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Vorwort der Herausgeber

Auf der Grundlage allgemeiner Konzeptionen fiir die weitere Entwicklung der
Ausbildung von Fachlehrern an den allgemeinbildenden polytechnischen
Oberschulen der Deutschen Demokratischen Republik erarbeiteten die Mit-
glieder der Fachkommission Mathematik beim Ministerium firr Volksbildung
und beim Ministerium fir Hoch- und Fachschulwesen ein Studienprogramm.
In ihm wurden die Grundsatze fir die Ausbildung im Fach, die Studienpléne,
Priifungen und der Inhalt der Lehrveranstaltungen fiir die nachsten Jahre
festgelegt. Dieses 1969 bestatigte Programm gilt firr die Ausbildung von
Fachlehrern mit dem Haupt- oder Nebenfach Mathematik an Universititen,
Piadagogischen Hochschulen, Technischen Hochschulen und Padagogischen
Instituten der DDR. Die Fachlehrer werden im Unterricht der Klassen 5
bis 10 der allgemeinbildenden polytechnischen Oberschulen eingesetzt. Aber
auch die Lehrer fiir die Klassen 11 und 12 der Erweiterten Oberschule werden
aus den gemaB dem Studienprogramm ausgebildeten Fachlehrern ausgewahlt.

Mit der Erarbeitung des Studienprogramms entstand der Wunsch und in
gewisser Hinsicht auch die Notwendigkeit, ein eigenstandiges Lehrwerk zu
schaffen, da die bisher verwendete Literatur die speziellen Belange der Lehrer-
ausbildung naturgema nur bedingt oder gar nicht beriicksichtigt. Um so
erfreulicher ist die bereitwillige Mitarbeit vieler Hochschullehrer als Autoren,
Gutachter und Mitherausgeber bei der Aufgabe, ein solches Werk heraus-
zubripgen, das sowohl zum Gebrauch neben den Vorlesungen als auch im
Fernstudium verwendet werden kann und dariiber hinaus auch fiir die Lehrer
geeignet ist, welche bereits im Schuldienst stehen.

Alle Beteiligten sind bemiiht, im Rahmen der Studienbiicherei des VEB
Deutscher Verlag der Wissenschaften ein Werk zu schaffen, das in Anlehnung
an das Studienprogramm im Stoffumfang beschrankt ist, aber den modernen
Entwicklungstendenzen in der Mathematik Rechnung tragt und die Bediirf-
nisse bei deren Umsetzung in Ausbildung und Erziehung an den allgemein-
bildenden Schulen der DDR beriicksichtigt. Im Interesse der Benutzer erfolgte
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eine weitgehende Abstimmung fiir die einzelnen Bande u. a. in bezug auf die
verwendeten Begriffe, Termini und Symbole, ohne da8 dadurch der indivi-
duelle wissenschaftliche Stil der einzelnen Autoren beeinflut wurde. Dariiber
hinaus werden sich in den einzelnen Banden neben Beispielen auch Ubungs-
aufgaben und kurze historische Einflechtungen finden, die den Leser in die
Lage versetzen sollen, die engen Wechselwirkungen zwischen allgemein-
gesellschaftlicher und speziell-wissenschaftlicher Entwicklung zu erkennen und
daraus Einsichten in die innermathematische Vorwartsbewegung zu gewinnen.

Herausgeber und Verlag sind nunmehr in der Lage, den ersten Band der
Reihe ,Mathematik fir Lehrer vorzustellen. Er wurde von Herrn Prof.
Dr. G. AssEr verfaBt und fithrt in den Stoff der ersten beiden Studienjahre
ein. Bis 1975 werden die weiteren Biande folgen, die den hauptséachlichsten
Stoff der ersten beiden Studienjahre umfassen.

Bd.2 Doz. Dr.J. WISLICENY
Grundbegriffe der Mathematik
Teil II: Rationale Zahlen, reelle Zahlen und komplexe Zahlen

Bd. 3 Prof. Dr.J. FLACHSMEYER, Doz. Dr. L. PROEASKA
Algebra,

Bd.4 Prof. Dr. S. BREHMER, Prof. Dr. H. APELT
Analysis
Teil I: Folgen, Reihen, Funktionen

Bd.5 Prof. Dr. S. BREEMER, Prof. Dr. H. APELT
Analysis
Teil II: Differential- und Integralrechnung

Bd. 6 Prof. Dr.J. BouyM, Dr. W. B6RNER, Dr. E. HERTEL,
Prof. Dr. O. KROTENHEERDT, Prof. Dr. W. MoGLING,
Doz. Dr. L. STAMMLER
Geometrie

Teil 1: Axiomatischer Aufbau der euklidischen Geometrie

Bd.7 Prof. Dr.J. Boum, Dr. W. BORNER, Dr. E. HERTEL,
Prof. Dr. O. KROTENHEERDT, Prof. Dr. W. MoeLING,
Doz. Dr. L. STAMMLER
Geometrie
Teil II: Analytische Darstellung der euklidischen Geometrie, Ab-
bildungen als Ordnungsprinzip in der Geometrie, geometrische
Konstruktionen
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Bd.8 Doz. Dr. E. SCHRODER
Darstellende Geometrie

Bd.9 Doz. Dr. H. KAISER
Numerische Mathematik und Rechentechnik
Teil I

Weitere Bénde, die zur Verwendung im dritten und vierten Studienjahr
geeignet sind, werden vorbereitet.

Herausgeber und Autoren hoffen, da diese Reihe einen Beitrag zur Ver-
besserung der Aus- und Weiterbildung von Mathematiklehrern liefert. Sie
werden kritische Hinweise, die zur Verbesserung der Biicher fiihren, gern
entgegennéhmen.

Den Herausgebern ist es eine angenehme Pflicht, beiden genannten Mini-
sterien fiir die den Autoren und Herausgebern gewihrte Unterstitzung zu
danken. Weiter gilt unser Dank der Leitung des VEB Deutscher Verlag der
Wissenschaften und besonders dem Lektorat Mathematik mit Herrn W. ARNOLD
und Fraulein E. ARNDT fiir die gute Zusammenarbeit wahrend der Vorberei-
tungszeit der Reihe ,,Mathematik fiir Lehrer.

W. ENceL S. BRemMEr M. ScENEIER H. Wussing



Vorwort des Autors

Der vorliegende erste Band der Studienbiichefei ,Mathematik fiir Lehrer*
enthalt eine Einfithrung in die allgemeine Mengenlehre und Abbildungstheorie
sowie die Anfangsgriinde der Arithmetik der natiirlichen Zahlen. Die Ein-
fiihrung in die Mengenlehre erfolgt auf der Grundlage einer typentheoretischen
Auffassung der Mengen. Diese ist fiir die meisten Anwendungen der Mengen-
lehre in der Mathematik voll ausreichend und hat den Vorteil leichter Ver-
standlichkeit. Da die Abbildungen, wie es heute in der Mathematik weitgehend
iiblich ist, als Mengen von geordneten Paaren aufgefaBt werden, erscheint
die Abbildungstheorie als ein etwas weiter ausgefithrtes Kapitel der allge-
meinen Mengenlehre. Hier finden auch einige Ausfithrungen iiber Relationen
und Operationen ihren Platz. In einem Abschnitt iiber endliche Mengen
wird gezeigt, wie allgemeine Aussagen iiber endliche Mengen, die wohl jedem
mehr oder minder einleuchten werden, auf der Grundlage einer exakten
Endlichkeitsdefinition streng bewiesen werden kénnen. Wesentlich ist da-
bei, duB diese Beweise nicht den Begriff der natiirlichen Zahl benutzen. In
dem Kapitel iiber natiirliche Zahlen besteht das Hauptanliegen darin, die
wichtigsten Eigenschaften der natiirlichen Zahlen systematisch und liickenlos
aus wenigen ihrer Grundeigenschaften, dem Peanoschen Axiomensystem fiir
die natiirlichen Zahlen, herzuleiten.

Die Definitionen und Satze werden in diesem Band in halbformalisierter
Form aufgeschrieben, die Beweise jedoch grundsatzlich in der Umgangssprache
inhaltlich gefiihrt. Wir méchten unsere Meinung hierzu kurz darlegen. Die
Formalisierungstechnik ist im Zusammenhang mit der mathematischen
Grundlagenforschung entstanden und dort zu groBter Perfektion entwickelt
worden, wobei neben einer Formalisierung der Aussagen auch eine Formali-
sierung der Beweise eine grundsitzliche Rolle spielt. In den Grundlagen der
Mathematik ist diese Formalisierung unumgénglich notwendig, da durch sie
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die meisten Grundlagenprobleme erst einen iiber allgemein-philosophische
Erorterungen hinausgehenden bestimmten Sinn erhalten. Seit einigen Jahren
setzt es sich nun immer mehr durch, daB gewisse Elemente der Formalisie-
rungstechnik, gewissermaBen als ,logische Stenografie”, in Vorlesungen und
Publikationen zu verschiedensten Gebieten der Mathematik Eingang finden.
Und selbst wenn ein Dozent in seinen Vorlesungen bewuBt hierauf verzichtet,
wird er nicht selten feststellen, daB es seine Horer — ob er es mag oder nicht —
anders halten. Sofern die Abkiirzungstechnik verniinftig und vor allen
Dingen einwandfrei gehandhabt wird, kann man ihre Verwendung nicht
schlechthin verwerfen; sie hat sogar den Vorteil, daB die logische Struktur
der Definitionen und Satze klar ersichtlich wird. Leider wird jedoch in Vor-
lesungen und Veroffentlichungen, insbesondere aber bei der ,Privatsteno-
grafie der Studenten noch oft gegen die genannten Forderungen verstoBen.
Ich méchte mit der Art der Darstellung dem Leser zeigen, wie eine einwandfreie
und — wie ich meine — verniinftige Verwendung logischer Zeichen bei der
Darlegung mathematischer Sachverhalte etwa aussehen kann. Natiirlich
muB man die einwandfreie Handhabung der Abkiirzungstechnik iiben, und
hierbei mochte der vorliegende Band ebenfalls unterstiitzen. Drei grundsitz-
liche Bemerkungen seien dem Leser noch mit auf den Weg gegeben: (1) Man
hiite sich vor der Annahme, daB die Verwendung logischer Abkiirzungen
ein Zeichen besonderer mathematischer Bildung sei. (2) Man glaube nicht,
daB die Verwendung logischer Abkiirzungen automatisch logische Exaktheit
zur Folge hat oder gar Voraussetzung hierfiir sei; sie hilft jedoch, eventuelle
logische oder begriffliche Unklarheiten aufzudecken und zu beseitigen. (3) Man
vergesse iiber der Form nicht den Inhalt (und das betrifft keineswegs in erster
Linie das Problem der Formalisierung). Vor allem bemiihe man sich stets,
und das ist fiir den angehenden Lehrer besonders wichtig, auch komplizierte
mathematische Zusammenhiange sprachlich einwandfrei zu formulieren.

_Die in diesem Band erklarten Begriffe und formulierten Satze werden dem
Leser zum groBten Teil aus der Schule bekannt sein, allerdings vorwiegend
als mehr oder minder empirisch gewonnene Einzelfakten. Demgegeniiber
werden sie hier in einen systematischen Zusammenhang gebracht und exakt
begriindet. Diese Seite der Mathematik bereitet dem Anfanger beim Mathe-
matikstudium erfahrungsgemaB erhebliche Schwierigkeiten und ist die
beriichtigte Barriere beim Ubergang von der Schule zur Hochschule. Moge
dieser Band vielen Studenten, die mit groBen Erwartungen ein Mathematik-
studium aufnehmen, um einmal als Lehrer ihr Wissen und Koénnen an die
Schuljugend weiterzugeben, die ersten Schritte auf diesem Wege erleichtern.

Ich méchte es nicht versiumen, den Herausgebern dieser Reihe und ins-
besondere ihrem Initiator, Herrn Prof. Dr. W. ENGEL, sowie vielen in der
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Lehrerausbildung tatigen Fachkollegen, die das Manuskript lasen und mir
wertvolle Hinweise gaben, herzlich zu danken. Mein Dank gilt ferner dem
VEB Deutscher Verlag der Wissenschaften fiir die Herausgabe dieses Bandes
und den Setzern des VEB Druckerei ,,G. W. Leibniz* fiir ihre sorgfiltige
Arbeit bei der Drucklegung.

Greifswald, im Februar 1973 GUNTER ASSER
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Oberblick iiber die wichtigsten im vorliegenden Band
eingefithrten Zeichen

Das Zeichen ,,: = (gelesen: . . . ist definitionsgemaB gleich . . .) wird als Defi-
nitionszeichen fiir T e r m e verwendet ; der links vom Zeichen stehende Term
ist eine neu eingefithrte (meistens kiirzere) Bezeichnung fiir den rechts vom
Zeichen stehenden Term.

Das Zeichen ,,:&“ (gel . gilt definitionsgemaB genau dann,
wenn . ..) wird analog sls Deﬁmtxonszexchen fiir Eigenschaften und Bezie-
hu.ngen benutzt.

. Logische Zeichen
prg:epundg (Konjunktion)
P vq:e poderq (Alternative)
P = ¢:$ wenn p, 80 ¢ (Implikation)
P < ¢:¢> p genau dann, wenn ¢ (Aquivalenz)
—1p:& nicht p (Negation)
A H(z):© fur jedes z gilt H (z) (Generalisierung)
z
A Hz): e A(z €M = H(z))
zZEM z
V H(z):4> es gibt ein z mit H(z) (Partikularisierung)

‘V H(z):e V (z € M A H(z))
zEM z

. Mengentheoretische Zeichen
z € M:& z ist Element von M
z¢ Mo zEM
M NeANE@EM=>2zEN) (Inklusion)
z



14 Uberblick iiber die wichtigsten Zeichen

McNeMCSNAM+=N (echte Inklusion)
{z : H (x)}:= Menge aller z mit der Eigenschaft H (z)
MAN={z:xEMrzEN} (Durchschnitt)
MOoN={z:z€MvzEN} (Vereinigung)
M\N:={z:2€ Mrz & N} (Differenzmenge)

NM:={z:A(MEM=>2zE M)
M
U= {z: V(M EMrz € M)}

M
PM):={X:X S M} (Potenzmenge)
0:= leere Menge
{a}:={z:z=a} (Einermenge)
{a,b}:={z:2=avz =10} (Zweiermenge)

N:= Menge aller natiirlichen Zahlen

N*:= Menge aller von Null verschiedenen natiirlichen Zahlen
Z:= Menge aller ganzen Zahlen

Q:= Menge aller rationalen Zahlen

R:= Menge aller reellen Zahlen

Ry:={z:2€Rrz =0}

Ro:={z:z€Rrz < 0}

R*:={z:2€Rrz + 0}

R¥:={z:2z€Rarz >0} (=R*~R,)
R*:={z:2€Rrz <0 (=R*AR)

3. Abbildungstheoretische Zeichen
(z, y):= geordnetes Paar aus z und y

M X N:={=zy):xEMryEN} (Produktmenge)
Br(z):={y: (z,y) € F} (volles Bild von z bei F)
Ur(y):={z: (x,y) € F} (volles Urbild von y bei F)
D(F):={z: Br(z) + 6} (Definitionsbereich von F)
W(F):={y:Urly) + 8} (Wertebereich von F)
F-1:={(y,z): (x,y) € F} (Umkehrkorrespondenz)
Go F:={(z,2): V((x,y) EF A (y,2) €Q)} (Verkettung)
FIX:={y):2€X(zy)EF (Einschrénkung)

F : M— N :& F eindeutige Abbildung von M in N
R/M := Restsystem von R nach M

F :2 & 2" F Isomorphismus von X auf 2’
P=XoeoVYF:Z2852)

P
F:X = X':= F Homomorphismus von X in X’



1. Grundbegriffe der Mengenlehre

1.1.  Einleitung

In allen Gebieten der Mathematik spielen heute der Mengen- und der Ab-
bildungsbegriff sowie eine Reihe hiermit zusammenhingender allgemeiner
Begriffsbildungen eine beherrschende Rolle. Thr systematisches Studium
bildet den Gegenstand einer eigenen mathematischen Disziplin, der soge-
nannten (allgemeinen) Mengenlehre oder Mengentheorie. Man kann
behaupten, daB die mengentheoretische Betrachtungsweise einen bedeutsamen
EinfluB auf die Entwicklung der Mathematik unseres Jahrhunderts ausgeiibt
hat und das Entstehen vieler wichtiger Teilgebiete der heutigen Mathematik
ohne das Fundament der allgemeinen Mengenlehre nicht méglich gewesen
wire. Dabei hat die Mengenlehre wesentlich zur Prazisierung, Vereinfachung
und Vereinheitlichung des Begriffssystems der Mathematik beigetragen.
Daher wird auch der Mathematikunterricht an den Schulen in immer star-
kerem MaBe von mengentheoretischen Auffassungen durchdrungen. Es ist
folglich nur natiirlich, daB die Vermittlung von Grundkenntnissen der Mengen-
lehre einen entsprechenden Platz in der Mathematikausbildung der Lehrer-
studenten an den Universititen und Padagogischen Hochschulen unserer
Republik einnimmt. ’

Als Begriinder der Mengenlehre ist der Hallenser Mathematikprofessor
GEeORG CANTOR (1845—1918) anzusehen. Natiirlich hatte man schon lange vor
dem Erscheinen der grundlegenden Arbeiten CaNTORs zur Mengenlehre
Gesamtheiten von mathematischen Objekten, wie Zahlen, Punkten usw.,
betrachtet, wenn man es vielleicht auch anders ausdriickte. Wesentlich neu
bei CANTOR war, daB er die Mengen und gewisse Beziehungen zwischen ihnen
zu selbstindigen Gegenstinden seiner mathematischen Untersuchungen
machte. Dabei wurde CANTOR durch sehr konkrete mathematische Frage-
stellungen auf diese Untersuchungen gefihrt. Man kann sich heute kaum
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noch vorstellen, welche groBe Energie CANTOR aufwenden muBte, um sich
gegen zahlreiche Vorurteile seiner mathematischen Zeitgenossen durch-
zusetzen. Seine Arbeiten wurden von vielen seiner damaligen Kollegen als
unklar und falsch abgelehnt, insbesondere war der einfluBreiche und bedeutende
Berliner Mathematiker LEoroLD KRONECKER (1823—1891) einer seiner
erbittertsten Widersacher. Man berief sich dabei unter anderem auf CaRrL
FRIEDRICHE GAUSS (1777—1855), der wohl groBten mathematischen Autoritat
des vorigen Jahrhunderts, der in Anspielung auf den Grenzwertbegriff der
Analysis "einmal folgendes geauBert hatte: ,,So protestiere ich zuvérderst
gegen den Gebrauch einer unendlichen GréBe als einer Vollendeten, welches
in der Mathematik niemals erlaubt ist. Das Unendliche ist nur eine fagon de
parler, indem man eigentlich von Grenzen spricht, denen gewisse Verhéltnisse
s0 nahe kommen als man will, wihrend anderen ohne Einschrankung zu
wachsen gestattet ist.“ Demgegeniiber sah CANTOR in der Tat auch unendliche
Mengen als etwas durchaus Vollendetes, Fertiges an, was insbesondere der
Ausgangspunkt seiner Lehre von den transfiniten Zahlen war. Man pflegt
heute jene beiden unterschiedlichen Auffassungen vom Unendlichen, das
Unendlichwerden und das Unendlichsein, durch die Bezeichnungen potentiell
unendlich und aktual unendlich zu unterscheiden. Es wurde iibrigens CANTOR
nicht nur der Vorwurf gemacht, er habe gegen Gesetze der Logik und Mathe-
matik verstoBen, es wurden ihm sogar VerstoBe gegen Grundsétze der Religion
nachgesagt.

Die ersten groBen Erfolge der Mengenlehre stellten sich zu Beginn unseres
Jahrhunderts in einem Grenzgebiet zwischen Analysis und Geometrie, der
Theorie der Punktmengen ein. Auf ihrer Grundlage entstand eine ganz
neue mathematische Disziplin, die man zunachst ,,Analysis des Unendlichen*
oder ,,Analysis situs“ nannte und die heute als allgemeine oder mengen-
theoretische Topologie bezeichnet wird. Ihre Ideen spielen gegenwartig
in vielen Zweigen der Mathematik eine beherrschende Rolle. Die Theorie der
Punktmengen entwickelte sich ihrerseits in engem Zusammenhang mit der
Theorie der reellen Funktionen, vor allem der MaB- und Integrations-
theorie. Es ist bemerkenswert, daB im Anfangsstadium die Theorie der
Punktmengen noch als Teilgebiet der allgemeinen Mengenlehre angesehen
wurde. Es spiegelt sich das noch deutlich im Inhalt der Arbeiten CANTORs
und der ersten Lehrbiicher zur Mengenlehre wider, 8o in dem im Jahre 1914
in Greifswald entstandenen klassischen Lehrbuch ,,Grundziige der Mengen-
lehre* von FELiXx HAUSDORFF (1868—1942; HAUSDORFF schied, um der Ein-
weisung in ein Konzentrationslager zu .entgehen, am 29.1.1942 freiwillig
aus dem Leben), das von groBer Bedeutung fiir die Durchsetzung der Cantor-
schen Ideen war. Dabei iibten die genannten Gebiete einen starken EinfluB
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auf die Entwicklung der Mengenlehre aus, wie man iiberhaupt sagen kann,
daB die Mengenlehre stets maBgeblich von ihren Anwendungen in den ver-
schiedenen  Bereichen der Mathematik befruchtet wurde und auch heute
noch befruchtet wird.

Allerdings ergaben sich auch eine Reihe von Schwierigkeiten. Es zeigte sich
einerseits, daB bei unvorsichtigem Vorgehen Widerspriiche auftreten, und
andererseits deckte man einige Fakten auf, die man sich zunachst nur schwer
erkliren konnte. Dadurch erhielten die Diskussionen um die Mengenlehre
neue Nahrung, die sich in den zwanziger Jahren zu heftigen Auseinander-
setzungen iiber die logisch-philosophischen Grundlagen der Mathematik
ausweiteten. Zugleich 16sten sie indes auch fundierte Untersuchungen iiber
die Grundlagen der Mathematik und speziell der Mengenlehre aus, und es
kam zur forcierten Entwicklung solcher Gebiete wie der Mathematischen
Logik und der Grundlagen der Mathematik (die man heute verbreitet
als Metamathematik bezeichnet); insbesondere entstanden in dieser Zeit
die verschiedenen axiomatischen Systeme der Mengenlehre.

Heute wird die Mengenlehre von der iiberwiegenden Mehrheit der Mathe-
matiker als Fundament der Mathematik voll anerkannt. Dabei werden —
ahnlich wie zu CaNTORs Zeiten — vielfach bereits weit iiber den Rahmen der
klassischen Mengenlehre hinausgehende mengentheoretische Bildungen be-
nutzt, deren volle logische Rechtfertigung zum Teil noch aussteht. Es gibt
allerdings auch heute noch einige wissenschaftliche Schulen in der Mathe-
matik (ihre Anhanger nennen sich Intuitionisten, Konstruktivisten u. &.), die
ernste Bedenken gegen gewisse Grundprinzipien der Mengenlehre und auf
ihnen beruhenden mathematischen Uberlegungen haben, wobei sich diese
Bedenken zugleich gegen gewisse von der Mehrheit der Mathematiker an-
erkannte logische SchluBweisen richten (es handelt sich hierbei insbesondere
um gewisse Arten ,indirekter Schliisse”). Die Ergebnisse dieser Schulen sind
von groBer methodischer Bedeutung, die Verabsolutierung der Auffassungen
dieser Schulen fiihrt indes zu einer von der ,,klassischen Mathematik“ erheblich
abweichenden Mathematik. Auf die hiermit zusammenhangenden Probleme
konnen wir an dieser Stelle nicht eingehen.

1.2.  Das Mengenbildungsprinzip

In dem im Jahre 1895 erschienenen ersten Teil seiner Arbeit ,Beitrige zur
Begriindung der transfiniten Mengenlehre® gibt CANTOR die folgende beruhmte

 besti

Definition einer Menge: ,,Eine Menge ist eine Z f g
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wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens — welche
die Elemente der Menge genannt werden — zu einem Ganzen.“ Wir merken sofort
an, daB es sich bei dieser Formulierung nicht um eine Definition in'dem heute
in der Mathematik einzig iiblichen Sinne einer sogenannten expliziten
Definition handeln kann, bei der verlangt wird, daB man den definierten
Begriff (in unserem Fall ,Menge“) stets eliminieren kann, indem man ihn
durch den definierenden Sachverhalt (in unserem Fall ,Zusammenfassung
bestimmter . . . zu einem Ganzen“) ersetzt. Denn im vorliegenden Fall wiirden
dabei an die Stelle des Begriffs Menge lediglich eine Reihe von anderen un-
definierten Begriffen, wie Zusammenfassung, Objekt usw., gesetzt werden.
Die Cantorsche Formulierung ist daher zundchst nur als eine ungefihre
Beschreibung dessen anzusehen, was vorliegen muB, damit von einer Menge
gesprochen wird.

Bevor wir den eigentlichen Inhalt der Cantorschen ,Definition“ genauer
herausarbeiten, betrachten wir einige Beispiele fir Mengen, wie sie haufig in
der Mathematik auftreten:

(1) Die Menge aller natiirlichen Zahlen.

(2) Die Menge aller Primzahlen.

(3) DieMenge aller natiirlichen Zahlen n, firr diedie Gleichung a* - y# = 2"
durch von Null verschiedene ganze Zahlen z, y, z losbar ist.

(4) Die Menge aller reellen Zahlen z, die den Ungleichungen 5 < z < 7
geniigen.

(6) Die Menge aller Punkte einer gegebenen Ebene, die von einem festen
Punkt O dieser Ebene den Abstand 1 haben.

(6) Die Menge aller Punkte X einer gegebenen Ebene, fiir deren Abstande
| 44X |, | A:X | von zwei festen Punkten A;, 4, der Ebene die Be-
ziehung | 4, X | + | 4,X | = 2 gilt.

In allen diesen Fillen sind die Elemente der jeweiligen Menge durch eine
Eigenschaft bzw. Aussage H (x) charakterisiert, wobei ein Objekt z, dann und
nur dann der betreffenden Menge angehort, wenn H(xo) gilt. In Beispiel (1)
ist es die Aussage (Eigenschaft) ,,z ist eine natiirliche Zahl“, die auf die Zahlen
0,1,2,..., nicht aber z. B. auf die Zahlen — 5, §, n usw. zutrifft. In Beispiel
(4) ist es die Aussage ,,z ist eine reelle Zah! mit 56 < z < 7, die z. B. auf die
Zahlen 5, 53, 6, 6.3, 2 7 usw., nicht aber z. B. auf die Zahlen 4, 7, T4, T USW.
zutrifft. In Beispiel (6) ist es die Aussage ,,X ist ein Punkt der.gegebenen
Ebene mit | 4. X | 4 | 4,X | = 2“; ist hierbei | 4,4, > 2, so gibt es keinen
Punkt X der Ebene, der der verlangten Gleichung geniigt, die betrachtete
Menge ist ,leer”; ist | 4,4, | = 2, so erfiillen genau die Punkte der Verbin-
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dungsstrecke der Punkte A4,, 4, die verlangte Gleichung; ist schlieBlich
|A;4,] < 2, so ist die betrachtete Menge Peripherie einer Ellipse mit den
Brennpunkten 4,, 4; und dem groBen Durchmesser 2, die im Fall 4, = 4,
(d.h. | 4;4,] = 0) in einen Kreis vom Durchmesser 2 ausartet.

Wir stellen weiterhin fest, daB in einigen der betrachteten Beispiele genau
fixiert ist, innerhalb welches Grundbereichs die Elemente der betreffenden
Menge zu wihlen sind. So haben wir in (4) ausdriicklich alle reellen Zahlen
mit der Eigenschaft 5 < z < 7 und nicht etwa nur die natiirlichen (in diesem
Fall wiirde die zugehorige Menge nur die beiden Zahlen 5 und 6 enthalten)
oder die rationalen Zahlen mit dieser Eigenschaft betrachtet. In (5) und (8)
betrachteten wir nur die Punkte einer gegebenen Ebene und nicht etwa alle
Punkte des Raumes mit der jeweiligen Eigenschaft. Aber auch in den iibrigen
Beispielen 1aBt sich aus dem Zusammenhang, wenn auch nicht immer in
eindeutiger Weise, ein Grundbereich finden, innerhalb dessen man sich die
jeweilige Mengenbildung vollzogen denken kann. So kommt in (2) als Grund-
bereich nur der Bereich der natiirlichen Zahlen in Frage, da sich die in der
Mathematik abliche Definition der Primzahlen (vgl. 3.7. (48)) grundsatzlich
auf natiirliche Zahlen bezieht. In (1) kann man als Grundbereich z. B. den
Bereich der natiirlichen Zahlen (in diesem Fall sind samtliche Objekte des
Grundbereichs Elemente der betrachteten Menge), den der ganzen Zahlen,
den der rationalen Zahlen oder den der reellen Zahlen nehmen, sicher aber
nicht die Gesamtheit aller Punkte einer Ebene oder die reellen Zahlen zwischen
0 und 1.

Nach diesen Vorbemerkungen diirfte der folgende allgemeine Ansatz hin-
reichend motiviert sein: Vorgegeben sei ein bestimmter Grundbereich E von
Objekten (man nennt sie in der Mengenlehre heute haufig Urelemente) und eine
Eigenschaft oder Aussage H(z), die fiir die Objekte = aus E definiert ist,
wobei also fiir ein beliebiges Objekt z, aus E sinnvoll die Frage gestellt werden
kann, ob H (z) auf z, zutrifft oder nicht. Zur Vermeidung von MiBverstand-
nissen weisen wir darauf hin, daB wir nicht voraussetzen, daB man wirklich
in der Lage sein muB, fiir jedes konkrete z, die richtige Antwort auf diese
Frage zu geben. So kann man z. B. (vgl. das obige Beispiel (3)) fiir jede natiir-
liche Zahl % sinnvoll die Frage stellen, ob die Gleichung 2® + y* = z® durch
von Null verschiedene ganze Zahlen z, y, z 16sbar ist oder nicht, die konkrete
Antwort auf diese Frage ist indes bis heute erst fiir wenige Zahlen n bekannt,
es wird vermutet, daB sie fiir alle natiirlichen Zahlen » = 3 negativ ausfallt
(diese Vermutung geht bereits auf den franzosischen Juristen und Liebhaber-
mathematiker PIERRE DE FERMAT (1601—-1665) zuriick, dem viele wichtige
mathematische Entdeckungen zu verdanken sind; FERMAT behauptete
iibrigens, einen Beweis fiir diese Vermutung zu besitzen). Uber die Natur der
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Objekte des Grundbereichs E werden keine Einschrinkungen gemacht: Es
kann sich dabei um ganz reale Objekte handeln, wie z. B. die von einem
Betrieb erzeugten Fertigprodukte, die Mitarbeiter eines Betriebes usw. (,,Ob-
jekte unserer Anschauung” in der Terminologie CANTORs), oder auch Objekte
begrifflicher Natur, wie Zahlen, Punkte usw. (,,Objekte unseres Denkens®).

Die Cantorsche Mengendefinition wollen wir nun dahingehend inter-
pretieren, daB man fiir eine gegebene Aussage oder Eigenschaft H (z) alle
diejenigen Objekte z, auf die H (x) zutrifft, zu einer Menge zusammenfassen
kann, genauer, daB es eine Menge gibt, die genau jene x als Elemente hat. Be-
zeichnen wir diese Menge zur Abkiirzung mit M, so besteht also fiir ein be-
liebiges Objekt z die folgende Beziehung:

(7 z ist Element von M genau dann, wenn H (z).

Fiir z [ist] Element von M, x gehort [als Element] zu M, z ist (als Element] in M
enthallen — alles Synonyma fiir denselben Sachverhalt — schreibt man heute
allgemein z € M (€ ist dabei eine stilisierte Form des kleinen griechischen
Buchstaben Epsilon). Verwenden wir zur Abkiirzung von ,,genau dann, wenn“,
der sogenannten logischen Aquivalenz (Gleichwertigkeit), das Zeichen <,
so konnen wir die Beziehung (7) zwischen der Menge M und der sie definierenden
Aussage (Eigenschaft) H (z) in der Form

(7) zEM < H(z)

schreiben, DaB diese Beziehung fiir alle z gilt, deuten wir kurz durch
A (x € M & H(z))
z

an, wobei also A ... als ,fur alle z (gilt) . ..“ oder ,.fir jedes = (gilt) . ..“

zu lesen ist (Generalisierung). Die Existenz einer derartigen Menge geben
wir schlieBlich durch

(8) Y{/\(a:eM(»H(z);

wieder, wobei also \/ ... Abkiirzung fiir ,es gibt ein(e Menge) M mit . ..“
o

oder ,.es existiert ein M mit ...“ verwendet wird (Partikularisierung).
In Zweifelsfallen, falls es also nicht aus dem Zusammenhang klar hervorgeht,
ist anzugeben, innerhalb welches Grundbereichs E die Betrachtungen verlaufen.

Die in der angegebenen Weise interpretierte Cantorsche Mengendefinition
wollen wir Mengenbildungsprinzip nennen. Es handelt sich hierbei
faktisch um ein Axiom oder Postulat: Es wird ohne Beweis postuliert, daB
8 bei gegebener Aussage H (z) iiber die Objekte eines gegebenen Grundbereichs
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E stets eine Menge M geben soll, fiir die (7) gilt. Das Mengenbildungsprinzip
gibt damit eine ganz bestimmte inhaltliche Vorstellung wie ier, die mit dem
Mengenbegriff verkniipft werden soll. In der mengentheoretiscl.en Literatur sind
fiir (8) (von fiir unsere Betrachtungen unwesentlichen Untersch.eden abgesehen)
die folgenden anderen Bezeichnungen ublich: Mengenbildungsaxiom, Kompre-
hensionsaxiom (Komprehension = Zusammenfassung), Aussonderungsaxiom.

Zur Klarung der Begriffe merken wir an, daB es sich bei den durch Zu-
sammenfassung von Objekten entstehenden Mengen um ganz neue abstrakte
Objekte handeln soll. So ist z. B. eine Menge von Zahlen begrifflich etwas
ganz anderes als eine Zahl, auch wenn vielleicht diese Menge (vgl. 1.5. (20))
nur eine einzige Zahl als Element enthilt. Es ist daher nicht sinnvoll zu fragen,
ob eine gewisse Menge M von Urelementen Element einer anderen Menge N
von Urelementen ist oder nicht: Die Beziehung 2 € M ist zunachst grund-
satzlich nur dann definiert, wenn z ein Urelement und M eine Menge von Ur-
elementen ist.

Es soll allerdings ausdriicklich zugelassen werden, da8 die Gesamtheit aller
uberhaupt bildbaren Mengen von Urelementen aus einem gegebenen Grund-
bereich E als neuer Grundbereich € von Urelementen fiir die Bildung so-
genannter Mengensysteme oder Mengen zweiter Stufe ggnommen werden kann,
deren Elemente dann Mengen erster Stufe, d. h. Mengen von Objekten aus E
sind. Es ist vielfach iiblich, derartige Mengensysteme durch groBe deutsche
Buchstaben (Frakturbuchstaben) zu bezeichnen. Die Bildung von Mengen-
systemen erfolgt mittels eines zu (8) analogen Mengenbildungsprinzips:

9 VAXeMe HX))
m X

(gelesen: Es gibt ein Mengensystem M, so daB fir jede Menge X gilt: X ist
Element von It genau dann, wenn H (X)), wobei jetzt H(X) eine gegebene
sinnvolle Aussage (Eigenschaft) iber Mengen erster Stufe ist.

Einige Beispiele migen das naher erlautern. Als Grundbereich £ nehmen wir
die Gesamtheit aller Punkte einer Ebene. Spezielle (Punkt-)Mengen erster Stufe
sind dann die Geraden, Strecken, Kreise, Dreiecke usw. Wir bemerken, da die
Worter , Kreis“, ,,Dreieck” usw. in der Geometrie in sehr unterschiedlicher Be-
deutung verwendet werden und man vielfach erst aus dem Zusammenhang ent-
nehmen kann, was gemeint ist; so bezeichnet das Wort ,,Kreis“ manchmal die
Kreislinie (d. h. die Menge aller derjenigen Punkte, deren Abstand vom Mittel-
punkt gleich dem Radius r ist), manchmal die Kreisscheibe unter Einschlu
der Kreislinie (d. h. die Menge aller Punkte, deren Abstand vom Mittelpunkt
< r ist) und manchmal die Kreisscheibe unter Ausschh;B der Kreislinie (d. h.
die Menge aller Punkte, deren Abstand vom Mittelpunkt < r ist). Mit Hilfe
dieser Mengen konnen wir dann z. B. die folgenden Mengensysteme bilden:
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(10)  Das System aller derjenigen Geraden, die durch einen gegebenen
Punkt gehen.

(11) Das System aller derjenigen Geraden, die zu einer gégebenen Geraden
parallel sind.

(12) Das System aller derjenigen Geraden, die Tangenten an einem ge-
gebenen Kreis sind.

(13) Das System aller derjenigen Kreise, die eine gegebene Gerade als
Tangente haben.

(14) Das System aller derjenigen Kreise, die zu einem gegebenen Kreis
konzentrisch sind.

Im Bedarfsfall konnen anschlieBend in analoger Weise Mengen dritter
Stufe gebildet werden, deren Elemente Mengen zweiter Stufe, d. h. Mengen-
systeme sind usw. Da die Mengen einer beliebigen Stufe % als Mengen erster
Stufe aufgefaBt werden konnen, die als Elemente Mengen der Stufe & — 1
besitzen, kénnen auf jeder Stufe im wesentlichen dieselben Begriffe eingefiihrt
werden und gelten jeweils auch dieselben Sétze. Wir beschranken uns daher im
folgenden auf Untersuchung der Verhiltnisse in der jeweils niedrigsten Stufe.

Die Beschrankung der Mengenbildungen auf Objekte eines bestimmten Grund-
bereichs und die dadurch bedingte begriffliche Unterscheidung zwischen Ur-
elementen (oder Mengen nullter Stufe), Mengen erster Stufe, Mengen zweiter
Stufe (oder Mengensystemen) usw. haben vor allem den Zweck, die bei sogenann-
ten ,uferlosen Mengenbildungen auftretenden Antinomien (Widerspriiche) zu
vermeiden. Am bekanntesten und einfachsten zu formulieren ist die im Jahre
1901 von dem englischen Mathematiker, Logiker, Philosophen und Sozialkritiker
BERTRAND RuUssELL (1872—1970) entdeckte Antinomie der Menge aller Mengen,
die sich nicht selbst als Element enthalten. Verzichtet man bei den Mengen auf
eine Stufenunterscheidung (wie das z. B. in der Cantorschen ,Definition“ der
Fall ist), so kann diese Menge — zumindest versuchsweise — gebildet werden.
Bezeichnen wir die Russellsche Menge mit m, so gilt also fiir eine beliebige Meuge =

(15) z€Eme gz,

wobei das Zeichen €, wie allgemein iiblich, die Negation der Elementbeziehung
bezeichnet. Setzen wir in (15) fiir « speziell die Menge m ein, so erhalten wir:

mEmesmém,

und das ist ein Widerspruch (denn es kann nicht ein gewisser Sachverhalt genau
dann vorliegen, wenn er nicht vorliegt). Zur Vermeidung dieser und &hnlicher
Antinomien entwickelte RUSSELL die hier dargelegten Grundgedanken eines
Stufenaufbaus der Mengenlehre, der nach ihm auch Typentheorie genannt
wird, und baute diesen zusammen mit A. N. WHITEHEAD (1861—1947) in dem
in den Jahren 1910 bis 1913 erschienenen dreibandigen Werk der ,Principia
Mathematica“ zur logigchen Grundlage fiir die Mathematik aus.

Wir méchten bemerken, daB die Gesamtheit aller Mengen, die sich nicht selbst
als Element enthalten (wie z. B. auch die Gesamtheit aller Mengen), nicht von
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vornherein von antinomischer Natur ist. Grund fiir das Auftreten der Russellschen
Antinomie ist in erster Linie, daB diese Gesamtheit wieder als Menge angesehen
wird. In neuerer Zeit setzt sich in der Mathematik immer mehr ein stufenfreier
Aufbau der Mengenlehre durch, bei dem der Mengenbegriff dem umfassenderen
Begriff der Klasse untergeordnet wird. Dabei sind diese Klassen — anschaulich
gesprochen — beliebige Zusammenfassungen von Mengen, und als Mengen werden
auch nur solche Klassen angesehen, die als El te von Klassen auftreten konnen.
Die Gesamtheit aller Mengen, die sich nicht selbst als Element enthalten, wie auch
die Gesamtheit aller Mengen und alle sonst bekannten Gesamtheiten von Mengen,
die bei Auffassung als Mengen zu Antinomien fithren, erweisen sich bei einem
derartigen Aufbau als Klassen, die keine Mengen sind, als sogenannte ,,Unmengen“.
Auf ndhere Einzelheiten iber stufenfreie Begriindungen der Mengenlehre konnen
wir hier jedoch nicht eingehen.

1.3. Das Extensionalitétsprinzip

Wir kommen nun zur Formulierung eines weiteren Grundprinzips der Mengen-
lehre, von dem man ebenfalls urspriinglich annahm, daB es lediglich eine
Definition sei, das aber genau genommen ebenfalls den Charakter eines
Axioms oder Postulats hat. Es betrifft die Frage, wann Mengen M und N
aus Elementen eines gegebenen Grundbereichs E als identisch angesehen
werden sollen. Die Antwort auf diese Frage gibt das folgende

Extensionalititsprinzip (Extension = Umfang, Ausdehnung). Mengen
M und N sind genau dann gleick (identisch), wenn sie dieselben Elemente ent-
halten, d.h., wenn fir jedes z gilt: = ist Element von M genau dann, wenn z
Element von N ist; in Zeichen:

1) M=NoA(EEMSzEN).

Durch (1) wird eine weitere wichtige inhaltliche Vorstellung festgelegt, die
mit dem Mengenbegriff verkniipft sein soll. Es wird namlich postuliert, da
jede Menge eindeutig durch die in ihr enthaltenen Elemente (ihren Umfang)
bestimmt sein soll, unabhingig z. B. davon, durch welche Eigenschaft ihrer
Elemente sie zunachst definiert wurde. Betrachten wir beispielsweise im Grund-
bereich aller Dreiecke einer gegebenen Ebene die Eigenschaften ,,z ist gleich-
seitig* und ,,x ist glulchwinklig®, so legt nach dem Mengenbildungsprinzip jede
von ihnen eine bestimmte Menge fest; nach dem Extensionalitatsprinzip
handelt es sich indes in beiden Fallen um dieselbe Menge, denn bekanntlich
ist jedes gleichseitige Dreieck gleichwinklig und jedes gleichwinklige Dreieck
gleichseitig.
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Als eine wichtige Folgerung aus dem Extensionalitatsprinzip erhalten wir,
daB es zu jeder Aussage H (z) iiber die Objekte eines gegebenen Grundbereichs E
nur eine einzige Menge M gibt, die alle und nur diejenigen Objekte xz enthdlt,
auf die H (z) zutrifft. Denn aus

A (x€ M e Hlz))und A (z€ M, H(z))
folgt :

NEEM szE M),

z

und nach (1) ist dann M, = M,. Die durch die Aussage (Eigenschaft) H (z)
eindeutig bestimmte Menge M mit der Eigenschaft

A (x€ M & H(z))

z
(ihre Existenz ist durch das Mengenbildungsprinzip gesichert) bezeichnet

man mit {x:H(z)} (gelesen: Menge aller z mit H(z)). Fiir ein beliebiges
Objekt x, aus dem betrachteten Grundbereich gilt also

(@) %€ {z: H(z)} o Hzy).

Sind H,(x) und H,(z) Aussagen iiber die Objekte eines gegebenen Grund-
bereichs E, so ist nach (1)

{x: H,(x)} = {2 : Hy(x)} genau dann, wenn fiir jedes z, gilt:
20 € {z : Hy(z)} & 20 € {z : Hy(2)}.
Andererseits ist nach (2) 2o € {z : H,(z)} logisch dquivalent mit H,(z;) und
29 € {z : H,(x)} logisch aquivalent mit H,(z,). Folglich gilt
(3) {o: Hi(2)} = {z : Hy()} & A (H(2) & Hy(2))-
z

Fir Mengensysteme wird entsprechend das folgende Extensionalitats-
prinzip gefordert:
(4) M=NSN(XEMSXEN)

x

(Mengensysteme M, N sind genau dann gleich, wenn sie dieselben Mengen X
erster Stufe als Element enthalten), und analog in héheren Stufen. Ist H(X)
eine Aussage iiber Mengen erster Stufe, so bezeichnet {X : H(X)} das eindeutig

bestimmte System I aller derjenigen Mengen X erster Stufe, auf die H(X)
zutrifft, und analog in héheren Stufen. Entsprechend (2) und (3) gilt dann

() X, €{X : H(X)} & H(X,),
(8) {XtHi(X)}={X=Hz(X)}<=>4\ (H:(X) & H,(X)).



1.4. Mengenalgebra 25

Etwas genauer konnen wir den Inhalt des Extensionalititsprinzips folgender-
maBen beschreiben: Nennen wir im Sinne einer expliziten Definition Mengen
M und N umfangsgleich (in Zeichen: M © N), wenn sie dieselben Elemente ent-
halten, so gelten zunachst die folgenden Sétze:

7) Fiir jede Menge M gilt: M © M.

(8) Wenn My © M, und My@ Mj, s0o My @ M,

9) Wenn My ® M,y, 50 My © M,.

Eine Beziehung (in unserem Fall zmschen Mengen) die die Eigenschaften (7),

(8), (9) besitzen, nennt man allg in eine Agqui lation (vgl. 2.5. (12)). Es
zeigt sich nun, daB es sehr viele versch:edene Aqmvslenzrelst)onen zwischen
Mengen gibt, unter denen die Identitat eine ausg hnete Rolle spielt (sie ist

die in einem bestimmten Sinne kleinste Aquivalenzrelation). Durch das Ex-
tensionalititsprinzip wird nun gerade postuliert, daB die Umfangsgleichheit die
Identitit sein soll, d. h., im Fall M © N die Buchstaben M und N dieselbe Menge
bezeichnen. Hierin ist insbesondere enthalten, daB im Fall M © N jedes Mengen-
system R, das die Menge M enthilt, auch die Menge N enthalt (und umgekehrt),
und gerade diese Eigenschaft der Umfangsgleichheit 1aBt sich nicht (z. B. mittels
des Mengenbildungsprinzips) aus ihrer Definition beweisen.

1.4.  Mengenalgebra

Im vorliegenden Abschnitt wollen wir einige allgemeine Operationen fiir
Mengen definieren und deren wichtigste Eigenschaften herleiten. Zu Ehren
des englischen Logikers GEORGE BooLE (1815—1869) werden diese Opera-
tionen heute vielfach Boolesche Operationen genannt. Bei allen im fol-
genden betrachteten Mengen, Mengensystemen usw. soll es sich um solche
itber demselben Grundbereich £ handeln.

Es seien zunichst M,, M, beliebige Mengen von Objekten aus E. Nehmen
wir im Mengenbildungsprinzip als H(z) die Aussage ,,x € M; und z € M,“,
so erhalten wir, daB es eine Menge M gibt, die alle und nur diejenigen Objekte
aus E als Element enthélt , die sowohl zu M, als auch zu M, gehoren, fiir die also
bei beliebigem =z gilt:

zEMS2EM A2EM,,

wobei wir die logische Konjunktion (das Woértchen ,;und“) durch das
Zeichen n wiedergegeben haben. Diese auf Grund des Extensionalitats-
prinzips durch M, und M, eindeutig bestimmte Menge M nennt man den
Durchschnitt der Mengen My, M,; man bezeichnet den Durchschnitt der
Mengen M,, M, heute allgemein mit M, ~ M,, wahrend in der alteren Li-
teratur die Bezeichnung M, - M, weit verbreitet war. Es gilt also

(1) 2EMiAM,:zEM A2€EM,
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bzw. bei Verwendung der in 1.3. eingefiihrten Bezeichnungsweise {z : H ()}
1) My ~AM,:={x:2€ M;r2E€ Ma.}.

Der Doppelpunkt vor dem Aquivalenz- bzw. Gleichheitszeichen soll dabei
andeuten, daB es sich bei der entsprechenden Zeile um eine Definition
handelt (zu lesen: 2 € M, ~ M, gilt definitionsgemaB genau dann, wenn
z€ M, und z€ M,, bzw. M, ~ M, ist definitionsgemaB gleich der Menge
aller z mit 2 € M, und z € M,).

Nehmen wir als H(z) entsprechend die Aussage ,x € M, oder z € M,“,
so erhalten wir die heute allgemein mit M, M, und in der alteren Literatur
verbreitet mit M, + M, bezeichnete Vereinigung oder Vereinigung ge von
M, und M,. Die Vereinigung wird also definiert durch

(2) cEM oM, 2x€EMva€E M,
bzw.
(2) MioM,:={x:2€Mvz€ M,},

wobei wir die logische Alternative (das Wortchen ,oder”) durch das
Zeichen v wiedergegeben haben.

Zur Vermeidung von MiBverstandnissen machen wir darauf aufmerksam,
daB das Wortchen ,oder” im iiblichen mathematischen Sprachgebrauch im
nichtausschlieBenden Sinne (lateinisch: vel) verwendet wird. Die Menge
M, < M, enthalt also genau diejenigen z, die in wenigstens einer der
Mengen M, M, enthalten sind, unter EinschluB aller derjenigen z, die zu
beiden Mengen, d.h. zum Durchschnitt M; ~ M, gehoren. Im Gegensatz
dazu sollte man das ausschlieBende Oder (lateinisch: aut-aut) durch
»entweder-oder” ausdriicken. Die zugehérige Menge bezeichnet man iibrigens
aus einem weiter unten ersichtlichen Grund als symmetrische Differenz M, A\ M,;
sie wird definiert durch

(3) 2E€EM ANMy,:x€EMVvzEM,
bzw.

3) M AM,:={x:2€ M,vz€ M,

wobei das Zeichen v, das wir allerdings im folgenden nicht systematisch ver-
wenden werden, dielogische Antivalenz,entweder . . . oder . . . “bezeichnet.
Ein Objekt ¢ gehort genau dann zu M; A M,, wenn es in wenigstens einer der
Mengen My, M, und nicht in beiden Mengen enthalten ist, wenn es also zu
genau einer dieser beiden Mengen gehort.

SchlieBlich bezeichnen wir die Menge aller derjenigen z, die zu 3, aber
nicht zu M, gehéren, mit M \M> und nennen sie die Mengendifferenz oder
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Differenzmenge. Deuten wir die Negation von 2 € M durch —z€ M oder
kiirzer 2 € M an, das Zeichen — ist also als Abkiirzung fiir das Wortchen
,»nicht*“ anzusehen, so kénnen wir die Differenzmenge durch

(4) T€EM\M,:2EM 28 M,

bzw.
4') M\M,:={z:2€EMyrnz& My
charakterisieren.

M,

MM,

Abb. 1

Man kann sich die bisher eingefihrten mengentheoretischen Operationen
gut mittels sogenannter Eulerscher Kreise (Venn-Diagramme) veranschau-
lichen (vgl. Abb. 1). Die vollstandige Charakterisierung der Mengen M; ~ M,
M, o M, M, A My, M\M, liefert die folgende Tabello:

M | M ||M~M, MM |MNAM|M\M,
1 1 1 1 0 0
1 (1} (1} 1 1 1
0 1 0 1 1 0
0 0 (1} (1} 0 0

Die vier Zeilen entsprechen den unter M,, M, angegebenen vier Moglichkeiten,
daB namlich ein gegebenes Objekt = entweder der betreffenden Menge an-
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gehort (durch 1 angedeutet) oder nicht angehért (durch 0 angedeutet). Eine 1
oder O in der entsprechenden Spalte unter My ~ M,, ..., M,\M, deutet
an, ob im jeweiligen Fall z dieser Menge angehért oder nicht. So entspricht
die dritte Zeile dem Fall z ¢ M,,z € M,, und die 1 unter M, A M, gibt an,
daB in diesem Fall z zu M; A M, gehort. Zugleich beschreibt diese Tabelle
den genauen Gebrauch von logischer Konjunktion (,,und*), Alternative
(-oder”) und Antivalenz (,.entweder . .. oder . ..“).

Wir kommen nun zu den wichtigsten algebraischen Rechengesetzen
fiir die bisher eingefithrten Mengenoperationen. Als erstes merken wir an, da3
sowohl der Durchschnitt als auch die Vereinigung und die symmetrische
Differenz dem sogenannten Kommutativgesetz geniigen, d. h., fiir beliebige
Mengen My, M, gilt
(5) Mi~My=M)~M,;

(6) Mo M, =M, M;;

(7 My ANMy= M, A M,

Wir wollen am Beispiel von (5) zunachst grundsatzlich klarmachen, was hierfir
eigentlich zu beweisen ist. Dazu erinnern wir daran, daB nach dem Extensio-
nalitatsprinzip Mengen (und hierum handelt es sich bei M; ~ M,und M, ~ M)
genau dann gleich sind, wenn sie dieselben Elemente enthalten. Daher ist
zum Nachweis von (5) zu zeigen, daB bei beliebigem z folgendes gilt:

(5') sEM "M, &2€EM~ M,

Hierfur brauchen wir jedoch nur die Tabelle fir M; ~ M; und M, ~ M, zu
betrachten:

M, | M, |M~M,| M, M,
1 1 1 1
1 0 0 0
0 1 0 0
0 0 0 0

Da wir unter M; ~ M, dieselbe Verteilung von 1 und 0 haben wie unter
M, ~ M, ist unsere Behauptung bewiesen. Analog beweist man (6) und (7).
Natiirlich bringen (5), (6), (7) lediglich zum Ausdruck, daB die logische Kon-
junktion, Alternative und Antivalenz kommutativ sind.

Als nichstes zeigt man, daB sowohl der Durchschnitt als auch die Ver-
einigung und die symmetrische Differenz dem sogenannten Assoziativgesetz
geniigen, d. h., fiir beliebige Mengen M, M,, M, gilt

(8) My~ (My~ M) = (My~ M) ~My;
9 Mo (Mo M) = (M M) v My;
(19 My A (M; AMy) = (M, A M) A M,
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Wir machen darauf aufmerksam, daB wie im folgenden Fall der Distributiv-
gesetze in den jeweiligen Tabellen bereits acht Fille zu unterscheiden sind.
Abb. 2 veranschaulicht das Assoziativgesetz fiir die symmetrische Differenz
mittels Eulerscher Kreise.

TydiT <10
A = w— I\
M ": H HH Mo My FEEE Mo
i i =
J 7 ;
HHHY

M M
NI Mya M, T My 0 M3
=={(MaM,)aM; == M,a(M,aM;)

Abb. 2
Weiterhin gelten fiir Durchschnitt und Vereinigung div folgenden so-
genannten Distributivgesetze:
(11) (Mo My) A My = (Mg~ M3)w (My~ My);
(12) (M~ My o My = (My v M3) ~ (M, My).
Der Beweis fir (11), der sogenannten rechésseitigen Distributivitat (= Verteil-

barkeit) des Durchachnilts beziiglich der Vereinigung, wird durch die folgende
Tabelle erbracht:

My | M| My || My M, | (M My) N My | My ~ M| My ~M, | (M ~M3) (M, ~ M)

COCOF I
CORRPROOR I
CrFRrOFROROR
OO R
SO0 O, OM
COOCOOrR,rOM
OCOOFrROOO M
COOrRrORrOr

Analog beweist man (12), die sogenannte rechésseitige Distributivitat der Ver-
einigung beziglich des Durchschnitts. Wir empfehlen, sich (11) und (12) auch
mittels Eulerscher Kreise zu veranschauliclen.

Die bisher genannten Sitze lassen eine gewisse Analogie zwischen den
Rechengesetzen fiir Vereinigung und Durchschnitt und denen firr Addition
und Multiplikation von (z. B. reellen) Zahlen erkennen. Sie zeigen aber auch
bereits einen wesentlichen Unterschied. Wahrend namlich fiir Vereinigung und
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Durchschnitt beide Distributivgesetze gelten, ist bekanntlich beim Zahlen-
rechnen zwar die Multiplikation distributiv beziiglich der Addition (d. h., fur
beliebige reelle Zahlen a, b, ¢ gilt (@ +b)-c=a-c-+ b-c), aber nicht die
Addition beziiglich der Multiplikation. Noch deutlicher wird der Unterschied,
wenn man beachtet, daB es sich bei Durchschnitt und Vereinigung um soge-
nannte idempotente O perationen handelt, d. h., fiir beliebige Mengen M gilt

(13) M~M=M;

(14 MoM=M.

Diese Gesetze haben beim Zahlenrechnen iiberhaupt kein Analogon mehr.
Wir erwahnen weiterhin, daB fiir Durchschnitt und Vereinigung die folgenden
merkwiirdigen Verschmelzungssatze erfillt sind: Fir beliehige Mengen
M,, M, gilt

(15)  (My\o M) ~M, = M,;

(16) (My~My))w M, =M,.

