S.Brehmer- H.Apelt
Analysis

|.Folgen, Reihen, Funktionen

VEB Deutscher Verlag der Wissenschaften



Mathematik fur Lehrer
Band 4

Herausgegeben von:
W. Engel, S. Brehmer, M. Schneider, H. Wussing

Unter Mitarbeit von:

G. Asser, J. Béhm, J. Flachsmeyer, G. Geise, T. Glocke,
K. Hirtig, G. Kasdorf, O. Kritenheerdt, H. Lugowski,
P. H. Miiller, G. Porath



Studienbliicherei

Analysis
1. Folgen, Reihen, Funktionen
Mit 65 Abbildungen

Mit historischen Anmerkungen
von H.-J. Ilgauds

Vierte Auflage

W

VEB Deutscher Verlag
der Wissenschaften
Berlin 1985

S. Brehmer
H. Apelt



Verlagslektor: Erika Arndt

Verlagshersteller: Birgit Burkhardt

Umschlaggestaltung: Rudolf Wendt

@© 1974 und 1982 VEB Deutscher Verlag der Wissenschaften, DDR - 1080 Berlin, Postfach 1216
Lizenz-Nr. 206 - 435/56/85

Printed in the German Democratic Republic

Satz: VEB Druckhaus ,Maxim Gorki, DDR - 7400 Altenburg

Offsetdruck und buchbinderische Verarbeitung: VEB Druckerei ,, Thomas Miintzer",
DDR - 5820 Bad Langensalza

LSV 1034 )

Bestellnummer: 570 187 1

01280




Vorwort zur dritten Auflage

Die Binde 4 und 5 der Reihe ,,Mathematik fiir Lehrer* behandeln die Grundlagen
der Analysis. Entsprechend ihrem Verwendungszweck unterscheiden sie sich in ihrer
Anlage von einem Lehrbuch der Analysis fiir Diplommathematiker. So werden z. B.
die weittragenden Hilfsmittel der Differential- und Integralrechnung erst im Teil
Analysis II eingesetzt. Die Lehre von den elementaren Funktionen wird bereits im
ersten Teil weitgehend entwickelt, zumal sie auch im Schulunterricht ohne Verwen-
dung der Differential- und Integralrechnung hehandelt werden muB. Die wichtigsten
Eigenschaften der Potenz-, Expdnential- und Logarithmusfunktionen, die im Schul-
unterricht bereits in der neunten und zehnten Klasse auftreten, werden sogar ohne
Verwendung des Grenzwertbegriffs hergeleitet. Wir stiitzen uns hierbei nur auf die
Existenz der kleinsten oberen Schranke und auf die Monotonieeigenschaften dieser
Funktionen. Die vorliegende dritte Auflage enthilt auch eine Einfithrung sowie eine
erweiterte Behandlung der trigonometrischen Funktionen. Die Beschrinkung auf
elementare Hilfsmittel erfordert allerdings einen hoheren Aufwand. Aus diesem
Grunde werden anspiteren Stellen unter Verwendung des Grenzwertbegriffs sowie der
Reihenlehre andere Moglichkeiten fiir die Einfiihrung der elementaren Funktionen

aufgezeigt.
Trotz einer inhaltlichen Abstimmung zwischen den einzelnen Binden der Reihe
,»Mathematik fiir Lehrer** lassen sich gewisse Uberschneidungen nicht vermeid

Insbesondere werden im Kapitel 1 Begriffe und Sitze behandelt, die auch in anderen
Binden auftreten. Das dem Grenzwertbegriff gewidmete Kapitel 2 stellt den Haupt-
teil des ersten Bandes dar. In ihm werden Grenzwerte von Folgen, Reihen, Funktionen
und Funktionenfolgen bzw. -reihen behandelt. Das wesentliche Anliegen des Lehr-
buches besteht in einer Vertiefung bzw. Fundierung des Stoffes, der im Lehrgang
Analysis der allgemeinbildenden und erweiterten polytechnischen Oberschule behan-
delt wird. Dariiber hinaus gilt es, auch dem Lehrerstudenten einen gewissen Einblick
in moderne Denkweisen der Analysis zu geben und einen ausreichenden Vorlauf fiir
die Phase des Fachstudiums zu schaffen. Aus diesem Grunde wird in 1.5. der mehr-
dimensionale euklidische Raum und seine Metrik eingefiihrt. Die eindimensionalen
Betrachtungsweisen werden regelmiBig durch kurze Erginzungen auf den mehr-
dimensionalen bzw. auf den komplexen Fall ausgedehnt. Trotzdem ist, wenn man
von dem nur in 1.5. behandelten Umgebungsbegriff absieht, eine zusammenhingende
Lektiire des Buches unter Auslassung aller den mehrdimensionalen Fall betreffenden
Abschnitte und Einfiihrungen méglich.

Der Stoff ist vorwiegend unter systematischen Gesichtspunkten angeordnet. Die
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Anordnung kann weitgehend variiert werden. So wird es sich zum Beispiel empfehlen,
gewisse Sitze mit komplizierten Beweisen erst dann hender durch beit
wenn diese explizit angewendet werden.

Der Banachsche Fixpunktsatz ist in einer so elementaren Form behandelt, wie er
auch in den Schulunterricht Eingang finden konnte. Die wichtigsten Anw
dieses Satzes erfolgen erst im zwelten Teil in Zusammenhnng mit der numerischen
Auswertung grundlegender Exi dtze (Nullstellenberechnung, Umkehrfunk-
tionen implizit definierter Funktionen, Losungen von Differentialgleichungen).

Die dritte Auflage von MfL 4 unterscheidet sich von den vorhergehenden Auflagen
in folgenden Punkten:

— Die Aufgabeh wurden gestrichen, da gesonderte Aufgabenbinde erschienen sind.
— Der frithere Abschnitt 2.5. wurde in die Abschnitte 1.8. (Die trigonometrischen
Funktionen) und 2.5. (Die hyperbolischen Funktionen und die Area-Funktionen)

aufgeglledort
— Der de Fortsetzungssatz iiber monotone Funktionen in Abschnitt 1.3.5.
ist in mehrere Sitze aufgegliedert. Der Abschnitt 1.4.2. iiber Exponentialfunk-

tionen wurde iiberarbeitet.

— Der Begriff der kompakten Menge wird in 2.1.7., Definition 3, Satz 4 und Satz 5,
sowie in 2.4.2., Satz 1, etwas ausfiihrlicher dargelegt.

— Der Begriff des Limes inferior bzw. Limes superior wird in 2.1.6. in einer anderen
Form eingefiihrt.

~— Fiir die Besti g des Infi bzw. Supr von Mengen werden in
1.1.3. bzw. 2.1.3., Satz 8, praktikable Verfahren hergeleitet.

Fiir wertvolle Hinweise haben wir einer Reihe von Kollegen, insbesondere Herrn
Prof. Dr. G. ASSER, sehr herzlich zu danken. Unser Dank gilt auch den Mitarbeitern
des VEB Deutscher Verlag der Wissenschaften fiir die gute Zusammenarbeit und der
Druckerei fiir ihre sorgfiltige Arbeit.

Potsdam, im Herbst 1982 S. BREEMER
H. ApELT
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1. Einige grundlegende Begriffsbildungen der Andlysis

1.1.  Reelle Zahlen
1.1.1.  Der Kérper der reellen Zahlen (Teilbereiche)

In der Menge R der reellen Zahlen sind zwei zweistellige assoziative und kommu-
tative Operationen, die Addition und die Multiplikation, definiert. Diese Operationen
sind miteinander durch das Distributivgesetz verkniipft. Die Addition ist unein-
geschrinkt umkehrbar, d. h., fiir alle reellen Zahlen a, b besitzt die Gleichung
a + x = b (sogar genau) eine Losung, und es gibt (genau) eine reelle Zahl 0 mit
a -+ 0 = a fiir alle a. Die Multiplikation ist mit einer Einschrinkung umkebrbar,
und zwar gibt es zu jeder von O verschiedenen reellen Zahl a und zu jeder reellen
Zahl b (genau) eine reelle Zahl z mit az = b, und es gibt genau eine reelle Zahl 1 mit
a - 1 = a fiir alle a. Auf Grund dieser Eigenschaften bildet die Menge R aller reellen
Zahlen mit den genannten Operationen einen Korper.

Das Produkt einer beliebigen reellen Zahl ¢ mit der Zahl O ergibt stets 0. Das
Produkt zweier von 0 verschiedener reeller Zahlen a, b kann niemals 0 sein, da sonst
die Gleichung az = 0 die voneinander verschiedenen Losungen b und 0 hiitte.

Ein Produkt von endlich vielen Faktpren ist dann und nur dann gleich 0, wenn
wenigstens einer der Faktoren gleich 0 ist. Die Sonderstellung der Zahl 0 erfordert
beim Rechnen mit Variablen ganz besondere Aufmerksamkeit. Aus einer Gileichung
der Form ac = bc darf nicht auf a = b, sondern nur auf @ = b oder ¢ = 0 geschlossen
werden, und fiir eventuell notwendige weitere Untersuchungen ist durch Fallunter-
scheidung weiter zu schlieBen. Aus der Gleichung

6z(x — 3) = (z + B) (x — 3)
folgt z. B.6x =z + 5oder r —3 =0,d. h. x = 1 oder z = 3.

Die Menge N der natiirlichen Zahlen ist die kleinste Teilmenge von R, die die
Zabl 0 und mit jeder Zahl » auch die Zahl » 4 1 enthiilt. Das hiermit im Zusammen-
hang stehende Beweisverfahren der vollstindigen Induktion sowie den Rechtferti-
gungssatz fiir induktive Definitionen setzen wir als bekannt voraus, desgleichen das
(auf induktiven Definitionen beruhende) Rechnen mit dem Summen- und Produkt-
zeichen.

Die Menge Z der ganzen Zahlen ist die Menge aller Zahlen 47, wobei  eine natiir-

liche Zahl ist. Die Menge aller Quotienten n ganzer Zahlen mit » == 0 ist die Menge @
der rationalen Zahlen. "
Die n-te Potenz z* einer reellen Zahl z wird induktiv durch
=1, (1)
1o ghy (n€ N) (2)
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definiert. Es gelten die Potenzgesetze

(zy) = amy, ®
M = gz, (4)
(@) =z, ®)

Fiir reelle Zahlen z mit 3 0 wird ferner

=

1
— =12...
- ® )
gesetzt. Die Potenzgesetze (3), (4), (5) bleiben dann im Fall z, y == 0 fiir alle ganzen
Zahlen m, n giiltig.
Die binomische Formel lautet

@typr=5 (:) it (yeR neN). ®)

k=0

Fiir zahlreiche Beweise der Analysis ist auch die fiir alle reellen Zahlen z, y giiltige
Identitit

pop=g-D Syt (=12 )
k=1
niitzlich. Der Beweis ergibt sich aus
. L] »
(y — 2) 3 yrtat-l = 3 yrkeigh-1 _ 3 ya-igh
k=1 =1 =1
n—1 "
=Tyt - Syt =y — o,
k=0 k=1
denn die S den der letzten beiden Summen stimmen fiir k 3= 0 bzw. fiir k 4= 2
iiberein.

1.1.2.  Ordnung reeller Zahlen (Rechnen mit Ungleichungen)

In der Menge R der reellen Zahlen ist eine (irreflexive) Ordnungsrelation a <
definiert, d. h., es gilt stets

—a<a (Irreflexivitét), (1)
a<bab<c>a<c (Transitivitit), (2)
a<bva=>bvb<a (Konnexitit). 3)

Fiir die Ordnungsrelation sind das Monotoniegesetz der Additi
a<b>a+c<b+ec 4
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und das Monotoniegesetz der Multiplikation
a<br0<c=>ac<be (8)

erfiillt. Auf Grund dieser Eigenschaften wird R zu einem geordneten Korper.

Der Gebrauch der Zeichen >, <, = sowie der Begriffe positiv, negativ, nicht-
positiv und nichtnegativ wird als bekannt vorausgesetzt.

Die Menge aller nichtnegativen Zahlen eines Zahlbereichs bezeichnen wir mit
einem tiefgestellten Index +-. So ist z. B. Z, = N. Soll die Zahl 0 im betrachteten
Zahlbereich nicht enthalten sein, so } ich wir dies durch einen hochgestellten
Stern. So ist z. B. N* = N\ {0}.

Mit Hilfe der Ordnungsrelation definieren wir die folgenden Arten von Intervallen
mit den Begrenzungspunkten a,b, wobei wir zunichst a,b€ R und a < b voraus-
setzen:

Ja.b[:= (z€ R:a <z < b}, (8)
[a,b[:=(z€ R:a =z < b}, (7)
Ja.b]:=({z€c Ria<z < b}, (8)
[a,b]:={z€ R:a =z < b}. 9)

Lassen wir im letzten Fall zu,daB a = b ist, so entartet das Intervall zur Einermenge
{a}. In den anderen Fillen gehen die Intervalle im Fall @ = b in die leere Menge
iiber.

Wir erginzen nun die Menge der reellen Zahlen durch die uneigentlichen Zahlen
—o00, co und vereinbaren, daB fiir z € R stets —oo < z < oo gelten soll. In den
Fillen (6), (8) darf dann auch @ = —oo, in den Fillen (6), (7) auch b = oo gewiihlt
werden.

Fiir a, b € R heiBen die Intervalle beschrinkt, fiir a = —oo bzw. b = oo dagegen
‘unbeschrinkt. Fiir alle a, b € R sind hiernach die Intetvalle

Ja, o[ ={(z€R:a<uz}, (10)
[a, o[ =(x€R:a=<gz), (11)
J—oo, b[ = (z€ R:z < b}, (12)
J—oo,b] ={z€ R:z < b} (13)

und J—o0, oo = R unbeschrinkt. Die Intervalle (6), (8), (10), heiBen linksseitig
offen, die Intervalle (7), (9), (11) linksseitig abgeschlossen. Alle Intervalle (6) bis (11)
sind linksseitig beschriinkt, die restlichen linksseitig unbeschriinkt usw.

Es sei M eine Teilmenge von R. Wir sagen, daB eine Teilmenge M, & M dicht
in M liegt, wenn es zu zwei Zahlena, b € M mita < bstetseinz€ Momita <z <b
gibt. Offensichtlich gibt es dann auch ein z, € M, mit a < z; < 2, und folglich liegen
im Intervall [a, b] mit a < b sogar unendlich viele Zahlen aus M,. So ist z. B. die
Menge Q. dicht in R, (vgl. MfL 2, 6.2.1.).

Die folgenden Siitze iiber Ungleichungen diirfen als bekannt vorausgesetzt werden.
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Satz 1. Fiir alle reellen Zahlen a, b gilt
a<bea—b<0, (14)
a<bo —a> —b. (18)
Satz 2. Eine reelle Zahl a ist genau dann positiv bzw. negativ, wenn —a negativ
bzw. positiv ist.
Satz 3. Das Produkt zweier reeller Zahlen ist genau dann positiv, wenn entweder
beide positiv oder beide negativ sind.
Die Monotoniegesetze der Addition und Multiplikation konnen auf die Relation <
iibertragen werden, d. h., fiir alle reellen Zahlen a, b, ¢ gilt

asba+csb+e,
as<barc=0=>ac < be.
Die Beweise werden durch Fallunterscheidung gefiihrt.
Satz 4. Fiir alle reellen Zahlen a, b, ¢, d gilt
a<brc<dzdatc<b+d, (16)
O<a<bral<c<d=>ac<bd. (17)

Wir bemerken, daB Satz 4 auch dann gilt, wenn das Zeichen < iiberall durch <
ersetzt wird. Dagegen darf man aus a <b und ¢ < d nicht auf a —c <b—d
schlieBen, wie das Beispiel a = 7, b = 8, ¢ = 2, d = 6 zeigt.

S:.nz 5. Fiir alle reellen Zahlen a, b, ¢ gilt

a<bac<0=>ac> b, (18)
1 1
0<a<bz—>4>0. (19)

Wir beweisen einige weitere Siitze iiber Ungleichungen.
Satz 8. Fiir alle reellen Zahlen a, b ist

s “; ¥ (20)

Beweis. Die Ungleichung (20) ist mit den folgenden Ungleichungen

2ab < a® + b2, (21
0 <a®— 2ab 4 b2, (22)
0 =(@-0bp (23)

dquivalent. Die letzte Ungleichung ist aber fiir alle reellen Zahlen a, b erfiillt, womit
der Satz bewiesen ist.
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Satz 7. Fiir alle reellen Zahlen a, b gilt
ab < (“ ar? b) . 249

Beweis. Aus 0 < (@ — b)? = a® — 2ab + b2 folgt, wenn wir auf beiden Seiten 4ab
addieren, 4ab < a? + 2ab + b? = (a + b)®. Das ist mit der Behauptung gleich-
wertig.

Satz 8. Fiir nichtnegative reelle Zahlen z,y und fir n = 1,2, ... gilt genau dann
2" = y" bzw. 2 < y", wenn ¥ = y baw. x < y st.

Beweis. Fiir x = 0 oder y = 0 ist die Behauptung richtig. Fiir positive z, y ist
die rechts in 1.1.1.(7) stehende Summe stets positiv, so da8 y* — 2® und y — z beide
positiv oder beide negativ oder beide gleich 0 sind. Damit ist Satz 8 bewiesen.

Satz 9. Fiir alle nichtnegativen reellen Zahlen z, y mit z == y und fiir alle natiirlichen
Zahlen n mit n > 1 1st

Ny — 2) <yt — 2" < my* iy — 2). (25)

Beweis. Aus 1.1.1.(7) folgt wegen J a = na stets
k=1

a2 —nan iy —2) = (y — x)kzu,: yritt — (y — 1).2"' Eal
— -0 g ey
n—1

=Xy —2)(y~F—ar k-l
k=1

Die Produkte (y — z) (y*~* — z"*) sind fiir nichtnegative reelle Zahlen z,y mit
z == y wegen Satz 8 positiv, und es folgt

y*— a2 —nx Ny —z) > 0.
Vertauschen wir z und y, so erhalten wir

™ —yt—nylz—y) >0
oder
y"—a* — ny" iy — ) <O0.

Aus den bewiesenen Ungleichungen kénnen wir unsere Behauptung ablesen.
Mit ihrer Hilfe beweisen wir die folgende Verallgemeinerung von (20).

Satz 10. Fiir alle von O verschiedenen natiirlichen Zahlen m, n und fir alle nicht-
negativen recllen Zahlen x,y mit 2 = y st

(m + n) 2™y® < mr™** + ny™-», (26)
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Fiir m = 0 oder n = 0 oder x = y geht die Ungleichung (28) in eine Qleichung iiber.

Beweis. Die letzte Behauptung des Satzes kann leicht unmittelbar nachgepriift
werden. Es sei nun m,n > 0, z & y. Da die Ungleichung (26) unverindert bleibt,

wenn wir z mit y und zugleich m mit n vertauschen, geniigt es, den Fall z < y zu
betrachten. Fiir z = 0 ist (26) erfiillt. Es sei 0 < z < y. Wegen (26) ist

o mt iy —a)  mytt  myt
Y —2®  mzly—z) ma™l  mam’

mI™(y* — 2*) < ny*(y™ — 2™),

und diese Ungleichung ist mit der Behauptung (26) gleichwertig.

Eine weitere Verallgemeinerung gibt

Satz 11. Fiir alle von 0 verschied g Zahlen m, n mit m + n 3 O und fiir
alle positiven reellen Zahlen x, y mit x = y st
L Yt < ! e 4 L Y™, (27)
mn n(m + n) m(m + n)

Beweis. Es seim + » > 0. Dann ist m > 0 oder » > 0, und durch Vertauschung
von z bzw. m mit y bzw. » konnen wir erreichen, daB m > 0 ist. Ist auch n > 0, so
ist (27) mit (26) dquivalent. Ist n < 0, so setzen wir p = m + n, ¢ = —n und fithren
(27) durch Multiplikation mit —mn(m 4 n) y=* = pg(p + ¢) ¥ in die dquivalente
Ungleichung

—paP < —(p + @) Y + qyP*

iiber, deren Richtigkeit wieder aus (26) folgt. Den Fall m + n < 0 fithren wir auf den
bereits bewiesenen Fall zuriick, indem wir z, y, m, n durch =71, y~}, —m, —n er-
setzen.

Satz 12. Fiir alle reellen Zahlen h mit 1 + k > 0 und fiir alle natiirlichen Zahlen n
gtlt die Bernoullische Ungleichung

L+ k=14 nh. (28)
Das Qleichheitszeichen gilt nur, wenn n = 0, 1 oder b = 0 1st.

Beweis. Fiir h = 0 oder n = 0, 1 gilt (28) mit dem Gleichheitszeichen. Im Fall
n > 0, h 5 0 setzen wir y = 1 + kh, z = 1 in (25) und erhalten nk < (1 + 2)* — 1.

Die Ungleichung (28) tritt erstmals 1689 in der ersten von fiinf als ,,Reihendisser-
tationen‘* bezeichneten Arbeiten von JAxoB BErNoULLI (1854—1705) iiber unend-
liche Reihen auf. Sie kann auch leicht direkt durch vollstindige Induktion bewiesen
werden.
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1.1.3. Obere und untere Schranken von Mengen reeller Zahlen

Mit Hilfe der Ordnungsrelation kann fiir Mengen reeller Zahlen eine Reihe von
Begriffsbildungen definiert werden, die fiir die Analysis von Bedeutung sind.

Definition. Eine Menge M reeller Zahlen heiBt nach oben beschrinkt, wenn eine
reelle Zahl a mit folgender Eigenschaft existiert: Fiir alle reellen Zahlen r mit
z € M gilt z < a. Jede reelle Zahl a mit dieser Eigenschaft heiBt eine obere Schranke
der Menge M:

a obere Schranke von M :& Az < a.
zeM

Alle bisher bewiesenen Aussagen iiber reelle Zahlen gelten unverindert fiir den
Kérper @ der rationalen Zahlen. Dagegen ist das hfolgende Grundgesetz der
Stetigkert fiir den Korper R der reellen, aber nicht fiir den Korper Q der rationalen
Zahlen erfiillt.

Satz. Jede nichtleere nach oben beschrinkte Menge M reeller Zahlen besitzt eine
kleinste obere Schranke, d. k., es gibt eine obere Schranke a derart, dap jede obere Schmnlce
b von M die Ungleichung a < b erfiillt.

Wegen der Giiltigkeit dieses Satzes!) bildet R beziiglich der Addition, Multiplika-
tion und Ordnung einen stetig geordneten Korper.

Aus dem Satz ergibt sich sofort, daB jede nach oben beschrinkte Menge reeller
Zahlen genau eine kleinste obere Schranke besitzt. Sind nimlich a,, a, kleinste
obere Schranken von M, so ist @, < a, und a, < a,, also ¢, = a,. Die kleinste obere
Schranke einer nach oben beschrinkten Menge M reeller Zahlen heiBt auch die obere
Grenze oder das Supremum von M, in Zeichen sup M.

Beispiel. Es seien by, by, b,, ... natiirliche Zahlen, und fiir k = 18¢i 0 < b < 9.
Mit M bezeichnen wir die Menge aller rationalen Zahlen

dy := byb, .. bt—bo+—+ +1—0.—

mit k € N. Wir werden zeigen, daB es eine reelle Zahl b mit
boby.. by < b < byby...b, + 107K

gibt. Hierzu setzen wir d;' := d; + 10-* . Wegen

ist
dhsd £ sd<d/<--<d) £ dy,

1) Ein Beweis dieses Satzes wird in MfL 2, 6.2.1., gefiihrt.
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und es folgt dy < dpum < dj,p < dp’ fiir alle natiirlichen Zahlen k, m. Fiir jede
natiirliche Zahl m ist also d,,” eine obere Schranke der nichtleeren Menge M. Daher
besitzt M eine kleinste obere Schranke b. Es ist also stets d; < b < d,’, was wir
zeigen wollten.

Wenn keine Neunerperiode auftritt, ist b nach MfL 2, 6.2.1., durch den unendlichen
Dezimalbruch b = by,b,b,... gegeben. Im Falle einer Neunerperiode ist diese Dar-
stellung in der bekannten Weise zu modifizieren. So ist z. B. 234,3179 = 234,318 zu
setzen.

Die Aussage a = sup M (a € R) ist genau dann erfiillt, wenn a obere Schranke
von M ist und wenn zu jeder reellen Zahl y, die kleiner als a ist, eine Zahl z mit
z < M und r > y gefunden werden kann. Dies besagt in formalisierter Schreibweise

a=supM:sAr=an A Vy<asy<z). (1)

zeM yeRzed

Das Supremum a einer Menge M braucht nicht Element dieser Menge zu sein. Ist
dies aber der Fall, so heit a das Maximum der Menge M, in Zeichen @ = max M.
Es gilt

a=muxM:aec MANz=Za, (2)

zeM

d. h,, a ist Maximum der Menge M genau dann, wenn a Element und obere Schranke
von M ist.

In Analogie zu den Begriffen ,,nach oben beschrinkt®, ,,obere Schranke*, ,,Maxi-
mum®, ,kleinste obere Schranke‘‘ bzw. ,,obere Grenze‘‘ bzw. ,,Supremum‘* fiihrt
man die Begriffe ,,nach unten beschrinkt*, ,untere Schranke*, ,Minimum®,
,»groBte untere Schranke‘* bzw. ,,untere Grenze* bzw. ,,Infimum‘ ein. Die Existenz
der groBten unteren Schranke einer nichtleeren nach unten beschrinkten Menge M
reeller Zahlen kann aus dem Grundgesetz der Stetigkeit gefolgert werden, indem man
die Menge M* := (x: —z € M} betrachtet, die auf der Zahlengeraden spiegelbildlich
zu M beziiglich O liegt. Abkiirzend wird die groBte untere Schranke einer nichtleeren
nach unten beschrinkten Menge M mit inf M (gelesen: Infimum (von) M) bezeichnet.
Besitzt die Menge M ein Minimum, so wird es mit min M (gelesen: Minimum (von)
M) bezeichnet. .

Ist eine Menge M nicht nach oben bzw. nach unten beschrinkt, so setzen wir
sup M := oo bzw. inf M := —oo.

Fiir jede nichtleere Menge M & R ist

1%ty = { J—o0, 8] fiir b= max M,
J—o0,b[ fir b=supM¢ M

offensichtlich das kleinste linksseitig unbeschrinkte Intervall, das die Menge M
umfaBt. Entsprechendes gilt fiir das Intervall

[a, oo fiir @ = min M,

T (M) := {
Je, oo fiir a=infM4 M.
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Daher ist
I(M) := I*(M) 0 I (M)

das kleinste Intervall, das die Menge M umfaBt.

‘Wenn es uns also gelingt, das kleinste Intervall zu finden, das eine nichtleere Menge
M < R enthilt, haben wir in dessen Begrenzungspunkten das Infimum und das
Supremum von M ermittelt. Das kleinste Intervall, das die Menge

M={—l-:n€ N‘}
n

umfaBt, ist z. B. das Intervall J0, 1], und folglich ist inf M = 0,sup M = max M = 1.

Jede nichtleere Menge natiirlicher Zahlen besitzt ein Mini Ferner besitzt jede
nach oben bzw. unten beschrinkte Menge ganzer Zahlen ein Maximum bzw. ein
Minimum. Ist z eine reelle Zahl, so ist die Menge aller ganzen Zahlen n mit » < z
nach oben beschrinkt und besitzt ein Maximum, das wir mit [z] bezeichnen:

[z]:=max(n:n€ ZAan < z}.

Die ganze Zahl [x] heiBt das grofte Ganze der reellen Zahl z.

Jede endliche Menge reeller Zahlen besitzt ein Maximum und ein Minimum. Hier-
mit beweisen wir die fiir alle natiirlichen Zahlen =, alle reellen Zahlen aq, ..., a, und
alle positiven reellen Zahlen by, ..., b, giiltige Ungleichung

P ) Gy @+ -+ a, Qo )
nmind—, ..., — < ——— < max{—, ..., —%, 3
{b,. b.} P {bo , b.} @

Es gibt ein ¢ mit |

3
—=— absba (k=0,.,7),

be
und folglich ist auch

L
@ X b = Za.b;szb.a.—b Zab

k=0 k=0

L]
Wegen b; > 0 und ' b, > 0 folgt
k=0

1
a4 <im0 ké; *
b:
. z b}
£=0
womnit die erste Ungleichung (3) bewiesen ist. Der Beweis der zweiten Ungleichung

verliuft analog.
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1.1.4.  Absolute Betrige

Fiir jede reelle Zahl a setzen wir nach KarL WEIERSTRASS (1815—1897)

a fir a=0,
la] := O]
—a fir a<0
und die nichtnegative reelle Zahl |a| den Betrag von a. Offenbar gilt
la| = max {a, —a}. (2)
Fiir jede reelle Zahl a setzt man ferner
1 fir a>0,
sgna:= 0 fir =0,
—1 fiir a<O0
(gelesen: Signum a). Fiir alle a gilt dann
la| =asgna, a=|a|sgna, (3)
und fiir alle a, b ist
sgn (ab) = sgna - sgnb. 4
Die Rechenregeln
la] = |—al, )
e —b| =ib—al,
|abl = |a] - [b], (6)
a la|
—|==— ®=+*0
b ol (b+0)
ergeben sich unmittelbar aus der Definition (1) bzw. aus (2)
Fiir viele Beweise der Analysis sind die beiden Dr gleichung
la £ b < |al + [B], (M
[lal — 1bl] < la =+ b ®)

von beeonderer Bedeutung Es geniigt, die Behauptungen (7), (8) fiir das obere der
beiden Zei zu bewei Wegen (B) ergibt sich nimlich die zweite Behauptung,
indem wir b durch —b ersetzen. Zum Beweis von (7) gehen wir von den nach (2)
giiltigen Ungleichungen +a < |a|, b < |b| aus und erhalten nach Addition 4 (a +b)
< lal + |b]. Fiir eines der beiden Zeichen ergibt sich links |a + b|, womit (7) bewiesen
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ist. Hieraus folgt weiterhin

lal = l(a + b) — ] < |a + b] + [b],
lal — Bl < |a + 3. (9)

Durch Vertauschung von a und b ergibt sich ebenso
bl — lal < [b + al = |a + b]. (10)

Aus (9) und (10) folgt (8).
Die Ungleichung

le—b<la—c +b—d (11)

wird ebenfalls hiufig als Dreiecksungleichung bezeichnet. Sie ergibt sich wie folgt
aus (7):

la—bl=l@a—¢c)—(b—c) Sla—cl+b—c.
Mit Hilfe von Absolutbetrigen kann man das Maximum bzw. Minimum zweier
reeller Zahlen formelmiBig angeben. Nach Definition des Absolutbetrages ist
la — b =a — bfiira = bund |a — b| =b — a fiir a < b. Es folgt

a+b+a—b _{a fir a =0,

2 b fir a<b,
a+b—|a—b| _ b fir a=0,
2 “la fir a<b,
d. h., es ist
mex (g, b} = wtl"——"' (12)
min (a, b) = “_""’_2""_—"'. (13)

1.1.5. Waurzeln

In der Schulmathematik wird der nachfolgende Salz von der Existenz und Einzigkeit
der n-ten Wurzel meist ohne Beweis verwendet.

Satz. Zu jeder nichtnegativen reellen Zahl a und zu jeder von 0 verschiedenen natiir-
lichen Zahl n qbt es genau eine nichtnegative reclle Zahl b mit b* = a.

Beweis. Fiir n = 1 ist a die eindeutig bestimmte Losung der Gleichung z* = a.
Es sei nun # > 1. Wir ermitteln die natiirlichen Zahlen by, b;,b;, ... aus den Bedin-
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gungen
b*=a < (b+ 1),
(bosby)* = a < (bo,by + 1071)*

(boby ... b)" < @ < (bosby...by + 107K

und setzen dj := by,b;...b;, di’ := di + 10~*. Nach 1.1.3. gibt es eine reelle Zahl b
mit d; < b < d}/, also auch

grsbr=d/'> (keN).
Nach Konstruktion ist andererseits d;* < a < d;'* oder
—d' < —a £ —dpr.
Addition der beiden letzten Ungleichungen ergibt
—(d—d®) <b* —a < &/ — di.
Mit 1.1.2.(25) folgt, wenn wir d;’ < d,’ beachten,
[b* —al S &' — d* <ndy"Ndy' — dp) = ndy'*1107%.

Wiire nun b = a, so konnten wir k so groB wihlen, daB 10* |b* — a| > nd,'*"1 ist,
was zu einem Widerspruch fiihrt. Somit ist b* = a. Wegen 1.1.2., Satz 8, kann es
keine von b verschiedene Losung der Gleichung 2" = a geben.

Definition. Ist a eine nichtnegative reelle Zahl, so heiBt die eindeutig bestimmte
nichtnegative reelle Zahl b mit b* = a (n = 1, 2, ...) die n-te Wurzel von a. Sie wird
mit 74; bezeichnet. Die Zahl a heit der Radikand von VE. Statt i/(; schreibt man
kiirzer Ya.

Nach Definition ist
(jaf = a
fiir alle nichtnegativen reellen Zahlen a, und nach 1.1.2., Satz 8, gilt @ = b bzw.
a < b fiir zwei nichtnegative reelle Zahlen a, b genau dann, wenn 'i/t-z = % bzw.
Vc; < W ist. Ferner ist stets i/; =a. .

Man beachte vor allem, daB das Symbol }/; (n =1,2,...) nur dann erklirt ist,
wenn a nichtnegativ ist. Das ist z. B. gesichert, wenn a = b%, d. h., wenn a das
Quadrat einer beliebigen reellen Zahl b ist. Insbesondere gilt stets

¥oi = o). )
Soistz.B. J(—3) =0 =3 =|—3|.
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Fiir ungerade natiirliche Zahlen » hat die Gleichung 2* = a auch im Fall a < 0
eine (sogar eindeutig bestimmte) reelle Losung. Diese wird aber nicht mit 'i/;,
sondern mit —V:bezeichnet. Wir sagen also z. B. nicht, ,,die Gleichung 2 = —8
hat die Losung :}'/—_8“, sondern wir bezeichnen die Lésung mit —i/g. Die Einfiihrung
des Symbols 'i/; fiir ungerade n und negative reelle Zahlen a ist unzweckméiBig, weil
dies fiir eine Verallgemeinerung der Potenzgesetze hinderlich ist.

Diese Vereinbarung betrifft die reelle Analysis. In der komplexen Analysis, der sogenannten
Funktionentheorie, und in der Algebra liegt ein anderer Sachverhalt vor. Hier ist es hiufig
nicht méglich, in natiirlicher Weise unter allen Lésungen einer Gleichung der Form z* = a

eine bestimmte auszuwihlen. Das Symbol 'i’:z wird dann verwendet, um irgendeine dieser
Lo ich Bei Ver d solcher ,,mehrdeutigen* Symbole muB man sorg-
filtig darauf achten, daB Mleerstandmsse vermieden werden.

1.2.  Komplexe Zahlen

- 1.21. Der Kérper der komplexen Zahlen

Die Tatsache, daBl gewisse algebraische oder geometrische Problemstellungen in
Zahlbereichen nicht 16shar sind, fiihrte in der Entwicklung der Mathematik zu Er-
weiterungen dieser Zahlbereiche bis zum Bereich der reellen Zahlen. Eine nochmalige
Erweiterung dieses Bereichs wurde zunichst dadurch motiviert, daB nicht alle
Gleichungen zweiten Grades im Bereich der reellen Zahlen loshar sind; dies gilt
z. B. fiir die Gleichung z? 4+ 1 = 0. Spiiter erwies sich, daB der bei diesem Erweite-
rungsschritt gewc Zahlbereich, der Bereich der komplexen Zahlen, fiir die
Mathematik und Naturwissenschaften von auBerordentlich weitreichender Bedeu-
tung war. Eine liickenlose Einfiihrung des Begriffs ,,komplexe Zahl* erfolgt an
anderer Stelle. Hier begniigen wir uns damit, den nachfolgenden Satz ohne Beweis
anzugeben.

Satz. Es gibt einen Zahlbereich C, dessen El te komplexe Zahlen heifen und der
folgende Eigenschaften besitzt:

a) Der Bereich der reellen Zuhlen ist ein Teilbereich des Bereichs der komplexen Zahlen,
d. h., jede reelle Zahl ist auch eine komplexe Zahl.

b) Im Bereich der komplexen Zahlen sind ecine Addition und eine Multiplikation
definiert, und beziiglich dieser Operationen bildet C einen Erweiterungskorper von R.
c) Es gibt eine komplexe Zahl © mit der Eigenschaft

2= —11) (1)

1) Wir v iden es, diese Gleich in der Form i = V-——l zu schreiben, denn wir haben
das Symbol }/; nur fiir nichtnegative reelle Radikanden a definiert.
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der Analysis

8

d) Zu jeder komplexen Zahl z gibt es ein eindeutig bestimmies Paar (z,y) reeller
Zahlen mit

2=z +iyl) @

Die reelle Zahl z heiBt der Realterl, in Zeichen Re z, die reelle Zahl y der Imaginirteil,
in Zeichen Im z, der komplexen Zahl z.

Wie wir aus (1) ersehen, ist im Bereich der komplexen Zahlen die Gleichung
2* + 1 = 0 l6sbar. Auf Grund der Eigenschaft b) kann man mit komplexen Zahlen
pim tlichen“ ebenso rech wie mit reellen Zahlen. Man beachte aber, dag
fiir komplexe Zahlen keine Ordnungsrelation definiert ist.

Wir fiihren noch folgende Bezeichnungein. Die komplexe Zahl z heiBt rein imagindr,
wenn z %= 0 und Re z = 0 ist. Fiir jede komplexe Zahl z gilt

z=Rez+47Imz.
Die komplexe Zahl
z:=Rez—iImz (3)

heiBt die zu z konjugiert komplexe Zahl.?)

Wihrend wir reelle Zahlen auf einer Zahlengeraden veranschaulichen, verwenden
wir fiir die Veranschaulichung komplexer Zahlen eine Zahlenebene, die Gaufsche
Zahlenebene (CARL FRIEDRICH GAuss (1777—1853)). Gauss fiihrte die Darstellung
der komplexen Zahlen in der Ebene in seiner zweiten Abhandlung iiber biquadra-
tische Reste 1831 ein.

Der komplexen Zahl z mit z = z + iy ordnen wir nach Wahl eines Koordinaten-
systems den Punkt P(r, y) zu. Es ist iiblich, die Punkte der GauBschen Zahlenebene
mit den komplexen Zahlen zu identifizieren und dementsprechend mit z statt mit
P(z, y) zu bezeichnen (Abb. 1.1).

Diese Zuordnung ist umkehrbar eindeutig. Den reellen bzw. nicht reellen kom-
plexen Zahlen entsprechen dabei die Punkte der xz-Achse bzw. die Punkte, die nicht

1) Wegen der Kommutativgesetze fir die Addition und Multiplikation kénnen wir auch
z2=12z + yi = yi + = iy + z dchreiben.
%) Neuerdings wird die konjugiert komplexe Zahl von z hiufig mit z* statt Z bezeichnet.
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auf der z-Achse liegen. Den rein imaginiren komplexen Zahlen entsprechen die
vom Ursprung verschiedenen Punkte der y-Achse. Ist z = z + iy, so heiBt die
reelle Zahl |z| mit

2 == Va* + @)

der Betrag von z. Offenbar ist |z| der Abstand des Punktes z vom Ursprung. Fiir
reelle komplexe Zahlen stimmt diese Definition mit der Definition von 1.1.4. iiberein.
Es ist |z = 0 genau dann, wenn z = 0 ist. Zwei konjugiert komplexe Zahlen z und z
liegen spiegelbildlich zur z-Achse und haben den gleichen Betrag.
1.2.2.  Das Rechnen mit komplexen Zahlen
Sind 2,, z; komplexe Zahlen mit z, = 2, + ¥y, 2, = 7, + 1¥,, S0 gilt

2+ 23 = (@ + W) + (@2 + ) = (@ + T2) + U + 1),
d.h., esist

Re(z + z) = Rez + Rez,

Im (z; + 2) = Imz + Imz,.
Wegen i* = —1 ist ferner

2% = (31 + ) (72 + W) = 1127 — Y1y + ATy + 017,
d. h., es ist

Re (z,z;) = Rez; Rez; — Im 2, Im z,,

Im (z,z) = Rez, Imz, + Imz, Re z,.
Fiir 2z, = z = ¢ + vy und 2, = Z = z — 1y erhalten wir insbesondere

z+ 2z =2z, z—z =2y, 2Z =2 + 42,

d.h, esist
z+z z—2Z
Rez= P Imz = PYRU 1
2] = Y2z, (2

wobei wir das Wurzelsymbol anwenden durften, weil 2z eine nichtnegative reelle
Zahl ist. Wegen Z = z ist offenbar |z| = |z].
“Fir jede von 0 verschiedene komplexe Zahl z gilt

1z _ 1. 3
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8

Fiir 2, 3= 0 ist folglich

2, 1 | -
= =z — = ——125. (O]

— =
Z 2 |za?

Fiir den Ubergang zur konjugiert komplexen Zahl gelten die Rechenregeln

ntn=%4tz, (8)

2% = 55, (8)

(_=-. =3 g0 ™
2z 23

Fiir das Rechnen mit Betriigen gelten die Regeln

llzal — laal] S 22 & 2l < [21] + ®)

[2122] = |21] - |22l » 9)
T U 1 R (10)
2 |22

Aus (9) folgt |z% = |z|* (n € N) durch vollstindige Induktion. Wir erliutern die
Rechenregeln an einigen Beispielen.
Es sei

a=2-—"57, b=3+ 47, c=%i.

Dann ist z. B.

a4+b=5—4%, a—b=—1—9, Rea=2, Ima=—5,

F=245, =yPFa="5 l=l-1|;a=—2i, ab =26 — T,
c C|

e 1 1 1 14 2

L =L o)) == (—14—28) = —= 2

P S T s BB B—4) = o0 ) 25 25

1.23. Quadratwurzel komplexer Zahlen
Satz 1. Die Qleichung z* = c besitzt fiir ¢ = 0 die eindeutig bestimmte Losung zy = 0
und fiir ¢ = 0 genau zwer Lisungen z,, z, mit z, = —z;.

Beweis. Wir unterscheiden zwei Fille.

Fall 1. Die komplexe Zahl c ist reell. Ist ¢ = 0 baw. ¢ < 0, so gilt ¢ = }/3 bzw.
c= (i }/—_c)”, und die Gleichung 2% = ¢ ist mit 23 = }fc? bzw. 2* = ('i V—c)’, also

mit (z - VE) (z + m =0 bzw. (z - z}/—_c) (z +7 }/?c) =0 dquivalent. Diese

Gleichungen sind genau dann erfiillt, wenn einér der beiden Faktoren gleich Null ist.
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Die Gleichung z? = ¢ hat somit genau die Losungen

2=0 =0, m
na=xye (¢ =Rec>0), @
zn,=4if—¢c  (c=Rec<0). ®3)

Fall 2. Die komplexe Zahl c ist nicht reell. Esseic = a + b,z = z + iy (a, b, 2, y
€ R). Nach Voraussetzung ist b = 0. Dann gilt 22 = ¢, also

(z + ) =a+ 0,
d.h.
(@ —y") + 2izy =a + b

genau dann, wenn die Gleichungen

2 —yt=a, 4)
20y =b (8)

erfiillt sind. Unsere Problemstellung ist damit auf die Losung des (nichtlinearen)
Gleichungssystem (4), (6) zuriickgefiihrt. Im Gegensatz zur Gleichung z* = ¢ handelt
es sich um ein Gleichungssystem im Bereich der reellen Zahlen. Wir haben somit
AnlaB, an Hand eines konkreten Beispiels zu zeigen, welche Probleme bei der Lésung
nichtlinearer Gleichungssysteme fiir reelle Zahlen zu beachten sind. Wir nehmen
zuerst an, daB zwei reelle Zahlen z, y die Glelchungen (4), (5) erfiillen. Durch Qua-
drieren und Addieren folgt

 — 22%2 4 yt = a?

4oy’ = b
2+ 2%t + yt = a® 4 b2

(2* + y*)? = a® + b2,

Somit ist
R

und wenn wir (4) addieren bzw. subtrahieren, erhalten wir

2z’=a+}/a’+b’, 243 = —a + Yad + B3,

Es folgt
lel = V“—* Lok W X Ll ®)
- 2 ’ VT e
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Aus b 50 und (5) folgt z,y + 0. Setzen wir o:=sgnz, so gilt osgny = sgnd
wegen (5), woraus sgn y = o sgn b folgt. Somit ist

Ya? + b _ a? + bt
=o|,a—+ 2“' +b , y=asgnb‘/—a+};a +¥ . (7

Wegen }Ja? + b® > +a kénnen wir umgekehrt die reellen Zahlen z, y durch (7) mit
= 1 oder 0 = —1 definieren. Dann gilt

I’_y’_a+}'a’+b’_—a+Va’+b’__a
n 2 2 -

_ a 4 Ya? + b2 1/ —a + Ya? + b?
2xy—2sgnbl/ 3 V

2
—sgnbY—a® + (a® + b%) =sgnb BT =1b,
d. h., die Gleichungen (4), (5) sind erfiillt. Daher sind

22 = i(]/"_e%ﬂ +isgn(Imc) Vi’;;—ﬂ’ (Imec +0) (8)

die einzigen Losungen der Gleichung 28 = c.
Damit ist Satz 1 bewiesen.

Beispiel. Die Gleichung 2 = —1 hat wegen (3) die Lésungen
212 = :I:iﬁ =+,
die Gleichung z® = 12 — 57 wegen (8) die Losungen

e = i(l/l‘z;m _,~V—122+ 13)=:I:(§V§—%;/§),

Mit Hilfe von Satz 1 beweisen wir
Satz 2. Zu jeder positiven natirlichen Zahl p gibt es eine kompleze Zahl z, mit

2P = 1.
Beweis (vollstindige Induktion).
a) Die Behauptung gilt offenbar fir p = 1.
b) Fir alle natiirlichen Zahlen ¢ mit 1 < g < p gebe es eine komplexe Zahl z, mit z,? = i.
Ist p = 4k bzw. p = 4k + 2 (k € N), so gilt
P = = baw. (—i)PH = (— i)W (—i)d =i,
Ist aber p ungerade, so setzen wir g := 2 _; !

und bestimmen eine komplexe Zahl z, mit
2,9 = i und eine weitere komplexe Zahl z, mit 2,2 = z,. Dann gilt
2P =220 =20 =i,

In allen Fillen gilt also die Behauptung auch firr p + 1.
Damit ist Satz 2 bewiesen.
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1.3. Funktionen

1.3.1.  Der Funktionsbegriff

Eine Teilmenge f des kartesischen Produktes M X N zweier beliebiger Mengen M, N
heiBt bekanntlich eine Funktion aus M in N, wenn aus (z, y,), (2, ¥o) € fstets y; = y;
folgt. Die Menge aller z aus M, zu denen ein y aus N mit (z, y) € f existiert, heiBt der
Definitionsbereich D(f) der Funktion f; die Menge aller y aus N, zu denen ein z aus
M mit (z, y) € f existiert, heiBt der Wertebereich W(f) der Funktion /. Mit f(x) wird
im Fall € D(f) das (nach Definition eindeutig bestimmte) Element y mit f € (z, y)
bezeichnet. Wir driicken diesen Zuordnungsproze8 durch

frzry=fz) (z€Dip) M
oder kiirzer durch
y=f@ (z€Dp)

aus. Ist M = D(f) bzw. N = W(f), so heiBt f eine Funktion von M in N bzw. aus M
auf N. Ist zugleich M = D(f) und N = W({), so heiBt / eine Funktion von M auf N.
Eine Funktion f heiBt konstant; wenn es ein Element ¢ mit f(z) = ¢ fiir alle z € D(f)
gibt.

Ist f eine Funktion aus M in N und M eine Produktmenge M, X --- X M, 80 heiBt
f eine Funktion von n Variablen. Die El te z des Definitionsbereichs von f kénnen
in der Form z = (z,,...,2,) mit z; € M; (¢ = 1,...,n) dargestellt werden. Statt
f((%1s -, %4)) schreibt man kiirzer f(z,, ..., z,)-

Zu jeder Teilmenge R von M X N, die auch als Korrespondenz zwischen den
Mengen M und N bezeichnet wird, insbesondere also zu jeder Funktion f aus M in
N, existiert die durch

RY={(x,y): (y,2) € B} @)

definierte Umkehrkorrespondenz oder inverse Korrespondenz. Ist f~! wieder eine
Funktion (was nicht immer der Fall ist), so heiBit f eine umkehrbare Funktion, und
#71 heiBt die Umkehrfunktion oder inverse Funlktion von f. Stets ist D(f!) = W(f),
W(f) = D(f). .

Ist M eine Teilmenge des Definitionsbereichs einer Funktion, so verstehen wir
unter der Einschrinkung f | M der Funktion f auf die Menge M die durch

fIM:z— f(z) (xe M) (3)

definierte Funktion. Ist g eine Einschrinkung der Funktion f, so heiBt / eine Fort-
setzung der Funktion g auf die Menge D(f).

Eine Funktion, deren Definitionsbereich die Menge N der natiirlichen Zahlen (oder
eine unendliche Teilmenge von N) ist, heiBt eine Folge, genauer eine Folge in der
Menge M, wenn ihr Wertebereich eine Teilmenge von M ist. Jedes Element dieses
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Wertebereichs heiBt ein Glied der Folge. Eine Folge in der Menge der reellen bzw.
komplexen Zahlen heiBt eine reelle bzw. komplexe Zahlenfolge. Wird der natiirlichen
Zahl n durch eine Folge das Glied a, zugeordnet, so bezeichnen wir diese Folge mit
(@a)nen Oder auch nur mit (a,).

In der Renaissance kam es zu einer auBerordentlich schnellen Entwick]ung der Mathematik.
Sie wurde hervorgerufen nicht nur durch die rechnerisch-geschiftlichen I der Kauf-
leute, sondern in noch stirkerem MaBe durch den beginnenden Einsatz von Maschinerien in der
Produktion (Manufakturen, Bergwerke). Neue Erfindungen (Feuerwaffen, Buchdruck), die
Konstruktion neuer Maschinen und Gerite (Uhren) fithrten zu einem allgemeinen neuen
technischen BewuBtsein und lenkten die Aufmerksamkeit auf das wissenschaftliche Studium
von Verinderungen, insb dere von Bewegungsvorgingen. Der Himmelmechanik kam
dabei besondere Bedeutung zu.

Die Mathematik der Antike und besonders dle dea Mlttelalters ha.ttzn trotz geutrelcher
Ansitze kaum Brauchbares zur th von

hinterlassen. Der entstehende Frithkapitali forderte d h auch hematische Ver-
fahren zur Losung dieses Problems.
Einen lichen Fortachritt bild in dieser Richtung die Untersuchungen von RENE

DESCARTES (1596—1650). Er hatte begonnen, die Verinderung algebraischer Ausdriicke in
Abhingigkeit von der Verinderung der in diese Ausdriicke eingehenden GréBen zu betrachten
und einen Teil des dazu notwendigen Symbolismus und der Fachsprache entwickelt. Es bestand
erst mit der Entwicklung der Analysis die Notwendigkeit, auch fir die Abhingigkeit veriinder-
licher GréBen neue Begriffe zu suchen. -

Das Wort ,,function‘* ver dete 1692 erstmals GorTFRIED WILHELM LEIBNIZ (1646 —17186).
Es wurde durch JoHANN BERNOULLI (1667 —1748) weit bekannt gemacht. Mit diesem Wort
bezeichnete man dabei stillschweigend nur solche Zusammenhinge, die durch Formeln vom
Typ algebraischer Ausdriicke beschrieben werden k LeoNarp EvLER (1707—1783)
gab 1748 fiir diese Vorstellungen die klassische Definition: ,,Die Funktion der verinderlichen
GroBen ist ein analytischer Ausdruck, der auf beliebige Art aus verinderlichen GréB8en und
Zahlen oder konstanten Quantltlten gebildet worden ist. Unter einem solchen ,,analytischen
Ausdruck* ist also bei EULER eine nach dem Typ algebrmscher Funktionen geb)ldete Abhiingig-
keit zu verstehen. Diese Definition EULERS prach dem Verstindnis der N tiker des
18. Jahrhunderts. Sie wurde nahegelegt durch das rein formale Operieren mit unendlichen
Reihen. Traten wirklich einmal analytische Funktionen auf, die andere Singularititen als die
algebraischen besaBen, so wurden sie kaum beachtet. Die Mathematiker gewéhnten sich daran,

,,analytischer Ausdruck‘ und ,,Funktion* als identische Begriffe zu betracht

Die Diskussion eines praktischen Probl das der Beschreibung der Oszillation der
schwingenden Saite, filhrte seit 1750 in vielerlei Hinsicht zur Unt hung gr gend
Fragen der Analysis und erfaBte auch den Funktionsbegriff.

Es hatte slch belm Problem der schn g d Saite dmlich herausgestellt, daB die }uer
wirklich vork in verschi Abschni durch verschi
analytische Ausdricke gegeben sein konnen. Im Jahre 1807 zeigte nun JoSEPH FOURIER
(1768 —1830) sogar, daB eine g h Linie (Ausgangsform der schwingenden Saite) durch
eine einzige trigonometrische Reihe beschrieben werden kann. FoustEr konnte sich in seinen
Unt dabei b ders auf Vorarbeiten von JoRANN BERNOULLI stiitzen.

Die Gleichsetzung von ,,Funktion‘ und ,,analytischem Ausdruck' muBte jetzt fallen-
gelassen werden. Die neue notwendige Erweiterung der Definition des Funktionsbegriffes
wurde zu Anfang des 19. Jahrhunderts von verschiedener Seite, so von SYLVESTER FrANGOIS
LAcroIx (1765—1843), BERNARD BoLzaNO (1781 —1848) und NIKOLAI IVANOVIE LOBACEVSKLY
(1793 —1856) vorg In klassischer Formulierung lautete die neue Definition 1837 bei
PETER GUSTAV LEJEUNE-DIRICHLET (1805—1859): ,,Eine Funktion heiBt y von 2, wenn jedem
Werte der verinderlichen GroBe z innerhalb eines gewissen Intervalls ein bestimmter Wert
von y entspricht; gleichviel, ob y in dem ganzen Intervalle nach demselben Gesetze von z
abhiingt oder nicht; ob die Abhingigkeit glurch math ische Operationen ausgedriickt
werden kann oder nicht.*
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Die Ausarbeitung des Funktionsbegriffes kann als eine H leistung der Mathematik des
19. Jahrhunderts angesehen werden, wobei sich durch die Emfuhmng komplexer Zahlen in den
Funktionsbegriff viele neue Aspekte ergaben. Eine véllig scharfe Fassung des Begnffs, wle sle
oben skizziert wurde, gelang erst bei der Uberarbeitung der Math tik mit den Pri
der Mengenlehre.

