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Vorwort zur ersten Auflage

Die ,,Grundaufgaben des physikalischen Praktikums‘‘ von Schaefer, Berg-
mann und Kliefoth haben durch mehrere Jahrzehnte in zahlreichen Auflagen
und Neudrucken viele Generationen von Studenten erfolgreich durch das
physikalische Praktikum an unseren Hoch- und teilweise auch Fach-
schulen gefithrt. Wenngleich auch bei jeder neuen Auflage einige als wiin-
schenswert erkannte Anderungen und Erginzungen angebracht worden
sind, so verlangte doch die in den letzten Jahren erfolgte Neuordnung der
Ausbildung kiinftiger Physiker und anderer Naturwissenschaftler sowie
der Lehrerstudenten eine eingehende Uberarbeitung sowohl des Versuchs-
bestandes als z. T. auch der Darstellung. Ebenso muBite die Tatsache Be-
riicksichtigung finden, daB einfachere Versuche heute vielfach schon im
Schulunterricht als Schiilerversuche durchgefiihrt werden, so daB sich ihre
Wiederholung im Physikalischen Praktikum der Hochschule zumeist er-
iibrigt. Im Laufe der Vorarbeiten fiir eine in solchem Sinne beabsichtigte
Neubearbeitung des genannten Lehrbuches zeigte sich, daf} diese der Heraus-
gabe eines vollig neu geschriebenen Werkes entsprechen wiirde, so daBl es
durchaus berechtigt erschien, im Titel den Bezug auf das frithere Werk
fallenzulassen.

Eine gewisse Schwierigkeit besteht bei der Schaffung eines Praktikums-
buches immer darin, eine angemessene Auswahl von wirklich zweckméBigen
Versuchen zu treffen. Dies ist um so schwerer, als an den verschiedenen Aus-
bildungsstéatten sich im Laufe der Zeit auch verschiedene Aufgabenbestinde
herausgebildet haben. Um hieriiber zunichst eine Ubersicht zu bekommen,
wurden zahlreiche Universitats- und Fachschulinstitute innerhalb der
Deutschen Demokratischen Republik um Mitteilung des derzeitigen Ver-
suchsbestandes gebeten. Den betreffenden Praktikumsvorstinden, die uns
durch die Beantwortung unserer Fragen entgegenkommend unterstiitzten,
sei auch an dieser Stelle herzlich gedankt. Als Ergebnis der Umfrage kann
festgestellt werden, daB, wie zu erwarten, gewisse Grundversuche mit ge-
ringfiigigen Varianten mehr oder weniger iiberall vorhanden sind, wozu je
nach Eigenart des betreffenden Instituts bzw. der zustindigen Praktikums-
leiter noch unterschiedliche Spezialversuche kommen. Es mufite nun Auf-
gabe des vorliegenden Praktikumsbuches sein, durch die aufgenommenen
Versuchsbeschreibungen die wichtigsten Grundversuche moglichst weit-
gehend zu erfassen, wobei ein Verzicht auf speziellere Aufgaben in Kauf
genommen werden konnte, zumal fiir diese an den betreffenden Instituten
Einzelbeschreibungen vorhanden sein werden. Ebenso wird es ofters niitz-
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4 Vorwort

lich sein, dem Studenten die értlich unterschiedlichen Abweichungen von
der Versuchsbeschreibung in vorliegendem Buch durch schriftliche Anwei-
sung oder auch nur miindlich zu erldutern. Herausgeber und Mitarbeiter
haben es fiir zweckmaBig angesehen, sachlich verwandte Versuche zu Ver-
suchsgruppen zu vereinigen, denen jeweils allgemeine Ausfiihrungen voran-
gestellt sind, die dem Studenten den zugrunde liegenden Stoff in groBen
Zigen in Erinnerung bringen sollen. Dabei wurde Wert auf eine maoglichst
griindliche theoretische Durchdringung gelegt. Dall es nicht die Aufgabe
sein kann, hiermit ein Lehrbuch zu ersetzen, versteht sich von selbst. Zu den
einzelnen Aufgaben werden anschlieBend noch die speziellen Grundlagen
gegeben und schlieBlich die Versuchsdurchfithrung beschrieben. Der zu-
nehmenden Bedeutung der Atomphysik entsprechend wurden auch einige
einfache Versuche aus diesem Gebiet mit aufgenommen, die sich mit Prak-
tikumsmitteln durchfiihren lassen.

Kritische Beurteilung des unmittelbar gemessenen oder aus Messungen
gefundenen Resultates ist grundsitzliche Forderung jeder wissenschaft-
lichen Arbeit und auBerdem von hohem erzieherischem Wert. Es sollte daher
stets im Anschlull an jeden Versuch eine Fehlerrechnung oder wenigstens
Fehlerabschiatzung durchgefiihrt werden.

Es ist kaum vermeidbar, dall ein neu geschriebenes Buch noch Mingel
und Fehler aufweist. Herausgeber und Verfasser wiren fiir entsprechende
Hinweise dankbar, um sie bei einer spéteren Auflage beriicksichtigen zu
koénnen.

Leipzig, im Januar 1966 ‘ Waldemar Ilberg

Vorwort zur vierten Auflage

Seit dem Erscheinen der ersten Auflage haben die physikalischen Prak-
tika sowohl in der Aufgabenstellung als auch in der Ausrustung groBe Ande-
rungen erfahren. Der Praktikant soll heute vom Beginn seines Studiums an
moderne Mef3verfahren und wissenschaftliche Gerate kennenlernen, mit de-
nen er in der Praxis konfrontiert wird. AuBlerdem soll er mit wichtigen MeB-
methoden vertraut gemacht werden, die der Bestimmung physikalischer
Stoffeigenschaften dienen. Versuche, in denen dargestellt wird, wie man eine
physikalische GréBle im Prinzip messen kann, treten immer mehr in den
Hintergrund. Der Umfang des Buches konnte und solite nicht erheblich
vergroBert werden. Daher waren einige Streichungen und Kiirzungen not-
wendig, um die Beschreibung aller neu vorgesehenen Versuche zu ermog-
lichen.



Vorwort 5

Das vorliegende Werk ist als Arbeitsmaterial fiir das Einfiihrungsprakti-
kum und das MeBpraktikum konzipiert. Fiir das Elektronikpraktikum und
das Fortgeschrittenenpraktikum stellt die Beherrschung der behandelten

"Versuche nur eine Voraussetzung dar,

An der Gestaltung der vierten Auflage haben sich zusdtzlich drei Mit-
arbeiter beteiligt, die iiber langjahrige Erfahrungen in der experimentellen
Ausbildung von Studenten der Karl-Marx-Universitit verfiigen. Herr
F. Thomschke hat den Abschn. W. 1.0 und die Versuche W. 1.1, W. 1.3,

"'W. 1.4 und W. 4.4 geschrieben. Herr Dr. A. Mende hat den Abschn. E. 3
griindlich iiberarbeitet, und Herr Dr. H. Schulze hat die Versuche M. 8.2,
0. 1.4 und O. 3.4 verfalit.

Herrn Dr. W. Rohmann (Friedrich-Schiller-Universitit, Jena) gebiihrt
Dank fiir eine Reihe wertvoller Hinweise. AuBerdem méchte der Heraus-
geber seiner Frau, Gertrud Kritzsch, herzlich danken, ohne deren tatkréiftige
Mitarbeit eine Einhaltung des Abgabetermins fiir das Manuskript der vier-
ten Auflage nicht moglich gewesen wiare.

Herausgeber und Autoren hoffen, daBl die vierte Auflage in der Versuchs-
auswahl und in der Darstellung den Wiinschen der Benutzer — Dozenten wie
Studenten — entspricht.

Leipzig, im Juli 1977 Manfred Krétzsch
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Einfiihrung

1.1. GroBen und Einheiten

Messungen dienen zur Bestimmung physikalischer Groflen, wie Langen,
Zeiten, Massen, Stromstirken usw.

Eine GroBe ist durch die Angabe der MaBzahl und der gewéhlten Einheit
bestimmt ; man kann sie in Form eines Produktes aus MaBzahl und Einheit
schreiben, wobei die Aufteilung in verschiedener Weise erfolgen kann.
Beispielsweise bedeuten 5 m (Mafizahl 5, Einheit ,,das Meter*) und 500 cm
die gleiche GroBle. GroBe Einheiten ergeben kleine MaBzahlen und umge-
kehrt.

Durch physikalische Messungen werden jedoch nicht nur einzelne Gréflen
ermittelt, sondern auch Zusammenhénge zwischen mehreren GroBen, die
sich als Gleichungen darstellen lassen. Wir schreiben sie in der Form von
Gréflengleichungen, in denen jedes Formelzeichen das Produkt aus MafBzahl
und Einheit bedeutet.

Beispielsweise gilt fiir die Abhangigkeit der Schwingungsdauer 7' eines mathemati-
schen Pendels von seiner Lénge ! die Formel 7' = 2n Vl/g (9 Schwerebeschleunigung).
Setzt man hier I = 1 m und g = 9,81 m/s? ein, so ergibt sich 7' = 2= ]/1 m/(9,81 m/s?)
= 2,006 s. Das gleiche Ergebnis erhilt man, wenn man ! = 100 cm und g = 981 cm/s?
einsetzt.

Die Verwendung von GréBengleichungen bringt folgende Vorteile:
1. GroBengleichungen sind unabhéngig vom MaBsystem.

2. Sie gelten unabhingig von den Einheiten, die fiir die einzelnen Groen
gewahlt werden. — Im allgemeinen wird man allerdings, wie im obigen
Beispiel, fiir GroBen gleicher Dimension gleiche Einheiten wéhlen. In
Sonderfillen kann man jedoch ohne weiteres von dieser Regel abweichen.
Zum Beispiel wird der spezifische Widerstand g eines Drahtes nach der
Formel o = R - A/l berechnet (R elektrischer Widerstand, 4 Querschnitt,
! Lange). Setzt man hier 4 in mm? und [/ in m ein, so ergibt sich g in
Q mm?/m. Diese Form ist in der Praxis oft bequemer als die Angabe in
Q m, die man erhalt, wenn man alle Langen in m angibt.

3. Eine Umrechnung auf andere Einheiten ist leicht moglich, indem man
mit Einheiten wie mit Zahlen rechnet.

-8 2
Beispielsweise ist 1 Q mm?/m = 10 . 101—mm =100 m = 107 Q cm.

4. GroBengleichungen gestatten in Form von Dimensionsbetrachtungen

einfache Kontrollen von Formeln, da auf beiden Seiten einer Gleichung
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GroBen gleicher Dimension stehen miissen. Insbesondere miissen Sum-
manden gleiche Dimensionen haben, Exponenten und Argumente von
Winkelfunktionen dimensionslos sein usw. Ist dies nicht der Fall, so liegt
mit Sicherheit ein Fehler vor. (Fehler in der Zahlenrechnung lassen sich
natiirlich auf diese Weise nicht ermitteln.)

1.2. MaBsystem

Wir benutzen das international vereinbarte und in der DDR gesetzlich

vorgeschriebene MafBsystem SI (Systéme International d’Unités), das sich
auf folgenden Grundeinheiten aufbaut:

1.

Einheit der Lange ist das Meter (m).

1 m ist gleich 1650763,73 Vakuum-Wellenlingen der Strahlung, die dem
Ubergang zwischen den Niveaus 2p,, und 5d; des Nuklids Krypton 86
entspricht.

Praktisch (mit einer Genauigkeit von 2 -10~7) ist dies identisch mit

dem Abstand der beiden mittleren Markierungen des internationalen -

Meterprototyps bei 0 °C und Atmosphérendruck.

. Einheit der Masse ist das Kilogramm (kg).

1 kg ist die Masse des internationalen Kilogrammprototyps.

. Einheit der Zeit ist die Sekunde (s).

1s ist die Dauer von 9192631770 Perioden der Strahlung, die dem
Ubergang zwischen den beiden Hyperfeinstrukturniveaus des Grund-
zustandes des Nuklids Césium 133 entspricht.

Praktisch (mit einer Genauigkeit von 10-%) ist dies identisch mit der
Dauer des 86400ten Teils eines mittleren Sonnentages.

. Einheit der Stromstéarke ist das Ampere (A).

1 A ist die Starke des zeitlich unveranderlichen Stromes durch zwei gerad-
linige parallele unendlich lange Leiter der relativen Permeabilitat 1 und
von vernachlissigbarem Querschnitt, die den Abstand 1 m haben und
zwischen denen die durch den Strom elektrodynamisch hervorgerufene
Kraft im Vakuum 2 .- 10~7 Newton pro Meter der Doppelleitung betragt.

. Einheit der Temperatur ist das Kelvin (K).

1 K ist der 273,16te Teil der (thermodynamischen) Temperatur des Tripel-
punktes von reinem Wasser natiirlicher Isotopenzusammensetzung.

. Einheit der Lichtstéirke ist die Candela (cd).

1 cd ist die Lichtstdrke, mit der ein schwarzer Kérper der Fliche (1/
600000) m? bei der Erstarrungstemperatur des Platins beim Druck
101325 N/m? senkrecht zu seiner Oberfliche leuchtet.
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7. Einheit der Stoffmenge ist das Mol (mol).

1 mol ist die Stoffmenge eines Systems, das so viel Elementarteilchen
enthilt, wie Atome in 0,012 kg des Nuklids Kohlenstoff 12 enthalten sind.
Die Art der gemeinten Elementarteilchen (Atome, Molekiile, Ionen,
Elektronen usw.) muf} dabei jeweils angegeben werden.

Die in 1 mol enthaltene Teilchenzahl ist eine Naturkonstante und wird
als Avogadrokonstante N, oder Loschmidtsche Konstante L bezeichnet.
Es ist N, = 6,0231 - 10% mol 1.

Auf Teilchenmengen bezogene GroBen heiBlen molare GroSen. Die wich-
tigsten davon sind die Molmasse M (g/mol), das Molvolumen Vy =
M - v (cm®/mol) und die molare Warmekapazitit C = M - ¢ (J - mol™*.
K1), wobei v das spezifische Volumen und ¢ die spezifische Warmekapazi-
tat sind.

Der Zahlenwert der Molmasse wird als relative Atom- bzw. Molekiil-

masse bezeichnet.

Tabelle 1. Namen und Kurzzeichen physikalischer Grofen

GroBe Einheit Kurzzeichen
Flache Quadratmeter m?

Volumen Kubikmeter m?

Ebener Winkel Radiant rad (= m/m)
Réiumlicher Winkel Steradiant sr (= m?/m?)
Frequenz Hertz Hz (=s1)
Geschwindigkeit Meter/Sekunde m/s
Beschleunigung Meter/Quadratsekunde m/s?

Dichte Kilogramm/Kubikmeter = kg/m3

Kraft Newton N (= kg - m/s?)
Druck Pascal = Newton/Qua- Pa = N/m?

Arbeit, Energie, Warme-

dratmeter
Joule = Newtonmeter

J(=N-m = Ws)

menge = Wattsekunde
Leistung Watt W (= J/s)
Elektrische Spannung Volt!) V(= W/A)
Elektrizititsmenge Coulomb C(=A-8)
Elektrische Feldstarke Volt/Meter V/m
Elektrischer Widerstand Ohm Q (= V/A)
Kapazitit Farad F(=A.8/V)
Induktionsflu Weber = Voltsekunde Wb (= V-8)
Induktivitat Henry H (= V.s/A)
Magnetische Induktion Tesla = Weber/Quadrat- T (= Wb/m? =V - s/m?)
meter
Magnetische Feldstirke Ampere/Meter A/m
Magnetische Spannung Ampere A
Lichtstrom Lumen Im (= cd - sr)
Beleuchtungsstirke Lux Ix (= Im/m?)
Leuchtdichte Candela/Quadratmeter cd/m?

1y Die Einheit der elektrischen Spannung 1V =1 W/A = 1 J/As ergibt sich auf-
grund des Energiesatzes, indem man fordert, daB die Einheit der elektrischen Arbeit

(1 VAs) gleich 1 J ist.
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Die Einheiten aller anderen physikalischen GroBen lassen sich aus diesen
sieben Grundeinheiten ableiten und in Form von Potenzprodukten mit
ganzzahligen Exponenten schreiben. Die wichtigsten davon sind in
Tab. 1 zusammengestellt.

Bruchteile und Vielfache von Einheiten werden durch die in Tab. 2 zu-
sammengestellten Vorsilben bezeichnet:

Tabelle 2. Bezeichnungen fir dezimale Bruchteile und Vielfache von Einheiten
Name Zeichen Bedeutung Name Zeichen' Bedeutung
Tera T 102 Dezi d 101
Giga G 10° Zenti c 10-2
Mega M 108 Milli m 10-3
Kilo k 10° Mikro @ 10-6
Hekto h 102 Nano n 10~
Deka da 101 Pico P 1012
Femto f 10-1
Atto a 10718

Aus historischen Griinden werden héufig noch systemfremde Einheiten benutzt:
Als Krafteinheit, insbesondere im Bereich der Technik, das Kilopond (kp); 1 kp ist
diejenige Kraft, die im normalen Schwerefeld der Erde auf die Masse 1 kg'wirkt;
1 kp entspricht 9,80665 N.

Als Druckeinheit im Bereich der Technik die technische Atmosphére (at); es ist
1 at = 1 kp/cm?.

Als Druckeinheit im Bereich der Vakuumtechnik das Torr (Torr); 1 Torr (& 1 mm
Quecksilbersiule) ist der von einer Quecksilbersidule von 1 mm Héhe bei 0 °C auf die
Unterlage ausgeiibte Druck. 1 Torr entspricht 133,3 N/m?2.

Als Energieeinheit, insbesondere fir Wirmemengen, die Kalorie (cal); 1 cal
= 4,1840 J. (Die frithere Definition, wonach 1 cal diejenige Wirmemenge war, die
1 g Wasser beim Erwiarmen von 14,5 auf 15,5 °C aufnimmt, trifft nicht mehr zu.)

Als Einheit der magnetischen Induktion das GauB (G); 1 G entspricht 10-4 Vs/m?2.

Als Einheit der magnetischen Feldstirke das Oerstedt (Oe); 1 Oe entspricht
(1000/47) Ajm = 79,58 A/m.

1.3. Messungen und MeBfehler

Physikalische GroBen werden in manchen Fillen durch Zihlen, in den
meisten Fallen jedoch durch Messung bestimmt, wobei unter einer Messung
der Vergleich der zu bestimmenden Griofle mit der gewdhlten Einheit zu
verstehen ist.

Im Gegensatz zum reinen Zéahlen, das zumindest im Prinzip fehlerfrei
ausgefiihrt werden kann, sind Messungen durch stets vorhandene Unzuling-
lichkeiten der MeBapparatur, Unvollkommenheiten der Sinnesorgane und
unkontrollierte d&uflere Einfliisse immer fehlerbehaftet. Von Ausnahmen ab-
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gesehen liefern daher selbst mehrere mit der gleichen Apparatur unter glei-

chen Bedingungen ausgefiihrte Messungen nicht das gleiche Ergebnis.

Jedes MeBergebnis ist also ein Naherungswert, dessen Genauigkeit durch
die Angabe eines Unsicherheitsintervalls charakterisiert werden muB.
Beispielsweise betrigt der derzeitig beste Wert fiir die Lichtgeschwindigkeit
im Vakuum ¢, = (299792456,2 + 1,1) m/s.

MeBfehler treten als systematische und als zufillige Fehler auf.
Systematische Fehler beeinflussen bei gleicher experimenteller Anordnung
das Resultat stets im gleichen Sinn und dndern sich gesetzmaBig mit der
Anderung der Versuchsbedingungen. Sie haben ihren Ursprung in:
Fehlanzeigen der MeBinstrumente (z. B. infolge falscher Eichung, Verande-
rungen infolge Alterung oder Uberlastung),

Unvollkommenheit des MeBgegenstandes (z. B. mangelnde Reinheit von

Stoffen, Inhomogenitaten, zeitliche Anderungen des MeBobjektes wihrend

der Messung),

Beeinflussung des MeBobjektes durch das MeBgerdt (z. B. Deformation bei

der Dickenmessung mit einer Mef3schraube),

Ubersehen &uBerer Einfliisse auf das Experiment (z. B. Luftauftrieb bei

Prazisionswagungen, elektrische oder magnetische Streufelder, wechsel-

seitige Beeinflussung mehrerer MeBinstrumente), aber auch im

Uberschreiten der Giiltigkeitsgrenzen physikalischer Gesetze (z. B. Ver-

lassen des Elastizitatsbereichs bei Dehnungsmessungen).

Systematische Fehler sind prinzipiell vermeidbar, oft jedoch nur mit be-
trachtlichem experimentellem Aufwand (Anderung der MeBapparatur oder
sogar des MeBprinzips). Unter Praktikumsbedingungen ist ihre Beseitigung
oft nicht oder nicht vollstandig moglich; der Praktikant mull sich aber
iiber ihren EinfluBl auf das MeBresultat Gedanken machen.

Zufdillige Fehler haben unregelméaBigen (statistischen) Charakter und
konnen bei gleicher experimenteller Anordnung das MeBergebnis sowohl
vergrofern als auch verkleinern. Sie haben subjektive und objektive Ur-
sachen.

Subjektiv bedingt sind Parallaxefehler, Schatzungsfehler bei der Inter-

polation von Skalenablesungen, schwankende Reaktionszeit des Beob-

achters usw.

Objektiv bedingt sind
— unregelmiBig schwankende Einfliisse der MeBapparatur und der Umwelt

(Reibung bei mechanischen Bewegungen, variable Kontaktwiderstinde,

Schwankungen von Temperatur, Luftdruck, Netzspannung usw.)

— durch Quantenerscheinungen bedingte statistische GesetzmaBigkeiten des
MeBgegenstandes bzw. der MeBapparatur (Rauschen elektrischer Stréme,
Temperaturbewegung von Molekiilen, Fluktuationen beim radioaktiven
Zerfall oder bei Emission von Lichtquanten usw.).

Die durch Quantenerscheinungen bedingten zufélligen Fehler sind grund-
sdtzlich unvermeidbar und bestimmen die prinzipielle Genauigkeitsgrenze
einer Messung; alle anderen Fehler sind zwar prinzipiell vermeidbar, prak-
tisch jedoch bei vorgegebenen Versuchsbedingungen nicht auszuschalten.
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1.4. Fehlertheorie

Aufgabe der Fehlertheorie ist es, geeignete Naherungswerte und Un-
sicherheitsintervalle fiir die gemessenen GréBen zu definieren und Methoden
zu ihrer Berechnung aus den MeBdaten anzugeben. Sie ist damit die Grund-
lage fiir die kritische Auswertung der MeBergebnisse.

Aussagen iiber systematische Fehler erhélt man durch eine Fehlerabschét-
zung (Abschn. 1.4.1); die Gr6Be der zufilligen Fehler 1486 sich durch mehr-
malige Messung und anschlieBende statistische Verarbeitung der Mefdaten
gewinnen (Abschn. 1.4.2).

Durch Addition des zufalligen und des maximal moglichen systematischen
Fehlers ergibt sich die MeBunsicherheit des MeBwerts.

1.41. Fehlerabschitzung und GroBtfehler
1.4.4.1. Unmittelbare Messung

MiBt man eine physikalische GréBe nur ein einziges Mal, so betrachtet
man den MeBwert z als Naherungswert fiir den unbekannten wahren Wert X.
Die Abweichung des MefSwerts vom wahren Wert heilt wahrer Fehler und
ist ebenso wie X nicht bekannt.

Statt durch den wahren Fehler charakterisiert man daher die Giite der
Messung durch die maximal mégliche Abweichung des MeBwerts vom wah-
ren Wert, die man als GroBtfehler Ax bezeichnet.

Az wird anhand des MeBverfahrens, der Empfindlichkeit der Gerite, der
verwendeten Skalenteilung, der Sorgfalt beim Experimentieren usw. ab-
geschatzt. Als Fehler der MeBgerite sind die vom Hersteller garantierten
Genauigkeiten (sog. Garantiefehlergrenzen) einzusetzen. Zum Beispiel wer-
den elektrische Gerite in Giiteklassen eingeteilt. Die Klassenzeichen (0,2;
0,5;1,0; 1,5; 2,5) geben dabei den maximalen prozentualen Fehler, bezogen
auf den Endausschlag, an.

Beispiel: Ein Spannungsmesser der Giiteklasse 1,5 habe eine Skale mit einem End-
ausschlag von 500 V, der Abstand der Teilstriche betrage 5 V. Als Ablesefehler setzt
man die Hilfte des Abstandes benachbarter Teilstriche (2,5 V) an; entsprechend der
Giiteklasse sind dazu 1,5% von 500 V zu addieren, so daB der GréBtfehler 10 V betrigt.

Aussagekraftiger als der absolute GroBtfehler Az ist meist der relative
GroBtfehler Az/x bzw. der prozentuale GroBtfehler (100 - Az/z) %. Da das
Vorzeichen der Abweichung des MeBwerts vom wahren Wert nicht bekannt
ist, erfolgt die Angabe des MeBergebnisses in der Form

X=2z+Az oder X ==z-(1+Az/2). 1)
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Mift man die Gréfle X mehrmals (n-mal) und sind die Abweichungen der
MeBwerte x,, ..., z, untereinander wesentlich kleiner als der GroBtfehler,

so dominjeren offenbar systematische Fehler. Man betrachtet dann den
Mittelwert

£=2 e, @)

als Néherungswert fiir die GroBe X.

Die Giite des MeBergebnisses hingt in diesem Falle nicht von der Anzahl
der Messungen ab (miBt man beiSpielsweise mit einem falsch geeichten MaB-
stab, so bleibt das Ergebnis auch bei oftmaliger Messung falsch), der Fehler
von z ist deshalb unabhingig von n durch Az bestimmt.

1.4.1.2. Mittelbare Messung (Fehlerfortpflanzung)

In der Praxis hat man es meist nicht nur mit unmittelbar meBbaren Gré-
Ben zu tun, sondern es sind zusammengesetzte GroBen zu ermitteln, in deren
Berechnung mehrere unmittelbar gemessene GroBen eingehen.

Zwischen der zusammengesetzten GroBe f und den voneinander un-
abhingigen direkt meBbaren GroBen z, y, 2, ... bestehe der Zusammenhang
f=f, ¥,z ...). Dann interessiert die Auswirkung der GroBtfehler Az, Ay,
Az, ... auf die GréBe £, d. h. der zugehorige GroBtfehler Af.

Sind die Fehler geniigend klein gegen die MeBwerte, so berechnet man Af,
indem man die Funktion f an der Stelle x, ¥, 2, ... in eine Taylorreihe ent-
wickelt, die nach dem linearen Glied abgebrochen wird:

fe+ Az, y+ Ay, z+ Az, ...)=f(z, 9,2, .. )+—f fA + fA

+...=f+Af.

Um mit Sicherheit den GroBtfehler Af zu erhalten, also die in Praxis durch-
aus mogliche Kompensation der Einzelfehler zu vermeiden, ist der Absolut-
betrag aller Glieder zu nehmen, so daB sich ergibt

Af= ‘afiA +‘af)A +’ A ... 3)

Hiufig benotigte Sonderfille der Gl. (3) sind
a)f=a-z+b-y+c-z+... (lineare Funktion).
Dann ist

= |a| Az + |b| Ay + l¢| Az + .... (3a)

2 Phys. Praktikum



18 Einfithrung

b)f =A -a2yfzr ... (Potenzprodukt).

Dann ist
A Az A Az
Tf=|oc|7+]ﬁ|7y+|y|—z—+.... (3b)

Beispiel: Die Schwerebeschleunigung g werde aus der Lange [ und der Schwingungs-
dauer 7 eines Fadenpendels bestimmt: g = 4=?. I/T2. Die Messung liefert ! = 97,4 cm
und 7' = 1,981 s, woraus sich ¢ = 4=n2.1/T? = 979,9 cm/s? ergibt.

! wurde unter Verwendung einer Millimeterskale gemessen, die an beiden Endpunk-
ten etwa mit einer Genauigkeit von 0,5 mm ablesbar ist; so ist Al = 0,1 cm. Zur Zeit-
messung wurden 100 Schwingungen mit der Stoppuhr auf 0,2 s genau gemessen (0,1 s

Fehler am Anfang und am Ende geschétzt), daher ist AT = 0,002 s. Mit # = 0,001

und 2,_71 ~ 0,001 wird nach GI. (3b) % = # +2. AT—T = 0,003 bzw. Ag = 3 em/s?.

Das Ergebnis ist zu runden und in der Form g = (980 + 3) cm/s? = 980 - (1 + 0,003)
cm/s? anzugeben.

Sind die Fehler groB3, muBl man zur Ermittlung der Grenzwerte f + Af die
Grenzwerte z + Az, y + Ay, z + Az, ... sinngemdB in f = f(x, y, 2, ...) ein-
setzen. Dabei werden die positiven und negativen GréBtfehler Af, und Af_
i. a. verschiedene Betrige erhalten.

Beispiel: Bei der Messung der Schwerebeschleunigung g aus Liinge I und Schwin-
gungsdauer T eines Fadenpendels werde 7' nur sehr ungenau zu 7' = (2 + 0,5) s be-
stimmt; demgegeniiber kann der Fehler von I = (99 4 1) em vernachldssigt werden.

Die durch AT = 0,58 verursachten Grenzen von g = 4rn?.1/T? ergeben sich zu

4n=] 472]
= = 2 — = — =
g + Ag, T — AT)? 17,4 m/s? und g — Ag_ T + AT 6,3 m/s2,
Alle in diesem Abschnitt durchgefiihrten Uberlegungen gelten auch, wenn
man %, ¥, z, ... mehrmals gemessen hat und systematische Fehler dominie-
ren. Es sind dann iiberall die Mittelwerte Z, 7, Z, ... einzusetzen, an den
Groftfehlern dndert sich nichts.

1.4.2. Statistische Fehlertheorie

Sieht man von systematischen Fehlern ab und liegt eine groBe Anzahl
von Beobachtungen vor, so kann eine Fehleranalyse mit statistischen Me-
thoden erfolgen (eine Methode zur Uberpriifung, ob bei einer MeBreihe die
Einzelwerte statistisch verteilt sind, wird in Abschn. 1.4.3 beschrieben)

1.4.2.1. Unmittelbare Messung

Die GroBe x werden unter gleichen Bedingungen n-mal gemessen, wobei n
im Gegensatz zu Abschn. 1.4.1 eine groe Zahl sein muB}. Die » MeBwerte
%y, Xy, ..., T, haufen sich bei einem bestimmten Wert. Teilt man die z-Skale
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in kleine Intervalle Ax,, so gilt fiir die Zahl der MeBwerte An,, die in den
Abschnitt Az fallen.

Any, = w(zg) - n - Az, 4)

w(x;,) gibt an, in welcher Weise sich die MeBwerte auf die einzelnen Inter-
valle verteilen und kann niherungsweise als Wahrscheinlichkeitsdichte be-
trachtet werden. Gl. (4) besagt, daB w(x,) - Az, eine Naherung fiir die
Wahrscheinlichkeit (relative Haufigkeit) darstellt, mit der ein im Intervall
Az, liegender Wert gemessen wird.

w(x) w(x)
02— 02
01— 01
\ | l |
995 1000 1005 x, /mm 995 1000 1005 x,/mm
Abb. 1a. Abb. 1b.
Hiufigkeitspolygon einer Mefreihe Histogramm der Mefireihe von Abb.1a
woh T [ [T T 1] I,
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Abb. 1 ¢. GauBsche Normalverteilungen mit gleichem Zentralwert u und verschiedenen
Standardabweichungen ¢; bzw. o,
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Trigt man w(z,) jeweils iiber der Mitte des zugehorigen Intervalls Az,
auf, so erhilt man eine grafische Darstellung der Verteilung in Form eines
Hiufigkeitspolygons (Abb. 1a) bzw. Histogramms (Abb. 1b).

Wird die Zahl der Messungen vergréfert und die Intervallteilung ver-
feinert, so nahert sich w(x;) in vielen Fillen erfahrungsgemaB einer Glocken-
kurve, der GauBschen Normalverteilung (Abb. 1¢)

_(x— ﬂ)z} , (5)

o
ex
o)2n p 20t

die durch den Erwartungswert (Zentralwert, wahren Wert) y und die
Standardabweichung o (als GiitemaB) charakterisiert ist [o ist der Abstand
der Abszisse der Wendepunkte der Kurve w(x) vom Zentralwert]. In der
Praxis mufl man sich aus zeitlichen und Gkonomischen Griinden meist mit
relativ wenigen MeBwerten begniigen, was der Entnahme einer Stichprobe
(vom Stichprobenumfang ») aus der Gesamtheit der méglichen MeBwerte
entspricht.

Als Niherungswert fiir den wahren Wert u betyachtet man auch hier den
Mittelwert

w(x) =

1 n
5 = — & 6
ELS ®)
Die Abweichung z, — £ vom Mittelwert ist der (scheinbare) Fehler') der
Einzelmessung; als MaB fiir die Giite der Messung benutzt man die Streu-
breite (empirische Standardabweichung, Streuungsmaf)

s=V ! ﬁ(xk—@%, (7)

n—1 k=1

die einen Naherungswert fiir die Standardabweichung ¢ darstellt. Der
Nenner n — 1 ist die Zahl der Kontrollmessungen, dadurch wird beriick-
sichtigt, daB man bei einer einzigen Messung aufgrund statistischer Uber-
legungen keinerlei Angaben iiber den Fehler machen kann.

Fiir die Streubreite § des Mittelwertes erhilt man?)

= —-I/ ! Z"] (2 — Z)? 8

V;,, nn—1) =, F ’ ®)
§ wird mit wachsender Zahl von Beobachtungen kleiner, jedoch erfolgt die
Verringerung nur mit. der Wurzel aus der Zahl der Beobachtungen, so da8
wenige sorgfiltige Messungen einer grolen Zahl oberflichlicher Messungen
vorzuziehen sind.

3

1) Der wahre Fehler ist die Abweichung vom wahren Wert u, der jedoch nicht be-
kannt ist.

2) Gl. (8) folgt aus dem GauBlschen Fehlerfortpﬂanzungsgesetz (12), da der Mittel-
wert Z als eine Funktion der » MeBwerte z,, ..., z, aufgefaBt werden kann.
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Den Bereich Z + ¢ - § nennt man den Vertrauensbereich des Mittelwerts.
¢t hingt ab von der statistischen Sicherheit, mit der der wahre Wert zwischen
den Vertrauensgrenzen £ — t- § und & + ¢ - § liegen soll. Sind die MeBwerte
entsprechend Gl. (5) normalverteilt, so ergeben sich die Vertrauensbereiche
aus folgender Tabelle:

Tabelle 3. Vertrauensbereiche bei Gaupfscher Normalverteilung

Statistische Sicherheit t Vertrauensbereich
o _ . 1
68% 1 I+ §=%4——3s

V»

o _ N _ 2
95% 2 T+22B=F4+—s

Vr

o . _ _ 3
99,7% 3 T+3E=F+—3s

I»

Unter Praktikumsbedingungen geniigt eine statistische Sicherheit von
95 % (t = 2), man gibt das Ergebnis also in der Form

=%+ 2=+ 2[|n (9)

bzw. unter Benutzung des relativen Fehlers in der Form

x=z(1ig§)=z(1¢ _28 ) (9a)
Z|n

an.
Tabelle 4. Messung der Linge eines Fadenpendels

A I (= &y

cm cm cm?

97,30 +0,06 0,0036
40 —0,04 16
,35 +0,01 01
45 —0,09 81
,30 -+0,06 36
,40 —0,04 16
,35 -+0,01 01
,40 —0,04 16
,30 +0,06 36 -
,35 +0,01 01

2973,60 cm 0,00 cm 0,0240 cm?
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Beispiel: 10 Messungen der Linge [ eines Fadenpendels ergaben die Werte von Tab. 4.
Der Mittelwert ist I = 97,36 cm, die Streubreite des Einzelwertes ist s = V0,024/9 cm

= 0,05 cm, die Streubreite des Mittelwertes 5 = s/]/10 = 0,016 cm. Nach Gl. (9) bzw.
(9 a) lautet das Ergebnis I = (97,36 + 0,03) cm = 97,36 - (1 4 0,0003) cm.

Sind zufillige und systematische Fehler von vergleichbarer GrofSe, so ist
der entsprechend Abschn. 1.4.1.1 abgeschéatzte GroBtfehler Az zum zufélligen

Fehler 2s/ ]/7& zu addieren, so daB man eine MeBunsicherheit 2s/ ]/% + Az und
damit

© =%+ (25 + Ax) = & + (25/}/n + Ax) (10)

erhalt.

1.4.2.2. Mittelbare Messung (Fehlerfortpflanzung)

Den Mittelwert fiir eine zusammengesetzte Gro8e f(z, ¥, 2, ...) erhilt man
durch Einsetzen der Mittelwerte Z, 7, %, ... direkt gemessener GroBen:

F= 1832 ..). | (11)

Fiir die Streubreite 3; von f gilt das GauBsche Fehlerfortpflanzungsgesetz

o= Y(&La) « (Lo« (La) oo )

Da es auf statistischen Uberlegungen beruht, beriicksichtigt es die Moglich-
keit, daB sich die Streuungen 3., 3,, 5,, ... in ihren Auswirkungen auf die
zusammengesetzte Grofle f teilweise kompensieren. Der wahre Wert von f
liegt daher entsprechend der GauBschen Normalverteilung (5) mit einer .
Wahrscheinlichkeit von 95 % innerhalb des Intervalls § + 25;.

Als Beispiel werde wieder die Schwerebeschleunigung g aus der Linge ! und der
Schwingungsdauer 7 eines Fadenpendels bestimmt (g = 4x2 - I/T'2), wobeil = 97,36 cm,

8 = 0,016 cm, 7 = 1,981 s und 3, = 0,001 s sein sollen. Es wird

_ 97,36 cm cm

g = 4r2 m = 979,5 7;2— ’
und mit

dg  4n? og ‘82l

A ™ T

erhilt man nach Gl. (12)

_ 472 _\2 8n2] _ \2
8 = ‘I/(? 81) +( 7 ST) = 1,0 cm/sg.
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Das Ergebnis ist daher abzurunden und in der Form
g = (980 L 2) cm/s?

anzugeben.
Die Rechnung vereinfacht sich, wenn man zunichst den relativen Fehler

- = [{ & \? 87 \%
= - +4|=

wi=|(5) +(7)
bildet. Man findet 5,/g = 0,0010 und daraus §, = 1,0 cm/s%.
1.43.  Uberpriifung des statistischen Charakters

einer MeBreihe

Um zu tiberpriifen, ob die Verteilung der n MeBwerte z,, z,, ..., x, einer

MeBreihe geniigend genau mit der GauBlschen Normalverteilung iiberein-
stimmt, kann man wie folgt vorgehen:

Aus Gl. (6) ergibt sich durch Integration die Anzahl n(£) der MeBwerte,
die kleiner als ein vorgegebener Wert & sind, zu

&
n(&) =n -_j' w(&)dE = n - D).

Die Funktion .

E .
- oxp [— & =M 4o
o6~ [ |- S e (13)

heilt GauBsches Fehlerintegral und ist in Abb. 2 dargestellt. In einem sog.

(e
7,0‘-——————_——_————-—————70—'.“-
osf '

06—

0,68

04

17.2L
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Wahrscheinlichkeitsnetz (Abb. 3), dessen Abszisse linear und dessen Ordi-
nate entsprechend dem GauBschen Fehlerintegral unterteilt sind, erscheint
diese Funktion als Gerade (vgl. dazu Abschn. 1.5.3).

n(€)/n
99,9
99,8
995 Kurve 1
oE soe 97.72%
961 /, Kurve2
95~ ]

! 7 )

sol- 5332 7 84,13%
/

70— s

o d )
— 50%
o X=304 ’

15.87%

IR

N Coretn

2.28%

j
Y

19 20 22 24 26 28 30 32 34 36 38 40 42 44 g

<)
&y

Abb. 3. Haufigkeitsverteilung von MeBreihen im Wahrscheinlichkeitsnetz

Kurve 1: annihernd normalverteilte MeBwerte; Kurve 2: rechteckverteilte
MeBwerte (Ordinatenwerte in %)

Trégt man in dieses Netz die relative Anzahl »(&)/n der MeBwerte unter-
halb von £ als Funktion von & ein, so ergibt sich beim Vorliegen normal-
verteilter MeBwerte eine Gerade, aus der man ohne Rechnung Mittelwert
und Streubreite ablesen kann. Als Beispiel sind in Abb. 3 als Kurve 1 Werte,
die naherungsweise einer GauBverteilung mit dem Mittelwert Z = 29,8 und
einer Streuung s = 3,4 entsprechen, eingetragen.
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Die stark von einer Geraden abweichende Kurve 2 stammt dagegen von
einer Reihe von Werten, die gleichméaBig im Intervall zwischen 34 und 44
verteilt sind,

0,1 filr 34 <z < 44,

w(x)z{o fir <34 und z>44,.

also nicht der Normalverteilung unterliegen.

1.4.4. Mittelwert und Fehler von MeBwerten
unterschiedlicher Genauigkeit

Wird die GroBe x n-mal mit verschiedener Genauigkeit (z. B. mit unter-
schiedlichen MeBmitteln oder von verschiedenen Beobachtern) gemessen,
so ordnet man jedem MeBwert x; entsprechend seiner Genauigkeit ein
statistisches Gewicht p; zu.

Aus analogen Uberlegungen wie in Abschn. 1.4.2 ergibt sich dann der
sog. gewogene Mittelwert &, zu

n n
Ty = 2 Pi%; /Z o8 (14)
=1 =1

die Streubreite (bezogen auf Z,) der Einzelmessung zu

n

Zipi(xi — T)*
bem= || —F——— 15
O o)

und die Streubreite des Mittelwerts Z, zu

n.

2 Di(%; — Tg)?
Sgz = — (16)

(n — 1)52=11p¢

Die statistischen Gewichte sind der MeBgenauigkeit entsprechend zu wih-

len, z. B. umgekehrt proportxonal zum geschitzten GroBtfehler des Mef3-
wertes ;.
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1.5. Auswertung von MeBresultaten

1.5.1. Rechenverfahren

In den meisten Féllen erhilt man bei einem Experiment die gesuchte
GroBe nicht direkt, sondern muB sie durch mehr oder weniger umfangreiche
Rechnungen aus den MeBergebnissen ermitteln.

Bevor man mit der Rechnung beginnt, mul man sich iiber die erforder-
liche Genauigkeit klar werden. Sie ist so zu wihlen, daBl der Fehler durch die
MeBgenauigkeit gegeben ist und nicht etwa durch die Rechnung vergrofert
wird ; andererseits ist es sinnlos und reine Zeitverschwendung, iibertrieben
genau zu rechnen. Im allgemeinen wird man eine Dezimale iiber die sicheren
Dezimalen des MeBresultats hinaus beriicksichtigen.

Die benotigte Rechengenauigkeit bestimmt die Wahl der Rechenhilfs-
mittel. Meist geniigt der Rechenschieber. Bei 25 cm Skalenliange betrigt die
relative Unsicherheit einer Einstellung etwa 0,1%. Eine einfache Multi-
plikation oder Division zweier Zahlen erfordert drei Einstellungen (Ein-
stellen der 1. und 2. Zahl und Ablesen des Ergebnisses). Sind n Zahlen mit-
einander zu verkniipfen, so sind dazu 2n — 1 Einstellungen erforderlich.
Fiir den mittleren relativen Fehler des Ergebnisses erhilt man nach Gl. (12)
die Werte von Tab. 5.

Tabelle 5. Relativer Fehler beim Rechenschieber

Anzahl der zu Relativer Fehler
verkniipfenden Zahlen

2 0,17%

3 0,22%

4 0,26%

5 0,30%

n V2n —1-01%

Ist groflere Genauigkeit erforderlich, muf3 man eine Logarithmentafel oder
eine Rechenmaschine verwenden.

1.5.2. Rechnen mit kleinen GréBen

GroBe Einsparung von Rechenaufwand ist oft durch die Benutzung von
Niherungsformeln zu erzielen, die man durch Reihenentwicklung gewinnt:
1. Winkelfunktionen von kleinen Argumentwerten :

MiBt man @ im Bogenmal, so ist

sihg~@~tang und coseg = 1.
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Der relative Fehler hat die GréBenordnung ¢?; unterhalb von 2° ist er kleiner
als 19/44, unterhalb von 6° kleiner als 1 %.

2. Faktoren, die wenig von 1 abweichen:

Dieser Fall tritt haufig auf, wenn an MeBwerten kleine Korrekturen an-
zubringen sind. Ist z < 1, so gilt

1 +2)"=14+ne,
1+2)"=1%F nz

ya 144
1+2)= j:zz,'

Axz)d £2z)~1+z+2,
exp (+2) = 1 £ 2,
In (1 +2) =~ +2.

Der Fehler hat die GréBenordnung 22; fiir z < 0,03 ist er kleiner als 0,001,
fiir z < 0,1 ist er kleiner als 0,01.

1.5.3. Graphische Darstellungen

Den funktionellen Zusammenhang zweier Grofen wird man meist durch
eine graphische Darstellung veranschaulichen, die unbedingt auf Koordi-
natenpapier auszufithren und mit einer Abbildungsunterschrift zu versehen
ist. AuBer der Bezifferung sind an den Achsen die dargestellten GréBen und
die gewahlten Einheiten anzugeben. Der MaBstab ist so zu wahlen, daf die
Kurve moglichst unter einem Winkel von etwa 45° zu den Koordinaten-
achsen verlduft. Dadurch erhilt man auf beiden Achsen gleiche Ablese-
genauigkeit.

Liegen die MeBwerte innerhalb eines begrenzten Intervalls relativ weit
entfernt vom Nullpunkt, so ist eine Darstellung mit unterdriicktem Null-
punkt zu wahlen (vgl. z. B. Abb. 5b).

Oft ist es zweckméBig, nicht die gemessenen GroBen selbst, sondern geeig-
nete Funktionen davon graphisch darzustellen, am besten auf entsprechend
unterteiltem Koordinatenpapier. Diese Funktionen werden nach Moglich-
keit so gewahlt, da man als Kurve eine Gerade erhilt. Einige typische
Beispiele sollen das Verfahren erléutern.

1. Linearer Zusammenhang iiber einen grofien Mefbereich

Hat man die Aufgabe, die Giiltigkeit des Ohmschen Gesetzes U = I - R
iiber einen groBen Bereich (etwa 10 mV bis 100 V, also iiber 4 Dekaden) zu
itberpriifen, so mit man in Stufen, die sich innerhalb einer Dekade immer
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etwa um die gleichen Faktoren unterscheiden, z. B. bei 10 — 20 - 50 — 100 —
200 - 500 mV usw. Bei einer graphischen Darstellung im linearen MafBstab
wiirde sich der gréBte Teil der MeBpunkte beim Nullpunkt héufen. Daher
empfiehlt es sich, in diesem Falle eine Darstellung im doppeltlogarithmi-
schen MaBstab anzufertigen. Die fiir diesen Zweck hergestellten Koordinaten-
papiere sind nach dem dekadischen Logarithmus unterteilt. Trigt man
Ig I/I, als Funktion von lg U/U, auf, so erhilt man eine gleichméiBige
Verteilung der MeBpunkte. I, und U, bedeuten hier die Einheiten von I
und U.

Ist das Ohmsche Gesetz fiir den untersuchten Leiter erfiillt, so ergibt sich
mit der aus ?U = IL}I%_ folgenden Gleichung lg U/U,=1g I|I,+ 1g R/R,

0 o Lo

in der doppelt logarithmischen Darstellung eine Gerade mit der Steigung
8 = 1. Nullpunktsfehler dullern sich in dieser Darstellung als Kriimmung
der Kurve.

2. Potenzzusammenhang

Der Zusammenhang zwischen der durch eine Lichtquelle der Licht-
starke I erzeugten Beleuchtungsstérke & und der Entfernung r der bestrahl-
ten Flache von der Lichtquelle ist durch die Beziehung E = I/r? gegeben.

Tragt man die zugehorigen Melwerte im doppelt logarithmischen MaB3-
stab auf, so ergibt sich wegen lg E/E, = lg I|I, — 2 - 1g r[r, eine Gerade mit
der Steigerung S = —2 (Abb. 4). E,, I, und r, bedeuten die Einheiten der
entsprechenden GroBen.

Da auf beiden Achsen der gleiche MaBstab gewéhlt wurde, braucht dieser
bei der Berechnung der Steigung nicht beriicksichtigt zu werden. Die Ab-
weichungen der 3 MeBpunkte bei groBen Entfernungen diirften auf Streu-
licht zuriickzufiihren sein.

Allgemein liefert jeder Potenzzusammenhang im doppelt logarithmischen
MaBstab eine Gerade, deren Steigung gleich dem Exponenten ist.

3. Exponentieller Zusammenhang

a) Bei der Entladung eines Kondensators der Kapazitit C iiber einen
Widerstand R dndert sich die Spannung U exponentiell mit der Zeit gemaf
U=U,-etEc,

Tragt man den Logarithmus des Spannungsverhiltnisses als Funktion

. . _ t-lge 04343 -t
der Zeit auf, so erhilt man wegen lg U/U, = — R0 - " m.o °ne
. . Ige 0,4343
Gerade mit der Steigung § = — R C-" RO (Abb. 5a).

Fiir die Zeichnung benutzt man in diesem Falle einfach logarithmisch
unterteiltes Papier (Abszisse linear, Ordinate logarithmisch geteilt). Da der
MafBstab auf beiden Achsen unterschiedlich ist, muf} er bei der Berechnung
von 8, wie in Abb. 5a angegeben, beriicksichtigt werden.
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Abb. 4. Beleuchtungsstirke £ als Funktion der Entfernung » (beide
Achsen logarithmisch geteilt)
b) Der Dampfdruck p einer Flissigkeit hingt gemif
p=a-T°. e~ Qa/RT

von der Temperatur 7' ab (¢ und b sind Konstanten, @, ist die molare Ver-
+ dampfungswirme, R die molare Gaskonstante).
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Auch in diesem Falle steht entsprechend unterteiltes Koordinatenpapier zur
Verfiigung : Abszisse reziprok, Ordinate logarithmisch unterteilt (Abb. 5b).

Bei den graphischen Darstellungen auf logarithmisch unterteiltem Papier
mull man stets mit dem Zehnerlogarithmus rechnen, da die verfiigbaren
Papiere dementsprechend unterteilt sind; ansonsten wire die Verwendung
des natiirlichen Logarithmus vorzuziehen, da dann der Faktor lge ver-
schwindet.
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4. Sinusformiger Zusammenhang

Die Schwingungen eines Tonfrequenzgenerators seien mittels eines Schlei-
fenoszillographen registriert worden, die Grundfrequenz sei f,. Es ist zu
priifen, ob Oberwellen vorhanden sind. Zu diesem Zwecke tragt man die
gemessenen Amplituden auf Koordinatenpapier auf, dessen Abszisse nach
einer Sinusfunktion und dessen Ordninate linear unterteilt ist. Ist nur die
Grundschwingung vorhanden, so erhilt man eine Gerade, Oberwellen be-
wirken Abweichungen. Man kann auf diese Weise bereits einen geringen
Oberwellengehalt erkennen, der sich bei linearer Abszissenteilung noch nicht
bemerkbar macht.

5. Polardiagramme

MiBt man den von einer leuchtenden Fliche ausgestrahlten Lichtstrom @
als Funktion des Winkels © zwischen Beobachtungsrichtung und Flichen-
normale, so erhilt man ein sehr anschauliches Bild von der rdumlichen Ver-
teilung, wenn man die MeBwerte in ein Polardiagramm eintrigt (Abb. 6).

Fldchennormale

£ Beobachtungsrichtung

-30° 0°

—609 60°

r Q
~80 . - 90°

Abb. 6. Richtstrahldiagramm einer strahlenden Flache
Ausgezogener Kreis: Lambertsches Gesetz

Insbesondere erhdlt man bei Giilltigkeit des Lambertschen Gesetzes @
= @, - cos ¥ einen Kreis, der die strahlende Flache tangiert. Abweichungen
vom Lambertschen Gesetz sind daher leicht festzustellen.

1.5.4.  Ausgleichsrechnung
Hat man die Grofle y als Funktion einer GréBe x gemessen und die Mef3-

punkte auf Koordinatenpapier aufgezeichnet, so tritt hiufig die Frage nach
der besten Kurve durch diese Punkte auf. Dabei ist meist aufgrund theo-



1.5. Auswertung. von MeBresultaten 33

retischer Erwigungen der Funktionszusammenhang zwischen y und  bis
auf einen oder mehrere Parameter 4, B, ... bekannt, die aus der Messung
zu bestimmen sind.

Wir behandeln hier den Sonderfall eines linearen Zusammenhanges?')

y=A+ Bz . (17

Die MeBwerte seien z;,...,z, und ¥, ..., y,. Die x; sollen als fehlerfrei
angesehen werden. Die Bestwerte 4 und B der Konstanten 4 und B sind
zu bestimmen.

Setzt man 4 und B in Gl (17) ein, so erhilt man

gk=E+B'xk. (18)

Infolge der MeBfehler stimmt 7, im aligemeinen nicht mit dem MeBwert y,
iiberein, und Ay, = ¥, — 7 ist von Null verschieden. 4 und B lassen sich aus
der Forderung bestimmen, dall die Summe der Quadrate der Abweichungen
Ay, ein Minimum werden soll:

F(4, B) =Y (yy — 4 — Bay)? = Min.!
1

Lol
N \E]

Die notwendigen Bedingungen fiir ein Minimum lauten 3F/04 = 0F[0B=0.
Daraus ergeben sich zwei lineare Gleichungen fiir 4 und B:

XyYye—n-A— Bz, =0,
k=1 k=1

n _n _n
Dyt — AXa— BXag=0
b= k=1 k1

Fiithrt man die Mittelwerte

1 = 1 %
E=— Zg» y=— s
nkgik Y= 2y

8

1 n _ 1 n
Y =— X%y, und 2?=— 3}
M k=1 7 k=1

ein, so erhalt man
nj =mnd + nz B,
nFy = nEA +na*B.

1) Viele nichtlineare Zusammenhnige koénnen durch geeignete mathematische Um-
formungen (vgl. Abschn. 1.5.3) in lineare umgewandelt werden.

3 Phys. Praktikum



34 Einfiihrung

Lost man nach 4 und B auf, so ergibt sich

p_TY—T-Y
B - @ (19a)
und
I Wil
Ad-§5-B.z=42 %% (19b)

— (5)2

Die Berechnung der Fehler von A und B geschieht wie folgt:
Die Streubreite s, von y, ist nach Gl. (7) gleich

Sy = V 1 ~ Ayk)z _V 1 = 1 - A - Bxk)z.

Die Streubreite von B ergibt sich daraus nach dem Fehlerfortpflanzungs-
gesetz (12) zu

_ 0B g
= |/ 2 (5, ) - (20)
Es ist 6_B = ! M, und man erhélt
Oy m 2 —(Z)?
no QB \2 1
? yl/kz=:1 (a?/k) yVn(x"‘ — (%)?) &)
Ferner erhilt man mit
04 _1F-ns
Oye M a2 — (F)?
n QA \? 2
s ) = _— = 22
o 8”1/151 (aylc) o n(z? — (%)2) E V: (22)

Beispiel

Zur Bestn;ﬁmu.ng des’ linearen Ausdehnungskoeffizienten « eines Stabes wurde die
Léangendnderung y als Funktion der Temperatur gemessen; bei 20 °C betrug die
Lingel,, gerade 1 m. Esist! = [y{1 + « (T — T,)} (I, = Léange bei 0°C, d.h.bei T = T'),
also

y=l—ly=l—=ly+1l-a (T —Ty) =4+ BAT.
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Als MeBergebnis erhielt man die in Tabelle 6, Spalte 1 und 2 zusammengestellten Werte.
Setzt man die Mittelwerte aus Tabelle 6 ein, so ergibt sich

_ 23,56mm K —0,272mm - 50K .

= 3500KF 50K 50K oo 107 mm/K

mm

K

o)

4 = 0,272 mm — 99,510 - 50 K = —0,2255 mm,

Iy = Iy + A = 999,8 mm,
« = BJl, = 99,5107 K1,

Tabelle 6. Messung des linearen Ausdehnungskoeffizienten

AT gy AT? y-AT Ay (Ay)?
K mm K2 mm-K mm mm?2
0 —0,24 0 0 —0,0145 210-10-¢
10 —0,13 100 —1,3 —0,0040 16 - 106
20 0,00 400 0 +0,0265 700 . 1078
30 0,08 900 2,4 +0,0070 49 .10°¢
40 0,16 1600 6,4 —0,0125 160 - 106
50 0,29 2500 14,5 40,0180 330.10-¢
60 0,35 3600 21,0 —0,0215 465 - 10—
70 0,47 4900 32,9 —0,0010 1.10-¢
80 0,55 6400 44,0 —0,0205 420 -10-¢
90 0,69 8100 62,1 40,0200 400 - 108
100 0,77 10000 77,0 40,0005 0-10-6
Summe 550 2,99 38500 259,0 —0,0020 2751 .10-¢
Mittelwert 50 0,272 3500 23,55

Fiir die Fehler erhilt man aus Spalte 6 von Tabelle 6

8y, = V% -2,751 - 103 mm? = 1,7- 10-2 mm

und
_ 0,017 mm .
% = 113500 K — 2500 Ky) — »7 107" mm/K
Es ist also « = Bfl, = (99,5 + 2) - 107 KL,
1.6. Versuchsvorbereitung und Protokollfiihrung

Die Erfahrung zeigt, daBl jedem Studenten, der ein physikalisches Prak-
tikum besucht, Hinweise fiir eine sinnvolle Versuchsvorbereitung und eine
ordnungsgemife Protokollfiihrung gegeben werden miissen. Einzelheiten
zu diesem Thema sind in der Praktikumsordnung der jeweiligen Hochschule
festgelegt. Hier kénnen nur einige allgemeine Regeln dargestellt werden.

In der Praxis hat es sich bewéhrt, fiir MeBprotokolle entweder gebundene

3*
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Biicher mit numerierten Seiten oder bestimmte Formblitter zu verwenden.
Aus diesem Grunde wird in jedem Praktikum eine dieser beiden Moglich-
keiten fiir die Protokollfilhrung vorgeschricben. Die Verwendung von
»,Schmierzetteln‘ ist unter keinen Umstdnden gestattet. Das Protokoll ist
das Dokument eines Experiments. Daher sollen alle Eintragungen mit Aus-
nahme von Skizzen und graphischen Darstellungen mit Tinte oder Kugel-
schreiber vorgenommen werden. Es ist nicht erlaubt, zu radieren oder in ande-
rer Weise Protokollteile verschwinden zu lassen, denn dabei besteht immer
die Gefahr, da auch unbedingt notwendige Angaben versehentlich verloren-
gehen. Wenn einem Praktikanten fehlerhafte Eintragungen unterlaufen, so
sind diese unter Angabe der Fehlerursache einzuklammern oder sauber
durchzustreichen. Auf allen Formblittern bzw. auf dem Titelblatt des
Protokollbuches sind Name, Fachrichtung und Seminargruppe des Protokol-
lanten anzugeben. Die erste Seite eines Protokollbuches soll einem Inhalts-
verzeichnis vorbehalten bleiben.

Vorbereitung

Jeder Student erfahrt rechtzeitig Thema und Literatur der auszufithren-
den Versuche, auf die er sich in Hausarbeit vorzubereiten hat. Nach dem
Literaturstudium soll der Student den Versuch planen, d. h., er soll die
Experimente in Gedanken ablaufen lassen und sich dabei iiberlegen, in
welcher Reihenfolge die benétigten physikalischen Groffen gemessen wer-
den miissen. Anderenfalls kann es vorkommen, daB eine Gréfe, deren Be-
stimmung im richtigen Moment vergessen wurde, in der zur Verfiigung ste-
henden Zeit nicht ermittelt werden kann, weil sich die entsprechenden Ver-
suchsbedingungen nicht mehr einstellen lassen.

Nun ist das Protokoll schriftlich vorzubereiten. Die Uberschrift besteht
aus der Bezeichnung des Versuches. AnschlieBend ist die genaue Aufgaben-
stellung zu formulieren. Das MeBverfahren soll in kurzer Form charakteri-
siert werden. Das kann in Stichworten und mit Hilfe von sauberen und
itbersichtlichen Freihandskizzen geschehen. Bei Versuchen der Elektrizi-
tatslehre sind stets die Schaltskizzen anzugeben. Auf keinen Fall ist es er-
wiinscht, daB ein Student im Protokoll Abschnitte aus Lehrbiichern oder
eventuell vorhandenen Versuchsanleitungen abschreibt. In ein Protokoll
der Praxis gehoren keine theoretischen Abhandlungen, sondern nur die
Gleichungen, die zur Berechnung der gesuchten physikalischen Grofen er-
forderlich sind. Wenn ein Student die notwendigen Gleichungen in seinem
Protokoll ableitet, weil er die Berechnung lernen will, wird er nicht ge-
tadelt. Jeder Praktikant sollte aber bedenken, daBl nicht zdhlt, wieviel er
aufgeschrieben hat, sondern wieviel er weif3.

Bei der Beschreibung des MeBverfahrens, in den Skizzen und nach den
Gleichungen muB die Bedeutung der verwendeten Symbole fiir die einzelnen
physikalischen GroBen klar angegeben werden. Zur schriftlichen Vorberei-
tung eines Protokolls gehort schlieBlich die Anwendung der Fehlerberech-
nungsformeln auf die verwendeten Gleichungen.
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Ein Student hat sich ordnungsgemaB vorbereitet, wenn er im Praktikum
unverziiglich und ohne grobe Fehler zu begehen mit der Versuchsausfithrung
beginnen kann.

MeBprotokoll

Im MeBprotokoll werden das Datum sowie die Uhrzeit fiir Beginn und
Ende der Versuchsausfiihrung angegeben. Die Namen des wissenschaft-
lichen Betreuers und eventueller Mitarbeiter am Versuch sind zu vermerken.
Dann folgt ein Verzeichnis aller notwendigen Geréite mit Angabe ihrer In-
ventar- oder Geritenummer und ihrer Genauigkeit (z.B. Giiteklasse,
kleinstes ablesbares Intervall usw.).

Wihrend der Versuchsausfithrung sind alle direkt gemessenen GrofBen,
die fiir das Endergebnis benétigt werden, iibersichtlich — méglichst in Form
von Tabellen — zu notieren. AuBierdem sind die Fehler dieser GroBen im
Protokoll schriftlich festzuhalten. Alle Angaben miissen TGL-gerecht sein,
d. h., es diirfen nur die gesetzlich zugelassenen Symbole und Einheiten ver-
wendet werden.

Auswertung

Die Versuchsauswertung ist — wenn nicht anders vereinbart — unmittelbar
nach Abschlul der Experimente in der Praktikumszeit vorzunehmen und
abzuschlieBen. Zur Auswertung werden im allgemeinen Zwischenresultate —
z. B. Mittelwerte der verschiedenen MeBgréBen — gebraucht. Auch diese
Werte miissen im Protokoll erscheinen.

Ist in einem Versuch die Abhingigkeit einer physikalischen GréBe von
einer anderen zu ermitteln, so soll dieser Zusammenhang stets auf geeigne-
tem Koordinatenpapier graphisch dargestellt werden (vgl. Abschn. 1.5.3).
Die MeBpunkte miissen in den graphischen Darstellungen —z. B. als Kreuze —
deutlich erkennbar sein, denn sie — nicht die hindurchgezogene Kurve —
sind der Beleg fiir das Experiment. Jeder Student soll sich anhand des
Variationsbereiches der darzustellenden GroBSen iiberlegen, wie der MaB-
stab auf den Koordinatenachsen sinnvoll zu wéhlen ist. In vielen Féllen
empfiehlt es sich, den Nullpunkt zu unterdriicken. Jede graphische Dar-
stellung muB beschriftet sein. Dazu gehoren das Thema (z. B. ,,Dynamische
Viskositat einer Fliissigkeit in Abhéngigkeit von der Temperatur‘) und die
Bezeichnung der Koordinatenachsen mit Symbol und der verwendeten
Einheit (z. B. /10~3 kg . m~! . s71 und 7'/°C).

Die Auswertung wird mit dem MeBergebnis einschlieBlich Fehlerangabe —
bei graphischen Darstellungen fiir mindestens zwei Werte — abgeschlossen.
Am Ende des Protokolls soll eine Diskussion des Ergebnisses und moglichst
eine kritische Bewertung des Experiments stehen.

Allgemein kann man sagen: Ein Protokoll ist dann in Ordnung, wenn ein
Mitarbeiter gleichen Ausbildungsgrades wie der Protokollant anhand der
Aufzeichnungen die MeBmethode und die Auswertung verstehen kann.



Mechanik

M.1. WAGUNG

M. 1.0. Alligemeine Grundlagen

M. 1.0.1. Zweischalenwaage

Die gleicharmige Zweischalenwaage ist eine spezielle Konstruktionsform
der Hebelwaage. Das schwingfahige System einer solchen Waage besteht
aus dem Waagebalken, an dem ein Zeiger starr befestigt ist, und zwei
Waagschalen. Die Schalen sollen als vollig gleich angenommen werden.

(myrm+Am)g

Abb. 7. Gleichgewichtslage einer ungleich belasteten Zweischalenwaage
(schematisch)

Genau in der Mitte des Waagebalkens ist die Schneide A — die Drehachse —~
angebracht. Der Massenmittelpunkt S, von Waagebalken und Zeiger muf
unterhalb der Schneide 4 liegen, damit das schwingféhige System an eine
stabile Ruhelage gebunden ist (vgl. Abb. 7).

Ein MaB fiir die Giite einer Waage ist die Empfindlichkeit E. Legt man auf
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eine der beiden Schalen einer zuvor abgeglichenen Waage einen Kérper
hinreichend kleiner Masse Am, so fithrt das System Schwingungen aus.
Diese sind infolge der Reibung der Schneide A in ihrem Lager geddmpft.!)
Ist das System nach einer gewissen Zeit zur Ruhe gekommen, haben sich
Waagebalken und Zeiger gegeniiber der Ausgangsstellung um den Winkel
A gedreht, und das freie Ende des Zeigers, dessen Lage an einer Skale
beobachtet werden kann, hat sich um das Stiick Az verschoben. Die Ent-
fernung der Skale von der Schneide 4 sei I. Da

Ap< 1 1)
ist, gilt in sehr guter Néherung
Az =1Ag.

Als Empfindlichkeit definiert man das Verhiltnis

Az Ag
B~ = am ®)

Nach Ubereinkunft gibt man Az in Skalenteilen und Am in Milligramm an.
Die Empfindlichkeit einer Zweischalenwaage ist sowohl von physikalischen
GroBen der Waage als auch von der Belastung m abhéngig. In den folgenden
Uberlegungen wird die Linge des Hebelarmes (der Abstand zwischen 4 und
A, bzw. A und A4,) mit », die Masse von Waagebalken und Zeiger mit m,,
die Masse einer Waagschale mit m, und der Abstand zwischen S, und 4 mit
8 bezeichnet. In Abb. 7 ist die Gleichgewichtslage einer ungleich belasteten
Waage dargestellt. Nach dem Hebelgesetz befindet sich eine Waage im
Gleichgewicht, wenn die Summe aller auftretenden Drehmomente ver-
schwindet. Rechnet man Drehmomente im Uhrzeigersinn positiv, im Gegen-
uhrzeigersinn negativ, so gilt

r(my + m + Am)g cos (@ — Ap) — r(m, + m)g cos (x + Agp)
— symeg sinAgp = 0. ®3)

Jeder Summand in Gl. (3) enthalt die Schwerebeschleunigung g als Faktor.
Daraus folgt, daBl man mit einer Hebelwaage die Masse m eines Korpers,
nicht sein Gewicht ¥ = mg bestimmt. Nach Abschitzung (1) ist

sin Ap ~ Ap, cos (x + Ap) ~ cos o F Ag sin .

1) Die Waagebalken mancher Analysenwaagen sind zusitzlich mit Dampfungs-
topfen versehen.
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Damit kann man Gl. (3) in guter Nédherung

rAm cos a = {sygmy — r[2(m; + m) + Am] sin a} Ap (3a)
schreiben. In der Praxis ist stets

a< 1, Am< 2(m; + m),
und Gl. (3a) vereinfacht sich zu

rAm = {sym, — 2r(m, + m) a} Ag. (83b)

Jede Waage, deren Prinzip mit Abb. 7 iibereinstimmt, wird so konstruiert,
daB

sgmy > 2r(my + m) o
fiir alle zuléissigen Belastungen m ist. Die durch Gl. (2) definierte Empfind-
lichkeit lautet also
r

E=1 . 4
Sgmy — 2r(m, + m) « )

Aus Gl. (4) folgt, daB die Empfindlichkeit der Linge des Hebelarmes r
naherungsweise proportional ist. Eine VergroBerung von r ist aber mit einer
Zunahme der Masse m, verbunden, da man den Querschnitt des Waage-
balkens nicht beliebig klein wihlen kann. AuBerdem wéchst das Trigheits-
moment des schwingfihigen Systems bei Verlangerung des Hebelarmes er-
heblich an. Dadurch wird die Schwingungsdauer und also auch der Zeit-
aufwand fiir eine Wagung gréBer [vgl. Gl. (M. 3.-13)]. Es ist daher nicht
erstaunlich, daB Analysenwaagen mit relativ kurzen Waagebalken aus-
gestattet sind. Eine Verkleinerung des Abstandes s, erhéht zwar die
Empfindlichkeit, fithrt aber auch dazu, daB die Ruhelage des schwing
fahigen Systems der Waage weniger stabil und die Schwingungsdauer
groBer wird.

Die Empfindlichkeit wéchst nach Gl. (4) mit der Belastung m an. Dieser
Empfindlichkeitssteigerung wirkt aber die unvermeidliche Durchbiegung
des Waagebalkens entgegen, die einer Abnahme des Winkels « gleichkommt
und den Abstand s, vergréBert; « und s, sind also Funktionen der Be-
lastung m

a = a(m), 8, = 84(m).

Der Nenner von Gl. (4) nimmt daher mit zunehmender Masse m nicht
monoton ab, sondern hat bei einer bestimmten Belastung m = m’ ein
Minimum. Der Wert von m’ hingt sowohl von der GréBe des Winkels «(0)
als auch von der Festigkeit des Waagebalkens ab. Die Empfindlichkeit E
als Funktion der Belastung m hat bei m = m’ ein Maximum.
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Bei einer Belastung m = m’’ > m’ liegen die Drehachse 4 und die Schnei-
den A, und 4, auf einer Geraden (¢ = 0). In diesem Falle lautet Gl. (4)

E=1—"

. 4
pve, (4a)

Wird die Belastung m gréBer als m”’, so befinden sich die Schneiden 4, und
A, bei abgeglichener Waage unterhalb der Drehachse 4. Dann ist in Gl. (4)
der Winkel a durch —a zu ersetzen, und die Empfindlichkeit nimmt geméal3

T
SgMyy + 2r{m, + m)

(4D)

mit der Belastung ab. Die bei der Diskussion von Gl. (4) gewonnenen Er-
gebnisse lassen sich am Waagemodell priifen.

Mit einer Zweischalen-Analysenwaage kénnen sehr genaue Massebestim-
mungen durchgefiithrt werden. Man muBl aber bedenken, daB sich die beiden
Hebelarme der Waage niemals voéllig gleich lang herstellen lassen. Die Lange
des linken Hebelarmes r, unterscheidet sich stets um einen sehr kleinen
Betrag von der des rechten r.. AuBlerdem ist zu beriicksichtigen, dal der
Schwerkraft bei einer Wéigung in einem materiellen Medium — z. B. in Luft -
der Auftrieb entgegenwirkt.

Das Archimedische Prinzip besagt:

Der Auftrieb, der auf einen KoPper in einem materiellen Medium (Fliissig-
keit oder Gas) wirkt, ist gleich dem Gewicht des vom Kérper verdringten
Mediums:

|Fal = V9M9=m%mg; (5)

hierin ist ¥ das Volumen und g die Dichte des Kérpers. Die Dichte des Me-
diums ist mit gy bezeichnet.

Legt man den zu wigenden Korper der Masse m auf die linke, Wagestiicke
der Masse m¥ auf die rechte Schale einer Waage, die sich in Luft befindet, so
gilt fiir den Abgleich

{mg— m%g}n= {m?‘g = mi‘—z%g} Tes

m( —%)rl=m;“( —%)rr. (6)

oL bzw. o* sind die Dichte der Luft bei Zimmertemperatur und Luftdruck
bzw. der Wagestiicke. Vertauscht man nun Korper und Wigestiicke, tritt
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an die Stelle der Gl. (6)
m(i——gi)rrzmi"( —Q—i)rl. (7
Y 0
Aus den Gln. (6) und (7) folgt mit der Abkiirzung
m= ]/mf"m’r" (8a)

fiir die zu bestimmende Masse

19

_ o*
m=m———. (9a)

10

0

Da die Dichte der Luft sehr klein gegen die Dichte des Koérpers bzw. die der
Wiigestiicke ist, kann man fiir Gl. (9a)

m=m{1+&—9—:} 9b)
e e
schreiben.

Mit einer sehr genauen Analysenwaage lassen sich mf* und m¥ bei Ver-
wendung des Reiters bis auf 10~¢ g bestignmen. Wenn mf* und m¥ jeweils
groBer als 100 g sind, muB man zur Berechnung des geometrischen Mittels
m zwei siebenstellige Zahlen miteinander multiplizieren und aus dem Pro-
dukt die Wurzel ziehen. Um diese listige Zahlenrechnung zu umgehen,
schreibt man GI. (8a)

T ok ok
rTz='mf‘]/1+mrTfml (8b)

und bedenkt, daB der Unterschied zwischen mf und m;} sehr gering ist.
Die Wurzel in Gl (8b) 1aBt sich nach der kleinen GréBe (mf — mi)/mi
entwickeln, und die Entwicklung darf nach dem linearen Glied abgebrochen
werden.

_ 1 mf¥ —mf 1

7t (1 T < ot o ). ®)
Man darf also das geometrische Mittel der Massen mf und mf mit hin-
reichender Genauigkeit durch das arithmetische Mittel ersetzen. Aus den
Gln. (8) und (9b) erhilt man

_1 s * 0. 0L ,
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Das Langenverhiltnis der beiden Hebelarme der Waage ergibt sich aus den
Gln. (6) und (7) zu

"m* S _ oKk
G i S Y i (10a)

e mit mj

oder nach Entwicklung der Wurzel zu

7 1 mf — mff
e 2 m

M. 1.0.2. Regeln fiir das Arbeiten mit Analysenwaagen

Eine Analysenwaage ist ein genaues und empfindliches MeBinstrument,
das duBerst sorgfaltig behandelt werden muf.

Wenn man die Arretierschraube einer Waage vorsichtig 16st, erhélt der
Waagebalken einen leichten Stof}, und das System Waagebalken — Zeiger —
Waagschalen beginnt um die Gleichgewichtslage zu schwingen. Die Ampli-
tude der Schwingungen wird meist durch eine Lupe auf einer Skale beob-
achtet, die hinter dem freien Ende des Zeigers am Sténder der Waage be-
festigt ist. Die Gleichgewichtslage (der Nullpunkt) wird stets bei schwin-
gender Waage und geschlossenem Gehéduse festgestellt. Nach dem Ent-

1mg 2mg 5mg
w0mg 20mg 50mg
100mg 200mg 500mg

Abb. 8b. Die verschiedenen Formen
der Bruchgrammstiicke Ausgabe A.

Heute werden Bruchgrammstiicke
als Ausgabe B auch in Rechteck-
form verschiedener GroBen herge-
Abb. 8a. Zur Bestimmung der stellt. Die Masse ist als Zahlenwert
Gleichgewichtslage einer Waage in mg eingedruckt.

arretieren 148t man das System einige Schwingungen ausfiihren und er-
mittelt dann die Lage von fiinf aufeinanderfolgenden Umkehrpunkten des -
Zeigers. Dabei ist auf Zehntelskalenteile zu schitzen. Die Zahl der Umkehr-
punkte muBl ungerade sein (vgl. Abb. 8a), da die Schwingungen gedimpft
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sind. Wenn die Dampfung nicht zu groB ist, kann man die Abnahme der
Amplituden als nahezu linear ansehen. Die Gleichgewichtslage x ergibt sich,
indem man das arithmetische Mittel von x, , z; und x; sowie das von x, und z,
bildet und aus diesen beiden Werten das arithmetische Mittel berechnet.

=g 3@t mt @)+ g @) (11)
Nach der Nullpunktsbestimmung wird die Waage sofort arretiert. Eine
Waage darf nur im arretierten Zustand be- oder entlastet werden. Be-
achtet man diese Vorschrift nicht, besteht die Gefahr, daB die Schneiden 4,
A; und 4, (vgl. Abb. 7) aus ihren Lagern springen und beschédigt werden.
Nach jeder Wigung wird der Nullpunkt erneut bestimmt. Unterscheidet
sich die Gleichgewichtslage vor der Wagung z, nur wenig von der nach der
Wigung z,, so arbeitet man mit

x= -;— (@, + 2,). (12)

Betrigt der Unterschied zwischen x, und z, mehrere Skalenteile, soll ein
Assistent die Waage priifen.

Die Wigestiicke und der Reiter diirfen nur mit der Pinzette angefaBt,
werden. Der Reiter hat eine Masse von 10 mg. Er kann mit einem ver-
schiebbaren Haken auf das am Waagebalken angebrachte Reiterlineal
gesetzt werden. Bei der Bestimmung des Nullpunktes soll sich der Reiter
in der Mitte des Waagebalkens (Teilstrich 0) befinden.

M. 1.0.3. Einschalen-Analysenwaage

Seit einigen Jahren werden vorwiegend ungleicharmige Analysenwaagen
hergestellt, die nur mit einer Waagschale versehen sind. Der kiirzere Hebel-
arm ist mit der Schale (Masse m,) und einem aus verschiedenen Teilen zu-
sammengesetzten Zusatzkorper (Masse my,,) belastet. Das Gleichgewicht
wird durch den geeignet bemessenen lingeren Hebelarm hergestellt. Legt
man nun auf die Waagschale einen Kérper der Masse m < mpy,,, dann
kénnen mit Hilfe eines Schaltwerkes so viele Teile des Zusatzkorpers ab-
gehoben werden, bis der kiirzere Hebelarm wieder mit der Masse m, + M,
belastet’und die Waage abgeglichen ist (Substitutionsprinzip). Die Masse m
liest man an einem Zahlwerk ab.

Da die Belastung bei dieser Waagenart unabhingig von der zu bestim-
menden Masse m ist, bleibt die Empfindlichkeit im gesamten Wagebereich
konstant. Die Genauigkeit der Massebestimmung hingt nur von der Emp-
findlichkeit der Waage und der Prizision ab, mit der die Teile des Zusatz-
korpers angefertigt worden sind. Das Lingenverhiltnis der beiden Hebel-
arme beeinfluBt dagegen die Genauigkeit nicht.
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M. 1.1. Empfindlichkeit einer Zweischalenwaage

Aufgabe: Die Empfindlichkeit einer Zweischalen-Analysenwaage soll bei
verschiedenen Belastungen bestimmt werden.

Versuchsausfiihrung

Wir lésen vorsichtig die Arretierschraube und bestimmen den Nullpunkt
x, aus der Lage von fiinf aufeinanderfolgenden Umkehrpunkten des Zeigers
der schwingenden Waage [vgl. Gl. (11)]. Dann wird die Waage arretiert und
der Reiter auf Teilstrich 3 des Reiterlineals am Waagebalken gesetzt. Das
entspricht einer Belastung von 3 mg. Die neue Gleichgewichtslage z’ ist
wieder aus fiinf Umkehrpunkten des Zeigers zu ermitteln. Wir arretieren
die Waage und heben den’ Reiter mit dem verschiebbaren Haken auf Teil-
strich 0 des Reiterlineals. Nun wird der Nullpunkt z, nochmals bestimmt
und 2 aus Gl. (12) berechnet. Die Empfindlichkeit der unbelasteten Waage
ergibt sich, indem wir die Differenz |z" — x| durch 3 mg teilen.

In gleicher Weise ist die Empfindlichkeit der Waage zu béstimmen, wenn
jede der beiden Schalen mit 5; 10; 20; 50 bzw. 100 g belastet ist. Der Null-
punkt stimmt bei den verschiedenen Belastungen im allgemeinen nicht mit
dem der unbelasteten Waage iiberein, da zwei Wagestiicke der gleichen
Wertstufe niemals vollig identisch sind und das Liangenverhaltnis der beiden
Hebelarme nicht exakt 1 ist.

Wir stellen die Empfindlichkeit als Funktion der Belastung graphisch dar
und vergleichen das experimentelle Ergebnis mit der in Abschn. M. 1.0.1
gegebenen Diskussion.

M.1.2. Absolute Wigung

Aufgabe: Die Masse m eines Korpers ist mit einer Zweischalen-Analysen-
waage zu bestimmen. Der Fehler soll 2 - 10~ g nicht iiberschrei-
ten. AuBlerdem ist das Langenverhidltnis der beiden Hebelarme
der Waage zu berechnen.

Versuchsausfiihrung

Wir bestimmen den Nullpunkt z, der Waage [vgl, Gl. (11)]. Dann wird die
Waage arretiert und der zu wigende Korper auf die linke Schale gelegt.
Wir schitzen die Masse des Korpers und belasten die rechte Schale mit den
entsprechenden Wigestiicken. Bei unvollstindiger Aufhebung der Arre-
tierung 1aBt sich leicht erkennen, ob die Waage nidherungsweise abgeglichen
ist. Die Lage des Reiters wird auf dem Lineal so lange verdndert, bis der
Zeiger frei vor der Skale schwingt. Die Gleichgewichtslage 2’ soll sich nur
wenig von z, unterscheiden. Nun verschieben wir den Reiter um einen Teil-
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strich nach rechts, d. h., wir vergr6Bern die Belastung der rechten Schale
um 1 mg und stellen die Gleichgewichtslage x” fest. Die arretierte Waage
wird vollstandig entlastet, der Reiter auf Teilstrich 0 des Lineals gesetzt
und der Nullpunkt kontrolliert: z, .

Die Masse mj ergibt sich aus der Masse der Wagestiicke unter Beriicksich-
tigung der Stellung des Reiters bei der Gleichgewichtslage z'. Wenn =z
[vgl. Gl. (12)] und 2’ nicht iibereinstimmen, fiigen wir ¢ Milligramm hinzu.

2 —x

&= ——
x/_x"

>

& kann sowohl positiv als auch negativ sein. In analoger Weise ist die Masse
mi zu ermitteln. Dafiir gilt die obige Beschreibung, es sind nur die Begriffe
rechts und links zu vertauschen.
Die Dichte der Luft bei Zimmertemperatur und Luftdruck ist
o~ 1,2kg - m3.

Die Dichten Qhund o* sind der Tab. 1 zu entnehmen. Die Masse m des
. Koérpers wird nach Gl. (9), das Langenverhiltnis der Hebelarme nach
Gl. (10) berechnet.

M.2. DICHTE

M.2.0. Allgemeine Grundlagen

Die Dichte g eines homogenen Korpers ist das Verhiltnis seiner Masse m
zu seinem Volumen V

m
e=5- (1)

Im gesetzlichen MafBlsystem ist die Einheit der Dichte kg m™3,

Die Masse eines Korpers 148t sich durch eine Wagung mit groBer Genauig-
keit ermitteln. Wenn zur Bestimmung der Masse eine Zweischalen-Analysen-
waage verwendet werden soll, ist vor dem Versuchsbeginn unbedingt der
Abschn. M. 1.0.2 zu lesen.

Eine Volumenbestimmung ist nach verschiedenen Methoden méglich,
von denen drei erwahnt werden sollen.

1. Hat ein fester Korper eine einfache geometrische Gestalt, d. h., 148t sich
sein Volumen als Funktion gewisser Langen ausdriicken, so wird die
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Volumenbestimmung auf Lingenmessungen zuriickgefiihrt, die mit
mechanischen MeBwerkzeugen (MeBschieber, MeBschraube, Endmale
usw.) vorgenommen werden konnen.

2. Wenn man das von einem beliebigen Koérper eingenommene Volumen
mit einer Fliissigkeit bekannter Dichte — z. B. mit Wasser — ausfiillt,
kann die Volumenbestimmung durch Wigungen erreicht werden.

3. Jeder Korper erfahrt in einer Fliissigkeit bzw. in einem Gas einen Auf-
trieb. Dieser ist nach dem Archimedischen Prinzip gleich dem Gewicht
des verdringten Fliissigkeits- bzw. Gasvolumens [vgl. Gl. (M. 1.-5)]. Das
Volumen des Korpers 148t sich daher durch Wéagung in zwei verschiede-
nen Medien bekannter Dichte — z. B. in Luft und in Wasser — bestimmen.

Wiahrend die Dichte eines festen Korpers oder einer Fliissigkeit nur wenig
von der Temperatur 7' und dem Druck p abhingt, dndert sich die Dichte
eines Gases oder eines Dampfes erheblich mit den Zustandsgréfien 7' und p.
Bei Angabe einer Gas- oder Dampfdichte sind daher stets die Versuchs-
bedingungen zu erwahnen.

Unter T ist die absolute Temperatur zu verstehen, die in Kelvin (K)
angegeben wird. Die mit gewohnlichen Fliissigkeitsthermometern in Grad
Celsius (°C) gemessene Temperatur soll dagegen mit ¢ bezeichnet werden.
Wenn 7' und ¢ den gleichen Zustand eines Korpers beschreiben, besteht der
Zusammenhang

(T} = 273,15 + {1} .

Die geschweiften Klammern bedeuten, daB nur die Zahlenwerte der ent-
sprechenden GréBen gemeint sind.

Der Druck p ist die senkrecht auf die Flacheneinheit wirkende Kraft. Die
Einheit des Druckes ist daher im gesetzlichen Mafsystem das Pascal,
1Pa=1Nm2 im CGS-System dyn cm~2 Der Luftdruck wird im all-
gemeinen durch die Hohe % der Quecksilbersdule im Barometer bei 0 °C
charakterisiert. Die Druckeinheit 1 Torr entspricht dem Schweredruck einer
Quecksilbersdule von 1073 m Hoéhe. Aus

P = hougg 2)
folgt

1 Torr = 103.13,6 - 103- 9,81 Nm~2 = 133,4 N m2.

In GL (2) bedeuten gy, die Dichte von Quecksilber bei 0 °C und ¢ die
Schwerebeschleunigung.

Als relative Gas- oder Dampfdichte D definiert man das Verhaltnis der
Dichte des Gases pg oder des Dampfes g, zur Dichte trockener Luft g;, bei
gleichen ZustandsgréBen 7' und p:

_elp) _me oo p_ o p _ M 3)
ouT,p) my ou(T, p) my,



48 Mechanik

dabei ist D das Verhiltnis der Masse des Gases m oder des Dampfes my,
zu der im gleichen Volumen bei gleichen Bedingungen enthaltenen Masse
trockener Luft m,,.

Wenn man annimmt, da8 die zu untersuchenden Gase bzw. Dampfe der
Zustandsgleichung

2V 1wV,

T T -
= = const oder — =gy —2 = const 4)
T T, ¢ P % Po

geniigen,!) ist D unabhingig von 7 und p. In diesem Falle kann man mit
Hilfe von D die Masse eines Kilomols Gas bzw. Dampf M berechnen. Ein
Kilomol (kmol) ist die Teilchenmenge, in der genau so viele, unter sich
gleiche Teilchen wie in 12 kg des haufigsten Kohlenstoffisotops 12C Nuklide
enthalten sind. Nach dem Gesetz von Awogadro befindet sich in gleichen
Volumina verschiedener Gase, fiir die Gl. (4) erfiillt ist, bei gleicher Tempera-
tur und gleichem Druck die gleiche Anzahl Molekiile. Daraus folgt, daf das
Volumen eines Kilomols fiir alle idealen Gase gleich ist. Es betrigt bei
Normalbedingungen (7'y = 273,15 K und py = 760 Torr)

Vy,x = 2241 m®kmol™.

Wenn man die in Gl. (3) vorkommenden Massen auf das Volumen eines
Kilomols bezieht und die Masse eines Kilomols Luft

My, = Vy,x0Lxw
schreibt, ergibt sich
M= VM,NQL,ND' (5)

Die Dichte der Luft bei Normalbedingungen gy y ist der Tab.3 zu ent-
nehmen.

Als relative Molekiilmasse M’ definiert man die Masse eines Molekiils des
betrachteten Stoffes geteilt durch den zwolften Teil der Masse eines 12C-
Nuklids. Aus dieser Definition folgt, dafl die relative Molekiilmasse mit dem
Zahlenwert der Masse eines Kilomols iibereinstimmt.

M =2241-1293.D =29,0D. (5a)

Die chemische Untersuchung eines Stoffes gibt AufschluB3 dariiber, welche
Elemente in welchem Massenverhéltnis enthalten sind. Eine Analyse von
z.B. Benzol fiihrt zu dem Ergebnis, dall Kohlenstoff und Wasserstoff im
Massenverhiltnis 12:1 vorkommen. Danach ist die chemische Formel
C,H,, wobei n eine beliebige ganze Zahl sein kann. Hat man nun die
relative Dampfdichte von Benzol zu D = 2,70 bestimmt, ergibt sich M’ nach
Gl (5a) zu 78,3. Die chemische Formel mull daher CgHq heillen.

1) FPur Dampfe ist die Annahme nur dann erfillt, wenn die Temperatur T erheblich
groBer als die Siedetemperatur der Fliissigkeit ist.
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M. 2.1. Auftriebsmethode

Aufgabé: Die Dichte verschiedener fester Korper soll nach der Auftriebs-
methode bestimmt werden.

Eine Hebelwaage sei abgeglichen, nachdem am Biigel einer der beiden
Schalen ein sehr diinner Kupferdraht (Volumen AV) angebracht worden
ist. Man befestigt den zu untersuchenden Kérper (Masse m, Volumen V) an
dem Draht und fithrt die Wagung in Luft durch. Die Gleichgewichtsbedin-
gung lautet bei Beriicksichtigung des Auftriebes

L) . (6)

m — V, =m*(1—
oL 0

In Gl. (6) sind m* bzw. o* die Masse bzw. die Dichte der Wagestiicke und
or, die Dichte der Luft bei Zimmertemperatur und Luftdruck. Wéhrend
der Wigung in Wasser soll der Kérper vollig, der Befestigungsdraht mit
1/n seiner Linge eintauchen. Fiir das Gleichgewicht gilt

1
m — Vew = 2-AVlew ~ e2) = miv (1 — %] ; (7a)

dabei ist gy die Dichte des Wassers und m¥y die Masse der Wigestiicke bei
dieser Wigung. Mit dem letzten Summanden auf der linken Seite von
Gl. (7a) wird beriicksichtigt, daB3 der Draht in Wasser einen gréBeren Auf-
trieb als in Luft erfihrt. Wenn der Draht einen Durchmesser von 0,2 mm,
eine Linge von 20 cm hat und etwa zur Halfte in das Wasser taucht, stellt

iAV@L eine Masse von ungefihr 4.107%g dar. Glieder dieser GroSen-
n .

ordnung sollen in der weiteren Betrachtung vernachlissigt werden. Gl. (7a)
lautet dann

1

o*
Die Gln. (6) und (7) sind zwei lineare Gleichungen zur Bestimmung der un-
bekannten GréB8en m und V. Die Losung kann
m(gw — o) = (m*ow — miy or) ( - g_:) )
— (m* — mty — = AV o
View — o) = [m* — my worew —E*‘

4 Phys. Praktikum
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geschrieben werden. Damit erhélt man fiir die gesuchte Dichte

* *
M™ 0w — Mw 01,

o= 1 . (8)
m* — m¥y — ZAVQW

Der- Ausdruck %AV@W hat die GréBenordnung 10~2 g. AuBlerdem gilt die

Abschatzung

miy o1, ~ 1073 m* gy,
Die Beriicksichtigung des Auftriebes, den der Draht in Wasser erfahrt, und
der Auftriebskrifte, die auf den Korper und die Wagestiicke in Luft wirken,
hat nur dann einen Sinn, wenn man eine geniigend empfindliche Waage

verwendet. Fiithrt man den Versuch mit einer Balkenwaage durch, so darf
Gl. (8) durch

m¥*

£ 0w (8a)

m* — miy

Q=

ersetzt werden.

Das Verfahren in der oben beschriebenen Form versagt, wenn die Dichte
des Korpers kleiner als die von Wasser ist. In diesem Falle wird der Kérper
vor der Wagung in Wasser mit einem Zusatzkorper hinreichend g'roBer
Dichte beschwert. Anstelle der Gl. (7) tritt dann

m — Vow + mg — Vaow ~7AV9w=m"v‘v( —%); (9a)

V, bzw. my sind das Volumen bzw. die Masse des Zusatzkorpers. Durch
Wigung dieses Korpers in Wasser erhélt man

1

Es wird also vorausgesetzt, dal der Befestigungsdraht bei beiden Wé-
gungen gleich weit in das Wasser eintaucht. Damit kann Gl. (9a)

m — Vow = (m¥y — m"z",w)( — %) (9)

geschrieben werden. Aus den Gln. (6) und (9) lassen sich m und V und
folglich auch die gesuchte Dichte ¢ berechnen. Das Ergebnis lautet

_ m¥*oy — (m¥y — mEw) oL
= T = (il — k) (10)
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oder bei Verwendung einer Balkenwaage

= - w 10
@ T (m¥ — mEw) Ow- (10a)
Versuchsausfihrung

Wir messen die Linge und den Durchmesser eines diinnen Kupferdrahtes
. zur Berechnung von AV, befestigen den Draht am Biigel einer Waagschale
und gleichen die Waage ab. Der zu untersuchende Koérper wird an den
Draht gehdngt. Aus der Wigung in Luft erhalten wir m*. AnschlieBend ist
die Waagschale mit einer kleinen Bank zu iiberbriicken, auf die wir ein
Becherglas stellen. Das Glas muB so weit mit Wasser gefiillt sein, daBl der
an dem Draht hangende Korper vollstindig eintaucht. Sollten an dem
Koérper Luftblasen haften, so sind diese zu beseitigen. Die Wigung in
Wasser liefert m¥;. Wir messen die Wassertemperatur und schitzen die
Lénge des eintauchenden Drahtes. Nach der Bestimmung der Empfind-
lichkeit der Waage ist zu entscheiden, ob die gesuchte Dichte gemifl Gl. (8)
oder (8a) zu berechnen ist. Die Dichte von Wasser wird der Tab. 4 ent-
nommen. Bei Verwendung der Gl. (8) ist die Dichte der Luft nach GI. (4)
aus der Dichte bei Normalbedingungen auf zwei Stellen genau zu berechnen.
Wir wiederholen die Messung mit anderen Versuchskorpern. Sollte ein
Korper in Wasser schwimmen, so ist er vor der Wagung in Wasser mit dem
Versuchskorper zu beschweren, der die groSte Dichte hat. In diesem Falle
erhalten wir die gesuchte Dichte aus Gl. (10) bzw. (10a).
Hat ein Korper einfache geometrische Gestalt, dann sollen auBerdem die
Langen gemessen werden, die zur Berechnung seines Volumens notwendig
sind. Aus Gl. (6) und dem berechneten Volumen ergibt sich seine Dichte.

M.2.2. Mohr-Westphalsche Waage

Aufgabe: Die Dichte einer Flissigkeit und die Dichte eines festen Korpers
sollen mit der Mohr-Westphalschen Waage bestimmt werden.

Die Mohr-Westphalsche Waage ist eine ungleicharmige Hebelwaage. Der
langere Hebelarm ist durch Kerben in Zehntel seiner Linge geteilt. Am
Ende befindet sich ein Haken, an den ein Senkkdorper gehidngt werden kann.
Dieser enthilt ein Thermometer. Der andere Hebelarm endet in einem
Metallzylinder, der mit einem Dorn versehen ist. Bei abgeglichener Waage
spielt die Spitze des Dornes vor der Spitze eines zweiten Dornes, der am
Stativ der Waage befestigt ist. Als Wagestiicke dienen Reiter verschiedener
GroBe, deren Massen sich wie 1:0,1: 0,01 verhalten.

4%
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Die Waage wird so justiert, daf} sie bei Belastung mit dem Senkkéorper
(Masse mg, Volumen V) abgeglichen ist. Dann greift am Haken des lan-
geren Hebelarmes das Gewicht des Senkkorpers und des Befestigungs-
drahtes (Masse Am, Volumen AV) vermindert um den Luftauftrieb an.
Bezeichnet man diese Kraft mit m’g, die Dichte der Luft bei Zimmer-
temperatur und Luftdruck mit g, so ergibt sich

m' = mg + Am — (Vg + AV) o (11)

- Nun taucht man den Senkkoérper vgllig, den Befestigungsdraht mit 1/n
seiner Linge in Wasser und belastet den lingeren Hebelarm mit Reitern
der Masse m,, bis sich die Waage im Gleichgewicht befindet. Dann gilt

m’ =ms+Am—(Vs +%AV)QW

- (1= ) aver + m(1- 2 (12)

Or

og ist die Dichte der Reiter. Man trocknet den Senkkorper sorgfaltig ab
und hingt ihn in eine Fliissigkeit der Dichte 9. Nach dem Abgleich der
Waage mit Reitern der Masse m, soll der Befestigungsdraht genau so tief
in die Fliissigkeit wie zuvor in Wasser tauchen. In diesem Falle ist

ey w

oxr
Zieht man Gl. (11) von Gl. (13) bzw. (12) ab, so erhilt man
1
mz( —&) = (Vs +‘;AV) e— o),

(4:3

ml( ~&-) =(Vs +%AV) (ow — or) -

Or

Daraus folgt

=2 )
e ow (-2 e (1)

In Gl. (14) geht nur das Verhiltnis von m, zu m, ein. Aus diesem Grunde ist
es moglich, beide Massen in der gleichen, aber willkiirlichen Einheit ,,Reiter-
masse’‘ auszudriicken. Darunter soll die Masse des groBen Reiters verstan-
den werden. Zur Erliuterung sei ein Beispiel angegeben: Wenn sich der
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Senkkérper in einer Fliissigkeit befindet, und die Waage spielt bei Be-
lastung des lingeren Hebelarmes mit dem groBen Reiter in Kerbe 7, dem
mittleren in Kerbe 9 und dem kleinen in Kerbe 1, so ist das nach dem Hebel-
gesetz gleichbedeutend mit einer Belastung des Hakens von

m = 0,791 ,,Reitermasse‘.

Schwebemethode

Ein fester Korper schwebt in einer Fliissigkeit, wenn die Dichten der bei-
den Stoffe iibereinstimmen. Auf den festen Korper wirkt dann die Ge-
samtkraft Null, da sich Schwerkraft und Auftrieb gegenseitig aufheben.
Die Bestimmung der Dichte einer solchen Fliissigkeit ist also zugleich die
Bestimmung der Dichte des festen Korpers. Um dieses Verfahren anwenden
zu koénnen, benétigt man zwei mischbare Fliissigkeiten. Die Dichte der
einen Fliissigkeit mull gréBer, die der anderen kleiner als die Dichte des
festen Korpers sein. Die Herstellung einer homogenen Mischung, in der der
feste Korper exakt schwebt, erfordert einige Zeit und Mithe. Man kommt
im allgemeinen schneller zum Ziel, wenn man zunéchst eine Mischung an-
fertigt, in der der Korper mit sehr geringer Geschwindigkeit fallt, und an-
schlieBend eine Mischung, in der der Korper etwa mit gleicher Geschwindig-
keit steigt. Die Dichte des festen Korpers ist dann in guter Naherung gleich
dem arithmetischen Mittel der beiden Fliissigkeitsdichten. Die Schwebe-
methode ist immer dann zu empfehlen, wenn der zu untersuchende feste
Korper sehr klein ist.

Mit Methylenjodid und Toluol lassen sich Mischungen herstellen, deren
Dichte g in dem Intervall

087g-cm3<p=<32g-.-cm3

liegt. Hat der zu untersuchende feste Korper eine Dichte, die nur wenig
groBer als die von Wasser ist, kann eine wiBrige Kochsalzlosung Verwen-
dung finden.

Versuchsausfiihrung

Wir hingen den Senkkérper an den Haken und justieren die Waage, bis
sie sich im Gleichgewicht befindet. Der Senkkérper wird vollstandig in Was-
ser getaucht und die Waage durch Aufsetzen von Reitern abgeglichen: m, .
Die Wassertemperatur wird abgelesen und notiert. Wir trocknen den Senk-
korper ab und héngen ihn in die zu untersuchende Fliissigkeit. Der Abgleich
der Waage liefert m,. Die Temperatur der Fliissigkeit ist zu notieren. Wir
berechnen die gesuchte Dichte nach Gl. (14). Die Dichte des Wassers wird
der Tab. 4 entnommen. Fiir die Mehrzahl aller Fliissigkeiten ist der zweite
Summand in Gl. (14) vernachldssigbar klein. Muf} er doch beriicksichtigt
werden, berechnen wir die Dichte der Luft mit Hilfe der Gl. (4) aus der
Dichte bei Normalbedingungen auf zwei Stellen genau.
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Wir stellen eine Flissigkeitsmischung bzw. eine Kochsalzlésung her, in
der der zu untersuchende feste Korper schwebt, und bestimmen die chhte
dieses Gemisches bzw. dieser Losung.

M.23. Pyknometer

Aufgabe: Die Dichte eines festen Korpers soll durch die Bestimmung seiner
Masse und durch die Wagung des von ihm verdriangten Wassers
ermittelt werden.

Das Pyknometer (Abb.9) ist ein im allgemeinen doppelwandiges Glas-
gefil}, an das eine mit einer Strichmarke S versehene Kapillare angeschmol-
zen ist und das mit einem sorgfiltig eingeschliffenen Thermometer geschlos-
sen werden kann.

Eine Analysenwaage befinde sich im Gleichgewicht, wenn man eine Waag-
schale mit dem zu untersuchenden Korper (Masse m, Volumen V), die
andere mit Wagestiicken (Masse m*, Dichte p*) belastet. Die Dichte der Luft
bei Zimmertemperatur und Luftdruck sei g;. Dann gilt bei Beriicksichtigung
des Auftriebes

m—VgL=m*(1—§—:). (15)

Abb. 9. Pyknometer

Das duBere Volumen des Pyknometers soll mit V; bezeichnet werden. Eine
Wigung des mit destilliertem Wasser gefiillten Pyknometers (Masse m;)
fihrt zu der Abgleichbedingung

my — VPQL=mT(1—§'}), (16)
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wihrend die Wigung des mit dem festen Kérper und mit destilliertem
Wasser gefiillten Pyknometers (Masse m,) die Bedingung

= Veor = m’j( - g—L) (17)

liefert. Dabei sind mf und m¥ die Massen der Wigestiicke, die bei den ent-
sprechenden Wigungen dem Pyknometer das Gleichgewicht halten. Unter
der Voraussetzung, dall die Temperatur des Wassers bei beiden Wigungen
gleich der konstanten Zimmertemperatur ist, besteht zwischen den Massen
m, m, und m, und dem Volumen V der Zusammenhang

m — Voy = my — my; (18)

ow ist die Dichte von Wasser. Setzt man die Gln. (16) und (17) in GI. (18)
ein, erhilt man

m — Vow = (mf - ) —g—L) (19)

Die GlIn. (15) und (19) sind zwei lineare Gleichungen zur Bestimmung der
unbekannten GréBen m und V. Die Losung lautet

mlow — o) = [m* oy — (m — m)oy] ( - Z—*) ,

View — o) = [m* — (mg — ml)]( o* )

Damit ergibt sich fiir die gesuchte Dichte

m* (mz 'ml)QL
m* — ¥ — mb) . (20)

fO

Die Wagungen des Pyknometers fiihren zu fehlerhaften Ergebnissen, wenn
sich Luftblasen im Inneren oder Wassertropfen am &ufleren Umfang des
GefiBes befinden. AuBlerdem treten Fehler auf, wenn die Temperatur ¢
im Inneren des nur mit Wasser gefiillten Pyknometers von der Temperatur
t, des mit Wasser und dem zu untersuchenden Korper gefiillten Pykno-
meters abweicht. Sieht man das Volumen ¥V und das innere Volumen des
Gefifles V; als konstant an, tritt an die Stelle der Gl. (18)

m — Vowl(ts) = my — my + Vi[ow(t)) — ow(ta)]- (18a)
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In den Gln. (18) und (19) fehlt dann also der Summand

Vilow(t:) — ow(t2)] -

Mit V; = 50 cm?®, ¢, = 20 °C und A¢ = [t, — ¢,| = 1 K betrigt diese Masse
etwa 1072 g, wihrend der aus den Wégungen resultierende Fehler von
mg — m¥ bei Verwendung einer Analysenwaage kleiner gehalten werden
kann. Man muB sich daher im Experiment bemiihen, daB die Differenz At
so klein wie nur méglich wird. AuBerdem ist diese Uberlegung bei der Fehler-
rechnung zu beachten.

Das in Abb. 9 dargestellte Pyknometer kann auch zur Bestimmung der
Dichte einer Fliissigkeit verwendet werden. In diesem Falle ermittelt man
die Masse des mit Luft, des mit destilliertem Wasser und des mit der zu
untersuchenden Fliissigkeit gefiillten Pyknometers. Aus den Abgleich-
bedingungen, die den drei Wagungen entsprechen, 148t sich die gesuchte
Dichte berechnen.

Ein Pyknometer, das zur Bestimmung der Luftdichte verwendet werden
soll, ist ein Glaskolben mit zwei angesetzten Rohren, die sich durch Hahne
vakuumdicht schliefen lassen. Die Dichte der Luft kann berechnet werden,
wenn man die Masse des luftgefiillten, des evakuierten und des mit Wasser
gefiillten Pyknometers bestimmt.

Versuchsausfiihrung

Wir wigen den zu untersuchenden festen Korper bei der Temperatur ¢,
mit einer Analysenwaage und erhalten m*. Nun wird das Pyknometer mit
destilliertem Wasser gefiillt. Wir achten darauf, daf sich vor dem Ein-
setzen des Thermometers keine Luftblasen im Inneren des Glaskolbens
befinden. Der Wasserspiegel in der Kapillare soll oberhalb der Marke § lie-
gen. AnschlieBend ist das Pyknometer sorgfiltig mit Zellstoff abzutrocknen.
Um eine Erwarmung des Wassers zu vermeiden, fassen wir das Pyknometer
nur am Hals an. Nach einigen Minuten hat das Wasser die Gleichgewichts-
temperatur ¢, angenommen, die wir notieren. Das Wasser, das sich in der
Kapillare oberhalb der Marke S befindet, wird vorsichtig mit Zellstoff oder
FlieBpapier abgesaugt. Die Wigung des Pyknometers liefert m¥. Anschlie-
Bend bringen wir den festen Korper mit Hilfe einer Pinzette in das Pykno-
meter. Es ist wieder darauf zu achten, daB-vor dem Einsetzen des Thermo-
meters alle Luftblasen aus dem Wasser entwichen sind. Nun warten wir so
lange, bis die Temperatur im Inneren des gut abgetrockneten und bis zur
Marke S gefiillten Pyknometers mit ¢, tibereinstimmt, und ermitteln die
Masse m3. Die Dichte des Wassers bei der Temperatur ¢, ist der Tab. 4 zu
entnehmen, die der Luft bei Zimmertemperatur und Luftdruck mit Hilfe
der Gl. (4) aus der Dichte bei Normalbedingungen auf zwei Stellen genau
zu berechnen. Die gesuchte Dichte g erhalten wir aus Gl. (20).
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M.24. Relative Dampfdichte nach Dumas

Aufgabe: Die relative Dampfdichte D einer Flussigkeit soll nach der
Methode von Dumas bestimmt werden. Mit Hilfe von D ist die
relative Molekiilmasse zu berechnen.

Gegeben sei ein Glaskolben (Masse my), dessen Ansatzrohr zu einer Kapil-
lare ausgezogen ist. Bei Zimmertemperatur f, und Luftdruck p, soll das
innere Volumen des Kolbens mit V,,, die Dichte der Luft mit g, bezeichnet
werden. Die Masse des luftgefiillten Glaskolbens ist unter den genannten
Bedingungen - ’

my, = My + VOQO' (21)

Nun bringt man einige Kubikzentimeter der zu untersuchenden Flissigkeit
(Dichte gg) in den Kolben und erwirmt ihn in einem Wasserbad der Tem-
peratur ¢, bis die Fliissigkeit vollstdndig verdampft ist. Der Luftdruck sei
jetzt p und das innere Volumen des Kolbens V. Im Kolben befindet sich eine
bestimmte Masse Dampf V’p;, und eine im allgemeinen kleine Masse Luft
(V = V') p. op bzw. g sind die Dichte des Dampfes bzw. der Luft bei den
genannten Bedingungen. Man schmilzt die Offnung der Kapillare zu und
kiihlt auf Zimmertemperatur £, ab. Dabei kondensiert der Dampf. Die Masse
des geschlossenen Kolbens ist

mp =mg + Vop + (V- V). (22)

Wenn man die Kapillare in luftfreies Wasser taucht und abbricht, dringt
durch die entstandene Offnung bis zum Druckausgleich Wasser in den
Kolben ein. Ist die Zimmertemperatur wieder ¢, und der Luftdruck p,,
dann nehmen die Fliissigkeit das Volumen

7 QD
Ve=V =2,
¥ or
die Luft das Volumen
Vo= (V=12

Qo
und das Wasser das Volumen

VW=V0—VF—VL

ein. Die Dichte des Wassers bei Zimmertemperatur soll mit g bezeichnet
werden. Die Masse des Kolbens ist

My, 1, = Mg + V/QD+ (V- V,)Q

+W—V@—W—Wﬁﬁw 23)

Or Qo
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Fiillt man den Kolben vollstindig mit Wasser, gilt
My = My + V’QD-’,-[VO— V’Z—D]gw. (24)
F

Zwischen ¥ und ¥V, besteht naherungsweise der Zusammenhang
V="Vl+3x(T—Ty], (25)

wobei o der lineare, 3« der kubische Ausdehnungskoeffizient von Glas ist.
In den Gln. (21) bis (24) sind die vier unbekannten GroBen my, V,, V' und
op enthalten. Durch geeignete Kombination lassen sich die Gleichungen
zu einer vereinigen, in der nur noch die Unbekannte g, vorkommt. Die
Rechnung kann vereinfacht werden, wenn man bedenkt, dall das von der
Flissigkeit eingenommene Volumen ¥y sehr klein gegen ¥V, ist und daB sich
die Dichten der meisten Fliissigkeiten nur wenig von der Dichte des Wassers
unterscheiden. Man setzt daher ndherungsweise

0r = Qw-
In dieser Ndherung lauten die Gln. (23) und (24)
g3, = g+ (V — V')g+[Vo—(V— V’)—g— ow (23a)
)
My = Mg + Voow- (244a)

Aus den Gln. (24a) und (21) folgt

Vo= Mw — My, (26)
Ow — Qo

aus den Gln. (24a) und (23a)

V_V/=mw_mW,L_Qo 27)

und aus den Gln. (22) und (21)

mp — my, = Viop — Vogo + (V— V)op. (28)
Wenn man Gl. (28) nach gy, auflést und ¥, V' sowie ¥y mit Hilfe der Gln. (27)
(25) und (26) durch bekannte GroBen ersetzt, erhdlt man

(mD—mL)M_I_mW,L_mL
o = ] )
(mw — myg) [1+ 3x (T—TO)]_Q—_ (g — mw'L)E
o
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Die relative Dampfdichte D ergibt sich, indem man Gl (29) durch die

Dichte trockener Luft o (7, p) teilt. Unter der Voraussetzung, daB die Luft

im Inneren des Kolbens wihrend des Versuches trocken ist, gilt nach Gl. (4)
e _Top - en_y

Qo Tp, ’ 0

Damit wird

(myp, — mL)% + My, L — My,

D= 0 . (30)

T
(my — mg) [1 + 3 (T — Ty)] T—,f: — (g — Mg, 1)

Wenn man die Naherung gy = g nicht einfiihrt, hat der Nenner in Gl. (30)
eine kompliziertere Form. Es 148t sich aber abschétzen, daf} die erzielte Ver-
besserung kleiner als die durch MeBfehler bedingte Unsicherheit von D ist.

Der Luftauftrieb, den der Glaskolben bzw. die Wagestiicke erleiden, be-
einfluBt GI. (30) nicht. Man darf also die GroBen my, mp, My, 1 bzw. my
durch die Masse der Wagestiicke ersetzen, die dem Kolben bei den vier ent-
sprechenden Wigungen das Gleichgewicht halten.

Versuchsausfiihrung

Wir iiberzeugen uns, dafl der Glaskolben trocken ist, und erwirmen das
Ansatzrohr gleichméflig, d.h. unter stindigem Drehen des Kolbens iiber
der Flamme eines Bunsenbrenners. Wenn das Glas hinreichend weich ist,
ziehen wir das Rohr zu einer Kapillare aus und brechen das Ende so ab,
daB eine Offnung von ungefihr 0,5 mm Durchmesser entsteht. Die Masse
des luftgefiillten Kolbens m;, wird mit Hilfe einer Analysenwaage bestimmt.
Wahrend der Wigung lesen wir die Zimmertemperatur ¢, und den Luft-
druck p, (die Héhe der Quecksilberséule A, im Barometer) ab. Der Kolben
wird iiber einer nicht zu kriftigen Gasflamme erwirmt. AnschlieBend
tauchen wir die Kapillare in die zu untersuchende Fliissigkeit. Nachdem
einige Kubikzentimeter des Stoffes eingedrungen sind, wird der Kolben
in siedendes Wasser gesetzt. Wir warten (mindestens 15 Minuten), bis die
Fliissigkeit vollstandig verdampft ist und bis die Temperatur ¢ im Inneren
des Kolbens mit der des siedenden Wassers iitbereinstimmt. Wir lesen ¢ und
den Luftdruck p (Quecksilbersiule %) ab und schmelzen die Offnung der
Kapillare zu. Der Kolben wird aus dem Bad genommen, auf Zimmer-
temperatur abgekiihlt und abgetrocknet. Seine Masse my, ist mit der Ana-
lysenwaage zu bestimmen. Nun halten wir die Kapillare in luftfreies Wasser
der Temperatur £,, brechen die Kapillare vorsichtig an der Stelle, an der sie
in das Ansatzrohr iibergeht, ab und lassen Wasser eindringen, bis der Spie-
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gel im Kolben die gleiche Héhe wie der im Vorratsgefd hat. Die Masse
My, 1, des sorgfaltig abgetrockneten Kolbens (einschlieBlich der abgebro-
chenen Kapillare) wird im allgemeinen so groB sein, da wir sie mit einer
Balkenwaage ermitteln miissen. Dann fiillen wir den Kolben vollsténdig mit
Wasser und bestimmen my,. Wenn der Kolben beim Zuschmelzen nur
Dampf enthilt, saugt er nach dem Abbrechen der Kapillare so viel Wasser
an, bis das Volumen V, ausgefiillt ist. In diesem Falle ist my; 1, = my . Zur
Bestimmung von g, rechnen wir den bei der Zimmertemperatur ¢, abgelese-
nen Luftdruck p, auf 0 °C um und beriicksichtigen die Kapillardepression
der Quecksilbersiule des Barometers (vgl. Tab. 5). Den so erhaltenen Druck
nennen wir py’. Die Dichte go(Ty, p,’) wird mit Hilfe der Gl. (4) aus der
Dichte der Luft bei Normalbedingungen auf vier Stellen genau berechnet.
Bei der Angabe von
P h
Do ho

brauchen die genannten Korrekturen nicht beriicksichtigt zu werden. Die
Dichte von Wasser gy(t,) ist der Tab. 4, der lineare Ausdehnungskoeffizient
von Glas a der Tab. 1 zu entnehmen. Die gesuchte relative Dampfdichte .D
wird nach Gl. (30), die relative Molekiilmasse M’ nach Gl (5a) berechnet.

Da die Luft im Kolben im allgemeinen nicht trocken ist, sondern Wasser-
dampf enthilt, kann der nach Gl. (30) in der beschriebenen Weise berechnete
Wert von D einen zusétzlichen relativen Fehler bis zu ungefahr 0,5 % haben.
Der relative Fehler der relativen Molekiilmasse M’ ist stets groBer als der
von D, weil die der Gl. (5) zugrunde liegende Gleichsetzung von Dampf und
idealem Gas nur als Ndherung betrachtet werden kann.

M. 2.5. Relative Dampfdichte nach V. Meyer

Aufgabe: Die relative Dampfdichte D einer Fliissigkeit ist nach der Me-
thode von Viktor Meyer zu bestimmen. Die relative Molekiilmasse
des Stoffes soll mit Hilfe von D berechnet werden.

Eine Fliissigkeit bekannter Masse mp, wird in einem Kolben I (vgl. Abb.10)
bei der Temperatur 7' und dem Luftdruck p vollstindig verdampft. Der
Dampf (Volumen V) verdringt Luft, die in dem MeBzylinder 2 aufgefan-
gen wird. Die Luft nimmt bei der Temperatur 7', (Zimmertemperatur) und
dem Druck p, das Volumen V, ein. Wenn man voraussetzt, daB
1. die in der Verdampfungsanordnung enthaltene Luft trocken ist,

2.im Kolben I kein homogenes Dampf-Luft-Gemisch entsteht, d.h. die

Verdampfung der Fliissigkeit bei der Temperatur 7' hinreichend schnell

erfolgt,
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3. das konstante Temperaturgefille, das sich im Ansatzrohr 4 vor Beginn
der Verdampfung eingestellt hat, durch die aus dem Kolben I verdriangte
Luft nicht gestért wird, das heit die Verdampfung der Flissigkeit nicht
zu schnell vor sich geht, besteht nach Gl. (4) der Zusammenhang

Vopp Vip
=17 31

Die Dichte des Dampfes 148t sich daher

Mmp mpT'; p
= D _ 32
QD VD Vl Tpl ( )

schreiben.

Abb. 10. Dampfdichtebestimmung
nach V. Meyer

Die Dichte der Luft or (7, p) wird nach Gl (4) aus der Dichte gy, y bei
Normalbedingungen Ty, py berechnet:

Txp
= . . 33
QL QL, N TpN . ( )

Die gesuchte relative Dampfdichte erhalt man durch Division der Gl. (32)
durch Gl. (33):

mp Ty Px
Lk VS (34)
ViorxTxpa
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Da die im MeBzylinder enthaltene Luft mit Wasserdampf geséttigt ist, setzt
sich der in dem Gasvolumen herrschende Gesamtdruck p, additiv aus dem
Partialdruck der Luft p, und dem der Temperatur 7', entsprechenden Sit-
tigungsdampfdruck des Wassers py, zusammen (Gesetz von Dallon). An-
dererseits ist p, gleich dem &uBeren Luftdruck p vermindert um den Druck
der im MeBzylinder stehenden Wassersiule der Hohe 4,. Es gilt also

P1=P— Pw — Powg-

Die Driicke py und p, diirfen durch die entsprechenden Hohen der Queck-
silbersdule im Barometer ersetzt werden, da in Gl. (34) nur das Verhéltnis
der beiden GroBen auftritt.

P k—hw—hlggX

ow bzw. o sind die Dichte von Wasser bzw. von Quecksilber. Setzt man
Gl. (35) in Gl. (34) ein, ergibt sich

Py _ L . (35)

D= i T o . (36)

V015 T (h =Ry %W)

Versuchsausfiihrung

Wir schalten die Heizung (Bunsenbrenner oder Thermostat) fiir den Tem-
perierbehilter 3 (vgl. Abb. 10) ein. Dieser Behilter ist im allgemeinen ein
mit Wasser gefiilltes Gefd3. Wenn die Temperatur 7' groBer als 373 K sein
soll, kann Silikondl als Temperierfliissigkeit Verwendung finden bzw. ist
der Behilter 3 durch einen elektrisch geheizten Ofen zu ersetzen. In das
Ansatzrohr 4 wird ein diinnes Rohr eingefiihrt, das bis zum Boden des Ver-
dampfungskolbens I reichen soll. Durch dieses Rohr lassen wir etwa 30 Mi-
nuten lang trockene Preffluft mit geringer Geschwindigkeit stromen, so daf
eventuell vorhandene Fliissigkeitsdimpfe und feuchte Luft aus dem Kolben 7
entfernt werden.

Inzwischen wird die Masse mp der zu untersuchenden Fliissigkeit mit
Hilfe einer Analysenwaage bestimmt. Die Fliissigkeit soll in ein kleines Glas-
gefil gefiillt werden, das sich entweder mit einem Stopfen schlieBen oder
zuschmelzen 14Bt. Der zweckmaBig zu wihlende Betrag von my hingt von
der GroBe des Verdampfungskolbens I bzw. der des MeBzylinders 2 ab.

