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1 e Einleitung

Standig wachst die Bedeutung der Mathematik. In den Naturwissenschaften, in
der Technik, in der Okonomie, in der Planung und Leitung der Volkswirtschaft
und in vielen anderen Bereichen der gesellschaftlichen Praxis werden in immer
groBerem Umfange mathematische Verfahren und Methoden benétigt und ange-
wandt. Oft begegnet man heute mathematischen Problemen und Aufgabenstel-
lungen, die mit den herkémmlichen Methoden nicht lésbar sind oder die nur auf
sehr schwierige Art gelost werden konnen.

So muB man z. B. lineare Gleichungssysteme mit Hunderten von Gleichungen
lésen, Nullstellen von Polynomen hohen Grades ermitteln, Wurzeln von transzen-
denten Gleichungen mit einer Unbekannten bestimmen, Integrale mit kompli-
zierten Integranden berechnen, bei Funktionen, die nur in Form von Tabellen
gegeben sind, interpolieren und Anfangswert- und Randwertprobleme bei Diffe-
rentialgleichungen behandeln.

Die Zahl solcher Aufgaben wichst stindig. Sie wird, da die Mathematik immer
mehr zur unmittelbaren Produktivkraft wird, weiter anwachsen. Die Kompli-
ziertheit und der Umfang derartiger Aufgabenstellungen werden zunehmen.

Die Behandlung der genannten Probleme erfordert einen umfangreichen Rechen-
aufwand. Zur Bewiltigung dieser gewaltigen Rechenarbeit stehen den Mathe-
matikern heute in Gestalt der Rechenautomaten unentbehrliche Helfer zur Ver-
fiilgung. Elektronische Rechner machen es moglich, eine Vielzahl von volkswirt-
schaftlich wichtigen Aufgaben mit Hilfe von Verfahren, die von Mathematikern
entwickelt wurden, zu 16sen. Die so beschriebenen Aufgaben gehoren vorwiegend
zum Titigkeitsfeld der Praktischen Mathematik. Die Praktische Mathematik ist
somit von groBer Bedeutung fiir die Anwendung. Sie ist ein wichtiges Bindeglied
zwischen Theorie und Praxis, weil sie Verfahren zur Losung praktischer Probleme
entwickelt, untersucht und fiir die Praxis bereitstellt.

Meist werden grafische Methoden, die Nomographie und die Numerische Mathe-
matik unter der Uberschrift , Praktische Mathematik' faBt. Wir
wollen uns im wesentlichen dieser Einteilung anschlieBen.




Man kann auch noch andere mathematische Disziplinen und Teilgebiete der Mathe-
matik zur Praktischen Mathematik zdhlen, so z. B. die Optimierung, die Spiel-
theorie und Gebiete der Wahrscheinlichkeitsrechnung und Statistik. Aus diesen
Bereichen sollen einige einfache Probleme der Linearoptimierung in die folgenden
Ausfithrungen einbezogen werden.

Allerdings kann das, was hier unter Praktischer Mathematik zusammengefaB3t
wird, nicht isoliert von anderen mathematischen Disziplinen und Teilgebieten
betrachtet werden. Alle mathematischen Disziplinen befruchten sich gegenseitig,
sind voneinander abhéingig und gehéren zusammen.

o Unter grafischen Methoden versteht man alle Verfahren, mit deren Hilfe die
Losungen einer Aufgabenstellung zeichnerisch gewonnen werden. Mit Hilfe gra-
fischer Methoden kann man z. B. Gleichungen lésen, Integrale und Differential-
gleichungen behandeln. Derartige Verfahren werden auch zum Teil im Unterricht
der Oberschule behandelt. Die Genauigkeit der grafischen Methoden ist beschrankt.
Man wendet sie an, um z. B. eine grobe Naherungslésung, die man vielfach als
Ausgangswert fiir Verfahren zur Verbesserung einer Naherung benétigt, zu finden.
Grafische Methoden sind einfach, iibersichtlich und anschaulich. Sie haben aller-
dings viel weniger Bedeutung als Verfahren der Numerischen Mathematik.

o Mit Hilfe von Nomogrammen kann man gesetzméBige Zusammenhange zwischen
verdnderlichen GroBen bildlich darstellen. Die gesetzmiBigen Zusammenhinge
kann man oft in Form einer Gleichung darstellen (z. B. Oumsches Gesetz: U =1 - R).
So lernt man im Schulunterricht bereits in der grafischen Darstellung von Funk-
tionen der Form y = f(z) solche Nomogramme kennen. Aus dem Kurvenbild
lassen sich die der unabhéngigen Variablen 2 zugeordneten Werte der abhingigen
Variablen y ablesen. In der Nomographie werden solche gesetzmaBigen Zusam-
menhinge in Form von Funktionsleitern, Funktionsnetzen, Netztafeln, Linien-
tafeln und in Form zusammengesetzter Nomogramme dargestellt, untersucht und
ausgewertet.

o Das umfangreichste und wichtigste Teilgebiet, das man meist unter der Uber-
schrift , Praktische Mathematik' findet, ist die Numerische Mathematik. Die
Numerische Mathematik ist eine selbstindige mathematische Disziplin. Sie be-
faBt sich mit der angendherten zahlenméaBigen Losung mathematischer Probleme.
Dabei werden in der Numerischen Mathematik Verfahren entwickelt, algorith-
misch aufbereitet, untersucht und diskutiert, mit deren Hilfe man unter Aus-
nutzung moderner Rechenhilfsmittel (Rechenautomaten) die Losung mathema-
tischer Probleme bis zum Zahlenresultat erméglicht. Die Verfahren miissen so
beschaffen sein,

— daB die Genauigkeit des Ergebnisses beliebig gesteigert werden kann,

— daB die Beschreibung (Angabe gewisser Operationen und Entscheidungen in
einer bestimmten Reihenfolge) eines solchen Verfahrens endlich ist,

— daB die Beschreibung stets vollstindig und eindeutig ist.

Dabei beschiftigt sich die Numerische Mathematik u. a. mit der Fehlerrechnung,
mit weiteren Problemen, die beim Zahlenrechnen auftreten (Genauigkeitsfragen,
Rechenanordnung und -schemata, Arbeit mit Naherungsformeln), mit Verfahren
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zur Lésung von Gleichungen und Gleichungssystemen, mit Methoden zur numeri-
schen Differentiation und Integration, mit Fragen der Interpolation und Approxi-
mation und mit der numerischen Behandlung von Differentialgleichungen. Im
Rahmen der Numerischen Mathématik werden auch Rechenhilfsmittel (Tafeln,
Rechengerite) erliutert. Enge Bindungen bestehen zwischen der Numerischen
Mathematik und der Rechentechnik.

¢ Die Linearoptimierung ist eine mathematische Disziplin, die in vielen Bereichen
der Praxis Anwendung findet. Viele 6konomische Probleme, Aufgaben aus der
Planung und Leitung und aus anderen Bereichen fiihren auf Linearoptimierungs-
aufgaben, auf die Aufgabenstellung, die Werte eines Systems von n Variablen,
&, Ty, ..., Tn, zu finden, fir die eine gegebene lineare Funktion
f(x) = ¢y + 612 + .. + CoZn

einen optimalen (maximalen oder minimalen) Wert hat und fiir die zugleich gewisse
Nebenbedingungen, die in Form linearer Gleichungen und Ungleichungen gegeben
sind, erfiillt sind. Zur Lésung solcher Aufgaben gibt es eine Reihe von speziellen
Verfahren. Einfache Linearoptimierungsaufgaben, nimlich solche mit zwei Varia-
blen, kann man auch grafisch lésen. Dazu sind Kenntnisse iiber Ungleichungen,
Ungleichungssysteme, iiber das Rechnen mit Ungleichungen, iiber dquivalente
Umformungen bei Ungleichungen und iiber die geometrische Interpretation von
Ungleichungen und einfachen Ungleichungssystemen notwendig.

In dem Lehrbuch ,,Praktische Mathematik‘ fiir den fakultativen Unterricht der
erweiterten Oberschule sollen einige Verfahren der Praktischen Mathematik, insbe-
sondere Probleme der Numerischen Mathematik, und einfache Probleme der Linear-
optimierung behandelt werden.

Es werden

— das Rechnen mit Zahlen,

— die grafische Darstellung von Algorithmen,

— Lasungsmethoden fiir Gleichungen mit einer Variablen,
— ein Lésungsverfahren fiir lineare Gleichungssysteme,

— die Interpolation,

— die numerische Integration,

— Ungleichungen,

— Ungleichungssysteme und

— einfache Probleme der Linearoptimierung

betrachtet.

Die Kapitel 2. (Rechnen mit Zahlen) und 3. (grafische Darstellung von Algorithmen)
enthalten allgemeine Hinweise.

Die Abschnitte 4.1. und 4.2. entsprechen dem Lehrplanabschnitt 1.!) (Grafische
Losung von Gleichungen mit einer Variablen), die Abschnitte 4.3. bis 4.6. im
wesentlichen dem Lehrplanabschnitt 3. (Numerische Verfahren zur Losung von

1) Vgl. ,,Plane fiir den fakultativen mathematisch-naturwissenschaftlichen Unterricht*‘.
Volk und Wissen Volkseigener Verlag, Berlin 1969, S. 39...49.
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Gleichungen mit einer Variablen), und das Kapitel 5. entspricht dem Lehrplan-
abschnitt 2. (Das Gausssche Eliminationsverfahren zur Losung von linearen
Gleichungssystemen). ‘

Im Kapitel 4. wird zusitzlich als einfaches Naherungsverfahren zur Lésung von
Gleichungen mit einer Variablen die regula falsi behandelt. Damit haben die
Teilnehmer am Lehrgang ,,Praktische Mathematik im Rahmen des fakultativen
Unterrichts die Moglichkeit, sich noch ein weiteres Verfahren anzueignen.

Die Kapitel 6. und 7. (Interpolation und Numerische Integration) sind nicht im
Lehrplan enthalten. Die Interpolation und die numerische Integration sind jedoch
wichtige Aufgabenstellungen der Numerischen Mathematik, und diese beiden
Komplexe sind fiir die Anwendung der Mathematik bedeutungsvoll. Der Leser hat
so die Méglichkeit, sich selbstindig in zwei weitere Probleme einzuarbeiten.

Das Kapitel 8. (Ungleichungen, Ungleichungssysteme und einfache Probleme der
Linearoptimierung) enthilt im wesentlichen das, was in den Lehrplanabschnitten 4.
und 5. gefordert wird.

In den einzelnen Abschnitten sind Wiederholungsfragen bzw. -aufgaben enthalten,
mit denen die Verbindung zum obligatorischen Unterrichtsstoff der Schule herge-
stellt wird.

Beispiele werden zur Erliduterung der Verfahren angegeben, Aufgaben sind zur
Ubung und Vertiefung zusammengestellt und einfache Beispiele zur grafischen
Darstellung von Algorithmen dienen der Entwicklung der algorithmischen Arbeits-
weise. Bei der Durchrechnung der Beispiele wurden mathematische Hilfsmittel
(Zahlentafeln, Tischrechenmaschinen usw.) eingesetzt. Die mit (L) gekennzeich-
neten Aufgaben wurden im Kapitel 9. Losungen beriicksichtigt.
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2 e Rechnen mit Zahlen

2.1. Hinweise zum Rechnen mit Zahlen

Wenn wir hier einige Hinweise fir das Rechnen mit Zahlen zusammenstellen,
dann wollen wir davon ausgehen, daB die mathematische Formulierung des prak-
tigchen Problems bereits vorliegt und daB bekannt ist, nach welchen Verfahren
dieses Problem zu losen ist.

Man wird also beim zahlenméBigen Losen eines gegebenen Prohlems eine mathe-
matische Formel oder eine Rechenvorschrift in anderer Weise zugrunde legen. Das
Rechnen erfolgt dann nach dieser Vorschrift bzw. nach diesem System von Regeln.
Man spricht auch vom Algorithmus des Verfahrens und meint damit also die Ge-
samtheit von Regeln und Formeln des Rechenverfahrens (7 S. 22).

Bei umfangreichen Rechnungen treten haufig Fehler auf, weil der Rechner die
Ubersicht verliert, weil der Rechengang nicht klar aufgegliedert ist oder weil wih-
rend der Rechnung bzw. nach Vorliegen des Endergebnisses keine Kontrollen bzw.
Proben durchgefiihrt werden. Zahlenwerte, die berechnet werden, miissen jedoch
einer vorgeschriebenen Genauigkeit geniigen und miissen auch praktisch verwertbar
sein. Man muB sich auf die Ergebnisse der Rechnung verlassen konnen.

‘Was sollte man beim Rechnen mit Zahlen beachten ?

1. Man mup dibersichtlich arbeiten.
Es ist also notwendig, Haupt- und Nebenrechnungen voneinander zu trennen.
Die Rechnung muB iibersichtlich angeordnet werden. Dabei sollte man sich
ein geeignetes Rechenschema anlegen.

2. Man mupf den Algorithmus richtig aufgliedern.
Eine Formel, einen Formelsatz oder eine Rechenvorschrift fir ein bestimmtes
Verfahren muB man in geeigneter Weise in Einzelschritte zerlegen bzw. zer-
gliedern. Dabei sollte man sich genau iiberlegen, welche Werte (Daten) fiir die
Rechnung bendtigt werden, nach welchen Vorschriften (z. B. nach welcher
Formel) die Rechnung erfolgt, welche Tabellenwerte in die Rechnung eingehen
und welche Werte als Ergebnis zur Verfiigung stehen miissen.
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. Man mup im Laufe der Rechnung Kontrollen durchfithren.

Die Kontrollen sind bei den verschiedenen Verfahren unterschiedlich. Sie
konnen auch in der Weise erfolgen, daBl mehrere Rechner nach dem gleichen
Verfahren bzw. nach unterschiedlichen Verfahren parallel rechnen und Zwi-
schenresultate laufend vergleichen.

. Man mup eine Endkontrolle durchfiihren.

Auch die Endkontrollen kénnen unterschiedlich sein. Beim Losen einer Glei-
chung bzw. eines Gleichungssystems z. B. wird man das Ergebnis in die Ausgangs-
gleichung bzw. in das entsprechende Ausgangssystem einsetzen und nachpriifen,
ob der Wert die Gleichung bzw. das System erfiillt.

. Man mufl, wenn das méoglich ist, eine Fehlerbetrachtung durchfihren.

Da das Ergebnis mit einer bestimmten Genauigkeit benétigt wird, ist es not-
wendig, entweder mit den Hilfsmitteln der Fehlerrechnung oder mit anderen
Hilfsmitteln (z. B. Formeln zur Fehlerabschatzung bei bestimmten Ldsungs-
verfahren) den Fehler abzuschétzen.

. Man sollte rationell arbeiten, d. h. unter Nutzung aller moglichen Rechenhilfs-

mittel.

Fiir das zahlenmiBige Losen mathematischer Probleme stehen eine ganze Reihe
von Hilfsmitteln zur Verfiigung. Solche Hilfsmittel sind: Tafeln, Rechenstab
und Rechenmaschinen.

Diese Hinweise oder Regeln zum Zahlenrechnen sollen noch an zwei Beispielen
erlautert werden.

]
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BEISPIEL 2/1:
Es ist die quadratische Gleichung Ax? + Bz + C = 0 (4 3 0) zu l6sen.
Aus Az? + Bz + C = 0 erhélt man bei Divisién durch 4 die Gleichung

c

a4+ pr+qg=0 mit p=§ und q=z.

Die Losungen dieser Gleichung sind

22 = —gi‘/(%) -

2
wobei fir D = (%) — ¢ = 0 die Wurzeln reell sind.

Bei der zahlenmiBigen Losung konnte man folgende Zergliederung des
Algorithmus angeben:
Gegeben: 4, B, C (4 +0)

Ermittlung der Zwischenwerte: p = ; =%

Berechnung der Diskriminante: D = (ﬂ) —



Berechnung der Wurzeln: Falls D = 0 gilt, ergibt sich
@ = —%—l—}/ﬁ und =z, = —}21—;/5.

Eine Endkontrolle (Probe) erfolgt durch Einsetzen in die Ausgangs-
gleichung.

Als Rechenhilfsmittel wird man hier die Zahlentafel bzw. den Rechenstab
verwenden.

BEISPIEL 2/2:

Die Quadratwurzel y = Jz (z > 0) kann man nach NEWTON naherungs-
weise nach folgender Formel bestimmen:

1 z
y“yu=5(!/n—l+ )
"Yn-1

firn =1,2, ... und mit y, = 2.
Man kann die Formel zergliedern und die Berechnung nach folgendem
Schema durchfiihren :

z 1 z
n Yn-1 Yoot E’(yn—l + yn—l) = Yn
1
1 o=z |1 ?(3+1)=y1
2w L] L(y, + i) -
% 2 %
3 Ya ..

Falls z = 2 ist, erhilt man, wenn man rundet (7 Seite 14),

x

n Yn-

n-1 Yot Yn
1 2,000 1,000 1,500
2 1,600 1,333 1,417

3 1,417 1,411 1,414

Es ergibt sich also y = |2 ~ y; = 1,414

Falls man Tischrechenmaschinen zur Verfiigung hat, wird man sie bei
der Lésung dieser Aufgabe einsetzen. Eine Endkontrolle nach drei
Rechenschritten ergibt y; = 1,414% ~ 1,999.
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2.2.  Einige Grundbegriffe der Fehlerrechnung

Die meisten Zahlenangaben, mit denen man es in der Praxis zu tun hat, sind Nahe-
rungswerte, also Werte, die vom exakten Wert abweichen bzw. Werte, die mit
einem Fehler behaftet sind. Es handelt sich vielfach um MeB- bzw. Tabellenwerte.
Auch gerundete Zahlen sind natiirlich mit einem Fehler behaftet.

Wenn z. B. berichtet wird, daB ein Sportler beim Lauf die 100 m-Strecke in 10,3 s
zuriicklegte, so sind die MeBwerte 100 m und 10,3 s als Naherungswerte zu be-
trachten.

Wenn man bei Berechnungen Funktionswertetabellen verwendet, dann sind in
diesen Tabellen die meisten Funktionswerte wegen der Beschrankung auf eine
bestimmte Stellenzahl mit Fehlern behaftet. Falls z. B. x ~ 51,6 ist, also die
Zahl z gerundet ist, so gilt 51,55 < z < 51,64.

Wenn man mit diesen Werten rechnet, so pflanzen sich die Fehler fort und neue
kommen hinzu. Dabei kann es passieren, daB der Fehler im Endergebnis so gro8
ist, daB der errechnete Wert nicht mehr zu gebrauchen ist. Es ist also notwendig,
eine Moglichkeit zur quantitativen Erfassung der Fehler anzugeben und zu unter-
suchen, wie sich Fehler bei Rechenoperationen fortpflanzen.

Vielfach muB man Werte runden.
Das Runden ist durch folgende Vorschriften festgelegt:
Folgt vor dem Runden auf die letzte Stelle, die noch angegeben werden soll,

a) eine 0, 1, 2, 3, 4, so bleibt die Stelle ungeandert (Abrunden);

b) eine 6, 7, 8, 9, so wird die letzte Stelle um 1 erhoht (Aufrunden);

¢) eine 5 mit noch mindestens einer von Null verschiedenen Ziffer dahinter, so
wird aufgerundet;

d) eine 5, von der bekannt ist, wie sie durch Runden entstanden ist, so wird abge-
rundet, wenn die 5 aufgerundet war, und es wird s.ufgerundet, wenn die 5 abge-
rundet war;

e) eine genaue 5 (das ist eine 5, hinter der nur Nullen folgen) oder eine 5 unbekann-
ter Herkunft und wird mit der gerundeten Zahl weitergerechnet, dann wird
so gerundet, daB die Zahl gerade bleibt (Geradezahlregel).

] BEISPIEL 2/3:
7,3234 ~ 7,323 ~ 7,32
8,158 ~ 8,16 ~ 8,2
8,37601 ~ 8,38
4,349 ~ 4,35 ~ 4,3
3,461 ~ 3,456 ~ 3,56
0,735 ~ 0,74
0,746 ~ 0,74

Die Giite eines Naherungswertes hangt ab von seiner Abweichung vom exakten
Wert.
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> DEFINITION 2/1:

Falls « der exakte Wert einer zu messenden GroBe ist und x, der MeBwert
oder Naherungswert, dann nennt man

!e:zo—a: [

den absoluten Fehler des MeBwertes und

k=2 —m

die Korrektur.

Ein Naherungswert ist umso genauer, je kleiner der Betrag seines absoluten Fehlers
ist. Beim Runden ist der Betrag des absoluten Fehlers stets kleiner oder hochstens
gleich einer halben Einheit der letzten Stelle.

Im allgemeinen ist der exakte Wert nicht bekannt. Daher kann man also auch
den absoluten Fehler und die Korrektur nicht angeben. Bei MeBgeriten ist es
iblich, daB man angibt, welche maximale Abweichung vom exakten Wert zu
erwarten ist. Diese Abweichung ist dann eine obere Schranke fiir den Betrag des
absoluten Fehlers.

> DEFINITION 2/2:

Der Absolutbetrag der maximalen Abweichung vom exakten Wert heiBt
obere Schranke oder absolute Fehlerschranke.
Man bezeichnet sie mit Az.

Es gilt also
le] = |k| < Az oder

% — 2| = |z — 2| < 4.

Auch bei MeBwerten und Tabellenwerten kann man diese absolute Fehlerschranke
angeben.
Der exakte Wert liegt zwischen

Zg— Az und 1z, + dz.
Es gilt also
Ty — Az <2< 7+ Az .

Will man die Fortpflanzung von Fehlern untersuchen, dann muB man davon
ausgehen, daB der Wert maximal mit dem Fehler 4 Az behaftet sein kann. Man
muB also rechnen mit z = z, + 4z.

15



O BEISPIEL 2/4:
Es sei z = (135,44 4+ 0,01) m.
Die absolute Fehlerschranke Az betrigt 0,01 m. Man kann demnach das
MeBergebnis in diesem Fall nur bis auf eine Genauigkeit von 41 cm
angeben. Das bedeutet, daB x zwischen 135,43 m und 135,45 m liegt.

Neben den Begriffen absoluter Fehler und absolute Fehlerschranke verwendet
man noch weitere Begriffe bei Fehlerbetrachtungen.

> DEFINITION 2/3:
Der relative Fehler ist der Absolutbetrag des Quotienten aus £ und z:

Da der exakte Wert x nicht bekannt ist, setzt man in diese Formel niherungsweise
%, ein, und man erhilt

&

To

é~

Diesen relativen Fehler driickt man gewohnlich in Prozent aus:

8~ 100|150

Zo

Man kann so Naherungswerte hinsichtlich ihrer Genauigkeit vergleichen.
Auch fiir den relativen Fehler kann man eine Schranke angeben. Die Schranke fiir
den relativen Fehler ist

Az . . Az
6z =—  oder naherungsweise dr~ —.
|| ol

Es gilt also

O BEISPIEL 2/5:
Es sei z = (135,44 4+ 0,01) m. Die relative Fehlerschranke ist in diesem
Fall

Az 0,01

Zo

oz ~

~ 0,0001; also 0,01%.

5
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Falls man die Rechnung mit Naherungswerten durchfiihrt, ist das Resultat auch
nur angenéhert richtig. Die Ungenauigkeit des Ergebnisses hingt im wesentlichen
von den Fehlern ab, die in die Rechnung eingehen. Natiirlich entstehen auch noch
Fehler durch das Runden im Laufe der Rechnung, und es kénnen auch Fehler da-
durch entstehen, daB eine Aufgabe durch eine sogenannte Ersatzaufgabe approxi-
miert, d. h. angendhert werden my8.

Bei der Angabe der Ergebnisse ist es notwendig, sinnvoll zu runden, und es muB
das Ergebnis mit einer sinnvollen Genauigkeit angegeben werden.

Man unterscheidet Eingangsfehler, numerische Fehler (oder Rechenfehler), Ver-
fahrensfehler und vollstindige Fehler.

Eingangsfehler heifen Fehler, die beim Losen von Aufgaben durch ungenaue
Anfangsdaten entstehen. Dabei versteht man unter den Anfangsdaten die Gesamt-
heit aller GroBen, die gegeben sein miissen, um die geforderte Losung einer Aufgabe
zu erhalten.

Numerische Fehler heiSen Fehler, die durch Ungenauigkeiten im Rechengang ent-
stehen.

Verfahrensfehler heien Fehler, die dadurch entstehen, daB man eine Aufgabe
durch eine Ersatzaufgabe approximiert.

Der vollstindige Fehler einer Losung setzt sich aus Eingangsfehlern, numerischen
Fehlern und Verfahrensfehlern zusammen.

In der nun folgenden Betrachtung soll gezeigt werden, wie sich Eingangsfehler im
Falle der Grundrechenoperationen auf die Rechnung auswirken.

Es seien 2, und y, die Naherungswerte, ¢, = z, — z und ¢, = y, — y die absoluten
Fehler sowie Az und Ay die absoluten Fehlerschranken.

Fiir die absoluten Fehler bei Summe und Differenz erhilt man dann

iy =@t Y) — Ly =¢eT¢&,
wenn mit &,,, der absolute Fehler der Summe bzw. Differenz bezeichnet wird.
Nach der Dreiecksungleichung?) gilt.

lessyl < leal + |yl < Az + dy .
Damit ergibt sich als ahsolute Fehlerschranke fiir Summe bzw. Differenz

> iA(z;ty)§Aa:+Ay. !

[m} BEISPIEL 2/6:
Es seien ¢ = (5,55 4+ 0,01) m und y = (4,45 4- 0,01) m zwei MeBwerte
mit den angegebenen absoluten Fehlerschranken.
Die Fehlerschranke der Summe bzw. Differenz betrigt dann +0,02 m.
Die relative Fehlerschranke der Summe betrigt

1) Falls a und b reelle Zahlen sind, dann gilt |a + b| < |a| + |b|.

2 (001712) 17



0,02

6(z+y)~-—_0002(02%
und die der Differenz
6(x—y)~0—02—0018(l 8%) .

Der relative Fehler der Differenz kann also wesentlich groBer sein als der relative
Fehler von z und y.
Bei den Rechenoperationen zweiter Stufe erhilt man als absolute Fehlerschranke
des Produktes x - y durch dhnliche Uberlegungen

(%o — &2) (Yo — &) = %Yo — (620 + 4% — €28) ,
also

Ez.y = Tofy + Yo'z — Ez€y 5
wobei ;. , der absolute Fehler des Produktes ist.
Weiter ergibt sich?)

lez. yl = 120l eyl + |9l le2] + leal |&y

= || Az + |yol Ay + 4z - Ay,

also

Az - y) S 7| Az + |yl dy + Az - Ay . ,
Falls 42 und Ay kleine Werte sind, was in der Praxis im allgemeinen der Fall ist,
kann das Produkt Az - 4y vernachlassigt werden, und es ergibt sich

> Az - y) = |zl Ay + |yol 4z .

Fiir mehr als zwei Faktoren sieht das Ergebnis analog aus. Bei drei Faktoren gilt
zum Beispiel

A -y - 2) = |Yozol Az + |202| Ay + |26yl Az .

Als Fehlerschranke fiir den Quotienten z ergibt sich naherungsweise, ohne daB
wir das hier herleiten, y

A (i)é 190l Az + 25| Ay .
vy~ %

1) Fiir das Rechnen mit Absolutbetrégen gilt |a - b] = |a| - |b| und die Dreiecksunglei-
chung, wobei a und b reelle Zahlen sind.

18



Wenn man den Tavrokschen Satz kennt, lassen sich die hier angegebenen Formeln
fiir die absoluten Fehlerschranken bei Summe, Differenz, Produkt und Quotienten
sehr leicht herleiten. .

Man bestimmt dazu den absoluten Fehler und die absolute Fehlerschranke fiir
eine Funktion mit mehreren unabhingigen Variablen. Sind in der Funktion

Y = f(@1, Ty, .., Tn)

von n Veranderlichen die z;, %, ..., z, die exakten Werte und Az, Az,, ..., Az,
die Fehlerschranken, so da8 die Werte

2y 4 Ay, 2y + Az, ..., 20 + Azy

gemessen wurden, so ergibt sich, wenn man die Funktion in eine TAYLOR-Reihe
entwickelt und nach dem linearen Glied abbricht (man muB allerdings voraus-
setzen, daB f(x,, ..., z) stetige partielle Ableitungen hat),

| |

1 hid 8f(y, ..., Tn) |
Ay S Y Ay |07
' v= éx' ’ 8z ‘
Fir y = f(z), %) = @, + 2,
erhalt man
Ayg}ﬂ Azy + [P A2, = Az, + Aay,
0, 0z,

tir y = f(z), 7) = 7 — 2,:
Ay = Az, + Az, ,
fir y = f(zy, 7) = 2 - 2,:

Ay <ilzg Azy + |2,| A2, .

und fiir y = f(z,, 7) = 2
Zy

dy = \l Az,
T3

4z, + }-%

oder

|2,| Az, + |2,| Az,
dy = p .

Das sind die Formeln, die vorn fiir die Fehlerschranken von Summe, Differenz,
Produkt und Quotienten angegeben wurden.

Die hier zusammengestellten Formeln fiir die absoluten Fehlerschranken von
Summe, Differenz, Produkt und Quotienten geben uns die Moglichkeit, fiir gewisse
Aufgaben eine Fehlerabschatzung durchzufiihren. Die angegebene allgemeine
Formel gibt die Moglichkeit, den maximalen absoluten Eingangsfehler fir f(z,, ..., 2s)
zu bestimmen.

Die Fehleruntersuchung soll nun noch an einem einfachen Beispiel erlautert
werden. ’
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2.3.
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BEISPIEL 2/7:

Es ist der Ausdruck f= ﬂ mit absolutem und relativem Fehler zu
berechnen, wenn ¢

a=20+4+01;56=40+02und c=25+0,1

gilt.
Losung:
2.4
="_=32
f 5
und
Af = c-A(ab)-l—ab-Ac_c(a-Ab+boAa)+ab-Ac
f= c? h c?
=2,5(2-0,2+4-0,1) +2.4.0,1 =£=0,448%0,5.
6,25 6,25
Um den maximalen Fehler zu erfassen, wurde aufgerundet.
A4 0,5
6x = !T/ = ﬁ= 0,156 oder 15,69%,.

Es gilt damit f = (3,2 + 0,5).

Aufgaben und Auftrige

. Wiederholen Sie das Losungsverfahren fiir zwei lineare Gleichungen

mit zwei Variablen!
Geben Sie fiir das Gleichungssystem

or + by =c¢
a,x + by = c,

Losungsformeln an!
Wie lautet die Endprobe ?

. Es sind die Polynome P(x) = ax + b und Q(z) = ¢z + d zu multipli-

zieren.
Wie lauten die Formeln zur Berechnung der Koeffizienten «, # und y
des Polynoms

P(z) - Q@) = aa® + fx + p? L)

. Die Gleichung 2% — 262? + 25 = 0 kann mit Hilfe der Substitution

#® = 2 auf eine quadratische Gleichung zuriickgefiihrt werden.
Losen Sie die Gleichung! (L)
Geben Sie so wie im Beispiel 2/1 eine Aufgliederung des Algorithmus an!



Geben Sie in dhnlicher Weise eine Aufgliederung des Algorithmus zur
Losung der Gleichung z* 4 a2? 4+ b = 0 an!

. Wie groB ist der relative Fehler, der bei der Berechnung einer Kreis-
flache gemacht wird, wenn r = (76,0 4 0,2) cm und » = 3,14 + 0,005
gilt ? (L)

. Wie groB sind absoluter und relativer Fehler bei der Berechnung von
s=l
y3+1

wenn V§ durch den auf 1,732 gerundeten Wert angenabert wird ? (L)
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3 o Grafische Darstellung von Algorithmen

Wenn die mathematische Formulierung zur Lésung einer praktischen Aufgaben-
stellung vorliegt und das Verfahren zur Lésung ausgewahlt ist, dann wird man den
Algorithmus fiir das Losungsverfahren aufstellen.

> DEFINITION 3/1:
Ein Algorithmus ist eine Vorschrift zur Losung einer Aufgabe. Er enthalt
die Gesamtheit von Regeln und Formeln fiir das Losungsverfahren. Die
Vorschrift muB aus einer eindeutig bestimmten Folge von Grundoperatio-
nen bestehen, mit deren Hilfe man schrittweise die Aufgabe 15sen kann.
Die Vorschrift mu8 vollstindig sein, und sie muB sich mit endlich vielen
Regeln bzw. Formeln beschreiben lassen.

Einfache Algorithmen liegen vor bei der Anwendung der Grundrechenoperationen,
beim Losen eines linearen Gleichungssystems von zwei Gleichungen mit zwei Varia-
blen und bei dem Verfahren zur Berechnung der Quadratwurzel nach NEwTON
(Beispiel 2/2, Seite 13).

Bei der Aufbereitung des jeweiligen Verfahrens fiir die Rechnung mufl man dieses
in Einzelschritte zerlegen. Man muB den Rechenablauf richtig durchdenken.
Vor der Aufstellung des Algorithmus ist es zweckmaBig, das Verfahren in Grund-
operationen zu zerlegen.

> DEFINITION 3/2:

Unter Grundoperationen sollen hier die Grundrechenarten und die GréB8er-
und Kleinerbeziehung verstanden werden.

Der Algorithmus wird dann formuliert und am besten grafisch dargestellt.

22



> DEFINITION 3/3:

Die grafische Darstellung des Algorithmus heiBt Programmablautplan
oder FluBbild.

Wir werden diese grafische Darstellung auch kurz Programm nennen. Der Pro-
grammablaufplan ist Grundlage sowohl fiir die Durchrechnung des Verfahrens als'
auch, wenn das notwendig ist, fiir die programmtechnische Aufbereitung des Ver-
fahrens fir Rechenautomaten, also fiir die Programmierung des Verfahrens. Er
ist unabhingig vom jeweiligen Automaten, den man einsetzt, und er ist ein wich-
tiges Hilfsmittel fiir die Anwendung mathematischer Verfahren in der Praxis.