1.3.2.  Funktionen aus der Menge bzw. in die Menge
der reellen bzw.komplexen Zahlen

Eine Funktion f aus einer beliebigen Menge in die Menge R der reellen bzw. in die
Menge C der komplexen Zahlen nennen wir eine reellwertige bzw. komplezwertige
Funktion. Eine Funktion aus R in R bzw. aus € in C nennen wir kurz eine
reelle bzw. kompleze Funktion. Jeder reellen Funktion / konnen wir nach Wahl
eines kartesischen Koordinatensystems in der Ebene die Menge aller Punkte
P(x, /(:)) mit z € D(f) zuordnen. Sie heiBt der Graph der reellen Funktion. Eine
Menge von Punkten P(z,y) der Ebene ist genau dann der Graph einer Funktion,
wenn jede Parallele zur y-Achse mit der Menge M hochstens einen Punkt gemein
hat.

Ist M eine Teilmenge des Definitionsbereichs einer reellwertigen Funktion, so
setzen wir

sup f(z) := sup {.'I= yeRAVy= /(1)}~
zEM TEM

Entsprechend bezeichnen wir das Infimum der rechts auftretenden Menge und ihr
Maximum bzw. Minimum, falls letztere existieren.

Definition 1. Eine reell- bzw. komplexwertige Funktion heiBt beschrinkt, wenn
ihr Wertebereich beschrinkt ist:

fbeschrinkt :> VA If(z) < K. 1)
KeR, zeD()

Entsprechend heiBt eine reellwertige Funktion nach oben bzw. nach unten beschrinkt,
wenn ihr Wertebereich nach oben bzw. nach unten beschrinkt ist:

/ nach oben beschrinkt : &\ A f(z) £ K,
KeR zeD(f) (2)

/ nach unten beschrinkt :&\/ A f(x) = K.
KeR zeD(f)

Definition 2. Eine von 0 verschiedene reelle bzw. komplexe Zahl 1 heiBt eine
Periode einer Funktion f aus R bzw. aus C, wenn fiir z € D(f) stets z + 1 € D(f) ist
und

fz + 2) = fz) ®)

gilt. Gibt es zu einer Funktion f aus R eine kleinste positive reelle Zahl 4, die die
Bedingung (3) erfiillt, so heit sie die primitive Periode der Funktion f.
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Funktionen, die eine Periode besitzen, werden periodische Funktionen genannt.
Wichtige Beispiele fiir periodische Funktionen sind bekanntlich die trigonome-
trischen Funktionen, die wir in 1.6. einfithren werden. Die Funktionen y = sin z
und y = cos z besitzen die primitive Periode 2x.

Definition 3. Ein Element z des Definitionsbereichs einer Funktion f heit eine
c-Stelle bzw. eine Nullstelle der Funktion, wenn f(x) = ¢ bzw. f(z) = 0 ist.

Die nachfolgende Begriffsbildung ist u. a. fiir die Entwicklung von Funktionen
in Reihen von Bedeutung.

Definition 4. Eine reelle bzw. komplexe Funktion heiBt gerade bzw. ungerade,
wenn aus z € D(f) stets —z € D(f) und

f(—=2) = f(z) 4)
f(—==2) = —f=) (8)

baw.

folgt.

Der Graph einer geraden bzw. ungeraden reellen Funktion liegt symmetrisch zur
y-Achse bzw. symmetrisch zum Ursprung. Alle Potenzfunktionen y = 2* mit n € N
sind fiir gerade » gerade, fiir ungerade n ungerade Funktionen.

Es sei / eine beliebige reelle Funktion mit einem zum Ursprung symmetrischen
Definitionsbereich. Setzen wir '

glz) = f(z) +2/(‘1) . @)= /=) —2/(-4’) ,
80 gelten die Beziehungen

g(—2) =9g(x),  h(—2) = —h(),
und es ist

ftz) = g(z) + h(z).

Wir konnen also f als Summe einer geraden und einer ungeraden Funktion dar-
stellen.

Wir unterwerfen den Graphen einer reellen Funktion f gewissen geometrischen
Transformationen, die wieder den Graphen einer Funktion g ergeben, und unter-
suchen die Beziehungen zwischen den zugehérigen Funktionen.

A. Spregelungen

Geht der Graph von g aus dem Graphen von f durch Spiegelung an der y-Achse bzw.
an der z-Achse bzw. am Ursprung hervor, so gilt

g@) =fi—z) (—zeD(p)

bzw.

9@) = —f@  (z€D(f)
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bzw.

g(@) = —f(—2)  (—z € D(f)

(Abb. 1.2).

Abb. 1.2

B. Translationen

Geht der Graph von g aus dem Graphen von / durch Translation um den Vektor
(a, b) hervor, so gilt

g@)=fz—a)+b (¢—ae D)
(Abb. 1.3).

Abb. 1.3
! T
4 9, /
Prd / g(x) =af(x)
/
7 f(s;(gw
flx Abb. 1.4
X x x
5 i
/
g~
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C. Deknungen und Stauchung

Geht der Graph von g aus dem Graphen von f durch Dehnung (bzw. Sta
Verhiiltnis a:1 (¢ > 0) in Richtung der z- bzw. y-Achse hervor, so gilt

w0 =1(3) (Feon)

9(@) =af(x) (€ D)
(Abb. 1.4).

h

g) im

bzw.

1.3.3.  Verkniipfungen von Funktionen

Wir stellen einige Moglichkeiten zusammen, aus gegebenen Funktionen neue Funk-
tionen zu bilden.

Aus der allgemeinen Theorie des Funktionsbegriffs ist bekannt, daB zu jeder
Funktion f aus L in M und zu jeder Funktion g aus M in N eine mit f o g (gelesen:
/nach g) bezeichnete (moglicherweise leere) Funktion gebildet werden kann. Sie ist
durch

(fog) (=) :=flgx))  (z € Dig) » g(=) € D(f)) (m
definiert und heiBt eine g Funktion. Hiernach ist
D(f o g) = (z € D(g): g(z) € D(f)}. @

Ferner gilt das Assoziativgesetz
(fog)oh=/[o(goh). &)

Fiir reellwertige bzw. komplexwertige Funktionen kénnen weitere Verkniipfungen
definiert werden. Ist f eine reell- baw. komplexwertige Funktion und A eine reelle
hzw. komplexe Zahl, so definieren wir die Funktion if durch

N @) := ) (= € D). “)

Die Funktionen f und Af haben somit denselben Definitionsbereich. Die S

bzw. Differenz zweier reell- bzw. komplexwertiger Funktionen f und g definieren wir
auch fiir den Fall, daB die Definitionsbereiche von f und g nicht identisch sind. Wir
setzen

(£ 9) @) :=f) L gx) (z€D(f) n D(g)). (8)

Sind /, g reelle bzw. komplexe Funktionen, so definieren wir das Produkt von /, g
durch

(/-9 (@) := =) glx)  (x€ D) n Dig)). (6)
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Man hat sorgfiltig zwischen f-g = fg und f o ¢ zu unterscheiden. Die Definitions-
bereiche von f 4+ g und /. g sind gleich dem Durchschnitt der Definitionsbereich
von f und g. Ist dieser Durchschnitt leer, so ergibt sich die ,Jeere Funktion®.

Bei der Bildung des Kehrwertes einer reellen oder komplexen Funktion ist zu
beachten, daB eine Division durch 0 ausgeschlossen ist. Wir setzen

1 1
F@= s EeDY A +0). )

Die Nullstellen der Funktion f gehéren somit nicht zum Definitionsbereich der
Funktion l Sie darf nicht mit der moglicherweise existierenden Umkehrfunktion

f~1 von [ verwechselt werden. Den Quotienten zweier reeller oder komplexer Funk-
tionen definieren wir durch

1
L.y2,
g 9
so daB
Lw—L2 (2 Dy D)o +0) ®)
g g(x)
gilt.
Wir fiihren die Menge &, aller reellwertigen bzw. komplexwertigen Funktionen
mit gemeinsamem Definitionsbereich D ein. Wir zeigen, daB die Menge &, einen

Vektorraum bildet. Fiir alle /, g, k € §p und alle reellen (bzw. komplexen) Zahlen
4, u folgt aus den Definitionen (4), (5):
A Lf+g¢€ .
IL(f+g)+h=f+(g+h).
III. Die Funktion k == g — f geniigt der Gleichung f + k = g.
W.g+/=f+g.
B L A€ B»p.
I 1. f=/.
L. (Au) f = Auf).
IV.Q+wf=4+4f.
V.af+g9=%4+12%.

Das Nullelement dieses Vektorraumes ist die Nullfunktion, die jedes x aus D auf 0
abbildet.
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Wie in allen Vektorriumen kann nun der Begriff der Linearkombination
J=4h+defs + - + Adfs

der Funktionen f,, fs, ..., /s mit den Koeffizienten 4,, 4,, ..., 4, eingefiihrt werden.
EinSystem /,, /s, ..., fa von n verschiedenen Funktionen f;mit f; € §p (¢ = 1, 2, ..., n)
heiBt linear unabhingig, wenn aus

Afy+ dafy 4+ D=0
stets 1; = 4y = --- = 4, = 0 folgt.
1.3.4. Ganzrationale, rationale und algebraische Funktionen
Fiir jede natiirliche Zahl » heiBt die Funktion

y=2a" (z€ R bzw. z€ C)

eine reelle bzw. komplexe Potenzfunktion. Da wir den reellen und den komplexen
Fall hiiufig parallel behandeln, kann z auch eine Variable fiir komplexe Zahlen sein.
In diesem Fall setzen wir z, := Re z, z, := Im 2.

Definition 1. Jede Linearkombination von reellen Potenzfunktionen mit reellen

Koeffizienten heift eine reelle ganzrationale Funktion. Jede Linearkombination von
komplexen Potenzfunktionen mit komplexen Koeffizienten heiit eine komplexe
ganzrationale Funktion.

Hiufig werden ganzrationale Funktioren Polynome genannt. Neuerdings ver-
steht man unter Polynomen die Elemente gewisser algebraischer Strukturen, die
allerdings in sehr engen Beziehungen zu den ganzrationalen Funktionen stehen.

Zur Vorbereitung des Beweises iiber die lineare Unabhingigkeit des Systems der
Potenzfunktionen benétigen wir den in mehrfacher Hinsicht bedeut

Satz 1. Es sei a, = 0 und

&'

@) =ao+ az + - +ax® (€ R baw. z€ C) (1

etne reelle bzw. komplexe ganzrationale Funktion. Dann gibt es im Fall n'= 1 eine
positive reelle Zahl R derart, daf

vz Bl o 2R @

und im Fall einer reellen Funktion

/@ > L jir wzr @

e = 2
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Beweis. Fiir [z] = 1 ist

@ | V@) — e el + lal-lal + - + laua] - 2t
anz" CARNE L |@al - |2I*
< |@ol + laa| + --- + |a,,_||'
|aa| - ||

Wihlen wir R = 1 und

R>2 1@ol + lay| + -+ + |anl

lall
so folgt aus [z| = R stets
f_ @ | | L
[aal - J2I® aez” 2

und der Vergleich der linken und rechten Seite ergibt (2). Aus der zweiten Un-
gleichung folgt, wenn f reell ist,

fx) 1
)<

a,zt
und das ist die Behauptung (3).

) n ungerade

a,>0

n gerade
a,<0

n ungerade Abb. 1.5
a,<0
In Abb. 1.5 sind die Graphen einiger reeller ganzrationaler Funktionen angedeutet.

Satz 2. Fiir jede natiirliche Zahl n ist das System der reellen bzw. komplexen Potenz-
funktionen k-ten Grades mit k = 0, 1, ..., n linear unabhéingig.

Beweis. Essei y = ag + a,x + --- + a,2* die Nullfunktion, d. h., fiir alle reellen
bzw. komplexen Zahlen z gelte

G+ a4 -+ aar = 0.
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Nehmen wir an, es sei a; = 0 fiir wenigstens ¢in k. Ist dann m die groBte natiirliche
Zahl mit ap, + 0, so gilt m > 0 und

@+ ax+ - +ap™ =0
fiir alle z, was ein Widerspruch zu (2) ist. Somit ist ay = a; = --- = a, = 0, und
Satz 2 ist bewiesen.

Wie in allen Vektorriumen gilt der Satz, daB die Koeffizienten einer Linear-
kombination eines linear unabhingigen Systems eindeutig bestimmt sind.

Satz 3. Jeder von der Nullfunktion verschied ganzrationalen Funktion f kann
umkehrbar eindeutig ein Term aq -+ a,x + --- + a,2* in der Variablen x mit a, + 0
zugeordnet werden derart, daf8

Hz) = ag + a1z + -+ + a,z* (@ +0)
fiir alle x € D(f) st.
Die Behauptung ist eine unmittelbare Folgerung aus Satz 2.

Definition 2. Besitzt die ganzrationale Funktion f die Darstellung (1) mit
a, = 0, 80 heiBt die natiirliche Zahl » der Grad der Funktion /, in Zeichen n = deg /.1)

Die konstanten, von der Nullfunktion verschiedenen ganzrationalen Funktionen
haben den Grad 0, die (nicht konstanten) linearen Funktionen den Grad 1, die
(eigentlich) quadratischen Funktionen den Grad 2.

Unter einer reellen bzw. komplexen rationalen Funktion verstehen wir eine Funk-
tion, die sich als Quotient zweier ganzrationaler Funktionen ohne gemeinsame
(komplexe) Nullstellen darstellen 1aBt. Abhgesehen von konstanten Faktoren ist
diese Darstellung eindeutig bestimmt.

Wihrend eine ganzrationale Funktion von mindestens erstem Grade nach Satz 1
niemals beschrinkt ist, besitzt z. B. die Funktion

1
=— R
f&O=rr% @R
die Schranke 1 (Abb. 1.6). Ist f der Quotient der ganzrationalen Funktionen g, k ohne
gemeinsame Nullstellen, so heiBt jede Nullstelle von 4 eine Polstelle der rationalen
Funktion /. So ist z. B. 1 eine Polstclle der rationalen Funktion

z+1
rz—1

fle) =

fix)= oty

Abb. 1.6

T 1

1) degree (engl.) — Grad.
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(Abb. 1.7). Eine rationale Funktion / = % mit ganzrationalen Funktionen g, b

ohne gemeinsame Nullstellen heiBt echt gebrochen, wenn der Grad des Zihlers kleiner
als der Grad des Nenners ist. Wenn dies nicht der Fall ist, kann sie mit dem in der
Algebra behandelten Verfahren der Restdivision als Summe einer ganzrationalen und
einer echt gebrochenen rationalen Funktion dargestellt werden.

Abb. 1.7

Zur Definition der algebraischen Funktionen erweitern wir zunichst den Begriff
der Potenzfunktion und den Begriff der ganzrationalen Funktion auf Funktionen
von mehreren Variablen. Sind m,, ..., m, beliebige natiirliche Zahlen, so heit die
Funktion f mit

@y, 2y, ..oy Xp): = Ty™Ey™ e 2T

eine reelle bzw. komplexe Polenzproduktfunktion der p reellen bzw. komplexen Varia-
blen z,, x,, ..., z,. Jede Linearkombination von reellen bzw. komplexen Potenz-
produktfunktionen mit reellen bzw. komplexen Koeffizienten heiit eine reelle baw.

plexe ganzrationale Punktion. So ist z. B.

y = 35,205 + 2,70 — 22,%r, + 21, + 2, + 5 (z€R)
eine ganzrationale Funktion. Jede ganzrationale Funktion F bestimmt im Bereich
der reellen bzw. komplexen Zahlen die p-stellige Relation

(21, Tay - Zp): F(2y, 2o, ..., ) = O}

Wir beschriinken uns jetzt auf den Fall reeller ganzrationaler Funktionen f von

zwei Variablen. Die Menge

((x,9): 2,y € Ra Flz, y) = 0} @
stellt im allgemeinen eine Punktmenge in der Ebene dar, die sich aus einer oder aus

mehreren Kurven zusammensetzt (Abb. 1.8). Wie diese Beispiele zeigen, wird durch
(4) im allgemeinen keine Funktion definiert. Oft kann man jedoch die durch (4)
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alx?-y?) +x4xy? =0
c) d)

(x%4y?)2 ~a?(x2-y?)=0

Abb. 1.8

definierten Punktmengen der Ebene in Teilmengen zerlegen, die Graphen von
Funktionen sind. Funktionen, die in dieser Weise definiert werden kénnen, nennt
man algebraisch. Ist also f eine algebraische Funktion, so gibt es eine ganzrationale

Funktiom F von zwei Variablen derart, daf3

Flz, f(z)) = 0

(8

fiir alle « mit = € D(f) ist. Eine weitere Bedingung dafiir, daB eine algebraische
Funktion vorliegt, konnen wir erst spiter erliutern. Sie besteht darin, daf die
Funktion / (im Sinne von 3.5.3.) durch die Funktion F implizit definiert und stetig

ist.

Beispiel. Fiir gegebene positive reelle Zahlen a, b setzen wir

2 2
F(z,y)=%+;’—,—n (@ y€R)
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und

2
/(x)::bl/l— = fir —a<z<a.
a’

Dann gilt
Flz,f(z)) =0 fir —a<z<a,

d. h., die Funktion f ist algebraisch. Ihr Graph ist die obere Hilfte der in Abb. 1.8a
dargestellten Ellipse.
Ist / eine nichtnegative algebraische Funktion, so ist auch deren m-te Wurzel

(m =1,2,...), d. h. die Funktion g mit g(z) = 'V/(_z, eine algebraische Funktion.
Sind g, / zwei algebraische Funktionen, so sind auch 4f,f + g, fg, £ algebraische
[

Funktionen. Es sei aber nachdriicklich darauf hingewiesen, da8 man, mit Hilfe der
genannten Operationen, von rationalen Funktionen ausgehend, nicht alle in der
Definition erfaBten algebraischen Funktionen konstruieren kann. Dies gilt z. B. fiir
die algebraischen Funktionen

f=l@y:y¥—4y—z—2=0ry 21}. (6)

Der Beweis dieser Behauptung griindet sich auf einen beriithmten, von N1eLs HENRIK
ABEL (1802— 1829) gefundenen Satz, nach dem es algebraische Gleichungen fiinften
und héheren Grades gibt, deren Losung nicht durch ineinandergeschachtelte Wurzeln
angegeben werden kann.

1.3.5. Monotone Funktionen

Die in der Schulmathematik auftretenden reellen Funktionen sind monoton oder
wenigstens stiickweise monoton, d. h., der Definitionsbereich 1aBt sich in Intervalle
zerlegen derart, da8 die Einschrinkung der Funktion auf diese Intervalle monoton
ist. Wir geben zunichst die

Definition. Eine reelle Funktion f heifit
monoton wachsend, wenn aus r, < x, stets f(z,) < f(2.),
monoton fallend, wenn aus z, < z, stets f(z,) = f(z,),
streng monoton wachsend, wenn aus z, < z, stets f(z,) < f(z,),
streng monoton fallend, wenn aus z, < z, stets f(z,) > f(z,)
folgt, wobei stets z,, z, € D(f) gelte.

Eine konstante reelle Funktion ist hiernach monoton wachsend und monoton
fallend zugleich.
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Als Folgerung aus der Definition ergibt sich der
Satz 1. Jede streng monotone reelle Funktion besilzt exne Umkehrfunktion.

Beweis. Die Funktion f sei streng monoton. Dann folgt aus z,, x, € D(f) und
z, # x,8tets f(z,) + f(x,), und durch Kontraposition ergibt sich, daB aus f(z,) = f(x;)
stets z, = z, folgt. Somit ist /! eine Funktion.

Satz 2. Die Umkehrfunktion einer streng ¢ hsenden (fallenden) reellen
Funktion st wieder streng monolon wachsend (fallend).

Beweis. Es sei etwa f streng monoton wachsend und f~(y,) = /~(y,). Dann folgt
w1 = /X)) 2 f/*(32)) = y.- Kontraposition ergibt: Aus y, <y, folgt /" (y)
< fYy,), d. h,, /71 ist streng monoton wachsend.

Eine zusammengesetzte Funktion h(r) = f(g(x)) zweier streng monotoner Funk-
tionen ist wieder streng monoton, und zwar wachsend bzw. fallend, je nachdem, ob
/ und g das gleiche oder das entgegengesetzte Monotonieverhalten haben.

Im folgenden Abschnitt werden wir Potenzen a' fiir beliebige positive Basen a
und beliebige rationale Exponenten r definieren. Dabei wird sich zeigen, daB die fiir
festes a > 0 mit a 5= 1 definierte Funktion f(r) := a* (r € Q) streng monoton ist,
und zwar wachsend oder fallend, je nachdem, ob @ > 1 oder 0 < a < 1 ist. Der
Definitionsbereich der Funktion f ist also nur dic Menge aller rationalen Zahlen.
Dieser Sachverhalt kann zwar grafisch nicht dargestellt, wohl aber plausibel gemacht
werden (Abb. 1.9). Die Punkte z,, z,, 2, sollen zum Definitionsbereich der Funktion
gehoren, der Punkt z dagegen nicht. Die Funktion soll nun auch in den ,,Liicken‘
definiert werden.

Es sei f zunichst eine monoton wachsende Funktion, und I sei das kleinste Inter-
vall, das den Definitionsbereich von f umfaBt. Nach Abb. 1.9 liegt es nahe, den
Funktionswert in einem Punkt z € I, der nicht zum Definitionsbereich gehort, als
kleinste obere Schranke aller Funktionswerte f({) mit ¢ < z zu definieren. Wir
setzen also

f@) :=sup(f(t):t€ D(fy nt < z}. (1)
Fiir z € D(f) ist dann offensichtlich f(z) = f(z), d. h., f ist eine Fortsetzung der

Funktion /. Ferner folgt aus z,, z, € I und z, < z, stets f(z;) < f(z,), d. h., auch die
auf das Intervall I fortgesetzte Funktion f ist monoton wachsend. Im Fall einer
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monoton fallenden Funktion f hat die Funktion

f@:=sup(f):te Df)at 22} (xel) (2)
analoge Eigenschaften.

Eine zusiitzliche Forderung sichert, daB dies die einzige Moglichkeit ist, unsere

Funktion zu einer auf I monotonen Funktion fort t Wir eine Teil-

menge M von R relativ dicht, wenn sie dicht liegt im kleinsten Intervall I(M), das
die Menge M umfaft (vgl. 1.1.3.).

Satz 3. Eine monotone Funktion f, deren Wertebereich relativ dicht ist, kann auf
genau eine Weise zu einer monotonen Funktion [ fortgesetzt werden, die auf dem klein-
sten, den Definitionsbereich von [ umfassenden Intervall I definiert ist.

Beweis. Es sei I' das kleinste Intervall, das den Wertebereich von f umfafit. Die
Funktion f sei etwa monoton wachsend, und f* sei eine beliebige monotone Fort-
setzung von f mit D(f*) = I. Dann ist auch /* monoton wachsend. Da zu z € I stets
a,beD(f) mit a <z <b, also fla) = f*a) < f(x) < f*b) = f(b) existieren, ist
f*(z) € I', also W(f*) S I'. Speziell haben wir stets

wihHer. (3)

Nehmen wir nun an, es gibe zwei verschiedene monotone Fortsetzungen f,, f,, dann
gibt es ein z, € I mit f,(%o) =+ fa(xo), etwa f,(zo) < fa(%o), woraus z, ¢ D(f) folgt. Fiir
Z,, %, € D(f) und 2, < z, < z, ist aber

f(@) = h(2) S h(ze) < folZo) S folza) = f(z),

und fiir keinen einzigen Punkt z € D(f) gilt f,(x,) < f(z) < fa(,). Das widerspricht
unserer Voraussetzung, nach der W(f) dicht in I’ liegt. Daher ist f die einzige Fort-
setzung mit den gewiinschten Eigenschaften.

Unter den Voraussetzungen vonSatz 3 wir f die tone Fortsetzung von f.

Satz 4. Die monolone Forlsetzung einer strenq monotonen Funktion mit relativ
dichtem Definitions- und Wertebereich ist streng monolon.

Beweis. Wir nehmen wieder an, daB /, also auch f/ monoton wachsend ist. Es sei
z,, T, € D(f) und z, < z,. Dann gibt es Elemente a,b € D(f) mit 2, < a <b < z,,
und es folgt f(z;) < f(a) = f(a) < f(b) = f(b) < f(=,), womit Satz 4 bewiesen ist.

Ein zentraler Satz der Theorie der stetigen Funktionen, der sogenannte Zuwischen-
wertsatz, besagt, daB eine auf einem Intervall I definierte stetige Funktion keinen
,Zwischenwert* ausldft, d. h., daB zu jeder Zahl ¢, die zwischen zwei Funktions-
werten liegt, eine Zahl z € I mit f(z) = c existiert (vgl. 2.4.2., Satz 3). Gleichbedeu-
tend hiermit ist die Aussage, da der Wertebereich der Funktion ein Intervall ist.
Fiir streng monotone Funktionen kann ein analoger Satz bereits jetzt ohne Miihe
bewiesen werden.
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Satz 5. Ist der Wertebereich einer auf einem Intervall I definierten streng monotonen
Funktion relativ dicht, so vst der Wertebereich exn Intervall.

Beweis. Es sei wieder I’ das kleinste W(f) umf: de Intervall, und g sei die
Umkehrfunktion von £, also D(g) = W(f) und W(g) = I. Die (sogar streng) monotone
Fortsetzung § von g ist also auf I’ definiert, und wegen (3) ist W(g) < I. Es sei nun
c€I' und z:= g(c) € I. Dann ist y := f(z) € D(g), also §(y) = g(y) = = g(c). Da
g streng monoton ist, folgt ¢ = y € W(f), und Satz 5 ist bewiesen.

Der Nachweis, da W(f) relativ dicht ist, kann oft mit folgendem Satz gefiihrt
werden.

Satz 6. Ist der Definitionsbereich einer Funktion [ relativ dicht und gibt es ein
K > 0 mit
M=) — iyl = K |z — gl (z.ye D)), 4)

80 18t auch der Wertebereich relativ dicht.

Beweis. Es sei @, b € D(f) und f(a) < f(b). Wir konnen etwa a < b voraussetzen.
Da D(f) relativ dicht ist, konnen wir Elemente z,, ..., 2, € D(f)y mita = 2, < 2, < -
<zy=>5b und O0<zy, — =z, <M ({=0,...,n — 1) finden. Wegen
f(@o) = f(a) < f(b) = f(z4) gibt es ein j mit 0 <j <7 und f(z)) < Ha) < f(z}n1)-
Aus (4) folgt

J(@41) — f(x)) = K(xgey — 25) < f(b) — Ha),
und es ist f(a) < f(zy.) < f(z;) + (F(b) — f(@)) < f(a) + (16) — f(@)) = /(b). Der
Funktionswert im Punkt z;,, liegt also echt zwischen f(a) und f(b).

Aus der Bedingung (4) folgt iibrigens, wie wir noch sehen werden, da8 die Funktion
stetig ist.

1.4. Potenz-, Exponential- und Logarithmusfunktionen

1.41. Potenzen mit rationalen Exponenten

Die Grundlage fiir den weiteren Ausbau der Lehre von den Potenzfunktionen ist der
Satz von der Existenz und Einzigkeit der n-ten Wurzel (vgl. 1.1.5.). Auf seiner
Grundlage definieren wir Potenzen mit rationalen Exponenten. Fiir alle nicht-
negativen reellen Zahlen a und alle natiirlichen Zahlen p, ¢ mit ¢ 4 0 ist

() = (o = (Y - o
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und folglich

V&’ = Yar. (1)

Jede nichtnegative rationale Zahl r kann in der Form r = 2 it 2,9€ N und
q

¢ # 0 dargestellt werden. Ist auch p_' =re= l, 8o gilt
q9 q

Vo' =Yaw = Yo7 = Yo' = o,

‘woraus

o‘,‘—lp=ci/;r' (_1_.;=£)

q q
folgt. Wir konnen daher fiir alle nichtnegativen rationalen Zahlen r mit r = z
durch 7
ot =Yap  (@€Ra+0;p,gcN,g+0) @

Pat,
)

mit nichtnegativer reeller Basis und mit nichtnegativen rationalen Expo-
nenten definieren. Die Definition ist unabhiingig von der Wahl der natiirlichen

Zahlen p, g mit ?2_,
q

Wir erweitern im Fall einer positiven reellen Basis a die Definition der Potenz auf
den Fall negativer rationaler Exponenten und setzen

1
a = - (@ > 0, r rational, r > 0).
a

Damit sind Potenzen a' in folgenden Fillen definiert:

Basis Exponent
a) reell natiirliche Zahl
b) reell, von Null verschieden ganz
c) reell, nichtnegativ rational, nichtnegativ
d) reell, positiv rational

Die Graphen der Funktionen y = 2’ sind in den genannten vier Fillen fiir einigt;
Werte des Exponenten r in Abb. 1.10 dargestellt (vgl. Satz 2).
Die Potenzgesetze

a’d = (ab), a'a® = a'?, (a7)® = a (3)
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gelten auch dann, wenn fiir die Basen @, b und die Exponenten r, s jeweils der Fall ¢}
oder jeweils der Fall d) vorliegt.

Ist a = 0 bzw. b = 0 (Fall ¢)), so ist (3) sofort klar. Es sei also jetzt a, b > 0. Dann
geniigt es, die Giiltigkeit von (3) fiir den Fall d) zu zeigen. Zuerst beweisen wir die
letzte Behauptung von (3) fiir 8 = m, wobei m eine ganze Zahl ist. Wir unterscheiden
drei Fille.

Fall 1. Esist me N, r = ¥a (P, g € N, ¢ 5= 0). Aus der Giiltigkeit der Potenz-
gesetze fiir ganzzahlige Expongnten und aus (1), (2) folgt
((@))7 = (@)= = ((@Py)= = (@?)™ = ar= = (@P™le)e = (@)
Aus 1.1.2,, Satz 8, folgt (a")™ = a™.

Fall 2. Esist me N, r = —E(p,qs N, ¢ & 0). Mit ¢t = —r gilt dann
q9

(@)™ = (_l.)m = L = _1 = a™,

at] (@)™ am

Fall 3. Es ist m = —k mit k € N, r rational. Dann ist

Damit ist die letzte Behauptung von (3) fiir den Fall s = m (m ganz) bewiesen.
Wir wihlen nun eine natiirliche Zahl m derart, daB mr und ms ganze Zahlen sind.
Auf Grund des bereits bewiesenen Teiles unserer Behauptung gilt
(a%d)™ = (a")™ (b")™ = ar™b™ — (ab)™ = ((ab)i)u’
(araa)a i (ar)n (al)ﬂ = qmgi™ — grmtIm —. g(rim — (aru)u,
((uv)c)n = (a7)*™ = a™*™ = (a™)™.

Aus 1.1.2., Satz 8, folgen nun wiederum die Behauptungen (3).
Wir leiten einige Ungleichungen her.

Satz 1. Fiir alle positiven reellen Zahlen x,y mit x + y und fiir alle von 0, 1 ver-
schiedenen rationalen Zahlen r gilt

Ty —2) Yy —a Yy iy —=a)

r—1 r(r—1) r—1 @

Beweis. Wir ersetzen z bzw. y in 1.1.2.(27) durch z'/* bzw. y'/* und wihlen m, n
derart, da8

r—l=%, m=n(r—1), m + n =nr
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n=4 Yy
n=3 ne-4ne2| n=-1
n=2
n=1
n=0 1+
Z, ,
! x =3 -
y=x"(neN) n=-1 a4 y=x"
(n ganz,n<0)
b)

, r=-1
7l et SNl oy
(r rational, r20) \\ ( r rational, r<0)
c) d) \
Abb. 1.10
ist. Wir erhalten
:v-ly P yr
< —

n3(r — 1) n»+nwr—u'
Yy — z 1 1 " r— 2z
7y —2) _ (L ¥ __y-=

r—1 r r—1 rir—1) rir—1)

und die erste Ungleichung (4) ist bewiesen. Die zweite folgt aus der ersten, indem
wir z mit y vertauschen und mit — 1 multiplizieren.

Satz 2. Die Funktion
y=a (z€R,2>0)

it fir r >0 bzw. r <0 streng monoton wachsend bzw. streng monoton fallend
(Abb. 1.10).



46 1. Einige grundlegende Begriffsbildungen der Analysis

Beweis. Nach (4) haben z, — z; und z," — z," gleiches oder entgegengesetztes
Signum, je nachdem, ob r > 0 oder r < 0 ist.

Die Bernoullische Ungleichung kann auf rationele Exponent jehnt
werden.

Satz 3. Fiir alle reellen Zahlen h mit 1 + h > 0 und h 3= 0 und fiir alle rationalen
Zahlen r mit r > 1 78t

(L+ Ry >1+4rh. (6)
Beweis. In der ersten Ungleichung (4) setzen wir z = 1, y = 1 + A, was wegen
1+ h =1, 1+ k>0 zulissig ist. Nach Multiplikation mit »(r — 1) erhalten wir
rh < (1 4+ k)" — 1 und damit die Behauptung.
Satz 4. Geniigt die positive reelle Zahl x den Ungleichungen
z,z1<Q (6)
und die rationale Zahl r der U nﬁcfchung
<R (7}
mit rationalem R, so gilt
@ <Qm, ®
ler — 1] S @R+ r| |z — 1]. 9)

Beweis. Ist = 1 oder r = 0, so sind die Behauptungen richtig. Es sei x = 1,
r £ 0. Wegen (6) ist stets Q = 1, und aus Satz 2 folgt @* = 1 fiir alle nichtnegativen
rationalen Zahlen s. Fiir r > 0 ist daher 2" < Q' < Q' - QF~* = @QR. Fiir r < 0 folgt
2" = (z71)"' < @R, und (8) ist bewiesen. Die Behauptung (9) gilt fiir r = 1. Wenn
r %= 0, 1 ist, folgt aus (4), wenn wir -1 = 27 . 27! < QF . Q = QR*! beriicksichtigen,

z—1 -1 Yz — 1)
r—1 rir— 1) r—1

r—1
rir— 1)

< max [lx — ”' z|r- Iz — sq@rnn”— ! lz —
Ir =1 Ir — Ir— 1|

womit auch (9) bewiesen ist.

Satz 6. Fiir alle positiven reellen Zahlen x, y und alle rationalen Zahlen p,q > 1
mit

+ (10}

LR
Q|-
I
-



1.4. Potenz-, Exp tial- und Logarith PRI 47

AP an
V4 q
Das Gleichheitszeichen gilt genau dann, wenn xP = y9 ist.
Beweis. Es gibt natiirliche Zahlen k, m, n mit
k k

p=— g=—.
m n

Wegen (10) ist m + n = k, und es folgt

w m+n m+n )'

d:=£+7—zy=k mz ™ 4ny » — (m+n)zy

1 1
Mita:=zm=,b:= y7 ergibt sich auf Grund von Satz 10 in 1.1.2.

d = k(ma™** + nb™** — (m + =) a™b®) = 0.

1 1
Das Gleichheitszeichen gilt genau dann, wenn @ = b bzw. z® = y"baw.zP = y?ist.

Mit Hilfe von Grenzwertsitzen fir Zahlenfolgen und der Relation 2.3.1.(5) kann Satz 5
auf den Fall reeller Exponenten p, g iibertragen werden.

1.4.2.  Exponentialfunktionen
Fiir jede positive reelle Zahl a ist die Funktion
fy=a (re@) (1)

fiir alle rationalen Zahlen r definiert und iiberall positiv.
Die Funktion (1) ist fiir @ > 0, @ = 1 streng monoton, denn nach 1.4.1,, Satz 2,
haben a* — 1 und a — 1 fiir r > 0 gleiches Signum. Aus r < s folgt somit

(@ —a)(a—1)=a'(@a"—1)(a—1)>0,

d. h., die Funktion (1) ist fiir 0 < @ < 1 bzw. a > 1 streng monoton fallend bzw.
wachsend.

Da R das kleinste Intervall ist, das alle rationalen Zahlen umfaBt, kénnen wir f
zu einer fiir alle reellen Zahlen definierten monotonen Funktion f fortsetzen. Wir
setzen a* := f(z), d. h., es sei

af =supf{a’:t€ QAt <z} (zeR,a>1), 2)
at =sup (@t QAat =z} zeRO<a<l). (3)

Im Fall @ = 1 setzen wir 17 := 1 fiir alle z € R.
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Definition. Ist a eine von 1 verschiedene positive Zahl, so heiBt die Funktion
y=a* (z€R)
die Exponentialfunktion zur Basis a.

Satz 1. Die Erponentialfunktion zur Basis a (@ > 0, a % 1) ist fiir a > 1 bzw.
0 <a <1 streng X hsend bzw. fallend, und thr Wertebereich ist die Menge
aller positiven reellen Zahlen (Abb. 1.11).

Abb. 1.11

Beweis. Es sei zunichst @ > 1. Der Definitionsbereich der durch (1) definierten
Funktion £ liegt dicht in R, und es ist W(f) S J0, cof. Es seien b, ¢ zwei beliebige
positive Zahlen mit b < ¢. Mit & := a — 1 gilt nach der Bernoullischen Ungleichung

1 1
= +hr>1 h, )= —_—
)= (L + A > 14 "= = o < T
fiir alle natiirlichen Zahlen n = 2. Es gibt deshalb zu b, c ein festes n mit f(—n) <b
< ¢ < f(n), und folglich ist R,* = JO, oo[ das kleinste Intervall, das W(f) umfaBt.
Fiir alle rationalen Zahlen r, 8 € [—n, n]) ist nach Satz 3 in 1.4.1. stets

If(r) — f(8)] = a* |a* 7 — 1} < a%a®*1 r — g} |a — 1],

Jir) — f8)i S K ir — 4| (r,s€ [—n, n]).
Aus Satz 6 in 1.3.5. schlieBen wir, daB der Wertebereich von f dicht in [[b, c] ist.
Da b, ¢ beliebig gewihlt war, ist W(f) dicht in R,*. Im Fall 0 < a < 1 folgt dies aus
‘l -r

a’'= [—
a

Aus Satz 4 bzw. Satz 5 in 1.3.5. folgt nun, daB die Exponentialfunktion streng
monoton bzw. daB ihr Wertebereich das Intervall R.* ist.

Satz 2. Fiir jede positive Busis u gilt das Potenzgesetz

a?' ¥ = a*ay (x,y € R). 4)
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Beweis. Wir konnten einen Beweis direkt auf die Definition (2), (3) stiitzen,
indem wir etwa die Annahme a**? < aa¥ im Fall @ > 1 dadurch zum Widerspruch
fithren, daB wir zwei rationale Zahlen r, ¢ mit 2 <7, y < 8 und a'*? < a%a¥ kon-
struieren. Der Beweis gestaltet sich aber mit unseren Sitzen iiber monotone Funk-
tionen viel einfacher.

Fiir festes s € @ ist die Funktion
a2+'
g@) =" (z€R)
a
eine monotone Fortsetzung der Funktion
T+

o) =" =0 e,

und folglich ist g(z) = a*. Daher ist a+* = a%a® fiir alle x € R, s € Q. Fiir festes
y € R ist die Funktion

r+y
eine monotone Fortsetzung der Funktion A(r) := 7 a', woraus h(x) = a<,
a**v = aay folgt. ar

Jede Exponentialfunktion f(x) = e~ erfiillt also die Gleichung

fle+y) =/ /y) (zyeR). (6)

Sie heiBt die Funktionalgleichung der Exp tialfunktion
Die Funktionalgleichung (5) wird offensichtlich von der Funktion

flz)=0 (x € R) (8)

erfiillt. Jede von der Nullfunktion verschiedene, auf R definierte reellwertige Funk-
tion f, die der Funktionalgleichung (5) geniigt, wollen wir eine verallgemeinerte
) )

fralfs ktr
"/

P

Satz 3. Fiir jede verallgemeinerte Ex; tialfunktion f gilt

f0)=1, 7)
/(3) >0 (x€ R), (8)
frz) =fzr (z€R,reQ@). @)

Beweis. Nach Voraussetzung gibt es ein ¢ mit f(c) 3= 0, und aus der Gleichung
f(©) f(0) = f(c + 0) = f(c) folgt (7).
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Aus f(z) J(—z) = f(x — z) = f(0) = 1 folgt f(x) % O fiir alle z, und wegen der Be-

ziehung f(z) = f (%) / (%) = (/ (%))’ gilt sogar (8).
Wir zeigen, daB
finz) = f(x)" (10)

ist. Die Behauptung ist nach (7) richtig fiir » = 0, und aus (10) folgt
fn + 1) 2) = f(n2) f(z) = f(2)" (@) = f@)***,

womit die Behauptung (10) durch vollstindige Induktion fiir alle » ¢ N bewiesen
ist.
Aus

f(—n2) f(z)* = f(—nz) f(nz) = f(0) = 1

folgt f(—nz) = f(x)~*, und (10) gilt fiir alle ganzen Zahlen n.
Sind m, n beliebige ganze Zahlen mit » = 0 so ist

/(%x)' - /(n z :) = fima) = @™
(%2 = e
n

Damit gilt (9), und Satz 3 ist bewiesen.

Satz 4. Ist eine verallgemeinerte Exp alfunktion f in einem (beliebig kleinen)
Intervall beschriinkt, so vst
fl@) =1  (z€R). (11)

Beweis. Es sei @ := f(1). Die Funktion
9(z) := a*f(—2)

ist offensichtlich wieder eine verallgemeinerte Exponentialfunktion. Nach Satz 3
ist fiir r € @ stets

g(r) = JQ1) [(—=7) = f(r) (—7) = f(0) = 1.

Nach Voraussetzung gibt es ein Intervall / und eire Zahl K, > 0 mit f(z) < K,
fiir z € I. Es sei [b, c] S 7 und b < ¢. Da auch a* in diesem Intervall beschriinkt ist,
gibt es ein K > 0 mit g(z) < K fiir alle z € [b, c]. Wir nchmen nun an, es sei
g(x) == 1. Wir kénnen g(x) > 1 voraussetzen. Andernfalls ersetzen wir  durch —z.
Wir wihlen eine natiirliche Zahl » mit g(nz) = g(x)* > K und eine rationale Zahl
r € [b — nz, c — nz]. Dann ist r + nx € [[b, c], und wegen g(r) = 1 erhalten wir den
Widerspruch

K < g(x)* = g(nz) = g(nx) g(r) = g(nxr + r) < K.
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Somit ist a*f(—z) = g(x) = 1 fiir alle € R. Multiplizieren wir mit f(z), so erhalten
wir die Behauptung (11).

Insbesondere ist auf Grund dieses Satzes jede streng monotone verallgemeinerte
Exponentialfunktion eine eigentliche Exponentialfunktion, denn eine monotone
Funktion ist auf jedem Intervall [a, b] S D(f) durch f(a) oder f(b) nach oben bzw.
unten beschrinkt.

Jetzt konnen die restlichen Potenzgesetze lcicht bewiesen werden.

Satz 5. Fiir alle positiven Zahlen a, b ist
ath® = (ab)* (z€ R),
(a%) = a™ (z,y € R).

Beweis. Durch f(z) := a*b* bzw. g(zx) := a°* mit festem ¢ € R werden offensicht-
lich verallgemeinerte Exponentialfunktionen definiert, die im Intervall [0, 1] he-
schrinkt sind. Folglich ist a*h* = f(1)* = (ab)* und a®* = g(1)* = (a)* fiir alle
z € R, und Satz 5 ist bewiesen.

Satz 6. Qeniigt eine auf einem Intervall [b, c] beschrinkte Funktion f der Funktional-
gleichung

[z + y) = fx) + f(y),
80 18t f(x) = zf(1).

Beweis. Fiir a > 1 ist die Funktion g(z) := @/ eine auf einem gewissen Inter-
vall beschrinkte verallgemeinerte Exponentialfunktion. Nach Satz 4 ist a/'®) = g(z)
= g(1)* = (a/M)* = @#'V, Aus der strengen Monotonie der Exponentialfunktion
folgt die Behauptung. Der Beweis kann allerdings auch ohne die Exponentialfunktion
gefiihrt werden.

1.43. Logarithmusfunktionen:

Definition. Die Umkehrfunktion der Exponentialfunktion zur Basis a (a > 0,
a = 1) heiBt die Logarithmusfunktion zur Basis a. Sie wird mit

y=legsz (z€R,2>0) (1)
bezeichnet (Abb. 1.12).

y=loge X
y=log,,x

y=log, x
0

y=log;x  Abb.1.12
e
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Fiir jede positive reelle Zahl @ mit a =+ 1 gilt hiernach
y=logzoz=ar (z,y€ R,z >0). (2)
Im Fall @ = 10 setzt man
Igz:=logez (x>0) 3)

und nennt den Funktionswert den dekadischen Logarithmus der positiven reellen
Zahl z.
Die von der Schule her bekannte Bedeutung der Logarithmusfunktion fiir nume-
rische Rechnungen beruht auf dem Logarithmengesetz
log, (zy) =logsz +logay (@, z,y € R; a,2,9y>0), @

das die Zuriickfiihrung des Multiplizierens auf das Addieren gestattet. Zum Beweis
setzen wir

pi=log,z, g:=log,y.
Dann ist a? = z, a? =y,
zy = ara? = aPq, P+ g =log, (zy),

und (4) ist bewiesen.
Aus

(a#loeb) = (aloub)r = be
folgt das Logarithmengesetz
log, (b*) = zlog, b (a,b,z€ R; a,b > 0). (5)
Setzen wir g(z) := log, 2, so nimmt (4) die Gestalt
9(zy) =g(®) +9y) (@ yeR; 2y>0) (6)

an. Diese Gleichung heiit die Funktionalgleichung der Logarithmusfunktion. Eine
von der Nullfunktion verschiedene Funktion g, die dieser Funktionalgleichung fiir
alle positiven z, y geniigt, wir eine verallgemeinerte Logarithmusfunktion. Mit
éhnlichen Methoden wie im vorigen Abschnitt kann gezeigt werden, daB fiir eine
solche Funktion stets

gy =rg) (BERDL>0,7€@)
ist. Wir begniigen uns mit dem

Satz. Ist eine verallgemeinerte Logarithmusfunktion g in einem (beliebig kleinen)
Intervall beschrinkt, so vst g die Logarithmusfunktion zur Basis
1
a:= bﬂ_"), (7

wobet b eine beliebige von 1 verschiedene positive Zahl st.
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Beweis. Fiir beliebige b > 0, b = 1 ist die Funktion f(z) := g(b%) auf einem Inter-
vall beschrinkt. Ferner ist

flz + y) = g(b*'%) = g(bb%) = g(b%) + g(¥) = f(z) + f(y)-
Nach 1.4.2., Satz 6, ist f(x) = zf(1), d. h., es ist
g(b%) = zg(b). (8)

Da g nicht die Nullfunktion ist, muB g(b) & 0 sein. Ist a durch (7) definiert, so folgt
aus (8)

= x
%) = g\ = —. g(b) =
g(a*) y( ) pros g(b) =

Somit ist g die Umkehrfunktion der Exponentialfunktion zur Basis a, und der Satz
ist bewiesen.

Fiir eine beliebige reelle Zahl « definieren wir die allgemeine Potenzfunktion
y=2¢ (z€R,z>0). 9)
Aus 0 < z < y und & =0 folgt lIg z < lg y und
g =algzsigy, =Sy,

d. h., die allgemeine Potenzfunktion ist fiir « > 0 bzw. a < 0 streng monoton
wachsend bzw. fallend.

Die K is von héh P der natiirlichen Zahlen kann bis nach Babylonien
(3. Jahrtausend v. u. Z.) zuriickverfolgt werden, und aus Kleinasien ist dieses Wissen auch
nach Griechenland gelangt. Wiihrend die babylonische Mathematik eine stark arithmetisch-
algebraische Tendenz hatte, war der vorherrschende Zug dcr griechisch-hellenistischen Mathe-
matik geometrischer Art. Man betrieb neben reiner Geometrie auch geometrische Algebra. Da
alle algebraischen Probleme in geometrischer Form behandelt wurden, waren héhere Potenzen
als die dritte, well keine geometrische Interpretation zur Verfiigung nund fiir fast alle grie-

hisch-heilenistischen Math iker nicht G d von U Nur gel
lich, so bei HERON (um 130 v. u. Z.) und dem Zahlentheoretlker DIOPHANTOS (um 250), treten
auch héhere Potenzen auf.

Durch Ub gen, hauptsiichlich arabischer Werke, gelangte das vorhandene Wissen in
das mittelalterliche Europa und wurde zuerst in Italien fruchtbar. Hier findet sich auch bei
Luca Pacrour (1445—1514?) die Erweiterung der Potenz auf beliebig hohe (natiirliche)
Exponenten. Um 1450 begannen, aufbauend auf italieni Vorbild he Mathe-
matiker die Potenzrechnung weiterzuentwickeln. Es entstand die ,,CoB* (von ital. oon, d. h.
Unbekannte). Die Cossisten lésten zwei Grundaufgaben 1. Sie die P
von der Gleichungslehre; 2. sie schufen sich zur B h der P eine eigene Zeichen-
sprache. Die heutige Art des Schreib der P« findet sich ausgebildet 1637 bei DEs-
CARTES, nachdem viele Vorstufen durchlaufen worden sind.

Es bleibt noch anzugeben, seit wann die Exp ten nicht notwendig als natirliche Zahlen
aufgefaBt wurden. Rationale Exponenten verwendete NICOLE ORESME (um 1323—1382).
Seine Schreibweise war fiir heutige Begriffe hochst ungewéhnlich und schwerfillig. Der Expo-
nent Null tritt, ebenso wie negative ganzzahlige Exponenten, 1484 bei NicoLas CHUQUET
(gest. um 1500) auf. ORESMES und CHUQUETS Werke haben jedoch auf den lebendigen Gang
der Mathematik kaum EinfluB gehabt, da sie erst in der Neuzeit durch die mathematik-
historische Forschung erschlossen wurden. Die modernere Potenzrechnung beginnt so eigent-




54 1. Einige grundl de Begriffsbildungen der Analysis

8 8

lich erst mit MicHAEL STIFEL (1487?— 1567). von dem iibrigens auch das Wort ,,Exponent"
stammt. Er gab 1544 eine Zusa g bisheriger K isse der Pot

* Imaginire und komplexe Exponenten treten dann 1740 und 1749 bei EULEB in der Blitezeit
der ,,formalen** Analysis auf.

Nachdem bei DESCARTES und besonders bzi Isaac NEwTON (1643 —1727) bereits allgemeine
Exponenten auftraten, schien der Schritt nahezuliegen, auch zu variablen Exponenten iaber-
zugehen. Jedoch war dies erst méglich, nachdem die durch die Praxis geforderte Inangriff-
nahme der mathematischen Behandlung von Bzwagungsproblemen erfolgt war und damit die
Beogriffe (in heutiger Sprachweise) ,,variable GréBe‘ und ,,Funktion* zur Diskussion standen.
Es ist deshalb k>in Zufall, daB g2rade LEIBNIZ, d2r maBgeblich an der Schaffung der Analysis
beteiligt war, 1679 zu variablen Exponenten iborging. Er behandelte Gleichungen wie
' 4 2% = b. Die hicr auftretenden Terme 2%, z7 b:zeichnete er spiter als ,,exponentialiter
transcendentes*’. Sie waren dann auch Gogenstand weiterer Untersuchungen von LErswiz
(1695) und JoHANN BERNoOULLI (1697), ohne daB jedoch wesentliche Fortschritte erzielt wur-
den. Auch hier waren die Arbeiten EULERS bahnbrechend. Einen wirklichen Abschlul bedeuten
erst die Untersuchungen N1eLs HENrIk ABELS (1802—1829), der die Funktionalgleichung
f(z) - Hy) = f(z + y) erschdpfend behandelte.

Die Geschichte der Logarithmen ist eng mit der Kenntnis geometrischer und arithmetischer
Folgen verbunden. Solche Folgen waren seit der Antike bekannt. Das Vergleichen einer will-
Imrhchen arlthmetuchan und einer willkiirlichen geometrischen Folge findet sich in allen

d h hen Werken des Mittelalters. Vor allem STIFEL hat sich mit tieferen
U hungen beim Vergleich der beiden Folgen abgegeben und praktisch alle Grund-
gesetze des Rechnens mit Logarithmen erkannt.

Aber diese Erkenntnisse waren oft nur zufillig, eine praktische Bedeutung wurde ihnen
kaum beigemessen. Das inderte sich entscheidend, als im 16. und 17. Jahrhundert rein rech-
nerische Arbeiten, insbesondere bei der Auswertung ischer Bzobachtungen, auBer-
ordentlich an Umfang zunahmen. Die noch aus dzr Antike oder von den Arabern abernom-
menen Methoden und die spiter entwickelten Rechenverfahren waren zeitaufwendig. Das
gesellschaftliche und wissenschaftliche Bediirfnis nach neuen Rechenhilfsmitteln fihrte nicht
nur zur Entwicklung erster Rechenmaschinen, sondern auch zu den ersten Logarithmen. Die
ersten Tafeln sind von Jost Bi'ro1 (1552—1632?), einem Bekannten des groBen Astronomen
und Mathematikers JouaNNES KEPLER (1571 —1630), um 1600 berechnet worden. Sie wurden
]edocll erst, 1620 verdffentlicht, weil Birar sich nur auBerordentlich schwer zur Publikation
seiner Unts hlieBen konnte. Biro1s Tnfeln enthulten die arithmetische Folge

mit @, = 10" und die geometrische mit a, = 105 |1 + i—OZ " .Dle Basis des Logarithmen-

systems (der Begriff ist BURGI véllig fremd) ist 1,0011° ~ e. Fast gleichzeitig mit Bi'rct
beschiiftigt sich der Schotte Joun NEPER (1550 —1617) mit der Aufstellung von logarith-
mischen Tafeln. Seine erste Tafel erschien 1614. Auf den Titel dieser Tafel geht auch das Wort
»,Logarithmus* zuriick. Die Neporache Tafel ist eine logarithmisch-trigonometrische Tafel mit
einer Basis, die angenihert gleich e~ ist. -

Auch KEePLER berechnete ,,nach der schottischen Manier* eigene Tafeln und wurde selbst
zum groBten Firsprecher des logarithmischen Rechnens.

Sehr schnell wurden die Biirgisch>n und Nepzrschen Logarithmen durch die dekadischen
verdriingt, da diese erheblich einfacher zu handhaben waren. Es ist das Verdienst von HENRY
BriGas (1556 —1630), einem Professor am Gresham College in London, der mit NEPER gut
bekannt war, solche Taleln erstmals berechnet zu haben. Seine Tafeln crschienen 1637. Die
folgende Zeit ist g h durch das Bestreben, die Genauigkeit der Tafeln zu erhhen
und ihre Form gunstlger zu gestalten. Gleichzeitig damit muBten die Bercchnungsmethoden
fir Logarithmen verbessert werden. Entschcidend gelang dies erst mit der Entdeckung der
logarithmischen Reihe 1667 durch NicoLius MErcaTor (1620—1687), deren Theorie bald
sorgfiltig ausgearbeitet wurde.

Wer die logarithmische Kurve zuerst betrachtet hat, ist unbekannt. Die crste bekannte
Arbeit iiber sie stammt von CHRISTIAN HUYGENS (1629 —1695), der sich auf ungenannte Vor-
giinger bezieht.
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1.5.  Der euklidische Raum R?