Nachdem der Temperierbehilter 3 die gewiinschte Temperatur 7' an-
genommen hat, schalten wir die PreBluftleitung ab und entfernen das Rohr
aus dem Ansatzrohr 4. Dieses wird mit dem Stopfen § geschlossen. Nun
bringen wir eine wassergefiillte Wanne 6 so an, daB sich das offene Ende des
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Rohres 7 knapp unter der Wasseroberfliche befindet. Die Einstellung des
Temperaturgleichgewichtes in der Verdampfungsanordnung erkennen wir
daran, dafl aus dem Rohr 7 keine Luftblasen mehr entweichen. Dann stecken
wir das mit der zu untersuchenden Fliissigkeit gefiillte GefiaB in das Ansatz-
rohr 4, in dem es durch einen Nickelstab 8, der sich mit Hilfe eines Magneten
horizontal verschieben 148t, gehalten werden soll. Wenn sich das durch das
kurzzeitige Offnen des Ansatzrohres 4 nur wenig gestorte Temperatur-
gleichgewicht wieder eingestellt hat, schieben wir den vollstindig mit Wasser
gefiillten MeBzylinder 2 iiber die Offnung des Rohres 7 und lesen den Luft-
druck p (Quecksilbersdule /) und die Zimmertemperatur ¢, & T, ab. Nun
lassen wir das kleine GlasgefiB, das den Fliissigkeitstropfen enthélt, in den
Verdampfungskolben I fallen. Ein sehr diinnwandiges, zugeschmolzenes
GefaBl wird beim Aufschlagen zerspringen. Soll das GefaB durch den Auf-
prall nicht entzweigehen, mull es mit einem Stopfen verschlossen sein, der
beim Verdampfen der Fliissigkeit herausgedriickt wird. Die vom Dampf
verdringte Luft wird im MeBzylinder 2 aufgefangen. Treten aus dem Rohr 7
keine Luftblasen mehr aus, lesen wir die Hohe der Wassersaule &, und das
Volumen V, ab. Vor dem Abschalten der Heizung des Temperierbehilters 3
ist unbedingt der Stopfen § aus dem Ansatzrohr 4 zu ziehen!

Der der Temperatur ¢, entsprechende Sattigungsdampfdruck von Wasser
Pw (Quecksilbersiule hy) wird der folgenden Tabelle, die Dichte von Queck-
silber der Tab. 2 entnommen. Wir berechnen die gesuchte relative Dampf-
dichte D nach Gl. (36), die relative Molekiilmasse M’ nach Gl. (5a).

Dampfdruck des Wassers in Abhdingigkeit von der Temperatur (angegeben in Torr)

Temperatur in °C

Zeh- Einer
ner 0 1 2 3 4 5 6 7 8 9

10 9,209 9,844 10,518 11,231 11,987 12,788 13,634 14,530 15,477 16,477
20 17,535 18,650 19,827 21,068 22,377 23,756 26,209 26,739 28,349 30,043
30 31,824 33,695 35,663 37,729 39,808 42,175 44,563 47,067 49,692 52,442

Wenn der MeBzylinder 2 vor der Verdampfung der Fliissigkeit nicht voll-
stindig mit Wasser gefiillt ist, miissen die Hohe der Wassersdule A, und
das Gasvolumen V, abgelesen werden. Nach der Verdampfung hat die
Wassersiule die Hohe A,, und das gesamte Gasvolumen ist V. Das Volumen
V, ergibt sich in diesem Falle in guter Naherung zu

he— Rk, o
V=V -V {1—¥_W}.
1 0 h — h’w 0
Da die der GI. (31) zugrunde liegenden Voraussetzungen im Experiment

kaum exakt erfiillt werden konnen, ist der tatsichliche Fehler von D stets
groBer als der Wert AD, der sich aus der formalen Fehlerrechnung ergibt.
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M. 2.6. Relative Gasdichte nach Bunsen

Aufgabe: Die relative Gasdichte D verschiedener Gase soll nach der Aus-
stromungsmethode von Bunsen bestimmt werden.

Ein Gas, das sich in einem Rohr 7 (Querschnitt 4,) befindet, soll unter dem
Druck .

P = P + 209 , (37)

stehen (vgl. Abb. 11); p, ist der Luftdruck und g die Dichte von Quecksilber.
Bei der in Abb. 11 angegebenen Stellung des Dreiweghahnes 2 strémt das
Gas mit der Geschwindigkeit v aus einer feinen Diise 3 (Querschnitt 4).

Abb. 11. Prinzip des Effusiometers
A nach Bunsen

Wenn man voraussetzt, dal das Gas als inkompressibel angesehen und der
Einflu} der inneren Reibung vernachlissigt werden kann, besteht zwischen
v und der Geschwindigkeit v, , mit der das Gas bzw. der Quecksilberspiegel
im Rohr 1 steigt, der Zusammenhang

Avg = Apg , (38)
und es gilt die Bernoullische Gleichung [vgl. Gl. (M. 7.-1a)]

1 1
p+§@%+ww=%+§&%+@w- (39)
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0c ist die als konstant angenommene Dichte des Gases. Gl. (39) 14Bt sich
mit den Gln. (37) und (38)

Ay

@ -

schreiben. Die GroBe (h — y) g ist gegeniiber xp vernachlissigbar, wenn
man sehr kleine Werte « von der Betrachtung ausschlieBt. Damit vereinfacht
sich Gl. (40) zu »

[ze — (h — y) ocl 9 =%9G02G[1 —(A )2]

= F) Oa v

1 AN 1 A2
e T (B N[
Fiir den speziellen Fall, da3 das Rohr I Luft (Dichte ;) enthilt, gilt
1 A\2 1 A1\
s = gewrk |- () | = grewoa|(5) - 1) (#0%)

Aus den Gln. (40a) und (40b) folgt

2
D=2 "L (41)
oL VG

Die Geschwindigkeiten v, vg,, vy, und vy, sind Funktionen von x und lassen
sich experimentell nur schwer bestimmen. Dagegen kann man leicht die
Zeit messen, in der ein definiertes, endliches Volumen Gas aus dem Rohr 1
ausstromt. Zur Zeit ¢ = 0 soll die Marke 5 des Schwimmers 4 die Marke 6
am Rohr 1 passieren. Der zugehorige Wert von y sei y, . Zur Zeit ¢ = {; bzw.
t = t;, habe die Marke 4 die Marke 7 erreicht, und y sei auf y, gestiegen. Lost
man Gl. (40a) nach vg, auf, so erhalt man

dy ¢ .~ ]/QG dy
= =V, di,= -
Va1 dtg _I/Q—G V-’K G

Ya .
_ Yoo [dy 1
te =5 f ﬁ | (42)
U1

1) Da das Volumen des Quecksilbers konstant ist, sind dx und dy einander proportio-
nal. Es ist aber nicht notig, diesen Zusammenhang anzugeben.

5 Phys. Praktikum
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Entsprechend gilt

U2
oL dy
b — Ve [y (43)
C
,,,f &

Oj/ [ETn

stellt eine Effusiometerkonstante dar. Teilt man Gl. (42) durch Gl. (43) und
quadriert anschlieBend, ergibt sich fiir die gesuchte relative Gasdichte -

t?
p-tfe 2. (44)

Die Dichten zweier Gase verhalten sich wie die Quadrate der Zeiten, in
denen gleiche Volumina der Gase unter gleichen Bedingungen aus der glei-
chen Offnung ausstromen (Ausstromungsgesetz von Bunsen).

Da die eingangs gemachten Voraussetzungen bei realen Gasen nicht exakt
erfiillt sind, ist mit einem systematischen Fehler von D zu rechnen, der
einige Prozent betragen kann. Dieser Fehler wird um so groBer, je mehr sich
die Viskositdt des zu untersuchenden Gases von der der Luft unterscheidet.

Versuchsausfithrung

Wir 16sen die an der Marke 8 angebrachte Halterung (in Abb. 11 nicht
eingezeichnet) und ziehen das Rohr I bei der Stellung a des Dreiweghahnes 2
(vgl. Abb. 12) aus dem mit Quecksilber gefiillten GefiaB8 heraus. Nun wird
der Hahn in die Stellung b gedreht, das geschlossene Rohr 7 in das Queck-
silber gedriickt und die Halterung an der Marke 8 befestigt. Sollte der

Abb. 12. Verschiedene Stellungen
a b ¢ eines Dreiweghahnes

Schwimmer 4 jetzt schon steigen, ist der Dreiweghahn undicht. In diesem
Falle muB der Hahn gefettet, d. h. der Schliff mit einem diinnen, gleich-
miBig verteilten Film aus Fett versehen werden. Wenn der Hahn dicht ist,
drehen wir ihn in die Stellung ¢ und bestimmen die Zeit #;,, in der die Marke §
des Schwimmers von der Marke 6 zur Marke 7 gelangt. Der Versuch ist mit
Luft so oft zu wiederholen (mindestens zehnmal), bis sich fiir ¢, ein kon-
stanter Wert ergibt.
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Wir ziehen das Rohr 1 so weit aus dem Quecksilber heraus, daB das offene
Ende gerade noch eintaucht, und lassen durch den Stutzen 9 bei der Stel-
lung a des Dreiweghahnes einige Minuten lang das zu untersuchende Gas
mit sehr geringer Geschwindigkeit einstrémen. Dann wird der Versuch, wie
oben beschrieben, so oft durchgefiihrt, bis die Zeit f; mit hinreichender
Sicherheit bestimmt ist. Die gesuchte relative Gasdichte D ergibt sich aus
Gl. (44).

Wenn das Gas aus einer Stahlflasche entnommen werden muf, soll sich
der Student vor dem Versuchsbeginn die Wirkungsweise und Handhabung
eines Reduzierventils vom Assistenten erkléren lassen!

M.3. PENDEL

M. 3.0. Aligemeine Grundlagen:

M. 3.0.1. Physikalisches und mathematisches Pendel

Ein physikalisches Pendel ist ein starrer Korper mit einer im allgemeinen

horizontalen, fest vorgegebenen Drehachse, die nicht durch den Massen-
mittelpunkt des Korpers geht. Nach einer Auslenkung fiihrt das Pendel
unter dem EinfluB der Schwerkraft Schwingungen um seine Ruhelage aus.
In den folgenden Uberlegungen wird vorausgesetzt, daB die Reibung im
Achsenlager vernachlissigbar klein ist.
- Der senkrechte Abstand des Massenmittelpunktes § eines Kérpers K
von der Drehachse A4 soll mit s, bezeichnet werden (vgl. Abb. 13). Ein be-
liebiges Massenelement dm habe den senkrechten Abstand » von der Achse 4.
Der zeitlich konstante Winkel zwischen r und s4 sei «. Bildet s, mit der Ver-
tikalen den Winkel ¢, so lautet die Bewegungsgleichung fiir das Massen-
element

dm.r-¢=—dm-g-sin (x + ¢). (1)

Durch Multiplikation von Gl. (1) mit dem Kraftarm r und anschlieBende
Integration iiber den gesamten Korper K erhidlt man die Drehmomenten-

gleichung
I¢r2dm=~g_frsin(cx+(p)dm. 2)
K K

Da der Kérper starr sein soll, ist die Winkelbeschleunigung ¢ fiir alle

Massenelemente gleich und karin vor das Integral geschrieben werden. Die

5%
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Abb. 13.
Physikalisches Pendel

GroBe

I,=[r2dm (3)
K

ist das T'ragheitsmoment des Korpers, bezogen auf die Achse A. Die Einheit
des Triagheitsmomentes ist im gesetzlichen MaBsystem kg m2.
Nach der Definition des Massenmittelpunktes gilt

Irsin(oH—<p)dm=jxdm=mxs=msAsingv; 4)
K K

m ist die Masse des Pendels. Mit den Gln. (3) und (4) kann man GI. (2)

§———FLsing (5)
A

schreiben. Die Grofie
D,y =ms,g (6)

hat die Dimension eines Drehmoments und wird als Direktionsmoment des
Pendels bezeichnet.

.
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Das mathematische Pendel stellt eine Idealisierung dar. Man denkt sich
die gesamte Masse im Massenmittelpunkt S vereinigt und sieht die Bindung
an die Drehachse 4 als masselos an. Dieser Idealisierung entspricht nihe-
rungsweise das Fadenpendel, das aus einer Metallkugel besteht, die an
einem diinnen Faden der Lange ! aufgehéngt ist. Die Bewegungsgleichung
des mathematischen Pendels lautet

ml@p = —myg sin @
oder

¢ =— ‘(; sin ¢. (7

Die Gln. (5) und (7), deren Losung elementar nicht moglich ist, vereinfachen
sich, wenn man nur sehr kleine Auslenkungen

lp| <1

zuldBt. Dann kann man den Sinus durch das Argument ersetzen und erhélt

ms
§=- I“g P, (5a)
A
5=-T0 (72)

Die bisherigen Betrachtungen gelten nur fir Bewegungen im Vakuum. Schwingt das
Pendel in Luft (Dichte g1), so ist der Auftrieb [vgl. Gl. (M. 1.-5)] zu beriicksichtigen.
Die riicktreibende Kraft auf ein Massenelement hat dann den Betrag

dmg(l ——i)i)s'm(a + @),
und an die Stelle der Gl. (2) tritt

[ @r® dm = —gKf (1 - —903) rsin (x + @) dm. (22)

Setzt sich das Pendel aus N homogenen Teilkérpern K, zusammen, deren Massenmittel-
punkte S; auf einer die Achse 4 schneidenden Geraden liegen und deren Massen bzw.
Dichten mit m; bzw. g; (¢ = 1, 2, ..., N) bezeichnet werden sollen, wird Gl. (2a)

N o1 X

f¢r2dm= g3 (1 —?)frsm(a + @)dm
i=1 i

K

K
oder

. ¥ oL : -
I, =—g 1——7 m; S4; 81N @ . (5b)

=1

i
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Hierbei ist s,; der Abstand des Massenmittelpunktes des i-ten Teilkérpers von der
Drehachse A. Die Beriicksichtigung des Auftriebes bedeutet also in diesem Falle: Man
ersetzt in Gl. (5) sowie in den daraus gewonnenen Gln. (5a) und (13) den Ausdruck ms,

durch
N
Z (1— QL)msSu- 8
=1 i
Haben alle Teile des Pendels die gleiche Dichte g, dann vereinfacht sich der Ausdruck
(8) zu
eL
ms, —=]. (8a)
‘ ( e )

M. 3.0.2. Drehtisch und Torsionspendel

Unter einem Drehtisch versteht man einen starren Korper, der um eine
vertikale Achse gedreht werden kann. Bindet man dieses System durch
eine Spiralfeder an eine Ruhelage, so fithrt es nach einer Auslenkung
Schwingungen aus. Wenn die elastischen Deformationen der Feder hin-
reichend klein sind, kann man das riicktreibende Drehmoment der Aus-
lenkung ¢ proportional setzen. Bei Vernachlissigung der Reibung im
Achsenlager lautet die Bewegungsgleichung

D
b=-TF9 ©)

Dabei ist I das Tragheitsmoment des Drehtisches um die vorgegebene
Achse, und der Proportionalititsfaktor D ist das Direktionsmoment der
Feder.

Ein Torsionspendel ist ein starrer Koérper, der an einem Draht aufgehingt
oder zwischen zwei Blattfedern gespannt ist. Nach einer Verdrillung des
Drahtes bzw. der Federn fiihrt das Torsionspendel Drehschwingungen aus.
Fiir sehr kleine Scherwinkel kann man berechnen [vgl. Gl. (M. 5.2.-26)], daB
das riicktreibende Drehmonemt der Auslenkung aus der Ruhelage propor-
tional ist. Die Bewegung des Torsionspendels wird daher auch durch Gl. (9)
beschrieben.

M. 3.0.3. Losung der Bewegungsgleichungen

Die Bewegungsgleichungen (5a), (7a) und (9) sind vom Typ

¢ = —wp. (10)

Gl. (10) sagt aus: Es wird eine Funktion ¢(f) gesucht, die ihrer zweiten Ab-
leitung nach der Zeit proportional ist. Da die Gl. (10) durch zwei nachein-
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ander auszufithrende Integrationen gelost wird, mul die vollstindige
mathematische Losung zwei Integrationskonstanten enthalten. Man kann
sich leicht davon iiberzeugen, dafl die Funktion

@ = ¢4 COS i + ¢, sin t (11)

die obengenannten Forderungen erfiillt. Die Konstanten ¢, und ¢, sind aus
den Anfangsbedingungen zu bestimmen. Dem Versuchsbeginn entsprechen

o=@, ¢=0 fir t=0.
Damit lautet GI. (11)

@ = @, €08 wt = @, cos (21:: -;T) ; (11a)

T ist die Schwingungsdauer bei sehr kleinen Auslenkungen (physikalisches
und mathematisches Pendel) bzw. bei geringen elastischen Deformationen
(Drehtisch und Torsionspendel).

Wenn man die Schwingungsdauer stoppen will, wahlt man dagegen den
Augenblick als Anfang der Zeitmessung, in dem das Pendel die maximale
Geschwindigkeit hat, d. h., es ist

=0, @=qu,, fir t=0.
Dann ist

p t
= Pmax gin oot = @ Sin wt = @, sin (2rc —I—,) . (11Db)

Durch Einsetzen von Gl. (11a) oder (11b) in die Gln. (7a), (5a) bzw. (9) findet
man fiir das Fadenpendel

B
T=2rn|/—, 12
rcl/g (12)

fiir das physikalische Pendel

@

T = 2n ]/ La (13)

msys g

und fiir den Drehtisch oder das Torsionspendel

T =2r l/% (14)
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Die mathematische Behandlung der Gln. (5) und (7) liefert fir die Schwingungsdauer

71 1.3 -
T’=T{1+( )smz";°+(2 4>sm4%+...}. (15)

Fur 7T ist beim Fadenpendel Gl. (12) und beim physikalischen Pendel Gl. (13) einzuset-
zen. Wenn die Amplitude ¢, kleiner als 0,1 (d. h. <C6°) ist, dann kann man in sehr guter
Niherung mit

1
= 2 =
T T(l + 16 ‘Po) (15a)

arbeiten.

M. 3.0.4. Satz von Steiner

Das Tragheitsmoment eines starren Korpers, bezogen auf die Achse 4, ist
gleich dem Trigheitsmoment, bezogen auf die durch den Massenmittel-
punkt gehende, zu A4 parallele Achse S, vermehrt um das Produkt aus der
Masse des Korpers und dem Quadrat des senkrechten Abstandes der beiden
Achsen.

Abb. 14.
Zum Steinerschen Satz

Zum Beweis dieses Satzes betrachtet man den in Abb. 14 dargestellten
ebenen Schnitt durch den Kérper. Der Ursprung des Koordinatensystems
z, y, z (die z-Achse stimmt mit der Drehachse S iiberein) soll im Massen-
mittelpunkt des Korpers liegen. Nach dem Kosinussatz gilt

r2=1"2+ % + 25,1 cos B =12+ &4 + 2s,%.
Dann ist das Triagheitsmoment des Koérpers bezogen auf die Achse 4

I,=[r2dm =[r2dm + s [dm + 2s, | « dm,
K K K K

[z dm = zgm = 0,
K
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Iy=1Ig+ msh. (16)

Der Steinersche Satz ist ein wertvolles Hilfsmittel fiir die Berechnung von
Tragheitsmomenten.

M. 3.0.5. Reduzierte Pendellinge

Ein physikalisches Pendel hat die gleiche Schwingungsdauer wie ein
mathematisches Pendel der Fadenlinge
1
I,=—2. (17)

msS,y

1, ist die der Achse 4 entspréchende reduzierte Pendellinge. Gegeben sei
ein physikalisches Pendel mit den parallelen Drehachsen 4 und B (vgl.
Abb. 13). Der Massenmittelpunkt soll auf der Geraden von 4 nach B liegen,
und der Achsenabstand sei

l=s4+sgp.

Es soll untersucht werden, unter welchen Bedingungen die Schwingungs-
dauern um diese beiden Achsen iibereinstimmen. Aus

- _ o
m:%V‘”—% b _op B 1T,
msa g g msg g

folgt bei Verwendung des Steinerschen Satzes

Ip,  Ig+m(l—s,4)?  Iy+ ml?— 2mls,

lA" - - ’

msg m(l — sy) m(l —s)
7. — mly 84 + ml2 — 2mls 4
4 m(l — s4)
oder
l2__ (lA+2SA)l+2lASA=O. (18)

Die quadratische Gleichung (18) kann
(-1 —254)=0 (19)

geschrieben werden.

Ist 1+ 2s,, so muB I =1, sein, d. h., der Achsenabstand, bei dem die
Schwingungsdauern gleich sind, ist gleich der reduzierten Pendellinge.

Ist jedoch I = 2s,4, d. h., der Massenmittelpunkt halbiert die Verbindungs-
linie der beiden Achsen, so ist der Schlufl I = I, falsch.
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M. 3.1. Fadenpendel

Aufgabe: Die Schwerebeschleunigung g ist mit dem Fadenpendel zu be-
stimmen. Der relative GroBtfehler soll 0,8 % nicht iiberschreiten.

Eine Metallkugel héingt an einem diinnen Faden vor einer Spiegelskale
mit Millimeterteilung. Der Nullpunkt des MaBstabes soll mit der Dreh-
achse iibereinstimmen. Die Fadenlidnge ! ist der Abstand der Drehachse vom
Mittelpunkt der Kugel. Regt man das Pendel zu Schwingungen kleiner
Amplitude (¢, < 5°) an, so liefert Gl. (12) den Zusammenhang zwischen der
Schwingungsdauer 7', der Fadenlinge ! und der Schwerebeschleunigung g.

o=(F ) (20)

Das Fadenpendel ist strenggenommen ein physikalisches Pendel, das in einem materiel-
len Medium (Luft) schwingt. Es empfiehlt sich zu priifen, ob die verschiedenen Ver-
nachléssigungen tragbar sind, die man bei der Verwendung der Gleichungen fiir ein im
Vakuum schwingendes mathematisches Pendel macht.

Das Triagheitsmoment I des Pendels setzt sich additiv aus dem der Kugel Ix und dem
des Fadens Iy zusammen. Da das Tréagheitsmoment einer homogenen Kugel mit dem
Ea,}ilius R und der Masse mx bezogen auf eine durch den Kugelmittelpunkt gehende

chse

2
10 = meRz
ist, erhidlt man nach Gl. (16)

2 2 [(R\?
IK =mKlz +-ngR2 = mKP {1 +F(T) }.

Das Trigheitsmoment des Fadens der Masse mp bezogen auf die gegebene Drehachse ist

1

IF = E mglz .
Damit wird
2 (R\*, 1 mp
p— 2 —_— | — ——
I_mxl{1+5(l)+3mg}' (21)
Bezeichnet man die Dichte der Kugel mit px und die des Fadens mit gg, so lautet
Gl. (5b)
w oL oL l} .
I6 = — L7 P — ) e -
(I
oder

I¢=—gmxlsin¢p{ —5—;+%ﬂ(1—ﬂ)}. (22)

mg oF
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Setzt man I gemdB Gl. (21) in Gl. (22) ein und beschrinkt die Betrachtungen auf sehr
kleine Auslenkungen, so erhilt man

¢=_—ZT¢

2 {R\2 1 myp
1+—5—(T)+—3—7n;

1_{&_iﬂ(1_&)}'
33 2 mx oF

Fiir die Schwerebeschleunigung gilt daher Gl. (20) mit I* statt I. Da (R/l)2, mp/mx,
ov/ox und gr/er sehr klein gegen 1 sind, sollen alle Produkte solcher Ausdriicke ver-
nachlissigt werden. In dieser Néherung ist

_ 21 \2 2 R\2 oL 1 mp
o= (F) e () - s )

Versuchsausfiihrung

mit

=

Zur Bestimmung der Fadenlinge [ blicken wir in horizontaler Richtung so
auf den oberen Rand der ruhenden Kugel, daf} er sich mit seinem Spiegel-
bild deckt, und lesen die Lénge [, ab. In gleicher Weise ergibt sich fiir den
unteren Kugelrand 7,. Die Fadenldnge ist das arithmetische Mittel von [,
und /, . Héngt das Pendel nicht vor einer Spiegelskale, so ist die Fadenlédnge
mit einem Kathetometer zu messen. Wir bestimmen die Schwingungs-
dauer 7', indem wir fiinfmal die Zeit fiir 100 Schwingungen stoppen. Der
Versuch ist bei » — 1 anderen Fadenlingen zu wiederholen.

Wir berechnen g nach GI. (20) und bilden die arithmetischen Mittel g,
aller Werte, die sich bei der Fadenlinge I, ergeben haben. Da die Messungen
bei groflen Fadenldngen genauer als die bei kleinen sind, ist aus den GréB8en
915> G2 - --» 9n der gewichtete Mittelwert

Loy + lgs + ... + 19,
L+l+...+1,

g =
zu berechnen.

Studenten mit Physik als Hauptfach sollen nachweisen, dafi die Verwendung von
Gl. (20) anstelle von Gl. (23) zur Bestimmung der Schwerebeschleunigung gerecht-
fertigt ist. Dazu muB} gezeigt werden, daB die Abweichung der geschweiften Klammer
iAn /Gl. (28) von 1 dem Betrag nach hinreichend klein gegen den relativen MefBfehler

g/g ist.
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M. 3.2. Reversionspendel

Awufgaben: 1. Die Schwerebeschleunigung g ist mit dem Reversionspendel zu

bestimmen. Der relative GroBtfehler von g soll kleiner als 0,08 %
sein.
2. Die Abhingigkeit der Schwingungsdauer 7 vom Auslenk-
winkel ¢, ist mit dem Reversionspendel bei einer vorgeschriebe-
nen Lage des Laufgewichtes experimentell zu ermitteln, um die
Giiltigkeit von Gl. (15a) nachzuweisen.

Das Reversionspendel besteht im allgemeinen aus einem Metallstab, der
um zwei parallele Achsen 4 und B gedreht werden kann (vgl. Abb. 15).
Die Achsen haben den fest vorgegebenen Abstand [. Zwischen den Achsen
befindet sich ein kleines Laufgewicht L der Masse m;. Durch Verschieben

ik
V e

SA

Abb. 15. Reversionspendel

von L 1aBt sich die Schwingungsdauer des Pendels innerhalb gewisser Gren-
zen variieren. In der Nihe des einen Stabendes ist ein Zusatzkérper K
(Masse my) angebracht. Wenn my hinreichend groB gegen m, ist, kann man
den Abstand y so wihlen, daB fiir jede mogliche Lage des Laufgewichtes
<<l

l
0<s,,<§ (24)
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ist. Dabei soll mit s, der Abstand des Massenmittelpunktes § des Pendels
von der Drehachse A bezeichnet werden. Wenn bei einer bestimmten Stel-
lung » des Laufgewichtes die Schwingungsdauer um die Achse A gleich der
um die Achse B ist, dann entspricht der Achsenabstand I der reduzierten
Pendelldnge. Setzt man

Ty=Ty=T, (25)

80 gi}t fiir die Schwerebeschleunigung
2w \2 :
(3]

Die bisherigen Betrachtungen gelten streng fir ein im Vakuum schwingen-
des Pendel, dessen Amplitude unendlich klein ist. In Wirklichkeit schwingt
das Pendel in Luft mit endlicher Amplitude. Nimmt man an, dafl das Pendel
ein homogener Korper ist, d. h., daB alle Teile des Pendels die gleiche
Dichte p haben, so wird die Pendelbewegung durch Gl. (5b) mit N = 1 be-
schrieben. Aus den Gln. (15a) und (13) in Verbindung mit dem Ausdruck
(8a) folgt fiir die tatsdchliche Schwingungsdauer um die Achse A

_ 1+ - @

I 16 7°

‘ mAg( “ﬁ) l/i—gli
| ¢ e

Eine analoge Beziehung gilt fiir die tatsdchliche Schwingungsdauer um die
Achse B. Im Experiment wird

T% = T% = T*

bestimmt. Dann gilt Gl. (25) mit

L

16 ¥6

(27)

Setzt man 7' nach Gl (27) in Gl (26) ein, erhalt man fir die Schwere-
beschleunigung
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Wenn man bedenkt, daB o./o < 1073 und fiir ¢, < 0,1 auch (1/16) ¢
< 1073 ist, sind alle Produkte solcher GréBen vernachlissigbar, und es gilt

2r N\ (1 oL
0= ).Z{Hﬁ 2+—}. (28)
T ghT

Der voranstehenden Beschreibung liegt die Annahme zugrunde, da min-
destens eine Stellung des Laufgewichtes in dem Intervall 0 < < [ existiert,
fir die die Schwingungsdauern um die Achsen 4 und B gleich sind. Es
lohnt sich, die Bedingungen zu untersuchen, unter denen Gl. (25) erfiillt
werden kann. Zu diesem Zweck sind die Massenmittelpunktsabstidnde s,
und s, die Tragheitsmomente I, und Iy und anschlieBend die Schwin-
gungsdauern 7', und 7'y als Funktionen von x darzustellen.

MSy = MySy -+ My,
msg = m (I — 84) = mg(l — ) + my (I — ).
Dabei bedeuten m die Masse des gesamten Pendels, m, die Masse des Pen-

dels ohne Laufgewicht und s, den Abstand zwischen dem Massenmittelpunkt
8, des Pendels ohne Laufgewicht und der Achse 4.

I, =TI+ myss + Iy, + mpa?,

Ig = Ty+ mo(l — so)2 + I, + my, (I — x)%
I, ist das Tréagheitsmoment des Pendels ohne Laufgewicht bezogen auf
die durch S, gehende, zu 4 und B parallele Drehachse, und I, ist das Trig-
heitsmoment des Laufgewichtes bezogen auf die zu A und B parallele Achse,

die durch den Massenmittelpunkt des Laufgewichtes geht. Mit der Ab-
kiirzung

I=1Iy+ mysh+ I, (29)
erhélt man fiir die Schwingungsdauern

I, 2r I+ mpx?

T, =2 e VL
a=er msyg Vg | meso + myx’ (30)
I 2w /1 4+ mgl (I — 284) + my (I — x)?
Ty = on |[ Lo 20 ]/ 1E @ B 4o,
g mssg Yol mel—s)+ml—a - G

Die Forderung 7, = T fiithrt auf die nachstehende Gleichung dritten
Grades in «

2m3a® — my {my (I — 2s,) + 3myl} a2
+ my, {21 + mol (I — 4sy) + m 1%«
— (I — myglsg) {my (I — 254) + myl} = 0. (32)
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Eine der drei Losungen von Gl. (32) kann man sofort angeben. Fiir x = x,
sei s4 = I/2 [vgl. GL (19)]. Dann gilt

l l
mE = (my + mL)§ = MySe + M T

oder

1 (m,
x3=i —_—

- mL(l—2so)+l}.

Da die Ungleichung (24) erfiillt sein soll, ist x; groBer als 7, d. h., die Stellung
des Laufgewichtes kommt im Experiment nicht vor. Dividiert man Gl. (32)
durch  — @3, so erhédlt man die quadratische Gleichung

- !
'x2 -— lx + I—moSo = O s
my
deren Losungen
l
Za=5 (L %) (33)

mit

T

=4
&
I~

B(X)
Abb. 16.
I Graphische Darstellung
- von T 4(z) und T'5(x)
9 L X
fe f 4

sind. Gl. (33) besagt, daB in dem Intervall 0 < x» <! symmetrisch zu
x =12 zwei Stellungen z, und x, des Laufgewichtes zu finden sind, bei
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denen der Achsenabstand ! der reduzierten Pendellinge entspricht, sofern
die in Gl. (29) definierte Grofe I der Bedingung

I =mgsyl + my (—él—)z (1 —&?) ©(34)

mit 0 < e < 1 geniigt. Gl. (34) 1aBt sich durch geeignete Wahl der Masse
und der Anordnung des Zusatzkorpers K stets so erfiillen, daB die Un-
" gleichung (24) erhalten bleibt.

Es kann gezeigt werden, daB die Funktionen 7 4(x) und T'gz(x), die durch
die Gln. (30) und (31) gegeben sind, nur je einen Extremwert, und zwar ein
Minimum haben. Die beiden Minima liegen unter den oben gemachten Vor-
aussetzungen in der Nihe des Wertes « = [/2. Abb. 16 zeigt den prinzipiellen
Verlauf der Funktionen 7',(z) und 7'g(z).

Versuchsausfiihrung

Zu Aufgabe 1: Wir bestimmen die Schwingungsdauern 7% und T% fiir
verschiedene Stellungen des Laufgewichtes L und achten darauf, da8 die
Amplitude bei allen Schwingungen den gleichen Wert ¢, < 0,1 hat. Das
Laufgewicht soll in dem Intervall 0 < <! von Messung zu Messung, um
5 cm verschoben werden. Um die in der Aufgabenstellung geforderte Ge-
nauigkeit zu erreichen, werden die Schwingungsdauern nach der Koinzidenz.-
methode oder mit einem elektronischen Zahlfrequenzmesser ermittelt.

Die folgende Darstellung beschreibt nur eine der technisch recht verschie-
denen Moglichkeiten zur Bestimmung der Koinzidenzzeit. Wir bringen eine
Glimmlampe durch Spannungsimpulse der Impulsfolgefrequenz v, = 1/T,
kurzzeitig zum Aufleuchten. Das Licht soll durch einen engen, horizontalen
Spalt auf einen kleinen Spiegel fallen, der an das untere Ende des Pendel-
stabes gekittet ist. Der Spalt wird iiber den Spiegel durch ein Fernrohr mit
Visierlinie beobachtet. Das Fernrohr ist so zu justieren, daf sich Spalt und
Visierlinie bei ruhendem Pendel decken. Schwingt das Pendel mit einer
Schwingungsdauer 7%, die sich nur .wenig von 7', unterscheidet, so be-
obachten wir durch das Fernrohr ein langsames Wandern der Lage der
Lichtblitze, da die Phase der Schwingungen bei aufeinander folgenden Licht-
impulsen nicht gleich ist. Zur Zeit ¢ = 0 soll ein Lichtimpuls mit der Visier-
linie des Fernrohres zur Deckung kommen. Nun wandert die Lage der Licht-
blitze z.B. nach oben, kehrt nach Erreichen eines hochsten Wertes um,
passiert die Visierlinie in entgegengesetzter Richtung wie zur Zeit ¢ = 0,
erreicht einen tiefsten Wert und fallt zur Zeit ¢ = ¢, wieder mit der Visier-
linie zusammen. #, wird als Koinzidenzzeit bezeichnet. Wenn in dieser Zeit
die Glimmlampe #,-mal aufgeleuchtet hat, ist

t, = n,T,. (35)

Das Pendel hat in der Zeit ¢, entweder n, + 1 oder », — 1 volle Schwin-
gungen ausgefiihrt, je nachdem ob 7% bzw. T} kleiner oder grofer als Ty ist,
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d.h,, es gilt
T% 5 =T, nl"i T (36)
Beobachten wir £ Koinzidenzen, bestehen die Zusammenhinge
be = mly = kn, T, (35a)
T% p=Ty—% . (36a)
n £ k

Die Zeit T’y soll mit groBer Genauigkeit gegeben sein. Im Experiment miissen
wir also zunichst feststellen, ob die Schwingungsdauer 7§ bzw. T} groBer
oder kleiner als 7'y ist. Dann geniigt es, die Koinzidenzzeit ¢, bzw. £, mit
einer genauen Uhr zu messen. Das langweilige Zahlen der Schwingungen ist
itberfliissig. Aus Gl. (35) bzw. (35a) erhalten wir n; bzw. n,, aus Gl. (36)
bzw. (36a) die Schwingungsdauer 7% bzw. T'%.

Wir stellen 7% und 7'% als Funktionen von z graphisch dar (vgl. Abb. 16).
Die Schnittpunkte der beiden Kurven werden sich im allgemeinen noch
nicht mit hinreichender Genauigkeit ermitteln lassen. Aus diesem Grunde
bestimmen wir 7% und 7'% in der Nihe von x, und z,, indem wir das Lauf-
gewicht von Messung zu Messung nur um 1 cm verschieben. Der relative
Fehler von 7 kann auf diese Weise kleiner als 0,01 % gehalten werden.

Der Achsenabstand ! wird dem Studenten im allgemeinen als Funktion
der Temperatur angegeben. Die Voraussetzung, daf3 das Reversionspendel
ein homogener Kérper ist, trifft nur selten zu. Wenn das Pendel aus Stahl-
und Messingteilen zusammengesetzt ist, kénnen wir

O L1510
e

setzen und g nach Gl. (28) berechnen. Da der Versuch viel Zeit beansprucht,
werden im Praktikum oft nur Teilaufgaben gestellt.

Steht zur Bestimmung von 7% und 7' ein Zahlfrequenzmesser zur Ver-
fiigung, so lassen wir das Pendel eine Lichtschranke passieren, deren elek-
trische Impulse dem Gerdt zugeleitet werden. Die in der DDR handels-
iiblichen Zihlfrequenzmesser konnen wir so einstellen, daB die Zeit von
10 Impulsen — das entspricht der Dauer von 5 Pendelschwingungen — ge-
messen wird. Da eine derartige Bestimmung nur ungefihr 10 s dauert,
nehmen wir sie bei jeder Stellung des Laufgewichtes mindestens dreimal
vor und arbeiten mit den Mittelwerten. Dieses Verfahren der Zeitmessung
ist genauso exakt wie die Koinzidenzmethode, 143t sich aber viel schneller
durchfiihren.

Zu Aufgabe 2: Die Schwingungsdauer 7" wird hinreichend oft fiir 1° <
@o < 10°, z. B. mit einem Zihlfrequenzmesser, bestimmt. Tragen wir 7"

6 Phys. Praktikum
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itber g2 (@, in BogenmaB) auf, so ergibt sich nach Gl. (15a) eine Gerade, die
eine Steigung von (1/16) 7' hat und fiir @, = 0 den Wert 1" = T' liefert.
Eventuelle Abweichungen vom linearen Verlauf sollen diskutiert werden.

M. 3.3. Gekoppelte Pendel

Aufgabe: Die Schwingungsdauern zweier gekoppelter Pendel bei gleich-
sinnigen bzw. gegensinnigen Schwingungen 7', bzw. 7', sollen
gemessen werden. Die Schwingungsdauer bei Schwebungs-
schwingungen 7' und die Schwebungsdauer I'g sind sowohl experi-
mentell zu bestimmen als auch aus 7', und 7', zu berechnen.
AuBerdem ist der Kopplungsgrad % zu ermitteln.

Gegeben seien zwei vollig gleiche physikalische Pendel 7 und 2, die
elastisch gekoppelt sind. Im allgemeinen wird die Kopplung durch eine
Schraubenfeder (vgl. Abb. 17) oder durch eine Gummischnur erzeugt.

Abb. 17,
Gekoppelte Pendel

Es ist aber auch moéglich, die Pendel ohne mechanische Hilfsmittel zu
koppeln. Sind z. B. beide Pendelkérper Dauermagnete, erfolgt die Kopp-
lung durch das Magnetfeld.

Die Drehachsen A4 und B sind so gelagert, daB beide Pendel nur in ein und
derselben Ebene schwingen kénnen. In den folgenden Uberlegungen werden
Winkel und Drehmomente nach rechts positiv und nach links negativ ge-
rechnet. AuBerdem wird vorausgesetzt, daB die Schwingungsamplituden
der Pendel sehr klein sind und die Reibung in den Achsenlagern vernach-
lassigt werden kann.
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Die Kopplung bewirkt, dal sich die Ruhelage des Pendels 7 um den Win-
kel «, die des Pendels 2 um den Winkel —a von der Vertikalen unterschei-
det. In der Ruhelage verschwindet das resultierende Drehmoment sowohl
fiir Pendel 1 als auch fiir Pendel 2. Bezeichnet man mit D das Direktions-
moment [vgl. Gl. (6)] von Pendel 7 bzw. 2 und mit M, den Betrag des Dreh-
momentes, das von der Feder auf jedes der beiden Pendel ausgeiibt wird,
so gilt

Da=M,. 37)

Ist Pendel 7 um den Winkel ¢,, Pendel 2 um den Winkel g, aus der Ruhe-
lage ausgelenkt, so wirkt auf Pendel I das riicktreibende Drehmoment

—D (¢, + a),
und das von der Feder herrithrende Drehmoment ist
My + D*(p; — 1) -

D* ist das Direktionsmoment der Feder. Bei Beriicksichtigung von Gl. (37)
kann man das resultierende Drehmoment fiir Pendel 1

—D(py + ) + My + D*(p, — ¢1) = —Dopy — D* (@, — @y)
schreiben. Fiir Pendel 2 liefert eine analoge Betrachtung

—D(gy— @) = My — D*(@y — ¢1) = —Dgpy + D* (91 — @)
Die Bewegungsgleichungen lauten daher

I$, = —Do; — D* (91 — @) (38)

1§y = =Dy + D* (¢, — @a) - (39)
Durch die Substitution |

Yi=¢1t @3, Ya=P1— P2
vereinfachen sich die Gln. (38) und (39) zu

Iy, = —Dy,
Iy, = —(D + 2D*) y,.

Die Losungen [vgl. Gl. (11)] sind

Y, = a, coS wyt + by sin w,yt,

Pg = Gy COS gt + by sin wyd

27 D
w1=Tl=+V—I—, (40)

mit

6*
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2w D + 2D* D* '
Geht man wieder zu den Winkeln ¢, und ¢, iiber, erhilt man
1
=5 {a, cos wyt + by sin w,t + a, cos wet + by, sin Wt} , (42)
1 . .
=5 {a, cos wt + b, sin w,t — @, cos wyt — by sin wyt} . 43)

Die Integrationskonstanten a,, b,, a, und b, sollen fiir drei verschiedene
Fille bestimmt werden.

1. Gleichsinnige Schwingungen

Beide Pendel werden um den gleichen Winkel @, aus ihrer Ruhelage aus-
gelenkt und zur Zeit ¢ = 0 losgelassen. Mit den Anfangsbedingungen

@1(0) = @2(0) = @o,  91(0) = @2(0) = 0
folgt aus den Gln. (42) und (43)

a, = 2@y, by =ay=0b=0,

P1= Pa = Po COS W;. (44)
Die beiden Pendel schwingen gleich, und zwar so, als wenn die Kopplung
nicht vorhanden wire.
2. Gegensinnige Schwingungen

Pendel I wird um den Winkel ¢,, Pendel 2 umn den Winkel —¢, aus-
gelenkt. Zur Zeit ¢ = 0 143t man beide Pendel los. Aus den Anfangsbedin-
gungen

1(0) = —3(0) = @,  @1(0) = §5(0) =0
folgt :
ay = 2@y, @y =0b=0b,=0,
Q1= —Pz = @ COS Wyt . (45)

Beide Pendel schwingen mit gleicher Amplitude und gleicher Frequenz,
aber mit einer Phasendifferenz n. Die Frequenz der gegensinnigen Schwin-
gung ist groBer als die der gleichsinnigen.

3. Schwebungsschwingungen

Man hilt Pendel I in seiner Ruhelage fest, lenkt Pendel 2 um den Winkel
@0 aus und 148t beide Pendel zur Zeit { = 0 los. Aus den Anfangsbedingungen

?10) =0,  @0) = @5, §:2(0) = 5(0) = 0
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ergibt sich
= —0y= @y, by =0b=0.
Die Gln. (42) und (43) lauten dann

‘ .1 . [1
@1 = % (cos w,t — cos wyt) = @, sin [7 (g — wl)t] sin [E (wy + wl)t] , (46)

1
Qo= —(2—0 (cos wqt 4 coswyt) = @, cos [5 (g — ) t] cos [% (g + @y) t] . (47)

Die durch die Gln. (46) und (47) beschriebenen Schwingungen haben im
allgemeinen einen komplizierten Verlauf. Aus diesem Grunde soll voraus-
gesetzt werden, dal die Kopplung der beiden Pendel nur lose ist. Als Ma
fiir die Kopplung definiert man den Kopplungsgrad

D*
“DiDv (48)

Mit den Gln. (40) und (41) kann man dafiir

k

_wi—ow] Ti-T; (49)
o+l T;4 T

schreiben. Kleiner Kopplungsgrad bedeutet also, daB das Direktionsmoment
der Feder klein gegen das des Pendels bzw. daBl die Schwingungsdauer der
gleichsinnigen Schwingung nur wenig groBer als die der gegensinnigen ist.
In diesem Falle kann man die Gln. (46) und (47) so interpretieren: Beide
Pendel fithren Schwingungen mit der Kreisfrequenz

w=-3 (wy + )

bzw. der Schwingungsdauer T' gemif

1 1/1 1
T=”2‘(T2+Tl) (50)

aus. Die Amplitﬁden ®o sin—;— (wy —wy) t bzw. @, cos % (ws — w;) ¢t dndern

sich mit kleiner Kreisfrequenz periodisch mit der Zeit. Die Amplituden von
Pendel 1 verschwinden zu den Zeiten

=nTs, n=01,2 ...
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Es gilt also
Wy —
22 ITS—W,
1 1 1
el 51
T, T, T, 1)

Das beschriebene Verhalten bezeichnet man als Schwebung, T als Schwe-
bungsdauer.

Versuchsausfiihrung

Wir bestimmen die Schwingungsdauern 7', und T, bei der gleichen Lage
der Kopplungsfeder, indem wir mehrmals die Zeit fiir je N Schwingungen
sehr kleiner Amplitude stoppen. Die Zahl & ist so groB zu wihlen, daf die
zur Berechnung von k und T [vgl. die Gln. (49) und (51)] benotigte Diffe-
renz T; — T, mit hinreichender Genauigkeit angegeben werden kann. An-
schliefend sind bei gleicher Kopplung die Schwingungsdauer der Schwe-
bungsschwingung 7" und die Schwebungsdauer 7'y zu messen. Beide Zeiten
sollen auch aus den Gln. (50) bzw. (51) berechnet werden. Den Kopplungs-
grad k erhalten wir aus Gl. (49). Der Versuch ist bei zwei anderen Ein-
stellungen der Kopplungsfeder zu wiederholen.

Die Erscheinung der Schwebungsschwingungen ist anhand des Energie-
satzes zu diskutieren. Studenten mit Physik als Hauptfach sollen sich
auBerdem iiberlegen, warum bzw. unter welchen Bedingungen beim Null-
durchgang der Amplitude der Schwebungsschwingung ein Phasensprung
von 7 auftritt.

M. 3.4. Tragheits- und Direktionsmomente

Aufgabe: 1. Das Tragheitsmoment I und das Direktionsmoment D eines
Drehtisches sollen bestimmt werden. Der Satz von Steiner ist
experimentell zu priifen.

Ein Drehtisch besteht aus einer horizontal liegenden Platte, die starr mit
einer gut gelagerten, vertikalen Drehachse verbunden ist. An der Achse ist
das innere Ende einer Spiralfeder befestigt. Das duBlere Ende der Feder ist
an das Gehduse des Drehtisches angeschraubt. In die Platte sind kleine
Locher gebohrt, die definierte Absténde s von der Drehachse haben und zur
Befestigung eines Koérpers dienen. Als Kérper K soll ein homogener Zylin-
der mit dem Radius R und der Masse m verwendet werden. Fiir die Schwin-
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gungsdauer des Drehtisches gilt unter den in Abschn. M. 3.0.2 gemachten
Voraussetzungen Gl. (14), d. h., es ist

I
2 — 42 .
T? =4n D (52)

Befestigt man den Zylinder so auf dem Drehtisch, da8 die Zylinderachse
parallel zur Drehachse verlauft und von ihr den Abstand s hat, dann ist das
Triagheitsmoment des Zylinders nach dem Steinerschen Satz Gl. (16)

IK=%mR2+msz. (53)

Fiir das Triagheitsmoment des Systems Drehtisch + Zylinder gilt

IS=I+IK=I+—;-mR2+msz, (54)
fiir die Schwingungsdauer
I
T: = 4‘”2% . (65)
Ist speziell s = 0, erhalt man
I+ —;—mR2
T;=4m2——— 56
[} T D (56)
Aus den Gln. (52) und (56) folgt
212 mR?

Den Rechnungen (vgl. Abschn. M. 3.0.2) liegt die Annahme zugrunde, da die Reibung in
den Achsenlagern vernachldssigbar ist. In Wirklichkeit treten im Experiment stets
Reibungsverluste auf, die eine Dampfung der Schwingungen zur Folge haben. Wenn
man das Drehmoment der Reibung proportional der Winkelgeschwindigkeit ¢ ansetzt,
148t sich berechnen, daB die Schwingungsamplitude exponentiell mit der Zeit abnimmt.
Ist das Verhiltnis einer Amplitude zur nichstfolgenden kleiner als 2, so wird die
Schwingungsdauer der gedimpften Schwingung nur um weniger als 1% groBet als die
der ungedimpften. Aus diesem Grunde ist es gerechtfertigt, zur Berechnung der Trig-
heitsmomente die Gleichungen fir ungeddmpfte Schwingungen zu verwenden.

Versuchsausfihrung

Wir bestimmen die Masse m und den Radius R des Zylinders K und be-
rechnen die Triagheitsmomente I, nach Gl. (53) fiir die mit dem Drehtisch
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realisierbaren Abstinde s. Vor Beginn der weiteren Messungen ist der
Drehtisch zu justieren. Zur Bestimmung der GroBen 7', Ty und T ist die
Zeit fiir moglichst viele Schwingungen zu stoppen. Das Direktionsmoment D
ergibt sich aus Gl. (57), das Triagheitsmoment des Drehtisches I aus Gl. (52).

Wir berechnen die Tragheitsmomente I, nach Gl. (54) und stellen die Ge-
rade I, iiber s? graphisch dar. In diese Darstellung werden die nach Gl. (55)
ermittelten Werte I, als deutlich erkennbare Punkte eingetragen. Wenn die
Abweichungen dieser Punkte von der Geraden kleiner als die absoluten
MeBfehler sind, ist die Giiltigkeit des Steinerschen Satzes experimentell
nachgewiesen.

Aufgabe: 2. Die drei Haupttrégheitsmomente eines homogenen Korpers
mit zwei zueinander senkrechten Symmetrieebenen sollen fiir den
Massenmittelpunkt experimentell bestimmt werden.

Gegeben sei ein starrer Korper mit einer beliebigen Drehachse A. Ein
Punkt der Achse wird als Ursprung eines rechtwinkligen Koordinaten-

z
/A

Abb. 18.
Zur Drehung eines Korpers
um eine feste Achse

systems mit den Einheitsvektoren %, j, k gewahlt (vgl. Abb. 18). In diesem
System hat der Einheitsvektor e der Drehachse die Komponenten (Rich-
tungskosinus) «, 8, y.

e = ui+ fj + yk,
e.e—lel2=1=a®+f2+ 92

Ein beliebiges Massenelement dm des Korpers habe den Ortsvektor
r=uxi+ yj+ z2k.

Der senkrechte Abstand des Massenelementes von der Achse sei [.

12 = |r|2sin?y = |r2 — |r|2cos?yp = |v|? |e|> — (r. e)2.
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Das Trigheitsmoment I, des Kérpers, bezogen auf die gegebene Achse, ist
Ii=[rdm=[|r2|e)2dm — [(r-e?dm
oder
Io={ (2% + g2 + 22 (@ + B2 + 92) dm
— _[ (woe + yB + 2zy)% dm.
Ordnet man nach den Komponenten des Einheitsvektors e, so wird
Iy=o[ (42 + 22) dm + 2§ (2% + 2) dm + p2[ (22 + ?) dm
—2{ap fay dm + By [ yz dm + ya [ zx dm} .
Die Ausdriicke »
J@+2)dm=1I,, J@+a)dn—1,, [@+y?)dn=1,

sind die Tragheitsmomente des Korpers, bezogen auf die drei Achsen des
Koordinatensystems. Die GroBen

2y dm = 1, jyz dm =1, fezdm = I,
bezeichnet man als Trigheitsprodukte. Damit wird
1, = o1, + B2l + v*1,, — 2{afl,, + Byl,, + yal,,}. (58)

Gl. (58) sagt aus: Wenn man die drei Tragheitsmomente, bezogen auf die
Achsen eines Koordinatensystems, und die drei Trigheitsprodukte kennt,
kann man das Tragheitsmoment fiir jede durch den Nullpunkt des Systems
gehende Achse angeben.

Auf der Drehachse soll vom Nullpunkt aus die GroBe

tof

R=IA_

aufgetragen, d.h., es soll der Vektor
1
R=1, ®e= Rai+ RBj + Ryk =& + nj + Lk

dargestellt werden. Multipliziert man GI. (58) mit R?, so erhdlt man fiir die
Komponenten &, i, § des Vektors R

Ezsz + nzlyy + CZIzz -2 {'E’]Izy + nCIyz + Cflzx} =1.. (59)

Gl (59) stellt eine Fliche im Raum dar. Da das Trigheitsmoment I fiir
keine Drehachse verschwindet, bleibt der Vektor R stets endlich. Die Fliche
ist also ein Ellipsoid, das Trigheitsellipsoid. Durch eine Hauptachsen-
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transformation (Drehung des Koordinatensystems um den Nullpunkt)
kann man Gl. (59) in die Form

X2l + Y2, + 221, =1 (60)

bringen. Iy, I, und I, bezeichnet man als Haupttrigheitsmomente, die
Achsen des neuen Koordinatensystems X, Y, Z als Haupttriagheitsachsen
und die durch die Achsen gebildeten Ebenen als Haupttrigheitsebenen.
Die Verhiltnisse werden wesentlich einfacher, wenn der Korper homogen
und z.B. die zy-Ebene des Koordinatensystems eine Symmetrieebene ist.
In diesem Falle verschwinden die Tragheitsprodukte I, und I,,, und die
Hauptachsentransformation wird durch eine Drehung des Koordinaten-
systems um die z-Achse erreicht. Hat der Korper noch zusitzlich eine
Symmetrieebene, die senkrecht auf der zy-Ebene steht (z. B. die 22-Ebene
des Koordinatensystems), dann verschwindet auch I,,. Die Achsen des
Koordinatensystems z, y, z sind also bereits Haupttriagheitsachsen. Diese
Betrachtungen gelten z.B. fiir den in Abb. 19 skizzierten Kdorper. Der

X X\
I3
L3/
M Z 0 27 Abb.19.
2 — F2' Koérper mit U-Profil
1 71

Ursprung des Koordinatensystems soll im Massenmittelpunkt liegen. Zur
Bestimmung der verschiedenen Trigheitsmomente des Korpers verwendet
man einen Drehtisch, dessen Trigheitsmoment I und Direktionsmoment D
bekannt sind. Die Stifte 1, 7/, 2, 2, 3 und 3 dienen dazu, den Xérper in
definierten Lagen auf dem Drehtisch zu befestigen.

Versuchsausfithrung

Wir bringen die z-Achse (Stift 7) mit der Achse des Drehtisches zur Dek-
kung und bestimmen die Schwingungsdauer 7,. Dann werden die Schwin-
gungsdauern 7', bzw. T';3 bei verschiedenen Abstéinden s zwischen Dreh-
achse und Stift 2 bzw. Stift 3 gemessen. Aus

T3”=4n2%, n=1,23

lassen sich die Tragheitsmomente I,, berechnen. Wir stellen I, und I, in
Abhingigkeit von s graphisch dar und ermitteln die Minima der beiden
Kurven.
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Es gilt
IOI = Izz = IX7
Min (Isz) = Iyy = IY,
Min (I5) =1,, = I,.

Damit ist das Tragheitsellipsoid Gl. (60) fiir den Massenmittelpunkt des
Korpers vollstandig bestimmt. Auflerdem kann man die Lage des Massen-
mittelpunktes angeben.

Die Lage des Massenmittelpunktes und die zugehérigen drei Haupttrag-
heitsmomente des Korpers der Abb. 19 kénnen auch berechnet werden.

M.4. KREISEL

M. 4.0. Aligemeine Grundlagen

M. 4.0.1. Kreiselarten

Alle starren Korper, die sich um einen festen Punkt drehen, stellen Kreisel
dar. Besitzen sie beziiglich einer durch ihren Schwerpunkt (Massenmittel-
punkt) gehenden Achse Rotationssymmetrie, sprechen wir von einem sym-
metrischen Kreisel. Die Symmetrieachse ist Haupttrigheitsachse und wird
Figurenachse genannt. Wenn der Schwerpunkt eines solchen Kreisels gleich-
zeitig Drehpunkt ist, liegt ein. krdftefreier Kreisel vor, weil seine eigene
Schwere die Kreiselbewegung nicht beeinflult (Schweremoment gleich Null).
Ein Kreisel, auf den ein Schweremoment oder ein beliebiges anderes, bei-
spielsweise magnetisch bedingtes Moment wirkt, heillt schwerer Kreisel. Das
im Versuch dieses Kapitels verwendete Fesselsche Gyroskop ist eine be-
sondere Form eines symmetrischen Kreisels, der als kraftefreier und schwe-
rer Kreisel betrieben werden kann.

Drehungen um Achsen sind Sonderfille der Kreiselbewegung. Man findet
sie beispielsweise bei navigatorischen Kreiselgeriten (Kreiselkompal,
Wendezeiger, kiinstlicher Horizont u. a.), bei rotierenden Maschinenteilen
(Rader, Schwungscheiben, Rotor von Motor, Generator, Turbine usw.), bei
der Erde und anderen Himmelskorpern, aber auch bei atomaren Dreh.
bewegungen.

M. 4.0.2. Prizession des symmetrischen Kreisels

Ein symmetrischer Kreisel moge sich zundchst kraftefrei um seine im
Raum ruhende Figurenachse drehen (Abb.20a). Diese ist gleichzeitig
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Richtung des Drehimpulsvektors L und der Winkelgeschwindigkeit «w sowie
der diesen Vektoren zugeordneten Achsen, der Drehimpuls- und der momen-
tanen Drehachse. Konnen Reibungskrafte vernachlissigt werden, behalt der
Drehimpuls des Kreisels seinen Betrag und seine Richtung unverindert bei

L

Drehimpulsachse

~preh-und
Schwerpunkt

Abb. 20. Kriftefreier (a)
und schwerer (b) Kreisel

(Drehimpulssatz). Wenn jedoch wahrend der Zeit df auf den Kreisel ein
Drehmoment M &duBerer Krifte wirkt (schwerer Kreisel), dndert sich der
Drehimpuls geméfB der Gleichung

dL = M dt. (1)

Der Vektor dL hat stets die Richtung des Drehmomentvektors M.

Zu dieser Gleichung fithrt folgende Uberlegung: FaBt man einen Kreisel als System
von Massenelementen auf, trigt jedes mit seinem Bahnimpuls p; zum Gesamtdreh-
impuls L bei. Wir setzen daher definitionsgemif3

L =% (v Xp)
1
und verstehen unter »; den Radiusvektor, der von einem Bezugspunkt auf der Achse

aus zum ¢-ten Massenelement geht.
Die Differentiation ergibt

ar. dr, dp;
3 [(G xp) + (o T
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Da p; || dr;/dt ist, wird die erste Klammer dieser Gleichung Null. Das Vektorproduks
der zweiten Klammer stellt das durch eine Kraft F; verursachte Drehmoment M;
dar; denn es ist dp;/di = F; und »; X F; = M;, so daB iiber

dL

7=§M,.=M

die Gl. (1) unmittelbar folgt.

Zwei Grenzfille der Drehimpulsinderung sind bemerkenswert :

a) Der Drehmomentvektor M verlauft in Richtung von L. Dann liegt
auch dL parallel zu L. Die Vektoraddition L + dL wirkt sich nur auf den
Betrag des Drehimpulses aus, seine Richtung bleibt erhalten. Je nach dem
Richtungssinn des Drehmomentes wird der Kreisel angetrieben oder ab-
gebremst.

b) Das Drehmoment M bildet mit dem Drehimpulsvektor L einen rechten
Winkel. Dann steht auch dL senkrecht auf L (Abb. 20b). In diesem Falle
weicht die Drehimpulsachse in Richtung des Drehmomentes M, also senk-
recht zur wirkenden Kraft aus. Solange ein Drehmoment M wirkt, lauft
der Drehimpulsvektor L auf der Mantelfliche eines Kreiskegels gleichférmig
um, der Kreisel prazediert. Der Offnungswinkel 2« des Kreiskegels ist durch
die Anfangsbedingungen gegeben, die hier nicht erértert werden. Fiir die
Winkelgeschwindigkeit |wyp| der Prizession folgt aus Abb. 20b

_dp 1 |dL| M|
el =g = |JL[sine “dt ~ |L|sina @
und daraus
|M| = |wp| - |L| sin a. (3)

Dies ist der Betrag des Vektorproduktes

M= w; x L, (4)

das somit die durch ein Drehmoment M verursachte Prézession eines Krei-
sels beschreibt. Der Drehmomentvektor M steht senkrecht zu der durch die
Vektoren wp und L gebildeten Ebene, die Vektoren wyp, L und M bilden in
dieser Reihenfolge ein Rechtssystem.

Der allgemeine Fall, dal der Drehmomentvektor M und der Drehimpuls L
einen beliebigen Winkel einschlieBen, kann iiber eine Komponentenzerlegung
auf die zuvor diskutierten Grenzfille zuriickgefithrt werden.

M. 4.0.3. Nutation des symmetrischen Kreisels

Wenn sich bei einem rotierenden symmetrischen Kreisel die Figuren-,
die Drehimpuls- und die momentane Drehachse nicht decken (Abb. 21),
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treten komplizierte Verhaltnisse auf: Die momentane Drehachse und die
Figurenachse beschreiben je einen Kreiskegel um die Drehimpulsachse, die
beim kraftefreien Kreisel ihre Richtung im Raum beibehilt (Drehimpuls-
satz). Die Kegel rollen aufeinander so ab, daBl ihre Achsen stets eine Ebene
bilden und bei einem verlingerten Kreisell) zueinander die in der Abb. 21

momentane

Drehachse Drehimpulsachse

Figurenachse
R _<£ufaf/vﬂ5keye/

A’as/‘po/
kegel

Gangpol-

kegel Abb. 21. Zur Bewegung eines ver-

lingerten symmetrischen Kreisels

gezeichnete Lage haben. Die Bewegung der Figurenachse um die Dreh-
impulsachse ist gut zu beobachten und wird Nufation genannt, der zu-
gehorige Kreiskegel ist der Nutationskegel. Die momentane Drehachse wan-
dert im Kreiselkérper.

Fithrt man ein koérperfestes kartesisches Koordinatensystem ein, dessen
Achsen z, y, z mit den Haupttragheitsachsen des Kreisels zusammenfallen
und bei dem z in Richtung der Figurenachse weist, 148t sich die Winkel-
geschwindigkeit » um die momentane Drehachse durch ihre Komponenten
¥y, 0y, 0, im korperfesten Bezugssystem ausdriicken:

W =+ o + wk (5)

(¢, §, k Einheitsvektoren im korperfesten Bezugssystem). In entsprechender
Weise gilt fiir den Drehimpuls

L = w,l,i+ w,d,j+ wlk,

wenn I, I, und I, die Haupttragheitsmomente (vgl. M. 3.4. Aufgabe 2)
darstellen. Da beim symmetrischen Kreisel das Trégheitsellipsoid rotations-
symmetrisch ist, folgt mit I, = I, = I

L = I(w,i + w,j) + Lo,k (6)

1) Er besitzt beziiglich seiner Figurenachse ein minimales, der abgeplattete Kreisel
ein maximales Trégheitsmoment.
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und daraus unter Beachtung der Gleichung (5)

1 I, |
w——I—SL—i—(i—T)wzk. (7)

8
Der erste Summand stellt die Winkelgeschwindigkeit wy der Figuren;,chse
um die Drehimpulsachse und damit die Winkelgeschwindigkeit der Nuta-
tion dar. Sie ist ein Vektor von der Richtung des Drehimpulses. Bezeichnet

man die Periodendauer mit 7'y, gilt fiir den Betrag der Winkelgeschwindig- -
keit und damit fiir die Kreisfrequenz der Nutation

2w
Tx

wN=

1
A |L|. (8)

Da sich die Bewegung der Figurenachse gut beobachten 1iBt, kann die
Nutationsfrequenz experimentell leicht ermittelt werden. Aus ihr und der
Prizessionsfrequenz wp konnen die Haupttragheitsmomente des Kreisels
bestimmt werden. Dazu dienen folgende Uberlegungen: Das Skalarprodukt
aus Gl. (6) und k ergibt

kL = |L| cos ¢ = Tw,

(9 ist der halbe Offnungswinkel des Nutationskegels). Fiir kleine Winkel ¢
(cos & ~ 1) folgt niherungsweise

IL| = Lo, = 2m,1,. 9)

Hierin ist v, die Frequenz der Rotation des Kreisels um seine Figurenachse.
Setzen wir Gl. (9) in Gl. (8) ein, ergibt sich fiir die Nutationsperiode

11

Tx= T (10)

Wenn ein Kreisel infolge eines permanenten duBeren Drehmomentes préze-
diert, iiberlagert sich die Nutation dieser Bewegung, so dall der Kreisel
insgesamt eine Nick- oder Schleifenbewegung auf kreisformiger Bahn aus-
fiihrt.

Setzt man den fiir kleine Nutationen giiltigen Betrag des Drehimpulses
[G1. (9)] in Gl. (2) ein, folgt fiir die Periodendauer der Prizession

2
TP=2—n=4n—szzsin a. (11)

Wp |M |




96 Mechanik

M. 41. Gyroskop

Aufgaben: An einem Gyroskop sollen ermittelt werden

1. die Nutationsperiode in Abhéngigkeit von der Kreiselfrequenz
[Ty = f@)],

2. die Abhingigkeit der Prizessionsperiode von &uBeren Dreh-
momenten und von der Kreiselfrequenz, evtl. vom Trigheits-
moment des Kreisels [Tp = f(M, v,, I,)],

3. die Haupttragheitsmomente des Kreisels. Gegebenenfalls sind
die aus experimentellen Daten ermittelten Werte mit den aus den
Kreiselabmessungen berechneten zu vergleichen.

Als Modell fiir einen symmetrischen Kreisel dient ein modifiziertes Fessel-
sches Qyroskop (Abb. 22). An dem einen Ende eines Stabes befindet sich ein
elektrisch angetriebener Kreisel K, der vom KurzschluBliufer eines Asyn-
chronmotors gebildet wird. Seine Figurenachse zeigt in Richtung des Stabes.

Abb. 22. Prizession (a) und Nutation (b) des Gyroskopes

Sie ist in Abb. 228 gleichzeitig Richtung der Drehimpulsachse. (Die Zuord-
nung der Vektoren M und wy, zu L geht aus der Abb. 20 fiir « = 90° hervor.)
Mit dem Laufgewicht Gy, am anderen Stabende kann das Gyroskop in bezug
auf die horizontale Achse, die z-Achse der Abb. 22, ausbalanciert werden.
AuBerdem ist eine Drehung (Prézession) um die vertikale, die y-Achse
moglich. Sie wird durch ein duBeres Moment M verursacht, welches im Ab-
stand s von der Drehachse angebrachte Zusatzgewichte G =m .g (m -
Masse der Gewichtsstiicke, ¢ — Schwerebeschleunigung) erzeugen. In diesem
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Falle kann Gl. (11) durch

_ 4,1,

T,
P mgs

(12)

ersetzt werden. Die Kreiselfrequenz », ist mit der Frequenz vy des elektri-
schen Drehfeldes im Motor M nahezu identisch. Es wird in unserem Beispiel
vom Dreiphasenstrom eines Umformers erzeugt (Abb. 23)1).

Umformer
o -\ o
a Q £ |
k Netigerat
Oszillaskop
6 [ o Y~ Abb. 23. Antrieb
~ 0 und Frequenzmessung
M 0 _° beim Gyroskop
Kreisel- Tongenerator
motor

Mit dem Widerstand R regeln wir die Speisespannung des Umformers und
damit die Frequenz des Dreiphasenstromes stufenlos.
Die Frequenz v, ~ vy kann auf verschiedene Weise ermittelt werden:

a) Vergleich der Frequenz der Speisespannung vy des Kreisels mit der Fre-
quenz eines Tongenerators G (gemalB der Schaltung in Abb. 23): Auf dem
Schirm eines Elektronenstrahloszilloskops wird die Lissajous-Figur fiir das
Frequenzverhaltnis 1: 1 (siehe Versuch E. 5.4.) erzeugt. Die Messung ist bei
Asynchronmotoren wegen des Schlupfes von Rotor und Drehfeld (v, < »g)
mit einem systematischen Fehler behaftet, der beim unbelasteten Asyn-
chronmotor im allgemeinen <1 % ist, im Versuch durchaus 5% betragen
kann.

b) Stroboskopische Frequenzmessung: Auf der Rotorachse befindet sich
eine MeBmarke oder eine mit einer Segmentteilung versehene Scheibe. Sie
wird mit einer intensitdtsmodulierten Lichtquelle (Lichtblitzstroboskop)
periodisch beleuchtet. Stimmen die Frequenzen des Wechsellichtes und des
Motors iiberein, ist ein stehendes Bild der MeBmarke bzw. der Segment-
scheibe zu beobachten. Je nach Teilung der Segmentscheibe ist dies auch
der Fall, wenn die Motorfrequenz bestimmte Bruchteile oder Vielfache der

1) Im Versuch handelt es sich beispielsweise um einen Kreisel eines Bordgerites aus
einem Flugzeug. Der Umformer wandelt den Gleichstrom des Bordnetzes (24 V) in
Drehstrom (vg = 500 Hz) um, so daB der Kreisel hochtourig betrieben werden kann.
Aus, diesem Grunde werden Kreisel als KurzschluBldufer ausgebildet.

7 Phys. Praktikum
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Frequenz des Wechsellichtes betrigt [vgl. Versuch M. 3.2. (Versuchsausfiih-
rung)]. Aus der an der Skale des Lichtblitzstroboskopes ablesbaren Fre-
quenz des Wechsellichtes folgt die Frequenz des Rotors.

Eine andere Bauart des Gyroskopes geht aus dem zuvor beschriebenen
Modell hervor, indem der Motorkreisel der Abb. 22 bei kardanischer Lage-
rung in das Drehzentrum gelegt wird. Auf dieses Modell lassen sich alle
Uberlegungen dieses Kapitels ohne Einschrinkungen anwenden.

Versuchsausfiihrung

Die Figurenachse des Gyroskopes wird mittels Laufgewichtes Gy hori-
zontal ausgerichtet, die Schaltung nach Abb. 23 aufgebaut. Die MeBreihen
fiir Aufgabe 1 und 2 beginnen jeweils mit maximaler Frequenz »; bzw. v,
(R = 0). Innerhalb der Mefireihen sollte mit mindestens 5 Rotorfrequenzen
gearbeitet werden, die méglichst .gleichméfBig auf das Intervall zwischen
maximaler Frequenz (vgu,,) und etwa ihren halben Wert (1/2 vgy,y) ver-
teilt sind. Eine konstante Drehzahl des Kreisels ist jeweils an einer gleich-
maBigen Tonhohe des Rotorgerdusches zu erkennen.

Zur Frequenzbestimmung iiber Lissajous-Figuren wird die Verstarkung
am Oszilloskop bzw. am Tonfrequenzgenerator so gewihlt, daff im ab-
geglichenen Zustand moglichst wenig verzerrte Ellipsen entstehen (siehe
Versuch E. 5.4.). Beim Abgleichen verindern wir die Tonfrequenz konti-
nuierlich und lesen den MeBwert an der Skale des Generators ab, fiir den das
Ellipsenbild ruht.

Bei dufgabe 1 16sen wir die Nutation des Gyroskops durch einen leichten
StoB gegen den Kreiselkorper aus. Wegen der Naherung in Gl. (9) soll 4
klein gehalten werden (¢ < 10°). T’y wird mit der Stoppuhr ermittelt, indem
wir im Interesse eines kleinen MeBfehlers den Mittelwert aus mindestens
10 Unléufen der Figurenachse bilden. Die graphische Darstellung von T'y
iiber 1/v, ergibt nach GL. (10) als Ausgleichskurve eine Gerade.

Fiir Aufgabe 2 stellen wir mit mehreren Gewichtsstiicken @, die in be-
stimmten Abstinden s vom Drehpunkt an das Gyroskop gehéingt werden,
verschiedene Werte des Drehmomentes [M| = mgs ein. Fiir jede Belastung
und Rotorfrequenz wird die Periodendauer der Prazession mit der Stoppuhr
bestimmt, indem wiederum der Mittelwert aus mehreren Umldufen gebildet
wird. LaBt sich das Triagheitsmoment beim Kreiselmodell des Praktikums
variieren, wird eine weitere MeBreihe bei geindertem Trigheitsmoment auf-
genommen. Erfahrungsgemal sinkt die Figurenachse auf der Seite der Zu-
satzgewichte im Laufe der Messung infolge Reibung ab. Dadurch verringert
sich das Drehmoment, so daB die Messungen verfilscht werden. Deshalb
muB die Figurenachse von Zeit zu Zeit durch einen leichten Druck in Pré-
zessionsrichtung oder durch eine entsprechende Unterstiitzung angehoben
werden.

Eine graphische Darstellung von T iiber .9,/(m - s) liefert nach
Gl. (12) als ausgleichende Kurve eine Gerade. Aus ihrer Steigung wird
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gemiB Aufgabe 3 mit Hilfe von Gl. (12) der Mittelwert des Haupttragheits-
momentes I, und mit der graphischen Darstellung der Aufgabe 1 und Gl. (10)
der Mittelwert des Haupttrigheitsmomentes I, berechnet.

M.5. ELASTISCHE EIGENSCHAFTEN
FESTER KORPER

M.5.0. Allgemeine Grundlagen

Jeder feste.Kérper wird unter dem Einflul einer mechanischen Spannung
deformiert. Bei hinreichend kleiner Spannung ist die Deformation elastisch,
d. h., der Korper nimmt nach der Entlastung seine urspriingliche Gestalt
wieder an. Uberschreitet die Spannung dagegen einen bestimmten Wert, so
konnen FlieBerscheinungen zu bleibenden Volumen- oder Forménderungen
fithren. Dann nennt man die Deformation unelastisch.

Das elastische Verhalten homogener, isotroper fester Kérper wird durch
vier MaterialgroBen charakterisiert: den Elastizititsmodul E, die Poisson-
sche Zahl p, den Torsions- oder Schubmodul G und den Kompressionsmodul K.

Der Elastizitdtsmodul wird durch das Hookesche Gesetz

o = Ee 1)

:: \__[
NS __ A _
e -
- ~,
|
f
2-AR) - Abb. 24.
2R Deformation eines Zylinders durch eine Zugkraft

T*
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definiert. Gl. (1) besagt, daBl bei hinreichend kleinen Deformationen die
Zugspannung o der Dehnung & proportional ist. Die Zugspannung ist die
senkrecht zum Querschnitt 4 des Korpers angreifende Kraft F, (vgl.
Abb. 24) geteilt durch diesen Querschnitt.
F.
o= Tz . (2)
Als Dehnung bezeichnet man das Verhiltnis der Lingeninderung zur
urspriinglichen Linge 1.
Al
&eE= —l— . (3)
Die Poissonsche Zahl ist der Quotient der relativen Querverkiirzung AR/R
und der Dehnung (vgl. Abb. 24).

PTRT T RN @)

Wenn auf die obere Deckfliche eines Wiirfels, dessen Bodenfliche fest-
gehalten wird, eine nicht zu grofie Kraft Fg in der in Abb. 25 dargestellten
Richtung wirkt, so ist der Scherwinkel « der Schubspannung ¢ proportional.

7= Qo (5)

Deformation eines Wiirfels durch eine Scherkraft

Den Proportionalitatsfaktor G nennt man Schub- oder Torsionsmodul, und
die Schubspannung ist das Verhéltnis der Scherkraft Fy zum Querschnitt 4
des Wiirfels.
Fy

TS (6)
Ein fester Korper habe bei einem hydrostatischen Druck p, d. h. bei Vor-
handensein einer negativen Spannung, das Volumen V. Wenn nun der
Druck um den kleinen Wert Ap gedndert wird, stellt man eine Volumen-
inderung AV fest. Bei einer Druckerhéhung nimmt das Volumen ab, bei
einer Druckerniedrigung zu. Der Quotient AV/Ap ist also stets negativ.
Der Betrag dieses Quotienten wird bei gegebener Druckdifferenz Ap um so
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groBer, je groBer das Volumen V ist. Andererseits wird bei gegebenem Aus-
gangsvolumen V der Betrag von AV/Ap um so kleiner, je gréBer die Druck-
differenz Ap ist. Zur Charakterisierung der Zusammendriickbarkeit eines
festen Korpers empfiehlt sich daher der Ausdruck

1AV 1.4V | -
{_75}—_7d—p’

% = lim
Ap—0

% bezeichnet man als (differentielle) Kompressibilitit, ihren Kehrwert als
Kompressionsmodul.

- (8)

Aus den Definitionsgleichungen (1), (5) und (8) in Verbindung mit Gl. (7)
folgt, daB die GroBen B, G und K die Dimension eines Druckes haben. Thre
Einheit ist im gesetzlichen MaBsystem Nm~2. In der Technik war es bisher
iiblich, die drei Moduln in der Einheit kp mm~2 anzugeben.

1 kp mm=2 = 9,81 . 108 Nm~2.

Es soll noch erwihnt werden, dafl zwischen den Materialgroffen der Elasti-
zitétslehre der Zusammenhang

E
b=5g- 1 (9)
)
K=3a—am 1o

besteht. Wenn man also z. B. den Elastizitdtsmodul und den Torsions-
modul experimentell bestimmt hat, kénnen die Poissonsche Zahl und der
Kompressionsmodul aus den Gln. (9) und (10) berechnet werden.

M. 5.1. Elastizititsmodul

Das Verhalten fester Korper bei Zugbeanspruchung wird in der Technik
mit Hilfe von ZerreiBmaschinen untersucht. Diese Maschinen sind mit zwei
Spannbacken ausgeriistet, die zur Befestigung eines Stabes aus dem zu un-
tersuchenden Material dienen. Eine der beiden Spannbacken ist starr mit
dem Sténder der ZerreiBmaschine verbunden. Greift nun an der anderen
eine Zugkraft Fy in Richtung der Stabachse an, so dehnt sich die Material-
probe um Al. An der ZerreiBmaschine ist eine MeBuhr angebracht, die den
Betrag von Fy anzeigt. Die Verlingerung Al kann an einem MaBstab ab-
gelesen werden. Im allgemeinen ist in eine ZerreiBmaschine noch zusétzlich
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ein Schreiber eingebaut, der F iiber Al graphisch darstellt. Um die Ergeb-
nisse von Proben mit unterschiedlichen Abmessungen vergleichen zu kén-
nen, mufl man von der Zugkraft zur Spannung und von der Verlingerung
zur Dehnung iibergehen, d. h. die Werte der Zugkraft durch den Quer-
schnitt 4 der Probe und die Werte der Verlingerung durch die Anfangs-
lainge ! teilen. Abb.26 zeigt schematisch ein sogenanntes Spannungs-

a
a M
B 2
o 7
Abb. 26. Spannungs-Dehnungs-Diagramm
p (schematisch)
9

Dehnungs-Diagramm. Im Intervall 0 < o < ¢y gilt das Hookesche Gesetz
Gl. (1). Punkt 1 wird als Proportionalititsgrenze bezeichnet, und der Ela-
stizitdtsmodul ergibt sich in dem genannten Intervall zu

Ao :
b= Ae (11)

Im Intervall o; < ¢ < 0, ist die Deformation zwar noch elastisch, aber
Spannung und Dehnung sind einander nicht mehr proportional. Punkt 2
nennt man Elastizititsgrenze. Zwischen Punkt 2 und Punkt 3 (Bruch-
grenze) ist die Deformation unelastisch. Wird die Spannung o, erreicht,
zerreifit die Probe.

Zur Bestimmung des Elastizititsmoduls im Laborversuch ist nicht un-
bedingt eine ZerreiBmaschine notwendig. Hat die Probe des zu untersuchen-
den Materials einen kleinen Querschnitt, kann man durch Belastung mit
Wigestiicken, deren Masse einige Kilogramm betrigt, gut mefibare Ver-
langerungen erzielen. Wenn die Probe einen gréfieren Querschnitt hat,
empfiehlt es sich, den Elastizitdtsmodul durch einen Biegeversuch zu er-
mitteln. '

M. 5.1.1. Dehnung

Aufgabe: Der Elastizitdtsmodul E verschiedener Metalle soll aus der Deh-
nung von Drihten bestimmt werden.

Ein Draht sei an einem Ende eingespannt, wihrend am anderen Ende
eine Zugkraft F, angreift. Diese wird so groB gewihlt, dal der Draht straff
gespannt ist. Am Draht sind zwei Marken 1 und 2 angebracht, die bei der
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Belastung F, den Abstand ! haben sollen. Beide Marken werden mit je
einem Mikroskop beobachtet. Die Mikroskopstiander diirfen wahrend des
Versuches nicht verschoben werden. Dagegen soll sich jedes Mikroskop
relativ zu seinem Stdnder mit Hilfe einer MeB8schraube parallel zu dem zu
untersuchenden Draht bewegen lassen, so daBl man nach einer VergroBerung
der Zugkraft die Verschiebung der beiden Marken messen kann.

Versuchsausfiithrung

Wir belasten den Draht mit der Zugkraft Fy und messen den Abstand 1.
Der Drahtdurchmesser 2r ist an etwa zehn verschiedenen Stellen zwischen
den Marken zu bestimmen. Zur Berechnung des Querschnittes wird der
arithmetische Mittelwert 7 verwendet. Wir stellen die beiden MeBschrauben.
auf 0 und lesen die Lage von Marke 1 bzw. 2 an den Okularskalen der
Mikroskope ab. Nach zusétzlicher Belastung des Drahtes mit der Zugkraft
F, sind die Meflschrauben so zu verstellen, daB die beiden Marken mit den
gleichen Teilstrichen der Okularskalen wie vor der Belastung zur Deckung
kommen. Die Differenz der MeBschraubeneinstellungen ist die der Zugkraft
F, entsprechende Verlingerung Al. Wir berechnen die Zugspannung ¢ nach
Gl. (2), die Dehnung ¢ nach Gl. (3) und wiederholen die Messung bei mehre-
ren verschieden grofBen Zugkriften; o ist iiber ¢ graphisch darzustellen.
Der Elastizitdtsmodul E ergibt sich aus dem Anstieg der gewonnenen Ge-
raden [vgl. Gl. (11)]. Der Versuch ist mindestens mit einem Draht aus ande-
rem Material zu wiederholen. Es ist zu beachten, daB die Drihte keinesfalls
Knicke haben diirfen !

M. 5.1.2. Biegung

Awufgabe: Der Elastizititsmodul £ verschiedener Metalle ist aus der Bie-
gung von Stében zu ermitteln.

Gegeben sei ein homogener Stab (Dichte g, Querschnitt 4), der auf zwei
Schneiden (Abstand ) liegt. Jede der beiden Schneiden ist dadurch mit der
Kraft 0,5 F, belastet. Das Gewicht des Stabes F; kann unter der Voraus-
setzung, dal} die Stablinge mit dem Schneidenabstand iibereinstimmt,

Fo=odlg : (12)

geschrieben werden. Der Stab ist infolge der Wirkung seines Gewichtes
auch ohne zusétzliche Belastung etwas gebogen. Lat man nun in der Mitte
zwischen den Auflagen senkrecht zur Stabachse eine Kraft F' angreifen, wird
die Durchbiegung vergréBert. Abb. 27 zeigt zwei Anordnungen zur Unter-
suchung der Biegung. Diese sind gleichwertig, wenn beide Stibe aus dem
gleichen Material bestehen und den gleichen, konstanten Querschnitt A4
haben. Den folgenden Uberlegungen liegt die Anordnung b) zugrunde.
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Die angreifenden Krifte bewirken, dal die oberen Schichten des Stabes
gedriickt, die unteren gedehnt werden. Im Inneren gibt es eine Schicht,
deren Léange sich nicht andert. Diese Schicht bezeichnet man als neutrale
Faser. Die Gleichung der neutralen Faser y(x) kann leicht berechnet werden,
wenn

1. das Hookesche Gesetz Gl. (1) gilt,

2. ein ebener Querschnitt des Stabes bei allen auftretenden Belastungen
eben bleibt,

3. die Durchbiegung so klein ist, daf fiir alle vorkommenden Werte von x
der Betrag der Ableitung 3’(z) sehr klein gegen 1 ist.

ya a
9
(F goAdl
7
7
7
Abb. 27. 4
Gleichwertige Anord- X

nungen zur Unter-
suchung der Biegung 5)

neutrale faser
it

ot ' 16+ Schichtquerschnitt a Abb. 28.
Deformiertes Volumenelement
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Auf den Stabquerschnitt an der Stelle z (vgl. Abb. 27 und Abb. 28) wirkt
ein Drehmoment im Uhrzeigersinn

!
——z

2
M, = god [ wdw + [no(y) d4. (13)
0 A

Aus Abb. 28 kann man entnehmen, daB sich das Hookesche Gesetz

o(n) =Ee=17]i1£=Eﬁ

£ r

schreiben 14Bt. Dabei ist » der Kriimmungsradius der neutralen Faser an
der Stelle z. Das Integral

(14)

I,=[n*d4 (15)
A

bezeichnet man als Fldachentragheitsmoment. Seine Einheit ist im gesetz-
lichen Mafsystem m*. Wenn man das erste Integral in Gl. (13) lost, in das
zweite Integral Gl. (14) einsetzt und Gl. (15) beriicksichtigt, erhdlt man

1 I v E
My =5 g0d (E—~x) + 1, (16)

Die Kraft 0,5 (F + F,) iibt auf den Querschnitt an der Stelle z (vgl. Abb. 27)
ein Drehmoment im mathematisch positiven Sinne

M, — % (El - x) (F + F,) (A7)

aus. Im Gleichgewichtsfalle gilt
M, = M,.
Aus den Gln. (16) und (17) folgt bei Verwendung von Gl. (12)

1

Bl = P — 22) + S goa (L) - 2} (18a)
=y ( x)‘*‘g.‘]@ {(g) E

Die GréBe 1/r ist die Kriimmung der neutralen Faser an der Stelle x. Aus
der Theorie der Beriihrung héherer Ordnung folgt firr die Kriimmung einer
Kurve y(x)

1, v
T RO
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Nach Voraussetzung 3 soll (y')? vernachlissighar klein gegen 1 sein. In
dieser Niherung gilt

Die Integration der Gleichung
L ELy" — LB - 2) + & A{(—”— 2} (18)

liefert bei Beriicksichtigung der Randbedingungen

¥'(0) = y(0) =0
1 1 e o1
L BLy =4 Pz — )+ god {(E) x—gx"}, (19)

l 1 1 1\2 1
+ElLy= %F(Eﬁ - gx"") + ZggA {(5) x? — gx‘*} . (20)

Da im vorliegenden Falle y(x) im Intervall 0 < z < I/2 positiv ist, muB} in
den Gln. (18) bis (20) das positive Vorzeichen verwendet werden. Die Funk-
tion der neutralen Faser hat an der Stelle x = /2 sowohl die groBte Steigung
als auch den groBten Funktionswert. Mit den Bezeichnungen

p~tangp=y(/2) und s=y(/2)
kann man die Gln. (19) und (20)

El,p - 11_6 (an + ; ggAzs) ,

1 5
=— 8 4 — 4
El,s = o (Fl +3 ggAl)

oder
2
zz (F +3 Fo)
¥="16m1, @1
» (F + %F.,)
s _° 7 (22)

48 EI,
schreiben. Die Linge s nennt man Biegepfeil.

Im Experiment ist der Stab zunédchst mit einer Schale (Masse mg) belastet,
die zur Aufnahme von Wigestiicken dient. Man erhilt den Winkel ¢, bzw.

’
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den Biegepfeil s,, indem man in den Gln. (21) und (22)
F = msg

setzt. AnschlieBend wird auf die Schale ein Wigestiick der Masse m ge-
legt. Der Winkel g ergibt sich aus Gl. (21), der Biegepfeil s aus Gl. (22) mit

F = (mg+ m)g.

Gemessen werden die Differenzen ¢ — ¢, oder s — sy. Dafiir konnen die
Gln. (21) und (22)

B 161, (9 — @) ’ @3)
__ Lmg
=48I, (s — 5) (24)

geschrieben werden. Das Gewicht des Stabes und das der Schale brauchen
daher nicht bekannt zu sein.

Um den Elastizitdtsmodul £ angeben zu kénnen, mufl man das Flachen-
tragheitsmoment I, fiir den Querschnitt des zu untersuchenden Stabes be-
rechnen. Voraussetzung fiir diese Berechnung ist, daB man die Lage der
neutralen Faser kennt. Da sich der Stab bei der Biegung insgesamt weder
verldngert noch verkiirzt, ist

ja(n) d4 =0
4
oder mit Gl. (14)
. Jn d4 = 0. (25)

Aus Gl. (25) folgt, daB der Massenmittelpunkt des Stabes in der neutralen
Faser liegen muBl. Hat der unbelastete Stab senkrecht zur Biegekraft eine
Symmetrieebene, dann stellt die Symmetrieebene die neutrale Faser dar.
Beispiele fiir diesen. Fall sind Stdbe mit rechteckigem oder kreisformigem
Querschnitt, Rohre und T-Triger. Fiir U- oder T-Triger (Biegekraft nach
oben oder nach unten) mufl die Lage der neutralen Faser nach Gl. (25)
berechnet werden.

Versuchsausfihrung

Wir legen den zu untersuchenden Stab so auf die Schneiden, daB die Stab-
enden nur sehr wenig iiberstehen (vgl. Abb. 27), und messen den Abstand I.
Dann wird die Schale zur Aufnahme der Wigestiicke in der Mitte zwischen
den Schneiden an den Stab gehéngt.
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Wir messen den Biegepfeil s, mit einer MeBuhr oder einer MeBschraube.
In gleicher Weise sind die Biegepfeile s; nach Belastung der Schale mit
Wigestiicken der Masse m; (¢ =1,2,...,n) zu bestimmen. Die Gerade
F; = m,g iiber §; = s; — s,, deren Steigung AF/AS ist, wird graphisch dar-
gestellt. Der gesuchte Elastizitdtsmodul Z ergibt sich nach Gl. (24) aus

_ BAFJAs
T 481,

n

E

Wenn statt des Biegepfeiles s der Winkel ¢ gemessen werden soll, befestigen
wir an einem Stabende einen kleinen Spiegel. Eine senkrecht stehende Skale
wird iiber den Spiegel durch ein Fernrohr mit Visierlinie beobachtet. Wir
messen den Abstand L zwischen Spiegel und Skale. Ist der Stab nur mit der
Schale belastet, wird am Mafistab der Skale der Wert z, abgelesen, bei zu-
satzlicher Belastung mit einem Wégestiick der Masse m,; der Wert z; (¢ = 1,
2, ..., n). Dann gilt

(2 — 2)
7

Wir stellen die Gerade F; = m,g iiber @; = @; — @,, deren Steigung AF/AD
ist, graphisch dar und berechnen den gesuchten Elastizitdtsmodul £ nach
Gl. (23) aus

12 AF/AD
B= 161,

Das Flachentrigheitsmoment I, fiir den Stabquerschnitt ist der Tab. 7 zu
entnehmen. Die zur Berechnung von I, benétigten Lingen sind mit mecha-
nischen MeBwerkzeugen an verschiedenen Stellen des Stabes zu bestimmen.
Der Versuch soll mit mindestens einem Stab aus anderem Material wieder-
holt werden.

2(@i — @o) ~ tan 2¢; — tan 2, =

M.5.2. Torsionsmodul

Der Torsionsmodul G 148t sich leicht aus Untersuchungen an verdrillten
Staben mit kreisformigem Querschnitt bestimmen. Gegeben sei ein einseitig
eingespannter Stab, dessen Lange 7 groB gegen den Radius r sein soll. Be-
trachtet man im Stabinneren einen koaxialen Hohlzylinder mit dem Ra-
dius 7" und der Dicke d#’ (vgl. Abb. 29) und la8t am freien Ende peripher
eine Schubkraft dFy angreifen, so wird eine urspriinglich senkrechte Faser
des Zylindermantels um den Scherwinkel & gedreht. Fiir den Bogen

s=1p
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gilt unter der Voraussetzung |«| < 1 in guter Naherung
s =la.

Damit kann man Gl. (5)

/

1=Gtz=G—Tl—<p

schreiben. Das Produkt aus der Schubspannung 7 und dem Querschnitt
des Hohlzylinders ist die Schubkraft

4

dFy = 2m’ dr’ G il— @.

W

)

S ———————

Abb. 29.
Zur Torsion eines Zylinders

Durch Multiplikation mit dem Hebelarm r* geht die Schubkraft in das
Drehmoment
2nG

M == pr’éde’

iiber. Das resultierende Drehmoment erhilt man durch Integration iiber
alle Hohlzylinder:

U= fdM=—2’;G q;fr’sdr',
0
TGrt

Wenn zur Verdrillung des Stabes ein groBles Drehmoment erforderlich ist,
empfiehlt sich eine statische Bestimmung des Torsionsmoduls. Liegt da-
gegen das zu untersuchende Material als Draht vor, wird der Torsionsmodul
zweckmaBigerweise mit einer dynamischen MeBmethode ermittelt.
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M. 5.2.1. Statische MeBmethode
Aufgabe: Der Torsionsmodul von Stiben aus verschiedenem Material soll

statisch bestimmt werden.

Das nicht eingespannte Ende eines Stabes wird starr mit einer zylindri-
schen Scheibe (Radius R) verbunden. Dabei sollen Stabachse und Schei-
benachse iibereinstimmen. Wenn man nun die Schubkraft Fg in der in
Abb. 30 dargestellten Weise an der Scheibe angreifen 1a8t, ist das auf den
Stab iibertragene Drehmoment

M = RF. (27)

' Abb. 30. Torsionsvorrichtung

1
7fs

Aus den Gln. (26) und (27) erhilt man fiir den Torsionsmodul

o 211;;1?8 .
r "4

(28)

An das freie Ende des Stabes ist ein kleiner Spiegel gekittet. Ein auf den
Spiegel fallender Lichtstrahl soll nach der Reflexion auf eine Skale treffen,
die den senkrechten Abstand L vom Spiegel hat. Dreht man die mit dem
Stab verbundene Scheibe um den Winkel ¢, wird die Lichtmarke auf der
Skale um die Strecke x verschoben. Dann gilt

tan 2¢ = /L (29)

oder fiir |¢p| < 1

(p = ﬁ . (293')

Versuchsausfithrung

Wir messen die Stablinge I, die Durchmesser 2r bzw. 2R des Stabes bzw.
der Scheibe und den Abstand L zwischen Spiegel und Skale. AnschlieBend
sind die Werte x;, x,, ..., z, fiir n verschieden groBe Schubkrifte zu er-
mitteln. Die zugehérigen Winkel ¢,, ¢,, ..., ¢, ergeben sich aus Gl. (29)
bzw. (29a). Wir bestimmen den arithmetischen Mittelwert aller Quotienten
Fg/p; und berechnen den Torsionsmodul aus Gl. (28). Der Versuch ist
mindestens mit einem Stab aus anderem Material zu wiederholen.
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M. 5.2.2. Dynamische MeBmethode

Aufgabe: Der Torsionsmodul eines Drahtes soll dynamisch bestimmt
werden.

Ein Draht habe die Lange ! und den Radius r. Das obere Ende sei ein-
gespannt, das untere mit einer zylindrischen Scheibe belastet. Dreht man die
Scheibe um den Winkel g, aus ihrer Ruhelage und 1iBt sie zur Zeit t = 0
los, so fithrt das System unter der Wirkung der elastischen Krifte des ver-
drillten. Drahtes Torsionsschwingungen aus (vgl. Abschn. M. 3.0.2.). Bei
einem Auslenkwinkel ¢ ist der Betrag des riicktreibenden Drehmomentes
durch Gl. (26) gegeben. Die Groe

Grt

D=—

(30)

ist das Direktionsmoment des Torsionspendels. Bezeichnet man mit I das
Tragheitsmoment des Systems, so lautet nach Abschn. M. 3.0.2. Gl. (9) die
Bewegungsgleichung

I¢ = - Dy,
und fiir die Schwingungsdauer gilt nach Abschn. M. 3.0.3. Gl. (14)

T 9n ]/%. (31)

Ist das Trigheitsmoment I bekannt, kann der Torsionsmodul G aus den
Gln. (30) und (31) bestimmt werden. Im allgemeinen 148t sich aber das
Tragheitsmoment des Systems (Draht, Scheibe und Befestigungsvorrich-
tung) nicht berechnen. Aus diesem Grunde ist es notwendig, I zu eliminieren.

Man schraubt einen Zylinder (Masse m, Radius R) so an die schon vor-
handene Scheibe, dal die Achse des Zylinders mit der Drahtachse iiberein-
stimmt. Das Tragheitsmoment des Torsionspendels vergroBert sich dadurch
additiv um

I, = %mRZ,

und die Schwingungsdauer wird

I+1,
D

" Wenn man die GIn..(32) und (31) quadriert und anschlieBend voneinander
abzieht, ergibt sich fiir das Direktionsmoment
4r2 1, 2n?mR?

D=T§—T2=T§—T2' (33)

T, =2n . (32)
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Aus den Gln. (30) und (33) folgt

4dnlmR? '
C= i — 1 (34)

Versuchsausfiihrung

Wir bestimmen die Masse m und den Durchmesser 2R des Zylinders sowie
die Lange ! und den Durchmesser 2r des Drahtes. Der Drahtdurchmesser
ist an mindestens zehn verschiedenen Stellen zu messen. In GI. (34) soll der
arithmetische Mittelwert 7 verwendet werden. Zur Bestimmung der Schwin-
gungsdauern 7' und 7', stoppen wir mehrfach die Zeiten fiir je 50 Schwin-
gungen. Der Torsionsmodul @ ergibt sich aus Gl. (34).

Die Zeiten 50 T' bzw. 50 T'; betragen im allgemeinen mehrere Minuten.
Die Erfahrung hat gezeigt, dal sich Praktikanten wegen der unvermeid-
lichen Gerdusche in einem Labor leicht ablenken lassen und verzihlen. So
wird hiufig die Dauer von 49 oder 51 Schwingungen statt der von 50 ge-
stoppt. Ein Beispiel soll zeigen, wie dieser grobe Fehler ausgeschaltet werden
kann. Wir bestimmen zunichst 37 = 224 s und 3 T = 22,0 5. Aus diesen
Werten ist zu schlieBen

73s<T <175s.
Nun messen wir 10 7' = 74,0 s und 10 7' = 74,4 s, woraus
7408 < T < T44s

folgt. Die Gefahr, dafl wir uns bei 3 oder 10 Schwingungen verziahlt haben,
ist dulerst gering.

Fiir 50 Schwingungen soll sich 50 7' = 363,2 s ergeben. Rechnen wir mit
einem Stoppfehler von +0,4 s, so erhalten wir

T=17264s8, AT = +0,008s.

Dieser Wert T liegt erheblich unterhalb der Grenzen aus der Bestimmung
der Dauer von 10 Schwingungen und ist mit Sicherheit falsch. In Wirklich-
keit gilt 49 T = 363,25,

T=17412s, AT = 10,008s.

Wir wiederholen die Messung von 50 ' mehrmals mit groBer Sorgfalt, um

die angestellte Uberlegung zu bestitigen. Zur Bildung des Mittelwertes 7'
darf auf keinen Fall der falsche Wert T' = 7,264 s — wohl aber 7' = 7,412 s —
einbezogen werden.
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M. 5.3. Schraubenfeder

Aufgaben: 1. Ein berithrungsloser (induktiver) Wegaufnehmer ist einzumes-
sen. :
2. Die Federkonstante einer Schraubenfeder soll mit einem Weg-
aufnehmer statisch bestimmt werden.
3. Die Federkonstante soll dynamisch, d. h. aus der Perioden-
dauer einer schwingenden Schraubenfeder, ermittelt werden.
4. Der Torsionsmodul des Federmaterials ist zu berechnen.

Eine Schraubenfeder (Drahtradius r, Windungsradius R) habe n Win-
dungen und sei am oberen Ende eingespannt. Hingt man-nun an das untere
Ende einen Korper der Masse m, so wird die Feder um das Stiick x gedehnt
{vgl. Abb. 31). Im Gleichgewichtsfall ist die Summe der Krifte gleich
Null, d.h.

mg — cx = 0.

Darin sind ¢ die Schwerebeschleunigung und ¢ die Federkonstante. Es gilt
also

=My (35)

L

X

Abb. 31. Schnitt durch die unterste Windung einer um das Stiick x gedehnten Schrau-
benfeder

Wenn man die belastete Feder, z. B. mit der Hand, aus ihrer Ruhelage zieht
und piotzlich loslaBt, beginnt die Feder zu schwingen. Die Bewegungs-
gleichung -

5c'=g—7;v‘x=—i(x——m—g) (36)

8 Phys. Praktikum
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hat eine partikuldre Losung

x=Asinwt+¥, (37)

worin 4 eine Konstante und o die Kreisfrequenz sind.
Aus Gl. (37) folgt

% = —w?4 sin ot = —@? <x - ?) . (38)
Der Vergleich der Gln. (36) und (38) liefert
2r\2 ¢
2 (20} -2
) ( T ) poot (39)

Wiéhrend der Schwingungen wandeln sich kinetische und potentielle Ener-
gie stindig ineinander um. Bei diesem Proze miissen auch die Energie-
anteile der schwingenden Feder (Masse my) beriicksichtigt werden. In Gl. (39)
ist aus diesem Grunde — wie hier aber nicht bewiesen werden soll —~ m durch

1
m + 3 ™ 20 ersetzen. Fiir die Federkonstante ergibt sich

¢ = (2—;)2 (m + %mF) . (40)

Die Feder speichert bei einer Auslenkung x aus der Ruhelage eine poten-
tielle Energie
c
E,= 5 a2, v (41)
Bei dieser Dehnung wird der Draht um den kleinen Winkel ¢ = z/R gedrillt

(vgl. Abb. 31). Die potentielle Energie, die der Draht bei der Drillung auf-
nimmt, betragt unter Beriicksichtigung von Gl. (26)

14 ¢
By~ [Mdg - e [ #ag - o g (42a)
0 0
Fiir die Lénge des Drahtes kann man im allgemeinen in guter Naherung
I =2rRn - (43)
schreiben. Damit wird Gl. (42a)
By O O -
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Aus dem Vergleich der Gln. (41) und (42) erhalt man fiir den Torsionsmodul

4nR3c
Versuchsausfﬁhmhg

- Die Bestimmung der Federkonstanten soll mit einem induktiven Weg-
aufnehmer W vorgenommen werden (vgl. die Abb. 32 und 33). Dieser be-
steht aus zwei hintereinandergeschalteten Spulen L, und L,, die auf einen
durchbohrten Kern aus magnetischem Material gewickelt sind. Die In-
duktivititen und damit die Wechselstromwiderstinde der beiden Spulen
hingen davon ab, wie weit der Taststift 7' in die Bohrung des Kernes ein-

—_

s 4 L W

Abb. 32. Zur Einmessung eines induktiven Wegaufnehmers

gefiithrt wird. Fiir die Messungen soll eine UniversalmeBeinrichtung zur Ver-
fiigung stehen, deren Prinzipschaltbild in Abb. 33 dargestellt ist. Der Weg-
aufnehmer wird mit einem Kabel K an das Gerdt angeschlossen und bildet
mit den Widerstinden R, und R, eine Wechselstrombriicke in Wheat-
stoneschaltung. Ein Niederfrequenzgenerator G speist die Briicke. Die

K I
’ 1
|
1
7 |\W

:(:H
; |
: |
I

T

Abb. 33. Prinzipschaltbild einer UniversalmeBeinrichtung mit angeschlos-
senem induktivem Wegaufnehmer

8*
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zwischen den Punkten I und 2 auftretende Spannung wird iiber einen Ver-
starker ¥ einem phasenempfindlichen Demodulator D zugefiihrt, an den ein
Anzeigeinstrument U angeschlossen ist. Es ist auch moglich, die demodulierte
Spannung einem Zihlfrequenzmesser oder einem Motorkompensator zu-
zuleiten.

Zunichst muB der Wegaufnehmer eingemessen werden. Dazu befestigen
wir den Taststift am Fiihler F einer mechanischen MeBuhr M und stecken
ihn bis zur Strichmarke S in den Wegaufnehmer (vgl. Abb. 32). Der Fiihler
driickt gegen einen verstellbaren Anschlag A, der so eingestellt wird, daf(
der Zeiger der MeBuhr auf Teilstrich 0 steht. Nun gleichen wir die Wechsel-
strombriicke ab. Dann wird der Anschlag ein kleines Stiick — z. B. 2 mm —
in Richtung auf die MeBuhr verschoben. Dadurch gelangt der Taststift
um das gleiche Stiick weiter in den Wegaufnehmer hinein, und die Wechsel-
strombriicke wird verstimmt. Wir wahlen die Verstirkung so, dal der
Zeiger des Instrumentes U auf Vollausschlag steht. Von jetzt ab darf an der
UniversalmeBeinrichtung nichts mehr verstellt werden.

Wir ziehen den Taststift schrittweise — z. B. um je 0,2 mm - durch Ver-
schieben des Anschlages aus dem Wegaufnehmer heraus, bis der Zeiger des
Instrumentes U die gesamte Skale iiberstrichen hat. Die Lage des Tast-
stiftes als Funktion des Zeigerausschlages wird graphisch dargestellt.

Um Aufgabe 2 auszufiihren, hingen wir den Taststift an die unbelastete
Feder und lassen ihn so weit in den Wegaufnehmer hineinreichen, da§ das
Anzeigeinstrument der MeBeinrichtung negativen Vollausschlag zeigt. Die
Feder wird mit verschiedenen Korpern bekannter Masse m,; belastet. Die
Verschiebungen z;, die den sich einstellenden Zeigerausschligen entspre-
chen, entnehmen wir dem angefertigten Diagramm und stellen m; iiber x;
graphisch dar. Aus der Steigung der Geraden erhalten wir die Federkon-
stante.

Wir schlieBen statt des Anzeigeinstruments einen elektronischen Zahl-
frequenzmesser an die MeBeinrichtung an, belasten die Feder mit Kérpern
bekannter Masse m;, bestimmen hinreichend oft die Periodendauern 7,
der schwingenden Feder und berechnen ¢ nach Gl. (40) sowie G nach Gl. (44).

Dieser Versuch ist ein typisches Beispigl fiir die Bestimmung mechani-
scher GréBen mit elektrischen Methoden. Der Student sollte sich iiberlegen,
wie die Federkonstante mit rein mechanischen Mitteln gemessen werden
kann.

M. 5.4. Poissonsche Zahl

Aufgabe: Die Poissonsche Zahl ist sowohl aus den beiden Hauptkriimmungs-
radien einer gebogenen Platte als auch dem Winkel 2« zu bestim-

men, den die Hyperbelasymptoten einschlieSen.
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Gegeben sei eine Platte (Lénge I, Breite b und Hohe 4), die auf den zwei
Schneiden 8, 8 aufliegt. Wird, iiber die Schneiden S,, §7 (vgl. Abb. 34) mit
Hilfe einer geeigneten Spannvorrichtung auf die Platte ein Druck ausgeiibt,

b

Abb. 34. Anordnung der Schneiden

so0 biegt sie sich in der yz-Ebene (Priméarbiegung). Dabei werden die oberen
Schichten der Platte gedehnt und erleiden eine Querkontraktion, wihrend
die unteren Schichten zusammengedriickt und somit in der Querrichtung ge-
dehnt werden. Es tritt also auch in der az-Ebene eine Biegung auf (Sekun-
dirbiegung). Die Oberfliche der gebogenen Platte unter den Schneiden 8,,
87 ist in Abb. 35 dargestellt. Die Kurven der Oberflichen der Platte in der
yz-Ebene und in der zz-Ebene lassen sich in sehr guter Néherung durch ihre
Kriimmungskreise beschreiben. Alle Kriimmungen in den Abb. 35, 36a,

B
—\

Abb. 35. Sattelférmige Oberfliche
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86Db sind stark iibertrieben. Aus Abb. 36a folgt fiir die relative Verldnge-
rung

L-1 Bk h

I "2l 2R —h’

wihrend man fiir die relative Verkiirzung aus Abb. 36b

b-b, B Bk _ h
b 2 2R, +h
%‘Q
™
B
==
Abb. 36a. Abb. 36b.
Schnitt durch die gebogene Platte Schnitt durch die gebogene Platte
in der yz-Ebene in der zz-Ebene

erhilt. Im Experiment ist A < R, und » < R,, so dall man 4 sowohl gegen
2 R, als auch gegen 2R, vernachlissigen kann. Fiir die Poissonsche Zahl
ergibt sich deshalb in guter Néherung

b= (45)
Die Gleichung der in Abb. 35 dargestellten Sattelfliche ist
B Z \2 v \2
= m =G el G o)

- Da im Experiment z < R, und y < R, ist, kann man die Reihenentwicklung
der Wurzeln nach den Gliedern mit (x/R,)* bzw. (y/R,;)? abbrechen und
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erhilt

a2 yZ

*=2R, 2R’

(46)

Schnitte durch die Sattelfliche parallel zur xy-Ebene (z = konstant) er-
geben Hyperbeln. Fiir z = 0 erhilt man ein sich schneidendes Geradenpaar

=+ B d
Y= be und y=— —x

Der kleinere Winkel zwischen den Geraden sei 2« (vgl. Abb. 37). Dann gilt

% tan? 47)

Versuchsausfithrung

Die Spannvorrichtung wird auf den Tisch eines Mlkroskops gestellt, der sich
sowohl in einer Langsrichtung bewegen als auch um seine Achse drehen 1d3t.
Legen wir auf die gebogene Platte eine planparallele Glasplatte und be-
strahlen die Anordnung mit monochromatischem Licht, so lassen sich die in

\ y
2

/ |
/_ Abb. 37.

Interferenzlinien

Abb. 37 angegebenen Hyperbelscharen — von denen nur je 3 dargestellt
sind — als Interferenzlinien sichtbar machen. Fiir die Abstdnde der Hyper-
belscheitelpunkte vom Nullpunkt ry;, und 7y, gilt GL.(0. 2.-20a). Die Langen
2r,, und 2r,, sind fiir k = 1, ..., 15 auszumessen. AnschlieBend sollen

rhe = f(k) und  rjg = 15(k)
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grapliisch dargestellt. werden. Bezeichnen wir die Steigungen der beiden
Geraden mit S, und S, so gilt

_S5 _ &
=S, TR,

Den Winkel 2o messen wir durch Drehung des Mikroskoptisches direkt. Ist
der Elastizititsmodul des zu untersuchenden Materials bekannt, so konnen
wir nach Gl. (9) den Torsionsmodul G berechnen.

Der Versuch ist nur mit Platten aus solchem Material durchfiihrbar, deren -
Oberfliche véllig plan und gut reflektierend ist.

M.6. OBERFLACHENSPANNUNG

M. 6.0. Allgemeine Grundlagen

Zwischen den Molekiilen einer Fliissigkeit wirken sowohl anziehende als
auch abstoBende Krafte geringer Reichweite. Der Abstand r, zweier néich-
ster Nachbarn stellt sich so ein, dal die Summe der abstoBenden und der
anziehenden Krifte gerade verschwindet. Wenn der Abstand zwischen zwei
Molekiilen etwas groBer als dieser Normalabstand ist, so iiberwiegt die An-
ziehungskraft, ist er dagegen etwas kleiner, dann stoBen sich die Molekiile
- gegenseitig ab. Ein beliebiges Molekiil der Fliissigkeit (Zentralmolekiil)
wird daher von allen Nachbarmolekiilen angezogen, deren Abstand vom
Zentralmolekiil groBer als r,, aber kleiner als der Radius 7, der Wirkungs-
sphére der Molekularkrafte ist.

Die Anziehungskrifte zwischen den Bausteinen (Molekiilen, Atomen,
Tonen) eines Stoffes nennt man allgemein Kohdsionskrifte, da sie fiir den Zu-
sammenhalt des Stoffes sorgen. Es existieren aber auch anziehende Krafte
zwischen benachbarten Bausteinen verschiedener Stoffe, die als Adhdisions-
kréfte bezeichnet werden.

Betrachtet man ein Molekiil im Inneren einer Fliissigkeit, so ist die Resul-
tierende der Anziehungskrifte Null, da die Nachbarmolekiile iiber alle Rich-
tungen gleichmiBig verteilt sind. Fiir ein Flissigkeitsmolekiil in einer Grenz.-
schicht (Oberfliche), deren Dicke dem Radius der Wirkungssphire der
Molekularkrifte entspricht, verschwindet dagegen die resultierende Kraft
im allgemeinen nicht. Es sind zwei Moglichkeiten zu diskutieren:

1. Die Kohésionskrifte zwischen den Molekiilen der Fliissigkeit sind groBer
als die Adhéasionskrifte zwischen den Fliissigkeitsmolekiilen und den
Bausteinen des angrenzenden Stoffes (vgl. Abb. 38a und b). In diesem
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Falle wirkt auf ein Flissigkeitsmolekiil eine resultierende Kraft F senk-
recht zur Oberfliche in das Innere der Fliissigkeit hinein. Die Fliissigkeit
ist daher bestrebt, eine moglichst kleine Grenzfliche mit dem anderen
Stoff zu bilden. Zur VergroBerung dieser Fliche um A4 muB der Fliissig-
keit eine Arbeit

AW =0AA 1)

zugefiihrt werden. Bei einer Verkleinerung der Grenzfliche um A4 wird
eine Arbeit gemaB Gl. (1) frei. Den Proportionalititsfaktor ¢ nennt man
Oberflichenspannung. Thre Einheit ist im gesetzlichen MaBsystem

Jm~2 = Nm™1,

Man muB sich dariiber im klaren sein, da die Oberflichenspannung so-
wohl von der Natur der Fliissigkeit als auch von der Natur des angren-
zenden Stoffes abhingig ist. Bei Angabe eines Wertes fiir o ist daher stets
der angrenzende Stoff zu nennen. Die Oberflichenspannung kann nur

Abb. 38. Krifte, die auf ein Grenzschichtmolekiil wirken (schematisch)

dann als reine Materialeigenschaft der Fliissigkeit angesehen werden,
wenn die Resultierende der Adhisionskrafte F', vernachldssigbar klein
gegen die Resultierende der Kohisionskrifte Fy ist (Beispiel: Fliissig-
keit — Luft).

Im Falle der Abb. 38b bezeichnet man die Fliissigkeit als nicht be-
netzend fiir den angrenzenden festen Korper. Wird der Randwinkel ¢
gleich =, d.h., ist F, <« Fy, ist die Nichtbenetzung vollstéindig.

2. Die Kohisionskrafte sind kleiner als die Adhéasionskréfte (vgl. Abb. 38¢).
Dann wirkt auf ein Fliissigkeitsmolekiill der Grenzschicht eine resultie-
rende Kraft F' senkrecht zur Oberfliche aus der Fliissigkeit heraus. Die
beiden Stoffe bilden daher eine méglichst groe Grenzfliche. In diesem
Falle bezeichnet man die Fliissigkeit als benetzend fiir den angrenzenden
Stoff. Verschwindet der Randwinkel ¢, d. h., ist Fx < F,, spricht man
von vollstindiger Benetzung.
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Taucht man einen festen Korper in eine vollstandig benetzende Fliis-
sigkeit (etwa Glas in Wasser), so bleibt nach dem Herausziehen ein diin-
ner Fliissigkeitsfilm an ihm haften. Die griindliche Entfernung solcher
Fliissigkeitsschichten auf Festkérpern kann unter Umstinden recht
miihsam sein.

M. 6.1. AbreiBmethode
Aufgabe: Die Oberflaichenspannung ¢ verschiedener Fliissigkeiten soll nach
der AbreiBmethode bestimmt werden.

Ein Platindraht der Lénge 7 ist in einem Biigel eingeldtet, der an einer
Waage hingt. Der Biigel soll so weit in die zu untersuchende Fliissigkeit
eintauchen, daB sich der Platindraht unmittelbar unter der Oberfliche be-

Amg

e Etp bR s Abb. 39. Zur AbreiBmethode

findet. Es wird vorausgesetzt, daB} die Fliissigkeit den Draht vollsténdig be-
netzt. Belastet man nun die Waage, so zieht der Draht eine Lamelle aus der
Fliissigkeit heraus (vgl. Abb. 39). Diese Lamelle soll bei der Belastung
F = myg gerade noch nicht abreilen. Da sich die Fliissigkeitsoberfliche um
21 As vergroBert, lautet Gl. (1)

AW = g2l As.
Andererseits ist

AW = FAs.
Daraus folgt

2)

g o
In der Betrachtung, die zu Gl. (2) fithrt, sind alle Randeffekte des Bugels und der Ein-
fluB des Gewichtes der herausgezogenen Lamelle unberacksichtigt geblieben. Wenn der
Platindraht einen Durchmesser von 0,3 mm hat, ergeben sich fiir ¢ nach Gl. (2) Werte,
die um etwa 10% zu groB sind. Die Abweichungen werden um so kleiner, je diinner der
Platindraht ist.
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Lenard hat eine genauere Beziéhu.ng zur Bestimmung der Oberflichenspannung
nach der Abreimethode abgeleitet. Diese lautet bei Vernachldssigung von Gliedern in r*

a=§—r{]/#—l£2}. (2a)

In Gl. (2a) bedeuten r den Radius des Platindrahtes und y die Wichte der Flissigkeit.

Versuchsausfiithrung

Die Drahtbiigel sind mit groBter Vorsicht zu behandeln. Vor allen Dingen
darf der Platindraht nicht berithrt oder der Biigel verbogen werden. Die
Biigel sind vor jeder Messung zur Reinigung mit Chromschwefelséure, destil-
liertem Wasser, Spiritus, Ather und der zu untersuchenden Fliissigkeit ab-
zuspiilen.

Wir messen die Drahtlinge ! (z. B. mit einem Abbe-Komparator) und
hingen den Biigel an die Waage, die so abgeglichen wird, dafi der Platin-
draht in der Ebene der Fliissigkeitsoberfliche liegt. Zur Bestimmung der
Kraft F = mg eignen sich besonders gut Spiralfederwaagen, mit denen man
die Zugkraft kontinuierlich einstellen kann. Der Versuch 148t sich auch mit
einer empfindlichen Balkenwaage durchfiihren, deren Belastung in méglichst
kleinen Schritten erhéht wird, bis die Flissigkeitslamelle abreiit. Fiir F
ist diejenige Belastung einzusetzen, der die Lamelle gerade noch das
Gleichgewicht hilt. Die Oberflichenspannung soll nach Gl. (2a) berechnet
werden. Der Drahtradius r sei gegeben, die Wichte der Fliissigkeit wird
einer Tabelle entnommen.

Der Versuch ist mit Biigeln anderer Abmessungen und mit anderen
Fliissigkeiten zu wiederholen. Jede Messung soll mehrfach ausgefiihrt
werden.

M. 6.2. Steighohenmethode

Aufgabe: Die Oberflichenspannung ¢ verschiedener Fliissigkeiten ist aus
der SteighShe in einem Kapillarrohr aus Glas zu bestimmen.

Eine Glaskapillare (Innenradius », AuBenradius ;) sei vollstandig von der
zu untersuchenden Flussigkeit benetzt. Wenn man die Kapillare senkrecht
in eine mit Flissigkeit gefiillte Schale eintaucht, steigt die Fliissigkeit in
dem Kapillarrohr bis zu einer Hohe A iiber den duBeren Spiegel an. Der
innere, horizontale Querschnitt der Schale soll mit A4, der Umfang dieses
Querschnittes mit U bezeichnet werden.
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Die Steighthe % berechnet man zweckmaBigerweise nach dem Prinzip der
virtuellen Arbeit. Eine unendlich langsam verlaufende VergréBerung der
Steighthe von % auf k + Ak, bei der der Fliissigkeitsspiegel in der Schale
um 8k sinkt (vgl. Abb. 40), erfordert die Arbeit

AW, = orrhg(Ah — 8h); (3)

dabei ist p die Dichte der zu untersuchenden Fliissigkeit. Da das Volumen
der Fliissigkeit konstant ist, gilt

r2(Ah — 8h) = (4 — wr) Sh.

25
nl2r

Abb. 40. Zur Steigh6henmethode

Durch das Anheben der Fliissigkeitssdule verkleinert sich die Grenzfliche
zwischen der Luft und dem an der Innenwand der Kapillare haftenden
Flissigkeitsfilm um

2nr(Ah — Oh).

Gleichzeitig nimmt die Grenzfliche zwischen der Luft und dem an der In-
nenwand der Schale sowie dem AuBenmantel der Kapillare haftenden Fliis-
sigkeitsfilm um

mr3(U + 2mry)

2 =
(U + 27ry) 8h g

(AR — 3h)

zu. Die gesamte Verkleinerung der Grenzfliche zwischen Luft und Fliissig-
keit ist daher

r (% U+ m‘l)

AA =2nr |1~ yp——

(Ah — Sh),
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und gemiB Gl. (1) wird die Energie

1
. r (~2— U+ m‘l)

frei. Diese Energie dient zum Anheben der Fliissigkeitssiule. Aus
AWI = AW2
folgt mit den Gln. (3) und (4)

Hat die Schale einen kreisférmigen Querschnitt (Innenradius R), lautet
Gl. (5) '

g ook (5a)

r
2{1_R_rl}

Die genaue Bestimmung der Steighdhe  bereitet insofern Schwierigkeiten,
als man die Hohe des Fliissigkeitsspiegels in der Schale im allgemeinen nicht
sehr genau messen kann. Aus diesem Grunde empfiehlt es sich, als Vorrats-
gefaB eine Kiivette zu verwenden. Eine Kiivette ist ein Glasgefal mit recht-
eckigem Querschnitt (Kantenlingen @ und b). Zwei gegeniiberliegende, senk-
rechte Deckflichen bestehen aus geschliffenem Glas. Wenn man auf eine
solche Fliche blickt, kann man den Fliissigkeitsspiegel sehr deutlich erken-
nen. Bei Verwendung einer Kiivette lautet Gl. (5)

ra+b+mr))
ab — wr?

G:

Wenn der Querschnitt 4 der Schale sehr groB gegen mr? ist, vereinfachen
sich die Gln. (5) bis (5b) in guter Naherung zu

1
=5 ogrh . (5¢)
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Die Kenntnis der Hohe des Flissigkeitsspiegels wird {iberfliissig, wenn man
mehrere Kapillaren mit unterschiedlichen Innenradien in das Vorratsgefa
taucht. Die Oberflaichenspannung 148t sich dann aus den Differenzen der
verschiedenen SteighGhen berechnen.

