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3. Differentialrechnung

3.1.  Grundregeln der Differentialrechnung

3.4.1. Differenzierbarkeit
In der historischen Entwicklung der Differentialrechnung spielte das sogenannte
Tangentenproblem eine groBe Rolle. Es sei f eine in einem Intervall definierte reell-

wertige Funktion. Zu einem beliebigen Punkt @ mit a € D(f) wihlen wir eine reelle-
Zahl b mit k 4 0, a + k € D(f) und betrachten die Verbindungsgerade der Punkte

,<

fla) fla+h)-

T a ash |
Abb. 3.1 Abb. 3.2

P(a, f(@), P(a+h, f(@ + &), die hiufig als ,Kur kante“ bezeichnet wird
(Abb. 3.1). Der Quotient der Zahlen f(a + k) — f(a) und & ist offenbar gleich dem
Tangens des Winkels, den die Sekante mit der z-Achse einschlieBt. Dieser Tangens
wird gewdhnlich als Anstieg der Sekante bezeichnet. Wir fijhren nun einen Grenz-
iibergang durch. Lassen wir 4 die Glieder einer Nullfolge (h,) mit a + h, € D(f)
durchlaufen, so kann der Fall eintreten, daB die Folge der zngehdrigen Sekanten einer
,»»Grenzgeraden® zustrebt (Abb. 3.2). Ist diese von der Wahl der Nullfolge unabhiingig,
80 wird man sie als die T'angente der durch die Gleichung y = f(z) gegebene Kurve
im Punkt mit der Abszisse z = a bezei

Fiir die uns aus der Schulmathematik bekannten el t Funkti existiert
im allgemeinen diese Grenzlage, und die auf diese Weise bestimmte Tangente ,,be-
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riihrt* den Graphen der Funktion im betrachteten Punkt. Im allgemeinen verbindet
man mit dem Begriff der Tangente die Vorstellung, daB die Kurve wie in Abb. 3.2
in einer Umgebung des betrachteten Punktes ganz auf einer Seite der Tangente liegt.

Es ist jedoch méglich, daB die Tangente die Kurve im betrachteten Punkt ,,durch-
setzt* (vgl. Abb. 3.23, S. 70). Es gibt aber auch Funktionen, bei denen die Grenz-
lage der Sekante zwar existiert, aber keum unseren gewohnten Vorstellungen von
einer Tangente entspricht. Fiir die Funktion

z’si.|:|l fir 240,
z

fl@): =
0 fir z=0
ist der Anstieg der Sekante durch die Punkte P(0, /(0), P(z, f(z)) durch
l@)—lw) —azsin L

z —
gegeben. Er strebt gegen 0 fiir  — 0, und folglich existiert die Grenzlage der Se-
kanten, niémlich die z-Achse. Diese ,,Tangente hat in jeder Umgebung des Punktes
P(0, 0) unendlich viele Schnittpunkte mit dem Graphen der Funktion f.

Dieses Beispiel zeigt, daB man mit rein geometrischen Vorstellungen nur schwer
zu einer exakten Begriffsbildung gelangen kann. Zur Einfithrung der Grundbegriffe
der Differentialrechnung wollen wir uns daher von der geometrischen Deutung l5sen.
Damit haben wir auch die Méglichkeit, unsere Betrachtungen auf komplexe Funk-
tionen auszudehnen.

Definition 1. Sind @, @ + & (b 4 0) Punkte des Definitionsbereichs einer reell
(oder komplexen) Funktion £, so heiBt die Zahl

Ha + }) — f(a)
3
der Differenzenquotient von f an der Stelle a mit dem Zuwachs k.

Definition 2. Eine reelle (oder komplexe) Funktion f heiBt in einem inneren
Punkt a ihres Definitionsbereichs differenzierbar, wenn die Funktion g mit

fla + h) — fta)

g(h): =

an der Stelle 5 = 0 einen endlichen G besitzt. Dieser G t wird mit
{'(a) bezeichnet und heiBt der Dsfferentudquohem oder die Ablestung der Funktion f
an der Stelle a.

Nach dieser Definition gilt somit
lim fa + k) — f(a)
"0 k

(k0,2 + k€ D)

fla)= M
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) ang

oder, mit z =a + &,

o —imlE=10) (2>
Setzen wir
ofa,z); = L2210y, ®

z—

8o erhalten wir durch Umstellung dié Weierstrafsche Zerlegungsformel

flz) = f(@) + (z — @) f' (@) + (z — a) gy(a, ), 4)
wobei
lim g(a, z) = 0 )

wegen (2), (3) ist. Der letzte Summand in (4) kann als Produkt zweier fir z —a
gegen Null strebender GréBen fiir kleine |z — a| vernachlissigt werden. Der Funktions-
wert f(x) wird demnach fiir kleine [z — a| durch die lineare Fanktion

f*@@) =f@) + (= — a) f(a) )

gut approximiert. Im reellen Fall geht die Gerade mit der Gleichung (6) wegen
1*(a) = f(a) durch den Kurvenpunkt P(a, f(a)) und ihr Anstieg ist die Ableitung der
Funktion f an der Stelle a.

Definition 3. Ist die reelle Funktion f im Punkt a differenzierbar, so heiBt die
Gerade durch den Punkt P(a, f(a)) mit dem Anstieg f'(a) die Tangents des Graphen
von f im Punkt P(a, (a)).

Eine Gleichung der Tangente in der Punkt-Richtung-Form lautet

0 pa), @

z—
was fiir y = f*(z) mit (6) gleichbedeutend ist.
Die zur Tangente senkrechte Gerade durch den Kurvenpunkt heift die Normale
der Kurve im Punkt P(a, f(a)). Eine Gleichung der Normalen lautet demnach
=f(a)— 7@ ( ) —a) ®)
im Fall f'(a) &= 0 bzw.
z=a 9)
im Fall f'(a) =
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Das Dreieck mit den Eckpunkten P(a, {()), P(z, f(a)) und P(z, f*(z)) heiBt das
Anstiegsdreseck. Seine Katheten haben die Lingen |z — a| und |(x — a) f'(a)|. Der
Funktionswert von f an der Stelle z kann gemi8 (4) in drei Summanden zerlegt.
werden (Abb. 3.3). Diese Summanden sind der Funktionswert an der Stelle a, dem
Betrage nach die senkrechte Kathete des Anstiegsdreiecks und die RestgroBe
(z — @) g/(@, 2), die die Abweichung des Kurvenverlaufs von der Tangente charak-
terisiert.

hfta)=htana
\7 h :
A f(a) E
_‘f .a ;- a+h
Abb. 3.3.

Der nachfolgende Satz kann auch als Definition fiir die Differenzierbarkeit ver-
wendet werden.

Satz 1. Eine reelle (oder komplexe) Funktion f ist in einem snneren Punkt a thres
Defsinitionsbereichs differenzierbar genau dann, wenn es eine reelle (oder komplexe) Zahl
¢ gibt derart, daf

i [®) = f@) — @ —a)c

20 r—a

=0 (10)
ist.

Beweis. Ist f an der Stelle a differenzierbar, so ist (10) mit ¢ = f'(a) erfiillt. Ist
umgekehrt (10) erfiillt, so folgt

f(z) l(a) =f@,
und £ ist an der Stelle a differenzierbar.

Wir stellen einen Zusammenhang zwischen der Stetigkeit und der Differenzier-
barkeit einer Funktion f an der Stelle a her.

Satz 2. Jede in einem inneren Punkt a thres Definitionsbereichs differenzierbare
Funktion f ist an der Stelle a stetig.
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Beweis. Aus (4), (5) folgt
lim f(z) = f(a),

und die Behauptung ist bewiesen.

Die Stetigkeit ist somit eine notwendige Voraussetzung fiir die Differenzierbarkeit.
DaB sie nicht hinreichend ist, werden wir in Beispiel 2 sehen.

Bis zum 19. Jahrhundert wurde es von den Math ikern als selb dlich betrachtet
daB eine ,,stetige* Funktion auch in ,,fast allen Punkten lhres Definitionsbereiches diffe -
bar ist. Der Grund fiir diese Auffassung ist in einer zu engen Besti g des Funktionsbegriffes

zu sehen. Man verstand unter ,,Funktion nur analytische Ausdrucke, die aus elementare;
.,Funktlonon" mit Hilfe von Addition, Subtraktion, Mulhphkshon, Division, Potenzieren und

Wi tzt waren. Eine solche Begriffsb g, die allerdings alle
wesentlichen Fille einfacher prnktmher Probleme zu behandeln erlaubte, Iegt natirlich auf
Grund der Ansch g eine , ich ‘ von Stetigkeit und Diffe ierbarkeit nahe, wobei
beide Begriffe selbst nur sehr- vage bestimmg waren. Diese Meinung vom Verhsltms von Stetlgkelt
und Differenzierbarkeit war noch zu Beginn des 19. Jahrhunderts so all vert ;daB

1806 ANDRE MARIE AMPRRE (1775—1836) dafiir sogar den Versuch eines Beweises unternshm
und SyLveSTRE FrANGOIS LAGROIX (1765 —1843) im gleichen Jahr in seinem beriihmten Lehrbuch
einfach beide Begriffe als gleichbedeutend betrachtete.

Erst mit der unbedingt notwend.lgen Verscharfung der Grundl.gen der Amlym im 19. Juhr-
hundert wurden auch die Begriffe ,, keit” und ,, Diff
BERNARD BoLzavo (1781—1848), dar u,uch klar dsrgestellt hat, was ,,stetig* engentlwh bedeutet,
verfaBte 1830 das Manuskript ,,Functionenlehre*. Darin stellte er fest, daB zwar Stetigkeit aus
Differenzierbarkeit folgt, aber nicht umgekehrt. Zur Begriindung dieser Ansicht gab er eine
Funktion an, die zwar dberall stetig, aber in unendlich vielen Punkten des Definitionsintervalls
nicht differenzierbar ist. Erst 1922 stellte K. RYcHLIK fest, daB die Funktion von Borzano
sogar nirgends differenzierbar ist. BoLzaNos Ideen sind wiihrend seiner Zeit fiir die Entwicklung
der Analysis nicht fruchtbar geworden, hauptsichlich deshalb, weil viele seiner Arbeiten im
tachechischen Teil der Habsb hie wegen der politischen Ansichten des Verfassers
nicht verdffentlicht werden duriten

Das gleiche Problem wie BoLzaxo griffen in der Folgezeit auch eine Reihe weiterer bedeuten-

der Math iker auf. B ders sind hier Ul h von BERNEARD RIEMANN (1826 bis
1866) aus dem Jahre 18564 und von Hmnm HANKEL (1839—1873) aus dem Jahre 1870 zu
erwihnen. Bis 1875 war es wei blieben, daB bereits KARL WEIERSTRASS

(18156—1897) 1861 in Vorlesungon eine Klasse von Funktionen angegeben hatte, die in ganz R
definiert und stetig, aber in keinem Punkt z ¢ R differenzierbar sind. WEIERSTRASS hatte die
Funktionen

z) = X b% oos (a™nz)

n=0
z€R,0 < a < 1,b ungerade ganze Zahl, ab> 1 + %n) betrachtet. Zur Klasse der Weier-

straBschen Funktionen gehért auch die in 2.8.2., Beispiel 4, betrachtete Funktion, Durch G
DarBoux (1842—1917) wurden 1875 die Uberl des Berliner Mathematik facht

und
f@) = 2'0 sin ((n + 1)i ) :, 1)z (z €R)
ne !

als eine solche Funktion, die diberall stetig, aber nirgends differenzierbar ist, eingefiihrt.
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M:t dﬁn Unumohungen durch die genannten Mathematiker waren auch endgiltig die Alm
ungen und der dazu gehdrende Funktionsbegriff Gberwunden. Der
»»Funktion‘ moh der Definition von PETER GusTAV LETEUNE DIRICHLET (1805—1859) wurde
zum all Bestandteil der Analysis.

Zu jeder reellen (oder komplexen) Funktion f kénnen wir eine neue Funktion bilden,
deren Definitionsbereich die (méglicherweise leere) Menge aller Punkte @ aus dem
Definitionsbereich von f umfat, in denen f differenzierbar ist und deren Funktions-
wert die Ableitung von f in diesen Punkten ist.

Definition 4. Unter der Ableitung einer in einem offenen Intervall definierten
reellen (oder in einem Gebiet definierten komplexen) Funktion f verstehen wir die
durch

lo): = lim w (= € D)

definierte Funktion f’, wobei D(f') die Menge aller z aus D(f) ist, in denen f differen-
zierbar ist.

Ist D(f’) nicht leer, so sagen wir, f sei in der Menge D(f') differenzierbar. Ist D(f')
= D(f), d. h., ist die Funktion f in allen Punkten ihres Definitionsbereiches differen-
zierbar, so heiBt 1 differenzierbar.

Ist f eine in D(f) stetige Funktion, so heiBt f stetig differenzierbar.

Die Bezeichnung f’ fiir die Ableitung einer Funktion f geht auf Joskrr Louis

LAGRANGE (1736—1813) zuriick (1770 ,,Nouvelle Méthode pour résoudre les équa-
tions littéraires par le moyen des séries*).

Beispiel 1. Nach 2.3.4., Beispiel 3, gilt
—a
lim 2 — a

v T — @G

fiir alle reellen (oder auch fiir alle komplexen) Zahlen a. Die Funktion f(z) = z*
(z € R bzw. z € C) ist somit in allen Punkten a ihres Definitionsbereichs differenzier-
bar, und es gilt stets f'(a) = 2a. Die Funktion f(z) = 2% (z € R bzw. z € C) ist
stetig, und folglich ist die Funktion f(z) = 22 stetig differenzierbar (Abb. 3.4).

Beispiel 2. Wir betrachten die Funktion f(z) = || (x € R). Bilden wir den Grenz-
wert dieser Funktion beim Grenziibergang  — a mit @ == 0, so kommt es nur auf die
Funktionswerte in einer Umgebung von @ an. Wir kénnen daher voraussetzen, dag
z und a dasselbe Signum haben. Aus |z| = z sgn « folgt somit

=2a

|2 — laf

lim =1lim 28T 08RG i egnal—2 —sgna,

s~ T —a ) zT—a 20 z—a

d. h., esist f'(@) = 1 fiira > Ound f'(a) = —1fiira < 0 (Abb. 3.5). Fiira = 0 st der
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Differenzenquotient gleich-

B0 s w40,
z—0

und diese Funktion besitzt fiir z — 0 kei G t. Die Funktion f(z) = |z
(z € R) ist somit in der Menge D(f') = R* = R\ (0} differenzierbar. Im Punkt
« = 0 ist sie nicht differenzierbar, obwohl sie dort stetig ist.

Der Differ tient besitzt aber im Punkt O einseitige Grenzwerte. Wir
fiithren daher die folgende Verallgemeinerung ein.

J T(x)=1x|
fo=1

i) =-1

Abb. 3.4 . Abb.3.5

Definition 5. Eine auf einem Intervall I definierte Funktion f heiBt in einem
Punkt a € I links- bzw. rechisseitig differenzierbar, wenn der Grenzwert

i @ = 1@ o @)~ f@)
zta ZT—a zle T—a

die links- bzw. rechisseitige Ableitung von f im Punkt a, existiert.

Die Funktion f(z) = |z| besitzt im Punkt z = O die linksseitige Ableitung —1,
die rechtsseitige Ableitung 1.

Ist der in Definition 5 betrachtete Punkt a ein Randpunkt des Intervalls I, so
158t man gewohnlich den Zusatz ,linksseitig” baw. ,rechtsseitig® fort, da keine
MiBverstindnisse zu befiirchten sind.

Eine Ubertragung des Beweisgedankens von Satz 2 zeigt, daB jede in einem Punkt
a links- bzw. rechtsseitig differenzierbare Funktion dort auch links- bzw. rechtsseitig
stetig ist.
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AbschlieBend machen wir einige Bemerkungen iiber die in der mathematischen
Literatur anzutreffenden Bezeichnungen fiir die Begriffsbildungen der Differential-

h Im Diffe tienten der Funktion y _{(z) wird der Zuwachs h
hiiufig mit Az und die Differenz der betrachteten Funkti te f(a + &), f(a)
mit Ay bezeichnet. Ferner setzt man

dy 4y
:=lim ==
dr " gpe0 A2’

wobei das Symbol %:— (gelesen: dy nach dz) kein Quotient, sondern der Grenzwert

eines Quotienten ist. Diese von LrrBNiz eingefithrte Symbolik besitzt neben einer
Reihe von Vorziigen, dxe alch vor allem auf das leichte Einpriigen von einigen Rechen-
regeln der Diff i iehen, auch erhebliche Nachteile. Zunichst wird
nicht klar unterschieden, ob es sich um die Ableitung an der-Stelle a (also um die
Zahl {'(a)) oder um die Ableitung (also um die Funktion f') handelt. Will man hervor-
heben, da8 es sich um dxe Ableitung an der Stelle a handelt, so hat man die etwas

hwerfillige Schreibweise
gy
dx =0
anzuwenden. Der schwerwiegendste Einwand besteht aber darin, daB hierbei die
Ableitung durch die Bezeichnungen der Variablen fiir das Argument z bzw. fiir
den Funktionswert y der Funktion f charakterisiert wird. Bei gewissen Unter-
suchungen, z. B. wenn fiir die Variablen z, y andere Vnnn.ble oder andere Funktionen
substituiert werden, kann diese Bezeicl zu erheblicher Vi

&'

fiihren. Ahnliches gilt fiir die ebenfalls hiufig verwendeten anchnungon

oder y fiir die Ableitung der Funktion y = f(z). Trotzdem wird man auf dlese Be-
zeichnungsweisen nicht ganz verzichten kénnen, zumal sie in der Literatur weit
verbreitet sind.

Auf die Einfiihrung sog ter ,,Differentiale” dz, dy wollen wir hier verzichten.
Ein tieferes Verstindnis und die erforderliche Sicherheit im Umgang mit diesen
Objekten kenn nach unserer Meinung erst auf einer hoheren Stufe erzielt werden.

af df(Z)

3.1.2. Differentlation elniger elementarer Funktionen
Mit den in 2.3. und 2.4. bereitgestellten Hilfsmitteln kénnen wir sofort die Ab-
leitungen einiger elementarer Funktionen berechnen.

Satz 1. Die Ableitung einer konstanten Funktion ist die Nullfunktion.

Beweis. Der Differenzenquotient ist stets gleich 0.
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Satz 2. Die reelle (oder kompleze) Polenzfunktion y = z® (n = 1, 2, ...) besitzt die
Ablestung y' = na™1.