Die grafische Darstellung von Algorithmen soll hier betrachtet werden. Zuerst
werden einige Hilfsmittel, nimlich die Sinnbilder, Elemente oder Symbole fiir
Programmablaufpline zusammengestellt und erliutert. AnschlieBend werden
einige Beispiele fiir die Aufstellung von Algorithmen und deren grafische Darstel-
lung angegeben.

3.1.  Sinnbilder fiir Programmablaufpléne

Die Programmablaufpliine als grafische Darstellung von Algorithmen setzen sich
aus Sinnbildern zusammen. Diese Sinnbilder, auch Elemente oder Symbole ge-
nannt, sind also Bausteine des Programmablaufplanes, und sie dienen zur Dar-
stellung bestimmter Operationen.

Wir wollen einige Sinnbilder hier zusammenstellen und erldutern.

Programmlinie: Die Programmlinie (Bild 1) gibt den Ablauf des Programmes bzw.
des Algorithmus an. In der Regel verlauft sie von oben nach unten, und sie ver-
bindet die Sinnbilder fiir die Operationen.

Ergibtanweisung: Die Ergibtanweisung wird mit Hilfe des Ergibtzeichens := ge-
bildet. Es wird aus bekannten GroBen auf der rechten Seite der Anweisung die
links stehende GroBe berechnet. Der links stehenden Variablen wird also der Wert
zugeordnet, der sich bei Berechnung des rechts stehenden Ausdrucks ergibt.

Eingabe
NNz
Ausgabe
a,bc
—
Bild 1 Bild 2 Bild 3
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O BEISPIEL 3/1:
»% := a + b° bedeutet, daB zu einer beliebigen Zahl a die Zahl 5 addiert
wird. Das Ergebnis wird mit « bezeichnet.

O BEISPIEL 3/2:
% := ¢ 4+ 1 bedeutet, daB zu einem Wert ¢ die Zahl 1 addiert wird und
daB das Ergebnis der neue Wert ¢ ist (Der Wert ¢ wird also um 1 erhéht).

[m] BEISPIEL 3/3:
k := 5n — 4 bedeutet, daB » mit 5 multipliziert wird. Davon wird 4 sub-
trahiert, und das Ergebnis wird mit & bezeichnet.

Ergibtanweisungen sind keine Gleichungen.

Organisationskdstchen: Sie dienen der Beschreibung von Anfang und Ende des
Programmablaufplanes (Bild 2).

Beim Start-Symbol beginnt die Programmablauflinie (das Kistchen hat also nur
einen Ausgang), beim Stopp-Symbol endet sie (das Kastchen hat nur einen Ein-
gang).

Ein- und Ausgabekiistchen: In die Ein- und Ausgabekastchen wird eingetragen,
ob es sich um Ein- oder Ausgabe handelt und welche GroBen ein- oder ausgegeben
werden (Bild 3). Haufig schreibt man auch ,lies‘“ und ,,drucke* in die Kastchen.
Die Bezeichnung Ein- und Ausgabe kommt daher, weil die Programmablaufplane
ja Grundlage sind fiir die Programmierung bei Automaten und weil dort dann ge-
wisse Daten ,,eingegeben‘‘ (,eingel ‘) werden miissen bzw. gewisse Ergebnisse
,,ausgegeben‘‘ (,,ausgedruckt‘) werden. Wir werden diese Kistchen verwenden
zur Erfassung der GroBen, die in die Rechnung eingehen bzw. die nach Ablauf der
Rechnung als Ergebnisse zur Verfiigung stehen miissen.

Operationskistchen: In den Operationskistchen werden die Regeln des Algorith-
mus, die Operationen, genau beschrieben (Bild 4). Das kann geschehen mit Hilfe
von Formeln, mit Worten oder in einer anderen geeigneten Form. Dabei verwendet
man die Ergibtanweisung. Operationskastchen haben Ein- und Ausgang.

- . Bestimmung von x sung der Gleichung
Xima+ 5 aus axzobxgéc=a I

2:= f(x,y)

T

Bild 4 Bild &




Sinnbild fiir Unterprogramme: Umfangreiche Aufgaben muB man in Teilprobleme
(Teilprogramme) zerlegen. Zur Beschreibung von solchen Teilprogrammen werden
spezielle Sinnbilder verwendet (Bild 5). Diese Sinnbilder verwendet man auch, wenn
beim Einsatz von Rechenautomaten sogenannte Unterprogramme, Programme fiir
sténdig wiederkehrende Standardaufgaben, Verwendung finden. Jede Rechen-
anlage hat eine umfangreiche Bibliothek solcher Programme. Bei Unterprogrammen
werden die Organisationskastchen durch Kreise dargestellt.

Alternativkiistchen: Diese Alternativkastchen heiBen auch Fragekistchen, Sinn-
bild fiir Testanweisung oder Vergleiche (Bild 6). Dieses Sinnbild hat einen Ein-
gang und zwei Ausginge (Ja-Ausgang und Nein-Ausgang). Die Kéastchen nehmen
die im Algorithmus auftretenden Fragen (Tests) auf. Der Vergleich wird also in das
Kistchen in Form einer Frage eingetragen. Die Frage muB so formuliert sein, daB
es nur zwei mogliche Antworten (ja oder nein) geben kann. Es sind sogenannte
Alternativiragen. Die Antwort auf eine solche Frage, man spricht auch’ von einem
Test, ist also immer eindeutig: ja oder nein.

Bild 6

Das Programm wird bei solchen Alternativkastchen verzweigt. Man spricht dann
von einem verzweigten Programm, wihrend die anderen Programme auch lineare
Programme heiBen. Die Zweige werden mit j (ja) und n (nein) gekennzeichnet.
Mit Hilfe dieser Kastchen ist es also moglich, verzweigte Programmablaufplane
(Programme) darzustellen. Auch Zyklen kann man organisieren. Ein Zyklus
(Schleife) entsteht dann in einem Programmablaufplan, wenn ein Teil desselben
wiederholt durchlaufen wird. Man spricht von zyklischen Programmen. Dabei
konnen Zyklen auftreten, bei denen die Durchlaufzahl aus dem Programmablauf-
plan sofort ablesbar ist. Die Anzahl wird gezahlt durch Vergleich mit einer vorge-
gebenen Zahl. Bei anderen Zyklen ist diese Anzahl der Durchlédufe nicht ablesbar.
Die Anzahl kann z. B. abhingen von der Genauigkeitsforderung, die man an das
Ergebnis stellt.

Konnektoren: Nicht immer ist es méglich, den Programmablaufplan auf einer
Seite unterzubringen. Dann unterbricht man die Programmablauflinie und setzt
sie auf der nichsten Seite fort. Das Symbol fiir die Unterbrechung ist ein Konnek-
tor (Bild 7). Mit Hilfe der Ziffern erfolgt die Numerierung der Konnektoren. Endet
eine Programmablauflinie z. B. beim Konnektor mit der Ziffer 1, so wird sie beim
folgenden Konnektor mit der Ziffer 1 fortgesetzt.

——@ Bild 7



3.2

Beispiele fiir Programmablaufpline

In diesem Abschnitt soll das Aufstellen des Algorithmus und des zugehérigen
Programmablaufplanes an Beispielen erliutert werden.

D
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BEISPIEL 3/4:

Von einem Rechteck mit den Seiten @ und b sind Flacheninhalt A und
Umfang u zu berechnen.

Beschreibung des Algorithmus:

Flicheninhalt und Umfang werden nach den Formeln berechnet:
A=a-b und u=2(a+Db).

Aus diesen Formeln 1aBt sich der Algorithmus ablesen: Die Werte a und

b sind einzugeben (gehen in die Rechnung ein). 4 und » werden nach
den Formeln berechnet und ausgegeben (Bild 8).

BEISPIEL 3/5:

Es sind die Polynome P(z) = az + b und Q(x) = cz + d zu multipli-
zieren.

Beschreibung des Algorithmus:

Es gilt P(z)-Q(x) = (ax + b) (cx + d) = ax? + fz + y mit « = ac,

Eingabe
a,bcd

B:=ad+bc

Ausgabe
a7

Bild 9



B = ad 4 bc und y = bd. Die Werte a, b, c und d, also die Koeffizienten,
gehen in die Rechnung ein. Aus ihnen werden nach den angegebenen
Formeln «, # und y berechnet. Diese Koeffizienten des quadratischen
Polynoms werden ausgedruckt (Bild 9).

[m] BEISPIEL 3/6:
Es ist die quadratische Gleichung A2? + Bx 4 C = 0 (4, B, C reell) zu
l6sen.
Beschresbung des Algorithmus (Bild 10):
In die Rechnung gehen die Koeffizienten 4, B und C ein. Falls 4 = 0
gilt, erhdlt man Bz + C = 0 und daraus z = — % (B #0).

Falls 4 =+ 0 gilt, ist Division durch 4 moglich, und man muB die Glei-
chung z? + px + ¢ = 0 1ésen, wobei

B
T4

c
d =~ gilt.
P un ¢=6

Lies ay,--,a,;
by, - byin

Lésung der L’ﬁ,x-‘--%t}lﬂ‘ l drucke §
ax+b=0 ‘
B Ausgabe
i :

Bild 10 Bild 11
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Als Losungen erhilt man

—
%y,p = —%ﬂ:l/(%) —9.

Falls D = % — g = 0 ist, erhilt man reelle Wurzeln, sonst komplexe.

Falls D = 0 werden «, und z, berechnet und als reelle Wurzeln ausge-
druckt, falls D < 0 ist, wird die Rechnung gestoppt.

Man kann die Beschreibung des Algorithmus auch in der folgenden Kurz-
fassung angeben:

(1) lies 4, B, C

(2) falls 4 = 0, dann (3), sonst (4)
(3) Loésung von ax + b = 0, wobei @ := Bund b := C

(4) p:=§ und ¢ :=§

®) D= g)— q

(6) falls D = 0, dann (7), sonst (9)
(7)x1:=—%+y'ﬁ und “2:=——g—‘]/5
(8) drucke z, und z,

(9) stopp

BEISPIEL 3/7:

Es sollen zwei n-dimensionale Vektoren
a = (a, @y, ..., Ap) und b = (by, by, ..., bn)
skalar nach der Formel
n

a-b=(ay,ay..,an) - (by, by, ..., bp) = X a;- b;

i=1
multipliziert werden, und das Ergebnis ist anzugeben (auszudrucken).
Beschreibung des Algorithmus (Bild 11):
Zur Berechnung des skalaren Produktes miissen die Werte a, ..., a, und
by, ..., ba zur Verfiigung stehen. (Die Werte miissen also, wenn man Auto-
maten verwendet, ,.eingelesen‘‘ werden). Die Berechnung des Produktes
kann man mit Hilfe eines Zyklus schrittweise durchfiihren. Man berech-
net das Produkt nach der Formel
S:=8 =+ a; - b( N
wobei man im ersten Schritt S := 0 setzt und ¢ dann die Werte 1 bis n
durchlaufen 1a8t. Man erhalt so

§:=0, S:=8S4a,-b, S:=8+a,-b,,..., S:=8+an-ba.



Der Zyklus wird n-mal durchlaufen. Das Ergebnis § als skalares Pro-
dukt der Vektoren a und b steht dann zur Verfiigung, kann ,,ausge-
druckt* werden.

Der Algorithmus kann wieder in Kurzfassung aufgeschrieben werden:

(1) Les ay, @y, ..., @a; by, by, ..., by und 7
(2)i:=1und §:=0 ’
3)S:=8+a-b;

(4) falls ¢ < n, dann (5), sonst (6)

(5) i :=i+ 1, dann (3)

(6) drucke S

(7) stopp

BEISPIEL 3/8:

Aus der Menge der voneinander verschiedenen Zahlen a,, ..., a, ist die
groBte Zahl (Maximum) auszuwihlen. Das Programm ist so aufzubauen,
daB am Anfang die Zahlen g, ...,a, in den Automaten ,eingelesen‘
werden.

Beschreibung des Algorithmus (Bild 12):
(1) lies »

2)i:=1

(3) lies a;

(4) ¢ < n, dann (5), sonst (6)

(6) ¢+ :=1 + 1, dann (3)

(6) max :=a,

(7)1:=2

(8) max < a;, dann (9), sonst (10)
(9) max := a,

(10) max := max

(11) ¢ < », dann (12), sonst (13)
(12) ¢ :=1¢ + 1, dann (8)

(13) drucke max := max {a,, ..., ap}
(14) stopp

BEISPIEL 3/9:

Es ist die Wurzel y = }z (x > 0) nach einer von NEWTON angegebenen
Vorschrift (* Beispiel 2.2., Seite 13) naherungsweise mit einer Genauig-
keit von & zu berechnen. Dabei soll unter ,,mit einer Genauigkeit von
&' verstanden werden, daB die Differenz zweier aufeinanderfolgender
Naherungen kleiner als ¢ ist.
Nach NEwToN kann man Naherungswerte fiir y = Jz nach der Formel
Yns1 =l(y. + 1) fir n=0,1,2,.. und y, ==z

2 Yn,

berechnen.
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Bild 13

Bild 12

Der Algorithmus fiir diese Vorschrift muB aufgeschrieben werden.
Beschreibung des Algorithmus ( Bild 13):

(1) lies x, ¢ (8) stopp

2) n:=0

() yn:==x

2
(5) 1Yn+1 — Yal < e, dann (7), sonst (6)
(6) Yn := Yp41, dann (4)
(7) drucke yp 41

1
@) Yoin :=—(yn n yﬁ)



Beim Beispiel 3/9 muB im Algorithmus der Zyklus so oft durchlaufen werden,
bis die gewiinschte Genauigkeit erreicht ist. Es liegt also ein zyklisches Programm
vor, bei dem die Anzahl der Durchlaufe nicht gegeben ist.

3.3.  Aufgaben

1. Stellen Sie einen Programmablaufplan (PAP) zur Lésung eines linearen
Gleichungssystems von zwei Gleichungen mit zwei Variablen auf!

2. Stellen Sie fiir das Beispiel 3/6 auf Seite 27 einen neuen Algorithmus
auf, bei dem die vier Fille
(1) 4=0; B=0, 2) A=0; B=+0,
) 4+0; B=0, (4 A4%0;B%+0
betrachtet werden!
Stellen Sie einen Programmablaufplan fiir diesen Algorithmus auf!

O 3. Es ist ein PAP zur Polynommultiplikation aufzustellen

a) fiir zwei Polynome dritten Grades und
b) fiir zwei Polynome n-ten Grades!

O 4. Stellen Sie einen PAP zur Lésung der Gleichung ax? + b2* + ¢ =0
auf!
Hinweis: Es ist die Substitution 22 = z durchzufiihren.
Fallunterscheidungen sind in dhnlicher Weise wie im Beispiel 3/6 not-
wendig.

O 5. Aus einer gegebenen Zahlenmenge a,, a,, ..., a, sind die groBte und
die kleinste Zahl auszuwihlen.
a) Schreiben Sie den Algorithmus auf!
b) Stellen Sie einen PAP auf!

31



lJ:. Gleichungen mit einer Variablen

Einfache Gleichungen mit einer Variablen konnen rechnerisch und grafisch gelést
werden.
Als Losung der linearen Gleichung

ax+b=0(a=+0)
erhalt man den Wert
= ——.
a
Bei der Losung der quadratischen Gleichung
2?4+ pr+g=0
erhalt man als Wurzeln

-
z,.2=-§iV(g)—q,

2
die, falls die Diskriminante D = (g) — g =0 ist, reell sind.

Bei praktischen Aufgabenstellungen muB8 man sehr oft algebraische Gleichungen
héheren Grades, also Gleichungen der Form

(@) = ap2® + a1t + ..+ @z +a,=0
lésen.
Die Koeffizienten ay, a,, ..., an sind reelle Zahlen, und = ist eine natiirliche Zahl,
f(x) heift Polynom.
AuBerdem treten neben algebraischen Gleichungen auch transzendente Glei-
chungen, z. B. Gleichungen der Form

z:Inz=a, sinz+4+az=cosz, x —tanz =0, 2% =4z,
auf.
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In den meisten Fillen ist man gezwungen, die angegebenen Gleichungstypen
néaherungsweise zu losen. Kenntnisse iiber das Losen von Gleichungen mit einer
Variablen mit Hilfe von Naherungsverfahren und Fertigkeiten im Umgang mit
solchen Verfahren sind fiir die praktische Anwendung der Mathematik not-
wendig.

In diesem Abschnitt werden wir solche Verfahren zur niherungsweisen Lésung
von Gleichungen mit einer Variablen fiir algebraische und transzendente Glei-
chungen kennenlernen. Dabei werden nur reelle Losungen (Wurzeln) gesucht,
komplexe Wurzeln werden nicht ermittelt.

Es wird also die Gleichung

f@)=0
betrachtet, und es werden alle reellen Werte &; gesucht, so da8
fé)=0

gilt.

4.1.  Grafische Losung

Kenntnisse iiber Funktionen und deren Darstellung in einem Koordinatensystem
sind eine wichtige Voraussetzung firr das grafische Losen von Gleichungen mit
einer Variablen.

Es sollen deshalb an dieser Stelle zunéchst einige Wiederholungsfragen gestellt
werden.

O 1. a) Wie ist eine Funktion definiert? Nennen Sie Beispiele fiir Funk-
tionen!
b) Wie ist eine lineare Funktion definiert ? Wie ist eine quadratische
Funktion definiert ?
¢) Was versteht man unter dem Definitionsbereich und dem Werte-
bereich einer Funktion ?

(@) 2. In welcher Form kann man Funktionen darstellen? Geben Sie Bei-
spiele an!

O 3. a) Wie kann man die lineare Gleichung ax + b = 0 grafisch 16sen ?
b) Losen Sie die Gleichungen
3 +5=0, 3—-5=0, 3z=0
grafisch!

Die Methode, die zur grafischen Loésung einer linearen Gleichung mit einer Va-
riablen angewandt wurde (Aufgabe 3), kann auch zur grafischen Losung einer
quadratischen Gleichung der Form 2? + pz + ¢ = 0 benutzt werden. Man zeich-
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net den Graph der Funktion y = 22 + pz + ¢ in ein kartesisches Koordinaten-
system. Die Abszissen der Schnittpunkte des Funktionsbildes mit der z-Achse sind
die reellen Losungen der Gleichung 22 + pz + ¢ = 0.

(@) 4. Losen Sie grafisch die Gleichungen
a)a? —2r —24=0, b)a?—Bzx+6=0, c) 2 — 12,96 = 0!

Eine Erleichterung beim Zeichnen des Graphen besteht darin, daB man eine
Schablone fiir y = 22 verwendet und die Scheitelpunktskoordinaten —%;
—m2

—f— + q) des Graphen von y = 2% + pz + ¢ ermittelt. Da das Bild der Funk-

tion y = 2? kongruent zum Bild der Funktion y = 22 + pz + g ist, braucht man
nur die Schablone so anzusetzen, daB der Scheitel der Schablone auf den Punkt

_p?
S (—‘—g-; Tp- + q) zu liegen kommt. Die Parabelachse muB parallel zur y-Achse

verlaufen.

(@) 5. Losen Sie mit Hilfe einer Schablone fiir y = 2% die Gleichungen
a)a? —42+4+3=0, b) 22 -2z —4=0, c) 22 + 3z = 0!

(@) 6. Stellen Sie fiir die folgenden Funktionen Wertetafeln auf!
a)y=3r+4 bly=a*—4r+3 c)y=z+sinz
dyy=234+22—38r e)y=lnz+22 f)y=i/5+3

In den Aufgaben 3 und 4 dieser einleitenden Wiederholung wurden lineare und
quadratische Gleichungen grafisch gelost. Entsprechend konnte man zur gra-
fischen Losung einer beliebigen Gleichung f(x) = 0 den Graph der Funktion
y = f(z) in ein Koordinatensystem einzeichnen und die Schnittpunkte der Kurve
mit der z-Achse ermitteln. Die Abszissen dieser Schnittpunkte sind die Null-
stellen der Funktion y = f(z). Sie geben die reellen Wurzeln &, der Gleichung
f(z) = 0 an (Bild 14a).

Bild 14a
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Die grafische Losung liefert nur Naherungswerte. Solche Naherungswerte kann
man mit Hilfe numerischer Verfahren verbessern. Man kann auch nach dem Graph
leicht zwei Zahlen a; und b, finden, zwischen denen jeweils nur eine Wurzel &
eingeschlossen ist.

> DEFINITION 4/1:

Intervalle (a, b)), in denen jeweils nur eine Wurzel & der Gleichung
f(z) = 0 liegt, nennt man Intervalle der abgespaltenen Wurzeln.

Man spricht vom Abspalten der Wurzeln einer Gleichung. Fir den im Bild 14a
angegebenen Fall gilt z. B.

a <§<b, ay < & < by ...

Reicht die Genauigkeit des Naherungswertes fiir die Warzel einer Gleichung nicht
aus, 50 kann grafisch diese Genauigkeit erhoht werden, indem man auf der z-Achse
eine MaBstabinderung in der Form durchfiihrt, daB man das jeweilige Intervall
,,auseinanderzieht‘‘ (Bild 14b). Dadurch ist es moglich, den Schnittpunkt der Kurve
mit der z-Achse genauer abzulesen.

YN\ y =flx) y=f(x)
1
i g’n 1 1 g‘ i
/) 1\2 3 x 1 2 x
L4 By ied Bild 14b

Haiufig wird man bei der praktischen Durchfithrung der grafischen Losung einer
Gleichung

flx) =0

8o vorgehen, daB man f(z) in der Form
) = (=) — h(=)

darstellt. Die Gleichung
hi(@) = h(=)

ist dann &quivalent zur Ausgangsgleichung.

1) Ein Intervall (@, b) ist die Menge aller reellen Zahlen z, fiir die gilt ¢ < z < b. Ein
solches Intervall, bei dem die Zahlen a, b selbst nicht zum Intervall gehoren, heiBt
offenes Intervall.

Ein abgeschlossenes Intervall, in Zeichen <a, b), ist die Menge aller reellen Zahlen z,
fir die gilt a < 2z < b.

Als halboffenes Intervall <a, b) bzw. (@, b) bezeichnet man die Menge aller reellen
Zahlen z, fir diea < 2 < b bzw.a < z < b gilt.

3¢ 36



Man ermittelt die Schnittpunkte der beiden Kurven f,(z) und f,(z). Die Abszissen
dieser Schnittpunkte sind dann die Nullstellen der Funktion y = f(z) und damit
also die reellen Wurzeln der Gleichung f(z) = 0. Die Aufspaltung der Funktion-
f(z) in f,(x) und f,(x) muB so erfolgen, daB die Bilder von f;(z) und f,(x) moglichst
leicht zu konstruieren sind.

O BEISPIEL 4/1:
Die Gleichung 22 + 0,52 — 3 = 0 soll grafisch gelost werden.
Wir formen 22 + 0,52 — 3 = 0 aquivalent um,
2= — 0,52+ 3,
und betrachten die Funktionen
f: y=2* und
fa: y=—05z+3.
Die Graphen beider Funktionen werden in ein gemeinsames Koordinaten-
system eingezeichnet (Bild 15). Die Abszissen der Schnittpunkte liefern
die reellen Losungen der Gleichung
22+ 06z —3=0.
.
y y
‘ +
y=x? y=flx) y=flx)
3
2] y =-05x+3
14
——
-3 X -1 0 ﬁfx,é 7 x 0 a Xy b X
Bild 15 Bild 16

Nach der Zeichnung kann man auch bei dieser Methode zwei Zahlen a und b
ermitteln, zwischen denen die Wurzel jeweils eingeschlossen ist (Bild 16).
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! ZUSAMMENFASSUNG:

Man kann die Gleichung

f®) =0
i in folgender Weise grafisch 16sen:
| 1. Losung durch grafische Darstellung der Funktion y = f(z) und durch
I anschlieBendes Ablesen der Nullstellen der Funktion.
| 2. Lésung durch Aufspaltung der Gleichung f(z) = 0 in f,(z) = f,(z) und
| durch Darstellen der Funktionen f,(z) und fy(z) sowie anschlieBendes
’ Ablesen der Abszissen der Schnittpunkte der Graphen dieser Funktionen.

Neben diesen beiden grafischen Losungsmethoden wird auch das grafische Ana-
logon zur regula falsi verwendet.

Bei diesem Verfahren verbessert man eine Naherungsldsung, die im Intervall
(ay, by) liegt, durch MaBstabsinderung auf der z-Achse (,,Auseinanderziehen* des
Intervalls).

Da aber das stindige Zeichnen der Kurve y = f(z) im jeweiligen Intervall sehr
aufwendig ist, wendet man ein verkiirztes Verfahren an.

In den die Wurzel & enthaltenden Intervallen

(@9, bo), (ay, bl)r vty (@n, bp), ... mit (@, bo) J (ay, bl) P

zeichnet man namlich nicht die Kurve y = f(x) selbst, sondern die Sehnen dieser
Kurve bzw. die Geraden durch die Punkte

Ao(ao- f(%)) und Bo(bov f(bo)) s
Ay(a, fle))  und  By(by, f(b))

Au(an, f@)  und  Ba(b, f(bu)

Die Schnittpunkte dieser Geraden mit der z-Achse liefern die Naherungen
%o, Xy, +vr, Ty, ... fiir & Die Umgebungen der Naherungslésungen ergeben bei Be-
achtung der weiter unten angegebenen Bedingungen gleichzeitig das Intervall,
das durch MaBstabsinderung auf der z-Achse zu vergroBern ist, damit die jeweils
gefundene Naherung weiter verbessert werden kann.

Es soll nun das Verfahren naher beschrieben werden.

Es sei (a,, b,) ein Intervall der abgespaltenen Wurzel, also ein Intervall, in dem
nur die Wurzel £ liegt und auBerdem gelte f(a,)<<0 sowie f(by) >0 (Bild17).
Durch Zeichnen der Sehne durch die Punkte (a,, f(a,)) und (b, f(b,)) erhélt man
den Wert ,, ndmlich den Wert der Abszisse des Schnittpunktes der Sehne mit der
x-Achse. Dieser Wert 2, wird als Ausgangsnaherung verwendet.

Es wird nun das Intervall (a,, b;) so gewihlt, daB gilt z, € (ay, by), (@, b;) € (@, by)
sowie f(a;) < 0 und f(b,) > 0. Durch die letzte Bedingung ist gesichert, daB &
im Intervall bleibf.
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VergroBerung des Intervalls (a;, b,) durch MaBstabsinderung auf der z-Achse und
Bestimmung des Wertes der Abszisse z, des Schnittpunktes der Sehne durch
(a1, f(2,)) und (b, f(b,)) mit der z-Achse liefert die nachste Naherung z;.

Das Intervall (a,,b,) wird nun wieder so gewahlt, daB =, € (ay, b,), (@,, b,) € (ay, by)
sowie f(a,) < 0 und f(b,) > O gilt. Man vergroBert dann auch wieder durch MaB-
stabsanderung auf der z-Achse das Intervall (a,, b,) und bestimmt in analoger
Weise z, und (a3, bs).

Allgemein liefert die VergroBerung von (a,, bs) durch MaBstabsanderung auf der
z-Achse und die anschlieBende Ermittlung des Wertes z, das Intervall (@, 1, by1)

(Bild 17).
En
G Ot /T
l/;. b B ¥
An

Durch die hier angegebene Methode wird grafisch die Naherungslosung der Glei-
chung f(z) = 0 immer weiter verbessert. Der Proze8 kann so lange fortgesetzt
werden, bis die geforderte Stellenzahl der gesuchten Wurzel erreicht ist.

Diese Methode wird haufig angewendet bei der Losung komplizierter transzen-
denter Gleichungen.

B(by ; fiby

Ay (19 i F(ay))

Bild 17

y 7%
Tlx) = x?-2¢~2 fola) = 2 +1
51+ 54
ot ot
4 2l

filx] = x*

Bild 18 Bild 19
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Die Moglichkeit der grafischen Losung einer Gleichung mit einer Variablen soll
nun an weiteren Beispielen erldutert werden.

O BEISPIEL 4/2:
Es ist die Gleichung 2? — 2z — 2 = 0 grafisch zu.l6sen.
Losung (Bild 18):
2
Als Scheitelpunktskoordinaten | — % H— % + q) erhilt man wegen
p=—2undg=—2: zg=1und yg = — 3.
Die Darstellung der Kurve mit Hilfe der Schablone fiir y = 2? kann nun
erfolgen. Die Abszissen der Schnittpunkte dieser Kurve mit der z-Achse
sind die gesuchten Naherungslosungen:
s —0,7 und Ty~ 2,7
m} BEISPIEL 4/3:
Es ist grafisch zu ermitteln, zwischen welchen ganzen Zahlen die Wurzel
2 > 0 der Gleichung
2 -2z —1=0
liegt. Gesucht wird auBerdem ein grober Naherungswert.
Losung (Bild 19):
Das Aufspalten der Gleichung fiihrt zu 2°® = 2z 4 1. Aus der Zeich-
nung sind die ganzen Zahlen und der grobe Naherungswert abzulesen.
Es gilt 1 <, <2 und 7, ~ 1,6.
y 4 4
ot
51+ f(x) =tan x fylx)=x 1, (x) = x2-1
4..
K2 S
fylx) = cos x
2+
1 -+
=Ny AR T A
_1 +.
_2--
x 2x -
Bild 20 Bild 21
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O BEISPIEL 4/4:
Es ist eine Naherungslosung der Gleichung tan z — z = 0 im Intervall
(0, 27) zu ermitteln.
Losung (Bild 20):
Nach Aufspalten der Gleichung in tan z = 2 und Darstellen der Funk-
tionen fy(z) = tanz und f,(z) =« im Intervall (0, 27n) laBt sich der
Naherungswert aus der Zeichnung ablesen. Es gilt 4,0 < z, < 3 7.
Wenn man eine noch genauere Zeichnung anfertigt, z. B. eine MaBstabs-
dnderung auf der z-Achse durchfiihrt, erhalt man 4,4 < 2, < 4,6.

O BEISPIEL 4/5:
Es sind Niaherungswerte fiir die Losungen der Gleichung
22 —1 —cosx =0
zu ermitteln.
Losung (Bild 21):
Man kann die Gleichung darstellen in der Form
22 —1=coszx.
Aus der Zeichnung kann man die Naherungswerte ablesen:

z,~ — 1,2 und n~12.

0O BEISPIEL 4/6:
Die Gleichung 22 — 2z — 2 = 0 ist mit Hilfe des Analogons der regula
falsi grafisch zu lésen. (Gefordert seien zwei Schritte.)
Loésung (Bild 22):
Es wird nur die Losung z, betrachtet. Nach Beispiel 4/2 liegt diese Lo-
sung im Intervall (2;3). Dieses Intervall nimmt man als Ausgangs-
intervall (@, = 2; by = 3). Man zeichnet die Gerade durch 4, (2; f(a,) = — 2)
und B,(3; f(b,) = 1) und erhilt z,, ~ 2,65 sowie das Intervall (a, = 2,6;
b, = 2,8). Als Verbesserung dieser Naherung erhélt man im zweiten
Schritt x,, ~ 2,73.
Man kann natiirlich als Ausgangsintervall auch das Intervall (2,6; 2,8)
zugrunde legen.

Die grafisch gewonnenen Naherungswerte fiir die Losungen von Gleichungen mit
einer Variablen f(z) = 0 kann man mit Hilfe numerischer Verfahren verbessern.
In den nachfolgenden Abschnitten werden drei solche Verfahren betrachtet:
das NEwToNsche Verfahren,

die regula falsi und

ein allgemeines Iterationsverfahren.

Zuerst soll jedoch noch im Abschnitt 4.2. als Spezialfall die kubische Gleichung
betrachtet werden.
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7. Schritt Bot3; 1

sian 2

o =26 27

aq=2
—

A (26 -044)

Mn(2;-2) Bild 22

4.2. Kubische Gleichungen

Wir wenden nun die Ergebnisse des Abschnittes 4.1. auf kubische Gleichungen
an. Eine kubische Gleichung (Gleichung dritten Grades) hat die Form
Ax® 4+ Bx2 4+ Cx+D=0.

Dabei muB man 4 = 0 voraussetzen, denn sonst wire die Gleichung nicht wirklich
vom dritten Grad.

Wenn man die Gleichung durch A4 dividiert und ; =a, % = b und g =c
setzt, so erhalt man die sogenannte Normalform der kubischen Gleichung
2t ax?+bx+c=0.
Die reellen Wurzeln einer solchen kubischen Gleichung zu bestimmen, ist gleich-
bedeutend mit der Aufgabe, die Nullstellen der Funktion
y=2a*+ax* + bx + ¢
zu ermitteln. Auf diese Art und Weise kann man also die kubische Gleichung

grafisch 16sen.

Da lim y = + oogilt, dazwischen weder Unstetigkeitsstellen noch Unendlich-
z++00

keitsstellen liegen, besitzt der Graph mindestens einen Schnittpunkt mit der

z-Achse, die Gleichung also mindest eine reelle Wurzel &,.

Bei unseren Betrachtungen gehen wir nicht von der Normalform der kubischen

Gleichung, sondern von der reduzierten Form

B+pzt+g=0

aus.
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Eine solche Reduktion ist stets méglich durch die Substitution

a
=2 ——.