1.5.1. Der zweldimensionale euklidische Raum

Die Menge R? = R X R aller geordneten Paare reeller Zahlen kann nach Wahl eines
Koordinatensystems umkehrbar eindeutig auf die Menge aller Punkte einer Ebene
abgebildet werden. In der analytischen Geometrie und linearen Algebra wird in der
Menge R? eine zweistellige Operation, die Addition, definiert. Fiir zwei Elemente
&,y von R? mit & = (z,, ,), ¥ = (y1, ¥») setzt man

(20 22) + (Y1 ¥2) := (T2 + Y1, T2 + ¥2). (1)

X=Xy, %y) X4y =(X4Y), Xty ) 3Ix=(3x,,3x%,)

X=(x,%,)
Abb. 1.13 Abb. 1.14
X=(%,,%,) x=(n.)
/ y=(%.%)
Ixh Va?+xZ / _ "2
/ -
- e
Abb. 1.15 Abb. 1.16

In Abb. 1.13 wird diese Operation geometrisch veranschaulicht. Sie ist ebenso wie
die Addition reeller Zahlen kommutativ, assoziativ und umkehrbar, so daB auch die
weiteren Eigenschaften der Addition reeller Zahlen sinngemif iibertragen werden
konnen. Insbesondere ist & — y = (2, — ¥y, T2 — ¥2)-

Ferner setzt man
H(xy, Tp) 1= (i1, t25) (2)

fiir alle reellen Zahlen ¢, z,, z,. Durch (2) wird offenbar eine eindeutige Abbildung
von R X R? auf Re definiert. Sie ist in Abb. 1.14 veranschaulicht. Ihre Eigenschaften
wollen wir hier ebenfalls als bekannt voraussetzen.

SchlieBlich wollen wir noch eine eindeutige Abbildung von R? auf die Menge der
nichtnegativen reellen Zahlen definieren, und zwar ordnen wir jedem Element @



56 1. Einige grundlegende Begriffsbild der Analysis

von R? den Abstand des zugeordneten Punktes vom Ursprung des Koordinaten-
systems zu. Wir bezeichnen diesen Abstand mit ||z|| (gelesen: Norm von @).
Fiir & = (z,, 2,) gilt nach dem pythagoreischen Lehrsatz

kel = Yz,* + =z, @3)

(Abb. 1.15). Hierdurch wird eine Funktion von R? in R, definiert. Sind &, y zwei
Elemente von R? und ist & = (,, 2,), ¥ = (¥. ¥2). 80 haben die Bildpunkte von @
und y den Abstand

e — yll = V(o — 90)* + (@ — pa)* @
(Abb. 1.16). Der Abb. 1.13 entnehmen wir die Dreiecksungleichung
ke + yll < ll=ll + [yl (8)

Sie besagt, daB im Dreieck die Summe zweier Dreiecksseiten nicht kleiner als dic
dritte Dreiecksseite ist. Einen von der Anschauung unabhingigen Beweis dieser Un-
gleichung fithren wir in 1.5.2. Wir nennen die Menge R? aller geordneten Paare reeller
Zahlen in Verbindung mit den durch (1), (2) und (3) definierten Opcrationen bzw
Funktionen den di) klidischen Raum?!).

1.5.2.  Der p-dimensionale euklidische Raum

Die Definitionen (1), (2), (3) in 1.5.1. kénnen sinngemaB auf die Menge R? iibertragen
werden, und auch hier ist eine analoge geometrische Deutung méglich. So ist z. B.
yz,® + 2,2 + 2,® der Abstand des Bildpunktes eines Elementes & aus R® mit
& = (2, Z,, ) vom Ursprung des Koordinatensystems (Abb. 1.17), und
Vi@, — 41)® + (. — ¥2)® + (¥; — y,)? ist der Abstand der Bildpunkte der Elemente
&, y aus R® mit & = (z,, 2, ;) und ¥y = (yy, Y2, ¥o).

\
/
/

/

s

~

X I/x'{xnxz'xl)
Vx2

/\h x +x2+x_,

——————
/
\

[ Abb. 1.17

!) In den ersten Auflagen wurde hierfiir das Symbol R, verwendet.
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Wir kénnen zwar nicht die geometrische Veranschaulichung, wohl aber die abstrak-
ten Definitionen (1), (2), (3) von 1.5.1. und die entsprechende Terminologie auch:
auf den Fall der Menge R? mit p ¢ N und p > 3 iibertragen.

Definition 1. Unter dem p-di: jonal klidischen Raum RP mit p =1
versteht man die Menge sller geordneten p-Tupel reeller Zahlen in Verbindung mit
den durch

(T3, Zgy o0y Zp) + W1 Yoo o Yp) = (@1 + Y1 X2 + Yoo o0 Tp + Yp)s (1)
Uy, Ty, -0y Tp) = (I2y, L2y, ..., L2p) (t€R), 2

Iy, 2y +.or Tl = Vo2 + 22 - + xp' (3)

definierten Operationen bzw. Funktionen.

Die durch (3) fiir jedes & mit & € RP definierte nichtnegative reelle Zahl |iz|| heifit
die Norm von &. Das Element (0,0, ..., 0) des Raumes R, bezeichnen wir im Fall
p > 1 mit 0. Offenbar ist |x|| = 0 genau dann, wenn & = 0 ist. Die Elemente des
eindimensionalen euklidischen Raumes R! sind die reellen Zahlen, und die Norm
eines Elements x mit z ¢ R! stimmt wegen 1.1.5.(1) mit dem Betrag der reellen
Zahl z iiberein.

Wir leiten aus der Definition des Raumes R® einige Rechenregeln ab.

Fiir alle ¢,  mit ¢ € R und @ € Re gilt

litell = ] lil. (4)

Satz 1. Fiir alle reellen Zahlen z,, z,, ..., Z, und yy, Y3, ..., yp gilt

P P
=)/ L= | Ew ®)

(Schwarzsche oder Bunjakovskijsche Ungleichung; HERMANN AMANDUS SCHWARZ
(1843—1921), VIRTOR JAROVLEVIE BUNJAROVSKIJ (1804 — 1889)).

14
P
i=1

Beweis. Es sei & = (7,, 23, ..., Zp) und ¥ = (¥, Y2, .-, Yp). Fiir®& = 0 oder y = 0
ist (5) erfiillt. Ist &, y = 0, 80 setzen wir

a; = L b=
T el T
Dann ist
Sar—L Faro1, Spa=i 6
Sumgplar=n fu-u ©

und aus (6) und 1.1.2., Satz 6, folgt

) » a? + b2
:I:Z: Ty = :l:.Z; il a; liyll b; = [iell IL'IIIZ (£a:d;) < ]l II.'IIIZ
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Wegen (6) ist die letzte Summe gleich 1, und es folgt
P
1+ zyi < Il liyll
i=1

was mit (5) gleichbedeutend ist.
Fiihrt man die Abkiirzung

@=L aw 1)

ein, so nimmt die Schwarzsche Ungleichung die Gestalt

I, ) < ] llyll 8)
an. Die durch (7) definierte reelle Zahl heiBt das Skalarprodukt von & und y.
Satz 2. Fiir alle , y, z € RP gelten die Dreiecksungleichungen

ke £ yil = ll=il + lyl, ©)
[llell — lyll| < Il £ wil, (10)
ke — 2l < lle — yll + Iy — =l (11)

Beweis. Wegen (1), (3), (8) ist

» » » »
ke + yl* = X' (@ + 3:)* =‘2,:1’." + 2] ¥+ 2‘2',; ZiYi, (12)

i=1

ke + ylI* < llel® + Iyl* + 20l |yl = (el + llyl)?*.

Da |l + y|| und |jz|| + |lyl| nichtnegativ sind, folgt (9). Die Ungleichung (10) wird
aus (9) ganz analog abgeleitet wie die Ungleichung 1.1.4.(8) aus 1.1.4.(7). Wihlen
wir in (9) das Zeichen + und ersetzen & durch & — y sowie y durch y — 2, so er-
halten wir (11).

Satz 3. Fiir alle ® mit * € RP und & = (2, 7, ..., %,) gilt

lzi] < el < |2 + [2a] + -+ + |25] E=1..p). (13)
Beweis. Die erste Ungleichung folgt unmittelbar aus (3), und aus

2+t 4 xS (T ] e %)

folgt die zweite Behauptung.
Wir fithren nun noch einige spezielle Punktmengen im euklidischen Raum RP ein.

Definition 2. Unter der Verbindungsstrecke zweier Punkte &,, &, aus R? verstehen
wir die Menge

S[xy, @] = (@, + UE, — @,):0 S L < 1),
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In den Raumen R, R?, R? kann der Begriff der Verbindungsstrecke anschaulich
gedeutet werden (Abb. 1.18).

Definition 3. Eine Teilmenge M des euklidischen Raumes RP heilt konver,
wenn aus &, T, € M stets S[x,, x,] S M folgt.

In Abb. 1.19 sind eine konvexe Punktmenge M, und eine nichtkonvexe Menge M,
des Raumes R? veranschaulicht.

Definition 4. Eine Teilmenge M des euklidischen Raumes R? heiBt sternformig,
wenn es einen Punkt @, in M gibt, so daB aus & € M stets S[xy, ] S M folgt
{Abb. 1.20).

Xp= X+ 1= x,)

x=x + 20x-xy)

xy=x,+ 0 (Xy-X;) Abb. 1.18

Abb. 1.19 Abb. 1.20

q: . 1

Fir das Hinausgehen iiber die drei Di i des Ansch aumes auf
mathematische Raume bestand in der Antike und im Mittelalter beim niedrigen Stand der
mathematischen Abstraktion keine Veranlassung. Erst mit der Behandlung von Integralen
tauchten vereinzelt, etwa bei BLAISE PascaL (1623 —1662), Ideen iber vierdimensionale geo-
metrische Gebilde auf.

Von philosophischer Seite wurde die M§ i emer di ionalen G trie deutlich
1746 durch IMMANUEL KANT (1724 — 1804) in seiner Erstli: hrift hen. KANT hat
allerdings spiter diese Festlegung zuruckgenommen und die Ansicht vertrebon, daB der drei-
dimensionale euklidische Raum denknotwendig sei. In den Werken von Mathematikern finden
sich Betrachtungen iiber die Geometrie von mehr als drei Dimensionen spontan (Joserx
Lovuts LAGRANGE (1736 —1813), CARL GusTAv JacoB JacoBr (1804 —1851), CArRL FRIEDRICH
Gauss (1777—1855)). Fir den Aufbau einer n-dimensionalen Geometrie gab es im 19. Jahr-
hundert zwei Ausgangspunkte, einerseits gedankliche Kiihnheit (ARTHUR CAYLEY (1821 bis
1895), HERMANN GRASSMANN (1809 —1877)) und andererseits die Verbindung von Mathematik
und Physik, bei der mehr als zwei unabhingige GroBen gebraucht wurden.

CAYLEY und insbesondere GrAssMaANN fithrten 1843 bzw. 1844 in hichst abstrakter Weise

le affine Mannigfaltigkei ein. Diese Arbeiten wurden mit Unglauben und
MiBtrauen, auch von th tischer Seite, aufg Erst BERNHARD RIEMANN (1826
bis 1866) bewirkte mit seinem beriih Habilitati trag von 1854 iber die Grundlagen
der Geometne eine Anderung dieser Haltung. Es wurde jetzt klar zwischen realem Raum, der
1 und G d der Naturforschung ist, und abstrakten mathematischen

»,Riéumen*’, deren ,,Dnmenuon“ beliebig hoch sein kann, unterschieden.

tiohlk
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1.5.3. Die Metrik des Raumes R®

Aus der analytischen Geometrie ist bekannt, daB der Abstand zweier Punkte @, y
der Ebene mit den Koordinaten z,, 2, bzw. y,, y, durch

V@ — 91)® + (@2 — 42)° = (21 — y1, 22 — )l = e — yll

gegeben ist. Eine analoge Formel gilt fiir Punkte des Raumes. Wir vereinbaren daher
allgemein die

Definition 1. Unter dem Abstand zweier Punkte &, y des Raumes RP verstehen
wir die Norm der Differenz von & und y, d. h. die Zahl ||z — y]|.
Der Abstand zweier Punkte wird auch héufig mit o(x, y) bezeichnet, so daB

o, y) = |lz — yll (O]
ist. Im Fall » = 1 ist hiernach
o®y) = |z —yl; @)
ebenso wird der Abstand zweier komplexer Zahlen definiert.
Satz 1. Fiir alle Elemente x, y, z des Raumes RP gilt

ol@,y) 20, 3)
o(®,y) =0 genau dann, wenn x =y, (4)
o(®@, y) = ey, x), ()
el®, 2) < o, y) + oy, 2). (6)

Der Beweis dieser Behauptungen wurde in 1.5.2. gefiihrt.
Mit Hilfe des Abstandsbegriffs filhren wir einen fiir die Analysis grundlegenden
Begriff ein.

Definition 2. Es sei &, ein Punkt des Raumes R? und ¢ eine positive reelle Zahl.
Dann heit die Menge aller Punkte & mit & € R?, deren Abstand vom Punkt z,
kleiner als ¢ ist, die e-Umgebung des Punktes &,. Sie wird mit U, (&,) bezeichnet. Der
Punkt @, heiBt der Mittelpunkt, die Zahl ¢ der Radius der e-Umgebung U, ().

Nach der Definition ist

U(xy) = (x: 2 € RP A p(Z(, ) < ¢}

Auf der Zahl geraden (im R!) besteht die e-Umgebung des Punktes , aus allen
reellen Zahlen z, die der Bedingung
iz — 2| < e, Tp—e<T< %yt ¢ (7)

geniigen (Abb. 1.21). Sie bildet ein offencs Intervall.
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In der Ebene bzw. im Raum (im R? bzw. im R?®) besteht die e-Umgebung aus
allen Punkten, die im Innern des Kreises bzw. der Kugel mit dem Mittelpunkt x,
und dem Radius ¢ liegen (Abb. 1.22).

In manchen Anwendungen ist es zweckmaBlg, neben der e-Umgebung auch die
Menge zu betrachten, die aus ihr durch Entfernung ihres Mittelpunktes entsteht.

Definition 3. Ist &, ein Punkt des Raumes R? und ¢ eine positive reelle Zahl, so
heiBt die Menge

U/ (@o) = Udl@o) \ (&0}
die punktierte e-Umgebung von &,.

%—U.W

Uelxy)
0 xyE X Xt€ o
Abb. 1.21 Abb. 1.22
Offenbar ist
U/ (@) = [®: 2 € R? A 0 < oo, &) < ¢}. (8)

Definition 4. Unter dem Durchmesser d(M) einer nichtleeren Teilmenge M des
Raumes R? verstehen wir die kleinste obere Schranke aller Zahlen p(x,y) mit
T, YyeM.

Hiernach ist
d(M) := sup (o(x, y) : T,y € M}. ®)

Definition 5. Eine Teilmenge M des Raumes R? heiBt beschrinkt, wenn sie leer
oder wenn ihr Durchmesser endlich ist.

Diese Bedingung kann auch anders formuliert werden.

Satz 2. Eine Teilmenge M des euklidischen R RP Vst beschrinkt genau dann,
wenn es eine reelle Zahl K ¢gibt derart, daf

=l = K (10)

28t fiir alle ® mit x € M.
Die Zahl K heit eine Schranke der Menge M :

K Schranke von M :& A x| < K.

zeM
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Beweis. Ist |l&| < K fiir alle & aus M, so gilt fiir zwei beliebige Elemente x, y
aus M die Abschitzung @ — y|| < |lzl|l + [yl =< 2K, d. h,, es ist d(M) < 2K.
Ist d(M) endlich und &, ein beliebiger Punkt aus M, so folgt aus & € M stets

llell = lkeo + (& — To)ll < ll2oll + ll& — @oll < [loll + (M),

d. h., die Zahl |jx,|| + d(M) ist eine Schranke von M.

Eine Menge reeller Zahlen ist beschrinkt genau dann, wenn sie nach oben und
nach unten beschrinkt ist. Ist K eine Schranke, so ist —K eine untere Schranke
und K eine obere Schranke von M.

1.5.4. Spezielle Punkte von Teilmengen des Raumes R?

In diesem Abschnitt betrachten wir Relationen, die zwischen Elementen und Teil-
mengen des Raumes RP bestehen. Alle nachfolgenden Definitionen stiitzen sich auf
den Begriff der Umgebung bzw. der punktierten Umgebung eines Punktes.

Definition 1. Ein Punkt & des Raumes R? heiBt ein innerer Punkt einer Menge M
mit M S RP, wenn es eine e-Umgebung des Punktes & gibt, die ganz in der Menge M
enthalten ist (Abb. 1.23): *

& innerer Punkt von M 1o \/ U, (®) S M)
>0

Ug(x)

Abb. 1.23 Abb. 1.2¢4

Definition 2. Ein Punkt & des Raumes R? heit ein duferer Punkt einer Menge M
mit M S RP, wenn es eine e-Umgebung des Punktes & gibt, die keinen Punkt der
Menge M enthilt (Abb. 1.24):

& duBerer Punkt von M :o \/ U (x)n M = 0.

>0

Offenbar ist & ein duBerer Punkt der Menge M genau dann, wenn & ein innerer
Punkt der Komplementirmenge R? \\ M ist.

1) Fir den gesamtcn Lehrgang Analysis vercinbaren wir, daB ¢ und & (bzw. ¢, §; usw.)
stets Variable fir positive Zahlen sind. Wir driicken dies an Stelle der ctwas schwerfilligen
Schreibweise & € Ry* kiirzer durch ¢ > 0 aus.
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Mit int M (gelesen: interior M) bzw. ext M (gelesen: exterior M) bezeichnen wir
die Menge aller inneren bzw. iuBeren Punkte der Menge M. Im allgemeinen gilt
nicht R? = int M uext M. Punkte, die weder innere noch éuBere Punkte einer
Menge M sind, wir Begr gspunkte der Menge M. Ist x ein Begrenzungs-
punkt, so kann eine beliebige e-Umgebung von & weder in der Menge M enthalten
noch mit M durchschnittsfremd sein, da & sonst innerer bzw. duBerer Punkt der
Menge wire. Der Begriff ,,Begrenzungspunkt kann daher auch wie folgt definiert
werden.

Definition 3. Ein Punkt & des Raumes R? heilit ein Begrenzungspunkt einer
Menge M mit M S R?, wenn in jeder e-Umgebung von & ein Punkt der Menge M
und ein Punkt der Menge R? \\ M liegt:

& Begrenzungspunkt von M .o AU (@) n M =0 A U(x) nR,\ M + 0.

©>0

Wir bemerken, daB in dieser Definition nichts dariiber gesagt wird, ob der Begren-
zungspunkt zur Menge gehori oder nicht. Beide Fille sind méglich. Nach der Defi-
nition kann RP selbst keine Begrenzungspunkte besitzen. Ein Punkt & ist Begren-
zungspunkt der Menge M genau dann, wenn er Begr gspunkt ihrer Kc
tirmenge ist. Die Menge aller Begrenzungspunkte einer Menge M bezeichnen wir
mit M.

Punkte, die hier Begrenzungspunkte genannt werden, hieBen friiher Randpunkte
der Menge. Hier werden nur diejenigen Begrenzungspunkte Randpunkte genannt,
die zur Menge gehéren:

« Randpunkt von M :&x € M n M.

Ein Punkt & ist hiernach Begrenzungspunkt von M genau dann, wenn er Randpunkt
von M oder Randpunkt der Komplementirmenge von M ist.

Definition 4. Ein Punkt & des Raumes R? heiBt Hiufungspunkt einer Menge M
mit M S R, wenn in jeder e-Umgebung von @ unendlich viele Punkte der Menge M
liegen.

Ein duBerer Punkt kann somit nicht Haufungspunkt sein.
Ferner gilt der

Satz. Der Punkt x ist Héiufungspunkt von M genau dann, wenn in jeder punktierten
&-Umgebung von & (wenigstens) ein Punkt der Menge M liegt:

& Hiiufungspunkt von M & AU/ (@) n M + 0.
>0
Beweis. Ist # Haufungspunkt von M, so sind in U () fiir alle ¢ > 0 unendlich

vicle, also auch in U,(x) sogar unendlich viele Elemente von M enthalten. Ist =
nicht Haufungspunkt, so gibt es ein ¢ > 0 derart, daB U,(x) keine oder nur endlich
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viele von @ verschiedene Punkte @, @, ..., &} der Menge M liegen. Ist dann
1 .
£ i= - min fo(®, @):v=1,2,..., k},

so enthilt U, (x) keinen Punkt der Menge M, d. h., auch die Bedingung des Satzes
ist nicht erfiillt.

AbschlieBend geben wir die

Definition 5. Ein Punkt & des Raumes R heiBt ein vsolierter Punkt einer Menge M
mit M & R?, wenn ® € M ist und es eine punktierte e-Umgebung von & gibt, die kein
Element von M enthilt.

Aus dieser Definition ergibt sicl:, daB jeder isolierte Punkt des metrischen Raumes
R? auch Begrenzungspunkt und Randpunkt dieser Menge ist.

Beispiel 1. Im metrischen Raum R? sei

M:=|xy):2+y*<1laz =0}
Dann ist
intM={x,y):22+y2<lnaz>0
die Menge aller inneren Punkte von M und
BM ={(x,y): (@ +yt=1r220)v(Ez=0A-1=5y=<1)
die Menge aller Begrenzungspunkte von M. Ferner ist int M u M die Menge aller
Hiufungspunkte und R2\ (int M v BM) die Menge aller duBeren Punkte von M,

wihrend isolierte Punkte von M nicht existieren (Abb. 1.25).

Beispiel 2. Im metrischen Raum R? sei
M = ((x,y):y =sgnz}.
In diesem Fall gilt

intM =49,
BM = Mu (0, 1), (0, —1)),
ext M = R2\ M.

Die Menge der Haufungspunkte ist # \ {(0, 0)}, und (0, 0) ist der einzige isolierte
Punkt der Menge M (Abb. 1.26).
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Beispiel 3. Im metrischen Raum R sei M die Menge aller rationalen Zahlen.
Dann ist int M = ext M = @ und fM = R, denn in jeder Umgebung einer reellen
Zahl x gibt es rationale und irrationale Zahlen. Ferner sind alle reellen Zahlen
Hiufungspunkte von M, und isolierte Punkte sind nicht vorhanden.

Abb. 125 ——¢! Abb. 1.26

1.5.5. Offene und abgeschlossene Mengen

Wir fithren die fiir viele Betrachtungen in der Analysis bedeutungsvollen Begriffe
der offenen hzw. abgeschlossenen Menge ein.

Definition 1. Eine Teilmenge G des Raumes R? heiBt offen, wenn jeder Punkt
von @ ein innerer Punkt von @ ist.

Nach dieser Definition sind offenbar die leere Menge und R? selbst offene Mengen,
nnd eine Menge ist offen genau dann, wenn sie keinen ihrer Begrenzungspunkte
enthdlt.

Jede ¢-Umgebung eines Punktes &, ist eine offene Punktmenge. Ist nidmlich
&y € U,(x,), 80 ist [l — &o|| < &, und setzen wir 6 := & — ||®, — Ty||, 80 ist 6 > 0.
Aus |® — &,|| < ¢ folgt dann

e — ol < e — 2] + ) — ol < 8+ @y — @l = e,

d. h,, es ist Uy(x,) S U.(x), und U, (x,) ist offen.

Definition 2. Eine Teilmenge F des Raumes R? heiBt abgeschlossen, wenn ihre
Komplementirmenge R? \ F eine offene Menge ist.

Somit sind R? und die leere Menge offen und abgeschlossen zugleich. Im Raum R!
ist jedes offene bzw. abgeschlossene Intervall eine offene bzw. abgeschlossene Punkt-
menge. Das abgeschlossene Intervall [a, b] ist der Spezialfall (p = 1) des im eukli-
dischen Raum R? wie folgt definierten Rechtecksbereichs R. Ist a; < b; mit a;, b, € R
(r=1,2,..., p), so setzen wir

Ri={(x), Xy .. Xp)ia; S2; b5 v =1,2,..,p).

Jeder solche Rechtecksbereich ist eine abgeschlossene Punktmenge. Werden in den
Ungleichungen die Gleichheitszeichen nicht 1 , 80 bezeich wir die ent-
stehende Punktmenge als einen offenen Rechtecksbereich. Er ist eine offene Punkt-
nenge.




66 1. Einige grundl de Begriffsbildungen der Analysis

Eine Menge M, die wenigstens einen ihrer Begrenzungspunkte enthélt und wenig-
stens einen ihrer Begrenzungspunkte nicht enthilt, ist weder offen noch abgeschlossen.

Satz 1. Die Vereinigung von beliebig vielen offenen Mengen des Raumes RP ist wieder eine
offene Menge.

Beweis. Es sei ® ein Mengensystem, dessen Elcmente offene Teilmengen von RP sind.
Ist & € U ©, so gibt es ein G mit G € @ und x € G und folglich ein ¢ > 0 mit U x) EG,
woraus U,(x) S U @ folgt. Jeder Punkt von | ® ist somit ein innerer Punkt von U ®, d. h.,
U @ ist eine offene Menge.

Satz 2. Der Durchschnitt von beliebig vielen abgeschl Mengen des Raumes RP ist
wieder eine abgeschlossene Menge.

Bewcis. Es sei § ein Merg , dessen El te abgeschl Teilmengen von RP
sind. Ist & ¢ N §, dann gibt es ein Fmit F ¢ Fundx ¢ F,d. h. mitx ¢ RP \ F. Da R? \\ F
offen ist, gibt cs ein e mit U (@) S RP \\ F. Wegen F 2N & ist RPN F S RP\ N §, also
U,x) S R? \. N §. Daher ist die Komplenentirmenge ven N § offen, und Satz 2 ist be-
wiesen.

Satz 3. Eine Teilmenge F des Raumes RP ist genau dann abgeschlossen, wenn sie
alle thre Hiiufungspunkte enthiilt.

Beweis. a) Es sei F abgeschlossen, und @ sei ein Hiaufungspunkt von F. Nehmen
wir an, es gelte ¢ F, also & ¢ R? \ F. Nach Definition 2 ist R? \ F offen, und es
gibt ein ¢ > 0 mit U,(x) S R? \\ F. Dies bedeutet aber, daB & duBerer Punkt von F
ist, wihrend wir vorausgesetzt hatten, daB @ Hiaufungspunkt von F ist. Somit gilt
& € F, die abgeschlossene Menge F enthilt alle ihre Hiufungspunkte.

b) Es sei F eine Menge, die alle ihre Haufungspunkte enthilt. Ist dannax € R? \ F,
80 ist & nicht Haufungspunkt von F. Nach dem Satz in 1.5.4. gibt es zunichst eine
punktierte e-Umgebung von &, die keinen Punkt von F enthilt. Da auch x ¢ F ist,
gilt U(x)n F =0, U(x) S RP\ F. Somit ist jeder Punkt & mit £ € RP\ F ein
innerer Punkt von R?\ F, d. h., R? \\ F ist offen. Daher ist F abgeschlossen, und
Satz 3 ist bewiesen.

Definition 3. Eine Teilmenge M des Raumes RP heiit cin Gebiet, wenn sie offen
ist und wenn es zu je zwei Punkten &,, &, aus M stets endlich viele Punkte &, = y,,
Yoo Yp =T mit Sy, Y] =M (i=1,2,...,n — 1) gibt.

Je zwei Punkte &, &, eines Gebietes konnen also durch einen ganz in diesem
Gebiet verlaufenden Streckenzug verbunden werden (Abb. 1.27).

Abb. 1.27
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1.5.6. Normierte Riume und metrische Riume

In der Mathematik treten hiufig Mengen auf, in denen ebenso wie im Raum RP
jedem Element eine Norm mit dhnlichen Eigenschaften zugeordnet werden kann.

Definition 1. Es sei E ein reeller Vektorraum. Eine Abbildung, die jedem Ele-
ment z € E eine nichtnegative reelle Zahl ||z|| zuordnet, heiBt eine Norm in E, wenn
fiir alle z, y € E und alle 1 € R die Bedingungen

Azl = |2} llll, 1)
lle + yll < llll + llyll, 2
Izl >0, falls z+0, (3)

erfiillt sind. Ist in E eine Norm ausgezeichnet, so heiBt E ein reeller normflerter
Raum.

Neben der Dreiecksgleichung (2) gelten in jedem normierten Raum auch die abge-
leiteten Dreiecksungleichungen 1.5.2., (10), (11). Beginnend mit Definition 2 in
1.5.2., konnen alle Begriffsbildungen und Sitze aus 1.5. wortlich auf normierte
Réume iibertragen werden.

Eine weitere Verallgemeinerung geben wir in der nachfolgenden Definition. Hier
wird nicht einmal vorausgesetzt, daB die Grundmenge ein reeller Vektorraum ist.

Definition 2. Unter einem metrischen Raum versteht man eine Menge X in Ver-
bindung mit einer Funktion g, die jedem geordneten Paar (z, y) von Elementen z, y
aus dieser Menge eine reelle Zahl g(z, y) zuordnet und die folgende Eigenschaften
besitzt: Fiir alle Elemente z, y, z der Menge X gilt

oz, y) 20, 1)
e(r,y) =0 genau dann, wenn z =y, @)
o(® y) = ely, ) (Symmetrie), (3)
o(z,2) < o(z,y) + o(y,2) (Dreiecksungleichung). 4)

Die Elemente eines metrischen Raumes werden hiufig Punkte, die Funktion ¢ wird
die Metrik des Raumes genannt.

Die nachfolgenden Begriffsbildungen und Siitze kdnnen sogar auf metrische Riume
iibertragen werden: die Definitionen 2, 3, 4, 5 aus 1.5.3., alle Definitionen und der
Satz aus 1.5.4. sowie die Definitionen 1, 2 und die Sitze 1, 2, 3 aus 1.5.5.

1.6.  Die trigonometrischen Funktionen

1.6.1.  Die Funktionalgleichungen der trigonometrischen Funktionen

In der Schulmathematik werden die trigonometrischen Funktionen auf Grund von
rein geometrischen Betrachtungen elngefuhrt ohne daB wichtige Begrlffsblldungen
wie Winkel, WinkelmaB, Orientierung, Stetigkeitsaxiom eine streng: gr g
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erfahren. Im Rahmen dieser Lehrbuchreihe erfolgt eine exakte Einfithrung auf geo-
metrischer Basis in den Binden MfL 6, 7. Im Rahmen des Lehrgangs Analysis geben
wir eine von der geometrischen Axiomatik unabhingige Konstruktion. Geometrische
Betrachtungen werden nur zur Veranschaulichung und Motivation herangezogen.
Die Definitionen und Beweisfilhrungen stiitzen sich aber ausschlieBlich auf die
Eigenschaften des Korpers der reellen Zahlen.

Den nachfolgenden Satz von der Existenz und Einzigkeit der trigonometrischen
Funktionen werden wir in mehreren Etappen, teilweise auch auf verschiedene Arten
beweisen.

Satz 1. Es gibt genau ein Paar reeller Funktionen, das fiir alle reellen Zahlen «,
den Funktionalgleichungen

co8 (x + B) = cos « cos f — sin « 8in f, (1)
sin (o« + B) = sin « cos § + cos « 8in B, (2)
€08 (—a) = co8 &, (3)
sin (—a) = —sina 4

und weiterhin den Ungleichungen

O<sina<a<22 (O<a<l) (5)
cos &
geniigt.

Die Funktionalgleichungen (1), (2) heiBen auch die Additionstheoreme der Winkel-
funktionen, und (3), (4) charakterisieren bekannte Symmetrieeigenschaften. Die
Ungleichungen (5) konnen leicht plausibel gemacht werden. Nach Abb. 1.28 ist der
Sinus eines spitzen Winkels stets kleiner als die zu diesem Winkel gehérende Bogen-
linge . Es ist nicht ganz so offensichtlich, aber doch einleuchtend, daB der Tangens
dieses Winkels groBer als die Bogenlinge ist. Genau diese Aussagen sind in (5)
fixiert.

Abb. 1.28

Einen Beweis der Einzigkeitsaussage unseres Satzes werden wir in 1.6.2. fiihren.
Ein Beweis der Exist ge mit el taren Hilfsmitteln ist sehr aufwendig.
Wir fiihren einen solchen Beweis in 1.6.4., wobei nur der Begriff der kleinsten oberen
Schranke und unsere Sitze iiber monotone Funktionen als Hilfsmittel eingesetzt
werden. Ein besonders einfacher Beweis der Existenzaussage wird in 2.2.8. mit den
Hilfsmitteln der Reihenlehre gefiihrt.

Im Rest dieses Abschnittes gehen wir von der Annahme aus, daB uns die Funk-
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tionen y = cos z, y = sin # noch nicht bekannt sind.!) Wir stellen uns also auf den
Standpunkt, daB ein beliebiges Funktionenpaar gegeben sei, da8 die Eigenschaften
(1) bis (5) besitzt.

Zuniichst wollen wir einige Aspekte der Funktionalgleichungen (1) bis (4) allein
untersuchen. Sie sind mit den Subtraktionstheoremen

cos (x — f) = cos « cos B + sin « sin §, (6)

sin (x — B) = sin « cos § — cos & sin § (7

dquivalent. Ersetzen wir nimlich # in den Additionstheoremen (1), (2) durch —8,
8o ergeben sich mit Hilfe der Symmetrieeigenschaften (3), (4) die Formeln (6), (7).
Umgekehrt folgt aus (6), (7) zunichst cos (x — ) = cos (8 — &) und sin (x — B)
= —sin (f — &), und damit sind auch (3), (4) erfiillt. Ersetzen wir nun wieder # in
(8), (7) durch —8, so erhalten wir (1), (2).

Es gibt Funktionen, z. B. die Funktionen

C(x) := e*cos &, S(x) := e*sin «,

die wohl den Additionstheoremen, aber nicht den Subtraktionsth geniigen. Nach dem
zuvor Bewiesenen sing also die letzteren aussagekriftiger.

Die Funktionalgleichungen (1) bis (4) sind offensichtlich erfiillt, wenn wir cos
= 8in & = Ofiiralle « € R setzen. Diesen trivialen Fall wollen wir fortan ausschlieBen.
Nach (4) ist aber stets

sin0 =0, (8)

und es folgt cosa = cos (x + 0) = cos & cos 0, sin & = sin (« 4 0) + sin « cos 0
fiir alle « € R. Dies ist nur méglich, wenn

cos0 =1 9)
ist. Wir zeigen nun, da8 die Eigenschaften (8), (7), (9) mit (1), (2) und

cos®a + sinta =1 (10)
dquivalent sind. Gilt naémlich (6), (7), (9), so sind (1), (2) erfiillt, und aus (6), (9)
folgt mit g := « die als ,trigonometrische Form des pythagoreischen Lehrsatzes*

bekannte Formel (10). Es seien umgekehrt (1), (2), (10) erfiillt. In (1), (2) ersetzen
wir &, f durch 8, « — # und erhalten

cos & = co8 f cos (x — B) — sin B sin (x — f), (11)

sin « = sin § cos (x — ) + cos B sin (x — B). (12)

1) Zur Verdeutlichung dieses Gedan} wiire es ei its vorteilhafter, in den Herleitungen
iberall ¢(«x), 8(x) statt cos «, sin & zu schreiben. Dies hatte and its den groBen Nachteil,
daB der im folgenden entwickelte umfangreiche F lapparat nicht sofort in der Form er-

scheint, wie es fir die Anwendungen wiinschenswert ist.
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&

Multiplizieren wir in diesen Gleichungen mit cos #, sin # bzw. mit —sin g, cos § und
addieren, so erhalten wir unter Beachtung von (10) die Formeln (6), (7). Auf Grund
von (10) ist stets |cos «|, [sin & < 1.

Weitere Additionstheoreme gewinnen wir, wenn wir «, 8 in (1), (6) durch“—”-

2
d ; L ersetzen und addieren bzw. subtrahieren. Wir érhalten
oosa+cosﬂ=2eosaT+ﬁoosaT_ﬂ, (13)
cos o« — cos f = 2 sin 2 B gin B =2, (14)
2 2
Aus (2), (7) folgt in gleicher Weise
uina+ainﬂ=23inf¥ma—;ﬂ, (18)
sina—sinﬂ=2ma+ﬂsinﬂ. (16)
2 2
Mit % statt , B gehen (1), (2) in die wichtigen Halbwinkelformeln
cosax = eoe'—;- - sin’-;—, (17)
3 3
. — 28in = K 1
8in sin 2 cos > (18)
iiber. Die erste kann mit (10) auch in die Form
cosa = 2008 = — 1 =1 — gin? = (19)
2 2

gebracht werden. Hieraus ergibt sich

cos 2| = __1+cosa' (20)
2 I/ 2

sin 2| = l/_l —cosax 21)
2 2

Aus (18) kann durch vollstindige Induktion die Produktdarstellung
8in & = 2°8in = €08 — CO8 - ..+ CO8 —— (22)
2* 2 4 2%

abgeleitet werden.



1.8. Die trigonometrischen Funktionen 71

Jetzt soll auch die Eigenschaft (5) herangezogen werden. Unter dieser Voraus-
setzung gilt stets

|sin «| < |«f. (23)
In der Tat ist (23) fiir 0 < « < 1 nach (5) erfiillt, und fiir —1 < « < 0 folgt dies

aus (8), (4). Ist aber (23) fiir ein « richtig, so ist [sin 2x| = 2 [sin &| [cos | < 2 |sin «]
< |2«|, und (23) gilt auch fiir 2x. Hieraus folgt unsere Behauptung.

Wenden wir (23) speziell auf (14), (16) an, so erhalten wir, wenn wir ‘oosu : ﬂl,
sin #' = 1 beachten,

lcos &« — cos B| < |« — B, (24)

|sin & — sin B < |a — B]. (25)

Der nachfolgende Satz charakterisiert die Kreiszahl 7 durch die bekannte Eigen-

schaft, daB %die kleinste positive Nullstelle der Kosinusfunktion ist.

Satz 2. Es gibt eine positive Zahl n mit
sina > 0 0O<a<n), (26)

cos%:O, s'm-’21= 1. 127

Beweis. Eine Umstellung von (5) ergibt 0 < « cos « < sin «, woraus «*cos® x
< 8in®x = 1 — cos® « oder

1
coa'a<-l-+—a’ (0<a<'l)

folgt. Speziell ist

L

cos’%<g, cos 1 =2cos'%— 1 <2—75,

also cos 2 = 2 cos? 1 — 1 < 0. Zum Beweis der Existenz einer Nullstelle der Kosinus-
funktion im Intervall [0, 2] geniigt nun der Nachweis, daB die Kosinusfunktion in
diesem Intervall streng monoton ist. Wegen (24) ist dann namlich der Zwischen-
wertsatz erfiillt (vgl. 1.3.5., Satz 6, Satz 5).

Fiir 0 < &« < 1 ist nach (5) stets cos «, sin « > 0, und folglich ist

aina=2sin%cos%>0 0D<a<?2). (28)
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Istalso 0 < & < # < 2, 50 haben wir

a+ﬂsinﬂ—a

>0,
2 2

cosx — cos f = 2 sin

und die strenge Monotonie ist bewiesen. Folglich gibt es genau eine Zahl » mit
0<zn<4und coa% =0.Fir0 Sa < %isteosa > 0, nach (28) auch sin x > 0.
Fiir 0 <« <z ist demzufolge sina = 2 sin % cos %> 0. Aus (10) folgt nun
sin -12’- = 1, und Satz 2 ist bewiesen.

Aus den Formeln (27) kénnen nun alle Periodizititseigenschaften der trigono-

metrischen Funktionen abgeleitet werden. Mit Hilfe der Additionstheoreme ergibt
sich

oos(a+%)= —sin «, (29)

sin (a + %) = co8 «. (30)
Nochmalige Anwendung ergibt

cos (x + ) = — cos &, (31)

sin (x + %) = — sin«. (32)

(Abb. 1.29). Durch vollstindige Induktion gewinnen wir die Formeln

co8 (& + km) = (—1)* cos «, (33)
sin (x + kz) = (—1)*sin a, (34)

e
=1 E

"\)(/ Abb. 1.29

nach denen die trigonometrischen Funktionen die Periode 27 besitzen. Fiir0 < a <z
bzw. 7 < & < 2x ist stets sin « > 0 bzw. sin « < 0, und folglich ist keine Zahl mit
0 < & < 2n eine Periode. Die Zahl 2z ist also die primitive Periode der Winkel-
funktionen. Die durch

tan o := sin « (a*kﬂ-l-i), (40)
COB o 2
cota:=2% (x4 kn) 1)

sin «
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g

definierte Tangens- bzw. Kotangensfunktion besitzt d die primitive Periode n

] BYE'

(Abb. 1.30). Die beiden Funktionen sind weiterhin durch

= cot & = tan i—a
tan « 2

und dhnliche weitere Relationen miteinander verkniipft.
y=tan x
y=cot x
x ; J K x Abb. 1.30

1.6.2. Die Arkusfunktionen

In diesem Abschnitt gehen wir wieder von der Voraussetzung aus, daB ein Funk-

haft

tionenpaar mit den in 1.6.1. zusa tellten Eig ten existiert.

)

Fiir 0 < & < n ist sin &« > 0, also

a+ﬂsinﬁ—_a
2 2

cos &« — cosff = 28in >0 O<Sa<p<m).

Die Kosinusfunktion ist daher im Intervall [0, =] streng monoton fallend. Da aufler-
dem |cos « — cos | < |« — f] ist, nimmt sie in diesem Intervall jeden Wert zwischen

c080 = 1 und cosx = — 1 genau einmal an. Auf Grund der Relation sin « = cos| Z &

ist die Sinusfunktion im Intervall —%, % streng monoton wachsend und be-
sitzt dort ebenfalls den Wertebereich [—1, 1]. Somit besitzt die Einschrinkung der
Kosinusfunktion bzw. Sinusfunktion auf das Intervall [0, =] bzw. I]:— %, g—]]eine auf

dem Intervall [0, 1] definierte Umkehrfunktion, die Arkuskosinusfunktion bzw.
die Arkussinusfunktion. Sie werden mit

Y = arccos (—-1=5z=<1), (1)
y = arcsin x (—-1=2<1) (2)
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bezeichnet (Abb. 1.31). Die Bezeichnungen riihren daher, daB « = arccos z bzw.
o = arcsin y derjenige Arkus (Bogen oder Bogenlinge) ist, dessen Kosinus bzw.
Sinus den Wert z bzw. y annimmt. Dies werden wir am SchluB dieses Abschnitts
und in 1.6.4. genauer erliutern (Abb. 1.32).

_t.
|
|
| n
, z_ .
| y=arcsinx
| |
| |
| y=arccos x
! 1
|
]
|
-—1-Z Abb. 1.31

a=arccos x<§

z-arwos»%

x>0 x<0
——.
a=arcsiny >0
y>0
y<0
«=arcsiny<0 Abb. 1.32

Die Einschrinkung der T&ngensfunktlon auf das Intervall :[’— - A{[ ist streng
monoton wachsend, denn fiir — ; <a<f< E ist

smﬂcosa—cosﬂ sina _ sin (ﬂ-—a)

ta, tan «
nf— cos ff cos o cosﬂoosa
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Sie nimmt in Intervall auch jede reelle Zahl z an, denn setzen wir

z

« 1= aminm.

n n
80 ist —— < & < — und
2 ~*<73

sin o =

z
, cos & > 0.
V1 + a2

Losen wir nach z auf, so erhalten wir

8
— ina __sina
Y1 —sinta cosx
[
+r
\ g y=arctanx
y=arcoot X
1
Abb. 1.33
L
2

Somit existiert eine fiir alle reellen Zahlen z definierte Umkehrfunktion, die Arkus-
tangensfunktion. Sie wird mit

y = arctan z€R) 3)

bezeichnet. Es ist fiir viele Anwendungen bedeutnngsvoll daB diese Funktion das
unbeschmnkte Intervall J—oo, oo umkehrbar eindeutig auf das beschrinkte

Intervall ——, —[I: abbildet. Mit
2’2

y=arccotz  (z€R) “

bezeichnen wir die Umkehrfunktion der Einschrinkung der Kotangensfunktion auf
das Intervall JO, nf[ (Abb. 1.33). Die Existenz leiten wir aus der Relation cot &

= tan (1 —a) ab.
2
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Die Arkusfunktionen sind miteinander durch die Relationen

arccos r 4 arcsin & =

, (6}

SR

arctan r + arccot r =

K]

(6)

verkniipft, denn aus & = arcsin xfolgt » = sin « = cos % — a«)und —% <a< l,

0= % — & < 7. Daher ist % — &« = arccos z, und das ist die Behauptung (5).
Ebenso wird (8) bewiesen.
Wir geben jetzt ein Verfahren zur Berechnung der Funktionswerte der Funktion

& = arccos z, das im Prinzip bereits auf ARCHIMEDES zuriickgeht? Wir erliutern es
zuerst geometrisch. Wir teilen den zu « gehorenden Kreisbogen in 2#-1 gleiche Teile.

Die Linge des zugehérigen Seh ges ist offensichtlich
8y 1= 2% sin-% =2 |/ 1— cos’%, (7)
«
2
@ '3
2
=
2 Abb. 1.34
sin ’;‘a

und diese Zahl kommt nach unseren anschaulichen Vorstellungen der Bogenlinge x
um so niher, je groBer wir die Zahl » wiihlen (Abb. 1.34). Nun kann aber der Kosinus

des Winkels % nach 1.6.1.(20) durch den Kosinus von _éa: dargestellt werden.

Die Zahlen s, konnen also, von z ausgehend, induktiv berechnet werden. Nunmehr
16sen wir uns von der geometrischen Interpretation und beweisen den

Satz 1. Es set —1 < 2 < 1 und « := arccos z. Setzen wir

14z,

zy ==z, gy 1=

(n € N), (8)
80 18t

2 1
0<a—2n 1—:5,,:§%<2“—_s nz=2). ®)
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Beweis. Im Fall z = 1, « = O ist z, = 1 fiir alle n € N, und (9) ist erfiillt. Es sei

nun —1 <2< 1lund a,:= %. Wir zeigen, dal
Z, = COB &y (10)

ist. Fiir n = 0 ist dies richtig. Gilt (10) fiir ein 7 € N, 80 ist apyy = %, also

Tusy = lﬂ.ﬁ = | cos Ll COB Kpyyy
2 2

und (10) ist durch Induktion bewiesen. Es folgt }/1 — z,! =s8ina,. Firn =2 ist
Zyy = 0 und

sin a, =l/ 1— czos LR Vl + c;)sa..-l = cos ay,

d. h,, es ist tan a, < 1. Andererseits ist fiir n = 2 stetsa, < % < 1und

8in &, < &y < tan a,,
0 < x, — 8in x, < tan a, — sin a,
= tan aa(1 — cos a,) < 1 — €08 &, == 23in? apyy < 233,

2
0<%—Vl—z,'<#.

2

Multiplizieren wir mit 2%, so erhalten wir die ersten beiden Ungleichungen (9) in
einer verschirften Form. Wegen 0 < & < 4 gilt auch die letzte Ungleichung (9), und
Satz 1 ist bewiesen.

ImFallz =0 ist a = % < 2, und wir haben die Abschitzung

0<a—2m1y1 — <

(n22). (11)

an-2

Sie erméglicht es, den Zahlenwert von x in jeder gewiinschten Genauigkeit zu be-
stimmen. Fiir die numerische Rechnung empfiehlt sich die Herleitung einer Re-
kursionsformel fiir die Zahlen

= 21Y1 — x,2.

Esist 2(1 —a%,,) =1 — x,, also

T _ I—x2 4/ =z)(1+x) l+:r._x
e Y 41— 2L 21 —z,) 2 v
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d. h., es ist

Tn

Tty = z
A+l

Mit einem Taschenrechner wurden nach dieser Formel folgende Niherungswerte fiir
7 berechnet.

n Zo:=0 n°:=2}/l—:r:o’=2
Tasy 1= l/_l + o Tnry 1= e
2 Ta+l
1 0,7071067811 2,828427124
2 0,9238795325 3,061467458
3 0,9807852804 3,121445152
4 0,9951847266 3,136548490
5 0,9987954562 3,140331156
6 0,9996988186 3,141277250
7 0,9999247018 3,141513801
8 0,9999811752 3,141572940
9 0,9999952938 3,141587725
10 0,9999988234 3,141591421
11 0,9999997058 3,141592345
12 0,9999999264 3,141592576
13 0,9999999816 3,141592634
14 0,9999999954 3,141592648
16 0,9999999988 3,141592652
16 0,9999999997 3,141592653
17 0,9999999999 3,141592653

Die Fehlerabschitzung (11) gilt nur bedingt, denn es treten unvermeidliche Run-
dungsfehler auf. Der genaue Zahlenwert fiir = beginnt mit '

3,1415926563589793 ...

Aus Satz 1 kann ein weiterer wichtiger Schlul gezogen werden.

Satz 2. Es gibt hochstens ein Funktionenpaar, das den Bedingungen 1.6.1.(1) bis
(5) geniigt.

Beweis. Wenn ein solches Funktionenpaar existiert, sind die Werte der Funktion
y = arccos z fiir —1 < z < 1 nach Satz 1 eindeutig bestimmt (vgl. auch 2.1.4.(10)).

Damit ist aber auch deren Umkehrfunktion, also die Funktiony = cos 2 (0 < z < n)
eindeutig bestimmt. Die Behauptung des Satzes folgt nun aus 1.6.1.(33) und (29).
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1.6.3. Trigonometrische Darstellung komplexer Zahlen.
Polar- und Zylinderkoordinaten

Es sei z =z + 7y (2, y € R). Wir setzen r := 2|, d. h.
ri=Yzt + o1, (1)
und zeigen, daB es einen Winkel ¢ mit

T=rcosg, y=rsing (2)

» Abb.135

gibt (Abb. 1.35). Im Fall z =0, also r =z =y = 0, ist (2) fiir jede reelle Zahl @
erfiillt. Ist z == 0, so setzen wir

arccos = fiir y=0,
r
9= @)

z
—arccos — fiir y <O0.
r

Die erste Gleichung (2) ist dann erfiillt. Im Fally = 0ist 0 < ¢ < =,

2
0<sing=}1—cos?ep= I/l—£’=l/%=—
r

1mF.11y<0isc§4=i1,—n<¢<o,

0>sing=—})l—cosbp= -]/l —-—=——== .

In beiden Fillen gilt somit (2). Aus (2) und z =z 4 1y folgt

z=r(cos ¢ + ¢sing), (4)
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womit wir die trigonometrische Darstellung komplexer Zahlen hergeleitet haben. So
ist z. B.

—1+i‘=}/§(0053T” +isin%),

—3—1=2 (cos%’ + isin%’),

—1 = (cos % + 78in ). (5)
Mit Hilfe der Reihenlehre werden wir spiter zeigen, daB die Definition

€' := cos ¢ + ©8in ¢ 6)

sinnvoll ist. Alle Zahlen ¢/ liegen wegen cos? ¢ + sin? ¢ = 1 auf dem Einheitskreis.
Aus (5) und r = 0 folgt also durch Ubergang zu den Betrigen stets |z| = r. Es gibt
somit genau eine nichtnegative reelle Zahl 7, fiir die eine Gleichung der Form (4)
erfiillt ist, némlich den Betrag der komplexen Zahl z. Es ist

(cos @ + 28in @) (cos y + 7 8in y)
= CO08 @ cO8 y — 8in @ 8in y + %(cos ¢ sin y + sin @ cos y)

cos (p + y) + ¢sin (¢ + ¢),

Ir

d. h., es gilt
€' P+y) — glrgiv

Jede reelle Zahl ¢, fiir die (2) bzw. (4) erfiillt ist, heiBt ein Argument der komplexen
Zahl z. Wegen der Periodizitit der trigonometrischen Funktionen ist mit ¢ auch jede
reelle Zahl ¢ + 2k mit k € Z ein Argument von z. Sind umgekehrt ¢ und y Argumente
einer von Null verschiedenen komplexen Zahl z, so ist z = re?? = re¥¥, d. h., es ist
€P—¥) — ¢lvg—iv — eive~lv — ¢® — 1. Daher ist cos (p — y) = 1 und damit ¢ — y
= 2kn (k€ Z). Arg te von kompl Zahlen z mit z = 0 sind somit bis auf
ganzzahlige Vielfache von 2z eindeutig bestimmt.

Die Darstellung wird im Fall z & 0 eindeutig, wenn wir ¢ auf ein halboffenes
Intervall der Linge 27, z. B. auf das Intervall J—z, n] oder [0, 22 beschrinken.
Der erste Fall entspricht der Definition (3). Wir nennen die im Fall z = 0 eindeutig
bestimmte reelle Zahl ¢ mit —n < ¢ < =, die der Gleichung (4) bzw. (6) mit r > 0
iigt, das Hauptarg t der kompl Zahl z. Die Darstellung

&

z = r(cos @ + 1 8in @) = ret® (r>0—a<g=na) (7)
ist daher eindeutig. Es ist stets

(r1€i®1) (ryei®) = ryrpeiteston (8)
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Hieraus ersehen wir erneut, daB der Betrag des Produkts zweier komplexer Zahlen
gleich dem Produkt ihrer Betrige ist (vgl. 1.2.2.(9)). Ferner ist die Summe zweier
beliehiger Argumente der Faktoren stets ein Argument des Produkts. -

Wir beweisen die Moivreschzn Formeln (ABRAHAM DE MOIVRE (1667 —1754))

n
cos ng =k2 (—1)* (2,2) cos" 2 g sin? @, 9)
=0
n
sin ng =k2 (— l)lr (2k 1 1) cos™—(2k+1) '3 sin2k+1 ?. (10)
=0

Sie sind implizit bereits in einer Arbeit von MoIVRE aus dem Jahre 1707 zu finden.

Explizit treten sie erstmals 1748 bei EvLEr auf. Fir & > 2 verschwinden alle
Summanden wegen 2

(5)=0 u>n-- an
Durch vollstindige Induktion zeigt man, daB
cos np + 1 8in np = € = (¢f7)" = (cos ¢ + i 8in @)*

ist. Anwendung der hinomischen Formel ergibt

n
cosng + isinng = I, (n) i sirf ¢ cos" 7 @.
ji=o\J

Zur Vermeidung von Fallunterscheidungen erstrecken wir die Summation bis
2n + 1, was wegen (11) zulissig ist. Wir erhalten

- n\ . . :
cos np + isinng = 3 ( ) ' sinf ¢ cos" T ¢
j=0 \]

[

n
=¥ ( 7;) 72 sin* @ cos" "2 ¢

n
+ X (21:7-!{- l) %-15in%-1 g cogn (%1 @,

Aus 22 = (— 1)}, %1 = (—1)* { ergibt sich durch Vergleich von Real- und Imaginiir-
teil beider Seiten die Behauptung.