Beweis. Nach 1.1.1. (7) ist
imE =% —lim z'z-—'a*-l = za-—'a'-l = na*"!
e T—a e k=1 k=1
fiir alle reellen (oder komplexen) Zahlen a.
Wir formulieren die Behauptung von Satz 2 auch in der hiufig angewandten
Schreibweise
(@) = na*"1, (1)
obwohl gegen sie wiederum die am SchluB von 3.1.1. erhobenen Einwiinde gelten.
Satz 3. Die Ableitung der reellen (oder komplexen) Ezponentialfunktion y = e*
5t wiederum die Exponentialfunkiion, d. h., es gilt
(Y =e*. (2)
Beweis. Aus dem Additionstheorem der Exponentialfunktion folgt

o el G heREmW.CLh+0).

h h
Aus 2.3.4. (6) folgt somit
lim v —e o
[y
und Satz 3 ist bewmeen In der Tatsache, daB sich die Exponentialfunktion bei der
Differentiati jert“, liegt eine wesentliche Ursache fiir die Bedeutung

dieser Funktion ﬁxr die Mathemtlk und die Naturwissenschaften.
SstzLDnLooamhmua]unMy=lnsz¢m¢ (der natirliche Logarithmus)
beaﬁztdieAbki&ungy’:%, d.h., s ist

1
(o z) =—. @)
z
Beweis.!) Es ist
z
nZ
Inz—lne_1__ a @ a>0,z%a).
z—a a

zZ_a
a

%) In 8.1.3. wird ein anderer Beweis gefihrt.
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Aus 2.3.4. (7) folgt

Damit ist (3) bewiesen.

DaB die Ableitung der Logarithmusfunktion eine rationale Funktion ist, wird

sich fiir die Integration rationaler Funktionen als bedeutungsvoll erweisen.

Satz B. Die trigonometrischen Funktionen y = sin z bzw. y = cos = besitzen die

Ableitungen y' = cos z baw. y' = —sinz, d. h., es ist
(sin z)’ = cos z,
(cos z)’ = —sin z.

Beweis. Nach 2.5.1. (19) ist
sin (@ + k) -—sina=2cos(a + %) sin-;i,

und aus 2.5.1. (8) und der Stetigkeit der Kosinusfunktion folgt

. 5 sin —
Eﬂw:mcos(a+5) _IL =cosa.
2

Unter Verwendung von 2.5.1. (17) erhalten wir analog

sin —
. _cos(@+ h) —cosa
m

L—T—=—lgsin(a+-§)—h—=—sina,

2
und Satz b ist bewiesen.

3.1.3. Differentiation von verkniipften Funktionen

(4)
®)

Wir leiten einige Regeln fiir die Differentiation von verkniipften Funktionen her.

Satz 1. Sind die Punktionen f und g in einem inneren Punkt a shres Definitions-
bereichs differenzierbar, so sind die Funktionen Af (A€ R bzw. A€ C), f+ ¢, f-g an
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der Stelle a differenzierbar, und es gilt

@Gf) (@) =), @),
(f£9) @=f@)Lg@), @)
(f-9) (@) =f(@) g(6) + fa) g'(@)- @)

Ist dariiber hinaus g(a) = 0, so st auch % an der Stelle a differenzierbar, und es gilt
f ) (@) gla) — f(@) g'(a) n
4 [ R iR A Bt Al i B il A )
(a @ (9(a))? ¢
Beweis. Die Behauptungen (1), (2) ergeben sich sofort aus
(@ + k) — A(a) - lf(ﬂ + k) — f@)
h h ’

[f@a + &) + gla + k)] — [{(@) £ g(@)] _ f(@ + ») — f(@) , gla + }) —g(a)
3 - 3 * o,

Die Regel (3) fiir die Ableitung eines Produktes leiten wir her, indem wir im Zahler
des Differenzenquotienten fiir das Produkt einen Summanden addieren und wieder
subtrahieren, der eine Abspaltung des Differenzenquotienten fiir f bzw. fiir g er-
moglicht. Es ist

fle thigle +0) =~ fe)ote) _ flot D= f0) g, 1 py 1 g B0 —000)

Da g an der Stelle a differenzierbar, also auch stetig ist, liefert der Grenziibergang
"k — 0 die Behauptung (3). Ist g(a) & 0, so konnen wir wegen der Stetigkeit von g
an der Stelle a ein § > 080 wihlen, daB aus |h| < 8 stets g(a + k) 5 O folgt. Dann ist
1 (I(a +h /(“)) _ fle +»)g(a) — fa)gla + k)
ge+h) gl hg(a + k) g(a)

[I(a + &) —f(a)

gla +h)—g(@)
-g(@) — fa) % ].

T e+ h) g(@)
und der Grenziibergang b — 0 ergibt die Behauptung (4).

In Verallgemeinerung von Satz 1 gelten fiir die Ableitungen der in einem Intervall
bzw. einem Gebiet differenzierbaren Funktionen folgende Rechenregeln:

@afy =, (1)
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o)y =19, @)
(f_'ﬂ)'=f'ﬂ+lv'. ®)
IN_te—W ,
(v) ' )

Befspiel 1. Die Ableitung der Tangensfunktion ist

(tan 2y’ = (5'2)= oz — sinz (—aing)
CO8Z,

" cos’z
(tan z)’ = 1 4 tandz = powr et (8)
Ganz analog erhalten wir
(cot z)) = —1 — cot?z = _sinl'z' (6)

Mit Hilfe der Regeln (1) und (2) sowie der Sétze 1 und 2 aus 3.1.2. kénnen wir nun
beliebige ganzrationale Funktionen, mit (4) dariiber hinaus alle rationalen Funktionen
in Teilintervallen des Definitionsbereichs diff it

Beispiel 2, Es ist die Ableitung der Funktion

_ae+bEto
y -

mit a, b, ¢ € R, n € N* zu bilden. Unter. Verwendung von (4) ergibt sich

— [az + b) (z + ¢)) 2® — a(z + b) (x + ¢) nz™ !

¥ 2

und Anwendung von (1), (3) und (2) liefert

y,_a[x+c+z+b]z'—a(z+b)(z+c)m'“

= o )
@—ma* + (1 — ) (@ + bx) — bon

y=a — .

Wir leiten nun die Regel fiir die Differentiation von Umkehrfunkts her.

Satz 2. Besstzt eine auf einem offenen Intervall stetige Funktion f eine Umkehrfunk-
tion g, die an der Stelle f(a) esne von O verschiedene Ablestung besitzt, so ist f an der
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Stelle a differenzierbar, und es ist
f@) = 1 U
7ite) '
Beweis. Nach der WeierstraBschen Zerl formel ist

z — a =gf@) — (/@)
= ({(=) — f(@)) ¢'(f(@)) + (f(z) — f(@)) eslf(@), f(=)-
Der Punkt f(a) ist innerer Punkt des Definitionsbereichs von g. Da g’(l(a)) + 0 ist

und ¢,{f(a), f(z)) wegen der Stetigkeit von f fiir z —a gegen O strebt, ist g'(f(a))
+ gilf(@), f(2)) fiir hinreichend kleine |z — a| von Null verschieden, und es folgt

- f@) —f@) . 1 1
].l = hm = »
e 20 ead(l@)+elf@ @)  ¢@)

womit Satz 2 bewiesen ist.

Beispiel 3. Aus () folgt
(arctan z)' = ﬁ-m'
(arctan z)’ = 14-;2' (8)
und ebenso
(arccot z)’ = _1-#;3‘ 9)

fiir alle reellen z. Damit haben wir wiederum zwei nichtrationale Funktionen mit
rationalen Ableitungen gefunden.

Beispiel 4. Fiir |z| < 1 ist

(arcsin z)’ = ! " = L ’
cos (arcsin ) /1 — sin? (arcsin z)
(arcsin z)’ = }/.li_x’ . (10)
Die Formel
(arccos z)’ = — 1 an

y1i—a
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kann ebenfalls mit Hilfe von Satz 2 oder einfacher ans
k3 .
arccos z = T arcsin z

(vgl. 2.5.2. (9)) abgeleitet werden.

Beispiel 5. Die Ableitung der Logarithmusfunktion kann auch mit Hilfe von (7)
ermittelt werden, und zwar gilt

1

1
nz) =—=—. 12
(n2) = — = (12)
Wir leiten die Regel fiir die Diffe iation gesetzter Funktionen her, die

hiiufig als Kettenregel bezeichnet wird.

Satz 3. Ist die reelle (oder komplexe) Funkiion g an der Stelle a und die Funktion f
an der Stelle g(a) differenzierbar und ist a esn innerer Punkt des Definitionsbereichs der
tzten Funktion f o g, 80 ist f o g an der Stelle a differenzierbar, und es ist

(tog) @) =g'(@) - flga). (13)
Beweis. Nach der WeierstraBschen Zerlegungsformel ist

fo@) — flo@) = (0(z) — 9(@) 1'(g@) + (g2) — 9(@)) edg(@), 9(=))-
Da g an der Stelle a differenzierbar, also auch stetig ist, gilt g(z) — g(a) und damit
orlg(a@), g(@)) — O fiir = — a. Es folgt

tim 0N =M@ _ ) @) + g0) -0,

o z—a
und (13) ist bewiesen.

Die Kettenregel liBt sich unter Verwendung der Leibnizschen Symbolik sehr gut
einpriigen. Ist y = g(z) und

z=y), (14)
80 erhalten wir die Ableitung der zusammengesetzten Funktion

z = flg(=)) (15)
nach der formalen Regel

& _d dy 16
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die allerdings einiger Erliuterungen bedarf. Zunichst ist zu bemerken, daB die
Variable z auf der linken Seite die zusammengesetzte Funktion (15), auf der rechten
Seite dagegen die Funktion (14) symbolisiert. Ferner muB beachtet werden, daB

nach Ausfiihrung der Differentiation ;ﬁ die Variable y durch g(z) bzw., wenn wir
Y

eine feste Stelle a betrachten, durch g(a) zu ersetzen ist. Man darf aber (16) bzw. die
analog gebildete Beziehung

L _sty
Az Ay Az
ohne eine exakte Begriindung des Rech mit Differentialen nicht als ichend

fiir einen Beweis der Kettenregel betrachten. Dagegen ist es vdllig legitim, sie als
Merkregel fiir das Rechnen mit Differentialquotienten aufzuf: Entsprechend
gilt fiir die Merkregel

Gy _ . 8=

dz  dy
fiir die Ableitung einer Umkehrfunktion.

Beispiel 6. Es sei f(y) =siny und g(z) =2*+ 2z. Dann ist f'(y) =cosy,
Fg(@)) = cos (z* + 22) und ¢'(z) = 2z + 2. Somit gilt

(sin (2* + 22)) = (cos (& + 22)) (2 + 2).
In der Leibnizschen Symbolik hiitte man z = sin y, y = 2? + 2z,

%=my=cos(x’+2z), %=21+2
und damit
= o2 = leosat + 20) (2 +2
zu setzen.
Beispiel 7. Fiir alle positiven reellen Zahlen a ist
@*) =a*lna  (z€R). 17)

Der Beweis ergibt sich mit der Kettenregel aus a* = ¢*'°°, indem wir f(y) =¥,
9(z) = z In a setzen. Dann ist

flo@) = flg@) = e =a*,  g@) =Ina,
und aus (13) folgt die Behauptung.
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Beispiel 8. Fiir alle reellen Zahlen « ist
@) =az! (z€Rz>0). (18)
Mit f(y) = ¢, g(z) = &« In z gilt I(g(z)) = ¢*!87 = 2%, und aus
Flo@) = flg@) ==,

g =@hay ==
x

folgt die Behauptung.
Beispiel 9. Es sei f(y) = Iny und g(z) = « + V2?+ c. Dann ist
1 1
fy=—, flg) = und ¢'@) =1 +———0.
y r+yrite Vo +e
Somit gilt
’ 1
In{z + Va2 +¢)) = ——.
e -
Beispiel 10. Es empfiehlt sich manchmal, zur Berechnung der Ableitung einer

iiberall positiven Funktion f den natiirlichen Logarithmus von f(z) zu nehmen und die
8o entstehende Funktion In f(z) zu differenzieren. Es ist

@)

In = —, 19
(i f@) =72 (19)
und man nennt die Funktion auf der rechten Seite die logarithmische Ableitung von
f(z). Wir berechnen auf diese Art die Ableitung von f(z) = (1 + %)’ Es ist

Infx) =zIn (1 + l),
z
@ =In (1 + l) — 1

f(=) z] 1+z
Somit gilt

(e e e !

Beispiel 11. Es sei f(z) = arcosh z. Unter Verwendung von 2.5.5. (5), erhiilt man

x
Y2r—1_ 1
z+y—1 Yo—1

1+

(arcosh z)’ = (]n (z + }/ztl)), =
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d. h,, es ist
(arcosh z)’ = —_l= (> 1). (20)
Y=2—1
Beispiel 12. Wegen 2.5.5. (8) ist
z
V 1
arsinh ) = In (z + Vz*+ 1) =,
( (m - z+ Vz'+ Y2+ 1
d. h., es ist
(arsinh z)’ = . (z €R). (21)

yz*+ 1

3.1.4.  Mittelwertsitze der Differentialrechnung

Wir betrachten in diesem Abschnitt ausschlieBlich reelle Funktionen, die auf einem
Intervall definiert sind, und beweisen zunichst einen nach MicHEL RoLLE (1652 bis
1719) benannten Satz. Er findet sich erstmals in seinem 1690 erschienenen Werk
,-Traité d’algébre*. Den Beweis des Satzes lieferte er erst 1691.

Satz 1. Ist f eine im abgeschlossenen Intervall [(a, b)) stetige und im offenen Intervall
Ja, b[[ differenzierbare Funktion, die an den Endpunkten des Intervalls den Wert Null
annimmt, so qibt es eine Zahl £ mit a < & < b und

1@ =

Beweis. Nach dem Satz vom Maximum und Minimum in 2.4.2. gibt es Punkte
2y, 73 € (@, b] mit f(z,) < f(z) < f(z,;) fiira <z < b,

Fall 1. Es ist f(zs) > 0. Wegen f(a) = f(b) =0 gilt 4 < z; < b, und f ist in z,
diff ierbar. Nach Definition von z, ist

f(zs + B) — f(z;) (S0 fiir 2> 0,
h =0 fir A<O.
Der Grenziibergang A —0 (A > 0 bzw. h < 0) liefert f'(z,) <0 und f'(z,) =0,
d. h., es ist f'(z;) = 0.

Fall 2. Es ist f(z,) = 0. Ist auch f(z,) = 0, so ist f(z) = O firallez mita < z < b.
Andernfalls setzen wir g(z) := — f(z). Dann besitzt g im Punkt 2, ein Maximum, und
wie im Fall 1 folgt ¢'(z,) = 0 und damit f'(z,) = 0.

Der Fall f(z,) < 0 kann nicht eintreten, und Satz 1 ist bewiesen.
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Die Voraussetzungen von Satz 1 sind natiirlich stets erfiillt, wenn f(a) = f(b) =
und wenn f sogar im abgeschlossenen Intervall [(a, b] differenzierbar ist. DaB die
schwiicheren Voraussetzungen von Satz 1 ausreichen, kann man sich an dem nach-

£l den Reianiel haulich ki h,
S

Beispiel 1. Es sei f(z) =1 —2® (—1 <z < 1). Fiir alle z mit z € J—1, 1 ist

—z
Yi—o
In den Randpunkten des Intervalls ist die Funktion nicht differenzierbar, aber sie

ist im abgeschlossenen Intervall stetig. Ihre Ableitung verschwindet an der Stelle
& =0 (Abb. 3.6).

f@)=

~

-1 £=0
Abb. 3.6 Abb. 3.7
Wir beweisen nun den Mittehwertsatz der Differentialrechnung.
Satz 2. Ist f eine im abgeschlossenen Intervall [(a, b)) stetige und sm offenen Intervall
Ja, b( differenzierbare reelle Funktion, 30 gibt es eine Zahl & mita < & < b und

O CESC) "
b—a

Beweis. Um den Beweis auf den Satz von RoLLE zuriickfithren zu konnen, bilden
wir die Gleichung y = g(z) der durch die Kurvenpunkte P(a, f(a)), P(b, /(b)) gehenden
Sekante (Abb. 3.7). Sie lautet in der Zweipunkteform

y—f@ _1®) — f@

z—a b—a
Somit ist
4@ = + B =10,
/(b) f(a)

q'(@@) =
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Die Funktion g mit g(z) = f(z) — g(z) erfiillt alle Voraussetzungen des Satzes von
RoLLE, und es gibt daher ein £ mit @ < & < b und

f(b) f@)

O0=g'O)=fE)—g@ =f¢)——— "

Damit ist Satz 2 bewiesen. Er besagt geometrisch, daB es eine zu einem inneren
Punkt gehorende Tangente gibt, die zur Sekante parallel ist.

Wir geben dem Mittelwertsatz noch eine andere Fassung (Abb. 3.8).

y

hfi(g+dh)

Abb. 3.8

a a+dh ash

Satz 2'. Ist die reelle Funktion f fiir alle z mit |z — a| < [h] (b == 0) stetig und fir
alle 2 mit |z — a| < |b| differenzierbar, so gibt es ein & mit 0 < 6 < 1 und

fl@ + k) = f(a) + hf'(a + Oh). (2)
Beweis. Setzen wir
F(t): = f(a + th) O0=t=1),

so ist F im abgeschlossenen Intervall [0, 1] stetig und im offenen Intervall JO, 1
differenzierbar, und nach Satz 2 gibt es ein # mit 0 < # < 1und F'(8) = F(1) — F(0).
Wegen F(1) = f(a + k), F(0) = f(a) und F'(t) = hf'(a + th) ist dies mit (2) gleich-
bedeutend.

Beispiel 2. Es sei g(z) = ¢(0) e** (vgl. 2.1.5.). Dann ist ¢'(z) = aq(0) ** = aq(z),
und nach dem Mittelwertsatz gibt es zu x,, z, mit z; < , ein § mit z; < § < 7, und

—q(z
2®) —g@) _ q'(&) = ag(£).
T, —x
Die Funktion g erfiillt also die Bedingung 2.1.5. (11).
Die Ableitung einer in einem Intervall differenzierbaren Funktion braucht nicht

wieder stetig zu sein. Aber auch dann, wenn sie nicht stetig ist, kann sie keinen
,»Zwischenwert* auslassen, denn es gilt
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Satz 3. Ist die reelle Funktion | im Intervall [(a, b)) differenzierbar, so nimmé¢ die
Funktion |’ in diesem Intervall jeden Wert zwischen [ (a) und f' (b) mindestens esnmal an.

Beweis. Wir setzen

fa) — fl@) g

pla):= ~—a a<z=<h,
f'(a) fir z=a,
1) — H=) .

@) = b — = fir a<z<b,
f'®) fir z=>5.

Dann sind p, g in [, b]) stetig. Es sei nun x eine zwischen f'(a) und /' (b) liegende Zahl,
wobei wir nur den Fall 4 = f'(a), f'(b) zu betrachten brauchen. Wegen f'(a) = p(a),
1'(b) = q(b) und p(d) = g(a) liegt 4 zwischen p(a) und p(b) oder zwischen ¢(a) und
g(b). Nach dem Zwischenwertsatz 2.4.2., Satz 3, gibt es ein 2 mit p(z) = u oder mit

q(x) = p. Im ersten Fall ist z & @, und folghch gibt es ein £ mita < £ < < b und

I(z) (a)

#=p) = =1

Analog verliuft der Beweis im zweiten Fall, und Satz 3 ist bewiesen.
Als Anwendung des Mittelwertsatzes beweisen wir zwei wichtige Sitze.

