln
Um den Leser mit Iterationsverfahren näher vertraut zu machen, soll als nächstes gezeigt
werden, wie man Quadratwurzeln auf iterativem Wege berechnen kann. Dabei werden
wir zugleich eine Gelegenheit haben, Ergebnisse aus dem vorhergehenden Abschnitt
anzuwenden.

Die Quadratwurzel aus 2 ist die positive Lösung x =
√

2 der Gleichung

x2 = 2 (9.1)

Wollen wir
√

2 iterativ berechnen, so müssen wir diese Gleichung zunächst auf die Form
einer Fixpunktgleichung, also auf die Form x = g(x) mit passender Funktion g bringen,
was auf mannigfache Art möglich ist.
Beispielsweise können wir eine beliebige Zahl a wählen, auf beiden Seiten von (9.1) den
Summanden ax addieren, wodurch

x2 + ax = ax + 2

entsteht, und anschließend durch x + a dividieren. Dann erhalten wir für
√

2 die Fix-
punktgleichung

x = ax + 2
x + a

(9.2)

bei der es sich wegen der Willkürlichkeit von a genaugenommen um unendlich viele
Gleichungen handelt. Die Gleichung (9.2) heißt eine iterationsfähige Umformung von
(9.1), wobei die zugehörige Iterationsvorschrift

xn = axn−1 + 2
xn−1 + a

(9.3)

lautet. Hieraus finden wir, wenn wir etwa a = 1 und x0 = 1 wählen,

x1 = 3
2 , x2 = 7

5 , x3 = 17
12 , x4 = 41

29 , x5 = 99
70
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3.9 Berechnung von Quadratwurzeln

oder in Dezimalbruchannäherung mit acht Ziffern

x1 = 1, 5; x2 = 1, 4; x3 = 1, 4166666; x4 = 1, 4137931; x5 = 1, 4142857

wobei die ersten vier Dezimalen von aus bereits mit den entsprechenden Dezimalen von√
2 = 1, 4142135... übereinstimmen.

Um die Abhängigkeit der Iterierten xn von a und x0 zu studieren, wollen wir anschlie-
ßend die Gleichung (9.3) explizit auflösen. Zu diesem Zweck machen wir den Ansatz
xn = yn/zn, durch den (9.3) in

yn

zn
= ayn−1 + 2zn−1

yn−1 + azn−1

übergeht. Diese Gleichung ist sicher erfüllt, wenn Zähler und Nenner auf beiden Seiten
übereinstimmen, wenn also

yn = ayn−1 + 2zn−1 , zn = yn−1 + azn−1 (9.4)

gilt. Dies sind zwei Gleichungen mit zwei unbekannten Folgen, aus denen wir eine der
beiden Folgen eliminieren können. Eliminieren wir zunächst die Glieder zn−1, so erhalten
wir (vgl. § 11)

2zn = ayn + (2 − a2)yn−1

oder nach einer Indexverschiebung

2zn−1 = ayn−1 + (2 − a2)yn−2

Setzen wir diesen Ausdruck in die erste der Gleichungen (9.4) ein, so entsteht für yn

die Rekursionsformel zweiter Ordnung

yn = 2ayn−1 + (2 − a2)yn−2 (9.5)

wobei wir die Fälle a = ±
√

2 ausschließen. Die zugehörige charakteristische Gleichung
(6.4) lautet

λ2 − 2aλ + (a2 − 2) = 0

Sie hat die beiden Lösungen
λ1,2 = a ±

√
2

so dass wir durch Einsetzen dieser Werte in (7.9) als Zwischenergebnis die allgemeine
Lösung von (9.5)

yn = c1(a +
√

2)n + c2(a −
√

2)n (9.6)

erhalten. Wegen der aus der ersten Gleichung von (9.4) nach Indexverschiebung und
Umstellung hervorgehenden Gleichung

zn = 1
2(yn+1 − ayn)
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3.9 Berechnung von Quadratwurzeln

ergibt sich durch Einsetzen von (9.6)

zn = 1√
2

[c1(a +
√

2)n − c2(a −
√

2)n]

Im Fall zn ̸= 0 für alle n erhalten wir für die Lösung xn = yn/zn der Rekursionsformel
(9.3) die Darstellung

xn =
√

2c1(a +
√

2)n + c2(a −
√

2)n

c1(a +
√

2)n − c2(a −
√

2)n

der nach Kürzung von c1(a +
√

2)n

xn =
√

21 + cbn

1 − cbn
=

√
2 + 2

√
2cbn

1 − cbn
(9.7)

mit
b = a −

√
2

a +
√

2
= 1 − 2

√
2

a +
√

2
, c = c2

c1
(9.8)

Während b durch die Koeffizienten der Rekursionsformel (9.3) festgelegt ist, hängt die
Konstante c mit dem Anfangswert x0 ̸=

√
2 durch

x0 =
√

21 + c

1 − c
bzw. c = x0 −

√
2

x0 +
√

2

zusammen. Wie man nachprüfen kann, ergeben sich im Fall a = x0 = 1 und damit
c = b aus (9.7) für n = 1, 2, 3, 4, 5 wieder die weiter oben schon berechneten rationalen
Näherungswerte für die Irrationalzahl

√
2.

Aus der expliziten Darstellung (9.7) für die Iterierten xn ist ersichtlich, dass letztere
sich genau dann mit wachsendem n dem Fixpunkt

√
2 nähern, wenn |b| < 1 ist (vgl.

Abb. 2), also wegen (9.8) a > 0 ist (vgl. Abb. 7).

Abb. 7

Die Annäherung an
√

2 erfolgt bei gleichem Startwert x0 um so schneller, je kleiner
b ist, je näher a also bei

√
2 liegt. Für a < 0, also |b| > 1 (vgl. Abb. 7), kann man

sich überlegen, dass die Iterierten xn dann den zweiten Fixpunkt x = −
√

2 von (9.2)
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3.9 Berechnung von Quadratwurzeln

approximieren.

Zum Schluss wollen wir noch eine weitere iterationsfähige Umformung von (9.1) auf-
stellen, wobei wir uns sogar auf die allgemeinere Gleichung

x2 = a (9.9)

mit a > 0 beziehen, durch die x =
√

a als positive Lösung bestimmt ist. Dividieren wir
(9.9) durch 2x, so folgt x/2 = a/2x, und addieren wir jetzt auf beiden Seiten x/2, so
entsteht die Fixpunktgleichung

x = x

2 + a

2x
(9.10)

(vgl. Abb. 8), zu der die Iterationsvorschrift

xn = xn−1

2 + a

2xn−1
(9.11)

gehört. Bei achtstelliger Rechnung findet man, vom Startwert x0 = 1 ausgehend, für
die ersten fünf Iterierten im Fall a = 2 bzw. a = 9

a = 2 a = 9
x1 2 5
x2 1,5 3,4
x3 1,4166666 3,0235294
x4 1,4142156 3,0000915
x5 1,4142135 3,0000000

wobei die Rechnungen mit dem bulgarischen Taschenrechner elka 135 durchgeführt
wurden. In beiden Fällen wurden die Fixpunkte

√
2 bzw.

√
9 = 3 in den angegebenen

acht Stellen bereits nach fünf Iterationsschritten erreicht, so dass das Iterationsverfah-
ren als besonders effektiv bezeichnet werden kann.

Abb. 8

Aufgaben. 17. Man zeige, dass die zn aus (9.4) ebenfalls die Gleichung (9.5) erfüllen,
also

zn = 2azn−1 + (2 − a2)zn−2 (9.12)
18. Man zeige, dass die xn aus (9.3) auch die Rekursionsformel

xn = xn−1 + (a2 − 2)n

znzn−1
w0

mit w0 = y0z−1 − y−1z0 erfüllen.
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3.10 Berechnung von Nullstellen

3.10 Berechnung von Nullstellen
Will man die Nullstellen einer Funktion f bestimmen, d.h. die Lösungen an der Glei-
chung

f(x) = 0 (10.1)
ermitteln, so kann man folgendermaßen vorgehen: Zunächst bringe man die Gleichung
(10.1) durch geeignete Umformung auf eine iterationsfähige Form

x = g(x) (10.2)

bei der die Nullstellen (oder wenigstens eine Nullstelle) von f als Fixpunkte von g
erscheinen. Auf eine allgemeine Möglichkeit für eine solche Umformung werden wir
weiter unten eingehen.
Danach betrachte man nach Wahl eines Startwertes x0 das zugehörige Iterationsver-
fahren

xn = g(xn−1) (10.3)
für n = 1, 2, 3, ... Vorausgesetzt werden muss natürlich, dass die Funktion g an den
auftretenden Stellen xn−1 stets erklärt ist. Die ersten Werte der Iterationsfolge xn

lauten, wenn wir sie jeweils durch x0 ausdrücken,

x1 = g(x0), x2 = g(x1) = g(g(x0)), x3 = g(x2) = g(g(g(x0)))

Wir unterscheiden jetzt zwei Fälle, die besondere Namen tragen:

1◦. Nähern sich die Iterierten (10.3) dem Fixpunkt x, sofern der Startpunkt x0 der
Iteration hinreichend nahe bei x gewählt wird, so heißt der Fixpunkt x anziehend.

2◦. Entfernen sich die Iterierten (10.3) vom Fixpunkt x, wie nahe auch der Startpunkt
x0 der Iteration bei x gewählt wird (jedoch x0 ̸= x), so heißt der Fixpunkt x abstoßend.

Beim Übergang von (10.1) zu (10.2) hat man darauf zu achten, dass die gesuchte Wur-
zel x von (10.1) ein anziehender Fixpunkt von (10.2) wird.

Lineare Funktionen. Besonders übersichtlich sind die Verhältnisse bei der linearen Funk-
tion

g(t) = at + b

mit a ̸= 0 und a ̸= 1, der wir uns jetzt zuwenden wollen. Die Gleichung

x = ax + b (10.4)

hat offenbar die Lösung x = b/(1 − a), so dass es genau einen Fixpunkt gibt. Die
zugehörige Iterationsvorschrift (10.3) lautet

xn = axn−1 + b

Sie ist eine Rekursionsformel erster Ordnung, die nach Beispiel 6◦ von § 5 die Lösung

xn = b

1 − a
+
(

x0 + b

1 − a

)
an (10.5)
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3.10 Berechnung von Nullstellen

besitzt. Unter Beachtung des in Abb. 2 angedeuteten Verhaltens der Folge an mit
wachsendem n erkennt man aus (10.5), dass der Fixpunkt b/(1 − a) für |a| < 1
anziehend und für |a| > 1 abstoßend ist.

Abb. 9a,b

Abb. 9c,d

Im Fall |a| < 1 des anziehenden Fixpunktes unterscheiden wir drei Unterfälle:

Ist 0 < a < 1 und xn < b/(1 − a), so nähern sich die xn von "links" her dem Fixpunkt,
d. h., die Folge xn ist monoton wachsend (Abb. 9a).
Ist 0 < a < 1 und xn > b/(1−a), so nähern sich die xn von "rechts" her dem Fixpunkt,
d. h., die Folge xn ist monoton fallend (Abb. 9b).
Ist −1 < a < 0, so nähern sich die xn abwechselnd von beiden Seiten her dem Fix-
punkt, d. h., die Folge xn ist alternierend (Abb. 9c).

Die Annäherung an den Fixpunkt erfolgt um so schneller, je kleiner |a| ist. Im Fall
|a| > 1 des abstoßenden Fixpunktes (Abb. 9d) lösen wir die Gleichung (10.4) nach
dem auf der rechten Seite auftretenden x auf, d. h., wir gehen zu der neuen Fixpunkt-
gleichung x = x/a−b/a über, für die der Fixpunkt b/(1−a) wegen |1/a| < 1 anziehend
ist. Damit haben wir diesen Fall auf den vorhergehenden zurückgeführt.

Im Fall a = −1 haben die Iterierten (10.5) die Periode 2, d. h., es gilt xn = xn−2, und
der Fixpunkt ist weder anziehend noch abstoßend.

Polynome. Die soeben bei der einfachen Gleichung (10.4) gewonnenen Erkenntnisse
sind auch für allgemeinere Gleichungen typisch. Ist beispielsweise (10.1) eine Polynom-
gleichung wie

3x3 + 131x2 + 239x + 47 = 0 (10.6)
so kann man den Übergang zur Fixpunktgleichung (10.2) dadurch vollziehen, dass man
das Polynom nach dem in dem linearen Glied 239x vorkommenden x auflöst:

x = −3x3 + 131x2 + 47
239
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3.10 Berechnung von Nullstellen

Hieraus entsteht die Iterationsvorschrift

xn = −(3xn−1 + 131)x2
n−1 + 47

239 (10.7)

wobei die Klammern so gesetzt wurden, wie es für die praktische Durchführung der
Rechnungen vorteilhaft ist. Vom Startwert x0 = 0 ausgehend, erhält man mit dem
bulgarischen Taschenrechner elka 135 bei 11 Iterationsschritten

n xn xn − xn−1
1 -0,1966527 -0,1966527
2 -0,2177542 -0,0211015
3 -0,2225131 -0,0047589
4 -0,2236528 -0,0011397
5 -0,2239294 -0,0002766
6 -0,2239967 -0,0000673
7 -0,2240131 -0,0000164
8 -0,2240171 -0,0000040
9 -0,2240181 -0,0000010
10 -0,2240183 -0,0000002
11 -0,2240184 -0,0000001

und bei weiterer Iteration ändert sich das Ergebnis nicht mehr, so dass wir mit x =
−0, 2240184 bis auf Rundungsfehler, die die letzte Stelle beeinflussen könnten, eine
Wurzel von (10.6) in ihren ersten sechs Dezimalen berechnet haben. Aus der letzten
Spalte erkennt man, dass die Annäherung der xn an den Fixpunkt monoton fallend
erfolgt und wie schnell diese Annäherung vor sich geht.

Der zuvor angegebene Übergang von (10.6) zu (10.7) führt nicht immer zu einem
anziehenden Fixpunkt, aber dann, wenn man die kleinste Nullstelle von (10.6) sucht
und der Koeffizient des Gliedes x groß genug ist.
Eine allgemeine Möglichkeit, von (10.1) zu einer brauchbaren Iterationsvorschrift zu
gelangen, bietet das folgende

Sekantenverfahren. Man wähle eine geeignete Zahl m ̸= 0, dividiere (10.1) durch −m
und gehe zur äquivalenten Umformung

x = x − 1
m

f(x)

über, zu der die Iterationsvorschrift

xn = xn−1 − 1
m

f(xn−1) (10.8)

gehört. Dabei empfiehlt es sich, für m den Steigungsfaktor

m = f(ξ2) − f(ξ1)
ξ2 − ξ1

(10.9)
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3.11 Zwei Gleichungen

der Sekante durch zwei Kurvenpunkte (ξ1, f(ξ1)), (ξ2, f(ξ2)) in der Nähe der gesuchten
Nullstelle t = x der Funktion y = f(t) zu wählen.

Die Motivation für die Iterationsvorschrift (10.8) ergibt sich dadurch, dass t = xn die
Wurzel der Geradengleichung

y − f(xn−1) = m(t − xn−1)

durch den Kurvenpunkt (xn−1, f(xn−1)) ist und diese Gerade die Funktion y = f(t) in
der Umgebung der Nullstelle t = x approximiert (Abb. 10).

Abb. 10

Für das Iterationsverfahren (10.8) sind verschiedene Varianten möglich, bei denen der
Faktor m bei jedem Iterationsschritt verändert wird, also ebenfalls von n abhängt:

1. Variante. Man wähle ξ2 = xn−1, ξ1 fest.
2. Variante. Man wähle ξ2 = xn−1, ξ1 = xn−2.

Die zweite Variante ergibt eine Rekursionsformel zweiter Ordnung und benötigt zwei
Startwerte x0, x1, sie steht zu der sogenannten Regula falsi in enger Beziehung. Übrigens
lässt sich auch das Beispiel (9.11) als Spezialfall von (10.8) mit f(x) = x2 − a und
m = 2xn−1 deuten.

Aufgaben. Man beweise:
19. Ist g eine monoton wachsende Funktion, d. h., folgt aus x′ < x′′ stets g(x′) < g(x′′),
und ist x ein Fixpunkt von g, so nähern sich die Iterierten (10.3) im Fall x0 < x1 < x
von "links" und im Fall x < x1 < x0 von "rechts" her dem Fixpunkt x.

20. Ist g eine monoton fallende Funktion, d. h., folgt aus x′ < x′′ stets g(x′) > g(x′′),
und ist x ein Fixpunkt von g, so nähern sich die Iterierten (10.3) im Fall x0 < x2 < x
dem Fixpunkt x alternierend.

3.11 Zwei Gleichungen
Iterationsverfahren kann man auch verwenden, um mehrere Gleichungen mit mehreren
Unbekannten näherungsweise aufzulösen. Dies wollen wir jetzt an Hand des einfachen
linearen Systems von zwei Gleichungen mit zwei Unbekannten

ax − by = p , cx − dy = q (11.1)

zeigen. Zunächst führen wir jedoch eine geschlossene Lösungsmethode vor.
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3.11 Zwei Gleichungen

Gaußsche Eliminationsmethode. Multiplizieren wir etwa die erste Gleichung. von (11.1)
mit d und die zweite Gleichung mit b, so haben die entstehenden Gleichungen

adx − bdy = pd , bcx − bdy = bq

bei y einen gemeinsamen Koeffizienten. Somit folgt durch Differenzbildung

(ad − bc)x = pd − bq

und wir haben y eliminiert. Im Fall

ad − bc ̸= 0 (11.2)

folgt hieraus, wenn wir in analoger Weise auch x eliminieren,

x = pd − bq

ad − bc
, y = pc − aq

ad − bc
(11.3)

Iteration in Gesamtschritten. Wollen wir das System (11.1) iterativ lösen, so benötigen
wir zunächst eine iterationsfähige Umformung. Im Fall a ̸= 0, d ̸= 0 ist

x = b

a
y + p

a
, y = c

d
x − q

d

eine solche Umformung. Um die folgenden Formeln zu vereinfachen, setzen wir a =
d = 1, was keine weitere Einschränkung bedeutet, d. h., wir befassen uns mit dem
System

x = by + p , y = cx − q (11.4)

Nach Wahl zweier Startwerte x0, y0 lässt sich diesem System die Iterationsvorschrift

xn = byn−1 + p , yn = cxn−1 − q (11.5)

zuordnen, die man ein Gesamtschrittverfahren nennt. Zur Lösung des Systems (11.5)
ersetzen wir in beiden Gleichungen n durch n − 1, so dass

xn−1 = byn−2 + p , yn−1 = cxn−2 − q

entsteht. Hieraus folgt durch Elimination der Iterierten mit dem Index n − 1

xn = bcxn−2 + (p − bq) , yn = bcyn−2 + (cp − q) (11.6)

Es genügt, diese Gleichungen nur für gerade n zu betrachten, dann sind sie wegen
2n − 2 = 2(n − 1) Rekursionsformeln erster Ordnung bezüglich x2n bzw. y2n (vgl.
Aufgabe 16), und wir erhalten analog zu (10.5) die Ergebnisse

x2n = p−bq
1−bc +

(
x0 − p−bq

1−bc

)
(bc)n

y2n = cp−q
1−bc +

(
y0 − cp−q

1−bc

)
(bc)n

 (11.7)
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3.11 Zwei Gleichungen

Für die ungeraden Indizes ergibt sich nach kurzer Zwischenrechnung aus (11.5)
x2n+1 = p−bq

1−bc + b
(
x0 − cp−q

1−bc

)
(bc)n

y2n+1 = cp−q
1−bc + c

(
y0 − p−bq

1−bc

)
(bc)n

 (11.8)

Auf Grund des in Abb. 2 angedeuteten Verhaltens der Folge der Potenzen können wir
abschließend feststellen:
Hat man als Startwerte x0, y0 für das Iterationsverfahren (11.5) nicht bereits den Fix-
punkt (11.3) mit a = d = 1 gewählt, so nähern sich die Iterierten xnyn genau dann
dem Fixpunkt, wenn |bc| < 1 ist, und die Annäherung erfolgt um so schneller, je kleiner
|bc| ist.

Im Fall |bc| > 1 entfernen sich die Iterierten von dem Fixpunkt, der Fall bc = 1 ist
wegen (11.2) und ad = 1 ausgeschlossen, und im Fall bc = −1 haben die Iterierten die
Periode 4. Im letzten Fall stehen die Geraden mit den Gleichungen (11.4) senkrecht
aufeinander.

Iteration in Einzelschritten. Das Gleichungssystem (11.4) kann im Fall |bc| < 1 auch
durch ein etwas anderes Iterationsverfahren gelöst werden.
Hat man nämlich aus der ersten der Gleichungen (11.5) den Wert xn bestimmt, so kann
man in der zweiten Gleichung bei der Berechnung von yn an Stelle von xn−1 bereits
den verbesserten Wert xn benutzen, d. h. an Stelle von (11.5) die Iterationsvorschrift

xn = byn−1 + p , yn = cxn − q (11.9)
verwenden, bei der man mit einem einzigen Startwert y0 auskommt. Dieses Verfahren
heißt ein Einzelschrittverfahren.

Um die Iterierten xn, yn geschlossen angeben zu können, eliminieren wir aus den Glei-
chungen (11.9) die Iterierte xn, wobei die Gleichung

yn = cbyn−1 + (cp − q) (11.10)
entsteht. Diese Rekursionsformel für yn ist dieselbe wie die aus (11.6) hervorgehende
für y2n; somit können wir aus (11.7) die Lösung

yn = cp − q

1 − bc
+
(

y0 − cp − q

1 − bc

)
(bc)n (11.11)

entnehmen. Aus der ersten der Gleichungen (11.9) folgt hiermit nach kurzer Zwischen-
rechnung

xn = p − bq

1 − bc
+ 1

c

(
y0 − cp − q

1 − bc

)
(bc)n (11.12)

(vgl. Abb. 11).

Abb. 11
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Da die Größenordnung des Fehlers zwischen den Iterierten und dem Fixpunkt (11.3)
mit a = d = 1 durch die Potenz (bc)n bestimmt wird, zeigt ein Vergleich mit den
vorhergehenden Ergebnissen (11.7), (11.8), dass zumindest bei diesem Beispiel das
Gesamtschrittverfahren im wesentlichen die doppelte Anzahl von Iterationsschritten
benötigt, um dieselbe Genauigkeit wie beim Einzelschrittverfahren zu erreichen.

