

Quadratische Funktionen

Aufgabe 1

Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung

a)
$$y = x^2$$
, $S(2; 4)$

d)
$$y = 2x^2$$
, $S(3; -2)$

b)
$$y = x^2$$
, S(-2; 3)

e)
$$y = 1/2 x^2$$
, $S(-4; -8)$

c)
$$y = -x^2$$
, $S(-1; -5)$

f)
$$y = -1/4 x^2$$
, $S(8; -4)$

Aufgabe 2

Bringen Sie die folgenden Gleichungen in die Scheitelpunktsform und geben Sie den Scheitelpunkt an:

a)
$$y = x^2 + 6x + 11$$

b)
$$y = x^2 - 10x + 24$$

c)
$$y = x^2 - x$$

d)
$$y = x^2 + 7x + 12$$

e)
$$y = -x^2 + 8x -$$

f)
$$y = -x^2 - 16x - 66$$

e)
$$y = -x^2 + 8x - 13$$

g) $y = 2x^2 - 4x + 2$

h)
$$y = 1/2 x^2 + 6x + 8$$

i)
$$y = 3/2 x^2 - 3/4 x + 1/4$$

k)
$$y = -3/4 x^2 - 6x - 4$$

Aufgabe 3

Von einer Parabel kennt man den Scheitelpunkt S und einen weiteren Punkt. Bestimmen Sie ihre Gleichung.

Aufgabe 4

Von einer Parabel kennt man die drei Punkte P, Q und R. Bestimmen Sie ihre Gleichung.

Aufgabe 5

Eine Parabel ist parallel zur gegebenen Parabel und geht durch die Punkte P und Q. Bestimmen Sie ihre Gleichung:

a) p:
$$y = x^2$$
, $P(1; 2)$, $Q(-2; -1)$

b) p:
$$y = 3x^2$$
, P(-1; 8), Q(0; 17)

c) p:
$$y = -0.25x^2$$
, P(7; -6), Q(-5; -18)

Aufgabe 6

Bestimmen Sie rechnerisch die Nullstellen (Schnittpunkte mit der x-Achse) der folgenden Parabeln:

a)
$$y = 1/2 x^2 + 2x - 6$$

b)
$$V = -1/4 x^2 + 2x - 4$$

c)
$$y = x^2 + 6x + 10$$

Aufgabe 7

Gegeben sind eine Parabel und eine Gerade; bestimmen Sie rechnerisch die Koordinaten ihrer Schnittpunkte.

a)
$$y = x^2 + 2x$$
; $y = 2x+4$

b)
$$y = -1/4x^2 - 1/2x + 11/4$$
, $y = x + 5$

c)
$$y = x^2 + 4x + 7$$
; $y = 1/2x + 3$

d)
$$y = -1/4x^2 + 4$$
, $x = 2$

Aufgabe 8

Gegeben sind zwei Parabeln; bestimmen Sie rechnerisch die Koordinaten ihrer Schnittpunkte.

a)
$$y = -2x^2 + 4x + 4$$
; $y = 2x^2 + 4x$

b)
$$y = -x^2 - 2x + 8$$
; $y = 1/2 x^2 - 5x + 9.5$

c)
$$y = 1/2 x^2 - 4x + 10$$
; $y = 12x^2 + 2x - 2$

d)
$$y = 2x^2 - 8x + 8$$
; $y = x^2 - 2x - 2$

Aufgabe 9

Welches unter allen geraden quadratischen Prismen, bei denen die Summe aller Kanten 24 cm misst, hat

a) die größte Oberfläche

b) den größten Mantel

Aufgabe 10

Mit einem Faden von 2 dm Länge soll der Umfang eines Kreissektors gebildet werden. Die variable Länge der Radien sei x. Stellen Sie die Abhängigkeit der Sektorfläche von x durch eine Kurve dar. Für welchen Wert von x wird die Sektorfläche am größten?