Satz 4. Ist die Ablestung einer auf einem Intervall differenzierbaren reellen Funktion
die Nullfunktion, so ist die Funktion konstant.

Beweis. Aus (2) folgt /(a + k) = f(a) fiir alle @, @ + k, die im betrachteten Inter-
vall liegen.

Der nachfolgende Satz liefert ein hinreichendes Kriterium fiir die Umkehrbarkeit
einer Funktion.

Satz b. Ist die Ableitung einer auf einem Intervall differenzierbaren Funktion von O
hieden, so ist die Funktion streng ton und damit umkehrbar.

Beweis. Die Funktion f’ kann nicht positive und negative Werte annehmen, da
sie sonst nach Satz 3 auch den Wert 0 annehmen wiirde. Es sei etwa stets f'(z) > 0.
Fiir & > 0 ist dann f(z + h) — f(z) = kf'(x + Bh) > 0, d. h., die Funktion f ist
streng monoton wachsend und damit umkehrbar.

DaB die Funktion f im Fall f(z) > 0 bzw. f'(z) < O streng monoton wachsend
bzw. streng monoton fallend ist, erkennt man auch aus der geometrischen Deutung
der Ableitung.

Wir beweisen den /] inerten Mittelwertsatz der Differentialrechnung, der u. a.

fiir die Berechnung von Grenzwerten von Bedeutung ist.
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Satz 6. Sind die Funkts 1, g im abgeschl Intervall (a, b)) stetig, smo//men
Intervall Ja, b[[ differenzierbar und ist g '(x) & 0 fiir a < z < b, 80 gibt es esn & mit
a<é<bund

f&) — f@) _ f'& @
g —gl@) g@’

Beweis. Wire g(a) = g(b), so giibe es entgegen unserer Voraussetzung ein §
mit g’ (&) = 0. Somit ist g(a) = g(b). Wir setzen

p(z): = fzx) — Ag(z)
und bestimmen 2 so, daB p(a) = p(b) ist. Aus
f(@) — Ag(a) = (b) — 2g(b)

folgt
_1®) — f@)
T 96 —g@’
Die Funktion p erfiillt die Voraussetzungen des Mittelwertsatzes, und wegen p(a)
= p(b) gibt es ein £ mit @ < £ < b und )
0=9p'(8) =1 — 4%,
1) — fla) —_1= §dG]
gb) —g(@) g’
und Satz 6 ist bewiesen.

3.1.5. Glatte Kurven

Wir betrachten eine Funktion, die jeder reellen Zahl t aus einem Intervall I eindeutig
einen Punkt 2(t) = (z,(t), vees z,(t)) des Raumes R, zuordnet. Die Funktion @ sei
hierbei als stetig vorausgesetzt, so daB auch die Koordinatenfunktionen z,
(¢ =1,..., p) im Intervall I stetig sind. Deuten wir I als ein Zeitintervall und ist
p = 2 bzw. p = 3, so kénnen wir die Abbildung

ts2t) = (z(t), 0o 2p(t)) (D) (1)

als Bahn eines bewegten Massenpunktes in der Ebene (p = 2) bzw. im Raum (p = 3)
in Abhingigkeit von der Zeit ¢ auffassen. Wir beschrinken uns zunichst auf die Fille
p = 2, 3 und gehen von (1) zu der Schreibweise

) =(z0),y) el
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bzw.

. ) = (=), y),20))  ¢€D)
ul

Beispiel 1. Es sei
t(t) = (cosh¢,sinh?) (£ € R). @

Wegen cosh ¢ > 0, cosh? ¢ — sinh?¢ = 1 liegen die Punkte r(¢) auf dem rechten Ast
der Hyperbel mit der Gleichung z® — y* =1 (Abb. 3.9), und jeder Punkt dieses
Hyperbelastes wird fiir geeignetes ¢ tatsiichlich angenommen.

Abb. 3.9 Abb. 3.10

Beispiel 2. Es sei
1(t) = (cost,sint, ) (L€ R). 3)

Wir betrachten die Projektion t*(t) = (cost, sin t) der Raumpunkte t(t) in die z, y-
Ebene. Wegen cos’t + sin3¢ = 1 liegen die Punkte t*() auf dem Einheitakreis
2% 4 y* = 1, und t*(¢) fithrt einen vollen Umlauf aus, wenn ¢ ein Intervall der Linge
27 durchlauft. Die Bewegung des Punktes t(¢) in Abhiingigkeit von ¢ ergibt sich durch
Uberlagerung der Rotationsbewegung von t*(t) mit einer gleichférmigen Bewegung
in Richtung der z-Achse. Somit durchlauft t(t) eine Schraubenlinie (Abb. 3.10).

Beispiel 3. Ist f eine im Intervall I definierte reelle stetige Funktion, so bilden die

te
0 =(f®) ¢eh @

den Graphen von f.



3.1. Grundregeln der Diff ialrech 29

Beispiel 4. Es sei a, b > 0 und
1(¢) = (a cos ¢, bsint) (—r=t< =) (5)
Wie aus Abb. 3.11 hervorgeht, durchliunft v(¢) die Punkte einer Ellipse mit den
Halbachsen a und b.

In den ersten drei Beispielen ist die Funktion ¢ +» t(f) umkehrbar eindeutig. In
Beispiel 4 ist dagegen t(n) = t(—=), wihrend die Abbildung fir —z < ¢ < 7 um-
kehrbar eindeutig ist. In den ersten drei Fillen sprechen wir von einer (ein-
fachen) Kurve, im vierten Fall von einer (cinfach) geschlossenen Kurve und geben
allgemein die

Definition 1. Eine Punktmenge C' des Raumes R, heiBt eine (einfache) Kurve,
wenn es eine stetige Funktion tr = r(¢) gibt, die ein Intervall I reeller Zahlen um-

#(t)= (acost bsint)

Abb. 3.11,

kehrbar eindeutig auf die Menge C abbildet. Ist I beschrinkt und abgeschlossen, so
heiBt C auch ein Kurvenstiick.

Ist I =((a, b], bildet die Funktion das Intervall Ja, b} umkehrbar eindeutig auf ¢
ab und ist t(a) = t(b), so heiBt C eine (einfach) geschlossene Kurve.

Der Begriff der Kurve war urspriinglich von CAMILLE JoRDAN (1838 —1022) wie folgt definiert
worden: Sind z = ga(l), y = v(t) (¢ € I) stetige Funktionen, so heiBt die Menge C der Punkte
(@(t), ¥(¢)) mit ¢ € I eine Kurve. Er forderte also nicht die umkehrbare Eindeutigkeit der Abbildung
t> (@9, w(l)) Von Gruserre Praxo (1858—1932) wurde 1880 gezeigt, daB diese Definition
zu allgemein ist. Er konstruierte im Intervall {{0, 1] stetige Funktionen @, y fir die die Menge

= {(p(®), v(t)) te[o, 1]} gleich dem Emheltaqnadnt der Ebene ist. Dieses unseren anschau-
lichen Vorstellungen vom Kurvenbegriff wit nde Ergebnis gab AnlaB zu der obigen

2! Definition, die erstmalig von JORDAN in ,,Cours d’analyse ITI* gegeben wurde.

Die Fusktion r = r(f) in Definition 1 heiBt eine Parameterdarstellung der Kurve
C und ¢ der Kurvenparameter. In den physikalischen Anwendungen ist ¢ gewShnlich
die Zeit. Mit dieser Interpretation kénnen wir den DifferentiationsprozeS anders
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deuten. Wir betrachten einen festen Parameterwert ¢, und eine gegen ¢, strebende
Folge von Parameterwerten ¢, ¢, .... Die Differenz t(t,) — x(t,) stellt dann angenéhert
die Wegdifferenz dar, die der bewegte Massenpunkt r(f) im Zeitintervall von ¢, bis
t, zuriicklegt (Abb. 3.12). Von der elementaren Definition der Geschwmd.lgkelt gleich-

formig bewegter M: punkte ausgeh bezeichnen wir den Quoti
Ita) —t(to) _ [(2(t) — (to) ylta) — ylho)  2(fa) — 2(to) ©)
ty—ty ba—ty | ta—ty | ty—t,

als mittlere Geschwindigkest von t(t) im Zeitintervall von ¢, bis ¢, (Abb. 3.13). Besitzt
(6) fiir jede Folge (t,) mit ¢, —> £, einen Grenzwert, 8o heiBt dieser die Geschwindigkeit

#(tn)-n(ty)

»y)

r(fz)

'(f,}
* (o) )it

Abb. 3.12 Abb. 3.13

t(t.,) des durch t =r(f) gegebenen bewegten Massenpunktes zur Zeit ¢ = ¢, Die

g der Geschwindigkeit ergibt sich wegen (6) durch koordinatenweise
Dliferenhs.tlon, wobei wir die Ableitungen durch einen Punkt kennzeichnen. In den
Beispielen (2) bis (5) gilt

(t) = (sinh ¢, cosh ¢t), "
(t) = (—sint, cost, 1), 3"
it =(L1®), @)
() = (—asint, bcost). (5

Ist £(¢) & O, so kénnen wir im Kurvenpunkt t(¢,) die Gerade mit dem Richtungs-
vektor £(f,) antragen. Entsprechend der geometrischen Deutung (Abb. 3.13) heiit
sie die Tangente der Kurve im Punkt t(¢,), und £(t,) ist ein Vektor, der die Richtung
der Tangente im Kurvenpunkt angibt.

Definition 2. Eine Kurve C heiBt glatt, wenn sie eine Parameterdarstellung
t =1(t) (¢ € I) mit stetig differenzierbaren Koordinatenfunktionen und mit £() 3 0




3.1. Grundregeln der Differentialrechnung 31

fiir alle ¢ € I besitzt. Eine glatte Kurve t = t(t) (¢ € I) besitzt somit in allen ihren
Punkten eine Tangente, und #(t) ist ein T'angentenvektor, d. h. ein Richtungsvektor
der Tangente im Punkt r(¢). Der Einheitsvektor

()
) = —~= (7
[t
heiBt der Tangenteneinheitsvektor der Kurve im Punkt r(f).

Im Fall einer Funktion
T =(nyt) .., 5lt)  CED (8)

von einem Intervall I reeller Zahlen in den Raum R, mit stetig differenzierbaren
Koordinatenfunktionen setzen wir entsprechend den bisher behandelten Spezial-
filllen

&)= (B(), ... 5() (€D, @
und bezeichnen &(t) als Ableitung der Funktion (8).

Eines der iltesten Probleme, zu dessen Losung heute Methoden der Diffe ialrechnung an
gewandt werden, ist das T problem. Es ist b ders bed Il fir die Aufklnmng
einer Reihe grundl der Z hiinge in der Theone der Kurven und der Entwicklung der
formalen D llung solcher Z ha .

ngenton sind in der Antike g lich an Kegelschni und igen hoh Kurven

dische Spirale) besti , worden. Dazu wurden geometrische (Arromoms (262? bis
1907 v. u. Z. )) oder an der mechanischen Erzeugung (ARCHIMEDES (287?—212 v. u. Z.)) der
Kurven orientierte Verfahren verwendet. Die Tang; wird dabei nicht immer als Grenzlage der

Sekante, sondern als Gerade, die mit der Kurve genau einen Punkt gemeinsam hat, eingefiihrt.
Es muB hier jedoch auch bemerkt werden, daB die antike Mathematik das auch dem Tangenten-
problem letztlich zugrunde liegende Problem des Unendlichen zwar erkannt, aber nicht be-
wnltlgt hat (Paradoxien des ZENO (4007 —430? v. u. Z.)). Eine andere Frage, die noch aus der
Mathematik st: te, spielte bis in die Zeit der Renaissance eine groBe Rolle. Es ist die

Frage nach der GroBe des Winkels zwischen Tang und (Kreis)bogen (Konti inkel).
Wiihrend EvkLip (365?7—300? v. u. Z.) im IIIL Buch der ,,Elemente* behauptet lnﬁe, ,»in den
Zwischenraum der geraden Linie und des Bogens laBt sich keine weitere gerade Linie neben-
hineinziehen*, war im Mittelalter, etwa bei JOEANNES CampANUS (13. Jahrhundert), der eine
beriihmte U'bersetzung der ,,Elemente aus dem Arabischen angefertigt hatte, der Kontingenz-
winkel eine (flichenhafte) GroBe. Erst 15657 zeigte JACQUES PELETIER (1515—1562), daB der
Kontingenzwinkel Null ist, eine Feststellung, die durch die Autoritit von FraNgors Viera
(1540— 1603) allgemcme Anerkennung fand. VIETA hat selbst einen originellen Beitrag zum Tan-
Er betrachtet die Tang an die archimedische Spirale r = ap im

Punkt P(q)) \md die von P(p) nach P(p + ¢) und P(p — ¢) zielenden Sehnen. Er stellte fest, da3
dlege Sehnen mit der Tangente fast gleiche Winkel bilden, und zeigte an Beispielen, daB mit ab-
dem & > 0 die Abweichung der beiden Winkel beliebig klein wird. Eine allgemeine Lisung

des Normalen- und damit des Tan g blems bei algebraischen Kurven gelang RENE DEs-
CARTES (1596—1650) unter Vermeid itesimaler Methoden 1637 in seiner ,,Geometrie‘.
Seine analytisch-g ischen und algeb hen Methoden haben neben denen von PIERRE
FrrMAT (1601 —1665; um 1635 ,,Iugoge“) die abstrakte F lisierung auch infinitesimaler
Aufgaben wesentlich mit vorbereitet. In der Folgezeit wird das Tangentenproblem auch von
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d Forschern mit hied: Method folgreich 1 an sp iellen Fillen bearbeitet. Es
bilden sich deutlich zwei Richtungen heraus, eine g trische, v durch Eva A
TorricELLY (1608—1647), Isaac Barrow (1630—1677), CrrisTiAAN HuvGeNs (1629—1695),
und eine algebraische, deren bed d Vertreter neben FERMAT und DESCARTES Joun

‘WaALLIS (1610—1703) War.
Das Tangentenproblem war also im weeentlichen auch ohne allgemeine Methoden der Diffe-
tialrechnung gelost worden. Die Entwicklung von Wirtschaft und Wissenschaft stellte ]edoch
der Mathematik im 17. Jahrhundert eine neue groBe Aufgabe, nimlich die der mathemati
Behandlung von B yprobl Dieses Problem wurde besonders im Z: h
mit dem v kt einsetzenden Bau von Meschinerien, Aufgaben der Ballistik und durch die
Himmelsmechanik erzeugt.

Den Zusammenhang von Weg, Geschwmd:gkelt \md Beschleumgung deckte dann GALILEO
GaLer (15664 —1642) weitestgehend auf. Eine all handlung der Be-
vegungsprobleme galmg ihm )edoch moht Zur Lésung dneser schwxengen Au.fga.he war es zu-
niichst , eine g der b tischen Kennt-

1 hanil rhebliche Bed

nisse, auch ﬁbor du ngentenproblem, dss u. a. in der Hi
besitzt, zu geben. Im Jahre 1668 gab JamEs GREGORY (1638 —1675) diese memenfm\mg

Ein erster Sohritt in Rwlmmg eines allgemeinen Kalkiils, der heute so bezeichneten Differential-

hnung, war die P hode. Der Calculus (die Form der Differentialrechnung nach
Lexsrrz) war es jedoch nicht. Dieser konnte nur von Mathematikern gefunden werden, die sowohl
die geometrische als auch die algebraische Methode véllig beherrschten.

Die Methode der Differentation ist die Entdeckung von NEwTON und LEIBNTZ. Isasc NEWTON
{1642—1727) fand seine Methode in den Jahren 1665/86. Fiir alle zuginglich wurde sie jedoch erst
1704 durch Veréffentlichung des Werkes ,,Quadratura curvarum‘ (Quadratur der Kurven).
GOTTFRIED WILHELM LEBNIZ (1646-—1716) machte unabhingig von NEwTON seine Entdeckung
1673—1676, verdffentlichte seine Ergebnisse eber schon 1684 in der Leipziger Zeitachrift ,,Acta
Eruditorum*. Die Arbeit von LEIBN1z hatte den Titel ,,Nova methodus pro mnlmls et minimis,
itemque tangentibus, quae nec fractas nec ionales t ingulare pro illi
caleuli genus* (Eine neue Methode fiir Maxima und Minima sowie fiar Tn.ngenmn, die durch ge-
brochene und irrationale Werte nicht beelntuchtlgt wn'd und eme merkwiirdige Art des Kal-
kils dn,fnr) Sie enthielt neben den noch die wichtig! Diffe-

geln sowie die not; fir E: te und Wendepunk
Der ,,Calculus differentialis* war - damit geschnffen

Da die Newtonsche Methode die historisch éltere, dazu heute weniger bekannt ist, sei sie etwas
genauer ausgefiihrt. NEwToN verwendete eine Reihe von neuen Kunstausdriicken, deren wich-
tigste ,,Fluxion'* (ein endlicher Wert, eme Gecchwmdlgkelf.) und ,,Fluente* waren. Wenn mit
9,2,y,2 ... die Variablen fir Fl hnet werden ,,And the Velocities by which every
Fluent is moreued by its generating Motion (which I may call Fluxions, or simply Velocities or
Celerities) I shall represent by the same Letters pointed thus v, £, y and 2 (I. Newrox ,,The
Method of Fluxions ..., London 1736, p. 20). Er erliuterte seine Methode am Beispiel:

Therefore let any Equation 23 — az? 4 azy — y* = 0 be given, and substitute z 4 %o for z,
and y + yo for y, and there will arise
28 + 32023 4 30z + 230*
— ax® — 2atoz — ailoo
— azy + adoy + ayox + atyoo
— ¥ — 3joyt — 3oy — §o°
Now by Supposition 2 — az* + azy — y* = 0, which therefore being expunged, and the re-
maining Terms being divided by o, there will remain 3422 + 34%z + #%0 — 2aiz — ad%o + aiy
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+ agz — aiyo — 3gy® — 3yoy — %o = 0. But whereas o is supposed to be infinitely little,
that it may rep the M of Q ities; the Terms that are multiplyd by it will be
nothing in respect of the rest. Therefore I reject them, and there remains 34z* — 2adz + ady
+ ayz — 3yy* = 0... (ebenda, p. 24—25).

Nzwrons Methode ist aus der Beechiftigung mit der Reihenlehre, wobei besonders der EinfluB

von WALLIS zu beachten ist, in Verbmdung mit ki tischen Vorstell erwach Beine
Art der Behandlung des Bewegungsprobl trigt deutlich die Zuge einer t.heorotmch—phyll.klh-
schen Auffassung.

Larsr1z hat diber seine Entdeckung und ihre Quellen selbst Berich ttet (Briefwechsel

mit EFEENFRIED WALTER TSOHIRNHAUS (1651—1708)). Er fihrt die Entdeckung des Caloulus

auf drei Einfliisse zurdck: erstens auf die von BLAISE PAscaL (1623 —1662) entwickelte Methode

dea chnu&unnuchen Drelecks (vg] Abb. 33), zweitens auf die von DESCARTES u.a. ent-

), her Kurven, drittens aunf die Entdeckungen

von MEROATOR (1512— 1584) und WaLLIS Gber unendliche Reihen sowie eigene Untersuchungen
iiber die Summation unendlicher Reihen.