Als ein Kuriosum erwihnen wir schlieBlich, daB auch der Durchschnitt distri-
butiv beziiglich der symmetrischen Differenz ist:

A7) (M & M)~ My = (M, ~ M) A (M ~ M)

Die Assoziativgesetze (8), (9), (10) beinhalten, daB es bei einem Durch-
schnitt, einer Vereinigung und einer symmetrischen Differenz aus drei Mengen
M,, M,, M, nicht darauf ankommt, in welcher Weise man sie durch Klammer-
setzung aus zweigliedrigen Durchschnitten, Vereinigungen bzw. symmetrischen
Differenzen aufbaut. Daher kann man — wie auch beim Zahlenrechnen — ganz
auf Klammersetzungen verzichten und einfach M, ~ My ~ M5, M, v M, M,
bzw. My A M, A M schreiben. Es liegt auf der Hand (systematisch kommen
wir hierauf in 3.5. zuriick), da8 Analoges auch fiir Durchschnitte, Vereini-
gungen und symmetrische Differenzen aus vier und mehr Mengen gilt. Wir
merken an, da allgemein My ~ - - - ~ M, (k'= 2) die Menge aller derjenigen
z ist, die simtlichen Mengen M,,..., M, angehéren. Entsprechend ist
Mo ... M, die Menge aller z, die in wenigstens einer der Mengen
M,,..., M, enthalten sind, und M, A --- A M, die Menge aller z, die einer
ungeraden Anzahl der Mengen M, ..., M, angehdren. Ebenso lassen sich
auch die Kommutativgesetze (5), (6), (7) leicht auf mehrgliedrige Durch-
schnitte, Vereinigungen und symmetrische Differenzen iibertragen. Unter
Verwendung der Kommutativgesetze (5), (8) gelangt man von den rechts-
seitigen Distributivgesetzen (11), (12) sofort zu den folgenden linksseitigen
Distributivgesetzen:

(11) My~ (Myw M) = (M3~ My) v (M3~ My);
(12)  Myo (M~ M) = (M5 M) ~ (M3 My).
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SchlieBlich kann man durch mehrfache Anwendung der einfachen Distributiv-
gesetze auch ohne Schwierigkeiten die vom Zahlenrechnen bekannten Ver-
allgemeinerungen der Distributivgesetze erhalten, wie z. B.
(My ~ M) (M3 ~ M; ~ M)
= (My v M3) ~ (My w M) ~ (My « Ms) ~(Myw My)
~(Myw M) ~(My— M)

Nehmen wir im Mengenbildungsprinzip als H(z) die Aussage ,z = z“, die
auf alle Objekte des betrachteten Grundbereichs E zutrifft, so erhalten wir
eine Menge, die simtliche Objekte aus E enthalt und die wir folglich mit dem
Grundbereich E identifizieren konnen. Nehmen wir die Aussage ,z + 2%, die
auf kejn Objekt zutrifft, so erhalten wir eine Menge, die kein Objekt enthalt;
man nennt diese Menge die leere Menge und bezeichnet sie heute meisteng
mit 8. Die leere Menge spielt fiur Durchschnitt und Vereinigung eine dhnliche
Rolle wie die Zahl Null bei der Multiplikation und Addition. Fiir jede Menge M
gilt
(18) MA~0=0;

(19 Mog=M.

Die vom Zahlenrechnen bekannte Eigenschaft, daB ein Produkt auch nur
dann Null ist, wenn wenigstens ein Faktor Null ist, hat dagegen kein Ana-
logon. Vielmehr ist die Beziehung M; ~ M, = @ charakteristisch dafiir, daB
die Mengen M,, M, kein Element gemeinsam haben. Man nennt solche Mengen
My, M, elementefremd oder disjunkt:

(20) M, disjunkt (elementefremd) zu My : & My ~ M, = 0.
Als Gesetze fiir die Differenz seien hier vor allem die folgenden genannt:

(21) (M~ M)\My = (M\M;) ~(M\M3);
(22)  (Myo M)\M3= (M\M;) « (M\My);
(23) M\(M;~ M) = (M\M,)w (M\M3);
(24)  M\Myvw M;) = (M\M5) ~ (M\M3);
(26) MN\(MA\M3) = (M\Mj) v (M~ M3);
(26) M\O=M;

(27) MM =9,

(28) M\ M\M,) = M, ~M,;

(29) M, A M= My M)\(M, ~M,);
(30) My AM;= (M\M,) < (M\M,).

Die Beweise aller dieser Sitze, die wir dem Leser als Ubungsaufgaben iiber-
lassen, werden in bekannter Weise nach der Tabellenmethode gefithrt. Man
kann sie sich auch leicht, was wir dem Leser dringend empfehlen, mittels



32 1. Grundbegriffe der Mengenlehre

Eulerscher Kreise veranschaulichen. Bei den Gesetzen (23), (24), die man
haufig de-Morgansche Regeln nennt, ist der Austausch von Vereinigung und
Durchschnitt zu beachten. Die Sitze (29) und (30) zeigen, daB die sym-
metrische Differenz prinzipiell entbehrlich ist, da sie sich mittels Vereinigung,
Durchschnitt und Differenz ausdriicken lit. Durch (30) wird iibrigens die
Bezeichnung symmetrische Differenz erklart. Aus (29) und (26) entnimmt
man leicht, daB fir disjunkte Mengen und nur fiir solche die symmetrische
Differenz mit der Vereinigung iibereinstimmt:

(31) M, disjunkt zu My My A My =My« M,.

Alle im vorliegenden Abschnitt behandelten Begriffe lassen sich entsprechend
auf Mengen hoherer Stufe iibertragen, wobei ganz analoge Sitze gelten. So
wird man z. B. als Durchschnitt M, ~ M, zweier Mengensysteme M;, M, das
System aller derjenigen Mengen X erster Stufe definieren, die sowohl zu I,
als auch zu M, gehoren, d. h.

(32) M ~AMy: ={X: XEM A X E M},

usw. Nimmt man im Mengenbildungsprinzip fir Mengensysteme als H (X) die
auf keine Menge erster Stufe zutreffende Aussage ,X + X*, so erhlt man die
Existenz eines Mengensystems ), das keine Menge erster Stufe als Element
enthalt und das als leeres System bezeichnet wird. Das leere System O ist
bei unserem Ansatz zunichst begrifflich durchaus von der leeren Menge
erster Stufe zu unterscheiden. Zum Beispiel kann die leere Menge erster
Stufe Element eines gewissen Mengensystems It sein (das dann vom leeren
System verschieden ist!), niemals kann das aber bei unserer Stufenver-
einbarung far das leere System der Fall sein. Es werden jedoch im fol-
genden keine MiBverstandnisse auftreten, wenn wir das leere System und
auch die leeren Mengen hoherer Stufe siamtlich mit dem Symbol 6 be-
zeichnen. Man muB sich nur in jedem Fall klar machen, als leere Menge
welcher Stufe im betreffenden Zusammenhang dieses Symbol verstanden
werden muB.

1.5. Die Inklusion

Eine wichtige Relation zwischen Mengen ist die Teilmengenbeziehung oder
Inklusion. Man nennt eine Menge M eine Teil- oder Untermenge der Menge
M,, wenn jedes Element der Menge M, auch Element der Menge M, ist.
Ausfithrlicher sagt man dafir auch, daB M, als Teilmenge in M, enthalten ist,
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und schreibt hierfir M; S M,. Es gilt also
(1) MCc Mo\ @ZEM =>2E M),
z
wobei das Zeichen => als Abkiirzung fiir die logische Implikation ,wenn. . .,

g0 . . .“ verwendet wird. Ist M, eine Teilmenge von M, 8o nennt man M, eine
Obermenge von M, und schreibt M, 2 M, d. h.

(2) M22M oM S M,
Man sagt hierfiir auch, daB die Menge M, die Menge M umfapt.

Aus der angegebenen Definition erhilt man mihelos die folgenden Grund-
eigenschaften der Inklusion:

3) Fir jede Menge M gilt M = M (Reflexivitat);

4) A (M, S MaA M, S M= M, & M;) (Transitivitat);
My, M, My

() A (MiS M nM; S M => M, = M,;) (Antisymmetrie).
My, M,

Eine Relation, die diese drei Eigenschaften besitzt, nennt man heute all-
gemein eine teilweise Ordnung (vgl. 2.5. (24)).

Die Inklusion hat also ahnliche Eigenschaften wie die <-Beziehung fir
reelle Zahlen. Allerdings miissen wir auch hier sofort wieder auf einen wesent-
lichen Unterschied hinweisen. Wahrend die <-Beziehung fiir Zahlen linear ist,
d. h,, fiir beliebige reelle Zahlen a, b stets a < b oder b < a gilt, gibt es Mengen
M,, M,, die unvergleichbar sind, fir die weder M, & M; noch M, & M, gilt.

Ist jedes Element der Menge M; auch Element von M, und gibt es ein
Element zy € M, mit ;€ M, d. h., ist M, & M; und M, = M,, so heiBt
M, eine echte Teilmenge von M, und M, eine echte Obermenge von M,; in
Zeichen driickt man das durch M; — M, und M, > M, aus:

(8) McM,:oM S M, AM, + M,;

(7) M;:.Ml:@ﬂ[‘t:l[g.

Wir machen darauf aufmerksam, daB in der Literatur die Inklusion vielfach
durch M; — M; und dann die echte Inklusion durch M; & M, bezeichnet
wird. Im Hinblick auf die Analogien zur <- und <-Beziehung fiir Zahlen
halten wir dies jedoch fir wenig zweckmaBig.

Aus der Definition des Durchschnitts folgt zunachst unmittelbar, daB der
Durchachnitt eine gemeinsame Teilmenge von M, und M, ist, d. h.

8) Mi~M, S My, Mi~M,E M, ’
Wir wollen nun zeigen, daB der Durchschniit die beziglich der Inklusion gripte
Menge mit dieser Eigenschaft ist, d. h., ist Z eine beliebige gemeinsame Teil-
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menge von M, und M,, 80 ist Z S M, ~ M,. In logischer Abkiirzung driickt
sich das so aus:

9 ANEZSMAIZSM,=ZCM A~M,).
z

Es sei also Z S M, und Z S M, und z ein beliebiges Element der Menge Z.
Wegen Z & M, ist dann 2 € M;, und wegen Z S M, ist € M, Also ist
‘€ My ~ M,. Da das fiir jedes z € Z gilt, ist Z & M, ~ M,, was zu zeigen war.

Wir merken an, da8 der Durchschnitt M, ~ M, auch die einzige Menge ist,
die die Bedingungen (8) und (9) erfillt. Zum Beweis nehmen wir an, es sei D
eine beliebige Menge mit diesen Eigenschaften, d. h., es gelte

(8) DS M, DS M,
(9) ANZEMANZS M,=>ZCS D)
z

Die Bedingung (8') besagt dann gerade, da8 D eine Menge Z ist, die die Vor-
aussetzungen von (9) erfullt, so daB wegen (9) D S M, ~ M, gilt. Anderer-
seits besagt (8), daB M, ~ M, eine Menge Z ist, die die Voraussetzungen von
(9') erfiillt, so daB wegen (9) M, ~ M, & D gilt. Aus DS M, ~ M, und
M, ~ M, S D folgt aber nach (5) D = M, ~ M,. Also ist in der Tat M ~M,
die einzige Menge D, fur die (8') uni (9') gelten.

Ganz analog beweist man (Ubungsaufgabe), daB die Vereinigung M, M 2
die beziiglich der Inklusion kleinste gemeinsame Obermenge von M, und M ist,
d.h.

(10) M SM oM, M,S M wM;
(11) ANMSZANM,SZ>M,wM,S2Z),
z

und ebenso wie beim Durchschnitt erkennt man, daB die Vereinigung ein-
deutig durch diese beiden Eigenschaften charakterisiert ist.

Ferner beweist man leicht, da3 Durchschnitt und Vereinigung beziiglich der
Inklusion monoton sind, d. h.

(12) MMM ~AM;S M)~ My;
(13) My S My=>M UM, S My o M,.

Fiir die Differenz gelten dabei die folgenden Gesetze:
(14) M, S M= M\M; S M)\Ms;
(15) M, S My= M\M, 2 M)\M,.

Als Folgerung aus bereits Bewiesenem erhalten wir, daB sich die Inklusion
auch sehr einfach mittels Durchschnitt oder Vereinigung ausdriicken lift. Es gilt
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namlich

(16) M, S M,oM ~M,=M,;

1y M CSMeM oM =M,

Wir beweisen als Bespiel die Behauptung (17); der Beweis fur (16) kann analog
erbracht werden (Ubungsaufgabe). Zut}‘ichst nehmen wir an, es sei M; & M,.
Dann ist nach (13) (mit M, als M3) M, O M, & M, & M, = M, (vgl 1.4.(14)),
und da die umgekehrte Inklusion M, & M, © M, nach (10) ebenfalls gilt, ist
nach (6) M, JUM,= M, Ist umgekehrt M, M,= M,, so ist wegen
M S M, M,auch M; & M,.

Als nichstes wollen wir eine Eigenschaft der Inklusion behandeln, die dem
Anfanger meistens zunachst etwas Kopfzerbrechen bereitet. Wir behaupten
niamlich, daB die leere Menge 6 Teilmenge jeder beliebigen Menge M ist:

(18) 9SS M.
Zum Beweis haben wir folgendes zu zeigen:
18’y A(x€9=>2€ M).

z

Warum ist des der Fall? Hierzu ist einfach folgendes zu sagen: Beim iiblichen
mathematischen Sprachgebrauch ist eine Implikation ,,wenn p, so ¢, deren
Voraussetzung oder Pramisse p falsch ist, grundsatzlich wahr. Mithin gilt (18')
einfach deshalb, weil die Voraussetzung = € 0 fiir jedes z falsch ist, da ja die
leere Menge kein Element enthéalt. Man konnte das im vorliegenden Fall viel-
leicht noch durch folgendes Argument erginzen: Ware nicht jedes Element der
leeren Menge auch Element von M, so miite man in der leeren Menge ein
Element finden kénnen, das nicht zu M gehért; das geht aber deshalb nicht,
weil die leere Menge ja kein Element enthalt.

Wir betrachten nun bei gegebener Menge M die Eigenschaft , X & M“, die

auf genau diejenigen Mengen (!) zutrifft, die Teilmengen von M sind. Das
Mengensystem (!), das aus allen diesen Mengen besteht, heiBt die Potenzmenge
von M und wird mit (M) bezeichnet. Es gilt also
19) B :={(X:X S M)
Da nach (18) bzw. (3) die leere Menge und die Menge M Teilmengen von M
sind, ist stets 8 € P(M) und M € P(M). Falls die Menge M selbst leer ist,
reduziert sich die Potenzmenge P (M) auf desjenige Mengensystem, dessen
einziges Element die leere Menge ist (dieses Mengensystem ist nicht leer!).

Es sei nun ¢ ein fest gewihltes Objekt aus dem gegebenen Grundbereich E.
Wir betrachten die Aussage ,z = a“. Man sieht sofort, daB diese Aussage
einzig und allein auf das Objekt a zutrifft. Folglich enthalt die durch diese
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Aussage definierte Menge das Objekt ¢ und nur dieses als Element. Man nennt
sie daher die Einermenge aus (dem Objekt) a; fir sie ist die Bezeichnung {a}
iblich:
(20) {a}:={z:x=a}.
Aus der Definition der Einermenge ergibt sich sofort
(21) a€EMefa}S M

Wegen a € {a} ist die Einermenge {a} sicher von der leeren Menge ver-
schieden, also {a} > 8. Andererseits sicht man sofort, daB es keine.Menge N
mit 8 = N < {a} geben kann. Fiir beides zusammen sagt man auch, daB die
Menge {a} beziiglich der Inklusion ein oberer Nachbar der leeren Menge ist.
Umgekehrt ist unmittelbar klar, daB auch jeder obere Nachbar der leeren
Menge eine Einermenge ist. Allgemein kann man zeigen (Ubungsaufgabe), da8
eine Menge M, genau dann oberer Nachbar einer Menge M, ist, wenn
M, = M, w{a} gilt, wobei a ein nicht zu M, gehoriges Objekt ist (im Falla € M,
ist natirlich M, w {a} = M,).

Sind a, b beliebige Objekte aus E, so wird
21) {a,b}:={a} {b}
gesetzt. Man erkennt sofort, daB folgendes gilt:
(22) {a,b}={z:z=avz=0}
so daB die Menge {a, b} die Objekte a, b und nur diese als Elemente enthilt.
Aus dem Kommutativgesetz fiir die Vereinigung (vgl. 1.4.(6)) folgt
(23) {a,b}=1{b,a},
was natiirlich andererseits auch ein Spezialfall des Extensionalitatsprinzips ist
(die Mengen {a, b} und {b, a} enthalten dieselben Elemente und stimmen daher
iberein). Ist @ = b, so ist natiirlich {a, b} = {a} = {b}, wiahrend im Falla + b
die Menge {a, b} ein gemeinsamer oberer Nachbar der Einermengen {a} und {6}
ist. Man nennt im Fall @ & b die Menge {a, b} eine Zweiermenge. Die Zweier-
mengen sind dann gerade die oberen Nachbarn von Einermengen.

Analog wird fiir Objekte a, b, ¢ aus ¥
(24) {a,b,¢}:={a} {b} —{c}
gesetzt. Hieraus folgt
25) {abc}={zx:z=avz=>bvz=c}
so daB die Menge {a, b, c} die Objekte a, b, c und nur diese als Elemente ent-

hélt. Aus dem Kommutativgesetz fiir die Vereinigung folgt, daB es bei der
Menge {a, b, c} nicht darauf ankommt, in welcher Reihenfolge man die Objekte
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@, b, ¢ zwischen den geschweiften Klammern aufzahlt, d. h.
(26) {a,b,c}={a,c,b}={c,a,b}=-"--.

Ferner ist )

27 {a,b,c}={a, b} {c}={a,c}w{b} ={b,c}—{a}.

Sind die Objekte a, b, c paarweise verschieden, in diesem Fall nennt man
{a, b, c} eine Dreiermenge, so ist also {a, b, ¢} ein gemeinsamer oberer Nachbar
der Zweiermengen {a, b}, {, c}, {b, c}. Sind gewisse der Objekte a, b, c gleich,
so reduziert sich natiirlich {a, b, c} auf eine Zweier- oder sogar auf eine Einer-
menge.

Ist allgemein n eine beliebige natiirliche Zahl und sind ay, . . ., a, vorgegebene
Objekte aus E, so wird :

28)  {ar, ..., a8} ={a} U ian}
gesetzt. Dann ist
29) fay,...a}={w:z=a v - vz=ag},

50 daB die Menge {a,, . . ., as} die Objekte ay, . . ., a; und nur diese als Elemente
enthalt. Auch bei der Menge {a,, . . ., a;} kommt es nicht darauf an, in welcher
Reihenfolge man die Objekte a,, . . ., a, zwischen den geschweiften Klammern
aufzihlt. Sind die Objekte a, . . ., as paarweise verschieden, so enthalt die
Menge {ay, . . ., as} genau n Elemente, wahrend sie sich andernfalls auf eine
bestimmte Menge {a", . a‘b} 1 <4 <.+ <1< n) mit £ <n paarweise
verschiedenen Elementen reduziert. Die Mengen aus » Elementen sind dabei
genau die (beziiglich der Inklusion) oberen Nachbarn von Mengen aus n — 1
Elementen.

Wir bemerken abschlieBend, da sich auch alle im vorliegenden Abschnitt
eingefithrten Begriffsbildungen unmittelbar auf Mengen héoherer Stufe iiber-
tragen lassen, wobei ganz analoge Satze gelten. Es sei darauf hingewiesen, daB
‘lie Potenzmenge einer Menge k-ter Stufe natiirlich allgemein eine Menge
tk + 1)-ter Stufe ist.

1.6. Durchschnitt und Vereinigung eines Mengensystems

In 1.4. hatten wir den Durchschnitt M; ~ M, der Mengen M,, M, als Menge
aller Objekte « definiert, die sowohl zu M, als auch zu M, gehoren. Unter Ver-
wendung der in 1.5.(23) eingefiihrten Bezeichnungsweise koénnen wir dafiir
auch sagen, daB8 M; ~ M, die Menge aller derjenigen z ist, die in allen Mengen
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des Mengensystems {M, , M} enthalten sind, denn dieses Mengensystem besteht
ja gerade aus den Mengen M, M,. Setzen wir an die Stelle des Mengensystems
{M,, M)} ein beliebiges Mengensystem I, so gelangen wir zum allgemeinen
Begriff des Durchschnitts eines Mengensystems I (genauer: der Mengen des
Mengensystems ). Dieser Durchschnitt, wir wollen ihn mit M M bezeichnen,
ist also die Menge aller derjenigen Objekte z des zugrundeliegenden Bereichs £
von Urelementen, die in simtlichen Mengen X des Systems M als Element
enthalten sind:

1) zENM: NXEM=>2€X)
x

bzw.

1) NM:={z: ANXEM=>z€ X)}.
x

Ist speziell M = {X : H(X)}, wobei H(X) eine Aussage iiber Mengen erster
Stufe ist, so schreibt man statt N {X : H (X)} auch ﬂ X (gelesen : Durchschnitt
aller Mengen X mit der Eigenschaft H(X)).

Entsprechend wird die Vereinigung eines-Mengensystems IR, wir wollen sie
mit U ¥ bezeichnen, als Menge aller derjenigen Objekte z definiert, die in
wenigstens einer Menge X des Systems R als Element enthalten sind:

(2) zEUM: oV (XEMrzE X)

. x

bzw.

) UM:={z:V(XEMrzE€ X)}.
x

Im Fall M = {X : H(X)} schreibt man analog wie beim Durchschnitt statt
U{X:H(X)} auch U X.
AX)

Wir machen ausdriicklich darauf aufmerksam, daB der Durchschnitt und die
Vereinigung, eines Mengensystems, d. h. einer Menge zweiter Stufe, Mengen
erster Stufe sind. Bei sinngemaBer Verallgemeinerung der hier eingefiihrten
Begriffe auf Mengen hoherer Stufe erhdlt man allgemein als Durchschnitt und
Vereinigung einer Menge k-ter Stufe (k¢ = 2) Mengen (k —1)-ter Stufe.

Von den Eigenschaften des allgemeinen Durchschnitts und der
allgemeinen Vereinigung seien hier zunachst die folgenden genannt:
(3) N{My, My} = My ~ M»;
4) U{M, M} =M, M,
und allgemeiner
3" N{My,... . M} =M, ~ -+ ~My;
) U{My, ..., Mo} =M, w---w M,.
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Ferner gilt

(5) N (Mg — My) = N WMy ~ N DMy;
(6) U@y v Ma) = UMy« UMy;
(7) M S M= N WM,y 2N Wo;
(8) MEM=> UM S UM,.

Die Behauptungen (3) (vgl. den ersten Absatz dieses Abschnitts), (3), (4),
(4') sind unmittelbar Folgerungen aus den Definitionen.

Zum Beweis von (5) sei zunidchst z ein beliebiges Element der Menge
N (M, v M,). Dann ist z Elemént jeder Menge X des Mengensystems IR, « M,,
also wegen M, = M, — M, insbesondere jeder Menge des Systems M, und
wegen MMy, S M, — M, auch jeder Menge des Systems IN,. Folglich ist  sowohl
Element von N M, als auch von N M, und mithin von N MWy ~ N DM;. Da das
fiir jedes z € N (M — M,) der Fall ist, gilt

(38) NM o M) SNM ~NMy.

Es sei nun umgekehrt = ein beliebiges Element der Menge N My ~ N M,.
Dann ist € N My und z € N M,, und folglich ist = Element sowohl jeder
Menge X des Systems IR, als auch jeder Menge X des Systems M,. Ist nun X,
eine beliebige Menge des Systems MR, « M,, so ist Xy € M, oder X, € M,. In
jedem dieser beiden Falle ist aber, wie gesagt, z € X,. Da das fir alle Mengen
Xo€ My v M, gilt, ist € N(M; — My). Mithin ist jedes Element der Menge
N My ~ N M, auch Element von N (MW, v M,), d. h.

(5b) N~ NM S N (D v My).
Aus (5a) und (5b) folgt aber auf Grund der Antisymmetrie der Inklusion
(1.5.(6)) sofort die Gleichung (5).

Analog wird (8) bewiesen (Ubungsaufgabe).

Zum Beweis von (7) seien I, M, beliebige Mengensysteme, die der Voraus-
setzung M; S M, von (7) geniigen, und es sei z ein beliebiges Element der
Menge N M,. Dann gilt = € X fiir alle X € M, und wegen M, = M, damit
erst recht fiir alle X € M, , und folglich ist z € N M, . Wenn aber jedes Element =
der Menge 1 M, auch Element von N M, ist, ist N M, eine Teilmenge von
N M, und N M, eine Obermenge von N M,, wie in (7) behauptet wird.

Analog wird (8) bewiesen (Ubungsaufgabe).

In Verallgemeinerung von 1.5.(8) und 1.5.(9) kann man behaupten, daB die
Menge N M die beziiglich der Inklusion grofte Menge ist, die Teilmenge aller
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Mengen X des Systems IR ist, d. h.
(9) ANZXER=>NMCSX),
x

10) AWEERSZSX)sZSNW),
-z x

wobei N IR auch die einzige Menge ist, die diesen Bedingungen geniigt. Analog ist
die Menge U M die beziiglich der Inklusion kleinste Menge, die alle Mengen X
des Systems M wmfapt, d. h.

11) AXEM=>XSUM).
X

(12) AWNEEM>XSZ)=>UMES2),
zZ X

wobei auch hier | M die einzige Menge ist, die diesen Bedingungen genigt.

Wir beweisen als Beispiel die Behauptungen fir U 3. Zum Beweis von (11)
sei X eine beliebige Menge des Systems 3R und z ein beliebiges Element aus X.
Dann ist 2 in wenigstens einer Menge des Systems 3R (namlich in X) als Element
enthalten, und folglich gilt € U IR. Also ist in der Tat X & U IR, wie in (11)
behauptet wird. Zum Beweis von (12) sei Z eine beliebige Menge, die die Voraus-
setzung von (12) erfillt, die also samtliche Mengen X des Systems IR umfaBt,
und es sei z ein beliebiges Element der Menge U IR. Dann gehort z wenigstens
einer Menge X, des Systems IR an, so daB wegen X, S Z auch z € Z gilt. Da
das fiir jedes € U IR der Fall ist, gilt U M S Z, wie in (12) behauptet wurde.
Wir nehmen schlieBlich an, ¥V sei eine beliebige Menge, die den Bedingungen .

(1) AXEM=>XCV),
P.¢

(12) ANEXEMR=>XcSZ)>VC2)
zZ X

geniigt. Nach (11') ist V eine Menge Z, die der Voraussetzung von (12) geniigt,
und daher U IR S V. Umgekehrt ist wegen (11) die Menge U R eine Menge Z,
die der Voraussetzung von (12') geniigt, und daher ¥V & U MR. Aus beidem
zusammen folgt U = V, d. h., U I ist die einzige Menge V, die den Be-
dingungen (11’) und (12”) geniigt.

Als ein Kuriosum sei erwiahnt, da8 man formal als Vereinigung des leeren
Systems die leere Menge erhalt, wiahrend sich als Durchschnitt des leeren
Systems die Menge E aller Urelemente ergibt (denn jedes Objekt ist in samt-
lichen Mengen des leeren Systems enthalten, da das leere System keine Mengen
enthélt).

In Verallgemeinerung von 1.4.(20) nennt man schlieBlich ein Mengensystem
M disjunkt, wenn keine zwei verschiedenen Mengen aus R ein Element
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gemeinsam haben:
(18) Mdisgjunkt: e A (KL EMAX,EMA X, + X,= X, ~ X, = 0).
x. .

X,
(13) ist in der Tat eine Verallgemeinerung von 1.4.(20), denn es gilt
(14) M, = M, = (M, disjunkt 2u M, < {M,, M,} disjunkt).
Die Voraussetzung M, + M, ist hierbei wesentlich: Nach (13) ist namlich
(Implikation mit falscher Pramisse!) jedes Einersystem {M} disjunkt, wahrend
nach 1.4.(20) eine Menge M nur im Fall M = @ zu sich selbst disjunkt ist. Nach
(18) ist auch das leere System disjunkt.



2.  Grundbegriffe der Abbildungstheorie

2.1. Einleitung

Ein weiterer, eng mit dem Mengenbegriff verkniipfter Grundbegriff der Mathe-
matik ist der Begriff der Funktion oder Abbildung. Die Bezeichnung
»Funktion* geht auf GorTFRIED WILEELM LEIBNIZ (1646 —1717) zuriick und
fand durch den bedeutenden Schweizer Mathematiker JOERANN BERNOULLI
(1667—11748) weite Verbreitung. Bei BERNOULLI und seinem beriihmten Schiiler
LecyzEARD EULER (1707—1783) finden wir die Auffassung der Funktion als einer
durch einen analytischen Ausdruck gegebenen gesetzmaBigen Abhangigkeit einer
veranderlichen GréBe y von einer anderen veranderlichen GréSe = bzw. einer
»curvae quaecumque libero manus ductu descripta (Kurve, die sich mit der
freien Hand zeichnen 1aBt). Insbesondere die Ergebnisse des franzisischen
Mathematikers JosepE FOURIER (1768—1830) iiber die nach ihm benannten
trigonometrischen Reihen, zu denen er im Zusammenhang mit Untersuchungen
-zur Warmelehre gelangte, fiihrten zu der Frage, ob die Auffassung von BER-
~oULLI und EULER nicht zu eng ist. Es ist bemerkenswert, da8 auch die Unter-
suchungen FourIERs, gerade wegen der groBen Allgemeinheit der durch trigo-
nometrische Reihen erzeugbaren Funktionen, auf Bedenken seiner Zeitgenossen
stieBen, ahnlich wie 75 Jahre spater die Untersuchungen CaNTORS, die iibrigens
ebenfalls durch Ergebnisse iiber trigonometrische Reihen ausgelést wurden. Im
Jahre 1837 legte der in Berlin und spater als Nachfolger von Gauss in Got-
tingen wirkende P. G. LEJEUNE-DIRICELET (1805—1859) die Grundlage fiir
unseren heutigen Funktionsbegriff, indem er die Forderung der analytischen
Darstellbarkeit rigoros fallen lieB und an eine Funktion nur noch die Forderung
stellte, daB durch sie jedem Argumentwert  nach einer gegebenen Vorschrift
ein bestimmter Funktionswert y zugeordnet wird. Uber die Natur der Vor-
schrift wurden dabei keinerlei Einschrankungen mehr gemacht: Sie konnte
wie bei BERNOULLI und EuLER durch einen analytischen Ausdruck gegeben
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sein, sie konnte in irgendeinem anderen mathematischen Verfahren bestehen,
z. B. wie bei FOURIER in der Berechnung des Grenzwertes einer trigonometri-
schen Reihe an einer Stelle z ihres Konvergenzbereichs, sie konnte verbal
beschrieben sein, wie bei der sogenannten Dirichletschen Funktion, die jeder
rationalen Zahl 2z den Wert 1 und jeder irrationalen Zahl 2 den Wert 0 zu-
ordnet, sie konnte aber z. B. auch in einer physikalischen MeBvorschrift oder
dergleichen bestehen. Dieselbe Idee entwickelte iibrigens schon im Jahre 1834
der beriihmte russische Mathematiker N. I. LoBATSCHEWSKI (1792—1856),
dessen Hauptverdienst die Entdeckung der nichteuklidischen Geometrie ist. In
unseren Tagen hat sich gezeigt, daB fiir manche Zwecke der héheren Analysis
und ibhrer Anwendungen in der Physik eine nochmalige Verallgemeinerung des
Funktionsbegriffs erforderlich ist. Diese verallgemeinerten Funktionen werden
heute meist Distributionen genannt.

Das besondere Merkmal einer Funktion besteht nach der heutigen Auf-
fassung darin, daB durch sie jedem Element z aus einer gegebenen Menge M,
dem Definitionsbereich der Funktion, ein durch z eindeutig bestimmtes Ele-
ment y aus einer evtl. anderen Menge N zugeordnet wird. Daneben benétigt
man in der Mathematik aber auch Zuordnungen, bei denen evtl. manchen
Elementen aus M kein und anderen Elementen aus M mehrere Elemente aus
N entsprechen. Bis vor kurzem war fiir solche evtl. mehrdeutigen Zuordnungen
im AnschluB an HousDORFF die Bezeichnung Abbildung @blich. In der letzten
Zeit hat es sich jedoch immermehr eingebiirgert, auch eine Abbildung grund-
sitzlich als eindeutig anzusehen, d. h. das Wort ,,Abbildung“ synonym mit dem
Wort ,,Funktion* zu verwenden. Wir wollen daher im folgenden eine nicht not-
wendig eindeutige Zuordnung eine Korrespondenz nennen; in der Literatur
wird hierfir vielfach auch die Bezeichnung Relation verwendet. Die Abbildun-
gen oder Funktionen sind dann spezielle Korrespondenzen, namlich sogenannte
eindeutige Korrespondenzen. ’

2.2. Geordnetes Paar und Produktmenge

Zur Prazisierung der in der Einleitung genannten Begriffe bendtigen wir zu-
nichst den Begriff des geordneten Paares (a, b) aus gegebenen Objekten ¢ und b.
Hierunter wollen wir ein durch die Objekte a, b festgelegtes neues (abstraktes)
Objekt verstehen, wobei wir lediglich verlangen, daB geordnete Paare (ay, b;)
und (ay, by) genaw dann gleich sind, wenn sowohl a; = a, als auch by = b, ist:

(1) (ay,b) = (a2, b0) & ¢y = as n by = b,.
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Hiernach ist es erforderlich, das geordnete Paar (a, b) sorgféltig von der Zweier-
menge {a, b} zu unterscheiden; denn es ist stets {a, b} = {, a}, aber natiirlich
im allgemeinen (a, b) % (b, a) (nach (1) ist (e, b) = (b, a) genau dann, wenn
a = b). In der Literatur finden sich eine ganze Reihe von verschiedenen Defi-
nitionen fir das geordnete Paar, die allerdings weitgehend technischer Natur
sind. Es handelt sich dabei jeweils um die mengentheoretische Konstruktion
eines Objektes (a, b) mit der in (1) geforderten Eigenschaft. So kann man z. B.
nach dem polnischen Mathematiker C. KuraTOWSKI zeigen, daB fiir Objekte
a, b aus demselben Grundbereich E die Zweiermenge {{a, b}, {a}} zweiter Stufe
(aber natiirlich genauso die Zweiermenge {{a, b}, {b}}) die Bedingung (1) erfiillt.
Fiir die Zwecke der Mathematik ist die Festlegung auf eine bestimmte Defi-
nition des geordneten Paares ohne Belang; wir benétigen nur das folgende

Prinzip der Paarbildung. Zu beliebigen Objekten a, b kann das geordnete
Paar (a,d) gebildet werden, wobei fiir diese Bildung die Bedingung (1) erfallt ist.

Das Objekt a heiBt dabei die erste Komponente oder das erste Glied und das
Objekt b die zweite Komponente oder das zweite Glied des geordneten Paares
(a,b). Bei der Paarbildung wollen wir ausdriicklich zulassen, da8 die Kompo-
nenten eines Paares verschiedenen Grundbereichen angehéren, insbesondere
kann also z. B. die erste Komponente ein Objekt a eines bestimmten Grund-
bereichs £ und die zweite Komponente eine Menge M von Objekten aus E sein
(bei der Definition von KURATOWSKI ist das nicht ohne weiteres moglich).

Sind M,, M, beliebige Mengen (iiber evtl. unterschiedlichen Grundbereichen
E,, E,), so definiert man als Produkimenge oder kartesisches Produkt M, X .M,
der Mengen M,, M, die Menge aller geordneten Paare p = (z,, ,) mit z, € M,
und z, € M,:

(2) M X My:={p: V (2, € My r2,€ M rp= (21, 7))},
Zy Iy

wobei wir fiir die rechte Seite dieser Definitionsgleichung auch kurz
{(xy,2)) 12 € My A2, € My}

schreiben wollen.

4 L *
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My

Abb. 3
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Man kann sich das Produkt M, X M, am einfachsten in der aus der analyti-
schen Geometrie bekannten Weise durch ein Rechteck veranschaulichen, dessen
Seiten die Mengen M, M, symbolisieren. Das geordnete Paar p = (2, z,) wird
dabei durch den Punkt des Rechtecks dargestellt, dessen erste Koordinate das
Element z; € M; und dessen zweite Koordinate das Element z, € M, ist. Ist
M, ={ay,...,an} eine Menge aus m Elementen und M, = {b,, ..., bs} eine
Menge aus n Elementen, so entartet natiirlich das Rechteck in ein Punktgitter
aus m - n Punkten (Abb. 3). ,

Wir merken zunichst an, daB im allgemeinen M; X M, von M; X M, ver-
schieden, die Bildung der Produktmenge also nicht kommutativ ist. Ebenso-
wenig gilt das Assoziativgesetz. Dagegen gelten bei beliebigem M,, M,, N die
folgenden Beziehungen:
®) (Mi~M,)) X N= (M, X N) ~(M; X N),

N X (My~M)= (N X M) ~(N X My)

) (Myw M) X N = (M, X N)w (M; X N),
N X (Myw M,)=(NXx M) (N X M,),
d. h.das Mengenprodukt ist rechés- und linksseitigdistributiv bzgl. Durchschnitt und
Vereinigung (vgl. 1.4.(11)). Der Beweis z. B. der ersten Regel (4) ergibt sich aus
der folgenden fir jedes Paar (z, y) geltenden Kette von logischen Aquivalenzen:
@y EM v M)X Noz€EM, WM, nyEN
S@EEM vzEM)ryEN
S @EMAyEN)v (z€E M, Ay€EN)
S@Y)EM XNV (z,y) EM; X N
& (z,y) € (M, X N) v (M, X N).
Man kann sich (3) und (4) leicht am oben erwahnten Rechteckmodell veran-
schaulichen.
Gemischte Anweridung von (3) liefert
(&) (My~ My X (Ny~ Ny
! = (My'X Ny) ~ (My X Na) A (M3 X Ny) ~ (M X N)).
Hierbei ist nun
(My X Ny) A (M3 X No) = (M; X Ny) ~ (M X Ny);
denn fiir jedes Paar (z, y) gilt
(,y) € (My X Ny) ~ (M; X Ny)
©(2,y)€E My X Ny A (z,y)€E My X N,
STzEM AYyEN, Az€EM;AyEN,
& (r,y) E My X Ny A (z,y) € My X N,
© (z,9) € (My X Ny) ~ (M, X Ny).
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Folglich ist nach 1.4.(13)
(My X Ny) ~ (M3 X Ny) ~ (M2 X Ny) ~ (M X Ny)
= (M, X Nj) ~ (M; X Ny),
und hieraus und aus (3') folgt
(6) (My~ M) X (Ny~Ny) = (My X Ny) ~ (M X Ny).
Setzt man in (5) Ny = N, = N, so gelangt man natiirlich sofort zu (3) zuriick.

Auch (5) kann man sich leicht am Rechteckmodell veranschaulichen, mittels
dessen man zugleich leicht erkennen kann, da8 eine analoge Verscharfung von

(4) nicht moglich ist (Abb. 4).
N/ \\\

f
|
Ny 4
|
L

Abb.4

Es seien noch folgende Rechengesetze genannt, deren Beweise keine
Schwierigkeiten bieten, und die wir daher dem Leser als Ubungsaufgabe iber-
lassen wollen:

) (M4 \M;) X N = (M; X N)\ (M, X N),
N X (My\ M) = (N X M)\ (N X M,);

) M‘gMzéuixNgﬂsz,
M, S M;=>NxM{SNXxM,;

8) M XMy=8&M,=8vM,=0;

©) M X NS M, x NAN+0=>M, S M,,
NXM S NXMAN+=0=>M,C M,.

Durch zweimalige Anwendung von (9) erhalten wir schlieBlich noch die folgen-
den wichtigen Kiirzungsregeln:

M, XN=M3XNAN=#@%M’=M2,
NxMi=NXMAN+0=>M, =

Wir sehen also, daB far das Mengenprodukt viele vom Zahlenrechnen bekannte

Rechengesetze gelten, aber ebenso eine Reihe wichtiger Rechengesetze, wie
insbesondere des Kommutativ- und Assoziativgesetz verletzt sind.

(10)
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Mit Hilfe des geordneten Paares kann man das (geordnete) Tripel aus gege-
benen Objekten a, b, ¢ durch

(11) (@, b,0): = ((,0), ¢
definieren. Auf Grund von (1) gilt dann

(@1, by, €1) = (a2, b2, €9) & ((a1, by), &1) = ((62, ba), €)
& (@1, h) = (a3, b)) ey =,
Say =08y Aby =00y A= ¢y,
d. h.
(12)  (a1,b1,¢) = (a5, by, 2) S ay = a3 A by =by A ¢y = cy.

Bezeichnen wir a als die erste, b als die zweite und c als die dritte Komponente des
Tripels (a, b, c), so besagt (12), daB T'ripel (ay, by, ¢;) und (a,, ba, ¢,) genau dann
gleich sind, wenn sie komp £ ise ubereinasti Die Menge aller Tripel

(1, %3, 23) mit z, € M,, 2, € M,, 23 € M, bezeichnet man mit M; X M, X M;:

(13) M X My X My: = {(x,2,,%3) : %, € My A22€ M, n23€ M3}.

Aus (11) folgt unmittelbar

(13') M] X Mz X Mg = (Mi X Mz) X Mj.

Wir merken an, daB es beim Tripel — analog wie beim geordneten Paar —

wiederum nur darauf ankommt, daB die Bedingung (12) erfiillt ist. Daher

hitten wir das Tripel (z, y, z) ebensogut durch (2, (y, 2)) definieren kinnen; bei

dieser Definition wire natiirlich M, x M, X M; = M, X (M, X Mj;).
Allgemein definieren wir fiir gegebene Objekte ay, ..., as (n natirliche

Zahl > 2) das n-Tupel (ay, . . ., a) induktiv durch i

(14)  (ay,...,an):=((ay,...,8,_ ), 0n),

wobei als 1-Tupel (a,) einfach das Objekt @, selbst zu nelmen ist. Dann gilt bei
beliebigem n

(15) @, ..,,an) = (by,...,ba) &> a;=0>y A~ Aay=Dby.

Bezeichnen wir ay, ...,a, als die Komponenten oder Glieder des n-Tupels
(a4, . . ., @) (genauer a,(1 < ¢ < n) als die i-te Komponente von (ay, . . ., ag)),
so sind also allgemein n-Tupel (ay,...,as) und (by,...,0,) genau dann
gleich, wenn sie komponentenweise (gliedweise) wibereinstimmen, und das ist die
wirklich wesentliche Eigenschaft der n-Tupel. Die Menge aller n-Tupel
@ys.es@n) mit 2, €M, ..., 2,€ My wird mit My X -+ X M, be-
zeichnet. Im Fall My = - - - = M, = M wird fir M, X * -+ X M, auch kurz
M geschrieben. In diesem Sinne ist also z. B. M2 die Menge aller geordneten
Paare (2, y) mit z€ M und y € M.
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23.  Korrespondenzen

Unter einer Korrespondenz aus einer Menge M in eine Menge N wollen wir eine
beliebige Teilmenge F der Produktmenge M X N verstehen:

(1) F Korrespondenz aus M in N: & F S M X N.

Eine Korrespondenz aus M in N ist also eine beliebige Menge von geordneten
Paaren (z,y), deren erste Komponenten samtlich zu M und deren zweite
Komponenten samtlich zu N gehéren. Korrespondenzen wollen wir bei den
folgenden allgemeinen Betrachtungen vorwiegend mit F, @ usw. bezeichnen.
Ist F eine Korrespondenz aus M in N und (z, y) € F, so nennen wir y ein Bild
von z und z ein Urbild von y bei F und sagen auch, daB durch F dem Element
x das Element y zugeordnet wird. Zur Abkirzung verwenden wit hierfir die
Schreibweise zFy:

(2) zFy: o (z,y)EF.

Die Menge aller Bilder y eines gegebenen Elements z € M heiBt das volle Bild
von z bei der Korrespondenz F und werde im folgenden mit Bp () bezeichnet:

3) Bp(x): = {y : aFy}.

Entsprechend heiBt die Menge aller Urbilder = eines gegebenen Elements
y € N das volle Urbild von y bei F und werde mit Ur(y) bezeichnet:

4) Urly): = {z : 2Fy}.

Da es in einer gegebenen Teilmenge F der Produktmenge M X N keineswegs
zu jedem = € M ein Paar (z, y) zu geben braucht, das z als erste Komponente
hat, kann das volle Bild Br(z) eines Elements 2 € M durchaus leer sein. In
diesem Fall wird dem Element z € M durch die Korrespondenz F kein Bild
zugeordnet. Die Menge derjenigen z € M, fir di¢ Br(z) + 9 gilt, nennt man
den Definitionsbereich der Korrespondenz F, manchmal auch den Urbildbereich,
den Vorbereich oder den Argumentbereich. Der Definitionsbereich einer Korres-
pondenz F soll im folgenden allgemein mit D (F) bezeichnet werden:

)  D(F):={z: Be(z) + 6} (= {x: V =Fy)).

y
Entsprechend nennt man die Menge aller derjenigen y € N, deren volles Urbild
nicht leer ist, die also Bild wenigstens eines Elements z € M sind, den Werte-
bereich der Korrespondenz F, manchmal auch den Wertevorrat, den Bildbereich,
den Nachbereich oder den Gegenbereich. Der Wertebereich einer Korrespondenz
F soll im folgenden allgemein mit W (¥) bezeichnet werden:

(6) WF) :={y:Urly) + 8} (={y: Ysz}).
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In der englischsprachigen Literatur sind fiir den Definitions- bzw. Wertebereich
die Bezeichnungen domain bzw. image verbreitet, auf Grund dessen man fiir
diese Mengen auch international vielfach die Abkiirzungen dom (F) bzw. im (F)
verwendet.

N.—
[ {
,B;(x){ rq» f
wm{‘ {
-~
l
U M
o(F)
Abb. 5

Veranschaulicht man sich die Produktmenge M X N in der oben angege-
benen Weise durch ein Rechteck mit den Seiten M, N, so erscheint jede
Korrespondenz F aus M in N als eine gewisse Menge von Punkten dieses Recht-
ecks. Die Mengen Br(z), Ur(y), D(F) und W (F) haben dann die in Abb. 5 dar-
gestelite einfache Bedeutung. Ist M = {a,, ..., am} eine Menge aus m Ele-
menten und N = {b;, ..., bs} eine solche aus n Elementen, so kann man
z. B. die Punkte des Gitters M X N, die zu einer Korrespondenz F gehéren,
durch eine 1 und die iibrigen durch eine 0 kennzeichnen. Man erhilt auf diese
Weise eine Charakterisierung von F durch eine Tabelle oder Matriz, wobei man
allerdings meistens die Elemente aus M den Zeilen und denen von N die
Spalten zuordnet:

F | b ...b ...by
a, [ TV R 17 B Y

am ®xmy -+ Cmf - -« Omn
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Dabei gilt
__ 1, falls (@, b)) € F,
g = {0, falls (a;, o) € F .

Fiir jede Korrespondenz F aus M in N ist offenbar D(F) £ Mund W(F) S N.
Ist speziell D (F) = M, so heiBt F eine Korrespondenz von M in N ; ist W (F)= N,
so heiBt F eine Korrespondenz aus M auf N; ist schlieBlich sowohl D (F) = M
als auch W(F) = N, so heilt F eine Korrespondenz von M auf N:

M\N | in auf
DFCM| DFS M

aus ’ WFCSN| WF=N
DF)=M| DO =M

von ‘ WFSN| WF=N

Wegen F & D(F) x W(F) (vgl. Abb. 5) ist jede Korrespondenz aus M in N
eine Korrespondenz von D (F) auf W (F).

Als spezielle Mengen sind Korrespondenzen F,G aus M in N genaw dann
gleich, wenn sie dieselben geordneten Paare als Element enthalten :

7 F=G0&NA(ny€EFs(@y€a).
zy
Da nach (3) (z, y) € F logisch dquivalent ist mit y € Br(z) und analog (z, y) € ¢
mit y€ Bo(z) und da die Bezietung A (y € Br(x) < y€ Ba(a)) gersde
besagt, daB die Mengen B () und Bg(z) gf:aich sind, folgt aus (7)
(8) F =G& A Br(z) = Bg(a),
z
d. h., Korrespondenzen sind genau dann gleich, wenn bes beliebigem z die Bild-
mengen Bp(z) und Bg(z) tbereinstimmen. Analog erhilt man
(8) F=GaAUrly)="Usly).
]
Entaprechend gilt nach Definition der Inklusion
® FSGsA(@yEF=(zy) €0
¥

Man nennt in diesem Fall die Korrespondenz F eine Einschrankung der Kor-
respondenz @ und @ eine Erweiterung oder Fortsetzung von F. In Analogie zu
(8) bzw. (8') gilt

(10) F S @s A Br(@) S Be(2);
t0) FcSGo AUrly) S Uely)
v
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Fiir eine beliebige Korrespondenz F versteht man unter der zu F inversen
Korrespondenz F-1 die Menge aller und nur der geordneten Paare (y, z), fiar
die (z, y) € F gilt:

(1)  Ft:={@2):@y€F}
wobei {(y, z) : (z, y) € F} eine Abkiirzung fiir
P: V(&9 EF rp=(y2))}
zy
ist. Die Korrespondenz F-! wird auch als Umkehrkorrespondenz zu F bezeich-
net. Ist F eine Korrespondenz aus M in N, so ist F'-1 eine Korrespondenz aus
N in M, und zwar ordnet die Korrespondenz F~1 einem Element y € N gerade

diejenigen z € M als Bild zu, denen bei der Korrespondenz F das Element y
als Bild zugeordnet ist, die also Urbild von y bei der Korrespondenz F sind:

(12) yF-1z & aFy.
Aus (12) folgt, daB bei beliebigem z gilt:
2€ Be-i(y) ©z€ Urly),

d.h.
(13) Bpe-i(y) = Url(y).
Analog erhilt man

13 Up-.(%) = Br(z),

und aus (13) bzw. (13') folgt

(14) D(F-1) = W(F), W(F-1) = D(F).

Also ist F-1 genau dann eine Korrespondenz von N in M, wenn F eine Kor-
respondenz aus M auf N ist, usw. Aus der Definition der inversen Korrespon-

denz folgt schlieBlich auf Grund von (7) unmittelbar, daB die zu F-1 inverse
Korrespondenz gleich der urspriinglichen Korrespondenz F ist:
(15) (F-)t=F

Es sei schlieBlich F' eine Korrespondenz aus M in N und @ eine Korrespon-
denz aus N in P. Unter der Verkettung, dem Produkt oder der Hintereinander-
ausfithrung G o F (gelesen etwa: G nach F) versteht man die Korrespondenz
aus M in P, die einem Element z € M alle diejenigen z € P zuordnet, die
Bild wenigstens eines Elements y aus Br(z) bei der Korrespondenz @ sind:

(16) . (z,2)€EG-F: ev((:c,y)GFA(y,z)GG)

d. h.

(16') G F:={(2,2):V (., 9) EF A (y,2) €G)}.
-y
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Wir zeigen, daB die Verkettung von Korrespond assoziativ ist:
(A7) Fyo (Fpo Fy) = (Fyo Fy)o Fy,
und ferner das folgende merkwiirdige Inversionsgesetz gilt:
(18)  (Go F)y 1= F-1.G-1.

Ist namlich (z,2)€ Fyo (Fyo F;), so existiert nach (18) ein y; mit (z,y,)
€ Fy0 F3 und (y,, 2) € F, und wiederum nach (16) ein y, mit (z, y;) € F3 und
(42, ¥1) € Fo. Dann ist aber (y,, 2) € Fy o F, und (z, z) € (Fyo Fy)o F,. Also ist
Fyo (Fyo Fy) S (Fyo Fy)o F5. Entsprechend zeigt man, daB (Fyo Fy)e Fy
S Fyo (Fyo Fy) ist, und damit ist (17) bewiesen. Ist (z, z) € (G F)~1, so ist
nach (11) (z, z) € G- F, und folglich gibt es nach (16) ein y mit (z, y) € F und
(¥,2) €G. Dann ist aber (z,y)€G-! und (y,z)€ F-! und folglich (z, z)
€ F-1o @-1. Mithin ist (G- F)~t & F-1. G-1. Entsprechend zeigt man, daB
F-10 G-1 € (G F)~1, und damit ist (18) bewiesen.

Ein besonders wichtiges Verfahren zur Charakterisierung einer Korrespon-
denz besteht darin, daB man eine fiir die Objekte z eines Grundbereichs £; und
die Objekte y eines (evtl. anderen) Grundbereichs E, definierte Eigenschaft
oder Aussage H(z,y) betrachtet und im Grundbereich E; x E, mittels des
Mengenbildungsprinzips die Menge aller derjenigen Paare p = (z, y) bildet,
fiir die die Eigenschaft H(z, y) erfiillt ist bzw. auf die die Aussage H(z, )
zutrifft. Die auf Grund des Extensionalitatsprinzips eindeutig bestimmte
Menge aller dieser Paare bezeichnet man naturgeméa8 durch

{p:V(p= (9 rHizy)} oderkurz {(z,y): H(z,y)}
=y
Diese Menge F kann aufgefa8t werden als Korrespondenz aus E, in E, oder
allgemeiner aus M in N, sofern D(F) &M S E, und W(F) S N C K, ist,
wobei D(F)={x:\ H(z,y)} und W(F)={y: Vv H(z, y)} gilt. In Analogie
4 z
zu 1.3, (2) gilt: .
“(19) (0, ¥o) € {(%, ¥) : H(z, y)} & H (0, o),
und in Analogie zu 1.3. (3) erhalten wir:
(20)  {(=9):Hz )} ={(x,9): Hy(z, 9)} & A (Hi(2, y) & Hy(, 9)).
zy
Diese Art der Charakterisierung einer Korrespondenz dirfte wohl gemeint
sein, wenn man davon spricht, daB eine Korrespondenz durch eine Zuord-

nungsvorschrift definiert ist. Dabei ist dann aber zu beachten, daB ver-
schiedéne Zuordnungsvorschriften H, (x, y) und H, (2, y) dieselbe Korrespon-
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denz definieren konnen, wenn sie namlich umfangsgleich sind, d. h., wenn
A (Hy(z, y) & Hs(z, y)) gilt.
e

Wir wollen die in diesem Abschnitt eingefiihrten allgemeinen Begriffsbildungen
noch an einem Beispiel aus dem téglichen Leben illustrieren. Dabei sei
M ={ay,...,an}eine Menge von m Betrieben und N = {b,, . . ., by} eine Menge
von n Arten von Produkten. Die Aussage ,z produziert y“ definiert dann eine
bestimmte Korrespondenz F aus M in N, bei der jedem Betrieb a, aus M die-
jenigen Produkte b, aus N als Bild zugeordnet sind, die vom Betrieb a, produziert
werden. So beschreibt z. B. fir m = 4, n = 5 die Matrix

F ] bl b2 bCI b4 b:'»
a | 1 0 0 1 0
a,y 1 0 1 1 0
e |0 0 1 0 1
G |1 0 1 1 1

den Fall, daB der Betrieb a, die Produkte b, und b;, nicht aber die Produkte
by, by, bs produziert, daB a, die Produkte b,, b3, b;, nicht aber b,, bs produziert
usw. Fir einen gegebenen Betrieb a, aus M ist die Bildmenge Br(a,) die Menge
aller derjenigen Produkte aus N, die durch a, produziert werden, wahrend fiir ein
gegebenes Produkt b, aus N die Urbildmenge Ur(b,) die Menge aller derjenigen
Betriebe aus M ist, die b, produzieren. Im betrachteten Spezialfall ist beispiels-
weise Bp(a;) = {b;, b5}, Ur(dy) = {ay, a;, a;}, Ur(b;) = @. Der Definitionsbereich
D(F) ist die Menge aller derjenigen Betriebe aus M, die wenigstens eines der
Produkte aus N produzieren, wihrend der Wertebereich W (F) die Menge aller
derjenigen Produkte aus N ist, die von wenigstens einem Betrieb aus M produziert
werden. Im betrachteten Spezialfallist D (F) = M und W (F) = {b, b,,b;,b5} — N,
es handelt sich also um eine Korrespondenz von M in N (von M auf {4, by, b;, b5}).
Deuten wir genauer F als die z. B. im Planjabr 1972 durch ,z produziert y“
definierte Korrespondenz und F” als die durch dieselbe Aussage im Planjahr 1973
definierte Korrespondenz, so besagt die Gleichung F = F” (vgl. (8)), daB im Jahre
1973 jeder Betrieb aus M dieselben Produkte aus N produziert wie im Jahre 1972,
oder auch (vgl. (9)), daB 1973 jedes Produkt aus N von denselben Betrieben aus
M produziert wird wie 1972. Die Inklusion F & F” besagt demgegeniiber, da
1973 kein Betrieb aus M weniger Produkte aus N produziert als 1972. Die zu F
inverse Korrespondenz F-1 ordnet jedem Produkt b, aus &V diejenigen Betriebe a,
aus M als Bild zu, die das Produkt b, produzieren. Im betrachteten Spezialfall
wird also F-! durch die Matrix

Ft| & a4 a a
b, 1 1 0 1
b, 0o 0 o0 o
by 0o 1 1- 1
b, 1 1 0 1
bs 0 0 1 1
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beschrieben. Zur Illustration der Verkettang sei schlieBlich P = {c;, . . ., cp} eine
Menge von p Sorten von Rohstoffen, und es bedeute @ die durch die Aussage
,»die Produktion von y erfordert z* definierte Korrespondenz aus N in P; sie ordnet
einem beliebigen Produkt b, aus N gerade diejenigen Rohstoffe ¢, aus P als Bild
zu, die zur Produktion von b, erforderlich sind. Mit p = 4 sei beispielsweise

[ ¢ ¢ 3 c;
b 1 0 0 1
by 0o 1 (1] 1
by 1 0 1 0
b; 1 0 0 (1]
b o o0 0 0

Die Korrespondenz @+ F ordnet dann, wie man leicht nachpriift, jedem Betrieb a,
aus M diejenigen Rohstoffe c, aus P als Bild zu, die er zur Produktion der Pro-
dukte aus N braucht. Im betrachteten Beispiel wird Go F durch die folgende
Matrix beschrieben:

GoF| e o 3 04
ay 1 0 0 1
a; 1 0 1 1
a3 1 0 1 0
a; 1 o0 1. 1

Wir empfehlen, sich am betrachteten Beispiel die Beziehung (18) zu ver h
lichen.

2.4.  Abbildungen und Funktionen

Wichtigster Spezialfall der Korrespondenzen sind die sogenannten eindeu-
tigen Korrespondeunzen. Dabei heiBt eine Korrespondenz F aus M in N ein-
deutig, wenn sie jedem z € M héchstens ein Element y € N als Bild zu-
ordnet:
1) F eindeutig : 92.{!\ (@Fy, A 2Fy, =y, = y).
(2}

Da eine Korrespondenz F genau den Elementen z € D(F) wenigstens ein
Element als Bild zuordnet, sind also die eindeutigen Korrespondenzen dadurch
charakterisiert, daB durch sie jedem Element z € D(F) genau ein Element y
als Bild zugeordnet ist. Dieses durch z eindeutig bestimmte y heit das Bild
oder der Wert von z bei der Korrespondenz F und wird iiblicherweise mit
F (z) bezeichnet.

