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Vorwort

In den Binden 1 und 2 dieeer Lehrbuchreihe wurde der Leser noch einmal vom
systematischen Standp mit der Arithmetik — dem Zahlenrechnen — vertraut

ht. Dabei standen in gleicher Weise die Objekte, mit denen gerechnet wird, die
Zahlen, wie auch die vollzogenen Verkniipfungen, die Rechenoperationen, im Brenn-
punkt des Interesses.

Der Algebra geht es in Abstraktion von individuellen Rechenobjekten um eine
Untersuchung von Rech tionen im allg worunter sich dann die
Rechenoperationen der Arithmetik als Spezm,lfa.lle einreihen. In diesem Sinne ist die
gebriuchliche pauschale AuBerung zu verstehen, daB die Algebra eine hohere Arith-
metik sei. Vom mengentheoretischen Standpunkt ist Algebra die Theorie der Mengen
mit Operationen. Natiirlich werden aus der denkbaren Fiille solcher struktur-
theoretischen Betrachtungen vorwiegend jene int ieren, die das Ordnen der
Wirklichkeit méglichst unterstiitzen und uns zu ,lebensnahen* Erkenntnissen
fiihren. Mit anderen Worten, man wird solche Mengen mit Operationen gesondert
betrachten, die als Widerspiegelung vielfiltiger Sachverhalte in Erscheinung treten.
Die lange Entwicklung der Mathematik hat hinsichtlich der. Algebra einen gewissen
klassischen Bestand an solchen Modellierungen herausgeschilt. Dazu gehéren
beispielsweise die Begriffe der Gruppe, des Ringes, des Korpers, des Vektorraumes
(und damit zusammenhiingende Begriffe wie Linearformen, lineare Abbildungen,
Dualraum) und auch der Begriff des Verbandes. Diese Begriffe spielen in der Schul-
mathematik keine explizite Rolle, aber sie stecken immer wieder in den schul-
mathematischen Dingen. Die Ausbildung der Lehrer zielt darauf at, den Lehrer
dafiir sehend zu machen, damit er von einem mehr iiberschauenden Standpunkt die
zu lehrende Thematik iibersieht. Sachverhalte, die vorher nur lose zusammn.cn-
hingend oder gar voneinander isoliert gesehen wurden, kénnen in Wahrheit schr
eng verwandt sein. Das Darlegen solcher natiirlichen Verwandtschaften ist Sinn ur 4

Zweck der Abstraktion, des Absehens von iiberfliissig konkretem Beiwerk
Abstraktion ist ein tlicher Erkenntnisschritt. Eine zu weit getriebene Ab-
straktion ist hingegen ermiidend und abstoSend. Der mit einer Abstraktion gewon-




6 Vorwort

nene Denkvorteil darf nicht solange auf sich warten lassen. Hierin besteht die Kunst
guten Lehrens.

In der Algebra herrscht ein hoher Abstraktionsgrad. Das macht erfahrungsgemi
anfinglich Schwierigkeiten. Wir haben uns bemiiht, durch Anordnung und Dar-
stellung diese Schwierigkeiten 8o zu halten, daB sie zu iiberwinden sind. Die Behand-
lung der sogenannten linearen Algebra hiitte aus systematischen und logischen
Griinden erst nach Kenntnis allgemeiner algebraischer Strukturen, wie Gruppen,
Ringe und Kérper erfolgen sollen. Aber von den Erfordernissen eines Lernenden,
moglichst oft an einem natiirlichen Heranwachsen der Begriffe teilnehmen zu
konnen, empfiehlt sich wohl eine Hinlenkung zur allgemeinen Algebra durch eine
Beschiiftigung mit der klassischen Grundaufgabe der linearen Algebra, nimlich dem
Auflosen von linearen Gleichungen mit reellen Koeffizienten. DemgemiB ist hier
zuniichst alles um diese Aufgabenstellung gruppiert. Der Leser wird damit an die
Algebra herangefiihrt. Ohne eigene (intensive!) Arbeit wird es nicht abgehen. Von
geometrischen Schulkenntnissen haben wir zur Ilustration Gebrauch gemacht. Vom
logischen Betrachtungspunkt wire natiirlich ein Ausk ohne jegliche geo-
metrische Vorleistung erstrebenswert. Die Aneignung mathematischer Kenntni
darf sich aber nicht darauf beschrinken, einen logisch reinen Aufbau iiberpriifend
nachzuvollziehen, sondern sie muB geniigend von der Erkenntniskomponente
»Kunst des Findens* enthalten. Zu einem spiteren Zeitpunkt wird der Leser hin-

ichtlich der Geometrie noch ausreichend mit der ,, Kunst des logischen Absicherns‘
in Berijhrung kommen.

Der erstgenannte Autor hat die Abschnitte 2 bis 10 verfaBt, der zweitgenannte
Autor die hlieBenden Abschnitte. Herr Kollege WussiNGg hat dem Ganzen den
Abschnitt 1 vorangestellt. Wir danken ihm herzlich dafiir. In der Folgezeit wird
noch ein Ergi band (Spezialstudium) iiber Algebra erscheinen.

Dem VEB Deutscher Verlag der Wissenschaften und den Herausgebern, insbeson-
dere Herrn Prof. Dr. W. ENgEL, danken wir fiir die Méglichkeit, mit diesem Band
einen Beitrag zur Studienbiicherei ,,Mathematik fiir Lehrer* leisten zu kénnen. Unser
Dank gilt aber auch Herausgebern und Kollegen, die mit ihren kritischen Bemer-
kungen zum Manuskript unser gemeinsames Anliegen geférdert haben. Besondere
Anerkennung verdient schlieBlich die sorgfiltige Arbeit des VEB Drucklnus »Maxim
Gorki* in Altenburg.

Zur weiteren Gestaltung und zukiinftigen Verbesserung des Bandea wiinschen wir
uns eine moglichst vielfiltige Reaktion der Leserschaft, insb dere der Studenten,
die danach arbeiten, der danach Lehrenden und der Lehrer, die zum Zwecke des
Auffrischens ihrer Kenntnisse das Buch zur Hand nehmen. Mégen uns viele Zu-
schriften erreichen. Eine auf offizielle Rezensionen beschrinkte AuBerung wire uns
nicht ausreichend.

Greifswald und Rostock, August 1973
JURGEN FLACHSMEYER
Lupwia PROHASKA
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1. Bemerkungen zur Geschichte der Algebra

HaNs WussING

I

Innerhalb der Mathematik der Neuzeit stellte die Algebra ein auBerordentlich um-
fangreiches, in ihren Zielen weitgespanntes und in Methode und Inhalt weitreichendes
mathematisches Gebiet dar. Auch heute befindet sie sich in rascher Entwicklung.

Die Anfinge der Algebra reichen weit zuriick. Der Begriffsinhalt und damit ihre
Zielstellung unterlagen dabei einer langen historischen Entwicklung. Etwas verein-
facht kann man die Geschichte der Algebra folgendermaBen periodisieren: Erste
implizite algebraische Denk- und Arbeitsweisen treten uns bereits in den frithen
Klassengesellschaften Chinas, Indiens, Agyptens und Mesopotamiens entgegen;
einige Nachwirkungen davon sind in der hellenistischen Antike nachweisbar und
gewannen dort insbesondere bei DIOPHANTOS VON ALEXANDRIA (um 250 u.Z.)
ansatzweise explizite Gestalt. Eine zweite Periode konnbe man a.ls Perlode der Ent-
wicldung der Algebra zur selbstindigen mathemati Di b hnen. Sie
reicht von der rechnerisch-algebraisch orientierten jslamischen Mathematik des
9. und 10. Jahrhunderts iiber die Rechenmeister und Cossisten der europiisch
Renaissance bis hin zum Ausgang des 15.Jahrhunderts. Wahrend einer dritten
Periode gewann die Algebra im 17. und 18.Jahrhundert den hauptsichlichen
Begriffsinhalt als Kunst, Gleichungen aufzulésen; als natiirlicher Abschluf dieser
Periode konnen die endgiiltigen, liickenlosen Beweise des Fundamentalsatzes der
Algebra durch CarL FRIEDRICH GAUsS (1777 —1856) angesehen werden.

Mit Gauss, ABEL, GaLors und anderen beginnt sich, zunichst allerdings nur in
impliziter Gestalt, eine neue Form algebraischen Denkens herauszubilden, die auf
das Studium algebraischer Strukturen abzielt. Am Ende des 19. und am Anfang des
20. Jahrhunderts vollzog sich auch @uBerlich eine radikale Wendung von einer als
Gleichungstheorie verstandenen Algebra zur Algebra als Disziplin, welche die Er-
forschung (algebraischer) Strukturen zum Gegenstand hat.
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II

Die altigyptische Mathematik im 2. Jahrtausend v.u.Z. besaB insofern Ansatz-
punkte zur Algebra, als sie imstande war, lineare Gleichungen mit einer Variablen
exakt zu behandeln und fiir die Variable einen feststehenden Terminus besaB,
nimlich das Schriftzeichen hau, das Haufen oder Menge bedeutet, als Symbol fiir die
zu bestimmende GriB8e oder Menge.

Im engeren Sinne echt algebraische Ansitze finden sich in der hochentwickelten
Rechentechnik der ten babylonischen Mathematik. Die Analyse jener

()

Rechengiinge auf mesopotamischen Keilschrifttafeln aus dem 1. Jahrtausend v. u. Z.
zeigt bei auBerordentlich komplizierten Aufgaben eine erstaunliche Geschicklichkeit
im Umformen von Gleichungen. Es werden u. a. zweckmiiBige HilfsgroBen eingefiihrt ;
wenn mehrere Variable auftreten, werden GroBen eliminiert. Es zeigt sich weiter,
daB die Rechnungen im Grunde so verlaufen, wie wir heute an solche Rechen-
aufgaben herangehen wiirden (vgl. [7, S. 46)).

In diesen Zusammenhiingen vollzog sich der Ubergang zu einer zwar unvoll-
stindigen, aber doch durch Konvention fixierten ,Formel‘-Schreibweise und die
Ausbildung einer Art Fachterminologie. Zum Beispiel repriisentierten die Worte tab
bzw. lal die Operationen der Addition bzw. Subtraktion, die zugleich die Rolle von
,,Vorzeichen‘ spielten. Es gab ein inneres Liickenzeichen nach Art einer Null im
sexagesimalen Zahlensystem, und es gab in der G ie einen feststehenden
Terminus als Zeichen der Gleichheit zweier Seiten. SchlieBlich verdichteten sich im
Laufe der Zeit die Texte zu einer ideographischen Kurzschreibweise von algebra-
ischem Charakter.

Die griechisch-hellenistische Mathematik nahm etwa seit dem Ende des 4. Jahr-
hunderts v. u. Z. den Charakter ciner geometrischen Algebra an (vgl. dazu [1, 7]).
In Anbetmcht der unbewiltigten Probleme des Umgangs mit dem Unendlichen und

+.

b dere der Problematik der ink nsurablen GroBen (u. a. der irrationalen
Zahlen) wurden algebraische Probleme mit Hilfe geometrischer Konstruktionen
behandelt. Beispielsweise wurden quadratische Gleich ittels der Methode der

Flichenanlegung gelost. Erst gegen Ende der Antike traten such Elemente einer
,,algebraischen Algebra* wieder hervor, insbesondere bei DIOPHANTOS VON ALEXAN-
DRIA. Sein Hauptwerk, die Arithmetik, verwendete feste Symbole fiir die gesuchte
Zah) (vermutlich einen abgewandelten Buchstaben des griechischen Alphabets) und
fiir deren k-te Potenzen, k¥ = 41, +2,..., 6. Fiir die Subtraktion hatte D1o-
PHANTOS ebenfalls ein festes Zeichen, eine Art umgekehrtes y; fiir die Gleichheit
verwendete er den Buchstaben :, den ersten des griechischen Wortes oo, das
gleich bedeutet.
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III

Die Mathematik der Linder des Islam (d. h. die sogenannte arabische Mathematik)
nahm wesentliche Teile der weiterentwickelten indischen sowie der hellenistischen
Mathematik in sich auf und erreichte, insbesondere auch bei der Fortfuhrung der
rechnerisch-algebraischen Ansitze der indischen Mathematik, eine bedeut
Hohe.

Das Wort Algebra geht zuriick auf den Titel eines Buches des aus Choresm (heute
Chiwa) stammenden aL-Hwirazmt (7807 —850%). Er lautet Hisdb aljabr w’almu-
gdbalah und bedeutet soviel wie ,,Buch von der Erginzung (aljabr) und der Aus-
gleichung (almugdbalah)*. An Hand von Musterbelsplelen erliutert der Autor dort
die Verfahren zur Auflssung von Gleich ielsweise wird in einer Gleichung,
die wir als 13z — 6 = 7z 4 4 schreiben wurden, dle linke Seite um 5 ,erginzt*,
weil dort ein negativer Term vorkommt; diese 5 muB dann rechts ebenfalls ,,ergiinzt*
werden. Dann folgt ein zweiter Schritt, die ,,Ausgleichung’ der mit z behafteten
Glieder in der Gleichung 13z = 7z + 9. Es ergibt sich 6z = 9 und damit die Losung

3

T=—\

2

Dieses schrittmachende Buch von aL-HwArazmi erlangte eine groBe Verbreitung
und wurde vom 12. Jahrhundert an auch in Europa bekannt. Der Buchtitel, ins-
besondere das erste Wort aljabr, wurde allmihlich zum Synonym fiir die dort ver-
wendeten Methoden der Auflésung von Gleichungen; so entstand das Fachwort
Algebra durch Latinisierung des arabischen Wortes. Jedoch schufen erst die Ent-
wicklung des Friihkapitalismus und der damit verbundene Ubergang von der
Natural- zur Geldwirtschaft das allgemeine gesellschaftliche Bediirfnis zur um-
fassenden Anwendung von Rechenmethoden. Den Rechenmeistern des 15. und 16.
Jahrhunderts — in Deutschland wurde ApaM RIES (1492 —1559) am bekanntesten —
dankt man u. a. die Einfiihrung der indisch-arabischen Ziffern, das damals als sehr
schwierig empfundene Rechnen mit Briichen, die kalkiilmiBige Durcharbeitung der
vier Grundrechenarten und des Radizierens und die Einfiihrung erster Symbele fiir
die Rechenoperationen und Unbekannten. Beispielsweise verwendete Luca PacroLr
(1445 —1515) die Zeichen $ und 7# fiir plus und minus. Im Rechenbuch des JOHANN
WIDMANN (geb. um 1460) aus dem Jahre 1489 traten, vermutlich zum erstenmal,
die Zeichen + und — im Druck auf. Der englische Arzt R. RECORDE (1510? —1558)
schlug 1557 den Gebrauch des heutigen Gleichheitszeichens vor, es setzte sich jedoch
erst im 17. Jahrhundert durch. )

Unter der Bezeichnung Cof oder cossische Kunst — welche auf die italienische
Benennung cosa (Sache) fiir die Variable in Gleichungen zuriickgeht — erreichte die
Verwendung von Symbolen und Abkiirzungen schon im 16. Jahrhundert einen recht
hohen Stand, in Deutschland durch das Wirken von Cur. RupoLrr (15007 —1545?)
und MICHAEL STIPEL (1486 —1567), in Frankreich durch N. CHUQUET (} um 1500),
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in Italien durch RarAEL BoMBELLI (16. Jahrhundert), HTERONIMO CARDANO (1501
bis 1576) und andere.

Die endgiiltige Herausbildung der Algebra vollzog sich erst am Ausgang des 16.
und zu Anfang des 17. Jahrhunderts. Insbesondere schuf FRaNGors VIETA (1540 bis
1603) mit seiner — natiirlich an Vorgingern orientierten — durchgebildeten Buch-
stabena.lgebm, die er im Unterschied zum Rechnen mit konkreten Zahlen als logistica
apecma (etwa: prachtvolle Rechenkunst) bezeichnete, ein einheitliches algebraisches

t Durchgehend hat Viera die Variablen (Unbekannten) durch
dle Vokale A E 1,0, U, Y und die bekannten GroBen durch die Konsonanten B,
C, D, ... bezeichnet; er verwendete u. a. die Zeichen + und —, geschweifte Klam-
mern, den Bruchstrich als Zeichen der Division, das Wértchen in als feststehendes
Kurzzeichen der Multiplikation. Die Gleichheit zweier Terme driickte VIETA noch
durch die Worte aequibitur oder aequale aus. (Die heute fast allgemein gewordene
Verwendung der letzten Buchstaben z, y, z des Alphabets fiir die Variablen geht auf
RENE DESCARTES (1586 —1650) zuriick.) Insgesamt trat durch VieTa die Algebra
als neuer Zweig der Mathematik gleichberechtigt neben die Geometrie, die bis dahin
weitgehend mit Mathematik iiberhaupt identisch gewesen war, hatte es bisher doch
nur dort echte mathematische Siatze und Beweise gegeben.

Zu Beginn des 16. Jahrhunderts traten in Verbindung mit den sich rasch ent-
faltenden friihkapitalistischen Produktionsverhéltni auch bedeutende mathe-
matische Leistungen hervor, darunter insbesondere bei der Behandlung algebraischer
Gleichungen. So fand um 1500 Screro pEL FERRO (1465?—1526) die algorithmische
Auflésung der kubischen Gleichung; doch blieb sie unpubliziert. Unabhanglg davon
gelangte der Rechenmeister N1ccoLd TARTAGLIA (15002 —1657) im Jahre 1635 zu
eben derselben Losung und teilte sie 1539 unter dem Siegel der Verschwiegenheit dem
Universititsprofessor CARDANO aus Milano mit, der jedoch eidbriichig TARTAGLIAS
Methode — zusammen mit der von seinem Schiiler Lupovico FERRARI (1522 —1565)
herriihrenden Losungsmethode fiir die Gleichung vierten Grades — in seiner Ars
magna von 15645 verdffentlichte.

Fiir die allgemeinen algebraischen Gleichungen hoheren als vierten Grades suchten
die Mathematiker der nachfolgenden Generation mit auBergewshnlicher Anstrengung
mch analogen Losungsverfahren, d. h. nach Losungen, die sich durch Wurzel-

htel darstellen lassen. Voriibergehend glaubte EERENFRIED WALTER VON
Tscmmuuus (1651 —1708) durch geeignete Variablensubstitution (Tschirnhaus-
Transformation) die Gleichungen aller Grade so umformen zu kénnen, daB eine
Auflosung moglich sein miisse, doch diese und weitere Hoffnungen zerschlugen sich.
Am Ende des 18. Jahrhunderts wurde es zweifelhaft, ob eine derartige Losung des
Problems mit den bisherigen Methoden iiberhaupt méglich sein werde; JoserH
Louis LAGRANGE (1736—1813) sprach dies 1770/71 als erster aus. Der Italiener
Paoro Rurrini (1765 —1822) konnte von 1799 an Schritt fiir Schritt einen im wesent-
lichen vollstindigen Beweis dafiir erbringen, daB die allgemeine Gleichung fiinften
Grades nicht in Radikalen losbar ist. Unabhingig von RuFrinT gelangte 1824 der
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Norweger N1eLs HENRIE ABEL (1802—1829) zum gleichen Ergebnis und konnte
zwei Jahre spiter den Beweis liefern, daB die allgemeine Gleichung héheren als vierten
Grades nicht durch Radikale l5sbar ist.

Die Frage nach der Existenz der Wurzeln algebraischer Gleichungen war schon
seit der Renaissance bewuBt gestellt worden und hatte iiberdies in der Folgezeit
philosophisch und mathematisch schwierige Fragen des Umgangs mit imaginiren
(wortlich: eingebildeten!) und komplexen Zahlen aufgeworfen (vgl. [10, 13]). ALBERT
GreARD (1595—1632) formulierte 1629 unter Einbeziehung komplexer Zahlen den
Satz, daB jede algebraische Gleichung n-ten Grades genau n Wurzeln besitzt. Doch
erst GAuss konnte, nachdem 1746 bereits: JEAN BAPTISTE LE ROND D’ALEMBERT
(1717—1783) Wesentliches beigetragen hatte, im Jahre 1796 seinen ersten liicken-
losen Beweis des Fundamentalsatzes der Algebra geben.

Auch andere El te der klassischen Algebra reichen weit in die Vergangenheit
zuriick und fanden wihrend der Neuzeit ihre Durchbildung. Beispielsweise war die
Behandlung linearer Gleichungssysteme schon im mittelalterlichen China hoch-
entwickelt; die in der sogenannten fang-cheng-Methode verwendeten Ideen stehen
dem Gebrauch von Determinanten und Matrizen sehr nahe. Bei GorTFRIED WILHELM
LEIBNIZ (1646—1716) scheint sich zum erstenmal eine allgemeingiiltige Definition
der Determinanten vorgefunden zu haben, die ind in Verg heit geriet. So
begann eine moderne Theorie der Determinanten 1750 mit dem Schweizer Mathe-
matiker GABRIEL CRAMER (1704—1752); der Ausbau erfolgte u. a. durch AUGUSTIN-
Louis CavcHY (1789—1857) und CaRL GUSTAV JacoB Jacosr (1804—1851). Die
Prizision der Losungsverhiiltnisse bei m linearen Gleichungen in » Variablen — wozu
auch die entscheidende Begriffsbildung des Ranges einer Matrix gehért — verdankt
man der britischen algebraischen Schule um ArTHUR CAYLEY (1821—1895) und
JAMES JoSEPH SYLVESTER (1814 —1897) sowie LEoroLD KRONECKER (1823 —1891)
und GEorg FROBENIUS (1849 —1917).

Mit der Entwicklung kapitalistischer Produktionsverhaltnisse, insbesondere seit
der industriellen Revolution, ergingen eine Vielzahl von direkten und indirekten
Impulsen an die Entwicklung der Naturwissenschaften und der Mathematik. Unter
anderem nahm auch die Algebra wihrend des 19. Jahrhunderts einen raschen Auf-
schwung. Noch innerhalb einiger Bestandteile der klassischen Algebra, insbesondere
der Auflésungstheorie algebraischer Gleichungen, entwickelten sich Elemente der
kiinftigen Strukturalgebra. Beispielsweise ist die Theorie der sogenannten GauBschen
Perioden identisch mit der Untersuchung der Untergruppen der Galoisschen Gruppe
der Kreisteilungsgleichung ; hieraus entnahmen ABEL und EVARISTE GaALo1s (1811 bis
1832) tliche Anregungen. Durch ABEL wurde der Begriff Gruppe zu einem

th tischen Fachausdruck; er untersuchte endliche kommutative Permutations-
gruppen bei der Frage der Bestimmung aller in Radikalen auflésbaren algebraischen
Gleichungen. GavLors erkannte die Bedeutung der Nornialteiler und konnte jeder
algebraischen Gleichung eine (Permutations-)Gruppe zuordnen, aus deren Struktur
auf die Losungsverhiltnisse der Gleichung geschlossen werden kann, insbesondere
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wird entscheidbar, ob sie in Radikalen auflésbar ist. KRONECKER stellte 1870 ein
erstes explizites Axiomensystem fiir eine endliche, kommutative Gruppe auf; im
selben Jahr erschien die bedeutende Monographie Traité des substitutions et des
équations algébriques von CAMILLE JORDAN (1838— 1922) Am Ende des 19. Jshr-
hunderts hatte sich der Begriff der Gruppe — aus zuni impli
gruppentheoretlschen Denkformen in Zahlentheorie, Geometrie und Auﬂosungs-
theorie algeb h ichungen — als erster abstrakter algebraischer Struktur-
begriff herausgebﬂdet.

Ahnlich entwickelten sich, in Anlehnung an das methodische Vorbild der Gruppen-
theorie, die abstrakte Korpertheorie, die Idealtheorie und die Theorie der hyper-
komplexen Systeme. Dabei wurden bei Studien iiber mogliche Axiomensysteme auch
nichtkommutative Verkniipfungen innerhalb einer Menge mit doppelter Verkniipfung
analysiert. Auf diesen Gebieten vollbrachten u. a. Sir WiLLzam RowaN HamriitoN
(1805—1865), ERNST EDUARD KUMMER (1810 —1893), GEORGE BoOLE (1815—1864),
KroNEGRER und RroEARD DEDEEIND (1831 —1916) bedeutende Forsch
gen. Die ausfiihrliche, immer wieder nachgedruckte Lehrbuchdmtellung der klas-
sischen Algebra durch HernriceE WEBER (1842 —1913) von 1895/96 stand geradezu
symbolisch am Ende dieses Abschnittes der Entwicklung der Algebra.

Auf der Grundlage der theoretischen Durchdringung der gesamten Mathe-
matik und unter der erkung des sogenannten ,,Zahlberichtes* (1897) von Davip
HILBERT (1862 —1943) sowie der Theorie der algebraischen Korper (1910) von ERNsT
STEINITZ (1871 —1928) kam es zu Anfang der zwanziger Jahre unseres Jahrhunderts
zu einem qualitativen Umschwung innerhalb der Algebra.

Die hochbedeutende Mathematikerin EMmY NoETHER (1882 —1935), die 1933 von
den Faschisten aus Gottingen vertrieben wurde, EMIL ARTIN (1898 —1962) und deren
Schiiler wie HELMUT HassE ( 1898), 0. SCHREIER (1901 —1929), W. KRULL (1899 —1971)
erhoben die Untersuchung der algebraischen Strukturen in ihrer abstrakten Form,
also losgeldst von einer Reprisentation durch , konkrete mathematische Objekte,
zum Gegenstand der Algebra. Wegbereitend wirkte hier das Lehrbuch Moderne
Algebra (1930/31) von BARTEL LEENDERT VAN DER WAERDEN (* 1903).

Obwoh! die Wissenschaft der Gegenwart in den sozislistischen und kapitalistischen
Staaten ginzlich anderen gesellschaftlichen I dient, ist sie doch allgemein in
rascher Entwicklung begriffen. Die Sowjetunion und die USA besitzen gegenwiirtig
die stirksten und erfolgreichsten math tischen Zentren, darunter auch hervor-
ragende algebraische Schulen. Hier, aber auch anderswo, entwickelten sich in Wechsel-
wirkung mit den Anwendungsgebieten der Algebra (Topologie, Funktionalanalysis,
algebraische Geometrie, theoretische Physik, Computertechnik) rasch neue Teil-
gebiete der Algebra, darunter die Theorie der Kategorien, die Verbandstheorie und
die Theorie der Halbgruppen. Fiir diese umf: de, vom strukturellen Denk
geprigte und auf die Herausarbeitung des Allgemei des vom algebraischen
Standpunkt Wesentlichen abzielende Algebra scheint sich in jiingster Zeit eine neue
Bezeichnung, Allgemeine Algebra, einzubiirgern.
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2. Der n-dimensionale reelle Zahlenraum

24.  Abstrakte Erklirung des R*

Definition 1 (n-dimensionaler reeller Zahlenraum, R*). Unter dem n-dimen-
sionalen reellen Zahlenraum — dem R — versteht man das n-fache kartesische
Mengenprodukt der Menge der reellen Zahlen R mit sich selbst:

R* =RXRX -+ XR =[(2,, %, ...,%,): 2; €ER, s =1,...,n}.
e
Die Elemente von R* (auch Punkte des R* genannt) sind also (geordnete) n-Tupel
reeller Zahlen

T = (zl:z;: PRV AN

Die das n-Tupel & konstitui den n reellen Zahlen z,, z,,...,z, heiBen die
Komponenten oder auch Koordinaten von x, und z; ist die i-te Komponente bzw. i-te
Koordinate von &. .

Unter der Gleichheit von zwes n-Tupeln ® und y wird gemiB der Produktmengen-
erklirung die koordinatenweise Gleichheit verstanden. Zwei Elemente @, y des R*

sind also genau dann der verschieden, wenn sie sich wenigstens in einer
e o unterscheid

) 4

2.2.  Veranschaulichung des R*

1. Eine Art der Veranschaulichung des R* fiir die Fille n = 1,2, 3 besteht in der
Deutung der Elemente des R* als Punkte einer ,,Zahlengeraden (Rl(— R)) einer
,,7ahlenebene" (R?) bzw. eines ,,Zahlenraumes* (R®). Sie wird euklidische Ver-
ansch t. Abbildung 1 verdeutlicht die genannten Fille.

2. Eine andere Art der Vennschauhchung des R, n beheblge natiirliche Zahl,
besteht in der Deutung der Elemente des R* als Abbildung einer n-elementigen
Menge, etwa der Menge (1, 2, ..., n}, in die Menge R der reellen Zahlen. Abbildung 2
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zeigt die Veranschaulichung von  als Funktion : (1,2,...,2) >R (% = (z,, 7,

oy z.)) Diese Veranschaulichung nennen wir die fasernweise oder schichtenweiso
Veranschaullchung des R". Der R* wird aus n Schichten, jeweils bestehend aus R,
aufgebaut gedacht. Ein Punkt des R*, kann dann a.ls ein ,,Faden“ aufgefaft
werden, der sich durch die Schichten an den Stellen z, bzw. z, ... bzw. z, zieht.

ox=(x7,X2, X3)

——r—————— e @
2) o 1 X
Abb. 1
X

% |¢ —xn-7

2.3. Arithmetische Struktur des R*

Mit den reellen Zahlen, mit den Elementen des R!, kann man rechnen. Das Rechnen
iibertrigt sich in bestimmter Weise auch auf die Elemente des R*. Solch eine Situation
ist fiir » = 2 schon im Zusammenhang mit den komplexen Zahlen aufgetaucht. Die
dort interessierende Addition war die koordinatenweise Addition wihrend die dortige
Multiplikation sehr wohl von der koordinatenweisen Multiplikation verschieden ist.
Die zu erklirenden Operationen hingen ganz von dem verfolgten Zweck ab! In der
linearen Algebra benétigt man in erster Linie eine Addition von Elementen des R*
und eine Multiplikation cines Elementes des R* mit einer reellen Zahl.

Definition 1 (Koordinatenweise Addition und Multiplikation mit einem Skalar

im R?). Es seien «, y € R* mit & = (2, 2, ..., Zu), Y = (Y1, Y1, -, Ya). Ferner sei
& € R. Unter der koordi: Addition im R* versteht man die folgende Ope-

ration:

e+ Y :=(T+ YT+ Yoo Tn + Ya)s
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d. h., die i-ten Koordinaten von & und von y werden jeweils addiert. Unter der
koordinatenweisen Multiplikation mit einem Skalar im R* versteht man die folgende
Operation:

&= (aTy, 6Ty, ..., 6Ty),

+oll

3
>

d. h., die i-te Koordinate von & wird jeweils mit « multiplizi von & - &

schreibt man vielfach auch nur ax.

Bemerkungen.
1. Die koordinatenweise Addition im R” ist also eine Abbildung von R* X R" in den
R*; jedem Paar von reellen n-Tupeln wird wieder ein reelles n-Tupel zugeordnet:

+:R*X R* > R" vermége (x,y) >x +y fiir x,yeR".

2. Die koordinatenweise Multiplikation mit einem Skalar im R" ist also eine Ab-
bildung von R X R* in den R*; jedem Paar aus einer reellen Zahl und ¢inem n-Tupel
reeller Zahlen wird wieder ein reelles n-Tupel zugéordnet :

-:RxR* > R" vermége (x,&) > ax fir a€ R, ®C R".

Einem Sprachgebrauch der Physiker folgend, hat sich in diesem Zusammenhang
anstelle der Sprechweise von der Multiplikation mit einer reellen Zahl die Bezeich-
nung von der Multiplikation mit einem Skalar eingebiirgert.

3. Die beiden genannten Operationen verfolge man zweckmifig unter Benutzung
der Veranschaulichungen des R*. Die Addition wird in der ersten Veranschaulichung
als Addition ,,nach dem Krifteparallelogramm‘ wiedergegeben, im iten Falle
als iibliche ,,Funktionenaddition oder ,,Superposition von Funktionen‘, wie man
auch sagt. Die Multiplikation mit einem Skalar bedeutet im ersten Fall eine radiale
Verschiebung des Punktes, im zweiten Fall eine Verzerrung der Funktion, hinzu
kommt in beiden Fillen bei « < 0 noch eine Spiegelung.

Die soeben betrachteten Operationen der Addition und der Multiplikation mit
einem Skalar geniigen gewissen G Die grundlegenden ,,Rechenregeln** fiir
diese Operationen sind nachfolgend zusa tellt.

&

Satz 1 (Grundeigenschaften der koordinatenweisen Addition und der Multlpll-
kation mit einem Skalar im R*). Die im R* erklirte bindre Operation der koords:
‘weisen Addstion und die Multiplikation mit einem reellen Skalar haben die folgenden
Grundesgenschaften :

L. Fiir die Addition + gilt:

1.z 4y =y + x fir alle @,y € R* (Kommutativitit der Addition).
2.(® +y) + 2z ==2x+ (y + 2) fir alle 2, y, 2 € R* (4ssoziativitdt der Addition).

3. Es gibt ein (eindeutig bestimmies) Element O € R*, so daf & + 0 = x fiir alle
zERlu'(F s of, MME’ '.l N3 ‘A'V 1lel )
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4. Zu jedem x € R" existiert ein (etndeutig bestimmies) Element, bezeichnet mit —,
fiir welches  + (—x) = O ist (Existenz und Einzigkest des Inversen).
II. Fiir die Multiplikation mit einem reellen Skalar gilt:

5.1-x = fiir alle x € R".
8. (x-B)x = a(px) fiir alle x, 8 € R und alle x € R* (Assoziativitit der Mulli-
plikation mit einem Skalar).

II1. Fiir das Z piel der koordinat tsen Addition + mit der Multiplikation
mit einem reellen Skalar gilt:
7. (x + B) ® = ax + Px fiir alle «,f € R und alle & € R* (Distributivitdt der
Multiplikation mit esnem Skalar beziiglich der Addition von Skalaren).

8. a(® +y) =ax + ay fir alle « € R und alle x, ye R* (Distributivitit der
Multiplikation mit esnem Skalar beziiglich der koordi: isen Addition).

Bemerkungen.

1. Die in der Gruppe I zusammengefaBten Rechenregeln fiir die Operation der
koordinatenweisen Addition sind uns schon mehrfach fiir andere Operationen
begegnet. Und zwar gehorcht die Addition im Bereich der ganzen Zahlen, im Bereich
der rationalen Zahlen, im Bereich der reellen Zahlen, im Bereich der komplexen
Zahlen und die Multiplikation im Bereich der von Null verschiedenén rationalen
Zahlen, im Bereich der von Null verschiedenen reellen Zahlen, im Bereich der von
Null verschiedenen komplexen Zahlen formal den gleichen Grundregeln. Hier bietet
sich also im Sinne ciner Denkikonomie eine Heraushebung dieses Umstandes in
Form eines eigenstindigen Begriffes an, zumal wir noch weitere Bereiche kennen-
lernen werden, dic gleichartig strukturiert sind. Es hat sich fiir den einschligigen
Begriff die Bezcichnungsweise abelsche Gruppe eingebiirgert. Eine systematische
Analyse dieses Begriffes erfolgt in der Gruppentheorie (vgl. hierzu Kap. 12).

Wir sagen kurz: Der R* bildet beziiglich der koordinatenweisen Addition eine
Gruppe.

2. Die aufgefiihrten Grundregeln sind natiirlich nicht die einzigen geltenden
Regeln hinsichtlich der Addition und der Multiplikation mit Skalaren im R*. Bei-
spielsweise nennen wir noch folgende:

(i) Zu je zwei Elementen &,y € R™ gibt eseinz € R® mitx + 2z =y.

(ii) Fiir jedes Element x ¢ R" gilt stets 0 - = 0.

Noch viele andere mehr wiiren zu nennen. Aber diese Regeln kann man alle aus
den ausgewihlten Grundregeln ableiten, ohne auf die konkrete Definivion zuriick-
zugreifen, wie koordinatenweise addiert bzw. mit einem Skalar multipliziert w d.
Diese Tatsachen haben sich im Laufe der Mathematikentwicklung herausgestellt ur.d
zu dem sogenannten axiomatischen Verfahren bzw. zum deduktiven Aufbau in de
Mathematik gefithrt. Was dabei jeweils als Grundregel ausgewihlt wird, unterliegu
in einem bestimmten MaBe¢ dem Belieben. Konkrete Angaben hierzu findet man etwa
in der Gruppentheorie.
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3. Nach dem Assoziativgesetz der Addition im R" ist bei drei Summanden die Art
der Klammerung ohne EinfluB auf das Ergebnis, es kann daher eine Klammerung
iiberhaupt unterbleiben, genauso wie das auch schon beim Rechnen mit Zahlen
erfolgte. Entsprechend hierzu hat dann auch eine k-gliedrige Summe im R* einen
wohlbestimmten Sinn:

k
2z, x; € R".
=1

Die binire Operation der koordinatenweisen Addition + im R" ist zu einer k-niren
Operation im R* ausgedehnt worden:

k
2 R*XR*x - X R" > R".
i=1 Ak-mal
4. Anstelle von  + (—y) schreibt man kiirzer £ — y, genauso wie dasauch fiir das
Zahlenrechnen iiblich ist.
Beweis des Satzes.
Zul.1.Essei®,y € R®  mit & = (2,25, ..., %s), ¥ = (Y1, Y2, -+, ¥u)- Es ist
T+Y= (T + YT+ Y2 Ty + Ya)
und
Yy+t&=U+2,%+ 2, ....Y% + )
Infolge der Kommutativitdt der Addition der reellen Zahlen haben wir x; + y;
=y; + «; firalles € {1,2, ..., n}. Also stimmen & + y und y + ® koordinatenweise
iiberein, d. h. aber gerade = + y=y+ea
Die anderen Eigenschaften werden ganz analog bewiesen. Wir vermerken lediglich
noch folgendes:
Zul. 3. Esist 0 = (0,0,...,0) — das n-Tupel reeller Zahlen, wo jede Koordinate
0 ist.
Zul 4. Esist —& = (—x,, —%;, ..., —%,), sofern & = (z,, 2,, ..., ,) ist.

2.4.  Ubungsaufgaben

1. Es bezeichne & die Menge aller reellen Polynome. Eu handelt sich also um die folgende Menge :
@ := {P: P:R — R mit einer Darstellung P(z) = 2 a.z! fiir ein gewisses n ¢ N und gewisse

a; €R}.
In & betrachte man die @ibliche Addition und Multlphhtlon mit reellen Skalaren:
+:PXP>P (P+Q@:=P)+Qa), PQe2;

“tRx2->2 («P) (z) : = «P(z), aecR, Ped.
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L

Lod

>

Man priife, welche der im Satz iiber die Grundei haften der ) di isen Addition
und der Multiplikation mit einem reellen Skalarim R" ten Rechengesetze fiir den Bereich
 hinsichtlich der zu betracht Operati gemn

Entsprechend zur Aufga.be l iuhre man eme unaloge Uborprufung fir die iolgenden Teilmengen
von £ durch, wo jed Op 8 t sind :

8) Py, :={P:PeP,P(z) = Z az mit n < mg, ny € N fixiert} . (P,, ist die Menge der reellen

=0
Polynome vom Grade hécha.tana 7y.)
b) 2\ 2,,.
¢) PN\ UPy, (ny + k), k fixiert.

Fiir den Bereich Q der rationalen Zahlen seien
@:AXQA->QAmitr@s:=(—r) 4 (—95),7,8¢Q
(rechts die @iblichen Operationen in Q);
O:RXQ->Qnmita®r:=0,a¢cR,rcQ.

Man iiberpriife wieder analog zur Aufgabe 1 fiir die beiden soeben erklirten Operationen, welche
der Grundregeln giiltig sind.

Aus den Grundregeln der Addition und Multiplikation im R® leite man die Galtiglkeit der folgen-
den Gleichungen ab:

folgend ionen betrachtet:
gende Op

—(-z) ==,
(—a)@® = —ax fir a ¢R und x ¢R",
& -0 =0 fir « ¢ R und das Nullelement 0 aus R".
Weiterhin zeige man ebenso, lediglich unter Benutzung der Grundregeln, die Giltigkeit der
Gleichungen
(x — p)® = ax — px fir . f R und x ¢R",
a(® —y) = ax — oy fir a ¢R und x,y <R*.
(Bei Benutzung der Erklirung der Operationen im R* als koordinat i Addition und Mnl',i-
plikation mit einem Skalar werden die b Gleich i

Es kommt aber in dieser Aufgabe darauf nn,edaa man an Hand der Herleitung aus den Grund-
regeln wirklich deren grundlegende Rolle mehr und mehr erkennt.)




3. Linearformen auf dem n-dimensionalen. reellen
Zahlenraum

31.  Ein einfiihrendes Beispiel. Erklirung der reellen Linearformen
" in n Variablen ’

Es seien a,, ay, ..., a, gegebene reelle Zahlen, wobei etwa die GroBe a; den durch die
i-te Abteilung eines Betriebes erreichten Gewinn pro erzeugter Einheit angibt. Der
Gesamtgewinn des Betriebes hiingt natiirlich von der von jeder Abteilung erzeugten
Menge ab, er berechnet sich als
%) + agT; + - + Guy,
sofern z; die von der i-ten Abteilung erzeugte Menge in Produktionseinheiten angibt.
) »
Jedes Produktionsergebnis (z,, 2,, ..., ,) ergibt einen Gewinn von }; a;;.
=1
Die Art der funktionalen Abhingigkeit ist hierbei, wie man sagt, durch einen
reellen linearen Ausdruck in n reellen Variablen z,, z,, ..., x, bestimmt.

Definition 1 (Reelle Linearformen in n Variablen). Unter einer reellen Linear-
form in n reellen Variablen z,, z,, ..., x, versteht man eine reelle Funktion auf dem R*,

f:R"—>R,
mit dem folgenden Verlauf:
f@1, 23y ooy @) = alél + @y, + oo + ayz,
bei fest vorgegebenen reelleh Zahlena; € R, i = 1,2, ..., n, mit (2, 2y, ..., 2,) € R™.

Die gegebenen reellen Zahlen ay, ..., a, heiBen die Koeffizienten der Linearform.
Es ist fiir f auch die Bezeichnung lineares Funktional auf dem R* iiblich.

Bemerkungen.

1. In der angefiihrten Definition ist hinsichtlich der Koeffizienten der betrachteten
reellen Linearform keine Forderung beziiglich Positivitit gemacht, wie das etwa in
dem obigen Beispiel naturgemif auftritt.

2. Im obigen Beispiel handelt es sich genauer gesagt also um eine reelle Linearform
mit positiven Koeffizienten und einem eingeschrinkten Definitionsbereich, in dem
niamlich nur solche (z,, 2,, ..., z,) betrachtet werden, fiir diez; 20,1 =1,2,...,n,
gilt.
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3.2.  Abstrakte Beschreibung und Veranschaulichung der reellen
Linearformen

Die reellen Linearformen auf dem R* kénnen als Funktionen durch ihr Verhalten
gegeniiber der arithmetischen Struktur des R" leicht wie folgt beschrieben werden.

Satz 1 (Reelle Linearformen als lineare Abbildungen). Es sei f: R* — R eine reelle
Funktion auf dem R*. Dann gilt: | ist eine reelle Linearform, d. h., es gibt endlich viele
reelle Zahlen a,, a,, ..., a, mit

f(®1 22y ooy T4) ='ﬁ1aiZi (%)

fiir alle (z,, ..., z,) € R* & f ist eine lineare Abbildung von R* in R, d. h., { hat beziiglich
der koordinatenweisen Addition im R* und der Mulliplikation mit reellen Skalaren die
folgenden Eigenschaften: :

1. f(® + y) = f(®) + [(y) fiir alle 2,y € R" (Additivitit der Funktion f).

2. f(a@) = af(x) fiir alle « € R und & € R* (Homogenitiit der Funktion f).

Bemerkung. Die Eigenschaften 1 und 2, die Additivitit und die Homogenitit

von f, kann man natiirlich zu einer einzigen Eigenschaft (Linearitét von f) zusammen-
ziehen:

Hox + By) = of(@) + Bf(y)
fiir alle «, 8 € R und alle &, y € R*. Per Induktion folgt dann auch

k [}
(25) = Z st
i=1 i=1
bei «; € R fiir beliebiges k¥ € N.

Beweis des Satzes. Der Aussagenteil ,,=“ ist nach Erklirung der arithme-
tischen Struktur des R* klar.

Zu ,,&": Es sind Zahlen a; € R zu finden, so daB { eine Darstellung () hat. Bei
einer gegebenen Linearform f haben die a; folgende Bedeutung:

a; = f(e) mit e =(0,...,1,...,0),

wobei in dem n-Tupel ¢; lediglich an der i-ten Stelle eine 1 steht und sonst lauter
Nullen vorkommen. Man wird also auch bei einer gegebenen linearen Ahbildung f
den Ausdruck

f@) = Sferz  wmit @ = (@55
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zu bestitigen puchen. Das gilt auch wirklich wegen der méglichen Darstellung

»
=) ze; mit e =(0,...,1,...,0).
i=1 i-te Btelle

Damit ist der Satz bewiesen.

Fiir die Fille n = 1 und n = 2 lassen sich die Linearformen auf dem R* durch ihre
Funktionsgraphen gut veranschaulichen, wenn man dabei fiir den R! X R* bzw.
R* X R! die euklidische Veranschaulichung wihlt (vgl. die erste Art der Veranschau-
lichung des R® in 2.2.).

Die Linearformen auf dem R1 entsprechen genau den simtlichen Ursprungs-
den im R?, men diej , die senkrecht zur Grundgeraden steht. Dic

imea.rformen auf dem R? entsprechen gemu den sémtlich im R3,

Unspn

-

(xy . Xp) =00y Xy + 0y X

L=y X
xp=(x2,x5)
Flx)=o;x

;o

diejenigen, die senkrecht zur Grundebene stehen. Abbildung 3
zelgt Funkt:onsgmphen der Linearformen auf dem Rt und dem R1. (Unter Heran-
ziehung von Schulkenntnissen mache man sich die geometrische Bedeutung der
Koeffizienten der Linearformen f(z) = az bzw. f(z,, ;) = a,%; + a7, klar.)

Fragt man nach einer Veranschaulichung der Linearformen auf dem R® unter
Benutzung der faserweisen Veranschaulichung, so wird man auf folgendes gefiihrt.
Die Linearformen des R* entsprechen genau den simtlichen Punkten des R*, und
zwar die Linearform f(2) = &,z, + -+ + x,%, genau dem Punkt (a,, & ..., &p).
Eine Linearform auf dem R* ist eindeutig durch das geordnete n-'l‘upel 1hrer Ko-
effizienten bestimmt. Mit den Punkten des R* konnen arithmeti Op
ausgefithrt werden. Vermége der angegeb Entsprechung zwischen den Linear-
formen und Punkten des R® kann man also in natiirlicher Weise auch fiir die Linear-
formen arithmetische Operationen erkliiren, was jetzt niiher erértert werden soll.

Abb. 3
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3.3.  Arithmetische Struktur im Bereich der Linearformen des R*

Es bezeichne #(R") die Menge aller reellen Linearformen auf dem R*. Die erwiihnte
Zuordnung zwischen den Punkten des R* und den Linearformen auf dem R* stellt
eine eineindeutige surjektive Abbildung #: R* — #(R") dar. Der Verlauf von & ist
dabei bestimmt durch

Py):=f mit f@) =y + v+ o+ v

fiir alle € = (z,, 7, ..., ,). Mittels dieser Abbildung @ kommt eine Ubertragung
der arithmetischen Struktur des R* in die Menge aller Linearformen auf dem R*
zustande, namlich

D(y) + P(2) : = Py + 2),
ad(y) : = P(ay).

Nun ist aber noch auf eine formal andere Weise eine Addition und eine Multi-
plikation mit reellen Skalaren fiir die Linearformen erklirt, und zwar die punktweise
Addition (Superposition) der Linearformen und die punktweise Multiplikation mit
einem reellen Skalar, denn es handelt sich ja bei den Linearformen um Abbildungen
vom R* in R.

Definition 1 (Punktweise Addition (Superposition) von reellen Funktionen und
punktweise Multiplikation mit Skalaren). Es sei X eine beliebige nichtleere Menge,
f und g seien zwei beliebige reelle Funktionen auf X :

}: X >R, g: X —>R.

Unter der punktweisen Summe der Funktionen f und g versteht man diejenige Funk-
tion h: X — R, die den folgenden Verlauf hat:

h(z) = f(z) + g(x) fiiralle z¢€ X.

Man schreibt iiblicherweise fiir diese Summe f + g.
Unter dem punktweisen Produkt der Funktion f: X — R mit einem reellen Skalar
« € R versteht man diejenige Funktion k: X — R, die den folgenden Verlauf hat:

h(z) = af(z) fiiralle z€ X.
Man schreibt iiblicherweise fiir dieses Produkt of.
Bemerkung. Diese punktweise vollzogenen Operationen fiir reelle Funktionen
sind uns schon in dem Spezialfall der koordinatenweisen Addition und Multiplikation
mit Skalaren im R* begegnet, wenn man die Elemente von R* als Funktionen @ :

{1,2,...,n} =R auffaBt. Hinsichtlich der vorhin erklirten Operationen fiir
reelle Linearformen haben wir den folgenden
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Satz 2 (Punktweise Operationen fiir Linearformen, widergespiegelt an ihren
Koeffiziententupeln). In der Menge £ (R*) aller reellen Linearformen auf dem R®
timmit die punkiweise Addition von Linearformen mit der Addition iiberein, die aus der
Addition der Koeffiziententupel hervorgeht. Ebenso stimmt die punkiweise Multiplikation
einer Linearform mit einem Skalar mit der Multiplikation iiberein, die aus der ent-
sprechenden Multiplikation des Koeffiziententupels mit dem Skalar hcroorgelu
In Diagrammform: f, g € £L(R"), y, z ihre entsprechenden Koeffizi

P

g [ + g (punkiweise) | ——— of (punktweise)

Yy, &6 —— y + 2 (koordinatenw.) y! * oy (koordinatenw.)

Beweis. Es sei y = (,, ¥z, ..+, ¥s) und 2 = (2, 23, ..., 2,). Dann gilt fiir jedes
X = (2, %3, ..., Z,) aus dem R*

f@) = Z yizi, g(®) = Z 2%;.

Die durch die koordinatenweise Addition der Koeffiziententupel hervorgehende
Linearform ist

M) = 5 i+ =)

Die durch die punktweise Addition hervorgehende Linearform ist f + g mit
(40 @ = 1) + @) = 5 v + 5 2

Durch eine andere Anordnung ergibt sich
(+0 @ =2 i+ 2z

Also gilt, wie behauptet,k = f + g. Entsprechendes erhilt man fiir die Multiplikation
mit einem Skalar.

Unter Verweis auf den im Band 1 der Reihe MfL erwiihnten Isomorphiebegriff
konnen wir sagen, daB die Abbildung @ einen Isomorphismus zwischen der arith-
metischen Struktur des R* beziiglich der koordinatenweisen Operationen und der
arithmetischen Struktur von £ (R") beziiglich der punktweisen Operationen darstellt.

Bemerkung. Inshesondere geht aus dem letzten Satz hervor, da8 die punktweise
Addition und die punktweise Multiplikation mit einem Skalar in #(R") den gleichen
Gesetzen geniigen wie die entsprechenden koordinat isen Operationen im R*.
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3.4.  Lineare Gleichungssysteme und Linearformen. Lineare "I'ellbriume

Linearformen auf dem R* treten uns in 1 Gleich t mit » Un-
bekannten entgegen. Es seien uns etwa m(m € N) Lmeatformen fi, Jas -+ s fm mit den
Koeffiziententupeln

(811, Bray -5 Bun)y  (B21, Bazy oov; B2p), o ovs (Bm1s Bmas oo s Bun)
gegeben. AuBerdem seien m reelle Zahlen b,, b, ..., b, vorgeschrieben. Wir suchen
alle Elemente & € R* zu ermitteln, die den folgenden Beziehungen geniigen:

@) =by,

fa(®) = by,

fu(c) = bm*
Ausfiihrlich geschneben heiBt das aber, daB man alle n-Tupel (%, T3y «e0, T,) €F-
mitteln soll, die dem folgend Gleich :

(- Rt ) )
anTy + Gy + o0 + G2 = by,

ATy + Gy + oo+ + BgaZy = by,

G %) + CaZy + o0 T+ ApaZy = bm’

Zuniichst verschaffen wir uns eine allgemeine Einsicht in die Struktur der Losungs-
gesamtheit, um dann spiter ein Verfahren zur konkreten Besti g der Lo
gesamtheit anzugeben.

Wir beginnen mit dem einfachsten Fall einer einzigen Gleichung, d.h. einer
einzigen Linearform, wobei auBerdem die gegebene rechte Seite b, den speziellen
Wert O hat.

Definition 1 (Kern bzw. Nullraum einer Linearform). Es sei { eine reelle Linear-
form auf dem R*. Unter dem Kern bzw. dem Nullraum dieser Linearform versteht
man die L theit der Gleich

=) =
Hiermit ist also die folgende Menge gemeint :
[@: xR, f@@) =0}.
Man schreibt
’ kerf={x:zcR", f@@) =0).
Wir illustrieren die Kerne von Linearformen an ejnigen Beispielen.

1. f € £(R!) sei eine reelle Linearform auf dem R!. Dann gilt:
a) Die Linearform f ist identisch Null (die Nullform) <> ker f = R%.
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b) Die Linearform f ist nicht ausgeartet (d. h. von der Nullform verschieden)
s kerf = {0}.

2. f € Z(R?) sei eine reelle Linearform auf dem R%. Dann gilt:

a) Die Linearform ist ausgeartet (die Nullform) < ker f = R®.

b) Die Linearform ist nicht ausgeartet < ker f besteht aus allen Punkten einer
Ursprungsgeraden im R*.
Die letzte Behauptung mache man sich mittels der euklidischen Veranschaulichung
von Linearformen geometrisch klar.

Nun kliren wir die Struktur der Kerne von Linearformen allgemein.

Satz 1 (Lineare Struktur des Kerns einer Linearform auf dem R*). Es sei f eine
Linearform auf dem R*. Dann hat der Kern dieser Linearform die folgenden Linearitiits-
eigenschaften : '

l.z,yeckerf=>& + yc€kerf.
2.x€kerf, a € R=>axckerf.

Beweis. Eine Linearform ist eine lineare Abbildung von R* in R. Also gilt bei
&,y € ker f stets f(x) =0 und f(y) = 0. Fiir beliebige reelle Zahlen «,f € R ist
deshalb

0 = af(x) + Bf(y) = flax + py),

d. h., a + Py € ker f.
Bemerkung. Wie schon beim Beweis geschehen, kann man beide Eigenschaften 1
und 2 zu der gleichwertigen Eigenschaft
x,yckerf und «,f€R=>ax+ fyckerf

zusammenfassen.
Teilmengen des R* mit der genannten Linearitiitseigenschaft spielen im weiteren
eine betrichtliche Rolle. Sie werden deshalb herausgehoben.

Definition 2 (Lineare Teilriume des R*). Eine nichtleere Teilmenge L des R* heifit
ein linearer Teilraum des R", wenn L die folgenden Linearitiitseigenschaften hat:
Le,yceL=>x+yelL.
2.2c¢L, s€R=>axcL.

Wir konnen den letzten Satz in Kurzform wie folgt formulieren:

Der Kern einer Linearform auf dem R* ist ein linearer Teilraum des R™.

Unter Berufung auf Schulkenntnisse mache man sich klar, daB beispielsweise bei
euklidischer Veranschaulichung des R® seine simtlichen linearen Teilriitime folgendes
geometrisches Aussehen haben:

1. Die einpunktige Menge {0},
2. die Ursprungsgeraden,
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3. die Ursprungsebenen,
4. der R3.

Es sei bemerkt, daB nicht alle linearen Teilriume des R® als Kerne von Linear-
formen auftreten kénnen. Wir wollen im spiteren Verlauf entscheiden, welche
linearen Teilriume gemde als Kerne von Linearformen in Frage kommen. Betrachtet
man anstelle einer einzigen Linearform f auf dem R® eine Schar vonmStuck fisfa -

h

fm € £(R*) und fragt man nach der Losungsgesamtheit des Gleichungssy
@) =0,
f:(®) =0,

fn(@) =0,

so sieht man, daB die Ldsungsg theit gerade gleich dem Durchschnitt aller
Kerne ist:

L]
(®:x € R* mit f(®) =0 firalle ¢+ =1,2,...,m) = kerf;.
im1
Diese Gesamtheit ist wieder ein linearer Teilraum des R*. Allgemein bestiitigt man
leicht den folgenden Satz:

Satz 2 (Durchschnitt von linearen Teilriumen). Es sei (L;);e; eine beliebige
Familie von linearen Teilrdumen des R*. Dann ist der Durchschnitt N L; wieder ein
linearer Teilraum des R". iel

Beweis. Es sei L: = r\ L;. Man muB zweierlei zeigen: 1. L+ 0, 2. ®,y€ L;

x,fERD ax + pyc L.
Zu 1. geniigt der Hinweis 0 € L firalleie I.

Mit dem Durchschnittssatz gelangen wir zu dem wichtigen Begriff der lincaren
Hiille einer Teilmenge des R™.

Definition 3 (Von einer Teilmenge erzeugter linearer Teilraum, lineare Hiille).
Es sei U eine beliebige Teilmenge des R*. Unter dem von dieser Teilmenge erzeugten
linearen Teilraum L(U) veérsteht man den kleinsten linearen Teilraum des R*, der
U enthilt, d. h., es wird definiert:

LUy :=NL (L linearer Teilraum des R* mit L 2U).

Beziiglich der Inklusion ist L(U) wirklich der kleinste lineare Teilraum, der U um-
faBt. Man sagt auch, daB der lineare Teilraum L(U) von der Menge U aufgespannt
wird oder daB L(U) die lineare Hiille der Menge U ist.
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Man verdeutliche sich diesen Begriff etwa wieder durch einige geometrisch-
anschauliche Uberlegungen an der euklidischen Veranschaulichung des R®. Man
findet:

1. LU) =10} & U = (0) oder U = Q.

2. Es sei U = (&} mit &4 & 0. Dann besteht L(U) aus allen Punkten der Ur-
sprungsgeraden, die durch &, geht.

3. Essei U = (&,, &,}, wobei &,, &; zwei Punkte des RS sind, die auf keiner gemein-
samen Ursprungsgeraden liegen. Dann besteht L(U) aus allen Punkten der Ursprungs-
ebene, die durch @, und &, geht.

4. Es sei U = (@, @, &3), wobei &,, &,, ®; Punkte des R? sind, die auf keiner
gemeinsamen Ursprungsebene liegen. Dann besteht L(U) gerade aus dem ganzen R®.

Man wird so zu der Vorstellung gefiihrt, daB die linearen Teilriume des R™ sich
immer schon aus endlichen Teilmengen aufspannen lassen. Die genaue Situation
wird i lm nm.hsten Abschnitt erértert. Zuvor vermerken wir noch als Gegenstiick zur

8 K ichnung der linearen Hiille eine innere Kennzeichnung

von L(ll).

Definition 4 (Endliche Linearkombination von Elementen des R"). Es seien
&,,&;,...,%; endlich viele beliebige Elemente aus R". Diese brauchen nicht not-
wendig verschieden zu sein. Man sagt, daB ein Element & € R* eine (endliche) Linear-
kombination dieser endlich vielen Elemente ist, wenn es gewisse reelle Zahlen «,,
&g, +. = o gibt mit der Darstellung

k
x =) «ix;.
i=1

e s

& heiBt auch linear & bar aus den gegeb El ten &,, Ty, ..., V.

f nnten li

Satz 3-(Innere Beschreibung des von einer Teil ng
Teilraumes). Es sei U eine Teilmenge des R®, wobei d 1 U ;é 0 vorausgesetzt
werde. Dann gilt: Der von U au[gespannte lineare Teilraum L(U) des R" besteht gerade

aus allen endlichen Lineark 1 von El ten aus U:
L(U) = [x: ® € R*, @ Lipt sich aus endlick vielen Elementen von U linear kombinieren).

Beweis. Es sei K die Menge aller endlichen Linearkombinationen mittels Ele-
menten aus U. Es ist US K, man verweist einfach anf die Darstellung = 1 - .
K ist auch als linearer Teilraum von R* zu erkennen:

k {
3,y6K=>3=‘2_,;0‘53h !I='2:1ﬂ1!h
= 1=
mit gewissen &y, ..., &, € U und y,, ..., ¥, € U und gewissen ; und §;. Also ist
k !
T+y= L‘la.-za + _Zlﬂ;y,,
i= =
dha+yek.
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Folglich muB K 2 L(U) sein. Andererseits enthilt aber jeder lineare Teilraum von
R*, der U umfaBt, auch jede endliche Li kombination von El ten aus U.
Also haben wir auch K & L(U) und damit K = L(U).

35.  Ubungsaufgaben

. Die Menge 2 aller reellen Polynome werde mit der punktweisen Addition und Multiplikation
mit reellen Skalaren ausgestattet (vgl. 2.4., Aufgabe 1).
Welche der beiden folgenden reellen Abbild 1:2—R und g: 2 —R ist ein lineares
Funktional auf 2, hat also die Eigenschaft der Homogemht und Additivitit:

N

/: 2 —>Rmit f(P) = ): a,, sofern P(z) = Ea,-:‘,
i=0 i=0

g: @ — R mit g(P) = P(z,), z, eine beliebige fixierte reelle Zahl?
. Die Menge
M:={xy):zyeR 2+ @y—102=1,y+2

(die Kreislinie, aus der der Nordpol herausgestochen ist) soll mit einer gewissen ,,Addition*
und einer ,,Multiplikation mit reellen Skalaren‘‘ derart ausgestattet werden, da man damit
eine gewisse Veranschaulichung fiir den Raum der Linearformen auf dem R! erhiilt. Wie hat
das zu geschehen?

3. Man betrachte eine nicht tete Linearform [ auf dem R?, ihr Koeffiziententupel sei
(a,. a;). Man versuche, eine geometrlnche Lagebeziehung zwischen dem Kern der Linearform
(als Gerade in der euklidisch lichung des R? aufgefaBt) und der Ursprungsgeraden
durch den Punkt (a,, a,) hernunzuf inden.

4. Die Vereinig von zwei | Teilrdumen des R® ist nicht notwendig wieder ein linearer
Teilraum des R® (Beuplele')

Welche geg miissen zwei lineare Teilriume (sogar eine beliebige

Familie linearer Tellrnume) des R# erfullen, damit die Vereinigung cin linearer Teilraum wird?
LiiBt sich das Element (1, 1, 1) des R*linear aus den Elementen (1, —1, 0), (2, 3, 1) kombinieren?
. Im R™ sejen die Elemente x,. Z,, ..., &, vorgegeben. Welches rechnerische Anhegen hat man bei
der Frage zu bewiltigen. ob &, zu dem von den El Xy .. Ty
Teilraum L({x,, x,, .... 2,}) gehort?

Welche Inklusionsbeziehungen gelten zwischen L(U',) n L(T',) und L(L n U,) bzw. L(U,uUy,)
und L(U,) v L(U,)?

Kann der lincare Teilraum L({x}). & ¢ R® der alxo von dem einzigen Element & aufgespannt
wird, Kern einer Linearform auf dem R® sein?

@

BCSp

bl

»
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41.  Erklirung der linear unabhingigen Teilmengen des R*

In ittelb Fort ng zu den letzt Ausfﬁhi-ungen versteht sich die folgende

Definition 1 (Lineare Abhingigkeit eines El von einer Teilmenge des
R*). Es sei € R* und U S R*. Das Element & heiBt von der Teilmenge U linear
abhingig genau dann, wenn & € L(U) gilt.

Lineare Abhiingigkeit des Elementes @ von U bedeutet also im Fall U 3= @, daB
sich & aus U linear kombinieren: i 8t.

Definition 2 (Lineare Unabhingigkeit von Elementen des R*). Es sei U eine
nichtleere Teilmenge des R*. Diese heiBt linear unabhingige Teilmenge bzw. die
Elemente von U heiBen linear unabhingig genau dann, wenn kein Element von U
von den iibrigen linear abhiingt, d. h., wenn stets & ¢ L(U\ (&) fiir € U gilt.

Ist die Menge U nicht linear unabhingig, so nennt man diese Menge bzw. ihre
Elemente linear abhiingig. Es muB dann also wenigstens ein & € U geben, das von
den iibrigen linear abhingig ist.

Bemerkungen.

1. Das Nullelement des R ist von jeder beliebigen Teilmenge linear abhingig,
denn es ist stets 0 € L(U).

2. Es sei U eine einpunktige Teilmenge des R*, U = (). Dann gilt: U linear un-
abhiingig & @ + 0.

3. Es sei U eine Teilmenge des R!, dann gilt: U ist linear unabhiingig < U besteht
aus genau einem Element &, und dieses ist ungleich 0.

4. Es sei U eine mehrpunktige Teilmenge des R®. Die Menge U ist linear unab-
hingig <> U besteht aus genau zwei Punkten, und diese liegen nicht auf einer gemein-
samen Ursprungsgeraden.

Entsprechendes mache man sich an der euklidischen Veranschaulichung des R® klar.

Nun leiten wir ein wichtiges Kriterium fiir die lineare Abhiingigkeit von endlich
vielen Elementen aus dem R*® ab.
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Satz 1 (Kennzeichnung der linearen Abhingigkeit bzw. Unabhingigkeit bei end-
lich vielen Elementen). Es sei [&x,,&,,...,&,] eine beliebige endliche (r-elementige)
nichtleere Teilmenge des R". Dann gilt:

1. Die gegebenen Elcmente &, &y, ..., &, (r 2 1) sind linear abhingig <& Es gibt r
reelle Zahlen «,, &y, ..., «,, die nicht sémilich gleich Null sind, so dap eine Darstellung
&y + a®y + - + &,&, = 0 moglich ist.

2. Die gegebenen Elemente &, 2,,...,%, (r = 1) sind linear unabhingig < Aus
einer Darstellung o,®, + a;®; + -+ + a2, = 0 folgt stets &y = a3 = -+ =a, =0.

Beweis. Zu 1. Es sei [®,, &, ..., &,) cine linear abhiingige Menge. Dann sei o. B.
d. A.

&, € L(|®y, Xy, ..., &) \ [@y))

angenommen, d. h., es gibt reelle Zahlen ay, ay, ..., «, mit @, = Z a@;. Dann hat
man i=2

r
— 3oz =0,
=g

wobei der Koeffizient bei @, ungleich 0 ist.
Wenn es umgekehrt eine Darstellung o,®, + a,®; + --- + &,&, = 0 gibt, wobei
nicht alle «,, a3, ..., &, gleich Null sind, so ist etwa «, 3= 0. Wir haben dann

&= E Tl..
1

d.h.x € L{lzy, &y, ..., 2} \ (@)
Zu 2. Die lineare Unabhiingigkeit einer nichtleeren Menge ist das Gegenteil der
linearen Abhiingigkeit. Also folgt alles aus 1.

Bemerkungen.

1. Folgende Sprechweisen fiir die nach dem Aquivalenzpfeil im Punkt 1 und Punkt 2
des Satzes aufgetretenen Situationen sind bequem.

a) Das Nullelement aus R* liBt sich nichitrivial linear kombinieren aus den Ele-
menten &y, &;, ..., T,.

b) Das Nullelement des R* 1aBt sich nur trivial linear k
&y, By ooey Ty

hins, "

en aus den EI

2 (Lineare Abhiingigkeit von Elementefamilien des R*). Die lineare Abhiingigkeit
einer Menge von r Elementen aus dem R* 1aBt sich sinngemiB auf eine Familie von
r El ten des R* ausdeh Die Elementefamilie (2;);_,,2,..,, des R* heiBt linear
abhingig genau dann, wenn sich das Nullelement des R" durch eine gewisse Familie
nicht simtlich verschwindender reeller Zahlen «,, as, ..., a, (d. h., wenigstens eines
der «; ist von Null verschieden) in der Form «,&, + «,&; + -+ + x,&, = 0 dar-
stellen 1aBt.
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Eine Familie @®,, &,, ..., &, von Elementen des R”* (jetzt brauchen also nicht mehr
je zwei voneinander verschieden zu sein) ist also gewiB linear abhiingig, wenn in ihr
zwei gleiche Elemente vorkommen.

Eine Familie von Elementen des R* heiBt linear unabhingig genau dann, wenn sie
nicht linear abhiingig ist. Notwendig fiir die lineare Unabhingigkeit der Familie
®,, &y, ..., T, ist die paarweise Verschiedenheit der El t

Der Begriff der linearen Abhingigkeit von Elementefamilien ist z. B. bei linearen
Gleichungssystemen bzw. bei den Zeilen einer Matrix bequem.

3 (Lineare Unabhingigkeit bzw. Abhiingigkeit im Bereich der Linearformen).
Im Bereich #(R*) der Linearformen auf dem R* herrscht die gleiche arithmetische
Struktur wie im R”. Es ist daher in gleicher Weise die lineare Unabhiingigkeit bzw.
Abhiingigkeit erklirt. Dieser Umstand wird uns spiiter bei den linearen Gleichungs-
systemen niitzlich sein.

4.2 Basen und Dimension von linearen Teilriumen des R*

Wenn man den von einer Menge U S R* aufgespannten linearen Teilraum L(U)
betrachtet, konnte man also im Fall der linearen Abhingigkeit der Menge U
sicher ein gewisses Element & ¢ U finden mit

L) = LU\ ().

Die den linearen Teilraum L = L(U) aufspannende Menge U, oder anders gesagt,
das Erzeugersystem U von L, hiitte man um ein Element reduziert. Wie weit kann
man diesen ReduktionsprozeB treiben? Uns wire an einer moglichst weitgehenden
Reduktion gelegen, da dann die Erzeugung von L an Ubersichtlichkeit gewinnt. Umn
solch eine Ubersichtlichkeit geht es uns allein schon wegen einer bequemen Be-
schreibung der Struktur von Losungsgesamtheiten linearer Gleichungssysteme.

Definition 1 (Basis eines linearen Teilraumes des R*). Es sei L ein linearer Teil-
raum des R*, dieser sei vom Nullraum verschieden, d. h. L = {0}. Eine Teilmenge
B S R* heiBt eine Basis fiir L genau dann, wenn gilt:

1. 8B spannt L auf, d. h. L = L(%B).

2. Keine echte Teilmenge von B spannt den gegeb linearen Teilraum auf.
Das pflegt man knapp so auszudriicken:

Eine Basis von L ist ein I

d tem von L.

¢} J

Satz 1 (Kennzeichnung der Basen durch lineare Unabhiingigkeit). Es sei L ein
vom Nullraum verschiedener linearer Teilraum des R* und B S R*. Dann sind folgende
Aussagen paarweise dquivalent:

1. 9B ist eine Basis von L.

2. B spannt L auf, und B ist eine linear unabhingige Menge.

7,
or
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3. B it esne linear unabhingige Teilmenge von L, und keine echte Obermenge von B,
die zu L gehort, ist linear unabhingig. '

Bemerkung. Man kann dann also der obigen knappen Formulierung fiir eine
Basis noch hinzufiigen: Eine Basis von L ist ein linear unabhingiges Erzeugenden-
system von L, sie ist ein maximales linear unabhéngiges System in L.

Beweis des Satzes. Es ist zu zeigen 1. & 2., 2. & 3., 1. & 3. Diese sechs Teil-
aussagen kann man sich im Beweis abkiirzen, indem man zyklisch beweist: 1.= 2.
=231

Zu 1.=> 2.: Es sei also B eine Basis von L. Dann ist L = L(%8). Es muB die lineare

Unabhiingigkeit von B gezeigt werden. Angenommen, B ist linear abhiingig. Dann
gibt es ein &, € B mit &, € L(B \ {x,)). Also wire L(B) = L(B \ (x,]). Also
konnte B entgegen der Vora g nicht minimal sein.

Zu2.= 3.: Essei B < L eine echte Obermenge von 8. Wir wihlen ein & € B\ B.
Wir haben wegen 8 € 8 \ (x} = B < L die Beziehung L = L(® \ {x}). Also ist
X € L(ﬁ \ {®}), d. h., B ist linear abhingig.

Zu 3.=> 1.: Zunichst erzeugt B ganz L. Denn wiire L(B) — L, so wire B u (x}
fiir jedes & € L \ L() linear unabhingig, was nach Voraussetzung von 3. nicht
zutrifft. Konnte man L durch eine echte Teilmenge U < B er , 80 ist fiir jedes
2€B\U

@€ L(U) = LB\ jz}) = L(®) = L.

x € L(B \ {x)) wiirde aber entgegen der Voraussetzung besagen, daB B linear
abhiingig wiire.

Mit der folgenden Definition verweisen wir auf ein wichtiges Beispiel fiir Basen. -

Definition 2 (Natiirliche Basis im R*). Unter der natiirlichen Basis des reellen
n-dimensionalen Zahlenraumes R" versteht man die folgende Basis B: e,, e,, ..., €,;
wobei

€ =(0,...,1,...,0)
i-te Stello
dasjenige n-Tupel reeller Zahlen ist, das genau an der i-ten Stelle eine 1 aufweist
und sonst lauter Nullen.

Bemerkung. Diese Definition bedarf natiirlich einer Rechtfertigung, d. h., man

muB sich von der Basiseigenschaft des Systens ey, e,, ..., e, iiberzeugen. Offenbar
spannen diese n Elemente den R* auf, denn es gilt fiir jedes & = (2, 75, ..., 2,)
Ld
& =) ze;.
i=1

Zum anderen sind sie auch linear unabhiingig, denn aus

»
E o€ = (1}

folgt (xy, xg, ..., x3) =0, also &; = O fiiralles =1,2,...,7.
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Es gibt natiirlich auch andere Basen als die soeben angegebene. Das macht man
sich leicht am R!, R? und R? klar. Spitere Ausfiihrungen zeigen das noch zur Geniige.
Von grundlegender Bedeutung ist nun fdlgender Sachverhalt.

Satz 2 (Gleichmichtigkeit der Basen eines linearen Teilraumes des R*). Es sei L
ein vom Nullraum verschiedener linearer Teilraum des R*. Dann hat L eine endliche
Basis und es bestehen alle Basen von L aus ein und derselben Anzahl von Elementen:

9B,, B, Basen von L= |B,| = |B,].

Beweis. Wir setzen zunidchst voraus, es sei schon bswiesen, daB L wenigstens
eine endliche Basis B: b,, b,, ..., b, besitzt. Es.sei nun B eine weitere Basis von L.
Wir zeigen folgende Austauschméglichkeit.

1.Schritt: Es gibt ein Element x, ¢ 8, so daB B, : = (B \(2,}) u (b)) eine
Basis von L ist. N

2.Schritt: Es gibt ein Element x, ¢ 8\ [#,}, so daB B, : = (B \ (z,, 2,))
u {by, b,) einc Basis von L ist.

Induktiv fortfahrend gelang man so zum ahschlieBenden Schritt.

m-ter, Schritt: Es gibt ein Element x, ¢ B\ (2, &, ..., Zp-y), 50 dab %,

=@\ (@, 2, ..., Tp)) U (by, by, ..., b,) eine Basis von L ist.

Dieses Verfahren ist als Steinitzsches Austauschverfahren hekannt. Nach AbschluB
des Verfahrens hat man mit i\,, 2 B eine Basis gefunden, dic ¥ umfaBt. Wegen der
Maximalitit des linear unabhingigen Systems 8 muB 9B, = B sein, d. h., es war
8= (@, &y, ..., X,) eine Menge aus ebenfalls m Elementen.

Wir begrundcn den ersten Schritt des Austauschverfahrens. Wegen b, € L(B)
188t sich b, lincar aus B kombinieren. In dieser Kombination tritt wenigstens ein
Element mit einem von Null verschiedenen Koeffizienten auf, s sci dies &,. Dann
ist & € L((ﬁ N{®) v {b,)). Jedes Element & ¢ L 16t sich aus B linear kombi-
nieren. Das dabei eventuell auftretende Element &, ersctze man durch eine Linear-
kombination mittels (B \ (x,}) u [b,], also erzeugt BN\ {x,}) v {by) ganz L. Man
zeigt auch noch die lineare Unabhiingigkeit von (B \ {x,]) u {b,], womit B, wirklich
eine Basis von L ist. In gleicher Weise erledigen wir die anderen Schritte. Nun hatten
wir aber vorausgesetzt, dal L iiberhaupt eine endliche Basis hat. Damit wissen wir
also, daB alle Basen im R* aus genau # Elementen bestehen. Ein linearer Teilraum L
des R™ kann aber auch wirklich keine unendliche Basis 8 haben. Denn wir kénnen 8
zu ciner Basis von ganz R" erginzen, indem wir e, im Fall e, ¢ L(B) zu B hinzu-
fiigen. Dann ist B, = B u (¢, lincar unabhingig; ist e, € L(B), so sei B, = V.
Ebenso fahren wir mit e, fort und erhalten B,. SchlieBlich gelangen wir zu einer
linear unabhingigen Menge ®B,, die ganz R" erzeugt, denn dic ey, e,, ..., €, tun es.
Also ist |B,| ==, d. h., wegen B & B, muB |B| < n sein.?)

1) Eine Basis von L konstruizrt man sich durch sukzessive Erweiterung einer linear unab-
hangigen Menge U < L. Man wahle ein beliebiges Element von L \\ L (U) und fiige es zu U hin-
zu. Mit der entstehenden (linear bhingigen!) Menge fahre man fort. Dieser ProzeB liefert
nach endlich vielen Schritten eine maximale linear unaBhéngige Menge in L.
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Definition 3 (Dimension von linearen Teilriumen des R*). Es sei L ein linearer
Teilraum des R*. Ist L der Nullraum, so sagt man: L hat die Dimension 0. Ist L vom
Nullraum verschieden, so besitzt er eine endliche Basis aus m Elementen (alle seine
Basen haben die gleiche Anzahl von Elementen). Man sagt: L hat die Dimension m.
Man schreibt dim L fiir Di ion von L. D h gilt fir L S R™:

dmL =0& L =10},
dim L = m < L hat eine Basis aus m Elementen.

Bemerkungen.
1. Infolge dieser Begnffsblldung haben wir also dim R" = n. Unsere neue Begriffs-
bild h mit der schon laufend gebrauchten Bezeichnungsweise

,n-dlmenelonaler reeller Zahlenraum* vollkommen iiberein.

2. Nach dem letzten Teil der Beweisausfiihrungen zum vorstehenden ‘Satz gilt
fiir jeden linearen Teilraum L von R* dim L < n. Etwas allgemeiner liBt sich die
dortige Argumentation in gleicher Weise auf den Fall anwenden, da man zwei
lineare Teilrdume L,, L, von R* hat mit L, & L,. Wir formulieren demzufolge das
zusitzliche Ergebnis.

Satz 3 (Monotonie der Dimension fiir lineare Teilriume des R*). Es seien L,, L,
2wet lineare Teilréume des R®. Dann gilt:

L, € L= dim L, g dim L,.
Mittels des Di ionsbegriffes ko wir die vorhin offen gelassene Frage be-

antworten, welche linearen ‘Teilriume des R* gerade als Kerne von Linearformen
auftreten.

Satz 4 (Beschreibung der Kerne von Linearformen auf dem R"). Es sei f eine
nichiausgeartete Linearform auf dem R". Dann ist der Kern dieser Linearform ein
(n — 1)-dimensionaler linearer Teilraum von R":

dimkerf =2 — 1.
Jeder (n — 1)-dimensionale lineare Teilraum des R® ist auch Kern einer gewissen nicht-

ausgearteten Linearform auf dem R*. Zwei nichtausgeartete Linearformen haben genau
dann denselben Kern, wenn sie linear abhingig sind.

Bemerkung. Der vorstehende Satz bedeutet eine erste Aussage iiber die voll-
stindige Beschreibung von Lésungsgesamtheiten linearer Gleichungen. Eine solche
Umformulierung ist wegen des Zusammenhangs zwischen Linearformen und linearen
Gleichungen moglich. Die Losungsgesamtheit der linearen Gleichung a,z, + a,z,
+ -+- + a4z, =0 in den n Unbekannten z,,%,, ..., 7, urid den gegebenen Koeffi-
zienten a,,a,,...,a, (nicht simtlich gleich Null) ist ein (» — 1)-dimensionaler
linearer Teilraum des R*. Zu jedem (» — 1)-dimensionalen linearen Teilraum L des
R* gibt es eine lineare Gleichung a,2, + .- + a,z, = 0, deren Losungsgesamtheit
gerade der gegebene li Teilraum L ist. Zwei nichtentartete lineare Gleichungen
;%) + +++ + a2y = 0 und bz, + b,x; + --- + byx, = 0 haben genau dann dieselbe
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Losungsgesamtheit L im R, wenn die Koeffiziententupel (a;, @,, ..., a,), (b1, b3, ..., b,)
linear abhiingig sind.

Beweis des Satzes. | sei nicht ausgeartet, also ist ker f 4 R". Demzufolge gibt
es ein Element &, ¢ ker f. Wir miissen zwei Fille unterscheiden: dim ker f = 0 und
dim ker f > 0. !

Bei x € R* gilt stets

_f@® f@ . _
/(w = "-'o) f) — 18 jeg 0

(es ist f(a,) = 0).
Im ersten Fall muB also

_ j=®
" Ho)

sein, d. h., {,} ist eine Basis des R*.
Im zweiten Fall wihlen wir eine Basis b,, b,,..., b, von kerf. Es ist dann
{®o, By, by, ..., by} linear unabhiingig. AuBerdem gilt wieder fiir beliebige & € R*

_ =)
T i)

Daher liit sich @ stets aus &y, b, ..., b, linear kombinieren. (&, b,, ..., by} ist
also Basis von R*, d.h. m =n — 1.

Es sei L ein (n — 1)-dimensionaler Teilraum des R*. Der Fall n = 1 ist klar. Im
Fall n > 1 existiert eine Basis by, b,, ..., b, von L. Wie aus dem Beweis des Satzes
iiber die Glelchmachtlgkelt der Basen erslchtllch konnen wir by, by, ..., b, durch
Hi hme eines gewi El t z., € R* zu einer Basis des R* ergnnzen Es
gehoren genau die & = ag®y + a0y + -+ + anbe zu L, fiir die ap = 0 ist. Als
Linearform mit dem Kern L haben wir daher {: R* — R mit f(&) = ay. (Man muB
dabei natiirlich bemerken, daB fiir jedes & ¢ R* der Wert &, und auch die Werte
&1, ..., 0 eindeutig bestimmt sind, was aus der linearen Unabhingigkeit von
®g, by, ..., by, folgt.)