Eamhthenufest dan:egmBe" deckung der Differentialrech du.rehN)wmxund

LEIBNIZ unabhi gig folg . Der sich bis ins 20. Jahrhund iehende Priorité
streit ist durch & detml]lerto Unt. hung ]otzt beigelegt worden
Die bedeutendsten M iker des Kontinents Resnich

sohnell auf, und innerhalb weniger Jahrzehnte wurde die Anl.ly!ls zu einem grolhrtlgen Ge-
biude, allerdings mit recht unsicheren Fundamenten. Erst das 19. Jahrhundert hat hier die not-
wendige Sicherheit geschaffen.

3.1.6. Aufgaben

1. Man ittle die Ableit; der folgenden Funktionen:

/(=)=3V;' (zeR,z=0),
o == (zeR,z=0),
flz) =2*+sinz  (zeR)
f(z) =Rez (zeC).

2. Gegeben seien die Funkti

flz) =ef, f(z)=Inz,2>0, f(z)=sinz, f(z)=

Man gebe die Gleichungen der Normalen fiir diejenigen Punkte der Graphen der Funktionen
an, in denen die Tangente den Anstieg 1 hat.
3. Man gebe die Ableitungen der folgenden Funkti an:

f(z) = 225 4 624 4 32% 4 22* - Tz + 9,

241 3 2 .
/()—T f)=z+—=—— fz) = 2%,
/(z)='1z‘oosz, f(z) = 3sinz cos? z,

— sinz

H=) = fiz) = In (sin*z + 1),

l + sin*z’
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f&)=Vo ¥ 32 8,  fa) = ==

Vnz+b’
() = M +U+8 ) — (1 4 g¥)coss,
4. Man besti fir die folgenden Funkti f aus R den (gréBtméglichen) Definitionsbereich
D(f) und ermittle die Ableitungen der Funkti Man gebe jeweils D(#) an.

f@)=2VT—2, f@&)=ln(na),
@)=V -z, fo)=mZ=2=8

>
) = sin (323 — 2z + TH).

5. Gegeben seien die Funkti

.1
hay={Tting far =0
o fir z=0,

1
hi@) = z-in; fir z+0,
0 fir z=0.

Man untersuche die Funktionen auf Stetigkeit und gebe D(/,") und D(f,’) an.
6. Fr welche reellen Zahlen z kann die Ableitung der Funktionen
y=arcsin}l —a%, y = arccos (8z* — 8z + 1)
mit Hilfe von 3.1.3., S8atz 3, ermittelt werden? Wie lauten diese Ableitungen?
7. Man ermittle # aus
fz + B) = f(z) + bf (z + OB)
tar dio Funktionen
foy=e,  fei=lhz f&=1.

8. Man bestimme mit Hilfo des Mittelwertaatzes zwei Zahlen a, b mit a < V80 < b, indem man
# = 0 und & = 1 setzt und geeignet abechiitzt.

9. Nach der Zshlentafel ist lg 20 = 1,3010. Man ermittle mit Hilfe des Mittelwertaatzes einen
Naherungswert, fir Ig 20,5, indem man =%nm

10. Man berechne die Tangenteneinheitsvek der Kurve
:=(lin'%onet, ain'%aint) ©st<3n
indanPnnktemmitdonPtnmoterwarwnt,t+n,t+2n(0<t<% und zeige, daB die

T ten in den hérigen Kur ein gleichseitiges Dreieck bilden.

g 3 18 P
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11, Man zeige, daB der Tangentenabschnitt der Kurve mit der Gleichung
y=NM1—-2+hz—m(1+V1-2) @©O<z<1)

vom Kurvenpunkt bis zur y-Achse eine konstante Linge besitzt (T'raktriz!) oder Echk”:.
kurve von HUYGENS, Abb. 3.14).

Abb. 3.14

———————
~.
~,

3.2. Differentiation von Funktionen mehrerer Variabler

3.21. Partielle Ableitungen

Es sei f eine in einem Gebiet G des Raumes R, definierte reellwertige Funktion.
Unter gewissen Voraussetzungen kann eine solche Funktion durch eine Fliche im
dreidi ionalen Raum haulicht werden (Abb. 3.16). Wir wihlen einen
Punkt (@, b) mit (a,b) € @ und eine in G liegende e-Umgebung dieses Punktes.
Fir 0 < |h] <&, 0 < |k| < ¢ ist stets (a + A, b), (2, b+ k) € G.

In Analogie zu 3.1.1., Definition 1, ko wir die Diffe quotient;
fa+ kb —f@d) fa b+ k) — fab)
13 ’ k

1) Die 'l‘nkmx war LEIBNIz seit etwa 1676 und JAKOB BERNOULLI (1064— 1705) seit 1601
bekannt. Beide verdffentlichten zunichst nicht ihre Erg Der £ Arzt CLaUDIUS
PERRAUT (1613—1688) stellt die Aufgabe, die Kurve zu besti die in einer hori: \!
Ebene von einem Massenpunkt beschrieben wird, der am Ende eines gespannten Fadens befestigt
ist und dessen zweites Ende eine in der Ebene gelegene Gerade durchléuft. Als die Mathematiker
sich dieser Aufgabe annahmen, verdffentlichte LErextz 1693 seine Losung. InX gleichen Jahr ver-
allgemeinerte HuvaENns die Aufgabe und gab den losenden Kurven den Namen Traktorien, ohne
zu wissen, daB auch JaAkoB BERNOULLI und GUILLAUME FRANGOIS AXTOINE DE L’HOSFITAL
(1661 —1704) bereits solche Verallgemeinerungen vorgenommen hatten.
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bilden. Diese Zahlen lagsen sich in der Schnittebene, die durch den Flichenpunkt

P(a, b f(a, b)) geht und pmllel zur z, z-Ebene bzw. y, 2-Ebene verliuft, geometnsch
Existi die G: te dieser Diff

fﬁrh—»Obzw k—»O solmenmchdxesealsAmtlegderT&ngenbenmdxeSchmtt-

kurven der Fliche mit den gensnnten Ebenen deuten. Die Gmnzwerte heiBen dle

partiellen Ableitungen der Funktion im Punkt (a, b). In der klassisch ti

z

Abb. 3.18

und physikalischen Literatur werden diese partiellen Ableitungen mit den Symbolen
f:(a, b) bzw. f,(a, b) (gelesen f nach z (partiell) an der Stelle (a, b) bzw. f nach y
(partiell) an der Stelle (a, b)) oder mit

9 o
0z (@.0) b ayL.b)

(gelesen: df nach dx partiell an der Stelle (@, b) bzw. df nach dy partiell an der Stelle
(a, b)) hezeichnet. Man setzt also

Laty =2t jmfethd—fa.b) "
0z o0 0 h
of . Ha,b+ k) — fla,b)
,b) = c=lim = 9
bt = a-'/L.b) h—l: k (2)

Zu jeder in einem Gebiet @ des R, definierten reellwertigen Funktion f kénnen wir die
Funktion f, bzw. f, bilden, deren Definitionsbereich die (mdglicherweise leere) Menge
aller Punkte (a, b) ist, in denen f,(a, b) bzw. f,(a, b) existiert. Die Berechnung der
Funktion f, bzw. f, kann auf die Regeln fiir die Differentiation von Funktionen von



<
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ciner Varisblen muriickgefihrt werden. Setzen wir nimlich
9@ :=1=0), v):=[@y),
so folgt aus (1), (2) sofort
¢@) =f@b), ¢ =/iab).
Man braucht also jeweils nur die eine der beiden Variablen als Konstante zu be-

trachten und nach der anderen Variablen zu differenzieren.
Aus
f@,y) =2*—3zainy +9* + 4
folgt z. B.
f«(z,y) = 32* — 3siny,
fy@ y) = —3zcosy + 2y.
Wir verallgemeinern die fiir Funktionen von zwei Variablen eingefiihrten Begriffs-
bildungen.
Definition. Ist f eine in einem Gebiet G des R, definierte reellwertige Funktion, so
heiBt der Grenzwert

L@y o0 8p) : = Ef(ﬁ, ey By, @ 1, Bisy, oo, Bp) — flay, ..o, @) @)

. ,
falls er existiert, die partielle Ablestung der Funktion f nach der s-ten Variablen an der
Stelle (a,, ..., ap).

Die Funktion f,, wird analog zum Fall zweier Variabler definiert. Neben f,, ist

auchlﬁerduSymbolaaTlgebri hlich. Diese klassischen Bezeichnungsweisen haben
i

einen schwerwiegenden Nachteil. In dem Term f,,(2y, ..., Zi, ..., Zp) tritt das gleiche
Zeichen z; in verschiedener Bedeutung auf. Bei dem im Argument der Funktion
auftretenden Zeichen z; kommt es auf den Zahlenwert an, der fiir diese Variable
eingesetzt wird. Als Index von f deutet z; nur diejenige Variable an, nach der zu
differenzieren ist. Die Bezeichnung dieser Variablen ist aber beim Funktionsbegriff
prinzipiell ohne Bedeutung. So sind z. B. die Funktionen

z=fzy (=yeaq),

e=fw2) (0.2)¢€0)
identisch. Die Symbole f,, f, haben aber in diesen beiden Schreibweisen derselb
Funktion eine unterschiedliche Bedeutung. In hen Darstell setzen sich

S

daher immer mehr andere Schreibweisen fiir die partielle Ableitung nach der i-ten
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Variablen durch. Wir werden neben den klassischen Schreibweisen vorwiegend das
Symbol 3;f an Stelle von f;, verwenden.

" Bezeichnen wir mit e; das Element aus R,, dessen s-te Koordinate 1 ist, wihrend
alle anderen Koordinaten 0 sind, so kénnen wir die Definition (3) mita = (a, ..., a,)
auch in der Form .

df@): = hm Ha + te,) — f(a) @

aussprechen.

Besitzt f in allen Punkten @ aus G partielle Ableitungen, so kénnen wir auf die
Funktion @; mit @;(t) = f(a + te;) den Mittelwertsatz der Differentialrechnung
anwenden und erhalten

@i(t) — @i(0) = tgi'(B2).
Wegen o;'(t) = 0;f(a + te;) erhalten wir mit

f(a + te;) — f(@) = tdif(a + dte;) (6)
den Mittelwertsatz fir partielle Ablestungen.

Partielle Ableitungen von Funkti h Variabler erldutert LEoNEARD EvLER (1707
bis 1783) erstmals im 7. Kapitel seiner Differentialrechnung ausfithrlich. Hier fihrte er fir partielle

Ableitungen auch erstmals: einen Symboli ein. Fiar — a’ schrieb er(d’)

3.2.2. Differenzierbare Funktionen von mehreren Variablen

Nach 3.1.1., Satz 1, ist eine reelle Funktion genau dann an der Stelle a differenzierbar,
wenn es eine reelle Zahl ¢ mit

i@ 1@ —@—a)e _ (1)
e z—a

gibt. Wir erhalten éine dquivalente Bedingung, wenn wir den Bruch mit sgn (z — a)
multiplizieren, so daB (1) in

i@ = 1@ — @~ _ | @
e |z — a]

iibergeht. In dieser Form kénnen wir den Begriff der Differenzierbarkeit auf reell-
wertige Funktionen von zwei (oder mehreren) Variablen verallgemeinern.

Wir nennen eine reellwertige Funktion z = f(z, y) im Punkt (a, b) € D(f) differen-
zterbar, wenn es zwei reelle Zahlen ¢,, ¢, mit

lim ’(zyy)—l(ﬂ»b)—(z—-a)c,—(y—b)c, =0 (3)
@0 Ve—ap + @y —bp
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gibt. Setzen wir speziell z =a + &, y = b, so folgt

R LR CUES

0

oder, wenn wir zum Betrag iibergehen,
jm|f@thO 1@y _ |
0 h '

Dies besagt, daB ¢, = f,(a, b) ist. Ebenso erhalten wir ¢; = f,(a, b). Hiernach ist die
Funktion f an der Stelle (a, b) differenzierbar genau dann, wenn sie an dieser Stelle
partielle Ableitungen besitzt und wenn
i @9 —fed—E—0Led) - G-bhed _,
€900 Vi@ —a)®+ (y — b)®
gilt. Setzen wir

f,y) — Ha,b) — (z — a) fs(@,b) — (y — b) }, (a, b)'
Ve—af + @y —b*
80 erhalten wir durch Umstellung die Weserstrafsche Zerlegungsformel
fz, y) = f@,b) + (z — a) fz(a, b) + (y — b) /,(a, b)

or(@, b; z,9): =

+ V@ —aP + (y — b gsla, b; 2, 9) ®)
mit
lim g/a,b;2,y) =0. (8)

(£.9)>(o,)
8Sind umgekehrt (5), (6) erfiillt, so gilt (4), und die Funktion f ist an der Stelle (a, b)
differenzierbar.
Fiir eine im Punkt (¢, b) differenzierbare Funktion f setzen wir
f*@, Y):= f@,b) + (z — a) /,(G, b) + (y— b) f'(a’ b). (7)

Der Graph dieser in z, y linearen Funktion ist eine Ebene, die durch den Punkt
Pa, b, Ha, b)) geht. Wegen

f@y) — @ y) =V —a)P+ (y — b)? ole, b; 2, 9)
0=1lim Viz—aP+@y—d=lim gl bd;zy)
(.9)0.0)

(z,9)+(a,b)

schmiegt sie sich dem Graphen der Funktion f sehr eng an und heiBt deshalb die
Tangentialebene des Graphen von f im Punkt P{a, b, (a, b)).

und
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Abgesehen von der letzten g trischen Deutung k Betrachtung
auf reellwertige Funktionen z = f(z,, ..., z,) von mehreren Variablen iibertragen
werden.

Definition. Eine in einem Gebiet @ des Raumes R, definierte reellwertige Funk-
tion f heiBt in einem Punkt @ mit @ € G differenzierbar, wenn es reelle Zahleng,, ..., ¢,
mit

1@ — f@) — 3 @ — ad e
lim =1

2 iz —al =0 ®

gibt.
Wie im Fall von zwei Variablen folgert man aus (8), daB ¢; = dif(a) ¢ = 1, ..., p)
und folglich
»

H=) — f(@) — X (z: — a:) Bif(a)

i1 =0 9
> Iz —aj ®

ist. Setzen wir

f@) — fi@) “?51 (@ — @) 3if(@)
, &)= — R 10
ola, ) P (10)
so gilt

lim g/(@, @) =0, (1)

und wir erhalten die WeierstraBsche Zerlegungsformel
f@) = fi@) + 3 (s — &) difa) + Iz — ol (0, ) (12

Das Wesen der Differenzierbarkeit einer Funktion besteht gerade darin, da8 die
lineare Funktion

@) = f@) + ‘.“5. (@ — a)) dif(@) (13)

fiir kleine | — al eine gute Approximation fiir die Funktion f darstellt. Den Uber-
gang von der gegebenen Funktion f zu der linearen Niherungsfunktion f* bezeichnet

) ImFallp=1 heidet sioch die Definition (10) von der Definition 3.1.1. (3) durch den
Faktor sgn (z — a). Bei der neuen Definition geht 3.1.1. (4) in
(=) = f(a) + (z — @) f(a) + |z — al g/(a, 7)
iiber, und 3.1.1. (5) bleibt unveriindert giltig.
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man als Linearisierung des Problems. Sie findet in der Fehlerrechnung vielfiltige
Anwendungen.

Im Fall einer Funktion z = f(z, ) von zwei Variablen setzt man hiufig, wenn
men den Funktionsverlauf in der Umgebung des Punktes (@, b) betrachtet,

Az:=z — a, Ay: =y —b, Az: = f(z, y) — f(a, b).

Mit diesen Bezeichnung, immt die Niherungsgleichung
f(t,y)—f(a.b)ﬁ’f‘(”,y)—f(ﬂ»b)
die Form
dz dz
Az~EAz+a—yAy

an. Es ist auch iiblich, die Anderungen Az, Ay, die man sich als sehr klein vorzu-
stellen pﬂegt, mit dz, dy zu bezeichnen und das — von a, b, dz, dy abhiingige —
totale Diff ial dz durch
9z 9z
dz: = —de+ —dy
oz + dy
zu definieren. Die obige Niherungsgleichung nimmt dann die Form Az ~ dz an.
Totale Differentiale wurden (mit anderen Bezeichnungen) von EULER in seiner Differential-
rechnung von 1755 eingefiihrt.
Wir zeigen an einem Beispiel, daB die Existenz der partiellen Ableitungen fiir die
Diff ierbarkeit zwar not dig, aber nicht hinreichend ist.

Beispiel 1. Es sei

(3

2zy .
—— fiir (z, y) = (0,0),
fay =1V + ¢

0 fir z=y=0.

Diese Funktion ist im Punkt (0, 0) stetig, denn setzen wir Q:=}lx’ + y? und bestim-
men wir ein @ mit

z=gcosy, y=gsing,
so folgt f(z, y) = e sin 2¢ und damit

im f(z,y) =hmesm2¢—0-—f(0 0).

(£.9)+(0,0)
Wegen

fO+h0—f0)_, [0,0+H—00_,

) ’ k .
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besitzt f im Punkt (0, 0) die partiellen Ableitungen f;(0,0) = /,(0, 0) = 0. Es ist
aber, wenn wir r und y mit h = r cos p, k = r sin y bestimmen,

f0+ 5,0+ k) — (0, 0) — Af:(0,0) — &/,(0,0) _ _ 2hk
Y+ & A+ &

Ein Grenzwert fiir diesen Quotienten existiert nur fiir spezielle Grenziiberginge
(k, k) — (0, 0), z. B. dann, wenn wir (k, k) = (r cos y, r sin y) so gegen (0, 0) streben
lassen, daB sin 2y gegen O strebt. Ein Grenzwert schlechthin existiert nicht, und
folglich ist die Funktion f an der Stelle (0, 0) nicht differenzierbar, obwohl sie partielle
Ableitungen an dieser Stelle besitzt. Sie besitzt sogar in allen Punkten von R, par-
tielle Ableitungen, aber die partiellen Ableitungen f,, f, sind im Punkt (0, 0) nicht
stetig.

Aus der Stetigkeit der partiellen Ableitungen kann dagegen die Differenzierbarkeit
einer Funktion gefolgert werden.

Satz 7. Besitzt eine reellwertige Funktion f in einem Gebiet G aus R, stetige partielle
Ablestungen, so ist sie in allen Punkten a aus G differenzierbar.

Beweis. Sei h = (hy, ..., Ap) = he; + - + he,. Wir setzen by:= @ und

= sin2y:.

b,:=¢+,_z“lh,e, E=1,...,p).
Wegen b;=b;,+Me und by=a+h ist
fa -+ ) — fla) = £ (s + hed — fbr)-
Aus dem Mittelwerteatz fir partielle Ableitungen folgt
B0+ hee) — 1) = AadBr + Bhe0),
R e I R )
W i

s 2 P ase,, +ope) — (o).
(=1 II_"II

Aus h - 0 folgt stets b,_; + O — 6. Wegen der Stetigksit der partiellen Ableitungen und
18| < |hj| ist somit

 fe+W - f@) —‘_z" hodf(@)
o= i =%
‘was zu beweisen war.