Nichtlineare Gleichungen. Die vorhergehenden Überlegungen dienten nur als Muster-
beispiel für die iterative Lösung von Gleichungssystemen mit mehreren Unbekannten.
Hat man es an Stelle von (11.1) mit einem nichtlinearen System zu tun, so stehen
nämlich solche geschlossenen Lösungsformeln wie (11.3) nicht zur Verfügung, während
die Iterationsverfahren auch dann anwendbar bleiben. Denken wir uns das System von
vornherein auf die iterationsfähige Form

x = g(x, y) , y = h(x, y) (11.13)

gebracht, wobei g und h zwei bekannte Funktionen sind, so lautet das Iterationsver-
fahren in Gesamtschritten

xn = g(xn−1, yn−1) , yn = h(xn−1, yn−1) (11.14)

und das Iterationsverfahren in Einzelschritten

xn = g(xn−1, yn−1) , yn = h(xn, yn−1) (11.15)

Bei nichtlinearen Funktionen g, h wird man die Iterierten xn, yn kaum wie im vorherge-
henden Fall geschlossen angeben können. Ihre Berechnung mit Hilfe eines Automaten
bietet jedoch keine Schwierigkeiten.

Es sei noch erwähnt, dass man die vorhergehenden Betrachtungen auch auf Gleichungs-
systeme mit mehr als zwei Gleichungen und Unbekannten übertragen kann.

Aufgaben. Unter der Voraussetzung bc = 1 beweise man:
21. Im Fall p ̸= bq ist das System (11.4) unlösbar.

22. Im Fall p = bq hat das Lösungspaar x, y von (11.4) die Form x = x∗ + c0x0, y =
y∗ + c0y0, wobei x∗, y∗ ein spezielles Lösungspaar, x0, y0 ein nichttriviales Lösungspaar
des zugehörigen homogenen Systems mit p = q = 0 und c0 eine beliebige Konstante
ist (vgl. § 7).

3.12 Fehlerabschätzungen
In den vorhergehenden drei Paragraphen haben wir Iterationsverfahren betrachtet, bei
denen sich die Iterierten xn einer gesuchten Zahl x schrittweise annähern. Für die
Anwendungen ist es wichtig, den Fehler |xn − x| abzuschätzen und nach Möglichkeit
ein n zu berechnen, für das der Fehler eine zulässige Genauigkeitsschranke ε > 0 nicht
übersteigt. Häufig haben Fehlerabschätzungen die Form

|xn − x| ≤ cqn (12.1)
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3.12 Fehlerabschätzungen

wobei c eine positive Konstante ist und q eine Konstante mit

0 < q < 1 (12.2)

In diesem Fall können wir die gewünschte Genauigkeitsaussage

|xn − x| ≤ ε (12.3)

garantieren, sobald n die Ungleichung cqn ≤ ε oder c/ε ≤ (1/q)n erfüllt.
Durch Logarithmierung (mit einer beliebigen Basis größer als 1) folgt hieraus, dass die
Ungleichung (12.3) für jede natürliche Zahl n mit

log c
ε

log 1
q

≤ n (12.4)

erfüllt ist.
Beispielsweise erhalten wir im Fall c = 12, q = 1/4, ε = 10−3 bei Verwendung von
Zehner-Logarithmen wegen

log(12 · 103)
log 4 ≈ 4, 079

0, 602 ≈ 6, 775

dass (12.3) für n = 7 erfüllt ist, da wir n natürlich so klein wie möglich wählen werden.
Ist (12.1) mit einem kleineren c oder mit einem kleineren q erfüllt, so kommt man im
allgemeinen mit noch weniger Iterationsschritten n aus.

Bei den vorhergehenden Beispielen (9.7), (10.5) und (11.12) sieht man sofort, dass
eine Fehlerabschätzung der Form (12.1) mit q = |b|, |a| bzw. |bc| vorliegt, falls auch
(12.2) erfüllt ist. Im Fall der allgemeinen Fixpunktgleichung (10.2), d. h.

x = g(x) (12.5)

mit dem zugehörigen Iterationsverfahren (10.3), d. h.

xn = g(xn−1) (12.6)

gelangen wir zu der Fehlerabschätzung (12.1), wenn die Funktion g für beliebige x′, x′′

einer Lipschitz-Bedingung

|g(x′) − g(x′′)| ≤ q|x′ − x′′| (12.7)

genügt, bei der die Lipschitz-Konstante q die Ungleichung (12.2) erfüllt. Es gilt nämlich
der folgende

Approximations- und Eindeutigkeitssatz. Es sei g eine Funktion mit ( 12.7) und (12.2).
Dann gilt über ihre Iterierten (12.6) bei hinreichend großen n und über ihre Fixpunkte:

1◦. Bei beliebigen Startwerten kommen sich die Iterierten zweier Iterationsfolgen beliebig
nahe.
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3.12 Fehlerabschätzungen

2◦. Bei beliebigem Startwert erfüllen die Iterierten die Gleichung (12.5) beliebig genau.

3◦. Ein Fixpunkt von g lässt sich durch die Iterierten beliebig genau approximieren.

4◦. Die Funktion g besitzt höchstens einen Fixpunkt.

Beweis. 1◦. Wir betrachten neben (12.6) eine zweite Iterationsfolge

zn = g(zn−1) (12.8)

Durch Subtraktion von (12.6) ergibt sich zn − xn = g(zn−1) − g(xn−1). Die Lipschitz-
Bedingung (12.7) lautet speziell für x′ = zn−1, x′′ = xn−1

|g(zn−1) − g(xn−1)| ≤ q|zn−1 − xn−1|

so dass wir
|zn − xn| ≤ q|zn−1 − xn−1|

erhalten. Hieraus folgt für n = 1, 2, ...

|z1 − x1| ≤ q|z0 − x0|, |z2 − x2| ≤ q|z1 − x1| ≤ q2|z0 − x0|, ...

und daher nach n Schritten

|zn − xn| ≤ qn[z0 − x0| (12.9)

Wegen (12.2) ist somit die erste Teilbehauptung bewiesen.

2◦. Wählen wir als Startwert von (12.8) z0 = x1 = g(x0), so folgt rekursiv zn = xn+1 =
g(xn). Damit erhalten wir als Spezialfall von (12.9)

|g(xn) − xn| ≤ qn|x1 − x0| (12.10)

womit nach dem zuvor Gesagten die zweite Teilbehauptung bewiesen ist.

3◦. Ist z0 = x ein Fixpunkt von g, so gilt wegen (12.5) und (12.8) zn = x für alle n.
In diesem Spezialfall lautet (12.9)

|x − xn| ≤ qn|x − x0| (12.11)

und dies ist nichts anderes als (12.1) mit c = |x−x0|, d. h. unsere dritte Teilbehauptung.

4◦. Ist jetzt auch x0 = z ein Fixpunkt von g, so gilt xn = z, und (12.11) geht für n = 1
in

|x − z| ≤ q|x − z|

oder (1 − q)|x − z| ≤ 0 über. Wegen (12.2) ist 1 − q > 0, so dass diese Ungleichung
nur für x = z bestehen kann. Dies bedeutet aber die Eindeutigkeit des Fixpunktes.

Wie aus dem Beweis hervorgeht, ist es nicht nötig, dass die Lipschitz-Bedingung (12.7)
für alle reellen Zahlen x′, x′′ erfüllt ist. Vielmehr genügt es, wenn sie für alle Zahlen
eines Intervalls erfüllt ist, in dem die Iterierten und der gesuchte Fixpunkt liegen.
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Aus (12.11) ist ersichtlich, dass die Annäherung der xn an x um so besser ist, je näher
der Startpunkt x0 bei x gewählt wird bzw. je kleiner q in (12.7) ist. Im Satz wird nichts
darüber ausgesagt, ob ein Fixpunkt existiert. Für praktische Anwendungen ist aber die
Aussage 2◦ völlig ausreichend.

Als Beispiel betrachten wir die Funktion g(t) = t
2 + a

2t mit a > 0, die zu der Fixpunkt-
gleichung (9.10) gehört. Wegen

g(x′) − g(x′′) =
(1

2 − a

2x′x′′

)
(x′ − x′′)

ist die Lipschitz-Bedingung (12.7) mit q = 1/2 erfüllt, wenn wir die Veränderlichen
x′, x′′ größer als

√
a/2 wählen, da dann

−1
2 = 1

2 − a

2a
2

<
1
2 − a

2x′x′′ <
1
2

,ist. Bei diesem Beispiel lässt sich sogar q beliebig klein wählen, wenn nur x′, x′′ hin-
reichend nahe bei

√
a liegen.

Die vorhergehenden Überlegungen lassen sich auch auf den Fall von § 11 übertragen,
wenn man für Funktionen zweier Veränderlicher Lipschitz-Bedingungen der Form

|g(x′, y′) − g(x′′, y′′)| ≤ q1|x′ − x′′| + q2|y′ − y′′|

verwendet und die Lipschitz-Konstanten q1, q2 passend einschränkt.

Aufgaben. 23. Man zeige, dass die zur Iterationsvorschrift (10.7) gehörende Funktion
g(t) = −(3t3+131t2+47)/239 im Intervall −1/2 ≤ x′, x′′ ≤ 0 der Lipschitz-Bedingung
(12.7) mit q = 134/239 genügt.

24. Man beweise: Besitzt g(t) die Lipschitz-Konstante q und h(t) die Lipschitz- Kon-
stante p, so erfüllt die zusammengesetzte Funktion g(h(t)) eine Lipschitz- Bedingung
mit der Lipschitz-Konstanten pq.
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4 Diskrete Modelle
Bei den praktischen Anwendungen der Mathematik hat man in der Regel diskrete Mess-
werte zu diskreten Endergebnissen zu verarbeiten. In komplizierteren Fällen geschieht
dies mit Hilfe eines kontinuierlichen mathematischen Modells, das zur Bearbeitung auf
einem Rechenautomaten dann nachträglich diskretisiert wird. Viel natürlicher ist es
jedoch, sofort ein diskretes mathematisches Modell heranzuziehen, d. h. wie in dem
Schema der Abb. 12 vorzugehen.

Abb. 12

Dies hat dann gleichzeitig den Vorteil, dass man kaum Hilfsmittel aus der höheren
Mathematik benötigt. Als Nachteil muss man allerdings in Kauf nehmen, dass diskrete
Modelle nicht eindeutig bestimmt sind. Andererseits lässt sich die vorhandene Mehr-
deutigkeit ausnutzen, um zusätzliche Anforderungen zu stellen und zu erfüllen.

In den nächsten drei Paragraphen wollen wir ein diskretes Modell der Mechanik vor-
stellen, das nach einem einheitlichen Konstruktionsprinzip aufgebaut, symmetrisch und
besonders einfach ist. Zu diesem Modell gelangt man, wenn man den kontinuierli-
chen Zeitablauf diskretisiert, das Geschehen also nur in gewissen diskreten Zeitpunkten
t0, t1, t2, ... abtastet (Abb. 1).

Im einfachsten Fall wird man die Zeitspanne ∆t = tn−tn−1 zwischen zwei benachbarten
Zeitpunkten von n unabhängig wählen, so dass dann die Punkte

t1 = t0 + ∆t, t2 = t0 + 2∆t, t3 = t0 + 3∆t, ...

äquidistant sind, wir wollen uns aber nicht von vornherein auf diesen Fall einschrän-
ken. Um das Wesentliche herausarbeiten zu können, gehen wir jedoch nur auf den
eindimensionalen Fall ein, d. h., wir betrachten nur geradlinige Bewegungsabläufe und
Krafteinwirkungen. Der Kürze wegen lassen wir dabei auch Dimensionsfragen außer
acht. Die Darstellung lehnt sich eng an [5] an.

In dem letzten Paragraphen des Abschnitts behandeln wir ein diskretes Modell der
Wahrscheinlichkeitstheorie, deren Grundlagen in dem Buch B. W. Gnedenko und A. J.
Chintschin [10] dargestellt werden.

4.13 Das Konstruktionsprinzip
Zwischen den mechanischen Größen Zeit t, Weg s, Geschwindigkeit v, Beschleunigung
a, Kraft F und Arbeit W bestehen im einfachsten Fall die Grundgleichungen

s = vt, v = at, W = Fs (13.1)

Dabei ist vorauszusetzen, dass die ersten Faktoren auf den rechten Seiten konstant
sind, während die übrigen Größen sich ändern können.
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Lassen wir t die diskreten Zeitpunkte tn, n = 0, 1, 2, ..., durchlaufen, so hängen auch
s, v und W von n ab, und wir erhalten an Stelle von (13.1) die Gleichungen

sn = vtn, vn = atn, Wn = Fsn (13.2)

Die erste Gleichung beschreibt eine gleichförmige Bewegung bei konstanter Geschwin-
digkeit v, die zweite eine gleichförmig beschleunigte Bewegung bei konstanter Beschleu-
nigung a und die dritte die Arbeit längs des Wegs sn bei einer konstanten Kraft F .
Da n variabel ist, können wir die Gleichungen (13.2) auch mit n − 1 an Stelle von n
aufschreiben, d. h.

sn−1 = vtn−1, vn−1 = atn−1, Wn−1 = Fsn−1

und wir erhalten durch Differenzbildung

sn −sn−1 = v(tn − tn−1), vn −vn−1 = a(tn − tn−1), Wn −Wn−1 = F (s−n−sn−1
(13.3)

für n = 1, 2, 3, ... Während aus den Gleichungen (13.2) folgt, dass für t0 = 0 auch s0,
v0 sowie W0 verschwinden, brauchen letztere Anfangswerte in den Gleichungen (13.3)
nicht zu verschwinden, sondern stehen zur Anpassung an eine konkrete Aufgabenstel-
lung zur Verfügung.

Wir müssen uns jetzt entscheiden, wie die Grundgleichungen (13.3) zu verändern sind,
wenn v, a und F ebenfalls von der Zeit tn und damit von n abhängen. Das einfachste
Modell erhalten wir, wenn wir diese Größen einfach durch ihren n-ten Wert vn, an bzw.
Fn ersetzen. Ebenso einfach wäre es, den (n − 1)-ten Wert vn−1, an−1 bzw. Fn−1 zu
wählen.
In beiden Fällen würden aber die Gleichungen unsymmetrisch werden. Das einfachste
symmetrische Modell entsteht, wenn wir die arithmetischen Mittel 1

2(vn+vn−1), 1
2(an+

an−1) bzw. 1
2(F − n + Fn−1) wählen, d. h. die Gleichungen (13.3) durch

sn − sn−1 = 1
2(vn + vn−1)(tn − tn−1) (13.4)

vn − vn−1 = 1
2(an + an−1)(tn − tn−1) (13.5)

Wn − Wn−1 = 1
2(Fn + Fn−1)(sn − sn−1) (13.6)

ersetzen. Sind die Zeitspannen ∆tn = tn − tn−1 klein, so stellen diese Gleichungen eine
gute Annäherung an die entsprechenden Gleichungen der klassischen Mechanik dar.
Multiplizieren wir die Gleichungen (13.4) und (13.5) "über Kreuz", so erhalten wir
wegen der binomischen Formel

(vn + vn−1)(vn − vn−1) = v2
n − v2

n−1

nach Kürzung des Faktors 1
2∆tn die Beziehung

v2
n − v2

n−1 = (an + an−1)(sn − sn−1) (13.7)
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auf die wir weiter unten noch zurückkommen werden.

Mit dem Übergang von den Gleichungen (13.3), in denen ein konstanter Faktor auftritt,
zu den entsprechenden Gleichungen (13.4) bis (13.6) mit veränderlichem Faktor ha-
ben wir ein einheitliches Grundprinzip zur Verallgemeinerung elementarer Gleichungen,
durch das unser diskretes Modell weitgehend bestimmt ist. Wie wir aber gleich sehen
werden, können wir dieses Prinzip keineswegs schrankenlos anwenden.

Erstens gibt es nämlich Grundgleichungen der Mechanik wie

Jn = mvn , Kn = 1
2mv2

n (13.8)

in denen m die Masse eines mit der Geschwindigkeit vn im Zeitpunkt tn sich bewegenden
Massenpunktes, Jn den Impuls und Kn die kinetische Energie dieses Massenpunktes
bezeichnen, die auch für eine veränderliche Masse in ganz analoger Form gelten:

Jn = mnvn , Kn = 1
2mnv2

n (13.9)

In diesem Fall würde unser Modell erheblich von der klassischen Mechanik abweichen,
wenn wir die Gleichungen (13.8) nicht durch (13.9), sondern durch Anwendung des
vorhergehenden Konstruktionsprinzips auf veränderliche Massen übertragen würden.

Zweitens könnte es sein, dass eine gedankenlose Anwendung des Konstruktionsprinzips
dadurch zu einem Widerspruch führt, dass eine physikalische Größe in mehreren Glei-
chungen auftritt und durch die Übertragung vom konstanten auf den variablen Fall bei
diesen Gleichungen unterschiedliche Ergebnisse entstehen. Um hierfür ein Beispiel zu
geben, betrachten wir das Newtonsche Grundgesetz

Fn = man (13.10)

das in dieser Form für konstante Massen m gilt. Aus (13.8) und (13.5) folgt

Jn − Jn−1 = m(vn − vn−1) = m

2 (an + an−1)(tn − tn−1)

so dass wir unter Berücksichtigung von (13.10)

Jn − Jn−1 = 1
2(Fn + Fn−1)(tn − tn−1) (13.11)

erhalten. Diese Gleichung ist nichts anderes als die Verallgemeinerung der für eine
konstante Kraft F = ma wegen (13.2) und (13.8) gültigen Beziehung

Jn = Ftn

auf den variablen Fall mit Hilfe unseres Konstruktionsprinzips. Im vorliegenden Fall
haben wir es aber nicht willkürlich angewandt, sondern (13.11) aus den vorhergehenden
Gleichungen hergeleitet.
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Ist auch die Masse m von der Zeit tn abhängig, so folgt aus (13.9) und (13.11)

mnvn − mn−1vn−1 = 1
2(Fn + Fn−1)(tn − tn−1) (13.12)

Diese Gleichung haben wir als Verallgemeinerung des Newtonschen Grundgesetzes auf
den Fall einer variablen Masse anzusehen, so dass wir im vorliegenden Fall nicht auch
noch auf (13.10) unser Konstruktionsprinzip anwenden können.

Veränderliche Massen kommen nicht nur in der Relativitätstheorie vor, sondern bei-
spielsweise auch beim Start einer Rakete, die durch die Verbrennung des Treibstoffs
laufend an Masse verliert.

Aufgaben. Man löse die Rekursionsformel (13.4)
25. bei gegebenen vn, tn und s0 nach sn auf,
26. bei gegebenen sn, tn und v0 nach vn auf.

4.14 Erhaltungssätze
Das im vorhergehenden Paragraphen zur Aufstellung der (verallgemeinerten) Grund-
gleichungen unseres diskreten Modells der Mechanik benutzte Konstruktionsprinzip ist
scheinbar willkürlich ausgewählt und könnte auch durch andere Konstruktionsvorschrif-
ten ersetzt werden. Wie wir aber gleich sehen werden, gelten in unserem Modell wichtige
Erhaltungssätze der Mechanik, so dass es allen anderen Modellen vorzuziehen ist, in
denen solche Sätze nicht gelten.

Umwandlung der Arbeit. Eliminieren wir aus der Gleichung (13.6) für die Arbeit mit
Hilfe des Newtonschen Grundgesetzes (13.10) die Kraft, so erhalten wir

Wn − Wn−1 = m

2 (an + an−1)(sn − sn−1)

Hieraus folgt wegen der elementaren Umformung (13.7)

Wn − Wn−1 = m

2 (v2
n − v2

n−1)

und unter Beachtung der Gleichung (13.8) für die kinetische Energie

Wn − Wn−1 = Kn − Kn−1

Durch rekursive Anwendung dieser Gleichung finden wir (vgl. § 4)

Wn − W0 = Kn − K0 (14.1)

und diese Gleichung besagt, dass beider Beschleunigung eines Massenpunktes durch
eine Kraft die im Zeitintervall von t0 bis tn geleistete Arbeit gleich dem Zuwachs an
kinetischer Energie ist.

Energieerhaltungssatz. Eine Kraft heißt konservativ, wenn sie (in dem hier betrachteten
eindimensionalen Fall) nur von dem Ort sn, aber nicht von der Zeit tn abhängt. Dies
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ist in der Mechanik immer dann der Fall, wenn kein Wärmeaustausch stattfindet, wenn
also die Reibung nicht in Betracht gezogen wird.

Haben wir es mit einer konservativen Kraft zu tun, so ist der negative Wert der Arbeit
(bis auf eine additive Konstante, auf die es nicht ankommt), gleich der potentiellen
Energie Un, d.h.

Un = −Wn (14.2)
da umgekehrt die Arbeit durch Verringerung der potentiellen Energie zurückgewonnen
werden kann. Die potentielle Energie wird auch kurz Potential genannt.

Eliminieren wir in (14.1) die Arbeit mit Hilfe von (14.2), so erhalten wir nach einer
Umstellung den Energieerhaltungssatz

Kn + Un = K0 + U0 (14.3)

d. h., bei konservativen Kräften ist die Summe aus kinetischer und potentieller Energie
konstant.

Impulserhaltungssatz. Wir betrachten jetzt neben der Masse m mit der Geschwindigkeit
vn noch eine weitere Masse m∗ mit der Geschwindigkeit v∗

n. Auf m möge von m∗ her
die Kraft Fn wirken, so dass nach dem Prinzip der Gleichheit von actio et reactio (lat.:
Wirkung und Gegenwirkung) auf m∗ von m her die Kraft F ∗

n = −Fn wirkt (Abb. 13).

Abb. 13

Solche zwischen zwei Massen wirkende Kräfte heißen innere Kräfte. Dabei ist es gleich-
gültig, ob die Kraftübertragung in direkter Form durch eine elastische Verbindung oder
durch Fernwirkung über ein Kraftfeld erfolgt wie bei der Gravitation oder den elektro-
magnetischen Kräften. Wegen (13.11) gilt dann für die zugehörigen Impulse

J∗
n − J∗

0 = −(Jn − J0)

(vgl. Aufgabe 25), so dass nach einer Umstellung der Impulserhaltungssatz

Jn + J∗
n = J0 + J∗

0

oder wegen (13.8)
mvn + m∗v∗

n = mv0 + m∗v∗
0 (14.4)

entsteht, der besagt, dass unter den getroffenen Annahmen der Gesamtimpuls (als
Summe der Einzelimpulse) zeitlich konstant bleibt.