Aufgabe 11

Ein Rechteck ist 5 cm lang und 3 cm breit. Sein Umfang soll unverändert bleiben. Um wieviel muss man seine Länge kürzer, und die Breite länger machen, damit die Fläche des Rechtecks ein Maximum wird?

Aufgabe 12

Einem ungleichseitigen spitzwinkligen Dreieck mit Grundlinie 6 und Höhe 8, ist ein möglichst großes, der Grundlinie anliegendes Rechteck einzuzeichnen. Wie lang und wie breit ist das Rechteck zu wählen?

Aufgabe 13

Von einem Dreieck sind die Grundlinie BC = a und die Höhe AF = h gegeben. Berechnen Sie die Seiten des einbeschriebenen Rechtecks so, dass dessen Flächeninhalt maximal ist.

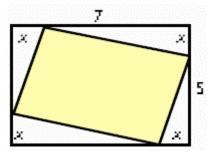
Aufgabe 14

Die Längensumme aller zwölf Kanten eines Quaders misst 84 cm. Eine Kante ist viermal so lang wie eine andere. Für welche Kantenlängen wird

- a) die Länge der Körperdiagonale minimal
- b) die Oberfläche maximal?

Aufgabe 15

Die Gerade g hat die Gleichung y = -3/2 x + 5. Beim Rechteck ABCD ist die Ecke A gleich dem Nullpunkt, B liegt auf der x-Achse, C liegt auf der Geraden g und D liegt auf der y-Achse. Für welche Wahl der Koordinaten von C hat das Rechteck die größte Fläche?



Aufgabe 16

Bestimmen Sie x so, dass die Fläche des Parallelogramms minimal wird.

Tipp: A ist minimal, wenn die weißen Dreiecke zusammen eine maximale Fläche besitzen. Setzen Sie also y für die Fläche der weißen Dreiecke.

Aufgabe 17

Mit 280 m Drahthag sollen sechs nebeneinander liegende, rechteckige, kongruente Pferche abgegrenzt werden. Bestimmen Sie Länge und Breite des benötigten Stücks Land, wenn die Pferche möglichst groß sein sollen.

Aufgabe 18

Zerlegen Sie die Zahl 12 so in zwei Summanden, dass die Summe ihrer Quadrate möglichst klein wird.

Aufgabe 19

Welcher Punkt P auf der Geraden y = 4 - 1/2 x hat den kleinsten Abstand vom Punkt (0; 0)?

Lösungen

6

a) -6; 2

1 a)
$$y = x^2 - 4x + 8$$
 $y = (x-2)^2 + 4$
b) $y = x^2 + 4x + 7$ $y = (x+2)^2 + 3$
c) $y = -x^2 - 2x + 6$ $y = -(x+1)^2 - 5$
d) $y = 2x^2 - 12x + 16$ $y = 2(x-3)^2 - 2$
e) $y = 1/2 x^2 + 4x$ $y = 1/2(x+4)^2 - 8$
f) $y = -1/4 x^2 + 4x - 20$ $y = -1/4(x-8)^2 - 4$

3 a)
$$y = 1/2 (x+3)^2 + 2$$
 b) $y = 2(x+1)^2 - 4$ c) $y = -(x-4)^2$

4 a)
$$y = 1/3 x^2 + 8/3 x + 4/3$$
 b) $y = 2x^2 - 4x - 4$ c) $y = -x^2 - 8x - 6$

b) 4

5 a)
$$y = x^2 + 2x - 1$$
 b) $y = 3x^2 + 12x + 17$ c) $y = -0.25x^2 + 1.5x - 4.25$

- 7 a) S(-2; 0) , T(2; 8) b) B(-3; 2) c) kein Schnittpunkt d) S(2; 3)
- 8 a) S(-1; -2) , T(1; 6) b) B(1; 5) c) S(2; 4) d) kein Schnittpunkt
- 9 a) $A = 24x 6x^2$ 2 cm und 4 cm b) $A = 24x - 8x^2$ 1,5 cm und 3 cm
- 10 Sektorfläche A = 1/2 b x = x (1-x); Nullstellen 0 und 1 Scheitelpunkt 1/2 Die Sektorfläche wird am größten bei einem Radius von 0,5 dm und einer Bogenlänge von 1 dm.
- Fläche des neuen Rechtecks $A = (5-x)(3+x) = 15 + 2x x^2$ Funktion einer nach unten geöffneten Parabel mit den Nullstellen 3 und 5 und dem Scheitelpunkt bei x = 1. Das Rechteck wird zum Quadrat.