Veranschaulicht man sich die Korrespondenzen aus M in N in der in 2.3
beschriebenen Weise als Teilmengen eines Rechtecks mit den Seiten M, N,
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80 erscheinen die eindeutigen Korrespondenzen als diejenigen Teilmengen, die
schlicht iiber der Menge M liegen, d. h., bei denen keine zwei verschiedenen
Punkte aus F' denselben Punkt z € M als Abszisse haben (Abb. 6). Fiir einen
gegebenen Punkt 2 € D(F) ist F (z) derjenige Punkt y der Ordinate N, fiir den
(z, y) € F gilt. Charakterisiert man im Fall M = {ay, . . ., am}, N = {by,..., b}
die Korrespondenzen aus M in N in der in 2.3. beschriebenen Weise durch
0, 1-Matrizen mit m Zeilen und = Spalten, so spiegelt sich die Eindeutigkeit
einer Korrespondenz aus M in N darin wider, daB in der zugehorigen Matrix
in jeder Zeile hochstens einmal die Ziffer 1 auftritt (vorausgesetzt natiirlich,
daB die Elemente b, , . . . , by paarweise verschieden sind).

N

i
W(F) /
Fio) oy /|

[
|
1
! [
1
|

X M

03)
Abb. 6

Wir weisen darauf hin, daB das Bild F(z) sorgfaltig von der Btidmenge
Bpr(z) zu unterscheiden ist. Es gilt aber
2) F eindeutig » z € D(F) = Br(z) = {F (z)}.
Aus der Definition des Wertes F () folgt ferner
(3) F eindeutig=> F = {(z,y) : 2 € D(F) ny = F(z)}
oder kurz
(3) F eindeutig = F = {(z, F(x)) : x € D(F)}.
AuBerdem erhilt man leicht
(4) F eindewtig => W(F) = {y: V (€ D(F) ry = F(z))}
oder kurz :
(4) F eindeutig = W (F) = {F (x) : z € D(F)}.
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Eine Korrespondenz F, die nicht eindeutig ist, bei der also firr wenigstens
ein z € D(F) die Bildmenge Br(z) keine Einermenge ist, heit mehrdeutig.

Die eindeutigen Korrespondenzen aus M in N werden auch (eindeutige)
Abbildungen oder Funktionen aus M in N genannt:

(5) f Abbildung (Funktion) aus M in N: < f S M X N A f eindeutig

(zur typographischen Unterscheidung von beliebigen XKorrespondenzen
bezeichnen wir bei den folgenden allgemeinen Betrachtungen Abbildungen
vorwiegend mit f, g usw.). Eine Abbildung (Funktion) von M in N ist dann
eine Abbildung aus M in N, deren Definitionsbereich die Menge M ist. Fiir
,f ist Abbildung von M in N* ist heute die Bezeichnung f: M — N oder auch
M 7 N weit verbreitet:

M > N:ofS M X N feindeutig » D(f) = M.

Die Menge aller Abbildungen von einer Menge M in eine Menge N wird haufig
mit N¥ bezeichnet:

(6) NM:={f:f: M — N}.

Eine Abbildung aus M auf N ist entsprechend wie bei Korrespondenzen eine
Abbildung aus M in N, deren Wertebereich die Menge N ist, und eine Ab-
bildung von M auf N ist eine Abbildung aus M in N, deren Definitionsbereich
gleich M und deren Wertebereich gleich N ist. Um auszudriicken, daBl der
Wertebereich einer Abbildung f aus M in N gleich N, also f eine Abbildung
aus M auf N ist, sagt man heute vielfach auch, die Abbildung f sei surjektiv
oder eine Surjektion (die Vorsilbe sur (= auf) kommt aus dem Franzosischen).

Als spezielle Korrespondenzen sind nach 2.3. (8) Abbildungen f, g aus M in N'
genau dann gleich, wenn bei beliebigem z die Bildmengen By(x) und B, (z)
iibereinstimmen. Bei einer Abbildung f ist nun aber die Bildmenge Bj(x)
entweder leer (wenn namlich z € D(f)) oder gleich der Einermenge {f(x)}
(wenn z € D(f)). Folglich gilt fir beliebige Abbildungen (Funktionen) f, g

(M f=goD(f)=D(g rA (=€ D(f) > fz) = 9(2));
denn die Gleichung {f(z)} = {g(x)} ist ja aquivalent mit f(x) = g(z). Sind

speziell f, g Abbildungen von M in N, so ist D(f) = D(g) = M und (7) ver-
einfacht sich zu

() f=g9g& A @E€M=flz)=g()

Im allgemeinen Fall ist die Bedingung D(f) = D(g) dagegen wesentlich, was
leider manchmal iibersehen wird. Entsprechend erhalt man aus 2.3. (9), daB
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eine Abbildung g genau dann eine Fortsetzung einer Abbildung f (f Einschran-
kung von g) ist, wenn der Definitionsbereich von g den Definitionsbereich von f
umfaBt und fiir alle z aus dem gemeinsamen Definitionsbereich D (f) die Werte
f(x) und g (z) iibereinstimmen:

@)  fseeDU)SD@G AN (EEDF) = f2)=g@)-

Hieraus folgt leicht, daB es fiir eine gegebene Abbildung ¢ von M in N und
fiir eine gegebene Teilmenge X von M eine und nur eine Abbildung f von X
in N mit f S ¢ gibt, namlich f = {(z, g(2)) : € X}. Diese Abbildung f nennt
man die EBinschrankung (manchmal auch Beschrankung) von g auf X ; sie wird
heute meistens mit g | X (gelesen: g auf X) bezeichnet:

9) g1 X:={(x,9(x)):z€ X}.

Es ist unmittelbar klar, daB die Umkehrkorrespondenz f-1 einer Ab-
bildung f mehrdeutig sein kann, also keine (eindeutige) Abbildung zu sein
braucht. Andererseits gibt es durchaus mehrdeutige Korrespondenzen F,
deren Umkehrkorrespondenz F-1 eindeutig, also. eine Abbildung ist; nach
2.3. (15) sind das genau diejenigen mehrdeutigen Korrespondenzen, die Um-
kehrkorrespondenzen von Abbildungen sind. Allgemein heit eine Korrespon-
denz F aus M in N, deren inverse Korrespondenz F-1 eindeutig ist, eine
eindeutig umkehrbare Korrespondenz (die in der Literatur meistens anzutref-
fende Bezeichnung ,umkehrbar eindeutig® ist als sprachlich falsch zu ver-
werfen):

10) F cindeutig umkehrbar : & F~1 eindeutig. _
1nsbesondere ist eine eindeutig umkehrbare Abbildung f aus M in N eine solche
Abbildung aus M in N, deren Umkehrkorrespondenz eine Abbildung aus N
in M ist. In diesem Fall heiBt f-! auch die zu f inverse Abbildung oder die
Umkehrabbildung zu f. Die eindeutig umkcarbaren Abbildungen werden
allgemein auch als eineindeutige Abbildungen (k..rz: 1-1-Abbildung) bezeichnet:
(11)  f1-1-Abbildung aus M in N

& fS M X N a feindeutig A f-1 eindeutig.
Auf Grund von 2.3. (15) ist klar, daB die Umkehrabbildung einer 1-1-Abbildung
aus M in N eine 1-1-Abbildung aus N in M ist:
(12)  f1-1-Abbildung aus M in N => f-1 1-1-Abbildung aus N in M.
AuBerdem gilt
(13)  f1-1-Abbildung aus M in N

> A (€ D(f) = f(f@) = 2) 1 A (¥E W) = [ @) = 9)-

z . ¥




58 2. Grundbegriffe der Abbildungstheorie

Fiir ,,f ist eine eineindeutige Abbildung von J in N sagt man heute vielfach,
daB f injektiv oder eine Injektion ist. Eine Abbildung, die sowohl injektiv als
auch surjektiv, die also eine 1-1-Abbildung von M auf N ist, nennt man dann
auch bijektiv oder eine Bijektion.

Ist f eine Abbildung von M in N und g eine Abbildung von N in P (auf diesen
Fall wollen wir uns hier beschranken), so ist g o f eine Abbildung von M in P,
und bei beliebigem x € M gilt (g+ f) (x) = g(f(x))

(14 f:M—-Nrg:N->P
Sgof:M > PaA (x€ M= (90 f) (x) = g(fi@))).

Beweis. Nach Definition 2.3. (16) der Verkettung ist zunachst klar, daB
g o f eine Korrespondenz aus M in P ist, wobei fir beliebiges € M undz € P

(*) (@, 2)€Egefo V(zy)ESfA(¥,2)€9)
y

gilt. Ist nun z ein beliebiges Element aus M, so ist wegen D(f) = M nach (3*)
(2, f@)) € f und wegen f(z) € N = D(g) ebenfalls nach (3') (f(z), g (f(2))) € g.
Folglich ist nach (+) (mit y = f(2)) (=, g(f(x))) € g+ f. Mithin gibt es zu jedem
z€ M ein z€ P (namlich g(f(z))) mit (z,z) € g-f, d. h., go f ist eine Kor-
respondenz von M in P. Unsere Behauptung (14) ist bewiesen, wenn wir
zeigen konnen, daB bei beliebigem z € M das Element g(f(z)) das einzige
2 € P mit (z,2) € go fist. Es sei also z ein beliebiges Element mit (2, z) € g+ f.
Wegen (*) existiert dann ein y, so daB (z, y) € f und (y, 2) € g. Auf Grund der
Eindeutigkeit von f muB hierbei y = f(z) und auf Grund der Eindeutigkeit
von g dann z = g(f(z)) sein, was zu zeigen war.

Ist f eine Abbildung von M auf N und g eine Abbildung von N auf P, so
wird (Beweis!) g o f eine Abbildung von M auf P. Sind f und g beides 1-1-Ab-
bildungen, so ist auch g e f eine 1-1-Abbildung.

Ist M eine beliebige (nichtleere) Menge, so bezeichnen wir mit T (M) die
Menge aller 1-1-Abbildungen von M auf sich:
(15) (M) :={f:[1-1-Abbildung von M auf M}.
Dann gehért sicher die durch
(16) ey:={(z,2):x€ M}
definierte identische Abbildung der Menge M, durch die jedes z € M auf sich

selbst abgebildet wird, zu T (M). Ferner ist nach dem Gesagten mit f stets auch
J~1und mit f und g stets auch das Produkt g f in (M) enthalten. Dabei sind
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die folgenden Rechengesetze erfiillt:
(178) foey=eyof=f firalle fE€E T(M);
(17b)  foft=ftof= e, firalle f€E T(M);
(A7¢)  fie (fao fo) = (fro fo) o fo fiir alle fy. fo, f € T(H).
Man sagt hierfiir, daB die Menge T (M) beziiglich der Verkettungsoperation eine
Gruppe bildet und nennt diese Gruppe auch die Permufations- oder Trans-
Jormationsgruppe der Menge M, da man die eineindeutigen Abbildungen einer
Menge M auf sich auch Permutationen oder Transformati von M zu
pflegt. Der Gruppenbegriff spielt in fast allen Bereichen der hoheren Mathe-
matik eine wesentliche Rolle. Sein systematisches Studium ist Gegenstand
eines Teilgebietes der Algebra, der sogenannten Gruppentheorie.

Aus (17c¢) folgt (vgl. 3.5. (13)), daB es auch bei vier- und mehrgliedrigen
Produkten nicht auf die Klammersetzung (wohl aber im allgemeinen auf die
Reihenfolge der Faktoren) ankommt, also z. B. bei fi, f2, f3, fs € T(H)

(re o fa)e fa=(fre f) o (fao fo) = (fie (fac fa)) o S
= fi° (f2° (f3° f2)

ist, wofiir man auch kurz f, o f, ¢ fy o f; schreibt, usw.

Ist M ={a,, ..., an} eine Menge aus n Elementen, so bezeichnet man die
Permutation, die dem Element a, das Element a (v=1,...,7) zuordnet,
héufig mit

(18) (al a,.)
R
oder kurz, indem man nur die Indizes notiert, mit

1...n
U
Man beachte, da8 hierbei grundsatzlich {a;,, ..., a,} ={ay, . .., an} gilt, d. h.

in der unteren Zeile, abgesehen von der Reihenfolge, dieselben Elemente wie
in der oberen Zeile erscheinen. Die identische Permutation e, wird dabei

durch

(al a,.) bzw. (1 n)

ay ... 0y 1...mn
wiedergegeben. Die Darstellung (18) fiir die zu einer Permutation f inverse
Permutation f-1 erhilt man, indem man jeweils unter @, dasjenige Element a;
notiert, unterhalb dessen in der Darstellung (18) von f das Element a, er-
scheint (» = 1, . .., n). Die Darstellung (18) fiir das Produkt (die Verkettung)
g f zweier Permutationen f, g erhialt man, indem man jeweils unter a, das-
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jenige Element notiert, das in der Darstellung (18) von g unter demjenigen
Element a; steht, das in der Darstellung (18) von f unter q, zu finden ist (man
beachte die Reihenfolge g nach f!).

Ist M = {a,} eine Einermenge, so besteht offensichtlich ‘£(M) nur aus der
identischen Permutation (als Kuriosum merken wir an, daB es auch im Fall
M = 0 genau eine 1-1-Abbildung von M auf sich gibt, nimlich die durch die
leere Menge reprisentierte leere Abbildung von @ auf sich).

Ist M = {a,, a,} eine Zweiermenge, so enthalt T (M) die folgenden beiden
Permutationen:

P

Dabei gilt fy o fy = foe o =fi, fic a=foc i =Fo
Ist M = {a,, a,, a3} eine Dreiermenge, s0 besteht T (M) bereits aus sechs
Permutationen, namlich

pme(33 A= (1) 4= (1)
k(3 A= (3 a2

Die verschiedenen Produkte dieser Permutationen sind systematisch in der
foigenden Gruppentafel zusammengestellt, bei der allgemein im Schnittpunkt
der i-ten Zeile mit der j-ten Spalte das Produkt f; - f; aufgefiihrt ist:

| i fo f fi s fe
nh|lh £~ K L 5 Te
L o e L L
L6 L h o o S
L\ 6 i 5 Hh N
L e 0 N L N
el fo S5 K f f2 N
DaB in der Tabelle in der ersten Zeile dieselben Elemente wie in der Kopfzeile
und in der ersten Spalte dieselben Elemente wie in der Kopfspalte auftreten,
ist natiirlich nur ein Ausdruck dafiir, da8 fir f; = e,, die Gleichuilgen (17a)
gelten Die Glelchung fao fo = ey besagt (vgl. (17b)), daB f; ' = f, (und analog
fs'=1fas, fs' =Je) ist, wahrend aus den Gleichungen j4 fs=ficfi=¢ey
folgt, daB f; ! = fsund f; ! = f; gilt — was man natiirlich auch direkt bestatigen
kann. Die Gleichungen f,¢ f3 = f5 und f; f, = f; lassen erkennen, daB die
Multiplikation von Permutationen im allgemeinen nicht kommutativ ist.

Im Fall einer Vierermenge M = {a,, a,, a3, a;} besteht die Menge T (M)
bereits aus 24 Elementen (vgl. 3. 6. (16)), so daB hier die Aufstellung der
Gruppentafel eine schon recht erhebliche Rechenarbeit erfordert.
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In den nun folgenden Betrachtungen sei M = {ay, . . ., a5} eine beliebige Menge
aus n = 2 Elementen. Es seien ferner Bigy ey B paarweise verschiedene Ele-

mente der Menge M, wobei wir annehmen wollen, daB ¥ = 2 ist. Unter dem
Zyklus (asy @i, . . . a;) oder kurz (iy iy ... tx) Versteht man diejenige Permu-
tation der Menge M, die g;, in @iy, @iy in aig, . .., a4, in ag und schlieBlich ay,
in a; abbildet und alle ibrigen Elemente der Menge M ungeindert liBt. Im
Fall n = 6 ist also z. B.

12345 6)

563421/

Die Zahl k = 2 heiBt dabei die Linge des Zyklus. Auf die Betrachtung von Zyklen
der Lange 1 (die naturgemaB als identische Permutation zu definieren waren),
wollen wir hier grundsétzlich verzichten. Es gilt der folgende wichtige Satz:

(19) Jede von der identischen Permutation verschied Permutation f der
Menge M lipt sich als (evtl. in einen Faktor ausgeartetes) Produkt von
Wrwe“ac 1, 4, ‘l’ A, I /MA) &lr ™)

Zum Beweis sei f eine beliebige Permutation der Menge M mit f = ey. Dann
existiert ein Element a; € M mit f(a;) + a;,. Wir setzen flai) = ayy, flas)
= @y, . . .. Offenbar gelangen wir nach hochstens n Schritten zu einem Element a;;,
tiir das f(ay,) = a¢, mit 1 < % < k wird. Wir nehmen an, daB das beim Element ai,
zum ersten Mal geschieht, also fiir alle x < k die Beziehungen f(a;) + a;, mit
1 < 4 < x gelten. Dann muB f(a;,) = a;, sein; ware namlich beispielsweise f (ag)
= a;, mit 1 < pu < k, so wire wegen a;, = f(a;,_,) und f(a;,) = f(ai,_,) offenbar
ay = flay,_,) = &,y im Widerspruch dazu, daB firalle x, A mit 1 <A< x<k
die Beziehung f(as,) # a;, gelten sollte. Es sind dann folgende Falle méglich:
Fall 1. Fir alle b€ M\{a; ,...,a;} ist f(b) =05 In diesem Fall ist
f= (ai,...ay), und unser Satz ist bewiesen.

Fall 2. Es gibt ein b, € M\{ay,,---, a;,} mit f(b;,) + by, In diesem Fall bauen

wir in analoger Weise, beginnend mit b;,, einen zweiten Zyklus (b;, . .. b;) auf.

Man sieht leicht ein, daB dieser Zyklus zum Zyklus (ay, - . . a;,) elementefremd

ist (Beweis!). Es sind dann folgende Falle moglich:

(1520)=(

Fall 1. Fir alle c€ M\({ay,, ..., ag} {bs, ..., by}) ist f(c) = ¢c. In diesem
Fall ist f = (bj, . .. by)e (ay, . .. ay) und unser Satz bewiesen.
Fall2. Es existiert ein ¢€ M\ ({ay,, - - - , @y} v {bs,, - - -, by}) mit f(c) + ¢c. In

diesem Fall fahren wir in analoger Weise fort.

Das beschriebene Verfahren muB nach einer endlichen Anzahl von Schritten,
spatestens namlich, wenn die Menge M ausgeschopft ist, mit dem entsprechenden
Fall 1 abbrechen. Man erhélt dann die gesuchte Darstellung von f als Produkt von
elementefremden Zyklen, womit der behauptete Satz bewiesen ist.

Man erkennt leicht, daB elementefremde Zyklen f;, f, bei der Multiplikation
(Verkettung) von Permutationen vertauschbarsind, d. h., daB fir sie fy o f, = fo° f;
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gilt. Weiterhin kann man zeigen, daB die Darstellung einer Permutation als Pro-
dukt von elementefremden Zyklen bis auf die Reihenfolge (und Klammerung)
der Faktoren eindeutig ist. Den in (19) auftretenden Ausnahmefall der identischen
Permutation beseitigt man gerne dadurch, da man formal auch ein leeres Produkt
zulaBt und dieses gleich der identischen Permutation setzt.

Die Zyklen der Lange 2 heiBen Transpositionen. Bei der Transposition (a; aj)
werden also lediglich die beiden Elemente a; und a; miteinander vertauscht. Als
teilweise Verscharfung von Satz (19) gilt:

(20) Jede Permutation f der Menge M lift sich als Produkt von Transpositionen
darstellen. -
Fiir die identische Permutation ist das klar; denn sind a4, a; zwei beliebige Ele-
mente aus M (a; + ay), 80 wird exr = (@i @j)° (ai a)). Ist f = (a;, . . . a;,) ein Zyklus
einer Lange k = 3, so wird (Beweis!)
= (@i ai)e (agy ay_,) o - * v o (a5 aig) © (@i aiy).
Ist schlieBlich f weder das eine noch das andere, so stellt man f zunichst nach
Satz (19) als Produkt von elementefremden Zyklen dar und zerlegt anschlieBend
jeden evtl. vorhandenen Faktor einer Linge k = 3 in der angegebenen Weise in
Transpositionen.

Wir merken an, daB in der Darstellung einer beliebigen Permutation als Pro-
dukt von Transpositionen die Faktoren im allgemeinen nicht mehr elemente-
fremd gewahlt werden konnen. Daher ist diese Darstellung nicht mehr eindeutig
(schon ey ist auf unendlich viele Weisen als Produkt von Transpositionen dar-
stellbar!). Aus demselben Grunde sind hierbei die Faktoren auch im allgemeinen
nicht mehr vertauschbar (nur elementefremde Zyklen sind stets vertauschbar!).
Es 148t sich allerdings zeigen (schwierige Ubungsaufgabe), daB bei einer beliebigen
Permutation f entweder alle sie darstellenden Produkte von Transpositionen eine
gerade Anzahl von Faktoren oder alle eine ungerade Anzahl von Faktoren haben. Im
ersten Fall heiBt f eine gerade Permutation, im zweiten eine ungerade Permutation.

Mit Hilfe des Begriffs der eineindeutigen Abbildung kann man eine not-
wendige und hinreichende Bedingung dafiir angeben, daB (endliche) Mengen
M und N dieselbe Anzahl von Elementen besitzen. Will man z. B. feststellen,
ob in einem Zimmer dieselbe Anzahl von Menschen und Stiihlen vorhanden
ist, so braucht man keineswegs die anwesenden Personen und die vorhandenen
Stiithle abzuzahlen, sondern nur zu bitten, Platz zu nehmen; stellt sich dabei
heraus, daB fiir jede Person ein Stuhl vorhanden ist (also keine Person stehen
bleibt) und hinterher kein Stuhl frei geblieben ist, so sind jedenfalls gleich viele
Personen und Stiihle vorhanden. Wesentlich ist hierbei offensichtlich nur, da8
durch das Niedersetzen eine 1-1-Abbildung zwischen den Personen und den Stiih-
len hergestellt wird. Man sagt allgemein, Mengen M und N seien gleichmdchtig
(in der alteren Literatur ist daneben die farblose Bezeichnung ,aquivalent*
iiblich), und schreibt dafiir M ~ N, wenn es eine 1-1-Abbildung von M auf N gibt:

(21) M ~ N:eoV (f1-1-Abbildung von M auf N).
24
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Auf Grund des zuvor Gesagten ist bei endlichen Mengen die Gleichmachtig-
keit ein Ausdruck dafiir, daB die betrachteten Mengen dieselbe Anzahl von
Elementen besitzen, ohne daB wir allerdings bisher die Begriffe ,endliche
Menge” und ,,Anzahl® genauer prazisiert haben (vgl. 2.8.). Aus (21) ergeben
sich leicht die folgenden Eigenschaften der Gleichmachtigkeit:

(22a) Fir jede Menge M git M ~ M (Reflexivitat);
(22b) AN (My~ManMy~ My=> M ~ M, (Transitivitit);
M, M, Ms
(22¢) A (My ~M,=> M, ~M,) (Symmetrie).
M\ M,
Eine Relation mit den Eigenschaften (22) nennt man allgemein eine Agui-
valenzrelation (vgl. 2.5. (12)). Die Eigenschaft (22a) folgt daraus, daB bei
beliebigem M die identische Abbildung e, eine 1-1-Abbildung von M auf sich
ist (im Fall M = 0 ist ¢;, = @, und die leere Menge von geordneten Paaren
erfiillt formal die Bedingungen einer 1-1-Abbildung von 8 auf ). Zum Beweis
von (22b) geniigt es zu bemerken, daB die Verkettung go f einer 1-1-Ab-
bildung f von M, auf M, mit einer 1-1-Abbildung g von M, auf M eine 1-1-Ab-
bildung von M, auf M, ist. Und (22c) folgt schlieBlich daraus, daB die Um-
kehrabbildung f-1 einer 1-1-Abbildung f von M, auf M, eine 1-1-Abbildung
von M, auf M, ist.

Als einfache Folgerung aus den Definitionen erhalt man noch

(23) M, ~MyAN,~N,nM, AN, =8 rMy~N, =9
> M N~ M N,

Ist namlich f eine 1-1-Abbildung von M, auf M,, g eine 1-1-Abbildung von
N, auf N,, so ist (Beweis!) fug(={(x9):(@ 9)Efv(z,y)€Eg}) eine
1-1-Abbildung von M, N, auf M, N,.

Ahnlich beweist man (Ubungsaufgabe):
(24) M‘~M2AN1~N2%M1XN1~M2XN2.

Wegen seiner (bereits auf CaANTOR zuriickgehenden) Beweisidee verdient der
folgende Satz besonderes Interesse:

(25) Filr keine Menge M gilt M ~ P (M).

Zum Beweis betrachten wir eine beliebige Menge M und eine beliebige 1-1-Ab-
bildung f von M in B (M) (z. B. ist die Korrespondenz {(z, {z}) : € M} eine solche).
Wir zeigen, daB f keine Abbildung auf % (M) sein kann, d. h., daB wenigstens eine
Menge X, M existiert, die beziiglich f kein Urbild besitzt. Dazu sei X, die Menge
aller derjenigen z € M, die nicht El t der z zugeordneten Menge f(z) & M sind:
() Xo:={z:2€E Mrz € f(z)}.
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Angenommen, es gibt ein 2, € M mit f(xg) = X, Nach (=) gilt dann
29 € f(mo) © 29 € Xo© 7 € f(2o),

und das ist ein Widerspruch. Also ist unsere Annahme falsch, und es gilt (25).
Zur Illustration dieses iiberraschenden Schlusses (vgl. Abb. 7) betrachten wir
die Korrespondenz

F:={z,y):c€MryE Mry€ f(x)},

M
A
/
,7{ _
X\o—{ I
\

\

Abb. 7

N X1 € £(x1)yx, £X

_ﬂg/}{%f///;// X2 £ Fl) 1%, € X,

-

[
i
L

X1 X M

bei der offenbar Br(z) = f(z) fiir alle z€ M (da f eine 1-1-Abbildung von M
in P (M) sein sollte, sind die Mengen Br(z) paarweise verschieden). Ferner sei
G:={(z,z):2€ M rz € f(z)}

Dann besteht G offenbar aus allen denjenigen Punkten der ,Diagonalen*
ey(= {(z, ) : € M}), die nicht zu F gehoren (@ = ey\F), und wegen (x).gilt
ferner D(G) = W(G) = X,. Die Menge X, ist nun deshalb von allen Mengen
f(x) mit z € M verschieden, weil sich X, von einer beliebigen Menge f(z,) wenig-
stens im Element z, unterscheidet (z, € f(zy) A X,). Wegen dieser anschaulichen
Deutung nennt man das verwendete Beweisverfahren haufig Cantorsches Diagonal-
verfahren.

Zum AbschluB wollen wir noch einige haufig in der Mathematik benutzte
Bezeichnungen und Begriffe einfithren, die eigentlich nur andere Benen-
nungen oder Auffassungen von bereits behandelten Begriffen sind. Es sei
dazu I eine beliebige Menge, die wir im vorliegenden Zusammenhang auch
Indexmenge oder Indexbereich nennen wollen. Es sei ferner z eine Abbildung
von I in eine gewisse Menge M (z : I — M), die also jedem Index i aus I ein
eindeutig bestimmtes Element z (i) aus M als Bild zuordnet, wobei man statt
2(i) — im Sinne der Bezeichnung Index — auch z; schreibt (hier ist also der
Buchstabe z ein Funktionszeichen!). Die Abbildung z, also nach (3') die Menge
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aller Paare (i, x;) mit i € I, wird dann eine Familie oder (allgemeine) Folge
mit dem Indexbereich I genannt und mit (z;:4€ I) oder (;);; bezeichnet.
Das dem Index i € I durch = zugeordnete Element z; heiBt das zum Index 4
gehorige Qlied dieser Familie oder Folge. Wir merken an, daB durchaus
zugelassen ist, daB ein Element x aus M in einer Familie (2,);c; mehrfach
vorkommt (was bei Mengen unméglich ist!), d. h., daB es mehrere Indizes
i€ I geben kann, fiir. die z; = z gilt. Daher ist die Familie (z;);c; wohl von
der Menge ihrer Glieder zu unterscheiden, die naturgemaB nichts anderes als
der Wertebereich der Abbildung z ist und nach (4') durch {z; : i € I'} gegeben
wird (wofir man manchmal auch {z;};, schreibt). Nach (7') sind Familien
(Folgen) (z);cy und (y.);cr mit dem Inde:tberewh I genau dann gleich, wenn
sie gliedweise iibereinstimmen:

(26)  @hea=WhaSAGCEIS>z=y).

Eine Familie (Folge) (y;);c, heiBt Teilfamilie (Teilfolge) der Familie (Folge)
(*)ier» wenn (¥;);e; S (¥))ier im Sinne der Inklusion von Korrespondenzen
(vgl. 2.3.(9)), so daB nach (8) gilt:

(27) ¥)ies S @ @I SIAN(GET >y, =2).

Besonders wichtig ist der Spezialfall, daB der Indexbereich I die Menge N
der natiirlichen Zahlen oder die Menge N* der positiven natiirlichen Zahlen
ist. Ist auBerdem noch die Menge M, in die die Abbildung = erfolgt, die Menge R
aller reellen Zahlen (also W(z) S R), so nennt man (z,);¢; eine reelle Zahlen-

folge. Ist z. B. fir i € N* allgemein z; = %, so erhdlt man die Zahlenfolge

B .
(T) mit den Gliedern 1, —, .. . .. Ist fiar § € N allgemein z, — (—1), so
t Jiene 2’3

erhalt man die Zahlenfolge ((— 1)°);c, mit den Gliedern 1, —1, 1, —1, .. ;
in diesem Fall ist {z;};cy = {1, —1}.

Wichtig ist weiterhin der Fall, daB der Indexbereich I die Menge {1, . . ., n},
d. h. die Menge aller natiirlichen Zahlen i mit 1 < 3 < » ist, wobei n eine
gegebene natiirliche Zahl = 1 ist. Auf Grund von (28) gilt

(26")  @dieqs,....m= Widictt,.... ;ST =Y1 A" * A Tn=Yn,

d. h., die Folgen (z);(s, ..., erfilllen die wesentliche Eigenschaft 2.2.(15) der
n-Tupel, so daB in der Literatur auch vielfach die Menge M* aller n-Tupel von
Elementen der Menge M als Menge aller Abbildungen von {1, . . ., n} in M defi-
niert wird. An Stelle der Menge {1, . . . , n} kann dabei natiirlich auch irgendein
anderer Indexbereich I = {i,, ..., is} aus n Elementen genommen werden.
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Es ist durchaus auch zugelassen, daB die Glieder einer Familie oder Folge Men-
gen sind. Eine Mengenfamilie oder Mengenfolge (M), ist also nichts anderes
als eine Abbildung M von I in ein gewisses Mengensystem I, durch die jedem
Index i € I eine eindeutig bestimmte Menge M (i) (oder M,) aus IR zugeordnet
wird (hier hat also der Buchstabe M die Rolle eines Funktionszeichens!).

Unter dem Durchschnitt bzw. der Vereinigung einer Mengenfamilie (M,);¢;
werden dann die folgendermaBen definierten Mengen verstanden :

(28) NM:={x:NGEI=>z€ M)},
ier ‘

(29) UM;:={x:V(EEIrz€E M)
‘€1 i

In Verallgemeinerung der Gesetze 1.4.(23) und 1.4.(24) gilt dann
(30) 1\7\ﬁ M= U (N\M)), N\UM = ﬂ (N\M)),
wobei (N\M‘),e, dxe]emge Mengenfamlhe (Abblldung!) ist, bei der einem

beliebigen Index i €I die Menge N\M; zugeordnet ist. Als eine allgemeine
Form der Distributivgesetze sind die folgenden Satze anzusehen:

nM‘uﬂN,= ﬂ (M;VNJ')’

(31) $€1 jeJ @NEIxJI
UM"'\UN1= U (-M."\N,‘)r
({33 jeJ @NEIxJ

wobei fir gegebene Mengenfamilien (M);¢;, (N,);e; beispielsweise unter
(M, w N))qperxs die Mengenfamilie mit dem Indexbereich I xJ verstanden
wird, bei der das zum Index (3, j) € I X J gehirige Glied die Menge (M, N;)
ist. Ist der Indexbereich I Vereinigung der beiden disjunkten Indexbereiche
1, 1> Iz» 8o 8‘1‘7

NM,=NM~NM,

13 I3 €1,

(32) '
UM;,=UM;wUXM,
34 A i€L,

wobei (M);c1, bzw. (M )¢y, diejenigen Teilfamilien von (M), sind, die sich
durch Einschrankung (vgl. (9)) der Abbildung M auf I, bzw. I, ergeben. (32)
1a8¢ sich sofort auf den Fall ausdehnen, daB I eine Vereinigung einer dis-
junkten Familie (I;);¢; von Indexbereichen ist, wobei die Familie (I));¢,
disjunkt heiBt, wenn I; ~ I, = 9 fir alle jy, j» € J mit j; =+ ja:

N M,= (nu‘),
feyr; - ses el
(32)
U M;=U

- $€UL €J ‘EI
,el{,f i /]
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(die Voraussetzung iiber die Disjunktheit der Indexbereiche ist sowohl bei (32)
als auch bei (32’) unwesentlich). Die Beweise von (30), (31), (32), (32) sind
simtlich sehr einfach und seien dem Leser als Ubungsaufgabe iiberlassen.

2.5. Relationen

Es sei M eine beliebige Menge und k eine natiirliche Zahl = 2. Unter einer
k-stelligen Relation in M versteht man eine beliebige Teilmenge der Menge M¥
aller k-Tupel von Elementen aus M:

1) R k-stellige Relation in M : & R & M*.

Ist(z,,- . ., 2;) € R, s0sagt man, daB die Relation R aufdas k-Tupel (z;, . . . ,2;)
zutrifft oder die Elemente zy, . . ., 2, (in dieser Reihenfolge genommen) in der
Relation R stehen.

Besonders wichtig sind die zweistelligen oder bindren Relationen, mit denen
wir uns im vorliegenden Abschnitt ausschlieBlich beschéftigen wollen und die
daher einfach Relationen (ohne besondere Angabe der Stellenzahl 2) genannt
werden sollen:

(2) R Relation in M : & RS M.

Offenbar ist danach eine Relation in M nichts anderes als eine Korrespondenz
aus M in M, so daB wir gema 2.3.(2) statt (z, y) € R auch zRy schreiben.
Nach 2.3.(11) bzw. 2.3.(18) sind mit R stets auch R~1 und mit R und S stets
auch S R Relationen in M.

Als Beispiele fiir (zweistellige) Relationen seien hier nur folgende genannt:
Die <- und die <- Relation z. B. in der Menge R aller reellen Zablen, die auf
genau die Paare (z,y) € R X R zutrifft, fir die z < y bzw. z < y gilt; die
Inklusion bzw. echte Inklusion zwischen Mengen eines gegebenen Mengen-
systems M (z. B. des Systems € aller Mengen aus Elementen eines gegebenen
Grundbereichs E), die auf genau die Paare (X, ¥) € | X M zutrifft, far die
X S Y bzw. X c Y gilt; die Teilbarkeitsrelation in der Menge N aller natiir-
lichen Zahlen, die auf genau die Paare (x,y) € N X N zutrifft, bei denen z
ein Teiler von y ist, usw.

Wir hatten bereits in 2.1. bemeérkt, daB man vielfach allgemeiner jede
Korrespondenz aus einer Menge M in eine (evtl. andere) Menge M, als (binére)
Relation und dann jede Teilmenge einer Produktmenge M; X --- X M,
als k-stellige Relation bezeichnet. Bei dieser allgemeinen Auffassung wird z. B.
die durch die Eigenschaft ,, P liegt auf g* fiir Punkte P und Geraden g beispiels-



68 2. Grundbegriffe der Abbildungstheorie

weise einer euklidischen Ebene definierte Korrespondenz eine Relation zwischen
Punkten und Geraden.

Wir betrachten nun einige hiufig bendtigte Eigenschaften von Re-
lationen. Dabei setzen wir voraus, daB es sich stets um Relationen in einer
festen nichtleeren Menge M handelt.

Eine Relation R S M X M heiBt reflexiv in M, wenn jedes z € M zu sich
selbst in der Relation R steht, d. h., R auf alle Paare (z, z) mit z € M zutrifft:

(3) Rreflexivin M : & A\ (x€ M = zR2).
Unter Verwendung der inz 2.4.(16) eingefithrten identischen Abbildung
ey(: = {(z, z) : * € M}) kénnen wir auch schreiben:
! R reflexivin M & e, S R.
anach ist eine Relation R genau dann nicht reflexiv in M, wenn ein

Paar (z, z) € M X M existiert, fiir das — zRz gilt. Gilt — zRz fiir alle Paare
(z, ) € M X M, so nennt man die Relation R irreflexiv in M:

(4) R irreflerivin M : & A\ (€ M = 1zRx),

R irreflexivin M & R ~ey = 8.
Eine Relation R & M X M heiBt transitiv, wenn aus zRy und yRz stets

zRz folgt (die Voraussetzungen R & M X M und zRy, yRz stellen bereits
sicher, daB die Elementé z, y und z zu M gehédren miissen):

(5) R transitiv : & A\ (zRy »n yRz = zRz).
z,¥.2

Unter Verwendung der Verkettung 1aBt sich (5) auch schreiben als
@ R transitive Re RS R.
Eine Relation R & M X M heiBt symmelrisch, wenn aus zRy stets yRz
folgt:
(8) R symmetrisch : & A (xRy = yRz).
z.y

z
%;Tn' wir offenbar auch schreiben kénnen:

Nur eine andere Schmibwei;e fiir (6) ist
(6" R symmetrisch < R S R-1.
Wir merken an, daB man (6) bzw. (6) sofort verschirfen kann zu
(7) R symmetrisch < A (xRy < yRz)
z,y

w.
é R symmetrisch <& R = R-1,
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Eine Relation R ist also nicht symmetrisch, wenn es wenigstens ein
Paar (z,y) € M X M gibt, so daB xRy und —yRz. Gilt —yRz fir alle
Paare (2, y), die in der Relation R stehen, so heit R asymmetrisch:

(8) R asymmelrisch : & A (xRy = — yRz).
zy
Eine Relation R ist also genau dann asymmetrisch, wenn fur kein Paar
(x,y) € M X M sowohl zRy als auch yRz gilt:
R asymmetrisch <& —\/ (zRy A yRz),
zy

wofiir wir offenbar auch
(8') R asymmetrisch<> R~ R 1 =0
schreiben kénnen.

SchlieBlich heiBt eine Relation R & M X M antisymmetrisch, wenn aus
2Ry und yRz stets z = y folgt:
9) R antisymmetrisch : < )\ (xRy AyRz = z = y)
oder =
(9) R antisymmetrisch & R ~ R™1 S e,,.

Aus unseren Definitionen folét,, Z. B. sofort, daB mit einer Relation R auch
die zu ihr inverse Relation R~1 reflexiv, irreflexiv, transitiv, symmetrisch, asym-
metrisch oder antisymmetrisch ist. Ferner ist sofort zu sehen, daB jede asym-
metrische Relation irreflexiv ist:

(10) RS M x M R asymmetrisch = R irreflexiv in M.

Umgekehrt ist eine transitive Relation R S M X M, wenn sie irreflexiv in M
ist, auch asymmetrisch:

(11) R S M X M A Rtransitiv a R irreflexiv in M => R asymmelrisch.
Gabe es namlich ein Paar (z,y) € M X M, fir das sowohl zRy als auch yRx

gilt, so wiirde auf Grund der Transitivitat auch xRz gelten, im Widerspruch
zur Irreflexivitat. '
Eine wichtige Rolle spielen in der Mathematik die sogenannten Aguivalenz-
relationen, die definiert sind durch
(12) R Aquivalenzrelation in M
& RE M X M A Rreflexivin M A R transitiv A R symmetrisch.

Ist B eine Aquivalenzrelation in M und gilt 2Ry, so sagt man auch, daB y
beziiglich (oder nach oder modulo) R zu x dquivalent ist. Die Menge Br(x) aller der-
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jenigen y € M, die zu z in der Relation R stehen, nennt man die Aqui-
valenz- oder Restklasse von z mach (oder modulo) R. Das System aller.
dieser Restklassen heiBt das Restsystem von M mnach (oder modulo) R und
wird meist mit M/R bezeichnet:

(13) M/R: = {Br(z): € M}.

Als erstes stellen wir fest, daB bei beliebigem z,y € M die Restklassen Bg(x)
und Br(y) genau dann gleich sind, wenn xRy gilt:

(14)  Br(z) = Br(y) © zRy.

Ist namlick Br(z) = Br(y), so ist wegen y € Br(y) (Reflexivitit von R) auch
y € Br(), und mithin gilt zRy. Gilt umgekehrt 2Ry und ist z € Br(y), so gilt
yRz und wegen der Transitivitit von R auch zRz, d. h. z € Bgr(z), so daB
Br(y) S Br(z); da ferner wegen der Symmetrie von R aus zRy auf yRx
geschlossen werden kann, gilt entsprechend Bg(z) S Br(y), also folgt in der
Tat aus Ry stets Br(z) = Br(y).

Als nachtes behaupten wir, daB fiir das Restsystem M/R einer Aquivalenz-
relation R in M stets die folgenden Eigenschaften erfiillt sind:

(158) A(X € M/R= X + 9),
X .

(15b) U (M/R) = M,
(15¢)  M/R ist disjunkt.

Die Eigenschaften (15a) und (15b) folgen unmittelbar aus der Reflexivitat
von R. Auf Grund derer ist fir jedes z € M nimlich z € Bgr(z) und mithin
Br(z) = 8 und =€ | (M/R). Zum Beweis von (15c) zeigen wir, daB Rest-
klassen Br(z), Br(y), die ein Element gemeinsam haben, iibereinstimmen: Ist
2 € Br(z), z € Br(y), so gilt 2Rz und yRz, also nach (14) Br(z) = Br(z) und
Br(y) = Br(z), so da8 in der Tat Br(z) = Bg(y).

Ein Mengensystem 3 mit den unter (15a) bis (15¢) angegebenen Eigen-
schaften des Systems M/R wird heute meist eine Zerlegung der Menge M
genannt:

(16) B8 Zerlegung von M: SN\ (XE€ 3= X + 0)a U 8= M » B disjunkt.
x

Eine Zerlegung von M ist also eine Einteilung von M in nichtleere Teilmengen,
so daB jedes Element 2 € M genau einer dieser Teilmengen angehort (aus
U 8 € M folgt namlich, daB alle Mengen aus 8 Teilmengen von M sind, aus
M < U 3 folgt, daB jedes Element aus M wenigstens einer Menge X € 3
angehort, und die Disjunktheit von 3 besagt, daB kein Element aus M zu zwei
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verschiedenen Mengen des Systems 8 gehort). Damit kénnen wir (15a) bis (15¢)
zusammenfassen zu:

(15) R Aquivalenzrelation in M => M /R Zerlegung von M.

Danach gehért also jedes Element = der Menge M einer und nur einer Rest-
klasse des Systems M/R an, die dann aus allen und nur den Elementen y aus M
hesteht, die beziiglich R zu z dquivalent sind. Je zwei Elemente einer Restklasse
sind #quivalent, wahrend Elemente aus verschiedenen Restklassen nicht
aquivalent sind.

Wir wollen nun zeigen, daB auch die Umkehrung von (15) gilt, genauer,
daB man zu jeder Zerlegung B einer Menge M eine eindeutig bestimmte
Aquivalenzrelation By in M finden kann, so daB B das Restsystem von Ry
wird:

17) 8 Zerlegung von M =V (Rg Aquivalenzrelation in M n 3 = M/Ry).
By

Zum Beweis betrachten wir bei gegebener Menge M und gegebener Zerlegung 3
von M die durch

(18) fy:={xX):z€ MrXEZrz€E X}

definierte Korrespondenz aus M in 8. Aus den Eigenschaften einer Zerlegung
folgt mihelos, daB f eine eindeutige Abbildung von M auf 3 ist, und zwar
ordnet f jedem Element z € M gerade diejenige Menge X der Zerlegung 3
zu, die = als Element enthalt. Man nennt fg die zur Zerlegung 3 gehorige
kanonische Abbildung. Wenn es nun iiberhaupt eine Aquivalenzrelation
R in M gibt, fir die 3 = M/R wird, so muB wegen z € fg(x) bei beliebigem
z € M jeweils Br(z) =f8(") sein, also auf Grund von (14)

(*) zRy & fy(x) = f3(y)

gelten. Wir sehen nun umgekehrt (#) als Definition einer Relation Ry in M an,
setzen also

(19) Ry:={(z,y):z€ M Ay € M a fy(2) = fg(y)}

Man erkennt miihelos, daB die so definierte Relation Ry eine Aquivalenz-
relation in M ist. Die Behauptung 8 = M/Rj folgt unmittelbar daraus, da8 bei
beliebigem z € M die Gleichung an (z) = fg(x) gilt, denn fir jedes y € M ist

Y€ Bry(@) & 2Ry & f3() = f3(y) © y € f3(@),

wobei im letzten Schritt benutzt wird, daB im Fall y € f3(x) die Mengen
f3(), fg(y) € 3 das Element y gemeinsam haben, also wegen der Disjunktheit
von § gleich sind.
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Wir fassen die vorangehenden Resultate zusammen in dem-folgenden

Hauptsatz iiber Aquivalenzrelatlonen. Jede Aquivalenzrelation R in
einer michtleeren Menge M bewirkt eine eindeutig bestimmte Zerlegung M/R
von M in Restklassen, wobei Elemente x, y € M genau dann derselben Restklasse
angehbren, wenn sie zueinander in der Relation R stehen. Umgekehrt existiert
zu jeder Zerlegung 8 der Menge M eine eindeutig bestimmte Aquival lati
Rg, so daf 8 Restsystein M/Rg dieser Aquivalenzrelation ist.

Wir wollen den Inhalt des Hauptsatzes an zwei Beispielen aus dem tag-
lichen Leben erlautern. Dabei bedeute M die Menge aller Schiiler, die zu
einem bestimmten Zeitpunkt eine bestimmte Schule besuchen. Durch die
Eigenschaft ..y ist Klassenkamerad von 2* wird (wenn wir jeden Schiiler als
Klassenkameraden von sich selbst ansehen) eine bestimmte Aquivalenzrelation
in M definiert. Die Restklassen dieser Aquivalenzrelation sind dann gerade
die verschiedenen Schulklassen. Fassen wir andererseits alle Schiiler aus M,
die einen bestimmten Vornamen haben, in jeweils einer Menge zusammen,
so erhalten wir eine. Zerlegung von M. Die zu dieser Zerlegung gehorige Aqui-
valenzrelation wird etwa durch die Eigenschaft ,y hat denselben Vornamen
wie z* charakterisiert.

Auf Grund von (12) ist klar, daB sowohl die identische Relation e, als auch
die Relation M X M Aquivalenzrelationen in M sind. Dabei ist offenbar e,
die beziiglich der Inklusion kleinste und M X M die beziiglich der Inklusion
groBte Aquivalenzrelation in M. Fir e, besteht das Restsystem M/e,, aus
allen Einermengen {z} mit € M, wihrend fir M X M das Restsystem
M/(M x M) die Einermenge {M} ist.

Es sei noch ein wichtiges Verfahren zur Erzeugung von Aquivalenzrelationen
behandelt, das wiederum in dem Sinne universell ist, daB mit seiner Hilfe
jede Aquivalenzrelation erzeugt werden kann. Dazu sei f eine beliebige
Abbildung von der nichtleeren Menge M auf (bzw. in) eine gewisse Menge N.
Wir setzen (vgl. (19)):

200  Ry:={(z9):2€ Mry€ MAf(z) =fy)

Man priift mithelos nach, daB Ry eine Aquivalenzrelation in M ist, die man auch
die durch f induzierte (erzeugte) Aquivalenzrelation nennt. Offenbar besteht
das Restsystem M/R; gerade aus allen vollen Urbildern Uy(y) mit y € W(f):
(20)  M/Ry={Us(y):y€E W({)}.

Die zur Zerlegung M/R; gehorige kanonische Abbildung von M auf M/R;,
sie sei mit j bezeichnet, ordnet dann einem beliebigen z € M die Menge aller
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derjenigen y € M zu, die bei der Abbildung f auf f(z) abgebildet werden:

@) f@):={y:yEMrf) =f@)} @EM).

Daber ist die Korrespondenz

(22) g:={(5,z):EEM/R/AzGNAV(xG§Az=f(:v))},

die einer beliebigen Klasse £ € M/R; das allen z € £ gemeinsame Bild z = f(x)
aus N zuordnet, eine 1-1-Abbildung von M/R; auf (bzw. in) N, und dabei gilt:
(23) f=g-},

was man sich gern durch ein Diagramm der Form

M 7 N
(23) f\ /

MR,

veranschaulicht. Jede eindeutige Abbildung f von einer Menge M auf (in) eine
Menge N ist also Verkettung der kanonischen Abbildung f von M auf das Rest-
system M|R einer gecigneten Aquival lation R in M (ndmlich der durch f
induzierten Aqulvalenzrela.tion (20)) und einer 1-1-Abbildung g von M/R auf
(in) N. Dabei ist offenbar die Abbildung f genau dann eineindeutig, wenn
f(2) = {&} (x € M). Umgekehrt ist natiirlich auch jede Verkettung gofg der zu
einer Zerlegung B von M (dem Restsystem M/R einer Aquivalenzrelation R
in M) gehorigen kanonischen Abbildung fg mit einer 1-1-Abbildung g von 3 auf
(in) eine beliebige Menge N eine eindeutige Abbildung von M auf (in) N. Die von
der kanonischen Abbildung fg induzierte Aquivalenzrelation Rfs stimmt

natiirlich mit der durch (19) gegebenen Aquivalenzrelation Rg iiberein.

Fiir (23) sagt man auch, daB das Diagramm (23°) kommutativ ist.

Die im obigen Beispiel betrachtete Relation ,y hat denselben Vornamen
wie 2 wird z. B. durch die Abbildung f induziert, die jedem Schiiler x € M
seinen Vornamen zuordnet. Die Abbildung f von der Menge M der Schiiler in
die Menge N aller Lehrer der betrachteten Schule, die jedem Schiiler seinen
Klassenlehrer zuordnet, induziert die durch die Eigenschaft ,;y ist Klassen-
kamerad von z“ charakterisierte Aquivalenzrelation (vorausgesetzt, daB kein
Lehrer der Schule Klassenlehrer zweier verschiedener Klassen ist).

Wir kommen nun zu den wichtigsten Arten von Ordnungsrelationen,
die ebenfalls in vielen Gebieten der Mathematik von Bedeutung sind. Es sei
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wieder M eine beliebige (nichtleere) Menge. Eine Relation R S M X M heiBt
eine reflexive teilweise Ordnung in (oder von) M, wenn R reflexiv, transitiv
und antisymmetrisch ist.
(24) R reflexive teilweise Ordnung in M

:© RS- M X M A R reflexivin M A R transitiv A R antisymmelrisch.
Eine Relation S & M X M heilt eine irreflexive teilweise Ordnung in M, wenn
8 irreflexiv und transitiv ist:

(25) S trreflexive teilweise Ordnung in M
1SS M X M S irreflexivin M A S transitiv.

Als Musterbeispiele fiir reflexive teilweise Ordnungen kénnen die <-Relation
fiir (reelle) Zahlen, die Inklusion fiir Mengen, aber z. B. auch die Teilbarkeits-
relation im Bereich der natiirlichen Zahlen (vgl. 3.7.) dienen. Musterbeispiele
fiir irreflexive teilweise Ordnungen sind die <-Relation fiir Zahlen und die
echte Inklusion fiir Mengen. Der Zusatz , teilweise” bezieht sich darauf, daB es
bei einer solchen Ordnung — wie z. B. bei der Inklusion — unvergleichbare
Elemerte geben kann, d. h. Elemente z, y € M mit z + y, fir die weder zRy
(bzw. zSy) noch yRz (bzw. ySz) gilt. Ein besonders extremes Beispiel ist die
identische Relation ey, von der man leicht nachpriift, daB sie eine reflexive
teilweise Ordnung ist, und bei der je zwei verschiedene Elemente aus M un-
vergleichbar sind (daher nennt man e, manchmal auch totale Unordnung).
Statt teilweise Ordnung sagt man vielfach auch Halbordnung oder partielle
Ordnung; in der neueren Literatur werden die teilweisen Ordnungen haufig
auch einfach Ordnungen genannt.

Wir merken als erstes an, dal mit einer Relation R (S) stets auch die zu ihr
inverse Relation R-1 (S-1) eine reflexive (irreflexive) teilweise Ordnung ist. Die
zur <-Relation (<-Relation) fir Zahlen inverse Ordnung ist die =>-Relation
(>-Relation), zur S-Relation (c-Relation) fir Mengen ist die =2-Relation
(>-Relation) invers (vgl. 1.5.(2) und 1.5.(7)).

Bei Betrachtung der Definitionen (24) und (25) mag vielleicht auffallen,
daB die in (24) geforderte Antisymmetrie in (25) kein Entsprechen hat. Das
liegt daran, daB die hier sinngema8 zu fordernde Asymmetrie auf Grund von
(11) bereits aus der Irteflexivitit und Transitivitit von S folgt, wahrend
Analoges — wie das Beispiel der Aquivalenzrelationen (mit R~ R-{= R
statt R ~ R-1= ey) zeigt — fir die Antisymmetrie nicht gilt. Allgemein
kann man jedoch leicht zeigen (Ubungsaufgabe), daB fiir eine reflexive und
transitive Relation R (eine solche nennt man meistens eine Quasiordnung)
durch :

z2Ty: < 2RyryRx (d.h.T:= R~ R™Y)
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eine Aquivalenzrelation in M definiert wird, und die zusitaliche Forderung
der Antisymmetrie stellt gerade sicher, daB8 7' die identische Relation e, ist.

Wir wollen nun zeigen, daB zwischen den reflexiven und den irreflexiven
teilweisen Ordnungen ein sehr einfacher Zusammenhang besteht, daB man
ndmlich in kanonischer Weise, so wie man das von der <- und der <-Relation
fir Zahlen kennt, aus einer reflexiven teilweisen Ordnung eine irreflexive teil-
weise Ordnung erhalten kann und umgekehrt.

Es sei dazu zuniachst R eine reflexive teilweise Ordnung in M. Wir definieren
mit ihrer Hilfe die Relation R; durch

(26) zRy: <o zRyrz +y
(<y:ezxz=<yrz=+y)d h, wisetzen
(26') R;:=R\ey.
Unsere Behauptung ist, daB die Relation R; eine irreflexive teilweise Ordnung
in M ist:
(27) R reflexive teilweise Ordnung in M
= R, irreflexive teilweise Ordnung in M.

Zunachst folgt aus (26') sofort R; ~ ey = 8, d. h. (vgl. (¢)), R; ist irreflexiv
in M. Zum Nachweis der Transitivitit nehmen wir an, es gelte Ry und
yRz. Dann gilt wegen (26) xRy, = + y, yRz und y % z. Aus zRy und yR=
folgt wegen der Transitivitdt von R sofort zRz. Es bleibt also zum Nachweis
von zRz zu zeigen, daB auch z = z gilt. Wir nehmen an, es wire x = z. Dann
wiirde sowohl zRy als auch (wegen yRz) yRx gelten, und wegen der Anti-
symmetrie von R wire z = y, was ja nicht der Fall sein sollte.

Es sei nun S eine beliebige irreflexive teilweise Ordnung in M. Wir defi-
nieren mit ihrer Hilfe eine Relation S; durch

(28) zSy e zSyva =y

@sy:oz<yvz=y),d h, wir setzen
(28') Sr:=8wuvey.
Unsere Behauptung ist, daB die Relation S eine reflexive teilweise Ordnung in M ist:
(29) 8 irreflexive teilweise Ordnung in M
= 8y reflexive teilweise Ordnung in M.

Zunachst folgt aus (28’) sofort ey S Sy, d. h. (vgl. (3')), die Relation S, ist
reflexiv in M. Zum Nachweis der Transitivitit von S, nehmen wir an, es gelte
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28,y und ySyz. Nach (28) muB dann einer der folgenden vier Fille vorliegen:
(i) xSy A ySz,

(ii) Sy ry =z,

(iii) z =y AYSz,

(iv) T=yry=z2.

Im ersten Fall gilt 258z wegen der Transitivitit von S und damit erst recht
2Syz, im zweiten und im dritten Fall gilt trivialerweise 28z und damit 28,2,
im vierten Fall gilt 2z = z und damit ebenfalls 2S,2. Zum Nachweis der Anti-
symmetrie von S, merken wir zundchst an, daB fir beliebige Relationen
Ry, Ry in M stets

(80)  (Byw Ry)~t=(B{'w R;")

gilt. Denn fiir beliebiges (z, y) € M X M ist

@ 9 E (R R) 1 (y,2)E Ry Ry
© (Y, 2)ERV(Y,2)ER,
o (z,9) € B! v (2,9) € By
& (z,¥) € Ri' © R
Folglich wird
SrASt=(Suey)n(Svuey)t=(Svey)(Stuey)
=8 ~SY)ex=ex
denn es ist S~ S-1=0 wegen der Asymmetrie von 8 (vgl. (11)). Die
Gleichung Sy ~ S;' = ex besagt aber gerade (vgl. (9°)) die Antisymmetrie von
Sy. Wir merken an, daB auch die Transitivitit von Sy durch einen analogen
SchluB bewiesen werden kann, wenn man sich zuvor die folgenden Distri-
butivgesetze verschafft (Ubungsaufgabe):

Ryo (R, Ry) = Ryo Ry~ Ry° R,

1
(3 ) (Rz\-/Ra)°Ri=R2°R;vR3=.Rt.

Beachtet man, daB (in Verallgemeinerung von 2.4.(17)) fur jede Relation R
inM
(32) Roey=eyo R=R
- gilt, so wird
Spo S = (S enr)o (S en)
=808 SoemveyeS\eyoen
SSveu=35,
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da wegen der Transitivitit von S (vgl. (5")) ja S § S § ist, und die Gleichung
Sy o Sy & Sr besagt gerade die Transitivitiat von Sr.

Aus (26') und (28') erhdlt man noch leicht, daB fiir jede reflexive teilweise
Ordnung R in M
(33) (R),=R
gilt. Denn
(R),=R;wex=(R\ey)wéy=Ruey=R,
da wegen der Reflexivitit von R offenbar R \ ey = R ist.

