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VORWORT

Die Lehre von den Geographischen Orisbestimmungen (Orts- und Zeit-
bestimmungen auf Grund astronomischer Beobachtungen) bildet einen
wichtigen Abschnitt der Sphdrischen Astronomie und handelt von den An-
wendungen dieser Wissenschaft auf die Probleme der rdumlich-zeitlichen
Orientierung des Menschen auf der Erdoberfliche. Die Methoden der Geo-
graphischen Ortsbestimmung werden daher in allen einschldgigen Lehr-
biichern der Sphirischen Astronomie mehr oder weniger ausfiihrlich mit-
behandelt, keineswegs aber in der Vollsténdigkeit, die sie verdienen. Die
Werke, die das Problem der Ortsbestimmung als Hauptthema behandeln,
sind mit wenigen Ausnahmen, auf die ich noch zuriickkomme, é#lteren
Datums und enthalten daher viele Gesichtspunkte und Methoden nicht,
die sich erst in neuerer Zeit ergeben haben.

Auf der Universitdt wird der Gegenstand der Geographischen Ortsbe-
stimmung vielfach von dem allgemeineren der Sphirischen Astronomie
getrennt und in besonderen Vorlesungen behandelt. Ich selbst habe es in
meinen astronomischen Vorlesungen in Breslau, Berlin, Graz und Géttingen
immer so gehalten und mich auf diese Weise bemiiht, dem Studierenden
eine moglichst vollstindige und geschlossene Ubersicht iiber die &uBerst
vielgestaltigen Mittel und Wege der astronomischen Orientierung nach den
Gestirnen zu geben. '

GewiB sind diese Dinge von gréBtem praktischem Nutzen und bilden eine
der wissenschaftlichen Grundlagen fiir die Kunst der Erdvermessung
(Geodisie) sowie ein unentbehrliches Hilfsmittel fiir die Seefahrt (Nautik)
und den Forschungsreisenden. Dariiber hinaus aber vermittelt die Be-
schéftigung mit den Aufgaben der Orts- und Zeitbestimmung jenes tiefere,
auf lebendige Anschauung gegriindete Verstindnis der Bewegungsvorgéinge
an der scheinbaren Himmelskugel, das dem Studierenden — und nicht allein
dem der Astronomie — zur Festigung der Fundamente seines makrokos-
mischen Weltbildes so nétig ist. Sie regt zu eigenen Beobachtungen und
Messungen an, die — wie gezeigt werden wird — nicht nur mit Prézisions-
instrumenten, sondern auch mit bloBem Auge und ganz einfachen Hilfs-
mitteln ausgefiihrt werden kénnen. Sie ist auch fiir den jungen Mathematiker
eine wertvolle Schule der Sphérischen Trigonometrie und ihrer Anwendungs-
moglichkeiten, und sie liefert dem Astronomen eine reiche Fundgrube rech-
nerischer Methoden und Kunstgriffe, auf die er auch bei der Bewiltigung
andersartiger Aufgaben seines groflen Forschungsgebietes gern und mit
Vorteil zuriickgreifen wird.

Das vorliegende Buch, das gerade von diesen Gesichtspunkten aus ge-
schrieben wurde, baut sich auf den oben erwéhnten Vorlesungen auf. Diesen
aber habe ich stets die unschétzbaren Anregungen und Vorbilder zugrunde
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gelegt, die ich im Sommer 1919 auf der Universitit Kiel aus den Vor-
lesungen meines hochgeschédtzten und unvergessenen Lehrers PaAur HARzER
nach Hause tragen durfte. HArRzER hat es immer verstanden, statt auf aus-
getretenen Pfaden zu wandeln, den Gegenstand, den er lehrte, mit eigenem
Geiste zu erfiillen, und so finden wir auch kaum eine Methode der Geo-
graphischen Ortsbestimmung, bei deren Lésung er nicht neue Wege erfolg-
reich versucht hiétte. Seine zahlreichen Arbeiten auf diesem Gebiete finden
sich in der Literatur weit verstreut, und ich habe es mir zur Aufgabe gemacht,
sie zu sammeln und in diesem Buche mit den klassischen Methoden zu einer
Ganzheit zu vereinigen. Dabei konnte ich auch einige Einzelheiten beriick-
sichtigen, die HARZER nicht mehr verotffentlicht hat und die sonst wohl der
Vergessenheit anheimgefallen wiren. Andererseits gelang es mir in einzelnen
Fillen, die HArzERschen Ldsungen, die immer mathematisch elegant und
von schoéner Symmetrie erfiillt, aber mitunter fiir einen weniger geiibten
Rechner als ihn selbst reichlich unbequem waren, nach eigenen Methoden
umzugestalten und so dem Praktiker schmackhaft zu machen. Das geschah
vor allem bei den Methoden der simultanen Bestimmung von Polhéhe und
Sternzeit aus drei relativen Zenitdistanzen, Azimuten oder parallaktischen
Winkeln (Abschnitte 48, 52, 55).

Der zur Verfiigung stehende Raum gebot in der Anlage des Buches eine
gewisse Beschriankung, deren MafB nicht immer leicht zu finden war. In den
Universititsvorlesungen geht gewdhnlich den Geographischen Ortsbestim-
mungen die allgemeine Vorlesung iiber Sphirische Astronomie voran, so
daB die Kenntnis dieses Gebietes vorausgesetzt werden kann. Um nicht die
Geschlossenheit des Lehrbuches zu gefihrden, durfte ich diese Voraussetzung
hier nicht gelten lassen. So habe ich in den ersten beiden Kapiteln wenigstens
diejenigen Dinge aus der Sphirischen Astronomie vorangeschickt, die zum
Verstidndnis der iibrigen unentbehrlich sind. Es kann also auch derjenige
sich ohne Schwierigkeit in das Buch hineinlesen, dem die Grundlage der
Sphirischen Astronomie noch fehlt, andererseits wird auch ein Leser, der
solche Kenntnisse schon besitzt, eine kurze und immer auf die eigentlichen
Zwecke des Buches ausgerichtete Zusammenfassung dieser Voraussetzungen
nicht als iiberfliissig empfinden.

Die folgenden fiinf Kapitel beschiftigen sich dann mit den Methoden
der Zeitbestimmung, der Polhéhenbestimmung, der simultanen Bestimmung
von Zeit und Polhéhe, der Bestimmung der geographischen Linge und
schlieflich mit der Ortsbestimmung im Polargebiet. Ich habe Wert darauf
gelegt, von der Vielgestalt dieser Probleme und Methoden ein mdoglichst
vollstindiges und abgerundetes Bild zu entwerfen, wenn natiirlich auch bei
weitem nicht alles beriicksichtigt werden konnte, was in der umfangreichen
Literatur auf diesem Gebiete zu finden ist. Diese Ganzheit ist ohne Uber-
schreitung des gebotenen Raumes nur durch Opfer an anderer Stelle méglich
gewesen. So muBte ich auf eine ausfiihrliche Beschreibung der den Zwecken
der Ortsbestimmung dienenden Instrumente und ihrer Handhabung ver-
zichten und mich auf eine kurzgefaBte Theorie der Gerite beschriinken,
die auf See- und Landreisen fast ausschlieBlich benutzt werden, des
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Sextanten und des Universalinsiruments. Auch die Theorie des Passage-
instruments bei Zeitbestimmungen im Meridian habe ich ihrer besonderen
Wichtigkeit halber nicht iibergehen zu diirfen geglaubt. Ferner habe ich die
Wiedergabe von konkreten Rechenbeispielen ganz unterlassen und die Zahl der
Tabellen (Anhang F) auf ein MindestmaB beschrinkt. Der letztere Verzicht
fiel am wenigsten schwer, da an Tafelwerken zum Gebrauch bei Geogra-
phischen Ortsbestimmungen kein Mangel ist — ich erinnere nur an die von
ALBRECHT, AMBRONN-DoMKE und Wirtz. So habe ich mich mit einigen
Tifelchen begniigen konnen, die weniger dem praktischen Gebrauch als
einer zahlenmiBigen Orientierung und Veranschaulichung dienen sollen.
Im iibrigen enthilt der Anhang eine Zusammenstellung von elementaren
mathematischen Hilfsmitteln, teils ohne Beweis (z. B. die wohlbekannten
Formeln der Sphéirischen Trigonometrie), teils mit ausfiihrlicher Begriin-
dung, wie gewisse Sitze, die ofter gebraucht werden und mit deren
Beweisen ich den Text nicht belasten wollte.

Ich glaube nicht, daB3 dieses kleine Lehrbuch mit den iibrigen deutsch-
sprachigen Veroffentlichungen dieser Art ernsthaft kollidieren wird. Von
neueren Biichern auf diesem Gebiet sind mir zwei bekannt geworden — die
dritte Auflage des zuerst 1912 erschienenen ,,Grundrisses der Geographischen
Ortsbestimmung‘* von K. Grarr (Berlin 1944) und ,,Die genauen Methoden
der astronomisch-geographischen Ortsbestimmung von TH. NIETHAMMER
(Basel 1947). Das erstere gibt eine sehr griindliche Anleitung fiir Beobachter
mit kleineren Instrumenten, deren Handhabung und Eigenschaften weit
ausfiihrlicher beschrieben werden, als es hier angéingig war — andererseits
bringt GrarF nur die wichtigsten und einfachsten Methoden, die in Nautik,
Geodésie und auf Forschungsreisen seit langem iiblich und erprobt sind. Das
NietnamMmeRsche Werk, das mir erst nach Abschluf des Manuskripts zu-
génglich wurde, beschrinkt sich auf die Behandlung einer kleinen Auswahl
von Methoden héchster Prézision; diese allerdings werden mit ungewohnlicher
Griindlichkeit und unter Beriicksichtigung aller instrumentellen, technischen
und fehlertheoretischen Gesichtspunkte dargestellt. Es setzt bereits ziemlich
viele astronomischen Kenntnisse und Einsichten voraus und wendet sich daher
weniger an den studierenden Anfinger als an den gewiegten Praktiker. Beide
Biicher erstreben also andere Ziele als das vorliegende, das eine breite Liicke
zwischen ihnen ausfiillt und andererseits von ihnen auf das beste ergénzt
wird.

K. Stumpff
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I. KAPITEL

EINFUHRUNG IN DAS PROBLEM DER GEOGRAPHISCHEN
ORTSBESTIMMUNG. REDUKTION DER BEOBACHTUNGEN

1. Terrestrische und astronomische Orientierung

Unsere Erde hat, wenn wir von den UnregelmiBigkeiten ihrer Ober-
flachengestaltung absehen, die Form eines schwach abgeplatteten Rotations-
ellipsoids. Um die Lage beliebiger Punkte ihrer Oberfldche beschreiben zu
konnen, bedient man sich des wohlbekannten Koordinatensystems der
Lingen- und Breitenkreise, iiber dessen Einrichtung hier keine besondere
Erlduterung notwendig ist. Alle festen Merkmale, die wir auf der Erdober-
flache vorfinden, lassen sich in dieses Netzeintragen und so zu iibersichtlichen
Darstellungen (Landkarten) vereinigen.

Soweit solche Karten vorhanden sind und die erforderliche Genauigkeit
und Vollsténdigkeit aufweisen, bereitet die Orientierung nach terrestrischen
Merkmalen keine Schwierigkeit. In den kultivierten Gegenden der Erde ist
diese Voraussetzung bereits erfiillt. Anders ist es auf dem offenen Meere, das
gestaltlos ist, und in entlegenen, unbewohnten oder schwer zuginglichen
Gebieten des Festlandes. Der Seemann, der die Meere befihrt, oder der For-
schungsreisende, der Wiisten, Steppen, weglose Urwilder oder die Eis-
regionen der Polargebiete besucht, wird daher in der Regel genotigt sein, sich
anderer Orientierungsmittel zu bedienen.

Bis zu einem gewissen Grade kommt man auch in diesen Fillen mit terre-
strischen Hilfsmitteln der Ortsbestimmung aus. Der Reisende, der von einem
auf den Karten noch bezeichneten Stiitzpunkt aus in unbekanntes Gelénde
vordringt, kann seinen Weg unter Kontrolle halten, indem er Marschrichtung
und Marschgeschwindigkeit fortlaufend beobachtet und aufzeichnet. Auch
der Seemann bedient sich dieses Verfahrens. Die Fahrtrichtung (den Kurs)
seines Schiffes bestimmt er mit dem Kompaf, die Geschwindigkeit mit
einem dazu geeigneten Gerit, der Logge. Die Logge besteht der Hauptsache
nach aus einer offenen Rohre, in dersich eine Fliigelschraube mit Umdrehungs-
zdhlwerk bewegt. Bringt man diese Rohre in der Fahrtrichtung ins Wasser,
so wird sie von diesem durchstromt; die Umdrehungsgeschwindigkeit der
Schraube ist dann der Schiffsgeschwindigkeit proportional. In der Nautik
wird diese Methode der Ortsbestimmung durch Fortschreiben von Kurs und
Geschwindigkeit als Gissen (engl. to guess = mutmaflen, schitzen) be-
zeichnet. Der auf diese Weise ermittelte Schiffsort heifit der gegifte Ort.

Es ist klar, daB3 die Unsicherheit des Gissens mit der Linge des seit der
Ausfahrt aus dem Hafen bzw. seit der letzten genauen Ortsbestimmung
zuriickgelegten Weges stark zunimmt. Der Seemann wie der Forschungs-
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reisende zu Lande wird daher bemiiht sein, den gegiten Standort von Zeit
zu Zeit durch andere Methoden der Ortsbestimmung zu kontrollieren und
nach Moglichkeit zu berichtigen. Dazu dient vor allem die Orientierung nach
den Gestirnen des Himmels, deren mannigfache und vielgestaltige Maoglich-
keiten den Inhalt dieses Buches ausfiillen sollen. Sie haben vor der Methode
des Gissens den Vorteil, absolute Orter zu liefern, d. h., von der Kenntnis des
Ausgangspunktes und des Verlaufes der Reise unabhéngig zu sein. Ihr Nach-
teil besteht darin, daB3 sie ohne besondere Hilfsmittel (Beobachtungsinstru-
mente, Uhren, astronomische oder nautische Jahrbiicher) nicht durchgefiihrt
werden konnen und daf3 die Beobachtung der Gestirne hiufig durch Be-
wolkung des Himmels unméglich gemacht wird. In noch gar nicht weit
zuriickliegender Zeit waren langanhaltende Schlechtwetterperioden, die
astronomische Ortsbestimmungen verhinderten, fiir die Seefahrt nicht un-
gefdhrlich. Heute hat die Ausbildung der Funktechnik, die eine Orientierung
durch den Empfang von Radiowellen (Funkpeilung, Zeitzeichen) gestattet,
die Bedeutung der astronomischen Beobachtungen fiir die Schiffahrt etwas
-zuriickgedringt. In weit hoherem Male gilt das fiir die Luftfahrt, in der die
astronomischen Methoden niemals eine grofle Rolle gespielt haben.

Mit den praktischen Bediirfnissen der Schiffahrt und der Forschungsreisen
erschopft sich die Bedeutung der geographischen Ortsbestimmungsmethoden
durch astronomische Beobachtung keineswegs. Wihrend fiir diese Zwecke
meist eine méBige Genauigkeit ausreichend ist und daher primitive Methoden
und einfache Instrumente mit verhiltnismiBig geringer MeBgenauigkeit
bevorzugt werden, erfordern die Aufgaben der Astronomie und der Geoddsie
exakte Methoden der Ortsbestimmung, leistungsfihige Instrumente und
Beobachtungen von héochster Prizision.

Jede Sternwarte, auf der exakte astronomische Beobachtungen aus-
gefiihrt werden, bedarf der genauesten Kenntnis ihrer geographischen Lage.
Die Bestimmung der geographischen Koordinaten geschieht dort mit Hilfe
besonderer fest aufgestellter Instrumente (Meridiankreise, Passageinstru-
mente, Vertikalkreise, Zenitteleskope u. a.) und mit einer Genauigkeit, die
mit geringeren Hilfsmitteln nicht erzielt werden konnte. Da die Gestirne,
die als rdumliche Orientierungsmarken bei der Ortsbestimmung benutzt
werden, infolge der Rotation der Erde eine scheinbare Bewegung ausfiihren,
ist jede astronomische Ortsbestimmung zwangsldufig mit der Kenntnis bzw.
der Bestimmung der Zeif verbunden. Die Sternwarten sind daher auch mit
sehr genau gehenden Uhren ausgeriistet, deren Gang durch astronomische
Zeitbestimmungen so oft wie moglich kontrolliert werden muf3. Von manchen
Sternwarten wird die Zeit regelméBig durch Rundfunksignale weitergegeben.
Wir werden spéter sehen, dafl durch diese Einrichtung die Bestimmung der
geographischen Ldnge, die sonst zu den schwierigsten Aufgaben der Orts-
bestimmung gehdort, auBerordentlich erleichtert wird.

Die Sicherheit, mit der die geographischen Koordinaten der Sternwarten
im allgemeinen bekannt sind, ist auerordentlich gro8; man kann annehmen,
daB diese GroBen bis auf ein Zehntel, haufig sogar bis auf ein Hundertstel
der Bogensekunde genau sind. Da. eine Bogensekunde auf der Oberfléiche
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einer Kugel den 206265. Teil des Halbmessers bedeutet und der mittlere
Halbmesser der Erde rund 6370 km betrégt, so entspricht auf der Erdober-
flache eine Bogensekunde einer Strecke von rund 31 m. Der Ort des Instru-
ments, mit dem die Ortsbestimmung der Sternwarte ausgefiihrt wurde, ist
also bis auf wenige Meter oder gar Dezimeter festgelegt — allerdings unter
der nicht zutreffenden Voraussetzung, daBl die Erdoberfldche genau die Form
eines Rotationsellipsoids hat.

Die Geoddsie, deren praktische Hauptaufgabe die Vermessung der Erd-
oberfldche ist, kann sich auf die Sternwarten als Fundamentalpunkte fiir
solche Vermessungsarbeiten stiitzen. Da aber diese Punkte meist sehr weit
auseinanderliegen, in manchen Gebieten auch spérlich oder gar nicht ver-
treten sind, verschaffen sich die Geodédten daneben ein dichteres Netz von
Stiitzpunkten, deren Orter gleichfalls astronomisch, aber mit kleineren
transportablen Geréten (Universalinstrumenten oder Passageinstrumenten)
bestimmt werden. Die angestrebte Genauigkeit ist hier entsprechend
geringer, aber immer noch bedeutend. Zwischen diesen Stiitzpunkten wird
die weitere Vermessung des Gelidndes mit rein terrestrischen Mitteln (Trian-
gulation, Nivellement) durchgefiihrt, die uns hier nicht zu beschéftigen
brauchen.

Die Genauigkeitsanspriiche bei der Ortsbestimmung auf See (und meist
auch bei Forschungsreisen zu Lande, falls diese nicht gerade Vermessungs-
zwecken dienen) sind erheblich bescheidener. Auf See ist dies schon deswegen
unvermeidlich, weil der schwankende Boden des Schiffes die feste Aufstellung
von Beobachtungsinstrumenten nicht gestattet und der Seemann daher
auf Geréte angewiesen ist, die er wihrend der Beobachtung frei in der Hand
hilt (Sextanten, Quadranten, Spiegelkreise). Sie gestatten meist eine MeB-
genauigkeit von 10—20 Bogensekunden, die aber nur selten ausgenutzt
wird. Die Festlegung des Schiffsortes auf den Bereich einer Seemeile
(1 Sm = 1,85 km = 1 Bogenminute auf der Erdoberfliche) ist auf hoher
See meist vollig ausreichend.

Auch bei Expeditionen auf dem Lande ist der Reisende in den meisten
Fillen auf kleine Instrumente zur Ortsbestimmung angewiesen. Oft verbietet
sich auch die Mitnahme von Prizisionsuhren, z. B. von Schiffschronometern
mit kardanischer Aufhéngung, wie sie auf Seereisen gebriuchlich sind, da
diese empfindlichen Instrumente die Erschiitterungen wihrend eines Trans-
portes zu Lande schlecht vertragen. Man wird sich in diesem Falle mit einer
guten Taschenuhr behelfen. Fiir Notfélle gibt es auch primitive Methoden
der astronomischen Orientierung, die mit ganz einfachen Hilfsmitteln und
(abgesehen von der unentbehrlichen Uhr) ohne Instrumente zum Ziele fiihren.

2. Das Blickfeld des Beobachters

Einem Beobachter im leeren Raum wiirde der Himmel mit seinen Ge-
stirnen als eine Kugel erscheinen, in deren Mitte er sich selbst befindet.
Auf diese Kugel, die ,,Sphdre*, projizieren sich fiir sein Auge alle rdumlichen
Objekte, da ihre Entfernungen nicht bemerkbar sind und ihm daher alle
gleich erscheinen. Der Halbmesser der Sphire ist willkiirlich wihlbar; es ist
zweckmiBig, ihn gleich der Einheit zu setzen. Die Orter der Gestirne an der

’
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Sphire (d. h. also ihre Projektionen auf die scheinbare Hlmmelskugel) unter-
scheiden sich also nur durch die chhtungen, aus denen sie dem Beobachter
erscheinen. Sie lassen sich durch zwei Winkelgrolen eindeutig festlegen,
wenn auf der Sphire ein Polarkoordinatensystem definiert wird. Die dritte
Koordinate, die Entfernung des Gestirns vom Beobachter, spielt in der Theorie
der Geographischen Ortsbestimmungen nur eine untergeordnete Rolle. Wir
werden daher unter dem Ort eines Gestirns, wenn es nicht ausdriicklich anders
vermerkt ist, immer seinen sphdrischen Ort verstehen. Von den Koordinaten-
systemen an der Sphére, mit deren Hilfe die Gestirnsorter sich zahlenméBig
ausdriicken lassen, wird in spiiteren Abschnitten die Rede sein.

Die Fixsterne, deren Entfernung auflerordentlich groB ist, erscheinen
dem Beobachter als punktférmige Objekte bzw. infolge der Beugung des
Lichtes an der Pupillenéffnung des Auges oder am Fernrohrobjektiv als
Scheiben von sehr kleinem Durchmesser, so daf3 sie sich als Orientierungs-

marken fiir die Ortsbestimmung am
besten eignen. Die Korper des Sonnen-

systems dagegen zeigen eine merk-
: s liche Ausdehnung — Sonne und Mond
o schon fiir das unbewaffnete Auge, die -

g T \ M Planeten beim Anblick im Fernrohr.
Diese Himmelskorper sind (wenn wir
von der starken Abplattung der

Abb. 1: Planeten Jupiter und Saturn absehen)
von kugelférmiger Gestalt und pro-
jizieren sich daher auf die Sphére als

Kreisscheiben. In den astronomischen

Jahrbiichern werden als Orter dieser Gestirne die Koordinaten ihrer

Mittelpunkte angegeben, wihrend der Beobachter mit dem MeBfaden

seines Fernrohrs ihre Rénder anvisiert. Zur Reduktion der Randbeobach-

tungen auf den Mittelpunkt der Gestirnsscheibe ist also die Kenntnis des
scheinbaren Gestirnshalbmessers notwendig, d. h. des Winkels, unter dem
der Halbmesser des Himmelskorpers dem Beobachter erscheint. Ist s der
lineare Halbmesser und r die Entfernung des Gestirnsmittelpunktes vom

Scheinbarer Halbmesser eines Gestirns

Beobachter, so ist der scheinbare Halbmesser ¢ durch sin ¢ =% I;1)
gegeben '(Abb. 1).

Die scheinbaren Halbmesser von Sonne und Mond, die wegen der wech-
selnden Entfernung dieser Gestirne von der Erde in engen Grenzen schwan-
ken, konnen fiir jeden Zeitpunkt aus den Jahrbiichern entnommen werden.
Sie sind einander ungefdhr gleich und betragen im Mittel rund 16 Bogen-
 minuten. Die Kenntnis des scheinbaren Halbmessers ist nur dann ent-
behrlich, wenn der Beobachter das Gestirn als volle Kreisscheibe erblickt
und deren Ausdehnung durch Beobachtung der entgegengesetzten Rénder
eliminieren kann. Das ist bei der Sonne stets der Fall, beim Monde und den
Planeten wegen ihrer wechselnden Beleuchtungsphasen aber nur bei voll
beleuchteter Scheibe (Vollmond, Opposition, obere Konjunktion).
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Nihert sich der Beobachter der Oberfliche des Himmelskorpers, so strebt
r gegen s und daher o:gegen 90°. Fiir einen Beobachter, der sich auf der
Oberfléche selbst befindet, verdeckt also das Gestirn die Hilfte der Sphire.
Demnach erscheint uns Bewohnern der Oberfliche des Planeten Erde der
Rand dieses Gestirns (wenn wir die Erde einmal als Kugel mit glatter Ober-
fliche ansehen wollen) als ein groBter Kreis, den wir als Horizont bezeichnen.
In Wirklichkeit wird die Ho-
rizontlinie meist durch die ,
Unebenheiten der Erdober-
fliche unkenntlich gemacht.
Nur auf dem offenen Meere
ist sie als Kimmlinie direkt
beobachtbar und erscheint
nur  geringformig  durch
die Meereswellen deformiert.
Hierbei muB allerdings . be-
merkt werden, dafl die Kimm
mit dem wahren Horizont
nicht genau zusammenfillt,

da das Auge des Beobachters M
immer etwas oberhalb der Abb. 2: _
Erd- bzw. Meeresoberfliche Kimmtiefe und Sichtweite

angenommen werden mug.

Die Abweichung zwischen Kimm und wahrem Horizont ist nicht unbe-
trichtlich, selbst wenn die Erhebung des Beobachtungsstandorts iiber. dem
Meeresspiegel nur wenige Meter betrigt. Es sei (Abb.2) B das Auge des
Beobachters, A der senkrecht unter ihm liegende Punkt der kugelférmigen
Erde, M der Erdmittelpunkt, R der Erdradius und BK eine Tangente von
B an die Meeresoberfliche. H'H’ versinnbildliche die Tangentialebene in A.
Dann schneidet ihre Parallelebene HH durch B die Sphére um B im wahren
Horizont, wihrend die Kimm offenbar um den Winkel HBK = BMK = x
unterhalb des Horizontes liegt. Ist BA = h die Hohe des Standortes iiber
dem Meeresspiegel, so bestehen zwischen der Sichiweite BK = S, der Ki zmm-
tiefe x und R, h die Beuehungen

S
tg”=ﬁ.

COS X = —R"_ITF ’
Da x ein sehr kleiner Winkel und auch das Verhiltnis % sehr Klein ist. kann
man genéhert setzen
P I .
T2 TR’ R

und somit

1  Geogr. Ortsbestimmungen
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Driickt man h in Metern aus und setzt man den mittleren Erdradius
R= 6,37 -10%m, so erhdlt man fiir die Kimmtiefe in Bogensekunden

"o L — 45 B . 9)
o= 1155 Vh (I; 2

und fiir die Sichtweite
S = 3,57 Vhkm. (I; 3)

Sichtweite und Kimmtiefe sind also der Wurzel aus der Hoéhe iiber dem
Meeresspiegel proportional. Die Formeln (I; 2) und (I; 3) erfordern aber noch
Korrekturen, da die Lichtstrahlen, die von der Kimm zum Beobachter
gelangen, Luftschichten verschiedener Dichte durchlaufen und daher nach
dem Gesetz der Strahlenbrechung gekriimmt werden. Die durch diese
Erscheinung verinderten Verhéltnisse sind, stark iibertrieben, in der rechten
Hilfte der Abb. 2 dargestellt. Da im allgemeinen die Luftdichte von der
Meeresoberflidche nach oben abnimmt, ist der Sehstrahl BK; nach unten
gekriimmt. Die Kimm erscheint daher dem Beobachter in der geringeren
Tiefe x,, wihrend die Sichtweite vergroflert wird. Die Korrektion der Kimm-
tiefe, die hier allein interessiert, kann nicht streng berechnet werden, da sie
von vielen —in den wenigsten Fillen iibersehbaren — Umsténden abhiingt.
Der Gradient der Luftdichte in den untersten Atmosphéreschichten ist je
nach den meéteorologischen Verhiltnissen stark variabel. Er hingt vor allem
von dem Unterschied zwischen Luft- und Wassertemperatur sowie von dem
Grad der Durchmischung der unteren Luftschichten ab. Der Seemann, der
seine Beobachtungen (Gestirnshéhen iiber dem Horizont!) gern direkt auf
die Kimmlinie bezieht und der daher bei ihrer Reduktion die Kimmtiefe zu
beriicksichtigen hat, benutzt gewohnlich statt (I; 2) die empirische Formel

12 v — 106; 6 Vh a; 4)
3"
fiir die verbesserte Kimmtiefe, die den durchschnittlichen Ergebnissen vieler
Untersuchungen iiber den Einflul der Strahlenbrechung am besten ent-
spricht.

®] =

3. Das Bezugssystem des Horizontes

Wenn wir die Gestirne des Himmels als Orlentlerungsmarken fiir die
Geographische Ortsbestimmung benutzen wollen, miissen wir drei Voraus-
setzungen erfiillen: 1. die Orter der Gestirne in ein lokales, d. h. mit Beob-
achtungsort und Erdkérper starr verbundenes Koordinatensystem einordnen,
2. die Koordinaten der Gestirne in einem raumfesten, d. h. mit der Gesamtheit
der Fixsterne in geeigneter Weise verbundenen System bestimmen, 3. die
rdumlich-zeitlichen Beziehungen zwischen beiden Systemen festlegen.

Als Hauptkoordinatenebene des lokalen Systems, mit dem wir uns zuerst
beschaftlgen wollen und dessen Ursprung im Beobachtungsort (genauer
gesagt, im Auge des Beobachters) liegt, bietet sich von selbst die Ebene des
Horizontes dar. Wir haben gesehen, dal der groSte Kreis, in dem diese
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Ebene die Sphére schneidet, der Horizont, nur auf freiem Meere (nach Beriick-
sichtigung der Kimmtiefe) der Beobachtung direkt zuginglich ist. Diese
Definition des Horizontes geniigt aber hochstens den geringen Genauig-
keitsanspriichen, die bei Beobachtungen mit Sextanten und &hnlichen
kleineren Instrumenten gestellt werden, also allenfalls bei Ortsbestimmungen
auf See, wo sie ja auch allein anwendbar ist.

Zu einer exakten Bestimmung des Begriffes der Horizontalebene reichen
geometrische Hilfsmittel nicht aus. Auch die Definition der Horizontalebene
als einer Tangentialebene des Erdellipsoids ist unzulinglich, da ja die Erd-
oberflidche in Wirklichkeit gar keine glatte und differenzierbare Figur dar-
stellt. Diese Schwierigkeit 148t sich beseitigen,
wenn man die Schwerkraft in Betracht zieht.
Horizontal nennen wir die ebene Oberfldche
einer ruhenden Fliissigkeit, die sich unter der
Wirkung der Schwerkraft senkrecht zu deren
Richtung einstellt. Genauer ausgedriickt: die
Oberflichen ruhender Fliissigkeiten sind Ni-
veaufldchen der Schwerkraft und werden von
der Richtung dieser Kraft iiberall senkrecht
durchsetzt. Auch die Meeresoberfliche ist, wenn
wir von ihrer Deformation durch Wellen, Stro-
mungen und Gezeiten absehen,: eine solche
Niveaufldche. Man kann also die Horizontebene
und damit den Horizont des Beobachters all-
gemein durch ihre Normale, die Schwerkrafts-
oder Lotrichtung, definieren. Diese 148t sich  Abb. 3: Meridianschnitt
aber immer auf einfache Weise und mit sehr des Erdellipsoids
groBer Genauigkeit physikalisch und beobach-
tungstechnisch realisieren, z. B. durch Vorrichtungen wie Senklot, Wasser-
waage (Libelle, Niveau) oder durch die spiegelnde Oberfliche einer mit
Quecksilber gefiillten Schale (Quecksilberhorizont).

Wir betrachten nun, was fiir die ferneren Uberlegungen unbedenklich
statthaft ist, die Erdoberfldche als ein abgeplattetes Rotationsellipsoid mit
‘der Achse PP’ (P = Nordpol, P’ = Siidpol). Abb: 3 stellt denjenigen ebenen
Schnitt durch diese Figur dar, der die Erdachse und den Beobachtungsort B
enthilt. Diese Ebene, die wir als die Meridianebene von B bezeichnen, enthilt
die Lotrichtung BZ des Beobachtungsortes und steht daher auf der Horizont-
‘ebene von B senkrecht, deren Spur BX die ,,Meridianellipse’* PBP’ in' B
beriihrt.

In dem lokalen und mit dem Erdkérper starr verbundenen Koordinaten-
system, das wir nun definieren wollen, sei B der Anfangspunkt und die nach
»oben*, d. h. in bezug auf das Erdellipsoid nach auflen gerichtete Lotrichtung
BZ die positive Z-Achse, so daB3 also die Horizontebene zur XY-Ebene wird.
In ihr sei BX, also der Schnitt zwischen Horizont- und Meridianebene, die
X-Achse. Die positive X-Richtung zeige nach Siiden und bilde daher mit der
Richtung PP’ einen spitzen Winkel ¢. Die positive Y-Achse soll nach Westen
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zeigen; sie steht in Abb. 3 senkrecht auf der Papierebene und ist auf den
Beschauer gerichtety

Abb. 4 zeigt die Sphire des Beobachtungsorts, d. h. die um B als Mittel-
punkt konstruierte Einheitskugel, die durch den Horizont SWNO in eine
obere und untere Hilfte zerlegt wird. Die Lofrichfung hat mit der Sphire
zwei Punkte gemeinsam, das Zenit Z (oben) und das Nadir Z’ (unten). Auf
dem Horizont zeichnen die X- und die Y-Achse vier weitere Hauptpunkte
ab, den Siidpunkt S, den Westpunkt W, den Nordpunkt N und den Ost-
punkt 0. Die Endpunkte der positiven X-, Y- und Z-Achse sind S, W und Z.

Die drei Hauptkoordlna—
tenebenen dieses lokalen Sy-
stems, das wir als das System
des Horizontes bezeichnen,
erzeugen an derSphéredreizu-
einander orthogonale GrofSt-
kreise: die XY-Ebene den
Horizont SWNO, die XZ-
Ebene den Meridian SZNZ',
die YZ-Ebene den Ersten Ver-
tikal WZOZ’'. Allgemein be-
zeichnet man als Verlikale
alle GroBtkreise, die durch
Zenit und Nadir gehen und
daher den Horizont recht-
winkligschneiden. Jeder Kreis
der Sphére, der parallel zum
Horizont verlduft, heiflit Al-
mukantaraf. Unter allen Al-
mukantaraten ist nur der Ho-
rizont selbst ein GroBtkreis,

Ist G der sphérische Ort eines Gestirns, so sind seine Koordinaten

Abb. 4: System des Horizontes

T =-cosh cos A, l
y=coshsind, (x2+y*+22=1) ’ (I;5)
z =sin A,

wenn h die Erhebung des Gestirns iiber dem Horizont und A den Winkel
bezeichnet, den der Vertikal von G mit dem Meridian bildet. Man nennt h

dle Hohe, A das Azimut des Gestirns. Die Héhe kann zwischen — - (Nadlr)r
und + (Zenlt) variieren.!) Das Azimut wird auf dem Horlzont' vom Siid-

punkt nach Westen gezihlt und kann demnach zwischen 0 und 2 x liegen,
bzw. zwischen — n# und + 7, wenn man fiir Sterne 6stlich des Meridians

1) Im WinkelmaB ist z = 180°, .also % =90° zu setzen.
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negative Azimute einfiihrt. Gestirne, die auf dem gleichen Almukantarat
liegen, haben gleiche Hohen, Gestirne auf dem gleichen Vertikal gleiche
Azimute oder, falls sie auf verschiedenen Seiten vom Zenit liegen, solche, die
sich um 7 unterscheiden. Im Zenit und im Nadir verliert der Begriff des

Azimuts seinen Sinn. Diese beiden Punkte sind durch die Angabe h = | %

allein eindeutig bestimmt.
In der Folge werden wir statt der Hohe h meistens die Zenitdistanz

T
Z—E—II

benutzen, die alle Werte zwischen 0 (Zenit) und & (Nadir) annehmen kann.

Alle Punkte des Horizonts haben die Zenitdistanz %

4. Das lokale System des Aquators

AuBer der Lotrichtung gibt es noch eine zweite fundamentale Richtung,
die sich innerhalb des Horizontsystems nicht dndert und daher zur Definition
eines weiteren lokalen Koordinatensystems dienen kann. Sie verlduft parallel
der Rotationsachse der Erde und zeigt nach zwei gegeniiberliegenden Punkten
der Sphire, dem Nordpol P und dem Siidpol P’ des Himmels, deren Lage
an der Sphire, wie spéter gezeigt werden soll, durch Beobachtungen leicht
bestimmt werden kann. Abb. 5, die wie Abb. 3 den durch den Beobachtungs-
ort B gelegten Meridianschnitt der Erde darstellt, zeigt, daB die Richtungen
von B nach P und P’ in der Meridianebene von B liegen und daf} die Hohe
von P iiber dem Horizont von B dleich dem schon genannten Winkel ¢ ist,
den die Erdachse mit der Horizontebene von B bildet.

Als Héhe des Nordpols, kurz als Polhohe von B, ist ¢ positiv, wenn B auf
der Nordhalbkugel der Erde liegt. Fiir Beobachtungsorte auf der siidlichen
Halbkugel ist @ negativ, da fiir diese der Nordpol des Himmels unter dem
Horizont liegt. Fillt B mit dem Nordpol bzw. dem Siidpol der Erde zu-
—725 bzw. ¢ = —%, da im ersteren Falle der Himmels-
nordpol im Zenit, im letzteren Falle im Nadir steht. Fiir alle Orte des Erd-
aquators befinden sich beide Himmelspole im Horizont, und es ist ¢ = 0.

sammen, so ist ¢ =

Die Gerade PP’ wird als Weltachse bezeichnet, da um sie das Himmels-
gewolbe mit den praktisch unendlich weit entfernten Fixsternen seine
scheinbare tégliche Drehung ausfiihrt. Die Weltachse dient als Hauptachse
eines neuen lokalen und mit dem Erdkorper fest verbundenen Koordinaten-
systems (Abb. 6), das aus dem Horizontsystem hervorgeht, wenn man um
dessen Y-Achse OW eine Drehung um 721 —
punkt aus gesehen im positiven, d.h. der Uhrzeigerbewegung entgegen-
2 Geogr. Ortsbestimmungen

@ ausfiihrt, und zwar vom West-
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gesetzten Sinne. Die Horizontebene geht durch diese Drehung in die auf der
Weltachse senkrecht stehende Ebene des Himmelsiquators AWQO iiber.
Durch einen Gestirnsort G der Sphire 148t sich ein dem Aquator paralleler
Kereis legen, der als Parallelkreis bezeichnet werden soll. Unter allen Parallel-
kreisen ist der Himmelsdquator selbst der einzige GroBtkreis.

ﬁ\ p

ory, .
%,

-

~~a
~

7
/ S

I Y
P
Abb. 5: Meridianschnitt
Polhéhe des Beobachtungsorts Abb. 6: Erstes Aquatorsystem?)

Der Parallelkreis durch G wird von dem Stundenkreis PGP’ senkrecht
geschnitten, jenem Halbkreis, der G mit den beiden Himmelspolen verbindet.
Der Winkel ¢, den der Stundenkreis mit dem Meridian einschliet, heif3t
Stundenwinkel. Dem Stundenkreis, der durch das Zenit geht, und der
mit dem Meridian zusammenféllt, wird der Stundenwinkel { = 0 zuge-
schrieben, von ihm aus zdhlt man die Stundenwinkel positiv nach Westen.
Der Abstand des Gestirns vom Himmelsdquator, der fiir Sterne nérdlich des
Aquators positiv gerechnet wird, heit Deklination. Durch den Stunden-
winkel ¢ und die Deklination & ist der Ort des Gestirns eindeutig bestimmt.

Die Beziehungen zwischen den Koordinaten im System des Horizonts
(A, h bzw. z) und denen im lokalen Aquatorsystem (t, §) leitet man aus dem
sphérischen Dreieck PZG (Abb. 7) ab, das aus dem Himmelsnordpol P, dem
Zenit Z und dem Gestirnsort G gebildet wird und Pol —Zenit-Dreieck
oder Nautisches Dreieck heif3t.2)

1) Abb. 6 (ebenso Abb. 10 und 29) sind schematisch gezeichnet, d. h., es wurde
darauf verzichtet, wie in Abb. 4 und 16 die Sphire in exakter Parallelprojektion
wiederzugeben. Diese Ungenauigkeit mufite der Deutlichkeit des Bildes zuliebe
in Kauf genommen werden.

2) Sphirische Dreiecke werden hier immer so gezeichnet, wie sie einem Beob-
achter auferhalb der Sphire erscheinen.
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Die Grundformeln der Sphérischen Trigonometrie [Anhang A (1)] er-
geben ‘

sin § = co0s z sin ¢ — sin z cos ¢ cos A,
cos § cost = cos z cos @ -} sin z sin @ cos A,
cosdsint = sinzsin 4 (I;6)
fiir die Berechnung von (4, ) aus (z, A) und
cos z = sin é sin ¢ + cos d cos @ cost,
sin z cos A = —sin d cos ¢ +- cos d sin p cos,
sin zsin A = cos d sin ¢ (I1;7)

fiir die umgekehrte Operation, unter der Vor-
aussetzung, dafl die Polhohe ¢ des Beobach-
tungsortes bekannt ist.

Der Winkel p, den Stundenkreis und Ver-
tikal des Sternes miteinander einschliefen und
der positiv sein moge, wenn sich der Stern
westlich des Meridians befindet, wird als der
parallaktische Winkel bezeichnet.

Abb. 7: 5. Geographische Koordinaten

Das ,,Nautische Dreieck* Die relative Lage der beiden lokalen Be-
(Pol—Zenit—Gestirn) zugssysteme eines Beobachtungsortes B, zuein-
ander und zu den entsprechenden Bezugs-
systemen anderer Orte B,, By, ... ist von der geographischen Lage dieser
Punkte abhiingig. Es ist vorteilhaft, die geographischen Koordinaten eines
Beobachtungsortes so zu definieren, daB diese fiir alle Methoden der Geo-
graphischen Ortsbestimmung grundlegenden Beziehungen moglichst einfach
werden.

Wir nehmen zunéchst wieder an, daB3 die Erdoberflache die Gestalt eines
abgeplatteten Rotationsellipsoids habe. Die durch die Erdachse begrenzten
Halbebenen schneiden aus dieser Figur kongruente Halbellipsen heraus, die
als Meridiane oder Ldngenkreise der Erde bezeichnet werden. Allen Orten,
"die auf dem gleichen Léngenkreise liegen, wird als gemeinsame Koordinate
die gleiche geographische Linge A zugeordnet. Demjenigen Meridian, der durch
einen willkiirlich auszuwihlenden Ort hindurchgeht, wird die Lénge 4 =0
gegeben — er heiflt Nullmeridian. Auf Grund internationaler Vereinbarungen
ist es heute fast allgemein iiblich geworden, hierfiir den Lingenkreis zu
nehmen, der durch die Sternwarte in Greenwich (London) hindurchgeht
(genauer gesagt: durch den Mittelpunkt des dort aufgestellten Meridian-
kreises). Die Léngendifferenz zweier geographischer Orte ist gleich dem
Winkel, der von den beiden die Meridiane dieser Orte erzeugenden Halb-
ebenen eingeschlossen wird. Die geographische Lénge wird vom Nullmeridian
positiv nach Westen, negativ nach Osten gezahlt. Durch eine zweite Koor-
dinate, die wir als geographische Breite bezeichnen wollen, wird die Lage des

2¢
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Beobachtungsortes auf der Meridianellipse festgelegt. Abb. 8 stellt den
Meridianschnitt dar, der den Ort B enthilt. P und P’ seien die Erdpole,
M der Erdmittelpunkt und A der Aquatorpunkt der Meridianellipse, deren
groBe Halbachse M A = a, und deren kleine Halbachse MP = MP’ = b sei.
P Die Definition der geographischen Breite erfordert
P einige Uberlegungen, da sich hierfiir mehrere Moglich-
keiten darbieten:
g 1. Seien x, y die rechtwinkligen Koordinaten von B
A y in einem System mit M als Anfangspunkt, MA als z-
M 3 A und MP als y-Achse, so ist
r=acosy[ = n .
y=bsingp( 2§'/’§+2) (I 8)
die Parameterdarstellung der Halbellipse PAP’, die nach
P Eliminierung von p in die Ellipsengleichung
Abb. 8: bt x? + a? y? = a? b? 1;9)
Geozentrische Breite {ibergeht. Durch den Parameter y wird die Lage von B
auf dem Meridian eindeutig bestimmt.
2. Durch die Gleichungen

r=gcos¢’( & __  _ = .
(- sv=+3) (; 10

werden die rechtwinkligen Koordinaten (z,y)
in die Polarkoordinaten (o, ¢’) iibergefiihrt
(Abb. 8). Zur Kennzeichnung von B leistet ¢’
die gleichen Dienste wie y.

3. Schliefllich ist auch die im vorigen Ab-
schnitt definierte Polhéhe ¢ von B fiir denselben
Zweck geeignet, da auch sie die Lage von B
eindeutig charakterisiert. In Abb. 9 ist der
Meridianschnitt gleichzeitig auf die Sphire von
B erstreckt, die er im Meridian NZS schneidet.
Nach Definition ist ¢ die Hohe des Himmels-
nordpols P iiber dem Horizont NS von B;
gleichzeitig ist diese Grofle, wie man unmittelbar
aus der Figur abliest, gleich der Deklination des

. ; Zenits Z bzw. gleich dem Winkel, den die Nor-
uﬁg"g;;ﬁ:;ﬁﬁhﬁﬂﬁe male KBZ der Meridianellipse in B mit der
groBen'Achse bildet.

Die drei GroBen y, @, ¢’ sind einander gleich, wenn B an den Polen oder

am Aquator der Erde liegt, sie haben dann die gemeinsamen Werte 4- 7%bzw. 0.

Wire die Erde eine Kugel, also a = b, so wire stets y = ¢ = ¢'. Fiir die
geringfiigig abgeplattete Erde sind die Unterschiede zwischen den drei
Winkeln klein.
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Da ¢ als Hoéhe des Himmelsnordpols und als Deklination des Zenits ein-
fache Beziehungen zu den beobachtbaren Richtungen der lokalen Bezugs-
systeme hat und demgemidB auch in den Gleichungen (I;6, I;7) er-
scheint, verdient diese GroB3e vor den beiden anderen, die der Beobachtung
nicht unmittelbar zugénglich sind, den Vorzug. Wir setzen daher fest: Die
geographische Breite eines Ortes ist gleich seiner Polhohe ¢p. Wir bezeichnen
ferner ¢ als die geozentrische Breite und den Punkt Z’ (Abb. 9), in dem die
Richtung MB in ihrer Verlidngerung die Sphire trifft, als das geozentrische
Zenit. Die geozentrische Breite ist gleich der Deklination des geozentrischen
Zenits.

Aus (I; 10) ergibt sich

Y .
tgg'=2 (I3 11)
und aus (I; 8)
a a
tgipzb—z—_——gtg?'. (I; 12)
Ferner ist die Richtungskonstante der Ellipsennormale in B
_Ty_a@ :
tg‘l’—m—p@?’- (I; 13)
Daraus folgt
g =Ltgp, tgp=2t

tgp-tge' =tgy
und, da b < a,

PI<lvI=Iol
Fiir das Erdellipsoid setzen wir nach Hayrorp (1909)
a = 6378,388 km, b= 6356,909 km
und die Abplattung der Erde (I; 15)
a=b_ 1 ’
a = 297,0
Um den Unterschied zwischen geographischer und geozentrischer Breite zu
berechnen, bilden wir mit Riicksicht auf (I; 14)

o on_ tge—tge’ _ (a b\ tgy  &—b .
tg (¢ q))———l—l-tgtptgqa'_(b a)l—l-tgzy)_ 545 Sn2y- (I 16)

Die Differenz ¢ — ¢ erreicht also ihre Extreme fiir = 4 45°, und es
ist, wenn wir fiir a, b die Zahlenwerte (I; 15) einsetzen,

a®— b2
—¢'| < = 11..
lg—g'| < arctg XY 11,6

o=
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Der Abstand ¢ des Beobachtungsortes vom Erdmittelpunkt ergibt sich aus
(I;10) und (I;8):
2 =2% + y* =a?cos?y + b%siny

oder, wenn man die Identitéten

cosztp'= 1—|—c0s21,v’ sin?p = 1—cos2y
2 2
az— b2
benutzt und ¢ = ET b setzt,
2 2
ot =2 +b (1+ & cos 2). (I; 17)

Mit Hilfe des Parameters y lassen sich also ¢ und ¢ — ¢', die bei einigen
speziellen Aufgaben der Geographischen Ortsbestimmung (z. B. Beriicksich-
tigung der Mondparallaxe bei Lingenbestimmungen) gebraucht werden, in
einfachster Form darstellen. Es ist aber erwiinscht, auch Formeln zu be-
sitzen, in denen diese beiden Groflen unmittelbar als Funktionen der geo-
graphischen Breite erscheinen. Setzt man nach (I; 13)

, b
tgy =a—2tg¢»

so ergibt sich nach dem Satz Anhang B II
b2 — a?

sin2¢ .
, _ b% + a? esin2¢ .
b2+ 2cos2<;o
. a®—b? 2—a o
wobei £_a2'+b2_a2——2a—|—a2—a<1+5+ )

nur wenig grofer als die Abplattung ist. Setzt man ferner
1—tg?y  a®—b2tglg

V=T gy~ @ gy

und hierin

1—cos2¢
2
te*y 1—|-cos2<p

so ergibt sich
£+ cos2¢

cos2y = 1+ecos2¢’
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und man kann daher (I; 17) in der Form

_a2+b2. 14 2¢ecos2¢ + ¢

02
2 14 ecos2¢

schreiben. Da
‘ (a4 b)?

W(l +2ncos2¢ + 9?),

1+ ecos2¢=

wenn
a—b « o s £
”=m=m—§(l+ §+“‘) ~3
gesetzt wird, so erhilt man nach kurzer Rechnung

__a®4-b? 142¢ccos2¢ 42 (I 19)
T a+b 14 2ncos2¢ + 52 *o
Da ¢ — ¢, &, % klein sind, benutzt man statt (I; 18), (I; 19) auch rasch

konvergierende Reihen. Es folgt (Beweise Anhang B I, III) aus (I; 18),
(I;19)

<p—¢p'=ssin2¢p—%szsin 4¢p+%e3sin6¢p—~--, (I; 20y

2 2
lng=]naaiz +(e——n)cos2<p—%(£2~—n2)cos4tp+---
at+b 1 3 ;20
~ - — e
In b + 2scos2¢p g cosd ¢ -+

Es ist schon darauf hingewiesen worden, da3 diese Formeln nur dann strenge
Giiltigkeit haben, wenn angenommen wird, da3 alle Beobachtungsorte auf
dem gleichen Rotationsellipsoid liegen, und wenn ihre Horizontalebenen als
Tangentialebenen, ihre Lotlinien als Normalen dieser Flidche angesehen
werden diirfen. In Wirklichkeit liegen diese Dinge ein wenig verwickelter.
Horizontebene und Lotlinie sind Tangentialebene und Normale der durch den
Beobachtungsort gehenden Niveaufldche der Schwerkraft. Diese Flidchen
haben zwar, besonders iiber dem Meere, angenéhert ellipsoidische Form,
weichen aber ortlich nicht unbetréchtlich von ihr ab. Diejenige Niveaufliche,
die sich dem mittleren Meeresspiegel am besten anschmiegt, wird als Geoid
bezeichnet, dasjenige Rotationsellipsoid, von dem sich das Geoid moglichst
wenig unterscheidet, als Referenzellipsoid. Auf dieses beziehen sich die
Zahlenwerte (I; 15). Wegen der unregelmiBigen Massenverteilung, besonders
in den oberen Erdschichten, sind die Abweichungen des Geoids vom Referenz-
ellipsoid stellenweise nicht gering. Hohe Gebirgsziige rufen Aufwélbungen des
Geoids und der ihm parallelen Niveauflidchen hervor; besonders an den
Réindern der Gebirgsmassive finden daher merkliche Lotabweichungen statt,
in dem Sinne, daB3 die Zenitpunkte der Randorte Verschiebungen erleiden,
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die nach auBen hin divergieren. Die Beobachtung der Lotabweichungen
und die Fixierung des Geoids ist Aufgabe der Geodésie und soll uns hier
nicht beschiftigen. Es muf3 aber darauf hingewiesen werden, da} diese Ver-
hiltnisse nicht ohne Einfluf3 auf die Gestalt des geographischen Koordinaten-
netzes sind. Wahrend auf dem Ellipsoid die Meridiane kongruente Ellipsen
und die Linien gleicher geographischer Breite genaue dem Aquator parallele
Kreise sind, -ist dies auf dem Geoid keineswegs streng der Fall. Vielmehr
erscheinen diese Linien, namentlich in gebirgigen Gegenden, mehr oder
weniger verzerrt. Die Geodé4ten miissen bei Landvermessungen diese Defor-
mationen beriicksichtigen. Uns geniigt es, von ihrer Existenz Kenntnis zu
nehmen.

In geringfiigigem MaBe sind die geographischen Koordinaten auch
zeitlichen Anderungen unterworfen. Die Rotationsachse der Erde ist mit dem
Erdkoérper nicht ganz fest verbunden, sondern fiihrt kleine periodische
Schwankungen um eine mittlere Lage aus. Die instantanen Pole, d. h. die-
jenigen Erdpole, die der augenblicklichen Rotation entsprechen, bewegen
sich langsam in einem begrenzten Bereich, dessen Durchmesser kaum
groBler als 20 m ist. Immerhin lassen genaue Messungen der Polhéhe an
Sternwarten die hieraus folgenden Polhéhenschwankungen deutlich er-
kennen, wenn auch deren Héchstwert nur wenige Zehntel einer Bogen-
sekunde erreicht. Diese Polhghenschwankungen enthalten neben starken
UnregelméBigkeiten zwei Periodizitdten: eine Jahresschwankung und dar-
iiber gelagert eine von etwa 14 Monaten Dauer, die nach ihrem Entdecker
als die ,,CuaNDLERSche Periode* bezeichnet wird. Die Polschwankungen
haben natiirlich auch kleine Anderungen der geographischen Linge zur
Folge. Wir diirfen uns hier mit dem Hinweis begniigen, daB die Polschwan-
kungen nur den feinsten Methoden astronomischer MeBkunst zuginglich
sind und bei geographischen Ortsbestimmungen immer vernachlissigt
werden. Selbst bei der Bestimmung der Sternwartenkoordinaten spielen sie
nur eine untergeordnete Rolle, da die hierzu notwendigen Beobachtungs-
reihen sich meist iiber lingere Zeitriume erstrecken, so daB die Einfliisse
der periodischen Polschwankungen aus dem Endergebnis zum iiberwiegenden
Teil herausfallen.

Zur vollstindigen Darstellung der geographischen Lage eines Beobach-
tungsorts gehort auch die Angabe seiner Hohe iiber dem Referenzellipsoid
(Hohe iiber dem Meeresspiegel oder Seehéhe). Sie kann durch astronomische
Beobachtungen nicht ermittelt werden, sondern wird auf terrestrischem
Wege bestimmt — entweder durch geoditischen Anschluf an Punkte mit
bekannter Seehohe oder (einfacher, wenn auch weniger genau) durch die
barometrische Hohenmessung. Hierbei wird die Tatsache benutzt, daB der
Luftdruck nach bekannten Gesetzen mit der Hohe abnimmt. Fiir die An-
wendung der Methoden der Geographischen Ortsbestimmung ist die
Kenntnis der Seehohe meistens belanglos.

6. Die geozentrischen Orler der Gestirne

Die erste der drei vorbereitenden Aufgaben, die wir uns am Anfang des
Abschnitts 3 gestellt hatten, ist gelost: wir haben die Orter der Gestirne in
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die lokalen, d. h. mit dem Beobachtungsort und seiner irdischen Umgebung
fest verbundenen Koordinatensysteme des Horizonts und des Aquators ein-
geordnet und die Beziehungen zwischen diesen Systemen und der geogra-
phischen Lage des Beobachtungsorts untersucht. Wir wenden uns nun der
zweiten Aufgabe zu, die Gestirnsérter auch in bezug auf ein raumfestes,
d. h. mit der Gesamtheit der Fixsterne verkniipftes System zu bestimmen.

Wir kénnen die Schwierigkeiten, die sich der Definition eines solchen
Systems gegeniiberstellen und deren griindliche Diskussion eine der wich-
tigsten Aufgaben der Sphirischen Astronomie darstellt, hier nur kurz
streifen. Wiren alle Fixsterne, einschliefllich der Sonne, starr miteinander
verbunden, so wiirden solche Schwierigkeiten nicht bestehen. In Wirklich-
keit bewegen sich die Fixsterne relativ zueinander und zur Sonne, und
projiziert man den Fixsternhimmel auf eine Sphire um den Mittelpunkt
der Sonne, so verindern die ,,Orter* der Sterne ihre gegenseitige Lage be-
stindig, wenn auch diese Eigenbewegungen infolge der sehr groBen Entfer-
nungen der Sterne nur klein sind und meist erst in lingeren Zeitrdumen
merkbar werden. Man kann diese relativen Bewegungen dadurch in absolute
iiberfithren, daB man etwa die Annahme macht, die Vektorensumme -
der absoluten Eigenbewegungen sei gleich null. Durch Beriicksichtigung
der so definierten Eigenbewegungen, die man fiir historische Zeitrdume
immer als gleichférmig und geradlinig ansehen darf, kann man die Anordnung
der Fixsterne an der heliozentrischen Sphére auf deren Anordnung zu einem
vorgegebenen Zeitpunkt, der Epoche, zuriickfiihren.

In ein solches Fundamentalsystem der Fixsternorter lieBen sich die
Hauptkoordinatenrichtungen eines raumlichen Bezugsystems leicht ein-
ordnen, etwa indem man die XY-Ebene durch zwei beliebig ausgewihlte
Sterndrter S; und S, gehen 1463t und auf dem so bestimmten GroBtkreis die
Richtung nach S, als X-Richtung definiert. Eine solche Definition wire aber
unzweckmaiBig, da sie vollig willkiirlich und ohne Beziehung zu den lokalen
Systemen ist. Es ist daher vorzuziehen, zum Aufbau des neuen Systems:
zwei fundamentale Richtungen zu benutzen, die sich in die lokalen Systeme
gut einfiigen lassen, wenn auch ihre Verbindung mit dem raumfesten Fix-
sternsystem nicht vollig starr ist: das sind die Richtungen der Erdachse
und der Normale auf der Ekliptik, d. h. der Ebene, in der die Erde um die
Sonne kreist.

Wir sehen fiir den Augenblick die Erde als ruhend an und verlegen den
Mittelpunkt der Sphire in den Erdmittelpunkt M. Diese geozentrische
Sphire wird von der Erdachse in den Himmelspolen P und P’ getroffen, von
der Normale der Ekliptik in den Polen der Ekliptik E und E’ (Abb. 10). Der
Bogen PE = ¢ (Schiefe der Ekliptik) umfafit rund 231/,°, er ist gleich der
Neigung des Himmelsdquators gegen die Ekliptik. Die Sonne, die vom
..geozentrlschen Standpunkt aus gesehen die Ekliptik im Laufe eines Jahres
in west-6stlicher Richtung durchwandert, iiberschreitet am Friihlingsanfang
den Himmelséquator von Siiden nach Norden. Diesen Schmttpunkt X
zwischen Ekliptik und Aquator, den Friihlingspunkt, bestimmen wir, zum
Endpunkt der positiven X-Achse des neuen Koordinatensystems. Die

3 Geogr. Ortsbestimmungen
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positive Y-Richtung mége im Hlmmelsaquator liegen, 90° vom Friihlingspunkt
nach Osten, die positive Z-Richtung zeige nach dem Nordpol P des Himmels.

Das neue Koordinatensystem, das wir als das zweite Aquatorsystem be-
zeichnen wollen, hat mit dem ersten (lokalen) Aquatorsystem die Z-Achse
(Weltachse) und damit auch die Lage der XY-Ebene (Aquatorebene) gemein-
sam. Diejenige Koordinate eines Gestirnsortes G, die den Abstand vom

I Aquator bedeutet, die Dekli-

nation ¢, ist daher in beiden
- Systemen dieselbe. Die andere
Koordinate e, die den Winkel
zwischen den Stundenkreisen
des Gestirns und des Friih-
lingspunktes bezeichnet (Abb.
10), heiBt Rektaszension und
wird vom Friihlingspunkt
nach Osten gezihlt, also in
entgegengesetztem Sinne wie
die entsprechende Koordinate
im lokalen Aquatorsyslem.
der Stundenwinkel ¢, der ja
in westlicher Richtung wiéchst.
Mit anderen Worten: das erste
Aquatorsystem ist, ebenso wie
das Horizontsystem, im Uhr-
5 zeigersinn gedreht (Links-
‘Abb, 10: Zweites Aquatorsystem?) system), das zweite ist ein

Rechtssystem.

Wenn wir das zweite Aquatorsystem zum Unterschied von dem lokalen
als ein raumfestes bezeichnen, so ist das nur angenéhert richtig, denn seine
Fundamentalrichtungen, die Weltachse und die Normale der Erdbahn-
ebene, sind keineswegs fest mit dem System der Fixsterne verbunden. Die
Lage der Ekliptik idndert sich im Laufe der Zeit infolge der Stérungen der
Erdbahnbewegung durch die Planeten; der Pol der Ekliptik fiihrt daher
langsame Schwankungen um eine mittlere Lage aus. Durch die Anziehungs-
krifte, die Sonne und Mond auf den Aquatorwulst der abgeplatteten ro-
tierenden Erde ausiiben, erfihrt ferner die Richtung der Erdachse eine zeit-
liche Anderung, in deren Verlauf der Rotationspol P um den Ekliptikpol E
in rund 26000 Jahren eine Kreiswanderung (Prdzession) und auflerdem
kleine Schwankungen von Kkiirzerer Periode (Nutation) ausfiihrt. Die Koor-
dination e, 6 der Fixsterne sind also infolge der Wirkungen von Prizession
und Nutation nicht fest, sondern langsamen Anderungen unterworfen,
deren Berechnung Aufgabe der Himmelsmechanik und der Sphdrischen
Astronomie ist. In den Astronomischen Jahrbiichern®), die bei der Ausfiihe

1) Siehe FuBnote zu Abb. 6.

%) Z. B. Berliner Astronomisches Jahrbuch, Nautical Almanac (London),
American Ephemeris (Washington), Connaissance des temps (Paris), Almanaque
Nautico (San Fernando, Spanien).
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rung von Zeit- und Ortsbestimmungen unentbehrliche Hilfsmittel sind,
findet man Rektaszension und Deklination einer groBen Anzahl von helleren
Fixsternen als Funktionen der Zeit in Form von Tafeln mit zehntigigen
Intervallen aufgezeichnet. In diesen Tafeln (Ephemeriden) sind gleichzeitig
die Eigenbewegungen beriicksichtigt sowie diejenigen Anderungen, die an
die sphérischen Orter der Fixsterne noch angebracht werden miissen, weil
die Erde in bezug auf das System der Fixsterne nicht ruht, sondern ihre
jihrliche Bahn um die Sonne beschreibt.

Die letztgenannten Anderungen sind zweifacher Natur: Zunichst ist klar,
daf} die Richtung nach einem Gestirn von endlicher Entfernung sich #ndern
muB, wenn wir den Sphirenmittelpunkt vom Mittelpunkt der in der Mitte
des Weltalls ruhenden Erde (bzw. vom Mittelpunkt der Sonne) in den der
bewegten Erde verlagern. Ist a der Halbmesser der Erdbahn, r die Entfer-
nung Sonne—Stern, so ist die maximale Verschiebung p, die der Fixsternort
infolge der Erdbewegung erleidet, die sogenannte jihrliche Parallaze, durch

sinp=% (1; 22)

gegeben. Nun ist die mittlere Entfernung der Erde von der Sonne a = 1,495
- 108 km, die des néchsten Fixsterns (« Centauri) r = 4,06+ 1013 km, woraus
p = 0776 folgt.l) Dies ist die bei weitem groBte Fixsternparallaxe, die
bisher beobachtet wurde. Die Zahl der Fixsterne, deren Orter durch die Par-
allaxe merklich beeinflu3t werden, ist gering.

Die andere Verschiebung der Fixsternérter infolge der Erdbewegung ist
die jdhrliche Aberration, die alle Sterne unabhingig von ihrer Entfernung
betrifft und deren -eigentliche
Ursache die endliche Geschwin-
digkeit des Lichtes ist. In der
sehr kurzen Zeit nimlich, die
. der Lichtstrahl des Gestirnes G -
benétigt, um (Abb. 11) vom
Objektiv O des Fernrohrs bis
zum Okular A zu gelangen, ver-
schiebt sich infolge der Erd-
bewegung die optische Fern-
rohrachse AQ parallel mit sich
selbst nach A’Q’. Der Lichtstrahl 2 VY
GO, der das Objektiv in der Stel- Abb. 11: Aberration
lung O trifft, erreicht daher das
Auge des Beobachters, wenn dieses in A" angekommen ist. Wéhrend also
der Lichtstrahl in Wirklichkeit die Strecke GOA’ durcheilt, ist das Fernrohr
auf die Richtung A0 bzw. A’Q’ eingestellt, d. h., der Beobachter erblickt
den Stern an einem Orte, der um den Winkel 0A’0’ =« in Richtung auf

1) In Wirklichkeit wird natiirlich umgekehrt aus der beobachteten Parallaxe p
auf die Entfernung r des Sterns geschlossen.

3
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den Zielpunkt der Erdbewegung verschoben ist. Ist / die Fernrohrlinge,
s = AA’ =00 die Verschiebung des Fernrohrs und 4 der Winkel zwischen
dem wahren Gestirnsort an der Sphire und dem des Zielpunkts der Erd-
bewegung, so ist

sina=;sim9 0<d<m). (I; 23)

Da nun offenbar% =§, wenn v die Erdgeschwindigkeit und ¢ die Licht-

geschwindigkeit bedeutet, so ist der Hochstbetrag der jahrlichen Aberration
durch die Ungleichung

. v
sing = —
¢

bestimmt. Setzen wir fiir » und ¢ die runden Betrige 30 bzw. 300000 km/sec
ein, so erhalten wir ¢ < 20,6 (genauer 20747).

Diejenigen Fixsternorter, die sich auf die instantane, d. h. fiir die Zeit
der Beobachtung giiltige Lage der Ekliptik, des Aquators und damit des
Friihlingspunktes (Aquinoktiums) beziehen und die Einfliisse der jahrlichen
Aberration, der jahrlichen Parallaxe und der Eigenbewegung enthalten,
werden als scheinbare Orter bezeichnet. In den Jahrbiichern sind die schein-
baren Rektaszensionen und Deklinationen der Mittelpunkte von Sonne,
Mond und Planeten und die scheinbaren Halbmesser von Sonne und Mond
fir jeden Tag des Jahres, die Orter der wichtigsten Fixsterne fiir jeden
10. Tag um 0" Greenwicher Zeit angegeben?'). Alle diese Angaben beziehen
sich auf die Sphére um den Mittelpunkt der Erde (geozentrische Koordinaten).
Beim Ubergang auf den Beobachtungsort als Sphérenmittelpunkt (fopozen-
trische Koordinaten) wird es unter Umsténden nétig sein, weitere Korrek-
tionen an die scheinbaren Orter anzubringen (tigliche Parallaxe, tigliche
Aberration). Diese kénnen in den Jahrbiichern nicht beriicksichtigt werden,
da sie von der geographischen Lage abhingen, und miissen somit vom
Beobachter selbst berechnet werden.

7. Die ﬁgliche Parallaxe

Die der Beobachtung zuginglichen lokalen Koordinaten (A, z bzw. ¢, 6)
der Gestirne beziehen sich auf den Beobachtungsort, die in den Jahrbiichern
angegebenen GroBen («, 6) auf den Erdmittelpunkt als Koordinatenanfang.
Wollen wir sie miteinander in Beziehung setzen, so ist es notwendig, an die
einen diejenigen Korrektionen anzubringen, die der Verschiebung des
Sphérenmittelpunkts auf den Koordinatenanfang der anderen entsprechen.

!) Im Berliner Jahrbuch sind die scheinbaren Orter der Planeten Uranus, Nep-
tun, Pluto von 4 zu 4 Tagen angegeben. Die Ephemeride des Mondes findet man
in manchen nautischen Jahrbiichern, so im Nautical Almanac (London), von
Stunde zu Stunde.
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Die Verbesserung der lokalen Koordinaten durch Parallelverschiebung
des Systems vom Beobachtungsort auf den Erdmittelpunkt bezeichnet man
als die tdgliche Parallaxe, da sie wegen der Drehung der Erde um ihre Achse
eine eintégige Periode aufweist. Fiir die Fizrsterne ist die téigliche Parallaxe
verschwindend klein; ihre GréBenordnung ergdibt sich, wenn in dem Ausdruck
(I; 22) fir die jdhrliche Parallaxe der Erdbahnhalbmesser a durch den
Erdhalbmesser g ersetzt wird. Da ¢ : a << 1: 20000, so folgt, daB.die tigliche
Fixsternparallaxe im sel-
ben Verhiltnis kleiner ist 4
als die jahrliche. Sie ist also
selbst bei den nichsten
Fixsternen véllig bedeu-
tungslos..

Fiir die Berechnung der
taglichen Parallaxe der
Sonne und der Planeten ge-
niigt es, die Erde als eine
Kugel anzusehen. Ist (Abb.
12) Bder Beobachtungsort,
sind M und S die Mittel-
punkte von Erde und Sonne, ist r die aus dem Jahrbuch bekannte Entfer-
nung Erde — Sonne und ¢ der Erdhalbmesser, so ist MBZ die Richtung
nach dem Zenit von B und die durch BMS bestimmte Ebene eine Vertikal-
ebene im Horizontsystem des Beobachters. Verlegt man den Sphéren-
mittelpunkt von B nach M, so geht die Richtung BS nach der Sonne in M'S
iiber, die beobachtete Zenitdistanz z also in die geozentrische Zenitdistanz z,,
und es ist nach dem Sinussatz der ebenen Trigonometrie

Abb. 12: Tigliche Parallaxe der Sonne

sin(z——zo)=%sinz=sin:n:@sinz. (I; 24)

Der Maximalwert 7 von z — z, tritt fiir z = % , also am Horizont ein und

heiBt Horizontalparallaxe. Setzen wir fiir o den Aquatorhalbmesser (I; 15)
und fiir r den ‘mittleren Wert 1,495-108km ein, so erhalten wir fiir die
Horizontalparallaxe der Sonne
e = 8,80.1)

Infolge der wechselnden Sonnenentfernung schwankt die in den Jahrbiichern
als Ephemeride gegebene Sonnenparallaxe (siehe Anhang F III) zwischen
8,66 und 8795. Der Einflu3 der Breitenabhéngigkeit von ¢ auf die Bestim-
mung von 7 ist zehnmal geringer als diese Schwankung und kann bei allen
Aufgaben der Geographischen Ortsbestimmung, die auf Beobachtungen der
Sonne beruhen, unbedenklich vernachléssigt werden.

1) Nach neueren Beobachtungsergebnissen, die allerdings wohl noch durch
weitere Untersuchungen erhirtet werden miissen, ist die mittlere Sonnenpar-
allaxe gleich 879 zu setzen.
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Wegen der Kleinheit von 7 darf man in (I; 24) den Bogen statt des
Sinus setzen und erhélt somit

zZp =2z —mgsinz. (I;25)

Um den beobachteten Sonnenort (A, z) wegen der tiiglichen Parallaxe zu
verbessern, muf3 man also die gemessene Zenitdistanz um einen Betrag ver-
kleinern, der im Zenit null ist, am Horizont aber seinen Héchstwert erreicht.
Auf das Azimut der Sonne hat die tigliche Parallaxe keinen merklichen
EinfluB. Die Formel (I;25) 148t sich
sinngemif3 auch auf die Planeten
anwenden.