Jeder Punkt der Ebene ist durch seine Koordinaten x, y beziiglich eines karte-
sischen Koordinatensystems bestimmt. Auf Grund von (2) kann er aber auch durch
die ebenen Polarkoordinaten r, ¢ festgelegt werden. Wihlen wir ¢ = @ bzw. r = 7,
konstant und variieren nur r bzw. ¢, so erhalten wir die Koordinat-nlinien dieses
krummlinigen Koordinatensystems. Es sind im ersten Fall vom Ursprung ausgehende
Halbgeraden, im zweiten Fall konzentrische Kreise mit dem Mittelpunkt O.
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Eine Verallgemeinerung dieser Betrachtungen fiihrt zu krummlinigen Koordinaten
im Raum. Durch die Gleichungen

z = gcos g,
y=g¢sing, (12)
z2=2z

werden Zylinderkoordinaten o, ¢, z eingefithrt (Abb. 1.36). Hierbei ist g := }2* + y?
der Abstand des Punktes (2, y, z) von der z-Achse. Durch die Gleichungen
z=rsindcosgp,
y =rsindsing, (13)

z = rcos®

werden rdumliche Polarkoordinaten r, 9, ¢ eingefiihrt (Abb. 1.37). Hierbei ist
r:=}2® -+ y* + 2% der Abstand des Punktes (z, y, z) vom Ursprung, der Winkel 8
die von der positiven z-Achse aus gemessene Poldistanz, und der Winkel ¢ entspricht
dem geographischen ,,Lingengrad* auf der Erdkugel.

raVx2+y2+22

Abb. 1.36 - Abb. 1.37

1.6.4.  Einheitskreis und Bogenlinge

In diesem Abschnitt geben wir den angekiindigten Beweis fiir die Exi zweier F'
mit den Elgensoh.fun 1.6. 1 (1) bis (5) uuf der Grundlage des Begriffs ,, Bogenlinge*‘. Wiederum
erldutern wir die auf Begriffabil haulich, wihrend die engenthchen Deﬁm-
tionen und Sitze unabhingig von der geometmchen Deutung f liert bzw. b

Essei —1 < z < 1. Mit 8() bezeichnen wir die Menge aller Zerlegungen

Ziz=x,< 2 << zZpg=1 (1)
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des Intervalls [z, 1] in endlich viele Teilpunkte. Ferner sei

wom VT @
und
diz;, z)) := V(z; — ) + (9 — 95 3)

In der anschaulichen Deutungliegen die Punkte r; : = (z,-, ¥1— z;’) auf dem oberen Halbkreis
des Einheitskreises, und d(z;, z;) ist der Abstand der Punkte 7;, ¥; (Abb. 1.38). Die Dreiecks-
ungleichung besagt, daB

d(z;, 7) < d(z, 7)) + d(z) 7)
ist. Nach Satz 3 in 1.5.2. ist andererseits

d(z;, 7)) < |z — oyl + lyi — yl- 4)

n=e Abb. 1.38
X=Xy X Txp Xy xg=l

Wegen z;2 + y;* = 1 kann (3) auch in der Form
d(z;, 7)) = V2(1 — ziz7y — yiyy) (%)
geschrieben werden.
Fir jede Zerlegung Z ¢ 8(z) gibt die Zahl
L
8(2) = E dleios ) 0)
i=

die Linge des Sehnenzuges 7,7, ... r, an. Entsteht die Zerlegung 2’ aus Z durch eine ,,Ver-
feinerung*, d. h. durch Hinzufiigen weiterer Teilpunkte, so ist nach der Dreiecksungleichung
stets 8(Z) < 8(Z’). Wir beweisen, daB die Zahl 4 eine obere Schranke fiir alle Summen (6) ist.
Es sei Z, eine beliebige Zerlegung aus 3(z). Wir ergiinzen sie zu einer Zerlegung Z des Intervalls
[—1, 1], die auch den Teilpunkt O enthilt. Es gelte etwa

Z:  1=2< 2, < <Zp=0< 2y, <+ < Tppyg = 1.
Fir i=1,..,mist y; , <y, fir i =m 4+ 1,...,m + n dagegen y; < y;_,. Aus (4) und
Yo = Ymin = 0, ym = 1 folgt
) min
8(2,) < 8(2) é_):luz; = Zial + 1% — %iaal)
i=

mtn "

m+n
=2 @—zi)+ D@ v+ X W — W)
i=1 i=1 i=mtl

= (Zmsn — %) + (Um — Yo) + (Um — Ym+a) = 4.
Dies rechtfertigt die
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Definition. Fiir jede Znhl z mit —1 < z < 1 heiBt die kleinste obere Schranke aller
Zahlen 8(Z) mit Z € 3(x) die Bogenlinge des vom Punkt e = (1, 0) zum Punkt » = (z, ¥1i— x’)
fiihrenden Bogens des Einheitskreises.

Wir bezeichnen diese Bogenlinge mit o(x). Fiir = 1 sei
o(l):= 0.
Nach Definition gilt
o(z) = sup S(Z) (-1 <z~ 1),
Ze3(a)
Die in dieser Weise definierte Funktion o mit 1(0) := [—1, 1] wird sich als identisch mit der

Arkuskosinusfunktion erweisen. Die Zahl = definieren wir jetzt als Bogenlinge des Halb-
kreises, d. h., wir setzen

ni=o(—1).
Die folgende Abschitzung wird zum Beweis von 1.8.1.(5) fiihren.
Satz 1. Fiir 0 << x = 1dst

z V1 — 22
V1 =22 < d(a)<2l/m —_ 7)

Beweis. Zunichst ist Y1 — 7t = Y < Ya =z + y? = d(1, z) < o(z). Zum Beweis der
zweiten Ungleichung (7) zeigen wir, daB d(x;, 7;) fir i < j mit der Zahl

a,~,:=}/l—r;Vl-i—:t,—-}/l-f—r;}/l—z,

abereinstimmt. Wegen z; — z; > a; — &y ist (1 — 2;) (1 + 23) > (1 + 2;) (1 — ), also auch
a;; > 0. Andererseits ist

=) ) b (L) —x) 2V — VT —2p
=201 — 7j — yiy;) = d(x;, 2))%

und folglich ist

dpa) = ay = V1 + 2, V15 3 (V Zi _ l/l;'l

14+ 7 l+:t,

<2(l/ﬁ— —!) <.
14+ 7 1+ z

In (6) eingesetzt, erhalten wir

1— g 1-= 1=z _ 1-=
3(7)<2):( T l/l+r) (l/l¢z:—l/1+z.) 2l/1+,,.

Da Z beliebig gewihlt war, gilt auch die zweite Ungleichung (7). SchlieBlich ist

2V1—z=2 (l—z)(l+z)=2}’1—z*<}/1—z’,
142 1+x(1+2) 1+2z x

denn es ist 2r < 1 + 2.
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Die Aussage des nachfolgenden Satzes hen wir an Hand von Abb. 1.39 plausibel. Es sei
—1 =<2’ < 1 und z ein Punkt des Intervalls [z, 1]. Wir spiegeln den zu z gehérenden Kreis-

punkt r = (z. V1 — z’) = (z, y) an der Mittelsenkrechten der Verbindungsstrecke der Kreis-
punkte e = (1,0) und = (z', Vi — z") = (2',y’). Der Bildpunkt r* = (z‘, V1 — z“)
= (z*, y*) muB dann der Bedingung

d&, z) = v — 7| = |le — ¥ = d(1, z*)
geniigen. Nach (5) ist
2(1 — a2’ — yy') = d(z', z)* = d(1, 2%) = 2(1 — %),
d. h., es ist z* = 22’ 1+ yy’. Da sich der Bogen von e nach 7’ aus den Bigen von € nach 7 und

von 7 nach 7’ zusammensetzt und der letztere zum Bogen von e nach r*kongruent ist, ver-
muten wir, daB stets o(z’) = o(x) + o(z*) ist. Dies ist die wesentliche Aussage von

Satz 2. Firalle x, ' mit —1 <z’ g z<1ist

o(z’) — o(x) = a(u:' + V1 -z yi— a:"), (8)

a(l/l—%’ = % ofz). (9)

Beweis. Wir definieren auf dem Intervall [2’, 1] zwei Funktionen f, g durch

f(x) := zz’ + yy', } @sz<1),
9(z) := 2y’ — Y&
wobei wie iiblich y’ := Y1 — 2%, y := V1 — z? zu setzen ist. Offensichtlich ist

fzy=1, f1)=2". (10)
Wir zeigen, daB g(z) = Oist. Im Fall0 < 2’ < z < listy < y'alsoyz’ < 2y’ Firz’ <0<z
ist dies offensichtlich. Ist schlieBlich ' <z < 0, s0 ist 0 < y < y’ und wiederum yz’ < zy'.
In allen Fiillen ist also g(z) = 0. Ist z,, z; € [’, 1] 80 haben wir

f(21) (z2) + 9(z) 9(22) = (12" + 919) (22" + 9:¥) + (@ — 9:7) (7Y — ¥:2)
= 5,2,2" + y,95y"" + TxY? + Ny,

denn die restlichen Glieder heben sich heraus. Es folgt

fz) f(zy) + g(=) glxy) = 212, + 1925 (11)
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und speziell ist f(z)* + g(z)* =1 fir alle z € [z, 1]. Setzen wir also z*:= f(z), so ist
y* := Y1 — 2*2 = g(z). Aus (11) und (5) folgt nun

d(z), 7y) = d(z,* 7y*)  (z, 7, € [, 1]). (12)
Als niichstes zeigen wir, daB stets

n*>z* fir 27 S2, <z, <1 (13)
ist. Dies it richtig, wenn y, = y, = 0 ist, denn dann ist 2’ =z, = —1, z, =l und z,* =1,
z,* = —1. Andernfalls ist y, + y, > 0, und wegen y,* — y,* = z,* — z,? ist

(@3* —2") ( +y) = (@ —2) 2 + (5 — ) ¥) (5 + %)
=@ =)+ + 0 -y
=@ =) +y)r + (@ — )y
=@ —z) (@ +2)Y — (% +¥) 2)
= (zy — ) (n* + n*) (14)
woraus z,* — z,* = 0 folgt. Nun ist aber d(z,*, 2,*) = d(z,, 2,) > 0, und folglich gilt z,* > z,*.
Damit ist (13) bewiesen.
Esseinun —1 <z’ < z < 1. Fiir 2’ = z oder z = 1 ist die Behauptung (8) trivial. Im Fall
—1 £ 2’ < z < 1 withlen wir eine beliebige Zerlegung Z’ des Intervalls [z’, 1]. Durch Hinzu-
fiigen des Teilpunktes x entstehe die Zerlegung
Zy: T =2y <5 < < Ty =T < Ty <+ < Ty = 1.

Dann ist
2:2 =2y < Ty < < Ty =1

eine Zerlegung von [z, 1. Nach (13) ist z;* < z,, und wegen z,* = f(z') = 1 ist
Z%: 2 =zt < <P <zt =11

eine Zerlegung von [z*, 1]. Aus (12) folgt
bl L
8(z') = 8(2y) = 'Eld(zi.r zty) + _Eld(zuwi-v Zmsi)
= i=
= 8(2*) + 8(2) = o(z*) + o(x).

h liebi

Da Z’ beliebig gewihlt war, ist o(2') < o(x*) + o(z).
Sind umgekehrt zwei b Zerleg

Z:z=2,< % < < Zp=1,

Z%:z* =%, <EF < - <Fy,=1
von [z, 1] bzw. [z*, 1] vorgegeben, so ist f(Z,) = (1) = 2’,

[(Z) = H(z*) = 2%2" + y*y = (22’ + yy') 2" + (ay’ —yz')y =22 + 7Yy* =z,
und

Z:2 =fF) < - <[fE)=Tp< 2 << zpy=1

ist eine Zerlegung aus §(z’). Ferner ist

8(2% + 8(2) = ﬁld(/w.», (&) +k)."*: Uzrr 2) = 8(2) < olz).

Dies ist nur méglich, wenn auch o(z*) + o(z) < o(z’) ist. Damit ist (8) bewiesen.
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Im Spezialfall z := I/l—;—z isty=Vy1—2t =

z‘=‘/-l—_;—z'z'+l/l _2" (1 —z")=‘/!+2—z’z'+(l — ') /HTz=L %=:.

d. b, es ist o(z’) = o(z) + o(z*) = 20(z). Mit z statt =’ erhalten wir (9), und Satz 2 ist be-
‘wiesen.

Satz 3. Die Funktion o besitzt eine auf dem Intervall [0, n} definierte Umkehrfunktion C.

Beweis. Aus —1 <2’ <z <1 und 2*:= 2z’ + yy’ folgt a(z’) — o(z) = o(z*) = 0. Wir
zeigen, dufB aus o(x') = o(x) stets ' = z folgt. Es ist dann nimlich o(z*) = 0, z* = 1, also
' +yy =1,
2y —yx' =0.
Multiplizieren wir mit z’ bzw. y’ und addieren, so erhalten wir z = 2’. Die Funktion o ist
daher streng monoton fallend und besitzt eine Umkehrfunktion C mit C(0) = 1, C(n) = —1.

Zum Beweis unseres Satzes brauchen wir nur noch zu zeigen, daB D(C) = W(o) dicht in
[0, n] liegt. Hierzu wiederum geniigt der Nachweis, daB fiir «, p € D(C) und « < f stets

%, B — a € D(C) ist. Durch Induktion ergibt sich némlich leicht, daB alle Zahlen der Form

n — —::n (k =0, ..., 2% in D(C) liegen, woraus unsere Behauptung folgt.

Es sei 2 =C(x), 22 =C(f). Dann ist —1 <z’ <z=<1 und f — « =o(z’) — o(z)
= o(zx’ + yy’) € W(o) = D{C). Nach (9) ist schlieBlich

oz) =0 (I/'%" € W(o) = D(C),

und Satz 3 ist bewiesen.

(S F
o=

—1, z = C(x) geht (8) in # — & = a(—1) — o(z) = o(—=z) iber, d. h., es ist

Mit 2" =
C(n — a) = —az,als0
C(n — &) = —C(a). (15)

Mita := % folgt hieraus

n
c (3) —o. (10)
Fiir die Funktion S(a) := ¥1 — C*a) (0 < & < x) gilt dann
S(r — &) = S(x), ()]
n
8 (-2—) =1. (18)

Jede reelle Zahl & kann auf genau eine Weise in der Form

& =ay + kn O=Sa<mkeZ) (19)
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dargestellt werden. Wir definieren nun die trigonometrischen Funktionen durch periodische
For g der Funkti C, 8. Ist « in der Form (19) dargestellt, so setzen wir

cos & := (—1)¥ C(ax,), (20)
sina 1= (—1)¥ S(a,).
Fiir zwei reelle Zahlen «, § seien & = ay + kn, f = B, + mn die Darstellungen gemiB (19),
Wir unterscheiden die Fille f, < ag und &, < f,. Im ersten Fall setzen wir z’:= C(a,).
z := C(B,). Dann ist

0y — fo = o(z) — o(z) = o(z2” + yy'),
also
Clao — flo) = 22’ + yy' = Claxo) C(Bo) + S(ao) S(Bo)-
Wegen (—1)k-m = (—1)km folgt
o8 (o — B) = cos (g — fo) + (k — m) z) = (—1)¥~™ C(og — Bo)
= (=1)¥*™ (C(ae) C(Bo) + Slexo) S(Bo))
= cos & co8 f + sin & 8in . (22)

Im zweiten Fall ist 0 < n — (8, — &) < 7, und aus (15) folgt

cos (& — f) = cos (( — (@ — fo)) + (k —m — 1) =)
= (—1),"1C(n — (xg — fo)) = (—1)*™ C(By — &),

d. h,, es gilt wiederum (22). Speziell ist

cos at—1 —cosacos£+sinaain-£—ainu
2] 2 2 ’

. n . .
sm(u— ?)=cos(a—n)=cosacosn+olnaumn= —cos &.

Es folgt
sin(a—ﬂ)=cos(a—ﬂ —-%)= cos(a—%)cosﬂ+sin(a—-%)sinﬁ
=sin & cos f — cos & sin .

Damit sind die Subtraktionstheoreme bewiesen. x
Es sei schlieBlich 0 < « < 1, z:= cos . Wegen 5= 0(0) > d(1,0) = ﬁ > 1istdann

0<a< %, und aus (7) folgt

V1 —2* sina

sina =8(a) =Vl —2? < o(z) = 0 < ——
x co8 x

Damit gilt auch 1.6.1.(5), und de'r Existenzbeweis fiir die trigonometrischen Funktionen ist
gefiihrt.



2. Der Grenzwertbegriff

21.  Zahlenfolgen
21.1. Spezielle Eigenschaften von Zahlenfolgen

In 1.3.1. haben wir den allgemeinen Begriff der Folge eingefiihrt. Wir betrachten
einige spezielle Zahlenfolgen (a,),.n. Es sei

a,:=2(—1)"n, (1)
0 fiir gerade n,
a, := (2)

n fir ungerade n,

@, e — @)
e F1 s .
a, =21, (4)
a,,;—_-n+ N + ni. (3)

Durch (1) bis (3) sind reelle, durch (4), (5) komplexe Zahlenfolgen definiert. In
anderer Schreibweise gibt man z. B. die Folgen (2) bzw. (4) durch (0, 1,0, 3,0, 5, ...)
bzw. (24, 2, 2, ...) an. Fiir die Veranschaulichung von reellen Zahlenfolgen gibt es
zwei Moglichkeiten. Wir kénnen sie durch ihre Graphen veranschaulichen. Der Graph
einer Zahlenfolge besteht aus allen Punkten (n, a,) mit » ¢ N. Auf jeder Parallelen
zur y-Achse durch einen Punkt (n, 0) mit 2 € N liegt genau ein Punkt des Graphen
(Abb. 2.1).

n n
. a,=(-1) e
L]
L]
(20a,) (400
- , A : s Abb.2.1
0
ol (36
(1,0,) °

Eine zweite Méglichkeit der Veranschaulichung von reellen Zahlenfolgen hesteht
darin, daB man den zu n gehdrigen Funktionswert a, der Zahlenfolge auf der Zahlen-
geraden markiert und durch das Symbol a, kennzeichnet.

Diese zweite Moglichkeit der Veranschaulichung besteht auch fiir komplexe
Zahlenfolgen, wenn man von der Zahlengeraden zur GaufBischen Zahlenebene iiber-
geht. In Abb. 2.2 ist die Folge (5) veranschaulicht.



90 2. Der Grenzwertbegriff

Die Begriffe ,,nach oben‘‘ bzw. ,,nach unten beschrinkt* fiir reelle Zahlenfolgen
sowie ,,beschrinkt‘ fiir alle Zahlenfolgen werden ebenso wie fiir Funktionen defi-
niert, denn Zahlenfolgen sind ja spezielle Funktionen. Die Folgen (1), (5) sind z. B.
nicht beschriinkt, die Folge (2) ist nach unten, aber nicht nach oben beschrinkt,
und die Folgen (3), (4) sind beschrinkt.

Eine konstante Folge wird auch stationdir genannt. So ist z. B. die Folge (4) statio-

Abb. 2.2

Wir haben bisher stets vorausgesetzt, daB Folgen die Menge aller natiirlichen
Zahlen als Definitionsbereich besitzen. In vielen Fillen ist es zur Vereinfachung der
Schreibweise zweckmiB8ig, auch solche Funktionen als Folgen zu bezeichnen, deren
Definitionsbereich die Menge aller natiirlichen (oder auch ganzen) Zahlen n mit
n = n, ist, wobei der Anfangsindex n, eine beliebige natiirliche (bzw. ganze) Zahl ist.
Wenn MiBverstindnisse zu befiirchten sind, bezeichnen wir solche Folgen aus-
fiihrlicher mit (a,),,,-

Der Begriff der Monotonie kann ebenso wie fiir Funktionen definiert werden. Da
der Definitionsbereich von Folgen ,,diskret* ist, kann die Monotonie auch wie folgt
definiert werden.

Definition 1. Eine reelle Zahlenfolge (a,) heiit

monolon wachsend, wenn a, < a,,,,
monolon fallend, wenn a, = a,,,,

streng monoton wachsend, wenn a, < a,,,,
streng monolon fallend, wenn a, > a,.,

fiir alle natiirlichen Zahlen = ist.

Durch vollstindige Induktion zeigt man, daB aus a, < a,,, fiir alle natiirlichen
Zahlen n stets a, < a,,, fiir alle natiirlichen Zahlen » und & folgt. Analoge Aussagen
gelten in den anderen Fillen. Die Definitionen sind daher mit der friiher gegebenen
Definition dquivalent. '

Beispiel 1. Fiir eine beliebige positive reelle Zahl 2 mit z # 1 betrachten wir die
Zahlenfolge mit den Gliedern

a:=njz—1 @z1.
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) -
Ersetzen wir , y, m, n in 1.1.2.(26) der Reihe nach durch w_lyx, 1, n, 1, so erhalten
wir

m+ 1)z <n¥z+1.
Wir subtrahieren auf beiden Seiten » + 1. Es folgt
=+ 1) (z—1) <n(fz — 1) = au; ®)

die Folge ist streng monoton fallend.

Beispiel 2. Fiir eine beliebige von 0 verschiedene reelle Zahl z betrachten wir die
Zahlenfolge mit den Gliedern
"
a,.:=(l+i) (n > —zx).
n

‘Wir nehmen an, fiir n > —z wiire

a'___(n+z)" g(n+l+a:)"+' —ap,.
n n4+1

n+l
Multiplikation mit (L) und Anwendung der Bernoullischen Ungleichung er-

gibt n+2
LN L R <O b PRI SN
n4xr n+1 n+ zx N mn+1)(n+ 2)
>1—(n+1) - ’ e

mFDmAn | atz ate
was ein Widerspruch ist. Fiir n > —z gilt somit
0<a,= (1 + —nz—)' < (1 + #)m =y (7
die Folge ist streng monoton wachsend.
Die beiden folgenden Definitionen sind naheliegend.

Definition 2. Sind (a,) und (b,) Zahlenfolgen, so heiBen die Zahlenfolgen
(ay + b,), (@, — b,), (asd,) die Summe, die Differenz bzw. das Produkt der beiden

Zahlenfolgen. Ist b, 3= 0 fiir alle » mit n € N, so heiBt die Zahlenfolge (&) der
Quotient der beiden Zahlenfolgen. b

Definition 3. Ist (n),n €ine streng monoton wachsende Zahlenfolge mit 7, € N
fiir alle £ € N, 80 heiBt die Zahlenfolge (a,,)ien €ine Teilfolge der Zahlenfolge (a,).

So ist z. B. (1, 3,5, ..., 2n + 1, ...) eine Teilfolge der Folge (0, 1,2, ..., %, ...).
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21.2.  Nullfolgen

Wir betrachten in diesem Abschnitt eine spezielle Klasse von reellen Zahlenfolgen,
die fiir den weiteren Aufbau der Analysis von besonderer Bedeutung ist, und zwar
wollen wir den Begriff der Nullfolge einfiihren. Eine wesentliche Eigenschaft einer
Nullfolge besteht darin, daB ihre Glieder a, mit wachsendem n der Zahl 0 ,,beliebig*
nahekommen. Um diesen Sachverhalt zu prizisieren, ordnen wir fiir eine vorgegebene
Folge (a,) jeder positiven reellen Zahl ¢ eine Teilmenge M (¢) der Menge der natiir-
lichen Zahlen zu. Wir setzen

M(e) = (n: |ay] Z ¢}. (1)
Ist n € M(e), d. h., ist |a,| = ¢, so liegt der Punkt (n, a,) in dem in Abb. 2.3 schraf-
fierten Bereich. Fiir unsere weiteren Betrachtungen ist es wichtig zu entscheiden,
ob M(¢) eine endliche oder eine unendliche Menge ist, d. h., ob in dem in Abb. 2.3

schraffierten Bereich endlich oder unendlich viele Punkte des Graphen der Folge
liegen.

//,, Abb. 2.3

(=1 +n

Beispiel 1. b i die Fol,
eispiel 1. Gegeben sei die oge( Ton 1

). GemiB (1) setzen wir

M(c):{n: %{f ge}=[n:(—1)-+nge(10n+1);.
Es ist
ME) =8, M) =0}, M(—;)=(O,2}, M(%)=|0,2,4,6,8}.

Diese Mengen sind endlich. Dagegen ist M % die Menge aller gera.dén natiir-

lichen Zahlen, also nicht endlich. Dies bedeutet, daB die Glieder a, der Folge mit wach-
sendem n der Zahl 0 nicht ,,beliebig‘‘ nahekommen, denn es gibt ,,beliebig grofe*

1
natiirliche Zahlen » mit |a,| = o

Beispiel 2. Gegeben sei die Folge (%ﬁ) Dann ist
n

5 g:}:{n:ngi—l}.
1 €

M(e) = {n:
n
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Fiir jede positive reelle Zahl ¢ ist die Menge M (¢) endlich. Mit Ausnahme von héchstens
endlich vielen Punkten liegen die Punkte (n,a,) innerhalb des sogenannten -
Streifens in Abb. 2.4. Da M(e) stets eine endliche Menge natiirlicher Zahlen ist,
besitzt jede dieser Mengen eine obere Schranke. Wenn » gréBer als diese obere
Schranke ist, gilt |a,| < ¢. Da die positive Zahl ¢ beliebig klein gewihlt werden kann,
kommen die Glieder a, der Folge mit wachsendem n der Zahl 0 beliebig nahe.

Wir konnen nun den Begriff der Nullfolge wie folgt prizisieren.

0
—e Abb. 2.4

Definition 1. Die reelle Zahlenfolge (a,) heilt eine Nullfolge, wenn fiir jede
positive reelle Zahl ¢ die Menge aller natiirlichen Zahlen n mit |a,| = ¢ endlich ist.

Die Folge in Beispiel 2 ist eine Nullfolge, die Folge in Beispiel 1 dagegen nicht.

Als unmittelbare Folgerung aus Definition 1 ergibt sich, daB jede Teilfolge einer
Nullfolge wieder eine Nullfolge ist. Aus der Definition ersehen wir ferner sofort,
daB die Eigenschaft einer Folge (a,), Nullfolge zu sein, erhalten bleibt, wenn man
endlich viele Folgenglieder durch beliebige andere reelle Zahlen ersetzt. Bei der
Untersuchung einer gegebenen Folge auf die Nullfolgeneigenschaft konnen wir also
stets endlich viele Folgenglieder unbeachtet lassen.

In der Mathematik sagt man, , fiir fast alle n gilt die Aussage H(n)*, wenn die
Menge der natiirlichen Zahlen, fiir die H(n) nicht erfiillt ist, endlich ist. Wir kénnen
damit den Begriff der Nullfolge auch wie folgt definieren.

Definition 1. Die reelle Zahlenfolge (a,) heifit eine Nullfolge, wenn fiir jede
positive Zahl ¢ gilt: Fiir fast alle n ist |a,| < &.

In Definition 1 konnen wir das Wort ,.endlich* auch durch ,,beschrinkt* er-
setzen, denn eine Menge natiirlicher Zahlen ist endlich genau dann, wenn sie in N
beschrinkt ist. Sie ist aber auch endlich genau dann, wenn sie in R beschrinkt ist.
Dies ist eine einfache Folgerung aus dem archimedischen Axiom. Ist nidmlich eine
reelle Zahl a eine Schranke einer Teilmenge M der natiirlichen Zahlen, so ist auch die
natiirliche Zahl [a + 1] eine Schranke von M, und folglich ist M in dem (endlichen)
Abschnitt der natiirlichen Zahlen von O bis [a + 1] enthalten. Umgekehrt besitzt
jede endliche Menge natiirlicher Zahlen ein Maximum und damit eine Schranke in
N, also auch in R. Ist die Menge (n: |a,| = ¢} endlich, so bezeich wir eine beliebig
Schranke dieser Menge mit n4(e) bzw. N(e), je nachdem, ob sie eine natiirliche oder
eine reelle Zahl ist. Man deutet hiermit an, daB diese Schranken von der Wahl der
positiven Zahl ¢ abhingen. Dies bedeutet allerdings nicht, da8 es sich um ein Funk-
tionssymbol handglt, denn mit jeder Zahl n, bzw. N ist auch jede groBere Zahl eine
Schranke.
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Die Ermittlung einer Schranke n, aus N hat den Vorzug, daB die hiufig ver-
wendete Sprechweise ,,von der Stelle 7, an gilt ¢, < & moglich wird. Andererseits
st6Bt man bei Beispielen und Anwendungen gewéhnlich auf reelle Schranken, und es

ist iiberfliissig, noch eine groBere natiirliche Zahl als Schranke zu fixieren.

Wir werden im folgenden alle Definitionen und Sitze mit reellen Schranken
formulieren, weisen aber darauf hin, daB iiberall ,,reelle Zahl N(¢)‘ bzw. ,,N € R*
durch ,,natiirliche Zahl ny(e)‘‘ bzw. ,,n, € N ersetzt werden darf.

Satz 1. Die reelle Zahlenfolge (a,) vst eine Nullfolge genau dann, wenn es fiir jede
positive reelle Zahl ¢ eine reelle Zahl N(¢) gibt derart, daf aus n = N(c) stets |a,| < ¢
folgt.

In der Tat existiert eine solche Zahl N(e) genau dann, wenn |a,| < ¢ fiir fast alle
ne N ist.

Die in Satz 1 angegebene charakteristische Eigenschaft von Nullfolgen dient
hiufig zur Definition dieses Begriffs. Dieses Kriterium fiir die Nullfolgeneigenschaft
kann in Zeichen wie folgt formuliert werden:

(a,) Nullfolges A V A (n = N=> [a,] <¢). (2)
¢>0 NeR neN

DaB N von ¢ abhiingig ist, kommt hierbei durch die Reihenfolge der Quantifikatoren
zum Ausdruck. Eine weitere Charakterisierung einer Nullfolge ergibt sich, wenn wir
die Implikation ,,aus n = N(e) folgt |a,| < &' durch ihre Kontraposition ersetzen.

Satz 2. Die reelle Zahlenfolge (a,) ist eine Nullfolge genau dann, wenn es fiir jede
positive reelle Zahl ¢ eine reelle Zahl N(e) gibt derart, daf aus |a,| = ¢ stets n < N(e)

Jfolgt.
In formalisierter Schreibweise besagt dies:

(ay) Nullfolge & A V A (la, = e=>n < N). (3)
¢>0 NéR neN
Da es hierbei, wie oben bemerkt, auf endlich viele Folgenglieder nicht ankommt,
geniigt es, die Implikation ,,aus |a,| = ¢ folgt n < N(e)** nur fiir alle natiirlichen
Zahlen n mit » = ny zu beweisen. Ferner kann n < N(e) durch n < N(e) ersetzt
werden.

Zur Untersuchung der Frage, ob eine Folge (a,) eine Nullfolge ist, versucht man
also aus der Ungleichung |a,| = ¢ eine Ungleichung der Form n < N(e) herzuleiten.
Wenn dies gelingt, bedeutet dies, daB die Menge {n: |a,| = ¢} beschrinkt ist.
n+5

Beispiel 3. Gegeben sei die Folge( 3 ik o ) = ¢ und
n + Bn 6 6n+n-f-l nt4+n 4+ 1
n = 1folgt e < — = < —. Fiir jedes ¢ mit & > 0 besitzt also die reelle
n n &
Zahl N(e): — 2 die Eigenschatt, daB aus ,"_” >cund n = 1stets n
& n4+n+1

= N(e) folgt. Die gegebene Folge ist nach Satz 2 eine Nullfolge.
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Beispiel 4. Gegeben sei die Folge (a*) mit a € R. Wir unterscheiden drei Fille.
Fall 1. Es ist a = 0. Dann ist (a*) eine Nullfolge.

Fall 2. Esist 0 < |a| < 1. Dann gibt es eine positive reelle Zahl z mit |a| = ! ,
und fiir # = 1 folgt aus der Bernoullischen Ungleichung Itz
N SR S |
T (4o T 14nz  nz’
Aus ¢ < ja*| und n = 1 folgt somit ¢ < —l- n < — = N(e), die Folge ist eine
nz’

Nullfolge.
Fall 3. Es ist || = 1. Dann ist |a® = 1 fiir alle natiirlichen Zahlen =, d. h., die
Menge M(1) ist unendlich, die Folge ist keine Nullfolge.

Es gilt somit der

Satz 3. Die reelle Zahlenfolge (a®) ist genau dann eine Nullfolge, wenn |a| < 1 st.

Beispiel 5. Gegeben sei die Folge (ra®) mit 0 < |a| < 1. Mit |a|] = folgt
(fiir n = 2) z
fatl = (1:::)- = ; <= 21 g

R E

Aus ¢ < na” und n = 2 folgt somit n — 1 < i, s — + 1, die Folge ist eine
Nullfolge.
In den obigen Beispielen ist es uns gelungen, fiir die Folgengheder a, eine Ab-

schitzung |a,| gf- (im letzten Beispiel |a,| < ¢ 1) herzuleiten. Ause < |a,| folgte
n n—

dann stets n < £ (bzw. n < L + 1). Abgesehen von dem konstanten Faktor ¢
L3 &

haben wir damit die Nullfolgeneigenschaft der gegebenen Folge auf die Nullfolgen-

eigenschaft der Folge i l) zuriickgefiihrt. Wir werden dieses Prinzip der Unter-
n

suchung von Folgen auf die Nullfolgeneigenschaft in einem der folgenden Siitze
verallgemeinern.

Satz 4. Die reelle Zahlenfolge (a,) st genau dann eine Nullfolge, wenn die Folge
(la,]) eine Nullfolge ist.

Der Beweis folgt unmittelbar aus der Definition der Nullfolge.

Satz 5. Jede Nullfolge st beschrinkt.
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Beweis. Die Menge aller reellen Zahlen |a,| mit n € {m: |a,| = 1} ist fiir eine Null-
folge endlich und besitzt damit ein Maximum K. Die groBite der beiden Zahlen 1 und
K ist dann eine Schranke fiir alle Glicder der Folge.

Satz 6. Dic Summe, die Differenz und das Produkt zweier Nullfolgen sind wieder
Nullfolgen.
Beweis. Fiir jedes ¢ mit e > 0 sind die Mengen {n: |a,| = 2i und {n:|b,| g%

endlich und haben folglich eine gemeinsame (von e abhingige) Schranke N. Fiir alle
nmit n > N gilt somit

€
g £ by S jay] + byl <o + 5 =c.

Nach Satz 2 sind also (a, 4+ b,) Nullfolgen. DaB das Produkt zweier Nullfolgen
wieder eine Nullfolge ist, ergibt sich als Teilaussage von Satz 7. Wir betonen aber
ausdriicklich, dall der Quotient zweier Nullfolgen im allgemeinen nicht wieder eine

1 1
Nullfolge ist. Dies zeigt etwa das Beispiel der Folgen (—), (—2) mit dem Quotien-
tern (n). n »

Satz 7. Ist (a,) cine Nullfolge und (b,) etne beschriinkte Zahlenfolge, so ist thr Produkt
(«tybn) eine Nullfolge.

Beweis. Es sei K eine positive Schranke der Zahlenfolge (b,). Dann existiert zu

jedem & mit £ > 0 eine Schranke N der (endlichen) Menge {n: la,! = i} Fiiralle n
mit » > N folgt K

faabal = il - bs] S K la] < K- = =,

d. h,, (a,b,) ist eine Nullfolge. Insbesondere ist (ca,) fiir jede reelle Zahl ¢ eine Null-
folge, wenn dies fiir (a,) der Fall ist.

Fiir die Untersuchung von Zahlenfolgen auf die Nullfolgeneigenschaft ist das
folgende Vergleichskriterium niitzlich.

Satz 8. Ist die reelle Zahlenfolge (b,) eine Nullfolge und gibt es zur reellen Zahlen-
Jolye (a,) reelle Zahlen ng und K derart, daf

1@al = K [by] )

Jiir alle n.mit n = nq 18t so ist auch (a,) eine Nullfolge.
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Beweis. Fiir jedes ¢ mit ¢ > 0 besitzt die Menge {n: |b,| = e 1} eine obere

Schranke N, und fiir alle natiirlichen Zahlen » mit n > N, n = n, gilt

|a.|sKIb.|<KK‘—+l<e,

d. h., (a,) ist eine Nullfolge.

Satz 9. Die stationdire Zahlenfolge (a,) mit a, = c fiir alle n ist genau dann eine
Nullfolge, wenn ¢ = 0 1st.

Beweis. Ist ¢ = 0, so ist (2,) eine Nullfolge. Ist ¢ = 0, so ist die Menge {n: la,| = H}
unendlich, d. h., die Folge (a,) ist keine Nullfolge. 2

Satz 10. Fiir alle positiven reellen Zahlen r gilt: Die reelle Zahlenfolge (a,) vst genau
dann eine Nullfolge, wenn die Zahlenfolge (|a,|7) eine Nullfolge ist.

Beweis. Ist (a,) eine Nullfolge, so ist die Menge
(n: la,| Z e} = (n: la,l" 2 ¢}

fiir alle £ mit ¢ > 0 endlich, d. h., (Ja,|") ist eine Nullfolge. Ist umgekehrt (|a,|") eine
Nullfolge, so ist die Menge

(n:|a,|" = €7} = [n: |a,] = ¢}

fiir alle positiven ¢ endlich, d. h., (a,) ist eine Nullfolge.

Die Definitionen und Sitze dieses Abschnittes ko unverindert auf
Zahlenfolgen und mit Ausnahme von Satz 3 und Satz 10 sogar auf Folgen im eukli-
dischen Raum R? iibertragen werden, wobei nur |a,| durch |i@,|| zu crsetzen ist. Es
gilt dann

Satz 11. Eine Folge (@,) im euklidischen Ravm R? mit Gliedern @, = (xyp, --.» &pa)
ist eine Nullfolge genau dann, wenn die (reellen) Zahlenfolgen (xsa)pem (7 = 1. ..., D)
Nullfolgen sind.

Beweis. Nach 1.5.2., Satz 3, ist stets
|58l S l1@all < losal + <=+ + |opal Gj=1..,p. (5)

Ist die Folge (a,), nach Satz 4 also auch die Folge (||a,[)) eine Nullfolge, 8o sind nach
Satz 8 alle Folgen (jas|)oen und damit (aza)uen (7 = 1, ..., p) Nullfolgen. Umgekehrt
folgt aus Satz 6 und der zweiten Ungleichung (5), da8 mit (xja)een (7 = 1,..., D)
auch (||@,]]) und damit (a,) eine Nullfolge ist. Speziell gilt
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Satz 12. Eine komplexe Zahlenfolye (z,) tst etne Nullfolge genau dann, wenn die
Folgen (x,) und (y,) der Realteile x, und Imaginiirteile y, von z, Nullfolgen sind.

Beispiel 6. Die Folge mit den Gliedern

1\ T
Eni= (—27) +n+l

ist eine Nullfolge.

2.1.3. Konvergente Zahlenfolgen

In 2.1.2. haben wir den Begriff der Nullfolge eingefiihrt. Liegt eine Nullfolge vor, so
sagt man auch, die Folge ,,strebe gegen 0‘‘ oder , konvergiere gegen 0*“. Wir wollen
nun allgemeiner Folgen (a,) betrachten, die gegen eine beliebige reelle Zahl a ,,kon-
vergieren*. Wir fiihren den Begriff der Konvergenz auf den Begriff der Nullfolge
zuriick.

Definition 1. Eine reelle Zahlenfolge (a,) heiBt konvergent, wenn es eine reelle
Zahl a gibt derart, daB die Folge (a, — a)!) eine Nullfolge ist. Eine Zahlenfolge, die
nicht konvergent ist, heiBt divergent.

Nach 2.1.2.(2) ist (a,) genau dann konvergent, wenn

AV Ar=2N=la,—al <) (1
acR ¢>0 NeR neN

gilt. Wir zeigen, daB es zu jeder Zahlenfolge (a,) hochstens eine reelle Zahl a gibt
derart, daB (a, — a) eine Nullfolge ist. Sind némlich (e, — @) und (a, — a’) Null-
folgen, so ist auch ihre Differenz, d. h. die stationire Folge mit den Gliedern a’ — a,
eine Nullfolge. Nach 2.1.2., Satz 9, ist dies nur fiir a’ — a = 0, a’ = a méglich.

Zu jeder konvergenten Folge (a,) gibt es somit genau eine reelle Zahl a, fiir die
(a, — a) eine Nullfolge ist. Sie heiBt der Grenzwert oder Limes der konvergenten
Folge.

Definition 2. Die reelle Zahl a heiBt der Gre.zwert oder der Limes der reellen
Zahlenfolge (a,), in Zeichen

a =lima,,
n—roo

wenn (a, — a) eine Nullfolge ist.
Man sagt dann auch, ,die Zahlenfolge (a,) konvergiert gegen a*, und schreibt

a, >a fir n—>o0 (gelesen: a, gegen a fiir » gegen oco).

1) Wegen 2.1.2., Satz 4, konnen wir a, — a auch durch |a, — a| ersetzen.
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Mitunter wird die Konvergenz der Folge (a,) mit dem Grenzwert a auch kurz durch
die Sprechweise ,,a, strebt gegen a‘‘ gekennzeichnet.

Auf Grund der entsprechenden Eigenschaft fiir Nullfolgen ergibt sich aus Defi-
nition 2, daB jede Teilfolge einer konvergenten Folge wieder konvergent ist und den-
selben Grenzwert besitzt.

Beispiel 1. Gegeben sei die Zahlenfolge (
in der Form

-:_ ;) Schreiben wir das Folgenglied

(»>0)

und beachten, daB— und — Glleder von Nullfolgen sind, so gelangen wir zu der

Vermutung, daB dle Folge den Grenzwert — besxtzt In der Tat ist

n’-{-l_l_ 2(n? + 1) — (2n® + 3) | <L
s +3 2| 2(2n® + 3) | 22nr+3) nt’
und die Folge mit den rechts stehenden Gliedern ist eine Nullfolge. Somit gilt
nt 4 1 1

im ——=—,
a0 222 4+3 2
Beispiel 2. Gegeben sei die Zahlenfolge (Vn’ +6n+1— n) Es ist nicht ohne
weiteres zu erkennen, daB diese Zahlenfolge einen Grenzwert besitzt. Die Umfor-
mungen

e e —n) (W6 i + )
Ynt 4 6n 4+ 14n

6L
n34 6n 4+ 1 — n2 n

TYmirenritn 6 1
mAGtltn V1+;+F+l

(21

lassen vermuten, daB als Grenzwert nur = 3 in Frage kommt. Inder Tat ist

6
yi+1
VT egT—n—s| <o T L+ )Tt o1+ n+3)

Yr2+6n+1+n+3

_|nt+bn4+1— (2460 +9)
Vot +6n+1+4+n+3 n

(n21),
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und die rechte Seite strebt gegen 0 fiir n — co. Auf Grund von 2.1.2., Satz 8, ist
unsere Vermutung bestitigt.

Beispiel 3. Wir zeigen, daB

n
lim 5 gt= —— @
n—r00 k=0 1—g¢

fiir alle reellen (oder komplexen) Zahlen ¢ mit |g| < 1 gilt. Nach 1.1.1.(7) ist

nt1 "
I—gi=(1—gl¢t=(l—g ¢
=1 k=0
Es folgt

L] 1 l_qﬂ+l l Iqll?l
¢—— ||z et
lé; 1—¢ 1—¢ 1—gq| {—g’

und die rechte Seite strebt nach 2.1.2., Satz 3, fiir n — oo gegen 0.
Beispiel 4. Wir betrachten die Zahlenfolge (V;),al, wobei a eine positive reelle
Zsahl ist. Aus 1.4.1.(9) folgt mit Q = max {a, l}, R =1,daB
a

@it — 1] S @2 ja — 1)
n

ist. Die rechte Seite strebt gegen 0 fiir n — oo, und daher ist

limfa=1 (¢>0). ®3)
A=—>00
Beispiel 5. Wir zeigen, daB

lima =1 (4)
n—roo
ist. Hierzu setzen wir a, := W— 1 und zeigen, daB (a,) eine Nullfolge ist. Fiir
n = 2 folgt aus der binomischen Formel

n= (@, + 10> (’2') a2 = "‘”T""a.a

2
[aa]? = @, < 1
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Wegen 2.1.2., Satz 8 und Satz 10, folgt die Behauptung.

Einige der Sitze iiber Nullfolgen kénnen sinngemi8 auf konvergente Zahlenfolgen
iibertragen werden.

Satz 1. Jede konvergente reelle Zahlenfolge vst beschrinkt.

Beweis. Gilt a, —a fiir n —> oo, 80 ist die Menge der reellen Zahlen a, mit
n € (m: |a, — a| = 1} endlich und besitzt daher eine Schranke K. Fiir alle n mit
ng (m:|a, — a] = 1} gilt

|ea] < |2y — a| + la] < 1 + |a].
Das Maximum der beiden Zahlen K und [a| 4+ 1 ist daher eine Schranke fiir alle
Glieder der Folge.

Die offenbar divergente Folge (1, —1,1, —1, ..., (—1)%,...) ist beschrinkt. Dies
zeigt, daB die Umkehrung von Satz 1 nicht gilt.

Satz 2. Aus a, —> a und b, — b fiir n — oo folgt

a,+b,—~>a+b, (5)
ab, —ab, (6)
|@a] — |a| (7

fiir n — oo, Ist ferner b == 0, so gibt es eine natiirliche Zahl ny mit by = 0 fiir n = n,,
und es gilt

T mzn) ®)

ol

fiir n — oo,

Beweis. Die Folge ((a, + b.) — (@ + b)) = ((a, —a) + (b, — b)) ist als Summe
bzw. Differenz zweier Nullfolgen wieder eine Nullfolge, und damit ist (5) bewiesen.
Die Folgen (a.(b. — b)) und (b(a, — a)) sind nach 2.1.2., Satz 7, Nullfolgen, und
daher ist auch ihre Summe (a,b, — ab) eine Nullfolge, womit (6) bewiesen ist. Wegen
||u,.] — |a|| < |a, — a] ist (la,] — |a]) eine Nullfolge, und (7) ist bewiesen.

Ist b 0, so glbt es ein n, mit |b, — b| <ufurn2n., Dann ist |b] — |b,]
=< |ba —b]g ,|b,|>—>0furn2no Eafolgt

1 1 b—b,
—_———| = < bl-— (n=n,
b, bl | - |_| | (n = n)

und damit b_l — 71’- fiir - oo. Durch Anwendung von (8) erhalten wir hieraus (8).
n
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Sind die Folgen (a,) und (b,) konvergent, so gelten nach Satz 2 die folgenden
Grenzwertsiilze, wobei im letzten Fall noch vorausgesetzt werden muB, da8 (b,) keine
Nullfolge ist:

lim (2, + b,) = lim a, + lim b,,, (5%)
n—>00 A—>00 A—>00
lim (a,b,) = lim @, lim b,, (6")
n—00 A= A0
lim |a,| = |lim a,], (7)
R—>00 N—00

a lim o,
lim —n — a2 8"
5y limb, ®)

oo

Mit Hilfe dieser Grenzwertsiitze kann die Berechnung von Grenzwerten hiufig auf
bereits bekannte Grenzwerte zuriickgefiihrt werden.

Beispiel 6. Wir berech den Gr t der Zahlenfolgen (a,) mit
_ n*43 W

" S —2n + 5
Offenbar ist

n n?

Auf Grund der Grenzwertsitze erhalten wir, wenn wir (4) beachten, fiir die Ziihler-
folge den Grenzwert 1 und fiir die Nennerfolge den Grenzwert 3, d. h., es ist

2 Vnt
lim L +3}/n—

1
w3 —20+6 3°

Satz 3. Gilt fiir zwet reelle Zahlenfolgen a, — a und b, — b fiir n — oo und gibt es
eine natiirliche Zahl ny mit a, < b, fiir alle natiirlichen Zahlen n mit n = n,, 80 ist
asb

Beweis. Angenommen, es ist ¢ > b. Fiir alle » mit n = n, ist dann

a—bsa—b+(.—a)=(a—a)—(b—>b,) =la—a,+[b—b,l
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=8 und b — by < 2= ist.

Wir kénnen n so groB wihlen, daB e — a,| < 2
Dann folgt a — b <%b+a; b

gelangt sind. Somit ist @ < b.

=a — b, womit wir zu einem Widerspruch

Wir betonen ausdriicklich, daB aus der verschirften V¢ tzung a, < b, fir
alle » mit » = ny nur auf @ < b und nicht auf @ < b geschlossen werden darf, wie

das Beispiel a, := L : !

j_ 1 zeigt.
Satz 4. Qilt a, — a und b, — a fiir n —> oo und gibt es eine natiirliche Zahl n, mit
a, < ¢y < b, fiir n = ny, 80 gilt auch c, — a fiir n — oo.
Beweis. Fiir » = n, ist
lea — @l < len — @4 + |@y — a| < [by — a4| + |an — al,
und die Behauptung folgt aus dem Vergleichskriterium fiir Nullfolgen.

‘Satz 5. Ist (a,) etne reelle konvergente Zahlenfolge mit nichinegativen Gliedern, so
gilt fiir positive rationale Zahlen r stels

lim a, = (lim a,)’. (9)
R—>00 N—> 00

Insbesondere vst
llm .a ‘/hma, (m=1,2..). (10)

Beweis. Es sei a = lim a,. Fiir @ = 0 gilt die Behauptung nach 2.1.2., Satz 10.
n00
Ist a 3= 0, dann gibt es eine ns,tiirliche Zahl n, derart, daB fiir alle natiirlichen

Zahlen n mit n = n, stets-;— = — < 2 ist. Aus 1.4.1.(9) folgt, wenn wir Q@ = 2,

R = r setzen,
r
(ﬂ) - 1| < argrely
a

Da |a, — a| nach Voraussetzung das Glied einer Nullfolge ist, gilt dies auch fiir
|@y” — a|. Damit ist der Satz bewiesen.

|a,” — a'| = ar =2 1

=a'"12'*r |a, —a].

Definition 3. Eine reelle Zablenfolge (a,) heiBt bestimmt divergent mit dem un-
eigentlichen Grenzwert oo bzw. —oo, in Zeichen

lima, =00 bzw. lima, = —o0,
A=>00 >0
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wenn ¢s zu jeder positiven Zahl w!) eine reelle Zahl N(w) gibt derart, daB aus
n = N(w) stets a, > o bzw. a, < —w folgt.

Fiir eine Zahlenfolge mit positiven Gliedern gilt offensichtlich lim a, = oo
a—>00

genau dann, wenn (l) eine Nullfolge ist.
n

Beispiel 7. Wir zeigen, daB die Zahlenfolge (a + brn — n?) fiir alle reellen Zahlen
a, b bestimmt divergent mit dem uneigentlichen Grenzwert —oo ist. Ausa 4 bn — n?

_— b\? b b
= —wo folgt nimlich 2® — bn < w + a, n—; §w+-a+T,nS—-

T2
f 3
+ |/o+a+ ?4—, und durch Kontraposition ergibt sich die Behauptung mit N(w)
b b?
=5+ |/etet+ e

Die Definitionen 1 bzw. 2 fiir dic Konvergenz bzw. den Grenzwert kénnen unver-
éndert auf komplexe Folgen und Folgen im Raum RP iibertragen werden. Die Sitze
1, 2 bleiben dann weiterhin fiir komplexe Zahlenfolgen und mit Ausnahme von (6),
(8) auch fiir Folgen im Raum RP giiltig.

Satz 8. Die Folge (@,) mit @, = (x;p, &2n, - .-» &pa) € RP st konvergent genau dann,
wenn alle Koordinatenfolgen (x4,) (j = 1,2, ..., p) konvergent sind, und die Koord:i-
naten x; des Grenzuwertes der Folge (a,) sind die Grenzwerte der entsprechenden Koordi-

natenfolgen.

Beweis. Die Folge (a,) ist konvergent, und @ = («y, ..., &) ist ihr Grenzwert
genau dann, wenn die Folge (@, — @) mit den Gliedern @, — @ = (x;0 — &y, ..., &ps — &)
konvergent ist. Dies ist nach 2.1.2., Satz 11, genau dann der Fall, wenn alle Folgen
(&js — &j)gen Nullfolgen sind, d. h., wenn

a5 = lim &y, G=1,...4D)

N—>00
ist. Damit ist Satz 6 hewiesen.

Satz 7. Fiir konverg komplexe Zahlenfolgen (z,) mit z, = z, + tYn (Tny ¥x € R)

gile

lim z, = lim z, + ¢{lim y,, (11)
oo nreo "o

limz, =limz;. (12)
"—> 0O A—>00

1) Wir wiihlen hier die Bezeichnung w stett ¢, um anzudeuten, daB w beliebig groB gewihlt
werden kann. Bei der Betrachtung von Nullfolgen kam es dagegen darauf an, da8 fiir ¢ eine
beliebig kleine positive Zahl gewiihlt werden kann.



2.1. Zahlenfolgen 106

Beweis. Es existieren die Grenzwerte

z:=limz,, z:=lim z,, y:=limy,,
N—>00 A—>00 A—00

und aus Satz 2 und Satz 6 folgt

z = lim (2, + ty,) = lim z, + lim 7y, = lim 2, + ?limy, = = + 1y,
R—>00

n—>00 n—>c0 A—>c0 N—00

z =z — iy =lim (z, — iy,) =limZ,,
a0

A—>00
womit Satz 7 bewiesen ist.

Der Begriff der Konvergenz kann sogar in beliebigen metrischen Raumen X definiert
werden.

Definition 4. Eine Folge (a,) in einem metrischen Raum X heiBt konvergent, wenn es in
X ein Element a gibt derart, daB die Zahlenfolge (¢(a,, a)) eine Nullfolge ist.

Sind die Folgen (g(a,, a)) und (g(a,, b)) Nullfolgen, so ist auch die Folge (o(a,, a) + o(a,, b))
eine Nullfolge. Wegen
0 < o(a, b) < o(ay, a) + olay, b)

ist dann auch die stationiire Folge mit den Gliedern g(a, b) einc Nullfolge, d. h., es ist o(a, b) = 0
und damit @ = b. Es gibt somit hichstens ein a mit @ € X, das die in der Definition 1 gefor-
derte Eigenschaft besitzt. Dies rechtfertigt die

Definition 5. Das Element a heiBt der Grenziwert oder der Limes der Folge (a,), in Zeichen

lim a, = a, wenn (g(a,, a)) eine Nullfolge ist.
o0

Zum SchluB dieses Abschnitts soll noch ein niitzliches Kriterium fiir die Ermitt-
lung der kleinsten oberen bzw. groBten unteren Schranke einer reellen Zahlenmenge
angegeben werden.

Satz 8. Fiir eine nichtleere Menge M reeller Zahlen gilt
a=supM bzw. a=infM
genau dann, wenn folgende Bedingungen erfiillt sind:

a) a st etne obere bzw. untere Schranke von M.
b) Es gibt eine Folge von Elementen a, € M mit a, — a.