3
Man erhilt nimlich aus der Normalform

2+ ax*+bxr+c=0

mit Hilfe der Substitution z =2z — ad

3
3 2
(z—%)+a(z—%)+b(z—§)+c=0
und daraus
2a a? a 2a3 c® 2a? a?
: R | —_— — 23 —_— — 2 _ " —_
(z 3z +gz 3z+92 27)+(az 3z—+—9)+
+bz—gl—’+c=0
3
und weiter
a? ab 24°
3 2 ——4+—]=0.
z +(b 3)z+(c 3+27)
Es ist also

a? ab  2a°
)

Die reduzierte kubische Gleichung ist in der Form
P=—pr—yq
einfach grafisch 16sbar. Die reellen Wurzeln sind die Werte der Abszissen der
Schnittpunkte der kubischen Parabel
hz) =2*
und der Geraden
hz)= —pz —q.
Je nach Lage der Geraden zur Parabel erhilt man
o drei Schnittpunkte (drei reelle Wurzeln £;, {; und (),
o einen Schnittpunkt und einen Beriihrungspunkt (eine einfache reelle Wurzel {;
und eine reelle Doppelwurzel {, = ;) oder
o einen Schnittpunkt (eine reelle Wurzel l;; die anderen beiden Wurzeln sind
dann komplex).
Aus der Wurzel { erhalt man die Losung & der Ausgangsgleichung
B +a+bx+c¢c=0,
indem man durch

a
E=C—'§



die Substitution riickgangig macht.
Bei der Losung der kubischen Gleichung kann man auch die nachfolgenden Uber-
legungen verwenden.
‘Wenn £, eine Wurzel der kubischen Gleichung
B 4a4bz4+c=0
ist, dann gilt
B4aft b +o=0.
Subtrahiert man die beiden Gleichungen, so erhalt man
(=* — &) +a(e® — &) + bz — &) =0.
Dieser Ausdruck la8t sich durch (z — £;) dividieren, und man erhalt
z’+az-}_-§1z+a5!+ﬂ+b=0.
Es gilt also
(—&)*+ @+ &)z +ad +E+5]=0.
Damit kann man, wenn £, eine Wurzel der kubischen Gleichung ist, durch Ldsen
der quadratischen Gleichung
224 (a+&)z+ (@5 +&+0)=0
die anderen beiden Wurzeln noch bestimmen.

Die grafische Losung der kubischen Gleichung soll nun an einem Beispiel be-
trachtet werden.

O BEISPIEL 4/7:
Es ist die kubische Gleichung 4z® — 242? 4 8z + 20 = 0 zu losen.
Losung:
Man erhilt die Normalform, indem man durch 4 = 4 dividiert, also

2 —622+2x+5=0.

Durch Substitution von z = z — % = 2z + 2erhalt man die reduzierte

Form
#—10z—7=0,
da

p—P 212 10
p=b—g=2-12=—
und

ab  2a° 12 2

(e -2+ 5+ 2 2. 216=5+4—16=—1.

? (° 3+27) t3m +t4-16

In der Form 2z® = 10z + 7 kann man versuchen, die Losung grafisch zu
gewinnen. Die Graphen von

hiz) =2 und fa(z) =10z + 7
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yA
1 &y ~-07
y="ty(z) =10z +7 y=hlz)=2°
2 6 =4-3
o7-(-5) =
A ~-07-(-§) =1
19

N Yy " + >

-2 -1 0 1 2 z
-1+
-2+

Bild 23

werden gezeichnet, und man erhilt als Wert der Abszisse eines Schnitt-
punktes £, ~ — 0,7 (Bild 23).

Eine Wurzel der Gleichung ist & ~ 1,3.

Mit diesem Niherungswert kann man durch Loésen der quadratischen
Gleichung 2 — 4,7z — 4,11 = 0 als weitere Naherungen &, ~ 5,6 und
& ~ — 0,8 erhalten.

4.3. Das Newronsche Verfahren?)

O 7. Erlautern Sie den Begriff ,,Differentialquotient* (erste Ableitung) von
y = f(z)! Wie kann man die erste Ableitung von y = f(z) geometrisch
deuten ?

1) NewToN, Tsaac (1643—1727), engl. Mathematiker und Physiker, von 1669 an
Professor an der Universitdt Cambridge. NEWTON erwarb sich um die Begriindung
der Differential- und Integralrechnung groBe Verdienste. Als Physiker schlo8
NEwTON mit der Formulierung der Axiome der Mechanik, des Gravitationsg,
und der Entdeckung der Bewegungsgleichungen den Aufbau der klassischen Mechanik
ab. Einige seiner bedeutendsten Werke sind:

1669: Analysis per aequationes (1704 gedruckt)
1685: Arithmetica universalis (1707 gedruckt)
1687: Philosophiae naturalis principia mathematica (1687 gedruckt)
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O 8. Zeichnen Sie den Graph der Funktion y = mx 4 n! Welche Bedeu-
tung haben m und n? Was gilt fiir einen Punkt Py(z,; y,), der auf der
Geraden liegt ?

O 9. Wie ermittelt man die Nullstellen der Funktion y = f(x) ?
Bestimmen Sie die Nullstellen von y = 3z + 2 und von y = 2* — 2z —3!
@)
Wir betrachten nun die Lésung der Gleichung
ftmy=0.
Es sei £ der exakte Wert einer Wurzel dieser Gleichung, d. h., es gilt
f&=o0.

AuBlerdem sei bekannt, da8 & im Intervall (a, b) liegt. Dieses Intervall kann man
z. B. mit Hilfe grafischer Methoden oder mit Hilfe einer Wertetabelle ermitteln.
Beim NEwTONschen Verfahren geht man von einer Naherungslosung z, aus. Diese
Naherungslésung wird verbessert, indem man im Punkt Py(z,; ¥, = f(z,)) die
Tangente T, an die Kurve y = f(x) legt, diese mit der z-Achse zum Schnitt bringt
und die Abszisse z; des Schnittpunktes als verbesserte Naherungslosung oder
sogenannte erste Naherung nimmt. Anstelle der Gleichung der Funktion y = f(z)
verwendet man zur Bestimmung dieser ersten Naherung als , Ersatzfunktion*
die Gleichung einer Geraden, namlich die Gleichung der Tangente T',. Anschlie-
Bend wird im Punkt P,(z,; %, = f(%,)) die Tangente T, an die Kurve gelegt.
Diese liefert als Abszisse des Schnittpunktes mit der z-Achse den Wert z,. Das
ist die zweite Naherung. Dieses Verfahren wird fortgesetzt. Man erhilt so eine
Folge von Naherungslosungen z,, 2y, Z,, ..., die unter gewissen Bedingungen
(' 8. 47) gegen die exakte Losung £ konvergiert (Bild 24).

y y=Fflx)
Py (xgiyy)
Py (xyi n)
E o
0 X xk N
a noon Bild 24

> DEFINITION 4/2:
Die Naherungsldsung z,, die als Anfangswert fiir die Konstruktion der
Folge der Naherungslosungen verwendet wird, heit auch Ausgangs-
néherung.
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Man wird diese Ausgangsnaherung so wahlen, daB sie im Intervall (a, b) Legt.
Haufig verwendet man den Anfangs- oder Endpunkt des Intervalls; also z, = a
oder z, = b.

Wenn man die hier angegebenen geometrischen Uberlegungen analytisch verfolgt,
erhalt man eine Formel zur Berechnung der Naherungswerte. Bei der Herleitung
der Formel legen wir des Bild 24 zugrunde.

Ausgangspunkt ist die Gleichung der Geraden in der Form y — mz 4 n, wobeim
der Anstieg der Geraden ist. Bei der Herleitung der Gleichung fiir die Tangente 7,
niitzen wir aus, daB eine Gerade eindeutig bestimmt ist durch die Angabe des
Anstiegs und eines Punktes, durch den die Gerade hindurchgeht.

Fiar die Gleichung der Tangente 7, gilt also, da m = f'(z,) ist,

y=f(z)x+n.

Da die Tangente 7, durch den Punkt Py(z,; ¥, = f(%,)) geht, der Punkt P, also
auf T liegt, gilt auBerdem

Yo=f(x) %+ .
Daraus erhalt man fiir
n =y, — (%) % -
Setzt man diesen Wert fiir » in die Tangentengleichung ein, so ergibt sich
¥ =f(=) 2 + 9o — ['(%0) %o , als0
Tangente Ty:  y = yo + [ (%) (x — 2,)-
Fiir y = 0 ergibt sich die Abszisse z; des Schnittpunktes mit der z-Achse.
Es gilt
Yo + f'(®) (T — z) = 0

und
__ ()
AEN]
sowie
o f(zo)
AR ey

Im zweiten Schritt erhdlt man fiir die
Tangente Ty: y =y + f' (&) (& — 2,)
und daraus fiir y =0 und z = z,

()
=2 — .
? ! f'(=)
Wenn man den ProzeB weiter fortsetzt, ergibt sich
f(=)
x’ = Py — e
' (@) ’



oder allgemein fir die Nahérungswerte x;, 2y, Z3, ..., Tp 1, «o-

_ Fan)
f'(@n)

fir n=0,1, 2, ... mit z, als Ausgangsnaherung.

> Tpp1 = Zn

Das NeEwtoNsche Verfahren ist ein Iterationsverfahren.

Ein Iterationsverfahren zur Losung der Gleichung f(x) = O ist ein Verfahren, mit
dessen Hilfe man, ausgehend von einer Naherungslosung z, (Ausgangsnaherung),
eine Folge x,, «,, ..., Za, ... konstruiert, die bei Konvergenz sich der exakten Lo-
sung & der Gleichung f(z) = 0 néhert.

Die oben angefiihrte Formel heiBt auch Iterationsvorschrift, und das NEwroNsche
Verfahren wird auch Tangentenmethode genannt.

Fiir die Konvergenz des NEwronschen Verfahrens gilt der folgende

> SATZ 4/3:
Die Folge der Naherungslosungen z,, Z;, ..., Zs, ... konvergiert gegen di¢
exakte Losung & der Gleichung f(x) = 0, falls ein Intervall I = (a,b)
mit £ € I und eine Zahl m mit 0 << m < 1 existieren, so daB gilt

f(z) - ()
[f'(=)1*
Dabei wird vorausgesetzt, daB f(z) in I zweimal differenzierbar ist und

f'(z) = O fiir alle z aus I gilt.

<m fir alle z ¢ I und 2, ¢ I fir n =0,1,2, ...

Der Nachweis wird im Abschnitt 4.6. (7 -S. 66) erbracht.

Die Konvergenz des Verfahrens kann meist erreicht werden, wenn der Wert von
f(x) geniigend klein ist, d. h., wenn man geniigend nahe an £ herangeht. Dann
konvergiert das Verfahren rasch. Mangelhafte Konvergenz deutet entweder auf
Rechenfehler hin oder auf die Tatsache, da man mit der Ausgangsnaherung nicht
nahe genug an £ ist. Das Verfahren versagt im allgemeinen, wenn f'(z) in der Nahe
von £ eine Nullstelle hat.

Bei der Anwendung des NEwTONschen Verfahrens ist es also notwendig, vor der
Rechnung die Konvergenz zu untersuchen.

Das Bild 26 zeigt verschiedene Falle fiir die Anwendung des Iterationsprozesses.
Es kann auch passieren,da8 man bei ungeeigneter Wahl der Ausgangsnaherung z,
keine Konvergenz erzielt. Dazu sind im Bild 26 zwei Beispiele angegeben.

Im Bild 26a tritt bei der gewahlten Ausgangsniherung z, der Fall ein, daB die
Niiherungsfolge ), 2;, ,, ... das Intervall, in dem ¢ liegt, verlaBt. Man erhalt
deshalb keinen Naherungswert fiir die Wurzel £. Die Folge der Naherungslosungen
konvergiert in diesem Fall gegen eine benachbarte Wurzel.

Im Bild 26b verldBt bei der gewahlten Ausgangsnaherung z, die Folge der Na-
herungslosungen den in der Zeichnung angegebenen Bereich.
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y y
flxg) >0 fln) <0
y = flx] fixg) <0 , filxg) > 0 y ="l
'lxg) > 0 ') = 0
4 £
X Noon \ ) y/ X x
y iz}
y="lx) Tl =0 y=flx flix) =0
fig) >0 filg) <0
1'g) < 0 1) < 0
XV € % x % €\Q x

Bild 25

Nachdem wir anschaulich den IterationsprozeB fir verschiedene Fille untersucht
haben, soll nun anhand einiger Beispiele die Durchfiihrung des NEwToNschen
Verfahrens demonstriert werden.

Im Beispiel 4/8 hat man sehr leicht die Moglichkeit, die exakten Losungen zu
ermitteln und kann so mit den Naherungslésungen, die sich aus der Anwendung
des NEwTONschen Verfahrens ergeben, vergleichen.

y=Fflx) y=f(x)

e |

I Xy E\NY X x I§ X \ :

Bild 26a Bild 26b

48



[m] BEISPIEL 4/8:
Es ist die Gleichung 2* — 2 — 1 = 0 naherungsweise mit Hilfe des
NewToNschen Verfahrens zu losen.
Losung:
1) Bestimmung der Ausgangsniherung: Man weiB, daB die gegebene qua-

dratische Gleichung hochstens zwei reelle Waurzeln, £, und &,, haben kann.
Mit Hilfe der Wertetabelle fir y = f(z) = 2> — 2 — 1

s | -2 -1 0 1 3
vy | 65 1 -1 -1 1

konnen diese Wurzeln auf die Intervalle (—1,0) und (1,2) lokalisiert
werden. [In diesem Beispiel soll nur auf die Wurzel £, im Intervall (1,2)
eingegangen werden.]

Eine nahere Untersuchung des Intervalls (1,2) fiihrt auf die Werte-

tabelle:
z | 1,0 12 1,4 1,5 1,6 1,7 1,8 20
y |—1 —0,76 —0,44 —0,25 —0,04 0,19 044 1

Die Wurzel &, liegt also im Intervall (1,6;1,7).

2) Konvergenzuntersuchung: Es ist

f@) =2z —1 und f'(x)y=2.

Die Funktionen f(z) und f'(x) sind im Intervall (1,6; 1,7) monoton stei-
gend. Im Intervall (1,6;1,7) gilt demnach

x) - (2 22—z —1 2.0,19 0,38
@) - @) _ |24 )| < _03
| Fer | | @—1p |~ 22 4,84
Damit ist die Konvergenz gesichert, falls die Folge z,, %,, ... im betrach-
teten Intervall liegt.

3) Berechnung der Ndherungswerte: Die Berechnung erfolgt nach der

Formel
=z =l e 0,1,2,.. mit =16

n+1 = Tn 2z, — 1 =0,12,.. 0 = 1,0.
Man erhilt die in der nachstehenden Ubersicht zusammengestellten Er-
gebnisse:

S(za) | I () S(zg)

n |z, =ap —zp— 1 I =2z, — 1 Fl@n
0 1,6000 —0,0400 2,2000 —0,0182

1 1,6182 0,0004 2,2364 0,0002
2 1,6180
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4) Probe: Ein Vergleich dieser Losung, die mit Hilfe des NEwTONschen
Verfahrens gewonnen wurde, mit derjenigen, die man beim iiblichen Lé-
sungsverfahren fiir quadratische Gleichungen erhalt, ergibt:

2, = 1,6180 ~ 0,56 + }1,256 ~ 1,6175 (Tafel; lineare Interpolation).

BEISPIEL 4/9:

Die Gleichung 2® — 2x — 2 = 0 besitzt im Intervall (1,2) eine reelle
Wurzel. Es sind nach dem NEwToNschen Verfahren die erste und die
zweite Naherung auszurechnen.

Losung:

1) Besti g der Ausgangsniherung: Mit Hilfe der grafischen Methode
(Zerlegen von f(z) in 23 = 2z 4 2 und MaBstabsinderung auf der z-Achse)
ermittelt man zunichst eine Ausgangsnaherung z,. Man verkleinert das
Intervall, in dem die Wurzel liegt. Aus der Zeichnung (Bild 27) ergibt sich
1,6 <z, <18.

2) Konvergenzuntersuchung: Es ist

f(x) = 322 — 2
und
f'(x) = 6z .

Extremwertstellen der Funktion f(x) sind z = + g Die Extremwert-

stellen liegen also auBerhalb des Intervalls ¢(1,6;1,8), in dem die Null-
stelle liegt. Da f’(x) fiir 1,6 < < 1,8 groBer Null ist, ist dort die Funktion
monoton steigend; auch f’(x) und f”'(z) sind in diesem Intervall monoton
steigend. Es gilt somit
fx)f"(x)] 1,2-10,8 12,96

[f =1 (5,682 32,26
Damit ist die Konvergenz gesichert, wenn alle Werte der Naherungsfolge
in dem Intervall <(1,6; 1,8) liegen.

~04 <.

ya
04+ filx) = x?
flx) =2x+2
5.-
A
0 1 x2 3 x Bild 27




3) Berechnung der Néherungswerte: Die Berechnung erfolgt nach der
Formel

tppr =20 — 1) i 5=0,1,2, ... und mit z,= 16.
f'(zn)

Man erhilt:

S(za) f(zn) S(za)
n EN =z) —2z,—2 | =3z — 2 I (zg)
0 1,6 —1,104 5,680 —0,194
1 1,79 0,155 7,612 0,020
2 1,77

Damit ergeben sich als Naherungswerte

z, ~ 1,79 und 2, & 1,77 .

Man kann auch als Ausgangsnaherung x, = 1,8 wahlen.

4) Probe: Eine Probe durch Einsetzen in die Ausgangsgleichung ergibt
3 — 22, — 2 = 5,646 — 3,64 — 2 = 0,005 .

Da ein Naherungswert x, fiir die exakte Losung & in die Ausgangsgleichung
eingesetzt wird, ergibt sich f(z,) 5 0, namlich hier im Beispiel f(z,) = 0,005.

BEISPIEL 4/10:

Die Gleichung f(x) = 0 ist nach dem Verfahren von NEwWTON zu lésen.
Es sind der Algorithmus und der Programmablaufplan anzugeben. Die
Genauigkeitsforderung sei |2, ., — #a| <& .

Beschreibung des Algorithmus (Bild 28):

x, sei eine bekannte Ausgangsniherung; sie liege im Intervall {a, b), in
dem auch alle weiteren Naherungen der Folge liegen.

(1) lies %y, @, b,

(2) Konvergenzuntersuchung

3)n:=0
(4) Berechnung von f(x,) und f'(z,)
) oy = 20 — 12

(8) |%p41 — %al < &, dann (8), sonst (7)
(7) @p := 24,4, dann (4)

(8) drucke .,

(9) stopp
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Programmablaufplan:

Eingabe
*,a,b€
Honvergenz-
untersuchung

Berechnung
von f(x,]

Berechnung
von f'(xy)

fix)
Xoat:i=Xp— m

('XMI"X-I <EDL“ i ™= Xaa
J .

Bild 28

ZUSAMMENFASSUNG:

Falls die reellen Wurzeln der Gleichung f(z) = 0 bestimmt werden sollen,
kann man nach folgenden Arbeitsschritten vorgehen:

1. Bestimmung der Ausgangsniherungen
Die Gleichung f(z) = 0 wird auf die Form f,(x) = f,(x) gebracht, und
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die Funktionen f,(z) und f,(xr) werden grafisch dargestellt. Die Ab-
szissen der Schnittpunkte der Kurven und damit die Naherungswerte
fiir die Wurzeln und die Intervalle, die jeweils nur eine Wurzel ent-
halten, kénnen ermittelt werden. Man wihlt eine geeignete Ausgangs-
niherung. Dabei sind die giinstigsten Bedingungen fiir die Konvergenz
zu wiahlen.

2. Konvergenzuntersuchung
Es werden die Ableitungen f'(z) und f"'(z) ermittelt. Nach der vorn
angegebenen Bedingung wird die Konvergenz des NEwWTON-Verfahrens
im vorliegenden Fall untersucht.

3. Berechnung der Niherungswerte fir die Wurzeln
Nach der Iterationsvorschrift werden die Naherungswerte fir die
Wourzeln berechnet. Die Rechnung wird abgebrochen, wenn eine vor-
gegebene Genauigkeit, etwa |z, — 2, _;| < ¢, erreicht ist. Es ist zweck-
maBig, sich fiir die Berechnung der Niherungswerte ein Schema in
folgender Form anzulegen:

Berechnung Berechnung f(za)
n | Tn von f(zy) von f'(z4) S(za)
o | m S ) \
(gegeben)
1 z f(z) (@)

4. Durchfiihrung einer Probe

4.4. Das Horner-Schema?)

Bei der Losung von Gleichungen mit einer Variablen mit Hilfe von Naherungs-
verfahren muB man immer wieder Funktionswerte ausrechnen. Das haben wir
beim NEwToNschen Verfahren festgestellt, und das gilt auch firr andere Ver-
fahren.

1) HorNER, WiLLIAM GEOBGE (1786 —1837) ist der Verfasser eines im Jahre 1819 in
London erschienenen Buches mit dem Titel Phil. Transactions, in dem er das nach
ihm benannte Verfahren zur Auflésung von Gleichungen angab. In ahnlicher Weise
wurden aber bereits im 11. Jahrhundert in Persien kubische Gleichungen aufgeldst,
und das von HORNER beschriebene Verfahren wurde auch schon 1804 von dem italie-
nischen Mathematiker PaoLo RUFFINI angegeben.
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In diesem Abschnitt wollen wir eine einfache Methode zur Berechnung von Funk-
tionswerten bei ganzen rationalen Funktionen, also bei solchen der Form

f(@) = awz™ + a,_y2""! + ... + a4z + ay,
kennenlernen. Diese Methode zur Berechnung von Funktionswerten wird vielfach

HorNER-Schema genannt.
Es sei

f(2) = anz” + ... + &% + @y = 3 aix’
i=0
und z, ein fester Wert. Wenn wir das Polynom
[(x) =a2" + ... + ayx + a,

durch (z — z,) dividieren, so ergibt sich folgendes:

’

(@a2" + Gy 171+ Gy g2 e+ a7+ @) ¢ (2 — Tp) =

no__ -1
u@ — a4 bt 4+ By + O
bz T — %
b1 — by =? B ba
b e G

bp_1% + @
by 1% — Toba_1

ba

by = ety + ay_y
by =87 + @y,

by = bn—lzo +a.
‘Wenn man das Ergebnis der Division zusammenfa3t, erhalt man
b,
@) : (@ — @) = pyx) + ——
z — 7,
oder
fl@) = py(2) - (= — %) + ba -
Setzt man in der letzten Gleichung x = %,, so ergibt sich
f(2o) = ba .
Das bedeutet, daB man den Funktionswert von f(x) an der Stelle z = z,, also den
Wert f(x,), erhalt, indem man b, berechnet. Der Wert b, ergibt sich schrittweise
nach den Formeln
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b = anty + ap_y 1)
by = bz + ay_» (2)

by = bp_17, + 4y - (n)

In diese Formeln gehen die Koeffizienten des Polynoms, also die Koeffizienten
@p, By _y, ..., @, und der Wert x = =, ein.
Die Berechnung fithrt man am besten mit Hilfe eines Rechenschemas, durch.

L] p-2 a ag
a,x byxg bp2% bpaxo

LA 2 ~ 71 /1
\ YR 7R Y4 VAR IVAR.

a, b 2 by by - Tlx)

Bild 29

In der ersten Zeile stehen die in die Rechnung eingehenden Koeffizienten des
Polynoms f(z), ndmlich die Werte @, a,_,, ..., a;, @,. Vor die zweite Zeile schreibt
man zweckmaBigerweise den Wert 2 = x,, fiir den der Funktionswert f(z,) be-
rechnet werden soll. In die zweite Zeile werden dann sukzessive die Produkte
eingetragen, die aufgrund des Formelsatzes (1), (2), ..., (») zur Berechnung der &
(:=1,2, ..., n) gebildet werden und zu den entsprechenden Koeffizienten a; ad-
diert werden miissen. Der Ablauf der Rechnung ist durch die Pfeile angedeutet.
Man muB also immer im Wechsel eine Multiplikation und eine Addition ausfiihren.
Entsprechend der Darstellung im Bild 29 beginnt man mit der Multiplikation
@n - %, Man schreibt dieses Produkt in die zweite Zeile unter a,_, und addiert
a,_; und as%, Die Summe

a1 + GnTy = b

wird in der dritten Zeile festgehalten. Dann folgt die nédchste Multiplikation:
b, - . Wiederum wird das Produkt in der zweiten Zeile niedergeschrieben und
die Summe

Gy + bizo =,

gebildet und in die dritte Zeils geschrieben.
Das Verfahren wird fortgesetzt, bis die letzte Summe

@y + by_ 17y = ba

den gesuchten Wert f(z,) ergibt.

Bei der Rechnung mit dem HORNER-Schema ist zu beachten, daB fiir fehlende
Koeffizienten von f(z) im Schema Nullen zu schreiben sind (vgl. Beispiel 4/11).
AuBerdem kann man bei der Berechnung der Produkte den Rechemstab ver-
wenden und einen Faktor, namlich den Wert z,, fest einstellen.
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Bild 30

4.5,

56

BEISPIEL 4/11:

Gesucht ist der Funktionswert, den die Funktion
f(x) = 32® — 7023 + 232% + 48

an der Stelle x, = — 5 annimmt.

Losung:

Anstelle der Berechnung von

f(—8) =3:(—5)% —70.(—5)% + 23 . (—5)% + 48

kann man das HorRNER-Schema folgendermaBen anwenden:

Ausgehend von
n
flz) = ¥ a@’
i=0
erhilt man im vorliegenden Fall

f(x) = 3a® + Oz — 702 + 2322 4 Oz + 48
und fiir x = — 5 folgendes Schema (Bild 30):

3 0 -70 23 0 48
-15 75 -25 10 -50
A b4 A A b4
3-(-5) (-15)(-5) 5-(-5) (-24-5) 10-F-5)
0+(-15) ~70+75 23+(-25) 0+10 48+(-50)
Vo e B v
3 -15 5 -2 10 | -2 = f(-5) I
Man erhilt also f(—5) = — 2.
Regula falsi

10. Erlautern Sie den Begriff ,,Sehne einer Kurve! Zeichnen Sie den

Graph der Funktion y = 2?2 — 22 — 4 im Intervall (1,

5!

Zeichnen Sie die Sehne der Kurve zwischen den Punkten

Afa = 1; f(a)) und B(b = 5; f(b))!

11. Schreiben Sie die Gleichung der Geraden auf, die durch die Punkte

Py(25 31) und Py(z,; y,) geht!
Hinweis:

Gehen Sie von der Geradengleichung der Form y = mx + n aus
und beachten Sie, daB P, und P, auf der Geraden liegen, die Ge-

rade eindeutig bestimmen!



Bei der Anwendung des NEwTONschen Verfahrens zur naherungsweisen Losung
von Gleichungen mit einer Variablen gehen in die Rechnung die Werte der ersten
Ableitung von f(z) ein. Die Bildung der ersten Ableitung kann manchmal auf
Schwierigkeiten stoBen. Eine Methode zur Losung von Gleichungen, bei der die
Ableitung f'(z) nicht benétigt wird, ist die Methode des linearen Eingabelns oder
die regula falsi, fir die keine Konvergenzuntersuchung erforderlich ist, da die
Losung eingeschlossen wird. Diese Methode soll nun betrachtet werden.

Es sei bekannt, daB eine reelle Wurzel & der Gleichung f(x) = 0 im Intervall (a, b)
liegt, daB also gilt @ << & < b. Zur Bestimmung eines Néherungswertes x, fir &
ersetzen wir die Kurve im Intervall {a, b) durch die Sehne AB. Die Abszisse
des Schnittpunktes der Sehne mit der z-Achse liefert die erste Naherung z, fiir die
Waurzel £ (Bild 31).

yA

P (Il ; firy))
LYCYR{Y)
Afa; fla)) Bild 31

Da die Kurve zwischen 4 und B durch die Sehne ersetzt wird, heiBt die Methode
auch Sehnenmethode. In dem Fall, der im Bild 31 dargestellt wird, liegt die Wurzel &
jetzt zwischen der ersten Naherung z, und b. Die zweite Naherung z, erhilt man,
indem man die Kurve zwischen P; und B wiederum durch die Sehne P—,B ersetzt
und diese mit der 2-Achse zum Schnitt bringt. Falls die Wurzel £ dann zwischen =,
und b liegt, so wie das in der Abbildung der Fall ist, erhalt man die dritte Naherung
#, durch Schnitt der Sehne P,B mit der z-Achse. Das Verfahren wird in entspre-
chender Weise fortgesetzt und liefert so eine Folge von Niherungslsungen
,, Zy, %3 ... mit Hilfe einer Folge von Sehnen.

Aus den geometrischen Uberlegungen 1aBt sich eine Formel zur Berechnung der
Naherungswerte 2,, z,, ... gewinnen. Man erhilt die Gleichung fiir die Sekante S,
durch die Punkte 4 (a; f(a)) und B(b; f(b)), indem man von der Gleichung der Gera-
den in der Form y = mz + n ausgeht und beriicksichtigt, daB durch die zwei
Punkte 4 und B die Gerade eindeutig bestimmt ist.

Die zwei Punkte 4 und B liegen auf der Sekante S;, und es gilt

fo)=m-b+n
und
f@)=m-a+n.
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Aus diesen beiden Gleichungen erhalt man

_10) — f@
b—a
und
n=fa 1O 1@,
b—a
‘Wenn man diese Werte in die Geradengleichurg der Form y = mz + n einsetzt,
erhalt man die Gleichung der Sekante S, :
b )
_®) — f@) ) f(a) 2+ fla) — (%) — f(a) ) f(a)

oder

I(b) /(a)

=f@)+———@—aq).

Fir y = 0 erhalt man die Abszisse z, des Schnittpunktes der Sekante S, mit der
z-Achse, also die erste Naherung fiir die Wurzel &:

O~ @) _ g0

fla) + ————
_ (6 — a) f(a)
BT — f@
In entsprechender Weise erhalt man
L (b—=) @)
A T )
und
. (b—z,)/(z,)'
TR - )

Die allgemeine Vorschrift zur Berechnung der Naherungslosungen lautet in diesem
Falle (Bild 31):

B — 20 f@) gyr 1,2,
f(B) — f(xn)

> Tny1 = Tn —

Esseiz,  <&<zp (n=1,2,..).
Dann miissen f(z,_;) und f(x,) entgegengesetzte Vorzeichen haben, es muB also
gelten

f(@a—1) - flza) <O.

In diesem Falle lautet dann die Formel
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_ (Tn — Tn_1) * f(Ta_1) .

Tnt1 = Tn—1

f(@a) — f(@a_1)

Da z,,, als (n 4 1)te Naherung zwischen z,_, und z, liegt, brauchen keine Kon-
vergenzuntersuchungen gefithrt zu werden. Es wird die exakte Losung & durch
die Folge der Naherungslésungen eingeschlossen. Das Verfahren konvergiert also,
aber meist langsam.
Haufig ist es zweckmaBig, die Endpunkte des Intervalls, in dem die jeweilige Nahe-
rung liegt, immer wieder mit @ bzw. b zu bezeichnen. Dann kann man die allge-

meine Vorschrift zur Berechnung der Naherungslosungen auch in dieser Form

>

_ (b —a)f(a)
1®) — f(a)

Tp=a mit n =1,2,3, ...

schreiben. Es muB dann gelten f(a) - f(b) < 0.
Betrachten wir den Verlauf des Prozesses zur Konstruktion der Naherungslosungen
fiir die in den Bildern 32a und b dargestellten Fille:

ya y=1(x) 7
y=fix)
X0 X3\ X2 ] - X X LT ] g
0 £ x 0 x
Bild 32a Bild 32b
oo b0 f@
1(b) — f(a)
n=2234,...
Bild 32a Bild 32b
1. Schritt (» = 2)
2 <&<z 7 <&E<m
H#o) - f(z,) <O f(@o) + f(z1) <O

a:=12; b:=m a: =1z, b:=2x
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2. Schritt (n = 3)

2y < E< x2<£<3'1

(=) - f(z) <O (=) « f(zy) <O

a:=1x; b:=uzx, a: =2, b:=z
3. Schritt (n = 4)

2 <&<m 7 <6<z

(o) - f(z3) < O f(zg) - f(zs) <O

a:=2y b=z a:=2,; b:=

BEISPIEL 4/12:

Die Gleichung 2 — 22 — 2 = 0 besitzt im Intervall (1,2) eine Wurzel.
Es sind nach der Sehnenmethode die erste und zweite Naherung zu be-
rechnen.
Lésung:
Mit Hilfe der Formel erhalt man

(b —a)-fla)
2T — 1@

—1- 13 .
2—(=3)
Es gilt also
zn=16=~¢.

Da f(1,6) - /(2) < O gilt, kann man mit ¢ = 1,6 und b = 2 weiterrechnen
und erhalt

04-(—1,1)

=16+4+014=174.
2 —(—11) +

z, =16 —

Es gilt also
2, =174~ £

BEISPIEL 4/13:

Es sind die reellen Wurzeln der Gleichung f(z) = 22 — Jz — 2 = 0 mit
Hilfe der regula falsi mit der Genauigkeitsforderung |z,,,; — x| < 0,0001
zu ermitteln.

Losung:

Mit Hilfe grafischer Methoden kann man grob das Intervall bestimmen,
in dem die einzige reelle Nullstelle £ liegt. Man erhélt 1 < & < 2, und
es gilt f(1) = — 2 und f(2) = 0,69. Man kann das Intervall mit Hilfe
einer MaBstabsinderung auf der z-Achse noch weiter einschrinken
(Bild 33).

Man erhélt 1,8 < & < 1,9, und es gilt f(1,8) = — 0,1 und £(1,9) = 0,23.