Wir nennen eine Funktion f aus R, in R in einem Gebiet @ stetig differenzierbar,
wenn f in G stetige partielle Ableitungen besitzt
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3.23. Verallgemeinerte Kettenregel

Wir betrachten eine in einem Gebiet @ & R, definierte reellwertige Funktion f und
eine in @ verlaufende Kurve mit der Gleichung

o) = (20, y0) ¢€D), 6]

wobei wir uns ¢ etwa als Zeitparameter vorstellen kénnen. Dann kénnen wir die
reelle Funktion F mit

Fi)y:=flz(),y®) (eI @

bilden. Sie gibt jeweils den Funktionswert von f in dem zum Zeitpunkt ¢ gehérenden
Kurvenpunkt an. In Satz 1 werden wir zeigen, da8 die Funktion F differenzierbar
ist, wenn dies fiir die Funktion f und fiir die Koordinatenfunktionen von (1) gilt,
und daB ihre Ableitung in der Form

F'(o) = L{a0), y0) 20) + Kz, @) 500 €D @)
dargestellt werden kann. Diese Formel wird hiiufig in der Form
dffz) y®) _ Of d= O dy @
dt oz dt Oy dt

h

geg wobei zu beachten ist, daB nach der Bildung der partiellen Ableitungen
Iz, f, die Variablen z, y dureh z(t), y(t) zu ersetzen sind.
’

Beispiel 1. Es sei
f@,y) ==zsin (zy), () =(,1n (@ + 1).

Aus
4 fs(@, y) =sin (zy) + zy cos (zy),  fy(z,y) =2"cos (zy), 4() =2
und
i = —2_
y(')—',+1
folgt
f{(”(:;t;y(‘))_=sin[(t’ln(t’+1))+t’ln(:’+1).m(¢t)n(p+1))]2¢
26
+¢‘coe(f’ln(l‘+1))"——+l.
Die Gleichung (3) bzw. (4) wird als verallgemeinerte Kettenregel bezeichnet. Sie kann

auf Funktionen von mehreren Variablen iibertragen werden und nimmt dann die
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Form
dﬂz,(‘), cn@pt)) & Of dxy
% —'§ _33, _dl el ®)

an. Die rechte Seite konnen wir gemiB 1.5.2. (7) als ein Skalarprodukt schreiben. Ein
Faktor dieses Skalarprodukts ist der Tangentenvektor &(t) = (£,(t), ..., £,(t)) der
Kurve mit der Gleichung () = (z,(t), ..., ,(t)). Die Koordinaten des zweiten Vektors
gind die partiellen Ableitungen der Funktion f an der betrachteten Stelle. Der so ge-
bildete Vektor heiBt der Gradient von f und wird mit grad f bezeichnet. Setzen wir
also

grad f(@) := (8,f(@), .-, B,f()), ®

so nimmt (5) die Gestalt
ﬂ:‘l’l = (grad f(x(t)), 2(t)) ™

an. Im Fall p = 2 oder p = 3 schreiben wir hierfiir auch, wie in der analytischen
Geometrie iiblich,

ﬂ(;%). = grad f{x(1) - £ ). - ®

Setzen wir speziell
T(8) =1 + te,
80 ist £(f) = e, und wir erhalten

ek ) —emafe-e. ®
-0

Ist e ein Einheitsvektor, so heiBt diese Zahl die Richtungsableitung von f an der

Stelle vy in Richtung des Einheitsvekiors e, weil sie die Anderung der Funktion f beim
Fortschreiten in Richtung des Einheitsvektors e charakterisiert.
" Auf eine geometrische Interpretation dieser Gleichung kommen wir spiter zu-
riick. An dieser Stelle bemerken wir nur, daB das Skalarprodukt in (9) und damit die
Richtungsableitung im Punkt t, einen maximalen Wert immt, wenn der Ein-
heitsvektor ¢ mit dem Gradienten gleichgerichtet ist. Wihlen wir im Fall p =3
fiir e den Vektor (1, 0, 0) bzw. (0, 1, 0) bzw. (0, 0, 1), so ist die Richtungsableitung
offensichtlich gleich der partiellen Ableitung nach z bzw. y bzw. z.

Beispiel 2. Ist f(z, y) = z sin (zy), s0 ist
grad f(z, y) = (sin (zy) + =y cos (xy), 2* cos (zy)),
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und die Richtungsableitung von f an der Stelle {1, Z)in Richtung des Einheits-
vektors (%, %) nimmt wegen grwdf(l, %) = (1, 0) den Wert % an.

Wir formulieren nun den oben angekiindigten
Satz. Es ses I ein Intervall,

z = (nyt),...,5WM) (kel), (10)
und die Funkdionen z; = z;(t) seien in b € I differenzierbar. Ferner sei f eine in einer
Umgebung U von @ = ®(b) definierte und in a differenzierbare recllwertige Funktion von
p Variablen. Dann sst die reelle Funktion

F) =f(z:8), ..., 2(0)) €L x@®) € D) an
¥m Punkt b differenzierbar, und es sst

P .
Fo) = Z; 2/ (8) Bf{z®), ..., zp(b)). (12)
i= .

Beweis. Nach 3.2.2. (12) ist

Hat) = o) + f (@(6) — z®)) 4f(a@) + lx(t) — all- e, (1),

l(z(“))_ — fta) ’ § 81(') - 31(5) af(a) + IIE(‘) ‘lII - ef@, (1)) (13)

Wegen &(t) — @ fir ¢ - b gilt g/(@, 2(t)) — 0 fir ¢ — b. Der Quotient von |i®(t) — ajj und ¢t — b
ist wegen
lae(t) — (@)l

= sgn(t—b
rp sgn ((

t—b

(31(') — (k) (f) — (b) "
t—b 7

beschriinkt, und folglich strebt der letzte Summand von (13) gegen 0 fiir ¢ — b. Es folgt

i FO = PO _ o Kzlt) = f2®) _ 2o 51000),
- t—0b t—-o t—b =1
und der Satz ist bewiesen.

3.2.4. Glatte Flichen

Wihrend wir zur Definition des Kurvenbegriffs von Funktionen aus R in R, bzw. Ry
ausgingen, betrachten wir zur Einfiihrung des Flichenbegriffs Funktionen t = r(x, v)
aus Ry in R;.
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Definition 1. Eine Punktmenge F des Raumes R, heiBt ein Flichenstick, wenn
es eine stetige Funktion r = r(u, v) gibt, die einen Bereich B aus R, umkehrbar
eindeutig auf die Menge F abbildet (Abb. 3.16).

In Koordinatendarstellung gilt
t = (z(u, v), y(u, v), 2(u,v))  ((x, v) € B). m

Wiihlen wir v = b konstant und variieren nur u, 80 durchlaufen die Punkte v = t(x, b)
eine in dem Flichenstiick liegende Kurve, eine sog te u-Linie. Entsprech

Abb. 3.18

bilden die Punkte r = t(a, v) mit konstantem a eine v-Linie (Abb. 3.16). Die Gleichung
t = t(u, v) heiBt eine Parameterdarstellung, u, v heiBen die Flichenparameter, und B
heiBt der Parameterbereich.

Beispiel 1. Es sei

T = (v cos u, v 8in u, u) 0=Sus27,0=v<1) (2)

(Abb. 3.17). Die Bildpunkte dieser Abbildung liegen auf einer Wendelfliche.
Beispiel 2. Es sei 2 > 0 und
T = (a cos v 8in u, @ sin v 8in «, @ cos u) O=usa—a<v=a) (3)
(vgl. 2.8.3. (13)). Die Parameter u, v kénnen entsprechend Abb. 3.18 als Poldistanz
bzw. (geographische) Linge auf der Kugel mit dem Radius a gedeutet werden. Fiir

v = 4= ist die geforderte umkehrbare Eindeutigkeit der Abbildung von B auf F
verletzt.



Abb. 3.17 Abb. 3.18
Beispiel 3. Ist z = f(z,y) ((z, y) € B) eine in B definierte reellwertige stetige
Funktion, so bilden die Punkte
t=(y,v,f(w,v)) ()€ B) @
ein Flichenstiick F (Abb. 3.19). Der Parameterbereich B ist die Projektion des

Flachenstiicks F in die z, y-Ebene, und die Flichenp ter u bzw. v sti mit
z bzw. y iiberein.

Abb. 3.19
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Besitzen die Koordinatenfunktionen in (1) stetige partielle Ableitungen, so kénnen
wir die Vektoren

o _ (0 3y &
r'=a_(6u'6u’6u)' (5
o _ (% By 2
t'=60_(80'80'60) (6)

bilden. Sie stellen Tangentenvektoren an die u- bzw. v-Linien dar. In Beispiel 1 bzw.
2 bzw. 3 gilt

ty = (—vsiny,vcosu,l),

T, == (co8 u, sin 4, 0), @)
bzw.

1, == (@ cO8 v CO8 %, @ 8in v CO8 %, —a 8in u),

1, = (—a sin v sin ¥, a cos v sin ¥, 0) 3"
bzw.

w=(1,0,f),

=01, ,')- @)

Sind die Vektoren 1, t, nicht pml:lel, s0 spannen sie eine durch den Flichenpunkt
gehende Ebene, die T'angentialebene der Fliche auf. Das vektorielle Produkt v, X t,
ist in diesem Fall ein (vom Nullvektor verschiedener) Stellungsvektor.

Anslog zum Begriff der glatten Kurve geben wir die
Definition 2. Ein Flichenstiick F heiBt glat, wenn es eine Parameterdarstellung
T = t(u, v) mit stetig differenzierbaren Koordinatenfunktionen und mit t, X . =& o

fiir alle (%, v) € B besitzt.
Der Vektor

- TuX Tp )
Tra X toll
heiBt der Normaleneinheitsvektor im betrachteten Flichenpunkt.

Wegen t, X1, = (—fy, fo, 1) & 0 ist jede Fliche (4) mit stetig differenzierbarer
Funktion f glatt.

Eine Gleichung der Tangentialebene an die Fliche mit der Gleichung v = t(u, v)
im Flichenpunkt t(u,, vo) lautet

™= (2o, V) + Ata(o, Vo) + uTo(to, Vo) 2, pE R) 8)
in Parameterdarstellung oder
(x* — r(up, v0) - R =0 ©)
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bzw.
(x* — t(0, ¥0)) - (talttor ¥o) X T(tg, v0)) =0 (10)
in p drfreier Darstell g
3.2.5. Aufgaben
1. Man berechne die partiellen Ableitungen f,, f, der Funkti
. + 2ty
flz,y) = —y
1(z, y) = arctan -:-.
arctan z
Hz,y) = Tt
2. Es sei
0 fir (z,y) =(0,0),
flz,y) = —
z’+y‘ fir (z,y) * (0,0).
Man zeige, daB die Funktion f stetig diff jerbar ist.
3. Man buhmmafﬂrdiannktlon l(z,y)=:c' y’mdenPunkun(l 1) und (—1,1) die
Ableitung g der W des ersten Quad

4. Man berechne die Gradienten der Funktionen
1 1 1
fe) =@+ faynd=—+ 7+ =

foy)=Ilnlz—ar+ -1 [f=my2)=V"+y"+2

5. JodomPnnkt(z,y,z)emesGeblemGCR,ulomVekwrb ugeord deasen Koordi
Funktionen von z,¥, z sxnd. Wir bezeichnen sie mit o,. Yy v,, wobel hier die Indizes nicht etwa

jelle Abl Als Divergenz bzw. 1) von b = (v, 9, v;), in Zeichen
div v bzw. rot v, bezeichnet man die reellwertige bzw. vektorwertige Funktion
o,
i = _l =z
divy = + P + %
bzw.

RN R R A Y A Y
y o’ @& ox' oz Oy

1) Der Begriff ,,Divergenz* geht auf WrLiaM Kmvapox CLirroRD (1845—1879), der Begriff
,»Rotation* auf JamEs CLERK MaxwxLL (1831 —1870) zuriick. MAXWELL verwendete fir ,,Rota-
tion* oft auch den noch heute gebriunchlichen Ausdruck ,,curl*.
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Man berechne div b und rot v fir

Y —y ),
’ (Yz'+y€+z' Vot + 4 + 2 V='+y’+z')
v = (0,z, zsin V2* + ),

© = (sin (yz), zz cos (yz), zy cos (y2)).

6. Man berechne eine Gleichung der T ialebene fiir
a) die Sattelfliche z = zy,
b) das Rolationsparaboloid z = 2* + o2,

o) den Kegel z = V=¥ + 5,
d) die Halbkugel z = Ya* — 22 — y*
in dem zu (z,, ¥,) gehorenden Flichenpunkt.

3.3.  Hohere Ableitungen und der Satz von Taylor

3.3.1. Hohere Ableitungen

Ist die Ableitung f' einer reellen (oder komplexen) Funktion f in einer Umgebung
eines Punktes a definiert, so kénnen wir priifen, ob die Funktion f’ in a differenzierbar
ist. Ist dies der Fall, so setzen wir

f'@) :=(f')Y(a) (1
und nennen f"(a) die zweste Ableitung von f im Punkt a. Entsprechend heiBt die durch

(1) definierte Funktion f’ die zweite Ableitung von f. Ganz analog definieren wir die
dritte, ..., n-te Ableitung von f durch

frr=Ye fm: = (fir vy,
In der Leibnizschen Symbolik setzt man

@1 == f —= o fn

de? dat
(gelesen dny nach dx hoch n). Auch die Bezeichnungen y'. ... ' fiir die hoheren
Ableitungen der Funktion y = f(x) sind gebriuchlich. Weiterhin setzt man stets
1O = f bzw. y: = y. Wir nennen cine Funktion f im Intervall 7 von der Ordnung k
oder (mindestens) k-mal stetig differenzierbar in I. wenn die Funktion f%) in [ existiert
und stetig ist. Wegen 3.1.1.. Satz 2. sind dann auch alle Funktionen f -4, f.f
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in I stetig. Die Menge aller in J k-mal stetig diffe ierbaren Funkti be-
zeichnen wir mit Cy(I).
Beispiel 1. Wir bilden die Ableitungen der Sinusfunktion. Es ist
y=sinz,
y =cosz,
y"' = —singz,

o

y

(sin z)® = (cos z)®- = (—1)sinz, @

(8in z)(3+)) = (cos z)®¥) = (—1)¥ cos z. (3)

= —co8 z,

Beispiel 2. Sind die Funktionen f, g n-mal stetig differenzierbar, so ist
G-y =t-9+1-9,
t-g'=t-9+2f-9+1-9"
n (n
g-om =3 ) fo-ngn. @
j=0 \J
Die Behauptungen (2), (3), (4) sind durch vollstindige Induktion zu beweisen.

3.3.2. Hbéhere partielle Ableitungen. Satz von Schwarz

Besitzt eine reellwertige Funktion f von p Variablen stetige partielle Ableitungen
d;f, so konnen wir diese Funktionen wiederum auf die Existenz von partiellen Ablei-
tungen bzw. auf Diff ierbarkeit untersuchen. Wir setzen

00:=08,0f) G,j=1,...,p)
oder, in anderen Schreibweisen,

2,
0= =l =1

= =
0x;0z;
und nennen diese Funktionen die zweiten partiellen Ableitungen von f. Analog
werden die dritten partiellen Ableitungen

a0 = —2t

= Ox0x 0z

und die héheren partiellen Ableitungen gebildet.

= frn ¢hk=1..p)
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Beispiel 1. Aus f(z, y) = sin (2y) folgt
fs(@, y) = y cos (zy),
fy(@, y) = =z cos (zy),
fu(®@, y) = —y*ein (2y),
I=y(®, y) = co8 (zy) — zy sin (2y),
(@, y) = cos (zy) — zy sin (zy),
fn(@: y) = —a*sin (zy).

Die Ubereinstimmung der partiellen Ableitungen f,, und f,, ist kein Zufall, denn der
Satz von HERMANN Amm)us ScEwaRz (1843—1921) besagt, th die Reihenfolge
der Differentiati vertauscht werden darf, wenn die zweit llen Ableitungen
stetig sind. Die Voraussetzungen kénnen sogar noch abgesehwicht werden.

Satz. Iat[emcmemmGebthdaRamnaR, Miﬁnﬂmm
besitzt | in @ stetige partielle Ablestungen 0.f, 0/f, a,ad. 0 existiert auch 00,f n G,
und es ist 00;f = 0,0,

Beweis. Da bei der Ableitung nach der i-ten und j-ten Variablen alle Variablen
2, mit k = ¢, § konstant zu halten sind, geniigt es, den Fall p = 2 zu betrachten. Es
sei also f, fs, f,, f+y stetig in G (@ S Ry) und (a, b) € G. Zu vorgegebenem ¢ > 0 wihlen
wir ein 4 > 0 mit

(@ + 5,0 + k) — fo(a,b) <e
fiir |(h, k)] = VA + &* < & und setzen
0a(@):== f(z, b + k) — f(z, b)
fiir |(z — @, k)| < 8. Dann ist
9 (z) = f(@, b + k) — f(z, b),
und aus den Mittelwertsiitzen folgt
f@+ h,b+ k) — f@ + k,b) — f(a,b + k) + f(a, b) = ga(a + &) — ga(a)
= hgy'(a + 0h)
= Mfs(a + Oh, b + k) — fu(a + 9h, b))
= hkfy(a + 0B, 0+ 0k) (0<9<1,0<d¥ <1).
Somit ist
fa+hbd+k—fa+hb)—fa b+ k) +fad)
h-k

= lfn(a + 8, b + k) — [0, B)i <&.

- In(aa b)



3.3. Hohere Ableitungen und der Satz von Taylor 53

Lassen wir hierin k gegen 0.streben, so erhalten wir

lie +h,b’: —hed) _, a|<e.

Da & beliebig gewahlt war, folgt
frfa, ) = lim M‘L}:_"M = f(a@ ),

und der Satz ist bewiesen.

‘Wie im Fall der Funkti einer Variabl wir eine reellwertige Funktion
aus R, im Gebiet @ von der Ordnung k, wenn in @ alle partiellen Ableitungen bis zur
k-ten Ordnung existiéren und stetig sind. Die Reihenfolge der partiellen Ableitungen
darf dann nach dem Satz von ScEWARZ beliebig permutiert werden.

Der nach ScHEWARZ benannte Satz findet sich bereits 1721 bei NrxoLaus I BrewouLLr (1687

bis 1760), 1755 bei EvLER und 1707 bei Laenangx. Einen ersten Beweis eines wichtigen Spezial-
falles des Satzes hatte schon 1739 ALEX1S CLAUDE CLAIRAUT (1713 —1765) geliefert.