Versuchsausfiihrung

Die benstigten Langen der Schale (2B oder ¢ und ) und der AuBen-
durchmesser des Kapillarrohres 2r, werden mit einem MeBschieber ermit-

telt. Zur Bestimmung von r sollen zwei vollig unterschiedliche Methoden
beschrieben werden.

Wigemethode

Wir saugen mit einem Gummigeblise Quecksilber in die trockene Kapil-
lare. Der Quecksilberfaden soll eine Lénge ! von mehreren Zentimetern
haben. Wir messen ! so genau wie méglich, bringen den Quecksilberfaden
Schritt fiir Schritt an verschiedene Stellen der Kapillare, wiederholen je-
weils die Lingenmessung und bilden den arithmetischen Mittelwert {. An-
schlieBend ist die Masse m des in der Kapillare enthaltenen Quecksilbers
mit einer Analysenwaage zu bestimmen (vgl. Abschn. M. 1.0.2.). Dazu wird
die Masse m,; eines Uhrglischens und die Masse m, des Glidschens mit dem
Quecksilber ermittelt. Es besteht der Zusammenhang

— — —_ — 2
m=my — My = PggV = pgg ¥l

sz -m

r=|/—=.

Tlom,

Die Dichte des Quecksilbers gg, ist der Tab. 2 zu entnehmen. Fiir I ver-
wenden wir den Mittelwert I.

oder

Onptische Methode

Wir legen die Kapillare auf den Tisch eines Durchlichtmikroskops und
durchstrahlen sie mit monochromatischem, parallelem Licht. Dann sehen
wir die in Abb. 41 dargestellten Strahlen als helle Linien. Thren Abstand 2s
kénnen wir mit einem OkularmaBstab messen. Aus Abb. 41 folgt

sin o cos f — sin f cos « s—r

taJn(a‘_ﬁ)zcosozcosﬁ+sinacsin/3: s (6)

. s s \2
sing=— und cosa=|/1—[—] .
1 r
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Nach dem Brechungsgesetz gilt

2
sinﬁ’:%ri und cosﬂ=V1—(i)
1

nry

Wenn wir in Gl. (6) alle Winkelfunktionen durch s, 7, und » ausdriicken und
Gl. (6) nach r auflésen, ergibt sich

VT

s
— 2
= 1 + tan? (ax — f).

Abb. 41.
-Strahlen durch eine Kapillare

Es gilt also

=_V s__?:. (Ta)

Der Fehler von s und damit auch der von r wird in der Groenordnung von
einigen Prozent liegen. Wenn wir nachweisen, dafl

< 1072
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ist, so vereinfacht sich Gl. (7a) zu

rm S | ™)

Der Brechungsindex n der Glaskapillare soll gegeben sein.

Vor Beginn der Steighthenbestimmung ist die Kapillare sorgfiltig mit
Chromschwefelsidure, destilliertem Wasser und der zu untersuchenden
Fliissigkeit zu reinigen. Dann tauchen wir die Kapillare senkrecht in die
Fliissigkeit, saugen diese mit dem Gummigeblise hoch und warten die Ein-
stellung von % von oben her ab. Die Hohe & wird entweder an einer Spiegel-
skale, die sich hinter dem Kapillarrohr befindet, abgelesen oder mit einem
Kathetometer gemessen. Die Steighshenbestimmung ist fiir jede Fliissig-

keit mehrmals auszufiihren. Wir bilden den arithmetischen Mittelwert A und
berechnen damit die gesuchte Oberflichenspannung nach Gl. (5a) bzw.
(5b). Die Dichte g ist der Tab. 2 oder der Versuchsanleitung im Praktikum
zu entnehmen. '

M.7. VISKOSITAT UND STROMUNGSPROBLEME

M.7.0. Allgemeine Grundlagen
M. 7.0.1. Bernoullische Gleichung

Eine idealisierte Fliissigkeit oder ein idealisiertes Gas stréme durch ein
Rohr. Die Idealisierung soll darin bestehen, daB der stromende Stoff als
inkompressibel angesehen und die Wechselwirkung der Fliissigkeits- bzw.

t t+at
. as;

Abb. 42,
Zur Bernoullischen
Gleichung
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Gasmolekiile untereinander und mit der Rohrwand vernachlissigt wird.
Das Volumen V eines Stromfadens, dessen Querschnitt 4 von Ort zu Ort
verschieden sein kann, bewegt sich in der Zeit df bei Vorhandensein einer
Druckdifferenz p, — p, gemaB Abb. 42. Da der Stoff inkompressibel sein
soll, ist .

A, ds, = Ay ds,.
Die bei der Verschiebung des Volumens V geleistete Arbeit ist
P14, dsy — pady dsy = (py — po) 4, ds,.

Die kinetische Energie vergroBert sich um

1 1 1 1

3 04adand — 5 od; daut = (o0t — 5 oof) 4, dsy,
wihrend die potentielle Energie um

oA, dsyghy, — 04, ds,gh, = pg(hy — hy) A, ds;
zunimmt. g ist die Dichte des stromenden Stoffes. Da jegliche Wechsel-
wirkung vernachlissigt werden soll, mull} die geleistete Arbeit gleich der

Summe der gewonnenen kinetischen und potentiellen Energie sein. Es gilt
also

1 1
Prt g @+ 0ghy = Py + 5 003 + oghy (1a)

oder

1
P+ 5 ev*+ egh = po. (1)

Wenn die Strémung durch ein horizontales Rohr erfolgt, bleibt die po-
tentielle Energie konstant. In Gl. (1a) ist dann A, = h,, und die Bernoul-
lische Qleichung (1) vereinfacht sich zu

1
P+'2‘Q”2:T’o- (2)

Gl. (2) besagt : Der statische Druck, vermehrt um die kinetische Energie der
Volumeneinheit (Staudruck), ist gleich dem konstanten Gesamtdruck.

9 Phys. Praktikum
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M. 7.0.2. Definition der Viskositit

Wenn ein realer Stoff (Flissigkeit oder Gas) durch ein zylindrisches
Rohr stromt, hat die Geschwindigkeit in der Rohrachse einen maximalen
Wert, wihrend sie an der Rohrwand verschwindet. Bei hinreichend kleinen
Geschwindigkeiten kann man annehmen, daf differentiell diinne Hohl-
zylinder wirbelfrei aneinander gleiten. Eine solche Strémung nennt man
laminar. Zwischen benachbarten Hohlzylindern mufl eine Reibungskraft
Fy wirken. Diese ist der Beriihrungsfliche 4 und dem Geschwindigkeits-
gefalle dv/dr proportional. Als Proportionalititsfaktor fithrt man die dyna-
mische Viskositit (den Koeffizienten der inneren Reibung) 5 ein.

dv
Fy=nA e (3)

Die Dimension der dynamischen Viskositat ist
Kraft - Zeit - Linge=2 = Masse - Lange™ . Zeit™1.

Die Einheit der dynamischen Viskositit ist im gesetzlichen MaBsystem
kg m1s71. Andere gebrduchliche Einheiten sind das Poise (P) und das
Zentipoise (cP).

1P=102cP=1gcem1s?*=10"1kgm s

Das Verhéltnis von dynamischer Viskositit # zur Dichte g bezeichnet man
als kinematische Viskositit v.

y="1 @)

Die kinematische Viskositat hat die Dimension Linge? - Zeit~1. Thre Einheit
ist im gesetzlichen MaBsystem m?2 . s~1. Andere gebrauchliche Einheiten sind
das Stokes (St) und das Zentistokes (cSt).

1St =102c¢St =1cm2.5 1= 10"4m?.s71,

M. 7.0.3. Gesetz von Hagen und Poiseuille

In einem mit Fliissigkeit oder Gas gefiillten Rohr vom Radius R entsteht
eine laminare Stromung, wenn ein nicht zu groBes Druckgefille vorhanden
ist. Im stationiren Zustand ist fiir jeden koaxialen Zylinder vom Radius #
die Summe von Druckkraft F und die Reibungskraft F, gleich Null.

F+ Fy =0.
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Fiir die Reibungskraft verwendet man Gl. (3).

dv

dr =0.

Tr3(p, — p,) + n2mwrl

Die Losung lautet unter Beriicksichtigung der Randbedingung v(R) = 0

Pr— P

= R2 — ¢?), 5

o) = B (B = ) )
FRohrwand
S v(r)
®= g Abb. 43.
Zum Gesetz von Hagen
A Rohrachse und Pozseuille
] P2<p1

Durch einen Hohlzylinder vom Radius r und der Dicke dr flieBt in der Zeit ¢
das Volumen dV (vgl. Abb. 43). Dann gilt

~dtl = 27r dro(r).

Mit v(r) gemaB Gl. (5) liefert die Integration iiber alle Hohlzylinder das
Gesetz von Hagen und Poiseuille

v

R
_MI 2 _ g2
P yoe, (RB% — 72) 2r dr,
0

V _ =w(p, — p,) R
t 8yl ) (6)

Es ist zweckmaBig, einen Mittelwert der Geschwindigkeit einzufiihren. Als
mittlere Geschwindigkeit 7 definiert man das pro Zeiteinheit ausflieBende
Volumen, geteilt durch den Rohrquerschnitt, d. h., es ist

TV = nR%. (7)

Aus dem Vergleich der Gln. (6) und (7) folgt

—_ R2
(P . ;;z) _ 8)

D=

9%
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Das Gesetz von Hagen und Potseuille gilt unter der Voraussetzung, dal die
Strémung laminar ist. Bei turbulenter Stromung, bei der durch Wirbel Teil-
chen aus einer diinnen Schicht in benachbarte Schichten gelangen, ist Gl. (6)
unbrauchbar. Aber auch im Bereich der laminaren Strémung ist das Gesetz
von Hagen und Poiseuille nur richtig, wenn eine energetische Bedingung erfiillt
ist. Um das einzusehen, betrachtet man die in einem Hohlzylinder mit dem
Radius 7 und der Dicke dr bei einer Geschwindigkeitsverteilung gemif3
Gl. (5) enthaltene kinetische Energie

1 L (D~ ps\?
= — 2 = 2 _ p2)2
dE, 5 dm 2 ( pwe, ) (R? — r%)2% p2xrl dr.
Die gesamte kinetische Energie ergibt sich durch Integration iiber alle
Hohlzylinder zu

R ;
_ ; mo(py — Pp)* B®
0
Dafiir kann man
— eRYp. — p) OB B

schreiben. Der in Gl. (9) auftretende Faktor

Re==-"— (10)

ist, wie sich leicht nachweisen 1aBt, dimensionslos und wird Reynoldssche

Zahl genannt.
Die kinetische Energie E, kann nun unter keinen Umstdnden griBer als

die in den stromenden Stoff hineingesteckte Arbeit

W =nR¥p, — p,y) ! (11)
sein. Der Vergleich der Gln. (11) und (9) liefert
ok B _Rep
1> 5= R. ’ (12)

Aus sorgfiltigen Messungen ist bekannt, dal fiir
Re < 1160

die Strémung in einem Rohr mit Sicherheit laminar ist. Versteht man unter
I die Lange des Rohres, dann folgt aus der Ungleichung (12), daf} sich eine
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parabolische Geschwindigkeitsverteilung im gesamten Bereich der lami-
naren Stromung nur dann einstellen kann, wenn das Verhiltnis der Rohr-
linge zum Rohrradius gréBer als 100 ist. Da bei der Herleitung des Gesetzes

von Hagen und Poiseutlle Gl. (5) verwendet wird, kann Gl. (6) nur gelben
wenn die Ungleichung (12) erfiillt ist.

M.7.4. Kugelfallmethode nach Stokes

Aufgabe: Die dynamische Viskositat einer sehr zihen Fliissigkeit ist nach
der Kugelfallmethode bei Zimmertemperatur zu bestimmen.

Auf eine in einer zahen Fliissigkeit fallende Kugel (Abb. 44) vom

Radius » wirken drei Krifte: die Schwerkraft F,, der Auftrieb F, und die
Reibungskraft Fy,:

4
Fy= ‘3‘7‘739Kg > (13)

4
FA:_gm'aQng (14)

- Abb. 44. Kugelfallmethode

dabei sind px bzw. gy die Dichte der Kugel bzw. der Fliissigkeit. Fiir eine
Kugel, die sich mit der Geschwindigkeit v in einer unendlich ausgedehnten
Flissigkeit bewegt, gilt nach Stokes

Fy = —6mnro. (15)
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Im Experiment fillt die Kugel in einem endlichen Rohr mit dem Radius R
und der Héhe h. Der Betrag der Reibungskraft vergrofert sich mit wach-
senden Verhiltnissen /R und r/h. Da im allgemeinen

h>R>r

ist, soll die Abhingigkeit von A vernachlissigt werden. Als Ansatz fiir Fy
empfiehlt sich

Fy = — 6y (1 - %)_”‘ (15a)

Nachdem die Kugel eine gewisse Strecke in der Fliissigkeit zuriickgelegt
hat, stellt sich eine konstante Geschwindigkeit v = I/t ein. Dann muB die
Summe der auf die Kugel wirkenden Krifte verschwinden.

Fo+ Fy+ Fg=0 (16)

Setzt man die Gln. (13), (14) und (15a) in Gl. (16) ein, so erhilt man fiir die
Viskositat

_ 2(px —0w)g 2( __7;)"
n—Trt 1 =) (17)

Die Stokesschen Beziehungen Gl. (15) bzw. (15a) gelten unter der Voraus-
setzung, daf die Reynoldssche Zahl')

Re — 2F""
N

sehr klein gegen 1 ist. Aus diesem Grunde ist auch Gl. (17) nur fiir sehr kleine
Reynoldssche Zahlen brauchbar.

Die Kugelfallmethode zur Bestimmung der dynamischen Viskositit kann
nur als Demonstrationsversuch angesehen werden. Fiir die meisten Fliis-
sigkeiten sind die Fallzeiten von Glas- oder gar Metallkugeln selbst bei sehr
groBen Fallstrecken sehr klein. Auflerdem ist die Viskositdt aller Fliissig-
keiten stark von der Temperatur abhéingig. Es macht experimentell viel
Miihe, die Temperatur einer in einem langen Rohr befindlichen Fliissigkeit
konstant zu halten.

GL. (17) kann bei bekannter Viskositdat des Mediums auch zur Bestim-
mung des Radius sehr kleiner Partikeln verwendet werden (vgl. Abschn.
0.8.1.).

(18)

) Im Gegens@tz zu der in Gl. (10) angegebenen Reynoldsschen Zahl fiir den Fall
einer zylindersymmetrischen Stromung tritt in Gl. (18) der Kugelradius » auf.
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Versuchsausfithrung

Wir messen die Fallstrecke ! und bestimmen den Rohrradius R sowie die
aus mehreren Messungen gemittelten Werte der Radien r, <7, < ... <1,
von m verschieden groBen Kugeln. Wir stoppen rasch nacheinander die
Fallzeiten £; > ¢, > ... > t,, der Kugeln zwischen oberer und unterer Marke
am Rohr und notieren wihrend jeder Messung die Temperatur. Es ist darauf
zu achten, dafl die Kugeln lings der Rohrachse fallen und daB keine Luft-
blasen an den Kugeln hingen. Der Exponent n wird aus allen zur gleichen
Temperatur gehérenden Kombinationen

\" n
7‘,'2t,;(1—-%> =T]%tk(1—r—£)

bestimmt. Wir berechnen die Viskositdt # nach Gl. (17) und wiederholen
den Versuch mindestens einmal. Die Dichten g und g sind den Tab. 1 und 2
bzw. der Versuchsanleitung im Praktikum zu entnehmen. Wir weisen nach,
daB die Reynoldssche Zahl fiir die groBte Kugel noch sehr klein gegen 1 ist
[vgl. Gl. (18)].

M.7.2. Hoppler-Viskosimeter

Aufgabe: Die Temperaturabhingigkeit der dynamischen Viskositit einer
Fliissigkeit soll mit dem Hoéppler-Viskosimeter in einem vor-
gegebenen Temperaturbereich bestimmt werden.

Fillt eine Kugel in einem senkrecht stehenden Rohr, dessen Durchmesser
nur wenig groBer als der Kugeldurchmesser ist, so berithrt die Kugel im
allgemeinen in unkontrollierbarer Weise die Rohrwand. Ihre Bewegung
wird reproduzierbar, wenn man das Rohr um einige Grad gegen die Verti-
kale neigt, d. h. die Kugel an der Rohrwand rollen 1i8t. Diese Uberlegung
veranlaflte Hoppler, ein Viskosimeter mit geneigtem Rohr zu entwickeln
(vgl. Abb. 45).

Die Viskositat aller Fliissigkeiten hingt sehr stark von der Temperatur ab.
Aus diesem Grunde befindet sich das Viskosimeterrohr in einem weiten
Glasrohr, durch das man Fliissigkeit konstanter Temperatur stromen 1aBt.
Hat die Kugel die MeBstrecke (Abstand zwischen oberer und unterer Marke
am Viskosimeterrohr) durchlaufen, dreht man das Viskosimeter 180° um
die Achse A und 148t die Kugel zuriickrollen. Wiahrend der Messung ist das
Viskosimeter mit der Schraube S zu arretieren. Die Viskositdt wird nach der
empirischen Formel

n = Klog — 0r)? (19)
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berechnet. In Gl. (19) ist K die Kugelkonstante, ¢ die Zeit, in der die Kugel
die MeBstrecke durchlduft, und gx bzw. gy sind die Dichte der Kugel bzw.
der Flissigkeit. )

Die Gln. (17) und (19) stimmen formal iiberein. Wahrend sich aber fiir
eine in einem weiten Rohr fallende kleine Kugel die Kugelkonstante berech-
nen liflt, muB die GréBe K in Gl. (19) mit Hilfe einer Eichfliissigkeit em-
pirisch ermittelt werden.

Abb. 45.
Héppler-Viskosimeter

Um das Héppler-Viskosimeter in einem sehr groflen Viskositétsbereich
verwenden zu kénnen, gehort zu jedem Gerét ein Satz von Kugeln verschie-
dener GréBe und Dichte. Eine der Kugeln ist zur Bestimmung der Viskositat
von Gasen geeignet.

Wenn man mit einer Kugel arbeitet, deren Durchmesser nur um etwa
0,1 mm kleiner als der Innendurchmesser des Rohres ist, so miissen das Rohr
und die Kugel an jedem Versuchstag griindlich gereinigt werden. Atich die
zu untersuchende Fliissigkeit mufl auBlerordentlich sauber sein.

Bei den Messungen ist darauf zu achten, dafl eine bestimmte ,,Mindest-
fallzeit* nicht unterschritten wird, da anderenfalls die Stréomung um die
Kugel turbulent wird.

Versuchsausfiihrung

Wir entgasen die Fliissigkeit durch Erwdrmen in einem sauberen Becher-
glas und kiihlen sie anschlieBend auf die geforderte Anfangstemperatur ab.
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Die Fliissigkeit wird in das Viskosimeterrohr gefiillt. Alle an der Rohrwand
haftenden Luftblasen sind sorgfiltig zu entfernen. Dann stecken wir die
Kugel in das Rohr. Auch an der Kugel darf keine Luftblase sitzen. Der Ein-
satz am oberen Ende des Viskosimeterrohres soll nicht vollstindig gefiillt
sein, damit sich die Fliissigkeit beim Erwirmen. ausdehnen kann. Wir schlie-
Ben das Rohr mit dem dafiir vorgesehenen Schraubverschlull und justieren
das Viskosimeter. Wir wihlen am Kontaktthermometer die gewiinschte
MeBtemperatur, schrauben das entsprechende Thermometer in das Viskosi-
meter und schalten den Thermostaten (vgl. Abschn. W. 1.0.5.) ein.

Die Zeit, in der sich die Kugel von der oberen bis zur unteren Marke am
Viskosimeterrohr bewegt, wird mit einer Stoppuhr gemessen. Da die Tem-
peratur nicht in der zu untersuchenden Fliissigkeit, sondern im Temperier-
bad bestimmt wird, ist die ,,Fallzeit* bei jeder Temperatur so oft zu stoppen,
bis sich ein konstanter Wert ergibt.

Die Dichten gg und gy sind der Anleitung im Praktikum zu entnehmen.
Wir berechnen die Viskositat 1 nach Gl. (19) und stellen die MeBergebnisse
graphisch dar. Da die Viskositét vieler Flissigkeiten der Beziehung

N(T) = A exp (i;)

geniigt, tragen wir lg# iiber 1/T auf geeignetem Koordinatenpapier auf.

A und B sind Materialkonstanten, und 7' ist die absolute Temperatur.
Jeder Praktikant soll sich davon iiberzeugen, daB alle Schliuche am

Thermostat und am Viskosimeter mit Schlauchklemmen abgesichert sind.

M. 7.3. Ubbelohde-Viskosimeter

Aufgabe: Die Abhingigkeit der kinematischen Viskositit einer Fliissigkeit
von der Temperatur 7' ist in einem Intervall 7y < 7' < T, mit
dem Ubbelohde- Viskosimeter zu bestimmen.

Das Viskosimeter nach Ubbelohde ist ein Kapillarviskosimeter. Es unter-
scheidet sich von dem é&lteren Viskosimeter nach Ostwald durch das Rohr 3
(vgl. Abb. 486). Dieses Rohr sorgt dafiir, daB am unteren Ende der Kapillare 4
Luftdruck herrscht. Die aus der Kapillare austretende Fliissigkeit flieBt in
einer diinnen Schicht an der Innenwand des Volumens C ab. In C bildet sich
ein sogenanntes hangendes Kugelniveau, das nach sorgfiltigen Unter-
suchungen von Ubbelohde unabhingig von der Dichte, der Viskositdt und
der Oberflichenspannung der zu untersuchenden Fliissigkeit ist. Die untere
Grenze der Druckhdohe % ist daher das untere Ende der Kapillare (nicht wie
beim Ostwald-Viskosimeter die variable Hohe des Fliissigkeitsspiegels im
Volumen B). Die Druckh¢he h éndert sich wiahrend der Messung von A(0)
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bis k(). Man rechnet deshalb mit dem zeitlichen Mittelwert

Fiir die kinematische Viskositdt gilt nach den Gln. (6) und (4)

n(p, — po) B¢
sV, Vio ' . (20)

" Beim Eintritt in die Kapillare muB die Fliissigkeit beschleunigt werden.
Dazu ist ein Druck 8p notwendig.
Py — P2 = ogh — 3p 21)

Zur Berechnung von 3p (Hagenbachsche Korrektur) schreibt man die kine-
tische Energie pro Zeiteinheit d& der durch einen Hohlzylinder mit dem
Radius r und der Dicke dr strémenden Fliissigkeit auf (vgl. Abb. 43). Es

gilt
1 3
dE = 7 o2wr dr [v(r)]

Die Integration iiber alle Hohlzylinder mit v(r) nach Gl. (5) liefert die ge-
samte kinetische Energie pro Zeiteinheit

__er -
© mR
Andererseits ist .
g wV
t
Daraus folgt
oV?
O = Cape - (22)

Die dargestellte Uberlegung ist insofern unexakt, als beim Eintritt der
Fliissigkeit in die Kapillare eine parabolische Geschwindigkeitsverteilung
gemil Gl. (5) noch gar nicht vorliegt. Aus diesem Grunde bringt man an
Gl. (22) einen Korrekturfaktor m an, der einen Wert von etwa 1,1 hat.

2
sp— eV 23)

T2R4Y?
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Setzt man die Gln. (21) und (23) in Gl. (20) ein, erhilt man

p=—t gy L (24)

_ mghR* ,  mV
K=—gpr wd K=
wird
K/
Yy = .K [t — E:I .

Die Grole K'[(Kt) muB die Dimension einer Zeit haben. Daher fithrt man
eine Korrekturzeit

KI
Kt
ein. Gl. (24) lautet dann

7

v=K(t — t’). (25)
723
D M,
A
M,
[
S
= =
4 <
Abb. 46.
M Ubbelohde-Viskosimeter
c
M |8

Die Ubbelohde-Viskosimeter sind so dimensioniert, daB sich die Werte der
Apparatekonstanten K nur sehr wenig von 1, 0,1 bzw. 0,01 ¢St s~ unter-
scheiden. Der exakte Wert von K ist in jedes Viskosimeter gedtzt. Die den
verschiedenen Ausfluflizeiten ¢ entsprechenden Korrekturzeiten ¢ sind

tabelliert.
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Versuchsausfiihrung

Wir fiillen Rohr 1 (vgl. Abb. 46) mit MeBfliissigkeit, bis der Fliissigkeits-
spiegel zwischen den Marken M, und M, liegt. Wir wahlen am Kontakt-
thermometer die gewiinschte Temperatur und schalten den Thermostaten
ein (vgl. W.1.0.5.). Dieser speist einen Glasbehilter, in den das Viskosimeter
einzusetzen ist. Rohr 3 wird mit dem Finger geschlossen und die MeBfliissig-
keit mit Hilfe eines Gummigeblases in Rohr 2 hochgesaugt. Wenn das Vo-
lumen D voéllig gefiillt ist, 6ffnen wir Rohr 3 und bestimmen die Zeit ¢, in der
der Fliissigkeitsspiegel von der Marke M bis zur Marke M, sinkt. Wir notie-
ren die Temperatur des Fliissigkeitsbades und messen die AusfluBBzeit ¢ bei
dieser Temperatur so oft, bis sich der Wert von ¢ nicht mehr dndert. Die der
AusfluBzeit ¢ entsprechende Korrekturzeit ¢ wird der vom Herstellerbetrieb
des Viskosimeters gelieferten Tabelle entnommen und die kinematische
Viskositét nach Gl. (25) berechnet. Der Versuch ist bei anderen Temperatu-
ren zu wiederholen. Wir stellen die Temperaturabhangigkeit der kinemati-
schen Viskositit auf geeignetem Koordinatenpapier graphisch dar.

M. 7.4. Rotationsviskosimeter

Aufgaben: 1. Die dynamische Viskositat 7 einer sehr zahen Fliissigkeit soll
in Abhéingigkeit von der Temperatur mit dem Rotationsviskosi-
meter bestimmt werden.

2. Bei einer konstanten Temperatur ist die Abhangigkeit des Ge-
schwindigkeitsgefalles dv/dr von der Schubspannung t zu er-
mitteln.

Das Rotationsviskosimeter arbeitet nach folgendem Prinzip: In dem
Spalt zwischen zwei konzentrisch angeordneten Zylindern (Radius 7; und 7,)
befindet sich eine zdhe Fliissigkeit. Nun wird einer der beiden Zylinder mit
einer konstanten Winkelgeschwindigkeit o gedreht, wihrend der andere

-z. B. durch eine geeignete Torsionsvorrichtung oder eine Spiralfeder an eine
Ruhelage gebunden ist. Die am rotierenden Zylinder haftende Fliissigkeits-
schicht bewegt sich mit der Winkelgeschwindigkeit w, die am anderen
Zylinder haftende Schicht ruht.

Es gibt sowohl Rotationsviskosimeter, bei denen sich der duBere Zylinder
dreht, als auch solche, bei denen der innere Zylinder rotiert. Hier soll der
letztgenannte Fall behandelt werden (vgl. Abb. 47). ‘

Wenn der Spalt zwischen den beiden Zylindern sehr schmal ist (r, = 7,),
kann man bei laminarer Strémung in guter Naherung annehmen, daB die
Geschwindigkeit linear vom rotierenden zum ruhenden Zylinder abnimmt,

v(ry=ar+b. (26)
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Die Konstanten @ und b sind aus den Randbedingungen
v(ry) = wry,  o(ry) =0
zu bestimmen. Man erhélt

g Oh g onn
’I’s—?’i Ta — T3

Damit wird Gl. (26)

wr;

v(r) :\

r, — 7
S ),

und fiir das Geschwindigkeitsgefille ergibt sich

dv wr;
- e @7
Nach dem Newtonschen Ansatz fiir die Viskositat gilt
T(r F(r M(r
P h |\ hr? | —

Abb.47. Stromung zwischen
rotierenden Zylindern

In GI. (28) bedeuten F(r) die positiv gerechnete Reibungskraft, 7(r) die
Schubspannung und M(r) das Drehmoment im Abstand r von der Achse.
Die Lénge des rotierenden Zylinders ist mit & bezeichnet. Setzt man Gl. (27)
in Gl. (28) fiir den Fall » = r; ein, so ergibt sich

M(Ti) Ta — 13
o 2rhr!

(29)
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Die Bestimmung des Drehmomentes 148t sich auf eine Winkelmessung zu-
riickfithren. Die Winkelgeschwindigkeit kann in den meisten Viskosimetern
stufenweise eingestellt werden. Der zweite Bruch in Gl. (29) ist fiir jedes
Zylinderpaar eine Konstante. Die Viskositédt und die Schubspannung lassen
sich daher nach den Beziehungen

n = KNa, (30)
T = ko (31)

bestimmen, wenn die Konstanten K und k sowie der Drehzahlfaktor N be-
kannt sind und der Winkel « gemessen wird.

Die Voraussetzung, dafl der zylinderformige Spalt sehr eng ist, ist fiir die Giiltigkeit
der Gln. (30) und (31) nicht nétig. Fiir dieses Problem (Couette-Stromung) 148t sich die
Navier-Stokessche Differentialgleichung exakt l6sen. An dle Stelle der Gln. (26) und (29)
treten dann folgende Beziehungen

[
o) =er + 2,

_ M(n) g — 1}
=" 2nhr(r2 + r2) °

Da die Viskositat aller Fliissigkeiten stark von der Temperatur abhingig
ist, muB sich das Rotationsviskosimeter in einem TemperiergefaBl befinden,
das von einem Thermostaten (vgl. Abschn. W. 1.0.5.) gespeist wird.

Versuchsausfiihrung

Nachdem der Ringspalt mit der zu untersuchenden Fliissigkeit gefiillt
und das Viskosimeter in den Temperierbehélter eingesetzt ist, stellen wir
am Kontaktthermometer die gewiinschte Temperatur ein und nehmen den
Thermostat in Betrieb. Ist Temperaturgleichgewicht erreicht, wird der
Winkel o bestimmt. Wir stellen bei jeder Messung die kleinste Winkel-
geschwindigkeit, d. h. den gréften Drehzahlfaktor, ein. Erst wenn « sehr
klein und damit der Fehler groB wird, schalten wir auf das nichstkleinere N
um. Die Messung soll bei gleicher Temperatur mehrmals wiederholt werden.
Mit dem Mittelwert & berechnen wir 7 nach Gl. (30). Haben wir die Messun-
gen bei hinreichend vielen Temperaturen ausgefiihrt, wird n(7') auf ge-
eignetem Koordinatenpapier graphisch dargestellt.

In Aufgabe 2 bestimmen wir « bei verschiedenen Winkelgeschwindig-
keiten w bzw. Drehzahlfaktoren N — eventuell bei zwei Zylinderkombina-
tionen — und berechnen t nach Gl. (31). Die Werte fiir dv/dr und % sollen dem
Priifschein des Viskosimeters entnommen werden. Die graphische Darstel-
lung
| dv| 1
, dr 77 ’




M. 7.5. Prandtlsches Staurohr 143

liefert fiir eine Newtonsche Fliissigkeit eine Gerade mit der Steigung 1/9.
7 soll berechnet werden.

Wenn dieser lineare Zusammenhang nicht gilt, bezeichnet man die Fliis-
sigkeit als nicht-Newtonsch oder strukturviskos. In diesem Falle kénnen

wir den Ansatz .
1 dv 1 .
— | = =78
dr 7(7) Mo

machen und berechnen den Exponenten n nach

ﬂ
T dr
le (1) =
ng(rz) e dv
dr

1

2

AuBlerdem bestimmen wir die Viskositat fir die verschiedenen Schub-
spannungen nach Gl. (30) und stellen die Funktion 7(r) graphisch dar.

M. 7.5. Prandtlsches Staurohr

Aufgabe: Die Geschwindigkeitsverteilung einer stationdren Luftstromung
in einem zylindrischen Rohr soll mit dem Prandtlschen Staurohr
bestimmt werden.

—>3_"l

Rohrachse

Abb. 48. Prandtlsches Staurohr und Differenzmanometer

Mit Hilfe eines Fliigelrades, dessen Drehzahl innerhalb gewisser Grenzen
regelbar ist, wird in einem horizontalen Rohr eine Luftstrémung erzeugt.
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Zur Bestimmung der Strémungsgeschwindigkeit verwendet man ein Prandtl-
sches Staurohr, das lings eines Rohrdurchmessers verschoben werden kann.
An der Offnung 1 (vgl. Abb. 48) herrscht der Gesamtdruck p,, da dort die
Strémungsgeschwindigkeit » = 0 ist. An den Offnungen 2 und 3 herrscht
dagegen der statische Druck p. Die Druckdifferenz p, — p mifit man zweck-
méiBigerweise mit einem Differenzmanometer, dessen Rohr um den kleinen
Winkel « gegen die Horizontale geneigt ist. Es gilt

Po— P = ppgAhsin a. (32)

Die Stromungsgeschwindigkeit ergibt sich aus der Bernoullischen Glei-
chung (2) zu

. V 2po — 1) (33)
oL
Setzt man Gl. (32) in Gl. (33) ein, erhdlt man

v=l/29f‘gﬂm' (34)

, oL

Hierin sind g5 bzw. g, die Dichte der Manometerfliissigkeit bzw. der Luft.

Versuchsausfihrung

Wir bestimmen Zimmertemperatur und Luftdruck und berechnen die
diesen Werten entsprechende Dichte der Luft aus der Dichte bei Normal-
bedingungen. Nun wird das Differenzmanometer justiert. Die Lage des
Fliissigkeitsspiegels im Manometerrohr bei der Druckdifferenz 0 ist zu no-
tieren. Wir schalten den Motor des Fliigelrades ein und warten 10 bis 15 Mi-
nuten, damit sich im Motor und im Vorwiderstand ein Temperaturgleich-
gewicht und folglich eine zeitlich konstante Drehzahl des Fliigelrades ein-
stellen kann. Wir bestimmen Ah (vgl. Abb. 48) fiir verschiedene Lagen des
Staurohres und berechnen die Geschwindigkeit v nach Gl. (34). Das Stau-
rohr soll von Messung zu Messung um 5 mm léngs eines Durchmessers des
Strémungsrohres verschoben werden. Es ist darauf zu achten, daB die
Achsen des Staurohres und des Stromungsrohres stets parallel zueinander
sind. Der Versuch wird bei einer anderen Drehzahl des Fliigelrades wieder-
holt. Wir stellen die Geschwindigkeit v iiber dem Abstand von der Rohr-
achse r fiir beide Drehzahlen graphisch dar und vergleichen die Ergebnisse
mit Gl. (5).
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M. 7.6. Reynoldssche Zahlen

Aufgabe: Diejenige Reynoldssche Zahl soll bestimmt werden, bei der die
: laminare Strémung in einem Rohr in turbulente Strémung um-
schlagt.

Bei einer stationidren Strémung durch ein Rohr vom Radius R ist die
Summe der Druckkraft F' und der Reibungskraft Fy, gleich Null.

F + Fy = 0. (35)

Fiir Fy, soll ein Ansatz gewahlt werden, der im Gegensatz zu Gl. (3) sowohl
im Bereich der laminaren als auch in dem der turbulenten Strémung brauch-
bar ist. Man setzt die Reibungskraft Fy, proportional der angestrémten
Flache 4 und der kinetischen Energie der Volumeneinheit mit der mittleren
Geschwindigkeit 7 [vgl. die Gln. (7) und (8)].

Fy = —wd -9 (36)

w ist ein dimensionsloser Widerstandsbeiwert, und p ist die Dichte der
Fliissigkeit. Aus

TR2(p, — pg) — w2rch% ?=0
folgt
w= (pl __1:2) R . (37)
olv

Fiir die Druckdifferenz (vgl. Abb. 49) gilt

Py — P2 = 09(hy — hy).

Damit wird der Widerstandsbeiwert

Ist die Stromung laminar, kann man Gl. (8)

(P — ) TRE — 8Tyl = 0 (39)
schreiben. Aus den Gln. (35) und (39) folgt
Fy = —8mylp. (40)

10 Phys. Praktikum



146 Mechanik

Der Vergleich der Gln. (36) und (40) liefert

8 8

- -5 4

Y= Rovs ~Re’ “h
2

Triagt man lg w iiber Ig Re auf, so ergibt sich im Bereich der laminaren
Stromung gemal Gl. (41) eine Gerade mit der Steigung —1. Bei turbulenter
Strémung besteht zwischen lg w und Ig Re ein anderer Zusammenhang.

Versuchsausfishrung

Wir stellen eine Druckdifferenz p, — p, ein und bestimmen die Zeit ¢, in
der das Volumen V ausflieft. Befindet sich Luft im Strémungsrohr, darf
erst dann mit der Messung begonnen werden, wenn die strémende Fliissig-
keit alle Luftblasen aus dem Rohr entfernt hat. Wir lesen die Temperatur
der Fliissigkeit (Wasser) ab und entnehmen die Dichte g sowie die Viskosi-
tét 9 der Tab. 4.

Wir wiederholen die Messung bei etwa 30 verschiedenen Druckdifferen-
zen. Dies kann z. B. so geschehen, daB der gefiillte Behilter B (vgl. Abb. 49)

-«
Ih
&
Abb. 49.
L Schematische Darstellung
= = = = - — - der Versuchsanordnung

von Messung zu Messung etwas geleert wird. Um geniigend viele Messungen
im Bereich der laminaren Stromung auszufiihren, wahlen wir die Differenz
der Fliissigkeitshohen in B zwischen zwei Messungen zunichst etwa 10 cm
und lassen sie immer kleiner werden. Ist der Behilter B fast leer, soll die
Differenz nur noch ungefihr 0,5 cm betragen. Wir berechnen den Rohr-
radius R mit Hilfe von Gl. (6). Da das Gesetz von Hagen und Poiseuille nur
fiir laminare Strémung gilt, verwenden wir zur Berechnung von R die bei
kleinen Druckdifferenzen ermittelten Werte V/t. Die mittleren Geschwindig-
keiten # erhalten wir aus Gl. (7), die Widerstandsbeiwerte w aus Gl. (38) und
die Reynoldsschen Zahlen Re aus Gl. (10). Wir tragen Ig w iiber lg Re auf
geeignetem Koordinatenpapier auf und lesen den Wert der Reynoldsschen
gnagl ab, bei dem der Umschlag von laminarer in turbulente Strémung statt-
et.
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M.8. SCHALLWELLEN

M. 8.0. Aligemeine Grundlagen

Eine clastische Deformation, d.i. die durch elastische Krifte hervor-
gerufene Verschiebung eines Volumenelementes aus seiner stabilen Ruhe-
lage, pflanzt sich in einem deformierbaren Medium mit endlicher Aus-
breitungsgeschwindigkeit fort. Es entsteht eine mechanische Welle, die man
als Schallwelle bezeichnet. Die Gesamtheit aller Flichenelemente des elasti-
schen Kérpers, die sich zu einer bestimmten Zeit im gleichen Schwin-
gungszustand (in gleicher Phase) befindet, nennt man Wellenfliche. Existiert
in einem homogenen, isotropen Korper ein punktférmiges Erregerzentrum, .
so entsteht eine Kugelwelle. Die Wellenflichen sind konzentrische Kugeln
um den Erreger. Ist dagegen das Erregerzentrum unendlich weit entfernt,
liegt eine ebene Welle vor. Die Wellenflichen sind zueinander parallele
Ebenen. Alle Linien, die die Wellenflichen senkrecht schneiden, bezeichnet
man als Strahlen.

In der folgenden Betrachtung wird vorausgesetzt, daB der elastische Kor-
per eindimensional ist. In Wirklichkeit gibt es derartige Korper nicht. Man
kann aber einen langen Metallstab (Dichte g), dessen Querschnitt 4 hin-
reichend klein ist, ndherungsweise als eindimensional betrachten. Jedes
beliebige Volumenelement des Stabes fithrt unter dem EinfluBl einer ortlich
und zeitlich variablen Zugspannung

o =0z, t)

in Richtung der Stabachse (z-Achse) Bewegungen um die Lage aus, die es
ohne Vorhandensein einer Spannung einnimmt. Die Verschiebung eines
beliebigen Querschnittes

ist dann auch eine Funktion des Ortes und der Zeit.

dx §+§X§dx_

Jol'}) Abb. 50
0 =~ >0+ dx .
ox i Zur linearen Wellengleichung
. in festen Korpern
X &

Ein bestimmter Querschnitt des Stabes stehe zur Zeit ¢ = ¢, unter der
Spannung ¢ und sei um das Stiick & aus seiner Ruhelage = verschoben
(vgl. Abb. 50). Ein benachbarter Querschnitt, der unter der Spannung

10*
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—gi dz steht, ist zur gleichen Zeit { = £, um & + % dz aus seiner Ruhe-
2z

lage verschoben. Das Volumenelement 4 dx erfihrt durch die Spannung

o+

eine absolute Langeninderung von 2—5 dx, wahrend die Dehnung (relative
x

Langeninderung) gleich % ist. Alle auftretenden Spannungen sollen so

klein sein, daB das Hookesche Gesetz [vgl. Gl. (M. 5.0.—1)] gilt. Dieses Gesetz
kann im vorliegenden Falle
0&

UZEE

geschrieben werden. £ ist der Elastizitdtsmodul des Stabmaterials.
Auf das Volumenelement wirkt in Richtung der z-Achse eine Kraft

do 0%k

Diese Kraft ist andererseits

ozt L3
Daraus folgt
9% B 0% :
BT g et @

Eine dhnliche Betrachtung kann auch fiir Fliissigkeiten oder Gase angestellt
werden. Man setzt voraus, daf} sich der Stoff (Dichte g) in einem diinnen,

e §‘f%dX

Abb. 51.
Zaur linearen Wellengleichung
in Flassigkeiten und Gasen

9
P> — <D, P> <—p+5§dx

horizontalen Rohr (Querschnitt A) befindet. Im Ruhezustand herrscht an
allen Stellen des Rohres der konstante hydrostatische Druck p,. Fiir die
zur Zeit t = ¢, auf das Volumenelement dV = 4 dx wirkenden Driicke
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(vgl. Abb. 51) gilt
P = p, + 3p,

op . a3p

3p und die Verschiebung & sind Funktionen des Ortes und der Zeit. Das
Volumenelement d ¥V steht unter dem EinfluB} einer Kraft

adp
—A de

in Richtung der x-Achse, die gleich

02¢
Adxo Fre

sein muB}. Daraus folgt

2
Nun fithrt man den Kompressionsmodul [vgl. Gl. (M. 5.0.-8)]
ein. Wendet man Gl. (3) auf das Volumenelement dV an, erhalt man
1 1 3dv 1 3de
B~V 5~ d @

ddx ist die absolute Lingeninderung des Elementes unter der Wirkung des
Druckes 3p, d.h., es gilt

o0&

8 de = % dx.
Damit kann man Gl. (4)
0&
by Ko )

schreiben. Wird Gl. (5) in Gl. (2) eingesetzt, erhalt man

0% K 0%
B g et ©)
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Die linearen Wellengleichungen (1) und (6) sind vom Typ

625 825
Fr T )

Gl. (7) ist der einfachste Fall der hyperbolischen Normalform der par-
tiellen Differentialgleichung zweiter Ordnung. Es existieren unendlich
viele Losungen. Jede Funktion

s=s@—§y (8)

§=5@+§) | (9)

geniigt Gl. (7). Dies 148t sich sofort nachweisen, wenn man die beiden par-
tiellen Ableitungen zweiter Ordnung von den Gln. (8) und (9) bildet.

Wie man sich leicht iiberzeugen kann, ist die in Gl. (7) formal eingefiihrte
GroBe ¢ die Geschwindigkeit, mit der sich ein bestimmter Schwingungs-
zustand (eine Phase) fortpflanzt. Die Schallgeschwindigkeit ¢ ist daher eine
Phasengeschwindigkeit.

Die durch Gl. (8) bzw. (9) beschriebenen Wellen breiten sich in positiver
bzw. negativer z-Richtung aus und sind als Losungen der linearen Wellen-
gleichung ebene Wellen. Da die Verschiebung in der Geraden der Ausbrei-
tungsgeschwindigkeit erfolgt, nennt man diese Wellen longitudinal.

Schallwellen in Gasen und Fliissigkeiten sind longitudinale Wellen, da
man im allgemeinen den EinfluB der inneren Reibung (Viskositéit) vernach- .
lassigen kann. In mehrdimensionalen festen Kérpern treten dagegen infolge
der nicht vernachlissigbaren Schubkrafte sowohl longitudinale als auch
transversale Schallwellen auf.

Von besonderem Interesse sind die karmonischen Wellen, bei denen die
Verschiebung & durch eine zeitlich und rdumlich periodische Funktion

£= £ cosw (t _ %) (10)
oder

£ = £ sinw (t - %) (11)

beschrieben wird. &, ist die Amplitude der Schwingung. Die in den Gln. (10)
und (11) auftretende GroBe w hat die Dimension' Zeit. Ihre Bedeutung er-
kennt man, wenn man den zeitlichen Verlauf der durch Gl. (10) dargestell-
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ten Welle an der Stelle x = 0 verfolgt. Zu allen Zeitent =nr (n =0, 1,2, ...)
ist & gleich &,. Daraus folgt wnr = n 2x oder

=== = 2my. 12
w 7 oY (12)

Hierin ist v die Schwingungsdauer, v die Frequenz und « die Kreisfrequenz
der Welle.

Betrachtet man andererseits den ortlichen Verlauf der durch Gl. (10) be-
schriebenen harmonischen Welle zur Zeit ¢ = 0, dann ist an allen Stellen
z=nl(n=0,1,2,..)) & gleich &,. Es gilt also

oon—}b = n2x
c
oder
1 )
c= P Y2 (13)

Die Phasengeschwindigkeit einer harmonischen Welle (Schallgeschwindig-
keit) ist gleich dem Produkt aus der Wellenlinge A und der Frequenz ».
Aus dem Vergleich der Gl. (7) mit den Gln. (1) und (6) folgt

o = g , (14)
2= % (15)

Die Schallschwingungen erfolgen mit so groBer Geschwindigkeit, daB sie als
adiabatische Vorginge angesehen werden koénnen. Ist das deformierbare
Medium ein ideales Gas, gilt fiir die Schwingungen die Adiabatengleichung
[vgl. Gl (W. 2.0.-18)]

V*p = const. (16)

In Gl. (16) bedeutet » das Verhiltnis der spezifischen Warmekapazitat bei
konstantem Druck ¢, zur spezifischen Warmekapazitit bei konstantem Vo-
lumen c;,. Differenziert man Gl. (16) nach V, ergibt sich

oder
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Damit lautet Gl. (3)
K =uxp. (3a)
Setzt man Gl. (3a) in Gl. (15) ein, erhilt man

P (17)
@

Fiir ideale Gase gilt [vgl. Gl. (M. 2.0.-4)]

£=&£;qu£1%. (18)
4 o0 T Qo T,

Die Schallgeschwindigkeit in idealen Gasen ist eine vom Druck unabhéngige
Funktion der absoluten Temperatur 7. Aus den GIn. (17) und (18) folgt

= anﬁlﬂ I ;OT" . (19a)

Qo

Fiir Luft erhalt man im Bereich der Zimmertemperatur (7' — Ty <« 7') in
guter Naherung

¢ = 330,6 {1 + T2_TT°} ms-L, (19b)

Stehende Wellen treten auf, wenn sich zwei gegenldufige harmonische Wel-
len gleicher Frequenz und gleicher Amplitude tiberlagern. Dies kann z.B. da-
durch geschehen, dafl eine Welle an einer bestimmten Grenze reflektiert wird.

Das Experiment zeigt:

Erfolgt die Reflexion der Welle am akustisch diinneren Medium, entsteht
an der Grenze ein Bauch (Schwingungsmaximum). Wird die Welle dagegen
am akustisch dichteren Medium reflektiert, entsteht ein Knoten (Auslé-
schung des Schwingungszustandes).

M. 8.1. Kundtsches Rohr

Awufgaben: 1. Die Schallgeschwindigkeit in einem Gas ¢g und das Verhéltnis
der spezifischen Wirmekapazitat bei konstantem Druck zu der
bei konstantem Volumen # sollen bestimmt werden.

2. AuBlerdem sind die Schallgeschwindigkeit in einem Metallstab
cy und der Elastizitdtsmodul £ des Stabmaterials zu ermitteln,
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Das Kundtsche Rohr (vgl. Abb. 52) ist ein horizontal liegendes Glasrohr,
das an einem Ende durch einen mit der Platte P, versehenen Stopfen ge-
schlossen ist. In das andere Ende ragt ein diinner Metallstab mit kreisférmi-
gem Querschnitt. Dieser Stab ist genau in der Mitte seiner Lénge fest ein-
geklemmt. Wenn man die Mantelfliche des Stabes mit einem Lappen paral-
lel zur Stabachse reibt, bildet sich im Metallstab eine stehende Welle, die man

g ;

=R g :

X
a L

Abb. 52. Kundtsches Rohr

als unangenehmen Quietschton wahrnimmt. In der Mitte des Stabes (ein-
gespannte Stelle) entsteht ein Schwingungsknoten, an den freien Enden je
ein Schwingungsbauch. Zwischen der Wellenlinge und der Stablinge !
besteht daher der Zusammenhang

Jor = 2L (20)

Durch die am Stabende starr befestigte Platte P, wird die Luft bzw. das
Gas im Rohr zu Schwingungen angeregt. Da die von P, ausgehenden Schall-
wellen an der Platte P, reflektiert werden, entsteht in der Luft bzw. in dem
Gas ebenfalls eine stehende Welle. Diese kann bei geeigneter Wahl des Ab-
standes a zwischen P, und P, durch Korkpulver sichtbar gemacht werden.
An der Platte P, befindet sich ein Schwingungsknoten. Der Abstand ist
immer dann geeignet gewihlt, wenn sich die Platte P, in unmittelbarer
Nihe eines anderen Knotens befindet, da an einer solchen Stelle die Ampli-
tude der Schwingungen in der Platte mit der Amplitude der Schwingungen
in der Luft bzw. in dem Gas iibereinstimmt. Die Wellenlinge in Luft 4
bzw. in Gas A¢ ergibt sich aus dem Abstand x bzw. 25 von der ersten bis zur
letzten gut erkennbaren Knotenstelle zu

_2= (21)
n
bzw.
2z
}'G = mG (22)

Dabei ist #» bzw. m die Zahl der zwischen den benachbarten Knoten liegen-
den Béuche,
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Die Frequenz v der stehenden Wellen ist in den verschiedenen Medien
gleich. Daher gilt

Cu = gV, Cg=2Agv, ¢c= M

oder

g

o =7 C (23)
o =5, (24)

Die Bestimmung der Schallgeschwindigkeit mit Hilfe eines Kundtschen
Rohres ist ein vergleichendes MeBverfahren. ¢, und cg kénnen nur angege-
ben werden, wenn die Schallgeschwindigkeit ¢ in einem Medium (hier in
Luft) bekannt ist.

Die stehende Welle in dem Gas, mit dem das Kundtsche Rohr gefiillt ist,
kann auch durch einen Lautsprecher erzeugt werden, der einen Ton ge-
eigneter Frequenz ausstrahlt. In diesem Falle ist die zweite Aufgabe zu
streichen.

Versuchsausfithrung

Wir messen die Zimmertemperatur und streuen Korkpulver in das Kundt-
sche Rohr. Pulver und Rohr miissen trocken sein, damit die feinen Kork-
stiicke nicht am Glas anbacken. Das Pulver wird durch Klopfen am Rohr
in einer Linie lings des unteren Innenmantels angeordnet und dann durch
vorsichtiges Drehen des Rohres um seine Achse ein wenig gehoben. Nun
erzeugen wir in dem Metallstab eine stehende Welle. Der dazu bendtigte
Lappen wird zur Erhéhung der Haftfihigkeit mit etwas Kolophonium be-
streut. Wir veréindern den Abstand ¢ in sehr kleinen Schritten so lange, bis
das Korkpulver im Glasrohr beim Reiben des Metallstabes deutlich er-
kennbare Kundtsche Staubfiguren bildet. Zur Bestimmung des Abstandes z
dient ein MaBstab, der im allgemeinen mit einer verschiebbaren Visier-
einrichtung versehen ist. Wir berechnen die Wellenldnge A nach Gl. (21). Bei
jeder Wiederholungsmessung (mindestens fiinf) sind die Staubfiguren neu
zu erzeugen. Aus den verschiedenen Werten A; wird der arithmetische Mit-
telwert 1 gebildet. Nun lassen wir einige Minuten lang ein Gas (z.B. CO,)
durch das Kundtsche Rohr strémen. AnschlieBend wird der Versuch in der
oben beschriebenen Weise ausgefiihrt. Aus den nach Gl. (22) berechneten
Werten der Wellenlinge A bilden wir den arithmetischen Mittelwert .

Wir messen die Stablange I, berechnen die Wellenlédnge 4, nach Gi. (20)
und bestimmen zum Schlufl noch einmal die Zimmertemperatur. Die Schall-
geschwindigkeit in Luft ¢ wird nach Gl (19b), die in dem Metallstab c,,
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nach Gl. (23) und die in dem Gas ¢ nach Gl. (24) berechnet. Dabei sind die
Mittelwerte 1 und Ag zu verwenden. E ergibt sich aus Gl (14) mit ¢ = ¢
und » aus Gl (19a) mit ¢ = cg. Die Dichten der verschiedenen Medien sind
den Tab. 1 und 3 zu entnehmen.

M. 8.2. Beugung des Lichts an Ultraschallwellen
(Debye-Sears-Effekt)

Aufgaben: 1. Es ist die Schallgeschwindigkeit einer Fliissigkeit sowie die
Schallwellenlange nach der Methode von Debye und Sears zu be-
stimmen.

2. Unter Zugrundelegung der in Aufgabe 1 gemessenen Schall-
geschwindigkeit sind durch Vergleichsmessungen die Schall-
geschwindigkeiten. von anderen Versuchsfliissigkeiten zu bestim-
men.

3. Von allen Versuchsfliissigkeiten ist der Kompressionsmodul zu
berechnen.

Eine durch eine Fliissigkeit laufende Schallwelle besteht aus periodischen
Verdichtungen und Verdiinnungen, die sich mit Schallgeschwindigkeit durch
das Medium bewegen (elastische Welle). Diese periodische Dichtednderung
fiihrt zu einer in gleicher Weise periodischen Anderung des optischen Bre-
chungsindex (vgl. O. 3.). Eine ebene Schallwelle wirkt daher auf eine Licht-
welle wie ein Beugungsgitter, dessen Gitterkonstante gleich der Schall-
wellenlinge 4 im Medium ist.

Ein solches Gitter nennt man Phasengitter, da die Lichtwellen, die an
unterschiedlichen Stellen das Gitter durchlaufen, wegen der periodischen
Anderung des Brechungsindex unterschiedliche optische Weglingen zuriick-
legen und beim Austritt gegeneinander phasenverschoben sind.

Beim Phasengitter treten im wesentlichen die gleichen Beugungserschei-
nungen auf, wie man sie bei einem iiblicherweise verwendeten optischen
Strichgitter beobachtet (vgl. 0.2.3.). Das letztere bezeichnet man als Ampli-
tudengitter, weil es aus aufeinanderfolgenden durchsichtigen Spalten besteht,
die durch undurchsichtige Partien voneinander getrennt sind. Das Licht
wird also je nachdem, wo es auf das Gitter fallt, durchgelassen oder nicht,
d. h. in der Amplitude verdndert.

Die Erscheinung der Lichtbeugung an Schallwellen bezeichnet man als
Debye-Sears-Effekt. Man verwendet hierzu Schallwellen im Ultraschall-
bereich, d. h. mit Frequenzen von mehr als 20 kHz.

Zum Nachweis des Beugungseffekts beleuchtet man die mit der Mef-
fliissigkeit gefiillte Glaskiivette, in der sich der piezoelektrische Schallgeber
befindet, senkrecht zur Schallrichtung mit parallelem monochromatischem
kohdrentem Licht (Abb. 53). Der durch die Linse I von der Lichtquelle be- -
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leuchtete Spalt wirkt als sekundére Lichtquelle und wird durch die Linsen 2
und 3, zwischen denen die ungebeugten Strahlen parallel verlaufen, scharf
auf den Schirm abgebildet. Anstelle des Schirms wird man oftmals eine MeB-
lupe verwenden.

Durch die Wirkung des Ultraschalls treten auf beiden Seiten vom zentra-
len Spaltbild eine Reihe von Beugungsbildern auf. Die Beugungserschei-

) i Schirm .
linse?  Spalt  Llinse?  Gloskivette  Linse 3 (MeBlupe)

Licht-
quelle

IR TIGGAT 1 fg |

\
N
N

3 Hoch-
I frequen i equen-
| generator

Abb. 53. Zum Debye-Sears-Effekt (Beugung stark schematisiert)

nungen sind sehr dhnlich denen, die an einem Strichgitter auftreten. Sie
werden ebenfalls durch die Formel

b-sino, =k- A £k=0,1,2,3,...

beschrieben (vgl. O. 2.3.); die Gitterkonstante b ist gleich der Schallwellen-
lange A. Zur Unterscheidung wird die Lichtwellenlinge hier mit A;, bezeich-
net. Beugungsmaxima k-ter Ordnung treten also bei Beugungswinkeln «,
auf, fiir die gilt:

Aesinog =k- A k=0,1,23,... (25)

Ist x;, der Abstand des k-ten Maximums vom Maximum nullter Ordnung
(Zentralbild), so ergibt sich wegen der fiir kleine Winkel «,, giiltigen Bezie-
hung z/f = tan o, =~ sin o, =~ o

/1~%=k-lL. (26)

-f ist die Brennweite der Linse 3,
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Fiir die Wellenldnge der Ultraschallwelle erhélt man

PR, 53 ) 27)
Ty
Die Abstinde Az benachbarter Maxima sind gleich. Es gilt
I
Av = |zp,, — x| = th. (28)

Ist die Frequenz » der Schallwelle bekannt, so 148t sich die Schallgeschwin-
digkeit ¢ berechnen:

k-2y-f-»

c=Av=—"—""—— (29)
Tk
oder mit Gl. (28)
. _/'[L.f.:p
C—A-V—Txk. (30)

Da es fiir die Lage der Beugungsbilder bei der Fraunhoferschen Beugung gleichgiiltig
ist, ob die beugende Struktur senkrecht zur optischen Achse verschoben wird bzw. sich
bewegt, tritt der Debye-Sears-Effekt bei fortlaufenden und stehenden Wellen in glei-
cher Weise auf. Die Wellenldnge und damit die Gitterkonstante ist in beiden Fillen die
gleiche. Die auftretende Dopplerverschiebung des gebeugten Lichts ist sehr klein und
kann vernachlissigt werden.

Versuchsausfiihrung

Zur Absolutmessung der Schallwellenlinge nach Aufgabe 1 verwenden
wir Gl. (27) oder (28). Ist die Brennweite der Sammellinse 3 nicht bekannt,
messen wir sie vorher nach einem der in Abschn. O. 1.1. beschriebenen Ver-
fahren. 2, bzw. Az wird am besten mit einer MeBlupe bestimmt. Wir messen
mehrmals und bilden den Mittelwert.

Wir beachten, daB der piezoelektrische Schallgeber nur in Betrieb gesetzt
werden darf, wenn sich Fliissigkeit in der Kiivette befindet. Bei allen Mes-
sungen wihlen wir die Breite des Beleuchtungsspaltes so klein wie moglich.

Um die Schallgeschwindigkeit ¢ = A-» zu bestimmen, wird zusatzlich
die Frequenz v des Hochfrequenzgenerators, der den Schallgeber anregt, mit
Hilfe eines Frequenzzihlers oder eines MeBgenerators gemessen.

Um mit der in Aufgabe 1 bestimmten Schallgeschwindigkeit durch Re-
lativmessung die Schallgeschwindigkeit weiterer Versuchsfliissigkeiten zu
erhalten, bedenken wir, daBl bei konstanter Schallfrequenz » fiir zwei Fliis-
sigkeiten I und II nach GI. (30) gilt

ALty
o= ALxI ’
CII — ALfv

AxII '
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Damit wird

CI A.’BII
vl

Die Schallgeschwindigkeiten verhalten sich also bei konstanter Frequenz
umgekehrt wie die Abstinde Az benachbarter Beugungsmaxima.

Als Bezugsfliissigkeit I wird die in Aufgabe 1 untersuchte gewahlt. Fiir
sie sind ¢! und Az! bekannt.

Bei gleicher Ultraschallfrequenz bestimmen wir in einem weiteren Ver-
such den Abstand Az'! benachbarter Beugungsmaxima der Fliissigkeit II.
Da wir eine Reihe von Beugungsordnungen sehen, werden simtliche
Abstinde benachbarter Maxima ausgemessen. Wir verwenden fiir die Be-
rechnung den Mittelwert. Mit dem so bestimmten Wert Ax'! erhalten wir
fiir die Schallgeschwindigkeit

clf = AT cl.

Der Versuch wird mit anderen Fliissigkeiten wiederholt. Wenn die Schall-
geschwindigkeiten aller Fliissigkeiten bestimmt sind, berechnen wir den
Kompressionsmodul K nach Gl. (15). Die Dichte ¢ wird der Tab. 2 ent-

hommen.



Warmelehre

W.1. TEMPERATURMESSUNG

W.1.0. Allgemeine Grundlagen

W. 1.0.1. Temperatur, MaBeinheiten und Temperaturskalen

Die Temperatur ist eine ZustandsgroBe der Thermodynamik, die den
Warmezustand eines Korpers im thermodynamischen Gleichgewicht cha-
rakterisiert. Nach der kinetischen Warmetheorie héingt sie von der durch-
schnittlichen kinetischen Energie der sich bewegenden Teilchen ab.

Die Temperatur iibt einen entscheidenden EinfluB auf viele Stoffeigen-
schaften der Korper aus.

Die Thermodynamik verwendet die Temperatur als vierte GrundgréBe
neben den aus der Mechanik bekannten GrundgréBen Masse, Linge und
Zeit. Die Temperatur kann nur indirekt gemessen werden. Die Messung be-
ruht auf der Temperaturabhéngigkeit solcher physikalischen und chemi-
schen Stoffeigenschaften, die einer unmittelbaren Messung zugénglich sind.
Man nennt diese Stoffe thermometrisch und die mit ihrer Hilfe festgelegten
Temperaturskalen empirisch.

Eine Definition der Temperatureinheit ist nur im Zusammenhang mit
der Realisierung einer Temperaturskale méglich. Die thermodynamische
Temperaturskale ist zwar eine theoretisch begriindete Skale (2. Hauptsatz
und Carnotscher Kreisprozel), sie kann aber weitgehend mit dem Gas-
thermometer verwirklicht werden. Mit Hilfe der thermodynamischen Tem-
peraturskale wird die Temperatureinheit, das Kelvin, definiert:

Das Kelvin (K) ist der 273,16te Teil der (thermodynamischen) Tempera-
tur des Tripelpunktes von reinem Wasser.

Je nach der Wahl des Nullpunktes unterscheidet man zwischen der ab-
soluten oder Kelvin-Skale und der Celsius-Skale. Die absolute Temperatur
wird mit 7' bezeichnet und in Kelvin (K) gemessen ; sie beginnt beim absolu-
ten Nullpunkt. Die Celsiustemperatur wird mit ¢ bezeichnet und in Grad
Celsius (°C) gemessen. Sie hat den Nullpunkt 7', = 273,15 K. Die Celsius-
temperatur kann also als spezielle Differenz

t=T~T, | (1)

aufgefallt werden.
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Temperaturbereiche (Differenzen, Toleranzen) stimmen demnach in bei-
den Skalen iiberein und werden ebenfalls in der Einheit Kelvin angegeben.
Man mulB3 daher beachten, dal ohne einen zusédtzlichen Wortbegriff eine
Unterscheidung, ob es sich um einen Skalenwert oder um eine Differenz-
grofle handelt, nicht moglich ist.

Bei hohen Genauigkeitsanforderungen sind thermodynamische Tempera-
messungen. sehr schwierig und nur mit sehr hohem Aufwand zu verwirk-
lichen. Man legte deshalb international fiir den praktischen Gebrauch eine
empirische Temperaturskale mit mehreren Fixpunkten und den genauen
Zuordnungsvorschriften fest. Diese Internationale Praktische Temperatur-
skale (IPT-Skale 1968) ist auf 11 Temperaturwerte, sogenannte Definitions-
fixpunkte und auf Vorschriften fiir die Interpolation zwischen diesen Punk-
ten gegriindet.

Die IPT-Skale stimmt mit der thermodynamischen weitgehend, jedoch
nicht vollstandig iiberein. Da aber z. B. im Bereich von 0 °C bis 100 °C die
Abweichungen zwischen den beiden Skalen nur einige Tausendstel Grad be-
tragen, also bei den meisten praktischen Messungen unbedeutend sind, kann
man die in der IPT-Skale gemessenen Temperaturen im allgemeinen in der
Einheit der thermodynamischen Skale angeben.

W. 1.0.2. Temperaturmessung mittels mechanischer
temperaturabhdngiger Stoffeigenschaften

Bei Erwarmung bzw. Abkiihlung eines Koérpers dndert sich unabhingig
vom Aggregatzustand seine Linge bzw. sein Volumen. Bei einer Langen-
dnderung tritt als Proportionalititsfaktor der lineare Ausdehnungskoef-
fizient « auf:

1 ! Al
R . ®

Fiir die Temperaturabhingigkeit der Linge ! gilt dann

1=1(1 + «AT). 3)

Analog dem linearen Ausdehnungskoeffizienten fiihrt man den kubischen
Ausdehnungskoeffizienten y ein:

1 dVv AV
- oder Y= W . (4)

YTV ar
Aus der dritten Potenz von Gl. (3) folgt bei Vernachlissigung der Potenzen
2. und 3. Ordnung mit y ~ 3«

V= Vo1 + pAT). (5)
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Das Fliissigkeitsthermometer ist die wichtigste Bauform der Thermometer.
Es beruht auf der thermischen Ausdehnung einer Fillfliissigkeit in einem
Gefil mit angesetzter Kapillare und benutzt zum Anzeigen der Temperatur
den Ausdehnungsunterschied zwischen Fiillfliissigkeit und GefidBmaterial.
Als Thermometerfiillung werden benetzende und nicht benetzende Fliis-
sigkeiten verwendet. Folgende Tabelle gibt einen Uberblick iiber die ge-
brauchlichsten Fliissigkeiten und den Temperaturbereich, in dem sie an-
wendbar sind:

Thermometerfillfliissighkeiten

Material Temperaturbereich
Quecksilber —38 bis +630 (750)
Quecksilber Thallium —58 bis 430
Pentan —200 bis +20
Athylalkohol —100 bis +50
Toluol —70 bis +100

Fiir hohe Temperaturen werden die Thermometer aus Quarz hergestellt.
Der Raum in der Kapillare ist mit einem unter Druck stehenden Gas, meist
Stickstoff oder Wasserstoff, gefiillt. Die mit Glasthermometern erreichbare
Genauigkeit liegt im allgemeinen in der GréBenordnung der Skalenteilung,
also bei minimal 0,01 K. Die meisten Fliissigkeitsthermometer sind fiir den
Fall justiert, daB sich der ganze Quecksilberfaden auf der zu messenden
Temperatur befindet, also fiir vélliges Eintauchen des Thermometers in ein
temperaturkonstantes Bad bis iiber die Quecksilberkuppe. Miissen die
Messungen mit herausragendem Faden durchgefiihrt werden, ist eine Fa-
denkorrektur vorzunehmen. Die Korrektur la8t sich nach folgender Formel

berechnen :
A=k At —ty). (6)

Dabei ist At, die Lange des herausragenden Fadens gemessen in °C, ¢ die ab-
gelesene Temperatur, ¢, die mittlere Temperatur des Quecksilberfadens und
k der scheinbare Ausdehnungskoeffizient der Fliissigkeit in dem betreffenden
Glas. Fiir Quecksilber in Jenaer Thermometerglas ist £ = 0,000157 K1,
fiir nichtmetallische Fliissigkeiten wird allgemein & = 0,0013 K- angenom-
men. Die mittlere Temperatur ¢, wird entweder geschitzt oder mit einem
speziellen ,,Fadenthermometer bestimmt.

Das Beckmann-Thermometer ist eine spezielle Form des Fliissigkeits-
ausdehnungsthermometers. Es wird insbesondere zur Bestimmung sehr
kleiner Temperaturdifferenzen verwendet. Die Skale eines solchen Thermo-
meters- umfaBt im allgemeinen ein Temperaturintervall von nur 5 K mit
einer Hundertstelgradteilung. Um das Thermometer fiir verschiedene MeB-
bereiche verwenden zu konnen, 148t sich die wirksame Quecksilbermenge
verringern oder vergréfern. Abb. 54 zeigt den oberen Teil eines Beckmann-

14 Phys. Praktikum
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Thermometers, das auf etwa 50 °C erwirmt worden ist. Durch vorsichtiges
Klopfen an das Thermometer reiBt das Quecksilber in dem erweiterten,
mittleren Rohr ab.

Der abgetrennte Anteil wird bei einer Abkiihlung nicht wieder in das am
unteren Ende befindliche Vorratsgefil gezogen, so daB das Thermometer
in einem MeBbereich von etwa 50 °C bis 55 °C verwendet werden kann. Will
man den MeBbereich veréindern, ist entweder ein weiterer Teil des Queck-
silbers abzutrennen oder ein Teil des bereits abgetrennten Quecksilbers zu-
riickzusaugen. Die Hilfsskale H liBt erkennen, daB das Thermometer fiir
Temperaturen zwischen —20 °C und +120 °C brauchbar ist.

Abb. 54. Oberteil eines Beckmann-Thermometers

Die Ablesungen, die man mit einem auf diese Weise eingestellten Thermo-
meter vornimmt, sind untereinander vergleichbar, ergeben aber noch keine
absoluten Werte der Temperaturdifferenz. Hierzu ist es noch erforderlich,
den Gradwert des Thermometers zu bestimmen. Der Gradwert, d. h. der
einem Grad der Teilung entsprechende Temperaturwert, ist nur bei einer
Temperatur richtig, denn er hangt von der Menge des Quecksilbers in der
Kugel ab, und diese andert sich, wenn Quecksilber in das Vorratsgefil am
oberen Ende der Kapillare iiberfithrt oder aus diesem entnommen wird.
Dabei spielen vor allem die Ausdehnung des Glases (verschiedene Glas-
sorten) und des Quecksilbers bei verschiedenen Temperaturen eine Rolle.

Der Gradwert 148t sich durch Vergleichsmessungen bestimmen oder be-
rechnen. Besteht das Beckmann-Thermometer aus Jenaer Thermometerglas
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und ist seine Skale fiir 0 °C bis 5 °C richtig (also Gradwert 1), so kann man
den Gradwert nach der Formel

1

G=4= 0,00016 -« (™

berechnen. Dabei bedeutet « die in Grad angegebene abgetrennte Queck-
silbermenge. Mit diesem Gradwert sind alle Ablesedifferenzen zu multipli-
zieren, wenn man Absolutwerte erhalten will. Der Gradwert hat dagegen
bei allen Vergleichsmessungen nur untergeordnete Bedeutung. Aus dem
gleichen Grund ist auch eine Fadenkorrektur nicht erforderlich, wenn
Eichung und Messung unter gleichartigen Bedingungen durchgefiihrt
werden.

In den Gasthermometern nutzt man zur Temperaturmessung die Zustands-
dnderung des (idealen) Gases aus. Er werden drei gasthermometrische Me-
thoden unterschieden: Methode des konstanten Volumens, des konstanten
Druckes und der konstanten Gefifitemperatur.

Bei der ersten Methode bleibt das Volumen der eingeschlossenen Gas-
masse etwa konstant. Die zu bestimmende Temperatur wird aus dem
Druckverhaltnis entsprechend (Gay-Lussac)

p=po(l +yAT) (8)

berechnet.

Bei der zweiten Methode wird der Druck konstant gehalten, wenn man
das Mefgerit von der Bezugstemperatur auf die MeBtemperatur bringt.
Die zu messende Temperatur ergibt sich aus dem Volumenverhéiltnis ent-
sprechend Gl. (5). In beiden Fillen ist das MeBgefdl mit bekanntem Volu-
men iiber eine Kapillare mit einem Quecksilbermanometer verbunden.

Bei der Methode der konstanten GeféBtemperatur wird die Temperatur
aus Druck- und Volumenmessungen gewonnen. Dabei wird das Volumen so
gedndert, dafl der Druck auf einen bestimmten Teil des Anfangsdruckes
abnimmt.

W. 1.0.3. Temperaturmessung mittels elektrischer
temperaturabhingiger Stoffeigenschaften

Eine der wichtigsten Stoffeigenschaften, die zur Temperaturmessung ver-

wendet werden, ist die Temperaturabhingigkeit des elektrischen Wider-
standes (vgl. E. 1.0.4).

Metallwiderstandsthermometer bestehen meist aus Platin, z. T. auch aus
Nickel. ‘

Das Platinwiderstandsthermometer dient zur Interpolation der IPT-
Skale 1968 zwischen 13,81 K und 903,89 K.

Fiir ein Halbleiterthermometer werden heute gesinterte Metalloxide und

11*



164 Wiirmelehre

oxydische Mischkristalle [Temperaturbereich —70 °C bis 150 (400) °C] sowie
reines Germanium verwendet. Die Temperaturabhingigkeit des Wider-
standes eines Halbleiters kann gut durch eine Exponentialfunktion [E. 1.0.4
— GI. (10)] wiedergegeben werden. Wegen ihrer Eigenschaften, bei hohen
Temperaturen den Strom besser zu leiten, heillen diese Halbleiter auch
HeiBleiter oder NTC-Widerstinde (NTC: negative temperature coefficient).

Halbleiterwiderstandsthermometer haben gegeniiber Metallwiderstands-
thermometern einige Vorteile: Der groBere Temperaturkoeffizient erlaubt
die Anwendung von MeBwerken mit geringerer Empfindlichkeit. Da NTC-
Widerstiande sehr hochohmig hergestellt werden konnen, beeinflussen auch
laingere AnschluBleitungen das MeBergebnis nicht. Da weiterhin NTC-
Widersténde sehr klein gehalten werden konnen (Kugeln mit Durchmesser
1 mm und kleiner), ergibt sich eine geringe thermische Tragheit (Einstell-
zeit einige ms). Nachteilig gegeniiber Metallwiderstandsthermometern wir-
ken sich die nichtlineare Widerstandscharakteristik, die notwendige kiinst-
liche Alterung bzw. Nacheichung und der durch grole Herstellungstoleran-
zen bedingte Abgleich durch Vor- und Nebenwiderstinde aus.

Eine andere wichtige Stoffeigenschaft, die zur Temperaturmessung ver-
wendet wird, ist die Thermoelektrizitit. Als Thermoelektrizitat bezeichnet
man die Gesamtheit von Erscheinungen in metallischen Stromkreisen, die
aus einer Wechselwirkung von Strom und Wérme herriihren. Fiir die Tem-
peraturmessung hat vor allem der Seebeck-Effekt Bedeutung. Er besagt, dall
in einem Leiterkreis aus zwei verschiedenen Metallen eine Thermospannung
erzeugt wird, wenn die beiden Lotstellen unterschiedliche Temperaturen
haben. Wird der Stromkreis geschlossen, flieB3t ein Strom, der Thermostrom.
Die Thermospannung liegt fiir die meisten Metalle bei 10~4 V/K bis 1075 V/K.
Die erzeugte Thermospannung wird in Thermoelementen zur Temperatur-
messung benutzt. Dazu werden zwei Drihte aus verschiedenen Metallen
durch Loten oder Schweilen miteinander verbunden. Die eine Lotstelle, die
MeBlotstelle, wird der zu messenden Temperatur ausgesetzt, die zweite Lot-
stelle, die Vergleichslotstelle, befindet sich auf einer konstanten Temperatur
(Eiswasser oder Thermostat). Die sich aufgrund der Temperaturdlfferenz
zwischen den beiden Létstellen ausbildende Thermospannung ist ein Maf
fir die Temperatur. Thermoelemente sind von —200 °C bis 3000 °C zur
Temperaturmessung geeignet. Es werden die verschiedensten Draht-
kombinationen (Thermopaare) verwendet. Zum Beispiel ist die Kombina-
tion Kupfer/Konstantan fiir Temperaturen zwischen —200 °C und 400 °C
geeignet. Es ist eines der am héufigsten verwendeten Thermoelemente und
besonders fiir niedrige Temperaturen geeignet. Mit dem Platin-Rhodium/
Platin-Element erfolgt die Interpolation der IPT-Skale 1968 zwischen
900 K und 1388 K.

Die Thermospannung einer Materialkombination ist in erster Néherung
proportional der Temperaturdifferenz

U=a-AT. )
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Fiir genauere Messungen ist eine quadratische Interpolation iiber Eich-
punkte notwendig

U=a-tAT + b(AT)2. (10)

Die Thermospannung wird im einfachsten Fall mit empfindlichen Galvano-
metern gemessen. Bei hohen Anforderungen miissen Kompensationsverfah- -
ren angewendet werden (E. 2.2).

Thermoelemente sind einfach herstellbar, besitzen eine geringe raumliche
Ausdehnung, geringe thermische Trigheit und sind auch fiir Fernmessun-
gen bei Verwendung von Ausgleichsleitungen geeignet.

W. 1.0.4. Temperaturmessung mittels optischer
temperaturabhingiger Stoffeigenschaften

Mit optischen Methoden konnen die Temperaturen strahlender Korper
gemessen werden, wenn ihre elektromagnetische Ausstrahlung eindeutig
durch die Temperatur der Koérper bestimmt ist, die Strahlung also eine
Wairmestrahlung ist. Es gelten dann die in Abschn. O. 5.0 beschriebenen
GesetzmiBigkeiten [Gl. (2a) und Gl. (3)], d. h., exakt gelten sie nur fiir
einen schwarzen Korper. Ein schwarzer Korper ist ein Kérper, der alle ein-
fallende elektromagnetische Strahlung unabhingig von Wellenldinge und
Temperatur absorbiert, sein Absorptionsgrad ist « = 1 (ebenso sein Emis-
sionsgrad ¢ = 1), und sein Reflexionsgrad ist ¢ = 0. In der Natur existieren
keine vollig schwarzen Strahler, gute Naherungen sind innen geschwarzte
Hohlrdume mit nicht zu groBen Offnungen. Reale Strahler, z. B. erwirmte
Metalle (Glithlampen), strahlen bei gleichen Temperaturen weniger als
schwarze Korper. Der Emissionskoeffizient ist stets kleiner als 1 (vgl.
0.5.0).

Aus den Strahlungsgesetzen ergibt sich, daB die Farbe, mit der ein Kérper
strahlt, von dessen Temperatur abhéingt. Diesen Effekt kann man gut fiir
grobe Temperaturabschitzungen benutzen. Ein Kérper mit einer Tempera-
tur von etwa 550 °C erscheint in dunkler Rotglut, gelbglithend hat er eine
Temperatur von etwa 1100 °C, weilglithend etwa 1500 °C.

MeBgeriate, mit denen man durch Vergleich der Helligkeit bzw. Farbe
eines MeBkorpers mit der einer Vergleichsfliche beriithrungsfrei Tempera-
turen (groBer als 600 °C) bestimmen kann, heillen Strahlungspyrometer. Man
unterscheidet, je nachdem ob der Vergleich im gesamten oder nur in einem
schmalen Spektralbereich vorgenommen wird, Gesamtstrahlungs- und
Spektralpyrometer. Letztere sind noch in Teilstrahlungs- und Farbpyro-
meter unterteilbar. Gesamtstrahlungspyrometer konzentrieren mittels Lin-
sen oder Hohlspiegel die von einem Kérper emittierte Strahlung insgesamt
oder eines sehr grolen Spektralbereiches auf einen Strahlungsempfénger.
Als Empfénger werden Photoelemente oder Thermoelemente benutzt. Die
gewonnene Energie ist ein MaB fiir die Temperatur.
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Das Glihfadenpyromeler, ein Teilstrahlungspyrometer, vergleicht die
Helligkeit bzw. Farbe des MeBobjektes mit der des Gliihfadens einer spe-
ziellen Glithlampe. Durch Anderung des Lampenstromes wird der Gliithfaden
auf die Helligkeit des MeBobjektes eingestellt. Der Lampenstrom ist ein Ma@3
fiir die Temperatur.

Das Intensititspyrometer, ein weiteres Teilstrahlungspyrometer, gleicht im
wesentlichen dem Gesamtstrahlungspyrometer, nur dal durch Vorschalten
eines Farbfilters ein kleiner Spektralbereich fiir die Messung verwendet
wird. Die starke Lichtschwédchung durch den Farbfilter macht die Verwen-
dung von Verstéarkern erforderlich.

Farbpyrometer filtern aus der zu untersuchenden Strahlung zwei kom-
plementére Spektralbereiche heraus und mischen diese. Die Mischfarbe
wird dann mit der entsprechenden einer Glithlampe bekannter Farbtempe-
ratur verglichen. Durch Farbfilter veranderlicher Dichte wird Farbgleich-
heit mit der Lampe hergestellt. Die Filterstellung ist ein MaB fiir die Tem-
peratur.

W. 1.0.5. Thermostat und Kontaktthermometer

Voraussetzungen. fiir eine hinreichende Temperaturgleichheit zwischen
MeBobjekt und MeBgerdt und damit fiir eine richtige Temperaturanzeige
sind rdumliche und zeitliche Temperaturkonstanz des MeBobjektes. Dies
1iBt sich am besten mit einem Thermostaten mit Kontaktthermometer
realisieren. Fiir Untersuchungen im Praktikum wird meist ein Fliissigkeits-
thermostat verwendet, fiir hohe und tiefe Temperaturen gibt es auch Me-
tallthermostaten. Ein Fliissigkeitsthermostat besteht aus einem nach auflien
warmeisolierten Kessel, der zur Aufnahme der Fliissigkeit dient. Fiir den
Temperaturbereich von 0 bis 100 °C wird normalerweise destilliertes Wasser
verwendet, fiir héhere Temperaturen nimmt man in der Regel Silikon- oder
Dampfturbinensl. Im Inneren des Kessels befindet sich ein Rithrwerk, das
von einem Elektromotor angetrieben wird. Der Motor betdtigt auBerdem
eine einstellbare Pumpe, mit der die Thermostatenfliissigkeit in einen duBeren
Wiérmebehéalter gedriickt werden kann. Soll die Fliissigkeit im Warme-
behélter eine freie Oberfliche haben, muf3 der Thermostat mit einer kombi-
nierten Druck-Saug-Pumpe ausgeriistet sein. Der Kessel enthilt einen oder
mehrere elektrische Heizkorper und eine Kiihlschlange, durch die man zur
Abkiihlung der Thermostatenfliissigkeit Leitungswasser flieBen lassen kann.

Als MeBfiihler dient ein Kontaktthermometer, dessen Prinzip in Abb. 55
dargestellt ist. In dem evakuierten Raum oberhalb des Quecksilberfadens @
ist eine Spindel S untergebracht. Wenn man die Spindel mit Hilfe des auf-
setzbaren Hufeisenmagneten H dreht, bewegt sich die auf der Spindel
sitzende Mutter M nach oben oder nach unten. An der Mutter ist ein Draht
D befestigt. Bei einer bestimmten Temperatur ¢ beriihrt die Oberfliche des
Quecksilberfadens das Drahtende und schlie8t damit den elektrischen Kreis
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zwischen den Polen 1 und 2. Die Lage der Mutter kann an einer Skale ab-
gelesen werden, die in Grad Celsius geeicht ist. Die abgelesene Temperatur
stimmt naherungsweise mit der Kontakttemperatur iiberein.

Das Regelungsprinzip des Thermostaten entspricht dem in Abb. §6 dar-
gestellten Schaltplan. Wenn man den Netzschalter S, schlieBt, wird der
Motor M in Betrieb gesetzt. AuBerdem flieBt ein Strom durch das Relais
Rel und den Widerstand R. Das Relais zieht an und schlieft den Schalter

6
AR
N\

H

L

S
° Nelz
Abb. 56.
a— . Schaltprinzip eines Thermostaten
J Abb. 55. Prinzip eines Quecksilber-Kontaktthermometers

S,. Der Heizer H wird vom Strom durchflossen, und die Glimmlampe G
leuchtet auf. Parallel zum Relais liegt der Stromkreis des Kontaktthermo-
meters KT'. Wird dieser Kreis geschlossen, bricht die Spannung am Relais
weitgehend zusammen. Der Schalter S, wird geoffnet, die Heizung setzt
aus, und die Glimmlampe erlischt. Nun kiihlt sich die Fliissigkeit langsam
ab, bis der Stromkreis des Kontaktthermometers unterbrochen wird. In
diesem Augenblick schlieft das Relais erneut den Heizstromkreis usw.
GroBere Thermostate haben vier Heizleistungsstufen. Die Anpassung der
Heizleistung an die jeweiligen Arbeitsbedingungen ist Voraussetzung fiir
eine hohe Regelgenauigkeit. Die richtige Einstellung ist im allgemeinen erst
nach Erreichen der Arbeitstemperatur, d. h. mit Einsetzen der Regelung
des Thermostaten, moglich. Die giinstigsten Bedingungen im Regelkreis
bestehen, wenn die meist von einer Glimmlampe angezeigten Heiz- und
Ausschaltzeiten moglichst kurz sind und ihr Verhéltnis 1: 1 betragt. Zur
Verkiirzung der Aufheizzeit kann der Thermostat mit der groBten Heiz-
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leistung aufgeheizt und wenige Grad vor Erreichen der Arbeitstemperatur
auf eine geringere Heizleistung umgeschaltet werden.

Die moderneren Kombinationsthermostate arbeiten mit zwei Heizungs-
stromkreisen. 50 % der Heizleistung werden ungeregelt geschaltet. Der iiber
das Kontaktthermometer geregelte Heizleistungsanteil kann durch einen
Thyristorsteller kontinuierlich zwischen Null und Maximum eingestellt
werden. Die ungeregelte Grundheizung wirkt sich besonders bei hohen
Arbeitstemperaturen giinstig aus; da hier nur noch ein Teil der benétigten
Heizleistung geregelt wird, ist eine wesentlich héhere Temperaturkonstanz
erreichbar. Sie betrigt im allgemeinen etwa 40,02 K, bei den kontinuier-
lich regelbaren Thermostaten ist sie noch besser.

W. 1.1. Ausdehnungskoeffizient einer Fliissigkeit

Aufgaben: 1. Die thermische Volumenidnderung einer Fliissigkeit ist zu be-
stimmen und in einem Diagramm darzustellen.
2. Mit Hilfe dieses Diagramms sind die Ausdehnungskoeffizien-
ten in bestimmten Temperaturpunkten bzw. -intervallen zu be-

rechnen.

Ein Glaskolben mit aufgesetzter Kapillare (Biirettenrohr) enthalt die
zu untersuchende Fliissigkeit (Volumen ¥V, bei der Temperatur ¢,). Das
Ausdehnungsgefal befindet sich in einem Wasserbad. Die Temperatur kann
mit Hilfe eines Thermostaten schrittweise verdndert werden. Die (schein-
bare) Volumenédnderung kann direkt an der geeichten Skale des Steigrohres
abgelesen werden. Fiir den Ausdehnungskoeffizienten y der Fliissigkeit er-
gibt sich dann bei Beachtung der Ausdehnung des Glasgefilles

Vz“Vl Vz
SRLE Tl £ WY VLA T 1
A AT I . ub

wobei unter V, das Volumen bei der Temperatur #, zu verstehen ist.

Versuchsausfiihrung

Ist das Volumen V, bei der Temperatur ¢, nicht bekannt, mufl dies zu-
néchst moglichst genau durch Wigung des leeren und des gefiillten Aus-
dehnungsgefifies bestimmt werden. Danach erwiarmen wir in Schritten von
etwa 5 K bis iiber den héchsten in der Aufgabenstellung verlangten Tem-
peraturpunkt bzw. iiber das héchste Intervall. Die abgelesenen Volumen-
anderungen AV werden iiber den Temperaturanderungen A7 abgetragen.
Aus den Anstiegen der Kurve in den Punkten ¢,, ¢,, ... lassen sich die Aus-
dehnungskoeffizienten y;, y,, ... bei ¢;, £,, ... gemal Gl. (11) berechnen.
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W.1.2. Gasthermometer

Aufgabe: Der Spannungskoeffizient ¥ von Luft soll mit dem Gasthermo-
meter von Jolly bestimmt werden. AuBlerdem ist die Zimmer-
temperatur mit diesem Thermometer zu messen.

Das Gasthermometer nach Jolly (vgl. Abb. 57) besteht aus einem Glas-
kolben K, der durch eine Kapillare k& mit einem senkrecht stehenden Glas-
rohr R, verbunden ist. Der Kolben K soll im vorliegenden Falle mit Luft
gefiillt sein. Parallel zu R, befindet sich ein Glasrohr R,, das vertikal ver-
schoben werden kann. Als Verbindung zwischen den Rohren dient ein
dickwandiger Gummischlauch. Die Rohre und der Schlauch sind mit Queck-
silber gefiillt. Die Hohe des Rohres R, wird stets so eingestellt, daf der
Quecksilberspiegel im Rohr R, die kleine Spitze S gerade beriihrt. Hinter den
Rohren ist eine Skale angebracht, auf der man die Lage der Quecksilber-
spiegel ablesen kann.

Zunichst soll die Luft in K die Temperatur ¢, = 0 °C haben und unter dem
Druck

Po = 09 (ko + Ahy) (12)
stehen; h, ist die Hohe der Quecksilbersiule im Barometer wihrend der
Bestimmung von Ak,; p ist die Dichte von Quecksilber. Bezeichnet man das

innere Volumen des Kolbens bei 0 °C mit ¥, so lautet die Zustandsglei-
chung (W.2.0.1-5)

2oVo = (n — Ang) RT,, (13)

[01 ty, t

Abb. 57.
N Gasthermometer (schematisch)
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wobei n die Luftmenge im Gasthermometer und An, die Luftmenge im so-
genannten schéidlichen Raum, d. h. in der Kapillare £ bzw. im oberen Ende
des Rohres R,, ist. Diese Luft nimmt das Volumen AV ein und besitzt
néherungsweise die Zimmertemperatur ¢,, d. h., es gilt

Po AV = An, RT,. (14)
Eliminiert man aus den Gln. (13) und (14) An,, erhdlt man
AV T,
Vo {1 + = A T1} nRT,. (15)

Nun wird die Luft in X bis zur Siedetemperatur ¢ von Wasser erwidrmt. Der
Druck steigt dabei auf

p =09 (h + Ah); (16)

h ist der Barometerstand in dem Augenblick, in dem man Ak bestimmt.1)
Das innere Volumen des Kolbens vergrofert sich gemifl Gl. (5), und die
Zustandsgleichung (W. 2.0.1-5) lautet

Im Volumen AV, in dem die Zimmertemperatur ¢, ndherungsweise erhalten
bleibt, befindet sich jetzt die Luftmenge An, d. h., es gilt

pAV = An RT,. (18)
Aus den Gln. (17) und (18) folgt
AV T
4 {1+3a A } nRT . 19
PVo Gl Vo Tl ( )
Die Division von Gl. (19) durch Gl. (15) liefert
(1+3aG1t+ AV T)
Vo T, T
- T (20a)
(1 LAY _T_O.) T,
pO Vo Tl

Nun sind sowohl 3ug;t als auch AV/V, sehr klein gegen 1. Man kann daher
Gl. (20a) in guter Naherung
AV T-T, T
1+ 3agt + — —} = (20)
o { Vo T, T,
1) Strenggenommen sind in den Gln. (12) und (16) unter o die Dichte von Quecksilber
bei 0 °C und unter kg, Aky, b und Ak die auf 0 °C umgerechneten Hohen zu verstehen.

Diese Umrechnung ist aber iiberfliissig, da zur Berechnung von y nur das Verhiltnis
(h + AR)/(hy + Ahg) benétigt wird.
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schreiben. ' — T, ist aber gerade ¢, und es gilt

T

Wenn man Gl. (20) nach yp aufldst, ergibt sich bei Beriicksichtigung der
Gln. (16) und (12)

L[ h+Ah AV 1
‘y = *t* {m [1 + (3CZG1 -+ —.V'vo— *T;‘) t] - 1} . (21)

In einer groben Naherung kann man das Volumen des schidlichen Raumes
und die Ausdehnung des Glaskolbens K vernachlissigen. Dann vereinfacht
sich Gl. (21) zu

1 r+AR 1}

Y= (ke + Bby (21a)

LA

Mit diesemm Wert y, berechnet man die Zimmertemperatur #, ndherungs-
weise zu

£ =—
Y%
wobei &, der Barometerstand wihrend der Bestimmung von A#, ist. Die in
~ Gl. (21) benétigte absolute Temperatur 7', ist in dieser Naherung

1 h + AR
_— . 22
Yo ho+ Ahg *)

1 {h1+Ak1 _1}
ho + Dhg ’

T,=

Wenn y bekannt ist, kann das Thermometer zur Temperaturmessung ver-
wendet werden.

Versuchsausfiihrung

Wir lesen am Barometer 4, ab und messen unmittelbar danach etwa fiinf-
mal Ak, . Dabei bemiihen wir uns, den Quecksilberspiegel bei jeder Messung
so genau wie moglich mit der Spitze S in Berithrung zu bringen. Dann wird
das Rohr R, gesenkt und der Kolben K in ein Gefal mit schmelzendem Eis
getaucht. Das Senken des Rohres darf unter keinen Umsténden vergessen
werden, da sonst die Gefahr besteht, daB die sich abkiihlende Luft Queck-
silber in den Kolben K saugt. Nach einer Wartezeit von mindestens 20 Mi-
nuten bestimmen wir mehrmals Ak, und den Luftdruck (die Hohe k).
AnschlieBend bringen wir den Kolben K in ein Gefa mit siedendem Wasser,
warten abermals 20 Minuten und lesen mehrfach Ak und den Luftdruck
(die Héhe k) ab. Vor dem Entfernen des GefiaBes mit siedendem Wasser mu8
das Rohr R, wieder gesenkt werden.
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Wir berechnen y, nach Gl. (21a), T'; nach Gl. (22) und y nach Gl. (21). Die
dem Luftdruck (Hohe k) entsprechende Siedetemperatur des Wassers ¢ ist
der Tab. 8 zu entnehmen. Das Verhaltnis AV/V, soll gegeben sein. Der
Fehlerrechnung legen wir Gl. (21a) zugrunde, d.h., wir berechnen den
Fehler von y,, der in sehr guter Naherung mit dem von y iibereinstimmt.
Zur genauen Ermittlung der Zimmertemperatur ¢, wird Gl. (21) nach ¢ auf-
gelost. Wir erhalten ¢ = ¢;, indem wir A + Ak durch k, + Ak, ersetzen.

W. 1.3. Widerstandsthermometer

Aufgaben: 1. Der elektrische Widerstand eines Platinwiderstandsthermo-
meters ist bei Zimmertemperatur auf 1072} Genauigkeit zu
messen.

2. Aus dem Widerstand bei der Temperatur von Eiswasser und
von siedendem Wasser ist der mittlere Temperaturkoeffizient zu
berechnen.

3. Die Erstarrungstemperatur einer Fliissigkeit ist als Haltepunkt
der Abkiihlungskurve zu bestimmen.

Da in dem angegebenen Temperaturintervall eine fast lineare Beziehung
zwischen dem Widerstand des PlatinmeBdrahtes undj der Temperatur be-
steht, geniigt zur Berechnung des Temperaturkoeffizienten Gl. (E. 1.0-9a).

Um die geforderte Genauigkeit von 10-2€) zu erhalten, ist zur Messung
des Widerstandes eine Prizisionsmefbriicke in Wheatstone-Schaltung erfor-
derlich (vgl. E. 1.2). Dies ist eine Meflbriicke mit verdnderlichem, durch
Kurbeln einstellbarem Vergleichswiderstand Ry und mit festen, durch
Stopsel wihlbaren Verzweigungswiderstinden B, und R,. Der Vergleichs-
widerstand besteht aus Dekaden mit Einzelwidersténden von 0,1; 1; 10;
100 und 1000 Q, die nach dem Baukastensystem zusammengesetzt und mit
Laschen verbunden sind. Die Verzweigungswiderstinde bestehen aus
2 Widerstandsreihen von 10, 100, 1000 und 10000 €, so daB3 das Verhiltnis
R, : R, eine Potenz von 10 ergibt. Die Kippschalter im Batterie- und Gal-
vanometerkreis haben Vorkontakte, an die der jeweilige Stromkreis iiber
einen Vorwiderstand angeschlossen ist. Das Galvanometer ist dadurch bei
nicht abgeghchener Briicke vor Uberlastung geschiitzt.

Versuchsausfiithrung

Die Schaltung der Briicke ist auf dem Gehduse angegeben. Der Wider-
stand des Platinwiderstandsthermometers bei Zimmertemperatur soll
grob bekannt sein; zur 1. Aufgabe ist daher zunéchst die Briicke auf diesen
Wert einzustellen.

Bei der 2. Aufgabe ist unbedingt Temperaturgleichgewicht abzuwarten
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(etwa 15 min). Bei der Siedetemperatur ist die Abhangigkeit vom Luftdruck
zu beachten (vgl. Tab. 8).

Zur 3. Aufgabe fiillen wir das Reagenzglas mit der zu untersuchenden
Flissigkeit und bringen es in das mit gestoBenem Eis gefiillte Dewargefaf3.
Das Widerstandsthermometer wird so eingetaucht, daf} es etwa in der Achse
des Reagenzglases steht und den Boden gerade noch nicht beriihrt. Der
Widerstand wird aller 30 s abgelesen, die Fliissigkeit wird stindig leicht ge-
rithrt. Der Haltepunkt soll etwa 10 min lang beobachtet werden. Die Ab-
kiihlungskurve ist zu zeichnen.

Bei der Fehlerabschatzung sind neben der Ablesegenauigkeit unbedingt
auch die MeBunsicherheiten der verwendeten MeBgerite zu beachten.

W. 1.4. Pyrometer

Aufgaben: 1. Es sind die wahren Temperaturen eines Widerstandsdrahtes
bei verschiedenen Stromstédrken mit Hilfe des Pyrometers zu be-
stimmen und graphisch darzustellen [T = f(I)].
2. Die wahren Temperaturen sind bei unter 1. gemessenen Stro-
men mit Hilfe des Stephan-Boltzmannschen Gesetzes zu berech-
nen und ebenfalls darzustellen (gleiches Diagramm).
3. Die erhaltenen Kurven sind zu diskutieren, die Unterschiede
zu begriinden.

Im allgemeinen verwendet man zur Bestimmung hoher Temperaturen
kommerzielle Pyrometer. Im Bereich von 700 bis 2000 °C bei Entfernungen
ab 0,50 m ist das Teilstrahlungspyrometer ,,Pyrolux 1'‘ geeignet. Dies ist
ein Glithfadenpyrometer nach dem Prinzip von Holborn-Kurlbaum. Die
Leuchtdichte des zu messenden Temperaturstrahlers wird mit einem in
seiner Leuchtdichte veranderlichen Glithfaden verglichen. Dieser Lampen-
faden bildet den variablen Zweig einer fest abgestimmten, temperatur-
kompensierten Wheatstoneschen Briickenschaltung. Die an der Briicke an-
gelegte Spannung 148t sich tiber einen Widerstand einstellen. Damit dndert
sich der Heizstrom des elektrisch geheizten Pyrometerlampenfadens. Gleiche
Leuchtdichte ist hergestellt, wenn sich der Fadenbogen nicht mehr vom
Bild des Strahlers abhebt. Dann ist der Widerstand des Lampenfadens, der
sich im Einklang mit seiner Temperatur &dndert, ein MaB fiir die schwarze
Temperatur des strahlenden Kérpers. Durch einen Rotfilter wird das nétige
einfarbige Licht erzeugt.

Zur Bestimmung der wahren Temperaturen 7' aus den gemessenen schwar-
zen Temperaturen 7' ist die Kenntnis des Emissionsgrades ¢ erforderlich. Um
diesen zu messen, mulBl man den realen Strahler ins thermische Gleich-
gewicht mit einem schwarzen Strahler oder mit einem realen Strahler be-
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kannten Emissionsgrades bringen. Fiir die meisten Metalle kann der Emis-
sionsgrad Tabellen entnommen werden.
Die wahre Temperatur kann gemaf
L1 1k

T T 9 Ine (23)
berechnet werden, wobei v die Frequenz, £ die Boltzmann-Konstante und
k die Planck-Konstante sind. In den Beschreibungen der kommerziellen
Geréate sind meist Korrekturtafeln bzw. -kurven enthalten, die nach Gl. (23)
berechnet worden sind.

Fiir die Berechnung der wahren Temperaturen nach dem Stefan-Boltz-
mannschen Gesetz wird angenommen, daf alle zugefiihrte Energie bzw. Lei-
stung in Strahlung umgesetzt wird. Mit Beachtung des Emissionsgrades &
ergibt sich dann aus Gl. (O. 5.0-3, 4) mit P (zugefiibrte elektrische Leistung),
A (strahlende Fliache) und ¢ = 5,67 - 1078 Wm~2 K4

P=g.0c-T4.A. (24)

Versuchsausfihrung

Die Lénge des eingespannten Widerstandsdrahtes (moglichst Flachdraht)
ist so zu wahlen, daB bei niedrigen Spannungen (10 bis 15 V) hohe Strom-
starken (6 bis 12 A) entstehen. Die elektrischen MeBgerite sind spannungs-
richtig anzuschlieBen. Die Stromstdrke erhéhen wir jeweils um 0,5 A, bei
jedem Meflpunkt ermitteln wir eine Durchschnittstemperatur aus etwa
10 Messungen.

Fir die tiefste und hochste gemessene Temperatur berechnen wir den zu-
falligen Fehler aus der entsprechenden MeBreihe, der systematische Fehler
des Pyrometers wird abgeschétzt. Fiir die berechnete tiefste und héchste
Temperatur berechnen wir die GréBtfehler aus den abgeschitzten Fehlern
der verwendeten MeBgerite.

W.2. ZUSTANDSANDERUNGEN UND
PHASENUMWANDLUNGEN

W.2.0. Allgemeine Grundlagen

W. 2.0.1. Zustandsgleichungen

Der Druck p, das Volumen ¥ und die Temperatur 7' bzw. ¢ sind physika-
lische GroBen, die den Zustand eines Korpers beschreiben. Sie werden des-
halb Zustandsgréfen genannt.
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Zustandsinderungen sind besonders dann leicht zu iiberschauen, wenn
eine ZustandsgréBe konstant gehalten wird. Man unterscheidet

a) isobare Zustandsinderungen (p = const),
b) isochore Zustandsénderungen (V = const) und
c) 1sotherme Zustandsinderungen (¢ = const).

Die ZustandsgréBen p, ¥ und ¢ kénnen nicht beliebig gedndert werden.
Zwischen den drei GréBen besteht ein funktionaler Zusammenhang, den
man als Zustandsgleichung bezeichnet.

Fiir isotherme Zustandsédnderungen in Gasen gilt nach Boyle

pV = const, (1)

wahrend isobare Zustandsénderungen durch

1
V= Vol +9t) = Voy (7+ ) @)
und isochore Zustandsanderungen durch

P =p(1+y't) 3)

beschrieben werden (Gesetze von Gay-Lussac). y ist der kubische Ausdeh-
nungskoeffizient, 9’ der Spannungskoeffizient des Gases. Gegeben sei ein
Gas, das bei der Temperatur 0 °C unter dem Druck p, stehen und das Volu-
men V, einnehmen soll. Erwarmt man nun das Gas bei dem konstanten
Druck p, bis zur Temperatur ¢, so gilt

DoV = DoV (1 + 91t). (2a)
Fiihrt man die gleiche Erwirmung bei dem konstanten Volumen ¥V, durch,
ergibt sich

Vo= poVo(1 + 9t). (3a)

Die Produkte p,V und p¥V, miissen nach Gl. (1) iibereinstimmen, da sie zwei
Kombinationen von p und V darstellen, die zur gleichen Temperatur ¢ ge-
héren. Daraus folgt aber, daB " und y gleich sind. Das Experiment zeigt
dariiber hinaus, daB alle Gase nahezu den gleichen thermischen Ausdeh-
nungskoeffizienten haben. Fiir das ideale Gas gilt

-1

, 1
YTV T o13 15
GL. (2a) kann nach den bisherigen Uberlegungen
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geschrieben werden. Die Konstante ¢’ mufl der Masse m des Gases propor-
tional sein, da die doppelte Gasmasse bei gleichem Druck und gleicher
Temperatur das doppelte Volumen einnimmdt.

pV = mCT. (4)

Wird GI. (4) auf ein Kilomol des Gases (Volumen V,;, Masse M) bezogen,
erhilt man

pVy = MCT. (4a)

Die Erfabrung zeigt nun, daBl das Volumen eines Kilomols fiir alle Gase
bei gleichem Druck und gleicher Temperatur gleich ist. Wahrend C eine
Materialkonstante darstellt, ist das Produkt M C eine Konstante R, die von
der Natur des speziellen Gases nicht abhéngt; R wird molare Gaskonstante
genannt. Damit kénnen die Gln. (4) und (4a)

sz—J‘mTRT=nRT, (5)

pVy = RT (5a)

geschrieben werden. Das Verhiltnis der Masse m des Gases zur Masse eines
Kilomols M ist die Stoffmenge n in Kilomol. Unter Normalbedingungen
(px = 760 Torr, Ty = 273,15 K) gilt

Va,x = 22,41 m® . kmol,
Aus Gl. (5a) folgt damit fiir die molare Gaskonstante
R =28314.103J - K-1. kmol™1.

Ein Gas, das der Zustandsgleichung (5) geniigt, bezeichnet man als ideales
Gas. Gl. (5) kann mit Hilfe der kinetischen Gastheorie begriindet werden,
wenn man die Gasmolekiile als véllig elastische Punkte!) ansieht, die nur
bei Zusammenstoen in Wechselwirkung miteinander stehen. In allen
realen Gasen existieren aber auch Krifte zwischen denjenigen Molekiilen,
die sich nicht beriihren. Sowohl die auf ein beliebig herausgegriffenes Mole-
kiil wirkende Kraft als auch die Zahl aller wechselwirkenden Teilchen sind
der Dichte proportional. Der gesamten Wechselwirkungskraft entspricht
der sogenannte Kohisionsdruck, der dem Quadrat der Dichte proportional
bzw. dem Quadrat des Volumens umgekehrt proportional ist. Dieser Druck
mufl dem in der Zustandsgleichung idealer Gase auftretenden Druck p
additiv hinzugefiigt werden. Aulerdem kann das Volumen des Gases nie-
mals verschwinden, da die Molekiile selbst ein endliches Volumen einneh-

1) Kugeln mit dem Durchmesser Null.
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men. Diese beiden Uberlegungen fithren zu der van-der-Waalsschen Zu-
standsgleichung. Diese lautet, bezogen auf ein Kilomol,

a
(P + 55 ) =)= R, ©
Die Grofien ¢ und b werden als van-der-Waalssche Konstanten bezeichnet,

Das van-der-Waalssche Kovolumen b entspricht naherungsweise dem vier-
fachen Eigenvolumen der Molekiile. Gl. (6) kann

Vi — (pb + RT)Vi + aVy — ab =0 (6a)

geschrieben werden. Wenn 7' und p gegeben sind, erhilt man aus Gl. (6a)
entweder drei reelle Werte V,; oder nur einen. In Abb. 58 sind drei ver-
schiedene Isothermen von Kohlendioxid dargestellt; CO, ist ein Stoff, der
der van-der-Waalsschen Zustandsgleichung in guter Niherung geniigt.

A

60°C
3%
2 0%

(10‘N-n¢’)
14
2t
0}
81 I\¢
el
,, Bw\

Abb. 58.
Isothermen von Kohlendioxid

0 02 04 06 Vy
{m*-kmol™")

Die nach Gl. (8) berechnete Isotherme fiir 0 °C besitzt ein Maximum und
ein Minimum. Diese Extremwerte werden im Experiment nicht realisiert.
Sie entsprechen labilen Zustinden. Der Ubergang vom Maximum zum
Minimum ist v6llig ausgeschlossen, da bei konstanter Temperatur der Druck
mit abnehmendem Volumen nicht sinken kann. Wenn man das gasformige
CO, isotherm komprimiert, beginnt am Punkt 4 die Verflirssigung, die am
Punkt B abgeschlossen ist. Wahrend dieses Prozesses wird die Umwand-
lungswirme freigesetzt. In dem Bereich, in dem der Stoff teilweise in
gasférmiger und teilweise in fliissiger Phase vorliegt, bleibt der Druck kon-
stant. Die Gerade 4B ist so zu wihlen, daB3 die beiden in Abb. 58 schraffier-

12 Phys. Praktikum
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ten Flichen gleich sind. Diese Forderung ergibt sich aus dem 1. und 2. Haupt-
satz der Thermodynamik.

In den Isothermen, die sich nach Gl. (6) fiir Temperaturen zwischen 0 und
31 °C ergeben, riicken die beiden Extremwerte um so naher aneinander, je
héher die Temperatur ist. Die Isotherme fiir 31 °C ist dadurch ausgezeich-
net, daB die Extremwerte in einem Punkt C' zusammenfallen. An dieser
Stelle hat die Isotherme einen Wendepunkt mit horizontaler Tangente. Die
zugehorigen Werte von p und Vy bezeichnet man als kritischen Druck p,
und als kritisches Volumen eines Kilomols V. Die Temperatur, die dieser
Isothermen entspricht, ist die kritische Temperatur 7. Wenn man die
kritische Temperatur und den kritischen Druck eines Stoffes kennt,
lassen sich Vy, und die van-der-Waalsschen Konstanten a und b berechnen.
Oberhalb der kritischen Temperatur hat man keine Moglichkeit, die gas-
formige Phase von der fliissigen Phase zu unterscheiden (vgl. die in Abb. 58
gezeichnete Isotherme fiir 60 °C).

W. 2.0.2. Energiesatz und Adiabatengleichung

Der Energiesatz (1. Hauptsatz der Thermodynamik) resultiert aus der
Erfahrung, daB sich keine Maschine konstruieren 143t, deren Arbeitsabgabe
groBer als die zugefiihrte Energie ist. Diese negative Aussage kann auch
positiv formuliert werden: Die Summe der einem System zugefiihrten
Wirmemenge AQ und der zugefithrten Arbeit AW ist gleich der Zunahme
der inneren Energie des Systems AU :

AU =AQ + AW. ; (7)

Die Wirmemenge ist eine spezielle Energieform. Sie ist der Masse m und
der Temperaturianderung At = AT des Systems proportional:

AQ =cm At = om AT. (8)

Das Produkt ¢ - m bezeichnet man als Warmekapazitét, den Proportionali-
tatsfaktor ¢ als spezifische Wiarmekapazitét. Die Einheiten fir die Wérme-
menge und die spezifische Warmekapazitit sind in W. 3 angegeben.

Die dem System zugefiihrte Arbeit kann

AW = —pAV ©)

geschrieben werden, wobei AV die Volumenénderung bei dem Druck p ist.
Durch das Minuszeichen in Gl. (9) wird beriicksichtigt, daf bei einer Ar-
beitszufuhr das Volumen abnimmt, AV also negativ ist.

Nach Versuchen von Gay-Lussac, Joule und Thomson dndert sich die
Temperatur eines Gases, das der Zustandsgleichung (5) geniigt, bei Aus-
dehnung ohne Arbeitsaufwand (d. h. ins Vakuum) nicht. Aus der Voraus-
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setzung AW = 0 und der experimentellen Feststellung AT = 0 (also AQ = 0)
folgt
AU =0.

Die innere Energie eines idealen Gases ist nicht, vom Volumen abhéngig. Sie
ist eine reine Temperaturfunktion. Dann mufl aber jeder beliebige Uber-
gang eines idealen Gases von der Temperatur 7' zur Temperatur T 4 AT
energetisch einer isochoren Erwirmung (AV =AW =0) von T auf 7'+ AT
gleichwertig sein, d. h., es gilt

AU =¢;m AT. (10)

Fiir eine isobare Erwarmung eines idealen Gases von 7' auf 7'+ AT nimmt
der Energiesatz die Form

eym AT = c,m AT — p AV (11)
an. ¢y ist die spezifische Warmekapazitit bei konstantem Volumen, c, die
bei konstantem Druck. Nach Gl. (5) gilt fiir eine isobare Zustanddnderung

m

Setzt man Gl. (12) in Gl. (11) ein, ergibt sich

R=M(c,—cy) = Cp— Cy. (13)

Die molare Gaskonstante B ist also die molare Warmekapazitit eines
idealen Gases bei konstantem Druck C,,, vermindert um diejenige bei kon-
stantem Volumen C,.

Fiir eine adiabatische Zustandsdnderung, bei der dem System Warme
weder zugefiihrt noch entzogen wird, lautet der Energiesatz Gl. (7) in
differentieller Schreibweise

dU = dW = —pdV. (14)

Wendet man Gl. (14) auf ein ideales Gas an, so ergibt sich mit den Gln. (10)
und (5)

_——— (15)

Unter der Voraussetzung, daBl ¢, konstant ist, liefert die Integration von
Gl. (15) mit

C, Cp
_ “»p _ 16
* C Cy (16)

TV*1 = const. (17)

12%
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Durch Einsetzen der Zustandsgleichung (5) in Gl. (17) erhilt man zwei
andere Formen der Adiabatengleichung.

pV* = const, (18)

I’

% — const. (19)

W. 2.0.3. Dampfdruck

Bringt man einen Fliissigkeitstropfen in ein evakuiertes Gefal3, das sich
in einem Wirmebehélter konstanter Temperatur 7' befindet, so verdampft
ein Teil der Fliissigkeit. Es stellt sich ein bestimmter Dampfdruck p ein, der
nur von der Temperatur, nicht aber von dem zur Verfiigung stehenden Vo-
lumen abhéngt. Eine VergroBerung des Volumens bei konstanter Tem-
peratur hat zur Folge, daB ein weiterer Anteil Fliissigkeit verdampft. Eine
Verkleinerung des Volumens bewirkt, daf der Dampf teilweise kondensiert.

Der Begriff des Dampfdruckes hat nur firr solche Temperaturen einen
Sinn, bei denen der betrachtete Stoff sowohl in fliissiger als auch in gas-
formiger Phase vorliegen kann, Daher endet die Dampfdruckkurve jedes
Stoffes im kritischen Punkt ¢ (vgl. Abb. 58). Wenn man nur Temperatur-
intervalle zuldBt, deren obere Grenze klein gegen die kritische Temperatur
Ty ist, kann der Dampfdruck vieler Stoffe in guter Naherung durch

P 1 1 T
gL~ a (_-4)—611_ 20
o M\T T, mET, (0)

beschrieben werden. In Gl. (20) ist p der Dampfdruck bei der Temperatur 7'
und p, derjenige bei T',. Den Zusammenhang zwischen der molaren Ver-
dampfungswirme @,, und dem Differentialquotienten des Dampfdruckes
nach der absoluten Temperatur liefert die Gleichung von Clausius und
Clapeyron

Qu=TSL (V- 7). 1)

Wenn man nur Zusténde betrachtet, die hinreichend weit unterhalb des
kritischen Punktes liegen, kann das Molvolumen der Fliissigkeit V, gegen
das des Dampfes V; vernachlissigt werden. Verwendet man dariiber hinaus
fir den Dampf die Zustandsgleichung (5a), so vereinfacht sich Gl. (21) zu

dp R

Qo3 = T* ar p (22)
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Durch Einfithrung der Variablen y = In p/p, und z = 1/T geht Gl. (22) in

d(np/p) Qs ‘
d(/Ty R (23)
iiber. In der gleichen Naherung besteht zwischen dem Dampfdruck iiber

dem festen Stoff ppey, der Temperatur 7' und der molaren Sublimations-
wirme @,, der Zusammenhang

d (In.(p/Po )rest) B Q3 ’
T _ (24)

Die Indizes in den Gln. (21) bis (24) sind so gewahlt, daB 1 den festen, 2 den
fliissigen und 3 den gasformigen Zustand reprasentiert.

PO, GeT-dT @Gl Abb. 59.
z Zur Gleichung von Clausius
und Clapeyron

-

Gl. (21) kann begriindet werden, wenn man den reversiblen Carnotschen Kreisprozef3
betrachtet, der in Abb. 59 dargestellt ist. Wahrend des Uberganges vom Punkt 4 zum
Punkt B wird ein Kilomol Fliissigkeit durch Zufuhr der Umwandlungswirme @,y
bei der Temperatur 7' und dem Druck p vollstindig verdampft. Die abgegebene Arbeit
betrigt!)

Wap=—p (Vs — V).

Durch eine adiabatische Entspannung des Dampfes vom Druck p auf den Druck
p — dp gelangt man zum Punkt C. Die geleistete Arbeit ist naherungsweise

AWge = —pdV;.

Eine isotherme Kompression bei der Temperatur 7', fithrt zum Punkt D. In diesem
Punkt soll der Dampf vollstindig kondensiert sein. Die dem System zugefiihrte Arbeit

ist
Weop = (p — dp) (V3 + AV, — V, + dVy).

Durch Zufuhr der Warmemenge d@), die im Vergleich zu Q,; vernachléssigbar klein ist,
kehrt man zum Punkt A zuriick. Die bei diesem Ubergang geleistete Arbeit kann

1) Auch hier werden zugefiithrte Arbeiten positiv, abgegebene Arbeiten negativ ge-
rechnet. Die Symbole W bzw. V bedeuten in der oben stehenden Betrachtung stets
Arbeit je Kilomol bzw. Volumen je Kilomol.
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niherungsweise
dWp, = —pdV,

geschrieben werden. Vernachléssigt man alle Produkte von differentiell kleinen GriBen,
erhilt man fiir den Betrag der insgesamt geleisteten Arbeit

|W| = |Wip+ dWao + Wep + dWps | = dp(V; — V).

Als Wirkungsgrad oder Nutzeffekt # des Kreisprozesses bezeichnet man den Betrag der
geleisteten Arbeit, geteilt durch die zugefithrte Warmemenge, d. h., es ist

_IWlL_ V=T,

dp. 25a
@ = G T #02)
Andererseits ist der Wirkungsgrad eines reversiblen Carnot-Prozesses
-7, 4ar
n=—p =5 (25)

Aus den Gln. (25a) und (25) 148t sich Gl. (21) sofort ablesen. Fir den ProzeB der Pha-
senumwandlung (vgl. Abb. 59) lautet der Energiesatz, bezogen auf ein Kilomol:

U — Uy =@y —p(Vy— V). -~ (26)

Dieser ProzeB ist sowohl isotherm als auch isobar. Wenn man annimmt, da die molaren
Wirmekapazititen konstant sind, gilt fiir einen isobaren Prozef3

avU = d(C,T) — d(pV),
oder wenn man lings der Isobaren integrieft
U=0C,T-—-pV +f. (27)

f ist strenggenommen eine Funktion des Druckes, soll aber in der folgenden Betrach-
tung als Konstante behandelt werden. Gl. (27) ist sowohl fiir den Dampf (Index 3) als
auch fiir die Flussigkeit (Index 2) giiltig. Daher kann Gl. (26)

fs—fa=2 (Vs = Vo) = (Cor — Co) T = Qo3 —p (V3 — V)
geschrieben werden. Mit der Abkirzung
fs—fo =@
erhilt man
s = Qo — (Co2 — Cps) T'. (28)
Setzt man Gl. (28) in GI. (22) ein und trennt nach den Variablen p und 7, ergibt sich
dp _ @ AT Cp — Cp dT

» R T¢ R T’
p Qo(i 1) Cpo—Cps ., T
n-—=->2 |-+ -5 In— 29
Do R\T T, R T, (29)
Wegen
gL —mPige

Po Po
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liefert der Vergleich der Gln. (29) und (20)
Q
a, = T" lge, (30)

Cpz — Cps
—R .

Ay =

(31)

W. 2.1. Bestimmung der relativen Molekiilmasse
nach Menzies

Aufgabe: Die relative Molekiilmasse eines Stoffes soll nach der Methode
~von Menzies bestimmt werden.

Gegeben sei die in Abb. 60 dargestellte Anordnung. Sie besteht aus einem
Glaskolben I (Radius r;), dessen oberes Ende in ein Rohr 2 iibergeht. Im
Rohr 1 befindet sich ein herausnehmbarer Metallzylinder 4, der ein kleines
zugeschmolzenes Glasko6lbchen 6 enthéilt. An das Rohr 2 ist seitlich ein Rohr 3
angesetzt. In ihm befindet sich ein Eisenstift 5, der in eine Offnung des Me-
tallzylinders eingeschoben werden kann und einen Fallkérper 9 im oberen
Teil des Metallzylinders festhilt. Das Glaskdlbchen 6 enthalt die zu unter-
suchende Stoffmenge » (Siedetemperatur 7's) und die Luftmenge ». Der
untere Teil des Kolbens I ist mit einem vertikal stehenden Rohr 7 (Radius 7)

7
£
S
.Q 0
<
<[
\ Abb. 60.
\ Y/ Anordnung zur Bestimmung
§ V% 7 der relativen Molekiilmasse
N =7

X=—=> nach Menzies
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verbunden und mit Quecksilber (Dichte g) gefiillt. Der obere Teil enthilt
Luft. Der gesamte Kolben I ist in einem GlasgefdB 8 untergebracht, durch
das eine Fliissigkeit konstanter Temperatur

T>Tg

flieBt. Das Volumen, das die Luft im Kolben I bei der Temperatur 7' und
dem Luftdruck

p = ogh (32)

einnimmt, soll mit V bezeichnet werden.