173 2%
flx) =x2-2 ¥ y=tyl) )
y =f &)
I fix) =% T
2..
7..
o\ L . R AR .
3 -2 V 23 x 0 1 /] 2 X
-2
Bild 33a Bild 33b

Die Naherungslosungen ergeben sich nach der Formel

_(—a)-fa

f(6) — f(a)
wobei man das Intervall <{a, b) nach jedem Schritt neu festlegen muB.
Die Werte sind in der folgenden Ubersicht zusammengestellt:

Tp=a

n=123,..,

Ausgangspunkte
n e |6 | f@ 1®) | 2 i)
1 1,8 1,9 | —-0,1 0,23 | 1,83 —0,0041
2 1,83 1,9 | —0,0041 1,831 —0,00044
3 1,831 1,9 —0,00044 0,23 | 1,8311 —0,000253
4 1,8311 1,9 —0,00025 1,83117 —0,000024
5 1,83117 1,9 —0,000024 | 1,83117 —0,000023
Es gilt

lzs — 2, = 0,00007 < 0,0001.

Damit hat man die gewiinschte Genauigkeit erreicht.
£(1,83118) > 0 ist, lautet das Ergebnis
zs = 1,83117 ~ £.

Da auBerdem

BEISPIEL 4/14:

Es ist der Algorithmus fiir die regula falsi zu beschreiben, und es ist ein
Programmablaufplan zu entwerfen. Die Genauigkeitsforderung lautet
s — %4_;| < &. Die Ausgangswerte a und b seien bekannt, und es sei

/(@) <0 und f(5) > 0.
Beschreibung des Algorithmus:
(1) lies @, b und ¢

2)n:=1
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(b —a)-fla) (® — a) - f(a)

R O A O )

(4) f(a) - f(zs) = 0, dann (5),sonst (7) | (10) |za — z,_,] <&, dann (11),
(8) f(a) - f(za) =0, dann (11), sonst (6) sonst (4)

(6) @ := a und b :=.z,, dann (8) (11) drucke z,

(7) @ := zound b := b, dann (8) (12) stopp

B ni=n+1 Programmablaufplan (Bild 34):

x:mg—(b-alfld)
" 11b)-fla)

Glnl-f[x.lﬁﬂ?)l’é‘(a}-ﬂx.l-ﬂ %@

n n

la:—x,,,- b:a-b] [a:-a; b:-x,,J

, ©
kS
@ Bild 34



ZUSAMMENFASSUNG:

Bei der praktischen Durchrechnung der Sehnenmethode kann man nach
folgenden Arbeitsschritten vorgehen:

1. Bestimmung der Intervalle der abgespaltenen Wurzeln
Mit Hilfe grafischer Methoden werden die Intervalle ermittelt, in denen
jeweils eine reelle Wurzel £ liegt. Es sei das Intervall {a, b) ein solches
Intervall; es gelte also a << & < b.

2. Berechnung der ersten Niherung x,
Die Berechnung erfolgt nach der Formel

oo =9 1@
1) — f(a)
Die Werte werden in ein entsprechendes Rechensch ingetragen

3. Einschrinkung des Intervalls
Mit Hilfe der bisher ermittelten Naherung z, und den Werten a und
wird das kleinste Intervall ermittelt, in dei die Wurzel £ liegt (ent-
weder z; < & < bodera < ¢ < z,).
Die Endpunkte des Intervalls werden wieder mit @ und b bezeichnet.
Sie sind der Ausgangspunkt fiir die Berechnung einer weiteren Naherung
2, nach der obigen Formel.

4. Berechnung weiterer Niherungen
Einschrinkung des Intervalls — Bezeichnung der Endpunkte jeweils
mit @ und b — Berechnung nach der Formel

(b —a)-Ha) -
Tp=Q@— ————— mit » = 3,4, ...
" 1(6) — f(a)

Es empfiehlt sich, bei der Rechnung das folgende Rechensch zu
verwenden :

Ausgangspunkte
n a | b fla) £(®) Zn S(za)
1 a b y ()
2 a=2z |b=1b

oder
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4.6.  Allgemeines Iterationsverfahren

Neben dem NEwTONschen Verfahren und, der regula falsi wird im folgendén Ab-
schnitt noch ein allgemeines Iterationsverfahren betrachtet.

Es sei x, ein Naherungswert fiir die Wurzel & der Gleichung f(z) = 0, der durch ein
grafisches Verfahren oder ein anderes Naherungsverfahren bestimmt worden ist.
Fiir das allgemeine Iterationsverfahren wird die Gleichung

flx) =10
auf die Form
z = @(x)

gebracht. Das ist i. a. in mannigfacher Weise méglich.
Wir betrachten dazu einige Beispiele :
Die Gleichung 22 — 22 + 3 = 0 1dBt sich z. B. auf die Formen

z=1y2—3,
z=2"3 40,
z
z% 4 3
2
bringen.
Die Gleichung 22 — 2 — In # = 0 kann auf die Formen
x = V2 +Ina,
z=e""2,
2 +Inz @ +0)

gebracht werden.
Diese Formen sind im allgemeinen nicht dquivalent.
Die Gleichung f(x) = 0 1aBt sich mit Hilfe der Iterationsvorschrift des NEwTON-
schen Verfahrens (* Seite 47) auf die folgende Form bringen:
()

z=gla) =z — .

(=)

Beim NEwToNschen Verfahren ist die Umformung édquivalent. Ist namlich
1(§) = 0, so gilt

o@) =& ﬁ%—.stﬂa#oyw
Aus ¢(£) = ¢ folgt
f(E)
& — o) = f ® =0,
also
f¢)=o0.



Wenn die Gleichung f(z) = 0 auf die Form z = ¢(x) gebracht wird, muB man
die Umformung méglichst so vorneh daB die Gleichungen = @(z) und f(z) =0
die gleichen Losungen haben. Es muB also moglichst eine dquivalente Umformung
vorgenommen werden.

Nach der Umformung der Gleichung f(z) = 0 auf die Form z = ¢(x) wird aus-
gehend von einem Néaherungswert x, eine Folge von Naherungslésungen nach der
Vorschrift

# = (%)
o = g(z)

oder allgemein

Zn = @(Tp_1)
fir n = 1, 2, 3, ... konstruiert.
Dieser ProzeB der fortlaufenden Berechnung der Folge der Néherungsldsungen
zn (n =1,2,..) heiBt auch, wie wir bereits vorn angegeben haben, Methode der
schrittweisen Niherung oder Iterationsverfahren.
Fiir die Konvergenz des allgemeinen Iterationsverfahrens zur Losung von Glei-
chungen mit einer Variablen gilt der

> SATZ 4/4:
Ist in einem Intervall (a, b), das auBer einer Wurzel £ von f(z) = 0 bzw.
2 = p(z) auch alle Niherungswerte z, (n =0,1, ...) enthilt, die Be-
dingung
(@) Em <1 fir alle z € (a, b)
erfiillt, dann gilt
limz, =¢, d.h,

n->o0

die Folge {x,} konvergiert gegen &.

Man sagt auch, daB das Iterationsverfahren konvergiert.

Beweis:

Da & Wurzel ist, gilt £ = @(&). Aus der Iterationsvorschrift erhalt man z, = ¢(z,)
mit , aus dem Intervall (a, b).

Es gilt

§ — = g(§) — (=)
und nach dem Mittelwertsatz der Differentialrechnung

(&) — (o) = (§ — ) @' (70) mit 2y < mp <& oder & <y < 7.
Damit gilt also

& — a3 = (& — m) ¢'(mo) mit mp <mp <& oder § <y < -
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Entsprechend erhélt man weiter

5_‘-"2:(5—3’1)?"(’71) mit z; <7, <& oder § <y <7y

E—an=( — 20 1) @ a_y) Mit 2y <y <&oderé <oy < Tp_s.
Unter Verwendung der Voraussetzung |¢’(z)| < m erhélt man

[ —z| S|E — 2 - m
-zl =1 —z| -m =€ — x| m?,

1§ — 2ol =16 — 2| - m"
Die Folge {m"} ist fiir m < 1 eine Nullfolge (geometrische Folge mit m < 1),
|§ — | ist konstant, und damit ist auch die Folge {§£ — z,} eine Nullfolge.
Es gilt also:
Sei £ > 0 beliebig vorgegeben, dann existiert ein 7, ¢ N, so daB
16 —agl m® <& firalle n =n,
gilt. Somit gilt erst recht
|zn — &l = | — zal <.
Die Folge {z} konvergiert also gegen &.
Damit ist der Satz bewiesen.
Bei der praktischen Durchfithrung des Verfahrens muBl man versuchen, die Glei-
chung f(z) = 0 so umzuformen, daB die Ableitung ¢’(x) in der Nahe der gesuchten
‘Wurzel £ dem absoluten Betrag nach moglichst klein ist.
Das Newronsche Verfahren ist ein Spezialfall des allgemeinen Iterationsverfahrens
mit
1)
f@
Wir kénnen nun auch die auf Seite 47 angegebene Konvergenzbedingung fiir das

Newronsche Verfahren herleiten. Es ergibt sich namlich unter Anwendung der
entsprechenden Differentiationsregeln

_[F@F — @) - (=)

pr) =2 —

@) =1
v F@p
1@) - 1"(@)
=1 -
" e
und damit
1@) - (@)
O ="
@Gilt nun
1@) - 1"(2)
| =< 1
7o) = o < m <

in einem Intervall (@, b), das £ und die Folge {zs} enthalt, so konvergiert nach
Satz 4/4 die Folge {z.} gegen &.
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13 ;y-x y[ y =x

y=elx

¥ = plx]

Xy y o xn ¢ x ok & X3 X
a 0=<¢'lx)=<1 B -1<¢'x)<0

sV

Bild 35

Im Bild 35 wird zunichst der IterationsprozeB fiir zwei verschiedene Falle, ndm-
lich fiir die monotone oder treppenférmige Konvergenz und fiir die oszillierende
oder spiralférmige Konvergenz, anschaulich verfolgt.
Einer Fehlerabschitzung beim aligemeinen Iterationsverfahren, bei dem Konver-
genz vorliegt, dient die folgende Betrachtung.
Es gilt nach den Uberlegungen im Beweis zu Satz 4/4

|n — &l Sm - |2y — & mit m 1.
Formt man |z,_; — &| mit Hilfe der Dreiecksungleichung um, also

Zpy — &l = |Zp_y — a + 20 — &l = lxn—-l — za| + |z — &,
8o erhalt man

|n — &l S m - [|2n_1 — Zal + |2a — £]]
und daraus

m
1—m

Damit laBt sich der Fehler fiir die n-te Naherung z, mit Hilfe des Absolutbetrages
|Zy_1 — | abschitzen, wenn eine Schranke m < 1 fiir |p’(z)| bekannt ist.

Das Verfahren soll, ehe wir Hinweise zur praktischen Rechnung geben, an einem
Beispiel erldutert werden.

|Za — &l =

|Zp-1 — Zal .

[m] BEISPIEL 4/15:
Es sind die reellen Wurzeln der Gleichung f(z) =2®* —2 —02=0
grafisch zu ermitteln und mit Hilfe des Iterationsverfahrens zu ver-
bessern.
Losung:
1) Besti: g der Ausg dherungen

Nach Aufspaltung der gegebenen Gleichung
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fz)=a®—2—-02=0

in fy(x) = fy(*) mit

fil@)=2+02 und fyz)=2"

und grafischer Darstellung erhilt man als Ausgangswerte ( Bild 36)
2= —095; 2%=—02 und =z, =105.

2) Umformung und K g t hung

Als Umformung bieten sich mehrere Maglichkeiten an. So kann man
zunachst 28 isolieren

»¥=z+4+02

und dann auf beiden Seiten der Gleichung radizieren:

z=Vz£02, (&=—02).

(Die notwendige Einschrinkung des Variablengrundbereichs bei dieser
Gleichung bringt es mit sich, da8 in diesem Fall auch eine Einschrankung
des Definitionsbereichs der gegebenen Funktion f(z) = 25 — 2 — 0,2 vor-
genommen werden muB. Diese Umformung gilt also nur fiir den Fall,
daB die Funktion in einem gewissen Intervall, nimlich im Intervall
— 0,2 < 2 < oo, betrachtet wird.)

- Eine andere Umformung erhilt man, wenn nach dem Isolieren von z®

auf der rechten Seite der Gleichung der Faktor (—1) ausgeklammert
wird :

2 =2z+4+0,2
28 = (—1)(—z —0,2)
x =——l}/—z—0,2 s —02).

filx) =X +02

Xy = =095
Xy = -0,20
o~ 105 gy s



Betrachten wir als dritte Umformung den Fall, daB z in der Ausgangs-
gleichung isoliert wird :

z=28—-02.

Wir stellen nun alle drei Umformungen zusammen:
z=p@)=—J—2—-02 (z=—02)

2 = @y(x) = 2 — 0,2
z = pgz) = 'Vz +02 (@=-02).

Die Gleichung z = @,(z) ist geeignet zur Berechnung der Naherungs-
16sungen fir &, mit z,, = — 0,2, da

|ga(@)} = b2t <1 fir — 03 <z < —0,1.

Die Gleichung = = @y(z) = ‘Va: + 0,2 ist geeignet zur Berechnung der
Néherungslésungen fiir £, mit g, = 1,05 als Ausgangsnaherung, da

lpa(@)] = fair 1<z<1,1.

1
———<1
5Y(x + 0,2)*
SchlieBlich ist die Gleichung

z=g@) = —}—2—02
geeignet zur Berechnung der Naherungslésungen fiir £, mit 2, = — 0,95,
da
, 1
Igi(@) = <1 fir —1<2<—09.

5.-Y(—z— 028
Man muB also fiir alle drei reellen Wurzeln drei verschiedene Aufspaltun-
gen der Gleichung f(x) = 0 verwenden.

Die Gleichung z = @,(z) = 2% — 0,2 ist zum Beispiel nicht fiir die Berech-
nung der Naherungslésungen fiir & und £, geeignet, da

lpa(@) =Bz >1 fir —1<z<—09 undfir 1<z<1,1
gilt. Damit ist die Konvergenzbedingung nicht erfiillt.

Die Gleichung = g,(z) = i/z + 0,2ist fiir die Berechnung der Naherungs-
16sungen &, nicht geeignet, da

, 1
|ps(®)) = 5————>1 fir —03<z<—0,1
5V + 0,28
gilt.
3) Berechnung der Niherungslosungen
Die Berechnung der Naherungslésungen erfolgt nach den entsprechenden
Formeln :

Fiir £, nach der Formel
Ty =~V Zw— 0.2 mit z=— 095
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fiir £, nach der Formel

Zy = —02 mit zm;=-—02 und

+
fiir £; nach der Formel

1 .
Ty, = V3e + 0,2 mit 25 = 1,05.

Man erhilt:

n | Tin | Ton l Z3n

© —0,95 —0,2 1,05

1 —0,944 —0,2003 1,0456
2 —0,9426 —0,2003 1,0449
3 —0,9422 1,0448
4 —0,9421 1,0448
5 —0,9421

also & ~ — 0,94; £, ~ — 0,20 und &; ~ 1,04.

4) Fehlerabschiitzung
Es wird die Fehlerabschatzung fiir die Naherungslésung von £, durch-
gefiihrt. Es gilt hier

l¢'(x)] = 524 < 0,06 =m in (—0,3; —0,1).
Damit erhalt man fiir den Fehler nach der ersten Naherung

|2y — &I gg’% |30 — @y| & 0,05 - 0,003 = 0,000015 .

ZUSAMMENFASSUNG:

Bei der praktischen Losung einer Gleichung f(x) = 0 mit Hilfe des allge-
meinen Iterationsverfahrens sollte man folgende Arbeitsschritte gehen:
1. Bestimmung einer Ausgangsnaherung z,

2. Umformung der Gleichung f(z) = 0 in z = ¢(x)

3. Konvergenzuntersuchung

4. Berechnung der Folge der Naherungslosungen z,

5. Fehlerabschitzung

Das Rechenschema sollte die Werte z,, Spalten zur Berechnung von ¢(x,)
und die Werte ¢(z,) selbst enthalten.




4.7.

Aufgaben

12.

14.

15.

16.

17.

13.

Losen Sie grafisch die folgenden Gleichungen!
a) 8x% + 23 = 522 { 50 b)22 —3z+5=0 c) 2+ 6z=17
Stellen Sie bei den nachfolgenden kubischen Gleichungen die redu-

zierte Form her und ldsen Sie die Gleichungen durch geeignete Zer-
legung grafisch!

a) 2 + 322 — 62+ 7=0(L) b)2®—322—2+3=0 (L)
c) 19z® — 1022 - 8 =0

Geben Sie Moglichkeiten fiir die grafische Losung von Gleichungen
der Form 2® + az® + ¢ = 0 an!

Losen Sie grafisch die folgenden Gleichungen!

) cosz—tz=0(L) b)E—dB=0@) ol—"4Z—0
37 - 2 "2a

d) sinz — > — 0 (im Intervall (2,3—")
2 2 2
e)3z —cosz —1=0 f)22+4+2x—-11=0

Verbessern Sie die Naherungswerte durch MaBstabsinderung auf der
z-Achse und durch Anwendung des grafischen Analogons zur regula
falsi (zwei Schritte)!

NewroN kniipfte die Darstellung seiner Ldsungsmethode an die
Gleichung

23 —22—5=0

an. Er rechnete dann folgendermaBen:

Ein erster Naherungswert ist &; = 2. Setzt man z = 2 + ¢ in die
Gleichung ein, so ergibt sich fiir ¢ die Bestimmungsgleichung

e+ 62 +10e —1=0. '

Da ¢ klein ist, werden die Glieder &® und 6¢? vernachlassigt. Man erhalt
so fiir ¢ = 0,1 und damit die zweite Naherung z, = 2,1.

In dieser Weise wird fortgefahren,

Zeigen Sie, daB diese scheinbar ganz andere Form der Losung mit
der iblichen Darstellung des NEwToNschen Verfahrens gleichwertig
ist!

Um sin 10° zu berechnen, setze man z = 10° und wende die Formel
8in (3z) = 3.sina — 4 -sind 2

an. Das liefert, da sin (3x) bekannt ist, eine Gleichung fiir sin 10°.
Berechnen Sie deren Losung naherungsweise! (L)
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18. Verbessern Sie die in den Aufgaben 4/13.a) und 4/13.b) grafisch

19.

20.

21.

22.

ermittelten Naherungslésungen

a) mit Hilfe des NEwToNschen Verfahren,

b) mit Hilfe der Regula falsi und

c) mit Hilfe des allgemeinen Iterationsverfahrens! (L)
Untersuchen Sie bei c) jeweils die Konvergenz!

Schreiben Sie die Iterationsvorschrift anf und legen Sie ein geeignetes
Rechenschema an!

Rechnen Sie jeweils beim NEwToNschen Verfahren einen Schritt und
bei den anderen Verfahren zwei Schritte!

Es sind folgende Gleichungen gegeben:

a)7® — 422 +2=0, b)2® —3z+1=0,
c) 22 — 3z 4+ cosz =0, d)x’+l—2=0,
x
. 1
e)sinz4+——2=0.
z

(1) Ermitteln Sie die Intervalle, in denen die Gleichungen reelle

Wourzeln haben! (L)
(2) Berechnen Sie mit Hilfe der Regula falsi jeweils eine Naherungs-
16sung! L)

(3) Uberpriifen Sie das Ergebnis, indem Sie die jeweilige Naherungs-
16sung mit Hilfe des NEwToNschen Verfahrens berechnen!

Berechnen Sie mit Hilfe des allgemeinen Iterationsverfahrens
a) die kleinste positive reelle Wurzel der Gleichung

2 — 422 +2=0, (L)
b) die groBte positive reelle Wurzel der Gleichung
23 — 3z + 1=0! (L)

(Bestimmen Sie eine Ausgangsniherung! Bringen Sie die Gleichung
auf die Form z = ¢(z)! Fiihren Sie eine Konvergenzuntersuchung
durch! Es ist ein geeignetes Rechenschema anzulegen, und es sind
einige Schritte zu rechnen. Fihren Sie mit Hilfe des HORNER-
Schemas eine Probe durch!)

Berechnen Sie alle reellen Wurzeln der Gleichung
22 —32+4+1=0
mit Hilfe des allgemeinen Iterationsverfahrens! (L)

Berechnen Sie die Wurzeln der Gleichung sin z + 1_ 2 = 0 mit
Hilfe des allgemeinen Iterationsverfahrens! z (L)



5 o Lineare Gleichungssysteme

O 1. Schreiben Sie ein lineares Gleichungssystem von zwei Gleichungen
mit zwei Variablen auf!
Wie kann ein solches Gleichungssystem gelost werden ?
Diskutieren Sie die Losbarkeit!

O 2. Losen Sie das Gleichungssystem
b5z + 3y =19
6z —2y= 6
a) rechnerisch und b) grafisch! (L)

O 3. Lasen Sie das folgende Gleichungssystem !
T+ - =1
2z, + 32, — 32, =0
3z, — 20, + z,=6 )

O 4. Wie lautet die Losung des Gleichungssystems

%y + Gty = &
ATy + BTy = ay
Wenn a,;, ay,, @y und a,, reelle Zahlen sind ?

Lineare Gleichungssysteme mit einer groBen Zahl von Variablen treten sehr hiufig
in der Praxis auf, so zum Beispiel bei der Losung von Aufgaben der mathematischen
Physik. Das Losen solcher Systeme ist jedoch meist mit Schwierigkeiten verbunden.
Die Methoden, die der Schiiler im Unterricht kennenlernt, reichen nicht aus. Viel-
fach muB man Methoden zur naherungsweisen Losung verwenden. So kennt man
direkte Methoden oder sogenannte exakte Verfahren. Diese Verfahren fihren
theoretisch immer zum Ziel. Sie enthalten jedoch eine Vielzahl von arithmetischen
Operationen, und es konnen sich bei diesen Methoden Rundungsfehler stark haufen
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und fortpflanzen. Neben den direkten Methoden wendet man auch iterative
Methoden oder Iterationsverfahren an. Diese Methoden sind gut fiir den Einsatz
an Rechenautomaten geeignet, da gewisse Zyklen standig wieder zu durchlaufen
sind. Sie liefern auch, wenn Konvergenz vorliegt, das Ergebnis mit einer grolen
Genauigkeit. Es gibt jedoch keine Naherungsverfahren, die fiir alle 16sbaren
Systeme angewendet werden konnen.

‘Wir werden in diesem Abschnitt ein direktes Verfahren, das zur praktischen Lésung
von Gleichungssystemen geeignet ist, behandeln, nimlich den Gaussschen Algo-
rithmus. Dabei stellen wir keine Untersuchungen zur Losbarkeit von linearen
Gleichungssystemen an, sondern wir setzen die Losbarkeit voraus und geben nur
den Algorithmus fiir das Lésungsverfahren an.

5.1.  Grundidee des Gaussschen Algorithmus

Es wird die Losung eines linearen Gleichungssystems der Form

auZ + Gy + oo + GpZn =@

A%y + CpoTy + oo + AppZn = Gn

oder

n
Yapry=a,und t =1,2,..,n
=1

betrachtet, also eines Gleichungssystems von 7 Gleichungen mit n Variablen.
Dieses System sei 16sbar.

Das Ziel des Gaussschen Algorithmus besteht darin, das System dquivalent so
umzuformen, daB es in gestaffelter Form — man sagt auch ,,in Dreiecksgestalt’‘ —
vorliegt. Diesen Vorgang bezeichnet man als Reduktion auf Dreiecksgestalt.

> DEFINITION 5/1:

Ein lineares Gleichungssystem von » Gleichungen mit » Variablen wird
gestaffeltes System oder auch System in Dreiecksgestalt genannt, wenn
die letzte (n-te) Gleichung des Systems nur noch die Variable z, enthilt,
die vorletzte ((n — 1)-be) Gleichung hochstens die Variablen z, und z,_,
usw. und die erste Gleichung héchstens alle Variablen 2s, 21, ..., 2;.

Ein solches gestaffeltes System ist leicht auflosbar. Aus der n-ten Gleichung erhalt
man den Wert der Variablen x,, unter Benutzung dieses Wertes aus der (= — 1)ten
Gleichung den Wert der Variablen z,_; usw. Diesen ProzeB nennt man Aufldsung
des Dreieckssystems.

Nach der Berechnung der Werte z,, ..., Z, ist noch eine Probe am Ausgangssystem
sinnvoll und zweckmagig.
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Im Laufe der Rechnung sollte man Rechenkontrollen durchfiihren.

Wir werden also bei der Losung eines linearen Gleichungssystems der vorn ange-
gebenen Form drei Schritte beachten:

1) Reduktion auf Dreiecksgestalt (mit, Rechenkontrollen)

2) Auflésung des Dreieckssystems

3) Probe mit Hilfe des Ausgangssystems.

[m]

BEISPIEL 5/1:
Das folgende Gleichungssystem ist in der oben angegebenen Weise zu
l6sen.
Z+ - =1
2z, + 3z, — 32, =0
32, — 22, + z,=6

Lésung:
1) Reduktion auf Dreiecksgestalt?)
Durch Subtraktion des Zweifachen (Dreifachen) der ersten Gleichung
von der zweiten (dritten) Gleichung wird aus der zweiten (dritten) Glei-
chung z, eliminiert. Man erhalt:
o+ 23— = 1
Tp— Zy=—2
— 5z, + 423 = 3.

‘Wenn man nun zur dritten Gleichung das Fiinffache der zweiten Gleichung
addiert, wird aus der dritten Gleichung auch z, eliminiert. Man erhalt das
Dreieckssystem

Z % — 2= 1
T —Ty=—2
—xy=—=1T.

2) Auflosung des Dreieckssystems

Aus der letzten Gleichung erhdlt man: z, = 7.

Durch Einsetzen in die zweite Gleichung ergibt sich: 2, = 5

und durch Einsetzen von z; =7 und 2, =5 in die erste Gleichung: z, = 3.
3) Probe

Die Probe erfolgt im Ausgangssystem. Man erhalt:

34+ 56— 7=1

6+16—-21=0

9—-104+ 7=686.

1) Rechenkontrollen werden erst spiter erlautert (. S. 79).
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5.2.  Drei Gleichungen mit drei Variablen

Das Gleichungssystem hat die Gestalt

%y + %y + Gis%y = 4y
Ay + Bp%; + Ggsy = Gy
gy + 5%y + Gy = Gy

mit a;; # 0 (durch Umordnung der Gleichungen ist das immer moglich).

Bei der Reduktion auf Dreiecksgestalt dividieren wir im ersten Schritt die erste
Gleichung durch a,;, die zweite durch a,, und die dritte durch ay. Jede Gleichung
wird also durch den Koeffizienten bei ; dividiert. Wenn in einer Gleichung dieser
Koeffizient Null ist, dann wird diese Gleichung im ersten Schritt nicht mit bearbei-
tet. Wir erhalten dann folgendes System:

;cl+a_n.zz+a_uxa =a_l
an o, an
xl+a_’.’zz+a_”x‘=a_2_
@y A @
zl+a;”1'z +a_,,xa=a_,
N a5 a3

Wir subtrahieren nun die erste Gleichung nacheinander von der zweiten und
dritten Gleichung. Die dabei entstehenden Differenzen der Form

(a_n_@); (a_a_a_u); (a_e_:&) usw.
3 Ay 21 Oq, 321 Oy,

bezeichnen wir im ersten Schritt mit
al);  af); o)  usw.
In der ersten Gleichung fiihren wir zur Vereinfachung noch folgende Schreibweise
ein:
Y 4 _ g i
an an an
Somit erhalten wir nach dem ersten Schritt das System:
zy + by + by =8,
afdz, + afjr, = af)
afir, + afry = af)

In diesem neuen System ist die Variable #; nur noch in der ersten Gleichung ent-
halten.

Im zweiten Schritt dividieren wir, nachdem wir die Gleichungen so umgeordnet
haben, daB afy) == 0 ist, jede Gleichung des Systems, beginnend mit der zweiten
Gleichung, durch den jeweiligen Koeffizienten von z, und subtrahieren anschlieBend
die zweite Gleichung von der restlichen. Wenn in einer Gleichung der Koeffizient
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von z, Null ist, dann wird diese Gleichung im zweiten Schritt nicht bearbeitet. Wir
erhalten dann das System nach dem zweiten Schritt

%y + b + bz = by

@y + by = by
s, o
mit
1 1
by =288, g, =%
BT 2T M
und
o) o)
A =28 _p =% _y
38 = om RIS ) ) 2
32 32

In diesem System enthélt die erste Gleichung die Variablen z,, z, und z,, die zweite
Gleichung die Variablen z, und z,.

Im dritten Schritt dividieren wir die dritte Gleichung durch den Koeffizienten
von .

Eine Subtraktion ist im hier behandelten speziellen Fall fir n» = 3 nicht mehr
notwendig (bei mehr als drei Variablen wird der Proze8 fortgesetzt). Man erhilt
das System in Dreiecksgestalt nach dem dritten Schritt:

@y + biay + by = b, . al®
Xy + bty = b, mit by = iz)
23 = by af

Die erste Gleichung enthalt die Variablen z,, z, und z;, die zweite Gleichung die
Variablen z, und z;, die dritte die Variable z;.
Dieses System ist leicht auflésbar. Aus der dritten Gleichung erhélt man

=10,
aus der zweiten Gleichung
Zp = by — byy@y = b, — bygby
und aus der ersten Gleichung
zyp = by — by — b7y
= by — byp (b, — bxby) — bysbs.
Die Probe erfolgt im Ausgangssystem.

ZUSAMMENFASSUNG :

Bei der praktischen Durchrechnung des Algorithmus ist es zweckmaBig,
folgende Schritte zu gehen:
1. Ordnen des Systems, so daB a,, 3 0 gilt.
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2. Durchfiihrung des ersten, zweiten und dritten Schrittes. (Gegebenen-
falls muB man nach dem zweiten Schritt wieder eine Umordnung der
Gleichungen des Systems durchfiihren, so daB af) 5= 0 gilt. Die Werte .
werden am besten in das nachfolgende Rechenschema eingetragen.)

3. Auflésung des gestaffelten Systems, das nach dem dritten Schritt
entsteht.

4. Probe im Ausgangssystem.

Die gesamte Rechnung sollte man in einem Rechenschema anordnen:

1 Siehe Abschnitt 5.4.; Seite 79.

Spaltensummen?
t | t [t ¢
Schritt Koeffizienten bei Absolut- Zeilen-
z, EN IS glied summen?
an Gyg s @ 8
0 o o O % 4
@y Gy Qg a3 8
1 by bys b, &V
1 0 a%) ag) a;l) 3(21)
0 agl ag) agl) ’(’l)
1 by bys b &Y = &V
2 0 1 by by &
0 0 afy a &
1 b bis b, o = o)
3 0 1 bes by 8 = o
0 0 1 by 8y

5.3. Allgemeiner Fall

Fiir den allgemeinen Fall, namlich fiir das Gleichungssystem

n
2 oum = a

k=1

wird die Reduktion folgendermaBen vorgenommen:

(=12 .,7),

Nach der Umordnung des Systems in der Weise, da8 a,, % 0 gilt, wird im ersten

Schritt

die erste Gleichung durch a;,,
die zweite Gleichung durch ay,

d.ie n-te Gleichung durch a,,;
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dividiert. Wenn in einer Gleichung dieser Koeffizient Null ist, dann wird diese
Gleichung im ersten Schritt nicht bearbeitet. Die dann folgende Subtraktion der
ersten Gleichung von allen anderen liefert das System nach dem ersten Schritt.
In diesem System ist die Variable x, nur noch in der ersten Gleichung enthalten.
Im zweiten Schritt gehen wir analog wie im ersten Schritt vor, ordnen, wenn es
notwendig ist, die Gleichungen um, dividieren jede Gleichung, beginnend mit der
zweiten Gleichung, durch den jeweiligen Koeffizienten von z, (falls dieser ungleich
Xull ist) und subtrahieren anschlieBend die zweite Gleichung von der dritten, vier-
ten, ... und n-ten Gleichung: Das neue System enthélt in der ersten Gleichung
die Variablen z,, ..., 2,, in der zweiten die Variablen z,, ..., 2, und in den rest-
lichen (n — 2) Gleichungen héchstens die Variablen z, ..., Zp.

Dieser ProzeB der Elimination der Variablen wird fortgesetzt.

Nach n Schritten erhilt man das gestaffelte System

Zy + by + by + oo + biaa = by
Zp + bogy + ... + bopxn = b,

Zp_1 + bn—l.nzn =by_y
Tq = by

Dieses System ist von unten nach oben leicht auflésbar. Es ist zweckmaBig, sich
auch hier ein Rechenschema wie im Fall n = 3 anzulegen.

54. Rechenkontrollen und Endprobe

Bei der Vielzahl der arithmetischen Operationen ist es notwendig, Kontrollen im
Laufe der Rechnung (Zwischenkontrollen) und am Ende der Rechnung (Endprobe)
durchzufiihren.

Die Zwischenkontrollen werden mit Hilfe der sog ten Zeil menprobe
und die Endprobe mit der Spaltensammenprobe durchgefiihrt. Dazu werden im
Ausgangsgleichungssystem die Zeilensummen

n
s=Yap+a (=12 .,n)
k=1

und die Spaltensummen

n n
=2 an und t= Y a k=1,..,mn)
im1

t=1

gebildet.

Auf die Zeilensummen s; werden, wie auf die Koeffizienten a, und die Absolut-
glieder a;, die Operationen des GAussschen Algorithmus angewandt.
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Im ersten Schritt werden also folgende Operationen ausgefiihrt:
="
und
=2 _2
%1 Ay
Wenn man die Zeilensummen fiir das nach dem ersten Schritt entstandene System
bildet und diese mit S{" bezeichnet, so muB gelten

fir ¢1=2,3,..,n.

8P - =0 fur =123, ..,n.

Im zweiten Schritt werden auf die Zeilensummen, die man nach dem ersten Schritt
gebildet hat, wiederum die Operationen des Gaussschen Algorithmus angewandt.
Die erste Gleichung wird dabei, wie das vorn angegeben wurde, unverindert
iibernommen, da sie bereits die erste Gleichung des gestaffelten Systems ist. Die
so entstandenen Werte miissen mit den Zeilensummen nach der Durchfiihrung
des zweiten Schrittes tibereinstimmen.