3.3.3. Die Taylorsche Formel
Wir ermitteln die Abl _1, der ganzrationalen Funktion
) =0y + 6,z + -+ + a,7".

Es ist
P'(2) =01 + 2852 + -+ + nayzt,
Pi(®)=1-2a, + - + (n — 1) - naz™*,
#')(z) =1.2...na,.
Alle hoheren Ableitungen hwinden. Fiir z = 0 erhalten wir
P(0) =ay,
?P'(0) =a,
2'0)=1-2.a,
P90) = nla,.
Somit ist

a,=%f°’ Osisn,
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d. h., jede ganzrationale Funktion p von hchstens n-tem Grade kann in der Form

pla) = 90) + 202 20,

z 4+
dargestellt werden. Sie ist daher durch die Funktionswerte der Ableitungen von
der O-ten bis zur n-ten Ordnung an der Stelle 0 eindeutig bestimmt. Wir zeigen, da
Entsprechendes auch fiir jede Zahl @ mit a 34 0 gilt. Hierzn setzen wir

q(z) := p(z + a).
Dann ist ¢ wiederum eine ganzrationale Funktion, und es ist

(@) =z + a),

p(z + @) = g(z) = q(0) + = Q(O) 24 o+ O q(')(O)

(a) @) ’(a)

=p)+ 2% 4. 4 2

Ersetzen wir hierin z durch z — a, so erhalten wir

P, 22 (. "

?(z) = pla) + —a)+ -+
Diese Formel wird als Entwicklung der ganzrationalen Funktion p an der Stelle a
bezeichnet. Wir ersehen aus ihr, da8 die Funktion p durch ihre Ableitungen an einer
beliebigen Stelle a bestimmt ist.

Ersetzen wir in (1) die Funktion p durch eine beliebige, etwa in einer Umgebung
von a n-mal stetig differenzierbare Funktion f, so wird diese Gleichung im al
nicht fiir alle z aus dieser Umgebung erfiillt sein. Es zeigt sich a.ber, daB die rechte
Seite von (1) die Funktion f in einer hinreichend kleinen Umgebung von a in einem
noch zu prizisierenden Sinne sehr gut approximiert. Das Wesen des Satzes von
Brook TAYLoR (1685—1731) besteht in der Untersuchung des Fehlers, den man be-
geht, wenn man die Funktion f durch die so gebildete ganzrationale Funktion er-
setzt.

Es sei f eine in einer Umgebung von a mindestens (n + 1)-mal stetig differenzier-
bare Funktion. Entsprechend unserer Vorbemerkung betrachten wir die ganzratio-
nale Funktion

G @ (a)

m@ =f@) + 57 @—a) + -+ =E

—a)".

Wir bezeichnen diese Funktion als das Taylorsche Niherungspolynom n-ten Grades
von f an der Stelle a. Der Vergleich mit (1) zeigt, daB

29@) =@ (G=0,1,...,n)
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ist. Die Funktion f und ihr Niherungspolynom haben somit an der Stelle a die gleichen
Ableitungen von der O-ten bis zur n-ten Ordnung. Um genauere Aussagen iiber die
Giite der Annitherung von f durch p, machen zu kénnen, setzen wir

Run(@, @) := f(z) — pa(2).

Nach Definition von p, gilt dann die Taylorsche Formel

t@ £*a)
1! nl

mit dem Restglied R,.,(a, z). Wir leiten eine Darstellung dieses Restgliedes her, die

viele wichtige Anwendungen in der Analysis erfihrt. Wir ersetzen z durch eine
Konstante b und a durch eine Variable ¢. Mit F(t) := R, (¢, b) gilt

1) = f@) + (z—a)+.+ (z — a)* + Ryu(s, 2)

s ),
Foy =0 — 320 6 oy,
j=o §!

ro=—3E200 _y_ FLO g e
j=o J! j=1 11.

B e O L=y LT D
- e-r - ey

i=o

L0 L
+ X e
Py = 120

n!

®—0", @

denn die letzte Summe geht durch eine Indextransfi tion in die vorletzte S

iiber. Wir fithren weiterhin die Hilfsfunktion G(¢) := (b — #)* ein, wobei k eine positive
natiirliche Zahl ist. Nach dem verallgemeinerten Mittelwertsatz der Differential-
rechnung gibt es ein & mit 0 < ¢ < 1 und

Fl@) — F() _ Fla + 80 —a))

Ga)— Q) Gla+80-a)’
Nun gilt

F(a) = Ryn(a,b), F(b)=0,

Ga)=@pd—af, GO =0,

Fla+80—a)=— Minlo(b;“_)). (® —a)1 — 9",

@la+ 80 — a)) = —k((® — a) (1 — O)1,
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und es folgt

F(a) /“*"(a + (b — a)) _
o = (b —ap=(l — pytn,

R,u(a,b) = Fla) = ﬂw b —a) (1 — By-tr,

Ersetzen wir nun wieder b durch 2, so erhalten wir die Restgliedformel von OsEAR
ScHLOMILCH (1823 —1901)

Runa,2) = D200 g g gprsa, ®
Fiir k = 1 ergibt sich die Restgliedformel von AveusTIN-Louis Cavory (1789 bis
1837)
Runto2) = EHEEHE=0) (g gy, @
fiir k = n + 1 die Restgliedformel von LAGRANGE
fiass ’!a +8(z—a )
R,u(a,z) = D) (z —a)™1, (5)
Mit bisheri Betrachtungen haben wir den Satz vorn TAYLOR, (mit der

Restgliedformel von meon) bewiesen.

Satz 1. Es sei f eine in einer Umg g von a mindestens (n + 1)-mal stetig diffe-
mwicrbareFunBion.Dannyibtaco’nOfm’t0<0<lund

f@ (w) @) (a) —ap

f@)=f@)+=—(z—a)+ - +——
Mg + =z — a)
(n 4+ 1!

Man nennt die Formel (8) auch die Taylorentwicklung von f an der Stelle a mit
dem Restglied (» + 1)-ter Ordnung von LAGRANGE. Letzteres kann auch durch das
Restglied von ScHLOMILCH bzw. CAUCHY ersetzt werden.

Fiir n == 0 geht (8) offenbar in den Mittelwertsatz der Differentialrechnung iiber.
Im Spezialfall 2 = 0 erhalten wir aus (6) die nach CoLIN MACLAURIN (1698—1746)
benannte Formel

(z — a1, (6)

I(O) o . + f(6z)

fo) =10 + 52 e+

z+--+ Z™. Q)
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Setzen wir in (6) schlieBlich & :=z — a, so erhn.lten wir die ebenfalls hiufig auf-
tretende Formel
f*V(a + k) fony
(n+ 1!
Wir beweisen einen Satz iiber die Einzigkeit der Taylorentwicklung.
Satz 2. Es sei | eine in der Umgebung von a (n + 1)-mal stetig dsﬂcrenmrbare
Funltion, und es gebe reelle Zahlen ay, a,, ..., a, mit

, "
fo+h=fa+LDp .. L0 oy ®

fa + k) — Z“J"‘
lim ——— =0 _ . (9)
A0 h*

Dann ist a; =£:(l—a) k=0,1,...,2).

Beweis. Ersetzen wir f(a + k) in (9) durch die rechte Seite von (8), so erhalten

wir
. 3 ((Ha) f*~V(a + 6h)
hm(é;( Bl ")h-+ @+ D1 h)_o‘

k)
Dies ist wegen k < n nur fiir ’( = a; moglich.

Die nach TayLoR b Entwickl der]' ktion f an der Stelle a befand sich seit 1668
(allerdings ohne Restglied und K is) im Besitz von GRBGORY. LEIBNIZ kannte
1694 Ergebni d.ledar'i‘,,‘ h Relhegle:ehwerhgumd Bei TayLon findet sich (durch

ngen Grenziberg lei diese R« kl erst 1712 (gedruckt 1715 in
»»Methodus mmmntomm“) Die MacLaurinsche Reihe ist vorhanden in MacLAURING »» Treatise
of Fluxions* (1742), kam jedoch auch schon 1715 bei TAYLOR vor. Ideen, die zur Reihenentwiok-
lung mit abschiitzbarem Restglied hitten fithren kdnnen (Fortsetzung der Idee der stindigen
partiellen Integration) finden sich in einem Brief pE L'H LS an Jox. B! L1 vom 18. 8.
1693).

Die Restgliedformel in der Form von LAGRANGE findet sich 1797 in deesen ,,Théorie des fonc-
tions analytiques' — die Form von SCHLOMILOE tritt bei diesem 1847 auf.

Beispiel 1. Wir entwickeln die Exponentialfunktion f(z) = e® an der Stelle
a = 0. Wegen f™(z) = ¢* (n € N) folgt aus (7) die Darstellung
C“
ef=1 ™, 10
+ + + + @+ (10)
Um diese Formel fiir die namerische Berechnung von e* mit Angabe einer Fehler-
schranke verwenden zu kdnnen, nehmen wir fiir das Restglied
&
(n+ 1)!

Ryn(0,7) =
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eine Abschiitzung vor. Ist b eine positive reelle Zahl, so gilt fiir alle z mit |z| < b die
Ungleichung

s et < bt 30
(n + 1! T4+

Da die Exponentialreihe fiir alle reellen Zahlen b konvergiert, bilden ihre Glieder,
=41
also auch (—b-i-—l)_l' eine Nullfolge. Mit hinreichend groBem n konnen wir also
n

erreichen, daB sich das Niherungspolynom im Intervall [ —b, ] hochstens um eine
beliebig kleine vorgeg! Zahl von der Funktion unterscheidet, und es ist

lim R,(0, z) = O (z€R).

Ayps (10) erhalten wir durch Grenziibergang wiederum die Reihendarstellung
z  z z* o
2 om ] e o o oee e —— e =,
e=ltnta Tttt T

Es soll die Zahl e bis auf acht Dezimalen genau berechnet werden. Wir wiihlen dazu
ein 7 mit | Ry, (0, 1)] < 10-1°, Die weitere Rechnung wird zeigen, daB die Schranken

10-* bzw. 10-° fiir das gewiinschte Ergebnis nicht ichen. Aus
|Ras] < —3 10w
" (n+ 1)!

entnehmen wir, da » = 13 gewiihlt werden kann. Wir berechnen die Summe
1 1 1
=14 —d = e f —.
=ittt ta

Esist mit 0 < ¢ < t=12..1)

N‘;—

1414 ‘.l, = 2,5000000000,
% =0,1866666667 — ¢, 101,
% = 0,0416666667 — £, 10-19,

% = 0,0083333333 + £, 10-,
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é = 0,0013888880 — £, 109,
%'= 0,0001984127 — &, 10-10,
—sl-l = 0,0000248016 — £, 10-1°,

L = 0,0000027567 + &, 10-1°,

a
2766 — & 10-10,
o = 0.000000 £ 10-
%! = 0,0000000251 — £, 10-19,
i%i = 0,0000000021 — £, 109,

I% = 0,0000000002 — £, 10-°.

Damit erhalten wir fiir 8,3 die Abschitzung
2,7182818286 — % 1010 < gy < 2,7182818286 + % 10-10,

2,7182818281 < s,, < 2,7182818287,
und somit gilt wegen 8,3 < e < 8,3 + 10~ fiir e die Abschitzung
2,7182818281 < e < 2,7182818287,
Beispiel 2. Nach 3.3.1. (2), (3) ergeben sich als Entwicklung der trigonometri-
schen Funktionen f(z) =sinz, g(z) =cosz an der Stelle a == 0 wegen f3¥)(0)
= gi#-1(0) = 0, f3+1)(0) = g¥)(0) = (—1)* die Darstellungen

.

sinz=z—%+5i—+"'+("‘l)"lm

+ (—=1)* mcoso:c, 1)
conz = 1= T4 b b

1 con (12
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Wegen |cos 62| < 1 gilt fiir alle 2 mit |z| < b die Abschiéitzung

b“*l
| Ryus1(0, 2)] _S_‘ (2n_—+l)' (13)
bzw.
B0, 2)l < %. (14)

Auf den rechten Seiten dieser Ungleichungen stehen die Glieder einer Nullfolge. Auf
Grund der Periodizitdt und der Beziehungen zwischen den Winkelfunktionen geniigt

es, die Funktionswerte von cos # und sinz fiir 0 < = s% zu berechnen. Dann
kénnen wir (13), (14) durch die fiir numerische Berechnungen bequemen Abschiit-
zungen

1

|Raanr(0, 2)| < e (13)

1 ,
|Raa(0, 7)| = @t (14)

ersetzen. Fiir kleine |z| gelten die Néherungsformeln
sinzwz—%, coszwl—%. (18)
Der Grenziibergang n — oo in (11) und (12) fithrt zu den Definitionsgleichungen
dieser Funktionen zuriick.
Beispiel 3. Da stets
(sinh #)® =sginhz,  (sinh z)®*) = cosh z,
(cosh z)3 =coshz, (coshz)**V=sinhz (ne N)
gilt, folgt analog zu Beispiel 2

2 aan-1 a1
nhzr—=z4+ 5 4o b —2 T oshdx,
shr =t gt T G T @ O 19

e“hz=l+%+...+£_

Fad
(2"_2” +W00!|102. (tY)
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Beispiel 4. Fiir 1 + z > 0 gilt

f@=In(1+2), f0) =0,
f@=(1+a2", fo=1,

'@ =(-na+a, 0 =-1,

1"@) =(=1) (=2) (1 + 2)*, 1"0) = (=1 (-2),

........................ poee
@) = (=11 - +2)*, 0= (—-1)"n-—1,
f*0(2) = (—1)" nl(1 4 z)?
und damit
z 2 2 . .
ln(1+z)—T—'—2-+?—+"-+(—1) 1 - + Ruir(0,2),

wobei das Restglied in der Form von LagraNgk durch
(1 + 8y i

el = Y T T Y A e
und in der Form von CavcHY durch
= (g T — 9"
Ry(0, 2) = (—1) A+ Fapn

gegeben ist. Fiir 0 < z < 1 setzen wir
01 == _1-—.
(1 + )™+
Dann ist offenbar 0 < #, < 1, und aus (19) folgt
zﬂ+l
Riy(0,2) = (—1)*0, —— (0<z=1).
n+1
Fiir —1 < z < 0 setzen wir

P ACT AU ET
T \1+0z) 1402

(18)

(19)

(20)

(1)

Wegen 0 <1 -0 <148z, 1+%x>1+2>0ist 0 <8, <1, und aus (20)

folgt
Run(0,2) = (—1)* f—ﬁ (—1<z50).

(22)
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Aus (21) und (22) ersehen wir, daB
lim R,(0,z) =0 (—1<z=<1)

ist. Firz =1 erg‘ibt sich die Darstellung

2=1— —4— — 1)1 = n_Y1
In2 + + -+ (=1 +( - — +1

Fiir pumerische Bereohnungen von In 2 ist diese Darsbellnng schlecht geeignet. Be-
stimmen wir aber z aus

142

=2,
1—=z

d.h.,setzenwirz=%, so folgt aus

lnl%z=ln(l+z)—ln(l—z),

lnl ”—l ‘.0 z”'*l
(+z)—z——+--—+ s+ (1) —+(—) "o T 1’
# D P i
o RUmA=—rm o T
die Beziehung
1+z_ 2o YL S
hl—z_z(""s"' +2n—1)+”m(2n+1+1—z)‘

Fiir n = b6 kann der letzte Summand durch

1 /6, 8, 13 1
:w(u"'l )<3u22<1o*

abgeschiitzt werden, womit bereits eine recht gute Anniitherung erzielt ist. Der Grenz-
iibergang n# — oo in (18) ergibt

h(l+z)=§;(—1)‘-‘§ (—1<zs1). @3)

Ersetzen wir hierin # durch z — 1, 8o erhalten wir die bisher noch nicht aufgetretene
Reihendarstellung

nz=3(— 1)-4(' Y o<zs2
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der Logarithmusfunktion in einer Teilmenge ihres Definitionsbereichs. Insbesond:
ist - )
1 1 1
B2=l-cto—Td— (24)
Beispiel 5. Fiir die Fanktion
f@)=1+2r
mit 1+ 2> 0,x € Rgilt
f(2) = a(x — 1)-r (& — 5 + 1) (1 4 2)**,
19@) =l (:) U +2p-,
und die Taylorsche Formel mit dem Restglied von CaucHY lautet

<1+z)-=1+(“)z+---+(“)z-
1 n

+( * )(n+1)w(1+oa>-—-*(l—o)'. (26)
741
Setzen wir o
a.:=(:)nz',
ilt
G | _ .a—nn+l= Jre—=n
o o | 2 2 :

Ist |2] < 1, so wird fiir hinreichend groB8es n die rechte Seite kleiner als eine feste
Zahl ¢ mit o < 1. Aus dem Quotientenkriterium folgt die absolute Konvergenz
der Reihe mit den Gliedern a,, und folglich gilt a, — 0 fiir n — co. Um

Lm R,0,2) =0 (2| <1)
A=+00
zu beweisen, brauchen wir nur noch zu zeigen, daB (1 4+ dx)**? (1 — 8)" beschrinkt.

ist.
Es ist

(1+oxr-'(1—o)-=(l")'(l+oz)-*

1+ 90z
9e-1 fir a1,

-1
<{t+62) S{(l—lzl)‘-‘ fir a<1,

womit die Behauptung bewiesen ist.
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Aus (26) erhalten wir die Reihendarstellung
(4o = i (:) 2 (al<1) (26)

der allgemeinen Potenzfunktion in einer Teilmenge ihres Definitionsbereichs.

3.3.4. Die Taylorsche Formel fiir Funktionen von mehreren Variablen
Wir k& den Taylorschen Satz auch auf Funktionen von mehreren Variablen
iibertragen.

Satz. Es sei | eine in einem Gebiet G des Raumes R, definierte reellwertige Funktion
der Ordnung n + 1. Ist die Strecke mit den Endpunkien @,a + h in G enthalten, so
gt esein ® mit 0 < ¥ < 1 und

fa+m =@ + Zhofi@ + 32 3 T hddf@)
j=1 fml jeml

Z Z ki B B, - O, f(@)

“' =1
(n + 1)1 §, ‘.E_,"i- - b0, 0;,, f(@ + Oh). I

Beweis. Wir setzen F(t):=f(@ + th) (0 < ¢ < 1). Nach der verallgemeinerten
Kettenregel 3.2.3. (5) ist, wenn wir hierin z;(t):= a; + th; und damit z;(f) = h;
setzen,

@ =iz': Adjf(a + th).

Ersetzen wir in der verallgemeinerten Kettenregel  durch d,f, so erhalten wir analog
P
F(#) =’Z£ h;‘z: h39,{a + th),
»
) =‘z; ’2;»‘»,8.6,/(‘: + th).
In dieser Weise fortfahrend erhalten wir

PO ) = 2 2 by oo B0y, -+ 0, (@ + th).

=1
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Nach dem Taylorschen Satz fiir Funktionen von einer Variablen ist

F'(0 F™(0) F+1)(9)
Fy=FO + FO+ =D 4 4 70 .
nl (n 4 1!
und wenn wir die gefundenen Darstellungen fiir die Ableitungen von F einset
erhalten wir die Behauptung.