Schwerpunktsatz. Es sei der Anfangsimpuls mv0 + m∗v∗
o des aus den Massen m und

m∗ bestehenden Systems gleich Null. Dann verschwindet der Gesamtimpuls auch für
alle folgenden Zeitpunkte, wenn die Massen des Systems wie zuvor nur durch innere
Kräfte untereinander in Wechselwirkung stehen, aber nicht durch zusätzlich äußere
Kräfte beeinflusst werden. Insbesondere gilt also

mvn + m∗v∗
n = mvn−1 + m∗v∗

n−1 = 0
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und daher auch
m(vn + vn−1) + m∗(v∗

n + v∗
n−1) = 0

Multiplizieren wir diese Gleichung mit 1
2(tn − tn−1), so folgt durch zweimalige Anwen-

dung von (13.4)
m(sn − sn−1 + m∗(s∗

n − s∗
n−1) = 0

Hieraus ergibt sich durch Umstellung

msn + m∗s∗
n = msn−1 + m∗s∗

n−1

und durch rekursive Auflösung

msn + m∗s∗
n = ms0 + m∗s∗

0 (14.5)

Bekanntlich ist durch die Gleichung

(m + m∗)x = ms + m∗s∗ (14.6)

der gemeinsame Schwerpunkt x der Massen m und m∗ definiert, sofern sie an den
Stellen s bzw. s∗ liegen (Abb. 14).

Abb. 14

Folglich beinhaltet (14.5) den Schwerpunktsatz der Mechanik, dass bei einer Bewegung
zweier Massenpunkte, die nur durch innere Kräfte bewirkt wird, die Lage des Schwer-
punkte sich nicht ändert, wenn der Anfangsimpuls gleich Null ist, die Massen sich also
beispielsweise am Anfang in der Ruhelage befinden.

Aufgaben. Für ein System aus r Massenpunkten m(k) (k = 1, 2, ..., r), zwischen denen
nur innere Kräfte Fkl von m(l) auf m(k) (k, l = 1, 2, ..., r) wirken, formuliere man
27. den Impulserhaltungssatz, 28. den Schwerpunktsatz.

4.15 Anwendungen
Nachdem wir die wichtigsten Grundgleichungen der diskreten Mechanik aufgestellt ha-
ben, wollen wir jetzt an Hand von zwei einfachen Beispielen zeigen, wie mit ihrer Hilfe
mechanische Aufgaben gelöst werden können.
Auf weitere Beispiele werden wir in § 24 zurückkommen.

Der Wurf. Ein als Massenpunkt gedachter Körper werde zur Zeit t0 = 0 am Ort s0 = 0
mit der Anfangsgeschwindigkeit v0 > 0 senkrecht nach oben geworfen. Nach dem
Abwurf möge auf den Körper nur die Schwerkraft mit der konstanten Erdbeschleunigung
g wirken, während vom Luftwiderstand und allen sonstigen möglichen Einwirkungen
abgesehen werden soll.
Bei senkrecht nach oben gerichteter s-Achse haben wir zu berücksichtigen, dass die
Schwerkraft in die entgegengesetzte Richtung wirkt, also die Beschleunigung an = −g
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für alle n lautet. Damit erhalten wir aus (13.5) die Gleichung vn−vn−1 = −g(tn−tn−1,
aus der durch Summation (vgl. § 3) wegen t0 = 0

vn = v0 − gtn (15.1)

hervorgeht. Setzen wir diesen Ausdruck für vn in (13.4) ein, so folgt

sn − sn−1 = v0(tn − tn−1) − g

2(t2
n − t2

n−1)

und hieraus ergibt sich durch Summation wegen s0 = 0, t0 = 0

sn = v0tn − g

2t2
n (15.2)

Man beachte, dass beide Ergebnisse nur von tn, nicht aber von der Wahl der vorherge-
henden Zeitpunkte abhängen. Die Gleichung (15.1) besagt, dass die Geschwindigkeit
linear abnimmt, wobei sie zum Zeitpunkt tn = v0/g verschwindet und danach ihre
Richtung ändert.
Die Gleichung (15.2) besagt, dass der Weg eine quadratische Funktion der Zeit ist,
wobei die maximale Höhe s zur Zeit tn = v0/g erreicht wird und den Wert

s = v2
0

2g
(15.3)

besitzt (Abb. 15).
Zur Zeit tn = 2v0/g ist sn = 0 und damit der Körper wieder am Ausgangspunkt
angelangt.

Der harmonische Oszillator. Ein Körper mit der Masse m möge an einer elastischen
Feder hängen (Abb. 16). Wird der Körper aus der Ruhelage s = 0 um den Weg s
entfernt, so lautet die rücktreibende Kraft

F = −fs (15.4)

wobei f die Federkonstante ist, die von der Art und von dem Material der Feder
abhängt; f ist positiv, da die Kraft stets zur Ruhelage hin gerichtet ist.

Abb. 15,16

Es soll jetzt die Bewegung des Körpers in den äquidistanten Zeitpunkten tn = n∆t
berechnet werden, wenn er sich zum Zeitpunkt t0 = 0 in der Ruhelage befindet und
ihm durch einen Stoß die Anfangsgeschwindigkeit v0 erteilt wird.
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Durch Elimination der Kraft aus dem Newtonschen Grundgesetz (13.10) und der Glei-
chung (15.4) zum Zeitpunkt tn folgt

ma = −fsn

Mit Hilfe dieser Gleichung lässt sich aus (13.5) die Beschleunigung eliminieren, wobei

vn − vn−1 = − f

2m
(sn + sn−1)∆t (15.5)

und nach einer Indexverschiebung

vn−1 − vn−2 = − f

2m
(sn−1 + sn−2)∆t

entsteht. Durch Addition der beiden vorhergehenden Gleichungen folgt

vn − vn−2 = − f

2m
(sn + 2sn−1 + sn−2)∆t (15.6)

Andererseits ergibt sich aus der Gleichung (13.4), d. h.

sn − sn−1 = 1
2(vn + vn−1)∆t (15.7)

nach Indexverschiebung die Gleichung

sn−1 − sn−2 = 1
2(vn−1 + vn−2)∆t

und durch Differenzbildung aus diesen beiden Beziehungen

sn − 2sn−1 + sn−2 = 1
2(vn − vn−2)∆t

und daher unter Berücksichtigung von (15.6)

sn − 2sn−1 + sn−2 = − f

4m
(sn + 2sn − 1 + sn−2)(∆t)2

so dass wir jetzt auch die Geschwindigkeit eliminiert haben. Mit der Abkürzung

ρ = f

4m
(∆t)2 (15.8)

lässt sich diese Gleichung in der Form

(1 + ρ)sn − 2(1 − ρ)sn−1 + (1 + ρ)sn−2 = 0

oder
sn − 21 − ρ

1 + ρ
sn−1 + sn−2 = 0 (15.9)
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schreiben. Zur Berechnung des Anfangswertes s1 benutzen wir jetzt die Gleichungen
(15.5) und (15.7) für n = 1, die wegen s0 = 0

v1 − v0 = −f∆t

2m
s1 , s1 = ∆t

2 (v1 + v0)

lauten. Hieraus entsteht durch Elimination von v1 mit der Abkürzung (15.8)

s1 = ∆tv0

1 + ρ
(15.10)

Wegen ρ > 0 ist ∣∣∣∣∣1 − ρ

1 + ρ

∣∣∣∣∣ < 1

so dass die Gleichung (15.9) die Gestalt (8.6) mit

cos ω = 1 − ρ

1 + ρ
= 4m − f(∆t)2

4m + f(∆t)2 (15.11)

besitzt. Wählen wir 0 < ω < π, so lässt sich der Anfangswert (15.10) wegen

sin ω =
√

1 − cos2 ω = 1
1 + ρ

√
(1 + ρ)2 − (1 − ρ)2 =

2√
ρ

1 + ρ

auch in der Form
s1 = ∆tv0

2√
ρ

sin ω =
√

m

f
v0 sin ω (15.12)

,schreiben. Damit lautet die Lösung von (15.9) mit den Anfangswerten s0 = 0 und
(15.12) nach (8.7)

sn =
√

m

f
v0 sin ωn (15.13)

Der Körper vollführt also eine harmonische Schwingung um die Ruhelage. Nach (15.11)
ist zwar die Frequenz dieser Schwingung von der gewählten Zeitdifferenz ∆t abhängig,
aber die Amplitude ist von dieser Wahl unabhängig.

Aufgaben. 29. Man zeige, dass (15.13) für hinreichend kleine ∆t näherungsweise durch

sn ≈
√

m

f
v0 sin

√
f

m
tn

ersetzt werden kann.

30. Man berechne die Bewegung des harmonischen Oszillators, wenn der Körper sich
zur Zeit t0 = 0 in der Anfangslage s0 ̸= 0 befindet und die Anfangsgeschwindigkeit
v0 = 0 ist.
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4.16 Zuverlässigkeit von Maschinen
Ein Ereignis heißt zufällig, wenn es zwar kausal bedingt ist, aber nicht mit Notwendigkeit
eintreten muss. Als Maß für die Sicherheit des Eintretens eines zufälligen Ergebnisses
hat man die Wahrscheinlichkeit p mit 0 ≤ p ≤ 1 eingeführt.
Einem Ereignis, das wahrscheinlicher ist als ein anderes, wird dabei eine größere Maß-
zahl zugeordnet. Die Grenzfälle sind das unmögliche Ereignis mit der Wahrscheinlichkeit
p = 0 und das sichere Ereignis mit der Wahrscheinlichkeit p = 1.

Führt man eine Reihe von n Versuchen unter gleichbleibenden Bedingungen durch, bei
denen ein bestimmtes Ereignis E eintreten kann, so hat die Aussage "die Wahrschein-
lichkeit des Ereignisses E ist p" die konkrete Bedeutung, dass E in dieser Versuchsreihe
ungefähr np-mal eintritt, falls n hinreichend groß ist.

Für die Wahrscheinlichkeitsrechnung sind die folgenden beiden Sätze von grundlegen-
der Bedeutung.

Additionssatz. Sind p1 und p2 die Wahrscheinlichkeiten zweier sich ausschließender Er-
eignisse E1, E2, also zweier Ereignisse, die nicht gleichzeitig eintreten können, so lautet
die Wahrscheinlichkeit p für das Ereignis "E1 oder E2 tritt ein", also die Wahrschein-
lichkeit dafür, dass wenigstens eines der Ereignisse E1, E2 eintritt,

p = p1 + p2 (16.1)

Multiplikationssatz. Ist E1 ein Ereignis mit der Wahrscheinlichkeit p1 und tritt das
Ereignis E2 unter der Bedingung, dass E1 bereits eingetreten ist, mit der Wahrschein-
lichkeit p2 auf, so lautet die Wahrscheinlichkeit p für das Ereignis "sowohl E1 tritt ein als
auch E2", also die Wahrscheinlichkeit dafür, dass beide Ereignisse E1, E2 gleichzeitig
eintreten,

p = p1p2 (16.2)
Eine einfache Folgerung aus dem Additionssatz bezieht sich auf

Das komplementäre Ereignis. Zu einem Ereignis E definiert man als komplementäres
Ereignis E das Ereignis "nicht E". Nach dem Additionssatz lautet die Wahrscheinlich-
keit p für E

p = 1 − p (16.3)
da E und E unvereinbar sind und "E oder E" das sichere Ereignis ist.

Durch wiederholte Anwendung von (16.1) ergibt sich weiterhin:

Die Laplacesche Formel. Sind bei einem Versuch genau n sich gegenseitig ausschließen-
de Ereignisse E1, ..., En möglich, die alle gleichwahrscheinlich sind, werden von diesen
m bestimmte Ereignisse ausgewählt und ist E das Ereignis dafür, dass genau eines
dieser m Ereignisse eintritt, so lautet die Wahrscheinlichkeit p für E

p = m

n
(16.4)

Als Anwendung der Wahrscheinlichkeitstheorie wollen wir die Zuverlässigkeit einer ein-
satzbereiten Maschine untersuchen, d. h. ihre Eigenschaft, einwandfrei zu arbeiten.
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Fällt die Maschine aus, so soll sie durch eine Reparatur wieder in den ursprünglichen
einsatzbereiten Zustand versetzt werden.
Vom Zeitpunkt t0 = 0 an beobachten wir die Maschine in den Zeitpunkten tn = n∆t
mit äquidistantem Abstand ∆t = tn−tn−1. Unter der Voraussetzung, dass die Maschine
im Zeitpunkt tn−1 arbeitet, sei p die Wahrscheinlichkeit dafür, dass die Maschine auch
im Zeitpunkt tn noch arbeitet.
Unter der Voraussetzung, dass die Maschine im Zeitpunkt tn−1 nicht arbeitet, sei q die
Wahrscheinlichkeit dafür, dass die Maschine auch im Zeitpunkt tn noch nicht wieder
arbeitsbereit ist.

Dabei setzen wir voraus, dass die soeben definierten Wahrscheinlichkeiten p und q nur
vom Zeitintervall ∆t, aber nicht von dem speziellen Zeitpunkt tn−1 abhängen. Dies
bedeutet insbesondere, dass wir die Stillstandszeiten, in denen die Maschine weder ar-
beitet noch repariert wird, aus der Betrachtung ausschließen.

Weiterhin sei pn die Wahrscheinlichkeit dafür, dass die Maschine im Zeitpunkt tn arbei-
tet, dann ist nach (16.3) die Wahrscheinlichkeit dafür, dass die Maschine im Zeitpunkt
tn nicht arbeitet, gleich 1 − pn. Wir wollen uns jetzt überlegen, dass pn die Lösung des
Anfangswertproblems

pn = (p + q − 1)pn−1 + (1 − q), p0 = 1 (16.5)

ist. Die Anfangsbedingung p0 = 1 ergibt sich aus der Voraussetzung, dass die Maschine
im Zeitpunkt t0 arbeitet, p0 also die Wahrscheinlichkeit für das sichere Ereignis ist. Das
Ereignis "die Maschine arbeitet im Zeitpunkt tn−1 sowie im anschließenden Zeitintervall
bis tn" hat nach (16.2) die Wahrscheinlichkeit ppn−1.

Das Ereignis "die Maschine arbeitet im Zeitpunkt tn−1 nicht, wird aber im anschlie-
ßenden Zeitintervall bis tn in den arbeitsbereiten Zustand versetzt" hat nach (16.2) die
Wahrscheinlichkeit (1 − q)(1 − pn−1).
Das Ereignis "die Maschine arbeitet im Zeitpunkt tn" mit der Wahrscheinlichkeit pn

tritt ein, wenn eines der beiden zuvor genannten sich ausschließenden Ereignisse eintritt;
daher gilt nach dem Additionssatz

pn = ppn−1 + (1 − q)(1 − pn − 1) = (p + q − 1)pn−1 + (1 − q) (16.6)

was zu beweisen war.

Für n = 1, 2, 3 folgen aus der ersten Gleichung von (16.6) wegen p0 = 1 die Werte

p1 = p, p2 = p2 + (1 − q)(1 − p)
p3 = p3 + p(1 − q)(1 − p) + (1 − q)(1 − p)p + (1 − q)q(1 − p)

wobei wir bei der Berechnung von p3 die Umformung

1 − p2 = (1 − p)p + q(1 − p)

benutzt haben. Dieselben Werte kann man auch unter Beachtung des Additions- und
des Multiplikationssatzes aus dem Zustandsgraphen der Abb. 17 ablesen, bei dem A
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"die Maschine arbeitet" und N "die Maschine arbeitet nicht" bedeutet. An den Kanten
wurden die Übergangswahrscheinlichkeiten notiert, mit denen man die Wahrscheinlich-
keit des vorhergehenden Zustande multiplizieren muss, um die Wahrscheinlichkeit des
nächsten Zustande zu erhalten.

Abb. 17

Durch Spezialisierung von (5.9) mit yn = pn, y0 = 1

pn = an + b
1 − an

1 − a
= b

1 − a
+ 1 − a − b

1 − a
an

auf den vorliegenden Fall a = p + q − 1, b = 1 − q können wir die Lösung des
Anfangswertproblems (16.5) aber auch in der geschlossenen Form

pn = 1 − q

2 − p − q
+ 1 − p

2 − p − q
(p + q − 1)n (16.7)

angeben. Aus 0 < p < 1 und 0 < q < 1 folgt −1 < p + q − 1 < 1, so dass
der zweite Summand auf der rechten Seite von (16.7) beliebig klein wird (vgl. § 12).
Damit erhalten wir für hinreichend große n näherungsweise den von n unabhängigen
Wert pn ≈ k mit

k = 1 − q

2 + p + q
(16.8)

der Bereitschaftskoeffizient genannt wird.
Die Aussage pn ≈ k bedeutet, dass die Maschine in großen Zeiträumen etwa im k-
ten Teil des Zeitraums arbeitet. Aus diesem Grunde ist der Bereitschaftskoeffizient
eine wichtige Kennziffer für die Qualität der Maschine sowie für die Effektivität der
Reparaturarbeit, und man hat in der Praxis durch geeignete Maßnahmen dafür zu
sorgen, dass diese Kennziffer möglichst groß ist.

Im Fall p = q hat der Bereitschaftskoeffizient den Wert p = 1/2. Eine Vergrößerung
erreicht man, indem man p vergrößert oder wegen der Umformung

k = 1 − 1 − p

2 − p − q

q verkleinert, was natürlich auch anschaulich völlig klar ist.
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Aufgaben. 31. Man beweise: Die Wahrscheinlichkeit qn für das Ereignis "die Maschine
hat im Zeitraum von 0 bis tn mindestens einen Ausfall" lautet qn = 1 − pn, die Wahr-
scheinlichkeit für das Ereignis "die Maschine hat ihren ersten Ausfall im Zeitintervall
von tn−1 bis tn" lautet pn−1 − pn.

32. Man beweise und interpretiere die Gleichung qn − qm = (1 − qm)qn−m für beliebige
natürliche Zahlen m, n mit m < n.
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Zweiter Teil. Große Gleichungssysteme
Will man die vielschichtigen Zusammenhänge, die in den Naturwissenschaften, der
Technik, der Ökonomie oder der Landwirtschaft herrschen, mathematisch möglichst
genau erfassen, so muss man sie durch Systeme von vielen Gleichungen mit vielen Un-
bekannten beschreiben.

Mit der Auflösung von solchen großen Gleichungssystemen wollen wir uns jetzt befas-
sen, wobei wir uns natürlich auf besonders übersichtliche Spezialfälle beschränken, die
aber schon einige wesentliche Erscheinungen erkennen lassen.

Theoretisch lassen sich die Lösungsmethoden für zwei Gleichungen mit zwei Unbe-
kannten, die wir in § 11 kennengelernt haben, auch auf größere Gleichungssysteme
übertragen; dies ist beispielsweise in dem Buch K.-D. Drews [9] ausführlich dargestellt
worden.
Bei der praktischen Durchführung der Rechnungen treten aber eigentümliche Schwie-
rigkeiten auf, die hauptsächlich daher kommen, dass bei den Zwischenrechnungen die
Rundungsfehler so stark anwachsen können, dass ein völlig falsches Endergebnis ent-
steht. Aus diesem Grunde ist man gezwungen, neue Lösungsverfahren zu entwickeln,
die sich auch bei großen Gleichungssystemen bewähren.

Im folgenden wollen wir vorwiegend auf Systeme der Form

a1z1 + c1z2 = f1

b2z1 + a2z2 + c2z3 = f2

b3z2 + a3z3 + c3z4 = f3

...

bN−2zN−3 + aN−2zN−2 + cN−2zN−1 = fN−2

bN−1zN−2 + aN−1zN−1 + cN−1zN = fN−1

bNzN−1 + aNzN = fN

von N Gleichungen mit N Unbekannten z1, z2, ..., zn eingehen, wobei an, bn, cn, fn für
n = 1, 2, ..., N vorgegebene reelle Zahlen sind (b1 und cN treten zunächst noch nicht
auf) und N eine ebenfalls vorgegebene natürliche Zahl größer als 1 ist.

Die Besonderheit bei diesen Systemen besteht darin, dass in den einzelnen Gleichungen
nicht alle Unbekannten vorkommen, sondern höchstens drei mit benachbarten Indizes,
so das man sie auch tridiagonale Systeme nennt. Die Zahl N kann in der Praxis die
Größenordnung von 100, 1000 oder auch 10000 haben.

Zunächst werden wir für solche Gleichungssysteme einfache Beispiele und Lösungsme-
thoden kennenlernen, bei denen N eine beliebige natürliche Zahl, insbesondere also
auch eine kleine Zahl wie etwa N = 3 (und im Grenzfall sogar N = 1) sein kann.
Danach werden wir uns mit den bereits erwähnten Schwierigkeiten für große N befas-
sen. Den Abschluss bilden etwas kompliziertere Beispiele und einige Ansatzpunkte für
eine abstraktere Darstellung mit Hilfe von Operatoren. Einen gewissen Überblick über
allgemeine Operatormethoden findet man in [6] und [7].
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5 Randwertprobleme
Das zuvor angeführte Gleichungssystem lässt sich auch als Differenzengleichung

cnzn+1 + anzn + bnzn−1 = fn

n = 1, 2, ..., N , schreiben, wenn man noch zusätzlich z0 = 0, zn+1 = 0 fordert.
Die letzten beiden Bedingungen nennt man Randbedingungen, und das Problem, die
Differenzengleichung unter den angegebenen Randbedingungen zu lösen, ein Randwert-
problem.

Im Unterschied zu den in § 6 und § 7 behandelten Anfangswertproblemen, bei denen
in der jetzigen Bezeichnungsweise die Anfangswerte z0, z1 vorzugeben sind und man
aus diesen und der Differenzengleichung im Fall cn ̸= 0 die nächsten Werte z2, z3, ...
rekursiv berechnen kann, ist beim Randwertproblem die Berechnung der zn nur unter
Berücksichtigung aller Gleichungen möglich.
Trotz dieses Unterschieds lassen sich aber auch bei der Lösung von Randwertproblemen
einige der zuvor erhaltenen Ergebnisse nutzbringend verwenden. Bei der Behandlung
von Randwertproblemen ist es zweckmäßig, die vorhergehende Zahl N durch N − 1 zu
ersetzen.