Wenn man das Rohr 2 mit einem Stopfen schlie3t, steigt der Druck im
Kolben I an. Nach dem Einstellen des Temperaturgleichgewichtes hat sich
der Quecksilberspiegel im Kolben um das Stiick dk,!) gesenkt, wihrend er
im Rohr 7 um Ah, gestiegen ist. Dadurch nimmt das Luftvolumen um
AV, zu. Da das Volumen des Quecksilbers in guter Néherung konstant
bleibt, besteht der Zusammenhang

AV, = nri 3hy = T2 Ah,. (83)
Fiir die Druckerhéhung Ap, gilt
r 2
Apy = 0g (Aky + Shg) = g Ahy {1 + (T) } , (34)
1

und die Zustandsgleichung (5) fiir die Luftmenge n,, die sich im Kolben 1
befindet, lautet

(p + Apy) (V + AV,) = n,RT. (35)

Wenn man nun das kleine Glasgefif3 6 zerstort, indem man mit Hilfe eines
Ringmagneten den Eisenstift aus der Offnung zieht und den Fallkérper auf
das Glaskoélbchen fallen liBt, verdampft der zu untersuchende Stoff. Da-
durch steigt der Druck um Ap, das Gasvolumen vergréBert sich um AV, der
Quecksilberspiegel im Kolben I sinkt um 3% und der im Rohr 7 steigt um
Ah. Es gilt

AV = nr? 8k = mr2 Ah, (36)
2
Ap = og(Ak + 8h) = og AR {1 + (ri) } . (37)
1

Das Glasgefal 6 wird bei der Zimmertemperatur 7', also vor dem Ein-
bringen in den Kolben 1, zugeschmolzen. Bezeichnet man das Volumen der
in ihm enthaltenen Luft mit », dann ist

pv = 9RT;. (38)

1) Da sich im Experiment der Quecksilberspiegel im Kolben I kaum wahrnehmbar
senkt, sind 34, und die spéter auftretende Grofe 8% in Abb. 60 nicht eingezeichnet.
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Nach dem Zerstoren des GefiBes enthalt das Volumen v nur noch die
Luftmenge » — Ay, d. h,, es gilt

(p + Apy + Ap)v = (v — Av) RT. (39)
Aus den Gln. (38) und (39) folgt

AvRT = v {pTil — (p+ Ap, + Ap)} . (40)

Die Zustandsgleichung (5) fiir das Luft-Dampf-Gemisch lautet schlieBlich
(p + Apy + Ap) (V + AVy+ ATV) = (ng + n + Av) RT. (41)
Lost man Gl. (41) nach »n auf, erhalt man bei Beachtung von Gl. (35)

n=— (0 + Apo) AV + Ap(V + AV, + AV) ~ MET). (42

Mit den Gln. (32), (33), (34), (36), (37) und (40) kann G1. (42)

n_ﬁ{Ah[m%Jr {V + mr (20, +Ah)}{1+( 1)2”

. [h% - (h + {Ahp + AB) {1 + (ri)z})” 43)

1

geschrieben werden. Der Radius » des Rohres 7 wird stets sehr klein gegen
den Radius 7, des Kolbens I gewéhlt. Aus diesem Grunde kann man die
Stoffmenge 7 im allgemeinen nach

n=9_ {Ah [V {1 + (L)z} + w2 (h + 2Ahy + Ah)]
RT 7y 0

’ - [h?T1 — (b + Ahy + Ah)]} (44)

berechnen. In einer groben Naherung werden der Radius  und das Volu-
men v gleich Null gesetzt. Dann gilt

n=-="—Ah. (45)

Die molare Masse ergibt sich aus » und der Masse des zu untersuchenden
Stoffes m zu

-, (46)
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Gibt man m in Gramm und % in Mol an, dann stimmt der Zahlenwert von M
mit der relativen Molekiilmasse iiberein. Die Methode von Menzies hat den
Vorteil, daBl man die Verdampfung auch bei Driicken ausfiihren kann, die
kleiner als der Luftdruck sind. Wenn man vor der Zerstorung des Glas-
gefifles 6 eine Pumpe an das Rohr 2 anschlie3t und den Druck im Kolben 7
erniedrigt, sinkt der Quecksilberspiegel im Rohr 7 unter das in Abb. 60
eingetragene Nullniveau. Zur Berechnung von n sind dann Ak, und 3%,
durch —Ah, und — 8k, zu ersetzen. Da ein Dampf der Zustandsgleichung (5)
um 8o besser geniigt, je kleiner der Druck ist, kann man die relative Mole-
kiilmasse bei verschiedenen Driicken bestimmen und eine Extrapolation auf
p = 0 durchfiihren.

Versuchsausfithrung

Wir wahlen am Kontaktthermometer die Temperatur 7' und schalten den
Thermostaten ein. Wahrend der Erwarmung soll trockene PreBluft durch
den Kolben 1 strémen. Wir wégen zwei kleine Glasgefafie 6 (m, und m,), in
die mit Hilfe einer Injektionsspritze einige Tropfen Benzol bzw. des zu un-
tersuchenden Stoffes gespritzt werden. Wir schmelzen die Offnungen zu und
wagen beide GefaBe abermals (m] und m,). Die Masse des Benzols ist dann
my = m] — m,, die des zu untersuchenden Stoffes m = m; — m,. Wir be-
stimmen den Barometerstand % und ‘das Nullniveau im Rohr 7. Nun wird
das mit Benzol gefiillte Gefa 6 in den Metallzylinder 4 gelegt, der Zylinder
in das Rohr I eingesetzt, der Eisenstift in die Offnung des Zylinders ge-
schoben, der Fallkorper aufgesetzt und Rohr 2 sowie Rohr 3 mit Stopfen
verschlossen. Sobald sich Temperaturgleichgewicht in der Anordnung ein-
gestellt hat, lesen wir Ak, ab, zerstéren das Gefall 6 und bestimmen Ah. Die
Temperaturen 7' und 7', werden notiert. Die Radien » und r,, das Volumen v
und die relative Molekiilmasse von Benzol sollen gegeben sein. Das Volumen
V wird sowohl nach Gl. (44) als auch nach Gl. (45) berechnet. Wenn die
Differenz der beiden Werte kleiner als der aus Gl. (45) resultierende absolute
Fehler von V ist, darf Gl. (45) fiir die Bestimmung der relativen Molekiil-
masse verwendet werden. Wir wiederholen den Versuch mit dem Gefal3 6,
das den zu untersuchenden Stoff enthalt.

W. 2.2. Isothermen eines Stoffes

Aufgabe: Mehrere Isothermen eines.Stoffes, dessen Siedetemperatur bei
Luftdruck in der Nahe der Zimmertemperatur liegt, sollen
experimentell aufgenommen werden.

Gegeben seien zwei U-Rohre aus Glas (vgl. Abb. 61). Die Enden der
Schenkel 7 und 2 sind zugeschmolzen, wiahrend die Enden der Schenkel 3
und 4 durch das Rohr § miteinander verbunden sind. Rohr § kann durch
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einen in Abb. 61 nicht angegebenen Hahn geschlossen werden. Der Schenkel
1 ist mit einem Gas (z. B. Wasserstoff) gefiillt, das in sehr guter Naherung
der Zustandsgleichung (5) geniigt und zur Druckmessung dient. Der Schen-
kel 2 enthélt den zu untersuchenden Stoff. Tm unteren Teil der beiden U-
Rohre befindet sich Quecksilber. Hinter den U-Rohren steht eine Skale, auf
der man die Lage der Quecksilberspiegel ablesen kann. Die gesamte Appa-
ratur ist in einem Wasserbad konstanter Temperatur untergebracht.

, 43 21 43 21
f \ 59 \
| | jﬂ%

1

(2

hao

9

Abb. 61. Anordnung zur Bestimmung von Isothermen

Zu Beginn wird der Hahn am Rohr § geoﬁnet go dal} in den Schenkeln 3
und 4 der Luftdruck

p = ogh

herrscht. Dabei ist ¢ die Dichte des Quecksilbers bei 0 °C, und 5 ist der auf
0 °C umgerechnete Barometerstand 7’. Das ideale Gas (vgl. Abb. 61a) steht
unter dem Druck

=09 (b + ko),

wéahrend der zu untersuchende Stoff dem Druck

= 0g (b + ha) - (47)

ausgesetzt ist. Die Héhen k,, und Ay, sind die auf 0 °C reduzierten Hohen
ki, und hj,. Nun wird Luft in die Schenkel 3 und 4 gepumpt, der Hahn
am Rohr § geschlossen und die Einstellung des Temperaturgleichgewichtes
in der Anordnung abgewartet. Nach Gl. (1) gilt -

Pyl = Diobio-
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Der Druck im idealen Gas ist daher
P1= g (b + hy) %‘19
der in der Luft in den Schenkeln 3 und 4 (vgl. Abb. 61b)
2o = pu= 0 [0+ 1) 22— ) | (48)

und der in dem zu untersuchenden Stoff

l
Py = 00 {(b+ hio) 22+ 1y = o] (49)
1

Die Héhen %, und h, sind die auf 0 °C umgerechneten Héhen %] und 4.
Wenn der Quecksilberspiegel im Schenkel 1 hoher als der im Schenkel £ liegt,
andert sich in den Gln. (48) und (49) das Vorzeichen von %,. Eine entspre-
chende Uberlegung gilt fiir das Vorzeichen von h,.

Versuchsausfiihrung

. Wir wihlen am Kontaktthermometer die geforderte Temperatur ¢ und
schalten den Thermostaten ein, der das Wasserbad speist. Nachdem die
gesamte Versuchsanordnung die Temperatur ¢ angenommen hat, werden
bei offenem Rohr § die Langen ki, hgy, 1, und Iy, abgelesen. AuBerdem
sind der Barometerstand 4’, die Zimmertemperatur ¢, und die Badtempera-
tur ¢ zu notieren. Wir pumpen Schritt fiir Schritt Luft in die Schenkel 3 und 4
und messen jeweils im Gleichgewichtszustand die Langen A7, A%, I, und I,.
Sowohl 4’ als auch Aj, und A%, und die verschiedenen Werte von h; und A;
werden auf 0 °C umgerechnet (vgl. Tab. 5). Mit den so erhaltenen Hohen 4,
hyg; hgg, ky und h, berechnen wir p,, nach Gl. (47) und p, nach Gl. (49). Die
Dichte g ist der Tab. 2 zu entnehmen. Wir tragen die Driicke p, iiber den
zugehorigen Volumina V, = Al, auf. Der Querschnitt 4 soll gegeben sein.
Der Versuch ist bei zwei anderen Temperaturen des Wasserbades zu wieder-
holen.

W. 2.3. Versuch von Clément und Desormes

Awufgabe: Das Verhsltnis der spezifischen Wéarmekapazitdten soll nach der
Methode von Clément und Desormes fiir Luft und Kohlendioxid
bestimm¢t werden.

Der folgenden Betrachtung liegt die Annahme zugrunde, da sowohl der
Luftdruck p als auch die Zimmertemperatur 7'y wihrend des Versuches
konstant bleiben.
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Eine Glasflasche F, deren inneres Volumen bis zum Dreiweghahn D mit V
bezeichnet wird, ist mit einem Gas gefiillt (vgl. Abb. 62). Das Gas soll die
Temperatur 7, haben und unter dem Druck

p + P, = ogh + ough,

stehen; & ist der Barometerstand, und p, ist der Uberdruck, der einer Fliis-
sigkeitssdule der Hohe %, im U-Rohr-Manometer M entspricht. Die Dichte
von Quecksilber ist mit g, die der Manometerfliissigkeit (im allgemeinen

S

M
7 0 _

Abb. 62. Zum Versuch von Clément und Desormes

Wasser) mit gy bezeichnet. Durch kurzzeitiges Drehen des Dreiweghahnes
um 90° nach links gegeniiber der in Abb. 62 angegebenen Stellung entspannt
sich das in der Flasche enthaltene Gas bis zum Druck p. Dabei sinkt die
Temperatur des Gases von T'j auf T'. Sobald aus dem Hahn kein Gas mehr
entweicht, wird der Hahn in die Ausgangsstellung zuriickgedreht. Da die
Entspannung sehr schnell vor sich geht, kann man sie als adiabatische Zu-
standsinderung ansehen. Nach Gl. (19) gilt also

(-2

Durch das Zuriickdrehen des Hahnes wird die im Volumen V enthaltene
Gasmenge », die der Zustandsgleichung

pV = nRT (51)

geniigt, mit der Gasmenge n, vereinigt, die das Volumen V; vom Dreiweg-
hahn bis zum Flissigkeitsspiegel im Manometerrohr fiillt. Dieser Gasanteil
geniigt der Zustandsgleichung

(p + p) V= nRT,. (52)
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Nachdem die gesamte Gasmenge die Temperatur 7', angenommen hat,
herrscht der Druck

P+ Py = ogh + oughs,
und das Volumen betrdgt V - V,, d. h., es gilt

(® + p2) (V + V) = (n+ ny) RT,. (53)
Setzt man die Gln. (51) und (52) in Gl. (53) ein, erhdlt man
P Va\_ oy [ Lo ( ﬂ)%]
pV<1+p)(1+V)—pV[T+1+p 1], (54)

Im Experiment wihlt man p,/p, p,/p, V,/V und V,/V sehr klein gegen 1,
so daB alle Produkte dieser Ausdriicke vernachlissigbar sind. Gl. (54) lautet
dann in guter Naherung

P2 Vi—7V, T,

1+—=—-——<=_=
+ » 7 T (55)
Aus den Gln. (55) und (50) folgt
x—1
Py Vi—"V, ( 41 )T
1+—=-——=[1+"— . 56
» 7% » (56)

Nun ist
A
V1 - V2=?(h1 - kz)’

wobei 4 der Querschnitt des Manometerrohres sein soll. Man kann daher
Gl. (56)

x—1
Onliy _ A(hy — hy) ( omha \
s O ATl (R ) (57)

schreiben. Wird Gl. (57) logarithmiert und nach x aufgelost, erhdlt man

log (1 + Qih‘—)

oh
- . (58)
omhy _ oumhs _ A (hy — hy)
log (1 + oh ) log (1 + oh oY% )

Da sich die Numeri der in Gl. (58) stehenden Logarithmen nur sehr wenig
von 1 unterscheiden, gilt ndherungsweise

_ k(o4
* by — hy (1 2@MV) ' ©9)
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Durch geeignete Wahl von 4 und V kann man erreichen, daf3

ohA

1
SonT < 0,0

wird. In diesem Falle darf » gemal

w=—1 , (60)

berechnet werden.

Versuchsausfithrung

Wir lassen bei ge6ffnetem Stopfen S etwa 10 Minuten lang trockene Prel3-
luft durch die Flasche F strémen und bestimmen den Barometerstand A
und die Zimmertemperatur. Dann setzen wir den Stopfen ein, erzeugen den
Uberdruck und drehen den Dreiweghahn in die in Abb. 62 angegebene
Stellung. Die Hohe der Fliissigkeitssdule , darf erst abgelesen werden, wenn
sich im Inneren der Flasche das Temperaturgleichgewicht eingestellt hat.
Als MeBinstrument dient ein Kathetometer oder eine Spiegelskale. Der
Dreiweghahn wird fiir kurze Zeit in der bereits beschriebenen Weise getffnet
und dann zuriickgedreht. Hat die Luft wieder die Zimmertemperatur an-
genommen, bestimmen wir k,. Der Versuch ist mehrmals zu wiederholen,
wobei der Barometerstand und die Zimmertemperatur standig kontrolliert
werden miissen. AnschlieBend lassen wir Kohlendioxid durch die Flasche
stromen und messen k; und A, mehrfach fiir CO,. Zur Berechnung von x soll
Gl (59) verwendet werden. Der Fehlerrechnung legen wir Gl. (60) zugrunde.
Fiir zwei Wertepaare von h,, h, ist » aullerdem nach Gl. (58) zu berechnen
und nachzuweisen, da3 der Betrag der Differenz von x» nach Gl. (58) und %
nach Gl. (59) kleiner als der Fehler Ax ist. ¥ und A4 sollen gegeben sein,
wahrend g und g, der Tab. 2 entnommen werden.

W. 24, Dampfdruckkurve und Verdampfungswirme

Aufgabe: Die Dampfdruckkurve einer Flissigkeit ist im Temperatur-
intervall T, < T < T, experimentell aufzunehmen. AuBerdem
soll die molare Verdampfungswirme @,; der Fliissigkeit berech-
net werden.

Das in Abb. 63 dargestellte U-Rohr-Manometer ist mit Quecksilber ge-
fiillt und in einem Wasserbad untergebracht, dessen Temperatur 7' mit
Hilfe eines Thermostaten geregelt werden kann. In das Torricellische Va-
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kuum des geschlossenen Schenkels I ist eine bestimmte Menge der zu unter-
suchenden Fliissigkeit eingefiihrt worden. Bezeichnet man den im offenen
Schenkel 2 herrschenden Luftdruck mit

Po = 0ogho,
so ergibt sich der gesuchte Dampfdruck zu

P = 0o (g — ). (61)

Hierin ist g, die Dichte von Quecksilber bei 0 °C, und A, stellt den auf 0 °C
umgerechneten Barometerstand dar. Hinter dem U-Rohr-Manometer be-
findet sich eine Skale, an der man die Hoéhe »' ablesen kann, die, auf 0 °C
umgerechnet, gleich % sein soll. Wenn der Quecksilberspiegel im Schenkel 2
hoher als der im Schenkel 1 liegt, &ndert sich in G1. (61) das Vorzeichen von A.

=

Abb. 63. Zur Dampfdruckbestimmung

Zur Berechnung der molaren Verdampfungswirme geht man von Gl. (22)
aus, die durch den Ubergang zum dekadischen Logarithmus die Form

y_ _ R d(igp/py)
Qes(T) = Tee A/ (22a)
annimmt. Eine kalorimetrische Methode zur Bestimmung der Verdamp-
fungswirme wird in W. 3.3.2 beschrieben.

Versuchsausfiihrung

Wir wihlen am Kontaktthermometer die gewiinschte Temperatur 7' und
schalten den Thermostaten ein. Dann wird der auf 0 °C reduzierte Baro-
meterstand kg bestimmt (vgl. Tab. 5). Die Hohe &', die fiir mindestens zehn
verschiedene Temperaturen zu messen ist, darf erst dann abgelesen werden,
wenn der zu untersuchende Stoff die Badtemperatur 7' angenommen
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hat. Wir rechnen jeden Wert 4’ auf den fiir 0 °C geltenden Wert A um und
tragen lg p/p, iiber 1/T" auf. In dieser Darstellung ist die Dampfdruckkurve
nur sehr wenig gekriimmt. Wir zeichnen fiir einen Punkt p,,, 7, die Tan-
gente der Dampfdruckkurve und berechnen die Steigung d(lg p/p,)/d(1/T).
Die molare Verdampfungswirme Q,; (7',,) ergibt sich aus Gl. (22a).

Studenten der Physik sollen auBerdem mit drei Wertepaaren p;, T; —
eines davon mulBl p,, T, sein — die Konstanten @, und a, der GI. (20) be-
rechnen. Bei Beachtung der Gln. (30) und (31) kann dann die molare Ver-
dampfungswirme als Funktion der Temperatur gemaB Gl. (28) angegeben
werden. Wenn die molare Warmekapazitat der Fliissigkeit €, bekannt ist,
1aBt sich die des Dampfes C)5 aus a, berechnen.

W.3. BESTIMMUNG VON WARMEMENGEN
(KALORIMETRIE)

W.3.0. Allgemeine Grundlagen

Einheiten der Energie sind nach internationaler Ubereinkunft
1 Joule (J) = 1 Wattsekunde (Ws) = 1 Newtonmeter (Nm).

Daneben wurde frither im Bereich der Warmelehre die inkohirente Einheit
,,Kalorie’“ benutzt, die urspriinglich auf eine bestimmte Erwirmung der
Masseneinheit des Wassers bezogen wurde. Sie ist jetzt durch die Umrech-
nungsbeziehung

1 cal = 4,1840 J = 4,1840 Nm = 4,1840 Ws (1)

sekundér festgelegt.

Wirmemengen werden im Kalorimeter bestimmt. Fiir die folgenden Ver-
suche werden ausschlieBlich Fliissigkeitskalorimeter verwendet. Das sind
besonders gestaltete und mit einer gewissen Menge einer Fliissigkeit (meist
Wasser) bekannter spezifischer Warmekapazitat ¢ gefiillte Geféfle. Die zu
bestimmenden Wirmemengen beliebigen Ursprunges ergeben sich in allen
Fillen aus einer Energiebilanz der im Inneren des Kalorimeters ausgetausch-
ten Anteile. Beim Aufstellen der Warmeenergiebilanz wird die grundlegende
Beziehung benutzt, daB die ausgetauschte Warmemenge AQ eine Anderung
der Temperatur um A¢ des betreffenden Stoffes (Masse m, spezifische Warme-
kapazitdt ¢) bewirkt:

AQ=c-m- At . 2)

13- Phys. Praktikum
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Aus Gl. (2) folgt, daB die spezifische Wirmekapazitat die Dimension

Wirmemenge - Masse™! . Temperatur!

besitzt. Die Einheit der spezifischen Warmekapazitat ist daher
1 Ws.kg™1. KL

Um das Kalorimeter naherungsweise als abgeschlossenes System behan-
deln zu kénnen, wird durch geschickte Konstruktion ein Energieaustausch
mit der Umgebung weitgehend vermieden. Das Mehrfachkalorimeter
(Abb. 64a) besteht aus mehreren ineinandergesetzten MetallgefiBBen, die
innen zur Vermeidung von Strahlungsverlusten verspiegelt sind. Verluste
infolge Warmeleitung und Konvektion werden durch die Unterteilung des
Mantels und durch die isolierenden Distanzstiicke sehr klein gehalten.

:
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Abb. 64. Kalorimeter

Dewar-Gefiffe (Abb. 64b) sind gliaserne Vakuummantelgefifle, deren
Innenwandungen ebenfalls verspiegelt sind. Sie verhalten sich hinsichtlich
der Verluste giinstiger als die zuvor genannten Mehrfachkalorimeter. Wegen
der Implosionsgefahr sollen Dewar-Gefiae stets von einer Schutzhiille um-
geben sein.

In die jeweilige Energiebilanz geht selbstverstdndlich auch die mit dem
Kalorimetergefil und dem apparativen Zubehér (z. B. Thermometer) aus-
getauschte Warmemenge ein (vgl. Abschn. W. 3.1). Aulerdem kann, wie
im folgenden mehrfach geiibt wird, der Energieaustausch des Kalorimeter-
systems mit der weiteren Umgebung beriicksichtigt werden.

Eine in der Kalorimetrie hiufig benutzte Sonderform eines Quecksilber-
thermometers ist das Beckmann-Thermometer. Eine Beschreibung dieses
Thermometers findet man in Abschn. W. 1.0.2.
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W. 3.1. Wirmekapazitit eines Kalorimeters

Aufgabe: Die Wiarmekapazitt eines Kalorimeters ist zu bestimmen.

Die Wirmekapazitit K einer Kalorimeteranordnung ist zahlenmiBig
gleich der Warmemenge, die sie bei einer Temperaturinderung von 1 K
austauscht. Nach Gl. (2) ist daher

_Ae

K=mC—E. (3)

Die Einheit der Warmekapazitat ist J - K-1. Da die Anordnung aus ver-
schiedenen Teilen (Kalorimetergefia3, Riihrer, Thermometer) besteht, ist
eine Berechnung der Wirmekapazitat schwierig und die experimentelle Be-
stimmung vorzuziehen. Hierzu wird die Mischungsmethode benutzt. Das
Kalorimeter wird mit einer bestimmten Menge warmen Wassers (Masse m,,,
Temperatur ¢,) gefiillt und hierzu eine abgemessene Menge kalten Wassers
(Masse my,, Temperatur ¢,) gegossen. Nach erfolgtem Warmeaustausch stellt
sich eine Mischungstemperatur ¢, ein. Sieht man zunéchst von einer Be-
teiligung der Umgebung an dem Vorgang ab, so ergibt sich folgende Energie-
bilanz: Das kalte Wasser nimmt die Warmemenge cmy (f, — %) auf, wih-
rend das warme Wasser die Warmemenge cmy(t,, — t,) und die Kalorimeter-
anordnung die Warmemenge K (t,, — ) abgeben ; ¢ ist die spezifische Warme-
kapazitit des Wassers, deren geringfiigige Temperaturabhéngigkeit hier
vernachlissigt wurde. Es gilt also

(me + K) (tw - tm) = cmy (b — tk) »

und die Wirmekapazitat wird

13

w_tm

—~ mw] ) 4)

Bei den Messungen ist der Warmeaustausch mit der Umgebung des Kalori-
meters trotz aller Vorkehrungen unvermeidlich.

Da der Mischvorgang eine endliche Zeit beansprucht, entspricht die ge-
messene Mischungstemperatur nicht dem Wert, der sich fiir den Fall un-
endlich schnellen Temperaturausgleiches einstellen wiirde. Er laBt sich
jedoch aus einem Temperatur-Zeit-Diagramm (Abb. 65) durch Extrapola-
tion gewinnen: Die Temperatur der Kalorimeterfliissigkeit — in diesem Fall
die des warmen Wassers — wird wiahrend einer Vorperiode von etwa 5 min
alle 30 s abgelesen und notiert. Die Hauptperiode wird durch das Eingieen
des in diesem Falle kalten Wassers eingeleitet und umfaf3t den Mischvorgang,
dessen Temperaturverlauf nach Moglichkeit auch verfolgt werden sollte.

13*
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Es schlieBt sich eine Nachperiode von etwa 5 min an. Wegen der Kiirze der
Vor- und Nachperiode ist der an sich exponentielle Temperaturverlauf durch
die Geraden AB und F@ hinreichend genau wiedergegeben. Aus diesem
Temperaturverlauf 146t sich auf den Temperaturverlauf bei unendlich

N
N

8
_f_w_‘¥,§i;>c

(]

> Temperatur

- =< Abb. 65.
~ Korrektur der Temperatur beim
Mischvorgang

schnellem Ausgleich schlieBen, indem eine Senkrechte CE so gezeichnet
wird, daB die Flichen BCD und DEF gleich groB sind. Als Temperaturen
i, und #,, werden diejenigen gewihlt, die den Punkten C und E entsprechen.

Der absolute Gréftfehler der Wirmekapazitidt folgt durch partielle Differentiation
aus Gl. (4) und zeigt vor allem auch die Notwendigkeit einer genauen Temperatur-
messung:

— My

AK:c[ﬂtrm = . Amy + Al — b)

tw*m tw—*tm
Fme T A b)) + Am (5)
My gy Al ta) O |

Dabei bedeuten
A(tm - tk) = Atm + Atk,
Alty — tn) = Aty + Aty

Versuchsausfiihrung

In die Messungen sind der Riihrer und das Thermometer stets in gleicher
Weise einzubeziehen. Um Kondensationsverluste zu vermeiden, fiillen wir
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das Kalorimeter zu Beginn des Versuches nur mit leicht erwidrmtem Wasser
etwa bis zur Halfte. AuBerdem iiberzeugen wir uns durch eine Uberschlags-
rechnung, dafl wir mit allen Temperaturen innerhalb des MeBbereiches des
Thermometers bleiben.

Die Massen my und m,, des Wassers ergeben sich aus der Differenz der
Wigungen des leeren, des mit warmem Wasser und des gleichzeitig mit
kaltem und warmem Wasser gefiillten Kalorimeters. Bei der Berechnung von
K ist mit den aus einem Temperatur-Zeit-Diagramm gewonnenen Tempera-
turen zu arbeiten.

W.3.2. Spezifische Wirmekapazitit von Festkdrpern
und Flissigkeiten

Im allgemeinen muBl man zwischen der spezifischen Wirmekapazitiat bei
konstantem Druck (c,) und bei konstantem Volumen (¢,) unterscheiden.
Fiir Festkorper und auch fiir manche Fliissigkeiten (z. B. Wasser) kann
wegen geringfiigiger thermischer Ausdehnung meist mit hinreichender Ge-
nauigkeit

Cp=Cr=2¢C (6)

gesetzt werden. Nach Gl. (2), die hier in der Form

AQ
m - At M

C =

geschrieben wird, entspricht der Wert der spezifischen Wirmekapazititen
dem Wert der Warmemenge, die der Masseneinheit zugefiihrt werden muB,
damit sich ihre Temperatur um 1 K erhéht. Die spezifischen Warmekapazi-
titen sind in allen Aggregatzustianden eine Funktion der Temperatur.

W. 3.2.1. Bestimmung der spezifischen Warmekapazitit
fester Stoffe

Aufgabe: Die mittleren spezifischen Warmekapazitdaten von Metallproben
sind fiir ein Temperaturintervall von etwa 20 bis 100 °C zu er-
mitteln.

Nach Gl. (7) gewinnt man die spezifische Warmekapazitét ¢ einer Probe,
indem ihre Temperatur ermittelt wird, nachdem die Probe eine Wéirme-
menge AQ abgegeben hat. Der Wirmeverlust kann in einem Fliissigkeits-
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kalorimeter gemessen werden. Er folgt aus der Temperaturinderung der
Fliissigkeit.

Der auf die Temperatur ¢, erhitzte Metallkérper (Masse m,, spezifische
Wirmekapazitit ¢;) tauscht die Warmemenge

AQ = cymy (t; — t) (8)

aus, wobei ¢, die Temperatur nach dem Energieaustausch, die Mischungs-
temperatur, ist. Vom Kalorimeter (Warmekapazitdt K) und der Fliissigkeit
(Masse mg, Temperatur tg, spezifische Wirmekapazitit cq) wird diese
Wirmemenge AQ aufgenommen, so daf andererseits

. AQ = (camq + K) (tn — ta) (9)
ist

Der Vergleich der Gln. (8) und (9) liefert als Bestimmungsgleichung fiir
die spezifische Warmekapazitdt der Festkorperprobe

(macqg + K) (b — ta)

my (b — bm) (10)

=

Die Methode liefert einen Mittelwert von ¢; fiir den Temperaturbereich
zwischen £, und ¢,.

Versuchsausfithrung

Der Probekorper wird gewogen (m;) und in einem elektrisch beheizten
Rohrenofen (Abb. 66) oder im Dampfstrom siedenden Wassers erhitzt

Sch

Abb. 66.
Zur Bestimmung der spezifischen
Warmekapazitit fester Stoffe
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(Temperatur ¢,). Aus den Wigungen des leeren und des mit Wasser gefiillten
Kalorimeters folgt die Masse mq. Die Temperatur des Wassers (f) wird
iiber eine Vorperiode hin periodisch gemessen und ein Temperatur-Zeit-
Diagramm (siche W.3.1) auch iiber eine Haupt- (,,Mischvorgang*) und
Nachperiode hin vervollstindigt. Dem Diagramm entnehmen wir die korri-
gierten Werte t; und t,. Soweit die Warmekapazitidt K unbekannt ist, soll
ihre Bestimmung (Abschn. 3.1) den eigentlichen Messungen vorangestellt
werden. :

W. 3.2.2. Bestimmung der spezifischen Wirmekapazitit
von Fliissigkeiten

Aufgabe: Die spezifische Warmekapazitit einer Fliissigkeit méBigen Dampf-
druckes soll bestimmt werden.

Die Bestimmung der spezifischen Wéarmekapazitit von Fliissigkeiten kann
immer dann auf die bisher behandelten Methoden zuriickgefithrt werden,
wenn die Fliissigkeiten im Bereich der Versuchstemperatur nur unmerklich
verdunsten :

a) Der Versuchsfliissigkeit im Kalorimeter wird eine bestimmte elektrische
Energie und damit auch eine bekannte Warmemenge zugefiihrt. Aus der
Temperaturinderung der Fliissigkeit folgt ihre spezifische Warmekapazitét.

b) In sinngeméafer Umkehrung der zuvor behandelten Methode zur Be-
stimmung der spezifischen Wirmekapazitat fester Stoffe ergibt sich die
spezifische Warmekapazitit einer Fliissigkeit, wenn sie mit einem tempe-
rierten Probekérper bekannter spezifischer Wirmekapazitit in Wérme-
austausch tritt. Fir diese Bestimmung ist Gl. (10) in gleicher Form giiltig.
Hiufig bedient man sich dabei einer speziellen Form des Warmeiibertragers,
des Thermophors.

¢) Der Thermophor (Abb. 67) hat die Form eines speziellen Fliissigkeits-
thermometers mit groBem Fliissigkeitsvorrat (haufig Quecksilber) und ent-
sprechend grofler Warmekapazitit. Am Schaft sind zwei MeBmarken M,
und M, angebracht. Der vor Versuchsbeginn im Wasserbad erhitzte Thermo-
phor wird in dem Augenblick in die MeBfliissigkeit getaucht, da der Queck-
silbermeniskus von oben her die MeBmarke M, passiert. Ist der Quecksilber-
spiegel bis M, gesunken, hat der Thermophor eine bestimmte, in einem Vor-
versuch mit Wasser bestimmbare Wiarmemenge abgegeben. Bedeuten K die
Wirmekapazitit des Kalorimeters, m; die Masse und ¢, die spezifische
Wirmekapazitat des Wassers sowie ¢, und ¢, seine Temperatur vor und nach
dem Wirmeaustausch, hat der Thermophor die Warmemenge

AQ = cymy(ty — t) + K (b, — t;) (11)

an ein mit Wasser gefiilltes Kalorimeter abgegeben. Die gleiche Wérme-
menge AQ wird auch von dem mit der Versuchsfliissigkeit gefiillten Kalori-
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meter aufgenommen. Dafiir gilt
AQ=cm(t—t)+ K{t—¥); (12)

hierin sind m die Masse, ¢ die spezifische Warmekapazitat, ¢’ und ¢ die Tem-
peratur des Versuchsstoffes vor und nach der Warmeiibertragung. Aus
der Gleichheit der beiden Ausdriicke (11) und (12) 1486 sich eine Beziehung
herleiten, nach der man die spezifische Wirmekapazitit ¢ der Versuchsfliissig-
keit berechnen kann: :

.= (eymy + K) (tlz—'tl) _£. v (13)
m{t—1) m

Abb. 67. Thermophor

Versuchsausfiihrung

Sofern der Thermophor im Wasserbad erhitzt wird, muB er vor dem Ein-
tauchen in das Kalorimeter gut abgetrocknet werden. Den Wirmeenergie-
ausgleich im Kalorimeter foérdern wir durch gutes Umrithren mit dem
Thermometer. Die Temperaturen ¢, und ¢, sowie ¢ und ¢ korrigieren wir
durch das in W.3.1 erliuterte Prinzip (Temperatur-Zeit-Diagramm). Die
Massen ergeben sich jeweils aus der Differenz der Wagung des leeren und
gefiillten Kalorimeters.
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W.33. Umwandlungswirmen

Die Ermittlung von Umwandlungswérmen wird am Beispiel der spezi-
fischen Schmelzwirme des Eises und der spezifischen Kondensationswirme
des Wasserdampfes geiibt.

Allgemein entsprechen die spezifischen Umwandlungswirmen den je nach
der Richtung des Prozesses positiv oder negativ zu rechnenden Warme-
mengen, die bei der Umwandlung der Masseneinheit des Stoffes bei kon-
stanter Umwandlungstemperatur umgesetzt werden. Die Einheit der spe-
‘zifischen Umwandlungswéirme ¢;; ist 1 J -kg=!. Insbesondere wird daher
beim Schmelzen von 1 kg Eis eine Warmemenge vom Betrage der spezi-
fischen Schmelzwirme verbraucht, wenn dabei die Temperatur konstant
0 °C bleibt. Die spezifische Kondensationswiarme des Wasserdampfes bei

Siedetemperatur wird frei, wenn 1 kg Wasserdampf in Wasser gleicher
Temperatur tibergeht.

W. 3.3.1. Spezifische Schmelzwirme des Eises

Aufgabe: Die spezifische Schmelzwirme des Eises ist zu bestimmen.

Die spezifische Schmelzwéirme g,, eines Stoffes 148t sich immer dann nach
der Mischmethode bestimmen, wenn als Kalorimeterfliissigkeit entweder die
Schmelze des Versuchsstoffes oder eine Fliissigkeit verwendet wird, in der
sich der Versuchsstoff weder 16st noch mit ihr chemisch reagiert. Stets
muB die Temperatur der Fliissigkeit hoher als die Schmelztemperatur des
festen Stoffes sein.

Wird eine Masse m; festen Stoffes der Temperatur ¢, in das Kalorimeter
gegeben, so erwarmt sie sich auf die Schmelztemperatur ¢,. Sie verharrt hier
so lange, bis der Stoff vollstindig geschmolzen ist, und erwarmt sich dann
auf die Mischungstemperatur ¢,,. In diesen drei Etappen werden von dem
urspriinglich festen Stoff gemaB Gl. (2) die Warmemengen

@y =m; - ce(ts — &) (c; spezifische Warmekapazitdt des festen
Stoffes),

Q2 = My - 4,

Qs =my - ety — &) (¢ spezifische Warmakapazitit des ge-
schmolzenen Stoffes)

aufgenommen. Die Wairmeenergieanteile werden von der Kalorimeter-
fliissigkeit (Masse mg, spezifische Warmekapazitit ¢;) und dem Kalori-
meter (Warmekapazitit K) geliefert, indem sich die Temperatur {; der
Kalorimeteranordnung auf die Mischungstemperatur ¢, erniedrigt:

Q4 = (camq + K) (g — tm)-
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Aus der Energiebilanz

Qi+ Qs+ Q=10

folgt die allgemeine Beziehung fiir die Bestimmung der spez1ﬁschen Schmelz-
wéarme nach dieser Methode:
cqmg + K
G2 = R (g — f) — G (b — 1) — Co b — B). (14)
my
Gl. (14) vereinfacht sich bei der Bestimmung der spezifischen Schmelzwéarme
des Eises, da wegen f, = #; = 0° auch @, = 0 ist.

Man erhélt
camg + K
Go = (tn = tw) = Ot (15)
. v
Versuchsausfithrung

Das Eis wird vor dem Beginn des Versuches gut zerkleinert und ab-
getrocknet. Seine Masse und die Masse des als Kalorimeterfliissigkeit die-
nenden Wassers folgt aus der Differenz dreier Wigungen: der des leeren
(einschlieBlich des Thermometers), der des mit Wasser gefiillten Kalori-
meters und einer Wigung, bei der das Kalorimeter zusétzlich das Wasser
des geschmolzenen Eises enthédlt. Die Temperaturen ¢; und £, gewinnen wir
aus einem Temperatur-Zeit-Diagramm (siehe W. 3.1).

W. 3.3.2. Spezifische Kondensationswiarme des Wasserdampfes

Aufgabe: Die spezifische Kondensationswirme des Wasserdampfes bei
seiner Siedetemperatur soll ermittelt werden.

Zur Bestimmung der spezifischen Kondensations- (oder Verdampfungs-)
Wiirme ¢, des Wassers bei der Siedetemperatur ¢, leitet man eine bestimmte

1 |

Abb. 68. Zur Bestimmung
der Kondensationswirme
des Wasserdampfes
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Menge des Dampfes (Masse mp) in die Fliissigkeit (Wasser, spezifische
Wirmekapazitit ¢) des Kalorimeters und 148t ihn dort kondensieren (vgl.
Abb. 68). Dabei werden die Warmemenge g,3myp, und bei der Abkiihlung auf
die Mischungstemperatur ¢, die Energie cmp(f; — t,) frei. Diese beiden An-
teile werden von der Kalorimeteranordnung aufgenommen (Warmekapazi-
tat K ; m,, und ¢, sind Masse und Temperatur des Wassers im Kalorimeter).
Aus der Energiebilanz folgt

cm, + K
Q23 = “’T (b — tw) — c(ts — tn). (16)

Versuchsausfithrung

Wir bringen das Wasser zum Sieden und warten in der Dampfleitung ein
Temperaturgleichgewicht ab, bevor wir den Dampf in das Kalorimeter ein-
leiten. Der Kondensatfinger in der Zuleitung soll verhindern, daB im Rohr
kondensierter Dampf in das Kalorimeter lauft. Die Masse der Kalorimeter-
fliissigkeit und die des kondensierten Dampfes ermitteln wir in bekannter
Weise durch je zwei Wigungen. Der Versuch wird mit Vor-, Haupt- und
Nachperiode zur Aufnahme eines Temperatur-Zeit-Diagrammes durch-
gefiihrt. Diesem sind die korrigierten Temperaturen zu entnehmen (siehe
W.3.1).

W.4. SYSTEME MIT VERSCHIEDENEN
KOMPONENTEN

W. 4.0. Aligemeine Grundlagen
W. 4.0.1. Gibbssche Phasenregel

Als Komponenten bezeichnet man die verschiedenen Bestandteile (z. B.
chemische Verbindungen), die in einem System vorhanden sind. Im all-
gemeinen existieren in einem bestimmten System mehrere homogene Be-
reiche, die durch Grenzflichen voneinander getrennt sind. Diese Bereiche
werden Phasen genannt. Der Begriff der Phase stellt eine Verallgemeinerung
des Begriffes Aggregatzustand dar. Ein System kann verschiedene feste
oder flitssige Phasen haben. So ist z. B. fester Schwefel in einer monoklinen
und einer rhombischen Modifikation — d. h. in zwei Phasen — bekannt. Da-
gegen besitzt jedes System wegen der Mischbarkeit der Gase nur eine gas-
formige Phase. Die frei wahlbaren ZustandsgréBen bezeichnet man als
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Freiheitsgrade des Systems. Den Zusammenhang zwischen der Zahl der
Freiheitsgrade f, der Zahl der Komponenten & und der Zahl der Phasen ng,
liefert die Gibbssche Phasenregel

f=k+2—ngy. 1)

Zur Erliuterung der Begriffe soll das in Abb. 69 dargestellte Zustands-
diagramm von Wasser betrachtet werden. Fiir dieses System gilt & = 1.
Wenn nur eine der drei Phasen vorliegt (ny, = 1), folgtaus Gl. (1) f = 2, d.h,,
sowohl der Druck p als auch die Temperatur 7' sind innerhalb gewisser

P I I
2,
1. flissig
fest
4| — —~—o 3
Torr Fir gasfirmig
|
[ Abb. 69.
‘ =  Zustandsdiagramm von Wasser
00075°C t

Grenzen frei vorgebbar. Sollen sich zwei Phasen im Gleichgewicht befinden
(ngn = 2), wird f = 1. Zu jeder sinnvoll gewihlten Temperatur 7' ist dann
der Druck p festgelegt. Man erhalt fiir die Kombination fest-gasférmig die
Sublimationskurve I, fiir die Kombination fest-fliissig die Schmelzkurve 17
und fiir die Kombination fliissig-gasformig die Dampfdruckkurve I11. Eine
Koexistenz aller drei Phasen (n,, = 3) ist wegen f = 0 nur in einem Punkt
mit definierten Werten von 7' und p - dem Tripelpunkt Py, — méglich.

W. 4.0.2. Losungen

Manche festen Stoffe 16sen sich beim Eindringen in eine Fliissigkeit (Lo-
sungsmittel), d. h., es tritt eine vollstindige Mischung der verschiedenen
Bestandteile ein. In den folgenden Betrachtungen wird vorausgesetzt, daf3
die Losung stark verdiinnt ist. Die Menge des geldsten Stoffes n, soll also
sehr klein gegen die Menge des Losungsmittels n, sein. Aulerdem wird fiir
den Dampf des Losungsmittels die Zustandsgleichung idealer Gase [vgl.
Gl. (W. 2-5)] verwendet.

Wenn man den rechten Schenkel eines U-Rohres mit einer Losung, den
linken Schenkel mit dem reinen Losungsmittel fiillt, diffundieren im Laufe
der Zeit die Molekiile des gelosten Stoffes in das Losungsmittel hinein.
Fiir dieses Bestreben nach Verdiinnung macht man einen bestimmten Druck
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in der Lésung — den osmotischen Druck IT — verantwortlich. I7 kann gemes-
sen werden, wenn Losung und Losungsmittel durch eine semipermeable (nur
fiir die Molekiile des Losungsmittels durchldssige) Wand W getrennt sind
(vgl. Abb. 70).

Das U-Rohr soll sich in einem Gefél3 befinden, das unter dem der Tempera-
tur 7' entsprechenden Dampfdruck des Losungsmittels steht. Die Verdiin-

T

_P1

, o dx

Dlx+dy)
Dix) =

X

Abb. 70.
Zur Dampfdruckerniedrigung
in Losungen -

nung geht nun so vor sich, daBl Molekiile des Losungsmittels durch W hin-
durch in die Losung wandern. Im Gleichgewichtsfall unterscheiden sich die
Lagen der Fliissigkeitsspiegel in den Schenkeln des U-Rohres um die Hohe A.
Bezeichnet man die Dichte der Lésung mit g, den Dampfdruck des Losungs-
mittels mit p,, den der Lsung mit p,, so ergibt sich der osmotische Druck zu
I = ogh — (po — P1)
oder naherungsweise zu?)
1T = ogh. 2)

Nun muB} sich aber auch der Dampf im Gleichgewicht befinden. Nach
Abb. 70 gilt

p(x + dz) — p(x) = —ppg du,

wobei pp, die Dichte des Dampfes an der Stelle z sein soll. Entwickelt man
p(x + dz) in eine Taylorreihe, gilt bei Vernachlassigung von (dx)?

1) Wenn gp die mittlere Dampfdichte im Intervall 0< o < b ist, wird p, — P,
= opgh.
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oder

de u h
P _ _ 0oJ

f"b | &

Do 0
2\ Po Mygh

In-—=—-In—" = - —-—; 3a
P P BT (82)

M, ist die molare Masse des Losungsmittels und p, ein beliebiger konstanter
Druck. Fithrt man in Gl. (3a) den osmotischen Druck gemifBl Gl. (2) ein,
erhilt man

2L Po_ Ml 3b)

Dn pn  oRT

Der osmotische Druck in stark verdiinnten Losungen geniigt dem wvan’t-
Hoffschen Gesetz

1V = n,RT. 4)

Die Menge n, des gelosten Stoffes verhilt sich also in der Losung wie ein
ideales Gas, das bei der Temperatur 7' das Volumen V einnimmt. Mit Gl. (4)
lautet Gl. (3b)

mP P _ —Monl ;
Pa P oV
oV ist die Masse der Lésung, die nach der eingangs gemachten Vorausset-

zung naherungsweise durch die Masse m, des Losungsmittels ersetzt werden
darf. Fiir den Dampfdruck der Losung gilt daher

(3¢)

PP M (3)
Pr Pn g

Die durch Gl. (3) beschriebene Dampfdruckerniedrigung in stark verdiinn-
ten Losungen hat sowohl eine Siedepunktserhéhung als auch eine Gefrier-
punktserniedrigung zur Folge.

Der Dampfdruck des Lésungsmittels geniigt der Gleichung von Clausius
und Clapeyron [vgl. Gl. (W. 2-23)]

dlnpy/p, @
aqn - R | (8)

Diemolare Verdampfungswirme @,;kanninnerhalb eines kleinen Temperatur-
intervalles als konstant angesehen werden. Die Integration der Gl. (5) fithrt
zu der ausgezogenen Geraden in Abb. 71.
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_ Nach Gl. (3) liegt die Dampfdruckkurve der Losung in der in Abb. 71 ge-
wihlten Darstellung um den konstanten Wert »,/n, tiefer (gestrichelte Ge-
rade). Das Losungsmittel bzw. die Losung sieden bei den Temperaturen

Abb. 71.
Zur Siedepunktserhéhung

r
A xol
57 sp T

Tso bzw. T, bei denen der Dampfdruck mit dem Luftdruck py iiberein-
stimmt. Aus Abb. 71 folgt

1 1 1Ay  n
et el ©

Da #, nach Voraussetzung sehr klein gegen n,, ist, gilt fiir die Siedepunkts-
erhéhung AT naherungsweise
1 1 T -T5, AT
TS 0 TS 1 Tg 0 .%Lo '
AuBerdem folgt aus Gl. (5)

Ay _ @

" Az R
so dall man Gl. (6)

BTS0 m

AT, =
5 Qas Mo

()

schreiben kann.
Der Sublimationsdruck des Losungsmittels pgree; geniigt der Gleichung
von Clausius und Clapeyron [vgl. Gl. (W. 2-24)]

d (In (po/Pn) rest) _ @ _ @1z + Qog 8)
d(1/T) R R ’

Die molare Sublimationswiarme €),; setzt sich additiv aus der molaren
Schmelzwarme ¢,, und der molaren Verdampfungswéirme @,, zusammen.
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Innerhalb eines kleinen Temperaturintervalles ist @, konstant. In Abb. 72
wird daher die Sublimationskurve durch die steile Gerade I dargestellt, die
Dampfdruckkurve des Lésungsmittels durch die Gerade II. Der Schnitt-
punkt der beiden Geraden liefert den Tripelpunkt Py, des Losungsmittels.
Die Dampfdruckkurve der Lésung (gestrichelte Gerade) liegt nach Gl. (3)

Abb. 72.
Zur Gefrierpunkts-
erniedrigung

um 7, /n, unterhalb der Geraden II. Am Schnittpunkt der gestrichelten Ge-
raden und der Geraden I haben Losung und festes Losungsmittel den glei-
chen Dampfdruck d. h., das Losungsmittel beginnt in der Lésung zu er-
starren. Es ist immer dle Phase mit dem kleineren Dampfdruck sta.bll

Aus Abb. 72 ergibt sich der Zusammenhang

1 Ay Ay 7y
(7~ (55), - ()] - ©)
Nun ist
(ﬂ) _(ﬁ) _s 9% 9
Az/y \Az); R R R -
AuBerdem gilt in guter Naherung
1 1 Tgo— TG1 AT,
Tor  Too  Tho  Tho'

Die Erniedrigung des Trlpelpunktes 148t sich also durch

ET%0

Q12 7

AT = (10)

beschreiben. Da die Erstarrungstemperatur nur sehr wenig vom Druck ab-
héngt, kann man annehmen, daBl auch die Gefrierpunktserniedrigung in
guter Niherung vom Druck unabhéngig ist. Aus diesem Grunde darf
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Gl. (10) fiir die Gefrierpunktserniedrigung bei Luftdruck verwendet werden.
Hiufig dissoziieren die Molekiile des gelosten Stoffes im Losungsmittel.
Die Stoffmenge n, ist der Zahl der Molekiile N, proportional, die in der
Masse m, des gelésten Stoffes enthalten sind. Zerfillt der Bruchteil § der
N, Molekiile in je z kleinere Teile, dann befinden sich

Ny=DN,[1+ (z—1) 8]

fremde Partikeln im Losungsmittel. In diesem Falle mufl man in den Gln. (3),
(7) und (10) n, durch

ny =1+ (2 — 1) 4] (11)

setzen. Die Zahl § bezeichnet man als Dissoziationsgrad.

W. 4.0.3. Legierungen

Jeder Stoff, der aus mehreren Elementen besteht und die Eigenschaften
von Metallen hat, wird Legierung genannt. Manche Stoffe besitzen die Fahig-
keit, sich vollstindig in der Schmelze eines Metalles zu l6sen. Derartige
Losungen und erstarrte Schmelzen, die aus Mischkristallen aufgebaut sind,
bezeichnet man als homogene Legierungen. Bei teilweiser oder vollstindiger
Unléslichkeit der Komponenten ineinander entstehen heterogene Legierun-
gen, die sich im festen Zustand aus einem Gemisch verschiedenartiger Kri-
stalle zusammensetzen. Durch Legieren dndern sich die physikalischen
Eigenschaften des Grundmetalls. So wird z. B. die mechanische Festigkeit
erhoht, wahrend die elektrische Leitfihigkeit und die Warmeleitfahigkeit
abnehmen. Die folgenden Ausfithrungen dienen der Erlduterung einiger

fliissig

T(b) g
K i fldssig
@ Ti@
y16)
4 £
A+B
Mischkristalle
A - g B A . B
Gehalt an Blin%)— Gehalt an Blin %) ——
Abb. 73. Abb. 74.
Schmelzpunktdiagramm eines in Schmelzpunktdiagramm einer
der Schmelze mischbaren mecha- liickenlosen Reihe von Misch-
nischen Gemenges kristallen

14 Phys. Praktikum
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einfacher Beispiele. Blei und Antimon sind in der Schmelze vollstindig
mischbar, wihrend ihre Kristalle ein mechanisches Gemenge bilden. Das
Schmelzpunktdiagramm von Pb-Sb-Legierungen entspricht dem in Abb. 73
dargestellten Typ. Kiihlt man eine Schmelze a ab, so beginnt bei der Tem-
peratur T'x(a) die Komponente 4 zu kristallisieren. Die Zusammensetzung
der Schmelze wird mit fallender Temperatur durch Kurve I beschrieben.
Eine Schmelze b scheidet dagegen nach dem Erreichen der Temperatur T'x(b)
Kristalle der Komponente B aus, und Kurve 2 stellt die Zusammensetzung
der Schmelze als Funktion der Temperatur dar. Der Schnittpunkt E der
Kurven I und 2 wird als eutektischer Punkt bezeichnet. Die Restschmelze
einer beliebigen Legierung dieses Typs erstarrt bei der Temperatur T’y wie
ein einheitliches Metall.

Silber und Gold sind in der Schmelze ebenfalls vollstindig mischbar.
Wihrend der Erstarrung entstehen aber Mischkristalle. Abb. 74 zeigt das

340 i ‘
flissig -4
300
S
S 260
S
g L@
g
=
22
160 3
aB K Abb.1s.
g I Schmelzpunktdiagramm
140l hd von Pb-Sn-Legierungen
0 2 w0 b 80 00
Bieigehalt (in %o)—

Schema des Schmelzpunktdiagrammes fiir Ag-Au-Legierungen. Wenn eine
Schmelze a beliebiger Zusammensetzung bei der Abkiihlung die auf der
Liquiduskurve L liegende Temperatur 7' (a) erreicht, setzt die Mischkristall-
bildung ein. Die Zusammensetzung der Kristalle wird durch den Punkt der
Soliduskurve § festgelegt, der zur Temperatur 7' (a) gehort. Mit sinkender
Temperatur kann die momentane Zusammensetzung der Schmelze auf der
Kurve L, die der gerade entstehenden Mischkristalle auf der Kurve S ab-
gelesen werden. Durch Diffusion tritt aber ein sténdiger Konzentrations-
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ausgleich zwischen Schmelze und Mischkristallen ein. Die Erstarrung ist
bei der Temperatur T's(a) beendet, und die Zusammensetzung der Misch-
kristalle ist mit der der urspriinglichen Schmelze a identisch.

Blei und Zinn bilden Legierungen, die einer Kombination der beiden bis-
her erlauterten Typen entsprechen. Abb. 75 zeigt das Schmelzpunktdia-
gramm. Enthilt die Schmelze einen Bleigehalt, der kleiner als 2, = 5% oder
groBer als z, — 80,5%}) ist, entstehen bei der Erstarrung der Schmelze
Mischkristalle & oder 8 in der am Beispiel Ag-Au beschriebenen Weise. Wah-
rend der Abkiihlung einer Schmelze @ beginnt bei der Temperatur 7'y (a) die
Ausscheidung von Mischkristallen f. Die Zusammensetzung der Misch-
kristalle éndert sich gemaf der Soliduskurve S, die der Schmelze geméf der
Liquiduskurve L. Bei der Temperatur T'; erstarrt die Restschmelze wie ein
einheitliches Metall. Das Eutektikum setzt sich aber nicht aus den Kristal-
len der reinen Komponenten zusammen, sondern besteht aus Mischkristal-
len « der Zusammensetzung x, und Mischkristallen 8 der Zusammensetzung
%,. Die Mischkristalle §, die vor der Erstarrung des Eutektikums schon vor-
handen waren, scheiden bei Temperaturen unterhalb 7 gemaf Kurve K
Zinn aus.

Die Diskussion der Verhéltnisse bei der Abkiihlung einer Schmelze, deren
Pb-Gehalt kleiner als 38 % ist, soll dem Leser iiberlassen bleiben. AuBerdem
wird empfohlen, die Aussagen der Gibbsschen Phasenregel Gl. (1) fiir die
verschiedenen Schmelzpunktdiagramme zusammenzustellen.

W.4.1. Siedepunktserhéhung

Aufgabe: Die relative Molekiilmasse eines in Wasser 16slichen festen Stoffes
soll aus der Siedepunktserhohung der Losung bestimmt werden.

Abb. 76 zeigt die von Landsberger angegebene Anordnung zur Bestim-
mung der Siedepunktserh6hung. Das Lésungsmittel bzw. die Lésung be-
findet sich in dem Glasgefill @, das in einem Behalter B untergebracht ist.
Der Stopfen § enthélt zwei Bohrungen, in die das Beckmann-Thermometer
Th und das Rohr R, eingesetzt sind. Wenn man durch das Rohr R, Wasser-
dampf in das GefiBl G leitet, beginnt die Fliissigkeit (Wasser oder Losung)
nach einiger Zeit zu sieden. Der Wasserdampt kann durch die Offnung O
und das Rohr R, entweithen. Die beschriebene Axt der Erwirmung hat den
groBen Vorteil, daB kein Siedeverzug auftritt.

Versuchsausfiihrung
Wir bestimmen den Barometerstand und entnehmen die zugehérige Siede-
temperatur von Wasser t5, der Tab. 8. Wir wigen das gut getrocknete Ge-
1) % bedeutet hier Massenprozent.
14*
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fiB @, dessen Masse m, sein soll. Dann wird das Gefal & in den Behilter B
gesetzt, etwa zur Halfte mit Wasser gefiillt und mit dem Stopfen S ver-
schlossen. Das Beckmann-Thermometer T4 und das Rohr R, miissen hin-
reichend tief in das Wasser eintauchen. Wir bringen Wasser in der Flasche #
zum Sieden und leiten den Dampf durch 'das Rohr R, in das Gefa3 G. Sobald
der Quecksilberfaden des Thermometers vor der Skale sichtbar wird, lesen

R

Abb. 76. Anordnung zur Bestimmung der Siedepunktserh6hung

wir die Lage des Meniskus in regelméfBigen Zeitabstianden ab. Das Beck-
mann-Thermometer muBl so eingestellt sein, daBl das Fadenende bei der
Siedetemperatur von Wasser im unteren Teil der Skale liegt. Nun geben wir
den festen Korper, dessen Masse m,; mit einer Analysenwaage bestimmt
worden ist, in das Wasser und ermitteln die Siedetemperatur der Lésung in
der oben beschriebenen Weise. Die Temperaturdifferenz A¢’ ist auf den MeB-
bereich zwischen 0 °C und 5 °C umzurechnen. So erhalten wir At = AT,.
Nach der Abkiihlung auf Zimmertemperatur wird die Masse m; des auBlen
getrockneten GefiBles G bestimmt. Die Masse des Wassers ergibt sich zu

my = mg — (my + my).
Nach Gl. (7) gilt fiir die molare Masse des geldsten Stoffes

. .RT%O my _ RT%O mlr
Qa3 At my ¢ Qas AL my

M,

Die spezifische Verdampfungswirme von Wasser ¢,; ist der Tab. 2 zu ent-
nehmen. Wenn der geldste Stoff in Wasser dissoziiert, ist Gl. (11) zu beach-
ten.
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W. 4.2, Gefrierpunktserniedrigung

Aufgabe: Die relative Molekiilmasse eines in Wasser 19slichen festen Stoffes
ist aus der Gefrierpunktserniedrigung der Losung zu bestimmen.

Eine Anordnung zur Bestimmung der Gefrierpunktserniedrigung, die in
ahnlicher Form von Beckmann angegeben wurde, ist in Abb. 77 dargestellt.
Ein GlasgefiaB @, das etwa zur Hilfte mit Wasser bzw. der Losung gefiillt
ist, sitzt in einem Gefall G,. In dem Raum zwischen den Gefaflen befindet

=

el

ERE R

R

1NN

:MGZ

y
@ Abb. 77. Anordnung zur Bestimmung

der Gefrierpunktserniedrigung

sich Luft. Das GefaB} G, ist in einem Behilter B untergebracht, der mit einer
Kiltemischung aus Viehsalz, gestoBenem Eis und Wasser beschickt wird.
Die Riihrer R; und R, dienen zum Ausgleich riumlicher Temperaturunter-
schiede in der Kaltemischung und in dem Wasser bzw. in der Losung. Die
Gefrierpunktserniedrigung wird mit dem Beckmann-Thermometer 7% ge-
messen.

Versuchsausfihrung

Wir stellen im Behalter B die Kaltemischung her, deren Temperatur etwa
—10 °C betragen soll. Dann wird das mit Wasser der bekannten Masse m,
gefiillte Gefall G in den Behilter B gesetzt. Bei stindiger Bewegung der
Riihrer R, und R, beobachten wir die Lage des Quecksilbermeniskus im
Beckmann-Thermometer. Im allgemeinen tritt eine Unterkiihlung des
Wassers unter den Gefrierpunkt ein, die aber durch Riihren bald aufgehoben
werden kann., Wahrend der Erstarrung soll der Quecksilberfaden des Ther-
mometers im oberen Bereich der Skale enden. Die entsprechende Tempera-
tur ¢ wird notiert. Wir heben das GefaB ¢, vor dem Ende der Erstarrung des
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Wassers aus dem Behélter B und warten, bis das Eis vollstandig geschmol-
zen ist. Dann wird der geloste Stoff, dessen Masse m; mit einer Analysen-
waage bestimmt worden ist, in das Gefal G, geschiittet. Wir lassen die Lo-
sung unter stindigem Riihren abkiihlen und notieren sowohl die tiefste
Temperatur ¢, die bei der Unterkiihlung erreicht wird, als auch die Tempe-
ratur ¢/, die das Thermometer unmittelbar nach Aufhebung der Unterkiih-
lung anzeigt. Im Laufe der Erstarrung des Wassers nimmt die Konzentra-
tion der Lésung zu, d. h., die Erstarrungstemperatur sinkt. Nach Gl. (10)
gilt
_ RT%o my RT%0 my

Qe At my " qip At my

M,
mit
At =t —t" =AT;.

Die spezifische Schmelzwirme von Eis ¢,, ist der Tab. 2 zu entnehmen. Wenn
der geléste Stoff in Wasser dissoziiert, muBl Gl. (11) beachtet werden.

Strenggenommen mufl die Masse m, um die Masse mg, die nach Aufhebung der
Unterkiihlung bereits in Form von Eis vorliegt, verringert werden. Fiir mg gilt nihe-
rungsweise

o(mg + my) (¢ — ¥) = g1omz,

wobei ¢ die spezifische Warmekapazitiat der Losung ist. Diese Korrektur hat aber nur
dann einen Sinn, wenn mg wesentlich gréler als m, ist.

W.43. Thermische Analyse

Aufgabe: Die Abkiihlungskurven einiger Blei-Zinn-Legierungen sollen auf-
genommen werden. Die Zusammensetzung der verschiedenen
Legierungen ist zu bestimmen.

Die Temperatur 7' einer Pb-Sn-Legierung, die nach dem Schmelzen sich
selbst iiberlassen bleibt, geniigt zunéchst dem Newtonschen Abkiihlungs-

gesetz

ar
ar = —MT - T,). (12)

Die Abkiihlgeschwindigkeit d7'/d7 ist also der Temperaturdifferenz 7' — T,
proportional, wobei im vorliegenden Fall 7', die konstante Zimmertempera-
tur sein soll. Den Proportionalitétsfaktor A bezeichnet man als Abkiihlungs-
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konstante. Die Integration der Gl. (12) im Zeitintervall von 0 bis 7 liefert

T(z)
_ ar . T(0)-T,
Iv=— T T, =1In Tr) = T, (13)
T(0)
oder
T(r) = Ty =[T(0) — Tyl e7*. (14)

Wenn die Legierung nicht gerade die eutektische Zusammensetzung hat,
beginnt bei einer bestimmten Temperatur 74, die Ausscheidung fester Pb-
Sn-Mischkristalle. Durch die entstehende Erstarrungswirme wird die Ab-
kiihlgeschwindigkeit verkleinert, d. h., die Abkiihlungskurve weist bei 7%,
einen Knick auf (vgl. Abb. 78). Die Schmelze besitzt bei der Temperatur 7'y

VTJ

[}
3
[/ —
\
\
72, \
- I
T T 05 38 85
%o Pb——>—
Abb. 78. Temperatur-Zeit-Diagramm Abb. 79. 7y in Abhingigkeit vom
einer Pb-Sn-Legierung Pb-Gehalt

die eutektische Zusammensetzung und erstarrt wie ein reines Metall. Wih-
rend der Zeit 1y bleibt die Temperatur der Legierung konstant. Die Ab-
kiihlung der véllig erstarrten Legierung geniigt Gl. (14). Die A-Werte der
Schmelze und der festen Legierung stimmen nahezu iiberein.

Wenn 7'y, groBer als die Schmelztemperatur von Zinn ist, kann die Zu-
sammensetzung der Legierung aus Abb. 75 eindeutig bestimmt werden. Ist
dagegen 7'y, kleiner als 232 °C, ergeben sich aus dem Schmelzpunktdia-
gramm zwei mogliche Konzentrationen. Die Zeit T'y, stellt ebenfalls ein Maf
fiir die Zusammensetzung dar, sofern die verschiedenen Legierungen gleiche
Masse haben und unter den gleichen Bedingungen abgekiihlt werden.

Aus Abb. 79 erhilt man fiir jede Zeit T'y zwei Konzentrationen. Die zu
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untersuchende Legierung besitzt die Zusammensetzung, die sowohl mit
Abb. 75 als auch mit Abb. 79 vereinbar ist.

Die Thermoanalyse wird neuerdings meist in Form der Differentialthermoanalyse
(DTA) eingesetzt. Diese beruht auf folgendem Prinzip: Die beiden Temperaturfiihler
eines Differentialthermoelementes, wie es beispielsweise in Abb. 93 dargestellt ist,
tauchen in je ein meist aus Platin bestehendes Probekélbchen. In das eine Kélbchen
wird der zu untersuchende Stoff gefiillt. In dem anderen Kélbchen befindet sich ein
Vergleichsstoff, der i Temperaturbereich der Messung keine Wiarmet6énung zeigen
darf. Fiir das Temperaturintervall 100 °C < ¢ < 1600 °C ist z. B. «-Al,O, geeignet.
Beide Kolbchen werden in einem gemeinsamen Wirmebad (Ofen) erhitzt bzw. ab-
gekiihlt. Das Differentialthermoelement liefert nur bei den Temperaturen eine Span-
nung, bei denen die zu untersuchende Probe im Vergleich zum Inertstoff eine Wirme-
tonung zeigt. Die Thermospannung wird in kommerziellen Apparaturen automatisch
registriert und gegeniiber der mit einem weiteren Thermoelement gemessenen Tempe-
ratur der Vergleichsprobe aufgezeichnet. Das Vorzeichen der Thermospannung gestat-
tet, zwischen exo- und endothermen Vorgingen zu unterscheiden. Die Fliche unter
der Kurve ist ein MaB fir die Umwandlungswirme. .

Als dynamische Mefmethode liefert die DTA keine exakten Gleichgewichtswerte
der Umwandlungs- oder auch Reaktionstemperaturen bzw. der entsprechenden Wirme-
mengen. Wesentliche EinfluBgro8en sind Wirmeleitfahigkeit und spezifische Wérme-
kapazitit von Probe- und Vergleichsstoff, ihre Massenverhiltnisse, gegebenenfalls die
TeilchengriBen sowie die Aufheiz- oder Abkiihlgeschwindigkeit. Die Aufheizgeschwin-
digkeit wird bei kommerziellen Anlagen im Interesse guter Reproduzierbarkeit der
Messungen programmgesteuert.

Versuchsausfiihrung

Wir erwiarmen die Legierung in einem Tiegel auf etwa 330 °C. Nach mehr-
fachem Umriihren lassen wir die Schmelze abkiihlen und lesen im Intervall
320 °C = ¢ < 140 °C alle 15 s die Temperatur ab. Zur Temperaturmessung
dient im allgemeinen ein eingemessenes Thermoelement. Das Temperatur-
Zeit-Diagramm efitspricht der in Abb. 78 ausgezogenen Kurve. Wir berech-
nen A nach Gl. (13), wobei die Zeit 7 so zu wihlen ist, da8 der obere Teil der
Abkiihlungskurve méglichst gut durch Gl. (14) beschrieben wird. Der Knick
bei T, ist oft nicht sehr ausgepréigt. Da die Temperatur an der freien Ober-
fliche stets unter der im Inneren der Legierung liegt, beginnt die Ausschei-
dung von Mischkristallen an verschiedenen Stellen zu verschiedenen Zeiten.
Vor dem Erstarren der eutektischen Schmelze stellen wir eine Unterkiihlung
fest. Die schon erwahnten Temperaturunterschiede in der Legierung haben
zur Folge, daf3 die Erstarrung der eutektischen Schmelze in einem gewissen
Zeitintervall und nicht in einem definierten Zeitpunkt abgeschlossen wird.
Wir stilisieren die Abkiihlungskurve durch Extrapolation sicherer Kurven-
teile (gestrichelte Linien in Abb. 78) und entnehmen der Darstellung die
Temperaturen 7'y, und T’y sowie die Zeit 7. Die Zusammensetzung der Le-
gierung wird der Abb. 75 und dem 7g-Diagramm, das fiir die vorliegende
Versuchsanordnung gegeben sein soll, entnommen. Wir wiederholen den
Versuch mit Legierungen anderer Zusammensetzung.

Eine genauere Darstellung der Abkiihlungskurve erhalten wir, wenn wir
anstelle der punktweisen Aufnahme der Temperatur die Thermospannung
einem Motorkompensator zufiihren, der diese als Funktion der Zeit schreibt,
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W. 4.4. Mikrothermoanalyse

Awufgaben: 1. Die Schmelztemperaturen zweier Stoffe sind mit der durch-
gehenden Methode und mit der Gleichgewichtsmethode zu bestim-
men.

2. Die eutektische Temperatur eines Gemisches aus den beiden
Stoffen ist mit Hilfe der Kontaktmethode zu ermitteln.

3. Mit Hilfe der Glaspulvermethode sind die Temperaturen fest-
zustellen, bei denen die Brechungsindizes der beiden Stoffe mit
dem eines vorgegebenen Glaspulvers iibereinstimmen. ‘
Auf graphischem Wege ist das prozentuale Verhéltnis eines Ge-
misches aus den beiden Stoffen fiir eine gegebene Gleichheits-
temperatur zu ermitteln.

Moderne zeit- und stoffsparende physikalische Mikromethoden auf dem Ge-
biet der Analyse organischer Stoffe und Stoffgemische sind chemischen Ana-
lyseverfahren und Nachweisreaktionen vielfach iiberlegen. Ausgangspunkt
und Grundlage einiger Mikromethoden bildet die Schmelzpunktbestim-
mung unter dem Mikroskop. Messungen thermischer Konstanten von Stof-
fen, wie eutektische Temperaturen mit Teststoffen und Bestimmung der
Lichtbrechung von Schmelzen mittels einer Skale gepulverter optischer Gla-
ser mit bekannten Brechungsindizes, dienen sowohl zur Identifizierung als
auch zur quantitativen Analyse von Gemischen. Eine weitere Anwendung-
dungsmoglichkeit ist die Bestimmung der relativen Molekiilmasse.

Ein Mikroschmelzpunktapparat (z. B. der handelsiibliche Mikroschmelz-
punktapparat ,,Boétius‘‘) besteht im wesentlichen aus einem elektrisch heiz-
baren runden Metallblech, dem Heiztisch, der auf den Objekttisch eines
Mikroskops aufgesetzt werden kann. Der Heiztisch besitzt eine zentrale
Bohrung, die sich nach unten konisch erweitert. Ein dort angebrachter
hitzebestandiger Kondensor besorgt die ausreichende und gleichméBige Be-
leuchtung des Gesichtsfeldes mit praktisch parallelem Licht. Zur Tempera-
turmessung dient ein in einem besonderen Justierverfahren eingemessen
EinschluBthermometer, das korrigierte Schmelztemperaturen anzeigt. Die
zentrale Lage des Temperaturfiihlers dicht unter dem Objekt macht die An-
zeige von einem zeitlich und 6rtlich unterschiedlichen peripheren Warme-
gefille in der Heizplatte unabhingig.

Zur Schmelzpunktbestimmung sind zwei Methoden bekannt. Bei der
durchgehenden Arbeitsweise 1aBt man die Temperatur bis zum vollstandigen
Schmelzen des Stoffes stetig ansteigen. Bei diesem Schmelzvorgang verfliis-
sigen sich zuerst die kleinsten Splitter, dann kleinere Kristalle und zuletzt
die groBen Kristalle, bis es zu einem vélligen ZerflieBen kommt. Diese Me-
thode dient meist nur zur ungefahren Orientierung, in welchem Intervall
die Schmelztemperatur liegt.

Wesentlich genauer ist die Gleichgewichtsmethode. Hierbei wird die Tem-
peratur in der Nahe des vorher bestimmten Schmelzintervalles nur langsam
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erhoht. Noch bevor der Stoff véllig geschmolzen ist, wird die Heizung ab-
geschaltet. Einige Restkristalle innerhalb des Schmelztropfens beginnen
nach dem Abschalten wieder zu wachsen, bei erneuter Erwarmung schmel-
zen sie wieder ab. Durch wiederholtes Abkiihlen und Erwéirmen kann man
sehr genau das Gleichgewicht zwischen fester und fliissiger Phase bestimmen.

Nur wenige Stoffe bleiben vor dem Schmelzen ganz unverindert. Bei den
meisten sieht man wihrend des Erhitzens vor dem Erreichen der Schmelz-
temperatur mannigfache, durch Sublimationsvorgéinge bedingte Verinde-
rungen. Manche Stoffe lagern sich wihrend des Erwarmens so weitgehend
um, daB sie vor dem Schmelzen ein vollig anderes Aussehen gewinnen. Es
kénnen tropfenformige oder kristallisierte Sublimate oder beide neben-
einander auftreten. Die tropfenférmigen bezeichnet man richtiger als Kon-
densationstropfchen. Fiir die mikroskopische Arbeitsweise ist die Fahigkeit
eines Stoffes zu sublimieren oft von auBlerordentlichem Vorteil, da sie die
Maoglichkeit bietet, in kurzer Zeit aus einem unreinen Stoff eine kleine, fiir
die Mikroschmelzpunkt- oder Brechungsindexbestimmung geniigende
Menge reiner Kristalle zu erhalten.

Die Bestimmung der eutektischen Temperatur soll hier nur an Stoffen
erliutert werden, die in der Schmelze mischbar sind, aber keine Misch-
kristalle bilden (vgl. W. 4.0.3, Abb. 73). Ein Gemisch aus zwei Stoffen wird
auf dem Heiztisch beobachtet. Bei Erreichen der eutektischen Temperatur
schmilzt ein Teil zu Schmelztropfen, der andere Teil bleibt kristallin. Dabei
hiangt die Anzahl der Tropfen vom Mengenverhéltnis der beiden Stoffe ab.
Trotzdem kann man diese Erscheinung schon beim Vorhandensein eines
Mengenverhiltnisses von nur 1:99 unter dem Mikroskop beobachten. Es
kann bei dieser Methode aber vorkommen, daB im Beobachtungsfeld nur
ein Stoff vorhanden ist, und dieser dann erst bei seiner Schmelztemperatur
schmilzt. Um das dadurch notwendig gewordene fortwahrende Verschieben
des mikroskopischen Priparates zu vermeiden, wendet man die Kontakt-
methode an. Hierbei wird die Mischzone zweier zwischen Objekttriager und
Deckglas sich berithrender Stoffe bei Temperaturdnderungen unter dem
Mikroskop beobachtet.

Durch die Bestimmung der eutektischen Temperatur eines Stoffes mit
einem Teststoff kann man den Stoff charakterisieren bzw. nachweisen.

Eine besonders charakteristische Eigenschaft der Stoffe ist die Licht-
brechung. Kristalle, bei denen die Lichtbrechung in allen Richtungen gleich
ist, nennt man optisch isotrop. Der Brechungsindex ist von der Lage des
Kristalls unabhéngig. Ist dies nicht der Fall, liegen optisch anisotrope Kri-
stalle vor. Da bei diesen Kristallen die Bestimmung der Brechungsindizes
sehr kompliziert wird, wurde sie oft zur Identifizierung von Stoffen ab-
gelehnt. Bestimmt man aber den Brechungsindex nicht von den festen
Kristallen, sondern von deren Schmelzen, die immer optisch isotrop sind,
hat man die Schwierigkeit der optischen Anisotropie der meisten kristalli-
sierten organischen Stoffe umgangen. Man versetzt dazu das mikroskopische .
Praparat des zu priifenden Stoffes vor dem Schmelzen mit ein paar Stiub-



W. 4.4. Mikrothermoanalyse 219

chen eines Glaspulvers mit bekanntem Brechungsindex, schmilzt es und
vergleicht die Lichtbrechung der Schmelze mit der der Glassplitter. Ein
Objekt ist in einer umgebenden Fliissigkeit nur sichtbar, wenn der Bre-
chungsindex der beiden Stoffe verschieden ist. Das Objekt erscheint dann
durch eine scharfe dunkle Linie von dem umgebenden Medium abgegrenzt.
Beim Heben des Tubus entsteht neben der Grenze eine helle Linie, die
Beckesche Linie, die sich beim weiteren Heben des Tubus gegen den stéirker
lichtbrechenden Stoff hin zu verschieben scheint. Beim Senken des Tubus
wandert diese Linie gegen das schwicher lichtbrechende Medium. Bei voll-
stindiger Gleichheit der Brechungsindizes verschwindet in der Regel die
Beckesche Linie, das Objekt ist in diesem Fall in der umgebenden Fliissig-
keit unsichtbar. Zum Vergleich steht eine ganze Skale von Glaspulver-
arten zur Verfilgung mit einer durchschnittlichen Differenz der Brechungs-
indizes von 0,01. -

Die Tatsache, dafl der Index der Schmelze mit steigender Temperatur-
abnimmt, wihrend der der Glaser praktisch unverandert bleibt, erméglicht
eine noch genauere Bestimmung. Zu diesem Zweck wéhlt man von den
beiden Glaspulvern, deren Brechungsindizes knapp oberhalb bzw. unterhalb
des Index des geschmolzenen Stoffes liegen, das Glas mit dem niedrigeren
Index. Unmittelbar nach dem Schmelzen ist die Schmelze hoher licht-
brechend als die Glassplitter, nach weiterem Erhitzen nimmt jedoch der
Brechungsindex der Schmelze ab, die Beckesche Linie und somit die Glas-
splitter werden immer undeutlicher, um schlieBlich bei Ubereinstimmung
der Lichtbrechung meist vollstdndig zu verschwinden. Bei weiterem Tem-
peraturanstieg tauchen die Glassplitter wieder auf, die Beckesche Linie
wandert jetzt beim Heben des Tubus gegen die Glassplitter. Die Schmelze
ist niedriger brechend geworden. Dieses Umschlagen der Beckeschen Linie
vollzieht sich innerhalb eines Grades. Die Temperatur, bei der die Brechungs-
indizes von Schmelze und Glaspulver gleich sind, hei3t Gleichheitstemperatur.
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Abb. 80. Refraktionsdiagramm
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Mit Hilfe der Lichtbrechung ist auch eine quantitative Analyse von Zwei-
stoffgemischen moglich. Sie beruht darauf, da die Brechungsindizes von
geschmolzenen Mischungen in der Regel eine lineare Funktion der
Brechungsindizes der beiden Komponenten darstellen. Die einfachsten
Beispiele sind dabei die, bei denen zur Bestimmung der Brechungsindizes
der Komponenten das gleiche Glaspulver verwendet werden kann, so daf}
der Unterschied der Lichtbrechung nur an den verschiedenen Gleichheits-
temperaturen von Schmelze und Glas zum Ausdruck kommt.

Man tragt in einem Diagramm auf der Abszisse die Mischungsverhalt-
nisse und auf der Ordinate die Temperaturen auf.

In Abb. 80 ist das Diagramm von Cycloform und Anésthesin wieder-
gegeben, das erstere zeigt bei 66,5 °C, das letztere bei 120 °C Gleichheit der
Lichtbrechung mit Glas (n = 1,5400.) Die entsprechenden Temperaturen fiir
alle Mischungsverhéltnisse liegen auf einer die beiden Gleichheitstemperatu-
ren der Komponenten verbindenden Geraden. Je steiler diese Gerade bei
einem System verlduft, um so genauer lait sich die quantlta,tlve Bestim-
mung durchfiihren.

Versuchsausfiihrung

Fiir die Herstellung des mikroskopischen Préparates benotigen wir eine
sehr geringe Stoffmenge, im allgemeinen nicht mehr als 0,1 mg, die vorher
zwischen zwei Objekttrigern zerrieben wird, um nicht zu grofle Kristalle in die
Untersuchung einzubeziehen. Fiir die Schmelzpunktbestimmung ermitteln
wir zunédchst in einem Vorversuch bei groBter Heizleistung die ungefihre
Schmelztemperatur, bringen die Schmelze unter leichtem Druck auf das
Deckglas zum Erstarren und erhalten dadurch einen Kristallfilm und damit

Abb. 81. Kontaktpriparat

den den EinmeBbedingungen entsprechenden gleichméBig kleinen Abstand
zwischen Objekttriger und Deckglas. Die Schmelztemperatur wird nun-
mehr bei einem Temperaturanstieg von 4 K - min— (Einstellung Vorwider-
stand) nach der durchgehenden Methode bzw. mit héherer Priizision im
Gleichgewicht bestimmt.

Fiir die Bestimmung der eutektischen Temperatur mit Hilfe der Kontakt-
methode wird das Kontaktpraparat wie folgt hergestellt (vgl. Abb. 81): Wir
bringen zunéchst eine Probe des hoher schmelzenden Stoffes zum Schmelzen,
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achten darauf, daB die Schmelze nur etwa die Hilfte des Raumes zwischen
Objekttrager und Deckglas ausfiillt, und lassen erstarren (Gebiet a). Den
zweiten Stoff bringen wir nun an den Rand des Deckglases neben den er-
starrten ersten Stoff (Stelle b) und erwérmen, bis er schmilzt, wobei die
Schmelze in den noch freien Raum zwischen Objekttrager und Deckglas
einfliet. In der Beriihrungszone wird durch die Schmelze des zweiten Stof-
fes etwas von dem erstarrten ersten Stoff aufgelost. Dadurch haben die bei-
den Stoffe die Moglichkeit, sich entweder nur zu mischen oder in der fiir das
Stoffpaar charakteristischen Weise miteinander zu reagieren. Gelingt dies
nicht, so wird das Priparat nochmals vollstandig durchgeschmolzen, ab-
gekiihlt und erneut erwirmt. Die dadurch breiter gewordene Mischzone
148t sich besser beobachten.

Fiir Aufgabe 3 benétigen wir eine etwas groBere Stoffmenge. Wir bringen
einige Glassplitter in das wie bei Aufgabe 1 vorbereitete Praparat, erwdrmen
aber noch langsamer als bei der Gleichgewichtsmethode und beobachten das
Verhalten der Beckeschen Linie. Die Beckesche Linie ist am intensivsten,
wenn das Priaparat im monochromatischen Licht beobachtet wird, deshalb
ist ein Rotfilter vorzuschalten.



Elektrizitatslehre

E.1. WIDERSTANDE

E.1.0. Aligemeine Grundlagen
E.1.0.1. Elektrischer Widerstand und Ohmsches Gesetz

Das Verhiltnis der in einem Stromkreis wirksamen Spannung U zur
Stromstérke I bezeichnet man als den Widerstand R des Stromkreises:

R= % (Definition) _ (1)

Volt (V)
Ampere (A)

Gl. (1) kann auch auf einzelne Teile eines Stromkreises angewendet wer-
den, wobei die Spannung zwischen den Enden des betrachteten Teilstiickes
einzusetzen ist. Physikalisch gesehen erscheint es sinnvoll, die Stromstérke
als Folge der sie verursachenden Spannung aufzufassen: I = U/R; oftmals
ist es aber auch zweckméBig, umgekehrt die Spannung zwischen den Enden
eines Leiterstiickes formal als Folge des Stromes anzusehén, der dieses Lei-
terstiick durchflieBt: U = IR. Man nennt diese Spannung auch ,,Wider-
standsspannung*, die an R auftritt, oder ,,Spannungsabfall.

Anstelle des Widerstandes kann mit gleicher Berechtigung auch dessen
Kehrwert @ eingefiithrt werden, der Leitwert genannt wird: G = 1/R. Seine
Einheit ist das Siemens (S). Mit dem Leitwerk ergeben sich die Beziehungen

I I

G='—ﬁ', I=UG, U='§. ‘(13)

Einheit: 1 Ohm (Q) = 1

Im allgemeinen Fall besteht keine Proportionalitit zwischen I und U,
so daB R eine Funktion von U oder von I wird (Glimmlampe, Licht-
bogen, Elektronenrshre, Gleichrichter usw.). In dem technisch besonders
wichtigen Sonderfall der metallischen Leitung ist jedoch Proportionalitét-
zwischen Stromstérke und Spannung gegeben (Ohmsches Geselz), so dafl
dann R = const ist. Hierfiir ist allerdings Konstanz der Temperatur Vor-
aussetzung. Da sich diese jedoch durch die Warmeentwicklung des den
Leiter durchflieBenden Stromes in Abhingigkeit von dessen Stirke u.U.
merklich dndern kann (Glithlampe), wird in solchen Fillen R durch diesen
sekundéren Einflull stromstérkeabhéngig.
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E. 1.0.2. Kirchhoffsche Regeln

Die 1. Kirchhoffsche Regel geht davon aus, daB in keinem Punkt eines
elektrischen Netzwerkes freie Ladungstriger zusétzlich entstehen oder ver-
schwinden. Sie lautet: Die Summe der zu einem Verzweigungspunkt eines
Netzwerkes (Knoten) hinflieBenden ist gleich der Summe der abflieBenden
Strome. Werden die zu- und abflieBenden Stréme durch unterschiedliche
Vorzeichen gekennzeichnet, ist die Summe aller Teilstrome I; Null (Knoten-
regel):

SIL=0. @)

Die 2. Kirchhoffsche Regel betrachtet die Spannungsverhaltnisse in einer ge-
schlossenen Leiterschleife (Masche) eines Netzwerkes: Die Summe der
,eingeprigten Spannungen U, (Urspannungen entsprechender Quellen)
ist dem Betrag nachgleich der Summe aller Spannungen U, = I;R; an den
Widersténden (Maschenregel). Dafiir schreibt man meist

3 U+ LR =0, 3)
1 .

weil vereinbarungsgemill von folgender Vorzeichenregel ausgegangen
wird : Jeder Spannungsquelle wird ein ,,Zahl-“ oder ,,Bezugspfeil*“ von der
Richtung des elektrischen Feldes innerhalb der Spannungsquelle und
daher vom positiven zum negativen Pol zugeordnet. Als positive, eben-
falls durch Pfeile symbolisierte Stromrichtung gilt die Bewegung posi-
tiver Lagungstrager.

Gl. (3) fithrt zum richtigen Ergebnis, wenn die Masche eines Netzes in
einem willkiirlich festgelegten Sinne durchlaufen wird und beim Aufsum-
mieren der Anteile die Vorzeichenkonvention beachtet wird.

E. 1.0.3. Schaltung von Widerstinden

Durch Kombination von Einzelwiderstinden (Abb.82) kénnen beliebig
vorgegebene Widerstandswerte realisiert werden: Die Rethen- oder Serien-
schaltung der Einzelwiderstinde R,, R,,..., B, fihrt zu dem Gesamt-
widerstand

R=R;+ Ry + ...+ R, (Addition der Widerstinde). 4)




224 Elektrizititslehre

Bei der Parallelschaltung ist der Gesamtwiderstand kleiner als der kleinste
Teilwiderstand ; denn es ist

% = —1; + - ]:; + .o+ %: (Addition der Leitwerte). (5)
) Ry Ry £,
—Y 3 — —
Ry
b)

Abb. 82. a) Reihen- und b) Parallelschaltung von Widerstinden

Insbesondere gilt fiir zwei Widersténde

R, -R
R=_-1 "2 6
R, + R, ©)
Die Gln. (4) und (5) folgen aus der Definition des Widerstandes [GI. (1)]
und den Kirchhoffschen Regeln [Gln. (2) und (3)].

E. 1.0.4. Spezifischer Widerstand, Temperaturabhanglgkelt
des Widerstandes

Bei einem homogenen zylindrischen Leiter (Lénge I, Querschnitt 4) er-
gibt sich sein Widerstand zu

R=p—; (7

dabei ist g eine Materialkonstante, die spezifischer Widerstand genannt wird
und in Q - m, Q - cm oder in Q . mm?/m angegeben werden kann.

Der Kehrwert von ¢ wird als spezifisches Leitvermégen o bezeichnet, d.h.,
es gilt

A
G*O’T.
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Bei festen Stoffen ist p stark vom Reinheitsgrad und vom Kristallgefiige
abhéingig. Geringe Verunreinigungen setzen z. B. den Widerstand von Lei-
tungskupfer und -aluminium stark herauf.

Die bereits erwihnte Abhidngigkeit des elektrischen Widerstandes von
der Temperatur kann fiir viele, vor allem metallische Stoffe durch die Be-
ziehung

R, = R,(1 + pt + pt?) (8)

beschrieben werden, wobei B; und R, die Widersténde bei der Temperatur ¢
und am Eispunkt (0 °C) bedeuten; § und y sind Temperaturkoeffizienten des
elektrischen Widerstandes. Sie werden in K1 bzw. K-2 angegeben. Ist R,
beispielsweise durch eine Messung am Eispunkt bekannt, kénnen § und y
durch zwei weitere, iber das interessierende Temperaturintervall verteilte
Widerstandbestimmungen R, und R, (die zugehtérenden Temperaturen
sind ¢, und £,) berechnet werden. Mit den experimentellen Daten 148t sich
zweimal Gl. (8) aufstellen. Man erhilt so Bestimmungsgleichungen fiir

f und y:

1 (R,~R, &, R,—R, t

ﬂw—tl{ R, 4 B 'TJ’ (82)
1 (R,—R, 1 R,—R, 1

= : T il 8b

v tz—tl{ R, & R, tl} (8b)

Fiir kleine Temperaturintervalle kann mit meist hinreichender Genauigkeit
die Temperaturabhingigkeit eines Widerstandes durch den linearen Zu-
sammenhang

R, = R,(1 + pt) 9)

approximiert werden, der fiir v = 0 aus GI. (8) folgt. Handelt es sich darum,
Widerstandswerte bei zwei beliebigen Temperaturen #; und ¢, in Beziehung
zu bringen, setzt man

-Rtl 1 + ﬁtl

R, 1+t

und findet hieraus

=1 2 (9&)

Der Temperaturkoeffizient 8 148t sich in diesem Fall aus zwei Widerstands-
messungen bei den Temperaturen ¢, und ¢, des interessierenden Intervalls
gewinnen. :

15 Phys. Praktikum
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Im Vorzeichen des Temperaturkoeffizienten § kommt der Leitungsmecha-
nismus der betreffenden Stoffklasse zum Ausdruck. Fiir Metalle und fiir
viele Metallegierungen ist der Temperaturkoeffizient positiv; der Wider-
stand steigt also mit zunehmender Temperatur. Es gelingt aber auch, Legie-
rungen herzustellen (z. B. aus Kupfer, Nickel, Mangan), die innerhalb eines
weiten Temperaturbereiches nahezu konstanten Widerstand haben (8 =~ 0).
Diese Legierungen eignen sich besonders fiir Normal- und MeBwiderstinde.
Elektrolyte sowie halbleitende Stoffe (das sind beispielsweise Elemente der
4. Gruppe des Periodensystems wie C, Si, Ge, aber auch bindre Verbindun-
gen von Elementen der 2. mit der 6., sogenannte II-VI-Halbleiter, bzw. der
3. mit der 5. Gruppe des Periodensystems, die III-V-Halbleiter) weisen
einen negativen Temperaturkoeffizienten auf. Spezielle Widerstinde aus
halbleitendem Material heiflen deshalb auch NTC-Widerstinde (NTC =
negative femperature coefficient).

Das Temperaturverhalten von Halbleitern kann oft durch eine Exponen-
tialfunktion der Form

i E
Rp= R*eT — R* ol (10)

recht gut wiedergegeben werden. Hierin ist 7' die absolute Temperatur, 7'
eine Materialkonstante von der Dimension einer Temperatur. R* ist ein
Faktor, der die Dimension eines Widerstandes hat und von der Form des
Widerstandes und der Ladungstrigerkonzentration wesentlich abhingt.
In der zweiten Schreibweise von Gl. (10) sind £ die Aktivierungsenergie und
k die Boltzmann-Konstante. Durch Differentiation der Gl. (10) nach der
Temperatur und eine Umformung folgt fiir den Temperaturkoeffizienten
dieser Stoffklasse

1 dR T
* = = -
B* =& ar T (102)

Die Gln. (8) bis (10a) gelten auch, wenn wir die Widerstdnde R durch die
entsprechend indizierten spezifischen Widerstdnde g ersetzen. Dies ist durch
Gl. (7) begriindet.

E. 1.0.5. Ausfiihrungsformen elektrischer Widerstinde

Widerstinde dienen vor allem zur Umwandlung elektrischer Energie in
Wirme (Heizung) oder Strahlungsenergie (Gliihlampe), der Stromeinstel-
lung oder -begrenzung in Leitungszweigen und zur Erzeugung gewiinschter
Spannungsabfille. Daneben gibt es verschiedene Sonderformen (z. B. die
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MeBwertwandler: Widerstandsmanometer, Widerstandsthermometer, Deh-
nungsmeBstreifen, Photowiderstinde). In diesem Abschnitt werden nur
MeB- und Einstellwiderstande behandelt. Der Praktikant informiere sich im
Labor iiber die verschiedenen, dort benutzten Ausfithrungsformen: Grund-
satzlich lassen sich feste und veranderbare Widerstinde unterscheiden.
Letztere kénnen kontinuierlich oder stufenweise einstellbar sein.

Drahtwiderstinde bestehen aus Sonderlegierungen mit hohem spezifischem Wider-
stand und relativ kleinem Temperaturkoeffizienten (Manganin, Konstantan), Schicht-
widerstdnde aus Kohlenstoff, der auf einem Porzellankérper niedergeschlagen ist. Aus
der Beschriftung der Widerstéinde oder aus Farbkennzeichen sind ihre in Q, kQ oder
MQ angegebene GroBe und oft die Zuverlidssigkeit des Nennwertes sowie die zuléssige
Belastbarkeit (Stromstérke in A oder Leistung in W) zu ersehen. Vor dem Einsatz eines

Widerstandes iiberzeuge man sich durch eine Uberschlagsrechnung, da dieser nicht
iberlastet wird.

Normalwiderstinde sind Prézisionswiderstinde fiir MeBzwecke. Sie werden meist
in Biichsenform gebaut und besitzen zwei Apparateklemmen fiir den AnschluB der
MeBanordnung und zwei zur Messung des Spannungsabfalles. Die Widerstinde eines

Satzes entsprechen dezimalen Bruchteilen oder Vielfachen von 1 Q (Bereich 104Q ...
105 Q).

Stopselwiderstinde sind ebenfalls PrizisionsmeBwiderstinde. Die Einzelwiderstinde
sind in Reihe geschaltet und in der Regel innerhalb einer Zehnerpotenz 1:2:2:5

abgestuft. Die nicht benétigten Widerstinde des Satzes werden mit einem Stopsel
itberbriickt.

Bei Dekadenwiderstinden sind zehn gleiche Widersténde in Reihe geschaltet und je-
weils mit einem Kontakt eines Stufenschalters verbunden. Der Einzelwiderstand ent-
spricht einem dezimalen Bruchteil oder Vielfachen von 1. Die einzelnen Dekaden
konnen zu Sétzen mit einem Werteumfang von 0,1 Q bis 10°Q vereinigt werden.

Als Einstellwiderstand werden Schiebe-, Dreh- und KurbelwiderstGnde benutzt.

Die beschriebenen MeB- und Einstellwiderstinde ergeben im Gleich- und
Wechselstromkreis praktisch gleiche Werte, wenn man sie gema8 Gl. (1) aus
Wertepaaren der Stromstérke und Spannung berechnet. Man nennt sie im
Unterschied zu den frequenzabhéngigen induktiven und kapazitiven Wech-
selstromwiderstanden insbesondere auch Gleichstrom- oder Wirkwider-
stinde. Fiir ihre Kombination (Reihen- und Parallelschaltung) mit induk-
tiven und kapazitiven Widerstanden gelten Gln. (4) bis (6) nur, wenn letz-
tere als komplexe Widerstdnde aufgefallt werden (vgl. Abschn. E. 5.0.1 und
E.5.0.2).

E.1.1. Bestimmung von Widerstinden durch
Strom- und Spannungsmessung

Aufgaben: 1. Aus der Messung von Strom und Spannung ist unter Beriick-
sichtigung des Innenwiderstandes der Instrumente ein elektri-
scher Widerstand zu ermitteln.

2. Durch Messung der Stréome und Spannungen sollen die Ge-
samt- und Teilwiderstdnde

51*
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a) einer Reihenschaltung

b) einer Parallelschaltung
bestimmt werden. Mit den Mef3daten sind die Beziehungen fiir
die Reihen- und Parallelschaltung sowie die Kirchhoffschen Re-
geln zu iiberpriifen.
3. Die Strom-Spannungs-Charakteristiken verschiedenartiger
elektrischer Widersténde (z. B. Metall- und Kohlefadenlampe,
Eisen-Wasserstoff-Widerstand, Varistor) sind aufzunehmen. Aus
den MeBdaten werden die Widerstands-Stromstérke-Kennlinien
abgeleitet und diskutiert.

Nach der Definition [Gl. (1)] 1a8t sich ein elektrischer Widerstand aus
Wertepaaren der Stromstidrke und Spannung berechnen. Zur gleichzeitigen
Erfassung von Strom und Spannung dienen die Schaltungsvarianten a und b
der Abb. 83. Das Potentiometer (Schiebewiederstand R,) liefert eine zwi-
schen Null und dem Wert der Quelle liegende variable Spannung (vgl.

ﬂ)\ ° o

| Rsp Abb. 83. Widerstandsbestimmung aus

‘@ Strom- und Spannungsmessung

Abschn. E. 2.2). Sie kann selbstverstindlich auch einem Stromversor-
gungsgerit entnommen werden. R soll der Widerstand sein, dessen Wert zu
ermitteln ist. Damit die MeBwerte durch die Instrumente maoglichst wenig
beeinfluBt werden, besitzen Strommesser (Amperemeter) im Vergleich zu
den Widerstinden des MeBkreises einen kleinen Innenwiderstand (Rg),
Spannungsmesser (Voltmeter) dagegen einen vergleichsweise hohen (Rg,).

Bei der Schaltung a (spannungsrichtige Schaltung) wird der Teilstrom I,
itber den Spannungsmesser (Widerstand Rg,) mit gemessen. Gl. (1) liefert
daher fiir den Widerstand R einen zu kleinen Wert und muf3 durch

U U
_R = =
I—-1Iy, I-URg (t1a)
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ersetzt werden. In der Schaltung b (stromrichtige Schaltung) verfilscht der
Spannungsabfall Us, am Widerstand Ry, des Strommessers das Ergebnis.
Der Widerstand R ist in diesem Falle aus

U — U U — IR,

R= 7 - 7 (11D)
zu berechnen, da Gl. (1) zu groBle Werte ergibt. Ein Vergleich der Formeln
zeigt, daB Gl. (11a) fiir Ry, >> R und Gl. (11b) fiir Ry, < R in Gl. (1) iiber-
gehen.

Die schaltungsbedingten Fehler koénnen meist vernachlissigt werden,
wenn bei vergleichsweise kleinen Widerstdnden R die Schaltung a, bei groBen
Widerstinden R die Schaltung b verwendet wird.

Soll dagegen bei Feinmessungen der schaltungsbedingte Fehler beriick-
sichtigt werden, wird die spannungsrichtige Schaltung a bevorzugt, weil der
Innenwiderstand der Voltmeter meist bekannt und gegeniiber dem der
Amperemeter weitaus unverinderlicher ist. Eine Korrektur der MeBwerte
eriibrigt sich auch, wenn die Spannung , leistungslos® gemessen wird. Das
kann mit elektronischen Voltmetern (vgl. Abschn. E. 2.1). Oszillographen
(vgl. Abschn. E. 4.4), Elektrometérn (vgl. Abschn. E. 1.4) oder mit der
Spannungsbestimmung durch Kompensation (vgl. Abschn. E. 2.2) erreicht
werden.

Fiir die Strom- und Spannungsmessungen dieses Abschnittes werden
DrehspulmeBwerke empfohlen, deren Prinzip und Verhalten an anderer
Stelle (Abschn. E. 4.1) ausfithrlich behandelt werden. Oft wird es notig
sein, Strom- und Spannungsmessungen innerhalb groer Bereiche, gege-
benenfalls itber mehrere Zehnerpotenzen der MeBwerte hinweg bei gleicher
relativer Genauigkeit durchzufithren. Dann benutzt man Instrumente
hoher Empfindlichkeit, deren MeBbereich durch Zusatzwiderstinde ent-
sprechend verdandert werden kann.

Soll der Mepbereich eines Strommessers n-fach erweitert werden, schaltet
man parallel zum Instrument (Innenwiderstand Rg,) einen Widerstand Egy,
(Shunt), iiber den bei Vollausschlag des Instrumentes der (n — 1)-fache
Strom flieBen muB. Dies wird, da die Teilstrome bei der Parallelschaltung
den entsprechenden Widersténden reziprok sind, durch einen Shunt

RSt
n—1

Ry = (12a)

erreicht.
Der Mepbereich eines Spannungsmessers wird n-fach erweitert, wenn dem
Innenwiderstand Rg, ein Widerstand

Ry = (n — 1) Ry, (12D)
in Reihe geschaltet wird. An diesem Vorwiderstand tritt bei Vollausschlag

des Instrumentes im Vergleich zu seinem Innenwiderstand ein (» — 1)-facher
Spannungsabfall auf.
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Das Prinzip der MeBbereicherweiterung elektrischer MeBinstrumente
wird in handelsiiblichen Vielfachmefinstrumenten sehr umfassend angewandt.
Das MeBsystem ist ein hochempfindliches Drehspulinstrument mit niedri-
gem Widerstand, das bei geeigneter Wahl von Vor- und Parallelwiderstén-
den sowohl fiir Spannungs- wie auch fiir Strommessungen benutzt werden
kann. Die Widerstinde sind in das Gehduse des Instrumentes eingebaut und
werden iiber einen Stufenschalter in Verbindung mit der Wahl des MeB-
bereiches geschaltet. Durch einen zusétzlich im Gehduse untergebrachten
MeBgleichrichter konnen auch Wechselstrome und Wechselspannungen
erfaBt werden. Die zugehérige (meist rote) Skale ist wegen der gekriimmten
Gleichrichterkennlinie nicht linear. Sie ist in Effektivwerten des Stromes
und der Spannung geteilt und setzt sinusférmigen Verlauf voraus. Ober-
schwingungen verfilschen daher das MeBergebnis. In giinstigen Fallen
eignen sich mit Gleichrichtern ausgestattete Drehspulinstrumente fiir Mes-
sungen bei Frequenzen von 15 Hz bis etwa 15000 Hz.

Ein VielfachmeBinstrument umfat beispielsweise fiir beide Stromarten entspre-
chend unterteilte Bereiche von 50 pA bis 2,5 A und 100 mV bis 1000 V. Die Angabe
des MeBbereiches bezieht sich jeweils auf den Vollausschlag des Instrumentes.

Der Innenwiderstand R, eines VielfachmeBinstrumentes 148t sich fiir den jeweils
gewihlten MeBbereich als Produkt aus dem MeBbereichendwert und einem bezogenen
Widerstand (Q2/V) berechnen. Fir die WechselspannungsmeBbereiche betrdgt der
geritetypische Wert beispielsweise 4000 Q/V, fiir entsprechende Gleichspannungs-
bereiche 20000 Q/V. Gelegentlich ist die Stromaufnahme bei Vollausschlag im jeweiligen
MeBbereich angegeben, die gleich dem Kehrwert des bezogenen Widerstandes ist, so
daB man den Strombedarf des Spannungsmessers gleichzeitig mit der zu messenden
Spannung auf der entsprechenden Skale ablesen kann. Analog wird fir die Strom-
meBbereiche der Spannungsbedarf fiir Vollausschlag angegeben. Das Produkt aus Strom.
bzw. Spannungsbedarf bei Vollausschlag und dem MeBbereichendwert ergibt den jewei-
ligen Innenwiderstand. {

VielfachmeBinstrumente gehoren meist zur Giiteklasse 1,5, wie aus der Beschriftung
der Skale zu ersehen ist. Das bedeutet, daBl der absolute Fehler der Instrumentenanzeige
1,5% des MeBbereichendwertes bei Einhaltung bestimmter Bedingungen (z. B. hin-
sichtlich Temperatur, Lage des Instrumentes, Fremdfelder) nicht iiberschreitet. Solche
Instrumente gehoren nach internationaler Ubereinkunft zur Gruppe der Betriebsmep-
gerdte, deren Klassen 1; 1,5; 2,5 und 5 sind. Elektrische Feinmefgerdte werden in die
Klassen 0,05; 0,1; 0,2 und 0,5 eingeteilt.

Einfache, direkt anzeigende Widerstandsmesser (Ohmmeter, Durchgangspriifer) ba-
gieren auf Gl. (1). Bei ihnen werden eine Trockenbatterie, ein Strommesser und der zu
bestimmende Widerstand in Reihe geschaltet. Da mit festgelegter Spannung gearbeitet
wird, ist es moglich, auf der Skale des Strommessers unmittelbar Widerstandswerte an-
zugeben. Eine Nullpunktkorrektur ist dann méglich, wenn im MeBkreis zusitzlich ein
Einstellwiderstand liegt. Dieser wird vor jeder Messung so gew#hlt, da8 bei iitberbriick-
tem AnschluB fiir den zu bestimmenden Widerstand das Instrument Vollausschlag
zeigt.

Das Verhalten elektrischer Bauelemente bei unterschiedlichen Betriebs-
bedingungen 148t sich besonders gut iibersehen, wenn die Zusammenhinge
graphisch dargestellt werden. Es liegt eine Strom-Spannungs-Charakteristik
oder -Kennlinie vor, wenn die Stromstérke iiber der Spannung aufgetragen
wird, die den jeweiligen Strom bewirkt. Entsprechendes gilt fiir die Wider-
stands-Strom- oder die Widerstands-Spannungs-Kennlinie.
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Ein Eisen-Wasserstoff-Widerstand besteht aus einem mit Wasserstoffgas
gefiillten und den Glithlampen #hnlichen Glaskolben, in dem ein diinner
Eisendraht ausgespannt ist. Eisen besitzt einen groBien positiven Tempera-
turkoeffizienten des Widerstandes und Wasserstoff eine gute Warmeleit-
fahigkeit. Bei geringen Spannungen wird die im Kisendraht erzeugte
Joulesche Warme durch den Wasserstoff nahezu vollstandig abgefiihrt, so
daB die Temperatur und damit auch der Widerstand des Drahtes praktisch
konstant bleiben. Von einer bestimmten Spannung an ist der Wasserstoff
nur noch in der Lage, die Warme teilweise abzuleiten. Eisen-Wasserstoff-Wi-
derstinde werden so ausgelegt, da8 in einem gewissen Spannungsbereich —
dem Regelbereich — Widerstand und anliegende Spannung einander pro-
portional sind, so dafl die Stromstérke konstant bleibt. Der differentielle
Widerstand strebt in diesem Gebiet gegen Unendlich. Oberhalb des Regel-
bereiches iiberwiegt die Warmeableitung durch Strahlung, und der diffe-
rentielle Widerstand nimmt wieder ab. Frither wurden auf diese Weise Netz-
gerite gegeniiber Schwankungen der Eingangsspannung unempfindlich ge-
macht, heute hilt man z. B. den Strom in elektrolytischen Bidern mit
Eisen-Wasserstoff-Widersténden konstant.

Varistoren sind spannungsabhéngige Widerstande (variable resistor) aus
gesintertem Siliziumkarbid, bei denen die Kennlinie unabhéingig von der
Polaritat ist. Der Zusammenhang zwischen Strom und Spannung wird in
einem groBen Bereich durch

U=CI?

gegeben. Darin sind § eine Materialkonstante (0,18 < 8 < 0,26) und C ein
Proportionalitdtsfaktor, in den die geometrischen Abmessungen des Vari-
stors eingehen. Der Gleichstromwiderstand

U
= = B-1
7 CI
und auch der differentielle Widerstand
aUu
=Y _sop1 =
R, I pCI SR

nehmen mit steigender Stromstérke ab. Varistoren dienen zur Spannungs-
stabilisierung und zur Unterdriickung von Spannungsspitzen, z. B. zur
Funkenloschung an Relaiskontakten.

Versuchsausfiihrung

Die Messungen werden jeweils mit niedrigen Werten der Spannung be-
gonnen. Zum Schutz der Instrumente tasten wir uns grundsétzlich vom un-
empfindlichsten zu dem fiir die jeweilige Messung giinstigsten MeBbereich
vor. Bei Vielfachinstrumenten muf bei der Wahl der MeBbereiche unbedingt
die Stromart beachtet werden.
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Aufgabe 1: Es wird nach Schaltung a der Abb. 83 gearbeitet und fiir
mindestens 5 Wertepaare von Strom und Spannung der unbekannte Wider-
stand nach Gl. (11a) berechnet. Die schaltungsbedingten Fehler sind mit
den instrumentellen Fehlern zu vergleichen. Es ist zu priifen, ob erstere bei
den gewidhlten Versuchsbedingungen ins Gewicht fallen. Die instrumentell
bedingten Fehler werden aus den der Giiteklasse des Instrumentes ent-
sprechenden Werten fiir A und AU abgeschétzt.

Aufgabe 2: Als MeBobjekte dienen mehrere Einzelwiderstinde, die nach-
einander in Reihe und parallel geschaltet werden. Es ist eine Schaltung auf-
zubauen, die es ermdoglicht, jeweils den Gesamtstrom und die Gesamtspan-
nung sowie die Teilstrome oder Spannungsabfille zu messen. Die Messun-
gen sollen jeweils bei drei verschiedenen Eingangsspannungen vorgenom-
men, die Einzelwiderstdnde nach Gl. (1) berechnet, die Gln. (4) und (5) so-
wie die Kirchhoffschen Regeln [Gln. (2) und (3)] iiberpriift werden.

Aufgabe 3: In einem Vorversuch ermitteln wir fiir jedes MeBobjekt einen -
Richtwert des Widerstandes, um zu entscheiden, ob Schaltung a oder b der
Abb. 83 zweckmiBiger ist. Bei mindestens einem der MeBobjekte wird die
Schaltung mit Wechselspannung betrieben. Die in der Arbeitsplatzanleitung
fir die einzelnen Bauelemente angegebenen Betriebsdaten diirfen nicht
iiberschritten werden.

In einer Darstellung von I iiber U bestimmt man einen konstanten Wider-
stand des MeBobjekts aus der Steigung S der Geraden gema8

1 U, — U,
R S L,—-1I,

Bei nichtlinearem Kurvenverlauf 13t man die Spannungs- und Strom-
differenzen gegen Null gehen und erhalt den differentiellen Widerstand

dU

=7 (13)

Ry =

Fiir die graphische Darstellung de- Kennlinien wird wegen des Umfanges
der Wertebereiche logarithmisch geteiltes Koordinatenpapier dem ge-
wohnlichen Millimeterpapier vorgezogen. Aus Gl. (1) folgt

R U I
log B log7 — logT ,
0 0 ]

wobei R,, U, und I, die Einheiten fiir B, U und I im gleichen MaBsystem
bedeuten. Durch sie werden die zu logarithmierenden GréBen dimensions-
los (vgl. Einfiihrung 1.5.3-1). In doppeltlogarithmischer Darstellung er-
geben die Kurven fiir konstante Widerstinde (R = const) gleichermaBen
Geraden, ebenso alle Kennlinien mit Potenzabhingigkeiten. Fiir den Vari-
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stor erhalt man z. B.
U C I
log — = log —— el
og 7, og ey + S log 7

worin O die Einheit von C ist. Aus der Steigung S der Kennlinie in doppelt-
logarithmischer Darstellung erhdlt man die Konstante § = 1/8.

E.1.2. Wheatstonesche Briicke

Aufgaben: 1. Fiir einen Thermistor?), einen Kohleschicht- und einen Draht-
widerstand ist die Temperaturabhangigkeit des elektrischen Wi-
derstandes im Bereich von etwa 20 bis 100 °C zu ermitteln. Es
ist zu priifen, ob jeweils Gl. (8) bzw. (9) oder Gl. (10) die Tem-
peraturabhingigkeit des elektrischen Widerstandes besser wie-
dergibt. Aus entsprechenden Darstellungen der MefBwerte wer-
den die Temperaturkoeffizienten des Widerstandes sowie ge-
gebenenfalls die Konstanten der Gl. (10) bestimmt.

2. Es sollen der Innenwiderstand eines Drehspulgalvanometers
ermittelt und die fiir eine 10- und 100fache MeBbereicherweite-
rung notwendigen Zusatzwiderstinde berechnet werden, wenn
das Instrument als Strom- und Spannungsmesser eingesetzt wird.

In der Grundschaltung besteht eine Wheatstonesche Briicke aus 4 Wider-
stdnden R, R,, Ry und Ry, die in der skizzierten Weise (Abb. 84) leitend
verbunden sind. An'den Punkten 4 und B der Schaltung liegt eine Spannungs-
quelle U, zwischen C und D ein Galvanometer G.

Abb. 84. Wheatstone-Briicke

1) Ein Thermistor ist ein speziell fiir Temperaturmessungen hergestellter Widerstand
aus halbleitendem Material von groBem Temperaturkoeffizienten (vgl. Abschn. B.1.0.4).
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Durch geschickte Wahl der Widerstandswerte R,, R,, By und Ry — die
Widerstinde der Zuleitungen werden vernachléssigt — kann erreicht werden,
daB das Galvanometer stromlos, die Briicke ,,abgeglichen ist. In diesem
Falle liegen die Punkte C und D der Schaltung auf gleichem elektrischem
Potential, und die Spannungsabfille an den Widerstanden R, und Rx sowie
R, und Ry sind paarweise gleich. Es gilt

R,I, = Ryly, (14)
R,I, = RyIy. (1)

Bei abgeglichener Briic'-e sind auBerdem I, = Iy und I, = Iy. Aus der
Division der Gln. (14) und (15) ergibt sich daher

R

Wenn die Widerstdnde R, und R, durch einen gemeinsamen, gut kalibrier-
ten, homogenen Widerstandsdraht ersetzt werden, den bei D ein Schleif-
kontakt in die Léngen I, und I, teilt (Wheatstone-Kirchhoffsche Schleifdraht-
briicke), kann wegen Gl. (7) fiir die Abgleichbedingung auch

gesetzt werden.

Die Gln. (16) und (17) besagen, daB sich ein unbekannter Widerstand Ry
aus dem Vergleichswiderstand Ry und dem Widerstands- bzw. Lingen-
verhaltnis (RB,/R, oder ,/l,) ermitteln 1a8t.

Bei jeder Wheatstone-Briicke lassen sich Galvanometer ¢ und Spannungs-
quelle U vertauschen. Die Teilstréme in den Zweigen einer abgeglichenen
Briicke andern sich nicht, wenn das Instrument kurzgeschlossen oder die Zu-
leitung zum Galvanometer unterbrochen wird.

Um das Galvanometer vor Uberlastung zu schiitzen, sind ihm Schutz-
widerstdnde Rg; vorgeschaltet. Der grofite dieser Schutzwiderstinde muB
so bemessen sein, daBl auch bei volliger Verstimmung der Briicke die Ge-
samtspannung U am Diagonalzweig liegen kann, ohne Galvanometer das zu
zerstéren. Dem gleichen Zweck konnen mit der Spannungsquelle in Reihe
geschaltete Einstellwiderstinde Ry dienen.

Beim Feinabgleich der Briicke werden die Schutzwiderstinde iiberbriickt.
Das Galvanometer soll méglichst im aperiodischen Grenzfall (vgl. Abschn.
E. 4.1) arbeiten. Das ist der Fall, wenn der Gesamtwiderstand R, der Briicke
bezogen auf die Punkte C' und D im abgeglichenen Zustand gleich dem &uBe-
ren Grenzwiderstand des Galvanometers ist. Um eine hohe Anzeigeempfind-
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lichkeit zu erreichen, werden in Briicken Galvanometer mit niedrigem In-
nenwiderstand R bevorzugt. Dann gilt

R 1'R2 + RNRX
R, + R, Ry+ Ry’

RG<<R5:

Bei verstimmter Briicke zeigt das Galvanometer einen Strom I an, der
sich mit Hilfe der Kirchhoffschen Regeln [Gl. (2) und (3)] berechnen lait.
Dabei wollen wir in die Widersténde Ry und Ry die Innenwidersténde von
Galvanometer und Spannungsquelle einbeziehen.

Fiir die Knotenpunkte C und D gilt

Iy = Iy + I, (18a)
I, =1I,+ I, (18Db)

fiir die Maschen ACD, CBD und ADB
LR, = IxRyx + IR, (18¢)
IR, = IyRy — IRy, (18d)
U= LR, + I,R, + IRgy. (18¢)

LaBt man den Spannungsabfall IRg; am Innenwiderstand der Spannungs-
quelle unberiicksichtigt, ergibt sich aus der Losung des Systems der Gln.
(18a bise) fiir die Stromstirke im Briickenzweig

RyRy — RyRy

Ic=U .
@ Bx[Rsa(By + REy) + By R,] + By[(Rx + Bsg) (B + Ry) + By R,

(19)

Diese Gleichung enthilt fiir I = 0 (Stromlosigkeit der Briicke) die Ab-
gleichbedingung [Gl. (16)]. Sie zeigt andererseits, dafi der Galvanometer-
strom und damit auch die Briickenempfindlichkeit mit der Spannung U
steigt. Diese Moglichkeit einer Empfindlichkeitssteigerung wird durch die
Eigenerwirmung der Widerstinde begrenzt, so dafl die Empfindlichkeit
von Wheatstone-Briicken vor allem durch die Stromempfindlichkeit des
Galvanometers bestimmt ist. Gestiitzt auf Gl. (19), wird die Anderung eines
Widerstandes Ry (beispielsweise unter TemperatureinfluB) gelegentlich
auch aus dem Galvanometerstrom einer nur anféinglich abgeglichenen
Briicke ermittelt. Dieses Verfahren setzt ein kalibriertes Galvanometer
voraus. Werden hohe MeBgenauigkeiten gefordert, miissen die in den Gln.
(16) und (19) verkniipften Widerstande genau abgeglichen sein und zeitlich
konstante Werte besitzen.

Kommerzielle Wheatstone-Briicken unterscheiden sich untereinander in ihrem Auf-
bau und hinsichtlich ihrer MeBgenauigkeiten. In Kleinmefbricken werden die Wider-
stinde R, und R, meist von einem Drehpotentiometer gebildet. Eine Kreisskale ist
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direkt in Werten des Widerstandsverhéltnisses R,/R, = X beschriftet. Da der Ver-
gleichswiderstand Ry in dezimalen Bruchteilen und Vielfachen von 1 Q abgestuft ist,
188t sich das MeBergebnis sehr einfach als Zehnerpotenz des Skalenwertes X ablesen.

Widerstinde, Galvanometer, Bedienungselemente und eine Spannungsquelle (Trok-
kenbatterie) sind gemeinsam in einem Gehduse untergebracht, an das der zu bestim-
mende Widerstand von auBlen angeschlossen wird. Der MeBwertumfang von Schleif-
drahtlg/rﬁcken reicht etwa von 0,5Q bis 50 kQ, die Genauigkeit betrigt ginstigen-
falls 1%.

Bei Prdzisionsmefbriicken in Wheatstone-Schaltung wird das Briickenverhaltnis
R,/R, meist mit zwei dekadisch abgestuften Stopselwiderstinden (Wertebereich 1 Q,
10Q,102Q, 103 Q, 101 Q) eingestellt. Sie dienen zum Grobabgleich der Briicke, wihrend
der Feinabgleich mit dem Widerstand Ry erfolgt. Dieser wird von mehreren in Reihe
geschalteten und dekadisch abgestuften Prazisionskurbelwiderstinden (Abgleich-
genauigkeit besser +0,03% bei Ry > 1Q) gebildet. Die kleinste Dekade umfaflt
10- 0,1 Q, so daB sich bei insgesamt 6 Dekaden beliebige Widerstdnde zwischen 0 und
100000,0 Q in Stufen von 0,1 Q einstellen lassen. Prizisionsbriicken erfordern externe
Spannungsquellen und Galvanometer. Mit PrézisionsmeBbriicken werden Genauig-
keiten bis zu 0,05% erreicht. Gute Wheatstone-Briicken (geringe Ubergangs- und hohe
Isolationswiderstinde) iiberstreichen einen MeBbereich von 10-3 Q bis 10° Q.