Wir betrachten einige Spezialfiille. Fiir n = 0 ergibt sich
?

fl@ + h) = f(a) +,Z: hojf(a + Oh). @
Dies ist der Mittelwertsatz fiir reellwertige Funktionen von mehreren Variablen. Fiir
Extremwertuntersuchungen wird der Spezialfall » = 1 von Bedeutung sein. Wir
erhalten

f@a+h) =fa) + Z' h0,f(a) +3 Z' Z hih@:9;f(a + Oh). @
Die Formel (2) bzw. (3) geben wir fiir den Fall p = 2 in ausfiibrlicher Schreibweise

an. Hierzu ist etwa @ = (ay, ..., ap) durch (a,d) und h = (k,, ..., b,) durch (4, k)
zu ersetzen. Dann ist

f@ + b, b + k) =f(a, b) + hfx(a + Ok, b + Ok) + kf,(a + 0, b + Ok) (4)

bzw.
fl@ + k, b + k) = f(a, b) + hfs(a, b) + kf,(a, b)
+ 5 ¥fale -+ 00,5+ OF) + 2ibfn(a + 0, b + 9B)
+ Bfyy(a + 0, b 4 Ok)]. ®)
In den Formeln (1) bis (5) ist wesentlich, daB auf den rechten Seiten in allen
Arg jeweils dieselbe reelle Zahl # erscheint.
3.3.5. Extremwerte und Wend kte. Kurvendiskussion

p

Bevor wir die Untersuchung von Funktionen auf Extremwerte mit den Methoden
der Differentialrechnung durchfiihren, wollen wir die hierbei verwendeten Begriffs-
bildungen priizisieren.

Definition 1. Es sei f eine reellwertige Funktion aus R (oder aus einem metrischen
Raum). Die Funktion f besitzt im Punkt a ein Mazimum, wenn stets

f@) S f@)  (zeD() 1)
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gilt. Sie besitzt in a ein lokales Mazimum, wenn a ein Haufungspunkt von D(f) ist
und wenn es eine e&-Umgebung von a mit

1@ S f@) (z€D() N Uia) @)

gibt. Die Funktion besitzt in a ein Mins: bzw. ein lokales Mins: wenn (1)
bzw. (2) mit dem Zeichen = an Stelle von < erfiillt gind.

Gilt in (1) bzw. (2) das Gleichheitszeichen nur fiir z = a, s0 werden wir, wenn
wir diesen Sachverhalt besonders hervorheben wollen, diesen Begriffsbildungen das
Beiwort ,,eigentlich* hinzufiigen. So hat z. B. die Funktion f in Abb. 3.20 im Punkt
@, ein Maximum, in a, ein lokales eigentliches Maximum, in a, ein eigentliches Mini-
mum und in a, ein Jokales Minimum.

Abb. 3.20

)
pql

Y S
(]

&

Als Oberbegriff fiir die Begriffe ,,Maximum® bzw. ,,Minimum* verwenden wir den
Begriff Extremwert. Es ist ein weit verbreiteter Irrtum, da8 Extremwertbestimmun-
gen stets mit den Hilfsmitteln der Diffe ialrechnung zu fiihren sind. Unsere nach-
folgenden Untersuchungen werden zeigen, daB mit den Methoden der Differential-
rachnung nur teils hinreichende, teils notwendige Bedingungen fiir lokale Extremwerte
angegeben werden kénnen. Sind die V¢ tzungen der nachfolgenden Sitze nicht
erfiillt, so mii zur Extremwertbesti g andere Methoden entwnckelt werden.
Als erstes geben wir eine notwendige Bedingung an.

Satz 1. Besitzt eine in esnem inneren Punkt a shres Definitionsbereichs diff er-
bare reelle Funktion | in diesem Punkt einen Extremwert, so hwindet die Ablest
von f im Punkt a.

Beweis. Es sei etwa f(z) < f(a) fiir alle z mit € U,(a). Dann ist
fea+h —fa) [ =0 fir >0,
h =0 fir A<O.

Der Grenziibergang & — 0 mit & > 0 bzw. b < 0 liefert f'(a) < 0 bzw. f'(a) =0
und damit f'(a) = 0-

Die Aussage f'(a) = 0 bedeutet, daB die Tangente im Punkt Pa, f(a)) den Anstieg
0 hat, d. h. parallel zu z-Achse verlduft.



3.3. Hohere Ableitungen und der Satz von Taylor 67

Beispiel 1. Die Funktion
f(@) =2* — 2r + 8 +&in® (z — 1)
ist an der Stelle z = 1 differenzierbar, und es ist
f@) = (@ — 1)* + 5 +ain* (z — 1) = 5 = {(1).
Somit muB #'(1) = 0 sein.
Eine hinreichende Bedingung formulieren wir in
Satz 2. Es sei f eine im Intervall Ja, b[[ differenzierbare reelle Funktion.}) Wechselt
die Ablestung der Funktion besim Durchgang durch ¢ mit ¢ € Ja, b[[ das Vorzeichen,

d.h., gilt fiir hinveichend Heines positives ¢ und fiir ¢ — ¢ = 2y < ¢ <3 S ¢ + o
stets f'(x,) - f'(zs) < O, 80 besitzt f in ¢ einen esgentlichen lokalen Extremwert.

Beweis. Fir 0 < |b| <e ist flc+h)=fc) + hf'(c +6h) mit 0 << 1.
Der Summand Af'(c + Oh) hat stets das gleiche Vorzeichen, denn mit 2 wechselt
nach Voraussetzung auch f'(c + ¢h) das Vorzeichen. Ist Af'(c + #h) negativ bzw.
poditiv, po ist stets [(c + A) < f(c) bzw. f(c + k) > f(c), und die Behauptung ist
bewiesen. .

Zur Einfiihrung des Begriffes ,,Wendepunkt‘ betrachten wir die Lagebezieh
zwischen dem Graphen einer differenzierbaren Funktion f in der Umgebung emes
Punktes ¢ und der Tangente im zugehérigen Kurvenpunkt. Abgesehen von dem
hier nicht niher untersuchten Fall, daB es in jeder Umgebung des betrachteten

7 | ;
1 1 H
| ] H
' A
T a T a a
a) b) c)
Abb. 3.21

Punktes weitere Punkte der Kurve gibt, die auf der Tangente liegen (Abb. 3.21c),
unterscheiden wir zwei Fille. In einer Umgebung des Punktes kann divc Kurve
ganz auf einer Seite der Tangente liegen (Abb. 3.21a), oder die Tangente kann die
Kurve durchsetzen (Abb. 3.21b). Um ein analytisches Kriterium fiir diesen Sach-

verhalt herzuleiten, vergleichen wir den Anstieg M der zu a,a + A

1) Btetige Ditf jerbarkeit braucht nicht gefordert zu werden.
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horenden Sekante mit dem A g /'(a) der Tangente. Die Differenz zwischen Se-
kAnten-undTungenhnmtleghntfurh>0undfurh<0memtenFallunter-
schiedliche, im zweiten Fall gleiche Vorzeichen. Dies fiihrt zur

Definition 2. Eine in einer Umgebung von a definierte und in a differenzierbare
reelle Funktion f besitzt in @ einen Wendepunkt, wenn fiir hinreichend kleine |A|
(b % 0) stets

f@a + b) — f@)
3

> ) ©]

oder stete

et D =fe)  p, ®

gilt. Ist dariiber hinaus f'(a) = 0, so heiBt dieser Wendepunkt auch Stufenpunkt.

Aus dieser Definition ergibt sich sofort das folgende hinreichende Kriterium fiir die
Existenz eines Wendepunktes.

Satz 3. Besitzt die Ablestung ' einer in esner Umgebung von a differenzierbaren
reellen Funktion f einen eigentlichen lokalen Extremwert, s0 besitzt f in a einen Wende-
punkt.

Beweis. Ohne Beschrinkung der Allgemeinheit besitze f in a ein eigentliches
lokales Maximum. Fiir hinreichend kleine |A| (b 5 0) ist dann

et D10 o pe+oh <t

und (4) ist erfiillt.

Beispiel 2. Die Funktion f(z) = 2* — 32® + 2 besitzt an der Stelle z = 1 einen
Wendepunkt, denn ihre Ableitung besitzt in diesem Punkt ein eigentliches Mini-
mum.

Wir betrachten nun eine Klasse von Funktionen, fiir die sich die Untersuchung
auf Extremwerte und Wendepunkte mit Hilfe einer Taylorentwicklung besonders
iibersichtlich gestalten liBt. Mit T(a) bezeichnen wir die Menge aller reellen Funk-
tionen f, fiir die es ein m = 2 mit folgenden Eigenschaften gibt:

1. Die Funktion f ist in einer Umgebung von @ mindestens m-mal stetig differenzier-
bar.

2. Es ist f™(a) + 0.

3. Aus 2 < k < m folgt fM(a) = 0.
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Fiir jede Funktion f aus T(a) ist die Zahl m als kleinste natiirliche Zahl m mit m = 2
und f*}a@) 4= 0 durch diese Bedingung eindeutig bestimmt. Die Taylorentwicklung
einer solchen Funktion lautet offenbar

@) =10+ Pi@) e — ) + L EEE =) (o _ e, ®

Hat der letzte Summand in (5) positives bzw. negatives Vorzeichen, so liegt der
Kurvenpunkt Pz, f(z)) oberhalb bzw. unterhalb der Tangente, deren Gleichung

y=f@)+f@) (z—a)

durch die ersten beiden Summanden auf der rechten Seite von (5) bestimmt ist
(Abb. 3.22). Die Lage des Kurvenpunktes zur Tangente wird also durch dss Vor-
zeichen von f*)(a + #(z — a)) (z — @)™ bestimmt. Wegen der Stetigkeit von f™
und wegen fi™(a) 4= 0 gibt es eine Umgebung U,(a), in der stets fi™(zx) 4= 0 ist.

-
pri {a;’\,!(x-a (x-a)m

L~
f'(ax-a)

~
f(a)

Abb. 3.22

a X

In dieser Umgebung haben dann f™)(z) und f(™(a) stets dasselbe Vorzeichen, und
die Lage des Kurvenpunktes wird durch das Vorzeichen von f(™(a) (x — a)™ be-
stimmt. Ist m gerade bzw. ungerade, so hat (z — a)™ fiir z > @ das gleiche bzw. ent-
gegengesetzte Vorzeichen wie fiir # < a. Ein Wendepunkt liegt also genan dann vor,
wenn m ungerade ist. Ist m gerade, so liegt die Kurve in der betrachteten Umgebung
ganz auf einer Seite der Tangente, und die Kurve ist fiir f™(a) > 0 ,,von unten
konvex*, fiir ff™(a) < 0 ,,von unten konkav‘‘ (Abb. 3.23).

Eine Funktion f aus ¥(a) besitzt hiernach genau dann einen lokalen Extremwert
an der Stelle a, wenn m gerade und f'(a) = 0 ist. Dieser Extremwert ist ein Maximum
bzw. ein Minimum, je nachdem, ob f{™(a) negativ bzw. positiv ist. Ist f'(a) =0
und m ungerade, 8o besitzt die Funktion an der Stelle a einen Stufenpunkt (Abb.
3.24). Fir Funktionen f, die an jeder Stelle a ihres Definitionsbereichs zur Menge
Z(a) gehoren, konnen wir somit notwendige und hinreichende Bedingungen fiir das
Vorliegen von lokalen Extremwerten und Wendepunkten formulieren.
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™ >0 tMy<o
m gerade
(x-a)M>0 i ;
] [l
fir x 4 a r] . r
' von unten konvex” Jvon unten konkav*
m ungerade
(x-afM(xy-0"< 0 i i
]
fir x; <a<x, a a
Wwendepunkt Wendepunit .
Abb. 3.23
™) >0 My <o
m gerade ¥ 7
T ] a
Minimum Maximum
o Lﬁ
m ungerade 7 N
7 - a
Stufenpunit Stufenpunkt
Abb. 3.24

Satz 4. Eine Funkiion | aus T(a) besitzt an der Stelle a einen lokalen esgentlichen
Eztremwert genau dann, wenn f'(a) = 0 und die kleinste natiirliche Zahl m msit m = 2
und f™)(a) 5 O gerade ist. Im Fall {™)(a) < O liegt ein Mazimum, sm Fall =(a) > 0
ein Minimum vor.

Die Funktion besitzt an der Stelle a esnen Wendepunkt genau dann, wenn die kleinste
natiirliche Zahl m mit m = 2 und f™(a) 3= 0 ungerade ist.
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Die in Satz 1 f lierte notwendige Bedingung fir das Auf lokaler E: fand
FxruaT 1629. Ein hinreichendes Kriterium ist bei ihm 1643 in Ansiitzen erkennbar, bei Lxrsxrz
ist die Bedingung 1683 véllig klar a

GrLes PERSONE DE ROBERVAL (1602—1675) entdeckte 1638 die Wendepunkte an der sog
ten Konchoide der Geraden ((x — a)* (z® + y%) — &% = 0), und FunMaT erschlo8 daraus die

Beispiel 3. Fiir die Funktion
1 2
=3 4+ —si =
=) + 7 o 2z + 3 2*
gilt
f(0) =3 und
f'(z) = cos 2z + 222, fo=1,
f'(x) = —2sin 2z + 4z, {'(0)=0,
f"@) =—4cos2z+4, ["(0)=0,
f@(z) = 8sin 2z, f*®@©) =0,
f®(z) = 16 cos 2z, 1®(0) = 16.
Somit ist m = B, und folglich besitzt die Funktion f im Punkt z = 0 einen Wende-
punkt. Die Taylorentwicklung lautet
‘18
=3 _— .
f=) +z+ 20 a° cos 20z
In der Umgebung von P(0, 3) schmiegt sich die Kurve sehr eng an die Tangente mit
der Gleichung y =z + 3 an.

Beispiel 4. Einer gegebenen Kugel mit dem Radius r soll ein gerader Kreis-
zylinder einbeschrieben werden. Wie muB das Verhiltnis von Zylinderhéhe A und

Zylinderdurch d gewiihlt den, damit
a) das Volumen bzw.
b) der Mantel bzw.
c) die Oberfliche
des Zylinders méglichst gro8 wird?
Die GroBen, die zu einem Extremwert gemacht werden sollen, sind
V=n % h (Volumen),
M = ndh (Mantel),

F =ndh + n% (Oberfliche).
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Hierbei sind d und A durch die Bedingung d* + A% = 4r* miteinander verkniipft
(Abb. 3.25). Wir kdnnen daher 4 als Funktion von d ausdriicken (oder umgekehrt)
und in die obigen Formeln einsetzen. Dann sind ¥, M und F nur noch von einer
Variablen abhiingig. Die Rechnungen gestalten sich aber einfacher, wenn wir 4 und d

A

Abb. 3.26

durch den Winkel z ausdriicken (Abb. 3.25). Mit A = 2r cos z, d = 2r sin z erhalten
wir
V = 2nr¥ain* z cos z,

M = 27r? 8in 22,
F = 2nr¥sin z (2 cos z + sin z).

Fiir 0 <z < - sind diese Funktionen stets positiv und nehmen fiir z = 0 oder
n
z = % den Wert 0 an. Sie haben daher ihr Maximum an einer Stelle z, bzw. zy

bzw. z, im Innern des Intervalls, und an dieser Stelle muB die Ableitung der differen-
zierbaren Funktion V bzw. F bzw. ‘M verschwinden. Aus

V' = 2nr3 sin z (2 cos® z — sin? z],

M' = 4nr® cos 2x,

F' = 2nr3 [2 cos 2z + sin 2z]

ergeben sich wegen tanz > 0 fir0 <z < % die notwendigen Bedingungen

2 cos? zy = sin? zy, tan zy =V§,
cos 2zp =0, xy=%n tanzp =1,
2c08 2zy +8in 22y =0, —2=tan2zy = 2o oy

1— tan®zy

tandzy — tanzy — 1 =0, tana:u=%+ I/i—+1=l+2}/5.
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In allen Fillen gibt es genau eine Nullstelle der Ableitung, und an dieser Stelle
< P

nimmt die im Intervall iO, %” definierte Funktion ihr Maximum an. Die ge-
\,

suchten Lingenverhiltnisse sind )

REST}

d
b
b)o=1
h_1+15
c)d_ 7

3.3.6. Extremwerte von Funktionen mehrerer Variabler

Die Theorie der Extremwerte von Funktionen mehrerer Variabler konnen wir hier
nur kurz streifen.

Satz 1. Existieren die partiellen Ableitungen einer in einem Gebiet G des Raumes R,
definierten reellwertigen Funktion f in einem Punkt @ mit @ € G und besitzt f in @
einen Extremwert, 8o verschwinden alle partiellen Ableitungen im Punkt a.

Beweis. Besitzt f in @ einen Extremwert, so besitzen die Funktionen g; mit
@i(t) = f(@ + te;) im Punkt 0 einen Extremwert. Nach 3.3.5., Satz 1, ist 0 = ¢;'(0)
= |/ (a)

Ebenso wie im Fall der Funktionen von einer Variablen sind die hiermit bewiesenen

twendigen Bedingungen nicht hinreichend. Eine hinreichende Bedingung fiir den
Fall p = 2 liefert

Satz 2. Ist eine reellwertige Funktion f in einem Gebiet G aus Ry von der Ordnung 2,
gilt 1.(6, b) = f,(a, b) = 0 und ist

fe=(@, 8) (@, B) — (fey(a, B))* > 0, 1
80 besitzt f sm Punkt (a, b) einen eigentlichen lokalen Extremwert.

Beweis. Wegen der Stetigkeit der zweiten partiellen Ableitungen gibt es eine
e-Umgebung U von (g, b) derart, daB die Bedingung (1) auch fiir alle Punkte dieser
Umgebung erfiillt ist. Fiir keinen Punkt dieser Umgebung kann f,, verschwinden, da
sonst (1) nicht erfiillt wire. Daher hat f,, in U stets dasselbe Vorzeichen. Wahlen wir
k, k mit (k, k) 5= (0,0) und (@ + k,b + k) € U, so gehort fiir 0 < # < 1 auch der Punkt
(@ + 9k, b + Ok) zu U. Zur Abkiirzung setzen wir

A= fn(a + Ok, b + k),
B:=f.,(a + 0k, b + 9k),
C:= f,(a 4 94, b + Ok).
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Die Formel 3.3.4. (5) lautet nun
@+ b,b + b) = f(8,5) + o [4B* -+ 2Bhk + OB,

fa+ Kb+ k) — fa,b)= -217 [A%? + 24 Bhk + ACKY),

24 -[f(@ + b, b + k) — f(a, b)] = (4h + Bk)* + (AC — B") k*.

Fiir k = 0 ist & & 0, und die rechte Seite ist gleich 433, also positiv. Fiir k == 0 ist
die rechte Seite nicht kleiner als (4C — B?) k* und damit wiederum positiv. Daher gilt
stets

2ful(a + 0k, b + OF) [f(@ + K, b + k) — f(a,5)] > 0.
Es folgt

fa+4,b + k)= f(a, b),
je nachdem, ob f,, an der Stelle (a, b) und damit auch in der Umgebung U von
(a, b) positiv oder negativ ist. Im ersten Fall liegt ein eigentliches lokales Minimum,
im zweiten Fall ein lokales Maximum vor.

Ohne Beweis vermerken wir, daB im Fall f.f,, — f3, < 0 kein Extremwert vor-

liegen kann. Im Fall f.f,, — f2, = 0 sind beide Fille méglich.