Da die tégliche Parallaxe des Mon-
des etwa das 400fache der Sonnen-
parallaxe betrégt (sie schwankt zwi-
schen 54 und 611!/, Bogenminuten),
so darf man bei ihrer Berechnung die
ellipsoidische Erdgestalt nicht mehr

Abb. 13: vernachléssigen.

Tigliche Parallaxe des Mondes Sind (Abb. 13) M und L die Mittel-
punkte von Erde und Mond und ist B
der Beobachtungsort, so zeigt die Gerade MB nach dem geozentrischen
Zenit Z’, jenem Punkt des Meridians von B, dessen Deklination die geo-
zentrische Breite ¢’ und dessen Zenitdistanz | ¢ — ¢ | ist. Bezeichnen wir
mit ¢ die geozentrische Distanz des Beobachtungsortes, die nach den Formeln
des Abschnitts 5 zu berechnen und nétigenfalls um die Seehéhe zu vergrofern
ist, mit r und r, die Entfer-
nungen des Mondes von B und
M, mit 2 und z,’ die sphiri-
schen Abstédndedes Mondortes
vom geozentrischen Zenit, wie
sie von B bzw. M aus erschei-
nen, so ist im Dreieck BML
rsin (2’ —zp) =psinzy (I;26)

rcos (2o — 2p) =TIy — 0 €OS 2;
(I;27)

Verlegt man ‘also den
Mittelpunkt der Sphire von

Abb. 14: Tigliche Parallaxe des Mondes B nach M, so riickt der Mond-

(parallaktische Verschiebung des sphirischen ort um den Betrag z’ — z; auf
Ortes) ' das geozentrische Zenit zu,

verlagert sich also, wie in

Abb. 14 aufgezeichnet, von L nach L,. Bezeichnet man in den Dreiecken
ZLZ' und ZL,Z’' die Winkel bei L und L, mit p und p,, so findet man in ZLyZ"

o = sin 2, sin py = sin (p — ¢') sin 4,,
B = sin z; cos py = cos (p — ¢') sin zy— sin (p — ¢’) cos z, cos A, (I;28)
» =€0s 2 = c0s (p — ¢') cos z, + sin (p — @) sin z, cos 4,

=Y
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und in ZLL,
sin zsin (A — 4,) = sin (' — 2;) sin p,,
sin z cos (A — A,) = cos (2 — 2;) sin 2z, - sin (2 — z) cos z, cos Py,
€os z = ¢0s (2’ — 2;) cos z, — sin (z" — z;) sin z, cos P,
oder, wenn wir nach (I; 26) und (I; 27)

sin (2' —2p) = % sin z;,

, o, ¢ ,
Cos (Z2— = — ——CO0S 2
(z—2) r 1 0

setzen und (I; 28) beriicksichtigen,
rsin zsin (A — Ap) =o«,
rsin z cos (A — Ag) =ry sin zy — g (y sin zy — f cos z;), (I;29)
I coSz =T, cos 2y — @ (y cos 2y + B sin 2)
Hieraus ergibt sich zun#4chst, wenn man die erste Gleichung durch die zweite
dividiert,

o .
Iy sin zy—p (¥ sin zy— f cos 2;)

tg(Ad—A4y) =

Setzt man hierin fiir &, B, ¥ die Ausdriicke (I; 28) ein, so erhélt man nach
kurzer Rechnung

_ __ psinA, . _g_sin (p—9') . .
tg(4 A°)_l—ycosAo mit g = ry sin z, (I3 30)

In den Jahrbiichern wird statt r, meist die Aquatoreal-Horizontalparallazre 7
des Mondes angegeben, die durch

. a
Sin e = I'_
0

definiert ist, wobei a den Aquatorhalbmesser der Erde darstellt. Das ist
die maximale parallaktische Verschiebung des Mondes bei der Entfernung r,.
Sie tritt ein, wenn der Mond vom Aquator der Erde aus im Horizont
beobachtet wird. Driickt man die Léngen der Strecken ry, ¢ in Einheiten

4

" des Aquatorhalbmessers aus, so wird rysin m¢=1 und daher

_ osinzcsin(p—¢') ot
b= sin z, (I3:31)
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A—A,

5 und addiert

Multipliziert man die erste Gleichung (I; 29) mit tg

dazu die zweite, so erhiilt man wegen der Identitét
A—

2A°+cos(A——Ao)= 1

sin (A — 4,) tg

die Gleichung
A—A,

rsinz=r,sinz,+ o (a tg 5 + B cos z,—ysin zo), (I; 32)
die zusammen mit der dritten Gleichung (I;29)
I cos z =ry cos zo — 0 (f sin zg + ¥ cos zy) (I;33)

die Grundlage zur Bestimmung von z — z, liefert.
Multipliziert man (I;32) (I;33) mit cosz,, — sinz, bzw. mit sin z,,
cos z,, so folgt ndmlich

2

rsin(z—zy) =0 (a cos 7, tg

% 1 ).
reos(z—zy) =ry,+ e (asinzotgA_—;A_o -—y)-
Setzt‘ man fiir e, 8, y wiederum die Ausdriicke (I; 28) ein und definiert einen
Hilfswinkel ¢ durch y
cos T"

tgl = tg(‘P—‘}")—A:‘X—. (I; 34)
cos — 0

so ergibt sich
rsin (z—z,) = g cos (p — ¢') sin (z,— ) sec £, | (I: 35)
I cos (z— zg) = Iy— @ cos (p —¢') cos (zp— &) sect | !
und daher
v sin (2, —¢)
tg(z—z) = — =
mit 1—wcos(zg—Y) (I; 36)

y= %cos (p— ') sec { = p sin m¢ cos (p—¢’) sec L.
0

Multipliziert man ferner die beiden Gleichungen (I; 35) mit sin z——zﬁ ,
cos ; % und addiert, so folgt
rcos 2_22" = I, COS z_zzo—gcos (@ —¢") sec{ cos (z —; z°-—§)
oder (I, 37)
To1—y cos(z+ z°-—§'> sec Z_20.
T, 2
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Die Formeln (I; 30), (I;31), (I;34), (I;36), (I;37) lésen das Problem,
indem sie die parallaktischen Verbesserungen des Azimuts, der Zenitdistazn
und der Entfernung des Mondes in aller Strenge liefern. In der Praxis geniigen
meist einfachere Ausdriicke. Zun#chst 148t sich zeigen, dafl die Azimut-
korrektion immer sehr klein ist. Um die GroBe x4 abzuschitzen (vgl. I; 31),
bedenken wir, dal3

, 1 .
on~1, smn(N , |sin (¢ — (p)|<m, also U< 18000 cosec z ist.

Nur wenn sich der Mond in Zenitnihe befindet, konnte x nichtdifferentielle
Werte erreichen. Diesen Fall (der zudem nur in den Tropen vorkommen kann)
diirfen wir praktisch ausschlieBen und somit fiir (I; 30,) (I; 31) die stets
ausreichende N#herungsformel

A — Ay = usin Ay = g sin 7 sin (p — ¢’) cosec zysin 4,  (I; 38)
einfiihren.

Wegen der Kleinheii_ von ¢ — ¢’ und A — A, darf man statt (I; 34)
immer schreiben

{=(p —¢')cos A, (I;39)

Entwickelt Iﬁan in dem Ausdruck (I; 36) fiir » die Funktionen cos (p — ¢)
und sec { in Reihen und fiibrt (I; 39) ein, so erhilt man

v=gsinn((l—('p—72‘p')2+ )(1—}—(9’ )* cos?A,+ .- )

Es ist also immer erlaubt,

v = g sin m (I; 40)
zu setzen, da die vernachléssigten Glieder von der Ordnung
(p—¢) 1.1 \
sin 7 =5 <o 60 2 3008

nicht merklich sind. Die Parallaxe in Zenitdistanz folgt daher aus

v sin [zy— (p—¢') cos Ay] .
—v €08 [z,—(p—¢') cos A,] -

gz—2)=— (I; 41)

Formel (I; 37) wird angewendet, wenn es gilt, den scheinbaren Halbmesser
des Mondes wegen Parallaxe zu korrigieren. Ist ¢ der dem Beobachter er-
scheinende Mondhalbmesser, ¢, der vom Erdmittelpunkt aus gesehene, so
gilt nach (I; 1), wenn s der lineare Halbmesser des Mondes ist,

. $ . s
Sitg = —, SIngy,=—.
r Ig



26 7. 1. Einfihrung in das Problem der geographischen Ortsbestimmung

Da ¢ und o, rund 16’ betragen und daher auch fiir genaueste Rechnung
der Sinus mit dem Bogen vertauscht werden darf, ist geniigend genau

_ _ z2+2 z2—2z, .
ao_aro_o[l vcos(--—2 C)sec 2] (I; 42)

—{=2z—C+ 2;22" gesetzt wird,

24 2,

oder, wenn 5

Z-—-Zo

2

sin (zp— C)] .

0y = a[l—-vcos(zo—l)—r tg

Das letzte Glied der rechten Seite darf vernachlissigt werden, da

oy tgz

—Zo<(2_2_~ .
5 =5 0713

an der Grenze sechsstelliger Rechengenauigkeit und weit unter der Genauig-
keitsgrenze von Mondbeobachtungen liegt. Es wird dann

v cos (zg—C)

Tz R0 ()

U—O’o=0'

Zusammen mit den Definitionsgleichungen (I; 39), (I; 40) liefern (I; 38),
(I;41), (I;43) die gesuchten Verbesserungen wegen téglicher Parallaxe.
Diese Formeln enthalten aber die geozentrischen Groflen 4, 24, 04, Vvon denen
nur ¢, unmittelbar gegeben ist. Statt A, z, benutzt man daher die beob-
achteten Werte A, z, was meist ausreicht. Andernfalls wird die Rechnung
wiederholt, nachdem man 4, z um die in erster Niherung erhaltenen par-
allaktischen Korrektionen verbessert hat.

Die Formeln (I'; 30) und (I; 36) bzw. (I; 41) lassen sich gem#d Anhang B I
auch durch Reihenentwicklungen ersetzen.

8. Die tigliche Aberration

Infolge der Rotation des Erdkorpers um seine Achse bewegt sich der
Beobachtungsort relativ zum Erdmittelpunkt. Diese Bewegung ruft natiirlich
ebenso wie die jéhrliche Drehung der Erde um die Sonne einen Aberrations-
effekt hervor. Seine GroSe ¢ wird wiederum durch (I;23) ausgedriickt:

. D .
sine = —sin &,
c

wobei v die Relativgeschwindigkeit des Beobachtungsortes gegen den Erd-
mittelpunkt, ¢ die Lichtgeschwindigkeit und ¢ den Winkel zwischen dem
Gestirnsort und dem Zielpunkt der Bewegung bedeuten. Der letztere ist, da
die Rotation der Erde von Westen nach Osten erfolgt, offenbar mit dem
Ostpunkt des Horizonts identisch. Infolge der téglichen Aberration wird also
der Gestirnsort auf dem GrofBtkreise, der ihn mit dem Ostpunkt verbindet,



8. Die tagliche Aberration 27

um den Bogen & nach Osten zu verschoben. Ist i, = 465 m/sec die Rotations-
geschwindigkeit am Erdéquator, so ist unter der geozentrischen Breite ¢

v = 465 cos ¢’ m/sec.
Hieraus folgt mit ¢ = 299860 km/sec
a = 0732 cos ¢ sin 9, (I; 44)

also eine auBlerordentlich kleine Verschiebung, die in den meisten Féllen
unbedenklich vernachlédssigt werden kann. Nur bei Beobachtungen, die

Abb. 15: Tégliche Aberration

mit groflen, fest aufgestellten Instrumenten vorgenommen werden und
hichste Prizision erfordern (z. B. Zeitbestimmungen), ist es notwendig, die
tégliche Aberration zu beriicksichtigen (siehe Abschnitt 27).

Es seien (Abb. 15): Z das Zenit, Z(Q) der Meridian, O der Ostpunkt, dessen
Abstand von allen Punkten des Meridians (also auch von Z und Q) % betrigt,

S der beobachtete, S, der von .der tiiglichen Aberration befreite Sternort,
A, z bzw. A,, z, deren Koordinaten im Horizontsystem. Dann liegt S auf
S,0, und es ist SO = B4, S,S =e.

Bezeichnet man mit ¢ den Winkel bei S,, so ist im Dreieck S,SZ
sin e sin ¢ = sin z sin (4, — A),
sin & cos ¢ = cos z sin z; — sin z cos 2, cos (4; — A) (I; 45)

A,—A

= sin (z, — z) + 2 sin z cos z, sin? =sin(zy — 2),

da, aufler in unmittelbarer Zenitniihe, das Glied mit sin? A”—Z—ﬁ verschwin-
dend klein ist. In S,ZO ist ferner
sin 9 sin ¢ = cos 4,, }

. (I; 46)
sin & cos ¢ = cos z,sin Ag:
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Eliminiert man ¢ durch (I; 46) aus (I; 45), so ergibt sich

. sine cos 4,
sin(Ag—A) = —————
A== "nzsin o
: sin & cos zy sin Ag
sin(zg—2) = —————— -

sin 9

Setzt man bei den sehr kleinen Winkeln A, — 4, z, — z, « den Bogen statt
des Sinus und beriicksichtigt (I; 44), so erhélt man
Ay — A = 0732 cos ¢ cos A cosec z, } (I; 47)

2y —2 = 0;32cos ¢’ sin A cos z,

wobei rechts wegen der Kleinheit des Zahlenfaktors nach Belieben die Orter
A, z oder A, z, eingesetzt werden konnen.

Ersetzt man in Abb. 15 das Zenit Z durch den Himmelspol P und dem-
gemiB die GréBen 4, z bzw. Aq, 2z, durch ¢, ; — dbzw.1,, g—éo, so dndert
sich an den geometrischen Eigenschaften der Figur nichts, da ja auch P auf
dem Meridian liegt. Man erhilt also fiir den Einflu} der téglichen Aberration

auf die Koordinaten des lokalen Aquatorsystems die analogen Formeln

to—t = 0732 cos ¢’ cost sec 4, } (I; 48)

8o — 08 = — 0732 cos ¢ sint sin 4.

Aus (I;47) und (I; 48) liest man ab, daB im Meridian die Zenitdistanz
und die Deklination, im Ersten Vertikal das Azimut durch die tégliche
Aberration nicht beeinflulit werden. In allen Formeln kann man ohne Be-
eintrichtigung der Genauigkeit ¢’ durch ¢ ersetzen. ’

9. Die Refraktion

Bevor man die beobachteten Gestirnsorter auf den Erdmittelpunkt
reduziert, um sie mit den in den Jahrbiichern gegebenen Ortern vergleichbar
zu machen, ist es noch notwendig, sie von dem EinfluB3 der Strahlenbrechung
in der Erdatmosphire zu befreien. Da die Flidchen gleicher Luftdichte im
allgemeinen parallel der Geoidfldche verlaufen und die Luftdichte selbst mit
der Héhe abnimmt, wird der vom Gestirn ins Auge des Beobachters gelan-
gende Lichtstrahl in der Vertikalebene des Gestirns verbleiben und wéhrend
seines ganzen Weges durch die Atmosphire eine Kriimmung nach unten
erleiden. Infolge der Strahlenbrechung oder Refraktion wird also das Azimut
eines Gestirns nicht verindert, seine Zenitdistanz aber scheinbar verkleinert.
Im engeren Sinne versteht man unter ,,Refraktion** den Betrag dieser Ver-
minderung, der gleich null ist, wenn das Gestirn im Zenit steht, mit wach-
sender Zenitdistanz stindig zunimmt und fiir Gestirne am Horizont sein
Maximum, die ,,Horizontrefraktion** (~ 35'), erreicht.
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Die Schwierigkeit der Berechnung der Refraktion beruht darauf, daB sie
von der Art der Abnahme der Luftdichte mit der Héhe iiber dem Erdboden
abhingt, iiber deren GesetzméiBigkeiten wir zwar auf Grund meteorologischer
und aerologischer Untersuchungen einigermaflen im Bilde sind, die aber in-
folge der Wettervorginge in den unteren Luftschichten starken und nicht-
stets kontrollierbaren Schwankungen unterworfen sind. Die Refraktion
hingt nicht nur von der Gesamtmasse der iiber dem Beobachtungsort lagern-
den Luftsédule ab, die wir durch Messung des Luftdrucks feststellen, sondern
auch von der Temperatur und dem Wasserdampfgehalt der von dem Licht-
strahl durchlaufenen Luftschichten. Da der Beobachter aber im allgemeinen
die Temperatur und Feuchte nur in der Néhe des Instruments messen kann,
wird die Theorie der Refraktion sich damit begniigen miissen, fiir die physi-
kalischen Eigenschaften der hoheren Atmosphirenschichten mittlere Ver-
hiltnisse anzunehmen, von denen im Einzelfalle nicht unerhebliche Abwei-
chungen stattfinden konnen.

Immerhin reichen diese Annahmen aus, um fiir méBige Zenitdistanzen die
Refraktion auf Bruchteile der Bogensekunde genau zu berechnen, falls
Luftdruck, Temperatur und Feuchte am Instrument bekannt sind. Erst fiir
sehr groBe Zenitdistanzen (z << 80°) werden die Refraktionsformeln merklich
ungenau und ergeben verschiedene Theorien abweichende Werte.

Beobachtet man mit kleinen Instrumenten, z. B. mit Sextanten, deren
MeBgenauigkeit nicht iiber 10 bis 20 Bogensekunden liegt, so geniigt es voll-
kommen, bei der Berechnung der Refraktion mittlere Werte zu benutzen,
die sich auf mittlere meteorologische Daten griinden. Im Anhang F 1V ist
eine kleine Tafel der mittleren Refraktion gegeben, die fiir einen Luftdruck
von 760 mm Hg und + 10° C Temperatur der (trockenen) Luft gilt. Die
mittlere Refraktion verlduft fiir kleine und mittlere Zenitdistanzen nach
dem Gesetz

r=catgz,

wobei der von z abhingige Faktor o nahezu konstant und wenig kleiner als
eine Bogenminute ist. Zur genaueren Berechnung der Refraktion bedient
man sich der von BesseL aufgestellten Formel

lgr=Iga+1gtgz+ A(gB+1g T)+ Algy,

in der @, A, A Funktionen der gemessenen (scheinbaren) Zenitdistanz z sind,
ferner Ig B vom Barometerstand, g T von der Temperatur des Quecksilbers
im Barometer und lg y von der Lufttemperatur abhéngen. Jede Sammlung
von Hilfstafeln?), die den Zwecken der Geographischen Ortsbestimmung
dient, enthilt Tabellen, aus denen man diese GroBen als Funktionen ihrer
Argumente entnehmen kann. Bei noch gréBeren Genauigkeitsanspriichen
fiigt man auch Korrektionen wegen der relativen Luftfeuchtigkeit und wegen
der Abnahme der Schwerkraft mit der Seehohe hinzu.

1) Siehe die im Literaturverzeichnis aufge‘iihrten Tafeln von ALBRECHT,
AMBRONN-DOMKE und WirTz sowie die Refraktionstafeln von DE BaLL.
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Die im Anhang F V gegebene Tafel zur logarithmischen Berechnung der
Refraktion ist gekiirzt den Hilfstafeln von AMBRONN-DOMKE entnommen.
In ihr fallt 1g T fort, da angenommen wird, daf3 der Barometerstand schon
auf 0° Quecksilbertemperatur reduziert worden ist.

10. Die Rotation der Sphire

Hat man die beobachteten Zenitdistanzen von dem Einflul der Refrak-
tion befreit und an Zenitdistanz und Azimul, soweit. erforderlich, die Korrek-
tionen wegen téglicher Parallaxe und Aberration angebracht, und hat man die
so berichtigten Koordinaten 4, z nach dem Formelsystem (I; 6) in ¢, § um-
gewandelt also die Orter auf das erste (lokale) Aquatorsystem bezogen. so ist
ein unmittelbarer Vergleich zwischen diesen Ortern und denen im zweiten
Aquatorsystem maglich, da beide Systeme ja nun den Erdmittelpunkt zum
Ursprung haben. Gemeinsam ist ihnen ferner die Rotationsachse der
Erde als Z-Achse, die Aquatorebene als XY-Ebene und die Koordinate 6.

Infolge der Rotation der Erde dreht sich das erste Aquatorsystem relativ
zum zweiten um die gemeinsame Z-Achse. Diese Drehung erfolgt von Westen
nach Osten, so daB die Sterne, die im zweiten (raumfesten) System ihre
Orter (abgesehen von kleinen und langsamen Bewegungen infolge Prizession,
Nutation, Aberration, Parallaxe und Eigenbewegung) nicht dndern, vom
lokalen System aus betrachtet eine (scheinbare) Bewegung im umgekehrten
Sinne ausfiihren. Die Sphire der Fixsterne dreht sich also scheinbar in ost-
westlicher Richtung um die Weltachse und fiihrt somit die Fixsterne auf der
lokalen Sphire in Kreisen herum, die parallel zum Himmelsiiquator verlaufen.

Die scheinbare Umdrehung der Sphére vollzieht sich nach biirgerlichem
Zeitmaf in 23" 56™ 45091, einem Zeitabschnitt, den wir als Sterntag bezeich-
pen. Die Einheit der biirgerlichen Zeitrechnung, der 24" umfassende mittlere
Sonnentag, ist gleich der durchschnittlichen Zeit der scheinbaren Umléufe
der Sonne und ist deswegen etwas lidnger als der Sterntag, weil die Sonne
sich auf ihrer jahrlichen Bahn léngs der Ekliptik in dstlicher Richtung gegen
die Fixsterne bewegt, also der téglichen Drehung der Sphire entgegengesetzt.
Infolge dieser eigenen Bewegung verliert die Sonne in einem tropischen Jahr
von 365,2422 mittleren Sonnentagen (d. h. in der Zeit zwischen zwei auf-
einanderfolgenden Durchgingen der Sonne durch den Friihlingspunkt)
gegeniiber der scheinbaren Drehung der Sphére genau eine Runde, und es
gilt daher die Beziehung

365,2422 mittl. Sonnentage = 366,2422 Sterntage, (I;49)

aus der die oben angegebene Linge des Sterntags unmittelbar folgt.

In Abb. 16 ist die gegenseitige Lage der beiden unatorsysteme zuein-
ander fiir irgendeinen Zeitpunkt dargestellt. PZP’ sei der Meridian des.
Beobachtungsortes, X der Fruhhngspunkt und G ein Gestirn, dessen Koor-
dinaten im ersten Aquatorsystem ¢, 8, im zweiten ¢, § lauten. Da t vom Meri-~



10. Die Rotation der Sphire 31

dian aus nach Westen, ¢ vom Stundenkreis des Friihlingspunktes aus nach
Osten gezihlt wird, ist
0=t1ia (I; 50)

der Stundenwinkel von X. Fiir das Zenit (t = 0) ist @ = .

Da wir die Rotation der Erde und daher auch die des zweiten Aquator-
systems in bezug auf das erste als gleichférmig betrachten diirfen, nimmt der
Stundenwinkel des Friihlingspunktes gleichm#8ig zu, und zwar in einem Stern-
tag um 360°. Wir konnen daher © als Zeitma benutzen und bezeichnen diese
GroBe als Sternzeit des Beob-
achtungsorts. Teilen wir, eben-
so wie den mittleren Sonnen-
tag, auch den Sterntag in
24 Stunden und diese wieder
in Minuten und Sekunden ein,
so entspricht eine Stunde
Sternzeit einem Zuwachs von
©um 15°, Es ist daheriiblich,
ebenso wie die Sternzeit 6,
gemif (I; 50) auch die Rekt-
aszension ¢ und den Stun- A .
denwinkel { der Gestirne in i fimnel

Zeitmaf3 auszudriicken, wo- o
bei also 3
1h =15°, §
Im =15, &
lg —_— 5/[
und umgekehrt
1° =4nm, 4
1 =4s, Abb. 16: Rotierende Sphire, Sternzeit und
18 geographische Linge
lll — _ﬁ

zu setzen ist. Es darf nicht vergessen werden, daf'die Stunden, Minuten und
Sekunden der Sternzeit eine kiirzere Dauer haben als die entsprechenden
Einheiten der mittleren Zeit.

Genau genommen erfolgt die scheinbare Rotation des zweiten Aquator-
systems nicht ganz gleichférmig, wie oben angenommen wurde. Die gleich-
méiBig fortschreitende Bewegung des Friihlingspunktes auf der Ekliptik
infolge der Prézession hat auf die Gleichformigkeit des Ablaufs der Sternzeit
natiirlich keinen Einfluf}, wohl aber die periodische Schwankung, die der
'Friihlingspunkt infolge der Nutationsbewegung der Erdachse erleidet. Sie
bewirkt, da} die zeitliche Anderung von © im Laufe einer 19j4hrigen Periode
abwechselnd grofer oder kleiner ist als im Mittel. .Diese Abweichungen sind
allerdings auflerordentlich geringfiigig, und die Unterschiede zwischen der
"waliren und einer mittleren (auf einen von den Nutationsschwankungen
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befreiten Friihlingspunkt bezogenen) Sternzeit liegen stets unterhalb
einer Zeitsekunde. Immerhin ist zu beachten, dafl die Sternzeit, wie sie sich
aus der Beobachtung der scheinbaren Drehung der Sphire ergibt, kein ganz
konstantes Zeitma@ ist.

Aus ihrer Definition folgt, daB die Sternzeit eine Ortszeif, d. h. von der
geographischen Lage des Beobachtungsortes abhiingig ist, denn da sie ein
Stundenwinkel ist, so bezieht sie sich auf den zum Beobachtungsort ge-
horigen Meridian. Sei zu einem bestimmten Zeitpunkt (Abb. 16) Z das Zenit
des Beobachters B und Z, der gleichzeitige Ort des Zenits von Greenwich,
so bilden die Stundenkreise von Z und Z,, d. h. die Meridiane von B und

Greenwich, den Winkel A miteinander. Ist ® der Stundenwinkel des Friih-
lingspunkts, bezogen auf den Meridian von Greenwich, d. h. die Greenwicher
Ortssternzeit, so ist (Abb. 16)

0=0+A. (I; 51)

Hierbei wird der Winkel A vom Greenwicher Meridian nach Westen gezihlt
und bedeutet somit die geographische Linge von B.

Nach den Ergebnissen unserer bisherigen Uberlegungen lassen sich nun-
mehr drei Sitze aufstellen, die das Fundament aller Methoden der Geo-
graphischen Ortsbestimmung bilden:

1. Die geographische Breite eines Beobachtungsorts ist gleich der Héhe des Himmels-
nordpols und gleich der Deklination des Zenits.

2. Die Sternzeit am Beobachtungsort ist gleich dem Stundenwinkel des Friihlings-
punkts und gleich der Rektaszension des Zenits.

3. Die geographische Linge des Beobachtungsorts ist gleich der Differenz zwischen
der Sternzeit des Meridians von Greenwich und der gleichzeitigen Sternzeit am
Beobachtangsort.

Eine vollstédndige Ortsbestimmung ist, wie man aus diesen Sdtzen erkennt,
nur im Zusammenhang mit einer Zeitbestimmung moglich. Ohne Uhr 146t sich
allenfalls eine Bestimmung der geographischen Breite durchfiihren. Die
Ermittlung der geographischen Linge ist aber nur auf dem Wege iiber die
Ortszeit moglich. Die Methoden der Zeitbestimmung werden daher in den
folgenden Kapiteln einen wichtigen Platz und breiten Raum einnehmen.

11. Der Sextant, das Ortshestimmungsgerit des Seemannes

Fast alle astronomischen Messungen, die der Bestimmung der Ortszeit
und der geographischen Koordinaten des Standortes dienen, beziehen sich
auf die sphérischen Koordinaten der Gestirne im System des Horizontes,
das ja fest mit dem Beobachtungsort verbunden ist und dessen Hauptrich-
tungen leicht realisierbar sind. Das letztere gilt besonders fiir die Z-Richtung
des Systems, die Lotrichtung, die physikalisch eindeutig definiert ist und auf
der Grundebene des Systems, der durch die Oberfliche ruhender Fliissig-
keiten (Meeresoberfldche, Quecksilberhorizont) gegebenen Horizontalebene,
senkrecht steht. Die Hohen bzw. Zenitdistanzen der Gestirne sind daher
besonders leicht meflbare GroBen und werden als Beobachtungsgrundlagen
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fiir geographische Ortsbestimmungen bevorzugt. Die andere sphirische
Koordinate im Horizontsystem, das Azimuf, kommt erst in zweiter Linie
in Betracht.

Das einfachste Instrument zur Messung von Gestirnshohen ist der
Sextant, der auch ganz allgemein zur Bestimmung der sphirischen Distanz
zweier Gestirne benutzt werden kann. Die mit ihm zu erzielende Beobach-
tungsgenauigkeit ist nicht sehr gro: die gemessenen Winkel lassen sich
héchstens auf 10 Bogensekunden genau ablesen. Dafiir hat der Sextant,
ebenso wie die ihm verwandten Instrumente (Oktant, Quadrant, Spiegel-
kreis), den groBen Vorteil, keinen festen Standpunkt zu erfordern — er
wird wihrend der Beobachtung in freier Hand gehalten und ist daher das
gegebene Instrument fiir den Seemann, der auf dem stindig schwankenden
Boden des Schiffes kein Gerit verwenden kann, das einer festen Aufstellung
bedarf.

Der Sextant (Abb. 17) besteht aus einem leichten Gestell in Form eines
Kreissektors, der den sechsten Teil eines Vollkreises umfat und an seinem
Rande einen mit fein geteilter Skala versehenen Kreisbogen von etwas mehr-
als 60° Liange trigt. Um den Mittelpunkt A des Kreises 4Bt sich ein dreh-
barer Arm AC, die Alhidade, bewegen, der in A einen auf der Sextantenebene
senkrecht stehenden Spiegel und in C einen Nonius trigt, mit dessen Hilfe
die jeweilige Stellung der Alhidade auf der Skala genau abgelesen werden
kann. Die Alhidade 146t sich bei C festklemmen und dann mit Hilfe einer
Feinbewegung noch um kleine Betrige verschieben. Fest mit dem Gestell
verbunden ist der ebenfalls auf der Sextantenebene senkrecht stehende
Spiegel B, der nur in seiner unteren Hilfte belegt, in der oberen aber durch-
sichtig ist. Auf ihn ist das Fernrohr F gerichtet, das ebenfalls fest auf dem
Gestell aufmontiert ist, und zwar so, daB ein von A aus den Spiegel B tref-
fender Lichtstrahl gerade in die optische Achse des Fernrohrs hinein re-
flektiert wird.

Der Nullpunkt der Skala (O in Abb. 17) ist nun so festgelegt, daB3 die
Spiegel A und B parallel stehen, wenn die Alhidade auf diesen Punkt ein-
gestellt wird. Irgendein Objekt, das mit dem Fernrohr anvisiert wird,
z. B. ein Stern, erscheint dann im Gesichtsfeld doppelt, einmal direkt durch
den oberen durchsichtigen Teil des Spiegels B, einmal nach zweimaliger
Reflexion an den Spiegeln A und B.

Will der Beobachter die sphirische Distanz zweier Objekte S, und S,
messen (Abb. 17), so visiert er S, direkt an und dreht die Alhidade um den
Winkel « so weit, da3 das doppelt reflektierte Bild von S, mit dem direkten
von S; zusammenfillt, wobei natiirlich das Instrument so gehalten werden
muB, daf} seine Ebene mit der des groften Kreises durch S, und S, iiberein-
stimmt. Aus den bekannten Gesetzen der Reflexion folgt unmittelbar, da
die Drehung « der Alhidade aus der Nullpunktslage heraus gerade halb so
groB3 ist wie die Distanz # der beiden Objekte (§ = 2 «). Um diesen Umstand
zu beriicksichtigen, ist die Skala des Sextanten gleich so eingerichtet, da3
auf ihr der doppelte Winkel (2 &) vermerkt ist. Der Beobachter liest also die
sphérische Distanz der beiden Objekte an der Skala direkt ab.

4 Geogr. Ortsbestimmungen
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Der Beobachter auf See, der die Hohe der Sonne iiber der Kimm messen
will, bringt den Sextanten in die Vertikalebene der Sonne, visiert die Kimm-
linie direkt an und dreht die Alhidade so weit, daf3 das zweifach reflektierte
Bild der Sonne mit dem oberen oder unteren Rand die Kimmlinie beriihrt.
Die Ablesung am Nonius ergibt dann die Hohe des oberen bzw. unteren
Sonnenrandes iiber der Kimm, woraus nach Beriicksichtigung der Kimm- .
tiefe und des scheinbaren Sonnenhalbmessers die scheinbare Hoéhe des

Sonnenmittelpunktes iiber

Sy %k dem wahren Horizont folgt.

A Dieses Ergebnis ist dann
noch wegen der Refraktion
und der téglichen Sonnen-
parallaxe zu berichtigen.

Bei Beobachtungen auf
dem Festland, wo die
Kimmlinie nicht sichtbar
ist, hilft man sich, indem
man einen Hilfsspiegel hori-
zontal lagert und nun die

X sphérische Distanz der
[§ Sonne von ihrem Spiegel-
“* bild miBt. Diese Distanz ist
dann gleich der doppelten
Hoéhe. Die horizontale
Lage des Hilfsspiegels, der
“auf einem durch drei Fug-
schrauben regulierbaren
Gestell rubt, l4Bt sich
mit einem Niveau (Libelle) recht genau kontrollieren. Besser ist es, einen
.» Quecksilberhorizont* (eine flache mit Quecksilber gefiillte Schale) zZu be-
nutzen, dessen spiegelnde Oberfliéche immer genau horizontal liegt. Um eine
Kriuselung der Quecksilberoberfliche durch Wind zu verhindern, schiitzt
man dieses Hilfsgerit durch ein dariibergesetztes giebelférmiges Schutzdach
aus planparallelen Glasplatten.

C
Abb. 17: Sextani

Der hauptsdchlichste Instrumentalfehler des Sextanten, der bei jeder
Beobachtung beriicksichtigt und wegen seiner Verénderlichkeit von Zeit zu
Zeit neu bestimmt werden muB, ist der Nullpunktsfehler. Er 148t sich er-
mitteln, indem man die Alhidade in die Nullstellung bringt und mit Hilfe
der Feinbewegung das anvisierte Objekt mit dem doppelt reflektierten Bild
zur Deckung bringt. Der an der Skala abgelesene Winkel (der auch << 0 sein
kann) entspricht dem wahren Nullpunkt der Skala und ist von jedem
Beobachtungsergebnis abzuziehen. Bei Verwendung der Sonne zur Bestim-
mung des Nullpunktsfehlers 143t man das direkte und das doppelt reflektierte
Bild der Sonnenscheibe sich mit den Réndern beriihren, und zwar einmal
von der einen, ein anderes Mal von der entgegengesetzten Seite her. Sind die
beiden Ablesungen an der Skala a; und a, (wobei a, > a, sein moge), so ist



12. Das Universalinstrument 35

1, (a, + a,) die Nullpunktslage, — 1/,(a, + a,) die Nullpunktskorrektion,
wihrend 1/, (a; — a,) den scheinbaren Halbmesser der Sonne als Kontroll-
ergebnis liefert.

Auf die iibrigen Instrumentalfehler dieses Instruments soll hier nicht
néher eingegangen werden — eine vollstindige Theorie des Sextanten findet
der Leser in vielen einschligigen Lehrbiichern der Sphirischen Astronomie,
so z. B. in kaum zu iibertreffender Ausfiihrlichkeit in dem Lehrbuch von
F. BRONNow (siehe Literaturverzeichnis). Diese Fehler koénnen die ver-
schiedensten Ursachen haben, von denen hier nur einige aufgezihlt werden
mdgen: die Spiegel A und B stehen nicht genau senkrecht auf der Sextanten-
ebene; die optische Achse des Fernrohrs, die durch ein Fadenkreuzim Ge-
sichtsfeld versinnbildlicht wird, hat gegen die Sextantenebene eine geringe
Neigung; der Drehpunkt der Alhidade fillt nicht mit dem Mittelpunkt des
die Skala tragenden Kreisbogens zusammen (Exzentrizititsfehler); die
Teilung der Skala ist fehlerhaft. Durch sorgféltige Justierung des Instrumentes
lassen sich einige dieser Fehlerquellen so gut beseitigen, daB ihre’ Einfliisse
weit unter die natiirliche Grenze der Beobachtungsgenauigkeit fallen. Die
Wirkung der Exzentrizitéit und der Skalenfehler kann man bestimmen, wenn
man bekannte Winkel verschiedener Gréfle (z. B. die wegen Refraktion ver-
besserten sphérischen Abstéinde hellerer Fixsterne) miB8t und die Ergebnisse
der Messung mit den wahren Werten vergleicht.

Da der Sextant, dessen Kreisbogen rund 60° umfa@Bt, Distanzen bis zu
120° zu messen erlaubt, reicht er zur Bestimmung von Sonnenhséhen auf
See vollig aus, ebenso der dhnlich konstruierte Oktant, dessen Skala nur
wenig iiber 90° geht. Ist man dagegen gezwungen, einen kiinstlichen Horizont
zu benutzen und daher doppelte Sonnenhéhen zu messen, kann es vorkom-
men, daf3 die Skala zu kurz ist — selbst in unseren Breiten erreicht die Sonne
zur Zeit des Sommersolstitiums Mittagshohen iiber 60°. Diesen Ubelstand
vermeiden die Spiegelkreise, die mit einem fein geteilten Vollkreis versehen
sind. Die um den Kreismittelpunkt drehbare Alhidade erstreckt sich lidngs
eines Durchmessers und trigt zwei einander gegeniiberliegende Nonien. Liest
man beide Nonien ab und bildet das arithmetische Mittel der beiden Ab-
lesungen, so fillt der Exzentrizititsfehler heraus.

12. Das Universalinstrument

Wihrend der Sextant nur zur Messung von Gestirnshohen und — was
insbesondere bei Bestimmungen der geographischen Linge auf See wichtig
ist (sieche Abschnitt 60) — sphérischen Gestirnsabsténden geeignet ist, dient
das Universalinstrument sowohl zur Messung von Hohen als auch von
Azimuten. Es besteht im wesentlichen aus einem Fernrohr, das um eine
horizontale und eine vertikale Achse (die ,,Kippachse' und die ,,Stand-
achse'') meBbar gedreht werden kann. Als tragbares Gerit, das aber bei .
Benutzung einer festen Aufstellung bedarf, ist es bei Expeditionen zu Lande
fiir alle Methoden der Zeit- und Ortsbestimmung verwendbar. Je nach Grofle
und Ausfiihrung des Instrumentes ist die Beobachtungsgenauigkeit sehr ver-
schieden: selbst kleinere Reisegerite gestatten Winkelmessungen, die be-

4!
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deutend genauer sind als die mit Sextanten erzielbaren; grofe Instrumente
dieser Art, die man auf Sternwarten findet (Altazimute oder, wenn sie nur zur
Messung von Zenitdistanzen dienen, Vertikalkreise genannt), gehoren zu
den besten Prizisionsgeriten, die dem Astronomen zur Verfiigung stehen.

Das Universalinstrument besitzt zwei fein geteilte Kreise, einen hori-
zontalen, den Azimutkreis, an dem Drehungen um die Standachse abgelesen
werden konnen, und einen vertikalen, den Hohenkreis, an dem die Zenit-
distanzen der beobachteten Objekte erscheinen. Die Ablesung der Kreise
geschieht zur Ausschaltung der Exzentrizititsfehler stets an zwei gegeniiber-
liegenden Stellen — bei kleineren Instrumenten mit Hilfe von Nonien, bei
groBeren mit Ablesemikroskopen, in deren Gesichtsfeld ein durch eine MeB-
trommel meBbar beweglicher Faden auf die Teilstriche der Kreisskalen ein-
gestellt werden kann. Instrumente, die nur zur Azimutmessung dienen und
daher keinen feingeteilten Hohenkreis besitzen, werden in der Geodésie bei
der Vermessung ebenen Geldndes verwendet und heiflen Theodolithe.

" Wenn wir von der Festlegung der Nullpunkte der Kreisskalen absehen,
muB ein fehlerfrei konstruiertes und aufgestelltes Universalinstrument drei
Bedingungen erfiillen: die Standachse muf3 genau vertikal, die Kippachse
genau horizontal sein, und die Achse (Visier- oder Absehenlinie) des Fern-
rohrs, die durch den Schnittpunkt eines horizontalen und eines vertikalen
Fadens (Fadenkreuz) im Gesichtsfeld definiert wird, mu83 genau senkrecht
auf der Kippachse stehen. Dariiber hinaus ist erforderlich, da3 die beiden
Achsen des Instruments auf den Ebenen der zugehorigen Kreise senkrecht
stehen (was aber mechanisch immer mit geniigender Genauigkeit erreicht
wird) und auch genau durch deren Mittelpunkte verlaufen. Die Exen-
trizititsfehler, die entstehen, wenn diese letzte Forderung nicht genau erfiillt
ist, werden, wie schon erwihnt, dadurch eliminiert, da} die Kreise an zwei
gegeniiberliegenden Stellen abgelesen und die beiden Ergebnisse gemittelt
werden.

Die oben genannten drei Bedingungen sind nun immer mehr oder weniger
ungenau erfiillt, was teils an Unvollkommenheiten der Konstruktion (In-
strumentalfehler), teils an der fehlerhaften Aufstellung des Instrumentes
(Aufstellungsfehler) liegt. Verlingern wir die drei durch das Instrument
gegebenen Richtungen, die der Achse des Fernrohrs und die der beiden
Achsen des Instruments, bis zur Sphire, so ergibt sich das in Abb. 18 ge-
zeichnete Bild:

Die Standachse zielt nach Z’, das Kreisende der Kippachse (d. h. das-
jenige Ende der horizontalen Achse, das den zur Ablesung der Zenitdistanz
bestimmten Kreis trigt) nach K, die Visierlinie des Fernrohrs nach einem auf
das Fadenkreuz eingestellten Gestirn G, dessen Koordinaten im System
des Horizontes A (Azimut) und z (Zenitdistanz) sein mégen. Bei verschwin-
denden Aufstellungs- und Instrumentalfehlern miilte Z’ mit dem Zenit Z
zusammenfallen, K bei jeder Drehung des Instruments um die Standachse
stets auf dem wahren Horizont HR liegen und der Bogen KG genau 90°
betragen. In Wirklichkeit habe Z’, das instrumentelle Zenit, von Z den kleinen
Abstand i und der zu Z’ als Pol gehorige groBte Kreis H' R’, der instrumentelle
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Horizont, gegen den wahren Horizont die Neigung i. Der Punkt K maoge iiber
dem wahren Horizont die Héhe b, iiber dem instrumentellen Horizont die
Héohe — ¢’ haben. Die Bogen KZ und KZ’ sind also % — b bzw. g + ¢’. Der
stets sehr kleine Winkel ¢, ein unveridnderlicher Instrumentalfehler, heifit

der Kollimationsfehler der Achsen. Der Bogen KG habe die Linge —:’25 +c;

die kleine GroBe ¢ heit Kollimationsfehler des Fernrohrs. Durch Parallel-
verschiebung des Vertikalfadens im Fernrohr mit Hilfe von Justier-
schrauben kann ¢ klein gehalten und praktisch zum Verschwinden gebracht
werden. Enthélt das Fadennetz mehrere parallele Vertikalfiden, so gilt ¢
fiir den Mittelfaden, wihrend die symmetrisch zu ihm angeordneten Seiten-
fdden ihre eigenen Kollimationsfehler haben.

Bei Azimutbestimmungen mit dem Universalinstrument werden zu-
néchst immer nur relafive Azimute gemessen, d. h. Azimutdifferenzen gegen
einen beliebigen Nullvertikal, dessen Azimut in bezug auf den siidlichen
Bogen des Meridians dann nétigenfalls durch gesonderte Beobachtungen
bestimmt werden muf (sieche Abschn.24). Es ist daher nicht nétig, das
Instrument von vornherein so aufzustellen, daB bei Anvisieren eines im
Siiden kulminierenden Sternes am Azimutkreis 0° abgelesen wird. Wir
konnen also zunéchst die Zahlung der Azimute bei einem beliebigen Vertikal
beginnen lassen und wihlen dafiir zweckmiBig den Vertikal von Z’, da dieser
dem wahren und dem instrumentellen Horizontsystem gemeinsam ist. In
bezug auf ZZ' als Nullvertikal habe G im wahren Horizontsystem die Koordi-
naten a, z, im instrumentellen die Koordinaten o', z’. Die entsprechenden

. . n 7
Koordinaten von K seien a,, 5~ b bzw. a,, 5 +c.

Bei Einstellung des Fadenkreuzes auf G werden an den Kreisen das
Azimut A, und die Zenitdistanz z, abgelesen. Es ist dann die Aufgabe zu
16sen, aus Ay, z, die wahren Koordinaten a, z bzw. (in bezug auf den Meridian
als Nullvertikal) A4, z abzuleiten, wenn die Aufstellungs- und Instrumental-
fehler sowie die Nullpunktskorrektionen der Kreise, iiber deren Ermittlung
weiter unten das Notige gesagt werden wird, bekannt :sind.

Aus dem Dreieck ZZ’'K (Abb. 18) erhilt man mit ZK als Grundseite
nach dem Cosinussatz

sinb = —sin¢ cosi — cos ¢’ sini cos @’y
oder, wenn b, ¢, i als klein angesehen und daher die Sinus dieser Winkel
gleich den Bogen, die Cosinus gleich Eins gesetzt werden,
b=—( +icosdy). (I;52)
Aus dem Dreieck Z' KG folgt nach dem Cosinussatz

—sine¢ = —sin¢’ cos 2’ 4 cos ¢’ sin 2’ cos (@' — ay),
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daher fiir kleines ¢, ¢’

—c=—c cosz + sinz sin [g —(a' — ao’)]
oder, da K sehr nahe beim Pol von Z’G liegt, und daher {der Winkel
—725 — (a’ — ay’) sehr Kklein ist,
4 ’ ’ ’ 7 4
5—(a —a,)= —c cosecz 4 c'ctgz,

woraus

ad = % + a, + ¢ cosecz’ — ¢ ctgz’ (Kreis links) (I:53)

Horizont

Abb. 18: Zur Theorie des Universalinstruments

folgt. Diese Formel gilt fiir den in Abb. 18 gezeichneten Fall, da3 das Kreis-
ende der Kippachse links. vom Beobachter liegt. Da a,’ bis auf Konstante
die Ablesung A," des Azimutkreises angibt, diirfen wir

%-}—ao’:Ao’-{-x (I; 53a)

setzen, wobei x eine noch zu bestimmende konstante Korrektion des
abgelesenen Azimuts bedeutet.

Liegt das Kreisende der Kippachse rechts vom Beobachter, was man da-
durch erreichen kann, daBB man das Instrument im Azimut um 180° dreht
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und das Fernrohr durch die Zenitlage hindurch wiederum auf G richtet, so.
erscheint in Abb. 18 das Dreieck Z'KG um Z’G umgeklappt. K hitte in der
neuen Lage das neue Azimut a,” = ay’ 4+ 2 (¢’ — a,’), und der Winkel ' — ay
ginge in @y’ — a’ iiber. Man erhélt dann statt (I'; 53)

d =a — % —c cosecz + ¢ ctg 2’ (Kreis rechts),  (I;54)
wobei man wieder

a,’ -—% =A) +=z (I; 54a)

setzen darf, wenn A, 4+ & die neue Kreisablesung bedeutet.
Aus Dreieck Z’'KG findet man nach dem Cosinussatz

cos 2" = sin ¢ sin ¢’ + cos ¢ cos ¢’ cos {’

oder fiir kleines ¢, ¢’ bis zur zweiten Ordnung

2 /2
cosz’=cc’+(l—c -|2-C )cosC'
oder
. 1__ o " ’ 2 /9
cosz’——cosC’=2sinc 22 sin_C —2|-z =ce—S -’2-‘: cos '

4 ’

Wegen des kleinen Faktors 2 sin ~{ — 2, der offenbar von der

2
zweiten Ordnung in ¢, ¢’ ist, diirfen wir
sin Ftz =sin{’
2
setzen und erhalten
2+ c’2

2 ={"—cc cosecl’ + ——ctgl’. (I; 55)

Desgleichen ergibt sich aus Dreieck ZKG die entsprechende Formel

z= C—I—cbcosec&‘—[— +b2

ctgl (I; 55a)

durch Vertauschung von 2z’ mit z, {’ mit £ und ¢’ mit —b. Abgesehen von dem
Fall sehr kleiner Zenitdistanzen, in dem die beiden letzten Glieder der rechten
Seiten von (I; 55) und (I 55a) unter Umstidnden merklich werden, darf man
also immer z = { und 2’ = {’ setzen.

Aus dem Dreieck ZZ'K folgt nach dem Sinussatz
cos b sin ({’ — {) =sini sinqy,
also genédhert, wenn man noch rechts nach (I; 53) ¢y’ = a’ — % setzt,
t=¢+4+1icosd.
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"Setzt man dies in (I; 55a) ein, so wird, da man in den Gliedern zweiter

Ordnung { = z setzen darf,

02 -+ b2
2

z=1{"+4icosa -+ cbcosecz-} ctgz. (I; 56)

Nun ist {’, wie aus Abb. 18 unmittelbar ersichtlich, die am Héhenkreis ab-
gelesene instrumentelle Zenitdistanz z, bis auf eine konstante Nullpunkts-
korrektion 4z. Ist der Hohenkreis so eingeteilt, da3 z, vom Zenitpunkt aus
nach beiden Seiten von 0 bis 180° wichst, so muf}, da in den beiden Kreis-
lagen z, auf verschiedenen Seiten vom Zenitpunkt abgelesen wird, Az das
eine Mal addiert, das andere Mal subtrahiert werden. Die wahre Zenitdistanz
ergibt sich also aus z, nach der Formel

cz+ b2

z2=2y+ Az +} icosa’ + cb cosec z 3

ctgz, (I; 57)

in der die Glieder zweiter Ordnung in ¢, b nur bei sehr kleinen Zenitdistanzen
ins Gewicht fallen.

SchlieBlich erhidlt man aus dem Dreieck ZZ'G mit ZG als Grundseite
nach dem Sinus- und dem Sinus-Cosinussatz

I (IT)
sin z sin @ = sin 2’ sin @', cosa' |sind
sin z cos @ = cos 2’ sin i + sin 2’ cos i cos a’

=jicosz 4 sinz cosa’. —sina’ |cos d’

Multipliziert man diese Gleichungen mit den Faktoren (I) und (II) und ad-
diert, so findet man

(I) sinzsin(a —a') = —icosz sina’,
(IT) sinzcos(a —a') =icosz cosa +sinz'.

SchlieBen wir sehr kleine Zenitdistanzen aus, bei denen Azimutbestim-
mungen unsicher sind und daher in der Praxis auch vermieden. werden,
so zeigt (I), daB a—a’ klein von der Ordnung i ist. Man darf also in (II)
cos (@—a’) =1 setzen und erhilt dann

sinz —sinz’ =icosz cosa’.

Ersetzt man also in (I) sin z durch sin 2’, so begeht man auf der linken Seite
einen Fehler zweiter Ordnung, und es folgt daher

a=a —ictgzsind.

Setzt man nun fiir ' die Ausdriicke (I;.53), (I; 53a) bzw. (I; 54), (I; 54a)
ein, so erhilt man

a=A,+ x4 ccosec? F (¢ + isina’) ctg 2,
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wobei das obere Vorzeichen fiir Kreis links, das untere fiir Kreis rechts

gilt. Wegen (I;52) und d’ ~a, + g ist aber
b=—( +isinda’) (I; 58)
und daher
a=A,4+ x4 ccosecz’ 4 betg 7,

wobei man noch 2’ durch z ersetzen darf. Nun bedeutet z die Korrektion des
abgelesenen Azimuts auf den Vertikal ZZ’'. Vereinigen wir diese mit dem
Azimut dieses Vertikals in bezug auf den Meridian und bezeichnen die Summe
beider Korrektionen mit 44, so erhalten wir fiir das wahre Azimut von G

A=A,+ A4A 4+ ccosecz 4 betgz. (I;59)

Hierbei ist zu beachten, daB A, bei Kreis links die Ablesung A,’, bei Kreis
rechts die vorher noch um 180° verminderte Ablesung A, bedeutet, und
daBl wegen (I;58) die Neigung b in beiden Kreislagen verschiedene Werte,
b bzw. b”, annimmt, wenn i 3= 0 ist.

Die Reduktion der beobachteten Koordinaten geschieht mit Hilfe der
Formeln (I; 57) und (I; 59), und es ist nun nur noch nétig, zu zeigen, wie die
Instrumentalkonstanten und Aufstellungsfehler bestimmt werden.

Die Neigung b der Kippachse, die im allgemeinen vom Azimut o’ ab-
héngig ist, 148t sich direkt mit Hilfe einer Libelle bestimmen, die man auf
die Zapfen der Kippachse aufsetzt. Fiir Kreis links ist dann

b=—c¢ —isind,

wobei @’ ~ A, 4 z zu irgendeiner beliebigen Einstellung A, am Azimutkreis
gehort. Bestimmt man nun die Neigungen b,, by, bs bei den drei Einstellungen
Ay Ay + 120°, so ist

by =—¢ =i sin(4y+ 2),

by =—c'+ %sin (A + z)—%. V3cos (4, + ),

by =—¢'+ 5 sin (Ao + 2) + 5 V3 cos (4o + 2),
woraus

g _bitbitd bart-by—2b;
' 3

.‘iSiD(Ao—l—:l‘): f : l'COS(A0+1')=ba_b2

V3
und damit ¢’, i und z folgt. Fiir jedes A, ist damit der N#herungswert

@’ = Ap + x bekannt, den wir zur Berechnung des Korrektionsgliedes
icos @’ in (I; 57) brauchen.

Den Kollimationsfehler ¢ des Fernrohrs bestimmen wir, indem wir ein
festes Objekt in beiden Lagen des Instruments anvisieren.
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Fiir Kreis links und rechts ist dann nach (I; 59)
A=Ay + 44 + ccosecz + b’ ctgz,
A=A+ AA —ccosecz — b ctgz,
und aus der Differenz dieser Gleichungen folgt

_AOH—AO' . b/+bn
c= ———E?———SHIZ—— D)

Ccos z.

Den Nullpunktsfehler A4 des Azimutkreises bestimmt man am besten,
indem man (I; 59) auf die Beobachtung eines Objekts mit bekanntem Azimut
anwendet, z. B. (vgl. Abschnitt 24) auf einen polnahen Stern in der Stellung
der ,,gréB3ten Digression*, in der sich das Azimut einige Zeit hindurch nicht
merklich verindert. Der Nullpunktsfehler Az des Hohenkreises kann auf
dhnliche Weise bestimmt werden, besser aber, indem man die Zenitdistanz
eines Objekts (etwa eines polnahen Sterns in der oberen oder unteren Kul-
mination) in beiden Kreislagen mifit. Es ist dann wegen (I; 57), wenn zy’, 2"
die beiden Kreisablesungen sind, bis auf Glieder zweiter Ordnung,

z=2/ +A4z+icosd,
z2=2/'—Az+icosa .

Also folgt aus der Differenz und der Summe dieser Gleichungen

A z zoll —‘zo’ . z _ ol + zo”
2 2

+icosa’.

Eine besondere Abart des Universalinstruments stellt der Meridiankreis
dar, bei dem die horizontale Achse fest in der Ost-Westrichtung liegt, so dal
das Fernrohr bei Drehung um diese Achse den Meridian des Himmels be-
streicht. An die Stelle der Azimutmessung tritt bei diesem Instrument die
Aufgabe, die Zeit des Durchgangs eines Gestirns durch den Meridian zu be-
stimmen. Fehlt der feingeteilte vertikale Kreis zur Messung von Zenitdistan-
zen, so heillt dieses Gerédt Passageinstrument, und die Bestimmung der
Durchgangszeit durch den Meridian (oder auch, wenn die horizontale Achse
nord-siidlich gerichtet ist, durch den Ersten Vertikal) ist seine einzige Auf-
gabe. Die Theorie des Meridiankreises und des Passageinstruments 148t sich
aus der des Universalinstruments unmittelbar ableiten, wobei man nur zu
beachten hat, da8 der Ubergang von der einen Kreislage in die andere nicht
durch Drehung des Instruments, sondern durch Umlegen der Achse mitsamt
dem Fernrohr in den festen Lagern geschieht, wobei also die Neigung i der
Achse gegen den Horizont erhalten bleibt.

Wegen seiner Wichtigkeit fiir die Aufgabe der Zeitbestimmung ist die
Theorie des Passageinstruments in Abschnitt 29 gesondert entwickelt worden;
die Ableitung der dort gewonnenen Formeln aus denen des Universalinstru-
ments sei dem Leser iiberlassen. N



II. KAPITEL
DIE TAGLICHE BEWEGUNG DER GESTIRNE

13. Aufgang und Untergang der Gestirne

Nach den beiden ersten der drei Fundamentalsiitze, die wir am Schlufl
des Abschnitts 10 zusammenstellten, sind Orts-Sternzeit und geogra-
phische Breite (Polhdhe) eines Beobachtungsorts mit den Koordinaten
(Rektaszension und Deklination) des Zenits identisch. Diese Koordinaten
lassen sich nicht direkt beobachten, man erhilt sie aber leicht aus den Be-
ziehungen, die zwischen ihnen und den der Beobachtung zugénglichen Hori-
zontkoordinaten der Gestirne bestehen, z. B. aus den Gleichungen (I; 6) und
(I; 7), die durch Anwendung der Sdtze der Sphérischen Trigonometrie auf
das Pol-Zenitdreieck (Nautische Dreieck) folgen (vgl. Abb. 7). Diese Be-
ziehungen nehmen besonders einfache Gestalt an, wenn sich die Gestirne
im Augenblick der Beobachtung an gewissen ausgezeichneten Punkten ihrer
scheinbaren tiglichen Bahn befinden, z. B. wenn sie die Hauptkoordinaten-
ebenen des lokalen Systems, den Horizont, den Meridian oder den Ersten
Vertikal iiberschreiten. Das genaue Studium dieser Sonderfille fiithrt zu
tieferen Einblicken in die Erscheinungen der t4glichen Bewegung der Gestirne,
deren Kenntnis fiir die Lésung der Probleme der Orts- und Zeitbestimmung
niitzlich ist.

Den Durchgang der Gestirne durch den Horizont bezeichnen wir als
Aufgang bzw. Unfergang. Im wahren Horizont des Beobachters |z =%

nehmen die Grundformeln (I;7) des Nautischen Dreiecks die einfachere
Form

~ 0 =sin dsin ¢ 4 cos d cos g cos t,,
cos A, = — sin 4 cos ¢ + cos d sin ¢ cos ,, } (I1; 1)

sin A, = cos d sin t,

an, wobei nach (I; 50)
to =0y — ¢

zu setzen ist. Es bedeuten dann t,, A, ©, Stundenwinkel, Azimut und Stern-
zeit des Auf- bzw. Untergangs eines Gestirns mit den Koordinaten «, d. Aus
der ersten Gleichung (II; 1) erhilt man den Stundenwinkel des Horizont-
durchgangs:

costy=—tgptgd Ir; 2)
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und, indem man (IT;2) in die zweite Gleichung (II; 1) einsetzt, fiir das
Azimut des Horizontdurchgangs:

cos Ag = —sec gsind. (11, 3)

Zur Berechnung von #, und A, sind diese Formeln ungeeignet, da sie ungenaue
Werte liefern, wenn f, und A, in der Nihe von 0 oder nliegen. Es ist iiberhaupt
zweckmiBig, Winkelgrofen nicht aus Sinus- oder Cosinusformeln, sondern
aus Tangentenformeln zu berechnen, da diese fiir den ganzen Bereich des
Arguments ausreichende Genauigkeit gewihrleisten. Auf Grund der Identi-
téiten ’
2 _ 1—cosz _ V1—cos?z
K 2 1+cosz’ Br=+

—  cosx
gewinnt man aus (II; 2) nach einfacher Rechnung die Formeln

fo cos (p — 9) _, Veos(@—d)cos(p +98) .
9=t st W=t apums a4

Aus (II; 3) ergibt sich auf dieselbe Weise zunéchst
Ay __cosg+sind
2 cosp —sind

t2

und hieraus, wenn man statt ¢ die Zenitdistanz y = % — @ des Himmels-

nordpols einfiihrt,

g 4 ]/tg"’ Toag V=0, g, 4 Vo0 D00 1)) gy,

In Verbindung mit (II;2) und (II; 3) liefert die dritte Gleichung (IT; 1)
folgende Beziehungen zwischen ¢, und A,:

tgto = ._ctgq)COSCC(SSin Ao, (II' 6)
tg Ag = — cos p ctg d sin £, .

und, wenn man die zweite dieser beiden Gleichungen durch die erste dividiert
und (II; 1) beriicksichtigt, die einfache Formel

tg A, =sin g tgt,, I1;7)
die auch aus' (II; 4) und (II; 5) direkt folgt.

Aus (IT; 2) folgt, daB t, nur dann reell ist, wenn | tgd | < | ctg ¢ |, with-
rend (II; 3) lehrt, daB fiir reelles A, die Bedingung | sin § | < | cos ¢ | erfiillt
sein muB. Beide Ungleichungen gelten gleichzeitig, und zwar dann und nur

dann, wenn |6 | < % — | @ | Alle Sterne, fiir die

14
[6]>5 =1l (IT; 8)



13. Aufgang und Untergang der Gestirne 45

gehen nicht auf und unter, bleiben also auf ihrer téglichen Bahn stets iiber
oder stets unter dem Horizont. Ihre Orter liegen innerhalb der beiden Pol-
kalotten der Sphire, deren Grenzkreise von den Himmelspolen den Abstand
| ¢ | haben und den Horizont im Nord- bzw. Siidpunkt beriihren. Diese
Sterne heiBen daber Zirkumpolarsterne. Aus (11; 8) folgt, daBl an den Erdpolen -

g((p =4 g— alle Sterne zirkumpolar sind, wihrend am Aquator (¢ = 0) alle

Sterne auf- und untergehen.

Die Gleichungen (IT; 2) bis (II; 5) zeigen, daBB es zwei Losungen £, A,
gibt, die symmetrisch zum Meridian liegen. In (II; 4), (IT; 5) bezieht sich das
positive Zeichen auf den Untergang, das negative auf den Aufgang. Auf- und
Untergang finden also im gleichen Zeitabstand vom Meridiandurchgang
(t = 0 oder x) und im gleichen Abstand vom Siidpunkt (A = 0) bzw. Nord-
punkt (A = x) statt. Das gilt allerdings nur, solange die Koordinaten ¢, é des
‘Gestirns wihrend der zwischen Auf- und Untergang verflieBenden Zeit als
konstant angesehen werden diirfen. Das ist fiir alle Fixsterne praktisch der
Fall, fiir Sonne und Planeten und besonders fiir den Mond aber nicht.

In allen bisherigen Formeln ist unter ,,Horizont* stets jener ideale
Groftkreis der Sphire verstanden worden, der sich mit dem sichtbaren
Horizont, etwa der Kimmlinie des Meeres, nicht deckt. Der beobachtbare
Auf- oder Untergang, d. h. das Auftauchen oder Verschwinden des Gestirns
hinter der Kimm, féllt mit dem Augenblick, in dem der Ort (¢, 6) den wahren
Horizont durchschreitet, nicht zusammen, und zwar aus folgenden Ur-
-sachen:

1. Der scheinbare Horizont ist gegen den wahren um die Kimmtiefe »
.gesenkt (Formel I; 4). Die Zenitdistanz z, des Auf- und Untergangs erscheint
1
2

2. Infolge der Horizontrefraktion erscheint das Gestirn um rund r, = 35’
.gehoben. Es erscheint also am Horizont, wenn es in Wirklichkeit noch (odey
schon) 35" unter dem Horizont steht. Es ist also z, um r, zu vergrofern,

3. Gestirne mit merklicher tiglicher Parallaxe erscheinen im Horizont
um die Horizontalparallaxe &, gesenkt. Infolge der Parallaxe tritt also Auf-
.oder Untergang ein, wenn die Gestirne in Wirklichkeit (d. h. fiir den geo-
zentrischen Standpunkt, auf den sich ihre Koordinaten ¢, é beziehen) schon
-oder noch die Hohe &, haben. Um diesen Betrag ist also z, zu vermin-
.dern. Da die Horizontrefraktion um mehrere Bogenminuten unsicher sein
kann, ist im Vergleich mit diesem Fehler die Horizontalparallaxe der Sonne
+(8,”8) und der Planeten bedeutungslos. Es braucht daher nur die Parallaxe
.des Mondes, deren mittlerer Wert 57’ betrigt, beriicksichtigt zu werden.

4. Bei Beobachtung der Auf- und Untergéinge von Sonne und Mond
‘werden nicht die Horizontdurchgénge der Mittelpunkte dieser Himmels-
korper, sondern die Koinzidenz des oberen oder unteren Randes der Ge-
:stirnsscheibe mit der Kimmlinie beobachtet. Die Zenitdistanz ist also um den.

also gegen ihren theoretischen Wert — um den Betrag » vergrofiert.
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scheinbaren Halbmesser oy zu vergréB3ern oder zu verkleinern, je nachdem, ob
der obere oder untere Rand beobachtet wird.

Allgemein gilt fiir den Durchgang durch den scheinbaren Horizont (Kimm)
zo=%+dzo=%+x+ro—n*—l_—a*. a1; 9)

Ist h die Hohe des Beobachters iiber dem Meeresspiegel, so ist, wenn wir
die mittleren Werte ry = 35, og = o¢ = 16, (ng =0), = 57’ benutzen:

fir Fixsterne . . . . . . . . . dzy=1,8 Vh+ 35,
fir Sonne, oberer Rand . . . . dz, = 1,8 Vh 4 51,
fir Sonne, unterer Rand. . . . dzp=1,8 Vh + 19,
fiir Mond, oberer Rand . . . . dz, =18 Vh — ¢,
fiir Mond, unterer Rand. . . . dz,=1,/8 Vh —38'.

Wegen der Unsicherheit der Korrektion dz, ist auch fiir die mit den
verbesserten Zenitdistanzen berechneten Stundenwinkel und Azimute des
scheinbaren Horizontdurchgangs nur eine geringe Genauigkeit zu erwarten.
Es ist daher im allgemeinen gestattet, dz, als Differential anzusehen, obwohl
es Betrdge von der GroBenordnung eines Grades annehmen kann, und die
entsprechenden Verbesserungen df, und dA, der nach (II; 2) bis (IT; 5) be-
rechneten Werte {,, A, nach Differentialformeln zu ermitteln. Differenzieren
wir die ersten beiden Glelchungen (I; 7), indem wir é und K4 als konstant an-
sehen, so erhalten wir

sin zdz = cos d sin ¢ sin tdt,
cos z cos Adz = sin z sin AdA — cos 6 cos ¢ sin tdt .

Setzen wir fiir den Horizont z = =, t = ty A = A, so folgt

2
dz,
= G355 cos @sint,
__,, cosdsingsint, tgo
ddo=dlv— A, d “sind,

Nach (IT; 6) erhédlt man, wenn man fiir tg#, und tgA, die Ausdriicke
(IT; 4), (II;5) einsetzt,

Vcos (p—0) cos (p + &)

i Vcos (p—6) cos (¢ + 6)

sinty = cos @ cos & sindy =+ cos @
und somit
dt, — dz,
Vcos (p—d) cos (p + 6) (1; 10)
dA, = dzysing

Vcos (p—9) cos (p 4+ 5
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wobei das obere Zeichen fiir den Untergang, das untere fiir den Aufgang gilt.
Diese Korrektionen sind an den nach (II;4), (IT; 5) berechneten Stunden-
winkeln bzw. Azimuten der Auf- und Untergénge anzubringen.

Aus (IT; 10) geht hervor, daB3 dt, und d4, nicht mehr als Differentiale

gelten konnen, wenn einer der Betrige |@ — 4| oder | @ + 6 | nur wenig
n
2 .
Grenzkreisen der Zirkumpolarsterne nahe stehen, also in der Nachbarschaft
des Siid- oder Nordpunktes auf- und untergehen. Fiir diese Fille sind strenge
Formeln notwendig. Nach dem Tangentensatz der Sphirischen Trigono-
metrie [Anhang A IIT (7)] ist im Nautischen Dreieck, wenn man die halbe
Seitensumme

kleiner als —ist. Das trifft aber [vgl. (IT; 8)] fiir diejenigen Sterne zu, die den

setzt,

¢ sin <s——32z—+ ¢p)sin(s——-%+6>

2—=
te 2 sin s sin (s — 2) ’
. T .
m— A A sm(s-—i—{—(p) sin (s —2) .
tg? — = ctg2§ =" ’

sinssin(s—%—{—é)

oder, wenn man statt s die GroBe

,,=2+‘»;i‘? (I1; 11)
einfiibrt und demgemis s =% +o—@p—96 =%+ z — o setzt:
. I sin(c—J)sin(c—¢)
te 2= cos (c—z)cos o '
(II; 12y
g !

i_ sin (o — d) cos o ) I
2 cos(c—z)sin(c—g)
Setzt man in (II; 11) z =g+dzo, so ergeben sich aus (II;12) f und A

fiir den scheinbaren Auf- und Untergang.

14. Meridiandurchgang der Gestirne

Beim Durchgang eines Gestirns durch den Meridian ist A = 0 oder =,
je nachdem der Durchgang siidlich oder nérdlich des Zenits stattfindet, und
t = 0 oder s, je nachdem er oberhalb oder unterhalb der Weltachse vor sich
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geht. Die Gleichungen (I; 7) liefern daher vier verschiedene Lésungen fiir die
Zenitdistanz z; des Meridiandurchgangs, némlich

(@ fird=mt=0:2y=06—¢p=—(p—9),
(b) firA=0,t=0:2, =¢ — 4, l
©fird=0,1=m:n=n+(p+0),

d)fird=mnt=n:1z,=n— (p +9). I

(I1; 13)

Aus Abb. 19, die den Meridianschnitt der Sphire darstellt und in der die
Bereiche dieser vier Fille bezeichnet sind, kann man diese Formeln auch
direkt ablesen, wenn man bedenkt,
daB die Distanz eines Gestirns vom
%— 8 betrigt.
Auf der Nordhalbkugel der Erde
(P iiber dem Horizont) kommt der
Fall (¢) nur fiir Meridiandurchgénge
torizont N unter dem Horizont vor. Auf
S — > — der Siidhalbkugel gilt dasselbe fiir
~ Fall (d).

Jedes Gestirn iiberschreitet wih-
rend seines scheinbaren Umlaufs
den Meridian zweimal. Man be-
zeichnet den Meridiandurchgang
oberhalb der Weltachse in den Ab-
schnitten (a) oder (b) als obere Kul-
mination, den unterhalb der Welt-
achse in der Abschnitten (c) oder

' (d) als untere Kulmination. Wenn
das Gestirn wihrend der Rotation der Sphire seine Deklination nicht
verdndert, fillt die obere Kulmination mit dem Minimum, die untere mit
dem Maximum der Zenitdistanz zusammen.

Gemessene Meridianzenitdistanzen sind wegen Refraktion und, wenn
erforderlich, auch wegen der tiiglichen Parallaxe zu korrigieren. Auf die Zeit
des Meridiandurchgangs haben beide keinen Einfluf, da sie das Azimut nicht
verdndern. Das gilt auch fiir die Mondparallaxe in aller Strenge, da diese
wegen des Faktors sin A in (I'; 30) im Meridian verschwindet. Dagegen er-
reicht die Wirkung der tdglichen Aberration auf Azimut und Stundenwinkel
im Meridian ihr Maximum. Nach (I; 47), (I; 48) stellt im Meridian

dA; = 4 0,32 cos ¢ cosec z,, l
dfy = 4 0,32 cos ¢ sec § |

Himmelsnordpol

Abb. 19: Zenitdistanzen im Meridian

(I1; 14)

den Betrag dar, um den man das beobachtete A, bzw. t, korrigieren mus,
um es von der téglichen Aberration zu befreien. Da die scheinbare Ver-
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schiebung des Gestirns nach Osten zu erfolgt, ist dA, positiv, wenn das
Gestirn siidlich des Zenits kulminiert, und df; positiv in der oberen Kul-
mination.