Beweis. Es geniigt, den erstgenannten Fall zu bewcisen. Die Bedingungen a), b)
seien erfiillt. Ist dann b eine beliebige obere Schranke von M, so gilt a, < b, also
auch

a=lima, £b.
S
Folglich ist a die kleinste obere Schranke von M.
Ist umgekehrt a = sup M, so unterscheiden wir zwei Fille.
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Fall 1. Es ist @ < oo, d. h., M ist nach oben beschrinkt. Fiir kein n € N* ist

dann ¢ — —l- eine obere Schranke von M, und folglich existieren Elemente a, ¢ M
n

mit @ — 1 < a, < a. Nach Satz 4 gilt dann a, — a.
n

Fall 2. Es ist @ = oo. Dann ist M nicht nach oben beschrinkt, und zu jedem
n € N gibt es ein Element a, ¢ M mit a, > n. Somit gilt ¢, >a = oo

Die Idee, daBB man beispielsweise zur Flichenberechnung des Kreises ein ,,Polygon‘ mit
,;unendlich vielen‘* Seiten ausnutzen kénnte, trat in der frithen griechischen Mathematik auf.
In diesem Sinne ist der Begnff der ,,Grenze geometrlschen Ursprungs Impllzlt tritt er m
vollig korrekter Weise in der griechi Math ik in der Exh
(das Wort stammt erst aus dem 17. Jahrhundert) auf. Diese Vorstellungen wurden im 16. Jahr-
hundert erneut im Zusammenhang mit praktischen Fragen der Flichen- und Volumen-
berechnung aufgegriffen.

Eine wissenschaftliche Darstellung fand diese Methode 1635 bei BONAVENTURA CAVALIERI
(1598 —1647). Im Jahre 1655 gab JouN WaLLIS (1616 —1703) dann eine arithmetische Fassung
des Begriffs der Grenze, indem cr die Grenze a einer Zahlenfolge (a,) als eine Zahl einfiihrte,
fir die @ — a, bei wachsendem n beliebig klein wird. Auch LEIBN1Z versuchte, aber durch
Stetigkeitsbotrachtungen, 1687 den Begriff des Grenzwertes zu erfassen, ohne vollig das
Problem meistern zu kénnen.

NEW‘IO‘I’ hatte in seinen Werken zur Inflnlmlmnlrcchnung den Begriff der Grenze auch nur

a proch Er ver dtc solche Begriffe wie ,,erstes und letztes Verhiltnis*
einer ,,Fluxlon .

Erst JEAN BAPTISTE LE ROND D’ALEMBERT (1717 —1783) ersetzte diese Begriffe in einigen
Artikeln der ,,Encyclopédie** durch die Idee des Grenzwert2s. Bei ihm ist eine GréBe der
Grenzwert einer Anderen, wenn sich dle zweite der ersten beliebig nihert.

Eine ebenfall i dfreie D: llung des Grenzwertbegrlffes gab 1786 SimMoxN

L'HUILIER (1750 — 1840) inseiner ,,Exposition élémentaire des principes des calculs supérieurs*.

D’ALEMBERTS und L'HUILIERS neue Begriindung der Infinitesimalrechnung fand jedoch
durchaus nicht den Beifall der Zeitgenossen. So lehnte LAGRAKGE die Theorie der Grenzwerte
ab und ersetzte sie durch eine neue Methode, die auf der (angenommenen) Existenz der
Taylorreihe fiir eine ,,beliebige** Funktion beruhte.

Der an sich unhaltbare Zustand, sich bei Grenzwertbetrachtungen auf die Anschauung zu
stiitzen, hielt weiter an. Erst mit AucusTiN-Louts CaucHys (1789—1857) ,,Résumé des
legons données & 1'école polytechnique sur le calcul infinitesimal* von 1823, in dem sich eine
einwandfreie Definition und ein Existenzbeweis fir das bestimmte Integral finden, sowie
durch die Arbeiten BERNARD BoLzaNos (1791 —1848), wurde dieser Zustand cndgiiltig be-
seitigt.

Cavcny erkannte die Notwendigkeit, die Existenz einer FlichenmaBzahl arithmetisch (d. h.
iber Zahlenfolgen) zu beweisen, und fithrte den Beweis in der Hauptsache auch einwandfrei
durch. Er stiitzt sich lich auf das ige grundl de ,,Konvergenzkriterium von
Cavcny* (vgl. 2.1.7.), von dem die ,,Notwendlgkelt“ semerzen auch leicht bewiesen wurde,
daB es ,,hinreichend** ist, aber erst nach der Schaffung einer strengen Theorie der Irrational-
zahlen.

2.1.4. Monotone Zahlenfolgen, Intervallschachtelungen

Die Untersuchung von reellen monotonen Zahlenfolgen auf Konvergenz gestaltet
sich sehr einfach, denn es gilt der

Satz 1. Eine monotone Zahlenfolge ist genau dann konvergent, wenn sie beschrinkt
st. I8t ste nicht beschriinkt, so ist sie bestimmt divergent.
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Beweis. Die Zahlenfolge (a,) sei etwa monoton wachsend. Dann ist das erste
Glied der Folge eine untere Schranke fiir den Wertebereich {a,:n € N} der Folge.
Wir unterscheiden zwei Fille.

Fall 1. Die Folge ist nach oben beschrankt. Mit a bezeich wir die kleinste obere
Schranke des Wertebereichs der Folge. Ist ¢ > 0, so ist @ — & keine obere Schranke
des Wertebereichs, d. h., es gibt ein #, mit n, € N und a,, > a — ¢. Fiir alle 2 mit
n 2 n, gilt dann

|a,,—a|=a—a,=a—a,.—(a,.—u,.)§a—a,_<s,
d. h., (a, — a) ist eine Nullfolge. Somit ist

lima, = sup (@,:n € N} (G = ay). )

R0

Fall 2. Die Folge ist nicht nach oben beschrinkt. Dann gibt es zu jeder positiven
reellen Zahl  eine natiirliche Zahl n, mit @, > o, und wegen der Monotonie gilt
dann auch @, > o fiir alle n mit = n,. Somit ist lim @, = o0, d. h., die Beziehung

n—>00
‘(1) ist auch fiir nicht beschrinkte monoton wachsende Zahlenfolgen erfiillt (vgl.
1.1.3).
Fiir monoton fallende Zahlenfolgen gilt analog

lim a, = inf {a,: 7 € N} (B < a,). (2)

%—o0

Wir bemerken, daB eine beschrinkte Zahlenfolge auch dann konvergent ist, wenn
sie, abgesehen von endlich vielen Gliedern, monoton ist.

Beispiel 1. Die Zahlenfolge mit den Gliederna, = n (W: - l) ist nach Beispiel 1
in 2.1.1. streng monoton fallend, und 0 ist fiir > 1 eine untere Schranke dieser
Folge. Daher existiert

lima, =limn(jz —1) @>1). @)

Fiir 0 < z < 1 folgt, wenn wir 2.1.3.(3) beachten,
N T e T L= T
lima(Jz — 1) = —lim Yz []/= — 1} = —lim Jzlima (]/= -1
n—>00 n—>00 z A0 R—00 z
n
—lim=» (l/I - l),
a0 z

und dieser Grenzwert existiert, weil z-1 > 1 ist. Fiir z = 1 ist die Zahlenfolge
stationdr, und ihr Grenzwert ist 0. Wir werden diese Folgen im nichsten Abschnitt
weiter untersuchen.

I
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Wenn auch die Existenz des Grenzwertes einer monotonen Zahlenfolge hiufig
sehr einfach bewiesen werden kann — niimlich durch Angabe einer Schranke fiir
ihre Glieder —, kann die Berechnung des Grenzwertes bzw. seine niherungsweise
Berechnung mit Angabe einer Fehlerschranke mit groBen Schwierigkeiten verbunden
sein. Das letztgenannte Problem ist wesentlich leichter zu l6sen, wenn eine sogenannte
Intervallschachtelung vorliegt.

Definition 1. Zwei reelle Zah]enfoigen (a,), (b,) bilden eine Intervallschachtelung,
wenn folgende Bedingungen erfiillt sind:

a) Die Folge (a,) ist monoton wachsend.

b) Die Folge (b,) ist monoton fallend.

¢) Fiir alle natiirlichen Zahlen » ist @, < b,.

d) Die Folge (b, — a,) ist eine Nullfolge.

Wir bezeichnen eine Intervallschachtelung auch mit (a, | b,).

Satz 2. Ist (a,|b,) eine Intervallschachtelung, so gibt es genaw eine reelle Zahl a

mita, < a < b, (n€ N), und zwar st
a=lima, =limb,. (4)
R—+00 A—00

Beweis. Fiir alle natiirlichen Zahlen =, k gilt a, < a,.; < byi < b,, und hieraus
folgt a, < b, fiir alle natiirlichen Zahlen m, n. Daher ist b, fiir alle » eine obere
Schranke der Folge (a,), und umgekehrt ist a, fiir alle n eine untere Schranke der
Folge (b,).

Nach Satz 1 sind beide Folgen konvergent. Ihre Grenzwerte seien a bzw. b. Wegen
a—b=(a—a,)+ (by — b) + (a, — b,) ist die stationiire Folge mit dem Glied
a — b als Summe dreier Nullfolgen eine Nullfolge und somit @ — b =0, d. h., (4}
ist erfiillt. Wegen 2.1.3., Satz 4, kann es keine von a verschiedene Zahl ¢ mit
a, < a < b, fiir alle n € N geben.

Beispiel 2. Wir zeigen, daB (a, | b,) mit

ay = (1 + %) b= (1 . %)H.

eine Intervallschachtelung ist.
Nach 2.1.1., Beispiel 2, sind die Folgen mit den Gliedern

R

streng monoton wachsend. Wegen

(-5
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i8t bycasy = 1. Die Folge mit den Gliedern b, ist somit als Folge der Kehrwerte einer
streng monoton wachsenden Folge mit positiven Gliedern streng monoton fallend.
Damit sind die Eigenschaften a), b) bewiesen. Es ist

1\* 1
b..—a.=(l+—) —>0, (6)
n n

und die Bedingung c) fiir eine Intervallschachtelung ist erfiillt. Aus a, < b, < b,
folgt, daB die Folge (a,) beschrinkt ist. Nach (5) ist b, — a, = a, - l, und wegen
2.1.2., Satz 7, ist (b — u,) eine Nullfolge. Damit sind alle Elgenschaften einer Inter-

vallschachtel

1esen.

Das Prinzip der Intervallschachtelung gehort 2u den friihen Methoden der Mathematik.
Bereits Mathematiker der Antike ver dere bei Quad wobei es hier

meist als heuristisches Verfahren ohne strenge Fauung auftritt. Volhg einwandfrei findet es
sich erst bei BoLzaNo und KARL WEIERSTRASS (1815—1897) als eine Grundméglichkeit fir
einen korrekten Aufbau der Lehre von den reellen Zahlen.

Der durch die Intervallschachtelung im Beispiel 2 bestimmte Gr t ist eine
fiir die Analysis auBerordenthch wichti ige reelle 7 ahl. Sie wird nach EULER mit dem
Buchstaben e bezeichnet. Es gilt also

l L] l 41
e:=lim (l + —) = lim (1 -+ —) .
00 n >0 n

Fiir die ersten Glieder der Intervallschachtelung erhalten wir

1\ 2
(I+T) =2 (l+ ) =4

1\ 9 1\* 27
14—} =—=225 14 =) =— =3,
(1+5) -1 (1+5) =5 =0

1\* 64 1\¢ 2
1 - =— =237 1 —) =—=3,16
( +3) 27 ( +3) 81

1\' 625 1\* 3125
14+ =) =—=2,4.. 14— =—— =3,
( +4) 266 ( +4) 024 06

Die Dezimalbruchentwicklung der Eulerschen Zahl e beginnt mit

e =2,71828 1828 4590 ...
Die Logarithmusfunktion zur Basis ¢ wird mit
Inx:=log, x

bezeichnet und heiBt aus einem noch zu erlduternden Grunde der natiirliche Log-
arithmus.
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Beispiel 3. Es sei —1 < z < 1. Wir betrachten die induktiv definierte Zahlen-
folge

1+ =z,

Lo =72, Tupy! = > (6)
Fii sz =<1 =< ! _; =< ! + < 1, und folglich ist die Definition
() sinnvoll. Ferner ist stets
1+ 2z,
= T =i, St =1 (7

Die Folge (x,) ist also konvergent, und die Folge (z,?) besitzt wegen (7) denselben
Grenzwert c. Somit ist ¢ = ¢2. Fiir » = 2 ist stets z, > 0, und folglich ist ¢ = ¢* > 0,
d. h., es ist

limz, = 1. ®)

A—>00
Wir zeigen, daB durch

a,:=2")1 —z,2, b,:= PO Ak S 9)

Zn Ta

eine Intervallschachtelung definiert wird. Damit der Nenner z, positiv wird, haben
wir im Fall 2 = —1 bzw. —1 <z <0 den Anfangsindex n =2 bzw. n =1 zu
wiihlen. Wegen

—e 1 — z
1—22,, =]/ —=
V Tut1 I[ 2
ey - Ty = 2041 V‘—T" ]/“fT‘ 2T —zd—a,.

Wegen 0 < ,,, ist also a, < a,,,.
Andererseits ist

ist

Ty

1+
—_ 2 —_
1Ty S Gpyy = Qpi1Zg ) = CpZnsy -

Fiir n = 2 ist also

byyy = = =
L1 Tn

Gt %
-
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Wegen b, — a, = b,(1 — z,) = 0 ist a, < b,. SchlieBlich ist
0 < by — ay = by(l — x,) < by(1 — ),

und wegen (8) ist (b, — a,) eine Nullfolge. Der Vergleich mit 1.6.2., Satz 1, zeigt, daB
der gemeinsame Grenzwert der Folgen (a,), (b,) der Arkuskosinus von z ist. Wir
haben also

— - 2
arccos z = lim 2% J1 — z,? = lim 2* %, (10)
"o nroo .

wobei die Folge (x,) durch (6) definiert ist. Man kann die Arkuskosinusfunktion auch
durch (8), (10) definieren und Satz 2 in 1.6.2. (mit o(z) = arccos z) mit Hilfe kon-
vergenter Zahlenfolgen beweisen. Dies ist eine weitere Moglichkeit, die trigono-
metrischen Funktionen mit elementaren Hilfsmitteln einzufiihren. Wir gehen hierauf
nicht niher ein.

2.1.5. Darstellung des natiirlichen Logarithmus und der speziellen
Exponentialfunktion durch monotone Zahlenfolgen

In 2.1.4., Beispiel 1, haben wir gezeigt, daB die Folge mit den Gliedern

ay =n({z — 1) 1)

fiir alle positiven reellen Zahlen z konvergent ist. Wir kénnen daher eine Funktion L
durch

L@ :=lima(jz —1) (>0 @
Lina ]
deﬁnieren.] Ersetzen wir in 1.4.1.(4) die Zahlen y, r durch 1, 1 (n = 2), so erhalten
. n
wir
. gm-1 ) ) —al 1 1—z
IR
n

n n \n

i/;z:l<n('i/;—l)<z— 1.

Der Grenziibergang n — oo ergibt, wenn wir 2.1.3., Satz 3, Satz 2, und 2.1.3.(3)
anwenden,

z— 1

=Lz sz—1 (z>0). 3)

Hieraus folgt

/}‘(z>l=>L(x)>0). (4)
zéel
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Satz 1. Die Funktion (2) geniigt der Funktionalgleichung der Logarithmusfunktionen
und 18t streng monoton wachsend.

Beweis. Unter Beachtung von 2.1.3.(5), (6), (3) gilt, wenn z, y positive reelle
Zahlen sind,

Lizy) — Liy) = lim a(fzy — 1)  lim a(fy — 1) = lim n({zy — )
= lim n(V; - l) i/g; = Iimn('i/; - l) -limw =L(z)-1,
d. h., es ist

Lz-y) = L)+ Lly) (x,y>0). (5)
Fiir 0 < z < y ist, wenn wir (4) beriicksichtigen,

L) =L (z- i) —L@+L (l) > L),
x z

und Satz 1 ist bewiesen.
Nach dem Satz in 1.4.3. ist L eine Logarithmusfunktion.
Batz 2. Fiir jede reelle Zahl x cxistiert der Grenzwert

E(z) := lim (1 + %)' ®)
und stels ist
E(z) B(—z) = 1. ™

Beweis. Fiir z = 0 ist die Behauptung trivial, und fiir jede reelle Zahl z mit
z 3 0 ist die Folge mit den Gliedern

a, = (1 +£)- (> —2)
n

h q

nach 2.1.1., Beispiel 2, streng t
Wir zeigen, daB die gegebene Folge fiir jede reelle Zahl = beschrinkt ist. Fiir

z<0|lndn>—ziat0<l+£§lundfolglich
n

(1+i)'§1.
n

Fir0 <z < 1list

(1+°:—).§(l+%)'<e.
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Fiir > 1 wihlen wir eine natiirliche Zahl k£ mit £ > z und setzen y := % Dann
ist y < 1, und nach dem zuvor Bewiesenen ist

N E
(o) s (s <[ 20T <
n nk n
Damit ist die Behauptung bewiesen, und die Folge ist fiir jede reelle Zahl = konver-
gent, so daB wir E durch (6) definieren kénnen. Es ist

- L] L]
E(z) - E(—2) = lim (1 + i) (1 - 5) =lim (1 - i) .
A0 n n o0 n?
Fiir n > |z| folgt aus der Bernoullischen Ungleichung

L]
12(1-2) 2122
n? n? n

und damit
n
lim (1 - i) =1,
n—00 n?
womit Satz 2 bewiesen ist,

Nun kénnen wir den Zusammenhang der Funktionen L, E mit der Eulerschen
Zahl e aufdecken.

Satz 3. Es st
z L]
ef =lim (l + ;) (x€ R), ®
Inz=limn(}z —1) (zeR,2>0). ©)-

Beweis. Wir ersetzen x in (3) fiir » > —z durch 1 % und erhalten

f _ <aL (1 + —:-) =1 ((1 + -})) < L{E@),
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L]
denn die Folge mit den Gliedern {1 + Z) und die Funktion L sind streng mono-
n
ton wachsend. Der Grenziibergang n — oo liefert
z < L(E(z) (z€R).

Hierin kénnen wir z auch durch —z ersetzen. Da L eine Logarithmusfunktion ist
und (7) gilt, folgt
1
—z < L(E(—z)) =1L (Wz)') = L(1) — L(E(z)) = —L(E(2)),

LE@))sz (zcR).

Somit ist L(E(x)) =z, E(x) = L™Y(z). Speziell ist L(e) = L(E(l)) =1,d.h, esist
L(z) =log,z =In z.
Da L die Umkehrfunktion von E ist, gilt E(x) == e*. Damit ist Satz 3 bewiesen.

n=]
y-n{%—l) n=2
n=3 n=3
n=2

y=(1+%)"
n=1

Abb. 2.5 Abb. 2.6
In Abb. 2.5 bzw. 2.6 wird deutlich gemacht, wie sich die Graphen der Funktionen

y=(1+i). m=12..)
n
bzw.

y=n('i/;_1) n=12,..)

den Graphen der Funktionen y = e? bzw. y = In x nihern. Da jede Teilfolge einer
konvergenten Folge wieder konvergent ist, konnen wir von (9) zu der Gleichung

lnz=lm2(Jz—1) (@ecRz>0)
A—>00

iibergehen. Sie hat den Vorteil, daB die Glieder dieser Folge neben den elementaren
Rechenoperationen allein durch wiederholtes Quadratwurzelziehen berechnet werden
konnen. Wegen der unvermeidlichen Rundungsfehler zeigt sich aber nach anfing-
lichem Anndhern an den Grenzwert In z immer stirker werdendes Divergieren von
diesem Grenzwert.
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In der Ungleichung (3) ersetzen wir z durch a* mit @ > 0 und erhalten die spiter
benétigte Ungleichung

T
ol @) sae—1,

1—a*<zlna<a*—1 (e, z€ R,a>0). (10)

Wir den die D: llung (8) der speziellen Ex tialfunktion mit der Basis e auf eine
technische Problemstellung an. Der Querschnitt einer eine Last L tragenden Siule soll so ge-
staltet werden, daB der Druck in allen Héh fen den } Wert ¢ besitzt. Der Quer-
schnitt muB dann offenbar nach unten zunehmen, da das Gewicht des dariiberliegenden

Siulenteils die Last vergroBert (Abb. 2.7).

X

/:Z‘ __—%l
abb.27 /) Abb. 2.8

2

\ L
Sind F(z) die Gesamtlast und g(z) der Querschnitt in der Hohe z, so muB also

F(x) F(O) L

az)  q0)  q0)

sein. Wie Abb. 2.8 zeigt, ist das Volumen des Siulenteils zwischen den Hohenstufen z, und z;
gleich g(£) (z, — z,), wobei & eine passend gewiihlte Zahl zwischen z, und z, ist. Ist ¢ das (kon-
stante) spezifische Gewicht des Siulenmaterials, so ist also

F(z,) — F(z)) = gq(£) (zz — 1),

c(g(z:) — 9(z))) = eq(é) (=3 — =,).

Mit @ = £ folgt
c

9(zy) — glzy) = aq(§) (2, — 7,) (T <§<a). (11)

Die Querschnittszunahme ist also proportional zur Hohendifferenz und zu einem ,,mittleren*
Querschnitt.

Um'’ Niherungslésungen fiir den gesuchten Q hnitt zu finden, teilen wir das Intervall
[0, 2] in n gleiche Teile und setzen

‘z
z,,=m7 (m=0,1,...,n).
1. Niherungslésung. Wir ersetzen z,, z,, ¢ in (11) durch z,,_,, Z,, Zjp—y, d. h., wir beriick-
sichtigen nur den in Abb. 2.9 schraffierten Teil des Siulenabschnitts. Es wird sich dann offen-
sichtlich ein zu kleiner Querschnitt g,(z) ergeben. Aus

In(Zm) — Gn(Tm-1) = agn(Zp-1) (Em — Tm-1)
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oder
0 (nZ) —an (m =0 %) = aau (i - Z) 2
n n n n

= (m i) —q ((m -1 i) (l + E) (m =1, ey m).
n n n
Ausfiihrlich geschrieben gilt

(%)= (1+ Z)

w22+ 3)

folgt

e =g (»Z) = o, (-0 %) 1+ 4‘”3)
Xm-1 Xm-1

Abb. 2.9 Abb. 2.10

Xm Xm
woraus durch M\iltiplikation und Kiirzen der Néherungswert

axr L]
@) =20 (1 + T) (12)

folgt. Durch Grenziibergang erhalten wir
lim g, (z) = ¢(0) e*%, (13
>0

und dieser Wert kann nicht groBer als der exakte Wert sein.

2. Naherungslésung. Wir ersetzen z,, z,, & in (11) durch z,_,, Z, Z5. Wie Abb.2.10
zeigt, ergibt sich ein zu groBer Querschnitt g,. Aus

In(Zm) — Oa(Tm-1) = 09a(Zm) (Tm — Tm-a)»

w(rd)efo03) =33

(e 2) e fen3)

Ahnlich wie im ersten Fall erhalten wir

folgt

a(2) (1 - i:-)' =g(0), gu®) = (lLO:z)-.'

n

tim gy(2) = L3 = g0y 2,

00
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also wiederum (13), und dieser Wert kann nicht kleiner als der exakte Wert sein. Wenn es also
iiberhaupt eine Funktion g gibt derart, da8 zu z,, z, mit z, < z, stets ein £ mit (11) existiert,
80 kann dies nur die Funktion

9(z) = q(0) 2%

sein. Mit dem Mittelwertsatz der Differentialrechnung werden wir zeigen, daB8 diese Funktion
tatsichlich die geforderte Bedmgung erfillt.

Ein dhnliches Verhalten vue bei der Querschnittsfunktion finden wir bei zahlreichen physi-
kalischen und biologischen P So ist z. B. die Temperatunbnuhmo eines erhitzten
Kérpers im Zeitraum von t, bis ¢, proportional zur Temperatur T'(r) in einem Zeitpunkt v
mit ¢, < v < t, und proportional zur Zeitdifferenz, d. h., es gilt

T(t) — T(t;) = aT(r) (¢, — ;) (< T <ty
Fiir den Zerfall.ciner (von der Zeit ¢ abhiingigen) Menge M(t) eines radioaktiven Stoffes gilt
M) — M) =aM@)(t,—t) (B<T<bh). (14)

In diesen beiden Beispielen ist a < 0. Die zur Zeit ¢ vorhandene Holzmenge M(t) eines Waldes
(oder die Bakterienmenge in einer Niihrlésung) geniigt ebenfalls der Bedingung (14) mit
a > 0. In allen diesen Beispielen gelangen wir wie oben zu der Funktion T'(t) = T(0) %
bzw. M(t) = M(0) e®. Wegen des zuletzt genannten Beispiels bezeichnet man das in dieser
Weise gefundene Resultat als das Gesetz des organischen Wachstums und die Loga.rlthmun-
funktion zur Basis « als den natiirlicken Logarithmus.

2.1.6. Hiufungswerte

Wir fiihren einen Begriff ein, der als eine Verallgemeinerung des Begriffs ,,Grenzwert
einer Zahlenfolge* aufgefaBt werden kann.

Definition 1. Die reelle Zahl a heifit ein Héiufungswert der reellen Zahlenfolge
(a,), wenn es zu jeder positiven reellen Zahl ¢ unendlich viele natiirliche Zahlen n
mit |a, -- @] < ¢ gibt.

Eine andere hiufig anzutreffende Definition lautet wie folgt:

Definition 1. Die reelle Zahl a heiBt ein Haufungswert der reellen Zahlenfolge
(a,), wenn eine konvergente Teilfolge (a, ) mit dem Grenzwert a existiert.

Wir beweisen die Aquivalenz der Definitionen. Die reelle Zahl a erfiille die in
Definition 1 geforderte Bedingung. Dann ermitteln wir eine Folge natiirlicher Zahlen

ky < ky <-oomit g, —al < l Offensichtlich gilt dann a, — a.
n

Gibt es umgekehrt eine Teilfolge (a,,) mit a, — a, so gibt es zu ¢ > 0 ein n,
mit |a, — a| < ¢ fiir n = n,. In jeder e-Umgebung von a liegen also unendlich viele
Glieder der Folge (a,).

Besitzt die reclle Zahlenfolge (a,) eine Teilfolge mit dem uneigentlichen Grenzwert
00 bzw. — 00, 80 nennen wir co hzw. — oo einen uneigentlichen Haufungswert der
Folge (a,).

Aus Definition 1’ ergibt sich sofort
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Satz 1. Jede konvergente reelle Zaklenfolge besitzt genau einen Hiufungswert, und
zwar den Grenzwert der Folge.

Eine Folge, die mehr als einen Hiaufungswert besitzt, kann daher nicht konvergent
sein. Die Folge ((— l)") hat z. B. die Haufungswerte 1 und —1.

Satz 2. Jede reelle Zahlenfolge enthilt eine monotone Teilfolge.

Beweis. Es sei M die Menge aller natiirlichen Zahlen k mit a;,, < a, fiir alle n
mit 2 € N.

Fall 1. Die Menge M enthilt unendlich viele Zahlen k,, k,, ..., wobei k, < ky < ---
vorausgesetzt werden kann. Nach Definition von M ist a, =a, =---, dic Teil-
folge (ay,, ay,, --.) ist monoton (fallend).

Fall 2. Die Menge M ist endlich und besitst daher eine obere Schranke K. Wir
wihlen k, > K. Wegen k, ¢ M gibt es eine (kleinste) natiirliche Zahl k, mit k, > k,
und a;, > a,,. Ist k, fir eine natiirliche Zahl n schon bestimmt, so gibt es ebenso
eine natiirliche Zahl ky,, mit k,., > k,und a, , > a,, und die so induktiv definierte
Folge (a;,, a,,. ...) ist (streng) monoton (wachsend).

Aus dem Konvergenzkriterium fiir monotone Zahlenfolgen ergibt sich als Folge-
rung der

Satz 3. Jede’ beschriinkte reclle Zahlenfolge enthilt eine konvergente Teilfolge und
besitzt damit einen Hiufungswert.

Dieser von BoLzaNo und WEIERSTRASS stammende Satz ist fiir viele Anwendungen
in der Analysis von fundamentaler Bedeutung.

Satz 4. Eine reelle Zahlenfolge ist genau dann konvergent, wenn sie beschrankt ist
und hochstens einen Hiufungswert besitzt.

Beweis. Ist die Folge konvergent, so ist sie beschrinkt und besitzt nach Satz 1
genau einen Haufungswert.

Besitzt die Folge hochstens einen Haufungswert und ist sie beschrinkt, so besitzt
sie nach Satz 3 auch wenigstens einen Haufungswert, namlich den Grenzwert einer
konvergenten Teilfolge. Sie hesitzt somit genau einen Haufungswert a. Wir zeigen,
daB a Grenzwert der gegebenen Zahlenfolge ist. Nehmen wir an, zu einer positiven
reellen Zahl ¢ gibe es unendlich viele natiirliche Zahlen ny, n;, ... mit ny < n; < ---
und |a, — a| = ¢ (k€ N). Dann enthilt die Folge (a, ),n eine konvergente Teil-
folge mit einem Grenzwert, der wegen ja, — a = ¢ von a verschieden ist. Die Folge
(@,) hiitte dann aber zwei Hiaufungswerte.

Satz 5. Besitzen zwet reclle Zahlenfolgen (a,) und (a,’) den gemeinsamen Grenzwert a,
80 besitzt auch die Muschfolge

, ,
(ag, @y, ay. @), ....a,, @, ...)
den Grenzwert a.

Beweis. Die Mischfolge ist beschrinkt und besitzt neben a keinen weiteren
Hiiufungswert.
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Es sei (a,) eine reelle Zahlenfolge und

a,,’. :=inf {ap: k = n}, (1)

a,’ :=sup a: k =n}. (2)

Fiir alle natiirlichen Zahlen » ist dann

—o<a/<a, <4, oo, @)
a’ Zay,,, 4)
o, Zay,,. (8)

Ist die Folge (a,) nach unten bzw. nach oben beschrinkt, soist also (a,’) bzw. (a,")
eine monoton wachsende bzw. fallende reelle Zahlenfolge. Wir bezeichnen ihren
(eigentlichen oder uneigentlichen) Grenzwert als Limes inferior bzw. Limes superior
der Folge (a,) und setzen

lim inf a, := lim inf {a;: k = n} (6)
oo o0
bzw.
lim sup a, := lim sup {a;: k = n}. (7)
00 A—00

Neben diesen Beziehungen sind auch die Schreibweisen

lim a, := lim inf a,, Im a, := lim sup a,

w0 n—sc0 n—oo nsoo
iiblich. Ist die Folge (¢,) nicht nach unten bzw. nicht nach oben beschrinkt, so ist
a,’ = —oo bzw. a,”” = oo fiir alle n ¢ N. In diesem Fall bezeichnen wir auch —oco
bzw. co als Limes inferior bzw. Limes superior der Folge (a,).

Satz 6. Der Limes inferior bzw. Limes superior einer reellen Zahlenfolge ist der
kleinste bzw. gropte Hiufungswert der Folge.)

Beweis. Es sei a’ der Limes inferior der Folge (a,). Ist ' = —oo, d. h., ist die
Folge nicht nach unten beschrinkt, so gibt es zu jedem n € N einen Index k, mit
@, <. —n. Die Folge («,) hat also den uneigentlichen Haufungswert —oo. Ist aber
die Folge (a,) nach unten beschrinkt, so ist stets a,’ € R, und auf Grund der Defi-
nition dieser Zahlen als Infimum gibt es eine Folge natiirlicher Zahlen k, mit k, =2 n
und

4 Sa, <a’ +1,

- o1
e Lo, <a) + 2’
a) Sa <d' +—,

!) Dieser Haufungswert kann auch uneigentlich sein.
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Hieraus folgt -

lime, =lima, =a’,

A—>00 R—>00
und die Folge (a,) hat den Haufungswert a’. Da die Folge (a,’) monoton wachsend
ist, konnen nur die Fille a’ € R oder a’ = oo auftreten.

Analog zeigt man, daB a’’ ein eigentlicher oder uneigentlicher Haufungswert der
Folge (a,) ist.

Es sei nun a ein beliebiger Haufungswert der Folge (a,). Dann gibt es eine Teil-
folge (a,) mit @, — a. Nach (3) ist a; < a, < a;’, und der Grenziibergang n — oo
liefert @' < a < a”’. Damit ist gezeigt, daB a’ der kleinste und a’’ der groSte Hiu-
fungswert der Folge (a,) ist.

Beispiel. Fiir die Folge

1 1
(@) = (1, ~2g 4o )

gilt stets a,’ = — o0, also auch @’ = —oo und

oy, L L1
(a.)—( S 5)

und damit a”’ = 0. Die Folge besitzt neben —oo und 0 keine weiteren Hiaufungs-
werte.

Satz 7. Eine reelle Zahlenfolge (a,) ist genau dann konvergent oder bestimmt diver-
gent, wenn thr Limes inferior und thr Limes superior iibercinstimmen, und in diescm
Fall ist

lim a, = lim inf @, = lim sup a,. (8)
A—00 A—00 R—>00

Beweis. Ist @’ = a”, so folgt (8) aus (3). Ist die Folge (a,) konvergent oder be-

stimmt divergent, so besitzt sie genau einen Haufungswert, d. h., es ist a’ = a”.

Die Definition des Haufungswertes und Satz 1 konnen unverindert auf komplexe
Zahlenfolgen bzw. auf Folgen im euklidischen Raum RP? oder noch allgemeiner auf
Folgen in einem metrischen Raum iibertragen werden. Wir zeigen, daf der Satz
von BorzaNo-WEIERSTRASS auch fiir komplexe Zahlenfolgen und fiir Folgen im
euklidischen Raum R gilt.

Satz 8. Jede beschrinkte Folge im Raum € bzw. tm euklidischen Raum RP enthilt
eine konvergente Teilfolge und besitzt damit einen Hiufungswert.

Beweis. Es sei @, = (xya, ..., &), und die Folge (a,) sei beschrinkt. Wegen
lainl < ll@all (1 =1, ..., p; n € N) sind dann auch die Folgen («;,) beschriinkt.

Wir wiiblen aus der beschrinkten Zahlenfolge (x,,) eine konvergente Teilfolge und
aus der Folge (a,) die entsprechende Teilfolge aus. Bezeichnen wir diese der Einfach-
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heit halber wieder mit (a,), so konvergiert die Folge der ersten Koordinaten, und wir
konnen wieder eine Teilfolge auswihlen, fiir die auch die Folge der zweiten Koordi-
naten konvergiert. Die Konvergenz der Folge der ersten Koordinaten bleibt hierbei
erhalten. In dieser Weise fortfahrend, erbalten wir nach dem p-ten Schritt eine Teil-
folge der Ausgangsfolge, in der slle Koordinatenfolgen konvergieren, die also selbst
konvergent ist. Analog verliuft der Beweis fiir komplexe Zahlenfolgen.

21.7. Fundamentalfolgen

Fiir reelle monotone Zahlenfolgen haben wir in 2.1.4. ein sehr einfaches Konvergenz-
kriterium gefunden. In vielen Fillen konnten wir Grenzwerte auch mit Hilfe der
Grenzwertsitze ermitteln. Im allgemeinen Fall sind wir bisher auf die Definition 1
in 2.1.3. angewiesen. Diese Definition enthilt aber einen fiir die Anwendungen
schwerwiegenden Mangel. Um sie auf eine Zahlenfolge (a,) anwenden zu kénnen,
muB man bereits von einer reellen Zahl a wissen oder zumindest vermuten, daB sie
der Grenzwert der Folge ist. Erst dann kann man ja untersuchen, ob die Folge
(us — a) eine Nullfolge ist. Von Cauchy stammt die Erkenntnis, daf# die Entschei-
dung, ob eine Folge konvergent ist oder nicht, unabhiingig von der Kenntnis des
Grenzwertes getroffen werden kann. Wir fithren den folgenden Begriff ein.

Definition 1. Eine reelle Zahlenfolge (a,) heiBt eine Fundamen'alfolge oder
Cauchyfolge, wenn es zu jeder positiven Zahl ¢ eine reelle Zahl N(¢) gibt, derart, daB
fiir alle natiirlichen Zahlen m, n aus m, n = N(¢) stets |a, — a,| < ¢ folgt.

Die eine Fundamentalfolge charakterisierende Bedingung kann analog 2.1.2.(2)
formalisiert wie folgt angegeben werden:

A (2N ja, —a, <e).
e>0NeR meN neN

Wir beweisen einige Sitze iiber Fundamentalfolgen.
Satz 1. Jede konvergente reelle Zahlenfolge ist eine Fundamentalfolge.
Beweis. Die Folge (a,) sei konvergent mit dem Grenzwert a. Ist N eine Schranke

der Menge {n: la, —a| = %}, so folgt aus m, n = N stets
Fim = @] S lam — ol + oy —al < =+ =,

die Folge ist eine Fundamentalfolge.
Satz 2. Jede Fundamentalfolge reeller Zahlen ist beschriinkt.

Beweis. Nach Definition gibt es zu ¢ = 1 eine reelle Zabl N(1) mit |a, — a,] < 1
fiir alle m, » mit m, » = N(1). Wir wihlen eine feste Zahl m > N(1). Fir n = m
gilt dann

|an_ao|§|a‘u_a‘o|+Ian_an|<|am'—'ao|+]:

die Zahlenfolge ist beschriinkt.
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Satz 3. Jede Fundamentalfolge reeller Zahlen ist konvergent.

Beweis. Nach dem Satz von BoLzaNo-WETERSTRASS und Satz 2 enthilt jede
Fundamentalfolge (a,) eine konvergente Teilfolge (a,,). Es sei @ = lim a,, . Dann gibt
[

es zu jeder positiven reellen Zahl & reelle Zablen N, bzw. N, mit |a, — a] < 2
€
fiir n, 2 N, bzw. |a, — a,j < % fiir m,n = N,. Ist N das Maximum der Zahlen

N,, N,, so folgt aus n, n; = N stets
2y — | <ty — ap| + I8y, —a] < =+ = =,
= (N n 3 3

d. h., die gegebene Fundamentalfolge besitzt den Grenzwert a.

Eine Zusammenfassung der Sitze 1 und 3 ergibt das wichtige, notwendige und hin-
reichende

Konvergenzkriterium von CAucHY. Eine reelle Zahlenfolge ist konvergent
genau dann, wenn sie eine Fundamentalfolge vst.

Beispiel 1. Wir betrachten die Folge mit den Gliedern
a,=l+%+...+_l.—]nn.
2 n
Fiir alle natiirlichen Zahlen n mit n = 1 ist

1
am—a,=m—ln(n+l)+lnn.

Nach 2.1.5.(3) gilt

n+-l_

1

"—gln(w)gﬁ_}._l,

n41 n n

n

! gln("—“)gl. (1)
n+1 n n

Es folgt

Oglnn__H_ ! =“n—a-+1§.—1'— !



Entsprechend ist

1 1
0= Ay — Qs < —
= %1 ﬂ.—n+l n+2
0=a [ L ! k=1.2,..)
= Ypsk-1 ”k—'n—l-L—l n+k =liay.e).
Addition ergibt
1 1 1
Oéa.—au+b§;'—n+k§;’,
1
|k — 0] = —.
n

Sind die natiirlichen Zahlen m, n gréBer als l, so gilt also
€

|Om — @} <,
d. h,, es liegt eine Fundamentalfolge vor. Thr Grenzwert wird als Eulersche Kon-
stante C bezeichnet. EULER fiihrte die Berechnung von C bis auf 16 Stellen durch.

Beispiel 2. Es sei (a,) eine beschrinkte Zahlenfolge und ¢ eine reelle Zahl mit
lgl < 1. Wir zeigen, daB die Zahlenfolge mit den Gliedern

»
8= Y g
k=0

eine Fundamentalfolge ist. Es gilt, wenn K eine Schranke der Folge (a,) ist,

. n+p ntp
[8ap — &l = | X agt] < 3 | gi*
k=n+1 k=n+1
. P el 1—|g?
SK Y gk=Kg~t Y gt =Klg*t ———
[Sr P 1—1ql
< Kigi»! .
1 —lql

Nach 2.1.2,, Satz 3, kénnen wir zu jedem positiven ¢ ein Nle) ermitteln, so daB die
rechte Seite fiir natiirliche Zahlen mit n = N(¢) stets kleiner als ¢ wird. Die Folge (s,)
ist somit eine Fundamentalfolge.

Der Begiff der Fundamentalfolge und die Siitze 1 und 2 kénnen unverindert auf
komplexe Zahlenfolgen, auf Folgen im Raum RP sowie auf Folgen in normierten
bzw. metrischen Raumen iibertragen werden. Fiir komplexe Zahlenfolgen und Folgen
im Raum RP bleiben auch Satz 3 und das Konvergenzkriterium von CAuCHY unver-
andert giiltig.
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Metrische Ridume, in denen dieses Kriterium hinreichend fiir die Konvergenz ist, erhalten
einen besonderen Namen.

Definition 2. Ein metrischer Raum X bzw. ein normierter Raum E heiBt vollstindig,
wenn jede Fundamentalfolge in diesem Raum konvergent ist.!) Gibt es in X eine Fundamental-
folge, die nicht konvergent ist, so heiBt der Raum unvollstindig.

Die normierten Raume R, R? und € sind hiernach vollstindig. Der normierte Raum @
der rationalen Zahlen mit der Norm |z| ist dagegen nicht vollstindig. So besitzt z. B. die

Fundamentalfolge ({1 + -1- " keinen rationalen Grenzwert.
n
Die folgenden Begriffsbildungen spielen in der modernen Analysis eine hervorragende Rolle.

Definition 3. Eine Teilmenge M eines metrischen Raumes X heiBt prakompakt, wenn jede
Folge in M eine Teilfolge besitzt, die eine Fundamentalfolge ist.

Satz 4. Eine Teilmenge M des Raumes R oder C oder RP ist genau dann prakompakt, wenn
sie beschrankt ist.

Beweis. Die Menge M sei beschriinkt. Da jede Folge (a,) in M beschrinkt ist, besitzt sie
nach 2.1.6., Satz 8, eine konvergente Teilfolge. Folglich ist M prikompakt.

Ist die Menge M nicht beschriinkt, so gibt es eine Folge von Elementen a, € M mit |la,| — cc.
Dieselbe Eigenschaft hat aber dann jede Teilfolge dieser Folge. Es gibt also keine beschrinkte
Teilfolge der Folge (a,). Dies besagt nach Satz 2, daB M nicht prikompakt ist, und Satz 4 ist
bewiesen.

Definition 4. Einc Teilmenge M eines metrischen Raumes X heiBt kompakt, wenn jede
Folge in M eine gegen ein Element a € M konvergierende Teilfolge besitzt.

R,

Satz 5. Eine Teilmenge M eines vollstandigen metrischen st genau dann kompakt,

wenn sie prakompakt und abgeschl 1at.

Beweis. Dio Menge M sei kompakt. Dann ist sie auch prikompakt, denn jede konvergente
Folge ist eine Fundamentalfolge. Ist a ein Hiaufungspunkt von M, so gibt es eine Folge (a,)
in M, die gagen a konvergiert. Nach Defintion der Kompaktheit besitzt sie eine gegen ein
Element a’ € M konvergierende Teilfolge. Dies ist nur fir @ = a’ € M méglich, und folglich
ist M abgeschlossen.

Ist M aber prikompakt und abgeschlossen, so besitzt jede Folge (a,) in M eine Teilfolge
(@w,), die eine Fundamentalfolge ist. Da X vollstindig ist, besitzt sie einen Grenzwert @, und a
ist ein Hiaufungswert von M. Somit ist @ € M, und M ist kompakt.

2.1.8. Die Sitze von Cantor und Heine-Borel

In diessm Abschnitt beschiftigen wir uns mit zwei Siitzen, die firr weiterfiihrende Betrachtun-
gen der Analysis bedeutsam sind. Der erste wird nach GEORG CANTOR (1845 —1918) benannt
und gibt eine Verallgemeinerung des Satzes 2 in 2.1.4. iiber Intervallschachtelungen.

Satz 1. Es sei (Fy, F,,...) eine Folge abgeschlossener, nichtleerer Mengen des euklidischen
Raumes RP mit Fy 2 F, 2 --- und lim d(F,) = 0. Dann gibt es genau einen Punkt x, der in
allen Mengen F, enthalten ist. Lnded

Beweis.) Wir wihlen aus jeder Menge F, ein Element &,. Wegen F,,, & F, (n,p € N)
gilt dann g(2,, Ts,p) < d(F,). Hieraus ergibt sich, daB (x,) eine Fundamentalfolge ist, denn
zu jedem & > 0 gibt es ein N(e) mit d(F,) < ¢ fir n = N(¢). Wegen der Vollstindigkeit des

1) Wesentlich ist hierbei, daB der Grenzwert ebenfalls ein Element des Raumes ist.
%) Hier wird von dem A hlprinzip Geb h g ht
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Raumes RP existiert ein Element & mit & ¢ R? und & = lim &,. Nehmen wir an, es giibe ein n

A—>00
mit & ¢ F,. Dann ist  in der offenen Menge R? \\ F, enthalten, und es gibt eine Umgebung
U,(z), die keinen Punkt von F,, damit aber auch keinen Punkt von F,,, (p € N) enthilt.
Es folgt o(y,p, &) = ¢ fir alle natirlichen Zahlen p, was wegen &, — & nicht moglich' ist.
Somit gilt & € F, fir alle natiirlichen Zahlen n. Ist auch y € F, fir alle » mit = € N, so gilt
stets o(®, y) < d(F ), woraus o(, y) = 0, & = y folgt.

Der zweite Satz wird in der mathematischen Literatur hiufig als Uberdeckungssatz von
Heine-Borel (Epuarp HEINE (1821—1881), EMILE BoBEL (1871—1956)) bezeichnet. Bevor
wir ihn formulieren, geben wir die

Definition 1. Ein Mengensystem @& von offenen Mengen G eines metrischen R X
heiBt eine Uberdeckung der Menge M mit M S X, wenn M in der Vereinigungsmenge des
Mengensystems & enthalten ist.

In Abb. 2.11 bildet z. B. das Mengensystem & = {G,, G,, G,, G,, Gy} eine Uberdeckung der
Menge M.

Satz 2. Zu jeder Uberdeckung © einer abgeschl beschrinkten Menge F des euklidischen
Raumes RP gibt es ein endliches Teilsystem {G,, Gy, ..., G,} mit G; € @ (j = 1,2, ...,n), das
ebenfalls eine Uberdeckung von F ist.

~——

Abb. 2.11 Abb. 2.12
Beweis. Es sei G die Vi igung des Mecngensy ®. Nach Vi g gilt F S G.
Mit M bezeich wir das Mengensy aller derjenigen Teilmengen von G, zu deren Uber-
deckung endlich viele Mengen des Meng @ ausreichen. Der Satz ist bewiesen, wenn

die Annahme F ¢ I zu einem Wlderspruch fithrt.

Mit Hilfe des sogenannten Halbierungsverfakrens konstruieren wir eine Folge (R,) von Recht-
ecksbereichen R,. Da die Menge F beschrinkt ist, besitzt die Menge aller Koordinaten der
Punkte & mit & € F eine Schranke K. Wir setzen

Ry, = {2y .- 2): 17l S K, j=1,...,p}.

Wegen F S R, ist nach unserer Annahme R, n F = F ¢ 3.
Ist fir eine natirliche Zahl n der Rechtecksbereich

Ry = {(@) gy s Tp): Ogp S 73 S bjay 1=1,2,...,p)

schon definiert und ist R, n F ¢ 9, so bestimmen wir die maximalc Kantenlinge, d. h. das
Maximum der Zahlen b;, — ay,, und den kleinstcn Index jy, fiir den dieses Maximum angenom-
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men wird. Wir zerlegen R, in zwei Teilbereiche R,, und R,,, indem wir das Intervall [aj,n, bj,n]
halbieren und alle anderen Intervalle [ay,, bj,1 (j # jo) unveriindert lassen (Abb. 2.12).
Von den Mengen R,, n F und R,, n F kann wegen

R,nF=(Ry,ynF)u(R,nF)

héchstens cine im N R enthalten sein. Ist Ry, n F ¢ M, so setzen wir R,,, =R,,,
andernfalls R,,, = R_, Dann ist R,,, ein Rechtecksbereich und R,., n F ¢ . Damit ist
die Folge (R,) induktiv definiert. Da bei jedem Konstruktionsschritt die bzw. eine lingste
Knnu des Rechtecksbereichs halbiert wird, betrigt die maximale Kantenlinge des Recht-

bereichs R,,, hochstens die Hilfte der maximalen Kantenlinge des Rechtecksbereichs R,.
Somit bildet dle Folge der maximalen Kantenlingen, damit aber auch die Folge der Durch-
messer der Rechtecksbereiche R, eine Nullfolge.

Die Mengen F, mit F, = }l,, n F sind abgeschlossen und nicht leer, es gilt d(F,) — 0 fir
n — oo, und wegen R, € R,,, gilt F, S F,,,. Nach Satz 1 gibt es genau einen Punkt & mit
x € F, (n€N). Wegen F, S Fistx € F, und da ® eine Uberdeckung von F ist, gibt es eine
offene Menge G, mit & € G, und G, € ®. Nach Definition der offenen Menge gibt es ein ¢ mit
U/&) S Go.

Wir bestimmen eine natiirliche Zahl » derart, daB der Durchmesser von R, kleiner als ¢
ist. Dax € F, S R, gilt, muB R, in U, (x) enthalten sein, und es folgt F, S R, S U (x) S G,.
Zur Uberdeckung der Menge F, geniigt also eine einzige Menge des Mengensystems ®. Das
ist wegen F, ¢ M ein Widerspruch zur Definition von 9, und Satz 2 ist bewicsen.

In Veraligemeinerung von Satz 2 kann man beweisen, daB eine Teilmenge F cines metrischen
Raumes X genau dann kompakt ist, wenn aus jeder Uberdeckung von F ein endliches Teil-
system ausgewahlt werden kann, das ebenfalls eine Uberdeckung von F ist.

2.2.  Reihen
2.21. Grundbegriffe der Reihenlehre

Bevor die Grundbegriffe der Analysis im vorigen Jahrhundert exakt formuliert
wurden, war es iiblich, eine unendliche Reihe als eine ,,Summe*‘ von unendlich vielen
Gliedern aufzufassen und mit ihnen ebenso wie mit endlichen Summen zu rechnen.
Wir wollen an zwei Beispielen zeigen, daB eine solche Erweiterung des Summen-
begriffs nicht moglich ist, weil sie zu Widerspriichen fithrt.

Beispiel 1. Es sei

1 1 1 1 1 1
= T TR TR A UL TR 1
s l+2+3+4+5+6+7+ (1)
Dann ist
8 1 1
—_—= = — — . 2
B ) + n + 6+ (2)

1 1 1
=14+—= 4+ = + — 4.
3 5 7 @
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Subtrahieren wir nun (2) von (3), so erhalten wir
1 1 1
0=1——d—m—— g — -,
2 + 3 4 +

1 11 11
o=(1—=)+(-=)+>1—-==—,
( 2)"'(3 4)+ Zi73=2

und wir sind zu einem Widerspruch gelangt.

Beispiel 2. Es sei

1 1 1 1 1
=1—— —_——— _——— e, 4
8 2+3 4-|-5 6+ 4)
Dann ist

1 1 1 1 1 1 1
=[1——= ——— - o>l = =,
: ( 2)"'(3 4)+(5 6)+ 7737
Eine Umordnung der Summanden ergibt
1

11 111
e — —
i e A TR ®)
Aus (4) folgt
8 1 1 1
2= P L ©

Addition von (5) und (6) ergibt

3 t o1t 1 1 111 1
D el —
gt ity tyty gttt -ttt

und das ist wiederum (4) in verinderter Anordnung der Summanden. Somit ist
8 = L;—s, was wegen 8 > %nicht moglich ist.

Diese Beispiele machen deutlich, daB bei der Begriffsbildung und beim Rechnen
mit ,,unendlichen Summen*‘ sehr sorgfiiltig vorgegangen werden muB. Wir werden

den Begriff der Summe nicht auf unendlich viele Summanden ausdehnen, sondern
den Begriff der Reihe auf den Folgenbegriff zuriickfiihren.

Definition 1. Ist (a,) eine Zahlenfolge, so heiBt die Zahlenfolge (s,) mit den
Gliedern

iz a, M
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d. h. die Zahlenfolge
(@gs @ + @y, @9 + @y + a5, ...),

die Folge der Partialsummen der Folge (a,).

Das Wesen der Reihenlehre besteht darin, das Verhalten, insbesondere das Kon-
vergenzverhalten der Partialsummenfolge, nicht auf die Untersuchung ihrer Glie-
der s,, sondern auf die Untersuchung der Glieder a, derjenigen Folge zuriickzufiihren,
deren Partialsummenfolge sie ist. In der Reihenlehre sind also stets zwei Folgen
nebeneinander zu betrachten, deren Glieder durch (7) miteinander verkniipft sind.
Wir geben die folgende

Definition 2. Unter der (unendlichen) Reihe mit den Gliedern a, verstehen wir
.
die Folge der Partialsummen ) a; der Folge (a,).
k=0

Diese Reihe wird mit

o
X a, oder ag+a,+ag+ -+ ay+ -
n=0
bezeichnet.
Eine Reihe ist entweder durch ihre Glieder oder aber auch durch ihre Partial-
summen bestimmt. Aus den Partialsummen kann man némlich ihre Glieder berech-
nen, denn aus (7) folgt

Qo = 8, Ay = 8p41 — 8n (n € N). (8)

Hiernach kann jede gegebene Folge (s,) als Partialsummenfolge der Reihe mit den
durch (8) definierten Gliedern a, (n € N) aufgefaBt werden.
Ist nicht 0, sondern n, der Anfangsindex der Folge (a,), so wird die Reihe mit

Xan

=
bezeichnet. Der S tionsbuchstabe n kann durch jeden von a verschiedenen
Buchstaben ersetzt werden. Wir werden im folgenden alle allgemeinen Aussagen
der Reihenlehre nur fiir den Fall n, = O formulieren. Die Ubertragung auf einen
beliebigen anderen Anfangsindex bereitet keine Schwierigkeiten.

Wir fiihren einige weitere Bezeichnungen ein.

]
Definition 3. Fiir jede natiirliche Zahl m heiBt die Reihe }' a, ein Rest und die

mip o n=m+1
(endliche) Summe 3 a, (p = 1) ein Ausschnitt der Reihe 3 a,.
n=m+1 "=0

Offenbar kann jeder Ausschnitt in der Form 8.y — 8 dargestellt werden.
Der Begriff der Reihe kann unverindert auf den euklidischen Raum R iiber-
tragen werden.



2.2. Reihen 129

Die Geschichte der Behandlung der unendlichen Reihen bnngt wie lumm ecin anderes mathe-
matisches Gebiet die unterschiedlichen Auff: von Strenge zum Aus-
druck. Der Freude iiber die gefund neuen Method folgte eine Periode der recht zigel-
losen A dung und Verwend von dlichen Reihen, wobei der urspriinglich noch

trisch lytischen Spekul tion spater mehr formale Aspekte abgewonnen wurden.
Erat mit Gavss beginnt das neue mathematische Zeitalter, in dem neben formaler Gewandt-
heit auch Strenge der Untersuchung verlangt wird.