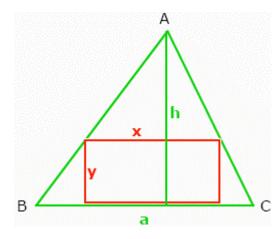
c) keine Lösung

12 Strahlensatz 6 : 8 = x : (8-y) y = (24-4x)/3

Rechteckfläche A = 4x (6-x)/3

Funktion einer nach unten geöffneten Parabel. Scheitelpunktes x=3, zwischen den Nullstellen 0 und 6.

Wenn die Länge des Rechtecks 3 ist, dann liegen seine beiden oberen Ecken genau in den Seitenmittelpunkten.



13 nach Ähnlichkeit und Strahlensatz wird

$$a: h = x: (h-y)$$

$$y = h/a (a-x)$$

6

8

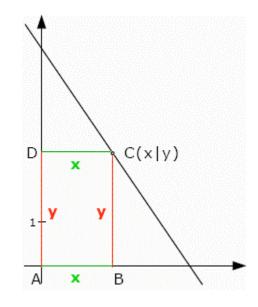
Fläche A = h/a (ax - x^2)

x-Wert des Scheitelpunktes a/2

In dem Fall sind die beiden oberen Ecken des Rechtecks Mittelpunkte der Seiten AB und AC.

14 $d^2 = 42x^2 - 210x + 441$, Scheitelpunkt 2,5 Kanten des Quaders: 2,5 cm, 10 cm, 8,5 cm A = 21x (5-x), gleiches Ergebnis wie bei a)

- 15 Rechteckfläche A = -1,5 x² + 5x
 Nullstellen 0, 10/3
 Scheitelpunkt bei x = 5/3
 Koordinaten von C: C(5/3; 5/2);
 Der Punkt liegt mitten auf dem von den Achsen gebildeten Geradenabschnitt.
- 16 Fläche y der weißen Quadrate y = x (5-x) + x (7-x) = 2x (6-x) Die weiße Fläche wird am größten und die gelbe Fläche am kleinsten für x = 3
- 17 Bedarf an Draht y = 140 3,5 xFläche $A = 140x - 3,5 x^2$ Scheitelpunktes bei x = 20Das Landstück erhält eine Breite vom 20m und eine Länge von 70m.



- 18 Summanden 6 und 6
- 19 Punkt mit minimalem Abstand hat den x-Wert x = 8/5 und den y-Wert y = 16/5

1. Gegeben ist die quadratische Funktion f. Bestimme die Nullstellen (sofern vorhanden), den Ordinatenabschnitt und den Scheitelpunkt der Parabel und skizziere sie in ein Koordinatensystem.