Fehlerbetrachtung

Eine iiber den gesamten Bereich konstante Ablesegenauigkeit der Léngen I; und
l, (bzw. der Widerstdnde R, und R,) wirkt sich je nach Stellung des Schleifkontaktes
auf den relativen Fehler des Widerstandes Rx unterschiedlich aus:

Mitl, +l,=1lund ]y =«;1l, =1 — x geht Gl. (17) in

x 1 -1
I—z Ry (? N )
itber. Daraus folgt, da der relative Fehler

1 -1
A (—— - 1)
ARX x ZA:E

R

Rx = Ry

x

bei gegebenem Az ein Minimum annimmt, wenn (! — «) ein Maximum ist. Das Mini-
mum des Fehlers liegt daher bei

l

T =5 oder 1, =1,,

wie sich aus Differentiation und Nullsetzen des Differentialquotienten
d
L El-ol=1-2=0

ergibt. In diesem Falle stimmen nach Gl. (17) der zu messende Widerstand Rx und der
Vergleichswiderstand Ry tiberein.
Versuchsausfiihrung

Bei Aufgabe 1 befinden sich die zu bestimmenden Widerstinde im Bad
eines Thermostaten und werden stufenweise erwérmt. Nachdem sich jeweils
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ein Temperaturgleichgewicht zwischen Bad und Widerstand eingestellt hat,
werden die Widerstéande tiber einen MeBstellenumschalter wahlweise mit der
MeBbriicke verbunden. In jedem Falle ist der Abgleich der Briicke (Ein-
stellung auf Stromlosigkeit des Galvanometers) zunichst bei unempfindli-
chem Galvanometer herbeizufithren. Der Feinabgleich erfolgt bei iiber-
briicktem Galvanometerschutzwiderstand Rgg. Im Interesse eines kleinen
relativen Fehlers wird jeweils in einem Vorversuch die giinstigste GréBe des
Vergleichswiderstandes Ry ermittelt.

Um zu priifen, welche der Gleichungen die Temperaturabhingigkeit des
Widerstandes treffender beschreibt, fertigen wir fiir jeden Widerstand aus
den MeBwerten zwei graphische Darstellungen an. Ist Gl. (9) erfiillt, muB die
Ausgleichskurve auf Millimeterpapier eine Gerade sein, wenn Ry iiber ¢ auf-
getragen wird. In diesem Falle dienen aus der Mefkurve entnommene
Wertepaare von Ry und ¢ zur Ermittlung des Temperaturkoeffizienten
nach Gl. (9a). Auf einfach-logarithmischem Papier (vgl. Einfilhrung 1.5.3-3)
ergeben sich Geraden, wenn die MeBwerte von Ry iiber der reziproken
absoluten Temperatur 1/T dargestellt werden und Gl. (10) erfiillen. Fiir
zwei Wertepaare von Ry und 7' gewinnen wir mit Hilfe von Gl. (10) zwei
Gleichungen

Rp, = R* . eT"T1, (20a)
Ry, = R* . oT*Tz (20b)

aus denen die beiden Unbekannten R* und T* berechnet werden kénnen.
Die Division der Gln. (20a u. b) liefert nach einer Umformung

T — In iRTl/liTz) ) 1)
T, T,

Damit kann R* errechnet werden, wenn der Wert fiir 7'* in eine der Gln. (20)
eingesetzt wird. Werden die MeBkurven weder durch Gl. (9) noch durch
Gl. (10) iiber den ganzen Temperaturbereich befriedigend wiedergegeben,
sollte die jeweils giinstigste Kurve stiickweise linear approximiert werden.

Fiir Aufgabe 2 wird das Instrument, dessen Innenwiderstand zu ermitteln
ist, anstelle von Ry in die Briicke gelegt und das Nullinstrument der iibli-
chen Anordnung durch einen Schalter ersetzt. Ein variabler Ballastwider-
stand Ry vor der Spannungsquelle mull zu Beginn der Messungen voll wirk-
sam sein. Er wird laufend so nachgestellt, da} der Teilstrom durch das Instru-
ment zu einem gut beobachtbaren Ausschlag fithrt. Der Abgleich der Briicke
ist erfolgt, wenn das Offnen und SchlieBen des Schalters ohne EinfluB auf
den Instrumentenausschlag bleibt.
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E.1.3. Thomson-Briicke

Aufgaben: 1. Es sind die Temperaturkoeffizienten des elektrischen Wider-
standes fiir Nickeldraht im Bereich von 0°C bis etwa 100 °C zu er-
mitteln.

2. Der spezifische Widerstand einer Zweistofflegierung soll in
Abhéngigkeit von ihrer Zusammensetzung am Beispiel des Sy-
stems Kupfer—Nickel oder a-Messing bestimmt werden.

Das Schaltbild einer Thomson-Briicke ist in Abb. 85 dargestellt. Darin
sind R, und R, Stopselwiderstinde, R, und R, Kurbelwiderstinde, und G
ist ein Nullinstrument (Lichtmarkengalvanometer), das durch den Wider-
stand Ry geschiitzt werden kann. Die Driahte von den Klemmen 3 und 4 der
Briicke zu dem Normalwiderstand Ry sollen die Widersténde r, und r,
haben. Ry und der zu bestimmende Widerstand Ry sind durch einen Draht

Abb. 85. Thomson-Briicke

(Widerstand r) verbunden. Die Widerstinde der Zuleitung von Rx zu den
Klemmen 4 und 6 der Briicke sind mit r, und r, bezeichnet. Die Spannung U
einer Gleichstromquelle liegt einerseits an Ry und andererseits an Ry . Fiir
die folgenden Betrachtungen sollen die Abkiirzungen

Ri=R,+r, Rp=Ry+r,, Ry=Ry+ry, Bi=R,+r, (22)

verwendet werden. .
Wenn die Briicke abgeglichen ist, gilt

U71 = Un, Uyg = Ups. (23)

Dann geniigen die Stromstérken Iy durch die entsprechenden Widerstinde
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R den Beziehungen

Ipg = Ipy, Ipy=Ig,, Ipy=Ig,. (24)
AuBlerdem ist

Iy (Bs + RY) = Ir = (Iry — Ig,) 1,

r

Ry (25)

Die Gln. (23) lassen sich mit Hilfe des Ohmschen Gesetzes unter Beriick-
sichtigung der Gln. (24) und (25) als

Ir

4
’ o 37
Ly By = In B+ S (232)
r
Ly B = Ing (Bx + g prr] (23b)

schreiben. Teilt man Gl. (23b) durch Gl. (23a) und 16st nach Ry auf, erhélt
man

Ry

R} , s {Ré R;} (26)

TRSY Ry R \R R
In Thomson-Briicken wird der Abgleich so vorgenommen, daB die Bedin-
gung

R, R,

R e

erfiillt ist. Man-kann nun stets

<Ry, 1r;<By

wihlen, indem man den Normalwiderstand Ry mit sehr kurzen, dicken
Drihten an die Klemmen 3 und 4 der Briicke anschlie8t. Haufig 148t es
sich auch erreichen, daB r, gegen B, und r, gegen R, vernachlissigt werden
koénnen. In diesem Falle vereinfacht sich Gl. (26) zu

R .

Fiir eine Widerstandsbestimmung ist immer dann eine Thomson-Briicke
der Wheatstone-Briicke vorzuziehen, wenn r, und r, gegen Ry nicht ver-
nachlissigt werden kénnen. Das ist etwa unterhalb By ~ 1 € der Fall. Der
Anwendungsbereich von Thomson-Briicken reicht in giinstigen Fallen bis
herunter zu 107 Q.
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Legierungen sind homogene oder heterogene, mehrere Elemente enthal-
tende Stoffe mit metallischen Eigenschaften. Die Bestandteile homogener
Legierungen sind im flilssigen und festen Zustand ineinander vollstdndig
loslich. Sie bilden daher ungeordnete oder geordnete Mischkristalle und
intermetallische Verbindungen. Sind die Elemente ineinander nur beschrinkt
Ioslich oder vollkommen unloslich, bilden sich heterogene, aus mehreren
Phasen bestehende Legierungen (vgl. Abschn. W. 4.0.3).

Im Vergleich zu ihren Bestandteilen besitzt eine Legierung meist erheb-
lich andere Eigenschaften. So wird bei Mischkristallen der elektrische Wider-
stand im Vergleich zu den Komponenten heraufgesetzt, wihrend sich
gleichzeitig der Temperaturkoeffizient des elektrischen Widerstandes
[GL. (9a)] erniedrigt. Daher gelingt es, aus gut leitenden metallischen Ele-
menten Widerstandsdrihte zu fertigen, die einen vernachlissigbaren Tem-
peraturkoeffizienten besitzen (Beispiel: Konstantan, eine Legierung mit
etwa 60% Cu- und 40% Ni-Anteil). Bei Zweistoffsystemen unbegrenzter
Mischbarkeit (Beispiel: System Cu-Ni) durchlduft der spezifische Wider-
stand in Abhdngigkeit vom Mischungsverhiltnis bei etwa 50 %igem Anteil
einer jeden Komponente ein Maximum. Treten bei bestimmten Konzen-
trationen geordnete Mischkristalle (Uberstrukturen; intermetallische Ver-
bindungen, wie beispielsweise im System Cu-Au) auf, fillt dort der spe-
zifische Widerstand gegeniiber benachbarten Konzentrationen erheblich ab.
Der im Vergleich zu den Komponenten hohe elektrische Widerstand homo-
gener Legierungen wird durch zusatzliche elastische Streuung der Leitungs-
elektronen an den in den Stoff hoherer Konzentration eingelagerten Atomen
erklart, die als Gitterstorung aufzufassen sind. Die elektrische Leitfahigkeit
der heterogenen Legierungen éndert sich annidhernd proportional zum Vo-
lumenanteil der Phasen am Kristallgemenge.

Die Legierungen der Aufgabe 1 bilden ungeordnete Mischkristalle. Beim
System Cu-Ni kénnen sich die Elemente in allen Konzentrationsverhilt-
nissen ineinander 16sen. Das Zustandsdiagramm entspricht Abb. 74. Mes-
sing ist eine Cu-Zn-Legierung mit einem Kupfergehalt von mindestens 55 %.
Es bildet ein kompliziertes Zustandsdiagramm und nur unterhalb von etwa
35% Zn eine homogene Legierung, das x-Messing.

Versuchsausfiihrung

Zunichst berechnen oder schitzen wir die GroBe der Widerstande r,,
7, und » und iiberlegen uns, welche GréBenordnung Ry, R, und R, haben
miissen, damit Rx mit hinreichender Genauigkeit nach Gl. (28) ermittelt
werden kann. Bei allen Widerstandsmessungen wird der Grobabgleich an
dem durch den Widerstand Ry geschiitzten Galvanometer beobachtet. Fiir
den Feinabgleich iiberbriicken wir Ry.

Die Messungen fiir Aufgabe 1 erfordern besonders groBe Sorgfalt, wenn
sich die beiden Temperaturkoeffizienten § und y der Gl. (8) ergeben sollen.
Der Widerstandswert des Nickeldrahtes wird zunichst in Eiswasser (R,)
oder einem entsprechenden Kiltebad, dann im Bad eines Thermostaten bei
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verschiedenen Temperaturen bis herauf zu etwa 100 °C ermittelt. Zusitz-
liche MeBpunkte kénnen bei der Abkithlung des Bades erhalten werden. Die
MeBpunkte sollen etwa 5 bis 10 K auseinanderliegen. In jedem Falle muBl
das Temperaturgleichgewicht abgewartet werden. Die MeBwerte werden
iiber der Temperatur graphisch dargestellt und durch eine ausglei-
chende Kurve verbunden. Der Darstellung werden R, und zwei weitere,
iiber die Kurve verteilte Wertepaare von R und ¢ entnommen und mit Hilfe
der GIn. (8a) und (8b) die Temperaturkoeffizienten berechnet.

Bei Aufgabe 2 ermitteln wir die elektrischen Widerstiande fir jede in
Draht- oder Stabform vorliegende Legierung durch mehrere voneinander
unabhingige Messungen. Auflerdem bestimmen wir die MeBlinge I sowie
den Querschnitt 4 mittels Meflstab oder Schieblehre und Mikrometer-
schraube (jeweils Mittelwertbildung iiber mindestens 5 Einzelmessungen)
und berechnen den spezifischen Widerstand nach Gl. (7). Diesen stellen
wir iiber der Konzentration graphisch dar und zeichnen die mittleren
Fehler der einzelnen Werte ein. AuBlerdem sollen die experimentell bestimm-
ten Werte von p mit den Werten verglichen werden, die sich aus einer linea-
ren Kombination der spezifischen Widerstande der Komponenten ergeben.

E.1.4. Entladung von Kondensatoren

Aufgabe: Es sind Hochohmwiderstdnde und die Zeitkonstanten der jewei-
ligen Schaltung zu bestimmen.

Die in den Abschn. 1.1 bis 1.3 beschriebenen Methoden der Widerstands-
bestimmung versagen im allgemeinen bei Hochohmwiderstanden. Hierfiir
ist folgendes Verfahren geeignet: Ein Kondensator der Kapazitit ¢ moge
die Ladung @ tragen, so da8 wir an ihm eine Spannung

Uo = Q|C (29)
messen. Verbinden wir ihn mit einem Widerstand E (Abb. 86), flieBt Ladung
ab und die Spannung U, sinkt entsprechend.}) Gleichzeitig wird am Wider-
stand ein Spannungsabfall Uy = IR beobachtet, wobei I der Momentan-

wert des Entladestromes ist. Nach der 2. Kirchhoffschen Regel [Gl. (3)] muB
die Summe der Spannungen an Kondensator und Widerstand Null sein:

Ues+ Ur=0, (30)
demzufolge ist
Q de
Ucz—URz'U'z_'d—t.R. (31)

1) In diesem Versuch wird vorausgesetzt, daB der Parallel-Verlustwiderstand des
Kondensators sehr groB gegen den Widerstand R ist.

16 Phys. Praktikum
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[y
T

T

Dabei wurde beachtet, daB definitionsgemi I = d@/d¢ ist. Wegen @ = CU,
= —CIR (R, C = konstant) kann dafiir auch

dQ ., dUs _ I
a x - OB

Abb. 86. Bestimmung
von Hochstohmwiderstinden

I=

=C

gesetzt werden, so daBl man aus Gl. (31) folgende drei Differentialgleichungen
ableiten kann:

Q 1
@ " m Y (82a)
v,

d7 1

Danach sind die relativen Anderungen der Ladung des Kondensators, seiner
Spannung und des Entladestromes der Zeit proportional und um so geringer,
je groBer das Produkt RC ist. Wegen seiner Bedeutung und Dimension wird

T = RC (33)
Zeitkonstante genannt. Die Integration der Gln. (32a bis ¢) liefert fiir La-
dung, Spannung und Strom gleichartige Abklinggesetze:

t—t,

Q _  t—ty . _ - RO .
nQ_o_ RO 3 Q,—Qo-e s (3331,b)
t—to
m e _ -t U,="U,-e EC; (34a, b)

U, RC °
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mle ot =10 5a, b

n10~ RO c=1y-e . (35a, b)
Die Ladung und Spannung eines Kondensators sowie die Stromstirke beim
Entladen nehmen also exponentiell ab. Fiir einen Zeitpunkt ¢ lassen sich die
Ladung @,, die Spannung U, und die Stromstirke I, errechnen, wenn die zu
einer Zeit {, gehérenden Anfangswerte ¢,, U, und I, sowie der Widerstand R
und die Kapazitat C' bekannt sind. Umgekehrt kénnen aus dem Verlauf von
@, U und I mit Hilfe der Gln. (33) bis (35) wahlweise Zeiten, Kapazititen
oder Widerstande ermittelt werden.

Diese Methode ist vor allem fiir die Kurzzeltmessung-und — wie im vor-
liegenden Versuch praktiziert — fiir die Bestimmung von Hoch- und Hochst-
ohmwiderstinden von meftechnischer Bedeutung.

Je nachdem, ob wir den Strom- oder Spannungsverlauf verfolgen wollen,
wird die Schaltung nach Abb. 86a oder 86b aufgebaut. Mit dem Umschalter

————— i
Sch ] Sth
ila
|
I
!
|
i
!
|
i
S o W
i
| : Abb. 87. Elektrometer
Ug | Ui in heterostatischer Schaltung

8 kann der Kondensator C wahlweise aufgeladen oder iiber den Widerstand
R entladen werden. Als Strommesser dient ein empfindliches Galvanometer G.
Um eine Entladung des Kondensators iiber den Spannungsmesser weit-
gehend zu vermeiden, muB dieser einen nahezu unendlichen Innenwider-
stand besitzen. Deshalb benutzen wir ein elektronisches Voltmeter (Abschn.
E. 2.1), ein elektrostatisches Voltmeter oder ein Elektrometer £, mit dem
bei entsprechender Kalibrierung gemif8 Gl. (29) auch Ladungen gemessen
werden konnen. Beim Einfadenelektrometer in der sogenannten hetero-
statischen Schaltung (Abb. 87) sind die zu messende Spannung und der
Ausschlag einander proportional. AuBlerdem kann eine relativ groe Span-
nungsempfindlichkeit (angegeben in Skt/V) erreicht werden. Sie wird durch
den Abstand der Schneiden Sch, die symmetrisch zur Erde liegende Hilfs-
spannung Uy (Anodenbatterie) sowie durch die mechanische Spannung des
Fadens F beeinfluBt.

16*
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Versuchsausfiihrung

Wir bauen die Schaltung a oder b nach Abb. 86 auf und setzen voraus,
daB kalibrierte MeBinstrumente zur Verfiigung stehen oder zumindest die
Linearitat von Ausschlag und MeBwert gesichert ist. Die Kapazitiat C' wird
durch Reihen- und Parallelschaltung (vgl. Abschn. E. 5.0.3) mehrerer ein-
zelner Kondensatoren verindert. Als Anfangswert der Zeit wihlen wir
t, = 0 und messen mit der Stoppuhr jeweils die Zeit ¢ = t,,, wahrend der der
MeBwert auf 1/n des Anfangswertes gesunken ist, so daf3

1 1 1
Qc=;Qo$ Uz=;Uo; It=;I0 (36)

sind. :
Die Zahl » und die Zeitkonstante T werden so gewahlt, daB einerseits die
. Zeit ¢, nicht zu kurz wird und andererseits der Zeiger des MeBinstrumentes
noch mit hinreichend groBer Geschwindigkeit den Teilstrich von @,, U, oder
1, passiert.
Mit den Gln. (36) folgt aus dem Abklinggesetz [Gln. (33) bis (35)] als Be-
stimmungsgleichung fiir den Widerstand
13

B i o

Wir messen mehrfach die Zeit ¢, fiir etwa 3 unterschiedliche Werte von n
und mindestens 3 verschiedene Kapazititswerte. Der Widerstand ergibt
sich iiber Gl. (37) als arithmetisches Mittel der einzelnen Werte. Mit ihm
werden nach Gl. (33) die Zeitkonstanten des Versuches bestimmt. Mit wel-
chem Fehler sind die Ergebnisse behaftet;? '

Falls die Werte von ¢, iiber C log n aufgetragen werden, kann aus der
Steigung der ausgleichenden Kurven ebenfalls der Widerstand ermittelt
werden.

E. 2. GLEICHSTROMQUELLEN

E.2.0. Allgemeine Grundlagen

Jede Stromquelle besitzt als charakteristische KenngroBe eine Urspan-
nung K, frither elektromotorische Kraft genannt. Sie bewirkt die Bewegung
der Ladungstrager im geschlossenen Leiterkreis. Die Spannung, die an den
Klemmen der belasteten Stromquelle gemessen wird, die Klemmenspan-
nung U, ist im allgemeinen kleiner als die Urspannung. Die Unterschiede
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zwischen der Urspannung E und der Klemmenspannung U werden durch den
Spannungsabfall U; an dem inneren Widerstand R; verursacht. Es gilt
(2. Kirchhoffsches Gesetz), wenn I die Stiarke des Stromes ist, der das Innere
der Stromquelle und den Widerstand R, im duBeren Kreis gleichermafen
durchflieBt (Abb. 88),

E=U+U=U+IR=IR,+R,). (1)

Klemmenspannung U und Urspannung £ stimmen also nur bei unbelasteter
Stromquelle (I = 0, R, — oo} tiberein [Gl. (1)]. Im Falle des Kurzschlusses
(R, — 0) flieB3t der groBte Strom, der der Stromquelle iiberhaupt entnommen
werden kann. Dabei bricht die Klemmenspannung zusammen (U — 0), so
daB aus Gl. (1) fiir den Kurzschlufstrom

B
IK = —R— (2)

1

folgt. Er wird also ausschlieBlich durch die Stromquelle bestimmt.
Die vom Widerstand R, aufgenommene Leistung ist, wenn Gl. (1) be-
riicksichtigt wird,

E 2
P, = Ul = IR, (m) 'R,. 3)
a i

Da die Urspannung E und der Innenwiderstand R; der Stromquelle vor-
gegeben und nahezu konstant sind, ist die an den Verbraucher abgegebene

Leistung eine Funktion des Widerstandes R,. Die Leistung ist maximal,
wenn die Bedingung

dpP, B ( E )2 RE® 0
dR, \R,+ R, (R, + R)®
erfiillt ist. Das ist bei
R,= R, )

der Fall und wird Leistungsanpassung genannt. An dieser Stelle ist die
zweite Ableitung d2P,/dR% als hinreichendes Kriterium fiir ein Maximum
negativ. Mit der Gl. (4) erhalten wir fiir die vom Widerstand R, maximal
aufgenommene Leistung aus Gl. (3)

E’z
Ramax = 43—
a8

Sie ist gleich der Leistung des Innenwiderstandes R; der Stromgquelle.
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Der Wirkungsgrad n einer Gleichstromanordnung ist als Verhaltnis der
Nutzleistung P, zu der von der Stromquelle insgesamt aufgebrachten Lei-
stung P, definiert. Mit den Gln. (1) und (3) folgt daher

P, UI R,-I* (R +R)U?

"=p, T Bl T (R,+R)I* R, E* ©)

Der Wirkungsgrad betrigt demzufolge beim angepafBten (R; = R,) Ver-
braucher 0,5 bzw. 50%. Er strebt gegen 1, wenn der Innenwiderstand R;
gegeniiber R, verschwindend klein wird, und gegen Null, wenn R, — 0 geht.

Fiir die Leistungsanpassung von Wechselstromquellen an elektrische
Netzwerke gelten entsprechende Uberlegungen. Sie beriicksichtigen die
Eigenart der verschiedenen Wechselstromwiderstinde und fithren nur bei
rein ,,ohmscher‘‘ Belastung zu den fiir Gleichstrom abgeleiteten Beziehun-
gen, in denen dann I und U die Effektivwerte von Strom und Spannung
sind.

Die Leistungsanpassung ist vor allem in der Schwachstromtechnik be-
deutungsvoll. In der Starkstromtechnik wird mit Uberanpassung (R, > R;)
gearbeitet.

Als Gleichstromguellen werden vornehmlich elektrodynamische Generato-
ren, mit Gleichrichterschaltungen versehene NetzanschluBgerite sowie gal-
vanische Primér- und Sekundérelemente eingesetzt. Von den Primérele-
menten sind das zur Trockenbatterie weiterentwickelte Leclanché-Element
(B =1,5...1,6 V) sowie das aus einer mehrschichtigen Elektroden-Elektro-
lyt-Kombination aufgebaute Weston-Normalelement von Bedeutung. Letzte-
res dient als Labornormal, da seine Spannung und deren Temperaturgang ex-
akt reproduzierbar und genau bekannt sind (Egp- = 1,018 V). Damit eine Pola-
risation der Elektroden und eine dadurch bedingte Spannungsinderung ver-
mieden werden, darf man es nur gering belasten (I < 10~* A). Sekunddrelemente
(Sammler oder Akkumulatoren) kénnen im Unterschied zu den Primér-
elementen wiederholt regeneriert (,,geladen‘’) werden. Von praktischer Be-
deutung sind vor allem die Blei- (£ = 2,1 V), die Nickel-Kadmium- (¥ =
1,35 V) und die Nickel-Eisen-Sammler (£ = 1,6 V).

Der Innenwiderstand der galvanischen Elemente hingt vom Typ, konstruktiven
Merkmalen sowie von der Elektrolytzusammensetzung und -temperatur ab. Letztere
beeinflussen auch die Urspannung £. Bei einem belasteten galvanischen Element kon-
nen sich daher die Urspannung und sein Innenwiderstand mehr oder weniger &ndern.
Der Innenwiderstand von Bleiakkumulatoren ist sehr niedrig (GroBenordnung: 10-2Q),
so daB nach Gl. (2) relativ groBe Strome entnommen werden koénnen, ohne daB die
Klemmenspannung stark sinkt. Dabei ist eine Eigenerwarmung unvermeidlich.

Der Innenwiderstand der alkalischen Sammler (Ni-Fe, Ni-Cd) ist etwa fiinfmal so
groB wie der eines entsprechenden Bleisammlers. Der Innenwiderstand eines Trocken-
elementes (Grofenordnung: 10-1 Q) steigt im Laufe der Entladung auf das 10- bis
15fache seines urspriinglichen Wertes.

Gesamtinnenwiderstande einer Reshen- oder Parallelschaltung von galvanischen Ele-
menten werden nach den bekannten Widerstandsgesetzen [Gln. (E. 1-4 u. 5)] berechnet
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und sind daher groBer oder kleiner als die Innenwiderstande der einzelnen Elemente.
Fir die Strome und Spannungen von Elementkombinationen!) gelten die Kirchhoff-
schen Regeln [Gln. (E. 1-2 u. 3)]. )

Ein weiteres Merkmal eines galvanischen Elementes ist seine Kapazitit. Sie wird in
Amperestunden (Ah) angegeben und ist ein MaB dafiir, wie lange (angegeben in h) ein
Element bis zur Entladung iiber einen vereinbarten Widerstand einen in A ausgedriick-
ten Strom liefern kann. %’bliche Werte liegen etwa zwischen 1 Ah (Taschenlampen-
batterie) und 200 Ah (Batterie eines Lastkraftwagens). Diese elektrochemische Kapa-
zitit darf mit der elektrostatischen eines Kondensators keinesfalls verwechselt werden.

E.2.1. Strom-Spannungs-Charakteristik einer
Stromquelle

Aufgaben: 1. Die Strom-Spannungs-Charakteristiken von galvanischen Pri-
maiar- und Sekundirelementen sind aufzunehmen, die Innen-
widerstdande der Stromquellen als Funktion der Belastung zu er-
mitteln und graphisch darzustellen.

2. Der KurzschluBstrom der Stromquellen werde berechnet.

3. Fiir ein Trockenelement ist der giinstigste Grad der Leistungs-
anpassung experimentell zu ermitteln und mit der Theorie zu
vergleichen. Der Wirkungsgrad ist bei mehreren Belastungen an-
zugeben.

Strom-Spannungs-Charakteristiken oder - Kennlinien sind graphische Dar-
stellungen der Stromstérke iiber der jeweiligen Klemmenspannung. Sie
informieren iiber das Verhalten des elektrischen Kreises bei unterschied-
lichen Belastungen. Aus ihnen kénnen Wertepaare der Klemmenspannung
U und der Stromstirke I entnommen werden, mit denen sich bei bekannter
Urspannung E der Innenwiderstand R; der Stromquelle berechnet; denn
aus GI. (1) folgt

Ri=—F—. Q)

Die I-U-Kennlinien werden mit Hilfe der Schaltung in Abb. 88 aufgenom-
men. Da der Widerstand R, variabel ist, ergeben sich fiir I und U verschie-
dene Werte. Bei offenem Schalter § ist die Klemmenspannung mit der Ur-
spannung identisch, wie aus Gl. (1) fiir I = 0 folgt. Allerdings muB dann zur
Spannungsmessung auch ein Instrument mit extrem hohem Innenwiderstand
verwendet werden. Besonders geeignet sind elektrostatische Instrumente
(vgl. Abschn. E. 1.4) oder das im Abschn. E. 2.2 praktizierte Kompen-
sationsverfahren. Fiir den Versuch dieses Abschnittes wird ein elektroni-
scher Spannungsmesser empfohlen. Er arbeitet nach folgendem Prinzip:

1) Kombinationen einzelner galvanischer Elemente (Zellen) werden Batterie genannt.
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Die zu messende Spannung-oder ein an einem hochohmigen Spannungs-
teiler (vgl. Abschn. E. 2.2) abgezweigter Teil wird verstarkt und von einem
Drehspulinstrument angezeigt. Wenn Wechselspannungen vorliegen, wer-
den sie im MeBgerdt zunichst gleichgerichtet. Mit Elektronenrohren be-
stiickte Gerate (Rohrenvoltmeter) werden zunehmend durch transistorisierte
(Transistorvoltmeter) verdrangt. '

R
— - |——
N
A\
;\S
Abb. 88.
. Schaltung zur Strom-Spannungs-
(") Rﬁ Charakteristik einer Stromquelle
2

Am Beispiel des in Universal- Rohrenvoltmetern (MeBbereiche 0,3 V;1V; ...
1000 V) benutzten Gleichspannungsdifferenzverstirkers (Abb. 89) wird das
Prinzip besonders deutlich. In den zwei einander entsprechenden Zweigen
einer Briickenschaltung (vgl. Abb. 84) befinden sich gleichartige Elektro-
nenrshren E; und E,. Da auch die Anodenwiderstinde R gleich sind, sollte
das Mikroamperemeter 4 des Diagonalzweiges (MeBbereich je nach Gerite-
typ 10 uA ... 100 pA, Innenwiderstand R, einige k{2) im nichtangesteuerten

Abb. 89.
Differenzverstarker
im Réhrenvoltmeter

Zustand keinen Ausschlag zeigen. Mit dem Potentiometer B, kann der Null-
punkt korrigiert werden. Wird am Gitterwiderstand R, der einen Réhre die
zu messende Spannung U angelegt, tritt am Instrument eine Spannung

. SE,R,R
U, =U 1A
A RR, + R,R, + RR,
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auf (S und R; sind Steilheit und Innenwiderstand der Rohren, vgl. Abschn.
E. 3). Sie ist also der zu messenden Spannung U proportional. Die Eingangs-
widerstdnde rohrenbestiickter Universalvoltmeter liegen fiir Gleichspannung
im Bereich von 10 MQ bis 1000 MQ, fiir Wechselspannung bei 1 MQ bis
10 MQ bei einem Frequenzumfang von etwa 30 Hz bis 800 MHz. Die Ge-
nauigkeit liegt bei +3 % des MeBbereichendwertes.

Die Empfindlichkeit§der Anzeige (MeBbereichwahl) wird mit dem Vor-
widerstand R, veridndert.

Im Gegensatz zur Elektronenréhre kann der Transistor nicht leistungslos
gesteuert werden (vgl. Abschn. E. 3), so dall der Innenwiderstand von
Transistorvoltmetern mit beispielsweise 800 kQ/V deutlich unter dem des
Rohrenvoltmeters blieb. Seitdem jedoch Feldeffekttransistoren bekannt
sind, lassen sich auch Eingangswiderstiande von 10 MQ erreichen.

Im Transistorvoltmeter kann ebenfalls ein dem Prinzip in Abb. 89 ent-
sprechender Differenzverstirker angewendet werden (Abb. 90). Die Transi-
storen 7', und 7', arbeiten hier in Emitterschaltung, die eine lineare Strom-
verstirkung bewirkt. Die Eingangsspannung U wird an die Basisanschliisse

Abb. 90.
Differenzverstirker
im Transistorvoltmeter

der beiden Transistoren gelegt, das verstirkte Mef3signal vom Mikroampere-
meter A des Diagonalzweiges der Briickenschaltung angezeigt. Der bei
Transistoren betriachtliche Temperatureinflul, Alterungseffekte und Un-
symmetrien der Schaltung erfordern haufigere Nullpunktkorrekturen. Diese
und die MeBbereichumschaltung erfolgen mit den Widerstdnden R, und R, .
Der Vorteil des Transistorvoltmeters liegt in niedrigen Steuerspannungen
und in der geringen GroBe der Bauelemente, die in Verbindung mit ge-
druckten Schaltungen und Batteriebetrieb handliche, transportable Gerite
erméglichen (Genauigkeit: etwa +38 % ; Frequenzbereich: einige 10 Hz bis
einige MHz).

Infolge ihrer hohen Innenwiderstinde belasten elektronische Voltmeter
die MeBstellen praktisch nicht. Mit ihnen kann man daher auch Spannun-
gen von Spannungssquellen mit hohem Innenwiderstand messen (Beispiel:
pH-MeBelektroden), wo beispielsweise herkémmliche VielfachmeBinstru-
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mente versagen. Elektronische Voltmeter werden weiterhin als Nullindi-
katoren in Briickenschaltungen eingesetzt und sind unentbehrliche MeB-
gerite der Schwachstromtechnik.

In zunehmendem MaBe werden transistorisierte Vielfachmefgerdte entwickelt. Sie
arbeiten auf der Basis eines Transistorvoltmeters und sind den herkommlichen, ver-
stirkerlosen Vielfachmessern (vgl. Abschn. E. 1.1) ebenbirtig. Bei diesen Geriten er-
folgt die Spannungsmessung nach dem zuvor beschriebenen §rinzip. Die Strommessung
wird auf eine Ermittlung des Spannungsabfalles an den im Gerdt eingebauten MeB-
widerstidnden zuriickgefithrt. Diese werden je nach dem gewiinschten MeBbereich wahl-
weise in den MeBkreis eingeschaltet. Die Widerstandsbestimmung erfolgt nach dem
Ohmmeterprinzip (vgl. Abschn. E. 1.1). Eine interne Stromquelle des Vielfachmessers
wird mit dem zu bestimmenden Widerstand verbunden und aus dem Spannungsabfall
an einem mit der Stromquelle und dem unbekannten Widerstand in Reihe geschalteten
MeBwiderstand auf den Wert des Widerstandes geschlossen. Dazu dient eine ent-
sprechend geteilte Skale (Genauigkeit ~10%).

Versuchsausfiihrung

Fiir die Messungen wird eine Schaltung nach Abb. 88 hergestellt und
dabei vor allem auch auf die richtige Polung der Meinstrumente geachtet.
Als Widerstand R, verwenden wir einen Stopsel- oder Dekadenwiderstand,
an dem der jeweils eingeschaltete Wert abgelesen werden kann (Belastbar-
keit beachten!).

Bei Aufgabe 1 werden fiir Akku und Trockenelement bei jeweils 10 bis
20 Werten des Widerstandes R,, bei groBen Werten beginnend, Strom-
stdarke I und Spannung U tabelliert und die Strom-Spannungs-Charakteri-
stiken gezeichnet. Die Urspannung ¥ wird bei getffnetem Schalter S im Ver-
laufe einer jeden MeBreihe mehrmals gemessen, da sie bei frisch geladenen
oder bereits stark entladenen Sammlern und bei relativ stark belasteten
Elementen mit der Zeit abnehmen wird. Als Anfangswert der Urspannung
kann auBlerdem der nach I = 0 extrapolierte Spannungswert der Kennlinien
gelten. Innenwidersténde R; der Elemente werden mit Wertepaaren der
Strom-Spannungs-Kennlinien und der jeweiligen Urspannung E nach
Gl (7) berechnet und gegebenenfalls in Abhéngigkeit von der Stromstirke
gezeichnet. Die Werte und Kurvenverldufe beider Darstellungen dieser Auf-
gabe werden diskutiert.

" Bei anndhernd linearem Verlauf der Strom-Spannungs-Charakteristik
kann der Innenwiderstand R; aus der Neigung der Kurve ermittelt werden:

AU
—B == (8)

In Aufgabe 2 sind Kurzschlufistrome fiir Akku und Trockenelement
nach Gl. (2) zu berechnen.

In Vorbereitung der Aufgabe 3 wird empfohlen, bei Aufgabe 1 zunichst
in einem Vorversuch iiber Gl. (7) den Innenwiderstand des Trockenele-
mentes abzuschdtzen und die Widerstinde R, beim Trockenelement in
Aufgabe 1 gleichmaBig um den Wert des abgeschitzten Innenwiderstandes
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zu verteilen. Fiir jeden Wert des Widerstandes R, werden die Leistung und
der Wirkungsgrad [Gl. (6)] errechnet, in Abhingigkeit vom Widerstand R,
graphisch dargestellt und mit der Theorie verglichen.

E.2.2. Spannungsmessung durch Kompensation

Aufgaben: Bestimme nach der Poggendorffschen Kompensationsmethode
und (oder) mit einem Gleichstromkompensator
1. die Urspannung eines galvanischen Elementes als Beispiel fiir
ein beliebiges elektrochemisches Potential ;
2. den Spannungsverlauf eines Thermoelementes in Abhingig-
keit von der Temperatur. Aus dem Verlauf der Kurve sind die
thermoelektrischen Konstanten des Thermoelementes zu er-
mitteln.

Die Urspannung einer Spannungsquelle kann nur mit einem Voltmeter
extrem hohen Innenwiderstandes (vgl. Abschn. E. 2.1) oder nach einer
Kompensationsmethode exakt ermittelt werden.

Der Kompensationsmethode nach Poggendorff liegt folgendes Prinzip zu-
grunde (Abb. 91): Eine Hilfsspannung Uy bewirkt in einem Widerstand

*, U/{ - 05
Ry (R7) Ry (RY)

J r I

|

+£,~ + Ey-
g /!1 2k Abb. 91
/ Rs Kompensationsmethode
oY — nach Poggendor(f

Sch — W

7

die Stromstirke I. Teilt ein variabler Abgriff diesen Widerstand in die Teil-
widerstinde R, und R,, so tritt am Widerstand R, nach dem Ohmschen Ge-
setz der Spamnungsabfall U = IR, auf (Spannungsteiler- oder Potentio-
meterschaltung). Mit dieser Spannung kann die Urspannung E, einer belie-
bigen Spannungsquelle kompensiert werden, wenn nur E, < Uy ist. Der
Abgleich ist erreicht, wenn das Galvanometer @ stromlos ist. Dann gilt,
da U = E, = IR, und Uy = I(R, + R,), die Beziehung

R

S I 9
E.’t UHR1+R2‘ ()
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Die zunichst nur ungenau bekannte Hilfsspannung Uy 1Bt sich mit der’
gleichen Methode iiber einen Vergleich mit der Spannung £ eines Normal-
elementes (Ey < Ug) aus der Gleichung

R, + R,
R
ermitteln. Dabei ist B, der Widerstand, an dem in diesem Falle die zur

Kompensation filhrende Spannung abgegriffen wird. Die Kombination der
Gln. (9) und (10) liefert

Uy = Ex (10)

R,

& (11

E,=Ey L

und ' zeigt, da die Hilfsspannung Uy nicht bekannt zu sein braucht. Sie
darf sich aber wihrend der MeBdauer nicht éndern. Ein Umschalter Sch
(Abb. 91) erleichtert die Verbindung der variablen Spannung mit dem Nor-
malelement oder der Spannungsquelle, deren Spannung zu bestimmen ist.

Die Spannung des Normalelementes ist geringfiigig temperaturabhingig
(siehe Eichtabelle). Man priife durch Fehlerabschitzung, ob dies beriick-
sichtigt werden muf3. Eine Polarisation der Elektroden des Normalelemen-
tes kann nur vermieden werden, wenn die im Sinne einer Ladung oder Ent-
ladung durch das Element flieBenden Stréme <10-% A sind. Der Einsatz
_einer Wheatstone-Kirchhoffschen Schleifdrahtbriicke (sieche Abschn. E. 1.2)
als Potentiometer ist deshalb ungiinstig. Eine Verschiebung des Schleif-
kontaktes um 1 mm bewirkt bei den iiblichen Spannungen Uy von einigen
Volt bereits einen zusitzlichen Spannungsabfall in der GréBenordnung von
103 V.

Stopselrheostaten sind als Spannungsteiler gut geeignet, doch ist die Aus-
wertang nach Gl. (11) nur erlaubt, wenn R, + R, = R + R; oder zumin-
dest R, > R, bzw. Ry ist.)

Norma,lelement und Galvanometer ¢ werden durch den meist stufen-
weise einstellbaren Widerstand R, geschiitzt. Er muB so bemessen sein, dal
bei voller Spannung Uy weder die fiir das Normalelement (104 A) noch fiir
den Vollausschlag des Galvanometers maximal zuldssige Stromstéirke er-
reicht wird.

In einem Kompensator (Abb. 92) wird die Hllfsstromstarke im Potentio-
meterwiderstand konstant gehalten. Der Widerstand, an dem die Kompen-
sationsspannung abfallt, kann daher in Einheiten der elektrischen Spannung
geteilt werden. Dies Wird erreicht, indem das Potentiometer aus mehreren

1) Werden zwei gleiche, in Reihe geschaltete Sitze von Stopselwiderstinden ver-
wendet, 1ift sich diese Bedingung immer erfiillen; so ist im Prinzip der -nachfolgend
beschriebene Kompensator aufgebaut. B, 4+ R, kann z. B. so gewdhlt werden, daB3 an
einem Widerstand von 1 Q die Spannung 1 mV auftritt.
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dekadisch abgestuften Kurbelwiderstinden besteht. Eine konstante Hilfs-
stromstérke (z. B. 1 mA) 148t sich durch den verénderlichen Widerstand R
einstellen. Der Hilfsstrom durchflieBt nur die Einzelwiderstiandenicht, die iiber
die Schleifkontakte S, und 8; bzw. 83 und Sj iiberbriickt sind. Wird durch die

Abb. 92. Kompensator

Doppelkurbeln auf der einen Seite der Widerstand verkleinert, wird auf der
anderen Seite automatisch der gleiche Betrag hinzugefiigt. Die Kompen-
sationsspannung wird an dem Widerstand zwischen den Kontakten §; — 8,
und 8; — S, abgegriffen. Der Abgleichvorgang ist am Galvanometer G zu
verfolgen. Der richtige Hilfsstrom flieBt, wenn der Spannungsabfall an
einem zusétzlich eingebauten Prézisionswiderstand R, durch die Spannung
eines Normalelementes kompensiert ist.

Befinden sich in einem offenen Leiterkreis zweier Metalle oder Halbleiter
die Kontaktstellen 1 und 2 (Abb. 93) auf verschiedener Temperatur, stellen
wir zwischen den offenen Enden des Kreises eine Spannung fest, die Thermo-
spannung (Seebeck-Effekt). Sie bewirkt einen Thermostrom, wenn die Enden
miteinander leitend verbunden werden. Bei einem solchen Thermoelement
wird thermische Energie direkt in elektrische Energie umgewandelt. Die

Abb. 93. Anordnung
des Thermoelementes
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Urspannung eines Thermoelementes entsteht in den beiden Kontaktstellen
der Stoffe, indem sich dort von der Stoffpaarung und der Temperatur ab-
hingende Potentialspriinge ausbilden. Sie lassen sich quantenstatistisch
deuten. Bei gleicher Temperatur der Kontaktstellen sind die Potential-
differenzen entgegengesetzt gleich, so daB sie sich kompensieren.

Thermoelemente dienen zur Temperaturmessung. Bewihrte Material-
kombinationen sind Kupfer-Konstantan, Eisen-Konstantan, Nickel-Chrom-
nickel, Platin~Platinrhodium. Thre Thermospannung liegt in der GréBen-
ordnung von 10-2 mV/K, die von Halbleitern bei einigen mV/K.

Die thermoelektrische Spannung E einer Materialkombination (Abb. 93)
a8t sich im allgemeinen durch die quadratische Funktion

E = a AT + b(AT)? (12a)

beschreiben. Hierbei sind o und b thermoelektrische Materialkonstanten,
AT die Differenz der Temperatur des MeBfiihlers zur Bezugstemperatur.
Fiir einen begrenzten Temperaturbereich gilt mit meist hinreichender Ge-
nauigkeit die lineare Gleichung

E = aAT, (12b)

die fiir » = 0 aus Gl. (12a) hervorgeht.
Unter der differentiellen Empfindlichkeit eines Thermoelements versteht
man die erste Ableitung der Gl. (12a) bzw. Gl. (12b) nach der Temperatur:

dE
bzw.
dz A
ﬁ =a. (13b)

Fiir eine Reihe von Thermopaaren ist die differentielle Empfindlichkeit eine
lineare Funktion der Temperaturdifferenz, so daf mit zwei Wertepaaren?)
AE und AT ein System zweier Gleichungen (13a) gebildet werden kann, aus
dem sich die thermoelektrischen Konstanten ¢ und b der jeweiligen Material-
kombination ergeben.

In Temperaturintervallen bis zu etwa 100 K lassen sich Kupfer-Kon-
stantan- und Eisen-Konstantan-Thermoelemente mit meist hinreichender
Genauigkeit durch eine konstante differentielle Empfindlichkeit charakteri-
sieren. Dann folgt die thermoelektrische Konstante ¢ gema Gl. (13b) aus
einem Wertepaar von AE und AT.

Technische Temperaturbestimmungen mit einem Thermoelement er-
folgen im allgemeinen iiber eine Strommessung (Ausschlagmethode). Die

1) Hier werden dZ und AE bzw. dT und AT gleichgesetzt, weil sich aus dem Experi-
ment nur endlich groBe Spannungs- und Temperaturdifferenzen ergeben.
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Skalen der Instrumente sind dabei meist auf die Thermoelemente abgestimmt
und in Einheiten der Temperatur geteilt. Da die Uberlegungen des Abschn.
E. 2.0 auch fiir Thermospannungsquellen zutreffen, empfiehlt sich, thermo-
elektrische Konstanten iiber eéine Spannungsmessung durch Kompensation
zu ermitteln.

V ersuchsausfiihrung

Fir Aufgabe 1 werde eine Schaltung nach Abb. 91 aufgebaut (Polungen
der Spannungsquellen beachten!). Werden dabei als Potentiometer Stop-
selrheostaten verwendet, ziehen wir im Interesse der MeBgenauigkeit sowohl
Stopsel kleinster Widerstinde als auch solche bis in den 10%-Q-Bereich
hinein. Bei unempfindlichem Galvanometer G bzw. gréfitem Schutz-
widerstand Rg suchen wir fiir die zu ermittelnde Spannung Eyx den Wider-
stand R, , bei dem das Galvanometer stromlos wird. Der Feinabgleich erfolgt
bei héchster Galvanometerempfindlichkeit. Der Abgleichvorgang wird wie-
derholt (Bestimmung von R,’), nachdem mit dem Umschalter Sck das Nor-
malelement eingeschaltet wird. Gl. (10) liefert die zu ermittelnde Spannung
Ex. Die Spannung des Normalelementes Fy entnehmen wir der Arbeits-
platzanleitung.

Bei Aufgabe 2 werde ein kommerzieller Gleichstromkompensator benutzt.
Zunichst ist der Hilfsstrom mit dem Widerstand R auf den vorgeschriebe-
nen Wert einzustellen. Beim Sollwert des Hilfsstromes mufl an R, eine be-
stimmte, in. der Arbeitsplatzanleitung angegebene Spannung abfallen.
(Beachte: Die Kurbelwiderstdnde miissen dabei auf Null stehen.) Das Ther-
moelement liegt an den mit Ky bezeichneten Klemmen.

In das DewargefdB3 (Lotstelle 7, Abb. 93) fillen wir Eiswasser (Bezugs-
temperatur 0 °C). Auf diese Temperatur wird zunéichst auch der MeGBfiihler 2
gebracht, und anschlieBend wird die Badfliissigkeit bei der Lotstelle 2 unter
stindigem Riihren langsam erwarmt.l)

Uber ein Temperaturintervall von etwa 80 K hinweg ermitteln wir in Ab-
stdnden von etwa 5K zusammengehérende Werte von Temperatur und
Thermospannung. Die Kompensation wird bei unempfindlichem Galvano-
meter begonnen. Es wird empfohlen, die jeweilige Thermospannung gering-
fiigig iiberzukompensieren und die Badtemperatur in dem Augenblick ab-
zulesen, da der Zeiger des Galvanometers @ die Nullmarke passiert. Der
Hilfsstrom sollte im Verlauf der MeBreihe mehrmals iiberpriift werden.

Sofern zwischen der Thermospannung und der Temperatur ein linearer
Zusammenhang besteht (graphische Darstellung!), wird die thermoelek-
trische Konstante a aus der Steigung der Kurve gemiB Gl. (13b) berechnet.
Bei nichtlinearem Kurvenverlauf kann zur Bestimmung der thermoelektri-
schen Konstanten ¢ und b mit einem Gleichungspaar von der Form der

1) Bei technischen Messungen héherer Temperaturen mit einem Thermoelement
wird — unter Verzicht auf eine entsprechende Genauigkeit — auf eine definierte Ver-
gleichsstelle 7 meist verzichtet.
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Gl. (13a) gearbeitet werden, fiir das zusammengehérende Werte von AE
und AT der graphischen Darstellung entnommen werden. Falls AE/AT
iiber AT aufgetragen wird, muB sich eine Gerade ergeben [Gl. (13a)], aus
der 2 und b iiber Ordinatenabschnitt und Steigungs maf folgen.

E.3. ELEKTRONISCHE BAUELEMENTE

E.3.0. Aligemeine Grundlagen

E. 3.0.1. Elektronenréhren

Funktionsgrundlage der Elektronenréhren ist die Bewegung freier Elek-
tronen im Vakuum.!) Diese verlassen als Folge einer direkten oder indirek-
ten elektrischen Heizung die Kathode mit thermischer Geschwindigkeit,
bilden vor der Kathode eine negative Raumladungswolke, und nur die Elek-
tronen groBler kinetischer Energie (Maxwellsche Geschwindigkeitsvertei-
lung) erreichen bei fehlender Saugspannung die Anode. Je nach der Zahl der
Elektroden unterscheidet man Diode, Triode, Tetrode, Pentode usw.

Der Anodenstrom I, durch eine Diode nimmt in der DurchlafBrichtung,
d. h. bei positiver Anodenspannung U,, mit U, zu und erreicht einen
Sattigungswert

ePx

I,=CTte *Ix, (1)

wenn alle emittierten Elektronen zur Anode gelangen. In der Richardson-
Dushmanngleichung (1) sind C eine Proportionalitdtskonstante, 7' die
Kathodentemperatur, e die Elementarladung, e®, die Austrittsarbeit der
Elektronen aus der Kathode und % die Boltzmann-Konstante. In der
Sperrichtung, d.h. U, < 0, nimmt der Strom mit der Spannung rasch ab;
seine GroBe wird durch das Anlaufstromgesetz

eUs —e(Pa — Pk)

I,=Ie *x @)

1) Wegen des guten Vakuums (p < 10-7 Torr) ist die mittlere freie Weglédnge der
Elektronen groB gegeniiber den Abmessungen der Rohre. Eine Behinderung der Be-
wegung durch Restgasmolekiile ist nicht zu befiirchten. '
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gegeben, wobei e@, die Austrittsarbeit der Elektronen aus der Anode ist.
Es ist zu beachten, daB sich bei der Rohrendiode auch bei negativer Anoden-
spannung. die Stromrichtung nicht umkehrt! In einer Darstellung von
In 1,/I, iiber U, erhilt man in diesem Gebiet eine Gerade der Steigung e/kT,
aus der man die Kathodentemperatur 7', bestimmen kann, der Schnittpunkt
der Anlaufstromgeraden mit dem Sattigungsstrom liefert das Kontakt-
potential D, — D, (vgl. Abb.94). Bei modernen Rohren liegt der Sittigungs-
strom wegen der groBen Emissionsfiahigkeit der Kathode iiber den maximal
zuldssigen Betriebsbedingungen. Man bestimmt das Kontaktpotential da-
her entweder im Impulsbetrieb oder mit unterheizter Kathode und der
dabei vorliegenden geringeren Emission.

Bei Einhalten des vom Hersteller vorgeschriebenen Heizstromes Iy liegt
zwischen Anlaufstrom- und Séattigungsstrombereich das Raumladungs-

Ty =200mA

i

Abb. 94. I-U-Kennlinien einer Hochvakuumdiode bei zwei verschiedenen
Heizstromen (normal 300 mA I, ist Einheit der Stromstirke)

gebiet, in dem die groBe Zahl emittierter Elektronen um die Kathode eine
Raumladungswolke bildet und die positive Anodenspannung zum Teil ab-
schirmt, so daB der Sattigungsstrom nicht erreicht wird. In diesem fiir den
normalen Betrieb hauptsichlich interessierenden Bereich gilt das Schottky-
Langmuirsche Raumladungsgesetz

I, = KU 3" 3)

Eine Darstellung von I, iiber U3 liefert als Steigung die vom Aufbau der
Diode abhingige Raumladungskonstante K.

17 Phys. Praktikum
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Dioden werden zur Gleichrichtung, Modulation und Demodulation von
Wechselspannungen unterschiedlichster Frequenz benutzt. Bei der Triode
ist zwischen Kathode und Anode ein Steuergitter g eingefiigt. Mit der Gitter-
spannung U, kann der Anodenstrom I, gesteuert werden. U, wird dabei
negativ gewahlt, damit kein Gitterstrom flieBt und die Steuerung leistungs-
los erfolgt. Der Zusammenhang von Gitterspannung U, und Anodenstrom I,

I
Uy=0 <0
—
£
s G
QQ
A[I(I'lu 40
/ X%
g VAYAV:
/
-l - /,/ U
g AUy =t Vg 0
a) b,

Abb. 95. Kennlinien einer Triode
a) I,-Ug-Kennlinien; b) I,-U,-Kennlinien

ist in Abb. 95 schematisch dargestellt. Die Anodenspannung dient als Para-
meter, der Heizstrom ist konstant. Dem Kennlinienfeld konnen die charak-
teristischen Rohrendaten entnommen werden. Die Steilheit S kennzeichnet
die Steuerwirkung der Gitterspannung auf den Anodenstrom

ol
S=( “) 4
G Ug Ugq = const. ( )

Der Durchgriff D gibt an, in welchem MaBle die Anoden- und die Gitter-
spannung in entgegengesetzter Richtung geindert werden miissen, damit
der Anodenstrom beibehalten wird. Es gilt

U,
D-— (_ _8)
aUa, Ia =const.

Er deutet an, wie stark die von der Anode ausgehenden Feldlinien durch
das Gitter hindurch in das Raumladungsgebiet greifen.
Den Kehrwert des Durchgriffs bezeichnet man als Verstirkungsfaktor u.
Der innere Widerstand R!) beschreibt die zu einer Anodenstroméinde-

)

1) Der innere Widerstand R, ist ein differentieller Widerstand (vgl. E. 1) und vom
Gleichstromwiderstand R = U,/I, der Réhre zu unterscheiden.
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rung notwendige Anderung der Anodenspannung, wenn die Gitterspannung
konstant bleibt. Es ergibt sich

o,
R = (—) 6
! aIa Ug = const . ( )

Die Barkhausensche Rohrenformel besagt, daB das Produkt dieser Rohren-
kenndaten den Wert 1 hat:

S-D-R=1. (7)

In Analogie zum Schottky-Langmuirschen Raumladungsgesetz gilt fiir den
Anodenstrom einer Triode

I,=C- U, (8)
wobei die Steuerspannung Uy, dem Ausdruck
st = Ug -+ DU, 9
entspricht.

Beim praktischen Einsatz der Rohre liegt meist im Anodenstromkreis ein
Aupenwiderstand R,, an dem durch den flieBenden Anodenstrom ein Span-
nungsabfall hervorgerufen wird. Dadurch werden kleine Anderungen der
Gitterspannung AU, = u, (Aussteuerung) in groBe Anderungen des Span-
nungsabfalls am AuBenwiderstand AU, = », umgewandelt (Spannungs-
verstiarkung). Die den AuBenwiderstand R, charakterisierende Wider-
standsgerade (Arbeitsgerade, Abb. 95b) schneidet die Achsen bei I, = 0,
U, = Uy (Betriebsspannung) und bei I, = Uy/R,, U, = 0. Der Arbeits-
punkt 4, d. h. die Gleichstromwerte, um die Gitterspannung, Anodenstrom
und Anodenspannung bei der Aussteuerung schwanken, wird in den Bereich
geringster Kriitmmung der I,-U,-Kennlinie gelegt, sonst treten unerwiinschte
Verzerrungen auf. Fir die Verstirkung gilt

ty = Sugy = S (ug + Duy) (10)

mit 4, = AI, (Anodenstrominderung) und ug, = AU, (Steuerspannungs-
anderung). Eine positive Gitterspannungsinderung u, bewirkt auch ein An-
steigen des Anodenstromes und wegen des groBeren Spannungsabfalls am
AuBenwiderstand ein Absinken der Anodenspannung

Uy = — 1, R, (11)

Aus den Gln. (10) und (11) erhidlt man unter Beriicksichtigung der Bark-
hausen-Beziehung S - D - B; = 1 die Verstirkung V zu

RS R, 1 R
“1+RSD R +R, D R +R "

Uy,

V= (12)

Ug

17*
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R, > R, ergibt die Maximalverstirkung

1

Vmax:7=‘u.

(13)
Diese Bedingung ist bei Trioden meist in guter Naherung erfiillt.

Der Durchgriff, der bei Trioden im wesentlichen die Verstarkung be-
grenzt, 1aBt sich durch ein Schirmgitter g, zwischen Steuergitter g, und
Anode a (vgl. Abb. 102), das konstantes Potential erhilt, herabsetzen (Te-
trode). Dadurch wird der Anodenstrom fast unabhéingig von der Anoden-
spannung. Bei der Tetrode kann infolge des Spannungsabfalls an einem
AuBenwiderstand im Anodenkreis bei groBerem Anodenstrom unter Um-
stdnden die an der Rohre wirksame Anodenspannung unter die Spannung
des Schirmgitters sinken. Aus der Anode austretende Sekundarelektronen
werden zum Schirmgitter hin beschleunigt und vermindern den durch den
Abfall der Anodenspannung schon geschwéchten Anodenstrom zusatzlich.
Deshalb wird ein auf Kathodenpotential liegendes Bremsgitter g, unmittel-
bar vor der Anode angeordnet, welches die Sekundéarelektronen zur Anode
zuriicktreibt, fiir die stark beschleunigten Primérelektronen jedoch kein
Hindernis bildet. Die so entstandene Pentode besitzt gegeniiber der Triode
einen erheblich gréBeren Innenwiderstand und einen um GréBenordnungen
geringeren Anodendurchgriff D,. Die Steuerwirkung des Schirmgitters
wird dabei — ebenso bei der Tetrode — durch den Schirmgitterdurchgriff

av,
D2=(— &) 14
& aUgg Ia, Ua = const ( )
beschrieben. Ersetzt man in Gl. (12) D durch 8 und R, so ergibt sich
_ -RiRa

Gl. (15) ist fiir die Betrachtung von Pentoden giinstiger und geht fiir B, > R,
(bei Pentoden meist erfiillt) in die hiufig verwendete Naherungsformel

V=R,S (16)

iber.

E. 3.0.2. Halbleiterdiode und Transistor

Die vierwertigen Halbleiterelemente (Silizium, Germanium) werden durch
Einbau (Dotierung) einer geringen Menge!) von fiinfwertigen Elementen

1) Die Stérstellenatome werden den Halbleitern etwa im Verhéltnis 1 : 107 zugefiigt.
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(Arsen, Antimon, Wismut) in das Kristallgitter zum Elekironen- oder n-
Leiter, da die fiir die Bindung im Grundgitter iiberzéhligen fiinften Valenz-
elektronen der fiinfwertigen Atome als Leitungselektronen abgegeben wer-
den. Die Fremdatome werden daher Donatoren genannt.

Dotiert man vierwertige Elemente mit dreiwertigen (Indium, Aluminium,
Gallium), kann von der Liicke des jeweils fehlenden vierten Valenzelektrons
(Defektelektron) ein Elektron aus der Nachbarschaft aufgenommen werden.
Die Fremdatome wirken als Akzeptoren. Durch Platzwechselvorginge der
Elektronen wandern auch die Elektronenliicken im Material (Ldcherleitung).
Da das Defektelektron als positive Ladung auf neutralem Grund aufgefaBt
werden kann, wird dieser Mechanismus p-Lestung genannt.

Beriihren sich p- und n-leitendes Material (Kristalldiode), diffundieren
durch die Beriihrungsfliche Locher aus dem p-Gebiet in das n-Gebiet
(Abb. 96). Umgekehrt wandern Elektronen aus dem n- in das p-leitende .

I
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SRS NS @®| ‘@@ SESHS) Abb. 96. Prinzip
[ der Kristalldiode

(+) (—=):Polungin DurchiaBrichtung
— + : Polung in Sperrichfung

Material. An der Grenzfliche bildet sich im p-Gebiet eine negative, im n-
Gebiet eine positive Raumladung. Das elektrische Feld zwischen den La-
dungswolken behindert einen weiteren Nachschub an Ladungen beiderlei
Vorzeichens und fithrt schlieBlich zu einem Ladungsgleichgewicht. Zwischen
den Raumladungswolken hat sich infolge der Wiedervereinigung (Rekombi-
nation) von Elektronen und Léchern eine hochohmige, an Ladungstrigern
verarmte Zone gebildet, die Sperrschicht, die weiter vergrofert wird, wenn
die p-Seite auf negativem, die n-Seite auf positivem Potential liegt (vgl.
Abb. 96). Diese Polung (Sperrichtung) verursacht nur einen geringen Strom
(Sperrstrom). Bei einer Vorzeichenumkehr der Spannung flieBen Ladungs-
triger in die Verarmungszone, die von einer bestimmten Spannung an, der
Schleusen- oder Schwellspannung, einen stark anwachsenden Strom bilden.

Die Kombination von p- und n-leitendem Material wirkt daher als Volu-
mengleichrichter. Sie hat gegeniiber frither eingefithrten Randschicht-
gleichrichtern (Kupferoxydul-, Selengleichrichter) den Vorteil eines groBe-
ren Verhaltnisses von DurchlaB3- und Sperrstrom und kann noch bei héheren
Sperrspannungen arbeiten. Halbleiterdioden werden wie Rohrendioden ein-

esetzt.

¢ Durch eine geeignete, relativ hohe Dotierung lassen sich sehr diinne
Sperrschichten erreichen, bei denen oberhalb einer bestimmten Sperrspan-
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nung (Durchbruch- oder Zenerspannung) der Strom steil ansteigt (Abb. 97).
Die notwendigen Ladungstrager entstehen infolge der hohen Feldstarke der
" diinnen Sperrschicht iiber innere Feldemission (feldstirkebedingtes Ablésen
der Valenzelektronen, Zenereffekt) bzw. bei einer Stofionisation durch die
stark beschleunigten Ladungstriger (Lawineneffekt oder Ladungstriger-
multiplikation). Diese Z-Dioden werden zur Spannungsstabilisierung, zum
Uberlastungsschutz von empfindlichen Bauelementen, als sekundire Span-
nungsnormale u. a. verwendet.
Wird die Dotierung weiter erh6ht, so verringert sich die Sperrschicht-
dicke so sehr, daB sie, besonders in Sperrichtung, von den Ladungstrigern

a) /) b) I
U /l U UZ U
s Usen A Usep 0
iy /I
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Abb. 97. Kennlinien von Halbleiterdioden

a) normale Diode; b) Z-Diode; c¢) Tunneldiode

Iy, Is, Ig bzw. It sind DurchlaB-, Sperr-, Hécker- bzw. Talstrom;

Up, Us, Uz, Usa, Ur bzw. Ur sind DurchlaB-, Sperr-, Zener-, Schwell-,
Hocker- bzw. Talspannung

sehr leicht ,,durchtunnelt” werden kann (quantenmechanischer Tunnel-
effekt). In DurchlaBrichtung nimmt der Tunnelstrom mit steigender Span-
nung schneller wieder ab, als der normale Diodenstrom steigt, so daB nach
einem Maximum (Hockerstrom mit zugehériger Hockerspannung) der
Strom zunédchst abfillt, um nach einem Minimum (Talstrom) wieder an-

zusteigen (Abb. 97). Der Bereich fallender Kennlinie (differentieller Wider-
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stand dU/dI < 0) wird bei der Tunneldiode zur Verstirkung und Schwin-
gungserzeugung benutzt.

Eine Zonenfolge pnp oder npn mit den zugehérigen Anschliissen Emitter
E, Basis B und Kollektor C fiithrt zum Transistor (Abb. 98), den man sich als
Reihenschaltung zweier entgegengesetzt gepolter Dioden vorstellen kann.
Die Basis-Emitter-Diode wird in DurchlaBrichtung gepolt, dadurch flieBt
in ihr bei kleiner Spannung Ugy ein groBer Strom, der in die sehr diinne
Basisschicht (wenige um) gelangt und von der Kollektorspannung Ugg zum
groften Teil in die in Sperrichtung betriebene Kollektor-Basis-Diode ge-
zogen wird. Der Strom durch die Basiselektrode I wird deshalb sehr klein,

c C [A
Bo— n B 8

p

I3

a) b) (9]

Abb. 98. pnp-Transistor
a) Zonenfolge; b) Ersatzschaltung; c) Schaltbild

wiahrend am Kollektor der um den Faktor § = I./Iy verstarkte Kollektor-
strom I, abgenommen werden kann.

Der iiber die Basis flieBende Steuerstrom Iz bewirkt, daB der Transistor
nicht leistungslos gesteuert werden kann, sowohl im Eingangs- als auch im
Ausgangskreis sind Stréome und Spannungen und die entsprechenden ge-
genseitigen Beeinflussungen zu beriicksichtigen. Fiir den Betrieb des Tran-
sistors als Verstarker interessieren hauptsachlich die WechselgroBen (dy-
namische GréBen, Aussteuerung) Al = ¢ bzw. AU = . Der Index 1 bei u
und 4 bezeichnet die EingangsgroBen, der Index 2 die Ausgangsgroflen. Die
Verkniipfungen zwischen ihnen wird meist in Hybriddarstellung angegeben

Uy = hyyiy + hyoits,
.1 11.1 122 (A7)
iy = hyyiy + hogts,

bzw. in Matrixschreibweise

U1\ _ hyshag)\ (1
(".2) - (h21h22) (u2) ’ (17a)

Der Ausdruck ,,hybrid* (von zweierlei Herkunft) weist darauf hin, daf die
Parameter A, unterschiedliche Dimensionen besitzen. Man bevorzugt diese
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Darstellung, da alle Parameter anschaulich und leicht meBbar sind. Es
gelten fiir die A-Parameter die Definitionsgleichungen:

[

Bon — u_) Eingangswiderstand (in ) bei dynamisch kurzgeschlos-
1 %, Ju, =0 Senem Ausgang,

™

- (ﬂ) Spannungsriickwirkung (dimensionslos) bei dynamisch
7 iy=0 offenem (nicht angesteuertem )Eingang,

e = ( ke ) Stromverstirkung (dimensionslos) bei dynamisch kurz-
n up =0 geschlossenem Ausgang,

Prgg = (_7@_) Ausgangsleitwert (in S) bei dynamisch offenem Ein-
=0 gang.

Dynamisch kurzgeschlossener Ausgang bedeutet, daB die zur Einstellung
des Arbeitspunktes 4 notwendige Kollektor-Emitter-Spannung Ucgy kon-
stant gehalten wird, d. h., daB keine Ausgangsspannungsénderung u, bzw.
Ausgangswechselspannung entstehen kann, wenn der Eingang ausgesteuert
wird. Analog wird bei dynamisch offenem Eingang das Entstehen einer
Anderung des Eingangsstromes 4, verhindert, wenn sich u, &ndert. Die Be-
deutung der k-Parameter und eine Moglichkeit ihrer Ermittlung ergibt sich
anschaulich aus dem Kennlinienfeld des Transistors (Abb. 99).

Fiir den Einsatz des Transistors sind drei Grundschaltungen moglich, die
ihre Bezeichnung nach der Elektrode, die Eingang und Ausgang gemeinsam

Parameter Up; A

Parameter 13

1
| [
[
|
Ig = T ' Ve
| |
| |
[ o
| |
Parqme’lfer Ueg Paruime/er Ig
Y ke ~\Uzu,

A
Upe
Abb. 99. Kennlinienfeld eines Transistors
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ist, erhalten haben (Abb. 100). Diese Grundschaltungen zeichnen sich durch

eine Reihe unterschiedlicher Eigenschaften aus:
Emitter- Basis- Kollektor-
schaltung schaltung schaltung
Eingangswiderstand klein sehr klein groB
Ausgangswiderstand grof groB - klein
Spannungsverstirkung groB grof3 =1
Stromverstéirkung groB ~1 groB

Fir die

b) )

Abb. 100. Grundschaltungen eines npn-Transistors
a) Emitterschaltung; b) Basisschaltung; c) Kollektorschaltung

meisten Anwendungsfille wird die Emitterschaltung bevorzugt,

die weitgehend der normalen Réhrenschaltung entspricht. Die anderen
Grundschaltungen sind Spezialanwendungen vorbehalten.

E.3.1.

Aufgaben:

Kennlinie einer Hochvakuumdiode

1. Es ist die I,-U,-Kennlinie einer Hochvakuumdiode bei zwei
verschiedenen Heizstromen aufzunehmen und graphisch dar-
zustellen.

2. Aus den Kennlinien sind das Kontaktpotential zwischen Anode
und Kathode, fiir die beiden Heizstrome die jeweilige Kathoden-
temperatur und fiir den gréBeren Heizstrom die Raumladungs-
konstante zu bestimmen.

Abb. 101.
MeBschaltung einer
Hochvakuumdiode
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Versuchsausfiihrung

Die Messungen werden mit einer Schaltung nach Abb. 101 durchgefiihrt.
Zur Darstellung der Kennlinien verwenden wir einfach-logarithmisches Pa-
pier mit 3 bis 4 Dekaden fiir die I-Achse. Vom Einsetzen des Stromes
(I =1pA) bis U, =~ +1V ist in Schritten von etwa 0,1V ...0,15V zu
messen, bis 4 V etwa aller 0,5V, dariiber sind bis zu den Maximalwerten

der Diode

E.3.2.

Aufgaben :

noch 4 bis 5 MeBpunkte erforderlich.

Kennlinien von Triode, Tetrode und Pentode

1. a) Fiir eine Triode oder eine als Triode geschaltete Pentode
{go = g5 = @, Abb. 102) sind I,-U,-Kennlinien fiir verschiedene
Werte der Anodenspannung als Parameter aufzunehmen.

b) Es sind I,-U,-Kennlinien fiir verschiedene Werte der Gitter-
spannung Uy, als Parameter aufzunehmen.

c) Aus beiden Kennlinienscharen sind fiir einen vorgegebenen
Arbeitspunkt D, S und R; zu bestimmen und die Barkhausen-
Formel sowie das modifizierte Schottky-Langmuirsche Raum-
ladungsgesetz Gl. (8) zu iiberpriifen.

d) Fiir einen vorgegebenen AuBlenwiderstand ist die Arbeits-
gerade in das I,-U,-Diagramm einzutragen und daraus die Span-
nungsverstirkung zu bestimmen. Diese ist mit der aus den Réh-
renkennwerten nach Gl. (12) berechneten zu vergleichen.

2. Fiir eine als Tetrode geschaltete Pentode (g5 an g,, Abb. 103)
ist fiir feste Gitter- und Schirmgitterspannung Uy, bzw. U,, eine
1,-U,-Kennlinie aufzunehmen.

3. a) Fiir eine Pentode sind I,-U,-Kennlinien fiir verschiedene
Werte der Schirmgitterspannung Uy, als Parameter bei fester
Anodenspannung aufzunehmen.

b) Es sind I,-U,-Kennlinien fiir verschiedene Werte der Gitter-
spannung Uy, als Parameter bei fester Schirmgitterspannung U,
(gleicher Wert wie in Aufgabe 2) aufzunehmen.

c) Fiir einen vorgegebenen Arbeitspunkt sind S und R; aus den
Kennlinien zu bestimmen und der Anodendurchgriff iiber die
Barkhausen-Formel zu berechnen. AuBlerdem ist der Schirmgitter-
durchgriff zu bestimmen.

4. Die erhaltenen Kennlinien sind zu diskutieren.

5. In die Kennlinienfelder fiir I,-U, ist der zuldssige Arbeits-
bereich, gegeben durch die vom Hersteller veroffentlichten Grenz-
werte fiir Anodenstrom I, Anodenspannung U, und Anoden-
verlustleistung P, = I, U,, einzuzeichnen,
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Versuchsausfiihrung

Die Triode und (oder) Pentode werden nach den Schaltbildern der
Abb. 102 und 103 geschaltet. Bei der Berechnung der Roéhrenkennwerte
werden als Naherung fiir die Differentialquotienten in den Gln. (4) bis (6)
die Differenzenquotienten bei den wenig gekriimmten Kurventeilen, sonst

Abb. 102. Schaltung
einer Pentode als Triode

der Anstieg der Tangenten verwendet. Es ist besonders zu beachten, daB
bei der Wahl der Wertepaare die jeweiligen Nebenbedingungen (I,, U,, U,,,
U,e = const) eingehalten werden. Fiir die Uberpriifung der modifizierten
Schottky-Langmuirschen Gleichung wird die Erlduterung des Abschn.
E. 3.0.1 sinngemaB iibertragen.

| &+

L

Abb. 103. Schaltung einer Pentode (fiir die Schaltung einer Pentode als
Tetrode ist g, an g, zu legen)

E.3.3. Kennlinien von Halbleiterdioden

Aufgaben: 1. Es sind die I-U-Kennlinien fiir Germanium-, Silizium-, Z- und
Tunneldiode in DurchlaB- und Sperrichtung aufzunehmen.
2. Fir die Germanium- und die Siliziumdiode sind fiir vor-
gegebene DurchlaB3- und Sperrspannungen Gleichstrom- und
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differentieller Widerstand sowie die Schwellspannung zu bestim-
men. Die unterschiedlichen Werte der Dioden sind zu diskutieren.
3. Fiir die Z-Diode ist die Zenerspannung zu bestimmen und der
differentielle Widerstand im Sperrbereich fiir vorgegebene Sperr-
strome bei gleichzeitiger Angabe der zugehdrigen Spannung zu
berechnen.

4. Fiir die Tunneldiode sind Hécker- und Talstrom mit den zu-
gehorigen Spannungen anzugeben und die differentiellen Wider-
stdnde fiir vorgegebene Spannungen sowie an der steilsten Stelle
der fallenden Kennlinie zu bestimmen.

Versuchsausfiihrung

Zur Messung wird eine Schaltung nach Abb. 104 benutzt. Der Umpol-
schalter gestattet die Untersuchung von Durchla8- und Sperrichtung. Da
sich Spannungen und Stréme um GréBenordnungen éndern kénnen, werden

so—(2) Ty

v 1S

-0

Abb. 104. MeBschaltung fiir Halbleiterdioden, Umpolschalter S in
Sperrichtung gezeichnet

vorteilhaft Vielfachmesser eingesetzt. Die in Sperrichtung und bei kleinen
DurchlaBspannungen auftretenden Verfalschungen der Stromanzeige lassen
sich leicht korrigieren, wenn man auf der Vielfachskale des als Spannungs-
messer verwendeten Gerétes auller der Spannung gleichzeitig den notwendi-
gen Strombedarf fiir den jeweiligen Ausschlag abliest (vgl. E. 1). Es ist un-
bedingt darauf zu achten, daBl die Hochstwerte fiir Strom und Spannung
eingehalten werden. Zur Ermittlung der Zenerspannung und der Schwell-
(oder Schleusen-) Spannung legt man eine Tangente an den steilen, prak-
tisch geradlinigen Teil der Kennlinie und bestimmt den Schnittpunkt mit
der U-Achse.

E.3.4. Kennlinienfeld des Transistors

Aufgaben: 1. Es ist das Kennlinienfeld eines Transistors in Emitterschaltung
aufzunehmen. Dazu sind I und Ugy als Funktion von Ugy mit
mehreren Werten von I als Parameter zu messen.

2. Aus den MeBwerten sind fiir alle I;-Werte die I-Ugg-Kenn-
linien, fiir mindestens zwei Iz-Werte Ugg-Ucg-Kennlinien und
fiir zwei Ugg-Werte Ig-Ig- und Ugg-I-Kennlinien darzustellen.
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3. Ein vorgegebener Arbeitspunkt im ersten Quadranten ist auf
die anderen drei Quadranten zu iibertragen. Fiir diesen Arbeits-
punkt sind die vier h-Parameter zu berechnen.

Versuchsausfiihrung

Die Messungen erfolgen mit einer Schaltung nach Abb. 105 fiir npn-Tran-
sistoren, bei pnp-Transistoren sind die Spannungen und alle Instrumente
umzupolen. Zur Bestimmung von Ugy verwenden wir vorteilhaft ein Roh-
ren- oder Transistorvoltmeter (Innenwiderstand =1 MQ), um Stromverfil-
schungen durch die Spannungsmessung zu vermeiden. An allen anderen

Abb. 105. MeBschaltung zur Aufnahme der Kennlinien eines npn-Transistors

Stellen sind Vielfachmesser einzusetzen. Bei kleinen Kollektorspannungen
(Ucg < 1V) besteht eine sehr starke gegenseitige Beeinflussung aller Gro-
Ben, so daB simtliche Werte stindig zu kontrollieren sind. Fiir die Berech-
nung der hA-Parameter wird bei den linearen Teilen der Kennlinien der Diffe-
renzenquotient, sonst der Anstieg der Tangente benutzt. Es ist unbedingt
darauf zu achten, daf alle Grenzwerte des im Versuch benutzten Tran-
sistortyps (Spannung, Strom, Leistung) nicht iiberschritten werden, vgl. E. 2.1.

E.4. ELEKTRISCHE STROME UND
MAGNETISMUS

E.4.0. Allgemeine Grundlagen

E. 4.0.1. Magnetisierung

Wird ein Stoff einem magnetischen Feld der Stirke H (Einheit: 1 Am™1)
ausgesetzt, so wird er magnetisiert. Die Magnetisierung M ist als Quotient
aus dem magnetischen Moment der magnetisierten Probe und ihrem Volu-
men festgelegt. Sie hat demzufolge die gleiche Einheit wie die magnetische
Feldstarke und wird als Beitrag eines Stoffes zum magnetischen Feld auf-
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gefaBt. Bei vielen Stoffen ist sie der magnetisierenden Feldstérke proportio-
nal: M = »,H. Der Proportionalititsfaktor x,, heiBt magnetische Suszeptibili-
tit. Fiir die magnetische Induktion oder Flufdichte B folgt somit

B = uo(H+ M) = poH + pyre, H = to (1 + 2¢) H; (1a)

po = 4w - 1077 Vs A2 m wird Induktions- oder magnetische Feldkonstante
genannt, u, = 1 + %, ist dierelative Permeabilitiit des magnetisierten Stoffes.
Sie wird wegen

B = popH (1b)

als Quotient der magnetischen Induktion im Stoff und der im Vakuum defi-
niert. Die Einheit der magnetischen Induktion ist 1 Tesla (T) = 1 Wb m™2,
und 1 Wb (Weber) = 1 Vs steht fiir die Binheit des magnetischen Flusses. Der
magnetische FluB @ durch eine Fliche A* ist als

&= [ Bda* . (2a)

(dA* L A%*) definiert. Im homogenen Feld vereinfacht sich diese Gleichung
bei ebener Fliache zu

@ = B . A* cos (B, d4¥*). (2Db)

Durch die dimensionslosen Kennwerte s, und g, werden die Stoffe hinsicht-
lich ihrer magnetischen Eigenschaften klassifiziert und charakterisiert. Fiir
para- und diamagnetische Stoffe ist u, ~ 1, fiir ferromagnetische') gilt dage-
gen p, > 1 (bis 10%). Ferro- und Paramagnetika nehmen in einem magneti-
schen Feld eine diesem gleichgerichtete Magnetisierung an (4, > 1, s, > 0).
Diamagnetika (4, < 1, %, < 0)sind entgegen dem duBeren Feld magnetisiert.

Die graphische Darstellung der Magnetisierung M oder der magnetischen
Induktion B in Abhéngigkeit von der magnetisierenden Feldstarke H liefert
fiir ferromagnetische Stoffe Kurven nach Art der Abb. 106: Die Magneti-
sierung wichst zunichst mit der Feldstarke, erreicht aber dann einen Satti-
gungswert. Der entsprechende Kurvenzug O-P, heilt Neukurve. Auf sie
1aBt sich Gl. (1b) nur anwenden, wenn die Permeabilitit y, als variabler,
feldstarkeabhangiger Wert aufgefaBit wird. Er hingt auBerdem vom Stoff
und seiner Vorbehandlung ab. Deshalb kennzeichnet man Ferromagnetika
durch ihre Anfangspermeabilitdt u., (das ist die Permeabilitit fiir H — 0)

1) Ferromagnetische Stoffe sind die Elemente Eisen, Kobalt, Nickel sowie Legierun-
gen dieser Elemente untereinander und mit fremden Elementen; weiterhin sind einige
Legierungen nicht ferromagnetischer Elemente ferromagnetisch.
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und durch die maximale Permeabilitit p .,y - Sie kommt der Stelle der Neu-
kurve zu, an der eine Tangente den groftmoglichen Anstieg besitzt. Wenn
wir die magnetisierende Feldstirke von P; aus verringern, wird ein dem
Kurvenzug P; — P, entsprechender Zusammenhang M bzw. B = f(H) be-
obachtet. Selbst bei H = 0 bleibt der Stoff magnetisch und kann durch

8

A
Br
]
&} i3

e 7 H

b

A
Abb. 106. Hysteresekurve

Remanenzinduktion By oder durch die remanente Magnetisierung My cha-
rakterisiert werden (P, in Abb. 106). Durch eine Koerzitivfeldstirke —H=H
(P; in Abb. 106) wird die Remanenz beseitigt. Bei einer zyklischen Ver-
anderung der magnetisierenden Feldstarke wird der Kurvenzug P,, P,, ...,
Py wiederholt durchlaufen (magnetische Hysterese). Da [B] - [H] = W s m™3,
entspricht die von der Hysteresekurve eingeschlossene Flache betragsméfig
der Energie, die bei einem Zyklus der Ummagnetisierung fiir die Volumen-
einheit aufzuwenden ist.

Der Verlauf der Hysteresekurve wird durch mehrere, im folgenden vereinfacht dar-
gestellte magnetische Elementarvorginge bestimmt: Kleine Bereiche (Weifsche Be-
zirke) sind magnetisiert, weil ihre atomar-magnetischen Momente sich spontan parallel
zueinander und zu typischen kristallographischen Richtungen stellen. Die Magneti-
sierungsrichtungen der Weilischen Bezirke eines polykristallinen Stoffes sind im Kérper
statistisch verteilt und deshalb makroskopisch nicht zu bemerken (M = 0). In einem
duBeren Magnetfeld wachsen zunichst die Gebiete giinstiger spontaner Magnetisierung
auf Kosten benachbarter Bezirke durch reversible Wandverschiebungen oder indem die
Magnetisierungsrichtung ganzer Volumenbereiche in eine energiemifBig giinstigere
kristallographische Richtung umklappt (Barkhausen-Sprung). Im Sittigungsgebiet der
Neukurve werden die Vektoren der Magnetisierung vorwiegend aus ihrer kristallo-
graphisch giinstigen Richtung heraus und in die Richtung des magnetisierenden Feldes
eingedreht.

Stoffe, die aus zwei Untergittern bestehen, in denen die spontane Magnetisierung
gleich groB, aber entgegengesetzt gerichtet ist, sind antiferromagnetisch. Wenn dagegen
die spontane Magnetisierung in den beiden Untergittern nicht gleich groB ist, nennt man
das Material ferrimagnetisch. Wichtige Vertreter dieser Stoffgruppe sind die Ferrite.
Sie haben dhnliche magnetische Eigenschaften wie Ferromagnetika.

Ferri- und ferromagnetische Stoffe werden oberhalb einer fiir das betref-
fende Material charakteristischen Temperatur (Curie-Temperatur 7T)
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paramagnetisch. Fiir Temperaturen T > T gilt das Curiesche Gesetz

C
Hm = —7—7 (3)

(C = Curiesche Konstante).

Fiir die Anderung der magnetischen Induktion B einer entmagnetisierten,
ferro- bzw. ferrimagnetischen Probe gilt nach Rayleigh in magnetischen Fel-
dern H, die klein gegen die Koerzitivfeldstarke H sind

B= By = o (8~ ) 2 55— e (4a)

In Gl. (42) sind y,, die Anfangspermeabilitit — d. h. die auf die Feldstirke
H = 0 extrapolierte relative Permeabilitdt — und g die Rayleigh-Konstante
der magnetischen Induktion. Das positive Vorzeichen in Gl. (4a) ist fiir
H > H,, das negative fiir H < H, zu nehmen.

Wihlt man H, = —Ho, B; = —Bo, so erhilt man fiir die Kurve a (vgl.
Abb. 107) :

B+Bo=ﬂo{ ra(H+Ho)+§(H+HO)2}. (4b)
8 A
By ————

Abb. 107. Rayleigh-Schleife

" Fiir H = Ho, B = By ergibt sich aus Gl. (4b) die Kurve b, auf der die positi- -
ven Spitzen verschieden weit ausgesteuerter Rayleigh-Schleifen liegen. Aus
By = pio {ptra + BHo} H, (4c)

folgt, daBB die relative Permeabilitit lings der sogenannten Kom-
mutierungskurve b linear mit der Amplitude der Wechselfeldstirke
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ansteigt, d.h.

Ur = pheg + BH,. (5)

Form und Fliche der Magnetisierungskurven sowie der daraus ableitbaren Kennwerte
bestimmen die Einsalzgebiete der magnetischen Werkstoffe: Magnetische Schalter und
Speicher verlangen beispielsweise moglichst rechteckige Hysteresekurven. Transforma-
toren- und Dynamobleche erfordern moglichst kleine Koerzitivieldstirken (He <C
1A cm™), groe Anfangs- (u;, = 1000) und Maximalpermeabilititen (trmax = 10000)
und schmale Hysteresen. Fir Dauermagnete werden Stoffe mit groBer Remanenz
(Br =~ 10~* Vs em~2) und groBer Koerzitivfeldstirke (H¢ ~ 500 A cm™!) eingesetzt.
Kerne fiir Spulen und Ubertrager der Schwachstromtechnik zeichnen sich durch még-
lichst hohe und iber weite Bereiche der Feldstiarke konstante Permeabilititen aus.

E. 4.0.2. Kraftwirkung magnetischer Felder auf
elektrische Stréme :

Elektrische Strome erzeugen magnetische Felder. Wird beispielsweise
eine zylindrische Spule von der Léinge / und vom Durchmesser d von einem
Strom f durchflossen, so betrigt die magnetische Feldstirke lings der Spulen-
achse :

H=L. (6a)

&+ B

Hierin bedeutet N die Windungszahl der Spule. Aus Gl. (6a) ergibt sich mit
d < ! der fiir eine unendlich lange Spule giiltige Grenzfall

H="—. ' (6b)

Die magnetischen Felder elektrischer Stréme wechselwirken ihrerseits mit
magnetischen Feldern und verursachen Krifte, die vielfiltig ausgenutzt
werden. Beispiele hierfiir sind der Elektromotor, die groBle Gruppe der
elektromechanischen Wandler, gewisse elektronenoptische Gerite und elek-
trische MeBinstrumente. Die Bestimmung magnetischer Feldstirken und
die Festlegung der Einheit der Stromstéirke beruhen ebenfalls auf der gegen-
seitigen Kraftwirkung zweier elektrischer Strome und ihrer Magnetfelder.

Auf eine im Magnetfeld mit der Geschwindigkeit v bewegte elektrische
Ladung @ bzw. auf einen vom Strom I durchflossenen Leiter der Linge [
wirkt eine Kraft

F=Q(vx B) bzw. F=1( x B) (7a)

18 Phys. Praktikum
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vom Betrage

F=Q.v-Bsin(v,B) bzw. F=1.I.Bsin (I, B). (7b)

Ihre Wirkungslinie steht also senkrecht zur Geschwindigkeit » bzw. zum
Strom I und zur magnetischen Induktion B. Die Vektoren » bzw. I, Bund F
bilden bei einer positiven Ladung oder der positiven Stromrichtung ein
Rechtssystem, bei einer negativen Ladung oder der Stromrichtung der
Elektronen ein Linkssystem.

E.4.1. Drehspulgalvanometer

Aufgaben: 1. Bestimme den Innenwiderstand sowie die Strom- und Span-
nungsempfindlichkeit eines Drehspulgalvanometers.
2. Es sind die Bewegungsarten (Schwingfall, aperiodischer Grenz-
fall, Kriechfall) einer Galvanometerspule zu verwirklichen und
graphisch darzustellen. Der dem aperiodischen Grenzfall ent-
sprechende AuBlenwiderstand ist anzugeben und das logarith-
mische Dekrement in Abhidngigkeit von der Dimpfung zu er-
mitteln.

Drehspulinstrumente beruhen auf folgendem Prinzip (Abb. 108): Die Pole
eines Permanentmagneten und ein Weicheisenkern K bilden einen zylin-
drischen Luftspalt. In ihm herrscht ein radialsymmetrisches magnetisches

Abb. 108. Prinzip des
Drehspulgalvanometers

Feld. Um den Kern kann sich eine rechteckige Spule Sp bewegen. Sie be-
steht aus Kupferdraht und bildet den Innenwiderstand R; des Instrumen-
tes. Die Spule wird bei dem empfindlichsten Instrument dieser Art, dem
Drehspulgalvanometer, durch Torsionsfiden oder -biander gehalten. Bei
weniger empfindlichen DrehspulmeBwerken ist sie spitzengelagert und wird



E. 4.1. Drehspulgalvanometer 275

durch ein Spiralfederpaar an eine Gleichgewichtslage gebunden. Torsions-
fiden und Spiralfedern dienen gleichzeitig als elektrische Anschliisse der
Spule.

FlieBt durch die Spule (Héhe %, Breite b, N Windungen) ein Gleichstrom
(Stromstérke I), iibt das magnetische Feld (KraftfluBdichte B) auf jede der
im Feld befindlichen Spulenseiten gemafl Gl. (7b) eine Kraft

F = NIhB (Tc)

aus (I bzw. % | B) und erzeugt so ein Kriftepaar. Dessen Drehmoment ist,
da I | B, vom Betrage

M = NbhIB = NA*IB = GI; (8a)

A* = bh ist die Querschnittsfliche der Spule, G = NA*B nennt man dyna-
mische Galvanometerkonstante.

Eine Gleichgewichtslage der stromdurchflossenen Spule ist im Vergleich
zur Nullage erreicht, wenn das elektrisch bedingte Drehmoment M und das
Moment der elastisch tordierten Spulenhalterung

M’ = Da (8b)

(D Direktionsmoment, « Drehwinkel der Spule) gleich sind. Aus den Gln. (8a)
und (8b) folgt fiir den Drehwinkel o eines Drehspulmefwerkes

G

a=—I=Eyy:I. 9)

Er ist demnach der zu messenden Stromstérke proportional. Der Pro-
portionalititsfaktor Eyq) = G/D ist die auf den Drehwinkel bezogene
Stromempfindlichkeit des MeBwerkes. Da Stromstirke und Spannung in
einem Leiterkreis einander proportional sind, dienen DrehspulmeBwerke
auch als Spannungsmesser.

Galvanometerablesung: Bei empfindlichen Drehspulgalvanometern?) wird
die jeweilige Stellung der Spule durch einen am Spulenrahmen befestigten
kleinen Spiegel angezeigt. Das geschieht wie folgt:

a) Das Spiegelbild (Abb. 109; Sp: Spiegel) einer ebenen Skale Sk wird mit
einem Fernrohr F betrachtet, in dessen Bildebene sich ein Fadenkreuz be-
findet.

b) Anstelle des Fernrohres wird eine mit einem Spalt, Faden oder einer
Marke versehene Lichtquelle benutzt, die den Spiegel beleuchtet. Vor die-
sem befindet sich eine Linse, die auf der Skale ein Bild der Lichtmarke ent-
wirft. ’

1) Mit Instrumenten hochster Empfindlichkeit konnen Strome bis herab zu 1011 A
nachgewiesen werden. )

18*



276 Elektrizitidtslehre

Dreht sich der Spiegel um den Winkel « aus der in Abb. 109 angenomme-
nen Nullstellung heraus, iiberstreicht der ,,Lichtzeiger einen Winkel 2u
(Reflexionsgesetz), fiir den mit den Bezeichnungen der Abb. 109 und der

Vereinbarung 2a = ¢ gilt
al)
tan ¢ = (10a)
bei kleinen Winkeln ist die Naherung
a
Q=— (10b)

erlaubt, fiir die bei ¢ < 6° der relative Fehler unter 1% bleibt. Ein von
einem systematischen Fehler freier Winkel wird aus

i (10¢)

Abb. 109.
Lichtzeigerablesung

lllllllllllll!l]llll[

im BogenmaB erhalten, wenn a’ der auf eine Kreisskale vom Radius 4 um-
gerechnete Ausschlag a der ebenen Skale ist (Reduktion auf den Bogen).

Dafiir gilt

a=a—141 (104d)
mit

A=a-—A¢p=a—Aarctan%. (10e)

Strom- und Spannungsempfindlichkeit: Strom- und Spannungsempfindlich-

1) Die Beziehung setzt voraus, daB der Lichtzeiger des stromlosen Instrumentes
unter einem rechten Winkel auf die Skale trifft.



E. 4.1. Drehspulgalvanometer 277

keit eines Galvanometers sind durch die Gleichungen

-9 _ @4 1
£, = T (11a)
und
-9 _ aI/A.
Ey 00 (11Db)

definiert. VereinbarungsgemiB werden der Ausschlag a’ in der MaBeinheit
mm und der Skalenabstand 4 in m angegeben. Demzufolge sind die Ein-
heiten der Strom- und Spannungsempfindlichkeit

mm/m mm/m

(B =5 Byl = 2

Aus dem Vergleich der Gln. (9) und (11a) folgt

E;=2Ep,. (12)

Die Kehrwerte der Empfindlichkeiten

1 1
OI = ’E und OU = 'E; (133, b)

werden Reduktionsfaktoren oder Strom- und Spannungskonstante des In-
strumentes genannt. Strom- und Spannungsempfindlichkeit sind iiber den
Innenwiderstand R; des Instrumentes miteinander verbunden (QOhmsches
Gesetz):

E, = EyR,. (14)

Die Kennwerte eines Galvanometers sind meist auf dem Typenschild an-
gegeben, so dal auch mit nichtkalibrierten Instrumenten iiber die Gln. (11)
und (13) Absolutmessungen von Strom und Spannung méglich sind.

Experimentell lassen sich die Stromempfindlichkeit E; eines Galvano-
meters und sein Innenwiderstand R; (vgl. Aufgabe 2 in E. 1.2) wie folgt er-
mitteln:

Wiéhlen wir in der Schaltung nach Abb. 110 den Widerstand R, < R,, 148t
sich der aus den Parallelwiderstinden R, und R; + R, gebildete Widerstand
gegeniiber R, vernachlissigen, und die Stromstérke im Kreis betrigt an-
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nihernd

U
=, 15
I 1 -Rl ( )
Uber das Galvanometer flieBt nach den Gesetzen der Stromverzweigung nur
der Teilstrom

I=1-1I, (16)
(I Teilstrom im Widerstand R,), fiir den andererseits
RZ
gilt. Aus diesen Beziehungen folgt
1=UE 1 (18)

R, "R+ R+ Ry

Abb. 110. Schaltung
des Galvanometers

Damit sind die Stromkonstante [Gl. (13a)] durch

1 UR, 1
Cr= g “WIAE R+BRTE (192)
und der Ausschlag durch
a E,UR, 1 (19b)

P=AT" R, R +R,+R,

gegeben.

Mit 2 Werten des Widerstandes R, und entsprechenden Ausschligen er-
geben sich bei Konstanz der iibrigen GroBen zwei Gleichungen, in denen R;
und E; unbekannt sind und daraus errechnet werden koénnen. Voraus-
gesetzt wird dabei, daB E; — wie bei guten Galvanometern gesichert — nicht
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von der GroBe des Ausschlages abhiingt. Soll dies nicht vorausgesetzt werden,
benutzen wir zwei Wertepaare R, und R,, die zu annihernd gleichen Aus-
schldgen fithren.

Wenn wir in Abb. 110 den Widerstand R; ausschalten (R; = 0), wird der
Ausschlag des Galvanometers nach Gl. (19b) durch den Innenwiderstand R,
bestimmt, sofern im Vergleich zu diesem R, verschwindend klein ist
(B, < R;). Der Ausschlag geht mit wachsendem R, zuriick und betrigt an-
niahernd die Halfte des anfinglichen Wertes, wenn

R, =R, (20)

ist.

Bewegungsgleichung und Bewegungsarten der Spule: Die Spule eines Gal-
vanometers filhrt meist gedimpfte Drehschwingungen um eine Gleich-
gewichtslage aus [Schwingfall (a) in Abb. 111]. Beim stark geddampften

Abb. 111. Bewegungsarten einer Galvanometerspule
a) Schwingfall (T = 3,58; & = 0,15871); b) Kriechfall; c¢) aperiodischer
Grenzfall (Ty = 3,498; wy = 6 = 1,8571)

System wird sich eine asymptotische Kriechbewegung [Kriechfall (b)] ein-
stellen. Den Ubergang vom Kriech- zum Schwingfall bildet der aperiodische
Grenzfall (c). Bei ihm kommt die Spule in kiirzester Zeit in der Gleich-
gewichtslage zur Ruhe. Darin liegt die meBtechnische Bedeutung des
aperiodischen Grenzfalles.

Alle Bewegungsformen der Drehspule gehorchen einer Differentialglei-
chung (Schwingungsgleichung), die sich durch Gleichsetzen aller am System
wirkenden Drehmomente ergibt.-Zunéchst wird ein stromloses Instrument
angenommen, so dafB sich die Dampfung auf die Luftreibung (» Reibungs-
faktor) im Ringspalt des Magneten beschrankt. Dann gilt

2
Lo 9 pe—o. (21)

7 de? ds
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o = a(t) ist der momentane Drehwinkel, J(d%«/d#?) verkérpert die durch
das Trigheitsmoment J bedingte Trigheit des Systems, r(da/dt) ist das
durch Diampfung verursachte Drehmoment und Do das riicktreibende Mo-
ment, welches durch die WinkelrichtgréBe D der elastischen Spulenbefesti-
gung erzeugt wird. Entsprechend ihrer physikalischen Bedeutung werden
die Dampfungskonstante

r

= 22

0=157 (22)

und die Kreisfrequenz wo des ungedampften Systems in der Form
D

w% = 7 (23)
eingefiihrt, so daf anstelle der Gl. (21) auch

d2x do .
geschrieben werden kann. Mit dem Ansatz

o = aet (25)
und seinen Ableitungen

de d2a

- = =2

a Ae und T Ao
folgt aus Gl. (24) die charakteristische Gleichung

224 204+ 0§ =0, (26)

aus der sich fiir 4 die beiden Lésungen

I S g (27)

ergeben.

Jeder der beiden A-Werte liefert eine partikulire Losung der Gl. (24),
wenn man sie in den Ansatz (25) einsetzt.

Die vollstindige Lésung ist fiir § < wo

2= et gl o o VE-wit (28)
und fiir 6 = wo
a=¢e"%(a+ bt). (29)

Die Konstanten @ und b sind aus den Anfangsbedingungen zu bestimmen.
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Beim Abschaltvorgang lauten diese: a = oo, da/dt = 0 fiir ¢ = 0. Man
hat drei Fille zu unterscheiden: '

a) Fiir 6 > wo ist die Wurzel reell, ;o sind negativ, und « fallt monoton.
Es liegt der aperiodische oder Kriechfall vor.

b) Wenn § = wo ist, gibt es nur eine Losung der Gl. (26). Der Ausschlag «
[siehe Gl. (29)] nimmt ebenfalls, jetzt optimal schnell, monoton ab (aperi-
odischer Grenzfall).

¢) Der Schwingfall liegt fiir § < wo vor, die Wurzel wird imaginir. Nach
der Eulerschen Beziehung!) kann in diesem Falle Gl. (28) in der Form

a = e {(a + b) cos wt + j(a — b) sin wt} (28a)
geschrieben werden. Darin stellt

2
w=2m=77f= w0l — o (30)
die Kreisfrequenz dar (v Frequenz, 7' Schwingungsdauer).
Da Gl. (24) reell ist, miissen sowohl Real- als auch Imaginéirteil von
Gl. (28a) fiir sich allein schon Losungen sein. Die vollstindige Losung ist

1) Die komplexe Schreibweise einer Schwingung stiitzt sich auf folgende Zusammen-
hinge: Die Kreisbewegung kann als ein in der komplexen Zahlenebene mit der Kreis-
frequenz w (Winkelgeschwindigkeit) um den Ursprung umlaufender Punkt aufgefaft
werden. Der Radiusvektor A’ der Kreisbewegung stellt physikalisch die Amplitude der
Schwingung dar. Er bildet mit der positiven reellen (2-)Achse die Winkel

p=owt oder y=wt+ ¢,
je nachdem, ob der Winkel ¢ zum Zeitpunkt ¢ = 0 ebenfalls Null oder ¢’ ist. Die Be-
triage der Koordinaten des Punktes auf der reellen und der imaginiren, der y-Achse,
sind unter der Voraussetzung ¢ = O fiir ¢ = 0

x = A’ cosyp = A’ cos wt,

y=A'siny = A’ sin wt.

Die Betrige x und y stellen jeder fiir sich eine lineare Schwingung dar. Sie verdeut-
lichen, daB die lineare und zirkulare Oszillation fir die mathematische Behandlung ein-

ander analog sind. Mit der imagindren Einheit j = V:—l (definiert durch j2 = —1)
kann der momentane Schwingungszustand des auf dem Kreis umlaufenden Punktes
auch durch die komplexe Zahl :

z + jy = A’(cos wt + j sin wt) = At

dargestellt werden. Der Zusammenhang der sin- und cos-Funktion mit der Exponen-
tialfunktion ist durch die Eulersche Formel

el — cos wt + j sin wt

gegeben.
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daher

o = e~ {fi cos ot + B sin wt} (31)

oder

I

a = Ce ¥ cos (wt — B). (32)

Dies ist die Darstellung einer geddmpften Schwingung.
Das Verhiltnis zweier aufeinanderfolgender Maximalausschlige o, und
®m+; Dach einer Seite ist

% e~

= m = e‘ST . (33)

Omt1

Der Exponent 67 heilt logarithmisches Dekrement /1 :

Om

Im+1

In = 8T =

i=27_té__—_[1, (34)
v )

Beim Einschalten eines Stromes bewegt sich die Spule eines Galvanometers
unter dem EinfluB des Drehmomentes GI, [ = Galvanometerkonstante,
vgl. Gl (8a)] auf eine neue Gleichgewichtslage zu. Der Einschwingvorgang
gehorcht der inhomogenen Differentialgleichung

d?a do

Der Gesamtstrom I, wird aus dem Strom I einer Spannungsquelle und dem
durch die Spulenbewegung induzierten Strom I; gebildet. Er kann durch
Induktionsspannung U; und Widerstand ausgedriickt werden:

Uy

IE=I+Ii=I+m‘

(36)
R, ist der Innenwiderstand des Galvanometers, R, der Widerstand des

duBeren Kreises. Fiir die Induktionsspannung ergibt sich aufgrund des
Induktionsgesetzes

U, = _NE= —NBA*d—a= _Gﬂ

& a at (37)

(V, A* Windungszahl und Fliche der Spule; @, B KraftfluB und KraftfluB-
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dichte des magnetischen Feldes). Damit kann fiir den Gesamtstrom [Gl. (36)]

G da

L A (38)

gesetzt werden.
Wird dies in Gl. (35) beriicksichtigt, ergibt sich nach entsprechender Um-
formung fiir die Schwingungsgleichung

d2x G? de
J D +(r+Ri+Ra)W+Da=GI. (39)
Hierin ist I der Strom durch die ruhende Spule. Der Klammerausdruck
r* = r + G*/(R; + R,) mull als Reibungsfaktor des belasteten Galvano-
meters aufgefaBt werden.
Mit der Substitution « = a* 4+ (G/D) I geht Gl. (39) in

d2a*

G? da*
e S o i Tl (#0)
i a

. s

iiber. Sie nimmt somit die Struktur der Gl. (21) an.

Der Einschwingvorgang des Galvanometersystems in die Nullage und in
eine beliebige andere Gleichgewichtslage sind also gleichwertig, so daf die
bereits frither diskutierten Losungen der Schwingungsgleichung im Prinzip
auch fiir den Fall des belasteten Galvanometers zutreffen. Insbesondere
folgt aus der entsprechend modifizierten Dampfungskonstanten [Gl. (22)]

oo G
e -
=9y T %7 (” B+ Ra)’ (41)

daB sich die Dampfung aus einem mechanisch und einem elektrisch beding-
ten Anteil zusammensetzt. Sie ist durch die Wahl des AuBenwiderstandes
R, in weiten Grenzen verdnderlich. Wenn der Widerstand im aperiodischen
Grenzfall R, genannt wird, gilt insbesondere:

a) R, < Rg.: Kriechfall. Die Dampfung ist bei kleinem R,, besonders bei
R, = 0 (KurzschluB} der Galvanometerklemmen), gro8.

b) R, = Ry.: Aperiodischer Grenzfall. In diesem Falle ist 0* = wo. Mit
Gl. (23) folgt daher aus Gl. (41) fiir den Grenzwiderstand

G2

-~ _&,. 42
2D —r )

R

¢) Ry > Ryt Schwingfall. Bei extrem groem R, (E, — oo, offene Galvano-
meterklemmen) wird die Démpfung durch die meist nur kleine Luftreibung
bestimmt.
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Wenn die Gln. (30) und (34) miteinander verkniipft werden, 1at sich die
Schwingungsdauer 7 eines gedimpften Galvanometers durch die des unge-
dampften Systems Ty und durch das logarithmische Dekrement / ausdriicken :

2
T=T0V1+%. (43)

Danach wichst die Schwingungsdauer eines Galvanometers mit seiner
Dimpfung.

Somit stehen Gleichungen zur Verfiigung, die auch die in diesem Versuch
nicht geforderten Galvanometerkonstanten (WinkelrichtgroBe der Dreh-
spule D, ihr Trigheitsmoment J, die Galvanometerkonstante @) zu ermit-
teln gestatten.

Versuchsausfiihrung

Wir stellen die Schaltung nach Abb. 110 her und sichern, daf B, > R,
und R, < R, (GréBenordnung von R;: 10 bis 102 Q) ist. Die Widerstinde R,
(GroBenordnung: 10% bis 10 Q) und R, (GroBenordnung: 0,1 bis 10 Q)
werden bei jeder MeBreihe so aufeinander abgestimmt, dal der Ausschlag
auf einer mehr als 1 m vom Instrument entfernten ebenen Skale 200 bis
300 mm nicht iiberschreitet. Dann eriibrigt sich die Reduktion des Aus-
schlages auf den Bogen (a’ ~ @). Bei offenem Galvanometerkreis (B; = o)
kann der Zeiger schnell in die Nullage gebracht werden, indem der Kurz-
schluBkontakt K mehrmals betétigt wird.

Bei Aufgabe 1 beginnen wir mit R, = 0 und notieren den Ausschlag
(@9;). Um Unsymmetrien der Anzeige auszuschlieBen, polen wir mit dem
Schalter § die am Galvanometer liegende Spannung U’ um, lesen den Aus-
schlag (ag,) nach der anderen Seite vom Nullpunkt ab und bilden den Mit-
telwert ao = (@g; + @g)/2. Auf gleiche Weise werden die Ausschlige a,
(=1, ..., 5) fiir weitere Widerstinde R, ermittelt. Der grofite Widerstand
sollte etwa zu einem Ausschlag ao/4 fithren. Jede Messung wird in Null-
punktbestimmungen eingeschlossen (Nullpunktdrift!). Aus einer graphi-
schen Darstellung a, = f(R;) wird der Widerstand R, entnommen, fiir den
a = ap/2 ist. Er stimmt praktisch mit dem Innenwiderstand iiberein
(Bsayi) = B;)-

Mit zwei Wertepaaren B, und ¢ =~ &’ der graphischen Darstellung stellen
wir auflerdem 2 Gleichungen nach Formel (19a, b) auf und berechnen daraus
die Stromempfindlichkeit #; und den Innenwiderstand R; des Galvano-
meters, nachdem wir die Spannung U am Voltmeter abgelesen und den
Skalenabstand A4 sowie die iibrigen Widerstinde (R,, R,) ermittelt haben.
Die Spannungsempfindlichkeit des Instrumentes folgt aus Gl. (14).

In Aufgabe 2 erzeugen wir jeweils durch eine am Potentiometer ab-
gegriffene Spannung U’ einen angemessenen Ausschlag ao und beobachten
fiir verschiedene AuBenwiderstinde R, = R, + R; das Zuriickschwingen
der Galvanometerspule in die Nullage, nachdem die Spannung U im Haupt-
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stromkreis abgeschaltet wird. Zunichst verschaffen wir uns einen Uberblick
iiber die Bewegungsarten der Spule (Schwing-, Kriech- und aperiodischer
Grenzfall), indem R;—~ mit dem Wert 0 beginnend — zunéichst in groben Stu-
fen geidndert wird. Sodann engen wir den aperiodischen Grenzfall ein, indem
wir den Widerstand R, = R,, suchen, fiir den ein bestimmter Ausschlag ao in
kiirzester Zeit zu Null wird (Nullpunktkontrollen!).

Fiir einen Kriechfall (R, < R,,), den aperiodischen Grenzfall (R, = R,,)
und mindestens 5 Schwingfille (R, > R,,) werden die Ausschlag-Zeit-Kur-
ven gezeichnet. Im Interesse einer guten Vergleichbarkeit der Kurven wer-
den sie normiert, indem fiir jeden MeBpunkt die Quotienten a/ao gebildet
und gegeniiber der Zeit aufgetragen werden. Im Schwingfall kénnen sicher
nur die Umkehrpunkte des Ausschlages und die zugehérenden Zeiten erfaBt
werden. Fiir die Schwingfille wird das logarithmische Dekrement 4 nach
Gl. (34) berechnet oder besser aus einer einfach-logarithmischen Darstel-
lung entnommen. Wenn in ihr der Ausschlag tiber der Zeit aufgetragen wird,
ergeben sich Geraden, aus deren Steigung das logarithmische Dekrement
folgt. A wird in Abhangigkeit vom Dampfungswiderstand R, aufgetragen.
Aus den Ausschlag-Zeit-Kurven sind weiterhin die Schwingungsdauern 7'
in Abhingigkeit vom Dimpfungswiderstand R, zu ermitteln und mit dem
nach Gl. (43) berechneten Wert zu vergleichen. T ist die zu R, = oo (offener
Galvanometerkreis) gehérende Zeit. :

Im aperiodischen Grenzfall (R, = R,.) wird zusétzlich folgende Messung
empfohlen: Man greift verschiedene Spannungen U’ an entsprechenden
Widerstinden R, ab und erzeugt so Galvanometerstrome I, die nach Gl. (18)
berechnet werden. (Unsymmetrien der Anzeige durch Umpolen und Mittel-
wertbildung der Ausschldge nach rechts und links ausschalten, Nullpunkt-
kontrollen!). Trigt man diese gegeniiber den gegebenenfalls auf den Bogen
reduzierten Ausschligen @ auf, liefern gute Galvanometer bei hinreichend
genau ermitteltem Innenwiderstand Geraden. Die Stromempfindlichkeit ist
also iiber den erfaBBten Bereich konstant und folgt aus dem Anstieg Aa/AT
der Kurve [Gl. (12a)]:

Aa

Br=JAr

E. 4.2. Ballistisches Galvanometer

Aufgabens 1. Die Magnetisierungskurve fiir den Hufeisenkern eines Elek-
tromagneten ist aufzunehmen.
2. Ermittle die magnetische Feldstirke zwischen den Polen des
Elektromagneten im Sattigungsgebiet.

Ballistische Galvanometer oder Stofgalvanometer sind Drehspulinstru-
mente (siche Abschn. E. 4.1) mit groBem Trigheitsmoment J der Spule und
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kleiner Winkelrichtgro8e D ihrer Befestigung, so dafl die Schwingungsdauer
[GIn. (23) und (43)] schon im stromlosen Zustand groB ist (7' > 10 s).
FlieBt wihrend einer gegeniiber der Schwingungsdauer Ty kurzen Zeit
At = t, — ¢, ein Strom durch die Galvanometerspule, so hat sie sich erst
wenig aus der Ruhelage entfernt, wenn der Strom bereits abgeklungen ist.
Sie beginnt eine freie Drehschwingung mit einer Anfangsgeschwindigkeit

die der Elektrizititsmenge ¢ des Stromstofles ¢ II dt proportional ist.

Dieser bestimmt den maximalen Ausschlag des Galvanometers den so-
genannten ballistischen oder Stofausschlag, der damit der Ladung @ pro-
portional ist und diese zu messen gestattet. Folgende Ableitungen fiihren zu
den entsprechenden Beziehungen :

Die Bewegung der Galvanometerspule gehorcht der Differentialgleichung
(39), wenn fur I der beim StromstoB zeitabhingige Momentanwert I(f)
= dQ/dt eingefithrt wird. Mit den Gln. (23) und (41) nimmt die Schwin-
gungsgleichung (39) nach Division durch das Tragheitsmoment J die Form

d%a G dQ
S et = =%
G + 20 dt Twox =— o (44)
an. Eine Integration in den Grenzen ¢, und t2 des StromstoBes liefert
A ts
de

1 21

Da die Drehspule aus der Ruhelage heraus angestoBen wird [(a), = 0;
(de/de), = 0] und « iiber das Zeitintervall A¢ als verschwindend klein an-
gesehen werden kann, vereinfacht sich Gl. (45) zu

(%); % Q. | (46)

Die am Ende des StromstoBes erreichte Winkelgeschwindigkeit & = (da/dt),,
der Drehspule ist demnach der Elektrizitatsmenge @ des StromstoBes pro-
portional. Beginnen wir die durch den Stromsto verursachte freie Schwin-
gung vom Zeitpunkt ¢ = ¢, an zu zdhlen und fiithren als neue Zeitksale
' =t — 1, ein, kann die Spulenbewegung gemiB Gl. (24) nunmehr durch die
homogene Differentialgleichung

2
gt’ +26* rra 2 fola=0 (47)
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beschrieben werden. Als vollstindige Losung fanden wir fiir den Schwing-
fall die Gl. (31). Thre Konstanten 4 und B ergeben sich aus den Anfangs-
bedingungen (zur Zeit ¢’ = Osind x = Qund & + 0)zu 4 = O und B = ¢/w.
Damit erhalten wir aus Gl. (31) fiir den zeitlichen Verlauf des Ausschlages

@ .
a=—e . gin wt’ (48)
. W

und daraus durch Nullsetzen der ersten Ableitung die Zeitpunkte extremer
Ausschlage:

tm = S arc tan —o- (49)
w

5%
(m=1,1"; 2,2’; 3,3;...). Der maximale StoBausschlag der Drehspule
(m = 1) betragt daher

G ad arc tan —‘
%= ev *.Q. (60)
Er folgt aus den Gln. (46), (48) und (49). Zur Drehung «; der Spule gehért
ein Ausschlag ¢, = 20, des ,,Lichtzeigers* (Reflexionsgesetz). Fiir ihn Wu'd
nach der Theorie des ballistischen Galvanometers

’

o= = ByQ =y 11Q (51)

gesetzt. Er ist demnach ebenfalls der Ladung @ proportional, die ihn ver-
ursacht. B} ist die mit der Dampfung des Galvanometerkreises sich ver-
andernde ballistische Empfindlichkeit ; B, steht fiir die ballistische Empfind-
lichkeit des (elektrodynamisch) ungedampften Instrumentes, und fiir 4 gilt

o* a4 2n
-—arc tan -2 ——arc tan —

A=e® o = 27 4, (62)

wobei /A = 2né*/w di¢ jeweilige Dampfung beschreibt. Entsprechend den
Gln. (11a, b) ist die ballistische Empfindlichkeit folgendermaBen definiert:

E, bzw. By, = “'% = %‘l (83)

(@’ Ausschlag auf einer Kreisskale, @ Ausschlag auf einer ebenen Skale, 4
Skalenabstand). Sie wird vereinbarungsgeméaf in der Einheit

mm/m

[By] = [Byel = 1 o g B0

C
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angegeben. Die Niherung o’ = a in Gl. (53) setzt kleine Ausschlige vor-
aus. Andernfalls muBl ¢ nach den GIn. (10) auf den Bogen reduziert
werden.

Der geratetypische Wert By, ist meist auf dem Typenschild des Instru-
mentes angegeben. Andernfalls kann er bestimmt werden, indem Konden-
satoren der Kapazitit C durch eine Spannung U geladen und iiber das Gal-
vanometer entladen werden. Dabei bewirkt die jeweilige Ladung Q=00
Ausschlige a’ bzw. a. Aus der Steigung einer Kurve a = o’ = f(Q) folgt E,,
gemilB Gl. (53).

Das logarithmische Dekrement A wird nach Gl. (34) firr die jeweiligen
Versuchsbedingungen aus dem logarithmierten Verhiltnis a,/a,.; bzw.
U |Oay Zweier aufeinanderfolgender Ausschlige auf der gleichen Seite vom
Nullpunkt bestimmt:

’
Ad=In2m —1p Im

. 54
U+l U1 (54)

Zur Vereinfachung der Auswertung kann A aus einer graphischen Darstel-
lung (Abb. 112) entnommen werden, in der die Gl. (52) in der Form A =
f(@,/a, 1) Wiedergegeben ist.

Die magnetische Feldstirke zwischen den Polschuhen eines Elektromagne-
ten ergibt sich aus dem StromstoB, den eine aus dem Magnetfeld schnell

18 ‘ T
A- (—L”
am+1

17

A
13 /’
12 -
Abb.112.
/ Bestimmung von 4 aus aufeinander-

" folgenden Ausschlidgen eines
0 ballistischen Galvanometers
1 2 4 680 20 40 60
n .
Im+1

heraus bewegte, flache Induktionsspule erzeugt. Wenn ihre Windungs-
fliche A* mit der magnetischen Induktion B einen rechten Winkel bildet,
herrscht in der Spule ein magnetischer Flufl @, den Gl. (2) beschreibt. Bei
N Windungen der Spule und g, = 1 (Luft) in Gl. (1b) fiihrt ihre Bewegung
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im Feld zu einer induzierten Spannung (Induktionsgesetz)

do dB dH
U= —-N—= —NA¥—— = — *
N T NA & HeVA ETaE

(85)
die bei einem Gesamtwiderstand im Galvanometerkreis (Abb. 113) von
R =Ry, + R, + R,

(Bsp, Widerstand der Induktionsspule; R; Innenwiderstand des Instrumen-
tes; R, Ballastwiderstand) zu der momentanen Stromstéirke

U A* dH
I=g =175 (56)

fithrt. Durch das Instrument flieBt wihrend der Zeit ¢ eine Elektrizitits-
menge

t t 0
A* [ dH A* A*
Q=J.Idt=—,u‘,N—F Tdt=—yoN—R—,J‘dII=yoN7H, (57)
0 0 H

aus der man mit Hilfe der Gl. (51) iiber den ballistischen Ausschlag ¢, die
magnetische Feldstarke bestimmen kann:

(58)

Abb. 113. Schaltung des ballistischen Galvanometers und des
Elektromagneten

Versuchsausfithrung

Zunichst entmagnetisieren wir den Eisenkern in einem Wechselfeld ab-
nehmender Amplitude. Wir speisen die Spulen des Magneten EM aus einem

19 Phys. Praktikum
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Stelltransformator oder einer Potentiometerschaltung und senken die Wech-
selspannung langsam bis zum Werte Null (ausfiihrliche Beschreibung der
Entmagnetisierung siehe Versuchsausfiihrung zu Abschn. 4.3).

Fiir die Aufnahme der Magnetisierungskurve (Aufgabe 1) werden der
Galvanometerkreis und der Magnet nach Abb. 113 geschaltet. Der Magnet
wird schrittweise bis zur Séttigung mit wachsender Stromstéirke I,; (Rege-
lung iiber Widerstand R;) erregt und anschlieBend der gesamte, in Abb. 106
skizzierte Zyklus durchlaufen. Die Umkehr des Feldes erfolgt iiber den Pol-
wendeschalter S. Da einerseits a,, ~ H [vgl. Gl. (568)], andererseits in der
Magnetspule H ~ Iy [vgl. Gl. (6b)] ist, kann der Einfachheit halber durch
eine Darstellung des Galvanometerausschlages iiber der Stromstirke im
Magneten ein der Magnetisierungskurve analoges Bild erhalten werden.

Fiir Aufgabe 2 setzen wir einen entsprechenden, auf 1 m Skalenabstand
reduzierten Ausschlag a,, in Gl.'(58) ein. Die ballistische Empfindlichkeit Ky,
und der Innenwiderstand R, des Instrumentes sind aus seinem Typenschild,
die Spulendaten (N, mittlere Windungsfliche 4* in m?, Rg ) aus der Be-
schriftung der Versuchsanordnung zu ersehen. Den Widerstand R, stellen wir
so ein, dafl das Galvanometer im Schwingfall arbeitet, das Amplitudenver-
haltnis a,,/a,,; gut ermittelt und A aus der graphischen Darstellung be-
stimmt werden kann. Die Feldstérke im Luftspalt wird fiir den Sattigungs-
bereich der Hysterese nach Gl. (58) berechnet.

E.43. Kriechgalvanometer — Fluxmeter

Aufgaben: Fiir einen geschlossenen ferromagnetischen Kreis (Transforma-
torkern) sind
1. der magnetische Fluf} und die FluBdichte in Abhangigkeit von
der magnetisierenden Feldstarke sowie
2. der Verlauf der Permeabilitdt iiber die Neukurve, die Rema-
nenz und die Koerzitivfeldstérke zu ermitteln.