Analog gilt fir jede irreflexive teilweise Ordnung S in M
By k=8
Eine Relation R & M X M heiBt linear in M, wenn bei beliebigem z, y € M

stets wenigstens einer-der Fille zRy oder yRz eintritt, wenn also beliebige
Elemente z, y € M durch R vergleichbar sind:

(35) R linear in M : S\ (€ M Ay€ M = zRy v yRz),

wofiir man auch
(35) Rlinearin M & R R1=MxM
schreiben kann. Man erkennt leicht, daB jede lineare Relation reflexiv ist:
(36) R linear in M = R reflexiv in M.
Eine Relation § & M X M heiBt konnex in M, wenn bei beliebigem z,y € M
stets wenigstens einer der Fille Sy oder ySz oder = y eintritt, anders

ausgedriickt, wenn je zwei verschiedene Elemente aus M durch S vergleich-
bar sind:

(37) Skonnexin M: SAN(€EMryE M =>28yvySzvz=y),
z,v

wofiir man auch

(37) Skomnezxin MeoSuStuey=MxM

schreiben kann. Aus (35) bzw. (37’) folgt sofort, daB mit einer Relation auch die
2u ihr inverse Relation linear bzw. konnex ist. Mittels (26’) bzw. (28') erhalt man
weiterhin

(38) R linear in M = R; konnex in M,

(39) S konnex in M = S, linear in M.
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Eine reflexive (irreflexive) teilweise Ordnung in M, die auBerdem linear
(konnex) ist, heiBt eine reflexive (irreflexive) totale Ordnung. In der &lteren
Literatur werden die totalen Ordnungen auch kurz Ordnungen genannt.

(40) R reflexive totale Ordnung in M

: & R reflexive teilweise Ordnung in M A R linear in M,
(41) S irreflexive totale Ordnung in M

1 © 8 irreflexive teilweise Ordgung in M A S konnex in M.
Mittels (27) und (38) bzw. (29) und (39) erhalt man
(42) R reflexive totale Ordnung in M

= R, irreflexive totale Ordnung in M,
(43) S irreflexive totale Ordnung in M

J

= S, reflexive totale Ordnung in M.

Bei einer irreflexiven totalen Ordnung S 1a8t sich die Konnexitat leicht zur
sogenannten T'richotomie verschirfen, die besagt, daB fiir beliebige Elemente
z,y€ M stets genau einer der Fille Sy oder %Sz oder z = y eintritt, also
stets wenigstens einer dieser Fille und nigmals zwei von ihnen eintreten:

(44) S trichotom in M
ONEEMAYEM > (xSyvySzvr =y)
M/\-—l(:l:‘Sy/\_i/;Sz)/\—1(::Sy/\a:=yl)/\—|(y,s;¢,\g;=y)),

Der behauptete Satz besagt dann

'(45) 8 irreflexive totale Ordnung in M = 8 trichotom in M.

Zum Beweis geniigt es zu bemerken, daB sich auf Grund der Asymmetrie von
S (vgl. (11)) die Falle zSy und ySz ausschlieBen, und auf Grund der Irre-
flexivitat von S ebenso die Fille zSy und z = y wie auch ySzund z = y.

2.6.  Operationen

Es sei M eine beliebige Menge und % eine natiirliche Zahl > 1. Unter einer
k-stelligen Operation in M verstehen wir eine Abbildung o von der Menge M*
aller k-Tupel (2, . . ., z;) von Elementen aus M in die Menge M :

1) o k-stellige Operation in M : < o : M* — M.
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Das dem k-Tupel (24, . . ., z;) € M* durch o zugeordnete Element o(zy, . . ., z;)
(es wire genau genommen natiirlich mit o((zy, . . ., 2;)) zu bezeichnen) heiit
das Resultat der Operation o fiir (zy, . . ., ;). Vielfach spricht man schon dann
von einer k-stelligen Operation in M, wenn o eine Abbildung aus M* in M ist,
und nennt die Operationen o, fir die D (o) = M* ist, die also jedem k-Tupel
ein Resultat zuordnen, unbeschrdnkt ausfithrbare Operationen. Wir wollen hier
Abbildungen aus M* in M, wenn sie gelegentlich eine Rolle spielen, beschrankt
ausfihrbare oder partielle Operationen nennen (bei ihnen ist also die Ausfithrbar-
keit, d. h. die Existenz des Resultats, auf D (0) beschrankt). Die ,,unbeschrankt
ausfithrbaren“ Operationen werden dabei als spezielle beschrankt ausfithrbare
Operationen angesehen. Nicht selten spricht man auch schon von einer k-
stelligen Operation, wenn eine Abbildung o von (oder aus) einer Produktmenge
M, X -+ X M, in eine Menge N vorliegt.

Besonders wichtig sind wieder die zweistelligen oder bindgren Operationen,
mit denen wir uns im vorliegenden Abschnitt vorwiegend beschaftigen wollen
und die daher einfach Operationen (ohne besondere Angabe der Stellenzahl 2)
genannt werden sollen:

(2) o Operation in M : < 0: M2 - M.

Das einem Paar (z,y) € M X M durch eine binire Operation o zugeordnete
Resultat o(z, y) wird im folgenden — wie man das in der Mathematik meistens
tut — mit zoy bezeichnet:

(3) zoy : = o(z, y).

Wir merken an, dal eine einstellige Operation in M nichts anderes als eine
Abbildung von M in M ist.

Durch
(4) Ry:={(x,y,2):2€E M ry€ M r z = z0y}
wird jeder bindren Operation o eine bestimmte dreistellige Relation R, zu-
geordnet (bei der Definition 2.2.(11) der Tripel ist sogar R, = o), die folgende
Bedingungen erfiillt :

(5) ANEEMAYyE M=V 2€E M (2,y,2) € R)),

z.y z
(6) (3sy,21)€ RA(’:y'zz)€R=“21=zz-
Umgekehrt kann jede dreistellige Relation R in M, die diese Bedingungen
erfiillt, als eine binire Operation in M aufgefaBt werden (1aBt man die Bedin-
gung (5) fort, so erhdlt man gerade die beschrankt ausfihrbaren Operationen).

Als Beispiele fiir (zweistellige) Operationen seien genannt: die Addition und
Multiplikation z. B. im Bereich R der reellen Zahlen, die Bildung des Durch-
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schnitts, der Vereinigung, der symmetrischen Differénz und der Differenzmenge
im System € aller Mengen iiber einem gegebenen Grundbereich E, die Bildung
des Relationenprodukts S R in der Menge (M x M) aller binéren Relatio-
nen in M usw. Die Abbildung, die einer biniren Relation R in M ihre inverse
Relation R-1 zuordnet, ist eine einstellige Operation (in B (M X M)), ebenso
die Abbildung, die einer Zahl a € R die Zahl — a zuordnet usw. Die Bildung
der Produktmenge X X Y ist bei unserer Auffassung keine Operation z. B. im
System € aller Mengen iiber einem Grundbereich E, da das Resultat nicht
wieder zu € gehért. Um eben auch derartige Falle mit zu erfassen, faBt man
manchmal den Begriff der Operation allgemeiner und sieht schon jede Ab-
bildung aus (oder von) einer Menge M, X M, in eine (evtl. andere) Menge N
als Operation an. Weitere interessante Beispiele fiir solche allgemeinen Ope-
rationen liefert die Vektorrechnung, wo man die Bildung des skalaren Viel-
fachen eines Vektors als Operation auffassen kann, die jedem Paar aus Skalar
und Vektor als Resultat einen Vektor zuordnet, wihrend das sogenannte
Skalarprodukt (innere Produkt) eine Operation ist, die jedem Paar von Vek-,
toren als Resultat ein Skalar zuordnet. Als Beispiele fir beschrankt ausfiihr-
bare Operationen erwahnen wir die Bildung des Quotienten g von Zahlen aus
R (beschriankt hier auf die Paare (¢, b) € R X R, fiir die b = 0 ist) oder die
Bildung der Differenz a — b fiir Zahlen aus N (beschrankt hier auf die Paare
(a, b) € N x N, fiir die @ = b ist) usw.

Wir wollen nun eine Reihe von in der Mathematik haufig auftretenden
Eigenschaften von Operationen systematisch zusam tellen, denen
wir auch im vorangehenden griBtenteils schon begegnet sind. Auf allgemeine
Zusammenhinge zwischen diesen Eigenschaften kann dabei nur in einigen
einfachen Fillen eingegangen werden. Wir verwenden bei den grundlegenden

‘Definitionen die nun bereits hinldnglich geiibte Abkiirzungstechnik, ohne den
jeweiligen Sachverhalt noch immer breit zu erdrtern. Bei den im folgenden auf-
tretenden Operationen o, o;, 0, soll es sich stets um Operationen in einer fest
gegebenen Menge M handeln, so daB sich die Quantifizierungen der Form ,,fiir
jedesz . ..“und ,es gibt ein z . . .“ grundsatzlich auf Elemente aus M beziehen,
was wir durch /\ .. (als Abkurzung fiar /\ (*x€EM=...))bzw.V ... (als Ab-

zEM

kiirzung fiir V (:v: E M A ...)) andeuten wollen

(7) o kommutativ : & A zoy = yoz,
z,yeM

(8) o assoziativ: & A zo(yoz) = (zoy)oz,
z,y,2€M
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(9) o, linksseitig distributiv bzgl. 0, : € A 20,(y0s2) = (z01y)0s(2042),

z,v,2€M

(%) o, rechtsseitig distributiv bzgl. 0, : & A (yos2)ox = (yo,2)0,(20,7),

z,y,2€.
9) oy (beidseitig) distributiv bzgl. o,
: & o, linksseitig distributiv bzgl. o, A o, rechisseitig distributiv bzgl. o,.

Wir merken an, daB eine kommutative Operation o,, die bzgl. einer Operation
0, linksseitig distributiv ist, auch rechtsseitig distributiv bzgl. o, ist, und umge-
kehrt, d. h., bei einer kommutativen Operation folgt aus der einseitigen (rechts-
oder linksseitigen) Distributivitat bereits die beidseitige Distributivitas.
(10) o idempotent : & A oz = z.
zEM R
In den folgenden Definitionen seien ¢, e, ¢ Elemente aus M.

(11,)) e, linksseitig neuirales Element fir o : & A\ eox = z,
zEM

(11¢)  er rechisseitig neutrales Element fiir o : & A zoer =z,
TEM

(11) e (beidseitig) neutrales Element fiir o
: & e linksseitig neutrales Element fir o
A e rechisseitig neutrales Element fir o.

Wir merken an, daB es bei gegebener Operation o durchaus méglich ist, daB es
fiir o weder ein links- noch ein rechtsseitig neutrales Element gibt. Ein ein-
faches Beispiel hierfir ist die in der Zweiermenge {a, b} (@ < b) durch die
folgende Operationstabelle gegebene Operation:

| a b
a a a
b a a

Es kann auch mehrere linksseitig oder mehrere rechtsseitig neutrale Elemente
geben. Als Beispiele nennen wir die durch die Tabellen

| a b | a b
a a b bzw. a a a
b a b b b b

gegebenen Operationen (im ersten Fall sind @ und b beide linksseitig neutral,
im zweiten Fall sind a und b beide rechtsseitig neutral). Wenn allerdings fiir
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eine Operation o sowohl ein linksseitig neutrales Element e, als auch ein rechis-
seitig neutrales Element e, vorhanden ist, dann gibt es jeweils nur eines, wobei
iiberdies e, = e, gilt; d. h., dieses ist dann zugleich beidseitig neutrales Element.
Insbesondere kann es also fiir eine Operation o héchstens ein beidseitig
neutrales Element geben. Zum Beweis dieser Behauptung nehmen wir an, es
sei e, ein gewisses linksseitig neutrales Element fir o und e ein rechts-
seitig neutrales Element. Ist dann e ein beliebiges linksseitig neutrales
Element, so gilt

(i) e0e; = e, da ¢; linksseitig neutral ist;

(i) ¢,0¢r = ¢,, da €] linksseitig neutral ist;

(iii) e0er = ¢, da e, rechtsseitig neutral ist;

(iv)  ejoer = €], da e, rechtsseitig neutral ist.

Aus (i) und (iii) folgt e = ¢,, und aus (ii) und (iv) folgt e, = ¢;, so daB e, = ¢;.
Damit ist gezeigt, daB es nur ein einziges linksseitig neutrales Element gibt, das
wir mit ¢! bezeichnen wollen. Da aber in den vorangehenden Uberlegungen e,
ein ganz beliebiges rechtsseitig neutrales Element war, ist damit zugleich
gezeigt, daB jedes rechtsseitig neutrale Element mit e} iibereinstimmt, also
auch nur ein rechtsseitig neutrales Element e existiert, das zudem gleich ¢
ist. Wir haben diesen Beweis: deshalb so ausfiihrlich wiedergegeben, weil er
wegen seiner Abstraktheit dem Anfanger meistens erhebliche Schwierigkeiten
bereitet. :

Bei einer kommutativen Operation ist natiirlich jedes linksseitig neutrale
Element auch rechtsseitig neutral und umgekehrt, d. h., jedes einseitig neutrale
Element ist beidseitig neutral. Daher besitzt eine kommutative Operation o

entweder kein oder genau ein neutrales Element.

In den folgenden Definitionen bezeichnet R eine binire Relation in M.
(12)) o linksseitig monoton bzgl. R: & A (zRy = (x0z)R(yoz)),
z,9,2€EM

(12r) o rechtsseitig monoton bzgl. R : & A (zRy = (z0z)R (20y)),
zZ,y.26 M
(12) o (beidseitig) monoton bzgl. R
: & o linksseitig monoton bzgl. R A o rechisseitig monoton bzgl. R.

Besonders wichtig ist der Spezialfall, daB hierbei R eine reflexive oder irre-
flexive teilweise oder totale Ordnung ist. Fiir den Fall einer irreflexiven totalen
Ordnung sei hier das folgende haufig benétigte Resultat genannt:
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(13) S irreflexive totale Ordnung in M A o linksseitig monoton bzgl. S
= A ((®o2)S(yoz) = xSy)n A (woz = yoz =>x =y).
z,y,26M z.y,2eM

Die erste Behauptung besagt, daB man im Fall einer irreflexiven totalen Ord-
nung in (12)) die Implikation ,=“ umkehren kann, wiahrend die zweite Be-
hauptung beinhaltet, daB man bei einer Operation o, die in bezug auf eine irre-
flexive totale Ordnung linksseitig monoton ist, eine Gleichung der Form
20z = yoz stets durch z kiirzen kann, daB o rechtsseitig kiirzbar ist (siche
unten). Zum Beweis der ersten Behauptung seien z, y, z Elemente aus M mit
(z0z)S(yoz). Auf Grund der Konnexitat von S tritt dann fiir die Elemente
z,y wenigstens einer der Falle Sy oder ySr oder z = y ein. Wir miissen
zeigen, daB die letzten beiden Falle nicht méglich sind: Wiirde Sz gelten,
dann wire wegen der linksseitigen Monotonie von o bzgl. S auch (yoz)S(z0z)
erfiilllt, was wegen der Asymmetrie von S im Widerspruch zu (z0z)S(yoz)
steht; wire x =y, so wiare zoz = yoz, was wegen der Irreflexivitit von S
ebenfalls im Widerspruch zu (z0z)S(yoz) steht. Analog beweist man die
zweite Behauptung. Ein entsprechendes Resultat gilt natiirlich auch fiir Ope-
rationen, die bzgl. einer irreflexiven totalen Ordnung rechtsseitig monoton
sind.

Als Beispiel sei genannt, da8 bekanntlich die Addition im Bereich der reellen
Zahlen (wie z.B. auch die Multiplikation im Bereich der positiven reellen
Zahlen) bzgl. der <-Relation monoton ist. Allein aus dieser Tatsache folgt nach
(19) bereits, daB man ausa 4 ¢ < b + cstetsaufa < bundausa +c=b+¢
stets auf a = b schlieBen kann (ohne also z. B. von der Subtraktion Gebrauch
zu machen).

Bei einer reflexiven Ordnung R spricht man vielfach von echier Monotonie,
wenn die betrachtete Operation bzgl. der zu R gehirigen irreflexiven Ordnung
R; monoton ist (echte Monotonie der Addition von reellen Zahlen bzgl. der
<-Relation bedeutet also Monotonie der Addition bzgl. der <-Relation).

Kehrt sich beim Resultat zoz die Relation um, so spricht man meistens
von Antimonotonie, also z. B.

(14;) o linksseitig antimonoton bzgl. R e) A (zRy = (yoz)R(zoz)).
. z,y,2€M )

Beispiel. Die Subtriktion von reellen Zahlen (zoy : = z — y) ist beziiglich
der <-Relation linksseitig morioton und rechtsseitig antimonoton, die Multi-
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plikation ‘von reellen Zahlen ist, wenn man sie auf R X R¥ (R* Menge aller
negativen reellen Zahlen) einschrankt, d. h. als partielle Operation in R mit dem
Definitionsbereich R X R* betrachtet, beziiglich der <-Relation linksseitig
antimonoton (z <yAz<0'=>y-z<x-2). Fir beziglich einer irreflexiven
totalen Ordnung antimonotone Operationen gilt ein zu (13) analoges Resultat.
(15)) o linksseitig kiirzbar : & A (yozy = Yoz, = 2y = 2,),

. 2.2, VEM
(18,) .0 rechtsseitig kiirzbar : & )\ (2,0y = 220y = 2, = z;),

2oy M
(15) o beidseitig kiirzbar
: © o linksseitig kiirzbar A o rechisseitig kirzbar.

Haufig tritt der Fall ein, daB z. B. (15,) nicht fur alle 2, 2, y € M, sondern nur
fiir 2y, 2, € Ny (S M) und y.€ N, (S M) erfiillt ist. In diesem Fall heiBt o links-
seitig kiirzbar in Ny X N,: )
(16;) o linksseitig kiirzbar in N, X N,

e A A (yozy = yoza = 2y = 2z,)
2,2,ENy  YEN,

(und analog bei (15;) und (15)).

Bei einer z. B. rechtsseitig kiirzbaren Operation o besitzt eine Gleichung der
Form 20y = z bei gegebenem z,y € M hiochstens eine Losung z € M. Die
Menge aller derjenigen geordneten Paare (z,y) € M X M, fir die diese Glei-
chung l6sbar ist, fiir die also ein z € M mit zoy = z existiert, bezeichnen
wir mit D;(0):

(16)  Dy(0): ={(z,9): V 20y = z}.
ZEM
Dann erhalten wir vermége
17) zoy=z2:(z,y)ED,(0) A 2EM A zoy = z.
eine im allgemeinen partielle Operation o, in M (D(o0,) = D,(0)), die wir die

linksseitige Umkehrung von o nennen wollen. Entsprechend wird bei einer links-
seitig kiirzbaren Operation o in

(18)  Dy(o): ={(x,9): yuyoz =}
durch
%) zoy=z: 0@ yEDO r2EMryz==x

eine im allgemeinen partielle Operation o, in M (D(or) = D» (0)) definiert, die
die rechisseitige Umkehrung von o genannt wird.
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Bei einer kommutativen Operation folgt natiirlich aus der linksseitigen
Kiirzbarkeit die rechtsseitige Kiirzbarkeit und umgekehrt, so daB eine ein-
seitig kiirzbare kommutative Operation stets beidseitig kiirzbar ist. Uberdies
ist bei einer (beidseitig) kiirzbaren Operation o stets or = o;; denn es ist
D(or) = D(0,), und bei beliebigem (z, y) € D (or) gilt

Toy =26 Y0z =TS 20y =TS T0Y = 2.

Wir wollen die letzten Definitionen an einigen Beispielen erlautern: Zunéchst
sei o die Addition in R, d. h. zoy : = z + ¥ (2, y € R). Diese Operation ist
beidseitig kiirzbar, wobei or = 0, die Subtraktionsoperation ist, d.h. zory
= zoy = # — y. Die Operation 2oy : = z - y (z, y € R) ist beidseitig kiirzbar
in R* X R* (R* = R\{0}) (genauer: linksseitig kiirzbar in R* X R und rechts-
seitig kiirzbar in R X R*), wobei or = o, die Divisionsoperation ist, d.h.
zogy = zoy =z :y (£ € R, y € R*). SchlieBlich betrachten wir noch die
durch zoy:=2a¥(=e" %) (D(0) = R¥ X R¥, R¥*:={zx:2€ Rarz>0})
definierte (nicht kommutative) Operation. Diese Operation ist rechtsseitig
kiirzbar in R¥ X R* und linksseitig kiirzbar in (R¥\{1}) X R*; die Umkehr-

1

operation o, wird gegeben durch zoy = 2, die Umkehroperation o, dagegen

durch zoy = ln_z

2.7. Mathematische Strukturen

Es ist von Mathematikern und Philosophen immer wieder die Frage auf-
geworfen worden, was denn eigentlich Mathematik sei, was Gegenstand der als
Mathematik bezeichneten Wissenschaft ist. Wir glauben nicht, da man auf
diese Frage eine fir die gesamte gegenwirtige Mathematik voll verbindliche
Antwort geben kann. Grundsatzlich kann man aber wohl feststellen, daB sich
jeder zusammenhiangende Komplex von mathematischen Untersuchungen auf
eine mehr oder minder fest umrissene sogenannte mathematische Struktur
bzw. eine Klasse derartiger Strukturen bezieht. Dabei ist eine mathematische
Struktur oder allgemeine Algebra durch eine Menge M, die Trigermenge der

Struktur, gewisse ausgezeichnete El tea,...,a, aus M und gewisse Grund-
relationen Ry, ..., Rm und Grundoperationen oy, ... 0n in M jeweils einer
bestimmten Stellenzahl 4y, . . ., im bzw. jy, . . ., ja festgelegt (in komplizierteren

Fillen — vgl. den Anfang dieses Abschnitts — kénnen es auch mehrere Trager-
mengen und Relationen und Operationen zwischen Elementen dieser unter-
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schiedlichen Tragermengen sein). Es.ist heute allgemein iiblich, als Struktur
oder Algebra ein (k+m + n + 1)-Tupel (M;ay,...,a,, Ry,...,Rm,
0y,...,0n) zu bezeichnen, dessen Komponenten die angegebene Bedeutung
haben (wobei auch die Fille £ = 0 und (oder) m = 0 und (oder) n = 0 zuge-
lassen sind). Das besondere Charakteristikum mathematischer Untersuchungen
besteht darin, daB man aus gewissen aus der Erfahrung (durch Abstraktion aus
realen Verhiltnissen) gewonnenen und haufig in Axiomen fixierten Eigen-
schaften der Elemente von M, die sich mittels a,...,a;, R,,..., Rm,
0y, . . ., 0 ausdriicken lassen, durch logische Schliisse weitere derartige Eigen-
schaften ableitet. Etwa in diesem Sinne ist die heute haufig zu findende Formu-
lierung zu interpretieren, daB-die moderne Mathematik Strukturwissen-
schaft ist. Allerdings tragt die genannte Beschreibung noch in keiner Weise der
Tatsache Rechnung, daB nicht die Untersuchung schlechthin jeder. Struktur,
die man sich irgendwie ausdenken mag, bedeutungsvoll ist (die mathematischen
Begriffe sind keineswegs freie Schopfungen des menschlichen Geistes, wie vom
Idealismus behauptet wird, sondern abstrakter Ausdruck bestimmter Ver-
hiltnisse der materiellen Welt). Das Kriterium fiir die Bedeutung mathemati-
scher Untersuchungen ist allein die Praxis, wobei man sich jedoch hiiten mu8,
diese zu eng zu fassen und nur einseitig in direkten Anwendungen der Mathe-
matik in Technik, Natur- und Gesellschaftswissenschaften zu sehen. Viele
Untersuchungen der sogenannten reinen Mathematik (in der letzten Zeit hat
sich dafiir auch die nicht sehr geistvolle Bezeichnung ,,Theoretische Mathe-
matik“ eingebiirgert) haben zunachst nur den Zweck, den Bestand an gesicherten
mathematischen Erkenntnissen zu vergréBern. Sie schaffen indes — und hierin
auBert sich ihre Bedeutung — zugleich einen Vorlauf, indem sie Resultate und
vor allem Begriffe und Methoden fiir mégliche Anwendungen bereitstellen. Die
Geschichte der Mathematik insbesondere der letzten 150 Jahre zeigt, da8 zahl-
lose mathematische Resultate und ganze mathematische Theorien, die zu-
nachst durch rein theoretische Erwiagung konzipiert wurden, unversehens
groBte Bedeutung fir die Anwendung hatten. So setzte die Relativitats-
theorie von ALBERT EINSTEIN (1879—1955) unabdingbar die groBartigen
geometrischen Erkenntnisse von C. F. Gauss, BERNHARD RiEMaNN (1826
bis 1866) und vielen anderen voraus, die moderne Wahrscheinlichkeits-
rechnung mit ihren zahlreichen Anwendungen in Natur- und Gesellschafts-
wissenschaften ware ohne das Fundament z. B. der MaBtheorie von HENRI
LEBESGUE (1875—1941) u. a. nicht denkbar, und weder die Konstruktion noch
der Betrieb programmgesteuerter Rechenanlagen wiare mdglich, hatten sich
nicht in einer 100 Jahre wahrenden Entwicklung die hierfiir notwendigen
theoretischen Prinzipien herausgebildet. Aus diesem Grunde ist eine Ein-
teilung der Mathematik in reine und angewandte Mathematik gegenwartig
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nicht mehr sinnvoll; beide sind heute eng miteinander verzahnt und bilden
eine dialektische Einheit.

Im Zusammenhang mit der genannten Strukturauffassung gewinnen eine
Reihe von allgemeinen Begriffen Bedeutung, die die gesamte heutige Mathe-
matik durchziehen. Wir betrachten hier nur die drei wichtigsten, wobei wir uns
der Einfachheit halber auf Strukturen beschranken, deren Grundrelationen und
-operationen samtlich die Stellenzahl 2 haben.

Eine Struktur 2’ = (M',a;,...,a;, Ry,..., R, of,...,o0,) heiBt Unter-
oder Teilstruktur der Struktur £ = (M, a,,...,0;, Ry,..., Rm, 01,...,0n)
(im allgemeinen Fall miissen X und 2’ gleiche Signatur haben, d. h. die ein-
ander entsprechenden Relationen bzw. Operationen gleiche Stellenzahl be-
sitzen), wenn M’ & M ist und dabei folgendes gilt:

(1a) a,=a, (x=1,...,k),
(1b) A ng,',ye)xR‘,y) w=1,...,m),

z,yEM

(1e) A oj(z,y) =0,z y) v=1,...,n).
z,yEM’

Die Bedingung (1b) kann offenbar auch als
(1Y) R,=R,~(M x M) w=1,...,m)

geschrieben werden. Man nennt in diesem Fall R, die Einschrankung von R,
auf M’ (S M). Aus (10) folgt, daB fir » = 1, . . ., n mit =, y stets auch o, (z, y)
zu M’ gehort (denn o] ist nach Voraussetzung Operation in M), wofiir man auch
sagt, daB M’ beziiglich oy, . . ., oy abgeschlossen ist. Folglich ist jede Operation
o, die Einschrankung (vgl. 2.4.(9)) der entsprechenden Operation o, auf
M xM:

(1¢') o, =o, | (M’ x M) (r=1,...,n).

Zum Beispiel ist im Fall
M =R, M =N,
R, = < -Relation in R, R{ = < -Relation in N,
0, = Addition in R, o; = Addition in N

(M, 0, R{, o]) Unterstruktur von (M, 0, Rl , 01).

Die Struktur >’ = (M, q;, ...,a;, R},..., R, o}, ..., 0,) heiBt isomorph
zur Struktur »' = (M, ay,...,a,, Ry,..., Rn, 0y, ...,0s) (im allgemeinen
Fall ist wieder vorauszusetzen, daB die einander entsprechenden Relationen
und Operationen in = und X’ dieselbe Stellenzahl haben) — man schreibt
Z =2 — wenn es eine 1-1-Abbildung f von M auf M’ gibt, die man dann
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einen Isomorphismus oder eine isomorphe Abbildung nennt (man schreibt hier-
fir f: £ & X'), so daB folgendes gilt:

(2a)  fla) =a, (x=1,....k),
(2b) /\EM(f(z)R;f(y) & zR,y) w=1,...,m),
z,¥!

(20) /\GM(O: (f(z):f(!l)) =f(z) Ad oy("'s y) = z) r=1,..., n),

Z,9.2

wobei man statt (2c) offenbar auch
(2¢) /\EHOC(f(x),f(y)) = flo,(z, 9)) r=1,...,n)
z,y

schreiben kann. Fiir (2) sagt man auch, daB sich bei der Abbildung f die Grund-
elemente, -relationen und -operationen ibertragen. Man zeigt leicht, daB die
Isomorphie von Strukturen eine Aquivalenzrelation ist:

(3a) ZT~2Z,
(£1) D XD YWD YD XL PIFP XN
(3¢) PSP PIF DA

Zunichst ist namlich die identische Abbildung ey ein Isomorphismus jeder
Struktur 2 mit der Triagermenge M auf sich. Ist f; ein Isomorphismus von X
auf X, f, ein Isomorphismus von Z, auf X3, so ist f,  f; ein Isomorphismus von
X, auf 2. Ist schlieBlich f ein Isomorphismus von Z auf X', so ist f~1 ein Iso-
morphismus von X’ auf X.

Die Isomorphie zweier Strukturen Z, Z’ beinhaltet, daB man (mittels des
Isomorphismus f) jede Eigenschaft der Elemente der Triagermenge M von X
beziiglich der Grundelemente, -relationen und -operationen von X in eine
analoge Eigenschaft der Elemente der Triagermenge M’ von X’ beziiglich der
jeweils entsprechenden Grundelemente, -relationen und -operationen von 2’
iibersetzen kann, wobei auch umgekehrt (mittels f-1) jeder Eigenschaft der
Elemente von M’ eine Eigenschaft der Elemente von M entspricht. Ist z. B.
die Grundoperation o, von X rechtsseitig monoton bzgl. der Grundrelation R,
von Z, so ist die o; entsprechende Grundoperation o; von X’ rechtsseitig
monoton bzgl. der R entsprechenden Relation R{, und umgekehrt. Gilt namlich
fiir o, und R, 2.6.(12,) und sind 2’, ¥, 2’ beliebige Elemente aus M’ mit z' R} ¥/,
8o existieren wegen der Eineindeutigkeit von f eindeutig bestimmte Elemente
z,4,2€ M, so daB z’' = f(z), ¥’ = fly), 2 = f(z). Wegen (2b) und z’Rjy’
gilt dann xRy, und wegen 2.6.(12,) folgt hieraus o, (z, ) R0, (2, y). Wiederum
wegen (2b) folgt hieraus f (o4 (z, z)) R{ f(02(z, y)), und wegen (2¢') ist

Sz 7)) = 0} (f(2), f(2)) = 0{(z', %)
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undanalogf(oy (2,)) = 0 (z’,%'). Alsogilt o (2, z’) R{o;(2’,y') fiirallex’,y’,2" € M’
mit 2'R{y’, und das besagt ja gerade, daB o bzgl. R] rechtsseitig monoton ist.
Ist das Grundelement @, von X linksseitig neutrales Element fiir die Grundopera-
tion oy von Z, so ist a{ linksseitig neutrales Element fiir o], und umgekehrt usw.

Eine Abschwichung des Isomorphiebegriffs ist der Begriff der Homomor-
phie. Dabei heiBt eine Struktur X’ homomorphes Bild der Struktur X, wenn es
eine eindeutige (also nicht notwendig eineindeutige) Abbildung f der Trager-
menge M von X auf die Triagermenge M’ von X’ gibt — sie heiBt dann ein
Homomorphismus oder eine homomorphe Abbildung von X auf X' (in Zeichen
f:Z2=2') —, s0daB die Bedingungen (2) erfiillt sind. Wir bemerken, daB die
Homomorphie von Strukturen reflexiv und transitiv, aber naturllch im allge-
meinen nicht mehr symmetrisch ist.

Zur Emubung der zuletzt eingefiihrten abstrakten Begriffsbildungen wollen
wir noch ein hiufig benétigtes allgemeines Strukturtheorem beweisen, das allge-
melnesHomomorphletheorem genannt wird. Dazu seien 2= (M, a4, . . . , a,
Ry,..., Rm, o,,...,o,,)undZ’ (M, af,...,a;, BR{,..., Ry, 0f,...,07)
Strukturen und f ein Homomorphismus von X auf 2. Es bezeichne R, die von f
in M induzierte Aquivalenzrelation (vgl. 2.5.(20)), fiir die also bei beliebigem
z, y€ M gilt:

4) zRy & f(x) = f(y),
und es sei M/R; das Restsystem dieser Aquivalenzrelation. In M/R; erklaren wir
nun auf folgende Weise Relationen R,(u = 1,...,m). Es seien &, 7 beliebige
Elemente aus M/R;, d. h. Klassen von untereinander bzgl. Ry dquivalenten Ele-
menten aus M. Wir wahlen dann aus jeder dieser Klassen einen beliebigen ,,Re-
prisentanten z*, y* aus (z* € £, y* € ) und setzen fest, daB gelten soll:
(5) ERm < a*Ry* w=1,...,m)
Wir miissen uns zundichst iberlegen, daB diese Definition unabhingig ist von der
speziellen Auswahl der Reprisentanten aus den Klassen &, 7, d. h., daB wir zu keinem
anderen Resultat gelangen, wenn wir statt z*, y* andere Reprasentanten z, y
nehmen. Es seien also z, y evtl. andere Elemente aus den Klassen £, 7. Nach De-
finition der Klassen folgt dann: zRsz* und yRsy*, also nach (4) f(z) = f(z*),
=7 (y‘) Gilt nun z*R,y*, so gilt nach der Homomorphiebedingung (2b)
auch f(z*) R, f(y*) und folglich f(z)R;, f(y), also wiederum nach (2b) 2Ry, wobei
alle diese Schliisse umkehrbar sind. Also liefert in der Tat die Verwendung von
z,y an Stelle von z*, y* bei (5) nichts anderes. Auf dhnliche Weise erklaren wir
in M/R; Operationen 6, (v = 1,..., n):
(6) GEN=C0:6 V @*CEry*Ennz*EL Ao, (2% y*) = 2*)
2%y%2%
('N= 1,...,n).

Wie bei (5) zeigt man mittels (2¢), daB auch diese Definition unabhangig von der
speziellen Auswahl der Reprasentanten z*, y*, z* aus den Klassen £, , { ist. SchlieB-
lich setzen wir:

() dy:={z:2€ M A zRpa,} x=1,...,k)
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Die Struktur £ = (M/Ry,a,,-..,ak, By,..., Rm,3,,...,0s) nennt man die
durch den Homomorphismus f erzeugte Restklassen- oder Faktorsiruktur und
schreibt £ = Z/R, der kurz £ = Z/f. Diese Faktorstruktur hat nun die bemerkens-
werte Eigenschaft, und das ist gerade die Aussage des allgemeinen Homomorphie-

theorems, daB die kanonische Abbildung f (vgl. 2.5.(21)), die einem beliebigen z € M
die z enthaltende Restklasse aus M /R, zuordnet, wegen (5), (8), (7) ein Homomorphis-

mus von X auf Z= Zf ist, wikrend die Abbildung g (vgl. 2.5.(22)), die einer be-
liebigen Restklasse aus M /R, das allen El ten dieser Restkl Bild
bei f zuordnet, sich leicht (Beweis!) als Isomorphismus von Z= Z/f auf X’ erweist.
Jeder Homomorphlsmus f von X' auf 2" ist also Verkettung go T des kanonischen
Homomorplnsmusf von X suf eine Faktorstruktur X und eines Isomorphismus
von X auf 2, was man sich gern (vgl. 2.5.(23")) auch durch das Diagramm

—x
® AN A
Zlf

veranschaulicht.

Die vorangehenden Uberlegungen sind im gewissen Sinne umkehrbar. Dazu
merken wir zunachst an, daB wir bei der Definition von Z/R; neben der Tatsache,
daB R, eine Aquivalenzrelation ist, nur die Unabhangigkeit der Definitionen (5)
und (6) von der Wahl der Reprssent&nten z*, y* (2*) aus den Restklassen £, 5 ()
benétigten. Analoges ist nun bei einer beliebigen Aquwalenzrelatxon R in

offenbar genau dann der Fall, wenn sie die folgenden Vertraglichkeitsbedingung

erfiillt:

9 zRx’ A yRy’ = (zRy & 'R, =1,...,m),

(9) zM{\“( YRy = xRy 2'Ry)) (u=1, m)

(10) A (zRz’ AyRy =>o,(z,y)Ro,(z’,y)) (=1,...,n).
z,4.2' ¥ €M

Eine Aquivalenzrelation R in M, fiir die (9) und (10) gilt, heiBt eine Kongruenz-

relation der Struktur X = (M,a,,...,ax, Ry,..., Rpm, 0,...,0p), und die

vorsngehenden Uberlegungen lehren, daB man zu jeder Kongruenzrelation R
einer Struktur X die Restklassenstruktur Z/R bilden kann. Man zeigt leicht
(Beweis!), daB in jedem solcher. Fall die kanonische Abbildung fur (vgl. 2.5.(18))
ein Homomorphismus von X auf Z/R ist und jede Verketlung dieses kanonischen
Homomorphismus mit einem Isomorphismus von Z[R auf eine beliebige Struktur
2’ einen Homomorphismus von Z auf Z* ergibt.

Die in 2.5. fir ,reine Mengen* durchgefithrten Uberlegungen konnen gewisser-
maBen als der Spezialfall ¥k = m = n = 0 der vorangehenden Ausfiihrungen
angesehen werden.
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2.8. Das Auswahlprinzip

Alle bisher betrachteten Mengenbildungen erfolgten ‘mit Hilfe des in 1.2.
behandelten Mengenbildungsprinzips mittels einer die Elemente der jeweiligen
Menge charakterisierenden Eigenschaft H (x). Daneben hat man in der Mathe-
matik haufig Mengen zu bilden, fiir deren Elemente sich nicht ohne weiteres
eine gemeinsame Eigenschaft angeben laft. Diese Mengenbildungen benutzen
ein erstmalig im Jahre 1904 durch den in Géttingen (spéter in Ziirich und
Freiburg i. Br.) wirkenden ErNsT ZERMELO (1871—1953) klar formuliertes
Prinzip, das man nach ihm als (Zermelosches) Auswahlprinzip oder Aus-
wahlaxiom bezeichnet. In seiner einfachsten Form hat es den folgenden ein-
fachen Sachverhalt zum Inhalt: Gegeben sei ein nichtleeres System MM aus paar-
weise digjunkten nichtleeren Mengen ; dann gibt es stets (wenigstens) eine Menge A
(eine sogenannte Auswaklmenge fiir M), die aus jeder Menge M des Systems M
genau ein Element ap in dem Sinne auswdhlt, daf A mit M genau das Element
ayy gemeinsam hat. Die Voraussetzung M = @ schlieBt den Trivialfall M = 0
aus, in welchem natiirlich A = @ eine Auswahlmenge ist. Die Voraussetzung,
daB die leere Menge nicht in M enthalten sein soll, ist bei der angegebenen
Formulierung des Auswahlaxioms wesentlich, da natiirlich keine Menge A4 aus
der leeren Menge ein Element auswahlen kann. Ebenso ist die Voraussetzung,
daB M disjunkt ist, wesentlich. Ist namlich M = {M;, M,, M3} mit

M0, My 08, My ~My=0,M, S M3, M S M3

(beispielsweise M3 = My \w M), so hat jede Menge 4, die mit M; und. M, je
genau ein Element ax, bzw. a, gemeinsam hat, mit M; die beiden verschie-
denen (M; ~ M, = 8!) Elemente ay, und ay, gemeinsam. In Abkiirzungs-
technik driickt sich das Auswahlprinzip folgendermaBen aus:

1) MEBAN(MEM=> M =+ 0) A M disjunkt
14
SVAMEM=>Y M A A={a)).
A M a

Wir merken an, daB man stets erreichen kann, daB die Auswahlmenge 4 nur
Elemente enthalt, die in wenigstens einer Menge des Systems It vorkommen,
d.h. 4 & UM gilt (was in (1) nicht unbedingt verlangt ist); ist namlich 4’
eine nach (1) existierende Auswahlmenge, fiir die das nicht der Fall ist, so wird
A =A4"~ UM eine Auswahlmenge, die diese zusatzliche Bedingung erfiillt.
Wir merken weiterhin an, daB es zu einem Mengensystem M, das die Voraus-
setzungen des Auswahlprinzips erfiillt, im allgemeinen (wenn namlich M nicht
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nur aus Einermengen besteht, in diesem Fall ist ibrigens U I eine Auswahl-
menge fiir M) mehrere, unter Umstianden sehr viele Auswahlmengen gibt. Im
Gegensatz zur Bildung von Mengen mit Hilfe des Mengenbildungsprinzips ist
also die Mengenbildung mittels Auswahlprinzip nicht eindeutig.

Es sind heute zahlreiche dquivalente Formulierungen zum Auswahlprinzip
bekannt. Wir wollen uns hier auf den Beweis einer haufig bendtigten anderen
Fassung des Auswahlprinzips beschrinken, daB es nimlich zu jeder mehrdeutig
Korrespondenz F von einer Menge M in eine Menge N eine eindeutige Korrespondenz
(also Funktion) f von M in N mit f S F gibt (Abb. 8):

N
; —{x} x Be(x)
Be(x) 4’
x M
Abb. 8

(2) F Korrespondenz von M in N
=V (f eindeutige Korrespondenz von M in N A f S F).
s

Eine Funktion f mit der angegebenen Eigenschaft heiBt eine Auswahlfunktion
fiir F. Zum Beweis (wir nehmen o. B. d. A. an, daB M = 0 ist), betrachten wir das

folgende Mengensystem M y:
3) Mr: = {z} x Br(z):2 € M}.

Es gilt: (i) Mp + 0 (da M = 0). (ii) 6 € Mr; ist namlich {z} X Br(z) € Mr, so
ist £ € M und daher (F sollte Korrespondenz von M in N sein!) Br(z) = 0, also
auch {z} X Bp(z) =+ 0. (iii) Mr ist disjunkt; sind namlich {z;} X Br(z},
{23} X Br(z,) zwei verschiedene Elemente des Systems IMp, so ist z, + z,, und
dannist ({2} X Br(z;)) ~ ({xs} X Br(z,)) = 0. Folglich gibt es nach (1) fir Mr
eine Auswahlmenge A. Diese Menge A (sie ist eine Menge von Paaren (z, y) mit
z€ M und y € N) ist zugleich eine Korrespondenz f mit der in (2) geforderten
Eigenschaft (Beweis!).

Obwohl die im Auswahlprinizp (1) (bzw. in (2)) fixierte Forderung sicher auBer-
ordentlich einleuchtend ist, wird es gegenwartig keineswegs von allen Mathe-
matikern voll anerkannt. Es zeigt sich jedoch, daB man viele grundlegende Resul-
tate der Mathematik ohne seine Hilfe nicht erhalten kann. Andererseits gelangt
man gerade mit Hilfe des Auswahlaxioms zu einer Reihe von Ergebnissen, die
recht paradox anmuten (indes keineswegs echte Widerspriiche darstellen). Auf
g e Zusam hénge konnen wir hier nicht eingehen.
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2.9.  Endliche Mengen

Nachdem in den vorangehenden Betrachtungen bereits gelegentlich der Begriff
der endlichen Menge auftauchte, den wir dort stets im naiven, anschaulichen
Sinne verwendeten, wollen wir uns jetzt einer etwas genaueren Untersuchung
dieses Begriffs zuwenden. Es werden im folgenden drei einander aquivalente
Definitionen der endlichen Menge betrachtet. Wir beginnen mit einer Defi-
nition, die inhaltlich wohl am nachstliegenden ist, aber den Nachteil hat, daB
sie den Begriff der natiirlichen Zahl benutzt, den wir systematisch erst im
néachsten Kapitel behandeln werden. Die zweite Definition, die im wesentlichen
auf BERTRAND RUSSELL zuriickgeht und die nicht den Begriff der natiirlichen Zahl
verwendet, ist zwar etwasabstrakter, aberauchnochrechteinleuchtend. Diedritte
Definition benutzt eine merkwiirdige, von dem Braunschweiger Mathematiker
RicEARD DEDEKIND (1831—1916) entdeckte einfache charakteristische Eigen-
schaft der endlichen Mengen. Daneben gibt es in der Literatur noch zahlreiche
weitere Endlichkeitsdefinitionen, auf die wir hier jedoch nicht eingehen kénnen.

Mit N bezeichnen wir wie bisher die Menge aller natiirlichen Zahlen ein-
schlieBlich Null, d. h. der Zahlen 0, 1, 2, . ... Ist n eine beliebige natiirliche
Zahl, so bezeichnet man die Menge aller Zahlen m € N, die kleiner als » sind,
fur die also m < n gilt, als den durch die Zahl n bestimmten Abschnitt der
Menge der natiirlichen Zahlen ; wir wollen ihn im folgenden mit £ (#) bezeichnen.

(1) An):={m:mE Nrm < n}.

Der Abschnitt £ (n) besteht also aus den Zahlen 0,1,2,...,n — 1 und nur
diesen. Auf Grund unserer Definition ist klar, daB auch die leere Menge ein
Abschnitt der Menge der natiirlichen Zahlen ist, namlich der durch die Zahl 0
bestimmte Abschnitt 4 (0) (es gibt keine Zahl m € N, die kleiner als 0 ist).

Nun zur exakten Definition der endlichen Mengen: Im anschaulichen Sinne
ist eine nichtleere Menge M genau dann endlich, wenn es eine natiirliche Zahl
n gibt, so daB man die Elemente der Menge M mit Hilfe der Zahlen 1, 2,...,n
oder — was fiir unsere Zwecke meistens bequemer ist — mit Hilfe der Zahlen
0,1,...,n — 1 durchnumerieren kann. Daneben gilt natiirlich auch die leere
Menge als endlich. Dabei bedeutet durchnumerieren, daB man eine 1-1-Ab-
bildung zwischen den Elementen der Menge M und den Zahlen 0,1, ...,n — 1
herstellen kann, so daB jedes Element aus M eine eindeutig bestimmte Nummer
0,1,...,7 — 1 besitzt, und auch umgekehrt zu jeder Nummer ein Element
gehort, das diese Nummer besitzt. Dieser Sachverhalt wird aber andererseitg
gerade durch M ~ 4 (n) wiedergegeben (vgl. 2.4.(21)). Damit gelangen wir zu
der folgenden
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Definition. Eine Menge M heift endlich, wenn es cine natirliche Zahl n
gibt, so daf die Menge M dem Abschnilt A (n) gleichmdchiig ist:

2 M endlich: &V (n€ Na M ~ A(n)).

Die leere Menge braucht hierbei nicht mehr besonders beriicksichtigt zu werden;
denn wegen £ (0) = @ ist auf Grund der Reflexivitdt der Gleichmachtigkeit
nach (2) auch die leere Menge endlich (hierbei ist natiirlich wesentlich, da8 wir
0 als natiirliche Zahl ansehen).

Wir weisen darauf hin, daB wir in (2) nur verlangt haben, daB die Menge M
wenigstens einem Abschnitt «£(n) gleichmachtig ist. Man zeigt leicht, daB
jede endliche Menge auch nur hiochstens einem Abschnilt gleichmdchtig sein kann.
Also gilt: Jede endliche Menge ist genau einem Abschnitt A (n) gleichmdchiig. Zum
Beweis dieser Behauptung nehmen wir an, es sei M ~ A (n,) und M ~ A(n,),
und zeigen, daB dann n, = n, gilt. Hierzu geniigt es wegen der Transitivitit
und Symmetrie der Gleichmachtigkeit (vgl. 2.4.(22)) zu zeigen, da8 aus der
Gleichmachtigkeit von Abschnitten «£(n,), 4 (n,) die Gleichheit der sie be-
stimmenden Zahlen %, , n, folgt:

(3) A(ng) ~ A(ny) = ny = n,.
Dem Beweis von (3) schicken wir den folgenden einfachen abbildungs-
theoretischen Hilfssatz voraus:
(4) J 1-1-Abbildung von M auf N nz€ M ny€EN
= V (g I-1-Abbildung von M auf N A g(z) = y).
v

Ist némlich f 1-1-Abbildung von M auf N mit f(z) = ¢/, f(z') = y (z, 2’ € M;
¥,y € N), so wird

g:=(f\{9), @ 9)) v {«.¥), @ )}
eine 1-1-Abbildung von M auf N mit g(z) = y (im Fall f(z) = y, in dem bereits
f die gewiinschte Eigenschaft hat, wird offenbar g = f).

Beim Beweis von (3) verwenden wir die aus der Schule bekannte Beweis-
methode der vollstandigen Induktion, deren systematische Begriindung wir
erst im folgenden Abschnitt geben werden, und zwar fiihren wir den Beweis
durch vollstindige Induktion z. B. iiber n,. Der Anfangsschritt n, = 0 ist
trivial, da £ (0) gleich der leeren Menge und diese nur sich selbst gleichmachtig
ist, so daB 4 (n;) = @ und daher atich n, = 0 sein muB (denn £(0) ist der
einzige leere Abschnitt!). Wir nehmen nun an (Induktionsvoraussetzung), da8
(3) fiir n; = n bei beliebigem 7, schon bewiesen ist, und zeigen (Induktions-.
behauptung), daB8 dann (3) auch fiir n;, = n 4 1 bei beliebigem n, gilt. Es sei
also A (n + 1) ~ A (n,), und es sei f eine 1-1-Abbildung von 4 (n + 1) auf A (n.).



2.9. Endliche Mengen 95

Wegen n € A(n + 1) ist A (ny) + 0, also 7, = 0 und folglich ny — 1 € A (n,).
Nach (4) gibt es eine 1-1-Abbildung g von 4 (n + 1) auf (n,) mitg(n) = n, —1,
und dann ist g\{(n, n, — 1)} eine 1-1-Abbildung von A£(n) auf A(n, — 1).
Folglich muB nach Induktionsvoraussetzungn = n, — 1 und damitn 4 1 = n,
sein, womit die Induktionsbehauptung bewiesen ist.

Die eindeutig bestimmte natiirliche Zahl », fiir die fiir eine gegebene endliche
Menge M die Bedingung M ~ £ (n) erfillt ist, heiBt die Elementeanzahl oder
Kardinalzahl von M und wird mit | M | bezeichnet; in der Literatur sind auch
die Bezeichnungen card (¥) und (nach CanTor) M tiblich. Es gilt also:

(5) |M|=n:M ~ A(n).

In diesem Sinne besitzt die leere Menge die Elementeanzahl 0, alle Einermengen
{a} haben die Elementeanzahl 1, alle Zweiermengen {a, b} mit a % b haben die
Elementeanzahl 2 usw. Allgemein gilt

(6) Mendlichnz €M =M o {z}endlichn | M w {a}| = | M| + 1.

Ist namlich |¥| = n und f eine 1-1-Abbildung von M auf 4 (n), so wird im
Fallz ¢ M (im Fallx € M ist M « {z} = M) offenbar f \ {(z, n)} eine 1-1-Ab-
bildung von M \ {z} auf 4 (n + 1),und demit giltinderTat |[M w {z}| = n +1
=|M|+1. »

Mittels (4) erhdlt man leicht das folgende Gegenstiick zu (6):

(7) M endlichn 2 € M = M \ {z} endlich A | M \ {z}| = | M| — 1.

Ist namlich | M| = n und f eine 1-1-Abbildung von M auf 4 (n), so muB wegen
z € M offenbar £ () = 0, also n =+ 0 sein. Mithin ist n — 1 € 4 (n), und es gibt
nach (4) eine 1-1-Abbildung g von M auf A (n) mit g(z) = n — L. Dann ist
aber g\ {(x, n — 1)} eine 1-1-Abbildung von M \ {z} auf 4 (n — 1), so daB in
der Tat | M \{z}| =n—1 = |M|— 1 wird.

Durch vollstandige Induktion iiber die Elementeanzahl | M| von M kann
man (7) zu dem folgenden naheliegenden Satz verallgemeinern:

(7) M endlichn N & M = N endlich A [N| < | M| .

Wegen der Reflexivitdit der Gleichmachtigkeit sind alle Abschnitte «£(n)
endlich, und es gilt |4 (n)| = n. Ferner sieht man auf Grund der Transitivitit
der Gleichmachtigkeit sofort, daB jede zu einer endlichen Menge M gleich-
mdchtige Menge N endlich ist und dieselbe El £ hl wie jene hat:

(8) M endlichan N ~ M => N endlich » |N| = | M]|.

Weitere wichtige Anzahlformeln werden wir in 3.6. behandeln.

Wir kommen nun zur Russellschen Definition der endlichen Mengen. Dazu sei
E ein beliebiger Grundbereich und es bezeichne § (E) das System aller im Sinne
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von (2) endlichen Mengen aus Elementen des Bereichs E:
FE): ={X: X S E X endlich}.
Dann gilt
@) F(E)S PE)ABE F(E) A Q/Z\(Xe F(E)r2€ E = X w{z} € F(E).

Ein System M von Mengen aus Elementen des Bereichs £ mit den Eigenschaften
(9) wollen wir kurz ein induktives Mengensystem iiber E nennen:

9) M induktiv iber E
CSMS PEAFEMAAAXEMAZE E=>> XU {2} EM).
X z .

Nach (9) ist  (E) ein induktives Mengensystem iiber E; ebenso ist natiirlich auch
das System B (E) aller Mengen aus Elementen des Bereichs £ induktiv iiber E.
Wir zeigen, daB & (E) das bzgl. Inklusion kleinste induktive Mengensystem tiber E ist
(withrend natiirlich 8 (E) das groBte derartige System ist):

(10) M induktiv iber E = F(E) S M,

d. h.

(10%) M induktiv iber E A M endlich n M S E => ME M.

Den Beweis fiir (10°) fithren. wir durch vollstandige Induktion iiber | M. Ist | M| = 0,
also M = @, so gilt die Behauptung auf Grund der Forderung, daB das induktive
Mengensystem 9 die leere Menge als Element enthalt. Wir nehmen nun an, (10°)
sei schon fiir alle Teilmengen von E mit der Elementeanzahl #» bewiesen, und es sei M
eine Teilmenge von £ mit [M| = n + 1 und f eine 1-1-Abbildung von A (n + 1)
auf M. Dann ist offenbar f\{(n, f(n))} eine 1-1-Abbildung von 4 (n) auf M\{f(n)},
also M\{f(n)} eine Teilmenge von E mit | M\{f(»)}| = n. Nach Induktionsvoraus-
setzung ist daher M\{f(n)} € M, und da das induktive Mengensystem M mit
einer Menge X bei beliebigem z€ E stets auch X\ {z} enthalt, ist folglich
M = (M\{f(n)}) w{fin)} Element von M, was zu zeigen war.

Nach (10) ist also eine beliebige endliche Menge M von Elementen aus E in
jedem induktiven Mengensystem iiber E als Element enthalten. Umgekehrt
gehort natiirlich eine Menge M, die in jedem induktiven Mengensystem .ent-
halten ist, speziell dem als induktiv erkannten System (E) aller endlichen
Mengen tber E an und ist mithin endlich. Also gilt ’

(11) M endlich & Q(m induktiv=> M € M).

An dieser Aquivalenz ist nun bemerkenswert, daB auf der rechten Seite nur Be-
griffsbildungen der allgemeinen Mengenlehre auftreten, es sich also um eine rein
mengentheoretische Charakterisierung der endlichen Mengen handelt, die den
Begriff der natiirlichen Zahl nicht mehr verwendet. Definiert man

(11°) M endlich (R): & q4!\(9.[12 induktiv=> M € M)

(wobei sich diese Definition — wie in 1.2. generell verabredet — auf Mengen und
Mengensysteme tber einem fixierten Grundbereich E bezieht), so wird dadurch
ein gewisser abstrakter Begriff der allgemeinen Mengenlehre erklart, von dem sich
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allerdings zeigt — und das ist der Inhalt des Satzes (!) (11) —, daB der umfangs-
gleich dem durch (2) mittels natiirlicher Zahlen definierten Begriff der endlichen
Menge ist:

(11) M endlick (R) < M endlich.

Es ist nun nicht schwer, auf der Grundlage der Definition (11°) die anschaulich
mehr oder minder evidenten Eigenschaften endlicher Mengen als Satze der reinen
Mengenlehre zu formulieren und zu beweisen. Wir wollen das an einigen Beispielen
zeigen: .

(12) M, endlich (R) A M, endlich (R) = M, M, endlich (R).

Wir merken an, daB lnerbel M,, M, und alle im folgenden Beweis auftretenden
Mengen und M Iche iber d lben Grundbereich E sein sollen.
Zum Beweis von (12) betra,chben wir bei fester im Russellschen Sinne endlichen
Menge M, das System I* aller derjenigen Mengen X, fiir die M, X im Russell-
schen Sinne endlich ist:

= {X: My X endlich (R)}.

Wir zeigen

(12’) IM* ist induktiv (iber E).

Damit ist offenbar (12) bewiesen; ist namlich M, eine beliebige im Russellschen
Sinne endliche Menge, so ist M, nach (11°) Element jedes induktiven Mengen-
systems 9, damit wegen (12°) Element von IR*, und das besagt ja nach Definition
von IM* gerade, daB M, M, im Russellschen Sinne endlich ist. Zum Beweis
von (12°) ist folgendes zu zeigen:

(i) 8 E M*,

(i) XEM*(nz€ B)=> X {z} € M*.

Im vorliegenden Fall bedeutet (i), daB M, @ = M, im Russellschen Sinne endlich
ist, was wir ja gerade vorausgesetzt haben. Zum Beweis von (ii) ist zu zeigen:
(i) M, © X endlich (R) = M, (X {z}) endlich (R).

Dazu sei M, ein beliebiges induktives Mengensystem. Nach Voraussetzung
von (iii) ist dann M, X€ M, und folglich nach (9°) auch M, (X {z})
= (M X){z} € My Also ist M, (X {z}) Element jedes induktiven
Mengensystems, und das ist ja nach (11°) die Behauptung von (iii).
Analog erhilt man durch Betrachtung des Systems

={X: (NS X N endlich (R))}

den folgenden Satz (Ubungsaufgabe):
(13) M endlich (R) AN S M = N endlich (R).

Als nachstes wollen wir zeigen, daB folgendes gilt-(vgl. (8)):
(14) M endlich (R) AN ~ M = N endlich (R).

Aus Griinden der Allgemeinheit wollen wir hierbei zulassen, da8 M und N Mengen
dber unterschiedlichen Grundbereichen E; bzw. E, sind. Zum Beweis von (14)




98 2. Grundbegriffe der Abbildungstheorie

betrachten wir das System IR* aller derjenigen Mengen X von Elementen aus E,,
fiir die gilt: Alle zu X gleichmachtigen Mengen Y von Elementen aus E, sind im
Russellschen Sinne endlich:

M :={X: XS EAN(YS E;n Y ~ X= Y endlich (R))}
b4

Wir werden zeigen:

(14)  IN* ist induktiv iber E,.