Zum letzten Teil: Sind die beiden nichtausgearteten Linearformen f,g ¢ £(R*)
linear abhiingig, so gilt f = ag bei einem gewissen « == 0 aus R. Also hat man f(x) = 0
genau dann, wenn g(x) = 0ist, d. h. ker f = ker g. Umgekehrt sei ker f = ker g. Die
Situation n = 1 ist wieder klar, da je zwei Linearformen im #(R?) linear abhiingig
sind. Im Fall n > 1 wihlen wir wieder eine Basis b,,...,b, (m =2 — 1) von
ker f = ker g und ergiinzen sie durch ein &, wie oben zu einer Basis des R*. Dann
haben wir fiir jedes & € R* eine Darstellung & = ag®y + %0y + -+ + omby. Dann
ist

=0

——— &g € ker f.

@) = xof @) + F(o1y + -+ + onbm) = xof (®o),
9(@) = xog(®o) + glorby + +- + auba) = axeg(®@o),



4.3. Koordinatendarstellungen in bezug auf Basen 41

d. h.

; f(o)
) = — g(x £ 0).
f@) = 9@ 0= +9)

Bemerkung. Der angegebene Satz machte eine allgemeine Strukturaussage iiber
die Lésungsmannigfaltigkeit einer Gleichung a,z, + a,2; + :-- + a,z, =0, aber
er liefert kein Verfahren, wie diese Losungsgesamtheit gewonnen wird. Solch ein
Lasungsverfahren ist aber auch unschwer zu erkennen. Man wihle einen beliebigen
Koeffizienten a; = 0, o. B. d. A. sei das etwa a,. Dann ist

a, a, a
-'1=—‘a—’¢:—‘—'-"-'a"‘"'—'£xu~ (%)

Die Losungsgesamtheit der betrachteten Gleichung erhiilt man also, indem man .
Zg, Ty, ..., Ty beliebig withlt und z, dann gemiB der Beziehung (*) bestimmt. Die so
gewonnenen (z,, , ..., Z,) sind genau die simtlichen L&sungen der Gleichung
Eine Basis des Lésungsraumes erhilt man etwa, indem man die frei wihlbaren
X3, Ty, ..., Ty beispielsweise nacheinander jeweils als 1 und die restlichen dabei als 0
wiihlt. Also wiire eine Basis fiir den Lésungsraum:

b, = (_ﬁ, 1,o,...,o),
a;

by = (—ﬁ. 0,0,...,1).
a,

Dieses sind nimlich » — 1 linear unabhingige Losungen der Gleichung. (Man

hiitte den ersten Teil des Struktursatzes auch so beweisen kénnen, daB man von den

eben angegebenen Elementen zeigt: Es sind # — 1 linear unabhingige Lisungen von
f@®) =ayz + - + ayze =0,

und jede Léosung dieser Gleichung laBt sich aus ihnen linear kombinieren.) Der Wert
desStruktursatzes besteht in seiner klirenden Funktion.

4.3. Koordinatendarstellungen in bezug auf Basen

Iin Beweisverlauf des Struktursatzes iiber die Kerne der Linearformen haben wir
schon einen Eindruck von der Niitzlichkeit der Darstellung von Elementen an Hand
igneter Basen bekc Eine solche Situation wird uns noch vielfach auch im
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Z hang mit and Fragen begeg Hier zuniichst noch einige allgemeine
Bemerkungen.

Satz 1 (Kennzeichnung der Basen durch eindeutige Darstellbarkeit von Elemen-
ten). Es sei L ein vom Nullraum verschiedener linearer Teslraum des R*. Weiter ses
B:b,,by, ..., b, ein endliches Erzeugendensystem von L. Dann gilt: B ist eine
Basis von L & Jedes ® € L hat eine Darstellung

T =§b; + &by + --- + Suba
mit eindeutig bestimmien Koeffizienten &;.
Beweis. Es sei 8 eine Basis von L und
& = &by + &by + - 4 Eabm = by + 73b; A+ o + 7uDp-

Dann ist (& — 7,) b, + +-+ + (§m — 7m) bm = 0. Wegen der linearen Unabhingig-
keit von 8 muB & — 9 =0, ..., s — 7 = O gelten, d. h., die Darstellung fiir 2
ist eindeutig.

Die Darstellung sei fiir jedes ® eindeutig. Also muB sich bei &b, + &by + ---
+ Enbw =0 ergeben,daB ¢, = &, =... =§, =0 ist,denn0b, + 0b, + --- + 0b,, ist
eine Darstellung von 0. Also ist B ein linear unabhiingiges Erzeugendensystem von L.

Definition 1 (Koordinaten beziiglich einer Basis). Es sei L ein vom Nullraum
verschiedener linearer Teilraum des R* mit der Basis B: b,, by, ..., by (1 < m < n).
Diese Basis werde in einer festen Anordnung betrachtet. Die eindeutig besti e
Darstellung

& =§b + &by + - + Enba

fiir jedes @ € L mit &; € R nennt man Koordinatendarstellung von 2 beziiglich der
(angeordneten) Basis B: b;, by, ..., by. (&, &, ..., £u) Nnennt man das Koordinaten-
tupel von & beziiglich der (angeordneten) Basis B, &, die erste Koordinate von @
beziiglich der Basis 8, ..., &, die m-te Koordinate von & beziiglich der Basis .

Bemerkung. Es sei & = (z,, ., ..., 7,) ein Element aus dem R*. Die z; heiBen
die Koordinaten bzw. Komponenten von & ohne einen Zusatz hinsichtlich einer
Basis. Oben ist die Koordinatensprechweise in bezug auf Basen eingefiihrt worden.
Wir erkennen, daB die obigen z; gerade die Koordinaten von & beziiglich der natiir-

lichen Basis im R* sind.o(Dieser Sachverhalt hat gerade die Bezeich

natiirliche Basis des R" veranlafit.)

Die arithmetischen Operationen — wie Addition und Multiplikation mit einem
Skalar — fiir El te eines li Teilr ko auch an den Koordinaten-
tupeln beziiglich beliebiger Basen des Teil gedriickt werden. Den g
Sachverhalt beschreibt die folgende Aussage.

Satz. 2 (Arithmetische Operationen in linearen Teilriumen beschrieben durch
Koordinatendarstellungen). Es sei L ein vom Nullraum verschiedener linearer Teil-
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raum des R® mit einer in einer bestimmien Anordnung fizierten Basis B: b,, by, ..., by
(1 = m < n). Weiler seien x, y beliebige Elemente von L mit den Koordinatentupeln
(81 &3y - ++» Em) D2W. (11, 73, -+, ) $7 Dezug auf B. Dann gilt:  + y hat in bezug auf
9B das Koordinatentupel (£, + 1, &+ g, -.-, bm + 7m); o®, a € R, hat in bezug auf
8 das Koordinatentupel (af,, afy, ..., abp).

Beweis. Es ist vorausgesetzt

»
3=.Z;£ibh y=Zlneba-

Dann ergibt sich
o L Ld
Tty =iZ; &bi + Zl'labi = ,21(5.' + ) bi.
- = =

Infolge der Eindeutigkeit der Koordinatendarstellung ist &; + #; die i-te Koordinate
von & + y in bezug auf die Basis 8. Der andere Teil erledigt sich entsprechend.

Bemerkung. Der Satz macht darauf aufmerksam, daB die arithmetische Struktur
des m-di ionalen linearen Teil L eigentlich die gleiche ist wie die arith-
metische St.mktur des Raumes R™. Auf dlesen So,chverhult waren wir schon bei

haulichen Betrachtungen der linearen Teilriume des R?
bzw. R? a.n Hand seiner euklidischen V. haulich hingelenkt worden. Der

-3

niichste Abschnitt befaBt sich hiermit etwas prignanter.

4.4,  Isomorphie linearer Teilriume

Die im a,bschlleﬂenden Satz des letzten Abschnittes dargelegben Verhiiltnisse werden
deutlicher, wenn wir sie uns noch einmal abbild isch vor Augen fiihren.
L war ein m-dimensionaler Teilraum des R* mit einer gewissen angeordneten
Basis 8. Diese Basis 8 bestimmte iiber die Koordinatend llung der El t
von L beziiglich 8 eine Abbildung #: L — R™ mit dem Verlauf  — (5,, Easies &n)y

m
sofern @ = Y £b; (B:by,..., b,) ist. Diese Abbildung hat die folgenden Eigen-
schaften: =1

1. & ist eineindeutig,.d. h. z + y= d(x) + P(y).
2. & ist surjektiv, d. h. #(L) = R™ (jedes Element von R™ tritt als Bild unter @ auf).
3. & ist linear, d. h,, fir®,y € L, «, B € R gilt

D(ax + fy) = aP(x) + fP(y).
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In Diagrammform: z,y € L, &(z), P(y) € R™

zyl Add.in L =ty *T Flm.um.tu.
() ('8) () ()
(@), DY) [k P) + Py) & @) fe - *P@)

Definition 1 (Isomorphismus linearer Teilriume). Es sei L ein linearer Teilraum
des R* und L’ ein linearer Teilraum des R™. Eine eineindeutige surjektive Abbildung
&: L — L’ von L auf L’ heiBit ein Jsomorphismus') von L auf L’ (oder zwischen L
und L’) genau dann, wenn & eine lineare Abbildung von L auf L’ ist, d. h., wenn
also gilt:

P(ax + fy) = aP(®) + fP(Y)

fiir alle @,y € L und «, § € R. Besteht ein Isomorphismus zwischen L und L’, so
heiBien diese linearen Teilriume zueinander tsomorph.

Bemerkung. Der Isomorphiebegriff fiir lineare Teilriume bringt also zum Aus-
druck, daB die betrachteten Teilriume dieselbe arithmetische Gestalt haben. In
ihrer arithmetischen Struktur unterscheiden sie sich nicht, wenn man sie unter
geeignetem Blickwinkel (d. h. unter gegenseitiger Bezugnahme mittels der Abbildung
@ betrachtet). Der Isomorphiebegriff ist nicht nur fiir lineare Teilriume des R*
bedeutungsvoll, sondern allgemein in der Mathematik fiir irgendwelche Strukturen
von Wichtigkeit. Das kommt in der allgemeinen Algebra noch verschiedentlich aus-
fiihrlicher zur Sprache. Fiir uns ergibt sich hier riickblickend auf die Linearformen,
daB wir eine Isomorphiebeziehung auch zwischen #(R*) und R* vorliegen haben, ohne
daB es sich dabei im Fall des #(R*) von vornherein um einen Teilraum eines R*
handelt (vgl. den Satz iiber die punktweisen Operationen fiir Linearformen, wider-
gespiegelt an ihren Koeffiziententupeln).

Wir formulieren unsere gewonnenen Einsichten.

Satz 1 (Isomorphie der linearen Teilriume des R* zu gewissen R™). Es ses L ein
linearer Teilraum des R® mit positiver Dimension m = 1. Dann wird durch jede an-
geordnete Basis B von L in kanonischer Weise eine Isomorphie zwischen L und dem
m-di ionalen arithmetischen Zahlenraum R™ hergestellt :

L < R™.
<)

1) Isomorphismus: Iso (gleich) morph (Gestalt). Man vergleiche hierzu Isomorphiebetrachtungen
in Band 1.
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Satz 2 (Isomorphiekriterium mittels Dimension). Es seien L S R*, L' S R™
lineare Teilrdume des R® bzw. R™. Dann gilt: Es gibt einen Isomorphismus zwischen L
und L' & dim L = dim L',

45.  Ubungsaufgaben

1. Warum ist eine Ubartragung des fir den R* erklirten Begriffs der linearen Unnbhsngug-
keit auf den Bereich 2 aller reellen Polynome, ausg mit der iblichen F
tion und Multiplikation mit reellen Skalaren, sinnvoll (vgl. hierzu Ubungsaufgabe 1 zu 2.4.)?
Man weise nach, daB die Menge aller Elementarpolynome P,(z) = z", n = 0, linear unab-
hiingig in 2 ist!

2. Zwei Elemente & = (z,, 2,), ¥ = (¥,, ¥s) des R? sind genau dann linear abhingig, wenn
7Yy = 2y, gilt.

3. Folgt im R? fiir die drei Elemente & = (z,, ,, 73), ¥ = (¥1, ¥ ¥s) und 2 = (z,, z,, 2,) stets
aus dem Bestohen der Beziehung z,y,2, = z,y52, = z,9,2; die lineare Abhingigkeit von
x,y, 2!

4. Wie drei all, b El z.y, # des R® beschaffen aem, dnmlt dle aus
den Elementen gebildata Menga linear bhingig wird ( dige und h Be-
dingungen)?

5. Man weise die Elemente & = (1, 2, 3), y = (4, 5, 6) des R? als linear unabhingig nach und
ergiinze sie durch ein waitsras Elem>nt zu einer Basis des R>.

6. L, und L, seien zwei lineare Tailriume des R», wobei B, eine Basis fir L, sei und 9, eine
Basis fiir L,. Man gebe Bedingungen an Hand von L, n L, und dim L,, dim L, dafir an, daB
8, u B, eine Basis fir R* wird.

7. Ly und L, seien zwei lineare Teilriume des R®. Was fiir eine Beziehung 18t sich zwischen
den Werten dim (L(L, u L,)), dim L, dim L, und dim (L, n L,) ableiten?

8. Es sei L ein echter linearer Teilraum des R*. Gibt es einen Isomorphismus von L auf den R*?

9. In R? werde die folgende Abbildung betrachtet: 4: R® — R? mit

[CYEEN] ;’ (—23 229, 7,)

fiir alle (z,, 2,, ;) € R%. Ist diese Abbildung ein I hi des R? auf sich?
10. Die Elemente

& = (cosa, sina), Yy = (—sina, cos )

des R? weise man fiir beliebiges « < R als linear unabhiingig nach.
Man besti zu den El ten (1,0), (0, 1), (1, 1) jeweils die Koordinatendarstellungen
in bezug auf die Basis B: &, y.
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5..  Die verschiedenen Typen linearer Gleichungssysteme

Es sei
@&y + Q1% + o + GraTy = by,
83Ty + GagTy + -0 + ATy = by, (*)
L T T OmnZn = bn

oder in Funktionalform

h@nza, ..., za) = by,
fal@r, 22y ooo, 2y) = by,
falZ1s Zay oovy Ty) = by

ein lineares Gleichungssystem in den n Unbekannten z,, z;, ..., 2, mit den gegebenen
Koeffiziententupeln

(11, Gy, - -+, By) (Koeffiziententupel fiir die Linearform f,),
(@1, @ag, .-, Ban) (Koeffiziententupel fiir die Linearform f,),

[T S A | (Koeffiziententupel fiir die Linearform f,,)

und den gegebenen rechten Seiten by, ..., b, (auch freie Glieder des Gleichungs-
systems genannt).

Definition 1 (Homogenes, inhomogenes, lésbares und unlosbares lineares

Gleich tem). Ein li Gleichungssystem (#) heiBt homogenes lineares
kahunguyctem genau dann, wenn die gegebenen rechten Selten simtlich gleich
Qleoseh

Null sind. Ein lineares Gleichungssystem () heifit i g g
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system genau dann, wenn die gegebenen rechten Seiten nicht simtlich gleich Null
sind. Ein lineares Gleichungssystem () heiBt ldsbar genau dann, wenn es wenigstens
eine Losung hat, d. h., wenn es wenigstens ein n-Tupel ® = (z,, ..., z,) gibt, welches
in die linken Seiten eingesetzt die rechten ergibt. Ein lineares Gleichungssystem ()
heiBt unlisbar genau dann, wenn es keine Losung hat (wenn es nicht 16sbar ist).

Bemerkungen.

1.Einh li Glei tem aus m Gleichungen mit n Unbekannt.
ist stets losba.r denn es hat zummdest dleLosungz = (0,0, ..., 0) — die sogenannte
triviale Losung.

2. Es gibt auch wirklich unlésbare Gleichungssysteme, was beispielsweise die
folg: infachen Syst zeigen.
=1, =2 (1)
oder
Z7+z, =1, @
22, + 2z, = 3.
Definition 2 (Bestimmte und unbestimmte li Gleichungssysteme). Ein
li Gleichungssystem (%) heiBt ein bestimmies lineares Gleichungssystem genau

dann, wenn es eine einzige Losung hat, wenn die Losungsmenge aus genau einem
n-Tupel ® = (2,, 3, ..., %,) besteht. Besteht die Losung ge von (x) aus mehreren

n-Tupeln, so heiBt das Gleichung ,.,:M.. (%) unbestimmi
Dof:mtlon 3 (Das zu einem | Gleichungssystem gehérende homogene
Gleichungssystem). Das zu dem linearen Glewhunguyalem (%) gehorende
lineare Gleich tem ist dasjenige, in dem die rechten Seiten alle

Caddd

durch Null ersetzt werden.

Iy

Definition 4 (Aquivalenz von linearen Gleichungssystemen). Es seien zwei
li Gleichungssyst in n Unbek gegeben, dabei bestehe das eine System
aus m Gleich und das andere aus ! Gleich

fr(@y, gy oony 20) = by,

)

................... . (%)
ll(zl» Ty eeey 1') = b.:
D@1, Zay oo, Ty) = 644
................... (%)
Gi(y, ;- 0 Ty) = ¢
Diese beiden lmesren G]eu,hungssysteme (*) und (*#) heiBen dquivalent genau dann,
wenn die Lisung gen (Teilmengen des R*) beider Systeme iibereinstimmen.
Bemerkung. Im Fall der einfachen Systeme
,l(xl: Zyyeey Zy) =0 (*)

9i(Zy, Tgy .0y 2,) =0, (%*)
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wobei die Linearformen f; und g, beide nicht entartet waren, hatten wir schon im
Satz iiber die Beschreibung der Kerne von Linearformen herausgefunden, daB beide
Systeme genau dann #quivalent sind, wenn f,, g, linear abhiingig sind.

5.2.  Lésungsmannigfaltigkeit homogener linearer Gleichungssysteme.
Der Rang eines linearen Gleichungssystems

Uber homogene lineare Gleichungssysteme in » Unbekannten im allgemeinen wissen
wir bisher lediglich, daB die Ldosungsmenge ein linearer Teilraum des R* ist (vgl.
S. 29 und S. 31). Unsere niichste Aufgabe wird in der Bestimmung der Dimension
dieses Losungsraumes bestehen. -

Hilfssatz 1 (Trennbarkeit von linearen Teilriumen und Punkten durch Linear-
formen). Es sei L ein linearer Teilraum des R® und & ein Punkt des R*, der nicht zu L
gehort. Dann gibt es eine Linearform f € £(R*) mit f(x) & O und f(y) = O fiiralley € L.

Beweis. Es konnen die Fille dim L = 0 oder dim L > 0 vorliegen. Im ersten
Fall wihle man eine beliebige Basis B: b, by, ..., b, von R* und betrachte die

Koordinatendarstell evonzl "e‘.lm

& =60, + &b + -+ + 4Dy )
Wenigstens ein £; ist von Null verschieden, es sei dies 0. B. d. A. £,. Dann nehme man
als f€ #(R*) die Abbildung f: R* — Rmit 2 ~> erste Koordinate von 2 beziiglich der,
Basis 8. Im Fall dim L > 0 wihle man eine Basis b,, b,, ..., b, von L und ergiinze
diesc zu einer Basis B: by, by, ..., by, ..., b, von ganz R*. Dann ist

T = Eby + oo + b + oo + £,y

Es muB jetzt &; = O fiir ein ¢ > m sein, weil sonst & € L ist. Essei 0. B.d. A. £, 4 0.
Dann nehme man als f € £(R") die Abbildung f: R* — R mit 2 > n-te Koordinate
von 2 beziiglich 8.

Mit di Hilfssatz gelangen wir zu der folgenden wichtigen Einsicht.

Satz 1 (Aquivalenz zweier homogener linearer Glclehungss) steme). Es seien zuei

esch 4, hol 1.
lineare g3y inn U geg

t4

fi@ Ty .0 23) =0,

......... (*)

Im(Z1s T2y ooey 2) =0,

(@), 2z, ..., 2,) =0,

(%)
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Dann gilt: Diese beiden Systeme sind dquivalent <> Die das Gleichungssystem (*)
bestimmenden Linearformen f,, ..., fm und die das Gleich ystem (w+) besti:
Linearformen g,, ..., g, erzeugen sm Raum £ (R*) aller Lmear/ormen auf dem R* ein
und denselben linearen Teilraum.

Beweis. Es sei L, der Losungsraum von (). Wir zeigen fiir eine Linearform
fe L(RM:

f € Illfy; 25 o+ fm)) © f(@®) =0 fiiralle ®€ L,.

Wenn f € L({f,, ..., fa}) ist, hat man eine Darstellung

f=afi+ -+ anlm
nit «; € R. Also ist fiir alle® € R*~

f®) = afs(@®) + -+ + xuful@),

d. h., fiir alle € L, muB f(x) = 0 sein.

Fiir die umgekehrte Richtung machen wir von dem Hilfssatz Gebrauch. Wir
nehmen an, es sei f ¢ L({f,, ..., fn)). Um den Hilfssatz unmittelbar anwenden zu
konnen, gehen wir vonder im #(R") vorliegenden Situation durch den kanonischen

zwischen #(R") und R* (wo also jedes f € #(R*) in sein Koeffizienten-"
tupel ubergefuhrt wird) zu einer Situation im R* iiber. Wir haben dann einen Teil-
raum L & R*, der dem L({f,, ..., fw}) entspricht, und einen Punkt y ¢ R*, der dem f
entspricht, mit y ¢ L. Es gibt nach dem Hilfssatz eine Linearform A ¢ #(R") mit
h(y) = Ound h = 0 auf L. Nun kehren wir wieder zur Situation in #(R") zuriick.
Der Linearform A entspricht dann ein Punkt 2z € R". Wir haben folgende Ent-
sprechung:

L{fy, oer fm)) < L, feuy, zoh;

16 Lilfy,o-s fm)) © Y 4 L, h(y) + 0 und =0 auf L & f(z) & 0 und g(z) = O fiir
alleg € L({},, ..., fw))- Also wiire fiir den ermittelten Punkt z erwiesen, daB z € L, ist.
Dabei sollte aber dann auch f(z) =0 gelten. Die Annahme 4 L ({f,, ..., fm)) be-
steht folglich zu unrecht.

Die Gesarntaussage des Satzes ist nun leicht zu folgern.

Satz 2 (Struktur der Losung! ge eines homog li Gleichungssystems)
Es sei ein homog lineares Gleichungssy in n Unbekannten gegeben :
"(Zl, Ty, eees Zy) =0
.................. (%)
Tl Ty oov, Tp) =0
Die Losungsmenge dieses linearen homog Gleich ¢ ist dann ein linearer

Teslraum L des R*. Die Dimension von L betrigt n — dlm L({fy, oo fnl)e
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Unmgekehrt gibt es zu jedem linearen Teilraum L des R* von einer Dimension0 < k < n
ein homogenes lineares Gleichungssystem von m C" ichungen, dessen Lisungsraum
gleich dem gegebenen L ist. Die das Gleich besti. den Linearformen
f1s ovs fm 8ind genau bei m = n — k linear unabhanmg

Beweis. DaB die Losungsmenge eines homogenen lincaren Gleichungssystems
ein linearer Teilraum L, des R" ist, hatten wir schon friiher festgestellt. Wir miissen
die Di ion von L, besti Nach dem Beweis des vorhergehenden Satzes gilt :

J€ Lilfy, s ful) © f®) =0 fiiralle & € L.

Also haben wir dim L({f,, ..., fm)) =7 & L, = [0}, denn zu jedem & 5= 0 gibt es
wenigstens eine Linearform, die in & einen von Null verschiedenen Wert annimmt.

Es sei jetzt dim L, = r > 0. Dann wilhlen wir eine Basis 8: b,,..., b, von L,.
Diese konnen wir zu einer Basis von ganz R" erginzen: b,,...,b,,...,b,. Wir
betrachten im Fall r < n (bel r = n muf} jedes f,, ..., fy dic Nullform sein, da der
Losungsraum einer einzig, i teten Linearform schon (» — 1)-dimensional
ist) die Funktionale gy, ..., g mit g;(x) = a;, wobei a; die i-te Koordinate von &
in der Koordinatendarstellung beziiglich der Basis by, ..., b,, by, ..., b, ist:

Die Linearformen g,.,, ..., g, sind linear unabhingig. AuBerdem gehdren sie alle zu
L({fy, «++, fm)), denn fiir & € L, ist jedes g;, i = r, gleich Null. Diese g; erzeugen auch
ganz L({fy, ..., fa}), weil fiir f € L({f,, ..., fm)) gilt

t2) =1( Z i) + £ st
i=1 i=r+l
=X aif(by)

i=r+1
= 3 [b) i@,
i=r+1
d. h.
=X b g..
t=r4l

Demnach ist dim L({f,, ..., fu)) =7 — r.

Zur umgekehrten Situation: Es sei ein linearer Teilraum L S R*mit 0 < dimL<n
gegeben. Bei dim L = 0 ist L der Losungsraum eines Gleichungssystems mit belie-
bigen n linear unabhingigen Linearformen. Im Fall dim L > 0 wiihlen wir wie
vorher eine Basis von L, erginzen diese zu einer vollen Basis von R* und verfahren

hi

genauso wie im ersten Beweisteil, d. h., gewi Linearformen erhalten

n
wir als f;(®) = a;,dimL <i < n,beiz =) «;b;.
i=1
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Fiir die Dimension des von den Linearformen eines Gleichungssystems im #(R*)
fgespannten Teilr hat sich die folgende Spmhwelse eingebiirgert, die auch
im Fall von inhomog: Gleichungssystemen tzt wird.

Definition 1 (Rang eines linearen Gleichungssystems). Es sei ein beliebiges
lineares Gleichungesystem in n Unbekannten z,, ..., z,, bestehend aus m Gleichung;
gegeben:

Unter dem Rang dieses Gleichungssystems versteht man die Di ion des von den
Linearformen /,, ..., fu im Raum &£(R") aller Linearformen iiber R* aufgespannten
linearen Teilraumes. Haben die Lincarformen f,,...,f, die Koeffiziententupel
@11y ++s Bya)s +ovs (Amys -+, Bmp) » 80 ist der Rang des Gleichungssystems also gleich der
Maximalzahl der in der Menge der (ay,..., @), .-+, (@m1, -+, Gng) linear unab-
hingigen Elemente.

Bemerkung. Fiir ein-homogenes li leichungssystem in » Unbekannten

gllt also in der neuen Sprechweise: Di jon des Losung des Gleich
systems + Rang des Gleichungssystems = n.

Im.iibernichsten Abschnitt werden wir ein geeignetes Verfahren zur Rangberech-
nung und zur effektiven Angabe des Ldsungsraumes von vorgelegten linearen
Gleichungssystemen abhandeln. Unsere im Augenblick angestellten Erérterungen
haben die wichtige Funktion der allgemeinen Struktu.rklarung Wir konnen durch
sie von einem iiberschauenden Standpunkt, der g trisch haulich Luge
trigt, verfolgen, was eigentlich beim Ldsen linearer Gleich t
withrend das rein Rechnerische beim LésungsprozeB solche Emslchten nicht mehr
bietet. Im niichsten Abschnitt soll nun auseinandergesetzt werden, daB die geo-
metrisch-anschauliche Ubersicht iiber die Losungsmengen von linearen Gleichungs-

‘systemen auch fiir nichthomogene Gleichungssysteme bestehen bleibt.

5.3. L6 sungsmannigfaltigkeiten beliebiger linearer Gleichungssysteme.
Lineare Mannigfaltigkeiten im R*

Die Losungsmannigfaltigkeiten linearer homogener Gleichungssysteme in # Un-

bekannten waren lineare Teilriume des R*. Das ist fiir nichthomogene lineare Glei-

chungssysteme nicht mehr richtig, da dann die Summe von zwei Losungen nicht

wieder eine Lsung ist und das skalare Vielfache einer Losung nur fiir den Wert o = 1

wieder eine Losung ist. Man sieht aber unmittelbar, daB die Differenz zweier L-
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ungen eines nichth li Gleichungssystems eine Losung des zu-

gehdrigen homogenen linearen Glelchungssysberns ist. Bei Vertriiglichkeit des in-
homogenen lmea.ren Gleichungssy tsteh m:f diese Weise auch alle Losungen
des ha igen h 1 Meaich

5

Wir fixieren diese Sachverhalte durch die folgenden Definitionen und Sitze.

Definition 1 (Komplexsumme von Teilmengen des R*). Es seien 4, B zwei

beliebige nichtleere Teilmengen des R". Unter der Komp dieser Teil
versteht man die Menge

A+B:=(a+b:ac4,b€c B).

Entsprechend versteht man unter der Komplexdifferenz dieser Teilmengen die
Menge

A—B:=|a—-b:ac 4,bc B).

Bemerkungen.

1. Diese Komplexsumme ist nicht mit der Mengenvereinigung zu verwechseln und
ebenso die Komplexdifferenz nicht mit der mengentheoretischen Differenz.

.2. Man vergleiche hierzu die Ausfiihrungen der allgemeinen Algebra hinsichtlich
der ,,Komplexprodukte*‘. Das Wort Komplex soll darauf hindeuten, daB hier die
Summe bzw. Differenz bzw. Verkniipfung im allgemeinen fiir ganze Komplexe
(Mengen) von Elementen betrachtet wird.

3. In Abb. 4 sind dazu einige Fille an Hand der euklidischen Veranschau-
lichung des R? gezeigt.

a) L

Die Lisungsmenge M eines vertriglichen inhomogenen linearen Gleichungs-
syst, in n Unbek hat, wie vermerkt wurde, die Eigenschaft, daB die Kom-
plexdifferenz von M mit sich selbst ein linearer Teilraum des R" ist. Die Umkehrung
hierzu gilt jedoch nicht, wie etwa im R das Beispiel M = {z:x € R', x = 0} zeigt.
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Denn es ist M — M = R! (nicht etwa {0}!), aber die Lésungsmengen von vertriig-
lichen li Glei gssystemen mit einer Unbekannten sind einpunktig oder der
ganze R!. Fiir uns werden jetzt die Komplexsummen von Bedeutung sein, wo der
eine Summand ein linearer Teilraum des R" ist und der andere eine einpunktige
Menge darstellt.

Wir schreiben anstelle der Komple {x) + A kiirzer und ebenso unmiB-
verstindlichax 4 4.

Definition 2 (Lineare Mannigfaltigkeiten im R*). Unter einer linearen Mannig-
faltigkeit M im R* versteht man eine Teilmenge der Form M = &, + L, wobei &,
ein festes Element des R* und L ein linearer Teilraum des R* ist.

Bemerkung. Man macht sich den Begriff der linearen Mannigfaltigkeit etwa
wieder an der euklidischen Veranschaulichung des R®* bzw. R? in seiner anschaulich-
geometrischen Bedeutung klar. Die Teilmenge M = &, + L ist aus L entstanden,
indem man ganz L parallel verschoben hat, bis es durch &, geht. Demzufolge sind die
linearen Mannigfaltigkeiten in R?:

1. dic einpunktigen Teilmengen des R? (L ist hier der Nullraum {0j),

2. die Geraden im R? (L ist hierbei eine Ursprungsgerade),

3. der ganze R%.

Die lincaren Mannigfaltigkeiten im R3 sind entsprechend :

1. die einpunktigen Teilmengen des R® (L ist hier der Nullraum {0}),

2. die Geraden im R3? (L ist hierbei eine Ursprungsgerade),

3. die Ebenen in R? (L ist hierbei eine Ursprungsebene),

4. der ganze R3.

Satz 1 (Gleichheit von linearen Mannigfaltigkeiten). Es seien M, ==, + L,,
M, = yo + L, zwei lineare Mannigfaltigkeiten im R". Dann gilt: M, = M, & L, = L,
und &y — Yo € L,.

Beweis. Es ist M, = (x,+ ®: 2 € L)), M; = |y, + y:y € Ly). Also gibt es bei
M, = M, zu jedem & € L, ¢in y € L, mit &, + & =y, + y. und umgekehrt gibt es
zu jedem y € Ly einx ¢ L, mit &y + & =y, + y. Fiir 2 = 0 bzw. y = 0 ergibt sich
somit &y — Yo € L, und &, — yo € L,. Dann ist also jedes & € L, Summe zweier
Elemente von L, und jedes y € L, Summe zweicr Elemente von Ly, d. h. L, = L,.

Die andere Implikation ist noch cinfacher &y — ¥, € L, (= L,) impliziert fiir
jedes® < L,

T+ (@ —Yo) =y€EL.
Jedes y € Ly tritt auch stets als gewisses & + (g — y,) auf. Also ist &g + Ly = g,
+ L.
Die sochen hewiesene Aussage reu.htfcrtlgt wegen der undeuhgen Emugung
Teil

ciner linearen Mannigfaltigkeit im R* aus einem wohlbesti
die folgende Begriffshildung.
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Definition 3 (Dimension einer linearen Mannigfaltigkeit). Es sei M eine lineare
Mannigfaltigkeit im R*. Unter der Dimension (dim M) dieser linearen Mannigfaltig-
keit versteht man dann die Dimension des diese lineare Mannigfaltigkeit hervor-
bringenden linearen Teilraumes:

M=z,+ L, dimM: =dimL.

Die linearen Mannigfaltigkeiten im R* von der Dimension » — 1 haben-noch eine
besondere Bezeichnung, die sich aus den fiir den R? in euklidischer Veranschaulichung
geltenden Beziehungen erklirt.

Definition 4 (Hyperebenen im R*®). Unter einer Hyperebene im R® versteht man
eine lineare Mannigfaltigkeit M des R* von der Dimension n'— 1 (dim M =n — 1).

So wie die (n — 1)-dimensionalen linearen Teilriume mit den Linearformen in
Beziehung stehen, so gibt es auch eine Beziehung zwischen den Hyperebenen und
Linearformen.

Satz 2 (Beschreibung der Hyperebenen durch Linearformen).

1. Es sei f eine nichtausgeartete Linearform auf dem R*. Dann ist fiir jedes gegebene
reelle o € R die Losung ge der GQleichung f(x) = « esne Hyperebene im R".

2. Jede Hyperebene H im R* ist Lisung ge einer Qleichung f(®) = x mit einer
gewissen nichtausgearteten Linearform f auf dem R® und einem gewissen o'c R.

3. Zwes nichlausgeartete Linearformen f, g auf dem R® bests durch die Qlesch
f(®) = & bzw. g(®) = B ein und dieselbe Hperebene H im R* genau dann, wenn es eine
reelle Zahl A & 0 gibt mit | = Ag und « = A8.

Bemerkung. Mit diesem Satz ist. dann also auch die Struktur der Lésungs-
mannigfaltigkeit von einer inhomogenen linearen Gleichung mit n Unbekannten
aufgeklirt. '

Beweis des Satzes.

Zu 1. Die Losungsmannigfaltigkeit von f(#) = « sci H. Die Losungsmenge der
Gleichung f(x) = 0 ist ein (» — 1)-dimensionaler linearer Teilraum des R*, der Kern
(ker f) dieser Linearform. Es sei &, eine gewisse Lisung von f(x) = «. Eine solche
konnen wir uns beispielsweise verschaffen, wenn wir in dem Ausdruck a,z, + a,,

+ -+ + ayy =« (wobei (a), @y, ...,a,) das Koeffiziententupel von { bezeichnet)
etwa Z,, ..., z, beliebig wihlen und z, folgendermaBen berechnen:
o=l B L
e a a,

(Wir haben o. B. d. A. a, % 0 angenommen). &, sei das n-Tupel (z., Zgy oery Ty) Mit
den soeben festgelegten Koordinaten.!)

h

1) Die Existenz eines &, mit f(x,) = « wiire auch so zu hlieBen: Far eine ni tete
Linearform f: R* - Rgnlt f(R®) = R, wassofort aus der Homogenitit von f folgt! Also glbt es fiir
jedes x ¢ R wenigstens ein &, € R* mit f(x,) = .
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Dann gilt fiir H
H =, + kerf,
denn wir haben die Beziehung:
f(®) =a & 2y — € kerf.

Zu 2. Es sei H = xy + L mit einem linearen Teilraum L des R* der Dimension
2 — 1. Dann gibt es eine Linearform f auf dem R*, so daB

L =kerf
ist. Fiir diese Linearform erhalten wir H als L der Gleich

(@) = (o).
Zu 3. Wenn es eine reelle Zahl 2 der genannten Eigenschaft gibt, haben wir

[(@) = a & Mg(x) =28 & g(x) = B.

Also stimmen die durch die erste Gleichung und zweite Gleichung bestimmten
Hyperebenen iiberein. Es sei jetzt

=(@:f@) =al, Hy:=(@:g@ =pl.
Vorausgesetzt wird H, = H,;. Wir haben demnach &, 4 ker f =y, + kerg fiir
&y, Yo € R* mit f(®y) = «, g(yo) = B. Zuniichst ist ker f = ker g nach dem Satz iiber
die Gleichheit von linearen Mannigfaltigkeiten. Dann muB aber wiederum f = g
fiir ein gewisses 4 3= O gelten. Weil noch @, — y, € ker f ist, ist f(x,) = f(yo)
= X(yo), d- h. « = .
Wir erkennen damit, daB die Lé igfaltigkeit eines i g linearen
Gleichungssystems in » Unbekannten ‘der Durchsc| hmtt von Hyperebenen des R* ist.
Satz 3 (Durchschnitt von linearen Mannigfaltigkeiten des R®). Es ses (M;);; eine
beliebige Familie von linearen Mannigfaltigkeiten des R*. Dann ist der Durchschnitt
N M; entweder leer oder er ist wieder eine lineare Mannigfaltigkeit des R™. Im letzten

ier
Fall gilt:
NM;, =x,+ N L,
Vel iet

h

sofern M; = x4 + L; ist (L; linearer Teilraum des R*).

Beweis. Es sei N M; 4- @. Wir wihlen einen Punkt &, € N M;. Dann haben wir
die Darstellung M; =&, + L;. Firx € N\ M;istalsox =&, + y; beiy; € L;;d. h.
& — ¥y € L;, fiir alle 1 € 1. Demnach liegt  in &, + N L;.

Wenn umgekehrt ® € &, + N L; gilt, so haben wir # =x,+y mit ye N L;,
d.h.x € M;firalles € I.

Bemerkung. Die Lésungsgesamtheit eines inhomogenen linearen Gleichungs-
systems ist also entweder leer oder aber eine lineare Mannigfaltigkeit im R*. Die
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T
&' Sa 3 angt

nachfolgende Aussage macht noch eine zusitzliche ﬁlmenslonsmgabo dieser Mannig-
faltigkeit.
Satz 4 (Struktur der Lo igfaltigkeit eines losbaren beliebigen linearen
Glelchungssysbems) Es sei ein belwbtgeo (d B b g oder inhomogenes) lineares
ich tem in n Unbekannt

Chad 4 ey

fi(@, Zas oo, Ta) = by,

................... (*)

ful@1; Zas o Zg) = D
Dieses Gleichungssystem ses losbar. Dann ist die Lisungsmannigfaltigkest eine lineare
Mannsigfaltigkest im R*. Ihre Dimension betrigt n — Rang des Gleichungssystems (*).

Umgekehrt gibt s zu jeder linearen Mannigfaltigkeit M des R* von esner Dimension k,

0 < k < n, ein losbares lineares Gleichungssystem vom Rang n — k, das die gegebene
lineare Mannigfaltigkeit als Losungsmenge besitzt.

lediolich

Beweis. Wir brauchen fiir den ersten Teil des Sat noch die Dimen-

m

sionsangabe zu beweisen. Es ist die Losungsmannigfaltigkeit gleich 2, + N ker f;.
=1

Nach dem Satz iiber die Struktur der Lﬁsungsmenge eines homogenen linearen

Gleichungssystems hat aber der lineare Teilraum n ker f; gerade die Dimension
n — Rang von (x).

Zur umgekehrten Situation: Es sei M = @, + L mit einem linearen Teilraum L
der Dimension k. L kann nach dem Satz iiber die Struktur der Losungsmenge eines
homog linearen Gleich yst beschrieben werden als Lisungsmenge von

-

In(®) =0
mit m = n — k linear unabhiingigen Linearformen. Dann ist M Lsungsmenge von
h@) = fi(@),

,.(3) = Iﬂ(co) .

5.4.  Der GauBsche Algorithmus

Nachdem wir mit den vorhergehenden Erérterungen eine vollstindige Aufklirung
der Struktur der Losungsmannigfaltigkeiten von allgemeinen linearen Gleichungs-
systemen erzielt haben, bleibt jetzt die Frage nach einem effektiven Verfahren der
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konkreten Bestimmung der Losung! igfaltigkeiten zu beantworten Em solehes

Verfahren ist der sogenannte Gaupsche Algonthmua, er besteht in einer fort,
den Elimination der Unbekannten. Die Begriindung fiir die Schliissigkeit des in

Rede stehenden Verfahrens kann nach bisherigen Einsichten leicht erbracht
den. Es handelt sich eigentlich nur noch um eine zweckmnlhge Anordnung der
ZUVOT gew( theoretischen Resultate.l)
Das vorgelegte lineare Gleichungssystem
h@®) =b,,
.......... (*)
Im(®) = by,
bestehe aus m Gleichungen mit » Unbelk ten x,, Z,, ..., ¥, . Die Losungsmenge M

dieses Gleichungssystemsist der Durchschnitt der Hyperebenen H; := (@: f;(®) = b},
¢+ =1,...,m. Nach dem Satz iiber die Beschreibung der Hyperebenen durch Linear-
formen erhalten wir dieselbe Hyperebene H;, wenn wir die anfingliche Gleichung
fi(®) = b; durch ein skalares Vielfaches 4;f;(®) = 4;b; mit einem von Null verschie-
denen Skalar 4; ersetzen. Wenn wir zwei Gleichungen f;(®) = b; und f,(®) = b; und

ihre Losung igfaltigkeit H; n H; betrachten, ist diese Menge H; n H; auch
Losungsmannigfaltigkeit des Syst mit den Gleichungen f;(@®) =b; und f(@)
+ }4(®) = b; 4 by, denn aus dem Bestehen der ersten beiden Gleichungen folgt das
Bestehen der letzten beiden Gleichung und gekehrt.

Wir haben d h das folgende Erg;

Satz 1 (El tare Umformungen von linearen Gleichungssystemen). Es sei ein
lineares Gleichungssystem mit m Gleichungen in n Unbekannten gegeben. Durch wieder-
holte A dung der folgenden el taren Gleichungsumf gen gelangt man stets
2u einem Gleichungssyst lches zum Ausgangssystem dquivalent i3t:

1. Vertauschen zweier Gleich

2. Ersetzen einer Qleichung durch ein skalares Vielfaches mit esnem von Null ver-
schiedenen Skalar.

3. Ersetzen einer Gleichung durch die Summe dieser Gleichung und einer beliebigen

A, esrh M Qosaf:

Dieser Satz bildet den Hintergrund fiir den Gauschen Algorithmus, mit dem man

ein vorgelegtes li Gleich ystem durch geeignete Elementaruniformungen
auf ein moglichst iibersichtlich aqmvalentes Gleichungssystem bringt, an dem die
konkreten Losungen leicht abzul sind. Durch den GauBschen Algorithmus bringt

man das anfingliche Gleichungssystem auf Trapezform. Wir fiithren den Algorithmus

1) Wegen der groBen pr.ktlschon Wichtigkeit der Loeung linearer Glmohung.ystamo erfolgt
eine weitere Behandlung in der Numerik (MfL, Bd. 9).
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an Beispielen vor, die getitigten Zeilenumformungen sind jeweils in der ersten
Spalte markiert.

1. Vorgelegtes Gleichungssystem :

%y + 2z, + bz = —9,
#H— 2+3= 2
3z, — 6zy — z, = 25.

Umformung suf Trapezform
Koeffizienten absolutes Koeffizienten absolutes
bei Glied bei Glied
2 i) s k2 Ty Zs
(1) 1 2 5 —9 (1) 1 2 5 —9
@ 1t [ -1 3 2 @) — (1) —3| —2 1t
3) 3 —6 | —t 25 (3) — 3(1) —12 | —16 52
Koeffizienten absolutes
bei Glied
Z Zy 3

(1) 1 2 5 -9

(2) -3 | -2 11

(3) —42) -8 8

Das Verfahren ist beendet. Die letzte Zeile ergibt —8x, = 8, also z; = —1. Dies in
die vorletzte Zeile eingesetzt, licfert z, = —3. Woraus schlieBlich durch Einsetzen

in die erste Zeile 2, = 2 hervorgeht.
Das vorgelegte Gleichungssystem hat demnach genau eine Ldsung, némlich das

Element

2. Vorgelegt:

(21, 23, 73) = (2, =3, —1).

h

Glei

z, + 22, =4,
3z, — 2, =2,
2z, + zZy=1.

gssystem :
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Umformung auf Trapezform:
Koeffizienten absolutes Koeffizienten absolutes
bei Glied bei Glied
E S Y 7 3
1) 1 2 4 (1) 1 2 4
@) 3 —1 2 (2) —=3(1) - —10
@) 2 1 1 (3) —2(1) -3 —7
Koeffizienten absolutes
. bei Glied
2 3
1) 1 2 4
2) -7 —10
o 3 30
(3) - 2 0 |-7+ T

Das Verfahren ist beendet. Die letzte Zeile ergibt, daB die Nullform einen von Null
verschied Wert h miifte, was jedoch nicht stattfinden kann.

Das vorgelegte Gleichungssystem ist demnach unvertriiglich, es besitzt keine
Léosung.

leotes (leich "
3’V'== gesy

25 — 73— 7+ 3z,
4, — 22, — 23+ =z,
6z, — 32, — 2, — =z, =9,
2z, — 3 4 2z, — 12z, = 10.

I
© o~

»

’

Umf g auf Trapezf

Koeffizienten absolutes
bei Glied
z; EN EX x, .
(1) 2 -1 -1 3 1
@) 4 -2 | -1 1
3) [ -3 | -1 -1
4) 2 -1 2 | —12 10




Koeffizienten absolutes
bei Glied
% z s T4
(1) 2 -1 —1 3 1
2) —2(1) 1 -5 3
3) — 3(1) 2| —10 (]
4) — (1) 3| —15 9
Koeffizienten absolutes
bei Glied
Z | oz | w |
) 2 | 1] -1 3 1
(2) 1| -5 3
(3) —2(2) 0 0
(4) —3(2) 0 []

Das Verfahren ist in erster Etappe beendet. Das anfingliche Gleichungssystem ist
in ein neues iibergefiihrt worden, welches aus zwei Gleichungen mit vier Unbekannten
besteht. Wir withlen zwei Unbekannte beliebig, etwa z; = «, z; = f. Dann haben
wir ein neues Gleichungssystem vor uns:

—x3+ 32, =1—-2x+ 8

zy — bz, =3.
Die p T, _l“( B h Al g bl'ihgtr £, |° 4.
Koeffizienten absolutes Koeffizienten absolutes
bei Glied bei Glied
EX z £ s
(1) -1 3 1—2x4+8 (1) -1 3 1—2x+8
(2) 1 -5 3 (2)+ (1) -2 |4—-2x+8
Daraus ergibt sich:
T, =0 — % -2,
5
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Das vorgelegte Gleichungssystem ist also unbestimmt. Die Losungsmannigfaltigkeit
besteht aus den Elementen

(a,ﬂ,5a —%ﬁ—'?, a—%—2)
fiir beliebiges «, ﬂ~e R. Wegen der Darstellung

5 B 5 1
——8 — £ = (1 1 1, —=,
(«,ﬁ,5a 2;3 7, 3 2)—a(,0,5, )+ﬂ(0 2 2)
+(0,0,-7, —2)
ist also die Losung! igfaltigkeit

M=(0,0,-7,—-2)+1L ({(1,0,5,1). (o, L-2,- é)})

Bemerkung (Rangberech von li " Gleich yst ). Auf das zu
einem gegebenen linearen Glelchungssystem gehdrige homogene Gleichungssystem
wendet man den GauBschen Algorithmus an. Der GauBsche Algorithmus fiihrt zu
einer Entscheidung, wie viele Unbekannte frei wihlbar sind. Diese Anzahl der frei
wiihlbaren Unbekannten gibt die Dimension des Ldsungsraumes an. Der Rang
betriigt dann: Anzahl -der Unbekannten minus Di jon des Losung
Gleichbedeutend dazu ist, daB der Rang gerade durch die Anzahl der nichttrivialen
Zeilen gegeben wird, die sich nach AbschluB des GauBschen Algorithmus in der
Trapezform noch vorfinden. Man iiberzeugt sich nimlich davon, daB der GauBsche
Algorithmus zu linear unabhiingigen Zeilen fiihrt.

Fiir unsere vorherigen Beispiele heiBt dies: Das erste homogene Gleichungs-
system hat den Rang 3, das zweite homogene Gleichungssystem hat den Rang 2,
das dritte homogene Gleichungssystem hat den Rang 2.

5.5.  Ubungsaufgaben

1. Im R? bestimmt jede Gleichung f(x) = & mit mchh\lngeartetem { € Z(R?) und « ¢ R eine Ge-

rade. (Ben Zugrundelegung dor euklidisch des R? macht die Losungs-
it der hung eine Gende aus). Man ermittle Bedingungen dafir,

daB die Gerade puullel zurz- Achse verliuft! (Ausgedriickt durch das Koeffiziententupel von
{ und den Wert «).

2. Wann und nur wann haben zwei Geraden im R?, die durch dle Gleichungen f(x) = «, g(x) =
mit f, g ¢ L(R?), «, f ¢ R, beschrieben werden, genau einen Schnittpunkt? (Vgl. Aufgabe 1.)

3. Welche geometrische Deutung in R? und R? kann man dem Hilfssatz iiber die Trennbarkeit
von linearen Teilriumen und Punkten durch Linearformen geben? (Existenz von Gerade bzw.
Ebene, dle nicht durch den gegebenen Punkt verlaufen und sich noch geeignet zu dem

verhalten.)

BOF
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4. Man bestimme alle Elemente & = (z,, z,, 2,) des R?, die auf der Hyperebene liegen, welche die
Elemente (1,0,0), (0, 1, 0) (0,0, 1) enthiilt! Man gebe eine Hyperebenengleichung fiir die
gewiinschte Hyperebene an.

5. Das folgende Gleichungssystem ist zu lésen:

i+ T+ 7+ 7, =5,
22 + 35+ 2+ z,=2,
4 + 224 + 3z, = 18,

5zl+411+3-"s+2’c=
6. Das folgende Gleich ygtem ist in Abhiingigkeit von 4 zu lgeen:
4y +z =1, ’
—z+Ay+z =4,
—z — y+l.z=—)..
7. Man bestimme eine Basis des Losung des folgenden Gleichungssy

5tz —z+z =0,
—Zy+ 2tz =0,
3z, + 24 — 2, + 32, =0,
Zy — 2y =.0.
8. Sind die folgenden Elemente des R? linear unabhingig:
e=(1,-21), y=06-12), z=(12

9. Man ittle drei Hyperel ich im R?, so daB der Durchschnitt der Hyperebenen
gerade nur aus dem Element (l 1, 1) besteht.
10. Was fiir eine Figur entsteh lmR’(ben klidischer Vi haulichung), wenn man die Kom-

plexsumme der Menge {(z,, 2,): z. + 2,2 = 1} mit slch selbst, betrachtet?



6. Lineare Abbildungen des n-dimensionalen reellen
Zahlenraumes. Matrizen

6.1.  Erklirung der linearen Abbildungen des n-dimenslonalen reellen
Zahlenraumes. Beispiele

Die mit einem gegeb linearen Gleich ystem verbundene Aufgabenstellung
I

wollen wir jetzt von einem neuen abbild : t tischen Standpunkt betrachten.
Es sei nun ein allgemeines li Gleichungssystem in n Unbekannten mit m
Gleichungen vorgelegt:
@y + GpTs + -+ G1aTa = by,
Ty A GxTy + oo + GanTa = by,
1Ty + QpgZy + -+ + GpyTp = by
Wir lassen iichst die vorgeschrieb rechten Seiten auBer Betracht und

nehmen uns lediglich die gegebenen Linearformen 1, I, ..., l,, mit den angeschrie-
benen Koeffiziententupeln (@, @ya, ..., @1a), -+, (@m1s -+ .+ @) VOT. Zu jedem x € R*
gehort dann ein Punkt ¢

¥ = (@), L@), ..., la(@)

des R™. Wir haben damlt eine Abblldung A:R* >R - (L), ... s In(@)). Das
Lisen des g ich bedeutet dann, alle & € R® a.usimdlg zu
machen, ﬁir welche A(z) =b lst mlt b = (b, b,, ..., by). Das Lisen von linearen
Gleichungssystemen ist also in der Natur seiner Aufgabenstellung etwa vollkommen
dem Lésen von Gleichungen n-ten Grades verwandt, nur mit dem Unterschied, daB
die gegebenen Abbildungen verschiedener Natur sind. Uber die Natur der bei linearen
Gleichungssystemen auftretenden Abbildungen 4 kann man sich rasch einen weiteren
Einblick verschaffen. Die Abbildung 4 hat hinsichtlich der arithmetischen Struktur
im R* die gleichen Eigenschaften wie eine Linearform, d. h., 4 ist additiv und homogen.

Definition 1 (Lineare Abbildungen desR" in den R™). Eine Abbildung 4: R* — R™
des n-dimensionalen reellen Zahlenraumes in den m-dimensionalen reellen Zahlen-
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Jinat,

raum heiBt lineare Abbildung genau dann, wenn hinsichtli h der koc
Addition im R*, R™ und der Multiplikation mit Skalaren folgendes gilt:

1. Az + y) = A®) + Aly) fiir allex,y€R".

2. A(ax) = axA(X) fir alle ¢ R* und «€R.

Bemerkungen.

1. Reelle Linearformen in » Unbekannten sind ein Spezialfall der linearen Ab-
bildungen. Bei ihnen handelt es sich um lineare Abbildungen des R" in den R!.

2. Ein anderer Typ von linearen Abbildungen ist uns bei den Isomorphismen vom
R* in den R™ (m = n) begegnet Hier tritt zur Linearitit der Abbildung noch die
Eineindeutigkeit.

Einige weitere Beispiele fiir lineare Abbildungen

1. Es sei 2 eine beliebige fixierte reelle Zahl. Dann ist im R* durch die Festsetzung
A(x) := Az, ® € R*, eine lineare Abbildung erklirt. Sie heiBt Homothetie mit dem
Koeffizienten 1. Man verfolge etwa die Wirkung von 4 an der geometrisch-eukli-
dischen Veranschaulichung des R? bzw. R3. Im Fall 0 < 4 < 1 wirkt die Abbildung
stauchend und im Fall 2 > 1 streckend. A = —1 bedeutet eine zentrale Spiegelung,
80 daB also bei negativem A eine Z tzung der er ten Wirkung mit
einer zentralen Spiegelung de |

2. Lineare Abbildungen sind insb dere fiir die G trie wichtig. Das wird
dort im einzelnen besprochen. Hier illustrieren wir lediglich noch etwa.s mehr den
Begriff der linearen Abbildung, wobei wir uns auf Schull tnisse bezieh

Wir betrachten im R® folgende anschaulich beschriebene Abbildung 4. In der

t klidiscl Vi haulich des R® als. Ebene wihlen wir eine

belleblge Gerade ! durch den Ursprung. Zum anderen sei eine davon verschiedene
Gerade g vorgegeben. Jetzt werde jeder Punkt der Ebene durch Parallelprojektion
auf die Gerade ! lings der vorgegebenen Richtung g projiziert (vgl. Abb. 5 und 6).

)

Abb. 5 Abb. 8

Durch diese Vorschrift wird eine Abbildung 4: R* — R? festgelegt. Als Bild
tritt hierbei der eindimensionale Teilraum des R* auf, der durch die Ursprungs-
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gerade ! repriisentiert wird. An Hand von Schulkenntnissen mache man sich klar, daB
die Abbildung linear ist.

3. Entsprechend zum vorstehenden Beispiel erortere man, daB eine axiale Strek-
kung im R% in bezug auf eine gegebene Ursprungsgerade ! lings einer gegebenen
(davon verschiedenen) Geraden g mit einem Streckungsfaktor A eine lineare Ab-
bildung im R* beschreibt. Der Fall 2 = —1 bedeutet hierbei die Spiegelung an !
lings der durch g gegebenen Richtung.

4. Es sei A: R" — R™ eine beliebige lineare Abbildung des R* in den R™. Wir be-
trachten die kanonischen Koordinatenprojektionen p,, p,, ..., pn in den R™. Jedes
p;: R® — R! ist, wie wir wissen, eine Linearform auf dem R™, die jedem Element
y € R™ gerade als Funktionalwert seine i-te Koordinate zuordnet. Die Zusammen-
setzung von A mit den p;, i =1,...,m, liefert uns m Linearformen f; :=p; 0 4
auf dem R". Die Abbildung A ist vollstindig durch diese m Linearformen bestimmt.
Es ist

A@) =y = (L&), @), ..., fwl@)), ®ER™
Die zu den f; gehorenden Koeffiziententupel seien (a;j, a3, ..., @;s). Dann ist also

Y1 = ey + 6Ty + -+ + Gy,
Ys = BT + Gp%3 + -+ + AT,

Ym = Gmi%y + GmaTs + -+ + Gpala-

Der Verlauf der linearen Abbildung 4: R* - R™, wo also jedem & = (zy, ..., Z,)
des R* das Element A(®) =y = (), Y3, ---, Ym) zugeordnet wird, ist demnach in
der gleichen Weise beschrieben wie in der Situation, die uns zum Begriff der linearen
Abbildung gefiihrt hat. Ein lineares Funktional f: R* — R! wird durch ein Koeffi-
ziententupel (a,, @y, ...,a,) beschrieben. Eine lineare Abbildung 4: R* - R™ wird
— wie wir jetzt herausgefunden haben — durch ein Koeffizientenschema beschrieben,
das aus m Zeilen und n Spalten besteht:

Qg G ... Gy

Gz Ggg -.- Gay

A1 G2 - - - Bmn

Mit solchen Koeffizientenschemata werden wir uns nun etwas ausfiihrlicher be-
schiftigen.
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6.2.  Matrizen und die durch sie beschriebenen linearen Abbildungen

Definition 1 (Reelle Matrix vom Typ m X n). Unter einer (reellen) Mairiz vom
Typ m X n; m, n natiirliche Zahlen; versteht man eine Abbildung A der Menge
1,2,...,m} x {1,2,...,n} in R. Diese Abbildung

A:{1,2,...,m x{1,2,...,n} >R,

definiert auf der endlichen Menge (1,2,...,m} X (1,2,...,2}, gibt man zweck-
méBig durch ihren Verlauf (s, j) — a; in einer rechteckigen Tabelle wie folgt an:

A1y Gyg --- Gy

A4 Gy Gy ... Ogg

Tm1 Cmz -« Cmn
oder kiirzer (a,,),_, ,,,,, - a;; nennt man das allgemeine Element der Matriz A. Der
erste Index ¢ des Elementes a;; gibt den Zeil d und der ite Index den

Spaltenstand des Elementes a;; an.

Man sagt auch: Eine Matrix vom Typ m X n (gelesen ,,m Kreuz n‘) ist ein recht-
eckiges Zahlenschema von m Zeilen und n Spalten. Man meint damit natiirlich den
ausgesprochenen Sachverhalt der Abbildung. Die ZweckmiBigkeit der Angabe der
hier interessierenden Abbildungen durch die rechteckige Anordnung der auftretenden
Bildelemente geht fiirs erste schon aus dem oben vermerkten Zusammenhang mit
linearen Gleichungssystemen hervor. Weitere Vorteile dieser Schreibweise werden
sich bald zeigen, vor allem bezieht sich die noch zu erklérende Matrizenmultiplikation
wesentlich auf die Zeilen-Spalten-Struktur einer Matrix.

Definition 2 (Gleichheit von Matrizen). Es seien 4, B zwei (reelle) Matrizen,

A = @y)iwy,..my B = Guey.....-
Jj=l..n :

Diese heifen gleich genau dann, wenn sie als Abbildung gleich sind. Fiir die Gleich-
heit von Matrizen ist also notwendig und hinreichend, daB ihr Typ iibereinstimmt
und sie auBerdem El t fiir El t libereinsti

" i =k1,...,m)
nes und a;; =by fiiralle i = UL, .y m).

Im letzten Beispiel des vorhergehenden Abschnitts haben wir bemerkt, daB jede
lineare Abbildung 4 : R* — R™ durch eine gewisse Matrix vom Typ m X n beschrieben
werden kann. Diesen Sachverhalt fassen wir jetzt allgemeiner, indem wir von ge-
wissen Basen im R* und R™ ausgehen. Der urspriingliche Fall bedeutet dann gerade
die Bezugnahme auf die natiirlichen Basen im R* und R™.

m=r
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Definition 3 (Die einer linearen Abbildung assoziierte Matrix). Es sei im R*
eine beliebige Basis B in einer bestimmten Anordnung fixiert: 8:b,, ..., b,. Es sei
im R™ eine beliebige Basis € in einer bestimmten Anordnung fixiert: €: ¢y, ..., Cu.
Jeder linearen Abbildung 4: R* — R™ liaBt sich dann eine von den Basen 8B, € ab--
hingende Matrix A vom Typ m X n in der folgenden Weise zuordnen:

4 = @y)izy.ms
j=1...%
wobei a;; die i-te Koordinate von A(b,) in bezug auf die Basis € ist. In der j-ten
Spalte von A steht also das Koordinatentupel des El tes A (b;) beziiglich der
Baasis €.

Die Matrix A heiBt die der linearen Abbildung A4:R* — R™ beziiglich der an-
geordneten Basen 8 und € assoziierte Matriz oder auch die die lineare Abbildung
A: R* — R™ beziiglich der Basen 8 und § beschreibende Matrix.

Wir werden sogleich auseinandersetzen, in welchem Sinne die Matrix die lineare
Abbildung bei gegebenen Basen beschreibt. Zuvor die folgenden

Bemerkungen.

1. Bei fixierten Basen gehdren zu verschiedenen linearen Abblldungen auch stets
verschied beschreib de Matrizen.

2. Jede Matrix vom Typ m X n ist auch stets beschreibende Matrix einer gewissen
linearen Abbildung vom R® in R™ beziiglich der fixierten Basen (Nachweis).

3. In dem Spezialfall einer linearen Abbildung 4:R® — R* des R* in sich tritt
hiufig der Umstand ein, daB eine beschreibende Matrix von A beziiglich eines
Basispaares 8, B mit ein und demselben ersten und zweiten Glied zu betrachten ist.
Man spricht in diesem Fall von der beschreibenden Matrix von A beziiglich der
Basis 8.

Satz 1 (Beschreibung einer linearen Abbilaung durch die assoziierte Matrix). In

den Raumen R* und R™ sei je eine geordnete Basis B:b,,...,b, und €:c,,...,Cq
fiziert. Es sei eine lineare Abbildung 4: R® — R™ gegeben. Es bezeichne
4 = @y)iat..m
jemlin,

die zu A beziiglich der Basen B und € gehirige beschreibende. Matrixz. Die Matriz
beschreibt dann in der folgenden Weise den Verlauf der Abbildung A: Es seien ® € R*,
y € R™ zwes gegebene Elemente. Fiir sie gilt dann: A(x) = y < Fiir die Koordinaten-
tupel (£, ..., &) von & beztiglich B und (n,, ..., ys) von y beziiglich € gilt

N = by + 8oy + - + andy,

» = Gmié1 + Gmabs + vt + Gmaéa-
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Beweis. Unter den gemachten Voraussetzungen ist
T=5b1+ 4 &bs, Yy =C + -+ Tl
und
A(by) = ay€; + 33 + -+ + ApiCrm-
Daraus folgt wegen der Linearitit von 4
hd R » - m n
aw =4 (Zn) = Zeav) = Fe Sae = £ (Zoe)en
=1 =t =1 =1 s=1\r=1

Also sind die Koordinaten von A(z) beziiglich der Basis € gerade
- » L
2141.5.,2; a!ven "')Z‘la—'fv'

Wir notieren zwecks besserer Einprigung das folgende Diagramm fir den Zu-
sammenhang zwischen A und A (es bezeichne 4 eine lineare Abbildung, 4 ihre beschrei-
bende Matrix beziiglich der angeordneten Basen B und € im R” bzw. R™, § das
Koordinatentupel von & € R* beziiglich B, 7 das Koordinatentupel von y € R™ beziig-
lich €):

y A4 § |
- &
B8 ¢ - . e "
i-te Zeile |a;, aiy ... a;y | |,mi =X a8,
i Tig. .- - Sin =,
§ l—A—' n &

Einige Beispiele fiir Matrizdarstellungen von linearen Abbildungen

1.Im R* betrachten wir eine beliebige angeordnete Basis 8: b,, ..., b,. Wie lautet
die assoziierte Matrix der identischen Abbildung I: R* — R*, d. h. I(x) = & fiir alle
x € R*, beziiglich des Basispaares 8, B? Die assoziierte Matrix I ist quadratisch
vom Typ » X n. In ihrer j-ten Spalte steht das Koordinatentupel von b, beziiglich 8,
d.h.

100...0
010...0
I=|001...0

Es treten also nur in der von links oben nach rechts unten laufenden Diagonalen
Einsen auf und sonst Nullen. Diese Matrix heiBt nach einem im niichsten Abschnitt
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etsnchthchen Grunde dle Einkeitsmatriz vom Typ n X n. Fiir gewohnlich wird sie

mit der f den B: hnungsweise abgekiirzt:
I= (‘M)--:
=1

Hierbei heiBt é;; das Ki romckcr—Symbol, es ist definiert durch

8 = 1 fir i=j, s,j=1,...,n,
#7010 fir i44, Gi=1,..,n

2. Wir nehmen uns das im vorhergc den Abschnitt deutete Beispiel der
Parallelprojektion P des R* auf eine Ursprungsgerade lings ciner vorgeschnebenen
Richtung vor. Withlt man die Basis geeignet, so wird die Projektion P durch die
Matrix P beziiglich des Basispaares B, 8 wie folgt beschrieben werden:

_f{10
P=(30)

Wir sehen an diesem Beispiel die ZweckmiBigkeit der geeigneten Basisauswahl.
Man wird die Basen jeweils so wihlen, daB iibersichtliche Matrixdarstellungen zu-
stande kommen.

3. Fiir das ebenfalls im vorhergehenden Abschnitt angedeutete Beispiel der
axialen Streckung zeige man durch geeignete Basi hl eine Matrixdarstellung
der Form

S=(g ‘l’)

6.3.  Algebraische Operationen fiir lineare Abbildungen. Matrizen-
kalkiil

Fiir lineare Abbildungen des R* in den R™ kann man auf eine uns schon geliufige
Art eine Addition und Multiplikation mit reellen Skalaren erkliren. Wir werden
niimlich ganz entsprechend wie mit den Linearformen zu verfahren haben.

Definition 1 (Punktweise Addition und Multiplikation mit einem Skalar fiir
lineare Abbildungen). Es bezeichne #(R*, R™) das System aller linearen Abbildungen
des R" in den R™. Unter der punktweisen Summe zweter linearer Abbildungen A, B
€ Z(R*, R™) versteht man die Abbildung 4 + B: R* — R™ mit dem Verleuf (4 + B)(z)
:= A(x) + B(x)fiir alle ® € R* (hierbei meint natiirlich 4(x) + B(x) di> koordinaten-
weise Addition im R™).

Unter der punktweisen Multiplikation einer linearen Abbildung A € £ (R®, R™) mit
einem Skalar « € R versteht man die Abbildung x4:R* - R™ mit dom Verlauf
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(xA) (®) := ad(w) fiir alle 2 € R* (hierbei meint natiirlich a4(x) die koordinaten-
weise Multiplikation von « mit 4(x) im R™).

Satz 1 (Arithmetische Struktur des Systems aller linearen Abbildungen des R*
in den R™ hinsichtlich der punktweisen Addition und Multiplikation mit einem
Skalar). Die in £(R*, R™) erklirte binire Operation der punkiweisen Addition von
linearen Abbildung und die punktweise Multiplikation mit reellen Skalaren haben

41, A Fa? A. b, l
die | Gr t

I Fuf die Addmon + gtlt
1. A + B = B + A fiir alle A. B ¢ £(R*, R™) (Kommutativitit der Addition).
2. (4 + B)+ C = A4 + (B + C) fir alle A, B, C € £(R*, R™) (4ssoziativilit der
Addition).
3. Es gibt ein eindeutig bestimmies Element 0 € £(R*, R™), so daf A + 0 = A fiir
alle A € Z(R*, R™) ist (Existenz und Einzigkeit des Nullel tes).
4. Zu jedem A € £ (R*, R™) existiert ein (emdeuttg bestimmltes) Element, bezeichnet
durch —A, fiir welches A + (—A) = 0 ist (Existenz und Einzigkest des Inversen).
. Fiir die Multiplikation mit einem reellen Skalar gilt:
5. 14 = A fiir alle A € L(R*,R™).
8. (xp) A = «(BA) fiir alle «,B € R und alle A € £L(R", R™) (Assoziativitit der
Multiplikation mit einem Skalar).
II1. Fir das Z piel der punktweisen Addition mit der Multiplikation mit
einem reellen Skalar gilt:
7. (¢ + ) A = x4 + pA fiir alle «, § € R und alle 4 ¢ £(R", R™) (Distributivitit
der Multiplikation mit einem Skalar beziiglich der Addition von Skalaren).
8. a(A + B) = xd + «B fiir alle « € R und alle A, B € £(R*, R™) (Distributivitit
der Multiplikation mit einem Skalar beziiglich der punktweisen Addition).

Bemerkung. Der Spezialfall #(R", R!) ist uns schon als System £ (R*) der simt-
lichen Linearformen auf dem R* vertraut. Wir werden daher den ohne neue Ideen
ablaufenden Beweis in der jetzigen Situation nicht reproduzieren. Die Details
mache sich der Leser als niitzliche Wiederholung selber klar.

Wir weisen nun auf einen wichtigen Umstand hin: Lineare Abbildungen kénnen
unter Bezugnahme auf Basen durch Matrizen beschrieben werden. Die algebraischen
Operationen fiir li Abbild ii sich lolghch in gewissen Operationen
fiir die Matrizen widerspiegeln. er zielen also auf ein gewisses Rechnen mit Matrizen
ab. Ein solches Rechnen mit Matrizen — der sogenannte Matrizenkalkiil — hat mit
dem englischen Mathematiker A. CAYLEY im Jahre 1858 begonnen.

Definition 2 (Matrizenaddition und Multiplikation mit einem Skalar). Es
bezeichne #(m X n) die Menge aller reellen Matrizen vom Typ m X . Fiir Matrizen
A, B ¢ #(m X n) ist die Matrizsumme A + B als Matrix vom Typ m X # mit dem
allgemeinen Element a;; + by erkliirt sofern

=(“ik);' (b-k)' =t

I

-

ist.
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Fiir die Matrix 4 € #(m X n) ist das Produkt mit einem Skalar & € R als Matrix
«A mit dem allgemeinen Element ag;; erklirt. Wir erkennen unmittelbar den folgen-
den

Satz 2 (Summe und skalares Vielfaches von linearen Abbildungen und ihre Be-
schreibung durch Matrizen). Es seien A, B lineare Abbildungen des R* in den R™ und
o ses ein reeller Skalar, « € R. Sind A und B die assoziierten Matrizen von A, B beziig-
lich gewisser fizierter Basen € und ® im R® bzw. R™, so gilt folgendes:

1. Der punktweisen Summe A + B der linearen Abbildungen A, B kemmt beziiglich
des Basispaares €, D in R®, R™ als beachreibende Matriz die Matriz A + B zu.

In Diagrammform:

4,Be Z(R",R") —— 4 + B¢ LR R")
it
(L) ()

—t—
A,Bc A(mXn) ——— A+ B¢ M#(mxXn)

2. Der punktweisen Multiplikation «A der linearen Abbildung A mit dem Skalar «
kommt beziiglich des Basispaares B, C in R*, R™ als beschreibende Matriz die Matriz
«A zu.

In Diagrammform:
AcLRR™) ——— x4 € L(R*,R™)

()] (U]

+
Ach(mxn) > A cMH(m X n)

Bemorkung Bei fixierten Basispaaren (€, D) fiir R", R™ besteht also eine ein-

deutige Entsprechung zwischen #(R", R™) und .#(m X n), die sogar die arith-
metische Struktur invariant 1a8t. Wir konnen also sagen, daB das System der Matrizen
(m X n) hinsichtlich der Matrizenaddition und Multiplikation mit Skalaren iso-
morph ist zu #(R* R®) hinsichtlich der punktweisen Addition und Multiplikation
mit Skalaren. Bei den Matrizen aus .#(m X n) handelt es sich nun um alle Abbildun-
genvon (1,2,...,m} x (1,2, ..., n} in R. Wir sehen somit, daB das System .#(m X n)
beziiglich der Matnzennddltlon und Multlpllkatlon mit Skalaren seinerseits isomorph
ist zu dem ar tischen m - n-d \! llen Zahlenraum R™*.

Elne weitere Operation fiir hnea,re Abbildungen ist bedeutungsvoll: die Hinter-

a, halt oder

-
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Definition 3 (Hintereinanderschaltung von linearen Abbildungen). Es sei
A:R* — R™ eine lineare Abbildung des R* in den R™ und B: R™ —> R* eine lineare
Abblldung des R™ in den R*. Die zusa tzte Abbildung B o 4:R* — R* ist
dann wie folgt erkliirt: (B o A) (x) := B(4 (a:)) fiir alle & € R*. Dlese Hinteresnander-
schaltung von linearen Abbildungen ergibt wieder eine lineare Abbildung (Bestiti-
gung!).

Wir machen extra noch einmal darauf aufmerksam, daB zur Hintereinander-
schaltung von linearen Abbildungen A, B in der Form B o A zuerst A ausgefiihrt
wird und dann B und daB dabei der Wertebereich der zuerst auszufiilhrenden Ab-
bildung mit dem Definitionsbereich der danach auszufiihrenden Abbildung iiber-
einstimmen muB.

In Diagrammform:
R® —————R"
\__‘ P
Bod ™ A€ Z(R"R)
) B =>Bodec LR RY.
Be £(R™, RY)

R*

Bemerkung. Die Hintereinanderschaltung von Abbildungen nennt man bis-
weilen auch das Produkt von Abbildungen.

Jetuzt wird die wichtige Frage nach der Widerspiegelung der Zusammensetzung von
linearen Abbildungen an Hand von assoziierten Matrizen erértert.
In R*, R™ und R* seien angeordnete Basen

B:by,...,b,; C:epy.eesCns D:dy, ..., dy

fixiert. Fiir gegebene lineare Abbildungen 4:R* - R™ und B: R® — R* mogen 4
€ M (m X n), B € #(kXxm) die zu den Basispaaren 8, € bzw.€, D gehorigen beschrei-
benden Matrizen von 4 und B sein. Welche Matrix vom Typ (k X n) gehort zu Bo 4
beziiglich des Basispaares 8, D? Die gesuchte Matrix C hat in ihrer ersten Spalte das
Koordinatentupel von (B oA4) (b,) beziiglich D, in ihrer zweiten Spalte das Ko-
ordinatentupel von (B o A4) (b,) beziiglich D,..., in ihrer n-ten Spalte das Koordi-
natentupel von (B o 4) (b,) beziglich D.
Unter Benutzung von
= (@if);,, o B = (bm)y=1.....b

j=1.. v=1,..m

erhalten wir

m m k
4(b)) = Zn aici, (Bod)(by) = é‘l ayB(c;), B(c) = é‘l b.d,,
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also insgesamt
m sk k m
(BoA) (b)) =X ay Y bd, =X (): bpi“ii) d,.
i=1  u=1 w=1 \i=1

Das allgemeine Element von C ist demnach
Ld
u = X buiaiy-
i=1

Definition 4 (Matrizenmultiplikation). Es seien

zwei Matrizen des Typs k X m bzw. I X n. Diese heiBen verkeltet.genau dann, wenn
m = 1 ist. Fiir zwei verkettete Matrizen B, A wird ihr Matrizenprodukt B - A als die
folgende Matrix erklirt: B - A ist vom Typ k X # und hat das allgemeine Element

»
i =’£b”a,,A (w=1,....,k; j=1,...,n).

Merkregel zur Matrizenmultiplikation

1. Verkettungsbedingung
Fiir zwei Matrizen B und A ist ihr Produkt B - 4 nur dann erklirt, wenn der links-
stehende Faktor genau so viele Spalten besitzt, wie der rechtsstehende Faktor
Zeilen aufweist.

2. Aufbau der Produktmatrix

B B-A
itoZeile [by . bu) [ 1 ) —— [T ) itezeite
j-te Spalte j-te Spalte

Das Element in der i-ten Zeile und j-ten Spalte der Matrix B - A hat die Gestalt

bir@iy + g8y + - + bintas.

Dieses Element in der Kreuzung der i-ten Zeile und j-ten Spalte von B - A erhilt man
als Summe der fortlaufend gebildeten Produkte der Elemente der i-ten Zeile von B
mit den Elementen der j-ten Spalte von A.

Wir notieren uns den folgenden

Satz 2 (Produkt von linearen Abbildungen und seine Beschreibung durch Matri-
zen). Es seien A: R* — R™, B: R — R* lineare Abbildungen. Sind A und B die asso-
ziserten Matrizen von A, B beziiglich gewisser fizierter Basen B, €, D im R*, R™, R¥,
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80 gilt folgendes: Dem Produkt B o A: R® — R¥ der linearen Abbildungen A, B k
beziiglich des Basisp B, D in R*, R* als beschreibende Matriz die Matriz B - A zu.
In Diagrammform:

Aec R R"), Be LR R |— Bodc Z(RRY

8,¢ () B, D

Ac MHmxn), BecMkxm) — B-Ac #HkXn)

Bei der Hintereinanderschaltung von linearen Abbildungen und der entsprechenden
Operation fiir die Matrizen war die Bezeichnungsweise Produkt gebraucht worden.
Eine Rechtfertigung findet diese Bezeichnungsweise, wenn man sich das Zusammen-
spiel dieser Produktbildung mit der Addition von Abbildungen bzw. Matrizen vor-
hiilt, wie es jetzt geschehen soll.

Satz 3 (Grundeigenschaften der Matrizenmultiplikation). Es seien A, B, C Matri-
zen. Dann gilt folgendes:

1. Sind B und C vom gleichen Typ und ist A mit B und mit C verkeltet, so besteht die
Beziehung A - (B + C) = A - B + A - C (Distributivgeselz der Mulliplikation in bezug
auf die Addition). (Entsprechend mit Multiplikation von rechts, sofern die auf-
tretenden Operationen ausfiihrbar sind).

2. Es bezeichne O die Nullmatriz eines beliebigen Typs. Dann bestehen fiir eine be-
liebige Matriz A bes entsprechender Verkettung mit O die Beziehungen

A-0=0,
0-4=0.

3. Es bezeichne I die (quadratische) Einheitsmatriz eines beliebigen Typs. Dann
bestehen fiir eine beliebige Matriz A bei entsprechender. Verkettung mit I die Beziehungen

A-I=A,
I.A = A (Rechifertigung der Bezeichnungsweise Einheitsmatriz).

4. Es sei die Matriz A mit der Matriz B verkettet und es sei B mit A verkettet. Dann
gilt sm allgemeinen

A-B=+B-A (Nichtkommulativitit der Matrizenmultiplikation).

5. Es gibt von der Nullmatriz verschiedene Matrizen A, B, die verkeltet sind, mit der
Eigenschaft

A-B = O (Ezxistenz von Nullteilern bei der Matrizenmultiplikation).
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8. Es seien Matrizen A, B, C in der angeschrieb Reihenfolge verkettet, dann
besteht die Beziehung )
A-(B-C)=(A-B)-C (Assoziativitit der Matrs; Uiplikation).

Beweis. Die Bestitigung ist einfach zu erbringen. Man kann zwei verschiedene
Wege einschlagen. Der eine besteht in der direkten Anwendung der Matri Iti-
plikation. Der andere interpretiert die Matrizen als Darstellungen von linearen
Abblldungen und léuft auf eine Bestiitigung der analogen Beziehungen fiir die

Abbild hi Die vorhergehenden Sitze g ti dann, daB auch
die entsprechend n Matrizenbezieh g/ gelben Der zweite Weg ist sogar weniger
schreibaufwendig, was sich besonders fiir die Assoziativitit zeigt. Die Details fiihre
der Leser selber aus. Wir machen uns lediglich die Aussagen 4 und 5 klar.

Zu 4. Es sei

a2 2=

Dann haben wir

A-B=(_‘: “;) und B-A = (‘l’ (‘))
alsoA-B+B-A.

Welche Abbildungen werden durch beide Matrizen im R? hinsichtlich der natiir-
lichen Basis beschrieben? Wir verfolgen diese Abbildungen in der euklidisch-geo-
metrischen Veranschaulichung des R!. Es gilt fiir die der Matrix A entsprechende
Abbildung 4: & — A(x), wenn & =: (z,, ), s0 ist

B [

(1, Za) ’;’ (2, — 24).

Es ist fiir die der Matrix B entsprechende Abbild\ing B:x+> B(x)beix = (z,, 7,)

b-E)-(2)

(3, T3) P> (7y, —25).
B

also

Abb. 7 veranschaulicht die Wirkung der im Text beschriebenen Abbildungen.
A beechrelbt demzufolge eine Rechtsdrehung um einen rechten Winkel. B beschreibt

lge eine Spiegelung an der x-Achse. Die Hi inanderschaltung B o 4 der
Recht,sdmhung um einen rechten Winkel mlt der Spiegelung an der x-Achse ist von
der Hintereinanderschaltung 4 o B verschi
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7.52 -——— 02,~¥7) p )
r——— ————-ela, 42
: ,I(x,,xz) -T
I 1 !
I T
! |
| .
: ———-J (x7,~X3)
a) F——b1x, ,-x7) [
Abb. 7

Zu 5. Auch hier bezichen wir uns auf die euklidisch-geometrische Veranschaulichung
des R%. Eine Orthogonalprojektion des R? auf die z-Achse wird durch die Matrix

7=(oo)

beschrieben.
Eine Orthogonalprojektion des R? auf die y-Achse wird durch die Matrix

r=(o)

beschrieben.

Die Hintereinanderschaltung der Orthogonalprojektion des R? auf die z-Achse
mit der Orthogonalprojektion auf die y-Achse ergibt aber die Nullabbildung, die
jeden Punkt des R? in den 0-Punkt abbildet. Demzufolge muB P, - P, = O gelten
(was man auch leicht durch direktes Ausrechnen hestiitigt). Es ergibt sich auch
P,-P,=0.