Magnetische Flufimesser (Fluxmeter) sind so stark geddmpfte Drehspul-
instrumente (vgl. Abschn. 4.1), dal der Kriechfall eintritt. Das Drehspul-
system dieser Kriechgalvanometer besitzt ein geringes Trigheitsmoment J
und ein verschwindend kleines riicktreibendes Moment (Dx = 0). Die me-
chanische Ddmpfung kann gegeniiber der elektromagnetischen vernach-
lassigt werden, so daB fir den Dampfungsfaktor in Gl. (39) r* = G?/(R;+ R,)
= G?/R’ gilt (G Galvanometerkonstante; R; Innenwiderstand des Instru-
mentes; B, AuBenwiderstand; Gesamtwiderstand des Galvanometerkreises
R’ = B, + R,). Daher vereinfacht sich die Bewegungsgleichung der Dreh-
spule [Gl. (39)] zu

de
*
& GI (59)
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(I momentane Stromstérke; a Drehwinkel der Spule; deo/df Winkel-
geschwindigkeit). Nach Umformung und Integration folgt daraus

[ 29 ta
Aa=a2—a1=-%j 1dt=%fUdt. (60)
t1 1 7%

Aus der Drehung Ax der Galvanometerspule lassen sich demnach Strom-
(J I dt) und SpannungsstoBe (J U dt) ermitteln. Letztere werden bei einem
Fluxmeter durch Spannungen gebildet, die in einer Spule (N’ Windungen)
induziert werden, wenn sich in ihr der magnetische FluB @ andert [AD =
D, — O, = (B, — B)) A* = ABA*; A* ist die vom magnetischen Fluf} er-
faBte Fliche, B die FluBldichte]. Fiir den induzierten SpannungsstoB gilt
nach Gl. (55)

ty
fUudt=N A® = N'4*AB. (61)
ty

Der magnetische FluB @ und die FluBdichte B durchsetzen die Spulenfliche
in diesem Falle senkrecht. Das Minuszeichen der Gl. (55) ist fiir FluB-
messungen praktisch ohne Bedeutung und deshalb in Gl. (61) nicht bertick-
sichtigt worden. Wird in Gl. (60) die Empfindlichkeit Ep des FluBmessers
eingefiihrt, das Zeitintegral der Spannung (Spannungssto8) durch die rechte
Seite von Gl. (61) ersetzt und beachtet, daff bei Lichtzeigerinstrumenten
fir die Ausschlaginderung Aa’ = aj — a] auf einer zylindrischen Skale
Ad’ = 2r Ax (r ,,Zeigerlinge) gilt [vgl. Abschn. 4.1], folgt

123
Ad = Ep [ U dt = BN’ AD = EgN'A* AB. (62)
ty

Die Empfindlichkeit Ep kommerzieller Fluxmeter wird in der MaBeinheit
Skt - V-1s71 angegeben. Auf dem Typenschild ist oft der reziproke Wert
Cg = 1/Eq in Vs pro Skt. als Gerdtekonstante eingetragen.

Die Versuchsanordnung ist in Abb. 114 schematisch dargestellt. Als ge-
schlossener magnetischer Kreis dient ein Transformatorkern. Er ist mit
einer Erregerspule (N Windungen) versehen, die aus einer Gleichspannungs-
quelle U gespeist wird. Der Erregerstrom I wird mit dem Widerstand R
stufenweise verindert. Er erzeugt nach dem Durchflutungsgesetz eine
magnetisierende Feldstdrke [vgl. Gl. (6b)]

H=NIJl (63)

(! mittlerer Umfang des magnetischen Kreises) und diese einen magnetischen
FluB @ im Kern. Jede FluBanderung A® bewirkt in der Induktionsspule

19%*
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(V" Windungen) des MeBkreises einen SpannungsstoB, der bei geschlosse-
nem Schalter 8’ gemafl Gl. (62) die Zeigerstellung des Fluxmeters G um Aa’
andert.

Versuchsausfiihrung

Zunéchst werden mit dem MeBschieber die Abmessungen des Kernes er-
mittelt und sein Querschnitt A* sowie der mittlere Umfang ! des magneti-
schen Kreises berechnet. Ein zerlegbarer Kern mull sorgfiltig und ohne
nennenswerte Luftspalte zusammengesetzt werden. Die Anordnung schal-
ten wir nach Abb. 114.

o &, Abb.i14.
I £ =  Magnetische FluBmessung
und Entmagnetisierung

Vor den elektrischen Messungen entmagnetisieren wir den Transformator-
kern, indem wir die Erregerspule mit der Wechselspannungsquelle U, ver-
binden (der Schalter Sy ist geschlossen, die mit ihm gekoppelten Schalter
S und 8’ sind dann automatisch geéffnet). Die am Potentiometer Ry ab-
gegriffene Spannung muf} anfangs so hoch gewahlt werden, dal3 die Wechsel-
stromstérke Iy = I'g ... zu Amplituden des magnetisierenden Wechselfeldes
fiihrt, mit denen periodisch Sattigungsmagnetisierungen des Kernes erreicht
werden (Igpa, ist der Arbeitsplatzanleitung zu entnehmen). Die Strom-
starke I wird anschlieBend iiber die am Potentiometer abgenommene
Spannung allmihlich bis zum Werte Iy = 0 verringert. Dabei werden
immer kleinere Hysteresekurven durchlaufen, bis sie bei Iy = 0 zu einem
Punkt entarten und der Kern vollsténdig entmagnetisiert vorliegt.

Fiir die FluB- und FluBdichtebestimmungen schalten wir die gekoppelten
Schalter um (Sg geoffnet, S und 8’ geschlossen), nachdem mit dem Stufen-
schalter bei R der Erregerkreis getffnet wurde (R = o, I = 0; @, B = 0).
Das MeBwerk des FluBmessers wird entarretiert, der Nullpunkt gegebenen-
falls iiber eine Réndelschraube mechanisch korrigiert. Bei den Messungen
verringern wir den Widerstand B mit dem Stufenschalter schrittweise und
protokollieren fiir jeden der m Schaltschritte (m = 1, 2, 3, ...) die entspre-
chenden Stromstirken I = I, sowie die zugehérenden Ausschlagsinderun-
gen Aayp, . Nur bei sehr stark geddmpften Instrumenten ruht praktisch’ der
Zeiger zwischen den Schaltschritten. Andernfalls sind die Aay, aus den
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Zeigerstellungen unmittelbar vor und nach der FluBinderung zu bilden.
Mit den MeBwerten von I, A* und Aay, werden aus den Gln. (62) und (63)
die FluB- und FluBdichteinderungen sowie die magnetisierende Feldstirke
berechnet. Die Werte fiir N und N’ sowie Cg bzw. Eg sind in der am Ar-
beitsplatz ausliegenden Anleitung angegeben. Mit den Werten fiir @ bzw.
B und H wird die Neukurve der Magnetisierung (Abb. 106) gezeichnet.
Dabei ist zu beachten, daB sich der Flull @,, bzw. die FluBdichte By, durch
Aufsummieren der m FluB- bzw. FluBdichtednderungen ergeben. Der Zweig
P, — P, der Hysteresekurve (Abb. 106) wird erhalten, indem der Wider-
stand R wieder bis zu R = oo schrittweise erh6ht wird. Den Kurvenzug
P, — P, und die Verlingerung gegen P, bekommen wir nach Umpolen der
Gleichstromquelle und schrittweise Erhohung des Erregerstromes I = I;.
Fiir diesen Kurventeil ist die magnetisierende Feldstirke negativ zu neh-
men. Aus der Neukurve wird mittels Gl. (1b) die graphische Darstellung
e = f(H) abgeleitet. Die remanente FluBdichte (Remanenz) By und die
Koerzitivfeldstirke He werden der Hysterese entnommen.

Achtung : Falls sich der Zeiger des FluBmessers im Verlaufe einer MeBSreihe
dem Endausschlag nihert, ist vor dem néichsten Schaltschritt der Null-
punkt entsprechend zu verlegen. Sollen die Messungen abgebrochen oder
unterbrochen werden, muf3 der FluBmesser erst arretiert und von der Mef3-
spule getrennt werden, bevor wir die Gleichspannung abschalten. Andern-
falls kann das Gerdt beschiadigt werden.

E.44. Elektronenstrahiferroskop

Aufgabe: Die Magnetisierungskurven verschiedener ferromagnetischer
Werkstoffe sind mit einem Elektronenstrahloszilloskop auf-
zunehmen und die Koerzitivfeldstarken sowie die Remanenzin-
duktionen zu ermitteln.

Mit einem FHElektronen- oder Kathodenstrahloszilloskop (Kathodenstrahl-
oszllograph) wird der Verlauf einer elektrischen Spannung in Abhéngigkeit
von der Zeit oder im Vergleich zu einer anderen Spannung dargestellt. Es
kénnen daher auch Frequenzen gemessen und die Phasenlagen von Span-
nungen in bezug auf eine Vergleichsspannung bestimmt sowie alle MeB-
aufgaben gelost werden, die auf die genannten Moglichkeiten zuriickfiihrbar
sind. So werden beispielsweise Kennlinien aktiver und passiver elektrischer
Bauelemente und die magnetische Hysterese ferromagnetischer Stoffe auf-
gezeichnet. Als Nullindikatoren ermdoglichen Elektronenstrahloszilloskope
den phasenrichtigen Abgleich von WechselstrommeBbriicken.

Der Mefivorgang wird auf dem Leuchtschirm einer Elekironenstrahlrohre
(Abb. 115) aufgezeichnet. Diese arbeitet im Prinzip wie folgt: Eine indirekt
geheizte Kathode K emittiert Elektronen, die durch eine zylindrische Anode
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A (Anodenspannung etwa 1000 bis 3000 V) beschleunigt werden. Der durch
eine Lochblende begrenzte Teil des Elektronenstrahles erregt einen Leucht-
schirm L im Spurpunkt. Die Kathode ist von einer Zylinderelektrode, dem
Wehnelt-Zylinder W umgeben. Er liegt im Vergleich zur Kathode auf nega-
tivem Potential und entspricht in seiner Wirkung dem Steuergitter einer

=

J\ J J J l Abb. 115.
Bildrohre (schematisch) eines
£ KR AHA W K Elektronenstrahloszillographen (ESO)

L

Triode (vgl. Abschn. E. 3.0.1). Die Steuerspannung kann bis zu etwa —100V
variiert werden, so dall der Elektronenstrom mehr oder weniger gesperrt
und das Leuchtschirmbild in seiner Helligkeit eingestellt wird. Eine weitere
Zylinderelektrode (Hilfsanode HA) wirkt gemeinsam mit der Anode 4 als
elektronenoptische Sammellinse, die es ermdoglicht, auf dem Leuchtschirm
ein verkleinertes Bild der emittierenden Kathodenfliche zu erzeugen. P,
und P, sind zwei Ablenkplattenpaare (- und y-Platten), an die MeB- und
Vergleichsspannungen (U ,) gelegt werden. Die entsprechenden elektri-
schen Felder bewirken eine spannungsproportionale horizontale und verti-
kale Auslenkung s, , des Elektronenstrahles auf dem Leuchtschirm:

8y, =1¢U,, (64a)
sy =¢,U,, (64b)

¢, = s,/U, und ¢, = 5,/U, sind die Ablenkempfindlichkeiten der Elektronen-
strahlrohre. Sie liegen in der GroSenordnung 1 bis 10 mm/V. Ihr reziproker
Wert wird Ablenkkoeffizient genannt. Eine Erhohung der Anodenspannung,
die im Hinblick auf die Biindelung des Elektronenstrahles und die Hellig-
keit des Schirmbildes durchaus erwiinscht wire, vermindert die Ablenk-
empfindlichkeit. Diese wird dagegen durch eine Nachbeschleunigung der
bereits abgelenkten Elektronen nicht so stark beeinfluft. Die entsprechende
Beschleunigungsspannung liegt an einer auf der Innenwand des Kolbens
angebrachten Ring- oder Spiralelektrode E.

Um den zeitlichen Verlauf einer Spannung auf dem Leuchtschirm zwei-
dimensional abzubilden, wird sie an die y-Platten gelegt und der Elektro-
nenstrahl in z-Richtung zeitproportional ausgelenkt. Dafiir sorgt eine Zeit-
ablenkeinheit (Abb. 116). Sie liefert eine Wechselspannung von sigezahn-
formigem Verlauf. Thre Frequenz wird in Stufen grob und innerhalb der
Stufen kontinuierlich geregelt. Wihrend des linearen Spannungsanstieges
auf der vorderen Flanke des Sigezahnes wird der Elektronenstrahl horizon-
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tal iiber den Bildschirm gefiihrt. Er springt wihrend des Abfalles der Span-
nung auf Null (steile Sagezahnflanke) in die Ausgangslage zuriick. Um eine
storende Riicklaufspur zu vermeiden, wird der Elektronenstrahl fiir die
Dauer des Riicklaufes ,,dunkelgetastet‘‘. Auf dem Oszillographenschirm er-
scheint genau eine Periode des MeBvorganges als stehendes Bild, wenn die
Frequenzen von MeBspannung und Zeitablenkspannung iibereinstimmen.

—1y-Teiler ————
-MeBver-
1010 |y Esk
| 1o O
%1 t:1000) | L
T i
'L_, T - i I : i
TRt T T T i
fremd ), Figen ’7 ' 1 {—
SO Netz I :u
Synchr: x-MeRver- ) | : :
<.s_f’zz_r/(z’r ®
ORU®) | __ |Scharfe /
: Helligkeit
%gﬁh’ R e e ———{ Nefzgerit
Trigger- I T
einheit Jeifablenkung
Frequenzwahl (grab/fein)
Ll/_vlfll/' ll/,l le

Abb. 116.

Vereinfachtes Blockschaltbild eines Elektronenstrahloszillographen
U,: y-Ablenkspannung; U,: z-Ablenkspannung;

U’: duBere Steuerspannung; ESR: Elektronenstrahlbildrohre

Betragt die Frequenz der Zeitablenkung einen Bruchteil der MeBfrequenz,
konnen entsprechend mehr Perioden des MeBvorganges beobachtet werden.

Da sich von auBen nur sehr schwer stabile Frequenzverhéaltnisse einstel-
len lassen, werden die y- und die Zeit-Ablenkeinheit durch einen elektroni-
schen Gleichlaufzwang (Einrichtung zum Synchronisieren) gekoppelt. Die
meisten Oszillographen erméglichen einen Gleichlaufzwang auch mit der
Netzfrequenz von 50 Hz oder mit einem externen Frequenzgenerator. Die
verschiedenen Moglichkeiten (Fremd-, 50-Hz-Eigensynchronisation) werden
durch einen Umschalter gewahlt.

Der Gleichlauf von MeB- und Zeitablenkspannung wird neuerdings durch
ein Ausloseverfahren erreicht: Ein ,,Trigger (Abb. 116) 16st den Sigezahn
immer dann aus, wenn die MeBspannung einen am Oszillographen einstell-
baren Schwellenwert (Triggerschwelle oder -pegel) durchlduft. Dieses Ver-
fahren erlaubt sogar die Abbildung eines iiber die gesamte Schirmbreite ge-
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spreizten Abschnittes einer Periode. Das Triggern kann wahlweise mit der
gerdteinternen, aber auch mit einer externen Triggereinheit erfolgen.

Bei vielen Oszillographentypen sind die Ablenkplatten iiber entsprechende
Buchsen direkt zugénglich. Je nach Ablenkempfindlichkeit und GroBe des
Leuchtschirmes der Rohre werden fiir die Aussteuerung des Elektronen-
strahles Ablenkspannungen zwischen 5 und 20 V Gleich- oder Wechsel-
spannung benétigt. Bei Wechselspannung ist zu beachten, dal der Aus-

schlag gleich dem Scheitelwert Uy = ]/QUeﬂ (Usn Effektivwert der Span-
nung) ist. Sind die Ablenkspannungen zu klein, werden sie, wie im Block-
schaltbild der Abb. 116 dargestellt, zunichst verstirkt (z- und y-MeS-
verstéirker). An die MeBverstirker werden hohe Anforderungen gestellt: Sie
sollen einedefinierteinstellbare und iiber einen breiten Frequenzbereich gleich-
mafBige, verzerrungsfreie Verstirkung bewirken. Fiir einen Frequenzbereich
bis etwa 100 kHz kann dies relativ leicht erreicht werden. Die Verstdrkungen
sind so bemessen, dall Eingangsspannungen von einigen mV die Oszillo-
graphen bereits aussteuern. Der MeBbereich wird zu hohen Spannungen hin
erweitert, indem die Verstdrker mit definiert wihlbaren Spannungsteilern
(in Abb. 116 als z- und y-Teiler bezeichnet) versehen sind.

Der Eingangswiderstand der Oszillographen liegt bei 1 bis 10 MQ. Oszil-
lographen erlauben daher Spannungsmessungen an hochchmigen Spannungs-
quellen und bei extrem niedriger Belastung der MeBstelle. Bei Wechsel-
spannungsmessungen mull die Frequenzabhingigkeit der Impedanz be-
achtet werden.

y-Verst

Abb. 117. Elektronenstrahlferroskop

Die Versuchsanordnung der Abb. 117 stellt ein sogenanntes Elektronen-
strahlferroskop dar. Mit ihm kann die magnetische Hysteresekurve als
stehendes Bild dargestellt werden, wie folgende Uberlegungen zeigen:

Im magnetischen Wechselfeld einer langen Spule Sp, (Abb. 117) wird eine
ferromagnetische Probe K (geschlossener Kern) periodisch ummagnetisiert.
Dies wird durch einen Wechselstrom I erreicht, den ein Stelltransformator
STr liefert und der iiber den Widerstand R, durch die Spule flieBt. Wenn
der Widerstand R, gegeniiber dem der Spule groBl gewahlt wird, bestimmt
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er die momentane Stromstirke I des Erregerkreises. Er erzeugt in der
Spule Sp, (Lange I, Windungszahl N,) eine momentane Magnetfeldstirke
[vgl. Gl (6Db)]

H="2X _ . (65)

Demnach ist der Spannungsabfall U = IR, am Widerstand R, der magneti-
sierenden Feldstiarke proportional. Er wird als MeBspannung benutzt und
an die horizontalen Ablenkplatten eines Oszilloskops gelegt. Ist dessen
horizontale Ablenkempfindlichkeit c,, entspricht einer Ablenkung s, des
Elektronenstrahles die Spannung U = s,/c,, und Gl. (65) nimmt die Form

N,s
H = 1°z
. Ry,

(66)

an,
Der jeweilige magnetische KraftfluB @ = BA* (A* Querschnittsfliche des
Kernes) durchsetzt die zweite Spule Sp, (Windungszahl N,). In ihr wird nach
dem Induktionsgesetz eine Spannung

do dB

- - _ *

O T (67)
erzeugt, die demnach der zeitlichen Anderung dB/dt der FluBdichte pro-
portional ist. Um die FluBdichte B als zweite MeBgréBe zu erhalten, muB
daher iiber die Spannung U, integriert werden. Dies besorgt ein RC-Glied
(Integrator), bei dem R > 1/wC (w Kreisfrequenz des Wechselstromes,
C Kapazitat des Kondensators, 1/wC kapazitiver Widerstand)!) ist. Die
momentane Stromstéirke I, = U,/R ist daher sehr gering und Gl. (67) hin-
reichend gut erfiillt. Am Kondensator entsteht der Spannungsabfall

Uy= N,

UC=—éTj‘Izdt=1R—1OJ‘U2dt : (68)

oder, wenn Gl. (67) beriicksichtigt wird,

UC:TZIN"A*%&=RLO.N2A*B‘ (69)

Demnach ist die magnetische Induktion B der Spannung Uy am Konden-
sator proportional. Diese wird zur vertikalen Auslenkung des Elektronen-

1) Erprobte Werte fiir den Integrator sind beispielsweise B = 50 kQ und C = 1 uF.
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strahles verwendet, nachdem sie verstirkt (y-Verstarker) wurde.l) Sind ¢,
die vertikale Ablenkempfindlichkeit und V, der Verstirkungsfaktor, be-
tragt die Spannung fiir eine Auslenkung s, andererseits Ug = s,/(c, - V).
Die magnetische Induktion folgt daher aus Gl. (69) zu

RCs,

B=——T%—.
Nyd*e,V,

(70)

Versuchsausfiihrung

Die einzelnen Baugruppen werden nach Abb. 117 geschaltet, nachdem
die Sekundirspannung des Stelltransformators ST auf ihren kleinsten
Wert eingestellt und der Elektronenstrahloszillograph eingeschaltet wurde.
Mit den entsprechenden Regelknopfen der Frontplatte des Oszillographen
sind Helligkeit und Schérfe des Schirmbildes giinstig einzustellen (Vorsicht!
Elektronenstrahl brennt bei iibermaBiger Fokussierung und Helligkeit auf
dem Leuchtschirm ein). Die Spulen Sp, und Sp, stecken wir auf einen U-for-
migen Kern K des ferromagnetischen Materials und schliefen den magneti-
schen Kreis mit einem entsprechenden Probekorper (Luftspalte méoglichst
klein halten!). Dann erhéhen wir die Sekundérspannung des Stelltransfor-
mators, bis der Elektronenstrahl durch den Spannungsabfall am Wider-
stand R, ausgesteuert wird. Falls dies nicht méglich sein sollte, ist iiber den
x-Verstirker des Oszillographen zu gehen. Die y-Verstirkung wird so ge-
wahlt, daB die Hysteresekurve den Leuchtschirm ausfiillt. Die Lage der
Koordinatenachsen erhalten wir dadurch, daB der Elektronenstrahl nach-
einander allein horizontal und vertikal ausgelenkt wird (U bzw. Ug = 0).
Der Koordinatenursprung soll méglichst mit dem Mittelpunkt des auf dem
Leuchtschirm befindlichen Rasters iibereinstimmen. Er kann mit entspre-
chenden Regelknopfen (Ho6he, Seite) verlegt werden.

Dem Leuchtschirmbild werden die horizontalen und vertikalen Aus-
lenkungen entnommen. Die zur Errechnung der Koerzitivfeldstirke Hg
und Remanenzinduktion By nach den GIn. (66) und (70) notwendigen
Ablenkempfindlichkeiten c, und ¢, sowie der Verstarkungsfaktor ¥V, werden
mit Hilfe der GIn. (64a u. b) tiber bekannte Spannungen U, , ermittelt.

E.4.5. Hall-Effekt

Aufgaben: 1. Ein Magnetometer (Hall-Sonde) ist zu kalibrieren, indem die
Hall-Spannung fiir zwei Sondenstromstirken in Abhingigkeit
von der magnetischen Feldstirke einer stromdurchflossenen
Spule aufgenommen wird.

1) Die Verstirker des Oszillographen miissen phasenrein arbeiten, andernfalls sind
die Hystereseschleifen im Sattigungsgebiet verschlungen.
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2. Fiir einen Halbleiterwerkstoff sind der Leitungstyp, die La-
dungstrigerdichte und die Beweglichkeit der Ladungstriger zu
ermitteln.

Eine quaderformige Halbleiterprobe werde parallel zu ihren Lingsseiten
(Abb. 118) von einem Gleichstrom I durchflossen. Sie befinde sich in einem
homogenen Magnetfeld der FluBdichte B, das die Probe senkrecht zur Ober-
fliche und zur Stromrichtung durchsetzt. Dies hat eine Lorentz-Kraft

E
MH,

|

|
/ I/

|

/
/
/

Abb.118. Zum Hall-Ei’fekt A

[GL (7)] auf die den Strom bildenden Ladungstriger zur Folge, die je nach
Vorzeichen aus ihrer urspriinglichen Strombahn heraus und zu einer der
Langsseiten der Probe hin verdrangt werden. Die Ladungen eines Vorzei-
chens sind also iiber den Querschnitt der Probe ungleichméfig verteilt und
bilden ein elektrisches Querfeld (Feldstirke Eg), dessen elektrostatische
Kraft der Lorentz-Kraft entgegenwirkt. Im stationdren Fall sind die Be-
trage von elektrostatischer Feldkraft F, = QEFp und Lorentz-Kraft Fy
= @QuB (@ stromende Ladung, v Geschwindigkeit der Ladungstrager in
Stromrichtung) gleich, so daB sich zwischen symmetrischen Punkten P,
und P, der Probe eine konstante Spannung Uy einstellt. Fiir sie folgt aus

QEy = QuB

unter der Voraussetzung eines homogenen Querfeldes wegen Ey = Ugfa
(@ Breite der Probe)

Ug = vBa. (71)

Diese Erscheinung ist der Hall-Effekt, die Spannung Uy wird daher Hall-
Spannung genannt,

Fiir die Stromstérke I bzw. die Stromdichte § = I/a - d (d Probendicke)
ergeben sich die Beziehungen

j=o0-F=pyunell = nev. (72)
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Darin sind ¢ = 1/p die elektrische Leitfahigkeit (Einheit: 1/Q -m); p der
spezifische Widerstand, £ die in Stromrichtung wirkende elektrische Feld-
starke, n die Ladungstragerkonzentration (Einheit: cm=3), ¢ die Elementar-
ladung und

(73)

die Beweglichkeit gleichartiger Ladungstriger entlang der Stromrichtung. Die
Beweglichkeit wird meist in der Einkeit 1 cm?/Vs angegeben.

Wird in Gl. (71) die Geschwindigkeit durch den aus Gl. (72) ableitbaren
Ausdruck ersetzt und j = I/a - d beachtet, folgt

1 1 IB 4 IB
=~ @iB=__ """ _ & — 74
Un neajB ne d c d (74)
Die Grofle
1 _n
RH_ne:? %)

nennt man Hall- Konstante. Damit kann fiir die Hall-Spannung

Ug = RgajB = Ry 1; (76)

geschrieben werden.

Bei der Herleitung der Hall-Spannung wurde vorausgesetzt, daB der
Strom von Ladungen eines einzigen Vorzeichens gebildet wird, wie es bei-
spielsweise bei der metallischen Leitung der Fall ist. Geht man dagegen von
einer bei Halbleitern méglichen ambipolaren Leitung [Elektronen-(n-)und-
Lécher- (p-)Leitung] aus, erhélt man fiir die Hall- Konstante den Ausdruck

Rﬁ=i(i%—— o ) (77)

Dabei ist Beriicksichtigt, daB sich die Leitfahigkeit ¢ einer Probe aus der
elektronischen (¢,) und Lécher- (o) Leitfihigkeit zusammensetzt (o =
0p + 0p); Ny, p sind die Locher- und Elektronenkonzentration.l)

1) Auch die Ableitung der Gl. (77) geht von vereinfachten klassischen Vorstellungen
aus. Sie vernachlissigt die thermische Bewegung der Ladungstréger, ihre Streuung am
Gitter und an Storstellen, den EinfluB der Bandstruktur des Halbleiters und des
Magnetfeldes. Deshalb wird die Hall-Konstante im allgemeinen durch einen Hall-
Faktor korrigiert, der in praktischen Fillen bei Unkenntnis meist Eins gesetzt wird.
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Nach Gl. (77) konnen sich Licher- und Elektronenleitung kompensieren.
Im Falle einer UberschuBleitung vereinfacht sich Gl. (77) zur Form der
Gl. (75); denn mit n, > n, wird o, ~ ¢ und

Ry = ! =% (Locherleitung). (78a)

Fiir n, > 0, gilt 0, ~ ¢ und

Ry = — ! - fm (Elektronenleitung). (78b)
Ny e o

In Gln. (78a) und (78b) stellen y,, , die Locher- und Elektronenbeweglich-
keit dar. Die bei n- und p-Leitung unterschiedlichen Vorzeichen der Hall-
Konstanten bestimmen das Vorzeichen der Hall-Spannung [Gl. (76)].

Aus der GréBe und dem Vorzeichen der Hall-Konstanten [Gln. (78a) und
(78Db)] lassen sich die Ladungstrigerkonzentration, der Leitungstyp sowie
die Beweglichkeit der Ladungstriager ermitteln.

Uber die Hall-Spannung [GI. (76)] kann aber auch die magnetische Induktion bzw.
magnetische Feldstirke bestimmt werden. Nach diesem Prinzip arbeitende Magneto-
meter (Hall-Sonden) werden kommerziell gefertigt. Damit die durch ein Magnetfeld
hervorgerufene Hall-Spannung maoglichst groB ist, sollte die Hall-Konstante Ry der
Sonde groB sein. Dies kann gemiB Gln. (78a) und (78b) durch niedrige Ladungstriger-
- konzentrationen erreicht werden. Im Interesse einer angemessenen Leistung der Hall-
Sonde wiinscht man sich jedoch eine hohe Leitfahigkeit, die proportional zur Hall-
Konstanten wichst. Die widerspriichlichen Forderungen werden nach Gl. (73) riur von
Werkstoffen hoher Beweglichkeit erfiillt, die in ihren elektrischen Parametern aufler-
dem weitgehend temperaturunabhingig sein sollten. Nach Tab. 10 ist dies beispiels-
weise fiir n-InSb gegeben.

Weiterhin lassen sich iiber den Hall-Effekt groBe Gleichstrome ermitteln [Gl. (76)].

Abb. 119. Hall-Probe nach van der Pauw

Um die Schwierigkeiten bei der Herstellung und symmetrischen Kon-
taktierung quaderférmiger Halbleiterplattchen zu eliminieren, wird heute
vorwiegend die von van der Pauw angegebene Variante der Hall-Messung
benutzt, die im folgenden ohne Ableitungen!) angegeben wird: Ein plan-

1) Die Ableitungen sind aufwendig. Deshalb wird auf die Originalarbeit verwiesen:
L. J. van der Pauw, Philips Res. Repts 13, 1-9 (1958).
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paralleles Scheibchen (Dicke d) beliebiger Gestalt wird 1angs seines Umfanges
mit vier Kontakten versehen (I bis 4 in Abb. 119). LaBt man den Strom
durch zwei gegeniiberliegende Kontakte I und 3 flieBen (I,5) und miBit die
Spannung zwischen den beiden anderen Kontakten 2 und 4 (U,,), kann ein
Widerstand

Rlalz4 =U, 24/113 (79)

definiert werden. Dieser wird einmal mit, einmal ohne Magnetfeld bestimm®
und aus den zugehorenden Widerstinden der Differenzwiderstand AR, g,
gebildet. Es 1aBt sich zeigen, dal der Hall-Koeffizient durch

d
By = TA‘RB/M (80)

gegeben ist.
Fiir den spezifischen Widerstand g der Halbleiterscheibe liefert die Theo-
rie den Ausdruck

1 nd  RBigjs4 + Rogjia

= = . 81
= G " T2 2 5 (81)
1.0
08 \\
TM
S
04 I~
~
0z
0
72 50 2 5w 2 5 ml
Ruyss

Ro3/ne

Abb. 120. Verlauf des Faktors f in Abhingigkeit vom
Widerstandsverhéltnis R, g,/ Ro3/14

f ist ein lediglich vom Quotienten R,y 34/R,3,4 abhingender Faktor, dessen
Verlauf Abb. 120 zeigt. R,y 3, und Ry, sind Widersténde, die entsprechend
der Gl. (79) gebildet werden. Die Stréme I,, bzw. I,; und die Spannungen
U, bzw. U,y werden jedoch zwischen benachbarten Kontaktstellen ge-
messen.
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Es ist vorteilhaft, wenn bei der Methode nach van der Pauw die Scheib-
chen einfache symmetrische Gestalt (rechteckig, quadratisch, kreisformig)
besitzen und symmetrisch kontaktiert sind.

Versuchsausfiihrung

In beiden Aufgaben wird die (in Kunststoff gefaBte) Hall-Probe nach
Abb. 121 a geschaltet (Bezifferung der Kontaktstellen beachten!) und dabei
fiir den Widerstand R zunichst der hichstmogliche Wert gewahlt. Das ist

Sp(N) Uy

und Magnetfeldspule (b)

Ry : (Sa Abb. 121. Schaltung von Hall-Probe (a)

®

notwendig, damit die Hall-Probe sich durch die Stromwéirme nicht auf-
heizt. Die Spannung Uy (GréBenordnung 10 bis 102 mV) wird leistungslos
und deshalb in diesem Versuch mit einem elektronischen Voltmeter (Abschn.
E. 2.1) gemessen. Die Thermospannungen aller Kontaktstellen kénnen das
MeBergebnis verfilschen.

Fiir die Messungen der 4ufgabe I wird die Hall-Sonde in die Mitte einer
Spule (Windungszahl N) so eingefiihrt, daB die Scheibenfliche parallel zum
Spulenquerschnitt liegt. Die Spule wird aus einem Stromversorgungsgerit
gespelst (Schaltung nach Abb. 121b), dessen Ausgangsspa.nnung Uy stufen-
weise einstellbar ist. Den jeweiligen Spulenstrom Iy lesen wir am Ampere-
meter A ab und berechnen nach Gl. (6) die magnetische Feldstarke H bzw.
iiber Gl (1b) die magnetische Induktion B am Orte der Hall-Sonde. Bei
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zwei verschiedenen, mit dem Widerstand R (Abb. 121a) eingestellten und in
der Arbeitsplatzanleitung vorgeschriebenen Sondenstrémen I (GréBen-
ordnung: 10" bis 102 mA) ermitteln wir die Spannung Uy in Abhéingigkeit
von der magnetischen Induktion B bzw. vom Spulenstrom Iy . Die jeweilige
Hall-Spannung ist die Differenz der Querspannung im Magnetfeld und
auBerhalb des Magnetfeldes (H = 0; ohmscher Nullwert). Fiir beide Sonden-
strome wird Uy als Funktion von B aufgetragen und das Ergebnis mit der
Theorie [Gl. (76)] verglichen.

Bei Aufgabe 2 nutzen wir den homogenen Bereich des Magnetfeldes zwi-
schen den Polen eines Hufeisenmagneten aus. Die FluBdichte B (B >
0,1 Vs m~2) ermitteln wir — sofern der MeBbereich ausreicht — mit der in Auf-
gabe 1 kalibrierten Hall-Sonde. Andernfalls arbeiten wir mit dem in der Ar-
beitsplatzanleitung angegebenen Wert. Die Hall-Konstante By berechnen wir
nach Gl. (80). AR, g, ergibt sich aus Gl. (79), indem wir U,, einmal im und
einmal auBerhalb des Magnetfeldes messen. In beiden Fallen halten wir mit
dem Widerstand R I,, konstant (GréBenordnung: 10 mA). Die Dicke d der
Hall-Probe ist aus der Arbeitsplatzanleitung zu ersehen. Mit dem Wert von
Ry kann aus Gl. (78a) bzw. (78b) die Ladungstragerdichte errechnet werden.
Die Gleichungen liefern gleichzeitig die Ladungstrigerbeweglichkeit u, ,,
wenn die Leitféhigkeit o bekannt ist. Diese 148t sich iiber Gl. (81) ermitteln,
indem wir die Widerstande R,,/5, und Ry, aus entsprechenden Messungen
der Spannung (U,,, U,,) und Stromstirke (I,,, I,3) gemaBl Gl. (79) bilden
(Kontakte nicht verwechseln!). Der Faktor f folgt aus der graphischen Dar-
stellung fiir das entsprechende Widerstandsverhaltnis R,y/5,/R3)14-

E.5. WECHSELSTROMWIDERSTANDE UND
ELEKTRISCHE SCHWINGUNGEN

E.5.0. Allgemeine Grundlagen
E. 5.0.1. Komplexe Darstellung von WechselstromgréBen

Fiir Gleichstrom stellt eine Spule einen ohmschen Widerstand dar, der
durch das Material und die Abmessungen der Drahtwicklung gegeben ist
[vgl. Gl. (E. 1.-7)]. Ein verlustfreier Kondensator bildet einen unendlich
hohen Gleichstromwiderstand. Im Wechselstromkreis bedeuten Spulen
der Induktivitdt L und Kondensatoren der Kapazitdt C endliche, von
der Kreisfrequenz w der Wechselspannung abhangige, induktive oder kapa-
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zitive Widerstimde

Zy=joL, 1)
1 1
Ty = = —j
i wC 2)

Die Betrage

X, = oL, (1a)
1

bezeichnet man als Blindwiderstand der Induktivitdt bzw. der Kapa:zitéif.
Wihrend der induktive Widerstand mit der Frequenz zunimmt, sinkt der
kapazitive Widerstand mit ihr. Die Einheit der Induktivitit ist das Henry (H)

1H =1Wb-A1=1V.s. A,
Die Einheit der Kapazitit, die sich aus der Definition

Q=0.U 3)
herleitet, ist das Farad (F)

1F=1A.5.-VL

Damit erweisen sich induktiver und kapazitiver Widerstand als dimensions-
gleich mit dem ohmschen Widerstand und rechtfertigen somit ihre De-
finition.

Der Wechselstromwiderstand einer Induktivitit hat folgende Ursache: In der Spule

wird bei einer Anderung der Stromstérke (Ein- bzw. Ausschaltvorgang, Wechselstrom)
eine der von auBlen anliegenden Spannung U entgegengerichtete Spannung

U=-L @)

induziert. Nach dem Kirchhoffschen Gesetz gilt
U+UL=U—L%=O. (5)

Im Wechselstromkreis muBl man zulassen, daB Spannung und Stromstérke nicht pha-
sengleich sind, sondern da die Extremwerte oder die Nulldurchgéinge von U und [ zu
verschiedenen Zeiten erreicht werden. Wird die Phasenverschiebung zwischen Span-

20 Phys. Praktikum



306 Elektrizitatslehre

nung und Strom mit ¢ bezeichnet, so kann man bei harmonischem Verlauf?!)
U = U, e®, (6)
I=1,e@ -9 W)

schreiben. U, bzw. I, sind die Extremwerte, U und I die Momentanwerte von Spannung
und Stromstédrke. Die Behandlung von Wechselstromgrofien in komplexer Darstellung
bringt eine erhebliche rechentechnische Erleichterung mit sich. Der physikalische
Sachverhalt wird stets durch den Realteil der komplexen Gleichungen beschrieben. Mit
der aus Gl. (7) folgenden zeitlichen Ableitung

dr .
geht GL. (4) in
U = joLI 8)

iiber. Aus dem Vergleich mit dem Ohmschen Gesetz wird jwL als induktiver (komplexer)
Widerstand interpretiert [vgl. Gl. (1)]. Durch die imaginére Einheit j kommt zam Aus-
druck, daB bei rein induktiver Belastung die Spannung gegeniiber dem Strom in der
Phase um =/2 vorauseilt.

Zum Wechselstromwiderstand eines Kondensators fithren &hnliche Betrachtungen:
Unter dem EinfluB einer duBeren Spannung U nimmt ein Kondensator der Kapazitit C
die Ladung @ = [ I df auf. Es gilt

1
U_Uc—ﬁjldt 9)
und, wenn fiir I der durch Gl. (7) dargestellte harmonische Stromverlauf vorausgesetzt
wird,
U=U¢= 11——'—1—1 10
=Ue=qo !~ Tiue ! 4o

Der Vergleich mit dem Ohmschen Gesetz liefert den kapazitiven Widerstand [vgl.
Gl. (2)], und auBerdem sagt Gl. (10) aus, dal der Strom der Spannung um den Phasen-
winkel n/2 vorauseilt. In ohmschen Widerstinden haben Spannung und Strom gleiche
Phase. An induktiven oder kapazitiven Blindwidersténden treten im Gegensatz zu den
ohmschen Widerstinden keine Verluste an elektrischer Energie auf.

Es ist jedoch zu bedenken, dafl Spulen stets einen ohmschen Widerstandsanteil und
eine — wenn auch in vielen Fillen vernachldssigbar kleine — Eigenkapazitidt besitzen.
Desgleichen sind bei Kondensatoren eine Eigeninduktivitdt und ein Wirkwiderstand
vorhanden. SchlieBlich sind ohmsche Widerstinde je nach ihrer Art mit einem mehr
oder weniger groBen Blindanteil behaftet. Widerstinde sind daher in der Praxis nicht
absolut phasenrein. Die Phasenlage und der Betrag des resultierenden Widerstandes
bzw. des Leitwertes kénnen Zeigerdlagrammen in der GauBschen Ebene entnommen
werden, sofern die einzelnen Widerstandsanteile bekannt sind.

Die Ersatzschaltung einer Spule ist eine Reihenschaltung von ohmschem
Widerstand R und induktivem Widerstand Z, so dafl der Gesamtwider-

1) Uber die komplexe Darstellung harmonischer Funktionen und den Zusammenhang
mit der e-Funktion informiert die FuBnote auf Seite 281.
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stand in komplexer Darstellung (Scheinwiderstand)

Z =R+ joL (11)

ist. Der Darstellung komplexer Zahlen in der Gaullschen Zahlenebene ent-
sprechend, wird R auf der reellen und wl auf der positiven imaginiren

m Jm
wl———
wlf-—————— A
| S
oA
N '.\‘ |
= ! &
g9
Al
& ! v
N | ' !
i . l
(i I |
4 ; g\ |
a) R Re b 6=k Re

Abb. 122. Zeigerdiagramm fiir den a) Widerstand einer Spule;
b) Leitwert eines Kondensators

Achse aufgetragen (vgl. Abb. 122a). Die vektorielle Addition liefert den
resultierenden Widerstand vom Betrag

|Z]| = JB* + (wL)? (12)

und einen Phasenwinkel ¢ gemifl

tan ¢ = % . (13)

Induktivitdten werden so hergestellt, daB R <« wl fiir alle Frequenzen im
Anwendungsbereich ist. Dann unterscheidet sich der Phasenwinkel nur
wenig von 7t/2. Der Winkel

=2 — ¢ (14)

20*
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ist ein MaB fiir die ohmschen Verluste. 6* wird als Verlustwinkel,

tan §* = tan (—g— - (p) =tanlgp = Ll (15)

oL
als Verlustfaktor bezeichnet.

Als Ersatzschaltbild fiir einen Kondensator wird in den meisten Fillen
eine Parallelschaltung von C und R gewahlt, da jeder Stoff, der als Dielektri-
kum zwischen die Kondensatorbelegungen gebracht wird, bis zu einem ge-
wissen Grade elektrisch leitend ist. Der Leitwert eines Kondensators in
komplexer Darstellung (Scheinleitwert) wird durch

1
Y = —+ jC, (16)

|Y| = B2+ (w0)?, (17)

der Verlustfaktor durch

1
*
tan 0 - wCR (18)

beschrieben (vgl. Abb. 122b).

E. 5.0.2. Schaltung von Blindwiderstinden

Bei einer Reihenschaltung mehrerer Spulen 1, 2, ..., n addieren sich deren
Wirk- und Blindwiderstidnde einzeln. Daher gilt

R=R,+Ry+...+R,, (19a)
L=L +L+..+5, , (19b)

In einer Parallelschaltung addieren sich Wirk- und Blindleitwerte einzeln.
Daraus folgt

! 20
R, (20a)
1

7

n

et
+ .+ (20b)

Bei einer Serienschaliung von mehreren Kondensatoren der Kapazitit O,
C,, ..., O, addieren sich deren Blindwiderstinde 1/wC;. Daraus folgt fiir
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die Gesamtkapazitit C

i ST Ry (21)

In einer Parallelschaltung addieren sich die Blindleitwerte wC; [vgl. Gl. (14)],
also auch die Kapazititen

C=0C,+Cy+ ...+ C,. (22)

E. 5.0.3. Die Dielektrizititskonstante

Die Kapazitit C eines mit einem Dielektrikum der relativen Dielektri-
zitdtskonstanten oder Dielektrizitdtszahl e, gefillten Kondensators ist
gegeniiber der Leerkapazitat €, (Vakuum zwischen den Belegungen) um
den Faktor &, groBer. Die relative Dielektrizititskonstante (DK) ist also als
das Verhéltnis zweier Kapazititen definiert

c
& =5 23)
o

Aus GI. (23) folgt, daB &, fir Vakuum gleich 1 ist. Befindet sich zwischen

den Kondensatorbelegungen Luft, so ist e, = 1,0006. Aus diesem Grunde

kann die Leerkapazitdt Cy in den meisten Féllen in Luft gemessen werden.
Fir einen Plattenkondensator ist

A A
C=s—d=e,507. (24)
In Gl. (24) sind A4 die Plattenfliche und d der Plattenabstand. ¢, ist die
elektrische Feldkonstante oder Dielektrizititskonstante des Vakuums:

g = 8,85642 - 10712 A .5.V1.m™2,

Das Produkt g6, = ¢ bezeichnet man als Dielektrizititskonstante des Stoffes,
¢ hat die gleiche Dimension wie ¢,.

Gl. (24) gilt exakt nur fiir unendlich ausgedehnte Plattenkondensatoren.
Alle Randeffekte — die dielektrischen Feldlinien verlaufen am Rande der
Platten nicht mehr senkrecht zu ihnen — sind dabei auBer acht gelassen
worden. Um diese Randeffekte zu unterdriicken, umgibt man kreisformige
Plattenkondensatoren mit von ihnen isolierten Schutzringen, in denen die
gleiche elektrische Feldstirke wie im Plattenkondensator herrscht.
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E.5.0.4. Elektrische Schwingungen

Entliadt sich ein Kondensator der Kapazitit C iiber eine mit einem Wirk-
widerstand R in Reihe geschaltete Spule der Induktivitit L, wird in dieser
eine Spannung induziert. Sie bewirkt ihrerseits einen zeitlich verdnderlichen
Strom, der sich dem Entladestrom iiberlagert und den Kondensator erneut
aufladt. Auf diese Weise wandeln sich die elektrische Feldenergie des Kon-
densators und die magnetische Feldenergie der Spule periodisch ineinander
um, bis die elektrische Energie durch den Wirkwiderstand verzehrt ist.
Dieser Vorgang ist eine freie gedimpfte elektrische Schwingung, die bei star-
ker Dimpfung [(R/2L)2 > 1/LC] analog zur mechanischen Schwingung
(vgl. E. 4.1) in den aperiodischen Fall iibergeht. Die RLC-Kombination
stellt einen elektrischen Schwingkreis dar.

Wird ein Schwingkreis an eine Wechselstromquelle angeschlossen, bildet
der Wechselstrom im Kreis eine erzwungene elektrische Schwingung. Je nach

Abb. 123.
Reihen- (a) und Parallelschwingkreis (b)

Art der Schaltung liegen Reihen- oder Parallelschwingkreise (Abb. 123a u.
b) vor. Die typischen Erscheinungen einer erzwungenen elektrischen Schwin-
gung werden am Beispiel eines Reihenschwingkreises gezeigt:
Die Eingangsspannung U habe einen harmonischen Verlauf, der sich
durch
U=U,et (25)

(U, Scheitelwert der Spannung; o Kreisfrequenz) beschreiben 1aBt.!) Die
Spannung erzeugt einen, im allgemeinen ihr gegeniiber phasenverschobenen
‘Wechselstrom, dessen momentane Stromstirke durch

1= 1,0 (26)

(o Scheitelwert der Stromstirke oder Stromamplitude; ¢ Phasenwinkel)
gegeben ist. Er filhrt am Wirkwiderstand R, am Kondensator der Kapazi-
tat C und an der Spule von der Induktivitit L zu Teilspannungen

Ugp = IR, : (27a)

m=%sz (27b)

1) Uber die komplexe Darstellung harmonischer Funktionen und den Zusammenhang
mit der e-Funktion inforiniert die FuBnote auf Seite 281.
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und
dz
=—~L—.
U, 3 (27¢)
In jedem Augenblick mufl im Schwingkreis das Kirchhoffsche Gesetz [Gl.
(E. 1.-3)] erfiillt sein, wobei die in der Spule induzierte Spannung wie eine
eingeprigte Spannung (Spannungsquelle) zu behandeln ist. Daher gilt

UR+ UC=U+ UL’

Werden fiir die GréBen dieser Gleichung die Ausdriicke (25) und (27a, b, ¢)
gesetzt, ergibt sich nach einmaliger Differentiation und Umstellung die als
Schwingungsgleichung bekannte Beziehung

& R daI 1 LU, .
- ____ I = 9 oiwt
et T atool-leg o (28)

Threr Struktur nach ist es eine inhomogene Differentialgleichung 2. Ordnung
mit konstanten Koeffizienten. Sie enthélt als Sonderfall die homogene Dif-
ferentialgleichung der zu Beginn dieses Abschnittes betrachteten freien
Schwingung, fiir die die rechte Seite der Gleichung Null ist. Fiir R = 0 be-
schreibt Gl. (28) eine ungedimpfte Schwingung. Ein bemerkenswerter
Unterschied zum mechanischen Analogon [Gl. (E. 4.-35)] besteht insofern,
als die rechte Seite der Gl. (28) die Kreisfrequenz w als Faktor enthilt.
Die allgemeine Losung einer inhomogenen Differentialgleichung setzt sich
aus der Losung der entsprechenden homogenen Differentialgleichung, wie
sie im Prinzip durch GI. (E. 4.-31b) gegeben ist, und einer partikuldren
Losung der inhomogenen Differentialgleichung zusammen. Erstere be-
schreibt die mit dem Einschalten angeregte, mit der Zeit abklingende Eigen-
schwingung des Kreises. Die partikuldre Losung gilt fiir den stationéren,
den sogenannten eingeschwungenen Zustand, auf den wir uns im folgenden
beschrinken.

Gl. (26) stellt eine Losung der Schwingungsgleichung (28) dar, wenn wir
fir die Stromamplitude I, einen auf folgende Weise ermittelten Ausdruck
setzen:

Fiihren wir die Ableitungen der Gl. (26)

== jol,eiwt—9)
und
d2r
dg?

= —w‘ZIo el (0t — @)

in Gl. (28) ein, folgt nach entsprechenden Umformungen und mit der Euler-
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schen Formel (vgl. die Fulinote auf S. 281)

% — jo 22 (cos g + § sin). (29)

— 2+' ﬁ
oo I,L

-3 0
tIo T
Real- und Tmaginérteil dieser Gleichung miissen fiir sich erfiillt sein, so daf}
Gl. (29) in

1 Uy
2 _ = 2o 30
o §76, 1,0 sin @ ‘ (30a)
und
R Uyw
— w =———COo8 (30b)
L I,L %

aufgespaltet werden darf. Durch Quadrieren und Addition beider Gleichun-
gen erhalten wir fir die Stromamplitude

Uo
2 L 1y .

Der Nenner dieser Beziehung ist der Betrag des Wechselstromwiderstandes
(Scheinwiderstand, Impedanz) fiir die Reihenschaltung von R, L und C
(vgl. Abschn. 5.0.1 u. 2). Bei konstanter Scheitelspannung U, wird die vom
Reihenschwingkreis aufgenommene Stromstéirke maximal (Resonanz), wenn
der Klammerausdruck verschwindet, wenn also wL — 1/wC = 0 ist. Dies
ist bei der Resonanzfrequenz

(31)

I,=

-1

wo = ﬁ (32)

(Thomsonsche Schwingungsformel) der Fall. Der Strom wird lediglich durch
den Wirkwiderstand begrenzt. Die Resonanz im Reihenschwingkreis wird
Reihen- oder Spannungsresonanz genannt. Damit soll insbesondere auch
zum Ausdruck kommen, daB die Spannungsabfille U, und Uy an den Blind-
widerstinden weit iiber der Eingangsspannung liegen koénnen. Fiir diese
Resonanziiberhéhung gilt

- (33)

U, U: 11/L oL 1
RY C B wlR

Bei der Ableitung dieses Ausdruckes werden die Gln. (1a), (2a) und (32)
benutzt. :
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Aus dem Quotienten der Gln. (30a) und (30b) ergibt sich der Phasen-

winkel zwischen der Eingangsspannung und dem Schwingkreisstrom ; denn
es ist

tan Q= *Tw— . (34:)

Wenn man die Dimpfungskonstante

0= R 35
2L (85)
und die Kreisfrequenz w, gemaf Gl. (32) in die Schwingungsgleichung (28)
einfiithrt, nimmt diese die Form
d2r dI 9 Uy o
W+26_Et_+w°[_]w—L—e] (28a)

an. Entsprechend kann man fiir Gln. (30a und b) auch

o 2 _ olU, .
?® — Wy IL sin ¢, (30aa)
_ oU,
20w = T.L cos @ (30bb)
setzen und erhilt fiir die Stromamplitude
U,
I,= L (31a)

‘/-' ((U2 - (0;2))2 + 4 02w? )

Sie geht demnach bei niedrigen Frequenzen (w — 0) gegen Null. Bei dem
in der Schaltungspraxis bedeutsamen Fall des nur schwach gedampften
Systems stimmen die Resonanzfrequenz w = w, und die Eigenfrequenz w,
praktisch iiberein (w, ~ w,).

Unter dieser Voraussetzung folgt fiir die Resonanzamplitude

woUq
_L
20w,

Iy, =~

(31b)

Sie nimmt demzufolge mit der Dampfung ab. Gleichzeitig wird die Reso-
nanzkurve — das ist die graphische Darstellung der Amplitude iiber der
Erregerfrequenz (vgl. Abb. 130) — und damit die ,,Abstimmschérfe
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des Kreises geringer. Ein MaB dafiir ist die Halbwerts- oder Bandbreite Aw.
Das ist die Frequenzbreite an der Stelle der Resonanzkurve, fiir die die
Amplitude I, = I,/ ]/§ ist, also das 0,707-fache der Resonanzamplitude I,
betragt (Abb. 130). Fiir sie gilt mit den Gln. (31a, b)

I 48%w% _ 1 _1
Ii: (@ — o} + 48%0F  (0® — w})? 1 2
45202
Dies kann nur fiir
(@ —w3)? _
40202

oder ‘
28wy = w? — Wi = (v + W) (0 — w,)

erfiillt sein. Da aber (v — w,) = Aw/2 die halbe Bandbreite und w + w,
naherungsweise 2w, ist, folgt fiir die relative Bandbreite

2 _ Ao

o = o (31c)

In Abb. 124 sind schematisch die Resonanzkurve und der Phasenverlauf
fiir den Reihenschwingkreis dargestellt.

A
ol

a bt <ty

y 4

Wy w—=

4,<6<4,
Abb. 124. Resonanzkurven und Phasen-
I verlauf fiir den Reihenschwingkreis bei

w—>= verschiedener Dampfung

iRy

ik
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Die Stromstérke in einem Parallelschwingkreis nach Abb. 123b wird
durch die Parallelschaltung von RL und C bestimmt. Fiir diese Anordnung
ergibt sich ein frequenzabhingiger Scheinwiderstand

2 212
w02 [R2 + (wL - —) J
oC
der in Gl (31) anstelle des Nenners zu setzen ist. Er ist in der Resonanz
(wL = 1/wC) maximal groB, die Eingangsstromstirke I o daher extrem klein.
Im Idealfall R = 0 wiirde sie auch Null sein. Der Gesamtstrom teilt sich
in die parallelen Teilstrome I, und I, des Schwingkreises, die in der Reso-
nanz vom gleichen Betrage, aber 180° gegeneinander phasenverschoben
sind und sich kompensieren. Die Teilstréme sind gréBer als der Gesamtstrom.
Fir die Resonanziiberhéhung im Parallelschwingkreis (Parallel- oder
Stromresonanz) gilt

1, I, 11L oL 1 530
TO‘TO“EV_O"“R wCR (332)

Der Phasenverlauf folgt aus

oL — wC (B® + w?L?)

= (34a)

tan ¢ =

Diese Gleichung ist das Ergebnis einer dem Reihenschwingkreis analogen
Rechnung. Aus ihr folgt fiir den Resonanzfall (wL = 1/wC)

R .
oL’
der Phasenwinkel ist wegen wL > R bei der Resonanz praktisch Null.

tan @, = —

E.5.1. Induktivititsmessungen

Aufgaben: 1. Die Eigeninduktivitit L und die Eigenkapazitit Cy, einiger
Spulen sollen gemessen werden.
2. Die Anfangspermeabilitit u,, des Kernmaterials verschiedener
Ringkernspulen ist bei Zimmertemperatur zu bestimmen.
3. Die Temperaturabhingigkeit der Anfangspermeabilitit ug,
eines magnetischen Werkstoffes soll im Bereich von Zimmer-
temperatur bis zu einer vorgeschriebenen Héchsttemperatur er-
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mittelt werden. Aus der graphischen Darstellung der Funktion
Uea(T) sind der Temperaturkoeffizient « der Anfangspermeabili-
tit ug zu berechnen und die Curie-Temperatur T zu extra-
polieren.

Die fiir diese Versuche wichtigen Grundlagen der Magnetisierung sind im
Abschn. E. 4.0.1 behandelt.

Die Bigeninduktivitit L einer Spule kann man im Prinzip nach Gl. (12)
bestimmen, indem man ihren Gleichstromwiderstand R und ihren Wechsel-
stromwiderstand |Z| bei gegebener Kreisfrequenz  miBt. Dieses Verfahren
wird aber in der Praxis kaum noch angewandt.

Zur Bestimmung von L stehen InduktivititsmeBgerite und Wechsel-
strommefbriicken zur Verfiigung.

InduktivititsmePgerite arbeiten im allgemeinen nach dem Resonanz-
prinzip (Parallelschwingkreis, vgl. Abschn. E. 5.0.4). Sie bestehen aus einem
Generator, dessen Frequenz in hinreichend weiten Grenzen eingestellt wer-
den kann. An den Generator ist ein Kondensator der Kapazitit O lose
angekoppelt, zu dem man von auBlen die Spule der Induktivitdt L parallel-
schaltet. Wenn man nun die Generatorfrequenz kontinuierlich variiert,
ergibt sich nach der Thomson-Formel [Gl. (32)] im Resonanzfall

1 1 1
L= - L
w?C, (2®)* Cy 2 (37)

Die am CL-Schwingkreis auftretende Spannung wird auf einen einstellbaren
Verstirker gegeben, gleichgerichtet und an einem Anzeigeinstrument ab-
gelesen. Bei der Resonanzfrequenz ist die Spannungsiiberhhung am groB-
ten [vgl. Gl. (33)], d. h., es ist die Frequenz einzustellen, bei der das An-
zeigeinstrument Maximalausschlag zeigt.

Das Ersatzschaltbild einer Spule bei Beriicksichtigung der Eigenkapa-
zitat Oy ist eine Parallelschaltung von L und €. Man bestimmt also

w2 = (Cy+ Cp) L. (38)

Nun schaltet man im MeBgerit auf 4C, und wihlt am Generator die Kreis-
frequenz /2. Mit Hilfe eines Drehkondensators Cy, der parallel zu €, und C,
liegt, stellt man Resonanz her. Dann gilt

4072 = (4Cy + Op + Cp) L. (39)
Aus den Gln. (38) und (39) folgt
4:00 + 4014 = 400 + OL + OD’

1

CL = '—3— CD . » (40)
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Ahnliche MeBgerite gibt es auch zur Bestimmung von Kapazititen. In diesen
Geraten ist eine Induktivitat an den Generator angekoppelt, zu der man
den zu untersuchenden Kondensator auBlen parallelschaltet (vgl. auch
E. 5.3).

Wechselstrommefbriicken zur Bestimmung von L sind in vielen Fillen
modifizierte Wheatstone-Briicken (vgl. E. 1.2). Sie sind héiufig als Labor-
RLC-MeBbriicke aufgebaut. Mit ihr kann man bei Gleichspannung ohm-
sche Widerstinde B und bei Wechselspannung bestimmter Frequenz In-
duktivitaten L oder Kapazitdten C messen. Derartige Gerdte enthalten
einen Stromversorgungsteil, die MeBbriicke und einen Indikator. Im all-
gemeinen kann man an diesen Briicken nach dem Abgleich (Minimalaus-
schlag des Indikators) R, L oder C direkt ablesen.

Versuchsausfithrung

Aufgabe 1: Wir schalten die zu untersuchende Spule an ein Induktivi-
tatsmeBgerit und bestimmen L nach Gl. (37). Normalerweise ist in solchen
Geriten zu jeder Frequenz die zugehérige Eigeninduktivitét firr den Re-
sonanzfall angegeben, so daB man den Wert fiir L am Instrument ablesen
kann. Zum Grobabgleich wihlen wir die Verstirkung so klein wie moglich.
Erst wenn niherungsweise abgeglichen ist, kénnen wir die Verstirkung er-
hohen und ermitteln L im Rahmen der Genauigkeit des Gerdtes. Anschlie-
Bend wird Cp, nach Gl. (40) bestimmmt.

Aufgabe 2: Nach dem Induktionsgesetz gilt fiir die in einer Spule indu-
zierte Spannung A

do d

U= FTa th-dA. (41)
In Gl (41) ist @ der magnetische FluB, und das Integral ist iiber die ge-
samte von Feldlinien durchdrungene Fliche A zu erstrecken. B und d4
(4 1 dA) sollen parallel zueinander sein. Ersetzt man die magnetische In-
duktion B durch die Feldstirke H [vgl. Gl. (E. 4-1b)] und bedenkt, daB
sich der Querschnitt 4 der Spule, die N Windungen haben soll, zeitlich nicht
andert, so erhilt man

dH
Sy (42)

Nun gilt fiir die Feldstirke H einer sehr langen Spule (Lange 1) oder einer
Ringkernspule (Umfang 1) H = N - I[l [Gl. (E. 4-6b)]. Damit wird

Nz dI

= — — = 43
und mit der Eigeninduktivitit L = popu 4 - N2/l
U= -L A . (44)

d¢
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Aus den Gln. (43) und (44) folgt

1L
He = oA
In Aufgabe 2 bestimmen wir L fiir verschiedene Werte der Spitzenspan-

nung U,, die an der zu untersuchenden Probe liegt und mit einem geeigne-
ten Rohrenvoltmeter (siehe Abschn. E. 2) gemessen wird. Fiir H, gilt

(45)

Hy=—5% - — 20, (46)

Wir stellen die Funktion u, iiber H, graphisch dar. Die Extrapolation von
1y auf Hy = 0 liefert die Anfangspermeabilitit u, . Ist die gewonnene Kurve
Ur(H,) eine Gerade, so ist die Rayleigh-Beziehung [Gl. (E. 4-5)] bestatigt.
Wenn die Kurve schwach gekriimmt ist, kénnen wir nur eine mittlere
Rayleigh-Konstante § der Induktion mittels Gl. (E. 4.-5) berechnen.

In Aufgabe 3 soll L bei hinreichend kleiner Spitzenspannung U, bei ver-
schiedenen, vorgeschriebenen Temperaturen gemessen werden. Dazu bringt
man die zu untersuchende Ringspule in ein TemperiergefiB3, das von einem
Thermostat mit Olfiillung gespeist wird. Die Spitzenspannung U, soll so
klein sein, dal man

Yr = Hra

setzen kann. Der Temperaturkoeffizient « ergibt sich bei linearem Kurven-
verlauf aus

Pea(T) = pea(T) {1 + (T — T4)} . (47)

Es ist vereinbart, daB « —~ auch bei nichtlinearem Kurvenverlauf — aus den
Werten von p,, bei Ty = 23 °C und T, = 63 °C zu berechnen ist.

Wenn die Curie-Temperatur 7 (vgl. Abschn. E. 4.0.1) erreicht wird,

bricht I von einem hohen auf einen sehr niedrigen Wert zusammen. Es

kann vorkommen, dal bei Temperaturen oberhalb 7'¢ ein Briickenabgleich
nicht mehr moglich ist.

E.5.2. Kapazititsmessungen mit einer
Wechselstrombriicke

Aufgaben: 1. Die Kapazitdt C einiger Kondensatoren soll bestimmt werden.
AuBerdem sind die Gln. (21) und (22) zu iiberpriifen.
2. Die Kapazitit C; und der Verlustfaktor tan 6F einer Parallel-
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schaltung eines Kondensators und eines Widerstandes R, sind
als Funktion der Frequenz zu bestimmen.

3. Die relative Dielektrizitatskonstante ¢, und der Verlustfaktor
tan 8* sollen bei einer vorgegebenen Frequenz fiir verschiedene
feste Dielektrika gemessen werden.

Prizisionsmefbriicken zur Bestimmung von Kapazititen sind in vielen
Fillen wie Wheatstone-Briicken aufgebaut (vgl. Abschn. E. 1.2). In ihnen
sind lediglich die ohmschen Widerstinde durch verlustbehaftete Konden-
satoren ersetzt [vgl. Gl. (16) bzw. Gl. (17)]. Als Spannungsquelle dient ein
Generator variabler Frequenz, als Indikator ein Oszillograph (vgl. E. 4.4).
Oszillographen sind einseitig geerdet. Aus diesem Grunde mu8 die Briicke

Abb. 125. Schaltung einer KapazititsmeBbriicke

der Abb. 125 einen Ubertrager enthalten. Die Kondensatoren C,, C; und C,
der Abb. 125 sollen einstellbar sein. Die Widerstinde B; und R, lassen sich als
verschiedene feste Werte einstellen.

Die Briicke ist abgeglichen, wenn zwischen den Punkten B und D (vgl.
Abb. 125) keine Spannungsdifferenz vorhanden ist. Die Abgleichbedingung
fiir die Briicke lautet, ausgedriickt in Scheinleitwerten,

Y, Y, = Y,Y,. (48)
Setzt man fiir die Scheinleitwerte Gl. (16), und fithrt man fiir tan §F und
tan 6¥ Gl. (18) ein, so erhalt man

C, (tan 6% + j) (i + jwo,,) — O, (tan 8F + j) (—1 + ij,) i
R, R,
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In dieser komplexen Gleichung miissen sowohl die Real- als auch die
Imaginirteile tibereinstimmen. Damit erhdlt man zwei Gleichungen fiir die
beiden gesuchten GréBen C; und tan éf . Die Losung lautet

o (C4R, — O3R;) + tan 6% (1 + w2C,R,C,R,)
L+ 0*C,R,0 R, — o tan 6% (0., — CoRy)

Ry 1+ 0*C3RyC4R, — tan 3f (CuB,y — C3Ry)
R, 1 + w®C2RE ‘

tan 6Ff =

(49)

C, =0, (50)

Die Gln. (49) und (50) vereinfachen sich, wenn folgende Voraussetzungen
erfiillt sind:

1. w(C,R; — C3R;) < 1 und tan 6F < 1073,

Man erhilt
% _ @ (CyRy — C3Ry) *
tan 67 1+ 0 CRCR. CuRiC.R, + tan 47 , (49a)
_ ~ By 1+ 0?C3B0,R,
Cr= Ozfs' 1+ ?CIR: (50a)
2. Zusitzlich sei w?C3R,C R, < 1073, Dann gilt
tall 6? =w (O4R4 e 03R3) + ta'n 6;‘, (49b)
R, 1
G=CF Trocr. (500)
3. SchlieBlich sei w2C2R% < 103 und tan 6 < tan &5 .
Damit werden die Gln. (44) und (45) zu:
tan 0F = o (OB, — C,R;), (49¢)
R
C, = oz—li. (50c)

Versuchsausfithrung
Wir schalten

a) einen Kondensator,

b) eine Reihenschaltung von » Kondensatoren,

¢) eine Parallelschaltung von n» Kondensatoren,

d) eine Parallelschaltung eines Widerstandes und eines Kondensators

an die Klemmen 7 und 2 der in Abb. 125 dargestellten Briicke. Am Genera-
tor wird die kleinste geforderte Frequenz gewihlt. Fiir R, = R, stellen wir
den grofiten Wert ein.
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Der Briickenabgleich wird bei festen Werten fiir C;, Ry und R, durch
wechselweises Vergréfern von €, und C, zunichst bei ganz geringer Ampli-
tude des Generators und geringer Verstiarkung im Oszillographen gesucht.
Haben wir den Abgleich grob gefunden, so diirfen zum Feinabgleich die
Generatoramplitude und die Oszillographenverstirkung vergréBert werden.

In Aufgabe 1 tiberpriifen wir, ob sich die Einzelkapazitaten bzw. ihre
Kehrwerte entsprechend den Gln. (21) und (22) addieren.

In Aufgabe 2 fithren wir die Messung bei verschiedenen Frequenzen aus.
Dabei miissen unter Umstinden E; und R, verkleinert werden. Bei der Be-
rechnung von C, und tan 6F ist zu priifen, welche der Voraussetzungen 1.,
2., 3. erfiillt sind. Danach wahlen wir die geeigneten Naherungsformeln zur
Bestimmung von C, und tan 6Ff aus. Die Frequenzabhingigkeit von tan 6f
ist auf doppeltlogarithmischem Koordinatenpapier darzustellen. Aus dieser
Kurve soll R, ermittelt werden.

In Aufgabe 3 148t sich die Frequenz so wahlen, daBl zur Auswertung die
Gin. (49¢)und (50c) verwendet werden konnen. Wir bestimmen zunéchst die
Kapazitit C,, eines Plattenkondensators einschlieBlich seiner Zuleitungen
zur Briicke. Zwischen den Platten (Abstand %) befinde sich Luft.

Nun schieben wir » Proben (Querschnitt 4, Héhe A, DK = ¢,) zwischen
die Platten und bestimmen

nAd
Cin=Cy + & (& — 1)7-

Daraus ergibt sich

- (Cln—CIO)h + 1.

gond (51)

Die Hohen der Scheiben miissen sehr genau gemessen werden. Schieben wir zwei Proben
der Hohe h und & — Ak zwischen die Platten, so bestimmen wir

A A
Cpp = Cy — ZEOT + Eofr 5 + Ckg. (52)

In Gl. (52) ist Cr die Kapazitdt der Reihenschaltung aus diinnerer Platte und Luft-
spalt.

1

I S (53)
L+ @— 12t

Cr = soer%

Setzen wir in Gl (51) » = 2, so ergibt sich firr die DK nur ein angeniherter Wert &,.
Mit &, und Gl. (53) kénnen wir Gl. (52) schreiben

Er
2& =6+ ——m .
' 1+(e,—1)%

21  Phys. Praktikum
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Dies ist eine quadratische Gleichung fiir &, mit der Losung

h - 1 h - 1\2 - [ h
8;-—7(737_&_?)4["I/(E—Sr—?)+26r(m—1) (54)
Wenn die Dicke des Luftspaltes nur 2,5% der des Plattenabstandes im Kondensator
betriigt, unterscheiden sich ¢ und ein angenommener Wert &, = 5 bereits um 5%.

Bei der Bestimmung des Verlustfaktors ist zu beachten, dal der nach
Gl (49¢) mit » = 2 und R; = R, = R ermittelte Wert

tan 6% = wR (Cy — Cy,) (55)

auch unter der Annahme, dafl der Plattenkondensator und die Zuleitungen
zur Briicke verlustfrei sind, noch nicht der Wert fiir die zu untersuchenden
Platten ist. Es gilt [vgl. Gl. (18)]

1 1 Cp Co
= ——=tan 6§ - ——. 56
oC1,Rp wCpRp Oy % Chz (56)

Dabei sind Cp, Rp und tan 6% die Kapazitit, der Widerstand und der Ver-
lustfaktor der beiden Platten in Parallelschaltung. Aus den Gln. (55) und

(56) folgt

tan 6% =

WRh (Cyy — C3,) Oy

260, A 67)

tan & =

Die GréBen R, (5, Cyy und C,, werden in der Briicke eingestellt, v = w/27
am Generator gewahlt. Fiir ¢, soll Gl. (51) Verwendung finden.

E.5.3. Bestimmung der Dielektrizititskonstanten
von Fliissigkeiten

Aufgaben: 1. Ein DK-MeBgerat ist abzugleichen.
2. Es ist die DK eines fliissigen, nichtleitenden und unbegrenzt
mischbaren Zweistoffgemisches in Abhéingigkeit vom Mischungs-
verhéltnis aufzunehmen.

Fiir die Bestimmung der Dielektrizititskonstanten (DK) nichtleitender
Fliissigkeiten werde eine Schwingkreismethode benutzt, die sich auf die
Thomsonsche Formel [vgl. Gl. (32)] fiir den praktisch ungeddmpften elek-
trischen Kreis [(R/2L)? < 1/LC] stiitzt und in der Form

= % - % (58)
T 2r ]/LO

Yo
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benutzt wird. L und C sind die gesamte Schwingkreisinduktivitit und
-kapazitit, v, und w, die Resonanzfrequenz und Resonanzkreisfrequenz des
Schwingkreises. Wird in den Kreis zusétzlich eine Kapazitit eingeschaltet
oder der Kondensator mit einem Dielektrikum von der Dielektrizitits-
konstanten &, [vgl. Gl. (23)] gefiillt, wird der Schwingkreis verstimmt.
Gl. (58) bietet die Moglichkeit, die Kapazititsinderung iiber die Anderung
der Resonanzfrequenz zu erfassen oder, wenn die urspriinglich im Kreis
liegende Induktivitdt oder Kapazitit meBbar variabel sind, die Verstim-
mung des Kreises zu kompensieren.

Hier wird der zweite Weg bei der DK- bzw. Kapazitdtsmessung benutzt:

Die Schwingungen eines durch einen Steuerquarz frequenzstabilisierten
Schwingkreises am Gitter einer Oszillatorrohre steuern deren Anodenstrom.
Sie regen so den MeBschwingkreis in der Anodenleitung zu erzwungenen

Abb. 126a. Schaltung
o eines DK-MeBgerites

Schwingungen gleicher Frequenz an. Die ,,Schaltkapazitit innerhalb der
Rohre zwischen Gitter und Anode tibernimmt die Riickkopplung (Huth-
Kiihn-Schaltung) und ist in Abb. 126a symbolisch durch den Kondensator
Cga dargestellt. Mit einem Drehkondensator C 148t sich die Eigenfrequenz
des MeBschwingkreises genau auf die Vergleichsfrequenz einstellen. Bei der
Frequenzgleichheit beider Kreise wird der Wert des Anodenstroms ein
Minimum (Stromresonanz, siehe Abschn. E. 5.0.4). Er kann am Strom-
messer 4, einem Mikroamperemeter, abgelesen werden. Wenn die Oszillator-
rohre gleichzeitig Abstimmanzeigerohre (magisches Auge) ist, kann das
Leuchtbild als weiteres Resonanzkriterium dienen. Der Zusammenhang

ha

!
g
|
|

' Resonanzpunkt

@ @ @ @ Abb. 126b. Leuchtfeldbild

der Abstimmanzeigeréhre
Skt und Anodenstrom

21%
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zwischen Anodenstromstérke I, und Leuchtbild des magischen Auges ist
in Abhéngigkeit von der in relativen Werten Skt (Skalenteilen) angegebenen
Stellung des Drehkondensators C aus Abb. 126b zu ersehen. Die unsymme-
trische Gestalt der Resonanzkurve ist durch den Steuerquarz im Gitter-
schwingkreis bedingt. Dem entspricht ein Leuchtfeldsprung als empfind-
liches Resonanzkriterium beim Durchlaufen der Kurve.

Die Kapazitat Cy (Abb. 126a) stellt eine MeBzelle, in unserem Falle eine
Flissigkeitsmefzelle dar, die aus einem kleinen, in einem Glasgefal unter-
gebrachten Plattenkondensator besteht. Der MeBbereich des Gerites kann
durch Einschalten verschiedener Induktivitdten L in den Anodenschwing-
kreis gedndert werden.

Versuchsausfihrung

Zur Bestimmung der DK von Fliissigkeiten kalibrieren wir entweder die

Skale des Drehkondensators € unmittelbar in Einheiten der DK, indem wir
die MeBzelle Cy; nacheinander mit Fliissigkeiten unterschiedlicher, bekann-
ter DK fiillen und jeweils die Resonanzstelle aufsuchen (Aufgabe 1).
" Universeller und fiir die Bestimmung von Kapazititen unumginglich ist
der Abgleich in Einheiten der Kapazitit. Hierzu ersetzen wir die MefBzelle
Cy durch einen Prézisionsdrehkondensator. Bei diesen Messungen geht die
Schaltkapazitat der moglichst starr gewdhlten Zuleitungen ein. Der ihnen
zukommende Betrag an Skalenteilen kann durch eine Differenzmessung
ermittelt und als Korrektur beriicksichtigt werden (4ufgabe I).

Die Leerkapazitit Cyo der MeBzelle und die Schaltkapazitit Cg des An-
schlusses konnen wir dann anhand der Abgleichkurve oder mit zwei Fliissig-
keiten bekannter DK (g, und ¢,) iiber das Gleichungssystem

&0uo + Cs = 0y, ) (59a)
e0uo + Os = Oy (59b)

leicht ermitteln. C, und O, sind die Kapazititen der gefiillten Zellen, deren
Werte sich aus der Abgleichkurve ergeben.

Fiir verschiedene Mischungsverhéltnisse der Fliissigkeiten werden die zu
den Resonanzpunkten gehorenden Kapazititen aus der Abgleichkurve ent-
nommen. Die Dielektrizitatskonstanten ergeben sich aus Gl. (23), in die
fiir C jeweils die GroBe Cy — Cy einzusetzen ist (Aufgabe 2).

E.5.4. Ermittlung von Phasenbeziehungen zwischen
Strom und Spannung

Aufgabe: Der Phasenverlauf zwischen Strom und Spa,nnung‘ist an einem
RC-, einem RL- und einem RLC-Glied in Abhingigkeit von der
Frequenz aufzunehmen und zu diskutieren.
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Der Phasenwinkel ¢ zwischen Strom und Spannung wird mit dem Elek-
tronenstrahloszillographen (Abschn. E. 4.4) ermittelt, indem die am Wirk-
widerstand abgegriffene und dem Strom phasengleiche Spannung U, dem
Horizontalverstirker des Oszillographen zugefithrt wird. Die (phasen-
verschobene) Spannung U der jeweiligen Kombination aus Wirk- und Blind-
widerstand liegt hingegen am Vertikalverstirker (Abb. 127). Das Bild auf

[ o | o
L T %
4 | £50
R =5 Abb. 127, Schaltung
l zur Bestimmung des
- . Phasenwinkels

dem Schirm des Oszillographen entspricht dem allgemeinen Fall einer Uber-
lagerung zweier senkrecht zueinander stehender Schwingungen gleicher
Frequenz:

Es entsteht eine Ellipse als Lissajous-Figur. Dies wird durch die folgende
Rechnung bestitigt, die auBerdem zu einer Beziehung fiir die Phasen-
verschiebung ¢ fithrt. Fiir die rechtwinkligen Koordinaten der Bahnkurve
setzen wir

z = a cos wt, , (60a)
y = b cos (wt + ¢) = b(cbs wt - cos ¢ — sin wt - sin @). (60Db)

Die Bahnkurve (Abb. 128) muB3 daher innerhalb eines Rechteckes mit den
Seiten z = +a, y = +b verlaufen. Aus Gl. (60a) finden wir cos wt = z/a,

Damit kann sin wt = |/1 — (z/a)? gesetzt werden. Fithren wir beide Aus-

X=-a X=+0

-Xo | X
\ |
% |L— Abb. 128. Schirmbild fiir die Uber-

y=-b
lagerung zweier orthogonaler
Schwingungen gleicher Frequenz
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driicke in Gl. (60b) ein, wird die Zeit eliminiert, und nach weiteren elemen-
taren Rechnungen folgt als allgemeine Gleichung der Bahnkurve

x2 2 x .
?+-§2——2a—gcos¢—sm2¢p=0. (61)

Sie beschreibt eine Ellipse (elliptische Schwingung), deren Mittelpunkt mit
dem Koordinatenursprung zusammenfillt, deren Hauptachsen sich wegen

<)
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Abb. 129. Lissajous-Figuren zweier zueinander
senkrechter Schwingungen gleicher Frequenz bei
verschiedenen Phasenwinkeln und Amplituden
—l (@£ ba=0b)

N

Viig

des Produktes zy aber nicht mit den Koordinatenachsen decken. Folgende,
in Abb. 129 dargestellte Fille sind zu unterscheiden:

1. ¢ = 0: Die Ellipse entartet zu einer Geraden (lineare Schwingung)

x Yy b

—- -2 = . = 61

" 5 0 bzw. y — 3 (61a)
durch den 1. und 3. Quadranten, die mit ¢ = b die Achsen unter 45°
schneidet.
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2.0 < ¢ = x/2: Es ergibt sich eine mehr oder weniger schlanke Ellipse, die
fiir ¢ = w/2 die Gleichung

xz yz
R

=1 (61b)

erfiillt und deren Achsen mit den Koordinatenachsen zusammenfallen.
Bei a = b entartet die Bahnkurve zu einem Kreis (zirkulare Schwingung).

3.7w/2 < ¢ < n: Mit dem Ubergang zu ¢ = & zieht sich die Ellipse zu
einer Geraden durch den 2. und 4. Quadranten zusammen, die geméaf
Gl. (61) der Formel

%-{»—Z—:O bzw. yz—%x (61c)
geniigt.
4. © < ¢ < 2n: Mit wachsendem Phasenwinkel entfaltet sich die Gerade

zu einer Ellipse bei gleichzeitiger Drehung ihrer Hauptachsen.
Fiir ¢ = 37/2 decken sich die Hauptachsen gemafi der Gleichung

22 2
S+ —?i/)? -1 (61d)

mit den Koordinatenachsen. Die Ellipse wird mit ¢ — 21 schmaler und
degeneriert fiir ¢ = 2r zu einer mit der bei ¢ = 0 deckungsgleichen Geraden.

Weitere Einzelheiten sind der Abb. 129 zu entnehmen und kénnen im
Versuch beobachtet werden. MeBtechnisch bedeutsam sind Phasenwinkel
im Bereich -7t/2 < ¢ £ +7/2.

Aus Gl. (61) gehen fiir  bzw. y = 0 die Schnittpunkte x, und y, der Ellipse
mit der z- und y-Achse hervor (vgl. Abb. 128):

%y = a|sin |, (62a)
Yo = |sing]|. : (62b)

Damit sind Bestimmungsgleichungen fiir die Phasenverschiebung gewonnen,
aus denen

ol =B _ Y
|sin @ | = = 5 (63)

folgt.

Versuchsausfithrung

Frequenzgenerator @, die RLC-Glieder und der Elektronenstrahloszillo-
graph werden nach Abb. 127 geschaltet und letzterer in Betrieb genommen.
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Die den Teilaufgaben entsprechenden Glieder werden mit dem Schalter S
wahlweise eingeschaltet. Horizontal- und Vertikalverstarker sind so ein-
zustellen, daB von der Ellipse stindig alle Seiten des auf dem Schirm ein-
gezeichneten Rechteckes berithrt werden. Gegebenenfalls ist das Bild ins-
gesamt horizontal oder vertikal zu verschieben. Bei jeder Frequenz werden
als Achsenabschnitte die Mittelwerte aus +x, bzw. +y, ermittelt und die
Phasenwinkel errechnet [Gl. (63)].

Das Vorzeichen des Phasenwinkels bestimmt man am besten so: Wird
|| mit wachsender Frequenz kleiner, ist es negativ. Bei einem mit der Fre-
quenz wachsenden |gi ist es positiv.

Die MeBergebnisse sind rechnerisch zu iiberpriifen, indem die Phasen-
winkel aus Zeigerdiagrammen berechnet werden, die nach den Ausfijhrun-
gen des Abschn. E. 5.0.1 angefertigt werden.

E.5.5. Strom- und Spannungsresonanz

Aufgaben: 1. Fiir einen Reihenschwingkreis sind der Verlauf der Teilspan-
nungen an Kondensator und Spule sowie die Stromstarke in Ab-
héngigkeit von der Frequenz der Stromquelle bei verschiedenen
Wirkwidersténden aufzunehmen und zu diskutieren.

2. Aus den Resonanzkurven des Reihenschwingkreises sind die
Dampfungs- und Giitefaktoren zu bestimmen.

3. Im Parallelkreis sind der Verlauf des Gesamtstromes und der
Teilstrome durch Kondensator und Spule in Abhéngigkeit von
der Frequenz der Stromquelle zu verfolgen und in einem Dia-
gramm darzustellen.

4. Fir den Resonanzfall sind entweder die Spannungs- oder
Stromiiberhthung zu ermitteln.

Die Spannungsresonanz im Reihen- oder Serienkreis ist einerseits in der
Wechselstromtechnik gefiirchtet, da die unter Umsténden hohen Spannun-
gen beispielsweise Menschen gefahrden, Isolatoren zerstoren oder zu Spriih-
erscheinungen fithren kénnen. Andererseits werden Serienkreise in der
Schwachstromtechnik im Eingang von Rundfunkempfingern (Antennen-
kreis), in Frequenzmessern oder als Einzelkreise von Bandfiltern benutzt,
weil fiir die Resonanzfrequenz gréBte Stromstirke herrscht. Parallelkreise
kénnen bestimmte Frequenzen sperren (Sperrkreise). Sie dienen auBerdem
als Schwingkreise in Sendern, Verstéirkern oder Empfangern.

Fast bei allen technischen Anwendungen werden méglichst wenig ge-
dampfte Schwingkreise angestrebt. Das sind solche, deren Dimpfungsfaktor

(64)

klein ist.
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Nach GI. (31b) vermindert die Dimpfung die Resonanzamplitude und
vergroflert die relative Halbwerts- oder Bandbreite. Fiir diese wurde im
Abschn. E. 5.0.4 (vgl. Abb. 130)

Ao 26 o M _ 0 (65)
Wy Wy Yo T,
Inr
______ L 7™\

T
| I !
1 [
5k
/ ! ? } Abb. 130.

Resonanzkurve und Halbwertsbreite

abgeleitet. Damit kann fiir das logarithmische Dekrement [\?gl. Gl. (E. 4.-33)]

A= _Td (66)
geschrieben werden. Der Glitefaktor eines Schwingkreises ist durch
@, W, 21y,
=—2___0 -0 67
=% ~“RL " EL (67)
definiert.
Versuchsausfihrung

Die Kreise werden jeweils iiber einen Verstirker mit dem Frequenz-
generator verbunden (Abb. 131 und 132). Wir achten darauf, daB iiber die

1)

L
I Abb. 131. Schaltung zur
Spannungsresonanz
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gesamte MeBreihe hinweg die Eingangsspannung U, konstant bleibt, und
stellen gegebenenfalls am Verstirker nach. Den giinstigsten Wert der Ein-
gangsspannung und den zu iiberstreichenden Frequenzbereich entnehmen
wir der am Arbeitsplatz ausliegenden Vorschrift.

Falls die Spannungen der Aufgaben I und 2 mit elektronischen Span-
nungsmessern (Abschn. E. 2.1) bestimmt werden sollen, kénnen wir wegen
der einseitigen Erdung dieser Instrumente mit der Schaltung nach Abb. 131 -

1)
\Y

I o [[ Abb. 132. Schaltung zur
Stromresonanz

nur U, und Uy, gleichzeitig messen. Sollen U, und U, gleichzeitig bestimmt
werden, so miissen wir € und L in der Schaltung vertauschen. Die Resonanz-
kurven I, = f(») werden fiir drei hinreichend unterschiedliche Wirkwider-
stinde aufgenommen. Die Dampfungsfaktoren (4ufgabe 2) sollen gemiB
Gl. (65) aus den Resonanzkurven ermittelt und mit den nach Gl. (64) be-
rechneten Werten verglichen werden. Der Giitefaktor folgt aus GI. (67).
Entsprechende Messungen werden am Parallelkreis (Aufgabe 3) vorgenom-
men.

Aufgabe 3 wird iiber die Gln. (33) und (33a) gelost. Gegebenenfalls ist zu

beachten, daB g = I,/ ]/§ (Zeq effektive Stromstérke) ist.



Optik und Atomphysik

O.1. LINSEN UND LINSENSYSTEME

0.1.0. Allgemeine Grundlagen

Linsen sind Korper aus einer lichtbrechenden Substanz, die von zwei
meist kugelférmigen Flichen begrenzt werden. Die Verbindungslinie der
Mittelpunkte dieser Flichen heifit optische Achse.

Ein auf die Linse fallender Lichtstrahl wird entsprechend dem Brechungs-
gesetz (siehe Abschn. O. 3) an beiden Grenzflichen gebrochen. Beschrankt
man sich auf Strahlen, die nur kleine Winkel mit der optischen Achse bilden,
so vereinigt eine Linse alle von einem Gegenstandspunkt G ausgehenden
Strahlen in einem Bildpunkt B. Das Bild B heiBt reell, wenn sich die Strah-
len im Bildpunkt wirklich schneiden, es heift virtuell, wenn sich nur die
riickwértigen Verlingerungen der Strahlen schneiden.

Zunichst beschranken wir unsere Betrachtungen auf diinne Linsen. Bei
diesen laft sich die zweimalige Brechung des Lichtes durch eine einzige
Brechung an der Mittelebene der Linse ersetzt denken.

Es sind Sammellinsen und Zerstreuungslinsen zu unterscheiden: Sammel-
linsen sind in der Mitte dicker, Zerstreuungslinsen diinner als am Rand.

Parallel zur optischen Achse einfallendes Licht wird von einer Sammel-
linse im Brennpunkt F vereinigt (Abb. 133a); der Abstand des Brennpunk-
tes F von der Mittelebene ist die Brennweite f der Linse. Der reziproke Wert
D = 1/f wird als Brechkraft bezeichnet und in Dioptrien (1 Dioptrie = 1 m™1)
gemessen.

N .

Abb. 133. Lichtbrechung an einer Sammellinse (a) und einer an Zerstreuungslinse (b).
Fiir die Bildkonstruktion 1aBt sich die zweimalige Brechung der Strahlen durch eine
einmalige Brechung an der Mittelebene ersetzen (die Linsen sind iibertrieben dick ge-
zeichnet
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Bei Zerstreuungslinsen werden parallel zur optischen Achse einfallende
Strahlen so gebrochen, als kiimen sie von einem Brennpunkt F” (Abb. 133b);
auch hier ist der Abstand des Brennpunkts von der Mittelebene die Brenn-
weite . Sammellinsen haben also reelle, Zerstreuungslinsen virtuelle Brenn-
punkte.

Fiir die geometrische Konstruktion des bei der optischen Abbildung ent-
stehenden Bildes B benutzt man Strahlen, deren Verlauf nach dem Durch-
gang durch die Linse leicht zu verfolgen ist:

1. den Mittelpunktsstrahl, der seine Richtung nicht &ndert,
2. den Parallelstrahl, der zum Brennpunktsstrahl wird,
3. den Brennpunktsstrahl, der zum Parallelstrahl wird.

In Abb. 134a ist die Konstruktion des Bildes bei einer Sammellinse fiir
drei verschiedene Gegenstandsweiten ausgefiihrt; die Abb. 134b zeigt die
entsprechende Konstruktion fiir eine Zerstreuungslinse.
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Abb. 134. Bildkonstruktion bei einer diinnen Sammellinse (a) und einer diinnen Zer-
streuungslinse (b)
B und & bezeichnen Bild- bzw. GegenstandsgroBe, b und g Bild- bzw. Gegenstandsweite
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Fiir Hohlspiegel gelten vollig analoge Betrachtungen, die entsprechende
Bildkonstruktion zeigt Abb. 135.

Das Verhiltnis von BildgroBie B zu GegenstandsgroBe @ bezeichnet man
als linearen Abbildungsmapstab y. Mit Hilfe des Strahlensatzes ergibt sich aus
Abb. 134a

B b
Uil 1)

Abb. 135. Bildkonstruktion am Hohlspiegel

M Kriimmungsmittelpunkt, F Brennpunkt. Die Brennweite ist gleich
dem halben Kriimmungsradius: f = R/2

Ebenfalls mit Hilfe des Strahlensatzes erhilt man
q B

1ot
woraus die Linsengleichung

1 1 1
B Rl YRRl 2
¢ T 7 ‘( )
folgt. Bei virtuellen Bildern bzw. Brennpunkten sind b bzw. f negativ ein-
zusetzen.
Setzt man zwei diinne Linsen mit den Brennweiten f, und f, so zusammen,
daB ihr Abstand klein gegen die Brennweite ist, so addieren sich ihre Brech-
krafte, d. h., fiir die Brennweite F des Systems gilt

1 1 1
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Die Brennweite f einer diinnen Plankonvexlinse 18t sich aus dem Brechungs-
index n des Linsenmaterials und dem Kriimmungsradius B der konvexen
Linsenfliche berechnen. Aus Abb. 136 ergibt sich

Bi = tan (8 — ) 4)
und
h/R = sina. 5)

(Bei einer Kugelfliche geht das Einfallslot durch den Kriimmungsmittel-
punkt M.)
Nach dem Brechungsgesetz (siehe Abschn. O. 3) ist

nsino = sinf. (6)

Abb. 136. Zur Berechnung der Brennweite einer diinnen Plankonvexlinse

Beschrinkt man sich auf kleine Einfallshohen 5, so sind die Winkel « und g
sehr klein und es wird

hf=tan(B—a)=~f—a~n—1)-a=~(n—1)-k/R.
Man findet also

G- (7a)

Fiir eine diinne Plankonkavlinse gilt die gleiche Formel, man muB jedoch R
negativ zahlen, so dal} sich eine negative Brennweite ergibt.

Linsen mit 2 gekritmmten Flachen kann man sich aus 2 einseitig planen
Linsen zusammengesetzt denken. Entsprechend Gl. (3) wird dann

—%=(n—1)(%1+%2). (7b)

Dabei ist der Radius fiir konvexe Flichen positiv, fiir konkave negativ ein-
zusetzen. Da der Brechungsindex von der Wellenlange des benutzten Lich-
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tes abhdngt, ist auch die Brennweite wellenlingenabhingig. Bei dicken
Linsen kann man sich die zweimalige Brechung der Lichtstrahlen an den
Linsenflichen nicht mehr durch eine einzige Brechung an der Mittelebene
ersetzt denken. Man hilft sich hier durch Einfiithrung der gegenstandsseiti-
gen Hauptebene H und der bildseitigen Hauptebene H’ (Abb. 137), an

H K b
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! 8
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g

Abb. 137. Bildkonstruktion bei einer dicken Sammellinse

denen man sich die Strahlen gebrochen denkt. Die Bildkonstruktion ist da-
bei nach folgender Vorschrift!) auszufiihren:

1. Zwischen H und H’ laufen alle Strahlen parallel zur Achse.
2. Der Parallelstrahl I wird an der Hauptebene H’ gebrochen und wird zum
Brennpunktsstrahl 1” durch den zu H’ gehérigen Brennpunkt F”.
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Abb. 138. Konstruktion der Hauptebenen eines Linsensystems

1) Der nach dieser Vorschrift konstruierte Strahlenverlauf hat nur fir die Bild-
konstruktion Bedeutung und stimmt nicht mit dem wirklichen Strahlengang iberein.
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3. Der Brennpunktsstrahl 2 durch den zu H gehorigen Brennpunkt F wird
an der Hauptebene H gebrochen und wird zum Parallelstrahl 2’.
4. Der Mittelpunktsstrahl 3 wird lediglich parallel verschoben.

Rechnet man g, b und f von den zugehérigen Hauptebenen ab, so gelten
die Gln. (2) und (1) auch fiir dicke Linsen. Die Lage der Hauptebenen lat
sich nach dem in Versuch O. 1.2 beschriebenen Verfahren von Abbe be-
stimmen.

Die Methode der Hauptebenen bewahrt sich nicht nur bei dicken Linsen,
sondern sie kann auch zur Bildkonstruktion in zentrierten Linsensystemen
(mehrere Linsen mit gemeinsamer optischer Achse) benutzt werden.

Die Lage der Hauptebenen des Systems 148t sich dabei aus der Lage der
Hauptebenen der Einzellinsen konstruieren. Das Verfahren dazu wird in
Abb. 138 an zwei diinnen Sammellinsen L, und L,, die den Abstand d haben,
demonstriert (die Linsen sind nur durch ihre Mittelebenen angedeutet). Zu-
nidchst konstruiert man mittels Parallel- und Brennpunktsstrahlen das
Zwischenbild B, und das Bild B des Gegenstandes G. Nun verfolgt man den
Verlauf des Parallelstrahls 7 durch beide Linsen und erhilt die Strahlen 1/
und 1”7, da ja I” an L, so gebrochen wird, daB I”” durch den Bildpunkt B
geht. Der Schnittpunkt der Verlingerung I’ von I mit 1" bestimmt die
Lage der Hauptebene H’, der Schnittpunkt von 1’ mit der optischen Achse
ist der bildseitige Brennpunkt F’ des Systems. H und F werden analog
konstruiert, indem man den Parallelstrahl 2" riickwérts verfolgt und den
Schnittpunkt seiner Verlingerung 2"/ mit dem Strahl 2 bestimmt. In dem
Beispiel von Abb. 138 liegen F und F’ innerhalb der Hauptebenen.

O.1.1. Kriimmungsradius und Brennweite
diinner Linsen

Aufgaben: 1. Krimmungsradius und Brennweite einer diinnen Plankonvex-
linse sind nach verschiedenen Verfahren zu messen; aus den
MeBwerten ist der Brechungsindex n zu berechnen.

2. Die Giiltigkeit der Linsengleichung ist zu iiberpriifen.

a) Messung des Kriimmungsradius

Der Kriimmungsradius kann mittels mechanischer oder optischer Ver-
fahren gemessen werden.

Bei den mechanischen Verfahren miBt man, beispielsweise mit einem
Tiefentaster, wie weit eine konvexe Linsenfliche in eine kreiszylindrische
Vertiefung einsinkt bzw. wie weit die Mitte einer konkaven Linsenfliche
iiber der Auflageebene liegt.

Bei den beriihrungslosen optischen Verfahren benutzt man die Linsen-
fliche als Spiegel. Bei konkaven Flichen ist das Autokollimationsverfahren
am einfachsten: Befindet sich im Kritmmungsmittelpunkt des Spiegels ein
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Schirm mit einer leuchtenden Marke, so wird diese umgekehrt und gleich
grof} auf dem Schirm scharf abgebildet (Abb. 139). In der Praxis benutzt man
als leuchtende Marke das iiber eine diinne planparallele Platte P beleuchtete
Fadenkreuz K eines sog. GauBlschen Okulars (Abb. 140) und verindert den
Abstand zwischen Fadenkreuz und Spiegel so lange, bis das Fadenkreuz
scharf und parallaxefrei in sich abgebildet wird.

v : o ‘?
G -
T —_—
8! d k , é
{
L g
Abb. 139. Autokollimationsverfahren Abb. 140. GauBsches Okular

beim Hohlspiegel

Bei konvexen Flichen entstehen virtuelle Bilder, das Autokollimations-
verfahren ist daher nicht anwendbar. Man benutzt dann die Methode von
Kohlrausch (Abb. 141). Bei diesem Verfahren befinden sich vor der Linsen-
fliche zwei leuchtende Marken I und 2, deren Spiegelbilder 1” und 2’ hinter
der Linsenfliche liegen. Den Abstand B der Spiegelbilder bestimmt man,
indem man vor der Linse eine durchsichtige Skale Sk befestigt und mit

Abb. 141. Kohlrauschsche Methode zur Messung des Kriimmungsradius

einem Fernrohr F, dessen Objektiv sich auf der Verbindungslinie der beiden
leuchtenden Marken befindet, die Projektion B’ der virtuellen Bilder auf
diese Skale mifit.
Nach GI. (2) ist
4jg - 1/|b] = ~1/|{| = ~2/R.

22 Phys. Praktikum
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Aus Abb. 141 entnimmt man unter Benutzung des Strahlensatzes

bjg = B|G
und
Bl(g+ |b]) = B'Jg.

Eliminiert man aus diesen Gleichungen die nicht direkt meBbaren GréBen
b und B, so ergibt sich '

2.9-F

G’—2-B" (8)

R=

b) Brennweitenmessung

Die Brennweite von Sammellinsen mifit man am einfachsten aus Gegen-
stands- und Bildweite, indem man das Bild eines leuchtenden Gegenstands
(beleuchteter durchsichtiger MaBstab) auf einem Schirm auffingt und die
entsprechenden Absténde zum Linsenmittelpunkt mifit. Aus Gl (2) be-
rechnet man daraus die Brennweite.

Das Verfahren hat den Nachteil, daBl bei gefaBten Linsen die Lage der
Mittelebene nicht genau bekannt ist. Man verwendet dann das Besselsche
Verfahren, bei dem Gegenstands- und Bildweite indirekt durch genauer

~
®
=]

\ Vo,
5 0 \

9r=b by =91

Abb. 142. Besselsche Methode der Brennweitenbestimmung

meBbare GroBen ermittelt werden (Abb. 142). Bei festem Abstand s zwi-
schen Gegenstand und Schirm erhilt man bei zwei symmetrischen Linsen-
stellungen I und I1 scharfe reelle Bilder auf dem Schirm (in Stellung 7 ein
vergroBertes, in Stellung I7 ein verkleinertes), wenn der Abstand s gréBer
als die vierfache Brennweite der Linse ist.
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Ist die GroBe der Verschiebung von Stellung I nach Stellung I1 gleich é,
so gilt wegen der Symmetrie der Linsenstellungen

e=>by—g; bzw. e=g; —b; (9a)
und

8§ =g+ by =g + by (9D)
Lo6st man nach g und b auf und setzt in die Linsengleichung (2) ein, so ergibt
sich!)

1 e?
=—ls——]. 1
I=z(-5) (10)

Die Brennweitenmessung kann auch nach dem Autokollimationsverfahren
erfolgen (Abb. 143). Man bringt dazu hinter der Linse einen ebenen Spiegel

/

)
f .
| 4 N

Abb. 143. Autokollimationsverfahren zur Brennweitenmessung

senkrecht zur optischen Achse an und verschiebt eine als Gegenstand die-
nende leuchtende Marke so lange, bis ihr Bild in der Gegenstandsebene
scharf erscheint. Ist dies erreicht, so befindet sich der Gegenstand in der
Brennweite der Linse. Alle von einem Punkt des Gegenstands ausgehenden
Lichtstrahlen treten daher parallel aus der Linse aus, werden reflektiert
und in der Brennebene wieder zu einem Punkt vereinigt. Fiir die praktische
Ausfithrung benutzt man ebenso wie bei der Messung des Kriimmungs-
radius das GauBsche Okular.

Das Verfahren wird hauptsichlich benutzt, um ein Fernrohr auf Unendlich ein-
zustellen (das Fadenkreuz befindet sich dann in der Brennebene des Objektivs) und um
seine Sehlinie senkrecht zu einer reflektierenden Fliche zu stellen. Die Linse L ist in
diesem Falle das Fernrohrobjektiv; der Abstand zwischen Fernrohr und Spiegel kann
beliebig groB sein.

1) Bei dicken Linsen ist s = ¢ + b + HH’, wenn HH’ der Abstand der beiden
Hauptebenen ist. Bei Prizisionsmessungen mufl daher HH’ ebenfalls gemessen werden.
In Gl. (10) ist anstelle von s die Groe s — HH’ einzusetzen.

22%
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Da die Abbildung mit Zerstreuungslinsen nur virtuelle Bilder liefert, muBl
deren Brennweite indirekt gemessen werden. Man setzt zu diesem Zwecke
die Zerstreuungslinse, deren Brennweite f, zu messen ist, mit einer Sammel-
linse bekannter Brennweite f; zu einem zentrierten Linsensystem zusammen.

Fiir die Brennweite F' des Systems ergibt sich nach Gl. (3)

1 1 + 1

Fof
wobei f, negativ ist. Wahlt man die Brennweite der Sammellinse kleiner als
den Betrag der Brennweite der Zerstreuungslinse, so iiberwiegt die sam-

melnde Wirkung, und das System hat eine positive Brennweite, die sich nach
den oben beschriebenen Methoden messen 1aBt. Aus f; und F ergibt sich

F'.fs_

fzz*F_fs' (11)

Versuchsausfithrung

Details zur mechanischen Ermittlung des Kriimmungsradius sind den
entsprechenden Gerétebeschreibungen zu entnehmen.

Bei der Messung des Kriimmungsradius nach Kohlrausch beobachtet man
auBer den an der Vorderseite der Linse reflektierten Bildern auch solche,
die von Reflexionen an der Riickseite stammen. Sie sind lichtschwicher;
bei einer einseitig planen Linse kann man sie vermeiden, indem man die
Planfliche schriag zur optischen Achse des Fernrohrs stellt.

Die Brennweitenmessungen sind auf einer optischen Bank auszufiihren,
die Linsen sind dabei genau senkrecht zur optischen Achse aufzustellen.
Um chromatische Abbildungsfehler zu vermeiden, ist gegebenenfalls mit
monochromatischem Licht zu arbeiten. Abbildungsfehler infolge zu weit
geofineter Biindel beseitigt man durch geniigend enge Blenden vor den Linsen.

Zur Uberpriifung der Linsengleichung miBt man bei verschiedenen Ge-
genstandsweiten g die Bildweite b und tragt 1/b iiber 1/g auf. Dabei mull
sich eine Gerade mit der Steigung —1 ergeben.

O.1.2. Brennweite und Hauptebenen eines
Linsensystems

Aufgaben: 1. Es sind die Brennweite und die Lage der Hauptebenen eines

Systems aus zwei diinnen Sammellinsen zu bestimmen, und es
ist eine maBstabgerechte Zeichnung anzufertigen.
2. Die Brennweiten der Einzellinsen sind zu messen. Unter Be-
nutzung der dabei erhaltenen Werte sind die Lagen der Brenn-
punkte und der Hauptebenen zu konstruieren und mit dem Er-
gebnis von Aufgabe 1 zu vergleichen.
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Die Messung der Brennweite und der Lage der Hauptebenen eines Linsen-
systems erfolgt nach dem Verfahren von Abbe, das auf der Messung des Ab-
bildungsmaBstabes reeller Bilder beruht. Kombiniert man die Gln. (2) und
(1) miteinander, so ergibt sich

1
= f. — 12
g f(1+y) (12a)
und
b=f-(1+7y). (12b)

Gegenstandsweite g und Bildweite b sind nicht direkt meBbar, da die Lage
der Hauptebenen noch unbekannt ist. Man miBt daher zunichst die Ent-
fernungen ¢’ und 5" von einer beliebig am Linsensystem angebrachten Ab-
lesemarke 4 ab und erhélt (Abb. 144) '

g’=g+k=f-(1+$)+h (13a)
und

V=b+k=f (1+y)+¥. (13b)

MiBt man bei zwei verschiedenen Entfernungen ¢ und g; die Werte
y, und yp,, so kann man die Unbekannten % und A’ durch Differenzbildung
eliminieren und erhélt

7 ’
et =
2 7
bzw.
/ . /
- y” _:1 . (141)
2 1
H H'

]

A

Abb. 144. Messung der Hauptebenenlage nach Abbe
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Setzt man die so bestimmte Brennweite f in Gl. (13a) bzw. (13b) ein, so
ergibt sich

1 1
e (1) (1) 150
und
K=bi—f-A+p)=b—f (L+yp). (15b)

Es kann vorkommen, daf} % oder ?’ negativ sind. Negatives h bedeutet, dafl
die Hauptebene H zwischen Ablesemarke und Bildebene liegt ; negatives A’
bedeutet, daBl H’ zwischen Ablesemarke und Gegenstandsebene liegt. Die
Brennweite f kann ebenfalls negativ werden. In diesem Falle liegt der ge-
genstandsseitige Brennpunkt F zwischen H und der Bildebene, der bild-
seitige Brennpunkt F’ zwischen H’ und der Gegenstandsebene.

Versuchsausfihrung

Als Gegenstand benutzen wir eine beleuchtete Glasskale, die wir durch
Verschieben des Linsensystems auf einen Schirm mit Millimeterteilung oder
auf die Okularskale einer MeBlupe scharf abbilden. Es empfiehlt sich, bei
méBiger Vergroflerung oder Verkleinerung zu messen (etwa 0,2 < ¢ < 5) und
moglichst enge Blenden vor die Linsen zu setzen, da sich sonst Abbildungs-
fehler stérend bemerkbar machen.

Um die Genauigkeit der Messungen zu vergroBern, messen wir nicht nur
bei zwei, sondern bei 4 bis 8 Gegenstandsweiten und tragen g’ iiber 1/y und
b iiber p auf. Es ergeben sich zwei Geraden, deren Steigung gleich der Brenn-
weite ist. Die Steigung ermittelt man, indem man entweder nach Augenmal
die beste Gerade durch die MeBpunkte legt oder diese durch Ausgleichs-
rechnung (sieche Abschn. 1.5.4 der Einleitung) berechnet. Mit der so ermit-
telten Brennweite berechnen wir aus Gl. (15a) fiir alle gemessenen Gegen-
standsweiten die Gré6Be & und bilden den Mittelwert. Analog berechnen wir
aus GL (15b) '

Fiir die Fehlerrechnung legen wir die Gln. (14) und (15) zugrunde.

Die Brennweite der Einzellinsen bestimmt man mit einem der in Versuch
0. 1.1 beschriebenen Verfahren; die Konstruktion der Lage der Haupt-
ebenen und Brennpunkte erfolgt nach der im Abschn. O. 1.0 angegebenen
Methode.

O.1.3. Lupe und Mikroskop

Aufgaben: 1. Die VergroBerung einer Lupe und eines Mikroskops ist zu be-
stimmen.
2. Die Apertur eines Mikroskops ist zu messen.
3. Der Zusammenhang zwischen Apertur und Auflésungsvermégen
eines Mikroskops ist mit Hilfe von Testobjekten zu iiberpriifen.
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Der Winkel, unter dem ein Gegenstand vom optischen Mittelpunkt des
Auges aus gesehen wird, heit Sehwinkel o oder scheinbare GroBe (Abb. 145).
Er hingt von der Objektgré8e @ und vom Abstand des Gegenstandes vom
Auge ab. Objekte gleicher scheinbarer GréBe erzeugen auf der Netzhaut

e Y G
% B
Abb. 145. Scheinbare GroBe

g Auge eines Objekts

gleich grofle Bilder. Der Sehwinkel kleiner Gegenstande 148t sich durch An-
niherung an das Auge nicht beliebig vergréBern, da unterhalb der deutlichen
Sehweite s = 25 cm die Sehscharfe abnimmt.

Lupe und Mikroskop dienen zur VergréBerung des Sehwinkels kleiner
Gegenstiande. Als VergroBerung bezeichnet man das Verhéltnis

t
e an ¢’
tan o

, / (16)

wobei ¢ der Sehwinkel mit ,,unbewaffnetem‘‘ Auge (ohne optisches Instru-
ment) und ¢’ der Sehwinkel bei Benutzung eines optischen Instruments sind
und beide Sehwinkel auf die gleiche Entfernung zu beziehen sind. Eine Lupe
ist eine Sammellinse, bei der sich der Gegenstand innerhalb der Brennweite
befindet, so daB ein vergréBertes, aufrechtes, virtuelles Bild entsteht
(Abb. 146). ZweckméaBigerweise arbeitet man so, da} sich das Bild in der

S - Abb. 146. Zur VergroBerung der Lupe

deutlichen Sehweite s befindet. Bringt man die Lupe unmittelbar vor das
Auge, so ist tan ¢’ = B/s, wihrend obne Lupe tan ¢ = (/s ist. Aus der
Linsengleichung 1/g — 1/s = 1/f (das negative Vorzeichen entspricht dem
virtuellen Bild) folgt s/g = s/f + 1, und man erhélt

TL=§= =%+1. (17

s
g
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In diesem Falle ist die VergroBerung Iy, gleich dem AbbildungsmaBstab y. Im all-
gemeinen unterscheiden sich jedoch VergréBerung und AbbildungsmaBstab. Beispiels-
weise kann man eine Lupe auch so benutzen, dafl der Gegenstand in der Brennebene,
das virtuelle Bild demzufolge im Unendlichen liegt. Der Sehwinkel mit Lupe ist dann
gleich G/f, und man erhélt ', = s/f, wihrend der AbbildungsmaBstab y,, = oo ist.

Geniigt die mit einer Lupe erreichbare VergroBerung nicht, so benutzt man
ein Mikroskop. Bei diesem wird zundchst mittels einer Sammellinse (Objek-
tiv) ein vergroBertes, reelles Zwischenbild entworfen und dieses mittels einer
Lupe (Okular) betrachtet (Abb. 147). Die damit erzielten VergréBerungen
sind gleich dem Produkt aus dem AbbildungsmaBstab y, = B,/G des Ob-
jektivs und der Lupenvergr6Berung m des Okulars.

\‘\\
| R
| <t
i ~ T
B | I
| >
1
| o B ——— & Fok

a= C‘G‘b Fk E = .
0b 0K

Abb. 147, Strahlengang im Mikroskop

MaBgebend fiir die Leistungsfahigkeit eines Mikroskops ist jedoch nicht
die erreichbare VergroBerung, sondern sein Auflsungsvermdgen, das an-
gibt, bei welchem minimalen Abstand d;, zwei Objektpunkte noch ge-
trennt wahrnehmbar sind.

Das Auflésungsvermégen wird durch die Beugung des Lichtes an der
Objektivoffnung begrenzt (vgl. Abschn. O. 2).

Nach Abbe ist

061-1 0612
n-sinw A

(18)

dmin =

Dabei ist 4 die Wellenlidnge des benutzten Lichtes (bei weillem Licht rechnet
man mit 4 = 550 nm, da fiir Licht dieser Wellenlédnge das Auge am empfind-
lichsten ist), n der Brechungsindex des Mediums zwischen Gegenstand und
Objektiv und u der halbe Offnungswinkel des von einem axial gelegenen Ge-
genstandspunkt in das Objektiv eintretenden Lichtbiindels (vgl. Abb. 149).
Die GroBe n - sin w = 4 heit numerische Apertur des Objektivs, sie ist ein
MaSB fiir sein Auflésungsvermaogen.

Versuchsausfihrunyg

Zur Messung der VergroBerung der Lupe betrachtet man mit einem Auge
durch einen Tubus 7' die in der deutlichen Sehweite befindliche Skale ~ und
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mit dem anderen Auge durch die Lupe L die vertikal verschiebbare gleich-
artige Skale 11 (Abb. 148).

Skale II wird so lange verschoben, bis ihr von der Lupe erzeugtes Bild in
der gleichen Entfernung wie Skale A scharf erscheint, so daBl man beide
Skalen iibereinander sieht. Bei richtiger Einstellung zeigen die Skalen keine

o

s SKI | 6l &
8
2a n
0b

i b |

SkI ol é/
Abb. 148. Messung der Abb. 149. Messung des Apertur-
LupenvergroBerung winkels beim Mikroskop

Parallaxe gegeneinander. Erscheinen dann n, Skalenteile von Skale I gleich
n, Skalenteilen von Skale 11, so ist die LupenvergréBerung

=L (19)

Um evtl. Unterschiede der beiden Augen des Beobachters auszugleichen,
vertauscht man Lupe und Tubus und bildet das Mittel aus den beiden
Messungen.

Die VergroBerung des Mikroskops 148t sich auf die gleiche Weise bestim-
men. Wegen der starken Vergréferung verwendet man allerdings in diesem
Falle als Skale II ein Objektmikrometer mit einer !'/,,-mm-Teilung, als
Skale I dagegen eine 1.mm-Teilung. Dann ist

Iy =100. 2 (19a)

Teg
Zur Messung des Aperturwinkels » benutzt man das in Abb. 149 schematisch
dargestellte Verfahren. Zunéichst stellt man das Mikroskop auf eine in der
Mitte des Gesichtsfeldes befindliche feine Lochblende B scharf ein. Dann
entfernt man, ohne an der Einstellung etwas zu verandern, das Okular und
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beobachtet ein Glithlimpchen G, des senkrecht zur Sehlinie auf einer Skale
verschiebbar ist. Man sieht dann dicht vor dem Objektiv das verkleinerte
Bild des Lampchens. Aus den beiden Stellungen, bei denen dieses gerade am
Rande des Gesichtsfeldes verschwindet, ergibt sich der Aperturwinkel zu

tan w = % . ' (20)

Zur Uberpriifung des Zusammenhangs zwischen Apertur und Auflosungs-
vermogen betrachten wir als Testobjekte Strichgitter bekannter Gitter-
konstante und stellen fest, welcher Abstand gerade noch aufgelést wird. Es
ist zweckmiBig, diese Messung bei monochromatischer Beleuchtung aus-
zufiithren. Dabei 148t sich auch die Abhéngigkeit des Auflésungsvermogens
von der Wellenlédnge iiberpriifen.

O.1.4. Fernrohr

Aufgaben: 1. Es ist die VergroBerung eines Fernrohres zu messen.
2. Das Gesichtsfeld des Fernrohres ist zu bestimmen.
3.: Es sind die Brennweiten der Objektiv- und Okularlinse von
einem Modell eines astronomischen Fernrohrs zu messen. Daraus
ist die VergroBerung des Fernrohrs zu berechnen. Die Vergrofie-
rung ist unabhingig davon direkt zu messen. Beide Werte sind
zu vergleichen.

Linsenfernrohre bestehen im einfachsten Falle aus zwei Linsen, dem
Objektiv (Sammellinse) und dem Okular (Sammel- oder Zerstreuungslinse).
Sie werden zur Vergroflerung des Sehwinkels eines weit entfernten Gegen-
stands verwendet. Das vom Gegenstand ausgehende Licht trifft daher
nahezu parallel auf das Fernrohrobjektiv. Zur Betrachtung ferner Gegen-
stinde 148t man beim Fernrohr den Brennpunkt Fy;, des Objektivs mit dem
Brennpunkt F,. des Okulars zusammenfallen (felezentrisches System), so daf
parallel ins Objektiv fallende Lichtbiindel das Fernrohr auch wieder parallel
verlassen. Man beobachtet deshalb mit auf Unendlich akkommodiertem
Auge.

Man unterscheidet

a) das astronomische oder Keplersche Fernrohr, das aus zwei Sammellinsen
besteht, einem Objektiv groBer und einem Okular kleiner Brennweite
(Abb. 150) und

b) das hollindische oder Galileische Fernrohr. Es besteht aus einer lang-
brennweitigen sammelnden Objektivlinse und einer kurzbrennweitigen

Zerstreuungslinse als Okular (Abb. 151).
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Objektiv
Okular
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Abb. 150. Strahlengang im astronomischen Fernrohr

Zur Berechnung der VergroBerung des astronomischen Fernrohrs werde
angenommen, daf ein vom fernen Gegenstand ausgehendes paralleles Licht-
biindel unter einem Sehwinkel ¢ in das ,,unbewaffnete* Auge des Beobach-
ters fallt (Abb. 145). Da bei einem weit entfernten Gegenstand die Linge
des Fernrohrs vernachlissigt werden kann, tritt das Lichtbiindel unter dem

0bjektiv

Okular
Ge BM , ,
sehr weit entfernt L Fx Cj( Fi Fib
t — = —r_7
Fob /

— 1

Abb. 151. Strahlengang im hollindischen Fernrohr

gleichen Winkel ¢ in das Objektiv des Fernrohres ein. In der gemeinsamen
Brennebene von Objektiv und Okular entsteht ein umgekehrtes reelles
Zwischenbild der Grofle

B, = [y -tano. ' 21)

Durch das als Lupe wirkende unmittelbar vor dem Auge befindliche Okular
erscheint das Bild unter dem Sehwinkel ¢’ mit

tang = B,
ok

(22)
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(sieche Abschn. O. 1.3), und fiir die VergroBerung des astronomischen Fern-
rohrs ergibt sich aus den Gln. (16), (21) und (22)

_ tan 0'/ _ ](ob (23)
tano  fgo

ast

Das astronomische Fernrohr liefert umgekelirte Bilder. -

Beim hollindischen Fernrohr entsteht kein reelles Zwischenbild. Als
VergréBerung erhdlt man durch im wesentlichen analoge Betrachtungen
(Abb. 131)

I holl =

tan ¢’ fob
tan o | f ok | )

(24)

Das hollandische Fernrohr liefert aufrechte Bilder (Opernglas).

Versuchsausfiihrung

Zur Messung der VergroBerung visiert man mit einem Auge durch das
Fernrohr einen entfernten Mafistab an, mit dem anderen betrachtet man ihn
direkt, indem man seitlich am Fernrohr vorbeisieht. Es gehngt ohne grofle
Miihe, beide Bilder gleichzeitig wahrzunehmen.

Man zahlt aus, wie viele Teilstriche », des unvergroBerten MaBstabs auf n,
Teilstriche des durch das Fernrohr betrachteten Mafstabs kommen. Die
Fernrohrvergré6Berung m betragt dann

Man wiederholt den Versuch, indem man mit jeweils dem anderemn Auge
durch das Fernrohr sieht bzw. den MaBstab direkt beobachtet.

Zur Bestimmung des als Winkel definierten Gesichtsfeldes (Objektfeld-
groBe) a (Abb. 152) bestimmt man den Durchmesser D des kreisférmigen

Abb. 152.
Zur Definition des Gesichtsfeldes

Gesichtsfeldes, indem man wieder den MaBstab durch das Fernrohr betrach-
tet. Ist @ der Abstand des Fernrohrobjektivs vom MaBstab, so ergibt sich
aus tan a/2 =~ a/2 = D|2a das Gesichtsfeld zu

D

o0=—",
@

2 ist vom Bogenmaf} ins Gradmal} umzurechnen.
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Die Brennweiten des Objektivs und des Okulars des Fernrohrmodells
werden nach einem der in Abschn. O. 1.1 beschriebenen Verfahren (giinstig
ist die Bessel-Methode) gemessen. Die VergroBerung des astronomischen
Fernrohrs wird nach Gl. (23) berechnet. Dariiber hinaus mifit man, wie oben
erlautert, die VergroBerung direkt und vergleicht beide Werte.

O.2. INTERFERENZ, KOHARENZ UND BEUGUNG

O.2.0. Aligemeine Grundlagen

Licht ist eine elektromagnetische Wellenerscheinung. Zu dieser Fest-
stellung zwingen u. a. die in den folgenden Versuchen beschriebenen Inter-
ferenz- und Beugungsphinomene.

Wir beschréinken uns auf ebene harmonische Wellen, die sich in +z-Rich-
tung ausbreiten. Fiir diese 1aBt sich die elektrische Feldstirke E(z, t) in der
Form

E(x,t) = B, - elet -2l ‘ 0

schreiben?) (Abb. 153).