(a)
$$f: y = x^2 + 2x + 1$$

(b)
$$f: y = x^2 - 4x$$

(c)
$$f: y = -x^2 + 1$$

(d)
$$f: y = x^2 - 4x + 3$$

(e)
$$f: y = \frac{1}{2}x^2 - 2x + 5$$

(f)
$$f: y = -(x-1)(x+3)$$

2. Gegeben sind die Punkte $A,\,B$ und C. Bestimme die quadratische Funktion, deren Graph durch diese drei Punkte geht.

(a)
$$A(-1|13)$$
, $B(1|3)$, $C(3|1)$

(b)
$$A(-2|-6)$$
, $B(2|2)$, $C(4|12)$

3. Bestimme den Schnittpunkt (die Schnittpunkte) zwischen den Graphen der Funktionen f und g.

(a)
$$f(x) = x^2 + 2x - 3$$
; $g(x) = 5$

(b)
$$f(x) = x^2 + 2x - 3$$
; $g(x) = x + 3$

(c)
$$f(x) = x^2 + 2x - 3$$
; $g(x) = 2x^2 + 3x - 5$

4. Für welche Werte des Parameters b berührt die Parabel mit der Gleichung

$$y = x^2 + bx + 5$$

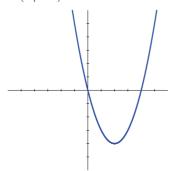
die x-Achse?

Quadratische Funktionen

1. (a) $x_1 = x_2 = -1$ $y_0 = 1$

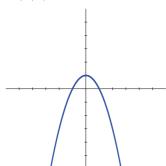
(b)
$$x_1 = 0, x_2 = 4$$

$$y_0 = 0$$
$$S(2|-4)$$



(c)
$$x_1 = 1, x_2 = -1$$

$$y_0 = 1$$



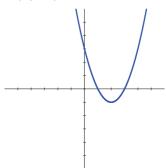
2. (a)
$$f(x) = x^2 - 5x + 7$$

3. (a)
$$P_1(-4|5)$$
, $P_2(2|5)$ (b) $P_1(-3|0)$, $P_2(2|5)$ (c) $P_1(-2|-3)$, $P_2(1|0)$

(d)
$$x_1 = 1, x_2 = 3$$

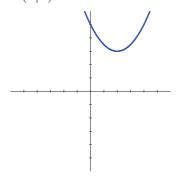
$$y_0 = 3$$

$$S(2|-1)$$



(e) keine Nullstellen

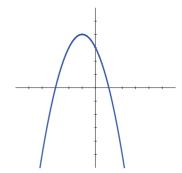
$$y_0 = 5$$



(f)
$$x_1 = -3, x_2 = 1$$

$$y_0 = 3$$

$$S(-1|4)$$



(b)
$$f(x) = \frac{1}{2}x^2 + 2x - 4$$

(b)
$$P_1(-3|0), P_2(2|5)$$

(c)
$$P_1(-2|-3)$$
, $P_2(1|0)$

4. Dies ist dann der Fall, wenn es genau eine Nullstelle gibt. Dies wiederum tritt_ein, wenn $D = b^2 - 4ac = 0$; also $b^2 - 20 = 0$; d. h. $b = \sqrt{20} = 2\sqrt{5}$ oder $b = -2\sqrt{5}$.

Übung: Quadratische Funktionen und Gleichungen

Aufgabe 1:

Gegeben ist die quadratische Funktion

(a)
$$y = x^2 + 2x - 8$$

(b)
$$y = x^2 - 10 x + 16$$

Bestimme die Nullstellen, den Scheitelpunkt, den Wertebereich, die Monotonie und den Schnittpunkt P mit der y-Achse. Welcher 2. Parabelpunkt hat den gleichen Funktionswert wie P?

Aufgabe 2: Bestimme die Lösungsmengen

(a)
$$x^2 - 3x - 8 = 0$$

(b)
$$-8z + 16 + z^2 = 0$$

(c)
$$(2x-2)(x+2)-(x+1)(x-1)=5$$

(d)
$$(4z + 5)^2 - (17 - 2z)^2 - 9(8 - 2z)^2 = 0$$

(e)
$$\frac{9}{x-2} - 5 = \frac{4}{x-7}$$

(e)
$$\frac{9}{x-2} - 5 = \frac{4}{x-7}$$

(f) $\frac{5x}{x^2-4} - \frac{3}{x-2} + \frac{x}{x+2} + 1 = \frac{2x^2-10}{x^2-4}$

Aufgabe 3:

Gegeben ist die quadratische Funktion $y = x^2 + 2x + 1$ und die lineare Funktion y = -12x +6. Bestimme die Schnittpunkte beider Funktionen. Welchen Abstand haben diese Punkte voneinander?