Unendliche Reihen traten erstmals bei ARCHIMEDES (287?—212 v. u.Z.) auf. In seiner
,»Quadratur der Parabel* lieferte er auch erstmals die Summation einer solchen Reihe mit
dem Quotienten 1/4.

Die Lehre von den unendlichen Reihen wurde im modernen Sinn von NicoLaus MERCATOR
eroffnet, der 1667 die logarithmische Reihe entdeckte. Allerdings traten auch in mittelalter-
lichen Schriften (von ORESME, ALVARUS THOMAS (um 1500)) gelegentlich unendliche Reihen
auf, ohne daB erkennbar ist, woher die Mathematiker des Mittelalters ihre Kenntnisse bezogen.
Auch war NEWTON seit 1666 im Besitz der Binominalreihe, ohne, wie es damals hiufig der
Fall war, die Ergebnisse im Druck zu veréffentlichen. In schneller Folge wurden jetzt weitere
Reihen deckt. Die Unt hung dieser Reihen wurden dann zu einer der wichtigsten
Quellen der Schaffung der Analysis bei LErBN1z und NEwTON. Bei der Erforschung von unend-
lichen Reihen beschiftigte man sich jedoch kaum mit dem Konvergenzverhalten, sondern
operierte unbefangen mit ihnen ebenso wie mit endlichen Ausdriicken. Ein Beispiel fir den
Umgang mit sogar unbestimmt divergenten Reihen bietet die Behandlung der beriichtigten
»»Reihe‘* von Guipo GRANDI (1671 —1742)

1—141—1+.,

der der Wert 1/2 zugeordnet wird, und diese Behauptung wird sogar von LEiBNIzZ und EULER
trotz der Einspriiche ciniger Mathematiker aufrechterhalten.

Durch Gauss, ABEL, BoLzaNo0, CaucHY wurde die Konvergenztheoric der unendlichen Reihen
auf sichere Fundamente gestellt. Erinnert sei an die Untersuchung von GAvuss zur hypergeo-
metrischen Reihe (1812), ABELS Arbeiten iiber die binomische Reihe, Caucuys ,,Cours
d’analyse* (1821) und BoLzanos ,,Functionenlehre** und ,,Paradoxien des Unendlichen*‘.

2.2.2. Konvergenz von Reihen

Die Konvergenz von Reihen wird auf die Konvergenz von Folgen zuriickgefiihrt.

Definition 1. Eine Reihe heiBt konvergent bzw. divergent bzw. bestimmt divergent?),
wenn die Folge ihrer Partialsunimen konvergent bzw. divergent bzw. bestimmt
divergent ist. Besitzt die Folge der Partialsummen den eigentlichen oder uneigent-
lichen Grenzwert s, so heiit s die Summe der Reihe, und man setzt

) k
$=) da,:=lim }a,. [§))
"=0 k—o0 n=0

Es ist ein bedauerlicher und nur aus der historischen Entwicklung zu verstehender

Umstand, daB das Symbol 2 a, damit eine doppelte Bedeutung er]angt hat, wihrend

sonst in der Mathematik auf eindeutige, unmiBverstindliche B hnungen groBer

Wert gelegt wird. Nach unserer in 2.2.1. gegebenen Definition 2 bedeutet dieses

') Die Begn“e treten erstmals 1668 bei dem lischen Mathematiker JaMES G Y
(1638 —1675) in seinem Werk ,,Vera circuli et Hyperbolae Quadratura** auf, haben aber dort
einen etwas anderen Sinn.
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Symbol die Folge der Partialsummen der Folge (a,), wihrend es im Fall der Kon-

vergenz nach (1) zugleich den Grenzwert der Partial folge bezeichnet. Aller-
dings wird aus dem Zusa hang gewdhnlich hervorgehen, welche der beiden
Bedeutungen gemeint ist. Solange wir es mit konverg oder bestimmt divergen-

ten Reihen zu tun haben, werden wir das Symbol gewdhnlich in der zweiten
Bedeutung, d. h. als Summe der Reihe, verstehen.
Zur Vereinfachung schreiben wir im folgenden hiufig 3’ a, an Stelle der ausfiihr-
Lo
lichen Bezeichnung J' a,.

Alle Sitze iiber die Konvergenz von Zahlenfolgen (a,) kénnen auf Reihen ) a,

-
iibertragen werden, indem man in den jeweiligen Kriterien a, durch s, = 3 a;
k=0
ersetzt. Die wichtigsten sich hierbei ergebenden Sitze stellen wir noch einmal zu-
sammen.

Satz 1. Konvergiert die Reithe ] a,, 80 konvergiert die Reihe ' ca, fiir jede reelle
bzw. komplexe Zahl ¢, und es it 3 ca, = ¢} a,.

Beweis. Sind s, bzw. s, die Partialsummen der Reihe }} a, bzw. } ca,, so ist
8,' = ¢8,, und aus 8, — 8 folgt 8,’ — cs.

Satz 2. Konvergieren die Rethen 3 a, und 3 b,, s0 konvergiert die Rethe 3 (a, + b,).
und es Ust
Z(G.-:i-.b-)=za.:i:£,‘b
Beweis. Sind 8., 8,” bzw. 8, die Partialsummen der Reihen 3 a,, 3’ b, bzw.
2 (@, + b,),s0ist 8, = 8," + 8,”, und aus 8," — ¢, 8,” — &'’ folgt 8, - &' + &".

Man driickt den Inhalt des hiermit bewiesenen Satzes hiufig wie folgt aus: Kon-
vergente Reihen diirfen gliedweise addiert bzw. subtrahiert werden.

Satz 3. Korweryu’rt die Rethe 3 a,, so konvergiert auch jede Reihe, deren Glieder
durch Z von Gliedern der Reihe 3, a, (bet Erhaltung threr Rethenfolge)
entstehen, und beuie Rethen besitzen dieselbe Smnme

Genauer besagt dies folgendes: Ist 0 =- 7y < 7, <, < - -+, 80 ist

'-9‘ ®© (A1
OES )
n=0 k=0 \j=mn,

oder, ausfiihrlicher geschrieben,
Qg+ Oy + @y + -+- = (B -+ -+- + Q) + (A - os Ay ) e (2)

Der Beweis der Behauptung ergibt sich unmittelbar daraus, daB die Partialsummen
der neu gebildeten Reihe eine Teilfolge der Folge der Partialsummen der urspriing-
lichen Reihe bilden. In konvergenten Reihen kann nian also wegen (2) nach Be-
lieben Reihenausschnitte in Klammern einschlicBen. Dagegen darf man vorhandene
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Kla n im allgemeinen nicht wegl wie das Beispiel der Reihen
-1+ —=1)+ und 1—141—-14—...
zeigt. Die erste Reihe hat die Summe 0, die zweite ist divergent.

Satz 4. Besitzen die Rethen mit den Gliedern aq, a,, @,, ... bzw. a4, a)', «,’, ... die
Summe 8 bzw. &', so besitzt die Reithe mit den Gliedern ay, ay, ay, a,’, @y, a,', ... die
Summe s + &'.

Beweis. Fiir die Partialsummen s,” der ,,Mischreihe** gilt
k k-1 ,
gi=Xa+Yae), s, = Za.+2a..
=0 =0 =0

woraus 8;; —> 8 +- &, 833, —> 8 + & fiirn — oo und damit 8,"” — 8 - &' fiir n — oo
folgt.

Wir formulieren nun ein wichtiges notwendiges Kriterium fiir die Konvergenz
einer Reihe.

Satz B. Ist eine Rethe konvergent, so bilden thre Glieder eine Nullfolge.
Beweis. Sind a, bzw. s, die Glieder bzw. die Partialsummen der Reihe, so gilt

litn @, = lim a,,, = lim (8,,; — 8,) = lim 8,,; — lim 8, = 0.
oo [ noo a0 s

Nach dem hiermit bewiesenen Satz ist die Bedingung lim @, == 0 eine notwendige
N—>00
Bedingung fiir die Konvergenz der Reihe J; a,. Sie ist aber nicht hinreichend. Dies
zeigt
Beispiel 1. Die Glieder der harmonischen Reihe
Zi-142 + + -
=1

bilden eine Nulifolge. Die Reihe ist aber nicht konvergent, denn ist K eine beliebige
positive reelle Zahl, ist m > 2K (m € N) und n, =: 2, so gilt fiir natiirliche Zahlen
n = n, stets

1
sZe, =1+~ +3+ + + +o +—
—1424 l+l Iy UL PR L
- 2 3 5 6 7 8
1
+ (2.—1 1 +t 2_n)
>1._+2‘i+2:.l+...+2--1. 1

9 2 2 2m
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und hieraus folgt

21
3 ==
a=1

Die Divergenz der harmonischen Reihe findet man in dem Werk ,,Questions super Geo-
metriam Euclidis* von ORESME nachgewiesen. Andere Beweise, die aber alle komplizierter

sind, stammen 1660 von PIETRO MENGoOLI (1625—1686) und 1689 von JOHANN und JAKOB
BERNOULLL

Beispiel 2. Wir untersuchen das Konvergenzverhalten der geometrischen Reihe

Ee

=0

mit ¢ € C. Fiir |g| = 1 bilden die Glieder der Reihe keine Nullfolge, die Reihe ist
divergent. Fiir [g| < 1 gilt

1 — +1
8y = Z ¢t = Lk il ,
¥=0 1—g¢
und wegen ¢* — 0 fiir n — oo folgt
Po-— @)

Auf Grund des Konvergenzverhaltens der geometrischen Reihe kann eine auf den ersten
Blick geradezu paradox erscheinende Aussage iiber die Menge aller rationalen Zahlen bewicsen
werden. Sie beruht auf der Tatsache, daB diese Menge abziihlbar ist, daB also einc Folge (r,)
existiert, deren Wertebereich alle rationalen Zahlen enthiilt. Wiihlen wir eine beliebige positive
reelle Zahl ¢, so kénnen wir fir jede der Zahlen r, die Umgebung U,~+(r,) bilden. Da die ratio-
nalen Zahlen in der Menge der reellen Zahlen dicht licgen, liegt die Vermutung nahe, daB durch
diese Umgebungen alle reellen Zahlen ,,iberdeckt'* werden. Es ist iiberraschend, daB dies
nicht immer der Fall ist und daB es im Gegenteil sogar méglich ist, die Summe aller Durch-
messer') dieser Umgebungen kleiner als jede noch so kleine positive reelle Zahl ¢* zu machen.
Hieraus folgt dann, daB nicht alle reellen Zahlen iiberdeckt sein konnen.

Der Durchmesser der Umgebung von r,, ist 2¢*+!, und fir die Summe aller dieser Durch-
messer erhalten wir, wenn ¢ < 1 gewihlt wird,

Z M+ — 2

=0 ¢

Wihlen wir ¢ kleiner nla (: > 0), so folgt

22:"“—2—<e.

was zu beweisen war.

1) Genauer: die Summe der von ihnen gebildeten Reihe.
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Wiihrend das in Satz 5 gegebene Konvergenzkriterium nur hinreichend ist, ist das
Konvergenzkriterium von Cauchy notwendig und hinreichend. Wegen s, — 8,
= Gpyy + gy + - + @y lautet es wie folgt:

Satz 6. Die Rethe 3] a, st konvergent genau dann, wenn zu jeder positiven reellen
Zahl € eine reelle Zahl N(e) angegeben werden kann derart, dap fiir alle natiirlichen
Zahlen n, k mit k = 1 und n > N(e) stets

[@piy + o+ + Bpup] < &
gilt.
Die Divergenz der harmonischen Reihe kann mit diesem Kriterium wie folgt
bewiesen werden. Fiir alle natiirlichen Zahlen » mit n = 1 gilt
1 1

1
e — > e—
n+l+n+2+ 2ns 2n

1
=3
Daher kann die Reihe nicht konvergieren.

Eine Ubertragung des Konvergenzkriteriums fiir monotone Folgen fithrt zu dem

Satz 7. Eine Rethe mit nichinegativen reellen Gliedern ist genau dann konvergent,
wenn die Folge ihrer Partialsumimnen beschrinkt vst.
Beweis. Die Folge der Partialsummen ist monoton wachsend.

AbschlieBend bemerken wir, daB eine Reihe offenbar genau dann konvergiert,
wenn einer (und dann auch jeder) ihre Reste konvergent ist, und in diesem Fall gilt

Ea,:i‘au-l—fa,. 4)
n=0 n=0 R=m+1

LBt man in einer Reihe endlich viele Glieder fort, so bleibt «war das Konvergenz-
verhalten — im allgemeinen aber nicht die Summe der Reihe — unverindert. Das
Konvergenzverhalten und die Summe bleiben jedoch erhalten, wenn man in die
Folge der Glieder der Reihe beliebig viele (aber natiirlich zwischen je zwei auf-
einanderfolgende Glieder héchstens endlich viele) Nullen einfiigt oder beliebig viele
Glieder a, mit a, = 0 weglifit.

Mit Ausnahme von Satz 6 und Satz 7 kénnen alle Definitionen und Sitze auf
Reihen iibertragen werden, deren Glieder Elemente eines normierten Raumes E
sind. Satz 6 gilt auch in vollstindigen norniierten Riumen.

Bis zu CAUCHY gab es nur wenige Versuche, wirklich exakt die Konvergenz von Reihen zu
bestimmen. Das Cauchysche Konvergenzkriterium kann, freilich in véllig anderer Form,
bereits bei EULER festgestellt werden. GAuss gab 1812 mit seiner Untersuchung iiber die hyper-
geometrische Reihe die erste systematische Us hung der Konvergenz von Reihen.

In CavucHYS beriihmten Lehrbiichern, etwa ,,Cours d’Analyse* von 1821, findet man zu-
sammenfassend, auf dem Grenzwertbegriff von D’ ALEMBERT basierend, den noch heute iiblichen
Aufbau der Infinitesimalrechnung. Dort sind auch alle einfachen Konvergenzkriterien vor-
handen.
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2.23. Alternierende Reihen

Eine Reihe mit reellen Gliedern heiBt alternierend, wenn je zwei aufeinanderfolgende
Glieder verschiedene Vorzeichen haben. Fiir solche Reihen gibt es ein einfaches,
von LrrBN1z stammendes hinreichendes Konvergenzkriterium (Brief an JOHANN
BERNoOULLI vom 10. 1. 1714).

Satz 1. Eine alternicrende Reihe konvergiert, wenn die Absolutbetrige ihrer Glieder
eine monotone Nullfolge bilden.

Beweis. In der alternierenden Reihe J' a, sei 0. B. d. A. @, > 0. Fiir allé natiir-
lichen Zahlen n ist dann a,, > 0, a,,,; << 0. Nach Voraussetzung ist a, = |a,| = a,
= |ag| = ---. Wir setzen

byt = 83011, Cu: = S1a»

wobei s, die Partial der gegeb 1 Reihe sind. Wir zeigen, daB (b, | c,) eine
Intervallschachtelung ist (Abb. 2.13). Fiir alle natiirlichen Zahlen = ist

bury — ba = (82043 — 82ms2) 4 (S2n42 — 82n01)

= Gapyg + Gaarg = Ggura — [B2asa| 2 0,
Cas1 == Cp = (83042 — 83a11) + ($2041 =~ 824)

= Gynig + Gypiy = Gapez — [Gan| £ 0,

Co— by == 824 — 8350y = |A2pna| >0,

fayl gyl
— —
9 a 9% ¢ % a; %
T I
T t
L| | : ! J
Sty | 15"%
S3=b | 1 5276
Sg=b, 5,-¢, Abb. 2.13

und da (|a,|) eine Nullfolge ist, gilt dasselbe fiir ihre Teilfolge (|;54(), d. h., (¢, — b,)
ist eine Nullfolge. Die Folgen (s,,), (824+;) besitzen somit denselben Gr rt 8, und
8 ist auch der Grenzwert ihrer Mischfolge (s,), d. h., es ist 8 = X a,, und der Satz
ist bewiesen.

Auf Grund dieses Satzes erkennen wir unmittelbar, daB dic Reihen

®, 1 1 1
S—l— = | - —f— — .,
g cHg =+

x 1 1 1

3 (—1)k =1 = — 4 — —
=T wr sts—+

konvergent sind. Wie wir spiter sehen werden, sind ihre Summen gleich In 2 bzw. %
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Fiir die Konvergenz einer Reihe ist nach 2.2.2., Satz 5, notwendig, daB die Glieder,
also nuch die Absolutbetriige der Glieder, eine Nullfolge bilden. Diese Bedingung ist
aber auch bei alternierenden Reihen nicht hinreichend. Die Bedeutung der im Satz
geforderten Monotonie zeigt das folgende Beispiel. Andererseits ist die Bedingung
der Monotonie der Nullfolge (|a,|) zwar hinreichend, aber nicht notwendig. Es giht
konvergente alternierende Reihen, fiir die (|a,|) keine monotone Nullfolge ist.

Beispiel. Die Reihe J' a, sei durch

1 1
—_ Aapyy = — ———
n —
Vn¥z—1 fntz+1

definiert. Nehmen wir an, die Reihe sei konvergent. Nach 2.2.2., Satz 3, kénnen wir
je zwei aufeinanderfolgende Glieder dieser Reihe zusammenfassen, d. h., es ist

3 ay =} (a3 + ag1).
=0 k=0
Wegen
Int+2+1—yny2+1 2

an"'“'!ul:(}/m- l)(}/m-f-l)_""'l

ist daher ' a, = 37 % Dies ist ein Widerspruch, denn die harmonische Reihe

ist divergent. Die betrachtete alternierende Reihe ist somit nicht konvergent, obwohl
ihre Glieder eine Nullfolge (aber eben keine monotone Nullfolge) bilden.

Ein wichtiges Problem der numerischen Mathematik besteht darin, den Fehler
abzuschitzen, den man begeht, wenn man die Summe einer Reihe durch eine ihrer
Partialsummen approximiert (annéhert). Dies ist in vielen Fillen ein sehr schwieriges
Problem. Dagegen ist die Fehlerabschitzung bei alternierenden Reihen, die dem
Leibnizschen Konvergenzkriterium geniigen, sehr einfach. Dies zeigt

Satz 2. Die n-te Partialsumme einer alternierenden Rethe, deren Glieder dem Betrag
nach eine tone Nullfolge bilden, unterscheidet sich von der Summe der Reihe
hochstens um den Absolutbetrag des (n + 1)-ten Gliedes der Reihe.

Beweis. Mit den Bezeich des Beweises von Satz 1 ist im Fall ¢, > 0 stets

)

801 = by < 8 < ¢ < 8y, und folglich gilt

1820 — 8] = 830 — 8 < 830 — S2ars = [Bapual,s
18201 — 8] = 8 — &rpuy =X 8g012 — 82001 = Gansas
d.h..esist

180 — 8] < |@puil. (1)
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2.2.4. Absolute Konvergenz

Aus jeder gegebenen Reihe konnen wir eine neue Reihe bilden, deren Glieder die
Absolutbetriige der Glieder der gegebenen Reihe sind. Fiir Reihen mit nichtnegativen
Gliedern stimmt die so gebildete Reihe natiirlich mit der urspriinglichen Reihe
iiberein. Wir vereinbaren die

Definition. Die Reihe J ' a, heiBt absolut konvergent, wenn die Reihe ' |a,|
konvergent ist.

Auch die Bedeutung dieses Konvergenzbegriffs wurde von Caucry erkannt. Fiir
Reihen mit nichtnegativen Gliedern gilt |a,| = a,, d.h., eine Reihe mit nicht-
negativen Gliedern ist genau dann absolut konvergent, wenn sie konvergent ist. Fiir
Reihen mit beliebigen Gliedern ist die absolute Konvergenz nur eine hinreichende
Bedingung fiir die Konvergenz. Dies besagt

Satz 1. Ist die Reihe }] |a,| konvergent, so konvergiert auch die Reihe 3 a,.
Beweis. Es ist stets
[@nir + Cuiz + o+ + Cnikl S [@pia| + [@asal + - + |@nitl
= |lannl + (@nsel + - + |@pul]-

Der Betrag eines Ausschnittes der Reihe ist also niemals groBer als der Betrag des
entsprechenden Ausschnittes der Reihe der Absolutbetriige. Die Behauptung ergibt
sich nun unmittelbar aus dem Cauchyschen Konvergenzkriterium.

Ein einfaches Kriterium fiir die absolute Konvergenz gibt

Satz 2. Eine Rethe ist absolut konvergent genau dann, wenn die Partialsummen der
Rerhe der Absolutbetrige evne beschrinkte Folge bilden.

Der Beweis folgt sofort aus 2.2.2., Satz 7.

Fiir die absolute Konvergenz leiten wir zwei wichtige Verg iterien her. Das
sogenannte erste Majorantenkriterium lautet:

Satz 3. Existiert zu einer Rethe 3 a, eine konvergente Rethe mit reellen Gliedern c,
derart, daf von einer Stelle p an stets

el S (2p) (1)

gilt, a0 1st die Reihe J a, absolut konvergent. Existiert eine divergente Reihe 5 d, mit
reellen. Gliedern derart, daB von einer Stelle p an stets

laal 2 1dal (2 2 p) @)

qilt, so ist die Rethe J a, nicht absolut konvergent.
Beweis. Die Folge der Partialsummen der Reihe 3 a, ist im ersten Fall wegen

[@pl + l@pss| + -+ + [Bpsk]l S €5 + Cpar + -+ + Cpui
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beschriinkt, im zweiten Fall wegen

lapl + 1apia] + -+ + [@pir] = 1yl + |dpia] + <+ + |dpaal

nicht beschriinkt, denn wegen Satz 1 ist 3 |d,| nicht konvergent. Die Behauptungen
folgen somit aus Satz 2.

Wir formulieren nun das zweite Majorantenkriterium.
Satz 4. Existiert zu einer Reihe J a, mit a, % 0 (n € N) eine konvergente Reihe mit
positiven reellen Gliedern c, derart, daB von etner Stelle p an stets
Laal Sz ®
@l Cn
gilt, so ist die Reihe ) a, absolut konvergent. Existiert eine divergente Revhe mit Gliedern
d, = 0 derart, daf von einer Stelle p an stets

1Bl - Jdul
izl ez )

gilt, 80 vst die Reihe 3 a, nicht absolut konvergent.
Beweis. Fiir die Folgen (d,), (a,), (c.) gelte

]d,,,,,| < |@pl < Cp+1
ldpl — lapl T e

Idp.al < 142 < %12

= = »
'dyﬂ| lapsl Cp+1

|dpil < 12| < Coet
[@prba] — 1@prkal  Cpup

Multiplikation ergibt

|dp4k| < |a'p+b| < Cp+k
—_— s
|dp| |a'y| Cp

d.h,firn=p+ k> pist

ol g <o < 2L, ®
L] Cp

Ist die Reihe 3 ¢, konvergent, so gilt dies auch fiir

L a, a, o0
Blel, sl 3,

a— LA
a=0 Cp Cp n=0
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Nach dem ersten Majorantenkriterium ist also J' @, absolut konvergent. Ist die
Reihe 3 |d,| divergent, so gilt dies auch fiir

Iay| Ia'p'
d" = d’l
zZ a1 = a1 2z

Aus dem ersten Majorantenkriterium und aus (5) folgt die Divergenz der Reihe
2 laal.

Wir leiten aus jedem der beiden Majorantenkriterien einen fiir die Anwendungen
besonders wichtigen Spezialfall ab. Diese Spezialfille stiitzen sich auf das Kon-
vergenzverhalten der geometrischen Reihe. Wihlen wir in Satz 3 die geometrische
Reihe als Vergleichsreihe, so erhalten wir das sogenannte Wurzelkriterium (CAUCHY
1821).

Satz 5. Die Reihe ' a, ist absolut konvergent, wenn es eine reelle Zahl q gibt derart,
dap von einer Stelle p an stets

Ved<g<t (zp) ®)

18t. Sie 1st divergent, wenn fiir unendlich viele natiirliche Zahlen n die Ungleichung
Viad 21 ™
erfiillt ist.

Beweis. Aus (6) folgt |a,| < ¢*, d. h., es gilt (1) mit ¢,: = ¢*. Nach Satz 3 ergibt
sich die erste Behauptung. Gilt dagegen (7) fiir dlich viele n, so bilden die Glieder
der Reihe keine N ullfolge, und die Reihe ist divergent.

Wir bemerken, daB die in Satz 5 angegebenen beiden Fiille nicht alle Moglichkeiten
ausschopfen und daB die angegebenen Bedingungen hinreichend, aber nicht not-
wendig sind.

Beispiel 1. Fiir die Reihe mit den Gliedern

)
In(n 4+ 3)

1 l 1

] = ———— < —<-—=1.

ln(n+3) n3 lne

gilt

Nach Satz 5 ist die Reihe konvergent.
Beispiel 2. Fiir die Reihe J' a, mit den Gliedern

ay i =— (r=1)
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gilt
£ )

|a.|=“;'<l (n>1).

(V)
Es kann aber keine Zahl ¢ angegeben werden, fiir die (6) erfiillt ist. Daher ist Satz 5
nicht anwendbar.

Fiir r = 1 ergibt sich die divergente harmonische Reihe. Um zu zeigen, daB die
Reihe fiir > 1 stets konvergent ist, ermitteln wir fiir die Partialsummen der Reihe
eine Schranke. Ist 7 eine beliebige positive natiirliche Zahl, dann wiihlen wir eine
positive natiirliche Zahl k mit n < 2**! — 1, und es gilt

1 1 1 1
A e —_— —_ —_ oo —
8, 8yra1_y +(2,+3,)+(4'+ +7')+

(o )

(2k)r (2l+1 _ l)'

1 1 1

— s oo |
<1+22'+2(2.)'+ +2(2k)'

1 1 1
—1+W+W+'"+W

© (1\m 1
<Z (5?) =T
Damit ist die Behauptung bewiesen.

Als Folgerung aus Satz 5 ergibt sich

Satz 6. Die Reihe } a, vst absolut konvergent, wenn

lim sup .V laa <1, (8)
R—>00
und divergent, wenn
lim sup Vla,| > 1 (9)
A—>00

at.
Beweis. Wir setzen

K :=lim sup }ja,] . (10)
00

Ist K < 1, 8o gibt es ein ¢ mit K < ¢ < 1, und nach Definition des Limes superior
gibt es hochstens endlich viele natiirliche Zahlen » mit 'y]a,l > ¢. Die absolute
Konvergenz folgt somit aus Satz 5. Ist K > 1, so gibt es unendlich viele natiirliche

Zahlen 7 mit ’ill.;:]- =1, und die Divergenz folgt wiederum aus Satz 5. Damit ist
Satz 6 bewiesen.
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Gilt dagegen in (8), (9) das Gleichheitszeichen, so kénnen keine Schliisse auf das
Konvergenzverhalten gezogen werden. So sind z. B. die Reihen mit den Gliedern

—l‘ bzw. (—1)* 1 bzw. 1 absolut konvergent bzw. konvergent und nicht absolut
n n n

konvergent bzw. divergent, und fiir alle drei Reihen gilt K = 1.
Wiihlen wir in Satz 4 die geometrische Reihe als Vergleichsreihe, so erhalten wir
das te Quotientenkriterium (CAUCHY 1821).

()

Satz 7. Die Reihe J a, ist absolut konvergent, wenn es eine reelle Zahl q gibt derart,
daf von einer Stelle p an stets

|@usa|
Iall

18t. Ste it divergent, wenn von einer Stelle p an stets

s¢<1l (nz2p) (11}

Lalot wzp (12)
@]
iat.l)
Beweis. Aus (11) folgt
|8l <qg= [
@4l [
und die erste Behauptung folgt aus Satz 4 mit c, = ¢* Gilt dagegen (12), so ist
|@y41| = |a,| > O fiir » = p, und die Glieder der Reihe bilden keine Nullfolge.

Als Folgerung aus Satz 7 ergibt sich

Satz 8. Konvergiert die Folge mit den Gliedern Ia""l, 80 st die Reihe } a,
absolut konvergent, wenn |2l

lim |G|
nso ||

<1,

und divergent, wenn  *

lim |@as1]
a0 |2

>1
8.
Beweis. Der Grenzwert sei gleich K. Ist K < 1, 80 gibt eseingmit K <g¢ <1,

und von einer Stelle p an ist die Voraussetzung (11) von Satz 7 erfiillt. Ist dagegen
K > 1, so gilt (12), und Satz 8 ist bewiesen.

Ist der Grenzwert gleich 1, so konnen wiederum keine Schliisse auf das Konvergenz-
verhalten gezogen werden.

1) Offenbar kénnen (11), (12) nur gelten, wenn a, 3 0 fir n = p ist.
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Beispiel 3. Wir betrachten die (fiir z = 0 stets konvergenten) Reihen

.§%=’+%’+§+"" (13)
"z,:(;)xn_;(;)+(:)x+(';)x’+... (a€R), (14)
§o%=1-|-li!+;_’!+..., as
S (;:)!‘ e (16)
-“i( "(2:'111)! — ot amn
éo(;:.;?=‘+%+%+"" (18)
jom—x+%+_§+ a9

und bestimmen von 0 verschiedene reelle (oder komplexe) Zahlen z, fiir welche diese
Reihen konvergieren bzw. divergieren. Wir bezeichnen die Glieder der Reihen jeweils
mit a,. In (13) gilt
Ml _ o n
|aal n+1
Ist |xj < 1, so ist (11) mit g := |xi stets erfiillt, die Reihe ist fiir alle reellen (oder
komplexen) Zahlen x mit |z| < 1 absolut konvergent. Ist |z| > 1, so gilt von einer
Stelle p an stets (12), die Reihe ist divergent. Fiir z = 1 ist die Reihe offenbar
divergent, fiir £ = —1 konvergent.
Ist & in (14) eine natiirliche Zahl, so sind hochstens endlich viele Glieder der
Reihe von 0 verschieden, und die Reihe konvergiert absolut fiir alle reellen Zahlen z.
In allen anderen Fillen gilt

a, x — N
foaal _ |yl = i

@l n1’

Da der rechts stehende Bruch fiir n — oo gegen 1 strebt, ergibt sich wiederum, daB
die Reihe fiir |#| < 1 absolut konvergiert und fiir |2| > 1 divergiert.

Ohne Beweis vermerken wir, daB die Reihe, falls « positiv ist, auch fiir z = —1
konvergiert und, falls » > —1 ist, auch fiir x = 1 konvergiert.

In (15) gilt

[ _ x|

la))  n+ 1
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und da rechts fiir alle reellen Zahlen x die Glieder einer Nullfolge stehen, ist (11) stets
erfiillt. Die Reihe (15) ist fiir alle Zahlen z absolut konvergent. Da die Glieder einer
konvergenten Reihe stets eine Nullfolge bilden, haben wir damit zugleich bewiesen,

daB die Zahlenfolge (i’) fiir jede reelle Zahl zeine Nullfolge ist. Dies bedeutet, daB
n!

die Folge (n!) wesentlich stirker gegen oo strebt als die Folge (z*), obwohl fiir groBe x
die ersten Folgenglieder 2" erheblich griBer als die entsprechenden Folgenglieder n!
sind.

Das Konvergenzverhalten der Reihen (16) bis (19) konnten wir ebenfalls mit
Hilfe von Satz 7 bestimmen. Betrachten wir jedoch die Folgen der Absolutbetriige
der Glieder der Reihen (15) bis (19), so erkennen wir, daB die zu den Reihen (16)
bis (19) gebildeten Folgen Teilfolgen der entsprechenden Folge (15) sind. Daher sind
auch die Reihen (16) bis (19) fiir alle reellen (oder komplexen) Zahlen z absolut
konvergent.

Die Reihen (13) bis (19) sind erste Beispiele fiir sogenannte Potenzrethen, die an
spiterer Stelle systematisch untersucht werden.

Alle Definitionen und Sitze dieses Abschnittes konnen unverindert auf Reihen
in vollstindigen normierten Riaumen z. B. im Raum RP iibertragen werden.

2.2.5. Bedingte und unbedingte Konvergenz

m

Wir untersuchen in Abschnitt den EinfluB einer Umordnung der Glieder einer
Reihe auf ihre Summe bzw. auf ihr Konvergenzverhalten. Dabei nennen wir eine
Reihe J'b, eine Umordnung der Reihe 3 a,, wenn eine umkehrbare eindeutige
Funktion ¢ von N auf N existiert derart, daB b, = a,,, ist. Bilden wir z. B. zur
Reihe } a, die Reihe

Lbh=a+a,+a +
a +ag+ a3+

G + Qi + doby + o0

d. h., setzen wir

@(3k) = 4k,

POk -+ 1) =4k +2, | (ke N)

@Bk +2) :=2k + 1
und b, := @y, 80 ist J' b, eine Umordnung der Reihe ' a,. Diese Umordnung
wurde in den Reihen 2.2.1.(4) bzw. (5) betrachtet, und die dortige Annahme, da8
jede Umordnung auf den Summenwert ohne EinfluB bleibt, hat zu einem Wider-

spruch gefiihrt. Es gibt also in der Tat Reihen, deren Konvergenzverhalten sich bei
einer Umordnung der Glieder dndert.

Definition. Eine Reihe heiBt bedingt konvergent, wenn sie konvergent ist und
wenn es eine Umordnung der Reihe gibt, die einen anderen Summenwert besitzt
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oder nicht konvergent ist. Sie heiBt unbedingt konvergent, wenn sie konvergent ist
und wenn der (endliche) Summenwert bei jeder Umordnung unveriindert bleibt.

Der folgende Satz stellt einen iiberraschenden Zusa hang zwischen den
Begriffen ,,unbedingt konvergent'‘ und ,,absolut konvergent her. Er geht auf
DiricHLET zuriick und wird gelegentlich der kleine Umordnungssalz genannt.

Satz. Evne Reihe ist absolut konvergent genau dann, wenn sie unbedingt konvergent
18t.

Nach diesem Satz konnen wir Reihen wie folgt klassifizieren:

Reihen
[ L |
konvergente divergente
Reihen Reihen
| : |

absolut (unbedingt) bedingt

konvergente konvergente

Reihen Reihen

Wir fithren nun den

Beweis. Wir setzen zuerst voraus, daB die Reihe J a, absolut konvergent ist.
Ferner sei ¢ eine umkehrbar eindeutige Funktion von N auf N und b, = a,. Zu
jeder positiven reellen Zahl & gibt es dann wegen der absoluten Konvergenz der
Reihe ' a, eine natiirliche Zahl p mit

p+g+1
2 lyl<e (geN). 1)

i=p+1

Wir bestimmen eine natiirliche Zahl N so, daB

(0, 1,..., p} S {9(0), (1), ..., p(n)}

fiir alle n mit n = N ist. Offenbar ist dann N = p. Das Maximum der Zahlen
@(0), (1), ..., p(n) sei n*. Dann ist » < n*, und fiir alle n mit = 3 N gilt

L] L
= | 'z‘;ay(’) —'z;“; S (8pal + -+ + ] <0,
i= i=

L] L]
Zbhy—2a
j=0 j=0

denn nach Definition von N treten alle Summanden a; mit j < p auch unter den
Zahlen a,,, @), - ., Gy 8uf, und fiir die verbleibenden Summanden q; gilt j = p
+ 1, 50 daB die Abschitzung (1) angewendet werden kann. Daher ist

" -
Lo —Xa| =0,

j=0 j=0

lim
R—>00
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woraus

l“Ja

2“!

o i=0

i

folgt. Somit ist jede absolut konvergente Reihe auch unbedingt konvergent. DaB
eine unbedingt konvergente Reihe auch absolut konvergent ist, zeigen wir durch den
Beweis der Kontraposition dieser Aussage. Die Reihe } a, sei nicht absolut kon-
vergent, d. h., die Reihe 3 |a,| sei divergent.!) Ist 3’ a, nicht konvergent, so ist
diese Reihe erst recht nicht unbedingt konvergent. Ist sie konvergent, so kénnen wir
0. B. d. A. voraussetzen, daB alle Glieder der Reihe von 0 verschieden sind. Wir
setzen
o i |aal + ax | @n fiir a, >0,
T2 _{o fir a, <0,
|a,] — ay, —a, fir ¢, <O,
2 ‘{ 0 fir a,>0.

(2)
d,:=

Dann ist stets c,, d, = 0 und |a,| = ¢, + d,, a, = ¢, — d,. Nehmen wir an, cine der
Reihen X c,, Y’ d, wiire konvergent. Wegen ¢, = a, + d, bzw. d, = ¢, — a, und
der vorausgesetzten Konvergenz der Reihe }' a, miiBte dann auch die zweite der
Reihen konvergent scin. Dann wiire aber auch die Reihe 3 |a,| = 3 ¢, + Y d, im
Widerspruch zu unserer Voraussetzung konvergent. Somit sind die Reihen 3 c,,
X' d, divergent, und zwar als Reihen mit nichtnegativen Gliedern bestimmt diver-
gent. Wegen (2) und der Konvergenz der Reihe J a, bilden ihre Glieder jedoch
Nullfolgen.

Wir skizzieren zunichst den weiteren Beweisgedanken. Wir wihlen eine heliebige
reelle Zahl x und setzen die Glieder der Folgen (c,) und (—d,) in der folgenden Weise
zu einer neuen Folge (b,) zusammen. Zunichst wihlen wir so viele Glieder der Folge
(Ca), bis deren Summe erstmals die Zahl x iibertrifft. Dann fiigen wir so viele Glieder
der Folge (—d,) an, bis die Summe aller so ausgewiihlten Glieder die Zahl x erstmals
unterschreitet. Nun addieren wir wieder so viele Glieder der Folge (c,), bis z iiber-
troffen wird, und so fort. Die Partialsummen s, der in dieser Weise gebildeten Folge
(b,) pendeln also stets iiber die reelle Zahl z hinweg. Da die Folgen (c,), (—d,) Null-
folgen sind, ist auch die Folge (s, — z) eine Nullfolge. Die Reihe J' b, konvergiert
gegen die beliebig gewihlte reelle Zahl z. In der Folge (b,) sind unendlich viele
Glieder von null verschieden. Wir betrachten! die Teilfolge (b,'), die nur aus den von
Null verschiedenen Gliedern der Folge (b,) besteht. Wegen (2) ist dann die Reihe
3’ b, eine Umordnung der Reihe 3 a,, und wegen 3'b,’ = J'b, = z ist die Reihe
2 a, nur bedingt konvergent.?)

1) Im Fall einer Reihe mit komplexen Gliedern a, bzw. einer Reihe mit Gliedern a, € R?
folgt dann aus 2.1.2.| (5). daB wemgstens eine der Reihen J |aj,] (7 = 1, ..., p) divergent sein
muB. Die hfol dann auf die Reihe S oy, angewendet werden, so
daB der Beweis auch fir diese Reihe giiltig bleibt.

2) Uber die Aussage des Satzes hinaus folgt aus dem Beweis: Zu jeder reellen Zahl z und
zu jeder bedingt konvergenwn Reihe gibt es eine Umordnung dieser Relhe, deren Summe
gleich z ist. Dies ist eine Teilaussage des sog schen U 1

g
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Zur Ausfilhrung des Beweisgedankens definieren wir induktiv vier Zahlenfolgen (z,), (y,),
(Pn)s (gn). Mit py bzw. g, bezeichnen wir die kleinste natiirliche Zahl mit der Eigenschaft

Co+ 6 4+ - +cp, >z baw. ¢yt + v dep —dg—dy — ot —dy, <z
und setzen
Pe %
zo =X ¢, Yoi=1%p — X dy.
i=0 j=0
Nach Definition von p,, ¢, ist dann
. ZTg—Cp, ST< %y, Yo<T=Yy+dg.
Fir eine natiirliche Zahl » scien p,, ¢,, Z,, ¥4 schon definiert, und es gelte
Ty —Cp, ST< Ty, Y <ZZYptdg,
Mit p,,, bzw. g, bezeichnen wir die kleinste natiirliche Zahl!) mit der Eigenschaft

Past Pana Yo
Tht+ X o>z baw. yo+ X oo— Y dp<z
j=patl j=patl  k=qat+1

und setzen
Pant [
Tpy1 1= Yn + PN Yn+1i= Tpyy — Xz d
i=Patl j=gnt+1
Nach Definition von p,,,, q,4, ist dann
Tper = Cppy =T < Tyyyy Ynt1 < T S Ypar + dgpae (3)

Damit sind die Folgen (p,), (¢,), (Z4), (¥,) induktiv definiert. Wegen (3) und c,, d, — 0 far
n — oo gilt z, -z, y, — z fir n — oo. Wir bilden die Reihe ' b,, deren Glieder durch die
Folge

(Cor <+ Cpyr — By ++er —Bgqs Cpys1s ++0r Cpyy —Bgyins =+ —Ggyy --2)

gegeben sind. Die Folgen (z;), (y;) sind konvergente Teilfolgen der Partialsummenfolge (s,)
dieser Reihe. Zu jeder natiirlichen Zahl » mit n > p, + ¢, + 1 gibt es genau eine natiirliche
Zahl j mit

s +1i<ns=pn,+g+1
oder
P+ 4+ 1<"§1’[+1+th +1.
Ferner gilt j —> oo fir n — co. Nach unserer Konstruktion ist stets y; < s, < z;,, bzw.

Yj < 8, < z;. Daher konvergiert auch die Folge (s,) gegen z, es ist J b, = ¥. Die bereits oben
definierte Reihe J' b,’ ist dann eine Umordnung der Reihe J a,, und unser Satz ist bewiesen.

2.2.6. GroBer Umordnungssatz
In vielen Anwendungen der Analysis treten sogenannte Doppelreihen der Form

0
X Lan

m=0R8=0

1) Die Existenz dieser Zahlen folgt aus der Divergenz der Reihen X ¢,, X d,.
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auf. Hierbei handelt es sich um die folgende Problemstellung. Gegeben ist eine
Doppelfolge (ama)mnen- Fiir jede natiirliche Zahl m soll die Konvergenz der Reihe

00
Z d’ﬂl
n=0
untersucht werden, und wenn diese Reihe stets eine endliche Summe Z, besitzt,
soll auch gepriift werden, ob die Reihe mit den Gliedern Z, konvergiert. Ist dies der
Fall, so setzt man

d fd L
L Zp:=Y Yap.
m=0 m=0 =0
Oft ist auch die Frage zu entscheiden, ob die Reihenfolge der beiden Grenziiberginge
vertauscht werden darf, d. h., ob

0 e [ L
2 Xan= Z 2
m=0mn=0 "=0m=0
ist. SchlieBlich ist es oft zweckmiBig, fiir die Indexpaare (m, n) eine ,lineare* An-
ordnung ((m,, ), (Mg, Ny), ..., (My, ), .. .), d. h. eine umkehrbar eindeutige Funktion
@ von N auf N XN mit ¢(j) = (my, ny) vorzugeben und zu untersuchen, ob auch die
,.einfache** Reihe
d
]'.-:I am,u,
denselben Grenzwert wie die beiden oben genannten Doppelreihen besitzt.
Die beiden wichtigen Spezialfille von linearen Anordnungen sind die Anordnung
Mch deraten und die Arwrdnung nach Diagonalen, die aus den folgenden beiden
werden }

Qg Uy Bgg e o . . .
ot 1

Qo —>ay Qg . ...

Qo> Ay > Ay e . . . .
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Im ersten Schema ist

o0y B10) P11y Bo1s D20y R21y A2y T2y Do2s + oy
im zweiten ist

o0s @100 To1y C20) F11s Bozs X300 D215 T2y Bos - -«

die lineare Anordnung.

Ein hinreichendes (zum Teil auch notwendiges) Konvergenzkriterium liefert der
in der mathematischen Literatur gewdhnlich als grofer Umordnungssatz bezeich

Satz. Es set (¢,,) eine Doppelfolge, und

Tonne Tmynyr Cmyny

sev etne lineare Anordnung der Doppelfolge. Existiert dann eine reelle Zahl K derart,
dap stets
[ ]
2 2leml =K  (pEN) (1)
m=0n=0

8¢, 80 konvergieren alle Rethen

E apmy  (m € N), 2‘0«” (n€N), E A n, (2a, b, ¢)
m=0 i=o

n=0
absolut, und es gilt
I o oo © o
Z Cpyn, = 2 Z Amn = Z Za’u-- 3)
i=0 m=08=0 A=0m=0

Beweis. Wegen (1) ist K offenbar eine obere Schranke fiir die Summe der Absolut-
betrige beliebig vieler Glieder der Reihen (2a) und (2b). Dasselbe gilt aber auch fiir
die Reihe (2¢), denn ist p das Maximum der Zahlen m;, n; mit j < , so gilt

z': | S 5 5 [l S K.

j= m=0n=0

Die Reihen (2) konvergieren daher simtlich absolut. Wir setzen

L
Zy =) app,
=0
el e
§:=x Aonynyr 8= [@anym, |5
j=0 j=0

2 2 .2
Sp:=2, Eann Sp‘:=24 L'a-ul~

m=0 n=0 m=0n=0
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Die erste Behauptung (3) lautet dann

P

S=X 7. @
m=0

Da die Reihe mit den Gliedern a,,, absolut, also auch unbedingt konvergiert,

konnen wir eine spezielle lineare Anordnung wiblen. Ohne Beschrinkung der All-

gemeinheit sei dies die Anordnung nach Quadraten. Die Folge (S,) bzw. (S,*) ist

unter dieser Voraussetzung eine Teilfolge der Partialsummenfolge der Reihe 3 [

bzw. J) |@egyn,|» und e8 gilt

8,—>8, 8*—>8* fir p—>oo. (5)

Fiir alle p, ¥ mit k = 1 ist ferner

P ptk
gz Z |l §S;+,,

m=0 n=0

P ptk
Z Z aﬂl

m=0n=p+1

S,* +

also
P p+k

2 aﬂl

m=0m=p+1

S 85— St

Der Beweis von (4) ergibt sich nun wie folgt. Es ist

» » pik P2k
s—Yz,|= |s—z (Iim Za,,.) lim (s B za,.)
m=0 m=0 \k—oo n=0 m=0n=0

p+k
—lxm 8§ — L z‘a,.,,
m=0n8=0
P prk
glim(ls—z Xag | +| X Z‘a”)
k—oo m=0n=0 m=0n=p+1

STim (1S — Syl + Spip — 8,%) = IS — 8yl + 8% —
k—oo
Fiir p — oo strebt die rechte Seite wegen (5) gegen 0, und damit ist (4) bewiesen.
Analog wird die zweite Behauptung (3) bewiesen.
Der groBe Umordnungssatz ist auch in vollstindigen normierten Réumen giiltig.

2.2.7. Multiplikation unendlicher Reihen

Gegeben seien zwei konvergente Reihen } a,, 3 b, mit reellen (oder komplexen)
Gliedern. Unter gewissen Voraussetzungen kann das Produkt der beiden Summen
in Form einer Doppelreihe oder auch einer einfachen Reihe angegeben werden. Ein
hinreichendes Kriterium hierfiir ist die absolute Konvergenz der beiden Reihen

1) Vgl. 2.1.3.(7").
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2 a,, 3 by. Dann gibt es nimlich reelle Zahlen K, K, mit

© ©
Xl =K, Xlbl<=K,
=0

=0
und fiir alle natiirlichen Zahlen p gilt
P ] »
2 Xlagh = X ‘an 2 bl < K,K,,

e
m=0nr=0 m=0

d. h., fiir die Doppelfolge (anb,) ist die Voraussetzung 2.2.8.(1) des groSen Um-
ordnungssatzes erfiillt. Aus

dem groBen Umordnungssatz und 2.1.3.(6) folgt somit

el o0 el d el fed
Lo Nby=5 Yapba=2X X anb,. 1)
m=0 n=0 m=0 n=0 R=0m=0
Eine fiir die Anwendungen besonders wichtige Formel ergibt sich, wenn man im
groBen Umordnungssatz die Anordnung nach Diagonalen wiihlt.
Wenn wir beachten, dal die Summe der beiden Indizes aller in derselben Diago-
nalen stehenden Glieder a,b, konstant ist, erhalten wir den

Satz. Sind die Reikhen ) a,, 3’ b, absolut konvergent, so gilt

[ o o k
Yan XYoo= Yab,. (2)
m=0 n=0 k=0j=0

Die in (2) rechts stehende (einfache) Reihe mit den Gliedern Za,b,_, heit die
Cauchysche Produktreihe der Reihen 3 a,, 3 b,. i=0

Beispiel 1. Fiir alle z mit |z| < 1 gilt

(E‘ x") (2 (=1 :r:") =3 Pl —t)igti— fztz" (—1)r-i

n=0 n=0 k=0 j=0 k=0 j=0
& 1
é’; T 1—at’
denn es ist
i’(—l)“‘f= 1 fir k=2n (n € N),
i=o 0 fir k=2n+1 (n € N).

htives Beispiel behandeln wir im nichsten Abschnitt
g piel b wir im A

Ein weiteres wi
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Die Ergebnisse dieses Abschnitt hen zusammen mit dem kleinen Umordnungs-
satz in 2.2.5. die eigentliche Bedeutung der absoluten Konvergenz deutlich. Mit
absolut konvergenten Reihen darf man (im Gegensatz zu der negativen Feststellung
am Anfang von 2.2.1.) ebenso wie mit endlichen S uneingeschrinkt
tativ, distributiv und assoziativ rechnen.

2.2.8. Die Exponentialreihe

Fiir alle reellen (bzw. komplexen) Zahlen z definieren wir exp x (gelesen: Exponent z)
durch
z z?

® g xk )
expx:=£“"—!=1+1—!+2_!+"’+k_!+"‘ (z€ Rbzw.C). (1)

In 2.2.4., Beispiel 3, wurde bewiesen, dafl diese Reihe fiir alle reellen bzw. komplexen
Zahlen z absolut konvergent ist. Sie wird Exponentialrethe genannt. Sie wurde
von NEwTON im Jahre 1666 durch Umkehrung der Mercatorschen Reihe fiir den
natiirlichen Logarithmus gefunden. Wir driicken das Produkt von exp r und exp y
durch die Cauchysche Produktreihe aus. Es ist

© am 0o x k—j
exprepy=5 — T L_ Sy ¥
m=o m! oo n!  £Zojo0 j! (kK — j)!
21 X k! . © 1 ki k .
= — —_— iyt = —_— )"( ) afyk-i
ké; k! ié; Jllk — i) ké; k! jZo \ 7
® (7t gk
_plaw
ko k!

Die reclle bzw. komplexe Funktion (1) geniigt somit der Funktionalgleichung der
Exponentialfunktion, es ist

exp (¥ + y) =expzrexpy (z,y € Rbzw. C). (2)
Wegen

3
expx=l+—:—, +%+...>1 (z€ R, z>0) (3)
folgt aus z < y stets
expy = exp (z 4 (y — 2)) = expzexp (y — ) > expz,

d. h., die reelle Funktion

2
expz=l+%+;+-~~ (z€ R) @
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ist streng monoton wachsend und geniigt der Funktionalgleichung der Exponential-
funktion. Daher ist (4) eine Exponentialfunktion, deren Basis @ wir ermitteln wollen.
Nach (4) ist

a#—l:expz—l§x+x'+...=lx_": eRO<2<1), (5)

und aus dem Satz iiber die Partialsummen alternierender Reihen (2.2.3., Satz 2)
folgt
Fa

2
1_a-==z_%+§_+...g:¢—% (z€RO0O<z<1). (6)

Mit 2.1.5.(10) ergibt sich

2
-2 <l—a*<zhe<o —1<—= O<z<l).
2 1—=z
" 1
Fiir z = folgt
n 1
— = aSl —_
2(n+l) " +

und der Grenziibergang n — oo liefert Ina = 1, a = e. Somit ist exp z = ¢* (z € R),
und wir gewinnen mit

x z z?
=) —=1+—4—+-- (z€R) (M
..é; ! 12!
eine neue wichtige Darstellung der speziellen Exp tialfunktion. Fiir die Zahl e

ergibt sich mit z = 1 die sehr gut konvergierende Reihendarstellung
tim (1 1\* Z"‘, 1 ®)
e =lim + -] = —_
n—>c0 ( n) amo 2!

Hiermit beweisen wir den

Satz. Die Eulersche Zahl e Vst irrational.

Beweis. Nehmen wir an, es wire e = r (p,q €N).Wegen2 <e<3istg>1,
und aus (8) folgt

p 21 = 1

¢ AW A e
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Multiplizieren wir beide Seiten mit ¢!, so steht links eine ganze Zahl m. Da die rechte
Seite positiv ist, ist m = 1. Es folgt
g q! 1 1 1
— < 4 4t + e

é.(q+k)1 g+1 (@+1p g+ 1)

1 1
Cg+t 1

¢+1

Das ist ein Widerspruch, und folglich ist ¢ irrational.

Erheblich schwieriger als der eben gefiihrte Beweis ist der Nachweis, daB e eine
transzendente Zah!l ist, d. h., daB es keine ganzrationale Funktion f mit rationalen
Koeffizienten aq, a,, ..., @, (@, = 0) und f(e) = O gibt.

Nach (7) gilt e* = exp  fiir reelle z, wihrend das Symbol e fiir nichtreelle kom-
plexe Zahlen z nicht definiert ist. Wir definieren es ebenso wie im Reellen, d. h., wir
setzen

1=m=

<1l

Q|-

o i En% (xeC), )

und damit lautet die am Anfang bewiesene Funktionalgleichung
€Tty = e%e¥ (x,y€C). (10)

Die durch (9) definierte Funktion heiBt die komplexre Exponentialfunktion. Wegen
et e % =¢ =1 ist stets e* 3 0, die komplexe Exponentialfunktion besitzt keine
Nullstelle. Wir vermerken weiterhin, daB stets

F=eé (z€C) (11)

gilt. Dies folgt aus der Darstellung (9) mit Hilfe von 2.2.2.(1), 2.1.3.(12) und
1.2.2.(5), (6).

Wir fiihren jetzt den angekiindigten Beweis fiir die Existenz der trigonometrischen
Funktionen mit den Hilfsmitteln der Reihenlehre. Fiir alle x € R ist

(ix)2* ;‘ (iz)2e+1

ol e
o kS (@k)! k:o 2k + 1!

=0
e | i
¥=o (2”' Ho 2k + 1!

Fiir » - oo konvergiert die linke Seite nach (9) gegen et. Auf der rechten Seite er-
geben sich die absolut konvergenten Reihen 2.2.4.(16), (17). Setzen wir also
x* ad

cosz—z‘(—l)'(zu' 1— 2'+4——+ zeR) (12)
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bzw.
Z3k+1 a3 x5

o — e (xeR), (13)

sinz:= 3 (—1)* 5

e

$o——o---=2— —
¥oo (2k + 1)! 3!
8o erhalten wir die Eulersche Relation

ef = cosz 4+ isinz (z€R),

die EULER wohl bereits 1740 gefunden hatte.