Re £

Ext=At)

E(x,t=0)

Ax=c-t

Abb. 153. Ortliche Verteilung der elektrischen Feldstirke einer harmo-
nischen Welle fiir zwei verschiedene Zeiten

r

1) Die Benutzung der komplexen Schreibweise hat rechentechnische Griinde; phy-
sikalische Bedeutung hat nur der Realteil der Gleichungen.
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E, ist die Amplitll:de der Welle, w = 2ny die Kreisfrequenz und ¢ die
Ausbreitungsgeschwindigkeit. Frequenz » und Wellenldnge A sind durch die
Gleichung

c=A-v 2

miteinander verkniipft.

Da, es sich beim Licht um sehr hochfrequente elektromagnetische Schwin-
gungen handelt, ist nicht die Feldstirke E, sondern die Intensitét I direkt
beobachtbar; sie ist dem Zeitmittel des Betragsquadrats der Feldstirke
proportional:

I~ [E@ )} = E(x1) - B, 1) ’ 3)

Uberlagern sich zwei oder mehrere Wellen gleicher Frequenz, so tritt Infer-
ferenz ein: je nach ihrer Phasenlage verstirken oder schwichen die Wellen
einander (vgl. die analogen Erscheinungen bei Schallwellen, Abschn. M. 8).
Es sei _
El(x, t) — Elo . glo(t —z/c)
und
Ey(x,t) = By - ello¢—zi0)+0],

wobei ¢ = 2r - Az/A die Phasenverschiebung der Welle 2 gegeniiber der
Welle 1 ist (Ax ist die Wegdifferenz der beiden Wellen).

Da sich elektrische Feldstarken ungestort iiberlagern, erhalt man am
Ort x zur Zeit ¢ die Feldstirke

E(@,t) = (Byg + Eqo - €9) - €270, (4)
die einer Intensitit
I~ (Big+ Eopp-€9) . (Byg+ Eyy- €710y = B2+ B3+ 2. B+ By - cosd  (5a)

entspricht. Driickt man die reellen Amplituden E,, und E,, durch die
Intensitdten I, und I, der einzelnen Lichtwellen aus, so folgt

I=1+1,+2.)I,-1,- cos 8. (5b)

Die resultierende Intensitiat I ist also nicht gleich der Summe der Intensi-
titen der Einzelwellen, sondern ist infolge des sog. Interferenzgliedes

2. ]/I 1+ 45 - cos § entsprechend der Phasenverschiebung § gréBer oder klei-
ner. Insbesondere gilt fiir gleiche Intensitdten I, = I,

beid=0 oder 2k-mw I=4.1I, (maximéle Verstarkung),
beid=n oder (2k+1)n:I=0 (vollsténdige Ausléschung).
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0 = 2kr entspricht einer Wegdifferenz von k- 1, § = (2k + 1) & einer Weg-
differenz von & - 4 + 4/2, wobei k eine beliebige ganze Zahl ist. Im Fall kon-
struktiver Interferenz (maximale Verstarkung) heift £ Ordnung der Inter-
ferenz.

Alle diese Uberlegungen gelten fiir raumlich und zeitlich unbegrenzte
Wellen. Dagegen lassen sich erfahrungsgemifl Interferenzexperimente mit
Licht aus getrennten Lichtquellen (auch mit Licht von verschiedenen Stel-
len der gleichen Lichtquelle) nicht ausfithren. Das hat seine Ursache darin,
daB Licht aus raumlich und zeitlich begrenzten Wellengruppen besteht, de-
ren Lange man alsKohérenzlange ! und deren Dauer man als Kohédrenzzeit =
bezeichnet. Interferenz tritt daher nur auf, wenn ‘die sich iiberlagernden
Wellen im gleichen Elementarvorgang, d. h. im gleichen Atom, entstanden
sind. Nur solche Lichtwellen sind kohérent, d. h. stimmen dauernd in Wel-
lenlénge und Schwingungsebene iiberein und haben eine zeitlich konstante
Phasendifferenz.

Fiir punktférmige Lichtquellen lassen sich die Bedingungen fiir Kohérenz
wie folgt formulieren:

1. Es muB hinreichende Uberlappung der Wellengruppen im Beobachtungs-
gebiet vorliegen, d. h., die Wegdifferenz der interferierenden Wellen muf3
kleiner als die Kohéarenzlinge sein.

2. Die Phasendifferenz darf sich zeitlich nicht (oder nur sehr langsam)
dndern, damit die Lage der Interferenzfigur wihrend der Beobachtungs-
zeit konstant bleibt.

Beide Bedingungen lassen sich durch Aufspalten einer Wellengruppe in
zwei (oder mehrere) realisieren, d. h., man muf} als Lichtquellen fiir Inter-
ferenzversuche zwei (oder mehrere) Bilder der gleichen Lichtquelle be-
nutzen.

Bei Verwendung rdumlich ausgedehnter Lichtquellen, die nicht als ein-
heitliches Ganzes schwingen (was in der Praxis auBler bei Lasern stets der
Fall ist), kommt noch eine weitere Bedingung hinzu:

3. Nur innerhalb eines Offnungswinkels 2u, der der Koharenzbedingung

(6)

sinu <
2

geniigt, kann eine Lichtquelle der linearen Ausdehnung y als punkt-
formiges Wellenzentrum betrachtet werden (Abb. 154), andernfalls ist
sie als aus mehreren inkohérenten Lichtquellen zusammengesetzt zu be-
trachten (vgl. O. 2.2).

Wahrend in gewohnlichen Lichtquellen spontane Emission vorherrscht,
d. h. alle Atome unabhingig voneinander Licht aussenden, dominiert in
Lasern die induzierte Emission, d. h., alle Atome sind durch das Strahlungs-
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feld gekoppelt. Laser stellen daher raumlich einheitlich schwingende Strah-
ler sehr grofler Kohirenzlinge dar. Infolgedessen ist auch Licht, das von
unterschiedlichen Stellen des Lasers stammt, interferenzfahig.

Trifft eine Lichtwelle auf ein Hindernis, so tritt Beugung auf: die Welle
wird von der geradlinigen Ausbreitungsrichtung abgelenkt. Die Erklarung

u
N Abb. 154. Zur Kohirenzbedingung

fiir diese Erscheinung liefert das Huygenssche Prinzip, nach dem jeder
Punkt in einem Wellenfeld Ausgangspunkt einer Elementarwelle wird, die
sich nach allen Seiten gleichméaBig ausbreitet. Trifft eine ebene Welle also
beispielsweise auf eine sehr kleine Offnung (Durchmesser <4/2) in einem
Schirm, so entsteht hinter dem Schirm eine Kugelwelle.

Werden von einer Welle mehrere Elementarwellen an verschiedenen Orten
erzeugt (z. B. bei mehreren Offnungen im Schirm bzw. bei einer relativ
groBen Offnung), so konnen diese miteinander interferieren, da sie durch
den gleichen Elementarvorgang erzeugt werden und infolgedessen kohérent
sind. Auf diese Weise entstehen die an einem Spalt oder einem Beugungs-
gitter auftretenden hellen und dunklen Beugungsstreifen.

Wir betrachten zunéchst die Verhéltnisse an einem Doppelspalt mit sehr
schmalen gleichbreiten Einzelspalten und berechnen die Intensitétsvertei-

CY)

Schirm

Abb.155. Beﬁgung am Doppelspalt und
Intensitiatsverteilung bei schmalen

i 0(\\ ) Einzelspalten.
\ Ax=b-sinex Spaltebene  Die beiden von den Spalten 7 und 2
‘507 5902 ausgehenden Strahlen, die sich auf dem

? A A K infallendes Licht Schirm treffen, werden als parallel be-
N trachtet
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lung auf einem weit entfernten Schirm. Dann sind die beiden in Abb. 155
gezeichneten ,,Strahlen’ (Ausschnitte aus den in den beiden Spalten ent-
stehenden Kugelwellen) praktisch parallel.) Wir haben es in diesem Fall mit
der Interferenz paralleler Biindel zu tun, was man als ¥Fraunhofersche Be-
obachtungsart bezeichnet (im Gegensatz zur Fresnelschen Beobachtungs-
art, bei der beliebig geneigt Biindel interferieren).

Aus Abb. 155 ergibt sich, daB die unter dem Winkel & gebeugten Strahlen
eine Phasenverschiebung von

o= 2r 0% | (7)

gegeneinander haben. Bezeichnen wir die von jedem Einzelspalt durch-
gelassene Intensitat mit I, so wird nach Gl. (5Db)

I(oc)=2-Io-(1+cos6)=4-I0-cos2%. (8)

Die Intensititsverteilung I(a) ist in Abb. 155 eingetragen.
Beugungsminima liegen an den Stellen
O

T . A
?=?+k~n oder smcxk—2—b(2k+1), (9a)

Beugungsmaxima an den Stellen

% Y
?=k~‘n: oder smozk=T-k. (9b)

Experimentell ist jedoch die Voraussetzung sehr schmaler Spalte («4) am
Doppelspalt nicht realisierbar, da die Beugungserscheinungen zu licht-
schwach werden.

Bevor wir den Doppelspalt mit endlicher Spaltbreite betrachten, berech-
nen wir zundchst die Intensitdtsverteilung bei der Beugung an einem Einzel-
spalt der Breite a fiir Fraunhofersche Beobachtungsart. Wir haben es jetzt
mit der Interferenz vieler Parallelstrahlbiindel der Breite dy zu tun (Abb.
156), die jeweils einen Feldstirkebeitrag d& = E - dy/a liefern und deren
Phasenverschiebung

y-sina y

sy —om L 20E 5, Y (10)

1) In der Praxis beobachtet man die Interferenz in der Brennebene einer Linse, in der
parallele Biindel vereinigt werden. Die Linse erzeugt keine zuséitzlichen Phasenverschie-
bungen, die Rechnung gilt daher auch fiir diese Beobachtungsart.

23 Phys. Praktikum
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betragt, wobei
@ - sin «

= (11)

5max =2r
ist.

Analog zu Gl. (4) ist iiber alle Teilbiindel zu summieren (integrieren), man
erhilt dann fiir die Feldstirke beim Beugungswinkel

E() = Ey o (‘ _%) f elomax-via dy — _ai (eldmax —1) o (‘ "9 . (12)

4 10max

Ay =0 Sin &

Spaltebene

Ll i

0 P Y= Richtung

Abb. 156. Zur Beugung am Einzelspalt der Breite a
Die Wegdifferenz zwischen den Strahlen I und 2 betrigt Az = y sin «, die

Phasendifferenz also d(y) = 2= y s;rl z
02 Spgx/2
£ ()= 517 4ng
1 ( (6max/2)
051
1 Nebenmaximum
. Y max
x 3
0 % x %
8in? Omax/2

Abb. 157. Spaltfunktion f(Smm) = ~G—2055
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Geht man entsprechend Gl. (3) zur Intensitdt iiber, so ergibt sich

2 — 2c08 Opax Sin? O, /2

fax T (/20

I=1,

(vgl. Abb. 157).

Im Falle des Einzelspalts liegen entsprechend Gl. (13) Beugungsminima
bei

(13)

6’“;‘"‘=k-1é bzw. a-sina=4k-4 (k=+0), (144a)
die Beugungsmaxima bei « == 0 und in der Nahe von (aber nicht genau bei)

/

6"12“"‘ = —72-‘:- (2k + 1) bzw. a-sine, = (2k+ 1) % . (14Db)

Ist ¢ < A, so gibt es keinen Winkel, der Gl. (14a) erfiillt, also auch keine
Intensitatsminima. So schmale Spalte werden zum Ausgangspunkt von
Kugelwellen, leuchten also den Halbraum hinter dem Spalt ohne Beugungs-
streifen relativ gleichméBig aus.

Die Berechnung der Intensitidtsverteilung bei der Beugung am Doppel-
spalt mit endlich breiten Einzelspalten verlduft analog zur Berechnung beim
Einzelspalt, es ist lediglich iiber beide Spalte zu integrieren. Als Ergebnis
erhalt man die Intensitdtsverteilung

I(@) = 10%75‘)/22 cos? 0/2, (15)
fgm-(%z)? fir =g
60 -
50
40
30+
20
10

SORES)

Abb. 158. Gitterfunktion f(d) = (

sin Nd/2

sin 6/2
Hauptmaxima liegen bei 6 = 2 krn; Minima (Nullstellen)
bei 6 = 2n(k + p/N), wobeip =1,2,...,N — 1ist

2
) fir N =8,

23*
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die sich als Produkt der Intensitétsverteilungen (8) und (13) darstellt

(Abb. 157).
Bei einem Beugungsgitter ist statt iiber 2 iiber NV Spalte zu integrieren,
man erhilt dann

8in® Opax/2  sin2 N§/2
(Omax/2)? sin2 §/2 ’

wobei der erste winkelabhéngige Faktor auch hier die Intensitdtsverteilung
des Einzelspalts ist (Abb. 158).

I(@) = I, (16)

0.2.1. Newtonsche Ringe

Aufgaben: 1. Die Wellenlinge von monochromatischem Licht ist zu ermit-
teln.
2. Der Kriimmungsradius einer Sammellinse ist zu bestimmen.

Newtonsche Ringe entstehen durch die Interferenz von Licht an der diin-
nen Zwischenschicht zwischen einer schwach gewélbten Linse und einer
Planglasplatte. Man beobachtet im allgemeinen das von dieser Anordnung
reflektierte Licht (Abb. 159). In diesem Falle interferieren der an der Unter-
seite der Linse reflektierte Strahl 7 und der an der Oberseite der Glasplatte

A 2um
\T Beobachter

dg*d

13

s

Abb. 159.
| Entstehung der Newtonschen Ringe

reflektierte Strahl 2. Beide Strahlen sind der Deutlichkeit halber versetzt
gezeichnet. Ihre Richtungsinderungen bei der Brechung bzw. Reflexion an
der Linsenfliche sind fiir die weiteren Betrachtungen unwesentlich und
werden vernachlissigt.

Ist 7 der Abstand vom Beriihrungspunkt der Linse mit der Glasplatte, so
hat die Luftschicht zwischen Linse und Glasplatte dort die Dicke d, + d.
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Der Anteil d, beriicksichtigt, daf keine ideale Beriihrung vorliegt: Durch
Staub kann der Abstand vergréBert, durch Deformation verkleinert werden.

Sieht man von der geringfiigigen Brechung der Lichtstrahlen in der Linse
ab, so betrigt der Wegunterschied der beiden interferierenden Wellenziige
2. (d, + d); da die Reflexion des zweiten Wellenzuges am optisch dichteren
Medium erfolgt, ist noch ein Phasensprung von w/2 zu addieren (vgl. die
analogen Verhiltnisse bei der Reflexion von Schallwellen, Abschn. M. 8), so
daB sich eine Phasenverschiebung

4 T
0= —=(do+d)+ a7
ergibt. Ist
0=2r-k (k=0,1,..), (18a)

so verstarken sich die interferierenden Wellenziige, und es entsteht ein
heller Ring, da langs der Peripherie eines Kreises um den Beriihrungspunkt
von Glasplatte und Linse die Phasenverschiebung & konstant ist. Ist da-
gegen

d=m-2k+1) (k=0,1,..), (18b)

so loschen sich die interferierenden Wellenziige aus, und es entsteht ein
dunkler Ring.

Den Zusammenhang zwischen dem Radius 7, des k-ten Ringes und der
Dicke d kann man entsprechend Abb. 160 mit Hilfe des Hohensatzes im
rechtwinkligen Dreieck ermitteln. Es ist

d-(2R—d)=13. (19)

—

\
\
7
<

& Abb. 160. Zur Ermittlung der Dicke d

Bei schwach gewélbten Linsen ist d < R, so daB in Gl (19) das Glied 42
vernachlissigt werden darf.
Aus den Gln. (17), (18) und (19) folgt dann fiir die dunklen Ringe

%=k-R-A—2.d,-R (20a)
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und fiir die hellen Ringe

¢g=(k~%).3.,1_2.d0.13. (20D)

Versuchsausfithrung

Zur Losung von Aufgabe 1 ist eine Linse mit bekanntem Kriimmungs-
radius R zu benutzen (R kann nach den in Versuch O. 1.1 beschriebenen
Methoden bestimmt werden). Linse und Glasplatte werden auf einen mittels
MeBschraube verschiebbaren Tisch gelegt und mit parallelem Licht
der zu messenden Wellenldnge A bestrahlt. Zur Vermeidung stérender Re-
flexionen legt man unter die Glasplatte schwarzes Papier.

Die Beobachtung der Newtonschen Ringe erfolgt mit einem Fernrohr mit
Fadenkreuz. Durch die Verschiebung des Tisches lassen sich die Durch-
messer der hellen und der dunklen Ringe bestimmen. Systematische Fehler
koénnen sich ergeben, wenn die Linse nicht in allen Richtungen den gleichen
Kriimmungsradius hat. Dies 1aBt sich iiberpriifen, indem man den Durch-
messer der Ringe in verschiedenen Richtungen mif}t.

Aufgabe 2 ist in gleicher Weise zu I6sen. Die Beleuchtung muf3 dabei mit
monochromatischem Licht bekannter Wellenlédnge erfolgen. Bei Linsen mit
sehr grofen Kriimmungsradien liefert diese Methode genauere Werte als
andere MeBBmethoden.

Zur Auswertung trigt man 7 iiber k auf und erhilt eine Gerade mit der
Steigung § = R- 4. Je nachdem, ob R oder A bekannt ist, 1aBt sich aus der
Steigung A oder R berechnen. '

Fiir die Fehlerrechnung legt man die Gleichung

1§, — 1, '
Bd= _ (21)

zugrunde, die durch Differenzbildung aus GI. (20) folgt.

Erstrebt man hohe Genauigkeit, so kann man nach dem im Abschn. 1.5.4
der Einleitung beschriebenen Verfahren die beste Ausgleichsgerade durch
die MeBpunkte legen und den mittleren Fehler in der dort angegebenen
Weise berechnen.

O.2.2. Beugung an Spalt und Doppelspalt

Aufgaben: 1. Die Wellenlinge der Na-D-Linie ist zu bestimmen.
2. Die Intensitatsverteilung bei der Beugung an einem Einzel-
spalt ist mittels eines Photowiderstandes auszumessen.
3. Die Giiltigkeit der Kohédrenzbedingung ist zu iiberpriifen.
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Zur Untersuchung der Beugung an Spalten benutzt man spaltformige
Lichtquellen (z. B. einen parallel zum beugenden Spalt Sp2 angeordneten
Beleuchtungsspalt SpI) und beobachtet das Beugungsbild in der Brenn-
.ebene einer Sammellinse L mit einer MeBlupe bzw. registriert es auf einer
Photoplatte oder mittels eines lichtelektrischen Empfingers (Abb. 161).

L
| %
—®
, 13
Sp1 Sp2? MeBjupe

Abb. 161. Wellenldingenmessung durch Beugung am Spalt bzw. Doppelspalt

Ist der Beleuchtungsspalt hinreichend schmal (s. unten), so erhilt man
in der Beobachtungsebene Minima und Maxima der Intensitit, woraus man
beim beugenden Doppelspalt entsprechend Gl. (9) bei bekanntem Spalt-
abstand b durch Messung der Winkel «; bzw. &, die Wellenldnge berechnen
kann. Analog ist beim Einzelspalt die Gl. (14) zu benutzen.

Die Winkel «, bzw. o, unter denen die dunklen bzw. hellen Beugungs-
streifen beobachtet werden, erhilt man entsprechend Abb. 162 aus

tan o, = zff, (22)

wobei 2 - 2, der Abstand der beiden Streifen gleicher Ordnung in der Brenn-
ebene der Sammellinse und f deren Brennweite ist.

Fiir breite Beleuchtungsspalte sind zusitzliche Uberlegungen erforder-
lich. Wir betrachten die Verhéltnisse fiir 3 linienférmige Lichtquellen, die
sich im Abstand g vom beugenden Doppelspalt befinden und voneinander
den Abstand y/2 haben (Abb. 163). Da ihr Licht inkohérent ist, erzeugen

Lichtquellen Sedlt
\%2’0\|
> /
Spalt-  Linse Brenn- l
egrne g ebene g |
Abb. 162. Sammlung Abb. 163. Zur Kohérenzbedingung

von Parallelstrahlen in der
Brennebene einer Sammellinse
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sie unabhéngig voneinander 3 Beugungsbilder, wobei die von den beiden
duBeren Lichtquellen stammenden um den Winkel ¢ gegen das mittlere
verdreht sind. Die Lichtquellen seien weit vom beugenden Doppelspalt ent-
fernt, daher ist ¢ klein, und es gilt

(pztan¢p=—2gg—. (23)

Ist @ gerade so groB, daf} die hellen Streifen des Beugungsbildes der mittle-
ren Lichtquelle mit den dunklen Streifen der Beugungsbilder der dulleren
Lichtquellen zusammenfallen, so wird die Beugungserscheinung unbeobacht-
bar. Dieser Fall tritt beim Doppelspalt ein, wenn

= —i
Q=0 = 20

ist, da entsprechend Gl. (9) Maxima und Minima um den Winkel a, = 1/2b
gegeneinander verdreht sind. Scharfe Beugungsstreifen sind daher nur zu
erhalten, wenn die Bedingung

AP
tan ¢ = 2 < % (24)

erfiillt ist, die der Kohdrenzbedingung (6) entspricht.

Fiir die Beugung am Einzelspalt ist in Gl. (24) 2b durch die Spaltbreite @
zu ersetzen.

Ausgedehnte Lichtquellen kann man sich aus einer Reihe punktformiger
Lichtquellen zusammengesetzt denken; die Bedingung (24) muB dann fiir
die Riander der Lichtquelle erfiillt sein.

Die Benutzung ausgedehnter Lichtquellen setzt also groBe Entfernungen
oder schmale Beugungsspalte voraus, andernfalls mufl die Ausdehnung der
Lichtquelle durch Vorsetzen eines Beleuchtungsspaltes verringert werden.

Versuchsausfithrung

Als Lichtquelle verwendet man eine Natriumdampflampe, die praktisch
monochromatisches Licht (die gelbe Na-D-Linie) aussendet. Zur Erfiillung
der Kohérenzbedingung (24) dient Spalt 1, der sich in groBem Abstand vom
beugenden Doppelspalt (Sp 2 in Abb. 161) befindet, so da dieser praktisch
mit parallelem Licht beleuchtet wird (Abb. 161). Die Beugungserscheinung
beobachten wir mit einer MeBlupe, dercn Okularskale sich in der Brenn-
ebene der Linse L befindet. Wir erreichen dies, indem wir zunéchst Spalt 2
entfernen und Spalt I scharf auf die Okularskale abbilden. Nachdem wir
dann Spalt 2 in den Strahlengang gebracht haben, messen wir den Abstand
2z, der hellen Streifen gleicher Ordnung. Aus den Gln. (9) und (22) ergibt
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sich, da die Beugungswinkel «f, sehr klein sind,
a/f =A-k/b. (25)

Tragt man daher x; iiber k auf und legt durch die MeBpunkte eine Gerade,
so ist deren Steigung

S=f-2b. . (26)

Zur Bestimmung der Wellenlénge sind noch der Spaltabstand b des Doppel-
spaltes und die Brennweite f der Linse zu ermitteln. Wir bestimmen b,
indem wir den Beugungsspalt an die Stelle des Beleuchtungsspaltes bringen
und mittels L vergroBert auf die Okularskale abbilden. Wir erhalten ein
Spaltbild " = y - b, wobei y der AbbildungsmaBstab der Linse bei der be-
treffenden Gegenstandsweite ist.

v und f bestimmen wir mittels der in Versuch O. 1.1 beschriebenen Bessel-
schen Methode, wobei Spalt 2 als Gegenstand dient und das Bild in der
Okularskale der MeBlupe entsteht. Aus den Gln. (19a und b) von Abschn.
0. 1.1 folgt

s+ e
‘)’:s_.e (27)
und
1 e2

Erfolgt der Nachweis des Beugungsbildes photographisch, so ist analog zu
verfahren: das Beugungsbild ist mit auf Unendlich eingestelltem Apparat
aufzunehmen, f ist jetzt die Brennweite des Objektivs. b kann wie oben
erlautert mit einer beliebigen Sammellinse ermittelt werden.

Bei photoelektrischer Registrierung tastet man die Beugungsfigur mit
einem lichtelektrischen Empfinger ab, vor dem sich ein feiner MeBspalt
befindet, der zusammen mit dem Empfinger mittels eines MeBschlittens
verschoben werden kann. Der registrierte Strom ist ein Maf fiir die Licht-
intensitit am Ort des MeBspalts.

Zur Uberpriifung der Kohirenzbedingung benutzen wir einen Beleuch-
tungsspalt variabler Breite und verdndern diesen von kleinen Spaltbreiten
beginnend so weit, bis die Beugungserscheinung des Spaltes 2 verschwindet.
Wir messen die Spaltbreite y, bei der dies eintritt, und vergleichen mit der
Beziehung (24). Es ist dabei mit ruhendem Auge zu beobachten, da bei
schriager Blickrichtung eine Biindelbegrenzung durch die Pupille erfolgt,
was einer Verkleinerung des Beleuchtungsspaltes entspricht, so dafi noch
Beugungsstreifen zu beobachten sind, wenn Gl. (24) nicht mehr erfiillt ist.

I3
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O.23. Beugung am Gitter

Aufgaben: 1. Die Gitterkonstante eines Reflexionsgitters ist zu bestimmen.
2. Die Wellenldngen der intensivsten Linien des Quecksilber-
spektrums sind zu messen.

3. Die Formel fiir das Auflésungsvermégen des Beugungsgitters
ist zu tiberpriifen.

Ein Beugungsgitter besteht aus einer Glas- oder Metallplatte, in die mit
einem Diamanten viele eng benachbarte dquidistante Furchen geritzt wur-
den. Die Flichen zwischen den Furchen wirken als enge reflektierende Spalte.
Beleuchtet man das Gitter mit parallelem Licht, so wird jeder dieser Spalte
zum Ausgangspunkt einer Elementarwelle. Vereinigt man alle unter einem
bestimmten Winkel abgebeugten Strahlen in der Brennebene einer Sam-
mellinse (Abb. 164), so tritt dort Interferenz ein.

Beobachtungs-
Normale ebene
Lichtquelle

Gitter Abb. 164.
Beugung am Reflexionsgitter

Ist « der Einfallswinkel des parallelen Lichtes und beobachtet man unter
dem Winkel 3 zur Normale des Gitters, so betrigt die Phasenverschiebung &
benachbarter Strahlen (z. B. 1 und 2 in Abb. 164)

6=2-1c-b-(sina——sinﬁ), (29)
A

wobei b die Gitterkonstante ist, die den Abstand dquivalenter Punkte des
Gitters angibt. Beobachtet man auf der Seite, auf der das Licht einfallt -
was im allgemeinen schwierig ist —, so ist 8 negativ zu rechnen, d. h., in

Gl. (29) ist das Minuszeichen durch ein Pluszeichen zu ersetzen.
Die entstehende Intensititsverteilung wird durch Gl. (16) beschrieben
und hat die in Abb. 158 dargestellte Form. Die bei einem Gitter mit vielen
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Spalten allein beobachtbaren Hauptmaxima der Intensititsverteilung lie-
gen bei den Nullstellen des Nenners, d. h. bei §/2 = k - & bzw.

sinffy=sinae—k-ib (k=0, +1, +2,...). (30)

Man beobachtet also in der durch §; gegebenen Richtung nur Licht, dessen
Wellenlange die Gl. (30) erfiillt. Da verschiedenen Wellenlingen verschie-
dene Ablenkwinkel 8; entsprechen, kann man das Gitter zur Zerlegung des
Lichtes in sein Spektrum benutzen (Gitterspektrometer).

Je nach der GréBe von % spricht man von einem Spektrum 1., 2., 3. Ord-
nung usw.; das nicht abgebeugte Licht bei 8, = « (k = 0) bezeichnet man
als ,,Spektrum nullter Ordnung*‘.

Von entscheidender Bedeutung fiir die Leistungsfihigkeit eines Spektro-
meters ist sein Auflosungsvermdogen. Man versteht darunter die Gré8e

_ A

A=1 (31)

In dieser Gleichung ist dA die kleinste Wellenlingendifferenz, die man mit
dem Spektrometer noch getrennt wahrnehmen kann. di héngt von der
Breite der bei der Beugung am Gitter entstehenden hellen Beugungsstreifen
ab.

Zur Berechnung des Aufldsungsvermégens nehmen wir an, daf das ein-
fallende Licht die Wellenléngen A und 4 + dA (d4 < 1) enthilt. Das Haupt-
maximum k-ter Ordnung fiir die Wellenlénge A liegt bei §,, fiir die Wellen-
linge A4 + dA liegt es bei B, wobei f;, durch

_A+di
b

gegeben ist. . a

Eine getrennte Wahrnehmung beider ist gerade noch méglich, wenn
mit der ersten Nullstelle der Intensititsverteilung neben dem Haupt-
maximum f, der Wellenlinge A zusammenfillt. Aus Gl. (16) und Abb. 158
ergibt sich, daB diese Nullstelle bei einer Phasenverschiebung liegt, die durch

o é
N‘7=N‘ 2

sin B = sina — k (30a)

+7 (32a)

gegeben ist, wihrend das Hauptmaximum k-ter Ordnung bei §/2 =k -x
liegt. Daraus folgt

, _ 2mb(sino — sin f) 2
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bzw.
sin B, — sin o« — (k+ 1 (32b)
o= e )
Gleichsetzen von Gl. (30a) und (32a) liefert
1 da 1

Das Auflésungsvermégen des Gitters ist also unabhingig von der Ein-
fallsrichtung lediglich durch Strichzahl ¥ und Beugungsordnung % be-
stimmt:

A
A=—7=k-N. (33)

Zur genauen Messung der Beugungswinkel dient uns ein Spektrometer, dessen
Hauptteile Spaltrohr mit Eintrittsspalt, Spektrometertisch mit Justier-
schrauben 7, 2 und 3, Beobachtungsfernrohr mit Fadenkreuz, zusammen mit
dem Strahlengang in Abb. 165 schematisch dargestellt sind.

Spalt und Spaltrohr dienen zur Erzeugung parallelen Lichtes, der Spektro-
metertisch tragt das dispergierende System, in unserem Falle das Beugungs-
gitter. Das Objektiv des Beobachtungsfernrohres erzeugt ein Bild des Spal-

"" Lichtquelle

Beabachter

Abb. 165. Strahlengang im Gitterspektrometer
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tes in der Farbe des gebeugten Lichtes, das mit dem Okular beobachtet
werden kann. Mit Hilfe der Winkelteilung eines Teilkreises kann die Ver-
drehung des Fernrohres gegeniiber dem Spektrometertisch gemessen werden.

Fir spektroskopische Untersuchungen werden heute in der Praxis ausschlieBlich
Spektrographen oder Monochromatoren benutzt. Bei den Spektrographen ist das dreh-
bare Fernrohr durch eine feststehende Kamera ersetzt, die Registrierung des Spektrums
erfolgt auf der Photoplatte. Monochromatoren haben einen feststehenden Austritts-
spalt, die verschiedenen Wellenlingen werden durch Drehung des Gitters (bzw. des
Prismas bei Prismenmonochromatoren) nacheinander auf den Austrittsspalt abgebil-
det. Fiir spektroskopische Untersuchungen mit Monochromatoren wird das austretende
Licht mittels lichtelektrischer Empfinger (vgl. Abschn O. 5) nachgewiesen. Diese Ge-
rite unterscheiden sich in ihrem Aufbau betrichtlich von dem oben beschriebenen
Spektrometer.

Versuchsausfiihrung

Vor der Messung mull das Spektrometer justiert werden.!) Die Justierung
umfaBt

1. die Einstellung des Fernrohres auf Unendlich,

2. die Senkrechtstellung der Sehlinie des Fernrohres zur Drehachse des
Spektrometers.

3. die Einstellung des Spaltrohres,

4. die Justierung des Beugungsgitters.

Zu 1. und 2.: LaBt sich das Fernrohr aus dem Spektrometer herausnehmen, so kann
die Einstellung auf Unendlich dadurch erfolgen, daB man einen geniigend weit ent-
fernten Gegenstand parallaxefrei?) in die Ebene des Fadenkreuzes abbildet (Beobach-
tung durch das gedffnete Fenster).

Bei fest eingebautem Fernrohr erfolgt die Einstellung auf Unendlich zusammen mit
der Senkrechtstellung der Sehlinie durch Autokollimation mittels des GauBschen
Okulars (vgl. Versuch O. 1.1). Das aus dem Fernrohr austretende Licht wird an einer
Glasplatte reflektiert, die parallel zu der Verbindungslinie der beiden Justierschrauben
1 und 2 (Abb. 165) auf dem Spektrometertisch steht. Das Fernrohr ist auf Unendlich
eingestellt, wenn man das Fadenkreuz und sein Spiegelbild gleichzeitig scharf und
parallaxefrei sieht. Die Einstellung geschieht durch Verschieben des gesamten Oku-
lars, nachdem man vorher mit der duBeren Okularlinse auf das Fadenkreuz scharf ein-
gestellt hat. :

Nun neigt man mittels der Justierschraube 3 die Glasplatte, bis sich Fadenkreuz und
Spiegelbild decken. Dadurch ist erreicht, dal die Sehlinie senkrecht zur Oberfliche der
Glasplatte steht, sie wird dann jedoch im allgemeinen noch nicht senkrecht zur Dreh-
achse stehen.

Um auch dies zu erreichen, dreht man den Spektrometertisch (oder das Fernrohr)
um 180°. Fadenkreuz und Spiegelbild decken sich nach dieser Drehung im allgemeinen
nicht. Die auftretende Abweichung kompensiert man zur Hilfte durch Neigung der
Glasplatte mittels der Justierschraube 3 und zur Hilfte durch Neigung des Fernrohres.

Das Verfahren ist so oft zu wiederholen, bis nach einer Drehung um 180° keine Ab-
weichung mehr auftritt. Ist die Glasplatte nicht genau planparallel, so treten zwei
Spiegelbilder auf. Davon ist stets das von der gleichen Seite reflektierte auszuwéhlen,

" nach der Drehung um 180° also das durch Reflexion an der Riickseite entstandene licht-

1) Bei modernen Spektrographen und Monochromatoren erfolgt die Justierung bei
der Herstellung und braucht nicht vom Benutzer vorgenommen zu werden.
2) Das ist besser als die Einstellung auf groBte Bildschirfe, da diese oft tduscht.
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schwichere Spiegelbild, wenn man vor der Drehung das durch Reflexion an der Vor-
derseite entstandene lichtstirkere gewahlt hatte.

Zu 3.: Zur Justierung des Spaltrohres beleuchtet man den Spalt und dreht das Fern-
rohr, bis das Licht aus dem Spaltrohr in dieses hineinféllt. Da das-Fernrohr auf Un-
endlich eingestellt ist, entsteht ein scharfes Bild des Spaltes nur dann, wenn er sich in
der Brennebene der Spaltrohrlinse befindet, was durch Verschieben des Auszuges, an
dem der Spalt befestigt ist, erreicht wird. Nun neigt man das Spaltrohr, bis das Spalt-
bild vom horizontalen Faden des Fadenkreuzes halbiert wird. Ist dies erreicht, so
stimmt die Achse des Spaltrohres mit der Sehlinie des Fernrohres iiberein.

Zu 4.: Zur Justierung des Gitters stellt man dieses wie vorher die Glasplatte so auf
den Spektrometertisch, daB die Gitterebene parallel zur Verbindungslinie der Justier-
schrauben 7 und 2 verliuft, und stellt durch Autokollimation die Gitterebene senkrecht
zur Sehlinie des Fernrohres, die aufgrund der vorangegangenen Justierung des Spalt-
rohres mit der Achse desselben iibereinstimmt.

Beleuchtet man jetzt den Spalt und dreht das Fernrohr, so lauft das Spektrum im
allgemeinen schrig durch das Gesichtsfeld, da die Gitterstriche nicht genau parallel
zum Spalt stehen. Man korrigiert dies mit den Justierschrauben I und 2, bis alle Spek-
trallinien vom horizontalen Faden des Fadenkreuzes halbiert werden.

Nach der Justierung des Gitters arretiert man den Tisch und stellt die
Sehlinie des Fernrohrs senkrecht zur Gitterebene. Der am Teilkreis dabei
abgelesene Winkel gibt die Richtung der Gitternormale an. Den Einfalls-
winkel o bestimmt man durch Beobachtung des Spektrums 0-ter Ordnung,
die Beugungswinkel 8 in 1. und 2. Ordnung, indem man bei méglichst engem
Eintrittsspalt das Fadenkreuz mit dem entsprechenden Spaltbild zur Dek-
kung bringt und die zugehorigen Drehwinkel am Teilkreis abliest. Die Ab-
lesung des Drehwinkels erfolgt mit zwei Nonien, die um 180° gegeneinander
versetzt sind, um Teilungsfehler zu eliminieren. Die direkte Messung der
Gitterkonstanten b, z. B. unter einem Mikroskop, ist zu ungenau. Man er-
mittelt daher b mit Licht bekannter Wellenldnge, z. B. einer Natriumdampf-
lampe, indem man die entsprechenden Beugungswinkel mi3t und aus der
aus Gl. (30) folgenden Formel

b= L (30b)

sin o — sin f§,

berechnet. Dieses Verfahren ist auch im Hinblick auf die Meterdefinition
zweckmaflig.

Ist b bekannt, so ergibt sich aus den Beugungswmkeln fi die Wellen-
linge zu
b (sin & — sin ;)

A= k

(30c¢)

Zur Uberpriifung des Auflésungsvermégens wihlt man geeignete Linien-
paare des Quecksilber- oder Natriumspektrums aus (siehe Tab. 12) und
verdndert mittels einer Spaltblende den Querschnitt des aus dem Spaltrohr
austretenden Lichtbiindels und damit die Zahl N der an der Beugung be-
teiligten Gitterspalte. Ist a die Breite der Spaltblende, so ist die Zahl N der
ausgeleuchteten Gitterspalte durch N = a/b gegeben.
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O.3. BRECHUNGSINDEX, DISPERSION UND
ABSORPTION

0.3.0. Allgemeine Grundlagen

0. 3.0.1. Brechungsindex und Dispersion

Die Ausbreitungsgeschwindigkeit des Lichtes ist in verschiedenen Stoffen
verschieden groB3. Ursache dafiir ist, daB alle Stoffe aus geladenen Teilchen
(Atomkernen und Elektronen) aufgebaut sind, die durch die einfallende
elektromagnetische Lichtwelle in Schwingungen versetzt werden und da-
durch zum Ausgangspunkt neuer Lichtwellen werden.

Von zwei Stoffen bezeichnet man den mit der gréBeren Lichtgeschwindig-
keit als den optisch diinneren, den mit der kleineren Lichtgeschwindigkeit
als den optisch dichteren Stoff. Trifft eine Lichtwelle auf die Grenzfliche
zwischen zwei verschiedenen Stoffen, so dndert sich ihre Ausbreitungsrich-
tung, sie wird gebrochen (und teilweise reflektiert). Fiir die Brechung einer
ebenen Welle (in Abb. 166 durch Lichtstrahlen, d. h. durch ihre Flichen-
normalen, charakterisiert) an einer ebenen Grenzfliche gilt das Snelliussche
Brechungsgesetz

sinae ¢ 7Ny

sme_a_M_ g 1
sinf ¢, my 2 @)
: Einfallsiot
optisch dunner Stoff: ¢y, ny
o
Grenzfldche
7. v g S 7/
-7 >N . !
-7l ~a aptisch dichter
- q o Stoff: Gy i1y
&~ >N~
tatalreflektierter B
Strahl
Grenzstrah/
gebrochener Strahl

Abb. 166. Zum Snelliusschen Brechungsgesetz.
Der Strahlengang ist umkehrbar.
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Das Verhaltnis n, = ¢gfc; (¢, Lichtgeschwindigkeit im Vakuum, ¢; Licht-
geschwindigkeit im Stoff 1) heillt (absoluter) Brechungsindex des Stoffes 1;
g, ist der relative Brechungsindex des Stoffes 2 gegeniiber dem Medium 1.

Aus Gl. (1) ergibt sich: Geht der (auf der Wellenfront senkrecht stehende)
Lichtstrahl vom optisch diinneren zum optisch dichteren Stoff iiber (z. B.
von Luft in Glas), so wird er zum Einfallslot hin, im umgekehrten Fall vom
Lot weg gebrochen; der gebrochene Strahl liegt dabei in beiden Fillen in
der durch das Einfallslot und den einfallenden Strahl gebildeten Einfalls-
ebene.

Beim Ubergang vom optisch dichteren zum optisch diinneren Stoff ist
der Brechungswinkel stets groBer als der Einfallswinkel, er erreicht daher
bereits bei einem Einfallswinkel §, < 90° den Wert 90°. Wird der Einfalls-
winkel grofer als §,, so wird das gesamte Licht in den dichten Stoff zuriick-
geworfen, es tritt T'otalreflexion ein; f; heiit daher Grenzwinkel der Total-
reflexion.

Die Lichtgeschwindigkeit hangt auBler von dem Stoff, in dem sich das
Licht ausbreitet, auch von der Wellenlinge ab (auBer im Vakuum). Diese
Erscheinung bezeichnet man als Dispersion. Sie wird dadurch verursacht,
daB die Molekiile des Stoffes, die durch die Lichtwelle in erzwungene Schwin--
gungen versetzt werden, iiber eine (oder mehrere) optische Eigenfrequen-
zen @, verfiigen. Demzufolge hangt die GriBe des elektrischen Dipol-
moments p, das durch das elektrische Feld ¥ der Lichtwelle in einem Mole-
kiil induziert wird, von der Frequenz @ der Lichtwelle ab.

Das Verhaltnis a, = p/E eines Atoms oder Molekiils ist ein MaB fiir die
Deformierbarkeit der Elektronenhiille und wird Polarisierbarkeit genannt.
Aus der Theorie der erzwungenen Schwingungen (vgl. E. 5.0.4) ergibt sich

e? 1
B At @)
wobei e die elektrische Ladung und m die Masse des fiir die optiseche Reso-
nanz verantwortlichen Teilchens ist.

Beriicksichtigt man den Beitrag benachbarter Molekiile zu dem elektri-
schen Feld der Lichtwelle, so erhédlt man fiir die Abhéingigkeit der Brech-
zahl n von der Frequenz

2 _ 2
n? —1 1 aZeN 1 3)

n2+2  3g P 3ggm wi— w?
(Lorentz-Lorenzsche Formel). N ist dabei die Konzentration der polarisier-
baren Molekiile, g, die Dielektrizitatskonstante des Vakuums.

Schematisch ergibt sich daraus, wenn man noch den Einflul der Dampfung
beriicksichtigt, die Kurve 1 in Abb. 167. Bei geniigend langen Wellenlingen
(bei iiblichen Glasern im sichtbaren Bereich) nimmt der Brechungsindex
mit zunehmender Wellenldnge ab (normale Dispersion). Als Ma§ fiir die
Grofe der Dispersion dient in diesem Bereich die Differenz der Brechungs-



0. 3. Brechungsindex, Dispersion und Absorption 369

indizes fiir die Wasserstofflinien H, und Hp, die als mittlere Dispersion
np — ne bezeichnet wird (# und C sind die Fraunhoferschen Bezeichnungen
fir H, und Hp).

In dem in Abb. 167 eingezeichneten Gebiet sog. anomaler Dispersion, in
dem der Brechungsindex mit wachsender Wellenlinge zunimmt, tritt
gleichzeitig starke Absorption auf (Kurve 2), so daB dort » nicht mehr mit
den sonst iblichen Methoden gemessen werden kann.

no

Nppr———————————f——— -

Kurvel:n(A)

~
anomale Dispersion g

Abb. 167. Dispersion und Absorption in der Umgebung einer
optischen Resonanzstelle

Die aus dem Brechungsindex # berechenbdre GriéBe

nt—1 M
Bu=aie o @
(M Molmasse, p Dichte) heiBt Molrefraktion. Sie ist eine Stoffkonstante, die
von Druck, Temperatur und Aggregatzustand weitgehend unabhingig ist.
Ry kann genidhert als Summe der Refraktionsanteile der Bindungen be-
trachtet werden:

Ry=a-2+b-y+c.z2+ ..., (5)

wobei z, ¥, 2, ... die Bindungsrefraktionen, a, b, ¢, ... die Anzahlen der je-
weiligen Bindungen im Molekiil sind. Infolge der nidherungsweisen Additivi-
tét der Bindungsrefraktionen ist B, eine wichtige GroBe in der organischen
Chenmie.

0. 3.0.2. Extinktion und Absorption

Fiir die bisher betrachteten vollstandig durchsichtigen Stoffe geniigt die
Brechzahl n zur optischen Charakterisierung. Tatséchlich wird jedoch ein
Lichtbiindel beim Durchgang durch einen Stoff auch geschwicht. Die
Schwichung wird durch Lichtstreuung (Richtungsinderung eines Teils der

24 Phys. Praktikum
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Welle) und durch Absorption (Umwandlung von Licht- in Warmeenergie)
verursacht.

Bei senkrechtem Durchgang einer Lichtwelle der Intensitat I, durch eine
planparallele Schicht der Dicke d erhilt man fiir die Intensitdat I hinter der
Schicht in guter Néherung

I=1I,1 —Rp.ek2, - (6)

K heift Extinktionskoeffizient; sein Reziprokwert 1/K entspricht der
mittleren Reichweite des Lichtes in dem betreffenden Stoff und kann auch
als mittlere freie Weglinge der Photonen interpretiert werden. R ist der
Reflexionskoeffizient der Grenzfliche (vgl. O. 4), durch den Faktor (1 — R)?
wird die Reflexion an Vorder- und Riickseite der Schicht beriicksichtigt
[Mehrfachreflexionen und Interferenzen sind in Gl. (6) vernachlassigt].

Bei verdiinnten Losungen, in denen die Wechselwirkung der gelosten Mole-
kiile untereinander vernachléssigt werden kann, ist K proportional zur
Konzentration ¢ der gelosten Molekiile:

K=¢-c : (7)

(Beersches Gesetz). Die Proportionalititskonstante ¢ heillt spezifischer
Extinktionskoeffizient und ist fiir den geltsten Stoff charakteristisch. Gl. (6)
geht damit iiber in

I=1I)1—R)?.e*cd (8)

(Lambert- Beersches Gesetz).
Die in einer diinnen Schicht der Dicke dx dem einfallenden Lichtbiindel
entzogene relative Intensitdt ergibt sich aus Gl. (6) zu

#= —K-de. 9)

Diese GroBe stimmt iiberein mit der Wahrscheinlichkeit fiir das Verschwin-
den eines Photons aus dem Strahl auf der Strecke dz.
Andererseits enthalt die Schicht im durchstrahlten Querschnitt A

dN=N.4.d=»

Molekiile (Abb. 168), wobei N die Teilchendichte (Zahl der gelosten Mole-
kiile je Volumeneinheit) ist. Ordnet man jedem Molekiil einen extingieren-
den Querschnitt ¢ zu, so ist der Bruchteil

q-dNJA=N.q-d=z

der durchstrahlten Fliche von gelosten Molekiilen bedeckt. Diese Grofe ist
daher ebenfalls gleich der Wahrscheinlichkeit fiir das Verschwinden eines
Photons aus dem Lichtbiindel. Setzt man die beiden Wahrscheinlichkeiten
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gleich, so ergibt sich

q=K|N. (10)
Der Teilchendichte N entspricht eine Konzentration
c=N-m, (11)

wobei m die Molekiilmasse ist. Mit m = M|N, (M Molmasse, N, Avogadro-
Konstante) wird

q=E'N—Aa (12)

so daB man aus der (makroskopischen) spezifischen Extinktion den (mikro-
skopischen) Extinktionsquerschnitt eines Molekiils berechnen kann.

r——— ———X—

Abb. 168. Zur Berechnung des
Pany extingierenden Querschnitts;
1~ A durchstrahlte Fliche;
- o ) dx Schichtdicke

ax

Ist die Extinktion ausschlieBlich durch Absorption bedingt (keine Streu.-
ung), so spricht man statt vom Extinktionskoeffizienten vom Absorptions-
koeffizienten a. Der Absorptionskoeffizient ist stark von der Wellenlinge
der einfallenden Strahlung abhingig, so daB sich fiir jeden Stoff ein cha-
rakteristisches Absorptionsspektrum «(4) ergibt, das z. B. zur Identifizie-
rung des betreffenden Stoffes herangezogen werden kann. Starke Absorp-
tion tritt insbesondere im Bereich der anomalen Dispersion (Abb. 167) auf.

0.3.1. Refraktometer

Aufgaben: 1. An einem Refraktometermodell sind der Brechungsindex des
Prismas und eines Glasplattchens mit Na-Licht zu messen.
2. Der Brechungsindex von Wasser ist in Abhéngigkeit von der
Temperatur zu messen und graphisch darzustellen.
3. Die Brechzahlen und die mittleren Dispersionen von minde-
stens 4 geeigneten organischen Verbindungen sind zu messen;
aus den Brechzahlen sind die Refraktionsanteile der einzelnen
Bindungen zu berechnen.

24%
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Gerite zur Bestimmung der Brechzahl durch Messung des Grenzwinkels
der Totalreflexion heiBen Refraktometer. Bei ihnen geniigt die Messung eines
Winkels, wihrend sonst nach Gl. (1) die Messung zweier Winkel erforderlich
ist.

Die Messung des Grenzwinkels erfolgt bei streifendem Lichteinfall an
einem Prisma (Abb. 169). Hat das Prisma den Brechungsindex n, und den

Ya
n, Abb. 169. Brechung am Prisma

¢ bei streifendem Lichteinfall
ﬂ& (ﬁg = ﬁG’ 7}' = }’a’ 61 = 60)

brechenden Winkel &, so wird der streifend einfallende Strahl (« = 90°)
unter dem Winkel §, in das Prisma hineingebrochen, trifft unter dem Win-
kel y, auf die zweite Prismenfliche auf und verlat das Prisma unter dem
Winkel §,. Nach dem Brechungsgesetz gilt beim Eintritt des Strahls

. 1
sin ﬂv - 7)’: (13)
und beim Austritt
. . sin y,
sin §, = n, - siny, = n ﬁ: . (14)
Wie aus Abb. 169 hervorgeht, ist
Bo+ve=¢, (15)

da ¢ AuBenwinkel in dem vom Lichtstrahl und den beiden Loten gebildeten
Dreieck ist. Setzt man Gl. (15) in Gl. (14) ein, so ergibt sich

sin §, + cos ¢
cot f, = —ems " (16)
Milt man & und d,, so 1laBt sich aus Gl. (16) §, und damit aus Gl. (13) der
Brechungsindex n, berechnen.

Strahlen, die unter kleinerem Einfallswinkel als 90° einfalien, verlassen
das Prisma unter einem gréBeren Winkel als d,, so dal nur Strahlen aus-
treten, die mit dem Lot einen Winkel grofer als §, bilden. Beobachtet man
das austretende Licht mit einem auf Unendlich eingestellten Fernrohr, so
entspricht jeder Strahlrichtung ein Punkt in der Brennebene (Abb. 170).

Da in dem aus dem Prisma austretenden Lichtbiindel nicht alle Richtungen



0. 3.1. Refraktometer 373

enthalten sind, bleibt ein Teil des Gesichtsfeldes dunkel. Der Richtung des
Grenzstrahls entspricht daher bei Verwendung monochromatischen Lichtes
eine scharfe Grenze zwischen hellem und dunklem Teil des Gesichtsfeldes.

Abb. 170. Strahlengang im Refraktometer

Bei Verwendung von weiBem Licht entsteht anstelle der scharfen Grenzlinie
ein farbiger Saum, da der Brechungsindex und damit auch die Lage der
Grenzlinie von der Wellenlidnge abhingen.

Versuchsausfiihrung

Aufgabe 1 wird mit einem Refraktometermodell ausgefiihrt, das aus
einem drehbaren Prisma, einem Teilkreis und einem auf Unendlich ein-
gestellten Fernrohr besteht.

Den brechenden Winkel ¢ bestimmt man, indem man das Fernrohr senk-
recht zu einer an ¢ anliegenden Prismenfliche einstellt (Ablesung ¢, am
Teilkreis) und dann das Prisma dreht, bis die zweite an ¢ anliegende Pris-
menfliche senkrecht zum Fernrohr steht (Ablesung @,). Der Drehwinkel ist
dann @, — @, = 180° — &. Die Senkrechtstellung des Fernrohrs erfolgt nach
dem in Versuch O. 1.1 beschriebenen Autokollimationsyverfahren mittels des
am Fernrohr befindlichen Gaufschen Okulars.

Der Winkel §, wird gemessen, indem man das Prisma streifend beleuchtet,
das Fadenkreuz auf die Hell-Dunkel-Grenze des Gesichtsfeldes einstellt und
die Winkeldifferenz zwischen austretendem Strahl und Lot bestimmt.

Um den Brechungsindex n, des Glasplattchens zu messen, klebt man es -
mit einer Fliissigkeit héherer Brechzahl (meist Monobromnaphthalin) an die
Eintrittsfliche des Refraktometerprismas und bestimmt den Austritts-
winkel 8, bei die Hypotenuse streifendem Lichteinfall. Fiir die Berechnung
ist Gl. (13) durch

1 Ny .
= sin g (13a)
zu ersetzen, da jetzt der relative Brechungsindex n,, gemessen wird. Die
zwischen Glasplittchen und Prisma befindliche Fliissigkeit hat auf die
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Messung keinen EinfluB, solange ihr Brechungsindex groBer als der des Glas-
plattchens ist. Sie bildet namlich eine sehr diinne planparallele Schicht, die
nur zu einer geringen Parallelverschiebung der einfallenden Lichtstrahlen
fiihrt, die Strahlrichtung jedoch unverindert 1a3t.

Die Aufgaben 2 und 3 werden mit einem Abbeschen Refrakiometer aus-
gefiihrt. Dieses Refraktometer besitzt ein aufklappbares Doppelprisma, in
dessen Zwischenraum die Fliissigkeit eingefiillt wird. Die der Fliissigkeit an-
liegende Fliche des unteren Prismas ist aufgerauht und dient als sekundére
Lichtquelle, wodurch giinstige Beleuchtungsverhéltnisse geschaffen werden
(Abb. 171).

Mefprisma

Abb. 171. Zur Beleuchtung beim
Beleuchtungsprisma Abbe-Refraktometer

Das Prisma kann mittels durchstrémender Flissigkeit, die von einem
Thermostaten geliefert wird, gekiihlt oder erwirmt werden. Statt eines
Teilkreises ist eine Skale vorhanden, an der der Brechungsindex n4 fiir
Natriumlicht (A = 589 nm) direkt abgelesen werden kann.

Die Messung erfolgt mit weilem Licht.

Dabei erscheint zunichst ein farbiger Saum. Im Fernrohr des Refrakto-
meters befinden sich jedoch 2 sog. Amici-Prismen, die fiir Licht der Na-D-
Linie geradsichtig sind, fiir andere Wellenléngen jedoch eine schwache Bre-
chung bewirken (Abb. 172). Durch Verdrehen der beiden Prismenkombina-
tionen gegeneinander kann der farbige Saum zum Verschwinden gebracht
werden, so daB wieder eine scharfe Hell-Dunkel-Grenze erscheint. Aus der
GroBe der dazu erforderlichen Drehung kann mittels einer Eichtabelle die
mittlere Dispersion der Fliissigkeit bestimmt werden.

Die Berechnung der Molrefraktionen erfolgt nach Gl. (4). Auflésung eines
Gleichungssystems, das sich aus den Gln. (5) fiir die untersuchten Substan-
zen zusammensetzt, liefert die Bindungsrefraktionen, wenn man so viele
Substanzen untersucht, wie verschiedene Bindungen in ihnen vorkommen.

Abb. 172. Amici-Prisma: Kronglas hat kleinen Brechungsindex und geringe
Dispersion; Flintglas hat groBen Brechungsindex und gro8e Dispersion
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Fehlerabschitzung

Die Berechnung des Brechungsindex des Refraktometerprismas erfolgt
aus den Gln. (13) und (16). & und J, werden gemessen und sind daher fehler-
behaftet ; die zu erwartenden Fehler seien Ag und Ad,. Differentiation von

Gl. (16) hefert
dg, sin ¢ cos d, dd, — cos? ¢ d
— e _ _ , (17)
sin? 8, sin? g

und aus Gl. (13) folgt

__ cos By
= = i g, Ve (18)

Nach Bildung des Absolutbetrages ergibt sich daraus

An, < n ﬁ" {sms cos §,Ad, + cos? e Ae}. (19)

0.3.2. Prismenspektrometer

Aufgaben: 1. Die Dispersionskurve eines Prismas ist zu messen.
2. Die Wellenlingen der Wasserstofflinien H,, Hz und H, sind
zu ermitteln.
3. Das Auflosungsvermdgen des Prismas ist zu berechnen und
der gefundene Wert experimentell zu iiberpriifen.

Beim Durchgang durch ein Prisma wird ein Lichtstrahl zweimal an den
Grenzflichen gebrochen. Fiir den Fall, dal der Strahl in einem Haupt-
schnitt (senkrecht zur brechenden Kante) verlduft und das Prisma sym-
metrisch durchsetzt (Abb. 173), tritt die kleinste Ablenkung & auf. Ist «
der Einfallswinkel und ¢ der brechende Winkel, so gilt

sinee =n-sinfg, (1a)

B = ¢/2 und § = 20 — &. Daraus ergibt sich

sin% (e + 9)

n=—— (20)
sin——
2

Da der Brechungsindex von der Wellenlinge abhingt, wird Licht ver-
schiedener Wellenldnge verschieden stark abgelenkt, das benutzte Licht
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wird in sein Spektrum zerlegt (Prismenspektrometer). Verwendet man eine
Lichtquelle, die ein Linienspektrum aussendet (z. B. eine Quecksilberdampf-
lampe), so kann man durch Messung der Ablenkwinkel die Dispersions-
kurve (Abhingigkeit des Brechungsindex von der Wellenlinge) ermitteln.

Abb. 173. Brechung am
Prisma bei symmetrischem
Strahlengang

Ist die Dispersionskurve bekannt, so kann man umgekehrt das Prisma zur
Wellenlangenmessung benutzen, indem man den Brechungsindex fiir die
betreffende Wellenldnge miflt und damit aus der Dispersionskurve 4 be-
stimmt. Man kann sich dabei die Umrechnung von § in » ersparen, indem
man sofort § = d(4) als Eichkurve zeichnet und daraus nach Messung des
Ablenkwinkels die gesuchte Wellenlinge direkt abliest.

Die Leistungsfihigkeit eines Spektrometers wird durch sein Auflosungs-
vermdégen charakterisiert. Das Auflosungsvermogen gibt an, in welchem
MagBe verschiedene Wellenldngen als getrennte Spektrallinien wiedergegeben
werden. Es ist durch die apparativ bedingte Breite der Linien begrenzt.

Ist der Eintrittsspalt breit, so sind es auch die im Fernrohr beobachteten
Spaltbilder. Durch Verringerung der Spaltbreite lassen sich diese aber nicht
beliebig schmal machen. Die untere Grenze ist durch die Beugung bestimmt:
Da das Prisma hochstens von einem Lichtbiindel der Breite a durchsetzt
werden kann (vgl. Abb. 174), wirkt es wie ein Spalt gleicher Breite. Man er-
hilt daher bei Verwendung monochromatischen Lichtes in der Brennebene
des Fernrohres die in Abb. 157 dargestellte Intensitatsverteilung. Der Win-
kelabstand der ersten Minima vom Hauptmaximum ergibt sich nach

Abb. 174.
Zum Auflésungsvermogen
des Prismas
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Gl (0. 2.-14a) zu sin @ = A/a ~ a. Zwei Wellenlingen 4 und 4 + d4 (d4 < 1)
werden dann noch als getrennte Spektrallinien wahrgenommen, wenn das
Hauptmaximum der Linie A 4+ dA4 mit dem 1. Minimum der Linie A zusammen-
fillt, d. h., wenn

dA+dA)=0(d) £+ a= 6(1)&;% 21)
ist. Als GroBe des Auflosungsvermogens definiert man
A
A=31
und man erhélt durch Taylorentwicklung von (21)
A aé ‘
Fiir die partielle Ableitung 05/04 ergibt sich aus Gl. (20)
sin —
90 9 on 2
or " oA d+¢ '
cos
2
woraus
sin —
: on 2
ool T
2
folgt.

Ist das Prisma voll ausgeleuchtet, so ergeben sich aus der Abb. 174 die

Beziehungen a = s - cos et und /2 = s - sin ¢/2 (b Basisldnge des Pris-

mas), und Gl. (23) vereinfacht sich zu

dn

Das Auflésungsvermdgen 148t sich also aus der Steigung der Dispersions-
kurve berechnen und ist wie diese von der Wellenldnge abhingig.
Versuchsausfiihrung

Die Bestimmung von n nach Gl. (20) erfordert die Messung des brechen-
den Winkels £ und des Winkels der minimalen Ablenkung §. Die Winkel-
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messung erfolgt mit einem Spektrometer, das zunichst sorgfaltig zu justie-
ren ist (vgl. Versuch O. 2.3).

Daraufhin ist die brechende Kante des Prismas senkrecht zur Sehlinie
des Fernrohres zu stellen, damit das Prisma im Hauptschnitt durchstrahlt
wird. Dies geschieht, indem man nach dem in Versuch O. 2.3 beschriebenen
Autokollimationsverfahren beide brechende Flichen senkrecht zur Sehlinie
stellt. Das Prisma stellt man dazu zweckméBigerweise so auf den Spektro-
metertisch, daf eine der brechenden Flichen senkrecht zur Verbindungs-
linie zweier Justierschrauben verlduft, und verstellt diese Flache unter allei-
niger Benutzung dieser beiden Schrauben. Fiir die Justierung der zweiten
Fliche benutzt man dann ausschliefllich die dritte Justierschraube.

Die Messung des brechenden Winkels kann in der in Versuch O. 3.1 be-
schriebenen Weise erfolgen. Ein weiteres Verfahren besteht darin, das Prisma
so aufzustellen, dal beide brechenden Flichen gleichzeitig vom Spaltrohr
beleuchtet werden. Man erhilt dann zwei Strahlenbiindel, die einen Winkel
von 2¢ einschlieBen.

Zur Messung der Dispersionskurve beleuchtet man den Spalt mit dem
Licht einer Quecksilberdampflampe. Nach dem Durchgang des Lichtes durch
das Prisma beobachtet man im Fernrohr voneinander getrennte farbige Bil-
der des Spaltes, die bei hinreichend kleiner Spaltbreite als Spektrallinien
bezeichnet werden und den verschiedenen Wellenlingen des vom Queck-
silberdampf ausgestrahlten Lichtes entsprechen.

Zur Bestimmung des Minimums der Ablenkung dreht man den Spektro-
metertisch mit dem Prisma und verfolgt die zu messende Linie im Fernrohr.
Bei einer bestimmten Stellung kehrt sich bei gleichbleibender Drehrichtung
des Prismas die Bewegung der Linie um. In dieser Minimumstellung bringt
man das Fadenkreuz mit der Spektrallinie zur Deckung und liest den Ein-
stellwinkel ab. In dieser Weise ist fiir jede Linie zu verfahren. AnschlieBend
dreht man das Prisma so, daB} das einfallende Licht nach der anderen Seite
abgelenkt wird, und wiederholt das Verfahren ; die Differenz der beiden Ein-
stellwinkel ist dann gleich dem doppelten Ablenkwinkel fiir die betreffende
Wellenldnge. Die zu den einzelnen Spektrallinien gehorigen Wellenlangen
sind aus Tabelle 12 zu entnehmen.

Zur Ermittlung der Wellenldnge der Wasserstofflinien ersetzt man die
Quecksilberdampflampe durch eine wasserstoffgefiillte GeiBlerréhre und
miflt ebenso wie bei den Quecksilberlinien die Ablenkwinkel. Die Wellen-
lingen entnimmt man der mit Hilfe der Quecksilberlinien gezeichneten
EinmeBkurve § = 6(4).

Der Fehler der Wellenkingenmessung ergibt sich aus folgenden Uberlegungen: Ad sei
der Fehler der Winkelmessung. Sieht man zunéchst die EinmeBkurve §(4) als fehlerfrei
an, so ergibt sich ein Wellenlingenfehler A1 = |05/04|~* Ad. In Wirklichkeit sind die
MeBpunkte der EinmeBkurve jedoch mit dem gleichen Fehler behaftet, so daB der obige
Wert zu verdoppeln ist.

Eine weitere Fehlerquelle liegt vor, wenn zur Kalibrierung nur wenige Wellenlingen
benutzt wurden, so dafl der Verlauf der EinmeBkurve nicht geniigend genau interpoliert
werden kann. Sind 4, B, C und .D MeBpunkte (Abb. 175), so verlduft die EinmeSkurve
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mit Sicherheit innerhalb des Dreiecks CBX, der Interpolationsfehler Ad’ betrigt
daher etwa XX’/2, und man erhilt als maximalen Fehler der Wellenlinge A1 <
|06/04]2 (246 + AY').

Eine experimentelle Uberpriifung des Zusammenhanges von Auflésungs-
vermogen und Biindelbreite o 148t sich mit Hilfe eng benachbarter Spek-
trallinien ausfithren. Man bringt dazu vor dem Objektiv des Fernrohrs oder

AS

246

Abb. 175.
Interpolationsfehler bei der
A  Wellenlingenmessung

des Spaltrohrs eine Spaltblende an, deren Breite a veranderlich ist, be-
stimmt die Breite, bei der die gewahlten Linien gerade noch getrennt er-
scheinen, und vergleicht mit Gl. (23). Geeignete Linienpaare sind in Tab. 13
zu finden.

0.3.3. Interferometer

Aufgabe: Die Brechzahl von Luft als Funktion des Druckes ist zu messen.

Theoretische Uberlegungen zeigen, daB bei Gasen die Differenz (n — 1)
proportional zur Zahl der in der Volumeneinheit enthaltenen Teilchen N
ist.

Aus der Zustandsgleichung fiir ideale Gase P 1.1V = PoT'_Vo ergibt sich
0
N p T
N — ( A ) P 2o 25
Vul po T (25)

(N, Avogadro-Konstante, Vy; Molvolumen, p Druck, 7' absolute Tempera-
tur; der Index O bezeichnet die betreffenden Werte unter Normalbedin-
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gungen). Bezeichnet man den Brechungsindex unter Normalbedingungen
mit n,, so ergibt sich aus Gl. (25)

P 1
1= -—y. .- 26
n—1=(n,— 1) 1 7 (26)

wobei y der Ausdehnungskoeffizient fiir ein ideales Gas und ¢ die Tempera-
tur in Grad Celsius ist.

Da der Brechungsindex von Gasen nur sehr wenig von 1 verschieden ist,
erfolgt die Messung mit einem Interferometer, mit dem die Differenz der opti-
schen Weglingen 7 - I von zwei kohérenten Strahlenbiindeln, die zwei Kii-
vetten durchlaufen, gemessen wird. Verschiedene Interferometer unter-

Seiten-
a:fsiiZf : (i[ ] |J_-]D

- 2eweglich; .
ompensations=
~ plafte

Spaltrohr  Doppelspalt Ly Beobachtungsfernrohr
feste
Kompensations-
. platfen
gg%{f- MeBkivelte
L Vergleichskiivette [{ -
S\

Abb. 176. Schema des Lowe-Haber-Interferometers

scheiden sich im wesentlichen durch die Art und Weise, wie die beiden ko-
hirenten Strahlenbiindel erzeugt werden. Fiir die Erklirung legen wir ein
Léwe-Haber-Interferometer zugrunde (Abb. 176), eine Ubertragung der Uber-
legungen auf andere Interferometertypen ist leicht méglich. Beim Léwe-
Haber-Interferometer werden die beiden Strahlenbiindel durch zwei Spalte
erzeugt. Bei ihrer Vereinigung durch die Linse L, entsteht daher in der
Brennebene des Fernrohres das Beugungsbild eines Doppelspalts (Spalt-
abstand b), das bei Benutzung monochromatischen Lichtes aus dquidistan-
ten hellen und dunklen Streifen besteht. Nach Gl. (0. 2.-9a) erhilt man
helle Streifen fiir alle Winkel «, , die der Beziehung

b-sinay=4k-A (k=0,1,2,..) @7)

geniigen.

Der helle Streifen k-ter Ordnung kommt durch Uberlagerung zweier
Wellen zustande, zwischen denen bei leeren Kiivetten eine Wegdifferenz
von k - A besteht (Abb. 177). Befindet sich in der MeBkiivette ein Gas mit
dem Brechungsindex # und in der Vergleichskiivette ein Gas mit dem
Brechungsindex n.,, so erhalten die beiden Wellen zusétzlich eine Differenz
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der optischen Wegliingen, die gleich (n — n,)- [ ist, wenn I die Lange der
Kiivetten ist und die geringe Neigung der Strahlen vernachlassigt wird.

Der helle Streifen k-ter Ordnung wandert dadurch an eine Stelle, die
durch den Winkel o}, bestimmt ist: es ist

b-sinay=ki+ (m—n)-1= k+(n—_ln")—-l}.=(k+Alc)l. 28)

L]

Melkivette

Abb. 177.
Zur Ableitung der Inter-
ferometergleichung (29)

Vergleichskiivette
Doppelspalt

Da eine Differenz der optischen Weglinge von A gerade einer Streifenbreite
im Beugungsbild entspricht, bedeutet dies eine Verschiebung des ganzen
Beugungsbildes um

Ak = (n — ng) - A (29)

Streifenbreiten.

Um diese Verschiebung messen zu kénnen, lat man einen Teil der beiden
Strahlenbiindel unterhalb der Kiivetten verlaufen, so daB sie von Unter-
schieden im Brechungsindex unbeeinflult bleiben und infolgedessen ein
feststehendes Streifensystem erzeugen. Die Messung der Verschiebung des
beweglichen gegeniiber dem feststehenden Streifensystem erfolgt durch
Kompensation: Im Strahlengang der Vergleichskiivette befindet sich eine
durch eine MeBtrommel drehbare Glasplatte (Kompensationsplatte), die
eine kontinuierliche Verinderung der Plattendicke und damit der optischen
Weglinge des Vergleichsstrahls ermoglicht, wodurch die Verschiebung mef3-
bar kompensiert werden kann.

Versuchsausfiihrung

1. Einmessung des Interferometers: Zunéchst ist festzustellen, bei welcher
Stellung der Kompensationsplatte die Wegdifferenz der beiden Strahlen-
biindel gleich Null ist. Dabei bleiben die beiden Kiivetten offen (gleicher
Druck), und die Beleuchtung der Spalte erfolgt mit weilem Licht. Das
Streifensystem besteht dann aus einer Uberlagerung der Beugungsstreifen
aller Farben. Da der Abstand der Streifen von der Wellenldnge abhéngt, tre-
ten jetzt nur der helle Streifen nullter Ordnung und die beiden dunklen
Streifen 1. Ordnung deutlich hervor. Der helle Streifen nullter Ordnung hat
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zwei rote Sidume, die dunklen Streifen 1. Ordnung haben innen (d. h. dem
hellen Streifen nullter Ordnung zugewandt) blaue Sdume. Dadurch ist eine
eindeutige Festlegung des Nullpunktes méglich, indem man entsprechende
Streifen vom feststehenden und vom beweglichen Streifensystem genau
iibereinanderstellt und an der MeBtrommel die zugehérige Lage der Kom-
pensationsplatte abliest.

Nun beleuchtet man mit monochromatischem Licht und erhalt ein System
von hellen und dunklen Streifen. Die Streifen von MeB3- und Vergleichs-
system stehen bei richtiger Nullpunktsfestlegung genau iibereinander. Ver-
schiebt man durch Drehen der MeBtrommel die beiden Systeme um genau
eine Streifenbreite, so erzeugt die Kompensationsplatte eine Wegdifferenz
von A fiir die Wellenlinge des zur Kalibrierung benutzten Lichtes. Bei Ver-
schiebung um zwei Streifenbreiten betrigt die Wegdifferenz zwei Wellen-
lingen usw. Tragt man daher die an der MeStrommel abgelesenen Werte x;,
iiber der Anzahl der Streifenverschiebungen Ak auf, so erhdlt man die Ein-
meBkurve des Interferometers fiir die betreffende Wellenlange.

2. Messung der Brechzahl: Um die Brechzahl zu messen, ist es am giinstig-
sten, die Vergleichskiivette zu evakuieren. Ist das nicht méglich, benutzt
man eine luftgefiillte verschlossene Kiivette, so da die darin enthaltene
Teilchenzahl konstant bleibt. Temperaturinderungen haben dann keinen
Einflu} auf »,, da N konstant ist.

Die MeBkiivette fiillt man mit Luft, aus der CO, und Wasserdampf ent-
fernt wurden. Uberdruck erzeugt man mit einem kleinen Gummiball, Un-
terdruck mit einer Wasserstrahlpumpe. Der Druck in der MeBkiivette wird
mit einem U-Rohr-Manometer gemessen, der duflere Luftdruck mit einem
Barometer bestimmt.

Zur Brechzahlbestimmung benutzt man weiles Licht und kompensiert
die bei einem bestimmten Druck auftretende Verschiebung der Interferenz-
streifen mit der Kompensationsplatte. Aus der EinmeBkurve entnimmt man
die zugehorige Streifenverschiebung 4, der nach Gl. (29) eine Brechzahl-
differenz

An=mn —nv=—k'l
l
entspricht. Entsprechend dem MeBverfahren ist hierbei fiir A die zur Eichung
benutzte Wellenlinge einzusetzen.

Zur Bestimmung von n, tragt man Az als Funktion von p auf (n, braucht
dazu nicht bekannt zu sein) und ermittelt durch Ausgleichrechnung (vgl.
Abschn. 1.5.4 der Einleitung) die beste Gerade durch diese MeBpunkte.

Aus Gl. (26) folgt fiir die Steigung 8 dieser Geraden

_dn (ry — 1) 1

dp Py 1+ pt’
und man erhilt
ng=14+8-p,- (1 + ). (30)

(29a)
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Ist n, bekannt (z. B. ist n, = 1, wenn man die Vergleichskiivette evakuiert),
so 1aBt sich n, auch direkt bestimmen, indem man Gl. (26) nach n, auflést.
Man erhilt mit n = n, + An

—1+(n—1) (1+yt) 31) -

O.3.4. Spektralphotometer

Aufgaben: 1. Uberpriifen Sie die Giiltigkeit des Lambert-Beerschen Gesetzes
a) durch Messung des Reintransmissionsgrades von wilirigen
Kupfersulfatlosungen verschiedener Konzentration bei. konstan-
ter Schichtdicke (Priifen Sie, ob ein linearer Zusammenhang
zwischen der Extinktionskonstanten und der Konzentration be-
steht. Bestimmen Sie die spezifische Extinktionskonstante.),

b) durch Messung des Reintransmissionsgrades einer wafrigen
Kupfersulfatlosung bestimmter Konzentration bei verschiedenen
Schichtdicken.

Die Wellenlénge ist bei den Aufgaben a und b konstant zu halten.
2. Bestimmen Sie den extingierenden Querschnitt fiir Kupfer-
sulfat.

3. Messen Sie die Extinktion einer Farbstofflosung in Abhingig-
keit von der Wellenlange. Diskutieren Sie die gemessene Kurve.

Der prinzipielle Aufbau eines Spektralphotometers ist in Abb. 178 ge-
zeigt. Aus dem von der Lichtquelle ausgehenden Licht wird durch Filter
bzw. einen Gitter- oder Prismenmonochromator Licht einer bestimmten

d
Filte, Photozelie
Gitfer-oder r 1
Pr/smelr,r- 1
A monochro- 1 -
6"%” fle - mator 1 =
/ Cgigod, i *
Kivette mit
MefBprobe Anzeigeinstrument

Abb. 178. Schematischer Aufbau eines Spektralphotometers

Wellenldnge ausgesondert und als Parallelbiindel durch die mit der MeS-
probe gefiilite, von parallelen Winden begrenzte Glaskiivette hindurch-
geleitet. Der Strahlungsnachweis erfolgt durch eine Photozelle, ein Photo-
element oder einen Photowiderstand mit nachgeschaltetem Anzeigeinstru-
ment.
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Von den drei Prozessen, die zur Intensititsabnahme des Lichtes beim
Durchgang durch eine Materieschicht fithren — Reflexion an den Grenz-
flichen, Absorption und Streuung —, ist der Anteil der Lichtstreuung bei
Lésungen absorbierender Teilchen in einem nichtabsorbierenden Losungs-
mittel, die im folgenden ausschlieBlich betrachtet werden, vernachlissigbar.

Da man durch spektralphotometrische Messungen Aussagen iiber die
durch die gelosten Molekiile hervorgerufene Extinktion und nicht iiber Re-
flexionsverluste an den Grenzflichen oder die Extinktion durch das Lo-
sungsmittel selbst erzielen will, beseitigt man diese Einfliisse durch Ver-
gleichsmessungen: Um die Extinktion der gelésten Molekiile zu bestimmen,
miBt man zunichst die Extinktion des Systems Kiivette + Losungsmittel +
geldster Stoff und zieht davon die Extinktion des Bezugssystems Kiivette +
Losungsmittel ab.

Da durch die gewihlte MeSmethode der EinfluB der Reflexionen nicht
mehr wirksam wird, kann fiir das Weitere Gl. (6) in der Form

I=1,.e°Kd (32)
und Gl. (8) in der Form
I=1,-e%8 (33)

Verwendung finden.

Die dimensionlose GroBe E = Kd = ecd (beim letzten Gleichheitszeichen
ist die Giiltigkeit des Beerschen Gesetzes vorausgesetzt!) bezeichnet man
auch als Eztinktion im engeren Sinne, so dal stets gilt:

I=1I,.eE ' - (34)
Ebenso schreibt man fiir den Reinfransmisssonsgrad
d=1/I,=eE, (35)

Oftmals verwendet man zur Definition der ExtinktionsgréBen aus prakti-
schen Griinden anstelle der Exponentialfunktion Zehnerpotenzen. So
schreibt man fiir Gl. (32)

I=1,-10%4% bzw. &= 10K, (36)
fiir G1. (33)
I=1,-10%4 bzw. &= 10-*cd (37

und anstelle der Gln. (34) und (35)
I=1,-10"F" bzw. 9 =10"F, (38)

Die Umrechnung zwischen den unterschiedlich definierten GréBen ist leicht
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moglich : ,
K=2303.K,
& =2303.¢, (39)
E =2303.F.

Versuchsausfiithrung

Es ist darauf zu achten, dafi alle Messungen als Vergleichsmessungen
durchgefiihrt werden. Als Normal fiir die Vergleichsmessung dient eine
Kiivette gleicher Schichtdicke, die mit dem Losungsmittel, in unserem Fal-
le also mit destilliertem Wasser, gefiillt ist. MiBt man eine absorbierende
Probe (bestehend aus: Kiivette + Losungsmittel + geldste absorbierende
Substanz) und liest am Photometer einen bestimmten Extinktionswert &
ab, so ist dieser zu korrigieren, indem man den bei der Vergleichsmessung
(Kiivette + Losungsmittel) gewonnenen Extinktionswert davon abzieht.
Liest man den Reintransmissionswert der MeBprobe direkt ab, so ist dieser
Wert entsprechend Gl. (35) durch den Reintransmissionsgrad des Ver-
gleichsnormals zu teilen. Durch dieses Vorgehen erreicht man, daB Licht-
verluste im Losungsmittel oder durch Reflexion an den Grenzflichen in das
MeBresultat nicht mehr eingehen.

Die MeB- und die Vergleichskiivette miissen genau gleich sein. Sie sind
vor den Messungen innen und auBen sorgfiltig zu reinigen.

Man mift den Reintransmissionsgrad ¢ bei konstanter Wellenlinge in
Abhéngigkeit von der Konzentration ¢ der Kupfersulfatlssungen und der
Schichtdicke d. Aus # berechnet man nach Gl. (35) jeweils die Extinktion E.
Bei industriell gefertigten Spektralphotometern kann man E’ nach Gl. (38)
direkt ablesen. Zur Umrechnung benutzt man Gl. (39).

Das Lambert-Beersche Gesetz iiberpriift man, indem man den Rein-
transmissionsgrad ¢ in einfach-logarithmischer Darstellung als Funktion
der Konzentration ¢ bzw. der Schichtdicke d auftragt. In beiden Fillen mull
sich bei Giiltigkeit des Lambert-Beerschen Gesetzes eine Gerade ergeben.
Aus dem Anstieg 1a8t sich die spezifische Extinktionskonstante ¢ berechnen.

Ist das Beersche Gesetz erfiillt, so ist die Extinktionskonstante eine
lineare Funktion der Konzentration ¢. Man priift dies, indem man die fiir
die verschiedenen Konzentrationen berechneten Werte K = E/d iiber der
Konzentration ¢ auftragt. Der Anstieg der Geraden gibt direkt die spezi-
fische Extinktionskonstante ¢.

Zur Bestimmung des extingierenden Querschnitts ¢ verwendet man die
Gln. (10) oder (12).

Bei der Messung der Wellenlingenabhingigkeit der Extinktion E einer
Farbstofflssung ist bei jeder Wellenlinge die Extinktion der Vergleichs-
probe mitzumessen und die Korrektur in der oben beschriebenen Weise vor-
zunehmen. Die MeBwerte sind graphisch darzustellen. Bei der Diskussion
beachte man, daB ein Stoff, der eine bestimmte Farbe absorbiert, in der ent-
sprechenden Komplementéarfarbe erscheint.

25 Phys. Praktikum
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O.4. POLARISATION

0.4.0. Allgemeine Grundlagen

Licht ist eine transversale Wellenbewegung, bei der die Schwingungen
senkrecht zur Fortpflanzungsrichtung erfolgen. Den Beweis dafiir liefert die
Méglichkeit, Licht zu polarisieren. Wir beschiftigen uns im folgenden mit
linear polarisiertem Licht, bei dem die Schwingungen nur in einer bestimm-
ten Ebene, der Schwingungsebene!), erfolgen.

Natiirliches Licht ist unpolarisiert, es dndert seine Schwingungsebene
innerhalb sehr kurzer Zeiten véllig unregelmiBig. Um daraus linear polari-
siertes Licht herzustellen, kann man die Reflexion an durchsichtigen Spie-
geln oder die Doppelbrechung benutzen.

1. Polarisation durch Reflexion

Die Intensitit I eines an einem durchsichtigen Medium reflektierten
parallelen Strahlenbiindels ergibt sich bei Polarisation parallel zur Einfalls-
ebene zu

_ 2
1o = (M) IO (1a)
" n cos a + cos f§ !

und bei Polarisation senkrecht zur Einfallsebene zu

I® = (—cos o« —mcosf )2 @, ' (1b)
+ cos o + 7 cos B +

100%

& Abb. 179. Reflexionskoeffizient R
o @ a° als Funktion des Einfallswinkels «

1) Bei einer Lichtwelle stehen elektrische und magnetische Feldstirke senkrecht auf-
einander; unter Schwingungsebene versteht man die Ebene, in der der Vektor der elek-
trischen Feldstirke schwingt. Die Ebene, in der der Vektor der magnetischen Feld-
stirke schwingt, wird auch als Polarisationsebene bezeichnet.



0. 4. Polarisation k 387

wobei « der Einfallswinkel,  der Brechungswinkel, n der Brechungsindex
des reflektierenden Mediums und I® die Intensitit des einfallenden Strah-
lenbiindels ist (Fresnelsche Formeln).

Ist n > 1, so ergibt sich die in Abb. 179 gezeigte Abhingigkeit des Re-
flexionskoeffizienten B = I®/I® vom Einfallswinkel ¢. Man sieht, daB bei
einem bestimmten Einfallswinkel o, die Intensitét des reflektierten Strahls
verschwindet, wenn dieser parallel zur Einfallsebene polarisiert ist. LaBt
man daher unpolarisiertes Licht unter dem Winkel «, einfallen, so werden
nur die senkrecht zur Einfallsebene polarisierten Anteile reflektiert, das
reflektierte Licht ist daher linear polarisiert. Der Winkel a, wird Polari-
sationswinkel genannt.

Aus Gl. (1a) folgt, indem man I® = 0 setzt,

% + By = 90°. (2)

Reflektierter und gebrochener Strahl stehen also in diesem Falle senkrecht
aufeinander (Brewstersches Gesetz, vgl. Abb. 180). Setzt man (2) in das Bre-
chungsgesetz ein, so ergibt sich

tan a, = n. 3)

diinnes

Medium

/

90°
Bp dichfes
Medium
Abb. 180. Brewstersches Gesetz

2. Polarisation durch Doppelbrechung

Trifft ein Lichtstrahl auf einen optisch einachsigen Kristall, z. B. Kalk-
spat, so wird er im allgemeinen (wenn er nicht in Richtung der optischen
Achse oder senkrecht dazu verlduft) in zwei Strahlen verschiedener Rich-
tung aufgespalten. Der eine der Strahlen gehorcht dem Snelliusschen Bre-
chungsgesetz und wird als ordentlicher Strahl bezeichnet; der andere ge-
horcht diesem Gesetz nicht!) und heilt auferordentlicher Strahl. Beide Strah-
len sind senkrecht zueinander linear polarisiert; da in dem einfallenden na-

1) Fir den auBerordentlichen Strahl hingt der Brechungsindex von der Ausbrei-
tungsrichtung ab.

25*
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tiirlichen Licht beide Polarisationsrichtungen mit gleicher Intensitat ent-
halten sind, haben beide Strahlen die gleiche Intensitét.

Will man mittels Doppelbrechung linear polarisiertes Licht erzeugen, so
mufl man einen der beiden Strahlen beseitigen. Dies geschieht beim sog.
Glan-Thompson-Prisma in folgender Weise: Aus einem doppelbrechenden
Kalkspatkristall werden 2 Prismen mit ihren brechenden Kanten parallel
zur optischen Achse herausgeschnitten und mit Kanadabalsam gekittet
(Abb. 181). Fiir den ordentlichen Strahl (o) ist die Brechzahl des Kalkspats

SO e 2 Abb. 181
\ Glan-Thompson-Prisma
0

(n = 1,66) groBer als die des Kanadabalsams (n = 1,54), er wird daher an
der Kittfliche totalreflektiert und an der geschwirzten Fassung des Prismas
absorbiert. Fiir den auBlerordentlichen (ao) Strahl ist dagegen der Brechungs-
index des Kalkspats in der betreffenden Richtung (» = 1,49) kleiner als der
des Kanadabalsams, er tritt daher als linear polarisierter Strahl aus dem
Prisma aus. Auf dem gleichen Prinzip beruht die polarisierende Wirkung
des friither vorwiegend benutzten Nicolschen Prismas, bei dem jedoch die
Eintrittsfliche schriag zur Langsrichtung steht und das nur einen kleineren
Gesichtsfeldwinkel (beim Glan-Thompson-Prisma 42°) auszunutzen ge-
stattet.

Anstelle von Polarisationsprismen lassen sich auch sog. dichroitische Kristalle zur
Herstellung polarisierten Lichtes benutzen, z. B. Turmalin. Bei diesen Kristallen wird
der eine der beiden Strahlen stark absorbiert. Bei den hiufig benutzten Polarisations-
filtern sind derartige Kristalle geordnet in geeignete Folien eingelagert.

3. Drehung der Polarisationsebene

Beim Durchgang von linear polarisiertem Licht durch sogenannte op-
tisch aktive Substanzen wird die Schwingungsebene gedreht. Optisch aktive
Substanzen treten stets in zwei Formen auf, die gleich stark, aber in ent-
gegengesetzten Richtungen drehen. Liegen diese Substanzen als Kristalle

CHs ot

Ho H H oH

COOH HOOC

Abb. 182. Stereoisomere der Milchsiure CH, - CHOH - COOH
(das asymmetrische C-Atom hat man sich in der Mitte des gezeichneten
Tetraeders zu denken)
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vor, so unterscheiden sich die rechts- und linksdrehenden auch in ihrer
duBeren Form, sie verhalten sich wie Bild und Spiegelbild (Enantiomorphie).

Die Drehung ist durch den Aufbau der Substanz bedingt und geht bei
Stoffen, die auch in Losung optisch aktiv sind, auf eine asymmetrische
Molekiilstruktur zuriick, die meist durch ein asymmetrisches Kohlenstoff-
atom (Kohlenstoffatom mit vier verschiedenen Substituenten) bedingt ist.
Abb. 182 zeigt fiir die einfachste optisch aktive Substanz, die Milchséure,
schematisch die beiden moglichen Molekiilformen.

Die optische Aktivitdt von Kristallen ist nicht notwendig durch asymme-
trische Molekiile bedingt, sie kann auch durch eine schraubenférmige An-
ordnung der Gitterbausteine hervorgerufen werden, z. B. beim Quarz.

Blickt man der Ausbreitungsrichtung des Lichtes entgegen, so hei3t eine
Substanz rechtsdrehend, wenn sie die Schwingungsebene im Uhrzeigersinn,
dreht, andernfalls linksdrehend. Bei festen Stoffen mufl man zur Messung
des Drehwinkels eine planparallele Platte der Dicke d aus dem zu unter-
suchenden Material herausschneiden. Der Drehwinkel ¢ ist dann proportio-
nal zu d:

»=Igl-d. @)

Die Materialkonstante [¢] (meist in Grad/mm angegeben) heifit spezi-
fische Drehung, sie hingt von der Schnittlage und von der Wellenléinge des
Lichtes ab (Rotationsdispersion), im allgemeinen nimmt [¢] mit abnehmen-
der Wellenldnge zu.

Bei Losungen hingt der Drehwinkel auBBer von der durchstrahlten Schicht-
dicke auch noch von der Konzentration ¢ ab, so daB sich

p=I[gl-c-d (6)

ergibt; ¢ wird meist in g/em3, d in dm angegeben, so dal man [¢] dann in
Grad cm?/g dm erhalt.

Manche optisch inaktiven Stoffe werden optisch aktiv, wenn man sie in ein Magnet-
feld bringt, dessen Richtung parallel oder antiparallel zur Ausbreitungsrichtung des
Lichtes ist. Diese Erscheinung bezeichnet man als Faraday-Effekt. Die Drehung der
Polarisationsebene ist auch hier proportional zur Schichtdicke und hiéngt linear von der
magnetischen FluBdichte ab. Es ist daher

g=w-d-B. (6)

Der Proportionalitdtsfaktor w wird als Verdet-Konstanie des betreffenden
Stoffes bezeichnet.

O.4.1. Polarisationswinkel und Reflexionsvermdgen

Aufgaben: 1. Der Polarisationswinkel einer Glasplatte ist zu bestimmen.
2. Das Reflexionsvermdgen als Funktion des Einfallswinkels ist
ZU messen.
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Unter Benutzung eines Spektrometers 1a8t sich die in Abb. 179 gezeich-
nete Abhingigkeit des Reflexionskoeffizienten R vom Einfallswinkel « iiber-
priifen. Man benétigt dazu ein MeBgerat fiir die Intensitat des Lichtes, z. B.
eine Photozelle, einen Photowiderstand oder ein Photoelement. Wéihrend
der durch die Photozelle flieBende Strom proportional zur Lichtintensitit
ist, muB} bei Verwendung eines Photoelements oder eines Photowiderstands
die Abhéngigkeit des Photostroms von der Lichtintensitét vor der Messung
durch Aufnahme einer EinmeBkurve bestimmt werden (vgl. Abschn. O. 5).

Versuchsausfiihrung

Fiir die Messung benutzt man eine Platte aus geschwirztem Glas, um
storende Reflexionen von der Riickseite zu vermeiden. Diese Platte wird
so auf den Spektrometertisch gestellt, daBl die reflektierende Fliche parallel
zur Drehachse steht (Justierung siehe Versuch O. 2.3).

Zur Messung des Polarisationswinkels bringt man vor dem Spaltrohr ein
Polarisationsfilter an. Ist dessen Durchlafrichtung nicht bekannt, so er-
mittelt man sie zusammen mit dem Polarisationswinkel in folgender Weise:
Zunichst wird bei beliebigem Einfallswinkel das Bild des Spaltes nach
Reflexion des Lichtes an der Glasplatte im Fernrohr beobachtet und der
Polarisator so lange gedreht, bis die minimale Helligkeit des Spaltbildes
erreicht ist. Nun wird der Einfallswinkel verdndert, ohne dal} das Spaltbild
aus dem Gesichtsfeld verschwindet. Hat man auf diese Weise den Polari-
sationswinkel erreicht, so tritt vollige Verdunkelung des Spaltbildes ein
(evtl. ist dazu der Polarisator noch geringfiigig nachzudrehen), und die
Durchlafrichtung des Polarisationsfilters stimmt mit der Einfallsebene iiber-
ein, liegt also senkrecht zur Drehachse des Spektrometers.

Zur Messung des Reflexionsvermégens ersetzt man das Okular des Fern-
rohrs durch den geeichten Strahlungsempféinger und mift bei verschiedenen
Einfallswinkeln die Intensitét des reflektierten Strahls bei parallel und bei
senkrecht zur Einfallsebene polarisiertem Licht. Dabei ist sorgfiltig darauf
zu achten, dafl das gesamte aus dem Spaltrohr austretende Licht an der
Glasplatte reflektiert wird und ins Fernrohr fillt. Nétigenfalls muf3 der
Durchmesser des Lichtbiindels durch geeignete Blenden begrenzt werden.
Ferner ist zu beachten, dal die Messung nicht durch Streulicht, z. B. von
den Zimmerwénden, verfilscht wird. SchlieBlich entfernt man die Glasplatte
und miBt die Intensitit des einfallenden Lichtes, indem man das Fernrohr
in die Richtung des Spaltrohres dreht.

Die gefundene Abhéngigkeit des Reflexionsvermégens vom Einfallswin-
kel ist graphisch darzustellen und mit den nach Gln. (1a), (1b) berechneten
Werten zu vergleichen. Fiir die Berechnung ist der aus dem Polarisations-
winkel nach Gl. (3) ermittelte Brechungsindex zugrunde zu legen.
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O.4.2. Drehung der Schwingungsebene linear
polarisierten Lichtes

Aufgaben: 1. Die Konzentrationsabhingigkeit des Drehvermégens einer
Rohrzuckerlésung ist zu unt®suchen und das spezifische Dreh-
vermogen zu berechnen.

2. Die Wellenléingenabhéangigkeit der spezifischen Drehung eines
Quarzpléattchens ist zu ermitteln.
3. Die Verdetsche Konstante fiir Nitrobenzol ist zu messen.

Die Drehung der Schwingungsebene linear polarisierten Lichtes wird mit
dem Polarisationsapparat (Abb. 183) gemessen. Hauptbestandteile dieses
Apparates sind zwei Polarisationsprismen oder Polarisationsfilter. Das erste

®///’r

— N
.‘\li

-

=) 7

F

~ ==
>

K

Abb. 183. Schema eines Polarisationsapparates

Prisma, der Polarisator P, erzeugt linear polarisiertes Licht; mit Hilfe des
zweiten Prismas, des Analysators A, 148t sich die Lage der Schwingungs-
ebene feststellen. Stehen die Schwingungsebenen von Polarisator und Ana-
lysator parallel, so ist das Gesichtsfeld des Fernrohres F hell; stehen sie
senkrecht aufeinander (gekreuzt), so ist das Gesichtsfeld dunkel.

Bringt man zwischen die gekreuzten Polarisationsfilter eine Kiivette K
mit einer optisch aktiven Substanz, so wird das Gesichtsfeld aufgehellt, da
die Schwingungsebene des Lichtes gedreht wurde. Der Drehwinkel ¢ 1a8t
sich messen, indem der Analysator so lange gedreht wird, bis wieder Dunkel-
heit herrscht. Dies ist dann der Fall, wenn der Analysator um @ oder um
180° — @ gedreht wird. Um zwischen diesen beiden Féllen zu unterscheiden,
muB der Drehsinn der betreffenden Substanz ermittelt werden.

Da die Einstellung auf véllige Dunkelheit schwierig ist, benutzt man fiir
genauere Messungen einen Halbschattenapparat. Bei diesem teilt man durch
ein Hilfsfilter N das Gesichtsfeld in zwei Halften. Bei parallelen Filtern be-
wirkt das Hilfsfilter eine Verdunklung der einen Halfte des Gesichtsfeldes,
wenn seine DurchlaBrichtung schrig zu der des Polarisators steht. Dreht
man nun den Analysator, so dal der helle Teil des Gesichtsfeldes dunkler
wird, so wird die vorher verdunkelte Hilfte aufgehellt, und man erreicht
schlieBlich eine Stellung, in der beide Teile gleich hell erscheinen. Bei einer
Drehung um 360° erscheinen die beiden Gesichtsfeldhdlften in zwei Stel-
lungen gleich hell und in zwei anderen gleich dunkel. Die dunkle ,,Halb-
schattenstellung‘‘ ist die empfindlichere, sie wird als Ausgangsstellung fiir
die Messung des Drehwinkels benutzt.
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Versuchsausfiithrung

Zu 1.: An Zuckerlsungen verschiedener Konzentration wird die Grofe der
Drehung gemessen. Da der Drehwinkel mit wachsender Konzentration zu-
nimmt, ergibt sich auch leicht der Drehsinn der Losung. Das spezifische
Drehvermégen berechnet man nadh Gl. (5). Ist [¢] bekannt, so kann man
durch Messung des Drehwinkels Konzentrationsmessungen ausfiihren.

Zu 2.: Um die Abhéngigkeit der spezifischen Drehung von der Wellen-
linge zu messen, stellt man mit Hilfe von Filtern (z. B. Metallinterferenz-
filtern) monochromatisches Licht her und miBt fiir jede Wellenléinge den zu-
gehorigen Drehwinkel. Die Dicke des Quarzplattchens wird mit einem Mel-
schieber oder einer BiigelmeBschraube bestimmt. Um den Drehsinn fest-
zustellen, bringt man gleichzeitig zwei Plittchen des gleichen. Quarzes
zwischen Polarisator und Analysator; der Drehwinkel mufl dann gréBer
werden.

Eine andere Methode besteht darin, die Erscheinungen im weillen Licht
zu beobachten. Infolge der Rotationsdispersion wird jeweils nur eine Farbe
ausgeloscht, und man sieht die Komplementéirfarbe. Aus der Aufeinander-
folge der Farben bei der Drehung des Analysators 1aBt sich ebenfalls der
Drehsinn ermitteln.

Zu 3.: Zur Messung der Verdetschen Konstanten wird die zur Messung
benutzte Kiivette mit einer Spule umgeben, in der ein starkes Magnetfeld
erzeugt werden kann. Man miBit den Drehwinkel in Abhéingigkeit von der
magnetischen FluBdichte B, wobei zur VergréBerung der MeBgenauigkeit
durch Umpolen des Spulenstromes abwechselnd bei positiver und negativer
Feldstérke gemessen wird, wodurch man eine Verdopplung des Drehwinkels
erreicht.

Die magnetische FluBdichte B bestimmt man aus Windungszahl n der
Spule und dem durchflieBenden Strom I nach der Formel

I
B=po-m- @

(! Lange der Spule, 1, magnetische Feldkonstante).

O.5. STRAHLUNGSMESSUNG UND
PHOTOMETRIE

0.5.0. Allgemeine Grundlagen

Die von einer Lichtquelle emittierte Strahlung kann in verschiedener
Weise bewertet werden. Interessiert man sich fiir rein physikalische Pro-
bleme, so bezieht man sich auf die Energie der Strahlung; interessiert man
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sich dagegen fiir den Lichteindruck auf das menschliche Auge, so bezieht
man sich auf die Lichtstdrke und die davon abgeleiteten GréBen.

In der folgenden Ubersicht sind die physikalischen StrahlungsgréBen
(Index e) und die photometrischen GréBlen einander gegeniibergestellt
(vgl. auch Abschn. 1.2 der Einleitung):

Auf die Quelle bezogene Groflen:

Strahlstirke I, (W/sr) 2 Lichtstarke I (cd)

Strahldichte L, (W/(m? - sr) 2 Leuchtdichte L (cd/m2)

StrahlungsfluBl (Energiestrom) @, (W) 2 Lichtstrom @ (Im) 11m = fcd-sr

spezifische Ausstrahlung M, (W/m?) & spezifische Lichtausstrahlung
M (Im/m?)

Auf den Empfinger bezogene Grofe:

Bestrahlungsstiarke £, (W/m?)y 2> Beleuchtungsstirke £ (1x)
, 11x =1 Im/m?

Der Begriff ,, Intensitat wird in verschiedener Bedeutung, meist synonym
fiir Bestrahlungsstirke gebraucht.

AuBer der Gesamtstrahlung ist haufig die rdumliche und die spektrale
Verteilung der Strahlung von Bedeutung. Die Abhingigkeit der Strahl- bzw.
Leuchtdichte von der Ausstrahlungsrichtung!) gibt man in Form des Richt-
strahldiagramms (Indikatrix) L = L($, ¢) an, wobei © und ¢ als Polarwinkel
die Beobachtungsrichtung festlegen. Meist kann man sich dabei auf die Vertei-
lung in einer Ebene senkrecht zur strahlenden Fliche beschrianken, so daB
zur Festlegung der Ausstrahlungsrichtung die Angabe eines Winkels geniigt.

Fiir den wichtigen Spezialfall einer gleichméBig erhitzten ebenen Fliche
eines schwarzen Korpers ist das Richtstrahldiagramm in Abb. 7 der Ein-
leitung angegeben. Eine derartige Fliche hat eine konstante winkelunab-
hingige Strahl- bzw. Leuchtdichte und strahlt nach dem Lambertschen Ge-
Setz :

L= 1Ly cosd; (1)

dabei ist # der Winkel zwischen Ausstrahlungsrichtung und Flachennormale
und L, die Strahl- bzw. Leuchtdichte in Richtung der Flichennormalen.

Zur Charakterisierung der spektralen Verteilung der Strahlung trigt man
die in einem engen Wellenlangenintervall A1 gemessene spektrale Strahl-
dichte L, als Funktion der Wellenlinge A auf. Man erhilt bei glithenden
Festkérpern oder Fliissigkeiten den in Abb. 184 a schematisch dargestellten
Verlauf (Kontinuumstrahler), wiahrend sich bei angeregten Gasen der in
Abb. 184 Db gezeigte Verlauf ergibt (Linienstrahler).

1) Beziiglich der rdumlichen Verteilung besteht kein Unterschied zwischen Strahl-
und Leuchtdichte.
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Ein wichtiger Spezialfall ist die spekirale Strahlungsverteilung des schwar-
zen Kérpers (d. h. eines Korpers, der alle auftreffende Strahlung absorbiert).
Sie gehorcht dem Planckschen Strahlungsgesetz: Die spektrale Strahl-
dichte L.; unpolarisierter Strahlung im Intervall A4, bezogen auf die Ein-
heit des Raumwinkels, ist gegeben durch

2hc? 1
LB == 5 —
AT —
Benutzt man statt der Wellenldnge die Frequenz » als Abszisse, so erhilt
man

-AA. : (2a)

2hy? 1
2 M
ekl —1

Loy - Av = Ay (2b)

(» Plancksches Wirkungsquantum, ¢ Lichtgeschwindigkeit). Die spektrale
Strahldichte héngt also bei einem derartigen Strahler auBer von der GroBe
der strahlenden Fliche nur von der Wellenlinge und von der absoluten
Temperatur 7' ab, jedoch nicht von der Beschaffenheit des Strahlers selbst.

1 %

J

A A

Abb. 184. Spektrale Strahldichte L, als Funktion der Wellenlédnge
a) Kontinuumstrahler; b) Linienstrahler

Durch Integration iiber alle Wellenlingen und iiber einen Halbraum er-
gibt sich unter Beriicksichtigung des Lambertschen Gesefzes [Gl. (1)] die
spezifische Ausstrahlung

2%
Me:f
0

(Stefan- Boltzmannsches Gesetz).

Reale Strahler, z. B. Glithlampen, strahlen bei gleicher Temperatur stets
weniger als der schwarze Korper. Das Verhéltnis der Strahldichte des be-
treffenden Korpers zu der eines schwarzen Korpers gleicher Temperatur be-
zeichnet man als den spektralen Emissionskoeffizienten ¢(4, 7T'), so dafl man

v , 205 BATH
J.Leldlcosﬂs1n0dﬁd¢=ﬁ—g—27b—3—=G-T4 3)
o

o
SE]
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fiir die spektrale Strahldichte L,; eines Temperaturstrahlers schreiben kann

2hc? 1
B R
T _ 4

Ly Al =¢(d, T) - AL. )

Der Emissionskoeffizient (1, T') ist gleich dem Absorptionsvermégen 4(4, 7).
das sich durch Reflexionsmessungen bestimmen 148t (Kirchhoffsches Ge-
setz). Es ist ndmlich

AAT)=1-R@AT), (5)

wobei R = I*|J¢ das Verhaltnis von reflektierter zu eingestrahlter Licht-
intensitét bei senkrechtem Lichteinfall ist (vgl. Abschn. O. 4).

Einen Koérper, bei dem der Emissionskoeffizient unabhéngig von der Wel-
lenléinge ist, bezeichnet man als grauen Strahler. Seine spektrale Strahl-
dighte stimmt bis auf einen konstanten Faktor ¢ < 1 mit der des schwarzen
Korpers iiberein. Beispielsweise ist fiir das technisch wichtige Wolfram im
sichtbaren Spektralbereich in guter Naherung ¢ = 0,47, unabhingig von
Temperatur und Wellenlange.

Der Nachweis der Strahlungsenergie kann mit thermischen oder photo-
elektrischen Strahlungsempfingern erfolgen. Mit beiden mit man die Be-
strahlungsstiarke E,. Zwischen ihr und der Strahlstirke I, besteht bei ge-
niigend kleiner und hinreichend weit vom Empfanger entfernter Lichtquelle
der Zusammenhang (Abb. 185)

Ee:%mosa (6)

(photometrisches Grundgesetz). « ist der Einfallswinkel der Strahlung,
r der Abstand der Lichtquelle von der Empfingerfliche. Da es sich hier

ot
Abb. 185.
T‘r/’ Zum photometrischen
r Grundgesetz

Lichtquelle Empféngerfigche

ebenso wie beim Lambertschen Gesetz Gl. (1) um rein geometrische Be-
ziehungen handelt, besteht der gleiche Zusammenhang auch zwischen Be-
leuchtungsstirke E und Lichtstarke I.

In thermischen Empfiangern (z. B. im Vakuumthermoelement, vgl. O. 5.2)
wird die gesamte auffallende Strahlung unabhingig von der Wellenldnge in
Wirme umgewandelt ; die entstehende Temperaturerhohung wird gemessen
und dient als MaB fiir die Bestrahlungsstéarke.

Photoelektrische Strahlungsempfinger beruhen auf dem lichtelektrischen
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Effekt. Dabei wird die in dem lichtempfindlichen Stoff absorbierte Licht-
energie auf die in dem Stoff gebundenen Elektronen itbertragen, so dafl diese
im Inneren frei beweglich werden (innerer lichtelektrischer Effekt) oder aus
> dem Stoff austreten konnen (duBerer lichtelektrischer Effekt).

Beim dufleren lichtelektrischen Effekt zeigt es sich, daBl die kinetische
Energie mv?/2 der ausgelosten Elektronen unabhéngig von der Licht-
intensitat ist, dagegen linear mit der Frequenz des Lichtes anwéachst. Diese
Tatsache ist auf der Grundlage der klassischen Physik vollig unverstandlich
und kann nur durch die Quantentheorie erklirt werden. Nach dieser Theorie
besteht das Licht aus Quanten der Energie W = % . » (2 Plancksche Kon-
stante), die nur als Ganzes absorbiert werden kénnen. Demzufolge wird bei
der Absorption auf ein Elektron genau die Energie & - » iibertragen.

Um aus dem bestrahlten Koérper austreten zu konnen, miissen die Elek-
tronen die Austrittsarbeit W, gegen die bindenden Krifte der Atome des
betreffenden Stoffes leisten, nach dem Austritt haben sie daher hochstensdie
Energie W' = W — W, . Fiir den Zusammenhang zwischen maximaler duBerer
kinetischer . Energie W’ und Frequenz » ergibt sich daher die Einsteinsche
Gleichung

W’=l;—vz=7w— W,. )

Ist . v < W,, so geniigt die bei der Absorption des Lichtes von den Elek-
tronen aufgenommene Energie nicht zur Uberwindung der Austrittsarbeit,
es treten keine Elektronen aus. Der duBlere lichtelektrische Effekt tritt
daher nur oberhalb der Grenzfrequenz y, = W,/h auf, der die Grenz.-
wellenldnge

Ag="h-c/Wy (8)

entspricht.

Die auf diesem Effekt beruhenden Photozellen und Sekundérelektronen-
vervielfacher sind infolgedessen nur zum Nachweis von Strahlung mit
A < Aq einsetzbar.

s Zahl der ausgelosten Photoelektronen
Das Verhiltnis q(2) = Zahl] der einfallenden Lichtquanten
chromatischem Licht der Wellenlinge A bezeichnet man als Quantenausbeute
des betreffenden Stoffes. Im allgemeinen steigt die Quantenausbeute mit
abnehmender Wellenldnge stark an (normale Empfindlichkeitskurve), bei
Alkali- und Erdalkalimetallen tritt jedoch in bestimmten Spektralbereichen
ein ausgepragtes Maximum auf (selektive Empfindlichkeitskurve). Fiir die
als Strahlungsempfinger haufig benutzten Photozellen werden hauptsich-
lich Kathoden mit selektiver Empfindlichkeitskurve benutzt.

Der innere lichtelekirische Effekt duBert sich in einer Anderung der elek-

bei mono-
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trischen Leitfahigkeit des bestrahlten Stoffes, die sich in der in Abb. 186
angegebenen Schaltung als Stroménderung bemerkbar macht (Photowider-
stand). Diese Anderung ist nur bei Isolatoren und Halbleitern merklich, bei
Metallen wird sie durch die ohnehin vorhandene hohe Leitfihigkeit voll-
stdndig iiberdeckt. Der Effekt ist besonders ausgeprégt bei Selen, Kadmium-,
Zink-, Thallium- und Bleisulfid.

Um die Leitfahigkeitsinderung in einem homogenen Stoff nachzuweisen,
ist entsprechend der Abb. 186 eine Hilfsspannung erforderlich. Bestrahlt

Licht

Hit

|||| Abb. 186. Schaltung eines Photowiderstandes

man dagegen die Grenzfliche zwischen einem Metall und einem Halbleiter
oder einen p-n-Ubergang in einem Halbleiter, so tritt der sog. Sperrschicht-
Photoeffekt auf, der eine spezielle Form des inneren lichtelektrischen Effek-
tes darstellt. Die elektrische Sperrschicht (vgl. Abschn. E. 3) bewirkt, daB
die im Halbleiter gebildeten Elektronen nur in einer Richtung abflieBen
kénnen; es tritt daher bereits ohne Hilfsspannung ein Photostrom auf.
Eine derartige Anordnung wird als Photoelement bzw. Photodiode be-
zeichnet.

Bei lichtelektrischen Bauelementen, die auf dem inneren lichtelektrischen
Effekt beruhen, ist die Anzahl der erzeugten Photoelektronen und damit
die Quantenausbeute ¢(1) meist nicht unmittelbar meBbar. Man gibt daher
statt ¢(A) meist die spektrale Empfindlichkeit S(4) an, die als Quotient aus
Empfingeranzeige und der absorbierten Strahlungsleistung P,(1) definiert
ist. Als Anzeigegrofe wihlt man oft den Photostrom ipy,, und erhilt
dann

_ pnoto(#)
S(2) 4—"},6(1) . 9)

Dieses Verhiltnis hingt allerdings bei den aus homogenen photoleitenden
Stoffen bestehenden Photowiderstdnden auch von der GroBe der Hilfsspan-
nung ab. Ferner ist zu beriicksichtigen, daf3 der Photostrom oft nicht linear
mit der Bestrahlungsstirke ansteigt, d. h., die spektrale Empfindlichkeit
hingt auBer von der Wellenlinge auch von der Bestrahlungsstérke ab.

Fiir photometrische Messungen, d. h. fiir die Bewertung der Strahlung
entsprechend ihrem Lichteindruck auf das Auge, kénnen subjektive und
objektive Verfahren eingesetzt werden.
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Bei den subjektiven Verfahren ist man auf den Vergleich von Beleuchtungs-
stirken angewiesen, da das Auge nur Beleuchtungsunterschiede wahr-
nehmen, dagegen Lichtstdrken nicht unmittelbar vergleichen kann.

Der Vergleich von Lichtstiarken erfolgt daher unter Zugrundelegung des
photometrischen Grundgesetzes [Gl. (6)]: Will man die Lichtstirke I, einer
Lampe messen, so vergleicht man sie mit einer Lichtquelle bekannter Licht-
stirke I, indem man den Abstand beider Lampen von einer Fliche so
regelt, daB beide auf dieser die gleiche Beleuchtungsstirke erzeugen. Es ist
dann E, = E,, und unter der Voraussetzung, dafl das Licht beider Licht-
quellen unter dem gleichen Winkel auf die Flache auftrifft, folgt aus Gl. (6)

V2 /Va max
ol—

- /

i,
IEFERER

L \

. —
< \
_3 1

|
400 500 600 700
A/nm

Abb. 187. Spektrale Empfindlichkeit V, des normalen
helladaptierten Auges im logarithmischen MaBstab
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I,[r = I,[r2. Daraus ergibt sich
I, 3
7, (6a)
Dadurch ist die Messung der Lichtstirke auf den Vergleich von Beleuch-
tungsstérken zuriickgefiihrt, der mit Photometern ausgefiihrt wird.

Voraussetzung fiir das MeBverfahren ist, dafl beide Lichtquellen gleich-
farbiges Licht ausstrahlen. Ist das nicht der Fall, so miissen Vereinbarungen
getroffen werden, was man unter gleicher Beleuchtungsstarke verschieden-
farbiger Lichtquellen verstehen will (heterochrome Photometrie). Es ist je-
doch in einem solchen Falle zweckméaBiger, objektive MeBverfahren zu be-
nutzen.

Bei den Verfahren der objektiven Photometrie wird das Auge durch einen
lichtelektrischen Empfénger ersetzt, der die gleiche spektrale Empfindlich-
keit wie das Auge hat. Unter der spektralen Empfindlichkeit ¥V, des Auges
versteht man das Verhéltnis von photometrisch gemessener Lichtstarke zur
Strahlungsstérke der Lichtquelle bei der Wellenlinge A. Dieses Verhaltnis
ist an einer Vielzahl von Versuchspersonen gemessen worden, der inter-
national vereinbarte Mittelwert ist in Abb. 187 dargestellt.

Durch Vorschalten geeigneter Filter kann man photoelektrische Empfan-
ger herstellen, deren spektrale Empfindlichkeit mit der des Auges weitgehend
iibereinstimmt. Ein derartiger Empfénger kann dann direkt in Einheiten
der Beleuchtungsstérke geeicht und fiir die Messung von Licht beliebiger
spektraler Zusammensetzung benutzt werden.

lgy
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Mifit man mit einem solchen Empfinger beispielsweise die spektrale Ver-
teilung der Leuchtdichte eines schwarzen Strahlers (Abb. 188a), so ist seine
Anzeige der physiologischen Leuchtdichteempfindung (Abb. 188b) pro-
portional.
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O.5.1. Photozelle

Aufgaben: 1. Die Strom-Spannungs-Charakteristik einer Vakuum- und einer
Edelgaszelle ist aufzunehmen.
2. Die Abhingigkeit des Photostroms von der Bestrahlungs-
stirke. (Lichtintensitit) ist zu messen.
3. Die Plancksche Konstante % ist zu bestimmen.

Eine Photozelle besteht aus einem evakuierten oder edelgasgefiillten
Glas- oder Quarzgefa}, in dem sich eine ring- oder netzférmige Anode und
eine lichtempfindliche Kathode aus einem Material geringer Austrittsarbeit
(Kalium, Ciasiumantimonid, Cisiumoxid) befinden. An die Anode wird eine
Saugspannung U gelegt, die die durch das einfallende Licht ausgeldsten
Elektronen zur Anode zieht.

Bei Vakuumszellen gelangen bei geniigend groBer positiver Anodenspan-
nung alle Elektronen zur Anode, es flieit ein Sattigungsstrom 4,. Verringert
man die Spannung, so wird der Strom schlieBlich infolge der Raumladung,
die die Elektronen erzeugen, kleiner. Jedoch flieBt auch bei geringen negati-
ven Anodenspannungen noch ein schwacher Strom, da die Elektronen in-
folge ihrer kinetischen Energie auch gegen eine schwache negative Span-
nung anlaufen kénnen. Der Strom wird erst Null, wenn die kinetische Ener-
gie der Elektronen kleiner ist als die potentielle Energie ¢ - U (¢ Elementar-
ladung, U Spannung zwischen Kathode und Anode, vgl. Abb. 189).

Photostrom

Edelgaszelle

Vokuumzelle A, 189, Strom-Spannungs-Kenn-

linien von Photozellen mit Hysterese-
erscheinungen

0o Anodenspennung U

Gasgefiillte Zellen verhalten sich bei kleinen Spannungen wie Vakuumzel-
len;; bei grolen Anodenspannungen tritt jedoch keine Séattigung auf, sondern
der Strom steigt mit wachsender Spannung exponentiell an. Ubertrifft
niamlich die Anodenspannung die Ionisierungsspannung des Fiillgases, so
treten unelastische St68e zwischen den Photoelektronen und den Atomen
des Fiillgases auf, die zur Bildung von Sekundéirelektronen und positiven
Ionen fithren. Die Sekundérelektronen wandern zusammen mit den Photo-
elektronen zur Anode, die Ionen zur Kathode, so daB eine betrichtliche
Stromverstirkung zustande kommt. Bei sehr grofen Anodenspannungen
(>100 V) tritt schlieBlich eine Glimmentladung auf, die zur Zerstérung
der Zelle fiithren kann.
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Versuchsausfithrung

1. Die Messung der Strom-Spannungs-Charakteristik erfolgt in der der
Abb. 190 entsprechenden Schaltung. Als Strommesser ist ein empfindliches
Galvanometer oder ein Roéhrenverstirker mit geringem Spannungsbedarf

Abb. 190. Schaltung zur Messung von
B || [ ’ ” || + Strom-Spannungs-Kennlinien
RN

zu verwenden (gegebenenfalls mufl bei kleinen Saugspannungen der,Span-
nungsabfall am Strommesser in Rechnung gestellt werden). Es ist sorgfiltig
darauf zu achten, daBl insbesondere bei Edelgaszellen die- maximal zulassige
Spannung nicht iiberschritten wird.

Die Beleuchtung kann bei dieser Messung mit weilem Licht erfolgen, die
Lichtintensitit muB jedoch unbedingt wahrend der Zeit der Messung kon-
stant bleiben. Es ist daher zweckmafig, als Spannungsquelle fiir die Lampe
einen Akkumulator zu verwenden. Die Spannung ist von kleinen nach
grofen Werten und umgekehrt zu veréndern; man beobachtet dabei oft
charakteristische Hystereseerscheinungen (Abb. 189), die ihre Ursache in
Aufladungen der Glaswand der Zelle haben.

2. Um die Abhéangigkeit des Photostroms von der Lichtintensitit zu
messen, ist es erforderlich, die Lichtintensitit meBbar zu verindern. Am
einfachsten und zuverldssigsten geschieht dies durch Anderung des Ab-
standes zwischen Lichtquelle und Photozelle (wobei sich selbstverstindlich
keine Linsen zwischen den beiden befinden diirfen). Ist I, die Lichtstirke
der Lampe und r der Abstand zwischen Lichtquelle und Photozelle, so ist
die Bestrahlungsstirke am Ort der Photozelle durch Gl. (6) gegeben. Durch
Abstandsénderung erhilt man Relativwerte fiir die Empfindlichkeit ¢ /1,
auch wenn die Lichtstarke I, nicht bekannt ist.

Die Messung ist bei Vakuumzellen im Séttigungsbereich, bei Edelgas-
zellen bei der héchsten zuldssigen Spannung auszufithren. Sehr kleine Ab-
stinde sind zu vermeiden, da dann die Abstandsbestimmung ungenau wird.

Ist die Lichtstérke I, bekannt, so ist durch diese Messung die Photozelle gleichzeitig
als Luxmeter geeicht. Allerdings ist die Eichung im allgemeinen nur fiir Lichtquellen
gleicher Farbtemperatur, d. h. mit gleicher spektraler Zusammensetzung des Lichtes
richtig, da sich im allgemeinen die spektrale Empfindlichkeit der Photozelle von der

26 Phys. Praktikum
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des Auges unterscheidet. Um Photozellen als Luxmeter fiir beliebige Lichtquellen ver-
wenden zu kénnen, muB ihre spektrale Empfindlichkeit durch geeignete Farbfilter mit
der des Auges in Ubereinstimmung gebracht werden (V,-getreue spektrale Empfind-
lichkeit).

3. Der Verlauf der Strom-Spannungs-Charakteristik hingt im Gebiet ne-
gativer Anodenspannungen von der kinetischen Energie der Photoelektro-
nen und infolgedessen von der Frequenz des eingestrahlten Lichtes ab.

Fiir die maximale negative Anodenspannung U,, gegen die die Photo-
elektronen noch anlaufen kénnen, findet man aufgrund des Energiesatzes

eUO:l;—N:hv— W,. (7a)

MiBt man daher U, in Abhdngigkeit von der Frequenz » des Lichtes, so er-
hilt man eine Gerade

Die Steigung dieser Geraden ist gleich k/e und wird aus den MeBwerten
graphisch oder durch Ausgleichsrechnung ermittelt. Mit dem als bekannt
vorausgesetzten Werte e = 1,60 - 1071° As ergibt sich daraus A.