Wegen ihrer Kleinheit 148t man die Korrektionen (II; 14) meist unberiick-
sichtigt. Bei genauen Zeitbestimmungen mit Meridianinstrumenten diirfen
sie nicht vernachléssigt werden. Davon wird in Abschnitt 29 die Rede sein.

15. Durchgang durch den Ersten Vertikal

’

Setzen wir in den Gleichungen (I;7) 4 =+ g— » 80 ergeben sich die Be-

dingungen fiir den Durchgang der Gestirne durch den Ersten Vertikal.
Bezeichnen wir mit z,, t, Zenitdistanz und Stundenwinkel des Durchgangs
durch diesen ausgezeichneten Kreis, so wird

€0s 2, = sin d sin ¢ - cos d cos @ cos t, ,

0 = —sind cos ¢ + cos dsin p costy, (I1; 15)

sin z, = 4 cos d sin t,,
wobei in der letzten Formel das obere Zeichen gilt, wenn der Durchgang
westlich des Zenits erfolgt.

Aus der zweiten Gleichung (IT; 15) erhélt man fiir den Stundenwinkel
des Durchgangs durch den Ersten Vertikal

costy, =tgdctg g (IT; 16)

und , setzt man dies in die erste Gleichung (II; 15) ein, fiir die Zenitdistanz
im Ersten Vertikal

(I; 17)

Aus (II; 16), (I1; 17) ergeben sich in der gleichen Weise wie (II; 4), (11:5)
aus (II; 2), (II; 3) die Tangentenformeln

ty sin (p—9) | Vsin(g—¥)sin(p +0) ...
th—i Si—n(¢—+6_j’ tg’z—i COS¢sin6 ’(II’ 18)
tg 2= Vtg 9 ;‘5 ctgg_-;_é, tgz = Vsin (”’—Sfli ;‘“ @+9  11; 19)

In Verbindung mit (IT; 16) und (II; 17) liefert die dritte Gleichung (II; 15)
folgende weiteren Zusammenhénge zwischen f, und z,:
tgt, = 4 tg @ cosec § sin z,, |

) (I1; 20)
tgz, = 4 sin pctg dsint,

und, wenn man diese beiden Formeln dividiert und (II; 15) erneut beriick-
sichtigt, _ '
tgz, = L cos @ tgt,, (II; 21)

5 Geogr. Ortsbestimmungen
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was auch direkt aus dem Vergleich zwigchen (IT; 18) und (II; 19) folgt. Die
positiven Vorzeichen gelten stets fiir den Durchgang westlich des Zenits.
~ Gleichung (II; 16) ergibt nur dann reelle Losungen ¢,, wenn [tgd| <
| tg @ |, ebenso liefert (II; 17) reelle Zenitdistanzen nur, wenn | sin 6 | < |sing |
ist. Beide Ungleichungen fiihren auf die Bedingung

[6|= o] (I1; 22)

dafiir, da das Gestirn auf seiner téglichen Bahn den Ersten Vertikal iiber-
schreitet. Das Gleichheitszeichen gilt fiir Sterne, die durch das Zenit (6 = ¢)
oder das Nadir (§ = — ¢) gehen, in welchen Punkten ihre Bahn den Ersten
Vertikal beriihrt. Am Aquator (¢ = 0) erfiillen nur Sterne des Himmels-
dquators (6 = 0) die Bedingung (II; 22), ihre Bahn fillt ganz mit dem Ersten
Vertikal zusammen. An den Polen gehen alle Sterne durch den Ersten Verti-
kal oder, genauer ausgedriickt, durch alle Vertikale, da ja an den Polen die
Begriffe des Azimuts und der Himmelsrichtungen ihren Sinn verlieren, und
somit keiner der Vertikale vor den anderen ausgezeichnet ist.

Die Durchgangszeit durch den Ersten Vertikal wird durch Refraktion
und tégliche Aberration nicht beeinfluflt, da beide nur die Zenitdistanz,
nicht aber das Azimut verdndern. Dagegen ergibt sich eine kleine Korrek-
tion wegen der tiglichen Parallaxe, die aber nur fiir den Mond merkliche Be-
trige erreicht.

16. Azimut und Zenitdistanz der Gestirne als Funktionen der Zeit
Die Grundformeln des Nautischen Dreiecks:
cos z = sin d sin ¢ 4 cos § cos p cos ¢,
sin z cos A = — sin § cos ¢ + cos d sin ¢ cos ¢,

. . (IT; 23)
sinzsin A = cosdsint,

t=0—¢

stellen Azimut und Zenitdistanz eines Sternes (e, d) unter der geographischen
Breite g als Funktionen der Sternzeit © dar. Sind «, é konstant, was bei Fiz-
sternen immer mit geniigender Niherung angenommen werden darf, so kann
die Abhingigkeit von 6 durch die von ¢ ersetzt werden und erweist sich als
sehr einfach, da ¢ nur explizit vorkommt.

Einige wichtige Eigenschaften der Funktionen 2(f) und A(f) ergeben sich
aus der Diskussion ihrer ersten beiden Ableitungen. Sehen wir ¢, ¢, d als
konstant an, so erhalten wir durch Differenzieren der Gleichungen (II; 23)

sin zdz = cos d cos g sin ¢ dt,

cos z cos A dz — sin zsin A dA = — cos d sin ¢ sint dt,
(I1; 24)

cos zsin A dz 4 sin zcos A dA = cos d cost dt,
dt =do.
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Aus der ersten Gleichung (II; 24) folgt

sinzi—i:cos&cosqasint (I1; 25)

und aus den beiden nichsten

coszi—j: cos d (cost sin A —sint cos A sin ),
dA (I1; 26)
sinzﬁ = cos d (costcos A - sintsin A sin ¢). |

Ist (siche Abb.7) p der parallaktische Winkel im Nautischen Dreieck, so
erhédlt man durch Anwendung der Grundformeln der Sphérischen Trigono-
metrie [Anhang AT (2)]:
cos p = cost cos A 4 sin sin A sin ¢,
sin p cos z = costsin A — sin{ cos A sin ¢, (IT; 27)
sin psinz =sinfcos ¢.

Wendet man (II; 27) auf die rechten Seiten von (II; 26) an, so findet man

dz . . dA
d—t—cosésmp, smz‘ﬂ—cosdcosp. (IT; 28)

Aus dem Nautischen Dreieck folgt ferner auch

(IT; 29)

sin § = sin ¢ cos z — cos @ sin z cos 4,
cos & cos p = sin ¢ sin z 4 cos @ cos z cos A,
cos d sin p = cos ¢ sin 4,

so daB man statt (II; 28)

a4 =sing + cospctgzcos A  (II; 30)

=cospsind, i

az

dt

setzen kann. _
Fiir die zweite Ableitung der Zenitdistanz erhélt man aus (II; 25)

. d’z dz\* .
mnzali—-—cosz(m) -+ cos é cos p cost (II; 31)

oder aus (II; 30)
3

z
~75 = COS @ cos A

i (II; 32)

9

Differenziert man die zweite Gleichung (II; 30), so folgt zundchst
2

‘—{—'1:—-?2‘(‘1"00&1i ‘E—cosq)ctgzsinA% (II; 33)

5e
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oder, wenn man im letzten Gliede cos ¢ sin A durch‘;—; ) %durch (II; 28)
ersetzt:
sinzz‘;—z—;; = -—%; (cos A cos @ + cos z cos § cos p) .

Driickt man auf der rechten Seite cosd cosp durch die zweite Gleichung
(I1; 29) aus und setzt sodann geméB der ersten Gleichung (II; 29)
sin @ cos z—sin &

cosAcosp = Sinz s

so erhilt man nach kurzer Rechnung

sin ¢

2
sinaz‘—ii— smé—(l—2 =5

2z). I; 34
e €os z -} cos z) (I1; 34)
Extrema der Zenitdistanz ‘;—i = 0] treten nach (II; 30) ein, wenn sin A =0,
also im Meridian. Setzt man in (IT; 31)dz =0, so findet man, daf} an den
Extremen der Zenitdistanz die zweite Ableltung das Vorzeichen von cos ¢ hat,
da sin z, cos 6 und cos ¢ immer positiv sind. Die Zenitdistanz hat also in der
oberen Kulmination (t = 0) ein Minimum, in der unteren (f = ) ein Maximum,
was schon in Abschnitt 14 bemerkt wurde.
Extrema des Azimuts (% = 0) treten nach (IT; 28) ein, wenn cos p = 0.
Esist dann der parallaktische Winkel p = :}: o jenachdem, obdas Extremum

westlich oder ostlich des Meridians stattfmdet Der Vertikal des Gestirns
steht dann auf dessen Stundenkreis senkrecht. Wir bezeichnen diese Stel-
lungen des Gestirns als groffe (westliche oder ostliche) Digression.

Im Nautischen Dreieck gelten fiir PZ als Grundseite die Beziehungen
cos ¢ sinf = sin zsin p,
cos ¢ cost = cos z cos § — sin z sin § cos p,

sin ¢ = cos z sin 6 - sin z cos & cos p, (IT; 35)
cos @ sin A = cos é sin p, '
cospcos A= —sindsinz + cosdcoszcosp .

Fiir p=+ % ergibt sich hieraus, wenn wir mit A;, z;, f; Azimut, Zenit-

distanz und Stundenwinkel der grofiten Digression bezeichnen,

cos psinf; = -4 sinzg,
cos @ cost; = €0S 23 €COS O,
singpg =coszsind, (IT; 36)

cos @ sin A3 = 4 cos d,
cos ¢ cos A3 = —sinzzsind.
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Aus den drei mittleren dieser Gleichungen erhilt man unmittelbar

cos d

_ 4 cosd _sing - :
sin A; = + cosg’ cosz’_siné’ costy = tgpctgd I1; 37)

und hieraus, in der gleichen Weise wie (II; 4) aus (II; 2),
tg? (% ¥ A’) g2oPglt?

2
cos o
tg Ay =
g s Vsm(é ) smOG o)

V'sin (6—¢) sin (8 + @) (I1; 38)
tgz = . .
sin @
oefa _ sin@—g)
2 sin(d+¢)’
Vsin(6—g)sin @+ ¢)
sin ¢ cos §

tgty = +

Aus (II; 37) folgt, daBl Aj3, z3, 3 nur dann reell sind, wenn
cosd<cosp, |sing|<|sind|, |tgo|<|tgd]|.

‘Diese drei Bedingungen sind gleichzeitig erfiillt, und zwar dann und nur dann,
wenn

[6]l=]¢]- (I1; 39)

In grofte Digression gelangen also nur die Sterne innerhalb der beiden

Polkalotten, deren Grenzkreise den Ersten Vertikal im Zenit bzw. Nadir

beriihren. Im Aquator umfassen diese Bereiche alle Sterne, an den Polen

keine. Vergleicht man (IT; 39) mit (II; 22), so findet man, daB groBte

Digression und Durchgang durch den Ersten Vertikal einander ausschlieBen.
In der groiten Digression ist nach (II'; 33) und wegen dd—lts =0

d‘-’A_s __ cos@cos Ag % .

dtr T sinfzg  dt
Hierin ist nach (II; 28) wegen sin p = 4 1
dzg
= + cos ¢
und nach der letzten Gleichung (II;36) cos ¢ cos A; = — sinzgsind zu

setzen. Demnach hat
Q?Ag _ 'sin dcosd
dt — —  singz

(II; 40)
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in der westlichen groSten Digression das gleiche, in der ¢stlichen das ent-
gegengesetzte Vorzeichen wie d. Nach der zweiten Gleichung (II; 37) findet
die grofite Digression iiber dem Horizont statt, wenn é und ¢ das gleiche
Vorzeichen haben. Beschrinken wir uns also auf die sichtbaren Digressionen,
so lehrt (IT; 40), daB auf der Nordhalbkugel der Erde das Azimut in der
westlichen groBten Digression ein Minimum, in der 6stlichen ein Maximum
hat. Auf der siidlichen Halbkugel ist es umgekehrt.

Die Funktionen z(f) und A(f) haben Wendepunkte, wenn ihre zweiten Ab-
leitungen verschwinden. An diesen Punkten kann ihre zeitliche Anderung
fiir ein mehr oder weniger ausgedehntes Zeitintervall angenéhert als linear
angesehen werden.

Nach (II; 32) verschwindet die zweite Ableitung der Zenitdistanz, wenn
entweder cos A oder %At— gleich null ist. Die Funktion z(f) hat also Wende-

punkte im Ersten Vertikal oder in der groten Digression. Jeder Stern durch-
lauft somit Wendepunkte der Zenitdistanz, da entweder die eine oder die
andere dieser Bedingungen im Laufe seiner téiglichen Bewegung eintreten muf;

Wendepunkte des Azimuts treten nach (II; 34) auf:

1. wenn‘E = 0 ist, also beim Meridiandurchgang,

dt ,
2. wenn die Zenitdistanz des Sterns gleich der Losung der Gleichung
_pfine 27— 0]
1 2sin6cosz+cos z =0 ist.

Durch eingehende Diskussion dieser Gleichung gelangt man zu interessanten
Einsichten iiber die Verteilung dieser Azimutwendepunkte?), iiber die wir
aber hier nicht zu berichten brauchen, weil sie fiir das Problem der Geo-
graphischen Ortsbestimmung keine Bedeutung haben.

. dz dA
Zur Ubersicht stellen wir nachfolgend die Werte zusammen, die qu und ar
an bevorzugten Stellen der Sphére annehmen:
dz aA
Ort i at
Horizont . . . . . . .. + Veos (p — 6) cos (p+ 6 sin ¢
Meridian . . . . . . .. 0 =+ cos d cosec 2,
Erster Vertikal. . . . . . + cos ¢ sin ¢
GroSte Digression . . . . + cos & 0

Bemerkenswert ist, daB die Geschwindigkeit der Azimutinderung eines
Gestirns im Horizont und im Ersten Vertikal den gleichen Wert hat, ferner,
daB die Geschwindigkeiten der Anderungen des Azimuts und der Zenit-
distanz im Ersten Vertikal nur von der Polhthe abhingen, also an einem
und demselben Beobachtungsort fiir alle Sterne gleich sind.

1) Siehe K. Stumprr: Uber die Wendepunkte des Azimuts der Fixsterne.
Astron. Nachr. 277 (1949).
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17. Die scheinbare Bewegung der Sonne

Die Uberlegungen des vorigen Abschnitts setzten voraus, daB die Koor-
dinaten ¢, 6 der Gestirne konstant seien. Fiir die beweglichen Himmels-
korper, von denen hier besonders Sonne und Mond interessieren, gelten sie
deshalb nicht.

Vor allem miissen wir uns hier mit der scheinbaren Bewegung der Sonne
befassen, nicht nur, weil die Beobachtung der Sonne (insbesondere auf See
die der Sonnenhdhen) sehr hiufig zur Bestimmung der Ortszeit und der
Polhéhe angewandt wird, sondern namentlich, weil ja der tégliche Lauf der
Sonne die Grundlage fiir die biirgerliche Zeiteinteilung bildet.

Ist {g der Stundenwinkel, o, die Rektaszension der Sonne und © die
Sternzeit, so ist nach (I; 50)
=0 —qag. (I1; 41)
Wir bezeichnen
w=1lg+ 12b (I1; 42)

als die wahre Sonnenzeit. Es ist demnach 0" wahre Sonnenzeit, wenn die
Sonne in unterer Kulmination, 12%, wenn sie in oberer Kulmination durch
den Meridian des Beobachtungsorts geht.

Differenziert man (II; 41):
dic = dO — deg,

so erkennt man, daf} die wahre Sonnenzeit langsamer abléuft als die Sternzeit,
da ja die Rektaszension der Sonne bestindig zunimmt, deg also immer
positiv ist. Da ferner die Anderung do nicht konstant, sondern periodischen
Schwankungen unterworfen ist, so folgt auch, dal die wahre Sonnenzeit
kein gleichformiges ZeitmaB darstellt. Fiir das biirgerliche Leben brauchen
wir aber eine Zeit, die zwar der téglichen Bewegung der Sonne und damit
dem Rhythmus von Tag und Nacht angepaft ist, aber vollkommen gleich-
formig verlduft. Es ist daher zweckmigig, d® und deg in konstante und peri-
odisch verinderliche Teile zu zerlegen, also etwa

d6 = d0e, 4 de,, dog =dog -+ de,
und
o =1(0y — ) + (0p —axp) =m + p — 12 l

. (I1; 43)
zu setzen, wobei m= 0y — e, + 12b J
eine streng linear mit der Zeit wachsende GroBe, die mittlere Sonnenzeit,
darstellt!) und wobei

"w=06,—a, (I1; 44)

die sogenannte Zeitgleichung, die periodischen Anteile der Sternzeit und der
Sonnenrektaszension enthilt, von denen aber nur dieletzteren von Bedeutung

1) Bis Ende 1924 war es in der Astronomie iiblich, den Beginn des wahren
und mittleren Sonnentages auf den Mittag festzusetzen. Fir Zeitangaben vor
dem 1. Jan. 1925 ist also in (II; 42) und (II; 43) die additive Konstante + 12h
fortzulassen.
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sind. Fiir die Zeitgleichung, die in den Sonnenephemeriden der astrono-
mischen Jahrbiicher fiir jeden Tag O mittlerer Greenwicher Zeit aufgefiihrt
wird, gilt nach (II; 42), (II; 43) die Beziehung

L =w—ml) (II; 45)
(Zeitgleichung = wahre minus mittlere Zeit).

Die Form des jahrlichen Verlaufs der Zeitgleichung wird durch die Art
der scheinbaren Bewegung der Sonne lidngs der Ekliptik bestimmt. Abb. 20
zeigt Aquator, Ekliptik und Friihlingspunkt (X) zu dem Zeitpunkt, an dem
die Sonne den scheinbaren Ort S erreicht hat. Zwischen der wahren Ldinge A
der Sonne (d. h. ihrem Ab-
stand SX vom Friihlings-
punkt), ihrer Rektaszen-
sion ez und der Schiefe
der Ekliptik ¢ besteht im
rechtwinkligen sphérischen
Dreieck SX(Q die Beziehung

tgam=rcosctgi,

die nach Anhang BII auf
die Reihenentwicklung

e .
a@=l—tg2—2—sm2ﬂ. +

Eklipﬁk 1 £
Abb. 20: Scheinbare Bahn der Sonne + P) tgt ) Sin4id—---
(IT; 46)

fiihrt. Es seien nun I7 der Ort des Perigdums (Erdnihe) der Sonne, w die Ldnge
des Perigiums, v die wahre Anomalie der Sonne in ihrer scheinbaren ellip-'
tischen Bewegung um die Erde (Abstand der Sonne vom Perigdum). Dann ist

A=w+v. (I1; 47)

Wir betrachten nun neben S einen Hilfspunkt S, (mittlere Sonne), der sich
gleichformig auf der Ekliptik bewegt und mit der wahren Sonne nach jedem
Umlauf im Perigdum 7 zusammentrifft. Der Abstand der mittleren Sonne
vom Perigdum ist die mittlere Anomalie M. Es gilt dann nach den Gesetzen der
Himmelsmechanik angenihert (d. h. ohne Beriicksichtigung der Stérungen
durch die Planeten und den Mond) ’

v=M—|—2esinM+iZ—e?sin2M+---, (I1; 48)

wenn e die Exzentrizitit der Sonnenbahn (Erdbahnellipse) bedeutet. Die
mittlere Anomalie M ist ein gleichformig mit der Zeit wachsender Winkel,

1) Vor dem 1. 1. 1931 pflegte man z = m — w zu setzen.
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- der in einem anomalistischen Jahr (d. h. von einem Perigium der Sonne bis
zum nichsten) um 2 z zunimmt. Bezeichnen wir mit

l=w0+M

die mittlere Linge (XS,) der Sonne, einen Winkel, der in einem tropischen
Jahr, d. h. der Zeit zwischen zwei Durchgéingen der mittleren Sonne durch
den Friihlingspunkt, gleichméfig um 2z zunimmt, so ist nach (II; 47),
(IT; 48)

A=1+4"2¢esin(l—w) + % e? éin2(l—w) + .- (I1; 49)

Setzt man dies in (II; 46) ein, so ergibt sich eine Entwicklung von der Form
o =14 ¢sin(l —y) +cpsin (21 —ypp) + -,

in der die Konstanten ¢;, y; Funktionen von e, w, ¢ sind. Die Zeitgleichung u
wird also gemiB (II; 44) im wesentlichen durch den negativ genommenen
periodischen Anteil dieses Ausdrucks gewonnen. Benutzen wir die fiir 1950,0
giiltigen Werte

e =0,01673 o =282°4/9 e = 23° 26,'8,
so erhalten wir fiir die Zeitgleichung den genédherten Ausdruck
u = 44251 sin (I — 103° 8,/0) + 595,59 sin (21 — 0° 11,/4) + -+-.

Der Hauptsache nach wird also der Verlauf der Zeitgleichung durch zwei
Sinuswellen von jéhrlicher und halbjéhrlicher Periode bestimmt. Die erstere
ist eine Folge der Exzentrizitit der Erdbahn, die zweite, deren Amplitude die
groBere ist, rithrt zum iiberwiegenden Teil von der Neigung der Ekliptik
gegen den Himmelséquator her.

Die Zeitgleichung, deren Jahresverlauf Abb. 21 zeigt, hat jahrlich vier
Nullstellen und je zwei Maxima und Minima. Die Eintrittsdaten der Null-
stellen und Extremwerte, die in verschiedenen Jahren nur geringfiigig
schwanken, sowie die' Extremwerte selbst sind nachfolgend zusammengestellt:

Nullstellen Extrema

16. April Minimum — 14,4 Min. am 12. Febr.

14. Juni Maximum 4+ 3,8 Min. am 14. Mai
1. September Minimum — 6,4 Min. am 26. Juli

25. Dezember Maximum -+ 16,4 Min. am 3. Nov.

18. Slgrnzeil und Sonnenzeit

Durch die gleichformige scheinbare Drehung der Fixsternsphére ist uns
als natiirliches ZeitmaB die Sternzeit gegeben, wihrend das nach dem Wechsel
zwischen Tag und Nacht ausgerichtete biirgerliche Leben uns zur Einfiihrung
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der mittleren Sonnenzeit — kiirzer auch mittlere Zeif genannt — veranlaft.
Das Nebeneinanderbestehen dieser verschiedenen Zeitrechnungen ist listig,
aber fiir den Astronomen unvermeidlich. Es ist daher notwendig, die Rechen-
vorschriften zu ermitteln, die dem Ubergang von der einen Zeitangabe zur
anderen dienen.

Ebenso wie die Sternzeit © ist auch die mittlere Zeit m zunichst als
Ortszeit definiert, d. h., sie gilt fiir den Beobachtungsort und gleichzeitig fiir

+15

+170

*5

[Janvar [Febrvar] Marz TAprd 1 Mai T NJun] Juli TAugust X Sep? | Okt | Nov. [ Dez.

Abb. 21: Jahresverlauf der Zeitgleichung

alle Orte derselben geographischen Lange. Der Beginn des Sterntages (6 = 0t)
ist auf den Zeitpunkt festgesetzt worden, an dem der Friihlingspunkt in
oberer Kulmination durch den Meridian des Beobachtungsortes geht. Der
Beginn des mittleren Tages (m = 0") findet gemiB (II; 45) statt, wenn
w = u oder, mit Riicksicht auf (II; 42), wenn der Stundenwinkel der wahren
Sonne gleich der um 12" vermehrten oder verminderten Zeitgleichung ist.

Fiir einen Beobachtungsort mit der geographischen Linge A sei 9 die
Sternzeit am Beginn des Beobachtungstages (mittlere Mitternacht oder Ot
mittlere Ortszeit), ® die im Augenblick T der Beobachtung. Dann ist also
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von der mittleren Mitternacht bis T die Sternzeit & — & verflossen. Nach
(I;49) ist
365,2422 \b

h o 122\* .
1t Sternzeit ._.( 366.2 422,) (1 —¢)® mittlere Zeit,

366,2422 \t 1h
_— o , _ .
12 mittl, Zeit = (365,2 422) = T—q Sternzeit,
-1
9= 366,2422

Sei nun im Zeitpunkt T die mittlere Ortszeit m, so folgt

m=(0—179)(1—q),

o— 19——— 1
1—q m( + 1—9) (IT; 50)
q

q = 0,00273043, 1—:? = 0,00273791 .

Seien ferner @, ¥, my die in Stunden ausgedriickten Betréige der Zeiten,
so kann man offenbar setzen

@q = 64 (3600 g)* = - 9+,829548 = 6 (10— f)*,

m—l iq =my* (36001—1_6)‘: my* 9¢,856476 = m;.(lO—y)'

und erhilt dann statt (II; 50)

m=6—9—(0—9(10—pr, |
0 =9+m+m (10 —yp)y,
mit g = 0,170452, y = 0,143524.

(II; 51)

Die Formeln (IT; 51) werden fiir die Rechnung sehr bequem, wenn mau
statt §, y die Ndherungswerte?)

8 ~% — 0,166667, N% — 0,142857 (I1; 52)

benutzt. Die Fehler, die man damit begeht, sind sehr klein, denn wihlt man
fiir 9 diejenige mittlere Mitternacht, die der Beobachtungszeit T am nichsten
liegt, so sind in (II; 51) die Betriige der Faktoren (6 — ¥); bzw. m;, im un-

1 1
1) Genauer: ﬁ——-}- 270+ v v=at et
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giinstigsten Falle ~ 12. Fiir die Betriige der Fehler der mit den N#herungs-
werten (II; 52) berechneten Zeiten gelten also die Ungleichungen

dm< 12(ﬂ—%)’= 0,045,
1 F]
40 < 12(y— 7) — 0,2008.

Ausgenommen bei exakten Zeitbestimmungen mit Meridianinstrumenten,
bei denen das Hundertstel der Zeitsekunde beriicksichtigt werden will, darf
man also immer die bequemen Né&herungen benutzen, wenn man es nicht
vorzieht, die Umwandlung der Zeiten streng mit Hilfe der Tafeln auszufiihren,
die in jedem astronomischen oder nautischen Jahrbuch zu finden sind (siehe
auch Anhang F II).

Die Formeln (II; 51) bediirfen noch einer Ergéinzung, da die Jahrbiicher
die Sternzeit ¢ nur fiir die mittlere Mitternacht des Meridians von Greenwich
geben. Die mittlere Zeit m des Nullmeridians wird als Weltzeit (WZ) bezeich-
net.!) Zwischen ihr und der gleichzeitigen Ortszeit m des Beobachtungsorts
auf der geographischen Linge A besteht die Beziehung

m=m+ 1, (IT; 53)

die der Gleichung (I; 51) fiir die Sternzeiten entspricht. Ist also fiir Green-
wich bzw. fiir den Beobachtungsort nach (IT; 51)

6 =9+ m + m (10 —py,
6=9%+m+m (10 —yy,
so ergibt wegen (I; 51) und (II; 53) die Differenz dieser beiden Gleichungen

A=9—3+ A+ (10 —ypy
oder D=0+ (10 —pp.
Als konventionelle biirgerliche Zeit gilt in Westeuropa die Greenwicher
Ortszeit (Weltzeit), in Mitteleuropa dagegen die Mitteleuropdische Zeit

(MEZ), die der Ortszeit des 15. Lingengrades dstlich Greenwich (4 = — 1%)
entspricht. Es ist also

MEZ=m + 1* =m + A + 1b.
Aligemein ist die auf die Ortszeit der Linge A, bezogene Zonenzeit
m,=m—Al=m+1—124,.

Nachstehend seien die zur Umrechnung von mittlerer Zeit in Sternzeit
und umgekehrt notwendigen Formeln noch einmal iibersichtlich zusammen-
gestellt, wobei die Naherungen (II; 52) verwendet wurden:

!) Englisch: U.T. = Universal Time.
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A. Umrechnung von mittlerer Zeit in Sternzeit

Gegeben: 4, moder MEZ, ) m=m —A=MEZ — (A + 1b)
8 =?9+z,,(1o - ;)‘

@=19+m+mh(10—-;—).

B. Umrechnung von Sternzeit in mittlere Zeit

Gegeben: 1, 0,9 ‘19 =9+ ;,h(lo _%).
m= @—0—(@—19),.(10—%)'
m=m+ 2
MEZ =m + 1t

19. Die Mittagsverbesserung

Fiir die beweglichen Gestirne sind wegen der Verénderlichkeit von e, é
die in Abschnitt 16 abgeleiteten Regeln der tdglichen Bewegung nur an-
gendhert giiltig. Uns interessieren hier besonders die Extrema der Zenit-
distanz, die fiir die Fixsterne beim Meridiandurchgang, fiir Sonne und Mond
aber im allgemeinen aufBlerhalb des Meridians stattfinden.

Differenzieren wir die erste der Gleichungen (II; 23), indem wir neben
z,t auch § als verédnderlich ansehen, so folgt

— sin z dz = (cos d sin ¢ — sin & cos ¢ cost) dd — cos & cos @ sint df.

Fiir den Stundenwinkel ¢, bei dem das Gestirn seinen hochsten bzw. tiefsten
Stand erreicht, gilt also die Beziehung (dz = 0)

sint=(tg<p—tg6cost)%. (I1; 54)

die man streng nach dem in Anhang C beschriebenen Verfahren l1sen konnte.

In der Praxis der geographischen Ortsbestimmung wird diese Formel aus-

schlieBlich auf die Sonne angewandt — der Stundenwinkel { bedeutet in

diesem Falle den Zeitunterschied zwischen dem Hdochststand der Sonne und

dem wahren Mittag und wird daher als Miftagsverbesserung bezeichnet.

Ebenso spricht man von Mitternachtsverbesserung, wenn es sich um die untere -
Kulmination der Sonne und ihren tiefsten Stand handelt, doch hat dieser

Fall nur in hohen Breiten praktische Bedeutung (Mitternachtssonne).

Fiir die Sonne ist die tégliche Anderung der Deklination | 49 | < 24’,
es ist also, wenn wir { im BogenmaB ausdriicken,

’ 1,\\45! "
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In (II; 54) ist also sin f im allgemeinen eine kleine Gréfe. AuBer in sehr hohen
Breiten, wo tg ¢ groB3 ist!), kann man daher stets sin t =1, cost = 1 fiir den
héchsten, sinf = & — 1, cost = — 1 fiir den tiefsten Stand der Sonne setzen
und erhiilt so die einfacheren Formeln

dé
i=(tg¢—t85)7ﬂ-
h s (IT; 55)
12 —t=(tg¢+tgf5)ﬁ

fiir die Mittags- bzw. Mitternachtsverbesserung.

Den numerischen Wert der Differentialquotienten kann man aus den
Ephemeriden der scheinbaren Sonnenkoordinaten e,  ableiten, in denen diese
GroBen nebst ihren ersten Differenzen fiir jeden Tag des Jahres Ot WZ ver-
zeichnet sind. Diese Differenzen Ae, 46, die den Zuwachs von «, é in 24 Stun-
den darstellen, ordnen wir den Zeitpunkten 12b WZ zu, also dem mittleren
Mittag des Nullmeridians. Es geniigt, wenn man aus dieser Tafel 4o und 46
fiir den Zeitpunkt der Kulmination der wahren Sonne am Beobachtungsort
linear interpoliert, also fiir

m=12d —u 41  (Weltzeit),

wobei u gleichzeitig der Ephemeride zu entnehmen ist. Die diesem Zeitpunkt
entsprechenden Differentialquotienten der Koordinaten nach der mittleren
Zeit m sind

de Ao dé A6

dm 2z’ dm 2=z’

da die Differenzen Ae, 45 einer Anderung der mittleren Zeit um 24¥, also des
Bogens m um 2z entsprechen, und da bei der geringen Kriimmung der
Kurven « (m), 6 (m) der Differenzenquotient fiir den Differentialquotienten
gesetzt werden darf. Gema8 (II; 41) und (IT; 50) ist nun

At =d0—da, dO=-2",
l—gq
also
1 da
und somit
dé
FTI Sl U= x
Y= = . (II; 56)
dt 1—(1— ).Q 1—»
7 dm

1) Erst far | ¢ | > 87 5 kann der Fehler in ¢ bei Verwendung der einfacheren
Formeln (II; 55) + 0,1 @berschreiten.
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Setzt man dies in (II; 55) ein, so erbilt man fiir die Mittagsverbesserung

1=(tgp—tgd)
mit ax; 57)

_1—q n_ 1—¢
¥ = o 46, v= o Ade.

Hierbei sind ¢, Aet, 46 zunédchst in Bogenmaf} verstanden. Will man £ in
Zeitsekunden erhalten und ist 46 in Bogensekunden, de in Zeitsekunden
ausgedriickt, so hat man zu setzen

1—q 46
(IT; 58)
v=1"9. 40 155in 1" = [5,0623] de.
27

Man kann aber die Formeln (IT; 57), (II; 58), ohne einen ins Gewicht fal-
lenden Fehler zu begehen, bedeutend vereinfachen, indem man Ade, das
zwischen den Grenzen 215° und 267° schwanken kann, und das ja auf das
Ergebnis nur Einfliisse zweiter Ordnung hat, durch einen konstanten Mittel-
wert ersetzt. Es ist leicht einzusehen, daB man dieser Vereinfachung durch
die Annahme df = dm entspricht. Setzt man dies in (II; 55) ein, so ergibt sich

do
dm

t=(tgp—tgo)
(I1; 59)

)
= (tgtp—tgd);:)—n = (tgp —1tg 6)+[8,025731 46

als Niherungsformel, deren Fehler hichstens 0,03% betragen und durchweg
vernachlédssigt werden kann.



ITI. KAPITEL

BESTIMMUNG DER ORTSZEIT
BEI BEKANNTER GEOGRAPHISCHER BREITE

20. Bestimmung der Ortszeit aus einer Zenitdistanz

Hat man die Zenitdistanz oder die Hohe eines Gestirns beobachtet, sie von
den Einfliissen der Refraktion und, soweit notig, der téglichen Parallaxe,
des scheinbaren Halbmessers und der Kimmtiefe befreit, und hat man ferner
die Beobachtungszeit u an der Arbeitsuhr abgelesen, so ist es bei bekannter
Polh6he ¢ im allgemeinen mdglich, den Stundenwinkel ¢ des Gestirns im
Zeitpunkt der Beobachtung zu berechnen. Dieser liefert aber die Sternzeit
und damit die Korrektion Au, um die die Angaben der Uhr zu verbessern
sind. Man bezeichnet Au als den Uhrstand oder die Uhrkorrektion.

Aus der ersten Gleichung (IT; 23) folgt

cos z—sin @ sin ¢

cost = 003 €0 8 (I11; 1)
oder
.2+ 9—6 . z—ep+ 0
t o & 1—cost cos (p—0)—cosz s 2 s 2
8 2 14cost cos(p+0)+cosz  @+0+z @+06—z°
cos cos —
2 2
Setzt man wie in (II; 11) i gii =0, so ergibt sich daraus die schon

frither (II; 12) angegebene Formel

__sin(¢—0)sin (0 — @)
"~ cosacos(c—z)

t
2 .

tg 3 , (IIT; 2)

die fiir logarithmische Rechnung geeignet ist und den Stundenwinkel so

genau liefert, wie es die Beobachtungsumsténde gestatten. Aus ihm folgt die

Sternzeit der Beobachtung ©® =1 +} ¢, also, wenn die Arbcitsuhr Sternzeit
anzeigt, '

du=0—u=t+4+a—u. (I11; 3)

Geht die Uhr nach mittlerer Zeit (z. B. WZ oder MEZ), so ist in (I11;3) ©
nach den Formeln des Abschnitts 18 umzuwandeln.
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Fehler in der Beobachtung der Zenitdistanz erzeugen Fehler in der aus ihr
abgeleiteten Uhrkorrektion. Angenommen, da8 PolhShe und Gestirnsort
fehlerfrei bekannt sind, ergibt die Differentiation der Gleichung (III; 1)

cos pcosdsintdt =sinzdz

oder, wenn man die linke Seite gemaf3 der dritten Gleichung (II; 23) um-
wandelt und sin z herausdividiert, '

sin A cos pdt =dz. (I11;; 4)

Die abgelesene Uhrzeit u darf als fehlerlos angesehen werden — man kann
einen Ablesefehler du (natiirlich bleiben grobe Fehler hier und bei allen fol-
genden Uberlegungen dieser Art auler acht) immer auf den Fehler dz der
gemessenen Zenitdistanz werfen. Die Beobachtung erfolgt ja stets so, da8 der
MefBfaden des Instruments auf den Stern (bzw. auf den Rand von Sonne
oder Mond) eingestellt wird. Der Fehler dz entsteht dadurch, daB8 im Augen-
blick der vermeintlichen Koinzidenz der Stern noch eine (sehr kleine) Ent-
fernung vom Faden hat. Ist zudem die abgelesene Uhrzeit u von der Uhr-
zeit der Einstellung des Fadens auf den Stern um du verschieden, so ist es
zweckmaéBig, diesen Fehler mit dz zu vereinigen, indem man nunmehr unter
dz den Abstand des Sterns vom horizontalen Mefaden zur Uhrzeit u versteht.

Unter diesen Voraussetzungen folgt aus (III; 3) und (III; 4)

dz

ddu=dt= sin A cos g ’

(I11; 5)

Der Fehler der beobachteten Zenitdistanz geht also im allgemeinen ver-
groBlert in das Beobachtungsergebnis ein. Die giinstigsten Bedingungen fiir
eine Zeitbestimmung sind erfiillt, wenn |sin A cos ¢ | moglichst groB ist.
Danach gelten folgende Regeln:

1. Zeitbestimmungen aus Zenitdistanzen sind am genauesten, wenn das
Gestirn im Ersten Vertikal steht (sin A = 4 1). Sie sind unmdoglich im
Meridian und unsicher in der Nihe des Meridians.

2. Zeitbestimmungen aus Zenitdistanzen ergeben die grofite Genauigkeit
am Aquator. In hohen Breiten sind sie unsicher und an den Polen (wo die
Zenitdistanzen der Fixsterne zeitlich konstant sind) ganz unmoglich.?)

21, Zeitbestimmung aus korrespondierenden Héohen

Gestirne, deren Deklination sich wihrend ihrer scheinbaren téglichen
Bewegung nicht merklich 4ndert, erreichen eine bestimmte Zenitdistanz z
in zwei entgegengesetzt gleichen Stundenwinkeln (f, = — 7, t, = + 7). Ist
in der Zwischenzeit auch die Rektaszension unverinderlich, so liegen die
entsprechenden Sternzeiten 6, =« —7; @, =« 4 v symmetrisch zur

1) Um diesen Sachverhalt zu beriicksichtigen, werden wir den Fehler der
Zeitbestimmung immer in die Form cos ¢ d 4« kleiden, die auch fiir hohe Breiten
differentiell ist.

6 Geogr. Ortsbestimmungen
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‘Meridiandurchgangszeit ©®, = «. Hieraus ergibt sich eine sehr einfache
Methode zur Bestimmung der Ortszeit: Man beobachte einen Fixstern
(e, 6), wenn er Ostlich und westlich des Meridians durch die gleiche Zenit-
distanz z geht. Sind u,, u, die abgelesenen Uhrzeiten, 4du,, du, die diesen
Zeiten entsprechenden Uhrsténde, so ist

+u2+ Al'll—{-Allz'

@l=ul+Au11 @2=u2+Au2; @o=a=u12 2

Nimmt man an, daB der Uhrstand sich in der Zeit zwischen den beiden
Beobachtungen linear geéndert habe, so wird

Auy + Au, gl + u,
2 o 2
der Uhrstand wéhrend der Kulmination des Sternes sein.

Dieses Verfahren, das auch als Methode der Zeitbestimmung aus korre-
spondierenden Héhen bekannt ist, hat aufler seiner Einfachheit den Vorzug,
daB weder die Deklination des Gestirns noch die Zenitdistanz z selbst bekannt
zu sein brauchen, und dafl somit Teilungs- und Indexfehler des Kreises am
Instrument keinen EinfluB haben. Auch die geographische Breite des Be-
‘'obachtungsorts braucht man bei dieser Methode nicht zu kennen. Erforderlich
ist nur, daB} die beiden ,,korrespondierenden‘* Zenitdistanzen einander genau
gleich sind. Man erreicht das, indem man dafiir sorgt, da bei der zweiten
Beobachtung die Neigung des Fernrohrs gegen die Lotlinie dieselbe ist wie
bei der ersten, was am besten mit Hilfe einer am Fernrohr festklemmbaren
Libelle geschieht, die bei der gewiinschten Fernrohrneigung genau einspielt.
Sind die Zenitdistanzen nicht genau gleich, so ergibt der Unterschied der
beiden Libellenablesungen den Unterschied dz der beiden Zenitdistanzen,
vorausgesetzt, daf3 sich an der Verbindung Fernrohr-Libelle in der Zwischen-
zeit (etwa durch Temperatureinfliisse oder mechanische Einwirkungen)
nichts geidndert hat. Sind also die beiden Zenitdistanzen z und z + dz, so
hat man wegen (III; 5) fiir die zweite Sternzeit

Auoz

dz
O =47+ T cosp
zu setzen. Es ist also
@1 + 02 —a dz
2 2sin A cos ¢
und daher
. uy + u, dz .
Auo =@ 2 2sin A cos

Um den EinfluBl einer Zenitdistanzéinderung (bzw. des Fehlers ihrer Be-
stimmung) auf das Ergebnis mdoglichst herabzudriicken, ist es also auch hier
zweckmiBig, die beiden Beobachtungen im Ersten Vertikal oder in seiner
Nihe vorzunehmen, die eine §stlich, die andere westlich des Zenits. AuBlerdem
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ist es natiirlich vorteilhaft, wenn die Zwischenzeit u, — u; moglichst klein
ist, damit UnregelméBigkeiten des Uhrgangs und Temperatureinfliisse auf
das Instrument moglichst wenig Zeit haben, sich schidlich auszuwirken,
Man wird also Gestirne bevorzugen, die den Ersten Vertikal in kleiner Zenit-
distanz iiberschreiten. Das hat auch den Vorteil, daB die Refraktion klein ist
und von den wechselnden meteorologischen Bedingungen nicht merklich
beeinflult wird.

Soll die Methode der korrespondierenden Hohen auf die Sonne angewandt
werden, so mufl wieder auf die Verinderung ihrer Koordinaten Riicksicht
genommen werden. Das arithmetische Mittel der zu gleichen Zenitdistanzen z
gehorigen Stundenwinkel ist nicht null und stimmt auch nicht etwa mit
dem Stundenwinkel der gréBten Sonnenhéhe iiberein, den wir in Abschnitt 19
als Mittagsverbesserung bezeichneten.

Es seien z; =z, die korrespondierenden Zenitdistanzen der Sonne,

u,, u, die abgelesenen Uhrzeiten, ¢, ¢, die zugehérigen Stundenwinkel der
Sonne (wahren Sonnenzeiten minus 12"), deren arithmetisches Mittel

(= L+t l
und die halbe Zwischenzeit 2 (I1I; 6)
,_th—h ’
9
Es seien ferner § und d‘: ] i ” [siehe (II; 56)] die zu ¢ oder, genau genug,

zum wahren Mittag gehorige Deklination der Sonne und ihre Anderung in
der Zeiteinheit. Man kann dann fiir die zu den beiden Beobachtungszeiten
gehorenden Deklinationen mit geniigender Anniherung

dé dé

61=6—rd—t, —(5—}—1:— (I11; 7)

setzen. Aus cos z; = cos z, folgt nach der ersten Formel (IT; 23)
sin @ (sin §, — sin §,) = cos @ (cos &, cos t; — cos d, cos {,)
oder, wenn man &, 6, durch (IIT; 7) ausdriickt und nach (III; 6)
11=t—‘£', 12=t+T
setzt, auf Grund einer kurzen Rechnung
ing cosdsin (7 do\ _
sin @ cos i) =

= Cos ¢

. . dé dé
sin d cost cos Tsin |7 ( dt) + cos 6smtsm-rcos( dt)]

do\ [tgp  tgo
smt—tg( dt)[smr tgt cost|:

und hieraus
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Danunz Z—f und demnach auch ¢ immer klein ist (wenn man die nihere Um-
gebung der Pole ausschlieBt), darf man sin { ={, cost =1, tg( dd) = ‘t‘;—?

dt
setzen und erhilt somit :

_ . di[tgy tgéd .
t—Tdt[sinr tgt]’ (I1; 8)

eine Formel, die fiir T -> 0 natiirlich in (II; 55) iibergeht. Seien u;, w;, mg
(i = 1,2) Zeitgleichung, wahre und mittlere Sonnenzeit wihrend der beiden
Beobachtungen, so ist, wenn m; = u; + Au;,

wl—;wz—l2"=t=ul-;u2+ Aul_gduz-l- ll1'|"ﬂ2'

4 4 (IIT1; 9)
_Up—uy Up— AUy , thh—He
=gt T
Sind g und ‘—;'l; Zeitgleichung und ihre zeitliche Anderung im wahren Mittag,
so kann man in (III; 9) mit geniigender Genauigkeit
Mt pe pa—p _ _dp
2 2 'dt

setzen, wihrend man die Differenz der beiden Uhrkorrektionen, die immer

klein ist, wegen des sehr kleinen Faktors@ mit dem 7 in (III; 8) multi-

dt’
pliziert erscheint, unbedenklich vernachlidssigen kann. Man erhélt dann,
wenn man wiederﬂ%m’z = Au setzt, aus (II1; 8), (IIT; 9)
U —1 -‘
2 __déftgp tgd\ u+u .
=%

In einem Spezialfall dieses Verfahrens der Zeitbestimmung aus korre-
spondierenden Sonnenhdhen sind u; und u, die Zeiten des Auf- und Unter-
gangs der Sonne. Es geniigt dann, in den Ausdriicken sin 7 und tg 7 der
Formel (III; 10) fiir = den theoretischen Stundenwinkel des Sonnenunter-
gangs zu benutzen. Nach (II; 1) und (II; 6) ist dann

sint =sec dsin 4,, tgv = — ctg ¢ cosec d sin A,,

wobei fiir 6 die Sonnendeklination des wahren Mittags gesetzt werden darf.
Man erhélt dann
— dé  tge 1 dé sing

dt cosdsin 4, df cos Y cos (p— &) cos (p + 0) |

wenn man sin 4, = cos 4, tg Ay durch (II; 3), (II; 5) eliminiert.

t
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22. Zeitbestimmung durch Beobachtung zweier Sterne in gleicher Zenitdistanz

Die im vorigen Abschnitt beschriebene Methode der Zeitbestimmung aus
korrespondierenden Hohen eines und desselben Sternes oder der Sonne hat
den Nachteil, daf beide Beobachtungen durch eine léingere, oft viele Stunden
wihrende Zwischenzeit getrennt sind, in der sich die Beobachtungsbedin-
gungen und die Beschaffenheit des Instruments in storender Weise éndern
kénnen. Eine Variante dieses Verfahrens, die von diesem Ubelstand frei
ist, besteht darin, dafl man zwei verschiedene Sterne wihrend ihres Durch-
gangs durch den gleichen Almukantarat beobachtet, wobei man immer in
der Lage ist, die beiden Sterne und ihre gemeinsame Zenitdistanz so auszu-
wihlen, da3 die Beobachtungen kurz hintereinander stattfinden konnen.

Es seien nun (z;, 6;) und (e, d,) die Koordinaten der beiden Sterne,
z; = z, = z ihre gemeinsame Zenitdistanz, t,, f, ihre Stundenwinkel, 6;, 6,
die Sternzeiten und u,, u, die Uhrzeiten der beiden Beobachtungen. Die
Uhrkorrektion du = @, — u, = @, — u, werde als konstant angesehen, da
die Differenz der Beobachtungszeiten klein ist.
Wir setzen nun
U —0 =T Uy — 0 =Ty
und daher
L =7+ 4u, t,=r1,+ 4u.

Es folgt dann aus der ersten Grundgleichung (II; 23)
cos z =sin @ sin 6, + cos ¢ cos J, (cos T, cos du — sin 7y sinAu),l (111 11)
cos z = sin g sin d, + cos @ cos d, (cos T, cos Au — sin 7, sin du ;[

also, wenn man beide Gleichungen voneinander subtrahiert, durch sin ¢
dividiert und nach Funktionen von Au ordnet:

acos du 4 bsin du =¢
mit
a = msin n = ctg ¢ (cos d; cos T; — €os J, COS Ty), (111; 12)
b =mcosn = — ctg ¢ (cos §, sin 7; — cos dy sinTy), '
¢ =sind, —sin g, .
Die Unbekannte Au kann also nach den Methoden gefunden werden, die in
Anhang C beschrieben sind. Am bequemsten erhélt man Au aus der Gleichung
msin (du 4 n) = sin d, — sin §; =c.

Eine Umwandlung dieser Gleichung in eine Tangentenformel eriibrigt sich,
wenn 6, und J, moglichst gleich gewihlt werden, da dann ¢ klein ist.

Eine Variante dieser Methode erlaubt mit Vorteil die Anwendung der
algebraischen Lésung (Anhang C II).
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Man setze
_t1+tz_71+‘52. _61+62
t= 5 — 3 + Adu, d= 5
l=t2"'tl _f—h 6= 9y —6 (ITT; 13)
bzw. 2 2 2 |
ti=t—A, ty=t+2, 6,=0—e, 6 =0+c¢.

Man erhilt dann statt (I11; 12)

ctg @ [cost cos A (cos 8, — cos J,) + sint sin A (cos &, + cos §,)] =
= sin §, — sin 6,

oder acost 4 bsint =c (T11; 14)
mit _ c0s0; —C0s8;
a—cos}.cosél+c0562_cos).tg6tgs, l
b=sin4, (IIT; 15)
_ sind, —sin &, ,
c—tgwa)s_éz—{—coséz_tg(ptge'

Diese Koeffizienten lassen sich gut logarithmisch berechnen. AuBlerdem er-
kennt man, daB (vgl. Anbang C IT)
a+c
o= b’
beide klein sind, falls die Deklinationen der beiden Sterne sich nur wenig unter-
scheiden. Die Konvergenz der Entwicklung [Anhang C IIT (23)]

tgtg:—%ﬂ(l —%aﬂ+%a2ﬁ2—%a3'ﬁ3+---) (IT1; 16)

a—=«c¢

B =

ist also auBerordentlich rasch.

Die Gleichungen von der Form (I1I; 12), (II1; 14) haben im allgemeinen
zwei Losungen, von denen aber nur eine den Beobachtungstatsachen ent-
spricht, wihrend die andere, die in (III; 16) bereits ausgeschieden wurde,
leicht als unrichtig erkannt wird (etwa dadurch, daB sie ein sebr groBles Au
liefert, wihrend man weifl, dal der Uhrfehler nur klein sein kann). Die
geometrische Bedeutung der beiden Losungen ist iibrigens leicht einzusehen.
Seien S;, S, die Orter der beiden Sterne zu den dazugehérigen Beobachtungs-
zeiten (Abb. 22), so geht die Mittelsenkrechte auf dem sie verbindenden
groBten Kreis offenbar durch das Zenit, da ja beide Orter die gleiche Zenit-
distanz haben. Andererseits liegt das Zenit auf dem Kreise um den Himmels-
7
2
lagen Z, und Z, und daher, da ja die Sternzeit als die Rektaszension des Zenits

nordpol P mit dem Halbmesser ¢. Es gibt also zwei mogliche Zenit-
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definiert ist, zwei Zeitbestimmungen, die mit den Beobachtungsdaten ver-
einbar sind.

Abb. 22 lehrt ferner, daB die Zenitbestimmung am schirfsten ausfillt,
wenn der Vertikal Z, Z, den Kreis Z, Z, rechtwinklig schneidet, d. h. durch P
geht. Dieser Vertikal fillt dann mit dem Meridian zusammen, S; und S,
liegen also zum Meridian symmetrisch, ihre Deklinationen sind gleich und
ihre Azimute entgegengesetzt gleich. Da die Beobachtung der Zeitpunkte,

in denen ein Stern eine Zenitdistanz z

- . dz
erreicht, am genauesten ist, wenn qt ein N
N\,

Maximum hat, also nach (II; 30) im AN
Ersten Vertikal, so folgt schlieBlich, da3 AN
es am giinstigsten ist, die Sterne ostlich }P
und westlich des Zenits bei ihrem Durch- 4
gang durch den Ersten Vertikal oder in . %,/
dessen Nihe zu beobachten. . ' e
Zu den gleichen Schliissen gelangt z,\
man natiirlich auch durch Diskussion :
der Differentialbeziehungen. Fiir kon-

S1 A~
stantes @, ¢, d gelten die Formeln (I1; 30) \ ~ /”‘/
o -~

dz, = cos ¢ sin A, dt,
= cos @ sin 4, (du, + d4u), Abb. 22: Zeitbestimmung
dz, = cos ¢ sin A, di, aus zwei gleichen Zenitdistznzen.
. Zwei Lo
= cos @ sin A, (du, + d4u). wet Losangen

Nimmt man die abgelesenen Uhrzeiten als fehlerlos an, (du; = du, = 0),
so wird der gesamte Beobachtungsfehler auf dz;, dz, geworfen, also auf die
tatsdchlichen Abstidnde der Sterne vom Horizontalfaden des Fernrohrs zu
den Zeiten u; und u,. Da nun die Lage des durch den Horizontalfaden ver-
sinnbildlichten Almukantarats beliebig ist, also dz;, dz, eine gemeinsame
willkiirliche Konstante enthalten, ist fiir die Beurteilung des Fehlers d4u nur
die Differenz dz, — dz; mafigebend, aus der diese Konstante herausfillt.

Man erhilt also
dz,—dz
cospddu = o —on 4,

Das Beobachtungsergebnis ist somit am genauesten, wenn sin A, — sin A,

ein Maximum hat, also fiir 4, = %, A, = —%. Nach Anhang DIV (29,

30) ist, wenn & den mittleren Fehler einer Zenitdistanzmessung bedeutet,

in diesem giinstigsten Falle (|sin A, —sin A, | =2) der mittlere Fehler

der Zeitbestimmung ¢ ° sec q;’
= —= .
u V§
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23. Die ZINGERsche Methode der Zeitbestimmung

Die allgemeinste Methode der Zeitbestimmung aus korrespondierenden
Zenitdistanzen, bei der die Bedingung der Gleichheit der Zenitdistanzen
nur angendhert erfiillt zu sein braucht, ist von N.Zinger!) entwickelt
worden und hat sich in der Praxis als eine der feinsten Methoden der Zeit-
bestimmung bewéhrt.

Als Instrument wird das ,,Zenitteleskop* verwendet, ein Fernrohr, das
um eine vertikale und eine horizontale Achse drehbar ist und keine fein-
geteilten Kreise zu haben braucht. Wohl aber ist eine empfindliche Libelle
erforderlich, die am Fernrohrkérper oder an der horizontalen Achse (recht-
winklig zu ihr) festklemmbar ist und durch die kleine Anderungen der Fern-
rohrneigung gegen die Lotrichtung mefbar angezeigt werden. Im Gesichts-
feld ist ein horizontaler Faden ausgespannt, den die Sterne im Moment der
Beobachtung iiberschreiten, besser noch ist ein Fadenmikrometer mit hori-
zontal verschiebbarem Mef}faden, der auf den Stern wéhrend seiner Wan-
derung durch das Gesichtsfeld beliebig oft eingestellt werden kann. Durch
die Ablesungen der Libelle und gegebenenfalls der MeBtrommel des Faden-
mikrometers 148t sich die Differenz z, — z; der beiden Zenitdistanzen, in
denen die Sterne beobachtet werden, sehr genau bestimmen — sie ist stets
sehr klein, da sie den Spielraum der Libelle und des Mikrometers nicht iiber-
schreiten darf.

Setzt man in (IIT; 11) links die verschiedenen Werte cos 2, und cos z, ein,
rechts £, =t — A, t;, =t + A statt {, =7, + Adu, t, =7, + 4u, so erhilt
man nach Subtraktion und Division durch cos d; + cos d,
cos §; — cos J,

costcos i c0s 3, & cos &,

- sintsind =

sin d, —sin d, €0S 2y — COS 2y

=8P 0 0, + cos d, TSP os 0, + cos &y

Fiihrt man auler den Bezeichnungen (III; 13) noch

2y=2—4z, z3=z+4 4z

ein und bedenkt, daB Az = 222 ¢in sehr kleiner Winkel ist, so ergibt

2
sich
. —2 . 4tz
sin 2L sin )
€0S 2; — COS 2, 2 2 .
= ~dzsinzsecdsece,
cos 6; + cos J, cosdcose

und die Bestimmungsgleichung fiir # lautet dann

costcos Atgdtge+sintsin A =tgptge+ Azsinzsecpsecdsece.

!) N. ZinGER: Die Zeitbestimmung aus korrespondierenden Héhen verschie-
dener Sterne. Aus dem Russischen von H. Kelchner, Leipzig 1877.
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Setzt man hierin zur Abkiirzung

tgotgectgi=tgy,
so ergibt sich
sin z cos ¥

tgptge .
% sin 7 cos @ Ccos 0 Cos €

sin(t + y) = “end >—-cosy + 4

’

Da nun Az sehr klein ist, so geniigt es, fiir die Faktoren des letzten Gliedes
dieser Gleichung grobe Ndherungswerte einzusetzen. Insbesondere geniigt es,
bei ihrer Berechnung anzunehmen, daB ¢ = 0 sei, die beobachteten Orter
also in den Stundenwinkeln 4 A und in den Azimuten 4 A liegen. Wegen der
dritten Gleichung (II; 23) ist dann

cosdsin A =sinzsin 4.

AuBerdem diirfen die cos der kleinen Winkel ¢, ¢ gleich eins gesetzt werden,
und man erhilt

. __ tgptge 4z
sin(t+7) = sind_ 0% + cos @ sin A

zur Bestimmung von ¢ und damit von Au =t —TITM. Da t und y klein

sind, reicht die Sinusformel fiir eine genaue Lésung der Aufgabe immer aus.

Die Sternpaare, die fiir die Anwendung der ZingeErschen Methode ge-
eignet sind, miissen so ausgewihlt werden, dafl & moglichst klein (d. h.
moglichst §; = d,) und daB sin A moglichst groB ist; doch ist, damit? 4 y
hinreichend klein wird, der zuldssige Spielraum fiir 4 ziemlich groB. Die
von ZINGER selbst aufgestellte Liste von 160 Sternpaaren, die fiir die geo-
graphische Breite von Pulkowo (RuBlland), ¢ = 59°46', giiltig ist, kann
daher auch fiir ganz Nord- und Mitteleuropa ohne weiteres benutzt werden.

24. Zeitbestimmung darch Azimutmessungen

Die Korrektion Au der Arbeitsubr 148t sich auch durch Messung der
anderen Koordinate eines Gestirns im Horizontsystem, des Azimuts, bestim-
men. Refraktion und Parallaxe haben auf Azimutmessungen keinen oder
(Mondparallaxe!) nur geringen EinfluB. Dafiir aber haben Messungen des
Azimuts gegeniiber denen der Zenitdistanz den sehr unangenehmen Nachteil,
daB sie sich nicht auf einen jederzeit physikalisch realisierbaren Nullpunkt
beziehen. Ein in Hohe und Azimut drehbares Instrument mit feingeteiltem
Azimutkreis (Theodolith, Universalinstrument, Altazimut), das fiir solche
Beobachtungen geeignet ist, liefert zunfchst nur relative Azimute (siehe
Abschn. 12). Um aus ihnen absolute zu erhalten, muB3 zuvor das Azimut
des Nullpunkts des Kreises bestimmt werden bzw. diejenige Kreisablesung,
die der Siidrichtung entspricht. Solche Nullpunktsbestimmungen, die bei
Hohenkreisen verhéltnisméBig einfach sind, erfordern bei Azimutkreisen
gesonderte astronomische Beobachtungen. Azimutmethoden werden daher



74 II1. Bestimmung der Ortszeit bei bekannter geographischer Breite

in der Regel bei Ortsbestimmungen nur angewandt, wenn sie es erlauben,
durch Kombination mehrerer Beobachtungen neben den eigentlichen Unbe-
kannten des Problems auch den Nullpunktsfehler des Kreises mitzubestim-
men, oder wenn nur die Differenzen der abgelesenen Azimute zur Verwendung
kommen.

Hier sei nun zunfichst angenommen, da3 der Nullpunktsfehler des Kreises
bekannt sei und die Messungen daher auf absolute Azimute zuriickgefiihrt
werden konnen. Sei A das beobachtete Azimut, und seien ¢ die geographische
Breite des Standorts und ¢, § die Koordinaten des Gestirns, so ergeben die

"zweite und dritte Gleichung (II; 23) nach Elimination von z

cosdsint sin £

tgd = cosdsin cosf—sindcosp  sin g cost—tgdcos g (115 17)

oder auch
costsinpsin A —sintcos A =tgdcosgpsin 4. (II1; 18)
Das ist wieder eine Gleichung von der Form (III; 14) mit
a=singsinA, b= —cosAd, c=tgdcosgpsinA. (III;19)

Setzt man
cos A = —sin n cos m,

sin A sin ¢ = cos n cos m, (I1T; 20)
sinAcosp =sinm
und leitét daraus m und n ab, so nimmt (II1; 18) die Form
' cos(t —n) =tgdtgm (I11; 21)
an, aus der die Tangentenformel

tgzt—n _ 1—tgdtgm _ cos (0 + m)
2 14 tgdtgm  cos(0—m)

(I1T; 22)

zur Bestimmung von { und damit der Uhrkorrektion Adu =t — u + « folgt.
Eine andere (algebraische) Losung ergibt sich nach Anhang C II. Aus
(I1I; 19) folgt
atec_ sin(p+49) , a—c sin (p —d) .
b AT s P s e IL DY

und daher

tg2 —(1 + V1+ap)
cos 0 tg* A
—tgASIn(¢+d)<l +V + “0s?d sin (¢ + d) sin (p — 6))
cosdcos A + V'cos? 5 cos? A + sin® A (sin® @ cos? d — cos? @ sin? §) ,
sin A sin (p + 9)




24. Zeitbestimmung durch Azimutmessungen 75

Setzt man im ersten Glied unter der Wurzel cos? A = 1 — sin? A, so érhﬁlt
man einfacher

ol cosdcos A + Vcos? 6—cos? psin® 4
89 = ) sin A sin (¢ -+ 6)

(I11; 24)

Theoretisch ergeben sich nach beiden Methoden zwei Lésungen ¢, und
die auf Grund von (IIT; 21) durch die Beziehung ’
i+ 1

2 =N
miteinander verkniipft sind. Geometrisch wird dies durch Abb. 23 erldutert:
Der Vertikal mit dem Azimut A wird von dem Kreis um den Himmelsnordpol P

ti—n=—(fy—n) oder (II1; 25)

mitg — & als Halbmesser p

in zwei Punkten S, S, ge-
schnitten, die beide (in
Wirklichkeit natiirlich nur,
wenn sie auf derselben
Seite vom Zenit liegen)
als Ort des beobachteten
Sternes in Frage kommen.
Fallt man von P das Lot
auf den Vertikal, und be-
zeichnet man in dem
rechtwinkligen  Dreieck
PZQ die Seite PQ mit
m und den Winkel ZPQ Abb. 23: Zeitbestimmung durch Azimutmessung.
mit n, so gelten nach den Zwei Lésungen

Grundformeln [Anhang A i

(5)] die Gleichungen (III;

20), so daB damit die geometrische Bedeutung der Hilfsgrolen m und n
erwiesen ist. Auch die Gleichungen (III; 25) lassen sich aus der Abbildung
ablesen; sie bedeuten, dafl die Winkel S, PQ und S,PQ einander gleich sind.
Uber die richtige Losung entscheiden die Beobachtungsbedingungen.

Es leuchtet ein, daf} die Zeitbestimmung am schirfsten ausféllt, wenn die
beiden geometrischen Orter von S;, S, sich rechtwinklig schneiden. Das ist
der Fall, wenn der Vertikal S,ZS, durch den Pol geht, also mit dem Meridian
identisch ist. Die beiden Orter S,, S, entsprechen dann der oberen bzw.
unteren Kulmination des  Sterns, so daB3 iiber die Entscheidung zwischen
ihnen kein Zweifel entstehen kann. Zum gleichen Ergebnis fithren die Diffe-
rentialformeln: Fiir konstantes ¢, &, § und dt = d4u ist nach (II; 28)

sin z df rT.
ddu= S oo p = cosdcosp’ (1 26)

wenn man mit
df =sinzdA
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den Abstand des Sternes vom Vertikalfaden des Gesichtsfeldes im Augen-
blick ® =u + Au des vermeintlichen Fadendurchgangs bezeichnet. Man
erkennt, daf} die Zextbestlmmung am genauesten ist, wenn § =0 und p =0,
also fiir Aquatorsterne und im Meridian. Sie ist unméglich fiir Sterne in
der grof8ten Digression. Betrachtet man den Fadenantritt als richtig
beobachtet, aber das am Kreis abgelesene Azimut von dem des Fadens um
den kleinen Betrag dA verschieden, so lehrt die Formel, daf} der Einfluf3 dieses
Fehlers am kleinsten ist, wenn z klein ist. Um den Einflu des Nullpunkts-
fehlers des Kreises herabzudriicken, wird man also Sterne bevorzugen, die
in Zenitndhe kulminieren. Eine Abhéngigkeit des Fehlers der Zeitbestimmung
von der geographischen Breite scheint nach (II1; 26) nicht zu bestehen, sie
ist aber tatsdchlich vorhanden, da ja der Fehler dA von der Festlegung der
Nord-Siid-Richtung abhéngt, die in hoheren Breiten ungenau, am Pol selbst
unmoglich ist.

Um den Nullpunktsfehler des Azimutkreises zu bestimmen, beobachte
man den Durchgang eines Sternes (iiber dessen Wahl noch zu entscheiden
sein wird) durch den Vertikalfaden des Gesichtsfeldes. Die Durchgangszeit
sei ® =u + Au, das abgelesene Azimut A’. Wenn Au und daher auch
t = ® — o bekannt sind, 148t sich das wahre Azimut A nach (III; 17)
berechnen. Man hat dann, solange die Stellung des Instruments unver-
dndert bleibt, jedem abgelesenen Azimut die Korrektion 44 = A — A’ hin-
zuzufiigen. Ist du nicht bekannt, so wihle man einen Stern, der durch eine
seiner grofBten Digressionen geht. Nach (III; 26) ist ndmlich

€o0s 0 cos
P adu
sinz

dA =

und in der groBten Digression (cos p = 0) hat daher ein Fehler der Uhr-
korrektion auf die Berechnung des Azimuts keinen Einflu. Noch vorteil-
hafter ist es, einen polnahen Stern in der gréfB3ten Digression zu beobachten,
da dann auch cos ¢ klein ist. In unseren Breiten wird die Beobachtung des
Polarsterns (« Ursae minoris, § ~ 89°) in der grofiten Digression immer zu
einer duBlerst scharfen Eichung des Azimutkreises fithren, da dieser Stern
dann sein Azimut wihrend einer ziemlich langen Zeit iiberhaupt nicht
merklich #ndert.

25. Zirkummeridianazimute

Wenn wir Azimute in der Nidhe des Meridians beobachten, wie es die
Fehlerbetrachtungen des vorigen Abschnitts als vorteilhaft erkennen lassen,
so erweist sich die strenge Formel (II1; 24) zur Berechnung von { als génzlich
ungeeignet, da sie fiir die obere Kulmination (wobei dasnegative Vorzeichen der
Waurzel gilt) den unbestimmten Wert 0:0 annimmt. Man benutzt dann
besser die Reihenentwicklung fAnhang CIII (23)] die wegen (IIT; 23) die Form

tgt tg A sin (p — 6)[ 1 + y— y3+'-

277 2coso
mit
y =off = tg* A sec?dsin (p — d)sin (¢ + J)
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annimmt. Fiir kleine Azimute und besonders in der Nihe des Zenits, wo
auch @ — é klein ist, konvergiert diese Entwicklung auBerordentlich rasch,
so daB man sich meist mit dem ersten oder den beiden ersten Gliedern be-
gniigen kann.

Will man diese Methode der Zeitbestimmung aus Zirkummeridian-
azimuten auch auf Sterne in der Nihe der unteren Kulmination anwenden,
s0 bedenke man, da8 dann in der Formel

teg = (1+VTF2p)

t ~ n ist und das positive Vorzeichen der Wurze] gilt. Es ist dann ctg%eine

kleine GroBe, und man findet (siehe auch Anhang C V)

t @ a(1—V1+«p) 1( —)
t _— = = —_—— 1___ 1 ,
YT I ViteR 1= +ap) B Vitap
also
t  tgAsin(p+9) 1 1 5
By =" sess | adT Y EST ]

Man kann auch die Entwicklung Anhang CIV(28);CV benutzen, die fiir die
ersten Glieder folgende Formeln liefert:
fiir obere Kulmination

1 t
—_— _ R2 8 —
t=—f-+ ]25 Ba+p)..., t Bsnl”
fiir untere Kulmination
1 t—=n
e Y 19k — - T,
t—=n a4 P (¢+3p)..., @—12%s 5sinl”

26. Zeitbestimmung aus Durchgingen zweier Sterne durch den gleichen Vertikal.
HARZERsche Fadenmethode

Die Schwierigkeit der Eichung des Azimutkreises entféllt, wenn man
.die Durchgangszeiten zweier Sterne durch den gleichen Vertikal beobachtet,
da dann das Azimut selbst sich eliminieren 148t. Fiir die beiden Sterne ist
.«dann tg A, = tg A,, also entweder Ay = A, oder A, = A, 4 =, je nachdem
die Sterne sich auf der gleichen oder der entgegengesetzten Seite vom Zenit
befinden. Beobachtungstechnisch spielt die letztgenannte Unterscheidung
keine Rolle, da das Fernrohr bei festgeklemmter Azimutbewegung den
ganzen Vertikal beherrscht.

Setzt man fiir zwei Sterne (f;, ;) und (f,, d,) die Ausdriicke (III; 17)
gleich, so erhélt man als Grundgleichung dieses Problems

€os d, sin ¢; (cos d, sin @ cos t, — sin d, cos @) =
= ¢0s J, sin ¢, (cos d, sin ¢ cos {; — sin §, cos @). (I1I; 27)
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:Substituiert man hierin wie fritherf;, =t — A, {, =1 + 4, so ergibt sich nach
"kﬁrzer Rechnung fiir die einzige Unbekannte t = %uz + du — o%az
wieder eine Gleichung von der Form a cost + bsin{ = ¢ mit

a = tg Asin (&, + 6y),

b =sin (6, — dy),

¢ =21g @ cos d, cos d5sin 4.
Fiihrt man die Hilfsgréfle n durch
b sin (6, — d,)
= — = ct . S— L
tgn a” ¢ A sin (6, + 65)

ein, so findet man ¢ aus

_c _2cosntg¢cosélcos¢$2cos}. .
cos (f —n) = g oS = Sn (6, - 0y (IT1; 28)
Oder man setzt nach Anhang C II
gy =2 (1+VFaf), (ILI; 29)
wobei ¢ und § durch Addition und Subtraktion der Ausdriicke
etp_a_ tg A sin (&, + 9)
2 b sin (6, — &,) l
(1115 30)
a—p ¢ .. cosd; cosd, I
2 b 2tggsind sin (6, — d,)

erhalten werden.

Die Gleichungen (III;28) oder (III;29) haben zwei Losungen. Geo-
4
5=
Halbmesser, auf dem das Zenit liegen muf}, hat mit dem Vertikal der Beob-
;achtungen zwei Schnittpunkte. Die giinstigsten Beobachtungsbedingungen
liegen vor, wenn diese beiden geometrischen Orter des Zenits sich recht-
winklig schneiden, d. h. also, wenn der Vertikal der Sterne mit dem Meridian
zusammenfallt.