Bemerkungen.

1. Schauen wir zuriick auf den durch eine assoziierte Matrix einer linearen Ab-
bildung vermittelten Ubergang der Koordinatentupel. Wir erkennen folgendes: Es
sei A eine lineare Abbildung des R* in den R™ und A die assoziierte Matrix von 4
beziiglich eines Basispaares B, € in R*, R®. Es sei & € R* und § sein Koordinaten-
tupel beziiglich der Basis 8. Dann hat das Element A(x) beziiglich der Basis €
gerade das Koordinatentupel

7] = Matrizenprodukt von 4 mit der Matrix §,’

hierbei ist § als Matrix vom Typ » X 1 und 7 als Matrix vom Typ m X 1 aufgefaBt.
In genauer Ubereinstimmung mit der Matrixerklirung sollte eigentlich

)iy &
n=("™] wd §=[%

"Im1 ém



8.4. Kern und Bildraum. Der Rang von Matrizen ki

geschrieben werden. Der zweite Index als Kennzeichnung der Spalte eriibrigt sich
aber, da nur eine einzige Spalte auftritt.

Bei der Matrizenmultiplikation ist also wesentlich, daB ein n-Tupel von Zahlen
als eine Matrix vom Typ n X 1 (eine Spalte) oder aber als eine Matrix vom Typ
1 x n (eine Zeile) betmchtet werden kann. Es hat snch in diesem Zusammenhang
folgende Bezeich iirgert: Ein Zahlentupel (mit » Komponenten) als eine
Zeile aufgefaBt (Matnx vom Typ 1 X n) heiBt ein Zeilenvektor, als eine Spalte auf-
gefaBt (Matrix vom Typ = x 1) heit es ein Spaltenvektor. Uber die Bedeutung des
Wortes ,,Vektor* vergleiche man Kapitel 9.

2. Es seien @, y zwei Elemente des R*, sie mogen die Komponenten z; bzw. y;,
i =1,...,7n, haben. Wird & als Zeilenvektor und y als Spaltenvektor aufgefaBt, so
ist das Matrizenprodukt @ - y erklirt, es ergibt sich eine Matrix vom Typ 1 X 1, das
einzige Element ist

Wir haben damit eine Abbildung von R* X R" in R.

Dieses spezielle Matrizenprodukt fiir Elemente aus dem R* heiBt das innere Produkt
oder — weil das Ergebnis stets ein Skalar ist — das Skalarprodukt von & mit y
(nicht zu verwechseln mit' dem skalaren Vielfachen!). Dieser wichtige Spezialfall der
Matrizenmultiplikation wird spéter noch weiter behandelt.

6.4.  Kern und Bildraum linearer Abbildungen. Der Rang von Matrizen

Mit einer linearen Abbildung 4: R* — R™ gehen zwei lineare Teilrdume, der Kern der
Abbildung und der Bildraum der Abbildung einher, die einen gewissen Aufschluf
iiber die Abbildung gestatten. Wir hatten die Niitzlichkeit des Kerns von Linear-
formen schon friiher feststellen kénnen.

Definition 1 (Kern und Bildraum einer linearen Abbildung). Es sei 4: R* — R™
eine lineare Abbildung des R* in denR™. Die Menge {x: ® € R*, A(x) = 0} ist dann
ein linearer Teilraum des R*; er heiBt der Kern der Abbildung A und wird bezeichnet
mit ker 4. Die Menge (y:y € R™, es existiert ein @ € R* mit A(®) =y) ist dann
ein linearer Teilraum des R™, er heiBt der Bildraum der linearen Abbildung A und wird
bezeichnet mit im 4.

Der Leser bestiitige die Teilraumeigenschaften!

Bemerkung. Der linearen Abbildung A4:R* - R™ entspricht, beziiglich der
natiirlichen Basen in R", R™® eine Matrix 4 = (a,,)._l ..... . Der Kern von 4 ist

dann gleichbedeutend mit dem Ldsungsraum des homogenen linearen Gleichungs-
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systems
%y + ey + o+ BTy = 0,

G Ty + Aug¥z A+ o+ + ApaZy = 0.
(Die Anwendung des Matrizenproduktes gestattet die abkiirzende Schreibweise als
Matrizengleichung

A-z=0,

'z
wobeia = : | als Spaltenvektor erscheinen muB und 0 das Nullelement im R™ jst,

Zn,
das als Spaltenvektor aufgefaBt wird.)
Wenn die Réume ker A und im 4 fiir eine lineare Abbildung wirklich gewissen
Einblick in die Wirkung von 4 erméglichen, so werden gewi8 die Dimensionszahlen
dim ker 4 und dim im 4 bedeutungsvoll sein.

Definition 2 (Rang einer linearen Abbildung). Es sei 4: R* — R™ eine lineare
Abbildung des R* in den R™. Die Dimension des Bildraumes von 4 heiBt dann der
Rang der linearen Abbildung.

. rang A := dimim4.
Wir stellen zuerst die folgende Aussage fest:

Satz 1 (Beziehu}:g zwischen den Dimensionen des Kerns und des Bildraumes
einer linearen Abbildung). Es sei A: R" — R™ eine lineare Abbildung. Dann gilt die
folgende Beziehung:

dim ker 4 4 dimim 4 = n.

Beweis.

1. Fall: dim ker 4 = 0. Es gilt: dim ker 4 = 0 & A ist eine eineindeutige lineare
Abbildung. Eine eineindeutige lineare Abbildung bedeutet aber einen 1somorphismus
von R* mit einem linearen Teilraum von R™. Bei einem Isomorphismus bleibt die
Dimension invariant. Also ist dim im4 = n.

2.Fall: dimker 4 =k > 0. Es sei b,, ..., b, eine Basis von ker 4. Diese kann
dann zu einer vollen Basis by, ..., by; by, ..., b, des R® ergiinzt werden. Ist k = n,
80 habeg wir imd4 = (0}. Ist hingegen k < 7, so spannen die Elemente A4(by.,),
..., A(b,) den Teilraum im4 auf. Diese Elemente sind notwendig linear unab-
hiingig! Denn aus ’

opey A(bysy) A -+ + anA(b,) =0
folgt
Afoegrbrsy + - + a,b,) = 0.
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Nun liegen aber nur die Linearkombinationen von by, ..., b, in ker 4. Also muB
gelten:
prbpry + oo+ aby =0,

was wegen der linearen Unabhiingigkeit von by, ..., b, die Relation apy =+« = «,
= 0 bedeutet. Demzufolge ist dim im 4 = n — k bestitigt.

Bemerkung. Wir kennen schon den Begriff des Ranges eines linearen Gleichm;gs-
yst Der vorstehende Satz fiihrt uns mit dem Satz iiber die Struktur der Losungs-
menge eines homogenen linearen Gleichungssystems zu einem Vergleich des Rang-
begriffes eines Gleichungssystems und des Rangbegriffes einer linearen Abbildung.
Zuerst sprechen wir den Begriff des Ranges eines Gleichungssystems in formal leicht
abgeinderter Form wie folgt aus.

Definition 3‘(Zeilenmng einer Matrix). Es sei A eine Matrix vom Typ m X n.
Unter dem Zeilenrang dieser Matrix versteht man den Rang des durch 4 bestimmten
homogenen Gleichungssystems A - & = 0, d. h., der Zeilenrang von 4 ist gleich der
Dimension des linearen Teilraumes von R", der durch die Zeilenvektoren von A4
aufgespannt wird.

Dann kénnen wir also sagen:

Essei A eine Matrix vom Typ m X n. Der Abbildungsrang der durch sie definierten
Abbildung & —~ A - ®, & € R* (als Spaltenvektor aufgefaBt), ist gleich dem Zeilen-
rang der Matrix 4.

Diese Einsicht kénnen wir noch ein wenig weiter treiben.

Definition 4 (Spaltenrang einer Matrix). Es sei 4 eine Matrix vom Typ m X n.
Unter dem Spaltenrang dieser Matrix versteht man die Dimension des linearen Teil- -
raumes von R™, der durch die Spaltenvektoren von A aufgespannt wird.

Satz 2 (Gleichheit von Zeilen- und Spaltenrang einer Matrix). Es sei A eine Matriz
vom Typ m'X n. Dann stimmen Zeilenrang und Spaltenrang von A iiberein. Man
spricht daher einfach von dem Rang einer Matriz. Es gilt 0 < rang A < min {m.n).

Beweis. Die gegebene Matrix A definiert eine lineare Abbildung 4: # > 4 -,
& € R*(als Spaltenvektor aufgefaBt) von R* in R™. Es sei der Zeilenrang von A gleich .
Wir sahen schon, da8 die Beziehung k& = rang 4 besteht. Nun ist der Rang von 4 als

Di i des Bild s von A erklirt. Die Spalten von A sind gerade die Ko-
ordinatentupel eines Erzeug ystems von im 4 beziiglich der natiirlichen Basis
im R™. Es ist der Spaltenrang von A glelch der Dimension des Bildraumes von 4,

heliehi

weil der Ubergang zu Koordinatent beziiglich einer igen Basis einen Iso-
morphismus darstellt. Die letzte Bezlehung ist klar, da der Zeilenrang kleiner oder
gleich der Zeilenzahl sein muB (entsprechend fiir den Spaltenrang).

Wir miissen nun die Frage beantworten, wie sich der Rang einer Abbildung durch
eine beliebige beschreibende Matrix ausdriickt. Die Argumente dazu sind schon
vollstindig in den soeben erfolgtenr Erorterungen aufgetaucht.
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Satz 3 (Rang einer Abbildung und Rang der assoziierten Matrizen). Es ses
A: R* —> R™ eine lineare Abbildung des R" in den R™. A sei die beschreibende Matriz von
A beziiglich esnes fizierten Basispaares B, € in R*, R™. Dann gilt

rang A =rang 4.

Beweis. Die Basis B bestehe aus by, ..., b,. Die Elemente A(b),..., 4(b,)
spannen im 4 auf. Esist rang4 = dim L([A(b,),A(b,), ceey A(b,.)l). Die Spaltenvek-
toren von A seien s,, ..., 8,. Die s; sind die Koordinatentupel von 4 (b;) beziiglich €.
Die Zuordnungy € imA4 + Koordinatentupel von y beziiglich € ist ein Isomorphis-
mus von imd mit L({8,, S, ..., 8,}), daher ist dim im 4 = dim L((s,, ..., 8,)).
Der letzte Wert ist aber der Spaltenrang (= Zeilenrang) von A.

Nach dem letzten Satz kénnen wir fiir eine lineare Abbildung bei Kenntnis einer
beliebigen beschreibenden Matrix den Rang der Abbildung berechnen, da uns ein
Berechnungsverfahren des Ranges eines Gleichungssystems (d.h. einer Matrix)
schon geliufig ist. Eine Rangberechnung macht sich beispielsweise bei der Ent-
scheidung nétig, ob eine gegebene lineare Abbildung eineindeutig ist oder nicht.

Satz 4 (Kennzeichnung der Eineindeutigkeit einer linearen Abbildung durch den
Rang der Abbildung). Es sei A: R — R™ eine lineare Abbildung des R* in den R™.
A ist eineindeutig (d. k. ein Isomorphismus von R* in R™) & rang A = n.

Beweis. Wegenn = dim ker 4 + rang 4 istrang 4 = n iiquivalent mit dim Ker 4
=0. Letateres ist aber mit der Eineindeutigkeit von 4 gleichbedeutend. Denn
A(x) = A(y) ergibt A —y) =0,d. h.z=y.

AbschlieBend sei noch das Verhalten des Ranges von Matrizen bzw. Abbildungen
gegeniiber der Produktbildung notiert.

Satz 5 (Abschitzung des Ranges einer Produktmatrix). Es set A eine Matriz vom
Typm X n und B eine Matriz vom Typ n X k. Dann gilt fiir den Rang der Produkt-
matriz A - B die folgende Ungleichung:

rang (A - B) < min {rang 4, rang B} .

Beweis. A definiert eine Abbildung 4 von R” in R™ und B eine Abbildung B von
RE in den R®. Es ist dim im 4 o B abzuschitzen!

Wir haben im 4 2im 4 o B, d. h.dim im 4 o B < dim im 4. Zum anderen ist
imA4 o B = A(im B), also dim im 4oB < dim im B, denn bei einer linearen Abbildung
hat der Bildraum eines linearen Teilraumes héchstens die Di ion des Urbild-
raumes, wie aus der Betrachtung von Er densyst: hervorgeht.

-
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6.5.  Lineare Abbildungen des R" in sich. Invertierbare Matrizen

hintapred 3 Thaléat £

Je zwei lineare Abbildungen des R* in sich kénnen
ebenso konnen jo zwei quadratische Matrizen des Typsn X n (hlerf\ir sagt man uuch
quadratische Matrizen von der Ordnung n) miteinander multipliziert werden.

Die folgende Aussage stellt noch einmal die Gmndelgenschnften der arithmetischen
Struktur in £(R*, R*) zusammen. Eine véllig analoge Aussage ist dann fiir die arith-
metische Struktur im System .#(n X n) der Matrizen der Ordnung n giiltig, weil
beide Systeme zueinander isomorph sind.

Satz 1 (Arithmetische Struktur der linearen Abbildungen des R* in sich beziiglich
der Addition und Multiplikation). Es bezeichne £ (R*, R*) das System aller linearen
Abbildungen des R* in sich. Man nennt die Elemente von £ (R*, R®) auch bisweslen die
Endomorphumen bzw. Operatoren des R®. .Q’(R' R*) hat dann hinsichdich der pamld-

Addition und Mults 'katlonmtt cmcm Skalar und hinsichtlich der H

;) hrli. 2o $nl, ;) fa’
g die folg Gr g y

1. Fir die Addition gilt:
1. 4 + B = B + A fiir alle A, B ¢ Z(R*, R*) (Kommutativitit der Addition).
2.(A+ B)+ C = A+ (B+ C) fir alle A, B, C € #(R", R*) (Assoziativitit der
Addition).
3. Es gibt ein eindeutig bestimmies Element 0 ¢ £ (R®, R"), sodaf A+0=4
fiir alle £ (R*, R®) ist (Existenz und Einzigkeit des Nullel
4. Zu jedem 4 € L(R*, R*) "'tem"’ tig besti: “Ekmembezewhna
durch —A, fiir welches A + (—A) = 0 st (Ezzatenz und Einzigkeit der Inversen).

I1. Fir die Multiplikation mit einem reellen Skalar gilt:
5.1-A4 = A fiir alle A € (R, R%).
8. (ap) A = «(BA) fiir alle «,B € R und alle 4 ¢ L(R*, R*) (Assoziativitit der
Multiplikation mit einem Skalar).

II1. Fiir das Zusammenspiel der punkiweisen Addition mit der Multiplikation mit
einem reellen Skalar gilt:
7. (¢ + p) A = aA + BA fiiralle x, p € R und alle A € £ (R*, R*) (Distributivitit
der Multiplikation mit einem Skalar beziiglich der Addition von Skalaren).
8. x(A + B) = A + «B fiir alle « € Rund alle 4, B € £(R*, R*) (Distributivitit
der Multiplikation mit einem Skalar beziiglich der punktweisen Addition).

IV. Fiir die Hintereinanderschaltung gilt:
9. Es gibt ein eindeutig bestimmtes Element I € £(R*, R*),s0daf Ao I=I04 = A
fiir alle £ (R*, R") ist (Existenz und Einzigkeit des Einselementes).
10. (Ao B)oC =Ae (BoC) fir alle A B,C € Z(R*, R") (Assoziativitit dt:r
Hinteresnanderschaltung).
11.40(B+0C) = AoB+AoC und (4 + B)o C’ AoC-I-BoC /ur alle
4, B,C € £ (R*,R") (Distributivitit der Hinteres haltung beziiglich der
Addition).
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Man sagt, & (R", R*) bildet beziiglich der betrachteten Operationen eine Algebra
iiber R (oder eine reelle Algebra). Diese Algebra ist bei n = 2 nicht kommutativ, sie
besitzt ein Einselement und bei n = 2 Nullteiler.

EinTeilsystem von.Z(R®, R*) ist von Bedeutung. Dazu die folgenden Betrachtungen:
Eine lineare Abbildung des R* in sich, die eineindeutig ist, muB zugleich auch surjektiv
sein, denn bei eineindeutiger linearer Abbildung 4 des R* in sich ist dim im4 ==n,
also besteht die Beziehung imA4 = R". Dann existiert aber zu 4 die inverse Abbildung
A-1: R* — R", deren Verlauf wie folgt erklirt ist:

TER>yeR: & Ay) ==.
4

A-! gehort wiederum zu £ (R", R*).

Satz 2 (Rein arithmetische Kennzeichnung der Invertierbarkeit von linearen
Abbildungen) Es sei A eine lineare Abbildung des R® in sich. A ist invertierbar (es
existiert die inverse Abbildung), d.h., A ist ememdcvmg (und surjektiv) < Es besteht
eine der folgenden dquival Beds,,

1. Es gibt eine Abbildung B € Z(R", R*) mit B o A = E (identische Abbildung des R*).

2. Es gibt eine Abbtldung C € £ (R*, R*) mit A o C = E (identische Abbildung des R*).
Bei Invertierbarkeit von A sind dann B und C eindeutig bestimmt, es gilt B = A4,
C =41

Beweis. Im Fall der Invertierbarkeit von 4 hat man

AocA ' —E—A104,
denn es ist bei der Existenz von 4-1

THYSYT.

4 4t

Wenn pun fiir ein gewisses B € #(R", R") die Beziechung Bo 4 = E besteht (ent-
sprechend fiir 4 o« C = E), so gilt fiir jedes & € R*

z = B(A(x)).
Demnach folgt aus 4(®,) = A(x,) die Gleichung ®, = x,, d. h., 4 ist eineindeutig.
Dann existiert also A-1, und @ = B(4(x)) bedeutet, daB B = A-1 ist.

Definition 1 (Invertierbare Matrix). Eine quadratische Matrix A der Ordnung »
heilt invertierbar genau dann, wenn eine der folgenden dquivalenten Bedingungen
gilt:

1. Es existiert eine quadratische Matrix B der Ordnungn, so daB das Produkt B - 4
gleich der Einheitsmatrix der Ordnung 7 ist.

2. Es existiert eine quadratische Matrix C der Ordnung », soda8 das Produkt 4 -C
gleich der Einheitsmatrix der Ordnung » ist.
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Bemerkung. Wir sehen nach den voraufgegangenen Erorterungen, da eine zu
einer linearen Abbildung 4 € Z(R*, R") assoziierte Matrix A (bei beliebigem Basis-
paar B, B) genau dann invertierbar ist, wenn die lineare Abbildung 4 invertierbar ist.
Die Matrizen B und C sind dann eindeutig bestimmt, es handelt sich gerade um die
assoziierte Matrix von 4-! beziiglich des Basispaares B, 8 (ein Basispaar B, € mit
€ 3 B kommt bei diesen Betrachtungen nicht in Frage, weil sonst die identische
Abbildung E: R*~ R*mit & +> & nicht durch die Einheitsmatrix beschrieben wird).

B

Man nennt diese zu der invertierbaren Matrix A eindeutig bestimmte Matrix, deren
Produkt mit A (von links und auch von rechts) die Einheitsmatrix ergibt, die zu 4
inverse Malriz, sie wird mit A-! bezeichnet. Invertierbare Matrizen heiSen auch oft-
mals regulire Matrizen. A-! ist selbst wieder invertierbar, ihre inverse Matrix ist A.
Ein Kriterium fiir die Invertierbarkeit (Regularitét) ist schon bekannt (Folgerung
aus dem Satz iiber die Kennzeichnung der Eineindeutigkeit von linearen Abbildungen
durch den Rang).

Satz 3 (Die Kennzeichnung der Invertierbarkeit einer Matrix durch den Rang).
Eine quadratische Matriz der Ordnung n ist genau dann invertierbar (regulir), wenn die
Mairiz den Rang n besitzt.

Unser Matrizenkalkiil ist bisher noch unvollstindig, da wir kein Verfahren er-
ortert haben, die inverse Matrix A-! einer invertierbaren Matrix A anzugeben, ob-
gleich wir durch die Rangberechnung die Invertierbarkeit entscheiden konnen. Der
Algorithmus zur Rangberechnung laBt sich aber leicht so ausgestalten, daB er im
Falle der Invertierbarkeit gleich die inverse Matrix mitliefert. Das wird weiter unten
besprochen. Zuvor noch einige Betrachtungen iiber das System der invertierbaren
Matrizen.

Satz 4 (Struktur des Systems der invertierbaren Matrizen der Ordnung » hinsicht-
lich der Matrizenmultiplikation). Das System aller invertierbaren quadratischen
Matrizen der Ordnung n (ein Teilsystem von #(n X n)) hat folgende Eigenschaften in
bezug auf die Matrizenmultiplikation:

1. Das Produkt zweier invertierbarer quadratischer Malrizen A, B der Ordnitng n
st wieder eine snvertierbare quadratische Matriz der Ordnung n. Es besteht die Be-
ziehung (A - B)! = B-'. A,

2. Es gibt esne (esndeutig bestimmite) invertierbare quadratische Matriz E der Ordnung n,
so daf fiir jede andere invertierbare quadratische Matriz A der Ordnung n A-E
—=E-A=Agil. '

3. Zu jeder tnvertierbaren quadratischen Matriz A der Ordnung n gibt es eine (ein-
deutig Dbestimmte) invertierbare quadratische Matriz A der Ordnung n, so dap A - &
=A.-A=Egiu.

Das System aller inverlierbaren quadratischen Matrizen der Ordnung n bildet hinsicht-
lich der Matrizenmultiplikalion — wie man sagt — eine Gruppe. Man bezeichnet sie
mit GL(n) und nennt sie-die generelle lineare Gruppe der Ordnung n.
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Beweis. Die ausgesprochenen Eigenschaften erkennt man leicht fiir die Hinter-
einanderschaltung der eineindeutigen linearen Abbildungen des R* in sich. Wegen der
Isomorphie zu dem System der invertierbaren Matrizen hinsichtlich der Matrizen-

multiplikation hat man die Bestitigung.

Nun erfolgt die Besprechung eines Verfahrens zur Ermittlung der inversen Matrix.
Wir suchen fiir eine quadratische Matrix A eine quadratische Matrix X mit 4 - X =E.

Sind die Spaltenvektoren von X nacheinander ,, &,, ..., ®,, so sollen also ; € R"
bestimmt werden mit
1 0 0
0 1 (1}
Az, =] .|, Az, =[] Az, =

0

_-Q ...

0
Das ist aber eine Aufgabenstellung zur Losung von n Gleichungssystemen in » Un-
bekannten. Diese Aufgabe 1a8t sich etwa nach dem GauBschen Algorithmus erledigen.
Wir formulieren diese Einsicht als den folgenden

Satz 5 (Verfahren zur Ermittlung der inversen Matrix). Es sei A = (a,,).= Lon eine

quadratische Matriz der Ordnung n. Die Frage nach der inversen Matriz A" d h.,
die Frage nach deren Existenz und deren konkreter Gestalt, wt leichbedeutend mit der

Auflosung der folgenden n inhomog linearen Qleichungssy
(21, 1 T12 0 Zin 0
T2 0 2% 1 Zgn 0
A1 1=t: ) Al )=lo ) Al )= o
Tnt 0 Zaz 6 Tun ;

Es tritt dabei genau eine der folgenden Moglichkeiten ein:
1. Nicht alle n Gleichungssysteme sind losbar.
2. Jedes der n Gleichungssysteme hat genau eine Lisung.
Im ersten Fall ist A nicht snvertierbar. Im zweiten Fall ist A invertierbar, und die zu A
tnverse Matriz lautet
Tz, Tia
A1 — Tg) Tag - .- Lon
Tn1Zaz -+ Tan
Die Entscheldung, welcher Fall vorliegt, erledlgt man bejspielsweise durch den
GauBschen Algoritt
Beispiele zur Invertierbarkeit von Matrizen
Der GauBsche Algorithmus fiir die 7 Gleichungssysteme, die zur inversen Matrix
fithren, wird gleichzeitig fiir alle » Systeme ausgefiihrt.
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1. Hat die quadratische Matrix
123

A=|456
7809,
eine Inverse?
Losung.
Koeffizi bsolut. GI. bei
bei
yj Zyj o |i=1|j=2]j=3
1 2 3 1 [\] 1 2 3 110 0
4 13 6 0 1 (1} } R 0oj]-3|—-6|—4]1 (1]
7 8 9 0 [} 1 ofj—-6|—-12/-7|(0|—6
1 2 3 1 0 o
—_ o | -3 -6| —-4] 1 0
0 0 0 1 . .

Also miiBte fiir j = 1 die Nullform den Wert 1 annehmen, was nicht- méglich ist.
Folglich sind die Gleichungssysteme nicht alle 16sbar. Demzufolge hat A keine Inverse!
(Wir sehen auBerdem, daB rang 4 = 2 ist.)

2. Hat die quadratische Matrix

111
A={—-111
001
eine Inverse?
‘Losung.
Koeffiz. b. " absol. Gl. b.

zj |2y | 2y |i=1]i=2]|j=3

1|1t |t | 0 | 0 |j— tjt1i1]1]0]0

-1 1 {1 | 0| 1 ] of2|12)11]¢
0|01 ] o] o 1 ofoj1]0/0}1
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1] 1
=|==] o
tjofo|5|—3
1| 1
o|ltfo|=] =|-1
2| 2
olof1{o] of 1

Die erste Umformung bringt die Entscheidung, daB A cine Inverse besitzt, die
weitere Umformung liefert die Inverse als

1 1 5
2 2

-1 —

=1 1 _ |
2 2
o o 1

Man iiberzeugt sich durch die Produktbildung 4 - A-! von der Richtigkeit der
Rechnung.

Eine geometrische Interpretation der gegebenen Matrix A als einc heschreibende
Abbildungsmatrix hitte uns auch leicht ohne Rechnung die Invertierbarkeit ent-
scheiden lassen. A beschreibt im R3die Abbildung, durch welche (1, 0, 0) in (1,—1, 0);
(0,1,0) in(1,1,0)und (0, 0, 1)in(1, 1, 1) iibergeht. Die Elemente (1, —1, 0), (1, 1, 0),
(1, 1, 1) spannen aber ganz R?® auf, da die beiden ersten die z, y-Ebene aufspannen
und das dritte Element aus dieser Ebene herausweist.

3. Wann hat die quadratische Matrix

A= (a" “n)
G31 Gz
eine Inverse?
Zwei Fille sind méglich, a,; 4= 0 oder a,; 4= 0. Denn bei a,, =0 und a,=0
liegt keine Invertierbarkeit vor.
1. Fall:a,; =0

Koeffiz.b. | absol. GL.b.

. . —
Zy | 2y |i=1]i=2
a, | an 1 0 o G2 1 0
Ay Gy 0 1 0 Ugy — n ay % 1
n ayy




2.Fall: a;3 0

Koeffiz. b. | absol. Gl b.
zy | 2y i.==l j=2 H—

Gy | O 1 0 LY L 1 0
Gy Gy 0 1 0 Gn G
M, o 1
Oy o™ .

Wir sehen also: Ist a;, 3 0, 80 besteht Invertierbarkeit von A genau dann, wenn
Gy — 2 a3 + 0.
an
Ist a,y 3 0, 80 besteht Invertierbarkeit von 4 genau dann, wenn

Q31 G ay, +0.
a3

Beide Bedingungen zusammenfassend kann man also sagen:
A invertierbar & a,,a53 — 64485, + 0.

Die Inverse von A lautet danﬁ, wie man durch Weiterfiihrung des obigen Verfahrens
erhiilt:

A1 — S S ( [ —“u)'

G183y — G203 \—an Gy

6.6. Basiswechsel und Koordinatentransformationen

Jetzt untersuchen wir den Ubergang von einer Basis des R® zu einer neuen Basis und
interessieren uns dabei vor allem fiir die Beschreibung durch Matrizen. Aus dem
Bisherigen ersiecht man direkt die Giiltigkeit der folgenden Aussage.

Satz 1 (Basiswechsel als lineare Abbildung). Es sei 8: b,, ..., b, eine (angeordnete)
Basis des R* und A: R® — R* eine lineare Abbildung des R* in sich.

Die Abbildung A iberfithrt die Basis 8 genau dann in eine Basis €: ¢,, ...,c. ms't
Ad;) =¢;,i=1,...,n, wenn A den Rang n hat. Zu zwes vorgeged
Basen 9: b,,...,b, und €: ¢,,..., ¢, des R® gibl es genau eine lineare Abbddcmg
A: R* — R" des R* in sich, die die Basis B in die Basis € tiberfiihrt:

Aby) =¢;, i=1,...,n
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Ziehen wir die Matrizendarstellung einer li Abbildung heran, so kommen wir
also zu einer Beschreibung eines Basiswechsels mittels einer Matrix.

Definition 1 (Matrix fiir einen Basiswechsel). Es seien B: b,,...,b, und €:
€y, ..., Cy zWei (angeordnete) Basen des R". Unter der Matrix lur den Basiswechsel
B > € soll die beschreibende Matrix der eindeutig b bbildung
A: R* — R* mit A(b;) = ¢; hinsichtlich der ersten Basis 8 verstanden werden

Demnach ist die Matrix fiir den Basiswechsel B +> €

by b . b b
ty ¢ t, .
n fae ) wobei ‘f'
‘nl tu: oo 'll ‘ni
das Koordinatentupel von ¢; (= A(b;)) beziiglich der Basis B bedeutet.
Wie berechnen sich nun die Koordinaten eines El tes des R* beziiglich einer
gegeb Basis bei Kenntnis der Matrix des Basiswechsels?
Satz 2 (Koordi transf tion bei Basi hsel). Es seien B und € zwei
(angeordnete) Basen des R*. T = (t;,),_, ..... bezeir.hne die Matriz des Basiswechsels
B>C Is =t

&
- (2)
El
das Koordinatentupel von & € R" beziiglich der Basis B (als Spaltenvekior aufgefapt) und
711
1] =
']u
das Koordinatentupel desselben Punkies @ ¢ R* beziiglich der Basis €, s0 besteht folgender
Zusammenhang zwischen § und 1:
N = T8 (oder gleichbedeutend: § = Tv).

Bemerkung. Die Koordinatentupel eines Elements des R* transformieren sich

also bei einem Basiswechsel nicht im gleichen Sinne wie die Basiselemente. Man sagt
dazu: Die Koordinaten transformi sich kontragredient zu den Basiselementen.
Beweis des Satzes. Nach den Voraussetzungen des Satzes gilt einerseits
.
=2 tyb
i=1

und andererseits

x = Zs.b —L 7;¢;-

i=1
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Durch Einsetzen erhilt man daraus
» " " . N " "
=2 ¢bi=Xn X tybi =2 X nptybi = X (2 'um) b;.
i=1 j=1 =1 j=1li=1 i=1 \j=1

Wegen der Eindeutigkeit der Koordinatendarstellung ergibt sich somit

f, =z‘,',17,, i=l,...,n.
=1
Das bedeutet aber gerade
(-
& L
Nun ist die den Basi hsel vermittelnde lineare Abbildung vom Rang 7, also ist

auch ihre beschreibende Matrix T vom Rang n. T besitzt demzufolge eine Inverse
T-1. Durch Multiplikation ergibt sich

T8 =1.
Der soeben bewi Satz b tet die Fmge nach der Berechnung der neuen
Koordinaten bei Kenntnis der alten Koordinaten und der Matrix T des Basiswechsels.
Dazu hat man zuvor die Inverse T-! von T zu besti Sind hingegen die beid

Basen 8: by,..., b, und €: ¢,, ..., ¢, gegeben und die Matrix des Basiswechsels noch
nicht direkt vorgelegt, so wird man zur Berechnung der neuen Koordinaten aus den
alten nicht etwa zuerst T ermitteln und darauf die Inverse T-1 bestimmen, sondern
man wird sogleich T-! errechnen. Dazu notieren wir uns den folgenden

Satz 3 (Matrix eines iterierten Basiswechsels). Es seien B, € und D gewisse an-
geordnete Basen des R*. Die Matriz T beschreibe den Basiswechsel B +— €. Die Matriz
S beschreibe den Basiswechsel € > D. Dann beschreibt die Matriz TS den Basis-
wechsel B — D (Reihenfolge!).

Beweis. Essei B: b,,...,0,;€C: ¢y, ...,¢, und D:d,,..., d,. Dann gilt
Ld "
=3tyb;, d=3syec,
=1} k=1

wobei T = (t.,)‘_ - und § = (au),_, _____ » die jeweiligen Matrizen fiir den Basis-

wechsel 8 G d G + D sind. Danut, ergibt sich durch Einsetzen

" L] LI N " L
4 =38y 3ty =3 3 tysub; = 3 (Z ‘u‘u) b;
k=1 i=1 k=] {=1 i=1 \k=}

Demnach wird also der Basiswechsel 88 > ® durch die Matrix mit dem allgemeinen
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Element
»
= 3 tidyt
=1

beschrieben, d. h., die Matrix fiir den iterierten Basiswechsel ist das Produkt 71'S,
wobei der erste Faktor die Matrix des ersten Basiswechsels ist.
Als Spezialfall hiervon erhilt man das folgende Ergebnis.

Satz 4 (Matrix fiir den inversen Basiswechsel). Es seien 8 und € zwes (angeordnete)
Basen des R*. Den Basiswechsel B > € beschreibe die Matriz T. Dann beschreibt die
Matriz T-! den Basiswechsel € > B.

Beweis. Es sei S die Matrix fiir den inversen Basiswechsel € — %8 zu dem Basis-
wechsel B8 + €. Dann ist fiir den Basiswechsel 88 > B nach dem vorhergehenden
Satz die Produktmatrix T'S beschreibende Matrix. Es ist aber auBerdem die Einheits-
matrix beschreibende Matrix, also erhilt man TS = E,d.h. S = T-1.

Eine lineare Abbildung des R* in sich kann beziiglich jeder beliebigen Basis desR"
durch eine Matrix beschrieben werden. Wie hiingen zwei beschreibende Matrizen ein
und derselben linearen Abbildung hinsichtlich verschied Basen miteinander
zusammen?

Satz 5 (Basiswechsel in Auswirkung auf eine Matrixdarstellung linearer Abbildun-
gen). Es sei A: R* — R® eine lineare Abbildung des R* in sich. Ferner seien zwei (an-
geordnete) Basen B und € des R* vorgegeben. Die beschreibende Malriz von A beziiglich
des Basispaares B, B sei B, die beschreibende Matriz von A beziiglich des Basispaares
@€, € ses C. Wenn der Basiswechsel B8 + € durch die Matrix T beschrieben wird, be-
steht der folgende Zusammenhang zwischen B und C:

C=T-'BT.
Beweis. Die folgenden Daten sind fiir die beschriebene Situation bekannt:
" " L]
B: by, ..., by, €0y, .0, 04, ¢ =‘Z¢.~,b.-, A(by) =.Z byiby, A(ey) =’z‘ 60
=1 =1 =1
Dann erhilt man
L] LJ » " "
Aey)) = 3ty A1) = 3 tiy 3 biby = 3 3 biitiybe
=] i=1 k=1 k=1i=1

und zum anderen
Aley) = Z Guz tab; = 2 taciybi.

Aus dem Vergleich beider Darste]lungen folgt also wegen der Eindeutigkeit der
Koordinatendarstellung )

. L
2 bty = 3 tyeyy fiiralle k,j=1,...,n
i=1 =1
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Die letzte Beziehung ist gleichbedeutend mit der Matrixgleichung'B-T =T -C,
woraus sich wegen der Invertierbarkeit von T

C =T'BT
ergibt.

6.7.  Ubungsaufgaben

1. a) In der Einheit ix I der Ordnung m vertausche man die ¢-te Zeile mit der j-ten Zeile.
Die entstehende Matrix T der Ordnung m ist invertierbar. Welcher Spaltenvektor entsteht
aus dem Spaltenvektor b mit den m Komponenten b,, by, ..., by durch Multiplikation mit T'?
(Man vergleiche also b mit Tb.)

b) Die beim GauBschen Algorithmus vork d 1! Zeil £ eines
b i Gleich

8

A%y + ATy + o + Oy = by,
an’x + GnZy + oo + Gaaza = by,

Gy + GpaZy + ++* + CpaZy = bpy

(in Matrixform Az = b), die bekanntlich in der Ver hung zweier beli ", Zeilen,
der Multiplikation mit einem Skalar oder auch in der Addition einer Zeile zu einer anderen
bestehen, beschreibe man )e'olls durch Multiplikation mit einer Matrix T als Ubergang zu
dem Gleichungssystem TAx = Tb!

2. Gibt es quadratische Mntnmn A der Ordnung # (» = 2) mit den folgenden Eigenschaften:
At (=A-A)=Tud A+I
M.n i iere diese Aufgabenstellung fiir lineare Abbildungen!

1%

3. Fﬂr eine beliebige quodntmche Matrix (" y) gelte stets fiir die fixierte Matrix (“ ﬂ)

(9-69-69-C

Man leite daraus her:

G8)=463)

4. Es werde durch folgende F g ,, Positivitit* von dratisohen Matrizen der Ordnung
n = 2 erklirt: Gogeben sei A = (a‘,)‘,.,

A heiBt ,,poamv“ Az20):s iy = = 0 far ulle ti=1,..,n
Damit sei dann in .#(n X n) ein Vergleich von Matrizen erklirt:

A=2B: A —-B=0.

Welche der folgenden fiir die reellen Zahlen und ihre irliche Ordnung ,,=* bek
Grundregeln gelten dann in (n X n) hinsichtlich ,,=*?

a) (Reflexivitit) A = A fir alle A ¢ 4(n X n)?

b) (Antisymmetrie) A = Bund B=A < A = B fiiralle A, B ¢ #(n X n)?

¢) (Transitivitit) A 2 Bund B = C=3 A = C fir alle A, B,C ¢ A(n X n)?

d) (Monotonie der Addition)A =B =>4 + C =B + Cfiralle A,B,C ¢ #(n X n)?
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o

£

10.

11.

12.

13.

14.

e) (Monotonie der Multiplikation) A 2 0, B2 0=>AB 2 O firalle A,B ¢ 4(n X n)?
f) (Positivitdt der Quadrate) A* = O fiir alle A ¢ A(n X #)?
Im folgenden handle es sich um qusdntische Matrizen, fiir diese zeige man:
a) A = T-'BT = A* = T-'B"'T.
b)AB = BA = (AB)* = A"B~.
c)AB=BA=3A+Br*=% (k) Anr—k Bk, wobei A° = E = B° bedeuten soll.
k=0

Von den beiden folgenden Matrizen entscheide man die Invertierbarkeit und berechne ge-
gebenenfalls die Inverse:

3 -2 1
1t 2 2 1
(2 -2 ), |12 7 Y.
2 -2 1 1
5 3 7

. Von der Matrix

A 10
A= 10 i 1
00 2

berechne man A? und A? und ermittle sodann einen Ausdruck von A®.

. Wie groB ist der Rang der in Aufgabe 7 angeschriebenen Matrix A (in Abhmglgkont von 1)?

Man gebe den Kern und den Blldnnm der durch A4 beziiglich des

y im R?® beschri Abbildung an.
‘Welche Bedmgungen sind an die natirlichen Zahlen 7 und m zu stellen, damit folgendes gilt?
8) Zu geg; Teil L des R 1éBt sich eine lineare Abbildung 4 : R* — R®finden
mit ker A L.
b) Zu g li Teil L desRm liBt sich eine lineare Abbildung A: R* —»R®
finden mit im A = L.
Far zwei hriebene lineare Abbildungen 4: R* — R™ und B: R* — R™ gelte

ker A = ker B.
Folgt daraus im allgemeinen die lineare Abhiingigkeit der beiden Elemente 4, B des Z(R®, R™)?
Das System .4(n X m) aller Matrizen des Typs n X m ist — wie wir wissen — hinsichtlich
der Matrizenaddition und der Multiplikation mitSkalaren isomorph zum R*® mit der koordi-
natenweisen Addition und Multiplikation mit Skalaren.
Man ermittle zwei verschiedene Basen in .#/(n X m) und entscheide die Frage, ob es eine Basis
in A(n X m) gibt, so daB die Rangzahlen der Basisel te alle groBer als Eins sind.
Man beweise, daB ein all, ines li Gleick von n Gleichungen mit # Un-
bekannten gensn dann eindeutig 15ebar ist, wenn die Koeffizientenmatrix invertierbar ist.
Man 13ee folgende Matrizengleich

) (0 D06y
»haea-(3)

Es sei A eine lineare Abbildung des R® in den R™ und 0 die Nullabbildung des R* in den
Rk (d. h. im 0 = {0}).
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16.

Die Loeungsgesamtheit {X: X ¢ #(R™, R¥), X o A = 0} ist als linearer Teilraum von Z(R™, Rk)
nachzuweisen!

Man bestimme auBerdem fiir den Fall n = m = k = 2 die Dimension dieses linearen Teil-
raumes in Abhingigkeit vom Rang der Abbildung 4.

Im R? betrachte man die folgenden Basen

8B:(1,0), (0,1), €:(1,1),(0,1), D:(—1,0), (-1, —1)
und ermittle die Matrizen T', 8 fir den Basiswechsel B D—> €und C—>T.

8
Man ubemuge sich davon, daB die Matrix fiir den Bumwochsel B> D von der Produkt-
matrix ST verschieden ist!
Warum ist Iolgende Argumanutlon mcM stichhaltig?
Dom Basi hsel 8 > € entspricht eine lineare Abbild A,;:R? > R?, die B in € iiber-

fihrt. Dem Basiswechsel € — D P eine lineare Abbildung 4, : R* — R?, die€ in D
iiberfiihrt. Die beschreibende Matrix von A, ist T, die beschreibende Matrix vonA, istS.Sodann
muB nach dem Satz iiber das Produkt von Abbildungen und seine Beschreibung durch
Matrizen fiir die dem Basii hsel ¥ > D prechende lineare Abbildung ,°A|nuchST

die beschreibende Matrix sein.



7. Das Skalarprodukt auf dem n-dimensionalen reellen
Zahlenraum

74.  Erklirung des Skalarproduktes auf dem R* und seine abstrakte
Beschrelbung als Bilinearform

Es war schon darauf aufmerksam gemacht worden, da man ausgehend von dem
Matrizenprodukt eine spezielle Abbildung von R* x R* in R erhiilt, wenn man jedem
Paar von Elementen &, y € R" das Matrizenprodukt xy zuordnet, sofern man x als
Zeilenvektor und y als Spaltenvektor auffaBt. Diese Abbildung sollte das Skalar-
produkt oder das innere Produkt der Elemente &, y heiBen. Sehr niitzliche geometri-
sche Zusammenhiinge sind mit diesem Produkt verbunden. Wir heben noch einmal
explizit seine Erklarung hervor. )

Definition 1 (Skalarprodukt auf dem R"). Unter dem Skalarprodukt auf dem R*®
versteht man die wie folgt erklirte Abbildung:

(».):R* X R* >R
mit dem Verlauf

@ y) = fzi ¥
=1

fiir alle ® = (24, ..., %) und ¥y = (yy, ..., ¥») des R*.

Aus der eingangs erwihnten Tatsache, daB es sich um ein spezielles Matrizen-
produkt handelt, entnimm¢ man sogleich folgende Eigenschaften:

1. Das Skalarprodukt (., .) ist in jedem seiner Argumente linear, d. h., es gilt

(ax + Py, 2) = «(®,2) + P(y, 2) firalle x,f€R und x,y,z€R",
®, ax + Py) = a(z, @) + p(w,y) firalle «,f € Rund ®,y,2 € R".
Zum anderen erkennt man noch
2. Das Skalarprodukt (., .) ist symmetrisch (oder auch kommutativ), d. h., es gilt
(@,y) =y, x) firalle a,y¢cR"

3. Das Skalarprodukt (.,.) ist positiv definit, d. h., es gilt (®,x) = 0 fiir alle
« € R* und (z, ) = 0 genau dann, wenn = 0.
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4. Das Skalarprodukt (.,.) ist hinsichtlich der natiirlicken Basis e,,e,,...,e,
von R® normiert, d. h., es gilt
({e;, e,) = 6;, fiir alle i,i =1,...,n.
Diese Eigenschaften von (.;.) sind auch charakteristisch fiir das Skalarprodukt.

‘Was dies im einzelnen besagen soll, bringen die folgenden Ausfiihrungen zum Aus-
druck.

Definition 2 (Bilinearform auf dem R*). Es sei B: R* X R* — R. Dazu sagt man
auch, daB B eine reelle Abbildung zweier Argumente auf dem R" ist. Diese Abbildung
heiBt eine Bilinearform auf dem R" genau dann, wenn folgendes gilt:

1. Die Abbildung B(x, .): R® - R mit dem Verlauf y > B(wx, y) ist fiir beliebig
fixiertes @ € R® linear, d. h., man hat stets

B(®, ay + pz) = aB(®, y) + pB(x, ?)

fiir alle «, § € Rund @,y,2 € R".
2. Die Abbildung B(., y): R" — R mit dem Verlauf & > B(z, y) ist fiir beliebig
fixiertes y € R" linear, d. h., man hat stets

B(ax + pz,y) = aB(x, y) + pB(z,y)

fiir alle «, f € Rund @, y,2 € R".
Eine Bilinearform B auf dem R* heiBt symmetrisch genau dann, wenn stets gilt:

B(x,y) = B(y, ) fiir alle &,y € R".
Eine Bilinearform B auf dem R", heiBt positiv-definit genau dann, wenn stets
B(®, ) = 0 und dabei nur fiir 2 = 0 gilt: B(®, &) = 0.

Satz 1 (Skalarprodukt als Bilinearform). Das Skalarprodukt auf dem R* ist die
einzige symmetrische Bilinearform B auf dem R™ mit der zusitzlichen Eigenschaft
B(e;, €;) = 8, fiir die natiirliche Basis ey, e,, ..., e, des R". (Diese Bilinearform ist
iiberdies positiv definit.)

Beweis. DasSkalarprodukt ., .): R* X R* — Rist, wie vermerkt, eine Bilinearform
mit den im Satz angegebenen Eigenschaften. Es sei nun B: R* X R* — R eine Bilinear-
form mit den genannten Eigenschaften. Es muB fiiralle ®, y € R* gezeigt werden:

Bx,y) = (x,y).

Dazu sei & = (2, ..., %,) und Yy = (y, ..., ¥a). Dann gilt

L] n
x =) ze;, y=2ye.
i=1 j=1
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Durch Einsetzen erhilt man

By = B(Z ze, 5 ve) = £, 3 suBle, e)
i=1 j=1 i=1j=1

(Induktion!). Nun ist B(e;, €;) = 4y, also verbleibt hochstens fiir ¢ = j ein von Null
verschiedener Summand

B(z,y) =.§z.~y.~ =@,y

7.2. Geometrische Bedeutung des Skalarproduktes im. Falle des R?
und R®. Norm im R*

Die jetzigen Darlegungen sind im Sinne einer Motivierung des Interesses an dem
Skalarprodukt im R" im allgemeinen und an den noch zu entwickelnden ,,geometri-
schen’* Betrachtungen wie Abstand und Orthogonalitit im besond zu verst,

10X17= 10F 12 + B2 = o? + 5% + a3

3
24~
/%
, 2o
*1
Abb. 8
22,24 ,24,2
X(x=(xy,%2, %)) I0Xlz—f\',2+ KR
= 24,2
Y=y, y2.¥ 30 W0V =yf+yi+yd
- IXY12= 11y =y )2 4 (g =y 102+ (xy —yg?
[
Abb. 9

'Wir stiitzen uns hierbei auf éinige Schulkenntnisse und verweisen auf die Ausfithrungen

in MfL, Bde. 6 und 7.
In der euklidischen Veranschaulichung des R? bzw. R? versteht sich nach dem

Pythagoras die Festsetzung, als Abstand des Punktes & = (x,, @,, xy) vom Ursprungs-
punkt die Zahl }z,3 + z,3 + x, ansehen zu wollen (vgl. Abb. 8).
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Weiterhin hat man nach dem Cosinussatz fiir den Winkel y zwischen den Ursprungs-
geraden durch die Punkte & = (2, z,, Z5) und y = (¥;, ¥1, ¥s)

|0X|* 4 |OY|* —2|0X|. [OY|cosy = | XY|®
(vgl. Abb. 9). Eine einfache Umformung fiihrt schlieBlich auf

3
|0X| - |0Y|cosy =} z;y;.
i=1

Wir sehen somit, daB sowohl bei der Abstandsbestimmung als auch bei der Winkel-
bestimmung in R? bzw. R? eine GréBe der gleichen Bauart eine entscheidende Rolle
spielt, nimlich das Skalarprodukt (., .). Fiir den Ursprungsabstand eines beliebj
Punktes & erhielten wir den Wert }(z, z). )

Fiir den Winkel zwischen den Ursprungsgeraden durch die Punkte & und y erhielten
wir den Ausdruck

Ve 2 -V, y)cosy = @, p).

Daraus folgt insbesondere, daB fiir zwei von Null verschiedene Elemente &, y des R®
bzw. R® die durch & und y gehenden Ursprungsgeraden genau dann senkrecht auf-
einanderstehen, wenn das Skalarprodukt (z, y) den Wert Null hat. Diese Verhiltnisse
geben Veranlassung, allgemein im R" analoge Begriffsbildungen wie Abstand und
Orthogonalitit mittels des Skalarproduktes zu erkliren.

Definition 1 (Norm der Elemente des R*). Im R* soll fiir beliebiges® € R® unter
der Norm des El tes & der folgende Zahl t verstanden werden:

llll : =V (, x).

Wir kénnen die Norm von & als eine MaBzahl des ,,Abstandes* des El
vom Element 0 ansehen.

5

x

Satz 1 (Grundeigenschaften der aus dem Skalarprodukt abgeleiteten Norm im R").
Die im R* mit dem Skalarprodukt erklirte Norm der Elemente von R™ ist eine Abbildung
|I.Il: R* — R mit den folgenden Eigenschaften:

1. |@|| = O fiir alle £ € R* und |x|| = O nur firxz =0.

2. |l - ®|| = || - ||| fiir alle « € R und @ € R".

3. ke + yll < llzll + llyll fir alle 2,y € R (sog te Dreiecksungleichung).

Aupferdem gilt noch die folgende Cauchy-Schwarz-Bunjakowski-Ungleickung:
4. @, y)| < |lll - llyll fiir alle x,y € R".

Bemerkung. Der Leser mache sich mittels der euklidischen Veranschaulichung
des R® klar, warum die Ungleichung |l + y|| < [®|| + |ly| den Namen Dreiecks-
ungleichung verdient, wenn man damit auf den Satz anspielt, daB in einem Dreieck
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die Summe der Lingen zweier Seiten stets groSer oder gleich der Linge der restlichen
Seite ist.

Beweis. Die Aussagen 1. und 2. sind wegen ||2|| = }(®, &) klar. Mittelsder Cauchy-
Schwarz-Bunjakowski-Ungleichung folgt auch leicht die Dreiecksungleichung. Denn
ist

ke +yl*=(@+yz+y
=@+ @y + Y2+ Yy
= |l«|* + 2(=, y) + lyl?*.
Wegen |(x,y)| < [l llyll ist dann

ke + yli* < llel® + 2l lyll + lyl*

ke + yi* < (el + lyl)*,
oder gleichbedeutend

e + yll = lill + liyll-

Verbleibt noch der Nachweis der Cauchy-Schwarz-Bunjakowski-Ungleichung.
Im R? ist diese klar, denn wir hatten gefunden

il liyll cos y = (®, y).
Nun beachtet man —1 < cosy < 1 und erhilt

@, y) = Ikl iyl -

Jetzt soll diese Ungleichung aber unabhiingig von jeglichen geometrischen Erérte-
rungen al in im R* abgeleitet werden. Dabei wird lediglich von den Gru.ndelgen-
schaften des Skn.larproduktes Gebrauch g ht. Ein Zusa g Zwil
(@, y) und |ix||, |ly|| besteht mittels (x — y, z —y)=0als :

kel — 2z, y) + llyl* = 0-
Damit gilt auch fiir be]iebiges a0

o ||* — 2¢x, y) +5 [I!lll' 20,
indem man von
lotg—Lyaz— Ly
\ y’ y/ =
ausgeht.
Nun gibt es bei ||2]| + 0 und |y|| 3 0 ein &, &= 0 mit xo|l2l| = — ||y||, also ist
2a48|@|* = 2(x, y) und deshalb

lkelllyll = @, ).
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Ebenso folgt aus
1 1
<az+—y,az+ —y> 20
« «
die Beziehung
lelllyll = — (=, y)

bei ||zl + 0, llyll + 0. .
Insgesamt ist dann |jz|||ly|| = |(x, y)|, weil auch fiir ||| = 0 oder |ly|| = 0 die Un-
‘gleichung wegen (z, y) = 0 richtig wird.

Bemerkung. In allen Arg tationen des vorstehenden Beweises ist von dem
Skalarprodukt (., .) lediglich benutzt worden, daB es sich um eine positiv-definjte
symmetrische Bilinearform handelt. Wir ko daher in gleicher Weise fiir solche

Bilinearformen eine Norm erklaren und dieselben Grundeigenschaften der Norm ab-
leiten. :

Definition 2 (Normierung von R* mittels einer positiv-definiten symmetrischen
Bilinearform).” Auf dem R*® sei eine positiv-definite symmetrische Bilinearform
B: R* X R* — R gegeben. Dann heiBt der folgende Zahlenwert fiir ein beliebiges
Element & € R* die Norm von & beziiglich B:

lells : = VB, ).

Satz 2 (Grundeigenschaften der aus einer positiv-definiten symmetrischen Bilinear-
form abgeleiteten Norm). Die im R* mit einer gegebenen positiv-definiten symmetrischen
Bilinearform B erklirte Norm der Elemente von R* ist eine Abbildung ||.||3: R* — R
mit den folgenden Eigenschaften:

1. |l=|lp = O fiir alle ® € R* und ||x|p = O nur fiirx = 0.

2. |la@llp = |a] - |l||5 féir alle « € R und ® € R*.

3. lle + ylls < llells + llylls fiir alle =,y € R".

Auperdem gilt noch die folgende Cauchy-Sch Bunjakowski-Ungleichung :

4. |B(@, y)| < lellsllylls fiir alle 2, y € R".

7.3.  Orthogonalitit im R*

Die folgende Begriffsbildung ist nach den Ausfiihrungen des letzten Paragraphen
sinnvoll, ihre ZweckmiBigkeit wird sich sodann unmittelbar zeigen.

Definition 1 (Orthogonslitét im R* hinsichtlich positiv-definiter symmetrischer
Bilinearform). Im R* sei eine positiv-definite symmetrische Bilinearform B: R* x R*
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— R gegeben. Zwei Elemente @,y € R" heiflen beziiglich B orthogonal genau dann,
wenn B(x,y) = 0 gilt. Orthogonalitit von &,y € R" beziiglich B wird durchx | 5 y
bezeichnet. Orthogonalitdt ohne den Zusatz einer Bilinearform B meint dann ein-
fach die Ortlogonalitit in bezug auf das Skalarprodukt im R*.

Definition 2 (Orthonormalsysteme im R"). Eine nichtleere Teilmenge S & R"
heiBt ein Orthonormalsystem hinsichtlich einer gegebenen positiv-definiten symmetri-
schen Bilinearform B: R* x R* — R genau dann, wenn gilt:

1. B(x,z) = lfiirallex € S.
2. Bx,y) =O0fiirallex,yc Smitx 3 y.

Bemerkung. Die erste Forderung besagt, daB jedes Element von S die Norm 1
hinsichtlich ||.||5 hat. Die zweite Forderung bedeutet, daB je zwei Elemente von §
beziiglich B orthogonal sind. Damit erklirt sich auch die Bezeichnung als Zusammen-
ziehung von ,,orthogonal’‘ und ,,normiert*.

Satz 1 (Orthonormalsysteme und lineare Unabhiingigkeit). Es sei im R" eine
positiv-definite symmetrische Bilinearform B:R™ X R" — R gegeben. 8§ = R" sei ein
Orthonormalsystem im R". Dann gilt: S ist eine linear unabhingige Menge.

Beweis. Angenommen, es gibt ein Element & ¢ §, das sich aus S\(&] linear
kombinieren JaBt:

x = i'a_.t,- (@; € S\{x}).

i=1

Nun sollte B(x, ) = 1 sein. Zum anderen ist aber
3 k
B(-‘l’, Zaﬂi) = Yo;Bx,x;) =0,
i=1 i=1

weil B(y, ) = 0 ist fiir alle y, 2 € S mit y 5 2. Demnach muB 8 wirklich linear un-
abhingig sein.

Wir ersehen aus dem Satz, daB der R* bestenfalls Orthonormalsysteme aus héch-
stens n Elementen besitzen kann. Im Fall des Skalarproduktes ist die natiirliche
Basis ein solches maximales Orthonormalsystem. Hat nun aber auch stets der R"
beziiglich einer beliebigen positiv-definiten symmetrischen Bilinearform eine ortho-
normale Basis? Diese Frage wird durch das folgende Ergebnis beantwortet.

Satz 2 (Umwandlung eines linear unabhingigen Systems in ein Orthonormal-
system). Es sei (a,, ..., @) eine linear unabhingige Teilmenge des R*, und im R* sei
eine positiv-definite, symmetrische Bilinearform B:R® X R* — R gegeben. Dann gibt
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es ein Orthonormalsystem (b, ..., by) beziiglich B mit der folgenden Eiymchaﬁ:

L({ay)) = L({b}),
L{{a,, a;}) = L((b, ba}),

L(la,, @y, oees @g, @) = L({by, b, ..., by_y, by))-

" Bemerkung. Das im anschlieBenden Beweis zur Anwendung kommende Kon-
struktionsverfahren von (b, b,, ..., by} heiBt das Orthonormalisierungsverfahren von
Gram-E. Schmidt.

Beweis. Die Konstruktion des Orthonormalsystems (b, ..., b;) geschieht schritt-
weise.
1. Schritt: Es wird

o
(LA
gebildet, wegen @, = 0 ist ||a,||p == 0 und b, wird in bezug auf B ein Einheitselement,
d. h., seine Norm |. || ist 1. Weil b, ein skalares Vielfaches von a, ist, versteht sich die
Beziehung L({a,}) = L((b,}).
2. Schritt: Es wird

b,:=

b:=a;+7-b

gesetzt, wobei der Koeffizient y, so gewiihlt wird, daB b,’ | 50y, d. 1., es muB
B(b,', b,) = B(ay, by) + y, - B(by, b)) =0

gelten, woraus folgt, daB y, : = —B(a,, b,) zu wihlen ist.

Es ist by’ & 0, weil sonst @, und b, und damit @, und @, linear abhiingig wiiren, was
der Voraussetzung widerspriche. Es wird

L b
ENTX
gebildet. b, ist in bezug auf B ein Einheitselement, d. h., seine Norm ist 1. b, und b,
sind nach K ktion zueinander orthogonal, und es ist auch L({a,, a,}) = L((b,, bs})

erfiillt, denn wir haben b, € L({a,, @,)), b, € L((a,, @,}). Also ist b,, b, ein orthonor-
miertes und damit linear unabhingiges System in L({a,, a,}), es muB demzufolge eme
Basis von L({a,, a,}) sein.

Auf diese Weise fihrt man induktiv in der Konstruktion fort.

Wir beschreiben dazu den allgemeinen Schritt:

v-ter Schritt: Es sei fiir » — 1 schonein orthonormlertes System mit den im Satz
angegebencn Eigenschaften konstruiert.
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Es wird
b':=a,+ &by + &by + -+ + £-10py

gesetzt. Die Koeffizienten ¢; werden dabei so gewiihlt, daB b,’ zu jedem b;, s =1,
..., — 1, orthogonal wird, d. h., es mu8

B(b,,b;) = B(a,,b;) + & =0
gelten, woraus folgt, daB
& = —B(a,, b))

zu wiihlen ist.
Es ist b,’ + 0, weil sonst @, € L({b,, b,, ..., b,_))) = L((a,, ..., @,-,)) wire, was der
Voraussetzung widerspriiche. Es wird

Lo b
T XA

gebildet. Damit ist {b,, b,, ..., b,;, b,} ein Orthonormalsystem. Wegen b; € L({a,,
...,a,)) fiir § =1,...,v ist {b,,...,b,) als Orthonormalsystem in L((a,, ..., a,))
linear unabhiingig, d. h., es muf eine Basis. von L({a,, ..., a,}) bilden (eine Basis
besteht aus » El ten)

Als Folgerungen aus dem Orthonormierungsverfahren ergeben sich die beiden
folgenden Sachverhalte:

Satz 3 (Maximale Orthonormalsysteme als Basen). Es sei S C R* ein Orthonormal-
system vm R™ beziiglich einer beliebig vorgegebenen positiv-definiten symmetrischen
Bilinearform B: R* x R* — R. Dann gilt:

8 15t eine Basis von R™ & S ist ein maximales Orthonormalsystem sm R*, d. h., es gibt
kein hinsichilich B normiertes Element (Norm 1), welches zu allen Elementen von S
orthogonal ist.

Beweis. ,,=: Angenommen, es gibt ein Element & € R* mit ||z = tund® | 3y
fiir alle y € 8. Dann ist das System S v {®} ein Orthonormalsystem, also linear un-
abhiingig. Das kann aber nicht eintreten, da S als Basis ein maximales linear un-
abhingiges System ist.

»&*: 8 ist als Orthonormalsystem linear unabhingig. Wiire L(S) =+ R*, so kénnte
man S um weitere Elemente zu einer vollen Basis von R* erginzen. Auf diese das
Orthonormalisierungsverfahren in geeigneter Weise zur Anwendung gebracht, wiirde
man ein § umfassendes Orthonormalsystem erhalten, was nach Voraussetzung nicht
geht. Also muB L(S) = R" gelten,d. h., S ist Basis von R".

Satz 4 (Positiv-definite symmetrische Bilinearformen als Skalarprodukt hinsicht-
lich Orthonormalbasen). Es sei B: R® X R® — R eine positiv-definite symmetrische
Bilinearform auf dem R*. B: b,, ..., b, sei eine beliebige Orthonormalbasis hinsichilich
B fiir den R* (nach dem Orthonormierungsverfahren gibt es auch stets solche).




7.4. Orthogonale lineare Abbild orthogonale Matrizen ©o103

Dann driickt sich der Wert der Bilinearform fiir die Elemente & und y mit den Koordi-
natentupein (&, ..., &) und (ny, ..., n.) beziiglich der Basis B wie folgt aus:

L]
B®,y) = ‘2'.; &
Beweis. Es ist nach Voraussetzung
L »n
=X tbi, y=Znby
i=1 j=t
und B(b;, b;) = 8;;. Daraus folgt
. " n L
B,y =B (£ t0 Endy) = 2 o) = 2 b
i= = ij= -

Den letzten Satz kénnen wir so interpretieren, daB wir bei Betrachtungen von
positiv-definiten symmetrischen Bilinearformen auf dem R" eigentlich immer das
Skalarprodukt zugrunde legen konnen, weil man ja durch geeigneten Basiswechsel
stets diesen Fall herzustellen vermag. Wir erkennen hieran einmal mehr, wie niitzlich

die Bezugnahme einer Problematik der linearen Algebra des R* auf eine zweckmi Bige
Basis ist.

7.4.  Orthogonale lineare Abbildungen und orthogonale Matrizen

Der folgende Typ von li Abbildungen des R* ist — besonders im Hinblick auf
die Kongruenzgeometrie — von Bedeutung.

Definition 1 (Orthogonale lineare Abbildungen des R* in sich). Es sei 4: R* — R*
eine lineare Abbildung des R* in sich. Diese heiBt eine orthogonale Abbildung genau
dann, wenn durch 4 jedes Orthonormalsystem von R* in ein Orthonormalsystem iiber-
gefiihrt wird.

Zuniichst kiimmern wir uns um eine andere Charakterisierung der orthogonalen
Abbildungen.

Satz 1 (Kennzeichnung der orthogomlen linearen Abbildungen durch Wirkung
auf das Skalarprodukt). Es sei A: R* — R" eine lnware Abbildung des R® in sich. Dann
sind die folgenden Aussagen paarweise G I

1. A ist eine orthogonale Abbildung.

2. A lipt das Skalarprodukt invariant, d. h., es besteht fir je zwei Elemente 2,y des
R* die Beziehung

@, y) = (Ad(x), Aly)).

94



104 7. Das Skalarprodukt auf dem R®
3. A lipt die Norm der Elemente von R* invariant, d. h., es besteht fiir jedes & € R"
die Beziehung
llell = 14)Il.

Beweis. Wir miissen die Aquivalenzen 1. ¢ 2., 2. & 3. und 1. & 3. zeigen. Dafiir
wird eine zyklische Beweisanordnung 1.=> 3.=> 2.=> 1. durchgefiihrt.
Zu 1.= 3. Fir * =0 ist A(®) =0, also |jz|| = ||4(x)||. Wenn & 3= 0 voraus-

gesetzt wird, so ist {ﬁi} ein Orthonormalsystem, also muB auch 4 II%I) Orthonor-
malsystem sein, d. h. l lA ("%I)” = 1 oder gleichbedeutend
4@ _
I}
Zu 3.=> 2. Es ist

1 . ,
(@, y) = Y (e — yli* — el — Iyl

wie aus (£ — y, & — y) = ||z — y||* hervorgeht. Nun hat man
e —yll = ld@ — )l = |4(x) — AWl

und
lell = L@, Iyl = 4@,
‘woraus
@9 = 5 ke — yi* — ll? — Iy1"
= —5 (M@ — AW ~ 4@ ~ 14w
= (A(x), A(y))
hervorgeht.

Zu 2.=> 1. Es sei S ein Orthonormalsystem im R*. Dann gilt

1fire,ycSundx =y,
@y = {Oﬁira:,ysﬂundz +y.
Also ist
1 fiir A(x), A(y) € A(S) und A(x) = A(y),
0 fiir A(x), A(y) € A(S) und A{x) + A(y),

d. h., bei 4(S) handelt es sich um ein Orthonormalsystem.

(A(@), Ag)) = {
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Bemerkung. Insbesondere enthilt der vorstehende Satz die Tatsache, daB jede
orthogonale lineare Abbildung des R" eine eineindeutige Abbildung des R* auf sich ist.
Denn aus & + y folgt [l* — yll + 0 und [l4(x) — A(Y)l + 0, d. h. A(x) + A(y).
Die inverse Abbildung 4-1: R* — R" 1aBt dann auch die Norm invariant, ist also selbst
wieder eine orthogonale Abbildung.

Durch welche Matrizen werden nun orthogonale lineare Abbildungen beschrieben?
Um diese Frage zu entscheiden, betrachten wir im R* eine lineare orthogonale Ab-
bildung 4: R* — R" und ihre beschreibende Matrix A beziiglich der natiirlichen Basis
€, e, ..., e, Dann ist A(e,), A(e,), ..., A(€,) ein Orthonormalsystem. Wir erkennen
also, daB die Spalten von A die folgende Eigenschaft haben: Das Skalarprodukt einer
jeden Spalte von A mit sich selbst ist 1, das Skalarprodukt zweier verschiedener
Spalten von 4 ist Null.

Definition 2 (Orthogonale Matrizen). Es sei A eine quadratische Matrix der
Ordnung n. Diese Matrix heiBt genau dann eine orthogonale Matriz, wenn das Skalar-
produkt einer jeden Spalte von A mit sich selbst 1 ist und das Skalarprodukt zweier ver-
schiedener Spalten von A4 gleich 0 ist.

Wir haben dann in leichter Verallgemeinerung der vorherigen Feststellung den
folgenden

Satz 2 (Kennzeichnung der orthogonalen linearen Abbildungen durch beschreibende
Matrizen). Es sei B: b,, ..., b, eine orthonormale Basts tm R*. A: R® — R® set eine
lineare Abbildung des R in sich. Diese lineare Abbildung ist orthogonal < Die be-
schreibende Malriz A von A beziiglich der Basis B iat orthogonal.

Beweis. Die Implikation ,,= ist im wesentlichen schon vorher erértert worden.
Der Leser gehe noch einmal alle Punkte sorgfiltig durch.

Zu ,,&": Wir zeigen (2, y) = (A(x), A(y)) fiir allex, y € R*. Es ist

" n
& =) &b, y = X by,
=1 i=1

und wegen Orthonormalitét der Basis B folgt (x, y) = Z.‘Em;. Fiir alle (4(x), A(y))
ergibt sich unter Benutzung von i=t

A(x) =;" &iA(b;) =£’ & Zn' aby = Z (2 ak.f.) b,
. Foat} S £
un

A(y) = X nA(by) = X n; X ayyby =Z.' (25' atl’ll) by,
i=t j=1 k=1 k=1

j=1

(A(x), Aly)) = ki; (‘Z"'l aiéi ).—':; “kl’ll) =X Z.' Z-' apayéiny
i \= o

k=1 i=1 j=1

= Z”' é(éx “r-ﬂu) &imy-

i=1j=1
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Bei Orthogonalitit von A ist aber fiir ¢ 4 j
2 akay =0
k=1
und bei i =j
»
2 anay =1,
r=1
womit
n
(A(x), Ay) =L; Emi = (@, y)

verbleibt.

Die vorhin vermerkte Tatsache, daB jede orthogonale lineare Abbildung des R* in
sich invertierbar ist und als Inverse wieder eine orthogonale lineare Abbildung besitzt,
kann zur folgenden Charakterisierung der Orthogonalitit von Matrizen benutzt
werden.

Satz 3 (Orthogonale Matrizen und ihre Inversen). Es sei A eme quadmluche Matriz
der Ordnung n. Dann sind folgende Aussagen paarweise dqus

1. A ist eine orthogonale Matrix.

2. A ist invertierbar und die Inverse A-1 ist orthog(mal

3. Die Zeilen von A bilden ein Orthonormalsystem im R™.

4. Fsgilt A- AT = AT . A = E, wobei AT die sogenannie transponierte Malriz zu A
tst, diese hat die Spalten von A als Zeilen:

= (@igli=1,....n> AT = (a5)i-
i=1.n j=1

Beweis. Wir zeigen einen Implikationszyklus 1.= 2.= 3. 4.= 1.

Zu 1.=>2. Wenn A orthogonal ist, ist die lineare Abbildung 4: R* — R*, die
beziiglich der natiirlichen Basis des R" als beschreibende Matrix gerade A hat, ortho-
gonal. Dann existiert aber die inverse Abbildung, und diese ist orthogonal. Die inverse
Abbildung hat aber die inverse Matrix A-! als beschreibende Matrix, also ist 4-!
orthogonal.

Zu 2. = 3. Hinsichtlich der i-ten Zeile von A gilt: Das Skalarprodukt mit der j-ten
Spalte von A-1ist d;;. Die Spalten von 4-1 bilden aber eine Orthonormalbasis s,, ..., 8,
von R®, wenn man sie als Zeilenvektoren auffaBt. Demnach hat man fiir die i-te

»
Zeile z; von A die Beziehung 2; = }’ 0,8,. Woraus wegen (z;, 8;) = §;; folgt:
k=1

oo oI E=1,
FT 0firk 4,
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d. h., es ist 2; = 8;. Es ist also schon bewiesen worden, daB die Zeilen von A gerade
mit den Spalten von A-! iibereinstimmen, sofern A-! orthogonal ist.

Wir haben also aus 2. sowohl 3. als auch 4. gefolgert.

Zu 3. = 4. Wenn die Zeilen von A ein Orthonormalsystem von R* bilden, schheBe
man analog wie zuvor.

Zu4.=> 1. Wenn

AT A=E=4.4

gilt, dann heiBt das gerade, daB die Spalten von A4 (die Zeilen von A) ein Orthogonal-
system bilden.

Bemerkung. Fiir eine orthogonale Matrix A erhilt man ihre Inverse also ganz
einfach durch Transponieren: 4-! = A". Nun fragen wir uns noch, welche Matrizen
fiir den Basiswechsel einer Orthonormalbasis zu einer anderen Orthonormalbasis in
Frage kommen.

Satz 4 (Ubergangsmatriz von Orthonormalbasen). Es sei B eine Orthonormalbasis
des R™ Die Mairiz T beschreibe den Basiswechsel B > € zu einer anderen Basis von R".
Dann gilt: Die Matriz T des Basiswechsels B +— € ist orthogonal <> Die neue Basis €
ist esne Orthonormalbasis.

Beweis. ,,=*“: Es gilt fiir die Basis€: ¢y, ..., ¢,

L]
¢ = Yty by,
i=1

wenn T = (l.,),_l - und B:b,,..., b, ist. Fiir (¢;, ¢,) erhilt man

=1,

/ n " n » n
eped ={ X ‘ifbnzlub:> =2 Xty (bi, b)) = N byt = O,
\ict i=1 i=1 i=1 =1
denn der vorletzte Summenausdruck ist das Skalarprodukt der j-ten Spalte mit der

k-ten Spalte von T.
,»&*: Wie vorher hat man

L]
ey = Z; titie
=

Diesmal wei man auf Grund der Orthonormalitit von €, daB (¢, ;) = dy; ist.
Demnach bilden wegen

L]
X bistic = O
d=1 :

die Spalten von T ein Orthonormalsystem.
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Satz 5 (Struktur des Systems der orthogonalen Matrizen der Ordnung » hinsicht-
lich der Matrizenmultiplikation). Das System aller orthogonalen Matrizen der Ord-
nung n (ein Teilsystem von M (n X n)) hat folgende Eigenschaften in bezug auf die
Matrizenmultiplikation :

1. Das Produkt zweier orthogonaler Matrizen der Ordnung n ist wieder eine ortho-

gonale Matriz der Ordnung n
2. Es gibt eine (esndeuts; 4 ) orth le Matriz I der Ordnung n, so daf8

fiir jede andere orlhogcmale M atriz A der Ordnung n gilt:
A-I=1-4=A.

3. Zu jeder orthogonalen Matriz A der Ordnung n gibt es eine (eindeutig bestimmite)

orthogonale Matriz A der Ordnung n, so dap gilt:

A4.-A=4.4=1
Das System aller orthogonalen Mairizen der Ordnung n bildet hinsichilich der Matrizen-
mullsplikation — wie man sagt — eine Gruppe. Man bezeichnet sie mit OL(n) und nennt
sie die orthogonale lineare Gruppe der Ordnung n.

Beweis. Wir brauchen uns nur um eine Bestiitigung der Eigenschaft 1. zu kii
da zu 2. der Hinweis auf die Einheitsmatrix geniigt und die in 3. auftretende Matrix A
die Inverse zu A ist. Die Aussage 1. folgt aber leicht aus der Hintereinanderschaltung
von orthogonslen linearen Abbildungen und ihrer Matrixdarstellung in bezug auf die
natiirliche Basis (Bestitigung der Details!).

7.5.  Die Struktur der orthogonalen linearen Abbildungen des R?

Zum AbschluB dieses Kapitels verschaffen wir uns zwecks Illustration der all-
tehenden Problematik der Strnkturaufklarung der linearen Abbildungen
g einen Einblick der Behandl solch .einer Problematik im einfachen
zweidimensionalen Fall der orthogonalen linearen Abbildungen,
Es sei uns eine orthogonale lineare Abbildung 4 : R? — R? des R?'in sich vorgelegt.
Thre Matrix beziiglich der natiirlichen Basis im R? sei

A= (an au)
3y Cg2/ -

Die Orthogonalitit von 4 hat die Orthogonalitit von A zur Folge. Das bedeutet

&

e+l =1,
o toke=1,
@138y + G385 = 0.
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Die erste und zweite Zeile werden unter Bezugnahme auf trigc trische Kenntni
umgeschrieben: Es gibt genau eine WinkelgroBe # € [0,2a mit
ay,; =cosd, a;, =sind.
Es gibt genau einen Winkel 5 € [0,22] mit
ay = 8in7, as = cog 7.
Die dritte Zeile liefert dann
sinz cos# -+ cosnsind =0,

was wiederum gleichwertig mit sin ( 4 #) = 0 ist. Folglich muB entwedery + ¢ =0
oder 7 + & = 2xn oder 5 + & == gelten.

Im ersten Fall ist A die Einheitsmatrix, d. h., der Operator 4 ist der identische
Operator.

Im zweiten Fall sieht die Matrix wie folgt aus:

cos ¥ sin ¢
4= (—sin#cosﬂ)'

Welche g trische Bedeutung hat die zugehérige orthogonale Abbildung 4?
Fiir einen Punkt

(#1, Z3) = (r cos «, 7 8in &)
des R? ergibt sich als Bildpunkt (y,, ¥,) mit der Koordinatenbeziehung

v\ _ [ cosdsind\ (z\ [ =z cosd 4 z,sin P

¥, \—sin® cos® \zy) \—=z, sin® + z,cos B

- cos & - cos # + sin’x - sin - cos (x — @)
—cosx-sind +sina-cosd)  \sin(x —#)/

Die Relation

(91, ¥3) = (r cos (« — B), sin (a — B))

kann wman aber léicht interpretieren. Es handelt sich bei (z,, ;) H> (¥;, ¥2) umeine
Rechtsdrehung um den Ursprung mit dem Drehwinkel 4.

Im dritten Fall sieht die Matrix wie folgt aus:
(cos # sin 0)

sin® — cos 9/

Welche geometrische Bedeutung hat die zugehorige orthogonale Abbildung 4?
Fiir einen Punkt

(), %) = (r co8 &, 7 8in &)
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des R? ergibt sich als Bildpunkt (y,, y3) mit der Koordinatenbeziehung
y,)_ cos & sin 9\ (z,\ [z, cos# + z;in &
vs/ \eind® —cosd/\z,/ \x,sind — z,cosd
—r 'co8 & cos # + sin & sin & - cos (x — )
" " \cosx sin® —sinx cos#/  \—sin(x —B)/°
Die Relation
¥1,9s) = (r cos (x — ), —rsin (x — 9))

kann man leicht interpretieren. Es handelt sich bei (a;,, Z3) > (%1, ¥;) um die Hinter-
einandefschaltung zweier Abbildungen (z;, z;) = (1 — ¥:) = (¥, ¥2). Der erste
Ubergang ist nach den vorherigen Ausfiihrungen eine Rechtedrehung um den Winkel 8.

Der zweite Ubergang ist dann eine Spiegelung an der 2-Achse. Das kann man nun wie-
derum weiter interpretieren als eine Spiegelung an der Ursprungsgeraden mit-dem

Neigungswinkel % (vgl. Abb. 10).

Damit sind also simtliche Typen der orthogonalen linearen Abbildungen im R®
aufgefunden, es sind dies in euklidisch-geometrischer Veranschaulichung die Drehun-
gen um den Ursprung und die Spiegelungen an Ursprungsgeraden. Zu einer dhnlich
geometrisch vollkommen durchsichtigen Klassifikation der orthogonalen linearen
Abbildungen des R® kann man ebenfalls gelangen. Die Durchfiilhrung des Weges
macht von der Eigenwerttheorie linearer Operatoren Gebrauch, die uns hier nicht
zur Verfiigung steht. Die Eigenwerttheorie behandelt dabei die wichtige Frage,
wie zu einem gegebenen linearen Operator des R” eine Basis zu ermitteln ist, so daB
die beschreibende Matrix des Operators in bezug auf diese Basis moglichst einfach
wird. Die denkbar einfachste Gestalt wire Diagonalform der Matrix, wo also héch-
stens in der Hauptdiagonalen von Null verschiedene Werte auftreten. Eine Reihe
von Operatoren laBt fiir ihre Matrizen solche Normalformen zu.
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7.6.  Ubungsaufgaben

1. Die Operation des Transponi fiir Matrizen war im Text bisher nur im Spezialfall der qua-
dratischen Matrizen vorgel Man kann sie natirlich fiir allgemeine Matrizen des Typs

m X n erkldren. Es sei A eine Matrix des Typs m x n. Dann versteht man unter der trans-
ponierten Matriz AT die Matrix vom Typ n X m, deren i-te Zeile gerade die i-te Spalte vonA ist,
t=1,...,n. Esutd.nnalaofﬁremzeR"unterszer Spal ): " zu teh
a) Man zeige: Sind die Matrizen A, B verkettet, sosind die Mttnzen BT, AT verkettet, und es
gilt(4.B)T =BT . AT.
b) Was bedeutet fiir &, y ¢ R* das Matrizenprodukt xyT?

. a) Es sei B eine beliebige quadratische Matrix der Ordnung =.
Man zeige, daB die folgende Abbildung B: R* x R* — R mit dem Verlauf B(z, y) = xByT
eine Bilinearform auf R# ist.
b) Beziiglich einer geeignet gewiihlten Basis im R kann man eine vorgegebene Bilinearform des
R* auch immer in dem Sinne des Teiles a) beschreiben. Man gebe eine genaue Formulie-
rung fiir diese Aussage und bestiitige sie!
c) Ist die Bilinearform B: R?* X R? — R mit dem Verlauf B(x, y) == (2 _l) y fire,y <R?
positiv-definit und symmetrisch? 13
d) Was bedeutet die Symmetrie einer Bilinearform B: R* x R* — R mit dem Verlauf B(z, y)
= By hinsichtlich der Matrix B?

»N

3. Fiir die folgende Basis des R? bringe man das Gi Schmidtsche Orth rfah
hinsichtlich des Skalarprodukts zur A d Welche Buu erha.lt man? Man verfolge den

ProzeB in der euklidisch g hen Ve g (B g gewisser Ebenen!)

1
a=(1,1,2), a,= (—1. 3, - 7), ay = (—4, —1,0).

4. Man gebe eine g ische Interp ion der Bedingung |z + yl| = |ixi| + liyll (etwa im R!).
5. Die im letzten Abschnitt 7.5. aufg orthogonale lineare Abbildung mit der Matrix
(::: ::: hinsichtlich der natiirlichen Basis erweise man als Spiegelung an der Ursprungs-

geraden mit einem Neigungswinkel l, indem man die natiirliche Basis in eine geeignete neue

Lage dreht, die Splegelnng donn hmslchthch der neuen Basis auf einfachste Weise durch eine
Matrix beschreibt und die Ubergang: ix von der ersten zur zweiten Basis be-
nutzt!
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8.1.  Vorbemerkungen, insbesondere iiber Permutationen

Bei der Behandlung der Invertierbarkeit der quadratischen Matrix

()

hatte sich ergeben, daB Invertierbarkeit genau dann vorliegt, wenn der Ausdruck
@183 — G158y von Null verschieden ist. Untersucht man entsprechend hierzu den
Fall der dreireihigen quadratischen Matrix, so wiirde man erhalten, daB die Matrix

@11 @12 Gig
Gy Ggp Ggy
331 @31 Gy

genau dann invertierbar ist, wenn der folgende Ausdruck

011090833 + G19llgsByy + B1g0g10gy — By3@2g@s; — Gy B3sBa — @yally By

von Null verschieden ist.