Die Entwicklung der Sinus- und Kosinusfunktion in unendliche Reihen war seit NEwToNs
»»De analysi per aequationes'* von 1666/69 bekannt. Die Reihen selbst zur Definition der Funk-
tionen, und zwar fiir komplexe Argumente, verwendet zu haben ist das Verdienst von EULER
1749,

Die Relationen cos (—z) = cos z, sin (—z) = —sin z kénnen unmittelbar aus
(12), (13) abgelesen werden. Die Additionstheoreme folgen aus
cos (2 + y) + ¢sin (z + y) = =Y = ¢izew
= (cos r + 7 8in z) (cos y + ¢8iny)
= (cos x cos y — sin z 8in y)
+ #(sin x cos y + cos z 8in y)

durch Vergleich von Real- und Imaginirteil. Es bleibt nur noch 1.6.1.(5) zu beweisen.
Fir 0 < z < 1 bilden die Absolutbetrige der Glieder der Reihen (12), (13) streng

monoton fallende Nullfolgen. Aus dem Satz iiber die Partialsummen alternierender
Reihen folgt daher

I'
0<l——+F—+m=cosz,
) O<z<1).
3 .
0<z<z—?+—...=smx

Ferner ist

sin:—zcosz:z—i+i_+..._(x_i+i_+...)

3! 5!
1 1
"“(ﬁ"%?)*""'

1 1
="’(E“¥)

und auf Grund desselben Satzes ist sin z — z cos z > 0.
Zusammenfassend ergibt sich

0<sinx<x<sm—z O<z<l),
cos

und die Existenzaussage von Satz 1 in 1.6.1. ist bewiesen.
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Nach 1.8.3.(7) kann nun jede komplexe Zahl z 3= 0 auf genau eine Weise in der
Form
z = ret® r>0,—n<gp=n (14)

dargestellt werden.

23.  Stetigkeit und Grenzwerte von Funktionen
2.3.1.  Stetigkeit (Folgendefinition)

Im folgenden lernen wir einen fundamentalen Begriff der Analysis kennen. Der
Begriff der Stetigkeit einer Funktion kann auf verschiedene Weisen definiert werden.
In diesem vorbereitenden Abschnitt filhren wir diesen Begriff auf die Konvergenz
von Folgen zuriick. Im néchsten Abschnitt werden wir eine zweite dquivalente Defi-
nition geben, die sich auf den Umgebungsbegriff stiitzt. Es sei f eine reelle Funktion.
Dann kénnen wir zu jeder Folge (z,) mit z, € D(f) (n € N) die Folge der zugehorigen
Funktionswerte f(z,) bilden. In der Theorié der Grenzwerte und der Stetigkeit wird
ein Zusammenhang zwischen der Konvergenz der Folgen (z,) und /((a:,)) hergestellt.

Beispiel 1. Wir betrachten die Funktion f(x) = sgn x (x € R) und bilden zu den
Nullfolgen

B () () oo

die Folgen der zugehorigen Funktionswerte, d. h. die Folgen mit den Gliedern 1,
—1, (=1

Die ersten beiden Folgen sind konvergent, haben aber die verschiedenen Grenz-
werte 1 und —1, die dritte Folge ist unbestimmt divergent. Aus der Konvergenz der
vorgegebenen Folgen kann somit nicht auf die Konvergenz der Folgen der Funk-
tionswerte geschlossen werden.

Beispiel 2. Fiir eine beliebige natiirliche Zahl m betrachten wir die reelle (oder
komplexe) Potenzfunktion f(x) = z™. Es sei (z,) eine beliebige konvergente Folge
mit dem Gr rt a. Dann besitzt die Folge eine Schranke K, und es gilt auch
la| < K. Im Fall m = 0 ist

1f(xa) — f(@)] = |zn® — %] =0,

und fiirm = 1,2, ... gilt

f(@a) — /@) = |z, — am| = | (22 — a) z'f 2yt
2

< |z, —al ):‘. KiK»i = |z, — a|m - K™1.
i=1 ’
Rechts stehen die Glieder einer Nullfolge, d. h., es gilt

lim z,” = a,,. (1)
R—>00
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Aus der Konvergenz der vorgegebenen Folge folgt somit im Gegensatz zu Beispiel 1
stets die Konvergenz der Folge der zugehdrigen Funktionswerte, und zwar konver-
giert sie stets gegen den zum Grenzwert der vorgegebenen Folge gehorenden Funk-
tionswert.

Nach diesen Vorbetrachtungen formulieren wir die

Definition 1. Eine reelle (bzw. komplexe) Funktion f heiBt im Punkt a € D(f)
oder an der Stelle a € D(f) stetig, wenn aus z, € D(f) (n € N) und hm z,, = a stets
folgt, daB hm /(:c,.) existiert und

lim f(z) = f(a) @)

ist. Ist / an der Stelle a € D(f) nicht stetig, so sagen wir, f sei an der Stelle a unstetig.

Die Funktion y = sgn z ist an der Stelle 0 unstetig, die Potenzfunktionen sind
dagegen an allen Stellen ihres Definitionsbereichs, d. h. fiir alle reellen (bzw. kom-
plexen) Zahlen, x stetig.

Der Begriff der stetigen Funktion tritt in der mathematischen Literatur recht spit auf, da
man zum gréBten Teil von vornherein stetige Funktionen auf Grund des engen Funktions-
begriffs betrachtete und den A h nicht b deren Wert beimaB. In BoLzaNos ,,Rein
analytischem Beweis ...* von 1817 findet sich die erste genaue Definition: ,,Nach einer rich-
tigen Erklirung ... versteht man unter der Redensart, daB eine Function f(z) fiir alle Werthe
von z, die inner- oder auBerhalb gewisser Grenzen liegen, nach dem Gesetze der Stetigkeit
sich éndere, nur so viel, daB, wenn z irgend ein solcher Werth ist, der Unterschied f(z + w) — f(z)
kleiner als jede gegebene GriBe gemacht werden konne, wenn man w so klein, als man nur
immer will, annehmen kann.* Cavcuys Definition von 1821, mit der der Begriff der stetigen
Funktion fest im Lehrgebdude der Mathematik verankert wurde, unterscheidet sich nur un-
wesentlich von der BoLzawos.

Ist eine Funktion f an der Stelle a stetig, so folgt aus der Definition sofort, dag
jede Einschrinkung von f, deren Definitionsbereich den Punkt a enthilt, ebenfalls
an der Stelle a stetig ist. Ebenso leicht erkennt man, daB f an der Stelle a stetig ist,
wenn a ein isolierter Punkt des Definitionsbereichs von f ist.!)

Beispiel 3. Die Funktion
y=Inz (z¥R,z>0) 3)

ist in jedem Punkt a mit @ > 0 stetig. Zum Beweis gehen wir von 2.1.5.(3), (9) aus.
Hiernach ist stets

Z_ 1
a

SEh—=s-—-1

YK
K

xz
a

r—a r—a
S<lhz—Ilne £ .

1) In manchen Lehrbiichern wird der Begriff der Stetigkeit nur fir Hiaufungspunkte des
Definitionsbereichs definiort
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Wihlen wir eine Folge positiver Zahlen z,, die gegen die positive reelle Zahl a kon-
vergiert, so erhalten wir mit 2.1.3., Satz 4, durch Grenziibergang

0<lim(lnz, —Ilna) <0,

A—>00
und hieraus folgt die Behauptung.

Beispiel 4. Die trigonometrischen Funktionen y = cos 2, y = sin z sind in allen
Punkten z € R stetig, denn nach 1.6.1.(24), (25) ist

|cos x, — cos x| < |x, — 2|,

sin z, — sin z| < |z, — z|.
Beim Nachweis der Stetigkeit konnen wir uns auf monotone Folgen beschrinken.

Satz 1. Eine reelle Funktion f ist in einem Hiufungspunkt a € D(f) stetig genau
dann, wenn (2) fiir alle streng monotonen Folgen (x,) mit dem Grenzwert a und mait
z, € D(f) (n € N) gilt.

Beweis. Ist f an der Stelle a stetig, so ist die Bedingung von Satz 1 nach Defi-
nition 1 offensichtlich erfiillt. Die Umkehrung beweisen wir durch Kontraposition.
Die Funktion f sei an der Stelle a unstetig. Dann gibt es eine Folge (z,) mit z, € D(f)
und z, — @, fiir die‘(/(.r,.)) nicht den Grenzwert f(a) besitat. Es gibt daher ein ¢ > 0
derart, daB |f(x,) — f(a)| = ¢ fiir unendlich viele natiirliche Zahlen » erfiillt ist.
Wir konnen daher zu einer Teilfolge (z,’) von (z,) mit |f(z,’) — f(a)| = ¢ iibergehen.
Diese Teilfolge enthilt eine monotone Teilfolge (z,’). Wegen z,"” — a fiir n — oo
und |f(z,") — f(a)].= ¢ ist stets x,’” &= a, und es gibt eine streng monotone Teilfolge
(z4*) von (z,”) mit |f(x,*) — f(a)| = . Die Folge (/(x.‘)) besitzt somit nicht den
Grenzwert f(a),qind Satz 1 ist bewiesen.

Beispiel 5. Fiir jede positive reelle Zahl a ist die Funktion
y=a* (z€R) (4)

an jeder Stelle b ihres Definitionsbereichs stetig. Zum Beweis wihlen wir eine streng
monoton wachsende Folge (x,’) und eine streng monoton fallende Folge (z,'') mit
z,' - b, z,”” - b fiir n > oo. Ferner wihlen wir rationale Zahlen r,’, 7,” mit
Ty, <ry <z und x,” <r,” <z, %0 daB auch r,’ > b, r,” - b fiir n > oo
gilt. Ist etwa a = 1, so folgt

o o < <ot < an
so daB wir nur noch zu zeigen haben, daB (a" — a'~') eine Nullfolge ist. Dies beweisen

wir mit Hilfe von 1.4.1.(8), (9). Ist R eine (rationale) Schranke von r,”" — r,’, 80
ist

lav." — ar.’| =a™ |am" T — 1= a’aR+1 la — 1| |y — '],

und hieraus folgt die Behauptung, weil (r,"” — r,’) eine Nullfolge ist. Die Funktion (4)
ist somit an jeder Stelle b stetig.
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Dieses Ergebnis zeigt, daB die Exponentialfunktion fiir irrationale Exponenten z
auch durch

az := lim a"» limr, = z) (5)
R—>00 N—>00

mit 7, € @ definiert werden kann.

Die obige Definition fiir die Stetigkeit kann unverindert auf Funktionen aus
einem euklidischen Raum R? in einen euklidischen Raum R? (oder noch allgemeiner
auf Funktionen aus einem metrischen Raum X in einen metrischen Raum Y) iiber-
tragen werden.

Definition 1’. Eine Funktion f aus einem metrischen Raum X in ecinen metrischen Raum Y
heiBt im Punkt a oder an der Stelle a stetig, wenn a € D(f) ist und wenn aus z, € D(f) (n € N)

und lim z, = a stets folgt, daB lim f(z,) existiert und lim f(z,) = f(a) ist.
R—>00 A—>00 N—>00

Auch Satz 1 bleibt fir Funktionen aus R in einen metrischen Raum X giltig.

2.3.2. Stetigkeit (Umgebungsdefinition)

Das nachfolgende Kriterium fiir die Stetigkeit einer Funktion wird haufig als Defi-
nition fiir diesen Begriff verwendet. Diese Definition hat gegeniiber der Folgen.
definition den Vorteil, daB sie auf allgemeinere Raumtypen iibertragen werden kann-
Ihr Inhalt kann geometrisch wie folgt geschildert werden. Es sei a € D(f). Dann
wiihlen wir eine beliebige positive reelle Zahl ¢, und betrachten die e-Umgebung von
f(a). (In Abb. 2.14 bzw. Abb. 2.15 ist der Sachverhalt fiir den Fall einer komplexen
bzw. reellen Funktion angedeutet.)

Fiir verschiedene positive Zahlen ¢ betrachten wir nun die Menge aller Bildpunkte
H(z) mit z € D(f) und = € U,(a). Im allgemeinen werden diese Bildpunkte nicht sémt-
lich in der vorgegebenen e-Umgebung von f(a) liegen. Das Kriterium fiir die Stetig-

Abb. 2.14

f(a+6;) 91

fla-6) &1 Abb. 2.15
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keit einer Funktion / an der Stelle a besteht nun gerade darin, daB fiir ein hinreichend
kleines 4 alle diese Bildpunkte in der vorgegebenen e-Umgebung liegen.

Satz 1. Eine reelle (bzw. komplexe) Funktion f st im Punkt a € D(f) stetig genau
dann, wenn es zu jeder positiven reellen Zahl ¢ eine positive reelle Zahl & gibt derart,
daf aus

zeD(f) und |z—a|<$

slels
If(z) — fla)] < e
Jolgt:
[ stetig in a € D(f) &
V A (z—al <8 f(x) — fl@) <¢). 1)
>0 >0 zeD())
Beweis. Wir betrachten die rechte Aussage der Aquivalenz (1). Ist diese Aussage

wahr, so wihlen wir eine beliebige Folge (x,) mit z, € D(f) und lim z, = a. Es sei ¢

R—>00
eine positive reelle Zahl. Wir wihlen gemi (1) eine positive reelle Zahl é mit der
Eigenschaft

A (lz—al <33 1f(x) — fl@)l < ). )
zeD(f)

Nach der Definition fiir die Konvergenz von Folgen gibt es ein N mit |z, — a| <
fiilr n = N. Wegen (2) ist dann |f(z,) — f(a)| < ¢ fiir » = N, d. h., es ist lim f(z,)
= f(a), die Funktion f ist an der Stelle a stetig. Linaed

Ist die rechte Aussage in (1) falsch, so ist ihre Negation wahr, d. h., es gibt eine
positive Zahl ¢ mit der Eigenschaft

V (lz—al <5alf@) — fa)l Z ¢).

850 2€DU/)
Wir setzen nun 8 := lund bestimmen z, so, daB z, € D(f), |z, — a <l und
1f(xa) — @)l = ¢ ist. Dann gnlt lim ::. = a, aber nicht lim /(a:,,) = f(a), d. h die
Funktion f ist an der Stelle a unstetlg Damit ist Satz 1 bewnesen.

Die Aussage (1) ist logisch dquivalent mit der Aussage
f stetig in a € D(f) &
AV A/ —fa)ze= |z —al Z6). 3

>0 8>0 zeDU)

In manchen Fillen lassen sich Stetigkeitsunt hungen in dieser Form besser
durchfiihren.
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Beispiel 1. Wir zeigen, daB die komplexe Exponentialfunktion in jedem Punkt ¢
ihres Definitionsbereichs stetig ist. Fiir den reellen Fall wurde der Beweis schon in
2.3.1., Beispiel 4, gefiihrt.

Fiir |z] < list
z z* 1
ef— 1| =|—4+—4 ...| < 14— ...
e—t= |2+ Ty \_|z|(+2,+ ) "
lef—1<lxle (2l <1).
Fiir |z — a| < 1 ist daher
lef — €% = |e*(ec® — 1)| < |e*| - e - | — a],
()

le* — e*| < |e**!] - |z — a].

Wiihlen wir zu vorgegebenema ¢ Cund e > 0eindmit0 <d < lund é < ¢ |e*?|,
8o folgt aus |z — a| < & stets

lef — €9 < le*tl|.ele® | =¢
und damit die Behauptung.

Stetigkeitsuntersuchungen kénnen héufig mit dem folgenden Vergleichskriterium
durchgefiihrt werden.

Satz 2. Es seien [, g reelle (bzw. komplexe) Funktionen mit D(g) S D(f). Gibt es zu

a € D(g) ein K mat
lg(x) — g(a)l < K |f(z) — f@)| (=€ D(g)), (6)
80 folgt aus der Stetigkeit von f an der Stelle a auch die Stetigkeit von g an der Stelle a.

Beweis. Aus z, —»a folgt f(x,) = f(a) und damit g(z,) —g(a), d. h., g ist in a
stetig.

Wir bemerken, daB es in Satz 2 geniigt, die Giiltigkeit von () fiir alle x aus einer
hinreichend kleinen Umgebung von a nach isen. Fiir reelle stetige Funktionen
ist stets

[If@) — /@] < If(z) — fa)l,
und dies besagt nach Satz 2, daB mit f auch die durch fo(z) := |f(z)| definierte Funk-
tion f, in a stetig ist. Allgemeiner gilt
Satz 3. Ist f eine im Punkt a € D(f) stetige kompleze Funktion, so sind thr Absolut-
betrag, thr Realteil und thr Imagindrteil, d. h. die Funktionen
fo(@) == /()| (z € D),
(@) :=Refz) (x¢D(p),
h@):=Imf(z) (z¢€ D(),
im Punkt a stetrg.
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Beweis. Fir:=0,1,2 ist
ifi@) — fi@)| S /(@) — f@)] (s, € DY),
und die Behauptung folgt aus Satz 2.

Die Sitze 1, 2 und 3 ké wir wieder verallg inern,

Satz 1'. Eine Funktion f aus einem metrischen Raum X in einen metrischen Raum Y ist im
Punkt a € D(f) stetig genaw dann, wenn es zu jeder positiven reellen Zahl e eine positive reelle
Zahl 6 gibt derart, daf aus

z € D(f) und px(z,8) <6
slets
er(f(2), f(a)) < &
folgt.
Der Beweis von Satz 1 kann unverindert iibertragen werden, wenn wir iberall [z — a]

durch gx(z, @) und |f(z) — f(a)| durch py(f(z), f(a)) ersetzen.

Satz 2'. Es sei f bzw. g eine Funktion aus einem metrischen Raum X in einen metrischen
Raum Y bzw. Z mit D(g) S D(f). Gibt es zu a € D(g) ein K mit

02(9(2), 9(a)) < Key(f2). /@)  (a € Dig)), ©)
80 folgt aus der Stetigkeit von f an der Stelle a auch die Stetigkeit von g an der Stelle a.

Der Beweis von Satz 2 bleibt unverindert, und wiederum geniigt es, die Giltigkeit von (8')

fiir eine hinreichend kleine Umgebung von a nachzuweisen.

Satz 3. Es sei [ eine Funktion aus einem metrischen Raum X in den Raum RP und

folz) = @), fz) = (@) .. fp(2) (= € D().

Die Funktion [ ist an der Stelle a € D(f) stetig genay dann, wenn die Funktionen f,, ..., f, an
der Stelle a stetig sind. Mit | ist auch f, an der Stelle a stetig.

Beweis. Firallez € D(fyund i =1, ..., p gilt
P
Ifi(2) — fi(a)l < lif(z) — f@l §'£l Ify(z) — fya)l.
i=
Ist f an der Stelle a stetig, so sind nach Satz 2’ auch die Funktionen f; (i = 1, ..., p) an der
Stelle a stetig. Sind umgekehrt alle Funktionen f; an der Stelle a stetig, so konnen wir zu vor-
gegebenem & > 0 Zahlen 6; > 0 mit |f;(x) — f;(a)] < £ far o(z, a) < &; bestimmen. Ist é das

Minimum der Zahlen 4,, ..., 3, so folgt aus g(z, a) < 4 stets ||f(z) — f(a)l| < &, und f ist an der
Stelle a stetig, Die Stetigkeit von f, an der Stelle a folgt nun aus

fo(z) — fol@) = [ilf@)Il — I(@)ll] < lIf(=) — fla)ll
und Satz 2’.

Stetigkei hungen fiir Funktionen zweier Variabler lassen sich mitunter
mit Hilfe von ebenen Polarkoordinaten bequem durchfiihren.
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Beispiel 2. Es sei

a?—
— 3 R\ (0, 0),
fl=,y):= Ve + 4 i mye @9
0 fir (z,y) = (0,0),
2 — y? "
—7 fi ,y) € R2\ (0,0),
gz, y):=1 2+ 9 iy @0
0 fir (z,y) = (0,0).

Wir priifen, ob diese Funktionen im Punkt (0, 0) stetig sind. Fiir alle (z, y) =+ (0, 0)
bestimmen wir reelle Zahlen 7, ¢ mit z = r cos ¢, y = r sin ¢ (r > 0). Dann ist

cos® p — sin? ¢

”
=5 ,
cos?p +sin?p 4 in 4p

f(x,y) =r2cos psing
und es folgt

£z, y) — £(0, 0)i = r*.
Tst ¢ > O vorgegeben und setzen wir 6 := }z, so folgt aus

r=ll=y —(0,0] <o
stets
fxy) — (0,0 =2 <8 =e.

Die Funktion f ist somit an der Stelle (0, 0) stetig. Fiir die Funktion g gilt dagegen
9(x, y) = cos® ¢ — sin? p = cos 2¢.
Hieraus kann man sofort die Unstetigkeit der Funktion an der Stelle (0, 0) ablesen,

N 1 1 . .
denn setzen wir z, := — cos @, ¥, := — 8in ¢, so gilt
n n
lim g(z,, y,) = cos 2¢p.
A—>00

Wir konnen daher gegen (0, 0) konvergierende Folgen mit den Gliedern (z,, y,) an-
geben, fiir die die Folge der Funktionswerte gegen eine beliebig vorgegebene reelle
Zahl zwischen —1 und +1 konvergiert.

23.3. Stetigkeit von verkniipften Funktionen

In 1.3.3. haben wir verschiedene Verkniipfungen von Funktionen kennengelernt.
Wir priifen, welche Folgerungen aus der Stetigkeit der verkniipften Funktionen ge-
zogen werden konnen. Hierfiir gilt der
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Satz 1. Sind die Funktionen f, g an der Stelle a stetig, so sind die Funktionen Af

f 9 /g an der Stelle a stetig. Ist dariiber hinaus g(a) &= 0, so0 vst auch A an der
g

Stelle a stetig.

Beweis. Aus lim 2z, =a und z, € D(f) bzw. z, € D(f & g) bzw. z, € D(f-g)
folgt hinaad

lim Af(z,) = Alim f(z,) = Af(a)

bzw.
lim (/(z.) £ g(z.)) = lim f(z,) + lim g(z,) = f(a) £ g(a)
bzw.

lim /(z,) glza) = lim /(z) - lim g(z,) = f(a) - g(@).

Ist g(a) + 0, lim 2, = a und z, € D(k) mit b = L, so folgt aus der Konvergenz der
A—>00 g
Folge (g(:c.,)), daB g(z,) % 0 fiir n = N, ist. Somit gilt

A )

lim =1 = .
a0 g(xa)  limg(z,)  gla)

Damit ist Satz 1 bewiesen.

Satz 2. Ist die Funktion f an der Stelle a € D(f) und ist die Funkiion g an der Stelle
f(a) € D(g) stetig, so ist die zusammengesetzte Funktion g o f an der Stelle a stetig.

Beweis. Aus lim z, = @ und z, € D(g o f) folgt z, € D(f) und f(z,) € D(g). Somit
A—00
ist lim f(z,) = f(a) wegen der Stetigkeit von f im Punkt a, und aus der Stetigkeit
R—>00
von g im Punkt f(a) folgt

lim (g0 ) () = lim g/(@)) = glf(@) = (g /) (@).

Fiir streng monotone Funktionen f gilt ein iiberraschender Satz. Ohne jede Vor-
aussetzung iiber die Stetigkeit von f kann nimlich auf die Stetigkeit der Umkehr-
funktion /™! in jedem Punkt ihres Definitionsbereichs geschlossen werden, wenn der
Definitionsbereich von f eine zusitzliche Bedingung erfiillt.

Satz 3. Ist der Definitionsbereich einer streng monotonen Funktion f ein Intervall
(oder eine abgeschlossene Menge), so ist die Umkehrfunktion von [ in jedem Punkt
thres Definitionsbereichs stetig.

Beweis. Die Funktion f sei o0.B.d. A. streng monoton wachsend, und es sei
g:=/"1, b€ D(g) = W(f) und a := g(b). Um die Stetigkeit von g im Punkt b zu be-
weisen, geniigt es nach 2.3.1., Satz 1, zu zeigen, daB fiir jede streng monotone Folge
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(ya) mit y, € D(g) und y, — b die Folge (g(y,.)) gegen g(b) konvergiert. Es sei etwa
(ya) streng monoton wachsend. Aus y, < Yusy < b folgt g(ya) < g(¥as1) < g(b), und
es existiert der Grenzwert, a* der streng monoton wachsenden Folge (g(y.)). Ferner
ist g(y.) < a* < g(b) = a. Es ist g(y,), g(b) € D(f), und da D(f) ein Intervall (oder
eine abgeschlossene Menge) ist, folgt a* € D(f). Nehmen wir an, es wire a* < a.
Dann ist f(a*) < f(a) = b, und wegen y, — b, y, < b gibt es ein n mit f(a*) < y,.
Hieraus folgt a* = g(/(a‘)) < g(ya), was_der Definition von a* widerspricht. Somit
ist a* = a = g(b). Ganz analog wird gezeigt, daB fiir jede streng monoton fallende
Folge (y,) mit y, € D(g) und y, - b die Folge (y(y,)) gegen g(b) strebt. Damit ist
Satz 3 bewiesen.!)

2.3.4. Grenzwerte von Funktionen

Wir betrachten in di Abschnitt eine Abschwichung der Forderungen, die wir
bei der Definition der Stetigkeit einer Funktion in einem Punkt a gestellt haben.
Die Verallgemeinerung besteht darin, daB wir den Funktionswert an der Stelle a
nicht in Betracht ziehen und nicht einmal fordern, daB @ zum Definitionsbereich der
Funktion gehért. Allerdings muB a ein Haufungspunkt dieses Definitionsbereich
sein. Wir fragen, ob es eine reelle Zahl b gibt derart, daB die durch

fx) fir z+a,
g(z) = {

b fir z=a

definierte Funktion g an der Stelle a stetig ist. In diesem Fall sagen wir, die Funktion f
besitze an der Stelle a den Grenzwert b. Ist a ein Haufungspunkt des Definitions-
bereichs von f, so besitzt also f an der Stelle a einen Grenzwert, wenn f dort stetig
ist oder wenn f durch eine ,,Korrektur* des Funktionswertes an der Stelle a (wenn f
an der Stelle a nicht definiert war, durch eine geeignete Definition dieses Funktions-
wertes) zu einer an der Stelle a stetigen Funktion gemacht werden kann. Wir for-
mulieren diesen Sachverhalt in einer unmittelbaren Definition, die nicht auf den
Begriff der Stetigkeit zuriickgreift.

Definition. Eine reelle (bzw. komplexe) Funktion / hat in einem Héufungs-
punkt @ von D(f) den Grenzwert b, in Zeichen
lim f(z) = b, (1)
r—a
wenn aus z, € D(f), z, + @ (n € N)und lim z, = a stets

8—>00

lim f(z,) = b

n—s00

folgt.

1) Wenn man die Stetigkeit einer Funktion nur fir Haufungspunkte des Definiti
bereichs erklirt, gilt der Satz nicht in der vorliegenden Form.
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Neben dieser ,,Folgendefinition konnen wir analog zu 2.3.2. den Begriff des
Grenzwertes auch mit einer ,,Umgebungsdefinition‘‘ charakterisieren, und zwar
gilt der

Satz 1. Eine reelle (bzw. komplere) Funktion | hat in einem Hiufungspunkt a von
D(f) den Grenzwert b genau dann, wenn es zu jeder positiven reellen Zahl ¢ eine positive
reelle Zahl & gibt derart, dap aus

zED(f) und 0<|r—a|<é

IHx) — bl <e
folgt:
lim f(z) = b (a Hiufungspunkt von D(f)) :¢>
A 0O<iz—al<d=fz) — b <¢).
>0 8>0 zeD(/)

Der Beweis verlauft analog zum Beweis von 2.3.2., Satz 1. Ferner kann 2.3.2.,
Satz 2, sinngemiB iibertragen werden. Ist @ Hiufungspunkt von D(f) und von D(g),
so folgt aus

lim f(z) = b
und g

lg(z) —el S K |f(z) — b (2 € D(g)\ {a} S D(f) 2
stets

lim g(z) = ¢c.

An Stelle von (1) schreiben wir gelegentlich ,,f(x) — b fiir x — a*. Die Aussage ,,die
Funktion f ist an der Stelle a stetig* konnen wir, wenn a kein isolierter Punkt des
Definitionsbereichs von f ist, auch in der Form

f(@) = lim f(z) 3)
schreiben.

Satz 2. Es set a ein Hiufungspunkt des Definitionsbereichs der zusammengesetzten
Funktion y = f{g(z)). Aus

limg(zr) =b (4)
und der Stetigkeit von f an der Stelle b folgt «
lim /(g(z)) = lim /(t). 6
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Der Beweis ergibt sich unmittelbar aus der obigen Definition.

Beispiel 1. Es sei f(x) = 2" (n € N, x € R). Da f in allen Punkten @ mit @ € R
stetig ist und jede reelle Zahl a ein Hiufungspunkt des Definitionsbereichs ist, be-
sitzt f in jedem Punkt a einen Grenzwert, und zwar ist

lim z* = a*.
0

Beispiel 2. Es sei f(z) = (sgn z)%. Fiir alle z mit z & 0 ist
If@) — 1| = |(sgn 2)* — 1] =0
und folglich
lim f(z) = 1,
z—0

withrend (sgn 0)* = 0 ist. Diese Funktion ist also an der Stelle z = 0 unstetig, aber
sie besitzt dort einen Grenzwert, der vom Funktionswert verschieden ist.

Beispiel 3. Fiir jede reelle Zahl a ist

— a?
limI’ a=2a,
s T—0Q
denn es ist
2 _ g2
TS _o|=|zta)—2|=|z—a (z+a).
r—a

Beispiel 4. Fiir die reelle (bzw. komplexe) Exponentialfunktion gilt
im &=Ly, ®)
0 z

denn fiir 0 < |z| << 1 ist

et — 1 z a2 1 1
- = ?+3—'+‘<|3| (E!-+ﬁ+~-)<lzl~e.
Beispiel 5. Es ist
LI ™
1 Z— 1

Beweis. Nach 2.1.5.(3) liegt der Quotient von Inz und z — 1 fiir 2 >0, z &+ 1
stets zwischen den Zahlen z7! und 1, und da aus z — 1 stets -1 — 1 folgt, gilt (7).
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Beispiel 6. Es ist

imE =l e @>o0). ®)
=0

Beweis. Fiir a = 1 ist die Behauptung trivial. Fiir a + 1 erhalten wir auf Grund
von Satz 2 und Beispiel 4

ar—1 G | e —1
lim —— = Ina.lim ——— =Ina-lim =Ina.
20 z z»0 Zlna y—0
Beispiel 7. Es ist
lim 2228 — . 9)
=0 T

Beweis. Nach 1.6.1.(8) ist . cos z < sin z < z fiir 0 < z < 1, woraus
sinz
csr < —<1
z

folgt. Dies bleibt richtig, wenn wir z durch —2z ersetzen. Fiir z, == 0, z, — 0 gilt
008 z, — 1, und mit 2.1.3., Satz 4, ergibt sich die Behauptung.

Die obige Folgendefinition des Grenzwertes ist so allgemein gefaBt, daB sie auch
die folgenden Sonderfille umfaBt:

a) Im Fall einer reellwertigen Funktion kann der Grenzwert b auch oo oder —oco
sein.

b) Ist D(f) = R, so bezeichnen wir co bzw. — oo als uneigentlichen Haufungspunkt
des Definitionsbereichs, wenn dieser nicht nach oben bzw. nicht nach unten be-
schriinkt ist. Dann kann auch a in der obigen Definition durch co oder —oo ersetzt
werden.

Wir erldutern dies an einigen Beispielen.

Beispiel 8. Es sei f(x) = % (z # 0). Diese Funktion ist an der Stelle z = 0
nicht definiert, aber fiir jede Nullfolge (z,) mit z, 3= 0 gilt

=w'
nsco Ty
d. h., es ist
lim L. oo.
=0 z*
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Beispiel 9. Es sei f(z) = T :_’z:

(z € R). Fiir jede Folge (z,) mit lim z, = oo
A—>00
ist (L) eine Nullfolge und folglich
Tn

2
limlz' - =lim 11 =1,
a—00 Ty -—»n_+l
z,2
d. h., es ist
lim =1.
o 1422

Beispiel 10. Wir betrachten die reelle ganzrationale Funktion
f@) =+ a2+ +a2  (@cR).
Ist » = 1, 80 ist
oo fir a,>0,
lim f(z) = (10)
00 —oo fir a,<0
sowie

lim f(z) =

Beweis. Nach 1.3.4.(3) haben f(x) und a,2* fiir hinreichend groBe |z| stets das-
selbe Signum, und aus 1.3.4.(2) folgt

{ oo fiir (—1)*a, >0, K1)

—oo fir (—1)*e, <O0.

lim f(z) = lim a,2* = sgn a, lim |a,2"],
00 z—>00 >0

lim f(x) = lim a,2* = (—1)*sgna, lim |a,™|.
2—>—00 r—>—00 T—>—00

Hieraus kénnen die Behauptungen abgelesen werden.

Aus den Gr i fiir Zahlenfolgen (vgl. 2.1.3.(5') bis (8’) und 2.1.6.
Satz 4) ergeben sich die folgenden Grenzwertsiitze fiir Funktionen, die allerdings noch
einer zusitzlichen Erlduterung bediirfen:

lim (f(z) & g(2)) = lim f(z) + lim g(z), (12)

lim (f(z) - g(2)) = lim f(z) - lim g(2), (13)

lim |f(z)] = Ilim /(@) | (14)
lim f(z)

tim J&) _ e (15)

s 9@ limg(a)
lim f(z)r = []im I(a:)]' (/@) > 0,7 € R). (16)
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Die Beziehung (12) ist z. B. wie folgt zu interpretieren. Ist a ein Hiufungspunkt von
D(f + g) (bzw. ist D(f & ¢) im Fall @ = 4 oo nicht nach oben bzw. nach unten be-
schriinkt), existieren die rechts stehenden Grenzwerte, und sind sie endlich, so
existiert auch der links stehende Grenzwert, und es gilt (12). Analoges gilt fiir (13)
und (15), wobei in (15) noch gefordert werden muB, daB der im Nenner stehende
Grenzwert von O verschieden ist. Auch in (14) kann aus der Existenz des rechts
stehenden Grenzwertes auf die Existenz des links stehenden Grenzwertes geschlossen
werden, aber nicht umgekehrt.

AbschlieBend nehmen wir wiederum cinige Verallgemcincrungen vor. So kénnen wir in der

obigen Definition an Stelle von reellen Funktionen auch Funktionen aus einem metrischen
Raum X in einen metrischen Raum Y setzen. Dann gilt

Satz 1. Eine Funktion f cus einem metrischen Raum X in einen metrischen Raum Y hat in
einem Haufungspunkt a € D(f) den Grenzwert b genau dann, wenn es zu jeder positiven reellen
Zahl ¢ eine positive reelle Zahl & gibt derart, dap aus

z € D(fy und 0 < py(z,a) < &

stets
er(f(z),b) < e
folgt.
Auch die Folgerung aus Satz 1 bleibt richtig, wenn

ez(9(z), ¢) < Koy(f(2),8) (=€ D(g) \ {a} S D(f)) (1)

an Stelle von (1) gilt.
Die Beziehung (12) gilt auch fiir Funktionen in R?. Far Funktionen in RP gilt ferner

lim |If(z)l| = || lim /(z)" (14')
z—a z—a

an Stelle von (14).

2.3.5. Einseitige Grenzwerte und einseitige Stetigkeit reeller Funktionen

Es sei f eine Funktion, deren Definitionsbereich in R enthalten ist. Dann kénnen wir
fiir jede reelle Zahl a die Einschrinkung der Funktion f auf die Menge

(z:z€ D(fyrz = a}
baw.
(z:x€ D(fyrnr < a)

betrachten und diese Einschrinkung an der Stelle a auf Stetigkeit bzw. Existenz
eines Grenzwertes untersuchen. Ist diese Einschrinkung an der Stelle a stetig, so
sagen wir, die Funktion f seian der Stelle a reckts- bzw. linksseitig stetig. Besitzt die
Einschriinkung an der Stelle a einen Grenzwert b, so sagen wir, die Funktion f besitze
an der Stelle a einen rechts- bzw. linksseitigen Gre: t. Die Bezeichnung fiir ein-
seitige Grenzwerte ist in der Literatur nicht einheitlich. Fiir rechtsseitige Grenzwerte
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an der Stelle a werden die Bezeichnungen

lim f(z) = b, lim f(z) =0, lim f(z) = b,
;»: z—>a+0 zia

fiir linksseitige Grenzwerte

lim f(z) = b, lim f(z) =b, lim f(x) = b
z—a z—a-0 zte
z<a
benutzt. Wir werden die letzte dieser Schreibweisen verwenden. Eine Funktion f

ist nach unserer Definition in einem Haufungspunkt a ihres Definitionsbereichs
rechts- bzw. linksseitig stetig genau dann, wenn

lim f(z) = f(a)

bzw.
lim /(z) = (@)
zte

ist. Stimmen rechts- und linksseitiger Grenzwert mit dem Funktionswert an der
Stelle a iiberein, so ist die Funktion stetig.

Beispiel 1. Gegeben sei die Funktion y = sgn z (z € R). Fiir x > 0 bzw. z < 0
ist |[sgn z — 1| = O bzw. [sgn z — (—1)| = 0 und folglich

limsgnz=1 und limsgnz = —1,
zi0 zt0

d. h., rechts- und linksseitiger G t sti an der Stelle 0 nicht iiberein.

Beispiel 2. Gegeben sei die Funktion

1
/(x)=-l+—2”; (xe R,z 50)
Wegen
lim 2V/7 = oo, lim 2V = lim -1— =0
=10 =t no 2V2
ist
. 1 .
lim —— =0, lim— =1
20 14217 et 1+ 2Ur

a.

Fiir monotone Funktionen konnen in di Zusammenhang b 3 ein-

fache Aussagen formuliert werden.
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Satz. Fiir jede auf einem Intervall [a, b]) definierte monotone Funktion [ existieren
die einseitigen Grenzwerte

flz — 0) := lim f(t) (a<z<h), 1)
tts

f(z + 0) := lim f(t) @<z <b). 2)
iz

Beweis. Die Funktion f sei etwa monoton wachsend. Wir wihlen zwei monoton
wachsende Folgen (z,), (x,') mit z,, 2," <z und z, >z, z,’ > 2. Dann sind die
Folgen (f(z,)), (/(z.')) monoton wachsend und durch f(z) nach oben beschrinkt.
Folglich existieren die Grenzwerte

y:=lim f(z,), y' :=lim f(z,).

Nach Voraussetzungen iiber die Folgen (z,), (z,') existiert eine Teilfolge
(z) mit z,’ <z, <z, woraus f(z,’) < f(z,) folgt. Der Grenziibergang n — oo
ergibt ¥y’ < y. Ebenso zeigt man, daB y < y’ ist. Daher ist y = y’ der linksseitige
Grenzwert von f an der Stelle z. Analog werden die Behauptungen in den anderen
Fillen bewiesen.

Fiir monoton wachsende Funktionen gilt offensichtlich stets

flz —0) = f(x) < f(= +0), 3)

und £ ist an der Stelle 2 mit a < z < b genau dann stetig, wenn f(x — 0) = f(z + 0)
ist. Ist f(z — 0) < f(z + 0), 80 heiBt z eine Sprungstelle der monoton wachsenden
Funktion /.

Fiir zwei verschiedene Sprungstellen z,, z, sind die Intervalle Jf(x; — 0), /(z, + O)[,
J(x2 — 0), f(z2 + O)[ disjunkt. Da jedes solche Intervall mindestens eine rationale
Zahl enthilt, kann man hieraus schlieBen, daB die Menge der Sprungstellen einer
monotonen Funktion hichstens abzihlbar ist.

2.4.  Stetige Funktionen

2.4.1. Stetigkeit in Punktmengen

Der Definitionsbereich einer nichtleeren reellen (bzw. komplexen) Funktion kann
stets in zwei disjunkte Punktmengen zerlegt werden, in die Menge der Stetigkeits-
punkte und in die Menge der Unstetigkeitspunkie der Funktion. Jede dieser beiden
Teilmengen kann leer sein. So besitzen z. B. die Potenzfunktionen keine Unstetig-
keitspunkte. Die Funktion

0 fiir =z rational,
f(@) = { )

1 fiir =z irrational
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besitzt d Qtetiokeit

gegen keine Stetig punkte, denn zu jeder reellen Zahl a gibt es eine
Folge rationaler Zahlen und eine Folge irrationaler Zahlen mit dem Grenzwert a.
Die (stationiren) Folgen der zugehorigen Funktionswerte haben dann die verschie-
denen Grenzwerte O bzw. 1, d. h., die Funktion f ist an der Stelle a unstetig. Die
Funktion y = sgn z (z € R) hat nur den Punkt 0 als Unstetigkeitspunkt.

Wir verallgemeinern den zunichst nur fiir einzelne Punkte des Definitionsbereichs
definierten Begriff der Stetigkeit einer Funktion.

Definition. Eine reelle (bzw. komplexe) Funktion f heit ©n der Menge M stetig,
wenn M & D(f) und wenn f in allen Punkten von M stetig ist. Die Funktion f heiBt
stetig, wenn sie in ihrem ganzen Definitionsbereich stetig ist.

Aus den bereits bewiesenen Sitzen folgt sofort, da8 alle Potenzfunktionen, die

trigonometrischen Funktionen, die spezielle Exponentialfunktion und die natiirliche
Logarithmusfunktion stetig sind. Wir betrachten weitere Beispiele.

Beispiel 1. Fiir alle nichtnegativen rationalen Zahlen r sind die Funktionen
y=2" (z€R,z=0) (2)
auf Grund von 2.1.3,, Satz 5, stetig.
Beispiel 2. Die Stetigkeit der Exp tialfunktion

y=a* (z€R) 3

ergibt sich wegen In a* = zIn a, a® = ¢*'"® erneut aus der Stetigkeit der speziellen
Exponentialfunktion und aus 2.3.3., Satz 2 und 1.

Beispiel 3. Fiir jede reelle Zahl « ist die Funktion
y=z= (x€R,z>0) (4)
stetig, denn wegen In 2* = « In z ist
z* = ealnr, (5)
Beispiel 4. Als Umkehrfunktion von (3) ist die Funktion
y =log, z (z€R,z>0) (8)
nach 2.3.3., Satz 3, stetig. Die Behauptung folgt auch aus der Identitit

Inz .
I =— 7
e Ina M

Eine unmittelbare Folgerung aus 2.3.3., Satz 1, ist

Satz 2. Jede Linearkombination von stetigen Funkii die einen g
Definitionsbereich besitzen, ist eine stetige Funktion.
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Beispiel 5. Alle ganzrationalen Funktionen sind stetig. Ferner sind alle ratio-
nalen Funktionen als Quotient zweier stetiger Funktionen stetig. Es ist inkorrekt,
wenn man die moglicherweise vorhandenen Polstellen, d. h. die Nullstellen des
Nenners (die nicht zugleich Nullstellen des Zahlers sind), als ,,Unstetigkeitsstellen‘
bezeichnet. Eine Unstetigkei lle einer Funktion gehort stets zu ihrem Definitions-
bereich, und dies ist fiir die Polstellen einer ganzrationalen Funktion nicht der Fall.

2.4.2. Auf abgeschl Mengen stetige Funktionen

Nach 1.5.5., Satz 3, ist eine Menge F genau dann abgeschlossen, wenn sie alle ihre Hiu-
fungspunkte enthilt. Die abgeschlossenen Intervalle [a, b] sind einfache Beispiele
fiir abgeschlossene Mengen. Funktionen, die auf abgeschlossenen beschrinkten
Mengen stetig sind, haben wichtige Eigenschaften, die fiir zahlreiche Anwendungen
bedeutungsvoll sind. Als erstes beweisen wir den Satz vom Mazimum und Minimum.

Satz 1. Der Wertebereich W(f) einer auf einer beschriinkten und abgeschlossenen
Menge definierten stetigen reellen Funktion f ist beschrinkt und abgeschlossen. Er
besitzt demzufolge ein Maximum und ein Minimum (Abb. 2.16).

1

1

1

I 0

1 X L Abb.2.16
x b

7 T

|
[ a

Beweis. Nehmen wir an, der Wertebereich wire nicht beschrinkt bzw. nicht ab-
geschlossen. Dann gibt es eine Folge von Elementen y, € W(f) mit y, -y und mit
y = 400 bzw. y ¢ W(f). Wir wihlen Elemente z, € D(f) mit y, = f(z,). Die Folge
(x,) ist beschrinkt und besitzt nach dem Satz von BoLzaN0-WEIERSTRASS eine kon-
vergente Teilfolge (z,,). Ihr Gr t z ist El t der abgeschl Menge
D(f), und aus der Stetigkeit der Funktion f folgt

fz) = lim f(z,,) = lim y,,, = y.
k—o0 k—oo

Das widerspricht unserer Voraussetzung, und folglich ist W(f) beschrinkt und abge-
schlossen. Zu y := sup W(f) gibt es nach 2.1.3., Satz 8, eine gegen y konvergierende
Folge von Elementen y, € W(f). Wortlich wie in dem soeben gefiihrten Beweis zeigt
man, daB ein Element z € D(f) mit f(x) = y existiert, d. h., es ist y € W(f), und y
ist das Maximum des Wertebereichs. Ganz analog wird der Beweis fiir die Existenz
des Minimums gefiihrt.

Mit Hilfe der in 2.1.7., Definitionen 3 und 4, cingefiihrten Begriffsbildungen kann dieser
Satz wie folgt verallgemeinert werden.

Satz 1’. Der Wertebereich einer auf einer kompakten Teilmenge eines metrischen Raumes X
definierten stetigen Funktion f in einen metrischen Raum Y ist kompakt.
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Beweis. Es sei (y,) eine Folge in W(f) und y, = f(z,). Da D(f) kompakt ist, gibt es eine
gegen ein Element x € D(f) konvergierende Teilfolge (x»,). Aus der Stetigkeit von f folgt

flz) = lim f(zy,) = lim ya,.
k—oo k—o0

Nach 2.1.7., Definition 4, ist W(f) kompakt.

Der nachfolgende Safz von Bolzano macht eine wichtige Aussage iiber die Existenz
einer Nullstelle einer Funktion. Diesem Satz ist wesentlich BoLzaNos beriihmte
Arbeit ,,Rein analytischer Beweis, daf zwischen zwey Werthen, die ein entgegen-
gesetztes Resultat gewihren, wenigstens eine reelle Wurzel der Gleichung liege* von
1817 gewidmet. Sie ist fiir die Theorie der reellen Funktionen von grundlegender
Bedeutung.

Satz 2. Nimmt eine auf einem abgeschlossenen beschrinkten Intervall stetige reelle
Funktion in den Endpunkten dieses Intervalls Funkti te mit enl

Y

Vorzeichen an, so besitzt die Funktion im Innern dieses Intervalls eine Nullat:lle.

L#(6)
a-ao 01-01
s b-b,-o, x
‘ y ‘ Abb. 2.17

Beweis. Wir konstruieren mit Hilfe des Halbierungsverfahrens eine Intervall-
schachtelung (a, | b,). Ohne Beschrinkung der Allgemeinheit sei f(a) <0 und
J(®) > 0 (Abb. 2.17). Wir setzen @, := a und b, :=b. Dann ist a, < by, f(a,) <0,

/(b°)>0undb,,—ao=b_a

Die Zahlen aq, ay, ..., @,; by, by, - .., b, seien schon konstruiert, und es gelte

QLG Sa,<bps-=h b,
b—a (1)
on

fla,) <0, f(bs) >0 und by —a, =
Wir halbieren das Intervall [a,, b,]. Im Fall
/(#) <0 baw. /(‘#) >0

setzen wir

a + b,

[ :.—=T bzw. a,,:=a,
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und

b
buoy 1= by bzw. by i= “‘42' "

Die Aussagen (1) gelten dann mit » + 1 statt », und die Folgen (a,), (b,) sind induktiv
definiert. Sie bilden wegen (1) eine Intervallschachtelung und besitzen daher einen
gemeinsamen Grenzwert . Wegen der Stetigkeit von f besitzen die Folgen (/(a,,)),
(/(b,)) den gemeinsamen Gr t f(z). Als Gr t einer Folge nichtpositiver
bzw. positiver Zahlen kann f(z) weder positiv noch negativ sein. Somit ist f(z) = 0,
und der Satz ist bewiesen. Der Beweis ist konstruktiv, d. h., er liefert ein Verfahren,
wie man eine Nullstelle einer Funktion mit den geforderten Eigenschaften numerisch
mit jeder geforderten Genauigkeit ermitteln kann.

Mit Hilfe des Satzes von BoLzaNo beweisen wir nun den Zwischenwertsaiz fiir be-
liebige stetige Funktionen.

Satz 3. Jede auf einem abgeschl beschriinkten Intervall stetige reelle Funktion

nimme jede reelle Zahl, die zwischen den Funktionswerten in den Endpunkten des Inter-
valls liegt, in wenigstens einem Punkt dieses Intervalls als Funktionswert an.

Beweis. Die Funktion f sei in [a, b])stetig, und es sei etwa f(a) < ¢ < f(b). Wir
setzen g(z) := f(r) — c. Dann ist g eine stetige Funktion mit g(a) = f(a) —c <0
< f(b) — ¢ = g(b). Nach Satz 2 gibt es ein z mit a < z < b und 0 = g(z) = f(z) — c.

Satz 4. Jede reelle stetige Funktion, deren Definitionsbereich ein Intervall ist,
nimmt mit zwei Werten y,, y, auch jeden Zwischenwert y an, und folglich ist thr Werte-
bereich ein Intervall.

Beweis. Es gibt Punkte z,, z, mit f(x,) = y,, f(X;) = y,, und es sei etwa z;, < z,.
Die Behauptung folgt nun, wenn wir Satz 3 auf die Einschrinkung von f auf das
Intervall [z,, z,] anwenden.

Hiernach und nach 2.3.3., Satz 3, besitzt jede auf einem Intervall definierte
stetige streng monotone Funktion eine auf einem Intervall definierte stetige streng
monotone Umkehrfunktion.

2.43. GleichmiBige Stetigkeit

Den folgenden Begriff werden wir in der Integralrechnung benétigen.

Definition. Eine reelle oder komplexe Funktion heiBt gleichmdfig stetig, wenn es
zu jeder positiven reellen Zahl ¢ eine positive reelle Zahl § gibt derart, daB aus
2, 2" € D(f) und |z' — z"'| < 6 stets [f(z') — f(x"")] < efolgt.

Wir vergleichen die Definition der Stetigkeit und der gleichméBigen Stetigkeit:

fotetigieo A AV A (¥ —2" <o) —f2) <), (1)
Z'€D(f) >0 >0 z”€DUS)
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| gleichmiiBig stetig :<

(7" — 2] < 6= If(@) — f=")] < ¢)- (2)

>0 8>0 z’€Df) z”’€D(S)
Die unterschiedliche Reihenfolge der Quantifikatoren ist hierbei von wesentlicher
Bedeutung. Wihrend (1) aus (2) gefolgert werden kann, ist das Umgekehrte nicht
der Fall. In (1) kann némlich die zu bestimmende Zahl 6 neben ¢ auch von der
betrachteten Stelle 2’ abhingen. In (2) darf dagegen 4 nur von ¢ abhingig sein. Als
Beispiel betrachten wir die Funktion f(z) =21 (0 <z < 1). Setzen wir etwa

1
&= «Eund ist 6 > O beliebig vorgegeben, so wihlen wir eine natiirliche Zahl n
mit né > 1 und setzen

_ 1
_n+1'

z' =

3=

’

Dann ist 2" — 2| < 1 < 4, aber [f(z') — f("') = |n — (n + 1)] = 1 > ¢, und die
n

Negation von (2) ist wahr. Die Funktion / ist im betrachteten Intervall zwar stetig,
aber nicht gleichmiBig stetig. Es gilt jedoch der

Satz. Jede reelle oder komplexe stetige Funktion, deren Definitionsbereich eine be-
schriankte abgeschlossene Menge ist, ist auch gleichmifig stetig.

Beweis. Nehmen wir an, die Funktion f sei nicht gleichmiBig stetig. Dann gibt
es ein ¢ > O derart, da8 zu jedem 6 > 0 Elemente ', '’ € D(f) mit |z’ — z"'| < 6

und [f(z') — f(z"')] = ¢ gefunden werden kénnen. Zu 6 := 1 wihlen wir Elemente
z,', z,” € D(f) mit "

, 1
2 — 2" < — @)

und |f(z,’) — f(zs"’)| = e. Die Folge (z,’) besitzt auf Grund unserer Voraussetzungen
eine gegen ein Element z € D(f) konvergierende Teilfolge (z,,). Die Folge (z,) hat
dann wegen (3) ebenfalls den Grenzwert z, und aus der Stetigkeit von f ergibt sich
der Widerspruch

€ é lim I/(Z.’.,) — f@)] = If(@) — f(z)] = 0.
Der Satz und sein Beweis konnen unvenndert auf reell- oder komplexwertige Funktionen

ibertragen werden, deren Defi bereich eine } kte Teil metrischen R
ist.

2.4.4. Nullstellen ganzrationaler Funktionen

Die Frage nach der Existenz und Anzahl der Nullstellen einer ganzrationalen Funk-
tion ist eines der klassischen Probleme der Mathematik. Wir formulieren und beweisen
einige der Siitze, die zu di umfangreichen Problemkreis gehoren.
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Wir betrachten zuerst reelle ganzrationale Funktionen. Bekanntlich besitzt jede
nichtkonstante lineare Funktion f(xr) = a, + a,x (a, #+ 0) (genau) eine Nullstelle.
Allgemeiner gilt der

Satz 1. Jede reelle ganzrationale Funkiion von ungeradem Grad besitzt (mindestens)
eine reelle Nullstelle.

Beweis. Wegen 2.3.4.(10), (11) (vgl. Abb. 1.5) nimmt eine ganzrationale Funktion
f vom Grad n = 2k + 1 positive und negative Funktionswerte an. Da sie iiberall
stetig ist, liegt zwischen zwei Stellen a, b mit f(a) f(b) < 0 eine Nullstelle der Funktion.

Eine Satz 1 entsprechende Aussage gilt aber nicht fiir reelle ganzrationale Funk-
tionen von geradem Grad. So kann z. B. eine quadratische Funktion f(r) = a, + a,x
+ a4z? (a, = 0) zwei verschiedene reelle Nullstellen, genau eine oder auch gar keine
reelle Nullstelle besitzen (Abb. 2.18).

Abb. 2.18

Die Situation #ndert sich aber grundlegend, wenn wir zu komplexen ganzratio-
nalen Funktionen iibergehen. So besitzt z. B. die Funktion f mit f(z) = 2® + 1 keine
reelle Nullstelle, aber die komplexen Nullstellen +7. In Satz 1 in 1.2.3. haben wir
allgemeiner gezeigt, daB die Gleichung z* = ¢ mit ¢ € C mindestens eine Lsung im
Bereich der komplexen Zahlen besitzt.

Eine ganzzahlige Nullstelle z, einer ganzrationalen Funktion mit ganzzahligen
Koeffizienten kann durch Probieren gefunden werden, denn aus

o + To(@y + axTo + - + apr®) =0
ersehen wir, daB x, stets Teiler des absoluten Gliedes a, ist.