5.17 Beispiele
Zunächst wollen wir auf zwei Beispiele eingehen, die in natürlicher Weise auf Randwert-
probleme und damit auf Gleichungssysteme führen. Diese Beispiele knüpfen unmittelbar
an die Anwendungen des vorhergehenden Abschnitts an.

Eine Irrfahrt. Bei der mikroskopischen Beobachtung kleinster Teilchen in einer Flüssig-
keit oder in einem Gas erkennt man die Brownsche Molekularbewegung. Diese ist eine
zufällige Bewegung, die auch Irrfahrt genannt wird.

Abb. 18

Wir betrachten eine Irrfahrt unter folgenden idealisierten Annahmen:
Ein Teilchen möge sich auf den ganzzahligen Punkten n = 0, 1, 2, ..., N einer Geraden
zufällig bewegen, wobei es von einem Punkt n mit 0 < n < N zu den benachbarten
Punkten n − 1 bzw. n + 1 jeweils mit der Wahrscheinlichkeit 1/2 übergeben möge
(Abb. 18), bis es bei einem der Endpunkte 0 bzw. N angekommen ist, wo die Irrfahrt
beendet sein soll (absorbierender Band).

Es sei pn die Wahrscheinlichkeit dafür, dass das Teilchen, vom Punkt n ausgehend,
nach endlich vielen Schritten den Punkt 0 erreicht. Da p0 die Wahrscheinlichkeit für
das sichere Ereignis, pN die Wahrscheinlichkeit für das unmögliche Ereignis ist, gelten
nach § 16 die Randbedingungen

p0 = 1 , pN = 0 (17.1)
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Für 0 < n < N finden wir mit Hilfe des Additions- und des Multiplikationssatzes
ähnlich wie bei der Herleitung von (16.6) die Beziehung

pn = 1
2(pn−1 + pn+1) (17.2)

aus der durch Umstellung
pn+1 − 2pn + pn−1 = 0

hervorgeht. Nach (7.12) mit a = −2 hat diese Gleichung die allgemeine Lösung

pn = c1 + c2n (17.3)

und die spezielle Lösung, die zugleich den Randbedingungen (17.1) genügt, lautet

pn = 1 − n

N

(Abb. 19). Dieses Ergebnis ist sehr anschaulich. Ist beispielsweise N eine gerade Zahl
und wählen wir n = N/2, also den Mittelpunkt des Intervalls (0, N), so ist pn =
1 − pn = 1/2, d.h., beide Endpunkte werden mit gleicher Wahrscheinlichkeit erreicht.

Abb. 19

Auch die Tatsache, dass die Lösungspunkte der Differenzengleichung (17.2) wie in Abb.
19 stets auf einer Geraden liegen, kann man sich leicht ohne Rechnung überlegen. Die
Gleichung (17.2) besagt nämlich, dass der Funktionswert pn an einer beliebigen Stelle
n gleich dem arithmetischen Mittel aus den Funktionswerten an den beiden Nachbar-
stellen n − 1 und n + 1 ist, und nur eine lineare Funktion, d.h. eine Gerade, besitzt
diese Eigenschaft.

Eigenwertprobleme. Eine spezielle Klasse von Randwertproblemen bilden die homoge-
nen Randwertprobleme, bei denen sowohl die Differenzengleichung als auch die Rand-
bedingungen homogen sind. Solche homogenen Probleme besitzen stets die (identisch
verschwindende) triviale Lösung.
Eine nichttriviale Lösung eines homogenen Randwertproblems heißt eine Eigenfunktion.

Eigenfunktionen sind nicht eindeutig bestimmt, sondern stets nur bis auf einen kon-
stanten Faktor (vgl. § 7, 4◦). Im allgemeinen existieren keine Eigenfunktionen. Kommt
jedoch in der Gleichung oder den Randbedingungen ein Parameter vor, der sogenannte
Eigenwertparameter µ, so kann es sein, dass es für spezielle Werte dieses Parameters
Eigenfunktionen gibt. Diese Werte heißen dann die Eigenwerte des Problems.

Die Berechnung von Eigenwerten ist von großer technischer Bedeutung, da Eigenwer-
te in der Regel kritische Werte sind, bei denen eine unerwünschte Abweichung vom
Normalfall eintritt, während die triviale Lösung die Ruhelage kennzeichnet.
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Beispielsweise lassen sich kritische Drehzahlen eines Motors, bei denen Resonanz auf-
tritt und es somit zu einer Resonanzkatastrophe kommen kann, oder kritische Lasten,
bei denen die Stabilität eines Tragwerkes nicht mehr gewährleistet ist und es zusam-
menbrechen kann, aus einem Eigenwertproblem berechnen. Da uns die Einzelheiten
eines solchen technischen Beispiels hier zu weit führen würden, wollen wir uns mit ei-
nem rein mathematischen Beispiel begnügen, ohne den Zusammenhang mit praktischen
Anwendungen genauer herauszuarbeiten.

Gegeben sei das Eigenwertproblem

zn+1 − (2 − µ)zn + zn−1 = 0 , z0 = zN = 0 (17.4)

Im Fall 0 < µ < 4 ist die Differenzengleichung vom Typ (8.6), so dass nach (8.7) ihre
allgemeine Lösung

zn = c1 cos ωn + c2 sin ωn

mit cos ω = 1 − µ/2 lautet, wobei wir ω auf das Intervall 0 < ω < π einschränken
können, da die übrigen Werte für ω nichts Neues liefern. Wegen z0 = c1, folgt aus der
ersten Randbedingung in (17.4) c1 = 0.
Die zweite Randbedingung zN = 0 ist daher erfüllt, wenn c2 sin ωN = 0 ist. Dies kann
auf zwei verschiedene Arten möglich sein. Erstens kann auch c2 = 0 sein; dann ist
zn = 0 für alle n, und wir erhalten die triviale Lösung. Da wir eine nichttriviale Lösung
suchen, bleibt zweitens nur der Fall übrig, dass sin ωN = 0 ist. Diese Gleichung hat
die Lösung

ωk = π

N
k

mit ganzzahligem k, doch benötigen wir wegen der Einschränkung 0 < ωk < π nur die
Werte k = 1, 2, ..., N − 1. Wegen µ = 2(1 − cos ω) und 1 − cos ω = 2 sin2 ω/2 haben
wir somit die N − 1 Eigenwerte

µk = 4 sin2
(

πk

2N

)
(17.5)

k = 1, 2, ..., N − 1, gefunden, zu denen die N − 1 Eigenfunktionen

z(k)
n = sin

( π

N
kn
)

(17.6)

gehören, wenn wir etwa c2 = 1 setzen, da es auf die Konstante c2 nicht ankommt. Die
fünf Eigenfunktionen im Fall N = 6 sind in Abb. 20 dargestellt worden.

Abschließend wollen wir uns davon überzeugen, dass es außer den Eigenwerten (17.5)
keine weiteren gibt. Im Fall µ = 0 hat die in (17.4) auftretende Differenzengleichung
wie in (17.3) die allgemeine Lösung zn = c1 + c2n, die aber nur im Fall c1 = c2 = 0
die Randbedingungen z0 = zN = 0 erfüllt. Im Fall µ = 4 hat die Differenzengleichung

zn+1 + 2zn + zn−1 = 0

wegen (7.12) mit a = 2 die allgemeine Lösung zn = (c1 + c2n)(−1)n, die aber die
Randbedingungen ebenfalls nur für c1 = c2 = 0 erfüllen kann.
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5.18 Variable Koeffizienten

In den übrigen Fällen hat die charakteristische Gleichung (6.4) mit a = µ − 2, b = 1
wegen a2 − 4b = µ2 − 4µ > 0 zwei verschiedene reelle Lösungen λ1, λ2 ̸= 1, −1, so
dass die Differenzengleichung nach (7.9) die

Abb. 20

allgemeine Lösung
zn = c1λ

n
1 + c2λ

n
2

besitzt. Damit die Randbedingungen erfüllt sind, muss

c − 1 + c2 = 0 , c1λ
N
1 + c2λ

N
2 = 0

und somit c1(λN
1 − λN

2 ) = 0 gelten. Für zwei verschiedene reelle Zahlen λ1, λ2 ̸= 1, −1
kann aber niemals λN

1 = λN
2 sein, so dass c1 = 0 und damit auch c2 = 0 folgt.

Damit haben wir gezeigt, dass das Randwertproblem (17.4) außerhalb des Intervalls
0 < µ < 4 nur die triviale Lösung besitzt.

Aufgabe 33. Man löse das Eigenwertproblem

zn+1 − (2 − µ)zn + zn−1 = 0, z1 =
(

1 − µ

2

)
z0, zN = 0

5.18 Variable Koeffizienten
Wir wenden uns jetzt dem allgemeinen Fall des beschriebenen Randwertproblems

zn+1 + anzn + bnzn−1 = fn (18.1)

für n = 1, 2, ..., N − 1 mit z0 = zN = 0 zu, wobei wir ohne Beschränkung der
Allgemeinheit den Koeffizienten von zn+1 gleich 1 gesetzt haben, da man andernfalls
die Gleichung nur durch ihn zu kürzen braucht, bzw. N verkleinern kann.
Dabei setzen wir bn = 0 für alle n voraus.
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5.18 Variable Koeffizienten

Die Wronskische Funktion. Zur bequemeren Ermittlung der Lösung von (18.1) ist es
zweckmäßig, die durch

wn = xnyn+1 − xn+1yn (18.2)

definierte Wronskische Funktion wn einzuführen, die aus zwei Lösungen xn, yn der zu
(18.1) gehörenden homogenen Gleichung gebildet wird. Es gilt also

xn+1 + anxn + bnxn−1 = 0 , yn+1 + anyn + bnyn−1 = 0 (18.3)

Multiplizieren wir die erste dieser Gleichungen mit −yn und die zweite mit xn, so folgt
nach Addition der entstehenden Gleichungen unter Beachtung von (18.2)

wn = bnwn−1

Hieraus ist ersichtlich: Ist w0 = 0, so ist auch wn = 0 für alle n. Ist w0 ̸= 0, so ist
wegen bn ̸= 0 auch wn ̸= 0 für alle n. Die Bedingung w0 = 0 ist nichts anderes als die
Bedingung (7.4) in anderer Schreibweise.

Um uns festzulegen, wählen wir für xn und yn die speziellen Lösungen von (18.3), die
den Anfangsbedingungen

x0 = 0, x1 = 1; y0 = 0, y1 = 1 (18.4)

genügen. Mit diesen Bedingungen sind xn und yn durch rekursive Auflösung von (18.3)
nach "rechts" bzw. nach "links" eindeutig bestimmt. Durch Einsetzen von (18.4) in
(18.2) folgt

w0 = −y0 , wN−1 = −xN

Im Fall y0 = 0 ist yn wegen (18.4) eine Eigenfunktion, und Entsprechendes gilt dann
auch für xn. Im folgenden wollen wir daher voraussetzen, dass das homogene Rand-
wertproblem keine Eigenfunktion besitzt.

Die Greensche Funktion. Zur Lösung des Randwertproblems (18.1) mit z0 = zN = 0
suchen wir jetzt eine Funktion gnm von zwei ganzzahligen Veränderlichen n, m, mit
deren Hilfe die Lösung zn für eine beliebige rechte Seite fn in der Form

zn =
N−1∑
m=1

gnmfn (18.5)

dargestellt werden kann. Eine solche Funktion gnm heißt die Greensche Funktion des
Randwertproblems. Sie ist durch folgende Eigenschaften eindeutig bestimmt:

1◦. g0m = gNm = 0 für m = 1, 2, ..., N − 1,

2◦. gn+1,m + angnm + bngn−1,m = δnm für alle n, m, wobei δnm das Kroneckersymbol

δnm =
{

1 für n = m
0 für n ̸= m

ist.
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5.19 Konstante Koeffizienten

Beweis. Aus (18.5) erkennt man für n = 0 bzw. n = N , dass die Randbedingungen
z0 = zN = 0 genau dann für beliebige fn erfüllt sind, wenn 1◦ gilt. Durch Einsetzen
von (18.5) in die linke Seite von (18.1) ergibt sich

zn+1 + anzn + bnzn−1 =
N−1∑
m=1

(gn+1,m + angnm + bngn−1,m)fm

und dieser Ausdruck ist für beliebige fn genau dann gleich fn, wenn 2◦ gilt.
Die Eindeutigkeit der Greenschen Funktion folgt schließlich daraus, dass die Differenz
zweier Greenscher Funktionen wegen 1◦ und 2◦ bei jedem festen m eine Lösung des
zugehörigen homogenen Randwertproblems ist, letzteres aber nach Voraussetzung nur
die triviale Lösung besitzt.

Nach diesen Vorbereitungen zeigen wir, dass mit den vorhergehenden Bezeichnungen

gnm =


xnym

wm
für n ≤ m

ynxm

wm
für n ≥ m

0 für n ̸= m

(18.7)

eine explizite Darstellung für die gesuchte Greensche Funktion ist.

Beweis. Für n = 0 und n = N ist 1◦ offenbar wegen (18.4) erfüllt. Für n ̸= m ist
wegen (18.3) auch 2◦ erfüllt, wobei die Fälle n < m und n > m zu unterscheiden sind.
Für n = m folgt schließlich durch Einsetzen von (18.7) in die linke Seite von 2◦ unter
Beachtung von (18.3) und (18.2)

gn+1,n + angnn + bngn−1,n = 1
wn

(yn+1xn + (anxn + bnxn−1)yn)

= 1
wn

(yn+1xn − xn+1yn) = 1

und da für n = m die beiden Gleichungen in (18.7) dasselbe besagen, ist alles gezeigt.

Zusammenfassend stellen wir fest, dass (18.5) mit (18.7) für beliebige rechte Seiten
fn eine Lösung des Randwertproblems (18.1) mit z0 = zN = 0 ist. Suchen wir eine
Lösung der Gleichung (18.1) unter den Randbedingungen

z0 = α , zN = β (18.8)

wobei α und β beliebig vorgegebene Zahlen sind, so können wir diesen Fall dadurch
auf den vorhergehenden zurückführen, dass wir f1 durch f1 − b1α sowie fN−1 durch
fN−1−β ersetzen und wieder die Lösung mit verschwindenden Randwerten bestimmen.

Aufgabe 34. Man berechne die Zahlen (18.7) im Fall N = 3.

5.19 Konstante Koeffizienten
Die vorhergehenden Ergebnisse sollen jetzt auf den Fall

zn+1 + azn + bzn−1 = fn (19.1)
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n = 1, 2, ..., N − 1, spezialisiert werden, bei dem also die Koeffizienten an und bn in
(18.1) vom Index n unabhängig sind. Wir beschränken uns dabei auf den Fall a2 ≤ 4b,
in dem die zugehörige charakteristische Gleichung (6.4), d. h. die Gleichung

λ2 + aλ + b = 0

zwei reelle Wurzeln λ1, λ2 besitzt, und setzen außer b ̸= 0 auch noch a ̸= 0 voraus.

Zwei verschiedene Wurzeln. Im Fall a2 > 4b sind die Wurzeln (6.5) voneinander (und
wegen b ̸= 0 auch von Null) verschieden, und die zugehörige homogene Gleichung

zn+1 + azn + bzn−1 = 0 (19.2)

hat nach (7.9) die allgemeine Lösung

zn = c1λ
n
1 + c2λ

n
2 (19.3)

Die speziellen Lösungen zn = xn und zn = yn von (19.2) mit (18.4) lauten damit, wie
man durch Berechnung der Koeffizienten c1, c2 aus

c1 + c2 = 0 , c1λ1 + c2λ2 = 1

im ersten bzw.

c1λ
N
1 + c2λ

N
2 = 0 , c1λ

N−1
1 + c2λ

N−1
2 = 1

im zweiten Fall leicht nachprüft,

xn = λn
1 − λn

2
λ1 − λ2

, yn = λn−N
1 − λn−N

2
λ−1

1 − λ−1
2

(19.4)

Weiterhin folgt aus wn = bwn−1 und b = λ1λ2 die Darstellung

wn = λn
1λn

2w0 (19.5)

und hieraus wegen w0 = −y0

wn = −λn
1λn

2
λ−N

1 − λ−N
2

λ−1
1 − λ−1

2
(19.6)

Setzen wir (19.4) und (19.6) in (18.7) ein, so erhalten wir nach Kürzung von −λm−N
1 λm−N

2 (λ−1
1 −

λ−1
2 für n ≤ m bzw. −λm

1 λm
2 (λ−1

1 − λ−1
2 für n ≥ m das gesuchte Ergebnis

gnm =


−(λn

1 − λn
2)(λN−m

1 − λN−m
2 )

(λ1 − λ2)(λN
1 − λN

2 ) für n ≤ m

−(λ−m
1 − λ−m

2 )(λn−N
1 − λn−N

2 )
(λ1 − λ2)(λ−N

1 − λ−N
2 )

für n ≥ m

Zur Kontrolle können wir den Fall N = 2 betrachten, wo wir

g11 = −λ1 − λ2

λ2
1 − λ2

2
= 1

λ1 + λ2
= 1

a
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erhalten und somit aus (18.5) die Lösung z1 = f1/a von (19.1) mit n = 1 und
z0 = z2 = 0, deren Richtigkeit man sofort bestätigt.

Eine Doppelwurzel. Im Fall a2 = 4b hat die charakteristische Gleichung (6.4) nach (6.5)
die Doppelwurzel λ = −a/2 und damit die Differenzengleichung (19.2) nach (7.12) die
allgemeine Lösung

zn = (c1 + c2n)λn (19.8)
Für die speziellen Lösungen zn = xn und zn = yn von (19.2) mit (18.4) finden wir
daher

xn = nλn−1 , yn = (N − n)λn−N+1

und aus (19.5) mit λ1 = λ2 = λ folgt wegen w0 = −y0 = −Nλ−N+1

wn = −Nλ2n−N+1

Setzen wir die gefundenen Ausdrücke wieder in (18.7) ein, so ergibt sich diesmal

gnm =
 −n

(
1 − m

N

)
λn−m−1 für n ≤ m

−m
(
1 − n

N

)
λn−m−1 für n ≤ m

Der Kontrollfall N = 2 liefert wie im vorhergehenden Fall das Ergebnis

g11 = − 1
2λ

= 1
a

Die homogene Gleichung. Als Anwendung betrachten wir jetzt den Fall, dass die ho-
mogene Gleichung (19.2) bei vorgegebenen Randwerten z0, zN aufgelöst werden soll.
Nach der letzten Bemerkung im vorhergehenden Paragraphen können wir statt dessen
die inhomogene Gleichung (19.1) mit

f1 = −bz0, fN1 = −zN , fn = 0 sonst (19.10)

und verschwindenden Randwerten auflösen.

Im Fall a2 > 4b ergibt sich daher durch Einsetzen von (19.7) und (19.10) in (18.5)
unter Beachtung von b = λ1λ2 für 0 < n < N

zn = λn−N
1 − λn−N

2
λ−N

1 − λ−N
2

z0 + λn
1 − λn

2
λN

1 − λN
2

zN (19.11)

Ganz analog entsteht im Fall a2 = 4b unter Verwendung von (19.9)

zn =
(

1 − n

N

)
λnz0 + n

N
λn−NzN (19.12)

Beide Ergebnisse finden wir jedoch viel einfacher, indem wir in den allgemeinen Lö-
sungen (19.3) und (19.8) die Konstanten c1, c2 so bestimmen, dass diese Lösungen
für n = 0 und n = N vorgegebene Werte z0 bzw. zN annehmen, indem wir also die
Lösungen c1, c2 des Systems

c1 + c2 = z0 , c1λ
N
1 + c2λ

N
2 = zN (19.13)
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5.19 Konstante Koeffizienten

in (19.3) und die Lösungen des Systems

c1 = z0 , (c1 + c2N)λN = zN

in (19.8) einsetzen.
Wählen wir z0 = zN = 0, so folgt in beiden Fällen zn = 0 für alle n. Dies bedeutet,
dass es im Fall a2 ≥ 4b keine Eigenfunktionen gibt, wobei uns dieses Ergebnis für b = 1
bereits aus § 17 bekannt ist.

Aufgabe 35. Warum liefern (19.11) und (19.12) für n = 0 und n = N nicht verschwin-
dende Randwerte?
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6.20 Klassifizierung

6 Stabilitätsprobleme
Löst man das zum Randwertproblem (19.1) mit z0 = zN = 0 gehörende Gleichungs-
system (s. Seite 55) numerisch mit einem Eliminationsverfahren auf, so erhält man in
einigen Fällen. die man "numerisch" stabil nennt, im Rahmen der benutzten Rechen-
genauigkeit die gewünschte Lösung, in anderen Fällen jedoch, die "numerisch" instabil
heißen, für größere N völlig verfälschte Ergebnisse.
Der Grund für dieses unterschiedliche Verhalten ist darin zu suchen, dass in den stabilen
Fällen die Rundungsfehler sich weitgehend wegheben, in den instabilen Fällen dagegen
bei den Zwischenrechnungen fortpflanzen und akkumulieren.

Ein einfaches Beispiel für numerische Instabilität liefert bereits die Berechnung der
Lösung yn = 3−n des Anfangswertproblems

yn = 10
3 yn−1 − yn−2, y0 = 1, y−1 = 3

Die Werte, die sich bei Benutzung des bulgarischen Taschenrechners elka 130 rekursiv
ergeben, wurden mit den ersten sieben Dezimalen der exakten Werte und den schnell
anwachsenden Fehlern in der folgenden Tabelle zusammengestellt:

n yn 3−n yn − 3−n n yn 3−n yn − 3−n

1 0,3333333 0,3333333 0 2 0,1111110 0,1111111 -0,0000001
3 0,0370367 0,0370370 -0,0000003 4 0,0123446 0,0123456 -0,0000010
5 0,0041119 0,0041152 -0,0000033 6 0,0013617 0,0013717 -0,0000100
7 0,0004271 0,0004572 -0,0000301 8 0,0000619 0,0001524 -0,0000905
9 -0,0002208 0,0000508 -0,0002716 10 -0,0007979 0,0000169 -0,0008148
11 -0,0024388 0,0000056 -0,0024444 12 -0,0073314 0,0000018 -0,0073332
13 -0,0219992 0,0000006 -0,0219998 14 -0,0659992 0,0000002 -0,0659994
15 -0,1979981 0 -0,1979981

Wie man nachprüfen kann, sind die Fehler (bis auf eine gelegentliche Abweichung um
eine Dezimale in der letzten Stelle) nichts anderes als die zu 3−1 linear unabhängige
Lösung −0, 1979981 · 3n−15 der zu lösenden Differenzengleichung, wenn man sie, von
n = 15 beginnend, "rückwärts" durch fortlaufende Division durch 3 numerisch berech-
net (vgl. Aufgabe 36).