Fiir die inverse Matrix tritt in jedem ihrer Glieder der obige Ausdruck als Nenner
auf. Ebenso bemerkt man auch bei den vierreihigen quadratischen Matrizen, da8
fiir die Invertierbarkeit ein in bestimmter Weise aus den Elementen der Matrix auf-
gebauter Ausdruck charakteristisch ist.

Der deutsche Philosoph und Mathematiker G. W. LEBN1z (1646—1718) ist
diesen GesetzmiBigkeiten auf die Spur gekommen. Die von ihm entdeckten Deter-
minanten kliren die Sachlage; sie waren sodann fiir die Auflésungstheorie linearer
Gleichungssysteme lange Zeit das beherrschende Element. Heutzutage hat sich
die Situation mehr zugunsten einer determinantenfreien Behandlung der Grund-
dinge der linearen Algebra verschoben. Einerseits ist dafiir wohl die moderne (gene-
relle) Forderung nach bequemer algorithmischer Behandlung, andererseits auch die
Vorleistung auf Fragestellungen der Funktionalanalysis (unendlichdimensionale
Vektorrdume) mit ausschlaggebend.
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Die Leibnizsche Definition  der Determinante macht von Kenntnissen iiber
Permutationen Gebrauch. Wir verweisen dazu auf die entsprechenden Ausfiihrungen
in MfL, Bd. 1. Hier folgen noch einige Erginzungen.

Eine Permutation einer nichtleeren Menge X war eine eineindeutige Abbildung von
X auf sich. Im Fall der Endlichkeit von X ist die Forderung der Eineindeutigkeit

1(7 2) To—wo7 00

20—.02 7 2

l(;) 77 © l( 2-X _ 7.:;‘.2

Abb. 11 Abb, 12

mit der Forderung der Surjektivitit gleichbedeutend. Besteht die Menge X aus den
natiirlichen Zahlen 1,2, ...,7 — den ersten natiirlichen Zahlen —, so sagt man fiir
eine Permutation der Menge X auch Permutation vom Grade =. Die iibliche Schreib-
weise

1 2 n

z(1) #(2) ... =(n)
fiir die Permutation n, indem man also unter die Zahl ¢ das Bild von ¢ hinsichtlich
der permutierenden Abbildung = schreibt, darf nicht zu Fehldeutungen mit Ma-
trizen verleiten. Zur prignanteren Unterscheidung wiirde sich fiir die Permutation =

etwa eine Bezeichnung

l (1 2 ..n )
(1) n(2) ... n(n)

empfehlen Das ist jedoch nicht eingebiirgert.

Wir lassen jetzt einige Beispiele fiir Permutationen folgen und mchen dabei auf
die beiden gebriuchlichen Darstellungen von Permutationen in Diagrammen auf-
merksam. :

In den Abbildungen 11, 12 und 13 werden Permutationen vom Grade = =1,
n =2 und n =3 im Pfeil- oder Leiterdiagramm und im Zyklendiagramm dar-
gestellt.

7To—eo7 To—so7

- Q QG RNV

039 225 7 55 1633 o< Ay
723\ 7 7 Te_ o7

IG3 1) 2 :g 7@/ 4N l(; 29 gs Eg 7.®.3
7'23 7o o7 723 Teo_ o7

: >L /N
IG33 20582 7 20 D I3 3) 2%z 7 32 ?

_Abb. 13



114 8. Determinanten

Bei dem Pfeil- oder Leiterdiagramm werden also zwei Exemplare der zu permu-
tierenden Menge {1, 2, ..., n} gegeniibergestellt und die durch die Permutation ver-
anlaBte Zuordnung mittels Pfeilen von der ersten Reihe zur zweiten Reihe nach Art
von verbindenden Sprossen angegeben. Bei dem Zyklendiagramm wird nur ein Exem-
plar der zu permutierenden Menge {1, 2, ..., n} verwendet und die durch die Permu-
tation veranlaBte Zuordnung mittels gerichteter Bigen innerhalb dieser Menge aus-
gedriickt, das gibt das Bild von (mehreren) geschlossenen Bahnkurven (Zyklen). Die
erste Art der Darstellung eignet sich besonders bei dem anschaulichen Verfolgen der
Hintereinanderschaltung von Permutationen desselben Grades. Eine solche Hinter-
einanderschaltung ist, wie aus MfL, Bd. 1 bekannt, gemé8 der iiblichen Zusammen-
setzung von Abbildungen zu verstehen.

Die Hintereinanderschaltung von Permutationen gleichen Grades nennt man auch
Produkt von Permutationen. Uber diese Produktbildung war in MfL, Bd. 1 notiert
worden, daB es sich um eine (im allgemeinen nicht kommutative) Gruppe handelt.
Diese Gruppe heiBit die volle Permutationsgruppe S, vom Grade n (oder auch die
symmetrische Gruppe vom Grade n).

Satz 1 (Elementezahl der vollen Permutationsgruppe). Die volle Permutations-
gruppe vom Grade n hat n! verschiedene Elemente: |S,| = n!.

Beweis. Die Bestiitigung ist einfach und sei dem Leser iiberlassen. Man wende
vollstindige Induktion nach n an.

Definition 1 (Signum einer Permutation). Es sei

(1 2 - on )
n =
a(l) a@) - nn)

eine Permutation der Ordnung n. Man sagt, daB in der Permutation z an den Stellen
1, im Falle ¢ < j eine Inversion vorliegt, wenn n(i) > =n(j) ist. Unter dem Signum
von n versteht man die Zahl

‘sgnm: = (—1)t,
wobei k die Anzahl der gesamten Inversionen von x ist.

Eine Permutation heift gerade genau dann, wenn die Anzahl aller ihrer Inversionen
gerade ist. Fiir die geraden Permutationen gilt also sgnz = +1. Eine Permutation
heiBt ungerade genau dann, wenn die Anzahl aller ihrer Inversionen ungerade ist.
Fiir die ungeraden Permutationen gilt also sgnz = —1.
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8.2. Die Leibnizsche Definition der Determinante. Determinanten
als Multilinearform

Definition 1 (Determinante einer quadratischen n-reihigen Matrix nach LEIBniz).
Es sei .
Q) Gyz---Gyn

N R I N

gy Gyz...Gpy
eine quadratische n-reihige Matrix.
Unter der Determinante von A (in Zeichen det.A bzw. |4|) versteht man den fol-
genden Zahlenausdruck:

detA =[A|:= 12 SEN T @yn(1)Ban(z) ** * Cux(n)
e W
= l(n(l) v A(R)
Die Summation wird dabei iiber alle Permutationen vom Grade n erstreckt, es treten
damit genau n! Summanden auf. Die Produkte @,x()82x(2) " -+ Guxis) Werden also so
gebildet, daB jedesmal aus jeder Matrixzeile und jeder Spalte genau ein Element ent-

nommen wird.
Einfache Beispiele illustrieren sofort die Berechnung der Determinante:

1. 4 = (ay,); det A =a,,.

2 A= (a,, a“); det A = a,,a,, — 01485, -
@21 @2,

3. @y Gy Gy

~A=\|ay ay ay |
@31 @32 Q33

det A = ,,05,853 + 013855051 + B130n832 — G130285) — G agla; — Byaly a3

Fiir den letzten Fall der Berechnung der Determinante einer dreireihi
schen Matrix gibt es eine bequeme Merkregel — die Sarrussche Regel:

quadrati-

ay a3 a;,la
1n l/!, l/h/ IL”a“

Gy Gz /az::,azl Qg2
-

a3 ay; “agNay Vay,

—_—
- +

An die Matrix fiigt man dazu noch einmal die ersten zwei Spalten an. Die von links oben

nach rechts unten verlaufenden Diagonalen liefern dann die Produkte, die addiert
werden (wobei sie das durch die Produktbildung entstandene individuelle Vorzeichen



116 8. Determinanten

behalten), wihrend die von rechts oben nach links unten verlaufenden Diagonalen
Produkte ergeben, die subtrahiert werden (wobei sie wieder das durch die Produkt-
bildung entstandene individuelle Vorzeichen behalten).

Nun untersuchen wir die Haupteigenschaitei\ der Determinanten, d. h. die Eigen-
schaften der Funktion

de_t: #A(n X n) >R,
wo also jeder n-reihigen quadratischen Matrix ihre Determinante zugeordnet wird.
Satz 1 (Grundeigenschaften der Determinante). Im Bereich #(n X n) der quadra-
tischen n-reihigen Matrizen hat die Determinante die folgenden Eigenschaften:
1. Besteht fiir die Matriz A € #(n X n)eine Zeile aus lauter Nullen,so gilt det A = 0.
2. Multipliziert man in der Matriz A eine Zeile mit 1 € R, so ist die Determinante
gleich dem A-fachen der Ausgangsdeterminante:

a, a,
det [ 20, | =7-aet | a;
a, a,
3. Ist fiir die Matrix A € M(n X n) eine Zeile die S zweier Zeilenvekioren, so
tst die Determinante gleich der entsprechenden S der Determinanten:
[ 4} a a,

det | a;+b; | —det | a; | +det | b,

4. Ist fiir die Matriz A € M (n X n)eine Zeiledie Linearkombination von yewmen Zes-
lenvektoren, so lipt sich die Determinante als entsprechende Linearkombs eiben.

5. Vertauscht man in der Matriz A € .l(n X n) zwei beliebige Zeslen miteinander,
80 dndert sich das Vorzeichen der Determi

Beweis.

Zu 1. In den bei der Erkh.ru.ng der Determinante auftretenden Produkten ist
unter der g, hten Vora ung stets die Null Faktor. Die simtlichen Produkte
sind dnher alle gleich Null.

Zu 2. Jedes Produkt in der Determinante der Matrix, die aus 4 entsteht, wenn
man alle Elemente einer Zeile von A mit 1 multipliziert, enthilt den Faktor 4.

Zu 3. Die i-te Zeile der Matrix A sei die Summe der Zeilenvektoren (a;y, @i, - .. ,3iy)
und (b;y, bia, «.., b;s) . Dann sieht jedes Produkt in der Determinante von A wie folgt
aus:

BENA e+ @inti) F Bix(i)) *** Bunn)
= GO Gya(1) *** Gingi) *** Ban(a) + BEOT Byxqy) *** Dingi) *** Bunem)-
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Also 1Bt sich det A in der im Saiz aufgefiilhrten Weise als Summe zweier Deter-
minanten schreiben.
Zu 4. Es handelt sich um eine Zusammenfassung der Eigenschaften 2. und 3 und
eine Ausdehnung auf mehrere Summanden.
Zu 5. Es werde in der Matrix A die i-te Zeile mit der j-ten Zeile vertauscht. Die
Produkte in der Determinante der Matrix A sind
BEN T Byix() *** Bin(i) *** Byn(j) *** Pmnin)»
in der Determinante der neuen Matrix lauten die Produkte entsprechend
SERA Graqr) -+ Bintiy *** Bjaii) *++ Banemy-
bix(iy ist das n(f)-te Element der j-ten Zeile von 4, d. h.,
bim‘) = Gyx(i)»
byx(y) i8t dasn(j)-te Element der i-ten Zeile von A, d. h. bjxj,'= @;a(). Also hat man

BT Bya(a) *+ Bingiy *+ Bjnei) ** Bunmy = BBNLTE Byar) *+* Bingg) *** Byngiy *** Bunm)
=(—1)8gnra,q) - Giviy** Bjp(g)*** Buain) »

wobei die Permutationen » und = wie folgt zusammenhiingen:
( 1 .. g n)
n= . . ,
(1) ... =) ... =Aw(G) .o =(n),
v_( ) I A n)
(1) .. G ... AG) ... am)
v entsteht aus » durch Vert. hung der El te (i) und n(j), damit ist sgnz
= (—1) sgn v (vgl. Ubungsaufgabe 3).

Fiir eine zweckmiBige F ng der Grundei haften der Determinante ver-

weisen wir auf die folgende Verallgemeinerung der Bilinearformen.
Definition 2 (Multilinearform auf dem R"). Unter einer k- Multilinearform (k € N,
k = 1) auf dem R* versteht man eine Abbildung
#:R" X R* x ... X R" >R,
—_—

e et

&-mal

die in jedem Argument linear ist, d. h., es gilt fiir jedes s =1,2, ...,k
By, 0 BY, X)) = ap(@y, e, Ty, X)) - PU@ Yy, By
i-tes Argument

Eine k-Multilinearform u auf dem R* heiBt schiefsymmetrisck genau dann, wenn u
bei der Vertauschung zweier Argumente das Vorzeichen wechselt:

By ooy By ooy By oo, Tp) = — (@5 oey gy veey Tiy oony )
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Bemerkung. Ist u eine k-Multilinearform auf dem R*, 8o gilt bei Schiefsymmetrie
allgemeiner

By, ..., Ty) = BGOT p(Baqr)s +++» Tuq)
fiir jede Permutation

I L S 1
T (:;(1) n(lc))'
Uberfithrt man nimlich in u(®.q), .-+, Tox) das Argument @, € R* in den ersten
Platz, so muB man es sukzessive mit allen Vorgingern vertauschen. Dabei tritt
jed 1 ein Vorzeich hsel auf. So mit allen Argumenten verfahren, wird.das
Vorzeichen in der Gesamtzahl der Inversionen von & gewechselt. Nach dem Satz iiber
die Grundeigenschaften der Determinante ist die Determinante eine schiefsymmetri-
.sche Multilinearform auf dem R". Es gilt sogar die folgende Kennzeichnung der
Determinante.

Satz2 (WeierstraBsche Determinantenk ichnung als Multilinearform). Auf
dem R*, n = 1, gibt es genau eine schiefsymmetrische reelle n-Mullilinearform mst der
Eigenschaft, dap der geordneten natiirlichen Basis der Wert 1 zugeordnet wird. Diese
Multilinearform hat den folgenden Verlauf: Der Wert der Multilinearform fir das
n-Tupel (&,, &, ..., &,), &; € R, 1t gleich.

&,

Beweis. det: R* x R* x .. X R* >R ist eine Multilinearform mit den angegebenen

»-mal
Eigenschaften. Es sei jetzt u eine n-Multilinearform auf R*, die schiefsymmetrisch und
normiert ist. Fiir®; € R*,+ = 1,2, ..., n, gelte

L]
& =) i€
j=1
hinsichtlich der natiirlichen Basis e,, €;, ..., e, des R". Dann ergibt sich

B(@yy gy ony By) = I (Z €, Z T24€y, m,Z Z.,e.)
i=1 =1 =1

L] " L]
=2 X X xyy e Zapley, € ..., €,).
j=1 k=1 a=1

Nun ist jedes u(e;, e, ...,e,) =0 (Schiefsymmetrie), wenn zwei gleiche Basis-
elemente darin vorkommen. Also reduziert sich die S auf

BEy Xy ooy By) = ) Tin1@anca) *** Tunia) B(€n(1) €x(z)s oo eu(,))
*

iiber alle Permutationen # vom Grade n.
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Wegen f(€x(1),€xa)s - ++» €x(m)) = SgNT (€, €, ..., €,) = sgnx folgt die Behauptung
o
u(®@y, Xy, ..., 2,) = det :f’
Tu
Nun beweisen wir noch einige weitere Determinantensétze.
Satz 3 (Kennzeichnung der Regularitit einer quadratischen Matrix durch ihre
Determinante). Es sei

a,

eine quadratische Matriz vom Typ n X n. Dann gilt: A hat den Rang n (d. k., die Zei-
len ay, ..., a, bilden eine n-el tige linear bhingige Menge) < det A + 0.

Beweis. ,,=>‘: Angenommen, es ist det A = 0 bei linearer Unabhingigkeit der
Zeilenvektoren a,,a@,, ...,a,. Fiir die Zeilenvektoren e,,e,, ..., e, der Einheits-
matrix gibt es eine Darstellung durch die Basis @,, a,, ..., a,:

"
e;=.Zl'e‘,a,, 1=1,...,n.
j=
Dann ist
e
e‘ Bx(1)
det :’ =1 =3 120)f2n(2) *** €an() det]
;' " aw(-)

Nun war det A = 0, d. h., es ist auch

@x1)
det | : =0,

L2T0)

was in der Gleichungskette den Widerspruch 1 = 0 ergibt. .
,»&*: Bei linearer Abhingigkeit der Zeilenvektorena,, ..., a, ist etwa @, = Y'i,a,.

Dann ergibt sich =2
G,
det| %) =0,
a

weil eine Determinante mit zwei gleichen Zeilen gleich Null ist.
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Satz 4 (Multiplikationssatz fiir Determinanten). Die Abbildung det: .#(n X n)—>R
ist multiplikativ, d. k., sind A, B n-reihige quadratische Motrizen, so gilt

det (AB) = det A - det B.

Beweis. Es sei

mit @; = (@, a3, «+., iy) und

b,
»
Die Produktmatrix AB hat als i-te Zeile Y'a;; b;. Es ergibt sich dann
jet

b
L] L] L3 b,
det (AB) = X ¥ -+ X ayuay -+ ay, - dot | ¢ ).
j=1l k=1 s=1 :
b,
Wenn in dem n-Tupel (j, £, ..., 8) nicht alle EI te voneinander verschieden sind,

ist die Determinante mit den entsprechenden b, ..., b, als Zeilenvektoren gleich
Null. Damit reduziert sich die Darstellung auf '

by
det (AB) = Y'@1x(1)82x(3) *** Gaxewy * det Ouy

bx(-)
= JOgN 7 Bya(1)Bax(3) *** Ana(a) det B = 9ct A - det B.

Satz 5 (Determinante der transponierten Matrix). Es sei A eine quadratische
Matriz der Ordnung n. Die zu A transponierte Malriz AT hat die gleiche Determinante
wie die Ausgangsmalriz:

det A = det AT.

Bemerkung. Nach diesem Satz behalten alle Aussagen iiber Determinant
ihre Giiltigkeit, wenn- darin ev 1l vorke de Zeil gen durch solche
iiber Spalten ersetzt werden.
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Beweis des Satzes. Es sei 4 (a,,)‘ Fir die transponierte Matrix A7

gllt AT = (bl')l-l u mit b,[ =i

Es errechnet slch det AT zu

det AT = 3 ognwbyaabanca) -+ baximy = 5 5B T Gaqut - Gagar *+* Grpara

Bezeichnen wir mit » die zu z inverse Permutation, d. h., es ist 7(s) — 1, so kann man

das Produkt .y @« Game 8UCh 88 Gy,)3ae) +* Gayia) Schreiben. Wegen
egnx = egn v erhalten wir die Bestb,t.:gung fiir die behauptete Determinant.

h Das folgende Ergebnis fiihren wir ohne Beweis an. Simtliche dazu not-
wendlgen Argumente stehen schon bereit. Der Leser fithre zur Ubung mindestens
den Fall der quadratischen dreireihigen Matrix durch.

Satz 6 (Laplacescher Entwicklungssatz fiir Determinanten). Es ses
Gy Gy ... Gy

A=|[ % G .. O

Gy Gpz ... Gpg
‘esnequadratische n-reihige Matriz. A;; sei die aus der Matriz A durch Streichung der i-ten
Zeile und j-ten Spalte entstehende quadratische Matriz der Ordnung n — 1. Dann gilt
folgende Entwicklung der Determinante von A nach der i-ten Zeile:

L
det A = Y (—1)* a;; - det A;;.
j=1

Bemerkung. Nach dem Entwicklungssatz kann man die Berechnung einer
Determinante n-ter Ordnung auf die Berechnung von Determinanten (n — 1)-ter
Ordnung zuriickfiihren. Der damit verbundene Rechenaufwand wird aber ver-

. gleichsweise groB, wenn man auf solche Art eine Reduktion bis zur zweiten Ordnung
vornimmt. Eine direkte Berechnung nach der Leibnizschen Definition ist ebenso fiir
n = 4 wegen der ! 8 den im allgeniei ignet. Hinreichend b
ist die Determinantenberechnung nach dem GeuBschen Algonthmus der elementaren
Zeilenumformung. Durch elementare Zeilenumformung bringt man die gegebene
quadratische Matrix auf eine sog te Dreiecksform, wo unter der Hauptdiagonalen
lauter Nullen stehen. Der gesuchte Determinantenwert ist gleich dem Produkt der
Elemente der Hauptdiagonale in der erhaltenen Dreiecksmatrix, weil alle iibrigen
Produkte verschwinden.
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8.3.  Zur algebraischen und geometrischen Bedeutung
der Determinante

Der Charakterisierungssatz der Regularitiit einer quadratischen Matrix mittels der
Determinante fithrt uns zu der folgenden Umformulierung unserer Einsichten iiber
die Losbarkeit von linearen Gleichungssystemen.

4:o 1

Satz 1 (Eindeutige Lisbarkeit eines linearen Gleichungssyst mit quadr
Koeffizientenmatrix). Es sei ein lineares Gleich von n Gleichungen mit n
Unbekannten gegeben :

A

Az =b,A€c #(n X n), beR".

Dieses ist genaw dann eindeutiy 16sbar, wenn die quadratische Koeffizientenmatriz A
eine von Null verschiedene Determinante hat.

Beweis. Die eindeutige Losbarkeit ergibt, daB die Losungsgesamtheit eine null-
dimensionale Mannigfaltigkeit ist. Demnach mu8 der Rang von A gleich n sein, d. h.
det A == 0. Wenn det A =+ 0 gilt, ist A invertierbar. Also gibt es genau eine Lésung
x =A"b.

Satz 2 (Cramersche Regel zur Bestimmung der Losung eines linearen Gleichungs-
systems). Es sei ein lineares Gleich von n Gleichungen mit n Unbekannten
gegeben (quadratische Koe/[szaentcnmalnz)

AnTy + Gig%y + oo+ Gy = by,
A1) + GgpTy + -+ + GyaZy = by,

Ty + Gy + o+ A Bua¥y = by

Bei eindeutiger Losbarkeit gilt fiir die Losuny folgende Darstellung mittels Determinant

Gy Gz ... Byog by Gyg0y ... 0
2 = 1 . det a.u ﬂin “oo gy by Byiy ... G
det 4 s e
Gay Gpg -« Gujoy by Bujiy - Gu
firj =1,2,...,n. Die rechisstehende Matrix ergibt sich aus der Koeffizientenmatriz A
mittels Ersetzen der j-ten Spalte durch den Spaltenvektor

b,
R b..
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Beweis. Eindeutige Losbarkeit des Gleichungssystems gilt genau fiir den Fall
det A + 0. Entwickelt man die Determinante det A4 nach der ersten Spalte, so ist

det 4 = 2-:‘ anoi;
aus =
@y A+ Gy + oo + Gy = b,
@312y + Gy + o+ + GoaTa = by,
BTy + GpaTy + o+ + GpaTe = by
folgt durch zeilenweise Multiplikation mit ayy, &gy, +.., &y, und Addition

(@nogy + Bayaxgy + -+ + tpyom) - Ty +
(B12011 + Bagtgy + o+ + Gnotim1) * 22 +

(B1n01r + Gantvar + oo+ + Gantar) - Ty = bty + byovay + +++ + bpayy.

In der ersten Klammer steht die Entwicklung der Determinante von A nach der

ersten Spalte. Auf der rechten Seite steht die Entwicklung der Determinante der-
b

jenigen Matrix, die aus 4 durch Ersetzen der ersten Spalte durch | : | entsteht. In
bl

den iibrigen linken Klammern steht die Entwicklung der Determina nte derjenigen

Matrix, die aus A durch Ersetzen der ersten Spalte durch die zweite Spalte bzw.

dritte Spalte, ..., bzw. n-te Spalte der Matrix 4 entsteht. Die letztgenannten Deter-

minanten sind simtlich gleich Null, da sie von Matrizen gebildet werden, die zwei

gleiche Spalten aufweisen. Demnach ergibt sich fiir z, die behauptete Darstellung.

Entsprechendes folgt fiir z,, ..., z,.

Der vorstehende Satz liefert uns kein eigentliches neuss Lésungsverfahren von
linearen Gleichungen mit quadratischer Koeffizientenmatrix. Er ist mehr als eine
neue theoretische Einsicht iiber die geschlossene Darstellung der eindeutig bestimmten
Losung anzusehen.

Ahnlich hat man das folgende Ergebnis zu werten, das eine Umformulierung von
Erkenntnissen iiber den Rang von Matrizen in die Sprache der Determinanten ist.

Satz 3 (Kennzeichnung des Matrizenranges durch Unterdeterminanten). Es sei
A = (Gij);-1,...m €ine Malriz vom Typ m X n. Die Matriz A hat den Rang r <& Durch

j=l..»
Streichen von Zeilen und Spalten kann man aus A eine quadratische Untermatriz der
Ordnung r erhalten, die eine von Null verschiedene Determinante hat, aber es yibt keine
quadratische Untermalriz hiherer als r-ter Ordnung, deren Determinante ungleich Null ist.

Beweis. Es sei B eine quadratische Untermatrix von A mit det B 4= 0. Dann sind
die Zeilen von B linear unabhingig, weil B regulir ist. Die entsprechenden vollen
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Zeilen von A sind dann ebenfalls linear unabhiingig (Nachweis!). Also ist der Rang
von A groBer oder gleich der Maximalzahl der Ordnungen der quadratischen Unter-
matrizen von A, wo eine von Null verschiedene Determinante auftaucht. Wenn r
der Rang von A ist, so gibt es r linear unabhingige Zeilen von 4. Die auf diese r
Zeilen reduzierte Matrix hat dann gewiB r linear unabhingige Spalten, weil der Zeilen-
rang gleich dem Spaltenrang ist. Reduziert man die Matrix nochmals auf diese r
Spalten, so erhiilt man also eine quadratische Matrix B (Untermatrix von A), die r
linear unabhiingige Spalten hat. Es muB also det B == 0 gelten. Daher ist der Rang
von A gleich der im ersten Teil des Beweises betrachteten Maximalzahl.

Wir wollen zum AbschluB der Determinantenbetrachtungen noch Ausfiihrungen
hen, die insbesondere wieder bei g ischen Anli fi werden.

Definition 1 (Das Vektorprodukt oder &uBere Produkt im R?). Unter dem
Vektorprodukt oder dem Guperen Produkt im R® versteht man die folgende binire
Operation

X :R? x R® - R®

1)

mit dem Verlauf

& Xy =|det (z, z,)’ —det (:q :r,), det (z, a:,)
Yz Ys Y1 Ys Y1 Yz
beix = (z1, 22, 73), Y = (Y1, Y2, ¥a)-

Merkregel zur Bildung des GupPeren Produktes

Das duBere Produkt & X y aus den Elementen & = (x,, 2, Z3), ¥ = (¥, Y1, ¥5) des
R? erhiilt man durch ,formale Entwicklung der folgenden Determinante nach der
ersten Zeile:

€, e; &
det |z, 2, z, ).
Y1 Y2 Ys

Satz 4 (Die algebraischen Grundeigenschaften des duBeren Produktes im R?).
Das dufere Produkt im R® hat die folgenden Grundes haften :

Y (J

1.2 X y=—(y X x) firalle®,y € R® (Schiefsymmetrie). )

2.2 X (y+2) = Xy+ & X z fir alle x,y, z € R? (Distributivitit).

3.a(® X y) = (ax) X y fiir alle ®,y € R* und & € R (Assoziativitdt bei Multi-
plikation mit einem Skalar).

4. Das Assoziativgesetz fiir das Gufere Produkt gilt sm allgemeinen nich.

Bemerkungen.'

1. Die Eigenschaften 2 und 3 ergeben, daB das éuBere Produkt eine bilineare Ab-
bildung von R? X R® in den R3 ist.
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. 2. Wegen der Giiltigkeit des Distributivgesetzes heiBt diese Operation Produkt.
Der Zi iu lst zur Unterscheidung vom i Produkt gewihlt worden;
entaprechend erklirt sich die Bezelchnung Vektorprodukt zum Unterschied vom
Skalarprodukt. Das Ergebnis beim Skalarprodukt ist ein Skalar, beim Vektor-
produkt ein ,,Zeilen‘‘vektor.

Beweis. Die Eigenschaften 1, 2 und 3 folgen sofort aus dén Determinanteneigen-
schaften in direkter Rechnung. Zur letzten Aussage (4.) betrachten wir (e, X e,) X €;
bzw.e, X (e, X e;) mite, =(1,0,0),e, = (0, 1, 0). Esergibt sich (e, x €,) X ¢, =0
unde; X (e; X €;) = —e;,.

Satz 5 (Die metrischen Grundeigenschaften des &uBeren Produktes). Uber den
Zusammenhang des duferen Produktes mit dem inneren Produkt im R® gilt:

1. (@,® X y) =0 fir @, yeRs.
Das dupere Produkt @ X y ist orthogonal zu jedem seiner Faktoren.
(®,x) (=, y))
Y.z .9

Die Norm des GuPeren Produktes @ X y ist gleich der Wurzel aus der sogenannten
Gramachen Determinante von @, y.

Beweis.
1. Es ist fiir beliebige x, y, z € R® leicht zu bestitigen:

z
(®,y x 2) =det {y ).

Bei & = y erscheinen aber in der Determinante zwei gleiche Zeilen.

2.0 X yll = det(

o :e Man berechnet | X yi® und det (E:’ :; E:’ :;) = ||| lyl® — (x, y)* und findet
reinstimmung. ’ ’
Satz 6 (K ich der li Abhiingigkeit zweier Elemente des R® durch
ngig !

das duBere Produkt). Im R gilt fiir zwei Elemente @,y € R3: ®, y sind linear abhingig
sSexy=0.

Beweis. Lineare Abhiingigkeit von &, y ist gleichbedeutend damit, daB der Rang
der Matrix

(z, EX x,)
Y1 Y2 Ys
héchstens gleich 1 ist. Nach dem Rang ich tz mittels Determinanten ist

das gleichwertig damit, daB jede zwelrelhlge Untermatrlx eine Determinante gleich 0
hat. Das ist dquivalent zux x y = 0.
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. Unter Berufung auf Schulkenntnisse weisen wir jetzt noch auf mogliche geometri-
sche Interpretationen des duBeren Produktes und dreireihiger Determinanten hin.
Eine ausfiihrliche Darstellung dieser Fragen erfolgt in der analytischen Geometrie.
Dort wird dann insbesondere das éuBere Produkt wie auch das innere Produkt zur
Erlangung geometrischer Einsichten herangezogen. Die jetzigen Ausfiihrungen sind
nur im Sinne einer ersten Illustration und zur Hebung des Interesses zu verstehen
(vgl. ML, Bde. 6 und 7).

1. Fiir @, y € R® miBt |lx X y|| den Flicheninhalt des Parallelogramms, das durch
die Strecken vom Ursprung nach @ und vom Ursprung nach y aufgespannt wird.
Die Ursprungsgerade durch @ X y selber steht senkrecht auf diesem Parallelogramm.
Es ist

e x yll = VielElylE — @, y)2.

Nach der geometrischen Bedeutung des Skalarproduktes ersetze man (x,y) durch
|l llyll cos <X (x, y). Dann ergibt sich

lle < yll = lizlllyll sin < (@, y),
was den genannten Flicheninhalt bedeutet.

2. Fiir zwei Elemente &, y € R® miBt |det “)| den Flicheninhalt des durch z,y
VJ

aufgespannten Parallelogramms (vgl. hierzu die vorsteh ge). Anstelle von
&,y € R? betrachte man

T = (2,,2,0), ¥=(4,%0)
aus dem R®. Dann miBt | X y|| den Parallelogramminhalt, und es gilt

(3l

3. Fiir drei Elemente ®,y,2 € R®* mift |{det{y || den Rauminhalt des durch
z
@, y, z aufgespannten Parallelepipeds (auch Spat genannt). Es ist

Iie x yll =

x

(®,y X 2) = det (y :
2

|ly X 2| miBt eine Grundfliche des Spats und (' x, YXZN bei y x 2 3= 0 die ent-
sprechende Hohe (Zeichnung!). . lly x 2L/
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8.4.  Ubungsaufgaben

-

.Von den simtlichen Permutationen vom Grade 4 bestimme man du Slgnum Wie verhilt
sich dabei das Signum gegeniiber der Produktbildung von P
. Unter einer Trsnsposltlon versteht mm eme Permutatlon, die alle bis t\lf zwei Elemente fest
1é8t. (Es werden nur zwei El t ver ht!) Man zeige, daB jede Transposi-
tion eine ungerade Permutation ist.
3. Es sei 7t eine gegebene Permutation vom Grade n = 2. In der Menge {1, ..., n} werden zwei
Elemente s, j fixiert. Die wie folgt erklirte Abbildung v: {1, ..., n} — {1, ..., n} mit dem Ver-
lauf (k) := (k) fiar k = 4, j und »(3) : = 2(j), »(j) : = =(s) ist dann wieder eine Permutation
vom Grade n. » entsteht, indem man zuerst n ausfiithrt und dann noch die Elemente n(i) und
7(j) vertauscht. Es gilt dann sgn 7 = (—1)sgn ». (Man stelle eine Beziehung zur Aufgabe 2 her!)
Von den in der Aufgabe 6 von 6.7. g Matrizen berechne man die Determinant.
VondenquAdntuohenMn.trmnderOrdnungn = 2,3, 4, 5, die in sul iver Aufeinanderfol,
die ersten n? natirlichen Zahlen 1, 2, ..., n? als Elemente enthalten, berechne man die Detor-
minanten.

»

.ol

=

6. Von den orth \! dratischen Matrizen berech sich die Determinante entweder
zu +1 oder —1 (Produktutz verwenden!).
7.Im Z hang mit dem Lapl hen Entwickl t: bestic:ge man, daB die Inverse

einer reguliren qnod.ntuchen Matrix A der Ordnung 3 ‘sich wie folgt berechnet:

1 +det 4,, — det A,, -+ det 4,
At = ota —det Ayy + det Agy — det Agg |-
+det 4,5 — det A,y + det 4,

(Eine entaprechende D: llung fiir A-! beweise man fir beliebiges n.)

8. Fiir die sog te Vander desche Determinant
1 1 . 1
z, EX . EN

Az, 24y ..., z,) = det
zh1 gt PR

bestiitige man 4 = 1] (z; — ;) (Produkt iiber alle Binome (z; — z;) mit 1 < j < ¢ < n ge-
nommen).

9. Man bestimme eine Mntnx
(¢n~ Gy au)
011 G213 Gn,
mit vorgegebenen Werten

det (““::)=b, dec("“::)=c, det(a“::)=d.'
on an an



9. Der Begriff des Vektorraumes

Die im n-dimensionalen reellen Zahlenraum R", in der Menge der linearen Funktionale
Z(R*), in der Menge der linearen Abbildungen #(R*, R") oder in der Menge R¥ der
reellen Funktionen auf X angestellten arithmetischen Betrachtungen haben einen
gemeinsamen algebraischen Kern. Es war schon darauf hingewiesen worden, daff
man eine der Gemeinsamkeiten mit dem algebraischen Begriff der Gruppe beschreibt,
indem man sagt, daB die g ten Mengen hinsichtlich einer darin erkldrten biniren
Operation (hier handelt es sich um die koordinatenweise hzw. um die punktweise
Addition) jeweils eine Gruppe bilden. In diesen Gruppen war nun dariiber hinaus
noch eine weitere Operation erklirt, nimlich eine Multiplikation der Gruppenelemente
mit reellen Zahlen. Die Verquickung der Gruppenaddltlon mit der Skalarmultiplika-
tion unterlag dabei stets ein und denselben R t Man sagt zu diesem
Sachverhalt, daB es sich bei den betrachteten algebrmschen Strukturen um lineare
Réume (oder auch Vektorriume) handelt.

Definition1 (Reeller linearer Raum oder reeller Vektorraum). Es sei E eine
nichtleere Menge, die mit einer binidren Operation ,,+

+:EXE—-E, 2,ycE»>z+yck

sowie einer ,,Skalarmultiplikation‘ ,,-
“RXE—>E,acR,z€Er>a-2€E

ausgestattet ist.

Man sagt, daB E hinsichtlich dieser beiden Operationen einen reellen linearen Raum
oder einen reellen Vektorraum bildet genau dann, wenn folgende Grundeigenschaften
erfiillt sind:

1. Beziiglich der Operation ,,+* gilt:
1. z + y =y + « fiir alle z, y ¢ E (Kommutativitit der Operation +).
2.+ +z= a:+ (y + z) fur alle z, y, z € E (Assoziativitit der Operation + ).
3. Es gibt ein (eind tes) El t 0 ¢ E, so daB & + 0 = x fiir alle
z € E ist (Existenz und | Einzigkeit eines Nullelementes).
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4. Zu jedem x € E existiert ein (eindeutig besti ) Element, bezeichnet durch
—u, fiir welches z + (—z) = 0 ist (Existenz und Einzigkeit der Inversen).

II. Fiir die Multiplikation mit einem reellen Skalar gilt:

5.1.z=zfirallez€ E.
8. (x - B)* = a(fz) fiir alle a, B € R undallez € E (Assoziativitat der Multiplika-
tion mit einem reellen Skalar).

II1. Fiir das Zusammenspiel der Addition + mit der Multiplikation mit einem reellen
Skalar gilt:
7. (x +B)x = az + Pz fiir alle a, € R und alle z € E (Distributivitit der
Multiplikation mit einem Skalar beziiglich der Addition von Skalaren).
8. a(x + y) = ax + ay fir alle « € R und alle x,y € E (Distributivitit der
Multiplikation mit einem Skalar beziiglich der Addition).

Bemerkung. Tritt an die Stelle des Skalarbereiches R der Skalarbereich C der
komplexen Zahlen, so heiBt die Struktur ein komplexer linearer Raum oder ein
komplexer Vektorraum. Die eingangs gemachten Hinweise konnen als Verweise auf
Beispiele zu den reellen linearen Rdumen verstanden werden. Damit sind aber die
Méoglichkeiten fiir illustrierende Beispiele zu diesem Begriff noch lingst nicht er-
schopft. In der Analysis wird sich etwa noch ergeben, daB die stetigen reellen
Funktionen, die differenzierbaren reellen Funktionen, die integrierbaren reellen
Funktionen, die Folgen mit konvergenter Reihe usw. reelle lineare Réume (bei
entsprechender Abinderung des Wertebereichs auch komplexe lineare Riume)
bilden. Zum anderen erscheinen in der Geometrie ebenfalls lineare Riéume, bei-
spielsweise in Gestalt der Menge der Parallelverschiebungen in der Ebene beziiglich
der Hintereinanderschaltung und der Multiplikation mit reellen Skalaren. Damit
ist wohl hinreichend gerechtfertigt, daB man einen solchen Begriff wie den des
linearen Raumes im Sinne einer Denkikonomie als abstrakten mathematischen
Begriff hervorkehrt. Die Bezeichnung ,linearer Raum* fiir diesen Begriff ist uns
dabei erklirlich, jedoch bedarf es noch einiger Worte iiber die Bezeichnungsweise
,, Vektorraum*‘.

Der deutsche Mathematiker HERMANN GRASSMANN (1809—1877) hatte zum
Zwecke einer geeigneten Behandlung geometrischer Probleme der Ebene und des
Raumes die geometrische Vektormethode (das Operieren mit gerichteten Strecken)
erfunden. Dabei verwirklichte GRassMANN eigentlich eine Idee von LEiBN1z, der
eine ,,characteristica geometrica‘ gefordert hatte, worunter eine Lehre zu verstehen
wiire, ,,die die geometrischen Lagebeziehungen so zum Ausdruck bringt, wie die Al-
gebra GréBenbeziehungen'. AuBer GRAsSMANN muB als Urheber einer Vektortheorie
noch der irische Mathematiker W. R. HamiLToN (1805—1865) genannt werden.
HamiutoN schuf mit den nach ihm benannten Quaternionen die meisten heute he-
kannten Einsichten der Vektortheorie. Von ihm stammt auch die Bezeichnung
,,Vektor* (vehere (lat.): fahren).

Heute hat die Vektortheorie auBer den geometrischen Aspekten, die in Band 6
und 7 betrachtet werden, algebraische Aspekte. Die Bezeichnung Vektor steht dabei
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allgemein fiir ein Element eines li R (eines Vektor ). Dem ,,Vektor*‘
kommt also keine absolute Bedeutung zu. Dieser Begriff versteht sich nur im Zu-
sammenhang mit einer bestimmten algebraischen Struktur. Vielfach iibliche, in der
Geometrie zu prizisierende AuBerungen, daB Vektoren mathematische GroBen be-
zeichnen, die auBer durch einen Zahlenwert noch durch eine Richtung gekennzeichnet
werden, sind in diesem Sinne unzutreffend, weil zu pauschal. Sie kénnen héchstens
als eine leichte Andeutung auf die El te des fiir die El targ trie wichtig
»Vektorr ‘“ der Verschiebungen aufgefat werden.




10.  Lineare Ungleichungen. Lineare Optimierung

Betrachtungen von linearen Ungleichungen werden zum Beispiel bei Fragen der
linearen Optimierung nétig. Wir bringen ein sehr einfaches, aber instruktives Bei-
spiel einer Aufgabe der linearen Optimierung.

Ein Betrieb stellt zwei Waren W, und W, her, wobel fiir jede Ware Rohstoffe
dreierlei Art R,, R,, Ry benétigt werden. Von dem Rohstoff R; seien b; Mengenein-
heiten vorhanden. Zur Herstellung von W, mége pro Mengeneinheit benotigt werden:

a,; vom Rohstoff R,,
a,; vom Rohstoff R,,
ag, vom Rohstoff R,.

Zur Herstellung von W, mége pro Mengeneinheit benétigt werden:

a,, vom Rohstoff R,,
ay, vom Rohstoff R,,
ay, vom Rohstoff R,.

In den Koeffizienten a;; gibt also der erste Index die Rohstoffart und der zweite
Index die Warenart an. Die Ware W; erbringe dem Betrieb pro Einheit einen ge-
wissen Gewinn p;, ¢ =1, 2.

Das interessierende Problem bestehe in der Frage: Wie muB der Betrieb seine
Planung einrichten, damit der G tgewinn méglichst groB wird? Es wird also die
Zahl z; der Wareneinheiten W;,i =1, 2, erfmgt, d.le duziert issen, um
optimalen Gewinn zu erzielen. Mathematisch g handelt es sich um die Be-
stimmung des Maximums der Funktion

(21, T2) = P1%1 + pa%s (Zielfunktion).
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Hierbei sind den (z,, z,) folgende Bedingungen auferlegt:
620,220

(sogenannte Randbedingungen);

aux + 4T S by,
anZy + %y < by,
a3, Ty + 5T, < by

(sogenannte Balance-Bedingungen).

Die Randbedingungen sind von sich aus klar. Die Balancebedingungen driicken
die zu beriicksichtigenden Stoffbeschrinkungen aus. Die Zielfunktion ¢ ist ein
lineares Funktional. Von diesem Funktional sind auf der Losungsmenge der ange-
schriebenen fiinf linearen Ungleichungen die Maximalstellen zu ermitteln!

In der Praxis treten solche linearen Optimierungsprobleme haufig auf. Zur rech-
nerischen Bewiltigung gibt es verschiedene Verfahren (Algorithmen). Wir gehen
auf die Losungsverfahren nicht ein, sondern wir schaffen uns noch einen kleinen
Einblick in die grundsitzliche Struktur der Problematik. Da wiire vor allem das
Aussehen der Lsung! ge von linearen Ungleichungen zu kliren.

Im R" sei eine lineare Ungleichung

T + 8%, + 0 + ar, S b

mit den vorgeschriebenen Koeffizienten a,,@,,...,a, und der vorgeschriebenen
rechten Seite gegeben. Es ist eine Einsicht in die Losung; ge dieser Ungleichung
gesucht. Um die Dinge geometrisch-anschaulich verfolgen zu kénnen, heschriinken
wir uns zunichst auf den Falln < 3. Wird anstelle der Ungleichung die entsprechende
Gleichung betrachtet, so ist die Lésungsmenge eine Ebene, Gerade oder aber ein Punkt
(in Abhingigkeit von n = 3, n = 2 oder n = 1).

Fiir n = 1 stellt die Losungsmenge einer linearen Ungleichung alle Punkte einer
Halbgeraden dar, die durch den der Gleichung entsprechenden Punkt bestimmt wird.
Fiir n = 2 stellt die Losungsmenge einer linearen Ungleichung f(x) < b alle Punkte
einer Halbebene dar, die durch die Gerade bestimmt wird, welche der Gleichung
(@) = b entspricht. Analog stellt die Losungsmenge einer linearen Ungleichung
f®) <b, f€ £L(R%, alle Punkte eines Halbraumes dar, der durch die Ebene be-
stimint wird, welche der linearen Gleichung f(&) = b entspricht. Zur Begriindung der
Aussagen betrachte man die Mengen

Hy:={x:xe R f®) <b), H:=[(x:®E R, f(@)=0),
H,: = {®:@xcR*, f(&)>b}.

Diese drei Mengen stellen eine Zerlegung des R* dar.
Nun laBt sich folgende. Feststell beweisen: Von zwei Elementen y, 2 € R*\H

-]

gehort eins zu H,, das andere zu H, genau dann, wenn die ,,Ver bindungsstrecke* von
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Yy, z die Menge H iiberschneidet, d. h., wenn
fuw:ucRhu=ty+ (1 —-t)z, 0<t=<1|nH+0

gilt. Das bedeutet also, daB die Mengen H, und H, die beiden verschiedenen (offenen)
Halbrdume sind, die beim Herauslésen von H aus dem R* entstehen. Die Losungs-
menge der betrachteten linearen Ungleichung f(x) < b ist damit ein ,,abgeschlossener*
Halbraum, wo also die Punkte der begrenzenden Hyperebene H noch mitgerechnet
werden. Hieraus folgt sodann, daB die Losungsmenge eines Systems von m linearen
Ungleichungen der Durchschnitt von (abgeschl ) Halbriiumen ist. Es handelt
sich um eine gewisse konvexe Menge. Belsplelsweise ist im R® die Losungsmenge des
Ungleichungssystems

%20,
20,
23,20,
T+ a3t =1

das durch die Einheitspunkte auf den z;-Achsen und dem Ursprungspunkt aufge-
spannte Tetraeder.




11.  Algebraische Strukturen

11.1.  Einleitung

In den Bemerkungen zur Geschichte der Algebra wurde bereits darauf aufmerksam
gemacht, wie sich die Auffassungen vom Inhalt der Algebra wihrend der historischen
Entwicklung dieses Zweiges der Mathematik mehrmals geindert haben. Einer elemen-
taren Lehre iiber die Auflésung von Gleichungen folgte die Beschiftigung mit der
,-Buchstabenrechnung‘‘, ehe das schwierige Problem der Auflosung einer Gleichung
n-ten Grades in einer Unbekannten in den Mittelpunkt des Interesses riickte. GAuss
bewies, daB jedes Polynom positiven Grades, dessen Koeffizienten komplexe Zahlen
sind, in der Menge der kompl Zahlen mindestens eine Nullstelle besitzt. Ent-
sprechend der zu jener Zeit hemchenden Auffassung vom Inhalt der Algebra wurde
dieses Resultat als Fund talsalz der Algebra bezeichnet.

War auch der Hauptinhalt der ,klassischen Algebra*, wie sie von WEBER in
seinem 1896 erschienenen Lehrbuch der Algebra dargestellt wurde, Gleichungstheorie,
so erschienen doch in dieser Entwicklungsphase bereits Elemente einer ,,Struktur-
algebra‘‘. In den Uberlegungen von ABEL und GaLo1s erwies sich der Gruppenbegriff
als ein wesentliches Hilfsmittel zur Beherrschung des Problems der Gleichungs-
auflssung. Auch andere Strukturbegriffe wie Modul, Korper, Ring und Verband
wurden bereits in dieser Zeit durch GAuss, DEDEKIND, HILBERT und DEDEKIND ein-
gefiihrt. Es stellte sich jedoch heraus, daB diese Hilfsbegriffe der klassischen Algebra
weitaus grollere Anwendungsmoglichkeiten besaBen, als man urspriinglich annehmen
konnte, denn es setzte sich die Erkenntnis durch, daB die Beschaffenheit der El t
einer solchen Struktur bei vielen Uberlegungen unbeachtet bleiben darf. STEINITZ,
der 1910 in seiner epochemachenden Arbeit Algebraische Theorie der Korper mit der
Aufstellung des Isomorphieprinzips die Richtung der algebraischen Untersuchungen
bestimmte, gab die priizise Formulierung dieser Auffassung.

Ausgehend vom Mengenbegriff entstand durch Hinzunahme von Operationen und
Relationen der Begriff der algebmnchen Struktur. Stellt man an eine solche noch
bestimmte Forderunger (die i.allg. als ein Axiomensystem fiir die betrachtete
Struktur formuliert werden), so erhilt man Typen von Strukturen, wie sie unter den
Namen Gruppe, Ring, Korper usw. geliufig sind. Thre Erforschung ist die Aufgabe
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der Algebra geworden. Diese ,,moderne Algebra‘ stellte vaAxX DER WAERDEN 1930/31
in seinem gleichnamigen, fiir die ganze Entwicklungsetappe grundlegenden Lehr-
buch dar. Seit der vierten Auflage im Jahre 1955 gab ihm der Autor jedoch den
Titel Algebra. In den letzten Jahrzehnten riefen niimlich die Eigenentwicklung der
Algebra sowie die Anspriiche, welche die Anwendungsgebiete (Topologie, Funktional-
analysis, algebraische Geometrie u.a.) an sie stellten, einige neue und wichtige
Zweige der Algebra (Verbandstheorie, Theorie der Halbgruppen, homologische
Algebra, universelle Algebra u. a.) ins Leben. Einen Einblick in diese neue Entwick-
lung vermittelte Kuro3 in sei Buch Vorlesungen iiber allgemeine Algebra, d
deutsche Ub ng 1964 hi.

11.2. Der axiomatische Aufbau einer Theorie

s oh

In einer mathemat Theorie betrachtet man Mengen von Objekten, zwischen
denen gewisse Beziehungen erklirt sind, welche besti e Eigenschaften haben
(vgl. MfL, Bd. 1, 2.7.). Der Inhalt der Theorie besteht nun darin, Begriffe und Be-
ziehungen durch andere zu definieren und Eigenschaften von Beziehungen und Be-
griffen zu beweisen. Zum Beispiel kann man, von den natiirlichen Zahlen ausgehend,
die rationalen Zahlen definieren, kann auf der Menge der rationalen Zahlen eine
zweistellige Operation erkliren, die man Addition nennt, und von dieser etwa be-
weisen, daB sie kommutativ ist. Es ist unmittelbar einzusehen, daB man nicht alle
Begriffe und Bezieh definieren und simtliche Eigenschaften allein mit Hilfe
der Logik beweisen ]mnn, da ja jede Definition den zu definierenden Begriff auf andere.
Begriffe zuriickfiihrt und beim Beweis jeder Eigenschaft andere Eigenschaften be-
nutzt werden. Deshalb muB man bei jeder mathematischen Theorie gewisse Begriffe
und Beziehungen ohne Definition an die Spitze stellen. Das sind die Grundbegriffe
und Grundbeziehungen der betreffenden Theorie. Ebenso muB man gewisse Eigen-
schaften der Grundbegriffe und Grundbeziehungen vor Diese sogenannten
Grundes haft den in den Azi formuliert. Nach der Aufstellung der
Gmndbegnffe und Grundbeziehungen sowie der Axiome, die das Fundament der
Theorie bilden, werden die abgeleiteten Begriffe und Sitze auf rein logischem Wege
aus ihnen gefolgert.
Ein solcher deduktiver Aufbau ist fiir die Mathematik typisch. Es ware jedoch
falsch, wollte man induktive Betracht isen, die von speziell ht
zu allgemei A lang als b ngslos fiir die Mathematik ansehen.
Die Mathematik ist wie ]ede andere Wissenschaft aus praktischen Erfahrungen
entstanden und dient praktischen Bediirfnissen. Die Grundbegriffe und Axiome einer
Theorie sind Widerspiegelungen der objektiven Realitit mit einem héufig sehr hohen
Abstraktionsgrad. Ehe der axiomatische Aufbau einer Theorie begonnen wird, sind
oft bereits Kennt vorhanden. So waren beispielweise die natiirlichen Zahlen und
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ihre Eigenschaften lingst bekannt, ehe von dem P hen Az tem aus-
gehend ein axiomatischer Aufbau der Theorie der natiirlichen Zahlen erfolgte Auch
waren bereits umfangreiche Kenntnisse der Geometrie vorhanden, als man einen

axiomatischen Aufbau begann, der in den beriihmten, im 3. Jahrhundert v. u. Z.
“in Alexandria geschriebenen ,Elementen‘‘ des EUELID dargestellt wurde. Es wire
aber auch verkehrt, wenn man die axiomatische Methode nur als ein Verfahren zur
eleganten Darstellung einer Theorie ansehen wollte. Die Kritik am Axiomensystem
des EUELID hat die mathematische Forschung in zwei Jahrtausenden angeregt.
Am Anfang des vorigen Jahrhunderts entdeckten ‘NIRoLAT IwANOWITSCH LoOBA-
TSCHEWSKI (1793 —1856), Gauss und Janos BoLyar (1802—1860), ausgehend von
einem Axiomensystem, die (hyperbolische) nichteuklidische Geometrie.

Wir haben Axiome als Grundaussagen ohne Beweis an die Spitze einer Theorie
gestellt. Damit soll nicht ausgedriickt werden, daB3 die Axiome etwa deshalb keines
Beweises bediirften, weil sie ,,offensichtlich* gelten. Eb ig vertreten wir den
Standpunkt, daB die Grundbegriffe und Grundbeziehungen nicht definiert zu werden
brauchten, weil ihre Bedeutung ,klar ist. Da die Grundbegriffe und Grundbe-
zichungen nicht aus der Theorie heraus erklirt werden, ergibt sich die Frage nach
ihrer Bedeutung. Ist sie geklirt, so kann man auch sinnvoll nach der Wahrheit der

Axiome fragen.

Man nennt eine vorgegebene Menge von Objekten, zwischen denen gewisse Be-
ziehungen bestehen, ein Modell oder eine Interpretation eines Axic yst , wenn
bei einer Belegung der Grundbegriffe und Grundbeziehungen des Axi yst

durch konkrete Objekte und Beziehungen zwischen Objekten der gegebenen Menge
die Aussagen des Axiomensystems zutreffen.

In diesem Fall kann dann die ganze Theone auf die vorgegebene Menge und die
zwischen ihren El ten bestehenden Bezieh angewendet werden. In einem
festen Modell eines Axiomensystems haben die Grundbegnfie und Grundbeziehungen
also eine wohlbestimmte Bedeutung, und die im Axiomensystem formulierten Aus-
sagen sind fiir das Modell wahr, weil sie dort zutreffen.

Die Menge der Kardinalzahlen der endlichen Mengen liefert ein solches Modell fiir
das Peanosche Axiomensystem (vgl. MfL, Bd. 1, 3.1.) und die Menge T(M) aller
1-1-Abbildungen einer beliebigen nichtleeren Menge M auf sich beziiglich der Ver-
kettungsoperation ein Modell fiir die Gruppenaxiome (vgl. MfL, Bd. 1, 2.4. (17a) bis
(17¢)). Wir werden im nichsten Abschnitt einige Axi yst fiir algebraische
Strukturen und zugehérige Modelle angeben.

Aus einem gegebenen Axiomensystem kann man weitere Aussagen ableiten. Er-
hilt man dabei zwei Sitze, die einander widersprechen, d. h., von denen der eine die
Negation des anderen ist, so heiBt das Axiomensystem widerspruchsvoll. Grundlage
fiir eine inhaltsreiche mathematische Theorie kann selbstverstindlich nur ein
Axiomensystem sein, das nicht widerspruchsvoll ist. Wenn aus einem Axiomen-
system bis zu einem bestimmten Zeitpunkt keine Widerspriiche entwickelt wurden,
so ist das natiirlich kein Beweis fiir seine Widerspruchsfreiheit. Es entsteht also die
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Frage, wie man sich von der Widerspruchsfreiheit eines vorgelegten Axiomensystems
iiberzeugen kann. KURT GODEL zeigte 1931, daB es unméglich ist, innerhalb einer
Theorie ihre Widerspruchsfreiheit nachzuweisen. Deshalb wird folgendes Verfahren
benutzt: Hat man eine Theorie T, an deren Widerspruchsfreiheit man nicht zweifelt,
sowie ein Axiomensystem ¥, dessen Widerspruchsfreiheit untersucht werden soll,
und gelingt es, mit den Begriffen der Theorie T ein Modell fiir das Axiomensystem %
zu konstruieren, so ist A (relativ zur Theorie T) widerspruchsfrei.

Haufig ist es iiblich, die Arithmetik der rationalen Zahlen als widerspruchsfreie
Theorie T zu akzeptieren und ein Axiomensystem % sowie die darauf aufgebaute Theo-
rie als widerspruchsfrei zu bezeichnen, wenn man mittels der Arithmetik der ratlonalen
Zahlen ein Modell fiir % konstruieren kann. Die im nichsten Abschnitt
Axiomensysteme fiir algebraische Strukturen werden sich in diesem Sinne “als wider-
spruchsfrei erweisen.

Eine zweistellige Relation R in einer Menge M heiBt Aquivalenzrelation, wenn sie
den Axiomen

A zRz (R ist reflexiv),
zeM
AN (zRy AyRz = zRz) (R ist transitiv),
y.zeM
A (zRy = yRBz) (R ist symmetrisch)
zyeM

geniigt (vgl. ML, Bd. 1, 2.5. (12)).

Dieses System ist widerspruchsfrei, denn z. B. stellt die Menge der ganzen Zahlen
mit der Gleichheit als Relation R ein Modell dar. Auch die Kongruenzrelation R,,
in der Menge der natiirlichen Zahlen (vgl. MfL, Bd. 1, 3.7. (63)) ist eine Aquivalenz-
relation.

Ein Axiom heiBt unabhingig von den iibrigen Axiomen eines Systems, wenn es sich
nicht aus diesen als Satz beweisen liit. Beim axiomatischen Aufbau einer mathe-

tischen Theorie bemiiht man sich natiirlich darum, méglichst nur unabhingige
Axiome im Axiomensystem zu haben, d.h. das Axiomensystem ,minimal*‘ zu
halten. Manchmal wird im Interesse der leichteren Handhabung einer axiomatischen
Theorie ein mit abhingigen Axiomen angereichertes Axi tem verwendet,
mit dessen Hilfe man oft schneller zu int t Fol.gerungen kommt. Die Un-
abhiingigkeit eines Axioms 4 von den iibrigen Axiomen eines gegebenen Systems &
kann man nachweisen durch Konstruktion eines Modells fiir dasjenige Axiomen-
ystem &', welch tsteht, wenn man in € das Axiom 4 durch seine Negation er-
setzt und alle anderen Axiome beibehilt.
Die nachstehenden Relationen sind jeweils in der Menge M = {1, 2, 3} erklirt:

Ry={xy):ze MAyc Maz<2Ay<2)
ist nicht reflexiv, aber transitiv und symmetrisch,

R ={xy:zce Mryc Malr—yl =1}
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ist nicht transitiv, aber reflexiv und symmetrisch.
By={z,y):zc Mryc Mrz <y}

ist nicht symmetrisch, aber reflexiv und transitiv. Daher ist im Axiomensystem der

Kquivalenzrelationen jedes Axiom von den beiden anderen unabhingig.

Die Modelle vieler Axiomensysteme sind Strukturen im Sinne des im ersten Band
dargestellten allgemeinen Begriffes. So sind die eben angefiihrten Beispiele Strukturen
iiber einer Trigermenge aus drei Elementen mit einer istelligen Grundrelation
in denen keine ausgezeichneten Elemente und keine Grundoperationen erklirt sind.
Wir nennen zwei Modelle eines Axiomensystems isomorph, wenn sie als Strukturen
isomorph sind (vgl. MfL, Bd. 1, 2.7.(2)), d. h.; wenn es eine 1-1-Abbildung von der
Triigermenge des einen auf die Trigermenge des anderen Modells gibt, bei der sich
die Grundelemente, -relationen und -operationen iibertragen. Sind je zwei Modelle
eines Axiomensystems isomorph, d. h. gibt es ,,bis auf Isomorphie‘‘ nur ein Modell,
so heit das Axiomensystem kategorisch (oder ph). Das Axic ystem,
welches die Aquivalenzrelationen beschreibt, ist nicht kategorisch, denn die Menge
M, = {1, 2, 3) mit der Relation

R, ={(1,1), (1,2), (2,1), (2,2), (3,3))
und die Menge M, = Z mit der Relation
Ry ={z9):zeZryecZa2]|lc—yl

sind Modelle dieses Systems, aber es gibt keine 1-1-Abbildung von M, auf M,.
Auch die Axiomensysteme der algebraischen Strukturen, die im niichsten Abschnitt
angegeben werden, sind nicht monomorph.

Ohne Beweis merken wir an, da8 das Peanosche Axiomensystem fiir die natiirlichen
Zsahlen und das von HILBERT gebene Axic ystem fiir die euklidische Geo-
-metrie kategorisch sind.

11.3. Algebraische Strukturen

Unter einer Struktur oder allyemimn Algebra versteht man ein (k + m + n + 1)-
Tupel (M, a,,...,a;, Ry, ..., Ry, 0y, ..., o,), wobei M eine Menge die Triagermenge
der Struktur, a,, ..., a;, ausgezeichnet te aus M, R,, ..., R, Relationen der
Stellenzahlen 4, ..., 4, in M und o,, ..., 0, Operationen der Stellenznhlen Fas eeesfn
in M bezeichnen. Es sind auch die Fille ¥ = 0 und (oder) m = 0 und (oder) n = 0
zugelassen (vgl. MfL, Bd. 1, 2.6.). Von einer algebraischen Struktur spricht man,
wenn M nicht die leere Menge bedeutet und wenigstens eine Operation in M erklirt
ist. Gegenstand der Algebra ist die Untersuchung solcher algebraischen Strukturen.
Dabei sind hiufig noch Eigenschaften der Elemente von M, die durch a, ....q;,
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R,,..., R, und o,,...,0, ausgedriickt werden konnen, in Axiomen fiir die Struk-
turen fixiert.

Wir wollen hier einige Beispiele fiir Typen von Strukturen angeben, die in der
Algebra von Bedeutung sind. Dabei beschrinken wir uns auf die Betrachtung
zweistelliger Operationen. In der Entwicklung der Algebra ist aus diesen Struktur-
typen durch weitere Verallgemeinerung der obige Strukturbegriff entstanden.

Den einfachsten Fall bilden offenbar die Strukturen (M, o), die aus einer nicht-
leeren Menge M mit einer darin definierten zweistelligen Operation o bestehen. Jede
solche Struktur heiBt Gruppoid.

(M, o) heift Gruppoid :<> M = B A o zweistellige Operation in M. 1)

Hiufiger als diesen noch sehr umfassenden Begriff verwendet man denjenigen der
Halbgruppe. Das ist ein Gruppoid, in welchem das Assoziativg

(@obd)oc=avo (boc)

fiir beliebige Elemente a, b, ¢ aus M gilt. Hier tritt also erstmalig ein Axiom auf, in
dem eine Eigenschaft einer Struktur fixiert ist.
(M, o) heift Halbgruppe :<> (M,o)ist Gruppoida N (@ ob)oc=ao(boc). (2)
abeeM

Beispiele fiir Halbgruppen sind die Menge der natiirlichen Zahlen mit der Addition
(N, +), die Menge der ganzen Zahlen mit der Multiplikation (Z, -) und die Menge der
Abbildungen von einer Menge M in sich mit der Hintereinanderausfiihrung der Ab-
bildungen als Operation.

Ist (M, o) ein Gruppoid und e € M, so heilt

e neutrales Element von (M, 0) :$> Aace =eca =a. (3)
aeM
Jedes Gruppoid (M, o) besitzt hichstens ein neutrales Element. (4)

Sind nimlich e und e’ neutrale Elemente von (M, o), so folgt aus (3)
e=¢eoe=¢eoce =e.

Die obigen Beispiele haben der Reihe nach die neutralen Elemente 0, 1 und die iden-
tische Abbildung, die jedes Element von M auf sich abbildet, wihrend die aus den
positiven geraden Zahlen mit der Multiplikation als Operation bestehende Halb-
gruppe kein neutrales Element besitzt.

Ist (M, o) ein Gruppoid mit dem neutralen Element e und sind @ und @ Elemente
aus M, so heifit

a inverses Element zua :©>aod =doca =e. (5)
Offenbar ist dann a inverses Element zu a.

Ist (M, o) eine Halbgruppe mit dem neutralen Element e, so besilzt jedes
a € M hichstens ein inverses Element. (8)
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Sind némlich @ und @’ inverse Elemente zu a, so ergibt sich aus (2), (3) und (5)
@ =aoe=a0(@ocd@)= (@ oa)od =eoa =a.
In (N, +) besitzt nur O ein inverses Element, nidmlich 0; in (Z,-) besitzen 1
und —1 inverse Elemente, nimlich 1 bzw. —1. In der Menge der Abbildungen von

einer Menge M in sich mit der Hintereinanderausfiilhrung der Abbildungen als
Operation besitzen genau die 1-1-Abbildungen von M auf sich inverse Elemente.

Eine Halbgruppe (M, o) wird Gruppe genannt, wenn zu je zwei Elementena, b € M
mindestens ein Element x ¢ M mit der Eigenschaft a o x = b und mindestens ein
Element y ¢ M mit der Eigenschaft y ca = b existiert (Ausfiithrbarkeit der links-
und rechtsseitigen Division).

(M, o) heipt Gruppe :<> (M, o) ist Halbgruppe A A ( Vaoz=bAV yoa =>)
abeM\zeM yeM
(9]

Beispiele fiir Gruppen sind die Menge der positiven rationalen Zahlen mit der
Multiplikation (Q,*, -), die Menge der komplexen Zahlen vom absoluten Betrag 1 mit
der Multiplikation als Operation und die Menge aller Permutationen einer endlichen
Menge M mit der Nacheinanderausfiihrung als Operation (vgl. MfL, Bd. 1, 2.4.).

In jeder Gruppe (M, o) gibt es ein neutrales Element e. (8)

Zu einem festen Element @ € M gibt es nach (7) in M jedenfalls zwei Elemente ¢, ¢’
mit

aoce=a, eoca=a.
Mit a und b liegen auch solche Elemente z, y in M, daB
acx=0b, yoa=>
gilt. Dann ist
€ob=¢o(@cx)=(ca)ox=aocx="b
und
boe=(yoa)oe=yo(ace)=yoa=>.

Mit b =ebzw.b = ¢’ ergibt sich daraus e’ce =e bzw. e'oce =¢’, also e =¢".
Dabher ist ¢ neutrales Element von (M, o).

Ist (M, o) Gruppe, so besitzt jedes a € M ein inverses Element a. 9)

Ist nimlich e das neutrale Element der Gruppe, so gibt es in M Elemented und a’, fiir
die
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gilt. Daher ist
@G=eo@=(@oa)od =a0o(aod) =aoce=a
ein inverses Element zu a, das nach (6) eindeutig bestimmt ist.

Ist (M, o) eine Gruppe, so gibt es in M zu jedem Elementepaar a, b aus M
genau ein x mit @ o x = b und genau ein y mit y o a = b. (10)

Die Existenz solcher Elemente x und y folgt aus (7). Bezeichnet e das neutrale Element
der Gruppe und @ das zu a inverse Element, so ist

T =eoxr=(@oa)ox =do(@ox) =aob

und

y=yoe=yo(aod) =(yoa)o@ =boa,
es gibt also hoch ein El t x und ein El t y in M, die den gegebenen
Gleich ii Man rechnet sofort nach, daB £ =@ob und y =boa die

geiordert: EiEenschaft besitzen, denn es ist

gox=ao(@ob)=(@acd)ob=eob=2">
und
yoa = (boB)oa ="bo(@ca)=boe=>.

Eine Gruppe (M, o) heiBt abelsch (oder kommutativ), wenn fiir alle Elemente
a,b € M das Kommutativgesetz a o b = b o a gilt.

(M, o) heift abelsche Qruppe :& (M. o) ist Gruppen A aob =boa. (11)
a,beM

Die Gruppe (Q,*, -) ist abelsch, die Gruppe S, aller Permutationen einer Menge aus
drei Elementen dagegen nicht (vgl. MfL, Bd. 1, 2.4.).

Meistens wird bei der Betrachtung dieser algebraischen Strukturen (M, o) mit einer
zweistelligen Operation die multiplikative Schreibweise verwendet, d. h., sind @ und b
Elemente von M, so schreibt man statt a o b einfach a - b oder ab und nennt ab ohne
Riicksicht auf die tatsichliche Bedeutung der vorliegenden Operation das Produkt
der Elemente @ und b. Das neutrale Element e der Gruppe nennt man dann auch das
Einsel ¢ und ‘bezeichnet es manchmal mit 1. Das zu a inverse Element wird mit
a! bezeichnet.

Bei kommutativen Strukturen (M, o) wird mitunter auch die sog. additive Schreib-
weise benutzt, d. h., statt @ ob wird a + b geschrieben und von der Summe der
Elemente a und b gesprochen. Das neutrale Element der Gruppe bezeichnet man dann
hiufig mit 0 und nennt es das Nullelement der Gruppe. Das zu a inverse Element
wird mit —a bezeichnet. Man setzt b —a :=b + (—a). Eine additiv geschriebene
abelsche Gruppe (M, +) wird Modul genannt.

(M, o) hespt Modul :< (M, o) ist additiv geschriebene abelsche Gruppe. (12)
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Die Menge aller ganzen Zahlen mit der Addition als Operation (Z, +) und die
Menge aller Vektoren des dreidi ionalen euklidischen R mit der Vektoraddi-
tion als Operation sind Beispiele fiir Moduln.

Eine algebraische Struktur (M, ol, 0;) mit zwei bindren Operatlonen wird nicht-

sativer Ring g t, wenn sie hinsichtlich der Operation o, eine abelsche Gruppe,
hinsichtlich o, ein Gruppoid ist und fiir alle Elemente a, b, ¢ aus M die Distributiv-
geselze

aoy(boyc) = (ao;yd)o, (ao,c)
und

(boyc)oya = (boga)o, (coya)

gelten. Diese Erklirung schlieBt nicht aus, daB in (M, o,) das Assoziativgesetz gilt,
d. h., ,,nichtassoziativ‘* wird hier als Abkiirzung fiir ,,nécht notwendig assoziativ' ver-
wendet.

Es ist im allgemeinen iiblich, o, durch die additive, o, durch die multiplikative
Schreibweise auszudriick Man nennt dementsprechend (M,o0,) = (M, +) die
additive Gruppe des Ringes und (M, v,) = (M,-) das mulliplikative Gruppoid des
Ringes. Fiir Elemente a, b, ¢ aus M sei ab + ¢ := (ab) + ¢, wie wir es vom Zahlen-
rechnen kennen. '

(M, +, ) heift nichtassoziativer Ring :& (M, +) ist Modul A (M, ) ist

Gruppoid A A a(b+o)—ab+m:/\ A (b+c)a—ba+ca (13)
ab,ceM

o

Die Menge aller Vektoren des dr nalen euklidischen R mit der ge-
wohnlichen Vektoraddition und der vektorlellen Multiplikation als Operation ist
ein Beispiel fiir einen nichtassoziativen Ring.

(M, +, -) nichtassoziativer Ring=> A a(b —c) =ab —ac

ab.ceM

AN (b—c)a=ba—ca. (14)
abeeM
Da (M, +) Gruppe ist, gilt (b —¢) + ¢ =b, woraus nach Multiplikation mit a
von links unter Ausnutzung des ersten Distributivgesetzes a(b — c) + ac = ab folgt.
Daraus ergibt sich
ab —c) =ab —ac,

weil (M, +) Gruppe ist. Die zweite Aussage kann analog bewiesen werden.

(M, +, -) nichtassoziativer Ring = A a0 =0z = 0. (18)
acM
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Ist nimlich z € M, so gilt nach (14)
a0 =a(z —2) =ar —azr =0.
(M, +, -) nichtassoziativer Ring => A (—a)b = a(—b) = —ab
A A (—a)(—b) =ab. e (16)
abeM

Denn aus
0=0b=(a+(—a)]b=ab+ (—a)b

ergibt sich (—a)b = —ab, da (M, +) Gruppe ist. Ebenso beweist man a(—b) = —ab.
Aus beiden Aussagen erhilt man

(—a) (=b) = —[a(—b)] = —(—ab) = ab.

Ist das multiplikative Gruppoid eines nichtassoziativen Ringes (M, +-,:) eine
Halbgruppe, 8o heiBt (M, +, -) assoziativer Ring oder einfach Ring.

(M, +, -) heift (assoziativer) Ring :<> (M, +, -) ist nichtassoziativer Ring
A A a(be) = (ab)e. (17)
abeeM

Beispiel. Die Menge aller n-reihigen quadratischen Matrizen mit reellen Elementen
(n = 2) mit der iiblichen Matrizenaddition und Multiplikation als Operationen ist
ein assoziativer Ring.

Ist die multiplikative Halbgruppe (M,-) des Ringes (M, +, ) kommutativ, so
nennt man den Ring kommulativ.

(M, +, -) heipt kommutativer Ring :< (M, +, ) ist Ring A A ab = ba. (18)
a,beM

Die Menge Z aller ganzen Zahlen bildet mit der Addition und Multiplikation als
Operationen einen kommutativen Ring.

Ist (M, +, -) ein nichtassoziativer Ring, dessen Trigermenge nicht nur aus dem
Nullelement 0 von (M, +) besteht, so kann das multiplikative Gruppoid (M, )
keine Gruppe sein, denn wegen (15) kann 0 nicht neutrales Element von (M, -) sein
und deshalb wegen (15) kein inverses El t in (M, -) besitzen. Bildet aber die Menge
M\(0) mit der Multiplikation des Ringes eine Gruppe, so heiBt der (dann notwendig
assoziative) Ring (M, +, -) Schiefkorper und (M\{0}, -) die multiplikative Gruppe des
Schiefkorpers. '

(M, +, ) heipt Schiefkorper :<> (M, +,-) ist Ring A (M\[0), -) ist Gruppe.
(19)

(M, +, -) heipt Korper .« (M, +, -) 18t kommulativer Ring A (M\(0}, -)

ist Gruppe. (20)
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Die Menge Q der rationalen Zahlen bildet ebenso wie die Menge der reellen Zahlen R
und der komplexen Zahlen C mit der iiblichen Addition und Multiplikation als
Operationen einen Kérper.

Vom Begnif des nicht; iativen Ringes ausgehend hnn man noch andere Strukturtypen er-
halten, die fiir A d von Bed sind. B lsweise heiBt ein nich iativer Ring
(M, +, +), in dem fiir behoblge Elemente a, b ce M

ag =90
und

(ab) ¢ + (bc) a + (ca) b =0

gilt, ein Liescher Ring (nach dem norwegischen Mathematiker S LiE (1842—1899)).

Im AnschluB an (13) haben wir ein Beispiel fiir einen nich iativen Ring angegeben, der
auch ein Liescher Ring ist.

‘Weitere Bou;plelo fir Liesche nge hnn man sich leicht herstellen: Ist (M, +, -) ein assozia-

tiver Ring und bezeich a,bb El te aus M, so ist ao b := ab — ba eine zwei-
stellige Operation in M und (¥, +,°) ein Liescher Ring.
Wir zeigen hst die Giiltigkeit eines Distributivg:

ao(b+c) =a(lb+c)—(b+cla=ab+ac— (ba+ ca)
=ab + ac — ba — ca = (ab — ba) + (ac — ca)
=aob+tace.
Analog kann nachgewiesen werden, daB das zweite Distributivgesetz gilt. (M, +, ¢ ) ist also ein
nichtassoziativer Ring.
Fir ein beliebiges Element a ¢ M gilt a @ = aa — aa = 0, und fir a, b, ¢ ¢ M ist
(@ob)oc+ (boc)ea+ (coa)ed
= (ab — ba) ¢ — c(ab — ba) + (bc — cb) @ — a(bec — cb)
+ (ca — ac) b — b(ca — ac) =
Dabher ist (M, +, o) ein Liescher Ring.

Eine algebraische Struktur (M, o,, 0,) mit zwei assoziativen und kommutativen
bindren Operationen heiBt Verband, wenn auBerdem noch die beiden Absorptions-
gesetze (auch Verschmelzungsgesetze genannt)

ao,(@0,b) =a und ao,(@ao0,d) =a

fiir alle Elemente a und b aus M gelten.

Die Bildung des Durchschnitts n und der Vereinigung u je zweier Teilmengen
einer gegebenen Menge M sind zwei Operati in der Pot PB(M), die alle
diese Bedingungen erfiillen. (%(M ), n, u) heiBt Verband aller Tetlmengen von M oder
voller Mengenverband. In Anlehnung an dieses Beispiel verwenden wir fiir die Opera-
tionen in einem Verband die Bezelchnungen Aund v.
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(M, A, ) heift Verband &> M + B A A, v zweislellige Operationen in M
ANaaAabac)=@Aab)acar AN avidbve)=(avbwve

a.b,ceM abceM

(21.1)
ANaAb=baar A avb=bdva (21.2)

abeM a,beM
A Nan@vd)=an ANav(aad)=a. (21.3)

a,beM a,beM
Die Menge N* der natiirlichen Zahlen == 0 mit der Bildung des groBten gemeinsamen
Teilers und des kleinst; i Vielfachen ist ein weiteres Beispiel fiir einen

Verband (N*, n, u).
Ist (M, A, ) ein Verband, so gelten fiir alle Elemente a,b aus M die Regeln
aAna=a, awva=a (22)
und
anb=asavbd=>. (23)

Denn nach (21.3)ista v (@ Aa) =aunda A (av (aAa)) =a,alBoaAna=a.
Analog folgt aus a A (@ v @) =a und av(aA(ava)) =a, daB ava =a.
Ferner ist (@ A b) v b = b. Daher folgt ausa A b =a, daB a v b = b ist. Analog
ergibt sich wegena A (@ v b) =asusav b=>0,daBa A b =aist.

Es sei M + O eine Menge und < bezeichne eine darin erklirte Ordnungsrelation,
d. h., < ist eine transitive, reflexive und antisymmetrische binire Relation in M
(vgl. MfL, Bd. 1, 2.5.). Zu zwei Elementen @ und b aus M definieren wir eine grifte
untere Schranke (Infimum, inf (a,d)) und eine kleinste obere Schranke (Supremum,
sup (a, b)) durch folgende Eigenschaften:

z = inf (g, b) (OTEMAzSurzSbANESarnESbEL7),
TeM
(24)
y=-8up (e, b)  QYEMAaSYAbSYraA@SGAb =G>y =9).
yeM
’ (25)

Ist z = inf (a, b) und z, = inf (a, b), so folgt aus (24) 2, < z und z < z,, wegen der
Antisymmetrie von < gilt also z = z;.

Ebenso zeigt man, daB es zu zwei Elementen a und b aus M héchstens eine kleinste
obere Schranke gibt. Es brauchen aber sup (a, b) und inf (@, b) nicht immer zu exi-
stieren. Beispielsweise ist in der Menge M = {(a, b, c, d, e} durch die Relation

R = {(a, a), (a, b), (a, ¢), (a, d), (a, €), (b, b), (b, d), (b, e), (c, ¢), (c, d), (c, €), (d, d), (e, €)}

eine Ordnung erklirt (z <y :% (z,9) € R), und es gilt inf (b,c) = a, wihrend
sup (b, ¢) nicht existiert.
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In jedem Verband (M, A, ) wird durch die Festlegung

a<b:anb=a (a,b€ M) (26.1)
eine Ordnungsrelation definiert, in der alle inf (a, b) und sup (a, b) existieren.
Es ist

inf (@,b) =a A b und sup(a,b)=avb. (26.2)

Zum Beweis zeigen wir, daB durch (26.1) eine Ordnungsrelation in M definiert
wird. Aus (22) ergibt sich @ < a fiir alle @ ¢ M. Da sich wegen (21.1) ausa Ab=a
undbAac=>

anc=@AbAac=andAac)=anb=a
ergibt, folgt ause < bund b < ¢ die Beziehung @ < c. SchlieBlich folgt ausa Ab=a
undb A a =b wegen (21.2)a =b,d. h.,,ista <bundb < a,80a =b.
Fiir beliebige Elemente @ und b aus M gilt wegen (21) und (22)
@Ad)Aaa=anbAaag)=an(@Adbl=(aAa)Ab=anb,

d.h.wegen (26.1) aAb<a und @Ab)Ab=aA(bAabd)=aAab, dh
a~nb<bIstzec Mundgit z <aeundz<b,dh.zAa=zundzAb=2z,50
istzA(@Ab) =@FAa)Ab=2Ab==z, was mit z <a A b gleichbedeutend
ist. Also ist @ A b = inf (a,b). Wir iiberlassen es dem Leser als Ubungsaufgabe,
unter Verwendung von (23) zu zeigen, daB a v b = sup (a, b) ist.

Umgekehrt gilt:

Ist die Menge M + @ und < eine Ordnungsrelation in M derart, daf zu allen
Elementen u,b € M inf (a,b) und sup (a, b) existieren, dann lassen sich in
M auf genau eine Weise zwei Operationen A, ~ 8o definieren,daf (M, A, )
ein Verband ist unda < b a Ab=a(a,bc M)gilt. 27)

Wir gehen von einer geordneten Menge (M, <) aus, in der alle inf (a, b) und
sup (a, b) («, b € M) existieren und definieren

aA~b:=inf(a,b), avb:=sup(a,b).

Wegen inf (2, b) = inf (b,a) und sup (a,d) =sup (b,a) ist a Ab=bAAa und
a v b =b v a. Fiir beliebige Elemente a, b, c aus M gilt

inf (inf (a, ), ¢) = inf (a, inf (5, ¢))
bzw.

sup (sup (a, b), c) = sup (a, sup (b, c))
(Ubungsaufgabe). Aus diesen Gleichungen folgt

@Ab)yAac=aAn(bAac) bzw. (avd)vc=awv (bwve).
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Wegen inf (a, sup (a, b)) < aist a A (@ v b) < a. Andererseits ist ¢ < @ und
a < sup (a, b), also a < inf (a, sup (g, b)). Daher gilt inf (a, sup (a, b)) =a,d.h
anA(avbd)=a.