Mit Hilfe dieser Zeilensummenproben nach jedem Schritt werden die Zwischen-
kontrollen durchgefiihrt. Die Zeilensummen werden am besten im Rechenschema
(vgl. S. 78) mitgefiihrt.

Die Endprobe wird, wie vorn angegeben, mit Hilfe der Spaltensummen durchge-
fithrt. Es muB gelten

n
D hxe=1t.
E=1

Auch die Spaltensummen werden in das Rechenschema eingetragen. Das Erfiillt-
sein der Bedingungen der Rechenkontrolle ist notwendig fiir ein richtiges Resultat,
aber im allgemeinen nicht hinreichend.
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5.5. Beispiele

[m] BEISPIEL 5/2:
Es ist das folgende Gleichungssystem mit Hilfe des Gaussschen Algorith-
mus zu losen.
o —2r,+x3 = 0
22y — 6wy + 203 = — 2
22 — 2y + 323 = 7

Rechenschema:
Probe:
tL=5 |ty=—9 |, =86 t=25 7
Schritt Koeffizienten des Systems bei Absolut- Zeilen-
z, EA Ty glied summen
1 —2 1 0 S =
0 2 —5 2 -2 S,=—3
2 —2 3 7 S, =10
1 -2 1 0 & =0
SV =0
1 0 —0,5 0 -1 ) = —1,5
S =~—15
0 1 0,6 3,6 ) =5
D _ 5
1 -2 1 0 ) =0
2)
=0
1
2 0 1 0 2 8 =3
S;?) —_ 3
0 0 0,5 1,5 &) =2
S;ﬂ) =
1 -2 1 0 0
3 0 1 (1} 2 3
0 0 1 3 4

Man erhalt aus dem letzten gestaffelten System
23=3,2,=2und 2, = 1.
Die Endprobe lautet

40Ty + bty + bty =562, + (—9) -2, + 6.1,
=5—-18+4+18=5=t¢.

=] BEISPIEL 5/3:
2,752, + 1,78z + 1,11z, = 15,71
3,28z, + 0,71z, + 1,16z, = 43,78
1,16z, + 2,70z, + 3,58z, = 37,11
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Rechenschema in Kurzfassung:

7,18 5,19 5,84 96,80 — 114,81
Absolut- H
£ EN ES glied
2,76 1,78 1,11 15,71 21,35
3,28 0,71 1,15 43,78 48,92
1,15 2,70 | 3,68 37,11 44,54
1 0,647 0,404 5,713 7,764
0 —0,431 —0,053 7,635 7,151
0 1,701 2,709 26,557 30,967
1 0,647 0,404 5,713 7,764
0 1 0,123 1 —117,7115 —16,5692
0 0 1,470 | 33,328 34,798
z3 = 33,328:1,470 = 22,672
2, = — 17,715 — 0,123 - 22,672 = — 20,504

z, = 5,713 — 0,404 - 22,672 — 0,647 . (—20,504) = 9,820
Die Endprobe lautet

7,18 . 9,820 + 5,19 - (—20,504) + 5,84 - 22,672 =

= 70,608 — 106,416 + 132,404 = 96,596 ~ 96,60 = ¢ .

Die Rechnungen wurden| mit einer Tischrechenmaschine ausgefiihrt. Bei Ver-
wendung des Rechenstabs wird man in der Rechnung entsprechend weniger
Stellen beriicksichtigen konnen.

5.6. Aufgaben

O 5. Bestimmen Sie von dem Gleichungssystem
bz + 3y =19
6r —2y= 6

a) die Zeilensummen und
b) die Spaltensummen!

O 6. a) Fiihren Sie bei dem Gleichungssystem
bz + 3y =19
6x —2y= 6
nach der Vorschrift des Gaussschen Algorithmus die Reduktion
auf Dreiecksgestalt durch!

b) Losen Sie das reduzierte System !
c) Fiihren Sie mit Hilfe der Spaltensummen die Endprobe durch! (L)
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7. Losen Sie folgende Systeme mit Hilfe des GAaussschen Algorithmus!
a) 22 —3z,4+ 23=0 b) 12z —02zr,+ 032=—10,6
—3z, + 4z, — 223 =1 —0,2z, + 1,6z, — 0,1z, = 0,3
bz, + 2, + 473 = —3 0,3z, — 0,1z, + 1,6z; = 04
c) 6z — 2z, + 32, =1 d) 2,1z, — 4,62, — 2,0z; = 19,07
z, + 8z, =0 3,0z, + 2,6z, + 4,323 = 3,21
2z, — 10z, = 4 —6,0z; + 3,6z, + 2,52, = 18,25

Fiihren Sie die Reduktion auf Dreiecksgestalt durch!

Legen Sie sich ein Rechenschema an!

Fiihren Sie mit Hilfe der Zeilensummen Zwischenkontrollen durch!
Fiihren Sie eine Endprobe mit Hilfe der Spaltensummen durch! (L)

8. Bei der im Bild 37 gezeigten Schaltung folgt aus den KircHHOFFschen
Gesetzen fiir die Strome I,, I, und I; das Gleichungssystem
L —I,—-I1;=0
BRI, + R, = U,
R,I, — RJ; =0

Berechnen Sie fiir B, = 0,26 2, R, = 0,36 2 und R, = 0,45 2 sowie
U, = 0,6 V die Stromstarken I,, I, und Ig!

Wenden Sie zur Losung des Gleichungssystems den Gaussschen
Algorithmus an! (L)

| 5 —— | Buas
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6 ¢ Interpolation

6.1.  Einfiihrung

Im Mathematikunterricht wird eine Reihe von Zahlentafeln, so u. a. die Tafel
der Quadratzahlen und -wurzeln, der Kubikzahlen und -wurzeln, der vierstelligen
dekadischen Logarithmen und der trigonometrischen Funktionen (Sinus, Kosinus,
Tangens und Kotangens) benotigt. Neben dem Rechenstab und den Kurven-
schablonen fiir die elementaren Funktionen sind diese Tafeln ein wichtiges Hilfs-
mittel fiir den Unterricht. Auch fiir alle diejenigen, die in ihrer beruflichen Tatig-
keit mathematische Aufgaben lésen und Berechnungen durchfiihren, sind Tafeln
neben dem Rechenstab und anderen Hilfsmitteln (z. B. Rechenmaschinen und
-automaten) unentbehrlich. Tabellen und Tafeln dienen der Vereinfachung und
schnelleren Durchfiihrung von Berechnungen. Sie erleichtern die Routinearbeit
beim zahlenmiBigen Losen eines mathematischen Problems, entlasten das Ge-
déchtnis und schaffen Voraussetzungen dafiir, daB man die ganze Aufmerksamkeit
dem mathematischen Problem zuwenden kann. Héufig reicht die Genauigkeit
der zur Verfiigung stehenden Tafeln nicht aus. Die Ergebnisse, die man erhilt,
sind mit groBen Fehlern behaftet.

O BEISPIEL 6/1:

Es ist « = 1,04341% zu berechnen.
Wir wenden das Logarithmengesetz log, b" = r - log, b an und erhalten

lgz =100 1g 1,0434 .
Verwenden wir die im Schulbuch Tabellen und Formeln — Mathematik,

Physik, Chemie auf den Seiten 20, 21 enthaltene Tafel, so konnen wir
zunachst nur den Logarithmus der Zahl 1,043 ablesen:

131,043 = 0,01828, also 100-1g 1,043 = 1,828 .

Fiir 1,04341% erhalten wir mit Hilfe dieser Tafel z ~ 67,3.
Verwenden wir dagegen eine fiinfstellige Logarithmentafel, so kommen
wir dem exakten Wert bedeutend naher, weil eine solche Tafel im allge-
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meinen das Ablesen des Numerus auf vier geltende Ziffern erméglicht.
Wir erhalten mit einer solchen Tafel, die fiir die Logarithmen der Zahlen
10000 bis 11000 haufig sogar siebenstellige Mantissen enthalt, folgendes
Ergebnis: ’

100 - 1g 1,0434 = 100 - 0,0184508 = 1,84508

z ~ 70,00.

Dieses Beispiel zeigt, daB der Wegfall einer geltenden Ziffer im Numerus
gerade beim Potenzieren die Genauigkeit erheblich mindert.

Die Genauigkeit der Berechnung kann bei Benutzung einer weniger umfangreichen
Tafel dadurch erhéht werden, dal man interpoliert. Beim Interpolieren in Tafeln
werden dabei Funktionswerte fiir Argumente ermittelt, die zwischen den in der
Tafel angefilhrten Argumenten liegen. Es werden also Funktionswerte ,da-
zwischengeschaltet’. Man muB gewissermaBen ,,zwischen den Spalten der Tafel
lesen‘.

O BEISPIEL 6/2:

Es soll 1,4532 aus der Tafel abgelesen werden.

Die folgende Ubersicht zeigt einen Ausschnitt aus der Quadrattafel auf
den Seiten 10 und 11 des Buches Tabellen und Formeln — Mathematik,
Physik, Chemie, Volk und Wissen Volkseigener Verlag, Berlin 1973.

n | 4 5 6 7

1,4 2,074 2,102 2,132 2,161

Ohne Interpolation kann man 1,452 und 1,462 ablesen. Der gesuchte
Wert liegt zwischen '
1,45% =~ 2,102 und 1,462 ~ 2,132 .

Der Unterschied d = 0,030 der beiden benachbarten Tafelwerte, die
sogenannte Tafeldifferenz, wird gleichmaBig auf die zehn Zwischen-
raume der als vierte geltende Ziffer méglichen Zahlen 0,1, 2, ..., 9 auf-

geteilt.
Durch Lésen der Proportion
v:0,030 = 3:10

erhalt man die Verbesserung v = 0,009, die man zu 1,45 ~ 2,102 ad
dieren muB. Es ergibt sich somit:

1,453% ~ 2,102 + 0,009 = 2,111 .



Diese Art der Interpolation, bei der die Differenz der Funktionswerte zwischen
zwei in der Tafel benachbarten Argumenten in der angegebenen Weise gleich-
miBig (linear mit dem Argument) aufgeteilt wird, heiBt lineare Interpolation.

Bei dem vorn betrachteten Beispiel der Berechnung von z = 1,04341% erhalt
man, falls man in der angegebenen Weise interpoliert, firr # den Naherungswert
70,8.

Da bei der linearen Interpolation die Kurve der Funktion durch eine Gerade
ersetzt wird, kann man diese nur anwenden, wenn sich die Funktionswerte im
betrachteten Intervall fast gleichmaBig verandern.

Fiir die in der Schule verwendeten vierstelligen Sinustafelnz. B.,in denen die Funk-
tionswerte fiir Zehntelgrade angegeben sind, kann linear interpoliert werden. Bei
der Tangenstafel mit einem Argumentabstand von 0,1° ist die lineare Interpola-
tion von Funktionswerten nur bis etwa 87° zuldssig, da sich, wenn man sich dem
Argument von 90° nahert, die Differenzen der Funktionswerte immer schneller
andern.

Nach diesen einleitenden Betrachtungen iiber die Interpolation wollen wir die
lineare Interpolation in Tafeln genauer untersuchen, eine veraligemeinerte Inter-
polationsaufgabe formulieren und einige Interpolationsméglichkeiten kennen-
lernen.

6.2. Lineare Interpolation in Tafeln
und lineares Interpolationspolynom

Zu gewissen Argumenten

Ty, Ly, Lgy oevy Thy ooey
die iiber einen bestimmten Bereich gleichabstindig!) verteilt sind, seien in einer
Tafel (Wertetafel) die zugehdrigen Funktionswerte

Yo = f(®o): 1 = f(@1), Y2 = f(22), oo, Y& = f(@e), ...

gegeben:
k 0 1 2 . k
s Ty Ty Ty .. Ty
Y Y% Y1 Y Y

Es lassen sich also zu den in der Tafel enthaltenen z-Werten die zugehorigen
y-Werte ablesen bzw. zu den y-Werten die x-Werte.
Wenn wir nun zu einem Argument x, das nicht in der Tafel enthalten ist, das

1) Man kann die Betrachtungen auch fiir solche Argumente durchfithren, die nicht
gleichabsténdig sind.

86



aber zwischen zwei Argumenten z; und ., (i € {0,1,2,...}), die in der Tafel
enthalten sind, liegt, den zugehérigen Funktionswert ermitteln wollen, so kann
das, wie bereits erwahnt, mit Hilfe der linearen Interpolation geschehen.

In der oben angegebenen Tafel ergibt sich als Differenz zwischen den Argumenten z;
und ;4

Tigy— e =h
und als Differenz zwischen den Funktionswerten
Yit1 — Yi = f(@ip1) — flx) = dq .

17
Ry -9
haT

(3} P y-flx)
A

nt

= LEN

}i x Xioy x
L.___.!h Bild 38

Bei der linearen Interpolation wird die Kurve der Funktion y = f(z) im betrach-
teten Intervall (z(, z;,,) zwischen den Punkten P; und P;,, durch eine Gerade g
ersetzt (Bild 38). Aus dem Bild kénnen wir zur Bestimmung firr den Naherungs-
wert § ~ f(z), falls x zwischen z; und ;,, liegt, die Proportion

z—2 §—y

h d,

ablesen. Aus dieser Beziehung ergibt sich

ZUSAMMENFASSUNG:
Fiir die lineare Interpolation in Tafeln erhalten wir:
Gegeben: z mit z, <z < 24,
(x¢ und x;,, sind als Argumente in der Tafel enthalten)
gesucht: y = f(z)
z — x4

Naherungswert fiir y: § =y, +d; %
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BEISPIEL 6/3:
Es soll 1g 1233 aus der vierstelligen Tafel auf den Seiten 20 und 21 von
Tabellen und Formeln abgelesen werden.

Gegeben: z = 1233

gesucht: y = f(z) = lg x = 1g 1233
Berechnung des Niherungswertes:
x, = 1230; z;,, = 1240

yo = 3,0899; y,,, = 3,0034

h = 10; d; = 0,0035

§=y 4+ d,% = 3,0899 + 0,0035 '1‘3’6% 3,0910

1g 1233 ~ 3,0910

BEISPIEL 6/4:

Es soll cos 48,37° aus der vierstelligen Tafel auf den Seiten 24 und 25
von Tabellen und Formeln abgelesen werden.

Gegeben: xz = 48,37°; gesucht: y = cos x

Berechnung des Ndherungswertes:
z = 483°% w;y, = 48,4°

yi = 0,6652; y;,, = 0,6639

Y=y + d.’;h" = 0,6652 + (—0,0013) 0(;017 ~ 0,6643

h=01; d,= —0,0013

cos 48,37° ~ 0,6643

Die geometrischen Uberlegungen (Bild 38), die genutzt wurden, um eine Formel
zur linearen Interpolation in Tafeln zu gewinnen, lassen sich auch noch in anderer
Weise auswerten. Die Kurve der Funktion y = f(z) wird im Intervall <z, z;,,>
durch eine Gerade g ersetzt. Die Gleichung der Geraden g kann man so als ,,Ersatz-
funktion* fiir y = f(z) im betrachteten Intervall auffassen. Damit haben wir
die Funktion y = f(x) im Intervall {z;, ;,,> durch eine lineare Funktion P,(z)
ersetzt. Fiir diese lineare Funktion P,(x) muBl gelten:
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Pya) =fz) und  Py@i) = f@) -

DEFINITION 6/1:

Man nennt die lineare ,Ersatzfunktion* P, fir die gilt

Py(xg) = f(z9) (=14 1i+1)

lineares Interpolationspolynom von f zwischen z, und z;,;.

Die Werte z; und 2;,, nennt man Stiitzstellen, die Werte y; und y;, die
zugehorigen Stiitzwerte und die Punkte Py(z; y:) und P; (%415 ¥iq1)
Stiitzpunkte.



¥ P lx) bzw. A (t)

y=flx)

N

(] X
0 t  Bild 39

Mit Hilfe des Bildes 39 1aBt sich die Gleichung der Geraden g als Zweipunkte-
gleichung ermitteln:
y = f() sei die gegebene Funktion, Py(zy; %) und Py(x,; y,) seien die bekannten
Stiitzpunkte, und es soll fiir das lineare Interpolationspolynom Py(z) gelten:
Py(zo) = f(,) und Py(z)) = f(zy) .
Durch forméle Umformung erhalten wir, wenn wir die Gleichung der Geraden,
die durch die Punkte P, und P, hindurchgeht, aufstellen,
(@ — o) (% — %) = (¥ — %) (71 — %))
und daraus das lineare Interpolationspolynom

[

H -
Y=o+ (x —z) LY,

| nT |

ZUSAMMENFASSUNG:

Wenn von einer Funktion y = f(z) die beiden Wertepaare (Stiitzpunkte)

(%? Yo = f f-"o)) und (”13 %= (-"1))

gegeben sind, so ermittelt man das lineare Interpolationspolynom P,(z)
im Intervall Czo, z,), 80 daB Py(zo) = f(zy) und Py(s) = (@) gilt, nach
folgender Vorschrift:

Pa): y=vo+ (@ —2) 2" L x ().
T — %
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m] BEISPIEL 6/5:
Gegeben sind die Stitzpunkte Py(2,03; y, = 2; ~ 8,365)
und Py(2,04; y, = a} ~ 8,490).
Gesucht ist das lineare Interpolationspolynom P(z).
Losung:
Py@) =y + (= “Io) £ 010215

y = f(z) ~ Py(z) = 12,5:: — 17,01
Falls zu dem Argument z = 2,037 der zugehdrige Funktionswert ermittelt
werden soll, erhdlt man

y=2a~ 12,562,037 — 17,01 = 8,453.

[m] BEISPIEL 6/6:
Gegeben sind die Stitzpunkte Py(5,72; y, = Ig 2, ~ 0,7574)
und Py(5,73; y, = lg z, ~ 0,7582) .
Gesucht ist das lineare Interpolationspolynom Py(z).
Losung:
P,(a:)-—yo+(x-—z.,) 90— 0,7574 + (z—572)00008
%o

01

y = f(x) ~ Py(z) = 0,089: + 0,2998 .
Der zum Argument z = 5,728 gehorige Funktionswert ist
y =g 5,728 ~ 0,08 - 5,728 + 0,2998 = 0,7580 .

Nach dieser ausfiihrlichen Darstellung der linearen Interpolation wollen wir im
néachsten Abschnitt eine verallgemeinerte Interpolationsaufgabe formulieren.

6.3.  Verallgemeinerte Interpolationisaufgabe

In der Praxis kommt es haufig vor, daB man mit Funktionen arbeiten muB, von
denen man nicht den analytischen Ausdruck kennt, sondern nur eine grafische
Darstellung oder eine Tabelle. Bei praktischen Aufgaben ist es jedoch oft not-
wendig, Werte der Funktion fiir Zwischenwerte, die in der Tabelle nicht vorliegen,
zu ermitteln. Im Falle der linearen Interpolation in Tabellen hatten wir eine
Moglichkeit kennengelernt, solche Zwischenwerte zu errechnen. Man konstruiert
eine entsprechende Ersatzfunktion, ein lineares Interpolationspolynom.

Eine solche Ersatzfunktion in Form eines Interpolationspolynoms kommt ge-
legentlich auch dann zur Anwendung, wenn die betrachtete Funktionsgleichung
sehr kompliziert ist.

In diesem Abschnitt wollen wir eine verallgemeinerte Aufgabenstellung fiir die
Interpolation formulieren.
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Von einer Funktion y = f() sind im Intervall <{a, ) zu » + 1 voneinander ver-
schiedenen Stiitzstellen (z-Werten)

Ty=a, &, %, ..., Ty = b
die zugehorigen Funktionswerte (y-Werte oder Stiitzwerte)

Yoo Y15 Y2 - Yn

bekannt. Die betreffende Funktion ist also durch eine Gleichung oder durch eine
Wertetafel in der Form

z | % ®m x .. %

vy v un % Yn
gegeben. Die Funktion y = f(z) ist durch ein Polynom Pa(x) von héchstens
n-tem Grad so anzunahern, daB gilt:

Yo = f(@o) = Palz,) ,

% = f(@) = Pa(x),

Ya = f(@n) = Pa(za) ,
also

Yo = f(x) = Pa(x) fir ¢=0,1,2,...,n.

[ T S ) Y Bild 40

Das Polynom Pg(z) heilt Interpolationspolynom.

Verfolgen wir die Aufgabenstellung mit Hilfe des Bildes 40 anschaulich, so stellen
wir fest, daB das Interpolationspolynom Py(x) zur Funktion y = f(z) so beschaffen
sein muB, daB seine Kurve durch die Punkte Py(zy; %), Py(%;; %), ---s Pa(Zn; Yn)
der Kurve der Funktion y = f(x) hindurchgehen muB.

In den folgenden Abschnitten werden wir Moglichkeiten fiir die Konstruktion
derartiger Interpolationspolynome kennenlernen.
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6.4. Unmittelbarer Polynomansatz

Soll zur Wertetafel

z |z m x ..

v lw u w Yn
das Interpolationspolynom Py(x) konstruiert werden, so kann man den folgenden
Polynomansatz, der noch (z + 1) unbekannte Koeffizienten a,, a,, a,, ..., a, ent-
hélt, machen:

Pp(x) = ay + a2 + a,2% + ... + azz" .
Entsprechend der im Abschnitt 6.3. formulierten Aufgabenstellung erhélt man
durch. Einsetzen der Wertepaare (x,; %;) (1 = 0, 1, ..., n) das lineare Gleichungs-
system

@y + a2y + axd + ... + anxy = ¥,

ay + ayz; + a2} + ... + anal =y,

@y + AT + B2 + o + AT = Yn

oder

@y + @ + a2} + ... + anal = y;
fir 4 =0,1,2,...,n zur Berechnuig der unbekannten Koeffizienten a,, a,, a,,
ey Gy«

s laBt sich nachweisen, daB das Gleichungssystem eindeutig 16sbar ist. Damit

ist auch das Interpolationspolynom P,(z) eindeutig. Bei unterschiedlichen Kon-
struktionsméglichkeiten fiir unterschiedliche Anforderungen, die man an das
Interpolationspolynom stellt, tritt es nur in verschiedenen Formen auf. Jede
dieser Formen hat ihre rechnerischen Besonderheiten.
Der in der Formulierung der Aufgabenstellung angegebene Zusatz ,,von hoch-
stens n-tem Grad*‘ ist notwendig, da es beliebig viele Polynome vom Grad > n gibt,
die die sogenannten Stitzstellenbedingungen erfiillen, und da auch Polynome
vom Grad <n existieren konnen, die die Bedingungen erfiillen. So kénnen z. B.
alle Punkte (%o; %), -.., (¥n; ¥n) auf einer Geraden liegen. In diesem Falle haben
wir bei # Stiitzpunkten ein lineares Interpolationspolynom. Es ist auch méglich,
bei zwei Stiitzpunkten Py(x,; ,) und Py(z,; ¥;), wo man mit einem linearen Inter-
polationspolynom auskommt, Parabeln zweiten oder dritten Grades zu konstru-
jeren, deren Kurven durch P, und P, hindurchgehen.
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BEISPIEL 6/7:

Fiir die Funktion mit der Gleichung
1

y=f) = m

soll eine Wertetafel mit den Abszi —1;0; 1 und 2 aufgestellt werden.

Danach soll auf der Grundlage dieser Wertetafel mit Hilfe des unmit-

telbaren Polynomansatzes das Interpolationspolynom dritten Grades
Py(z) aufgestellt werden.

Losung:
Wir berechnen die Ordinaten und vervollstindigen die Wertetafel:
z | -1 o 1 2
2 1 1 1
y Z = —

3 2 3 5
Der Ansatz Py(x) = a, + @& + a,2% 4 a328 liefert das Gleichungssystem

2
G — @+ a; —ay =3
a 1
0 2

1
@+ ay +a; + ay =§

1
%+2"'1+4a2+8‘13=§
und die Koeffizienten
a—l' 41——31'a—0'a—l
=g BT gy T s
Damit ist

1 31 1

f(x) ~ Py(x) = z + z?

2180 ' 180

Der hier beschriecbene Weg, das Interpolationspolynom mit Hilfe des unmittel-
baren Polynomansatzes zu finden, ist zwar theoretisch gut zu iiberblicken, prak-
tisch aber umstdndlich. Man kann auf einfachere Weise Interpolationspolynome
gewinnen. So haben LAGRANGE!), NEWTON und weitere Mathematiker Verfahren
entwickelt, die bei einer groBen Anzahl von Stiitzstellen effektiver und prak-
tischer sind. Im ndchsten Abschnitt wird eine Moglichkeit fiir die Konstruktion
des Interpolationspolynoms angegeben.

1 LAGRANGE, JosEPE Lovuis (1736 —1813), lehrte in seiner Heimatstadt Turin sowie
spéter in Berlin und Paris. Er lieferte hervorragende wissenschaftliche Beitrige u. a.
zur Analysis, zur Himmelsmechanik und zur Hydromechenik.
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6.5. Das Interpolationspolynom von Lacrance

Zur Konstruktion des Interpolationspolynoms n-ten Grades zur Wertetafel
z |z w oz .. %
Yy | Yo % Y2 Yn
kann man nach LAGRANGE in der nachfolgenden Weise vorgehen.
Fiir das Interpolationspolynom Pg(x) wird der Ansatz
Po(z) = yoLo(2) + thLs(2) + - +YnLa(@)
gemacht. Dabei sollen die Ausdriicke Ly(x), Ly(z), ..., La(z) Polynome n-ten Grades
mit der Eigenschaft
Ly =) Mr ¥k P
1 fir i=k 2)

sein.
Die Polynome n-ten Grades mit der Eigenschaft (1), (2) nennt man LaGRANGEsche
Polynome. Mit der Eigenschaft, die diese Polynome haben sollen, wird die For-
derung der Aufgabenstellung, nimlich

Po(x) = y: fir ¢+=0,1,..,2,
gerade verwirklicht. Dazu braucht man nur die Wertepaare in den Ansatz ein-

zusetzen.
Es miissen nun die LAGRANGEschen Polynome bestimmt werden. Aus der Eigen-
schaft (1) ergibt sich, daB die Werte

Loy L5 eees Tp—1s Tk 415 oo0s T

Nullstellen des Polynoms Ly(z) sind. Da Li(z) von n-tem Grad sein soll, sind das
auch alle Nullstellen. Damit kann man das Polynom in Linearfaktoren aufspalten
und erhalt

Li(z) = Clz — ) (z — @) - (& — 24_1) (& — Tpya) - (7 — Ta)

wobei C eine noch zu bestimmende Konstante ist.
Die Konstante C kann man ermitteln, wenn man die Eigenschaft (2), die an die
LacraNGEschen Polynome gestellt wird, auswertet. Es ergibt sich

1 = Ly(2) = C(me — o) » ++ + (T — Tp_1) * (& — Tpya) » o+ (T — Ta)
und damit
o= ! .
(Te — @)+ ++ + (@x — Tp_g) * (@x — Tpyy) * o - (T — Za)
Wir haben so die LacraNGEschen Polynome in der Gestalt
Lg(.‘c) - (T — Zg) (T — @) » oo o (B — Zp_g) (T — Tpgq) - ooe o (T — T)
(Te — Zo) (xx — y) » o+« (@e — Tp_1) (@B — ZTpg1) - -+ (Te — Tn)

oder ausfiihrlich in der Gestalt
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(& =) - (& — @)
L == = - .,
o) (T — 2y) = =+« (g — Zn)
_ E—m)- (@ =) (2 — Tn)
b = (@ — @) - (23 — ) - e+ (&g — Zn)
Lyx) = (@ —2) (— &) (¥ — @) - - ( — ¥n)
(T — Z) + (T — @)+ (2 — X3) « ++ (T — Zn)
Li(@) = (T — %) (B —2p_y) (B — 2 yy) - - (B — Zn) ,
(Te — o)+ ++ + (@ — Tp_1) (Te — Tpya) * -+ (@ — Zn)
Ly(z) = (B — %)+ e (& — Fn_p) - (& — Tp_1)
(Tn — @) * »++ + (Tn — Ty_3) * (Tn — Tp_1)

gewonnen. Es ist zu erkennen, daB im Polynom L,(x) im Zahler der Faktor
(x — 23) nicht auftritt und daB im Nenner der Faktor (z; — z;) nicht auftreten
kann. Der Zahler von Ly(x) ist ein Polynom, gebildet aus den Linearfaktoren
(x — ;) aller zu x; fremden 2,. Der Nenner ist ein Zahlwert, den dieses Polynom
fir z = «, annimmt.

Das Interpolationspolynom Pa(x), das mit Hilfe der LacraNgEschen Polynome
konstruiert wurde, lautet

(x — 7y) - (x — @)
(g — @) ++* (%g — Tn)
(T —Zp) = (& — Z_y) (& — Zpyy) == (& — Zn)
(Te — Tp) =+ (Xr — Tp_1) (Be — Tpyq) - (T — Za)
(22— o) -+ (& — Zp—1)
(@n — %) (& — 2a_1)

Pp(z) =y, -

-+ Yr o

e Yn*

Man nennt dieses Polynom LacrangEsches Interpolationspolynom.

ZUSAMMENFASSUNG:
Wenn die Stiitzpunkte
Po(%o; Yo)» +-s Pn(Zn; Yn) (— eventuell in Form einer Wertetafel —)
gegeben sind, so kann das LaGranNGEsche Interpolationspolynom folgen-
dermaBen gefunden werden:
(1) Aufstellen der LacraNGEschen Polynome

Lz) (1=0,1,2,..,2);
(2) Multiplikation dieser Polynome mit den jeweiligen Funktionswerteny;
(3) Ordnen nach Potenzen von z.
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Nach der Herleitung des LAGRANGEschen Interpolationspolynoms wollen wir nun
zwei Spezialfélle betrachten.

1) Lineare Interpolation: Es sind zwei Stiitzpunkte Py(z,;,) und P(z;; ) ge-
geben, und es soll das LaGraNGEsche Interpolationspolynom fiir diesen speziellen
Fall aufgeschrieben werden. Man erhalt

T — T —
Li®=2"%, Lm=I"%
To— T I — %
und
z — 2 z — 2z
Py(z) = Ly(x) o + Ly(2) 4. = - Y + ° %
To— T T — %o
bzw

Py(z) = Y — y°z+ %1% — To¥r
T — % T — %
Das lineare Interpolationspolynom stimmt mit dem Polynom, das wir im Ab-
schnitt 6.2. gewonnen hatten, iiberein.
Falls man » = z, — z, einfiithrt, nimmt das Polynom folgende Form an

Y% 1Yo — %o

x+ 7

> Pyw) = %

Wenn man die Transformation z = 2, + th vornimmt, also auf die Variable ¢
transformiert, so daB x, der Wert ¢ = 0 und «; der Wert ¢ = 1 entspricht, verein-
facht sich das Interpolationspolynom (Bild 41). Man erhalt

Lyt)=1—t und L) =t

¥
A__g
y="fix)
A
N
Y
,',n W x Bid4l
> PO)=Q -0y +th=0—%"¢t+%-
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Eine solche Transformation ist durch passende MaBstabswahl auf der z-Achse
stets moglich.
2) Kubische Interpolation: Es sind vier Stitzpunkte Po(y; %), Pi(21; %), Py(2; ¥)
und Py(%,; y5) gegeben. Die vier Stiitzstellen sollen gleichen Abstand haben, es
gilt also

Xy — Ty =T, — =2, —Xo="h.
Man spricht dann von gleichabstandigen oder Aquidistanten Stiitzstellen. AuBer-
dem wollen wir wieder mit Hilfe von z = x, + th so auf eine Variable ¢ transfor-
mieren, daB gilt

z I Ty T ;X

y=fix)

Xy X
0 1 2 3 't Bild 42

Das ist bei aquidistanten Stiitzstellen durch geeignete MaBstabsanderung auf der
x-Achse stets moglich (vgl. Bild 42). Zur Aufstellung des Interpolationspolynoms
erhilt man

E—zm)E—z)@—x) _(¢—-1)-¢—2)-¢—3)

Ly= =
(@g — @) (¥ — %) (“’n — 23) (=1):(=2)-(=3)

= —3C-D-e-2-¢-3),

Lo ) @—m)@—2) -2 (-3

P e —w) (@ — ) (7 —x) L (1) (=2)
=%t(t—-2)-(t—3),

Lo E—mE—n)@—z) _H-—1)-¢—3)
.=

@ — %) (@ — ) (@ — %)  2-1.(—1)
= _%z(c—l).(c—&
und

7 1001712] 97



E—z)@—m)@—x) _H—1)-¢—2)

L=
(%3 — o) (%2 — %) (% — 22) 3-2-1

=%z(z—1)-(e—2).

Als Interpolationspolynom ergibt sich somit
Py(t) = Ly(t) yo + Ly(t) y1 + Lo(t) y2 + Ls(t) ys

=—%"(t’—Gt’+11:—6)+y—2‘(t‘—5t“+6t)——

—%(:=—4t=+3¢)+-”_g(zs—3¢=+2t)

Py(t) = 5 [(4s + 31 — 39, — o) £ + (6y, — 16y, + 12y, — 3yy) £2 +
{ + (i8y; + 2y; — 11y, — 9y,) ¢ + 6y,] .

Die LacrancEsche Interpolationsformel ist vor allem wichtig fir die Unter-
tafelung, d. h., wenn eine Tabelle mit dquidistanten Stiitzstellen (Argumenten x)
durch Einschalten neuer dquidistanter Zwischenwerte unterteilt (verfeinert) wer-
den soll und die dazugehorigen Stiitzwerte (Funktionswerte y) ermittelt werden
sollen. Dabei ist fiir immer wiederkehrende z-Werte zu interpolieren. Die La-
GRANGEschen Polynome kénnen dann wiederholt verwendet werden. Fiir einen
bestimmten z-Wert konnen die L;-Werte, mit denen die y; zu multiplizieren sind,
zahlenmiBig angegeben werden. Der Nachteil der LacraNGEschen Interpolations-
formel besteht darin, daB man den Grad des Polynoms durch die Anzahl der
Stiitzpunkte vorher festlegen muB. Wenn der Genauigkeitsgrad der Interpolation
nicht ausreicht, muB man die Anzahl der Stiitzpunkte vergroBern. Man erhoht
damit patiirlich im allgemeinen auch den Grad des Polynoms. Allerdings muB
dann die gesamte Rechnung (Aufstellen der LaGRaNGEschen Polynome, Ermitteln
der Zahlwerte) wiederholt werden.