Ganz allgemein hängen bei Anfangs- oder Randwertproblemen die Stabilitätseigenschaf-
ten einer Differenzengleichung ausschließlich vom Verhalten der Lösungen der zugehöri-
gen homogenen Gleichung ab. Somit wollen wir als nächstes verschiedene Möglichkeiten
des Verhaltens dieser Lösungen analysieren, um bei Instabilität daraus Schlussfolgerun-
gen für wirksame Gegenmaßnahmen ziehen zu können. Dabei verzichten wir auf eine
exakte Stabilitätsdefinition, denn es kommt uns nur darauf an, dem Leser ein gewisses
Gefühl für unterschiedliches Stabilitätsverhalten zu vermitteln.

6.20 Klassifizierung
Wie bereits angekündigt wurde, wollen wir jetzt das Verhalten der Lösungen der ho-
mogenen Differenzengleichung

zn+1 + azn + bzn−1 = 0 (20.1)
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6.20 Klassifizierung

n = 1, 2, ..., N −1, mit a ̸= 0, b ̸= 0 bei vorgegebenen Randwerten z0, zN im einzelnen
diskutieren. Der Übersichtlichkeit wegen beschränken wir uns auf den Fall a2 > 4b, in
dem die Wurzeln (6.5) der zugehörigen charakteristischen Gleichung (6.4) voneinander
verschieden sind. Dabei ist es zweckmäßig, die Indizes dieser Wurzeln stets so zu wählen,
dass

|λ1| < |λ2| (20.2)
ist. Bei den Wurzeln (6.5) ist diese Ungleichung für a > 0 automatisch erfüllt, für
a < 0 vertauschen wir im folgenden die Indizes.
Die Lösung (19.11) unseres Randwertproblems lässt sich auch in der Form

zn = λn
1 − λN

1 λn−N
2

1 − qN
z0 + λn−N

2 − λ−N
2 λn

1
1 − qN

zN

mit q = λ1/λ2 schreiben. Wegen (20.2) ist |q| < 1, so dass qN nach § 12 für hinreichend
große N beliebig klein wird. Damit lautet die Lösung zn näherungsweise

zn = (λn
1 − λN

1 λn−N
2 )z0 + (λn−N

2 − λ−N
2 λn

1)zN (20.3)

Wir machen jetzt drei Fallunterscheidungen.
1◦. |λ1| < 1 < |λ2|.
In diesem Fall ist |λn

1 | ≤ 1, |λn−N
2 | ≤ 1 für 0 ≤ n < N , und λN

1 , λ−N
2 werden für

hinreichend große N beliebig klein, so dass wir (20.3) noch einmal näherungsweise zu

zn = λn
1z0 + λn−N

2 zN (20.4)

Abb. 21

vereinfachen können. Dies ist der stabile Fall, bei dem sich eine Änderung der Rand-
werte und damit auch eine durch Rundungsfehler hervorgerufene Störung nur auf die
unmittelbar benachbarten Werte und noch dazu in abschwächender Tendenz fortpflan-
zen kann, während sie sich in einer gewissen Entfernung vom Rand (die von der Größe
der Beträge |λ1|, |λ2| abhängt) nicht mehr bemerkbar macht (Abb. 21).

Im vorliegenden Fall können wir die Näherungslösung (20.4) auch dadurch finden, dass
wir in der allgemeinen Lösung (19.3) die Konstante c1 aus z0 = c1λ

0
1 und die Konstan-

te c2 aus zN = c2λ
N
2 bestimmen und dadurch die Auflösung des Gleichungssystems

(19.13) umgehen.

2◦. |λ1| < |λ2| < 1.
Für hinreichend große N und 0 ≤ n ≤ N wird diesmal |λN

1 λn−N
2 | ≤ |q|N mit q =

λ1/λ2, beliebig klein, so dass wir (20.3) zu

zn = λn
1z0 + λ−N

2 (λn
2 − λn

1)zN (20.5)
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6.20 Klassifizierung

vereinfachen können, aber λ−N
2 wird beliebig groß. Dies bedeutet, dass sich zwar der

Randeinfluss vom Anfang n = 0 nach wie vor stabil verhält, aber der Randeinfluss vom
Ende n = N des Intervalls (0, N) in instabiler Weise auf die vorhergehenden Werte
einwirkt.

Der Deutlichkeit wegen wollen wir die Näherungswerte (20.5) von zn im Fall z0 = 0,
zN = 1, λ1 = 1/4, λ2 = 1/2 und N = 5, 10, 15 sowie 20 bis auf zwei Dezimalen
angeben:

n zn bei N = 5 zn bei N = 10 zn bei N = 15 zn bei N = 20
0 0 0 0 0
1 8 256 8192 262144
2 6 192 6144 196608
3 3,5 112 3584 114688
4 1,88 60 1920 61440
5 0,97 31 992 31744
6 15,75 504 16128
7 7,94 254 8128
8 3,99 127,5 4080
9 2 63,88 2044

10 1 31,97 1023
11 16 511,75
12 8 255,94
13 4 127,99
14 2 64
15 1 32
16 16
17 8
18 4
19 2
20 1

Aus dieser Tabelle erkennt man deutlich das starke Anwachsen der ersten Werte von zn

bei Vergrößerung von N , wobei zu beachten ist, dass N = 20 ja noch keine besonders
große Zahl ist. Bei weiterer Vergrößerung von N wachsen die Werte von zn nach "links"
auch dann stark an, wenn man nicht bei zN = 1, sondern bei einem verhältnismäßig
kleinen Wert wie etwa zN = 10−8 beginnt, mit dem alle zum Fall zN = 1 gehörenden
Werte zn zu multiplizieren sind.

3◦. 1 < |λ1| < |λ2|.
Für hinreichend große N und 0 ≤ n ≤ N wird jetzt |λ−N

2 λn
1 | ≤ |q|N mit q = λ1/λ2

beliebig klein, so dass

zn = λN
1 (λn−N

1 − λn−N
2 )z0 + λn−N

2 zN (20.6)

eine ausreichende Näherung für (20.3) und damit für (19.11) ist, aber diesmal wird
λN

1 beliebig groß. Damit haben wir genau umgekehrte Verhältnisse wie beim vorher-
gehenden Fall, d. h., es ist zwar der Randeinfluss vom Ende n = N stabil, aber der
Randeinfluss vom Anfang n = 0 des Intervalls (0, N) wirkt auf die folgenden Werte in
instabiler Weise ein.
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6.21 Faktorisierung

Die Näherungswerte (20.6) mit z0 = 1 und zN = 0 sind im Fall λ1 = 2, λ2 = 4 die-
selben wie zuvor, sofern ndurch N − n ersetzt wird, so dass wir sie nicht noch einmal
aufzuschreiben brauchen.

Im stabilen Fall 1◦ lassen sich die in der Darstellung (18.7) für die Greensche Funkti-
on auftretenden Folgen xn, yn ohne Schwierigkeiten aus (18.3) und (18.4) numerisch
berechnen. Nach (19.4) und (19.6) ergibt sich für große n bzw. N − n näherungsweise

xn = − λn
2

λ1 − λ2
, yn = λn−N

1
λ−1

1 − λ−1
2

, wn = − λn−N
1 λn

2
λ−1

1 − λ−1
2

und damit aus (18.7) oder (19.7) näherungsweise

gnm =


λn−m
2

λ1−λ2
für n ≤ m

λn−m
1

λ1−λ2
für n ≥ m

Im stabilen Fall sind daher die Werte von gnm für n = m nahezu konstant und verklei-
nern sich betragsmäßig bei wachsender Differenz |n − m|.

Aufgabe 36. In welchen der drei vorhergehenden Fälle sind die Lösungen der Differen-
zengleichung (20.1) bei vorgegebenen Anfangswerten z0, z1 stabil, wenn man sie a)
nach "rechts" bzw. b) nach "links" fortsetzt?

6.21 Faktorisierung
Für das Randwertproblem

zn+1 + anzn + bnzn−1 = fn, z0 = zN = 0 (21.1)

n = 1, 2, ..., N − 1, haben wir im Fall der Lösbarkeit bereits die geschlossene Lö-
sungsdarstellung (18.5) mit (18.7) hergeleitet. Um noch eine andere Lösungsmethode
kennenzulernen, die sich leicht für einen Rechenautomaten programmieren lässt, gehen
wir von dem Ansatz

vn = αnvn−1 + fn , zn+1 = βnzn + vn (21.2)

aus und versuchen, die Folgen αn, βn so zu bestimmen, dass zn nach Elimination der
Folge vn eine Lösung des Randwertproblems (21.1) wird. Durch Einsetzen des Aus-
drucks für vn aus der ersten Gleichung in die zweite Gleichung von (21.2) entsteht

zn+1 = βnzn + αnvn−1 + fn

Setzen wir hier für vn−1 den aus der zweiten Gleichung von (21.2) durch Indexverschie-
bung entstehenden Ausdruck vn−1 = zn − βn−1zn−1 ein, so folgt durch Umstellung

zn+1 − (αn + βn)zn + αnβn−1zn−1 = fn

Damit diese Gleichung in die erste der Gleichungen (21.1) übergeht, fordern wir für
n = 1, 2, ..., N − 1

αn + βn = −an , αnβn−1 = bn (21.3)
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6.21 Faktorisierung

Um jetzt auch die Randbedingungen von (21.1) zu berücksichtigen, bemerken wir zu-
nächst, dass die Bedingung z0 = 0 auch durch b1 = 0 ersetzt werden kann, da die erste
der Gleichungen (21.1) in beiden Fällen für n = 1 dasselbe besagt und sonst sich diese
Abänderung nicht weiter auswirkt.
Erfüllen wir jetzt die zweite der Gleichungen (21.3) für n = 1 durch a1 = 0, so gelangen
wir zu folgendem Lösungsalgorithmus.

Man berechne, von α1 = 0 ausgehend, zunächst αn, βn und vn rekursiv für n =
1, 2, ..., N − 1 aus (21.3) und der ersten Gleichung von (21.2), d.h. aus

α1 = 0 β1 = −a1 v1 = f1

α2 = b2/β1 β2 = −a2 − α2 v2 = f2 + α2v1

α3 = b3/β2 β3 = −a3 − α3 v3 = f3 + α3v2

...

αN−1 = bN−1/βN−2 βN−1 = −aN−1 − αN−1 vN−1 = fN−1 + αN−1vN−2

wobei die Gleichungen zeilenweise abzuarbeiten und die bereits berechneten Werte
jeweils zu benutzen sind. Beispielsweise erhält man dabei in der zweiten Zeile die Werte

α2 = b2/β1, β2 = −a2 − α2, v2 = f2 + α2v1

Anschließend berechne man, von zN = 0 ausgehend, aus der zweiten Gleichung von
(21.2) in der Form zn = (zn−1 − vb)/βn "rückwärts" für n = N − 1, N − 2, ..., 1

zN−1 = −vN−1/βN−1

zN−2 = (zN−1 − vN−2/βN−2

...

z1 = (z2 − v1/β1

Offenbar ist dieser Algorithmus genau dann ausführbar, wenn keiner der Werte βn

verschwindet.
Ist diese Voraussetzung erfüllt, so ergeben die vorhergehenden Überlegungen, dass die
berechneten Werte zn das Randwertproblem (21.1) lösen, wenn man von der im Fall
b1 = 0 überflüssigen Bedingung z0 = 0 absieht. Das Wesentliche bei diesem Algorith-
mus besteht darin, dass die in (21.1) stehende Differenzengleichung zweiter Ordnung
hierbei auf das System der zwei Differenzengleichungen erster Ordnung (21.2) zurück-
geführt wird.

Dieser Vorgang wird auch Faktorisierung genannt, doch kann dieser Begriff erst in § 27
erklärt werden. Nebenbei sei erwähnt, dass man zu dem Algorithmus auch durch eine
Übertragung der Gaußschen Eliminationsmethode aus § 11 auf den vorliegenden Fall
gelangen kann.

Konstante Koeffizienten. Sind die Koeffizienten an = a, bn = b = 0 in (21.1) von n
unabhängig (mit Ausnahme von b1 = 0), so lassen sich die Rekursionsformeln (21.3)
geschlossen auflösen. Durch Elimination von αn erhalten wir zunächst aus (21.3)

βn + bn

βn−1
+ an = 0 (21.4)
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6.21 Faktorisierung

Dies ist eine nichtlineare Rekursionsformel erster Ordnung für βn, die wir unter der
Anfangsbedingung β1 = −a für n ≥ 2 auflösen, so dass die Ausnahme b1 = 0 nicht
weiter stört. Führen wir durch die Substitution

un+1 = βnun (21.5)

eine neue Folge un mit u1 = 1 ein, so erhalten wir aus (21.4) nach Multiplikation mit
u1 = βn−1un−1 die lineare Rekursionsformel zweiter Ordnung

un+1 + aun + bun−1 = 0 (21.6)

mit den Anfangsbedingungen u1 = 1, u2 = β1 = −a. Wir beschränken uns wieder auf
den Fall a2 > 4b, in dem die allgemeine Lösung von (21.6) nach (7.9)

un = c1λ
n
1 + c2λ

n
2

mit (6.5) und willkürlichen Konstanten c1, c2 lautet. Wegen u2 = −a = λ1 + λ2 ist

un = λn
1 − λn

2
λ1 − λ2

(21.7)

offenbar die spezielle Lösung von (21.6), die zugleich den Anfangsbedingungen genügt.
Damit folgt aus (21.5) bzw. aus der zweiten Gleichung (21.3) wegen b = λ1λ2 das
gesuchte Ergebnis

βn = λn+1
1 − λn+1

2
λn

1 − λn
2

, αn = λ2λ
n
1 − λ1λ

n
2

λn
1 − λn

2
(21.8)

Auf die geschlossene Lösung der Gleichungen (21.2) gehen wir nicht weiter ein, da wir
das Ergebnis bereits aus (18.5), (19.7) kennen.

Zur Beurteilung der numerischen Stabilität unseres Lösungsalgorithmus nehmen wir
jetzt wie in (20.2) |λ1| < |λ2| an. Dann kann βn in (21.8) niemals verschwinden, und
die für den Lösungsalgorithmus erforderliche Voraussetzung ist stets erfüllt. Weiterhin
kann dann λn

1 in (21.8) für große n im Vergleich zu λn
2 vernachlässigt werden, und wir

erhalten aus (21.8) näherungsweise

αn = λ1 , βn = λ2

Im stabilen Fall 1◦ von § 20, d. h. für |λ1| < 1 < |λ2|, lassen sich auch die Gleichungen
(21.2) stabil auflösen. Die zweite Gleichung von (21.2) wird nämlich von "rechts" nach
"links" aufgelöst, und die zugehörige homogene Gleichung (21.5) hat bis auf einen
konstanten Faktor die für n > 0 nach "links" abklingende Lösung (21.7).

Entsprechend kann man zeigen (vgl. Aufgabe 37), dass die Lösungen der zur ersten
Gleichung von (21.2) gehörenden homogenen Gleichung nach "rechts" hin abklingen.
Analog sieht man, dass im instabilen Fall 2◦ von § 20 die zweite und im instabilen Fall
3◦ von § 20 die erste der Gleichungen (21.2) numerisch instabil ist.

Aufgabe 37. Man zeige, dass vn = (λ−1
1 − λ−1

2 )/(λ−n
1 − λ−n

2 ) die Lösung von vn =
αnvn−1 mit (21.8) und v1 = 1 ist. Wie kommt man auf die Gestalt von vn?
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6.22 Regularisierung
Nach den beiden vorhergehenden Methoden zur Lösung des Randwertproblems

zn+1 + anzn + bnzn−1 = fn (22.1)

z0 = zN = 0, n = 1, 2, ..., N − 1, wollen wir jetzt eine dritte Methode kennenlernen,
die sich in den instabilen Fällen bewährt.
Diese besteht in der Zurückführung des Randwertproblems auf ein Anfangswertproblem,
wobei es zwei Möglichkeiten gibt, je nachdem, ob wir den linken oder den rechten
Randpunkt des Intervalls 0 ≤ n; ≤ N auszeichnen.

Es soll jetzt wieder bn ̸= 0 sein für alle n. Wir beginnen mit dem linken Randpunkt und
wählen neben z0 = 0 willkürlich einen zweiten Anfangswert z1, beispielsweise z1 = 0.
Die Lösung der Rekursionsformel (22.1) mit diesen Anfangswerten bezeichnen wir mit
z(0)

n . Im allgemeinen wird z
(0)
N ̸= 0 sein, so dass z(0)

n keine Lösung des Randwertpro-
blems ist. Als nächstes bestimmen wir rekursiv die Lösung z′

n der zu (22.1) gehörenden
homogenen Gleichung

z′
n+1 + anz′

n + bnz′
n−1 = 0 (22.2)

unter den Anfangsbedingungen z′
0 = 0, z′

1 = 1. Wir setzen voraus, dass z′
n keine

Eigenfunktion ist, also z′
N ̸= 0 ist. Nach dem Überlagerungssatz von § 7 ist dann

zn = z(0)
n − z(0)

n

z′
N

z′
n (22.3)

die gesuchte Lösung des Randwertproblems.

Diese Lösungsmethode ist eine Präzisierung der sogenannten Schießmethode, bei der
man eine Folge von zusätzlichen Anfangswerten z

(1)
1 , z

(2)
1 , z

(3)
1 , ... für die inhomogene

Gleichung (22.1) wählt, die zugehörigen Lösungen z(1)
n , z(2)

n , z(3)
n , ... berechnet, zu jedem

Anfangswert z
(k)
1 den zugehörigen Endwert z

(k)
N beobachtet, aus der Änderung von z

(k)
N

gegenüber von z
(k−1)
N Rückschlüsse über eine günstigere Wahl von z

k+(1)
1 zieht und sich

auf diese Weise auf den gesuchten Endwert zN = 0 "einschießt" (vgl. Abb. 22). Die
Schießmethode wird vor allem bei nichtlinearen Randwertproblemen benutzt, bei denen
die präzisierte Form nicht anwendbar ist.

Abb. 22

Die zweite Möglichkeit besteht darin, z(0)
n aus z

(0)
N = z

(0)
N−1 = 0 und (22.1) sowie z′

n aus
z′

N = 0, z′
N−1 = 1 und (22.2) rekursiv nach "links" zu bestimmen, wobei wir analog
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zu (22.3) die Lösungsdarstellung

zn = z(0)
n − z

(0)
0
z′

0
z′

n (22.4)

für unser Randwertproblem erhalten.

Konstante Koeffizienten. Bei Gleichungen (22.1) mit von n unabhängigen Koeffizienten
an = a, bn = b wird man die erste Lösungsdarstellung (22.3) wählen, wenn der instabile
Fall 2◦ von § 20 vorliegt, also |λ1| < |λ2| < 1 gilt, da dann das Anfangswertproblem
"von links nach rechts" stabil auflösbar ist, dagegen wählt man die zweite Lösungs-
darstellung (22.4), wenn der instabile Fall 3◦ von § 20 vorliegt, also 1 < |λ1| < |λ2|
gilt, da das Anfangswertproblem dann "von rechts nach links" stabil auflösbar ist (vgl.
Aufgabe 36).
Im Fall 1◦ von § 20, für den wir bereits zwei numerisch stabile Lösungsmethoden kennen,
sind beide Lösungsdarstellungen (22.3) und (22.4) für große N numerisch instabil (vgl.
S. 85).

Wir wenden uns jetzt noch einmal etwas eingehender den soeben angeführten Fällen
2◦ und 3◦ von § 20 zu, in denen das Randwertproblem instabil ist. Im Fall 2◦ klingen
alle Lösungen der homogenen Gleichung (22.2) und damit auch z′

n nach "rechts" ab,
d.h., z′

N ist für große N sehr klein.
Damit wird aber das zweite Glied auf der rechten Seite von (22.3) im allgemeinen für
kleine n sehr groß sein und folglich auch die ganze rechte Seite, was der vorhandenen
Instabilität entspricht. Insbesondere ist dies stets der Fall, wenn die in (22.3) auftre-
tenden Größen nicht exakt, sondern nur numerisch bestimmt werden.

Andererseits kann es sein, dass das inhomogene Randwertproblem trotz der Instabili-
tät des zugehörigen homogenen Problems eine Lösung besitzt, die an keiner Stelle n
besonders groß ist. Wegen der vorhandenen Instabilität ist es unmöglich, diese Lösung
mit einer der vorhergehenden Methoden numerisch zu bestimmen.
Wir können aber folgendes vereinbaren und den in (22.3) auftretenden Summanden
z(0)

n , der sich aus einem Anfangswertproblem numerisch stabil bestimmen lässt, eine
regularisierte Lösung des Randwertproblems nennen.

Diese regularisierte Lösung hat folgende Eigenschaften. Im Fall 2◦ von § 20 erfüllt die
regularisierte Lösung z(0)

n des Randwertproblems die Differenzengleichung (22.1) sowie
die Randbedingung z0 = 0, während zN nicht zu verschwinden braucht.
Ändert man den Anfangswert z

(0)
1 ab, so beeinflusst diese Änderung nur die Werte von

z(0)
n für "kleine" n, nicht aber im Rahmen der Rechengenauigkeit die Werte von z(0)

n

für "mittlere" und "große" n.

Dies bedeutet, dass die Werte der regularisierten Lösung z(0)
n für "mittlere" und "große"

n ≤ N − 1 numerisch stabil sind. Besitzt das Randwertproblem eine Lösung, die nir-
gends besonders groß ist, so ist diese Lösung für "mittlere" und "große" n im Rahmen
der Rechengenauigkeit gleich der regularisierten Lösung z(0)

n .

Welche Werte von n dabei schon "mittlere" genannt werden können, hängt von der
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Größe der Wurzeln λ1, λ2 der charakteristischen Gleichung (6.4) und damit von der
Schnelligkeit des Abklingens der Lösungen (7.9) der homogenen Gleichung sowie von
der gewählten Rechengenauigkeit ab. Die Richtigkeit der letzten der genannten Eigen-
schaften erkennt man aus (22.3); denn wird zn nirgends groß, also auch nicht für n = 1,
so muss z

(0)
N in (22.3) sehr klein, also im Rahmen der Rechengenauigkeit gleich Null

sein.