Fiir die beiden Beobachtungen gelten die Differentialbeziehungen (III; 26)
dAu cos p, cos §; = dA, sin z; = df;,
dAu cos p, cos §; = dA, sin z, = df,.

metrisch bedeutet das: Der Kreis um den Himmelsnordpol mit @ als

Da die Lage des Beobachtungsvertikals unbestimmt ist, eine Anderung
dA seines Azimuts also keinen Einflul auf das Ergebnis d4u hat, darf man
in diesen Gleichupngen zu dA,, dA, eine willkiirliche Grofle dA hinzufiigen.
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Es ist also richtiger
dAu cos p, cos §; = dA sinzy + dfy, |

dAu cos py cos 8, = dA sin z, + df,, |

wobei nunmehr df,, df, die Abstéinde der Sterne von demjenigen Vertikal
bedeuten, der durch den Vertikalfaden des Fernrohrgesichtsfeldes reprasen-
tiert wird. Eliminiert man dA aus (III; 31), so erhilt man

dAu (cos p; cos &, sin z, — cos p, cos J, sin z;) = df, sin z, — df, sin z,

(ITT; 31)

und, wenn man die zweite Gleichung (II;29) beriicksichtigt,
hY ) d . . d .
cospddu = h Sl 2 [2 bk .
cos A; cos z; sin z, — cos A, sin z; cos z,

Da nun, wie schon erwihnt, A, = A, oder A, = A, + =, also cos A,
= 4 cos 4,, vereinfacht sich diese Beziehung zu
df; sin z, —df, sin z,
cospddu = “cos Ay sin (z; F z)
Bezeichnen wir mit &4, den mittleren Fehler der Bestimmung von Au und
mit ¢ den mittleren Fehler der Fadenantritte, d. h. den statistischen Mittelwert
der Fadenabstinde df;, df,, so folgt nach Anhang D

Vsin? z, + sin?z,
’ III; 32
cos Ay sin (25 + 2;) ( )

COS Q- Egy =€

Der Einflul des Einstellungsfehlers ist demnach, wie zu erwarten war, am
kleinsten im Meridian, wo cos A, = 4 1. Liegen die Sterne auf der gleichen
Seite vom Zenit, so wird man, damit der Betrag von sin (z, — z;) mdoglichst
groB3 werde, die Zenitdistanzen moglichst verschieden wihlen, also einen
zenitnahen und einen horizontnahen Stern beobachten. Man erhilt dann im
giinstigsten Falle cos ¢ €4, ~ &. Liegen die Sterne beiderseits des Zenits, so
gilt im Nenner von (III; 32) das positive Zeichen. Bei festem A, und z; hat
dann der Ausdruck (III; 32) ein Minimum, wenn z, = z,, und es wird

&
V2cos A, cos z;
Man gelangt somit zu den giinstigsten Bedingungen, wenn man Sternpaare

auswihlt, die nérdlich und siidlich des Zenits in kleinen und gleichen Zenit-
distanzen den Meridian iiberschreiten, und es ist dann

COSQ - &gy =

€
COS @ €4y ~ VQ .

Nach P. Harzer 148t sich die Zeitbestimmung aus Durchgéngen zweier
Sterne durch den gleichen (meridiannahen) Vertikal auch ohne jedes Instru-
ment durchfiithren, wenn man mit der bescheidenen Genauigkeit zufrieden
ist, die man aus Beobachtungen mit bloBem Auge erwarten kann. Vier
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senkrecht in die Erde getriebene Stangen, z. B. starke Bohnenstangen, die
oben durch vier Querstangen miteinander verbunden sind (Abb. 24), bilden
ein Geriist. Die Querstangen sollen ungefdhr in ost-westlicher bzw. nord-
siidlicher Richtung verlaufen. Durch zwei Osen A und B, die in der Mitte der
ost-westlich gerichteten Querstangen an deren Unterseite angebracht sind,
wird ein Faden gezogen, dessen Enden zusammengekniipft und mit einem

Gewicht G beschwert werden. LBt
= man das Gewicht frei hingen, so bildet
Z 8 der straff gespannte Faden ein Drei-
eck, das eine dem Meridian benachbarte
Vertikalebene definiert. Der Durchgang
eines Siidsterns durch diesen Vertikal
ereignet sich, wenn sich fiir das Auge
des am Nordende des Geriists befind-
lichen Beobachters die Fadenteile AB
und AG decken und gemeinsam vor dem
Stern erscheinen. Zur Beobachtung

W= || <pa ljé Wit ol des Nordsterns begibt sich der Beob-
L‘@M % 5. achter auf die Siidseite des Geriists
~ - " und visiert den Stern iiber die Faden-
Abb. 24: Das HarzERsche Fadendreieck teile BA und BG an. Vorbedingung
fiir das Gelingen der Beobachtung ist,
daBl der Faden ruhig hiingt, also nicht durch Wind in pendelnde Bewegung
versetzt wird. Bei nicht zu starker Luftbewegung lassen sich die Schwin-
gungen des Fadendreiecks leicht ddmpfen, indem man das Gewicht in ein
GefdB mit Wasser hiingen 14B8t. Als Beobachtungsuhr geniigt bei diesem
Verfahren, das als Harzersche Fadenmethode bekannt ist, eine Taschenuhr
mit Sekundenzeiger. Die Bestimmung des Uhrfehlers gelingt gewdhnlich bis
auf wenige Zehntel einer Zeitminute.

4

27, Zeitbestimmung aus gleichzeitigem Durchgang zweier Sterne durch den gleichen Vertikal

Eine Variante der im vorigen Abschnitt beschriebenen Zeitbestimmungs-
methode ergibt sich, wenn man zusitzlich fordert, dafl die beiden Stern-
durchginge durch den gleichen Vertikal auch gleichzeitig erfolgen sollen.
Auf den ersten Blick scheint es, als ob diese Bedingung beobach!ungstechnisch
unerfiillbar sei. Das ist jedoch, wenn man einige Einschrinkungen in Kauf
nimmt, nicht der Fall. Begniigt man sich z. B. mit Beobachtungen ohne
Instrument, also mit bloflem Auge, so kann man die Harzersche Faden-
methode (Abschnitt 26) variieren, indem man lediglich einen senkrecht
hingenden beschwerten Faden benutzt. Ein Beobachter kann dann den
gleichzeitigen Durchgang zweier Sterne durch den gleichen Vertikal leicht
feststellen, indem er den Zeitpunkt vermerkt, an dem der Faden beide Sterne
gleichzeitig verdeckt.?)

1) Hierbei befinden sich beide Sterne natiirlich auf der gleichenSeite vom Zenit.
Fir unsere Breiten ge ingt dieses einfache Verfahren am besten fiir den Polarstern
und einen Zeitstern in der Nihe der unteren Kulmination (siehe Abschnitt 28).
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Mit einem Universalinstrument oder einem Theodolith ist. diese Methode
nur dann anwendbar, wenn sich das Azimut des einen Sternes in der Zeit
zwischen beiden Beobachtungen nicht merklich dndert, d. h. also, wenn sich
etwa der Nordstern S; in der groften Digression befindet. Da die Beob-
achtungen auflerdem in einem meridiannahen Vertikal. erfolgen sollen,
wihlt man fiir S; moglichst einen polnahen Stern. Ist z. B. S; der Polarstern
in der Nihe seiner groBten Digression, S, ein zweiter Stern, der als Zeitstern
bezeichnet werden moge, so stellt man zuerst den Vertikalfaden des Instru-
ments auf S; ein, beobachtet dann die Durchgangszeit von S, und visiert
dann wiederum S; an. Es wird sich dann zeigen, ob in der Zwischenzeit das
Azimut von S; unveréndert geblieben ist und es somit erlaubt ist, die
Beobachtungszeit von S, auch fiir S; anzusetzen. Ist das Instrument (etwa
ein Passageinstrument mit verstellbarem Azimut) mit einem- Fadenmikro-
meter mit meBbar verstellbarem Vertikalfaden ausgeriistet, so ist man nicht
an die groBte Digression des Polarsterns gebunden. Die Bewegung dieses
Sternes im Azimut ist auch in anderen Phasen seiner tiglichen Bewegung so
langsam, daf3 die Gleichsetzung der Beobachtungszeiten in erster Ndherung
stets erlaubt ist — eine Verbesserung des Ergebnisses 148t sich durch Aus-
wertung der Mikrometermessungen leicht erzielen.

Die Methode der Zeitbestimmung im Vertikal des Polarsterns ist eine der
schénsten und genauesten ihrer Art; sie soll im n#chsten Abschnitt
gesondert behandelt werden. Fiir die allgemeine Losung der' Aufgabe,
den Uhrstand aus dem gleichzeitigen Durchgang zweier Sterne durch
einen. beliebigen Vertikal von un-
bekanntem Azimut zu ermitteln,
kann man sich der Formeln des
vorigen Abschnitts bedienen, wobei
nur u; =, = u und daher

o+ o

=u-+ du— 7

Oy — 0
2

zu setzen ist. Vorzuziehen ist aber x
folgende sehr elegante und sym-
metrische Methode:

Es sei (Abb. 25) XKQ der Him- Abb. 26: Zwei Sterne gleichzeitig
melsiquator mit dem Friihlings- im gleichen Vertikal
punkt X, PZQ der Meridian mit dem
Nordpol P und dem Zenit Z. KZ sei der gemeinsame Vertikal, in dem d1e
beiden Sterne S; und S, beobachtet werden. Seine Lage an der Sphire wird
bestimmt durch seine Neigung i gegen den Himmelséiquator und die Rektaszen-
sion £ = XK des ,, Knotens* K. Es sind dann die Rektaszensionen von S,,

S, und Z

l=

[}

o, = X0, oy =XQ,, 6=XQ,

7 Geogr. Ortsbestimmungen
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wobei © die Sternzeit der Beobachtung bedeutet und
& =801 6, =380, 9=20

die Deklinationen dieser Orter sind. In den rechtwinkligen sphérischen Drei-
ecken KS,0;, KS,Qy KZ() ist sodann nach Anhang A II (6), dritte Gleichung,

tgisin (o; — §) = tg é,,
tg i sin (@ — §3) = tg 85, (IIT; 33)
tgisin (0 —§) =tg ¢.

Die ersten beiden dieser Gleichungen sind, wenn man die Sinusaus-
driicke aufldst, in tg i sin £ und tg i cos §3 linear und ergeben

tgdysiney; —tgd, sine, |
sin (0y — ;)

tgisind =
(1IT1; 34)
tg d, cos ¢; — tg d; cos e,

tgicosfd = sin (0, — )

zur Bestimmung von i und £3. Die dritte Gleichung liefert dann die Stern-
zeit © aus ‘

sin (0 — ) =tgpctgi,
und zwar mit geniigender Schirfe, da der Vertikal meridiannah sein soll und
daher i ~%, also ctg i und somit auch @ —§3 klein ist. Das Azimut A des

gemeinsamen Vertikals der Sterne ergibt sich aus dem rechtwinkligen
Dreieck KZQ nach Anhang A II (5), erste Formel, durch

sin A = cos i sec g.

28, Zeitbestimmung im Vertikal des Polarsterns ,

Steht einer der beiden Sterne (S,) sehr dicht am Himmelspol (z. B. fiir
die nérdliche Halbkugel der Polarstern o Urs. min, § = 89°2, fiir die siid-
liche der ziemlich schwache Stern ¢ Octantis, § = — 89°8'1), so lassen sich
neben den Formeln der Abschnitte 26 und 27 noch rasch konvergierende
Reihen fiir den gesuchten Stundenwinkel des Zeitsterns S, angeben.
Nachstehend moge die von W. DoeLLEN?) entwickelte und von P. HARZER?)
verbesserte Methode dieser Art Platz finden.

1) Deklinationen fiir 1950.

t) W. DoELLEN: Die Zeitbestimmung vermittelst des tragbaren Durchgangs-
instrumentes im Verticale des Polarsternes. St. Petersburg 1863, 1874.

3) P. Harzer: Uber die Zeitbestimmung im Vertikale des Polarsternes. Publ.
der Sternwarte Kiel X, 1899.
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Im Dreieck PS,S, (Abb. 26) sei A =t; —t, = @; — @, der Winkel am
Pol und o der immer sehr kleine Winkel am Zeitstern. Ist b die Linge des
Bogens S,S,, so ist nach den Grundformeln der Sphérischen Trigonometrie

sin b sin w = cos 4, sin 4,
sin b cos w = sin 6, cos d, — cos 4, sin d, cos 1
und daher
sin 4
tg 6, —tg d, cos A
Die Extrema von o sind fiir mifBige 62 von der

tgow = secdy . (I11; 35)

NG%’ so da3 Entwicklungen
nach Potenzen von w gute Konvergenz versprechen.
Zur Durchfiihrung einer solchen Reihenentwick-
lung fiir den Stundenwinkel des Zeitsterns ist es
erwiinscht, von Formeln des Typus (IIT; 29) aus-
zugehen. Es ist jedoch zweckmifig, auf die Sym-
metrie zu verzichten, wie sie sich etwa in (I1I; 30)
ausdriickt, denn die beiden Sterne nehmen ja in die- Sz
sem Problem eine ganz verschiedene Stellung ein. .
Man wihle daher jetzt als Unbekannte statt des Abb.26: Zeitstern (8,)
arithmetischen Mittels der beiden Stundenwinkel den 1™ Azimut des Polar-
des Zeitsterns allein, d. h. den Winkel sterns (8,)

t=t,,

GroBenordnung % —6;

der Kklein ist, wenn S, in der Néhe der oberen, und nahezu gleich z, wenn S,
in der Nihe der unteren Kulmination steht. Im ersteren Falle ist also t.g2i

im letzteren ctgé eine kleine Grofle. Man setze ferner
ty=t+ 4,

wobei A die in (III; 35) und Abb. 26 benutzte GroBe bedeutet. Mit diesen
Werten fiir {, und ¢, nimmt die Gleichung (III; 27) nach kurzer Rechnung
die Form

tg dysin A cost - (tg d,cos A —tg d;)sint =tg @ sin A

an. Sie ist wiederum vom Typ (II1; 14) mit
a=tgd,sin4d, b=tgdcosl—1tgd, c=tgpsini
und hat nach Anhang C IT (22) die Losungen
t 1 —_—
tgs=—(1FV1+ef),
wobei g5 =" +af)
a—c sin (¢ — ;)

. p=1 =g

cos @ b cos @

am T g, W)

7‘
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wie man mit Hilfe von (III; 35) leicht herleitet. Wegen des kleinen Faktors
tg o sind ¢ und g beide klein (ausgenommen in sehr hohen Breiten, wo
diese Methode ohnehin ihre Vorziige einbiit). Man benutzt also mit Vorteil
die Entwicklung [Anhang C IIT (23)]

t 1 . 1 1
tgf=§tgw§ec¢s1n(¢—62)[l—1—n+gnz—-—n + - ] (II1; 36)

mit 7 = af = tg? w sec? g sin (p — d,) sin (¢ + 4,),

wenn S, in der Nihe der oberen Kulmination beobachtet wird. Fiir die untere
Kulmination erhélt man entsprechend (¢t = n + )

t t 1 . 1 1 5
-—ctg5=tg§=—2—tgwsec(psm(¢p—i—62) I—I 7+ §”2_@773 + ]
(I11; 37)

Beide Formeln haben groBe Ahnlichkeit mit denen fiir die Zeitbestimmung aus
Zirkummeridianazimuten (Abschnitt 25).

‘Will man eine Reihenentwicklung fiir die Stundenwinkel selbst haben,
so schreibt man nach Anhang C IV (28) fiir obere Kulmination

f——ﬂ+ (15f3~l—1-3:92 )——(ﬁ5+5ﬂ4a+10ﬁ3a2)+ ., (III; 38)

wilhrend fiir untere ¢’ =t — x aus (III 38) durch Vertauschung von «
und 8 hervorgeht (Anhang C V).

Wenn der Zeitstern in der Ndhe des Zenits kulminiert, so ist ¢ — J,
klein, und B wird daher klein von der zweiten Ordnung. In diesem Falle
konvergieren die Reihen (IIT; 36), (ITI; 38) so rasch, da3 es auch bei strengen
Genauigkeitsanforderungen fast immer geniigt, sich auf das erste Glied der
Entwicklung zu beschrinken. Fiir die untere Kulmination kann dieser
giinstige Fall nicht eintreten, da sin (¢ 4 d,) nur in der Néhe des Nadirs
verschwindet. Aber auch hier wird man selten iiber das zweite Glied der
Entwicklung hinauszugehen brauchen.

29. Zeitbestimmung aus Meridiandurchgingen. Das Passageinstrament

Fiir Zeitbestimmungen auf Sternwarten und bei geodétischen Arbeiten,
wo es auf dullerste Genauigkeit ankommt, werden fast ausschlieBlich In-
strumente verwendet, die zur Beobachtung von Sterndurchgéngen durch
den Meridian geeignet sind. Solche Geréte heilen Meridiankreise, wenn sie
einen fein geteilten Kreis zur Messung von Zenitdistanzen tragen, und
Passageinstrumente, wenn nur ein grob geteilter Einstellungskreis vor-
handen ist. _

Das Passage- oder Durchgangsinstrument ist ein Fernrohr, das sick um
eine horizontale, mit ihren Enden auf festen Lagern ruhende Achse drehen
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14Bt. Ist diese Achse genau horizontal und genau von Westen nach Osten
gerichtet, und steht die optische Achse des Fernrohrs auf der Achse des In-
struments genau senkrecht, so deckt sich ein im Gesichtsfeld ausgespannter
Vertikalfaden, der die optische Achse schneidet, in jeder Lage des Instru-
ments genau mit dem Meridian des Himmels.

Um mit Hilfe eines solchen idealen Instruments die Ortssternzeit zu
bestimmen, geniigt es, die Uhrzeit des Durchgangs irgendeines Sternes mit
bekannter Rektaszension durch den Vertikalfaden zu
beobachten. Ist die Sternzeit des Durchgangs u, so ist P
die Uhrkorrektion durch ‘

Au=ca—u oder Au=a—u-12t

gegeben, je nachdem der Meridiandurchgang in oberer

oder unterer Kulmination erfolgt. Ein Beobachtungs-

fehler d Au konnte dann nur dadurch entstehen, daB die

Uhrzeit u notiert wird, wenn das Bild des Sterns nicht

genau durch den Faden biseziert wird, sondern sich in e
einem kleinen Abstand df vom Faden befindet. Ist o~
(Abb. 27) df = dAu der dem Meridianabstand df = SQ
entsprechende kleine Stundenwinkel des Sterns, so ist

in dem bei Q rechtwinkligen Dreieck PSQ

dt = df sec §, U

d. h., die Zeitbestimmung ist von dem Einstellfehler
am wenigsten abhiingig, wenn § = 0 ist, also fiir Aqua-
torsterne, die ja den Faden mit der groftmaoglichen
Winkelgeschwindigkeit iiberschreiten.

In Wirklichkeit sind die eben angenommenen Voraussetzungen nicht
streng erfiillt. Das Westende der Achse ist nicht genaunach dem Westpunkt des

TeIpIIaW

Abb. 27: Abstand
vom Vertikalfaden

Horizonts gerichtet, sondern nach einem Punkt, dessen Azimut% —k und

dessen Hdohe i betragen moge. Die kleinen GroBen k und i heiflen Azimut-
fehler und Neigungsfehler des Instruments. Der Vertikalfaden des Gesichts-
feldes (oder das Abszissenmittel einer gréBeren Anzahl symmetrisch ange-
ordneter Vertikalffiden oder die Normalstellung eines parallel zu sich selbst
durch eine Mikrometerschraube meBbar verschiebbaren beweglichen Verti-
kalfadens), an dem die Zeiten der Sterndurchgiinge gemessen werden, be-
zeichnet nicht die auf der Achse senkrechte Richtung, sondern bildet mit

dem Westende der Achse den Winkel g + ¢. Man nennt ¢ den Kollimations-

fehler des Fernrohrs. Hierbei muf3 bemerkt werden, daB sich das Instrument
aus seinen Lagern herausheben und umlegen 148t. Die beiden Enden der
Achse unterscheiden sich dadurch, daB sich an einem Ende der Hohenein-
stellungskreis befindet — die beiden Fernrohrlagen bezeichnet man demnach
als ,,Kreis West* bzw. , Kreis Ost* (oder auch nach der Lage der Befesti-
gungsklemmen des Fernrohrs als ,,Klemme West bzw. Ost*). Ist der Kolli-
mationsfehler in der Kreislage West + ¢, so ist er — c in der Kreislage Ost:
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In Abb. 28 sei nun W das auf die Sphére iibertragene Westende der

Achse mit dem Azimut% — k und der Zenitdistanz% — 1, G der Gestirnsort,

dessen Abstand von W im Zeitpunkt der Beobachtung g + ¢ (Kreis West)

betrage, wihrend ¢, A, z die gewohnliche Bedeutung haben. Im Dreieck
WZG gilt dann nach dem Cosinussatz.

— sin ¢ =sin i cos z 4 cos i sin z sin (k + A).
Driickt man hierin cos z, sin z cos A und sin z sin A durch (II; 23) aus, so
erhilt man
— sin ¢ = sin i (sin 6 sin @ + cos & cos @ cos f) -+
+ cos i [cos k cos 6 sin f — sin k (sin 6 cos ¢ — cos & sin ¢ cos?)]. (IIT; 39)

Da nun ¢, i, k, t sehr kleine Winkel sind,
darf man die Sinus durch die Bogen, die
Cosinus durch eins ersetzen und erhilt
—c=icos(p—0)+
+ tcos 6 + ksin (p — 9)
oder, da
: u+ Adu —e,

du=0a —[u-icos(p—Jd)secd +
+ ksin (p — d) secd + csecd]. (III; 40)

Abb. 28: Zur Theorie des

Passageinstruments Dies gilt fiir die obere Kulmination. In

der unteren Kulmination ist = 12b -

+ ¢ =u+4 Adu — « — 12% und, da ¢ klein ist, cost = — cost’ = — 1,
sint = —sint’ = — ' zu setzen. Somit folgt aus (III; 39)

—c=—icos(p+ 8) —tcosd— ksin (¢ + ),

also fiir die unfere Kulminati-
Au =¢a + 128 — [u + i cos (p + 8) sec & + k sin (¢ + &) sec d — c sec d].
[(III; 41)

Man bezeichnet (I1I; 40) und (III; 41) als die MaYERschen') Formeln fiir die
Uhrkorrektion. Sie gelten fiir Kreis West — nach Umlegen des Instruments
(Kreis Ost) ist ¢ mit — ¢ zu vertauschen.

1) Nach JoH. ToB1AS MAYER (1723—1762), der diese Formeln zuerst bei
der Reduktion von Meridianbeobachtungen benutzte.
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Die Neigung i des Instruments wird gewdhnlich direkt mit einer Libelle
gemessen, die sich an den Zapfen der Achsen einhéingen 14Bt. Die Uhrzeit u
148t sich somit unmittelbar wegen der Neigung korrigieren, und man erhélt

v =u +icos(p F d)secd,

wobei das obere Zeichen fiir obere Kulmination gilt.

Die Kollimation ¢ bestimmt man, indem man einen polnahen Stern
(6 > 80°) in derselben Kulmination und in beiden Kreislagen beobachtet.
(Da der Stern nur langsam durch das Gesichtsfeld 14uft, hat man zum Um-
legen des Instruments geniigend Zeit.) Es ist dann z. B.1)

du = o — [uy’ + ksin (p — 8) sec 6 4 csecd] (ob. Kulm., Kr. West),
Au = o — [uy + ksin (p — &) secd — csecd]  (ob. Kulm., Kr. Ost).

Die Differenz ergibt
uy —u =2csecd,

woraus, da sec 9 stets ein groBer Faktor ist, ¢ mit groBer Genauigkeit bestimmt
werden kann.

Die tdgliche Aberration der Gestirne, die im Meridian die maximale
Verinderung des Stundenwinkels bewirkt, muf} bei genauen Zeitbestimmun-
gen auch beriicksichtigt werden. Setzt man in (I; 48), erste Formel,
cost =+ 1(wobei wie oben das obere Zeichen fiir die obere Kulmination gilt),
so ergibt sich als Korrektion des Stundenwinkels

=4 032 cos g sec d;

sie verlduft ebenso wie die Korrektion wegen Kollimation proportional mit
sec §. Man kann daher die Kollimationskonstante mit der Konstante der
taglichen Aberration

032 cos ¢ = 00,0213 cos ¢

vereinigen, indem man in der Kreislage West ¢ um diesen Betrag vermindert,
in der anderen Lage dagegen vermehrt.

Ist auch das (um die Aberration verbesserte) Kollimationsglied bekannt
und angebracht: u” = u’ 4 csecd, so kann man den Azimuifehler k be-
stimmen, indem man zwei polnahe Sterne beobachtet, die nacheinander
durch die obere bzw. untere Kulmination gehen. Man erhilt dann die
Gleichungen

Au = a; — [u,"" + ksin (p — ;) sec 6,] (ob. Kulm.),
Au = oy + 128 — [u,” + k sin (p + 6,) sec 6, (unt. Kulm.).’
1) Die Uhrzeiten %,” und u,” der beiden Beobachtungen sind selbstverstind.

lich auf die gleiche Stelle des Gesichtsfeldes (z. B. den mittleren Vertikalfaden)
zu beziehen.
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deren Differenz fiir k die Beziehung
k [sin (@ + &,) sec 6, — sin (p — d;) sec 6;] = 120 + a0y — &ty — (U, —uy”)

liefert. Der Faktor von k ist groB, da die Faktoren sec §; und sec d, gro83
sind und sin (¢ 4 J,) und sin (p — §,) entgegengesetzte Vorzeichen haben.

Nach der Ermittlung der Instrumentalfehler i, k, ¢ kann man dann 4du
aus der Beobachtung von Zeitsternen, d. h. Sternen niedriger Deklination,
ableiten. Wenn man zur Erhohung der Genauigkeit eine groBere Anzahl von
Zeitsternen beobachtet hat, bedient man sich bei der Reduktion der Ergeb-
nisse statt der MaAyeErschen Formeln vielfach anderer, die von BEsseL auf-
gestellt wurden: !

Bezeichnet man mit n die Deklination und mit—;z— m den Stunden-
winkel des Westpunkts W der Instrumentenachse (Abb. 28), so folgt aus dem
Dreieck PWG -

— sin ¢ = sin n sin é + cos n cos & sin (m + £) (IT1; 42)

und hieraus, wenn man ¢, m, n, t als klein ansieht,
t=—(m+ ntgd+ csecd)
oder
Adu =¢a — (u + m) — (ntg é + ¢ sec d)
fiir obere Kulmination und entsprechend
Au=a+ 122 — (u + m) 4 (ntg § + csec )

fiir untere Kulmination. Diese Formeln gelten fiir Kreis West. Fiir Kreis Ost
ist wieder ¢ durch — ¢ zu ersetzen. Die GroBen m und n werden aus dem
Dreieck PZW mit Hilfe der Grundformeln

cos nn sin m = sin i cos ¢ - cos i sin ¢ sin k,
sin n = sin i sin ¢ — cos i cos ¢ sin k
abgeleitet oder, wenn m, n, i, k als klein angesehen werden, aus
m=icos ¢ -+ ksin ¢,
n=1isingp —kcosg.l)

30. Sonnenuhren

Sofern es nicht auf groBe Genauigkeit ankommt, 148t sich der sphérische
Ort der Sonne aus Richtung und Lénge der Schatten bestimmen, die ihr Licht
von geeigneten Gegenstinden erzeugt. Schon im Altertum wurden nach
diesem Prinzip Sonnenuhren konstruiert, die es gestatten, aus dem Schatten-
wurf meist stabférmiger Korper auf eine geeignet eingeteilte Unterlage die
wahre Sonnenzeit abzulesen.

!) Die BrsserLschen Formeln sind bei Reihenbeobachtungen sehr bequem,
da sie als additive Konstante mit der Uhrzeit vereinigt erscheint und die
Faktoren von » und ¢ nur von der Deklination des beobachteten Sterns.ab-
hingen.
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Die einfachste Form der Sonnenuhr wird Gnomon genannt und besteht
aus einem senkrechten Stab, dessen Schatten auf eine horizontale Unterlage
fallt. Es ist klar, dal das Azimut des Schattens gleich dem um 180° ver-
mehrten Azimut der Sonne und die Schattenlénge proportional dem Tangens
der Zenitdistanz der Sonne ist. Man kann also bei Auswertung von Linge und
Azimut des Schattens die Formeln (I ;6) zur Bestimmung der wahren Sonnen-
zeit benutzen oder, wenn man nur die Linge bzw. nur das Azimut verwenden
will, die Formeln (III; 2) bzw. (III; 22). Die zur Definition der
Azimute notwendige Nord-Siid-Richtung findet man dabei leicht als Winkel-
halbierende derjenigen
Richtungen, in denen der
Schatten vormittags und
nachmittags gleiche Lange
annimmt — die kleine Kor-
rektion wegen der Mittags-
verbesserung  (Abschnitt
19) darf dabei vernach-
lassigt werden, da sie meist
weit innerhalb der Ge-
nauigkeitsgrenzen liegt, die
dem Gnomon -eigentiim-
lich sind.

Will . man aus der

Schattenrichtung unmit-
telbar die wahre Sonnen-
zeit ablesen, so daB3 der
Schatten des Stabes unab-
hingig von der Jahreszeit
als Uhrzeiger gelten kann,
so muB man dafiir sor- Abb. 29: Zur Theorie der Sonnenuhr?!)
gen, dal die Schattenebene,
d. h. diejenige Ebene, die durch die Sonne und den Schattenstab gebildet
wird, stets mit der Ebene des Stundenkreises der Sonne zusammenfllt. Das
ist aber dann und nur dann der Fall, wenn der Schattenstab die Richtung
der Weltachse einnimmt. Die Lage der Zifferblattebene ist dann in sehr weiten
Grenzen beliebig und die Schattenrichtung, die einer bestimmten Stunde
wahrer Sonnenzeit entspricht, von der Deklination der Sonne unabhingig.
Die Einteilung des Zifferblatts, die dann fiir alle Zeiten giiltig ist, besteht
aus einem Strahlenbiischel, das vom FuBpunkt des Schattenstabs aus-
geht und dessen Strahlen nach den Stunden der wahren Sonnenzeit und
ihren Bruchteilen zu numerieren sind.

Die Theorie der Sonnenuhren lehrt das Verfahren der Konstruktion der
Zifferblatteinteilung, die von der Lage der Zifferblattebene im System des
Horizontes abhéngig ist. In Abb. 29 sei P der Himmelsnordpol, AXYR der
Himmelsidquator, S die Sonne — der Randkreis der Abbildung stelle also den

1) Siehe FufBnote zu Abb. 6.

p!
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Stundenkreis der Sonne dar. Die Zifferblattebene schneide die Sphére in
dem GroBtkreis HUY K, und Q sei der Pol dieses Kreises. Die Richtung des
Schattenstabes, die der Weltachse parallel ist, sei durch den Pfeil angedeutet.
PXUP’ sei der Meridian. Dann ist XA = der Stundenwinkel der Sonne,
und wenn T der Stundenwinkel, D die Deklination des Zifferblattpols be-

zeichnen, so ist XY = g —T,YR = g —t+ T (da ja AXYR = n), ferner

T

QP =L XYU =5 —D.

Auf dem Zifferblattkreise werden die Abschnitte HU, UY, YK mit «,
B,y bezeichnet. Dann ist et fty=n (I11; 43)
und y gleich dem Winkel, den die Schattenrichtung zur wahren Sonnenzeit ¢
mit der am wahren Mittag bildet. Diesen Winkel gilt es als Funktion der Zeit?
und der Zifferblattkonstanten T, D zu bestimmen.

Im rechtwinkligen Dreieck UXY findet man nach Anhang A II (6), zweite
Formel, ctg T

ga:E‘D

Ferner ist im rechtwinkligen Dreieck K'Y R nach dem gleichen Satz

_ctgt—7T),
8 ="ap

Wegen (I1I; 43) ist also
= _ tget+tgh
tgy=—tg+h=p " r"
_ [ctg T + ctg (t— T)] cosec D
" ctg Tctg(t—T) coseceD—1

_ [cos T'sin(t—T)+ sin T cos(f—T)]sinD
" cos T cos(t— T)— (1—cos® D) sin T sin (t— T)

oder
sin Dsint

cost + cos? Dsin T sin (t-—T).
In folgenden ausgezeichneten Lagen des Zifferblatts nimmt (III;44)
einfachere Gestalt an:
a) Zifferblatt parallel dem Himmelsdquator: Der Schattenstab steht auf

tgy = (III; 44)

dem Zifferblatt senkrecht, es ist T unbestimmt; D = % , somit

tgy =tgt, y =t.

Die Einteilung der Zifferblatts ist also gleichformig.
b) Zifferblatt horizontal: Da Q mit dem Zenit zusammenfillt, ist T = 0,

D = g und daher tgy = tgtsin ¢.
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c) Zifferblatt vertikal: Q ist dann ein Punkt des Horizonts mit dem Azimut

A. Setzt man in den Gleichungen (I; 6) rechts z =%. so findet man sinn-

gemif
cos Dsin T =sin A4,

cos D cos T = cos A sin ¢,
sin D = — cos A cos ¢.

Fiihrt man dies in (III; 44) ein, so ergibt sich

_ sinf cos . .
. Y =~ Costcos A + sin/sin A sin @ (IIT; 45)

‘d) Zifferblatt im Ersten Vertikal: In diesem Spezialfal! von (III; 45) ist
A = 0oder A = 7 zu setzen. Man erhilt

tgy = F tgtcos ¢.

Diese Formel ist anzuwenden, wenn die Sonnenuhr an einer genau ostwestlich
orientierten Gebdudewand angebracht werden soll. Das negative Zeichen gilt
fiir eine Siidwand, das positive fiir eine Nordwand.

Die horizontale (unter freiem Himmel aufgestellte) Sonnenuhr hat den
Vorzug, daB sie ihre Dienste leistet, solange die Sonne iiber dem Horizont
steht. Dagegen befindet sich (in nérdlichen Breiten) eine vertikale Sonnenuhr
an der Siidwand eines Gebdudes im Schatten, wenn die Sonne (in den frithen
Morgen- und den spiten Abendstunden des Sommerhalbjahrs) nordlich des
Ersten Vertikals steht. Vertikale Sonnenuhren sollten also immer durch
solche an der gegeniiberliegenden Wand des Gebidudes erginzt werden.

Zur Ermittlung des Azimuts A der Normale der Gebdudewand, an der
eine Sonnenuhr angebracht werden soll, geniigt es, den Augenblick festzu-
halten, in dem die Sonne durch die Ebene der Wand geht, die Beschattung
der Wand also gerade beginnt oder aufhort. Der zu diesem Augenblick ge-
horige Stundenwinkel ¢ der Sonne ist dann in (III; 17) einzusetzen und
i efert das Azimut A’ da Wand. Das Azimut der Normale (also des Zifferblatt-
pols) ist dann durch

A=Aig

gegeben. Man kann auch A direkt bestimmen, indem man den Beginn oder
das Ende der Beschattung einer Hauswand beobachtet, die mit der Ziffer-
blattwand einen rechten Winkel bildet.

Vertikale Sonnenuhren sind an den Erdpolen, horizontale am Aquator
in der oben beschriebenen Form unbrauchbar, da der schattenwerfende Stab
in die Zifferblattfliche fallen wiirde und somit ein Schattenwurf nicht statt-
finden konnte. Man mufl dann zu anderen Zifferblattformen greifen, z. B.
fiir den Aquator zu einem waagerecht liegenden, nach oben gedffneten Halb-
zylinder, dessen nord-siidlich gerichtete Achse der Schattenstab bildet.



IV. KAPITEL

BESTIMMUNG DER POLHOHE DES BEOBACHTUNGSORTS
BEI BEKANNTER ZEIT

3L Beslimmuné der Polhdhe aus Zenitdistanzen

Wenn die Ortszeit, d. h. die Korrektion Au der Arbeitsuhr des Beobachters
bekannt ist, kann man aus der zu einer Sternzeit ® gemessenen Zenitdistanz z
eines Gestirns die Polhohe oder geographische Breite ¢ des Beobachtungsorts
bestimmen. Die erste Grundgleichung (II; 23) des Nautischen Dreiecks hat
die Form

acosg + bsing =c¢ } av;1)

mit a=cosdcost, b=sind, c=cosz (t =06 —a).

Bestimmt man zwei Hilfsgrolen m und n aus

cosmsinn =siné,
cos mcos n = cos 0 cos t, (IV; 2)
sin m = cos d sin ¢,
so kann man statt (IV; 1)
€OS m COS (p — n) = C0S z
schreiben. Daraus folgt die Tangentenformel
,$—N __cOSM—COSZz _  z-m zi—m' .
tg 2 ~ cosm-+tcosz €5 te 2 (IV: 3)

Benutzt man die Losungsmethode nach Anhang C II, so erhélt man mit

__cosdcosf 4 cosz cos § cost—cosz

*= sin & und f = sin &
e 1 —  sind + Vsin?d + cos? d cos®t — cos? z
—_ = 1 = =
tg2 a(li-V +a/3) cos d cost + cosz

oder, wenn man unter der Wurzel sin2d = 1 — cos? ¢ setzt,

e ——— 23
tggz__sméi V/sin® z— cos? 6 sin t (IV; 4)
2 cosd cost -+ cosz
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Sowohl (IV; 3) als auch (IV; 4) lassen erkennen, daB die Rechnung zwei
Ldsungen ¢,, g, fiir die unbekannte Polhohe liefert, von denen natiirlich nur
eine den ortlichen Bedingungen entspricht. Nach (IV; 3) hiingen sie durch
die Beziehung

¢ —n=—(p;,—n) oder et —*2— L

miteinander zusammen. Abb. 30 lehrt die geometrische Bedeutung der dop-
pelten Losung sowie der Hilfsgro8en m und n. Das Zenit Z, dessen Deklination
ja gleich ¢ ist, liegt 1. auf dem Meridian, 2. auf jenem Kreise, dessen Mittel-
punkt der im Stundenwinkel ¢ beobachtete
Stern S und dessen Halbmesser gleich der
beobachteten Zenitdistanz z ist. Diese beiden
Orter haben zwei Schnittpunkte Z, und Z,,
deren Deklinationen die beiden Losungen ¢,,
@, ergeben. Fillt man von S auf den Meridian
das Lot, so ist die Deklination des FuBpunk-
tes Q gleich n, der Abstand SQ = m, denn es
gelten in dem rechtwinkligen Dreieck PSQ die
Formeln (IV; 2) nach Anhang A II (4). ‘

Die giinstigsten Beobachtungsbedingungen
ergeben sich, wenn S im Meridian steht, da
dann der Kreis Z, Z, den Meridian rechtwinklig
schneidet. Uber die richtige der beiden Lésun-
gen kann dann kein Zweifel herrschen, da das
Zenit fiir die eine nérdlich, fiir die -andere
siidlich des Sterns liegt. Steht dagegen S im
Ersten Vertikal, so berithrt der Kreis den
Meridian in Z, und eine sichere Bestimmung

veipla

der Zenitlage ist unmdoglich. Differenziert Abb. 30:
man die erste Gleichung (II; 23), indem man  Polhohenbestimmung aus
{ und § als konstant ansieht, so erhilt man Zenitdistanzen.

(sin @ cos d cost — cos @ sind) dp = sinzdz Zwei Losungen
oder, wenn man die Klammer links durch die zweite Gleichung (II; 23)
umwandelt, nach Division durch sin z cos A

dz

cos A

Iv; 5)

Es' zeigt sich also auch auf diese Weise, daB3 die Polh6henbestimmung aus
Zenitdistanzen im Meridian am genauesten, im Ersten Vertikal dagegen
unmaoglich ist.

32. Zirkummeridianzenitdistanzen

Wihrend des Meridiandurchgangs nehmen die Zenitdistanzen der Gestirne
die Werte (II; 13) an, d. h., es ist in oberer Kulmination

2=+ (p —9),
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je nachdem ‘der Stern den Meridian siidlich oder nérdlich des Zenits
iiberschreitet. In unterer Kulmination ist hingegen

z=n4 (p+0),

wobei, vorausgesetzt, daf die untere Kulmination iiber dem Horizont statt-
findet, das obere Zeichen fiir die nordliche, das untere fiir die siidliche Halb-
kugel der Erde gilt.

Bei bekanntem J kann also auf Grund dieser Formeln die Polh6he aus
gemessenen Meridianzenitdistanzen sehr einfach bestimmt werden. Da aber

im Meridian nach (II; 30) Z—f = 0, dndern sich die Zenitdistanzen vor und

nach der Kulmination nur sehr wenig. Es wird daher, wenn Zenitdistanzen
in der Nihe des Meridians gemessen werden (Zirkumimeridianzenitdistanzen),
nur geringer Korrektionen bediirfen, um sie auf Meridianzenitdistanzen
zuriickzufiihren.

Sei in der Nihe der oberen Kulmination die Zenitdistanz eines Gestirns.
2=+ (p—0 +r, (IV; 6)

so ist  eine kleine GroBe, die positiv sein muB, da ja z im Meridian ein Mini-
mum hat. Setzt man (IV; 6) in (IV; 1) ein, so erhilt man

cos (p — 8 4 x) = cos p cos § cost + sin p sin § =
= cos (¢ — d) — 2 cos ¢ cos § sin? %
Das ist eine Gleichung von der Form
acoszr + bsinz =c, aIv; 7y
mit a = cos (p — 8), b = F sin (p — J),
¢ =cos (p — ) — 2 cos ¢ cos § sin? %
Setzt man also

€os (¢ — ) — cos @ cos d sin? ;

a+c¢ — ;
*= b =+2 sin (p — d)
t
Lo b
5 a—c  _ €os @ cos 0 sin 5
=3 =7 sin(p—¢)

so erhélt man nach Anhang C IV (28) die Reihenentwicklung

r=—f+

112(53-}-3,32(1)_316(,35_'_554“_'_ 1083a2) 4-+-.  (IV; 8
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Nun enthilt & Glieder der nullten und zweiten Ordnung in der kleinen Gréfet,
wihrend 8 von zweiter Ordnung ist. Will man die Reihe bis zur vierten
Ordnung durchfiihren, also Glieder von sechster und hoherer Ordnung ver-
nachléssigen, so geniigt es,

1
1‘=—ﬂ+zﬁ2a

zu setzen und im letzten Gliede fiir @ nur das von ¢ unabhingige Glied zu
verwenden. Es ist dann, wenn man zur Abkiirzung

cos @ cos § R ¢ .ot
= — <, m=2sin?—, n=2sin*_—-
setzt, sin (p —d) 2 2 (IV; 9)

r=4+1ImF Pnctg(p—9).
Es ergibt sich also aus (IV; 6) und (IV;9) ¢ =6 4 (z — x) oder
p=0+z—Im+ Pnctg (p —0) (IV; 10y
fiir obere Kulmination (oberes Zeichen fiir Kulmination siidlich des Zenits).
In der Nihe der unteren Kulmination gilt anstatt (IV; 6)
z=aF (p+06)—uz, (Iv; 11}
wobei wiederum 2 klein und positiv ist, da ja in der unteren Kulmination

die Zenitdistanz ihr Maximum hat. Das obere Zeichen gilt fiir nérdliche, das
untere fiir siidliche Breiten. Setzt man dies in (IV; 1) ein, so ergibt sich

—cos(p+d+ )= 2cos¢pcosécos2-;- —cos (p + 0),

wobei t ~ 7, also cosz—;~ sehr klein ist; Man erhélt wieder eine Gleichung von:
der Form (IV;7) mit

a=—cos(p+9d), b= +sin(p+9J), c= 2cos<pcos¢5coszt§—cos (p + 6)
und somit x aus der Reihenentwicklung (IV; 8) mit

cos (¢ + 8) —cos ¢ cos d cos? L

= sin (9 + 0)
coscpcosécosztf
p=TF2 sin (
@+ 9)

oder, wenn man sich wieder mit den Gliedern bis zur vierten Ordnung
begniigt, _
‘r=4Um +1'*n’ctg(p +96),
,  COsS@cosd

t b4
H —_—— 2 __  — 4 ",
mit l—s. Tk m = 2cos 5 n’ = 2cos 5
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Hieraus und aus (IV; 11) findet man also mit Hilfe von Zirkummeridian-
zenitdistanzen in unterer Kulmination

p=+(n—2)—0F<z
p=1(n—2—0—I'm +1"n ctg(p +9), (IV; 12)

wobei das obere Zeichen fiir nordliche, das untere fiir siidliche Breiten gilt.

Die Formeln (IV; 9) zeigen, daf die Konvergenz der Reihenentwicklung
schlecht wird, wenn ¢ — ¢ klein ist, also der Stern in der Nihe des Zenits
kulminiert. Schlieft man zenitnahe Gestirne aus, so ist die genéherte Formel
(IV; 10) fiir Stundenwinkel bis zu 1 — 11/, Stunden ausreichend ; beschrinkt
man sich auf | | << 30™, so geniigt in der Regel schon das erste Glied. Man
findet die GroBen m, n (aus denen m’, n’ durch Vertauschen von f mit{ — 12"
hervorgehen) in den meisten Tafelwerken zur Geographischen Ortsbestim-
mung oder Nautik als Funktionen des in Zeitmaf} ausgedriickten Stunden-
winkels tabuliert, und zwar in Bogensekunden verwandelt, so daf} sie in den
Formeln (IV;10), (IV;12) unmittelbar verwendet werden koénnen. Die
Faktoren [/, I’ enthalten die unbekannte Polhéhe; es geniigt aber, sie mit
gendherten Werten von ¢ zu berechnen, wie sie in Form der unkorrigierten
Polhohe 6 4 z bzw. 4 (7 — 2z) — d immer zur Verfiigung stehen. Der Fehler,
den diese Annahme in/, !’ hervorruft, wird durch die kleinen Faktoren m, n, . .
meist unter die Schwelle der Rechnungsgenauigkeit herabgedriickt —
wenn nicht, so wird die Wiederholung der Rechnung mit dem aus der ersten
Hypothese gewonnenen ¢ zum Ziele fiihren.

Zur Erhohung der Genauigkeit ist es zweckmiBig, nicht eine einzige
Zenitdistanz des Gestirns zu messen, sondern eine ganze Reihe von Mes-
sungen in der Nidhe der Kulmination auszufiihren. Die oben abgeleiteten
Formeln sind dann sehr bequem, da die GréBen I/, I2 ctg (¢ — 6) usw. fiir alle
diese Beobachtungen konstant sind.

Ist die Deklination des Gestirns verinderlich (Messung von Zirkum-
meridianh6hen der Sonne auf See mit dem Sextanten!), so muf3 man jede
einzelne Beobachtung mit dem ihr zugehérigen 6 reduzieren. Bei einer
grofleren Zahl von Sonnenbeobachtungen in der Nihe des wahren Mittags
kann man sich diese etwas umstindliche Arbeit erleichtern, indem man ¢
nicht vom Meridian, sondern vom Stundenwinkel der grofiten Sonnenhdhe
an rechnet, mit anderen Worten, indem man die Mittagsverbesserung nach
(IT1; 59) beriicksichtigt. Man setzt also statt ¢ die Grofe

t =t —[8,02575] (tg ¢ — tg 6) 48"

oder

i

und kann dann die ganze Rechnung mit derjenigen Deklination der Sonne
-durchfiihren, die dem Zeitpunkt ihrer gréften Hohe entspricht.

Eine weitere Vereinfachung der Reduktion von serienweise beobachteten
Zirkummeridianzenitdistanzen besteht darin, daBl man nicht die einzelnen
Zenitdistanzen, sondern ihr arithmetisches Mittel verwendet. Man hat aber
«dann zu beachten, daB dieser Mittelwert im aligemeinennicht dem Mittelwert der

!
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Beobachtungszeiten bzw. Stundenwinkel entspricht. Das wire nur.dann der
Fall, wenn die Zenitdistanz sich mit der Zeit linear #nderte, eine
Bedingung, die aber gerade in der Umgebung der Kulmination nicht erfiillt
ist. Uber das Verfahren, das Mittel der beobachteten GréBen auf das Mittel
der beobachteten Zeiten zu reduzieren, wird in Anhang E berichtet.

33. Polhihenbestimmung aus Zenitdistanzen polnaher Sterne
Zirkumpolarsterne kann man in beiden Kulminationen beobachten, wenn
die Zeiten der oberen und der unteren Kulmination beide in die Dunkelheit
fallen, oder wenn der Stern so hell ist, daB3 er im Fernrohr des Beobachtungs-
instruments auch am Tage sichtbar ist. Die Zenitdistanzen z, und z, sind
dann, nachdem sie von der Refraktion befreit sind,

Zo=:F(<P—¢5)’ zu=7':F(‘P+6)'

wobei das obere Zeichen fiir nérdliche, das untere fiir siidliche Breiten gilt.
Hierbei ist angenommen, daB3 beide Kulminationen auf der gleichen Seite
vom Zenit erfolgen, andernfalls erhilt z, das umgekehrte Vorzeichen.
Bildet man das arithmetische Mittel der beiden Zenitdistanzen, so ergibt
sich
2+ 2,
2

_ W (2t
_2+q) oder tp-—-i(z 5 )

Diese Methode der Polhohenbestimmung hat den Vorteil, daB die Dekli-
nation des Gestirns (sofern sie konstant ist) nicht bekannt zu sein braucht;
der Nachteil besteht darin, da3 die beiden Beobachtungen zwélf Stunden
auseinanderliegen, und sich in dieser Zeit die meteorologischen Bedin-
gungen (Refraktion!) und die Instrumentalkonstanten geidndert haben
kénnen.

Befindet sich der Stern sehr nahe am Pol (Polarstern!), so wird er sich
im Azimut wéhrend seiner téglichen Bewegung niemals weit vom Meridian
entfernen, falls es sich nicht gerade um Beobachtungsorte in der Nahe der
Erdpole handelt. Die Beobachtungsbedingungen sind also gemaf (IV; 5)
jederzeit giinstig, da in allen Stundenwinkeln |cos A| ~ 1 ist. Die Bewegung
des Polarsterns ist so langsam, daf seine Einstellung auf den Horizontal-
faden des Fernrohrs jederzeit sehr genau vorgenommen werden kann.

Da Messungen der Zenitdistanz des Polarsterns héufig zu exakten Be-
stimmungen der Polhohe herangezogen werden, ist es interessant festzustellen,
in welchem Betrage nicht nur die Fehler der gemessenen Zenitdistanz, sondern
auch die Unsicherheit der Beobachtungszeit © und des Gestirnsorts (e, 6) in
das Ergebnis eingehen. Differenziert man die Grundgleichung (II; 23), erste
Formel, nach allen diesen Groflen, so erhélt man

— sin z dz = (cos @ sin § — sin ¢ cos d cos t) dp +-
+ (sin @ cos 6 — cos @ sin d cos ) d6 — cos @ cos d sint dt,
dt = dO —da.

8 Geogr. Ortsbestimmungen
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Setzt man hierin die aus dem Nautischen Dreieck folgenden Formeln

—cosq;sihd + singpcosdcost =sinzcos 4,

singpcosd —cospsindcost =sinzcosp,
cos psinf =sinzsin p
ein, so ergibt sich, nachdem man den gemeinsamen Faktor sin z heraus-
dividiert hat,
cos Adp =dz + cos pdd — cos §sin p (d6 — da).

Fiir den Polarstern kann man links (au8er fiir sehr hohe nérdliche Breiten)
cos A ~ — 1 setzen. Der Fehler der Deklination hat also im Meridian
(cos p = 4 1) den groBten EinfluB, bleibt aber in der gréften Digression
wirkungslos. Der Uhrfehler d®, der mit dem Fehler der Rektaszension ver-
einigt bleibt, ist wegen des Faktors sin p in der gréBten Digression am wirk-

samsten, doch wird der Betrag dieses Einflusses durch den Faktor cosd
auf etwa den 60. Teil herabgedriickt.

Die Poldistanz @ = g — 0 des Polarsterns ist ein kleiner Winkel (gegen-

wiirtig ist @ << 1°); man kann diese Tatsache benutzen, um die Polhohe des
Beobachtungsorts in eine nach Potenzen von & fortschreitende Reihe zu
entwickeln, deren Koeffizienten von der gemessenen Zeitdistanz z und dem
Stundenwinkel # des Polarsterns abhéingen. Man setze

T
(P=§—'(Z+I').'

wobei x offenbar eine kleine GroBe von der Ordnung & ist. Die erste Glei-
chung (IT; 23) nimmt dann die Form

€0S z = COS @ c0S (z + x) + sin & sin (z + x) cos
an oder, wenn man die Ausdriicke sin (z 4+ x), cos (z + z) auflést und ordnet,
acosx +bsinz =c,
mit
a =sin z sin @ cost + cos z cos @ ,
b =coszsin @ cost — sinz cos @,

C =C0sz.

Nach Anhang C-IV (28) fiihrt dies also auf die Entwicklung
1 1
z=—f+5(F + 3 a)— g5 (°+ 5 ' + 1030 +

L
448

(IV; 13)

+— (87 + 7 fla 4 21 f8a® + 35 f4a’) —---,
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mit o sin zsin @ cost 4 cos z(1 4 cos @)
~ coszsin @ cost—sin zcos @

sin zsin @ cost—cos z (1 —cos @)

b= cos zsin @ cost —sin z cos @
Man kiirze diese Briiche durch sin z coszf . Da
cos @ &  sino »
20— —tg? o, - =2tg -,
cos? 2 2 cos? 2
2 2
14 cosa 1—cos @ »
HCO® _y, 0 _og2,
)
cos? — cos? —
2

so folgt, wenn man zur Abkiirzung

tg%=y, ctgz=p, tgchst:m. ctgzcostf=n
setzt,
— l+my _  2p 14 my
a__2pl—y2—2ny__1——y2' 2y
1— n
I l_yz
B——2py -y _2yp m—y
1—y*—2ny 1—y 2y
l-—l__yzn
oder, da
_e® 2 s T~ B
y=1tg5, l_yz—tgw, i = oy secd,

~

d=—2pc052%sec6<l-[—mtg%)(l-i—ntg&)—i—nztg?&}+--

ﬂ=—Dtg5(m—tgg)(l+ntgc7>+n=tg25+---).

Fiihrt man nun die Reihenentwicklungen

» @? ~ w?
cos—2—=1—-T—|—-o-,secw_l+—2—+ ,
t ~_~+E+... t_&'_)__&:)_+c7)3+.”

go=0T3 » 83 =37

99
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ein, so gelingt es leicht, @, § und damit auch z in eine nach Potenzen von &
fortschreitende Reihe zu entwickeln. Beschrinkt man sich auf Glieder bis
zur vierten Ordnung, was auch fiir genaueste Rechnung mehr als ausreichend
ist, und beriicksichtigt man, daB & von der nullten, g von der ersten Ordnung
in @ ist, so bleiben von der Reihe (IV; 13) die Glieder

1 1 1 1 5
r=—f+ Zﬁ2a+1—2‘83_§ﬁ3a2—1_6ﬂ4a + aﬂ;aa...

zu berechnen iibrig, wobei g bis zur vierten, ¢ bis hochstens zur zweiten
Ordnung zu entwickeln ist. Eine elementare, wenn auch etwas umsténdliche
Rechnung ergibt sodann die auch in den Lehrbiichern (z. B. in der ,,Sphéri-
schen Astronomie‘* von BRuNNow) angegebene Entwicklung

m2 3

T e eost— O i B° ostsin—
=7 ¢ —z= w cost o) sin®f ctg z 4 3 costsin®t
mi
—;0—4sin’lctgz(5sin2t—4cos”t—l—3sin’tctgzz)+---
und somit
(p=%— —® cosf—%sin”tctgz—i—“- , (IVv; 14)

wobei & vor der Klammer in Winkelma$, in der Klammer aber in Bogenma8
zu verstehen ist. In der Praxis wird man selten mehr als die in (IV; 14) auf-
gefiihrten Glieder benétigen. Die erste Nidherung

k14 ~
@ = ~—2z— w cost

2
liefert die Polhohe schon auf die Bogenminute genau, wihrend die Beriicksich-
tigung des nichsten Gliedes bereits Bruchteile der Bogensekunde garantiert.

Eine sehr einfache geschlossene Losung desselben Problems ergibt sich
auf folgende Weise: In Abb. 31 sei S der Polarstern und SQ der auf dem
Meridian PZ senkrecht stehende Bogen, der das Nautische Dreieck in zwei
rechtwinklige Dreiecke zerlegt. Man setze wieder die Poldistanz des Polar-

sterns PS = % — 3= @, ferner das Komplement der geographischen

Breite PZ = % — @ = und die beiden Meridianabschnitte PQ = p und
QZ = ¢. Dann ist (vgl. Anhang A II (6), zweite Formel)
tgp =tg @cost,

tgq =tgzcos(w — A), (IV; 15)

r— —

y=p+9.
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Diese Gleichungen enthalten die vollstindige Losung, ¢ = g— ¥, nach-

dem man den immer sehr kleinen Winkel # — A aus PZS nach dem Sinussatz
sin (m — A) = s.mt sin @
sin 2

bestimmt hat.

Eine dritte Losung, die wieder auf Reihenentwicklungen beruht, wurde
von P. Harzer gefunden. Sie ist bisher nicht verdffentlicht worden, ver-
dient es aber, ihrer mathematischen Eleganz wegen,
der Vergessenheit entrissen zu werden. Im Drei-
eck PZS (Abb. 31) gelten die Grundgleichungen

sin z sin (x — A) = sin @sint,

sin z cos (r — A) = cos @ sin p —

—sin @ cos p cost.

Multipliziert man die erste mit der imaginiren
Einheit / und addiert sie zur zweiten, und setzt
man

cos (mr— A) + isin (m— A) = e("-4),
it ~it W p—it
COSI=£, isin[:eTe’

2

z

so ergibt sich

i Abb. 31:
sin ze¥(*~4) = cos @ sin y — Polhéhenbestimmung
1 ‘ 1 aus Zenitdistanzen des
—3 sin @ cos p (¢it + %) + 5 sin @ (ef — e~¥4) Polarsterns

oder, wenn man die Glieder mit e, e~% sammelt und die Identititen

14cosy o 1—cosy
g =0sto. —a—

: o ¥
= sin? -
)
benutzt,
sinze*(*~4) = cos @ siny + sin @ (e"‘sin2 %’——e-“cos2 %)

. o . 0 N R Y S ) v
= siny | cos? - —sin?— | 4 2sin — cos — [ e*sin? = — e—¥ cos2 X
"’( 2 2>+ 2 %3 )

. @ @ @ ; @ ;
= smtpcoszf(l—tng + tgftg%e“—tg—z—ctg%e“‘)°
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Setzt man in dieser Gleichung
r=tg2ag?, g-1g2eg?,
so kann man sie auch in der Form
sin zet A)—sm¢c0s2 (1—fe% (1 + ge't)
schreiben. Durch Logarithmieren ergibt sich
Insinz +i(z—A) = ln (smy; cos? ) +In(1—fe=*) + In(1 4 ge*).

Da f und g fiir nicht zu hohe Breiten klein von der Ordnung & sind, lassen
sich die beiden letzten Logarithmen rechts in rasch konvergierende Reihen
verwandeln, und man erhélt

Insinz 4+ i(m— A)._ln<sm1,oc0s2 ) fe—it— fze""“—%f"e‘“‘—

. 1 . 1 .
I geu 3 g2e2zt I 3 gaeau
oder, wenn man wieder ettt — cost 4 isint einfiihrt,

Insinz + ¢ (n——A)—ln(smzpcos’*’ )—(f g)cost——(f’+gz)cos2t—

+i[(f+y) sint+é~(f2— 2)sin 2¢ 4 - --

Die Gleichsetzung der reellen und imaginéren Teile beider Seiten fiihrt auf
zwei Beziehungen:

In sin o =lnsinz—2lncos§ + (f—g) cost + —;--, (f2+ g*)cos2t + -,
av; 16)
= (f+ g)sint—}—%(f —¢%)sin2f 4+ — (f3+g3)sm3t—|- - (1IV; 17)

Formel (IV; 16) ergibt die Polhohe ¢ =—72£——1p aus dem Cosinus, sie ist

also fiir kleine Breiten ungeeignet. Das ist aber kein groBer Nachteil, da
in diesen Gegenden der Polarstern in geringer Hohe iiber dem Horizont
steht und Messungen seiner Zenitdistanz ungenau sind (Refraktion!). Als
Nebenprodukt erhilt man A aus (IV; 17). Bei (IV; 16) hat man darauf zu
achten, daB die Cosinusreihe rechts mit dem Modul M = 0,43429 zu multi-
plizieren ist, wenn man Bricasche Logarithmen verwendet. Formel (IV; 17)
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liefert # — A in BogenmaB, ist also mit 206265 zu multiplizieren, wenn man
das Ergebnis in Bogensekunden haben will.

Ein Nachteil dieser hiibschen Methode besteht darin, daB die HilfsgroBen f
und g die unbekannte Polhdhe enthalten. Da sie aber mit dem kleinen

Faktor tg% behaftet sind, ist es ausreichend, fiir ¢ den immer verfiigbharen

Néherungswert z 4 @ cost zu benutzen.

34. Polhhenbestimmung durch Beobachtung zweier Sterne in gleicher Zenitdistanz.
Methode von HORREBOW-TALCOTT

In den Abschnitten 22 und 23 wurde gezeigt, wie man bei bekannter Pol-
hohe die Ortszeit aus korrespondierenden Zenitdistanzen zweier Sterne be,
stimmen kann. Diese Methoden zeichnen sich durch groBle Genauigkeit aus-
da sie von den Fehlern der Kreisablesung und der Refraktion frei sind. Ganz
entsprechende Methoden fiihren auch zur Bestimmung der Polhéhe bei be-
kanntem Uhrstand, wenn man zwei Sterne bei ihrem Durchgang durch den
gleichen Almukantarat beobachtet.

Angenommen, zwei Sterne («;, 6;) und (c,, d,) haben zu den kurz aufein-
anderfolgenden Sternzeiten ©,, @, die Stundenwinkel t,= 6, —a,;, t, =0, —a,
und die gemeinsame Zenitdistanz z. Dann ist nach (II;23)

cos z = sin ¢ sin §; + cos @ cos §, cos t,,
cos z = sin @ sin d, -+ cos @ cos d, cost, .
Durch Gleichsetzung der rechten Seiten folgt

__ €05 0y COSt; — COS §p COS By
sin d, —sin 6,

tge
Setzt man wie in (III; 13)
ty=t—Aty=t+216,=0—¢ 6,=0+¢

(IV; 18)

so ergibt sich aus (IV; 18) nach kurzer Rechnung die etwas bequemere
Formel
tgp =tgdcostcos A+ ctgesintsin 4.

Zur Ableitung der giinstigsten Beobachtungsbedingungen benutzen
wir die Differentialformel (IV;5), nach der fiir fehlerfreie Sternorter und
Zeiten

dp cos A, =dz; =dz 4 df;,
dp cos Ay = dz, = dz + df,
gilt, wenn dz der bei dieser Methode zu eliminierende Fehler der Zenit-

distanz ist und df;, df, die Einstellungsfehler auf den Horizontalfaden des
Fernrohrs bedeuten. Nach Subtraktion beider Gleichungen ergibt sich

_ _ df—df,
dp = cos A; —cos A,

1
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Der EinfluB der Beobachtungsfehler erreicht also sein Minimum, wenn der
Nenner moglichst groB, also A; = 0, A, = mist. Die beiden Sterne sind daher
nach Méglichkeit im Meridian nordlich und siidlich des Zenits zu beobachten.
Ist ¢ der mittlere Einstellungsfehler, so ergibt sich in diesem giinstigsten

Falle als mittlerer Fehler der Polhdhe ¢, = Vii (Anhang D IV).

Es leuchtet ein, daB es nahezu unmdglich ist, Sternpaare zu finden, die
fiir einen gegebenen Beobachtungsort genau in der gleichen Zenitdistanz
nérdlich und siidlich des Zenits kulminieren. Man wird also in der Praxis zu-
frieden sein, wenn bei fester Hoheneinstellung des Fernrohrs beide Sterne
wihrend ihrer Kulmination im Gesichtsfeld erscheinen. Die Unterschiede der
Meridianzenitdistanzen lassen sich dann mit Hilfe eines beweglichen horizon-
talen Mikrometerfadens, oder wenn nur ein fester Faden vorhanden ist,
mit Feinbewegung und Libelle bestimmen. Sind also die beiden Meridian-
zenitdistanzen

5 =¢—0 (Kulmination siidlich des Zenits),
2=0,— ¢ (Kulmination noérdlich des Zenits),
so erhilt man durch Subtraktion

‘p=21:22+61‘*2'52

.wobei die Differenz der Zenitdistanzen mittels Mikrometermessung oder
Libelle oder durch beides bestimmt wird. Dieses an Genauigkeit und Ein-
fachheit uniibertreffliche Verfahren ist als Methode von HorreBow und
TavrcotT bekannt. Man benutzt, obwohl die GréBenordnung der Zenitdistanz
an sich gleichgiiltig ist, zweckméfig zenitnahe Sterne, um Fehlerquellen, die
von Anomalien der Refraktion herriihren konnten, nach Moglichkeit aus-
zuschalten.

Die HorreBow-TaLcorr-Methode hat zur Erforschung der #uBerst
geringen zeitlichen Schwankungen der Polhéhe gedient, von denen im
Abschnitt 5 die Rede war.

35. Bestimmung der Polhéhe aus Azimutmessungen

Um die Polhihe bei bekannter Ortszeit aus einer einzigen Azimutmessung
eines Gestirns zu bestimmen, benutzen wir die Gleichung (III; 18) in der
Form

cos @ sin § sin A — sin ¢ cos d sin A cosf = — cosdcos Asint. (IV;19)
Sie hat die Gestalt acos ¢ + bsin ¢ =c¢ mit

a=sindsin A, b =—cosdsin A cost, ¢ = — cosdcos Asint
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und fiihrt somit nach Anhang C IT auf die Losung

w? =2 (11 ViTap)

mit
__cosdcos Asint—sin dsin A
- cos dsin A cost '
__ cosdcos Asint - sindsin A
p=— cos dsin A cost
d. h. auf

e ? cosdsin A cost 4 V/cos?d sin?A cos?t — (cos®d cos?A sin?{ —sin2d sin?A)
€9 = cos & cos A sin ¢ —sin d sin A

oder, wenn man im ersten Gliede unter der Wurzel cos?d = 1 — sin? 6 und
cos2t = 1 — sin?¢ setzt,

@ _ cosdsinAcost + Vsin®4 —sintcos?d .
ey = cos d cos A sinf —sin d sin A (Iv; 20)

Dieser rechnerisch umstéindlichen algebraischen
Losung ist folgende geometrische Methode iiber-
legen: Man fille (Abb. 32) vom Sternort S das Lot
SQ =m auf den Meridian PZ. Der FuBpunkt Q
habe die Poldistanz n. Dann ist ZQ = ¢ + n — %
und im rechtwinkligen Dreieck SQZ bestehen -die
Beziehungen [Anhang A II (4)]

s.mzsmA =sin m, } (IV; 21)
sinzcos A = — cos mcos (¢ + n).
Hieraus -folgt Abb. 32:
cos(p+n)=—ctgAtgm Polhdhenbestimmung

aus Azimuten
und somit die Tangentenformel

¢p+n_1—cos(¢_—_{—i)__sin(A+m)‘ .
tg? 5 =TT coslpn) — sm(d—m) av; 22)

Die HilfsgroBlen m, n folgen aus den Beziehungen [Anhang A II (4)] des recht-
winkligen Dreiecks PQS:

cosmcosn =sin g,
cosmsinn = cos d cost, (IV;23)
sinm=cosdsint.
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Die Formeln (IV; 20) und (IV; 22) zeigen, daB es zwei Losungen ¢ gibt,
die den Gleichungen geniigen. Thre geometrische Bedeutung geht aus Abb. 33
hervor. Die Gleichungen (IV; 23) gelten némlich auch fiir das Dreieck SQZ’,

das dem Dreieck SQZ kongruent ist. Z’ hat die Poldistanz ¢ + 2n — g Da

nun aber, wenn wir die zweite Losung mit ¢’ bezeichnen, wegen (IV; 22)
¢ +n=—(p+n), also ¢’ = — (p + 2n) ist, so hat das Zenit Z” der

zweiten Losung die Poldistanz g + ¢ +2n,s0

daB Z’ und Z” sich um z = 180° voneinander
unterscheiden. Z’ ist ,also das Nadir eines Ortes
auf der geographischen Breite ¢'. Ist demnach Z
das Zenit der ersten Losung, so stellt Z* das Nadir
der zweiten Losung dar.

Um den EinfluB} eines Azimutfehlers auf das
Ergebnis zu priifen, differenzieren wir (IV; 19)
nach A und ¢ und erhalten

sin A de (sin é sin @ + cos d cos d cos t) =
=dA [cos A (cos @ sin § — sin ¢ cos § cos ) —
— sin A cos § sin ]

Abb. 33: oder, wenn wir die Gleichungen (II;23) beriick-
Polhéhenbestimmung sichtigen,
aus Azimuten. tgz df
. " . —_a . .9
Zweite Losung do oA S cosz (IV; 24)

Hier bedeutet df = sin zdA den Einstellfehler des Sterns auf den Vertikal-
faden des Gesichtsfeldes. Es zeigt sich, daf3 die giinstigsten Beobachtungs-
bedingungen vorliegen, wenn der Stern im Ersten Vertikal steht, wiahrend im
Meridian die Polhéhenbestimmung aus Azimuten unméglich ist. Ferner ist
es vorteilhaft, kleine Zenitdistanzen zu wéhlen.

36. Polhéhenbestimmung aus Durchgiingen zweier Sterne’ durch den gleichen Vertikal

Beobachtet man die Durchgénge zweier Sterne durch den gleichen Ver-
tikal, so 148t sich das Azimut A des Vertikals eliminieren. Die Bestimmung
der Polhohe ist dann von den Fehlern des Azimutkreises frei, und ihre Ge-
nauigkeit héingt nur von der Zuverlissigkeit der beiden beobachteten Durch-
gangszeiten ab.

Wendet man (III; 17) auf die beiden Sternérter (e, é;) und (e, J,) an, die
den gegebenen Vertikal (4, A + x) zu den Zeiten ©,, ®, bzw. in den Stunden-
winkeln ¢,, f, iiberschreiten, so ergibt der Vergleich der rechten Seiten

cos &, sin { (cos d, sin ¢ cos f, — sin §, cos p) =
= ¢0s d, sin #y (cos d; sin @ cos t; — sin d; cos @)
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oder
tg 4, sint, —tg d, sin t1
sin (12 —tl)

tgp = (IV; 25)

Zur Untersuchung der Fehlereinfliisse benutzen wir (IV; 24), wobei wir
die Azimutfehler d4, (i = 1,2) der beiden Beobachtungen in die Bestandteile

dA;—=dA + smfz, "(IV; 26)

zerlegen, d. h.-in den hier zu elimiﬁierenden Ablesefehler dA des Azimut-
kreises und den Einstellfehler df; auf den Faden. Es ist sodann

sin A, cos z, dp = — sin z; dA — df;,

sin A, cos z,dp = — sinz, dA — df,.
Hierbei ist sin A, = 4 sin A;, je nachdem die zweite Beobachtung auf

der gleichen oder der entgegengesetzten Seite vom Zenit gemacht wurde.
Eliminiert man dA4, so erhilt man

__dfysinzy —dfysinz,
" sin A;sinq(z, F z;)

Ist & der mittlere Fehler der Fadeneinstellungen, &, der mittlere Fehler der
Polhéhe, so folgt nach Anhang D IV

s __ g Sin*z 4sin®z
sin? A, sin® (z, F z;)

(IV; 27)

Ep =

Hieraus ergibt sich, daf3 die Sterne am vorteilhaftesten im Ersten Vertikal
beobachtet werden (sin? A = 1). Befinden sich die Sterne auf der gleichen
Seite vom Zenit, so sollten sie moglichst verschiedene Zenitdistanzen
haben [sin (z, — 2,) = 1]. Das praktisch unerreichbare Optimum wiirde
eintreten, wenn der eine Stern im Zenit, der andere im Horizont (Ost- oder
Westpunkt) beobachtet wiirde. Es wire dann ¢, = e. Finden die beiden
Vertikaldurchgénge auf verschiedenen Seiten des Zenits statt, so tritt das
sin? z1 + sin? %2y
n?(z + z, )
ein, wenn z,=2z,. Es wird dann ¢, = —,_-—s—, und es erweist sich somit
V2cosz
als zweckméBig, moglichst zenitnahe Sterne zu wihlen. Die Beobachtung auf
verschiedenen Seiten vom Zenit (Ost- und Weststern) ist also aus mehr als
einem Grunde vorzuziehen — der optimale Fehler ist kleinér, und die Beob-
achtung kann in kleinen .und gleichen Zenitdistanzen erfolgen (bessere
Bildbeschaffenheit der Sterne, kleine Refraktion, gleiche Beobachtungs-
bedingungen fiir beide Sterne).