Es gibt noch weitere Moglichkeiten, Interpolationspolynome zu konstruieren.
NewroN hat ein Interpolationspolynom angegeben, das die hier angegebenen
Nachteile des LaGrRaNGEschen Interpolationspolynoms nicht aufweist. Fir spe-
zielle Interpolationsaufgaben gibt es auBerdem spezielle Interpolationspolynome.
Zum LaGraNGEschen Interpolationspolynom sollen nun noch zwei Beispiele be-
trachtet werden.
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O BEISPIEL 6/8:
Es ist das Interpolationspolynom von LAGRANGE fiir die Funktion

_ 1
Y =1r=
unter Verwendung der Wertetafel
z | -1 0 1 2
2 1 1 1
v R
aufzustellen.
Losung:
L@ = 2@-DE@E—-2 _ 1.,
o) - (=2 (=3 B (28 — 322 + 22),
_e+he-N@E-2_ 1 . .
Ly(z) —W_Ew 222 —z 4+ 2),
_ (x+1):c(z—2)__l o
G R e
und
_@+ha-1) _1 ,
o =—51  ~s¢ 2
Damit ergibt sich
Py(z) = —%(z’ — 322 + 2z) +Ti-(z' — 22 —z 4+ 2)—

_1 o — 1 -
—6-(3:‘ z 2:)-}-%(2:’ z)

oder zusammengefaBt

1 31 1
Pyz) = —ad — L g4 1
@) =1%" 1" T2

Das Beispiel zeigt, daB die Bildung des LaGraNGEschen Interpolationspolynoms
mit einem groBen Rechenaufwand verbunden ist. Es ist zweckmaBig, den Algo-
rithmus zur Bestimmung des Interpolationspolynoms so aufzubereiten, da8 man
Formeln zur Berechnung der Koeffizienten des Polynoms gewinnt. Dann hat
man die Moglichkeit, den Algorithmus in Form eines FluBbildes darzustellen, den
Rechenablauf zu programmieren und Hilfsmittel (z. B. Automaten) zur Berech-
nung einzusetzen. Fir den Fall » = 3 soll das im nachfolgenden Beispiel unter-
sucht werden.
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BEISPIEL 6/9:

Es ist das LagraNGEsche Interpolationspolynom fiir die Funktion y = f(x)
mit den Stiitzstellen z,, x,, %,, 3 (n = 3) aufzustellen. Der Algorithmus
zur Berechnung der Koeffizienten ist-in Form eines FluBbildes darzu-
stellen.

Losung:
(x — 1) (x — 2,) (x — 7) (x — o) (z — z,) (x — z3)
P. =
() (T — 21) (T — @3) (g — ) Wt (21 — mp) (71 — %) (7 — T5) ut
(& — z) (z — 7)) (z — ) (& — ) (2 — ) (x — x)

' (23 — %) (x5 — 7y) (X3 — @) :

(T — o) (xp — 21) (¥, — 75)
Man erhélt P;(z) als Polynom dritten Grades in der Form
Py(z) = ay + a,x + a,a? + agz? .
Die Koeffizienten des Polynoms lassen sich z. B. nach den folgenden
Formeln berechnen:

&> 7

Yo N ! ]
Ap=pri A= M= A=y
Lies Xy, Xy X3 %30 Yoo 1 Yo Vs ;
l ay: = Ag+ A+ A +4, J
A = Xg—X ‘
B: = x—x = Ay (x+xy+x3) — Ay (xg+X3+X3)
—Ay (Xg+xy+xy) — Ay (xg+xy+Xg)
. =x—x ;
A k| ay:=Ag (X1 Xp + XXy + XXy ) + A[ Xo Xy + XoXy + Xy Xy
E = x-x +Az( xoxy +XoX3 +X1X3) +Ayl XoXy +XgXp X1 %)
F: = x-x ‘
‘ ai=—Ay 0 X X3—A) xg X3 X5
—Ay xg Xy X3 Ay Xg X X
py: = A-B-C ‘
e =ADE drucke ay, ay, @y, a3
Py = B-D-F
py: ==C-E+F

Bild 43
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6.6.

o O

Y.
ay = — z/lxlxgx, - 2‘_%1213 - !Exoxlx, - ‘szozl"’z s
Po o 2] 2]
a = %" (m%y + 2123 + %) + % (g%y + To2s + 275) +
o 1

+i—2 (Tey + ZpT3 + 237%3) + y;:(%xl + 2o, + 21T,) ,
2

a2=y—°(z1+x,+x,) - zﬂ(’04':'524'5"3)—
P 21

—&(xo‘l'xl"'za)—&(zo‘i‘xz"f'xz)»
2] Ps

ag =t Y
Do P1 P2 Ps
mit
Po = (Tp — 1) (To — Tp) (@ — %), P = (T — %) (@1, — 7,) (7, — %),
Py = (@ — %) (@ — 2,) (2, — 23) und Py = (T3 — 2o) (%3 — ) (T3 — z3) «
Fiir das geforderte FluBbild wurde im Bild 43 ein Vorschlag unterbreitet.

Aufgaben

1. Wie lautet die Formel fiir die lineare Interpolation ?

[

. Ermitteln Sie das lineare Interpolationspolynom fiir den Fall P,(6,38;
Ig 6,38) und P,(6,39; lg 6,39)! ’
Berechnen Sie damit einen Néaherungswert fiir lg 6,386! (L)

3. Zur Wertetafel

z l 0,1 0,2 0,4

y 11052 12214 14018
ist das Interpolationspolynom zweiten Grades P,(x) mit Hilfe des un-

mittelbaren Polync tzes aufzustell @)
4. Wie lautet das LacraNGEsche Interpolationspolynom fiir den Fall
n=27? : L)

5. Es ist die Néherungsfunktion fiir y = V:? mit Hilfe der Interpolations-
formel von LAGRANGE zu ermitteln, deren Bild durch die Punkte
Py(1;1); Py(1,21;1,1) und Py(1,44; 1,2) geht. (L)
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70 Numerische Integration

7.1. Einfiihrung

Bei der Losung praktischer Aufgaben sté8t man vielfach auf bestimmte Integrale,
b
also auf Integrale der Form [ f(z) dz. Wie aus dem Unterricht in der Abiturstufe
a

bekannt ist, entspricht der Wert des bestimmten Integrals
5
[ f(z) dz, wobei f(z) in <a, b) stetig ist und f(z) = 0 fiir a < = < b gilt,
a

dem Zahlenwert des Flacheninhalts der Fliche 4, die begrenzt wird, von der
Kurve der Funktion y = f(x), von der z-Achse und von den Geraden z = a und
z = b (Bild 44).

ya

y=rlx)

b X Bild 44

Bestimmte Integrale kann man in vielen Fallen formelmaB8ig 1osen. Hierbei nutzt
man die bekannten Grundintegrale, wie z. B.

1
il e — L S
fz n+1f‘ ¢,

f—d—z=ln|z|+o u. a.,
z
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und wendet dann den Hauptsatz der Differential- und Integralrechnung an:

Ist f eine im Intervall {a, b) stetige Funktion und F irgendeine Stamm-
funktion von f, so ist

b
;l’/(z) dx = F(b) — F(a) .

@) 1. Berechnen Sie!

1 1
a)f(2x+5)dz b)f(;—l,ﬁ)dz
s '}
8 2
c)f(2z—4)dz d) f(§+4)dx L)
e} 2

Interpretieren Sie die errechneten Werte geometrisch!

Mitunter muB zur Lésung eines Integrals auf eine passende Substitution zuriick-
gegriffen werden. Dariiber hinaus sind noch weitere Moglichkeiten zur formel-
maBigen Losung von Integralen gefunden worden, die jedoch nicht im obliga-
torischen Unterricht bis zur Klasse 12 behandelt werden.

Alle diese Verfahren fithren jedoch nicht immer zum Ziel, d. h., es ist nicht in
jedem Fall méglich, das Integral exakt formelmaBig zu l6sen. In solchen Fillen
kenn man sich mit Naherungsmethoden behelfen, zu denen die Verfahren der
numerischen Integration gehoren.

Wenden wir uns beispielsweise der Berechnung der Bogenlinge einer Ellipse zu,
einer Problematik, die u. a. in der Astronomie und der Astronautik von Bedeutung
ist, so stoBen wir auf ein sogenanntes elliptisches Integral, das man nicht formel-
maBig 16st, sondern mit Hilfe eines Naherungsverfahrens.

Numerische Berechnungen von Integralen sind aber auch dann zweckmaB8ig, wenn
der bei der exakten Losung entstehende Ausdruck oder der Integrand sehr kom-
pliziert ist, wenn der Integrand nur als Tabelle (Wertetafel) vorliegt und wenn
man zur Auswertung von Integralen Hilfsmittel in Form von Rechenautomaten
einsetzen will.

Die numerische Integration besteht darin, daB man das bestimmte Integral eben
als Zahlenwert der Fliche eines ,krummlinig® begrenzten Trapezes (begrenzt
durch die Kurven # =a, z =5, y =0 und y = f(z)) auffiBt und, anstatt die
Fliche des gegebenen Trapezes zu berechnen, ein anderes Trapez (begrenzt durch
z=a,2=>5,y=0und y = g(x)) sucht, dessen Fliche sich leichter berechnen
1aBt, wobei sich allerdings die Kurve y = g(x) moglichst wenig von der Kurve
y = f(z) unterscheiden soll. Bei der numerischen Integration wird also der Wert
eines bestimmten Integrals angenahert zahlenméaBig mit Hilfe eines numerischen
Verfahrens berechnet.

Es werden im folgenden 1. die Rechteckmethode, 2. die Trapezregel und 3. die
SmmrsoNsche Regel betrachtet.
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Bei allen drei Methoden wird zur naherungsweisen Berechnung des bestimmten
b

Integrals [ f(z) dz das Integrationsintervall (g, b) in 7 gleiche Teile der Lange
a —_

(Schrittweite) b = b

ad zerlegt. Die Teilungspunkte, die wie bei der Inter-

polation Stiitzstellen heifen, werden mit a = x,, z,, Z,,..., z, = b bezeichnet, die
zugehérigen Funktionswerte des Integranden f(z) mit y, = f(z,), %1 = (=), -oes
Yn = f(za) .

Nach dieser Unterteilung wird eine der angegebenen Methoden angewandt.

7.2. Die Rechteckmethode

Bei der Rechteckmethode wird die Kurve der gegebenen Funktion y = f(z) in
den Teilintervallen von z, bis z,, 2, bis z,, ... und von z,_, bis z, durch Geraden-
abschnitte ersetzt, die parallel zur z-Achse verlaufen. Als Naherung fiir die Flache
wird die Sumome von 7 Rechteckflachen genommen. Die Breite dieser Rechtecke
ist gleich &, die Hohe ist gleich der rechten oder linken Ordinate in jedem der
Teilintervalle (Bild 45).

a=xy Xy X; X

Bild 46

Als Niherungsformeln erhilt man

n

|
b— |
f’("’) dz ~ 2 (% + Y2 + - + ya) bzw. |

b
b_
ft(z)dm- 2ot - F Yan)-
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Man nennt diese Formeln auch Rechteckregeln oder Rechteckformeln. Der Fehler
b

d= l J fxydz — I| (wobei I der errechnete Niherungswert fiir das bestimmte
a

Integral ist), der auftritt, 1aBt sich'mit Hilfe der Ungleichung

I M, (b —
1(b —a)?
> ’ d=< —

abschitzen, wobei M, der groBte Wert des Betrages der ersten Ableitung f'(z) im
Intervall <a, b) ist. f(x) muB einmal stetig differenzierbar sein. Aus der Formel
ist zu erkennen, daB mit der VergroBerung der Anzahl der Teilpunkte, d. h. mit
der VergroBerung der Anzahl der Stiitzstellen, die Genauigkeit wachst.

! ZUSAMMENFASSUNG :
b
Gegeben: [ f(z) dz

Gesucht:  Naherungswert fiir das bestimmte Integral

1

i Losung: Unterteilung des Intervalls {a, b) in n Abschnitte von der
b—a

|

’

Liange b =

Berechnung eines Naherungswertes mit Hilfe einer Recht-
eckformel.

O BEISPIEL 7/1:

3
Es ist f %fﬁr n = 4 mit Hilfe der Rechteckmethode néherungs-
2
i

weise zu berechnen.

Losung:
p=t-e 8-1_1
n 4 2

z | 1 1,5 2 2,5 3

fx) |o0Jl00 0087 0077 0069 0,063

L ~ 0,5 (0,1 4+ 0,087 + 0,077 4 0,069) = 0,167
3z + 7

1
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oder

8
dx
0,6 - (0,087 4 0,077 4 0,069 + 0,063) = 0,148.
f Go ™ 08 (0087 + 0,077 + 0,069 + 0,063)
1

Man kann, da das Integral geschlossen auswertbar ist, einen Vergleich
mit der exakten Losung angeben. Man erhalt

dz 1 s 1
_— _=|(=m3z+ 17| =—(In|16] — In |10,
3z + 7 [3 |’+|]1 3(Il 110])
1
=%(2,773—2,303)~0,157.
BEISPIEL 7/2:

Es ist der Fehler abzuschétzen, der bei Anwendung der Rechteckmethode
im Beispiel 7/1 auftritt.

Losung:
1 , 3
flz) = 1 flz) = Grr
3
'(z)] = — = 0,03
lrzfsxalf (=) 108
i< —0’02 4 _o0015.

7.3.  Die Trapezregel

Ein weiteres Verfahren zur numerischen Integration ist die Trapezregel. Das
Prinzip, das diesem Verfahren zugrunde liegt, besteht darin, daB man die Kurve

der

¥

gegebenen Funktion durch einen Polygonzug ersetzt. Das hat zur Folge, daB

y=fix)

a=xy X X n=b x Bild 46
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in den Intervallen (z,, z,>, {2}, %;), ..., {¥n_1, Tap, die durch die Abszissen der
Polygonecken gebildet werden, statt der Kurven Sehnen zu betrachten sind.
Dabei entstehen Trapezflichen. Die Trapezfliche des i-ten Teilintervalls wird
begrenzt durch die Kurven y =0, z = z;_;, # = z; und durch die jeweilige
Sehne. Als Naherung fiir die gesuchte Flache wird die Summe der Trapezflachen
angesehen (Bild 46).

Die Formel fiir die Trapezregel hat, wenn man die Formel zur Berechnung des
Flicheninhaltes eines Trapezes zugrundelegt, die Gestalt

Yot Ht o Y1+ y.)=
ff(x)da: ( > o +...+_2—‘
b—
S A

oder

1]
> ff(z)d”‘*‘b_a(.'lo+2y1+2y:+---+2yn—1+?/-)-

Der Fehler d, der auftritt, also der Betrag der Differenz zwischen exakter Losung
und Naherungsldsung, 148t sich mit Hilfe der Ungleichung

Myb—a)®

d=s
= 12

abschatzen, wobei M, der groBte Wert des Betrages der zweiten Ableitung f(z)
im Intervall {a, b) ist, also My = ma.x | f'(z)|. Die Funktion muB zweimal stetig
differenzierbar sein. ass

Soll das Integral nach einer vorgegebenen Genauigkeit e berechnet werden, d. h.,
es soll gelten d < e, so kann die Zahl n der Unterteilung aus der Ungleichung

‘% <e (nistdie Anza.hl der Teilintervalle)
n

ermittelt werden.

Man kann bei der Herleitung der Trapezregel auch so vorgehen, daB man in
jedem der Teilintervalle {x;, «;,,) zwischen den beiden Stiitzpunkten die Kurve
y = f(x) durch das lineare Interpolationspolynom P,(z) ersetzt und dann im je-
weiligen Intervall nicht

%+l
[ faydz  (=0,1,..,n—1)
zi

ausrechnet, sondern
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Zit1

f Py(x) dz

berechnet und den Wert dieses Integrals als I\aherungswert fiir das bestimmte
Integral verwendet. Es wird also f(z) durch ein Interpolationspolynom ersetzt.

O BEISPIEL 7/3:
3

a) Esistf dz
3z+17

und es1 ist der Fehler abzuschitzen.

b) Es ist die Zahl » der Unterteilung zu ermitteln, damit das Integral
mit Hilfe der Trapezregel mit einer Genauigkeit von e = 0,0001 be-
rechnet werden kann.

Lésung'

mit Hilfe der Trapezregel fir n = 4 zu berechnen,

——.(0,100 + 2-0,087 + 2- 0,077
)f3z+7~2 (0,100 + + +

+ 2.0,069 + 0,063) = 0,25 - 0,629 ~ 0,167 .

Da

» 18
(=) = Bty
und

max |f'(x)] = -—8 = 0,018,

1s2zs3
erhilt man
.98
a< 2082 0007,
12-16
18. 28
b) —— 2 _ < 0,0001 soll gelten.
) Tor- 1om = B0t gellen

Daraus folgt n? = 120 und damit » = 11.

7.4. Die Smupsonsche Regel

Bei der Herleitung der SmpsoNschen Regel unterteilt man das Intervall (a, b)
in eine gerade Zahl n = 2k von Teilintervallen

(X D, {Fpy X5 wevs {Tn—1s Zn) +

Die Kurve wird durch Parabelbogen ersetzt, die jeweils durch drei aufeinander-
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folgende Stiitzpunkte (x5, %), (%1, %) und (2,, ¥5); (%, ¥2), (%3, y3) und (z, y,) usw.
hindurchgehen. In jedem der Intervalle {z,,,), {3, Zy), .., (Tn_g, Tny Wird also
die Funktion y = f(z) durch ein Interpolationspolynom zweiten Grades (quadra-
tische Interpolationsparabel) ersetzt. Als Niherung fiir das bestimmte Integral

berechnet man die Summe der Flichen unter den % Parabelbogen (Bild 47).
Zur Herleitung der SmvpsoNschen Regel wird das erste Intervall betrachtet
(Bild 48).

Die Funktion y = f(x) wird ersetzt durch das LacrANGEsche Interpolations-
polynom

Py(z) = Ly(@) yo + Ly(#) %1 + Ly() s -

y r yA
P
- y=1)
Sn-2 |Ya-1 |y
ll-A‘. x, x ” , x-b x
Bild 47 Bild 48

b—a

, also

Die LagrancEschen Polynome lassen sich bei der Schrittweite h =
bei gleichabstindigen Stiitzstellen, mit Hilfe der Formel

T —% "
h
so auf eine Variable ¢ transformieren, daB folgende Wertetafel gilt:
z ‘ Ty T T
t o 1 2

Die Lacraneeschen Polynome mit der auf die Schrittweite 1 transformierten
Variablen ¢ lauten dann

1 1
Li=5¢-D(-2)=2@E—3+2),
Lt)y=—tt—2)=—+ 2t

und
1 1
Ly(t) = —t(t — 1) =—(t2 —¢) .
o) = K ) 2( )
Integration von 0 bis 2 liefert
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zy z,
f/(z)dszPz(z)dz=

2
=f [Zo() %o + Ly(t) 31 + Ly(t) yz]:;‘:d‘
]

1 4 1
=(§yo+§y| +§3/:) k.

Damit erhdlt man fir dieses Intervall als Naherungsformel fiir das bestimmte
Integral

" I3 _
> f/(x)dz““v'g‘(yo‘l"fyx‘l‘yz) mit h=x’ 2%-
ES

Diese Uberlegungen lassen sich fiir alle Intervalle durchfiihren. Als Ergebnis
erhilt man dann zur ndherungsweisen Berechnung des bestimmten Integrals die
Smvpsonsche Regel'):

1]
h
ff(z)d-" %E(!/o'i' W+ Yt Rttt ot Ya2t4Yno1tYn)

h
=3 (Yot 4% + 292 + 4Ys + 2Ys+ oo + 2Un_2 + 4Yn_1 + Yn)

mit h=2"2

, also

b
b —
> ff(x) dz ~ 3na ¥ + 4% + 202 + - + 2Yn_z + 4Yn_1 + ¥n) -

Die Genauigkeit, mit der das Integral nach der SmMpsonschen Regel berechnet
werden kann, laB8t sich nach der Ungleichung

1) SrmpsoN, THOMAS, (1710—1761) verfaBte zahlreiche Lehrbicher. Die nach ihm be-
nannte SiMpsoNsche Formel wurde bereits vor ihm von ToRRICELLI, GREGORY (1668)
und NEwWTON (1676) benutzt. Ein Spezialfall der SimpsoNschen Formel ist die
KerrLersche FaBregel, die von dem deutschen Mathematiker und Astronom Jo-
HANNES KEPLER (1571 —1630) in seinem Werk ,,Nova stereometria doliorum vina-
riorum** (Linz 1615) angegeben wurde.
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M (b —a)

[ =
> —  180m¢

abschétzen, wobei M, der groBte Wert des Betrages der vierten Ableitung f¥)(x)
im Intervall (g, b) ist. Die Funktion f muB die entsprechenden Vor: tzungen
erfiillen.

Soll das Integral mit einer vorgegebenen Genauigkeit e berechnet werden, so kann
die Zahl # der Unterteilung aus der Ungleichung

M, —G)GS e
180n¢ —

bestimmt werden. Die Zahln muB dabei eine gerade Zahl sein, da man bei der
Anwendung der SmapsoNschen Regel eine gerade Anzahl von Intervallen benétigt.

7.5.  Hinweise zur praktischen Rechnung

Die Durchfithrung der praktischen Rechnung bei der numerischen Integration
soll am Beispiel der Smpsonschen Regel erlautert werden. Falls das Integral
[

J f(z) dz mit Hilfe der SmupsoNschen Regel mit einer Genauigkeit von e berechnet
a

werden soll, geht man am besten nach den nachfolgenden Arbeitsschritten vor.

Die Ergebnisse tragt man in eine Tabelle (Rechenschema) ein.

Arbeitsschritte:

1. Ermitteln der vierten Ableitung des Integranden f)(z) und des groBten Wertes
von [{#)(z)| im Intervall (a, b, also

M, = max |f9(z)] .
eszSd

2. Ermitteln der Zahl n der Unterteilung aus der Ungleichung
—a)d
M (b —a) <e
180nt

(Wenn die erhaltene Zahl n ungeeignet ist, also ungerade ist, so kann sie ver-
groBert werden.)

3. Berechnen von kb =
(k=0,1,..,m).

4. Berechnen der Funktionswerte y, = f(z) (k =0, 1, ...,2). (Bei der Berech-
nung der Funktionswerte y, muB man mit einer groBeren Genauigkeit arbeiten,
als dies die Genauigkeit, mit der das Integral berechnet werden soll, erfordert.
Die Zwischenergebnisse bei der Berechnung der y, werden zweckmaBigerweise
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in Hilfsspalten in der Tabelle mitgefiihrt. Die Zahl der Hilfsspalten hangt von
der Art des Integranden ab.)

5. Eintragen der Faktoren, mit denen die y,-Werte bei der StvpsoNschen Regel
multipliziert werden miissen, in eine gesonderte Spalte der Tabelle:

Mmy=mp=1,my=mg=ree=my_1=4 und Mmy=mg=-=m,_, = 2.
8. Berechnen der Produkte my - .

7. Aufsummieren der Produkte m;y;:

n
8= My .
=0

8. Multiplizieren der Summe s mit i . Man erhilt so den Naherungswert fiir das
Integral, 3

1]
ff(:’c)dxw%-s.

Rechenschema :

k I Tk l | Y | my ] Yax

0 Ty ! Yo my Yoo

1 x, % ™ Y1y

2 Ty Y2 My Yam
n—1 Ty Yn-1 Myp—1 Yn—1My -1
n Ty Yn My | Ynmy

‘Bei der Trapezregel kann man die Arbeitsschritte und das Rechenschema analog
aufbauen.
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7.6.  Einige Beispiele

a BEISPIEL 7/4:

1
Esist1=f de
1+

2

rechnen.

Losung :

Man legt die Wertetabelle

k (1] 1 2 3 4
T 0,00 0,25 0,60 0,75 1,00
Y 1,000 0,941 0,800 0,640 0,500

zugrunde und erhalt

3n

I=

(Yo + 431 + 20 + 4 + %))

I~ ;5(1,000 + 3,764 -+ 1,600 + 2,560 + 0,500) ~ 0,785 .

nach der SmMpsoNschen Regel fir » = 4 zu bo-

Man kann den Wert des Integrals auch exakt berechnen und erhalt

1
dz
14 2

[

O BEISPIEL 7/6:

= [arc tan z]} ~ 0,785 .

5
Das Integral I = [xe~* dz ist mit Hife der drei Regeln néherungsweise

0
zu berechnen (n = 10).

Losung:

Bei der Losung dieser Aufgabe legt man sich zweckmaBigerweise ein
geeignetes Rechenschema in folgender Form an:

k Ty Y My Y My - Yy
(far Trapez- (fiir S1MpsoNsche
regel) Regel)

0 0,0 0,000 | 0,000 0,000

1 0,6 0,303 | 0,608 1,212

2 1,0 0,368 ' 0,736 0,736

3 1,6 0,335 : 0,670 1,340

4 2,0 0271 | 0542 0,542

5 2,5 0,206 | 0,410 0,820

6 3,0 0,140 | 0,208 0,208 (Forts. §. 114)

8 (001712)
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114

k Ty, Y my - Yp My Yy
(fir Trapez- (far SmmesoNsche
regel) Regel)
7 3,5 0,108 0,212 0,424
8’ 4,0 0,073 0,146 0,146
9 4,5 0,050 0,100 0,200
10 5,0 0,034 0,034 0,034
1,860 3,754 5,752
bzw.
1,896

a) Nach der Rechteckregel erhalt man

I~ 5. 1,860 = 0,930 bzw. I~ —5— 1,806 = 0,948 .
10 10

b) Nach der Trapezregel erhalt man

I~—.3754=0938.
”20

¢) Nach der Smmpsonschen Regel erhilt man
I 0—35 - 5,752 = 0,958 .

Der exakte Wert bétrigt 0,9596. Man kann das Integral mit Hilfe
der partiellen Integration geschlossen auswerten.

BEISPIEL 7/6:

| —
Es ist [)1 + 2®dz nach der Trapezregel mit einer Genauigkeit von
o

e = 0,01 zu berechnen.

Losung :

Wenn man nach den Hinweisen des Abschnittes 7.5. vorgeht, ergibt sich
der folgende Losungsweg.

Arbeitsschritte :

1. Bestimmen der zweiten Ableitung des Integranden f(z) = V 1+ 22:
" 34w + o4
=222,
41 4+ :c‘)z

Da das Maximum von |f”'(z)| im Intervall (0, 1) schwer zu bestimmen
ist, schatzt man |f''(z)| ab, d. h., es wird eine Zahl M (Schranke) mit
1@} < M im gegebenen Intervall gesucht'

el =| 2| 3t
1+0)7

3u14+1=

41 4 292



Somit kann M = % gesetzt werden.

. Mit M — %, b—a=1 und e = 0,01 lautet die Ungleichung zur
Bestimmung von n:
15-1 o1,
4.12n%
Aus dieser Beziehung erhalt man 7% = 31,25, d. h., » = 6. Fir die
Rechnung wird man » = 8 nehmen.

. Fir kb erhdlt man b—a

= 0,125. Die Koordinatenstiitzstellen z;
(k=0,1, ..., 8) werden in die Tabelle (Spalte 2) eingetragen.

. Die Berechnung der y, (k =0, 1, ..., 8) erfolgt unter Benutzung einer
Hilfsspalte (Spalte 3), in die die 2} eingetragen werden. Die Funktions-
werte yx = |/1 + 2} werden in die Tabelle (Spalte 4) eingetragen.

. Die Faktoren, mit denen die Funktionswerte y, zu multiplizieren sind,
namlich my; = mg=1 und m;, = m, = ... = m, = 2, werden in die
Tabelle (Spalte 5) eingetragen.

. Die Produkte my -y (k= 0,1, ...,8) werden berechnet und in die
Tabelle (Spalte 6) eingetragen.

7. Das Aufsummieren der Produkte liefert s und
o s Lb—a . .
8. Multiplikation mit ? Yiefert den Naherungswert (siehe Tabelle).
n

Tabelle:
k £ o} ye=Vy1+ 3} my Yr - My
1 2 3 4 5 [
0 0,000 0,000 1,000 1 1,000
1 0,125 0,002 1,001 2 2,002
2 0,260 0,016 1,008 2 2,016
3 0,376 0,053 1,026 2 2,052
4 0,600 0,126 1,060 2 2,120
5 0,626 0,244 1,116 2 2,232
6 0,750 0,422 1,193 2 2,386
7 0,876 0,670 1,292 2 2,684
8 1,000 1,000 1,414 1 1,414

& = 17,808

1
—_— 1
f}/l + 2* dz ksﬁ- 17,806 = 0,0625 - 17,806 ~ 1,11
0
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7.9,

116

. Berechnen Sie ndherungsweise f 3 dz

Aufgaben

. Erlautern Sie die Aufgabenstellung der numerischen Integration! Wo-

durch unterscheiden sich Rechteck-, Trapez- und Smesonsche Regel ?

. Fir welche Klasse von Funktionen liefert die SmmpsoNsche Regel die

exakte Losung ?
3

fir » = 10 mit Hilfe der
z + 7

i
Rechteckregel! Schétzen Sie den Fehler ab! Vergleichen Sie mit Bei-
spiel 7.2.1 (L)

5
. Berechnen Sie niherungsweise f g fir £k = 4 und k = 10 mit Hilfe
z
1

der Trapezregel! Vergleichen Sie mit dem exakten Wert! (L)
Ermitteln Sie dann die Zahl n der Unterteilung, damit das Integral
mit Hilfe der Trapezregel mit einer Genauigkeit von e = 0,01 be-
rechnet werden kann! (L)

1
. Berechnen Sie nidherungsweise f —lj—z—’ mit Hilfe der drei Regeln!
x

0
Vergleichen Sie die Resultate! (L)

2
]
. Berechnen Sie f 2% 3z nach der Trapezregel mit einer Genauigkeit
z

i
von e = 0,001! L)

20
. Berechnen Sie naherungsweise f hiimit h=1! (L)
z
10



8 o Einfache Probleme der Linearoptimierung

8.1.  Einfiihrung

Mathematische Aufgabenstellungen, die sich aus der weiteren Entwicklung der
Naturwissenschaften, der Technik, der Volkswirtschaft und der Planung und Lei-
tung ergeben, werden immer umfangreicher und komplizierter. Vielfach handelt
es sich um Aufgaben, bei denen optimale Werte zu ermitteln sind.

Aus dem Schulunterricht ist bekannt, daB man gewisse Optimierungsaufgaben
mit den Hilfsmitteln der Differentialrechnung lésen kann, nidmlich sogenannte
Extremwertaufgaben.

O 1. Was versteht man unter einem relativen Extremwert der Funktion
y = f@)?

O 2. Wie kann man relative Extremwerte einer Funktion y = f(z) be-
stimmen ?

O 3. Was ist eine ganze rationale Funktion? Was ist eine lineare Funk-

tion? Was ist eine nichtlineare Funktion ?

Diese Extremwertaufgaben, die mit Mitteln der Differentialrechnung unter ge-
wissen Bedingungen gelést werden konnen, beziehen sich jedoch stets auf Sach-
verhalte, denen nichtlineare algebraische Funktionen oder transzendente Funk-
tionen zugrunde liegen. Bei linearen algebraischen Funktionen versagen diese
Methoden, und man muB andere Verfahren heranziehen, um optimale Lésungen
ermitteln zu kénnen.

Die Optimierung, eine selbstindige mathematische Disziplin, hilt u. a. Verfahren
fiir diese Aufgabentypen bereit. Handelt es sich speziell um Aufgaben, denen
lineare Funktionen zugrunde liegen, so wird eine Linearoptimierung erforderlich,
fiir die es rechnerische und gegebenenfalls auch graphische Losungsverfahren gibt.
Wir betrachten im folgenden nur einfache Probleme der Linearoptimierung, die
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grafisch gelost werden konnen. Voraussetzung dafiir sind Kenntnisse iiber lineare
Ungleichungen und Ungleichungssysteme, iiber deren grafische Darstellung und
Losung. In den Abschnitten 8.2. und 8.3. wird das Notwendigste zusammen-
gestellt.

Ehe die Aufgabenstellung der Linearoptimierung exakt formuliert wird, sollen
einige Beispiele betrachtet werden, die der Erlduterung dienen und an denen die
praktische Bedeutung veranschaulicht werden soll. Ausgehend von einem stark
vereinfachten praktischen Sachverhalt wird dabei fiir das jeweilige Problem die
mathematische Formulierung in Form einer Linearoptimierungsaufgabe vorge-
nommen. Diese Linearoptimierungsaufgabe ist also das sogenannte mathematische
Modell fiir die jeweils vorliegende Aufgabe.

O BEISPIEL 8/1:
Optimierung des Produktionsumfangs — Gewinnoptimierung

Ein Industriebetrieb erzeugt zwei Produkte 4 und B. Zu ihrer Produktion
ist die Arbeit von drei Maschinen M;, M, und M, notwendig. Die Ma-
schinen kénnen zur Produktion dieser zwei Erzeugnisse nur eine be-
stimmte Zeit genutzt werden: M, 24000 s, M, 40000 s und M; 27000 s.
Die Zeiten, die die einzelnen Maschinen zur Erzeugung einer Einheit
der Produkte 4 und B benétigen, und die Gewinne pro Einheit sind in
der folgenden Tabelle zusammengestellt:

] Erzeugnis A Erzeugnis B
M, L. 86—
: Einheit Einbeit
8 8
- 4 —
My Einheit Einheit
8 8
M, —_— 3 ——
: Einheit Einheit
Gewi Mark Mark
winn — _—
Einheit Einheit

In welcher Menge sind die Produkte 4 und B zu erzeugen, damit der
Gewinn fiir den Betrieb maximal wird ?