Ganz analoge Bemerkungen treffen auf den Fall 3◦ von § 20 zu. Die in (22.4) auftreten-
de regularisierte Lösung erfüllt dann (22.1) und z

(0)
N = 0, wobei z

(0)
N−1 auch abgeändert

werden kann, und in den zuvor angeführten Eigenschaften hat man lediglich die Worte
"kleine" und "große" zu vertauschen.

Weiterhin kann man den Begriff der regularisierten Lösung auch auf den Fall übertra-
gen, dass die zu (22.1) gehörenden Randwerte nicht verschwinden (vgl. Aufgabe 38).

Abschließend kehren wir zum Fall 1◦ von § 20 zurück, in dem zwar das Randwertpro-
blem stabil ist, aber die zugehörigen Anfangswertprobleme instabil sind. Man kann jetzt
ganz analog für die Anfangswertprobleme eine regularisierte Lösung definieren, indem
man eine der Anfangsbedingungen weglässt, zusätzlich eine Randbedingung willkürlich
wählt und die stabile Lösung dieses Randwertproblems regularisierte Lösung des An-
fangswertproblems nennt.

Aufgabe 38. Man berechne für 0 < n < 100 die Lösung der Differenzengleichung

zn+1 − 6zn + 8zn − 1 = 3

a) unter den Randbedingungen z0 = z100 = 1,
b) unter den gestörten Randbedingungen z0 = 1 + 10−10, z100 = 1,
c) unter den Anfangsbedingungen z100 = 1, z99 = 0 (regularisierte Lösung des Rand-
wertproblems a)).
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7 Identifikation
Während wir bisher von einer gegebenen Differenzengleichung mit entsprechenden Ne-
benbedingungen ausgegangen sind und die zugehörige Lösung gesucht haben, wollen
wir uns jetzt mit dem umgekehrten Problem befassen, bei dem die rechte Seite der
Differenzengleichung und die Lösung gegeben sind und die linke Seite gesucht ist, d.
h. die Koeffizienten der Differenzengleichung.
Solche Umkehrprobleme treten in den Anwendungen immer mehr in den Vordergrund.
Man spricht hierbei von einer Identifikation der Differenzengleichung bzw. des durch
sie beschriebenen technischen Systems.

Bei der Differenzengleichung (19.1)

zn+1 + azn + bzn−1 = fn

mit konstanten Koeffizienten, auf die wir uns ausschließlich beschränken wollen, ist das
Identifikationsproblem relativ einfach, da hier nur die konstanten Parameter a und b
bestimmt werden müssen, so dass man in diesem Fall von einer Parameteridentifikation
spricht.
Theoretisch gesehen, braucht man zur Bestimmung der Unbekannten a und b lediglich
die Differenzengleichung für zwei verschiedene Werte von n zu benutzen und die beiden
Gleichungen (sofern sie voneinander unabhängig sind) nach a und b aufzulösen.

Dieses Vorgehen setzt jedoch voraus, dass die verwendete Lösung zn und die zugehörige
rechte Seite fn exakt bekannt sind.
In den Anwendungen kennt man jedoch für zn und fn nur Messwerte, die mit Fehlern
behaftet sind, so dass man auch die Koeffizienten a und b nur mit Fehlern erhält. Leider
stellt es sich heraus, dass die Fehler bei den Koeffizienten sehr groß werden können und
stark davon abhängen, welche zwei Gleichungen man zur Bestimmung von a und b
heranzieht (instabiler Fall).

Aus diesem Grunde werden wir uns zunächst mit einem Fehlerausgleichsverfahren be-
fassen, das sich dann auch bei der Bestimmung von Anfangswerten in der diskreten
Mechanik als nützlich erweisen wird, bevor wir auf die Identifikation von Differenzen-
gleichungen zurückkommen werden. Mehr über die Fehlerrechnung findet man bei H.
Hänsel [11] sowie bei H. Richter und V. Mammitzsch [15].

7.23 Die Methode der kleinsten Quadrate
Durch eine lineare Gleichung mit einer Unbekannten x

ax = f

ist x im Fall a ̸= 0 eindeutig zu x = f/a bestimmt. Ein System von n > 1 Gleichungen
mit einer einzigen Unbekannten x,

a1x = f1, a2x = f2, ..., anx = fn (23.1)
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hat im allgemeinen keine Lösung, da die k-te Gleichung dieses Systems mit 1 ≤ k ≤ n
im Fall ak ̸= 0 die Lösung xk = fk/ak besitzt und diese Lösungen im allgemeinen von
k abhängen. Man nennt daher (23.1) ein überbestimmtes System.

Ähnlich wie im vorhergehenden Paragraphen kann man jetzt nach einer verallgemei-
nerten Lösung fragen und darunter hier eine Zahl x verstehen, die die Gleichungen
(23.1) "möglichst gut" erfüllt, wobei dieser Begriff noch näher zu präzisieren ist. Dies
geschieht durch die

Gaußsche Methode. Man bestimme die verallgemeinerte Lösung x so, dass die Summe
der Fehlerquadrate

Q =
n∑

k=1
(akx − fk)2 (23.2)

möglichst klein ist. Dabei wird vorausgesetzt, dass mindestens ein ak ̸= 0 ist.

Zur Lösung dieses Problems formen wir Q zunächst um. Nach Auflösung der Klammern
nimmt Q die Gestalt

Q = Ax2 − Bx + C

mit
A =

n∑
k=1

a2
k, B =

n∑
k=1

akfk, C =
n∑

k=1
f2

k (23.3)

an oder nach Ermittlung der quadratischen Ergänzung

Q = 1
A

(Ax − B)2 + C − B2

A
(23.4)

Hieraus ist ersichtlich, dass Q genau dann minimal wird, wenn x = B/A (vgl. Abb. 3)
oder wegen (23.3)

x =

n∑
k=1

akfk

n∑
k=1

a2
k

(23.5)

wird. Damit haben wir die verallgemeinerte Lösung zu des Systems (23.1) im Sinne der
Gaußschen Methode der kleinsten Fehlerquadrate gefunden. Besitzt (23.1) eine Lösung
im üblichen Sinne, so geht (23.5) natürlich in diese Lösung über.

Betrachten wir an Stelle des Systems (23.1) das System

x = x1, x = x2, ..., x = xn (23.6)

mit xk = fk/ak für alle k, das aus (23.1) durch Division der k-ten Gleichung durch
ak hervorgeht, so liefert die Gaußsche Methode als verallgemeinerte Lösung von (23.6)
das arithmetische Mittel

x = 1
n

(x1 + x2 + ... + xn)

da wir in (23.5) nur ak = 1 und fk = xk zu setzen brauchen (vgl. Abb. 23).
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Abb. 23

Dieses arithmetische Mittel benutzt man bekanntlich in der Praxis, wenn man bei-
spielsweise einen Widerstand R mit Hilfe des Ohmschen Gesetzes R = U/I bestimmen
Will, für verschiedene Spannungen Un die zugehörigen Stromstärken In misst und den
Einfluss der Messfehler auf die Einzelergebnisse Rk = Uk/Ik durch eine Mittelbildung
ausgleicht.
Als Nebenprodukt erhalten wir aus den vorhergehenden Betrachtungen die

Cauchysche Ungleichung. Für beliebige reelle Zahlen an, bn gilt
 n∑

k=1
akbk

2

≤
n∑

k=1
a2

k

n∑
l=1

b2
l (23.7)

Dabei steht das Gleichheitszeichen genau dann, wenn alle ak = 0 sind oder es eine
Konstante x gibt mit bk = akx für alle k.

Beweis. Da der Fall ak = 0 trivial ist, nehmen wir an, dass mindestens ein ak ̸= 0 ist.
Aus (23.2) folgt 0 ≤ Q, so dass (23.4) mit x = B/A folglich 0 ≤ C − B2/A oder
wegen A > 0 schließlich B2 ≤ AC liefert.
Wegen (23.3) ist dies gerade die Ungleichung (23.7), wenn wir fk = bk setzen. In
diesen Ungleichungen steht das Gleichheitszeichen genau dann, wenn Q = 0 ist, wenn
also wegen (23.2) bk = fk = akx gilt für alle k.

Für spätere Anwendungen benötigen wir die Gaußsche Methode noch für

Gleichungen mit zwei Unbekannten. Unter dem verallgemeinerten Lösungspaar (x, y)
der n Gleichungen

akx + bky = fk (23.8)

k = 1, 2, ..., n, verstehen wir dasjenige Zahlenpaar (x, y), für das

Q =
n∑

k=1
(akx + bky − fk)2 (23.9)

möglichst klein wird. Die Fälle, in denen ak ≡ 0 oder bk ≡ akz für eine feste Konstante
z gilt, schließen wir aus, da sie auf den bereits erledigten Fall (23.1) hinauslaufen. Unter
dieser Voraussetzung lautet die verallgemeinerte Lösung von (23.8)

x = BD − EF

AD − F 2 , y = AE − FB

AD − F 2 (23.10)

mit (23.3) und

D =
n∑

k=1
b2

k, E =
n∑

k=1
bkfk, F =

n∑
k=1

akbk (23.11)
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Beweis. Zunächst bemerken wir, dass wegen der Cauchyschen Ungleichung (23.7) und
unserer Voraussetzung F 2 < AD ist, so dass die Quotienten (23.10) einen Sinn haben.
Durch Auflösung der Klammern in (23.9) und Berücksichtigung der Bezeichnungen
(23.3) und (23.11) folgt für Q die Darstellung

Q = Ax2 − 2Bx + C + Dy2 − 2Ey + 2Fxy

Wir versuchen jetzt, neue Konstanten a, b, ..., f, g so zu bestimmen, dass Q die Form

Q = (ax + by − c)2 + (dx + ey − f)2 + g (23.12)

erhält oder nach Auflösung der Klammern und Umordnung

Q = (a2 +d2)x2 +(b2 +e2)y2 +2(ab+de)xy −2(ac+df)x−2(bc+ef)y +g +c2 +f2

Durch Vergleich mit der vorhergehenden Darstellung für Q finden wir die Beziehungen

A = a2 + d2, D = b2 + e2,
B = ac + df, E = bc + ef,

C = g + c2 + f2, F = ab + de.

 (23.13)

Dies ist ein unterbestimmtes Gleichungssystem von sechs Gleichungen für die sieben
Unbekannten a, ..., g, das stets lösbar ist. Die Lösung benötigen wir aber gar nicht
explizit. Aus (23.12) ist ersichtlich, dass Q genau dann minimal wird, wenn

ax + by = c , dx + ey = f

ist. Nach der Eliminationsmethode von § 11 hat dieses System die Lösung

x = ce − fb

ae − db
, y = af − dc

ae − db
(23.14)

sofern die Nenner nicht verschwinden. Wir brauchen jetzt nur noch zu zeigen, dass die
Behauptungen (23.10) mit den Lösungen (23.14) übereinstimmen. Dies lässt sich aber
unter Benutzung der Beziehungen (23.13) durch elementare Umformungen nachweisen.
Vgl. hierzu die

Aufgabe 39. Man verifiziere die Gleichungen

AD−F 2 = (ae−db)2, BD−EF = (ce−fb)(ae−db), AE−FB = (af−dc)(ae−db)

7.24 Beispiele aus der Mechanik
Zur Anwendung der vorhergehenden Ergebnisse behandeln wir jetzt zwei Aufgabenstel-
lungen, bei denen wir zum Teil auf die Darlegungen im Abschnitt IV zurückgreifen.

Regressionsgeraden. Zwischen zwei Veränderlichen möge ein linearer Zusammenhang
bestehen. Um einen konkreten Fall im Auge zu haben, seien diese Veränderlichen die
Zeit t und der Weg s. Dann gilt bei einer gleichförmigen Bewegung

s = vt + u (24.1)
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Die Geschwindigkeit v und die Anfangslage u seien unbekannt und sollen durch Messung
des Weges s zu verschiedenen Zeitpunkten t ermittelt werden. Wir wählen willkürlich
die Zeitpunkte tk, k = 1, 2, ..., n, die nicht äquidistant zu sein brauchen, und messen
die zugehörigen Wege sk.
Wegen der Messfehler liegen die Punkte (tk, sk) in der t, s-Ebene im allgemeinen nicht
genau auf einer Geraden. Unsere Aufgabe besteht jetzt darin, diejenige Gerade zu finden,
die sich im Sinne der Gaußschen Methode der kleinsten Fehlerquadrate möglichst gut
der Punktmenge (tk, sk), k = 1, 2, ..., n, angleicht (vgl. die spätere Abb. 24), d. h., wir
suchen die verallgemeinerte Lösung (u, v) des überbestimmten Gleichungssystems

u + tkv = sk

Dieses System hat die Form (23.8) mit ak = 1, bk = tk, fk = sk, x = u, y = v, so
dass seine Lösung die Gestalt (23.10) besitzt. Führen wir die 100 VII. Identifikation
Mittelwerte

t = 1
n

n∑
k=1

tk , s = 1
n

n∑
k=1

sk (24.2)

ein, so finden wir aus (23.3) und (23.11) die Beziehungen A = n, F = nt, B = ns
und

AD − F 2 = n
n∑

k=1
t2
k − n2t

2 = n
n∑

k=1
(t2

k + 2tkt + t
2) = n

n∑
k=1

(tk − t)2

AE − FB = n
n∑

k=1
tksk − n2t

2
s2 = n

n∑
k=1

(tksk − tks − tsk + ts) = n
n∑

k=1
(tk − t)(sk − s)

Damit ergibt sich aus (23.10) mit y = v für den sogenannten Regressionskoeffizienten
die Darstellung

v =

n∑
k=1

(tk − t)(sk − s)
n∑

k=1
(tk − t)2

(24.3)

und wegen

nu = Ax = ABD − AEF

AD − F 2 = (ABD − BF 2) − (AEF − BF 2)
AD − F 2 = B − yF = n(s − vt)

für den zweiten Koeffizienten x = u

u = s − vt

Die mit diesen Koeffizienten gebildete Gerade nennt man Regressionsgerade. Sie lässt
sich auch in der Form

s − s = v(t − t)
mit (24.2) und (24.3) schreiben, so dass sie stets durch den Schwerpunkt (t, s) geht.

Die Grundgleichung der Mechanik. Wir kehren jetzt zu unserem diskreten Modell der
Mechanik zurück, in dem mehrere Grundgleichungen die Form

yn − yn−1 = 1
2(zn + zn−1)∆x (24.4)
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mit ∆x = xn−xn−1 haben (vgl. (13.4) bis (13.6) sowie (13.11)). Der Einfachheit wegen
nehmen wir im folgenden stets an, dass ∆x eine von n unabhängig gewählte, bekannte
positive Konstante ist. Dann kann man die Gleichung (24.4) verwenden, um entweder
bei bekannten zn die yn oder umgekehrt bei bekannten yn die zn zu berechnen. Im
ersten Fall erhalten wir durch Summation (vgl. Aufgabe 25)

yn = y0 + 1
2

n∑
k=1

(zk + zk−1)∆x

und hieraus für n ≥ 1

yn = y0 + 1
2(z0 + zn)∆x +

n−1∑
k=1

zk∆x (24.5)

Im zweiten Fall erhalten wir aus der Umstellung

zn + zn−1 = 2∆yn

∆x

mit ∆yn = yn − yn−1 nach Einsetzen in die Identität

zn = (−1)nz0 +
n∑

k=1
(−1)n−k(zk + zk−1)

die Gleichung (vgl. Aufgabe 26)

zn = (−1)nz0 + 2
n∑

k=1
(−1)n−k ∆yk

∆x

und hieraus für n ≥ 1 wegen
n∑

k=1
(−1)n−k∆yk =

n∑
k=1

(−1)n−k(yk − yk−1) =
n∑

k=1
(−1)n−kyk +

n∑
k=1

(−1)n−kyk

nach Zusammenfassung der Summanden mit 1 ≤ k ≤ n − 1 die Darstellung

zn = (−1)nz0 + 2
∆x

yn + (−1)ny0 + 2
n−1∑
k=1

(−1)n−kyk

 (24.6)

Bestimmung von Anfangswerten. In den beiden soeben behandelten Fällen ist die ge-
suchte Folge nur bis auf ihren Anfangswert durch die gegebene Folge bestimmt. Bei
einer konkreten physikalischen Aufgabenstellung wird jedoch auch stets der Anfangs-
wert y0 in (24.5) vorgegeben.
So ist y0 im Fall (13.4) die Anfangslage s0, im Fall (13.5) die Anfangsgeschwindigkeit
v0, im Fall (13.6) die am Anfang bereits vorhandene Arbeit W0 und im Fall (13.11)
der Anfangsimpuls J0. Bei s0 und W0 gibt man meistens den Wert 0 vor, sofern keine
anderen Gründe dagegen sprechen.

Anders ist es bei der Gleichung (24.6). Hier liefert die konkrete physikalische Aufga-
benstellung keine Anhaltspunkte zur Bestimmung von z0, so dass wir eine zusätzliche
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Überlegung anstellen müssen. Da bekannt ist, dass im physikalischen Bereich der Natur
im allgemeinen Optimalzustände realisiert werden, dürfte es sinnvoll sein, z0 nach der
Methode der kleinsten Quadrate zu bestimmen. Wir fordern daher, dass

Q =
n∑

k=1
rkz2

k (24.7)

möglichst klein sein soll, wobei die rk positive Gewichte sind, über die wir noch verfügen
können. Je nach der Wahl der rk und nach der Wahl von n erhalten wir natürlich
unterschiedliche z0 und damit unterschiedliche Modelle der Mechanik. Eine andere
Argumentation zur Bestimmung von Anfangswerten findet man in [5].

Wir bringen jetzt hierfür einige Beispiele, wobei wir die Abkürzung

qn = 1
∆x

yn + (−1)ny0 + 2
n−1∑
k=1

(−1)n−kyk

 für n ≥ 1 (24.8)

und q0 = 0 benutzen, so dass (24.6) für n ≥ 0 wie folgt lautet:

zn = (−1)nz0 + 2qn (24.9)

1◦. Wählen wir n = 0, so wird (24.7) für z0 = 0 minimal.

2◦. Wählen wir n = 1 und r0 = r1 = 1, so lautet (24.7)

Q = z2
0 + (z0 − 2q1)2

und wird nach (23.5) für z0 = q1 minimal, d. h. wegen (24.8) und (24.9) für

z0 = z1 = ∆y1

∆x
(24.10)

3◦. Wählen wir n = 2 und r0 = r2 = 1, r1 = 2, so wird

Q = z2
0 + 2(z0 − 2q1)2 + (z0 + 2q2)2

nach (23.5) und (24.8) für

z0 = q1 − 1
2q2 = 3∆y1 − ∆y2

2∆x
(24.11)

minimal, wobei nach (24.9)

z1 = q1 + 1
2q2 , z2 = q1 + 3

2q2

folgt.

Quadratische Funktionen. Ist yn = α + βn + γn2 wie sn bei dem in § 15 behandelten
Wurf eine quadratische Funktion, die für γ = 0 die lineare und für γ = β = 0 die
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konstante Funktion als Spezialfall enthält, so findet man aus (24.6) unter Beachtung
von Aufgabe 8

zn =
{

z0 + 2γ
∆xn für gerade n

2
∆x(β + γn) − z0 für ungerade n

(24.12)

Im Fall 3◦ folgt aus (24.11) z0 = β/∆x, so dass (24.12) die lineare Funktion

zn = 1
∆x

(β + 2γn)

wird (die hohlen Kreise der Abb. 24). Im Fall 2◦ folgt aus (24.10) z0 = (β + γ)/∆x,
so dass (24.12) in die Funktion

zn =
{ 1

∆x(β + γ + 2γn) für gerade n
1

∆x(β − γ + 2γn) für ungerade n

übergeht, die für y = 0 um die im Fall 3◦ ermittelte Gerade schwankt (die vollen Kreise
der Abb. 24).

Abb. 24

Im Fall γ = 0 erhalten wir wie zuvor die konstante Funktion zn ≡ β/∆x, während
(24.12) sonst für γ = 0, z0 ̸= β/∆x eine periodische Funktion ist (Abb. 25).

Abb. 25

Im Fall 1◦, in dem z0 = 0 ist, wird (24.12) lediglich für γ = β = 0 konstant, und zwar
zn ≡ 0.

Aufgabe 40. Man zeige, dass (23.12) im Fall der Regressionsgeraden den minimalen
Wert

Q = g =
n∑

k=1
(sk − s)2 − v2

n∑
k=1

(tk − t)2

besitzt.

89



7.25 Bestimmung von Lösungen

7.25 Bestimmung von Lösungen
Von einer diskreten Funktion zk sei bekannt, dass sie die Gestalt

zk = c1λ
k
1 + c2λ

k
2 (25.1)

besitzt, die reellen Zahlen cj, λj j = 1, 2, seien jedoch unbekannt. Von zk mögen die
Messwerte z0, z1, ..., zn+1 mit n ≥ 3 vorliegen.
Setzen wir diese Werte in (25.1) ein, so entsteht für die vier Unbekannten cj, λj ein
überbestimmtes Gleichungssystem, von dem wir mit der Methode der kleinsten Qua-
drate eine verallgemeinerte Lösung suchen, bei der die Messfehler ausgeglichen werden.

Der vorliegende Fall ist jedoch wesentlich komplizierter als alle vorhergehenden Fälle, da
wir es einerseits mit vier Unbekannten zu tun haben und andererseits die Gleichungen
(25.1) für k > 1 nichtlinear sind. Wie wir aber gleich sehen werden, lässt sich dieses
Problem auf zwei lineare Ausgleichsverfahren für jeweils zwei Unbekannte zurückfüh-
ren.