Damit ist offenbar (14) bewiesen; ist namlich M eine beliebige im R 1lsch
Sinne endliche Menge von Elementen aus E,, so ist M nach (11°) Element jedes
induktiven Mengensystems I iiber E;, damit wegen (14°) speziell Element von
AR*, und das besagt ja nach Definition von IN* gerade, daB jede zu M gleich-
machtige Menge ¥ von Elementen aus E,, insbesondere also N, im Russellschen
Sinne endlich ist. Zum Beweis von (14°) ist nach (9°) folgendes zu zeigen:

(0h)] 0€ M+,
(if) XEM*Az€ B > X {z} €M

Die Behauptung (i) folgt unmittelbar aus der Tatsache, daB jede zur leeren Menge
gleichmachtige Menge Y leer ist, und da die leere Menge trivialerweise im Russell-
schen Sinne endlich ist (sie ist ja nach (9") Element jedes induktiven Mengen-
systems!), ist jede zur leeren Menge gleichmachtige Menge im Russellschen Sinne
endlich und folglich 8 € IN*. Zum Beweis von (ii) sei X eine beliekige Menge aus
R*, d. h., es gelte

(iif) YZS Eya Y ~ X = Y endlich (R).

Es ist zu zeigen, daB dann jede zu X _ {z} gleichmachtige Teilmenge Z von E,
im Russellschen Sinne endlich ist. Der Fall z€ X ist trivial, weil in diesem Fall
X {z} = X und mithin unsere Behauptung wegen (iii) richtig ist. Es sei also
z € X, Z ~ X w{z}, f 1-1-Abbildung von Z auf X {z} und M, ein beliebiges
induktives Mengensystem iiber E,. Dann ist Z\ {f-1(z)} ~ X, denn f |(Z\ {f~1(z)})
ist 1-1-Abbildung von Z\{f-1(z)} auf X, und es gilt nach (iii): Z\ {f~1(z)} endlich
(R). Das heiBt, Z\{f"!(z)} ist Element jedes induktiven Mengensystems iiber K,
speziell also von Iy. Dann ist nach (9') auch Z = (Z \ {f~1(2)}) w {f~1(=)} Element
von M. Da hierbei M, ein ganz beliebiges induktives Mengensystem iiber £, war,
ist also Z Element jedes induktiven Mengensystems iiber E, und daher nach (11°)
im Russellschen Sinne endlich. Also ist jede zu X \ {z} gleichmachtige Menge Z
im Russellschen Sinne endlich und damit nach der Definition von IR* in der Tat
X {z}€ M*.

Mit Hilfe von (14) kénnen wir nun leicht den folgenden Satz beweisen :
(15) M, endlich (R) A M, endlich (R) => M, X M, endlich (R).

Ist hierbei M, eine Menge iiber dem Grundbereich E;, M, eine Menge iiber dem
Grundbereich E,, so wird M; X M, eine Menge iiber dem Grundbereich E; X E,.
Zum Beweis von (15) betrachtet man bei gegeb im Russellschen Sinne end-
lichen Menge M;  E, das folgende Mengensystem IN* iiber E,:

M*: = {X: X S E, A M, X X endlich (R)}.
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Wir zeigen, daB folgendes gilt:
(15°)  IM* ist induktiv iber E,.
Man erhilt (15) aus (16°) in derselben Weise, wie wir oben (12) aus (12°) gewonnen
haben. Zum Beweis von (15°) ist folgendes zu beweisen:
(i) g€ M*;
(ii) XEM*Az€E Ey=> X {z}EM*.
Die Behauptung (i) gilt wegen M, X @ =@ trivial. Mithin bleibt folgendes zu
beweisen : :
(i) M, X X endlich (R) => M; X (X {z}) endlich (R).
Hierzu beachten wir, daB M, X (X w{z}) = (M X X)\ (M, X {z}) ist. Also ge-
niigt es wegen (12) zu zeigen, daB die Menge M, X {z} im Russellschen Sinne end-
lich ist. Das folgt aber unmittelbar aus (14); denn offenbar ist {((y, ), y) : y EM,}
eine 1-1-Abbildung von M, X {z} auf M,, d. h. M, x{z} ~ M,, und M, war ja
als im Russellschen Sinne endlich vorausgesetzt.

Anslog beweist man (Ubungsaufgabe), daB folgendes gilt:
(16) M endlich (R) = P (M) endlich (R);
in Worten: Jede endlicke Menge hat nur endlich viele Teilmeng

Wir wollen schlieSlich noch den folgenden merkwiirdigen Satz beweisen:
17) M endlick (R)=> V (N M AN ~ M);

N

in Worten: Keine endliche Menge ist einer threr echten Teil leichmachts,
Zum Beweis von (17) sei

mt;={x:ﬂ1\v/(NcXAN~X)}.

Wir zeigen

(17°) SIR* ist induktiv.

Aus (17°) folgt (17) in analoger Weise wie (12) aus (12°). Zum Beweis von (17°)
ist folgendes zu zeigen:

(i) 9E M*;

(ii) XEM* = X {z} € M*.

Die Behauptung (i) gilt trivialerweise, da die leere Menge keine echte Teilmenge
besitzt und folglich auch keiner ihrer echten Teilmengen gleichmachtig sein kann.
Den Beweis von (ii) fihren wir indirekt, setzen also voraus, daB X € IR*, und
nehmen an, daB X « {z} ¢ Ik*. Dann muB es eine Menge ¥ mit ¥ — X \{z} und
Y ~ X w{z} geben. Es sei dann f 1-1-Abbildung von X «{z} auf Y. Ist hierbei
2 ¢ Y, s0 wird f \ {(«, f(z))} eine 1-1-Abbildung von X auf Y \{f(2)} (cY.€ X),
im Widerspruch zu X € d¢*. Ist dagegen z€ Y, so existiert nach (4) eine 1-1-
Abbildung g von X {z} auf ¥ mit g(z) = z, und dann wird g\{(z,2)} eine
1-1-Abbildung von X auf Y \{z} (Y S X), ebenfalls im Widerspruch zu
X € M*. Also ist unsere Annahme falsch, und es gilt (ii).

Aus (17) folgt unmittelbar, daB jede Menge M, die sich eineindeutiy auf eine shrer
echlen Teilmengen abbilden lift, unendlich ist (wobei wir unter einer unendlichen
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Menge natiirlich eine Menge verstehen, die nicht endlich ist). Damit ergibt sich
sofort, daB z. B. die Menge N aller natirlichen Zahlen unendlich ist, denn die
Korrespondenz g, die einer beliebigen Zahl n € N die Zahl » + 1 zuordnet, ist eine
1-1-Abbildung von N auf N\{0}.

Wichtig ist nun, daB auch die Umkehrung der Implikation (17) gilt: Jede Menge
M, die sich nicht eineindeutsy auf eine echte Teilmenge von sich selbst abbilden lipt,
i8¢ endlich; oder anders ausgedriickt: Jede unendliche Menge lift sich eineindeutiy
auf eine shrer echten Teilmengen abbilden. Der Beweis hierfiir ist recht schwierig
und benutzt entscheidend das Auswahlaxiom. Wir werden daher diese Umkehrung
erst spiter (vgl. 3.5. (35)) beweisen. Unter Benutzung hiervon wird die folgende
Dedekindsche Endlichkeitsdefinition sinnvoll:

(48)  Mendlich (D):e> 1V (N = M AN ~ M).

Auch diese Definition zeichnet sich dadurch aus, daB auf der rechten Seite nur
Begriffsbildungen der allgemeinen Mengenlehre auftreten, insbesondere also der
Begriff der natiirlichen Zahl nicht verwendet wird. Eine Reihe der im voran-
gehenden bewiesenen Satze iiber endliche Mengen (wie z. B. (13) und (14)) lassen
sich auch miihelos unter Verwendung der Dedekindschen Definition beweisen,
wahrend bei anderen BSitzen ganz erhebliche Schwierigkeiten auftreten. Wir
empfehlen dem Leser, diese Dinge selbst zu durchdenken.



3. Das System der natiirlichen Zahlen

3.1.  Einleitung

Der Zahlbegriff ist das Resultat eines komplizierten und langwierigen histori-
schen Entwicklungsprozesses. Ein genaueres Studium dieses Prozesses zeigt,
daB der Zahlbegriff auf sehr frithen Stufen der menschlichen Gesellschaft aus
unmittelbaren Bediirfnissen der Praxis entstand und sich bei der weiteren
gesellschaftlichen Entwicklung selbst entwickelte und vervollkommnete, daB
also der Zahlbegriff keine unverianderliche Kategorie ist, die unserem Verstande
a priori eigen, d. h. vor jeder Erfahrung dem Menschen schon bei seiner Geburt
gegeben ist. Ebensowenig sind der Zahlbegriff und die arithmetischen Ope-
rationen freie Schopfungen des menschlichen Geistes, sondern ein von einer
Reihe spezieller konkreter Merkmale befreiter, abstrakter Ausdruck realer Be-
ziehungen der materiellen Welt. Auf diese auBerordentlich wichtigen philoso-
phischen Fragen, die fiir das richtige Verstindnis des Wesens der Mathematik
von grundlegender Bedeutung sind, kann hier nicht naher eingegangen werden.

Im vorliegenden Abschnitt werden wir den Begriff der natiirlichen Zahl und
die wichtigsten elementaren Operationen und Relationen im Bereich der natiir-
lichen Zahlen einer genauen logischen Analyse unterwerfen. Die dabei gewon-
nenen Resultate werden dem Leser zum groBten Teil — allerdings weitgehend
empirisch — aus der Schule bekannt sein. Demgegeniiber besteht das Haupt-
anliegen der folgenden Ausfihrungen darin, dem Leser und zukiinftigen
Lehrer systematisch die logischen Zusammenhénge aufzudecken und ihn mit
grundlegenden Beweisgedanken vertraut zu machen.

Unter natiirlichen Zehlen verstehen wir im folgenden die Zahlen 0, 1, 2, . . .,
sehen also insbesondere die Zahl Null als natiirliche Zahl an. Die Frage, ob
Null eine natiirliche Zahl ist oder nicht, ist ausschlieBlich eine Frage der Kon-
vention (und nicht etwa der Weltanschauung oder dergleichen). Die der Zahl
Null lange Zeit zugeschriebene Sonderrolle besteht eigentlich nur darin, daB
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sie bei der historischen Entwicklung des Zahlbegriffs erst sehr spat entstanden
ist. Die Menge der natiirlichen Zahlen wird nach wie vor mit N bezeichnet.

Unserer Kenntnis der natiirlichen Zahlen entnehmen wir, da die natiir-
lichen Zahlen mindestens zwei wesentliche Aufgaben erfiillen: Einmal benutzt
man sie zur Angabe der Anzahl der Elemente von endlichen Mengen, d. h. als
Kardinalzahlen, zum anderen (hier allerdings meistens unter AusschluB der
Zahl Null) zum Durchnumerieren der Elemente einer endlichen Menge, d. h.
als Ordinalzahlen. Der Leser mache sich sorgfaltig klar, daB zwischen Kar-
dinal- und Ordinalzahlen ein grundlegender begrifflicher Unterschied besteht;
es ist z. B. etwas anderes, ob ich 50 Seiten oder die 50. Seite eines Buches zu
studieren habe.

Zu einer Prazisierung des Kardinalzahlbegriffs gelangt man, wenn man die
Kardinalzahlen als Aquivalenzklassen (vgl. 2.5.(13)) der Gleichmachtigkeit
(vgl. 2.4.(21)) z. B. im System € aller Mengen iiber einem gegebenen Grund-
bereich F definiert. Diese Auffassung geht im wesentlichen bereits auf CANTOR
und DEDERIND zuriick und spiegelt in abstrakter Form den Inhalt des histo-
risch entstandenen Anzahlbegriffs wider. Im Sinne dieser Definition ist z. B.
die Zahl 5 der Inbegriff, das System aller derjenigen Mengen (iiber E), die sich
eineindeutig auf die Finger meiner rechten Hand abbilden lassen. Die Addition
von Kardinalzahlen wird durch die Vereinigung disjunkter Mengen (vgl.
2.4.(23) und 3.6.(7)), die Multiplikation durch das kartesische Produkt (vgl.
2.4.(24) und 3.6.(12)) und die <-Beziehung durch die Inklusion (vgl. 2.9.(7')
und 3.6.(4)) reprasentiert. In dhnlicher Weise kann man den Ordinalzahlbegriff
prézisieren, worauf wir hier jedoch nicht eingehen kénnen.

Wir werden uns im folgenden auf keine bestimmte Definition der natiir-
lichen Zahlen stiitzen. Vielmehr werden wir einige Grundeigenschaften der
natiirlichen Zahlen als Axiome an die Spitze stellen, aus denen wir durch
mathematische Schliisse alle weiteren uns interessierenden Eigenschaften ab-
leiten werden. Das von uns verwendete Axiomensystem wurde in nur unwesent-
lich anderer Form im Jahre 1891 von dem italienischen Logiker und Mathe-
matiker GIUSEPPE Pmo (1858—1932) aufgestellt und wird daher heute
allgemein P h ystem genannt, obwohl die grundlegenden Ideen
bereits von DEDEKIND stammen. Die mengentheoretische Definition der natiir-
lichen Zahlen z. B. als Kardinalzahlen endlicher Mengen hat vor allem den
Sinn, sich durch mengentheoretische Konstruktionen mathematische Objekte
zu verschaffen, die diesen Axiomen geniigen — die ein Modell fir das Peanosche
Axiomensystem bilden — und fiir die damit auch alle Folgerungen aus dem
Axic ystem gelten. Thnen kommt insofern grundsatzliche Bedeutung zu,
als sie zeigen, daB far eine logische Begriindung auch des Zahlbegriffs die
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Grundprinzipien der Mengenlehre ausreichen. Sie diirfen allerdings auch nicht
(insbesondere philosophisch) tiberschitzt werden, spiegeln sie doch nur einige
Aspekte des historisch gewachsenen Zahlbegriffs wider.

3.2.  Das Peanosche Axiomensystem fiir die natiirlichen Zahlen

Als Peanosches Axiomensystem bezeichnet man das folgende System
von Aussagen iiber natiirliche Zahlen:

(1) Die Zahl Null ist eine natiirliche Zahl.

(2) Jede natirliche Zahl besitzt eine eindeutig bestimmie natiirliche Zahl als
wnmittelbaren Nachfolger.

(3) Jede natiirliche Zahl ist unmittelbarer Nachfolger hichstens einer natiirlichen
Zahl.

(4) Die Zahl Null ist kein unmittelbarer Nachfolger einer natirlichen Zahl.

(3) Die Menge aller natiirlichen Zahlen ist die bzgl. Inklusion kleinste Menge,
die die Zahl Null und mit einer natirlichen Zahl auch deren unmittelbaren
Nachfolger enthalt.

Das Peanosche Axiomensystem charakterisiert also die natirlichen Zahlen

als Elemente der Tragermenge einer Struktur (N, 0, o) (vgl. 2.7.) mit einem

ausgezeichneten El t 0 (der Zahl Null) — Axiom (1) — und einer einstelligen

Operation ¢ in N (die einer beliebigen Zahl » € N ihren eindeutig bestimmten

unmittelbaren Nachfolger — die Zahl n + 1 — zuordnet) — Axiom (2) —, in der

folgende Eigenschaften erfillt sind:

(3") Die Operation o ist eindeutig umkehrbar, d. h.

A (o(m)=o(n) =>m=n).
nEN

™,

(¢4) —V on)=0, d.h. 0¢ W(o).
neEN
(3') AOEMA A €M =a(n)€E M)= NS M)
M neN

Eine derartige Struktur wird heute vielfach Peano-Struktur (oder Peano-
Algebra) genannt. Fiir die Tatsache, daB in (N, 0, ¢) die Axiome (3') bis (5')
gelten, sagt man auch, daB diese Struktur ein Modell fir diese Aziome ist.
Bezeichnen wir fiir eine gegebene natiirliche Zahl n € N eine Zahl m €N
mit o(m) = n als unmittelbaren Vorginger von n, s6 besagt Axiom (3), da8
jede natiirliche Zahl hichstens einen ittelbaren Vorganger hat, wahrend in
Axiom (4) festgestellt wird, daB die Zahl Null (in N) keinen unmittelbaren
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Vorganger besitzt. Durch Axiom (5) — das auch Induktionsaxiom genannt
wird — wird in praziser Form zum Ausdruck gebracht, dafl man ausgehend von
der Zahl Null durch fortgesetzte Nachfolgerbildung schlieBlich alle natirlichen
Zahlen erhalt.

Wir betonen nochmals, daB wir hier nicht die Absicht haben, die Peanoschen
Axiome ndher zu begriinden, d. h. auf irgendwelche anderen GesetzmaBig-
keiten, z. B. auf die in 2.9. genannten Satze iiber im Russellschen oder Dede-
kindschen Sinne endliche Mengen zuriickzufithren. Wir sehen sie vielmehr als
Grundeigenschaften der natiirlichen Zahlen an, aus denen wir alle weiteren uns
interessierenden Eigenschaften ableiten. Die im vorliegenden Kapitel bewiesenen
Sétze konnen damit als Sitze aufgefaBt werden, die in jeder Peano-Struktur
gelten.

Wir kommen nun zu einigen ersten einfachen Folgerungen aus dem
Peanoschen Axiomensystem.

Als erstes wollen wir zeigen, daB die Zahl Null die einzige natiirliche Zahl
ist, die keinen unmittelbaren Vorganger hat, daB also jede natiirliche Zahl » == 0
wenigstens einen und mithin wegen Axiom (3) genau einen unmittel-
baren Vorgéanger besitzt:

(6) An*E0=>V o(m)=n).

nEN meN
Diese Behauptung ist offenbar gleichwertig mit
®) W) =N\{o).
Zum Beweis dieser Tatsache betrachten wir die Menge M, die die Zahl Null
und alle diejenigen natiirlichen Zahlen enthilt, die einen unmittelbaren
Vorginger besitzen:

M:={0}{n:nENAV o(m)=n}.

mEN

Offensichtlich ist 0 € M. Ferner ist mit einer natiirlichen Zahl » stets auch
ihr unmittelbarer Nachfolger o(n) in M enthalten; derh o(n) besitzt einen
unmittelbaren Vorganger, namlich die Zahl n. Folglich enthélt nach Axiom (5)
M alle natiirlichen Zahlen, d. h., jede natiirliche Zahl » + 0 hat wenigstens
einen unmittelbaren Vorgénger.

Nur eine andere Formulierung von (3') ist, daB verschiedene Zahlen auch
verschiedene Nachfolger haben:
3") m %+ n = a(m) *+ o(n).
Hiermit erhalten wir leicht, daB jede natiirliche Zahl n von ihrem unmittelbaren
Nachfolger ¢ (n) verschieden ist:
(7) A (€ N=n =+ g(n)).

n
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Zum Beweis dieser Behauptung betrachten wir die Menge M aller derjenigen
natiirlichen Zahlen n, die von ihrem unmittelbaren Nachfolger verschieden
sind:

={m:n€NAn =+ o(n)

Nach Axiom (4) ist 0€ M; denn die Zahl Null ist kein Nachfolger, also sicher
von o(0) verschieden. Ist ferner » € M, so ist nach Definition der Menge M
dann n = ¢(n), also nach (3") auch ¢(n) % o(s(n)) und mithin o(n) € M.
Damit folgt aber nach Axiom (5), daB M alle natiirlichen Zahlen enthalt, also
in der Tat jede natiirliche Zahl n von ihrem unmittelbaren Nachfolger o(n)
verschieden ist.

Im vorangehenden haben wir zwei Beweise durch ,,vollstindige Induktion®
gegeben, die auf einer unmittelbaren Anwendung des Induktionsaxioms (5)
beruhten. Meistens pflegt man jedoch Beweise durch vollstindige Induktion
s0 zu fithren, daB man eine gegebene Aussage iiber natiirliche Zahlen zunachst
fir die Zahl Null beweist, sodann zeigt, daB aus der Giltigkeit der betref-
fenden Aussage fiir eine beliebige natiirliche Zahl n ihre Giiltigkeit fiir die
Zahl n + 1 folgt, und dann behauptet, daB die betrachtete Aussage fiir alle
natiirlichen Zahlen richtig ist. Dieser sogenannte Schluf von n auf n + 1
erhélt seine Rechtfertigung durch den folgenden Satz, in dem wir allerdings
den unmittelbaren Nachfolger der Zahl n zunéchst noch mit o(n) bezeichnen
(im folgenden Abschnitt werden wir nach Definition der Addition zeigen
kénnen, daB fir jede natiirliche Zahl n die Beziehung o(n) = n 4 1 gilt):

Rechtfertigungssatz fiir Beweise durch vollstindige Induktion.
Es sei H(z) eine beliebige Aussage iiber natiirliche Zahlen. Gilt diese Aussage fiir
die Zahl Null und folgt fir eine beliebige natiirliche Zahl n aus ihrer Giltighkeit
fiir die Zahl n ikre Gultigkeit fir die Zahl o(n), so gilt die Aussage H (z) fir
alle natiirlichen Zahlen:

(8) H(0) A A (H(n) = H(a(n)) = A H(n).
neEN neEN

Den Nachweis der Giiltigkeit von H(0) nennt man den Anfangsschritt des
Induktionsbeweises, den Beweis von /\ (H(n) = H(o(n))) den Induktions-

€N
schritt. Die Voraussetzung H (n) im Bewels des Induktionsschritts nennt man
die Induktionsvoraussetzung, die daraus zu beweisende Behauptung H (¢(n))
heiBt die Induktionsbehauptung. Wir machen darauf aufmerksam, daB man auf
Grund des Rechtfertigungssatzes Sitze, die fiir alle natiirlichen Zahlen gelten,
durch vollstindige Induktion beweisen kann, aber nirgends behauptet ist,
daB man sie durch vollstdndige Induktion beweisen muB.
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Zum Beweis von (8) sei H () eine Aussage iiber natiirliche Zahlen, fiir die die
Voraussetzungen von (8) erfiillt sind. Wir bezeichnen mit M die Menge aller
derjenigen natiirlichen Zahlen z, fiir die H (z) gilt:

M:={zx:2€ Nar H(z)}.

Auf Grund der Voraussetzung von (8) ist dann 0 € M, und es gilt
A (n€ M = o(n) € M).
nEN

Also ist nach (5') N & M, und das ist ja nach Definition von M gerade die
Behauptung von (8).

Wir merken abschlieBend an, daB man aus der Giiltigkeit von (8) (fiir beliebige
Aussagen H(z)) auch leicht die Giiltigkeit von (5) folgern kann, d. h., (8) und
(5) sind logisch aquivalent, so da8 man vielfach auch (8) als Induktionsaxiom
verwendet. Zum Beweis sei M eine beliebige Menge, die die Voraussetzung von
(5) erfiillt, die also die Zahl Null und mit einer natiirlichen Zahl n stets auch
die Zahl o(n) enthalt. Wir betrachten dann die folgende Aussage H(z) iiber
metiirliche Zahlen: ,x € M ~ N“ (,,x ist eine natiirliche Zahl, die zu M gehort*).
Offenbar sind fiir H (z) die Voraussetzungen von (8) erfiillt, so daB im Fall der
Giiltigkeit von (8) die Aussage H (r) auf alle natiirlichen Zahlen zutrifft, und das
besagt ja gerade, daB alle natiirlichen Zahlen zu M gehoren, was zu zeigen war.

3.3.  Die Addition und Multiplikation natiirlicher Zahlen

In den Peanoschen Axiomen ist zunachst nur von einer Operation in N, der
Nachfolgeoperation ¢ die Rede. Im vorliegenden Abschnitt wollen wir die
Addition und Multiplikation von natiirlichen Zahlen definieren und die
wichtigsten Eigenschaften der natiirlichen Zahlen beziiglich dieser Operationen
behandeln.

Meistens pflegt man die Addition (und dann analog die Multiplikation) von
natiirlichen Zahlen induktiv zu definieren, und zwar als zweistellige Operation
im Bereich der natiirlichen Zahlen, die fiir beliebiges m, n € N den sogenannten
Rekursionsgleichungen
(1) m+0=m, m-4 o(n)=oc(m-+ n)
geniigt (wobei wir — wie iiblich — das Zeichen 4 als Operationszeichen fiir
die Addition verwendet haben und im Sinne von 2.6.(3) m + % als Abkiirzung
fiir 4+ (m, n) gilt). Diese Definition bedarf jedoch einer grundsatzlichen Recht-
fertigung. Es ist ndmlich zunachst in keiner Weise gesichert, ob es iiberhaupt
eine Operation gibt, die den Rekursionsgleichungen (1) geniigt, und wenn das
der Fall ist, ob es nur eine derartige Operation gibt (sonst miiite genauer
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gesagt werden, welche der verschiedenen Operationen, die (1) erfiillen, die
Addition sein soll).

Die Einzigkeit der durch die angegebenen Rekursionsgleichungen fest-
gelegten Operation 1Bt sich leicht nachweisen. Dazu nehmen wir an, es seien
+, und 4, zweistellige Operationen in N, welche (1) erfillen. Wir zeigen,
daB dann fir beliebige natiirliche Zahlen m, n
(2) mityn=m-,n
gilt, so daB nach 2.4.(7') in der Tat 4+, = -+, ist (man beachte, daB nach
Voraussetzung + ; und + 5 Abbildungen von N X N in N sind). Den Beweis
von (2) fihren wir bei beliebigem, aber festem m € N durch vollstandige
Induktion iiber n, wenden also den Rechtfertigungssatz 3.2.(8) auf die Aus-
sage ,m + & = m +, z“ an. Da 4+, und 4, beide die erste der Gleichungen
(1) erfiillen sollen, ist m +; 0 = m und m +,0 = m, alsom +, 0 =m +, 0,
d. h., die betrachtete Aussage gilt fiir die Zahl Null. Wir nehmen nun an, unsere
Aussage sei fiir die Zahl » schon bewiesen (Induktionsvoraussetzung), und
zeigen, daB sie dann auch fiir'die Zahl ¢(n) gilt (Induktionsbehauptung). Nach
der zweiten Gleichung aus (1), dpr ja sowohl 4, als auch -+, geniigen sollen,
ist m 4 0(n) =0(m +;7) und m +,0(n) = o(m +,n), wobei nach In-
duktionsvoraussetzung m +; n = m -+, n gilt, so daB in der Tat

m +y0(n) =m +,0(n)
ist, was zu zeigen war.

Wie steht es nun mit der Existenz einer derartigen Operation? Der Beweis
hierfiir ist etwas schwieriger. Wir benutzen dabei einen Kunstgriff, der auf den
ungarischen Mathematiker Laszro KaLMAR zuriickgeht. Zunachst zeigen wir
némlich, daB es zu jeder natiirlichen Zahl m eine (und itbrigens auch nur eine)
Abbildung fm von N in N gibt, die die Rekursionsgleichungen
Bm)  fm(@) =m, fm(o(n))=0(fm(n))
erfiillt. Im Fall m = 0 leistet offenbar die Funktion

for={mmn):n €N} (= ey
das Verlangte; denn es ist f,(0) = 0 und fy(o(n)) = o(n) = o(fo(n)). Wir
nehmen nun an, daB fir die Zahl m bereits eine Funktion fm gefunden ist, fiir
die (3m) gilt, und konstruieren mit ihrer Hilfe eine Funktion f,.,, die den
Gleichungen (3,,,) geniigt. Dazu setzen wir

Som 2 = {(n; 0 (fm ))) : n € N}.
Dann gilt

Joy(0) = 0(fm(0)) = o (m)
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und

fo(m) (e(n)) =0 (fmlo ) = o(o(fm (n))) = “(fp(g.)-(”))’
so daB in der Tat f,,, die Gleichungen (3,,,) erfullt. (Die vorangehenden
Ausfithrungen sind natiirlich eine Kurzfassung eines Beweises durch voll-
standige Induktion iiber m fiir den Satz: Zu jeder natirlichen Zahl m existiert
eine Funktion fn, die den Rekursionsgleichungen (3m) geniigt). Wir setzen nun
m 4+ n : = fm(n), wobei also fr,(n) der Wert einer bestimmten (der eindeutig
bestimmten) Funktion fm mit (3,) an der Stelle » ist. Dadurch wird offenbar
jedem geordneten Paar (m,n) von natiirlichen Zahlen genau eine natiirliche
Zahl m + n zugeordnet, d. h. eine zweistellige Operation in N definiert. Diese
Operation erfillt die Rekursionsgleichungen (1), denn es gilt

m+ 0= fn(0) =m, m + o¢(n) = fm(c(n)) = o(fm(n)) = o (m +n).

Also gibt es genau eine zweistellige Operation + in der Menge N, die den

Rekursionsgleichungen (1) geniigt, und diese Operation heiBt die Addition von
natiirlichen Zahlen. Das Resultat m + n der Anwendung der Additionsope-
ration auf ein Paar (m, n) von natiirlichen Zahlen wird die Summe der Zahlen
m, n genannt, die dann ihrerseits die Summanden heiBen.

Wir wollen nun zeigen, daB die Additionsoperation assoziativ (vgl. 2.6.(8))
und kommutativ (vgl. 2.6.(7)) ist, d. h., fiir beliebige natiirliche Zahlen n,, n,, n3
gilt:

(4) 7y + (g + n3) = (ng + n3) + n3,
(5) Ny + Na = ny + 4.
Den Beweis von (4) fithren wir (bei festem %, n, € N) durch vollstandige
Induktion dber n;. Auf Grund von (1) gilt
7y + (13 + 0) = ny + 7y = (0 + n) + O,
d. h.,, (4) gilt fir n; = 0. Wir nehmen nun an, (4) sei fiir n; = n schon bewiesen,
und zeigen, da8 (4) dann auch fiir n; = o (n) gilt: Nach (1) ist
ny + (n2 + 0(n)) = ny+ o(ny + n) = o(ny + (22 + 7)),
nach Induktionsvoraussetzung gilt n; + (ny + %) = (ny + n,) + » und folglich
o (ny + (ng + 1)) = o((ng + ny) + n),
und wiederum nach (1) ist
o((ny + m) + m) = (m; + n) + o (n);
also gilt in der Tat
ny + (n2 + o(n)) = (n, + no) + o(n),

was zu zeigen war.
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Zum Beweis von (5) zeigen wir zunéchst, daB bei beliebigem n; € N
(6) 0+mn=mn
gilt. Das ergibt sich miihelos durch vollstandige Induktion @ber #,; denn im
Fall n; = 0 gilt (6) auf Grund von (1) trivial, und wenn (8) fir n, = n schon
bewiesen ist, wird 0 + o(n) = o(0 + n) = o(n), d. h., so gilt (6) auch fir
ny = o(n). Ferner zeigen wir durch vollstindige Induktion iiber n,, daB bei
beliebigem n,, ny € N
(7 ny + a(ng) = o(ny) + ny
gilt. Im Fall n, = 0 gilt (7); denn nach (1) ist
7y + 0(0) = o(ny + 0) = o(ny) = o(ny) + 0.
Wir nehmen nun an, (7) sei fiir n, = n schon bewiesen; dann wird
ny + o(o(n)) = o(ny + a(n)) = (o (n,) + n) = o (ny) + o (n),
d. h., es gilt (7) auch fiir n, = o(n).
Mittels (6) und (7) kann schlieBlich (5) durch vollstandige Induktion iiber
n, bewiesen werden. Nach (1) ist zunachst n, 4 0 = n;, und nach (8) ist

ny = 0 + n,, also ist n; + 0 = 0 + =,, d. h., (5) gilt fir n, = 0. Wir nehmen
nun an, (5) sei fiir n; = n schon bewiesen. Dann wird

7y + o(n) = o(ny + n) = o(n 4 ny) = n 4 a(ny),
wobei nach (7) n + o(ny) = a(n) + n, ist, so daB n; + o(n) = o(n) + n, wird,
d. h,, (5) gilt fiir n; = o(n).

Die erste Gleichung (1) besagt offenbar, daB die Zakl Null rechisseitig und
wegen (5) (bzw. (6)) dann natiirlich auch linksseitig neutrales Element fiir die
Addition ist (vgl. 2.6.(11)), wobei die allgemeinen Betrachtungen aus 2.6.
lehren, daB 0 auch die einzige natiirliche Zahl z ist, fiir die m + z = m bei
beliebigem m € N gilt.

Bezeichnen wir den unmittelbaren Nachfolger der Zahl Null mit 1
(8) 1:=0(0),

8o wird bei beliebigem 7 € N nach (1) o(n) =o(n + 0) =n + 0(0) =n + 1,
d. h., fiir jedes n € N gilt

9 a(n)=n+1,

80 daB wir von nun an statt ¢(n) — wie iiblich — auch n + 1 schreiben kénnen
(was wir systematisch allerdings erst ab 3.5. tun wollen).
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Es gelten fiir die Addition ferner noch die folgenden beiden Sitze, die wir
in folgenden Abschnitt benétigen werden:
(10) m+n=08m=0rn=0;
(11) m+n=mé&n=0.
Da bei (10) und (11) die Implikationen von rechts nach links trivial gelten,
geniigt es, die Implikationen von links nach rechts zu beweisen. Zum Beweis

von (10) sei also m + n = 0 und wir nehmen an, es wire beispielsweise n + 0.
Dann gébe es nach 3.2.(8) eine Zahl k € N, so da n = ¢ (k), und es wire

m+n=m+ak)=0cm+k)=0,
im Widerspruch zu Axiom 3.2.(4). Der Beweis von (11) ergibt sich leicht durch
vollstandige Induktion iiber 7 und sei dem Leser als Ubungsaufgabe iiber-
lassen.

In Analogie zu (1) definieren wir die Multiplikation natiirlicher Zahlen
induktiv durch die folgenden Rekursionsgleichungen:

(12) m-0=0, m-o(n)=(m-n)+m.

In die Rekursionsgleichungen fiir die Multiplikation geht also bereits die zuvor
durch (1) induktiv definierte Addition ein. Entsprechend wie bei der Addition
hat man sich natiirlich davon zu iiberzeugen, daB es genau eine binire Ope-
ration - in N gibt, die den Rekursionsgleichungen (12) geniigt. Dies sei dem
Leser als Ubungsaufgabe iiberlassen. Diese eindeutig bestimmte Operation
wird die Multiplikation von natirlichen Zahlen genannt. Das Resultat m - n
der Anwendung der Multiplikationsoperation auf ein gegebenes Paar (m, n)
von natiirlichen Zahlen heiBt das Produki dieser Zahlen, die dann ihrerseits
Faktoren bzw. Multiplikator und Multiplikand genannt werden.

Durch vollstandige Induktion iiber m zeigt man leicht (Ubungsaufgabe), daB
Siir allem €N
(13) 0-m=0
gilt. Ferner ist nach (12) m1 =m-¢(0)=m-0+m=0+4m=m, d.h,,
Jiir jedes m € N ist
(14) m-1=m,

die Zahl1 ist rechisseitig neutrales Element fur die Multiplikation (vgl. 2.8.(11,)).
Durch vollstindige Induktion iiber m kann man leicht zeigen, daB die Zahl 1
auch linksseitig neutrales Element fiir die' Multiplikation ist, d.h., fir jedes
m € N gilt

(15) 1 m=m.
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Durch vollstandige Induktion beweist man, daB die Multiplikation assoziativ,
kommutativ sowie rechts- und linksseitig distributiv bzgl. der Addition ist, d.h.
fiir beliebige natirliche Zahlen ny, ny, ny gilt
(16)  (ny - mg) - m3 = my - (ng* m3);

(17) Ny * Ny = N * Ny;5

(18)  (ny + ng) * m3 = 0y~ n3 + np* 33

(18) g (ng + mg) =3 my + 3 0y

(wobei wir bei (18) bereits von der iiblichen Konvention Gebrauch gemacht

haben, daB das Pluszeichen stirker als das Malzeichen trennt, d. h.,
nycn3+ ny g

ist eine abkiirzende Schreibweise fiir (n, * n3) 4+ (n; * n3)). Die durchweg ein-

fachen Beweise seien dem Leser als Ubungsaufgaben iberlassen, wobei wir nur

den Hinweis geben méchten, diese Sitze in folgender Reihenfolge zu beweisen :

(18), (17), (18,), (16).

SchlieBlich gilt bei beliebigem m,n € N

(19) mn=0m=0vn=0,
(20) mn=1m=1rn=1.
Wir kénnen uns offenbar sowohl bei (19) als auch bei (20) auf den Nachweis der
Implikation von links nach rechts beschranken. Es sei also m - = = 0, und wir
nehmen an, es wire sowohl m = 0 als auch n 4 0. Dann gibe es nach 3.2.(6)
natiirliche Zahlen m; und n, so daB m = o(m,), n = a(ny), und es wire
m-n=a(m) - o(ny) = o(m) - ny + o(my) = o(o(my) - ny + my) = 0,
im Widerspruch zu Axiom 3.2.(4). Ist m-n = 1, so muB nach (19) sowohl
m =% 0 als auch n =+ 0 sein. Folglich gibt es natiirliche Zahlen m,,n, mit
m = o(my), n = o(n,), und dann wird
m-n=o(m) o(ny) = a(m) - 7y + o(my) = o (o(m) * 7y + my),
80 daB wegen m - n = 1 (= ¢(0)) nach Axiom 3.2.(3)
o(my) - ny + my =0,
also nach (10) o(m,) - n; = 0 und m; =-0 und damit n; = 0 sein muB, woraus
sofort m = o(my) = 1 und n = o(n,) = 1 folgt.

3.4, Die Ordnung der natiirlichen Zahlen

Mit Hilfe der Addition konnen wir nun die iibliche <-Relation und die <-Rela-
tion fiir natiirliche Zahlen definieren:

1) mgn:eVmt+k=n.
EEN



112 3. Das System der natiirlichen Zahlen

Wir zeigen als erstes, daB die so definierte <-Relation eine reflexive totale
Ordnung in N ist (vgl. 2.5.(40)), d. h., fiir beliebige natirlicke Zahlen n, n,, n,,
n3 gilt

(2) n <=,
3) NS NpANy S N3Ny S N,
(4) Ny S My ANy SNy SNy =N,

(5) Ny S N VR < Ny

Zum Beweis von (2) geniigt es zu bemerken, daB wegen n + 0 = n eine
natiirliche Zahl k existiert (ndmlich k = 0), fiir die n 4 & = n ist, und mithin
in der Tat n < n gilt. Zum Beweis von (3) sei #y < 7, und 7, < #3. Dann
existieren wegen (1) natiirliche Zahlen %, , &, mit 2y + k; = nyund n, + k; = n3.
Dann wird aber nach 3.3.(4)ny 4 (&, + k3) = (ny + ki) + ko = 1y + k3 = 23
d. h,, fir die natiirliche Zahl k = k; + k, gilt n, + k = 7n3, und es ist in der
Tat 7y < n3. Zum Beweis von (4) sei ny < n, und 7, < n,, und zwar sei
7y + ky = ny und np + k; = n,. Dann wird ny + (k; + £5) = (ny + k) + &k,
=ny + k;=mn,, und auf Grund von 3.3.(11) muB daher %, + %, =0
sein, woraus mittels 3.3.(10) k, = k, = 0 folgt. Dann ist aber wegen n, -+ k, =2,
in der Tat ny = ny, Was zu zeigen war.

Dem Beweis von (5), d.h. der Linearitat der <-Relation, schicken wir
zunichst zwei Bemerkungen voraus: Wegen 0 4 n = n gilt fiir jedes n € N
die Beziehung

(8) 0 n,

die Zahl 0 ist also bzgl. der <-Relation kleinste Zahl in N. Entsprechend folgt
aus n + 1 = ¢(n) (vgl. 3.3.(9)), daB fir jedes n€ N

(7 n < o(n)

gilt. Damit kénnen wir nun (5) leicht durch vollstandige Induktion z. B. iiber
ny beweisen. Wegen 0 < n, gilt erst recht 0 < n,v np < 0, d. h., (5) ist fur
7, = 0 richtig. Wir nehmen nun an, (5) sei fiir n; = n schon bewiesen, es gelte
also n < 2 v %, < n, und zeigen, daB dann (5) auch fir n, = ¢(n) gilt. Ist
"0y < n, 80 ist wegen #n < ¢(n) auf Grund von (3) n; < o(n), und es gilt in der
Tat g(n) < nyv ny < o(n). Ist dagegen n < n,, so existiert eine Zahl k€ N
mit n 4 k = n,; ist hierbei k =0, so ist » = n, und folglich wegen (7)
ny < o(n), also gilt erst recht o(n) < nyv ny < o(n); ist dagegen k + 0,
so existiert nach 3.2.(6) eine natiirliche Zahl k; mit ¥ = o(k,), und es wird
ny, = n+4k =n+o(k,) =o(n) 4k (vgl. 3.2.(7)), also o(n) < ny, und damit
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gilt ebenfalls erst recht o(n) < ny v ny < o(n). Also ist (5), wenn es fiir ny = n
gilt, auch fiir n; = o(n) richtig, was noch zu zeigen war.

Mittels 2.5.(26) und 2.5.(42) erhalten wir sofort, daB durch
8) m<n:om<nrmEn

eine irreflexive totale Ordnung in N definiert wird, d. h., fir die durch (8) de-
finierte <-Relation in N gelten die folgenden Satze:

9) —Vala,

nEN

(10) A (g <npamy <mg=>ny <my),

1y, 15,m3 EN
(11) A (g <mpvmg=myv iy <my).

nn EN ~
Aus 2.5.(11) folgt, daB die <-Relation auch asymmetrisch ist:
(12) A (g <ny=> 0y <my),

ny,m EN
und Satz 2.5.(45) lehrt, daB die <-Relation trichotom ist:
(13) A ((ng <mgv g =mnyvny<ny)

n,mEN

A (g < ng A my = mg) A T (g < Mg ANy < My)

ARy =A< ﬂi)),
d.h., von den drei Fallen n; < na, my = ng, 7y <%y tritt bei beliebigem
ny, 7, € N stets genau einer ein. SchlieBlich folgt aus 2.5.(28) und 2.5.(33),
daB bei beliebigem m, n € N

(14) m<nem<nvm=n
gilt, wodurch insbesondere die Lesart ,,m ist kleiner oder gleich #* firm < n
gerechtfertigt wird (da man m < n als ,;m ist kleiner als n“ liest).

Die <-Relation 18t sich auch leicht direkt mit Hilfe der Addition aus-
driicken: Bei beliebigem m, n € N gilt

(15) m<ne V (k+0rm+ k=n)
LEN

Zum Beweis nehmen wir zunachst an, es sei m < n. Dann ist nach (8) m < n und
m + n. Wegen (1) gibt es folglich eine natiirliche Zahl k mit m + k = n, und hier-
bei muB k = O sein, da andernfalls m = n wire. Gibt es umgekehrt eine Zahl
k <+ 0 mit m + k = n, so ist wegen (1) m < n; es muB aber auch m + n sein,
da andernfalls m + %k = m ware und dann nach 3.3.(11) k¥ = 0 sein miiBte.

Als nachstes zeigen wir, daB die Addition beziglich der <-Relation monoton
ist (vgl. 2.6.(12)), wobei wir uns wegen der Kommutativitit der Addition
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natiirlich auf den Nachweis z. B. der rechtsseitigen Monotonie beschranken
konnen:
(16) A (g Sng=>m+n <m+ ny).

m,n,n €N
Es sei also n; < n,.. Dann exisitiert eine natiirliche Zahl £ mit n; 4+ k = n,.
Folglich wird (m + ny) + k= m + (ny + k) = m + n;, und mithin ist
m + ny < m + n,. Entsprechend zeigt man unter Benutzung von 3.3.(18)),
daB auch die Multiplikation (rechtsseitig) monoton bzgl. der <-Relation ist:
17 A (y<nm=>m-n <m-ny).

™, 0, % EN

Analog beweist man mittels 3.3.(18), daB die Addition und die Multiplikation

auch monoton bzgl. der <-Relation sind, wobei allerdings bei der Multiplikation
zusdtzlich m + 0 vorausgeselzt werden muf: '

(18) A (<np=>m+n <m-+ny),
m,n,mEN

(19) A <nramE0>m-n <m-n,).
MR, m EN

Beim Beweis von (19) wird wesentlich von 3.3.(19) Gebrauch gemacht
m*=0rk+0=>m-k =+ 0).

Aus (18) bzw. (19) folgt mittels 2.6.(13), daB auch die Umkehrungen von
(18) bzw. (19) gelten und die Addition und Multiplikation kirzbare Operationen
(vgl. 2.6.(15)) sind:

(20) A m4n<m4n=>nny),
m, 0y, 8 EN

(21) A lmeng <meng = n <),
=,n,mEN

(22) A m4n=m-+n,=>n =ny),
m,n,8EN

(23) A (mny=menyam=$0=>n =n,y).
0, mEN

Aus (22) bzw. (23) folgt mittels 2.6.(17), daB die Addition und die Multipli-
kation beschrinkt ausfihrbare Umkehroperationen besiizen, die wir Subtraktion
bzw. Division nennen und fiir die wir die Operationszeichen — bzw. : ver-
wenden. Sie sind definiert durch

(24) n—m=k:om+k=n,

bzw.

(25) n:m=k:om-k=n,



3.4. Die Ordnung der natiirlichen Zahlen 115

wobei wir statt n : m, wie iiblich auch 77:; schreiben. Der Definitionsbereich fir
die Subtraktion bzw. Division wird dabei gegeben durch (vgl. 2.8.(16))
(26) D(—) = {(n, m) :EVNm +k=n}={(n,m):m < n},
€
(27) D()={(n,m):m=+=0rVm-k=n}={n,m):m=0rm|n},
kEN
wobei | die Teilbarkeitsrelation bezeichnet, die wir systematisch in 3.7. be-
handeln werden.
Wir merken an, daB wegen 3.2.(7) die Behauptung (7) unmittelbar zu
(28) A n<a(n)
nEN
verscharft werden kann. Ferner gilt bei beliebigem n € N
(29) TV (B<mam<on)).
mEN
Offenbar ist (29) dquivalent mit

A (n<m=—m< a(n)),
mEN
wobei —1m < og(n) wegen (11) und (14) seinerseits mit ¢(n) < m équivalent
ist. Also sind

(29') A (Br<m=o(n) <m)
meN

und analog auch (Beweis!)
29") A (m<om)=>m<n)
mEN

aquivalente Formulierungen fir (29). Durch (28) und (29) wird iibrigens
nachtriglich die fiir o(n) benutzte Bezeichnungsweise unmittelbarer Nachfolger
von # (nédmlich in der <-Relation) gerechtfertigt.

Als Hilfssatz zum Beweis von (29’) zeigen wir zunéchst:
(30) AEk+0=>k21)
kEN

(wobei k = ! allgemein nur eine andere Schreibweise fiir I < k sein soll). Ist
namlich ¥€ N und k + 0, so existiert nach 3.2.(6) eine natiirliche Zahl %
mit &k = o(k) = &, + 1. Hierbei ist nach (6) ¥; = 0, und Anwendung von (16)
(genauer der linksseitigen Monotonie der Addition beziiglich der <-Relation)
liefert: k = k; + 1 = 0 4+ 1 = 1, was zu beweisen war.

Die Behauptung (29’) kann nun folgendermaBen bewiesen werden: Es sei
n < m. Nach (15) gibt es dann eine natiirliche Zahl & 3 0 mit n + k = m.
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Wegen (30) ist hierbei £ = 1, und (16) ergibt o(n) =n+1<n+ k=m,
wie in (29’) behauptet wurde.

Es sei darauf hingewiesen, da8 der unmittelbare Nachfolger o(n) durch die
Bedingungen (28) und (29) eindeutig charakterisiert ist, d.h., erfallt eine
natiirliche Zahl n’ die Bedingungen
(28%) n<7n,

(29%) "V m<mam<7),
mEN

80 ist n’ = g(n). Denn aus (28*) und (29’) folgt o(n) < ', und aus (28) und der
zu (29*) aquivalenten Bedingung

(29%) A(m<m=>n"<m)
. mEN

folgt n' < o(n), so daB wegen (4) in der Tat n’' = o(n) ist.
Sehr haufig verwendet man in der Mathematik das folgende

Prinzip der kleinsten Zahl. In jeder nichtleeren Menge von natiirlichen
Zahlen gibt es eine (eindeutig bestimmie) kleinste Zahl, d. h. eine Zahl, die kleiner
als alle anderen Zahlen der betrachteten Menge ist:

(31) MINAM 0=V (mEMANA(MEM = my <m)).
my m

Die kleinste Zahl in einer gegebenen nichtleeren Menge M von natiirlichen
Zahlen wird tiblicherweise mit min M (gelesen: Minimum von M) bezeichnet.
Ingbesondere ist also min{n,,...,n,} die kleinste der Zahlen n,,...,n,.
Zum Beweis von (31) betrachten wir die Menge N aller natiirlichen Zahlen n,
die kleiner oder gleich allen Zahlen m der Menge M sind:

N:=n:n€ENAA(ME M =>n <m)}.

Wegen (6) ist offenbar 0 € N. Andererseits enthalt die Menge N sicher nicht
alle natiirlichen Zahlen; denn ist m € M, so ist wegen m < og(m) die Zahl
o(m) nicht Element von N. Daher gibt es eine Zahl m,, so daB my€ N und
o(mg) € N; denn andernfalls enthielte N nach dem Induktionsaxiom 3.2.(5)
samtliche natiirlichen Zahlen. Wegen my € N gilt nach Definition von N:

AmEM=my<m).

AuBerdem muB m, Element von M sein; denn andernfalls ware my < m fir
alle m € M, und nach (29’) ware ¢ (my) < m fiir alle m € M, also ¢(mg) €E N —
was ja nicht der Fall sein sollte. Also enthélt in der Tat jede nichtleere Menge
von natiirlichen Zahlen eine kleinste Zahl. DaB diese kleinste Zahl eindeutig
bestimmt ist, ist auch leicht einzusehen: Sind namlich my und my, kleinste
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Zahlen in M, gilt also

(i) my€E M, (i) MmEM=>my < m,
(i) me € M, (ii’) mEM = my < m,

50 ist wegen (i) und (ii’) mg < mo und wegen (i’) und (ii) my < mgq, also nach
(4) in der Tat my = mgo.

Mit Hilfe des Prinzips der kleinsten Zahl ergibt sich leicht der folgende

Rechtfertigungssatz fiir Beweise durch ordnungstheoretische
Induktion. Es sei H(z) eine beliebige Aussage iber natirliche Zahlen. Gilt
diese Aussage fir die Zahl Null und folgt bei beliebigem n € N aus der Giltigkeit
von H (z) fiir alle Zahlen m < n die Gultigkeit von H (z) fiir die Zahl n, so gilt die
Aussage H (z) fir alle natiirlichen Zahlen:

32)  H@O)AA (A (m<n=Hm)= H(n))=> A H(n).
nEN mEN nEN

Im Gegensatz zur vollstindigen Induktion 3.2.(8) ist also bei der ordnungs-
theoretischen Induktion im Induktionsschritt aus der Indukti

daB die Aussage H (z) fiir alle Zahlen m < n gilt, die Induktwmbehauplimg,
daB H(z) dann auch fiir die Zahl n gilt, zu erschlieBen. Bei der gegebenen
Formulierung ist iibrigens rein formal der Anfangsschritt H(0) im Indyktions-
schritt enthalten, brauchte also nicht gesondert gefordert zu werden. Bei
praktischen Anwendungen ist allerdings der Fall n = 0 meistens gesondert
zu behandeln, so daB wir ihn extra aufgefithrt haben.

Zum Beweis von (32) sei H(z) eine Aussage iiber natiirliche Zahlen, fiir die
die Voraussetzungen von (32) erfiillt sind. Wir nehmen an, die Behauptung
von (32) wire falsch, d. h., es gabe eine natiirliche Zahl »,, fiir die die Aussage
H (z) nicht gilt. Dann wire die Menge M aller derjenigen natiirlichen Zahlen =,
fiir die H (z) falsch ist, nicht leer. Also enthielte die Menge M eine kleinste
Zahl m,. Nach Definition der Menge M miiBte dann (wegen mo € M) die Aus-
sage H(x) fiir die Zahl m, falsch sein, wihrend sie firr alle Zahlen m < m,
giiltig ist. Das ist aber ein Widerspruch dazu, daB bei beliebigem n (speziell
also fiir n = m,) aus der Giltigkeit von H (z) fiir alle Zahlen m < = die Giiltig-
keit von H (z) fiir die Zahl n folgen sollte. Also ist unsere Annahme falsch und
H (z) gilt fir alle natiirlichen Zahlen.

Fiir den Nachweis, daB eine Aussage H (z) iiber natiirliche Zahlen fiir alle
Zahlen n = n, gilt, wobei n, eine bestimmte natiirliche Zahl bedeutet, kann
man die folgende modifizierte Form der Beweise durch vollstandige
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Induktion benutzen:
(33)  Hmo)a A (n=non Hin) = H(om)) = A (n = no=> H(n)).
nEN REN

Zum Beweis von (33) sei H () eine Aussage iiber natiirliche Zahlen, fiir die die
Voraussetzungen von (33) erfiillt sind. Es sei

M:={z:H@z)}w{z:2€Nrz < ng}.

Man zeigt leicht, daB die Menge M die Voraussetzungen des Induktionsaxioms
3.2.(5) erfiillt, also nach diesem alle natiirlichen Zahlen enthalt. Dann miissen
aber (da die Menge {z : 2 € N A z < ng} nur die Zahlen enthalt, die kleiner als
ng sind) alle Zahlen » = n, in der Menge {z : H ()} enthalten sein, und das ist
ja gerade die Behauptung von (33).

Man kann ohne Schwierigkeit eine entsprechende Modifikation von (32) formu-
lieren und beweisen, was wir dem Leser als Ubungsaufgabe iiberlassen wollen.

Zum AbschluB sei noch das folgende Prinzip der gréoBten Zahl bewiesen:
In jeder nichtleeren nach oben beschrinkten Menge M von natirlichen Zahlen
gibt es eine (eindeutig bestimmte) grofte Zahl; dabei heiBt eine Menge M von
natiirlichen Zahlen nach oben beschrinkt, wenn es eine natiirliche Zahl n, gibt,
so daB alle Zahlen m aus M kleiner oder gleich n, sind, d. h., wenn keine Zahl
der Menge M groBer als n, ist (eine solche Zahl n, wird dann auch eine obere
Schranke fir die Menge M genannt):

(34) MSNAMEOAV AMEM=>m < ng)
ENm
SV (mo€ M A A (ME M = m < my).
™ ™

Die griBte Zahl in einer nach oben beschrankten nichtleeren Menge M von
natiirlichen Zahlen wird iiblicherweise mit max M (gelesen: Maximum von M)
bezeichnet. Insbesondere ist also max {n,...,n,} die groBte der Zahlen
ny,...,n, (wobei zu beachten ist, daB jede nichtleere endliche Menge von
natiirlichen Zahlen nach oben beschrankt ist — Beweis!). Es sei M eine beliebige
Menge, die die Voraussetzungen des Satzes (34) erfallt. Mit N bezeichnen wir
die Menge aller derjenigen natiirlichen Zahlen n, die groBer oder gleich allen
Zahlen m aus M sind (die also obere Schranken fir M sind):

N:={n:nENAA(mMEM=>m < n)}.

Diese Menge N ist offenbar nicht leer (da M nach oben heschrankt ist). Folglich
enthalt N nach (31) eine kleinste Zahl m,. Wir behaupten, daB m, groBte Zahl
in M ist. Wegen my € N ist sicher m < m, fiir alle m € M. Es bleibt also zu
zeigen, daB mg zu M gehért. Dazu nehmen wir an, das wére nicht der Fall;
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dann gilte m < m, fir alle m € M. Da M nicht leer ist (hier wird diese Voraus-
setzung von (34) entscheidend benutzt), wire'm, + 0. Es gibe also ein m; € N
mit my = ¢(m,), und dann gilte nach (29") m < m, fiir alle m € M. Mithin
wire m; Element von N, im Widerspruch dazu, daB m, kleinste Zahl aus N
sein sollte, aber nach (28) m, < m, ist.

3.5. Induktive Definitionen

Bei der Definition der Addition und der Multiplikation von natiirlichen
Zahlen in 3.3. haben wir bereits zwei Beispiele fiir sogenannte induktive
Definitionen kennengelernt. In beiden Fillen war zunichst zu beweisen,
daB es jeweils genau eine zweistellige Operation in N gibt, die den formu-
lierten Rekursionsgleichungen 3.3.(1) bzw. 3.3.(12) geniigt. Nachdem das
geschehen war, konnten wir die entsprechenden induktiven Definitionen durch
einwandfreie explizite Definitionen ergidnzen, indem wir namlich z. B.
die Addition von natiirlichen Zahlen als die eindeutig bestimmte Operation
in N definierten, die die Rekursionsgleichungen 3.3.(1) erfiillt. In diesem Sinne
spricht man von einer Rechtfertigung der induktiven Definition 3.3.(1).
Gemeint ist damit also, daB die Rekursionsgleichungen 3.3.(1) eine eindeutig
bestimmte Operation charakterisieren und in dieser Hinsicht als Definition
dieser Operation angesehen werden kénnen.

Es zeigt sich nun, daB man in analoger Weise sehr allgemeine Arten von
induktiven oder — wie man auch sagt — rekursiven Definitionen rechtfertigen
kann. Wir wollen hier nur ein besonders wichtiges Beispiel fiir einen solchen
allgemeinen Rechtfertigungssatz etwas eingehender diskutieren. Dazu sei
M eine beliebige Menge von irgendwelchen mathematischen Objekten, x, ein
fest vorgegebenes Element aus M und F eine bestimmte Abbildung von N X M
in M. Wir betrachten dann die folgenden Rekursionsgleichungen:

@) fO) ==, fln+1)=_F(nf(n)

(wobei wir von nun an statt o(rn) wie iiblich » 4 1 schreiben). Die Frage ist,
ob es unter den angegebenen Voraussetzungen stets genau eine Abbildung f
von N in M gibt, die bei beliebigem » € N den Gleichungen (1) geniigt. Diese
Frage wird nahegelegt durch die Tatsache, daB ja durch die Gleichungen (1)
die Funktionswerte f(0), f(1), f(2), ... der Reihe nach eindeutig festgelegt
sind, wobei auf Grund des Induktionsaxioms 3.2.(5) der zu einem beliebigen
Argumentwert n € N gehorige Funktionswert f(n) auch erreicht wird. Diese
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Bemerkung wird auch heute noch vielfach als ausreichende Begriindung fiir
die RechtmaBigkeit induktiver Definitionen angesehen. Sie ist indes keines-
wegs ein strenger Beweis des Satzes, daB es gemzu eine Abbildung f von N
in M gibt, die den Rekursionsgleichungen (1) geniigt, als der sie eigentlich wohl
gedacht ist. Hierauf hat berelts im Jahre 1888 RicEARD DEDEKIND mit allem
Nachdruck hingewiesen, von dem auch der erste strenge Beweis des genannten
Rechtfertigungssatzes stammt. Der nachfolgende Beweis des Rechtfertigungs-
satzes, der vorwiegend technischer Natur ist, kann bei einem ersten Studium

iibergangen werden.