Minimum der symmetrischen Funktion bei vorgegebenem z,
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Wie bei Zeitbestimmungen aus Vertikaldurchgéingen von Sternpaaren
(Abschnitt 26, Abb. 24) kann auch bei der oben beschriebenen Methode der
Polhéhenbestimmung das Harzersche Fadendreieck benutzt werden. Es ist
nur in diesem Falle das andere (nord-siidlich gerichtete) Paar von Querstan-
gen zum Aufhingen des Fadens zu benutzen, damit die Ebene des Dreiecks
moglichst der Ebene des Ersten Vertikals benachbart ist.

Eine Variante der Methode der Polhdhenbestimmung im gleichen Vertikal
erhilt man, wenn man zusétzlich fordert, daBl die Durchginge gleichzeitig
erfolgen sollen. Man kann dann, wenn @ die gemeinsame Sternzeit des Ver-
tikaldurchgangs ist, die Formeln (III; 33), (III; 34) benutzen, indem man
zunéchst i, §3 nach (II1; 34) berechnet und dann ¢ aus der dritten Gleichung
(IIT; 33) bestimmt. Praktisch 148t sich diese Methode mit jedem Universal-
instrument durchfiihren, wenn man als ersten Stern (S,) einen solchen wihlt,
der nicht weit vom Zenit in grofBter Digression steht. S; soll also ein Stern
sein, fiir den | d | wenig groBer als | ¢ | ist. Nach (II; 37) findet die groBte
Digression eines solchen Sternes in der Nachbarschaft des Ersten Vertikals
statt, und da der Stern ldngere Zeit hindurch sein Azimut nicht wesentlich
dndert, hat man Zeit (dhnlich wie bei Zeitbestimmungen im Vertikal des
Polarsterns), zwischen zwei Beobachtungen von S, eine von S, einzuschieben,
und man darf dann die Beobachtungszeit von S, auch S, zuschreiben.

Auch die Harzersche Fadenmethode 148t sich hierbei anwenden, wenn
man das einfache Fadenlot benutzt, dessen Gewicht man zur Abddmpfung
von Schwingungen in ein Gefd mit Wasser hingen 148t. Man beobachtet
dann das gleichzeitige Verschwinden der beiden Sterne hinter dem Faden.
In diesem Falle miissen natiirlich beide Sterne dasselbe Azimut haben,
also auf der gleichen Seite vom Zenit stehen. ZweckmiBigerweise wihlt
man S; in der Nihe seiner grofiten Digression in kleiner Zenitdistanz, S,
unterhalb von S, in groBer Zenitdistanz.

37. Polhshenbestimmung aus den zeitlichen Anderungen
der Zenitdistanz oder des Azimuts

Aus den Formeln (II; 30) geht hervor, daB die zeitlichen Anderungen der
Zenitdistanz und ‘des Azimuts der Gestirne im Ersten Vertikal (cos 4 = 0,
sin A = + 1) die Werte

dz _ +- cos a4 = sin
at = =% g ?

annehmen, also unabhﬁngig von der Deklination bzw. der Zenitdistanz sind.
Das positive Zeichen von ‘% gilt fiir den westlichen Durchgang.
Aus diesem merkwiirdigen Satz folgt eine hiibsche Methode der Polhhen-

bestimmung: Entwickelt man némlich die Zenitdistanz in der Umgebung des
Durchgangs durch den Ersten Vertikal in eine TayLorsche Reihe, so erhilt
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man fiir zwei Stundenwinkel £, t2

dz, dzzo o1 d3z°
zl_'zo—*_‘rl dt + 2 dtz -1—? +
dz, dzzo 1 d“’z0
=2 + Te 5, dt + dtz + 6 dta +

Hierbei seien z,, to,% ..., Zenitdistanz, Stundenwinkel und Ableitungen

der Zenitdistanz im Ersten Vertikal, und es werde 7, =, —{,, 7, =13, — 1,
gesetzt. Die Differenz beider Gleichungen lautet dann

dz 1 d? d&
a—n=E@—n) 0 4 @~ TR p - R+

Da nun im Ersten Vertikal

d2 d3 _ .
Tom toosp, TH=0, TH=TFeospuintp, -,

wie man aus (II; 30) und (II; 32) herleitet, so ergibt sich

cos ¢ = +- :2—? + %cos:psin’tp(rf + e+ 72)+..., (IV; 28)
27— 4

‘wobei wieder das positive Zeichen fiir einen Weststern gilt. In erster Ndherung

ist also wegen 7, — 7, =1, —1;

2, —2,

2 1, IvV; 29
=y ( )

cosp = +

Sofern die Beobachtungen in unmittelbarer N#éhe des Ersten Vertikals
stattfinden und die Zeitdifferenz nicht iibermé#Big groB ist, reicht diese Néhe-
rung aus. Andernfalls kann man die Korrektion

—I—%coscpsinch(t% + 1,72+ 72)
und, wenn noétig, auch hohere Glieder hinzufiigen. Das zur Berechnung dieser
Korrektionsglieder erforderliche ¢ entnimmt man der ersten Niherung.
Die GroBen 7y, 7, enthalten den Stundenwinkel im Ersten Vertikal, der
{ebenfalls mit dem genéherten ¢) aus (II; 18) zu berechnen ist.

Diese Methode eignet sich am besten fiir hohe Breiten. Esist zu beachten,
daB3 die Differenz z, — z,, die man vorteilhaft bei unversinderter Hohen-
einstellung des Fernrohrs mit dem horizontalen Mikrometerfaden miBt,
wegen der differentiellen Refraktion korrigiert werden mufl. Da jede gemessene
Zenitdistanz um die Refraktion r(z) verkleinert erscheint, ist statt (IV;29)

2p—2  Ip—I
cos ¢ = 1 .
P=*i 5 T,
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Zur Berechnung des Zusatzgliedes geniigt es, den Differenzenquotienten
durch den Differentialquotienten zu ersetzen. Man erhilt

ar_dz dr
dt — dt "dz’
also dr
cos @ = +E—_tl<l+a)

wobei Z—:aus Anhang F IV zu entnehmen ist. Diese Tafel gibt die differentielle
Refraktion fiir mittlere atmosphérische Verhiltnisse (+ 10° C, 760 mm Hg),
was bei nicht zu groflen Zenitdistanzen immer ausreicht.

Die entsprechende Methode der Polhéhenbestimmung aus Azimut-
differenzen erscheint zunichst weniger brauchbar, da ja die zweite Ableitung

des Azimuts im Ersten Vertikal nicht verschwindet. Es ist fiir A, =+ —;—

2
%:sintp, ‘Z—;:": F cos @ sin ¢ ctg zy = —sin g ctgt, .

Der Ausdruck fiir die dntte Ableitung wird bereits recht kompliziert. Man kann
aber die Formel

Az -_— 141
L—14

T+ T

sin ¢ = + 5 singctgty 4 -+

mit Vorteil bei kleinen Breiten benutzen, wo (IV; 28) versagt. Wenn man
Sterne kleiner Deklination nimmt, fiir die im Ersten Vertikal nach (II; 18)
etg t, klein ist, und dafiir sorgt, da3 die Beobachtungszeiten moglichst
symmetrisch zur Durchgangszeit durch den Ersten Vertikal liegen, wird auch.
hier schon das zweite Glied hinreichend Kklein.



V. KAPITEL

GLEICHZEITIGE BESTIMMUNG VON ORTSZEIT
UND POLHOHE AUS KOMBINIERTEN BEOBACHTUNGEN

38. Das Zweihéhenproblem. Lésung von KRAFFT-HARZER

Bei den bisher beschriebenen Methoden der Ortsbestimmung haben wir
stets angenommen, daB eine der beiden GréBen ¢ und Au bekannt sei. In
diesem Kapitel sollen diejenigen Methoden beschrieben werden, die eine
vollstindige - Ortsbestimmung vermitteln, in denen also sowohl die geo-
graphische Breite als auch die Ortszeit (deren Kenntnis ja nach den Er-
gebnissen des Abschnitts 10 die wesentliche Voraussetzung fiir die Bestim-
mung der geographischen Linge bildet) als Unbekannte auftreten.

Die Aufgabe, Ortszeit und Polhthe aus zwei gemessenen Zenitdistanzen
abzuleiten, wird als Zweihéhenproblem oder auch als das Douwessche Problem
bezeichnet. Der holldndische Seefahrer Douwes (18. Jahrh.) hat eine fiir den
Gebrauch auf See besonders zugeschnittene Losung dieser Aufgabe ange-
geben, die eine genéherte Kenntnis der beiden Unbekannten zur Voraus-
setzung hat. Ehe wir auf dieses und auf andere in der Nautik verwendete
spezielle Verfahren eingehen, soll das Problem allgemein und ohne besondere
Voraussetzungen gelost werden.

Eine sehr brauchbare und wenig bekannte Losung des Zweihéhenpro-
blems ist von W. L. Krarrr (St. Petersburg 1799) gefunden worden.ly
P. Harzer hat sie auf folgende besonders einfache und elegante Form ge-
bracht: Es seien die Zenitdistanzen z,, z, der Sterne S, (¢, 6;), S, (g, 8,) ZU
den Uhrzeiten u,, u, gemessen worden. Die zugehorigen Stundenwinkel seien

tl=t—;»=H1+Au—al,

Lh=t4+A=u,+ du — a,;
es ist also

t

_wntu ot
=—35 g T4

Ui ep—0

Z_2 2

1) Essai sur la méthode de trouver la latitude sur mer de l’altitude de deux
étoiles. Nova Acta Academiae Petropolitanae, Tome XIII, 1802,
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und somit A bekannt, wihrend ¢ (das du enthilt) neben ¢ als Unbekannte
auftritt. Fiir die beiden Beobachtungen gilt dann nach (II; 23)
cos z; = sin @ sin é; + cos ¢ cos &, (cos/ cos A + sintsin 3), | V: 1)
cos 2, = sin @ sin dy + cos @ cos J, (cos t cos A — sin ¢ sin 4) . ] '

Setzt man nun
T = cos ¢ cost,

y = cos psint,
z =sing,
so bestimmen sich 2, y, z und damit ¢,  aus den drei Gleichungen

€os z; = x cos d, cos A + y cos &, sin 4 + zsin §;,
€0S 2 = I €08 §, cos A — Y cos J, sin 4 4 zsin 6,, } (V:2)

1 =2%4 y? 4 22.

Damit ist die Losung der Aufgabe in wenigen Strichen skizziert, und es
eriibrigt sich fast, sie explizit hinzuschreiben. Eliminiert man aus den ersten
beiden Gleichungen (V;2) y bzw. z, so erhilt man

r=c—az y=d—>bz

mit __ sin(6; 4 dy) b sin (6, — 6,)
" 2co0sd, cosdycosd’ " 2c0sd, cos O, sin A’ Vs 3)
1 cos z n CoS 2, ) _ 1 feoszy cosz) ;
€= 2cos7 \cosé, cosd, /°  2sind \cosd, cosd,/ |

Setzt man (V; 3) in die letzte Gleichung (V; 2) ein, so erhilt man fiir z die
quadratische Gleichung

(c—az)?4+(d—0b2)2+22=1

oder
22—2Az=RB,
mit
A= ac+ bd B_l—(c’—{—d’l
14+a®+ b’ T 14a*+ b2
und den Losungen
z=A+ VA*+ B.

Die Notwendigkeit zweier Losungen folgt geometrisch aus Abb. 34. Das
Dreieck PS,S, ist seiner Gestalt nach durch die beiden Poldistanzen und durch
den Winkel S;PS, = 2 4 gegeben; zu seiner Fixierung an der Sphére fehlt
nur die Angabe der Lage des Zenits in bezug auf das Dreieck. Nun liegt das
Zenit 1. auf dem Kreise um S; mit z;, 2. auf dem Kreise um S, mit z,; es sind
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also zwei Zenitlagen Z und Z’ moglich, die den beiden Schnittpunkten dieser
Kreise entsprechen. Gleichzeitig erkennt man, dall die Losung am ge-
nauesten, d. h. am wenigsten durch.Beobachtungsfehler beeinfluB3bar ist,
wenn die beiden Kreise sich rechtwinklig schneiden. In diesem Falle schneiden
sich auch die Vertikale der beiden Sternérter rechtwinklig. Im iibrigen spielt
dabei das Azimut der Vertikale und die Zenitdistanz der beiden Sterne keine
Rolle.

Zu den gleichen Ergebnissen gelangt man natiirlich auch auf Grund von
Differentialbetrachtungen. Differenziert man die Grundglelchungen Vi 1)
nach z;, &, ¢, wobei man dt, = df, =ddu P
setzen kann, so erhiilt man (i =1, 2)

sin z.~dz.- =
= (— cos @ sin §; -} sin ¢ cos §; cos ;) dp +
~+ cos @ cos §;sint; dAu,

und wenn man (II; 23) beriicksichtigt und
durch sin z; kiirzt,

cos A, dp + sin 4, cos pdAu =dz,,

| Jovio
_cos Agdep -+ sin A, cos pd du =dz,.

Hieraus bestimmt man

sin A,dz, —sin A,dz, ;

d¢= sin (Az——Al) ’ V
cosoddu = cos Aldzz——cos A,dz (V39) Abb. 34:Z Zw.e%fihenproblem.
2 T sin(4,—4,) wei Liosungen

Ist also ¢ der mittlere Fehler der Zenitdistanzmessungen, so ergeben sich
die mittleren Fehler der Polhohe und des Uhrstandes nach Anhang D IV aus
408 4, + cos? 4,

sin2 (A, — 4,)

2 __ g Sin?A; 4sin? A, .
e, =¢ sni(A,—A4;) cos cpsd.._

Da Sternzeit und Polhéhe die Koordinaten des Zenits sind, so wird die
giinstigste Losung des Ortsbestimmungsproblems erreicht, wenn das durch
die berechneten GroBen du, ¢ gegebene Zenit von dem wirklichen einen
moglichst kleinen Abstand hat. In Abb. 35 sei Z das wahre, Z’ das errechnete
Zenit, do die Entfernung dieser beiden Punkte. Fillt man von Z’ auf den
Meridian PZ das Lot Z’Q, so kann man das sehr kleine rechtwinklige Dreieck
QZZ’ als eben ansehen, und es ist, da die Katheten Z'Q =cosgdduy,
Z() = dp sind, '

(do)? = (dp)? + cos? g (dAu)?

9 Geogr. Ortsbestimmungen
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und somit der mittlere Zenitfehler

e V2

— Vel 2 el — .
&g = Ve,+cos Qe = [ (4, — 4y

Der mittlere Zenitfehler ist also am kleinsten, wenn
A=A, + g d. b, wenn sich die beiden Vertikale

rechtwinklig schneiden. Im iibrigen ist &, weder von
7 dtcospl @ A; noch von den Zenitdistanzen der beiden Sterne
d abhingig.
P
do
39. Das Zweihhenproblem nach GAUSS

Z
Abb. 35: Von C.F. Gauss?!) stammt folgende Losung des
A Zweihthenproblems, die wesentlich komplizierter, aber
Zenitpunktfehler

fiir logarithmische Rechnung bequemer als die im
vorigen Abschnitt beschriebene algebraische Methode
ist. In Abb. 36 seien S, und S, die beiden Sternoérter, D ihre Distanz,
A =t, —t; = us— u, die Differenz der Stundenwinkel, 4 = A4, — A, die
Differenz der Azimute, p;, p, die parallaktischen Winkel, s;, s, die bei-
den Winkel, die der grofite Kreis S,S, mit den beiden Stundenkreisen PS;,
PS, bildet. Auf Grund der Gaussschen Formeln [Anhang A IV (9)] ist
dann im Dreieck PS;S,

cos%cos 82-;81 =cos%cos 62;6‘ ,
cosgsin sz-;sl = sin%sin 6’_‘2_6’ '
sin %cos s,—;—sl =cos%sin 6’;6’ ;
singsin f%ﬁ= sin%cosa"’-lz_al .

Mit Hilfe dieser Gleichungen lassen sich D, s,, s, aus Tangentenformeln be-
rechnen, da die rechten Seiten bekannt sind. In dem Dreieck ZS, S, sind nun-
mehr die drei Seiten D, z;, z, bekannt — die letzteren beiden aus den Beob-
achtungen. Nach Anhang A III (7) findet man daher, wenn man

s= 3 (D+z+2)

1) C.F. GAuss: Methodus peculiaris elevationis poli determinandi. Werke
Bd. VI, pag. 37. Gottingen 1908.
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setzt, ¢ 2 S1+ Py __ sin(s—D)sin(s—z,)
8€——o = sins-sin(s—z;)
¢ ;S2+ P2 __ sin(s—D)sin(s—z,)
& T sins-sm (s—2z,)
bzw.
$i+p $2+ Pa f
g~ 5 =+ Vg, tg’T=i]/£.
mit ‘. . g (V; 6)
' f= sin (s — D) __sin(s—z,)
~ sins ' T sin(s—zp)

Die Gleichungen (V; 6) ergeben, je nach Wahl der Vorzeichenkombi-
nation, vier verschiedene Ldsungspaare p;, p,, wihrend wir aus den Uber-
legungen des vorigen Ab-
schnitts wissen, daf} es nur
zwei geben kann. Nun liefert
im Dreieck S,ZS,der Sinu:satz

sinz, __ sin(s; + py)
sinz,  sin(s; + p,)

Daraus folgt aber, da sin z,
und sin z, wesentlich positiv
sind, daB sin (s; + p,) und
sin (s, + pp) stets das gleiche
Vorzeichen haben. Es sind

also die Winkelm und

s,_—;—_& stets gleichzeitig << %

oder >% , so daB3 also die Abb. 36: Zweihohenproblem nach Gauss

beiden Wurzeln in (V; 6) keine verschiedenen Vorzeichen haben konnen
und die Zahl der Moglichkeiten sich somit auf zwei vermindert.

Nachdem p,, p, vorliegen, folgen ¢, t,, f, aus den Nautischen Dreiecken:
PZS, und PZS, nach den Grundformeln

sin ¢ = sin J; cos z; 4 cos &; sin z; cos py, }

cos ¢ cos f; = cos d; cos z; — sin d; sin 2; cos py,
cos @ sin f; = sin z; sin p;,
wobei noch £, =t, + 4 zur Kontrolle dient. Um die Formeln (V; 7) fiir die

logarithmische Rechnung bequemer zu machen, fiithrt man die HilfsgroBen:
m;, n; durch die Gleichungen

€OS m; COS Ny = COS 24,
cosm;sinn, =singcospy (i =1,2),
sin m; = sin z; sin p;

(Vi 7)

9‘
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ein. Man erhilt dann statt (V; 7)
sin ¢ = cos my sin (6 + n;),
cos @ cos t; = cos m; cos (6, + ),

cos @ sin fy = sin my.

Die Formeln des Zweih(’ihehproblems, sowohl nach dieser als auch nach
der im vorigen Abschnitt beschriebenen Methode, werden einfacher, wenn

man fiir beide Beobachtungen denselben Stern (in nahezu umgverschiedenen

Azimuten) verwendet, da dann §, = §, wird. Das hat den Nachteil, daB die
Zwischenzeiten unter Umsténden ziemlich grof sind, wenn man nicht einen
Stern wihlt, der in Zenitnihe gelangt, wo das Azimut sich rasch éndert. Ist
der Beobachter auf Sonnenbeobachtungen angewiesen (z. B. im arktischen
Sommer), so ist nur diese Variante moglich, und man muf3 daher die Nach-
teile der langen Zwischenzeit in Kauf nehmen. Man mul} dann aber auch auf
die kleinen Anderungen der Deklination Riicksicht nehmen.

Weitere Vereinfachungen ergeben sich, wenn man vorschreibt, da8 die
beiden Zenitdistanzen gleich sein sollen. Handelt es sich dabei wieder um
einen und denselben Stern, so folgt, daB er in den Azimuten 4+ A zu beob-

achten ist, wobei nach Maoglichkeit A N% sein sollte. Es sei dem Leser

iiberlassen, fiir diese Spezialfille des Zweihohenproblems die vereinfachten
Formelschemata zu entwickeln.

40. Losung des Zweihéhenproblems durch Hypothesenrechnung. Die Standlinienmethode

In den meisten Féllen werden dem Beobachter gute Néherungswerte der
Unbekannten Au, ¢ bereits bekannt sein. Er wird danndie gemessenen
Zenitdistanzen und die dazugehdérigen Uhrzeiten dazu verwenden, die kleinen
Verbesserungen d4u, de abzuleiten, die an die hypothetischen Ausgangs-
werte du,, @, angebracht werden miissen, um die wahren Betrige dieser

GroBen zu erhalten.

Mit @, und t;, = wy — o + Au, (i = 1, 2) berechne man die der Uhrzeit uq
entsprechenden genédherten Koordinaten Aqyq, 2, des Sterns S; nach den
Formeln (II; 23):

cos z;, = sin @, sin § -+ cos g, cos d; cos £;,,

_sin 2;y cos Ajp= — co0s @, sin & + sin @, cos d; cos t;q,

sin z;q sin A;q = cos d; sin ¢;4,

wihrend die beobachteten Zenitdistanzen z; = z, + dz; sein mégen, so da

dzl == 21 - Zm, d22 = 22 _‘220
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die den Verbesserungen dAu,, do entsprechenden Korrektionen der Zenit-
distanzen sind. Sofern man alle diese Korrektionen als Differentiale ansehen
darf, sind die Formeln (V; 5) auf sie anwendbar, und man erhalt

dp = sin Aydz, —sin A,,dz, i
sin (Ao — Ayo)
cos A,y dz,—cos Ayydz,
sin (Ago— A10)

(V; 8)

cospddu =

als Losung 'der Aufgabe. Die verbesserten Werte ¢ = @, + dop, du = Aduy+
+ dAu konnen als endgiiltig angesehen werden, wenn die Quadrate der
Ausdriicke (V; 8) unter der Schwelle der Rechengenauigkeit liegen. Tun sie
das nicht, so muB die Rechnung mit den verbesserten Werten wiederholt
werden.

Der Seemann, der graphische Methoden und den Gebrauch von Tafeln
umstindlichen Rechnungen vorzieht, hat verschiedene Varianten dieses
Verfahrens ausgebildet, von denen die wichtigste die sogenannte Standlinien-
methode ist. '

Die geniaherten Werte Au,, ¢, sind auf See, von seltenen Ausnahmen
abgesehen, immer verfiigbar. Vom Schiffsort der letzten sicheren Ortsbe-
stimmung aus ist der neue Ort durch Gissen (siche Abschnitt 1) gendhert
bekannt. Das Schiffschronometer zeigt gewohnlich die konventionelle
Zonenzeit des Heimathafens oder die Greenwicher Ortszeit (Weltzeit) an.
Von der Kontrolle dieser Uhren, die zum Zwecke der Bestimmung der
geographischen Linge notwendig ist, wird im néchsten Kapitel die Rede sein
— hier mége bemerkt werden, daf3 sie heute durch Abhéren der internatio-
nalen funkentelegraphischen Zeitzeichen stets ohne Schwierigkeit und mit
jeder gewiinschten Genauigkeit moglich ist. Es werde also jetzt der Stand des
Schiffschronometers als bekannt angesehen. Ferner sei 4o, ¢, der gegifite
Ort, A = 4, + dA, ¢ = @y + do der wahre Ort des Schiffes und m die Welt-
zeit der Beobachtung, die man nétigenfalls leicht in die Greenwicher Stern-

zeit @ verwandeln kann.

Das Standlinienverfahren beruht nun auf folgender Uberlegung: Zur
Beobachtungszeit @ steht der beobachtete Stern («, 6) im Zenit des Ortes S
mit den geographischen Koordinaten & (Breite) und ® — ¢ (Linge). Der
Beobachtungsort B, von dem aus das Gestirn in der Zenitdistanz z erblickt
wurde, liegt also auf einem Kreis um § mit dem Halbmesser z (wobei wir die
Erdoberfléche als eine Kugel mit dem Halbmesser eins betrachten diirfen).
Werden zwei Sterne (¢, 6,) und (e, J,) in- den Zenitdistanzen z, und z,
beobachtet, so erhilt man also fiir den Schiffsort B (4, @) zwei geometrische
Orter in Gestalt der beiden Kreise um S, (6, — ay, 8;) und S, (0, — aty, &) mit
den Halbmessern z; und z,, die man auch als die Sumnerschen Kreise be-
zeichnet (nach dem amerikanischen Kapitin Tu. H. SUMNER, der die Stand-
linienmethode 1837 erfand). Ihr Schnittpunkt ergibt die wahre geographische
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Lage des Schiffsortes (Abb. 37), der irgendwo in der Nihe des gegiBten
Orts B’ (4, @) liegen muBl. Wenn nun die Entfernung BB’ gegen die auf der
Erdoberfléche gemessenen Bogen z; und z, klein ist, so kann man die Kreis-
bogen in dem Bereich der Seekarte um B und B’ als gerade Linien (Stand-

linien) betrachten, deren Richtungen durch die Azimute A4, 4 ;, A,ig

gegeben sind, wenn A4,, A, die Azimute der Gestirne wihrend der Beobach-
tung bezeichnen.

Q
<

Abb. 37: Die SumMNERschen Kreise Abb. 38: Standlinien

Die Schnittpunkte der zu den beiden Sternen gehérigen Standlinien L,,
L, (Abb. 38) mit dem Lingen- und Breitenkreis von B’ mégen By, By, bzw.
B,,, By, heiBen. Der Beobachtungsort B 148t sich dann graphisch finden,
wenn man von diesen Hilfsortern irgendeine der vier Kombinationen

(Bot» Bug)s (Boys Big)s (Byy, Bug)s (Byy, Bia)

kennt, da durch sie und die Azimute A,, A, die beiden Standlinien definiert
sind. Voraussetzung ist dabei natiirlich, daB die benutzte Kartenprojektion
winkeltreu ist (Merkator-Projektion!).

Will man z. B. die Kombination (By,, B;,) benutzen, so gilt es, die Schnitt-
punkte der beiden SumneRrschen Kreise mit dem Breitenkreis ¢ = ¢, auf-
zusuchen. Nimmt man ¢,, z, § als gegeben an, so erhélt man nach (II; 11),

(I1; 12)
g I _ sin(s—@o)sin (s—9)
tg _— = ’
2 €0S §€Os (s —2) ( %_|_5+z)
s=—F (V; 9
A _sin(s—gg)cos(s—z) 2
2 cosssin(s—d)

tg?
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Wendet man diese Formeln auf beide Sterne an, so ergeben sich die zu ¢,, z,
d; gehorigen Stundenwinkel #;, f, und die Azimute A,, A, der Normalen
der beiden Standlinien. Es ist aber, wenn die Weltzeit m (bzw. 8) des
Schiffschronometers als richtig angesehen wird,

Al=0—0=0—1—c¢
oder, wenn die Sonne beobachtet wurde (u = Zeitgleichung),
A=m—m=m—t+u.

Damit sind die Lingen von B,,, B, bekannt, ebenso die Azimute der
Standlinien, und B kann graphisch gefunden werden. Der Seemann erleich-
tert sich die einfache Rechnung meist noch dadurch, dal er die Azimute
nicht rechnet, sondern durch ,,Anpeilen* der Sterne mit Hilfe des Kompasses
roh bestimmt. Erweisen sich die Strecken BB;;, BB, als so grof}, daB} die
Kriimmung der Sumnerschen Kreise nicht mehr vernachlissigt werden
darf, so ist die Rechnung mit B statt B’ als Ausgangsort zu wiederholen.

Bei der zweiten Losung, die auf der Bestimmung der Hilfsérter By,, By,
beruht, gilt es, die Schnittpunkte der Sumnerschen Kreise bzw. der Stand-
linien mit dem Lé#ngenkreis A =4, zu bestimmen. Es sind dann die
Stundenwinkel

to= 60 — g —a bzw. (Sonne) ty = — Ay + 1
neben z und é fiir jeden Stern gegeben und die dazugehérigen Werte ¢, A zu be-
rechnen. 4 findet man durch Anpeilen oder aus der dritten Gleichung (II; 23);

cos dsin f,

sin z (Vi 10)

sin A =

wihrend die ersten beiden Gleichungen ¢ auf folgende Weise liefern: Sie
sind linear in cos ¢ und sin @ und ergeben, wenn man sie nach diesen
Gré6fen auflost:

sin @ (sin? § + cos? d cos2fy) = sin & cos z 4 cos & sin z cos A cos t,,
cos @ (sin? d + cos? § cos?t,) = cos d cos z cos Iy — sin J sin z cos A,

mithin tgg = sin d cos z -}- cos d sin z cos A cost,
# = Cosdcosz cost,—sin d sinz cos A

oder, wenn man durch cos é cos z cos ¢, kiirzt,

tro — tgdsect,+ tgzcos A
8¢ = 1—tgdsectytgzcos A

Hieraus folgt aber, wenn man
tgp=tgdsect,, tgy=tgzcosd |

setzt, p=pF+y. [ (Vi 1)
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Wendet man die Formeln (V; 10), (V; 11) auf beide Sterne an, so erhilt
man die Breiten der beiden Punkte By, By, und die Azimute der Standlinien-
normalen und damit die notwendigen Daten zur Konstruktion von B.

Die beiden iibrigen Kombinationen (By,, By,) und (B,,, B,,) sind einander
gleichwertig, da sie sich nur durch die Numerierung der Sterne unterscheiden.
Wihlen wir die erstere, so ist By, auf dem’Breitenkreis ¢ = @,, By, auf dem
Lingenkreis A = 4, zu bestimmen. Bei allen diesen Verfahren wird die
grofte Genauigkeit erzielt, wenn die beiden Standlinien sich rechtwinklig
-schneiden, also die Azimute der beiden Sterne sich um 90° unterscheiden.
Wichtig ist auch, daB die beiden Hilfspunkte Bj, von B nicht weit ent-
fernt sind, da sich sonst die vernachléssigte Kriimmung der SuMNER-
schen Kreise stérend bemerkbar macht. Die Konstruktion der Standlinien
ist dann mit verbesserten Ausgangsdaten ¢, bzw. 4, zu wiederholen. Am
raschesten konvergiert das Ndherungsverfahren, wenn man die Kombination
(By3> Byy) wihlt und den Stern S, im Ersten Vertikal, S, im Meridian
beobachtet (sieche auch Abschnitt 41). '

Schliefllich sei noch auf eine weitere Moglichkeit zur Bestimmung der
Standlinien hingewiesen, die in der Praxis besonders beliebt ist: Man
berechne fiir einen gegebenen Stern, dessen Zenitdistanz oder Hohe man
beobachtet hat, ¢ und damit 4 nach (V;9) mit zwei verschiedenen Hypo-
thesen iiber ¢, die zweckméBigerweise von dem gegifiten @, nicht viel ab-
weichen, etwa mit ¢; =@, + d¢@; d¢ =30'. Man erhilt auf diese Weise
zwei Orter (4;, ¢;) und (4, @,), die man in die Karte eintrigt, und deren
‘Verbindungslinie, die Standlinie, genau genommen eine Sehne des SUMNER-
schen Kreises darstellt. Dasselbe wiederholt man mit einem zweiten Stern,
dessen Azimut von dem des ersten moglichst um 90° abweicht. Auch
hierbei sind Varianten moglich, z. B. die, da8 man mit zwei Hypothesen
A =2, 1 42 die zugehorigen ¢; berechnet [nach (V; 11)] und nach diesem
Verfahren eine der Standlinien oder -alle beide konstruiert. Der Fehler
des Ergebnisses ist bei nicht zu kleinen Zenitdistanzen meist zu vernach-
ldssigen, wenn der neue Ort von den berechneten Hilfspunkten nicht zu
weit entfernt ist. Andernfalls mu8 man mit verbesserten Ausgangswerten
@os A, eine zweite Hypothese rechnen und nétigenfalls auch das Inter-
vall A¢ bzw. AA verkleinern.

41. Das DOUWESsche Verfahren. Beriicksichtigung der Bewegung des Schiffes

Douwes, der seine fiir den Gebrauch auf See zugeschnittene Losung
des Zweihhenproblems durch geeignete Hilfstafeln zu erleichtern bestrebt
ist, benutzt Zenitdistanzen zweier Sterne, von denen der eine in der N#he
des Vertikals, der andere in der Nihe des Meridians beobachtet wird. Mit der
gegiflten Breite wird der Stundenwinkel ¢, des ersten Sternes nach (V;9)
ermittelt und damit ein gut gendherter Wert fiir die Ortszeit erhalten. Man
ist dann in der Lage, aus der Zenitdistanz des zweiten Sternes die Polhohe
nach der Methode der Zirkummeridianzenitdistanzen oder nach (V; 10),
(V;11) zu bestimmen. Durch Wiederholung der Rechnung fiir den ersten
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Stern mit der verbesserten Polhdhe ergibt sich dann ein genauerer Wert fiir
die Ortszeit und damit, wenn die Weltzeitangabe der Schiffsubr als gesichert
angenommen werden darf, die geographische Lénge.

Besonders einfach gestaltet sich die Rechnung, wenn beide Beobach-
tungen sich auf dasselbe Gestirn beziehen. Die Differenz der Grundgleichungen

cos z; = sin @ sin § 4 cos ¢ cos d cos t,, (V; 12)
€0s 2, = sin @ sin § + cos @ cos § cos {, '
ergibt dann
— ‘ —t . 4+t
€0 2y — C0S 2, — 2sin 22 221 sin 21-222 = 2cos¢pcos¢5sint"’Tt‘lsm%—2
oder, wenn wir
setzen,
sinzsin ¢
inf=——-——— V; 13
sint cos@cosdsind ( )

fiir den Stundenwinkel der Mittelzeit t = t—‘—-;tz , wihrend sich die Polhohe

aus der zweiten (meridiannahen) Beobachtung ergibt. Da nimlich f, klein
ist, setzt man

costy = l—2sin2%2

und erhilt dann aus der zweiten Gleichung (V; 12)

cos (q)—6)=cosz,+2cosq)cosésin2%- (V; 14)

Die Rechnung nach den Formeln (V; 13), (V; 14) ist sehr kurz, wenn man
Tafeln fiir die GroBen 2 sinzé und sin { zur Verfiigung hat, in denen das

Argument { im Zeitmaf} ausgedriickt ist.

Wenn derselbe Stern fiir beide Beobachtungen verwendet wird, ist die
Zwischenzeit 24 so grof3, daB auf die Bewegung des Schiffes (,,Versegelung*)
Riicksicht genommen werden mu8. Es beziehen sich dann die beiden Beobach-
tungen auf verschiedene geographische Orter, deren Unterschiede 44, A aber
durch Gissen geniigend bekannt sind. Bei der Standlinienmethode reduziert
man die erste Beobachtung auf die Zeit der zweiten, indem man den Hilfs-
ort B, der der ersten Beobachtung entspricht und auf der Standlinie L, liegt,
um die Schiffshewegung 44, 4¢ nach By’ verlegt (Abb. 39). Die neue Stand-
linie L,’ ist dann parallel zu L, zu zeichnen — das Azimut A, des Gestirns er-
scheint von B’ aus nicht wesentlich verindert, da man ja die Kriimmung der
SumnEeRrschen Kreise vernachléssigt.
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Verfédhrt man nach der Douwes schen Methode, so mufl man die erste
Zenitdistanz wegen Versegelung korrigieren — sie muf8 offenbar (Abb. 40) um
den Abstand B,C der Standlinien L, und L," vermehrt oder vermindert
werden, je nachdem C auf der entgegengesetzten oder der gleichen Seite
von L, liegt wie S,. Ist A die in Seemeilen (1 Sm = 1’) ausgedriickte Ent-
fernung der beiden Schiffsérter, y die Kursrichtung des Schiffes (von Osten
iiber Norden gezihlt), A; das Azimut des Sterns, so ist offensichtlich

dz, = B,C— / cos[y_(g—Al)] — Asin(y + 4y)

die an z; anzubringende Korrektion in Bogenminuten.

N \}
NC
\\
4 N <
N
‘1[-,4, N
7 NC
7 M
7]
4
S

Abb. 39: Versetzung der Standlinie = Abb.40: Reduktion der Beobachtungen
infolge der Schiffsbewegung wegen Versegelung

Ist das beobachtete Gestirn die Sonne, so muf auBerdem’die Anderung
der Deklination in der Zwischenzeit beriicksichtigt werden. Wenn die eine
der Beobachtungen (etwa z,) in der Néhe des Meridians erhalten wird, geniigt .
es, an z, die fiir den Meridian giiltige Korrektion 4+ (6, — d,) anzubringen, die
zur Reduktion auf die Deklination d, erforderlich ist. Das positive Zeichen
gilt, wenn die Sonne nérdlich, das negative, wenn sie siidlich des Zenits
kulminiert. Die geringfiigige Ungenauigkeit, die man damit begeht, wenn die
Beobachtung nicht genau im Meridian erfolgt, ist fiir die Ortsbestimmung
auf See ohne Bedeutung.

42. Bestimmung der Zeit und der Polhhe aus der Beobachtung zweier Sternpaare
in gleichen Zenitdistanzen ,

Wir haben gesehen, dafl es moglich ist, bei bekannter Polhdhe die Ortszeit
und bei bekannter Zeit die Polhdhe aus der Beobachtung zweier Sterne in
gleicher Zenitdistanz zu bestimmen. Bei beiden Methoden kam es auf die
Werte der Zenitdistanz selbst gar nicht an, sondern nur auf die Durchgangs-
zeiten durch den gleichen Almukantarat. Wir stellen uns nun die Aufgabe,
Zeit und Polhdhe gleichzeitig aus der Beobachtung zweier Sternpaare in
jeweils gleichen Zenitdistanzen zu ermitteln.
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Fiir das erste Sternpaar (S,, S,) erhilt man, wenn man 7; = uy — o,
t; = 7; + Au setzt, auf Grund der ersten Gleichung (IT; 23):

cos z = sin @ sin 8, + cos @ cos d, (cos 7, cos Au — sin 7, sin Au),} (V; 15)

€0s z = sin @ sin d, 4 cos @ cos &, (cos 7, cos Au — sin 7, sin Au).
Subtrahiert man diese Gleichungen von einander und dividiert durch sin ¢,
so erhilt man
sin d, — sin §; = ctg @ cos Au (cos §, cos T; — cos J, €OS Ty)—
— ctg ¢ sin du (cos d; sin T; — cos J, sin 7).

Fiihrt man dasselbe fiir ein zweites Sternpaar (S3, S;) aus, das in der gemein-
samen Zenitdistanz 2’ beobachtet werde, so entsteht eine entsprechende
Gleichung. Setzt man

@ =08 d; COST; — €080, COS Ty, @ = COS 3 COS Tg — COS Jg COS Ty,
b = — cos 8, sin 7, + cos 8, sin 7, b = — cos d; sin 73 | cos , sin 74,
¢ =sin §, —sin d,, ¢ =sin §, — sin ds,
und schlieBlich
& = ctg g cos 4u, } (V: 16)
n = ctg @ sin du.

so nehmen diese Gleichungen die Form
a¢ +b =c,
al é + br 17 —_ cl

an. Die Unbekannten &, 7 dieser linearen Gleichungen liefern nach (V; 16)
die gesuchten Grdflen du, ¢.

Damit ist das Problem auf die einfachste Weise gelost, und es ist nur noch
notig, durch Differentialbetrachtungen die giinstigsten Beobachtungsbe-
dingungen aufzusuchen. Zerlegt man den Fehler dz; der beobachteten Zenit-
distanz z (bzw. z') in den zu eliminierenden Fehler dz (bzw. dz’) des Almu-
kantarats und den Einstellfehler df; auf den Horizontfaden (auf den, wie
frither, auch ein etwaiger Ablesefehler der Uhrzeit geworfen werden kann), so
folgt gemaB (V; 4)

dz, = dz + df; = cos A, dp + sin A, cos pddu,
dz, = dz + dfy = cos A, dp + sin A, cos pdAu, l
dzg = dZ’ + dfs = cos Ay dp + sin Ag cos pdAu,

dzg = d7 + dfy = cos Aq d - sin A, cos pdAu. [

(V5 17)
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Bilden wir, um dz und dz’ zu éliminieren, die Differenzen der beiden ersten
und der beiden letzten dieser Gleichungen, so ergeben sich zur Bestimmung
von dg und cos pdAu die linearen Gleichungen

dg (cos A; — cos Ap) + cos pdAu (sin A, — sin Ay) = df; — df,,
dg (cos Ag — cos Ag) + cos pdAu (sin Ay — sin A,) = dfs — df

oder
d‘PSinéﬁ—AE—COSCPdAucos A1+Aa= dfi—df, ,
2 - 2 . A,— A,
2sin
2
d¢8iﬂﬁ+—m—cos¢dAucosA3+A‘ —_dfs—df,s
2 2 A, — A,
2sin ———=
2
mit den Losungen
; A A+ A
cos_ﬁ_“' cos 1 “la
dosin At As—As—4y _ dfi—dfy 5 dfy—df,*” 2
¢ 2 2 Sin M 2 Sin A4;A8’
2 2
cos pd Ausin A1+A2;A3_A“ =
o As+ Ay . A+ A,
sin =22 sin
_dfi—df, 2~ dfs—df, 2
2 3 A2_A1 2 . A4—A’
sin ——5— sin —45—

Geben wir den Beobachtungen gleiche Genauigkeit und bezeichnen wir mit ¢
den mittleren Einstellungsfehler, so ergeben sich die mittleren Fehler dp und
ddu der Polhohe bzw. Uhrkorrektion nach Anhang D IV aus

As;+ A A+ A
2 18 4 g <11 2
. Ayt Ay—Ag— A4y & cos 5 +cos )
’ 2 2 sin? —A_”_Al sin2 Aa— 4 ’
2
., Azt A o, At 4,
sin? ———— n?
" 2 2 gne A2— A1 g, da—ds
2
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Es wird also der mittlere Fehler des Zenits (vgl. Abschn. 38, Abb. 35)

eo= Vel + costgel, =

—_— . € / 1 _|_ .
T s A1+A2—A3—A4l/ L. Ag—A T A —A,
2 2

Das Minimum des mittleren Zenitfehlers tritt ein, wenn die drei Sinus-
ausdriicke rechts gleichzeitig extreme Werte annehmen. Von den vier Azi-
muten ist also eines, etwa 4,, willkiirlich, und man erhélt fiir die anderen drei
die Bedingungen

A2=Aliﬂ; A‘=A3:*:ﬂ; A1+A2—A3—A‘=2(A1—Aa)=:tﬂ-

Mit anderen Worten: Jedes der beiden Sternpaare soll moglichst auf dem
gleichen Vertikal, aber zu verschiedenen Seiten vom Zenit beobachtet werden,
und die beiden Vertikale sollen moglichst einen rechten Winkel miteinander
bilden. Unter diesen Bedingungen wird &; = ¢. Die beiden Zenitdistanzen z
und 2’ sind beliebig; sie konnen auch einander gleich gewihlt werden.

43. Das Dreihéhenproblem

In dem zuletzt angedeuteten Spezialfall des im vorigen Abschnitt be-
handelten Problems — Gleichheit aller Zenitdistanzen — ist eine der vier
Beobachtungen iiberfliissig, da sich die Elimination von z dann auch schon
aus drei Gleichungen von der Form (V; 15) durchfiihren 148t. Diese drei
Gleichungen haben, wenn man sie durch cos z dividiert, die Form:

aGé +bn+cl=1 (i=123), (V; 18)
mit den bekannten Koeffizienten
ag = cos 0; C0s. T3, b; = cos dsin 7;, ¢; = sin &;

und den Unbekannten
& = cos ¢ cos Au sec z, (V;19)
7 = — cos ¢ sin Au sec z,
{ =singsecz,
aus denen man unmittelbar ¢, Au und, wenn man will, auch die gemeinsame
Zenitdistanz z der drei Sterne gewinnt.?)

Um die Einfliisse der Beobachtungsfehler zu untersuchen, benutzen wir
drei Gleichungen von der Form (V;17)

dfy = — dz 4 cos A;dp + sin A; cos p d4u, (V; 20)

1) Ist z die so berechnete, 2’ die am Kreis abgelesene Zenitdistanz, so ist
Az = z — 7' die ,,Jndex- oder Nullpunktskorrektion* des Kreises.
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aus denen die Fehler dz, dg, cos ¢ d4u als lineare Funktionen von df;, df,.
dfs hervorgehen. Ist

A4 =sin (A; — Ag) + sin (A3 — A,) + sin (4, — Ayp)
die Hauptdeterminante des Gleichungssystems, die man nach Anhang B IV
auch in der Form

g Ag— Ay Ay— Ay Ay— A4,

A = 4sin 5 sin 5 sin 5

schreiben kann, so erhilt man

A-dz =23, df;sin A"_Afcos A—4 ,
ik 2 2
A-dp =23 df;sin A"_Aicos At 4 ,
ik 2 2
A-cospddu =23 df;sin A";A’ sin A"—|2_Ai,
ik

wenn man in den Summen i, j, k die drei zyklischen Permutationen der
Indexfolge 1, 2, 3 durchlaufen l48t. Bezeichnet man wie frither mit ¢ den
mittleren Einstellungsfehler auf den Horizontalfaden, mit &, den mittleren
Fehler der Zenitdistanz z bzw. der Indexkorrektion des Kreises und mit

o= Vey? + cos? g ey

den mittleren Zenitfehler, so ist nach Anhang DIV:

Ay—A;
cos2 1
g=2 2 ,
Wk sin? A"—A'sinzAf_A‘
2
€3=8—2 1 .
4 . G Ar—A; . Ai— Ay
57k sin2 "2 ! sin2 L 5

Das Fehlerminimum des Zenits, auf das es hier zunichst ankommt, tritt
offensichtlich ein, wenn die Differenzen A; — A;, absolut genommen, mdog-
lichst groB sind, d.h. wenn die Azimute der drei Sterne um je 120° ausein-
ander liegen. In diesem Falle wird

. JAy—A; 3 Ar—A; 1
2 i__ 9 2 i__
sin 5 =7 cos 5 =1
und daher
£ 2¢
€2=_ p—
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44. Das Dreihhenproblem. Lésung von CAGNOLI

Die im vorigen Abschnitt beschriebene Losung des Dreihghenproblems,
die an Einfachheit, Eleganz und Symmetrie nichts zu wiinschen iibrig 148t,
wurde von P. Harzer vorgeschlagen. Von élteren Losungen derselben -Auf-
gabe sind die von Cacnori (Ende des
18. Jahrhunderts) und von C. F. GAuss
(1808) bemerkenswert.

Die Losung von Cagnorr fuit auf
geometrischen Uberlegungen und be-
nutzt die parallaktischen Winkel p; der
drei Sterne als HilfsgroBen.

Die drei Sterne mogen durch die In-
dizes i, j, k bezeichnet werden, deren
zyklisch vertauschbare Reihenfolge die
der wachsenden Stundenwinkel sein
soll. Abb. 41 enthélt die zwischen Pol,
Zenit und den beiden Sternértern S;,
Sy bestehenden sphirischen Dreiecke.
Die Dreiecke ZS;S, sind gleichseitig,
da ja die Zenitdistanzen einander gleich
sein sollen. Die Basiswinkel mogen
mit ¢; bezeichnet werden. Ferner seien
ps die parallaktischen Winkel in den
Nautischen Dreiecken PZS;. In den
Dreiecken PS;Sy sind dann die Winkel Abb. 41: Dreihhenproblem
bei den Sternen y; = ¢; — p; (bei S)) nach CaeNoL
und ﬁ" =qs + Pk (bel Sk).

Nach Anhang A V (10) ist fiir die Dreiecke PS;Sy:

O — 0;
Bi—vi . Pit+p I .
T =Ry =%y 51y
cos ——

Damit sind die GroBSen
s =pj+ P

bestimmt, aber auch die p; selbst, denn es ist offenbar

1
$= (Sit+sj+s)=p+pit+P=pits,
also
Pi=S8—s;.
Aus den Nautischen Dreiecken PZS; folgt ferner, wenn #; der Stunden-
winkel von S; ist, nach dem Sinussatz:
sin z sin p; = cos ¢ sin #;
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oder, wenn wir die fiir das ganze Problem konstante GroSe

__sinz
= E(F‘P
einfiihren : _
sin {; = k sin p;. (V;21)
Es ist dann

sint, - sint; _ sin p; 4 sin p;
sinfy—sin#; ~ sin p,—sin p;

oder, nach Umformung,

tg tk—!z-t,- ctg tk—z-t, —tg pk_;-pictg Pk;P;'.

Da nun die GréBen #; —t; = uy — u; = 4 bekannt sind, ergibt sich fiir

b+t w+u oo
5~ 5 g T

die Gleichung

tg”‘"2|' _tgétgictg —Pi (V; 22)

aus der (und zwar wegen der zyklischen Vertauschbarkeit der Indizes auf drei
Arten) die Uhrkorrektion Au folgt.

Nunmebhr sind auch die drei Stundenwinkel #; bekannt, und man findet die
Polh6he ¢ aus einem der Nautischen Dreiecke PZS;. Benutzt man hierbei
(was fiir die logarithmische Rechnung empfehlenswert ist) die Gaussschen
Gleichungen [Anhang A IV (9)], so erhélt man, wenn man die Poldistanzen der

Sterne @ = % — &; und die Poldistanz des Zenits ¢ = % — geinfiihrt, die
Beziehungen
A Y— g Pi + t
sin 3 ' cos 3 2 —cos? 3 ¥ sin ,
vy+z_ B pitth
cos 2 tcos ¥ 5 cos - cos 5
A - . (V3 23)
A4 Y—2 Wi Di—
sin 3 sin ——— 5 = sin - sin 5
A; —I— . O pi—k
cos 5 sin ¥ = sin —-cos g

44 . . T
aus denen man neben ¢ = 5 =Y auch die gemeinsame Zenitdistanz z der

Sterne sowie ihre Azimute A; ableiten kann. Das ergibt wertvolle Kontrollen
der Rechnung, wenn man ein Universalinstrument benutzt, an dessen
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Kreisen man die Zenitdistanzen und Azimute (oder wenigstens, wenn der
Azimutkreis nicht berichtigt ist, die Differenzen der Azimute) ablesen kann.
Andererseits ergibt sich hier die Maglichkeit, die Indexkorrektionen der
beiden Kreise zu bestimmen, indem man die berechneten mit den abgelesenen
GroBen z, A; vergleicht.

Man kann die Gleichungen (V;22) und (V;23) je dreimal anwenden,
indem man der Indexfolge i, j, k die Werte (1, 2, 3), (2, 3, 1) oder (3, 1, 2)
zuschreibt. Die Gleichheit- der Ergebnisse Au, ¥, z bedeutet eine weitere
wichtige Rechnungskontrolle.

P. Harzer hat einen sehr hiibschen Weg gefunden, um die drei Glei-
chungen (V; 22) durch eine einzige véllig symmetrische Formel zur Berech-
nung von Au zu ersetzen. Er bezeichnet mit '

t=%(’1+’2+fa)=%(71+73+73)+4u

das arithmetische Mittel der drei Stundenwinkel. Es sei ferner
. =1+ u, (Vi 24)
wobei

_2h—ti—ty _ (i—t)— =) _ A—A
v 3 - 3 - 3

drei bekannte Grofien sind, deren Summe gleich null ist. Man setze nun

_ sing _Ccosu .
r'_sinp;' 9= Smp’ (V3 25)
dann ist wegen (V; 21)
e g fsinp  sinpy
rk [’_k(sint,‘ sinl,-)
oder, wenn man (V; 24) beriicksichtigt, nach einfacher Reduktion
__ sintsin(up—up;) _ , sintsindy .
fi—fj=k sint;sint, = sint,sinfy (Vi 26)
Genauso ergibt sich
cos f sin 4; .
B—gi=—k sinf; sin & (Vi 27)
und damit, wenn man (V;26) durch (V;27) dividiert,
tgt=—L=fi (V; 28)

9e—9j
‘10 Geogr, Ortshestimmungen
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-Diesen unsymmetrischen Ausdruck verwandelt man in einen symmetrischen,
indem man die drei Gleichungen (V; 28), die sich durch Indexvertauschung
ergeben, miteinander multipliziert:

Fe—17) =T G—F) _ 2R (fe—1)
(95— 95) (95— 91) (gi— 95) =9 (g—g)’

wobei die Summen wieder iiber die drei zyklischen Permutationen von i, j, k
zu erstrecken sind. Setzt man rechts im Zihler nach (V; 28)

fu—fi=— (g — g) tat,

so tritt der Faktor tg ¢ vor die Summe im Zihler, und man erhilt:

tgdt=—

2 (g—g)
tg2t =2 90 V; 29
eI=Sa B—9) ( )
Setzt man (V; 25), (V;27) ein und multipliziert noch den Faktor
sinp;
sinfy
hinzu, so ergibt sich
k2%cost sindy .
2 (0 —
i 9—g) = " sin;sint;sint, "sin py sin? g
. k*cost  sink
g (ge—g) = — — o0s?

" sin t;sint;sin t,, sin p;

oder, da das Produkt sin # sin t; sin f,, gegen Indexvertauschung invariant
ist und daher mit k2 cos ¢ bei der Bildung von (V; 29) vor die Summen tritt
und sich heraushebt,
= S0
tgtt=— b
sin A;

2 o costyy

sin p;

als voéllig symmetrische Formel zur Bestimmung von {.

45. Das Dreihéhenproblem. Losung von GAUSS

C. F. Gauss gibt (Werke, Band IV, ‘pag. 129) folgende Losung des Drei-
héhenproblems an: Fiir die Sterne S;, Sy gelten, wenn man

A=t —1,;, al_so =t~ X, =1 —.ﬂi
einfiibrt, bei gleicher Zenitdistanz z die Grundformeln

€os z = sin g sin d; 4~ cos ¢ cos d; cos (t; + Az),
cos z = sin @ sin d + Cos @ cos 0y cos (; — 4);’
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wenn man also z- durch Subtraktion dieser beiden Gleichungen eliminiert, gilt
0 = sin ¢ (sin &, — sin 8;) + cos ¢ [cos & cos (t— 4) — €os d; cos (t; + Ay).

Setzt man hierin

0035k=003(6k+6’+ 6). cos6f=cos(6"—’2_6"—6";6’.>

und lost diese Ausdriicke auf; so ergibt sich

sin @ (sindy— sin 8;) + cos g cos % + L % [cos (t,—). ) —cos (4 A4)]

= cos @ sin S _; 4, sin % géi [cos (t;—4;) + cos .("+ Al

Setzt man ferner

sin 6;‘—-' Slﬂ 6,' = 2sin

—6; G+,
5 08—

cos (f;— Aj) —cos (t; + A;) = 2sin (I.- + 1";1") sin & -l2- %,

cos (t— 4;) + cos (f; + A;) = 2 cos (1; + A ;}'f) cos M -12- M i
beachtet, daB wegen A; + A; + A, = 0 auch }%ﬂ" = — %’ gesetzt werden
kann, und dividiert schlieBlich die Gleichung durch

2cos @ sin 3

so erhilt man

tg¢p=ctg6"%6"sin% sin (t,--l—}"' )—l— tg %+ ’cosfcos (t.-i—l"—z—li) '

Fiihrt man die HilfsgroBen A4;, B; durch

M

A;smB¢=—ctg(S";2(si sin 5

Py (V;.30)
A" cos Bi = tg % CcoS %

ein, so wird
I—A4;
tg ¢ = A;cos Bi++ g

10°*
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-oder, wenn man noch zur Abkiirzung

pRuy

Ci=Bi+—

setzt, schlieBlich (V: 31)

tgp = Aicos (4 C).
Man kann nun #; bestimmen, indem man ¢ aus den beiden Gleichungen

(V;31)
tg @ = Ai Cos (t" + C,) = A', CcOs (t,. + C;,)

eliminiert. Es ist ndmlich

X A—2 A A
b+ C=titht B+ AP g pp AR g K

Ay— s

A
i+ G =ti—4j+ Byt —— =k Bx ’=I.-+B,,+§'.

_ A+ A
2
also

A; {cos t; cos (B,- — %) — siﬁ t;sin (B,- —_ %)] =
Ax ., '
= A |cost;cos| B+ 0] —sinf;sin | By + 5

Hieraus ergibt sich, wenn man noch

Ay = Ajtg {;
setzt,

cos (B,—%i) — tg &icos (B,, + —121‘) (V: 32)

sin (B,--— %) — tg s sin (B,, + %)

tgt; =

Das Formelsystem (V; 30), (V; 32), (V; 31) 16st das Problem vollsténdig,
und zwar wieder auf drei moglichen Wegen, die sich durch zyklische Ver-
tauschung der Indizes i, j, k ergeben, und die sich gegenseitig kontrollieren.
(V; 32) ist etwas unbequein, 148t sich aber leicht auf eine fiir logarithmische
Rechnung geeignete Form bringen:

Setzt man zur Abkiirzung

Q=&—ﬁ

A .D;+ D
23 Dk=Bk+'§kv Dl»':'%‘" - (V;33)
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8o ist

tgt tg D;
tg (s + D;) = 8 't_g'_t.'tgg D=

__ (cos Dj—tgycos Dy) cos Dy (sin D;—tg {ysin Dy)sin Dy
" (sin D;—tg¢sin D) cos D;— (cos D;—tg L;cos Dy)sin Dy

__cos (Di——D.') —1tg C‘ Ccos (D'—D’i)
~sin (D,——D.) —I— tg i‘ sin (D.-—D/;) )

D;— Dy

Nun ist aber D; — D; = D; — Dy, = )

, also

Dk 1—-th¢ _ D Dk .
e

tg i+ D) = ctg 2
so daf} (V; 33), (V; 34) an Stelle von (V; 32) treten.

46. Das allgemeine Dreihchenproblem. Lésung von WILKENS

Es ist nicht immer leicht, besonders wenn man sich auf hellere Sterne
beschrinken muB, Gruppen von drei Sternen zu finden, die in angemessenen
Zeitabstdnden und in moglichst verschiedenen Azimuten durch die gleiche
Zenitdistanz gehen. Es verdienen daher auch diejenigen Methoden Beachtung,
die sich der Messung dreier beliebiger Zenitdistanzen bedienen. Hierbei
werden zwar die Zenitdistanzen am Kreise des Instruments abgelesen, aber
es werden nur ihre Differenzen verwertet, so daB der Zenitpunktsfehler
(Indexfehler) des Kreises nicht bekannt zu sein braucht, bzw. auf Grund der
Beobachtungen mitbestimmt wird. Wir wollen diese Aufgabe das allgemeine
Dreihohenproblem nennen. Im Sonderfall konnen auch die Unterschiede der
drei Zenitdistanzen geringfiigig sein. Sie werden dann beiin Hohe geklemmtem
Instrument mittels Libelle und Feinbewegung oder mit dem horizontalen
Meffaden eines Mikrometers bestimmt — der Kreis braucht in diesem Falle
nicht abgelesen zu werden.

Die Differentialbeziehungen (V; 20) behalten auch fiir das allgemeine
Problem Giiltigkeit, wenn wir den Fehler dz = dAz als ,,Fehler der Bestim-
mung der Indexkorrektion des Hohenkreises' allen abgelesenen Zenit-
distanzen gemeinsam zuschreiben. Die drei Sterne sollen also moglichst in
drei gleichméBig verteilten, d. h. jeweils um etwa 120° auselnanderhegenden
Azimuten beobachtet werden, wihrend die Zenitdistanzen beliebig sein
diirfen. Der Beobachter wird trotzdem Wert darauf legen, daB3 die Unter-
schiede der Zenitdistanzen nicht groB sind, damit der Genauigkeitsgrad der
einzelnen Beobachtungen maglichst derselbe ist (groBe Zenitdistanzen sind
wegen der Refraktion und der Bildbeschaffenheit weniger genau als kleine!).
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A. WiLkEens?) hat folgende geometrische Losung des allgemeinen Drei-
hohenproblems angegeben, in der die parallaktischen Winkel als Hilfsgrofen
benutzt werden. Die Losung ist unsymmetrisch, da die Beobachtung €ines
der drei Sterne (etwa die von S,) in der Rechnung bevorzugt wird. Die
Zenitdistanzen und Stundenwinkel der drei Sterne seien

2y 2a=2 4+ 8o 23=2+ (s

tyy to=1 + A By =1, + Ay

Die Differenzen £,, {3; 45, 43 sind bekannt, die Unbekannten des Problems
sind z, t;, @; z, enthélt die Indexkorrektion des Kreises, ¢, die Uhrkorrektion.

Fiir die Sterne S, :S; gilt dann nach (IT; 23)
cos (2, + ¢;) = sin ¢ sin &; + cos ¢ cos &; cos (t; + 4) (V; 35)
(i =223).
Im Nautischen Dreieck PZS,; des ersten Sternes gelten die Grundformeln
sin @ = cos z, sin &, + sin z; cos J, cos p;,
cos @ cos f; = €0s z; cos &, — sin z, sin &, cos p;, (V; 36)
cos ¢ sin f;, = sin z, sin p,.

Setzt man dies in (V; 35) ein, nachdem man die cos-Ausdriicke aufgeldst
hat, und ordnet nach Funktionen von z,, so erhilt man

€os z; [cos C;- — (sin'd, sin &; 4 cos 51 cos d; cos )] =
= sin z; [sin {; + (cos d, sin §; — sin &, cos §; cos 4;) cos p; — (V; 37)
' — cos d; sin 4; sin p,].

Nun ist, wenn wir (Abb. 42) im Dreieck PSS! den Winkel bei S; mit s; und
die Seite S,S; mit o; bezeichnen, '

cos g; = sin , sin 6; 4 cos J, cos J; cos A;,
sin o; cos s; = cos d, sin & — sin &, cos &; cos &, (V; 38)
sin o; sin's; = cos d; sin 4;.
Damit vereinfacht sich (V; 37), und man erhélt mit { =2, 3

_ cos {4— cos a; .
~ sin¢, 4 sinogcos (p; + si)

tgz, (V; 39

1) A. WiLkeNs: Uber die Verallgemeinerungen des Gaussschen Dreihohen-
problems. Astron. Nachr. 191, 361.
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Setzt man diese beiden Ausdriicke fiir tg z, gleich, schafft die Nenner fort
und ordnet nach Funktionen von p;, so ergibt sich die Gleichung

acosp, + bsinp, =c
mit

a = sin a3 cos s; (cos £ —CO0S 0,) —Ssingy, COS Sy (cosl; —cos ay), (V; 40)
= — sin ¢ sin s (cos {, — cos 0,) + sin g, sin s, (cos 3 — cos a3), '
¢ = —sin {3 (cos £, — cos g,) +sinf, (cos{y — cos a3),
die nach den in Anhang C beschriebenen Methoden aufgelést werden kann.

Der Rechnungsgang ist also folgender:
Man bestimmt aus den Gleichungssystemen

(V; 38) a5, Sg; 03, 3, dann p, aus (V; 40), v

2, aus einer der Gleichungen (V; 39), die sich A
gegenseitig kontrollieren, und schlieBlich ¢

und ¢, aus (V; 36).

47, Das allgemeine Dreih6henproblem,

Lésung von HARZER-PLUMMER ‘|€' .
Eine algebraische Losung des allgemeinen Rieo !
Dreihohenproblems, die sich durch mathe-
matische Eleganz und Symmetrie aus-
zeichnet, wurde von P. Harzer!) gegeben. Si
Es seien z; (i =1, 2, 3) die Zenitdistanzen ll
der beobachteten Sterne und Sy
1 Abb. 42: Dreihdhenproblem
' =3 (24 + 23 + 23) nach WILKENS

ihr arithmetisches Mittel, dessen Wert unbekannt ist, da es den Indexfehler
~des Kreises enthilt. Setzen wir

Zi=2z-4¢, (V;41)

so sind die &; aus den Differenzen der Kréisablesimgen bekannt, denn es ist ja
1 1
a=u—z@Et+g+a)=7la—2z)+E—wl

Fiir die drei Sterne gelten drei Gleichungen von der Form (V; 15), wenn
links statt z die verschiedenen Werte z; gesetzt werden. Es ist also, wenn wir
(V; 41) einsetzen,

€os (z + &) = sin @ sin &; 4 cos ¢ cos J; (cos 7; cos Au — sin 7; sin Au).

1) P. Harzer: Uber das Dreihhenproblem. Astron. Nachr. 192, 107.
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Werden nun die Bezeichnungen (V;19) eingefiihrt, so ergeben sich die
Gleichungen
' aé+on+al="n, (V; 42)
mit

h; = cos (z + &) sec z = cos & — tg zsin &;. (V; 43)
Das sind drei lineare Gleichungen fiir die vier Unbekannten £, #, {, tg z. Dazu
tritt als vierte Gleichung die aus (V; 19) folgende Beziehung

E2 4 n24f2=sec?z=141tg%z.

Das. Verfahren besteht darin, &, %, { zu eliminieren, so daB eine qua-
dratische Gleichung in tg z allein iibrig bleibt. Man bezeichnet diese als die
Schiiisselgleichung des Problems, da, sobald tg z bekannt ist, die &; aus (V; 43)
und die iibrigen Unbekannten und damit ¢, Au und (als Endkontrolle) sec z
aus den drei linearen Gleichungen (V ; 42) unschwer abgeleitet werden kénnen.

Das Eliminationsverfahren 148t sich nach einem Vorschlag von H. C.
PLumMER?!?) folgendermaBen sehr elegant und durchsichtig ausfithren. Die
GroBen ag, b;, ¢; (V; 19), fiir die af + b + ¢ = 1 gilt, stellen die recht-
winkligen Koordinaten der drei Sternérter (S;) dar, wenn wir als Koordina-
tensystem das lokale System des Aquators wihlen, aber die a, c-Ebene nicht
in den Meridian, sondern in die Ebene des Stundenkreises mit dem Stunden-
winkel du fallen lassen. Als vierten Punkt der Sphire fiigen wir das Zenit
hinzu, das in diesem System die Koordinaten

a, =cos ¢ cos Au, b, = — cos psin Au, ¢, =sin g
besitzt. Es ist dann die vierreihige Determinante
D =|a,-,b,-,c.-,0| =0.}

Fassen wir die Zahlentripel a;, b;, ¢; als Koordinaten von Einheitsvektoren
pi (i =1, 2, 3, 4) auf, so ist das skalare Produkt von p; und p;

(pibj) = ai a; + b; b; + cicj,
und es gilt nach dem Multiplikationssatz der Determinanten
D =|[(pipy), (Piba) (Pibs), (Pip)|=0.
Danun (p; ) = 1 und (p; py) = cos z;, ferner
(b2 p3) = cos oy, (P3hy) = cosay (P; Pg) = cos 7y,

wenn wir mit ¢; die Bogenléingen der Seiten S; Sy des sphirischen Dreiecks
S; S; Sy bezeichnen, so erhalten wir

1 C0SO3 COSO, COSZ
C0s 03 1 COS gy COS Zy
C0S g COS 0y 1 COS 24
€082z COSZy COSZ4 1

1) H. C. PLuMMER: On the Latitude Problem with three Relative Altitudes.
Astrou. Nachr. 192, 273.

D2 = =0
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oder, wenn wir noch die vierte Spalte und die vierte Zeile durch cos z divi-
dieren und (V; 43) beriicksichtigen,

1 lcoso; cosoy, Ry
cosoy 1 coso; hy
€0s gy COS 0y 1 hy

hy hy hy 1+4tg2z

Diese Gleichung hat, da die h; lineare Funktionen von tg z sind, die Form
Atg?z—2Btgz+C=0. (V; 44)

Die Koeffizienten dieser quadratischen Gleichung lassen sich nach Auf-
16sung der Determinante leicht hinschreiben. Sie stellen symmetrische Aus-
driicke in den GroBen o, &; dar, deren Bildung dem Leser iiberlassen bleiben.
Die Groflen cos o; berechnet man aus den sphirischen Dreiecken PS;Sj; nach
dem Cosinussatz:

cos 0; = aj a, + b; by + ¢j cx = sin J; sin & + cos §; cos Jy cos (T, — T;) .

48. Das allgemeine Dreihdhenproblem. Lésung von STUMPFF

Die Koeffizienten der Schliisselgleichung (V; 44) sind trotzihrer iibersicht-
lichen und symmetrischen Form fiir die numerische Rechnung wenig be-
quem. Der Verfasser?) hat versucht, sie nach einem anderen Verfahren abzu-
leiten, das besonders fiir den Gebrauch der Rechenmaschine geeignet ist.
Gleichzeitig ist bedacht worden, da8 die Indexkorrektion des Kreises 4z
meist sehr klein ist und es daher zweckmifBig ist, diese GroBe (im Hin-
blick auf die Moglichkeit, rasch konvergente Reihen zu entwickeln) statt des
Mittelwertes z direkt als Unbekannte einzufiihren.

Man setze also jetzt die Zenitdistanzen der drei Sterne
2; =r" + AZ, (i = 1, 2, 3),

wobei f; die Kreiéablesungen bedeuten. Es gilt dann statt (V; 42), (V; 43)

a.-£+b.-17+c.-C=cosf.-—tgAzsinf;, (V;45)
& = cos g cos du sec Az, n=—cos ¢ sin Au sec 4z, { = sin p sec 4z, (V; 46)
E24n24(2=1+4tg24z. (V;47)

Man bestimme nun die sechs Groflen &,, 7;, ;3 & 79, {p aus den beiden
linearen Gleichungssystemen

a; & +b.'771-l-ca'C1=cOSfa
a; &+ bimy + ¢ {p =sinf;

1) K. Stomprr: Uber das Problem der Ortsbestimmung aus drei relativen
Zenitdistanzen oder Azimuten. Astron. Nachr. 277, 145.

(i=123). } (V; 48
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Mulitipliziert man die zweite dieser Gleichungen mit tg 4z und subtrahiert
sie von der ersten, so entsteht das neue System

a; (& — &, t8 A2) + bi (g, —matg A2) 4 ¢; (§; — L tg 42) =
= cosf; —tg Azsin f;,

das offenbar mit (V; 45) identisch ist. Es ist also
E=§ —&tgdz, n=n —ntgdz, {=¢ —,tg 4z, (V;49)

Setzt man dies in (V; 47) ein und ordnet nach Potenzen von tg A?, SO er-
scheint die Schliisselgleichung in der sehr einfachen Gestalt

Atg2dz—2Btgdz4+C=0 (V; 50)
mit :

A=+ +0—1 B=&+mm+bEG C=E+n1+H-1
Nach ihrer Aufldsung erhélt man &, #, { aus (V; 49) und sodann du, ¢ aus

(V; 46).
Die Losung von (V; 50) lautet explizit

B AC

Wenn aber A4z klein ist, was in der Praxis immer zutrifft, so gilt das negative
Zeichen vor der Wurzel. Man kann diese nach dem binomischen Satz ent-
wickeln und erhilt die Potenzreihe

C AC AC
tgAz—ﬁ[l+4Bz+2(4B2) +5(4Bz) +] (V; 51)

die besonders dann gut konvergiert, wenn AC/4 B2 klein ist. Ist diese Grofe
gleich oder nahezu null, so beschrinkt sich die Entwicklung praktisch auf
das erste Glied.

Diese Bedingung, die eine auBerordentliche Vereinfachung der Rechnung
mit sich bringt, ist nahezu erfiillt, wenn alle Zenitdistanzen ungefihr gleich
sind und um 45° liegen. Das 148t sich folgendermaflen sehr einfach zeigen:
Angenommen, es seif; = f, =fs = z. Setzt man dies in (V; 48) ein, bezeich-
net mit A4 die gemeinsame Hauptdeterminante der beiden Gleichungs-
systeme und mit 4,, 4,, 4, diejenigen Determinanten, die man erhélt, wenn
man in A4 die erste, zweite bzw. dritte Spalte durch Einsen ersetzt, so ist

A& =A4,c082, Angy =d,c082, AL = A;c0s2,
A& =Aysinz, Any=A,sinz, Af = Aysinz
Die Koeffizienten der quadratischen Gleichung (V; 50) sind dann

A =F%sin?z—1, B=F2sinzcosz, C =F2cos?z —1,



49, Das Zweiazimutproblem 139

wenn man zur Abkiirzung

o A1+ 43443
_it 4

schreibt. Ist das Instrument genau berichtigt, also 4z =0, so ist offen-
bar C = 0, andernfalls ist C klein und F2 = (1 + C) sec? 2.