Bestimmung der λj. Wie wir wissen (vgl. etwa (19.2) und (19.3)), treten diskrete
Funktionen der Form (25.1) als Lösungen von Differenzengleichungen der Gestalt

zk+1 + azk + bzk−1 = 0 (25.2)

auf. Setzen wir hier für k = 1, 2, ..., n die Messwerte ein, so haben wir es zunächst
mit einem linearen Ausgleichsproblem für die beiden Koeffizienten a, b zu tun. Mit den
Umbezeichnungen x = a, y = b, ak = zk, bk = zk−1, fk = −zk+1 erhalten wir daher
aus (23.10)

a = BD − EF

AD − F 2 , b = AE − FB

AD − F 2 (25.3)

und aus (23.3) sowie (23.11)

A =
n∑

k=1
z2

k, B = −
n∑

k=1
zkzk+1, E = −

n∑
k=1

zk−1zk+1

C = A + z2
n+1 − z2

1 , D = A + z2
0 − z2

n, F = −B + z0z1 − znzn+1

Ändern sich die Werte zk stark, indem sie mit wachsendem k recht groß bzw. recht klein
werden, so ist es zweckmäßig, diese Änderungen durch geeignete positive Gewichte rk

auszugleichen, d.h. die Ausgleichsrechnung auf die aus (25.2) folgende Gleichung

rkzka + rkzk−1n = −rkzk+1

anzuwenden. Das Ergebnis hat dann wieder die Form (25.3), wobei in (23.3) und (23.11)
jetzt ak = rkzk, bk = rkzk−1, fk = −rkzk+1 zu setzen ist. Eine sinnvolle Wahl für die
Gewichte rk lautet

rk = 1
|zk+1| + |zk| + |zk−1|

(25.4)

Im Fall zk ̸= 0 für 1 ≤ k ≤ n kann man aber auch einfacher rk = 1/|zk| wählen.
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Nach der Identifikation der zu zk gehörenden homogenen Differenzengleichung finden
wir im Fall a2 > 4b, auf den wir uns beschränken wollen, die Zahlen λ1, λ2 aus der zu-
gehörigen charakteristischen Gleichung (6.4). In dieser quadratischen Gleichung drückt
sich die Nichtlinearität des ursprünglichen Problems aus. Die Lösungen der charakte-
ristischen Gleichung lauten nach (6.5)

λ1 = 1
2(−a +

√
a2 − 4b) , λ2 = 1

2(−a −
√

a2 − 4b)

mit (25.3), so dass der erste Teil unseres Problems erledigt ist.

Bestimmung der cj. Nachdem wir die λj bestimmt haben, ist (25.1) bei gegebenen
zk für k = 0, 1, ..., n + 1 jetzt nur noch ein lineares Ausgleichsproblem für die beiden
Unbekannten c1, c2. Setzen wir x = c1, y = c2, ak = ρkλk

1, bk = ρkλk
2, fk = ρkzk mit

geeigneten positiven Gewichten ρk, so geht (25.1) in (23.8) über, und die zugehörige
verallgemeinerte Lösung lautet nach (23.10)

c1 = BD − EF

AD − F 2 , c2 = AE − FB

AD − F 2

wenn wir in den Koeffizienten (23.3) und (23.11) für ak, bk, fk die soeben angegebenen
Ausdrücke einsetzen und gleichzeitig beachten, dass k in den Summen von 0 bis n+1 zu
laufen hat (sofern wir nicht auf die Werte z0 und zn+1 verzichten). Insbesondere finden
wir nach (2.4) für F im Fall ρk ≡ 1 wegen λ1λ2 = b mit (25.3) den geschlossenen
Ausdruck

F =
n+1∑
k=0

akbk =
n+1∑
k=0

bk = 1 − bn+2

1 − b

für b ̸= 1, während für b = 1 offenbar F = n + 2 wird. Im allgemeinen wird man aber
die Gewichte ρk in ähnlicher Weise festlegen wie zuvor die Gewichte rk.

Es sei bemerkt, dass die soeben durchgeführte zweimalige lineare Ausgleichsrechnung
zwar nicht dasselbe Ergebnis wie die eigentlich erforderliche nichtlineare Ausgleichs-
rechnung liefert, Testrechnungen zeigen aber, dass die Ergebnisse zufriedenstellend
ausfallen, wenn man bei den Koeffizienten (25.3) die Gewichte (25.4) benutzt und bei
der Berechnung von c1 und c2 analog vorgeht.
Die Voraussetzung über die Gestalt (25.1) der diskreten Funktion zk ist immer erfüllt,
wenn von vornherein bekannt ist, dass zk Lösung einer Differenzengleichung zweiter
Ordnung (mit a2 > 4b) ist. Ist hierüber nichts bekannt, so kann man natürlich trotzdem
die Konstanten λj und cj auf die vorhergehende Weise berechnen und nachträglich
feststellen, wie gut die rechte Seite von (25.1) die linke approximiert.

Ein anderes Fehlermaß. Das Gaußsche quadratische Fehlermaß (23.2) zur Bestimmung
der verallgemeinerten Lösung des Systems (23.1)

akx = fk (25.5)

für k = 1, 2, ..., n kann auch durch ein anderes Maß ersetzt werden, beispielsweise
durch

M =
n∑

k=1
|akx − fk| (25.6)
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Wählen wir der Einfachheit wegen n = 2, so erkennen wir aus Abb. 26, dass M diesmal
für

x =
{

f1/a1 für |a1| > |a2|
f2/a2 für |a1| < |a2|

(25.7)

minimal wird, während x für |a1| = |a2| jeden Wert zwischen f1/a1 und f2/a2 (ein-
schließlich dieser Werte) annehmen kann.

Abb. 26
Diese Methode wollen wir jetzt verwenden, um die in § 22 eingeführte regularisierte
Lösung eines Randwertproblems näher zu charakterisieren. An Stelle von (22.3) be-
trachten wir die Lösung

zn = z(0)
n + xz′

n

der Differenzengleichung (22.1) mit den Anfangsbedingungen z0 = 0, z1 = x. Wie
wir wissen, erhalten wir für x = −z

(0)
N /z′

N die Lösung des interessierenden Randwert-
problems, allerdings kann diese Lösung im instabilen Fall verhältnismäßig große Werte
annehmen.
In Anlehnung an eine Idee des sowjetischen Mathematikers A. N. Tichonov bestimmen
wir jetzt nach Einführung eines positiven Regularisierungsparameters α die Zahl x so,
dass

M = |z(0)
N + xz′

N | + α|z(0)
1 + xz′

1| (25.8)
möglichst klein wird. Diese Forderung bedeutet zwischen den beiden im instabilen Fall
2◦ von § 20 im allgemeinen unvereinbaren Bedingungen, dass nämlich einerseits zN = 0
und andererseits z1 (und damit auch alle folgenden zn) nicht zu groß sein sollen, einen
Kompromiss, wobei dieser Kompromiss durch die Wahl von α gesteuert wird.
Wegen z

(0)
1 und z′

1 = 1 nimmt die Größe M nach (25.7) im Fall a > |z′
N | ihren

minimalen Wert für
x = 0 (25.9)

an. Da aber z′
N in dem betrachteten instabilen Fall für große N einen kleinen Wert

hat, ist die Ungleichung für α für alle sinnvollen Werte α erfüllt, und wir sehen, dass
die in § 22 bestimmte regularisierte Lösung z(0)

n für diese α durch die Forderung der
Minimalität von (25.8) eindeutig bestimmt ist.

Eine ganz entsprechende Überlegung kann für die regularisierte Lösung z(0)
n aus (22.4)

im instabilen Fall 3◦ von § 20 durchgeführt werden.

Aufgabe 41. Man bestimme x so, dass an Stelle von (25.8)
Q = (z(0)

n + xz′
N)2 + αx2

möglichst klein wird, und vergleiche das Ergebnis mit (25.9).
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8 Operatormethoden
Will man die zuvor für Differenzengleichungen zweiter Ordnung durchgeführten Über-
legungen auf Differenzengleichungen höherer Ordnung übertragen, so stößt man auf
keine prinzipiellen Schwierigkeiten. Es werden lediglich die Formeln entsprechend län-
ger, so dass der Schreibaufwand ansteigt.

Um diesen Schreibaufwand zu verringern, führt man zweckmäßigerweise geeignete Ab-
kürzungen ein, die sich auch schon bei der Behandlung von Differenzengleichungen
zweiter Ordnung als nützlich erweisen, da man mit ihrer Hilfe einige der zuvor durch-
geführten Umformungen übersichtlicher gestalten kann.

Bei diesen Abkürzungen handelt es sich in erster Linie um die Einführung von soge-
nannten Operatoren sowie von Rechenoperationen mit diesen Operatoren. Äußerlich
gesehen stimmen diese Rechenoperationen im wesentlichen mit der zuvor bereits be-
nutzten "Buchstabenrechnung" der Algebra überein, so dass wir uns scheinbar auf einem
vertrauten Gebiet bewegen.
Die Buchstaben haben aber jetzt eine ganz andere Bedeutung, so dass wir uns in Wirk-
lichkeit auf einer höheren Abstraktionsstufe befinden.

Aus diesem Grunde wurde auch davon Abstand genommen, Operatoren frühzeitig ein-
zuführen und zu verwenden, wie es beispielsweise in den Artikeln [3] und [4] versucht
wurde. Doch soll abschließend jetzt ein gewisser Einblick in das Gebiet der Operato-
renrechnung gegeben werden, der auf die genannten Artikel aufbaut.

Operatoren. Ein Operator A ist eine eindeutige Abbildung von einer Menge D, dem
Definitionsbereich des Operators, in eine Menge W , den Werte- oder Bildbereich des
Operators, bei der jedem Element x ∈ D genau ein Element y ∈ W zugeordnet wird,
für das

y = Ax

geschrieben wird (Abb. 27).

Abb. 27

Ein Operator ist daher nichts anderes als eine abstrakte Funktion, wo bei den Bil-
dern A(x) des Operators lediglich die bei Funktionen üblichen Klammern weggelassen
werden.
Die Elemente von D heißen Operanden, und bei der Bildung von Ax sagen wir, A wird
auf x angewendet. Während die Mengen D und W bei klassischen Funktionen stets
Zahlenmengen sind, können sie bei Operatoren weitgehend beliebige Mengen sein.
Für unsere Zwecke hier genügt es, wenn wir als Elemente der Mengen D und W dis-
krete Funktionen xn, yn im Sinne von Abschnitt I wählen, deren Argumente n von Fall
zu Fall festzulegen sind.
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Nach einer kurzen Darlegung der grundlegenden Begriffe und Eigenschaften werden wir
die Anwendung von Operatoren bei Differenzengleichungen sowie bei Gleichungssys-
temen erläutern, wobei wir uns natürlich auf einige wenige Andeutungen beschränken
müssen. Wer etwas mehr über die dabei auftretenden speziellen Operatoren wissen
möchte, möge sich darüber an Hand der Bücher D. R. Dickinson [8] bzw. H. Belkner
[2] informieren (vgl. auch [6] und [7]).

8.26 Grundbegriffe
Die Wirkungsweise eines Operators kann man am besten durch ein Blockdiagramm
schematisieren, wobei eine Eingangsfunktion xn auf einen Block einwirkt und durch
einen im Block sich befindenden oder gedachten Mechanismus in eine Ausgangsfunktion
fn umgewandelt wird (Abb. 28), für die wir

fn = Axn (26.1)

schreiben.

Abb. 28

Praktische Beispiele für solche Blöcke oder Systeme mag der Leser sich selbst überlegen
(vgl. die spätere Abb. 32). Zwei Operatoren A und B heißen gleich, geschrieben A = B,
wenn für jede diskrete Funktion xn die Bilder gleich sind, also Axn = Bxn gilt.

Abb. 29

Multiplikation. Für zwei Operatoren A und B kann man durch die Reihenschaltung der
Abb. 29 ein Produkt AB definieren. Darunter versteht man denjenigen Operator, der
eine diskrete Funktion xn in

(AB)xn = A(Bxn) (26.2)

abbildet, wobei die linke Seite durch die rechte definiert wird und die Klammern auf
der rechten Seite die Reihenfolge der Abarbeitung angeben.
Im allgemeinen ist AB ̸= BA; gilt jedoch AB = BA, so heißen die Operatoren A und
B vertauschbar. Das Produkt von drei Operatoren A, B, C ist in dieser Reihenfolge
durch

(ABC)xn = A(B(Cxn)) (26.3)

erklärt (Abb. 30), und ganz entsprechend lässt sich das Produkt von beliebig vielen
Operatoren einführen.

Abb. 30
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Aus (26.3) erkennt man sofort, dass das Operatorprodukt assoziativ ist, d. h., für
beliebige Operatoren A, B, C gilt

A(BC) = (AB)C

so dass wir im folgenden bei Produkten die Klammern weglassen können.
Für Operatorprodukte mit gleichen Faktoren benutzen wir die Potenzschreibweise, die
wir wie in § 1 durch

Am = Am−1A, A0 = I

für m = 1, 2, 3, ... rekursiv definieren können, wobei I der durch

Ixn = xn (26.4)

für alle Operanden xn erklärte Einheitsoperator ist.

Abb. 31

Addition. Durch die Parallelschaltung der Abb. 31 bzw. durch die Formel

(A + B)xn = Axn + Bxn (26.5)

für beliebige diskrete Funktionen xn lässt sich für zwei Operatoren A und B auch eine
Summe A+B definieren. Da die Addition auf der rechten Seite von (26.5) kommutativ
und assoziativ ist, gilt auch für die Operatoraddition das Kommutativgesetz

A + B = B + A (26.6)

sowie das Assoziativgesetz

A + (B + C) = (A + B) + C (26.7)

Da durch mehrfache Anwendung von (26.2) und (26.5)

((A + B)C)xn = (A + B)(Cxn) = A(Cxn) + B(Cxn)

und
(AC + BC)xn = (AC)xn + (BC)xn = A(Cxn) + B(Cxn)

gilt und die rechten Seiten für beliebige diskrete Funktionen xn dasselbe beinhalten,
erkennen wir auch die Richtigkeit des rechtsseitigen Distributivgesetzes

(A + B)C = AC + BC (26.8)
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Lineare Operatoren. Ein Operator A heißt linear, wenn er für beliebige diskrete Funk-
tionen x′

n, xn′′ und für beliebige reelle Zahlen c1, c2 die Eigenschaft

A(c1x
′
n + c2x

′′
n) = c1Ax′

n + c2Ax′′
n (26.9)

besitzt. Für einen linearen Operator A gilt wegen

(A(B + C))xn = A(Bxn + Cxn) = ABxn + ACxn = (AB + AC)xn

wobei xn eine beliebige diskrete Funktion ist, auch das linksseitige Distributivgesetz

A(B + C) = AB + AC (26.10)

Beispiele für lineare Operatoren bilden die reellen Zahlen c, wenn man die Anwendung
dieser Operatoren auf eine diskrete Funktion xn durch die gewöhnliche Multiplikation
cxn erklärt. In der Technik ist ein Zahlenoperator C = c im Fall c > 1 ein Verstärker
und im Fall c = −1 ein Kommutator mit der Eigenschaft (−1)xn = −xn (Abb. 32a, b).
Im Fall c = 1 erhalten wir den Einheitsoperator I und im Fall c = 0 den annullierenden
Operator mit der Eigenschaft

0xn = 0
für alle Operanden xn, wobei die Null auf der rechten Seite die identisch verschwin-
dende Funktion bezeichnet. Lineare Operatoren A sind stets mit Zahlenoperatoren c
vertauschbar, da aus (26.9) mit c1 = c und c2 = 0 unmittelbar Ac = cA folgt. Sie
besitzen die identisch verschwindende Funktion xn = 0 als Fixpunkt, d. h.

A0 = 0 (26.11)

wie aus (26.9) für c1 = c2 = 0 ersichtlich ist.

Abb. 32

Ein Beispiel für einen nichtlinearen Operator ist der durch

Axn = |xn|

definierte Gleichrichter A (Abb. 32c), da er die Eigenschaft A(−xn) = Axn besitzt,
während für einen linearen Operator A wegen (26.9) mit c1 = −1, c2 = 0 stets
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A(−xn) = −Axn gilt.

Verallgemeinerte Inversen. Ein Operator R heißt eine verallgemeinerte Inverse von A,
wenn eine der Gleichungen

AR = I, RA = I, ARA = A, RAR = R (26.12)

erfüllt ist. Genauer gesagt, heißt R eine Rechtsinverse, Linksinverse, innere Inverse
oder äußere Inverse von A, wenn die erste, zweite, dritte bzw. vierte der Gleichungen
erfüllt ist. Ist R Rechts- und zugleich Linksinverse, so heißt R einfach Inverse von A;
ist R innere und zugleich äußere Inverse, so heißt R auch reflexive Inverse von A.
Trivialerweise ist R = 0 äußere Inverse eines jeden Operators.

Besitzt A eine Rechtsinverse R und eine Linksinverse L, so ist LAR = R = L. Dies
bedeutet, dass eine Inverse, sofern sie existiert, stets eindeutig bestimmt ist.
Für die Inverse von A benutzt man die Bezeichnung A−1. Existiert A−1‚ so folgt aus
ARA = A durch Multiplikation mit A−1 von links und von rechts, dass es dann außer
A−1 keine weitere innere Inverse von A gibt.

Analog sieht man: Ist R Rechts- oder Linksinverse von A, so ist R auch eine reflexive
Inverse von A.

Projektoren. Ein linearer Operator P heißt ein Projektor, wenn

P 2 = P (26.13)

ist. Triviale Projektoren sind der Einheitsoperator I und der annullierende Operator 0.
Ein weiterer Projektor ist der durch

Pxn ≡ x0 (26.14)

für alle n erklärte Operator P , er heißt Anfangswertprojektor.
Ist P ein Projektor, so ist wegen (I − P )2 = I − 2P + P 2 = I − P auch der Operator
I − P ein Projektor.
Ist R eine verallgemeinerte Inverse von A, so gilt wegen (26.12) stets

ARAR = AR , RARA = RA

d.h., die Operatoren AR und RA sind dann im linearen Fall stets Projektoren und nach
dem soeben Bewiesenen auch die Operatoren

P = I − RA , Q = I − AR (26.15)

Offenbar gilt für lineare Operatoren stets

AP = QA , PR = RQ (26.16)

und es ist AP = QA = 0, falls R innere Inverse von A ist, und PR = RQ = 0,
falls R äußere Inverse von A ist. Ist R Rechtsinverse von A, so ist Q = 0, und ist R
Linksinverse von A, so ist P = 0.

Aufgabe 42. Man beweise: Ist Rk eine Rechts- bzw. Linksinverse von Ak für k =
1, 2, ..., m, dann ist Rm...R2R1 eine Rechts- bzw. Linksinverse von A1A2...Am.
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8.27 Lösung linearer Operatorgleichungen
Eine beliebige Gleichung zur Bestimmung einer diskreten Funktion xn lässt sich mit
Hilfe eines geeigneten Operators A stets in der Form

Axn = fn (27.1)

schreiben. Im folgenden wollen wir uns aber ausschließlich auf lineare Operatoren be-
schränken, für die dann auch die Operatorgleichung (27.1) linear heißt. Insbesondere
heißt (27.1) dann für fn ̸≡ 0 eine inhomogene und für fn ≡ 0 eine homogene Glei-
chung, und es gilt über die Lösungen von (27.1) in Verallgemeinerung von § 7 der

Struktursatz. 1◦. Die homogene Gleichung hat stets die identisch verschwindende tri-
viale Lösung.

2◦. Sind x′
n und x′′

n zwei Lösungen der homogenen Gleichung, so ist für beliebige Kon-
stanten c1, c2 auch c1x

′
n + c2x

′′
n eine Lösung der homogenen Gleichung.

3◦. Ist x∗
n eine Lösung von (27.1) und x(0)

n eine Lösung der zugehörigen homogenen
Gleichung, so ist xn = x∗

n + x(0)
n eine Lösung der inhomogenen Gleichung (27.1).

4◦. Sind xn und x∗
n zwei beliebige Lösungen von (27.1), so ist x(0)

n = xn −x∗
n stets eine

Lösung der zugehörigen homogenen Gleichung.

Beweis. Die Behauptung 1◦ folgt aus (26.11), 2◦ aus (26.9) und die letzten beiden
Behauptungen aus Axn = Ax∗

n + Ax(0)
n = fn + 0 = fn bzw. Ax(0)

n = Axn − Ax∗
n =

fn − fN = 0.

Lösbarkeitsaussagen. Der Operator A möge eine (lineare) verallgemeinerte Inverse R
besitzen. Dann gilt:

5◦. Ist R eine Rechtsinverse von A, so besitzt (27.1) mindestens eine Lösung xn.

6◦. Ist R eine Linksinverse von A, so besitzt (27.1) höchstens eine Lösung xn.

7◦. Ist yn die allgemeine Lösung von

APyn = Qfn (27.2)

mit (26.15), so ist
xn = Pyn + Rfn (27.3)

die allgemeine Lösung von (27.1).

8◦. Ist R eine innere Inverse von A, so ist

Qfn = 0 (27.4)

eine notwendige und hinreichende Lösbarkeitsbedingung für (27.1), und (27.3) ist mit
beliebigem yn die allgemeine Lösung von (27.1).

Beweis. 5◦. Im Fall AR = I ist xn = Rfn stets eine Lösung von (27.1).
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6◦. Im Fall RA = I folgt aus (27.1) durch Anwendung von R, dass jede Lösung die
Gestalt xn = Rfn besitzt.
7◦. Durch Anwendung von Q auf (27.1) folgt wegen (26.16) die Gleichung (27.2) mit
yn = xn‚ und durch Anwendung von R auf (27.1) folgt wegen (26.15) die Gleichung
(27.3) mit yn = xn. Umgekehrt folgt aus (27.3) durch Anwendung von A und Beach-
tung von (27.2) sowie von (26.15)

AGxn = APyn + ARfn = (Q + AR)fn = fn

8◦. Im Fall AP = QA = 0 folgt aus (27.2) einerseits (27.4) und andererseits, dass yn

in (27.2) beliebig gewählt werden kann. Damit ist der Satz bewiesen. Im Fall 7◦ kann
man für R etwa eine äußere Inverse wählen, obwohl dies nicht notwendig ist.

Folgerungen. 9◦. Die allgemeine Lösung der homogenen Gleichung Axn = 0 lautet,
falls R innere Inverse von A ist, xn = Pyn (vgl. (27.3) mit fn = 0).

10◦. Existiert die Inverse A−1, so besitzt (27.1) die eindeutig bestimmte Lösung xn =
A−1fn (vgl. 5◦ und 6◦).

Verschiebungsoperatoren. Ein wichtiger linearer Operator ist der durch

V xn = xn−1 (27.5)

definierte Verschiebungsoperator V , wobei xn eine beliebige Folge ist, deren Argumente
n jetzt die Menge aller ganzen Zahlen durchlaufen soll. Die Potenzen von V ,

V 2xn = V (V xn) = V xn−1 = xn−2

und allgemeiner
V mxn = xn−m (27.6)

sind ebenfalls Verschiebungsoperataren (Abb. 33).