Entsprechend weist man auch die Giiltigkeit des zweiten Absorptionsgesetzes nach.
Damit ist gezeigt, daB (M, A, V) ein Verband ist. In diesem gilt

aAnb=inf(a,bd) =a=>a=<bh
und
a<b=>as<inf(a,b)=aAb=<aDaAb=a.

Da wir bereits gezeigt haben, daB (26.2) aus (26.1) folgt, gibt es auch nur eine
Méglichkeit, in (M, <) Operationen A und v so zu definieren, da8 (M, A, ) ein
Verband ist, in dem (26.1) gilt.

In jedem Verband (M, ~, ) ist durch eine Operation die andere eindeutig
festgelegt. (28)

Denn nach (26.1) geht nur die Operation A in die Definition der Ordnungsrelation
< ein, durch die dann nach (27) die Operation v bestimmt ist. Mittels (23) erkennt
man, daB auch durch die Operation v die Ordnungsrelation < erklart werden kann,
durch die dann die Operation A festgelegt ist.

(26) und (27) besngeﬂ, daB die Verbande und diejenigen geordneten Mengen, in
denen alle inf (a, b) und sup (g, b) existieren, identische Begriffe sind. Der Zusammen-
hang wird durch (26.1) vermittelt.

Die wichtigsten der vorgestellten Strukturen sind die Gruppen, Ringe und Korper.
Entsprechend sind Gruppentheorie, Ringtheorie und Korpertheorie wichtige Teil-
gebiete der Algebra. Wir werden uns in den nichsten Abschnitten mit einer Ein-
fiihrung in diese Theorien beschéftigen. Dabei werden wir im allgemeinen die Triiger-
menge einer Struktur und die Struktur mit dem gleichen Buchstaben bezeichnen.
Wir werden also beispielsweise von den Elementen einer Gruppe @ oder eines Kérpers
K sprechen.

11.4.  Ubungsaufgaben

1. Man zeige, daB die angegebenen Axiome, welche ein Gruppoid (M, o ) erfillen muB, um eine
Gruppe zu sein, voneinander unabhiingig sind.
Dazu gebe man in einer dreiclementigen Menge M = {a, b, c} solche zweistelligen Operationen o
(z. B. in Form einer ,,Multiplikationstabelle'* (vgl. 12.3.)) an,daB (M, o ) jeweils genau einem
dieser Axiome nicht geniigt.
Wie viele Moglichkeiten gibt es, in M = {a, b, ¢} eine zweistellige Operation o so zu erkliren,
daB (M, ) eine Gruppe ist?
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2. Die Menge aller zwemllngen quadratischen Matrizen mit Eleménten aus N bildet bezaglich
der Matri Itiplikation eine Halb . Man zeige, daB es darin Matrizen A und B gibt,
far die AX = B unendlich viele La;ungen, YA = B dagegen keine Losung besitzt.

3. In der Menge M aller linearen Polynome f(z) = az + b mit Koeffizienten a (+ 0), b aus Q
wird durch f(z) o g(z) := f(g(z)) eine zweistellige Operation erklirt. Man beweise, daB (X, o)
eine nichtkommutative Gruppe ist, gebe ihr neutrales Element an und bestimme das zu f(r)
inverse Element.

4. In einer dreielementigen Menge M = {a, b, ¢} gebe man solche zweistelligen Operationen -, -
(z. B. durch Tabellen) an, da8 (M, +, -) ein Ring ist.

Wie viele verschiedene Moglichkeiten gibt ex?

6. Gilt in dem Ring (M, +, -) neben den Ringaxiomen auch noch

V Aae=ea=a,
ecM aeM
lo heiBt (M +, +) Ring mit Einsel ¢ e. Im Arxi fiir einen solchen Ring ist die
itdt der Addition eine Folgerung aus den iibrigen Axiomen (sogar auch schon ohne
d.u Axiom der Assoziativitit der Multiplikation).

6. Wie viele Ordnungarelntlonen kann man in der Menge M (a, b, ¢} so erkliren, daB zu je zwei
sus M das Infi und das §
In einem Fall gebe man die durch eine solche Ord 1 f legten Operati A
und v, mit denen (M, A, \) nach 11.3. (27) ein Verbmd mt in Tabellenlorm an.




12.  Gruppen

121. Gruppenaxiome, Beisplele

12.).1: Wir erinnern zunichst an die bereits im vorigen Abschnitt gegebene
Definition 1. Eine nichtleere Menge @ mit einer (hier multiplikativ geschriebenen)
zweistelligen Operation heiBt Gruppe, wenn folgende Axiome erfiillt sind:

A (ab)c = a(be) (Assoziativgesetz), 1)
a,b,ceG . .
"A Vaz=b/cha=b) @
a.be6\zc0 e

(Ausfithrbarkeit der links- und rechtsseitigen Division).
Diese Elemente z, y sind durch a und b eindeutig bestimmt (vgl. 11.3.(10)).
Die Gruppen kénnen auch durch andere Aussagen charakterisiert werden:
Satz 1. Hine nichtleere Menge G mit einer zweistelligen Operation ist dann und nur
dann eine Gruppe, wenn folgendes gilt:

A (ab) ¢ =a(be). (1)
a,b,ceG
In @ gibt es genau ein neutrales Element e mit der Eigenschaft
A ae=ea—=4. (3)
ae@
Zu jedem a € G gibt es in Q genau ein inverses Element a-! mit der Eigenschaft
aa! =ala=ce. . $4)

Beweis. Hat die Struktur G die Eigenschaften (1), (3), (4), so sind fiir beliebige
Elemente a, b aus @ auch z = a-'b sowie y = ba~! aus @, und es gilt

axr = a(a-'b) = (aa') b =eb =b,
ya = (ba')a =b(a'a) =be = b.
Also sind (1) und (2) erfiillt, und @ ist eie Gruppe.
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Sind umgekehrt (1) und (2) erfiillt, so gilt (3) (vgl. 11.3.(3), (4), (8)) und (4) (vgl.
11.3.(5), (6), (9)).

In @ sind zunichst nur Produkte aus zwei Elementen erklirt. Produkte aus mehr
als zwei Elementen kénnen durch mehrmalige Multiplikation von je zwei Elementen
gebildet werden. Beispielsweise kann das Produkt der Elemente a,b, ¢ einerseits
bestimmt den, indem dchst ab = p berechnet wird und dannpc = (ab) c.
Andererseits kann man aber auch zuerst bc = ¢ und dann aq = a(bc) bilden. Das
Assoziativgesetz (1) besagt, daB sich in beiden Fillen das gleiche Ergebnis einstellt.
Daher 1aBt man oft die Klammern weg, schreibt also abc = (ab)c = a(bc) und spricht
vom Produkt der drei Elemente a, b, ¢ in der gegebenen Reihenfolge. Das Produkt
aus n (n € NAn = 3) Gruppenelementen a,, ...,a, ist erklirt, wenn es durch
Beklammerung auf die Nacheinanderausfiihrung von » — 1 Produkten aus je zwei
Gruppenelementen zuriickgefiihrt wurde. Wir werden zeigen, daB jedes so gebildete
Produkt bei fester Reihenfolge der Faktoren das gleiche Resultat liefert. Es kommt
also auch bei einem Produkt aus » Faktoren nicht auf die Beklammerung an, und man
schreibt daher einfach a,a, --- a,.

Diese Aussage kann durch vollstindige Induktion nach n bewiesen werden. Fiir
n = 3 folgt die Richtigkeit aus (1). Wir nehmen an, die Behauptung sei fiir Produkte
aus weniger als » Faktoren richtig. Fiir jede natiirliche Zahl k mit 1 < k < » sind
also die Produkte a, --- a@; = p, und ay,, -+ @, = p, bereits eindeutig durch die An-
gabe der Faktoren und ihrer Reihenfolge bestimmt. Das Gesamtprodukt der a, -+ - @,
kann gebildet werden, indem man (a, -+ @;) (@, -+ @,) = p,p; berechnet. Ist ! eine
andere natiirliche Zahl mit 1 <! < n undsind ¢, = a, - a;, ¢, = ay4, -~ a,, 50 kann
das Gesamtprodukt auch durch (g, -+ @) (@14, - @y) = ¢1¢; bestimmt werden. Zu
zeigen ist p;p; = ¢;qs. Sei k < l. Nach der Induktionsannahme ist r = a4, +-- a;
allein durch die Angabe der Faktoren und ihrer Reihenfolge festgelegt, und es gilt

nr=q und g, = P,.
Aus (1) folgt dann
PP = Pilrgs) = (P17) 42 = Q42+

Fiir ein Produkt aus » Faktoren e (n € N*) kann man wegen der Giiltigkeit des
assoziativen Gesetzes die Schreibweise

a" i=au-a

» Faktoren
einfiihren. Fiir die so erklirte n-te Potenz von a gelten die Regeln
a™a* = a™*" = g"a™, (@™)" =a™ = (a")™ (5)
Definiert man noch

a®:=¢, @a":=(al)",



12.1. Gruppenaxiome, Beispiele 151

80 bestitigt man unter Verwendung von (4) leicht, daB die Regeln (5) fiir beliebige
Exponenten m, n € Z gelten.

In abelschen Gruppen (vgl. 11.3.(11)) ist fiir » € Z und beliebige Elemente a, b
auBerdem

(ab)* = a"b". (6)
In einer additiv geschriebenen Gruppe treten an die Stelle der Potenzen a® die Viel-
fachen na. Die Regeln (5) heiBen dann

ma + na = (m + n) a = na + ma, n(ma) = (nm) a = m(na).
Da ab(b'a!) = a(bb!) a! = aea! =e¢ und das inverse Element eindeutig be-
stimmt ist, gilt

(aby! = bla-. @

Definition 2. Als Ordnung |G| einer Gruppe @ bezeichnet man die Anzahl ihrer

Elemente, wenn diese endlich ist, @ wird dann endliche Gruppe genannt. Sonst heiBt
'@ Gruppe unendlicher Ordnung oder unendliche Gruppe.

12.1.2. Beispiele. Wollen wir von einer Menge M = @ und einer Korrespondenz,
die geordneten Paaren von Elementen aus M gewisse Bilder zuordnet, nachweisen,
daB durch sie eine Gruppe gegeben ist, so haben wir zu zeigen:

1. Diese Korrespondenz ist eine Operation in M (d. h. eine eindeutige Zuordnung
von M X M in M).

2. Die Axiome (1) und (2) sind erfiillt. (Nach Satz 1 kann statt dessen auch die
Giiltigkeit von (1), (3) und (4) bewiesen werden.)

Bei den folgenden Beispielen werden wir auf ausfiihrliche Nachweise hiufig ver-
zichten, da der Leser sie leicht erginzen kann.

121.21.D ={a + bY3 :a € ZA b€ Z Aa* — 35* = 1} bildet mit der iiblichen
Multiplikation eine unendliche abelsche Gruppe.
Aus a® — 3b* = ¢* — 3d? = 1 folgt niimlich, daB

(@ +8Y3) (c + a13) = (ac + 3bd) + (ad + o) V3
Element von D ist, da folgendes gilt:

(ac + 363)* — 3ad + be)! = (a® — 3b%) (¢* — 3d%) = 1.

Das Assoziativgesetz gilt bekanntlich in R. 1 4 0 }/5 =1 ist neutrales Element. In
der Struktur gibt es kein weiteres neutrales Element (vgl. 11.3.(4)).



Zua +b)3ista—b }/5 invers, weil

(a+ bﬁ) (a—b}/!;) =a'—3b*=1.
Wegen 11.3.(6) ist es das einzige Element mit dieser Eigenschaft.
Nach Satz 1 liegt also eine Gruppe vor.
12.1.2.2. Ist « eine feste Zahl aus R\{0, 1, —1}, dann bildet dieMenge Z,, = {a*: k € Z}

beziiglich der iiblichen Multiplikation eine unendliche Gruppe mit dem neutralen
Element a® = 1 und dem zu «* inversen Element x-*.

Eine golche Gruppe, deren El te die Pot eines einzigen El sind,
heiBt zyklisch. Nach (5) ist jede zyklische Gruppe abelsch.
12.1.2.3. (Z, 4) ist eine additiv geschriebene unendliche zyklische Gruppe, da
simtliche El te Vielfache von 1 sind. 0 ist das neutrale Element und zur ganzen
Zsahl a ist —a invers.
(@, +), (R, +), (C, +), (@Q\[0}, -), (R\(0), -), (C\{0}, )

sind weitere Beispiele fiir unendliche abelsche Gruppen in additiver und multiplika-
tiver Schreibweise.

12.1.2.4. Die Menge L, der quadratischen n-reihigen Matrizen aus rationalen Zahlen
mit von 0 verschiedener Determinante bildet beziiglich der Matrizenmultiplikation eine
unendliche Gruppe, die im Fall » > 1 nicht abelsch ist, wihrend fiir » = 1(Q\(0}, -)
vorliegt.

Das neutrale Elément ist die Einheitsmatrix I'; zur Matrix A invers ist die aus der
linearen Algebra bekannte inverse Matrix A-'.

12.1.2.5. Es sei M eine Menge und A & M, B & M. Beziiglich der durch
AoB:=(4AuB)\(4nB)

definierten Operation bildet die Potenzmenge (M) eine abelsche Gruppe. 4 o B
besteht aus denjenigen El ten von M, die in genau einer der Mengen A4, B liegen.
(AoB)oC besteht dann aus denjenigen Elementen von M, die entweder in genau
einer der Mengen A4, B, C liegen oder in allen drei Mengen enthalten sind. Aus den-
selben Elementen besteht aber die Menge 4 o (B o C).

Neutrales Element ist die leere Menge 0.

Da Ao A =0, ist jedes 4 € P(M) zu sich selbst invers.

Wegen der Kommutativitit von uund nist Ae B=Bo 4.

Wenn M eine endliche Menge aus |[M| Elementen ist, hat die Gruppe (B(H), o)
die Ordnung 2/¥l, sonst ist sie unendlich.

12.1.2.6. Es bezeichne T(M) die Menge aller 1-1-Abbildungen (Permutationen)
einer Menge M auf sich. Mit der Nacheinanderausfiihrung als Operation bildet T (M)
eine Gruppe (vgl. MfL, Bd. 1, 2.4.).
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Das neutrale Element e ist die identische Abbildung. Das zu f € (M) inverse
Gruppenelement ist die inverse Abbildung f-!. Ist M eine unendliche Menge, so
bildet T{HM) eine unendliche Gruppe, ist aber M eine endliche Menge aus » Elementen,
so bildet T(M) eine Gruppe der Ordnungn! (vgl. MfL, Bd. 1, 3.8.), die mit S, bezeich-
net und symmelrische Gruppe des Grades n genannt wird. .

Bildet die Permutation f der Reihe nach die Elemente a, b, ¢, ... € M auf f(a),
1(®), f(¢), ... € M ab, so schreibt man in iibersichtlicher Weise

= (a b ¢ )
— \fl@) 1®) fo) ...f"
Dabei steht in jeder der beiden Zeilen jedes Element aus M genau einmal. Zwei
solche Symbole stellen genau dann die gleiche Permutation dar, wenn sie durch Ver-
tauschung der Spalten auseinander hervorgehen.
Ist M = (1,2, 3}, so sind

o (123 12
“lt23) P= 23
._ (123 s (12
=\t32) =132

alle Permutationen aus S.
Das Resultat f o g der Nacheinanderausfiihrung (f nach g) der Permutationen

_fa b ¢ ...
= (/(a) 1®) f(e) )
und
_fa b ¢ ..
9= (v(a) 9) g(c) )
schreiben wir als Produkt
gl :=fog,

wobei der linke Faktor die zuerst fiihrende Per: tion g angibt. Da man nach
einer Spaltenvertauschung die Permutation f in der Form

(M gb) glo) )
flg(@) Hg®) f(g(©) -
schreiben kann, ist
_ b g@) g®) gc) ...
feg=of= (v(a) o) 90) . )(f(a(a)) fo®) flg() )

- (7(a<a)) flo®) flot) III)~
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Beispielsweise ist in der S;
pr=(l 2 3)(1 2 3)___(1 2 3)
231/\132 321
(gelesen: ,,1 bei p in 2 und 2 bei r in 3, also 1 bei pr in 3 usw.),
(1323 1)=(13)
Man muB also auf die Reihenfolge der Faktoren achten. Die 8, ist nicht abelsch.
12.1.2.7. Es sei P folgende Menge von Polynomquotienten in z:

p={,,_l,1_,,.ﬂ L = }
z z

"t—z'z—1
Fiir beliebige Elemente f = f(x) und g = g(x) aus P definieren wir
fog :=flgl)).

Istetwaf=1—zundg = Ll , 80 ergibt diese Substitution von g in f
x—

z 1
z—1 11—z

feg=1-—

wieder ein Element aus P. Man kann in endlich vielen Schritten nachpriifen, da
durch diese Festlegung jedem geordneten Paar (f, g) von Elementen aus P eindeutig
ein Element aus P zugeordnet ist.

Da nur endlich viele Elementtripel existieren, kann man durch Berechnung aller
méglichen Fille die Giiltigkeit des Assoziativgesetzes fiir die Operation o nachweisen.
Man kann sich den Sachverhalt aber auch durch die folgende Uberlegung klarmachen.
fo(goh) bedeutet, daB zunichst h(z) statt z in g(z) einzusetzen und dann das
Ergebnis in f(x) an die Stelle von z zu schreiben ist:

fo (g h) = flgth(x))).

Das gleiche Resultat entsteht, wenn ichst z in f(x) durch g(z) ersetzt und an-
schlieBend statt z im Ergebnis A(z) geschrieben wird:

(fog) o b = flg(h(x)).

Das neutrale Element e ist z. Die Elemente z, l , 1 —z,
x x
selbst invers, z—1 und i ! sind inander invers. P ist also eine Gruppe der
z -z

Ordnung 6. Sie ist nicht abelsch, denn
1 T 1 1
1 —x)o = 1 —2)=—.
( #) 11—z x—l*l—zo( 7 T

z 1sintl jeweils zu sich
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12.1.2.8. Es sei m eine natiirliche Zahl > 1 und
£ :=cosz + i 8in 2
m m
Dann ist
& = cos 21@ + isin 2Lk
m m

(vgl. MiL, Bd. 2, 7.3.) und m der kleinste Exponent aus N¥, fiir den ¢™ =1 gilt.
& =1,¢,¢, ..., ™1 bilden beziiglich der Multiplikation der komplexen Zahlen eine
zyklische Gruppe der Ordnung m.

12.1.2.9. Es sei m eine natiirliche Zahl > 1 und a, b ganze Zahlen. a heiBt kongruent
b modulo m genau dann, wenn m Teiler von @ — b ist:

a=bmodm :&>m|a—b

(vgl. MfL, Bd. 1, 3.7.). Die so definierte Kongruenz ist eine Aquivalenzrelation und
gibt AnlaB zu einer Einteilung der Menge der ganzen Zahlen in paarweise elemente-
fremde Klassen (vgl. MfL, Bd. 1, 2.5.), die Restklassen modulo m genannt werden.
Dividiert man a und b durch m, so gelangt man zu der Darstellung

a=mg+r Q@EZATENAOSr<m),

b=mg +r (@ EZArENADST <m).
Daraus ergibt sich

mla—bom|r—roer=r.

Also liegen zwei Zahlen a und b genau dann in der gleichen Restklasse mod m, wenn
sie bei der Division durch m den gleichen Rest aus derMenge {0,1,2,...,m — 1}
lassen.

Ista =sm + o’ und b =tm + b’ (3,¢ € Z), so folgt
a+b=@+t)ym+a +b

und
ab = (stm 4 a’'t + b's)m 4 a’d’.

Dabher gilt:
a=a'modmAab=bmodm=>a+b=a"+ b modmaAab=a’t' modm (8)

Es bezeichne [a] diejenige Restklasse modulo m, in der a liegt. Jedes Element
aus [a] heiBt ein Reprdsentant von [a]. Durch

[a] + [b] :=[a + b] ©)
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wird eine Addition in der Menge der Restklassen modulo m erklirt, indem man als
Summe der Restklassen von @ und b diejenige Restklasse definiert, in der a + &
liegt. Dies Ergebn!s hingt nicht von der Auswahl der benutzten Restklassenreprisen-
tanten ab. Sind nimlich a’ bzw. b’ andere Elemente aus den Restklassen [a] bzw. [b],
d. h., ist @ =a’ mod m und b = b’ mod m, so besagt (8), daB e + b und a’ + b’ in
derselben Restklasse liegen. Also gilt:

[a] = [a'] A [b] =[] => [a] + [¥] = [a + B] =[a’ + &) = [a'] + [¥].
Durch (9) wird deshalb eine Operation in der Menge der Restklassen modulo m
erklirt.
Ganz entsprechend definiert man eine Multiplikation der Restklassen modulo m
durch

[a] [3] := [ab] (10)

und zeigt mittels (8), daB auch hier das Ergebnis nicht von der Auswahl der be-
nutzten Restklassenrepriisentanten abhingt.

Da die Addition und Multiplikation der Restklassen mod m mittels der ent-
sprechenden Operationen in der Menge Z der ganzen Zahlen definiert wurden, weist
der Leser leicht nach, daB fiir sie jeweils das Assoziativgesetz sowie das Kommutativ-
gesetz gelten und auch das Distributivgesetz erfiillt wird. Die Menge Z,, der Rest-
klassen mod m bildet beziiglich der Restklassenaddition (9) als Operation eine
abelsche Gruppe der Ordnung m. Weil ihre Elemente [1], [2], ..., [m] = [0] wegen

[k] = k1] :=[1) + -+ + [1]

simtlich Vielfache von [1] sind, liegt eine additiv geschriebene zyklische Gruppe vor.
Das neutrale Element ist [0], und zu [a] invers ist [—a].

Mit den durch (9) und (10) definierten Operationen ist die Menge der Restklassen
mod m ein kommutativer Ring (vgl. 11.2.(18)), der Restklassenring mod m genannt
wird.

12.1.2.10. Fiir zwei Elemente a und a’' einer Restklasse mod m gilt a = sm + a’
(8 € Z). Daher ist jeder gemeinsame Teiler von a und m auch Teiler von a’ und jeder
gemeinsame Teiler von e’ und m Teiler von a. Insbesondere gilt also fiir die groBten
gemeinsamen Teiler am = a'Mm. Diejenigen Restklassen, deren Elemente zum
Modul m teilerfremd sind, heiBen prime Restklassen mod m. Sind [a] und [b] prime
Restklassen mod m, so ist auch [a] [b] = [ab] eine prime Restklasse mod m.

Zu zwei teilerfremden ganzen Zahlen a und m gibt es ganze Zahlen % und v, so daB

au +myv=1

ist (vgl. MfL, Bd. 1, 3.7.). Multipliziert man mit der ganzen Zahl b und setzt ub =z,
so ergibt sich daraus

az + m(vb) = b. (11)
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Mit @ und b ist auch z zu m teilerfremd. Daher bedeutet (11), daB es zu den modulo m
primen Restklassen [a] und [b] eine prime Restklasse [z] gibt, fiir die

[a] =] =[]

gilt. Weil die Restklassenmultiplikation iativ und ke tativ ist, erfiillen die
primen Restklassen mod m beziiglich der Restklassenmultiplikation als Operation
(1) und (2) und bilden deshalb eine endliche abelsche Gruppe der Ordnung @(m)
(Bulersche Funktion; vgl. MfL, Bd. 1, 3.7.).

12.1.2.11. E? sei die euklidische Ebene, |P, Q| der Abstand ihrer Punkte P, Q und
B, die Menge aller 1-1-Abbildungen f von E? (als Punktmenge aufgefaBt) auf sich,
welche die Abstinde aller Punktepaare ungeiindert lassen:

= {I=I EX(EY A A |P,Q = II(P),/(Q)I}-
P,QeEr

Mit der Nacheinanderausfiihrung als Operation bildet B, eine Gruppe.
Sind-f, g € B,, so gilt

IHg(P)), fg@) = lg(P), 9@) = |P,QI.

Da auch foge T(E3),ist fog € B,.

Fiir die Nacheinanderausfiilhrung von 1-1-Abbildungen gilt das Assoziativgeset:
Neutrales El t ist die identische Abbildung. Zu jedem f € B, gibt es in EI(E’) dle
inverse Abbildung -1, von der noch gezeigt werden muB, daB auch sie die Abstinde
je zweier Punkte ungeindert li8t. Sind P, Q € E?, so gilt wegen f € B,

IFB), @) = AP, 1 @) = 1P, @l

Die Elemente von B, heilen Bewegungen von E3? und B, die Gruppe der Bewegungen
oder Bewegungsgruppe von E3.

12.1.2.12. Eine Teilmenge F der Punktmenge der euklidischen Ebene E? nennen
wir eine Figur. Bezeichne B,p diejenigen Bewegungen aus B,, die F auf sich abbilden.

B,p bildet beziiglich der Nacheinanderausfithrung eine Gruppe. .

Offensichtlich ist mit f und g auch f o g Element von B,y. Das Assoziativgesetz
gilt, und die identische Abbildung ist neutrales Element in Byp. f € Byp besitzt eine
inverse Abbildung ! mB,. 1st P ein Punkt von F, so existiert ein P ¢ F mit f(P) =
Daher ist f1(f(P)) = P = f-}(P), also f-! € Bys.

B,p heiBt Gruppe der Figur F. Wir betrachten die Gruppe B;p der Eckpunkte
eines gleichseitigen Dreiecks in 3. Ein Element aus B,p ist bereits durch die Angabe
der Bilder der drei Eckpunkte festgelegt, denn jeder Punkt von E* ist durch die Ab-
stiinde von drei festen, nicht auf einer Geraden liegenden Punkten bestimmt. Jede
Permutation der drei Eckpunkte ist maglich. B, ist also die symmetrische Gruppe S8,.
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Die Gruppe B, der Eckpunkte eines Quadrates ist dagegen nicht die S,. Bezeichnet
man die Eckpunkte des Quadrates mit 1, 2, 3, 4 (vgl. Abb. 14), so beschreibt die
Permutation

1234
2134

7 4

2 3 Abb. 14

keine Bewegung aus B,q, weil der Abstand (1,4) vom Abstand der Bildpunkte (2, 4)
verschieden ist. Die Bewegungen von B;q werden durch die Permutationen

1234 1234 1234 1234
1234) \2341)° \3412) \4123)
1234 1234 1234 1234
1432) \3214) \2143)” 4321
angegeben. Die Gruppe hat also die Ordnung 8 und ist wegen
1234 1234*1234 1234
2341/\1432 1432/\2341

nicht abelsch.

12.2. Komplexe und Untergruppen

Da eine Struktur nur igen und naheli den Axiomen geniigen mu8, um eine
Gruppe zu sein, ist der Gruppenbegriff, wie die Belspxe]e illustrieren, in vielen
Bereichen der Mathematik von Bed Aus den Grundaussagen werden in der

Gruppentheorie viele nichtriviale Resultate gewonnen, die dann in den jeweiligen
Modellen Sitze iiber Abbildungen, Permutationen, Bewegungen, Zahlen, Rest-
klassen u.v.a. ergeben. Um die abzuleitenden Aussagen bequem formulieren zu
kénnen, fiihren wir zunichst einige Begriffe ein und untersuchen einfache Zusammen-
hinge.
12.2. 1 Fur dle Tellmengen der Menge der Elemente einer Gruppe @ kann neben den
igen, wie sie durch die Zeichen =, &, 2, <, o,n, u
ausgedruckt werden, auch die in @ erklirte Operation betrachtet werden. Um diesen
Unterschied zur Mengenlehre zu betonen, erfolgt die
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Definition 1. In der Gruppe G heifit
K Komplez von @ . K S GAK +0.
Definition 2. Sind X und L Komplexe der Gruppe G, so heiit
=(kl: ke Kale L)

Komplexprodukt von K und L. K-1 := (k2: k € K) heiBt zu K inverser Komplez.

In der symmetrischen Gruppe S, (vgl. 12.1.2.6.) enthalt das Komplexprodukt KL
der Komplexe K = (¢, r) und L = {p, r} die Permutationen

i (123)(123) _ (123 _
T=312)le31) 123/ ™%
123/123 _ (123 -
312/\132/ \213/ "
123\(123) (123
132/\231) \213
L23) (123
1 3 z 13z \t2s3/ "
es ist also KL = (e, t}. Ebenso berechnet man LK = e, s}.
Die Bildung des Komplexproduktes ist eine Operation in der Menge der Komplexe
einer Gruppe G. Sie ist assoziativ, da die Gruppenoperation assoziativ ist. Wie unser

Beispiel zeigt, ist sie aber im allgemeinen nicht kommutativ.

Ist K ein beliebiger und 4 = {a} ein Komplex von G, der nur aus einem Elcment a
besteht, so schreiben wir statt K4 bzw. 4K auch Ka bzw. aK.

Definition 3. K und L seien Komplexe von @.
L heiBt (unter @) zu K konjugiert :<> V g-'Kg = L.
o -

[
K heiBt normal (oder invariant) in @ :& A g'Kg = K.
7e@

8

Ist g-'Kg = L, so sagt man auch, daB K bei der Transformation mit dem Element
g € G in L iibergeht, und nennt L transformierten Komplex. K ist also genau dann ein
invarianter Komplex in @, wenn K bei allen Transformationen mit Elementen aus &
in sich iibergeht. g-1Kg = K bedeutet nicht, daB die cinzelnen Elemente von K bei
der Transformation mit g ungeiindert bleiben. Davon kann man sich am Beispiel der
Gruppe §8; iiberzeugen, denn K = (e, p, g} ist darin normaler Komplex. Insbesondere
priift man leicht die Bezichungen .

ri=r; riler=e, ripr=gq, rigr=p

nach, aus denen r1Kr = K folgt.
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In jeder Gruppe @ besitzen die Gleichungen az = bund ya = b (a, b € G) eindeutig
bestimmte Lésungen. Daher gilt fiir beliebige Elemente g € G

Gg=g@=G oder g¢g'Gg=@G. 1)
Ferner ist
66 =@ @

und (g-1)-! = g zufolge
G1=a. @)

Neben @ ist in jeder Gruppe @ der nur aus dem.neutralen Element bestehende
Komplex invariant.

12.2.2. Von besonderer Bedeutung sind Komplexe, auf die zutrifft die

Definition 4. Ist U Komplex der Gruppe @, so heiBt U Untergruppe von @ :& U
ist beziiglich der in @ definierten Operation eine Gruppe.

Die in @ erklirte Multiplikation ist genau dann auch eine Operation in U, wenn
fiir sie gilt:

veUAveUDuweU. 4)
U ist dann und nur dann Untergruppe, wenn neben (4)
veU=ulelU (6)

erfiillt ist. Da es nimlich in U wenigstens ein Element u gibt, folgt aus (5) und (4),
daB uu = e € U. Das Assoziativgesetz gilt selbstverstindlich in U, da es in @ gilt.
Also ist U eine Gruppe (vgl. 12.1., Satz 1).

Gleichbedeutend mit (4) und (5) ist die Bedingung

veEUAvEUDurteU. 6)
Denn weil U wenigstens ein Element u enthilt, ergibt sich fir v = u aus (6), daB
wu! = e € U. Ferner ist mit ¢ und u auch ex~! = »! in U enthalten. Daher liegt

mit  und v auch v-! und nach (6) «(v-)-! = uv in U. Umgekehrt ergibt sich offen-
sichtlich (6) aus (4) und (5). Also gilt der

Satz 1. Der Komplex U von G ist genau dann Untergruppe von G, wenn
urrc v (6)
gilt.
Die nur aus dem tralen El t bestehende Gruppe sowie G sind Unter-

gruppen jeder Gruppe @. Sie heiBen (riviale, alle anderen heiBen nichétriviale oder
eigentliche Untergruppen von G.
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Mit Hilfe dieser Uberlegungen ist es leicht, die folgenden Mengen als Untergruppen
der gegebenen Gruppen zu erkennen (vgl. 12.1.2.):

1. {g: Vg= 22} in (Z, +),

2€Z

. Zin (@, +),
. Qin (R, +),
. (A: A€ Lyndet A = 1}in (L, ),

5. (f: f € T(M) A fiir ein festes Element a € M ist f(a) = a) in (M),
insbesondere {e, r} in S;,

6. {e,p,q) in Sy,

7. Bgrin By,

g J(1234) (1234) (1234) (1234, 5
"W1234)°\2341)°\3412)" \4123 2
(Drehungen des Quadrates),

1234) (1234, o
1234) 1432 2

(Spiegelungen des Quadrates an einer Diagonalen).

oW N

Zwei Elemente a, b einer Gruppe heiBen vertauschbar, wenn ab = ba ist.
Definition 5. In der Gruppe @ heiBt
Z(@) := {z: ze@ A'/(\ng = zg} Zentrum von G.
Z(G) enthilt das neutrale Element ¢ € @. Aus gz, = z,g und gz, = 2,g ergibt sich
g2\25 = 2,g2y = 2,2,9, 8lso
2, € Z(Q) Azg € Z(G) > 2,2, € Z(@).
Aus gz = zg folgt z7lg! = giz1. Weil G-! = G ist, gilt dann
2€ Z(@) > 2t € Z(G).

Z(@) ist also eine Untergruppe von G. Die abelschen Gruppen stimmen mit ihrem
Zentrum iiberein, Z(S;) enthilt nur das neutrale Element und Z(B,q) besteht aus
den Permutationen

1234\ 1234
(1 23 4) und (3 41 2)‘

Ist U eine Untergruppe von @, so sind auch die konjugierten Komplexe ¢g-'Ug,
g € @, Untergruppen von G, denn unter Verwendung von 12.1.(7), sowie (2) und (3)
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erhélt man
gUg) g Ug)? = g'Ugg'U'g = g7 UUYg =40y,
d. h., (6') gilt fiir den Komplex g-1Uy.
Ist U Untergruppe von G, V Untergruppe von U, so ist V auch Untergruppe
von G.

Ist U eine nichtleere Menge von Untergruppen von G, so ist auch der Durchschnitt
D =NU eine Untergruppe von G, denn liegen » und v in jedem U € U, so liegt

Ueu
notwendig nach (6) auch uv-! in jedem U € U, und daher ist D eine Untergruppe.

Definition 6. Bezeichnet K einen Komplex der Gruppe G und U die Menge aller
K umfassenden Untergruppen U von @, so heiBt (K) := N U Erzeugnis von K.
1

.4
(K) ist die kleinste Untergruppe von @, die K enthilt, da A (K) € U gilt. Sie
ven

besteht als allen endlichen Produkten k% --- k,*, die aus Elementen k,, ... € K mit
Exponenten &y, ... € (+1, —1} erzeugt werden kénnen. Nach 12.1.1. ist unmittelbar
klar, daB alle diese Produkte in (K) liegen miissen, und aus Satz 1 folgt, dag der
Komplex dieser Produkte eine K umfassende Untergruppe ist.

Ein Komplex K, fiir den (K) = G ist, heiBt ein Erzeugendensystem von G. Gibt es
einen endlichen Komplex K = (k,, ..., k,) dieser Eigenschaft, so nennt man @ end-
lich erzeugbar, und die kleinste dabei auftretende Zahl n wird als Erzeugendenzahl von
G bezeichnet. Durch die Erzeugendenzahl 1 sind genau die zyklischen Gruppen
beschrieben.

Fiir ein Element a einer Gruppe G besteht (a) aus der Menge aller verschiedenen
Potenzen at (k € Z) und wird die durch a erzeugte zyklische Untergruppe von G genannt. -
Ist fiir je zwei verschiedene Zahlen k,, k, aus Z immer a* = a™, so ist (a) eine un-
endliche zyklische Gruppe. Gilt aber eine Gleichung der Form a* = @', in der wir
k < 1 annehmen konnen, so ist a'-* = e. Sei m der kleinste Exponent aus N* mit

a" —e. W)

Dann sind offenbar a® =e, a!,a?,...,a™! paarweise verschieden, und jedes a*
(k € Z) ist gleich einer dieser Potenzen. Denn da es Zahleng€ Z und r € (0, 1, ...,
m — 1) gibt, fiir die & = mq + r ist (vgl. MfL, Bd. 1, 3.7.), gilt

at = g™+ = (a™)%a" = ea’ =a'.

(a) ist also eine zyklische Gruppe der Ordnung m. In ihr wird durch (7) das Rechnen
festgelegt. Diese Gruppe kann daher durch Angabe des erzeugenden Elementes und
der definierenden Relation (7) vollstindig beschrieben werden.

Definition 7. Fiir ein Element g einer Gruppe @ heit |g| := [(g)| Ordnung von g,
sofern (g) eine endliche Gruppe ist. Sonst nennt man g Element unendlicher Ord-
nung.
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In einer endlichen Gruppe hat selbstverstindlich jedes Element endliche Ordnung,
wiihrend es in einer unendlichen Gruppe auch Elemente unendlicher Ordnung geben
kann.

An einigen Beispielen wollen wir zeigen, daB auch nichtzyklische Gruppen durch
Angabe eines Erzeugendensystems und definierender Relationen, welche die Rech-
nung in der Gruppe vollstindig bestimmen, festgelegt werden konnen.

Fiir die S, (vgl. 12.1.2.6.) sind p und r erzeugende Elemente. Man priift leicht nach,
daB sie den Relationen

PP =e, m=e, rp = p’r

geniigen. Daher laBt sich jedes Produkt aus Potenzen von p und r so umrechnen, da
es die Form

prf,  «€(0,1,2), €01}
erhiilt. Die Elemente der 8, sind
e, p, ¢g=p) r, s=pr, t =pir.
Die Ausnutzung der definierenden Relationen zeigen wir an der Berechnung des
Produktes
tp = (p'r) p = Prp) = P(@Pr) = pir = pr.
Die Gruppe B;q (vgl. 12.1.2.12.) kann aus den Elementen

po(1234) . ,._(1234
2341 432

unter Beachtung der definierenden Relationen
r=e, s=e, sr =13
erzeugt werden. Jedes Element der Gruppe B,q liBt sich auf genau eine Weise in der
Form
res? mit 0€1{0,1,2,3) und o€ {0,1})
darstellen.
Die multiplikative Gruppe der primen Restklassen mod 8 kann aus den Elementen
[3] und [5] erzeugt werden. Definierende Relationen sind
B =[1], [6*=[1], [3]1[5] =I[51[3].

Oft 1iBt sich die Menge der Untergruppen einer Gruppe @ und ihre Einbettung in
die Gruppe in iibersichtlicher Weise durch Graphen (auch Diagramme genannt) ver-
anschaulichen. Dabei werden die Untergruppen derart durch Punkte einer Ebene
dargestellt, daB das Bild von V unterhalb von U liegt, wenn V < U ist. Beide Punkte
werden durch eine Strecke verbunden, wenn @ keine Untergruppe W mit der Eigen-
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schaft ¥V < W und W < U enthilt. Fiir einige Beispiele aus 12.1.2. geben wir die
Graphen an:

Die Abbildungen 15 und 16 zeigen die Diagramme der zyklischen Gruppen der
Restklassen nach den Moduln 8 und 6.

Zyg Ordnung 8 4 Ordnung 6
<(2]> Ordnung 4 L2 Ordnung 3
<L4]> Ordnung 2 <£31> Ordnung 2
<e> Ordnung 7 <oy Ordnung 7

Abb. 15 Abb. 16

In den Abbildungen 17, 18 und 19 sind die Untergruppen der Gruppe der primen
Restklassen mod 8, der S; und der B,q dargestelit.

(L31,(5])
Ordnung %
<L37> (L31L51)  Ordnung 2
Ord)
2 rdnurg 7 Abb. 17
S5
Ordnung 6
(72X Ordnung 3
p%>  Ordnung 2
b Ordnung 7 Abb. 18
B2¢

Ordnung 8 )
sy ‘b r2rs)  Ordnung 4
(5> § w Crs) Ordnung 2
) Ordnung 7

. Abb. 19
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Mitunter will man nur die Lage einiger Untergruppen in @ illustrieren. Um die
Ubersichtlichkeit zu erhohen, nimmt man dann nicht alle Untergruppen von @ in das
Diagramm auf. Ein Beispiel gibt Abb. 20 fiir zwei echte Untergruppen U, V der
Gruppe G.

4

YuV)

4

YnV
[}

<e> Abb. 20

12.23. Definition 8. Bezeichnet U eine Untergruppe, g ein Element der Gruppe
G, so heiBt der Komplex Ug Rechtsnebenklasse nach U und gU Linksnebenklasse
nach U.

Jedes Element g € @ liegt in einer Rechtsnebenklasse nach U, da g = eg € Uyg.

Kein Element aus @ liegt in zwei verschiedenen Rechtsnebenklassen. Ist nimlich

d ¢ Ug, n Ug,,sogibt es in U Elemente u,, u,, fiir welche die Gleichungen d = u,g,
= u,g, gelten. Daher ist g, = u,lu,g,, und nach (1) ergibt sich Ug, = Uuyu,g,
= Ug,. Es erfolgt also eine Einteilung der Menge G in paarweise elementefremde
Klassen, die Rechtsnebenklassen nach U.

Dies wird hiufig durch

G=UauUbuUcu:-- (8)
ausgedriickt, wobei u hier die Vereinigung el tefremder Teil bezeichnet
Zwei Elemente g,, g, von @ liegen genau dann in einer Rechtanebenkluse nach U,
wenn gig,' € U. Aus gigy ' = u € U und g, = u,g € Ug folgt nimlich g, = ug,

= uuyg € Ug. Umgekehrt ergibt sich aus ¢, = u,ge Ug und g, = u,g € Ug, daB
NG = wmgglu, ! = wyuy € U. Eine Nebenklusse ist naturhch U selbst.

Die Elemente a, b, c, ... in (8) werden ein Rechtsreprd ystem R fiir G nach
U genannt. Da Elemente ¢,, g, aus @ genau dann die gleiche Rechtsnebenklasse nach
U repra.sentleren, wenn ¢, = ug, mit » € U ist, erhilt man uus einem gegebenen

htsrep tensystem fiir @ nach U alle moglichen R
systeme, wenn man seine El te von links heinander mit sa.mthchen Elemen-
ten aus U multipliziert.

Ganz entsprechend kann man @ in Linksnebenklassen nach U zerlegen. Aus (8)
erhilt man unter Benutzung von (3) durch Ubergang zu den inversen Elementen

Gl'=Q@=a'Uvb'UuctUvu--...




166 12. Gruppen

Ist also R ein Recht tensystem, so ist R-! ein Linksreprisentantensystem
fiir G nach U. Die Menge der Linksnebenklassen ist daher genau dann endlich, wenn
die Menge der Rechtsnebenklassen endlich ist, und beide Mengen enthalten in diesem
Fall die gleiche Anzahl von Nebenklassen.
Diese Mengen sind jedoch im allgemeinen nicht gleich. Beispielsweise sind in der

8, die Rechtsnebenklassen nach der Untergruppe U = (r):

U=Ue=lerl, Up=iptl, Ug=lgs,
die Linksnebenklassen aber

U=eU-=\e,r], qU=1Iqt), pU=(p,sl.

Definition 9. Ist in der Gruppe G die Anzahl i der Nebenklassen nach der Unter-
grupge U endlich, so heiBt [@ : U] := ¢ Index von U in G. Sonst heiSt U Untergruppe
von unendlickem Index.

Da jede Nebenklasse nach der Untergruppe E = (¢) nur aus einem Element
besteht, ist in endlichen Gruppen G die Ordnung |G| = [@ : E].

Jede Nebenklasse Ug von G nach der endlichen Untergruppe U enthilt genau |U|
Elemente, denn aus u,g = u,g (4, us € U) folgt u; = u,. Hat U in der endlichen
Gruppe G den Index 1, so ergibt sich aus (8) durch Vergleich der Elementeanzahlen
|@| = |U| ¢. Diese Tatsache wurde zuerst von LAGRANGE bewiesen, wir formulieren
sie als ’

Satz 2. Fiir jede Untergruppe U einer endlichen Gruppe G gilt
[@:E)=[G:U][U:E]. 9)
Folgerung 1. In einer endlichen Gruppe sind die Ordnung und der Index jeder
Untergruppe Teiler der Gruppenordnung.
Betrachtet man die von einem Element erzeugte Untergruppe, so ergibt sich
Folgerung 2. In einer endlichen Gruppe @ ist die Ordnung jedes Elementes ein
Teiler der Gruppenordnung. Daher sind Gruppen von Primzahlordnung zyklisch.
Ferner gilt fiir alle g € G
g9 =e. (10)

‘Wendet man dieses Ergebnis auf die Gruppe der pnmen Restklassen mod m an, so
erhiilt man

Folgerung 3. Fiir jede zum Modul m teilerfremde Zahl a ist
a*™ = 1 modm.
Insbesondere ergibt diese zahlentheoretische Aussage
Folgerung 3'. Ist a € Z nicht durch die Primzahl p teilbar, so gilt
@’ =1mod p.
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Ohne Beweis wurde der letzte Satz schon von dem franzésischen Mathematiker
PreReE DE FERMAT (1601 —1665) angegeben. Daher nennt man (10) den Fermatschen
Satz der Gruppentheorie.

12.3. Isomorphie von Gruppen

12.3.1. In einer Gruppe G beherrscht man die Rechnung vollstindig, wenn man zu
jedem geordneten Paar von Elementen g, b auch deren Produkt gh kennt. Fiir end-
liche Gruppen liegt es nahe, alle Produkte in einer Tabelle der Form

| ..he..

cgh...

igeben. Dabei stehen in der Eingangszeile und Eingangsspalte jeweils alle Ele-
mente der Gruppe in irgendeiner Reihenfolge. Im Schnittpunkt der Zeile von g mit
der Spalte von k wird das Produkt gh notiert. Eine solche Tabelle heiit Gruppentafel
von @Q.

Als Beispiele betrachten wir die additiven Gruppen der Restklassen nach den
Moduln 2 und 3. Beide Gruppen Z, und Z, sind zyklisch, ihre Gruppentafeln lauten

Zz] [0] 1] Zy | [0] [1] [2]

(01|01 (1] wnd [0]] [0] [1] [2] '
[11) 011 [0] (11| 111 2] [0
(2] (21 [0] 1]

Die multiplikative Gruppe der primen Restklassen mod 8 hat die Gruppentafel

| [1] [3]1 [5] [7]

(11} 11} [3] 8] 7]
(311 (3] 1] (7] (6]
(51 | (5] (7} (1] (3]
[71] (71 8] (3] (1]

SchlieBlich geben wir noch Gruppentafeln fiir die Gruppe S, in den Bezeichnungen
von 12.1.2.6. sowie fiir die Gruppe B;q unter Verwendung des in 12.2.2. betrachteten
Erzeugendensystems und der zugehdorigen definierenden Relationen an.
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S epqrat

e epgrast

P pgestr

q geptrs

r rtsegqp

8 srtpegq

t tsrqpe
By | e r ” r 8 ] r2s s
e e r e r 8 r8 r2s rs
r r r” r e r8 28 ris 8
r2 r? r e r r2s s 8 re
r r e r r? rs 8 r8 r2s
8 8 ris r’s r8 e r° r? r
re s 8 rs 2 r e ” r”
r2g r%s rs 8 ris rt r e [d
s s r2g s s ” 2 r e

Da die links-(rechts-)seitige Division in der Gruppe G' méglich und eindeutig ist,
steht in jeder Zeile (Spalte) der Gruppentafel jedes El t von @ genau einmal.
Dann und nur dann ist die Gruppentafel symmetrisch beziiglich der Diagonalen von
links oben nach rechts unten, wenn G abelsch ist.

12.3.2. Die multiplikative Gruppe mit den Elementen

1 ¢ s 1 [
- -4 = 3 ___.V
f=1, € 2+2}/3, I3 2 2 3

(vgl. 12.1.2.8.) besitzt die Gruppentafel

l & g

e | g gl g

e ]t et g

e | &0
Die Rechnung verliuft genauso wie in der Gruppe Z,, denn diese Gruppentafel
entsteht aus derjenigen der Gruppe Z;, wenn darin die Elemente durch ihre Bilder
bei der Abbildung f: [k]> & (k =0, 1,2) ersetzt werden. Die Umkehrabbildung
iiberfiihrt entsprechend die vorliegende Gruppentafel in diejenige der Gruppe Z,.

Der Leser iiberpriift leicht, daB mit der Abbildung

z—1
zr>e,

= p, —q,

1 —z
z

1
1l—zmr, —_> 38, >t
z

z—1

die Gruppentafel der Gruppe P (vgl. 12.1.2.7.) in die Gruppentafel der S, iibergeht.
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In der multiplikativen Bezeichnungsweise bedeutet -diese Eigenschaft der an-
gegebenen Abbildungen, daB immer ' )

Bild des Produktes = Produkt der Bilder

gilt. r

Zwar unterscheiden sich in beiden Beispielen die jeweiligen zwei Gruppen durch
die konkrete Bedeutung und Bezeichnung ihrer El te, doch verliuft die Rech-
nung in ihnen gleichartig. Wir befinden uns damit in derselben Situation wie ein
Kind, das die Addition von Zahlen an Hand von realen Dingen (Rechenstibchen,
Fingern, ...) erlernt, dabei erfihrt, daB es gar nicht entscheidend ist, was addiert
wird, und daher zu abstrahieren beginnt.

Uns schafft nun der wichtige Begriff der Isomorphie von Gruppen die Mdglich-
keit, von der Bedeutung der Gruppenelemente zu abstrahieren.

Definition 1. @ und @ seien Gruppen. Dann heit
f Isomorphismus von G auf G :& f ist 1-1-Abbildung von G auf G

A A af(!hyz) = f(g\) f(gs)-

01,05€!

Man nennt
@ isomorph G :& ein Isomorphismus von @ auf @ existiert
und schreibt in diesem Fall @ =< G.
Beispiele.
1. Es ist leicht nachzupriifen, daB die Abbildungen f,: a* > k und f;: o > —k
(k € Z) die einzigen Isomorphismen von Z,, auf (Z, +) sind (vgl. 12.1.2.).

2. Aus seiner Schulzeit weiB der Leser, daB die Gruppe (R.*,-) der positiven
reellen Zahlen mit der Multiplikation als Operation vermittels der Abbildung

f={=9y):zeR*ry =Inz}
zur Gruppe (R, +) der reellen Zahlen mit der Addition als Operation isomorph ist, da
A In(z,) =Inz, + Inz,

Z),74€Ry*
gilt.
Ist f ein Isomorphismus der Gruppe @ auf die Gruppe G und K ein Komplex von @,
80 sei f(K) := (f(k): k € K}.

Satz 1. Ein Isomorphismus f von G auf G hat folgende Eigenschaften:

e neutrales Element von G = f(e) = & neutrales Element von G, (1)
a1 invers zu a in G = f(a-!) = [f(a)]! invers zu f(a) in G, 2)
U Untergruppe von G = f(U) = U Untergruppe von G, 3)
K normaler Komplex von G => f(K) = K normaler Komplex von G, 4)

G abelsch = f(G) = G abelsch. (5)
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Beweis. Da f(e) f(e) = f(ee) = f(e), ist f(¢) = & neutrales Element von G. Aus
1(a) f(a) = f(aa—) = f(e) = & ergibt sich (2). Fiir die Untergruppe Ugilt UU-! £ U,
und unter Verwendung von (2) erhilt man daraus

KUY U = f(U) {(U) = (UU-) € (D).

Nach 12.2., Satz 1, ist daher f(U) Untergruppe von @. Da jedes Element aus G Bild
ist, folgt die Behauptung (4) aus

§(E) § = @] [(K) f(g) = Hg™) [(K) {(g) = (g Kyg)

fiir alle § = f(g) € G. Zu beliebigen Elementen §,, §, aus @ gibt es Urbilder g,, g, bei
1, und aus g,g; = g9, erhilt man

7102 = (@) 1(g2) = f(g:92) = f(g:92) = 1(g2) (@1) = Faff1,
was (5) beweist.
Fiir jede Gruppe @ gilt
G==aq, (6)

denn immer ist die identische Abbildung ein Isomorphismus von G auf G. Bildet der
Isomorphismus f von @ auf G die Elemente g,, g, auf f(g,) = §,, f(g:) = 75 &b, s0
ergibt f(g.g:) = f(g1) f(gs) , daB

919z = [1(7:7)
ist und daher
13 1(@s) = 9:9s = [2(3:75)
gilt. Mithin ist /- ein Isomorphismus von G auf @, und d. h.
0=G=0=0. (7
Tst ferner f ein Tsomorphismus von @ auf G, so gilt
J o Hgwa) = F(@:5a) = @) F@2) = (F < f(g) (7 o £(g2))-
f o f ist also ein Isomorphismus von G auf @, und deher folgt
G=Grl2G3024. (8)

Damit haben wir bewiesen, da8 die Isomorphie eine Aquivalenzrelation in jeder
Menge von Gruppen ist und daher eine Einteilung dieser Gruppen in disjunkte
Klassen vermittelt (vgl. MfL, Bd. 1, 2.5.). Eine solche Klasse isomorpher Gruppen
wird abstrakte Gruppe genannt. Die einzelnen Gruppen einer Klasse unterscheiden
sich zwar durch die Bezeichnung und Bedeutung ihrer El te, stellen aber simt-
lich Realisierungen desselben abstrakten Rechensch dar. Das bedeutet fiir iso-
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morphe endliche Gruppen insbesondere, daB sie (bis auf die Bezeichnung) iiberein-
stimmende Gruppentafeln besitzen.

In der Gruppentheorie untersucht man hauptsiichlich solche abstrakten Gruppen,
d. h., man versucht, allein aus dem abstrakten Rechenschema Aussagen zu gewinnen,
die dann fiir simtliche Gruppen dieser Klasse gelten. Bei einer solchen Betrachtung
sieht man zwei isomorphe Gruppen als nicht tlich verschieden an. Unt: ht
man jedoch eine Gruppe @, die zwei isomorphe Untergruppen U,, U, enthilt, so
wird man U, und U, als Untergruppen von @ sehr wohl zu unterscheiden haben.
Beispielsweise ist in der Gruppe B,q (vgl. 12.2.2.) die Untergruppe (r*) zur Unter-
gruppe (s) isomorph, aber (r3) bildet das Zentrum von B,q, withrend die Elemente s
und r nicht vertauschbar sind.

Die wichtigste Aufgabe der Gruppentheorie, das Strukturproblem, besteht darin,
jede Klasse isomorpher Gruppen so genau zu beschreiben, daB man die Rechnung
in allen Gruppen der Klasse vollstindig beherrscht. Diese Aufgabe ist bisher nur fiir
wenige spezielle Gruppentypen, z. B. fiir die endlichen abelschen Gruppen befrie-
digend gelost worden. Wir werden hier als ein Beispiel die zyklischen Gruppen
betrachten.

12.3.3. Sind f und g Isomorphismen von der Gruppe G auf die Gruppe G, so ist die
durch Nachei sfithrung gewc Abbildung g-! o f ein Isomorphismus von
@ auf G. Ist k ein Isomorphismus von @ auf sich und f ein Isomorphismus von @ auf
@, s0 ist f o b ein Isomorphismus von @ auf G. Zwei Isomorphismen von @ auf G
unterscheiden sich also nur durch einen Isomorphismus von @ auf sich. Daher kann
man simtliche Isomorphismen von @ auf G aus einem einzigen erhalten, wenn man
alle Isomorphismen von @ auf sich kennt.

Definition 2. Bezeichnet @ eine Gruppe, so heiBt
f Automorphismus von @ :& f Isomorphismus von @ auf G.

Fiihrt man zwei Automorphismen' der Gruppe @ nacheinander aus, so erhilt man
wieder einen Automorphismus von @. Fiir die Nacheinanderausfiihrung gilt das
Assoziativgesetz (vgl. MfL, Bd. 1, 2.4.), die identische Abbildung von G ist ein
Automorphismus, und zu jedem Automorphismus f ist auch die inverse Abbildung
f! ein Automorphismus. Daher bilden die Automorphismen einer Gruppe @ beziig-
lich der Nacheinanderausfiihrung eine Gruppe, die Automorphismengruppe von G.

Die Automorphismengruppe der additiven Gruppe Z; der Restklassen mod 3 hat
die Ordnung 2, denn e: [z] + [z] und f: [z] +> [3 — 2] (z = 0, 1, 2) sind die Auto-
morphismen von Z;. Zu jeder mit Z; isomorphen Gruppe @ gibt es also zwei Iso-
morphismen von Z, auf @.

Ist g ein festes Element der Gruppe @ und ordnet man jedem a € G das Element
g'ag zu, so erhilt man eine Abbildung von @ auf sich, die eindeutig umkehrbar ist,
denn

gl =glag=>a=a
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Weil

g (ab) g = g-'agg by = (g'ag) (g~"bg)
gilt, ist die Abbildung sogar ein Automorphismus von G. Er wird der durch g erzeugte
innere Automorphismus von G genannt.

In abelschen Gruppen erzeugt jedes El t den id
In der Gruppe S; erzeugen verschiedene Elemente auch verschiedene innere Auto-
morphismen, und jeder Automorphismus der S, ist ein innerer Automorphismus
(Ubungsaufgabe).

Besitzt die Gruppe @ einen inneren Automorphismus, welcher a € @ auf b € @
abbildet, d. h., gibt es ein g € G mit g-lag = b, so heiBt b zu a konjugiert (vgl. 12.2.,
Definition 3). Diese Beziehung ist eine Aquivalenzrelation in @ und vermittelt daher
eine Zerlegung von @ in Klassen konjugierter Elemente.

Normalisator des Kompl K der Gruppe G bezeichnet man

43 00h

Automorph
utomorp

N¢(K) = ([g:9€ Garg'Kg = K}.
N;(K) ist eine Untergruppe von G. Da fiir zwei Elemente p, ¢ von @ gilt:
pKp = ¢'Kg & pgt € No(K),

ist in endlichen Gruppen @ die Anzahl der verschiedenen zu K konjugierten Kom-
plexe gleich [@ : Ng(K)], also ein Teiler der Ordnung von G. Insbesondere ist also die
Zahl der zum Element a € @ konjugierten Elemente gleich [G : Ng(a)] und die Zahl
der zur Untergruppe U S G konjugierten Untergruppen gleich [@ : N;(U)].

Eine besondere Rolle spielen solche Untergruppen N von G, die bei allen inneren
Automorphismen von @ auf sich abgebildet werden. Fiir sie ist Ng(N) = G.

Definition 3. @ bezeichne eine Gruppe.

N heiBt Normalteiler (oder invariante Untergruppe) von @ :¢> N ist Untergruppe
von G A Ag'Ng=N. 9)
ge@

Jede Gruppe @ enthilt die trivialen Normalteiler G und (e) = E. Offenbar ist das
Zentrum Z(@) Normalteiler von G. Jede Untergruppe N vom Index 2 in @ ist Normal-
teiler von @. Weil nimlich die von N verschiedene Nebenklasse alle nicht in N
liegenden Elemente a aus G enthilt, ist aN = Na und also g-'1Ng = N fiiralleg € G.
Dabher ist z. B. die Untergruppe (p) Normalteiler der S;. In einer abelschen Gruppe
ist jede Untergruppe Normalteiler. Es gibt jedoch auch nichtabelsche Gruppen, in
denen jede Untergruppe Normalteiler ist. Sie heiBen Hamiltonsche Gruppen.

Ein Beispiel dafiir bildet die Quaternionengruppe Q. Sie kann aus den Elementen
a, b unter Beachtung der definierenden Relationen

at =e, b? = a?, ba = a1
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erzeugt werden. Eine Realisierung ist die von den Matrizen

_( o1 _ (0 o
4= (—1 o)' B~ (io) @=-1
beziiglich der Matrizenmultiplikation erzeugte Gruppe der Ordnung 8 (Ubungs-
aufgabe). Die Quaternionengruppe enthilt genau eine Untergruppe der Ordnung 2,
nimlich (a®), sowie drei Untergruppen der Ordnung 4, namlich (a), (b), (ab). Als
Untergruppen vom Index 2 sind sie Normalteiler von Q. (a?) ist das Zentrum der
Quaternionengruppe und daher ebenfalls Normalteiler von Q.

Da aus (9)
AgN =Ny (10)
geq
folgt, sti die Rechtsnebenklassen und Linksnebenklassen nach einem Normal-
teiler iiberein.

Bezeichnet R eine nichtl Menge von Normalteilern der Gruppe @, so ergibt
sich aus Definition 3, daB

D:=NN

NeR
ebenfalls Normalteiler von @ ist (vgl. 12.2.2.).

Das Komplexprodukt zweier Untergruppen einer Gruppe @ ist im allgemeinen
keine Untergruppe von @, wie man am Beispiel der Gruppe S; und ihrer Unter-
gruppen (r) und (pr) (vgl. 12.2.2.) erkennt. Ist aber U eine Untergruppe und N ein
Normalteiler von G, so ist nach (10) UN = NU und UN Untergruppe von G, denn
es ist

(UN) (UNY* = (UN) (NU-Y) = UNU-' — NUU- = NU = UN

(vgl. 12.2.2,, Satz 1).
Das Produkt zweier Normalteiler N,, N, von @ ist sogar wieder Normalteiler
von @, weil fiir alleg € @

gUN\N;)g = (g7 Nyg) (97 Nog) = NN,
gilt.

12.4. Zyklische Gruppen

In den Beispielen wurde bereits erklirt

Definition 1. Eine Gruppe @ heifit zyklisch und wird mit @ = (a) bezeichnet,
wenn ihre Elemente die verschiedenen Potenzen eines festen Elementes a € G sind.
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= (a) ist eine unendliche Gruppe, wenn fiir verschiedene ganzzahlige Exponenten
ky, ks immer a* == a* ist. Die Gruppenelemente sind dann
..,a%a?al,a® =eal,al,ad,...
Da mit ihnen nach der Regel a’a' = a**! (k, ! € Z) gerechnet wird, ist die Abbildung
f:a*—>k (keZ)

ein Isomorphismus von @ auf die additive Gruppe (Z, +) der ganzen Zahlen. Sind
aber einmal zwei Potenzen von @ mit verschiedenen ganzzahligen Exponenten gleich,
80 gibt es einen minimalen Exponenten m € N*, fiir den a™ = e ist. In diesem Fall
ist @ = (a) eine endliche zyklische Gruppe, die aus den Elementen

a® =e,al,a?,...,a™!
besteht. Weil mit ihnen unter Beachtung der Relation a™ = e gerechnet wird, ist
ata! at+, wenn k4+l<m,
a*-®  wenn k41Z=m
(vgl. 12.2.2.).
Da die Addition der Restklassen [0], [1], ..., [m — 1] modulo m nach der Regel
_ k41, wenn k+l<m,
[k]+[l]_{[k+l—m], wenn k4-1l=m
erfolgt, ist die Abbildung
f:a* > [k] (kefo,1,...,m — 1))
ein Isomorphismus von @ auf die additive Gruppe (Z,, +) der Restklassen modulo m.
Damit ist bewiesen:
Satz 1. Fir zyklische Gruppen G = (a) gilt:
@ hat unendliche Ordnung = Q = (Z, +),
@ hat endliche Ordnung m = G == (Z, +).
Daraus ergeben sich sofort die
Folgerungen. Jede zyklische Gruppe ist abelsch. Zu jeder endlichen Ordnung gibt
es bis auf Isomorphie genau eine zyklische Gruppe. Bis auf Isomorphie gibt es genau
eine unendliche zyklische Gruppe.

,In einer von (e) verschiedenen Untergruppe U der zyklischen Gruppe G = (a) sei
a‘ Potenz von @ mit minimalem positiven Exponenten d. Ein solches Element gibt
es in U, weil mit jeder Potenz a* auch a-* in U liegt. Bezeichne a* ein beliebi
‘Element aus U. Es gibt ganze Zahlengund r,;s0daBs =¢gd + rmit 0 <7 < dist
(vgl. ML, Bd. 1, 3.7.). Aus @’ = (%)%’ € U und a®€ U folgt a’((@®)?)* = a'€ U.
Wegen der vorausgesetzten Minimalitit von d muB dann r = 0 und a* = (a%) sein.
Daher ist U = (a9).
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Weil jede Zahl ¢ € Z eine eindeutige Darstellung der Form

t=zd+r (z€Z und r€{0,1,2,...,d —1})

besitzt, kann jedes Element a' = (a%)%a’ aus @ = (a) auf genau eine Weise als
= ua’ mit u € U geschrieben werden. Daher ist .

(@) =UvuUavu--uUa+V 1)
die Nebenklassenzerlegung von @ nach U (Rechts- und Linksnebenklassen sti
wegen der Kommutativitit von @ iiberein!). Also ist

[(@): {a®)] =d.

Falla @ die endliche Ordnung m besitzt, ist daher der minimale Exponent ¢ von
= (a%) ein Teiler von m (vgl. 12.2.3. )
Umgekehrt gibt es zu jedem vorgeg inimalen Exp ten d € N* in der
unendlichen zyklischen Gruppe G = (a) eine Untergruppe U = (a%). Ist |(a)| =m
und der minimale Exponent d ein Teiler von m, so bilden die Elemente

a® = ¢, al, a%, ..., qm-10

eine Untergruppe U = (a%) von (a).
Durch die minimalen Exponenten d ist die Untergruppe U eindeutig bestimmt.
Wir fassen unsere Resultate zusammen.

Satz 2. Die Untergruppen U einer zyklischen Gruppe @ = (a) sind zyklisch und von
der Form U = (a%) mit d € N.

In unendlichen Gruppen (a) gibt es zu jedem d € N genau eine Untergruppe (a®).

Hat (a) die endliche Ordnung m, 8o ist notwendig d = O oder d ein positiver Teiler
von m, und zu jedem solchen d gibt es genau eine Untergruppe (ad).

Fiir die von (e) verschiedenen Untergruppen ist [(a): (a®)] = d

Da sich in einer endlichen Gruppe der Index und die Ordnung einer Untergruppe
gegenseitig bestimmen (vgl. 12.2.3., Satz 2), ergibt sich die

Folgerung. In einer endlichen zyklischen Gruppe der Ordnung m gibt es zu jedem
Teiler t von m genau eine Uniergruppe der Ordnung t.
AbschlieSend soll untersucht werden, wann zwei Elemente a* und a* der Gruppe
(a) dieselbe Untergruppe erzeugen. Es gilt
(aM) =(@™) & V (ah = a%h Aah = guh). (2)
ththeZ
Ist (a) unendliche zyklische Gruppe, 8o ergibt sich daraus
(@) =@me V (hl = Ushy A kg = ushy).
Uy, '.(
Weil hieraus u,u, = 1 oder b, = k, = 0 folgt, ist
(@) = (@) &b =hyvh = —h,.
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Jede von (e) verschiedene Untergruppe einer unendlichen zyklischen Gruppe besitzt
also genau zwei erzeugende Elemente. Entsprechend gibt es genau zwei Auto-
morphismen von (a), die durch a > a bzw. a > a-! festgelegt sind.
Hat aber (a) die endliche Ordnung m, so kann angenommen werden, dal die
Exponenten k,, k, Elemente der Menge {0, 1, ..., m — 1} sind. (2) bedeutet dann
(aM) = (aM) e V  (ughy = hy mod m A ushy = by, mod m)
t,uy€Z
@m n hy|hyAam n byl hy
omn hy|m o kyam 0 bym 0ok
omn hy=m n h,.

Insbesondere besitzt also jede zyklische Gruppe (a) der Ordnung m genau ¢(m)
erzeugende Elemente, nimlich die Pot, a*, deren Exp ten mit 7 den groBten
gemeinsamen Teiler m n b = 1 besitzen. Zu jedem Teiler ¢ von m liegen genau ¢(t)
Elemente der Ordnung ¢ in (a). LiBt man ¢ alle Teiler von m durchlaufen, so erhilt
man jedes Element der Gruppe genau einmal. Daher ergibt sich iiber die Eulersche
Funktion die Aussage

'IZ- o) =m. @)

Istd =m n &, so gilt (a*) = (a%), und deshalb ist

ah] = —=—. )
mnh
Es gibt genau g(m) Aut phi der zyklischen Gruppe (a) der Ordnung m,
die durch

ara* mt mnkh=1

festgelegt sind. Bei der Nacheinand fiilhrung der beiden durch
ara* mit mnh?l und a+at mit mn k=1

bestimmten Automorphi wird a auf a** abgebildet. Da es bei der Multiplikation
der Exponenten nur auf die Restklassen modulo m ankommt, ist die Automorphis-
mengruppe von (a) isomorph zur multiplikativen Gruppe der primen Restklassen
modulo m.
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12.5. Homomorphie von Gruppen

Verzichtet men auf die bei den Isomorphi forderte eindeutige Umkehrbar-
keit, 8o kommt man zu dem sehr wxchtlgen Begnff der homomorphen Abbildung.

Definition 1. Fiir die Gruppen @ und @ heit
{ Homomorphismus (oder homomorphe Abbildung) von @ in G
:¢ f Abbildung von @in G A A f(g.g,) = f(g1) (ge)

91.0:€G
ist. Man schreibt

G = G :& ein Homomorphismus von @ in G existiert.
Sei f ein Homomorphismus von @ in G und
U :={u:u [ v/(g)=7i}
9€G

das Bild von @ bei f. Bezeichnen e,  die neutralen Elemente von @ bzw. G, so folgt
aus f(e) f(e) = f(ee) = f(e), daB

fey=¢ecU.
Ist @ € U, so gibt es ein g € @ mit f(g) = %, und aus f(g) f(g~!) = f(gg~?) = f(e) = ¢
ergibt sich, daB gilt:

= [fg) =fgHeT.
Zu 7, %, € U existieren g,, g, € G, so daB f(g,) = %, und f(g,) = %,. Dann ist

fg:ge) = f(g)) 1(g2) =TT, € T
Das homomorphe Bild f(@) = U der Gruppe @ ist also eine Untergruppe von G.
Normalteiler von @ werden durch  auf Normalteiler von T abgebildet, und ist G
abelsch, so auch U (vgl. 12.3., Satz 1). Ist {(G) = @, s0 heiBt { Homomorphismus von
G aufG.

Beispiele.

1. Die Abbildung f: z > |z| (z € C\{0}), die jeder von Null verschiedenen komplexen
Zahl ihren Betrag zuordnet, ist ein Homomorphismus von (C\{0}, ) in (R\{0}, )
(vgl. MfL,Bd. 2, 7.).

2. Der Multiplikationssatz fiir Determinanten (vgl. 8.2.) besagt, daB die Abbildung
f:A > detA (A€ L,) ein Homomorphismus von der Matrizengruppe L, (vgl.
12.1.2.4.) in die Gruppe der rationalen Zahlen (Q\{0}, ) = L, ist. Man iiberzeugt sich
leicht duvon, daB jedes Element aus L, als Bild auftritt. Im Fall n» > 1 ist diese
Abbildung offensichtlich kein Isomorphi , denn L, ist dann im Unterschied zu
L, nicht abelsch.

3. Bildet man von der Gruppe S; die erzeugenden Elemente p auf 1, r auf —1 und
die iibrigen, hieraus als Produkte darstellbaren Elemente auf die entsprechenden




178 12. Gruppen

Produkte der Bilder ab, so werden p* = e auf 1, r* auf 1 sowie rp und p*r auf —1
abgebildet. Die definierenden Relationen der Gruppe S, gehen also in richtige Rela-
tionen zwischen den Zahlen 1 und —1 tiber. Daher ist die Abbildung

e 1, p1, Pr1,
re—> —1, pre> —1, Pri> —1
ein Homomorphismus von der S, auf die multiplikative Gruppe der Zahlen 1 und —1.

Sei f ein Homomorphismus von der Gruppe G auf die Gruppe @ und  das neutrale
Element von @. Dann ist

={n:n€@nrfn) =28

ein Normalteiler von @, der Kern von f genannt wird. Sind némlich n, und n, Ele-
mente von N, so liegt wegen

flrng™) = f(n) fing?) = f(m)) [f(no)]* = 882 =&
auch nyn;1in N. N ist also Untergruppe von @ (vgl. 12.2., Satz 1). Weil fiir beliebige
Elemente g € Gund n € N

fg'ng) = 1) f(m) f(g) = /(@) ef(g) = &
ist, gilt

Ag'Ng=N,

9<0

d. h., N ist Normalteiler von G.
Fiir Elemente g,, g, € @ ist

flg1) = f(gs) & f(g1) flg:7") =E© g9t €N,

d. h., genau solche Elemente aus @, die in derselben Nebenklasse nach dem Kern N
von f liegen, haben bei f dasselbe Bild. Insbesondere ist ein Homomorphismus von G
auf G genau dann ein Isomorphismus, wenn der zugehérige Kern nur aus dem
neutralen Element e besteht.
Wir wollen nun zeigen, daB es umgekehrt zu jedem Normalteiler N einer Gruppe
@ eine Gruppe @ und einen Homomorphismus f von @ auf @ gibt, dessen Kern N ist.
Die Nebenklassenzerlegung von @ nach N sei

@=NuNauNbu--...

Die Menge dieser Nebenklassen bildet beziiglich der Komplexmultiplikation (vgl.
12.2., Definition 2) einé Gruppe. Aus der Normalteilereigenschaft von N folgt nam-
lich Na = aN fiir alle @ € @. Daher ist das Produkt zweier Nebenklassen

(Nb) (Nb) = N(aN) b = N(Na) b = (NN) (ab) =
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gleich derjenigen Nebenklasse Nc, in der das Produkt ab liegt. Fiir die Komplex-
multiplikation dieser Nebenklassen gilt 'das Assoziativgesetz (vgl. 12.2.). N ist
neutrales Element bei der Multiplikation der Nebenklassen, denn fiir alle g € @ gilt
N(Ng) = (NN)g = Ng » (Ng) N = N@gN) = N(Ng) = Nyg.
Ist Na eine beliebige Nebenklasse und a2 € Nb, so liegt aa! = e in (Na) (ND),
d.h
(Na) (Nb) = N A (Nb) (Na) = N.
Nb ist also zu Na invers.

Definition 2. Sei N ein Normalteiler der Gruppe G. Die Gruppe der Neben-
klassen von @ nach N mit der Komplexmultiplikation als Operation wird mit G/N
bezeichnet und Faktorgruppe von G nach N genannt.

Bilden umgekehrt die Nebenklassen von @ nach einer U
multiplikation eine Gruppe, so ist U N Iteiler von G. B«
Element von G, so gilt wegen ¢ = eg~leg € (Ug™!) (Ug) die Beziehung

UlgUg) = (Ug™) (Ug) = U,

gruppe U besglich dor Kompl
g ool s

also
U U
und daher
g\Ug="U.

Ist N ein Normalteiler der Gruppe G und bildet man jedes g € @ auf diejenige
Nebenklasse von @ nach N ab, in der g liegt, so erhilt man eine Abbildung f von @
auf @ = G/N. Sie ist sogar ein Homomorphismus, denn aus f(g,) = Na und f(g;) = Nb
folgt nach der Definition des Produktes zweier Nebenklassen, daB (Na) (Nb) = N¢
diejenige Nebenklasse ist, in der g,g, liegt. Es ist also

H(gga) = f(g:) Hgs)-

Diese Abbildung heiBit natiirlicher (oder k tscher) He phismus von G auf
G|N.
Bezeichnet f einen H orphi von @ auf @ und N den zugehgrigen Kern,
80 ist
GIN =@.

Da nimlich alle Elemente einer Nebenklasse von @ nach N dasselbe Bild bei f
haben, ist

f:Navw f@) (NacG|N)
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eine Abbildung von G/N auf G, die sogar eineindeutig ist, weil Elemente verschiedener
Nebenklassen verschiedene Bilder bei f besitzen. Sind Na, Nb beliebige Nebenklassen
von @ nach N und ist ab € Nc, so gilt

f(NaNb) = [(Ne) = f(ab) = f(a) {(b) = f(Na) |(Nb).

f ist also ein Isomorphismus von G/N auf G.

Die Ergebnisse fassen wir zusammen zum

Satz 1 (Homomorphiesatz fiir Gruppen). Durch jede homomorphe Abbildung f einer
Gruppe G auf eine Gruppe G wird ein Normalteiler N von @ bestimmt. Er besteht aus
denjenigen Elementen von G, die bei f auf das neutrale Element & von G abgebildet
werden und heift Kern des Homomorphismus {. Die Faktorgruppe G|N ist isomorph G.
Umgekehrt gibt es zu jedem Normalteiler N von G eine homomorphe Abbildung von G
auf G|N, deren Kern N ist.

In Beispielen besteht der jeweilige Kern aus

1. den komplexen Zahlen z mit dem Betrag 1,

2. den Matrizen A aus L,, deren Determinante 1 ist,

3. den Elementen ¢, p, p* der zyklischen Untergruppe (p).

Besteht der Kern des Homomorphismus f von G auf G nur aus dem neutralen
Element e von @, so ist f ein I phi liegt dagegen die ganze Gruppe @ im
Kern, so ist f eine Abbildung auf die nur aus dem neutralen Elerent & von & be-
stehende Gruppe ().

Jede Faktorgruppe einer zyklischen Gruppe (a) ist zyklisch (vgl. 12.4.(1)). Er-
zeugendes Element der Faktorgruppe (a)/U ist Ua.

Bildet man jedes Element g der Gruppe G auf den von g erzeugten inneren Auto-
morphjsmus ab, so erhiillt man einen Homomorphismus von @ auf die Gruppe der

Automorphi 1(@),d Kern das Zentrum Z(@) ist (Ubungsaufgabe).

Besitzt eine Gruppe @ einen nichttrivialen Normalteiler N, so kann man durch
Betrachtung der Gruppen N und G/N Aufschliisse iiber die Struktur von @ erhalten.
Diese Gruppen sind meist iibersichtlicher gebaut als G selbst; beispielsweise haben
sie im endlichen Fall kleinere Ordnungen als G. Von besond Interesse sind daher
Gruppen @, die keine solche ,,Zerspaitung'‘ mehr gestatten, die also auBer G und (e)
keine Normalteiler besitzen. Sie heiBen einfache Gruppen.

Die Gruppen von Primzahlordnung sind einfach, da sie nur triviale Untergruppen
enthalten. Umgekehrt ist eine abelsche Gruppe @ == (¢) auch nur dann einfach, wenn
sie Primzahlordnung hat. Ist nimlich @ nicht zyklisch, so erzeugt jedes von e ver-
schiedene Element einen zyklischen Normalteiler, der von @ und (e) verschieden ist.
Wenn aber @ zyklisch und nicht von Primzahlordnung ist, so gibt es in @ eine nicht-
triviale invariante Untergruppe.

Beispiele fiir nichtabelsche einfache Gruppen werden wir noch kennenlernen.
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12.6. Kommutatorgruppe, Auflésbarkeit

Fiir beliebige Elemente a, b einer Gruppe @ ist @b = ba(a-'b-'ab). Man nennt
[a, b) := a~'b'ab den K| tator der El te @ und b.
Es gilt
[a,b] =e < ab =ba.
Definition 1. Ist K:=fk: k€ @A V k= u“b"ab} der Komplex aller Kommu-

a.beG
tatoren einer Gruppe @, so heiBt das Erzeugnis @' : = (K) Kommulatorgruppe von G.
@ beschreibt, grob gesagt, die Abweichung der Gruppe @ von der Kommutativitét.
Es ist
@ abelsche Gruppe & Q' = (e).

Im anderen Extremfall @ = G wird @ perfekt genannt.

Da bei einem Automorphismus von G ein Kommutator wieder in einen Kommu-
tator iibergeht, wird @’ bei jedem Automorphismus von G auf sich abgebildet.
Untergruppen mit dieser Eigenschaft heiBen charakteristische Untergruppen. Da sie
insbesondere bei jedem inneren Automorphismus von @ auf sich abgebildet werden,
sind sie Normalteiler. Nichtabelsche einfache Gruppen sind demnach perfekt.

Satz 1. Bezeichnet G' die Kommulatorgruppe der Gruppe G, so ist G|Q' abelsch, und
fiir jeden Normalteiler N von G mit abelscher Faktorgruppe G/N gik G = N.

Beweis. Sind G'a und G’ beliebige Elemente von G/@', so ist

(G'a) (G'b) = G'ab = @' (aba~*b-) ba = G'ba = (G'D) (G'a).
Weil G/N abelsch ist, gilt fiir einen beliebigen Kommutator a-1b-ab aus G
Na-'b-lab = (Na-?) (Nb2) (Na) (Nb) = (Na-‘) (Na) (Nb2) (Nb) = N.
Dsher ist a-'b-ab € N und also @' S N.

Aus dem Satz ergibt sich sofort, da8 die Gruppen (p) bzw. (r?) (vgl. 12.2.2.) die
Kommutatorgruppen von 8, bzw. Bgq sind.
G’ bezeichnet die Kommutatorgruppe von G'. Allgemein heiBt

GW = (GYY  (i=1,2,...)
die ¢-te Kommutatorgruppe der Gruppe G©® := G.
Definition 2. Bezeichnet @ eine Gruppe, 8o heiBt @ aufloshar :&> \/ G = (e).
neN

In diesem Fall wird durch die Kommutatorgruppen
DG DD =(e)
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eine Kette abelscher Faktorgruppen
GG, G'[G”, ..., G =D [Qm) = Ga-1)

bestimmt. Insb dere sind abelsche Gi G auflosbar, da bei ihnen schon @ = (e) ist. §; und

PP

By sind nichtabelsche aufldebare Grupp
Satz 2. Untergruppen und Faktorgruppen auflosbarer Gruppen sind auflésbar.

Beweis. Ist U Untergruppe von @ und G(™ = (e), 8o ist sicher auch U™ = (¢). Beim natiir-
lichen Homomorphismus von @ auf die Faktorgruppe G/N wird ein Kommutator a-15-'ab auf
einen Kommutator Na-'Nb-NaNb abgebildet. Deshalb ist (G/N)(9, das Bild von G? (i =0, 1,
2,...), und aus G™ = (¢) ergibt sich, daB (G/N)™ = N das neutrale Element der Faktorgruppe
G/N ist.

Satz3. Ist N Normaluilorhﬁ'rmc G und sind N und G/N auflosbar, so sst auch G auflssbar.

Beweis. Es gibt eine natiirliche Zahl m, fiir die (3/N)™ = N gilt. Daher ist ™ < N. Ferner
existiert ein n ¢ N, so daB N(™ = (¢). Daher ist G(™+®) = (¢).

. Definition 3. Eine Gruppe @ mit der Primzahlpotenzordnung p* (n ¢ N*) heiBt p-Gruppe.
Satz 4. Jede p-Gruppe G hat ein von (e) verschiedenes Zentrum Z(G).

Beweis. Seien K|, ..., K, die Klassen konjugierter Elemente von G. Die Anzahl k; der Elemente
in der Klasse K; (t = 1,2, ..., r) ist ein Teiler von |G| (vgl. 12.3.3.), also 1 oder eine Potenz von p.
Da jedes Element von @ in genau einer Klasse konjugierter Elemente liegt, ist

61 =p* =k + -+ k.