Aufgabe 4:

Für welchen Wert von a hat die Gleichung $x^2 + ax - 2a^2 = 0$ keine, eine oder genau zwei Lösungen?

Aufgabe 5:

Wie lang sind die Seiten eines Rechtecks?

- der Umfang beträgt 120 cm, der Flächeninhalt 864 cm² (a)
- der Flächeninhalt beträgt 9,6 cm², benachbarte Seiten unterscheiden sich (b) um 2,8 cm

Aufgabe 6:

Von einem Quader sind bekannt: Volumen 528 cm³, Höhe 11 cm, Mantelfläche 308 cm². Wie lang sind die Seiten der Grundfläche?

Aufgabe 7:

Die Gleichung $2x^2 + px - 15 = 0$ hat zwei Lösungen. Eine der Lösungen ist 5. Bestimme p und die zweite Lösung.

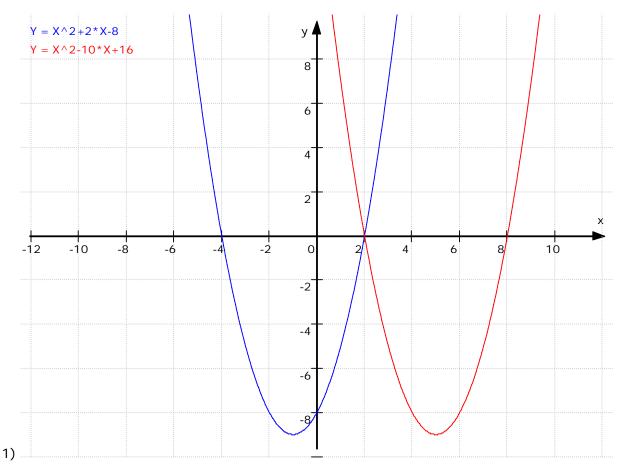
Aufgabe 8:

Welche Zahl kommt in Betracht? Bei einer positiven gebrochenen Zahl ist der Zähler um 3 größer als der Nenner. Vertauscht man Zähler und Nenner, so erhält man eine um 2,1 kleinere gebrochene Zahl.

Aufgabe 9:

Frau X hat im Sommer für 2160 € Heizöl gekauft, im Herbst nochmals für 600 €. Im Herbst hat sie 3000 Liter weniger eingekauft als im Sommer, den allerdings zu einem um 6 Cent höheren Preis. Bestimme den jeweiligen Preis je Liter.

Lösungen



- a) NS 2; -4 / S(-1; -9), Wertebereich y ≥ -9 fallend bis S, dann wachsend Schnittpunkt mit y-Achse (0; -8), 2.Punkt (-2; -8)
- b) NS 2; 8 / S(5; -9), Wertebereich y ≥ -9 fallend bis S, dann wachsend Schnittpunkt mit y-Achse (0; 16), 2.Punkt (10; 16)
- 2) a) $3/2 \pm 1/2 \sqrt{41}$
- b) 4
- c) -4;2

- d) 5/2; 14
- e) 5
- f) R
- 3) Schnittpunkte (1; 4) und (-5; 16); Abstand 13,4164
- 4) allgemein x = a und x = -2a; für a = 0 eine Lösung, sonst immer 2
- 5) a) Seitenlängen 24 cm und 36 cm
 - b) Seitenlängen 2 cm und 4,8 cm
- 6) $V = 528 = a \cdot b \cdot 11$; $M = 308 = 2(a \cdot 11 + b \cdot 11)$ Seiten der Grundfläche 6 cm und 8 cm
- 7) p = -7; zweite Lösung -3/2
- 8) Zahl 5/2
- 9) $2160 = p \cdot s$; $600 = (p+0.06) \cdot (s-3000)$; Preis p = 0,54 € im Sommer