Abb. 33

Dabei hat die Gleichung (27.6) für beliebige ganze Zahlen m einen Sinn, so dass
insbesondere die Inverse V −1 mit V −1xn = xn+1 existiert. Es sei bemerkt, dass das
bereits in § 13 benutzte Symbol ∆ nichts anderes als ein Operator ist, der mit V und
dem Einheitsoperator I = 1 durch ∆ = 1 − V zusammenhängt.

Die homogene Gleichung erster Ordnung

(1 − αV )xn = 0 (27.7)
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wobei α eine nicht verschwindende reelle Zahl ist, hat die allgemeine Lösung xn = αnx0
(vgl. § 5, 2◦). Deshalb kann A = 1−αV nach der vorhergehenden Folgerung 10◦ keine
Inverse besitzen. Wohl aber hat A eine Rechtsinverse R mit

Rfn =



n∑
k=1

αn−kfk für n > 0
0 für n = 0
−

0∑
k=n+1

αn−kfk für n < 0
(27.8)

wobei man die Werte für n ≥ 0 aus (5.6) ablesen kann und die Werte für n < 0
sich analog ergeben. Wie man nachrechnen kann, besitzt der durch (26.15) definierte
zugehörige Projektor P die Eigenschaft Pxn = αnx0, so dass er für α = 1 in den
Anfangswertprojektor (26.14) übergeht.
Die homogene Gleichung zweiter Ordnung

(1 + aV + bV 2)xn = 0 (27.9)

mit konstanten Koeffizienten a, b und b ̸= 0 lässt sich auf den vorhergehenden Fall
zurückführen, wenn wir die Faktorisierung

1 + aV + bV 2 = (1 − αV )(1 − βV ) (27.10)

durchführen, wobei α, β die Wurzeln der zu (27.9) gehörenden charakteristischen Glei-
chung

λ2 + aλ + b = 0
sind, die wir als reell annehmen. Da die Operatoren A = 1 − αV und B = 1 − βV
miteinander vertauschbar sind, ergibt sich aus (27.10), dass sowohl xn = αn als auch
xn = βn Lösungen von (27.9) sind und daher nach 2◦ auch xn = c1α

n + c2β
n mit

beliebigen Konstanten c1, c2.
Im Fall α ̸= β haben wir damit die allgemeine Lösung von (27.9) gefunden (vgl. (7.9)).
Im Fall α = β erhalten wir nach Einführung der Hilfsfunktion

vn = (1 − αV )xn (27.11)

aus (27.9) und (27.10) die Gleichung (1 − αV )vn = 0 und damit die Zwischenlösung
vn = cαn. Aus (27.11) finden wir dann mit Hilfe von (27.8) und 5◦ die weitere Lösung
xn = cnαn und damit nach 2◦ die allgemeine Lösung von (27.9)

xn = (c1 + cn)αn

die wir (in anderer Bezeichnungsweise) auch schon in (7.12) angegeben haben.

Betrachten wir an Stelle von (27.9) die Gleichung mit variablen Koeffizienten

(1 + anV + bnV 2)xn = 0

so führt der Faktorisierungsansatz

(1 + anV + bnV 2) = (1 − αnV )(1 − βnV ) (27.12)
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wegen
(1 − αnV )(1 − βnV ) = 1 − (αn + βn)V + αnβn−1V

2

auf die bereits bekannten Gleichungen (21.3) zur Bestimmung von αn, βn. Dabei wurde
die Gleichung V βn = βn−1V benutzt, bei der man βn und βn−1 als Operatoren mit
der gewöhnlichen Multiplikation aufzufassen hat. Diese Gleichung zeigt, dass V und βn

und damit auch die Faktoren in (27.12) nicht vertauschbar sind.

Aufgabe 43. Man beweise: Sind A und B lineare Operatoren, so sind auch
a) AB, b) A + B und, falls A−1 existiert, c) A−1 lineare Operatoren.

8.28 Vektoren und Matrizen
Während wir im vorhergehenden Paragraphen diskrete Funktionen xn betrachtet haben,
die für alle ganzzahligen Werte n definiert waren, wollen wir jetzt näher auf diskrete
Funktionen eingehen, die nur für endlich viele Argumentwerte erklärt sind.
Solche Funktionen heißen Vektoren und die Funktionswerte dieser Funktionen ihre Ko-
ordinaten. Bei Vektoren ist es üblich, auf die Angabe des Arguments n zu verzichten,
so dass wir im folgenden für xn einfach x schreiben werden.

Der Einfachheit wegen beschränken wir uns im weiteren auf den zweidimensionalen Fall,
dass n nur die Werte 1 und 2 durchläuft, die Vektoren also nur zwei Koordinaten besit-
zen, da man an diesem Spezialfall bereits alles Wesentliche erläutern kann, was dann
analog auch für große n gilt. Für solche Vektoren x, y, f benutzen wir die Schreibweise

x =
(

x1
x2

)
, y =

(
y1
y2

)
, f =

(
f1
f2

)

die besagen soll, dass x die Koordinaten x1, x2 besitzt und es bei den übrigen Vektoren
analog ist. Die Vektoren (28.1) dürfen nicht mit den eingeführten Binomialkoeffizien-
ten verwechselt werden. Als diskrete Funktionen lassen sich Vektoren ohne weiteres
addieren und mit einer Zahl c multiplizieren, wobei diese Operationen koordinatenweise
vorzunehmen sind (vgl. Abb. 34), d. h.(

x1
x2

)
+
(

y1
y2

)
=
(

x1 + y1
x2 + y2

)
, c

(
x1
x2

)
=
(

cx1
cx2

)

Abb. 34

Auch die Gleichheit zweier Vektoren ist koordinatenweise zu verstehen. Der Vektor x
mit den Koordinaten x1 = x2 = 0 heißt der Nullvektor.
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Ein beliebiger linearer Operator A, der eine Abbildung zwischen (zweidimensionalen)
Vektoren bewirkt, muss bei Anwendung auf x stets ein Ergebnis der Form

Ax =
(

a1x1 + a2x2
a3x1 + a4x2

)
(28.1)

mit gewissen Zahlen a1, ..., a4 liefern, da der Operator in beiden Koordinaten linear
sein muss. Die Zahlen a1, ..., a4 hängen natürlich von dem speziellen Operator A ab
und bestimmen ihn in eindeutiger Weise. Die Gleichung (28.2) legt es nahe, analog zu
der Vektorschreibweise (28.1) für den linearen Operator A mit (28.2) und für einen
entsprechenden Operator B die Schreibweise

A =
(

a1 a2
a3 a4

)
, B =

(
b1 b2
b3 b4

)
(28.3)

einzuführen. Die auf den rechten Seiten der Gleichungen (28.3) stehenden Ausdrücke
heißen Matrizen, und die Zahlen, aus denen die Matrizen gebildet werden, die Elemente
der Matrizen.
Spezielle Beispiele liefern uns die Matrizen

I =
(

1 0
0 1

)
, O =

(
0 0
0 0

)
, P1 =

(
1 0
0 0

)
, P2 =

(
0 0
0 1

)
(28.4)

mit

Ix =
(

x1
x2

)
, Ox =

(
0
0

)
, P1x =

(
x1
0

)
, P2x =

(
0
x2

)

I ist die Einheitsmatrix, O die Nullmatrix, und die Matrix Pk ist für k = 1, 2 jeweils
ein Projektor auf die entsprechende Komponente des Vektors, der als Operand auftritt
(vgl. Abb. 35 sowie § 26).

Abb. 35

Rechnungen mit Matrizen. Aus der Definition (26.5) für die Addition von Operatoren
folgt für die Addition von Matrizen(

a1 a2
a3 a4

)
+
(

b1 b2
b3 b4

)
=
(

a1 + b1 a2 + b2
a3 + b3 a4 + b4

)
(28.5)

und aus der Definition (26.2) für die Multiplikation entsprechend(
a1 a2
a3 a4

)(
b1 b2
b3 b4

)
=
(

a1b1 + a2b3 a1b2 + a2b4
a3b1 + a4b3 a3b2 + a4b4

)
(28.6)
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Speziell ergibt sich noch aus (26.2) für die Multiplikation mit einer Zahl c

c

(
a1 a2
a3 a4

)
=
(

ca1 ca2
ca3 ca4

)
(28.7)

(vgl. Aufgabe 44). Matrizenprodukte sind im allgemeinen nicht vertauschbar, wie das
Beispiel (

0 1
0 0

)(
0 0
1 0

)
=
(

1 0
0 0

)
,

(
0 0
1 0

)(
0 1
0 0

)
=
(

0 0
0 1

)

zeigt. Führen wir die Bezeichnungen

A =
(

0 1
0 0

)
, R =

(
0 0
1 0

)

ein, so lassen sich die vorhergehenden Gleichungen wegen (28.4) in der Form AR = P1,
RA = P2 schreiben, aus der durch erneute Anwendung von (28.6) ARA = P1A =
AP2 = A, RAR = RP1 = P2R = R folgt.
Damit ist gezeigt, dass die Matrizen A und R zueinander reflexiv invers sind, wobei die
zugehörigen Projektoren (26.15) wegen P1 + P2 = I

P = P1 , Q = P2

lauten.
Vektoren und Matrizen sind geeignet, um Gleichungssysteme

a1x1 + a2x2 = f1 , a3x1 + a4x2 = f2 (28.9)

in der Kurzform Ax = f schreiben zu können. Da das System (28.9) im Fall

d = a1a4 − a3a2 ̸= 0 (28.10)

nach (11.3) die eindeutig bestimmte Lösung

x1 = 1
d

(a4f1 − a2f2) , x2 = 1
d

(−a3f1 + a1f2)

besitzt, können wir jetzt sagen, dass die Matrix A unter der Voraussetzung (28.10)
eine Inverse besitzt, und zwar bei Verwendung der Eigenschaft (28.7)

A−1 = 1
d

(
a4 −a2

−a3 a1

)

Weiterhin ist es jetzt möglich, die Aufgabe 22 als Spezialfall der Eigenschaft 3◦ oder
auch 8◦ von § 27 zu behandeln, worauf wir aber nicht weiter eingehen wollen. Bei den
Matrizen (28.8) ist die Bedingung (28.10) nicht erfüllt, so dass wir uns dort mit verall-
gemeinerten Inversen begnügen müssen. Beispiele für eine Rechts- oder Linksinverse,
die nicht sogar Inverse ist, gibt es im Bereich der Matrizen (28.3) nicht.
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Verschiedene Bereiche. Bisher haben wir uns ausschließlich mit Operatoren befasst, bei
denen Definitions- und Bildbereich übereinstimmen. Im allgemeinen ist diese Voraus-
setzung jedoch nicht erfüllt.
Die vorhergehenden Überlegungen lassen sich auf den allgemeineren Fall übertragen,
wenn man darauf achtet, dass bei der Addition A + B die Operatoren A und B einen
gemeinsamen Definitionsbereich und einen gemeinsamen Bildbereich besitzen und dass
bei der Multiplikation AB der Bildbereich des zweiten Faktors B im Definitionsbereich
des ersten Faktors A enthalten ist.

Hierfür wollen Wir jetzt abschließend einige Beispiele anführen, wobei wir uns nach wie
vor auf zweidimensionale Vektoren und die zugehörigen Matrizen (28.3) beschränken.

Neben den Vektoren (28.1), die wir jetzt als Spaltenvektoren bezeichnen, führen wir
die Zeilenvektoren

α =
(

a1 a2
)

, β =
(

b1 b2
)

ein, die sich von den Spaltenvektoren lediglich in der zeilenweisen Anordnung der Ko-
ordinaten unterscheiden. Die Addition und die Multiplikation mit einer Zahl ist auch
hier wieder koordinatenweise auszuführen, d. h.(

a1 a2
)

+
(

b1 b2
)

=
(

a1 + b1 a2 + b2
)

c
(

a1 a2
)

=
(

ca1 ca2
)

Zwischen Spalten- und Zeilenvektoren erklären wir die folgenden beiden Produkte:(
a1
a2

) (
b1 b2

)
=
(

a1b1 a1b2
a2b1 a2b2

)
,

(
b1 b2

) ( a1
a2

)
= a1b1 + a2b2 (28.12)

wobei das Ergebnis im ersten Fall eine Matrix und im zweiten Fall eine Zahl ist. Fassen
wir bei den Produkten (28.12) jeweils den ersten Faktor als Operator und den zweiten
als Operanden auf, so haben wir es hier mit Beispielen zu tun, bei denen die Operanden
und die Bilder unterschiedlichen Mengen angehören. Ein weiteres Beispiel dieser Art
lautet (

a1
a2

)
c =

(
a1c
a2c

)

wobei c eine reelle Zahl ist.

Wie man zeigen kann, lassen sich die Produkte (28.12) auch als Operatorprodukte
auffassen, wenn man auf den linken Seiten auch die zweiten Faktoren als Operatoren
deutet und sie auf zulässige Operanden anwendet.
Wählt man dann

a1b1 + a2b2 = 1 (28.13)

was auf mannigfache Art möglich ist, so liefertβa = 1, wobei a der zu α gehörende
Spaltenvektor ist, ein Beispiel dafür, dass a Rechtsinverse von β und somit β Linksin-
verse von a ist. Bei diesen Operatoren gibt es im Gegensatz zu den zuvor betrachteten
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Matrizen keine Inversen, da aβ nach (28.12) niemals die Einheitsmatrix darstellen kann.
Es lässt sich aber erreichen, dass aβ eine symmetrische Matrix wird, bei der a1b2 = a2b1
gilt, woraus in Verbindung mit (28.13)

b1 = a1

a2
1 + a2

2
, b2 = a2

a2
1 + a2

2
(28.14)

folgt. Die spezielle verallgemeinerte Inverse β von a mit den Koordinaten (28.14) heißt
die Moore-Penrose-Inverse von a.

Die vorhergehenden Ergebnisse veranschaulichen insbesondere die Eigenschaften 5◦ und
6◦ von § 27, da die Gleichung

(
a1 a2

) ( x1
x2

)
= f (28.15)

mit einer gegebenen Zahl f unterbestimmt und die Gleichung(
a1
a2

)
x =

(
f1
f2

)

mit einer gesuchten Zahl x überbestimmt ist. Multipliziert man die letzte Gleichung
formal mit der Moore-Penrose-Inversen β von a, so entsteht wegen (28.14) gerade die
verallgemeinerte Lösung (23.5) mit n = 2 der Vektorgleichung (28.15).

Aufgabe 44. Man beweise die drei Gleichungen (28.5) bis (28.7).
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9 Lösungshinweise
1. 5! = 5 · 4 · 3 · 2 · 1.

2. Für k = 0 und k = n stimmt die Behauptung wegen (1.5). Für die übrigen k folgt
sie wegen (1.6) ausn

k

 =
n − 1

k − 1

 +
n − 1

k

 = (n − 1)!
(k − 1)!(n − k)! + (n − 1)!

k!(n − k − 1)!

= (n − 1)!
k!(n − k)!(k + (n − k)) = n!

k!(n − k)!

nach dem Prinzip der vollständigen Induktion.

3. a = 63
100 , q = 1

100

4. a
1−q = 63

99 = 7
11

5. n + 1

6. (1 − 1)n = 0; für ungerade n kann man den Beweis auch mit Hilfe von (1.7) führen.

7. (n + 1)! − 1

8. (−1)n 1
2n(n + 1).

9. 1
3((−1)n + 2n+1)

10. 1
2n(n + 1) (vgl. Aufgabe 8).

11. 1
2n2 + c1n + c2 mit beliebigen Konstanten c1, c2

12. 1
4n(n + 2) + c mit einer beliebigen Konstante c.

13. Man multipliziere y′
n + ay′

n−1 + by′
n−2 = f ′

n mit c1 und y′′
n + ay′′

n−1 + by′′
n−2 = f ′′

n

mit c2, anschließend addiere man die Ergebnisse.

14. x′
n = c2+n−c−n

c2−1 , x′′
n = c1+n−c1−n

1−c2 für c2 ̸= 1;
x′

n = (n + 1)cn, x′′
n = −ncn−1 für c2 = 1

15. x′
n =

√
bn sin ω(n+1)

sin ω , x′′
n = −

√
bn+1 sin ωn

sin ω

16. x2n+1 + bx2n−1 = 0, x2n + bx2n−2 = 0

17. Man eliminiere in (9.4) zunächst yn−1, ersetze n durch n − 1 und eliminiere aus
dem Ergebnis mit Hilfe der zweiten Gleichung von (9.4) nochmals yn−1

18. Man führe die Hilfsfunktion wn = ynzn−1 −yn−1zn ein, leite für diese aus (9.5) und
(9.12) die Gleichung wn = (a2 −2)wn−1 her und dividiere die Lösung wn = (a2 −2)nw0
dieser Gleichung durch znzn−1

19. Ausxn−1 < xn < x folgt g(xn−1) < g(xn) < g(x)‚ d. h. xn < xn+1 < x. Aus
x < xn < xn−1 folgt g(x) < g(xn) < g(xn−1)‚ d. h. x < xn+1 < xn
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20. Aus x2n−2 < x2n < x folgt g(x2n−2) > g(x2n) > g(x)‚ d. h. x < x2n+1 < x2n−1,
durch nochmalige Anwendung von g folgt g(x) > g(x2n+1) > g(x2n−1)‚ d. h. x2n <
x2n+2 < x

21. Aus der Lösbarkeit von (11.4) folgt p = x − by = bq

22. Man wähle etwa x∗ = p, y∗ = 0; x0 = b, y0 = 1

23. Man benutze g(x′) − g(x′′) = − 1
239(3(x′2 + x′x′′ + x′′2) + 131(x′ + x′′))(x′ − x′′)

24. |g(h(x′)) − g(h(x′′))| ≤ q|h(x′) − h(x′′)| ≤ pq|x′ − x′′|

25. sn = s0 + 1
2

n∑
k=1

(vk + vk−1)(tk − tk−1)

26. vn = (−1)nv0 + 2
n∑

k=1
(−1)n−k sk−sk−1

tk−tk−1

27.
r∑

k=1
m(k))v(k)

n =
r∑

k=1
m(k)v

(k)
0 , wobei v(k)

n die Geschwindigkeit von m(k) zur Zeit tn

bedeutet

28.
r∑

k=1
m(k)s(k)

n =
r∑

k=1
m(k)s

(k)
0 bei verschwindendem Anfangsimpuls.

29. ω ≈ sin ω ≈ 2√
ρ =

√
f
m∆t

30. sn = s0 cos ωn

31. Das komplementäre Ereignis "die Maschine hat in keinem der n Zeiträume von tk−1
bis tk, k = 1, ..., n, einen Ausfall" hat nach dem Multiplikationssatz die Wahrschein-
lichkeit 1 − qn = pn. Wegen des zweiten Ereignisses vgl. Aufgabe 32 mit m = n − 1

32. pm − pn = pm(1 − pn − m). Man berechne die Wahrscheinlichkeit für das Ereignis
"die Maschine hat ihren ersten Ausfall im Zeitintervall von tm bis tn" einerseits mit
Hilfe des Additionssatzes und andererseits mit Hilfe des Multiplikationssatzes, wobei
es im zweiten Fall nur auf die Länge des Intervalle von tm bis tk, nicht aber auf den
Anfangspunkt tm ankommt.

33. µk = 4 sin2
(

2k−1
4N π

)
, z(k)

n = 4 cos
(

2k−1
2N πn

)
, k = 1, 2, ..., N

34. g11 = a2d, g12 = −d‚ g21 = −b2d‚ g22 = a1d mit d = 1/(a1a2 − b2)

35. In zn = −gn1bz0 − gn,N−1zN wurde für gn1 die zweite und für gn,N−1 die erste der
Darstellungen (19.7) bzw. (19.9) benutzt, diese gelten aber nicht in den Grenzfällen
n = 0 bzw. n = N .

36. a) 20, b) 30

37. un = l/v−n ist eine Lösung von (21.6) und v2 = α2

38. a) zn = 1, b) zn ≈ 1+10−10(2n −4n−50), c) zn = 1+4n−99 −2n−98. Man beachte,
dass 449 = 3, 2 · 1029 ist und 2−98 = 3, 2 · 10−30.
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39. AD − F 2 = (a2 + d2)(b2 + e2) − (ab + de)2 = a2b2 + a2e2 + d2b2 + d2e2 − a2b2 −
2abde − d2e2 = (ae − db)2 usw.

40. Aus den beiden mittleren Gleichungen von (23.13) folgt c = 1
∆(Be − Ed), f =

1
∆(aE − bB) mit ∆ = ae − bd.
Folglich ist mit (23.10)

c2 + f2 = 1
∆2 (B2(e2 + b2) + E2(d2 + a2) − 2BE(ed + ab)) =

= 1
∆2 (B2D + E2A − 2EBF ) = B

∆2 (BD − EF ) + E
∆2 (EA − BF ) =

= Bx + Ey = B2

A + AE−BF
A y = B2

A + 1
A(AD − F 2)y2

und wegen A = n, y = v,
AD − F 2 = n

n∑
k=1

(tk − t)2, AC − B2 = n
n∑

k=1
(sk − s)2

gilt
g = C − c2 − f2 = 1

A(AC − B2 − (AD − F 2)y2) =
n∑

k=1
(sk − s)2 − v2 n∑

k=1
(tk − t)2

41. x = −z
(0)
N z′

N/(α + z′2
N) ≈ 0, falls α nicht zu klein gewählt wird.

42. Aus AkRk = 1 für k = 1, ..., m folgt (A1...Am)(Rm...R1) = I, aus RkAk = I folgt
(Rm...R1)(A1...Am) = I

43. a) AB(a1xn + byn) = A(aBxn + bByn) = aABxn + bAByn,
b) (A + B)(axn + byn) = A(axn + byn) + B(axn + byn) = a(A + B)xn + b(A + B)yn‚
c) Axn = fn, Ayn = gn haben die Lösungen xn = A−1fn, yn = A−1gn. Hieraus folgt
A(axn +byn) = afn +bgn und somit A−1(afn +bgn) = axn +byn = aA−1fn +bA−1gn

44. Man wende beide Seiten der zu verifizierenden Gleichung auf einen beliebigen Spal-
tenvektor x an und überzeuge sich von der Gleichheit der jeweiligen Ergebnisse.
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