Eine Klasse enthiilt genau dann nur ein Element zwenn g-'zg = z fiir alle g ¢ @ gilt, d. h., wenn
z € Z(Q) ist. Da sicher e ¢ Z(Q) ist, hat wenigstens ein k; den Wert 1. Weil aber.p |(k; + k3 + ---
+ k,), gibt es mindestens p Klassen, die nur aus einem Element bestehen, d. h. |Z(@)| = p.

Satz 5. G ist p-Gruppe = @ ist aufloshar.

R + d;

Beweis durch vollstindige Induktion nach dem Exp # der G g p"
Jede Gruppe der Ordnung p ist als zyklische Gruppe abelsch und daher auflosbar. Wir nehmen
nun an, daB alle Gruppen der Ordnung p* (k ¢ {1, 2, ..., n — 1}) auflosbar sind. Sei G eine Gruppe
der Ordnung p*. Dann hat G/Z(G) die Ordnung p* mit €{0,1,...,n — 1} und ist also aufléebar.
Z(G) ist als abelsche Gruppe auflosbar. Nach Satz 3 ist daher auch G auflésbar.

12.7. Direkte Produkte

Definition 1. Eine Gruppe G heiBt genau dann direktes Produkt ihrer Untergruppen
A und B (Bezeichnung: @ = 4 X B), wenn jedes Element g € G auf genau eine
Weise in der Form

g=ab (acd, beB)
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dargestellt werden kann und die Elemente aus 4 mit den El ten aus B vertausch
bar sind, d. h., wenn
AN ANab=ba
aeA beB
gilt.
a heiBt A-Komponente, b heiBt B-Komponente von' g. Aus g —ab und § = ab
(@, € 4;b,b ¢ B) folgt
97 = (ab) (ab) = a(b3) b = a(@b) b = (a@) (3D),
d. h., man beherrscht die Rechnung in 4 X B bereits, wenn man sie in 4 und B
kennt, da komponentenweise gerechnet wird.
Offensichtlich ist im Fall endlicher Gruppen |4 X B| = |4]| |B|.
Das direkte Produkt li8t sich auch durch andere Eigenschaften der direkten Fak-
toren 4 und B beschreiben.
Satz 1. @ = AX B & A, B sind Normalteiler von GAAB =G A A nB = (e).
Beweis. Sei@ = 4 x B. Wenng € 4,80ist g = ge und wenn g € B;soistg =eg
die einzige Darstellung von g als Produkt eines Elementes aus 4 mit einem Element
aus B. Wenn also g € 4 n B, s0 ist g = ee = ¢. Fiir ein beliebiges g = ab € @ gilt
g4g =bla dab = b14b = b4 = 4.
Analog ergibt sich die Normalteilereigenschaft von B.
Sei nun G das Produkt seiner Normalteiler 4, Bund 4 n B = (¢). Hat ein Element
g € G die Darstellungen g —ab = ab (s,3 € 4;b,b € B),soist Gla =bb-'c An B
= (e), also @ = a und b = b. Fiir beliebige Elemente a € 4 und b € B folgt aus der
Normalteilereigenschaft von 4 und B

ablabe 4 nB =),

also ab = ba.

In der Gruppe B,q (vgl. 12.2.2.) ist die Untergruppe (r2, s) = (r*) X (s) direktes
Produkt. Die Gruppe 8, = (p) (r) ist zwar Produkt ihrer Untergruppen (p) und (r),
aber nicht direktes Produkt, da (r) kein Normalteiler von S, ist.

Definition 2. Eine Gruppe G heiBt genau dann direktes Produkt ihrer Untergruppen 4,, ...,
Ay, (Bezeichnung: @ = 4, X - X 4,) (n ¢ N*), wenn jedes g ¢ G auf genau eine Weise in der
Form

g=a,---a, (@g;ed;;4=1,...,n)
dargestellt werden kann und jedes a; ¢ 4; mit jedem a; ¢ 4; (s = j) vertauschbar ist.
Wir setzen
Al = A, A Ay, - Ay G=1,...,m).
Satz2. G =4, X -+ X Ay & A A, ist Normalteiler von G
i€l



184 12. Gruppen

Der Beweis kann wie im Fall von zwei Faktoren gefiihrt werden.

Wie man Ibar aus den h phen Abbild
Gy o By BBy - Gy > By <22 By Biyy - Oy
bzw.
)0 G0y - Gy > G
abliest, ist

Gld, = A7 und  GAS = A G=1...m).
Sind 4 und B gegebene Gruppen, so bildet die Menge
G ={@a,b):ac Arbe B}

mit der durch (a, b) (@, b) := (a@, bb) fur die Elemente (a,b) und (&, b) aus @ be-
schriebenen Operation eine Gruppe. B hnen e, e, die neutralen El te von 4
bzw. B,sosind 4 :={(a, e): @ € A} und B :={(e,, b): b € B} zu 4 bzw. B isomorphe
Untergruppen von G, und es gilt

@=AxB.

Allgemeiner kann man nach der Konstruktion solcher Gruppen G fragen, die zu
gegebenen Gruppen U und N isomorphe Untergruppen U und N derart enthalten,
daB N Normalteiler von @ und G/N = U ist. Eine solche Gruppe G nennt man
eine Erweiterung von N mit U. Das direkte Produkt ist ein einfaches Beispiel einer der-
artigen Erweiterung. Andere Losungen dieser Aufgabe werden in der Erweiterungs-
theorie gegeben.

Mit Hilfe des dlrekun Produktes konnen wir die Struktur der endlichen abelschen Gruppen
ubersichtlich b iben. Zur Vereinfachung der Sprechweise wollen wir nachstehend die Gruppe G

auch dann als direktes Produkt zyklischer Gruppen bezeichnen, wenn G selbst zyklisch ist, das
Produkt also nur einen Faktor besitzt. Mit dieser Festlegung gilt der

Hilfssatz 1. Jede abelsche p-Gruppe P ist direktes Produkt zyklischer Gruppen.

Beweis. Wir zeigen, daB es zu jeder Untergruppe U von P, welche direktes Produkt zyklischer
Gruppen oder gleich (e) ist, im Fall U + P ein a ¢ P\ U gibt, fir das (U, a)direktes Produkt
zyklischer Gruppen ist. Weil P\ U =+ 9 ist, existiertein @ e P\ U. Unter dessen Potenzen a, @,
@?', @', ... tritt e auf, und es gibt daher ein minimales i ¢ N, fiir das

@ gUAFY ¢ U

gilt. Fiir @ :=a?' ¢ P \\ U ist also

agUnaPel (1)
und
KU, @)l = p U] @)
Nach der Voraussetzung ist
= (VU = (By) X e X (B @

Ist a? = e, so gilt
(U,a) = U x (a).
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Aus (3) folgt dann, daB (U, ) direktes Produkt zyklischer Gruppen ist. Im Pall a? + ¢ st bei
P ge der Faktoren in (3) :
aP =bhi bt (el Bl =1} k=1,2,..., 5 1<t<s). @

Man kann sich a so gewihlt denken, daB keiner der Exponenten 4,, ..., §; durch p teilbar ist.
Wire z. B. 1, = pi)’ (§,” ¢ N*), so folgte aus (4)
(“bf‘:)' = byin oo by,
Weil
abrii ¢ Un (ab;";)’ eU
ist, kdnnte man ab,~*, statt @ benutzen.
Dao.B.d.A. |by| = |by| = -+ = |by] angenommen werden kann, ist nach (4) [a| = p |b,| und also
wegen (2) und (3)
KU, a)| = |a] [bs] -+~ [b,l.
Weil nach (4) b, € (a, by, ..., by), also (U, @) = (g, by, ..., b,) ist, folgt
(U, @) = (@) X (ba) X -+ X (by).

Hilfssatz 2. Hat das Element z der Gruppe G viw Ordnung |z| = mn, wo m, n teilerfremde
natirliche Zahlen bezeich 80 gibt es eindeutig b Elemente y und z der Ordnungen
lyl = m und |z| = n in G, fir die

z=yz=12y
gilt. y und z sind Potenzen von z.

Beweis. Aus m n n =1 folgt die Existenz ganzer Zahlen u, v, fir die um + vn =1 ist
(vgl. MfL, Bd. 1, 3.7.). Setzt man y := 2°® und z := 2%®, o gilt demnach

yr=zy =2 =z Ay =maz| =n.
Sind §, Z € G und ist

F=T=zalfl=mrlil=n,

so folgt aus
F=FF=F wmd G-t

daB § und Z mit z und daher auch mit y = z"® und z = z*® vertauschbar sind. Die Gleichung
=9

ergibt, daB

w=ygly=72"
ist. Aus der Vertauschbarkeit von y mit g folgt
W= (Y =Gy ==

und aus der Vertauschbarkeit von z mit Z ebenso w" = ¢. Dann ist aber auch w = w™sw"™ = ¢,
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Folgonmg Hat dac Elemeut z der Gruppe G die Ordnung |z| = p,*% --- p,%, w0 Py, ..., Py
paarwesse h und (e,,...e,)cN‘ul 80 gibt es eindeutig be-
stimmte Elemente z,, ..., z, der Ordnungen |z,| = p,*, ..., |z, = p,* in G, fir die

T =22y - 2,
gilt. z,, ..., z, sind Potenzen von z.
Bezeichnet @ eine endliche abelsche Gruppe und p einen Primteiler von |G|, so ist
P:= {g:geGA Vv v"=¢}
ieN

eine Untergruppe von G, denn sind g, und g, Elemente von P mit den Ordnungen |g,| = p% und
|gsl = p%, 80 hat g,g, die Ordnung pmax (i i) und liegt also in P. Nach der Beweisfiihrung
von Hilfssatz 1 ist P direktes Produkt zyklischer Gruppen von p-Potenzordnung und also |P|
= p° (¢ € N). Man nennt P die p-Sylowgruppe der abelschen Gruppe G. Sind p;, ..., p, die simt-
lichen verschiedenen Primteiler von |G| und P,, ..., P, die zugehérigen Sylowgruppen, so ist
P;n P, = (e), wenn ¢ + k, und
P, x--xP,S@.
Nach der Folgerung aus Hilfssatz 2 ist
PP, =G.
Daber gilt der
Satz 3. Bezeichnet G eine endliche abelsche Gruppe mit den Sylowgruppen P,, ..., P,, so0 ist
G=P; X Py x:-XP,.
Aus Satz 3 und Hilfssatz 1 folgt unmittelbar der

Satz 4 (Haupteatz fir endliche abelsche Gruppen). Jede endliche abelsche Gruppe st das
direkte Produkt zyklischer Gruppen von Primzahlpotenzordnung.

Damit ist das Strukturproblem fiir endliche abelsche Gruppen in befriedigender Weise geldet.
Die Gruppen P,, ..., P, sind durch @ eindeutig bestimmt. Weiter gilt der

Satz 5. Ist P eine endliche abelsche Gruppe von Primzahlpotenzordnung und sind A,, ...., 4,,
B,, ..., B, von (¢) verschiedene zyklische Gruppen, fir die

P=A X :-XA, =B X+ XB,
gilt, s0 15t r = s und bei geeigneter Numerierung |4;| = |B;| 6 =1, ..., 7).
Beweis durch Induktion nach dem Exponenten » der Ordnung p® von P. Offenbar ist der
Satz fir Gruppen der Ordnung p richtig. Indukti hme: Er gilt fir alle Gruppen, deren
Ordnung ein echter Teiler von |P| ist.

Py:={z:z¢P rzP=¢ und PP:={y: Vrz'=y}
z€

sind Untergruppen von P.
Sei A; =(a,),.|4; =p* (i=1,...,r) und die Numerierung so gewiihlt, daBe, =:-- 2 ¢,.
Der Leser priift leicht nach, daB folgendes gilt:

Py= (@) X - X (a7
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und |Py| = p". Ist ¢; = 1, 80 PP = (¢). Anderenfalls sei ¢, das letzte von 1 verschiedenee;, d. h.
€ = e 2l > €y =+ = ¢, = 1. Dann ist

PP = (@) X e X ().

Sei B; = (b;), |Bjl = p/s (i =1,..., 8) und die Numerierung so gewihlt, daB {, = .-- = f,.
Wie eben erkennt man, daB | Pp| = p? ist. Daher folgt r = s. Im Fall ¢; = f, = 1 ist der Satz da-
mit bewiesen.

Anderenfallsseif, = :++ = fy > fg41="'+ = f, = 1. PP ist dann einerseits direktes Produkt von
‘m zyklischen Gruppen der Ordnungen p*, ..., p*»~1 und andererseits direktes Produkt zyklischer
Gruppen der Ordnungen p/i-1, ..., p/a-!. Aus der Induktionsannahme folgt m =n und ¢, — 1
=fy—1,...,6q — 1 = f, — 1. Hieraus ergibt sich wegenr = a:¢, = f, ..., ¢, = f,.

12.8. Permutationsgruppen

Jede Untergruppe @ einer symmetrischen Gruppe S, (vgl. 12.1.2.8.) wird Permu-
tationsgruppe des Grades n g t. Thre El te, die ja 1-1-Abbildungen einer
n-elementigen Menge M auf sich sind, heiBen Permutats von M. Besteht @ aus
Permutationen der Menge M = {a,, ..., a,} , G aus solchen derMenge M = (a@,, ..., @,}
und gibt es eine 1-1-Abbildung

fiai>a :=fa)=8a (=12..,n)

von M suf M, fiir die

_ (= oo Gy - a, e By — d-l— ..a—.
» ~—-(,,(al) p(a.)) €Ger:= (W,) i»(ﬁ.)) = (—'@ ,,(,,,,) €@

gilt, gehen also die Permutationen von @ aus denjenigen von G durch Umbezeich-
nung der permutierten Elemente hervor, so heiBen @ und G dhnlich. Man zeigt leicht,
daB diese Ahnlichkeit eine Aquivalenzrelation ist. Insbesondere gehen konjugierte
Permutationen durch Umbenennung der permutierten Elemente auseinander hervor,
denn ist

eine feste Permutation von M und p € G, so ist
gt (;.?) (al .ty ) (a_a_)
@y ... ) \play) ... P(a,)) \@y ... a,
_ @ ...a,) [0 ---Ga _’Lﬂl)...p(L.)
a, ...a,) \P(@) --- P(@4) ] \p(a,) ... p(an),

— (a_,__ . i) ()
P(ay) .- p(an)
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und daher ¢-'G¢ eine zu @ dhnliche Per tionsgruppe. Die vermoge ¢ zu p konju-
gierte Permutation entsteht also aus p, indem auf die Elemente der beiden Zeilen
von p die Permutation ¢t angewendet wird, d. h. die permutierten Elemente gemiB ¢
umbezeichnet werden. Wir werden dhnliche Permutationsgruppen als nicht wesent-
lich verschieden ansehen und hidufig M = {1, 2, ..., n) wihlen.

Es bezeichne G, die Untergruppe aller Permutationen von G, die ein festes Ele-
ment a; € M auf sich abbilden. Das Element a; ¢ M heiBt durch die Permutations-
gruppe @ mit a, € M verbunden, wenn es in @ eine Permutation p gibt, die a; auf a;
abbildet. Jedes a; € M ist vermoge der identischen Permutation mit sich verbunden.
Ist a; durch die Permutation p mit @, verbunden, so a; durch p-! mit a;. Wird a, bei
der Permutation ¢ auf a; abgebildet, so a; bei der Permutation pq in ;. Das Ver-
bundensein ist also eine Aquivalenzrelation in M. Die zugehorigen Aquivalenz-
klassen werden Transitivititssysteme genannt. Besteht M nur aus einem Transitivi-
tatssystem, so heiBt die Permutationsgruppe @ transitiv, anderenfalls intransitiv.
Beispielsweise sind B;q (vgl. 12.1.2.12.) und deren zyklische Untergruppe (r) (vgl.
12.2.2.) transitiv. Die Untergruppe (r3, 8) von B,q ist intransitiv.

In einer transitiven Gruppe @ von Permutationen der Menge M = (1,2, ..., n}
gibt es zu jedem 1 € M eine Permutation p;, bei der 1 auf ¢ abgebildet wird.

G=GpuGpu--uGp, (2)

ist die Zerlegung von @ in Rechtsnebenklassen nach der Untergruppe G, aller Permu-
tationen, welche 1 auf sich abbilden, denn bildet p die 1 auf ¢ ab, so ist pp;? E Q,
und p € G,p;. Damit ist bewiesen:

Satz 1. Ist Q eine transitive Permulationsgruppe des Grades n, so gilt
n]@.

Eine transitive Permutationsgruppe @ des Grades » heiBt reguldr, wenn n = |G|.
Zum Beispiel ist die durch

12...n—1n
(2 3.... n 1)
erzeugte zyklische Permutationsgruppe regulir.

Eine Permutationsgruppe G ist genau dann regulir, wenn es zu jedem Paar permu-
tierter Elemente a;, @; eine und nur eine Permutation in @ gibt, die a; auf a, abbildet.
In den Bezeichnungen von (2) besteht p;'Gyp; (i = 1,2,...,n) aus allen Permu-
tationen von @, die ¢ auf ¢ abbilden. Falls @ abelsch ist, gilt p;2G,p; = G, (i =1, 2.

..,n), d. h., G, besteht nur aus der identischen Permutation. Daher ist eine tran-
sitive abelsche Per tionsgruppe regulir.

Unter einer Darstellung der Gruppe G durch die Gruppe G versteht man eine

homomorphe Abbildung von @ auf G. Insbesondere spricht man von Darstellungen,
wenn die Bildgruppen aus Matrizen oder Permutationen bestehen.
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Sei U eine Untergruppe von G und [@: U] = n endlich. Ist M = {Ur,, ..., Ur,)
die Menge der Rechtsnebenklassen von @ nach U und bezeichnet a ein El t aus

@, 80 ist
_(Ury ... Ury
Pa= Ura ... Urya

eine Permutation von M. Die Abbildung
a > p, (3

ist ein Homomorphismus von @ in die Gruppe aller Permutationen der Menge M.
Ist ndmlich b ein weiteres Element aus ¢ und

_ (U, ... Ur,
P _(Urlb Ur,.b),
80 ist

_(Ury ... Ury \ (Ur, ... Ur,
PoPo _(Ur,a Ur,a) (Urlb Ur,b)

Ury -+ Ury \ (Urya ... Ur,;z
Ura - Urya) \Uryab ... Uryab

Ur, ...Ur, \_
(Ur,ab Ur.ab) = Por-

Die Bildgruppe ist transitiv, denn o. B. d. A. ist Ur, = U, und deshalb wird Ur,
bei der Permutation p,, auf Ur; ( = 1, 2, ..., n) abgebildet.

Der Kern N des Homomorphismus (3) ist ein Normalteiler von @, der aus allen
El ten & € G besteht, fiir die

A Urk=Ur,
i€{l....n}
d.h.,
AN kerUr;
i€{L.....m)

der groBte in U enthaltene Normalteiler von G.

‘Wiihlt man in der endlichen Gruppe @ speziell U = (e), so erhilt man die sogenann-
te regulire Darstellung von G durch eine zu @ isomorphe transitive Permutations-
gruppe. Es gilt also der folgende, schon von ARTHUR CALEY (1821 —1895) bewiesene
Satz.
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Satz 2. Jede endliche Gruppe Lipt sich isomorph durch eine transitive Permutations-
gruppe darstellen.

Genau dann, wenn die Untergruppen U und V in @ konjugiert sind, liefern sie bei dem ange-
gebenen Verfahren éhnliche Dmtollungen von G

Sind die von U und ¥V gt tell von @ ihnlich, so ist notwendig
[@: U) = [@: V]. Seien (Ur., ceey Ur.), {Vay, .. Va.) die Mengen der Rechtsnebenklassen von G
nach U bzw. V.

Ur, ...Ur Vs, ... Vs
(Ur:a oo Ur:a und Va:a .. Vo:a)

o

seien fiir alle a € @ bis auf die Bezeichnung der permutierten El te dieselb
Dann gilt insbesondere fiir die gleichen a ¢ G

Ura = Ury, Vaa= Vs,
d. h.
rn"'Ura = r,30ry, 8, 1Vsa = 8,71Vs,.
Es ist also
aer'Ur,Sacs Vs,
und daher
= (r8 )1 U(ry8,7Y).
Sind aber U und V konjugiert, ist also g-'Ug = V mit einem geeigneten g ¢ G, so bilden
8 = r‘r,g, .» 84 1= g 'reg ein Reprisentantensystem fir die Bechmnebenklusen von Vin

@. Fir ein festes Element a ¢ G ist Ura (i ¢ {1, ..., n}) eine wohlbesti aus
der Menge {Ur,, ..., Ur,}, die wir mit Ur;::= Ur;a bmnchnen

(%)

ist dann eine durch a festgelegte Permutation der Menge {1, 2, ..., n}. Weil

Vaglag = g~'Ugg'rigg-'ag = g'Ur,ag

=g 'Ur;g-=g'Ugg-iry.g = Ve (t=1,...,n)
ist, unterscheiden sich die P
Ury, ...Ur, ) - (Url Ur,)
Una... Urea, Ury. ... Ury:
und

Vs, Vs, — (Va, .. Vay
Vaglag ... Vag'lag Vay ... Va,:

R

nur durch die B« der

ierten El te. Die letzte P ion ist zu

Ve ... Vs, )
Vsa... Vaga,

P
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in der Gruppe aller Permutationen von {V3s,, ..., Vs,} konjugiert, denn sie kann in der Form
Vs ...Vag \2 (Vs ... Vs, ) (Va, v Vay

Vaig ... Vaug, Vaa ... Vaga] \Vayg ... Vayg,
geschrieb den. Daher werden durch die Untergruppen U und V éhnliche Permutations-
darstellungen von G erzeugt.
Bis auf Ahnlichkeit erhilt man durch das angegebene Verfahren alle transitiven P
d llungen von G. Sei nimlich @ eine itive Gruppe von Permutationen der Menge {1, ..., 7},

ar>qs (‘150_: %6 €Q)

eine homomorphe Abbildung von G auf Q und U die Untergruppe saller Elemente u von @, deren
g, die 1 auf sich abbildet. Wegen der Transitivitit von Q gibt es Permutationen ¢,,, gy, -.-» Zrar
die die 1 der Reihe nach auf 1, 2, ..., n abbilden. ry, ry, ..., r, ist ein Reprisentantensystem fiir die
Rechtenebenklassen von G nach U. Wenn a ¢ G die Permutation

1...n
%= (1' n’)
zugeordnet ist, bilden die Permutationen, welche den El aus Uria
1 auf ¢’ ab, und es ist also Ura = Ur;. (i = 1, 2,..., n). Daher stimmt

_ (Ur ... Urg\ _ (Ur, ...Ur,
Pa Ura...Urga Uryr oo Ury:
bis auf die Bezeich der p ierten El mit der Per tion g, iberein, und die Be-

hauptung ist bewiesen.

+, q

t sind, die

Die bisherigen Ergebnisse geben Veranlassung, sich noch etwas niaher mit dem
Aufbau der symmetrischen Gruppe S, zu beschiftigen, die aus allen Permutationen
der Menge M = (1,2, ..., n) besteht. Da S, nur aus einem Element besteht, wollen
wir #n > 1 annehmen. 8, ist transitiv und hat die Ordnung |S,| =n! (vgl. MfL,
Bd. 1, 3.6.(16)).

Unter einem Zyklus (a,, a,, ..., a;) der Linge 1 (I = 2) versteht man diejenige
Permutation, welche a, auf a,, a, auf a;, ..., a;-; auf a; und a, auf a, abbildet. Zum
Beispiel ist

1234586
(4 2635 l) =(1,43,6
ein Zyklus der Linge 4 aus Sq. Jede von der identischen Permutation verschiedene
Permutation p e S, 1Bt sich als (eventuell in einen Faktor ausgeartetes) Produkt
paarweise elementefremder Zyklen darstellen (vgl. MfL, Bd. 1, 3.6.(19)). Beispiels-
weise ist

123456788910\ _
(0z788t5200)= 100548, @

Das Produkt elementefremder Zyklen ist kommutativ. Ferner gilt

(31,85, +o2s @) = (B3, @3, ..., B, @) = -0 = (@4, By, N, Bpg)



192 12. Gruppen

Die .Do,rstellung einer Permutation als Produkt elementefremder Zyklen ist bis auf
die Reihenfolge der Faktoren eindeutig.
Die Ordnung eines Zyklus (a,, ay, ..., ;) ist gleich seiner Liinge . Ist

P = (a3, s, -+, By,) (B21, Bas, - o, Bap,) -+ (r1; Bray +o 5 Brt,) (5)

die Darstellung der Permutation p durch el tefremde Zyklen, so nennt man
{l, b, ..., 1} den Typus der Permutation p. Wegen der Vertauschbarkeit elemente-
fremder Zyklen gilt

P” = (11, Gugy oo, @y, )™ (@21, @gpy oev s Bt )™ <o+ (A1, Oy, oeny @)™
p™ ist genau dann die identische Permutation, wenn
Limaly|mAa--al |m.

Daher ist die Ordnung von p gleich dem kleinsten gemeinsamen Vielfachen der
Zyklenldngen 1,,1,, ..., 1,. Die Permutation im Beispiel (4) hat also die Ordnung
3.-4=12

Nach (1) erhilt man die zur Permutation p € S, vermoge ¢ € S, konjugierte Permu-
tation t-1p¢, indem man in beiden Zeilen von p die Permutation ¢ ausfiihrt. Ist p in
der Form (5)als Produkt elementefremder Zyklen dargestellt und

12..n
'=(i2...i)’

so ist
(@11, Byg, oo s By,) (Bo1s By, - ov, Byy,) <o+ (Byy Bpgy oee5 By) (6)

die Darstellung von ¢-!p¢ als Produkt elementefremder Zyklen. Umgekehrt s nd offen-
bar zwei Permutationen gleichen Typus, die durch (5) und (6) gegebensinc , vermége
tkonjugiert. Zwei Permutationen aus der S, sind also genau dannkonjugiert, wenn
sie vom gleichen Typus sind. Beispielsweise ist p = (1,3) zu ¢ = (1, 2) in der 8,
konjugiert, denn mit

=1 23
132
ist £lpt = q.
Zyklen der Linge 2 heiSen Transpositionen. Sind @, und a, verschiedene permu-
tierte Elemente, so 1aBt sich die identische Permutation e von S, darstellen als

e = (a,, ) (ay, a,).
Da ferner im Fall [ > 2

(@1, ay, ..., @) = (61, @) (a3, @) (a3, @) -+~ (@11, @)
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ist, kann jede Permutation aus S, als ein Produkt von Transpositionen geschrieben
werden. Aus

(2,3)(1,3)(2,3) (1,8) = (1,2) (1,3) *= (1,3) (1, 2)
entnimmt man, daB es dabei auf die Reihenfolge der Transpositionen ankommt, da

diese im allgemeinen nicht el tefremd sind und daB die Darstellung nicht ein-
deutig ist.
8, (n > 2) kann bereits von zwei Permutationen, beispielsweise ¢ = (a,, a;) und

z = (@, G, ..., G,) erzeugt werden, denn es ist 2¢ = (ay, @y, ..., a,) und daher
(289 p(ztt-2 = (a1, @) k=2,...,n)

sowie
(@1, 8) (@, ) (@1,0) = (@i, 4) (2Si<k=n)

Wir wollen nun zeigen, daB jede Darstellung einer Permutation p € 8, als Pro-
dukt von Transpositionen stets eine gerade oder stets eine ungerade Anzahl von

Faktoren enthilt. Dazu betrachten wir das Diff produkt
4:= JI G —k.
GEE(L ...}
i<k
Ist
12 ..n
p=( 3 m)es
‘80 entsteht
a2 := JI @ —F)
ike(l,....n)
i<k

aus 4, indem die Zahlen i, k aus (1, ..., n) durch ihre Bilder i’, &’ bei p ersetzt werden.
4 und A* stimmen bis auf das Vorzeichen iiberein: 47 = y(p) 4, x(p) € {1, —1}. Die
Abbildung y : p > z(p) ist ein Homomorphismus von S, auf die zyklische Gruppe
(—1) der Ordnung 2. Mit einer weiteren Permutation g € 8, ist nimlich

2(pg) 4 = 4% = (87) = z(p) 49 = x(p) 2(q) 4
und also

2(29) = 2(p) 2(9)-

Der Ausdruck x(p) heiBt Charakter der Permutation p. Der Kern des Homomorphis-
mus ist die alternierende Gruppe A,, deren Elemente die Menge {a:a € S, A x(a) = 1}
bilden.?)

1) Fiir jede Permutation p € S, gilt offenbar x(p) = sgn p (vgl. 8. 1., S. 114). Daher gehort
a € 8, genau dann zu 4,, wenn a eine gerade Anzahl von Inversionen enthalt.
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Offensichtlich ist x((1,2)) = —1. Bezeichnet (i, k) eine beliebige Transposition
aus 3, t eine Permutation der Form

12...
b= (i k ...)55-'

80 ist ¢-1 (1,2) ¢ = (¢, k) und also

26, 1) = 26 2((1, 2)) 2(0)
= 207 2((1, 2)) 2(6)
=1,2) = —1.

Ein Produkt einer geraden Anzahl von Transpositionen liegt: daher immer in 4,,
ein Produkt einer ungeraden Anzahl von Transpositionen in der einzigen von 4,
verschiedenen Nebenklasse 4,(1, 2). Weil demnach die Permutationen aus A4, nur
durch Produkte einer stets geraden Anzahl, die Permutationen aus A,(1,2) nur
durch Produkte einer stets ungeraden Anzahl von Transpositionen darstellbar sind,
heiBen die ersten gerade, die zweiten ungerade Permulationen. S, (n > 1) enthiilt
ebensoviele gerade wie ungerade Permutationen, nimlich

n!
[4a| ==~

Weil 8, eine zyklische Gruppe der Ordnung 2 ist, gilt 4; = §," = (¢). 9, ist nicht abelsch.
8y’ = Ay =((1, 2, 3)) ergibt S, = (¢). S, enthilt den Normalteiler 4, vom Index 2. Daher ist
S/ & A, Aus

(21, 33)7X(as, 3)7X(3, 8y) (a5, By) = (a1, @y) (3, B3)
bzw.

(31, 3)71[(81, 3) (@, 84)]7" (3, B) [(ay, B3) (24, 6,)] = (ay, @4) (a5, 3y)

folgt, daB jedes Produkt von zwei Transpositionen aus S, in S,’ liegt. Also ist S’ = A,. 4, ist
einzige Untergruppe vom Index 2 in 8,, denn jede Untergruppe vom Index 2 ist Normalteiler
mit abelscher Faktorgruppe und umfaBt deshalb 3,’. Fir die Permutationen

e a=(1,2)3,4), b=(1,3)(2,4), ab=(1,4)(2,3)

gelten die Relationen a* = b® = e, ab = ba. Sie bilden daher eine abelsche Untergruppe V von
A,, die Kleinsche Vierergruppe. Weil V aus e und simtlichen Permutationen vom Typus {2, 2} von
S, besteht, ist ¥ Normalteiler von 8, und erst recht von A4,. A,/V ist zyklisch von der Ordnung
3 und daher 8" = 4 S V. Aus V' = (¢) ergibt sich 8, = A" = (e). Also gilt:

8,y Ay 8ind auflosbare Gruppen, wenn n < 4 ist. (U}
Seien a,, a,, a,, @, paarweise verschiedene Elemente von (1,2, ..., n}. Es ist
(a1, 84) (ay, 33) = (8y, Gy, Gy)

und

(31, 69) (a3, 6,) = (@1, By) (81, @y) (B3, @) (35, B4) = (ay, a5, 43) (3, 3y, 1)
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Weil jede Permutation aus 4, als Produkt einer geraden Anzahl von Tmnspoeltlonen duaullbl.r
ut, kann sie also auch als Produkt von Zyklen der Liinge 3 (= D:
its ist jeder Dreierzyklus eine gerade Permutation. Dt.her st Ay(n= = 3)das Eruugml
siimtlicher anrzyklen von 8,.
Satz 3. Die alternierenden Gruppen A, sind aufer fir n = 4 einfach.
Beweis. 4 = (¢) und A, als Gruppe der Ordnung 3 sind einfach. 4, ist nicht einfach
Son nunn25und N em von () verschiedener Normalteiler von 4,. Dann glbt es in N eine
tion p von Pri Sie ist als Produkt von lauter elementefremden Zyk]en
der Lange p darstellbar. Wir zeigen, , daB es in N eine Permutation vom Typus {3}, d. h. einen
einzelnen Dreierzyklus gibt.
1. |p| = 2. Dann ist

P = (a1, ay) (@5, 0)) - -+,
wobei die punktierten Stellen auch leer sein konnen. Weil ¢, := (a,, @y, @) € 4,, ist auch
g :=t7ph = (a3, @) (a3, 8)) --- € N A7 :=pgt = (83, 0) (aps 0} € V.
Weil n = 5 ist, enthiilt A, die Permutation ¢, := (a,, a;) (ay, 6,), und es folgt
8:=ty7'rly = (a3, Gy) (3, @s) € N BOWie rs= (a5, 05, 0,) € N.
2. |p| = 3. Ist p nicht schon selbst ein Dreierzyklus, so ergibt sich aus
- (8, B3, G3) (ay, Gy, Gy) <+
mit ¢ := (83, 8,) (g, @) € Ay und' by := (a3, a5) (a3, Oy) € A, daB auch
g := 471k = (a4, Gy, Gy) (G, Gy, Gg) -+« € N A7 := ty~\ply = (ay, G, Q) (G4, Gy, Gg) +++ € N
und daher gr-! = (ay, a5, @) € N.
3. |pl > 3. Weil ¢, := (ay, a,, a,) € 4, ist mit

= (81, Gy, Gy, B4, B, ...) - €N
au

¢ :=t7pl = (ay, 8y, 0y, 8, 05, ..) - €N
und daher
=(a,8568)cN.
Sei p = (ay, 6y, a,) ein in N enthaltener Dreierzyklus, (a,:, a5-, ay-) ein beliebiger Dreierzyklus
aus A,. Weil sich die Permutationen
,___(a; oy a3 ) wmd t=(0 a o )
a0 Gy Gy ... Gy Gy Gy ...

" heid

aus S, genau um eine Transposi i liegt eine in 4,, also ist

87ps = (ay, 8y, ay) €N vi7Ipt = (ay, a1, 05 ) € N
Weil aber mit (ay/, ', a5-) € N auch .
(83 ay:, ay) (B3, @y, Oy0) = (81, 090, Gy) €N
gilt, ist also jedenfalls (a,, ay, ay-) € N. Daher ist N = A, und folglich 4, fiir n = 5 einfach.
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Aus (1, 2,3) (2, 3, 4) + (2,3,4) (1, 2, 3) ergibt sich, daB die alternierenden Gruppen 4, (n = 4)
nicht abelsch sind. Fiir #n = 5 folgt dann aus der Einfachheit von 4,: 8y’ = 4, = 4,/,d. h.,

Sy, Ay 8ind nickt auflssbar, wenn n= 5 ist, . (8)
und 4, ist in diesen Fillen sogar perfekt (vgl. 12.6.).

Zu einer beliebigen Untergruppe U von endlichem Index in @ liefert (3) eine Dar-
stellung von G durch eine transitive Permutationsgruppe, deren Ordnung ein Teiler
von [G: U]! sein muB. Der Kern N des Homomorphismus ist der gréBte in U enthalte-
ne Normalteiler von G. Nach dem Homomorphiesatz ist deshalb [@ : N] | [@: U]!.
In einer einfachen Gruppe G gibt es demnach keine nichttriviale Untergruppe U,
fiirdie[G : U]! < [@ : (e)] ist. Deshalb enthilt die 44 keine Untergruppen der Indizes
2, 3, 4, d. h. der Ordnungen 30, 20, 15.

Es gibt also nicht notwendig in jeder endlichen Gruppe @ zu jedem Teiler ¢ von |G|
eine Untergruppe U mit der Ordnung ¢. Ist aber ¢t = p® (n € N*) eine Potenz der
Primzahl p und p* teilerfremd zu |G| : p*, so enthilt G eine Untergruppe P der Ord-
nung p*, die p-Sylowgruppe von G genannt wird. Zu jedem Exponentenr € (1, ...;n)
gibt es wenigstens eine Untergruppe der Ordnung p' in G. Nach dem Sa!z vorn SYLow
(1872) ist auBerdem jede Untergruppe von p-Potenzordnung in einer p-Sylowgruppe
von @ enthalten und sind je zwei p-Sylowgruppen in & konjugiert.

Fiir auflésbare endliche Gmppen @G bewies P. HaLL (1928): Ist der Texler t von |@|
zu |G|: ¢ teilerfremd, so besitzt @ eine Untergruppe H der Ordnung ¢, je zwei Unter-

. gruppen der Ordnung ¢ sind in G konjugiert, und jede Untergruppe U von G mit
|U]| | ¢ ist in einer solchen Untergruppe der Ordnung ¢ enthalten. Untergruppen H,
deren Ordnungen zu ihrem Index teilerfremd sind, werden Hallgruppen von G genannt.
Auf die Angabe von Beweisen verzichten wir hier. Der Leser findet sie in Lehr-
biichern der Gruppentheorie.

12.9. Endliche Drehgruppen

In diesem Abschnitt verwenden wir einige Begriffe und Sachverhalte aus der G trie, die
dort ausfiihrlich dargestellt werden (vgl. MfL, Bde. 6 und 7), achst unter ittelb
Berufung auf die Anschauung.

Sei K die Menge aller Pu.nkte der Oberilache el.ner Kugel mit dem Mittelpunkt 0. Wir betrachten
alle Dreh des d um Achsen durch 0. Ordnet man
jedem Punkt des Raumes den)emgan Punkt zu, in welchen er bei einer solchen Drehung iiberge-
fithrt wird, so erhilt man eine eineindeutige Abbildung der Menge aller Punkte des Raumes auf
sich, die wir in diesem Abschnitt auch als Drehung bezeichnen werden. Insb dere vermittelt jede
solche Drehung (nls Abblldung) eine 1— 1 Abbildung von K auf sich und ist umgekehrt durch
diese bereits voll Das Ergebnis zweier nacheinander ausgefiihrter Drehungen
18t sich auch durch eine einzige Drehung erzielen. Die identische Drehung e bildet jeden Punkt
von K auf sich ab. Zu jeder Drehung d gibt es eine Drehung d-2, fiir die das Ergebnis der Nach-
einanderausfithrung von d und d-! sowie von d-! und d die identische Drehung e ist. Beziglich
der Nacheinanderausfithrung bilden die simtlichen Drehungen um Achsen durch 0 daher eine
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Gruppe, deren Untergruppen Drehgruppen genannt werden. Wir wollen alle endlichen Drehgruppen
angeben.

Jede von e verschiedene Drehung d laBt genau zwei Punkte von K, nimlich die Schnittpunkte
der Drehachse mit der Kugeloberfliche, fest. Sie werden Pole der Drehung d genannt. Das Bild d(x)
des Punktes & ¢ K bei der Drehung d werde in diesem Abschnitt mit ad bezeichnet. Bei der Nach- .
einanderausfithrung der Drehungen d, und d, wird & auf ad,d, := (ad,) dy abgebildet. Liegen
o, B € K einander diametral gegeniiber, 8o auch ad und fd.

Wir betrachten nun eine endliche Drehgruppe @ von der Ordnung # > 1. Bei den Drehungen
aus @ treten dann auch nur endlich viele Pole auf. Ist ¢ eine beliebige Drehung aus G und &« ¢ K
ein Pol bei @, d. h., gibt es in @ eine Drehung d + ¢ mit ad = &, 80 ist af = a dt = ot (¢~ dt)
‘ebenfalls ein Pol bei G@. G vermittelt also eine Gruppe von Permutationen der Pole. Entsprechend
zerfillt die Menge der Pole in Transitivititssysteme P, ..., P;. Die Anzahl der Pole in P; sei m;
(s =1, ..., k). Alle Drehungen aus G, die einen festen Punkt & ¢ P; als Pol haben, bilden zusam-
men mit ¢ eine Untergruppe Z;. In G gibt es solche Elemente ¢, ..., tm, (¢, € Z;), daB a = ody, ...,
om 8lle Pole aus dem Transitivititssystem P; sind. Ein beliebiges ¢ ¢ G bildet jedenfalls « auf
einen dieser m; Pole, etwa af; ab. Dann ist af; = «, also t4;~! ¢ Z; und ¢ € Z ;. Daher ist

G=2Ztyu---vZim,
die Zerlegung von G in Rechtsnebenklassen nach Z;. Mit |Z;| = n; ergibt sich daraus

n = mn; E=1,...,k. 1)
Fir ein Element ¢ ¢ Ggilt: att = of; & ¢ € t;~ ‘Z;l,. DAhor tritt ]edee ot aus P‘ bel der gleichen
Anzahl von Drehungen aus ¢ als Pol anf, namlich bei #; — 1 nich Weil

jede nichtidentische Drehung zwei Pole besitzt und insgesamt n — 1 solche Dmlmngen zu G ge-
héren, ist .

2n —1)= Z mi(n; — 1),

Wegen (1) ergibt sich daraus
1 k 1

21 — =)= 1——

( ") l£( "s)
und

k—2+—— -—. 2]

né‘l i @

Aus dieser Gleichung liest man ittelbar ab, daB k = 2sein muB. Weil2 < n; <2 (=1, ...,

k) ist, folgt weiter k — 2 + % = %, d. h. & < 3. Wir brauchen also nur dieFillek = 2und

k = 3 zu betrachten.
Fall 1. k = 2. Dann heiBt die Gleichung (2)

2
n

s ®

3=

L

™

Weil n; < n und daher -:— = % (4 =1, 2) ist, ergibt (3) n, = ny = n. Jedes der beiden Tran-
¢

sitivititasysteme P, P, enthilt genau einen Pol. @ besteht aus lauter Drehungen um die Achse
durch diese beiden Pole. Unter ihnen gibt es eine Drehung a mit minimalem Drehwinkel ¢ (0 < ¢
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< 2x). Der Drehwinkel ¢ (0 < y < 27) einer beliebigen Drehung b ¢ @ 1Bt sich in der Form
yv=2¢+¢ (2¢N, 0 < g < ¢) schreiben. Dann ist ba—* € @ eine Drehung um den Winkel o.
Wegen der Minimaleigenschaft von @ muB ¢ = 0, also b = a* sein. Daher liegt eine zyklische

Gruppe G = (a) vor, die von der Drehung a um den Winkel ¢ = % erzeugt wird.
Fall 2. k = 3. Gleichung (2) besagt dann
2 1 1 1
14— — o —. )
n ™ o] o]
0.B.d.A. kann 2 < n; < ny < ny = n angenommen werden. Es muB n, = 2 und n, < 3 sein,

weil sonst die rechte Seite von (4) hdchstens gleich 1 wire. Daher kann (4) nur die folgenden
Losungen in lichen Zahlen besitzen:

Om=2, m=2m=1.

Mit n, = 2, ny = 3 folgt aus (4)
120y = n(6 — 3),
also 3 < n, < 6, was noch die Losungen
b) ,=2,n,=3, ny =3, n=12;
c) m=2,n=3n=4 n=24;
d) my=2,n,=3,n,=5,n=60
ergibt. .
Zu 8). Das Transitivititssy Py besteht b aus zwei Polen a,, a,, die bei jeder Drehung aus G
featbleiben oder miteinander ver den. «, und &y hogen einander also diametral

gegenuber Alle Drehungen aus @, die «, unveriindert lassen, bilden eine Untergruppe Z von G.
Sie besteht ans Drehungen um dxo Achse du.reh o, und &;. Wie im Fall 1 Gberlegt man sich, daB Z

d

zyklisch von der Ordnungm = —2— ist. u € @ ver he o, und &y . Dann ist

G=1ZuZu.
Z = (a) wird von einer Drehung a um die Achse durch x, und &4 mit dem Drehwinkel p = —

erzeugt. Weil die Drehungen zu (z ¢ Z) die Pole &, und «, miteinander vertauschen, haben sie
von diesen verschiedene Pole. Die Drehung (zu)? hat dieselben Pole wie zu und 18t auBerdem o,
und o, fest. Deshalb muB (zu)* = e sein. Insbesondere folgt ¥? = ¢ und u~‘au = a-1.

‘Wir betrachten ein regulires m-Eck in der zur Achse durch «, und &, senkrechten Ebene durch
0, dessen Ecken auf der Kugel K liegen. G besteht dann aus allen Drehungen, die dieses ,, Dieder*
in sich dberfihren und wird deshalb Diedergruppe genannt. Die m Drehungen um die Achse durch
o, und & bilden Z, withrend Z«u alle ,,Umklappungen* enthilt. Ist m gerade, 8o sind das Drehungen
mit dem Winkel # um Achsen durch gegeniiberliegende Ecken oder gegeniiberliegende Seiten-
mitten des m-Ecks. Ist m ungerade, so gehen die Achsen dieser Drehungen durch j je eine Ecke und
die Mitte der gegeniiberliegenden Seite des m-Ecks. Das Transiti P, besteht aus den
Ecken des m-Ecks, P, aus den Schnittpunkten der Strahlen von 0 durch die Selt«enmltten des
m-Ecks mit der Kugeloberfliche.

Als abstrakte Gruppen der Ordnung n = 2m k& die Diedergruppen @ beschrieben werden
durch zwei erzeugende Elemente a, ¥ und die definierenden Relationen

a®=e, ut=e¢, ulau=a"l,
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In den dbrigen F"a'llen ist die Grupp dnung » eindeutig besti Jedes Transitivitédts-
system P; besteht aus — > 2 Polen (i = 1, 2, 3). Nur die identische Drehungli8t also alle Pole
eines Tra.mttmt&taayntems fest Dahor ist @ nuomorph zu den itiven Per ionsgruppen,
die von @ in den drei Transi rt: werden.

Zu b). Zu P gehiren vier Pole. Ala Permutationsgruppe dieser vier Pole hat @ in der Gruppe S,
aller Permutationen der Pole aus P, den Index 2 und ist daher Normalteiler in S,. Weil aber 4,
der einzige Normalteiler dieser Art in S, ist, folgt G = A,.

@ besteht aus allen Dreh die ein K einbeschriebenes regulires Tetraeder mit sich zur
Deckung bnngen Deshalb heiBt G auch Telmderprw Die Pole des Transitivititssystems P,
sind die vier Ecken des Tetraeders, die d tral gegeniiberliegenden Pole bilden das Transiti-
vititesystem P,. Die zugehongon Drehachsen gehen also jeweils durch eme Ecke und den Mittel-
punkt der gegeniiberliegenden Fliche des Tetraeders. Die von e Drehungen um diese
Achsen haben die Onlmmg 3. Verbindet man die Mittelpunkte gegeniiberliegender Kanten des
Tetraeders, 8o erhilt man drei weitere Drehachsen fiir Dreh der Ordnung 2. Sie bilden zu-
sammen mit e die Kleinsche Vierergruppe. Die zugehérigen Pole llegen im Tnnsltlntimy!tam P,.

Zuc). Im Trunsmwmtsaystem P, liegen acht Pole. Da n, = 3 ist, haben die von e verschiedenen
Drehungen. welche einen Pol aus P, besitzen, die Ordnung 3. Die Pole in den beiden anderen

héren zu Drehungen der Ordnung 2 oder 4. Folglich liegen jeweils beide
Pole einer Drehung der ( Ordnung 3 in P,. Wir fassen die d tral gegeniiberliegenden Pole, die
zu einer Drehachse gehéren, zu einem Polpaar zusammen. Da bei jeder Drehung aus @ ein solches
Polpaar wieder in ein Polpaar ubergefahrt wird, induziert @ eine Gruppe G von Permutationen
dieser vier Polpaare, die homomorphes Bild von @ ist.

LiBt eine Drehung u ¢ @ alle vier Polpaare fest, so bleiben jeweils die beiden Pole eines Paares
einzeln fest oder werden miteinander vertauscht. Dann bleiben sicher bei 432 alle Pole aus P, einzeln
fest, und folglich ist u? = e. Ist nicht schon u = ¢, s0 hat u die Ordnung 2, und die Pole der Drehung
u liegen in P, oder Py. Dann werden bei « also die beiden Pole jedes Paares aus Py miteinander ver-

7] hreih

tauscht. Sind oy, as; By, Bas Y1, 25 6y, 8, die vier Polp so ist in Zyk weise
u = (&3, &g) (Brs Bs) (Y1 ) (61, 9).

Weil bei jeder Drehung aus @ ein Polpaar in ein Polpaar iibergefiihrt wird, gilt fir jede Drehung
deG .
d-ud = u.
Insbesondere wire « mit einer Drehung a von der Ordnung 3 vertauschbar, und deshalb hitte

ua die Ordnung 6, wihrend es in G nur Drehungen der Ordnungen 2, 3, 4 gibt. Es muB also
4 = ¢ sein. Weil bei keiner von e verschiedenen Dmhung aus @ alle vier Polpaare fest bleiben,

ist @ = @ . Die Gruppe 8, aller Per i der vier Polpaare hat ebenso wie G die Ordnung 24.
Daher ist G = 8,.
Die Gruppe G besteht aus allen Drehungen, die ein K einbeschriet reguliires Oktaeder mit

sich zur Deckung bringen. Daher nennt man @ Oktaedergruppe. Verbindet man die Mitten gegen-
iiberliegender Flichen, so erhilt man vier Drehachsen, deren Pole das Transitivitdtssystem P,
bilden. Jede Drehungaus G p tiert diese Drehachsen un der. Die Verbindungslinien der
Mittelpunkte gegeniiberliegender Kanten liefern sechs Drehachsen fiir Dreh der Ordnung 2.
Die zugehorigen Pole bilden das Transitivititssystem P,. SchlieBlich ergeben die Verbmduny-
linien gegeniiberliegender Ecken drei Drehachsen, deren Pole in P; liegen. Zu jeder dieser drei

Achsen gehort eine zyklische Untergruppe, die von einer Drehung um den Winkel % erzeugt wird.
Tatsiichlich erfahren die vier Verbind linien gegeniiberliegender Flichenmitten bei den

Drehungen aus G die volle Permutationsgruppe 8,, denn bei Drehungen um % um die Achsen
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durch gegeniiberliegende Eoken des Oktaeders werden die Verbind li klisch ver ht,
withrend bei Drehungen um 7 um die Achsen durch gegeniberliegende K.mtonmltten zwei solohe
Verbmdnngll.imen jeweils auf sich obgeblldet und die beiden and v 8, kann
aber von einem Zyklus der I&nge 4 \md einer dieser Transpositionen erzeugt werden (vgl. 12 8.).

Zu d). Dle.'iOPoloun'T“‘ iti y P, gehd amtlich zu Drehungen der Ordnung 2.
Die beiden and Tr: itd bestehen aus Polen von Drehungen der Ordnungen 3
und 5. Daher enthiilt P, mit jedem Pol auch den d tral gegeniiberliegenden. Wir fassen beide
zu einem Polpaar zusammen. Bei jeder Drehung aus G geht ein Polpaar wieder in ein Polpaar @iber.
G induziert also eine zu G homomorphe Gruppe von P i der 15 Polp aus P;.

Die Drehungen aus @, welche die 15 Polpaare einzeln festlassen, bllden einen Normalbonlor H
von G. Jedes b ¢ H vertauscht hochstens die beiden Pole einzel der. Daher
ist A* = 6. Wiire h == e, 80 hiitte diese Drehung die Ordnu.ng 2 u.nd ihre Pole ligen in P,. Da sie
keine wei Fixpunkte besitzen kann, v ht sie in den 14 iibrigen Paaren jeweils beide
Pole. Weil die Pol aus einem Transitivi t: und H N Iteiler von G ist,
giibe es dann in Hm jedem der 15 Polpaare eine Dmhung der Ordnung 2, deren Achse durch die
Pole dieses Paares bestimmt ist und die die beiden Pole jedes anderen Paares vertauscht. Sind A
und A, zwei solche Dreh mit hied Achsen, dann ist Ak, =+ ¢ eine Drehung, die
26 von den 30 Polen aus P, festlaBt. Weil es eme solche Drohung nicht geben kann, ist H = (¢) und
daher die durch G induzierte Gruppe von Per der 15 Polp aus P, sogar zu G
isomorph.

Es sei « = (,, &) ein Polpaar aus P,. Da die zu den Polp aus P, igen Dreh die
Ordnung 2 haben, gibt es genan eine Drehung a 3 ¢ in G, deren Pole «, , und a:, sind. Weil beide
Pole im Transitivititasystem P, liegen, gibt es in @ eine Drehung b, die &, in &, Gberfihrt. Bei b
geht dann notwendig &, in «, iiber, b2 1Bt neben «; und &, auch noch die davon verschiedenen
Pole f; und f, von b fest. Daher ist b* = e und g = (B,, By) ein Polpaar aus P;; b~'ab liBt &,
und &, einzeln fest, d. h. b-'ab = a. Daraus folgt

fra = pba = (Bya)b,
B,a ist also ein Pol von b.-Weil 8, kein Pol von a iat, muB f,a = B, sein. Ferner ist f;a = f;.
Es vertauscht also b die Pole von @ und a die Pole von b.

Es sei ¢ = ab. Dann ist ¢® = e. Daher liegen die Pole y,, ¥; von ¢ in P, und bilden das Polpaar y.
¢ vertauscht &; mit a, und f; mit B,. Daher sind y,, ¥, von ,, &g, B, B; versohieden. Aus

718 = yica = (na)c

folgt, daB y,a Pol von ¢ ist. Weil aber ¥, kein Pol von a ist, muB ,6.= , sein. Damit ist y,6 = y,.
Ebenso zeigt man, daB y, und y, bei b vertauscht werden.

Die Drehungen g, b, ¢ bilden zusammen mit e eine zur Kleinschen Vierergruppe isomorphe
Gruppe V,g,.

Eine Drehang 2 + e von G, die eines der Polpaare o, £, y festliBt, liegt in V,4, und iberfiihrt
daher jedes der drei Paare in sich. Bleiben nimlich bei d beide Pole eines Paares einzeln fest, so
maB d eine der Drehungen a, b, ¢ sein. Wenn aber d etwa «, und «, vertauscht, bleiben &, und
oy bei db einzeln fest. Daher ist db = e oderdb = a,d.h.d = b oderd = ¢.

Da P, ein Transitivititssystem ist, gibt es eine Drehung s ¢ @, die das Polpaar « in § @iber-
fihrt und daher kein Element von V,, ist. Dann gilt s~las = b. s~'bs und s~'cs vertauschen #,
und f, miteinander und liegen daher ebenfalls in V,g,. Demnach gilt

8 Vagy8 = Vepye

Ist B8 = & und fys = &, 80 bleiben &, und £, bei s-1bs einzeln fest und sind also die Pole dieser
nichtidentischen Drehung aus ¥, sy Daher stimmt (§,, &) mit einem der Polpaare & oder y iiberein.
Ebenso erkennt man, daB y bei 4 in eines der Paare « oder y iibergeht. Da 8 §V,4,, lifit skeines
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der Polpaare a, f, y fest und vertauscht sie deshalb zyklisch. Dann ist &* ¢ V,g,, und weil es in ¢
keine Drehungen der Ordnung 8 gibt, folgt daraus &* = e.

Topy = (Vapy, 6) hat die Ordnung 12. Man iiberzeugt sich leicht, daB Tz, zur Tetraedergruppe
isomorph ist, indem man im Fall 2b) die Permutationen der sechs Pole des Transitivititesystems
P, betrachtet. Diese sechs Pole bilden drei Polpaare, welche zu Drehungen der Ordnung 2 ge-
horen.

Jede Dmhung g + e aus G, die ein Polpaar der Menge {x, 8, } in ein Polpur derselben Menge
uberfiihrt, liegt in T',5, und permutiert daher die Paare «, #, y nur Geht namlich
Eeln, By y) bei g in smh iber, so liegt g sogar in V,,,, geht ¢ aber in ein anderes Paar 7 dber, so
gibt es ein solches ¢ ¢ {1, 2}, daB auch & das Paar ¢ in # iiberfithrt. Dann lé8t aber gs—i das Paar £
fest, liegt also in Vs, und es ist g € V,5,8' < Ty,

G trisch bed die bisherigen ‘Ergebnisse, daB jede der drei Drehachsen, die von den

Pol «, f8, y besti den, l\lf den beiden and krecht steht. Die Dreh aus
.,, iberfithren dieses orthog y als G in sich. Ist g eine mcht in T4, gelegene

Drehung von G, so geht du rth le Sy in ein and ort iiber,

durch drei von «, 8, ¥ ds Polp o, B,y .,,‘ wird. DlesesSystemwn'dgencu

durch die Drehungen aus r‘T,, g= T, +g+y+ 8l8 Ganzes in sich Gbergefihrt.
Dle 16 Polpure aus P, zerfallen also in funf Tripel von Polpuren Jedes Tripel bestimmt ein
S von Drehach Jede Drehung aus G 1éBt ein solches System als Ganzes

fest oder Gberfahrt es in ein and Sy Daher induziert @ eine zu ¢ homomorphe Gruppe
von Permutationen dieser fiinf orthogonalen Systeme.
Der Kern des H hi ist der Durchschnitt allerunter Gzu T, by konjugierten Gruppen.

Bezeichnen «, #, y und &, ﬂ', y' zwei verschiedene Tripel von Polpaaren, o ist Vapy 0 Vargryr = (&),

Daher kann der Durchschnitt aller zu 7', 5, konjugierten Gruppen nur noch die Ordnung '3 oder 1
baben. Hitte er die Ordnung 3, so wire 7, ,, direktes Produkt abelscher Gruppen der Ordnungen 3
und 4 und daher abelsch. Das stimmt aber nicht, da bereits gezeigt wurde, daB s~12s = b + a ist.

@ ist also einer Untergruppe der symmetrischen Gruppe Sy aller Permutationen der fiinf
orthogonalen Systeme lsomorph Well 1G] = 60 mt. hat d.lese Untergmppe den Index 2 in S5 und
muB daher deren einzig; ivialer N il h die de Gruppe A4, sein.
Folglich ist G = 4,.

Die Gruppe @ besteht aus allen Drehungen, die ein K einbeschrieb reguliires Ik
mit sich zur Deckung bnngan Daher nennt man ¢ dle Ikosaedergruppe. Die Verbindungslinien
der Mittelpunkte der Kanten b 15 Drehach deren zugehdorige
Pole das Tr&nsntmtatesysum PI bllden Jede Drehung aus G permutiert die aus je drei dieser
Achsen gebildeten fiinf orth der. Die zehn Drehachsen zu Dreh
der Otdnu.ng 3, deren Pole in Py hegen, fihren durch die Mitten gegeniiberliegender Flichen.
Die Verbind ien gegeniiberli der Ecken legen sechs Drehachsen fir Drehungen der
Ordnung 5 fest, deren Pole P, ausmachen.

Die Mittelpunkte der Ikosaederflichen konnen nls die 20 Ecken eines reguléren Dodekaeders
aufgefaBt werden, das bei den Dreh der Ik benfalls in sich ﬂbergeiuhrt wird.
Entsprechend sind die acht Flwhenmtulpunkw des mguliren Okmden die Ecken eines Wiirfels,
der genau bei den Drehungen der Oktaedergruppe in sich ibergeht. Konstruiert man in entspre-
chender Weise zu einem reguliren Tetraeder den ,,dualen‘ regelmiiBigen Korper, so erhiilt man
erneut ein regulires Tetraeder.

3
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12.10. Ubungsaufgaben

1.

2.
3

Lol

Man priife nach, dABd)oMengeder" tkl dulo 10 beziiglich der Restkl ddition
und Restklassenmultiplikation einen kommutativen Ring bildet.

Man bestimme alle abstrakten Gruppen der Ordnungen 4 und 6.

. Man zeige, da8

K:={(a,b):aec@Gabe@aVglag =b)
: 0€@

eine Aquivalenzrelation in der Menge der Elemente einer Gruppe G ist.
U sei die Menge aller Untergruppen einer gegebenen Gruppe G. Durch

UAV:=UnV und U~V:=UuV)

* fir beliebige U, ¥ aus Il werden in Il binére Operationen definiert. Man zeige, da8 (11, A, v)

o o

L

10.

11.

12.

13.

14.

ein Verband ist.

Fir die zyklische Gruppe der Ordnung 4 und die Kleinsche Vierergruppe beschreibe man diese
Untergruppenverbinde durch Angabe

a) der Operati in Tabellenfe

b) der Untergruppendiagramme.

Gilt fiir jedes Element g der Gruppe G: g* = e, so ist @ abelsch.

. Man gebe Beispiele fiir unendliche Gruppen an, in denen

a) jedes Element endliche Ordnung hat, )
b) jedes Element = ¢ unendliche Ordnung hat,
o) Elemente == e von endlicker Ordnung und Elemente unendlicher Ordnung enthalten sind.

Man besti die Aut: phi gruppe der Gruppe V = (g, b) mit den definierenden
Relationen a? = % = ¢ und ab = ba.
Welche Ordnung hat die Gruppe B,g aller B: gen einer euklidischen Ebene, die ein

regelmiiBiges Sechseck dieser Ebene auf sich abbilden? °

Welche natiirlichen Zahlen treten als Ordnungen von Elementen dieser Gruppe auf?

Man beschreibe die El te der Gruppe durch Angabe der P tati denen die Eck-
punkte bei den einzelnen Abbildungen unterworfen werden.

Man gebe mindestens drei hiedene nichttriviale Untergruppen dieser Gruppe an.

Man gebe simtliche N Iteiler der Gruppe Byg (vgl. Aufgabe 8) an und bestimme (bis auf
Isomorphie) alle homomorphen Bilder dieser Gruppe.

Man zeige, daB die inneren Automorphismen einer Gruppe G eine Untergruppe I(@) der
Automorphismengruppe von @ bilden und daB I(@) = G/Z(G) ist (dabei bezeichnet Z(@)
das Zentrum von G).

Man besti die Gruppe der i Auts hi der Quaternionengruppe.

Man zeige, daB die durch ein festes n ¢ N* bestlmmw Abbildung g+ ng (g € Q) ein Auto-
morphismus der additiven Gruppe (@, +) der rationalen Zahlen ist.

Man beweise, daB die additive Gruppe (Q, +) der rationalen Zahlen keine echte Untergruppe
von endlichem Index enthilt.

Eine endliche Folge

CG=0G26,26,2:-206,= (¢
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i derliegender Untergruppen der Gruppe G, die mit (¢) endet, heiBt Normalreshe von G,
wenn jede U a@; N lteiler von G;_, (1 =1,2,...,1) ist. Die G;_,/G; heiBen
Faldorgruppen der ] Normnlmtho
Man beweise: G ist aufloebar <& G besitzt eine N Ireihe mit abelschen Faktorgruppen.
15. Man bestimme die regulire Darstellung
a) der Kleinschen Vierergruppe,
b) der lymmetri:ehon Gruppe 8,.
16. Man gebe eine h he Abbildung der Gruppe Byq (vgl. 12.1.2.12.) auf die multiplikative

Gruppe der Zahlen 1 und —1 sn.



13.  Ringe, Integritétsbereiche, Kérper

13.1. Ringe

Eine nichtleere Menge R mit zwei biniiren Operationen, die iiblicherweise als Addition
und Multiplikation bezeichnet werden, heiBt Ring, wenn (R, ) eine abelsche
Gruppe ist, (R, -) eine Halbgruppe und wenn in (R, +,-) die Distributivgesetze
gelten (vgl. 11.3.). Wir geben noch einmal die

Definition 1. Eine nichtleere Menge R mit zwei biniren Operationen +, - heiBt
Ring, wenn folgende Axiome erfiillt sind:

A (@+b)+c=a+ (bt c) (Assoziativgeselz der Addition), O}
a.b.c€R

Aa+b=b+a (Kommutativgeselz der Addilion), (2)
abeR

AN Vat+z=>b (Ausfiihrbarkeit der Subtrakiion), 3)
a,béR z€R

A (ab)c = a(be) (Assoziativgesetz der Multiplikation), (4)
a.b.c€R

A a(b+c)=ab+ac, A (b+c)a=ba-+ ca (Distributivgesetze). (5)
ab.ceR a.b.ceR

Gilt iiberdies noch
A ab =ba (Kommulativgesetz der Multiplikation), 6)
abeR
80 heiBt R kommutativer Ring.

(R, +) nennt man die additive Gruppe des Ringés R. Aus der Gruppeneigenschaft
von (R, +) folgt sofort, daB das Element z in (3) durch @ und b eindeutig bestimmt
ist. Es gibt genau ein neutrales Element o in (R, +), fiir das

Aa+o=a (U]
a€R
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gilt. o wird Nullelement des Ringes genannt und oft auch mit 0 bezeichnet. Die nur
aus dem Nullelement bestehende Menge erfiillt mit den Operationen 0 + 0 =a
und oo = o alle Ringaxiome. Sie bildet den Nullring. Wir werden hier im allgemeinen
voraussetzen, da R vom Nullring verschieden ist. Fiir das Nullelement o jedes
Ringes R gilt
ANao=o0a =0 8)
a€R
(vgl. 11.3.(15)).

Da (R, +) eine Gruppe ist, gibt es zu jedem a € R genau ein Element —a in R,
80 daB a + (—a) = o ist. Fir beliebige Elemente a, b, ¢ aus R gelten dann die
Regeln

a(b —c) =ab —ac, (b—c)a="ba —ca, (9)-

(—a)b =a(—b) = —ab, (—a)(—b)=ab (10)

(vgl. 11.3.(14)), wobei z — y := z + (—y) bedeutet.
Allein aus den entsprechenden Assoziativgesetzen folgt, daB in R Summen und
" Produkte von je endlich vielen Elementen aus R unabhiingig von der Beklammerung
eindeutig definiert sind (vgl. 12.1.1.). Daher kann fiir eine Summe aus #» Summanden
a € R (n € N*) kurz

na:=a+--+a
geschrieben werden. Erklirt man noch
Oz :=o, (—n)a :=n(—a),

so ergibt sich aus 12.1.1., daB fiir beliebige a,b € R und m,n € Z die Regeln

(m + n) a = ma + na, (mn) @ = m(na)
sowie
n(a + b) = na + nb
gelten.
Bezeichnet

a*:=qa-a (@€ RAn€ N¥

ein Produkt aus » Faktoren a, so gelten fiir beliebige a,b € R und m,n € N* die
Potenzgesetze )

a™a® = a™t" = a"a™, a™ = (an)w
sowie in kommutativen Ringen

(ab)* = a"b*.
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Durch Induktion kénnen die distributiven Gesetze auf mehr als zwei Summanden
und auf Klammerprodukte ausgedehnt werden. Es ist

ab+c+ .- +d)=ab+tac+--+ad
und :

(@4 d) (c + d) =a(c + d) + b(c + d) = ac + ad + bc + bd
(a,b,¢,...,deR).

Daraus ergeben sich die bekannten Regeln fiir das Ausmultiplizieren von Klammern,
wobei aber zu beachten ist, daB das Produkt nicht kommutativ zu sein braucht.

Beispiele. Die folgenden Mengen sind beziiglich der in ihnen jeweils erklirten
Addition und Multiplikation Ringe.

1.Z,Q,R,C.

2. Die geraden ganzen Zahlen G = (z:2 € Z A2 |z} und allgemeiner alle durch
¢t € N* teilbaren ganzen Zahlen T = (z: 2 € Z At | a}.

3. Die GaupBschen ganzen komplexen Zahlen {a + bi:a € ZAbe Z}.
4. Die Restklassen modulom (m € N¥) (vgl. 12.1.2.9.).

5. Die gquadratischen Matrizen A = (a,,) einer festen Zeilenzahl n € N* aus ratio-
nalen Zahlen.

6. Die Polynome

P(z) = ag + @z + a2® + -+« + a,2® (e N)

mit Koeffizienten ay, ..., a, aus Z. Dieser Ring wird mit Z[z] bezeichnet. (Im Ab-
schnitt 14 werden solche Polynomringe niher untersucht.)

Sei K ein Korper (vgl.11.3.(20)). Die Elemente des Vektorraumes K* (vgl. 9.) sind dann alle
@,
Vektoren @ = mit Koordinaten a,, ..., @, aus K. Sie bilden beziiglich der durch

G,

Q-0

erkliren Addition einen Modul (vgl. 11.3.(12)). AuBerdem ist durch

-0
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eine Verkniipfung der El te von K mit denjenigen von K* definiert, die fiir beliebige El
k,l ¢ K und @, b ¢ K* den Regeln

k(@ + b) = ka + kb,

& + Do = ka + la,

(k)@ = k(la),

1a = a fir das Einselement 1 aus X
geniigt.

Seie; (1 = 1, 2, ..., n) derjenige Vektor, dessen i-te Koordinate 1 und dessen brige Koordinaten
0 sind. Jeder Vektor @ ¢ K* besitzt dann genau eine Darstellung der Form

a = a,e, + ae; + -+ + aney,

weshalb ey, ..., €, eine Basis von K® genannt werden.
Man definiert durch .

.
e ‘=.£l Cijix

mit beliebigen Elementen ¢;; € K (4,5, k € {1, ..., n}) Produkte der Basisvek iteinand
Durch

L] n L] » n ] »
ab=( £ ae)) (_zib,e,) =2 Favee=f (£ 2 aden) o
P L2

i=1 k=1 \im]1 j=1

wird dann ein Produkt in K* erkliirt. Mit der Vektoraddition und dieser Multiplikation erfiillt K®
alle Ringaxiome bis auf (4). Das Assoziativgesetz der Multiplikation gilt genan dann, wenn fir
beliebige 4, j, k € {1,..., n}

e;(ee,) = (ee))e;,

ist. Aus
L] "
ejlee,) = e‘l Z" ki€ = Z;' Cjuieie
L] L L] L
= X X Citm@m = X ( X om Gau) €n
=1 m=1 m=1 \=1
und

n n "
(ee))ey = X cij(€€y) = X cijt X Clim®m
.= =1 m=1
n n
=2 (2 OsnGIm) €n
m=1 \I=1
"folgt, daB das Assoziativgesetz der Multiplikation genau dann gilt, wenn
n n
X Ciuctim = X CijCum  fur alle 4,5, k,m e {1,2,..., 7} (11)
=1 =1

ist. Sind diese n* Bedingungen erfiillt, so nennt man den erhaltenen Ring 4 = (K", 4-, -) eine
Algebra des Ranges n iiber dem Kérper K.
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Die Algebren bilden eine umfangreiche Klasse von Ringen. 8o knnen die komplexon ZahlenC
als eine Algebra des Ranges 2 ﬁber R mit den Basiselementen €, = 1, €; = ¢ und der Multipli-
kationsvorschrift

el=e, 66, =6e =6, &'=—¢

aufgefaBt werden. Die im Beispiel 5 g ten Matrizenringe sind Algebren dee Ranges n® iiber Q.
Basiselemente sind die Matrizen E,., (@ v=1,2,...,n), die im Schnittpunkt der u-ten Zeile
mit der v-ten Spalte eine 1 und sonst lauter Nullen ent.hz,lten, Esist

» "
A=) =X X opE,.
p=lv=1

Die Multiplikation der Basiselemente erfolgt nach den Regeln der Matrizenmultiplikation. Es ist
also

E.E E,,, wenn gt = 4
S = O, wenn u = 4,
wobei O die Nullmatrix bezeichnet.

Ein Element e des Ringes R heit Einselement von R, wenn

ANae =ea =a (12)

aER
ist. Jeder Ring besitzt hich stens ein Einsel t (vgl. 11.3.(4)), das wir oft auch
mit 1 bezeichnen werden. Beispiel 2 zeigt, daB es Ringe ohne Einselement gibt. Im
Nullring ist das Nullel t 0 auch Einsel t. In jedem Ring, der nicht nur aus 0
besteht und ein Einselement 1 enthiilt, ist nach (8) und (12) 0 5= 1. Wenn im folgen-
den Ringe betrachtet werden, die ein Einselement enthalten, sei immer der Nullring
ausgeschlossen.

Nicht jeder Ring ist kommutativ, wie man aus Beispiel 5 im Fall » = 2 ersehen
kann.

Es kann in gewissen Ringen vorkommen, da8 ein Produkt gleich dem Nullelement
ist, obwohl seine Faktoren vom Nullelement verschieden sind. Im Ring der Rest-
klassen modulo 10 ist beispielsweise [2] [5] = [10] = [0].

Definition 2. Bezeichnet 0 das Nullelement des Ringes R und sind a, b € R, so
heiBt

a linker und b rechter Nullteiler :<>ab =0Aa = 0Ab 0.

Alle Restklassenringe modulo 7 enthalten Nullteiler, wenn m € N* nicht 1 oder
Primzahl ist. Ein weiteres Beispiel liefern die zweireihigen quadratischen Matrizen

aus rationalen Zahlen. Nullelement dieses Ringes ist die Nullmatrix (g g) . Es ist

(0o 60 =(o)
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Eine Teilmenge U eines Ringes R, die beziiglich der Operationen von R bereits
selbst einen Ring bildet, fiir die also insbesondere Summe und Produkt zweier
Elemente aus U wieder in U liegen, heiBt Unterring (oder Teslring) von R. Die Menge
aller durch ¢ (¢ € N*) teilbaren Zahlen bildet einen Unterring des Ringes Z aller
ganzen Zahlen.

Es kann vorkommen, da8 ein Unterring U des Ringes R ein anderes Einselement

: 0
besitzt als R. So enthilt der Ring aller zweireihigen quadratischen Matrizen (g b)
1
(@, b € Z) mit dem Einselement (0 1) den Unterring U aller Matrizen (g 0) (@ €Z),
1
dessen Einselement ist. R enthiilt Nullteiler, wihrend U nullteilerfrei ist.

0 0,
In dem Ring R bildet die Menge Z(R) := (z: z € R A A rz = zr} einen Unterring.
Sind namlich z,, z, € Z(R), also rer

A(rzy = z,r Arzy = 2,1),
T€R

so folgt
Ar(zi+2) = +2)r
rER

und

A r(zizs) = (2125) 7.
reR

Z(R) heiBt Zenirum des Ringes R. Es enthilt mindestens das Nullel t von R
und stimmt mit R iiberein, wenn R kommutativ ist.

13.2. Integrititsbereiche, Kérper

Wir beweisen folgende A

In einem Ring R hat jede Qleichung ax = b und ya =b (a,b€ R A a = 0) genau
dann hichstens eine Losung, wenn R keine Nulltesler enthiilt.

Besitzt namlich R keine Nullteiler und sind z,, z; Losungen von ax = b, gilt also
a::, = b und az, = b, so folgt a(zr, — z;) = 0 und wegen der Nullteilerfreiheit dann
= z,. Enthilt B Nullteiler, d. h. Elemente a % 0 und ¢ # 0, fiir die ac = 0 ist,
80 gllt az = a(z + c) fiir jedes « € R. Es gibt dann also ]edenfa]]s Gleichungen ax = b
(a,b € RAaa +0), die in R zwei verschiedene L& it Fiir Gleich
der anderen Form schlieBt man analog. Im Ring der Restklassen modulo 10 erglbt
sich beispielsweise aus [2] [3] = [6] und {2] [5] = [0], da8 [2] z = [6] die Losungen
z = [3] und z = [3] + [5] = [8] hat.
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Unser Ergebnis besagt, da8 in nullteilerfreien Ringen die ,,Kiirzungsregel'

=arAa 032 =2;, yo=ysra+0=>y =y 1)
gilt.
Weil die Struktur eines Ringes durch die Existenz von Nullteilern wesentlich
beeinfluBt wird, kennzeichnet man nullteilerfreie kommutative Ringe mit einem
eigenen Namen.

Definition 1. I heiBt Integritdtsbereich : I ist kommutativer Ring A I enthilt
keine Nullteiler.

Beispiele fiir Integrititsbereiche sind die Ringe Z, Q, R, C und deren Unterringe
sowie die Polynomringe Z[z], Q[z], C[x]. Der Restklassenring mod m (m € N \ {0, 1})
ist offensichtlich genau dann ein Integrititsbereich, wenn m eine Primzahl ist.

Weil in einem Integnta.tsberexch I mit dem Einsel 1t 1 die Gleich =1
(e € I) hochstens eine Losung besitzt, kann ein Element e € I in I hochstens ein
(beziiglich der Ringmultiplikation) inverses Element ¢! besitzen.

Definition 2. Ist I ein Integnta.tsberexch mit dem Einselement 1 und e € I, 8o

heiBt
e Einheit von I :& V ee? =1.
el

Sind ¢, und e, Einheiten von I, so liegt mit den Elementen e,;”! und e;! auch
(e1es)! = e 'e;1in I, es ist

(e165) (e162)! = e,(ere,7)) €71 = epey ! =1
und dsher e,e, Einheit. Aus 1 -1 = 1 folgt, daB 1 Einheit ist. Aus ee* = e-¢ ergibt
sich, daB mit e zusammen auch e Einheit ist. Ferner gilt fiir die Multiplikation das
Assoziativgesetz. Also bilden die Einheiten von I eine abelsche Gruppe.

Die Einheiten von Z sind 1 und —1. In Q, R, C sind alle von O verschiedenen
Zahlen Einheiten. Unter den GauBschen ganzen komplexen Zahlen sind 1, ¢, —1, —¢
Einheiten, und im Restklassenring modulo einer Primzahlist jede Restklasse [a] 5= [0]
eine Einheit (vgl. 12.2.3., Folgerung 3').

Bezeichnet a eine Einheit und b ein Element des Integrititsbereiches I, so hat die
Gleichung axz = b in I die (eindeutig bestimmte) Lisung z = a-1b.

Sei R ein kommutativer Ring, der nicht nur aus dem Nullelement besteht. Hat in
R jede Gleichung

ax=b (@a,beERAa+0) (2)
genau eine Losung, so ist R nach der Eingangsbemerkung nullteilerfrei, also Inte-
gritatsbereich. Daher ist das Produkt zweier von 0 verschiedener Elemente nicht 0.
(R \\ {0}, -) ist also eine abelsche Gruppe. Ist umgekehrt (R \ {0}, ) eine abelsche
Gruppe, so hat jede Gleichung (2) in R genau eine Lisung, die im Fall b = 0 selbst 0
ist und sonst in R \ (0} liegt. Daher ist die in 11.3.(20) gegebene Erklirung gleich-
wertig mit
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Definition 3. K heiBt Kérper :< K ist vom Nullring verschiedener kommu-
tativer Ring A jede Gleichung ax = b (a,b € K A @ 5 0) besitzt in K genau eine
Losung.

Weil fiir das neutrale Element 1 der Gruppe (K \ {0}, -)

A la=al=a
aeX\ (0}

und nach 13.1.(8)
1:0=0.1=0

gilt, ist es Einselement von K. Zu jedem a aus K \ {0} gibt es in K genau ein inverses
Element ¢! mit

ag! =ala=1.

Ein Kjrper ist also ein Integrititsbereich mit Einselement, in dem zu jedem von O
verschiedenen Element ein inverses Element liegt, also jedes Element + O Einheit ist.

Beispiele fiir Kérper sind Q, R, C.

Satz 1. Jeder vom Nullring verschiedene Integritiitsbereich I mit endlich vielen
Elementen it ein Korper.

Beweis. Multipliziert man simtliche Elemente z;,...,z, (n € N*) von I mit
einem Element a = 0 von I, so sind nach der Kiirzungsregel (1) azy, ..., azx, paar-
weise v hieden und liefern also wieder simtliche Elemente von I,
darunter das Element b. Die Gleichung ax = b hat also in I eine (und wegen der
Nullteilerfreiheit auch nur eine) Losung.

Folgerung. Der Restkl ing modulo einer Primzahl p st ein Korper.

Verzichtet man auf die Kommutativitit des vom Nullring verschiedenen Ringes R, so zeigt
sich, daB (R\ {0},) genau dann eine Gruppe ist, wenn jede Gleichung az = b und jede Gleichung
ya =1b(a,b ¢ R A a 3 0) genau eine Lisung hat. Ringe mit dieser Eigenschaft heifen Schief-
kbrper (vgl. 11.3.(19)). Wie bei den Kérpern ergibt sich, daB sie genau ein Einselement und za
jedom Element a + 0 genau ein inverses Element a—* enthalten.

Man kann ulgen, daB )edor Sohlefkﬁtper der nur endlich viele Elemente enthilt, ein Kérper

ist (Batz von Wi | fir einen Sohiefkdrper bilden die Quaternionen. Sie
sind eine Algebra @ vom ng4 iiber R. Die Multiplikati hrift fiir die Basisel te ;
(§=1,2,3, 4) lautet
€€ =¢€¢, =€ (6=12,3,4),
ee, =e, €€ =—¢ (1=2,3,4),
€403 = €, = —€4€;, €46, =€y = —E€€;, €€ =€ = —€ye,.
Statt €, kann einfach die Zahl 1 geschrieb den. Ersetzt man die Basiselemente €,, €, €,

duroh die Symbole s, j, &, 8o erhilt man eine @bliche Schreibweise fir Q i Es gelten die
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Multiplikationsregeln
=P ir=—1,
G=k, jb=3, ki=4f, ji = —k, kj = —i, ik = —j.
Die Quaternionen sind dann die simtlichen Ausdriicke der Form
o =a, + a5t + a5j + ak (ay, 8y, @y, 64 € R).
Ist
B =0b; + byt + byj + bk (byy bs, by, B¢ € R),
80 gilt nach den Festlegungen Gber Algebren
a=fa=bnray=bjaa,=bjra,=1b,,
o+ B =(ay+ by) + (ax + bl + (a3 + b)j + (aq + Bk,

&« B = (@15, — Ggby — Ggby — ady) + (ash) + a1y — agd, + aghy)i
+ (a3by + aybs + ayby — asb)j + (8eby — Gsbs + Gsbs + arbyk.

Mit den die Quaterni darstellenden f¢ len S wird also nach den Assoziativ- und
Distrib gerechpet, wobei die reellen Zuhlen mlt 4, J, k vertausohbar sind und die an-
gegeb Multlphl: i geln fir 4, j, k

Das Nullel t der Qi i ‘--‘--Qu ffenbar 0 = 0 + 0i + 07 + Ok. Smda,ﬁsQ

und ist & <= 0, 80 gibt es immer genau ein § = 2, + 28 + 23j + 2.k in Q, 80 daB af = f ist. Die
Bestimmung eines solchen £ bedeuntet némlich die Losung des Gleichungssystems

4,7y — GyTy — GyT3 — BT, = by,
az) + ay2y — a2y + g7y = by,
03%; + 6% + 6Ty — a7, = by,
a3 — ayT; + 8373 + 6,7, = b,.