Wir zeigen als erstes, da3 es hochstens eine Abbildung f von N in M gibt, die
den Rekursionsgleichungen (1) geniigt. Sind namlich f;, f, Abbildungen von N
in M, die beide die Rekursionsgleichungen (1) erfiillen, so gilt zunachst f; (0) = z,,
f2(0) = z,, d. h. f;(0) = f»(0). Wir nehmen nun an, daB fiir eine gewisse Zahl n
die Gleichung f, (n) = f,(n) bereits gilt. Dann gilt aber auch

filn+ 1) = F(n, f; (n)) = F(n, f5(n)) = fo(n + 1).
Daraus folgt, daB die Gleichung f; (n) = f,(n) fiir alle natiirlichen Zahlen 7 gilt,
und das besagt ja gerade, daB die Funktionen f; und f, iibereinstimmen.

Fir den Existenzbeweis betrachten wir das System IR aller derjenigen

Mengen N & N X M, die folgende Bedingungen erfiillen:

@) (0, ) € N,

(ii) (n,2)E N=>(n+1, F(n,z)) €N,

und bezeichnen mit N* den Durchschnitt dieses Mengensystems (wir bemerken,

daB z. B. die Menge N X M zu M gehort). Man zeigt leicht, daB auch die Menge

N* die Bedingungen (i) und (ii) erfiillt, d. h. N* € 9t; denn (0, z,) gehért zu allen

Mengen des Systems I und damit zu dessen Durchschnitt N*, und liegt das

Paar (n, z) in N*, so gehért (n, ) und mithin nach (ii) auch (n + 1, F(n, z)) zu

jeder Menge des Systems M, und folglich liegt (= + 1, F(n, z)) in N*. Wir werden

nun zeigen, daB folgendes gilt:

(iii) Zu jeder natiirlichen Zahl n gibt es genau ein Element z aus M, so daf
(n, x) € N*.

Offenbar besagt (iii) gerade, daB N* eine (eindeutige) Abbildung von N in M ist,

und die Bedingungen (i) bzw. (ii) fir N* besagen gerade, daB folgendes gilt:

(i*) N*(0) = ,

(ii*) N*(n)==z= N*(n+1)= F(n,2),

wobei wir statt (ii*) offenbar auch kurz N*(n + 1) = F(n, N*(n)) schreiben

konnen. Das heiBt aber, daB die Abbildung N* die Rekursionsgleichungen (1)

erfiillt, womit der Existenzbeweis erbracht ist. Es bleibt also (iii) zu beweisen. Das

tun wir durch vollstindige Induktion iiber n.

Anfangsschritt: Da (0, zo) € N* ist, geniigt es zu zeigen, daB kein Paar (0, )
mit x = xp zu N* gehort. Angenommen, das ware doch der Fall. Dann wiirden
wir die Menge Ny = N*\{(0, )} betrachten. Man erkennt leicht, daB sie ebenfalls
die Bedingungen (i) und (ii) erfillen wiirde; denn das in N* enthaltene Paar (0, zo)
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ist (wegen z = zo) in N, verblieben, und mit (n, z) gehért stets (n 4 1, F(n, z))
zu Ny, da wir ja kein Paar entfernt haben, dessen erste Komponente gleich » + 1
ist. Die Beziehung N, € It hatte aber (vgl. 1.6.(9)) N M = N* & N, zur Folge,
was im Widerspruch zu N; < N* steht.

Induktionsschritt: Wir nehmen an, da8 bereits gezeigt ist, daB es genau ein
z € M mit (n, ) € N* gibt, und zeigen, daB es dann auch genau ein y € M mit
(n 4+ 1, y) € N* gibt. Die Existenz eines solchen y ist klar, denn wegen Eigen-
schaft (ii) von N* leistet F(n, z) das Verlangte. Es bleibt also zu zeigen, daBl es
daneben kein weiteres derartiges y geben kann. Der Beweis hierfiir verlauft analog
wie im Anfangsschritt, indem man zeigt, daB andernfalls die Menge

No\{(n + 1,y)} = N*

die Bedingungen (i) und (ii) erfiilllen wirde, was wie dort zum Widerspruch fiihrt
(beim Beweis von (ii) ist dabei lediglich zu beachten, daB das herausgenommene
Paar (n+ 1,y) im Fall y & F(n, z) nicht von der Form (» + 1, F(n, z)) mit
(n, z) € N* sein kann).

In vielen Anwendungsfillen, so z.B. bei der Addition (vgl. 3.3.(3)), der
Multiplikation und der anschlieBend zu behandelnden Potenzierung hat man
es faktisch mit dem Spezialfall zu tun, .daB die Werte der Funktion F nicht
vom ersten Argument abhéngen, d. h. eine Abbildung & von M in M existiert,
50 daB bei beliebigem (7, z) € N x M

F(n,z) = G(z)
ist. In diesem Fall reduzieren sich die Rekursionsgleichungen (1) auf
) fO) =20, fln+1)=0EC(f(n),
wobei also z, ein festes Element aus M und G eine gegebene Abbildung von
M in M ist.

Wir kommen nun zu einer Reihe von weiteren Beispielen von induktiven
Definitionen. Zuniachst wahlen wir in (1) fiir 2, die Zahl 1 und fiir @ bei festem
m € N diejenige Abbildung G, von N in sich, die der Zahl z € N die Zahl
2+ m zuordnet. Mittels des Rechtfertigungssatzes erhalten wir, daB es genau
eine Abbildung pm von N in sich gibt, die den Rekursionsgleichungen
2 2m(0) =1, Pm(n+1)=pnm(n)-m
geniigt. Setzen wir noch

mtn:=pm(n)
(gelesen: m hoch 2), so nehmen die Gleichungen (2) die Form
2" mt0=1, mt(n+1)=(mtn) - m
an, durch die eine eindeutig bestimmte zweistellige Operation in N definiert

wird, die man als Potenzierung bezeichnet. Es ist allgemein iiblich, das Re-
sultat der Anwendung der Potenzierungsoperation auf ein Paar (m, n) von
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natiirlichen Zahlen statt durch m t » durch m® zu bezeichnen. In diesem Fall
heiBt m die Basis und n der Exzponent. Wir haben zunachst die andere Schreib-
weise vorgestellt, um ganz deutlich zu machen, daB es sich auch bei der Po-
tenzierung — wie bei der Addition und der Multiplikation — um eine Operation
handelt und die iibliche Exponentenschreibweise nur eine gewisse Konvention
iiber die Schreibung der Werte dieser Operation ist. In Exponentenschreibweise
erhalten die Rekursionsgleichungen (2') die bekanntere Form

2") ml =1, mrtt=mn-m.

Mittels der Rekursionsgleichungen (2") erhilt man miihelos die folgenden
Potenzgesetze:

3) mhtt = m™ . ™,
@ mem= e,
) (mymgr = m}-ml.

Die durch vollstandige Induktion iiber n, bzw. n zu fiihrenden Beweise seien
dem Leser als Ubungsaufgaben iiberlassen. Bei Verwendung des Operations-
zeichens 4 fiir die Potenzierung nimmt das Gesetz (3) die Form m 4 (n, + n.)
= (m*n)-(m*n,) an, die man als eine Art abgewandelter linksseitiger
Distributivitat der Potenzierung bzgl. der Addition ansehen kann, abgewandelt
insofern, als bei der Verteilung aus der Addition die Multiplikation wird. Das
Gesetz (4) nimmt entsprechend die Form m 1 (n, - ny) = (m 1 ) 1 n, an, ist
also eine Art Ersatz fiir die (nicht geltende) Assoziativitat der Potenzierungs-
operation. Das Gesetz (5) nimmt schlieBlich die Form

(my - my) t 0= (my 1 n) - (mg 4 n)
an und beinhaltet in dieser Form die rechtsseitige Distributivitat der Potenzie-
rung bzgl. der Multiplikation.

Firr die Potenzierung gelten ferner die folgenden Monotoniegesetze,
deren Beweise ebenfalls dem Leser iiberlassen bleiben:

(6) my < mp=>my < mh,

(7) my <myan + 0=>m} < mj,
(8) Ny <npAm % 0=>mM < mh,
9) Ny <ngAm>S1=>mMm < m™

Als néchstes Beispiel behandeln wir die induktive Definition der all-
gemeinen Summe und des allgemeinen Produkts. Dazu sei (a,), eine
mittels der Zahlen aus N indizierte Familie (Folge) von Elementen einer
gegebenen Menge M (vgl. S.64), d. h. eine Abbildung, die jeder natiirlichen
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Zahl v ein bestimmtes Element a, der Menge M zuordnet. Weiter setzen wir
voraus, daB fiir die Elemente der Menge M eine als Addition ,,+“ bzw. als
Multiplikation ,,-“ bezeichnete zweistellige Operation erklirt sei (es kann also
z. B. M die Menge der natiirlichen Zahlen mit der in 3.3. erklarten Addition
bzw. Multiplikation sein, es kann aber auch M die Menge R der reellen Zahlen
mit der dort diblichen Addition bzw. Multiplikation sein oder dergleichen).
Dann wird durch

(10)  Z(0)=ay, Z(n+1)=2Z(n)+ a,,,

bzw.

(1) IO =ay, Tn+1)=IMIx)-a,,,

eine bestimmte Abbildung Z bzw. IT von N in M definiert, wobei man statt
Z(n) bzw. I1(n) auch ausfiihrlicher ‘\5’ a, (gelesen: Summe » von 0 bis n iiber a,)
bzw. !jo a, (gelesen: Produkt » von'O- g:-is  iiber a,) schreibt. Damit nehmen die
Rekursionsgleichungen (10) und (11) folgende Form an:

, [ n+d n
(10%) Z’a,:ao, Z’a,=2a,+a“,,
n+l

(11) Ha—ao, Ha——Ha a,

Es ist also z. B.

Za = ao, ZG =ay+ a, 2“ = (a9 + &) + a2,

r=0
§G-=((ao+‘11) +ay)+as, ...

(man beachte die Klammerung!). Bei der vereinbarten Schreibweise soll es
allerdings auf die Bezeichnung des sogenannten Summationsindex v nicht

ankommen, also statt 2’ a, ebensogut Z’ a,, Z’ a; usw. gesch.neben werden
»=0
diirfen. Wir merken an, da8 zur Berechnung des Wertes Z’ a, natiirlich nur

die Glieder ay, ..., a, der gegebenen unendlichen Folge (a,),eN benomgt werden.
Die Betrachtung unendlicher Folgen dient lediglich der formalen Verein-
fachung der induktiven Definition.

Ist ¢ eine eindeutige Abbildung von N in sieh, so wird unter Z’ ay, in
naheliegender Weise der Wert Z,(n) der durch

Z,00) =ayq, Z,(n+1)=2Z,(n)+ Gyuyyy
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definierten Abbildung von N in M verstanden. In diesem Sinne ist also z. B.
3 3 .
20' a,,, = ((a; + a3) + a;) + a5, Z; as, = ((@o + @2) + a;) +as
und anealog beim Produkt. SchlieBlich definiert man noch

No+n ” No+n n
)’ pp— *
(10 ) 2 a,:.= 2 "nn.,’ 2 a‘¢(v) - 2 aw(uﬂo)’
veny v=0 r=mnq »=0

so daB also z.B.

8
Z: a, = ((as + ag) + a;) + ag, 412. = ((@s0+ @12) + @15) + 46
wird.

Wirkommen nunzu denwichtigsten Rechengesetzen fiirdieallgemeine Sum-
me und das allgemeine Produkt. Bei den folgenden Gesetzen wird zunachst nur
vorausgesetzt, daB es sich beider betrachteten Addition ,,+* bzw. Multiplikation ,,-“
wm eine assoziativeOperation in M handelt. Dann gilt fir beliebigesm, n mit n + 0

m+n m+n m+n

(12) 2a=2a+2 Ha—Ha I a.

=0 rem+1i r=0 re=m+1
Wir merken an, daB in (12) das Assoziativgesetz fir ,,+“ bzw. ,, alg Spezialfall
enthalten ist, also (12) eine gewisse Verallgemeinerung des Assoziativgesetzes
fiir ,, L bzw. ,,-“ darstellt. In der Tat wird firm = 0, » = 2

m+n
Va, =

—
ve=0 »

l'ﬂla

= (ap+ ) + a,

[
o

und

_,\L‘“-“ Vg, =ap+ (a1 + ad) .

=0 v =‘m 1
Der Beweis von (12) erfolgt durch vollstandige Induktion @iber #, wobei der An-
fangsschrittn = 1 (wirhattenn = 0vorausgesetzt!) trivial ist. Wir nehmen daher
an. daB (12) fir » = ny = 1 schon bewiesen ist, und zeigen, da8 dann (12) auch
fiir n = ng — 1 gilt. Das liefert aber unmittelbar die folgende Gleichungskette:

m=ia=1 m-n,
= v -
- =1 e,y
v=0 vl
n m<n,
J— - £
_(Sar g v av) T Umennst
v=0 r=m+1
" m=no 3
= S X et
e vame1
) me-na~1
= Vi — a

-— —
v - r=m-t
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Unter Benutzung von (12) kénnen wir nun das folgende allgemeine
Assoziativgesetz beweisen: Fir jede belichig geklammerte Summe
8(ay, . . . , an) bzw. jedes beliebig geklammerte Produkt p(ay, - . . , an) der Elemente
ay, . ..,0a, aus M (in dieser Reihenfolge!) gilt

(13) s(@g,...,an) =-Zn’a,, p(al,...,a,.)=ﬁa-,,

vt
wobei also Z’a ( I a) die (das) induktiv definierte kanonisch geklammerte

Summe (Produkt) bedeutet Der Beweis von (13) erfolgt durch ordnungs-
theoretische Induktion (vgl. 3.4.(32)) iiber die Anzahl n der Summanden
(bzw. Faktoren). Der Anfangsschritt n = 1 wie auch der Fall n = 2 gelten
trivial; im Fall n = 3 reduziert sich (13) im wesentlichen auf das iibliche
Assoziativgesetz, da es hier neben der kanonischen Klammerung (a; + a;) + a;
nur noch die Klammerung a, + (a; + a3) gibt (die AuSenklammern haben wir,
wie iiblich, fortgelassen). Wir nehmen nun an, (13) sei schon fiir alle Summen

mit & < n Summanden bewiesen, und es sei s(a,, ..., @) eine beliebig ge-
klammerte Summe mit den 2 Summanden a,, . . . , @,. Dann existiert offenbar
eine Zahl k < n, so da )

8(ay, ... an) =81(ar,...,0) + 8(ag,q5 - - -5 Ca),
wobei 8 (ay, . . ., @) bzw. 85(a,,,, - - ., @n) in geeigneter Weise geklammerte
Summen mit den Summanden a,, .. .,a, bzw. a;,,, ..., a4 sind. Ist z. B.

s(ay, as, as, a;, as, ag, a;) = ((a; + a3) + @3) + ((@5 + as) + (a6 + @7)),
8o wird £k = 3 und
81(ay, a2, @3) = (a; + @9) + a3, 82(as, as,aq,a7) = (a5 + @5) 4- (a6 +a7)-

Da nun & und s, weniger als n Summanden haben, gilt nach Induktions-
voraussetzung

k n
81(41,...,0,)=Z:a,, Gz(ah.“---,an)= 2 a,,
= vmk+1
und nach (12) wird

a, + Zn’ a, =2"'a,,

vek+1 =1

l\f]n-

8(ty,...,0qn) =

was zu zeigen war.

Bei den nun folgenden Uberlegungen setzen wir voraus, daB die betrachtete
Addition ,,+“ bzw. Multiplikation - eine Operation in der gegebenen Menge M
ist, die sowohl assoziativ als auch kommutativ ist. Dann gilt das folgende
allgemeine Assoziativ-Kommutativgesetz: Fir beliehige Elemente
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ay,...,a, aus M und jede Permutation n der' Indizes 1, . .., n gilt
” " n n
(14) 2: Ay = Z" %, lz“n(v) = 17""»'
Der Spezialfall » = 2 und = = ; f) liefert das gewdhnliche Kommutativ-

123
231
(@ + ay) + a3 = (a2 + a3) + a4,
woraus unter Anwendung des (als Spezialfall in (14) enthaltenen) gewohnlichen
Kommutativgesetzes sofort
(as + a3) + a3 = ay + (a; + a3),
d. h. das gewShnliche Assoziativgesetz, folgt. (14) ist also in der Tat eine Ver-

allgemeinerung sowohl des Kommutativ- als auch des Assoziativgesetzes (wir
werden auch beim Beweis wesentlich das Assoziativgesetz benétigen).

Beim Beweis von (14) kénnen wir uns auf Grund des Satzes 2.4.(20) (der
Leser, der 2.4.(20) nicht studiert hat, muB (14) ohne Beweis zur Kenntnis
nehmen) auf den Fall beschranken, daB die betrachtete Permutation n eine
Transposition (i j) mit 1 < i< j < n ist, und wegen

@) =0 ne@n)(n)
geniigt es, den Fall z = (k n) mit 1 < % < n zu behandeln. Hierzu merken
wir zundchst an, da8 auf Grund des Assoziativ- und des Kommutativgesetzes
bei beliebigem a, b, ¢, d € M die Gleichung
(@+d+(+d)=(a+d)+ (c+b)
gilt (Beweis!). Folglich wird

)’j“»=(2” “.+%)+( "2-71 “.+a.)

=1 - vok+i

=('2_,"a.+an)+( ._: a.+a,)

-1 r=k+
Sk n n
=) oyt I =2
=1 vek+t =1
k-1 n-1
(im Fall k = 1 fehlt der Anteil }) a,, im Fall k =n — 1 der Anteil }) a,,

=1 vek+d
80 daB sich der Beweis leicht vereinfacht).
SchlieBlich beweist man durch vollstindige Induktion @iber n, daB fir jede
assoziative und kommutative Addition ,,+“ bzw. Multiplikation - bes beliebigem

gesetz. Der Spezialfall n = 3, n = ( ) liefert
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@y, ... A, by, ...,bs aus M die folgenden Qleichungen gelten:

(156) 2:’(a,+b,)=2”:a,+‘_zn:b,, Ij(a,'b,)=]j‘a,-1j‘b,.

Als nichstes nehmen wir an, daB die Multiplikation ,-“ linksseitig bzw.
rechtsseitig distributiv bzgl. der Addition ,-+“ ist. Dann gilt bei beliebigem
a,ay,...;0, € M (Beweis!) ’

(16) a-(zn' a,)=§:(a-a,) bzw. (,‘-\:1' a,)‘a=';,:’ (a, - a).

Ist .- beidseitig distributiv bzgl. ,+“, so erhalten wir durch Anwendung

beider Gleichungen (16), wenn wir hier fir ¢ eine Summe }’ b, mit
u=1
by,...,bm € M einsetzen:

n m n »

4  3e-3b=3 ( (@ - b,)).

[ u=1 vl \u=1t
Die rechte Seite von (17) kann aufgefaBt werden als eine bestimmte nicht
kanonisch geklammerte Summe, deren Summanden die in einer bestimmten
Reihenfolge genommenen sdmtlichen Produkte a,-d, (»=1,...,n;
p=1,...,m) sind. Ist die Addition ,+“ noch tativ und k tativ,
30 kann man diese S beliebig umkl n und ihre Summanden in eine
beliebige andere Reihenfolge bringen, ohne daf sich ihr Wert andert. Dafiir schreibt
man dann auch kurz

n »
2 Y (@-b) oder 3 (a-b)
=1 p=q ;-_:.....’:
oder dergleichen.

Von nun an bezeichne + bzw. - wieder grundsatzlich die in 3.3. definierte
Addition und Multiplikation von natiirlichen Zahlen. Durch vollstandige
Induktion zeigt man leicht, daB man in bekannter Weise die Multiplikation
als iterierte Addition und analog die Polenzierung als iterierte Multiplikation
auffassen kann, d. h., fiir beliebiges » == 0 gilt

A n
(18) m=-cr=ma=m=> I m=mna]lm=mn
LEX] re=1i
Damit (18) auch im Fall n = 0 gilt, fithrt man formal eine leere Summe und
ein leeres Produkt ein, wobei man vereinbart, daB die leere Summe den Wert 0
und das leere Produkt den Wert 1 haben soll.
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Als nichstes betrachten wir die durch die Rekursionsgleichungen

(19) (0 =1, e(r+1)=9p®) (n+1)

definierte Abbildung von N in N. Den Funktionswert @(n) bezeichnet man

allgemein mit n! (gel : n Fakultat), womit wir (19) auch als

(1Y) ol=1, (n+1)=nl (n+1)

schreiben kénnen. Offenbar gilt also:
0l=1, 11=1, 2!=1-2, 3!=1-2-3=86,
4!=1:2-3-4=24, 5!=1-2-3-4-5=120,...,

allgemein

(20) nl= ﬁv,

v=1

wobei (20) gemaB unserer Vereinbarung iiber das leere Produkt auch im Fall
n = 0 richtig ist.

Als Beispiel fiir eine kompliziertere Art von induktiver Definition (sogenannter
mehrfacher Rekursion) betrachten wir die folgenden Rekursionsgleichungen:
(21) p(n, 0) =1, 'P(O’ k +1)=0,

: vn 4+ 1,k + 1) = p(, k) + p(n, k + 1).

Man kann zeigen, daB es genau eine Abbildung y von N x N in N gibt, die
bei beliebigem 7, k€ N den Gleichungen (21) geniigt. Die sukzessive Be-
rechnung der Funktionswerte y(n, k), die man iiblicherweise mit (;:) (gelesen:

n iiber k) bezeichnet, erfolgt nach folgendem Schema:

@) wk| -0 1 2 3 4 5 . . .
0 f 0 0 0 0 o0
1 t 1 0 o0 o0 o
2 t 2 1 0o o0 o0
3 t 3 3 1 0 o0
4 1t 4 6 4 1 0
5 1t 5 10 10 5 1

Zunichst wird entsprechend der ersten Gleichung die erste Spalte mit Einsen
ausgefiillt und entsprechend der zweiten Gleichung die erste Zeile von der
zweiten Spalte an mit Nullen. Dann kann man mittels der dritten Gleichung
fir n =0, d.h. p(1, %k + 1) = 9(0, k) + y(0, k + 1), die zweite Zeile aus-
fiillen, indem man niamlich in eine beliebige Spalte die Summe aus der in
dieser Spalte und der links daneben stehenden Spalte der ersten Zeile stehenden
Zahlen schreibt. Mittels der dritten Gleichung fir » =1, d.h. 9(2,k + 1)
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= y(1, k) + y(1, k + 1) kann man anschlieBend die dritte Zeile (neben n = 2)
ausfiillen usw. Sieht man von den oberhalb der Diagonalen stehenden Nullen ab,
8o kann man sich die Erzeugung der Funktionswerte y(n, k) an dem folgenden
einfacheren Schema merken:

(22 1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

das in der Literatur als Pascalsches Dreieck bekannt ist (nach dem franzo-
sischen Mathematiker Bra1se PascaL (1623-1662)). Die Za.hlen( ) die man

wegen ihres Auftretens im gleich zu behandelnden binomischen Satz auch als
Binomialkoeffizienten bezeichnet, spielen in vielen Gebieten der Mathematik
eine wesentliche Rolle.

Durch vollstindige Induktion itber n bestitigt man leicht die folgenden
(nach (22) zu vermutenden) Beziehungen:

(23) n<k—*,o(;:)=0,
(24) (:)=1 far allen € N,

@) ks> (:) = (”1 )

Die Behauptung (23) ist fiir n = 0 offensichtlich richtig, da im Fall £ >0
eine natiirliche Zahl ! mit k = ! 4 1 existiert und nach der zweiten Gleichung

(21) (l +1)= 0 sein soll. Wir nehmen an, daB (23) fir n = n, bereits gilt, d. h.
fiir alle ¥ > n, die Beziehung k = 0 erfiillt ist, und zeigen, daB dann auch
fiir alle Zahlen k& > ny + 1 die Beziehung ”°;: 1) = 0gilt. Istjedoch k >ng + 1,
so existiert eine Zahl ! mit k =1 4- 1, wobei ! > ny und damit erst recht
1 4+ 1 > ny ist, so daB nach Induktionsvoraussetzung sowohl (’;") = 0 alsauch

= 0 wird. Dann wird aber

o+ 1\ _ (no+1\ _ (o no \ _
-+ oo

b)=
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was zu zeigen war. Den ((23) benutzenden) Induktionsbeweis fir (24) fiber-
lassen wir dem Leser als Ubungsaufgabe. Beim Beweis von (25) ist der Anfangs-
schritt n = 0 (der sich wegen der Voraussetzung k < n aufden Falln = k = 0
reduziert) trivial. Wir nehmen daher an, (25) sei fiir n = 5, schon bewiesen, und
zeigen, daB (25) dann auch fir n = ng + 1 gilt. Da sich die Falle £ = 0 und
k = ny + 1 auf die nach (21) und (24) giiltige Gleichung

no+ 1 - no+ 1 =1
0 7o+ 1
reduzieren, kénnen wir voraussetzen, daB die Zahl k den Ungleichungen

0<k<mno+ 1 geniigt. Dann wird k =1+ 1 mit 0 <! <n,, und es gilt
nach Induktionsvoraussetzung:

(") = (08 = )+ 6370 = (w20 + (i)

= (,,o“i z) + ((n., _”zo) - 1) = (::i;) = ((ﬂo’if)i—k)’

was zu beweisen war.
Binomischer Satz. Fir beliebige (natirliche) Zaklen a, b gilt fur jeden
natirlicken Exponenten n = 1:

26 =3 (Vo s

26) (a+b) =§(,)a :

Wir merken an, daB (26) auch fir belicbige reclle oder kompleze Zaklen a, b richtig
ist (wir werden namlich beim Beweis nur solche Umformungen verwenden, die
auch fir beliebige reelle oder komplexe Zahlen gelten). Die Bezeichnung
binomischer Satz rithrt daher, da8 man in der alteren Literatur Terme der
Form a + b Binome nannte. Rein formal gilt Gibrigens (26) auch fir n = 0.
Indes ist der Fall » = 0 nicht als Anfangsschritt der Induktion ausreichend,
de wir im Induktionsschritt maBgeblich (Frage: wo?) die Voraussetzung
n =1 (d. h. » + 1 = 2) ausnutzen werden. Bei der Niederschrift von (26)
haben wir iibrigens von der iblichen Konvention Gebrauch gemacht, das
Multiplikationszeichen fortzulassen (genau genommen miiBte auf der rechten

Seite (’:) - a*-* - b’ stehen).

Der Beweis von (26) erfolgt durch vollstandige Induktion iiber ». Im An-
fangsschritt n = 1 steht in (26) auf der linken Seite @ - 6 und auf der rechten
Seite ((1) aldo 4 (:) a0b1, was offensichtlich gleich @ + b ist. Wir nehmen nun
an, daB (26) fir den Exponenten n = 1 schon bewiesen ist, und zeigen, da8
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(26) dann auch fiir den Exponenten n + 1 gilt. Nach (2"), der Induktions-
voraussetzung, der linksseitigen Distributivitit der Multiplikation bzgl. der
Addition und (16) gilt zunichst

(@ +b)*!' = (a4 )" (2 +
(2() ..-.,,.)(a+b)

?=0

(;’: ( )a“"b') a+ (g (’:) a""b’) b

Z”r( )a"“"b'+z"'(t)a”"b"’.

»=0 »=0

Nach (12) (mjt, m=0,a,= (’:) anti-v br) und (10") wird

*) Z., (':) i b — (0) a™ B0 4 Zr ( )avul-v I

o <
=an+1+2-:: )an+|-vb'
=a™! ’Zv-o (v+ 1) an-r b,

und entsprechend wird nach (12) (mit, m=n—1,a,= (':) ar-’ b'“) und (24)

'g(v)a.-.,,m 2’() - .,,,H_,_(:),,o,,m

() AT B 4 B

! o
-

’

Also gilt nach (1) und (21)
" n R=v Ly "+
N { R R LT
= a® ""i'1 n-v pr+1 ®+1
T
Nochmalige Anwendung der Umformung (») (mlt( + 1) anstelle von (’:))

ergibt
@+ b+t = Zv ("’ i :) QT B Bt = E’ (’: + 1).,-»,1-- v,

’=0

]

was zu zeigen war.
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Setzen wir in (26) speziell @ = b = 1, so erhalten wir
" (n
(27) § (,) = 2n,

Durch vollstindige Induktion iiber n (Ubungsaufgabe) beweist man leicht
die folgende Gleichung:
Yfm+v\_ [m+n+1
e Z0T)=0)

woraus fir m = 0 speziell

(29) ("':‘)=n+1

und dann mittels (25)

(29 ("‘i‘ 1)=n+1

folgt. Wenden wir auf die in (29) links und rechts auftretenden Binomial-
koeffizienten die Beziehung (25) an, so erhalten wir

(30) “':‘,(m+v)=(m+n+1)'

“o m m+1

Setzen wir noch m -+ n = p, so kann (30) auch geschrieben werden als

" L\ _[p+1
o Z()=(21]) ezm

Es sei ferner das folgende wichtige Additionstheorem fiirdie Binomial-
koeffizienten genannt, dessen Beweis wir dem Leser als Ubungsaufgabe
iberlassen:

(31) ("‘ ','; "2) =§ (,:) (k - x)'

Als nichstes wollen wir die folgende wichtige Beziehung beweisen:

32) o<kgn=(’,:

Der Beweis von (32) erfolgt durch vollstandige Induktion iiber n, wobei der
Anfangsschritt # = 0 trivial ist, da es keine natiirliche Zahl k£ mit 0 < k < ¢
gibt (Implikation mit falscher Pramisse!). Wir nehmen nun an, daB (32) fiir
n = ny bei beliebigem k bereits gilt, und zeigen, daB dann (32) auch fir
n = no+ 1 bei beliebigem k& richtig ist. Es sei also 0 <k < ny+ 1. Dann
existiert eine Zahl ! mit 0 < I < n,, bo daB k = I 4 1 wird. Ist hierbei ! = 0,

)'k!=n-(n—1)~-'(n—k+1).
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s0 wird ¥ = 1 und nach (29’)
o414}, [(ma+1) , _
T

und das ist gerade die Behauptung von (32) im Fall n =244 1, £ =1.
Ist I = n,, 80 wird & = ny 4 1, und nach (24) ist

mo+ 1) 4y (1), | = g

(7 ) e = (e L) a0t = ot 0o meo,
und das ist die Behauptung von (32) im betrachteten Fall. Ist schlieBlich
0 < ! < ng, so wird nach Induktionsvoraussetzung

mo+1\ ., _ (ro+ 1),

( k )k!_(1+1) ¢+nt
— (™ ng |\
= () e+ o () e
=ng(ng—1)---(mp—141)(+1)

+ ol — 1)+ (o — I+ 1) (ng — 1)
=nolmg— 1) -(mg—1l4+1)(I+1+mn—1)
=Mmo+1)ng - (mg—14+1)
=Mmo+1)ng---(mp+1—k+1),
und das ist die Behauptung von (32) im Falln = ny 4 1,0 < ! < ny. Wir bemer-

ken, daB die gesonderte Behandlungder Fille I = 0 und ! = nydeshalb erforder-
lich ist, weil in diesen Fallen die Induktionsvoraussetzung nicht anwendbar ist.
Da (Z) eine natiirliche Zahl ist, folgt aus (32) speziell, da im Fall0 <k <=
die Zahl k! ein Teiler von n - (n — 1) -+ (n — k 4 1) ist, so daB wir nach
3.4.(25) den Satz (32) auch in der Form

, n _n-(n—i)u~(n—k+1)
(32) 0<k§n=>(k)_ )
schreiben kénnen, was durch Erweitern mit (n — k)! noch auf die symmetrische
Form

" n\ _ n!
82) k§n$<k>_k!(n—lc)!
gebracht werden kann.

Als weitere Anwendung des Rechtfertigungssatzes (1) wollen wir zeigen, daB die
natiirlichen Zahlen durch die Peanoschen Axiome (vgl. 3.2.) bis auf Isomorphie
eindeutig charakterisiert sind, genauer:

(33) Jede Pgano-Struktur (l:l, 0, G) ist der Peano-Struktur (N, 0, o) isomorph,
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wobei unter einer Peano-Strukiur (vgl. 3.2.) ein beliebiges Modell des Peanoschen
Axiomensystems verstanden wird (zum Isomorphlebegmﬂ' vgl.2.7.(2)). Hierausfolgt
natiirlich nach 2.7.(3) sofort, daB je zwei Peano-Strukturen zueinander l.somorph
sind. Zum Beweis von (33) bemerken wir zunachst, daB es niach (1) (gemau) eine

Abbildung f von N in N gibt, die folgende Eigenschaften besitat:

34  f0)=0, flom)=0o(fm)) REN).

Wenn wir zeigen konnen, daB f eine 1-1- Abbxldung von N auf N ist, haben wir
(33) bewiesen; denn dann ist nach (34) f ein Isomorphismus von (N 0, o) auf
(N, 0, o). Hierzu brauchen wir offenbar nur noch zu beweisen, daB es zu ]edem z€N
genau eihe Zahl n € N mit f (n) = z gibt. Zum Beweis dieser Behauptung sei M die
Menge aller derjenigen z € N, fir die das der Fall ist. Dann ist zunachst 0€ M.
Denn einerseits ist nach (34) die Zahl 0 ein Urbild von 0 bei der Abbxldung f Esist
aber 0 auch die einzige Zahl mit dieser Eigenschuft; gabe es namlich eine natirliche
Zahl n % 0 mit f(n) = 6, dann wire nach 3.2.(6) » = o(n;) mit n; € N, und nach
(34) ware_

0= Jlo(ny)) = 6(f(ny)),
im Widerspruch dazu, daB es nach Axiom 3.2.(4) fir (N 0 a) kein z€ N mit
0= & () gibt. Es sei nun z, ein beliebiges Element der Menge M, d. h. ein Element
aus N, das genau ein Urbild n, bei der Abbildung f besitzt. Wir behaupten, daB
dann auch 6 (z) zu M gehéort. Wegen f(ny) = 2, ist nach (34) zunachst

flo(ng)) = 6(f(mg)) = & (o),
d. h., die Zahl o(n,) ist Urbild von G (zy) bei der Abbildung f. Ist andererseits » ein
beheblges Urbild von & (z,) bei f, so muB zunachst n =+ 0 sein; denn sonst ware
0= f(0) = 6 (x,), im Widerspruch zu Axiom 3.2.(¢4") fiir (N 0, &). Also gibt es eine
Zahl n; € N mit # = o(ny). Dann wird aber & (z,) —f(a(n,)) = §(f(n,)), woraus
nach Axiom 3.2.(3") fir (N 6 &) sofort zy = f(n,) folgt, so daB nach Voraus-
setzung (ng sollte das einzige Urbild von z, sein) n; = ny und mithin n = a(n,)
= 0/(no) sein muB. Also ist o (no) das einzige Urbild von ¢ (o), d. h. & (%o) € M. Damit
besitat die Menge M (= N) die folgenden Eigenschaften:

0€ M, ANEEM=>a(@)€ M).

zeN

Folglich enthélt nach Axiom 3.2.(5’) fiir (N, 6, &) die Menge M samtliche Elemente
aus _ﬂ, und das besagt ja nach Definition von M gerade, daB zu jedem Element
z € N genau eine Zahl 2 € N mit f(n) = = existiert.

Ein Axiomensystem, das nur untereinander isomorphe Modelle besitzt, heift
kategorisch oder ph. Insbesondere ist also nach (34) das Peanosche Axiomen-
system kategorisch, wobei man aus dem Beweis von (34) noch leicht entnehmen
kann, daB es zu je zwei Modellen dieses Axiomensystems jeweils nur eine einzige
isomorphe Abbildung des einen auf das andere Modell gibt. Man sagt hierfiir auch,
daB das Peanosche Axiomensystem sirikt kategorisch ist. Wir bemerken, daB man
in jeder Peano-Struktur, so wie wir das in den vorangehenden Abschnitten am
Beispiel der Struktur (N, 0, o) vorgefiihrt haben, eine Addition ‘-T-, eine Multi-
plikation ~, eine reflexive totale Ordnung < usw. definieren kann, wobei dann der
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konstruierte Isomorphi fvon (N, 0,_0) guf (I‘.l, 6, &) zugleich auch ein Isomor-
phismus von (N, 0,0, +,°, <, ...)auf (N, 0,6, +, ¥, 5, . . .) wird.

Wir wollen schlieBlich noch einen Beweis fiir die in 2.9.(18) bereits erwahnte
Behauptung skizzieren, daB such die Umkehrung von Satz 2.9.(17) gilt, und zwar
wollen wir zeigen, daB jede unendliche Menge M einer shrer echten Teilmengen gleich-
mdchtig ist:

(35) M unendlich >\ (N < M AN~ M)
N

(wegen der in 2.9.(11) bewiesenen Aquivalenz von Endlichkeit im Sinne von 2.9.(2)
und Russellscher Endlichkeit konnen wir die Voraussetzung von (35) interpretieren
als: M ist keinem Abschnitt £ (#) (n € N) gleichmachtig). Dazu merken wir zunachst
an, da8 die Funktion o, die einer beliebigen natiirlichen Zahl n jhren unmittelbaren
Xachfolger n + 1 znordnet, eine 1-1-Abbildung von N auf N\{0} ist, d. h., die Menge
N ist ihrer echten Teilmenge N\ {0} gleichmachtig. Wir werden nun folgendes zeigen :

(36) M unendlich=> \,,{ (NoS M ANy~ N).

Daraus ist leicht (35) zu erhalten. Ist namlich g 1-1-Abbildung von N, auf N mit
g(xo) = 0, so wird (Beweis!, vgl. Abb. 9) g~1c 0o g 1-1-Abbildung von N, auf
No\ {zo} und (g=to oo g) \ e, 1-1-Abbildung von M auf M \ {z,} (= M), womit
(35) bewiesen ist. ’

No M\ N,

i i’% 0% 0%2 0 — o o — o
g
%o & IR gL I I I‘
=l M\ Ny
p——
No({XD] M\ Np

= Ouadp O
Jo -
[-]

°xv Ox? Ox,

_Abb.9

Zum Beweis von (36) betrachten wir bei gegebenem z, € M zunachst die folgende

Menge F:
F:={X,2): XS MrX+0rz€ X} {2} -

Offenbar ist F eine Korrespondenz von P (M) in M. Es sei dann gemaB 2.8.(2) f
eine Auswahlfunktion fir F, d. h. eine (eindeutige) Abbildung von P (M) in M mit
f S F. Die Funktion f ordnet der leeren Menge das Element z, und jeder nichtleeren
Teilmenge X von M ein eindeutig bestimmtes Element der Menge X zu. Es sei ¢ die
durch die folgenden Rekursionsgleichungen definierte Abbildung von N in P (H):

?(0) =8, ¢+ 1)=¢n) {f(M\pn))} '
Durch vollstindige Induktion iiber n zeigt man leicht, daB"lg(n)| = n bei be-
liebigem n ist (hierbei wird wesentlich benutzt, daB M unendlich ist), wobei auBer-
dem ¢ (0) c (1) = @(2) = - - - gilt und jeweils g (n + 1)\ p(n) eine Einermenge
ist. Setzen wir

Ny:= ”LGJN!P (n)



136 3. Das System der natiirlichen Zahlen

und bezeichnen mit y diejenige Abbildung von N in M, die einer gegebenen natiir-
lichen Zahl » das einzige Element aus @ (n + 1)\ ¢ (n) zuordnet, so wird ¢ eine
1-1-Abbildung von N auf Ny, womit (36) bewiesen ist.

3.6. Kombinatorische Anzahlbestimmungen

Im vorliegenden Abschnitt wollen wir die bereits in 2.8. begonnenen Anzahl-
bestimmungen endlicher Mengen systematisch weiterfiihren. Derartige Anzahl-
bestimmungen bilden den wesentlichen Gegenstand dor sogenannten Kom-
binatorik, deren einfachste Grundbegriffe wir hier ebenfalls behandeln
werden. In 2.9. hatten wir als Elementeanzahl oder Kardinalzahl | M| einer
endlichen Menge M die eindeutig bestimmte natiirliche Zahl n definiert, fiir
die M ~ A(n) gilt, wobei 4 (n) die Menge aller natiirlichen Zahlen i mit
0 < i < n bezeichnete. Dort wurden bereits eine Reihe von einfachen Anzahl-
sitzen vermerkt, die wir noch einmal kurz zusammenstellen wollen:

(1) IM|=0&M=8;
(2) | Ml=nrz2é¢M=> Moz} =n+1;

(3) | M|=nraz€EM=>(n>0A) | M\{z}|=n—1;

(4) | M|=nANZ M= (N endlichr) |[N| < n;

(5) |M|=nAN~ M= (N endlich r) |[N| = n.

Als unmittelbare Folgerung aus (4) erhalten wir, daB der Durchschnitt
M AN ciner endlichen Menge M mit einer beliebigen Menge N stets endlich
istund |M ~N| < | M| gilt:

(6) M endlich = M ~ N endlich n |[M ~N| < |M|.

Als erstes wollen wir nun den folgenden naheliegenden Satz beweisen:

7 | My| =ngn | Myl =ny A My~ My =0= | M v M| =n + 2,
Den Beweis von (7) fithren wir durch vollstindige Induktion iiber n,. Im Fall
ny, = 0 (Anfangsschritt) ist M, = 0, und die Behauptung von (7) gilt trivial.
Wir nehmen nun an (Induktionsvoraussetzung), (7) sei fir n, = n schon be-
wiesen, und zeigen (Induktionsbehauptung), da8 (7) dann auch fir n, = n 4 1
richtig ist. Es sei also | M,| = n + 1. Dann ist nach (1) M, nicht leer. Also gibt
es ein 2 mit € M,. Nach (3) ist dann | M,\{z}| = n. Wegen M, ~ M, = 0 ist
auch M, ~ (M, \ {z}) = @, und es ist = & M, (M, \ {z}). Folglich wird nach
Induktionsvoraussetzung | M v (M;\{z})| = n; + %, und (2) liefert schlieBlich
| My o My| = [ Mo (Ma\{&}) o {z}| =0, 4+ n 41,
womit die Induktionsbehauptung bewiesen ist.
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Durch vollstindige Induktion iiber k kann man (7) sofort verallgemeinern zu
(®) M =rnnon My =mAA(Si<jS k=M~ M, =0)
Wf '
S| Mo CM|=n 4"+ n.
Als unmittelbare Folgerung aus (7) erhalten wir .
(9) | Myl =nyA | My| =ngn My & My => (ny <0y A) | M\ M| =0y —n,.
Denn offenbar ist im Fall M, S M, stets M, = M, (M \ M,) mit
My~ (M \ M) = 0,
also nach (7) | M| = |M,| 4+ | M\ M,|, d. h.
ny = ny + | M \M,|,
woraus mittels 3.4.(24) unmittelbar die Behauptung von (9) folgt (daB mit M
auch M,\ M, endlich, also | M,\ M,| eine natiirliche Zahl ist, folgt aus (4)).
Sind M,, M, endliche Mengen mit |M,| = n,, | M;| = n,, so kénnen wir
allgemein nur behaupten, daB | M, w M,| < ny + ny ist:
(10)  |My| =1 | M| =1ny= | My o My| < 0y + 1y,
Unter Verwendung von (9) kénnen wir indes (10) sofort zu der folgenden
merkwiirdigen Gleichung verschirfen :
(11) | My|=nyn | My| =ny=> | My v Ms| + | My A M| =ny + ny.
Wir merken an, daB (7) als Spezialfall in (11) enthalten ist. Zum Beweis von
(11) beachten wir, daB
My My=M, < (M,)\ (M, ~ My))
mit M, ~ (M\ (M, ~ M,)) = . Also wird nach (7)
My~ M,| = | M| + | MM, ~ M))|,
wobei wegen My~ M;C M, nach (9) | M\(My~M,)| =n,— | M, ~ M,]| ist.
Mithin wird |M; « M,| = ny + ny — | M, ~ M,|, was nach 3.4.(24) nur eine
andere Schreibweise der Behauptung von (11) ist.
Als nichstes wollen wir zeigen, daB folgendes gilt:
(12)  |My|=mnya | My] =ny= | My X My| = n; - m,
Der Beweis von (12) erfolgt durch vollstandige Induktion iiber n,. Der An-
fangsschritt n, = 0 ist wegen M; X 0 = 0 trivial. Wir nehmen daher an, (12)
sei fiir n, = n schon bewiesen, und zeigen, daB8 dann (12) auch firn, = n 1
richtig ist. Im Fall n,=n 41 kénnen wir offenbar M, in der Form
M,= M, {z} mit = ¢ M, und | M,| = n darstellen, so daB nach Indyktions-
voraussetzung |M; X M;| = n, - n ist. Andererseits ist offenbar
My X My=M, X (M, {z}) = (M; X M) v (M, X {z})
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mit (M; X M;) ~ (M, X {x}) = 0. SchlieBlich ist -{((y, 2),y) :y € M} eine
1-1-Abbildung von M, X {z} auf M;, so daB M, X {x} ~ M, und daher
nach (5) | M, X {z}| = |M,| = n, wird. Damit erhalten wir nach (7)
My X My| = | My X My| 4+ | My X {2} =9y 0+ 0y =ng* (n41),
womit die Induktionsbehauptung bewiesen ist.
Durch vollstandige Induktion iiber k& kann (12) sofort verallgemeinert
werden zu
(13) | Myl=mqnc-n|My| == |My X oo X M| =1ng--m,
woraus sich im Spezialfall n; = - - - = n, = 2 nach 3.5.(18) sofort
(13) |M|=nrk=1=|M|=nk
ergibt. In 2.4.(26') hatten wir nun bereits bemerkt, daB man die Menge M*
aller £-Tupel von Elementen einer beliebigen Menge M auch auffassen kann als
Menge aller Abbildungen von einem beliebigen Indexbereich I = {i,, ..., i}
aus k Elementen (d. h. mit [I| = k) in die Menge M. Genauer gilt
14)  |I|=k=> M ~ M,
wobei (vgl. 2.4.(8)) M* die Menge aller Abbildungen von I in M bezeichnet.
Der exakte Beweis von (14) sei dem Leser als Ubungsaufgabe tberlassen.
Damit erhalten wir auf Grund von (13’) und (5)
(14') | M|=nal|l|=k=|M| =nk
in Worten: Die Anzahl aller Abbildungen f von einer Menge I mit k Elementen
in eine Menge M mit n Elementen ist gleich nk.
Unter Verwendung von (14') kénnen wir nun leicht den folgenden Satz
beweisen: :
(18) M| =n=[PH)|=2%
in Worten: Eine Menge aus n El ten besitzt insg ¢ 2% Teil
Beweis von (15) zeigen wir, daB fiir jede Menge M folgendes gilt:
(15)  B&H) ~ {o, ).
Hierzu ordnen wir jeder Menge X & M ihre durch
._J1, fallsz€ X,
rx(@): = {o, falls 2 € M\X,
definierte charakteristische Funktion zu. Man zeigt leicht, daB die durch
{(X, ¥): X S M} definierte Korrespondenz eine 1-1-Abbildung von P (M)
auf die Menge aller Abbildungen von M in {0, 1}, d. h. auf {0, 1}* ist, so daB
in der Tat (16’) und damit auf Grund von (14’) auch (15) gilt (dabei ist lediglich
noch |{0, 1}| = 2 zu beachten).

Zum

e
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Wirkommen nunzurkombinatorischen, d. h. mengentheoretischen Deutungder
in 3.5.(19’) induktiv definierten Funktion n!. Wir behaupten, daB folgendes gilt:
(16) |M|=n=|T(H)|=nl;
in Worten: Die Anzahl aller 1-1-Abbildungen einer Menge uus n Elementen auf
sich (aller Permutationen einer Menge aus n Elementen) ist gleich n!. Den Beweis
von (16) fihren wir durch vollstandige Induktion iiber n. Der Anfangsschritt
n = 0 ist trivial, da in diesem Fall M = & und rein formal die leere Abbildung
(leere Menge von geordneten Paaren) die einzige 1-1-Abbildung von 9 auf 8 ist.
‘Wem dies zu gekiinatelt oder abstrakt erscheint, mag in (16) den Fall n = 0
ausschlieBen und den Induktionsbeweis mit n = 1 beginnen: Hier ist M eine
Einermenge und in der Tat e, die einzige 1-1-Abbildung von M auf sich (vgl.
S. 60). Wir nehmen nun an, daB (186) fiir die Zahl  bereits gilt, und zeigen,
daB die Behauptung von (16) dann auch fiir jede Menge M mit # + 1 Elementen
richtig ist. Es sei M = {ay, ..., a,,,} eine solche. Mit F;(i=1,...,n+ 1)
bezeichnen wir die Menge aller 1-1-Abbildungen f von M auf sich, fir die
f(a,.,) = a; gilt. Offenbar sind die Mengen F; paarweise disjunkt, und es gilt

TM)=Fyw--- VF»+!'
Ferner ist F,,, ~T(M \{a,,,}); denn die Korrespondenz &, die einer
beliebigen Permutation

a ...a, a,,,

(al.i b al.n aﬂ‘-‘)

aus F_ , die Permutation

(a‘ - a,)
L
der Menge M\{a, .} (= {a,...,@as}) zuordnet, ist eine 1-1-Abbildung van
F,,, suf T(M\{a,,,})). Also ist nach Induktionsvoraussetzung (nach (3) ist
|M\{a,,}| =n) und (5) |F,,,|=mn! SchlieBlich ist bei beliebigem
i=1,...,nauch F; ~ F__,, alsoebenfallsnach (5) |F;| =nl(i=1,...,n);
denn die Korrespondenz &;, die einer beliebigen Permutation f aus F; die
Permutation (a;4a,,,)°f zuordnet (bzgl. der Definition der Transposition
(a;a,,,) vgl. 2.4.(20)), ist eine 1-1-Abbildung von F; auf F,.,: Ist nimlich
Qg .8 .Gy
= (" a % )

TR R
eine beliebige Permutation aus F;, so wird
ay...a5...a,
D,(f) = (@;8p01) o f = (a.i ) / a “) ,

TR Y A
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d.h. & (f)EF,,,, D, ist also eine Abbildung von Fin F, ,; ist g eine be-
liebige Permutation aus F,,,, so ist analog (a; a,,,)> g € F;, wobei wegen
(2,0, 41) 0 (3; 8oy y) = €y

¢(((ai Qi) g) = (@4 0y,4)° (B:8,,0)09 =9
gilt, d. h., @, ist Abbildung von F; auf F,,,; sind schlieBlich f, f; Permu-
tationen aus F; mit @,(f;) = D;(f2), so ist (ega,, ) fi = (a;a,,,)¢ fa,
und folglich (Multiplikation beider Seiten der letzten Gleichung mit
(@; 2,,,)) auch fy = f,, d.h., &, ist eindeutig umkehrbar. Aus dem Bewie-
senen folgt mittels (8) und 3.5.(19)

| Z(M)| = |Fy|+ -+ |Fppyl=nl-(n+1)=(n+ 1),
womit die Induktionsbehauptung bewiesen ist.

Zur kombinatorischen Deutung der durch 3.5.(21) induktiv definierten

n
)
gegebene natiirliche Zahl & mit §, (M) das System aller derjenigen Teilmengen
von M, die die Elementeanzahl & besitzen:
(17) M) :={X: XS M |X|=k}.
Die Elemente des Systems &, (M), d. h. die k-el tigen Teilmengen von M,
heien auch Kombinationen ohne Wiederholungen von Elementen aus M zur

Klasse k.
Wir behaupten, daB folgendes gilt:

I

Binomialkoeffizienten ( bezeichnen wir fiir eine gegebene Menge M und eine

d. h., (Z) ist die Anzahl aller der Teilmengen einer Menge M von n Elementen,

die genau k Elemente enthalten.
Nach (18) bestimmt sich z. B. die Anzahl der Tipmé&glichkeiten beim Zahlen-
lotto (,,6 aus 90“) zu
(90)_ 90-89-88-87-86
5/7 1. 2. 3- 4- 5
und beim Sportfesttoto (,,6 aus 49%) zu
(49)__ 49-48-47-46-45-44
6 1- 2- 3- 4- 5- 6
Den Beweis von (18) fithren wir durch vollstindige Induktion iiber #. Der
Fall n = 0 ist nach 3.5.(21) trivial, da 8,(9) = {8} und ®,,,(0) = 0 (es gibt
genau eine Teilmenge X der leeren Menge mit | X | = 0, namlich X = @, und

= 43949268

= 13983816.
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keine Teilmenge X der leeren Mengen mit | X| = k + 1 > 0). Wir nehmen nun
an, (18) sei fir » = n, bereits bewiesen, und zeigen, daB (18) dann auch fir
n =mno 4 1 gilt. Es sei also ¥ = {a,,...,qa,,,} eine beliebige Menge mit
ng + 1 Elementen und k eine beliebige natiirliche Zahl. Ist ¥ = 0, so wird
8. (M) = {0} und in der Tat |R,(M)| = To 2_ 1). Ist dagegen k > 0, so wird

R.(M).= 8, (M\ {a,,.}) v 81,
wenn wir mit §} das System aller X € ®,(M) mit a,, ,, € X bezeichnen, wobei
iiberdies ®,(M\{a, ,}) ~ R = 8 ist. Wegen | M\{a,,_, }| = n, ist nach Induk-
tionsvoraussetzung

1% (M\ (o, }) | = (’,‘j).

Ferner ist &% ~ ®,_,(M\{a,_,,}) (hier brauchen wir die Voraussetzung k > 0),
da sich jede Menge X € ® in eindeutiger Weise in der Form X, {a, ,}
mit Xo€ ®;_, (M\{a, ,,}) darstellen 1aBt. Folglich ist nach (5)
(R = |8, (M\{“n.,n})[,
also nach Induktionsvoraussetzung |R®}| = ( o ) Dann wird aber nach (7)
: k—1
und 3.5.(21)
no + 1)

19,0001 = 12,00 1+ 1981 = () + (™) = (7

was zu zeigen war.
Da fiir eine beliebige Menge M mit | M| = n offenbar

B) = Ro(M) w Ry(H) © - -+ — Rn(H)

ist, wobei die Mengensysteme ®,(M) (v=0,...,n) iiberdies paarweise
disjunkt sind, wird nach (8)

B =) |8, (M),

ey}
was wegen (15) und (18) auch als
& (7

»=5()
geschrieben werden kann. Damit sind wir zu einem neuen mengentheoretischen
Beweis der Formel 3.5.(27) gelangt. Da im Fall k < n die Korrespondenz, die
einer beliebigen Menge X aus ®,(M) die Menge M\X zuordnet, vor allem
nach (9) eine 1-1-Abbildung von ®,(M) auf ®,_,(M) ist, wird

IQE(M)] = lﬁn-E(M)l’
und das ist der mengentheoretische Inhalt der Formel 3.5.(25).
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In analoger Weise lassen auch alle weiteren Formeln in den Binomial-
koeffizienten eine mehr oder minder einfache kombinatorische Deutung zu
(welche kombinatorische Bedeutung hat z. B. das Auftreten der Binomial-
koeffizienten im binomischen Satz?).

Fiir zahlreiche Anwendungen ist die folgende Verallgemeinerung des Begriffs
der Kombination zur Klasse k von Bedeutung. Es sei M eine endliche Menge
mit |M|=n und (ny,...,ns) ein r-Tupel von natiirlichen Zahlen, das der

Bedingung Z’ n, = n genigt. Unter einer (ny, ..., n,)-Kombination (ohne

erderholungen) der Elemente aus M verstehen wir ein beliebiges r-Tupel
(X4, ..., X,) von Teilmengen von M mit folgenden Eigenschaften:

XywrovX=M X, ~X, =0 (% e) |X,|=n,

Mit R,.....n) (M) bezeichnen wir das System aller dieser (n, . . . , #,)-Kom-
binationen:

(19) R(tu,...,n,) (M) = {(Xh DN -xr) : (Xh EEE) xr) ist

(ny, . . ., nr)-Kombination von M}.
Dann gilt
r n!
(20) |M|=n/\§n¢=n=>m(,,b_._.,,',(M)I= PP

r
In (20) ist speziell enthalten, da8 im Fall n = 3 n, die Zahl n,! - - - n,] stets

e=1
ein Teiler von n!ist (denn |R,, .. freeesne) (M)] ist seiner Natur nach eine natiirliche

Zshl!). Im Fall r = 2, ny = k (s n), n; = n — k nimmt die Behauptung von
(20) die Gestalt

| R (M) | = kl(:' lc)'( (Z))

an. Diese Gleichung ist natiirlich nur eine andere Fassung der Behauptung
von (18); denn im Fall k < n ist offenbar X & M genau dann eine Kombi-
nation der Elemente von M zur Klasse ¥, wenn das Paar (X, M\X) eine
(k, n — k)-Kombination in M ist.

Mit Hilfe von (20) lassen sich Fragen folgenden Typs beantworten: Auf
wie viele Weisen lassen sich die 32 verschiedenen Karten eines Kartenspiels
an drei Spieler verteilen, so daB jeder Spieler zehn Karten erhalt und die beiden
restlichen Karten im Talon verbleiben? Antwort:

32!
10!-10!-10!- 21"
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Dem Beweis von (20) schicken wir den folgenden fast trivialen Hilfssatz
voraus:

Es sei M, eine endliche Menge, f eine Abbildung von My auf M, und p eine
natirliche Zahl, so daB das volle Urbild Uy(y) (vgl.2.3.(4)) eines beliebigen
Elements y € M, jeweils aus genaw p Elementen besteht. Dann ist auch die Menge
M, endlich, und es gilt | M| = p - | M,|.

Ist namlich | M,| = m und dabei M, = {a,, . . ., Gm}, 80 wird

My = Uslay) v - - v Uylan),
wobei die Mengen Us(a,) (1 =1, ..., m) paarweise disjunkt sind (vgl. 2.5.(20))
und bei beliebigem x = 1, ..., m nach Voraussetzung | Uy(a,)| = p ist. Dann
ist aber nach (8) |M;| = p - m = p - | M,|, wie behauptet wurde.