Die hoheren Glieder von (V; 51) verschwinden, wenn A =0, d. h}

1
tg?z=——,
8 2=11¢
also, wie behauptet, fiir eine Zenitdistanz, die von 45° nur wenig verschieden
sein kann.

49. Das Zweiazimutproblem

Die gemeinsame Bestimmung von Ortszeit und Polh$he gelingt natiirlich
auch, wenn man statt der Zenitdistanzen Azimute bzw. Durchgénge durch
gegebene Vertikale verwendet. Die meisten dieser Methoden fiihren aller-
dings auf Formelsysteme, die fiir den praktischen Gebrauch viel zu kompli-
ziert sind, und erfreuen sich daher einer weitaus geringeren Beliebtheit. Fiir
den Theoretiker sind sie aber interessant, und unsere Darstellung wiirde
eine empfindliche Liicke aufweisen, wenn wir darauf verzichten wiirden,
sie zu beschreiben.

Schon das Zweiazimutproblem, also die Aufgabe der Ortsbestimmung
aus zwei gemessenen absoluten Azimuten, zeigt die oben genannten Schwierig-
keiten in vollem MaBe. Wendet man die Grundgleichung (I1I; 17) auf zwei
Sterne (i = 1,2) an, so erhilt man

sin #; — sin @ cos t; tg A; + cos @ tg §; tg A; = 0. (V; 52)

Setzt man hierin, wie friiher, 7; = u; — &, {; = 7; + 4u, so ergeben sich,
wenn man die trigonometrischen Ausdriicke auflést und nach Funktionen
von du ordnet, die Gleichungen

cos Au (sin 7; — sin @ cos 7; tg A;) 4 sin du (cos 7; + sin @ sin 7; tg A;) +
+ cos ptgditg 4; =0,
aus denen man cos Au, sin 4u als Funktionen von ¢ berechnen kann. Setzt
man, wie iiblich, 4 = 7, — 7, und fiihrt die Abkiirzungen
Bi="tg Ai, yi=1tgAitgd;, e=tg A, —tg A,

ein, so ergibt sich
E cos Adu = (A + Bsin ¢) cos ¢, } (V; 53)
E sin Au = (C + D sin ¢) cos ¢
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mit

A =y, €05 Ty — Y, €OS Ty,

B =fyy;sinty—fypsinty,

C =y,sint, —y;sint,,

D =B y1c08 T, — By ypcos 7y,

E =sinl —e¢cos Asin g 4 B, f,sin Asin? .

Eliminiert man Au durch Quadrieren und Addieren der beiden Glei-
chungen (V;53) und setzt dabei cos?¢ =1 —sin?¢, so entsteht eine
Gleichung vierten Grades in sin ¢:

F(p) =a- bsingp + csin?¢p 4 dsin®p + esintp =0 (V; 54)
? ? ®

mit den Koeffizienten

a=sin?2 —p} +2y;p,c08 2 —p3,

b=2¢sinA(y;ys —cos 1),

¢ =¢?cos? A+ 2B, fysin? A+ »3 (1 — B3) —

.= 2yypc08A(1 —Bify) + 73 (1 —BD),

d=—2¢esinA(yyys + fifycos 4),

e =P} sin? A+ Biys — 2B By 1vacos A+ B3vi.
Von den vier Wurzeln der Gleichung (V; 54) kommen nur die in Betracht,
die reell, und deren Betriige kleiner als eins sind. Unter ihnen wird man in
der Praxis diejenige, die den geographischen Bedingungen entspricht, immer

ohne Schwierigkeit aussondern konnen. Ist sin @ gefunden, so ergibt sich aus
(V; 53) die Uhrkorrektion

(V; 55)

C+ Dsing
tgdu= A+ Bsing

Damit wiire die Aufgabe im Prinzip gelost, doch ist die Bestimmung von ¢
aus dem Sinus nur fiir kleine und mittlere Breiten sicher genug. Will man die
Polhéhe aus einer Tangentenformel ableiten, so erreicht man dies auf zwei
Wegen:

‘1. Man berechnet t; = 7; + Au mit Hilfe des bereits ‘bekanntgewordenen
Uhrstandes. Dann ergeben die beiden Gleichungen (V; 52) sin ¢, cos ¢ und
damit

yl Sin ’Z—yz Sinfl
fycostysint, — f,sint, cost,

tgy =

2. Aus (V;53) entnimmt man
C—Atgdu

Sme= BtgAdu—D
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Dann ist
¢ 2(£_£>_‘l—sin¢p_ (A4 B)tg4du—(C+-D) .
8\e2) T 1fsmg  (B—A)tgdu+ (C—D)

Bei nicht zu hoher Breite ist es, wie gesagt, nicht notwendig, auf diese
Formeln zuriickzugreifen, doch stellen sie wertvolle Kontrollen dar, auf die
der Rechner nicht verzichten sollte. Man kann iibrigens, wenn man will,
die biquadratische Gleichung (V; 54) auch so umwandeln, daB sie fiir alle

Breiten genaue g liefert. Setzt man némlich sin ¢ = 1—3_1‘? » so erhilt man
eine Gleichung 8. Grades in x = tg %, deren Koeffizienten aber symmetrisch
sind, so daB man sie in der aus der elementaren Algebra bekannten Weise auf

eine Gleichung 4. Grades in y ==z +—i— zuriickfithren kann.

Die Auflésung der Gleichung (V; 54), F(¢) = 0, gestaltet sich einfach,
wenn man iiber einen guten Né#herungswert fiir die geographische Breite
verfiigt, was in der Praxis immer der Fall ist. Das NEwTonsche Néherungsver-
fahren fiihrt dann eindeutig auf die richtige Losung. Ist sin ¢ = sin ¢, + dy
und F (p,) = dF, so gilt, falls man dy und dF als Differentiale ansehen darf,
die Beziehung

dF + dy (b + 2¢sin @y + 3d sin? ¢, 4 4e sin? @) = 0,

aus der die Verbesserung dy der N#herungslosung sin ¢, zu entnehmen ist.
Notigenfalls, d.h. wenn der verbesserte Wert sin ¢, = sin ¢, 4 dy die
Bedingung F(@;) =0 noch nicht erfiillt, muB das Verfahren mit ¢, als
Ausgangswert wiederholt werden.

Zur Untersuchung der giinstigsten Beobachtungsbedingungen differen-
zieren wir die zweite und dritte der Grundgleichungen (II; 23), indem wir
links z und A, rechts ¢ und ¢ als variabel ansehen:

cos zsin Adz 4 sinzcos AdA = cos é cos tdt,
cos z cos Adz —sin zsin AdA = — cos d sin ¢ sin {dt - cos zdg.
Eliminieren wir dz aus diesen Gleichungen, so erhalten wir in

df =sinzd A = cos é (cosf cos A 4 sint sin A sin ¢) dt — cos zsin Adyp

die gewiinschte Beziehung zwischen dem Fehler des gemessenen Azimuts
und den Fehlern der Ortszeit und der Polhdhe. Setzt man dt = dA4u, indem
man einen etwaigen Fehler in der Ablesung der Uhrzeit u auf das Azimut
wirft, und benutzt man die erste Gleichung (II; 27) und die zweite Gleichung
(11; 29), so ergeben sich fiir die beiden Sterne (i =1, 2) die Beziehungen

dfy = (sin z; sin @ + cos z; cos ¢ cos As) dAu — cos z; sin Adg , (V. 56)
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in denen df; die Einstellungsfehler der Sterne auf den Vertikalfaden des
Instruments bedeuten, und aus denen man

Ndp = df; (sin @ sin z, + cos @ cos z, cos Ay) —
—df, (sin ¢ sin z, + cos,p cos z, cos 4,),
NdAu = df; cos zy sin Ay — df, cos z; sin 4,,

7

N = sin @ (sin z; cos z, sin A, — €08 2, 5in 2, sin Ay) +
+ cos @ cos z; cos 2z, sin (A, — A,)

ableitet. Berechnet man aus diesem ziemlich verwickelten Ausdruck nach
Anhang D IV das mittlere Fehlerquadrat des Zenits, &; = €}, -+ cos? @ €4y,
indem man, wie friiher, den mittleren Einstellungsfehler mit ¢ bezeichnet,
so ergibt sich
2
£l = % {sin? @ (sin?z, 4 sin2z,) + cos? @ (cos?z, + cos?z,) 4

+ 2sin @ cos @ (sin z, cos z, cos A, +} sin z, cos z, cos 4,)].

Man erkennt sofort, daB dieser Ausdruck unverédndert bleibt, wenn man z,
mit z, und A4, mit — A, vertauscht. Aus Symmetriegriinden muf also das
Minimum des Zenitfehlers fiir z; =z, =2z und A, = — A, = A eintreten,
was man natiirlich auch streng beweisen kann. Die Sterne sollen also maglichst
in gleicher Zenitdistanz und symmetrisch zum Meridian beobachtet werden.

Die Aufgabe, das giinstigste Azimut und die giinstigste Zenitdistanz als
Funktionen von ¢ zu bestimmen, scheint bisher von den Theoretikern ver-
nachlissigt worden sein. Es sei daher folgende bislang unverdffentlichte
Loésung des Verfassers mitgeteilt: Unter den obigen Annahmen wird

€2 sin?@sin?z 4 2singp cospsinzcoszcos A - cos2 @ cos?z
2 (sin @ sin z 4 cos @ cos z cos A)2 cos2zsin? A

&= (V;57)
Setzt man hierin
& = coszcos A cos ¢,
7 = cos zsin A cos ¢, (V; 58)
{ =sinzsin ¢,
so erhilt man kiirzer

2 ‘2 2
Es ist also
1 1
f=n—2+m (V; 58a)

unter der Nebenbedingung
g=8+n*+{%ctg?p —cos’p =10
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zum Minimum zu machen. Nach bekannten Regeln sind also die Groflen
& n, , A aus den Gleichungen

f+/1 g—f]+zg—fi=o, a—£+ 6—g=o
g=0
zu bestimmen. Die ersten drei dieser Gleichungen lauten explizit
AE(E+ 0P =1,
At =1,

A (40P =tge

Addiert bzw. dividiert man die erste und dritte, so erhilt man

1 ta? 4
(E+0t= +Ag ¢=co’:2¢p' %:ctg’q;

Man findet daher

E={ctg?p, n={_Vcosp(l+4ctg2eg)= Vcosq:

2
sm«p

und wegen g =0

2
sintg Cos™@..

Cz(ctg4¢+ + ctg? ) r2 COS(p(]-l—cosq;)

~ sinfe

also schlieBlich

N

f=c052¢‘/ﬂ, n=—~i_.L¢_’ ¢=SID2¢VICO$ (V; 59)

14cosp V14 cosg + cosgp

und
& = . _ cosgp
ctgA_-n__Vcos g, sinz=_ | sin @ |V1+cos<p

‘In Abb. 43 findet man A und z als Funktionen von ¢ dargestellt. Am
Aquator wird man die Sterne méglichst unter den Azimuten -+ 45° (oder
135°) beobachten, in der Nihe der Pole dagegen im Ersten Vertikal. In klei-
nen und sehr hohen Breiten sind kleine Zenitdistanzen zu bevorzugen, in
mittleren Breiten steigen die giinstigsten z-Werte bis 30° (fiir | ¢ | = 60°)
an. Allgemein ist

02 775 (14 cos ) (V; 60)

wie man durch Einsetzen von (V; 59) in (V; 58a) leicht beweist.
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Was die Vorzeichen der Quadratwurzeln anbelangt, so zeigt (V; 58),
daB ¢, und daher wegen & = { ctg?z auch &, stets das Vorzeichen von sin ¢
haben, d. h. sie sind positiv auf der nordlichen, negativ auf der siidlichen
Halbkugel der Erde. Dagegen ist # stets positiv, wenn wir unter A das
giinstigste Azimut des Weststernes verstehen. £ und daher auch ctg A
erleiden also beim Ubergang iiber den Aquator einen Vorzeichensprung:
A geht von 45° auf 135° iiber. Das ist aber keine echte Unstetigkeit, da
ja gleichzeitig z durch null geht. Wichtig ist, daB3 die beiden Sterne stets

auf derjenigen Hilfte der
P sichtbaren Sphére liegen
sollen, auf der sich der sicht-
bare Himmelspol nicht be-
findet, also unter nordlichen
Breiten siidlich, unter siid-
s’k lichen Breiten nordlich des
Alp) Ersten Vertikals. Das 140t
- sich auch unmittelbar ver-
stindlich machen, wenn man
i in (V; 57)

30°t Zip) sin @ sinz- cosgpcoszcos A =

X = cosd cos p

i setzt. Dann wird nimlich

L ! - 1 S — .y 2 _ ff 1
’ 0 60 % =73 (cos”z sin? 4 +
Abb. 43: Zweiazimutproblem; .
giinstigste Azimute und Zenitdistanzen ' 4+ __ Cos"p
cos26 cos?p)’

und man erkennt auf den ersten Blick, daB Sterne in der Néhe des Me-
ridians (sin A =0) und in der Nihe ihrer groflten Digression (cosp = 0)
ungeeignet sind. Die groften Digressionen finden aber stets auf derjenigen
Seite vom Ersten Vertikal statt, die den sichtbaren Himmelspol enthilt.

Die Formeln (V; 55) zeigen, dafl die Gleichung vierten Grades fiir sin ¢
in eine quadratische iibergeht, wenn ¢ = 0, also tg A, =tg A, ist, d. h.
wenn man die beiden Sterne im gleichen Vertikal, aber natiirlich auf ver-
schiedenen Seiten des Zenits beobachtet. In diesem Falle ist nur eine absolute
Ablesung des Azimutkreises erforderlich. Um auch hier die Symmetrie der
Sterne in bezug auf den Meridian zu beachten, wird man diese Beobachtungen
moglichst im Ersten Vertikal anstellen. Man verzichtet dann zugunsten einer
sehr vereinfachten Reduktion auf den Vorteil des geringsten Fehlereinflusses.

Setzt man in (V; 58) A =g, so wird

=0, n=-coszcosp, {=sinzsin g,
1 14 @
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also = _+ 1 (14 ctg®zctg®g)
{2 cos?zcos?gp

Das Minimum dieser Funktion von z tritt ein fiir ctg z =}/'tg ¢, und es ist dann
€
&g = —= 1 ct, .
A letg@])

Der kleinste mittlere Zenitfehler ist also, wie ein Vergleich mit (V; 60) lehrt,
stets groBler als derjenige, den wir fiir die giinstigsten Azimute gefunden
hatten. Fiir ¢ = 0 wichst er sogar iiber alle Grenzen — diese Methode ist
also unter kleinen Breiten nicht anwendbar. Fiir mittlere und hohe Breiten
ergeben sich dagegen Fehlereinfliisse, die in méfBigen Grenzen bleiben. Fiir

@ =45° erhilt man z.B. &, = £}/2 bei z = 45°. Fiir ¢ = 90° strebt ¢, gegen
€

—=und z gegen null.

% geg

50. Bestimmung von Ortszeit und Polhéhe aus den Durchgiingen zweier Sternpaare
durch zwei Vertikale

Wiederholt man die am Schluf des vorigen Abschnitts beschriebene
Beobachtung der Durchgénge zweier Sterne S,, S, durch den gleichen Verti-
kal V an einem anderen Sternpaar S; S, und einem anderen Vertikal W,
so kann man Zeit und Polhohe allein aus den Differenzen der Durchgangs-
zeiten bestimmen, ohne das Azimut der beiden Vertikale zu kennen. Diese
Methode ist ein Analogon zu der in Abschnitt 42 beschriebenen.

Fiir die beiden Sternpaare ist wegen (IV; 25)
tg psin (f, — ;) =tg d; sint, — tg d, sinfy,
tg @ sin (f, —t5) = tg dysint, — tg §,sint;.
Setzt man wie in Abschnitt 42
=1+ du; & =ctggpcosdu, n=-ctgepsinduy,
so ergeben sich daraus nach einfacher Rechnung die beiden linearen Glei-
chungen
sin (1, — 7,) = & (tg 6, sin 7, — tg &, sin 7,) + % (tg §, cos T, —tg J, cos 7y),
sin (z, — 73) = £ (tg 3 sin T4 — tg d, sin T5) + 7 (tg d; cos T, — tg d, cos Ty),
aus denen man &, 7 und somit ¢, 4u bestimmt.

Zur Ermittlung der Fehlereinfliisse benutzen wir die Gleichungen (V; 56),
in denen wir wie in (IV; 26)

_dfs_

dA,—dv + 3 y dAa__dW-|- e
a4, = av + e da,=aw+ 2o
2 smz2 4 sinz,

11 Geogr. Ortsbestimmungen
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setzen. Dabei bedeuten dV und dW die zu eliminierenden Variationen der
Azimute der beiden Vertikale. Fiir das erste Sternpaar gilt dann
sin z, dV 4 df; = (sin z, sin ¢ + cos 2, cos ¢ cos Ay) dAu —
— cos z, sin A dp,
sin z, dV + df,, = (sin z, sin @ + cos z, cos ¢ cos A,) dAu —
—cos zysin A, do.

(V; 61)

Eliminiert man dV und bedenkt, daB3 cos A, = 4 cos A,, sin 4, = 4 sin 4,,
je nachdem die beiden Sterne auf der gleichen oder der entgegengesetzten
Seite vom Zenit beobachtet werden, und wiederholt man dasselbe fiir das
zweite Sternpaar, so ergeben sich die Gleichungen

df, sin z, — df, sin z; = sin u, (cos A, cos p dAdu — sin A, dg),
df 3 sin z, — df , sin z; = sin pg (cos A4 cos pddu — sin Azdg).
| (Mm=2F2, ps=2,F2).
Hieraus berechnet man
cospddu=
__ (dfysinzg—df,sin z,) sin Ag sin uz — (df; sin z, — df sin zg) sin A, sin u,
- sin p, sin pg sin (A3 — 4,) ’

__ (dfysin z,—df, sin z,) cos Ag sin ug — (df 3 sin z, — df y sin z5) cos A, sin p,

de sin u, sin g sin (A3— 4,)

und in iiblicher Weise
' g2 sin®z, 4-sin%z, | sin®z; 4 sin?z,]
sin?(A3— A,) | sin?(z, F z;) sin2(z, F z3)

€z = ¢&p | COS @ ely =

Damit dieser Ausdruck mdoglichst klein werde, ist es zunichst notwendig,

7
Ag— A = 9
schneiden, wihrend im iibrigen ihre Lage beliebig ist. Werden die Sterne
jedes Paares auf verschiedenen Seiten vom Zenit beobachtet, so sind, wie
in den dhnlichen Formeln (III; 32) und (IV; 27), die Zenitdistanzen gleich zu
wihlen, und es gilt im Nenner das positive Zeichen. Setzt man alle Zenit-
distanzen gleich z, so erhélt man dann

zu setzen, d. h. die Vertikale V und W sollen sich rechtwinklig

sogL—>e fir z->0.
cos 2

Beobachtet man die Sterne auf der gleichen Seite vom Zenit, so gilt
das negative Zeichen, und man hat moglichst verschiedene Zenitdistanzen
zu wihlen. Das Optimum fiir & ist dann £}2.

Die Durchgangszeiten der vier Sterne durch zwei Vertikalebenen, deren
Azimute nicht bekannt zu sein brauchen, lassen sich ohne optische Hilfs-
mittel an dem in Abschnitt 26 beschriebenen Harzirschen Fadengestell
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beobachten. Es ist dann erforderlich, an den beiden freien Querstangen ein
zweites Fadendreieck anzubringen, dessen Ebene auf der des ersten mog-
lichst senkrecht steht. Es muf natiirlich dafiir gesorgt werden, daf3 die beiden
Fadenziige und die angehingten Gewichte sich nirgends beriihren. Eine
Orientierung des Geriists nach den Himmelsrichtungen ist bei Anwendung
dieser Methode nicht notwendig. '

Eine Variante dieses Verfahrens besteht darin, daB man den gleich-
zeitigen Durchgang eines Sternpaares durch den Vertikal V und den gleich-
zeitigen Durchgang des anderen Sternenpaares durch den zu V moglichst
senkrechten Vertikal W beobachtet. Sind die Koordinaten «;, &; der vier
Sterne gegeben, so findet man nach (III; 34) die Lagekoordinaten i,, §3,
von V aus dem ersten, die Lagekoordinaten i,, §3,, von W aus dem zweiten
Sternpaar. Seien @, und @, die beiden Durchgangszeiten, so ist nach (I1I;33)

sin (@,—§,) = tg ¢ ctg i, = sin (u,—§3,) cos A u + cos (u,—§3,) sinAu,
sin (@,—83y) = tg @ ctgi, = sin (u,— §3y) cos 4 u + cos (u,—83,) sin Au
oder, mit
E=ctgpcosdu, n=ctgpsindu,
ctgi, = £ sin (u,— §3,) + 7 cos (1, —§3y) ,
Ctg i, =_§sin (HW—SB“,) +77 cos (uw'_' w) .
Diese linearen Gleichungen ergeben &,# und damit ¢, du.

In der Praxis wird man fiir V den Vertikal des Polarsterns, W den eines.
zenitnahen Sternes in der grofiten Digression wéhlen, damit der eine Stern
jedes Paares sein Azimut moglichst langsam é&ndert. Bei Beobachtungen
mit bloBem Auge kann man wie bei den in Abschnitt 27 und 36 beschriebenen
Verfahren das Harzersche Fadenlot verwenden. Es miissen dann bei bei-
den Beobachtungen die Sternpaare auf der gleichen Seite vom Zenit ge-
wihlt und die fiir diesen Fall ungiinstigeren Fehlereinfliisse in Kauf ge-
nommen werden.

51. Das Dreiazimutproblem. Lésung von WILKENS

Ein Gegenstiick zu dem in den Abschnitten 46—48 beschriebenen allge-:
meinen Dreihohenproblem bildet die Aufgabe, Zeit und Polhéhe aus drei
Azimuten zu bestimmen. Fiir die Reduktion der Beobachtungen werden, aufler
den Uhrzeiten der Fadendurchgénge, nur die Differenzen der drei Azimute
benotigt. Der Nullpunktsfehler des Azimutkreises und damit die Kenntnis.
der Nordsiidrichtung ergibt sich aus der Rechnung als Nebenprodukt.

"~ Eine iltere Losung dieser Aufgabe stammt von Th. CLaAuseN?); in neuerer
Zeit ist sie von WiLkENs?), HARzER®) und dem Verfassert) behandelt worden..

1) Th, CLAUSEN: Eine neue Art, die Zeit und die Polhohe zu bestimmen..
Journ. f. d. reine und angew. Math. 7, 105, Berlin 1831.

2) A, WiLkENs: Uber die Verallgemeinerungen des G-aussschen Dreihéhen-
problems. Astron. Nachr. 191, 361.

3) P. Harzer: Uber das Problem der drei Azimute. Astron. Nachr. 193, 145.

4) K. Stomprr: Uber das Problem der Ortsbestimmung aus drei relativen.
Zenitdistanzen oder Azimuten. Astron. Nachr. 277.

11*



148 V. Gleichzeitige Bestimmung von Ortszeit und Polhdhe

WiLkENS greift das Problem der drei Azimute, ebenso wie das der drei
Héhen, auf geometrischem Wege an. Seine Losung ist unsymmetrisch, da sie
einem der drei Sterne (S,) eine bevorzugte Stellung einrdumt. Seien S, Sy, S,
die drei Sternérter, 4,’, A,’, A5 die zugehorigen unkorrigierten Ablesungen
des Azimutkreises und

Al = Azl —_ All, A3 = A3' -—_ Az’, 21 == 12 — T]_, 13 == 13 - 72,
so ist (Abb. 44) in den Dreiecken ZS,S, und ZS,S; nach dem Cotangenten-
satz [Anhang AT (3)]
€os I cos z, = sin z, ctg D; —sinx ctg 4, ,

} (V; 62)

cos (0 — ') cos z, = sin zzA ctg D, —sin(c —z) ctg 4,.

Ferner gelten in den Dreiecken
PS;S, (i =1,3) die Grundformeln

cos D; = sin d; sin §, 4
—+ cos &; cos d, cos 4;,

sin D cos g; = sin J; cos d, —
— cos d; sin 6, cos 4; ,

sin D; sin g; = cos J; sin 4;,

aus denen man die Stiicke D,, D,,

0y, 03 und damit auch ¢ =0, + g,

berechnet. Die Gleichungen (V; 62)

enthalten und bestimmen dann =z

o und z, als Unbekannte, und die wei-

Abb. 44: Dreiazimutproblem tere Aufgabe besteht darin, diese
nach WILKENS GréBen zu trennen.

Setzt man zur Abkiirzung
ctgd, =a, ctg D, =B, coso =y, singctg 4, =34,
sinc =¢, —cosoctgd, =2, ctgD; =1,

so erhalten die Gleichungen (V; 62) die Form

CoST cos 2z, + e sinx = fsinz,, | (V: 63)
cos  (y cos 2z, + ) + sinx (e cos z, + {) =y sinz, . ] ’
Hieraus berechnet man
sinz = sinz, cosz 78(:2)55222 T}-ﬁé'()y C(t)xs(z; ;‘c:si) + 6)’ ]
2 2 0522 (Vs 64)

cos T = sinz,

B(ecosz, 4 &) —ne l
€0S2, (€ €082y + ) — (¥ coszy - 0)
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und damit
tgr— ncoszy— B (y cosz, 4 d)
= Blecosz, +0)—ne

Setzt man (V; 64) in die Identitdt sin?x 4 cos2x = 1 ein und driickt
sin? z, durch 1 — cos?z, aus, so erhdlt man fiir cosz, eine Gleichung
vierten Grades

costz, + acosdz, + bcos?zy 4 ccosz, +d =0 (V; 66)

(V; 65)

mit

da =2[e (¢ —ay) + e (B —ne) — o (n — f¥)].

Ab = ( —ay)® + (L —na)® + B26* — 2ade — p2e*— (n — By)*,

de =2[p6(n — Py) —ad ( —ay) — e (Bl —nea)],

Add = %62 — (B¢ — na)? — 262,

4 =& (1 + B + (n—Py)*.
Nach Losung von (V; 66) ergibt sich x nach (V; 65) und sodann ein ge-
nauerer Wert z, aus der Tangentenformel
cetglr—({—ay)tgz—a
(an—pl)tgz—po  °

die man leicht erhilt, wenn man aus (V; 63) sin z, und cos z, berechnet.

‘tgz, =cosz

Auller z und z, ist nun auch der parallaktische Winkel im Nautischen
Dreieck PZS,, p, = 0, — x bekannt, und man findet dann ¢, t, (und damit
auch du =1, — 1,) aus den in diesem Dreieck giiltigen Formeln

sin ¢ = sin d, cos z, + cos J, sin z, cos p,,
€os @ cos t, = c0s J, COS z — sin d, sin z, €Os Py,
cos @ sin t, = sin 2, sin p,,
und schlieBlich, wenn man auch die Nullpunktskorrektion 4 A = 4, — 4, des
Kreises bestimmen will, 4, aus (III; 17):

sin t, .
cost, sin ¢ —tg d, cos ¢

tg A2 =

Zur Untersuchung der Fehlereinfliisse benutzen wir wieder Gleichungen
von der Form (V; 61). Wir haben hief das System

df; = (sin z; tg @ 4 cos z; cos A;) cos pd Au — cos z;sin A;dp — sin z;dA

(V;67)
nach cos pddu, dp und dA =d 4 A aufzulésen. Wir wollen uns die sehr kom-
plizierte Aufgabe, die Bedingungen fiir die kleinste Fehlereinwirkung auf-
zusuchen, dadurch erleichtern, daB8 wir die drei Zenitdistanzen z; einander
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gleich setzen. (Daf8 das absolute Fehlerminimum diese Bedingung erfordert,
ist aus Symmetriegriinden einleuchtend, miiite aber streng genommen noch
bewiesen werden.)

Mit z; = z erhalten wir fiir die Hauptdeterminante des Systems (V; 67)

A =|sinztgp 4 coszcos A;, coszsinA;, sinz|
=sinzcos?z 3 sin (A, — A4;)

A—dy o A— A A— A

= —4sinzcos?zsin
2 2 2 '

indem wir den in Anhang B IV bewiesenen Satz benutzen, und es ist
4-cospdAu =sinzcosz X dfi(sinA;—sin 4;) =

A— Ay s At 4

= —2sinzcosz 3> df;sin 5 9

A-dp =sinzcosz 3 dfi(cos A;—cos Ay) =

Ak'—‘A,‘ . A]‘ + A,‘
) sin 5 ’

= 2sinzcosz Y, dfsin

A-dAA =sinzcosz Y dfi[tg ¢ (sin A;—sin Ay) 4 ctgzsin (4;— Ag)] =

Ay—A; Ax+ A Ap—A;
—5 tggvcos—z——l-ctgzcos —5 |

= —2sinzcosz > df;sin

wobei die Summen stets iiber die drei zyklischen Permutationen der Indizes
i, j, k zu erstrecken sind. Es folgt schliefllich

df‘cosw
cospdAun = 5 Ai—dA; . A—A
sin sin
2 2
dr’.sinm
PR B 2
=T 3c0s2 ™ Ai—4, Aj—Ai’
sin sin
2 2
4 A; — A
"dfs tg<,vcosA"—'A’-l—ctgzcosM
i L s 2 2
_2COSZ sin A;—Ah sin A,-—A.'

2 2



51. Das Dreiazimutproblem. Losung von WILKENS 151
Nach Anhang DIV ist dann das Quadrat des mittleren Fehlers des Zenit-
punkts, wenn wir mit ¢ den mittleren Einstellungsfehler bezeichnen,

e? 1
4cos322 Y
) si

&5 =¢&p + cos2peh, = — A4
k sin2 =1

2 2

Damit dieser Ausdruck moglichst klein werde, muB z moglichst klein und
miissen, wie unschwer einzusehen ist, die Azimutdifferenzen einander gleich,

also jeweils 120° sein. Setzt man also cosz =1 und sinzﬂ%ﬂ=%, S0
findet man fiir diesen giinstigen Fall
Eq — E
o Vﬁ
Fiir das Quadrat des mittleren Fehlers der Bestimmung der Azimut-
kreiskorrektion ergibt sich entsprechend, da cos A; 4 cos Ay = — cos Aq,
2 tg’q:cos”@ —tg @ ctgzcos A,--l—ctg*zcoszA—"g—Ai
Eaa= -
4 cos?z sin? A‘_z-AkSinzAi-;A‘

Unter der Voraussetzung, daB die Azimute gleichmiBig verteilt sind, ist

. JAy—A; 3 Ay—A4; 3.
2 i_ 2 i
sin 5 =7 S cos 5 =7
E:COSA{ __0' §:c0821_4i—_ |‘47_—'.§_’
2 2
1 2 &2 2 2
also 844_3c0822[2tg @ + ctg?z].

In bezug auf die moglichst sichere Bestimmung des Kreisfehlers gelten
also andere Bedingungen als fiir die Ortsbestimmung selbst, und man sieht
sofort, daBl — wenigstens fiir mittlere Breiten — weder sehr kleine noch sehr
groBe Zenitdistanzen gew#hlt werden diirfen. Das Fehlerminimum tritt
ein, wie eine einfache Untersuchung ergibt, wenn

ctg?z = V2tgg.

Unter dieser Bedingung erhilt man nach leichter Rechnung

644 =Vi§<1+V§tg¢)- (V; 68)
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Fiir kleine Breiten ist demnach die Bestimmung des Siidpunktes am genaue-
sten, und man hat dann Sterne in grolen Zenitdistanzen zu wéhlen. In
hohen Breiten wird sie ungenau, und man nimmt zenitnahe Sterne. Am Pol
selbst ist natiirlich die Eichung des Azimutkreises unmaglich, da ja dort die
Begriffe der Himmelsrichtungen ihren Sinn verlieren. In Formel (V; 68)
findet diese Erscheinung ihren klaren mathematischen Ausdruck.

52. Das Dreiazimutproblem. Lésung von STUMPFF

Harzer hat versucht, die Unsymmetrien der WiLkensschen Losung zu
beseitigen, indem er Wege beschritt, die ihn bei der Losung der einfacheren
Dreih¢henaufgabe zum Erfolg fiihrten. Er gelangte wie WiLKENS zu einer
Gleichung vierten Grades fiir den Cosinus einer der drei Zenitdistanzen, aber
es ist ihm nicht gegliickt, die Durchsichtigkeit der mathematischen SchluB-
folgerungen und die Einfachheit des Algorithmus zu verbessern. Wir kénnen
daher diese interessante, aber fiir die praktische Rechnung ungeeignete
Methode mit dem Hinweis auf die Originalarbeit (FuBnote S. 147) iibergehen.

Im folgenden sei der Loésungsversuch des Verfassers beschrieben, der
ebenfalls die Erfahrungen am Dreih6henproblem (Abschnitt 48) weitgehend
benutzt und die tiefe innere Verwandtschaft beider Aufgaben deutlich her-
vortreten 148t. Man wende die Grundgleichung (III; 17) auf drei Sterne
(i =1, 2, 3) an und schreibe sie in der Form

sin A; (cos ¢ sin d; — sin ¢ cos §; cos t;) -+ cos A; cos §; sint; = 0.

Setzt man nun
t=1+A4u, A;=A!+A4A,

wobei die A; wie im vorigen Abschnitt die Kreisablesungen bedeuten und
4 A die unbekannte Nullpunktskorrektion des Kreises ist, so ergeben sich
nach elementarer Rechnung die Gleichungen

a;§ + bin + il = wr + vy + wiz, (V; 69)
mit den Unbekannten
x=—cosdAsindu 4 sin 4 A cos du sin ¢,
y =cos 4 A cos Au + sin A4 A sin Au sin ¢,
z =sin 4 A cos ¢, (V; 70)

& =sin 4 A sin Au + cos 4 A cos Au sin ¢,
n = —sin 44 cos du + cos 4 A sin 4u sin ¢,
¢ =cosdAcos ¢
und den Koeffizienten
a; = — sin Ay’ cos J; cos T, u; = cos A{’ cos §; cos T;,
b; = sin A cos 6; sin 7;, v; = — cos A{ cos d; sin T;,
¢; = sin A; sin 6;, w; = — cos A{' sin ;.
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Zwischen den sechs Groflen (V; 70) bestehen auBler den drei homogenen
linearen Gleichungen (V; 69) die Beziehungen zweiten Grades

Bn =1, } .
tyi42=1,
§r+ny+8z=0. (V;72)

Man bestimme nun die neun HilfsgroBen &, ny, {15 &2 %2 La3 a0 M3s Cs
aus folgenden drei Systemen von je drei linearen Gleichungen:

a;é + bigy + il =, l
a;éy + bimg + cily = s, i=12173) (V;73)
aiky + bily + Gl = wi [

eine Operation, die rechnerisch (besonders mit Hilfe der Rechenmaschine)
bequem ausfithrbar ist, da die drei Systeme dieselbe Hauptdeterminante
besitzen. Zwischen den neun Hilfsgr6B8en und den sechs Unbekannten be-
stehen die Beziehungen

E= 511' + Ezy + 532.
N =MT + Ny + N2 (V:74)
=0+ Ly + G2
wie man leicht beweist, indem man die Gleichungen (V; 73) mit x, y, z mul-
tipliziert und addiert. Das Ergebnis ist identisch mit (V; 69), woraus die
Behauptung folgt.
Setzt man nun in die Differenz der Gleichungen (V; 71) und in (V; 72) die
Ausdriicke (V; 74) ein, so erhélt man zwei homogene quadratische Gleichungen
A11‘2+Bly2+C122-|—D1yZ+E121‘+F11'y=0, } (V75)
Ayx? 4 Byy? + Cy22 + Dyyz + Eyzx + Foxy =0, '

mit den Koeffizienten

h=g+m+a-L =g
B=8+m+83 -1  B=m
C, =8 +n 42 —1, C, =105 : (V;76)

Dy = &85 + n2ms + Lol Dy = {5 + 75
E3é1 + mam + Calys E, =&+
&18s + mns + 18y Fy =n + &, J

RS

aus denen man u =—Z;und v =%bes_timmen kann, worauf man wegen
(V;71) y aus
y?(u?4v241)=1, sodann z = yu, z=yv

erhélt. Sofern Au und 4 A einigermaBen klein sind, ist y, wie aus der Defi-
nition folgt, immer positiv und nahezu gleich eins.
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Wenn man aus den beiden Gleichungen (V; 75) eine der Unbekannten u,

v eliminiert, ergibt sich fiir die andere eine Gleichung vierten Grades. Es ist
aber nicht zweckmiBig, diese Substitution exp11z1t vorzunehmen, da die
Symmetrie der Formeln, die in den Ausdriicken (V; 76) noch klar hervor-
tritt, durch die Bevorzugung einer der Unbekannten verloren ginge. Es ist
daher zweckméBig, (V; 75) als die Schliisselgleichungen des Problems anzu-
sehen und die Umwandlung in eine biquadratische

b Gleichung erst vorzunehmen, nachdem man die

numerischen Werte der Koeffizienten eingesetzt hat.

Mit z, y, z sind auch &, », { durch (V; 74) bekannt.

§&  Um aus diesen GroBen die eigentlichen Unbekannten
Sl @, Au, 4 A abzuleiten, nehmen wir eine geometri-
sche Uberlegung zu Hilfe. In Abb. 45 sei PZ der

_ Meridian, PQ der Stundenkreis mit dem Stunden-
Z  winkel Au, ZQ der Vertikal mit dem Azimut A A.
Der Schnittpunkt Q dieser beiden Kreise habe die
Poldistanz @,; der zu ZQ rechtwinklige Vertikal
treffe PQ im Punkte R mit der Poldistanz @, und

S der Zenitdistanz u. Die parallaktischen Winkel in
7§ den Dreiecken PZQ und PZR seien p; und p,. Dann
$ findet man aus (V; 70), indem man die Grundformeln
. Anhang A I (2) auf diese Dreiecke anwendet, die
Beziehungen
Abb. 45: . . . .
Dreiazimutproblem T = SN Py COS &y, § = sin p, cos @,
nach STUMPFF y =cosp,, 7) == COS Py,
z =sin p, sin @,, { = sin p, sin @,,

aus denen man p,, p,; &,, &, ableiten kann. Im rechtwinkligen Dreieck ZRQ
ist ferner nach der zweiten Formel Anhang A I (6)

tgu = — cos p, tg (& — &),
und es folgen sodann aus Dreieck PZQ die Gleichungen
sin ¢ = cos @, cos 4 4 sin @, sin § cos p,,
cos @ cos Au = sin @, cos it — COS @, Sin 4 €os Py,
cos @ sin Au = sin u sin p,,
cos g cos AA = sin @, sin p,,
! cos g sin 4 A = cos @, sin u — sin @, cos y cos P,

zur Bestimmung der gesuchten GroBen.

Sind Au und 4 A hinreichend klein, was in der Praxis immer erreichbar
ist, so 140t sich die umsténdliche Aufstellung und Losung der biquadratischen
Gleichung umgehen, indem man ein rasch konvergierendes Néherungsver-
fahren anwendet, das genau der Reihenentwicklung (V; 51) im Falle des
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Dreihéhenproblems entspricht. Es ist dann, wie aus (V; 70) folgt, y nahezu
gleich der Einheit, wihrend z, z und daher auch u, v von der Ordnung der
kleinen GréBen Au, 4 A sind. Schreibt. man die Gleichungen (V; 75) in der
Form

Fyu+ Dy + By = — (A,u? + Eyuv + Cpvd), |

‘ V;77)

Fou + Dyv + B, = — (Au? + Eyuv + Cy0?), J
so sind die rechten Seiten von zweiter Ordnung und diirfen daher in
erster Ndherung vernachléssigt werden. Man erhélt also gute Niherungswerte
fiir u, v aus linearen Gleichungen. Verwendet man diese zur Berechnung der
quadratischen Glieder auf der rechten Seite, so ergeben sich neue lineare
Gleichungen, aus denen verbesserte und meist schon endgiiltige Werte der
Unbekannten hervorgehen.

Damit ist die Aufgabe gelost, und es sind nur noch einige zusétzliche
‘Bemerkungen notwendig:

1. Die gemeinsame Hauptdeterminante der drei Gleichungssysteme
(V; 73) lautet

A4 = | a;, b, ¢; | = — sin A" sin Ay’ sin A4’ | cos &; cos 7;, cos d; sin ;, sin J; .

Sie darf nicht verschwinden, sondern soll um der Genauigkeit der Ergebnisse
willen moglichst groB sein. Es darf also keines der abgelesenen Azimute Ay
die Werte 0° oder 180° annehmen. Nehmen wir gleichméBige Verteilung der
Azimute an, wie es ja zur Erzielung grofter Genauigkeit der Ortsbestim-
mung empfehlenswert ist, so erreicht der Faktor sin Ay’ sin A;' sin Ay’ sein

Maximum -+ l, wenn einer der drei Werte A gleich 4- 7 gesetzt wird. Mit
1 g 28

den Ergebnissen der Fehleruntersuchung des vorigen Abschnitts, wonach die
drei Azimute — abgesehen von ihrer gleichméBigen Verteilung iiber den
Horizont — beliebig orientiert sein diirfen, steht dies natiirlich nicht in
Widerspruch: man kann ja stets erreichen, daf} eine der drei Ablesungen A’
den Wert 90° annimmt, indem man alle A; um eine geeignete gemeinsame
Konstante vermehrt. Um die gleiche Konstante ergibt dann die Rechnung
die Nullpunktskorrektion 4 A zu klein. Oder, anders ausgedriickt: Um die
angedeutete Schwierigkeit zu vermeiden, ist es nur notig, den Azimutkreis
bei der Beobachtung so zu klemmen, daf3 die Ablesung 90° (oder 270°) un-
gefdhr dem Azimut eines der Sterne, z. B. des ersten, entspricht.l)

2. Soll die Auflésung der biquadratischen Gleichung durch Anwendung
des N#herungsverfahrens (V; 77) vermieden werden, so ist Voraussetzung,
daB3 4 A klein sei. In diesem Falle diirfen die Azimute A; nicht, wie oben,
durch beliebige Konstante veridndert werden. Es ist also'notwendig, einen der

1) Man kann diese Schwierigkeit auch umgehen, wenn man in dem oben be-
schriebenen Algorithmus zur Auflésung des Systems (V; 69) die Rollen der
GroBen &, 7, { und x, y, 2 vertauscht. Die Hauptdeterminante 4 erhilt dann
den Faktor cos 4," cos 4,’ cos 45, der fir 4, =0 gerade sein Extremum an-
nimmt.
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drei Sterne wirklich in der Néhe des Ersten Vertikals zu beobachten, wihrend
die beiden anderen ungefidhr 120° im Azimut beiderseits von ihm entfernt
sein, auf alle Fille aber die Nihe des Meridians vermeiden sollten. Auch fiir
die Zenitdistanz der drei Sterne (die wir wieder als gleich oder nahezu gleich
ansehen wollen) ergeben sich zusétzliche Forderungen, wenn die rasche Kon-
vergenz des Niherungsverfahrens gewihrleistet werden soll. Eine nihere
Untersuchung dieser Frage, die hier iibergangen werden darf, hat ergeben,
daB — fast unabhingig von der geographischen Breite — Zenitdistanzen um
50° am vorteilhaftesten sind.

53. Bestimmung von Ortszeit und Polhdhe aus Azimut and Zenitdistanz eines Gestirns

Beobachtet man mit einem Universalinstrument, dessen Aufstellungs-
febler, inshesondere die Nullpunktskorrektionen der beiden Kreise, bekannt
sind, Azimut und Zenitdistanz eines Gestirns, das man auf den Schnittpunkt
des Horizontal- und des Vertikalfadens einstellt, so kann man aus diesen
beiden GréBen (A, z) Uhrkorrektion und Polhéhe bestimmen.

Aus der ersten der Grundgleichungen (I; 6):
cos 4 sint = sin z sin 4,

cos § cos! = cos z cos @ -+ sin zsin ¢ cos 4, (V; 78)
sin § = cos z sin ¢ — sin z cos ¢ cos 4,

ergibt sich zunichst

sint{ = sin z sin A4 sec é.
Diese Formel reicht zur Bestimmung von ¢ (und damit von du =t — u + «)
vollig aus, obwohl sie keine Tangentenformel ist, denn die folgenden Genauig-
keitsbetrachtungen werden zeigen, da3 die Fehlereinfliisse am kleinsten sind,

wenn die Beobachtung in der Nihe des Meridians angestellt wird, also sin ¢
klein ist. Aus den beiden letzten Formeln (V; 78) folgt sodann

sin @ (cos? z + sin%z cos? A) = cos d cos? sin z cos A + sin § cos z,
cos @ (cos?z + sin?z cos? A) = cos d cost cos z — sin 4 sin z cos A
und daher, wenn man durch cos é cos ¢ cos z kiirzt,

to o — tgzcosA.—f- tgdsect
89 = 1—tgzcos Atgdsect

Setzt man also
tgf=tgdsect, tgy =tgzcos A,
so erhilt man einfach
p=F+7

Diese Losung stimmt vollkommen mit dem Ergebnis (V; 11) iiberein, das
wir bei der Behandlung der Standlinienmethode erhalten hatten.
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Die giinstigsten Beobachtungsbedingungen leitet man aus den Differen-
tialbeziehungen (V; 4) und (V; 56) ab, die man unter Beriicksichtigung der
letzten beiden Gleichungen (IT; 29) auch in der Form

df = dz = cos Adp + cos § sin pd4u, |

, , (V3 79)
dg = sin zdA = — cos zsin Adg + cosdcos pddu, |

schreiben kann. df und dg bedeuten dabei die Einstellungsfehler auf den
Horizontal- bzw. Vertikalfaden des Gesichtsfeldes. Man findet dann

de (cos A cos p 4 sin A sin p cos z) = df cos p — dg sin p,
cosd dAu(cos A cos p 4 sin A sin p cos z) = df sin A cos z 4 dg cos A.

Wendet man Anhang AT (2), erste Formel, auf das Nautische Dreieck an, so
zeigt man, daB3
cos A cosp + sin Asinpcosz =cost.

Es ist demnach einfacher
de = (df cos p — dg sin p) sect,
cos 6dAu = (df sin A cos z 4 dg cos A) sect .

Betrachtet man die Genauigkeiten beider Einstellungen als gleich grof3
und bezeichnet mit ¢ den entsprechenden mittleren Fehler, so erhélt man
in iiblicher Weise fiir den mittleren Fehler des Zenits die Gleichung

2

& =¢; -+t costpeh, = [cos?d + cos? @ (1 —cos2?dsin2t)],

cos? ¢ cos?t
wobei die erste Gleichung (V; 78) benutzt wurde. Es ist also
es =€V 14 costg,

und das Minimum wird erreicht, wenn 6 =0 und sin{ =0 ist, also fiir
Aquatorsterne im Meridian, und zwar in oberer Kulmination, da ja die
untere Kulmination fiir Aquatorsterne immer unter dem Horizont statt-
findet.

54. Bestimmung von Ortszeit und Polhohe aus den Differenzen der Azimute
und Zenitdistanzen zweier Sterne

Obwohl die im vorigen Abschnitt beschriebene Methode zu iiberaus ein-
fachen und handlichen Formeln fiir die Reduktion der Beobachtungen fiihrt
und als einzige Ortsbestimmungsmethode den Vorzug hat, dal Zeit und Pol-
hohe aus einer einzigen Sterneinstellung und Uhrzeit folgen, wird man sie
in der Praxis ungern anwenden, da sie die Kenntnis der Nullpunktskorrek-
tionen der beiden Kreise erfordert. Beobachtet man dagegen Azimut und
Zenitdistanz zweier Gestirne (oder auch desselben Gestirns zu zwei ver-
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schiedenen Zeiten), so benétigt man zur Ortsbestimmung nur die Differenzen
der beiden Zenitdistanzen und der beiden Azimute sowie die Differenzen der
zugehorigen Uhrzeiten. Als Nebenergebnis erhilt man die Korrektionen der
Kreise.

Abb. 46: Ortsbestimmung aus Differenzen der Zenit-
distanzen und Azimute zweier Sterne nach HARZER

P. Harzer?) l6st diese hiibsche Aufgabe folgendermaflen: Gegeben seien
auBer den Koordinaten (x;, d;; @y, ;) der beiden Sterne die gemessenen
Differenzen

x=A, — A,
=12y, —2z oder v =2z,+ 2%,

A=1T,— 1T, = (Ug— ;) — (ta — ).

Ferner sei (Abb. 46) M die Mitte des Bogens S,S, zwischen den beiden Stern-
ortern. Dieser Punkt habe die Deklination d, den Stundenwinkel f und die
Zenitdistanz z. Die Entfernung der beiden Sternérter sei b, und der Stunden-
kreis von M bilde mit denen von S; und S, die Winkel 4, und 2,, so daf}
A = 2; + A,. Im Dreieck PS,S, gilt dann

cos b = sin §, sin d, -+ cos 6; cos &, cos A =

= c08 (0, — ;) coszg—cos (6 + &) sinzé

1) P. Harzer: Uber die Bestimmung der Breite und der Uhrkorrektion aus
der Beobachtung zweier Sterne an einem Universalinstrument, fiar das die
Indexfehler beider Kreise unbekannt sind. Astron. Nachr. 212, 173.

%)y jst die Differenz der abgelesenen Zenitdistanzen, wenn man das Fernrohr
zwischen den beiden Beobachtungen umlegt.
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oder
b 1-+4cosb 1+ cos(d,—6;)
2 p— p— 2
cos 5 = 5 = ) cos P + 5
oder
b 0y — 0Oy O+ 6 y)
2 o 2 2 2 2
c0s? 5 = €0s* ——5— cos + sin — 5 sin 5 I
ebenso
., b ., 0g—0 Y} 0y + 6 ‘
2~ _gjp? -2 1 2 2 72 1in2
sin® 5 = sin 5 cos?5 -+ cos 5 sin®5.

1—cos (63 —I- 61) sin? A

|
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(V; 80)

Durch diese Formeln ist b bekannt, wobei noch zu bemerken ist, daB

cos %und sin%stets positiv sind, da b << 180°.

In den Dreiecken PMS,; und 'PMSz ist

b b .
cos d, cos A, = cos—- cos § -} sin - sin é cos w,

2 2
. b
cos d, sin 4; = sin - sin o,
. . b
sin 8, = cos 5 sin 6 — sin 5 Cos d cos w,

b b
cosézcoslz=cos§ cosé—smismécosw,

P b
cos d, sin 1, = sin-sin @,

b b
sin 62 =cos o sind 4 sm €os d cos w.

Durch Multiplikation von (a) und (e) bzw. (b) und (d) erhiilt man

cos &, cos d, cos A, sin 4, = sin 3

cos 4, cos d, sin 4, cos 4, = sin

(b)

(©

(d)

(e)

®

2 2
Dann folgt:
(f) —(¢): cosdcosw = sin 8o — Lco 8o+ & cosec =
’ 2 2 2’
(9)+ (h):  cosdsinw = cos d, cos d, sin A cosec b,
) + (o): sin = sin 62_*2_6%03 62_261 sec%.

b . b b
5 sinw €08 - €0s 6 — sin - sin d cos @

%sin ) (cos b cos d 4 sin % sin d cos w) , (8)

)._ (h)

(V; 81)
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Ferner ergibt sich aus (b) — (e):

cos d, sin 4, — cos d,sin 4, = 0
und wegen
hth h—h_ A d—h

h==" 2 T2 T 2
YR P P Y | A A—2
p=tth hth 2 Aok
nach kurzer Rechnung
Ay—2 A, 0,—0;, 0,406
tg%:tgitg 3 Lig 2 + L (V; 82)

‘womit neben 4, 4+ 4, = 4 auch 4, — 4, und somit 4;, 4, einzeln bekanntsind.

Die Gleichungen (V; 80) bis (V; 82) lassen sich auch ganz entsprechend
fiir die Dreiecke ZS,S,, ZMS; und ZMS, aufstellen. Hierbei tritt Z an die
Stelle von P und daher » = %; - %y, 2;, 25, 2, ¢ an die Stelle von 4 = 4, 4 4,,

1 7 7
’2——'(51, -5—62, 5—6, .
Infolgedessen ist auch 62—261 durch -21_222 = —% und (k——gﬁ durch
d m =T _r zu ersetzen, und man erhilt
2 2 2 2 ’
b 7 v %
2 2 2 2 __ 2
cos 5 = cO0S 5 cos —|—cos 5 sin 5
(V; 83)
sin? b — sin? & cos? X —|— sin? = sin? -
2 2 2 2’
sin z cos ¢ = —sin I sin 2 cosec —
=gy 2"
sin z sin ¢ = sin z, sin z, sin % cosec b =
= % (cos u — cos»)sin x cosec b, (Vs 84)
€0S z = CO0S £ cos X seé E
- 2 2 2’
L Ha—Ay X ULV .

ml Dreieck PZM ist sodann
cos @ cosf = cos z cos  — sin z sin d cos (6 — w) ,
cos g sint = sinzsin (¢ — ),
sin ¢ =cos zsin § + sin z cos § cos (6 — w) .
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Mit Hilfe von (V; 84) wiiren z, o und damit ¢, ¢ berechenbar, wenn gleich-
zeitig 4 und ¥ gegeben wiren. Nun ist zwar nur eine dieser beiden GroSen
durch Beobachtung bekannt, die fehlende folgt aber aus den Gleichungen

(V; 83), wobei zu beachten ist, da3 % und %

Mit u, # sind 2,, z, bekannt und es wird moglich, durch Vergleich mit den
abgelesenen Zenitdistanzen den Nullpunktsfehler des Hohenkreises zu be-
stimmen. Um auch die Nullpunktskorrektion des Azimutkreises zu be-
rechnen, benutzt man die Grofen x,, x,, die aus », 4+ », = » und (V; 85)
folgen. Ferner braucht man das Azimut A des Vertikals ZM, das aus PZM
mit Hilfe der Formel (III; 17)

tg A

im ersten Quadranten liegen.

sin{
- tg 6 cos ¢ — costsin ¢
erhalten wird. Damit ergeben sich die wahren Azimute der Sterne:
Al=A—un, Ay=A+x
und durch Vergleich mit den abgelesenen Azimuten die Kreiskorrektion.
Ebenso folgt die Uhrkorrektion Au aus ¢, denn es ist ja

ty=t—2A, ty=1-+ A

also

b4+t Ti4T Aa—4, T, + Ty,
o= =ttt Ty

Die Untersuchung der Fehlereinfliisse fithren wir nach Harzer folgender-
maBen durch: Wenden wir die Differentialformeln (V;4), (V; 56) auf die
beiden Sterne (i = 1,2) an, so erhalten wir

dz; = cos Aidgp + sin A; cos pdAu,
dA; = — ctg z;sin Aydp + (tg @ + ctg z; cos A;) cos pddu s
Es ist also '
dx =dA; —dA; = — (ctg z, sin A, — ctg 2, sin A,) dp +
+ (ctg z, cos A, — ctg z, cos A;) cos pdAu,
du = dzy — dz; = (cos Ay — cos A,) dp +
+ (sin A, — sin 4,) cos pd4u,
dv = dzy + dz; = (cos Ay 4 cos A;)dp +
+ (sin A, + sin 4,) cos pdAu.

Betrachten wir » und u als' beobachtete Gréfen und dx, du als ihre Fehler,
so folgt aus den ersten beiden Gleichungen (V; 86)

— dx (sin Ay —sin A,) 4 du (ctg z, cos A, —ctg z, cos A,)
(ctgzy + ctg z,) [1—cos (A;— 4,)]

dx (cos Ay—cos Ay) + du (ctgzysin A, —ctgz, sin 4,)
(ctgz, + ctgzy) [1—cos (A,— Ay)]

(V; 86)

do=

cospddu=

12 Geogr. Ortsbestimmungen
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Bezeichnet man wieder mit ¢ den mittleren Einstellungsfehler auf beide
Fiden (indem man die Einstellung auf den Horizontal- und den Vertikal-
faden als gleich genau ansieht), so ist offenbar

1 1
2 __ o2 2 __ 2 2
E=¢ (sin221+ sin212> » Bu=ey=2¢
und
& = ep + cos? @ ehy
__2&(1—cosx) + &, (ctg®z, 4 ctg®z, — 2ctg zy ctg zy cos %)
- (ctg z; + ctg z,)2 (1 —cos )2

Man bemerkt zunéchst, daB man, um den Fehler méglichst zu verkleinern,
cos ¥ = — 1, also A, — A; = = zu setzen hat, d. h. die beiden Sterne sollen
im selben Vertikal auf verschiedenen Seiten des Zenits beobachtet werden.
Unter dieser Voraussetzung ergibt sich bei Erweiterung des Bruches mit
sin2 z, sin? z, nach kurzer Reduktion

1  sin?z, } sin?z
2 __ of 1 21,
bo=¢ (2 + sin2 (z, -+ z,) )
Das Minimum dieses Ausdrucks tritt ein, wenn z; = 2z, =z gesetzt wird
[vgl. (IIT; 32) und (IV; 27)], und es ist dann

2 82
&= 5(1 + sec2z);

Fiir kleine z néhert sich also &, dem giinstigsten Wert e.

Legt man das Fernrohr zwischen den Beobachtungen um, sind also » und
» als Beobachtungsdaten gegeben, so gelangt man auf demselben Wege zu
dem Ergebnis, da3 cos x = 1, also A, = A, gesetzt werden muf3. Die Sterne
sind also wiederum mdglichst im gleichen Vertikal, aber auf derselben Seite
vom Zenit zu beobachten. Unter dieser Annahme erhilt man die Formel

_ sin®z; +sin®z,
Sin2 (22_21)

£3=82(—;—+G),

. - 3 . -
die dem Minimum &3 = 5 €% zustrebt, wenn eine der Zenitdistanzen gegen

null geht, wihrend die andere an sich beliebig sein darf. Es ist aber darauf
zu achten, daB die Differenz z, — 2z, nicht zu klein ist, da die Funktion G
fir z; =2z, unendlich gro8 wird und an der Stelle z; =2z, = 0 die un-
bestimmte Form 0:0 annimmt.
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55. Ortsbestimmung mit Hilfe der parallaktischen Winkel

Harzer?) und WiLkENs?) haben darauf aufmerksam gemacht, da3 man
Ortsbestimmungen auch durchfiihren kann, wenn die parallaktischen Winkel
der Gestirne als Beobachtungsdaten gegeben sind. Natiirlich lassen sich diese
nicht unmittelbar an Instrumenten ablesen, die zur Messung von Zenit-
distanzen und Azimuten diemen. Es kann aber gezeigt werden, daB die
parallaktischen Winkel mit Hilfe des Universalinstruments auf folgende
indirekte Weise erhalten werden:

Nach (II; 28) sind

df dz . dg . dA .
(Tt_dt_cosdsmp, 3 = S0z T =cosdcos p v; 87)

die Geschwindigkeiten, mit denen sich die Abstinde der Sterne vom Hori-
zontal- bzw. Vertikalfaden des Gesichtsfeldes édndern. Es ist also

df

Der. parallaktische Winkel p ist daher nichts anderes als der auf die Hori-
zontale bezogene Richtungswinkel der Tangente an der scheinbaren Bahn
des Sterns durch das Gesichtsfeld. Bei #quatornahen Sternen kann das kurze
Stiick der scheinbaren Bahn, das man beobachtet, als geradlinig angesehen
werden — hier ist also p die Neigung der Sternbahn selbst und kann auf einen
beliebigen Zeitpunkt innerhalb der Dauer des Durchgangs bezogen werden.
Bei Sternen hoherer Deklination erscheint die Sternbahn gekriimmt, in die-
sem Falle ist p die Richtung der Sehne zwischen zwei Bahnpunkten und kann
ohne wesentlichen Fehler dem arithmetischen Mittel der beiden Zeitpunkte
zugeschrieben werden, die den Enden der Sehne entsprechen.

Nach diesem Prinzip kann man p auf zwei Arten praktisch bestimmen:

1. Es seien im Gesichtsfeld zwei vertikale Fiden mit bekanntem Abstand
(etwa dg = 10° = 150”) ausgespannt und ein Mikrometer mit horizontalem
MeBfaden vorhanden. Man stelle den MeBfaden auf den Stern ein, wihrend
er die beiden Vertikalfiden tiberschreitet. Ist dann df die wegen differentieller
Refraktion korrigierte und in Bogensekunden ausgedriickte Differenz der

beiden Mikrometerablesungen, so ist p =arctg (?) der parallaktische
Winkel, der bis auf unmerkliche Abweichungen der Mitte zwischen den beiden
Messungszeiten zuzuordnen ist.

1) P. Harzer: Uber das Problem der drei parallaktischen Winkel und die
Verwendung des Problemes bei einer Methode der geographischen Ortsbestim-
mung ohne astronomische Instrumente. Astron. Nachr. 193, 147.

2) A. WiLKENS: Neue Prinzipe und Methoden der geographischen Ortsbe-
stimmung. Astron. Nachr. 195, 49.

12¢
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2. Man bringe in der Fokalebene des Fernrohrobjektivs eine photo-
graphische Kassette an. Bei lidngerer Belichtung wird auf der Platte die"
scheinbare Bahn des Sterns als mehr oder weniger gekriimmte Schwirzungs-
spur erscheinen, deren Endpunkte dem Anfang und Ende der Belichtungs-
zeit entsprechen. Wenn die Kassette so orientiert ist, daf3 ein Kantenpaar der
Platte stets der Kippachse des Fernrohrs parallel bleibt, und wenn dafiir
gesorgt wird, dal die Kippachse stets horizontal liegt, dann lassen sich die
parallaktischen Winkel durch Ausmessung der Sternspuren leicht finden.
WiLkens hat das zur Auswertung solcher Aufnahmen notwendige Verfahren
a. a. . erschopfend beschrieben. Harzer benutzt bei seiner Methode nur
die Differenzen der parallaktischen Winkel und kann infolgedessen die
Bezugsrichtung auf der Platte willkiirlich annehmen.

Im Nautischen Dreieck gelten die Formeln

sinzsin p = cos g sint, } (V; 88)

sin z cos p = sin @ cos § — cos @ sin'd cost .

Eliminiert man hieraus sin z, so ergibt sich die allen in diesem Abschnitt zu
beschreibenden Methoden zugrunde liegende Formel

sin p (sin ¢ cos § — cos @ sin § cos f) = cos p cos g sint; (V:89)

Uber alle Methoden der Ortsbestimmung, die sich auf die Messung abso-
luter oder relativer parallaktischer Winkel stiitzen, hat WiLKENS in der oben
zitierten Arbeit eine vollstindige Ubersicht gegeben. Auf sie sei der Leser
verwiesen, der sich fiir diese theoretisch interessanten, aber in der Praxis
ungebréduchlichen Methoden besonders interessiert. Hier begniigen wir uns

. damit, die wichtigsten von ihnen kurz zu skizzieren:

A. Die Messung des absoluten parallaktischen Winkels eines Sterns
(e, 6) geniigt zur Bestimmung des Uhrstandes bei bekannter Polh6he oder
der Polhohe bei bekannter Zeit. Fiir die erste dieser Aufgaben liefert (V; 89)
eine Gleichung von der Form

acost + bsint =c,

aus der ¢ nach den Methoden in Anhang C bestimmt werden kann. Die
Losung der zweiten Aufgabe,

tgp =ctgpsecdsint 4 tgdcost (V;90)

folgt direkt aus (V; 89).

Differenziert man (V;88), indem man nur § als konstant ansieht, |so
folgen die Gleichungen

cos z sin pdz + sin z cos pdp = — sin ¢ sintdep + cos ¢ cos tdt,
coszcos pdz — sin zsin pdp = (cos ¢ cos § 4 sin ¢ sin é cos t) dp 4
+ cos g sin d sin t d¢.
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Eliminiert man hieraus dz, so ergibt sich zunichst
sinzdp = —dg [sin ¢ (cos p sint + sin p cos t sin §) + cos ¢ sin p cos 6] +-
-+ cos @dt (cos p cost — sin p sin ¢ sin §)
und, da zufolge Anhang A I (2) im Nautischen Dreieck
cos pcost —sin psintsind = cos 4,
cos psint 4 sin p costsin § = sin A4 sin ¢,
sin p cos § = sin A cos ¢,
so erhélt man schlieBlich
sinzdp = — sin Adg + cos A cos pdt (V;91)

als Grundgleichung fiir alle Fehlerbetrachtungen, die Ortsbestimmungen
aus parallaktischen Winkeln betreffen. Fiir die oben beschriebenen einfachen
Aufgaben folgt (df = dAu)

sinzdp
sin4

sinzdp

cospddu = cos A (V; 92)

bzw. dp=—

Die Zeitbestimmung ist also im Meridian, die Polhéhenbestimmung im
Ersten Vertikal am genauesten. Die Formeln (V; 92) erwecken auflerdem den
Anschein, als ob, wegen des Faktorssin z, die Fehlereinfliisse mit abnehmender
Zenitdistanz gegen null streben, so daB also, fehlerfreies ¢ und § voraus-
gesetzt, die Genauigkeit der Zeit- oder Polhohenbestimmung durch Beob-
achtung in moglichst kleinen Zenitdistanzen beliebig gesteigert werden
konnte. Das ist natiirlich ein FehlschluB, den folgende (ngerlegung leicht be-
seitigt:

Es sei (Abb. 47) SH der grofite Kreis der Sphiire, der den Sternort S (zur
Zeit der Beobachtung) mit denjenigen Punkten verbindet, in denen die
Verldngerung der Horizontalachse (Kippachse) des Instruments die Sphére
trifft. SQ (senkrecht auf SH) sei der zu diesen beiden ,,Achsenpolen‘* gehorige
»Achsendquator. Im Gesichtsfeld des Fernrohrs bedeuten dann SH und
SQ offenbar die als fehlerfrei angesehenen. Richtungen des Horizontal- und
Vertikalfadens. SS” sei die Richtung der scheinbaren Sternbewegung, p der
parallaktische Winkel. Ist nun die Richtung der Kippachse genau horizontal,
so geht der GrofStkreis, der durch den Vertikalfaden SQ bezeichnet wird,
genau durch das Zenit Z. Hat jedoch die Achse eine Neigung di, so geht
dieser GroBtkreis an Z im Abstand ZQ = di vorbei, und dem gemessenen
parallaktischen Winkel p haftet dann der Fehler dp an, fiir den im recht-
winkligen Dreieck SZQ die Gleichung sin zsin dp = sindi oder, wenn di
und dp klein sind,

' sinzdp =di (V;93)

gilt. Unter der Voraussetzung, dafl der gemessene Winkel p und die Neigung
des Horizontalfadens SH fehlerfrei sind, stellt also der gemeinsame Zahler
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der Formeln (V; 92) den Nivellierungsfehler der Kippachse dar, deren hori-
zontale Lage ja bei jeder Beobachtung mit Hilfe der Libelle kontrolliert
werden muB. Einen Fehler in der Bestimmung von p und der Neigung des
Horizontalfadens, auf dessen Richtung die Messung von p bezogen wird,
kann man immer mit Hilfe der Beziehung (V; 93) auf einen Nivellierungs-
fehler di zuriickfiihren bzw. mit einem
solchen vereinigen. Man schreibt statt

QLY |, (V; 92) also besser
’ — di .
S ‘ cos pdAdu = s A’
z . di
@ 9=—"na

Unter den giinstigsten Bedingungen
sind also diese Fehler von der GréBen-
P . ordnung des Fehlers der Bestimmung
§ der Achsenneigung, gegebenenfalls ver-
mehrt um einen Fehler von der
Form sin zdp.

B. Aus den parallaktischen Win-
keln zweier Sterne lassen sich Zeit
und Polhthe gemeinsam bestimmen.
Wendet man (V; 90) auf zwei Sterne S;, S, an, so ergeben sich zwei Aus-
driicke fiir tg @, die einander gleich gesetzt werden konnen. Es ist also

ctg p, sec 9, sint, + tg &, costy = ctg p, sec d, sint, 4 tg d, cost,.

Setzt man hierin {, = 7, + 4du, {, = 7, + 4u, so erhilt man eine Formel fiir
tg Au. Die Polhohe folgt dann aus (V; 90).

Zur Bestimmung der Fehlereinfliisse dienen die Gleichungen (V;91),
(Vs 93)

Abb. 47: Ortsbestimmung aus par-
allaktischen Winkeln. Fehlereinfliisse

di; = —sin A, dp + cos A, cos ¢ d Au,
di, = — sin A,dp + cos Ay cos pd Au,
aus denen do— diycos Ay—di,cos A
4 sin(d,—4;)
di,sin A,—di,sin 4,
sin (4,— 4,) ’
folgt. Werden die beiden Sterne in gleicher Zenitdistanz beobachtet, so darf
man annehmen, daf die Fehler di;, di, von gleicher GréBenordnung ¢ sind.
Man erhélt dann fiir den mittleren Zenitfehler
. — eV2 .

° 7 |sin(d,—Ay)|
Die beiden Sterne sind also in beliebigen, aber moglichst um 90° verschie-
denen Azimuten zu beobachten.

cospdAdu =
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C. Bei den bisher beschriebenen Methoden wurden die absoluten parallak-
tischen Winkel als Ausgangsdaten verwendet, es wurde also der Neigungs-
fehler des Horizontalfadens als bekannt vorausgesetzt. Durch Vermehrung
der Beobachtungen 148t sich dieser Neigungsfehler eliminieren bzw. mit-
bestimmen. Man benutzt dann lediglich die Kenntnis der Differenzen der
parallaktischen Winkel. So 148t sich aus der Differenz der parallaktischen
Winkel zweier Sterne die eine der Groflen ¢ oder Au bestimmen, wenn die
andere bekannt ist. Ferner kann man ¢ und Au gleichzeitig ermitteln, wenn
man zwei Paare von Sternen beobachtet. Die Losung dieser Aufgaben, die
man auch bei WiLkens (loc. cit.) findet, ist leicht und kann dem Leser zur
Ubung iiberlassen bleiben.

Die letztgenannte Aufgabe 148t sich natiirlich auch durchfiihren, wenn
man nur drei Sterne beobachtet hat. Die gemessenen Winkel p;’ beziehen sich
dann auf eine beliebige Richtung im Gesichtsfeld, und die Unbekannten
sind ¢, Au und die Abweichung Ap dieser Bezugsrichtung von der Hori-
zontalen. Ist die Bezugsrichtung die des Horizontalfadens, so stellt 4p die
kleine Neigungskorrektion dieses Fadens dar.

Dieses Problem der drei parallaktischen Winkel, das dem Problem der
drei Azimute verwandt ist, wurde von Harzer, WiLkeNs und dem Ver-
fasser entwickelt und von ersterem in eine beziiglich der drei Sterne voll-
kommen symmetrische Form gebracht. Bei Anwendung der photographischen
Beobachtungsmethode entsprechen die Differenzen der parallaktischen
Winkel, von kleinen Korrektionen abgesehen, den Winkeln des von den drei
Sternspuren gebildeten Dreiecks — das zur Auswertung der Photogramme
notwendige Reduktionsverfahren hat WiLkens in der oben genannten
Abhandlung beschrieben.