Da dessen Determinante
@ —a  —a  —q
N R R T
o a, o  —a
o  —a o a

ist, gibt es genau ein ¢ ¢ @ mit der geforderten Eigenschaft. Analog ergibt sich, daB auch jede
Gleichung nx = B («, 8 € Q A « % 0) in @ genau eine Losung hat.
Die Quaterionen bilden also einen Schiefkorper, der sicher kein Korper ist. Sie wurden vor
Se Wm.uu Rowax Hnm.'ron (1005—1866) entdeckt und spielten eine Rolle als Vorliufer
Vek Georc Fr Us (1840—1917) bewies, daB unter allen
Algebren iber R bis auf Isomorphm (vgl. 13.3.) R, C und die Quaternionen die einzigen Schief-
korper sind.
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13.3. Isomorphie von Ringen und Kérpern
Fiir Ringe ist der Begriff der Isomorphie von gleicher Bedeutung wie fiir Gruppen
(vgl. 12.3.). )
Definition 1. R und R seien Ringe. Dann heifit
f Isomorphismus von R auf R :< f ist 1-1-Abbildung von R auf B
A A e+ 1) =fln) A fir) A A flrrs) = f(n) frs).
R ) © TunER

L€

Man nennt
R isomorph R :¢ ein Isomorphismus von R auf K existiert
und schreibt in diesem Fall R =~ E.

Insbesondere vermittelt f einen Isomorphismus der additiven Gruppe (R, +) des
Ringes R auf die additive Gruppe von R. Daher ist f(0) = 0 das Nullelement von E,
und fiir alle r € R gilt f(—r) = —f(r) (vgl. 12.3., Satz 1). Der Leser weist leicht die
Ubertragung weiterer Eigenschaften von R auf R nach. Ist beispielsweise 1 Eins-
element von R, o ist f(1) = 1 Einselement von E; ist R Integrititsbereich, so auch
R, ist R Korper, so auch R.

Beispiele.
1. Die Abbildung
” a 0
f:ar—»A:(oa) (@acZ)

ist offensichtlich ein Isomorphismus vom Ring der ganzen Zahlen auf den Ring

. 0
der Matrizen (z a) mit ganzzahligen Koeffizienten a.

l:a+b£|->(_::) @€ ZabeZ)

wird der Ring der GauBschen ganzen komplexen Zahlen ebenfalls auf einen Matrizen-
ring abgebildet.

Es ist sofort klar, daB das Bild einer Summe von komplexen Zahlen gleich der
Summe der Bilder dieser Zahlen im Matrizenring ist. Aus

(a + bi) (¢ + di) = (ac — bd) + (ad + bo) ¢

a b c ac —bd ad 4+ be
(—b a) (—di) - (—(ad +be) ac —bd)

folgt, daB auch das Bild eines Produktes gleich dem Produkt der Bilder ist.

und
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3. Wir iiberlassen es dem Leser als Aufgabe, zu zeigen, daB die Abbildung

o+ 6y a3t ag
o — ag) a.—w') (ay, 8y, 85,64 € R)

ein Isomorphismus des Schiefkérpers der Quaternionen auf einen Schiefkérper von Matrizen ist.

R P T

Die Isomorphie von Ringen ist wie im Fall der Gruppen (vgl. 12.3.1.) reflexiv,
symmetrisch und transitiv, vermittelt als Aquivalenzrelation in jeder Menge von
Ringen also eine Einteilung dieser Ringe in disjunkte Klassen (vgl. MfL, Bd. 1, 2.5.).
Eine solche Klasse isomorpher Ringe heiBt abstrakter Ring. Die einzelnen Vertreter
einer Klasse stellen verschiedene Realisierungen desselben abstrakten Rechen-
schemas dar. Deshalb werden isomorphe Ringe oft als nicht wesentlich verschieden
angesehen und in der Ringtheorie abstrakte Ringe betrachtet.

Definition 2. Bezeichnet R einen Ring, so heiBt

f Automorphismus von R: & f ist Isomorphismus von R auf sich.
Beispiele.
1. Die Menge der Zahlen a + b }/2_(41, b € Z) bildet einen Unterring U von R.

/:a+bﬁr—>a—bﬁ

seeolt

ver einen Automorphi von U.

2. Die Abbildung
fia+bir>a—bi (a,beR),

die jeder komplexen Zahl ihre konjugiert komplexe Zahl zuordnet, ist ein Auto-
morphismus von C.

-3. Der identische Automorphismus, der jedes Element eines Ringes auf sich ab-
bildet, ist der einzige Automorphi von Z, Q und allen Restklassenringen mod m
(m € N*) (Ubungsaufgebe).

Sind f und g Automorphismen eines nges R, so ist f o g eine 1-1-Abbildung von R
auf sich, und es gilt

A fogln +r) = flgn) + g(r2)) = f o glr1) + f o glra)

ruf€R

sowie

. '/\mf o g(ryr) = f(ﬂ("l) 9(":)) =fog(r)foglr),

d. h., / g ist Automorphismus von R. Die Nacheinanderausfiihrung von Auto-
morp 1 ist iativ (vgl. MfL, Bd. 1, 2 4.), und die identische Abbildung ist
offenbar ein Automorphi Jedes El t aus R besitzt genau eine Darstellung
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der Form f(r). Sind f(r,), f(rs) beliebige Elemente aus R, so gilt fiir die zu f inverse
Abbildung f-1:

FUfr) + fir2)) = FAf(r1 + 7)) =71 4 12 = F{f(r0)) + FH{fra))

In ‘(f("l) ’(':)) =f ‘(’(’1"3)) =nr =f '(/(’1)) f l(f(":))-

Dabher ist auch /- ein Automorphismus. Die Automorphismen eines Ringes R bilden
also beziiglich der Nacheinanderausfiihrung eine Gruppe, die Automorphismengruppe
von R.

und

13.4. Homomorphie von Ringen

13.4.1. Wie bei den Gruppen kommt man auf den wichtigen Begriff der homomorphen
Abbildung, wenn man auf die bei den Isomorphismen geforderte eindeutige Um-
kehrbarkeit verzichtet.

Definition 1. Fiir die Ringe R und R heiBt
f He phi. (oder & -phe Abbildung) von R in R
:¢ f Abbildung von R in B A J/'\m Hry + 1) = H(ry) + f(rs) AM/.\“ f(rirs) = f(r1) f(rs)
ist. Man schreibt

R ~ E :¢ ein Homomorphismus von R in E existiert.
Sei f ein Homomorphismus von R in B. Dann ist das Bild
U:=@maeRaVir) =1
reR
von R bei f ein Unterring von R. Wie bei den Gruppen (vgl. 12.5.) ergibt sich nimlich,
daB mit zwei Elementen %, und %, aus U auch deren Summe und Produkt in U
liegen. Die Giiltigkeit der Ringaxiome wird durch die Abbildung f von R nach U

iibertragen. Da f insb dere einen Homomorphi der additiven Gruppe von R
in diejenige von R vermittelt, gilt fiir die Nullelemente 0 und 0 von R bzw.

f0) =0
(vgl. 12.5.). Besitzt R ein Einsel t 1, so ist
r-l=1.r=r fiirallercR.
Daraus folgt
af(l) =f(l)a =u firallezc f(R) =T.
Ist also U nicht der Nullring, so enthilt U das Einselement I = f(1).
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Beispiele.
1. Es sei m € N*, und fiir a € Z bezeichne [a] die Restklasse von a mod m. Die
Abbildung

f:a— [a]

ist ein Homomorphismus von Z auf den Restklassenring mod m, denn fiir die Ele-
mente a, b € Z gilt

[a + 6] =[a] + (6], [ab] = [a] [3]
(vgl. 12.1.2.9.).
2. Die Abbildung
f:p@) =ao+ax+--F+az*>a (n€NAay,...,a,€Z),

die jedem Polynom aus Z[z] sein ,,Absolutglied“ a, zuordnet, ist ein Homomorphis-
mus von Z[z] auf Z.
Sei f ein Homomorphismus des Ringes R auf den Ring R. Er bestimmt insbesondere

einen Homomorphismus der additiven Gruppe von R auf diejenige von R. Bezeichnet
0 das Nullelement von R, so ist

n:=(n:n€ RAfin)=0}
als Kern des Gruppenhomomorphi eine Untergruppe der additiven Gruppe von

R. Nach dem Homomorphiesatz fiir Gruppen haben zwei Elemente r,, r, € R genau
dann dasselbe Bild bei f, wenn sie in derselben Nebenklasse n + a (a € R) der addi-
tiven Gruppe von R nach dem Kern n liegen.

Wir beziehen nun auch die Multiplikation in unsere Betrachtungen mit ein. Weil
f ein Ringhomomorphismus ist, gilt fiir beliebige r ¢ Rund» € n

frn) = f(r) f(n) =f(r) 0 =0
sowie
f(nr) = f(n) f(r) = Of(r) = O,
d. h. rn € n und nr € n. Fiir ein festes r € R sei

m:={m:n€nj, nr:={nr:ncnj.

Dann hat n fiir beliebige r € R die Eigenschaft rn & n und nr & n. Wahlt man ins-
besondere r € n, so ergibt sich, daB das Produkt zweier Elemente aus n wieder in n
liegt und demzufolge n ein Unterring von R ist. n wird Kern des Ringhomomorphismus
{ genannt.

Definition 2. In dem Ring R heiBt

n. Ideal von R :& n ist Unterring von RA Am Snanr Sn.
rER
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Sei R ein kommutativer Ring mit Einselement 1 und a € R. Die Menge
n=[n:V ks =nl
=

aller Vielfacken ka (k € R) von a bildet ein Ideal von R. Es heiBt das von a erzeugte
Hauptideal von R und wird mit (a) bezeichnet. Das nur aus dem Nullelement 0
bestehende Nullideal (0) ist ein spezielles Hauptideal. Das von einer Einieit e ¢ R
erzeugte Hauptideal ist der ganze Ring R, denn in (e) liegt ee! = 1 und daher jedes
Element 1r = r aus R.

Im Polynomring Z[z] bilden die Polynome der Form

a(r) =a,x + --- + a,z" meEN*Aay,...,a, € Z)
das Ideal (z). (z*) besteht aus allen Polynomen

b(z) = byz® + -+ + byz" MEN*ARZ=2Ab,,...,b, € Z),
und die Elemente von (k) sind die Polynome

c(@) = keo + keyx + -+ + kepz® me€NACy...,co €Z),

deren simtliche Koeffizienten durch eine feste Zahl k € Z teilbar sind.

Die Nebenklassen n + @ (a € R) der additiven Gruppe von R nach n nennt man
(als Teilmengen des Ringes R) Restklassen modulo n. )

Diejenigen Elemente des Ringes R, die bei dem Homomorphismus f von R auf B
auf das Nullelement 0 abgebildet werden, bilden also ein Ideal von R, und die Rest-
klassen modulo 1 entsprechen eineindeutig den El ten von R.

Im Beispiel 1 besteht das zur Abbildung a — f(a) = [a] gehérige Ideal aus allen
ganzzahligen Vielfachen von m und ist also das Hauptideal (m). Die Restklassen
mod (m) sind dann genau die friiher eingefiihrten Restklassen mod m.

Im Beispiel 2 ist (z) das zugehorige Ideal, denn im Kern liegen alle Polynome mit
dem Absolutglied 0. Sie haben die Form zp(z) (p2) € Z[z]). Zwei Polynome aus Z[z]
liegen genau dann in derselben Restklasse mod (z), wenn ihre Absolutglieder iiber-
einstimmen.

13.4.2. Wir wollen nun zeigen, da8 es umgekehrt zu jedem Ideal n eines Ringes R
einen Ring R und einen Homomorphismus f von R auf R gibt, dessen Kern n ist.

Dazu betrachten wir die Menge {n,n + a,n + b, ...} aller Restklassen mod n.
Aus der Kommutativitit der additiven Gruppe von R folgt, da8 n Normalteiler in
(R, +) ist. Durch Ubertragung der Ergebnisse von 12.5. in die additive Schreibweise
ergibt sich sofort, daB die Menge der Restklassen mod n beziiglich der ,,Komplex-
addition‘ eine Gruppe bildet. Sind (n + a), (n + b) zwei beliebige Restklassen
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mod n, so bedeutet dabei
m+a)+ (n+b):={(n +a)+ (ny+b):n EnAang€n}
={n+(@+b:nen}
=n+(a+?)
=n+c¢
diejenige Restklasse mod n, in der @ +. b liegt.
Sind n,,7; € n und a,b € R, so folgt aus den Idealeigenschaften von n, daB
n = nyng + n,b + an, ein Element von n ist. Daher liegen alle Produkte
(ni+6) (ns+b) =nms + b+ any+ab=n+ab  (n,n,€m)
in derselben Restklasse mod n wie ab. Diese sei n + d. Durch
m+a)(n+b) :=(n+ab) =(n+d

wird also eine zweistellige Operation in der Menge der Restklassen mod n erklart,
die wir Restkl ltiplikation werden.

Aus der Assoziativitdt der Multiplikation in R ergibt sich sofort die Assoziativitit
der Restklassenmultiplikation. Ebenso folgt aus der Giiltigkeit der Distributivgesetze
in R, daB auch die Addition und Multiplikation der Restklassen modn diesen
Gesetzen geniigen. Die Restklassen mod 1t bilden also einen Ring.

Definition 3. Sei n ein Ideal des Ringes R. Der Ring der Restklassen von R
modulo nt mit der Restklassenaddition und Restklassenmultiplikation als Operationen
wird mit R/n bezeichnet und Restkl. ing von R modulo n genannt.

Kurz gesagt, man rechnet im Restklassenring, indem man aus jeder Klasse einen
Vertreter withlt und als Summe (Produkt) von zwei Restklassen diejenige Klasse
nimmt, in der die Summe (das Produkt) der Vertreter liegt. Wir haben gesehen, da
das Ergebnis der Rechnung von der Auswahl der Vertreter unabhéngig ist.

Bildet man nun jedes Element r € R auf diejenige Restklasse von R modulo n ab,
in der r liegt, so erhilt man eine Abbildung von R auf B = Rm. Sie ist sogar ein
Homomorphismus, denn aus f(r,) =n + a und f(r;) = n + b folgt nach der Defi-
nition der Summe und des Produktes zweier Restklassen, da8 r; 4 r; in

m+a)+m+b)=m+c
und ryr; in
(n+a)(n+d) =(n+d)
liegt. Es ist also
flrs + ra) = f(r1) + f(r2) und firira) = f(r1) f(r2).

Diese Abbildung heilt natiirlicher (oder kanonischer) Homomorphismus von R auf
Rin.




13.4. Homomorphie von Ringen 219

Bezeichnet f einen H phi des Ringes R auf den Ring R und n den
zugehérigen Kern, so ist

Rn=R.

Da niimlich zwei Elemente von R genau dann dasselbe Bild bei f haben, wenn sie in
derselben Restklasse modulo n liegen, ist

f:m+a) > f@ (m-+a)eRm)
eine 1-1-Abbildung von R/n auf R. Sind (n + a), (n + b) beliebige Restklassen
modulo nund ist @ + b € (n + ¢), ab € (n + d), so gilt
fln+a) 4+ 4 b)) =fm+c)=fa+b)
=f@) +f®) =fm+a)+ fin+ )

. Tl + @)+ 8) =f(n + d) = f(@b) = f(a@) 1) = f(n + @) [(n +B).
f ist also ein Isomorphismus von R/n auf R.
Die Ergebnisse fassen wir zusammen zum

Satz 1 (Homomorphiesatz fiir Ringe). Durch jede homomorphe Abbildung f emea
Ringes R auf einen Ring R wird ein Ideal n von R bestimmt. Es besteht aus denj
Elementen von R, die bei f auf das Nullelemem 0 von R abgebildet werden und he:ﬂt
Kern des H hi. f. Der Restkk ing R|n ist isomorph R.

Umgekehrt gibt eszu jedem Ideal n von R eine homomorphe Abbildung von R auf Rn,
deren Kern n ist.

und

Jeder Ring R ist Ideal von sich und enthilt das nur aus dem Nullelement be-
stehende Nullideal (0). Es ist R/R =< 0 und R/(0) =~ R, wobei o den Nullring bezeich-
net. Schiefkorper und Korper enthalten auch nur diese beiden trivialen Ideale. Ist
nimlich R ein Schiefkérper und enthilt das Ideal n von R ein Element a 5 0, so
gibt es in R zu a ein inverses Element a1, und wegen der Idealeigenschaft liegt das
Einselement 1 = aa~! von R in n. Dann gehéren aber auch alle Elemente 1r = r
(r € R) zu 1, und es ist n = R. Damit haben wir bewiesen:

Folgerung. Jedes homomorphe Bild eines Kirpers K ist zu K oder dem Nullring o
isomorph.

Definition 4. Es sei p ein Ideal des kommutativen Ringes R.
p heiBt Primideal von R :& R[p Integrititsbereich ist.

R ist immer Primideal von R, weil R/R =< o nullteilerfrei ist. Das Nullideal o ist
genau dann Primideal, wenn R Integritiitsbereich ist. Der Restklassenring Z/(m) der
ganzen Zahlen modulo m (m-€ N Am > 1) ist dann und nur dann nullteilerfrei,
wenn m eine Primzahl ist (vgl. 13.1., 13.2.). Fiir natiirliche Zahlen m € N gilt also

(m) it Primideal von Z <& m Primzahlvm =1vm = 0. 1)
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13.4.3. Um ein weiteres Beispiel fiir einen Restklassenring zu erhalten, betrachten
wir im Polynomring Z[z] das Hauptideal (1 4 22). Es besteht aus allen Polynomen
der Form (1 + 23) g(z) mit g(z) € Z[2] f(z), g(z) € Z[x] liegen gensu dann in der-
selben Restklasse mod (1 + 23), wenn f(z) — g(z) € (1 + z*) (vgl. 12.2.3.), wenn es
also in Z[] ein g(z) gibt, so daB

f@) = (1 + 2% g(@) + g(a)
ist. Weil es zu jedem p(z) € Z[z] Polynome g(z) und r(z) = a, + a, in Z[z] gibt,
fiir die

P(z) = (1 + 2%) q(z) + (=)
gilt (Polynomdivision mit Rest!), kann jede Restklasse [p(z)] € Z[z]/(1 + #3) in der
Form [ay + a,x] (a,, @, € Z) geschrieben werden. Dabei ist

[ao + a,2) = [bo + bix] © ay =byra, = b, (@9, @y, bo, by € Z).
Die Operationen im Restklassenring Z[x]/(1 + 2?) sind durch

[@o + ayx] + [bo + ,2] = [(@ + bo) + (a1 + b)) 2]
und

[ao + a,7] [bo + b:17] = [aobo + (@1bo + achy) = + @15y

= [(@obo — @r}y) + (@1bo + Geby) 2] (@9, @y, by, by € Z)

festgelegt, denn a,b,2* = a,b,(z® + 1) — ab,.

Insbesondere ist dann

[=] [z] = [-1].
Dabher ist die Abbildung
f:la0 + @zl > ao+ay (30,81 € Z)
offenbar ein Isomorphismus von Z[z]/(1 + %) auf den Ring der GauBschen ganzen
komplexen Zahlen. (1 + z?) ist daher ein Primideal von Z[z].
Analog ergibt sich die Isomorphie
Rz)/(1 + 2?) == C
des Restklassenringes aller Polynome mit reellen Koeffizienten nach dem von 2* + 1
erzeugten Hauptideal mit dem Korper der komplexen Zahlen.

13.4.4. Nach dem Homomorphiesatz kann man sich (bis auf Isomorphie) eine
Ubersicht iiber alle homomorphen Bilder eines Ringes R verschaffen, wenn man
simtliche Ideale von R kennt. Als Beispiel betrachten wir den Ring Z der ganzen
Zahlen.

Sei m = (0) ein Ideal von Z. Es gibt also ein Element @ 4= 0 in m. Da ausa € m
folgt —a € m, kann man sogar @ € N* annehmen. Unter den in m enthaltenen
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Zahlen aus N* sei m die kleinste. Zu jeder Zahl z € m gibt es ganze Zahlen a, r, s0 daB
z=am-+r 0=s=r<m)
ist. Da z und m in m liegen, ist auch r =  — am € m. Wegen der Minimaleigenschaft
von m mu dann r = 0 und demnach
=m

sein. Die Ideale von Z sind also die von den Zahlen m €. N erzeugten Hauptideale (m).
Jedes homomorphe Bild des Ringes Z ist daher einem Restklassenring Z/(m) iso-
morph. Im Fall m = 1 ist das der Nullring und fiir m = 0 ist Z/(0) == Z.

Die Elemente von Z/(m) bezeichnen wir mit [0],[1],...,[m — 1]. Ist arnm
=d > 1, so kann die Gleichung

[a] [«] =[1] o

sicher keine Lésung [«] € Z/(m) besitzen, da sonst d ein Teiler von 1 sein miiBte. Ist
aber anm =1, so hat (1) eine (nach 11.3.(6) eindeutig bestlmmbe) Lasung [@]
(vgl. 12.1.2.10.), d. h., genau zu den primen Restklassen gibt es lnverse Elemente in
Z/(m). Weil aus [a] [b] = [0] und [@] [a] = [1] folgt, daB

[b] = [@] ([a] b)) = [3] [0] = [0]
ist, kann eine prime Restklasse nicht Nullteiler von Z/(m) sein.
Besitzt die Gleichung
(6] (=] =) @

eine Losung [z] € Z/(m), gibt es also Zahlen z, k € Z, fiir die az = b + km ist, so
muB notwendig d =anm ein Teiler von b sein. Ist umgekehrt d = a nm Teiler
von b, so gibt es Zahlen %, v € Z und b’ € N mit der Eigenschaft au + mv = d und
db’ = b (vgl. MfL, Bd. 1, 3.7.). Daraus folgt

a(ub’) + m(vb') = db’ =1b, @)
also ist

(=] = [ub"]
eine Losung von (2). Mit @ = a’d und m = m'd ergibt sich weiter aus (3)

a(ub’ + km’) + m(vb’ — ka') =b,

d. h., die Restklassen [ub’ + km’) (¢ =0,1,...,d — 1) sind Losungen von (2). Da
[a'] prime Restklasse ist, folgt and its fiir zwei Lo [#] und [Z] von (2) aus

[6] [z] — [a] [Z] = [a] ([z] — [2]) = [&'] [d(z — Z)] = [0],

daB [d(z — Z)] = [0] ist und sich z und Z daher nur um ein ganzzahliges Vlelfa.ches
von m’ unterscheiden.
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Damit haben wir bewiesen
Satz 2. Im Restklassenring Z|(m) ist [a] [z] [b] losbar < anm |b.

Bezeichnet [z] eine Lésung, so sind [z+k ](k:o,l,...,anm—l)
sdmitliche Lisungen.
Insbesondere sieht man noch einmal (vgl. 13.2.), daB

Z[(m) nullteilerfres &m =0vm = 1 v m Primzahl

und
Z/(m) Korper <& m Primzahl.

Sei p eine Primzahl. Nach dem Satz von FERMAT (vgl. 12.2.3., Folgerung 3') gilt
fiir alle von [0] verschiedenen Elemente [a] des Restklassenkorpers Z/(p)

[a] — [1] =[0] 4)
und fiir alle [a] € Z/(p) dann [a]? = [a].
Sei [a] € Z/(p) a[a] + [0]. Wie bei der Polynomdivision in Z[#] ergibt sich, daB es ein Polynom
ga(2) = 2P-3 + ... mit Koeffizienten aus Z/(p) und ein [r] € Z/(p) gibt, so daB
() = 21— [1] = ¢y(z) (z — [a]) + [r]

-ist, wobei z* := (1] 2® (» ¢ N*) bedeutet. Wegen (4) folgt daraus fir z = [a], da8 [r] = [0] ist.
Die Nullteilerfreiheit von Z/(p) ergibt weiter, daB fiir alle von [0] und [a] verschiedenen Elemente
]

4x([b]) = [0]
gilt. Daher kann die auf ¢,(x) angewendete Uberlegung fiar gy(z) wiederholt werden usw. Naoh
p — 2 Schritten erhiilt man

2t —A]l=@E—-U)@=—[2)—-[p—1).

Hieraus er‘gibt sich durch Vergleich der Koeffizienten vor den Pot. von z
M1+ @21+ +[»—11=[0),
11021+ (1181 + - +[p — 21 [p — 1] = (0],

13 (2] - [p — 1] = [—1PP-
Die letzte Gleichung liefert den folgenden Satz.

Satz 3 (Satz von WiLsoN). Fir jede Primzakl p gilt (p — 1)! = (—1)? mod p.
Es seip eine Primzahl der Form p=4n+ 1 (n e N*). Dann ist
(P—1)t=(1-2@20))-((p— 1) (p — 2) - (p — 2n))
= ((2n)!) - ((—1)*"(2n)!) mod p
= ((2n)!)? mod p
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und nach dem Satz von WiLsox also
(2n)!)'m —1 modp.

Folgerung. Fir Primzahlen p der Form p = 4n+1 (n € N*) wird in Z/(p) die Gleichung
2* + [1] = [0] durch z = [(2n)!] gelbst.

13.5. Teilbarkeitstheorle in Integrititsbereichen

13.5.1. Die Teilbarkeit ist eine wichtige Relation im Ring der ganzen Zahlen. Sie
kann auf andere Integrititsbereiche I iibertragen werden.

Definition 1. Seien a, b Elemente des Integrititsbereiches I. Dann heiit

a Teiler von b: & V ax =b.
zel
Man schreibt in diesem Fall a | b und nennt b teilbar durch a.!)

Wir beschriinken uns hier auf Integrititsberelche, weil in diesen die Gleichung
az =b (a 3 0) hochstens eine Losung besitzt, was gegeniiber allgemeinen Ringen
eine Vereinfachung bedeutet. In Korpern ist die Teilbarkeitsbeziehung trivial, da
die Gleichung az = b fiir @ 5 0 immer genau eine Losung hat.

Definition 2. Sei I ein Integrititsbereich mit Einselement 1 und a,a’ € I.

a heiBt assoziiert zu a’ ;< V e ist Einheit von I Aae =a’.
134

Weil aus ae; = a’ A a’e, = a die Gleichung ae,e; = @ und nach 13.2. (1) dann

a = 0vee, = 1 folgt, ist
a assoziiert zua’ © a|a’ Aa' |a. 1)

Da die Einheiten von I eine abelsche Gruppe mit dem neutralen Element 1 bilden,
weist man leicht nach, daB die Assoziiertheit eine Aquivalenzrelation in I ist. Die zu
a € I assoziierten Elemente und simtliche Einheiten e von I sind wegen ae-le =a
immer Teiler von a. Sie werden triviale Teiler von a genannt. ¢ heiBt echter Teiler
von @, wenn ¢ | @ und ¢ nicht assoziiert zu a ist.

Definition 3. Ist I ein Integrititsbereich mit Einselement und a 5 0 aus I, so
heiBt

" a unzerlegbar (oder irreduzibel) in I :< a besitzt nur triviale Teiler.

Anderenfalls wird a zerlegbar (oder reduzibel) genannt.

Im Ring Z der ganzen Zahlen sind z. B. alle Primzahlen p und die Zahlen —p un-
zerlegbar. Die Menge {a + b1 —3:a € Z A b € Z} bildet mit der iiblichen Addition

Ya * b bedeutet, daB b nicht durch a teilbar ist.
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und Multiplikation der komplexen Zahlen einen Integritétsbereich Z [ —3| mit Eins-
element 1 = 1 4 0} —3. Einheiten sind nur 1 und —1 (Ubungsaufgabe). In diesem
Integrititsbereich ist

3=(0+1Y=3){0—1V=3)
zerlegbar, 2 aber unzerlegbar, da

2 =(a+5Y=3)(c + dV=3) = (ac — 3bd) + (ad + be) 3
nur die ganzzahligen Losungen b=d =0, a =42, c=+1 und b=d =0,
a=+1,c= 42 hat.

Definition 4. Ist I ein Integrititsbereich mit Einsel t und p € I weder Null-
element noch Einheit von I, so heift

P Primelement von I :¢> A (p|ab=>p|avp|b).
abel

Satz 1. Sei I Integrititsbereich mit Einselement.
p Primelement von I = p ist unzerlegbar in I.

Beweis. Ist p =ab (a,b€ I), so gilt p|a oder p|b. Sei etwa a = pc (c € I).
Dann ist p = pchb und nach 13.2.(1) ¢b = 1. b ist also Einheit von I, und a, b sind
triviale Teiler von p.

Im Integrititsbereich Z [V—3] ist 2 unzerlegbar, aber kein Primelement, weil das
Produkt ( 14 V—3) (l — V—3’ = 4 durch 2 teilbar ist, ohne da8 einer der Faktoren
(l + V=3) oder (l — -3} durch 2 teilbar ist (Ubungsaufgabe).

In 13.4.4. wurde gezeigt, daB simtliche Ideale von Z Hauptideale sind.

Definition 5. Ein Integrititsbereich I mit Einselement, dessen simtliche Ideale
Hauptideale sind, wird Hauptidealring genannt.

Grundlegend fiir die Teilbarkeitslehre in Z sind die Sitze vom groBten gemein-
samen Teiler und von der eindeutigen Primzahlzerlegung (vgl. MfL, Bd. 1, 3.7.). Sie
gelten in allen Hauptidealringen.

Definition 6. Sei I ein Integrititsbereich. d € I heiBt grofter gemeinsamer Teiler
der Elemente a,, a,, ..., a, € I (Bezeichnung: a,na,n---na,)

@ (d|ayad|ayAn---Ad|ay,) 2)
AN(Elayat|agn---At]a,)=>t]|d. 3)
ter

Ein Element d ¢ I mit der Eigenschaft (2) heiBt gemeinsamer Teiler von a,, a,, ..., a,.
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Satz 2 (Satz vom groBten gemeinsamen Teiler). Sind a,, ay, ..., a, Elemente eines
Hauptidealringes I, so gilt:
Es gibt gropte gemeinsame Teiler von a,, @y, ..., ay tn I. 4)
Je zwes gropte gemesnsame Teiler von a,, ay, ..., a, sind assozitert. (5)
d € I ist groPter gemeinsamer Teiler von a,, a,, ..., a,
& d € I ist gemeinsamer Teiler von a,, ay, ..., G,

AV T8y + By + -+ 240, =d. (6)
[ 3 4
Beweis. Sei b der Durchschnitt aller Ideale von I, die (a,), (a,), ..., (2,) umfassen.
b ist Ideal von I und wird daher von einem Element d € I erzeugt: b = (d). Aus (d)
2 (a;) folgt a; € (d), d. h. Vdk; = a; (i =1,2,...,n). Demnach ist
kel

dlayadlaga-ad]|a,. 7

Ferner liegen alle Vielfachen za; (x; € I) von a; ( = 1,2, ..., %) in (d). Da (d) ein
Ideal ist, gehdren dann auch alle Vielfachsummen

2,81 + 248y + -+ + T (8)
mit beliebigen Faktoren z,, z, ..., z, € I zu (d), d. h.

D= {v:hm}’mf =20, + 28, + -+ + Z.a.} < ). 9
Andererseits ist b ein Ideal von I, dgs die Ideale (a,), (a,), ..., (a,) umfaBt. Daher gilt

b2 (d). (10)
Weil nach (9) und (10) v = (d) ist, besitzt d eine Vielfach darstellung (8),

d.h. .
Vo 28, 4 28, + - + 200, =d.

2y, 2n€l
Ist t € I gemeinsamer Teiler von a,, a,, ..., a,, gibt es also Elemente f; € I 1 = 1,2,
..., n), fiir die a; = [yt ..., @, = f4t gilt, so folgt aus

d = 2,8, + Tp8y + -+ + Ta8y = (@ifs + Tafs + - + TWfa) €

daB ¢ | d und daher d groBter gemeinsamer Teiler von a,, as, ..., a, ist. Damit sind
(4), die Darstellbarkeit eines groBten gemeinsamen Teilers von a,,a,,...,a, als
Vielfachsumme und die Implikation ,,<** aus (6) bewiesen.

Bezeichnen d, d' groBite gemeinsame Teiler von a,, a,, ..., a,, 8o ist

d\dad|d,

also nach (1) d assoziiert zu d’. Damit ist (5) bewiesen.
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Ist d’ ein groBter gemeinsamer Teiler von a,, a,, ..., a,, 80 ist nach (5) &’ = de mit
einer Einheit e € I, und man erhilt sofort eine Vielfachsummendarstellung von d’
aus einer solchen von d. Daher ist auch die Implikation ,,=* aus (8) bewiesen.

Die Elemente a,, @, ..., a, aus I heiBen teilerfremd, wenn ihre groBten gemein-
samen Teiler die Einheiten von I sind.

Satz 3. Sei I Hauptidealring und p € I weder Nullelement noch Einheit von I. Dann
gilt:

p unzerlegbar in I => p Primelement von I.

Beweis. Sei p | ab, etwa ab = kp (a, b, k € I). Da p unzerlegbar ist, ist p nur durch
Einheiten von I und zu p assoziierte Elemente teilbar. Ist p n a eine Einheit, so gibt
es nach Satz 2 Elemente z, y € I derart, daB zp + ya = 1 und also

xbp + yab = (zb + yk) p = b,
d.h.p|b.

Folgerung. Fiir jedes unzerlegbare Element p des Hauptidealringes I folgt aus
plab(a,bel),dap p|aoder p|b.

In einem Hauptidealring I gilt (vgl. 13.4.2.(1)):

(p) ist Primideal von I
& p ist Primelement von I v p = 0 v p ist Einheit von I. (11)

Des Ideal (0) ist ein Primideal. Bezeichnet p eine Einheit von I, so ist (p) =1

und daher ebenfalls Primideal. Ist aber p ein Primelement von I und a € I, aber

a ¢ (p), so sind p und a teilerfremd, und nach Satz 1 gibt es eine Vielfachsummen-
darstellung

za+yp=1 12)
mit Elementen z,y aus I. Bezeichne [a] diejenige Restklasse von I/(p), in der a
liegt. Weil die Nullklasse [0] aus den Elementen von (p) besteht, folgt aus (12)
[z][e] = [1],
d. h., jedes [a] 3= [0] aus I/(p) besitzt ein inverses Element. Daher ist I/(p) ein Korper,
also (p) Primideal.
Ist umgekehrt p 4 0 als Produkt p = rs (r, s € I) darstellbar und ist keiner der
Faktoren Einheit von I, so kann auch keiner der Faktoren in (p) liegen, weil er nach

(1) sonst zu p assoziiert und der andere Faktor Einheit wire. Fiir die Restklassen
modulo (p) bedeutet das

[r] 4= [0] A [8] &= [0], aber [r][s] =[0].
Dabher ist (p) kein Primideal.
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13.5.2. In Hauptidealringen gilt der folgende Satz.
Satz 4 (Teilerkettensatz). Sei I ein Hauptidealring. Ist in
6,a;,... (a€el; 1=1,2,..) (13)
jedes Element a;., echter Tesler von a; (¢ = 1,2, ...), 80 kann die Folge (13) nur endlich
viele Glieder enthalten.
Beweis. Wegen der Voraussetzung iiber die a;,, ist
@)= (@) (=12..). (14)
Die Vereinigungsmenge
=(@)u(a)u- -

ist ein Ideal von I. Ist nimlich a € q, so liegt @ in einem (a;), und daher sind alle Viel-
fachen za; (z € I) in (a;), also auch in a. Bezeich a, b El te von a, so liegt a
in einem (g;), b in einem (a;). O. B. d. A. kann k = ¢ angenommen werden. Aus (14)
folgt dann, daB a und b in (a;) liegen, also aucha — b € (@) < a.

a ist nach der Voraussetzung iiber I ein Hauptideal: a = (a). @ muB als Element
von a in einem (@;) enthalten sein. Sei n der kleinste Index mit der Eigenschaft
a € (a,). Dann ist (a).< (a,). Giibe es noch einen echten Teiler a,,, von a,, so wire
(@4) = (@p41), Woraus der Widerspruch (a) S (a.) = (@p+1) S a = (a) folgen wiirde.
a, muB also das letzte Glied der Teilerkette (13) sein.

Aus diesem Satz ergibt sich nun leicht der
Satz 5 (Satz von der eindeutigen Primel tzerl g). Ist I ein Hauplideal-

-4

ﬂngumiaeIwederNulldcmntnochEmhatmI 8o lipt sich a als Produkt von

I' T, 4 p.elw 3,11,

6=p1 P (15)
Bezeichnet

a=q g

eine weitere derartige Darstellung, so ist m =n und (bes geeigneter Numerierung)
g¢; assozitert zu p; (5 =1, ..., m).

Beweis. Die Existenz einer Primel tzerlegung (15) bewei wir indirekt.
Hitte a keine solche Zerlegung, so kénnte a jedenfalls kein Primel t sein, ds
sonst bereits eine Primelementzerlegung (mit einem Faktor) vorlige. Nach Satz 3
muB dann @ in der Form a = a'a’’ zerlegbar sein, wobei a’, a” echte Teiler von @
bezeichnen. Mindestens einer dieser Faktoren kann keine Primelementzerlegung
besitzen, denn sonst wire auch a als Produkt von Primelementen darstellbar. Auf
diesen Faktor @, kann die Uberlegung erneut angewendet werden usw. Es entsteht

eine unendliche Folge a, a,, a,, ... von Elementen aus I, in der jedes Glied echter
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Teiler des vorhergehenden ist. Die Exlstenz emer solchen Folge widerspricht Satz 4.
Daher muB a eine Primel 1
DaB die Faktoren in (15) bis suf Assoznerthelt eindeutig bestimmt sind, kann
durch Induktion nach m bewiesen werden. Im Fall m =1 ist a Primelement und
besitzt also keine echte Zerlegunga =g, --- ¢,. Daherist n =1 und ¢, =
Induktionsannahme: Fiir Produkte aus iger als m Primel ten ist die Ein-
deutigkeit der Darstellung bereits bewiesen. Aus

a=pD3 Pm =002 In (16)

folgt p, | 9145 -+ ¢u, und da p, Primelement ist, existiert ein g; (i € {1, ..., n}), welches
durch p, teilbar ist. O. B. d. A. kann p, | g, angenommen werden. Da andererseits
¢, als Primel t legbar ist, besitzt es nur triviale Teiler. Es gibt also eine
solche Einheit ¢, € I, daB g, = pye, ist. Aus @ = p,p, -+ Py = P1€1¢; -+ - g, €rgibt sich
dann nach 13.2.(1)

Do Pm=(€105) *** Ga

Nach der Induktionsannahme folgt daraus, daB m — 1 =n — 1, also m = und
¢; assoziiert zu p; ( = 2, ..., m) ist.

Mitunter wahlt man aus ]eder Aquivalenzklasse assoziierter anelemenm von 1 eines aus und

hreibt die Primel gung (15) mit Hilfe dieser ierten* Pri te (und einer
Einheit als Fskbor) auf. Beuplelswelu werden im Ring der ganzen Zahlen hiufig die Primzahlen
aus N* als te Pri ver

Integritdtsbereiche mit Einsel t, in denen der Satz von der eindeutigen Primelement-
zerlegung gilt, werden ZPE-Ringe genannt. Wir merken hier ohne Beweise an, daB es ZPE-Ringe
gibt, die nicht Hauptidesaliringe sind.

13.5.3. In 13.4.4. wurde gezeigt, daB der Ring Z der ganzen Zahlen ein Haupt-
idealring ist. Der Beweis beruht auf der Division mit Rest und nutzt die durch die
<-Relation gegebene Ordnung der El te von Z aus. Man kann ihn auf solche
Ringe ubertragen, die beachneben werden durch

Definition 7. Sei I ein Integrititsbereich und 0 sein Nullelement.

I heiBt euklidischer Ring
:& eine Abbildung & von I \ {0} in N existiert, so daB

Afa+0=> Vb—aq+ rA(r=0vh(r)<h(a))).

abel

Beispiele fiir euklidische Ringe sind:

1. Der Ring der ganzen Zahlen Z vermége der Abbildung %: a +> |a].

2. Der Ring Q[] aller Polynome in x mit Koeffizienten aus dem Korper der ratio-
nalen Zahlen Q. k(a) sei dabei der Grad des Polynoms a € Q[z].

3. Jeder Korper K ist trivialerweise euklidischer Ring. Man setze niamlich ¢ = a-1
und r = 0.
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Satz 6. Jeder euklidische Ring I ist ein Hauptidealring.

Beweis. Sei a # (0) ein Ideal in I. Dann existiert in a ein Element a + 0, fiir das
h(a) minimal ist. Bezeichne b ein beliebiges El t aus a. In dem euklidischen
Ring I gibt es Elemente g und r, so daB

b=ag+ra(r=0vh(r) <ha))
ist. Weil mit b und a auch b-— ag = r in a liegt, muB r = 0 sein. a besteht also aus
allen Vielfachen von a. ’

AuBerdem muB gezeigt werden:

Jeder euklidische Ring I besitzt ein Einselement. 17)
I ist selbst ein Ideal. Daher muB es nach dem Vorstehenden ein a € I geben, von dem
alle Ringelemente Vielfache ga sind. Insbesondere existiert ein solches e € I, daB

a = ae ist. Bezeichnet b = ga ein beliebiges Element aus I, so folgt be = gae = ga
=b, d. h,, e ist Einselement von I.

Wiihrend Satz 2 nur die Existenz des groBSten gemeinsamen Teilers in Haupt-
idealringen sichert, liefert das schon von EUELID angegebene Verfahren der sukzes-
siven Divisionen (euklidischer Algorithmus, vgl. MfL, Bd. 1, 3.7.) fiir euklidische
Ringe sogar eine Methode zur Berechnung des groBten gemeinsamen Teilers und
seiner Vielfachsummendarstellung.

Sind a,,a, (@, +=0Aa, 3 0) Elemente des euklidischen Ringes I und ist
k(a;) = h(a,), 80 bestimme man Elemente ¢,, ¢,, ... und ry, r,, ... aus I derart, daB

e =a:qy + 1 mit k(ry) < k(as),
QG ="y + 12 mit  h(ry) < h(ry),
Ty =Ty + T mit, h(ry) < h(ry),

und fahre damit solange fort, his einmal die Division mit dem Rest Null aufgeht:

Tror =Tiens + Mo Mt h(ren) < kiry),
Ty = Ti+1 Qie2s

was nach endlich vielen Divisionsschritten eintreten mu8, weil die h(r;) 1 = 1,2, ...)
eine monoton abnehmende Folge natiirlicher Zahlen sind.
Aus den Gleichungen (von unten nach oben ausgenutzt) ergibt sich sukzessive
Tear | Tis Teer | Toory oo, Tier | @, Trer | @1

Weiter entnimmt man den Gleichungen (von oben nach unten), daB aust |a, A ¢ | a,
auch folgt

tlr, tlrg, .., R/ Y

Daher ist 7, = a, na,.
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Die vorletzte Gleichung liefert eine Vielfachsummendarstellung von r,,, als Viel-
fachsumme von r;_, und r,. Die drittletzte Gleichung ergibt eine Darstellung von
7441 8ls Vielfachsumme von r,_; und r,_,. B man die Gleichungen wéiter der
Reihe nach (von unten nach oben), so erhilt man schlieBlich r,,, als Vielfachsumme
von a, und a, ausgedriickt.

Wir wollen die letzten Ergebnisse am Ring @ der GauBschen ganzen komplexen Zahl illustrieren.
Als Norm der komplexen Zahl & = a, + a,8 (ay, @, € R) bezeichnet man

N(x) := ay* + a,* = (6 + 6;) (3 — a18) = 0&.
Es ist
Nea)=02a =a,=05a=0.

Ist B = b, + b, eine weitere komplexe Zahl, 8o folgt aus den Regeln fiir das Rechnen mit kom-
plexen Zahlen (vgl. MfL, Band 2)

N(af) = af o = a&ff = N(a) N(B). (18)
Da N(1) = 1 ist, ergibt sich daraus

N(oe) = N(x)* (19)

Wir betrachten nun die GauBschen ganzen kompl Z.hlena,+¢lt(a.,aleZ) Die Normen

dieser Zahlen liegen in N. Naoh (19) daher not g die Einheiten die Norm 1 besitzen.
Gilt umgekehrt far .

e=¢ + e (e &y € Z)
die Gleichung
Ne)=e'+ =1,

g0 i8t £ = ¢ — ¢,f zu ¢ invers und daher ¢ Einheit. Genau diejenigen Zahlen ¢ = ¢, + ¢,4 aus G
md also Einheiten von G, fiir die ,? + ¢,* = 1 ist. Del h sind die Einheiten von G

1, —1,5, —i.

Als niichstes zeigen wir, daB @ ein euklidischer Ring ist. Sind § = b, + b,$ und & = ay + a,¢
aus G und ist « % 0, 80 s0ll nachgewiesen werden, daB es eine Zahl x = k, + ki (kq, k; € Z) gibt,
fiar die

N(f — ax) < N(x)

gilt. Bekanntlich ist

B _ .
P =g+ a
mit
bee + b3y
3~
R T
und
byay — b
= _la'__O“‘l cQ

ot +a?
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Offensichtlich liegen in Z solche Zahlen k,, k,, daB folgendes gilt:
1 1
qo_"ol§;’ |¢1—"1]§;-
Setzen wir x = k, + k1,80 ist
1 1 1
N(% —~) “N(@-k+@-R)S T+ =7

und nach (18)

NB—ax)=N (% - x) Na) < N(a).

Damlt ist gezeigt, daB @ ein euklidischer Ring ist. Man bilde nimlich jedes « ¢ G ab auf A(x)
= N(«). InGist also jedes Idu] em Hsupndeal und es gelten die Sitze vom groBten gemeinsamen

Py

Teller und von der g
Es sollen nun die anelemente von [ bestlmmt den. Da @ ein Hauptid g ist, sind die
Primelemente genau die von den Einheit: legb El te. Aus (18) folgt
sofort:
a € G A N(x) Primzahl = & Primelement von G. (20)

Fir me G erglbt slch aus N(n) = n7, daB n |N(rn), wobei N(n) als Element von G aufgefaBt wird.
Istn tvon G, s0 muB (vgl. Definition4) Telloramerdonomgen?nmuhlan
sein, die lhmmmta Teiler von N(x)sind. » kann nicht Teiler zweier verschiedener Primzahlen p
und q sein, denn weil die 1 als Vielfachsumme

1=ap+yg (xyeZ)

darstellbar ist, miiBte sonst x | 1 gelten. Das ist urimoglich, da = als Primel, t keine Einheit
ist. Also gilt:

7 Primelement von @ = es gibt genau eine Primzahl p, die durch n teilbar ist. (21)
Daher hat man in @ die (nich iierten) Primteiler der Primzahlen p zu besti:

1.8ei p = 2. Es ist 2 = (1 4 %) (1 — 4). Da N(1 4 4) = 2, ist (1 4 ) Primelement von G.
(1 — 4) = (—%) (1 + ¢) ist zu (1 + 1) assoziiert. Weil in G der Satz von der eindeutigen Prim-
elementzerlegung gilt, sind daher alle Primelemente, die 2 teilen, zu (1 -+ 1) assoziiert.

2. Sei p = 3 mod 4. Da N(p) = p* ist und N(x) | N(p) aus x| p folgt, muB N(n) = p oder
N(z) = p% sein. Fiir n € N gilt:

2|a=3n'=0 mod4
und
24n=>n'=1 modd.
Ist x = z + yi, so ergibt sich daraus
Nn)=2*4+y* %3 mod4,
d. h., es muB N(n) = p* sein. Aus p = nx erhiilt man dann
N(z) =p* = N(p) = N(=)N (o),
also N(x) = 1. o ist daher Einheit und p Primelement von G.
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3. Sei p = 1 mod 4. Dann gibt es eine Zahl z ¢ N, fiir die
22= —1 mod p

gilt (vgl. 13.4.4., Satz 3, Folgerung). Weil 22 4 1 = (z + ¢) (z — 1) ist, folgt far ein Primelement n
aus |pundp |2+ 1

nlz+4 oder n|lz—3i.
Wiire x zu p assoziiert, so miiBte auch
plz+14 oder plz—1

sein, was wegen
2 rlgarlt_lye
V4 V4 P 4

unmaglich ist. Daher kann p kein Primelement von @ sein und muB also eine Zerlegung der Form
p=on mit xeGaneGaN@ >1aANHR) >1

gestatten. Wegen

N(p) = p* = N(z)N(x)
ist dann
N(n) = N(&) =

d. h., 7 und « sind Primelemente von G. Aus n = z + yi ergibt sich

Na)=p=2'+ ¢ = (= + yilo
und also

Daher ist p = 2%. Man priift sofort nach, daB n und 7 nicht assoziiert sind.
Samtliche Primelemente von G sind also: 1 + ; die Primzahlen p mit p = 3 mod 4; die

Zshlonx-f—yumdz—-—yt.woz,y, hlige Lo der Gleichung z* + y* = p (p Primzahl
A p = 1 mod 4) bedeuten, aoww alle d.uu uaozuertan Elemente aus G
Nach Satz 3 ist in einem Hauptidealring jedes unzerlegbare Element, das nicht Einheit ist,

Primelement. Daker ist der Ring Z [V-s] aller Zahlen der Form a 4 bY—3 (a,b € Z) kein
Hauptidealring (und erst recht kein euklidischer Ring), denn er enthilt das Element 2, welches
unzerlegbar, aber weder Einheit noch Primelement ist (vgl. 13.5.1.).

13.6. Quotientenkdrper

Bekanntlich sind die Integrititsbereiche der ganzen Zahlen, der geraden ganzen
Zahlen und der GauBschen ganzen komplexen Zahlen Teilbereiche von Kérpern.
Sei der Integrititabereich I Teilbereich des Korpers K. In diesem Fall heit I ein-
gebettet in K. I bestehe nicht nur aus dem Nullel t 0. Dann besitzt in K insbeson-
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dere jede Gleichung
ar=b (@€elabelna=+0)
genau eine Losung

z =ba1l=a,

die Quotient l := ba~! genannt wird.
a

Fiir die Quotienten gelten in K die Rechenregeln:

LA AR )
a c

b d _botad

b4 _botal @
a [ ac

b d _bd

2.2, (3)
a [ ac

Sie ergeben sich wegen der Nullteilerfreiheit von K aus den Gleichungen

ac(i—i) =bc —ad,
a ¢

wbed bz
ac

Aus den Regeln erkennt man, daB die Menge aller Quotienten 2 (a =+ 0) einen
Tellkorper Q von K bildet. Das Einselement sind die Quotlenten - (a %+ 0), zu

(a +0A b 3 0) invers ist T I ist in Q eingebettet, denn die Elemente k aus I
erscheinen als Quotient, (x#:O)mQ

Die Regeln (1) bis (3) bedeuben, daB die Rechnung in @ bereits véllig durch die
Rechnung in I festgelegt ist. Jeder Kérper, der I umfaBt, enthilt auch Q. In diesem
Sinne ist @ der , kleinste Korper, in welchen I eingebettet ist. Er wird durch I bis
auf Isomorphie eindeutig bestimmt und heiBt Quotientenkirper von I. Zu zwei ver-
schiedenen Integrititsbereichen konnen gleiche (bzw. isomorphe) Quotientenkérper
gehoren; beispielsweise ist der Korper Q Quotientenkérper des Integrititsbereiches
Z und des Integrititsbereiches aller geraden Zahlen aus Z.
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Bisher hatten wir vor

tzt, daB I in einen Korper eingebettet ist. Es gilt

aber sogar der
Satz 1. Zu jedem Integrilitsbereich I gibt es einen bis auf Isomorphie eindeutiy
bestimmien Quotientenkirper.

Beweis. Wir konstruieren einen Korper, der einen zu I isomorphen Integritits-
bereich umfaBt. Die Existenz und Eindeutigkeit (bis auf Isomorphie) des Quotienten-
korpers ergibt sich dann aus den bisherigen Feststellungen.

Es wird hier formal ebenso vorgegangen wie bei der Konstruktion des Korpers Q
der rationalen Zahlen aus dem Integrititsbereich Z der ganzen Zahlen.

Es sei I nicht der Nullring. Dann bilden wir die Menge

P:={(b,a):beInacI\(0}

aller geordneten Paare von Elementen aus I, deren zweite Komponente ungleich
Null ist. Man rechnet leicht nach, daB durch

G, a)R(d,c):ebc=ad ((b,a)e Pad,c)€P)

eine Aquivalenzrelation R in P gegeben ist. Sie vermittelt eine Einteilung der Ele-
mente von P in Aquivalenzklassen (vgl. MfL, Bd. 1, 2.5.). Sei [b, a] diejenige Aqui-
valenzklasse, in der (b, a) € P liegt. Die Menge dieser Aquivalenzklassen bezeichnen
wir mit Q. Dann ist in @ ’

[b,a] =[d,c] & bc =ad. 4)
Ferner gelten fiir die Elemente aus @ die Implikationen

[5, 0] = [¥',a'] A [d, c] = [, ¢')=> [bc + ad, ac) = [b'¢’ + a'd’,a'c’)  (5)

und

[b,a] = [b',a’] A [d, c] = [d', ') = [bd, ac] = [b'd’, a'c], (6)
denn es gilt

ba’ = ab’ Adc’ = cd' = bea'c’ + ada’c’ = ach’c’ + aca'd’
und

ba' =ab’ Ade’ =cd’ = bda'c’ = acb'd’.
Unter Verwendung der in I erklirten Addition kann man durch
[b,a]) + [d.c] :=[bc + ad,ac] " ((b,al€Q,[d,c]€Q) @

eine ,,Addition* genannte Operation in Q definieren. Um die § zweier El t

aus @ zu bestimmen, wihlt man also aus der Klasse [b,a] einen Vertreter (mit
(b, @) bezeichnet) sowie aus der Klasse [d, c] einen Vertreter (mit (d, c) bezeichnet)
und bildet mit Hilfe der in I erklirten Addition das Paar (bc + ad, ac), welches
wegen der Nullteilerfreiheit von I in P liegt. SchlieBlich sucht man die Aquivalenz-
klasse [bc + ad, ac] dieses Paares auf. Nach (5) ergibt sich dieselbe Klasse auch,
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wenn man aus den Klassen [b, a] und [d, ¢] andere Vertreter auswihlt. Die Deflmnon
(7) ist also ,,vertreterunabhiingig*. Sie ordnet je zwei El ten aus Q ei

ein Element aus @ zu und ist demnach eine Operation in Q. -
Ganz entsprechend wird durch
[b, a] [d, ¢] := [bd, ac] (b, a1€Q,[d,c]€Q) (8)

eine Multiplikation in Q erklirt. Die Vertreterunabhiingigkeit dieser Definition folgt
aus (6).

Fiir diese Operationen in @ gelten die Assoziativgesetze, Kommutativgesetze und
das Distributivgesetz, weil sie fiir die Operationen in I gelten (Ubungsaufgabe). Die
Gleichung

[b, a]l + [y, z] =[d,c] (b,a1€Q,[d,c]€Q)
hat in @ die Losung

[y, 2] = [da — bc, ac).

Daher ist @ beziiglich der eben erklirten Operationen ein kommutativer Ring.
Nullelement ist die Klasse [0, ] aller Paare, deren erste Komponente 0 ist. Da

[b, al[d, ¢] = [bd, ac] = [0, n] <> bdn =0
ist, folgt aus » == 0 und der Nullteilerfreiheit von I
1, a] [4, ¢] = [0, ) & [b, a] = [0, 7] v [d, ¢] = [0, m],

d. h., Q ist nullteilerfrei. Einsel t von @ ist die Klasse [, n] aller Paare, deren
beide Komponenten gleich sind. Ist [, a] = [0, =], so liegt auch [a, b] in @ und ist
wegen (b, a] [a, b] = [ab, ab] zu [b, a] invers. Q ist also ein Korper.

Bezeichnet a ein festes Element aus I und durchliuft z die Menge I \ {0}, so
bilden die Paare (az, z) eine Aquivalenzklasse [az, z]. Die 1-1-Abbildung

f:a v [az, ] (ael)
ist ein Isomorphismus von I auf einen Teilintegritétsbereich I' von @, denn nach (7)
und (8) gilt fiirallea,be I

[az, z] A [bz, 2] = [(a + b) 2%, 2%] = [(@ + b) 7, 2],

[az, z] [bz, 2] = [abz?, 2] = [abz, 2].

Damit ist die Existenz eines Korpers bewiesen, der den zu I isomorphen Teilbereich
I um.faBt7

Ist @ & 0, so hat die Gleichung [az, z] [v, u] = [by, y] die Losung [v, u] = [b, a].
K besteht also aus allen Quotienten der Elemente von I’ und ist demnach Quotienten-
korper von I'.
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13.7.  Primkérper

Eine Teilmenge T von Elementen des Korpers K, die beziiglich der Operationen von
K bereits selbst einen Korper bildet, heiBt Teilkérper von K. Insbesondere spricht
man im Fall T & K von einem echten Teilkirper.

Definition 1. K heiBt Primkorper :< K ist Korper A K enthilt keine echten
Teilkorper.

Beispiele fiir Primkorper sind die Restklassenkorper Z/(p) nach einer Primzahl p
und der Korper der rationalen Zahlen Q. Enthilt ein Teilkérper von R die Zahl 1,
80 alle Elemente der von ihr erzeugten additiven Gruppe, d. h. alle ganzen Zahlen
und den durch sie bestimmten Quoti korper Q. Jeder Restklassenkorper Z/(p)
ist ebenfalls ein Primkérper, denn ein Teilkorper enthiilt zusammen mit der Rest-
Kklasse [1] alle durch Addition daraus zu gewinnenden Restklassen und stimmt des-
halb mit Z/(p) iiberein.

Satz 1. Jeder Korper enthilt genau einen Primkorper.
Beweis. Bezeichnet K einen Korper und ¥ die Menge aller Teilkdrper von K, so ist

D:=NT
TeX
ein Teilkorper von K. D ist Primkorper, denn ein echter Teilkorper von D wiire auch
Teilkorper von K. Es ist D durch K eindeutig bestimmt.
Sei K ein Korper. Der Primkorper von K enthilt sicher alle durch Addition und

Subtraktion aus dem Einsel t e von K entstehenden EI t
eted e (k Summanden), wenn k > 0,
ke := 30, wenn k =0,

—(e+e+---+e) (]k| Summanden), wenn k& < 0.
Die Abbildung
frk>ke (keZ)
ist ein Homomorphismus von Z in K, denn fiir &, € Z gilt

flk 4 1) = (k 4 1) e = ke + le = f(k) + f(0)
und

fUl). = (k) e = (ke) (le) = f(k) {(2).

Die Elemente ke (k € Z) bilden also einen Teilintegrititsbereich I von K, und es gibt
ein Ideal n von Z, so daB Z/n == I ist.
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Fall 1: n = (0). Dann ist I =< Z. Der Quotientenkorper von [ ist der Primkérper
von K. Er ist isomorph dem Quotientenkérper Q von Z. Man nennt K in diesem
Fall einen Kérper der Charakteristik 0.

Fall 2: n 5= (0). Da I nullteilerfrei ist und nicht nur aus dem Nullelement besteht,
muB n = (p) sein, wo p eine Primzahl bezeichnet (vgl. 13.4.2.). Aus der Isomorphie
von I zum Restklassenkorper modulo p folgt, daB I bereits der Primkérper von K ist.
In diesem Fall wird K als Korper der Charakteristik p bezeichnet. @ und Z/(p)
(p Primzahl) sind also (bis auf Isomorphie) die einzigen Primkérper.

In einem Korper K der Charakteristik p gilt

(a4 b =af + P @eKabekK),

da die Binomisalkoeffizienten

(?)=w G=1,2..p—1)
4 l.z....

durch p teilbar sind. AuBerdem ist (ab)? = aPb?, und aus a? = b? folgt wegen 0 = aP — b? = (a — b)P
und der Nullteilerfreiheit in K, daB a = b sein muB. Daher ist die Abbildung

f: ar>a? (a e K)

ein Isomorphismus von K auf den Teilkorper K?, der aus allen p-ten Potenzen der Elemente von

K besteht. Weil f 1-1-Abbildung ist, muB fiir einen endlichen Korper K = KP sein, d. h., in

einem endlichen Korper K der Charakteristik p existiert zu jedem a € K gensu ein b ¢ K, fir d.'
W=a

gilt.

13.8. Ubungsaufgaben

1. Sei L ein Integrititsbereich mit dem Einsel t 1 und I ein vom Nullring verschiedener
Teilintegrititsbereich von L mit dem Einselement 1. Man zeige, daB dann 1 = 1 ist.
2. Man besti tliche Einheiten des Ringes Z [V—3] (vgl. 13.5.1.).

In diesem Ring ist 2 ein Teiler des Produktes (1 + ¥—3) (1 — Y—3) = 4. Man zeige, ds8
aber weder 1 + Y—3 noch1 — Y—3inZ [7—3] durch 2 teilbar ist.
3. Es sei
P:={@ab):acRabdeR}

die Menge aller geordneten Paare reeller Zahlen. Fiir beliebige Elemente (a;, b,) und (ay, b,)
dieser Menge gilt

(ay, b)) = (ag, by) & a, = aga b, = b,.
Durch
(a3, b)) + (a3, by) := (@, + a3, b, + by)
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und

(81, b) (@3, by) := (2185, B 11 + a3by)
werden in P Addition und Mulhphkali'mu t istellige Operati erklirt. Man
beweise, daB P beziiglich dieser Operati ein L i ngmt Ferner zeige man,

daB er einen zum Korper der reellen Zahlen isomorphen Teilkorper enthilt, und bestimme die
Einheiten sowie die Nullteiler dieses Ringes.

4. In einem Integrititsbereich I kann jede Gleichung
ar* +bz+¢=0 @bcel)

h3chstens zwei Losungen haben.

5. Man bestimme sémtliche Losungen der Gleichung 2* = —1 im Schiefkérper der Q:
(vgl. 13.2.).

6. Im Ring Z der ganzen rationalen Zahlen besti man das @Big klei Ideal n,
welches die Zahlen 546, 408 und 210 enthilt und gebe die Elemente des Restklassenringes
Z/n an.

7. Man zeige, daB die Menge

{z+y}’—_2:zeZAy(Z}

mit der Addition und Multiplikation der komplexen Zahlen einen euklidischen Ring Z [V —2]
bildet. Man bestimme die Einheiten dieses Ringes.
Ist auch Z [Y—3] ein euklidischer Ring?
8. Im Ring G der GauBschen ganzen k ! Zahlen besti man die groBten gemeinsamen
Teiler der Elemente 2 4 4¢ und 5 4 6t und stelle sie als Vielfachsummen dar.

9. Man gebe die Primelementzerlegungen von 2 + 4i und 5 + 5¢ im Ring der GauBschen ganzen
komplexen Zahlen an.

10. Man' besti den Quotientenkdrper des Ringes der GauBschen ganzen k ) Zahlen.

11. Wie viele Korper aus genau zwei, drei und vier Elementen gibt es? Man stelle in jedem Fall
die Additions- und Multiplikationstabellen auf.
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141. Polynome in einer Unbestimmten

Es sei I ein Integrititsbereich mit Einselement 1 und

P:=f(a:a = (a,a,,85,...) ANG €AV An>m=a, =0}
ne meNneN

die Menge aller unendlichen Folgen von Elementen aus I, in denen nur endlich viele
Glieder vom Nullelement 0 € I verschieden sind. Bezeichnen

a = (G, 8y, By, ...), - b= (by, by, b3, ...)
zwei beliebige Elemente aus P, so ist (vgl. MfL, Bd. 1, 2.4.)

a=>bs Aa, =b,. (1)
neN
Durch
+b:= (@ + b0 @y + b1, 3y + by, ...) @
wird eine Addition und durch
LJ
ab:= (aobo» aghy + ayby, agh, + "lbx. + azb,, ---»z:)aibhi: ) 3)

eine Multiplikation in P erklirt. Es ist leicht nachzupriifen, daB P beziiglich dieser
beiden Operationen einen kommutativen Ring bildet. Er hat das Nullelement
(0, 0,0, ...) und das Einselement (1, 0,0, ...).
Die Teilmenge

I' ={a:a = (a,,0,0,...)Aag € I}
aller Folgen, in denen héchstens das vorderste Glied a, == 0 ist, bildet verméoge der
Abbildung

f:a0 > (2, 0,0, ...)
einen zu I isomorphen Unterring von P, denn

f:d0 + by > (@ + 86,0, 0, ...) = (ag, 0,0, ...) + (b, 0,0, ...)



240 14. Polynome

und
f: agbo > (asho; 0,0, ...) = (a0, 0,0, ...) (5, 0,0, ...).

Identifizieren wir diese speziellen Folgen mit den Elementen aus I und schreiben
also fiir alle Elemente a, aus I

a4y = (0, 0,0,...), (4)

so ist I ein echter Unterring von P. Daher nennt man P auch einen Erwesterungsring
von I.
Setzen wir die Bezeichnung

z:=1(0,1,0,0,...)
fest, so ist

x® =(0,0,1,0,...),

«*=(0,0,0,1,...)

und fiir beliebige n € N bedeutet

z* = (ay, @y, @y, Gy, ...) mit ay=1A A a;=0.
iENN(n}
Dann ist

(@9, 81, g, ...) = (30,0,0;...) + (81,0,0,...)z +.(25,0,0,...) 2* + ---
oder wegen (4)

(a9, @y, 83, ...) =@y + 6,7 + @2® + -+, (6)
Die Summe auf der rechten Seite enthilt hochstens endlich viele Summanden, die

vom Nullelement verschieden sind.
Nach (4) wird das Nullelement von P mit 0 bezeichnet. Wegen (1) gilt

G +axtagtt - +aa" =000 =0,=--=0,=0. (6)

Man sagt fiir diesen Sachverhalt auch, daB je endlich viele der Elemente 1, z, 23, ...
iiber I linear unabhingig sind, und nennt z ein beziiglich I transzendenles Element
oder eine Unbestimmte. Die Elemente von P, fiir die wir in Zukunft die durch (5)
gegebene Schreibweise

f(x) =aq + &,z + a2 + -+ + 2™ @

benutzen werden, heiien Poly in der Unbestimmten z. Die a,, a,, ..., a, werden
als Koeffizienten des Polynoms bezeichnet. Insbesondere nennt man a, das absolute
Glied von f(z). Ist a,, & 0, so heiBt m Grad des Poly und a,, hichster Koeffizient
von f(z). Polynome des Grades 0 sind also die von 0 verschiedenen Elemente aus I.
Dem Nullpolynom 0 wird kein Grad zugeschrieben. Die Operationen (2) und (3)
bedeuten in der neuen Schreibweise einfach die bekannte Addition und Multiplikation
von Polynomen.
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Die eben durchgefiihrte Konstruktion, die zu dem Integrititsbereich I den kommu-
tativen Ring P aller Polynome in der Unbestimmten z mit Koeffizienten aus I liefert,
wird Adjunktion von z zu I (da das Resultat ein Ring ist, g : Ringadjunktion)
genannt. Wir bezeichnen diesen Polynomring mit P = I[z].

Satz 1. I Integrititsbereich mit Einselement 1 => I[x] Integrititsbereich mit Eins-
element 1.

Bezeichnen f(z), g(x) Polynome =+ 0 aus I[x], so gilt:

Grad (f(z) g(x)) = Grad f(x) + Grad g(z).

Beweis. Nach den vorstehenden Bemerkungen braucht nur noch die Nullteiler-
freiheit von I[z] sowie die Aussage iiber die Grade gezeigt zu werden. Das Produkt
zweier Polynome der Grade m und = ist

f®) g(@) = (a0 + a;z + -+ + apuz™) (bo + b1z + +++ + buz")
= agby + (aohy + abg) T + -++ + apbpz™t".

Weil I Integrititsbereich ist, folgt aus a, < 0 und b, =+ 0 auch ab, 4 0. Daher
hat das Produkt f(z) g(z) den Grad m + » und ist nicht das Nullpolynom.

Nach der Definition 1 aus 13.5. ist f(x) € I[z] genau dann Teiler von g(z) € I[x]
(Bezeichnung: f(z) | g(z)), wenn es in I[z] ein Polynom g(z) gibt, fiir das

1@) g(a) = g(a)

gilt. Da das Einselement 1 von I[z] ein Polynom vom Grade 0 ist, muB jede Einheit
e(z) von I[z] nach der Bemerkung iiber den Grad eines Produktes vom Grade 0,
also aus I sein. Die Einheiten von I[z] sind also genau die Einheiten von I.

Sei L ein I (nicht notwendig echt) umfassender Integritétsbereich und

f(x) = ao + a1z + agz? + -+ + anz™ € I[z].
Durch
frarfla) =6y + a0 +aa®+ - + apa™  (x€ L)

ist eine Abbildung von L in L gegeben, die als ganze rationale Funkiion mit Koeffi-
zienten aus I iiber dem Definitionsbereich L bezeichnet wird. Ist

groa > gla) =by + bya+ bo* + -+ 4+ bya"  (x € L)

eine weitere solche Funktion, so sind auch die Summe

f+g:amflo) +gla) =(a + bo) + (@ +b)a+ - (x€L)
und das Produkt
fg: & > f(a) gla) = agbo + (aohy + aibo) & + -+ (x € L)

ganze rationale Funktionen mit Koeffizienten aus I iiber dem Definitionsbereich L.
Man priift leicht nach, daB die Menge dieser Funktionen beziiglich der beiden ge-
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nannten Operationen einen kommutativen Ring bildet. Sein Nullelement ist die
,,Nullfunktion*, die jedes « € L auf 0 € L abbildet.

F:f(x) =ap+ ax+ at+ - +ama™ > | (f(z) € I[z])

ist ein Homomorphismus von I[z] auf den Ring der ganzen rationalen Funktionen
mit Koeffizienten aus I iiber dem Definitionsbereich L. Genau dann liegt das Polynom

}(2) = ag + @,z + a2 + -+ 4 apa™ € I[z]
im Kern dieses Homomorphismus, wenn

AL/(“) =ag+ @& + aga® + - + @ua™ = 0.

a€

Ist I (und daher auch L) ein unendlicher Integritéitsbereich (z. B. einer der Zahlen-
bereiche Z, @, R, C), so gilt

Afx) =ap + @15 + @ga® + ++- + Bra™ =0 ag =a, = ++- =ap =0.
acL,

Betrachtet man niémlich die Gleichung
G + @1 + @0 + oo + apa” =0

fiir m + 1 verschiedene & € L, so erhilt man ein homogenes lineares Gleichungs-
system fiir die Koeffizientena,, a,, ..., @, dasnur dieLosung e, = a; = -:- =@, =0
besitzt. In diesem Fall ist daher der Polynomring I[x] zum Ring der ganzen rationalen
Funktionen mit Koeffizienten aus I iiber dem Definitionsbereich L isomorph.

In der Analysis interessiert man sich fiir die Funktionsei haft der g
rationalen Funktionen. Hier kommt es uns jedoch darauf an, daB es einen Erweite-
rungsring I[z] von I gibt, der durch Adjunktion eines iiber I transzendenten Elemen-
tes z zu I entsteht. Seine El te nennen wir Polynome. Ist I ein unendlicher
Bereich (z. B. Z, @, R, C), 80 kann man sie sich als ganze rationale Funktionen mit
Koeffizienten aus I vorstellen. Wie unsere Konstruktion zeigt, muB man das aber
nicht tun, sondern kann sich die Elemente des Polynomrings I[z] auch als spezielle
Folgen von El ten aus I denl d. h., die Funktionseigenschaft ist fiir uns
un tlich. Bezeichnen z und y Unbestimmte, so sind offensichtlich I[z] und I[y]
isomorph.
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14.2. Polynome iiber einem K&rper und einem Integritatsbereich.
Zerlegung in irreduzible Faktoren

14.2.1. Fiir den Integrititsbereich aller Polynome in z mit Koeffizienten aus einem
Korper gilt der

Satz 1. Bezeichnet K einen Korper, so ist K[x)] ein euklidischer Ring.

Beweis. & bilde jedes vom Nullpolynom verschiedene f(z) € K[z] auf A(f(x))
:= Grad von f(z) ab. Wir haben zu zeigen, daB zu beliebigen Polynomen a(z) + 0
und b(z) aus K[z] immer Polynome g(z) und r(z) in K[z] existieren, fiir die

bz) — a(a) gla) = r(a)

mit r(z) = 0 oder h(r(z)) < h(u(:c)) gilt. Ist b(z) = 0, so wird diese Bedingung von
g(z) = r(x) = 0 erfiillt. Daher sei

a(x) =ag + a,x + -+ + apz™ (@n + 0)
und

bx) =bo + by + -+« + byz” (s * 0).
Ist n < m, so wird die Bedingung von g(z) = 0 und r(z) = b(z) erfiillt, da ja k(b(z))
=n<m= h(a(z)) ist. Ist schlieBlich n = m, so hat

by(®) : = b(z) — ap-byz* a(2)
4

einen Grad n; < n. Ist n, < m, 8o setze man g(z) = ayb,z" ™ und r(z) = b,(z).
Ist aber n, = m, so kann man von b,(z) wieder ein geeignetes Vielfaches von a(x)
subtrahieren, so daB ein Polynom b,(z) mit einem Grad < n, entsteht. Nach endlich
vielen Wiederholungen findet man ein solches g(z) = @, 1b,z*™ + ..., so daB fiir
r(z) = blz) — a(z) g(z) gilt: r(z) =0 v h(r(z)) < m. Aus friiheren Uberlegungen
(vgl. 13.5., Siitze 2, 5, 6) ergibt sich die

Folgerung 1. K[x] ist Hauptidealring. Daher gelten n K[z] die Sitze vom grifiten

3 onrde

gemeinsamen Teiler und von der gen Pr legung

Einheiten von K[2] sind alle von 0 verschiedenen Elemente aus K, und p(z) € K[z]
ist genau danr: Primelement von K[z], wenn Grad p(z) > 0 ist und p(z) nur triviale
Teiler besitzt (vgl. 13.5., Siitze 1, 3). Solche Polynome p(x) werden in K([z] unzerlegbar
oder trreduzibel (vgl. 13.5., Definition 3) oder auch Primpolynome von K[x]genannt. Die
Zerlegbarkeit eines Polynoms hingt von dem Koérper ab, der fiir die Koeffizienten
der Faktoren zugelassen wird. So ist p(z) =2® — 2 in Q[z] unzerlegbar, wegen

—2= (z — }/—) (:t + }/—) aber in R[x] zerlegbar.

Sei L ein K umfassender Korper und bezeichne d(x) einen groBten gemeinsamen
Teiler der Polynome f(z), g(x) aus K[z] in L{x]. Dann gibt es einen zu d(z) € L[z]
assoziierten groBten gemeinsamen Teiler d,(z), der bereits in K[z] liegt, denn bei der
Bestimmung eines groBten gemeinsamen Teilers von f(z) und g(z) mit dem eukli-
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dischen Algorithmus treten nur Polyaome aus K[z] auf. Insbesondere folgt: Sind
f(x) und g(z) in K[z] teilerfremd (d. h., die von 0 verschiedenen Elemente aus K sind
die einzigen gemeinsamen Teiler), so auch in L[z].

14.2.2. Wir betrachten jetzt einen Integrititsbereich I mit Einselement 1 und ein-
deutiger Primelementzerlegung. Aus dieser Voraussetzung folgt sofort, daB je endlich
viele Elemente aus I einen bis auf Einheitsfaktoren eindeutig bestimmten groBten
gemeinsamen Teiler besitzen (Ubungsaufgabe). Jedes unzerlegbare Element p = 0
aus I, das nicht Einheit ist, muB notwendig Primelement sein. Es sei p(z) € I[z] und
p(x) = 0. Dann heiit

P(x) = @y + @@ + -+ + auz™ primitives Polynom: & agna;n---na, =1.

Als Hilfssatz von Gauss bezeichnet man den

Satz 2. In I[z] gilt: f(z), g(z) primitive Polynome=> f(x) g(x) primitives Polynom.

Beweis. Die Koeffizienten des Polynoms f(x) g(z) = h(xr) haben genau dann
keinen von einer Einheit verschiedenen grofiten gemeinsamen Teiler, wenn es kein
Primelement von I gibt, welches gemeinsamer Teiler aller dieser Koeffizienten ist. Sei

f@) =ao+ax+ - +ai + - + a2 (an +0),
0@) = by + bz + o + bt o £ Bt (by+0)
und p ein beliebiges Primelement von I. Unter den nicht durch p teilbaren Koeffi-

zienten von f(z) bzw. g(z) habe a; bzw. b, maximalen Index. Da f(z) und g(z) primitiv
sind, gibt es solche Koeffizienten. Setzt man

Uiy = Opyp = =+ =bpyy =bpyy =+ =0,

80 kann der Koeffizient von x+* im Produkt

min
() g(x) = Z; @
j=
in der Form
Civk = Agbisk + @ibipi—y + -+ + aiby + cor 4 Giggrby + @b

geschrieben werden. Aus p t a; A p } b, folgt p 4 a;b,. Alle iibrigen Summanden der
rechten Seite sind durch p teilbar. Daher ist p 4 ¢4 - f() g(x) muB also primitiv sein.
Aus dem Beweis folgt sofort:

Plf=)g@)=>plf=)vp|g@=).

Daher sind die Primelemente von I auch Primelemente von I[x].
Die Einheiten von I und I[z] stimmen iiberein.
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Sei X der Quotientenkérper von I. Jedes von 0 verschiedene Polynom g(z) € K[x]
148t sich in der Form

@(z) = of*(z) (¢ € K A f*(x) primitives Polynom aus I[z]) (1)

schreiben. Dabei sind ¢ und f*(z) bis auf Einheitsfaktoren aus I[z] eindeutig be-
stimmt. .

Zum Beweis nehme man ein von O verschiedenes a € I, fiir das ap(z) in I[z]
liegt. (Ein solches a ist z. B. das Produkt aller in den Koeffizienten von ¢(zx) auf-
tretenden Nenner.) Ist dann b groBter gemeinsamer Teiler der Koeffizienten von
ag(z), so ist f*(z) ein primitives Polynom aus I[z], fiir das ap(z) = bf*(z) gilt.
(1) wird also mit ¢ = a-b erfiillt. Gilt neben (1) auch noch

@(x) = og*(x) (0 € K A g*(z) primitives Polynom aus I[z]),

80 ist of*(z) = og*(z). Es sei ¢ = 0 ein Element aus I, fiir das co und coinJ ]iegen.
Wegen
cp(z) = cof*(z) = cog*(z)

'sind cp und co groBte gemeinsame Teiler der Koeffizienten desselben Polynoms aus
I[z] und daher in I assoziiert. Hieraus folgt, daB auch f*(x) und g*(z) in I[z] asso-
zijert sind. ) .

Ist f*(x) ein primitives Polynom aus I[z] und sind b und & = 0 aus J, so gilt
abf*(z) € I[x] © a|b. (2)

Es sei abf*(z) € I[z]. Ist ¢ € I groBter gemeinsamer Teiler der Koeffizienten
dieses Polynoms, so gibt es eine Darstellung

a'bf*(z) = cg*(2)

mit einem primitiven Polynom g*(z) aus I[z]. Nach der eben bewiesenen Eindetitig-
keitsaussage ist a-'b = ce mit einer Einheit e € I, d. h. a | b. Die andere Richtung
der Aquivalenz (2) ist trivial.
Satz 3 (Satz von GAuss). Besstzt ein Polynom f(x) € I[z] in K[z] eine Zerlegung
tn Faktoren positiven Grades, so gibt es bereits in I[x] eine solche Zerlegung.
Beweis. Es sei
f@) = @i(2) @a@)  (@u(2), (=) € K[2]).
Wendet man (1) auf @,(z) und g,(z) an, so erhilt man die Existenz von Elemerten
a, 0, a; 30, by, b, in I und primitiver Polynome positiven Grades f,*(z), f,* )
in I[z], fiir die
f(z) = a0, f1*() a,710,1,%(2) = (3:18,)7" (byda) f1*(2) f2*(2)
gilt. Weil f,*(z) /;*(x) nach Satz 2 primitiv ist, folgt aus (2), daB a,a, | b,b, und daher
f(x) sogar in I[z] zerlegbar ist.
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Ist also f(x) € I[x] ein primitives, in I[z] unzerlegbares Polynom positiven Grades,
80 ist f(x) unzerlegbar in K[x]. Nach Folgerung 1 ist K[z] Hauptidealring und daher
f(z) Primpolynom von K[z]. Aus

f@) | g@) h(x)  (9(=), h(z) € I[z))
folgt daher bei Betrachtung in K[z]
1) | 9() v f(z) | (z)-

0. B. d. A. sei f(z) | g(x), d. h., es gibt ein Polynom ¢,(z) € K[z], fiir das f(z) ¢,(z)
= g(z) gilt. Anwendung von (1) auf ¢,(z) ergibt die Existenz von Elementen a + 0
und b aus I sowie eines primitiven Polynoms f,*(z) € I[z] mit der Eigenschaft

a'bf(z) i*(z) = g(2).

Nach Satz 2 ist f(z) f{;*(z) ein primitives Polynom aus I[z], und aus (2) folgt dann
a | b. Daher gilt schon in I{z]

f) | g(=)-
f(x) ist also ein Primpolynom von I[xz].

Damit ist gezeigt, daB die Primelemente von I und die primitiven, irreduziblen
Polynome positiven Grades in I{z] Primelemente von I[z] sind. Da jedes Prim-
element notwendig unzerlegbar ist (vgl. 13.5., Satz 1), gibt es keine weiteren Prim-
elemente in I[z]. ’

Nach diesen Vorbereitungen ergibt sich der

Satz 4. Ist I ein Integrititsbereich mit Einsel t und eindeutiger Primel ¢
zerlegung, so besitzt auch I[x] eine eindeutige Primel tzerlegung

Beweis. K bezeichne wieder den Quotlentenkorper von I. Nach Folgerung 1 gilt
in K[z] der Satz von der eindeuti Pri zerlegung. Ist f(z) 4= 0 aus I[z],
80 besitzt es eine Darstellung der Form

f(z) = a7'bg,() -+ ea(2),

wobei @ 3= 0 und b in I liegen und g,(z), ..., gs(*) bis auf Einheitsfaktoren aus X
eindeutig bestimmte Primpolynome aus K[z] sind. Nach (1) kann jedes g;(x) mit
Elementen b;, a; & 0 aus I als

0i(x) = a;1b;r;*(x) F=1,...,n)

geschrieben werden. Dabei bezeichnen die r;*(x) primitive, in I[z] unzerlegbare
Polynome aus I[z], die bis auf Einheitsfaktoren aus I[z] eindeutig bestimmt sind.
Dann ist

f(z) = (aay -+~ @)™ (Bb; --- by) 11¥() -+ - 1u*(2).
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Weil r,*(z) --- r,*(z) nach Satz 2 ein primitives Polynom aus I[z] ist, folgt aus (2)
c:=(aa, ‘- a,)? (bbl bp) €1,

Da die r;*(z) bis auf Einheiten aus I[z] eindeutig festliegen, ist auch ¢ durch f(z)
bis auf einen Einheitsfaktor eindeutig bestimmt (vgl. 13.2.(1)). ¢ besitzt in I eine
bis auf Einheitsfaktoren eindeutige Primel legung

C=P1"""Pm:
Also gibt es eine Da1stellung
f@) = pr o pur*(@) -+ 1e* (@)

von f(x) als Produkt von Primelementen aus I[z], welche bis auf Einheitsfaktoren
aus I[z] durch f(x) eindeutig bestimmt sind.