Zuerst soll die mathematische Formulierung der Aufgabe vorgenommen
werden.

Wenn z der Gewinn ist, z die zu produzierende Stiickzahl des Produktes 4
(Anzahl der Einheiten) und y die Stiickzahl des Produktes B, so ergibt
sich als Gewinn

z2=9z+ 6y.

Die so ermittelte Funktion z, die sogenannte Zielfunktion, ist zu opti-
mieren. Es ist deren Maximum zu bestimmen.
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Man schreibt dafiir

2z = 9z + 6y = max

Allerdings ist das Maximum unter gewissen einschrankenden Bedingungen,
die sich aus der Aufgabenstellung, hier aus den Produktionsbedingungen,
ergeben, zu bestimmen. Aus der Tabelle und den Zeiten, die den ein-
zelnen Maschinen zur Produktion von A und B zur Verfiigung stehen,
erhilt man

3z + 6y < 24000

8z 4 4y < 40000

9z + 3y < 27000

und natiirlich

z,y=0.

Diese Bedingungen heiBen Nebenbedingungen.
FaBt man die mathematische Formulierung der Aufgabenstellung zu-
sammen, 8o erhélt man eben eine sogenannte Linearoptimierungsaufgabe :

z = 9z + 6y = max
3z + 6y < 24000
8z 4+ 4y < 40000
9z 4 3y < 27000
z,y=0.

Bei einer solchen Aufgabe ist also eine Funktion (Zielfunktion) unter gewissen
Nebenbedingungen zu optimieren (Maximum bestimmen — maximieren oder
Minimum bestimmen — minimieren). Zielfunktion und Nebenbedingungen sind
linear.

Die hier angegebene stark vereinfachte Aufgabe einer Gewinnoptimierung kann
wie folgt interpretiert werden: Es wird nicht die Gesamtproduktion des Betriebes
betrachtet, sondern nur die Erzeugung zweier Produkte 4 und B. AuBerdem
betrachtet man nur die Produktion in einem bestimmten Abschnitt, némlich im
Bereich der Maschinen M;, M, und M,.

Wenn man sich bei der vorliegenden Aufgabe (Gewinnoptimierung) von der starken
Vereinfachung 16st, bedeutet das bei der mathematischen Formulierung eine
Erhohung der Zahl der Variablen und der Ungleichungen. An der mathematischen
Problemstellung selbst éndert sich grundsétzlich nichts.

Diese Aufgabe mit zwei Variablen kann man grafisch lésen.

0 BEISPIEL 8/2:
Fiitterungsproblem
Schweine sollen mit Kartoffeln und Riiben gemastet werden: Dabei
kommt es auf den Gehalt des Futters an Kohlehydraten, Eiwei und
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Mineralstoffen an. Die Werte sind in folgender Tabelle zusammengestellt

(ohne Einheiten):

Kartoffeln l Riiben dB:xti;rc‘;:weine
Kohlehydrate 140 | 40 560
EiweiB 10 | 8 80
Mineralstoffe 4 ‘ 8 48
Preis 10 K

Wie muB die Futterzusammenstellung (Kartoffeln/Riiben) gewahlt wer-
den, damit die Kosten am geringsten sind ?
Mit ahnlichen Uberlegungen wie im Beispiel 8/1 erhalt man als Linear-
optimierungsaufgabe:
z = 10z 4+ 4y = min
140z + 40y = 560

10z + 8y = 80

4z + 8y= 48

z,y= O

Auch diese Aufgabe, die nur zwei Variable enthalt, ist grafisch zu losen.

O BEISPIEL 8/3:

Optimaler Schichiplan

Auf einem Bahnhof besteht durchschnittlich folgender Personalbedarf:
zwischen 0 und 4 Uhr 3 Personen

zwischen 4 und 8 Ubr 8 Personen

zwischen 8 und 12 Uhr 10 Personen

zwischen 12 und 16 Uhr 8 Personen

zwischen 16 und 20 Uhr 14 Personen

zwischen 20 und 24 Uhr 5 Personen

Die Eisenbahner beginnen ihre Arbeit um 0, 4, 8, 12, 16 bzw. 20 Uhr. Jeder
arbeitet 8 Stunden.

Welcher Schichtplan erfordert einen minimalen Einsatz an Arbeitskraf-
ten ?

2, Eisenbahner beginnen die Arbeit um 0 Uhr, 2, um 4 Uhr, ..., 74 um
20 Ubr.

Man erhalt als Linearoptimierungsaufgabe eine Aufgabe mit 6 Variablen:
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2 =1 + %, + %3 + %, + 25 + ¥ = min
z + 2, 8
T+ 2
z3 + 2,
Zy + 25
Zt+zg= b
n +Z= 3
=0 (1=1,..,6)

Diese Aufgabe kann nicht grafisch gelost werden.

'
(=]

VIV IV IV
" o

Nach der Betrachtung dieser vereinfachten Beispiele wollen wir die Aufgaben-
stellung der Linearoptimierung exakt formulieren.

©)
(@)

4. Was ist bei allen drei Aufgabenstellungen gleich ?

5. Formulieren Sie eine Linearoptimierungsaufgabe, die nur zwei Varia-
ble z, und z, enthilt!

DEFINITION 8/1:

Wenn bei einer praktischen Aufgabenstellung die Werte eines Systems
von n Variablen 2,, 2,, ..., Z, zu finden sind, fiir die eine gegebene lineare
Funktion, die sogenannte Zielfunktion, 2z = ¢;z; + €%, + ... + CaZa
(¢4, Cy, - - . sind Konstanten) einen optimalen Wert (Maximum oder Mini-
mum) hat und fiir die zugleich die als Gleichungen bzw. Ungleichungen
gegebenen Nebenbedingungen

wE o =0
a7, + o BpnZa =a

Guyn Tt Gty Tn = By

A%y + + GpnTn = an
Ty ooy Tn =0

erfilllt sind, so spricht man von einer Linearoptimierungsaufgabe. Man
schreibt dafiir kurz

n
z =} ¢y = opt (max bzw. min)
i=1
hid .
‘Z,'la,,'x. =a (G=1,..,m)

=0 (G=1,..mn)
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Entsprechend betrachtet man Linearoptimierungsaufgaben der Form:
z = opt

n
Yaozisa; (j=1,..,m)

i=1
=0 (=1,..,2).

Linearoptimierungsaufgaben dieser Art kann man fiir » = 2 auch grafisch lésen.
Fiir » > 2 wurden eine Reihe von Verfahren zur Losung entwickelt, z. B. das
Simplexverfahren. Solche Verfahren werden hier jedoch nicht behandelt.

Zu den ersten Arbeiten, die auf dem Gebiet der Linearoptimierung veréffentlicht
wurden, gehért eine Untersuchung des sowjetischen Mathematikers L. W. Kan-
TOROWITSCH, die im Jahre 1939 erschien. Darin werden Losungsmethoden fiir
solche Aufgaben angegeben, die die Planung von Transportarbeiten und von
Produktionsablaufen  betreffen. Die bereits erwihnte Simplexmethode wurde
im Jahre 1947 von dem amerikanischen Mathematiker G. B. DANTZIG erarbeitet.

8.2.  Ungleichungen

O 6. Wiederholen Sie die Begriffe ,,Gleichung®, ,,Ungleichung*‘, ,,Lésung
einer Gleichung (Ungleichung), , Lineare Gleichung®, ,,Aquivalente
Gleichungen (Ungleichungen)*!

O 7. Lésen Sie die folgenden linearen Ungleichungen!

a) 52 — 3 < 4z d)2—i%gz(7—x)
b) 6z — 5 <13 e)ax+b>cx+d
x _x—1
1—=>2 L
01-2>22 (L)
O 8. Was versteht man unter einer Menge ? Was versteht man unter Ver-

einigung, Durchschnitt und Differenz zweier Mengen ?

Die beiden Ungleichungen @ < b und b > a stellen dieselbe Beziehung zwischen

den zwei verschiedenen reellen Zahlen @ und b dar. Man kann die Eigenschaften

von Ungleichungen mit denen von Gleichungen vergleich

Bei Gleichungen kann man die linke und die rechte Seite vertauschen, d. h., wenn

a = b ist, so ist auch b = a. Wenn man bei Ungleichungen die rechte und linke

Seite vertauscht, so ist das Relations- oder Ungleichheitszeichen durch das ent-
tzte Zeichen zu erset: Dabei ist das zum Zeichen < ent; tzt

BUEEIE

&8

Zeichen das Zeich > und umgekehrt. Es gilt also
a < b definitionsgema genau dann, wenn b > @ (3> 2 und 2 < 3).
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Wenn man zwei verschiedene reelle Zahlen @ und b miteinander vergleicht, so ist
a > b genau dann, wenn a — b > 0 gilt, und
a < b genau dann, wenn .b — a > 0 gilt.

Mit Hilfe dieses Kriteriums kann man entscheiden, welche von zwei verschiedenen
reellen Zahlen @ und b groBer ist. LaBt man die Gleichheit mit zu, so gilt

a = b genau dann, wenn @ — b = 0 und
a < b genau dann, wenn b —a = 0.

Natiirlich kann man dieses Kriterium auch in folgender Weise formulieren:

Die Differenz b — a ist positiv genau dann, wenn b > a, und die Differenz b — a
ist negativ genau dann, wenn a > b.

Die Grundeigenschaften von Ungleichungen gehen aus folgenden Satzen hervor:

> SATZ 8/1:
Wenn @ > b und b > ¢, so gilt a > ¢ (Transitivitit).

> SATZ 8/2:
Wenn a > b, dann ist a 4 ¢ > b + c¢ fiir jede reelle Zahl c.

> SATZ 8/3:
Wenn a > b und ¢ > 0 gilt, so gilt ac > bcund%>%.

(Bei Multiplikation einer Ungleichung mit einer negativen Zahl und bei
Division durch eine positive Zahl bleibt das Ungleichheitszeichen er-
halten.)

> SATZ 8/4:
Wenn a > b und ¢ < 0 gilt, so gilt ac < bc und %<%.

(Bei Multiplikation einer Ungleichung mit einer negativen Zahl und bei
Division durch eine negative Zahl muBl das Ungleichheitszeichen durch
das entgegengesetzte ersetzt werden.)

> SATZ 8/5:
Falls a > b und ¢ > d gilt, gilt auch a + ¢ > b + d.

> SATZ 8/6:

Falls @ > b und ¢ > d gilt und a, b, ¢ und d positive Zahlen sind, so gilt
auch ac > bd.
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> SATZ 8/7:
Wenn a > b ist und a sowie b positive Zahlen sind, so gilt
Va> 5,

wobei # eine natiirliche Zahl ist.

Die hier angegebenen Sitze lassen sich leicht bei Benutzung des oben angegebenen
Kriteriums beweisen.

Diese Sitze sind eine wichtige Voraussetzung fiir das Umformen von Ungleichungen
und das Rechnen mit Ungleichungen. Sie gelten auch, wenn man anstelle des Rela-
tionszeichens > das Relationszeichen = verwendet, wobei an einigen Stellen ¢ = 0
auszuschlieBen ist. Die einzelnen Sitze sollen noch an einigen Beispielen erlautert
werden.

Od BEISPIEL 8/4:
Aus 6 >4 und 4> 2 folgt 6 > 2.
Aus 6> 4 folgt 6 +5 >4+ 5,d.h, 11> 9.
Aus 6> 4 folgt 6 —7>4—7,d.h,, —1> - 3.

O BEISPIEL 8/5:
Aus 12> 9 folgt 123> 9-3 und %)-g—,
aber auch
12-(—3)<9.(—3),dh, —36<—27,
und
12

9
£ <2 dh, —4<—3.
_3<_3 <

m] BEISPIEL 8/6:
Aus 4> 3und 3 > 2 ergibt sich4 +3>3+ 2,d.h. 7> 5.

O BEISPIEL 8/7:

Der Satz 8/6 gilt allgemein fiir eine beliebige Anzahl von Ungleichungen.
Falls @ > b ist, @ und b positiv sind, so ist fiir eine beliebige natiirliche
Zahl n die Ungleichung o™ > b" erfiillt (3 > 2, dann 3% > 22, 32 > 23 und
3> 2n),

Falls negative Zahlen in der Ungleichung auftreten, kann sich das Un-
gleichheitszeichen #ndern.

So gilt zum Beispiel — 4 < — 2, (—4)* > (—2)* und (—4)* <(—2)*.
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Mit Hilfe der bisherigen Kenntnisse kann man auch die Allgemeingiiltigkeit eini

=)

Ungleichungen beweisen.

]

8.3.

BEISPIEL 8/8:

Es ist zu beweisen, daBB a® 4 b = 2ab fir beliebige reelle Zahlen a, b
gilt.

Beweis:

Es gilt

(a—082=0

fiir alle reellen Zahlen a, b und damit

a® —2ab+ 52 =0.

Addition von 2ab auf beiden Seiten (Satz 8/2) liefert
a? + b? = 2ab. ’

Ungleichungen mit einer Variablen

DEFINITION 8/2:
Eine Ungleichung mit einer Variablen ist eine Ungleichung der Form
h@) > h() bzw.  fi(2) = fi(2),

wobei f,(z) und fy(x) Funktionen mit einer unabhangigen Variablen sind.

DEFINITION 8/3:
Die Lisungsmenge der Ungleichung

h@) > f@)  bzw.  fi(2) 2 hix)

ist die Menge aller Werte , fiirr die die Ungleichung erfiillt ist.
Falls also f,(a) > f,(a) gilt, so gehdrt = a zur Losungsmenge der Unglei-
chung.

DEFINITION 8/4:
Die beiden Ungleichungen
h@) > f(z) und  gy(z) > gulw)

heiBen #dquivalent, wenn sie beide dieselbe Losungsmenge haben.
Falls z = a Losung von f,(z) > f,(x) ist, also f,(a) > f,(a) gilt, so muB
auch g;(a) > g,(a) gelten und umgekehrt.
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Die Definitionen sollen an einigen Beispielen erléutert werden.

] BEISPIEL 8/9:

3z+5>2, 42r—3<32+5, sinzx= und tanz <z

Nlb—i

sind Ungleichungen mit einer Variablen.

O BEISPIEL 8/10:

Zur Losungsmenge der Ungleichung 5 — 2z > 3 gehért 2 = 0,6. Die
Losungsmenge ist die Menge aller reellen Zahlen z, fiir die gilt z <1,
also z. B. x =0,5;0; —1; —2.

[m] BEISPIEL 8/11:
Die Losungsmenge der Ungleichung
5—2x

T2 <z+8 st L={a-N1<ze<—2}U{alz> —1}.

Man kann die Losungsmenge einer Ungleichung geometrisch mit Hilfe der Zahlen-
geraden anschaulich darstellen. Im Bild 49 sind die Lésungsmengen der Bei-
spiele 8/10 und 8/11 dargestellt.

-2 -1 0 1 2 -10 -5 [
NNNNNNNNN N > A N
NNNNNWN M v YL H
a b
Bild 49

Uber die Aquivalenz von Ungleichupgen gibt es u. a. zwei wichtige Sitze, die im
folgenden angegeben werden.

> SATZ 8/8:
Wird auf beiden Seiten der Ungleichung
filx) > fo(x)
die Funktion g(z), die denselben Definitionsbereich wie die Funktionen

fi(x) und fy(x) hat, addiert, dann erhélt man eine der gegebenen Unglei-
chung dquivalente Ungleichung

hi@) + 9(2) > f(=) + g(=) .
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> SATZ 8/9:
Die Funktion k(x) habe denselben Definitionsbereich wie die Funktionen
f1(z) und f(z). Fiir diese x-Werte sei h(z) stets grofer Null.
Die Ungleichung
h(®) - h(z) > () - h(z)
ist dann der Ungleichung
h(@) > f(x)
dquivalent.
Wenn h(z) denselben Definitionsbereich wie f,(x) und f,(z) hat, und A(z)
nur negative Werte annimmt, so ist die Ungleichung
h(@) - b@) < f(a) - k(=)
der Ungleichung
hiz) > fol=)

dquivalent.

Die Sitze ergeben sich aus den entsprechenden Sitzen des Abschnittes 8.2. Es
ist nur zu zeigen:

Wenn z = a Losung der einen Ungleichung ist, so ist z = a auch Lésung der
anderen Ungleichung und umgekehrt.

Die Sitze 8/8 und 8/9 sind wichtig fiir die &quivalente Umformung von Ungleichun-
gen und fiir das Lésen von Ungleichungen mit einer Variablen.

Die Satze gelten analog, wenn man anstelle des Relationszeichens > das Relations-
zeichen = verwendet.

8.4. Lineare Ungleichungen mit einer Variablen

Nach den in den vorangegangenen Abschnitten durchgefiihrten allgemeinen Be-
trachtungen iiber Eigenschaften von Ungleichungen und iiber die Aquivalenz
von Ungleichungen mit einer Variablen sollen nun speziell lineare Ungleichungen
mit einer Variablen diskutiert werden.

> DEFINITION 8/5:
Eine Ungleichung der Form
ax 4+ b> 0 oder az + b <0
(@z + b =0 oder az + b < 0)
mita 0
heiBt lineare Ungleichung mit einer Variablen.
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Im Folgenden sprechen wir kurz von linearen Ungleichungen.

Wenn man bei der Ungleichung ax + b < 0 beide Seiten mit —1 multipliziert,.
erhilt man eine Ungleichung der Gestalt az 4+ > 0. Man braucht also nur Un-
gleichungen der Form ax + b > 0 zu betrachten.

Soll die Ungleichung geldst werden, so heiBt das, daB man die Menge aller x be-
stimmen soll, die die Ungleichung erfiillen. Diese Menge heif3t, wie bereits vorn
angegeben wurde, Losungsmenge der Ungleichung.

Nach den Sétzen iiber die Aquivalenz von Ungleichungen erhalt man aus

ax+b>0
nach Subtraktion von b und Division durch a auf beiden Seiten
x> — i fir a >0
a
oder
b
x < — — fiur a <O0.
a
Man kann die Lésung der linearen Ungleichung gut geometrisch veranschaulichen.
Das Bild der Funktion y = ax + b ist eine Gerade. Die Nullstelle dieser Funktion
ist, falls e = 0 ist, x = — E .
a
Im Bild 50 sind die Graphen der Funktionen y = az + b fiir > 0, b > 0 und

a < 0,b> 0 in der zy-Ebene sowie die Lésungen der Ungleichung ax + 5> 0
auf der Zahlengeraden dargestellt.

H‘ y=ax+b 4
a>0,b>0 a=<0,b>0

Qo

Bild 50
Es sollen nun zur Losung linearer Ungleichungen Beispiele betrachtet werden.
(] BEISPIEL 8/12:

Es ist die Ungleichung 3x — 6 > 0 zu lésen.
Losungsmenge: {z|z > 2} (Bild 51).

128



N > Bild 51

a BEISPIEL 8/13:
3 —6>2 45

Man erhélt nach équivalenter Umformung = > 11 und damit als Lésungs-
menge {z|z > 11}.

a BEISPIEL 8/14:
3z + 7 4r — 8
2 t3< 3
Man erhilt
9z + 21 + 18 < 8x — 16 + 24
z < —3l.
Losungsmenge: {zx|x < — 31}.

+4

Man kann auch Systeme linearer Ungleichungen mit einer Variablen betrachten.

> DEFINITION 8/6:

Ein System von linearen Ungleichungen mit einer Variablen ist ein Un-
gleichungssystem folgender Form

oz + b >0
az +5,>0

auz + 50> 0.

Anstelle von > kann auch stehen =. Das System kann auch Gleichungen mit

enthalten. B
Fiir n = 2 erhilt man also ein System von zwei linearen Ungleichungen mit einer

Variablen:
az + 5, >0
a3z +5,>0.
Man kann auch die Losung solcher Systeme betrachten.

> DEFINITION 8/7:

Die Lisungsmenge des Systems ist die Menge aller der z, die alle Un-
gleichungen des Systems erfiillen.
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Die Losung eines solchen Systems soll an zwei Beispielen erlautert werden.

m] BEISPIEL 8/15:
Es ist das System
3z +4>0
4z — 20
zu losen. Die Losungsmenge der ersten Ungleichung ist die Menge
{a:la: > — %} , die der zweiten Ungleichung Jz|z < % .

Die Losungsmenge des Systems ist der Durchschnitt der beiden Lésungs-
mengen (Bild 52):

4 1
{x| —§<z<-§}.

-1 0 1
N e s Tt >
P 1
7 H

Bild 52

0O BEISPIEL 8/16:
Gegeben ist das System
3r—-—2<22+6
bx — 2

1 <l+z

b5+ 9z
2
Man erhilt die Losungsmenge :
{elz < 8) N {zlz <6 N {zlz> — 5},
also die Menge
{a]—6<xz<6}.

4 <

Natiirlich kann die Lésungsmenge auch die leere Menge sein.
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8.5.  Lineare Ungleichungssysteme mit zwei Variablen

Bei Linearoptimierungsaufgaben treten in den Nebenbedingungen lineare Un-
gleichungssysteme auf. Solche Systeme sollen in diesem Abschnitt untersucht
werden. Wir werden uns speziell mit linearen Ungleichungssystemen mit zwei
Variablen beschiftigen, da bei der grafischen Losung einfacher Linearoptimierungs-
aufgaben nur solche Fille vorkommen kénnen.

O 9. Schreiben Sie die allgemeine Form der Geradengleichung fiir die
' Ebene auf!

(@] 10. Welches Bild erhdlt man bei der Darstellung der Gleichung
ar + by =c?

Fiihren Sie eine Fallunterscheidung durch (@ >0, >0, ¢ > 0;
a<0,5>0,c>0usw)!

O 11. Zeichnen Sie den Graph der Gleichung ax + by = cbzw.y = mz + n!
O 12. Welche Ungleichungen gelten fiir die Koordinaten' aller Punkte der

zy-Ebene (kartesisches Koordinatensystem), die

a) oberhalb (unterhalb) der z-Achse bzw.

b) rechts (links) der y-Achse liegen ?

c) Welche Ungleichungen gelten fiir die Koordinaten der Punkte

des I', 2., 3. und 4. Quadranten ? (L)

O 13. Welche Ungleichung gilt fiir die Koordinaten der Punkte, die

a) oberhalb (unterhalb) der Geraden y = a (a const.),
b) die links (rechts) der Geraden z = b (b const.) liegen ?

¢) Welche Ungleichung gilt fiir die Koordinaten der Punkte, die ober-
halb und auf der Geraden y = a liegen ? (L)

Wenn man den Graph der Funktion az + by = ¢ in der 2y-Ebene zeichnet, erhalt
man eine Gerade g (Bild 53).
Diese Gerade g teilt die Ebene in zwei Halbebenen, eine Halbebene oberhalb der

Bild 53
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Geraden (I) und eine Halbebene unterhalb der Geraden (II). Die Gerade g gehort
zu keiner der beiden Halbebenen. Sie heiBt Grenzgerade. Falls b > 0 ist, gilt fiir
die Punkte der oberen Halbebene (I)

ar +by>c
und fiir die der unteren Halbebene (IT)

ax + by <c.
Wird jedoch die Gerade g zu einer Halbebene hinzugenommen, z. B. zur oberen
Halbebene, dann gilt

ar +by=c.
Falls b < 0 ist, gilt fiir die Punkte der oberen Halbebene az + by < ¢ und fiir die

der unteren Halbebene ax + by > c.
Die entstehenden Ungleichungen sind solche mit zwei Variablen.

> DEFINITION 8/8:

Ungleichungen der Form ex + by = ¢ bzw. az + by > c heiBlen lineare
Ungleichungen mit zwei Variablen.

Ungleichungen der Form az + by < ¢ bzw. az + by < ¢ sind in der Definition
mit erfaBt, da solche Ungleichungen durch Multiplikation mit —1 auf die obige
Form gebracht werden kénnen.

> DEFINITION 8/9:

Die Lisungsmenge der Ungleichung az + by = ¢ bzw. az + by > ¢ ist
die Menge aller Wertepaare [2; y], die die Ungleichung erfiillen.

Man kann diese Wertepaare deuten als Koordinaten (z; y) von Punkten der zy-
Ebene.
Damit kann man auch den Begriff ,,;Halbebene‘‘ definieren.

> DEFINITION 8/10:

Die Menge aller Punkte der zy-Ebene, deren Koordinaten der Unglei-
chung

ax + by >e¢
geniigen, bildet eine Halbebene.

Die zugehorige andere Halbebene enthalt dann alle Punkte, deren Koordi-
naten der Ungleichung ax + by < ¢ geniigen.

Die Grenzgerade gehort zu keiner der Halbebenen. Das soll auch in den weiteren
Betrachtungen so sein.

Falls b = 0 ist, erhalt man die beiden Halbebenen links und rechts der Geraden
ax =c.
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O BEISPIEL 8/17:

Die Gerade

g: v —2y=1

teilt die Ebene in zwei Halbebenen I und II (Bild 54).

Fiir die Punkte der oberen Halbebene (I) einschlieBlich der Geraden g gilt
r—2y=1,

Bild 54

fiir die der unteren Halbebene (II) gilt  — 2y > 1.

Nach diesen Betrachtungen sollen nun lineare Ungleichungssysteme mit zwei
Variablen naher untersucht werden.

> DEFINITION 8/11:

Ein lineares Ungleichungssystem von » Ungleichungen fiir zwei Variablen
ist ein System folgender Art

oz +by=c
az + by = ¢,

an% + bpy = Cp.

Dabei wollen wir als Relationszeichen auch die Zeichen > und = in den vorliegen-
den Beziehungen zulassen. Das System kann auch Gleichungen, muB jedoch min-
destens eine Ungleichung enthalten.

Die Relationszeichen < und < braucht man nicht noch zuzulassen. Ungleichun-
gen, die diese Relationszeichen enthalten, konnen durch Multiplikation mit —1
auf die in der Definition angegebene Form gebracht werden.

Falls eine Ungleichung der Form az + by = ¢ vorliegt, kann diese Ungleichung
durch eine Halbebene veranschaulicht werden, zu der die Grenzgerade az + by = ¢
mit gehort. Bei az 4 by > ¢ gehort die Grenzgerade nicht mit zur Halbebene.
Bei ax + by = c¢ erhilt man keine Halbebene, sondern nur eine Gerade.
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DEFINITION 8/12:

Die Lisungsmenge eines linearen Ungleichungssystems von » Unglei-
chungen mit zwei Variablen ist die Menge aller Wertepaare [z; y], die
alle Ungleichungen gleichzeitig -erfiillen. ,,Losen des Systems‘ heiBt

Reati

. der Losung: 1ge ‘.

Die Losungsmenge kann man fiir den Fall von zwei Variablen, den wir betrachten,
leicht graphisch finden. Es ist eine Punktmenge der zy-Ebene. Wir betrachten
zuerst ein ausfiihrliches Beispiel.

O

Bild 55
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BEISPIEL 8/18:

a) Die Ungleichung z — 2y <1 definiert eine Halbebene (Bild 55,
schraffiert). Die Koordinaten aller Punkte dieser Halbebene und da-
mit alle Wertepaare [; y], denen diese Punkte zugeordnet sind, er-
fiillen die Ungleichung.

[ARRARRAN!
(g)) 2x-y=-2

¥

{g,) x-2y =1

2 J x

Bild 56

b) Das Ungleichungssystem

z—2y=<1

22 —y=—2

definiert die im Bild 56 dargestellte schraffierte Punktmenge der xy-
Ebene.

Die Menge ist der Durchschnitt der Menge der Punkte, die oberhalb und
auf der Geraden g, mit der Gleichung z — 2y = 1 liegen, sowie der Menge,
die unterhalb und auf der Geraden g, mit der Gleichung 2z — y = 2 liegen.
Die Menge ist unbeschrankt. Die Koordinaten der Punkte der Menge, und
damit alle entsprechenden Wertepaare [; y], erfiillen das System.



c¢) Das Ungleichungssystem
r—2y=1
—2+ys2
2r —y<2

definiert die im Bild 57 schraffiert dargestellte Punktmenge. Es ist
eine unbeschrinkte Vielecksfliche.

1 [oo) -2x+y =2

\\Ig,/ x+y=-3

Bild 57 Bild 58

d) Das Ungleichungssystem
z—-2ys1
—2z+y=<2
z+y<-—3

hat als Losung nur das Wertepaar [— ; HE %] (Bild 58).

e) Das Ungleichungssystem
z—2y =1
—2r+y=s2
z+y=1

definiert die im Bild 59 schraffiert dargestellte Punktmenge. Es ist eine
Dreiecksfliche.
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Bild 69
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I (9)) -2x+y =2

(g5) y-x=-2

9) y=05

g x+y=1

Bild 60

f) Das Ungleichungssystem
z—2y=<1
—24y<2
z+y=1
1
<_
v=3
definiert die im Bild 60 schraffiert dargestellte Punktmenge. Es ist
eine Vierecksfliche. Nimmt man zu dem gegeb: Ungleich
tem noch die Ungleichung

—z+y=-—2 (95)

dazu, so andert sich die Losungsmenge nicht (Bild 60). Es kénnen
also in einem System auch Ungleichungen ,,iberflissig* sein.

g) Das Ungleichungssystem
z—2y<1
rx—2y=3
hat als Losungsmenge die leere Menge.
h) Das Ungleichungssystem
z—2y=<1
—2r+y=<2
z+y=s1
z+y=1

hat als Losungsmenge die Menge aller Punkte einer Seite der im Bild 59
dargestellten Dreiecksfliche.
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XNach der Betrachtung dieses Beispieles wollen wir die Ergebnisse iiber das Losen
eines linearen Ungleichungssystems zusammenfassen.

ZUSAMMENFASSUNG :

Die Losungsmenge eines linearen Ungleichungssystems der Form

ar +by=c

anZ + bpy = ca (vgl. Definition 8/11)

ist eine Menge von Wertepaaren [z; y]. Diese Paare konnen als Koordina-

ten derjenigen Punkte angesehen werden, die den Durchschnitt aller
i Halbebenen mit den zugehérigen Grenzgeraden, die durch die einzelnen

Ungleichungen dargestellt werden, bilden.

Will man also das Ungleichungssystem grafisch lésen, so zeichnet man
f alle Halbebenen mit den zugehorigen Grenzgeraden, die durch die Un-

‘gleichungen dargestellt werden, und bildet deren Durchschnitt.

Die Ungleichungssysteme konnen vertriglich oder unvertraglich sein.

> DEFINITION 8/13:

Ein lineares Ungleichungssystem mit zwei Variablen heiBt vertriglich,
wenn wenigstens ein Wertepaar [x; y] existiert, das alle Ungleichungen
erfiillt.

Es gibt also in di Fall mind ein Zahlenpaar [z; y], das alle Ungleichungen
gleichzeitig erfiillt. Man kann auch sagen, es gibt wenigstens einen Punkt P(z; y),
der allen Halbebenen mit den zugehérigen Grenzgeraden angehort, die durch das
System definiert werden.

> DEFINITION 8/14:

Ein Ungleichungssystem heiBt unvertriglich, wenn es kein Wertepaar
[=; y] gibt, das alle Ungleichungen gleichzeitig erfiillt.

Es gibt also bei Unvertraglichkeit keinen Punkt P(z;y), der allen Halbebenen
mit den zugehorigen Grenzgeraden gleichzeitig angehért. Das Ungleichungssystem
hat keine Lésung.

Bei vertraglichen Ungleichungssystemen kann die Lésungsmenge eine Halbebene
(evtl. mit der Grenzgeraden), eine unbeschrinkte oder beschrinkte Vielecksfliche,
eine Gerade, eine Strecke (Seite eines Vielecks) oder ein einziger Punkt sein.
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Die Gesamtheit der Punkte, deren Koordinaten (Wertepaare) das Ungleichungs-
system erfiillen, ist eine konvexe Menge.

>

8.6.
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DEFINITION 8/15:

Eine konvexe Menge ist eine Menge, die mit je zwei Punkten auch die
gesamte Verbindungsstrecke dieser beiden Punkte enthalt.

Linearoptimierungsaufgaben mit zwei Variablen

14. a) Wie kann man lineare Ungleichungen mit zwei Variablen geo-

15.

16.

17.

metrisch deuten ?

b) Wie kann man ein System von linearen Ungleichungen mit zwei
Variablen geometrisch deuten ?

c) Welche Punktmengen konnen als Lésungsmenge von linearen Un-
gleichungssystemen mit zwei Variablen auftreten? Erldutern Sie
die verschiedenen Falle mit Hilfe von Skizzen!

Fiir welche Punkte der zy-Ebene gilt

a) 22+ 3y<6 b)2x+3y<6
—zt+y=s2
c)2x+3y=<6
—z4+ys2 d) 3z — 2y < 12
—r—3y =<3 3z — 2y =12
22 <3
— 3z —2y< — 12 (L)

Zeichnen Sie die Bilder der Geraden 3z — 2y =c¢ fiirc =0, 11,
+2,...
Was stellen Sie fest ?

a) Ermitteln Sie grafisch die Losungsmenge des Ungleichungssystems
r—2y=<2

20— y=-—2
T+ y<1
b) In welchem Punkt P(x; y) der Losungsmenge hat die Funktion
2z = 2y + « ihren groBten Funktionswert ? (L)
¢) In welchem Punkt P(z;y) hat die Funktion z = 2y + « ihren
kleinsten Funktionswert ? (L)



Nachdem in den vorangegangenen Abschnitten die Grundlagen fiir die grafische
Losung von Linearoptimierungsaufgaben mit zwei Variablen zusammengestellt
wurden, wollen wir in diesem Abschnitt die grafische Losung solcher Aufgaben
betrachten.