In Anlehnung an die in Abschnitt 52 beschriebene Lésung des Dreiazimut-
problems 148t sich das Problem der drei parallaktischen Winkel folgender-
mafBen behandeln: Schreibt man die Grundgleichung (V; 90) fiir drei Sterne
(i =1, 2, 3) auf und setzt

=71+ A4u, pi=pi + 4p,
so erhilt man, wie in Abschnitt 52, Gleichungen von der Form (V; 69)
a:é + bin + ¢l = wix 4 viy + wiz,
mit den Koeffizienten
a; = sin p;’ sin 7; — cos pi’ cos 7; sin &;,
b; = sin p;’ cos 7i 4 cos p; sin 7; sin &;,
¢ = cos p;’ cos d;,
u; = cos p;’ sin 7; + sin.p;’ cos 7; sin §;,
v; = cos p;’ cos T; — sin p;’ cos 7; sin &,

w; = — sin p;’ cos §;
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und den Unbekannten

& =sin Ap cos Au, x =cosdpcosdu,
n =sin Apsin 4u, y =cos Apsin 4u, } (Vi 94)
{=sindptge, z =cosdptge,
zwischen denen noch die Beziehungen
nz =&y =0, } (V; 95)
lr—£z=0

bestehen. Wie in Abschnitt 52 bestimmt man dann die neun Hilfsgroflen
E..... {; aus den drei linearen Gleichungssystemen (V; 73), und es gelten.
dann die Beziehungen (V; 74). Setzt man diese in (V; 95) ein und setzt

u=2, v=£, (V; 96)

so entstehen die quadratischen Gleichungen
pu® + £quv + (S, — M) u — g0 — 7y =0,
£ + Luv —Lu+ (& —C)v—§ =0
Aus der ersten dieser Gleichungen folgt

D= Gut + (§,—m)u—ny
"73'—5311

(V: 97)

Setzt man dies in die zweite ein und multipliziert mit dem Quadrat des
Nenners 53 — &;u, so entsteht eine Gleichung dritfen Grades fiir u, die
leicht durch Ndherungsmethoden auflésbar ist, da ja u = tg 4u gewdhnlich
eine kleine Grofle ist. Hierauf folgt v aus (V; 97), und es ist schlieSlich wegen
(V;94), (V; 96) und (V; 74)

gdu=Y—u, tgdp=S—tttuttm,

v
Vl—l—uz.

Die Fehlerbetrachtungen, die hier iibergangen werden konnen, ergeben
fiir die Ortsbestimmung grofte Genauigkeit, wenn die Zenitdistanzen der
drei Sterne gleich und einigermaflen klein sind, und wenn die drei Azimute
gleichmiflig iiber den Horizont verteilt sind. Sind 4u und 4p klein, so
empfiehlt es sich, die Sterne in den Azimuten 0°, 4- 120° zu beobachten,
damit die Determinante der Gleichungen (V;73) moglichst groB werde.

tgcp:%cosdu:vcosAu:



VI. KAPITEL

BESTIMMUNG DER GEOGRAPHISCHEN LANGE

56. Hilfsmittel und Wege zur Lingenbestimmung

Am Ende des 10. Abschnitts haben wir die astronomischen Grundlagen
der geographischen Ortsbestimmung in drei Sitzen zusammengefalit. Der
letzte dieser Sitze liefert das Prinzip der Bestimmung der geographischen
Linge eines Erdorts. Nach ihm ist die Differenz der geographischen Léingen
zweier Orte gleich der Differenz ihrer Ortszeiten zu einem gegebenen Zeit-
punkt und die absolute Linge gleich der Differenz der Ortszeit in Green-
wich gegen die gleichzeitige Ortszeit am Beobachtungsort. Es ist dabei
gleichgiiltig, ob es sich um Sternzeit oder mittlere Sonnenzeit handelt.

Ist die Ortszeit am Beobachtungsort mittels einer der im dritten oder
fiinften Kapitel beschriebenen Methoden bestimmt worden, so ist damit
gleichzeitig auch die geographische Linge bekannt, falls der Beobachter
eine nach Weltzeit (oder nach der mittleren oder der Sternzeit eines belie-
bigen festen Meridians) gehende Uhr zur Hand hat. Der Seemann nimmt zu
diesem Zwecke ein Schiffschronometer (oder besser mehrere) mit auf die
Reise, dessen Stand gegen Weltzeit er zu Beginn der Fahrt gepriift hat und
dessen Gang (d. h. zeitliche Versinderung des Standes, also Betrag des tig-
lichen Vor- oder Nachgehens) ihm bekannt ist. Unter der Annahme, daB3 der
Uhrgang sich wihrend der Reise nicht dndert, steht ihm also die Weltzeit
jederzeit zur Verfiigung, und die astronomische Bestimmung der Ortszeit
auf See ergibt somit ohne weiteres auch die geographische Linge. Nehmen
wir an, daB die Schiffsubr genau Weltzeit anzeigt und diesen Stand nicht
dndert, und benutzt man sie unterwegs als Arbeitsuhr bei einer Bestimmung
der Ortszeit, so ist die gefundene Uhrkorrektion

du=—24,

wobei die geographische Linge A, wie immer, westlich von Greenwich posi-
tiv zu rechnen ist.

In Wirklichkeit wird der Stand der Uhr sich wihrend der Reise édndern,
und zwar nicht gleichférmig, so daB3 die Beriicksichtigung des Ganges nicht
mit der wiinschenswerten Genauigkeit moglich ist. Insbesondere werden
grofle Temperaturdnderungen, wie sie namentlich auf Seereisen vorkommen,
die sich iiber groB3e Breitenunterschiede erstrecken, den Gang der Uhren in



170 VI. Bestimmung der geographischen Linge

nicht sicher kontrollierbarer Weise beeinflussen.!) Es ist daher wiinschens-
wert, den Uhrstand auch wahrend der Fahrt von Zeit zu Zeit unter Kontrolle
zu halten. Natiirlich kommt es auch vor (z. B. wenn die Uhr unterwegs stehen
geblieben ist), dal der Beobachter zu einer vollig neuen Bestimmung der
Weltzeit gezwungen ist.

Ist der Beobachter mit einem Rundfunkempfangsgerit ausgeriistet, so
bereitet der Uhrvergleich mit Weltzeit keine Schwierigkeiten. Es ist nur
erforderlich, eines der Zeitzeichen abzuhéren, die von allen groeren Sende-
stationen zu bestimmten Zeiten ausgestrahlt werden. Diese Signale, die von
Sternwarten gesteuert werden, liefern Weltzeit oder Zonenzeit mit einer
fiir die meisten Zwecke der Ortsbestimmung mehr als ausreichenden Genauig-
keit.

Vor der Erfindung der Funkentelegraphie war die Lingenbestimmung
bzw. die Kontrolle der Weltzeituhren auf Reisen nur mit Hilfe astronomischer
Beobachtungen moglich. Diese astronomischen Methoden der Lingenbe-
stimmung haben heute an praktischer Bedeutung wesentlich eingebiifit,
zumal sie auch an Genauigkeit mit der Technik der telegraphischen und
funkentelegraphischen Zeitiibertragung nicht wetteifern koénnen. Fiir den
Theoretiker sind sie aber nach wie vor interessant, und es kommt natiirlich
auch heute noch vor, daBl der Praktiker auf sie zuriickgreifen muB, wenn die
technischen Hilfsmittel zum Funkempfang fehlen oder versagen.

Das Grundprinzip der astronomischen Léngenbestimmung ist die Be-
obachtung astronomischer Ereignisse, die fiir alle Orte der Erdoberfliche
gleichzeitig stattfinden, und-deren Eintrittszeiten bekannt und in den astro-
nomischen Jahrbiichern nach Weltzeit vermerkt sind. Der sehr enge Bereich
solcher Ereignisse 148t sich bedeutend erweitern, wenn man auch Vorgénge
mit einbezieht, deren Eintrittszeiten von der geographischen Lage des Be-
obachtungsorts abhéingen, aber nach bekannten Gesetzen und mit so kleinem
Betrage, daB3 eine gendherte Kenntnis der geographischen Koordinaten schon
geniigt, um die erforderlichen Korrektionen zu berechnen.

Die erstere dieser beiden Arten von Vorgéngen beschrinkt sich fast aus-
schliellich auf die echten Finsterniserscheinungen im Sonnensystem, also
auf die Mondfinsternisse und die Verfinsterungen der Jupitertrabanten. Fiir die
Bestimmung der Léngendifferenz von Orten, die nicht sehr weit voneinander
entfernt sind, kommt auch die Beobachtung des Aufleuchtens oder besser
des Erloschens von hellen Sternschnuppen in Frage.

Mondfinsternisse sind verhéltnisméfig selten und kénnen daher nur bei
sich bietender Gelegenheit zur Lingenbestimmung benutzt werden. Infolge
der Unschérfe des Erdschattenrandes ist die Genauigkeit, mit der die
Finsterniszeiten (Beginn und Ende der partiellen und totalen Verfinsterung)
erfalt werden konnen, ziemlich gering. Etwas genauer lassen sich die Ein-
und Austritte einzelner Krater in den (bzw. aus dem) Kernschatten beob-
achten, aber auch hier sind Fehler von der Gréfenordnung einer oder meh-

1) Bis zu einem gewissen Grade 148t sich der EinfluB der Temperaturschwan-
kungen auf den Gang der Uhr nach Formeln berechnen, die fiir jede Uhr indivi-
duell und auf empirischem Wege bestimmt werden.
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rerer Zeitminuten méglich. Die Verfinsterungen der vier groflen Jupitermonde
sind ziemlich haufig, da diese Korper bei jedem ihrer Umléufe um den Planeten,
die zwischen rund 2 und 16 Tagen liegen, dessen Schatten durchqueren.?)
Nur wihrend einiger Monate um die Zeit der Konjunktion des Jupiter mit
der Sonne sind diese Erscheinungen nicht sichtbar. Zur Beobachtung der
Verfinsterungen bedarf man eines nicht allzu schwachen Fernrohrs — be-
sonders die Schatteneintritte und -austritte des innersten der vier Monde,
die stets in grofler Néhe der hell leuchtenden Planetenscheibe stattfinden,
sind nicht sehr leicht zu beobachten. Und gerade sie liefern die genauesten
Zeiten, da der innerste Mond (Umlaufzeit <C 2 Tage) sich rasch bewegt
und der Vorgang der Verdunkelung sich daher in kurzer Zeit, in Bruchteilen
einer Zeitminute, abspielt. Der #ufBlerste Mond (Umlaufzeit > 16 Tage)
verschwindet dagegen nur langsam im Planetenschatten und taucht ebenso
langsam wieder aus der Dunkelheit auf. Die Verfinsterungen dieses Traban-
ten, die auch in kleineren Fernrohren beobachtet werden konnen, sind also
nicht sehr haufig und liefern wesentlich ungenauere Zeiten.

Zu den Erscheinungen, deren Eintrittszeiten vom geographischen Stand-
ort des Beobachters merklich abhingig sind, und die daher erst nach An-
wendung eines mehr oder weniger komplizierten Reduktionsverfahrens
(Beriicksichtigung der Mondparallaxe) zur Léngenbestimmung dienen
konnen, gehdren in erster Linie die uneigentlichen Finsternisse oder
Bedeckungen. Es sind dies die Voriiberginge des Mondes vor der Sonne
{Sonnenfinsternisse) oder vor Fixsternen oder Planeten (Sternbedeckun-
gen), ferner die Voriibergéinge der Venus oder des Merkur vor der
Sonne, die hier aber nur erwidhnt werden sollen, da sie selten sind. Aus
demselben Grunde diirfen auch die Sonnenfinsternisse als Hilfsmittel
zur Léngenbestimmung iibergangen werden. Wichtig dagegen sind die
Sternbedeckungen durch den Mond, von denen fast in jedem Monat einige zu
beobachten sind. Sie geben zu einer der genauesten astronomischen Methoden
zur Ermittlung der geographischen Lénge Anlal — besonders, wenn man
das plotzliche Verschwinden von Fixsternen hinter dem dunklen Mondrand
beobachtet, dessen Zeitpunkt auf Bruchteile einer Sekunde genau erfabar
ist. Die Sterne, die der Mond auf seinem Wege verdeckt, sind allerdings in
der iiberwiegenden Mehrzahl lichtschwach, so daB schon ein gréferes Fern-
rohr zur Beobachtung der Bedeckung notwendig ist, namentlich um die
Vollmondszeit, wenn die Helligkeit der Mondscheibe das Licht der Sterne stark
iiberstrahlt. Von Zeit zu Zeit kommen allerdings auch Bedeckungen sehr
heller Sterne vor (Aldebaran, Regulus, Spika, Antares u.a.), die auch in
einem Feldstecher wahrnehmbar sind. Die gelegentlich vorkommenden
Bedeckungen von helleren Sternhaufen (Plejaden, Hyaden, Praesepe) sind
besonders wertvoll, da eine groflere Zahl von Beobachtungen in kurzer Zeit
moglich sind. Dasselbe ist wéhrend totaler Mondfinsternisse der Fall, wo auch
die Beobachtung der Bedeckung schwicherer Sterne gelingt.

1) Eine Ausnahme bildet der vierte Jupitermond, der zu gewissen Zeiten
nicht verfinstert wird, da seine gegen die Jupiterbahnebene geneigte Bahn ihn
nordlich oder siidlich des Planetenschattens vorbeifiihrt.
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Alle diese Gelegenheiten zur Langenbestimmung haben den Nachteil, daf
sie an bestimmte seltene Zeitpunkte gebunden sind. Sie finden daher auch
nur gelegentlich Verwendung und sind keinesfalls. als Werkzeug fiir den
tiglichen Gebrauch geeignet, wie es z. B. der Seemann bei der Navigation
notig hat. Gliicklicherweise 148t das diesen Methoden zugrunde liegende
Prinzip eine sehr weitgehende Verallgemeinerung zu, so dal seine Anwen-
dungsmoglichkeiten fast unbeschriankt sind.

Der Mond, der in 27,3 Tagen seinen siderischen Umlauf um die Erde voll-
endet und sich durchschnittlich in etwas weniger als einer Stunde um seinen
eigenen Durchmesser fortbewegt, bietet zu jedem Zeitpunkt, an dem er iiber-
haupt sichtbar ist, die Moglichkeit einer absoluten Zeitbestimmung: sein geo-
zentrischer Ort, der sich mit der Zeit so rasch indert, ist ja in den astrono-
mischen und nautischen Jahrbiichern als Funktion der Weltzeit ephemeriden-
miBig verzeichnet und stellt daher gewissermaflen den Zeiger einer Welt-
zeituhr dar, dessen Stellung man direkt am Fixsternhimmel ablesen kann
und nur noch — mit der Ortszeit und geniherten Werten fiir die geographi-
schen Koordinaten — wegen der téglichen Parallaxe zu verbessern hat. Jede
Bestimmung der sphérischen Koordinaten des Mondorts in irgend einem
Bezugssystem oder auch nur einer Koordinate, sofern sie von der Mondbe-
wegung stark genug beeinfluBBt wird, kann daher durch Vergleich mit der
Mondephemeride zur Ermittlung der Weltzeit und damit der geographischen
Lange dienen. Auch die Anfangs- und Endzeiten der Finsternisse und Be-
deckungen sind ja nur deshalb geeignete HilfsgroBen zur Bestimmung der
Weltzeit, weil sie Funktionen des Mondorts sind.

Die strengste Methode dieser Art ist die aus der Bestimmung der Meridian-
durchgangszeit des Mondes, die ja infolge der raschen Anderung der Rekt-
aszension des Mondes von der Ortszeit der Kulmination und daher auch von
der geographischen Linge abhingt. Fiir kleine Instrumente und fiir Beob-
achtungen mit dem bloflen Auge (Harzersches Fadendreieck!) eignet sich
besser die Methode der Mondbeobachtung in einem beliebigen Vertikal,
dessen Azimut aus Sterndurchgingen bekannt ist. Die klassische Methode
der Lingenbestimmung auf See ist die der Monddistanzen, die mit Hilfe des
Sextanten ausfiihrbar ist. Sie ist eigentlich nichts anders als eine Verall-
gemeinerung der Sternbedeckungsmethode: die absolute Zeit wird aus der
scheinbaren Distanz eines Sterns vom Mondrand abgeleitet, die sich besonders
schnell dndert, wenn der Stern in der Nihe der Mondbahn liegt; bei Stern-
bedeckungen wird lediglich der spezielle Zeitpunkt abgewartet, an dem die’
Distanz gleich null wird. :

57. Telegraphische Bestimmung des Lingenunterschiedes fester Stationen

Eine besonders grofle Sorgfalt ist bei der Bestimmung der geographischen
Lénge der Sternwarten notwendig, die ja als geographische Fixpunkte erster
Ordnung gelten, und deren Aufgabe es u. a. ist, die Zeif zu iiberwachen und
gegebenenfalls (durch Steuerung der funkentelegraphischen Zeitzeichen) zu
verbreiten. Dazu ist natiirlich (zwecks Reduktion der durch astronomische
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Beobachtungen erhaltenen Ortszeit auf Weltzeit oder Zonenzeit) eine duBerst
genaue Kenntnis der geographischen Lénge erforderlich.

Seit der Erfindung des:elektrischen Telegraphen benutzt man diese Ein-
richtung zur Bestimmung des Léingenunterschiedes zweier Beobachtungs-
orte (Sternwarten), die durch eine Telegraphenleitung miteinander ver-
bunden sind. Diese Methode ist duBlerst exakt, mit verhiltnism#Big beschei-
denen technischen Hilfsmitteln durchfiihrbar und hat den groflen Vorzug,
daB die Beobachter in der Lage sind, alle nur denkbaren Fehlerquellen zu
beriicksichtigen oder auszuschalten. Einfacher ist die Lingenvergleichung
durch gleichzeitigen Empfang drahtloser Zeitsignale auf beiden Stationen
— doch kann diese Methode mit der erstgenannten an Genauigkeit nur
konkurrieren, wenn die Beobachter mit den recht komplizierten und kost-
spieligen Anlagen zum selbstregistrierenden Empfang der Zeitzeichen aus-
geriistet sind.

Wir beschrinken uns hier darauf, die Moglichkeiten zur Ausschaltung
systematischer Fehler bei der telegraphischen Léingenvergleichung zwischen
zwei Orten A und B kurz zu behandeln. Es moge dabei angenommen werden,
daB3 beide Beobachter mit den gleichen Apparaturen (tragbaren Passage-
instrumenten und Schreibchronographen) ausgeriistet sind, und da8 beide
Orte durch eine Leitung miteinander verbunden sind. Jeder der beiden
Chronographen registriert nebeneinander drei Arten von Signalen: die
Sekundenzeichen der beiden in 4 und B stationierten Uhren, sowie die
Signale des Beobachters am angeschlossenen Passageinstrument.

Auf jeder Station wird der Uhrstand aus Beobachtungen von Meridian-
durchgingen abgeleitet (sieche Abschnitt 29). Diese Uhrstéinde sind mit
systematischen Fehlern?) behaftet, die sich folgendermaflen zusammensetzen:
1. aus der persinlichen Gleichung des Beobachters. Darunter versteht man die
Verzogerung, mit der der Beobachter auf die zu beobachtenden Vorgénge,
z. B. die Fadendurchgénge der Zeitsterne, reagiert. Die personliche Gleichung
l4Bt sich bis auf einen geringen Rest beseitigen, wenn das Passageinstru-
ment mit einem ,,unpersonlichen Mikrometer*“ ausgeriistet ist; 2. Aus der
Summe der systematischen Fehler, die dem Instrumentarium eigentiimlich
sind; 3. Aus den Fehlern der Rektaszensionen der bei der Zeitbestimmung
benutzten Sterne. Da nun zur Léngenvergleichung nur die Differenz der
beiden Ortszeiten benutzt wird, so sind diese Fehler unwirksam, wenn sie
auf beiden Stationen gleich groB sind. Fiir die Rektaszensionsfehler 1483t
sich das dadurch erreichen, da3 beide Beobachter die gleichen Sterne be-
nutzen. Die iibrigen Fehler lassen sich eliminieren, indem man die Beob-
achtungen nach Austausch der Beobachter und Instrumente wiederholt.
Bezeichnet man nimlich mit ¢, ¢, die systematischen Zeitbestimmungs-
fehler, die den beiden Beobachtern mitsamt ihrem Instrumentarium an-
haften, so ist der durch sie verursachte Fehler der Léngenvergleichung &, —¢;,
nach dem Austausch dagegen &, — ¢,. Das Mittel beider Ergebnisse wird also
von diesen Fehlern frei sein. '

1) Siehe Anhang D I.
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Wihrend der Ausfithrung der Beobachtungsreihen miissen die Angaben
der beiden Uhren mehrfach miteinander verglichen werden, damit nach
Beriicksichtigung aller Korrektionen die Differenz der Ortszeiten gebildet
werden kann. Dazu dient der Chronograph, auf dem man beide Uhren (die
ortsfremde iiber die Telegraphenleitung) gleichzeitig schreiben lassen kann.
Hierbei ist aber zu beachten, dal3 die Sekundenzeichen der fremden Uhr
mit einer der Lénge der Leitung proportionalen Verspédtung eintreffen, da ja
der elektrische Strom den Draht mit endlicher Geschwindigkeit durchliuft.
Bezeichnen wir die Lingen der beiden Orter mit ,, 45, die wahren Stern-
zeiten im Augenblick der Vergleichung mit ©,, ©,, dann ist offenbar

lb_la=@a—@b-

Da nun immer die ortsfremde Zeit um die Laufzeit 4 ® des Stromes ver-
groBert erscheint, so ist der Fehler der Lingendifferenz gleich — 4 ©, wenn
man diese aus den Registrierungen in A ableitet, dagegen gleich + 4 © nach
den chronographischen Aufzeichnungen in B. Man erhélt also die wahre
Lingendifferenz, indem man die Ergebnisse der Uhrvergleichung auf beiden.
Stationen mittelt.

Die Lingenvergleichung zweier Sternwarten auf diesem Wege ergibt.
sehr genaue Werte, wenn sie sich auf Beobachtungsreihen stiitzt, die lingere.
Zeit hindurch fortgesetzt werden, und in deren Verlauf Beobachter und
Instrumente mehrfach ihren Standort wechseln. Es liegt in der Natur der
Sache, daB} die Schwierigkeiten solcher Unternehmungen mit der Entfernung
der beiden Stationen stark anwachsen. In der Praxis werden daher meist.
kleinere Lingendifferenzen gemessen, und der Anschlul weit entfernter-
Stationen aneinander und an das System der geographischen L#ngen wird
iiber eine kleinere oder groflere Anzahl Zwischenstationen erfolgen. Eine:
Summierung der Beobachtungsfehler ist dabei unvermeidlich.

Die fiir Astronomie und Geodésie gleich wichtige Aufgabe, die Stern--
warten und andere geographische Punkte aller Erdteile an das Lingensystem
des Greenwicher Meridians anzuschlieflen, ist noch keineswegs mit der-
héchsten erreichbaren Prizision gelost worden. Eine grofiziigige internationale:
Zusammenarbeit, wie sie in kleineren Gebieten wie z. B. Mitteleuropa schon
lénger bestanden hat, wire hierzu erforderlich. Es ist zu erwarten, daB bei
diesen Arbeiten die Methode der funkentelegraphischen Zeitvergleichung-
immer mehr an Bedeutung gewinnen wird, obwohl auch sie ihre besonderen .
Schwierigkeiten und Fehlerquellen hat.

38. Liingenbestimmung aus Meridiandarchgingen des Mondes

Beobachtet man die Durchgangszeit des Mondes durch den Meridian mit .
einem Passageinstrument und im Anschlull an eine Folge von Zeitsternen;.
die vor- und nachher kulminieren, so erhilt man die Rektaszension des Mon-
des zu eben dieser Zeit. Mit ihrer Hilfe 148t sich die Weltzeit des Durchgangs
unmittelbar der Mondephemeride entnehmen, die im Berliner Astrono--
mischen Jahrbuch fiir 0*WZ jeden Tag und in den meisten Nautischen
Jahrbiichern (Nautical Almanac!) sogar fiir jede Stunde WZ gegeben ist..
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Diese Methode der absoluten Léngenbestimmung bediirfte keiner ndheren
Erlduterung, wenn es moglich wire, die Durchgangszeit des Mondmittel-
punkts, auf den sich die Ephemeriden beziehen, direkt zu beobachten, etwa
als das arithmetische Mittel der Durchgangszeiten beider Rénder der Mond-
scheibe. Das ist aber nur zur Zeit des Vollmonds mdglich, allenfalls noch
einige Tage vor und nach Neumond, wenn der dunkle Teil des Mondes durch
das ,,aschgraue Licht schwach erhellt ist. Im allgemeinen wird man nur
einen Rand beobachten — den westlichen bei zunehmender, den 6stlichen
bei abnehmender Phase — und das Ergebnis mittels des scheinbaren Halb-
messers der Mondscheibe auf deren Mittelpunkt reduzieren. Randbeobach-
tungen werden allerdings stets durch Fehler entstellt, die teils von der Uber-
strahlung durch die Helligkeit der Mondscheibe, teils »
von der UnregelmiBigkeit des Randprofils (Gebirge)
herrithren. Um diese Fehlerquellen zu vermeiden, zie-
hen manche Beobachter es vor, den Mefifaden auf den

kleinen Krater Mdsting A einzustellen, ein bei jeder ]
Beleuchtungsphase scharf definiertes Objekt in der

Mitte der Mondscheibe, um die es (infolge der Libra- S
tionsschwankungen des Mondkorpers) im Bereich o) §
weniger Bogenminuten hin und her pendelt. Die Be- Sk R
obachtung von Moésting A ist natiirlich nur in der Zeit 3

zwischen dem ersten und letzten Viertel moglich, da
nur dann die Mondmitte im Sonnenlicht steht. Die
geozentrisch gesehenen Abweichungen des Kraterorts P @
vom Mondmittelpunkt in Rektaszension und Dekli-
nation findet man im Berliner Jahrbuch verzeichnet,
ebenso seine Aquatoreal-Horizontalparallaxe, die immer Abb. 48:
etwas grofler als die des.Mondmlttelpunkts selbex: ist. Meridiandurchgang
Mit diesen Daten lassen sich alle Beobachtungen dieses  3es Mondrandes
Objekts ohne Schwierigkeiten reduzieren.

_Die Reduktion von Meridianbeobachtungen des Mondrandes auf den
Mittelpunkt ist im Prinzip auf zwei Arten ausfiihrbar:

1. Man bestimmt den kleinen Stundenwinkel 4 des Mondmittelpunkts M
(Abb. 48) in dem Augenblick, wo der Mondrand den Meridian in Q beriihrt.
Da fiir den Meridian die Azimutparallaxe verschwindet [siehe Formel (I; 30)],
so wird im gleichen Augenblick auch fiir einen im Erdmittelpunkt gedachten
Beobachter Meridianberiihrung stattfinden. Abb. 48 gilt also auch fiir die
geozentrische Sphére, und es ist im rechtwinkligen Dreieck M PQ

sin 4« = sin o, sec
wobei o, und §, die geozentrischen Werte des scheinbaren Halbmessers und
der Deklination bedeuten, wie sie in den Jahrbiichern verzeichnet sind. Da

Ae und o, klein sind, darf man den Bogen statt des Sinus setzen. Wird A« in
Zeitsekunden, ¢, in Bogensekunden ausgedriickt, so erhélt man

Aa

=1—5005e060.
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Ist nun ® = « die beobachtete Meridiandurchgangszeit des westhchen bzw.
ostlichen Mondrandes, so ist

0@)=a+da=0+ — ooseccso

15

die geozentrische Rektaszension des Mondmittelpunkts zur Ortssternzeit 6.

2. Zwischen dem Meridiandurchgang des Mondmittelpunkts und eines
der Riinder vergeht eine gewisse Sternzeit 4 4 @. Es ist also &, = 6 + 46
Kulminationszeit und Rektaszension des Mondmittelpunkts. Wiirde der
Mond seinen Ort an der Fixsternsphére nicht dndern, so wire (Abb. 48)
einfach 4 ® = Ae. In Wirklichkeit wichst in der Zeit 4 @ die Rektaszension
des Mondes um eine Gréfle kA4 6. Es ist demnach 40 = Ae + kA4 0, also

Ao

aO(@O)_0+ k

(VI; 1)

die geozentrische Rektaszension des Mondmittelpunkts bei der Kulmination,
also zur Ortssternzeit 0, = .

Die GroBe k bedeutet hier die in Zeitsekunden ausgedriickte Anderung
von ¢ in einer Sternzeitsekunde. Die Nautischen Jahrbiicher (Nautical Al-
manac!) geben diese Anderung gewohnlich fiir 1* mittlere Zeit. Ist h der fiir
den Beobachtungszeitpunkt interpolierte Wert dieser Anderung, so ist

h  365-2422
= 3800 366515 — 0,000277h.
In beiden Fillen erhilt man aus der Mondephemeride die Weltzeit T als
das Argument der Rektaszension «,. Sie entspricht der Ortssternzeit @

(bzw. ©,). Verwandelt man sie in Greenwicher Sternzeit (670), so ist die ge-
suchte geographische Linge

A=6,—6 bzw. A= 6,— 6,.

Bislang wurde angenommen, daf3 die Durchgangszeit des westlichen oder
ostlichen Mondrandes durch: den Meridian durch Beobachtung genau be-
kannt sei. In Wirklichkeit wird der Durchgang durch eine bestimmte Verti-
kale des Gesichtsfeldes (z. B. durch den mittleren Vertikalfaden) registriert,
und die erhaltene Zeit ist (s. Abschnitt 29) noch wegen des Einflusses der
Instrumentalfehler zu verbessern. Dies kann aber nicht ohne Beriicksichti-
gung der Parallaxe des Mondes erfolgen. Derartige Uberlegungen sind bei der
Reduktion aller Mondbeobachtungen notwendig, die mit fehlerhaften oder
fehlerhaft aufgestellten Instrumenten vorgenommen werden. Als wichtigstes
Beispiel hierfiir moége die Meridianbeobachtung des Mondes mit dem
Passageinstrument dienen.

Wir erinnern an die Gleichung (I1I; 42), die der BesseLschen Reduktions-
formel zugrunde liegt:

— sin ¢ = sin n sin § 4 cos n cos é sin (m + ) . (VI; 2)
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Hier bedeutet { = ® — ¢ den kleinen Stundenwinkel des zur Sternzeit ©
beobachteten Objekts (¢, ), wéhrend ¢, m, n die Instrumentalkonstanten
sind, die — ebenso wie die in @ enthaltene Uhrkorrektion Au — aus Fix-
sternbeobachtungen bekannt sein sollen. Die Kollimation ¢ mdge hier die
ostliche Abweichung des Mittelfadens von dem auf der Instrumentenachse
senkrechten Groftkreise bedeuten, der sich bei richtiger Stellung des Instru-
ments mit dem Meridian deckt. Dann ist ¢ + f die entsprechende Abwei-
chung eines Seitenfadens F, dessen oOstlicher Abstand vom Mittelfaden f
(in Zeitsekunden) betragen moge. Ebenso

ist ¢c+f :[:11—50 die ostliche Abweichung

des Mondmittelpunkts von diesem Groft-
kreis, falls der westliche bzw. dstliche Mond-
rand an dem Faden F beobachtet wird,
und o den in Bogensekunden ausgedriickten
Halbmesser des Mondes darstellt, wie er dem
Beobachter erscheint. Setzen wir demnach

P

1
c+f+ 5° statt ¢ und beriicksichtigen,

daB ¢, m, n, 6, f, ®— ¢ klein sind, so erhalten
wir an Stelle von (VI; 2)

—(@—a)cosé:c—l—fi% o+
+ mcosd 4 nsind. (VI;3)

Hier bedeuten ¢, é, ¢ die (vom Beobachter
aus gesehenen) scheinbaren Werte der Mond-
koordinaten und des Mondhalbmessers, die durch Beriicksichtigung der
Parallaxe noch in die geozentrischen GroBen a,, dy, 0, zu verwandeln sind.

Ist in Abb. 49 Z’ das geozentrische Zenit, L der scheinbare und L, die
geozentrische Mondort, so gelten in den Dreiecken PLZ’ und PL,Z’ der
Gleichungssysteme

Meridian

Abb. 49: Beriicksichtigung
der Parallaxe bei Meridian-
durchgingen des Mondes

cos §sin { =sin 2’ sin A",
cos d cost = cos 2’ cos ¢’ + sin 2’ sin ¢’ cos A,

sin 8 = cos 2’ sin ¢/ — sin 2’ cos ¢’ cos A’,
bzw. cos , sin ¢, = sin zy' sin A’,

cos d, cos I, = cos zy’ cos ¢’ + sin z, sin ¢’ cos A,

sin 6, = cos zy sin ¢’ — sin zy’ cos ¢’ cos A'.

Eliminiert man aus je zwei entsprechenden Gleichungen dieser Systeme die
GroBen sin A’, sin ¢’ cos A, cos ¢’ cos A’, so erhilt man
cosdsint sinzy — cos dysinfysinz’ =0,
cos & cost sin z, — cos &, cos fysin 2 = cos ¢’ sin (zy’ — 2),
sin d sin z, — sin d, sin z° = sin ¢’ sin (zy' — 2’).

Geogr. Ortsbestimmungen



178 VI. Bestimmung der geographischen Linge

Dividiert man durch sin 2/, beriicksichtigt, daB [siehe (I; 26) und Abb. 13]

. ’ : ’ U

sin z, r sin (2" —zp .

nn I SE=5)_ 0 _ osing,
sin 2z To sin 2 Ty .

und ersetzt fiir die kleinen Winkel t =0 — ¢, = 0 — @, den Sinus
durch den Bogen und den Cosinus durch eins, so ergibt sich

ri(@—a) cos & = (0 —a,) cos §y,
[}

fcosé == c0s 8, —psin 7¢ cos ¢’, (VI; 4)
[}

ro. . . .,
7s1n6=sm60—gsmn( sin @
0

und aus den letzten beiden dieser Gleichungen

r ‘ r . ,
r—cos(&—éo)g_r—= 1 —psinz¢ cos (¢’ —4&y). (VI; 5)

0 0

Multipliziert man nun (VI; 3) mitri und benutzt die Beziehungen (VI; 4)
0
und (VI; 5), so folgt
. oy 1 r
—(9—“_0) cos 6y = (¢ +f) [1 —e sinzc cos (¢’ —dy)] £+ EUE-I-

+ m (cos 6, —p sin ¢ cos ¢') + n (sin 6, — o sin ¢ sin ¢’)

oder
Oy = @+Aa =
=0 + [ sec 8 [1 — o sin 7 cos (¢’ — b)) + %ao sec 6 -+ (VI; 6)
+ my -+ ny tg 8y + ¢, sec 8o,

wobeiwegen (I;42) o. rL = o, gesetzt werden konnte und
0

my, = m — cp sin w¢ cos.¢’, ny=n — cp sin z¢ sin ¢’,
€ =¢ — p sin ¢ (mcos ¢' + nsin ¢')

die wegen Parallaxe korrigierten Instrumentalkonstanten bedeuten. Formel
(VI; 6) liefert also die Rektaszension des geozentrischen Mondmittelpunkts
fiir den Augenblick 6, in dem der Durchgang deés (westlichen oder ostlichen)
Mondrandes durch den Faden F beobachtet wird. Die Kulminationszeit des.
Mondmittelpunkts ergibt sich wiederum, mit dem A« der Formel (VI; 6),
aus (VI3 1). -
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Die Genauigkeit einer absoluten Lingenbestimmung mit Hilfe von Mond-
beobachtungen dieser oder anderer Art ist beschrénkt. Die Berechnung der
Bewegung unseres Trabanten ist eine der schwierigsten Aufgaben der Him-
melsmechanik, und die Ephemeriden des Mondes enthalten daher kleine
Restfehler, die auch die genaueste Theorie nicht beseitigen kann, und deren
Ermittlung nur nachtriglich auf empirischem Wege, d. h. durch fortlaufende
Meridianbeobachtungen des Mondes auf groflen Sternwarten moglich ist.
Wenn auch diese Ephemeridenfehler die Groflenordnung einer Zeitsekunde
selten iiberschreiten, so ist ihr Einfluf} auf die absolute Bestimmung der geo-
graphischen Lénge doch bedeutend. Da nidmlich die Zunahme der Mond-
rektaszension durchschnittlich 27 mal langsamer erfolgt als die Zunahme
der Sternzeit selbst, so geht ein Ephemeridenfebler ¢ durchschnittlich mit
dem 27fachen Betrage in das Ergebnis der Lingenbestimmung ein. Genauer
ist, wie eine einfache Dreisatziiberlegung zeigt,

3600
dA = h ¢
der Fehler der Lingenbestimmung, wenn h, wie weiter oben, den Zuwachs
von ¢« in einer Stunde bedeutet.

Wenn man Ldngendifferenzen aus Mondbeobachtungen ableitet, entfallt
der Einflu des Ephemeridenfehlers. Diese Methode der relativen Léngen-
bestimmung entspricht vollkommen der telegraphischen Methode, nur daf
hier die telegraphische Uhrvergleichung durch die zwischen den Stern-
durchgéngen eingeschaltete Beobachtung des Mondes ersetzt wird, Auf jeder
Station wird nédmlich die Arbeitsuhr, deren Stand die Sternbeobachtungen
ergeben, mit der durch die Mondbewegung definierten Weltzeit. verglichen,
und da es ja nur auf die Differenz der Zeiten ankommt, f4llt der Ephemeriden-
fehler heraus. der einem (lingere Zeit konstant bleibenden) Fehler der Zeit-
angabe dieser symbolischen Weltzeituhr gleichkommt. Das gleiche gilt
mehr oder weniger auch fiir andere bei Mondbeobachtungen auftretende
systematische Fehler, wie z. B. die Beeinflussung der Randbeobachtungen
durch Uberstrahlung oder Profnlunregelmaﬁlgkelten sofern nur die Beob-
achtungen auf beiden Stationen in der gleichen Weise erfolgen.

59. Lingenbestimmung aus Azimut oder Zenildistanz des Mondes

Allgemein 148t sich das Problem der Léngenbestimmung l6sen, wenn
man eine beliebige GréBe beobachtet, die vom Mondort abhéngt, und in
deren zeitliche Anderung die Bahnbewegung des Mondes mogllchst:unver-
mindert eingeht. Fiir das Azimut des Mondes ist diese Bedingung am;besten
in der Néhe des Meridians erfiillt, aber auch in einem ziemlich breiten Bereich
vor und nach der Kulmination noch in geniigendem MaBe. Je hoher die
geographische Breite, um so ausgedehnter ist dieser Bereich, in dem die
Bahngeschwindigkeit eine starke horizontale Komponente hat. Ungiinstiger
liegen. die Dinge bei der Zenitdistanz. Nur in kleinen Breiten und in der Um-
gebung des Ersten Vertikals ist die vertikale Bahnbewegungskomponente
so betréchtlich, dall Zenitdistanzmessungen fiir die Bestimmung der geo-
graphischen Linge geeignet sind.

13¢
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Bei der Beschreibung der anzuwendenden Methode und der Untersuchung
der Fehlereinfliisse folgen wir im allgemeinen den von P. HArzer!) vor-
gezeichneten Wegen. In Abb. 50 sei an der geozentrischen Sphére XQ der
Himmelsidquator (X = Friihlingspunkt), PZ der Meridian des Beobachtungs-
orts und KM die instantane Mondbahn, d. h. der GroBtkreis, auf dem sich
zur Zeit der Beobachtung der geozentrische Mondort M in bhezug auf das
zweite (durch P und X definierte) Aquatorsystem fortbewegt. Man kann die
Bestimmungsstiicke  der
instantanen = Mondbahn,
nédmlich die Rektaszension
des Knotens XK = &3 und
die Neigung i, fiir ein ge-
raumes Zeitintervall, das
mindestens 5 Stunden vor
und nach der Beobach-
tung umfaBt, als konstant
ansehen. Innerhalb dieses
Zeitraums darf man auch
die zeitliche Anderung der
Mondldnge als unverénder-
lich betrachten — unter
»»Mondlénge** versteht
_ man den gebrochenen

Abb. 50: Lingenbestimmung aus Mondértern = Bogen XKM = Q + v.

Die GroBen i, §3 lassen sich

dann leicht aus zwei geozentrischen Monddrtern M;, M, ableiten, die zu

zwei in dem genannten Zeitintervall liegenden vollen Weltzeitstunden

gehoren, und deren Koordinaten (e, d;; o, d,) man der Ephemeride des
Jahrbuchs entnimmt. Im rechtwinkligen Dreieck KMN ist némlich

’ tg i sin (@ — §) = tgd. (VI;7)

Wendet man diese Formel auf beide Orter an, so erhilt man aus zwei
linearen Gleichungen die zur Bestimmung von i und & geeigneten GriBen

tg 8, cos oy — tg d; cos
sin (@g —4)

tgicos =

tg 0, sin ot; — tg d, sin ey
sin (ey — ;)

tgisin =

Eine andere Losung derselben Aufgabe ergibt sich, wenn man dem Jahr-
buch fiir eine dem Beobachtungszeitpunkt maglichst nahe Weltzeitstunde die
Koordinaten des Mondes und das Verhiltnis ihrer zeitlichen Anderungen.

1) P, Harzer: Uber die Bestimmung der Linge aus einem Azimut oder
einer Zenitdistanz des Mondes. Astron. Nachr. 214, 123.
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entnimmt. Sind de, 44 die im Nautical Almanac gegebenen Koordinaten-
dnderungen fiir eine Stunde, so ist stets genau genug

do_ 1 49
de 15 de’
Differenziert man nun (VI; 7) nach « und 4, so ergibt sich

tg i cos (@ — ) de = sec? 8 d§, (VI; 8)

’

und man erhélt aus (VI; 7) und (VI; 8) die beiden Gleichungen
tgicos {3 sino — tgisin 3 cosa =tga,
tgicos§ycose -+ tgisin QY sina = :—jseczé.
aus denen

1

tgicos Sy = tgésina+j—2sec"6cosa,]
dé (VI;9)

'tgisinga=——tg6cosa+d—aseczésina ]

folgt.

Die Aufgabe der Langenbestimmung ist gelést, wenn man aus dem wegen
Parallaxe, Halbmesser und Refraktion verbesserten Beobachtungswert A
oder z den zugehorigen geozentrischen Stundenwinkel t = @ — « des Mondes
berechnet hat, denn dieser liefert bei bekannter Ortszeit ® die Rektaszen-
sion &, aus der auf Grund der Ephemeride die Weltzeit folgt. Fiihrt man
als beobachtbare Grofen

f=tgA, g=tgz
ein, von denen jeweils eine bekannt ist, und als Unbekannte
r =1tgt,

so findet man auf folgende Weise Gleichungen, aus denen sich x als Funktion
von [ oder g allein berechnen 148t:

Dividiert man die Grundgleichungen (II; 23) des Nautischen Dreiecks
durch cos z cos A, so erhélt man

sin 4 sin @ cos d cos @ cost

sec A =

cosz cos A coszcosA
sind cosp |, cosd sing cost
tgz=— : :
82 cosz cos A + coszcos A
, cos o sinf
tgztg A =

cosz cos A
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oder, wenn man neben f, g, * noch die Hilfsgrofle

cos d cos @ cost
= " coszcosA
einfiihrt,
Vi+ft=h(tgptgdsect + 1), (VI; 10)
g=nh(tgp —tgdsect), (VI; 11)
fg=hzxsecgp. (VI; 12)

Diese Gleichungen enthalten rechts aufler A und = noch den unbekann-
ten Stundenwinkel ¢ in dem Ausdruck tg d sec f, der sich aber, wie ge-
zeigt werden soll, als lineare Funktion von z darstellen l48t.

Da nimlich die Bahnkonstanten i, § sowie die Sternzeit ® bekannt
sind, kann man auch

m=tgicos(® — &), n=tgisin(0 — () .

als gegebené GroBen ansehen. Multipliziert man. die Gleichungen (VI;9)
mit cos 6, sin @ bzw. sin ®, — cos ® und addiert, so erhilt man

m=—tg¢5sint—|—%sec26cost,

n= tgécost—}—g—jseczésint

und hieraus
’ n—mzx=n—mtgt=1tgdsect,

so dal man statt (VI; 10) und (VI; 11) auch

Vit =hitgp(n—mz) + 1], (VI; 13)
g=h(tge—n+mx) (VI; 14)

schreiben kann. Die beiden Aufgaben, t aus A oder z zu bestimmen, lassen
sich dann folgendermaflen erledigen:

a) Azimutaufgabe: Man eliminiert ¢ und h, indem man (VI; 12) durch
(VI; 14) dividiert. Das ergibt
fe Tsecp

T tge—n+mx
also z als Funktion der aus Beobachtungen bekannten GroSe f = tgA .

b) Zenitdistanzaufgabe: Durch Addition der Quadrate von (VI; 12) und
(VI; 14) erhilt man

g2 (1 4+ f* = h®[z%sec’p + (tg ¢ — n + mx)?),
wihrend das Quadrat von (VI; 13)
1+ f*=h*[tge(n—mz)+ 1]

tgo—n

oder x={fcos¢ [—mfcosg '
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liefert. Dividiert man die erste dieser beiden Gleichungen durch die zweite,
so fallen f und h heraus, und man erhilt nach kurzer Rechnung fiir  die
quadratlsche Gleichung
ar®+2bzx=c

mit den nur von g = tgz abhingigen Koeffizienten

a=sec? @ + m?(l'— g%tg? ),

b=mtgp 1+ ¢%) —n(l —g%tg?g)],

c=g*(1+ntge)*—(tgp —n)-

Damit sind beide Aufgaben im"Prinzip gelost. Die Messung der Azimute
und Zenitdistanzen geschieht in der Praxis durch Anschluf3 an passende
Sterne. Man wird z. B. eine Léngenbestimmung aus Azimutmessungen so
vornehmen, daB man den Durchgang des Mondrandes und mdoglichst kurz
vor- und nachher Durchgénge von Fixsternen durch den gleichen Vertikal
beobachtet. Aus den Koordinaten der Sterne und der als bekannt voraus-

gesetzten Ortszeit und Polhohe folgt nach (III; 17) das Azimut dieses Verti-
kals und damit das des Mondrandes.

Das beobachtete Azimut A des Mondrandes ist wegen Parallaxe und Halb-
messer zu verbessern. Nach (I; 38) erhiilt man zunichst das geozentrische
Azimut des Randes

A, = A — psin m¢ sin (p — ¢') cosec z; sin A,
sodann das geozentrische Azimut des Mittelpunkts

A o sin 7z¢ sin (¢ — q))son—l-ao

A,=A 0 COSEC 2y =
m o T 0o 0 sin zg

wobei das obere Zeichen gilt, wenn der westliche Rand beobachtet wurde.
Auf der rechten Seite darf A, = A gesetzt werden, wihrend die geozentrische
Zenitdistanz z, des Mondrandes, die gleich der des Mittelpunkts ist, aus den
Grundformeln (II'; 23) berechnet werden muf8. Dazu ist allerdings die Kennt-
nis der Weltzeit bzw. der Mondkoordinaten nétig; man muf also ein Ni-
herungsverfahren einschlagen, um zum Ziele zu gelangen. Beobachtet man die
Zenitdistanz des (oberen oder unteren) Mondrandes, so ist diese nach Beriick-
sichtigung der Refraktion zunichst [Formeln (I;40), (I;41)] wegen der
Parallaxe zu korrigieren, worauf dann der geozentrische Halbmesser .o,
hinzuzufiigen bzw. abzuziehen ist.

Die Azimutmethode, die der Zenitdistanzmethode schon ihres gréfleren
Anwendungsbereiches wegen vorzuziehen ist, 148t sich iibrigens auch bequem
mit dem Harzerschen Fadendreieck durchfiihren, dessen Azimut man mit
Hilfe von Sterndurchgangen nach Formel (III; 17) ermittelt. Bei der ver-
hiltnismaBig geringen Genauigkeit dieses Verfahrens kann man auf die Be-
riicksichtigung der Azimutparallaxe stets verzichten, zumal, wenn das
Azimut Kklein ist. Ferner kann man, ohne die Grenzen der unvermeidlichen
Beobachtungsfehler wesentlich zu iiberschreiten, auch Randbeobachtungen
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vermeiden. Man hat fiir den Durchgang des Mondmittelpunkts durch die
Fadenebene zwei Kriterien, die bei einiger Ubung geniigend Sicherheit
gewihrleisten: 1. die Hornerspitzen der Mondsichel (vor dem ersten und
nach dem letzten Viertel) sind von der Fadenebene gleich weit entfernt;

Abb. 51: Vertikaldurchgang
des Mondmittelpunktes

Abb. 52: Fehlereinfliisse
bei Lingenbestimmungen
aus Mondortern

2. die Tangente im Schnittpunkt der Faden-
ebene mit dem (oberen oder unteren) Mond-:
rand liegt waagerecht, d. h. schneidet den
Faden rechtwinklig (sieche Abb. 51).

.Um den Einflu der Beobachtungsfehler
festzustellen, nehmen wir an, daB3 (Abb. 52)
zur Zeit der Beobachtung der Vertikalfaden
mit dem Vertikal ZM zusammenfillt, wihrend
das beobachtete Objekt (Mondmittelpunkt,
Rand, Moésting A) in Wirklichkeit den Verti-
kal ZM’ iiberschreitet, also den Abstand df =
sinzdA vom Faden hat. Dieser fehlerhaften
Einstellung entspricht ein Mondort' M’ in der-
instantanen Bahn, wihrend dem "Azimut des
Fadens der Mondort M entsprechen wiirde.
Die Entfernung MM’ entspricht einem Fehler
in' der' Bahnlénge

dv=cdT,

wenn ¢ die instantane Bahngeschwindigkeit
und dT dié Zeit bedeutet, in der das Bahn-
stiick MM’ vom Monde durchlaufen wird. Das
kleine rechtwinklige Dreieck QMM’' darf als
eben angesehen werden. Bedeutet (wie auch
in Abb. 50) ¢ den Winkel, den die Bahn mit
dem Vertikal bildet, so ist.

df =dvsing.
Ebenso ist bei der Anwendung der Zenit-

distanzmethode, wenn dz = dg = MQ der Ein-
stellungsfehler ist,

dg=dvcosgq.

Es ist nun die geographische Linge durch
A=T —1t gegeben, wenn T die Weltzeit,

t die Ortszeit der Beobachtung bedeutet. Nehmen wir die Ortszeit als fehler-
frei an, so ist der Lingenfehler dA =dT. Es ist also, je nachdem.es sich
um die Azimut- oder Zenitdistanzmethode handelt,

—df— oder. di =

dg

~ csing ccosq
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Der Faktor 1/c kann dabei Werte zwischen 23 und 31 annehmen. Die Léngen-
bestimmung aus Azimuten ist am genauesten, wenn die instantane Bahn den
Vertikal rechtwinklig schneidet, die aus Zenitdistanzen aber, wenn die Bahn
im Augenblick der Beobachtung mit dem Vertikal zusammenfillt, also durch
das Zenit geht. Es ist klar, daB dieser Fall nur in kleinen Breiten vorkommen
kann.

60. Lingenbestimmung aus Monddistanzen

Die klassische Methode der Léingenbestimmung auf See, die vor Erfindung
der Funkentelegraphie in der Nautik fast ausschlieBlich angewandt wurde,
beruht auf der Messung der sphérischen Abstdnde des Mondes von hellen
Fixsternen, Planeten oder auch der Sonne. Befinden sich diese Gestirne in der
Nihe der Mondbahn (fiir Sonne und Planeten ist das immer der Fall),
und sind die Abstinde nicht zu klein, so geht die Bahnbewegung mit
einer groBen Komponente in die Abstéinde ein, so daB diese zur Ermittlung
der Weltzeit sehr geeignet sind. Fiir den Seemann hat die Methode der
Monddistanzen den unschitzbaren Vorteil, da sie mit dem Sextanten
ausfiihrbar ist, also mit jenem Instrument, das fiir den Gebrauch auf dem
schwankenden Schiff allein geeignet ist.

Das Prinzip des Sextanten (vgl. Abschn. 11) beruht ja darauf, daB
vermittels eines drehbaren Spiegels die Bilder zweier Gestirne im Gesichts-
feld eines kleinen Fernrohrs zur Deckung gebracht werden konnen — an
einem fein geteilten und mit Nonius versehenen Kreise liest man dann
den Betrag der Drehung bzw. die daraus unmittelbar folgende Distanz der
Gestirne ab. Bei der Beobachtung der Monddistanzen von:Fixsternen be-
stimmt- -man den Abstand des Sternes vom beleuchteten Mondrand, bei
Sonne und Planeten werden die Rinder dieser Gestirne mit dem des
Mondes zur Deckung gebracht. :

In manchen Nautischen Jahrbiichern findet. man die geozentrischen
Distanzen des Mondmittelpunktes von geeigneten Fixsternen bzw. von den
Mittelpunkten der Sonne und der Planeten als Ephemeride gegeben. Hat man
eine solche Ephemeride nicht zur Hand, so kann man sie leicht berechnen:
Fiir eine kleine Anzahl von vollen Weltzeitstunden um den Beobachtungs-
termin herum entnimmt man dem Jahrbuch (Nautical Almanac) die Koordi-
naten ay, d;; oy, 0, der beiden Gestirne S, und S,. Wir beschrénken uns hier
auf den Fall, da} S; den Mond und S, einen Fixstern darstellt. Setzt man nun
a; — ay = A, so erhélt man die geozentrische Distanz b nach den Formeln
(V; 80) oder besser durch Anwendung der Tangentenformel Anhang A IIT (8)
auf das Dreieck PS,S,.

Die Reduktion der Beobachtungen erfolgt in zwei Schritten: Zunéchst
ist der beobachtete Abstand um den scheinbaren Mondhalbmesser zu korri-
gieren. Der so erhaltene scheinbare Abstand des Sterns vom Mondmittel-
punkt ist sodann von dem Einflufl der Parallaxe und der Refraktion zu be-
freien, um mit den geozentrischen Distanzen der Ephemeride vergleichbar zu
werden. Zur Berechnung dieser Korrektionen sind aber die scheinbaren Mond-
orter notig, die man wiederum nur berechnen kann, wenn man die geo-
graphische Linge des Beobachtungsorts wenigstens gendhert kennt.
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Der Seemann hat einen geniherten (gegiiten) Wert der geographischen
Linge seines Schiffsorts immer zur Verfiigung. Ortszeit und Polhdhe seien
aus besonderen Beobachtungen bekannt. Mit der geniherten Weltzeit, die
man aus Ortszeit und genédherter Linge bestimmt, erhélt man aus der Ephe-
meride die geniiherten geozentrischen Koordinaten des Mondes (e, d;)
und des Sterns (e, d,). Nach (II; 23) bestimmt man dann die ent-
sprechenden geozentrischen Horizontalkoordinaten A, z;; A,, z, der beiden
Gestirne. Um hieraus die scheinbaren (vom Beobachter aus gesehenen)
Koordinaten A/, z,; A, z,’ zu erhalten, sind an A4,, z; die Korrektionen
wegen der téglichen Parallaxe, an z,, z, die wegen der Refraktion an-
zubringen. Die ersteren erhidlt man nach (I; 38), (I;.40), (I;41). Die
Refraktion ist in den gebriuchlichen Tafeln immer mit dem Argument 2,
der scheinbaren Zenitdistanz gegeben. Zur Entnahme dieser Korrektion
sind also zwei Schritte notig: Mit dem schon um die Parallaxe verbesserten z
entnimmt man die Refraktion r aus der Tafel, sodann wiederholt man die
Entnahme mit dem Argument z —r. Wenn die Zenitdistanz nicht allzu
groB ist, wird diese zweite Ndherung schon den endgiiltigen Wert der Refrak-
tion ergeben. Bequemer ist die Benutzung von Tafeln, die r direkt mit dem
Argument wahre Zenitdistanz liefern.

Bei der Reduktion der gemessenen Distanz des Sternes vom Mondrand
auf die vom Mondmittelpunkt muf3 man beachten, dag infolge der Refraktion
der vertikale Monddurchmesser gegen den horizontalen verkiirzt erscheint.
Der Mondrand erscheint daher dem Beobachter nicht als Kreis, sondern als
eine annihernd elliptische Figur, deren Achsenverhiltnis man geniigend genau
einer Tafel mit dem Argument 2z’ entnehmen kann. Bezeichnet man den
Winkel, den die Verbindungslinie Stern-Mondmitte mit dem Vertikal des
Mondes bildet, mit w, und sind ¢ und § die Halbachsen des scheinbaren
Mondrandes, so findet man auf Grund der Ellipsengleichung den in Richtung
auf den Stern zeigenden scheinbaren Mondhalbmesser zu

B

aff o @ cosy

- Ve cos?* w + B2 sin® w = B ~ V1—sin’ysin’o
Vl—(l— )sin%u

Hierbei ist o der nach (I; 43) wegen Parallaxe verbesserte Mondhalbmesser,

wiihrend
2
Y == arc sinV — %

aus der genannten Tafel (Anhang F IV) entnommen werden kann. Aus dem
Dreieck ZS,S, findet man ferner fiir sin w den geozentrischen Wert

|sin o] = zbz |sin (Ag— 4y)],

der eigentlich noch wegen Parallaxe zu verbessern wire. Man kann aber auf
diese kleine Korrektion verzichten, da sin? w mit dem stets sehr kleinen
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Faktor sin2 y multipliziert erscheint. Die scheinbare Distanz &’ des Sterns
vom Mondmittelpunkt erhélt man dann, indem man die gemessene Distanz
um ¢ vermehrt oder vermindert, je nachdem ob man den dem Stern zu- oder
abgewandten Rand des Mondes beobachtet hat.

Nunmebhr ist von ¥’ die Korrektion b — b zu subtrahieren, um den wahren
Wert der geozentrischen Distanz b zu erhalten. Diese Korrektion 148t sich
genau genug mit Hilfe der genéherten Mondkoordinaten berechnen, die man
auf Grund der gegiBiten Linge schon zur Verfiigung hat. Dabei ist zu be-
achten, daB b — b in ungiinstigen Fillen bis zur GréBenordnung 60’ an-
wachsen kann — es kann fiir diesen Winkel wohl der Sinus mit dem Bogen
vertauscht, nicht aber der Cosinus durch die Einheit ersetzt werden. Das
gleiche gilt mehr oder weniger auch fiir die Verbesserungen der Zenitdistanzen
der beiden Gestirne, wihrend das Azimut des Fixsterns unveréndert bleibt
und das des Mondes nur eine kleine Anderung d A, wegen Parallaxe erfihrt,
die man stets als Differential ansehen kann. Es werde also zunéichst b wegen
der Parallaxe des Mondazimuts verbessert: Aus dem Dreieck ZS,S, folgt
nach dem Cosinussatz

c0s b = cos z; €0s z, + sin z; sin z, cos (4, — 4,)
und daher
sin b db = — sin z; sin z, sin (4, — A;) d A,

oder, da nach (I; 38) d A; = g sin & sin (p — ¢’) cosec z, sin 4,,

o sin 7 sin (@ — @) sin z, sin A, sin (4, — A;)
sin b )

db =

AuBerdem sind noch die Einfliisse zu beriicksichtigen, die von den betricht-
licheren Verbesserungen der Zenitdistanzen wegen Parallaxe und Refraktion
herriihren. Seien wieder die fiir die Sphére des Beobachters giiltigen Grofen
von den geozentrischen durch einen Strich unterschieden, und setzt man wie
in Abschnitt 54

x=Ay— Ay, k=2 —z, v=2 12z,

W=z —z, v=2z +1z,
so gelten die Gleichungen (V; 83)

’ ’

., b 7 x v o,
sin? — = sin? - cos? —— -} sin? —-sin%? —
2 2 2 + 2 2’

., b ., M % S 2
2 0 qin? 2 % 2 Y oginz 2.
sin? - = sin o- cos® 3 —+ sin 5 Sin 5

Subtrahiert man diese voneinander und bedenkt, daB fiir irgend zwei
Winkel «, g

sin? @ — sin? § = sin (¢ + B) sin (@ — B),
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so erhilt man

b+bsinb——b=cos'isinﬂ+‘usin”—'“ +

sin 9 5 D) D) D)

v+ sin v —v
2 2

. [ 2N
+ smzf sin

oder, wenn man
b —b=4b, ' —pu=A4z— A4z, = Ay,
V —vy=A4z+ A2, = Av

setzt und, was nach der obigen Bemerkung erlaubt ist, die Sinus der Ver-
besserungen 4b, Au, Av durch die Winkel ersetzt,

Absin (b—l- ‘g’) =Ap cos”%sin (,u +A7#,) + Avsin’-%sin (v + ‘%)
Diese Formel liefert zunéchst einen Naherungswert fiir A5, wenn man den
Faktor links durch sin b ersetzt. Berechnet man mit dieser Ndherung den
Faktor genauer, so folgt das endgiiltige 4b durch abermalige Auflésung der
Gleichung. Damit ist die Aufgabe gelost, denn mit b = b' — db — A b erhilt
man den der beobachteten Monddistanz entsprechenden geozentrischen Wert,
mit dem aus der gegebenen oder berechneten Ephemeride die zugehorige
Weltzeit entnommen werden kann. Ist diese von der urspriinglich angenom-
menen, aus der gegiliten Lénge abgeleiteten Weltzeit nicht sehr verschieden,
so kann die Rechnung als abgeschlossen gelten. Andernfalls mufl man die
ganze Rechnung mit der verbesserten Lénge wiederholen.

61. Lingenbestimmung aus Sternbedeckungen durch den Mond

Als Spezialfall der Methode der Monddistanzen 148t sich die Léngen-
bestimmung aus Sternbedeckungen auffassen: An den Zeitpunkten des Ver-
schwindens und des Wiedererscheinens eines Sterns hinter der Mondscheibe
ist die scheinbare Distanz des Sterns vom Mondmittelpunkt gleich dem
scheinbaren Mondhalbmesser und die Distanz vom Mondrand gleich null. Die
Distanz ist also bekannt, und der Beobachtungsfehler kann daher ganz auf
die beobachtete Zeit geworfen werden; diese 148t sich aber sehr genau fest-
legen, wenn der Stand der Arbeitsuhr nach Ortszeit bekannt ist. Besonders
scharf 148t sich das Verschwinden eines Sterns hinter dem dunklen Mondrand
(zwischen Neu- und Vollmond) beobachten, da man den Stern bis zu seinem
plotzlichen Ausléschen im Auge behalten kann — die Registrierung des Zeit-
punkts der Bedeckung erfolgt meist mit einer ganz geringfiigigen Verzo-
gerung, der personlichen Gleichung, die selten mehr als 2—3 Zehntel einer
Zeitsekunde betrigt und von einem erfahrenen Beobachter ziemlich richtig
geschitzt und beriicksichtigt werden kann. Mit etwas geringerer Sicherheit
wird das Wiederaufleuchten eines Sterns am dunklen Mondrand (nach Voll-
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mond) aufgefaBt, da es schwierig ist, die Stelle des Austritts genau zu fixieren.
Noch ungenauer ist, namentlich bei schwécheren Sternen, die vom Mondlicht
liberstrahlt werden, die Beobachtung der Ein- und Austritte am hellen Rand.

Gegeniiber der Methode der Monddistanzen hat die Beobachtung von
Sternbedeckungen einen weiteren nicht zu unterschiitzenden Vorteil, der
darin besteht, daB die Bedeckungszeiten dem EinfluB der Refraktion nicht
unterliegen. Man kann also bei der Entwicklung der Theorie der Sternbe-
deckungen die Kriimmung der Lichtstrahlen durch die Erdatmosphire ganz
aufler Betracht lassen.

Wir projizieren den Vorgang der Bedeckung auf eine Ebene, die durch den
Erdmittelpunkt geht und das vom Fixstern kommende parallele Lichtbiindel
rechtwinklig schneidet. Auf
dieser Ebene sei der Erdmittel-
punkt selbst der Koordinaten- 2y
anfang. Die Projektion der Erd-
achse machen wir zur X-Achse
(positiv nach Norden), wihrend
die positive Y-Achse rechtwink-
lig dazu nach Osten gerichtet
sei. Die Projektion des Beob-
achtungsorts bewegt sich dann
im Laufe eines Sterntages auf
einer Ellipse, deren kleine Achse
in die X-Achse des Koordinaten-
systems féllt. Die Projektion des
Mondes wird von einem Kreis
begrenzt, dessen Halbmesser in

NIy

Einheiten des dquatorealen Erd- s

halbmessers k = 0,272495 be- .
.trigt, und dessen Mittelpunkt Abb. 53: Lingenbestimmung
eine bestimmte, durch die aus Sternbedeckungen

Theorie der Mondbewegung vor-
geschriebene Bahn beschreibt. In den beiden. Augenblicken des Beginns
und des Endes der Bedeckung beriihrt der Lichtstrahl, der vom Stern zum
Beobachter fiihrt, den Mond. Er gehort also dem einhiillenden Zylinder
an, der den Mondrand auf die XY-Ebene projiziert. Im Augenblick der
Beobachtung fallen daher die Projektionen des Mondrandes und des Be-
obachtungsortes zusammen.

An der geozentrischen Sphire (Abb. 53) seien Z' das geozentrische Zenit,
S der Ort des Fixsterns und M der Ort des Mondmittelpunkts zu der auf den
Meridian des Beobachtungsorts bezogenen Sternzeit ®. X und Y seien die
Punkte, in denen die X- und Y-Achse die Sphére durchstoflen. X liegt dann
auf dem Stundenkreis von S (90° nérdlich von S), und SXY ist ein Kugel-
oktant.

Bezeichnet man mit r die in Einheiten des dquatorealen Erdhalbmessers
ausgedriickte geozentrische Entfernung des Mondmittelpunktes und mit o,
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wie iiblich, die geozentrische Entfernung des Beobachtungsortes, der vom
Erdmittelpunkt aus gesehen in Richtung Z’ liegt, so sind offenbar

x=rcos(MX), y=rcos(MY)
die rechtwinkligen Koordinaten der Projektion des Mondmittelpunkts und
E=pcos(Z'X), n=ygpcos(Z'Y)

die Koordinaten der Projektion des Beobachtungsorts.
Da Y ein Pol des GroBtkreises PXS ist, so ist

= L

PY_]:2 , ILYPS= 5

Aus den Dreiecken PMX, PMY, PZ'X, PZ'Y lassen sich dann nach dem
Cosinussatz die Ausdriicke cos (MX) usw. berechnen, und man erhilt, wenn
man wie im vorigen Abschnitt die auf den Mond beziiglichen Gréen mit dem
Index 1, die auf den Stern beziiglichen mit dem Index 2 bezeichnet, und wenn
man bedenkt, daB die Stundenwinkel von M, S, und Y

n

HL=0—0a,, t,=0—a,, lz—% =0—-a2——5

sind.
z = r[sin §, cos §, — cos &, sin &, cos (z; — a,)],

y =rcos 4, sin (@, — o), (VI; 15)
& = o[sin ¢’ cos 8, — cos ¢’ sin J, cos (@ — )],
n = g cos ¢’ sin (6 — ).

Hierbei seien alle Strecken in Einheiten des dquatorealen Erdhalbmessers.
ausgedriickt. Es ist dann, wenn 7, die Aquatoreal-Horizontalparallaxe des
Mondes bedeutet,

I = cosec (VI; 16)

zu setzen. Fiir den Zeitpunkt der Bedeckung (Ein- oder Austritt) gilt dann
die Fundamentalgleichung

=8+ @—nP=k, (VI; 17)

von der die Losung aller Aufgaben ausgeht, di¢ sich aus der Beobachtung
von Sternbedeckungen ergeben. '

Soll die geographische Lénge des Beobachtungsorts abgeleitet werden, so
darf vorausgesetzt werden, daf} ein gendherter Wert A, der gesuchten Linge
schon vorliegt. Die wahre Linge sei A = i, + d4; die unbekannte Verbes-
serung d 4 ist klein, wenn sie im allgemeinen auch nicht als Differential an-
gesehen werden darf. Bekannt sind ferner auf Grund vorausgegangener Orts-
bestimmungen die geographische Breite ¢ (und damit auch ¢’ und p nach den.
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Formeln des Abschnitts 5 bzw. nach Tabelle Anh. F I) sowie die Ortsstern-
zeit @ der Bedeckung. Die gleichzeitige Greenwicher Sternzeit ist dann

0=0+1=0,+dA,
wenn wir mit B
@o=@+10

den geniherten Wert von @ bezeichnen. Ebenso ist die Weltzeit der Beob-

achtung T T 4
= 0 .

Die gendherte Weltzeit T, bestimmt man nach (II; 51) zu
0= 6 — 9 — (8 — P (10 — By,

wobei ¢ die in den Jahrbiichern gegebene Greenwicher Sternzeit um 0t WZ
des Beobachtungstages bedeutet.

Mit dem Argument T, entnimmt man aus den Ephemeriden des Jahr-
buchs die Koordinaten «,, , und die Parallaxe 7, des Mondes und die Koordi-
naten a,, d, des bedeckten Fixsterns. Die letzteren findet man im Jahrbuch
in einer Liste aller vom Monde bedeckten Sterne fiir den Zeitpunkt der geo-
zentrischen Konjunktion zwischen Mond und Stern angegeben — dieser Zeit-
punkt ist von T, stets so wenig verschieden, daB die Anderungen des Stern-
orts wegen Prézession, Nutation und Aberration unmerklich bleiben. Die
Mondkoordinaten miissen hingegen aus der Ephemeride streng interpoliert
werden, am besten aus der des Nautical Almanac, die &, dy fiir alle Welt-
zeitstunden und m, fiir O® und 12t WZ jeden Tages enthilt. Fiir den Be-
obachtungszeitpunkt ® (bzw. T) sind dann mit geniigender Annéherung

o =ay+a'dd, 6y =208y + ddA 7 =my+ a'dA

die genaueren Werte der Koordinaten und der Parallaxe des Mondes, wenn
o, ¢, o' die fiir T, giiltigen Differentialquotienten der betreffenden GréBen
bedeuten. , ‘

Von den variablen GréBen der Fundamentalgleichung (VI; 17) sind &, n
streng bekannt, wihrend von x, y mit Hilfe von (VI; 15), (VI; 16) die Nihe-
rungen r,, Yy, berechnet werden konnen. Es nimmt dann, wenn mit 2’, y’
die Ableitungen von z, y bezeichnet werden, (VI; 17) die Form

(o + 2'd2 — §)2 4 (yo + y'dA — )2 = k* (VI; 18)

an, wird also zu einer quadratischen Gleichung fiir die Unbekannte da.

Nach einem von Besser!) vorgeschlagenen Verfahren 16st man diese
Gleichung folgendermaflen auf: Man berechne die Hilfsgro8en m, M, n, N
nach

mcosM =zx,—&, ncosN=12,
msihnM=y,—n, nsinN=y.

1) P, W.BesseL: Uber die Vorausberechnung von Sternbedeckungen.
Astron. Nachr. 7 (1829). :
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Dann 148t sich (VI; 18) auch in der Gestalt
m?sin? (M — N) + [mcos (M — N) + ndA] = k*

schreiben. Dividiert man diese Gleichung durch k2 und setzt man
'—;:—sin(M—N) =cosy,
so ergibt sich schlieBSlich

di —_—‘—gcos(M,—N) F %sintp, (VI; 19)

wobei das obere Zeichen fiir den Beginn, das untere fiir das Ende der Be-
deckung gilt.

Es ist nun noch zu zeigen, wie die zur Berechnung von n, N nétigen
Differentialquotienten z’, y’ gefunden werden, und wie sie zu dimensionieren
sind, damit dZ in Zeitsekunden erhalten wird. Aus (VI; 15), (VI; 16) ergibt
sich durch Differentiation nach der Zeit fir T = T,

= r'ir + r {&' [cos 8, cos §, -+ sin J, sin &, cos (@g — @5)] +

+ &' c0s §, sin 8, sin (e, — )},

4

y= r’% ~+ r[— &' sin §, sin (@g — @) + o’ cos §, cos (zg — )],

r=—n'rctgm,.
Bedenkt man, daf} ¢, — «,, §; — J, im Augenblick der Bedeckung sehr klein
sind, so kann man mit ausreichender Genauigkeit stets

' =r!d' + sin 1" [’ (0t — etp) €OS &g 8in 6y — 7' (§p — &) ctg 7,1},
Y’ = r{a’ cos §y—sin 1" (g — @) [¢’ sin 6y + &’ cos &, ctg 7y ]}

schreiben. In der Praxis wird es, namentlich wenn d4 klein ist, immer ge-
stattet sein, sich auf das erste Glied in den geschweiften Klammern zu be-
schrinken. Es ist also gendhert

¥ =rd =& cosec x,, .
Yy’ =ra’ cos §; = o’ cos d, cosec my. } (VI; 20)
Soll d A nach (VI;19) in Zeitsekunden erscheinen, so miissen z’, y’ die Dimen-
sion Léngeneinheit : Zeitsekunde, also o', ¢’ die Dimension Bogen: Zeit-
sekunde erhalten. Sind also 15 A« und 46 die fiir T, aus dem Nautical
Almanac entnommenen und in Bogensekunden ausgedriickten stiindlichen
Anderungen der Mondkoordinaten, so hat man

_154de 46

in 17, 6=m'sml (VI; 21)

’

* = 3600 °
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zu setzen. Es empfiehlt sich aber, statt dessen die HilfsgréBen n, N aus

ncos N =448, nsin N =154« cosé, (VI; 22)
abzuleiten und dann das nach (VI; 19) erhaltene Ergebnis mit dem Faktor
— D sn (VI; 23)

sin 1

zu multiplizieren, um es in Zeitsekunden zu verwandeln.