14.3. Nulistellen von Polynomen

14.3.1. Sei J ein Integrititsbereich mit Einselement 1 und L ein I umfassender
Integrititsbereich, wobei auch L = I zugel ist. Bezeichnet
f@) =80 + a1z + ay2® + -+ + apz™  (Gm + 0)

ein Polynom aus I[z] und « ein Element aus L, so heiBt der durch die Ersetzung
von z durch « entstehende Ausdruck

fla) =ao + @y + @302 + -+ + apa™

ein Polynom in «. f(x) ist ein wohlbestimmtes Element aus L. Man rechnet sofort
nach (Ubungsaufgabe), daB die durch

1) ¥ f(o)

gegebene Abbildung ein Homomorphismus von I[z] in L ist. f(«) wird der Wert des
Polynoms f(x) an der Stelle z = x genannt.

Definition 1. Seien I S L Integritiitsbereiche mit Einselement. Bezeichnet 0
das Nullelement und sind « € L, f(x) € I[z], so heiBt

& Nullstelle von f(x) (oder Wurzel der Gleichung f(2) = 0) :& f(x) = 0.

Die Division von f(z) durch £ — « ist in L[z] ausfithrbar, da + — « den héchsten
Koeffizienten 1 hat. Es gibt also ein Polynom f,(x) € L{z] und ein ¢ € L mit der
Eigenschaft

f@) = (& — &) hix) + e-
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Fiir eine Nullstelle « von f(z) ergibt sich
fla6) =0fy(x) + ¢ =¢ =0,
und dsher gilt:
o € L ist Nullstelle von {(z) € I[z]=> f(z) ist in L[z] teilbar durch (z — «). (1)
Ist « auch noch Nullstelle von f,(x), so ist f,(2) ebenfalls durch (x — «) teilbar:
f@) = —aflz) (fal) € L=)).
Falls fy(x) = 0 ist, liBt sich nochmals ein Faktor (z — «) abspalten. Weil dieses
Verfahren nach spitestens m = Grad f(z) Schritten abbrechen muB, gibt es ein
k € N* und ein f(z) € L{z], so daB
f@)=(z—a)fiz) und fix)+0
ist. « wird dann eine k-fache Nullstelle von f(z) genannt.

Ist B € L eine von « verschiedene I-fache Nullstelle von f(z), so mu8 f(z) durch
(z — B) teilbar sein. Da (z — «)* wegen (8 — &)* % 0 nicht durch (z — p) teilbar
sein kann, ist

@) = @ — BY foul@)
und also
1@) =@ — )@ — ) frri®  (fru(®) € Liz]).

Liegen noch weitere Nullstellen von f(z) in L, so kann man wiederum Linear-

faktoren, das sind Faktoren ersten Grades, von f;,;(z) abspalten. f(z) kann als Poly-

nom m-ten Grades aber niemals als Produkt mit mehr als m Linearfaktoren dar-
stellbar sein. Damit ist folgender Satz bewiesen.

Satz 1. Seien L 2 I Integrititsbereiche mit Einselement und f(x) € I[z]. Dann gilt:
Grad f(z) = m=> f(x) besitzt in L hochstens m Nullstellen.
14.3.2. Definition 2. Sei I ein Integrititsbereich mit Einselement 1 und
f(@) = 6o + a1 + a2® + --- + apz™ € I[z].
Dann heiBt
f'(z) € I[x] Ableitung von f(z) :¢> f'(x) = @, + 257 + --- + manz™!.

Diese Definition bedeutet, daB fiir Polynome f(z) vom Grade 0 und fiir das Null-
polynom die Ableitung f'(z) = 0 ist. Fiir f(z), g(z) € I[z] ergeben sich allein aus der
Definition die Regeln

(t@) + 9@) = =) + g'@@) @
(f2) g@)) =1'(2) 9(@) + f(=) ¢’ (@). &)
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Zum Beweis schreiben wir die Polynome in der Form
d oo .
He) =X at,  gl2) = 3 b,
i=0 i=0

wobei z° : = 1 und jede der Summen nur endlich viele vom Nullelement 0 verschie-
dene Koeffizienten a; bzw. b; enthilt. Dann ist

f@ =.-§, g, g =.~‘§: b,
und es ergibt sich .
(@) + g@) = ( 5 @+ 5) z')
=5 itai+ byt
_‘_21 gt 2 b1
— 1@ + 7@
(3) kann ebenfalls durch einfache Rechnung bewiesen werden:

s = ( Zes) (£ = (£ Z200#)
= Z l ( P a;b.)z‘-’ = f ( TG+h a..b.) Z-1

=1 i k=] =1 \it+k={

=& (Ziab) =+ 2 (X kb
=£( 56+ 1) b 2 +2'°( Z aifk+ 1) be) 2

m=0 \i+k=m m=0\i+k=m
- (2 G+ 1) a) z ) + (2 a)( e+ beni?)
= (@) 9(e) + f(x) ¢'(2).

Die Ableitung f'(z) von f(z) = ay + @& + --- + a42™ € I[z] ist genau dann das
Nullpolynom 0, wenn

ta; =0 B=1,..,m) 4)
(vgl. 14.1.(8)). Als Charakteristik von I bezeichnen wir die bereits durch I fest-

gelegte Charakteristik des Quotientenkérpers von I. Ist sie 0, so bedeutet (4)
=@y =+ = ap = 0. Ist sie aber ¢ine Primzahl p, so folgt aus (4) nur a; =0,
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wenn p }t ¢. Damit ist gezeigt:

I hat die Charakteristik 0=> (f'(z) = 0 & f(z) = ay € I), )
I hat die Charakteristik p
= (F@) =06 f@) = ay + 42" + a3,2% + - + ay2?). 0)

I und L seien wie in 14.3.1. erklirt. Bezeichnet « € L eine k-fache Nullstelle von
f(z) € I[z], ist also

@) =@ —a)h@) uwd f@+0 (h@ L),
so folgt aus (3)

f'(@) = k@ — o filz) + (= — o) f¥'(z)
= (z — o [kfy(2) + (z — &) f' (@),
d. h., f'(z) ist in L[z] mindestens durch (z — «)*-! teilbar. Hat I die Charakteristik 0,
so folgt aus kfy(x) + 0, daB kfy(z) + (z — &) fi'(z) nicht durch (x — «) teilbar ist.
In diesem Fall ist « also genau (k — 1)-fache Nullstelle von f'(z). Die Aussage stimmt
nicht mehr, wenn I die Charakteristik p besitzt. In diesem Fall hat beispielsweise
das Polynom f(2) = (z - «)? die Ableitung f'(z) = 0.
Erklirt man nach der Festsetzung f(z) : = f(z) durch
@)= (V@) (=12..)
sukzessive hohere Ableitungen von f(x), so ergibt sich im Fall der Charakteristik 0,
daB eine k-fache Nullstelle von f(z) € I[z] (k — i)-fache Nullstelle von f'¥(z)
(i=1,2,...,k — 1) ist.
Wir fassen unsere Ergebnisse zusammen im
Satz 2. I sei ein Integrititsbereich mit Einselement und « eine k-fache Nullstelle von
f(z) € I[z]. Hat I die Charakteristik 0, so ist « (k — 1)-fache Nullstelle von f'(z), und es
glt :
Ho) =f(a) =--- =f*Pax) =0, fP(a) +0.
Hat I die Charakteristik p, so ist f'(x) mindestens durch (x — «)*! teilbar.

Definition 3. Bezeichnen K und L Korper, so heiBt
L Erweiterungskirper (oder Korpererweiterung) von K :& K ist Teilkorper von L.

Satz 3. Sei K ein Korper, f(x) € K[x] und p(x) ein Primpolynom von K[z). Besitzen
f(x), p(x) in einem Erweiterungskorper von K eine gemeinsame Nullstelle, so gilt bereits
in K[z]: p() | f(z).

Beweis. Sei « aus dem Erweiterungskorper L von K gemeinsame Nullstelle von
f(z) und p(z). Dann sind f(x) und p(z) in L[x] nicht teilerfremd, weil sie den gemein-
samen Teiler (r — «) besitzen. Nach der Bemerkung am Schlu8 von 14.2.1. haben
f(z) und p(z) daher schon in K[z] einen groBten gemeinsamen Teiler d(z) von posi-
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tivem Grad. Da p(z) Primpolynom von K[z] ist, muB d(x) zu p(z) assoziiert sein.
Deshalb ist auch p(z) ein Teiler von f(z).

Dieser Satz gestattet eine interessante

Folgerung. Fiir einen Korper K der Charakteristik O gilt: Ist p(x) Primpolynom
aus K[z), so besitzt p(x) in jedem Erweiterungskorper von K nur einfache Nullstellen.

Beweis. Wegen der Voraussetzung iiber die Charakteristik ist p’(z) nicht das
Nullpolynom. Hiitte p(z) in einem Erweiterungskérper von K eine k-facheNullstelle x
(k = 2), so wiire « (k — 1)-fache Nullstelle von p’(z), und nach Satz 3 wiirde gelten
p(z) | p'(z) in K[x]. Das ist unméglich, weil Grad p(x) > Grad p'(z) ist.

Es bezeichne K weiterhin einen Korper der Charakteristik 0. f(x) € K[2] sei ein
Polynom des Grades m > 0. Wir wollen uns fiir die Nullstellen von f(z) interessieren.
Daher kénnen wir 0. B. d. A. annehmen, daB f(z) den héchsten Koeffizienten 1 hat.
(Sonst dividiere man durch diesen Koeffizienten. Dabei éndern sich die Nullstellen
nicht.) Weiter wollen wir annehmen, daB es einen Erweiterungskorper L von K gibt,
in dem f(x) genau m Nullstellen besitzt, wobei jede so oft gezihlt wird, wie ihre
Vielfachheit angibt. Spiiter werden wir zeigen, daB es solche Erweiterungskorper

immer gibt. Sind «,, ..., «, die verschiedenen Nullstellen von f(z) in L, so zerfillt
f(z) in L{z] in ein Produkt
fl@) = (@ — )" (& — ag)®* - (z — &) M

von Linearfaktoren, wobei k; die Vielfachheit der Nullstelle «; (¢ =1, ..., r) angibt.
Bezeichnet f,(x) das Produkt derjenigen Linearfaktoren, die in (7) mit dem Ex-
ponenten k auftreten, so kann f(z) in der Form

H(z) = h(z) f*x) -~ (=)

geschrieben werden, wobei f;(z) : = 1 bedeuten soll, wenn in (7) kein Linearfaktor
mit dem Exponenten k vorkommt. Weil k-fache Nullstellen von f(z) genau (k — 1)-
fache Nullstellen von f'(x) sind, ist

di(2) : = f(@) n (@) = fo(2) f3=) -+ [N (2)
Seine Berechnung kann mit dem euklidischen Algorithmus bereits in K[z] erfolgen.

z
0@ =12 ) ) o pitw) ®)
dy(z)
ist dann ein Polynom aus K[x], das die gleichen Nullstellen wie f(z) besitzt, aber jede
nur mit der Vielfachheit 1.
Auch die Faktoren f;(z) kénnen durch Rechnungen in K[z] bestimmt werden. Sei

némlich

do(2) : = f(z),
di@) :=f@)nf@n-nfiz)  @E=1,..,t-1),
dyz):=1.



"Dann ist
4ie) = fra@ @) - (@ € Kla] (1 = 0,1t = 1),
0@ =28 _ f) o) D € BB (=100
i(x)

und also

fi(=) = L) €Kzl (=1,....,t—1),
Gi+a(2)
fi(@) = q(=) € K[z].
Besitzt f(z) € K[z] mehrfache Nullstellen, so kann man also deren Bestimmung
durch Rechnungen in K[z] auf die Bestimmung der Nullstellen von Polynomen
kleineren Grades zuriickfiihren.

14.3.3. Sei K ein Korper und f(z) € K[z] ein Polynom des Grades n. Nach Satz 1
besitzt f(z) in jedem Erweiterungskérper von K hichstens » Nullstellen. Ein Polynom
n-ten Grades, dessen Nullstellen die (nicht notwendig paarweise verschiedenen)
Elemente a,, ..., a, sind, ist

(=) @ — ) (@ — ).
Haben die Polynome
f@) =ao +az + - + a,2*  (ay +=0),
9@) =by+ bz + - + bt (b +0)
aus K[z] dieselben n Nullstellen, so sind diese auch Nullstellen von

d(z) = b,f(z) — aug(x).

Da aber der Grad von d(x) hochstens n — 1 betrigt, muB d(x) das Nullpolynom
und daher

o(@) = 2 flz)
a,

sein, d. h., f(z) und g(z) sind in K[z] assoziiert.

Wir verallgemeinern jetzt die Problemstellung und fragen nach der Existenz von
Polynomen aus K[z], die an n verschied vorgegeb Stellen «,, ..., xs € K
vorgeschriebene Werte f,, ..., B, € K besitzen. Hat ein Polynom f(z) € K[z] diese
Eigenschaft, so auch f(z) + g(x) € K[z], wobei g(z) ein beliebiges Polynom aus K[z]
hezeichnet, fiir das g(x;) =0 (§ =1, ..., n) ist. Es gibt aber hichstens ein Polynom
f(z) € K[z] mit einem Grad < » — 1, das die Bedingungen

fa) =8 (E=1,...,n)
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erfiillt. Gilt nimlich auch fiir das Polynom f(z)< K[z] mit dem Grad <7 — 1
fa)y=8 (G=1,..,2),

80 ist f(x) — f(x) € K[z) als Polynom eines Grades < » — 1 mit wenigstens » Null-
stellen das Nullpolynom und also f(z) = f(z).

Da der Grad von

Biim (@ — o) -+ (T — &ic) (B — &isa) -+« (& — )
(o — ory) »+o (o0 — obimg) (65 — OKigg) =+ (06 — xa)

€Kz (@(G=1,...,m). (9)

gleich » — 1 ist und
hilo) =1, ki) =0 (@ +k)
gilt, ist der Grad von
Uz) : = pila(®) + Boha(@) + -+ + Baka(2) € K[2] (10)
héchstens n — 1, und es ist
o) =8 (E=1,...,m).
Damit ist der folgende Satz bewiesen:

Satz 4. Bezeichnet K einen Korper und xy, ..., xy paarweise verschiedene, B, ..., B
beliebige Elemente aus K, so gibt es in K[x] genau ein Polynom l(x), dessen Grad n — 1
nicht ibersteigt und fiir das ¥o;) = ; (i = 1, ..., n) gilt.

Die Aufgabe, ein Polynom zu finden, das an vorgegebenen Stellen bestimmte Werte

annimmt, tritt bei der Interpolation von Funktionstafeln auf. (10) heiBit in Verbin-
dung mit (9) Lag he Interpolationsformel. Sie beschreibt im Fall n = 2 die

Y !

lineare Interpolation, welche hiufig bei der Benutzung von Tafelwerken ange-
wendet wird.

14.4. lrreduzibilititskriterien

Es bezeichne I einen Integrititsbereich mit Einselement und f(z) ein Polynom posi-
tiven Grades aus I[z]. Gesucht werden Methoden, mit deren Hilfe in endlich vielen
Schritten entschieden werden kann, ob f(z) in I[z] irreduzibel ist.

Wir beschrinken uns auf den Fall, da8 I der Integrititsbereich Z der ganzen
Zahlen ist und die Koeffizienten von f(z) € Z[«] teilerfremd sind. Hat f(x) den Grad
m > 0 und ist f(z) als Produkt zweier Polynome positiven Grades aus Z[z] darstell-

bar, so hat einer der Faktoren, er werde mit g(x) bezeichnet, einen Grad < % Sei
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r diejenige ganze Zahl, fiir welche r < % < r + 1 gilt. Dann betrachte man r + 1

paarweise verschiedene Zahlen «y, «y, ..., x, aus Z. Weil g(z) | f(x) angenommen
wurde, ist

glexi) | fos) (t=0,1,...,7).

f(«;) besitzt nur endlich viele Teiler ¢;,, @iz, ..., @y, in Z. Daher gibt es zu jedem
$1€10,1,...,r} fiir g(a;) nur ¢; € N* Moglichkeiten. Insgesamt gibt es also in Q[z]
nur tyf, - - ¢, Polynome, die alsg(x) in Betracht kommen (vgl. 14.3., Satz 4). Sie kénnen
mit Hilfe der Lagrangeschen Interpolationsformel gewonnen werden. In endlich
vielen Schritten kann iiberpriift werden, ob sie Teiler von f(z) sind. Ist keines dieser
Polynome ein Teiler von f(z), so ist f(z) irreduzibel in I[z]. Wenn aber f(x) durch
eines der Polynome teilbar ist, gibt es bereits in Z[z] eine Zerlegung von f(z)
(vgl. 14.2., Satz 3).

Dieses Verfahren von KRONECKER (1823 —1891) verwendet nur folgende Tat-
sachen: Z enthilt unendlich viele Elemente (namlich zu beliebigem m € N* mehr als

% Elemente), jedes von 0 verschiedene Element von Z besitzt nur endlich viele

Teiler, die in endlich vielen Rechenschritten bestimmbar sind. Daher lassen sich die
Uberlegungen auf jeden Integritiatsbereich I mit diesen Eigenschaften iibertragen.

Es ist eine groBere Anzahl von Irreduzibilititskriterien (d. h. hinreichenden Bedi fir die
Irreduzibilitdt von Polynomen entwickelt worden. Wir beweisen als Beispiel den

Satz 1 (Kriterium von E N). Gibt es eine solche Primzahl p € N*, dapf fir die Koeffs-
zienten des Polynoms

) f(x) = ag + ayz + -+ + apa™ € Z[7]
die Bedingungen

pramr A plainpifa, )
i€(0.1,0..m—1)

gelten, so ist f(z) in Q[z] irreduzibel.
Beweis. Wiire f(z) reduzibel, so giibe es Polynome

4 g(z) = by + byz + -+ + b2’ € Q[z] b +0, r>0)
un
hz) =y + €47 + -+ + cx* € Qz] (¢s+0, 8>0),
fz) = g(x)h(z)
gilt. Es kann sogar g(z) € Z[z] A h(z) € Z[z] angenommen werden (vgl. 14.2., Satz 3). Aus
@y = bycy und Plagapita,
folgt, daB genau eine der Zahlen by, ¢, durch p teilbar ist. Es sei 0.B.d.A. p | b,. Da p ¥ am, kénnen

nicht alle b; (§ = 0, 1, ..., r) durch p teilbar sein. Es gibt also einen Index k < r < m mit der
Eigenschaft

PlooAplbya-ap by aptby. (2)

fir die
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Es ist
@ = boeg + bicpy + -+ + bpa6y + byty. 3)

Da wir bereits wissen, daB p } c,, folgt aus (2) und (3) p ¥ a,. Weil & < m ist, widerspricht das der
Voraussetzung (1).

Beispiele.

1. Ist a € Z und gibt es eine Primzahl p, fiir die p |a A p* 4 a gilt, 80 ist z™ + a (m ¢ N*) in Q[z]
irreduzibel. X

2. Als p-tes Kreisteil I bezeichnet man

gopoty

Fplo)i= 2=l =2t ba it (p Primash),

Es ist in Q[z] irreduzibel, denn wiire es zerlegbar, so miBte auch

APt s (B g P ?
B+ 0 = =1 @) (2 (,2)
zerlegbar sein. Aus

i((l..ﬁﬂ—l) p| (f) " Pt*(z’ ? 1)

folgt nach Satz 1 aber die Irreduzibilitit von Fp(z + 1).

14.5. Kérpererweiterungen

Wir wollen hier von einem beliebigen Korper K ausgehen und dazu Erweiterungs-
kérper mit gewissen vorgegebenen Eigenschaften konstruieren.

14.5.1. Durch Adjunktion einer Unbestimmten z erhélt man aus K den Inte-
grititsbereich K[z] aller Polynome mit Koeffizienten aus K (vgl. 14.1.) Es sei

K(z) : = Quotientenkérper von K[z].
K(z) besteht aus allen Quotienten

f@) _ 8+ a1z + a2 + -+ + auz™

preial v e gy = LA
von Polynomen aus K[z] mit vom Nullpolynom verschiedenen Nenner und wird
Korper der rationalen Funkti in der Unbesti z mit Koeffizienten aus K
genannt.!) Der Korper K(z) ist bis auf Isomorphie durch K[z] und daher sogar schon
durch K festgelegt. Nach 13.6. enthilt er einen zu K isomorphen Teilkorper. Identi-
fizieren wir diesen mit K, so erscheint K(z) als Erweiterungskorper von K.

a,
Yy Im Unterschied zu K(x) bilden aber die rationalen Funktionen r:a +» r(a):= 'f—(;)) (a e K)

mit Koeffizienten aus K iber dem Definitionsbereich K beziiglich der iiblichen Addition und Multiplika-
tion (vgl. 14.1.) keinen Kérper. Beispielsweise gibt es zur identischen Funktion i:a+ a (a € K)
keine beziiglich der Multiplikation inverse Funktion 4: a  &(a) (a € K), denn fiir alle @ € K miBte
ak(a) = 1 scin.
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Die hier skizzierte Konstruktion, die zu dem Kérper K den Korper K(z) der
rationalen Funktionen in z mit Koeffizienten aus K liefert, heiBt Adjunktion von z
zu K (und da das Resultat ein Kérper ist, genauer: Kérperadjunktion). Weil nur ein
Element adjungiert wurde, spricht man von einer einfachen Korpererwesterung, und
da dieses El t beziiglich K t dent ist (vgl. 14.1.), wird K(z) eine einfache
transzendente Erweiterung von K genannt.

Definition 1. Seien L und L’ Erweiterungskorper des Korpers K. Dann heift
L dquivalent L' beziiglich K :< ein Isomorphismus ¢ von L auf L’ mit A p(a) =a
existiert. aek

Bezeichnen K(x) und K(#) einfache transzendente Erweiterungen von K, so ist
die Abbildung
9: @) =ag + 0,z + - + ap2™ > [(§) =ag + @y + - + 6n8"
(H(x) € K[z]) ein Isomorphismus von K[z] auf .K [#]. Daher ist auch
K(z) = K(8),

und ¢ léBt sich zu einem Isomorphismus der Quotientenkorper fortsetzen. Es ergibt
sich also:

Je zwei einfache transzendente Erwesterungen von K sind dgquivalent. (1)

14.5.2. Es sei jetzt p(z) € K[] ein in K[x] irreduzibles Polynom mit einem Grad

n > 1. K[z] ist Hauptidealring (vgl. 14.2., Satz 1, 13.5., Satz 6) und daher p(z) Prim-

element von K[z] (vgl. 13.5., Satz 3). Dann ist (p(z)) ein Primideal von K[v] und

K[z]/(p(z)) sogar ein Korper (vgl. 13.5.1.). Da alle Polynome, die sich von p(z) nur

um einen konstanten Faktor = 0 aus K unterscheiden, dasselbe Ideal erzeugen,

konnen wir o. B. d. A. annehmen, daB p(z) den hichsten Koeffizienten 1 hat. Sei

P(a) =" + Gy 2" + - + a. @)

Zu jedem f(z) € K[x] gibt es eindeutig bestimmte Polynome ¢(x) und r(z) in K[z],
so daB ’

fz) = ¢(®) p(a) + r(z), () =0V Gradrx) <n

gilt. Daher liegen f(z) und r(z) in derselben Restklasse modulo (p(z)). Weil in keiner
Restklasse modulo (p(z)) zwei verschiedene Polynome, deren Grad < n ist, enthalten
sein kdnnen, liBt sich also jede Restklasse modulo (p(a:)) durch genau ein Polynom

bo 4 byx + «- + by gz € K[z]
repriisentieren, dessen Grad hochstens (n — 1) betriigt. Beispielsweise liegen

&% = (2" 4 By + - o B) + (—Gaegz™ = oo —ay) ®
und —a, ;@*! — ... — @,z — a, in derselben Restklasse modulo (p(z)).



14.5. Kérpererweiterungen 257

f(x) bezeichne die Restklasse von f(z) € K[z] modulo (p(z)). Jedes Element aus
K| [z][(p(z)) kann auf genau eine Weise in der Form

b+ bix + o+ + Dpg@™ L =By + BiZ + o+ + by g7
geschrieben werden. Fiir zwei Elemente des Restklassenkérpers gilt also
by + 07 4+ b B =T+ EF + o+ G A b =7 (4)

i€{0,....8—1
Ferner ist
B0+ biZ + -+ + BpiZ ) + (o + EF + o0+ Cui®
= (B + %) + (b1 + €1 F + =+ + (Bpy + Ep1)T 1. (6)
Aus (3) folgen die Beziehungen
™ = —a, T — . —gEtt — gt (k=0,1,...). (6)

Daher kénnen in
m@) 1= (be + BiZ + -+ + by @0 + &F + -+ + CpaZ™Y)
= Beto + (Bifo + BeE1) Z + - + bp1TagZ™? 0]

die Potenzen von Z, deren Exponenten n — 1 iibersteigen, schrittweise durch Poten-
zen von Z mit kleineren Exponenten ausgedriickt werden, bis die Darstellung des
Produktes in der Form

@) =do + & + -+ + dpyz? )

erreicht ist. Zu f(z) & 0 aus K[z]/(p(z)) kann das inverse Element folgendermaBen

bestimmt werden:
Da p(z) 4 f(x), sind p(x) und f(z) teilerfremd. Durch den euklidischen Algorithmus
lassen sich in K[z] Polynome g(x) und k(x) berechnen, fiir die

(=) g(=) + p(x) k(z) =1 (8)
gilt. Daher ist 9@) in K[z]/(p(x)) zu f(z) invers.
Da p(z) = 0 ist, bedeutet (2)
't Gy Z b+ BT+ =0, ©)
Der eben konstruierte Kérper K[z]/(p(z)) enthilt einen zu K isomorphen Teil-

korper K, bestehend aus allen Restklassen b (b € K). Wir bilden die Menge der
Elemente

(Et2)/ (pt=)) \E) u K,

d. h., wir ersetzen in K [z]/(p(z)) alle Restklassen b durch die Vertreter b (b ¢ K).
Ersetzen wir dann auch in allen Gleichungen, die die Operationen in K[z]/(p(z))

beschreiben, die auftretenden Elemente b aus K durch ihre Vertreter b aus K,
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8o werden durch diese neuen Gleichungen Operationen in (K[z]/(p()) \ K) u K
erklirt, beziiglich derer diese Menge offensichtlich ein zu K| [z]/(p(z)) isomorpher Er-
weiterungskorper von K ist. SchlieBlich wollen wir noch des Element Z dieses Korpers
mit ¢ und den Korper selbst mit K(#) bezeich Jedes El t aus K(#) kann
dann auf genau eine Weise in der Form

Do+ b+ 0,084+ 8" (b eK; §i=0,1,...,n —1)

angegeben werden. Die Rechnung in K (#) wird durch (4), (5), (8), (7), (7) beschrieben,
wenn darin ¢ an die Stelle von Z gesetzt und die weiteren Querstriche weggelassen
werden. Die Gleichung (9) bedeutet in K (&)

"+ @y 9" 4 oo a0 + a2, =0. (10)
# ist also eine Nullstelle von p(z).

Definition 2. Sei L ein Erweiterungskirper des Korpers K und 4 € L. Dann
heiit

A algebraisch bezilghch K :& 2 ist Nullstelle eines Polynoms f(z) 4 0 aus K[z].
Ist ein Element 4 € L nicht algebraisch beziiglich K, so folgt aus jeder Gleichung

“ul-+an-11'_l+"‘+“|1+¢o=°( A a.'eK)

1€{0,....m)

die Beziehung a, = gy = +++ = a9 = 0, d. h., 4 ist transzendent beziiglich K (vgl.
14.1.).

Beispiel. }2 € R ist algebraisch beziiglich Q, da }/2 Nullstelle von z* — 2 € Q[z]
ist. e und # sind transzendent beziiglich Q. Die Transzendenz von e wurde 1873 durch
CraBLES HermiTE (1822—1901), diejenige von n 1882 durch FERDINAND VoN
LINDEMANN (1852—1939) bewiesen. Wir gehen hier nicht auf die Beweise ein.

Die Gleichung (10) besagt also, daB & algebraisch beziiglich K ist. Daher heiBt
K(0) algebraische Erweiterung von K.

Die skizzierte Konstruktion, die zu dem Kérper K und dem irreduziblen Polynom
p(x) € K[z] den Korper K(#) liefert, heiBt Adjunktion einer Nullstelle von p(z) zu K.
Da nur ein Element adjungiert wurde, nennt man K(#) eine einfache algebraische
Erweiterung von K mit dem definierenden Polynom p(z).

Zwes einfache algebraische Erweiterungen von K mit dem

definierenden Polynom p(z) € K[x] sind dquivalent. (11)

Sind nimlich 4 und ¢’ Nullstellen von p(z), so ist nach unserer Konstruktion

K(9) = K[z)(p(z)) und K@) = K[)/(p()).
Bei diesen I phi tsprechen sich die Elemente von K und die durch sie
repriisentierten Restklassen modulo (p(2)). Ferner entsprechen # bzw. ¢ der Rest-
klasse Z von z. Daraus ergibt sich die Behauptung. Insgesamt liefern unsere Resultate
den folgenden Satz.
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Satz 1. Bezeichne K einen Korper. Zu K gibt es bis auf Aquivalenz genau eine ein-
fache transzendente Erweiterung. Ist p(x) ein in K[z] irreduzibles Polynom, so gibt es
bis auf Aquivalenz genau eine einfache algebraische Erweiterung K(8) mit dem defs-
nierenden Polynom p(z), d. k., in K(8) gilt die Qleichung p(6) =

Beispiel. 2® — 2 ist in Q[z] irreduzibel (vgl. 14.4., Satz 1). Die Elemente der
Erweiterung Q(#) von Q mit der definierenden Gleichung #* — 2 = 0 kénnen in der
Form

bo + bi# + bt (bo, by, b, € Q) »
geschrieben werden. Mit ihnen wird wie mit Polynomen gerechnet, wobei aber die

Gleichung #* = 2 zu beachten ist. Der Teilkorper Q G/E) von R, der aus simtlichen
reellen Zahlen der Form

b+ 6,12 +5(2) G by b€ Q)

besteht, sowie der Teilkérper Q ﬁ (—-l + = }/5) von C,der ausallen komplexen
Zahlen 2 2

b+ 5i(1Z8) + (/28 )" (bo» bubi€ Qb= —> 4> ﬁ)

gebildet wird, sind beziiglich @ dquivalent. Beide Kérper stellen Realisierungen der
durch p(x) = 23 — 2 definierten einfachen algebraischen Erweiterung von Q dar.

14.5.8. Bisher amd wir von einem festen Korper K ausgegangen und haben dazu einfache trans-
dente und einf braische Erweiterungen konstruiert. Die Elemente der entstandenen
Erweiterungskorper sind Quotmntzn von Polynomen in einer Unbestimmten bzw. die Rest-
klassen des Polynomrmgee K[x] nach einem Primideal. Nach Satz 1 sind dies bis auf Isomorphle
auch die einzigen Erwemanmgen der betracht Art. Das Beispiel zeigt jedoch, daB es zu einer
%o gewonnenen Erweltanmg eines gegebenen Korpers in einem bereits bekannten, diesen um-
den Kérper dquivalent Erwelterungen geben kann, deren Elemente nicht Polynom-
quotienten oder Restklassen zu sein brauchen.

Dabher liegt es nahe, einen Kérper L sowie einen darin enthaltenen Teilkorper K zu betrachten
und nach Erwolumngukbrpern von K zu fragen, die in L liegen. Jeden Tellkﬁrper Z von L, der
K umfaBt, nennen wir einen Zwischenkérper von K und L. Bezeichnet M eine beliebige Menge von
Elementen aus L und

8 :={Z2:Z 2 M A Z ist Zwischenkérper von K und L},

80 ist
KM):=N2Z
Ze8

ein M umf der Zwischenkoérper von K und L. Offenbar liegen in jedem Z und daher auch in
K (M) alle diejenigen Elemente von L, die sich durch endlich viele Rechenschritte (d. h. Anwen.
dungen der Operationen von L sowie Bildung der i El te beziiglich dieser C‘ i )
aus den El vonKu Md llen lassen. Diese Elemente bilden aber bereits einen M um-
fassenden Zwischenkorper von K und L, der dann K(M) sein muB. er wollen sagen, daB K(M)
aus K durch Adjunktion (genauer: Kw, djunktion) von M

Da ein Element aus K(M) zu seiner D llung im eben ten Sinn nur endlich viele
Elemente aus M benétigt, gibt es zu jedem Rechenschritt, der in K(M) ausgefiihrt wird, eine
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solohe endliche Teilmenge M’ von M, daB dieser Rechenschritt bereits in dem Teilkorper K(M’)
von K(M) abliuft. Beherrscht man also die Rechnung in allen Kérpern K(M’), die aus K durch
Adjunktion endlicher Teilmengen M’ von M aus K entstehen, so beherrscht man sie auch in
K(M).
Bezeick M’, M” Teil von M, soist K(M’') S K(M’ v M”)und M” S K(M’' v M"),

also
KM (M") S KM vM”).
Andererseits ist £ & K(M’) (M") und M’ v M" & K(M') (M"), also
KM vM"')S K(M') (M").
Aus beiden Beziehungen folgt
K(M' v M") = K(M') (M"),

d. h., die Adjunktion endlicher Mengen kann auf die schrittweise Adjunktion einelementiger
Mengen zuriickgefiihrt werden. Ist M = {«,, ..., «,} eine endliche Menge, 80 sei K(«x,, ..., xy)
:= K({xy, ..., &g}). Fiir ein beliebiges Element # ¢ L betrachten wir die Erweiterung K(#). Die
Menge aller Elemente der Form

f(0) = ay + ay® + - + ayP* (fag, a5, ..., 0} S K; ke N)

bildet einen l‘e;lmtegnﬁtsbemch K[#] von K(8).

Wir versuchen nun, einen Zusammenhang zu den vom ten Erw gen herzu-
mllen, und betrachten daher parallel den Integrité ich K[z] u]ler Polynome in der Unbe-
ten = mit Koeffizi aus K. Durch

f@) =ay + ayz + -+ + agk > f(B) = ag + @B + --- + a,B*

wird ein Homomorphismus von K[z] auf K[#] beschrieben, dessen Kern p aus allen Polynomen
f(z) besteht, deren Bild f(#) = 0 ist. Aus dem Homomorphiesatz fiir Ringe ergibt sich

K(z)/p = K[#.

p ist Primideal von K[z}, denn K[#] ist Integrititsbereich. Weil K[2] Hauptidealring ist, mu8
= K([z] oderp = (0) oder p = (p(x)) sein, wobel p(z) em mK[z] duzibles Polynom P iti
Grulen bezeichnet. Da K[#] als K Integri h nicht der Nullring sein kann,

ist p + K[z). Es bleiben also die Mog| it (0) oder p = (p(z)).

Fall 1. p = (0). In diesem Fall ist die gogobene Abbildung ein Isomorphismus von K[z] auf
K[#]. K(z) bzw. K(#) sind gerade die Quotientenkérper von K[z] bzw. K[#]. Nach 13.6. ist dann

K(#) = K(z).
Es liegt also eine einfache lramemiente Erwesterung von K vor. Mit # wird ebenso gerechnet wie
mit der Unbesti z.d ist ein beziiglich K t tes Element von L.

Fall 2. p = (p(2)). Schon vorn wurde gezeigt, daB in diesem Fall K[z]/p ein Korper ist und

daher
K(9) = K[#] = K[z)/(p(z))-

Aus p(z) — p(#) = 0 folgt, daB & Nullstelle des Polynoms p(z) ist. # ist also ein beziglich K alge-
braisches Element von L und K(#) eine einfache algebraische Erweiterung von K mit dem defi-
nierenden Polynom p(z). Da p(z) durch p nur bis auf Faktoren + 0 aus K bestimmt ist, kann
0.B.d.A. angenommen werden, da8 p(z) den hichsten Koeffizienten 1 hat. Hat p(z) den Grad 1,
80 ist bei dieser Normierung p(z) = z — & und wegen p(z) ¢ K[z] also # ¢ K. Dann ist aber
K(#) = K, d. h., es liegt keine echte Erweiterung vor.
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Durch die angegebenen Konstruktionen wurden also schon alle Mdglichkeiten fiir einfache
Erweiterungen, das sind Korpererweiterungen, die durch Adjunktion einer einelementigen Menge
entstehen, erfaBt.

14.5.4. Sei K ein Korper und f(z) € K[z] ein Polynom des Grades n > 0.

f(z) = h(®) fa(=) -+« (=)

bezeichne die Zerlegung von f(z) in irreduzible Faktoren aus K| [zj (vgl. 14.2.1.). Sind
diese Faktoren simtlich linear, so liegen alle Nullstellen von f(z) in K. Anderenfalls
sei Grad f,(z) > 1. Dann gibt es einen Erweiterungskérper K(x,) von K, der wenig-
stens eine Nullstelle a, von f,(z) enthilt. Die Zerlegung von f(z) in irreduzible Fak-
toren aus K(«,) (2] sei

f@) = (& — &) gs(2) -+~ g,(7)
(vgl. 14.3.1). Falls noch nicht alle Faktoren den Grad 1 haben, adjungiere man zu

K(a,) eine Nullstelle «, eines nichtlinearen Faktors. In K(«,) («;) [#] zerfillt dann
f(x) in das Produkt irreduzibler Faktoren

1z) = (2 — &) (@ — &g) () ==+ Be(2).-

Hat hierin noch ein Faktor einen Grad > 1, so kann man das geschilderte Verfahren
fortsetzen und erhilt spitestens rach » — 1 Schritten einen Erweiterungskorper Z
von K mit der Eigenschaft, daB f(z) in Z[z] in ein Produkt von Linearfaktoren zer-
faillt:

f@)=a@@—a) (@ —ar)--- (& —an) (@€ K).

Definition 3. Seien Z 2 K Koérper und f(z) € K[z] ein Polynom positiven
Grades. Z heiBt genau dann Zerfillungskorper (im weiteren 8inn) von f(z), wenn
f(z) in Z[z] in Linearfaktoren zerfllt. Genau dann heiBt Z kleinster Zerfillungskir-
per von f(z), wenn kein echter Teilkorper von Z Zerfillungskérper von f(x) ist.

Satz 2. Ist K ein Korper und f(z) € K[x] ein Polynom des Grades n > 0, so gibt es
einen kleinsten Zerfillungskorper Z von f(z).

Beweis. Nach den obigen Uberlegungen gibt es jedenfalls einen Zerfillungskorper
Z von f(z). Der Durchschnitt aller in Z enthaltenen Zerfillungskorper ist dann ein
kleinster Zerfillungskorper von f(z).

Je zwei kleinste Zerfillungskérper von f(z) € K[x] sind beziiglich K dquivalent.
Dieser Eindeutigkeitssatz, dessen Beweis (vgl. etwa Kochendorffer: Einfiihrung in
die Algebra, 4. Aufl., 1974, S. 168) wir hier ibergehen wollen, besagt, daB in jedem
Zerfillungskorper von f(z) bei der Zerlegung von f(z) in ein Produkt von Linear-
faktoren die gleiche Anzahl verschiedener Linearfaktoren und die gleichen Vielfach-
heiten dieser Faktoren auftreten, die Zerlegung von f(z) in Linearfaktoren also im
wesentlichen in allen Zerfillungskorpern dieselbe ist.
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14.6. Polynome in mehreren Unbestimmten

14.6.1. Es sei I ein Integritdtsbereich mit Einselement. Durch Adjunktion der Un-
bestimmten z, entsteht daraus der Polynomring I[z,]. Hierzu kann man erneut das
in 14.1. geschilderte Verfahren anwenden (vgl. 14.1., Satz 1) und erhilt nach Ad-
junktion der Unbestimmten z; den Polynomring I[z,] [2,], den wir kiirzer mit I[z,, ,]
bezeichnen wollen. Adjungiert man weiter der Reihe nach die Unbestimmten z,,
T4y +.+, Ty, 80 erhilt man den Polynomring

I[z,, ..., zs) : = I[zy, ..., Za-y] [Za) (n — 1€ N*).
Seine Elemente heiBen Polynome in den Unbestimmien ,, Zs, ..., Z5 und haben die
Form

f(@1, Zay o0y ) = Z Bisiyin PAC XTI AN (1)
1igeeeetn
wobei die Koeffizienten a; ;, ;, € I sind und iiber endlich viele n-Tupel von Expo-
nenten iy, 1y, ..., i, aus N summiert wird.

Es sei L ein I umf; der Integrititsbereich. Setzt man in der Gleichung (1) «; € L an die
Stelle von z; (s = 1,2, ..., n), 8o wird durch (ay, a, ..., &,) > (&), &g, ..., &,) eine Abbildung
von L X L X --- X L in L beschrieben, dié man ganze rationale Funktion von n Arg iber
dem Definitionsbereich L x L X --- X L nennt. Wie in 14.1. kann gezeigt werden, daB diese
Funktionen einen kommutativen Ring bilden, der im Fall eines unendlichen Integrititsbereiches
I (z. B. Zahlenbereich Z, Q, R, C) zum Polynomring I[z,, zy, ..., Z,) isomorph ist.

Aus 14.1. ergibt sich, da8 I[x,, ..., z,] ein Integritidtsbereich ist. Sein Quotienten-
korper, dessen Elemente also die Gestalt

f@1 oeny 24)
g(xyy 00, Tp)

haben, wobei f(z,, ..., z,), g(®), .--, Zs) € I[®y, ..., Z,] und g(z,, ..., z,) = 0 ist, wird
durch I(z,, ..., z,) bezeichnet und wegen des Zusammenhanges der Polynome mit den
ganzen rationalen Funktionen meistens Korper der rationalen Funktionen (von n
Unbestimmten) iiber dem Koeffizientenbereich I genannt.

Die Exponentensumme %, + --- + %, heiBt Grad des Gliedes ‘a;;, ;. z,"z" - z4
Unter dem Grad des Polynoms f(z,, z,, ..., %,) versteht man den groliten Grad,
welcher bei den Gliedern von f(z;, 2,, ..., 2,) auftritt. Wie in 14.1. wird dem Null-
polynom kein Grad zugeschrieben. Eine Form oder ein homogenes Polynom ist ein
Polynom, dessen simtliche Glieder den gleichen Grad haben.

14.6.2. Definition 1. s(zy,..., 2,) € I[,, ..., z,] heiBt symmetrisches Polynom
:& 8(%y, ..., Z,) bleibt bei jeder Permutation der Unbestimmten z,, ..., z, ungein-
dert.
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Beispiele sind:
die Potenzsummen
A2y, s Ta) it b 2k (£=0,1,2,..0),
die Diskriminante
82y, oeey X)) =T (2; — 2)* HEk=1,..,n)
i<k
sowie die sogenannten symmetrischen Grundfunktionen
Oy(Tyy eey Zy) i =2y + 2y + -+ + 2y,
03T, oes Tp) i =TTy + BTy + o TpaTa = Y T,

0<ii<hisn

die allgemein durch
0Ty, ovey Ty) 1= Py i Z;, o T, k=1,2,...,n) (2)
0<hi<h<-<irSn
gegeben sind, wobei die Summe iiber alle (:) moglichen Indexsyst: zu erstreck
ist.

Sei I ein Integrititsbereich mit Einsel t, @ der Quotientenkérper von I und
K 2 Q Zerfillungskérper des Polynoms

(@) =" + 8y @™ + - + a2 + ag € I[2]. &)
Dann gibt es also Elemente «, ..., «, in K, so daB
fl@) = (2 — ;) (& — &3) -+ (z — &) 4)

gilt. Multipliziert man dieses Produkt aus, ordnet nach Potenzen von z und ver-
gleicht die Koeffizienten gleicher Potenzen von z in (3) und (4), so ergeben sich
folgende Beziehungen zwischen den Koeffizienten und den Nullstellen von f(z), die
bequem durch die symmetrischen Grundfunktionen ausgedriickt werden konnen:

Gpey = (—1) o4&y, .oy ag) = (—1) (&1 + &3 + +-+ + o),
Gpy = (—1) 0y(y, -0, ap) = (—1)% (01002 + 01005 + =+ + Ka-y0ta),

Gas = (—1)¥ aa(y, .., @n) k=1,...,n), ®)

o = (—1)" oa(@r, -ver 2p) = (—1)" 03 -+ iy

Die Polynome o;(z,, ..., ,) sind grundlegend fiir alle symmetrischen Polynome,
denn es gilt
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Satz 1 (Hauptsatz iiber symmetrische Polynome). Zu jedem symmetrischen
Polynom )
’(zlv ey zl) € I[zl: "'yx-]
gibt es genau ein Polynom
f@, oeey @) € X[y, oo0,y 7]
80 daf
8(1, -+er Ta) = f(01(1, 205 Tp), +-ns a1, -, Z)) )
ist.
Beweis. Seig € N Ag > 1. Wir betrachten symmetrische Polynome

8(21, cney zn) = Z ai..‘.i.zl"' A xui'y

deren Grad < g ist. Daher sind nur solche Koeffizienten a; _;, =+ 0, fiir deren
Indizes 0 < iy < g (k =1, ..., n) gilt. Die Menge dieser n-Tupel von Indizes wird
durch

-
(i ees i) > Xigg™t
k=1

offenbar eineindeutig in die Menge aller nichtnegativen ganzen Zahlen < g* ab-
gebildet (Darstellung ganzer Zahlen in einem Zahlensystem mit der Grundzahl g).
Das Bild eines n-Tupels bezeichnen wir als seine Nummer. Die groBte Nummer eines
n-Tupels mit a;,_;, = 0 aus s(z,, ..., ) sei k.

Durch vollstindige Induktion nach b wird nun die Existenz von Polynomen
f(@,, ..., z,) mit der Eigenschaft (6) gezeigt. ’

Ist O die groBte auftretende Nummer, so folgt ¢, = .- = i, =0 und daher
8(xy, ..., Tp) == @Gq_¢. In diesem Fall ist also

f@1, ooy za) i=ag_,

ein Polynom aus I[x;, ..., x,], fiir das (8) gilt.

Wir machen die Induktionsannahme, daB simtliche symmetrischen Polynome, in
denen nur Koeffizienten mit Indexnummern < k von 0 verschieden sind, gemi8 (6)
durch die symmetrischen Grundfunktionen ausgedriickt werden konnen. Es sei dann
8(zy, ..., x,) ein symmetrisches Polynom, das nur von O verschiedene Koeffizienten
mit Indexnummern < % enthilt. Ist (3, ..., t,) das n-Tupel mit der Nummer %, so
muB ¢, = 44y, (k = 1,...,n — 1) sein, denn wire 3, < i;,,, so hitte das durch Ver-
tauschung voni, mit s, aus(s,,...,1,) entstehende n-Tupel eine Nummer > A, und der
zugehorige Koeffizient miiite 0 sein, withrend er wegen der Symmetrie vons(zy, ...,x,)
gleicha; ; = 0 ist.

Offenbar ist

STy, ey Ra) 1= 8y, e, Ta) — @i, 00T Py e gl g ™
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ein symmetrisches Polynom, wobei o; (i = 1, ..., n) jeweils fiir o;(z,, ..., z,) steht.
Der Grad von o; ist 1. Weil

16 — 8g) + 2082 — §3) + - + (0 — 1) (5, 1 — 14) + 7iy =k21€. <g
und Grad s(z,, .:.,z,.) < g ist, bat auch s*(z,,...,z,) einen Grad < g. In einem
Produkt von o,-Faktoren entsteht das Glied 5= 0, welches die gréBte Indexnummer
besitzt, durch Multiplikation derjenigen Glieder aus den Summendarstellungen (2)
von oy (k =1, ..., ) mit den niedrigsten Indizes iy, ..., %, also derGlieder z, --- 2,
(k =1, ..., n) miteinander. Fiir das in (7) subtrahierte Produkt ist dies das Glied

@iy T EE) T (@ e Ty (7 e )= @, T 2
Daher hat jeder Koeffizient 5 0 in s*(z,, ..., ,) eine Indexnummer < k. Nach der
Induktionsannahme gibt es ein Polynom f*(z,, ..., 2,) € I[z,, ..., %,] fiir das

8421, +e0y Tp) = [¥(01, ..., 04)
gilt. Nach (7) ist dann

3y, eevs Ty) = [¥(01y oer, On) + @iy 0,01 Oy <o ginain g

eine Darstellung von 8(z,; ..., z,) durch ein Polynom in den symmetrischen Grund-
funktionen mit Koeffizienten aus I.
Wir beweisen nun noch die Eindeutigkeit der Darstellung. Wiren

8(2y, ooy Tp) = fl0y, ..., 04) = gloy, -+, 05)

zwei Darstellungen von s(z;, ..., 2,) durch Polynome in den symmetrischen Grund-
funktionen, so wire

Ho1,-ees00) — (01, .o0s 04) = d(0y, ..., 0p) = D(y, ..., T)
das Nullpolynom in den z,, ..., 2,. In dem Potenzprodukt
oy gy "‘ﬂf.‘:‘f" o, B2 =4, 20)

ist, wie wir oben gesehen haben, z,"z," - - - z,i* das von 0 verschiedene Glied mit der
groBten Indexnummer. Verschiedene Potenzprodukte haben also auch verschiedene
Glieder mit groBter Indexnummer. Daraus folgt, daB simtliche Koeffizienten von
d(ay, ..., 0,) gleich 0 sein miissen und also

(o1, +.e; 04) =gloy, -, 04)

gilt. Anderenfalls bestinde nimlich d(o,, ..., 0,) aus einer Summe von Potenz-
produkten der g, ..., g, mit Koeffizienten == 0. Von diesen Potenzprodukten lie-
ferte eines einen Summanden c;,..;,2," --- , mit einem Koeffizienten ¢;,_;, + 0
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und maximaler Indexnummer. Er kénnte nach der vorstehenden Bemerkung nicht
gegen einen anderen Summanden fortfallen und D(z,, ..., z,) also nicht das Null-
polynom sein.

Der Beweis liefert auch sofort ein Verfahren, um die Darstellung eines symme-
trischen Polynoms als Polynom in den symmetrischen Grundfunktionen mit Koeffi-
zienten aus I tatsichlich zu finden. Wir zeigen das am Beispiel

8(Tyy ooey Ty) = 2 + 23° + 75

Der Grad dieses Polynoms ist 3. Daher geniigt es, g = 10 zu wihlen. Die Index-
nummern der Summanden sind dann

3 3.10®* = 300,

z,3: 3.10 = 30,

EAH 3.10°= 3.
Nach (7) ist

8 =8 —1.0%0,"%,° =z + 2 + 2’ — (& + 2 + z)°
= —32,%, — 32,%%; — 37,37, — 32,2, — 37,7, — 37,7y} — 6xyozs.
Unter diesen Summanden hat —3z,%, die groBte Indexnummer. Sie betriigt
2.10%1 4 1.10* = 210.
Wenden wir das Verfahren auf s* erneut an, so erhalten wir nach (7)
§** = g* — (—3) 0,*20,1%,° = 8* + 30,0,
=8* + 3(z) + 2, + 25) (2122 + 2,25 + TaT5)
= 32,77,
=30,.
Daher ist

8 = 8* 4 ¢, = 8** — 300, + 0;?
= 0,® — 30,0y + 303.

14.7. Fundamentalsatz der Algebra

Nach 14.1. ist C[z] isomorph zum Ring der ganzen rationalen Funktionen mit Koeffi-
zienten aus C. Zur Untersuchung der Elemente dieses Ringes stehen Hilfsmittel der
Analysis zur Verfiigung, durch die spezielle Eigenschaften des Kérpers C ausgenutzt
werden konnen.
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‘Wir werden zuerst einige Aussagen iiber solche ganzen rationalen Funktionen und
iiber Nullstellen von Polynomen aus C[z] beweisen.

Hilfssatz 1. Sei
gx) =az 4 -+ + apa™ € C[z],  p:=max {lay],..., |au|}
und ¢ eine beliebige positive reelle Zahl. Dann gilt fiirz € C:

2] < —— = lg(@)] <e.
e+ p

Beweis. Es ist
9@ < lay Jx] + «-+ + [am] |2™ ”
zll

1—
S a2l 4zl + e 2™ = plal @

Im Fall [z| < = =< 1 folgt daraus
e+ u

€
< pyp—=E¢.
1 — Jai u

lg(@)] = plx|

Die zu a € C konjugiert komplexe Zahl werde mit @ bezeichnet. Dann gilt a + b
=& + b und ab = @b. Ist f(z) € C[x], s0 sei f(z) dasjenige Polynom, welches ent-
steht, wenn in f(z) jeder Koeffizient durch die konjugiert komplexe Zahl ersetzt wird.

Hilfssatz 2. Sei f(x) € C[z). Dann ist F(z):= f(z) f (%) € R[z], und es gilt:

f(z) besitzt eine Nullstelle aus C < F(x) besitzt eine Nullstelle aus C.

Beweis. Offenbar hat f(z) f(x) reelle Koeffizienten, wenn f(z) das Nullpolynom ist
oder den Grad 0 besitzt.
Induktionsannahme: Ist der Grad von f(z) < m — 1,80 hat f(%) f(z) reelle Koeffi-
zienten. Es sei
f(@) = apz™ + g(2) (@n +0AGradg(x) = m — 1)

ein Polynom vom Grade m. Dann ist

F(z) = {(z) (@) = (anz™ + 9(2)) (Znz™ + ()
= pTp 7" + (Fng(2) + auf(2)) 2™ + g(a) §(2).
Die Koeffizienten gleicher Potenzen von z in @,g(x) und a,g(r) sind zueinander
konjugiert komplexe Zahlen. Daher hat @,g(x) + anf(z) reelle Koeffizienten. Weil

@pdm € Rund nach der Induktionsannahme g(z) 7(z) € R(z] ist, besitzt f(z) f(z) reelle
Koeffizienten.
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Ist « € C und f(x) =0, so auch F(x) = f(«) f(x) = 0. Ist umgekehrt « € C Null-
stelle von F(z), so ist « oder & Nullstelle von f(z). Aus F(x) = f(x) f(x) = 0 folgt
nimlich f(x) = 0 oder f(x) = 0. f(x) = 0 ergibt wegen 0 = 0, da8

fo)=T@ =@ =0
ist.

Hilfssatz 3. f(z) € R[z] A 2 ¥ Grad f(z) = an(a) =0.

a€l

Beweis. 0.B.d.A. kann f(z) mit dem hochsten Koeffizienten 1, also in der
Form
f@) =2 + @pyz™ k-t @z +a,  (24m)
angenommen werden. Sei
g(t) 1= apyt + --+ + @™ + agt™
und .
# 1= max (gpy, .-, |Bo]} -
Dann ist

= 1ot ) o (104

Nach Hilfssatz 1 gilt:

1 1 1
- < — - 1,
x<l+p=)g(z)<

]zl>|1+,u|=>l+g(%)>0.
Da m ungerade ist, folgt:
z<—(1+p)=>f2)<0; x>1+4p=>fz)>0.

Als stetige Funktion (vgl. MfL, Bd. 4) besitzt f(z) daher wenigstens eine reelle
Nullstelle « aus dem Intervall [—1 — g, 1 + zJ.

Nach diesen Vorbereitungen beweisen wir den folgenden Satz.
Satz 1 (Fundamentalsatz der Algebra). Jedes Polynom positiven Grades aus C[x]
besitzt in C mindestens eine Nullstelle.

Beweis. Da die Multiplikation mit einem konstanten Faktor == 0 die Nullstellen
nicht beeinfluBt, kann o. B. d. A. angenommen werden, da8 der hichste Koeffizient
des Polynoms 1 ist. Nach Hilfssatz 2 geniigt es, den Satz fiir Polynome mit reellen
Koeffizienten zu beweisen. Es sei

f@) = 2% + Gp@™ oo a7+ 1
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ein beliebiges Polynom positiven Grades mit Koeffizienten aus dem Kérper der
reellen Zahlen R. Nach 14.5.3. gibt es einen Erweiterungskérper L von R, der simt-
liche Nullstellen von f(x) enthélt. In L{x] zerfillt.f(x) daher in Linearfaktoren

@) =(x — o) (8 — &g) -+ (x — &tm).

Wir werden zeigen, da8 mindestens ein «; im Korper der komplexen Zahlen C liegt.
Der Grad m von f(z) kann in der Form
m =2 CTeENA2}w
geschrieben werden. Wir filhren unseren Beweis nun durch vollstindige Induktion

nach . Im Fall | = 0 ergibt sich aus Hilfssatz 3, daB C eine (sogar reelle) Nullsbel]e
von f(z) enthilt.

Induktionsannehme: Jedes Polynom aus R[z], dessen Grad nicht durch 2 teilbar
ist, besitzt in C wenigst eine Nullstelle. Wir betrachten nun das Polynom
() € R[z] vom Grade m = 2'u (I € N*) und bilden mit Hilfe einer beliebigen reellen
Zahl ¢ im Zerfillungskorper L die Elemente

B =iy + ol +og)  (af € 1L, eeeyml AG < ).

Diese

m(m — 1)

2 .

Elemente sind Nullstellen des Polynoms

y($) =H(z—ﬁil) (5»7'6{1,--~yml/\"'< i)
vom Grade 2'-1v, dessen Koeffizienten durch die symmetrischen Grundfunktionen
der g;; ausgedriickt werden kénnen (vgl. 14.6.2.(5)). Weil bei einer Permutation der
«; die f;; nur untereinander vertauscht werden, sind die Koeffizienten von g(x) auch
symmetrische Polynome der «; mit Koeffizienten aus R und kénnen daher als Poly-
nome der symmetrischen Grundfunktionen der «; mit Koeffizienten aus R dar-
gestellt werden (vgl. 14.6.2., Satz 1). Die symmetrischen Grundfunktionen der «;
sind aber bis auf das Vorzeichen die reellen Koeffizienten von f(z). Daher sind auch
die Koeffizienten von g(z) reell. Nach der Induktionsannahme besitzt g(z) dann
wenigstens eine komplexe Nullstelle, d. h., ein §;; liegt in C. Es konnte eventuell von
der Wahl der Zahl ¢ abhingen, fir welches Indexpaar ¢, j das zutrifft. Es treten

m(m — 1) Um _l) +1

verschiedene reelle Zahlen ¢ durch und notiert jedesmal diejenigen lndexpa.are
k, 1, fiir welche die zugehérigen Elemente £, in C liegen, so muB wenigstens ein Paar
zweimal vorkommen. Folglich gibt es Zahlen 7 < j aus der Menge (1, ..., m} sowie
zwei verschiedene reelle Zahlen ¢, ¢’, so daB

Bi 1 = ooy + (i + o)),
Bij' 1= aioy + ¢'(e; + o)

= 2142 — 1) = 21y 24v)

verschiedene Indexpaare auf. Fithrt man die Uberlegung fiir
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Elemente aus C sind. Dann liegen aber auch

,
—a:=a;+a,=ﬂ' ﬁf’
c—c¢
und
cBif — ¢'B;
b:=aia'=u
c—c¢

in C, d. h., die Koeffizienten des Polynoms
d2tazt+b=(2—x)(z—0)

sind komplexe Zahlen. Seine Nullstellen «; und «; sind bekanntlich (vgl. MfL,
Bd. 2, 7.5.) die komplexen Zahlen

—% (a + M) und —_ (a - }/a' )

f(x) besitzt also mindestens eine Nullstelle «; in C. Damit ist der Fundamentalsatz
bewiesen.

Folgerung 1. Sei m € N*. Dann gilt:

f(z) € C[x] hat den Grad m=> f(z) besitzt in C genau m Nullstellen.
(Dabei wird jede Nullstelle in threr Vielfachheit gezihlt.)

Beweis. Die Aussage stimmt fiir Polynome ersten Grades.

Induktionsannahme: Sie stimmt auch fiir alle Polynome, deren Grad <m — 1
ist. Das Polynom f(x) vom Grad m hat nach Satz 1 wenigstens eine Nullstelle &, in C
und ist daher durch (z — «,) teilbar (vgl. 14.3.(1)):

f#) =@ —a)gle) (o) € Clz)).

Da g(z) den Grad m — 1 hat, besitzt es nach der Induktionsannahme genaum — 1
Nullstellen «, ..., &y in C. Daher hat f(z) igstens die m Nullstellen ay, ay, ..., 0t
in C. Weitere Nullstellen kann es aber in C nicht geben (vgl. 14.3.1., Satz 1).

Hat f(z) € C[z] den hochsten Koeffizienten a,,, 8o ist es in der Form

f(@) = au(@ — 1) - (z — ota)
als Produkt von Linearfaktoren aus C[z] darstellbar. Daher gilt:

Folgerung 2. C ist Zerfillungskorper (im weiteren Sinn) fir alle Polynome aus C[z].

Die irreduziblen Polynome aus C[z] haben also alle den Grad 1. Deshalb gibt es
keine echte algebraische Erweiterung des Korpers C. Korper mit dieser Eigenschaft
heiBen algebraisch abgeschlossen.

Ist umgekehrt K ein algebraisch abgeschlossener Korper, so hat jedes irreduzible
Polynom aus K[z] den Grad 1, da jedes irreduzible Polynom groBeren Grades die
Moglichkeit einer echten algebraischen Erweiterung von K bieten wiirde.

Der Satz 1 ist also gleichwertig mit der Aussage:
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Der Korper der komplexen Zahlen ist algebraisch abgeschlossen. (¢3]

Das ist ein algebraischer Fundamentalsatz der komplexen Zahlen. Der Name
,,Fundamentalsatz der Algebra* ist entstanden, als sich die Algebra noch auf die
Untersuchung des Korpers der komplexen Zahlen, seiner Teilkorper, Teilringe und
zugehorigen Polynomringe beschriinkte. Da der Korper C diese zentrale Stellung
withrend der neueren Entwicklung der Algebra verloren hat, trifft eigentlich auch
jener Name nicht mehr zu. !

Den ersten Beweis des ,,Fundamentalsatzes der Algebra‘‘ gab Gauss 1799 in seiner
Dissertation an. Er hat spiter noch weitere Beweise fiir diesen Satz gefunden. Die
Hilfsmittel der Funktionentheorie (Theorie der Funktionen komplexer Verinder-
licher) gestatten heute sehr kurze Beweise des Fundamentalsatzes.

STEINITZ bewies in seiner Arbeit ,,Algebraische Theorie der Korper (J. reine
angew. Math. 137 (1910), 167 —309), daB es zu jedem Korper K einen Erweiterungs-
korper L gibt, der algebraisch abgeschlossen ist und dessen simtliche Elemente
sogar algebraisch iiber K sind (vgl. 14.5.2., Definition 2).

14.8. Das Problem der Auflésung algebraischer Gleichungen durch
Radikale

K bezeichne einen Kérper. Unter einer reinen Gleichung in K[z] versteht man eine
Gleichung der Form
z* —a=0 (@€ K Amn e N*).

Die Lisungen reiner Gleichungen heiBen Radikale. Wir wollen hier nur Teilkdrper
des Korpers der komplexen Zahlen C betrachten. Die Losungen von

*—-1=0
sind die n-ten Einheitswurzeln
2k 2kn

08 == 4 isin==  (k=0,1,2,...,n —1).
n n

Sie bilden beziiglich der Multiplikation eine zyklische Gruppe, deren erzeugende
Elemente primitive n-te Einhestawurzeln genannt werden.
Ist
a=rcosp+ising) (FERAr=0A0=<¢<2n)

eine komplexe Zahl, so hat die Gleichung
?*—a=0 (neN*
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die Radikale
ﬁ;=i/7(cos"+2’”' +isin"+2"”) (k=0,1,...,n —1).
n n

Man beachte, daB hierbei das Symbol }/;im Fall a & 0 n verschiedene komplexe
Zahlen bezeichnet, die n-te Wurzeln aus a genannt werden. Im Falla = 0 ist a := 0.
Dagegen bedeutet '+ die reelle n-té Wurzel aus r, d. h. diejenige (eindeutig bestimmte)
nichtnegative reelle Zahl w, fiir die w® = r ist. Offensichtlich erhilt man die simt-
lichen Wurzeln der Gleichung 2® — @ = 0 aus einer einzigen, indem man diese mit
den Potenzén & (k =0, 1,...,n — 1) einer primitiven n-ten Einheitswurzel & multi-
pliziert. (vgl. MfL. Bd. 2, 7.4.).

Der Fundamentalsatz der Algebra garantiert die Existenz von Ldsungen der
algebraischen Gleichung

() ;=apa" + ag 2™+ -- + @z +a; =0 (f(x) € C[z],n € N*,a, + 0) 1)

im Korper der komplexen Zahlen. Der angegebene Beweis liefert aber keine Methode
zur Berechnung solcher Losungen aus den Koeffizienten des Polynoms f(z). Daher
ergibt sich das Problem der Auflésung algebraischer Gleichungen durch Radikale:

Kann 'man die Losungen der Gleichung (1) erhalten, indem man von den Koeffi-
zienten ausgehend im Korper C nur endlich oft addiert, subtrahiert, multipliziert,
dividiert und Lésungen reiner Gleichungen bestimmt (radiziert)?

Es sei K der Durchschnitt aller Teilkorper von C, welche die Koeffizienten a,,
@4y, ..., Gy, @g der gegebenen Gleichung (1) enthalten. K ist ein Q umfassender Teil-
kérper von C und f(z) € K[z]. Sodann adjungiereniwir zu K die Nullstellen &, ..., a,
von f(z) und erhalten den Teilkérper

2 = K(ay, ..., 0)

von C. 9 ist kleinster Zerfillungskorper von f(z). Er heiBt Normalkirper oder Galois-
scher Korper der GQleichung (1).

Definition 1. Die Gleichung
f=@) :=apz" + ap 2"t + - + a + g = 0 (f(z) € K[z], n € N*, q, = 0)

heifit (durch Radikale) auflésbar :<> es gibt eine endliche Kette K = K, — K,
< -+- < K, durch reine Gleichungen definierter Kérpererweiterungen, deren letztes
Glied den Normalkorper 2 von f(z) umfaft: 2 € K,.

Bemerkung. Der Kérper K; entsteht also aus K;, durch Adjunktion eines
gewissen Radikals g;, d. h., es ist

K;=Ki(e) mit g™=c€K; (I=1,...,10).
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Die Relation 2 S K, bedeutet, da8 die Lésungen der Gleichung f(x) = 0 in endlich
vielen Schritten aus den Koeffizienten von f(x) und rationalen Zahlen durch Addition,
Subtraktion, Multiplikation, Division und Auflésung reiner Gleichungen berechnet
werden konnen. Sind umgekehrt die Losungen von f(z) = 0 auf diese Weise berechen-
bar, so gibt es eine endliche Kette von Korpererweiterungen, die bei K beginnt und
deren letztes Glied K, 2 Q ist.

Beispiele.
1. Die Lésungen z,, z; der Gleichung

+pr+g=0 (p,geC)
werden bekanntlich durch die Formel

e = “'g‘zl: %}/P’—q .

gegeben. Hierbei ist K = Q(p, q), ¢, = p* — 4q € K und g, einer der zwei Werte
der komplexen Wurzel }7* —4q. Dann ist 2 S K, = K(g,). Falls g, schon in K
liegt, ist K; = K. Jede quadratische Gleichung aus C[xz] ist also durch Radikale
auflésbar.

2. Fiir die Gleichung

2?+pr+g=0 (pgeC) (2)

ist K = Q(p, g¢). Weil 23 = 0 sicher durch Radikale auflésbar ist, betrachten wir
nur Fille mit p 3= 0 oder ¢ == 0. Der Wert

SR

t] 3
liegt in K, g, sei einer der zwei Werte der komplexen Wurzel (—g—) + (%) .

Wenn g, € K ist, sei K; = K. Anderenfallsist K, = K(g,) eine echte Erweitcrung von K.
Der Wert

€3 = _';' + o
3
liegt in K, . Das Radikal g, sei einer der drei Werte der komplexen Wurzel —% + o1
Wenn g, € K, ist, sei Ky = K,. Anderenfallsist K; = K,(p,) eine echte Erweiterung
: 3
von K. g; und g, seien die beiden anderen Werte der komplexen Wurzel —% +or-

Liegen sie auch in K, so sei K3 = K,. Sonst adjungieren wir zu K, eine Lisung g
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der Gleichung z* + 3 = 0. In K, = K,(g;) sind dann die beiden primitiven dritten
Einheitswurzeln —% + % Y —3 und daher neben g, auch g, und g, enthalten.
Bekanntlich werden die Losungen 2,, z,, x5 der Gleichung (2) durch die Formeln

Z =@ —5’;, 3|=ea—‘£-» T3 =0 —:“,'%
3 .

gegeben, wobei gq, gy, ¢, die drei Werte der komplexen Wurzel

3
q AN FAY
&R ERE
sind (vgl. MfL, Bd. 2, 7.5.). Weil z,, z;, , in K, liegen, ist der Normalkérper Q der
Gleichung (2) in K, enthalten und daher die Gleichung durch Radikale auflésbar.
Auch die algebraischen Gleichungen vierten Grades mit Koeffizienten aus C sind
durch Radikale auflésbar, und es gibt sogar eine allgemeine Auflésungsformel, welche
die Wurzeln dieser Gleichungen durch Radikale darstellt (vgl. MfL, Bd. 2, 7.6.).
Allgemeine Auflésungsformeln fiir Gleichungen dritten und vierten Grades wurden
bereits im 16. Jahrhundert von CaRpANo und FERRARI angegeben. Daher vermutete
man, daB es auch fiir die Gleichungen hoheren Grades méglich sein miiSte, Formeln
zu finden. welche die Losungen solcher Gleichungen durch Radikale darstellen. Die
Vermutung wurde 1826 durch ABEL widerlegt, nachdem bereits PaoLo RurFmNt
(1765—1822) Untersuchungen in dieser Richtung veroffentlicht hatte.

Ohne Beweis geben wir hier den folgenden Satz von ABEL an:

Satz 1. Fiir die algebraischen Gleichungen (1), deren Grad n = b ist, gibt es keine
allgemeine Auflosungsformel, durch die jeweils esne Wurzel jeder dieser Qleichungen
durch Radikale dargestellt wird.

Einen Beweis, der mit den hier erarbeiteten Hilfsmitteln zugiinglich ist, findet der
Leserinder ,,Enzyklopidie der Elementarmathematik*, Band IT, 5. Aufl., Berlin 1972,
S.255—263. Der Satz 1 liBt noch die Méglichkeit offen, daB jede algebraische
Gleichung (1) eine von der gegebenen Gleichung abhiingige Auflésung durch Radikale
besitzt.

Uber Satz 1 hinaus kann man aber zeigen, daB das allgemeine Polynom (das ist ein
Polynom mit Unbestimmten als Koeffizienten) vom Grade n im Fall n = 5 nicht
durch Radikale auflosbar ist. Der Beweis beruht auf Hilfsmitteln der Galois-Theorie,
die im Rah dieses Buches nicht dargestellt werden kann.

Es lassen sich davon unabhingig auch konkrete Gleichungen angeben, die nicht
durch Radikale auflosbar sind, beispielsweise alle Gleichungen der Form

z5 — p’z —pP= 0»
wobei p eine beliebige Primzahl bezeichnet (s. 0., S. 282).
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Fiir die Auflésung von Gleichungen fiinften und hoheren Grades ist man daher auf
Niherungsverfahren angewiesen, wie sie in der numerischen Mathematik entwickelt
wurden und auch schon zur Lésung von Gleichungen dritten und vierten Grades
angewendet werden.

14.9. Partialbruchzerlegung

K(z) sei der Karper der rationalen Funktionen in z mit Koeffizienten aus dem
Korper K (vgl. 14.5.1.). Seine Elemente haben die Gestalt

o2) = ": ; (k=) € K(2] A g(=) € K[2I\0)).

Falls Grad k(z) = Grad g(z) ist, ergibt die Division von A(z) durch g(z) mit Rest
k(@) = ¢@) g(z) + f)  (g(z) € K[z] A f(z) € K[#] A Grad {(z) < Grad g(2)).
" Daher kann g(z) in der Form

k=) (=)
o(®) = @ =g(z)+ = pr
dargestellt werden.
Weil
1(z) (gz)u(z)) = f(z) (w=)g(2)) = (/(z)u(z)) ()
ist, gilt far «(z) € KIzi\ ]
1) _ f(a) ulz)
9()  g(z) u(z)
(vgl. 13.6.(1)). Deshalb kann f(z) n g(z) = 1 angenommen werden. Uberdies ist 0.B.d.A. 1 der
héchste Koeffizient von g(z).

Grundlage fiir die weitere Zerlegung von ; (( )) in eine Summe von Partmlbmchen
ist der

Satz 1. Bezeichne K einen Korper und k(z), l(z) teilerfremde Polynome aus K[z]
mit Grad k(z) = a und Grad l(z) = b. Ist f(x) ein beliebiges Polynom aus K(x], dessen
Grad kleiner als a + b ist, so gibt es in K[z] Polynome 8(2), t(z) mit Grad 8(z) < b und
Grad t(z) < a, fiir die

f(x) = a(z) k(z) + H=) Yz) (1)

gilt.
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Beweis. Da k(z) n l(z) = 1 ist, gibt es in K[z] Polynome ¢(z), d(z), fiir die
1 = ¢(z) k(z) + d(z) U(z)
gilt. Dann ist

(=) = f(x) ¢(2) k(x) + }(z) d(z) U=). @
Division von f(x) ¢(z) durch I(z) mit Rest ergibt
f(@) e(z) = v(z) Uz) + 8(x)  (v(=), 8(2) € K[=]) (3)

wobei der Grad s(x) < Grad l(z) = b ist. Setzt man (3) in (2) ein, so folgt mit
tz) := f(z) d(x) + k(=) v(z)
die Gleichung
f@) = s(@) k(=) + (f(@) d(z) + k() v(z)) U=)
= 8(x) k(z) + (=) Y=z).

Da die Grade von f(z) und s(z) k(z) kleiner als @ + b sind, ist Grad ¢(z) < a.
Dividiert man auf beiden Seiten der Gleichung (1) durch k(z) l(z), so erhélt man

fz) __8(2)  U=) @
M)z Uz) | k@)

Auf der linken Seite der Gleichung (4) ist voraussetzungsgemiB der Grad des
Zihlers kleiner als der Grad des Nenners. Dasselbe gilt fiir die beiden Partialbriiche
&) Hz)

2% ung 222

Uz) k)’

Sind f(z) und k(z) l(z) teilerfremd, so auch s(z) und I(z) sowie l(z) nnd k(z) H.t k(z) l(z) den
hochsten Koeffizienten 1, so kann man 0.B.d.A. daB von
k(z) und I(z) ebenfalls 1 sind.

LiBt sich nun in einem der Teilbriiche der Nenner wiederum als Produkt von zwei
teilerfremden Faktoren schreiben, so kann er erneut als Summe von zwei Partial-
briichen dargestellt werden. Nach endlich vielen Wiederholungen erhélt man eine
Summe von Partialbriichen, deren Nenner simtlich Potenzen von Primpolynomen
aus K[z] sind. Damit ist der folgende Satz bewiesen.

Satz 2. Ses K ein Korper mtdi(—)) € K(x). Ist Grad f(z) < Grad g(x), so kann

2((;) als Summe von Partialbriichen geschrieben werden, deren Nenner diejenigen
Pot von Primpoly aus K[z] sind, welche in der Primelementzerlegung von
g(z) auftreten. In jedem Partialbruch ist der Grad dea Zéhlers kleiner als der Grad des

Nenners.
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z(x)
pla)
polynomen sind, lassen sich noch weiter aufspalten. Bezeichnet I € N* den Grad von
P(x), so ist Grad z(z) < Ut. Dividiert man z(x) durch p(x)*-?, so erhilt man einen Rest
2,(2) € K[z], dessen Grad kleiner als I(¢ — 1) ist. Dividiert man diesen durch p(x)*-2,
s0 entsteht ein Rest von einem Grad < (¢ — 2) usw. Es ergeben sich die Gleichungen

%(x) = i) p@)'* + z(@),

2(2) = gx(x) p()** + 2,(),

2-9(%) = q1(2) PR) + 21(2),

z1(7) = gi(=),

aus denen

2(z) = qi(2) p(2)'* + @) P(x)'2 + -+ + g1 (®) D) + ()

Die erhaltenen Partialbriiche — (¢ € N*), deren Nenner Potenzen von Prim-

und )
22) _ 6@ | 6@ 4 3@ (=) 4+ 22 =) ®)
px)  px)  pl)P P(z)"‘ pla)

folgt. Die g;(x) (¢ =1,..., t) haben simtlich einen Grad < I. In allen Partialbriichen
auf der rechten Seite der Gleichung (5) ist deher der Grad des Zihlers kleiner als der
Grad des Nenners. Damit ist bewiesen:

Satz 3 (Satz von der Partialbruchzerlegung). Es sei K ein Korper, — f@
Grad {(z) < Grad g(x) und g9(=)

9(2) = py(2)" pa(2)’ -+ Pal)'=

€ K(),

die Primfaktorzerlegung von g(z) in K[x). Dann i«t.’(i) als Summe von Partial-
briichen darstellbar: 9)

(=) + [1a(7) | 9,2(2) 9o1,(%)
L G m e uE)
wobei fiir jedes v € (1,...,n) die Zdikler q,,(z) (v, = 1,2, ...,t,) entweder Null sind
oder einen kleineren Grad als p,(x) besitzen.

Wenn die Primpolynome p,(z) simtlich den Grad 1 haben, sind alle Zihler der
Partialbriiche Elemente aus K. In diesem Fall kann die Partialbruchzerlegung sehr
einfach gewonnen werden. Tritt (x — ) mit dem Exponenten ¢ € N* in der Prim-
faktorzerlegung von g(z) auf, ist also g(z) = (x — «)*k(z) mit einem nicht mehr durch
(z — «) teilbaren Polynom k(z) aus K[z], so kann in

f@) ___f=® _ 8 (=) — Bh(=)
9@ @ —afhzx) @—a)f  (z—a)fh

(6)
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die Konstante # € K so bestimmt werden, da8

(o) — Bh(x) =
ist. Bei dieser Wahl von # hat f(z) — ph(z) die Nullstelle « und ist daher durch
(# — o) teilbar: '
f@) — Bh(z) = (& — ) hi®)  (h(e) € K[=]).
Mit
f@) —Bh@) _ _ he)
@ —afhiz) (z — o) hiz)
wird nun ebenso verfahren, bis die vollstindige Partialbruchzerlegung {8) von —— fz)
erreicht ist. g(2)
Da nach dem Fundamentalsatz der Algebra alle Primpolynome von C[x] den
'Grad 1 haben, gilt die

Folgerung 1. Hat g(z) € C[z] die (paarweise verschiedenen) Nullstellen «,, ..., oy
mist den Vielfachhesten ty, ..., t, und ist der Grad von

glz) = (@ — )" -ee (@ — )

grofer als der Grad von f(z) € Clz], so Tann f ((x)) € C(z) als Summe von Partial-
briichen dargestellt werden, deren Zahler B,,, (v, =1,...,t,;v =1, ..., n) Elemente aus

C sind:
f2) Z.'( Ba +L+...+ Bur )
=1 \Z

9(=) —a (-0 @ —a)

14.10. Ubungsaufgaben

1. Man bestimme den groBten gemeinsamen Teiler der Polynome

P —28—z42
und )
2 — 5284 T — 52+ 6

und stelle ihn in Q[z] .Is Vielfachsumme dar.
2. I sei ein Integritétst nutE: )! t und habe die Charakteristik 0..L bezeichne einen

I.ntognﬁ‘ bereich derm gering vonlI ist. « ¢ L sei eine Nullstelle des vom Null-
hi Pol, =) aus I[z]. Man beweise:
Ist ¢ & (k — 1) hohe Nu.llato]le von f'(z), so ist o k-fache Nullptalle von /(z) (k e N*).
3. Sei p eine Primzahl. Man gebe in Z/(p) [z] vom Nullpoly i Poly an, die
an siimtlichen Stellen « ¢ Z/(p) den Wert [0] besltzen ’
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4. Man bestimme in Q[z] dn]emge Polynom f(x) mit /Gnd J(z) < 4, fir welches
f(—2)=16, {(—1)=2, f(0)=0, f(1)=4, /2)=

5. Mit Hilfe des Verfahrens von KRONECKER beweise man, daB die Polynome
2 —2242 und ?—azt41
in Qfz] irreduzibel aind.
6. Man stelle das Polynom
6ab — 1224 — 62 + 12
als ein Produkt von Primelementen aus Z/[z] dar.
7. Hat das Polynom
f@)=2*—3zt +4

mehrfache Nullstellen?
Gegebenenfalls bestimme man ein Polynom, das genau dieselben Nullstellen wie f(z) besitzt,
aber jede mit Vielfachheit 1.

8. Man zerlege die Polynome

fz)=2*—324 + 4

glz) =25 — 4t + 222 — 822 + z — 4

in Produkte von Primpolynomen aus Q[z] und gebe simtliche Nullstellen beider Polynome an.
9. Ein Polynom mit Koeffizienten aus einem Ring mit Nullteilern kann mehr Nullstellen be-
sitzen, als sein Grad betﬁgt.
Als Beispiel gebe man etwa ein quadratisches Polynom mit Koeffizienten aus Z/(6) an, das drei
Nullstellen in diesem Ring besitzt.
10. Die Elemente des Restklassenkdrpers K = Z/(2) seien mit [0] und [1] bezeichnet. Das Polyrom

p) =[1]2* + 1]z + [1)
ist in K[z] irreduzibel.
Man konstruiere K[z)/(p(z)) und stelle fiir diese algebraische Erweiterang vun K die Additions
und Multiplikationstabellen auf. (Vgl. 13.8., Aufgabe 11.)
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