Zur Messung benutzt man die Spektrallinien von Quecksilber, die mit ge-
eigneten Filtern oder einem Monochromator aus dem Spektrum ausgeblen-
det werden. Kurzwelliges Streulicht ist dabei sorgfiltig zu vermeiden.

Infolge der begrenzten Empfindlichkeit des Strommessers 1t sich nur
feststellen, bei welcher Spannung der Strom unter die Nachweisgrenze des
MeBinstruments gesunken ist. Es ist deshalb zweckméBig, durch Einschal-
ten von Graufiltern dafiir zu sorgen, dafl bei verschiedenen Wellenlingen
die gleiche Anzahl von Elektronen/Sekunde emittiert wird, also bei ver-
schiedenen Wellenlingen auf etwa gleichen Séttigungsstrom einzustellen.
Dadurch wirkt sich der durch die Empfindlichkeitsgrenze des MeBinstru-
ments hervorgerufene Fehler bei der Bestimmung von U, bei allen Mes-
sungen in gleicher Weise aus und verursacht keine Verfilschung des Wertes
hle.

/Fehlmessungen kénnen durch schlechte Isolation der Zelle und durch
Photoemission der Anode hervorgerufen werden. Beides duBert sich darin,
daB bei einer bestimmten negativen Spannung der Strom sein Vorzeichen
wechselt. Isolationsstrome lassen sich durch sorgfiltigen elektrischen Auf-
bau vermeiden; Photoemission der Anode ist herstellungsbedingt (Ver-
unreinigung der Anode durch Kathodenmaterial), in diesem Falle ist eine
andere Zelle zu benutzen.
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O.5.2. Spektrale Empfindlichkeit lichtelektrischer
Strahlungsempfinger

Aufgaben: 1. Die relative spektrale Empfindlichkeit eines Photowiderstan-
des und einer Photodiode sind zu bestimmen.
2. Die Intensitdtsabhéngigkeit der Empfindlichkeit eines Photo-
elements ist bei konstanter Wellenlinge zu ermitteln.
3. Die Quantenausbeute einer Vakuumphotozelle ist als Funktion
der Wellenléinge zu messen.

Die spektrale Empfindlichkeit S(4) ist durch Gl. (9) definiert:

. v oto(}*)
S() ——*‘1‘;6(7), 9)

wobei 4ppy, der Photostrom, P, die ihn verursachende Strahlungsleistung
ist. .

Die Messung erfolgt durch Vergleich mit einem Strahlungsempfinger be-
kannter Empfindlichkeit, indem man nacheinander beide Empfénger an die
gleiche Stelle im optischen Strahlengang bringt.

Als Strahlungsempfanger bekannter spektraler Empfindlichkeit dient ein
Vakuumthermoelement, bei dem die gesamte auffallende Strahlung unabhin-
gig von der Wellenldnge in Wiarme umgewandelt wird. Beim Thermoelement
nach Hase (Abb. 191) fallt die Strahlung auf ein sorgfiltig geschwirztes

\Halbleiter-
\ stibchen

Auffinger-
scheibchen

Abb. 191, Thermoelement nach Hase

Auffingerscheibchen und erwarmt dieses. Dadurch entsteht an dem damit
eingeitig verbundenen Halbleiterstébchen eine Temperaturdifferenz, die zu
einer Thermospannung zwischen den beiden Enden des Halbleiterstibchens
und damit zu einem Stromflu durch das angeschlossene empfindliche Gal-
vanometer fiihrt.

Die Temperaturerhohung AT ergibt sich aus dem Gleichgewicht zwischen zugestrahl-
ter und abgefiihrter Leistung. Die zugestrahlte Leistung P, ist der Bestrahlungsstirke
E, proportional, die abgefithrte Leistung setzt sich aus Wiarmeleitung, Konvektion und
Strahlung zusammen. Wirmeleitung und Konvektion sind proportional zur Tempera-
turdifferenz, die Wirmestrahlung ist nach dem Stefan-Boltzmannschen Gesetz pro-
portional zu T4 — T, da der Empfinger (Temperatur 7') nicht nur abstrahlt, sondern

26*
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auch Energie aus der Umgebung (Temperatur 7',) zugestrahlt bekommt. Da 7', nur
geringfiigig hoher als T, ist, gilt

T8 — T4 =T+ AT —Ti=4-T3-AT ~AT. (10)

Damit wird die gesamte abgefiihrte Leistung proportional zu A7, und aus der Gleich-
gewichtsbedingung folgt A7 ~ P,.

Da der Thermostrom 3, proportional zu A7 ist, gilt schlielich
(@) = Su - Pe(d) - (11a)

Der Photostrom des lichtelektrischen Empfangers im gleichen Strahlungs-
feld ist

ipnoto(A) = S(4) - Pe(4). (11b)
Durch Division der Gln. (11a) und (11b) erhélt man
_ . iphoto(}*)
S(A) = S N (12)

wobei die Empfindlichkeit Sy, des thermischen Empfangers nicht von der
Wellenlénge abhéngt.

In vielen Fallen begniigt man sich mit der Kenntnis der relativen spek-
tralen Empfindlichkeit

S(l) _ iphoto(l) ith(l) 12
S0he) ~ Tpnototho) | imlAe) (12a)

in die die Empfindlichkeit S, nicht eingeht. Dabei ist 4, an sich beliebig, je-
doch wihlt man meist die Wellenldnge, bei der die Empfindlichkeit ein
Maximum hat, d. h., man setzt die relative Empfindlichkeit im Maximum
leich 1.

¢ Die Quantenausbeute g(4) ist definiert als das Verhéltnis der Anzahl der
je Zeiteinheit erzeugten Photoelektronen n(1) zur Anzahl der je Zeit-
einheit absorbierten Lichtquanten n,(q), d. h., ¢(4) ist die Wahrscheinlich-
keit dafiir, daB ein absorbiertes Lichtquant ein Photoelektron erzeugt.
g(2) 148t sich aus der Empfindlichkeit S(g) berechnen, wenn der Zusammen-
hang zwischen Photostrom und n(g) bekannt ist.

Im Falle des duBeren lichtelektrischen Effekts in einer Vakuumphotozelle
(in der keine Stromverstérkung auftritt), ist

ionoto = 1(A) - €, (13)

wobei e die Elementarladung ist.
Andererseits hat jedes Lichtquant die Energie % - v, daher besteht zwischen

P, und n, der Zusammenhang
Py(A) = no(d) - . (14)
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Aus den Gln. (13) und (14) folgt

n(d) v he ‘
o) S() - o = ol SA). (15)
Auch hier begniigt man sich meist mit der Messung der relativen Quanten-
ausbeute

A _ 8@ 4
- Lo 15a
a00) " B A o2)
die sich nur durch den Faktor A,/A von der relativen spektralen Empfindlich-
keit unterscheidet.
Will man Absolutwerte von ¢ bestimmen, so bentigt man P,(4); eine der-
artige Messung erfordert also ein absolut geeichtes Thermoelement.

q(A) =

Versuchsausfithrung

Als Lichtquelle benutzt man einen Strahler mit kontinuierlichem Spek-
trum. Mittels eines Monochromators oder geeigneter Filter erzeugt man
monochromatisches Licht, bringt nacheinander die beiden Empféanger, die
zu vergleichen sind, in den Strahlengang und miBt die Stréme 4, und 4y, .
Dabei ist sorgfaltig darauf zu achten, dafl das gesamte aus dem Monochro-
mator austretende Licht auf die empfindliche Fliche der Empfinger fallt.

Erforderlichenfalls ist der Biindeldurchmesser durch geeignete Blenden
zu begrenzen. Ferner ist sicherzustellen, dafl kein Streulicht auf den Emp-
fanger gelangt, das die Anzeige insbesondere dann stark verfilschen kann,
wenn man in groBem Abstand vom Empfindlichkeitsmaximum arbeitet.
Alle MeBergebnisse sind graphisch darzustellen.

O.5.3. Plancksches Strahlungsgesetz

Aufgabe: Die Temperaturabhingigkeit der spektralen Strahlungsdichte
einer Glithlampe ist fiir verschiedene Wellenlingen zu messen
und daraus das Verhiltnis der Planckschen zur Boltzmannschen
Konstante (h/k) zu ermitteln.

Eine Glithlampe mit Wolframfaden kann man im sichtbaren Spektral-
bereich in guter Naherung als einen grauen Strahler betrachten. Die spek-
trale Verteilung der Strahldichte ist dann durch Gl. (4) gegeben, wobei
£ = 0,47 ist.

Fiir die technisch méglichen Temperaturen unterhalb des Schmelzpunktes
ist hy[ET > 1, so daBl man niherungsweise

2eh® -1
= e

Ley - Ay = T Ay (14a)

setzen kann.
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Benutzt man fiir den Nachweis der Strahlung einen Empfinger, dessen
Anzeige 4 (z. B. der Photostrom) proportional zur Bestrahlungsstirke ist,
so gilt

A(T) ~ e MIkT (16)
daraus folgt

A(T) hy hy

Ty = wT, "W

(162)

wobei T, eine beliebig gewahlte Temperatur des Glithfadens ist. Tragt man
also In [4(T')]A(T,)] tiber 1/T" auf, so ergibt sich eine Gerade mit der Stei-
gung —hy/k, aus der man h/k entnehmen kann.

Versuchsausfiihrung

Als Lichtquelle benutzt man entweder eine Wolframbandlampe oder eine
Glithlampe mit einem mdoglichst langen Glithfaden.

Bei einer Glithlampe bestimmt man die Temperatur des Glithfadens aus
dem elektrischen Widerstand (vgl. Abschn. E. 1). Lampen mit langem
Glithfaden sind giinstig, da sich bei ihnen UngleichméBigkeiten der Tempera-
tur des Fadens, z. B. an den Befestigungsstellen, weniger stark bemerkbar
machen.

Bei der Wolframbandlampe muf} die Temperatur der strahlenden Fliche
auf optischem Wege mit einem Pyrometer gemessen werden (Abb. 192). Die

Strahlende
Fliche
Abb. 192.

Schema eines Pyrometers

strahlende Fléche wird dazu in eine Ebene abgebildet, in der sich der Faden
einer Mleinen Glithlampe befindet. Der Strom dieser Lampe wird so lange
verandert, bis das Bild des Gliihfadens auf dem Untergrund der strahlenden
Fliche verschwindet ; die dazu nétige Stromstirke ist ein Ma8 fiir die Tem-
peratur, die man aus einer Eichkurve entnimmt. Die Eichung des Pyro-
meters erfolgt, indem man Kérper bekannter Temperatur betrachtet.

Fiir die Strahlungsmessung bringt man vor der Lichtquelle ein Filter an,
das nur einen schmalen Wellenldngenbereich durchlafit, oder man benutzt
einen Monochromator. Da die Anzeige des Nachweisgerdtes proportional
zur Bestrahlungsstirke sein mull, kommt fiir den Nachweis nur eine Photo-
zelle oder ein Photovervielfacher in Frage.

Der Photovervielfacher (Sekundirelektronenvervielfacher, SEV, Abb. 193) enthilt
ebenso wie die Photozelle eine lichtempfindliche Kathode. Die durch das Licht aus-
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gelosten Elektronen gelangen aber nicht direkt zur Anode, sondern treffen noch auf
mehrere Prallanoden (Dynoden), aus denen sie Sekundérelektronen ,,herausschlagen®,
so daB fur jedes an der Kathode ausgeloste Elektron an der Anode eine Elektronen-
lawine ankommt, die bis zu 10% Elektronen enthilt (vgl. Abb. 193). Die Anwendung
eines derartigen Photovervielfachers ist immer dann vorteilhaft, wenn sehr geringe
Lichtintensitdten nachzuweisen sind.

Kathode

y I
Prallanoden (Dynoden)

Licht
Abb. 193. Schema eines Sekundiirelektronenvervielfachers (SEV)

Es ist zweckmiBig, das von der Lampe ausgesandte Licht durch ein ro-
tierendes Zahnrad zu modulieren und den Strom der Photozelle mit einem
Wechselstromverstéarker zu messen. Die Messung kann dann nicht durch
Streulicht verfalscht werden und 148t sich auch in einem méaBig abgedunkel-
ten Raum ausfiihren.

Die Messung ist bei mindestens drei Wellenldngen auszufiithren. Mittels
.des gemessenen Wertes fiir 4/k ist zu iiberpriifen, inwieweit die Bedingung
hy[kT > 1 erfiillt ist; der durch die Vernachlissigung von 1 gegeniiber
ek j;m Nenner von Gl. (4) entstehende Fehler ist abzuschétzen.,

0.5.4. Photometrie

Aufgaben: 1. Lichtstirke und optischer Wirkungsgrad einer Glithlampe sind
in Abhéngigkeit von der zugefithrten elektrischen Leistung zu
messen, und es ist zu ermitteln, mit welcher Potenz der absoluten
Temperatur die Lichtstirke der Lampe ansteigt.

2. Das Richtstrahldiagramm einer Glithlampe ist zu messen und
mit dem eines Lambertschen Strahlers zu vergleichen.

Unter dem optischen Wirkungsgrad # einer Lichtquelle versteht man das
Verhiltnis der Lichtstirke I zur aufgewandten elektrischen Leistung P:

I
n="- (17)
Im Gegensatz zum mechanischen oder thermodynamischen Wirkungsgrad
ist der optische Wirkungsgrad keine reine Zahl, sondern wird in cd/W
gemessen.
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Die Abhingigkeit der Lichtstirke von der Temperatur der Gliihlampe
148t sich innerhalb gewisser Grenzen durch den Potenzzusammenhang

I = const T= (18)

beschreiben. Nach dem Stefan-Boltzmannschen Gesetz (3) ist die aus-
gestrahlte Gesamtleistung proportional zur 4. Potenz der absoluten Tem-
peratur 7'1) Da im Dauerbetrieb Gleichgewicht zwischen zugefiihrter und
ausgestrahlter Leistung besteht, gilt also

T = const P14 (19)
und man erhéilt
b, I = const Pz (20)
log (I/1,) = - log (P/Py), (20a)

wobei I, und P, zusammengehérige MeBwerte bei einer beliebig gewihlten
Temperatur 7' sind.

Versuchsausfiihrung

Die Messung der Lichtstérke erfolgt durch photometrischen Vergleich mit
einer Normallampe?) bekannter Lichtstirke nach dem photometrischen
Grundgesetz [Gl. (6)]. Man vergleicht beide Lichtquellen mit Hilfe des
Photometerwiirfels von Lummer und Brodhun auf einer optischen Bank.

L2
B
Lp
- ;}
Ill
L1:» "Lj
— !
LT -
]
;|I A
[
1y
L1
#IH
Yvy

von Ly beleuchiet .
(/]
@y nlpbeluchlel o4 Photometerwiicfel

1) Genauer: proportional zu 7% — T4, wenn 7', die Temperatur der Umgebung ist.
Es ist jedoch 7' >> T, so dafl man T4 vernachlissigen kann.

%) Eine Normallampe ist ein sekundéres Normal, dessen Lichtstirke durch Vergleich
mit einem schwarzen Strahler ermittelt wurde.
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Der Photometerwiirfel (Abb. 194) besteht aus zwei Prismen P, und P,,
die in der Mitte der Hypotenusen fest aneinandergepreBt sind, so daB kein
Zwischenraum bleibt. In die Mitte des Beobachtungsfeldes gelangt daher
nur Licht von der Lichtquelle L,, das den Wiirfel ungehindert durchsetzt.
Hingegen wird das Licht von der Lichtquelle L, am Rand des Prismas P,
totalreflektiert und gelangt an den Rand des Beobachtungsfeldes.

Fiir die Messung 148t man das Licht der beiden Lichtquellen, die zu ver-
gleichen sind, zunéchst in der in Abb. 195 gezeigten Weise an einer weillen

Gipsplatte

Abb. 195. Messung von Lichtstirken mit dem Photometerwiirfel

Gipsplatte reflektieren, damit die ungleichméBige Emission verschiedener
Teile der Lichtquelle nicht stort. Gipsplatte und Photometerwiirfel sind zu
einem Photometerkopf vereint, der auf der optischen Bank zwischen den
beiden Lichtquellen angeordnet ist. Erscheinen beide Seiten der Gipsplatte
gleich hell, so ist nach Gl. (6)

I, = I, - (ry/ry)>

Reflektiert die Gipsplatte nicht auf beiden Seiten gleich gut, so treten Feh-
ler auf. Man eliminiert sie, indem man den Photometerkopf um 180° dreht
und das geometrische Mittel der beiden Ablesungen bildet.

Anstelle des Photometerkopfes kann man auch ein Photoelement benut-
zen, das zu diesem Zwecke nicht geeicht zu sein braucht, da es ja nur auf die
Feststellung der Gleichheit zweier Beleuchtungsstérken ankommdt.

Normale

Wendel
i Abb. 196. Zur Messung der

Beobachtungs~
Richtstrahlcharakteristik einer Glithlampe

richtung

Steht ein als Photometer geeichter Strahlungsempfinger zur Verfiigung
(siehe Vers. O. 5.2), so ist die Vergleichslampe iiberfliissig, und man kann die
Lichtstarke direkt aus der gemessenen Beleuchtungsstirke und dem Ab-
stand zur Lichtquelle berechnen. Fiir die Berechnung des optischen Wir-
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kungsgrades ist noch die der Lampe zugefiihrte elektrische Leistung zu er-
mitteln. Man erhilt sie aus Stromstirke und Spannung.

Triagt man im logarithmischen MaBstab die Lichtstiarke als Funktion der
elektrischen Leistung auf, so ergibt sich nach Gl. (20a) eine Gerade, aus
deren Steigung man z entnehmen kann.

Zur Messung der Richtstrahlcharakteristik befindet sich die Lampe in
einer drehbaren Halterung. Man miBt die Lichtstirke in Abhingigkeit vom
Drehwinkel mit einem geeichten Photoelement oder durch Vergleich mit
einer Normallampe. Die Messung ist so auszufiihren, daB3 bei der Drehung
der Winkel zwischen der Normalen zur Glithwendel und der Ausstrahlungs-
richtung verandert wird (Abb. 196). Das Ergebnis ist in einem Polardia-
gramm darzustellen.

O.6. FUNDAMENTALKONSTANTEN
DER PHYSIK

0. 6.0. Allgemeine Grundlagen

In den physikalischen Gesetzen tauchen eine Reihe von Fundamental-

konstanten auf, deren GroBe als naturgegeben anzusehen ist und nur durch
Experimente bestimmt werden kann. Es sind dies die Elementarladung e,
die Avogadro-Konstante N,, die Boltzmann-Konstante k, das Plancksche
Wirkungsquantum #%, die Elektronenmasse m, und die Protonenmasse m,,
ferner die Lichtgeschwindigkeit ¢ und die Gravitationskonstante .
_ Die Verfahren zur Messung dieser Konstanten bilden eines der reizvollsten
Kapitel der Physik, weil dabei in faszinierender Weise der innere Zusam-
menhang verschiedener Teilgebiete sichtbar wird. Mit Ausnahme der
Gravitationskonstanten und der Lichtgeschwindigkeit lassen sich diese
Fundamentalkonstanten bereits mit relativ bescheidenen Hilfsmitteln im
Rahmen eines Praktikums bestimmen, wobei allerdings auf die modernen
Prazisionsmethoden verzichtet werden muf3.

1. Die Elementarladung e wird nach der Methode von Millikan (Versuch
0. 6.1) gemessen. :

Ist e bekannt, solaBt sich aus der leicht meBbaren Faraday-Konstante
F die Avogadro-Konstante N, berechnen: Da F die von einem Mol eines
einwertigen Elektrolyten bei der Elektrolyse iiberfiihrte Elektrizitdtsmenge
ist, erhdlt man

Ny=Fle. (1)
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Die Avogadro-Konstante ist das Hauptbindeglied zwischen mikroskopischen
und makroskopischen GréBen. Daher lassen sich bei Kenntnis von N,
weitere Fundamentalkonstanten berechnen:

a) Die Protonenmasse m, erhilt man aus der Masse eines Mols Wasser-
stoff, die sich durch Wégung bestimmen 148t (vgl. Abschn. M. 2.0).

Da M(H,)/N, gleich der Masse von zwei Wasserstoffatomen ist, wird

1 MH,)
mp =5 N, = M. (2)

Dabei liefert die Elektronenmasse m, nur eine geringe Korrektur. Analog
ergibt sich die Neutronenmasse m, aus der Wagung von Deuterium.
b) Die Boltzmann-Konstante k ergibt sich aus der molaren Gaskonstanten
R, esist
R

-5 (3)

Die Gaskonstante R 1i8t sich messen, indem man durch eine genau meB-
bare Strommenge eine bestimmte Menge eines Gases durch Elektrolyse
abscheidet und dessen ZustandsgréSen Druck, Volumen und Temperatur
miBt.

k 14Bt sich auch unmittelbar aus Schwankungserscheinungen (z. B. aus
der Brownschen Bewegung in einem Millikan-Kondensator, vgl. O. 6.1) er-
mitteln.

2. Die Elektronenmasse m, bestimmt man aus der Ablenkung von Elek-
tronenstrahlen im magnetischen Feld (Versuch O. 6.2). Es ergibt sich pri-
mar die spezifische Ladung e/m,, aus der man m, berechnen kann, wenn e be-
kannt ist.

In dhnlicher Weise bestimmt man in Massenspektrometern die spezifische Ladung
und damit die Atommasse von Einzelteilchen, wihrend man mit den chemischen Me-
thoden der Molekulargewichtsbestimmung nur Mittelwerte iiber sehr viele Teilchen
und iiber verschiedene Isotope erhilt.

3. Das Plancksche Wirkungsquantum h kann man auf verschiedene Weise
messen. Alle Methoden beruhen auf dem quantenhaften Charakter der
Wechselwirkung zwischen Licht und Materie.

Theoretisch am einfachsten zu tiberblicken ist die Bestimmung von k/e
aus der Einsteinschen Gleichung des Photoeffektes (Versuch O. 5.1). Wih-
rend dieser Methode die Umwandlung der Energie eines Lichtquants in
kinetische Energie eines Elektrons zugrunde liegt, stellt der Franck-Hertz-
Versuch (Versuch O. 6.3) in einem gewissen Sinne die Umkehrung dazu dar:
Die kinetische Energie von Elektronen wird bei unelastischen Zusammen-
stoBen mit Atomen in die Energie eines Lichtquants umgewandelt. Dieser
Versuch 1aBt sich zu einer MeBmethode fiir #/e ausbauen, wenn man neben
den Anregungspotentialen noch die Frequenz des emittierten Lichtes mif3t.
Als weitere MeBmethoden fiir 2 werden in Versuch O. 6.4 die Berechnung
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von h aus der Rydberg-Konstanten des Wasserstoffatoms und in Versuch
0. 5.3 die Messung des Verhaltnisses von Planckscher zu Boltzmannscher
Konstanten A/k aus dem Planckschen Strahlungsgesetz beschrieben (letzte-
ren kann man auch als MeBmethode fiir ¥ auffassen, wenn man A als ander-
weitig gemessen voraussetzt). '

0. 6.1. Elementarladung nach Millikan

Awufgabe: Die Elementarladung e ist zu ermitteln.

Kleine Fliissigkeitstropfchen sind stets geladen. IThre Ladung ist notwen-
digerweise ein ganzzahliges Vielfaches der Elementarladung. Befindet sich
ein geladenes Tropfchen in einem vertikal gerichteten elektrischen Feld,
so wirken folgende Krafte:

1. die Differenz zwischen Schwerkraft ¥, und Auftrieb F, :

4
Fy—F =—3—‘7’3'(9"9L)‘g;

2. die Reibungskraft F, = 6c-9 - v - 7 (vgl. Versuch M. 7.1);

3. die elektrische Kraft F, = 4¢ - E je nach Richtung des Feldes (positives
Vorzeichen bedeutet Feldstérke in Richtung der Schwerkraft).

Dabei ist  der Radius, ¢ die Ladung und o die Dichte des Trépfchens,
o1, die Dichte der Luft, 7 der Koeffizient der inneren Reibung der Luft und £
die Feldstarke.

Bereits nach kurzer Zeit bewegt sich das Tropfchen gleichformig mit der
Geschwindigkeit v (vgl. die analogen Verhiltnisse in Versuch M. 7.1). Sind
elektrisches Feld und Schwerkraft gleichgerichtet, so ergibt sich daher

Fre-e)g—bue g B=0, (4a)
sind sie entgegengerichtet, so erhilt man

e~ g —6myr. —q-E 0. (4b)
Ohne elektrisches Feld erhilt man die Fallgeschwindigkeit v, aus

%TS(Q_QL)Q—%’V%:O- (4¢)

Durch Bildung der Summe von (4a) und (4b) erhilt man

8r
—3—r3(9 — QL) g =6myr(v, +v_), (4d)
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woraus sich der unbekannte Trépfchenradius ergibt:

3 1/n(vy +v)
r=—|| . 5
2 V g(e —eu) ®
Bildet man die Differenz von (4a) und (4b), so folgt
6yr (v, — v) V 7’ 1 —
== =9 |/ ——— . - +o ) (v, —v). 6
q 7 7e—a) 7V o) 0 —v) 6)

Bei der Berechnung von ¢ nach Gl. (6) muB8 man beriicksichtigen, da bei
Tropfchen, die in ihrer GroBe mit der mittleren freien Weglinge 4 der Gas-
molekiile vergleichbar sind, # keine Konstante ist, sondern vom Trépfchen-
radius abhingt. Nach Cunningham ist

= "o - )
1+ 0,637

wobei 7, der bei grofem Durchmesser gemessene Koeffizient der inneren
Reibung ist.
Versuchsausfihrung

Zur Messung wird in einen seitlich beleuchteten Kondensator (vgl.
Abb. 197) Zigarettenrauch geblasen, der teilweise aus geladenen Teilchen
besteht, um die sich Wasserdampf kondensiert hat. Die Tropfchen beob-

Up
——— -

Kondensator  Folwender

Gesichisreid

Abb. 197, Zur Messung der Elementarladung nach Millikan

achtet man mit einem Mikroskop mit geeichter Okularskale; die optische
Achse des Mikroskops steht dabei senkrecht zum elektrischen Feld und zum
einfallenden Licht (Dunkelfeldbeleuchtung, die Tropfchen erscheinen hell
auf dunklem Grund). Man faBt nun ein bestimmtes Troépfchen ins Auge,
schaltet das elektrische Feld ein und bestimmt mit einer Stoppuhr die Zeit,
in der es eine bestimmte Anzahl von Marken der geeichten Okularskale
passiert. Noch ehe das Trépfchen das Gesichtsfeld verldBt, polt man das
Feld um und miBt in gleicher Weise bei entgegengesetzter Feldrichtung.
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AnschlieBend bestimmt man noch die Geschwindigkeit v, des freien Falls
ohne elektrisches Feld.

Zur Auswertung iiberpriift man zunichst, ob die aus den Gin. (4¢) und
(4d) folgende Beziehung

2.9y =10, +v_ (4e)

innerhalb der Fehlergrenzen der Geschwindigkeitsmessung erfiillt ist. Ist
das nicht der Fall, so sind die MeBwerte infolge von Umladungen des Tropf-
chens wahrend der Messung verfilscht und deshalb unbrauchbar. Ist Gl. (4e)
erfiillt, so berechnet man zunichst nach Gl. (5) den Tropfchenradius #, man
benutzt hierfiir ndherungsweise 7, = [1,835 - 10~5 — 4,9 10-8 (20 — #)] kg/
m - s [¢ ist der Zahlenwert (Celsiusskale) der Temperatur im Kondensator].
Mit Hilfe des so gewonnenen Naherungswertes fiir den Tropfchenradius be-
rechnet man nach Gl. (7) den fiir diesen Radius giiltigen 7-Wert (4 =
6. 10-8 m fiir Luft unter Normalbedingungen).

Die Feldstérke erhdlt man aus der angelegten Spannung U und dem Ab-
stand der Kondensatorplatten, fiir die Dichte der Tropfchen benutzt man
den Wert fiir Wasser.

Setzt man alles in Gl. (6) ein, so erhélt man gq.

Es sind méglichst viele Teilchen auszumessen, die Grofle der Elementar-
ladung erhélt man aus den g-Werten als groBten gemeinsamen Teiler.

Stromungserscheinungen, die z.B. durch Temperaturdifferenzen der
Kammerwinde verursacht sein konnen, fithren zu systematischen Fehlern.
Man schatze aus der leichter zu beobachtenden horizontalen Strémungs-
geschwindigkeit ab, wie groB der Fehler wird, wenn eine gleich groBe verti-
kale Stromungsgeschwindigkeit vorhanden wére.

0. 6.2. Spezifische Ladung des Elektrons

Aufgabe: Aus dem Kriimmungsradius eines Elektronenstrahls in einem
homogenen Magnetfeld ist die spezifische Ladung e/m, des Elek-
trons zu bestimmen.

Bewegt sich ein Elektron in einem magnetischen Feld B, so unterliegt es
dem Einflul der Lorentz-Kraft

F=ce-[v x B], 8
seine Bewegungsgleichung lautet daher
dv
me-ﬁ=e-[va]. ’ 9

Den Vektor » zerlegt man zweckmiBigerweise in eine Komponente v par-
allel zum Magnetfeld und in eine Komponente v, senkrecht zum Magnetfeld.
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Ein parallel zum Magnetfeld fliegendes Elektron wird nach Gl. (9) nicht
beeinflult, d. h., es ist v = const.

" Ein senkrecht zum Magnetfeld fliegendes Elektron unterliegt der Kraft
F =e¢.v,-B, (8a)

die senkrecht auf der Bewegungsrichtung steht. Es beschreibt daher einen
Kreis, dessen Radius sich aus dem Gleichgewicht zwischen Zentrifugalkraft
und Lorentzkraft ergibt:

1

2
T-me-vl—e-vl-B.

Man erhalt fiir den Radius

=g —L . (10)

Elektronenbahn
\ r

T S N T Y O I A
L I/?g%ife Leuchtschirm mif MaBstab

Abb. 198. Schema zur e/m.-Messung

Elektronen einheitlicher Geschwindigkeit erzeugt man, indem man die aus

einer Glithkathode austretenden Elektronen durch eine an die Anode an-

gelegte Spannung U, so beschleunigt, dal sie sich nach dem Durchgang

durch ein Loch in der Anode senkrecht zum Magnetfeld bewegen (Abb. 198).
Aus dem Energiesatz

¥ =e-U, (11)

folgt dann

vl=V2eUA (11a)
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bzw.

1/ 2m U, 1 12
,_]/ LAY (12)

Daraus erhilt man

—— . (13)

I I
R
R

Abb. 199. Helmholtz-Spulenpaar

Das Magnetfeld wird mit einem Helmholtz-Spulenpaar erzeugt (Abb. 199).
Dieses besteht aus zwei flachen Spulen mit dem Radius R, und je n Win-
dungen, die im Abstand R’ = R/2 parallel zueinander angeordnet sind und
vom gleichen Strom I durchflossen werden. Das in dem frei zugénglichen
Innenraum entstehende Magnetfeld ist weitgehend homogen und hat die
GroBe

= ﬂ . i -n. ‘ (14)

125 R

Die Bahn der Elektronen wird sichtbar gemacht, indem man die Mefirohre
nicht vollstindig evakuiert. Infolgedessen st6Bt ein Teil der Elektronen mit
den Restgasmolekiilen zusammen und regt sie zur Lichtaussendung an. Bei
einem Teil der ZusammenstoBe entstehen positive Ionen. Sie bleiben infolge
ihrer im Vergleich zu den Elektronen grofien Masse in der Néhe des Ent-
stehungsorts, d. h. auf der Elektronenbahn, und kompensieren durch ihre
Ladung die Raumladung des Elektronenstrahls. Durch diese ,,Raumla-
dungsfokussierung‘‘ entsteht ein enges Elektronenbiindel, ein sog. Faden-
strahl.

Versuchsausfiihrung

Nach geniigender Evakuierung der MeBrohre ist der Heizstrom der Ka-
thode allmihlich zu erhéhen, bis der Elektronenstrahl als Fadenstrahl oder
infolge seines Auftreffens auf einen Leuchtschirm sichtbar wird. Dabei ist
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die Arbeitsanweisung genau zu beachten, um die Zerstérung der Kathode
zu vermeiden! AnschlieBend miBt man bei verschiedenen Beschleunigungs-
spannungen U, und Magnetfeldstirken B den Radius 7.

r kann innerhalb der MeBréhre aus der Lage des Auftreffpunktes des Elek-
tronenstrahls auf einen mit MaBstab versehenen Leuchtschirm ermittelt
werden ; ist keine solche MeBmdgglichkeit vorgesehen, mul » von auBen durch
Anvisieren mit einem Fernrohr bestimmt werden, das senkrecht zu seiner
Sehlinie meBbar verschoben werden kann (Kathetometer).

Zur Auswertung bieten sich 2 Moglichkeiten an:

a) Trigt man bei konstantem U, den Radius 7 iiber 1/B auf, so ergibt sich
nach Gl. (12) eine Gerade mit der Steigung

= 15
Sl Ve/me H ( )
aus der '

efme=2.U,[S} (15a)
folgt.

b) Tréagt man bei konstantem B die GrofBe 72 iiber U, auf, so erhdlt man
nach Gl. (12) eine Gerade mit der Steigung

2m,
S2 = B .ee ’ (16)
aus der sich
e 2
e "B, (162)

ergibt.

Ursachen fiir systematische Fehler sind der EinfluB des Magnetfeldes der
Erde und die thermische Geschwindigkeit der Elektronen beim Austritt
aus der Kathode.

Der EinfluB des Erdfeldes 148t sich niherungsweise eliminieren, indem
man zunéchst bei einer Magnetfeldrichtung den Radius r, miBt, anschlie-
Bend durch Umpolen der Stromrichtung in den Helmholtz-Spulen die Rich-
tung von B umkehrt und den zugehérigen Radius r_ miBit; es ist dann

1
7'z~2—‘(”'++7'_.). (17)

Die Differenz |r, — r_| ist ein Maf} fiir die Stdrke des Erdfeldeinflusses.
Den EinfluB der thermischen Geschwindigkeit der Elektronen kann man
niherungsweise beriicksichtigen, indem man statt mit der Anodenspannung
U, mit der Spannung (7 Kathodentemperatur)

Uy = U, + kT2 (18)

27 Phys. Praktikum
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rechnet, d.h., man addiert die Hilfte der der mittleren thermischen Ge-

schwindigkeit in Austrittsrichtung v, = ]/kT /m, entsprechenden Spannung.
Dabei muB %¥7'/e < U, sein. Der EinfluB der relativistischen Massenverander-
lichkeit wird erst bei Spannungen oberhalb von 10 kV wichtig.

0. 6.3. Franck-Hertz-Versuch

Aufgabe: Das Anregungspotential von Quecksilberatomen ist durch Elek-
tronenstoB zu bestimmen und daraus das Verhéltnis h/e zu be-
rechnen.

Atome konnen sich nur in diskreten Energiezustdnden befinden (vgl. die
Rechnungen zum H-Atom, Vers. O. 6.4), sie kénnen daher nur bestimmte
Energiebetrige aufnehmen oder abgeben, die gerade der Energiedifferenz
zwischen zwei erlaubten Energieniveaus entsprechen. Der Nachweis fiir den
quantenhaften Charakter der Energieiibertragung wird durch den Elek-
tronenstoBversuch von Franck und Hertz erbracht.

Die fiir die Ausfithrung des Versuchs erforderliche Apparatur ist in Abb.
200 schematisch dargestellt. In einer mit Quecksilberdampf gefiillten Triode

Abb. 200. Schaltung zur
Messung des Anregungs-
potentials von Gasen

beschleunigt man die von der Kathode emittierten Elektronen durch eine
positive Gitterspannung U; zwischen Gitter und Anode liegt ein Brems-
potential U, von etwa 0,5 V.

MiBt man den Anodenstrom I, als Funktion der Beschleunigungsspan-
nung U, so erhélt man die in Abb. 201 schematisch dargestellte Kurve. Bei
niedriger Spannung steigt der Strom wie in einer Hochvakuumréhre mit
wachsender Spannung an, sinkt jedoch beim Erreichen einer bestimmten
Spannung plétzlich ab. Nach Durchlaufen dieser Spannung haben die Elek-
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tronen namlich geniigend Energie, um die Quecksilberatome anzuregen,
wahrend bei niedrigerer Energie die ZusammenstéBe véllig elastisch ver-
laufen. Bei der Anregung der Quecksilberatome verlieren die Elektronen
fast ihre gesamte Energie und kénnen daher nicht mehr gegen das Brems-
potential U, anlaufen. Weitere Minima in der Anodenstromkurve entstehen
infolge der Anregung von zwei oder mehr Atomen durch das gleiche Elektron.

Jolp4)
350

300
250 A
200

150 / /
00 Y
50 Abb. 201. MeBkurve beim
U,
\La—'l Franck-Hertz-Versuch

0 5 Ot %

Der Abstand aufeinanderfolgender Minima ist gleich dem Anregungs-
potential U, der Quecksilberatome ; infolge der Differenz der Austrittsarbei-
ten von Kathode und Anode kann jedoch das erste Minimum bei einer von
U, abweichenden Spannung liegen. Die angeregten Atome gehen unter
Lichtaussendung wieder in den Grundzustand iiber, die Energie der aus-
gestrahlten Lichtquanten ist dabei gleich e - U,. Man kann daher bei gleich-
zeitiger Bestimmung der Anregungsenergie ¢ - U, und der Energie & - » der
Lichtquanten die GroBe hje = U,/y ermitteln.

Versuchsausfiihrung

Um sich einen raschen Uberblick iiber die Abhingigkeit des Anodenstroms
von der Beschleunigungsspannung zu verschaffen, benutzt man die in
Abb. 202 angegebene Schaltung. An der Kathode der MeBrohre liegt jetzt
eine Sigezahnspannung, die man dem Kippgerit eines Oszillographen ent-
nimmt. Dadurch wird die Beschleunigungsspannung periodisch verdndert.

Der am Widerstand R entstehende Spannungsabfall ist proportional zum
Anodenstrom I,, benutzt man ihn nach entsprechender Verstirkung fiir
die Vertikalablenkung und die Sigezahnspannung fiir die Horizontal-
ablenkung der Oszillographenrshre, so erhilt man auf dem Leuchtschirm
die Kurve I, = f(U).

Man kann auf diese Weise bequem die giinstigsten Bedingungen fiir die
Messung von U, ermitteln. AuBer von der GroBe der Gegenspannung U, und
vom Kathodenstrom der MeBrohre héingt der Kurvenverlauf stark von der
mittleren freien Weglinge der Elektronen in der Rohre und damit vom
Dampfdruck des Quecksilbers ab, der sich durch Anderung der Temperatur

27+
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der Rohre regulieren 1aBt. Zu diesem Zwecke befindet sich diese in einem
kleinen Ofen, der elektrisch geheizt wird.

Nachdem man die optimalen MeBbedingungen ermittelt hat, nimmt man
mit der Schaltung von Abb. 200 den Verlauf der Kurve I, = f(U) punkt-
weise auf und bestimmt daraus das Anregungspotential.

Abb. 202. Schaltung zur oszillographischen Messung
des Anregungspotentials

Die bei der ElektronenstoBanregung von Quecksilber ausgestrahlte Reso-
nanzlinie liegt im ultravioletten Spektralbereich und 1Bt sich nur mit
einem Quarzspektrographen beobachten. Die fiir die Berechnung von /e
erforderliche Wellenlinge wird daher als bekannt vorausgesetzt, es ist
A = 257 nm.

0. 6.4. Rydberg-Konstante und Plancksches
Wirkungsquantum

Aufgabe: Die Rydberg-Konstante Ry fiir das Wasserstoffatom ist zu mes-
sen und daraus das Plancksche Wirkungsquantum A zu berech-
nen.

Das Spektrum des atomaren Wasserstoffs besteht im Sichtbaren aus einer
Reihe von Linien H,, H;, H, usw., deren Wellenzahlen # sich durch die
experimentell gefundene Beziehung

1 1
V=Rg- (> —— =3,4,5,... 1
4 H ( 4 mz) m 3’ ’ 5, ( 9)
beschreiben lassen (Balmer-Formel).
Eine theoretische Begriindung dieser Formel wurde von Bohr gegeben,
der damit die Grundlagen der Quantentheorie schuf.



0. 6.4. Rydberg-Konstante und Plancksches Wirkungsquantum 421

Nach der Bohrschen Theorie besteht das Wasserstoffatom aus einem posi-
tiv geladenen Kern (Proton) und einem Elektron, das sich auf einer Kreis-
bahn um diesen Kern bewegt. Es besteht Gleichgewicht zwischen Zentri-
fugalkraft und elektrischer Anziehungskraft (Coulomb-Kraft):

v? e?
me - (20)

Das erste Bohrsche Postulat verlangt, da8 fiir Elektronen nur Bahnen er-
laubt sind, auf denen der Drehimpuls ein ganzzahliges Vielfaches der
Grofle & = h/2r ist. Dies bedeutet

Mo -v-r=mn-h n=1,2,3..); (21)

n ist die sog. Hauptquantenzahl, die den,,Zustand‘‘ des Atoms charakteri-
siert.
Aus den GIn. (20) und (21) kann man den Bahnradius r und die Geschwin-
digkeit v berechnen, es ist
4t egh? - n?
N 22)
und
h k
v=mn- = . (23)
M MG
ay = 0,529 - 1078 em ist der Radius der kernnichsten Bahn (1. Bohrscher
Radius).
Auf der Bahn mit der Hauptquantenzahl » hat das Elektron die Energie

1 . €2
E’IA = Ekin + Epot = -?me v — 41‘:80’]‘
Setzt man r und v ein, so ergibt sich
h? 1 meet 1
= == - —, 24
By 2ma; n? 8eih2  n? (24)

Gl. (24) gibt die fiir das Elektron erlaubten Energiewerte an, die man in
Form eines Termschemas (Abb. 203) darstellt. E ist negativ, da das Elektron
gebunden ist und zu seiner Ablosung vom Kern Energie aufgewendet werden
mubB.

Geht das Elektron von einem Zustand hoher Energie (kernferne Bahn) in
einen Zustand niedriger Energie (kernnahe Bahn) iiber, so wird Energie frei,
die in Form von Licht ausgestrahlt wird. Die Frequenz des ausgestrahlten
Lichtes ist durch die Gleichung

h-v=AE=E, - E, (25)
gegeben (2. Bohrsches Postulat).
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In der Spektroskopie rechnet man statt mit der Frequenz meist mit der
Wellenzahl % = y/c = 1/A (v gibt die Zahl der Wellenléngen auf einer Strecke
von 1 cm an) und erhilt dann aus den Gln. (24) und (25)

~ mee4 1 _._1)-_ (_1__L) 26
V= 8&2hic (—1;5- me) R n?  m?)’ (26)
A Energie
o} . nfm
=727
—n=3
—n=2

Abb. 203. Termschema des Wasserstoffatoms.
1 eV =1,60-101°Ws ist diejenige Energie, die ein
Elektron beim Durchlaufen einer Spannungs-

~136eV differenz von 1 V gewinnt

T

n=1

Ry ist die Rydbergkonstante fir unbewegten (unendlich schweren) Kern.
Beriicksichtigt man die Mitbewegung des Kerns, so erhélt man fiir Wasser-
stoff

. 1 1
b= B (=) | (262)
mit
-1 4
Ry = Ry, (1 + ﬁ) - ef 27)
Mmy

82 h3c (1 + ﬁ)
m

D

Betrachtet man alle Ubergiinge, die zum gleichen Endzustand n fithren, so
ist » konstant, und man erhélt eine Serie von Spektrallinien. Insbesondere
erhilt man fiir n = 2 und m = 3 die Balmer-Formel (19).

Versuchsausfiihrung

Mit einem Gitter- oder Prismenspektrometer (Versuch O. 2.3 bzw. O. 3.2)
bestimmt man die Wellenlingen der Balmerlinien H, (m = 3), Hy (m = 4)
und H, (m = 5). Als Lichtquelle ist dazu eine wasserstoffgefiillte GeiBler-
rohre zu verwenden. Man beobachtet dabei eine Vielzahl von Linien, die
vom molekularen Wasserstoff herriihren, die Balmerlinien unterscheiden
sich davon durch gréBere Intensitét.
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Aus jeder der gemessenen Linien berechnet man nach Gl. (19) Ry, bildet
den Mittelwert und berechnet daraus das Plancksche Wirkungsquantum,
indem man Gl. (27) nach % auflést.

O.7.- RADIOMETRIE

'

0.7.0. Allgemeine Grundlagen

Unter Radiometrie wollen wir den Nachweis und die Analyse der primi-
ren Korpuskular- und Quantenstrahlung beim Atomkernzerfall sowie die
mit der Rontgendosimetrie verbundenen meBtechnischen Aufgaben ver-
stehen.

0.7.0.1. Wechselwirkung von Strahlung und Stoff

Bei der Wechselwirkung dieser Strahlungen mit Stoffen werden physi-
kalische, chemische und biologische Verdnderungen beobachtet, die von
der Strahlenart und vom bestrahlten Stoff abhéngen. Hier interessieren
solche priméren und sekundéren Prozesse, die in radiometrischen Detek-
toren ausgenutzt werden, und der biologische Einflul der Strahlen insofern,
als er zu erheblichen irreversiblen Schadigungen biologischer Objekte fiihren
kann.

Deshalb miissen beim Umgang mit derartigen Strahlungsquellen die je-
weiligen Strahlenschutzvorschriften streng beachtet werden. Die im Prakti-
kum verwendeten Quellen unterliegen entweder wegen ihrer geringfiigigen
Strahlung keinen besonderen Bestimmungen oder sind so abgeschirmt und
nicht direkt zuginglich, daB sie keine Gefahr bilden, wenn die Arbeits-
vorschriften exakt eingehalten werden.

Die Partikeln der a-Straklung sind jHe-Kerne mit diskretem Energie-
spektrum bei einer vom jeweiligen Radionuklid abhingenden Energie zwi-
schen 2 und 10,5 MeV. Sie werden bereits von diinnen Metall- und Kunst-
stoffolien vollstandig absorbiert.

Die Bt-(Positronen-) und f--(Elektronen-) Strahlungen besitzen konti-
nuierliche Energiespektren mit einer von der Strahlungsquelle abhdngenden
Maximalenergie zwischen 18 keV und 5 MeV. Der §-Zerfall ist aus Griinden
der Energie- und Impulserhaltung stets von einer Neutrinoemission be-
gleitet. Die B-Strahlung ist in der Lage, diinne Folien (bis zum mm-Bereich)
zu durchdringen.

Die y-Strahlung ist eine elektromagnetische Wellenstrahlung (Quanten-
oder Photonenstrahlung), die nur in Verbindung mit einem a- oder §-Zer-
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fall auftritt. Sie besitzt als Folge angeregter Kernniveaus eine diskrete, vom
jeweiligen Radionuklid abhéngende Energieverteilung im Bereich von
0,1 bis 3 MeV und durchdringt unter Umsténden noch einige Dezimeter
dicke Stoffe. :

Rontgenstrahlung ist der y-Strahlung wesensgleich, ihre Photonen sind je-
doch energiedrmer. Sie entsteht bei Ubergingen der Hiillelektronen zwi-
schen kernnahen Energieniveaus entweder als Folge einer Kernreaktion
(K-Einfang) oder durch Beschul} der Stoffe mit Elektronen-, Tonen- und
Quantenstrahlungen entsprechender Energie. Diese fiir den emittierenden
Stoff ,,charakteristische’’ Rontgenstrahlung besitzt ein diskretes Energie-
spektrum im Gegensatz zur sogenannten ,,Bremsstrahlung® (vgl. Abschn.
0.7.3).

Im Ergebnis einer elektrostatischen Wechselwirkung mit der Elektronen-
hiille von Atomen gasférmiger, fliissiger oder fester Stoffe werden die zuvor
genannten Strahlungen gestreut und (oder) absorbiert. KernstéfBe oder
Kernreaktionen sind unter gewshnlichen Bedingungen selten.

Bei der Wechselwirkung mit Stoffen zerlegen die «- und §-Strahlen die
von ihnen getroffenen Atome in ein Ladungstrigerpaar aus positivem Ion
und Elektron (direkte Ionisation). In Stoffen mit molekularem Aufbau wer-
den auch negative Ionen beobachtet. Durch jeden Stof erleiden die Parti-
keln der Strahlung einen Energieverlust von gréBenordnungsméaBig 10 eV,
so daB bis zur Abbremsung auf thermische Energien eine groBe Anzahl von
StéBen erforderlich ist. Die Zahl der Ladungstrigerpaare ist der Partikel-
energie proportional und ermgglicht daher eine Energiebestimmung.

Die Quanten der elektromagnetischen Strahlung geben bei der Wechsel-
wirkung mit Stoffen ihre gesamte Energie oder einen erheblichen Teil davon
auf einmal ab. Da diese Wechselwirkungsprozesse im Vergleich zu den «-
oder f§-StoBen weniger wahrscheinlich sind (kleinerer ,,Wirkungsquer-
schnitt*), sind - und Réntgenstrahlen durchdringungsfihiger als Teilchen-
strahlen. Bei der Wechselwirkung der Quanten mit Stoffen entstehen erst
geladene Teilchen, die ihrerseits Ionenpaare erzeugen und so beispiels-
weise den Nachweis der y-Quanten erméglichen (indirekte Ionisation).

Bei y-Strahlen werden drei Prozesse beobachtet:

Photoeffekt: Ein Quant (Photon) wird vollstdndig absorbiert und befreit
ein Elektron, das die um die Ablésearbeit verminderte, aber dennoch groBe
Energie des Photons besitzt. Der Wirkungsquerschnitt des y-Quants ist
dabei o0 ~ Z* (Z Kernladungszahl des Absorbers).

Compton-Effekt: Ein y-Quant tibertragt beim StoB3 einen Teil seiner Ener-
gie an ein quasifreies Elektron. Dabei stellen sich eine typische, vom Streu-
winkel abhéngende Verteilung der Elektronen- und Photonenenergie und
eine entsprechende richtungsabhingige Anderung der Wellenléinge der elek-
tromagnetischen Strahlung ein. Der Wirkungsquerschnitt bei der Compton-
Streuung ist ¢ ~ Z.

Paarbildung: Bei einer Quantenenergie E, = kv > 1,02 MeV (& Planck-
sches Wirkungsquantum, » Frequenz der Strahlung) kénnen Elektron-Posi-
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tron-Paare erzeugt werden, die ihrerseits ihre Umgebung ionisieren und da-
durch ihre kinetische Energie verlieren. Das Positron zerstrahlt zusammen
mit einem Elektron und bildet dabei zwei y-Quanten zu je 0,5 MeV, die
einen Photoeffekt auslosen kénnen. Der Wirkungsquerschnitt bei der Paar-
bildung ist o ~ Z2%. Radioaktive Strahlen konnen auBerdem Hiillelektronen
bestimmter Stoffe anregen und strahlende Ubergéinge erzeugen (Lumines-
Zenz).

0. 7.0.2. Strahlungsdetektoren

In radiometrischen Detektoren wird die Energie der Strahlung durch die
zuvor behandelten Wechselwirkungen mit dem Detektormedium in Signale
umgewandelt, die es ermoglichen, Partikeln und Photonen zu zéhlen, ihre
Energie und die Energieverteilung zu bestimmen, die Partikelspuren und
die raumliche Verteilung der Bahnen aufzunehmen sowie die Intensitit der
Strahlung zu messen.

In der folgenden Tabelle sind in der Labor- und BetriebsmeBtechnik ge-
brauchliche Detektoren und charakteristische Parameter aufgefiihrt, die
ihre Einsatzgebiete vorwiegend bestimmen.

Eigenschaften von Detektoren

Typ Detektor-  Raum- Energie- Totzeit Arbeits- Nachweis-
medium auf-  auf- geschwin-  bare

l6sung 16sung digkeit Strahlen-
mm % ] Ereignisse/s art

Ionisations-  gasférmig - - - - a B,y

kammer

Proportional- gasformig 1...101...10 10°¢ ~10° a, f

zdhlrohr

Auslose- gasformig  1...10 - 107%...107% =~10° a, B,y

zdhlrohr

Halbleiter- fest 1...2 02...0,3 - =108 o, B,y

detektor

Szintil- gasformig >10 5...10 - ~108 o, (B), ¥

lations- fliissig

zdhler fest

Nebel- gasf. + H,0 1 >10 a, f

kammer

Zihlrohr und Ionisationskammer sind mit einem Zylinderkondensator zu
vergleichen, dessen Dielektrikum vom Detektorgas gebildet wird und an
dem eine Spannung (kV-Bereich) liegt. Der Gasdruck ist so bemessen, daB
die mittlere freie Weglinge der Gasmolekeln klein gegeniiber den Abmessun-
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gen des Detektors ist. Eine in das Detektorvolumen eindringende Strahlung
ionisiert das Gas, die positiven Ionen und Elektronen wandern infolge der
elektrischen Feldkraft in entgegengesetzte Richtungen zu den Elektroden
entsprechenden Vorzeichens. Unterwegs rekombiniert ein Teil der Ladungs-
paare. Bei geniigend hoher Spannung ist dies kaum noch mdéglich, so daB
sich ein Sattigungsstrom I im Detektor einstellt, dessen Gr6Be der Zahl der
Ionenpaare proportional ist. Unter solchen Bedingungen arbeitet eine
Tonisationskammer vorwiegend (vgl. Abb. 204). Der Ionisationsstrom wird

Tonisations- | Zihlrohr !
kammer i | I
I
i
& |unge : gesattigt { Pmporﬁana/‘—_Aus/ise-
S |sdttigt i bereich
S0 1
< | 1
S | | { |
S Py o | |
E s i : I
g, g | , } Abb. 204.
S | | ! | Arbeitsbereiche von
! I } ! Gas-Ionisationsdetektoren
| I I I (schematisch)
Detektorspannung U

entweder iiber einen Gleichstromverstirker (vgl. Abschn. E. 2.1) gemessen
oder mit einem empfindlichen Elektrometer (vgl. Abschn. E. 1.4), das durch
ihn entweder aufgeladen (Auflademethode) oder entladen (Entlademethode)
wird (Abb. 205).

Die Ionisation des ,,Zihlgases‘‘ und der Strom I in der Ionisationskam-
mer sind der Intensitdt I* (Dimension: Leistung/Flache) der einfallenden
Strahlung bzw. auch der Aktivitit 4 der Strahlungsquelle (angegeben in
Zerfillen/Zeit) direkt und der Auf- bzw. Entladezeit At des Elektrometers
umgekehrt proportional:

) _
~ *N ~ ———
I~I*~ A4 A7 (1)

Abb. 205. Schaltung von Ionisationskammer Iy und Elektrometer £
(vgl. Abb. 87)

a) Auflademethode; b) Entlademethode
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Eine Erhéhung der Spannung der Ionisationskammer iiber den Sattigungs-
bereich hinaus (vgl. Abb. 204) fiihrt zu einer ,,Gasverstirkung®, indem die
primér erzeugten Elektronen zwischen zwei Zusammensto8en so viel kine-
tische Energie gewinnen, daf3 sie ihre StoBpartner ionisieren (Stofionisation).
In einem gewissen Spannungsbereich ist die Anzahl der sekundir durch

N
i | Arbeitsbereich o
B0 & . S
- 3 Linge des Plateaus T
= I
%o 5 3
i~}
- &S Q
201 §' 100V, Arbeitspunkt
~ o]
100} S,é
L ( 0V ST
80| 5
60 | | U
1000 100 1200 1300 ¥

Abb. 206. Zahlrohrcharakteristik N = f(U),
N: Impulsrate [vgl. Gl. (5)]; U: Zahlrohrspannung

StoB erzeugten Ionen der Anzahl der Primédrionen proportional. In diesem
Bereich arbeiten die Proportionalzihlrohre (und gasgefiillte Photozellen,
vgl. 0. 5.1). Wird eine fiir jede Anordnung und Gasfiillung charakteristische
Spannung, die Geiger-Schwelle (Abb. 206), iiberschritten, wéichst die Zahl
der Tonen unabhingig von der Grofle der priméren Ionisation lawinenartig.
Dadurch wird in der Schaltung von Abb. 207 der Kondensator C auf-

1
A

Abb. 207. Prinzipschaltung eines Zahlrohres,
K : Zshlrohrmantel, als Kathode geschaltet; 4: Zahldraht, als Anode
geschaltet; IZ: Impulszéhler
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geladen, die Ladung aber iiber den Widerstand R abgeleitet. Durch diesen
Strom sinkt die Klemmenspannung U unter den Wert der Geiger-Schwelle,
wodurch die Entladung geloscht wird und ein zeitlich begrenzter Impuls
entsteht (Auslose- oder Geiger- Miiller-Zihlrohr).

Das Loschen kann statt durch einen hohen Widerstand R auch durch den
Zusatz eines ,,Loschgases” (z. B. von Alkoholen) erreicht werden, dessen
Molekiile die Energie der Ionen lediglich als Rotations- und Schwingungs-
energie iibernehmen und dadurch Dauerentladungen verhindern (selbst-
loschendes Zihlrohr).

Eine weitere Steigerung der Spannung bewirkt eine die Zahlrohre gefahr-
dende Dauerentladung.

Die Ladungsmenge, die durch ein Primaérereignis in einem Proportional-
Zihlrohr erzeugt wird, ist durch Art und Energie des auslésenden Teilchens
bestimmt. Mit Proportionalzihlrohren werden daher Energieverteilungen
mit akzeptablem Auflésungsvermégen aufgenommen.

Beim Ausldsezihlrohr bestimmen die Betriebsspannung und die Zahlrohr-
geometrie die Ladungsmenge. Es dient daher der Impulszédhlung.

y-Quanten lassen sich im Prinzip nach Abschn. O. 7.0.1 durch Detektor-
medien von hoher Ordnungszahl und gréBerer Dichte besser nachweisen.
Dem kommen Halbleiterdetektoren (Si, Ge) entgegen, die eine Art Festkorper-
ionisationszahler kleinen Zihlvolumens — und das ist ihr Nachteil — dar-
stellen. Ein pn-Ubergang ist in Sperrichtung geschaltet (die Spannung be-
trigt groBenordnungsmaBig 50 V). Dadurch bildet sich im pn-Ubergangs-
gebiet eine an Ladungstragern verarmte Zone aus, die das empfindliche
Detektorvolumen darstellt. Eine ionisierende Strahlung erzeugt auf ihrem
Wege durch die ,,Zdhldiode* Elektronen-Defektelektronen-Paare, die im
p- und n-Gebiet rekombinieren, in der Grenzschicht getrennt werden und so
einen Stromimpuls erzeugen. Seine Hohe ist der Energie der ionisierenden
Strahlen proportional. Das Energieauflésungsvermégen dieser Detektoren
ist ausgezeichnet. Sie erfordern nur etwa 3 eV Ionisationsenergie/Ionen-
paar, besitzen aber eine so grofie Eigenleistung, daB sie bei tiefen Tempera-
turen betrieben werden.

s P 0 0 5, 6 A
v v v v #
v e v 74
N 4 s 2 s ]\
m “
v 7 P R

P A

Abb. 208. Szintillationszihler,

8: Szintillatorkristall; PK: Photokathode; SEV: Sekundirelektronen-
vervielfacher; D,, ..., D;: Dynoden; 4: Anode;
R,, ..., R4: Spannungsteiler
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Abb. 208 zeigt den prinzipiellen Aufbau eines Szintillationszihlers. Die
ionisierende Strahlung erzeugt in einem Gas, einer Fliissigkeit oder — wie
‘hier vorausgesetzt — in einem Festkorperl) Szintillationen (Lichtblitze), die
in der Photokathode eines angekoppelten Sekundéirelektronenvervielfachers
(SEV) Elektronen auslésen. Der Elektronenstrom wird in dem mehrstufigen
Dynodensystem verstérkt (vgl. Abschn. O. 5.2 und Abb. 193). Die Anord-
nung erméglicht je nach Betriebsbedingungen Teilchenzahlungen oder
Energiemessungen.

Nebelkammern dienen zur Sichtbarmachung der Bahnen hochenergeti-
scher geladener Teilchen. Man nutzt dabei aus, daB die von den Teilchen
erzeugten Ionen als Kondensationskerne bei der Bildung von Nebeltropf-
chen aus iibersittigten Diampfen dienen kénnen. Die Ubersittigung kann
durch adiabatische Expansion ( Wilsonkammer) oder durch Diffusion erzeugt
werden.

Abb. 209 zeigt das Schema einer Diffusionsnebelkammer. Sie besteht aus
dem gekiihlten Kammerboden, den Wéinden mit dem Beleuchtungsfenster,

Beobachtungsfenster
4 \
c >§/§%ﬁaﬂz—
N Fidssiateilsbeh
Beleuchtung issigkeifsbehdlter
— nP
- empfindliche
= Schicht
‘ Kihimittel r

Abb. 209. Schema der Diffusionsnebelkammer

dem Deckel mit dem Beobachtungsfenster und einem Fliissigkeitsbehalter.
In dem Fliissigkeitsbehalter befindet sich eine leicht verdampfende Fliissig-
keit, z. B. Methanol, iiber der sich ein der Temperatur des Behilters ent-
sprechender Dampfdruck einstellt. Am gekiihlten Boden erfolgt die Konden-
sation des Dampfes, so daB3 oberhalb des Bodens der der Temperatur ent-
sprechende Gleichgewichtsdampfdruck sehr klein ist.

Infolge des so erzeugten Konzentrationsgefilles diffundiert Dampf vom
Flussigkeitsbehélter zum Boden, so daB dicht oberhalb des Bodens der
durch Diffusion erzeugte Dampfdruck groBer als der Gleichgewichtsdampf-
druck ist. In dieser sog. empfindlichen Schicht dicht tiber dem Kammer-

1) Als Festkorperszintillatoren dienen beispielsweise mit Thallium (<1%) aktivierte
NaJ-Kristalle, ein fliissiger Szintillator enthalt beispielsweise p-Terphenyl.
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boden tritt daher Uberséttigung ein, wenn infolge des Fehlens von Konden-
sationskernen keine Trépfchenbildung stattfinden kann.

Dieser Zustand wird einige Zeit nach der Fiillung der Kammer mit Alko-
hol erreicht, da die urspriinglich vorhandenen Kondensationskerne zusam-
men mit den an ihnen gebildeten Alkoholtrépfchen zu Boden sinken. Nach
der ,,Selbstreinigung** der Kammer bilden sich Trépfchen nur noch an neu-
gebildeten Kondensationskernen. Als solche wirken die durch Kernstrah-
lung gebildeten Ionen.

0.7.0.3. Gesetz des radioaktiven Zerfalls

Der radioaktive Zerfall eines Nuklids ist ein stochastischer ProzeB. Ein
statistisches, fiir jedes Nuklid charakteristisches Maf3 der Radioaktivitét
ist die Zeit, in der sich jeweils die Halfte der anfangs (f = 0) vorhandenen
Anzahl N§ der Nuklide einer Sorte umgewandelt hat (Halbwertszeit T).
Demnach sind zur Zeit ¢ nur noch

N* = N¥ e 2)

Ausgangskerne vorhanden. In diesem Zerfallsgesetz stellt A die Zerfalls-
konstante dar. Je groBer sie ist, um so kleiner ist die Halbwertszeit 7' und um
so mehr Umwandlungen ereignen sich in einem Zeitintervall. Die Aktivitdt
ist als Anzahl der Zerfille je Zeit definiert:

div*
= —_—_—_  — AN*

Ihre Einheit ist das Becquerel (Bq) = 1 s71. Sie ist mit der inkohiirenten
Einheit Curie (Ci) iiber
1Ci _
1 Ba= 57w *

verbunden.
Nach der Halbwertszeit 7' hat die Aktivitit definitionsgemaB um die
Halfte abgenommen. Daher folgt

Ay 1 T
A, 2
und
_ In2 0,693

A

T ey (2b)




0. 7.1. Diffusionsnebelkammer 431

O.7.1. Diffusionsnebelkammer

Aufgabe: Die Energie einzelner von einem radioaktiven Priparat aus-
gesandter §-Strahlen ist zu bestimmen.

Bringt man ein schwach radioaktives Priparat, z. B. Urandioxid, in die
Kammer, so entstehen um die von den «- und g-Teilchen gebildeten Ionen
Tropfchen, die bei seitlicher Beleuchtung sichtbar werden und die Bahn der
Teilchen markieren. «- und §-Teilchen sind leicht zu unterscheiden, da a-
Teilchen infolge ihres starken Ionisationsvermogens sehr kriftige Spuren
bilden.

Um die Energie der g-Teilchen zu bestimmen, bringt man die Nebel-
kammer in ein Magnetfeld B, dessen Kraftlinien senkrecht zum Kammer-
boden und damit auch senkrecht zur empfindlichen Schicht verlaufen.
Unter dem Einflul der Lorentz-Kraft [vgl. Gl. (E. 4.-7a, b)]

F=e¢:[v x B]

beschreiben die §-Teilchen, die senkrecht zum Magnetfeld emittiert werden,
Kreisbahnen, aus deren Kriimmung man die Energie ermitteln kann. Teil-
chen, die nicht senkrecht zum Magnetfeld emittiert werden, verlaufen nur
ein sehr kurzes Stiick innerhalb der empfindlichen Schicht und entziehen sich
dadurch der Beobachtung.

Es liegen hier analoge Verhéiltnisse wie bei der e/m,-Bestimmung von
Elektronen vor (vgl. Vers. 0. 6.2); infolge der hohen Energie der §-Teilchen
muB jedoch die relativistische Massenverdnderlichkeit des Elektrons be-
riicksichtigt werden.

Auch bei relativistischer Rechnung bleibt Gl. (0. 6.-10) erhalten, es ist

m-v=p=e-B-r. (3)
Der Energiesatz muf in seiner relativistischen Form geschrieben werden:
E*=E}+ p?-c?, (4a)

wobei Ey = m, - c¢® die der Ruhemasse m, entsprechende Ruheenergie des
Elektrons ist.
Fir die kinetische Energie der §-Teilchen erhalt man

By = B — By = | E§ + p%* — E,. (4D)

Versuchsausfiihrung

Nach dem Einbringen des radioaktiven Priparats wird der Fliissigkeits-
behalter gefiillt, die Kammer verschlossen und das Kiihimittel (Trocken-
eis) unter dem Kammerboden angebracht. Die Beleuchtung der empfind-
lichen Schicht geschieht mittels einer intensiven Lichtquelle (Bogenlampe
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oder Hg-Hochstdrucklampe) durch einen schmalen horizontalen Spalt.
Streulicht vom Kammerboden oder von den Winden ist zu vermeiden
(Winde schwérzen).

Die Beobachtung der Spuren geschieht durch den Deckel der Kammer.
Um die Bahnen auszumessen, werden sie mit einer lichtstarken Kamera
photographiert.

Vor dem Photographieren ist es zweckmaBig, den Selbstreinigungsprozef3
der Kammer durch Anlegen eines elektrischen Feldes zwischen Boden und
Deckel der Kammer zu beschleunigen, um die vor der Messung gebildeten
Ionen schnell zum Kammerboden zu treiben.

Das zur Energiebestimmung erforderliche Magnetfeld wird durch ein
Helmholtz-Spulenpaar (vgl. Vers. O. 6.2) erzeugt, dessen KraftfluBdichte B
iiber Gl. (0. 6.-14) berechnet wird. Um aus dem Kriimmungsradius " auf
dem Film den wahren Bahnradius r zu berechnen, muf3 der Vergroferungs-
faktor der photographischen Aufnahme bekannt sein. Man ermittelt ihn am
einfachsten, indem man einen Gegenstand bekannter GroBe, z. B. den
Praparattriager, mit photographiert. Aus Gl. (3) folgt p, und mit Gl. (4b)
wird die kinetische Energie der §-Strahlen berechnet.

0O.7.2. Messungen mit dem Geiger-Miiller-Zzhlrohr

Aufgaben: 1. Es ist die Charakteristik eines Geiger-Miiller-Zahlrohres auf-
zunehmen. Die Einsatz- und Arbeitsspannung sowie die Mindest-
plateauldnge und die Plateausteigung sind anzugeben.

2. Zur radiometrischen Kaliumbestimmung ist die Abgleich-
kurve eines Flussigkeitszédhlrohres aufzustellen.

Die MeBergebnisse von Partikelzihlungen werden als (zeitliche) Impuls-
dichte oder Zdhlrate N angegeben. DefinitionsgemaB ist dies die auf die Mef3-
zeit At bezogene Anzahl m der Impulse:

m
N AL (5)
Ihre Einheit ist min—1.

Der Nulleffekt N’ = m/[At’ ist die Zahlrate, die auch bei Abwesenheit des
MeBobjektes beobachtet wird. Er wird durch die Hohenstrahlung und die
natiirliche radioaktive Verseuchung der MeBanordnung und der Umgebung
verursacht und ist vom MeBergebnis abzuziehen.

In einem gewissen Bereich der Charakteristik (Abb. 206), dem Arbeits-
bereich oder Plateau, ist die Zéhlrate nahezu unabhéngig von der Spannung.
Die Plateauldnge soll bei guten Zahlrohren etwa 200 V betragen und die
Plateausteigung 5% nicht iitberschreiten. Die Steigung wird fiir den Arbeits-
punkt angegeben. Er liegt gewohnlich 100 V iiber der Geiger-Schwelle oder
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50 V iiber dem Anfang des Plateaus. Sind V die Impulsrate im Arbeitspunkt,
N, und N, die Impulsraten bei um 50 V geringerer und héherer Spannung,
so betragt die vereinbarungsgemiB auf 100V bezogene und daher in
% /100 V angegebene Steigung des Plateaus im Arbeitspunkt

N, - N

- 1,
8= 100. (6)

Die Empfindlichkeit der Stabzéhlrohre nimmt nach dem Ende zu ab (Feld-
verzerrungen, Abdiffundieren von Ladungen aus dem aktiven Volumen).
Ahnliche Erscheinungen treten auch in den Randpartien von Glockenzihl-
rohren auf. Die Langs- und Querempfindlichkeit der Zahlrohre lassen sich
durch Abtasten mit einem scharf ausgeblendeten Strahl nachweisen.

Fehlerquellen bet Zihlrohrmessungen sind :

a) Absorption der Strahlung im Praparat und im Zahlrohrmantel,

b) Riickstreuung der Strahlen am Priparattrager,

¢) Koinzidenzfehler: Ein Quant oder Teilchen kann mit einem anderen koinzidieren
oder in die durch den vorangegangenen Zihlvorgang verursachte ,,Totzeit* des Zahl-
rohres fallen,

d) Verteilungsfehler infolge zeitlich schwankender Intensitdt der Strahlung und des
,,Hintergrundes** (Nulleffekt).

Vertetlungsfehler
Die Grenzen, innerhalb derer der Mittelwert einer MeBireihe mit einer Wahrschein-
lichkeit von 68,26% anzunehmen ist, sind durch den mittleren Fehler
d=+])m=+)YN-t (7

festgelegt. Meist wird bei Zahlrohrmessungen der in Prozent angegebene mittlere
relative Fehler

100 % — & 100

Vm V¥t
benutzt. Bei kleiner Impulsdichte ist daher im Interesse eines moglichst kleinen Fehlers

die MeBzeit groB8 zu wihlen. Ist der relative Fehler des Nulleffektes d;ra und der des
Priparates o, gilt fiir den relativen Gesamtfehler

6,..31:!: %Zﬂ:

é -,’;OO % (8)

01,90 = & .l/é%rel + 02z %0. 9)

Fiir exakte Messungen sollte daher der Nulleffekt relativ klein und hinreichend bekannt
sein. .

Die Isotopenzusammensetzung des Kaliwms und seiner Verbindungen ist
konstant und unabhingig von Herkunft oder Darstellung. Das $$K-Isotop
tritt mit einem Anteil von 0,011 % auf. Es zerfillt unter §- und -Emission
nach den Reaktionsschemata

19K(—, ) 26Ca;  15K(e, y) 18Ar (K-Einfang). (10)

28a  Phys. Praktikum
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Fiir analytische Zwecke eignet sich vor allem die §-Strahlung mit einer
Reichweite in einem Kalium-Salz von einigen 1/10 mm. Fremdstoffzusitze
storen die K-Gehaltsbestimmung in feingepulvertem Material nicht, in
Fliissigkeiten nur, wenn durch den Zusatz die Dichte der Fliissigkeit merk-
lich gedndert wird. Der Gehalt ist der Impulsrate proportional.

Versuchsausfiihrung

Nach einem Vorversuch, bei dem wir uns mit der Arbeitsweise der MeB-
apparatur vertraut machen, legen wir nach Gl. (8) bzw. (9) den relativen
Fehler fest, der bei jeder Einzelmessung nicht tiberschritten werden soll
[Beachte: Die Fehler der Gln. (7) bis (9) beziehen sich auf die Impulszahl m].
Der Fehler sollte so bemessen werden, dal3 die MeBzeit je MeBpunkt trag-
bar ist. Es wird daher empfohlen, mit einer entsprechenden ,,Impulsvor-
wahl“ zu arbeiten und die zugehdrige MeBzeit zu stoppen.

Fir Aufgabe I benutzen wir einen Uranglaswiirfel als Praparat. Von der
Geiger-Schwelle an wird die Spannung am Zéhlrohr in Schritten von etwa
10 zu 10 V, im Bereich des Plateaus um jeweils 20 V verdndert und bei jeder
Spannung mehrmals die Impulsrate bestimmt. Dauerentladungen miissen
vermieden werden. Wir begniigen uns daher mit der Angabe der Mindest-
plateauldnge. Bei Aufgabe 2 gehen wir von einer bei Zimmertemperatur ge-
sattigten Losung bekannter Konzentration eines Kaliumsalzes aus, von der
wir eine Verdiinnungsreihe (etwa 5 Verdiinnungsgrade) herstellen. Der Null-
effekt wird bei dem mit destilliertem Wasser gefiillten, zuvor griindlich ge-
sduberten Fliissigkeitszahlrohr gemessen. Bei allen Messungen ist es von
einer Bleiabschirmkammer zu umgeben. Die Messungen beginnen wir mit
der Losung geringster Konzentration. In der Abgleichkurve (Zahlrate als
Funktion der Konzentration) werden die um den Nulleffekt verminderten
Impulsraten dargestellt.

0.7.3. Messungen mit der lonisationskammer

Aufgaben: 1. Die relative Intensitdt von Rontgenstrahlen ist
a) in Abhangigkeit von der Anodenspannung bei konstantem
Rohrenstrom, .
b) in Abhingigkeit vom Rohrenstrom bei konstanter Anoden-
spannung zu messen.
2. Schwichungskoeffizienten und Halbwertsdicken von Metall-
proben sind fiir Réntgen- und (oder) y-Strahlung zu bestimmen.

In Rontgenréhren werden die aus einer Gliihwendel austretenden Elek-
tronen (Ladung e) durch die zwischen Kathode und Anode (Antikathode)
wirkende Hochspannung U zur Anode hin beschleunigt. Dabei gewinnen
sie eine Energie £ = eU, die sie bestenfalls in einem Schritt beim Aufprall
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auf die Anode abgeben konnen. Fiir die kiirzeste Wellenlange 4, gilt daher

U = gy = h "

, 11
j'min ( )
Amax ist die maximale Frequenz, b das Plancksche Wirkungsquantum und ¢
die Lichtgeschwindigkeit.

Meist wird die Energie in mehreren Schritten abgegeben, so dal ein kon-
tinuierliches, das Bremsspektrum entsteht, aus dem im allgemeinen fiir das
betreffende Anodenmaterial charakteristische Linien (Linienspektrum)
herausragen. Diese beruhen auf diskreten Quanteniibergingen der Elek-
tronen der kernnahen Schalen im Anodenmaterial. Die Gesamtintensitat
der Strahlung einer Rohre ist der in der Zeiteinheit zur Anode gelangenden
Anzahl der Elektronen und damit dem Réohrenstrom I, proportional.
Dieser wird im allgemeinen unabhingig von der Hochspannung iiber die
Stromstarke im Kathodenheizkreis geregelt (Abb.210). Bei konstanter

— . |

il

4

'Abb. 210. Prinzipschaltung einer Rontgenanlage

Heizleistung wichst die Intensitdt der Strahlung etwa mit dem Quadrat
der Hochspannung. Diese wird iiber die Spannung auf der Primérseite
eines Hochspannungstransformators veridndert. Nach Gl. (11) wird dadurch
gleichzeitig die Strahlenqualitit (Verteilung der Energie auf die einzelnen
Wellenléingen) gedndert.

In ihren Anwendungen lassen sich Rontgenanlagen meist durch trans-
portable y-Strahlungsquellen ersetzen.

Beim Durchgang durch feste, fliissige und gasférmige Stoffe erleiden
y- und Rontgenstrahlen eine Schwdchung. Wenn I§ die Intensitit einer ein-
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fallenden (monochromatischen) Strahlung ist, wird nach dem Durchgang
durch eine Schicht der Dicke d die Intensitat

I* — It e wd (12)

festgestellt. u ist der material- und wellenlingenabhingige lineare Schwd-
chungskoeffizient, der sich additiv aus einem Absorptions- und einem Streu-
anteil zusammensetzt. In diese Anteile gehen der im Abschn. O. 7.0.1
diskutierte Photo-, der Compton-Effekt und eventuell auch die Paarbildung
ein. Das Schwichungsgesetz [Gl. (12)] gilt anndhernd auch fiir g-Strahlen.

Aus ihm folgt durch Logarithmieren eine Bestimmungsgleichung fiir den
linearen Schwichungskoeffizienten:

I*
und
1 I* 2,30, I*
=TT EE (14

Die EHinheit ist [u] = 1 em™'. Der Massenschwichungskoeffizient ufo eines
Stoffes (p ist seine Dichte) hat die Einheit cm?/g und ist im Gegensatz zum
linearen Schwéchungskoeffizienten vom chemischen und physikalischen Zu-
stand des Materials unabhéngig. Er gehort zu den Atomeigenschaften. Ver-
schiedene Modifikationen eines Stoffes (z. B. Graphit und Diamant) haben
gleiche Massenschwéchungskoeffizienten, aber verschiedene lineare Schwa-
chungskoeffizienten.

Unter der Halbwertsdicke d’ wird definitionsgemiB die Materialstirke ver-
standen, die die Intensitdt I* auf die Halfte herabsetzt. Dafiir erhalten wir
aus Gl. (12)

I f ¥ —ud!
I*=-2—=Ioe/‘d, : (15)
woraus
In 2
d = ne ﬂ (16)
1 K
folgt.
Versuchsausfihrung

Durch Bleiblenden wird ein annéhernd paralleles Rontgen- bzw. y-Strah-
lenbiindel ausgeblendet, das zur Vermeidung eines Photoeffektes weder die



0. 7.4. Aktivierungsanalyse 437

seitliche Wandung noch den Draht der Ionisationskammer trifft. Die Gren-
zen, innerhalb derer bei den Versuchen die Betriebsdaten gedndert werden
diirfen, entnehmen wir einer gesonderten Arbeitsvorschrift, die auch in den
iibrigen Teilen aus Griinden des Strahlenschutzes genau einzuhalten ist.
Je nach Schaltung der Ionisationskammer (Abb. 205) messen wir die bis zu
einem bestimmten Skalenwert verstrichene Auf- oder Entladezeit des
Elektrometers. Die relativen Intensitéten ermitteln wir nach der Bezie-
hung (1).

Ob sich die erwarteten Zusammenhénge ergeben, entnehmen wir fiir 4uf-
gabe 1a einer Darstellung der relativen Intensitit I iiber U2, fiir Aufgabe 1b
tragen wir I itber dem Rohrenstrom I, auf.

Bei der 4ufgabe 2 benutzen wir verschiedene Materialstirken und ermit-
teln den Schwichungskoeffizienten entweder aus der graphischen Darstel-
lung der Gl. (13b) (einfach-logarithmisches Papier) oder aus Gl. (14). Die
Halbwertsdicke ergibt sich aus Gl. (16).

0O.7.4. Aktivierungsanalyse

Aufgaben: 1. Halbwertszeit und Zerfallskonstante des §-Zerfalles von neu-
tronenaktiviertem, in Kaliumjodid gebundenem Jod-128 sind zu
ermitteln.

2. Die Konzentration des Silbers in einer silberhaltigen Probe soll
mittels Neutronenaktivierungsanalyse bestimmt werden.

Die Aktivierungsanalyse nutzt die kiinstliche Radioaktivitdt entspre-
chender Nuklide aus. Da sich die Radionuklide durch Art, Energie und
Halbwertszeit ihrer Strahlung unterscheiden, sind eine qualitative Analyse
und wegen der Proportionalitit von Aktivitdt und Nuklidkonzentration
auch eine quantitative Analyse moglich. Die Nachweisgrenzen liegen zwi-
schen 107 und 107° g und reichen bei einigen Elementen bis herunter zu
1071 und 101 g. Eine Aktivierungsanalyse setzt konstante Isotopenverhéalt-
nisse der Elemente und ihrer Verbindungen voraus.

Neutronenaktivierung: Die Aktivierung erfolgt bevorzugt im Neutronen-
strom, in dem Neutroneneinfangreaktionen ablaufen. Das sind solche, bei
denen ein Neutron in den Kern eindringt und kein anderes Teilchen mit
einer von Null verschiedenen Ruhmasse im Augenblick der Reaktion den
Kern verldt. Dabei tritt in Verbindung mit einem initiierten a- oder f-Zer-
fall regelmaBig p-Strahlung und gegebenenfalls eine Neutrinoemission auf,
so daB als allgemeine Reaktionsgleichung

47X (n, y)A“réX bzw. X +n - X+ ¥ (17)

folgt (X Nuklidsymbol, A* Massezahl, Z Kernladungszahl, n Neutron).

28b Phys. Praktikum
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Reaktionen und Daten unseres Versuchsmaterials sind :
1°7Ag(n, ) 147Ag - 125
Ag-107: Isotopenhéuﬁgkeit 51,35 %,
19A0(n,y) 9Ag _L) 11004
Ag-109: Isotopenhéufigkeit 48,65 %
HIn,y) W > HXe

Eine Probe mit N* Kernen des Nuklids 43X werde wihrend einer Be-
strahlungs- oder Aktivierungszeit ¢z einem Neutronenflul @ (angegeben in
Anzahl der Neutronen je Fliche und Zeit) ausgesetzt. Nach der Bestrah-
lung wird eine von den aktivierten Nukliden ausgehende Akfivitit [vgl.

Gl (2a)]
A(tg) = PoN* (1 — e~itz) (18)

beobachtet. Dabei sind ¢ der Wirkungsquerschnitt des Ausgangsnuklids fiir
Neutronen und A die Zerfallskonstante der aktivierten Kerne. Nach einer
unendlichen Aktivierungszeit (f5 — oo) wird nach Gl. (18) eine Sdttigungs-
aktivitdt

= PgN* (18a)

erwartet. Im Verlauf einer Bestrahlungszeit von tg; =57 (7 = Halb-
wertszeit) erreicht die Aktivitdt bereits 97 % des Endwertes A, .

Die Proben werden meist im Neutronenstrom von Kernreaktoren akti-
viert. Als kleine, im Prinzip transportable Neutronenguelle kann — wie hier
im Versuch — die historisch bedeutungsvolle Berylliumreaktion

9Be + 4o — 2C + n 4 5,76 MeV (19)

dienen, bei der Neutronen einer Energie bis zu 10 MeV entstehen. Beryllium
wird mit «-Strahlen beschossen, die beispielsweise aus dem Zerfall eines %9Pu-
Praparates (Halbwertszeit: 24 410a) stammen.

Bei der Aktivierung ist der Wirkungsquerschnitt ¢ der schnellen Neu-
tronen im Vergleich zu thermischen Neutronen (Energie: etwa 0,025 eV,

Abb. 211. Abbremsung schneller Neutronen
(schematisch)

@: Pu-Be-Neutronenquelle; M : Moderator
(Paraffin); n,: schnelles Neutron;

niy: thermisches Neutron
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entsprechend einer thermischen Geschwindigkeit von etwa 2200 ms=1) im
allgemeinen gering. Deshalb werden iiberthermische Neutronen durch Sto8
mit moglichst massegleichen Partikeln (z. B. mit H-Atomen in Paraffin)
zuniichst abgebremst (moderiert). Dies ist schematisch in Abb. 211 dar-
gestellt. Die Wirkungsquerschnitte der Nuklide unserer Proben sind fiir
diese abgebremsten thermischen bzw. epithermischen Neutronen: o,,_1q7
= 45b, 0,5 190 = 113b1).

Versuchsanordnung und Mefprinzip: Ein fiir Aktivierungsanalysen ge-
eigneter Mef3platz ist im Prinzip wie folgt aufgebaut (Abb. 212): Die Signale
eines Detektors D werden in einem Impulsverstirker IV geformt und ver-
stirkt. In weiteren Stufen (Z) werden die iiber dem Storpegel liegenden

m—[j-fw“—bw— 7 -
R

DSp Start-Stop A

= 1A z

Abb. 212. Blockschaltbild (vereinfacht) eines AktivitdtsmeBplatzes,

D: Detektor; DSp: Detektorspannung; IV: Impulsformer
und Impulsverstirker; 74 : Impulshohenanalysator; Z: Zahlwerk;
A : Anzeige/Registrierung

Signale gezdhlt und angezeigt (4) bzw. registriert. Eine Start/Stop-Ein-
richtung sorgt dafiir, daBl entweder die Zeit fiir eine wihlbare Zahl von
Impulsen gemessen wird (Impulsvorwahl) oder die wihrend einer vorher
bestimmten Zeitspanne anfallenden Impulse gezdhlt werden (Zeitvorwahl).
Die Energieverteilung wird mit einem Impulshéhenanalysator (I4) er-
mittelt. Die Impulse eines geeigneten Detektors (vgl. Abschn. O.7.0.2)
werden nach ihrer Hohe (Energie) sortiert und diejenigen in jeweils einen
»Kanal®“ eingespeist, die zu einem bestimmten Energieintervall gehéren.
Mit Einkanalanalysatoren werden nacheinander die zu einer bestimmten
Kanalbreite gehorenden Impulsraten ermittelt, wihrend Vielkanalanalysa-
toren (einige 102 bis einige 10% Kandle) das gesamte Energiespektrum gleich-
zeitig erfassen.

Im Versuch nutzen wir die §-Strahlung der aktivierten Stoffe aus und be-
schrinken uns auf eine Impulszihlung. Dabei wird ein Glockenzihlrohr
vom Geiger-Miiller-Typ verwendet, das in eine Bleikammer eingebaut ist.
Es besitzt ein diinnes Glimmerfenster; in dem die §-Strahlen nur maBige

1) 4b (Barn) =1.10"28m2 =1 . 10724 cm? ist eine Flidcheneinheit der Atom- und
Kernphysik.
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Energieverluste erleiden. Die so ermittelte Impulsrate ist wesentlich kleiner
als die Zerfallsrate des Praparates (vgl. Abb. 213), weil wir mit dem Zahl-
rohr nur einen Ausschnitt aus dem Strahlungsfeld erfassen (Geometrie-
faktor G). Weiterhin sind die Ansprechwahrscheinlichkeit ¢ des Detektors,

Abb. 213. Stirnfenster- oder Glockenzéahlrohr,
A: Anode; K: Kathode; GF: Glimmerfenster;
Z@: Zihlgas (100 Torr Argon); LG :Loschgas
(10 Torr Alkohol)

die Absorption 4" im Fenster, die Selbstabsorption § im Préparat und die
Riickstreuung R durch die Unterlage von EinfluB, die wir jeweils durch
einen Faktor { beriicksichtigen. Fiir die gemessene Impulsrate [vgl. Gl. (5)]
wird daher

N=cfyfsfrnGA (20)

gesetzt. A ist die §-Aktivitdt des Praparates. Da die Ansprechwahrschein-
lichkeit des Zahlrohres fiir die y-Begleitstrahlung nur etwa 1 % des 8-Wertes
betrigt, wird die y-Strahlung vernachléssigt. Aulerdem wird auf eine Tot-
zeitkorrektur des Zihlrohres verzichtet, der Nulleffekt ist in Gl. (20) nicht -
beriicksichtigt.

Um die verschiedenartigen Einfliisse der Gl. (20) zu eliminieren, wird eine
Relativbestimmung der g-Aktivitit vorgenommen: Wir vergleichen die
Impulsrate NV, des Préparates unbekannter Konzentration ¢, mit der Zahl-
rate Ng, eines unter gleichen Bedingungen aktivierten und vermessenen
Standardpriaparates bekannter Konzentration cg,. Mit ¢ ~ 4 und Gl. (20)
folgt
N, Cy

=—". 2
Ngy o5 @

Es wird vorausgesetzt, daf} die Praparate gleiche Flache und eine Dicke be-
sitzen, die gréBer als die ,,Sattigungsdicke* ist. Aus einem tiefer liegenden
Bereich dringen infolge Selbstabsorption keine Zerfallselektronen durch die
Oberfliche. Die Sattigungsdicke wird iiblicherweise als ,,Flachendichte** in
mg - cm~2 angegeben.
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Versuchsausfiihrung

In einem Vorversuch legen wir den Arbeitspunkt des Zahlrohres (Zahl-
rohrspannung) fest. Der Wert wird der Betriebsanleitung entnommen oder
experimentell ermittelt, indem die Geiger-Schwelle (vgl. Abb. 206) gesucht
oder die Zahlrohrcharakteristik aufgenommen wird. Im ersten Falle legen
wir den Arbeitspunkt 100V iiber die Geiger-Schwelle, im zweiten Falle in die
Mitte des Plateaus. Fiir diese Messungen steht ein 3-Praparat zur Verfiigung,
dessen Aktivitit sich iiber die MeBzeit praktisch nicht verdndert (groBe
Halbwertszeit!). Das Praparat darf nur von der Praktikumsaufsicht in die
Abschirmkammer eingefithrt und aus dieser entfernt werden! Dauerent-
ladungen zerstéren das Zahlrohr. Deshalb darf die Zahlrohrspannung nicht
iiber das Plateau hinaus erhoht werden. Weiterhin wird vor jedem Versuch
die Impulsrate N’ des Nulleffektes ermittelt. Bei Aufgabe 1 erfolgt diese
Messung wegen der 5-Aktivitit des 43K an einem nicht aktivierten KJ-Pré-
parat, bei Aufgabe 2 bei leerer MeBkammer. In beiden Fillen streben wir
einen statistischen Fehler 6,,; < 10 % an. Dazu sind nach Gl. (8)

é <0,1 bzw. m =100

/ 4

Impulse und eine entsprechende MeBzeit At’ notwendig, so dafl

7

N = (22)

ist.

In dem Augenblick, da die Praktikumsaufsicht die fiir Aufgabe I und 2
bestimmten Praparate aus der Neutronenquelle entfernt, wird eine Stopp-
uhr betédtigt. Beim Einfithren der Praparate in die MeBkammer darf das
Glimmerfenster nicht beriihrt werden (Zerstérungsgefahr!). Um fiir die
Zerfallskurven hinreichend viel MeBpunkte zu erhalten, sind die Zahlraten
wegen der geringen Halbwertszeit der Proben in moglichst kurzen Zeit-
abstdnden zu ermitteln. Die MeBzeit At”” der Einzelmessung erstrecken wir
im Interesse der Genauigkeit auf eine Impulszahl m” = 1000 Impulse (ein
Richtwert fiir At” der ersten Messung wird gegeben). Die Zihlrate

17

” m
N =1 (23)

stellt dann einen tiber das Zeitintervall At gemittelten Wert dar und gilt
fiir eine Versuchsdauer ¢ + A ¢”//2 (¢ ist die Zeit, bei der wirdie Einzelmessung
beginnen). Die jeweilig effektive, den Nulleffekt [Gl. (22)] beriicksichtigende
Impulsrate folgt aus

m/l ml

— N__N,:——'——.
N=¥ At AV

(24)
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Auf einfach-logarithmisch geteiltem Koordinatenpapier zeichnen wir die
jeweiligen Zerfallskurven, die nach Gl. (2) Geraden sein sollen. Fiir jeden
MeBpunkt tragen wir einen mittleren Fehler £AN ein, der aus Gl. (24) bzw.
Gl. (9) abgeleitet wird.

Bei Aufgabe 1 verfolgen wir den Zerfall etwa 45 Minuten lang und ent-
nehmen der Darstellung die Halbwertszeit 7'y, 55 (Fehler angeben!), womit
wir nach Gl. (2b) die Zerfallskonstante A;. ;54 berechnen.

Die erste Messung der Aufgabe 2 beginnen wir am besten erst, nachdem
die Aktivitit des Ag-110 abgeklungen ist (f = 2 min = 120 s). Danach ist
aufgrund der Gin. (2), (2b) und (18) mit einem zeitlichen Verlauf der Ak-
tivitdt

¢
- 0,289 —
A(t) = Agag-108 © mn (25)

und der Zihlrate

t
N(t) = Noe 2 i
zu rechnen. Die Extrapolation der Zerfallskurven (einfach-logarithmische
Darstellung; bei der graphischen Mittelung der MeBwerte die Halbwerts-
zeit beachten!) auf ¢ = 0 ergibt N, fiir die Standard-(V,g;) und unbekannte

Probe (N,,).
Mit diesen Daten erhalten wir aus Gl. (21) die unbekannte Konzentration
ZVO:C
=9z 2
cx ZVO st Cst » ( 6)

¢sy Wird gegeben. Als MeBzeit einer jeden Probe werden 12 min < ¢ < 15 min
empfohlen.
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1. Einige Eigenschaften fester Stoffe

Dichte Linearer Spezifische
bei 20 °C Ausdehnungs- Wirmekapa-
koeffizient zitit
zwischen 0 °C bei 20 °C
und 100 °C
18kg - m= 106K J.kgl. K1
Aluminium 2,70 24 895
Blei 11,35 31 128
Eisen 7,86 12 450
Glas 24...26 9 795
Gold 19,29 14,3 130
Kochsalz 2,165 40 855
Kupfer 8,92 17 385
Magnesium 1,74 26 1020
Messing 8,4 18 380
(62% Cu, 38% Zn)
Neusilber 8,41 18 400
(62% Cu, 15% Ni,
22% Zn)
Nickel 8,90 13 445
Platin 21,45 9,0 135
Silber 10,5 19,5 235
Wolfram 19,3 4,3 135
Zink 7,14 26 385
Zinn 5,75 27 225
2. Einige Eigenschaften von Fliissigkeiten
Dichte Kubischer Oberflichen- Dynamische
bei 20 °C Ausdehnungs-  spannung Viskositit
koeffizient gegen Luft bei 20 °C
bei 20 °C bei 20 °C
108 kg - m=3 103K 103N .m™ 103kg . m1.s7t
Athanol 0,789 1,1 22 1,20
Athylather 0,714 1,6 17 0,240
Benzol 0,879 1,2 29 0,649
Chloroform 1,490 1.3 27 0,565
Glyzerin 1,261 0,5 66 1480
Methanol 0,791 1,2 23 0,588
Methylenjodid  3.325
Nitrobenzol 1,202 0,8 43 2,02
Quecksilber 13,546 0,18 465 1,554
0°C 13,596 1,685
Schwefel- 1,263 1,2 32 0,367
kohlenstoff
Tetrachlor- 1,595 1,2 27 0,969
kohlenstoff
Toluol 0,867 1.1 29 0,585
Wasser 0,998 0,2 73 1,005
m-Xylol 0,864 1,0 29

1) Werkzeugstahl.

2) Zersetzt sich.
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Schmelz- Spezifische Elastizitats- Torsions-
temperatur Schmelz- modul modul
wirme
°C 105J . kg! 1010 Pg, 1010 Pg,
600 3,97 7,3 2,4
327 0,23 LW 17 0,5...0,8
1535 2,77 20...22Y) 7,7...8,1Y)
800 ... 1400 5...8 1,8...3,0
1063 0,67 7.9 2,7
801 5,19
1083 2,05 12 3,8...4,7
651 3,68 4,2 1,6...19
~910 8...10,3 26...41
~1000 11 3,9...4,7
1455 3,00 20...22 7,6
1769,3 1,11 17 6,4
960,8 1,05 6...8 24...2,8
3380 1,92 35,56 13...15
419 1,10 8...13 3,9
231,9 0,61 4,6...54 1,8
Spezifische Schmelz- Spezifische Siede- Spezifische
Wirme- temperatur Schmelz- temperatur Verdampfungs-
kapazitit wirme wirme
bei 20 °C
103J-kg 1. Kt °C 105J - kg™ °C 105J . kgt
2,43 —114,5 1,08 78,3 8,4
2,30 —116,3 0,98 34,6 3,8
1,72 5,563 1,27 80,1 3,9
0,96 —63,5 0,75 61,3 2,8
2,40 18 2,00 290
2,50 —97,7 0,92 64,6 11,0
0,46 5...6 1802)
1,47 5,7 0,94 210,9 4,0
0,139 —38,87 0,118 356,6 2,85
1,00 —111,6 0,58 46,3 3.5
0,86 —23,0 0,21 76,6 1,9
1,69 —95,0 110,6 3,6
4,182 0,00 3,337 100,0 22,56
1,70 —47,9 1,09 139,1 34

29 Phys, Praktikum
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3. Dichte einiger Gase bei 0 °C und 760 Torr

Dichte Relative

kg -m3 Gasdichte
Helium 0,1785 0,1380
Kohlendioxid 1,9767 1,5290
Leuchtgas 0,6 0,46
Luft 1,2928 1,0000
Sauerstoff 1,4289 1,1053
Stickstoff 1,2505 0,9673
Wasserstoff 0,0899 0,0695

4. Dichte und Viskositit von Wasser

Tempe- Dichte Viskositit Tempe- Dichte Viskositit
ratur ratur
°C 10% kg/m? 103kg/m - s °C 10% kg/m?3 103 kg/m - s
(g cm7?) (cP) (g - cm™?) (cP)
0 0,99984 1,792 23 0,997 54 0,936
1 0,99990 1,731 24 0,99730 0,914
2 0,99994 1,673 25 0,99705 0,894
3 0,999 96 1,619 26 0,996 79 0,874
4 0,99997 1,667 27 0,996 52 0,855
5 0,999 96 1,519 28 0,996 24 0,836
6 0,99994 1,473 29 0,99595 0,818
7 0,99990 1,428 30 |, 0,99565 0,801
8 0,999 85 1,386 35 0,9940 0,723
9 0,99978 . 1,346 40 0,9922 0,656
10 0,99970 1,308 45 0,9902 0,599
1 0,999 61 1,271 50 0,9880 0,549
12 0,999 50 1,236 55 0,9857 0,506
13 0,99938 1,203 60 0,9832 0,468
14 0,999 24 1,471 65 0,9806 0,436
15 0,99910 1,140 70 0,9778 0,406
16 0,998 94 1,111 75 0,9749 0,380
17 0,99878 1,083 80 0,9718 0,357
18 0,998 60 1,056 85 0,9686 0,336
19 0,99841 1,030 90 0,9653 0,317
20 0,99821 - 1,006 95 0,961 9 0,300
21 0,99799 0,981 100 0,9583 0,284
22 0,99777 0,958
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5. Umrechnung der Barometerablesung auf 0 °C und Kapillardepression
der Quecksilbersqule

Infolge der Ausdehnung sowohl des Quecksilbers als auch der Barometerskale ist
der bei der Temperatur ¢ abgelesene Barometerstand 7 um

Ah=(y —a)-t-h

zu verkleinern. y ist der kubische Ausdehnungskoeffizient von Quecksilber, wihrend
der lineare Ausdehnungskoeffizient des Skalenmaterials mit « bezeichnet ist. Fiir eine
Messingskale gilt mit den Werten der Tabellen 1 und 2

Ah = 0,000162K-1.¢. k.
Besteht die Skale aus Glas, ist mit
Ak = 0,000171 K1.¢. &

zu arbeiten.

" Zu dem an der Kuppe des Quecksilbermeniskus abgelesenen Barometerstand ist der
zu dem Innendurchmesser des Rohres und der Héhe der Quecksilberkuppe gehorende
Wert (angegeben in Torr) aus der nachstehenden Tabelle hinzuzufiigen.

Innen- Hohe der Kuppe in mm

durch-

messer

mm 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6
7 0,17 0,34 0,49 0,62 0,74 0,85 0,96 1,04
8 0,13 0,27 0,39 0,49 0,59 0,68 0,76 0,82
9 0,10 0,21 0,30 0,38 0,46 0,54 0,60 0,65

10 0,08 0,16 0,23 0,30 0,36 0,42 0,47 0,52

11 0,06 0,11 0,17 0,22 0,27 0,32 0,37 0,41

12 - 0,04 0,08 0,12 0,15 0,19 0,23 0,27 0,31

13 0,03 0,06 0,09 0,11 0,14 0,17 0,20 0,22

6. Spezifische Warmekapazitit des
Wassers bei Normaldruck in Abhdngigkeit
von der Temperatur

Temperatur Spezifische
‘ Wiirmekapazitat

°C J-kgt. K1

0 4218
20 4182
40 478
60 4184
80 . 4196

29*
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7. Flichentrigheitsmomente fiir verschiedene Querschnitte

Querschnitt Massenmittel- Flachentrigheits-
punktsabstand moment
A hy I,
A7
1 1
—_ —_— 3
cl < > 5 oh
)
7 7
Y24 44
A+ <
1 1 s _ g
S ‘ ?h T (bh® — ad?)
.| 7. f
b b

?
Qo 1-'_ "
R TR
) 2
(o’ 1
?
< o« R % (Rt — 1)
&
A7 R
) % ¢
| ah? + bdz % {(a + b) A3
e e + (b — Be)? —B{lo — )
a a b b
P IN 7lal?
=T
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8. Siedetemperatur t des Wassers in Abhingigkeit vom Luftdruck p

P t P ¢

P t P t
Torr °C Torr °C Torr °C Torr °C
700 97,711 720 98,49 740 99,25 760 100,00
701 97,75 721 98,53 741 99,29 761 100,04
702 97,79 722 98,57 742 99,33 762 100,07
703 97,83 723 98,61 743 99,37 763 100,11
704 97,87 724 98,64 744 99,41 764 100,15
705 97,91 725 98,68 745 99,44 765 100,18
706 97,95 726 98,72 746 99,48 766 100,22
707 97,98 727 98,76 747 99,52 767 100,26
708 98,02 728 98,80 748 99,55 768 100,29
709 98,06 729 98,84 749 99,59 769 100,33
710 98,10 730 98,87 750 99,63 770 100,37
Co7e 98,14 731 98,91 751 99,67 T 100,40
712 98,18 732 98,95 752 99,70 772 100,44
713 98,22 733 98,99 753 99,74 773 100,48
714 98,26 734 99,03 754 99,78 774 100,51
715 98,30 735 99,07 755 99,82 775 100,55
716 98,34 736 99,10 756 99,85 776 100,59
7 98,37 737 99,14 757 99,89 777 100,62
718 98,41 738 99,18 758 99,93 778 100,66
719 08,45 739 99,22 759 99,96 779 100,69
9. Spezifischer elekirischer Widerstand und Temperaturkoeffizient
Spezifischer Temperatur-
Widerstand koeffizient
bei 0 °C
104 Qcm 103K
Aluminium 0,029 41
Blei 0,210 4,2
Eisen 0,090 ... 0,150 5,6...6,6
Konstantan (60% Cu, 40% Ni) 0,490 0
Kupfer 0,017 4,3
Manganin (84% Cu, 4% Ni, 12% Mn) 0,42 ...0,44 0
Messing (62% Cu, 38% Zn) 0,070 ... 0,090 1,5
Nickel 0,070 6,7
Nickelin (62% Cu, 20% Zn, 18% Ni) 0,033 0,2
Osmium 0,100 4,2
Platin 0,105 3,9
Quecksilber 0,958 0,99
Silber 0,016 4,0
Tantal 0,150 3,5
‘Wolfram 0,053 4,6
Zink 0,060 4.1
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10. Beweglichkeiten der Ladungstrager bei T = 300 K in ausgewdhlten Stoffen

Stoff I’ o
cm?/Vs - cm?/Vs

Cu 32 -

C (Diamant) 1800 1200
Si 1600 400
Ge 3800 1800
GaP 190 120
GaAs 9000 435
GaSb 4000 1420
InP 4500 150
InAs 33000 450
InSb 77000 700
ZnS 280 -
Cds 315 -
Pb8 600 200

Ladungstrigerkonzentration in Metallen:
Ny =~ 102 cm3,

Ladungstrigerkonzentration in Halbleitern:
Tinp = 10 ... 1018 cm ™3

11. Physikalische Grundkonstanten

Elementarladung e =1,6022.1071° As
Plancksches Wirkungsquantum h = 6,6262-10-3¢ Wg?
Boltzmann-Konstante k= 1,3807 .10~ Ws/K
Vakuumlichtgeschwindigkeit ¢ =2,997925.10°m/s
Gravitationskonstante y =6,673-10" m¥kg . s?
Ruhemasse des Elektrons me = 9,1096 - 1031 kg
Ruhemasse des Protons my = 1,6726 - 10727 kg
Ruhemasse des Neutrons Mmn = 1,6748 - 10727 kg
Avogadro-Konstante!) N, = 6,0220 - 10?® mol 1
Faraday-Konstante F = 96487 As/mol
Molare Gaskonstante R = 8,3143 Ws/mol - K

Molvolumen idealer Gase unter Normbedingungen Vn = 22,414 - 103 m?/mol

Elektrische Feldkonstante & = 8,8542.10712 Ag/Vm
Magnetische Feldkonstante Ho =47r-1077Vs/Am

= 1,2566 - 10~ Vs/Am
Temperatur des absoluten Nullpunktes t, = —273,45°C

1) Diese GroBe wurde in der deutschsprachigen Literatur frither Loschmidtsche
Konstante genannt, und die Avogadrosche Zahl bedeutete die Zahl der Molekiile je
Kubikzentimeter. ‘ ’
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12. Schaltzeichen
Schaltzeichen Benennung Schaltzeichen Benennung
_ Gleichstrom rl stufige
Wochselst: / Verstellbarkeit
o echselstrom
- ohmscher Wider-
Gleich- oder R I ot i
~ Wechselstrom stand allgem_em
Allstrom - ohmscher Wider-
_~ Tonfrequenz —E;é—- ' stand verstellbar
~ Wechselstrom 4 ohmscher Wider-
_Z_ stand stufig ver-
b~ Hochfrequenz- stellbar
~ Wechselstrom
hmscher
~/ . ° .
~ Hochstfrequenz- Spannungsteiler
N Wechselstrom —5_ stetig verstellbar
Kondensator,
Leitung allgemein 1 kapazitiver Wider-
T stand allgemein’
= :: Leitung geschirmt ]lzl'ehk% Wid
. o # apazitiver Wider-
o %elii)u.nﬁ mit l16sbarer stand verstellbar
erbindung
ol + Elektrolytkonden-
Leitungskreuz T - sator, gepolt
ohne elektrische indultives Wid
Verbindun, induktiver Wider-
8 ——- stand allgemein
I Leitungsabzweig ‘ induktiver Wider-
stand verstellbar
ind. Wid. fur Hoch-
_I_ Erdung - YYYY\  und Hochstfrequenz
. % desgl. verstellbar
I asse
—  Drosselspule mit
—_o0— Schalter —_— Eisenkern
—o/)_ —SE—  Drosselspule mit
———— Massekern
Umschalter
© Transformator,
— Ubertrager, Wandler
Einstellbarkeit —J— aligemein
(mit Werkzeug)
—— Transformator,
Verstellbarkeit e Ubertrager, Wandler
(mit Drehknopf) —J— it Eisenkern
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12. Schaltzeichen (Fortsetzung)
Schaltzeichen Benennung Schaltzeichen Benennung
y Transformator.
Y'Y Y )
A~ . Ubertrager, Wandler lichtelektrische
allgemein Zelle allgemein
Y Transformator,
— Ubertrager, Wandler elektr. Ventil
LYY Y mit Eisenkern Kristalldiode

——

L
z

galvanische Strom-
quelle, Einzelzelle

Batterie mit
n-Zellen

Thermoelement

Strommesser

Spannungsmesser

Galvanometer

Kolben fiir
a) Diode
b) Vielpolrohre

Anode

Kathode

direkt geheizte
Kathode

indirekt geheizte
Kathode

Gitter, Steuergitter

Schirmgitter,
Schutzgitter

Bremsgitter

®
14
4

R

bl

Transistor pnp

Transistor npn

elektronischer
Generator allgemein

Tonfrequenz-
generator

Gleichrichter

Verstirker allgemein

Verstirker mit
Angabe des
Frequenzbereiches

Mikrophon

Fernhorer

Lautsprecher
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13. Spektren zur Aufstellung der Dispersionskurve eines Prismas

Die Angaben in Spalte 4 geben nur die relative Intensitit der Linien innerhalb eines
Spektrums an. Die Intensitidten schwanken sehr stark je nach der benutzten Lampe.
Die fir die Uberprifung des Auflésungsvermégens geeigneten Linienpaare sind

durch * gekennzeichnet.

Element Bezeichnung und Wellenléinge Farbe Intensitat
in nm
H H, (C) 656,3 rot stark
Hp (F) 486,1 blaugriin mittel
Hy (G") 434,1 violett schwach
H s (h) 410,2 violett schwach
He 667,8 rot stark
D, 587,6 gelb sehr stark
*504,8 griin schwach
*501,6 griin mittel
492,2 blaugriin mittel
471,3 blau schwach
4471 blau stark
Li 610,4 gelbrot schwach
670,8 rot stark
Na D, *589,6 gelb sehr stark
D, *589,0 gelb sehr stark
K *769,9 dunkelrot stark
*766,5 dunkelrot stark
. 404,7 violett mittel
Zn 636,2 rot stark
518,2 griin stark
481,1 blaugriin stark
472,2 blau stark
*468,0 blau stark
*463,0 blau mittel
Cd 643,8 rot stark
515,5 griin mittel
508,6 griin mittel
480,0 blaugrin stark
*467,8 blau mittel
*466,2 blau mittel
Hg 623,4 rot schwach
*579,1 gelb sehr stark
*571,0 gelb sehr stark
546,0 griin sehr stark
496,0 blaugrin schwach
491,6 blaugriin mittel
*435,8 blau stark
*434.8 blau mittel
*433,9 blau schwach
*410,8 violett schwach
*407,8 violett mittel
*404,7 violett stark
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14, Umrechnung von Energieeinhesten
J=Ws erg kWh kpm
1J=1Ws= 1 107 2,7778 . 1077 1,0197 . 101
lerg = 10-7 1 2,7778 . 10714 1,0197 . 108
1 kWh = 3,6 - 108 3,6 - 1013 1 3,6711 - 10°
1 kpm = 9,8062 9,8062 - 107 2,7239 .10 1
1 cal = 4,1840 4,1840 - 107 1,1622 . 106 4,2666 - 1071
1eV 2l 1,6022 . 1010 1,6022 . 1012 4,4506 - 1026 1,6339 . 10-2¢
1cm1A?) 1,9865-10-28  1,9865-1071¢  5,5179.10730  2,0257 . 10~
1K 29 1,3807 . 10-2%  {,3807.1071%  3,8352.10730  1,4079.10"*
cal 2o eV S em?t A~ K
1J=1Ws= 2,3901.1071 6,2414 - 1018 5,0340 - 1022 7,2429 . 1022
1erg = 2,3901 - 108 6,2414 - 1011 5,0340 . 1015 7,2429 . 1015
1 kWh = 8,6042 - 10° 2,2469 - 10% 1,8123 - 10% 2,6074 . 102
1 kpm = 2,3438 6,1204 - 10 4,9365 . 102 7,1025 . 10%
1cal = 1 2,6114 . 1010 2,1062 - 10 3,0304 - 102
1eV A1) 3,8294 . 1020 1 8,0655 - 10° 1,1605 - 104
1 cm™1 A2) 4,7478 - 1024 1,2399 - 104 1 1,4388
1K 23) 3,2999 . 1Q‘24 8,6173 - 108 6,9503 - 101 1

1) 1 Elektronenvolt (eV) ist diejenige Energie, die eine Elementarladung beim
Durchlaufen einer Spannungsdifferenz von 1 V gewinnt.
2) Nach der Beziehung F = hy = hcv (vgl. Versuch O. 6.4) entspricht jeder Wellen-
zahl 7 eine Energie £ = hc?.
3) Nach der Beziehung Z = kT entspricht jeder Temperatur 7' eine mittlere Energie

kT.

15. Umrechnung von Druckeinheiten

Pa = N/m? dyn/cm? mbar
1 Pa = 1 N/m? 1 10 10-2
1 dyn/cm? 10— 1 10-3
1 mbar 102 10® 1
1 at = 1 kp/cm? 9,8067 - 10* 9,8067 - 10° 9,8067 - 102
1 atm 1,033 - 105 1,0133 - 108 1,0133 - 103
1 Torr 133,32 1333,2 1,3332

at = kp/cm? atm Torr
1 Pa = 1 N/m? 1,0198 - 103 0,9869 - 10-5 7,5006 - 10-3
1 dyn/cm? 1,0198 . 106 0,9869 - 10-¢ 7,5006 - 10-4
1 mbar 1,0198 - 103 0,9869 - 103 0,75006
1 at = 1 kp/em? 1 0,96784 735 56
1 atm 1,0332 1 760,00
1 Torr 1,3595 - 103 1,3258 - 10-3 i
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Brennpunkt 331
Brennweite 331
Brewstersches Gesetz 387

Carnotscher KreisprozeB
181

Celsius-Skale 159
Clausius-Clapeyronsche
Gleichung 180, 206
Clément-Desormes,
Versuch von 188
Compton-Effekt 424, 436
Couette-Stromung 142
Curiesches Gesetz 272
Curie-Temperatur 271,318

Daltonsches Gesetz 62
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-, —, nach Bunsen 64

Gaskonstante, molare176,
179, 450

Gasthermometer 163, 169

Gasverstarkung 427

GauBsches Okular 337
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Induktionskonstante 270

Induktivitdt 305, 315

InduktivitidtsmeBgerit
316

Innenwiderstand, bei
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Kollektor 263
Kollektorschaltung 265
Kombinationsthermostat
188
Kompensationsmethode
nach Poggendorff 251
Kompensator 252
Komponente 203
Kompressibilitdt 101
Kompressionsmodul 101,
149
Kondensationswirme 202
Kondensator 308
Kondensatorentladung
241
Kontaktpotential 257
Kontaktthermometer 166
Kopplungsgrad 85
Kovolumen, van-der-
Waalssches 177
Kreisfrequenz 151
Kriechfall (Drehspul-
instrument) 281, 283,
290
Kriechgalvanometer 290
Kriimmung einer Kurve
105
Kugelwelle 147
Kundtsches Rohr 152
KurzschluBstrom 245
Kiivette 125

Ladung, spezifische 414
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Leitwert 222, 308
Leuchtdichte 393
Lichtblitzstroboskop 97
lichtelektrischer Effekt
396, 424, 436
Lichtgeschwindigkeit 367,
450
Lichtstérke 393
Lichtstrom 393



458 Sachverzeichnis
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(Galvanometer) 276 Nulleffekt 432 228, 251
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Lorentz-Kraft 273, 299,
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Lupe 342

Magnetisierung 269, 293,
316

-, remanente 271
Magnetismus 270
Magnetometer 301
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229
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Mikroskop 344
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Mischkristall 209, 240
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Molrefraktion 369

Nebelkammer 425, 429
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Newtonsche Ringe 356
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270 '
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350
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Photoeffekt 424, 436
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Radioaktivitidt 430
Radiometrie 423 N
radiometrische Gehalts-
bestimmung 432
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Reflexionskoeffizient 386
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Rontgenstrahlung 424,
435

Rotationsviskosimeter
140

Rydberg-Konstante 420,
422

Sammellinse 331

Sattigungsstrom 256

Schallgeschwindigkeit
151, 155

— in Luft 152

Schallwelle 147

Scheinwiderstand 307

Schirmgitter 260

Schleusenspannung 261

Schimelzkurve 204

Schmelzpunktdiagramm
209

— von Pb-Sn-Legierungen
210

Schmelztemperatur 445

Schmelzwirme 201

-, spezifische 445

-, —, des Wassers 201

Schraubenfeder 113

Schubmodul 100

Schubspannung 100

Schwichungsgesetz 436

Schwiichungskoeffizient
436

schwarzer Korper 165, 394

Schwebemethode 53

Schwebungsdauer 86

Schwebungsschwingung
84

Schwellspannung 261

Schwerebeschleunigung
74,76
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Schwingkreis, elektrischer
310

Schwingkreismethode
322
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elektrische 310 -
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-, gedémpfte 279
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281
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151, 284

Schwingungsgleichung
311
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175
Spannungsmessung 228
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251
Spannungsresonanz 328
Spannungsriickwirkung
264
Spannungsteilerschaltung
228, 251
Spektralphotometer 383
Spektrometer 364
Sperrichtung 256
Sperrschicht 261
Sperrschicht-Photoeffekt
397
Sperrspannung 262
Standardabweichung 20
Staudruck 129
Stefan-Boltzmannsches
Gesetz 174, 394
Steilheit 258
Steinerscher Satz 72
Stereoisomere 388
Stirnfensterzdhlrohr 440
Stokessche Kugelfall-
methode 133
Stopselrheostat 252
Storstellenleitung 260, 300
StoBgalvanometer 285
StoBionisation 427
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—, ordentlicher 387
Strahldichte 393
Strahlenschutz 423, 437
Strahlstirke 393
Strahlungsdetektor 425
Strahlungsempfianger 395
Strahlungspyrometer 165,
173
Streubreite 20
Stroboskop 97
Strommesser 228

Strommesser, MeBbe-
reicherweiterung 229
Stromresonanz 328
Stromung, laminare 130,
145
-, turbulente 132, 145
Stromverstirkung 264
Strukturviskositit 143
Sublimationsdruck 207
Sublimationskurve 204,
207
Sublimationswirme,
molare 181, 207
Suszeptibilitiit,
magnetische 270
Szintillationszihler 425,
498

Temperatur 12, 47, 159
-, kritische 178
Temperaturkoeffizient bei
ohmschen Wider-
stdnden 225, 238, 240
—, bei Halbleiterwider-
stdnden 226
Temperaturmessung 159,
254
Temperaturskale 159
Termschema 422
Thermistor 233
Thermoelektrizitit 164
Thermoelement 164,
253
Thermometerfiillfliissig-
keit 161
Thermophor 199
Thermospannung 164,
253
Thermostat 166
Thomson-Briicke 238
Thomsonsche Schwin-
gungsformel 312, 316
Torsionsmodul 100, 108,
115, 445
Torsionspendel 70
Totalreflexion 368
Tragheitsellipsoid 89
Tragheitsmoment 68, 86
Trégheitsprodukt 89
Transistor 263, 268
Transistorgrundschal-
tungen 264
Transistorvoltmeter 248,
303
Trigger 295
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Tripelpunkt 204, 208 Wigung 38 Widerstand, ochmscher
Trockenbatterie 246 —, absolute 45 222

Tunneldiode 262

Ubbelohde-Viskosimeter
137

Uberstruktur 240

Ultraschallwelle 155

Umwandlungswirme
201

UniversalmeBeinrichtung
115

Urspannung 244

—, eines Thermoelements
254

Vakuumthermoelement
403

van’t-Hoffsches Gesetz
206

Varistor 231

Verdampfungswirme,
molare 180, 191, 207

-, spezifische 445

—, —, des Wassers 202

Verdet-Konstante 389,
392 .

VergroBerung 343

Verlustfaktor 308

Verlustwinkel 308

Verstirkung 259

Verstirkungsfaktor 258

VielfachmeBinstrument,
elektrisches 230

-, elektronisches 250

Viskositit, dynamische
130, 444

-, —, des Wassers 446

-, kinematische 130

Volumen, kritisches
178

Volumenbestimmung 46

Wiarmekapazitat 178, 195

— eines Kalorimeters 194

—, molare 179, 182

-, spezifische 151, 178,193

-, —, fester Stoffe 197, 444

—, —, von Flissigkeiten
199, 445

Wirmemenge 193

Wechselstrombriicke 115,
316

Wechselstromwiderstand
304

-, komplexe Darstellung
304

Wegaufnehmer, induk-
tiver 115

‘Weilscher Bezirk 271

Welle, ebene 147

—, harmonische 150, 349

—, longitudinale 150

—, stehende 152

—, transversale 150

Wellenfliche 147

Wellengleichung, lineare
147

Wellengruppe 351

Wellenldnge 151

Wellenzahl 422

Weston-Normalelement
246, 252

Wheatstone-Briicke 172,
233, 317

Widerstand, Aus-
fithrungsformen 226

—, differentieller 231, 232,
258, 262

-, induktiver 304

—, innerer 233, 245, 258,
274

—, kapazitiver 304

—, komplexe Darstellung
304

Widerstandsbestimmung
2217, 233, 238, 241

Widerstandsthermometer
172

Wilsonsche Nebelkammer
429

Wirkungsgrad, Gleich-
strom 246

~, Kreisprozef3 182

—, optischer 407

Wirkungsquantum,
Plancksches 394, 400,
411, 450

Zihlrate 432
Zihlrohr 425
Zihlrohrmessungen 432,
439
Zeigerdiagramm 307
Zeitkonstante 242
Zeitvorwahl 439
Zenerdiode 262
Zenerspannung 262
Zentralwert 20
Zerfallsgesetz 430
ZerreiBmaschine 101
Zerstreuungslinse 331
Zugspannung 100, 147
Zustandsénderung,
adiabatische 179, 189
—, isobare 175
—, isochore 175
—, isotherme 175
Zustandsdiagramm
von Wasser 204
Zustandsgleichung 175
—, idaeler Gase 48, 169,
176
—, van-der-Waalssche 177
ZustandsgroBe 174
Zweischalenwaage 38, 45