Zum Beweis von (20) sei zunéchst (4, ..., 4y) eine feste (ny, ..., n,)-Kombi-

r
nation der Menge M (eine solche existiert wegen 2 n, = n). Eine Permutation n der
Menge M soll eine (4, ,..., 4,)-Permutation Pgel:mmt werden, wenn 7 jede der
Mengen 4, ..., Araufsichabbildet,d.h., wenn{z (z): 2€ 4.} = 4 firg=1,...,r.
Die Menge aller (4, ..., 4r)-Permutationen von M werde mit T (4,,..., 4,)
bezeichnet. Fiir beliebiges #€ T (4, ..., 4,) ist offenbar m,: == |4, (vgl
2.4.(9)) eine Permutation der Menge 4,, und es gilt: z =7 -+ x,. Sind
umgekehrt 7, . .., n, beliebige Permutationen der Mengen 4, ..., 4,, so wird

=g\ \wneine(4y,. .., Ay)-Permutation. Die (4, . . ., A,)-Permutationen
entsprechen also eineindeutig den r-Tupeln (7, ..., 7)€ T(4;) X **+ X T(4,),
d. h. :

Ty, ) ~ T(A)) X - X T(4),
und mithin gilt nach (5), (13) und (17)

1T (A, o0, A0 = |T ()]~ I1T(4r)| =ngl- -2l
Ist nun 7 eine beliebige Permutation der Menge M, so sei f(n) : = (X, ..., X;)
diedurch X, : = {n(2) : 2€ 4.} (¢ =1, . . ., r) definierte (n,, . . ., 7,)-Kombination.
Man sieht leicht, daB f eine Abbildung von T (M) auf Rn,,...,n) (M) ist. Fir

eine beliebige (ny, . .., nr)-Kombination (Xj, ..., X;) und eine beliebige Permu-
tation x € T (M) mit f(n) = (X, ..., X,) wird

Ur((Xyy ooy X)) = {mon*:a* € T4y, ..+, 4,)}
(Beweis!). Mithin ist bei beliebigem (X, ..., Xy) € R{n".“'”')(_u )
Ur((Xy, .oy Xp)) ~ T4y, - - -, 4y),

also |Uy((Xy,..., X;))|=mn! - n!. Damit kénnen wir (mit M, = T (M),
M, = Rey,....n) (M), P=my!---n!) den zuvor bewiesenen Hilfssatz an-
wenden und erhalten mittels (17):

nl=mngle-n!- Iﬁ(n‘,....n,)(M” ,

was zu zeigen war.
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n! ! . .
Die Zahlen P P mit }) n, = » nennt man wegen ihres Auftretens im
T n, &

folgenden sogenannten polynomischen Satz auch Polynomialkoeffizienten.
Polynomischer Satz. Fir beliebige (natiirliche) Zahlen a,, . . ., ar (r = 2)
gilt fir jeden natiirlichen Exponenten n = 1:
n! "y Ry
O
wobei 3 die (in einer beliebigen Reihenfolge genommene) Summe

np+en-n

iber alle moglichen Indexkombinationen (n4,...,7) mit 0 <%, <=
r

(e=1,...,7) und ' n, = n bezeichnet. Im Fall r = 2 geht offenbar (21)
e=1

wegen 3.5. (32”’) in den binomischen Satz iiber.

Den Beweis von (21) fiihrt man am bequemsten bei festem n durch voll-
standige Induktion iiber die Anzahl r der Summanden. Im Fall r = 2 (An-
fangsschritt) reduziert sich — wie bereits bemerkt — (21) auf den binomischen
Satz, ist also die Behauptung richtig: Wir nehmen nun an, (21) wire bereits
fiir alle Summen mit r Summanden bewiesen, und zeigen, daB (21) dann auch
fiir alle Summen mit 7 + 1 Summanden gilt:

(a'l + 4 a”.i)” = (ai +-+ a,_, + (a + ar+1))'

. ny "r 1
= Y ——— a v t+a,, )"
. 1 r+d
Ryt _g+men “l! nr l! ml
D S o T AR
e r-
Byteetf_qg+man n,! n,_y!1m!
m! a"r, "r:l
r+
npt g gmm Ryl
n! " n,
= 1 ... r+1
° = 1. |a'l LAY
fg+cee b q=n Ny Mray?

Dabei hat man sich bei der letzten Umformung nur zu iiberlegen, daB8 (nach
Kiirzen durch m!) beide Summen aus denselben Summanden aufgebaut sind.

Es sei nun wieder M eine beliebige Menge mit | M | = n und k eine natiirliche
Zahl mit 1 < k < n. Unter einer Variation okne Wiederholungen von Elementen
aus M zur Klasse k versteht man ein beliebiges k-Tupel (zy, . . . , z;) aus pasar-
weise verschiedenen Elementen der Menge M. Die Menge aller dieser k-Tupel
wollen wir mit 8, (M) bezeichnen:

(22) BM):={(xy, ..., %5): (2, ..., 2 )EMonz,..., 2
paarweise verschieden}.
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Wahrend es also bei den Kombinationen zur Klasse k£ nicht darauf ankommt,
in welcher Reihenfolge ihre Elemente genommen werden (die Kombinationen
sind Mengen), spielt bei einer Variation zur Klasse k diese Reihenfolge (wie eben
bei k-Tupeln) eine wesentliche Rolle. Wir wollen zeigen, daB folgendes gilt:
(23) M=nalgk<n=>|B(M)|=nn—1)(n—Fk+ 1)

Diesen Anzahlsatz bendtigt man bei der Lisung von Aufgaben folgenden
Typs: Bei wie vielen der Zahlen zwischen 1000 und 9999 besteht die iibliche
Dezimaldarstellung aus paarweise verschiedenen Ziffern (wie z. B. bei 1023
usw.)? Zur Beantwortung dieser Frage betrachten wir zundchst alle Zahlen
2y 103 + 2+ 102 + 23+ 10 4 2 mit (2, 72, 73, 25) € B4({0, .. ., 9}). Thre
Anzahl ist nach (23) gleich ,

10-9- 8- 7 = 5040.
Unter den betrachteten Zahlen kommen nun aber neben den uns interes-
sierenden noch alle Zahlen der Form z; * 102 4 z; - 10 4 2, mit
(zlr z3, z‘) € 83({1: sy 9})
vor. Deren Anzahl ist, wiederum nach (23), gleich
9.8.7 =504,
womit sich die zu bestimmende Anzahl zu
5040 — 504 = 4536
ergibt.

Ein Beweis von (23) wird z. B. mittels des oben bewiesenen Hilfssatzes
folgendermaBen erhalten: Die Korrespondenz £, die einer beliebigen Variation
(x4, ..., %) € B(M) die Kombination {z,,...,z,} € R,(M) zuordnet, ist
eine Abbildung von B,(M) auf ®,(M), fir die offenbar bei beliebigem
{24, ..., 7} € R (M) die Beziehung|Uy({z,, . .., z,})|= k! gilt. Mithin wird
nach (18) und 3.5.(32')

198, (M) = | R, ()] - k! = (;)-m —nm—1)(r—k+1),
was zu zeigen war.

Verzichtet man auf die in (22) gestellte Forderung, daB die Elemente
%y, ..., %, paarweise verschieden sind, so gelangt man zu den sogenannten
Variationen mit Wiederholungen von Elementen aus M zur Klasse k. Bezeichnen
wir die Menge aller dieser mit 8% (M), so wird offenbar
(24) ¥ (M) : = M*,
und daher gilt nach (13')

(26) M| =mn=BI)| = .
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Mit Hilfe dieses Anzahlsatzes bestimmt sich z.B. die Anzahl der Tip-
méglichkeiten beim FuBballtoto (mit Zusatzzahl) zu 313 = 1594 323.

Die abschlieBend zu behandelnden Kombinationen mit Wiederholungen
sind insofern etwas problematisch, als sie der Sache nach zwar ebenfalls
recht einfach sind, ihre exakte Definition aber einige Schwierigkeiten bereitet.
Der Grund hierfiir ist, daB es in unserem Begriffesystem keine Objekte gibt,
die den Charakter von nicht geordneten Gesamtheiten mit mehrfach auf-
tretenden Elementen haben. Am einfachsten kénnen wir eine Kombination
mit Wiederholungen dadurch beschreiben, daB wir mittels einer Abbildung «
von M in N fir jedes Element z € M angeben, wie oft es in der betreffenden
Kombination gezahlt werden soll. Eine solche Abbildung « nennen wir eine
Kombination mit Wiederholungen von Elementen aus M zur Klasse k, wenn
J a(z) = kgilt. Die Menge sller dieser Kombinationen wollen wir mit ®f (M)
seM

bezeichnen :
(26) SYM):={a:a:M—NrJ a(z)=4.
TEM

Wir behaupten, da8 folgendes gilt:
e Mi=nz =i = (TR

Mit Hilfe dieses Anzahlsatzes lassen sich Aufgaben folgenden Typs lésen:
Wie viele verschiedene Wiirfe sind mit finf gleichen (= ununterscheidbaren)
Wiirfeln méglich? Im vorliegenden Fall nehmen wir als Menge M die Menge
{1,..., 6} der auf jedem Wiirfel vorhandenen Augenzahlen. Die Abbildung
a ordnet jeder Augenzahl z € M die Anzahl der Wiirfel zu, die bei einem be-
stimmten Wurf die Augenzahl z zeigen. Sie charakterisiert vollstindig die bei

einem bestimmten Wurf hinsichtlich der Augenzahlen zu becbachtende
Situation. Durch die Bedingung Z’ a(z) = 5 wird festgelegt, daB wir es mit

fiinf Wiirfeln zu tun haben. 'Dumlt ergnbt sich nach (27) die gesuchte Anzahl zu

|8% (M) = ( 0) — 262.
Ferner folgt aus (27), daB die Anzahl der Summanden im polynomischen
Satz (21) gleich (n +; - 1) ist.

Den Beweis von (27) fihren wir bei festem k durch vollstindige Induktion
iiber n. Im Fall n = 1, d. h. M = {a,}, ist nur der Fall a(a,) = ¥ méglich, so

da8 |8} (M)| =1 wird, also wegen (Il:) = 1 die Behauptung von (27) erfillt
ist. Wir nehmen nun an, die Behauptung von (27) sei fir alle Mengen M mit
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n Elementen bereits bewiesen, und zeigen, da88 die Behauptung von (27) dann
auch fiir alle Mengen M mit | M| = n + 1 gilt. Esseialso M = {a,,...,a,,4}
eine beliebige Menge mit » 4 1 Elementen. Dann ist offenbar

P =83 8Y
wobei

RE={x:a: M >N J a(@)=kAra(t,,)==x}
ZEM

(x=0,...,k). Die Menge R besteht also aus jeweils denjenigen Kombi-
nationen aus §§(M), in denen das Element a,,, mit genau der Vielfachheit
» auftritt. Die Mengen R, ..., &} sind dabei paarweise disjunkt. Bei be-
liebigem a € &% ist nun f,(«) : = « \ {(@,,, %)} eine Abbildung von M \ {a,,}
in N mit
Y ()@ =Ek—=x dh f()€RF (M\{s,.}
ZEM\(ay 4 1} )

Man zeigt nun leicht (Beweis!), daB f, eine 1-1-Abbildung von ®? auf

t-«(M\{a,,}) ist, also 8% ~ RF_.(M \{a,,,}) gilt. Mithin wird wegen
|M \{a,,}| = n nach Induktionsvoraussetzung

o« _[r+k—x+41
IRxI - ( k—x ):

also nach (8) und 3.5. (28)

19| = 1851 + 1R +--- + |87
=(n+”:—1)+(n-li-f:2)+_“+(n;i)
=2(7)-(1)

Durch geeignete Kombination der gewonnenen Resultate lassen sich wesent-
lich kompliziertere Anzahlbestimmungen durchfiihren, worauf wir hier jedoch
nicht naher eingehen kénnen.

was zu zeigen war.

3.7. Elemente der Teilbarkeitstheorie

Wir kommen nun zur Behandlung einer weiteren wichtigen Relation im Bereich
der natiirlichen Zahlen, der sogenannten Teilbarkeitsrelation. Bekanntlich
heiBt die natiirliche Zahl m ein Teiler der natiirlichen Zahl # und n ein Viel-
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faches von m, in Zeichen: m | n (gelesen: m [ist] Teiler von n oder m teilt n),
wenn es eine natiirliche Zahl ¢ gibt, so daB m - ¢ = n:.
1) min:&Vm-g=n.
g€EN

Ein Vergleich mit der Definition 3.4.(1) zeigt, daB die Teilbarkeitsrelation
das multiplikative Analogon zur <-Relation ist.

Wir zeigen als erstes, daB die Teilbarkeilsrelation eine reflexive teilweise
Ordnung in N ist (vgl. 2.5.(24)), d. h., fiir beliebige natiirliche Zahlen n, n,,
na, 1 gilt

2) n|n,
3) ny [ng Ay |0y =>ny | ng,
(4) ny | Ny ARy |0y =0y =n,

Zum Beweis von (2) geniigt es zu bemerken, daB wegen n - 1 = n eine natiir-
liche Zahl ¢ existiert, fir die » - ¢ = » ist, und mithin in der Tat n | n gilt.
Zum Beweis von (3) sei 2 | 7, und 7, | n;. Dann existieren wegen (1) natiirliche
Zahlen gy, g; mit n, - ¢y = n, und ny - ¢; = n3. Dann wird aber =, - (g; * ¢5)
= (ng*q1) g2 =1n3° g2 =m3, d. h,, fir die Zahl ¢ =g, ¢, gilt n,- ¢ =13,
und es ist in der Tat n, | n;. Zum Beweis von (4) sei n | n; und 7, | ny, und
zwar sei ny* ¢y =n; und 7ny° ¢, =ny. Dann wird ny°(¢1°¢2) = (04 @4) * @2
= mny gy =n,y -1, woraus im Fall n, & 0 nach 3.4.(23) ¢; - ¢ = 1 und dann
nach 3.3.(20) ¢, = ¢, = 1 folgt, so daB in der Tat n, = n, ist, wahrend im
Fall n, = 0 wegen n, * ¢; = ny auch n, = 0 ist.

Im Gegensatz zur <-Relation ist natiirlich die Teilbarkeitsrelation keine
totale Ordnung, d. h., es gibt unvergleichbare Elemente (z. B. gilt weder 2 | 3
noch 3|2). Wir werden jedoch sehen, daB starke Analogien zwischen der
Teilbarkeitsrelation und der Inklusion bestehen.

Zunichst ergibt sich aus m - 0 = 0 sofort, daB die Zakl 0 Vielfaches jeder
natirlichen Zahl m ist:
®  Amlo

meEN
Die Zahl 0 ist also beziiglich der Teilbarkeitsrelation groftes Element in N
(beziiglich der <-Relation ist in N kein gréBtes Element vorhanden), und
wegen (4) ist die Zahl 0 auch die einzige Zahl mit dieser Eigenschaft; denn
ist m | n, fir alle m € N, so ist speziell 0 | ny, und umgekehrt ist nach (5)
74| 0, also gilt nach (4) ny = 0.
Wegen 1 - n = n ist die Zakl 1 Teiler jeder natiirlichen Zahl n:

(6) Atlln,
nEN
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d. h., die Zahl 1 ist beziiglich der Teilbarkeitsrelation kleinstes Element in N
(wie die Zahl 0 bzgl. der <-Relation und die leere Menge bzgl. der Inklusion),
und wegen (4) ist die Zahl 1 auch die einzige Zahl mit vieser Eigenschaft
(Beweis!).

Ferner erkennt man leicht, daB zwischen der Teilbarkeitsrelation und der
<-Relation folgende Beziehung besteht:
(7 minan+E0=>m< 0,
d. h., vom Fall n = 0 abgesehen ist die Teilbarkeitsrelation eine Teilrelation
der <-Relation. Ist namlich m | %, so existiert eine Zahl g € N mit m - ¢ = n,
wobei im Fall n & 0 die Zahl ¢ von Null verschieden, also ¢ = 1 ist. Dann ist
aber (vgl. 3.3.(17)) m = m - 1 < m - ¢ = n, was zu zeigen war.

Als nichstes zeigt man, daB bei beliebigem m, ny, ny € N folgendes gilt:
(8) m|ngAm|n,=>m|n + n,,
9) MmN AMm|NAR = 0> M|y — 0y
Der Beweis von (8) sei dem Leser als Ubungsaufgabe iiberlassen. Da (9) im
Fall m = 0 trivial gilt (Beweis!), konnen wir im folgenden Beweis fir (9)
m + 0 voraussetzen. Ist dann n, = ¢;m, n, = g,m, 8o ist mit n, = n, nach
3.4.(21) und 3.4.(22) auch g, = ¢,, so daB eine Zahl g€ N mit ¢+ ¢ =g,
existiert, und folglich wird g,m + ¢m = ¢;m, also n, + gm = n,. Hieraus
folgt nach 3.4.(24) »y — n, = gm, d. h. m | n; — n,, was zu zeigen war.

Ohne Schwierigkeit erhilt man noch, daB bei beliebigem m, n, k € N folgendes
gilt:
(10) min>m-kin-k,
d. h., die Multiplikation ist monoton bzgl. der Teilbarkeitsrelation (vgl. 2.6.(12)).
Natiirlich 1a8t sich (10) sofort zu
(10°)  my |mynng|ny=>my ny|my-ny
verschirfen, woraus mittels (6) noch
(10”)  my|my=>ny|k-ny
folgt.

Als Hilfssatz fiir die weiteren Uberlegungen benétigen wir den folgenden

Satz iiber die Division mit Rest. Es sei (n, m) ein belicbiges :Paar von
natirlichen Zahlen mit m #+ 0. Dann gibt es genau ein Paar (q, ) von natirlichen
Zahlen, so daf folgendes gilt:
(11) n=q-m+r und 0<r<m.
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Die durch n und m eindeutig bestimmmten Zahlen ¢ und r heifien der Quotient
bzw. der Rest bei Division von n durch m und sollen im folgenden mit q(n, m)
bzw. r(n, m) bezeichnet werden.

Wir zeigen als erstes, daB es hochstens ein derartiges Paar (g,7) von
natiirlichen Zahlen geben kann. Dazu nehmen wir an, es gelte
(i) n=¢g - 'm+r mt 07r <m,
(ii) n=¢qgy'm-+r, mt 07, <m.
Ware hierbei r; = r,, so miite nach 3.4.(13) entweder r, < r, oder 7, < r,
gelten. Ohne Beschrankung der Allgemeinheit kénnen wir uns auf die Be-
trachtung des Falles r, < r; beschrinken. In diesem Fall gabe es nach 3.4.(15)
eine natiirliche Zahl k 4 0 mit r, + £ = 7;, und nach (i), (ii) und 3.4.(22)
wire ¢, m = ¢, - m + k, also g, - m < ¢, - m und mithin nach 3.4.(21) ¢; < g5,
also nach 3.4.29') ¢; + 1 < ¢;. Dann miiBte aber wegen 7, <m nach (i),
3.4.(18), 3.4.(17) und (ii)

n=¢g-m+r<g-m+m
=@+l m=ppm=g - mtr=mn,
d. h. # < n gelten, was offenbar ein Widerspruch ist. Also ist unsere Annahme
r, =% 7, falsch, und es gilt ry = r,. Dann wird aber nach (i) und (ii) auf Grund
von 3.4.(22) ¢, - m = ¢y - m, also wegen m = 0 nach 3.4.(23) ¢, = ¢,, womit
die Einzigkeit eines Paares (g, 7) mit (11) bewiesen ist.

Zum Existenzbeweis betrachten wir die Menge M aller natiirlichen
Zahlen z, fiir die die Ungleichung « - m < n erfullt ist. Die Menge M ist sicher
nicht leer, da die Zahl 0 zu M gehort. Die Menge M ist ferner nach oben
beschrinkt, da wegen m = 0alle Zahlen z € M der Ungleichungz < = geniigen.
Folglich gibt es nach 3.4.(34) in M eine groBte Zahl ¢. Fiir diese gilt

(12) gm=n<(g+1)-m

Wegen g - m < = existiert eine natiirliche Zahl r, so daB g - m + r = n, wobei
wegen ¢+ m + r < ¢ - m + m nach 3.4.(20) r < m ist. Also erfillen die konstru-
ierten Zahlen g, r die Bedingungen (11), was noch zu zeigen war.

Zugleich haben wir gezeigt, daB es bei beliebigem m + 0 und n genau eine
Zahl g € N gibt, fir die (12) gilt.

Wir merken an, daB im Fall m =+ 0 die Zahl m genau dann ein Teiler der Zahl n
st, wenn r(n, m) = 0 ist:
(13) m=%0=>(m|ner(n, m)=0).

Als nachstes wollen wir zeigen, daB es zu beliebigen natiirlichen Zahl
m, n genau eine natirliche Zahl d gibt, die den folgenden Bedingungen




3.7. Elemente der Teilbarkeitstheorie 151

geniigt:

(14a) d|m, d|n,

(14b) A @|mat|n=>t]|d).
tEN

Eine Zahl d mit den Eigenschaften (14a) nennt man einen gemeinsamen Teiler
der Zahlen m, n, und die durch m und » eindeutig bestimmte Zahl ¢ mit den
Eigenschaften (14a) und (14b) heiBt der grafte gemeinsame Teiler der Zahlen
m und n und werde im folgenden mit m M n bezeichnet (in der Literatur ist
auch die Bezeichnung (m, n) iiblich, die wir jedoch konsequent fiir das ge-
ordnete Paar benutzen; vielfach wird auch die Bezeichnung ggT(m, n) ver-
wendet). Wir machen mit allem Nachdruck darauf aufmerksam, da8 ent-
sprechend (14b) der groBte gemeinsame Teiler die beziiglich der teilweisen
Ordnung | grofte Zahl ist, die gemeinsamer Teiler der Zahlen m und n ist, und
nicht etwa bezuglich der totalen Ordnung <, wie vielfach filschlich definiert
wird. Im Bereich der natiirlichen Zahlen ist das wegen (7) zwar im wesent-
lichen dasselbe, jedoch ist die Bedingung (14b) und nicht die Bedingung

(14Y) A(|mat|n=>t<d)
tEN

die entscheidende Eigenschaft des grioSten gemeinsamen Teilers. Dabei ist
u. a. zu beachten, daB man es mit Teilbarkeit auch in anderen Bereichen als
den natiirlichen Zahlen zu tun hat (z. B. bei Polynomen), in denen es kein
Analogon zur <-Relation gibt. Die Teilbarkeitsrelation und der durch (14a)
und (14b) charakterisierte groBte gemeinsame Teiler sind ihrer Natur nach
zunéchst allein mittels der Multiplikation definiert, wahrend die <-Relation
(vgl. 3.4.(1)) auf der Addition basiert. Wir machen ferner darauf aufmerksam,
daB die Eigenschaften (14a) und (14b) das formale Analogon zu den Eigen-
schaften 1.5.(8) und 1.5.(9) des Durchschnitts beziiglich der Inklusion sind.

Zum Nachweis der Einzigkeit. des groBten gemeinsamen Teilers nehmen
wir an, daB die Zahlen d, und d, die Eigenschaften (14) besitzen. Aus (14a)
fur d, und (14b) fiir d, folgt dann d, | d, und aus (14b) fir d; und (14a) fir d,
analog d; | d;, so daB nach (4) in der Tat d;, = d, ist.

Da im Fall m = 0 die Zahl d = n und im Fall n = 0 die Zahl d = m die
Eigenschaften (14) besitzt (Beweis!), beschrinken wir uns im folgenden
Existenzbeweis auf den Fall m + 0, n & 0. Wir geben zunachst einen
Beweis, der auf C.F.Gauss zuriickgeht und auf einer wichtigen Dar-
stellungsmoglichkeit fiir m M n beruht. Dazu betrachten wir die Menge
D(m, n) aller natiirlichen Zahlen z = 0, die sich in der Form am — bn mit
a, b € N darstellen lassen,

D(m,n):={z:2ENrz+0A V z=am—bn},
a,0EN
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sowie analog die Menge D (n, m) aller natiirlichen Zahlen z < 0, die eine Dar-
stellung der Form &n — bm mit @, b € N besitzen.

Wir beweisen als erstes, da8 im Fall m = 0, n 3 0 die Mengen D (m, n) und
D(n, m) gleich sind. Dazu sei 2 = am — bn eine beliebige Zahl der Menge
D(m, n). Dann ist wegen z 4 0 offenbar am = bn = b, d. h., es existiert eine
Zahl @ € N mit b 4+ & = am. Ebenso ist an = a, und es existiert eine Zahl
5€ N mit b + a = an. Dann ist bn + @n'= bm + am, und es gilt am + é@n
= 2 + bn + d&n = z + bm + am und mithin n = = + bm, alsoz = an — bm,
so da8 z € D(n.m). Folglich ist D(m,n) S D(n, m), und aus Symmetrie-
griinden gilt dann natirlich auch die umgekehrte Inklusion.

Wegen m € D(m, n) (a = 1, b = 0) ist die Menge .D(m, n) nicht leer. Folg-
lich gibt es nach 3.4.(31) in D(m, n) eine (beziiglich <) kleinste Zahl d. Wir
behaupten, daB diese Zahl d die Eigenschaften (14) besitzt. Zum Beweis von
(14b) gehen wir davon aus, daB wegen d € D(m, n) natiirliche Zahlen a,, b,
mit d = aym — byn existieren (wobei wegen d € D (m, n) natiirlich aom > byn
ist). Ist nun £ eine beliebige natiirliche Zahl mit ¢ | m und ¢ | n, so ist nach (10”)
t]agmund ¢ | byn, also nach (9) ¢ | agm — byn, d. h. ¢ | d, wie fir (14b) zu zeigen
war. Zum Beweis von (14a) wenden wir auf m und d (wegen d € D(m, n) ist
d = 0) den Satz (11) iiber die Division mit Rest an:

m=gqgd+r mit r<d.
Nun laBt sich d (wegen D(m, n) = D(n, m)) auch in der Form d = @yn — bym
mit &, by € N darstelen. Folglich wird
m=gqd + r = g(@on — bym) + r = gdon — gbym + 7,
also (gby + 1) m = gdgn + r, und mithin
r = (gbo + 1) m — (gdo) n,
woraus im Fall r & 0 unmittelbar r € D(m, n) folgen wiirde, was wegen r < d
im Widerspruch zur Minimalitat von d in D (m, n) steht. Also ist r = r(m, d)= 0
und wegen (13) d ein Teiler von m. Aus Symmetriegriinden ist dann natiirlich
auch d | n.
Damit haben wir zugleich den folgenden wichtigen Satz bewiesen:
(15) m+0An+0
SmMan=mn{z:2€E NAaz+0A V z2=am —bn}
a.bEN
=min{z:2ENAz+0A V z=dn — bm}.
8,5eN

Man kann iibrigens noch leicht zeigen, daB die im Beweis von (15) betrachtete
Menge D(m,n) gerade aus samilichen positiven Vielfachen der Zahl m [ n
besteht (Ubungsaufgabe).
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Aus der Definition (14) ergeben sich miihelos die folgenden Eigenschaften
des gréBten gemeinsamen Teilers (vgl. dazu die Satze 1.4.(5), 1.4.(8),
1.4.(18) und 1.5.(16) iiber den Durchschnitt):

(16) m[n=nm,

(A7) ny N (ny M ny) = (5 M ) M ong,

(18) nMNn=mn,

(19) m|n&m M n=m.

Wir beweisen als Beispiel das Assoziativgesetz (17) und iiberlassen die analogen
Beweise der anderen Behauptungen dem Leser als Ubungsaufgaben. Zur
Abkiirzung werde n; M (ny M n;) gleich d gesetzt. Dann gilt zunichst nach
(14a) d | n; undd | n, M n; und wegen n, M 73 | 7, und n, M %5 | n3 nach (3)
auch d | n; und d | ny. Folglich ist nach (14b) d | n, i1 %, und nochmals nach
(14b)d | (ny M ny) M ny. Alsogiltny M (n, M ny) | (5, M ny) M 23, und analog
zeigt man, daB auch umgekehrt (ny M ng) M 23 | 7y M (ng [ n3), sodaB nach
(4) in der Tat (17) gilt.

Auf Grund von (17) kénnen wir also, ohne MiBverstandnisse befiirchten zu
miissen, in #; M (5, M n3) und (8, M n;) M n; die Klammern fortlassen und
kurz n; M n, M ng schreiben, wobei nach 3.5.(13) analoges bei vier- und mehr-
gliedrigen M -Termen méglich ist. In diesem Sinne bezeichnet also

N MngMeeeMny

einen beliebig geklammerten [1-Term aus den Zahlen n,, . .., n, (in dieser
Reihenfolge) z. B. den kanonisch geklammerten Term

(- (g Mny) Omg) M -+2) Moy
Man zeigt leicht, daB bei beliebigem k die Zahl d = n, M - -+ [ n, durch die
Jolgenden Eigenschaften charakterisiert ist (fir k = 3 ist das im obigen Beweis
fr (17) enthalten):
(20a) dny,...,d|n,,
(20b) A (E|nga---at|n,=>t]d).

tEN

Aus diesem Grunde nennt man 5, 1 - -+ [ n, den grapten gemeinsamen Teiler
der Zahlen n,, . . . ,n,.

Auf Grund von (16) und (17) kommt es nach 3.5.(14) in n, M - -+ M n,
such nicht auf die Reihenfolge der Glieder an, d. h., fir jede Permutation x der
Indizes 1, ...,k gilt
(16') Ry Moo Mnggy=mn, M---Mn,
was man ibrigens auch unmittelbar (20) entnehmen kann.
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Auch der Satz (15) laBt sich leicht auf mehrgliedrige M-Terme verall-
gemeinern. Dazu ist es allerdings zweckmaBig, von ganzen Zahlen Gebrauch
zu machen. Offenbar kénnen wir nach (15) sagen, daB ém Fall m &= 0, n % 0
der gropte gemeinsame Teiler m M n die kleinste positive Zahl ist, die sich in der
Form am + fn mit «, B € Z (Z Menge aller ganzen Zahlen) darstellen lgft. In
Verallgemeinerung hiervon gilt:

(15')  Sind die Zahlen n,...,n € N nicht samtlich gleich Null, so st
ny [+ [ n, die kleinste positive Zahl, die sich in der Form

TR I SR -
mit &y, . .., o, € Z darstellen lapt.

Natiirlich 1a8t sich (15’) unter Verwendung der Differenz auch allein in natiir-

lichen Zahlen ausdriicken, wird dann aber entsprechend der Vielzahl von

Moglichkeiten recht kompliziert (z. B. ist also n, M ng M n; die kleinste von

Null verschiedene Zahl in der Menge aller der natiirlichen Zahlen, die sich in

einer der Formen + @, n; 4 a, n, + a3 n3 mit a,, a,, a3 € N darstellen lassen).
Aus (19) und (5) folgt noch leicht, daB bei beliebigem n € N

(21) n10=0MNn=n

ist (wie schon im Beweis von (15) bemerkt), d. h., die Zahl 0 ist beidseitig
neutrales Element der Operation 1 (vgl. 2.6.(11)). Entsprechend folgt aus (19)
und (6), daB bei beliebigem n € N (in Analogie zu 1.4.(18))

(220 n2Mt=1Mn=1.

SchlieBlich merken wir an, daB die Multiplikation beidseitig distributiv bzgl.
der Operation [ ist (vgl. 2.6.(9)), d. h., bei beliebigem m, n;, n, € N gilt

m - (ny M ng) = (m - ny) M1 (m - ny),

@)y M) - m = (my - m) O (ny - m).

Wegen der Kommutativitat der Multiplikation kénnen wir uns natiirlich auf
den Nachweis z. B. der linksseitigen Distributivitit beschrinken, und da (23)
in den Fillen n; = 0 und n, = 0 nach (21) trivial gilt, kénnen wir beim nach-
folgenden Beweis n; + 0 und n, =+ 0 voraussetzen. Wir weisen nach, daB die
Zahl d =m- (n; M ny) die charakteristischen Eigenschaften des groBten
gemeinsamen Teilers von m - n; und m - n, besitzt. Wegen n; M n, | n; und
ny [ ny | nygiltnach (10) m - (ny M ny) | m - ngundm - (ny M n,) | m * ny,d. b,
d ist ein gemeinsamer Teiler von m - n; und m - n,. Es bleibt also zu zeigen,
daB jeder gemeinsame Teiler ¢ der Zahlen m - #; und m * n, auch ein Teiler von
d ist. Dazu beachten wir, daB nach (15) natiirliche Zahlen a, b mit

ng M nyg = any—bn,
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existieren. Dann wird aber
d=m-(ng M ny) = amn; — bmn,,
woraus nach (10”’) und (9) die genannte Behauptung folgt.

Der auf einer geschickten Anwendung des Prinzips der kleinsten Zahl
beruhende GauBsche Beweis fiir die Existenz des groBten gemeinsamen Teilers
hat den Nachteil, daB er zundchst lediglich ein sogenannter reiner Existenz-
beweis ist, d. h. kein Berechnungsverfahren fir m M = liefert; denn es
ist in keiner Weise zu erkennen, wie man bei vorgegebenem m,n € N die
Koeffizienten a, b bzw. &, b in der Darstellung (16) von m M n ermitteln kann.
Aus dem Beweis von (15) ist lediglich zu entnehmen, wie man aus den Koef-
fizienten a, b die Koeffizienten @, b (und analog aus @, b auch a, b) berechnen
kann:

(24) é@G=am—b, b=an—a; a=dan—058 b=am—a.

Ein wichtiges Berechnungsverfahren fiir den groBten gemeinsamen Teiler
findet sich bereits im siebenten Buch der ,,Elemente des EUELID (etwa 365
bis 300 v. u. Z.), dem groBartigen Sammelwerk der mathematischen Kenntnisse
der griechischen Antike (der Name ,Elementarmathematik“ bedeutete
iibrigens urspriinglich ,Mathematik gemaB den Elementen des Euklid“, die
in iiberarbeiteter Form noch bis in das vergangene Jahrhundert die Grundlage
der Schulmathematik bildeten). Es wird demgemaB heute euklidischer
Algorithmus genannt. Dieser Algorithmus besteht in einer merkwiirdigen suk-
zessiven Anwendung der in (11) behandelten Division mit Rest. Es seien dabei
m, n beliebige von Null verschiedene natiirliche Zahlen, wobei wir o. B. d. A.
wegen (16) m = n voraussetzen kionnen (was aber nur der Abkiirzung des
Verfahrens dient). Der Systematik halber sei m =7y und n = 7, gesetzt.
Im ersten Schritt dividieren wir 7o(= m) durch r,(= n) mit Rest, wobei wir
q(ro, 7y) = ¢y und r(ry, 7)) = 7o setzen:

(25)) ro=qri+7r mt rp<r.

Ist hierbei 7, = 0, so ist das Verfahren beendet (und 7y M 7, = ;). Ist dagegen
ry = 0, 8o wird in analoger Weise r; durch r, mit Rest dividiert, so daB bei
q(ry, 1) =@a, ¥(r1, 79) =13

(25)) ri=gqry+r3 mit r3 <7y

wird. Ist hierbei r; = 0, so ist das Verfahren beendet. Ist dagegen auch noch
ry = 0, so wird

(28)) ra=gqar3+ 7, mit 7 <73
gesetzt und allgemein das Verfahren mit

(25)  ri=qua T i, mit 1, <7y
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solange weitergefiihrt, bis erstmalig r, ,, = 0 wird:

re=¢qr+r, mt 0<rJr,
rp=¢yrs+ 73 mit 0<r;<ry,
(25) :

= Gntn,, mt 0], <,
Te = Qeat Thate

Da die Reste r,, r3, ... eine echt monoton fallende Folge von natiirlichen
Zahlen bilden, erfolgt nach endlich vielen Schritten ein Abbruch. Wir behaupten
nun, daB der leizte nicht verschwindende Rest r,, , der grofte-gemeinsame Teiler
der Zahlen ry (= m) und ry (= n) ist. Das ist eine unmittelbare Folgerung aus:

(26) n<mam=gnt+r=>mlln=nllr

Mittels (26) erhalten wir namlich aus (25):
roMry=rMNrp=rnlnp=-=n_MNn

=nn,=rn,,MN0=r,.

Zum Beweis von (26) geniigt es jedoch, folgendes zu bemerken:
timat|n=>t|nat|r=>t|n M,

so daB wegenm M n |mundm M n | nspeziellm M n |n M r; umgekehrtgilt
tinat|r=>t|mat|n=>t|mMa,

sodaBwegenn 1 r|nundn M r|rauchn M 7|m M n. Alsoist
mMa=nallr

wie behauptet.
Mittels (25) 1aBt sich auch leicht die in (15) festgestellte Darstellung des
groBten gemeinsamen Teilers berechnen. Nach (25,) wird namlich zunichst

ro=1m— gy n.

Setzen wir dies in (25,) ein, so erhalten wir
n=n—@m—gn)=(@ga+1)n—gmn,

und (25,) liefert
n=@G+)n—@ieaa+at+a)n

usw., bis schlieBlich nach (25,_,) eine Da.rstelhing vonr,,, (=m M n) in der
Form am — bn bzw. Gn — bm gewonnen wird.
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Das folgende Beispiel (m = 133, n = 91) moge das Verfahren erlautern:
133 =191 + 42,
* 91=2-424 7,
42=6- 7.
Also gilt 133 M 91 = 7. Ferner ergibt sich aus («)
42 =133 — 91,
7= 91 —2-42=91—2-(133 —91)=3-91 — 2-133,
und (24) liefert
7=(3-91—2)-133 — (3-133 — 8)- 91 = 271 - 133 — 396 - 91.
Dieses Beispiel lehrt bereits, daB die Koeffizienten a, b, G, b in der Darstellung
(15) sehr groB werden kénnen.
Nadtiirliche Zahlen m, n heiBen teilerfremd oder relativ prim, wenn ihr gréBter
gemeinsamer Teiler die Zahl 1 ist:
(27) mteilerfremd zun: S m Mo =1,
Wir merken an, da8 die Teilerfremdheit das formale Analogon zur Disjunkt-
heit von Mengen (vgl. 1.4.(20)) ist, da ja die Zahl 1 hinsichtlich der Teilbar-
keitsrelation dieselbe Rolle wie die leere Menge bzgl. der Inklusion spielt.

Nach Satz (15) sind von Null verschiedene Zahlen m, n genau dann teilerfremd,
wenn es natirliche Zahlen a, b (@, b) gibt, so daf am — bn = 1 (@n — bm = 1):
(28) m*EOAnE0>(mMNo=1& \V am—bn=1).
a,bEN

Damit erhalten wir leicht den folgenden Satz:

(29) m+0An+0am=(mM ) maran=(mn) n
= my teilerfremd zu ng.

Denn nach (15) gibt es natiirliche Zahlen @,b mit m M n =am — bn
= (m M n)amy — (m M n)bny = (m M %) (am; — bn;), und hieraus folgt
nach 3.4.(23) am, — bny = 1, also sind nach (28) die Zahlen m,, n, teilerfremd,
Was Zu zeigen war.

Mittels (28) kénnen wir ferner den folgenden wichtigen Satz beweisen:
(30) kElm-nakMm=1=>k|n;
in Worten: Teilt eine Zahl k ein Produkt m - n und ist sie zu einem der Faktoren
(beispielsweise zu m) teilerfremd, so teilt sie den anderen Faktor. Ist eine der
Zahlen k oder m gleich 0, so gilt (30) trivial, so daB wir beim folgenden Beweis
k + 0, m = 0 voraussetzen konnen. Dann gibt es nach (28) natiirliche Zahlen
a, b mit ak — bm = 1, und Multiplikation beider Seiten dieser Gleichung mit »
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ergibt akn — bmn = n. Hierbei ist nun & | akn, und wegen k | mn gilt nach
(10”) k | bmn, also nach (9) k | akn — bmn, d. h. k | n, was zu zeigen war.

Mit Hilfe von (30) kénnen wir schlieBlich den folgenden Satz beweisen:
31) my|namylnam Mmg=1=>m-m,|n.
Ist namlich n = m, q;, so gilt nach (30) wegen m; | gy m; und my M my; =1
offenbar m, | ¢, d. h., es gibt eine Zahl ¢ € N mit m, ¢ = ¢;, und dann wird
n = m, q; = my m, g, und das besagt ja gerade, daB m, - m,ein Teiler von » ist.

Das duale Gegenstiick zum groBten gemeinsamen Teiler und formale
Analogon zur Vereinigungsmenge ist das sogenannte kleinste gemeinsame
Vielfache zweier natiirlicher Zahlen m, n, das durch die Bedingungen
(32a) m|v, nlov,

(32b) A (m|san|s=>v]s)
N

charakterisiert wird (vgl.1.5.(10), (11)). Zunéchst ist natiirlich vor allem
wieder zu zeigen, daB es bei beliebigem m, n € N genau eine natiirliche Zahl v
gibt, die die Bedingungen (32) erfullt. Diese durch m und n eindeutig bestimmte
Zashl v wird dann das kleinste gemeinsame Vielfache von m und n genannt und
im folgenden mit m LI n bezeichnet (in der Literatur sind hierfir auch die
Bezeichnungen [m, ] und kgV (m, n) iiblich).

Der Nachweis fiir die Einzigkeit von v erfolgt analog dem Beweis der
Einzigkeit einer Zehl d mit den Eigenschaften (14) und sei dem Leser als
Ubungsaufgabe iiberlassen. Zum Existenzbeweis merken wir zunichst an,
daB im Fall m = 0 und im Fall » = 0 die Zahl v = 0 die Eigenschaften (32)
besitzt, so daB wir unsaufdie Betrachtungdes Falles m = 0, # < 0 beschranken
konnen. Wir wollen zeigen, daB in diesem Fall die Zahl

_m-n

T mnMn
das Verlangte leistet (wegen m 1 n | m - nund m M % =+ 0 ist v eine natiirliche
Zahl). Zum Beweis dieser Behauptungseim = (m M n) myundn = (m M n) n,.
Dann wird offenbar

v=(m M n)mn,,

woraus zunichst unmittelbar (32a) abgelesen werden kann. Zum Nachweis
von (32b) sei s ein beliebiges gemeinsames Vielfaches von m und =7, etwa
8 = mg, = ngy;. Dann ist s insbesondere ein Vielfaches von m M n, etwa
8= (m M n)g, und es gilt

(m M n)g=mg, = (m M n)m,q,
(m M n)g=mng,=(m M n)n, g,
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woraus nach 3.4.(22) (wegen m M n =+ 0) ¢ = m, q, = n, ¢, folgt. Alsoist m, | g
und n, | ¢, wobei nach (29) m; M n, = 1 ist. Mithin gilt nach (31) auch m », | g,
d. h., es existiert eine Zahl ¢ € N mit m;n, ¢ =¢. Dann wird aber
§=(m Mn)g= (m M. n)mn; ¢ = v, sodaB in der Tat v | s, was noch zu
zeigen war.

Damit haben wir zugleich den folgenden wichtigen Satz bewiesen:
m-n
mOn’

Hieraus folgt unmittelbar, daB bei teilerfremden Zahlen m,n das klemstc
gemeinsame Vielfache gleich dem Produkt ist:

(33) m+0An+0=>mU n=

(34) mMNe=1i=samlUUn=m-n,

wobei im Fall m < 0, n & 0 offenbar auch die Umkehrung gilt.

Aus der Definition (32) ergeben sich mithelos die folgenden Eigenschaften
des kleinsten gemeinsamen Vielfachen (vgl.dazu die Satze 1.4.(8),
1.4.(9), 1.4.(14) und 1.5.(17) iiber die Vereinigung):

(35) mUn=nLm,
(36)  ny L (np U ng) = (ny LI mp) LI m3,
(37) nlUn=mn
(38) minemlU n=nmn
Die Beweise hierfiir verlaufen analog den Beweisen der Satze (18) bis (19) und
seien dem Leser als Ubungsaufgaben iiberlassen. Auf Grund von (36) kénnen wir,
ohne MiBverstandnisse befiirchten zu miissen, in drei- und mehrgliedrigen LI -Ter-
men die Klammern fortlassen, also n; LI - - - LJ n, fir einen beliebig geklam-
merten LI-Term aus den Zahlen n,, . .., n, (in dieser Reihenfolge), z. B. den
kanonisch geklammerten Term (- - - ((ny U ng) L ng) LI - - -) LI n, schreiben.
DieZahlv = ny U - - - LI n, wird dann bei beliehigem k durch die Bigenschafien
(39a) mylv,...,n 0,
(89b) A(ng|sa---am|s=>0]8)

€N

charakterisiert und daher das kleinste gemeinsame Vielfache der Zahlenn,, . . . ,n,
genannt. Man zeigt leicht, daB in Verallgemeinerung von (33) folgendes gilt:
40) 2y, +0n Ay 0=>n L) U"""m,r'l--‘r‘lm,'
wobei

my=ngccon_n g ccem (E=1,...,k).
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Auf Grund von (35) und (38) kommt es in n, LI - - - LI n, ebenfalls nicht auf
die Reihenfolge der Glieder an, d. h., fiir jede Permutation x der Indizes 1, . .., k
gilt
(36") Mgy U - Ungyy=mng Ll-o- Ling

Aus (38) und (5) entnehmen wir noch leicht (wie bereits im Beweis von (33)
bemerkt), daB bei beliebigem n € N
(44) aUO0=0UR=0
ist, und entsprechend folgt aus (38) und (6), daB bei beliebigem n€ N (in
Analogie zu 1.4.(19))

(42) nlli=1Un=n.

In Analogie zu (23) gilt ferner

(49) m = (ny U ny) = (m-ny) LI (m - ny),
(ny U 7g) ~m = (ng - m) U (ny-m) .

Es entsteht nun naturgemaB die Frage, ob in Analogie zu Durchschnitt
und Vereinigung (vgl. 1.4.(11) und 1.4.(12)) die Distributivgesetze
(44)  (ng U mg) Mmg=(ny M 7g) U (ny M 1g),

(45)  (ng M mg) U mg = (ng LI m3) [ (ng LI n3)

und die Verschmelzungssatze (vgl. 1.4.(15) und 1.4.(18))

46)  (ng U mg) M mg=my,

(47) (ny M ny) LU ny =my

gelten. Wir merken ohne Beweis (Ubungsaufgaben!) an, daB das tatsachlich
der Fall ist.

Ein weiterer wichtiger Begriff der Teilbarkeitstheorie ist der Begriff der
Primzahl. Hierunter wird bekanntlich eine natiirliche Zahl p > 1 verstanden,
die nur durch 1 und sich selbst teilbar ist:

(48) P Primeahl: ©pENADp>1IAA(E|p>t=1vi=D).
teN

Wir machen ausdriicklich darauf aufmerksam, da8 die Zahl 1, die ja auch nur
durch 1 und sich selbst teilbar ist, nicht zu den Primzahlen gerechnet wird.
Im Prinzip ist das natiirlich eine Konvention, die allerdings einen bestimmten
Grund hat, auf den wir etwas spater eingehen werden. Die Primzahlen sind
mithin dadurch charakterisiert, daB sie genau zwei Teiler besitzen (die Zahl 1
besitzt nur einen Teiler). Beziiglich der teilweisen Ordnung | sind die Prim-
zahlen gerade die oberen Nachbarn der Zahl 1, die ja nach (8) das beziiglich
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der Teilbarkeitsrelation kleinste Element ist. Sie spielen also in dieser Hinsicht
(vgl. S. 36) dieselbe Rolle wie die Einermengen bei der Inklusion.

Als erstes wollen wir zeigen, daB sich jede natirliche Zahl n > 1 auf wenigstens
einc Weise als Produkt von Primzahlen darstellen laft, wobei dieses Produkt
allerdings auch in einen einzelnen Faktor ausarten kann. Lassen wir auch das
leere Produkt zu und schreiben wir diesem den Wert 1 bei, so gilt der behauptete
Satz auch im Falln = 1:

(49) n=1= V (k€ Nap, Primzahln---
EPg.e., Pi

E
A Py Primzablnn = [T p,).
LT

Wir beweisen (49) indirekt, nehmen also an, es gabe eine natiirliche Zahl
n = 1. die sich nicht als Produkt von Primzahlen darstellen 1a8t. Dann ist
die Menge aller der Zahlen n = 1, die sich nicht als Produkt von Primzahlen
darstellen lassen, nicht leer, enthalt also nach 3.4.(31) eine kleinste Zahl n,.
Dabei muB ny > 1 sein, da verabredungsgema8 die Zahl 1.durch das leere
Produkt dargestellt wird. Es kann auch n, keine Primzahl sein, da sich in
diesem Fall 7y als Produkt aus einem Faktor darstellen 1a8t. Folglich besitzt
no einen Teiler ¢, der von 1 und 7, verschieden ist, d. h. ny = ¢ - ¢, wobei nach

(7) offenbar 1 < t < myund 1 < g < m, gilt. Also lassen sich ¢ und ¢ als Produkte
von Primzahlen darstellen (denn 7, sollte dle kleinste Zshl = 1 sein, die keine

derartige Darstellung besitzt), etwa ¢ = H P 4= H p;, und dann wire

ng=1t-g= Hlp,."‘HPA
EL) -1
eine Darstellung von 7, als Produkt von Primzahlen, die es ja nach Annahme
nicht geben sollte. Folglich ist unsere Annahme falsch, und es gilt (49).

Wir wollen im folgenden unter einer Primzahlzerlegung der Zahl n ein
k-Tupel (k = 0) (py,...,p,) von Primzahlen py, ..., p, verstehen, fir das
k

P=py<- - <p.und J] p,=n gilt, wobei ‘wir die Zahl k auch die Ldnge
: X
dieser Primzahlzerlegung nennen wollen. Nach dem allgemeinen Assoziativ-
Kommutativgesetz 3.5. (14) ist klar, daB jede natirliche Zahln, die sich wherhaupt
als Produkt von Primzahlen darstellen lift — und nach (49) gilt das fur jede
natiirliche Zahl n = 1 — auch eine Primzahlzerlegung im hier betrachteten
Sinne besitzt.
Wir wollen nun zeigen, daB schirfer folgendes gilt:
(50) Jede natiirliche Zahl n = 1 besitzt genau eine Primzahlzerlegung.
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Man nennt (50) Hauptsatz iber die eindeutige Primzahlzerlegung.
Unsere Einschrankung auf Primzahlprodukte H .Mty S <P,

stellt sicher, daB es im strengen Sinne genau eme Zerlegung gibt, wahrend
andernfalls die Zerlegung nur bis auf die Reihenfolge der Faktoren eindeutig
ist. Far die Giltigkeit von (50) ist offenbar wesentlich, daB wir die Zahl 1
nicht zu den Primzahlen gerechnet haben, denn andernfalls ware noch nicht
einmal die Lange der Primzablzerlegung eindeutig bestimmt.

Die Existenz einer Piimzahlzerlegung ist — wie bereits bemerkt — duich
(4 \ bewiesen. Fir die Einzigkeit wollen wir aus einem spéter ersichtlichen
G- 1nd zwei verschiedene Beweise geben. Der erste Beweis stiitzt sich auf den
vnuitteibar avs (30) folgenden und schon bei EvkLip vorhandenen Hilfs-

atz

(1)  pPrimablap|m-n=>p|mvp|n;
1n Worten: Teilt eine Primzahl p ein Produkt m - n, so teill sic wenigstens einen
der Faktoren m oder n. Zum Beweis nehmen wir an, daB die Primzahl p das
Produkt m - n, aber nicht z. B. den Faktor m teilt, und zeigen, da8 dann p
notwendig den anderen Faitor n teilen muB. Ist namlich p kein Teiler von
m, 8o ist offeubar nach (19) m M p = 1 und mithin nach (30) p ein Teiler von =,
Was Zu Zeiken Wur.
Durch vollstiudige Induktion dber & {Ubungsaufgabe!) kann man (51)
leicht ver.llgemeinern zu
. k
(61')  pPrimallap|J[n,=>plnv---vp|n,
ETE |

Hier zunichst noch die genaue Formuiierung des Einzigkeitssatzes:

(60') n=1nA(n,...,n,) Primzahlzerlegung fiir n

A (D], - - - » D) Primzahlzerlequng fir n

Sk=Iapi=pr- AP =0

Der erste Beweis fur (60°) exfolgt durch ordnungstheoretische Induktion @iber n
(vgl. 3.4.(32)). Dar Anfangsschritt # = 1 ist trivial: Da jede nichtleere Prim-
zahlzerlegung Hp,, (k = 1) groBer als 1 ist, besitzt die Zahl 1 nur die leere
Zerlegung. Wu- nehmen nun an, daB fiir alle Zahlen m mit 1 < m < n die

Einzigkeit der Primzahlzerlegung schon bewiesen ist, und zeigen, daB sis dara
auch fir die Zahl n gilt. Dazu seien (py, . .., p;) und (py, . . ., p;) beliebige
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Primzahlzerlegungen fir die Zahl n (> 1), wobei wir o. B.d. A. annehmen
kénnen, daB p; < p; ist (andernfalls wiirden wir lediglich die Rollen von

& !
(®1,- -, 2) und (pq, ..., p)) vertauschen). Wegen [] p, = J] p] ist dann
] L] A=t
21 | [] ;. s0 daB nach (61") die Zahl p, wenigstens einen der Faktoren p], . . . ,p;
i1

teilen und mithin (da p, . . . , p; Primzahlen sind) mit diesen iibereinstimmen
muB. Wegen p; < p; muB das der Faktor p] sein; denn ware p, + p;, so wire
Py < p;, und wegen p;=p; (A=2,...,1) konnte dann p, mit keinem der

: :

Faktorenpj, . . . , p; tibereinstimmen. Folglich ist nach 3.4.(23) [/ », = ﬂ D1s
E %2 =2

d.h., die Zahl m = J] p, <n hat die Primzahlzerlegungen (p,, . . . ,'p,) und

%2
(p3,...,p;), und nach Induktionsvoraussetzung mu8 dann k=1 und
P2 =Dj, . .., P, = Py sein, was zusammen mit der schon bewiesenen Gleichung
1 = p; die Behauptung von (50°) fiir die Zahl n ergibt.

Obwohl bereits bei EUKLID der Satz (51) mit allen dazu notwendigen
Vorbereitungen zu finden ist, wurde von ihm der relativ kleine Schritt zum
Haupteatz (50) nicht mehr vollzogen. Wir wissen nicht, ob den griechischen
Mathematikern dieser Satz bekannt war, und wenn, warum ihn EvrLID in
seinem sonst so systematischen Werk nicht formuliert hat. Sicher ist jedoch,
daB Evkwnip ihn nicht stillschweigend als eine evidente Tatsache angesehen
und benutzt hat.

Der nachfolgende zweite Beweis von (50') ist sehr neuen Datums und geht
auf E. ZErMELO zuriick. Er benutzt nicht den Satz (61) und damit auch nicht
die zum Beweis von (51) erforderlichen Grundtatsachen iiber den griBSten
gemeinsamen Teiler. Er erméglicht dadurch einen wesentlich anderen Aufbau
der Anfangsgriinde der Teilbarkeitstheorie, wie er heute auch in der Schule
vorgenommen wird, obwohl dabei manche Zusammenhinge unerkannt
bleiben. Der Zermelosche Beweis von (50°) erfolgt analog wie der Beweis des
Satzes (49) indirekt. Es wird also angenommen, daB es eine Zahl n > 1 gibt,
die zwei verschiedene Primzahlzerlegungen besitzt. Dann gibt es auch eine

E
Lkleinste derartige Zahl, und diese sei mit n bezeichnet, wobei n = [] », und
i

P |

n = ] p; zwei verschiedene Primzahlzerlegungen der Zahl n seien. Dann
-1 k ]

muB offenbar p, + ] sein; denn andernfalls wire [] p, = [] »;, und wegen
x %22 32

II p.<n miBte k=1 und p; =p;,...,p, = p; sein (da ja n die kleinste

Nm2
1*
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Zahl mit mehreren Primzahlzerlegungen sein sollte), was zusammen mit
p, = p; ein Widerspruch zu der Voraussetzung ist, daB (p;,...,7p,) und
(P}, ..., p;) verschiedene Zerlegungen der Zahl n sind. Ohne Beschrinkung
der Allgemeinheit kénnen wir annehmen, daB p; < p; ist. Wir betrachten
dann die Zahl

m=n—p ;B
Wegen p, < p; ist py* p;***D; < P;* P, * - p; und mithin m € N und auBer-
dem m < n. Offenbar ist
(). m=p@: =P D)

mit Py P — Py P <m<n, so daB py---p, — p,- - p; genau eine
Primzahlzerlegung (p, ..., ;") besitzt, aus der nach (i) die eindeutig be-
stimmte Primzahlzerlegung (pf,...,pY,,) von m dadurch gewonnen wird,
daB man die Primzahl p; an der richtigen Stelle einordnet. Andererseits ist

i)  m=@—p)p; P
mit pf — Py Sm <mn, so daB auch p; — p; genau eine Primzahlzerlegung

rrr

@, ...,p,”) besitzt, aus der sich nach (ii) die eindeutig bestimmte Primzahl-
zerlegung (pf, ..., p%,,) von m dadurch gewinnen laBt, daB man die Prim-

zahlen p;, ..., p; an den richtigen Stellen einordnet. Da nun p, unter den
Primzahlen p%, ..., p},, vorkommt, muB sie auch unter den Primzahlen
2., ....0,", P3, - . . , p; vorhanden sein. Nun ist aber wegen

P<PEP S =P
die Primzahl p, von allen Primzahlen p;, ..., p; verschieden. Also muB p,
unter den Primzahlen 9, ...,p,”” vorkommen, und hieraus folgt wegen
H p.’, daB p, ein Teiler von p; — p, ist. Dann ist aber nach
(8) Py a,uch Teller von (p; — py) + p;, d.h. Teiler von p;, so daB p, = p;

sein muB, was wir bereits als unméglich erkannt haben. Also ist unsere
Annahme, daB es eine natiirliche Zahl » = 1 mit zwei verschiedenen Prim-
zahlzerlegungen gibt, falsch und (50') bewiesen.

Man wird zugeben miissen, daB der Zermelosche Beweis zwar recht originell,
aber keineswegs ganz einfach ist.

FaBt man die in der eindeutigen Primzahlzerlegung einer natiirlichen
Za.hl n > 1 evtl. mehrfach auftretenden Primzahlen im zugehérigen Produkt

H p, zu Potenzen zusammen, so erhilt man: Jede natiirliche Zahl n = 1

[T}
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lapt sich auf genau eine Weise in der Form

!
(52) n=J]p?

-1
mit paarweise wverschied Primzahlen p, < p, <---<p, und von Null
verschiedenen natiirlichen E'zponenten v1 , .+« , v darstellen. Die Darstellung (52)
wollen wir auch die Primzahlpot. llung von n nennen.