Mit der verbesserten Lénge 4 = 4, + d A wird man die Rechnung wieder-
holen, wobei man die Grofen &, # und meist auch #, 4e, 46 unverindert aus
der ersten Rechnung iibernehmen kann. In den meisten Fillen wird die
zweite Hypothese nur noch geringfiigige Verbesserungen liefern oder das
Ergebnis der ersten bestétigen.

Die Genauigkeit dieser Methode der Lingenbestimmung wird durch die
systematischen- Fehler der Mondephemeride und durch die Unregelm#Big-
keiten des Mondrandes stark beeintréchtigt, wie dies ja auch bei anderen ab-
soluten Ortsbestimmungsmethoden mit Hilfe von Mondbeobachtungen der
Fall ist. Um den Einfluf} dieser Fehler abzuschétzen, nehmen wir an, daBl de,,
ddy, dk die Fehler der angenommenen Mondkoordinaten und des Mondhalb-
messers sind — der letztere beruhe hauptséchtlich auf der Beschaffenheit des
Randprofils an der Ein- oder Austrittsstelle des Fixsterns. Differenziert man
(VI; 18) nach x,, y,, d A einerseits und k andererseits, so ergibt sich

(x — &) [dzo + 2'd (dA)]) + (y — ) [dyo + y'd (dA)] = kdk

(z—8dzo+ (y—n)dyo—kdk
r(x—&+y@—mn

oder
d(di)=—

Setzt man nun

kcoso =& —x, ksino=9n—y,
so bedeutet, wie man sich aus dem Bild der Projektion des Bedeckungsvor-
gangs auf die XY-Ebene leicht klar macht, @ den vom Nordpunkt der Mond-
scheibe aus nach Osten herum gezihlten Positionswinkel der Ein- oder Aus-
trittsstelle. Setzt man ferner gemaB (VI; 20), (VI; 21), (VI; 23)

Cz' = 46, Cy =15 Aacosd,

und bezeichnet mit Av den stiindlichen Zuwachs der Mondlinge in der Bahn
(Abb. 54), mit p den Positionswinkel der instantanen Bahnrichtung, so ist

46 =A4v cosp; 15 A cos 6y = Avsin p.
Setzt man schlieBlich auf Grund von (VI; 20)
dzxy = dd, cosec my, dy, = da cos dy cosec 7y,

und nimmt man an, daf} der angenommene Mondort gegen den wahren um ds
und in Richtung des Positionswinkels ¢ verschoben sei, so ist

dxy, = ds cos q cosec 7,
dy, = dssin ¢ cosec 7.
14 Geogr. Ortstestimmungen
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Mit diesen Festsetzungen wird der in Zeitsekunden ausgedriickte Lingen-
-bestimmungsfehler
ds cosec my cos (@ —q) + dk

d(@dh=—C Avcos (@ —p)

Nun beruht erfahrungsgemifl der Ephemeridenfehler zum iiberwiegenden
Teil auf einem Fehler der Mondldnge, wihrend der Fehler in Breite kaum ins
Gewicht fillt. Wir nehmen daher an, daB die Verschiebung des Mondorts

infolge der Unsicherheit der Ephemeride in Rich-
£ tung der instantanen Mondbahn erfolgt, so da
¢ = p gesetzt werden kann. Dann ist einfacher
Ao 3600 ds - dk sin 7, sec (& — p)
d(d}) == . \
' sin 1” 4v

oder, wenn wir ds und den Fehler des schein-
baren Mondhalbmessers-do = dk sin 7, in Bogen-

“:'a sekunden ausdriicken,
’ 360 ~
B v u d(dl):%[ds-l—dosec(w—p)].
B \ao
” ? Da nun die Mondldnge in 27,3 Tagen um 360°
/ Acccos by wiichst, ist der durchschnittliche Wert ihrer
stiindlichen Anderung
—— 360° .
ADb. 54: Fehlereinflisse Av = 5 ogy = 1978”.

bei Lingenbestimmungen
aus Sternbedeckungen  Benutzt man diesen Wert, so erhilt man

d(dAy = 1.82[ds” + do” sec (& — p)],

wobei der Faktor rechts einen Mittelwert darstellt und in Wirklichkeit
zwischen den Extremen 1.5 und 2.1 schwanken kann.

Ein Ephemeridenfehler ds von 1° = 15" wiirde also zu einer Verfil-
schung der Lingenbestimmung um rund eine halbe Zeitminute fiihren. Wird die
gleiche Sternbedeckung an zwei verschiedenen Orten beobachtet, so fillt in
der Differenz der geographischen Lingen dieser Fehler natiirlich heraus. Der
Fehler d¢” kann wegen der UnregelmiBigkeiten des Randprofils bis zu 2
betragen. Seine Wirkung ist am kleinsten, wenn cos (@ — p) =+ 1, d. h.
der Positionswinkel des Ein- oder Austritts mit dem der instantanen Bahn
zusammenfillt, die Bedeckung also zenfral verlduft. Fiir cos (@ — p) =0,
also bei streifender Bedeckung, wird der Faktor von do unendlich groB,
eine Lingenbestimmung daher unmoglich. Fiir die Zwecke der Lingenver-
besserung wird man also maoglichst zentrale Bedeckungen wihlen, immerhin
konnen die RandunregelméBigkeiten auch dann Fehler bis zu 4* verur-
sachen.

Zum Schlufl mége noch ein Wort iiber die Vorausberechnung von Stern-
bedeckungen gesagt werden. In den Jahrbiichern findet man Zeiten und
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Positionswinkel der Bedeckungen fiir ausgewihlte Orte (Sternwarten). So
gibt das Berliner Astronomische Jahrbuch fiir verschiedene deutsche Stern-
warten (z. Z. fiir Berlin, Frankfurt a. M. und Miinchen) die Bedeckungszeiten
auf 0,1™ WZ und die Positionswinkel auf ganze Grade genau, wéihrend der
Nautical Almanac diese Grofen fiir eine Reihe von Orten des Britischen
Weltreichs (Greenwich, Edinburgh, Toronto, Montreal, Vancouver, Calgary,
Kapstadt, Johannesburg, Melbourne, Sidney) liefert. Da die Vorausberech-
nung nur den Zweck verfolgt, den Beobachter iiber die Zeit der Erscheinung
ungefdhr zu unterrichten, damit er seine Aufmerksamkeit rechtzeitig auf sie
lenken kann, so sind Zeitangaben von der Genauigkeit einiger Minuten
hinreichend. Unter dieser Voraussetzung darf man annehmen, daB in
einem weiten Umkreis um einen Ort A,, fiir den das Jahrbuch die Bedek-
kungszeiten angibt, diese Zeiten sich linear mit den geographischen Koordi-
naten éndern. Sind also 4y, @, die Koordinaten von Ay und 1 =14,4 44,
@ = @, + A¢ diejenigen eines benachbarten Ortes A, so erhilt man, wenn T,
die Bedeckungszeit fiir A, bezeichnet, fiir A die Zeit

T = Ty + ad i+ bde.

Die Koeffizienten a, b sind in den Jahrbiichern neben T, zu finden. Die For-
mel kann im allgemeinen fiir Entfernungen bis zu 200 km benutzt werden,
ohne daB der Fehler 2% iibersteigt. Fiir streifende Bedeckungen wird die
Unsicherheit erheblich groBer.

Ist man gezwungen, die Vorausberechnung der Sternbedeckung selbst
vorzunehmen, so kann man dies nach dem gleichen Verfahren tun, das oben
fiir die Léngenverbesserung vorgeschlagen wurde. Man geht von einer der
Konjunktionszeit benachbarten vollen Weltzeitstunde T, aus, entnimmt fiir
diese aus dem Jahrbuch die Mondkoordinaten und setzt fiir den unbekannten
Zeitpunkt der Bedeckung

T=T,+t.

Es ist dann, entsprechend (VI; 19), fiir Ein- und Austritt

m _ k.
l—-——;cos(M—N)+7lsm1p,

wobei m, M, k die gleiche Bedeutung wie friither haben, wihrend zur Berech-
nung von n, N nunmehr

ncosN=z' — ¢, nsaN=y —9y

zu setzen ist, da ja &, 7 die gesuchte Bedeckungszeit @ enthalten. Und zwar ist
nach (VI; 15)

& =00 cos ¢ sin dysin (0 — ),

7 =06 cos ¢ cos (0 — ay),
wobei
_ 3662422
T 365-2422

/

15sin 1"

14*
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die in Bogenmaf} ausgedriickte Anderung der Sternzeit in einer Sekunde
mittlerer Zeit bedeutet. Entsprechend schreibt man statt (VI; 22)

ncos N = A6 — 54147,84" o cos ¢’ sin d, sin (0 — a,) sin 7,
n sin N = 15 de cos 6, — 54 147,84 p cos ¢’ cos (6 — a,) sin 7,
Bequemer und anschaulicher ist folgende halbgraphische Methode, die

darauf beruht, daB man fiir mehrere der Konjunktionszeit benachbarte volle
Weltzeitstunden die GroBen
f—z n—y :
P 5 (VI; 24)

berechnet. Diese GroBen stellen die auf die Projektion des Mondmittelpunkts
bezogenen und in Einheiten des Mondhalbmessers ausgedriickten Koordi-
naten der Projektion des Beobachtungsorts auf die XY-Ebene dar. Zeichnet
man auf einen Bogen Millimeterpapier die Projektion des Mondrandes als
Kreis vom Halbmesser 1, wobei die Einheit moglichst grof3 festgesetzt werde,
so stellen die Punkte mit den Koordinaten (VI; 24) die scheinbaren Orter des
Sternes relativ zum Monde zu den gewéhlten Zeiten dar. Verbindet man diese
Orter durch gerade Strecken, so ergeben die Schnittpunkte dieses Polygon-
zugs mit dem Kreis die geniiherten Orter und Positionswinkel des Ein- und
Austritts, wihrend die zugehérigen Zeiten sich durch Ausmessung der
Strecken leicht ermitteln lassen. Die einmal vorbereitete Zeichnung 1483t sich
fiir die Vorausberechnung beliebig vieler Sternbedeckungen verwenden.



VII. KAPITEL

ORTSBESTIMMUNG IM POLARGEBIET

62. Schwierigkeiten der Orisbestimmung in der Nihe der Erdpole

Von einigen wenigen Bemerkungen abgesehen, haben wir in den vorher-
gehenden Kapiteln die besonderen Umsténde unberiicksichtigt gelassen, die
sich ergeben, wenn sich der Beobachtungsort in der Nihe des Nord- oder Siid-
pols der Erde befindet. In der Tat sieht der Polarforscher, der bis in die Nach-
barschaft dieser singuldren Punkte des geographischen Koordinatensystems
vordringt, sich gewissen Schwierigkeiten gegeniiber, die eine besondere Be-
handlung des Ortsbestimmungsproblems erforderlich machen.

Fiir den Theoretiker wire es nicht ohne Reiz, die im Vorhergehenden be-
schriebenen allgemeinen Methoden der Ortsbestimmung einzeln auf ihre
Brauchbarkeit im Polargebiet zu untersuchen und ihnen, wenn erforderlich,
die Form zu geben, die sie fiir die Zwecke des Polarforschers geeignet machen
wiirde. Das praktische Bediirfnis nach einer solchen Untersuchung ist aber
gering, wie man auch beim Durchblédttern der umfangreichen Ortsbestim-
mungsliteratur bemerkt, die nur wenige Beitrége zum Problem der Orien-
tierung in Polnéhe aufweist. Der Polarforscher selbst wird sich in Anbetracht
der schwierigen geographischen und klimatischen Umwelt, in der er seine
Arbeiten ausfiihren muf, immer auf die einfachsten und mit den geringsten
Hilfsmitteln durchfiihrbaren Beobachtungs- und Reduktionsmethoden zu-
frieden geben, so daB3 auch wir uns auf die Beschreibung einiger der zweck-
maiBigsten Verfahren beschrénken diirfen.

Die Auswahl der Ortsbestimmungsmethoden im Polargebiet wird durch
zwei Umsténde entscheidend beeinfluBt: Zunéchst sind wéihrend des Polar-
sommers, der eigentlichen Reisezeit des Forschers, von allen Gestirnen nur
die Sonne und zeitweilig auch der Mond sichtbar. Nur selten wird der Beob-
achter im Universalinstrument einen der hellen Planeten (nur Venus und
allenfalls noch Jupiter kommen in Frage) einstellen konnen. Weitaus die
groBte Zahl der Beobachtungen, die in den Tagebiichern der Polarreisenden zu
finden sind, bestehen daher auch aus Messungen der Sonnenhdhe. Die zweite
Eigentiimlichkeit liegt natiirlich in den singuldren Eigenschaften der Pole im
System der geographischen und astronomischen Koordinaten begriindet. Wir
haben gesehen, dal an den Polen selbst verschiedene Begriffe und Groéflen,
derer wir uns bedient haben, ihren Sinn verlieren: es gibt an diesen Punkten
weder Meridian noch Ersten Vertikal, weder Ortszeit noch geographische
Linge, weder Stundenwinkel noch Azimut. Das Nautische Dreieck selbst, aus
dem die weitaus grofite Zahl unserer Formeln hergeleitet wurde, degeneriert
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da zwei Ecken, Himmelspol und Zenit, zusammenfallen. Auch in der Um-
gebung der Pole, der niheren (| ¢ | > 85°) wie der weiteren (| ¢ | > 80°), wird
sich dieser Umstand — teils stérend, teils aber auch zum Vorteil — bemerk-
bar machen.

Eine ganze Reihe von Methoden, die fiir mittlere und kleine Breiten sehr
brauchbar sind, lassen sich in der unmittelbaren Nihe der Pole nicht mehr
verwenden; so alle Methoden der absoluten Zeit- und Léngenbestimmung
sowie die Beobachtung und Verwendung absoluter Azimute. Man kann damit
rechnen, daB es dem Polarforscher mit seinen beschrinkten instrumentellen
Hilfsmitteln noch bis zur Breite von 89° maglich ist, die Lage des Meridians
(wenn auch unsicher) festzulegen. Dariiber hinaus (d. h. in einem Umkreis von
etwa 100 km Halbmesser um den Pol) macht die Unsicherheit der Messungen
die Beobachtungen illusorisch. Dabei ist aber zu beachten, daf} die Begriffe
Zeit und Azimut trotzdem eine Bedeutung behalten, sogar an den Polen
selbst. Zwar verlieren die Begriffe,,Ortszeit",,,Sternzeit*, ,,mittlere und wahre
Sonnenzeit** ihren urspriinglichen Sinn, da sie an die Lage des Himmels-
meridians gebunden sind, die an den Polen unbestimmt wird. Natiirlich aber
gibt es auch fiir die Pole eine konventionelle Zeit, als die man praktischerweise
die fiir den ganzen Planeten giiltige ,, Weltzeit, die Ortszeit des Greenwicher
Meridians, bestimmt. Am Pol selbst 148t sich auch das Azimut definieren,
indem man den Nullpunkt der Azimutzéhlung durch die Richtung des Null-
meridians festlegt. Diese Definition 148t sich allerdings fiir die Polumgebung
nicht ohne weiteres verwenden.

Auch die Unbestimmbarkeit der geographischen Lénge in der nichsten
Umgebung der Pole bedeutet keineswegs, dafl die Ortsbestimmung als solche
unsicher wird. Der Pol selbst ist ja, ohne daB die Angabe einer ,,Lénge*
iiberhaupt erforderlich wire, durch die Mafzahl ¢ = 90° (bzw. ¢ = — 90°)
eindeutig bestimmt. Desgleichen ist ein Ort in der Nihe des Pols durch die —
in bezug auf den Pol als Anfangspunkt und den Nullmeridian als z-Achse ge-
zdhlten — rechtwinkligen Koordinaten

r=cospcosi, y=cosgsini

auf der als Einheitskugel anzusehenden Erdoberfldche wohlbestimmt. Wegen
des Faktors cos ¢ sind diese GroBen sehr klein und verschwinden am Pol
ginzlich. Die Fehler dieser Orter, die von dem unsicheren A herriihren, sind
von der gleichen Groenordnung, wie wir sie aus kleineren Breiten gewohnt
sind, denn es ist ja

dxr = —sin A:cos pdA, dy = cos A*cos pd4,

und der Fehlerd 4, der fiir kleine Poldistanzen stark anwichst, wird durch den
Faktor cos ¢ wieder auf das normale Fehlermaf} herabgedriickt.

63. Die Zweihihenmethode im Polargebiet

Diejenige exakte Methode, die bei Ortsbestimmungen im Polargebiet fast
ausschlieBlich angewandt wird, beruht auf der Auswertung zweier Stern- oder
Sonnenhshen. Man bedient sich dabei zweckméBig des in Abschnitt 38 be-
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schriebenen Verfahrens von KRarrT-HARzZER zur Losung der Zweihohen-
aufgabe, das aber unter Ausnutzung der Vorteile, die die Nihe des Pols bietet,
umgeformt werden kann.

Wenn man beriicksichtigt, daB im Polargebiet mit groBer Anniherung

| sin @ | = 1ist, kann man auf die Auflésung der quadratischen Gleichung fiir
z = sin @ ganz verzichten und die Gleichungen (V; 3) in der Form ,
T =(fy +fo)secd y=(f;—fp)secA (VIL; 1)
schreiben, wo zur Abkiirzung A = % (t,—t) und (s = % —2z)
i __sinhy—sinpsin §, f __sin h,—sin @ sin d,
1= 2 cos §, »orT 205 0,
gesetzt wurde. Bestimmt man ferner 4,’ und 4, durch
sin §," = sin @ sin ¢;, sin d,’ = sin ¢ sin d,, (VII; 2)
so folgt auch
_ sin hl —sin 61' o h1 —_— 61' hl + 61'
fl = _2(586—1— = Ssin 5 CcoS D) sec 61.
in h; —sin &, hy—6 hy+ o (VIL: 9)
_sinhy—sindy’ . hy—dy 2+ 02
fa= “Scoso, sin ——5— cos ——5— sec ;.

Hieraus ergibt sich nun ein duBerst schnell férderndes Niherungsverfahren
zur Bestimmung der Unbekannten

Z = cos g cost, y = cos @ sin't.

Setzt man nimlich in erster Hypothese ¢ = 90°, d. h. also im Nordpolar-
gebiet sin ¢ = 1, im Siidpolargebiet sin ¢ = — 1, so wird 8, = &, 6, = Jy,
und die Formeln (VII;3) und (VII;1) ergeben die erste Ndherung der Unbe-
kannten, die in den meisten Fillen schon ausreichend genau sein wird. Ist
eine zweite Niherung erforderlich, so berechnet man ¢ aus x oder y und hier-
mit é,, §," aus (VII; 2), worauf die Rechnung wiederholt wird.

CHARLIER?) hat die gleiche Methode vorgeschlagen, nur benutzt er statt
des mittleren Stundenwinkels ¢ = % (t, + t;) den der ersten Beobachtung (¢;)

als zweite Unbekannte neben ¢, so daB séine Formeln die schone Symmetrie
vermissen lassen, die der Methode von KrarrT-HARZER zu eigen ist.

Die Bestimmung von ¢ aus z und y wird natiirlich bei groBer Polnidhe un-
sicher, desgleichen die der geographischen Linge, die wir, um einer Verwech-
selung mit ' :
=t,—t=t—1t

1) C. V. L. Cuarcier: Uber geographische Ortsbestimmung in der Nihe der
Pole. Astron. Nachr. 184, 1 (1910).



200 VII. Ortsbestimmung im Polargebiet

vorzubeugen, hier ausnahmsweise mit / bezeichnen wollen. Die Berechnung
von [ aus { ist natiirlich wieder verschieden, je nachdem es sich um Stern-
oder Sonnenbeobachtungen handelt. Der Polarforscher benutzt zweckmaBig
eine Uhr, die nach Weltzeit geht und deren Korrektion durch funkentele-
graphischen Zeitempfang oder aus einer der im vorigen Kapitel beschriebenen
Methoden (Monddistanzen von der Sonne oder von Sternen) bekannt sei.
Ist dann

ﬁ=¢2uz—{—du

die Weltzeit des Mittels der Beobachtungszeiten, so ist bei Sonnenbeob-
achtungen die geographische Linge durch

l=m+p—t

bestimmt, wobei u die Zeitgleichung zur Weltzeit m bedeutet. Bei Sternbeob-
achtungen verwandle man die Greenwicher mittlere Ortszeit m in die Green-
wicher Sternzeit ® (Abschnitt 18). Die Ortssternzeit ist dann zur Zeit des
arithmetischen Mittels der beiden Beobachtungsmomente

@:@-1:14-“‘42'“2

und die geographische Linge
—3 —_— _1—2 .
l=0—t 5

Wegen der Unsicherheit von ¢, die sich auf [ iibertrégt, ist es ratsam, die
GroBen ’

r=-cosgpcost, y=cosgsint

selbst als rechtwinklige Koordinaten in eine Karte einzutragen, die ein
Koordinatennetz mit dem Pol als Anfangspunkt enthilt. Die positive x-Achse
des (x, y)-Systems zeigt in die Richtung { =0, d. h. also in die Winkel-
halbierende der beiden Stundenkreise, in denen die Beobachtungen erfolgten.
Die Richtungswinkel { wachsen fiir den Nordpol im Uhrzeigersinn, fiir den
Siidpol entgegengesetzt. Es ist nun noch eine Drehung des Koordinaten-
systems erforderlich, so daf3 die &-Achse des neuen (&, %)-Systems in die Rich-
tung des Nullmeridians fillt. Es ist also

& =cos ¢ cosl = cos ¢ cos (T — 1),
7 =cos @ sinl = cos g sin (T — )

zu setzen, wobei T=m 4 u die wahre Sonnenzeit des Nullmeridians be-
deutet, und man erhélt somit als neue Koordinaten

E=zcos T+ ysinT,
n==zsin T —ycos T.
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Die Punkte (&, ) haben die Entfernung cos ¢ vom Anfangspunkt, die fiir
einen weiten Bereich um den Pol geniigend genau linear mit der sphérischen

Poldistanz p = g—- @ wichst. Fiir weitere Poldistanzen ist zu beachten, da3
(bei den iiblichen Polkarten in stereographischer Projektion — siehe auch

nichsten Abschnitt) die Halbmesser der Breitenkreise proportional tg— an-
wachsen. Es sind also &, % noch mit dem Faktor

2tg — = 2 z = 2 1_/)

tg 20086(31/) sec 2 14 tg 5

zu multiplizieren, der aber fiir ¢ = 85° nur um 0,19%/, und selbst fiir p = 80°
um nicht mehr als 0,77°/, von der Einheit abweicht.

64. Die Standlinienmethode im Polargebiet

Wir haben im vorigen Abschnitt gezeigt, wie sich die Zweih6henmethode
fiir den Gebrauch in polnahen Gebieten umformen 148t. Ahnliche Uber-
legungen fiir andere, in der Praxis des Polarforschers ungebrauchliche Ver-
fahren (z. B. das Dreihohenproblem oder die Methode der Sterndurchginge
durch zwei Vertikalebenen) anzustellen, sei dem Leser iiberlassen. Wir
konnen aber unsere Betrachtungen nicht schlieBen, ohne auf die in der Nautik
und auf Expeditionen so beliebte Stand-
linienmethode einzugehen, die ja nichts 2 Nulimerigian
anderes ist als ein graphisches bzw. ’
halbgraphisches Verfahren zur Ldsung
der Zweih6henaufgabe. Fiir arktische
und antarktische Beobachtungsorte ge-
stattet’ das Standlinienverfahren eine
besonders einfache Handhabung und 148t
sich fast ohne Rechnung- durchfiihren.

Wie schon weiter oben erwéhnt
wurde, bedient sich der Polarreisende
gern einer Polarkarte in stereographi-
scher Projektion. In dieser (siehe Abb. 55)
sind die Meridiane gerade Linien, die
durch den Pol P gehen, die Breitenkreise
Kreise um P mit den Halbmessern

Abb. 55: Standlinie und -SUMNER-
scher Kreis in der Nihe des
Nordpols. (Die Krimmung des

Kreises ist in der Abbildung

i 9‘0) , stark iibertrieben)

L4

r=2tg 5 (w =3
wobei der Erdhalbmesser gleich der Einheit gesetzt ist. Die Giiltigkeit dieser
Formel ist aus Abb. 56 unmittelbar abzulesen. Diese Projektion hat die
Eigenschaft der Kreisverwandtschaft, d.h. alle Kreise auf der Erdkugel
werden in Kreise projiziert (bzw., wenn sie durch den Pol P oder den Gegen-
pol P’ gehen, in gerade Linien). Diese Abbildung ist auch winkeltreu —
Kreise, die sich auf der Erdoberfliche rechtwinklig schneiden, tun dies
auf der Karte auch.
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Man habe nun, zu den Weltzeiten m, und m,, die mgglichst um etwa sechs
Stunden auseinanderliegen sollen, zwei Sonnenhéhen h, und h, gemessen. Die
dazugehgrigen Deklinationen seien ¢; und d,. Es sind dann Ty, = m,; + u,,
T, = my 4+ py die Stundenwinkel der wahren Sonne fiir den Nullmeridian.

Sei nun (Abb. 57) PS der Meridian der Linge T westlich Greenwich, iiber
dem die Sonne zur Weltzeit m steht, so ist der geometrische Ort allerPunkte
der Erdoberfliche, fiir die die Sonne die Hohe h bzw. die Zenitdistanz z hat,
ein Kreis mit dem sphirischen Halbmesser z um denjenigen Punkt S
des Meridians PS, in dessen Zenit die Sonne
steht. Dieser Kreis schneidet den Meridian
PS rechtwinklig. Es schneidet also auch
auf der Karte (Abb. 55) die Abbildung
dieses ,,SumNERschen Kreises (vgl. Ab-
schnitt 40) die Meridianabbildung PS recht-
winklig im Punkte Q. Der SuMNERsche
Kreis, dessen Halbmesser (der Zenitdistanz z
der. Sonne entsprechend) stets grof ist, ist
nur schwach gekriimmt, es ist also erlaubt,
ihn in erster Ndherung (die auch meistens
ausreicht) durch eine auf PS in @ senk-
rechte Gerade zu ersetzen. Nun ist aber auf
dem Erdmeridian (Abb. 57) PS gleich dem

Bogen’—z‘ — 4, Q'S gleich dem Bogen z =

4 g—h; es ist demnach PQ' = PS —Q'S =
Abb. 56: St hisch
Pricktion Dot Bk, b, wd ds wgen der Pobibe von ¢

tungsort B’ wird vom Gegen- Bogen und Abbildung einander gleich ge-
pol P’ aus auf die Tangential- setzt werden diirfen, so ist auch auf der
ebene im Pol P in den Karte P(Q bekannt.
Bildpunkt B projiziert Man findet demnach den Beobachtungs-
ort mit meist vollig ausreichender Genauig-
keit durch folgendes einfache Verfahren: Man ziehe auf der Karte
vom Pol aus zwei Gerade (Meridiane) mit den Lingen T, =m; + u,,
T, = m, + p, und markiere auf ihnen die Punkte Q,, Q, mit den Polabsténden
d, = h, — 8, bzw. d, = hy— J,. Errichtet man dann in @, und Q, die Lote auf
den Meridianen, so schneiden sich diese in dem Beobachtungsort B. Dieses pri-
mitive Verfahren, das dem friiher beschriebenen Standlinienverfahren véllig
entspricht, liefert um so genauere Ergebnisse, je dichter B am Pol liegt. Die
grofle Vereinfachung gegeniiber der allgemeinen Methode (Abschnitt 40), die
ja immerhin einige Rechnung erfordert, hat ihren Grund darin, da man hier
in der Lage ist, den nahen Pol selbst mit seinen singuléiren Eigenschaften im
System der geographischen Léngen und Breiten als gegiffen Ort anzusehen.

Fiir den Fall, da3 das Ergebnis dieser graphischen Methode nicht genau
genug ist, kann man die strenge Losung durch Ndherungsrechnung ermitteln:
Der SumneRsche Kreis um S mit der Zenitdistanz z als Halbmesser schneidet
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(Abb. 57) den Meridian der Sonne in den Punkten Q' und R’, deren Polar-
projektionen Q und R sind. In der Projektion halbiert der Mittelpunkt des
SumnEerschen Kreises, M, die StreckeQ R. Es sind dann (Erdhalbmesser = 1)

d=PQ=2tgﬁ=2tgh—Eé ~h—3¢,

D=PR=2tga=2ctg%é

P
Abb. 657: Stereographische Projektion des SuMNERschen Kreises

die Absténde des polnichsten und polfernsten Punktes des Kreises vom Pol.
Der Halbmesser des projizierten SumMnerschen Kreises ist

1 . h46 h—é cos h
e=gD—d=dg————— =315 =5
sin —— €08 ——
2 2
der Polabstand des Mittelpunktes M
_ 1 . h40 h—é cosd
o=gDFd =g+t 5 =315 r—¢
sin —5— cos —

In der Kartenebene lautet demnach die Gleichung des SumMnERschen Kreises,
dessen Mittelpunkt auf dem Meridian mit der geographischen Lénge T liegt,

(:c—o-cos T): + (y — o sin T)? = p2.
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Die Koordinaten z, y des Beobachtungsortes B erhilt man dann aus
einer der Losungen der beiden quadratischen Gleichungen

(x — 0y cos Ty)% + (y — oy sin Ty)% = g2,

(x — a5 cos T,)% + (y — o, sin T,)% = g},

wenn die Indizes 1, 2 den beiden Beobachtungen zugeordnet werden. Da nun
die zu B gehorigen Groflen z, y klein gegen g, ¢ sind, kann man schreiben

_91+$2+y
20

e—0+2*+
20

zcosTy + ysinT, =

zcos Ty, 4 ysin T2=0

oder, wegen ¢%*—p?=0%*—(6—d)?=20d—d?,

1
zcos Ty + ysin T1=d1—|—§U—(zz-l—y2—df),

z cos Ty + ysin Tz_dz—l—

+y _dﬁ)'

und es sind auf den rechten Seiten die quadratlschen Glieder klein von der
zweiten Ordnung.

Vernachldssigt man diese Glieder in erster Ndherung, so ergeben sich zwei
lineare Gleichungen, die den in der obigen graphischen Losung benutzten
Standlinien genau entsprechen. In der zweiten Niherung werden die Pol-
abstidnde?!)

51

d=2tgm=% _p s,

52

dz—ztg ~h2——-62

um die Verbesserungen

2 2___ g2
Adl:ii‘y_dl

_rty—d
20, Ady =

20'2

vergroBlert, worauf man B als Schnittpunkt der verbesserten Standlinien
erhélt. Bei der Berechnung der Ad benutzt man die aus der ersten Ndherung
gewonnenen Werte von x und y. Offenbar ist dann 22 4 y2 — d2 gleich dem
Quadrat des Abstandes ¢ des Beobachtungsortes von dem betreffenden
Sonnenmeridian. Man hat also bei der verbesserten graphischen Ldsung
die Polabstinde d der Standlinien um

h+4d —d

Ad_2q31n cos 5 sec &

1) Die Ndherungen d = h—¢ sind bis auf Glieder von dritter Ordnung genau.
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zu vergréBern. Bei Verwendung dieser Formel ist zu beachten, daB alle
Grofen in Einheiten des Erdhalbmessers a ausgedriickt sind. Ist der MaBstab
der Karte so gewihlt, daB3 1° in der Umgebung des Pols die Lénge eins (etwa
1dm) hat, sb ist a = 1870 = 57.296. Sind d und q in dieser Einheit gemessen

(¢ kann mit dem MafBstab aus der Karte entnommen werden), so erhilt man

_ ¢ . h+d6 h—0 1 .
Ad_zasm 5 ¢S~ secd lg2a = 7,94085— 10

in der gleichen Einheit. Den Faktor cos h 5 J in dieser Formel kann man

immer fortlassen, da er sich von der Einheit hinreichend wenig unterscheidet.

Fiir die Erzielung der gro3ten Genauigkeit gelten selbstversténdlich die
gleichen Regeln, die aus den Fehlerbetrachtungen des Abschnitts 38 folgen.
Es sollen also die beiden Azimute moglichst um 90° verschieden sein. Fiir
Sonnenbeobachtungen bedeutet -dies, dafl die beiden Beobachtungen mit
etwa sechsstiindiger Zeitdifferenz anzustellen sind, denn in der Nédhe der-Pole
unterscheiden sich bei méaBiger Hohe der Gestirne Azimut- und Stunden-
winkeldifferenzen nur wenig. Bei Beachtung dieser Vorschrift schneiden sich
die Standlinien nahezu rechtwinklig und gewihrleisten daher eine moglichst
scharfe Bestimmung des Schnittpunkts. ‘



ANHANG

A. Formeln und Siitze aus der sphiirischen Trigonometrie

I. Grundformeln im gewoéhnlichen sphédrischen Dreieck:

Cosinussatz: cosc =cosacosb+ sinasinbcosy,
Sinus-Cosinussatz: sin ¢ cos ¢ = cos a sin b — sin a cos b cos y, (1)
Sinussatz: sin ¢ sine¢ = sinasiny.

Abb. 58:
Sphirisches Dreieck

Diese Sétze gelten, wenn man (Abb. 58) fiir ¢ irgend eine Seite und fiir «
einen der ihr anliegenden Winkel nimmt. Fiir jedes Dreieck lassen sich also
drei verschiedene Cosinus- und Sinussitze und sechs verschiedene Sinus-
Cosinussiitze aufschreiben. Ebenso gelten, wie man aus dem ,,Polardreieck**
nachweist, in dem Seiten und' Winkel bzw. deren Supplemente vertauscht
erscheinen, die entsprechenden Sétze:

cos y = — cos & cos § + sin & sin f cos ¢,
sinycosa=  cosesinf 4 sina cosfcosc, 2)
sinysina= sinesinc.

Die dritte (Sinussatz) ist mit der entsprechenden Formel des Systems (1)
identisch.

Dividiert man die letzten beiden Formeln der Systeme (1) oder (2) durch-
einander, so ergibt sich eine der sechs Formen des Cofangentensatzes:

Cotangentensatz: cos b cos y = ctg a sin b — ctg « sin y (3)
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II. Grundformeln fiir das rechtwinklige sphirische Dreieck?)

(c = Hypothenuse, y = 12{)
cosc = cos a cos b
sinccose =cosasinb 4)

sin ¢ sin ¢ = sin a

©)

cos ¢ = sin f§ cos a
sin e cos ¢ = cos f cos a

sin ¢ sin ¢ = sin a

cosc =ctgectgf
cose = ctgctgd (6)
sina =tgbctgp

II1. Tangentensitze:

2¢J_¢_sin(s-—b)sil:l(s——c) at+bd +
'8 2 sinssin(s—a) = 2 @)
2@ cosocos(oc—a) ,3
85 = " cos (o—p) cos (0 —7) ( = ®)
IV. Die GAussschen Formeln:
b—e__ B+
cos2 cosT cos2sm
b—c . a . f—y
cos = sin = sin —sin
2 2 2 2
(9)
b+ec B+
sm2c05 3 _cosicos
bt+c_ . a p—y
smism —5— = Sin 5 cos T

1) Diese Formeln ergeben sich als Spezialfille der Grundformeln I. Ahnliche
Sitze lassen sich auch fir den Fall aufstellen, daB eine Seite des sphirischen

Dreiecks den Wert = 3 annimmt,
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V. Die NariErschen Formeln:

tg ﬂ+w

COS

folgen unmittelbar aus (9).

B. Trigonometrische Siitze und Reihenentwicklungen
I. Satz: Ist a eine kleine Grgf3e, und ist

asinx

t = s
8y l—acoszx

so kann man y in die rasch konvergierende trigonometrische Reihe
| 1 ..
y:asin:c+§a2sm2x—|—§a%m3z+--- (12)
entwickeln.

Beweis: Man betrachte in (11) y als Funktion von a. Dann ist

dy dtgy 1 sin (13)
da~ da 1+tg8y 1—2acosz+2*

Der Ansatz
y =o,sinx 4 e, sin 2z + agsin3z 4 ---,

d—_y dal
da da

fiihrt dann auf ‘
sinz = (1—2acosx + a?)- (d—a smx—l— —2sin 2z 4+ )

x+—sm2r+——sm3:r+

=sinz [(1 + az)gﬂ—— %] +
da3 (14)

g Ta+a) da_ da

dal

+ sin 2z | — +

doy dog doy

+sin39:[—a—+(1 + 2)—— a

_'_....
l
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Damit diese Gleichung fiir alle x identisch erfiillt sei, verschwinden auf der
rechten Seite die Koeffizienten sdmtlicher trigonometrischer Glieder bis auf
den des ersten, der gleich eins zu setzen ist. Es ergeben sich auf diese Weise,

wenn man in Ubereinstimmung mit (13) noch 'gd%l= 1 setzt, Rekursions-

formeln fiir % (i=2.3...), und man findet
dy . . .
E=51n:r-|—asm2x+a2sm3:r—|—---,

woraus durch Integration die Behauptung (12) hervorgeht, denn da wegen
(11) fiir x = 0 auch y = 0 folgt, so muB} offenbar die Integrationskonstante
ebenfalls gleich null gesetzt werden.

I1. Satz: Ist b eine von eins wenig verschiedene Konstante, und gilt
tgy=>btgr,
s0 146t sich dieser Fall auf den vorigen zuriickfiihren.

Es ist ndmlich:

_ tgy—tgx b—1
tg(y_x)_l—f—tgytgz ez 1+ btgex

.oder, wenn man

tax — sin2:c__ t2x__l—cos2:l:
g 14 cos2z’ 8 " 14 cos2zx
einsetzt,
b—1 ina
b+lsn T
tg(y—zx)= ,
l b_lcos21r
b+ 1

‘woraus nach (11), (12) die Reihe

—1 1/b—1
b1° I+§(b—|—l> sin2z+ 3 (b+l)

folgt, die rasch konvergiert, wenn b nahezu 1 ist.

+ sin3x 4 +--

II1. Satz: Ist a eine kleine Konstante, und ist

y=V1+ 2acosz + a2,
'so ergibt sich die rasch konvergierende Reihe
Iny= acos:r:—;—a2 cos 2z + %—aacosiix ==

15 Geogr. Ortsbestimmungen
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Beweis: Durch Koeffizientenvergleichung (nach dem gleichen Verfahren
wie beim Beweis von Satz I) findet man
1d . cosr+a
3aq R t2acoss+a) =g o=

=cosr—acos2z + a’cos3x F-:-,

woraus durch fntegratioh die Behauptung unmittelbar folgt.
IV. Satz: Sind ¢, B, y drei Winkel, deren Summe null ist, so gilt
sine - sin 8 -+ siny = — 4sinZ sin ésin’i.
2 2 2
Beweis:
sina + sin 8 + siny = sin & + sin § —sin (¢ + B) =
= sina + sin # —sin @ cos f —sin f cos ¢ =
=sina (1—cosf) + sinf (1l —cos @) =

= 4sin ;—‘cosg sinzg + 4sin E cosﬂ sin?

a
2

_iea B .3 @ B
_.4sm§sm2(cos2sm +sm2cos§)
B n
2

—4sin%sinf sn 2 TP
_4sm2sm2sm 3 _—4sm2sm

2

C. Lésung einer trigonometrischen Gleichung
Eine unbekannte Winkelgrofe x sei durch die Gleichung

acosz +bsinzr =c (15)
gegeben.
I. Trigonometrische Losung: Man setze
‘ a=mcosn, b=msinn. (16)
Dann 148t sich (15) in der Form
mcos(r—n)=c (17)

schreiben. Wenn ¢ im Verhiltnis zu m Klein ist, kann man hieraus z genau be-
stimmen; andernfalls benutzt man besser die Tangentenformel

o T—N  1—cos(z—n) ;m—c

t = = )
g 2 14cos(x—n) m-+ec (18)

Statt (16) kann man auch setzen:
a=msinn, b=mcosn, (19)

und erhélt dann statt (17)
msin (r + n) =c. (20)



C. Losung einer trigonometrischen Gleichung 211

I1. Algebraische Losung: Man setze
2
1—y sinz = 2y

T+ Y

=t z CoS T =
y'—' g2’ -

Dann erhilt (15) die Form
a(l—y®)+2by=c+y?

yz(a+¢)—2by=a—c.

oder

Aus dieser quadratischen Gleichung ergibt sich die Lgsung

1 f 2 2 _
Fiihrt man statt a, b, ¢ die neuen Gréf3en
ate ,_a—c
b )

ein, so lautet die quadratische Gleichung

eyt —2y=4 1)
und hat die Losungen

=:7(1i1/1+a,3). (22)
II1. Erste Reihenentwicklung: Ist (vgl. Lﬁsuné IT) ﬂ klein, so kann man

unter Umsténden y in eine Potenzreihe nach # entwickeln. Nach (22) und dem
binomischen Satz ist

=it ateni=

1;|:1+ ef— 2[32 oo — 1280,4,94
=3

Fiir diejenige der beiden Losungen, die klein von der Ordnung g ist, gilt
das negative Zeichen vor der inneren Klammer, und es ist

y=—3b(1— fep+garp—g o +) @)

Die Konvergenz ist besonders rasch, wenn neben f auch « klein ist. In diesem
Falle wird man sich mituntér schon mit der ersten Néherung

1
_§ﬁ+...

begniigen konnen, deren Fehler von der dritten Ordnung ist.
15
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IV. Zweite Reihenentwicklung: Unter Umsténden ist es erwiinscht, auch fiir
r=2arctgy

eine nach Potenzen von & und B fortschreitende Reihe zu besitzen. Hierfiir
gibt P. Harzer folgendes Verfahren an:

Aus (21)
atg*%—2tg%=ﬂ

folgt durch partielle Differentiation nach e, z bzw. 8, =
aatgzg __9z ( l—at,gi)

cos’—;— 2
Oz z
_aﬂz coszi(l—atgg)
. 2
und somit
1—atg X
(@_a_r)_;“_‘iz__ | igZ
e 0f cos? < 2 cos?
oder, mit Riicksicht auf (22)
6z oz 1 _ I
O 0p 1—atgl Vi+ep (24)

Fiir die Losung, die zu dem negativen Vorzeichen von (22), also dem posi-
tiven Vorzeichen von (24) gehort, ist nach dem binomischen Satz

0r Or -+ .1 3 L
%—W=(l+aﬂ) =l—geft+ga®fiF = (25)
. oo ; 2i aiﬂl' .
_i§)(— D ( i) 2%

Es wird nun behauptet, da3 die gesuchte Reihenentwicklung von der Form

T = Ao — (@106 + a1, %) + (a30f° + ap fle 425 f%0%) F -+ =
= i ' (—1iagpP—*+1a* (26)
i=0 k=0

sei. Differenziert man (26) partiell nach ¢, so erhilt man
¢ 61. ) 1

- = — 1VYka:. B2V —k+1pk—1
aa - <o hgl( 1) kaﬁkﬂ " [*4 »
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wobei in der Summe iiber k das Glied k¥ = 0 ausgelassen werden konnte, da es
ja gleich null-ist. Ersetzt man den Summationsindex k durch k41, so ist

6:1: ;i é:: (— 1)‘ k+Daix+ l,Bzi_kal‘ )

Ebenso erhilt man
a T o [

aﬂ ‘.§ go(—l)‘(Zi_k-l_1)0‘.kﬂzi—kak'

und die Differenz dieser beiden Ausdriicke ergibt
dz odx 2 !

P —ﬂ_z 2(—1)' (k+ 1) @41 — 21—k + 1) ai] p2*—*a*]—

—igo(— 1)" (i + 1) ae;ﬂ‘a‘. (27)

Vergleicht man (27) mit (25), so findet man, daB nur die letzte Summe rechts
von null verschieden sein kann, wihrend die Koeffizienten der Doppelsumme
identisch verschwinden. Es ist also

2y 1 (241 1
“”"‘(i>22"<i+T>‘_( i )22~"<2i+1">'
gp= T L k=0, 1,--+i—1)

20—k 1 0kt
oder, wie man hieraus leicht herleitet?),
2i+1 1 .
o S e U
Somit ist fiir die eine Losung unserer Gleichung

B B g 2
==ty +30—5 @+t 0+

"
+7—é4_3(ﬂ3+7ﬁ2a+2,lﬂa2+35a3)-—---

Die Konvergenz der Reihe 0(28) wird folgendermafBlen bestétigt:
Es ist offenbar
© i (____1)1'+1_ 2i+1 okt 1
§0 ZEgiri)\ k )P <
|ﬂ|‘7i+1 2s+1<2l+1)
2RI+ DS\ k /|8

1) Man zeigt, da3 diese Formel die obige Rekursionsgleichung erfiilit. Da
sie auch fiir k = ¢ gilt, so gilt sie demnach auch fiir jedes kleinere k.

’

||Mg
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da auf der rechten Seite dieser Ungleichung nicht nur alle Glieder positiv

genommen sind, sondern auch die innere Summe iiber k¥ = i hinaus bis
k = 2i + 1 fortgesetzt worden ist. Nach dem binomischen Satz ist aber

PG

=0\ Kk
_ o Ue B _ o U (e[ [BH_
6_,-§o22"(2i—|-1) “2,-§02i—|-1( 2 ) -

1 (la|+18])

[+1

3

o

B

also

=2In

1—3 (lel+18])

’

Diese Summe konvergiert bekanntlich fﬁr;— (e |+ |8 |)<1.Inallen Fillen,

in denen eine Anwendung dieser Reihenentwicklung niitzlich ist, weist man
leicht nach, daB diese Bedingung erfiillt ist.

V. Die zweite Lisung der Gleichung (15) bzw. (21) 148t sich unter geeig-
neten Voraussetzungen ebenfalls durch rasch konvergente Reihen von der
Form (23) bzw. (28) darstellen. Wihlt man in (22) das positive Zeichen, so ist

_1 T 27) — B
y=—(1+V1i+ap)= T
Setzt man nun

-—aﬂ
«(1—=V1+ap)

r=mn+2z
so wird

T, .2 z

y=tg(§+§)——ctg§,
also
u=tgi=—l=2(1—VIfap)
2 y B

und

z=mn+2arctgu.

Die Reihenentwicklungen fiir tg% bzw. x — = folgen also aus (23) bzw. (28),

-indem man « und g vertauscht.

D. Einige Begriffe und Siitze aus der Theorie der Beobachtungsfehler
1. Zufillige und systematische Fehler.

Unter dem wahren Fehler einer beobachteten Grofle versteht man die
Differenz zwischen dem beobachteten und dem wahren Wert. Er setzt sich im
allgemeinen aus zwei Teilen zusammen, dem systematischen und dem zufdl-
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ligen Fehler. Wird die Beobachtung unter den gleichen Bedingungen wieder-
holt, so wird der systematische Anteil des Fehlers immer wieder in der
gleichen GroBe und mit dem gleichen Vorzeichen auftreten, wihrend GroBe
und Vorzeichen des zufilligen Fehlers wechseln.

II. Scheinbare Fehler.

Im allgemeinen sind der wahre Wert der beobachteten Grofe und daher
auch die wahren Fehler unbekannt. Man ist daher gezwungen, an Stelle des
wahren Wertes den wahrscheinlichsten zu setzen. Vorausgesetzt, daf} alle
systematischen Fehler eliminiert sind, bestimmt man den wahrscheinlichsten
Wert folgendermalflen:

Liegt nur eine einzige Beobachtung vor, so wird ihr Ergebnis als der
wahrscheinlichste Wert der beobachteten Grofe angesehen. Sind mehrere
Beobachtungen (Messungen) unter gleichen Bedingungen (von gleicher Ge-
nauigkeit) angestellt worden, so ist der wahrscheinlichste Wert gleich dem
arithmetischen Mittel aus allen Messungsergebnissen.

Der Unterschied zwischen dem beobachteten Einzelwert und dem wahr-
scheinlichsten Wert wird als der scheinbare Fehler der Beobachtung bezeich-
net. Es gilt also der Satz (fiir Messungen gleicher Genauigkeit):

Die Summe der scheinbaren zufélligen Fehler aller Beobachtungen ist
gleich null. ;

II1. Fehlergesetz und mittlerer Fehler.

In Ubereinstimmung mit der Erfahrung ergibt die Theorie der zufilligen
Beobachtungsfehler u. a. folgende GesetzmiBigkeiten:

1. Positive und negative Fehler gleichen Betrages treten mit gleicher
Wahrscheinlichkeit auf (sind gleich héufig).

2. Grofle Fehler sind weniger héufig als kleine.

3. Die Abnahme der Fehlerhdufigkeit mit zunehmendem Betrage erfolgt
angenihert — und zwar um so genauer, je grofler die Zahl der Beobachtungen
war — nach dem Gaussschen Fehlergesetz. Setzt man die Héufigkeit sehr
kleiner Fehler (z = 0) gleich der Einheit, so ist diejenige eines Fehlers x nach
diesem Gesetz

H (z) = e #7,

wobei h eine Konstante ist, die als das Genauigkeitsmaf3 der Beobachtungsreihe
bezeichnet wird. Je groBer h ist, um so schneller fillt die Haufigkeitskurve der
Fehler mit wachsendem x gegen null ab, um so schmaler ist also der Bereich
um r = 0, in dem die iiberwiegende Mehrzahl der vorkommenden Fehler ein-
geschlossen ist.

Als den mittleren Fehler (m. F.) einer Reihe von Beobachtungen gleicher
Genauigkeit bezeichnet man die Gréfe
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2
Fiir x = ¢ ist (filg =0, hat also die Gausssche Fehlerkurve Wendepunkte.
Der mittlere Fehler ist demnach ein geeignetes Ma# fiir die Breite des Fehler-
bereichs. Der wahrscheinlichste Wert des mittleren Fehlers einer Reihe von n
gleich genauen Beobachtungen einer unbekannten Gréfe 148t sich folgender-

maflen bestimmen:

Sind w,, wy, « - w, die wahren Fehler der n Messungen, so ist
PN wf
& =
n

der wahrscheinlichste Wert des mittleren Fehlers. Es ist also ¢ der quadratische
Mittelwert aller Einzelfehler. Sind vy, v,, ... v, die scheinbaren Fehler, so ist

PN v.-
&= E—:i‘ . (29)
Diese Formeln gestatten es "also, den m. F. zu berechnen, der einer einzelnen
Beobachtung anhaftet.
IV. Fehlerzusammensetzung. |

Setzt sich der Gesamtfehler einer Beobachtung linear aus Einzelfehlern
zusammen, die verschiedenen Fehlerquellen entstammen, sind also z;, z,,
...z, diese Einzelfehler, &, €, - -+ &, deren mittlere Fehler und a,, ay, ... a,
irgend welche Konstante, und ist der Gesamtfehler

T=a,1,+ a2+ -+ + a, z,
so gilt fiir den mittleren Gesamtfehler
e =aje]+ aje; 4+ arer .

Es ist nidmlich

M-.

r
2 AT Ty = Z aizi+ .Zk a; QT T, . (30)
= 3

i=1

[

Bildet man nun den Mittelwert der Fehlerquadrate, so ergibt sich
e = 2 aje,

denn die Produkte a; a; x; 25 (i 5= k), die dem Fehlergesetz zufolge Werte
gleichen Betrages und entgegengesetzten Vorzeichens mit gleicher Wahr-
scheinlichkeit annehmen kénnen, werden sich bei der Summation iiber viele
Beobachtungen mit groBer Wahrscheinlichkeit gegenseitig aufheben. Der
wahrscheinlichste Wert der zweiten Summe in (30) ist also null.

Beispiel 1: Es seien vy, v, --- v, die (scheinbaren) Fehler von n beob-
achteten GroBen. Der scheinbare Fehler des arithmetischen Mittels dieser
GroBen ist dann

1
U=E(Ul+vz+"'+vn)=0-
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Nach dem obigen Satz ist also
1
ez_l?(8;+8§+..._|_3z)

das Quadrat des m. F. des arithmetischen Mittels. Waren die beobachteten
GroBen von gleicher Genauigkeit und ihr mittlerer Fehler gemiB (29)

p=1=",
n—1
so folgt
=Ly - =H
n n(n—1)

Beispiel 2: Sind bei- einer Ortsbestimmung nach Kapitel V dp und d4u
die Fehler der Bestimmung der geographischen Breite und der Uhrkorrektion,

sind ferner df, und df, die Fehler der beiden beobachteten Fadenantritte, und
ergibt die Theorie die Zusammenhénge

de = a,df, + a,df,,
cos pdAu = bydf, + b,df,,

so erhélt man die m. F. ¢, und ¢4, der beiden Unbekannten aus
o=tV +a, cospes,=cVb+02,

wenn ¢ den gemeinsamen m. F. aller Fadenantritte bezeichnet. ‘Da ferner
(sieche Abb. 35) der ,,Zenitfehler'‘do der Beziehung

(do)? = (dgp)? + cos? p (d4u)?
geniigt und somit auch, wenn man viele dieser Gleichungen mittelt,

g2 =¢e} + cos®pely,
so ergibt sich

ea=e V@ +a;+ b +b;.

E. Reduktion auf den Mittelwert
Das Beispiel 1 in D IV zeigt, daB3 der m. F. des arithmetischen Mittels

aus n Beobachtungen mit wachsendem n wieL_ abnimmt. Man wird also
n

zwecks Steigerung der Genauigkeit eine Beobachtung 6fter wiederholen und
das arithmetische Mittel der einzelnen Ergebnisse bilden. Die astronomischen
Beobachtungen zur Ortsbestimmung beziehen sich aber auf die mit der Zeit
verdnderlichen Koordinaten (Zenitdistanzen oder Azimute) der Gestirne.
Hier liegen die Dinge etwas verwickelter. Nur wenn die Verdnderung der
Koordinaten linear mit der Zeit erfolgt, ist es gestattet, das arithmetische
16 Geogr. Ortsbestimmungen P
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Mittel aus den beobachteten GroBen dem arithmetischen Mittel der Beob-
achtungszeiten (Stundenwinkel) zuzuschreiben. Das wird aber im allgemeinen
nicht der Fall sein, z. B. dann nicht, wenn es sich um Messungen von Zenit-
distanzen in der Nihe des Meridians handelt (vgl. Abschnitt 32).

Es seien z,(t,), 2;(f3), - - -» 2(t) 1 verschiedene Beobachtungen der von der
Zeit t abhéngigen GroBe z, und es seien die arithmetischen Mittel der Beob-
achtungswerte und der Beobachtungszeiten

1 n
2 =—3 z,

1
n;-1 I'I

Es wird dann zu der Zeit ¢, der Funktionswert z = z, 4+ 4z und zu z, die Zeit
t =t,+ At gehoren. Entwickelt man z; um z, herum in eine TavLorsche
Reihe, so erhélt man

dZo 1 dzzo

z=mz0+ Lli— o+ A0+ 5 2 i~ (o + 40P+ @)

Insbesondere wird zu der Zeit ¢, der Funktionswert

1 d?z,

dzo
1=12 At—l—2 7

(4t —

gehoren. Erfolgen die Beobachtungen z, - - - z, kurz nacheinander, so ist die
Zeitkorrektion A1 stets so klein, daB3 ihr Quadrat vernachléssigt werden darf,
und es gilt daher in geniigender Ndherung zwischen 4z = z — z, und 4t die
Beziehung

Az = dz°At (32)

Bildet man nun das arithmetische Mittel der Gleichungen (31), so ergibt sich

o dn 10 ldizg 12
Zo—zo‘l‘“ " 4§1( Al)+2 dr E.gl( i—to—At)* +
oder
d 1 d%z |1 24t
% s 6 to)—Ai]‘f‘in:[—Z(f_to)—_'—2(1c—fo)+(4t)
n
4ee=0. (33)

Da nun Y (t; —t,) =0 ist und (4¢)? vernachléssigt werden kann, so erhilt
man, wenn man die Entwicklung (33) nach dem Gliede zweiter Ordnung ab-
bricht,
d 1 d?z,
0=—Pat4 4. TS —toy
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oder
d’zo
1 de 2
Af_ 2!1 dZo ';1 (ta—to)z
dt
und wegen (32)
1 d%z, 2

—_— 2
Az =— Sndl ; Z (t;—1y)2.

Bedeutet nun speziell z (f) die Zenitdistanz eines Gestirns und ¢ seinen
Stundenwinkel, so ist nach den Formeln (II'; 28) und (II; 32) des Abschnitts16

d?z _ cospcosd

E:cosésinp, —cos Acosp

dt d* —  sinz
und demnach
1 cosgcosd n 2
- = = S —1)2. 4
4z = 3n  sinz cos A cosp ‘2::1 t _to) (34)

Im Nautischen Dreieck ist nun nach dem Cosinussatz fiir Winkel (2)

cos { = cos A cos p + sin 4 sin p cos z,
also
cos A cos p = cost — sin A sin p cos z. (35)

Ferner ist nach dem Sinussatz

sin p sin z = cos g sin ¢,

sin A sin z = cos § sin
und somit
. . cos ¢ cos 4 sin? ¢
A = 36
sin A sin p Py (36)

Setzt man (.35) und (36) in (34) ein, so erhilt man schlieflich

_ 5. COS@COSd €os @ €08 & Cos 2, sin? ¢
Az= T 2n .;1 (ti—1o) sinz, cost— sin? z, ’
wobei eigentlich t = ¢, + At zu setzen ist. Man darf sich aber, wenn nicht z,
sehr klein ist, immer mit ¢ = {, begniigen.

Bei Polh6henbestimmungen aus Zirkummeridianzenitdistanzen mit dem
Sextanten, die hochste Genauigkeit nicht erfordern und gewéhrleisten, kann
man die Rechnung dadurch vereinfachen, daB man die zeitlichen Absténde
der Beobachtungen als gleich annimmt, was ein geschickter Beobachter bei
einiger Ubung auch ungefihr erreicht. Ist dann

T=t,—t,
16*



220 Anhang

die Gesamtdauer der Beobachtungen, so ist offenbar

i—1 T
ti=11+mT und llzto__2_'
also
=g, 2ot D)
i=bt+—o—y T
Daraus folgt aber
n T2 "
YR . R . g .
igl(ti lo) "‘“4(“___1)2'.;1[41 4l(n+l)+(n+l)].
Mit den bekannten Summationsformeln
Zi=M und Zi2=.n("+1)(2n+l)
§=1 2 &= 6

erhilt man nach kurzer Rechnung

i T?n(n+1)
)2 —
.~§1 =t =15 1
und somit
Az —— T n+1 Cos?)cosé cos t, — cosgocosécoszosinzto
24 n—1 singz sin? z,

Ist T in Zeitsekunden gegeben, und will man 4z in Bogensekunden erhalten,
so hat man die rechte Seite dieser Formel noch mit 152 sin 1" zu multipli-

zieren. Man vereinigt diesen Faktor am besten mit dem Zahlenfaktor

k= 7_85 sin 1" = [5,65754 — 10] .

Werden die Beobachtungen einigermalen symmetrisch zum Meridian vor-

genommen, so ist ausreichend genau
Nr— kT2n+ 1 cospcosd

n—1 sinz,
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1. Geozentrische Koordinaten auf der Brdoberfliche

? P—9 Igo ? p—9 Igo

0° 0 0.0 | 0.000000] 45°| 11’3858 | 9.999271
5 2 04 9.999989 1 50 | 11 25.6 9.999144
10 3 57.2 9.999956 | 55 | 10 54.6 9.999020
16 5 36.9 9.999903 f 60 | 10 3.6 9.998 904
20 7 26.1 9.999830 | 65 8 54.2 9.998799
25 8 51.8 9.999740 | 170 7 28.4 9.998708
30 10 1.5 9.999637 | 175 5 38.9 9.998 634
35 10 63.1 9.999521 | 80 3 58.7 9.998 580
40 11 24.8 9.999398 [ 85 2 1.2 9.998 546
45 11 35.8 9.999271 | 90 0 00 9.998535

Die geozentrische Breite ¢’ und die geozentrische Distanz g sind mit der
Abplattung nach HAYFORD (¢ = 1 : 297) gerechnet. Fiir siidliche Breiten erhilt
@ — ¢’ das negative Vorzeichen.
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I1a. Verwandlung von mittl. Zeit in Sternzeit

m Am m Am m Am
1h +0m 9,86 13h +2m  8.13s 1m | +40.164s
2 +0 19.71 14 +2 17.99 2 +0.329
3 +0 29.57 15 +2 27.85 3 +0.493
4 40 39.43 16 +2 37.70 4 +0.657
5 +0 49.28 17 +2 47.66 5 +0.821
6 40 59.14 18 +2 57.42 6 +0.99
7 +1 9.00 19 +3 7.27 7 +1.15
8 +1 18.85 20 +3 17.13 8 +1.31
9 +1 28.71 21 +3 26.99 9 +1.48

10 +1 38.56 22 +3 36.84 10 +1.64

11 +1 48.42 23 +3 46.70

12 +1 58.28 24 +3 56.56

Sternzeit = m + Am

Beispiel: Das mittlere Zeitintervall m = 14h 27m 10.8% = 14h 27.18m in
Sternzeit zu verwandeln:

14h dm = 42m 17.993
20m + 3.29
Tm + 1.15
0.1m + 0.016
0.04m -+ 0.007

Adm = +2m 22,459
® = 14h 29m 33.259

IIb. Verwandlung von Sternzeit in mittl. Zeit

0 40 (2] 460 0 46
1 | —O0m 9.83s 13 | —2m 7,78 1m —0.164s
2 —0 19.66 14 —2 17.61 2 —0.328
3 —0 29.49 15 —2 27.44 3 —0.491
4 —0 39.32 16 —2 37.27 4 —0.655
b —0 49.15 17 —2 47.10 5 —0.819
6 —0 58.98 18 —2 56.93 6 —0.98
7 —1 8.81 19 —3 6.76 7 —1.15
‘8 —1 18.64 20 —3 16.59 8 —1.31
9 —1 28.47 21 —3 26.42 9 —1.47
10 —1 38.30 22 —3 36.25 10 —1.64
11 —1 48.13 23 —3 46.08
12 —1 57.95 24 —3 55.91

Mittl. Zeit = @ + AO

Beispiel: Das Sternzeitintervall ® = 14h 29m 33.25s = 14b 29.554m in
mittl. Zeit zu verwandeln:

’ 14h 460 = — 2 17.618
200 - 3.28

9m — 1.47

0.5m ) — 0.082

0.054m — 0.009

40 = — 2m 22,455

m = 14h 27m 10.80°
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IV. Mittlere Refraktion
. dr dr
z r = z hudd
dz ¥ ’ dz v
0° {0 0.0 0.00028 — 71.0°| 2’ 47.5" 0.002569 4° 7
10 0 10.3 0.00029 1° 23’ | 71.6 2 52.3 0.00272 4 14
20 0 21.2 0.00032 1 27 72.0 2 57.3 0.00286 4 20
30 0 33.6 0.00038 1 34 72.5 3 2.6 0.00302 4 27
40 0 48.9 0,00048 1 47 73.0 3 8.2 0.00318 4 34
50° 1© 9.3 0.00068 90 v 73.5 3 14.1 0.00337 4 42
74.0 3 20.3 0.00356 4 50
51 1 11.8 0.00071 2 10
74.5 3 26.9 0.00378 4 59
52 1 144 0.00074 2 12
75.0 3 34.0 0.00402 5 8
53 1 17.2 0.00077 2 16
75.56 3 414 0.00428 5 18
54 1 20.0 0.00081 2 18
76.0 3 49.4 0.00457 5 29
56 1 23.0 0.00085 2 22
76.5 3 57.9 0.00489 5 40
56 1 26.1 0.00090 2 26
77.0 4 7.0 0.00524 b 52
87 1 29.5 0.00094 2 29
77.5 4 16.8 0.00563 6 5
58 1 33.0 0.00100 2 33
78.0 4 27.3 0.00608 6 19
59 1 36.6 0.00105 2 38
) 78.6 4 38.7 0.00657 6 34
60 1 40.6 0.00112 2 43
79.0 4 51.0 0.00712 6 b1
61 1 44.7 0.00119 2 48
79.5 5 4.4 0.00774 7T 8
62 1 49.1 0.00127 2 53
80.0 5 18.9 0.00845 7 27
63 1 53.8 0.00135 2 59 80.5 5 34.9 0.00926 7 48
64 1 58.9 0.00145 3 6 . . .
81.0 5 52.3 0.01018 8 11
65.0°( 2' 4.3” 0.00156 3°12' | 81.5 6 11.6 0.01127 8 37
66.6 | 2 7.1 0.00161 3 15 82.0 6 33.0 0.01253 9 b
66.0 | 2 10.1 0.00168 3 19 82.5 6 56.9 0.01399 9 36
66.6 | 2 13.2 0.00174 3 23 83.0 7 23.6 0.01671 10 10
67.0 | 2 164 0.00181 3 27 83.6 7 53.6 0.01775 10 49
67.6 | 2 19.7 0.00189 3 31 84.0 8 27.7 0.02027 11 33
68.0 | 2 23.2 0.00197 3 36
68.6 | 2 26.8 0.00205 3 40 85° 9’ 52" — —
69.0 | 2 30.6 0.00215 3 45 86 11 45 — —
69.6 | 2 34.5 0.00225 3 60 87 14 22 — —
70.0 | 2 38.7 0.00235 3 56 88 18 18 — —
70.5 | 2 43.0 0.00246 4 1 98 24 37 —_ —
71.0 | 2 47.5 0.00259 4 17 90 36 24 — —

2z = scheinbare Zenitdistanz;

r = mittlere Refraktion nach BEssEL, giiltig fir 760 mm Luftdruck und
+10° C Lufttemperatur;

dr

+— = differentielle Refraktion

dz

(siehe S. 109);

) ist der auf S. 186 eingefithrte Winkel, durch den. bei der Reduktion der
Monddistanzen die Abplattung der scheinbaren Mondscheibe infolge der
Refraktion gemessen wird.

dr

Die Anderungen von %

und ¢ bei abweichenden meteorologischen Bedin-

gungen sind fir nicht zu groBe Zenitdistanzen geringfiigig und dirfen meist

vernachléssigt werden.
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Harzer, P. 79f., 82, 101, 111f., 127,
129f., 135ff., 146, 147, 152, 158ff.,
163f£., 167, 180f£f., 199

Hayrorp 13, 221

Himmelsmechanik 18, 179

Hohe 8, 32

Hohen, korrespondierende 65£f.

— -messung, barometrische 16

Horizont 5, 6ff., 45f.

Horizontalparallaxe 21, 45

Horizontrefraktion 28, 45

— -gystem 6ff.

HorrEBOW-TALCOTT-Methode 104

Indexfehler, -korrektion; s. Nullpunkt-
fehler

Jahr, tropisches 30

Jahrbicher, Astronomische und Nauti-
sche 2, 18, 174, 176, 185

Jupitermonde 170f.

1) Stichworter, die sehr hdufig im Text vorkommen, werden im allgemeinen nur
dort aufgefuhrt, wo sie definiert worden sind.
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Kimm, -linie 5, 45

— -tiefe 5f., 34

Kippachse 35, 164f.

Knoten 81

Kollimationsfehler 37, 41f., 85ff.

Kompafl 1, 119

Koordinaten, geozentrische und topo-
zentrische 20-

KrarrT, W. L. 111, 199

Kulmination 48

Kurs (des Schiffes) 1, 122

Landkarte 1 )

Lange, geographische 2, 11, 32, 60,
117, 121, 1691f.

— des Mondes 180, 194

— der Sonne 56f.

Libelle 7, 34, 66, 72, 104

Logge 1

Lotabweichung 15f.

Lotrichtung 7f., 32

MAYER, Tobias 86

Meridian a. d. Erde 7, 11, 30ff.
— des Himmels 8, 47{.

— -ellipse 7, 12

— -kreis 2, 42, 84

— -zenitdistanzen 48
Merkatorprojektion 118

Merkur, Voriibergang vor der Sonne 171
Mikrometer, unpersonliches 173
Mittagsverbesserung 61ff., 67, 96
Mitteleuropédische Zeit 60f.
Mitternacht, mittlere 59
Mitternachtsverbesserung 61
Mondbahn, instantane 180
-distanzen 172, 185f{f., 225
-finsternis 170

-halbmesser 189

- scheinbarer 4, 25, 177
-parallaxe 14, 22ff., 45, 73, 183,
185f.

— giderische Umlaufszeit 172
MostmcrA 175, 184

Nadir 8, 106

Nautisches Dreieck 10f., 197

Neigungsfehler 37, 41, 85 if., 1651f.

Niveaufliche 15

Nordpol des Himmels 7, 9

Nordpunkt 8

Nullmeridian 11, 32, 60, 198, 200

Nullpunktsfehler 34, 42, 74, 76, 125,
129, 133, 137, 147, 151, 156f., 161

Nutation 18, 30f.

Oktant 33, 35
Orter, scheinbare 20
— sphiérische 4, 8, 17

LT
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Ortszeit 32, 58, 60
Ostpunkt 8, 27

Parallaktischer Winkel 11, 51,
127, 149, 1631f.

Parallaxe, jihrliche 19, 30

— tégliche 20ff.

Parallelkreis 10

Passageinstrument 2, - 42, 81,
1761f.

Perigium 56

PLumMMER, H. C. 136

Polarstern 76, 81, 82ff., 971f.

Poldistanz 98, 128 '

Polhéhe 9, 12f., 32, 92ff. — s. auch
Breite, geographische

Polhohenschwankungen 16, 104

Positionswinkel 193

Prizession 18, 301.

Projektion, stereographische 201

114,

84ff.,

Quadrant 3, 33
Quecksilberhorizont 7, 32, 34

Referenzellipsoid 15f. .
Refraktion 6, 28ff., 226f.

— differentielle 109, 225

— mittlere 29, 225
Refraktlonsta.feln 29f., 227%f.
Rektaszension 18, 31

Schiffschronometer 3, 119, 169f.

Schwerkraft 7, 15

Seehohe 16

Seemeile 3, 122

Sextant 3, 29, 32ff., 96, 185

Sichtweite 5f.

Skalenfehler 35

Sonnenbewegung, scheinbare 55ff.

-finsternis 171

--halbmesser, scheinbarer 4, 34

-parallaxe 21, 45

-tag, mittlerer 30

-uhr 88ff.

-zeit, wahre u. mittlere 55, 57ff.,

198

Sphire 3

Sphérische Trigonometrie,
meln der 11, 50, 206{f.

Spiegelkreis 3, 33, 35

Standachse 35

Standlinienmethode 117£f., 121, 156,
2011f.

Sternbedeckungen 171, 1881f.

— Vorausberechnung der 194ff.

Sterntag 30, 58

Sternwarten 2, 84, 172

Sternzeit 31f., 571f., 176, 198, 222

Grundfor-
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Strahlenbrechung s. Refraktion
Stumerr, K. 1371f., 147, 162ff., 167
Stundenkreis 10

— -kael 10, 31

Sudpol des Himmels 7,9

Sidpunkt 8

SuMNER 117

— scher Kreis 117ff., 121, 201ff.

Theodolith 36, 73, 81
Triangulation 3

Uhrgang 169f.

— -korrektion 64

— :gtand 64

Universalinstrument
156, 197

Untergang 43ff.

3, 35ff.,, 73, 81,

Venus, Voritbergang vor der Sonne 171
Versegelung 121f.

Vertikal 8

— Erster 8, 49f.

— -kreis 2, 36
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Weltachise 9, 89

Weltzeit 60, 169f., 176, 198

Wendepunkte des Azimuts 54

— der Zenitdistanz 54

Westpunkt 8

WIiLKENS, A. 133ff., 147ff., 152, 163{.,
167

Zeitbestimmung 32, 42, 64ff., 111£f.
— -gleichung 551f.

— mittlere, s. Sonnenzeit

— _stern 81ff.

— -zeichen 2, 170, 172

Zenit 8, 32

— .distanz 9, 32, 48

— -fehler 113f., 217

— -teleskop 2, 72

ZINGER, N. 72f.
Zirkummeridian-Azimute 76f.

— -Zenitdistanzen 93ff., 120, 219f.
Zirkumpolarsterne 45, 97
Zweiazimutproblem 139ff.
Zweihohenproblem 111f£f., 198ff.-