Es soll zuerst ein Beispiel diskutiert werden, nimlich das Beispiel 8/1 (Seite 118).
Als mathematisches Modell fiir den in diesem Beispiel angegeb: praktisch
Sachverhalt erbielten wir die Linearoptimierungsaufgabe

z = 9z + 6y = max
3z + 6y < 24000
8z + 4y < 40000
92 + 3y < 27000
T,y = 0.

Diese Aufgabe soll grafisch gelést werden.
Es ist also das Maximum der Zielfunktion

z =9z + 6y
unter den als Ungleichungen angegebenen Nebenbedingungen

3z + 6y < 24000

8z + 4y < 40000

9z + 3y < 27000

zy2 0

zu bestimmen.
Das Ungleichungssystem kann man mit Hilfe der Uberlegungen, die im Abschnitt
8.5. angestellt wurden, grafisch losen. Es ist bei dieser Aufgabe zweckmaBig, das
System

3z + 6y < 24

8z + 4y < 40

9% + 3y < 27

z,y= 0

zu 16sen und im Ergebnis zu beachten, daB man Tausender erhalt.
Als grafische Losung des Systems erhalt man eine konvexe Vierecksflache in der
xy-Ebene (Bild 61). Diese konvexe Vierecksfliche heiBt auch Bereich der zuldssigen
Ldsungen der vorliegenden Linearoptimierungsaufgabe.
Aus dem Bereich der zuldssigen Lésungen sind nun die Punkte (z;y) bzw. die
Wertepaare [z; y] auszuwahlen, die der Zielfunktion

2z =9z + 6y

den groBten Wert (Maximum) erteilen.
Wir zeichnen dazu das Bild der Funktion

9z +6y=c,

in der ¢ ein Parameter ist, in das Koordinatensystem ein und ermitteln grafisch
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‘Bild 61

>

2 10 s Is 7Ny 1
-1
-2 195/ 9143y-27 Igll Bx+hy =40 (gy) 3x+6y =24

den Punkt oder die Punkte des zulassigen Bereiches, in denen ¢, der Wert der Ziel-
funktion, einen optimalen Wert (Maximum) annimmt.
Dabei verfahren wir am besten in der Weise, da3 wir die Gerade

9z + 6y = ¢
mit ¢ = 0 in das Koordinatensystem einzeichnen und diese Gerade parallel so
verschieben, bis ¢ im Bereich der zuldssigen Losungen einen maximalen Wert
annimmt. Parallelverschiebung der Geraden bewirkt ja gerade Anderung der
Parameterwerte ¢ oder umgekehrt.
Das Bild 61 zeigt, daB wir einen maximalen Wert von

z2=9x+46y=c
in einem Eckpunkt der Vierecksfliche, namlich im Punkt mit den Koordinaten
(2; 3), erhalten. Einen minimalen Wert wiirde man im Punkt 0 (0; 0) erhalten.
Als Lésung erhélt man somit das Wertepaar [2; 3], also

z = 2000 und y = 3000 .

In diesem Punkt nimmt die Zielfunktion bei Einhaltung der Nebenbedingungen
ihren groBten Wert an, nimlich den Wert

z =9z 4 6y =9 - 2000 4 6 - 3000 = 36000 .
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Wenn der Betrieb also vom Produkt A 2000 Stiick und vom Produkt B 3000 Stiick
produziert, ist der Gewinn am groBten.

Die an diesem Beispiel erliuterte Methode kann man allgemein bei Linearopti-
mierungsaufgaben mit zwei Variablen anwenden.

ZUSAMMENFASSUNG:

Eine Linearoptimierungsaufgabe mit zwei Variablen der Form
2 = ¢; + ¢;%, = opt (max oder min)

at +apt 24

A%y + Amo%y = An
z,73 20
wird grafisch gelést, indem man
1. den zuléssigen Bereich der Losungen bestimmt und

2. die Menge der Punkte ermittelt, in denen die Zielfunktion ihr Optimum
annimmt.

Der zulassige Bereich der Losungen ergibt sich aus den Nebenbedingungen, also
aus einem linearen Ungleichungssystem. Dieses Ungleichungssystem ist grafisch
zu lésen. Der zulassige Bereich ist eine konvexe Menge. Dabei muB man die im
Abschnitt 8.5. (vgl. Seite 137) angegebenen Fille unterscheiden.
Durch Zeichnen der Geraden ¢,z, + ¢,x, = ¢ fiir ¢ = 0 und Parallelverschiebung
dieser Geraden erhilt man den Punkt P(z,;z,) [die Punkte (z,, 2,)], fiir dessen
(deren) Koordinaten gilt

2 = %) + €, = opt
und der (die) zugleich auch im Bereich der zulassigen Losungen liegt (liegen).
Der optimale Wert wird, wenn eine konvexe Vielecksflache als Bereich vorliegt in
einem Eckpunkt der konvexen Vielecksfliche angenommen. Es kann allerdings
auch der Full eintreten, daB das gesuchte Optimum auf einer Seite der Vielecks-
fliche angenommen wird. Damit existieren unendlich viele Losungen fiir die
Linearoptimierungsaufgabe, namlich alle Punkte der Seite des Vielecks.
Den Punkten P(z,; %,), die man grafisch als Losung erhalt, werden die entsprechen-
den Wertepaare [z, ; y,] zugeordnet.
Mit Hilfe der angegebenen Methode kann man nur einfache Linearoptimierungs-
aufgaben, namlich solche mit zwei Variablen und solche, die sich auf Aufgaben mit
zwei Variablen zuriickfithren lassen, grafisch 16sen.
‘Wenn man mehr als zwei Variable zulaBt, kann man mit Hilfe der Linearoptimie-
rung viele praktische Aufgaben betrachten und lasen, so u. a.
Optimierung des Produktionsumfanges (vgl. Beispiel 8.1),
Gestaltung optimaler Futterplane (vgl. Beispiel 8.2),
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Ermittlung optimaler Bebauungspline in der Landwirtschaft,
Transportoptimierung,

Optimierung von Zuschnittproblemen,

Gestaltung optimaler Schichtpline (vgl. Beispiel 8.3).

Man muB dann bei mehr als zwei Variablen andere Verfahren anwenden.

8.7.

O
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Aufgaben und Auftrage

18.

19.

20.

21.

22.

23.

24.

25.

Beweisen Sie die Grundeigenschaften von Ungleichungen (Satz 8/1
bis Satz 8/7, Seiten 123, 124)!

Weisen Sie die Richtigkeit der Ungleichung

a-+b
2

Beweisen Sie, daBi (a + b) (b + ¢) (c + a) = 8 - abe gilt, wenn a, b
und ¢ nichtnegative Zahlen sind!

= yab (@ =0 und b = 0) nach!

Beweisen Sie die Sitze 8/8 und 8/9 iiber die Aquivalenz von Un-
gleichungen! Beachten Sie dazu den Hinweis auf Seite 127!

Losen Sie folgende Ungleichungen
q“;2§1+x c)dr — 5= 8z — 7!
m4z<555f @

Zeichnen Sie die Gerade 4z — 5y = 6!
Wie lauten die Ungleichungen fiir die obere und untere Halbebene ? (L)

Fiir welche Punkte P(z; y) der Ebene gilt das Ungleichungssystem %
a) 22+4+3y<6 b) 224+3y=6
22 —3y<6 22 — 3y =6

—2+3y=<6 —22+3y=6

—2z2—-3y=<6 —2x—-3y=6
Bestimmen Sie die Wertepaare [z; y], die folgende Systeme erfiillen!
8) — =0 b)z=0 c)z<3

—y=0 y=0 ys—2
dz=s2 eyz—y=0 flz—y=0

r=—3 z=0 =0

ys1 z2=6



26.

27.

28.
29.

g) —2+y<2 h) zz20 i) —2+2y=2

2z —y<+4 y=0 x— y<3
2 —3y <12 —ygr—y=s-—1

Bestimmen Sie grafisch die Losungsmenge folgender Systeme!

a) T+ y= 2 b) z= 0 )2 — y=-—95
2z —3y=—16 2z — 5y <10 dr+ y= b
x4+ 3y = 4 x4+ y= 2 x4+ Ty= 19

— 4z — by = — b6 3z 4+ 5y <15 y=s 1

— bz + 2y = — 37
Losen Sie die folgenden Linearoptimierungsaufgaben!

a) z = 12z 418y = max b) z = 12z 4 18y = max
4r —3y=— 6 —z—3y=-—12
z—3y=—15 —z—2y=-—10
—z+4y=— 4 2z +6y= 30
nyz 0 (L) zy= 0 (L).
¢) 2 =2z — y = max d) z=2z+ 3y > max bzw.
3r+6y<6 z = 2z + 3y = min
x+2y<+4 z— 3y= O
6z +5y=25 —2— y=-1
z,y=0 Tz — 2y < 38
(L) —6x+22y < 79 (L)
z,y= O
e) 2=z + y =>max bzw. f)z=y—§x:max bzw.
2=z + y = min z=y—%x=}min
—r—2y=—6 —z -3y = 3
z—3y=s 6 be+9y=< 45
z— y=-3 y= 3
z,y=0 5z — 6y = — 30
bz4+3y<s 16
@ znyz O 9]

Losen Sie das Beispiel 8/2 grafisch!
Ein Maschinenbetrieb stellt zwei Erzeugnisse E; und E, her. E, bringt

einen Gewinn von 3000 , E, einen von 2000

M
Einheit Einheit -
Die Produktion sei folgenden Beschriankungen unterworfen :
Von den zwei bendtigten Rohstoffen R, und R, werden 136 t bzw.
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30.

200 t von einem Zulieferbetrieb angeliefert. Zur Produktion von E

werden von R; 17 und von R, 10

‘t - .t — benoétigt, zur
Einheit Einheit

Produktion von E, 8 —— von R, und 20 ——von R,.

Emh Eht

Eine Einheit von E, lastet i% der Kapazitit der Schmiede aus, eine

1
Einheit von E, lastet 7] der Kapazitat aus.

Die Montagestra8e des Erzeugnisses E, reicht aus firr 7 Einheiten,
die von E, fiir 12 Einheiten.

Wieviel Einheiten von E; und E, sind zu produzieren, -damit der
Gewinn maximal wird ? (L)

Die Ziegeleien Z, und Z, haben eine Produktionskapazitit von 7 Mill.
bzw. 4 Mill. Ziegel. Sie versorgen die Baustelle B, mit 3 Mill. und die
Baustelle B, mit 8 Mill. Ziegel. Die Kosten fiir den Transport von
1 Mill. Ziegel von Z;, nach B, betragen 45000 M, von Z, nach B,
30000 M, von Z, nach B, 42000 M und von Z, nach B, 13000 M.

Es soll ein Plan fiir den Ziegeltransport aufgestellt werden, so daB
die Transportkosten am niedrigsten sind. (L)



9 e Losungen

Im folgenden sind Lésungen zu den Aufgaben aufgefiihrt, die weiter vorn mit
einem ,, L gekennzeichnet wurden.

Kapitel 2

2.a=ac; Pf=ad+bc; y=0bd
3.2,=58; z=-—-6; z=1; =z =-—-1

4, AA~2-2rn-Ar + 2. An =
=4.76-3,14.0,2 4 762.0,005 = 219,79
(mit & = 3,14 4+ 0,005)
219,79

A —
18136,64

= 0,012
5. 3 = 1,732 + 0,0005

4 — ¥3+1)-0,0005 — (Y3 — 1) - 0,0005
(/3 + 12

~ 0,0001
s ~~ 0,0003
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Kapitel 4

9. Man lést die Gleichung f(z) = 0:
31"—‘—% und n=-1; z,=3.
13. a) Die Substitution z = z + 2 liefert
22—10z2 —7=0.

Das grafische Losungsverfahren, das man mit Hilfe der Zerlegung der
Funktion

y=22—10z2 -7

in

=2 und y,=10z+7

durchfithren kann, fiihrt zu

2z €(—3,—2) bzw. 2z~ —25;

2z €(—1,0) bzw. 2z~ —1;

23 €(3,4) bzw. 23 &~ 3,5.

Damit erhalt man 2, ~ — 0,6; , ~ 1 und z; ~ 5,5.

13. b) Die Substitution 2 = z — 1 liefert
28 —82+4+14=0.

Das grafische Losungsverfahren, das man mit Hilfe der Zerlegung der
Funktion

‘y=122—82+ 14

in % = 2® und y, = 8z — 14 durchfiihren kann, ergibt, daB es nur eine
einzige reelle Losung im Intervall (—4, —3) gibt. Man erhalt z ~ — 3,6
und z ~ — 4,5.

15. a) Das grafische Losungsverfahren ergibt

na~—30; A~ —25; x3~12.
15. b) Das grafische Losungsverfahren ergibt z ~ — 0,7.

17. «=10°: sin3x =sin30°=0,6 =3 -sina — 4 .8in%x
sina = z: — 4234+ 32 =05
oder
28 = 0,762z — 0,125 .
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Das grafische Losungsverfahren und eine sich anschlieBende Untersuchung
mit Hilfe einer Wertetabelle liefert

z~ —095; x,~018 und z,=0,76.
Damit erhdlt man
z = sin 10° ~ 0,18 .

Es erfolgt eine Verbesserung der Ausgangsniherung z, = 0,18 mit Hilfe
des allgemeinen Iterationsverfahrens:

3
Zayr = 4’"_';‘&5_ mit z,=0,18 und n=0,1,2,..
lp'(2)] = 42? < 1 vz € (0,1;0,2)
3
n za I 423 w

0 0,18 0,025 | 0,178
1 0,178 | 0,022 | 0,174
2 0,174

sin 10° = z &~ 0,174.

18.  (zu 4/13a)

Es erfolgt eine Verbesserung von z;, da in diesem Fall die Iterationsvor.
schrift einfacher ist (1 = 1, 2, 3). ’

a) Newtonsches Verfahren:

B — 10z, — 17
327, — 10

(=123 (n=0,1,2,..)

Zin+l = ZHn —

, (#1,0)
. S | e ;(;)

Zip 0 —2,5 2,37 8,75 0,271
1 —2,771

2 |0 | —1 2 -7 —0,275
1 —0,725

zm | O 3,5 0,88 26,75 0,032
1 2,468

o~ — 0771

7 ~ 1,275

3 A~ 5,468

T _, _ (a—10)-f@) :_ _
b) Regula falsi: 2,441 = b @ =10 (t=1,2,3)(n=0,1,2,..)
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n a b fla) f®) Zp f(zq)

Zin 1 -3 —2 —4 5 —2,56 1,742
2 -3 —2,66 | —4 1,74 | —2,69 0,425
3 -3 —2,96 | —4 0,425 | —2,72 0,177

Zon 1 —1 0 2 -7 —0,78 0,464
2 —0,78 ) 0,46 | —7 —0,73 —0,106
3 —0,78 | —0,73 0,46 | —0,106| —0,737 —0,030

Zgy 1 3 4 —10 14 3,42 —1,186
2 3,42 4 -1,19 14 3,46 —0,147
3 3,46 4 —0,15 14 3,467 —0,032

o~ —072; 2,~1263; x3~ 5,467,

c) Allgemeines Iterationsverfahren:

z und 2z Znyr = ’;/lOz,. + 7

g =

%’ Znt1

3.Y10z + 72
22—
10

10

<1 Vze(—

‘o) — B2 —
l(p(z)l—ﬁz <1 Vze(—1,0)

3,—2) und Vze(34)

n |z, 10z, + 7 Y10z, + 7
zm |0 | —25 —18 —2,621
1 —2,621 —19,21 —2,668
2’ —2,668 —19,68 —2,7
z2m | O 3,6 42 3,476
1 3,476 41,76 3,470
2 | 3,470 41,70 3,468
25 -1
n 2y 23 ' il o
Zom 0 -1 -1 —0,8
1 —-0,8 —0,512 —0,751
2 —0,751 —0,422 —0,742
e~ —07; 2,~12568; 3~ 5468.
18. (zu 4/13b)
Es erfolgt eine Verbesserung von z.
3
— 8 14
a) Newtonsches Verfahren: z,,., =z, — Zn 3 2ﬁ-§—
20 —
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19.

2

f(za)

1
n ‘ 2, % z fe) | f(za) T
0 —3,6 —42,88| 12,25 —0,88 | 28,75 —0,030
1 —3,47 | —41,78 | 12,04 —0,12 | 28,12 —0,004
2 —3,466
T ~ — 4,46.
. (@ —b) - f(b)
b) Regula falsi: z, =b-———
““ fla) — 1(b)
| (@ — b) - f(b)
no | } a ’ b e ’ 1) ’ s - g0 | S =2
0 —30 | —40 [ -—30 | -—18 |1 -1 0,38
1 —3,38 | —4,0 | —3,38 | —18 | 242 | —0,62 0,07
2 | —3,45 i
r=~ — 4,45.

c) Allgemeines Iterationsverfahren: z,., = '/8z.. — 14

8

P'@) = 5—oo-1<1 Vze(—4, —3)
378z — 14y

n | 2a [ 8z, — 14 | Yoz — 12

0 -3 —38 —3,36

1 —3,36 —40,88 —3,42

2 —3,42

T~ — 4,42,

Die Berechnung der Naherungslosungen wurde nach der regula falsi mit
Hilfe eines Rechenautomaten mit einer Genauigkeit von 0,0000001 durch-

gefiihrt. AnschlieBend wurde auf vier Dezimalstellen gerundet.

Gleichung Intervalle, in denen Naherungs-
reelle Nullstellen liegen | 16sung
a) (—0,8; —0,6) —0,6664
(0,6; 0,8) 0,7892
(3,8; 4,0) 3,8662
b) (—2,0; —1,8) —1,8794
(0,2; 0,4) 0,3473
(1,4; 1,6) 1,5321
) (—3,14; —1,57) —1,7890
(1,67; 3,0) 1,7950
d) (—=1,7; —1,6) —1,6180
o) (0,6; 1,67) 0,7658
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20. a) Kleinste reelle Nullstelle
z¢€(06,08); =z =06

23 1
Tny1 = I" +§

3
¢’ (2)] = ’: =<1 Vzc(08;089)
X
4.2 /_ -
l i3
3 )
Ty Ty 1
" ’ o 1 ‘ VI te
(1] 0,6 0,054 | 0,7443
1 0,74 0,101 0,7752
2 0,78 ‘
z, ~ 0,78.

Mit dem Rechenautomaten (siehe oben) erhélt man nach der Rundung:

z; ~ 0,7892.
Probe mit Hilfe des HORNERschen Schemas:
1 —4 0 2
z, ~ 0,78 0,78 —2,5116 —1,959
1 -3,22 —2,5116 0,041 = £(0,78)

20. b) Gropte reelle Nullstelle
Te(3,8;40); =40 =4l _2

8z
lp'@) = 5———-—=<1 Vze(38;4,0)
3Y(4z2 — 2)

n |x,, ’4x,2,—2 "41,2,—-2

0 4,0 62 3,958

1 3,96 | 60,7 3,930

2 3,93 | 59,8 3,900

3 3,90 \

Ty ~ 3,90.

Mit dem Rechenautomaten (siche Losung zur Aufgabe 19) erhilt man nach
der Rundung: z, ~ 3,8662.

Probe mit Hilfe des HoRNERschen Schemas:

1 -4 0 2
7,5 3,9 39 —0,39 —1,521
1 —01 —0,39 0479 =/((3,9)
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21, z, € (—2,0; —1,8); 2,= —2,0 (Ausgangsnaherung fiir z,)
1
o1 =137 — 1 g = <1 Vze(—20; —18)

Y6z —1p
n lz,. i3z,,—1 |"'/ﬁz”__1
0 —2,0 -7 —1,913
1 —1,913 —6,74 —1,890
2 —1,890 —6,67 —1,882
3 —1,882
T, ~ — 1,882.

Mit Hilfe des Rechenautomaten (siehe Lésung zur Aufgabe 19) erhalt man
nach der Rundung: z, ~ — 1,8794.

z,€(0,2;04); 2 =02

2 1 1
B =2 F L @l =B £ U <L, Ve e 02:08)

z3+ 1
n Zp z3 + 1 ‘ n t
3

0 0,2 1,008 0,336
1 0,336 1,038 0,348
2 0,346 1,041 0,347
3 0,347

zy = 0,347,

Mit Hilfe des Rechenautomaten (siche Losung zur Aufgabe 19) erhilt man
nach der Rundung: z, ~ 0,3473.

zy€(1,4;1,6); 2,=14
Top1 =132 —1; '@ <1 Vze(l4;16)

| 2 | 32 —1 | ¥z, — 1

n

0 14 3,2 1,474
1 1,474 3,42 1,607
2 1,607 3,52 1,621
3 1,621

z, ~ 1,621.

Mit Hilfe des Rechenautomaten (sieche Lésung zur Aufgabe 19) erhilt man
nach der Rundung: z; ~ 1,56321.

22, 2¢€(0,6;1,0); =05
Tpp1 = Tn+ 8N 2Zy — zp + 1
¢'(@)l =Isinz + z-cosz — 1 <1  Vz € (05;1567)
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n 2y | %, (Grad) | sin z, | @y« sinz, I Ty i1

0 0,6 28,8° 0,4818 0,2409 0,7409
1 0,74 43,4° 0,6871 0,5085 0,7685
2 0,77 l

z ~ 0,77.

Mit Hilfe des Rechenautomaten (sieche Losung zur Aufgabe 19) erhilt man
nach der Rundung: = ~ 0,7647.

Kapitel 5

2. x=2; y=3
3. 2, =3, x=05; x=1
5. a) =27; =10

b) =11; t,=1; t=25

6. 8) z+ 0,6y =38 b)z=2; y=3
y=30
¢) bz +ty=11.241.3=25=t¢
7. a)
Schritt |6 =4 |[tb=2 [, =38 |t= — 2| s¥|SH (t=123)
(k=0,1,2,3)
a1 a2 a3 aq

2 -3 1 .0 $ =0

0 -3 4 -2 ‘ 1 S;=0
5 1 4 | —3 Sy =1
1 —1,60 0,50 0 & =0 SO =0

1 0 0,67 0,67 | —0,33 | &) =0 S =0
0 1,70 0,30 | —0,60 | &V =1,40 SO = 1,40
1 —1,50 0,50 0 82 =0 s@ =0

2 0 1 1 -2 2 =0 S =0
0 0 —0,81 1,62 | s =081 S® =081
1 —1,60 0,60 0 o =0 s® =0

3 (1] 1 1 -2 ,gs) = s;a) =0
0 0 1 -2 ) =—1 SP=-1

Losung: 2, =1; 2,=0; 2= —2

Endprobe: t,z, + tax, + ey =4-1+4+2:-04+3-(—2) = —-2=t¢
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7. b)

7.¢)

Schritt | ¢, = 1,3 =13 | ty= 1,7 t=0,1 | SB/[e®)
1,2 —0,2 0,3 —0,6 I o 'I
0 —0,2 1,6 —0,1 0,3
0,3 —0,1 1,5 0,4
1 —0,17 0,25 —0,50 I, ,68/ 0,58
1 0 —17,83 0,26 -1 ’ —8,58/—8,58
0 —0,17 4,75 1,84 | 642/ 642
1 —0,17 I 0,25 —0,50 | 0,68/ 0,68
2 0 1 ! —0,03 0,13 oLl 1,1
0 0 —217,97 —10,93 | —38,9/—38,8
1 —0,17 0,25 —0,50 i 0,58/ 0,68
3 0 1 | —0,03 0,13 | L1/ 1,1
0 0 1 0,39 1,39/ 1,39
Losung: @, = —0,67; 2,=0,14; ;=039
Endprobe: tz, + t,x, + t723 = 0,104 ~ 0,1 = ¢
Schritt | t, =9 |ta=86 ta=—1 |[t=5 SP/e®)
6 —2 3 1 8
0 1 8 0 0 9
2 0 ' —10 4 —4
1 —0,333 [ —0,600 0,167 1,333/ 1,333
1 0 8,333 | —0,600 —0,167 7,667/ 17,667
0 0,333 —5,600 1,833 —3,333/—3,333
1 —0,333 0,500 0,167 1,333/ 1,333
2 0 1 —0,060 —0,020 0,920/ 0,920
0 0 —16,440 5,520 —10,92/—10,92
1 —0,333 0,600 0,167 1,333/ 1,333
3 0 1 —0,060 —0,020 0,920/ 0,920
0 0 1 —0,335 0,664/ 0,665
Losung: z, =0,322; «,= —0,040; 23= — 0,335

Endprobe: zyt, + 2ty + gy = 0,322 -9 — 0,04 - 6 + 0,335 - 7
= 5,003 ~ ¢
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7. d)

8.

154

Schritt |4 =—09|t, =15 |t=48 |:t=4053 | SP/s®
2,1 —4,5 —2,0, 19,07 14,67
0 3,0 2,5 4,3 3,21 13,01
—8,0 3,5 2,5 18,25 18,25
1 —2,14 —0,95 9,06 6,97/ 1,0
1 0 2,97 2,38 — 17,99 — 2,64/— 2,63
0 1,56 0,53 —12,10 —10,01/—10,01
1 —2,14 —0,95 9,06 6,97/ 1,0
2 0 1 0,80 — 2,68 — 0,88/— 0,88
0 0 0,46 — 5,07 — 5,63/— 5,67
1 —2,14 —0,95 9,06 6,97/ 17,0
3 0 1 0,80 — 2,68 — 0,88/— 0,88
0 0 1 11,02 12,02/ 12,02
Losung: 2 = —5,08; &, = —11,60; x3=11,02

Endprobe: x,t, + xuf, + 3ty = — 5,08-(—0,9) — 11,50 - 1,6 + 11,02 -4,8
= 4,672 — 17,25 + 52,90 =

=5747 — 1725 =4022 ~ ¢

Schritt | f, = 1,26 |, =— 0,28] t, =— 1,45/ t = 0,6 N
1 -1 -1 0 -1 /-1

0 0,25 0,36 0 0,60 1,21
0 0,36 —0,46 0 —0,09
1 -1 -1 0 -1 /-1

1 0 2,44 1 2,4 5,84/ 5,84
0 0,36 —0,45 0 —0,09/—0,09
1 -1 -1 0 -1 /-1

2 0 1 0,41 0,98 2,39/ 2,39
0 0 —1,66 —0,98 —2,64/—2,64
1 -1 -1 0 -1 /-1

3 0 1 0,41 0,98 2,39/ 2,39
0 0 1 0,59 1,69/ 1,59

Lésung: I, =133; I,=074; I;=0,9

Endprobe: It + ILt, + Igty
=1,33.1,25 + 0,74 - (—0,28) + 0,69 - (—1,46) =
= 1,66 — 0,207 — 0,866 = 0,6 =¢



Kapitel 6

— Y.

2, y‘,-+-(:|:—:a:)y1 —

0,8056 — 0,8048

J = 0,8048 + (6,386 — 6,380 =0,
Y =+ ( ) - 530 — 6,38 0,8052 ~ lg 6,386

3. Ansatz: Py(z) = gy + a& + a2?

a, + 0,1 a; + 0,01 a, = 1,1052 a, = 0,6333
ay + 0,2a, + 0,04 a, = 1,2214 a, = 0,9720
ay + 0,4a, + 0,16 @, = 1,4918 a, = 1,0017
Py(z) = 1,0017 4 0,9720x + 0,6333z2
4, n=2:
C—z)@—2) -z
Py(z) = Yo +
: (T — 7y) (Ty — ) ‘ (2, — %) (2, — @) !

(2 — %) (x — -"71)
(T — %) (22 — Il)
Bei aquidistanten Stiitzstellen und Transformation auf die Variable ¢:

.(t)—(——y+) (2y 3 )t+y

5 Py = (@ —121) (v — 144) @—1) (= —144) 11
(—0,21) - (—0,44) 0,21~ (—0,23)
(@ —1) (@& — 1,21)
+ 04a. 023 7
P,(z) = — 0,102 + 0,70z + 1,70
Kapitel 7

LaylI=2 bI=—-8 ¢ I=—15 a) I=16

1
4. k z -
& FLEN] Frn
0 1,00 0,100
1 1,20 0,094
2 1,40 0,089
3 1,60 0,085 (Forts. S. 166)
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1
k T Sflae) = P
4 1,80 0,081
5 2,00 0,077
6 2,20 0,073
7 2,40 0,070
8 2,60 0,087
9 2,80 0,065
10 3,00 0,062

I~02-0801=01602 bzw. 020,763 = 0,1526
My(b — a)?

d=
2n

3
= max— = 0,03
T aem (3 + T2
0,03 - 22

d=< = 0,006

Das Ergebnis von Beispiel 7/2 lautet fir n = 4: I ~ 0,167 bzw. 0,148.
Der exakte Wert betragt I = 0,157.

5. k=4
1
k ’ T fla) = =
0 1 1,000
1 2 0,500
2 3 0,333
3 4 0,250
4 5 0,200
1 m54—l(l 0% 405+ 033 + 0,250) =1.1,683 = 1,683
k = 10:
1
k o L
0 1,0 1,000
1 1,4 0,714
2 1,8 0,565
3 2,2 0,455
4 2,6 0,384
5 3,0 0,333
6 3,4 0,294
7 3,8 0,263
8 4,2 0,233
9 4,6 0,217
10 5,0 0,200
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I~ % (0,6 + 3,448) — 1,6192

5
Exakter Wert: fd_x =[nz]} =1n5 = 1,6094
z
1

—_ 3
Ermittlung der Zahln:e = 220 —0° 4, _4
122
e = 0,01
M, = max (i)
ze(1;5) 3
n? = 1067
n = 33
6. k= 8:
T | flzx)
0 0,000 E 1,000
1 0,125 I 0,004
2 0,250 | 0,941
3 0,375 | 0,877
4 0,500 0,800
b5 0,625 0,719
6 0,750 0,640
7 0,875 0,666
8 1,000 . 0,500
Ip ~ 0,754 bzw. 0,817
Ir ~ 0,7848
Is ~ 0,7854
I =~ 0,7854
7. Ermittlung der Zahl n:
- 3
e=0,001;M b—a=1
12n2
v 5
M, = max |{'(z)] =—
ze(1;2) 8
b
nt=——— =521 n=8
8.0,012
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Berechnung von I:

Ig 2
)!
k £ g Tk %
0 1,000 0,0000 0,0000
1 1,125 0,0512 0,0456
2 1,250 0,0969 0,0776
3 1,376 0,1384 0,1008
4 1,600 0,1761 0,1174
5 1,626 0,2214 0,1362
6 1,750 0,2430 0,1417
7 1,875 0,2731 0,1456
8 2,000 0,3010 0,1505
Ip ~ 0,1049
8. Berechnung mit der SmMpsoNschen Regel:
1
k z In z, na
0 10 2,3026 0,4343
1 11 2,3979 0,4170
2 12 2,4849 0,4003
3 13 2,6649 0,3898
4 14 2,6301 0,3788
5 15 2,7081 0,3692
6 16 2,7726 0,3609
7 17 2,8332 0,3629
8 18 2,8904 0,34569
9 19 2,9444 0,3396
10 20 2,9957 0,3334
I, ~ 3,7376
Kapitel 8
5
7.8) <3 b) 2 <3 1:):4:<E
120 d—2b
d) z=>— e) z> fir a—¢c>0
19 a—c
d—>b
z < fir a—c¢<0
a—c

12. a) -Menge der Punkte der xy-Ebene, die oberhalb bzw. unterhalb der z-Achse
liegen: y >0 bzw. y <O.
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13.

17,

22,

23.

27.

29,

b) Menge der Punkte der zy-Ebene, die rechts bzw. links der y-Achse liegen:
>0 bzw. 2<0.
¢) I.Quadrant: 2>0; y>0
II. Quadrant: 2 <0; y> 0
III. Quadrant: z <0; y <O
IV.Quadrant: 2> 0; y <0

a) y>a(y<a) b) 2lb@@>0)  e)y=a

. 8) Halbebene unterhalb der Geraden 2z + 3y =6 unter EinschluB der

Punkte dieser Geraden
b) Unbeschranktes Dreieck
¢) keine Losung
d) Die Losung ist die Gerade 3z — 2y = 12.

b) Maximum im Punkt P, (—%; %)

¢) Minimum im Punkt P,(—2; —2)
a) z =6 b)a:>—5 c)zsl
= 3 =72

4z — by > 6 untere Halbebene
4r — 5y <6 obere Halbebene einschlieBlich der Geraden mit der Glei-
chung 4z — 6y = 6

a) Der groBte Wert wird in unendlich fernen Punkten des offenen (unbe-
schrankten) Vielecks angenommen.

b) Keine Losung, da die Ungleichungen unvertraglich sind.

€) max (%;0) d) max (7; 5,5); min (3; 1)
e) max (6;0); min (—7,6; —4,5) 1) ma.x(—s—:: ;), mm(lzs. —?)

3z 4+ 2y = max

17x + 8y <136

10z + 20y < 200

1 1

—_ —y=<1

0°TEYs
<7

y=9
z2,y=0
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Die Gerade y = — %x wird parallel verschoben.

Die Zielfunktion hat ihren maximalen Wert, wenn die Gerade durch den
Punkt P(5,4; 5,5) geht.

Fiir das praktische Problem kann man nur ganze Zahlen z, y zulassen.
Der letzte Punkt mit ganzzahligen Koordinaten z, y, der zum zuldssigen
Bereich gehort und der auf der Geraden, die die Zielfunktion darstellt,
liegt, ist der Punkt P(5; 6).

Man erhilt also

x=5; y=6, 2z=27000.

30. 45z + 30(7 — z) + 42y + 12(4 — y) = min
z = 15z + 29y = min
z+y=3
<3
y=4
z,y=0
Das Minimum wird angenommen in P(3; 0). Man erhilt

z=3, y=0 und z=307.
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