Hat man eine Nullstelle x, einer ganzrationalen Funktion f gefunden, so kann die
Ermittlung weiterer Nullstellen auf die Untersuchung einer ganzrationalen Funktion
zuriickgefiihrt werden, deren Grad um 1 kleiner als der Grad von f ist. Wegen

f@) =ao+ax + - + agam, 1)
0 = f(xo) = dg + ATy + -+ + Apg® (2)

ist namlich

fld) = f(@) — f(®) = ay(x — Zo) + - + an(z® — 2" 3)



2.4. Stetige Funktionen 177

und alle Summanden lassen sich nach 1.1.1.(7) als Produkt von z — z, und einer
ganzrationalen Funktion darstellen. Daher ist

f@) = (= — =) g(2), @)

und g(z) kann nach dem bekannten Verfahren der Restdivision bestimmt werden.
Eine Verallgemeinerung dieses Sachverhalts liefert

Sutz 2 Zu ;eder anﬂmonalen Funktion f und zu jedem z, mit z, € D(f) gibt es

eine positive natiirliche Zahl p und eine eindeutig bestimmte ganz-
rationale Funldum g mit

1@) = f(@o) + (z — zo)? g(x) und g(%o) % 0. ®)

Beweis. Es sei p die groBte natiirliche Zahl, fiir die (x — 2,)? Teiler von f(z) — f(x,)
ist. Dann ist p > 0 und

f(@) — f(@o) = (x — zo)? 9(2)- (8)

Nehmen wir an, es wire g(z,) = 0. Dann hat g einen positiven Grad, und analog zu
(4) erkennen wir, daB es eine ganzrationale Funktion A mit g(z) = (z — x,) h(z)
gibt. Dann ist f(z) — f(%,) = (# — 2,)?*! h(z), und dies widerspricht der Definition
von p Somlt gilt (5). Es sei auch f(z) — f(x,) = (* — 2,)9 h(z) und k(z,) # 0. Ohne

inkung der Allgemeinheit sei ¢ < p. W&re g < p, so folgte (x — z,)?~? g(x)
= h(z) Fiir z = z, ergabe sich 0 = h(x,), was nicht maglich ist. Es folgt p = ¢, g(z)
= k(z), und Satz 2 ist bewiesen.

Wir beweisen nun eines der klassischen Resultate der Mathematik von grund-
legender Bedeutung, den sog ten Fund lsatz der klassischen Algebra. Er

wurde erstmalig von GAuss in seiner im Alter von 21 Jahren verfaBten Dissertation
bewiesen.

Satz 3. Jede komplexe ganzrationale Funktion von positivem Grad besitzt eine
(komplexe) Nullstelle.

Beweis. Essein € N,n = 1,a, & 0 und
flz) =g+ ayz + -+ +apz®  (z€C). (U]
Wir setzen
= inf {if@): = € D()}-
Nach 1.3.4. (2) gibt es eine positive reelle Zahl R mit
@)l 2m+1 far jo| = R. (8)
Die Funktion y = |f(z)| ist nach 2.3.2., Satz 3, auf der abgeschl ¥ beschriinkten Menge

{z: |z] < R} stetig und besitzt dort nach dem Satz vom Maximum und Minimum(2.4.2.,
Satz 1) ein Minimum, d. h., es gibt ein z, mit |z, < R und mit

@)l = If(2)] far |z| < R. (L]
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Nach Definition des Infimums gibt ¢s ein z, mit |f(z,)] < m + %, da sonst m + %eine untere
Schranke fir alle Zahlen |f(z)| mit = € D(f) wire. Aus (8) folgt dann |z,| < R. Wegen (9), (8)
ist

@)l = lfl@)l <m + 1 <@ (x| 2 R).
Somit ist

@)l < /=) (z € C). (10)

Nehmen wir an, es wire f(z,) += 0. Nach Satz 2 kann f in der Form (5) dargestellt werden.
Wir setzen

Me):i= fl@o +2) 9z + 2)
(o) (o)

Nach (5) ist h(z) = 1 + 2P¢(z), und wegen (10) ist |h(z)| = 1. Somit gilt

, o glz):= y g0 =a+ib (abeR).

1 = |hz)* = |1 + zPq(z)|* = 1 + 2 Re (2Pq(2)) + |2Pq(2)I?,
0 < 2 Re (2Pg(2) + |2Pq(z)?

fiir alle z mit z € C. Ersetzen wir z durch - (n =1, 2, ...) und multiplizieren mit n?, so cr-

halten wir
2
2°q (i) I .
n

1
0<2Re(zpg (X)) +—
sere( (1)) + 5

Da die Funktion ¢ ganzrational, also stetig ist, folgt, wenn wir n gegen oo gehen lassen,

0 < 2 Re (27¢(0)) = 2 Re (zP(a + ib)).

Wihlen wir nun fir z der Reihe nach die komplexen Zahlen 1, z,, 2.2, z?® wobei 2z, der Glei-
chung z,P = i geniigt (vgl. 1.2.3., Satz 2), so erhalten wir

0= Re(a + tb) =a,

0 < Re (i(a + b)) = —b,

0 < Re (i*(a + ib)) = —a,

0 < Re (%(a +- b)) = b.

Daher ist ¢(0) = a + ib = 0, was wegen g(z,) + 0 ein Widerspruch ist. Somit ist f(z,) = 0,
und der Fundamentalsatz ist bewiesen.

Mit Hilfe des Fundamentalsatzes beweisen wir den Satz von der Zerlegung in
Lincarfaktoren.

Satz 4. Jede komplexe ganzrationale Funktion f vom Grad n (n > 0) kann — von
der Reihenjolge der Faktoren abgesehen — auf genau eine Weise vn der Form

[(@) = a(z — )" (2 — Zg)Pr -+ (z — TY)™* (11)

dargestellt werden Hverbei vst a etne von Null verschiedene lcompleze Zahl, z,, z,, ..., Z,

hiedene

sind X ver: komplexe Zahlen, und p,, p,, ..., pr 8tnd positive nalur-




2.4. Stetige Funktionen 179

liche Zahlen mat

P+ Pt =m0 (12)

Beweis. Ist n = 1, so gilt f(z) = ay + @,2, also f(z) = a(x — 7,)! mit a:=a,,
z; := —a, 'ay, und diese Darstellung ist durch f eindeutig bestimmt.

Es gebe fiir alle ganzrationalen Funktionen mit 1 < degf < n — 1 genau eine
Darstellung der Form (11). Ist dann deg f = 7 und z, eine Nullstelle von /, so kann /
nach Satz 2 auf genau eine Weise in der Form

f@) =@ —z)mg@)  (9(x) +0)

dargestellt werden. Hierbei ist g(x) eine konstante Funktion, oder auf g(z) kann die
Induktionsvoraussetzung angewendet werden. In beiden Fillen ergibt sich wegen
g(x,) =+ O die geforderte Darstellung, und diese ist eindeutig bestimmt. Damit ist
Satz 4 bewiesen.

Offenbar ist a der Koeffizient von z* in der Darstellung (7), und z,, 2, ..., 2
sind Nullstellen von f. Da f(x) £ 0 fir z = 2; (: = 1,2, ..., k) ist, besitzt f keine
weiteren Nullstellen. Die Zahl p; heiit die Vielfachheit der Nullstelle z;. Zihlen wir
jede Nullstelle z; so oft, wie ihre Vielfachheit angibt, so gilt der

Satz 5. Jede komplexe ganzrationale Funktion n-ten Grades besitzt genau n komplexe
Nulistellen.

Fiir kompleze ganzrationale Funktionen mit reellen Koeffizienten kénnen wir noch
eine zusitzliche Aussage machen.

Satz 6. Besilzt eine komplexe ganzrationale Funktion | mit reellen Koeffizienten
@g, @y, ..., @, eine nichireelle Nullstelle z, der Vielfachheit p, so ist auch die konjugiert
komplexe Zahl T, eine Nullstelle von der gleichen Vielfachheit.

Beweis. Wegen 1.2.2.(5), (6) und 4 =a; (i=0,1,...,n)ist

f@) =gt az + - Faz" =+ aF + - + a3 = f(3).
Aus (11) folgt
/@) = au® — 1) (& — 2 -+ @ — 2},

2) = f(Z) = an(z — BZ)P (& — D) - ( — TP

Ist etwa z, nichtreell, so ist , = z,, und da die Darstellung (11) bis auf die Reihen-
folge der’ Faktoren eindeutig bestimmt ist, muf es ein j mit z; = Z, und p; = p,
geben. Damit ist Satz 6 bewiesen.

Fiir reellc ganzrationale Funktionen gilt der Satz von der Zerlegung in Linear-
faktoren und quadratische Faktoren ohne reelle Nullstellen.

Satz 7. Jede reelle ganzrationale Funktion f von positivem Grad kann — von der
Reihenfolge der Faktoren abgesehen — auf genau etne Weise in der Form

1) = alfy@)P - (fu))e (13)
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dargestellt werden, wobei die Funktionen f,, f,, ..., fi paarweise verschieden sind und
fiir alle jmit j = 1,2, ..., k entweder
fix) =z —z; (z; € R) (14)
oder
M) =(=—b+¢) (e R +0) (15)
gilt.
Beweis. Ist die Summe der Vielfachheit der reellen Nullstellen von f gleich dem
Grad der Funktion, so gilt die Darstellung (11), d. h., es gilt (14) fir j = 1,2, ..., k.

Andernfalls besitzt / — als komplexe Funktion aufgefat — eine nichtreelle Null-
stelle, etwa z,. Dann ist nach Satz 6 auch %, eine Nullstelle, und f kann in der Form

f(@) = (& — z))" (x — T))™ g(2)

mit g(z,) £ 0, g(Z,) + O dargestellt werden.
Wegen

(x—2) (r— 7)) =2 — 2rRez, + |52 = (x — Re xy)? -+ (Im x,)?
gilt, wenn wir b, := Re z, und ¢, := Im z, setzen,
f@) = ((-" — b))+ Cl’)p‘ g).

Wenden wir auf g(x) dieselbe Betrachtung an, so erhalten wir in endlich vielen
Schritten die Darstellung (13), wobei wegen g(x,), ¢(%;) = 0 nicht noch einmal der
gleiche Faktor f,(x) auftreten kann.

Die Eindeutigkeit der Darstellung (13) ergibt sich aus der Eindeutigkeit der Dar-
stellung (11).

Obwohl die Existenz komplexer Nullstellen ganzrationaler Funktionen von
positivem Grad gesichert ist, stellt ihre numerische Ermittlung in vielen Fillen ein
auBerordentlich schwieriges Problem dar, das im allgemeinen nur nitherungsweise
losbar ist.

Die Kenntnis der Auflosung linearer Cileichungen kann bis in das 2. Jahrtausend v. u. Z.
zurickverfolgt werden. Auch quadratische Gleichungen werden schon sehr frith, etwa in der
bt.bylonwchen Mathematik, im Zusammenhang mit praktischen Problemen behandelt, bei-

lsweise bei der Berechnung von Dammbauten.

In der griechisch- hellenistischen Mathematik } ten auch allgemei dratische Glei-
chungen einwandfrei mit geometrischen Methoden gelést werden, wobei “donn auf Grund
dieser Methode fast ausschlieBlich nur positive Losungen zugelassen werden. Den Arabern
verdankt man die geometrische Auflésung der Gleichungen dritten Grades durch Kegel-
schnitte. Trotz vieler Versuche gelang jedoch einc arithmetische Losung der kubischen Glei-
chungen nicht.

In der Renai e, als die Bedeutung der Mathematik fiir praktische Probleme deutlicher
hervortrat und ein allgemeines Interesse an mathematischen Fragen hervorrief, wandte man
sich auch diesem schwierigen Problem erneut zu.

Screio pEL FERRO (1465? —1526) gelang dann die Losung dieses Problems. Unabhiingig von
ihm fand auch Niccoro TaRTaGLIA (15007 —1557) eine Losung. TARTAGLIA hatte sein Ver-
fahren HieroNmmo CarRDANO (1501 —1576) nach langem Widerstreben mitgeteilt und um
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Geheimhaltung gebeten. Als CARDANO spiiter feststellte, daB bereits DEL FERRO eine Losung
besessen hatte, fiihlte er sich an das gegebene Versprechen nicht mehr gebunden und ver-
offentlichte das Verfahren. Daher heiBen die entsprechenden Formeln unberechtigterweise
auch ,,Cardanische Formeln*‘.

Im Zusammenhang mit der Lésung der Gleichungen dritten Grades treten beim ,,casus
irreducibilis** auch erstmals komplexe Losungen als Wurzeln auf.

Die innerlogische Entwicklung der Mathematik filhrte dann 1545 Lupovico FERRART
(1522—1565) auch zur Losung der allgemeinen Gleichung vierten Grades, und man versuchte
nun, auch Gleichungen noch hheren Grades all in zu behandeln und Lésungen in Radi-
kalen zu finden, d. h. durch ineinand hachtelte Wurzeln b

‘Wie wir bereits in 1.3.4. bemerkt haben, wurde von ABEL im Jahre 1826 bewiesen, daf3
Gleichungen fiinften und héheren Grades im allgemeinen durch Radikale nicht l6sbar sind.
Bereits vor ABEL hatte PooLo RUFFINI (17656 —1822) eine im wesentlichen vollstdndige Losung
dieses Problems gegeben.

2.4.5. Der Banachsche Fixpunktsatz

Fiir die Behandlung zahlreicher mathematischer Probleme, die mlt der Auflésung
von linearen und nichtli en Gleichungen bzw. Gleich

hiingen, ist ein nach dem polnischen Mathematiker STEFAN BA.NACK (1892—1945)
benanntes konstruktives Verfahren von universeller Bedeutung entwickelt worden.
Wir betrachten zuerst eine stetige Funktion /, die ein beschrinktes abgeschl
Intervall I = [a, b] in sich abbildet. Setzen wir g(z) := f(z) — z, so geniigt die
sfetige Funktion ¢ wegen a < f(a) und f(b) < b den Bedingungen g(b) < 0 < g(a)
und besitzt nach dem Nullstellensatz eine Nullstelle ¢. Somit ist f(c) = g(c) + ¢ =¢.
Der Punkt ¢ heiBt wegen f(c) = c ein Fixpunkt der Abbildung / (Abb. 2.19).

3
b+ —
y|=x
cﬁ-— 1+ = y=Ff(x)
l
|
T T
o Abb. 2.19
a c b
Wir machen nun eine itzliche Vora tzung, die uns neben der Existenz auch

die Einzigkeit eines Fixpunktes sichert. Wir fordern, daB der Anstieg einer Kurven-
sekante dem Betrag nach eine positive reelle Zahl ¢ mit ¢ < 1 nicht iiberschreitet,
d.h., daB

[Hzy) — f(®)] < ¢ |2 — 24 @z €1) (1)

ist. Da die Gerade y = z den Anstieg 1 besitzt, hat der Graph von f mit dieser
Geraden hichstens einen, nach dem eben Bewiesenen also genau einen Punkt gemein.
Die Bedingung (1) ist so stark, daB nicht einmal die Beschriinktheit des Intervalls I
gefordert zu werden braucht.
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Eine Funktion f mit der Eigenschaft (1) heiBt eine kontrahicrende Abbildung, weil
der Abstand zweier Funktionswerte stets kleiner als der Abstand ihrer (voneinander
verschied ) Arg te ist. Der nachfolgende Firpunktsalz von BaNacm wird
aus diesem Grunde auch das Prinzip der kontrahierenden Abbildungen genannt.

Satz. Es sei f eine auf einer abgeschlossenen Menge F < R definierte stetige Funktion
mit folgenden Eigenschaften :

a) Die Funktion f bildet F in sich ab, d. k., es ist W(f) S F.

b) Die Funktion f ist kontrahierend, d. h., es gibt ein ¢ mit 0 < g < 1 derart, daf
astets

fz) —fE) = qlzs — 2l (@, 2 € F) @)

Dann besitzt f genau einen Fixpunkt a in F. Ist a, evn ganz beliebig gewiihlter Punkt
aus F und setzen wir

@y 1= f(a,) (n € N), 3)
80 8¢

a=lima,. 4)
Ferner st

la—ay 52222, ®

—-9q
|a_a.|§q.“°1—_“l|, ®)
—9q

Beweis. Aus (2), (3) folgt
[@nsr — @al = |f(@2) — f(@n1)] < ¢ lay — Gpeyl,

und vollstindige Induktion ergibt

[@askrs — Guit] S g l@nik — Cpipal < -0 S ¥ [@nar — aal. (7)
Speziell ist
@y — el < g* lag — ay|. (8)

Aus der Dreiecksungleichung und aus (7), (8) folgt

2 p
|@aipr1 — @n] < 2 s — Cpit] = (Bpiy — @yl Zq.s 9)
k=0 -r

i (10)

P
Iauyﬂ — @, S |ag — ay Q”Zfl" < lag — ay 1
k=0
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Die Folge (a,) ist daher eine Fundamentalfolge, die einen Grenzwert a besitzt. Da F
abgeschlossen ist, gilt @ £ F. Aus der Stetigkeit von f folgt nun

a = lim a,; = lim f(a,) = /(]im u,) = f(a).

Tst auch b = f(b), so ist
la — b < |f(a) — f(b)] < gqle—bl,

was nur fiir @ — b] = 0, @ = b méglich ist. Die Funktion f besitzt somit genau einen

Fixpunkt.
Wir beweisen die Behauptungen (3), (6), die eine Fehlerabschitzung erméglichen.

Aus i

3
la — a,| < |a — @uipr| + @pipar — a,| =la— “npﬂi + |@ney — @4l Z'I‘
k=0

ergibt sich durch Grenziibergang p — oo die Behauptung

la — a,| él“nn"unl'
1—¢

.

S |ty — Gpa} —L— S o < Ja, — agl —2

1—gq 1—

und der Fixpunktsatz ist bewiesen.

Die Ungleichung (5) gestattet es, nach jedem ,,Iterationsschritt'* (d. h. nach jeder
Berechnung von a,., aus a, nach (3)) den jeweiligen Fehler abzuschitzen (a-posteriori-
Abschitzung). Die Ungleichung (8) ermdglicht es dagegen, vor Beginn (falls man
Rundungsfehler nicht in Betracht zieht) eine Maximalzahl von Iterationsschritten
zur Erreichung einer vorgeschriebenen Genauigkeit festzulegen (a-priori- Abschitzung).
Das Verfahren ist selbstkorrigierend, d. h., man kann nach jedem Teilschritt ohne
Bedenken von einem gerundeten Niherungswert ausgehen, da sich die Abschitzung

(5) nur auf den ittelbar vorangehenden Niherungswert stiitzt.

Beispiel. Wir suchen eine Niaherungslésung der kubischen Gleichung

32 — 100x + 1 == 0.

Setzen wir
3P4+
fa) o= o (11

80 ist a genau dann eine 1.osung der kubischen Gleichung, wenn f(a) = @, d. h., wenn
a ein Fixpunkt von f ist. Fiir 2| < 1ist

3+1

H=) = Wé L
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d. h., die Funktion / bildet das abgeschlossene Intervall [—1, 1] in sich ab. Wegen

V@) — )l = ’%.03‘"

3 3
=‘1—|31’+3132+Iz'|‘|31—x3|§m'3lzl—zz.

1/z2) — flza)| = ﬁ ler =zl (=], |7l = 1)

ist die Abbildung kontrahierend mit dem Kontraktionsfaktor ¢ = 0,1. Die Voraus-
t des Banachschen Fixpunktsatzes sind erfiillt. Mit dem Startwert a, = 0
erhalten wir

=/(0) =001,
a, = f(0,01) = 0,01000003.

. Die Fehlerabschitzung (6) ergibt

0,01.0,01
- — 2 —0,000i.
ool s =g
Bereits nach dem iten Iterati hritt haben wir damit einen brauchbaren

Niherungswert gewonnen.

Der Ansatz (11) muB an dieser Stelle als Kunstgriff erscheinen. Mit den Methoden
der Differentialrechnung werden wir spiter allgemeine Kriterien fiir die Anwendbar-
keit des Banachschen Fixpunktsatzes herleiten.

Der Banachsche Fixpunkt: bleibt dndert giltig, wenn wir R durch einen beliebigen
vollsténdigen metrischen Raum Wie gewohnt hat man iiberall |z — y| durch o(z, y)
zu ersetzen.

25.  Die hyperbolischen Funktionen und die Area-Funktionen

2.5.1. Die hyperbolischen Funktionen

Mit Hilfe der (speziellen) Exponentialfunktion defini wir ein Funktic
fiir das zahlreiche Formeln gelten, die in analoger Weise bei der Kosinus- und Smus-
funktion aufgetreten sind. Wir setzen

e 4 et
2

cosh z := (z€R) (1)
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(gelesen: cosinus hyperbolicus z) und

) e —e*
sih z := i

(z€R) 2)

(gelesen: sinus hyperbolicus z).
Aus der Reihendarstellung fiir die Exponentialfunktion ergibt sich

. © o2k
hr =) —, 3
cosh :‘:‘; 2o 3)

® 2%l
inhz = ' ——. 4
sinh z l::‘o @k Tl (4)
Somit ist

coshO =1, 8inh0=0, (8)
cosh (—z) =coshz,  sinh (—z) = —sinh z. (6)

Die Funktion y = cosh z ist eine gerade und y = sinh z eine ungerade Funktion.
Die Additionstheoreme

cosh (z + y) = cosh z cosh y + sinh z sinh y, (7
sinh (2 + y) = sinh z cosh y 4 cosh zsinh y 8)

ergeben sich durch Einsetzen von (1), (2) auf beiden Seiten dieser Gleichungen. In
gleicher Weise erhalten wir die Identitit

cosh? z — sinh?z = 1. ()}
y-‘" y=e*
\ 1
\ /
\ /
/
y=cosh x \N|7/
- ~—

y=sinhx Abb. 2.20

Die Herleitung der zu 1.6.1.(8), (7) und (13) bis (18) analogen Formeln iiberlassen
wir dem Leser.

Die Analogie zwischen den trigonometrischen und hyperbolischen Funktionen er-
streckt sich nicht auf die Graphen dieser Funktionen. So sind die letzteren z. B. nicht
beschrinkt und (im Reellen) nicht periodisch (Abb. 2.20). Der Graph der Funktion
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y = cosh z wird als Kettenlinie bezeichnet, weil eine an zwei Punkten befestigte
Kette unter dem EinfluB der Schwerkraft die Gestalt dieser Kurve annimmt.

In GALILEO GALILEIS (1564 —1642) beriithmten ,,Discorsi...** von 1638 findet sich noch die
Behn.uptung. die ,,Kettenlmle“ sei eine Parabel. JoacHIM JUNGIUS (15687 —1657) widerlegte

durch Berech und Experi te die Behauptung GALILEIS, konnte aber auch nicht
angeben, welcher An die Kurve ist. 1690 stellt J.u(on B LLI in der Zeitschrift ,,Acta
eruditorum** offentlich die Frage nach der Funkt: leich der ,,K linie*‘. LEIBNI1Z,

JoHANN BERNOULLI und HUYGENS lésen dann 1691 fast glclchzemg diese Aufgabe.

Die Funktion y = cosh z ist im Intervall [0, oof streng monoton wachsend, im
Intervall J— oo, 0] streng monoton fallend, denn es gilt

en I en z
cosh z, — cosh z, = ehteh eten 1 (ez. — em) (1 — e~tmtan),

Fiir z, < z; < 0 sind beide Klammerausdriicke negativ. Die Funktion y = cosh z
ist somit im Intervall ]—oo, 0] streng monoton fallend. Als gerade Funktion ist sie
dann im Intervall [0, oof streng monoton wachsend.

Die Funktion y = sinh z ist streng monoton wachsend, denn fiir z, < z, folgt
wegen et — %' < 0 stets

sinh2, —sinhz, = ——— — ———— = — (ez. —em) (1 4 e~tnt2) < 0.

In Anaslogie zu den trigonometrischen Funktionen definieren wir

sinh z

tanh z := (z€R), (10)
cosh z

coth z 1= SXMZ R z40). (11)
sinh a

Fiir z) < x, ist

sinh z, sinh x,

tanh x, — tanh 2, =
! ? ™ cosh x, cosh z,

sinh z, coshz, — cosh z, sinh z,

cosh z, cosh z,
_ sinh (z; — 2,)
"~ cosh z, cosh z,

Die Funktion y = tanh z ist streng monoton wachsend. Fiir 1, <z, <0 und
0<z <mygilt

1 1 tanhz, — tanh 2,

— = > 0.
tanhz, tanhaz, tanh z, tanh z,

coth z, — coth z, =
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Die Funktion y = coth z ist im Intervall ]—oo, O[ und im Intervall JO, cof streng
monoton fallend (Abb. 2.21).
Eine Begriindung fiir die Bezeichnung ,,hyperbolische* Funktionen werden wir

spiiter geben. Sie hingt damit zusammen, daB diese Funktionen in d@hnlicher Be-
ziehung zur Hyperbel wie die trigonometrischen Funktionen zum Kreis stehen.

Die hyperbolischen Funktionen traten in ihren Grundlagen implizit u. a. bereits bei NEwroN
und pE Mo1vrE auf. Die Theorie dieser Funktionen begmndet zu haben, ist ein Verdienst von

VinceNzo Riccart (1707—1775). Er verwendete g he Betrachtung Im Jahre 1768
kam LAMBERT dann auf die Idee, sie fiir die Trig, ie bar zu h itdem sind
sie Gemeingut der Mathematik geworden.

Abb. 2.21

2.5.2. Die Area-Funktionen

Nach den in 2.5.1. durchgefiihrten Monotonie-Untersuchungen besitzen die Funk-
tionen

y = cosh (z€ R, z=0),
y =sinhz (r€R),
y =tanhz (zx € R),
y = coth z € R, x%0)

die folgenden Umkehrfunktionen (Abb. 2.22; 2.23):

y = arcosh z. (x=1), 1)
y = arsinh z (z€R), (2)
y = artanh z (-l<z<]), 3)

= arcoth z (lz| > 1) 4)

(gelesen: area cosinus hyperbolicus z usw.).
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y=arcosh x

y=arsink x

Abb. 2.22 Abb. 2.23

Fiir die Funktionen (1) bis (4) konnen explizite Darstellungen gefunden werden.
Es gilt y = arcosh z genau dann, wenn y = 0 und z = cosh y, d. h.

2z =¢" €77,
e — 2z +1=0

ist. Dies kann als quadratische Gleichung fiir ¢ aufgefaSt werden. Das Produkt der
Losungen ist nach dem Vietaschen Wurzelsatz gleich 1, und da y = 0, & = 1 gilt,
muB die groBere der beiden Losungen, d. h. die Losung

o=zt 1,
gewihlt werden. Somit ist

a,rooshz=ln(z+ Yot — l). ()]

Der Definitionsbereich dieser Funktion ist das Intervall [1, cof. Ahnliche Uber-
legungen fiihren zur Darstellung

arsinhz = In (z + VYt + l) (z€R). 6)
Es gilt y = artanh z genau dann, wenn z = tanh y, d. h.

o — eV
T = —
e 4 ey

¢~=1+z, = l+z, y=In .l_-‘-.
1—2 1—2 1-—

ist. Es folgt

(lz] < 1),

ala

142

= (=<, ™

ntanhz:%ln
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Die Gleichung y = arcoth z ist mit

_ e 4 e?
e — (l«| > 1),

e"=z+l, o = z+1, y=In z+1
z—1 z—1 z—1

dquivalent, d. h., es ist

z+ 1
z—1

arcoth z = -%ln (|z| > 1). (8)

Auf die Wahl der Bezeichnung ,,Area‘‘ kommen wir spiter zuriick.

2.6.  Folgen und Reihen von Funktionen

2.6.1. Punktweise Konvergenz

Bei unseren bisherigen Untersuchungen sind schon mehrfach Folgen bzw. Reihen
aufgetreten, deren Glieder nicht konstant, sondern von einer Variablen x abhingig
waren. In dieser Weise haben wir z. B. durch 2.1.5.(8), (9), 2.2.8.(7) die spezielle
Exponentialfunktion bzw. den natiirlichen Logarithmus sowie durch 2.2.8.(12), (13)
die trigonometrischen Funktionen-eingefiihrt. In 2.6. wollen wir einige allgemeine

L
Untersuchungen iiber Folgen (f,),en bzw. Reihen J /,, deren Glieder f, Funktionen

A=0
sind, durchfiihren. Da jede Reihe durch die Folge ihrer Partialsummen bestimmt ist
und umgekehrt zu jeder Folge eine Reihe existiert, deren Partialsummen die Glieder
der gegebenen Folge sind, geniigt es, einen dieser Fille zu betrachten. Wir werden
unsere Definitionen und Sitze je nach ihrer Bedeutung fiir die Anwendungen fiir
Folgen oder fiir Reihen formulieren. Die sinngemiBe Ubertragung auf den anderen
Fall bereitet keine grundsitzlichen Schwierigkeiten

Wie bei Folgen und Reihen mit konstanten Gliedern ist auch hier die Frage der
Konvergenz das Kernproblem.

Definition. Eine Folge (f,) reeller oder komplexer Funktionen heiBt (punkt-
weise) konvergent in der Menge D (D S D(f,) fiir alle ), wenn es eine in D definierte
Funktion /, die Grenzfunktion der Folge, gibt derart, daB

f(z) = lim f,(2) (O]

o0
fiir alle x aus D ist.

Da es hochstens eine Funktion mit der Eigenschaft (1) gibt, ist die Grenafunktion
“ner konvergenten Folge eindeutig bestimmt.
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Sind die Funktionen /, bzw. g, beispielsweise durch
x L]
pe= (142 wem, @

g@=nlJz—1) (zeRz>0) 3)

definiert, so ist die Folge (f,) bzw. (g,) in der Menge aller reellen Zahlen bzw. in der
Menge aller positiven reellen Zahlen konvergent und besitzt als Grenzfunktion die
spezielle Exponentialfunktion bzw. den natiirlichen Logarithmus.

Gehen wir auf die Definition des Grenzwertes einer Folge zuriick, so kénnen wir
die punktweise Konvergenz formalisiert durch

AV A @RZN=> () - ful=2)] <o) 4)

z€D ¢>0 NeR aeN

definieren, wobei die ersten beiden Quantifikatoren auch vertauscht werden kénnen.
Die Grenzfunktion einer (punktweise) konvergenten Folge stetiger Funktioren f,
braucht nicht wieder stetig zu sein.

Beispiel. Fiir jede positive natiirliche Zahl n sei D(f,) die Menge aller nicht-
negativen reellen Zahlen, und der Graph von f, sei fir 0 <z < —1- die Verbindungs-

strecke der Punkte (0, 1), (l, 0) und falle fiir z > 1 mit der z-Achse zusammen
(Abb. 2.24), d. h., es sei n

—nx + 1 fiir nggl,

n
Ialz) =
] 0 fiir x>—l—.
. n

Abb. 2.24

[ ey
-

9]

Die Funktionen f, sind stetig, und die Folge (/,) ist in der Menge der nichtnegativen
reellen Zahlen (punktweise) konvergent. Die Grenzfunktion f ist offensichtlich durch

1 fir z=0,
f(z) =
0 fir z>0

gegeben. Sie ist an der Stelle 0 unstetig.



2.6. Folgen und Reihen von Funktionen 191

2.6.2. GleichmiBige Konvergenz

Die Frage nach hinreichenden Bedingungen fiir die Stetigkeit der Grenzfunktion
einer konvergenten Folge stetiger Funktionen fiihrte zu einer Verschdrfung des
Konvergenzbegriffs.

Definition. Eine Folge (f,) reeller oder komplexer Funktionen heit gleickmdifig
konvergent in der Menge D (D < D({,) fiir alle =), wenn eseine in D definierte Funktion
f mit folgender Eigenschaft gibt: Fiir alle ¢ > 0 gibt es ein N derart, daB |f(z) — fu(%)|
< ¢ fiir alle 2 mit z € D und fiir alle n mit n = N ist.

In formalisierter Schreibweise lautet die definierende Aussage

A A (=N 1/@ — @) <o) o

>0 NeR zeD neN

und der Vergleich mit 2.6.1.(4) zeigt, daB nur eine unterschiedliche Reihenfolge der
Quantifikatoren vorliegt. Der wesentliche Unterschied besteht darin, da8 die gema
(1) existierende Zahl N bei gleichmiBiger Konvergenz nur von ¢, nicht aber von der
Stelle z mit € D abhiingig ist. Wir haben hier einen dhnlichen Sachverhalt wie bei
der gleichméBigen Stetigkeit (vgl. 2.4.3.). Wiihrend 2.6.1.(4) aus (1) gefolgert werden
kann, ist das Umgekehrte nicht der Fall. Jede gleichmiBig konvergente Folge ist
punktweise konvergent, aber das folgende Beispiel zeigt, daB nicht jede punktweise
konvergente Folge gleichmiBig konvergent ist.

Beispiel 1. Es sei f, wie im Beiapiel in 2.6.1. definiert. Wir setzen & := % und
bestimmen zu jeder positiven reellen Zahl N eine natiirliche Zahl » mit » = N und

1 .
setzen z := —. Dann ist
2n

V@) — @l = io - %‘ _Lls.

R0 | =

Die Aussage

V AV V (rZNalf@) — /2 Z¢),

>0 NeR zeD neN

d. h. die Negation von (1), ist wahr. Die Folge ist konvergent, aber nicht gleichmaig
konvergent.

Beispiel 2. Es seien f,(z) die Partialsummen der Reihe

s 1
El L(T—i—ﬁ coskz  (z€R). (2)
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Wegen

s (11 1
(@) < N A N D
@l é: k(k+ D .‘E,(k T 1) P

ist die Reihe mit den Partialsummen f,(z) nach dem Vergleichskriterium fiir alle z
konvergent, und die Folge /,(x) konvergiert punktweise gegen die Funktion

@) =% —— cos ka.

Fiir alle z ist

1
W) = —
(=) — fal2)] le(k TR

und die Bedingung (1) ist mit N := — erfullt Die Folge (/) ist gleichmiBig kon-
vergent in R.

Aus der gleichmiBigen Konvergenz konnen weitreichende Folgerungen abgeleitet
werden. Ein erstes Beispiel hierfiir gibt der

Satz 1. Jede in einer Menge D gleichmaBig k g Folge stetiger Funkti
besitzt eine in der Menge D stetige Grenzfunktion.

Beweis. Es sei f die in D definierte Grenzfunktion der Folge (f,) und z, € D. Zu

vo!

rgegeb e > 0 wihlen wir eine reelle Zahl N derart, daB |f(z) — /A(2)] <§
fiir alle x mit z ¢ D und fiir alle » mit » = N ist. Zu einer fest gewahlten natiirlichen
Zahl n mit » = N bestimmen wir unter Beriicksichtigung der Stetigkeit der Funktion

fa eine positive reelle Zahl 6 derart, daB |f,(x) — fa(Zo)| < £ fiiralle z mit z € Dund
|# — x| < 4 ist. Fiir diese reellen Zahlen x gilt somit

1fx) — fxo)i < If(x) — fu(®) + Ifn(x) — falZo)l + |fa(Xo) — f(Zo)l
< + + — =E.
Die Existenz der Zahl  bei vorgegebenen x,, ¢ mit dieser Eigenschaft besagt aber
gerade, daB f in allen Punkten von D stetig ist, und damit ist unser Satz bewiesen.
Wir wollen die Anniherung der. Folgenglieder einer gleichmiiBig konvergenten

Folge stetiger reeller Funktionen /; an die Grenzfunktion f geometrisch interpretieren.
Zu vorgegebenem ¢ > 0 betrachten wir den sogenannten ,.e-Schlauch* um den
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Graphen von f (Abb. 2.25). Er besteht aus allen Punkten (z,y) mit z € D und
ly — f(x)| < e. Wiihlen wir N = N(e) entsprechend der Definition der gleichmiBigen
Stetigkeit, so gilt |fu(z) — f()| < ¢ fiir alle z € D und fiir alle » mit » = N. Die
Graphen aller Funktionen f, mit » = N liegen also innerhalb des e-Schlauches.
Lassen wir ¢ gegen O streben, so nihern sich die Graphen der Funktionen f,
mit = = N(e) ,,gleichmiBig*, d. h. in ihrem ganzen Funktionsverlauf der Grenz-
funktion f.

Besitzt eine punktweise konvergente Folge von stetigen Funktionen £, eine stetige
Grenzfunktion, so kann hieraus nicht auf gleichmiBige Konvergenz geschlossen
werden.

€
€}

of
Abb. 2.25 Abb. 2.26

Beispiel 3. Dic Funktionen /, scien fiir n = 1 wie folgt definiert:

nx fir 052 <

3|

hie) = —nx + 2 fiir l<:r:§—,
n n

0 fiir alle anderen 2

(Abb. 2.26). Da der ,,Zacken** dieser Funktionen fiir wachsende » immer dichter an
die y-Achse heranriickt, gilt

f(x) =limf(x) =0  (r€R).
n—oo
Ist 0 < ¢ < 1, o liegt keine der Funktioncn f, im e-Schlauch um den Graphen von
/- Die Folge ist nicht gleichmiBig konvergent, obwohl die Grenzfunktion stetig ist.

Fiir die Untersuchung von Reihen auf gleichmiBige Konvergenz ist das Kritertum
von Welerstra von hesonderer Bedeutung.

Satz 2. Gibt ¢s zu ciner Reihe, deren Glieder reelle oder komplexe Funktionen f,
mit dem Definitionsbercich D sind, cine konvergente Reihe 3 a, mit |fo()| < a, fiir alle
x ¢ D und fiir alle n > ny, 0 st die Rethe 37 f, gleichmiifig konvergent.

Beweis. Es seicn 5, die Partialsummen der Reihe ' f,. Wegen

[80-6F) — 84(0)] S tpey + 0 + Cars
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und der Konvergenz der Reihe J' a, ist die Folge (s,(z)) fiir jedes z € D eine Funda-
mentalfolge, und es existiert

8(z) 1= lim 8,(z) (x € D).

Zu vor b £ > 0 wihlen wir ein N mit an,y + @pg + +-- < ¢ fiir n = N.

B8

Dann ist
18(2) — 84(2)| = Apia + Cuyz + - <€

fir » = N und z € D. Daher ist die Folge (s,) oder, was definitionsgemiB gleich-
bedeutend ist, die Reihe J' /, gleichmiBig konvergent.

Beispiel 4. Die Reihe

& sin (10%z)
—_— R
2 o weh
ist wegen
sin (10%%z) l
10° =100

und Satz 2 in R gleichmiiBig konvergent, und nach Satz 1 ist die Funktion f mit

& sin (10%*z)

o) =X

2 o (zeR) @)

iiberall stetig.

2.6.3. Cebyiev-Metrik

Die mit der gleichmiBigen Konvergenz zusammenhiingenden Begriffe und Sitze konnen sehr
iibersichtlich formuliert werden, wenn man den Begriff des metrischen Raumes heranzieht.
Wir beschrinken uns auf den Fall, daB der Definitionsbereich D der betrachteten Funktionen
eine abgeschl hrinkte Menge reeller oder komplexer Zahlen ist. Mit Cp bezeichnen
wir die Menge aller auf D stetigen Funktionen. Wir setzen

[ mex IHz) — g (fg€Ch), 1)

wobei wir auf Grund von 2.4.2., Satz 1, max an Stelle von sup schreiben durften. Offensich
lich ist (f, g) = 0, und g(f, g) = O gilt genau dann, wenn f(z) = g(z) fir alle z€ D, d. h.,
wenn f = g ist. Ferner ist o(f, g) = e(g, /). Sind /, g, h aus Cp, so gilt stets

[Hz) — M) = If(2) — g(2)| + lg(z) — h(2)| <elf9) +elg }) (z€ D),
und folglich ist auch
elhB) =elf 9) + el B).

Die Menge C), bildet also in Verbindung mit der durch (1) definierten Funktion ¢ einen metri-
schen Raum (vgl. 1.5.6.). Die Funktion ¢ wird auch die Cebydev- Metrik (PaFNuTI Lvovié
CEBYSEV (1821 —1894)) im Raum Cj genannt.
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Satz 1. Eine Folge von Funktionen f, aus Cy ist in D gleichmipig konvergent genau dann,
wenn es eine Funktion f aus Cp mit

lim o(f, fa) = 0 2)
gibt.

Beweis. Es gelte (2). Dann gibt es zu vorgegebenem ¢ > 0 ein N mit p(f, f,) < efarn = N.
Fir alle z € D und fir n = N ist dann

@) — fu@) S elh fa) < &,

und die Folge ist in D gleichmiBig konvergent. Ist umgekehrt die Folge (f,) in D gleichmiiBig
konvergent mit der Grenzfunktion f, so gibt es zu vorgebenem & > 0 ein N mit

) — f@)l < =
fiir alle z € D und fir n = N. Es folgt
ol ST <e

fir n = N, d. h., es gilt (2). Damit ist Satz 1 bewiesen.

Eine Folge (f,) ist d h in der abgeschl beschrink Punk: ge D gleich-
miiBig konvergent genau dann, wenn sie in der Cebygev-Metrik konvergenc ist.
Satz 2. Der Raum Cp ist bezaglich der Cebydev- Metrik vollstandig (vgl. 2.1.7., Definition 2).

Beweis. Es sei (f,) eine Fundamentalfolge in Cp, d. h., fiir alle ¢ > 0 existiere ein N mit
o(fm» fo) < efiirm,n = N. Firallez ¢ Dund mn = detnn fm(Z) — fa(@)| < o(fms 1) <&
und folglich ist (f,(2)) eine reelle (bzw. komp F talfolge. Firr jedes z € D existiert
daher der Grenzwert

(@) :=”l_i: fa(@).

Zu vorgegebenem & > 0 wihlen wir ein N mit
lfm(@) — fa(@)l S elfw fu) < 5 (€ Dimn 2 N).
Der Grenzibergang m —> oo ergibt
Wz — @) S 5 <¢  @eDinzN),
und dies besagt, daB die Folge (f,) in D gleichmiiBig gegen die Funktion f konvergiert. Die
Grenzfunktion f ist nach 2.6.2., Satz 1, stetig, und damit ist Satz 2 bewiesen.
2.7.  Approximation von Funktionen

2.7.1. Das Approximationsproblem

In den Anwendungen der Mathematik ist man wiederholt darauf angewiesen, eine
gegebene Funktion f durch eine Funktion bzw. durch eine Folge von Funktionen
/» einer gewissen Klasse von Funktionen mdéglichst gut anzundhern, zu-approxi-
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mieren. In den wichtigsten Fillen sind die Naherungsfunktionen f, ganzrational bzw.
Linearkombinationen der trigonometrischen Funktionen cos kz, sin kx (k € N). Fiir
die ,,Giite‘* einer Approximation konnen verschiedene Kriterien entwickelt werden,
von denen wir einige aufzihlen.

a) Die Niherungsfunktionen £, sollen mit der gegebenen Funktion f an maéglichst
vnelen gegebenen Stellen, den Stiitzstellen iibereinstimmen. Eine solche Approximation

ichnet man als Interpolation durch Funktionen der gegebenen Klasse.

b) Die Niherungsfunktionen /, sollen die Funktion f in der Umgebung eines festen
Punktes a moglichst gut annihern. Dieses Problem werden wir fiir die Klasse der
ganzrationalen Funktionen mit Hilfe der Taylorschen Formel (Brook TAYLOR
(1685—1731)) im Kapitel Differentialrechnung lésen.

¢) Die Niherungsfunktionen £, sollen die Funktion f gleichmi8ig approximieren.
(Hiermit ist gleichbedeutend, daB die Abweichung o(f, /,) der Naherungsfunktionen
fa von der Funktion f in der Cebydev-Metrik sehr klein sein soll.)

tionath

Dieses Problem griff zuerst CEBYSEV auf. Seine Approxima ie ist erwachsen aus
der Beschiftigung mit dem sogenannten Wattschen Parallelogramm. An der Dampfmaschine
von JAMES WaATT (1736 —1819) befand sich ein Mechanismus, der die Aufgabe hatte, dem End-
punkt der Kolbenstange eine geradlinige Bewegung zu erteilen, damit der Kolben im Zylinder
sich weder lockert noch klemmt. Der Wattsche Mechanismus erméglichte nur eine in einem
engen Bereich annihernd gerade Bewegung, so daB die technischen Anforderungen an eine
Geradfihrung etwa erfillt waren. Es entstand die mathematische Aufgabe, entweder eine
cxakte Geradfithrung zu finden (gelést 1864) oder einc Methode zu geben, um die passendsten
El te fur die G igkeit des Spiels des Pamllelogmmms zu bestimmen. Das letzte er-
fordert, das Polynom zu fmden, welches sich in einem gegebenen Intervall am besten einer
gegebenen Funktion nihert. Dieser Frage ist CEBYSEVS Arbeit von 1853 ,, Théorie des mécanis-
mes connus sous le nom de parullélogrummes gewidmet, die die erste syswmatuchs Dar-

tellung zur Approxi heorie ist. Diese Theorie ist also eindeutig durch ein praktisches
Problem ungeregt worden. CEBYSEV bemerkte selbst, daB ihm auch bei seinem Approximations-
problem (allerdings im Zusammenhang mit geographischen Projektionen) EuLER (1777)
vorausgegangen war.

2.7.2. Interpolation

Das erste der in 2.7.1. aufgeworfenen Probleme wird gelost durch den

Satz 1. Zu jeder reellen (oder komplexen) Funktion f und zu jedem System von n + 1
verschiedenen Stiitzstellen x; (k = 0, 1, ..., n; x; € D(f)) gibt es genau eine ganzrationale
Funktion P von hichstens n-tem Grad derart, daf

P(x) = f(x) (k=0,1,...,n) (1
st.

Beweis. Wenn eine Funktion P mit

P(z) = Z" cpat (2)
i=o
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PP

existiert, die den Bedingungen (1) geniigt, sind die Gleichungen
"
Zepd=f@w) (E=01,..,n) ®
i=0
erfiillt. Als Gleichungssystem fiir die ¢; hat (3) die Koeffizientenmatrix
1z ... z®

1 2! ... 2

deren Determinante unter der Bezeichnung Vandermondesche Determinante (ALEXAN-
DER THEOPHILE VANDERMONDE (1735—1798)) bekannt ist. In der Determinanten-
theorie wird bewiesen, daB
N = (@1 — o) (T2 — o) -+ (T — Zo)-
(T — 7y) - (Ty — 7))

(@0 — 2,_.)

ist. Da alle Stiitzstellen voneinander verschieden sind, ist die Koeffizientendeter-
minante ungleich 0, und es gibt genau ein System von Zahlen ¢y, ¢,, ..., ¢,, fiir das
(3) erfiillt ist. Definieren wir also P durch (2), so ist (1) erfiillt, und unser Satz ist
bewiesen.

Beispiel. Die Sinusfunktion soll durch eine quadratische Funktion so approxi-
miert werden, daB beide Funktionen an den Stellen 0,%, % iibereinstimmen.
Die Niherungsfunktion P(x) = ¢, + ¢, + c,2® ist aus den Bedingungen

c+0+0=0,

n n\2 1
00+01-6-+0=(?) =3
¢ + ¢ 1+c iz—1
ot g 1\3) =

zu ermitteln. Dieses Gleichungssystem hat die Losung ¢y = 0, ¢, = %, €= —i’,
14

d.h., es ist

P(z)=lx—ix’.
2n n?
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Fiir die Losung des Interpolationsproblems gibt es auch explizite Formeln. Von
LAGRANGE stammt die Formel

P@) =.2'o fi2) iz, @

wobei die f‘unktionen i durch

(B —Zo) (& — ) (2 — Tp) (B — Tpy) (& — Z4)
(@ — Zo) (Tx — Z1) -+ +(Te — Te1) (B — Tnr) (T — Za)

W(z) :=

definiert sind. Fiir z = z; stimmen Zihler und Nenner iiberein, d. h., es ist ly(z;) = 1.
Firz =2, (j =0, 1, ..., n;j & k) verschwindet der Zihler, d. h., es ist [;(z;) = O fiir
j = k. In der Summe

P(xy) =.Z.' fe) b(zy)
=0

verschwinden daher alle Summanden, in denen k == j ist, und wegen I(z;) = 1 gilt
P(z;) = f(z;). Da alle Funktionen /; ganzrationale Funktionen vom Grad = sind, ist
die Linearkombination (4) dieser Funktionen eine ganzrationale Funktion héchstens
n-ten Grades, die dis Interpolationsproblem 16st. Bereits zuvor hatten wir bewiesen,
daB diese Losung eindeutig bestimmt ist.

2.73. GleichmiBige Approximation
’

Uber die gleichmiBige Approximation von stetigen Funktionen wurden von WEIER-
STRASS zwei beriihmte Siitze bewiesen.

Satz 1. Zu jeder auf einem abgeschlossenen beschrinkten Intervall stetigen Funktion f
gibt es evne Folge von ganzrationalen Funktionen, die auf diesem Intervall gleichmiifig
gegen | konvergiert.

Beweis. Die Funktion f sei auf dem abgeschlossenen Intervall [a, b] stetig. Wir fithren den
Beweis auf den Fall @ = 0, b = 1 zuriick, indem wir

g(z) := f(a + z(b — a)) (1)
setzen. Die Funktion g ist im Intervall [ 0,1] stetig, und es ist

/(z)=a(" “) @szsb),

b—a
und wenn die Behauptung fiir g gilt, ist sie auch fiir f bewiesen.

Fortan sei also a = 0, b = 1. Wir fihren die sogenannten Berndtejnschen Polynome (SERGES
NaTANOVIS BERNSTEIN (1880 —1868))

B.(:)==f/(i)(")z*u—z>'-~ (€N @
k=0 \n/\k
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der Funktion f ein und beweisen zunichst einige Hilfsformeln. Fir n = 2 gilt, wenn wir zur
Abkiirzung y := 1 — z setzen,

z (:)"”""= E+ur =1, ®
K=o
» _ —-1 - =l fn -
L’k( )z'y' t_z,'( ),Ey- k=u£ ( ),b’n k-1
k=0 k=1 -1 =0 k
= M(éc + 9t =nz, 4

BeG)or gl o

= m:.z‘—lk (n : l) zhyn =1 4 g 2 (" : l) zhyn—k-1,
k=0
Wrendon wir (4) bzw. (3) mit n — 1 statt n auf die vorl bzw. letzte S an, 8o erhalt.
e (") 2hyh—t = nn — 1) 2 + nz. ®)
k=0 \k
Wegen (3) ist
fz) — Byte) = 5 (/(z) - 1) ;) =
¥=o n
e - B 5 & |10 -1 (2)| (7) = ®
k=0 n /| \k

Zu vorgegebenem ¢ > 0 wihren wir auf Grund der gleichmiBigen Stetigkeit von f ein 6 > 0
mit [f(z,) — f(z,)] < —;— fir |2, — z,| < 6. Essei z € [0, 1), und M, bzw. M, sei die Menge aller
natiirlichen Zahlen k mit 0 < k¥ < n und

x—£|<6 bzw.
n

z—ilgé.
n

Fir k¢ M, ist

k £ Lo
fx) —1 (T) | <3 und folglich ist

g | —/(—:—)

2
Firke Myist1 < % z — i , und wenn K das Maximum von f fiir 0 < z < 1 ist, erhalton
n

A\ gk < £ g (P prgr—r — £
(i)t s 5 £ ()= o

wir unter Beriicksichtigung von (3), (4), (5) die Abschitzung

Z @ =1(2)|(2) = sz (7)o
< 21{50 (z - %)‘ (") Zhyn—k

= n’d‘

2 (n32? — 2nkz + k%) ( )z“y"‘"’

=-E’-[n’z’—‘.’nz~u+n(n— 1) 2 4 na|
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nd? o\t 2
<2K 1 _ K ®)
w4 2nd

‘Wiehlen wir N > %, so gilt fir » = N und 0 < z < 1 wegen (8), (7), (8) stets

£, &
f@) = Bua)l < 5 + 5 =&,

und Satz 1 ist bewiesen.

Der zweite Satz von WETERSTRASS ermdéglicht die gleichméBige Approximation
von stetigen periodischen Funktionen durch trigonometrische Funktionen-
systeme. Unter einem trig trischen Poly versteht man jede reelle Funktion
T, die sich in der Form

T(x) = ay + Z" (@ cos kz + b, sin kx) (z€R)
k=1

mit ag, b, € R darstellen 1iBt. Jede Linearkombination von trigonometrischen
Polynomen ist daher wieder ein trigonometrisches Polynom. Aus den Additions-
theoremen folgt, da mit 7' auch die durch S(z) := T(x + c) definierte Funktion §
ein trigonometrisches Polynom ist. Ersetzen wir «, # in 1.6.1.(13) bis (16) durch
(m + n) z bzw. (m — n) z, so erkennen wir, daB auch das Produkt zweier trigono-
metrischer Polynome wieder ein trigonometrisches Polynom ist.

Nach diesen Vorbereitungen formulieren wir

Satz 2. Zu jeder reellen stetigen Funktion f mit der Periode 2n gibt es eine Folge von
trigonometrischen Poly die in R gleichmifig gegen die Funktion f konvergiert.

Beweis. Es geniigt, zu zeigen, daB zu jedem & > 0 ein trigonometrisches Polynom 7' mit
|f(x) — T(z)| < € fir z € R existiert. Zuniichst sei f eine gerade Funktion. Die Funktion g
mit g(¢) := f (arccost) (—1 < ¢t < 1) ist stetig, und nach Satz 1 existiert zu vorgegebenem
€ > 0 eine ganzrationale Funktion A mit [g(¢) — A(t)] < ¢ fir —1 < ¢ < 1. Nach Definition
ist f(z) = g(cos z) zuniichst fir 0 < z < n. Wegen f(—z) = f(z), co8 (—z) = cos z und der
Periodizitit von f(z) und cos z gilt f(z) = g(cos z) fir alle z € R. Setzen wir T'(z) := h(cos z),
80 ist T ein trigonometrisches Polynom, und es gilt

If(2) — T(z)| = |g(cos z) — h(cos )| <& (€ R).
Die Behwptung des Satzes ist damit fir gerade Funktionen bewiesen.

Als nichst trachten wir Funkti die sich in der Form f(z) = g(z) sin® z mit einer
stetigen Funktion g der Periode 2z darstellen lassen. Zu den (geraden) Funktionen

au(a) = (=) +2a(—z) sin’ z,

7l@) : . 9@ 2;7(—:)““ z
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+

existieren nach dem Bewi zu vorgeg &> 0 trig trische Polynome T, T,
mit

@) ~ Tl <3 (@eR;i=1,2),

und wegen f(z) = g,(z) + gs(z) sin z ist
If(@) — Ty(2) — Ty(=) sin z| < |g3(2) — To(=)| + |ga(2) 8in 2 — Ty(z) sin 2|
< 1:@) — Ti(@)| + Igsz) — Tol@)| <& (= €R).
Es sei schlieBlich f eine beliebige Funktion, die den Voraussetzungen des Satzes genigt.
Dann gibt es zu den Funktionen

fi(x) := f(z) 8ind z, folz) := /(z - %) sin? 2

nach dem zuletzt Bewi zu b € > 0 trig ische Polynome 8, S, mit

Beg!

filz) — Si@)l < % @ER; i=1,2).

Wegen f(z) = fu(e) + fs (z ¥ %) folgt

I = 8i0) = 84 (= + 5) | S Ihe) — @) + |r. (+3)-s(=+ %)I

<

oo

+€=e (z€R),

und Satz 2 ist bewiesen.
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