Bevor wir diesen Satz noch etwas weiter ausbauen, wollen wir einen anderen
wichtigen Satz beweisen, der gleichfalls auf EvkLID zuriickgeht:

(53) Die Menge P aller Primzahlen ist unendlich.

Nach 2.9.(2) haben wir hierfiir zu zeigen, dafl die Menge P keinem Abschnitt
A(n) (n € N) gleichmichtig ist. Das beweisen wir wiederum indirekt. Wir
nehmen also an, es gibe eine natiirliche Zahl » mit P ~ A(n), und es sei f
eine 1-1-Abbildung von £ (n) auf P, so daB also P aus den genau # Primzahlen

p0=f(0)’ cees Ppoy =.f(n— 1)
besteht. Wir betrachten dann die folgende natiirliche Zahl m

m=po:-Py_y+ 1.

Da offenbar m = 2 ist, laBt sich m nach (49) als nichtleeres Produkt von
Primzahlen darstellen. Ist dann p ein beliebiger Faktor aus diesem Produkt,
80 ist p | m. Daraus folgt, daB die Primzahl p von den Primzahlen p,, . . ., p,_,
verschieden ist; denn der Rest #(m, p,) bei der Division vop m durch p, ist
gleich 1, und mithin kann nach (13) p, kein Teiler von m sein. Also ist
p € {po, . . .,P,_4}, entgegen unserer Annahme, daB {p,, . . ., p,_,} samtliche
Primzahlen enthalt. Dieser Widerspruch widerlegt unsere Annahme und be-
weist (53).

Es sei nun wieder n eine natiirliche Zahl = 1 und p eine beliebige Primzahl.
Mit exp,(n) (gelesen: Exponent von p in ) bezeichnen wir den Exponenten »,
mit dem p in die eindeutige Primzahlpotenzdarstellung (52) von n eingeht,
wobei wir exp,(n) = 0 setzen, wenn die Primzahl p in dieser Darstellung nicht
als Faktor auftritt. Man erkennt leicht (Beweis!), daB expp(n) die grofte
natiirliche Zahl v* ist, so daf p™ Teiler von n ist. Eine solche griBte Zahl existiert
nach 3.4.(34), da die Menge aller Zahlen » mit p” | n nach oben beschrankt
ist: Ist ndmlich p” | n, so ist » < »; denn wegen p = -2 ist nach 3.5.(6) p* = 2%,
und es ist andererseits — wie man leicht durch vollstindige Induktion iiber n
bestatigt (Beweis!) — stets 2* > n, und aus p® > n folgt nach 3.5.(9), daB erst
recht fiir alle m > n die Ungleichung p™ > n gilt; folglich ist im Fall n = 0
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nach (7) keine Zahl p™ mit m > n ein Teiler von n. Es ist also
(54) expp(n) : = max{r:»€ N1 p" | n}.
Insbesondere gilt also
(55) expp(n) £+ 0 & p | n.
Ferner gilt nach (52)
(56) n=t1=n=[]p"",

in
wobei das Produkt auf der rechten Seite entsprechend der ,Laufanweisung*
unter dem Produktzeichen iiber alle (etwa nach wachsender Groe geordneten)
endlich vielen (!) Primzahlen zu erstrecken ist, die Teiler der Zahl » sind. Das
ist nur eine andere Schreibweisé fiir (62). Dabei schadet es iibrigens nichts,
wenn wir in das Produkt auf der rechten Seite von (56) noch einige Primzahlen
aufnehmen, die keine Teiler von x sind ; denn fiir diese ist nach (55) expy(n) = 0
und ™™ = 1. Fir unsere folgenden Betrachtungen ist es sogar zweckmaBig,
das formal unendliche Produkt [ p“p’(") zu betrachten und (56) in der Form

peP
(56') n=1l=n= Hpoxp,(n)
- PEP °
zu schreiben (wobei also dieses unendliche Produkt als das Produkt der nur
endlich vielen von 1 verschiedenen Faktoren der Form p*™%™ (p € P) defi-
niert ist).
Man zeigt leicht (Ubungsaufgaben!), daB im Fall m + 0, n + 0 die folgenden
merkwiirdigen Beziehungen gelten :
(87) /G\PeXPp(m - n) = expp(m) + exp,(n),
P
(58) mine /\ expy(m) < expy(n),
(59) epexp,(m (1 n) = min {exp, (m), expy(n)},
?
(60) /E\Pexp,(m Ll n) = max{expy(m), expp(n)}.
»

Hierdurch werden die Multiplikation und die mit ihrer Hilfe definierte Teilbar-
keitsrelation sowie die auf der Teilbarkeitsrelation beruhenden Operationen
M und U auf die Addition, die mit ihrer Hilfe definierte < -Relation sowie
die auf der <-Relation beruhenden Operationen min und max zuriickgefiihrt.
Offenbar kann man die Beziehungen (59) und (60) auch in der Form

(59,) mMn= H pmln(ox»,(-) exp,(u))

(60) miln= H pm(exv,(u).exp,(n))
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echreiben, und hierdurch wird in der Schule meistens der groBte gemeinsame
Teiler und das kleinste gemeinsame Vielfache definiert. Diese Definitionen
benutzen indes maBgeblich — und das ist wohl zu beachten — den Hauptsatz
(52). Setzt man diesen z. B. mit dem Zermeloschen Verfahren als bewiesen
voraus, so kann man auf der Grundlage dieser Definitionen und der Satze (57)
und (568) die charakteristischen Eigenschaften (14) und (32) des gréBten gemein-
samen Teilers bzw. kleinsten gemeinsamen Vielfachen sowie die anderen in
diesem Abschnitt behandelten Satze der Teilbarkeitstheorie beweisen.

Als Beispiel betrachten wir den wichtigen Satz (30): Es sei k | m -2 u1d
k M m = 1. Dann ist bei beliebigem p € P nach (58) und (57)

expy (k) < expp(m * n) = exp,(m) + expy(n)

und wegen ¥ 7 m = 1 nach (59) und (55) min{exp,(k), expy(m)} = 0. Hieraus
folgt, daB exp, (k) < expy(n) bei beliebigem p € P ist; denn im Fall exp, (k) = 0
gilt dies trivial, wahrend im Fall exp, (k) <+ 0 wegen min{expy(k), exp,(m)} = 0
offenbar exp,(m) = 0 sein muB und dann die behauptete Ungleichung aus
exp, (k) < expy(m) + expy(n) folgt. Wenn aber bei beliebigem p € P die Un-
gleichung exp,(k) < exp,(n) gilt, ist nach (65) k ein Teiler von %, wie in (30)
behauptet wurde. Man beachte, daB dieser Beweis von (30) sich grundlegend
von dem auf S. 157 gegebenen Beweis unterscheidet, der maBgeblich (28), also
die in (15) gegebene Charakterisierung des groBten gemeinsamen Teilers benutzt.
Wir empfehlen dem Leser, auch die anderen wesentlichen Grundgesetze der
Teilbarkeitstheorie mittels (567) bis (60) zu beweisen. '

Die vorangehenden Ausfithrungen legen die Frage nahe, wie man fir eine
gegebene natiirliche Zahl » = 1 die Primzahlpotenzdarstellung (52) effektiv
herstellen kann. Das ist nun — um es gleich ganz deutlich zu sagen — nur
durch systematisches Probieren méglich. Hierin liegt der groBe Nachteil z. B.
der Bestimmung des groBten gemeinsamen Teilers nach (59) gegeniiber seiner
Berechnung mittels des euklidischen Algorithmus (25). Wir empfehlen dem
Leser, den groBten gemeinsamen Teiler zweier sehr groBer Zahlen, z. B.
10436 877 und 128 412, einmal nach dem einen und dann nach dem anderen
Verfahren zu bestimmen.

Zur Ermittlung der Primzahlpotenzdarstellung einer Zahl n probiert man
die Primzahlen der Reihe nach durch, ob sie Teiler von n sind oder nicht und
bestimmt auf diese Weise zunachst die kleinste Primzahl p, , fiir die p, | n gilt.
Sodann bildet man solange Potenzen p,, p?, . . . dieser Primzahl, bis man erst-
mals zu einer Primzahlpotenz pjt*! gelangt, die kein Teiler von » mehr ist,
und hat dann in der Zahl » des Exponenten éxp, (n) gefunden. AnschlieBend
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geht man zu der Zahl n, = 7:_( iiber und setzt, beginnend mit der auf p,
1
folgenden Primzahl und der Zahl n; das Verfahren in analoger Weise fort. Es

7;;_;' gleich 1 wird. Zur Abkiirzung des Verfahrens kann
¥
man den folgenden Satz benutzen, dessen Beweis dem Leser als Ubungs-
aufgabe iiberlassen sei:

bricht ab, wenn n, =

(61) n > 1A 7 (n Primzahl) = \/ (p Primzahl A p | n A p2 < n).
4

Wir wollen dieses Verfahren an einem Beispiel erlautern: Es sei
% = 138875. Man stellt leicht fest, daB n nicht durch 2 und nicht durch 3
teilbar ist, d. h. exp,(n) = exps(n) = 0. Dagegen ist 5 | 2, und die Betrachtung
der Potenzen 5, 52, 53, 5¢ fithrt zu exp;(n) = 3. Sodann wird das Verfahren

mit p =7 und n, = 5% = 1111 fortgesetzt. Man stellt fest, daB 7 kein Teiler
von 7y ist, wahrend 11 | 1111, jedoch 112 kein Teiler von 1111 ist. Folglich ist
exp;(n) = 0, expy;(n) = 1. SchlieBlich setzen wir n, = T = 101. Hier

kénnen wir das Verfahren bereits abbrechen; auf Grund der bisherigen Kon-
struktion ist namlich keine Primzahl p < 11 ein Teiler von 101, so daB wegen
112 =121 > 101 nach (61) 101 eine Primzahl sein muB. Damit erhalten wir
die folgende Primzahlpotenzdarstellung von »:

138875 = 53+ 11 -101.

Das geschilderte Verfahren setzt wesentlich voraus, daB man iiber die Menge
der Primzahlen in ihrer natiirlichen Anordnung verfiigt oder zumindest in der
Lage ist, diese beliebig weit fortzusetzen. Letzteres gelingt nun mit Hilfe einer
auf den hellenistischen Mathematiker, Geographen und Astronomen Erato-
STHENES von Kyrene (etwa 275—194 v. u. Z.) zuriickgehenden Methode, die
man in recht anschaulicher Weise auch Sieb des Eratosthenes nennt. Dazu
bezeichne n, eine beliebig groBe natiirliche Zahl (im folgenden Beispiel ist
ng = 120). Wir denken uns die Zahlen 2, 3, ..., ny in ihrer natiirlichen An-
ordnung der Reihe nach aufgeschrieben. Aus dieser Folge streichen wir zu-
néachst alle diejenigen Zahlen =, die echte Vielfache der Zahl 2 sind, d. h. sich
alsn = 2 - ¢ mit ¢ > 1 darstellen lassen. Sodann gehen wir in der verbleibenden
Folge zur nachsten Zahl (d. h. zur Zahl 3) iiber und streichen aus der verblie-
benen Folge alle echten Vielfachen dieser Zahl. Im néchsten Schritt gehen wir
in der nunmehr verbliebenen Folge wiederum zur nichsten Zahl (d. h. zur
Zahl 5) iiber und streichen alle deren echte Vielfache usw. Im Endergebnis



3.7. Elemente der Teilbarkeitstheorie 169

bleibt die Menge aller Primzahlen p mit p < n, in ihrer natiirlichen Reihen-
folge stehen. Wir merken an, daB nach (61) das Verfahren bereits abgebrochen
werden kann, wenn man erstmalig zu einer nicht gestrichenen Zahl p mit p2 > n,
gelangt (also im Fall ny = 120 schon nach vier Schritten, da man am Beginn
des fiinften Schrittes die Zahl p = 11 findet und 112 = 121 > 120 ist):
T2 3 4 5 B T £ & M 1 a2 13 M4
T 46 10 20 2 2 33 4 35 6 I W 2N 36
3% 34 35 36 37 W 34
A6 4T A6 M S0 St % 53 4 5 6 I 56 59 B0
5 sy
w

B4 B5 B6 67 6K 0 T 37 T3 M
T0 B 8K XX 53 3L M5 6 M7 MK X9 S0
M 92 98 94 97 96 97 %DE_I_MIIHMII):!WM

06 107 L0 100 LHT LA 147 113 Lkt 165 146 LT L4 34 107

Essindalso 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, 101, 103, 107, 109, 113 simtliche Primzahlen unterhalb 120.

Man hat nach dieser Methode sehr weitreichende Primzahltafeln aufgestellt
(bis 107 reicht eine verdffentlichte Tafel von LEEMER, und bei der Accademia
d'Italia gibt es eine Tafel bis 3 - 10°). Diese Tafeln zeigen, daB die Primzahlen
in der Menge der natiirlichen Zahlen sehr unregelmaBig verteilt sind. So findet
man einerseits auBerordentlich lange Intervalle, die frei von Primzahlen sind,
und andererseits stellt sich immer wieder einmal der Fall ein, daB zwei un-
mittelbar aufeinander folgende ungerade Zahlen (wie 41, 43, 101, 163 usw.)
Primzahlen sind. Wahrend sich die erste Beobachtung durch den nachfolgenden,
iiberraschend einfach zu beweisenden Satz in sehr allgemeiner Form bestatigen
laBt, fuhrt die zweite Beobachtung auf ein bislang ungeldstes berithmtes mathe-
matisches Problem, namlich auf die Frage, ob die Menge aller derartigen
Primzahlzwillinge endlich oder unendlich ist.

(62) ANr=2=s Viz+1,...,24+ 0}~ P=49); \
nEN . zZEN

in Worten: Zu jeder natirlichen Zahl n = 2 existiert eine natirliche Zahl
z, so daf unter den n aufeinander folgenden Zahlen x + 1, ...,z 4+ n keine
Primzahl vorkommt. Setzen wir namlich z = (n 4 1)! + 1, so ist — wie man
unmittelbar sieht — die Zahl z + 1 (= (» + 1)! + 2) durch 2, die Zahl
2+ 2 (=(n + 1)! 4 3) durch 3, . . . und schlieBlich die Zahl

z4n(= (n+ 1)+ (@+1))

durch n 4 1 teilbar, also in der Tat keine der Zahlen 2 4 1, ...,z 4 n eine
Primzahl.
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In diesem Zusammenhang ist die Frage nach Abschatzungen der Anzahl z(n)
sller Primzahlen p mit p < »n von Interesse. Schon EULER bewies, daB bei unbe-

schrinkt hsendem n der Quoti n(n) , d. h. das Verhailtnis dieser Anzahl zur

Anzahl aller natiirlichen Zahlen ¥ mit 1 = k < n, gegen Null strebt, also die Prim-

zahlen mit wachsendem n im Mittel sparlicher werden, in jedem hinreichend

groBen Abschnitt der Folge der natiirlichen Zahlen die iiberwiegende Anzahl der

Zahlen zvsammengesetzt ist. Er konnte jedoch andererseits auch zeigen, daB mit
R

wachsendem n die Folge der Zahlen z, = X % (ebenso wie die Folge yp = X %)
psn k=1

unbeschrinkt wichst, wahrend — wie in der Analysis gezeigt wird — z. B. die Folge

n 2
2y = ): %(gegen % konvergiert, also insbesondere beschrankt ist. Hieraus

folgt, da,B die anzahlen wesentlich dichter als z. B. die Quadratzahlen liegen. Diese
relativ el tar beweisb Tatsachen ergeben jedoch erst ein recht ungenaues
Bild von der Verteilung der Primzahlen in der Folge der natiirlichen Zahlen. Durch
eingehendes Studium von groBen Primzahltabellen gelangte man bereits zu Beginn
des vorigen Jahrhunderts zu der merkwiirdigen Feststellung, daB bei sehr groBem

n der Wert zz(n) in recht guter Naherung gleich lnl-n- ist, aber viele beriihmte Mathe-

matiker dieser Zeit, wie GAUSS, LEGENDRE u. &. b sich vergeblich, diese
empirisch gefundene Tatsache allgemein zu beweisen. Erst dem bedeutenden russi-
schen Mathematiker P. L. TSOREBYSCHEFF (1821 —1894) gelangen hierbei die ersten
bedeutsamen Erfolge. Er zeigte u. a., daB fiir alle hinreichend grofen natirlichen
Zahl, "dieLT.’l'l

P

e

In2< <2:In2

n(n)-lnn
n

gilt. Im Jahre 1894 konnten die franzosischen Mathematiker J. HApAMARD (1865

bis 1963) und C. DE LA VALLER-PoUSSIN (1866 —1962) mit tiefliegenden Hilfsmitteln

der Analysis den ersten vollstindigen Beweis des sogenannten Primzahlsatzes

erbringen, der sich am einfachsten in der Grenzwertbeziehung

lim z(n)+Inn
fi—sco
ausdriicken 1aBt. Im Jahre 1948 konnten P. ERDOS und A. SELBERG den Beweisgang
derart vereinfachen, da8 in ihm nur noch einfache Tatsachen aus der reellen Ana-
lysis benotigt werden. Die weiteren Untersuchungen in dieser Richtung beschaf-
n(n)-Inn
n -

=1

tigen sich bis in unsere Tage mit dem Problem, die Differenz 1 —
genauer abzuschatzen.

Ein weiteres wichtiges Kapitel arithmetischer Forschung war und ist mit der
Frage nach der Anzahl der Primzahlen in gewissen anderen Teilmengen der Menge
der natiirlichen Zahlen verkniipft. Das wohl beriihmteste Resultat in cieser Rich-
tung ist der im Jahre 1840 von DIRICHLET ebenfalls mit analytischen Hilfsmitteln
bewieséne Satz, daB es in jeder ,arithmetischen Progression“kn +1(n =10,1,2,...)
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mit teilerfremdem k und l, wie z. B. in der Folge 9, 14, 19, 24,... (k= 5,1=19),
unendlich viele Primzahlen gibt. Die naheliegende Verallgemeinerung dieser Frage
auf Zahlenmengen z. B. der Form {k;n2 + kyn + %3 : n =0, 1, 2, ...} fihrt sofort
auf zahllose ungeloste Probleme; so ist bis heute unbekannt, ob die Menge

n2+1:2=0,1,2,...},
d. h. die Folge 1, 2, 5, 10, 17, . . ., endlich oder unendlich viele Primzahlen enthalt.

In einem Brief an EULER aus dem Jahre 1742 warf GoLDBAOH (1690—1764) das
Problem auf, ob man jede natiirliche Zahl » = 6 als Summe von drei Primzahlen
darstellen kann, wie er gleichfalls rein empirisch bemerkt hatte. Diese Behauptung
ist offenbar bewiesen, wenn man zeigen kann, daB sich jede gerade natiirliche Zahi
7 = 4 als Summe von zwei Primzahlen darstellen 1aBt, eine Behauptung, fiir die bis-
lang ebenfalls kein Gegenbeispiel bekannt ist und die man heute vielfach (nicht ganz
zu Recht) Goldbachsche Vermutungnennt (4 =2 4 2,6 =3+3,8=5+3,...).
Die ersten Erfolge in Richtung eines Beweises dieser Vermutung konnten jedoch
erst im Jahre 1930 von dem damals ganz jungen sowjetischen Mathematil
I. G. SCENIRELMANN (1905—1938) erreicht werden, der mit relativ elementaren
Hilfsmitteln zeigte, daB es eine Zahl k gibt, so dap jede natiirliche Zahl n = 1 als
Summe von hichstens k Primzahlen dargestellt werden kann. Diese Zahl k erwies sich
zundchst als auBerordentlich groB und konnte in den folgenden Jahren bis auf 67
herabgedriickt werden. Im Jahre 1936 bewies der sowjetische Mathematiker
I. M. WINOGRADOW mit neuartigen analytischen Hilfsmitteln, daB sichk jede hin-
reichend grofe ungerade Zahl als Summe von drei Primzahlen und damit jede hin-
reichend grofe gerade Zahl als Summe von vier Primzahlen darstellen ligt. Die ur-
spriingliche und die verscharfte Goldbachsche Vermutung fiir gerade Zahlen
harren dagegen noch immer ihrer Losung.

Zum Abschlu8 wollen wir noch kurz eine wichtige auf Gauss zuriickgehende
arithmetische Methode behandeln, die beim Beweis zahlreicher elementarer
Sitze der Zahlentheorie wertvolle Dienste leistet. Wir kniipfen dazu an den
Satz (11) iiber die Division mit Rest an, nach dem man bei gegebener natiirlicher
Zahl m (= 2) jede natiirliche Zahl » in eindeutiger Weise in der Form

n=gm+r mt 0r<m
darstellen kann, wobei wir den Rest 7 auch ausfiihrlich mit 7 (%, m) bezeichnen.
Sind nun %y, n, beliebige natiirliche Zahlen, fir die r(n,, m) = r(ny, m) gilt,
so sagt man, da8 die Zahlen n,, n, kongruent modulo m sind, und schreibt dafiir
ny = ny mod m (vielfach auch kurz #, = n, (m)):
(63) 7y = nymod m : & r(n;, m) = r(ny, m).
Bei gegebenem m (= 2) wird durch (63) eine zweistellige Relation Ry, in N
definiert, von der man sofort feststellt, daB sie eine Aquivalenzrelation in N
ist (vgl. 2.5.(12)). Setzen wir o. B. d. A. voraus, daB =, = n, ist, so gilt
(Beweis!)
(64) ny =n,modmeSm|n — n,.
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Insbesondere folgt aus (64)
(65) n=0modmem|n.
Ferner erhalt man mittels (64)
(66) ny =nymodm = ny; + k = ny + k mod m,
und zweimalige Anwendung von (66) liefert
(66') ny =mnymodmnky = ky mod m = ny + ky = ny + ky mod m.
Analog ergibt sich
(67) ny =nymodm =>mn,k=n,-kmodm
und
67) mny=nymodmnaky =kymodm=n -k =mny-kymodm
sowie
(67") my =mn,modm = nf = ntmodn.
Da fiir r(n, m) genau die Werte 0, 1, . . ., m — 1 moglich sind, folgt aus (63)

sofort, daB jede natiirliche Zahl n genaw einer dieser Zahlen kongruent modulo m
ist:
(68) A(VOLi<m—1an=imodm)
n€EN fEN
ATV (0=Ei<jEm—1an=imodman = jmodm)).
iJEN
Wir wollen die Wirksamkeit der bisher bewiesenen Satze an zwei einfachen
Beispielen erlautern. Als erstes wollen wir zeigen, daB keine Zahl z. B. der
Form 7 k + 3 eine Quadratzahl sein kann. Dazu merken wir zunachst an, daB
jede Zahl n der Form 7 k + 3 der Bedingung n = 3 mod 7 geniigt. Ware nun
n eine Quadratzahl, etwa n = g2 mit ¢ € N, so miiBte ¢ nach (68) genau eine
der Bedingungen
=0mod7, ¢g=1mod7, ¢g=2mod7, ¢=3mod7,
g=4mod7, ¢g=5mod7, ¢=6mod7

erfilllen. Dann ware aber nach (67'') bzw. (63)
¢2=0mod7, ¢?2=1mod7, ¢g2=4mod7, ¢2=2mod7,
@#?=2mod7 ¢2=4mod7, ¢2=1mod7,
im Widerspruch zu # = 3 mod 7.
Zur Erlauterung des nachsten Beispiels machen wir zunachst eine historische

Vorbemerkung: Im Jahre 1796 bewies GAUSS im Alter von 19 Jahren, dag sick
das regelmdpige n-Eck genaw dann mit Zirkel und Lineal konstruieren lagt, wenn
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die Zahl n die Form

n=2m.p --p
hat, wobei m eine beliebige natirliche Zahl ist und py, ..., pr paarweise ver-
schiedene Primzahlen der Form 2r 4+ 1 mit r = 1 sind.

Es ergibt sich daher die naheliegende Frage, fir welche Werte von r die
Zahl 2r 4- 1 eine Primzahl ist. Zunachst sicht man leicht, daf 27 4+ 1 mit r = 1
nur dann eine Primzahl sein kann, wenn r eine Potenz von 2 ist. Denn im Fall
r = k- u, u ungerade, wird

2r 1 = (26 4 1) (2FW-V _ k=D 4 ...y 2% _ 2k 1).
Also reduziert sich unsere Frage auf das Problem, fiir welche Werte von s die
Zahl 22° + 1 eine Primzahl ist. Fiir s = 0, 1, 2, 3, 4 erhalt man der Reihe nach
die Primzahlen 3, 5, 17, 257, 65537. Dies sind auch die einzigen bis heute
bekannten Primzahlen der Form 22’ + 1, die auch GauBsche oder Fermatsche
Primzahlen genannt werden. Man weil dariiber hinaus lediglich noch, daB sich
fir s=5,6,7,8,9,11, 12, 18, 23, 36, 38, 73 mit Sicherheit keine Primzahlen
ergeben. Fiir 8 = 5 (und ahnlich iibrigens fiir die anderen genannten Werte)
ergibt sich das folgendermaBen: Wegen 5 - 27 = 640 ist 5 + 27 = 641 —1 mod 641
und mithin nach (87") 52+ 214 = (641 —1)2 mod 641. Andererseits ist

(641—1)2 = 6412 — 2- 641 4 1 = 1'mod 641,
a.50 52+ 214 = 1 mod 641 und damit 5%- 228 = 1 mod 641. Folglich ist

232 4 1 = 292 4 54 228 mod 641
und damit 232 4 1 = 228 (24 + 54) mod 641. Nun ist aber 2 + 5¢ = 641, d. h.
24 4 54 = 0mod 641, und hierausfolgt 232 4 1 = Omod 641,d.h. 641 | 232 4 1,
80 daB in der Tat 232 4 1 keine Primzahl ist.

Nach dem oben genannten Resultat von Gauss lassen sich von den regel-
maBigen Vielecken mit einer Eckenzahl unter 100 genau die mit folgenden
Eckenzahlen mit Zirkel und Lineal konstruieren:

3,4,5,6,8,10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68,
80, 85, 96.
Von Gavuss stammt iibrigens auch die erste Konstruktion des regelméaBigen
17-Ecks mit Zirkel und Lineal.

Ist i eine der Zahlen 0, 1, . .., m — 1, so bezeichnen wir mit K{™ die Menge
aller natiirlichen Zahlen 7, die bei Division durch m den Rest i lassen, d. h., die
modulo m zur Zahl i kongruent sind:

69) EKM™:={n:n=imodm}(={n:r(nm=i)@GE=0,...,m—1).
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Es ist unmittelbar klar, daB die Mengen K™ gerade die Restklassen der Aqui-

valenzrelation Ry sind (vgl. 2.5.(12)), d. h.

(70) N/Rpm = {E™, K™, ..., K™ }.

Daraus folgt (vgl. 2.5.(15)), daB das System {K{™, ..., K™ } eine Zerlegung

der Menge N bildet, was natiirlich nur eine andere Formulierung fir (68) ist.
Wir merken an, daB die Satze (66") und (67’) gerade besagen, daB die Relation

Ry, sogar eine Kongruenzrelation (vgl. 2.7.(10)) der Struktur Z = (N, 4, *) ist.

Daraus folgt, daB8 man die Restklassenstruktur F=2z /Rm=(N/Rp,F,~)
bilden kann, wobei ¥ und ~ durch reprasentantenweise Addition bzw. Multipli-
kation definiert sind. Im vorliegenden Fall wird allgemein

K™ ¥ Em=EKme T 4 i,m=j 0<i, i< m—1),
K™~ B = KM iy iy, m)=7 (0=<id,iz<m—1).
Die Abbildung f, die einer beliebigen natiirlichen Zahl 7 diejenige Restklasse K™

zuordnet, der n angehort, ist nach 2.7.(8) ein Homomorphismus von ' auf Z/R,,.
Die Struktur Z'/R,. heiBt der Restklassenring modulo m. Im Fall m = 6 werden z. B.
die Addition F und die Multiplikation ~ durch folgende Tabellen gegeben, wobei
wir statt K{® kurz i geschrieben haben:

¥]012 3 45 ~|01 23 45
0|01 23 435 0] 0 00O0O0O0
11 2 3 45 0 1101 2 3 4 5
2123 4501 2102 40 2 4
3/!3 45 01 2 3103 0303
4|14 5 01 2 3 410 4 2 0 4 2
5|6 01 2 3 4 5|05 43 2 1

Mittels (64) erhalt man sofort, daB die Implikation (66) umkehrbarist, d. h., daB
man aus n, + k = ny, + k mod m stets auf ny = ny, mod m schliefen kann:
(71) ny+ k=mny+ kmod m = n = ny, mod m.
Wir fragen nun, wann Analoges bei (87) moglich ist. Unsere Behauptung ist, daB
man aus ny * k = n,y - k mod m genau dann bei beliebigem ny, ny auf ny = n, mod m
schliefen kann, wenn die Zahl k zum Modrl m teilerfremd ist:
(72) A (nik=mnkmodm=n =n,modm)SkMm=1.

iy,

Wir nehmen zunéachst an, es sei k¥ 1 m = 1 und es gelte n, ¥ = 7, ¥ mod m mit
0.B.d. A.ny k = ny k. Dann ist nach (84) m | k(n; — n,), also nach (30) m | n; — n,
und mithin %, = n, mod m. Ist dagegen kM m =d > 1 und k = d g, so wahlen
wir ng, ng € N mit n; > n,y und (ny — ny) d = m. Dann ist 0 < 5y — ny < m, also
m kein Teiler von n; — ny, d. h. n; == n, mod m. Andererseits ist

) mEk—mk=(n —n)k=(n, —ny)dg=mgq,d. h.m|n k—n k
und mithin-n; k = n, k mod m.

Aus (72) folgt speziell:
(72')  p Primzahl A k == 0 mod p A kny = kny mod p = n; = n, mod p.
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Ist der Modul m eine Primzahl p, so kann man also aus einer Kongruenz kn, =
mod p generell den Faktor k kiirzen, wenn er ,von Null verschieden ist“ (d. h.
k == 0 mod p gilt).

Eine Menge {ng, . . . , #;m—s} aus m Zahlen, die aus jeder Restklasse X™ (genau)
einen Reprasentanten enthélt, heiBt ein vollstindiges R Z duls m (v. R.
mod m). Zum Beispivl ist also {0, 4, 8, 15, 25, 29} ein v. R mod 6. Fiir manche
Anwendungen ist der folgende Satz von Bedeutung:

(73) {ng, oo Mm-t}v. RomodmakMm=1a0EN
>{kny+mn,...,kam-y+ n}v. R. med m.

Zum Beweis von (73) geniigt es offenbar za zeigen (warum?), da8 die Zahlen
kni+n(3=0,...,m —1) paarweize :nodulo m inkongruent sind. Dazu nehmen
wir an, es sei k®;, 4+ n = kny, + n mod m. Dann ist nach (71) kn;, = kn;, mod m
und nach (72) ny, = n;, mod m, also ny, = ny,, da {ny, . . ., nm_s} ein v. R. mod m
ist. Da {0, 4, 8, 15, 25, 29} ein v. R. mod 6 1st, ist nach (73) (mit k=7, n = 3)
auch {3, 31, 59, 108, 170, 206} ein v. R. mod 6

Eine einfache Folgerung aus Satz (26) ist
(74) E K™AangMm=d=> A\ (n€EEM=>nm=d),
also speziell "
(74) noe:K§")Anol'1m='1=)/’}(n€K“."‘)%nf—Im=1);

in Worten: Ist wenigstens ein Beprasentant ny einer Restklasse K™ 2um-Modul m
teilerfremd, so gilt das fur alle Zahlen aus K{™. Eine Restklasse K{™), derensamtliche
Elemente zum Modul m teilerfremd sind, heiBt eine prime Restklasse modulo ‘m.
Nach (74) gilt dsnn

(75) K™ prime Restklasse modulo m & m Mi=1.

Eine Menge {n, . . . ,ns} von natiirlichen Zahlen, die aus jeder primen Restklasse
modulo m genau ein Element enthalt, wird ein primes Restsystem modulo m (p. R.
mod m) genannt. Die Anzahl s stimmt offenbar mit der Anzahl der natiirlichen

Zahlen z < m tberein, die zu m teilerfremd sind. Diese Anzahl wird iiblicherweise
mit @ (m) bezeichnet, und die Abbildung ¢ heiBt die Eulersche Funktion:

(76) pim):=|{z:zENaz<mazMm=1}]. .
Zunachst ist unmittelbar klar, da8 folgendes gilt:
(77) p Primzahl = ¢p(p) = p— 1
uai silgemeinzr (Bewais’)
(77")  p Prim:ahl=> p(pk) = pt — pb~1i,
Wir wollen als nichsies dza foigendea Satz von Euler beweisen:
(78) kMm=1= k™ =1 mod m.
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Ist speziell m eine Primzahl, so geht (78) wegen (77) in den folgenden Satz von
Fermat iber:
(78") p Primzahl A 1 p| k= k?~1 = 1 mod p.
Zum Beweis von (78) zeigen wir zunichst, daB in Analogie zu (73) folgendes gilt :
(79) {nys ... Ngm} p- R.modmakMm=1
= {kny, . . ., kngm} p- R. mod m.

Da die Zahlen kny, ..., knym) wegen (72) paarweise inkongruent modulo = sind,
brauchen wir nur zu zeigen, daB sie samtlich zu m teilerfremd sind. Das ist jedoch
nn nittelbar klar.

Line einfache Folgerung aus (79) ist, daB jede der Zahlen kn,, . . ., kngm) des
primen Restsystems {kn,, . .., knom} genau einer Zahl n,, ..., n;, , des primen
Restsystems {n, . . ., ngm} modulo m kongruent ist:

(*) kny = ny mod m, . . ., kngm = L mod m,
wobei {n,, ..., m’(”)} ={ny,..., nem?} ist. Aus (x) folgt nach (67°)

kP - py o Ngimy = Ny ¢+ * Ng(m) mod m.

Hierbei sind nun n, . . ., g sdmtlich zu m teilerfremd, und damit folgt aus (72)
die Behauptung von (78).

Als letztes wollen wir zeigen, daB die Eulersche Funktion ¢ im folgenden Sinne
multiplikativ ist;
(80)  myMmy=1=g(m  m) =gp(m)-g(m).

Hiernach ergibt sich bei beliebigem m € N mit m > 2 der Wert q;(m), d. h die
Anzahl der zu m teilerfremden Zahlen z < m aus der Pri 1

-]

m = JTp"*™ von m, zu
pim

@(m) = Hw(pen,(u)) =11 (pexp,(u) _ pexp,(m)-i)
?im ?lm

exp,(n)( 1) ( 1)
= 1—N=m-g7(1—2),
e 2) =" AT
so daB z. B.

otz = 130- (1 - 2) (1= 4) (1= £) = o2

wird. Hiermit folgt aus dem Eulerschen Satz, daB fiir jede zu 120 teilerfremde
Zahl k (z. B. k = 100793) die Beziehung k32 = 1 mod 120 gilt.

Zum Beweis von (80) seien m; und m, beliebige teilerfremde natiirliche Zahlen.
Wir betrachten die Anordnung der Zahlen von 1 bis m, - m, in folgender Tabelle:

1 2 k my
my+ 1 mo + 2 my+ k cee 2my
(81) .

(my—1)my+1 (my—1)m+2 ... my—1)my+%k ... m-m
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Offenbar ist @ (my*m,) die Anzahl aller derjenigen Zahlen n der Tabelle, die
zu my - my teilerfremd sind. Wegen my M my =1 ist 2 M (my - my) = 1 genau
darn, wenn n Mmy=1 und n M my=1 ist. Wir bestimmen nun zunachst
di~jenigen Zaklen aus (81), die zu m, teilerfremd sind. Dazu beachten wir, daB
folgendes gilt:

a) In jeder Zeile von (81) steht nach (73) ein v. R. mod m,,

b) Alle Zahlen einer Spalte von (81) liegen in derselben Restklasse modulo m,.

c) In jeder Spalte von (81) steht nach (73) ein v. R. mod m,.

Aus a) und b) folgt nach (74°), daB genaun @ (m,) - my Zahlen der Tabelle (81) zu
m, teilerfremd sind, die auf @(m,) volle Spalten von (81) verteilt sind. Unter
diesen sind nun diejenigen auszuwahlen, die zusitzlich zu m, teilerfremd sind.
Dazu brauchen wir jedoch nur zu beachten, daB es wegen c) in jeder Spalte genau
@(m,) Zahlen gibt, die zu m, teilerfremd sind. Also enthélt die Tabelle (81) in der
Tat @ (my) - @ (m,) Zahlen, die sowohl zu m, als auch m, teilerfremd sind, was zu
zeigen war.

3.8. Die systematische Darstellung der natiirlichen Zahlen

Die historische Entwicklung des Zahlbegriffs war eng mit der Entwicklung der
Zahlbezeichnungen, und zwar sowohl der sprachlichen Benennungen als auch
der Zahlnotierungen verbunden, die uns zugleich die wichtigsten Riickschliisse
auf den jeweiligen Entwicklungsstand des Zahlbegriffs gestatten, denn in der
Uberlieferung sind uns vor allem die Zahlbezeichnungen iiberkommen. An ein
Bezeichnungssystem fiir die natiirlichen Zahlen wird man vor allem die
Forderung stellen, daB sich in ihm jede natiirliche Zahl » in eindeutiger Weise
bezeichnen laBit. Das einfachste Verfahren besteht offenbar darin, da man
mit Hilfe eines einzigen Grundzeichens | (Strich) jede natiirliche Zahl n = 1 als
Folge von n Strichen schreibt. Diese Art der Bezeichpung hat natirlich den
groBen Nachteil, daB die Niederschrift einigermaBen groBer Zahlen sehr lang
und uniibersichtlich wird, und sie ist daher fiir die Praxis kaum brauchbar.

Die fiir das praktische Rechnen vollkommenste Schreibweise der Zahlen
beruht auf einem Prinzip, das u. a. auch unserer iiblichen dezimalen Ziffern-
darstellung der natiirlichen Zahlen zugrunde liegt. Bei der dezimalen oder
dekadischen Zifferndarstellung werden zunachst die Zahlen von 0 bis 9 durch
individuelle Zahlzeichen (Ziffern) 0,1, ..., 9 bezeichnet, wobei wir im vor-
liegenden Abschnitt zur deutlichen begrifflichen Unterscheidung die Ziffern
(= Zahlzeichen) in Fettdruck wiedergeben wollen. In diesem Sinne meinen wir
also mit 8 die Zahl Acht, mit 8 aber die diese Zahl bezeichnende Ziffer; ist all-
gemein a eine der Zahlen 0, . . ., 9 so bedeutet @ die zu dieser Zahl gehorige
Ziffer. Wahrend die Zahlen Objekte begrifflicher Natur sind, sind die zuge-
hérigen Zahlzeichen oder Ziffern letztlich geometrische Figuren einer
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bestimmten Gestalt. Von der Zahl (dber nicht der Ziffer) 8 konnen wir z. B.
behaupten, daB sie kleiner als die Zahl 9 ist, von der Ziffer (aber nicht der Zahl)
8, daB sie auf dieser Seite dieses Buches fiinfzehnmal gedruckt ist (und zwar
achtmal mager und siebenmal fett).

Jede natiirliche Zahl n wird anschlieBend durch eine eindeutig bestimmte
endliche Folge aus Ziffern 0,1, . . ., 9 bezeichnet, wobei man sich eines so-
genannten Stellenwert- oder Positionsprinzips bedient. Grundlage hierfiir ist
der anschlieBend (in allgemeinerer Form) zu beweisende Satz, daB man jede
natiirliche Zahl n = 1 in der Form ’

(1) n=ap 10+ a,_,- 105 L ... 4 a,-10 4 a4

darstellen kann, wobei der Exponent k und die Koeffizienten a, (x = 0,1, ..., A,
durch n eindeutig bestimmte natiirliche Zahlen sind, die folgenden Bedingungen
geniigen: k= 0,0 <a,<9(x=0,...,k),a = 0. Ungekehrt liefert natiir-
lich jede Summe (1) mit den genannten Bedingungen eine bestimmte natiirliche
Zahl n > 1 (die Zahl 0 kann man dabei formal durch die leere Summe dar-
stellen). Die Darstellung einer Zahl n in der Form (1) wollen wir auch als
Dezimaldarstellung von n bezeichnen. Wird nun die Zahl » durch die Dezimal-
darstellung (1) gegeben, so verwendet man zur Bezeichnung der Zahl n die
Ziffernfolge (das ,,Wort“) @z @, _, . . . @, @y, was wir auch durch

(2) nL 0@, ,...6, 8

(geiesen etwa: die Zahl n wird dezimal durch die Ziffernfolge axr @, _, ... a, a,
bezeichnet) wiedergeben wollen. Die Ziffernfolge ax a;_, . . . @, @y wollen wir
dabei die dezimale Zifferndarstellung von n nennen. Die bislang ausgeschlossene
Zahl 0 soll durch die Ziffer 0 bezeichnet werden. Wir merken an, daB die
Zifferndarstellung jeder natiirlichen Zahl # = 1 mit einer von der Ziffer 0 ver-
schiedenen Ziffer beginnt.

Die Bedeutung einer Ziffer in der (dezimalen) Zifferndarstellung einer natir-
lichen Zahl n hingt also auBer von ihrer Gestalt maBgeblich von der Stelle
(Position) ab, an der sie in der Zifferndarstellung auftritt. So hat in der dezi-
malen Zifferndarstellung 888 der Zahl 888 die erste (am weitesten links stehende)
Ziffer 8 die Bedeutung von 8 Hunderter, die mittlere Ziffer 8 die Bedeutung
von 8 Zehner und die dritte Ziffer 8 die Bedeutung von 8 Einer. So einfach uns
auch heute diese Schreibweise erscheinen mag, ist sie doch das Ergebnis einer
langen historischen Entwicklung. Das dezimale Positionssystem ist wahr-
scheinlich indischen Ursprungs, von wo es im frithen Mittelalter iiber den
vorderen Orient, Nordafrika und Spanien nach Mitteleuropa gelangte. Aber
auch hier dauerte es noch einige Jahrhunderte, bis es sich im 16. und 17. Jahr-
hundert gegen das bis dahin iibliche rémische Bezeichnungssystem durch-
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setzte. Insbesondere war das Positionsprinzip den altgriechischen Mathe-
matikern unbekannt, die ein alphabetisches Bezeichnungsprinzip verwendeten.
Ebenso wie die Zahl 10 kann auch jede andere natiirliche Zahl ¢ > 2 als
Grundzahl (Basis) fir ein Positionssystem genommen werden. Die besonders
weite Verbreitung des Dezimalsystems hat wahrscheinlich ihren historischen
Ursprung in der Anzahl unserer Finger. Rein sachlich besitzt es keine nennens-
werten Vorziige, die es vor Positionssystemen mit anderer Basis auszeichnen.
Die Darstellung der Zahlen mit Hilfe einer beliebigen Basis ¢ = 2 wurde
zuerst 1654 von B. PascAL untersucht. Sie beruht auf der zu (1) analogen Tat-
sache, daB man bei gegebenem g = 2 (g € N) jede natiirliche Zahl n > 1 in der
Form
(3) "‘=ak'g"+a);-|'gh’+"'+a1‘9+ao
darstellen kann, wobei der Exponent k und die Koeffizienten a,(x =0, ..., k)
durch n (und g) eindeutig bestimmte natiirliche Zahlen sind, die jetzt den folgenden
Bedingungen geniigen: k 20,0 <a, <g—1(x=0,...,k)und ax + 0. Wir
wollen allgemein (3) die g-adische Darstellung von n nennen. In Verallgemeine-
rung der dezimalen Zifferndarstellung benétigt man zur g-adischen Ziffern-
darstellung der natiirlichen Zahlen g Ziffern (Zahlzeichen). Deuten wir die einer
natiirlichen Zahl ¢ mit 0 < a < g — 1 entsprechende Ziffer wieder allgemein
durch a an, so wird im g-adischen Positionssystem die Zahl » mit der g-adischen
Darstellung (3) wieder durch die Ziffernfolge @: @, _, . .. a; @ nun aber aus
Ziffern @, mit 0 < a, < g — 1 bezeichnet, was wir jetzt durch

(4) nSoar@_...0a

(gelesen etwa: die Zahl » wird g-adisch durch die Ziffernfolge a: @, _, . . . @, @y
bezeichnet) andeuten wollen. Die Zahl 0 wird wieder durch die ihr zugeordnete
Ziffer bezeichnet.

Beim Dual- oder Bindrsystem (g = 2) werden also nur zwei Ziffern, z. B.
0 und 1 benétigt (wobei vielfach statt 0 und 1 die Zeichen o und ! verwendet
werden). Das Terndrsystem (g = 3) benétigt drei Ziffern 0,1 und 2. Beim
Duodezimalsystem (g = 12) sind 12 Ziffern, etwa 0,1,...,9, A, B (mit A als
Ziffer fir 10, B als Ziffer fiir 11) erforderlich, usw. Man rechnet leicht nach, daB
z. B. folgendes gilt:

3179 2, 3179, 3179 2, 110001101011
3179 2, 11100202, 3179 2,, 1A0B.

Ein Positionssystem mit kleiner Grundzahl g hat offenbar den Nachteil, daB
die Niederschrift groBerer Zahlen sehr lang wird, es bendtigt demgegeniiber
nur wenige Ziffern und hat demgemaB ein kleines Einmaleins. In einem Posi-
tionssystem mit groBer Grundzahl (im alten Babylonien wurde ein solches mit
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der Grundzahl 60 verwendet!) werden die Niederschriften der Zahlen kurz, es
benétigt aber viele Ziffern und das fiir das Rechnen erforderliche Einmaleins
wird sehr umfangreich.

Wir wollen nun den Satz (3) beweisen, der ja die Grundlage fiir die g-adische
Zifferndarstellung der natiirlichen Zahlen ist. Der Satz (1) ist natiirlich nur der
Spezialfall g — 10 des Satzes (3). Dazu nehmen wir zunéchst an, daB uns eine
Darstellung der Zahl % = 1 in der Form (3) schon bekannt ist. Dann ist offenbar
die Zahl a, der Rest bei der Division der betrachteten Zahl » durch die Grund-
zahl g > 2 (vgl. 3.7.(11)):

(6o) n=g¢gig+a mit 0<ag=g—1; .
die Zahl a, ist sodann der Rest bei der Division des Quotienten ¢, = q(=, g)
durch g:

(51) G =¢g+ae mt 0<e=sg—1,

die Zahl a, ist der Rest bei der Division des Quotienten ¢, = q(qy, g) durch g:
(52) @=0g+ae mt 0<ae<g-—1

usw. Dieses Verfahren wird nun solange fortgesetzt, bis erstmalig der Quotient
Qi+1 = q(gx, g) gleich Null wird (wegen g = 2 bilden die Quotienten eine echt
monoton fallende Folge von natiirlichen Zahlen, so da8 dieser Fall nach endlich

vielen Schritten eintritt), und der zugehérige Rest ¥ (g, g) ist dann der in (3)
auftretende Koeffizient a;:

(Br) @=0-g+a mit 0<apr=g—1

wegen ¢y + 0 ist a; <+ 0, wie in (3) gefordert). Wenn sich die Zahl n > 1 also
iiberhaupt in der Form (3) darstellen 1aB8t, miissen sich die Koeffizienten
@y, Gy, . . ., 8;_,, a nach folgendem Algorithmus ergeben:
n=g=q¢g+a mt g+0, 0=<g=g-—1,
f1=¢9g+e mit ¢+0, 0<e=g—1,

(8
Go1=®g+e, mt ¢=+0, 0=<q_,=g—1,
Gt=0'g4+a mt 0<a=<g-—1

(man vergleiche dies mit dem Euklidischen Algorithmus 3.7.(25)). Man sieht
nun aber sofort, daB mit den nach (5) ermittelten Koeffizienten a, (x = 0, . . ., k)
die Gleichung (3) gilt. Setzt man namlich (5;) in

Bpt) By =@g+a,
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ein, so erhdlt man
Qo1 =0 g+ a_y;
dies in
(Bpc2) Boa=D%-19+ 0
eingesetzt, ergibt
Go=ag*+a_ g+ ,,
usw.; und schlieBlich folgt aus (5,) und (59)
G=agt it t+ag9+a
sowie
n=go=argt+ -+ a g+ a.
‘Wendet man (5) mit der Grundzahl g = 3 bzw. g = 12 auf die Zahl n = 3179
an (vgl. obiges Beispiel), so erhalt man:

3179 = 1059 -3 4 2, 3179 = 264 - 12 + 11,
1059 = 353-3 4 0, 264 = 22-12+4 O,
352 = 117-3 + 2, 22= 1-12 4 10,
117= 39-3+0, 1= 0-12+4 1,
39= 13-3+40,

13=4-3+1,

4= 1-341,

1= 0-341,

80 daB in der Tat 3179 £, 11100202 und 3179 £,, 1A0B gilt.

Man zeigt noch leicht (Beweis!), daB der Exponent k in (3) durch die Un-
gleichungen
©® g=n<gt
charakterisiert ist (man sollte sich dabei auch iiberlegen, daB es bei gegebenem
g = 2 und n = 1 genau eine natiirliche Zahl k gibt, far die (6) gilt).

Wir kommen nun zur theoretischen Begriindung des Additionsverfahrens
fiir in g-adischer Zifferndarstellung gegebene natiirliche Zahlen, das im Prinzip
genauso wie das bekannte Additionsverfahren fiir in dezimaler Zifferndar-
stellung gegebene Zahlen verlauft. Es seien dazu 4, n, von Null verschiedene
natiirliche Zahlen mit

MLy ... .8, N2 by, ... b,
d. h., es gelte

b ks
Q) "1=2°G,.9". "z=20'5.9"
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mt0<a, <g—1(x=0,..., k), a, +0,0<b <g—1(x=0,..., k),
bk, + 0. Setzen wir k = max {k, k,} und im Fall k&, < k bzw. k; < k& noch
Gy =""r=a=0bzw. b, =---=b =00 wird

™ ™ =:_§o' a. g% ny= :):,")b,g"
mit 0 <a,, b, <g—1(x=0,...,k) und a + b 3+ 0. Wegen (vgl. (6))
g S n <ghth, g smy <ght!
wird — wie man leicht zeigt —
(8) gt < my +mp <gtt2,
so daB8 der Exponent k* in der g-adischen Darstellung von 2, + n,, es sei dies

e
(9) ”1+"2=z°’3.9’

0=s,<g—1(x=0,...,k*), s =+ 0), entweder gleich k oder gleich k¥ + 1
ist. Die Aufgabe besteht nun darin, aus den Koeffizientena, und b, (x = 0, . . ., k)
die Koeffizienten s, 3y, ..., 8, 8,,, zu ermitteln, wobei im Fall k* =k
natiirlich s, ,, = 0 gesetzt ist.

Wir behaupten, daB sich die Koeffizienten sy, . . ., 8;,, aus den Koeffizienten
Qg, . .., G, bo, eeey bg gemiB

(10) s, =r(@ +b 44,9 (x=0...,k), 8, =1,

berechnen, wobei die Ubertrage i, . . ., @, , nach den folgenden Rekursionsglei-
chungen gewonnen werden:

(1)  d@g=0, d,,=q(a,+b,+d,9) (*x=0,...k.

Man erkennt leicht (Beweis!), daB fiir @, (x =0, ...,k + 1) nur die Werte
0 und 1 in Frage kommen, so daB sich im Fall g = 2 die Werte s, und %, , , aus
folgender Tabelle ablesen lassen:

bs

£
&

8y | e 4 1

O ORP R, OO
PORORPRORPO
e OO0 0
POOROMR RO
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Die analoge Tabelle fiir den Fall g = 3 hat bereits 18 Zeilen (wir empfehlen
dem Leser, sie sich ausfiihrlich aufzuschreiben), die fiir g = 10 hat 200 Zeilen,
die fiir g = 12 hat 288 Zeilen, und bei beliebigem g hat sie 2 g2 Zeilen.

Zum Beweis von (10) beachten wir, daB die Koeffizienten «aq, ..., a,
by, ..., bk, 8, ..., 8., nach (5) durch

% = Q19+ 8, (x=0,....k) mit ¢o =m,, Qo1 =0,

(12) ¢, =g 19+b, (x=0,...,k) mit g = 7, % =0

O =g+ s (x=0..,k+1) mit g7 =mn 4, ¢l =0
gegeben werden, wobei g, ., = q (4., 9), a, = 7 (g, g) usw. gilt. Man zeigt nun
leicht, daB bei beliebigem x =0, ...,k + 1
(13) ¢ =g, +g.+4%,
ist. Im Fall » = 0 gilt (13) trivial. Wenn aber (13) fiir den Index x < & schon
bewiesen ist, wird nach (12)

0 =0+ Gt G =@+ G 9+ 0, + b, + G,
und mithin nach (11) und (12)

T =9 9) = s + Gur + g (@ + b, + 4 9)

= syt Qeis + sy
Also gilt (13) fiir alle Indizes x = 0, ...,k + 1. Aus (13) ist nun leicht (10) zu
erhalten. Denn aus (12) und (13) folgt fur x=0,.

qx = (Qx+i + qu+l) g + ax + bx + uxv
80 daB in der Tat

s=rg 9 =r(@,+b+i,9)
ist, und fir x = k + 1 liefert (13)

St = it = Qroy + Ghoy + Gy = Gy

Die vorangehenden Uberlegungen lassen sich leicht auf Summen aus mehr
als zwei Summanden verallgemeinein. Dabei kann natiirlich bei hinreichend
vielen Summanden der Ubertrag ,(x =1,...,k 4 1) beliebige Werte

0,...,9 — 1 annehmen, und bei mehr als ¢ Summanden treten neben dem
Ubertrag auf die links folgende Stelle auch Ubertrage auf hohere Stellen auf.

Die Multiplikation von in g-adischer Zifferndarstellung gegebenen Zahlen
erfolgt ebenfalls nach einem dem bekannten Multiplikationsverfahren fiir
Zahlen in dezimaler Zifferndarstellung analogen Verfahren. Zur theoretischen
Begriindung dieses Verfahrens merken wir zunichst an, daB bei beliebigem
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A = 0 folgendes gilt:

(14) nlp@...q0>37 g2 ar...a,0...0.
mal

Damit reduziert sich wegen
(Zrows)-(Z0e) = 5 Z s

die Ermittlung der Ziffern der g-adischen Zifferndarstellung von

ny  mg (= (é; % 9") ) (g’; b gl))

im wesentlichen auf die Aufgabe, bei gegebenem y =0,...,9 — 1 aus der
g-adischen Zifferndarstellung von n die von 7 * y zu ermitteln (wobei die Fille
v = 0 und y = 1 natiirlich trivial sind). Es sei dazu

nsg@r...qy, N-YSoPer...Po.

Dann ist im Fall y & 0 zunachst nach (6) entweder k* = k oder k* = k + 1,
und analog zu (10) und (11) gilt (Beweis!):

(15) p~='(an7+ﬁ"ug) ("=0:--':k)’ ?k+i=ib¢l

mit .

(‘6) iy =0, "2,+«=‘1(“,7+11.,9) (”=0:"'»k)‘

Fiir die Ubertriage 4, (x = 0,...,%k + 1) sind dabei nach (16) die Werte
0,...,9 — 2 moglich (Beweis!). Im Fall g = 3 ergeben sich die Werte fir »,

und 4, nach folgender Tabelle (bei der wir auf die Angabe der Trivialfille
» = 0 und y = 1 verzichten):

@ Y e | Pe insn
0 2 0 0 0
i 2 0 2 0
2 2 0 1 1
0 2 1(1 o
1 2 1 0 1
2 2 1 2 1

Im Fall g = 10 hat die analoge Tabelle (ohne ¥ = 0 und y = 1) 640 Zeilen,
und bei beliebigem ¢ sind es g - (7 — 2) Zeilen (der Fall ¢ = 2 bendtigt keine
Tabelle, das Einmaleins reduziert sich auf 1 - 1 = 1).
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Hier ein Beispiel fiir eine Multiplikation im Ternarsystem:

2122 - 1212
2122
12021
2122
12021
@: 112211

11212111

Auch die Division (mit Rest) verlauft im g-adischen Positionssystem analog
wie im Dezimalsystem. Wir verzichten auf eine genaue theoretische Begriindung
und geben nur ein Beispiel fiir eine Division im Ternarsystem:

211211021 : 101 = 2021121
202
221
202
121
101
T 200
101
Te%2
202
“201
101
100
d.h., fir n, £;2i1211021 und 7, 23101 wird q(n,, n,) £32021121 und
r(n,, ny) 23100,
Wir merken an, da8 sich die Division mit Rest im Dualsystem besonders
einfach gestaltet.

Zum Abschluf wollen wir noch das Grundprinzip der bekannten Dreier-

und Neunerprobe herausarbeiten. Dazu sei zunachst » eine beliebige natiir-
E

liche Zahl mit n £y ax . .. @, d. h. n = 3 a, - 10*. Die dezimale Quersumme

x=0

von # wird dann definiert durch

E
(17 Quin):= }a,.

u=0
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Aus 10 = 1 mod 3 (10 = 1 mod 9) folgt nun mittels 3.7.(67"’) sofort, daB bei
beliebigem x auch 10* = 1 mod 3 (10* = 1 mod 9) ist, und damit erhilt man
mittels 3.7.(66') und 3.7.(67)

(18)  Qqo(n) =nmod3  (Qyo(n) = n mod 9).
Insbesondere gilt also auf Grund 3.7.(65)
(19)  3[n&3[Qm), 9|ne9|Qpn).
Ist g eine beliebige Grundzahl, n £, a; . . . @y, 80 nennen wir analog
E
4 Q= o,
die g-adische Quersumme von n. In Verallgemeinerung von (18) bzw. (19) gilt
dann.
(18') g=1modk = Qy(n) = n mod k,
(19) g=1modk= (k|nek|Qn)).

Im Fall g = 11 tritt also z. B. an die Stelle der Dreier- und Neunerprobe eine
Zweier- und Fiinferprobe.
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Mengentheorie 15
Metamathematik 17
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Peanosches Axiomensystem 102, 133
Permutation, 59, 139

—, gerade 62
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symmetrische Differenz 26
systematische Darstellung 177

Teilbarkeitsrelation 147
Teiler 147"



192 Namen- und Sachverzeichnis

Teiler, gemeinsamer 151
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Ternérsystem 179

Topologie 18

totale Ordnung 78, 83; 112, 113
— Unordnung 74
Transformation 59
Transformationsgruppe 59
transitiv 68
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—, gemeinsames 158
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