Beispiel. Wir betrachten die Funktion
f(z,y) = 2® + 22y + 44 + 2z — 10y + 5.
Es ist
fie,y) =22+ 29+ 2, [ 2,9) =22+ 8y—10,
la@y) =2, [o@y) =2, [plz,y)=8.
Notwendige Bedingungen fiir das Vorliegen eines Extremwertes sind
22+2+2=0, 2x+8 —10=0.

Sie sind nur fiir z = —3, y = 2 erfiillt. Wegen /nf,, — fz, = 12 > 0 liegt ein lokaler
Extremwert vor, und zwar wegen f,, = 2 > 0 ein lokales Minimum.

3.3.7. Grenzwertbestimmungen mit Hilfe der Differentialrechnung

Ist eine Funktion als der Quotient zweier in einem Intervall definierter Funktionen
1, 9 gegeben, so ist sie in den Punkten, in denen der Nenner verschwindet, nicht
definiert. Sind die Funktionen stetig und ist / an einer isolierten Nullstelle a des
Nenners von 0 verschieden, so besitzt der Quotient an der Stelle a einen uneigent-
lichen links- bzw. rechtsseitigen Grenzwert. Vollig offen ist dagegen das Verhalten
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des Quotienten in einer Umgebung einer gemeinsamen Nullstelle von Zihler- und
Nennerfunktion. Bei differenzierbaren Funktionen kann diese Frage in vielen Fillen

mit Hilfe einer nach BERNOULLI-DE L’ HoSPITAL ben: Regel entschieden werden.
Um nicht eine Vielzahl von Regeln fc Li Zu mii betrachten wir gleichzeiti
verschiedene Formen des G iibergangs und stellen die dem Grenzuberga.ng ent-
prechenden V. tzungen iiber das Inberva].l in dem die Funktionen f, g diffe-
jerbar sein mii in der nachfolgenden Tabelle

Grenziibergang Differenzierbarkeitsintervall fiir £, g

a)zla a<z<a+h

b)zta e—h<z<a

c)z—>a O0<|z—al<h

d)z > o0 z>R

e)x — —o0 z<—R } E>0

Unter diesen Voraussetzungen gilt der

Satz 1. Ist im f(z) = lim g(z) = O und existiert der eigentliche oder unesgentliche
(=)

Grenzwert lim ———, so gilt
7' (@)
im 1@ _ i @ 1)
g2 ga@’

Beweis. Im Fall a) setzen wir

fz) fir a<z<a+h,
0 fir z=a.

F(z):= {

Dann ist F stetig in (a, @ + A und differenzierbar in Ja, a + A(. Analog definieren
wir die Funktion G. Fiir a < # < a + h ist nach dem verallgemeinerten Mittelwert-
satz

f@) _F@) —F@) _F¢ _ f@¢

9= 6@ —Ga@) @O 70
mite < & < z. Aus z | a folgt somit £ | @, und da der Grenzwert des Quotienten von
/'(z) und ¢’ (=) fiir z | a nach Voraussetzung existiert, erhalten wir

iim 18 i £O _ o F®)

zia g(x) zla 9‘(5) Hﬂ g (5)
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womit die Behauptung im Fall a) bewiesen ist. Analog verliuft der Beweis im Fall b),
und a) und b) zusammen ergeben den Fall ¢). Im Fall d) setzen wir

1 1
-] fir O<ti<—,
Fy:= ’(:) <<z
0 fir ¢=0.
. N | . . . 1 .
Dmnmtl’stetxgm|0,—-|,d1fferenz:erbum|0,-——|,undeust
R R

1 1 1
FH)=——. — t —J.
Analog definieren wir @ und erhalten mit Hilfe des bereits Bewiesenen

i PO i FO @)
o @) 4o ,'(l) no ') w0 Q) 2o g(@)
t

o 100 ()

Analog verfahren wir im Fall e), und Satz 1 ist bewiesen.
Man beachte, daB auf der rechten Seite von (1) nicht etwa die Ableitung des

Quotienten L zu bilden ist, sondern daB Zihler und Nenner einzeln zu differenzieren
gind. g

Beispiel 1.
. . )
limunz=ﬁm2smzcoex=o.
20 x 0 1
Beispiel 2.
1
lim V; =lim 2.x = —o0
20 cO8Z — 1 210 —8inz
Beispiel 3.
ln:4¢+1 z—1@—1)—(z+1)
— —_ t]
lim —2 1=h,mz+l (z — 1) — lim 223 —a.
200 l 200 _L 2o 28 — 1
z z

In diesen Beispielen ergibt sich die Berechtigung des ersten Gleichheitszeichens erst
aus der Existenz des rechts stehenden Grenzwertes.
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. In den Voraussetzungen von Satz 1 wird gefordert, daB f und g bei dem betrach-
teten Grenziibergang gegen O streben. Man spricht daher hiufig von ,,unbestimmten

Ausdriicken der Form %“. Fiir ,,unbestimmte Ausdriicke der Form 2« gilt ein
oo

analoger Satz. Bei der Beweisfiilhrung wird nur bendtigt, daB die Nennerfunktion
gegen oo strebt und daB g’ nicht das Vorzeichen wechselt.
Satz 2. Ist lim g(z) = oo, existiert der eigentliche oder uneigentliche Grenzwert

lim zi—;‘; und ist ¢’ i dem betrachieten Differenzierbarkeitsintervall von O verschieden,
%0 18t

tim 1) _ g @)

g(@) 7'(@)

Beweis. Die Funktion g’ hat wegen 3.1.4., Satz 3, und ¢’(z) 3 O stets dasselbe

Vorzeichen. In Abb. 3.26 ist das Verhalten der Funktion g in den Fillen a), b), d), )

veranschaulicht. In den Fillen b) und d) ist offensichtlich g’(z) > 0, und in den Fillen

a) und e) ist ¢’ (z) < 0. Es geniigt, den Beweis fiir die Fiille b) und d) zu fithren, da der

AN}

Fall a) Fall b) Fall d) Fall @)
Abb. 3.26

@

Beweis in den Fillen a) und e) analog verliuft und der Fall c) eine Folgerung aus den
Fillen a) und b) ist. Es liege also Fall b) oder Fall d) vor. Wir unterscheiden wiederum
zwei Fille.

Fall 1. Der auf der rechten Seite von (2) stehende Grenzwert ist eine reelle Zahl c.
Dann gibt es fiir alle positiven & im Fall b) ein positives 8, im Fall d) ein positives
® mit
')

c—e<
g'(x)

<c+ ¢ @—8<z<a bzw. w<z).

Es folgt
c—ag@ —f<0<(c+eg'@ —f@),
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d. h., die Funktion A, bzw. A, mit

h@) =@ —egl)— ), k@) =(+ e g — fz)
ist wegen h,'(z) < 0 < hy'(z) streng monoton fallend bzw. wachsend. Ausa — 8 < b
< z < abzw. w < b < z folgt somit, da g(z) fiir hinreichend kleine 8 > 0 bzw. fiir
hinreichend groBe w positiv ist,

hy(@) = (¢ — &) g(z) — f(2) < (c — &) g(B) — f(}) = h(B),

e t@ =090 — 10)

g(x) g(z)

hy(b) = (c + &) g(b) — f) < (¢ + &) g&) — [(2) = Ma(2),

1@ etas®—1®) _
9(@) 9(z)
‘Wegen g(z) — oo erhalten wir, wenn wir z von unten gegen @ bzw. gegen oo streben
lassen,
¢c—e=lim f=) Sc+e.
9@ .
Da ¢ beliebig gewiihlt war, folgt

lim 1(-2—)- =ec.
9(=)

Fall 2. Der auf der rechten Seite von (2) stehende Grenzwert ist nicht endlich,
etwa 0o. Dann gibt es fiir alle positiven Zahlen K ein positives 4 bzw. ein positives
 mit

f@

9,(2)>K @—d<z<a bzw. o <z).
Dannist f'(z) — Kg'(z) > 0, und die Funktion » mit A(z) = f(x) — Kg(z) ist streng
monoton wachsend. Fiir a —3d <b <z <a bzw. o < b < z folgt f(b) — Kg(b)
< fx) — Ky(x),

fo) g, 10— Egd)
9(=) 9(z)
Der zweite Su d der rechten Seite strebt fiir z 1 a bzw. fiir z — oo gegen 0, d. h.,
es ist

im 1@ > g,
g(x)

und da K beliebig gewiihlt war, folgt die Behauptung.
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Beispiel 4.
1
in®
lim Inz = lim —= =lim(—mz)==0
a0 cotz g —1 240 z
fin? z

(vgl. Beispiel 1).

Neben den in Satz 1 und Satz 2 betrachteten Grundformen der Regel von Bea-
NOULLI-DB L’HOSPITAL treten weitere unbestimmte Ausdriicke auf, die wir wie folgt
auf die Grundformen zuriickfithren konnen:

1. 0- 00: Um den Grenzwert f(z) - g(z) zu berechnen, setzen wir h(z) := %3) bzw.
h(z):=L- und berechnen den Grenzwert von I bzw. o= nach Batz 1 bzw. 2.

f(x) hz)  hx)
2. 00 — oo: Wir setzen
1 _ b
_ _ 9@ =)
flz) — g(z) = R —
) g(x)

und wenden Satz 1 an.
3. In allen Fillen, in denen Grenzwerte von Funktionen der Form f(z)*) zu be-
stimmen sind, setzen wir
{(z)p® = eptennsie)
und berech den G t des Exponent:
Im letzten Fall sind insb dere die ,,unbestimmten Ausdriicke der Form 0°,
1%, 0% sorgfiltig zu untersuchen.

Beispiel b.
Ed
) 1
hm(( —ﬁ)tanz)s-:lim = lim =-1
—t x cotz = _ 1
2 2 2 sin® z
Beispiel 6.
cos z
lihl(sinz)““=explim]nmz=explim R —expO=1.
i — cot z = _ 1

: : ' antz
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Beispiel 7.
l.im(ninz)‘“‘=exp]im1“—le=explim(—sinxcosz)=1.
40 0 cotzx zl0
Beispiel 8.
1 1—2
z |* . z .oz 142
————| =explimzin =exp lim ——— =1
m[z‘+1 P o1 T 1
zl

Das in den Siitzen 1 und 2 angegebene Verfahren zur Ermittlung von Grenzwerten
fiihrt nicht zum Ziel, wenn der Quotient der Ableitungm an der betrachteten Stelle

wiederum ein unbestlmmter Ausdruck der Form g oder — ist. In diesem Fall kann

<ine nochmalige oder eme mehrmalige Anwendung der Regel von BERNOULLI-
B L’HosPrTAL Zum Ziel fithren. Ist etwa

lim f(z) = lim f'(z) =+ = lim f*Dz) | _ oo
lim g(z) = lim ¢'(z) = -+ = lim g Y(x) )
und existiert
@)
7™()’
80 ist nach Satz 1 bzw. Satz 2
o 2@ _ o ) @ L @)
" @) g*V(z) 7@ @

Man beachte aber, daB diese Schluikette nur dann richtig ist, wenn alle Quotienten
von f*)(z) und g*)(z) fiir k = 0,1, ..., n — 1 an der betrachteten Stelle unbestimmte
Ausdriicke sind. Die Kette bricht ab, wenn diese Bedingung nicht mehr erfiillt ist.

Beispiel 9.
xr — 1] - 1 —_
lim 2coszr — 2+ & = lim 2smz+2z=lim 2cos:+2=0'
o € —1—2z e €€ —1 700 e

In manchen Fillen kann man mit den geschilderten Methoden den Grenzwert auch
dann nicht ermitteln, wenn er existiert.

Das Verhalten des Quotienten von f und g fiir einen (rechts- bzw. lmksseltlgen)
Grenziibergang an einer gemeinsamen Nullstelle @ von f, g kann stets entschieden
werden, wenn es fiir f bzw. fiir g eine kleinste natiirliche Zahl k bzw. m gibt derart,
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daB f® bzw. g™ in einer Umgebung von a existiert und stetig ist und auBerdem
1®(a) % 0 bzw. g™(a) = 0 gilt. Wegen f(a) = g(a) = 0 ergibt die Taylorentwicklung

fz) _ m! f%(a + 8 — a)) (z — a)

glz) k! g‘""(a + ¥ — a)) @ —ay’

k),
o @) _ e

2—+a g(2) kl 9(')(4) z—a
Ist & > m, so ist der Grenzwert 0. Ist k = m, so ist der Grenzwert gleich dem Quo-
tienten von k! f®(a) und k! g®(a). Ist ¥ < m und k — m gerade, so ist der Grenz-
wert je nach dem Vorzeichen des Quotienten von f*(a) und gt™(a) gleich co oder
—oo. Ist ¥ < m und k — m ungerade, so ist der rechtsseitige Grenzwert oo, der
linksseitige Grenzwert —oo oder umgekehrt.

Die Regel von BERNOULLI — DE L'HOSPITAL erschien zuerst in der 1698 gedruckten ,,Analyse

des infiniments petits pour I'intelligence des lignes courbes** des Marquis pE L’HOSPITAL fiir un-
bestimmte Ausdriicke der Form % JoHaXN I BErNOULLI, der seit 1691 mit DE L’HOSPITAL

bekannt war und diesen in die Arbeiten mit dem Calculus eingefiihrt hatte, wies 1704 darauf hin,
daB er die Regel 1694 dem Marquis mitgeteilt hobo — er nlso der olgenthcho Entdecker sei.
Gleichz eitig bemerkte er, daB die Regel unter Umstind sei.

m (z — a)t-"™.

3.3.8. Aufgaben

1. Man besti durch vollstindige Induktion die n-te Ableitung der Funkti
y=(+2r @R, y=2I
2. Man gebe die Tayl icklung der Funktion f(z) = a® (a > 0) an der Stelle 0 an.

3. Man berechne ohne Verwendung einer Logarithmentafel V2 (sm + ) auf vier Stellen
genau.

4. Man entwickle die Funktion f(z, y) = cos z cos y in der Umgebung des Nullpunktes mit einem
Restglied vierter Ordnung.

5. Man bestimme die Extrema der folgenden Funktionen:
fix) =cosz + i »
2
g(z) = cos z + cosh z,

@
) = =5 +1

6. Man diskutiere den Verlauf der Graphen der Funktionen

1.2 —pltz —z—si
I(@)—x+2. v(z)—lnl_z. h(z) =z — sinz.
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7. Man besti bet den folgenden Funkti die Punkte, in denen die notwendigen Bedin-
gungonfﬁrduVurlngenomulohlenExmmweMetfulltund und untersuche, ob in ihnen
die hinreichenden Bedingungen erfiillt sind:

fon) =5 +oe— szt L gy,
gz y) ==y —z—y) (@>0),

Mz.v)=z'+y' (z,y>0).
zy

8. Gegeben seien n Punkte (2, y;) (§ = 1, 2, ..., ). Man bestimme einen Punkt (z, y), fir den die
Funktion

fiz ) '4)5. ey — 2)° + (s — 9%

ein lokales Minimum besitzt.

3.4. Potenzreihen

3.41. Konvergenzbereich von Potenzreihen

In333 haben wir fiir gewisse Funktionen f (z. T. in Teilmengen ihres Definiti
ichs) Reihendarstellungen der Form

f@) = g ez — o) @

erhalten. Wir jede Darstellung dieser Form eine Potenzreshendarstellung
oder Potenzreshenentwicklung der Funktion f an der Stelle @ in der betrachteten
Teilmenge von D(f). Kann eine Funktion f in einer Umgebung von a in der Form (1)
dargestellt werden, 8o sagen wir, f lasse sich in a in eine Potenzreihe entwickeln.

Wir gehen nun von der amgekehrten Problemstellung aus. Wir geben eine Folge
(¢s) komplexer (oder reeller) Zahlen und eine komplexe (oder reelle) Zahl ¢ vor und
bestimmen die Menge aller komplexen (oder reellen) Zahlen z, fiir die die in (1)
rechts stehende Reihe konvergent ist.}) Ist M die so definierte Menge, so kénnen
wir eine Funktion f durch die Gleichung (1) definieren. Dann gilt

l:z»i‘c,(z—a)" (z€ M). (2)
A=0

Ist z ¢ M, 80 ist 3’ c,(z — a)" eine divergente Reihe.

1) Untersuchungen dieser Art haben wir bereits.in 2.2.4., Beispiel 3, durchgefiihrt.
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Definition 1. Die Menge M aller komplexen bzw. reellen Zahlen z, fiir die
D ¢y — a)* konvergiert, heiBt der K¢ genzbereich der Pot ihe mit den
Koeffizienten ¢, und mit dem Mittelpunkt a, ihre Kompl C\M
bzw. R\ M ihr Divergenzbereich. Die Funkmon (2) heiBt die durch die Potenzreihe
3 cy( — a)® dargestellte Funktion. )

Der Begriff ,,Potenzreihe bzw. ,,Potenzreihe mit den Koeffizienten ¢, und dem
Mittelpunkt a* wird in der mathematischen Literatur in verschied Bedeut
verwandt. Zwischen der Funktion und ihrer Darstellung durch eine Reihe (bzw dem
abstrakt definierten Term 3’ c,(z — a)") wird oft nicht streng unterschieden. Im
folgenden wird aus dem Zusammenhang hervorgehen, welche Bedeutung gemeint
ist. Wir sagen, eine Potenzreihe konvergiere bzw. divergiere im Punkt 2, wenn z zu
ihrem Konvergenz-- bzw. Divergenzbereich gehért. Wenn sich die Betrachtungen
ausschlieBlich auf reelle Zahlen beziehen, so kennzeichnen wir dies durch die Be-
zeichnung ,reelle Potenzreihe. Andernfalls sprechen wir nur kurz von Potenz-
reihen.

Wir wollen nun zeigen, daB fiir den Konvergenzbereich einer Potenzreihe mit dem
Mittelpunkt a die folgenden drei Fille moglich sind.

a) Die Potenzreihe konvergiert nur in jhrem Mittelpunkt a. Sie heiSt dann (nicht
ganz konsequent) nirgends konvergent.

b) Es gibt eine positive reelle Zahl R, den K genzradius der Pot ihe, mit
folgender Eigenschaft: Die Potenzreihe ist fiir alle z mit | — a| < R absolut kon-
vergent und fiir alle # mit |z — a| > R divergent. In den Punkten z mit |z — a| =
kann gie absolut konvergent, bedingt konvergent oder divergent sein.

¢) Die Potenzreihe ist in allen Punkten z absolut konvergent. Sie heiBt dann
bestindig konvergent.

Im Fall a) bzw. c) sagen wir auch, die Potenzreihe habe den Konvergenzradius
R =0bzw. R = oo.

Satz 1. Zu jeder Potenzreshe 3 c,(x — a)* gibt es genau ein R mit 0 < R < oo
derart, daB die Potenzreshe fir alle z mit |x — a| < R absolut konvergent, fir alle z mst
|z — a| > R divergent ist.

Beweis. Wir setzen

"
L := lim sup Vica, @
W—>00
0 fiir L=oo,
R:= % fir 0<L < oo, #)
oo fir L=0.
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Fiir « = a ist die Reihe trivialerweise konvergent. Fiir z 34 a ist sie nach 2.2.4.,
Satz 8, absolut konvergent, wenn

]imsup'ylc.(x—a)" =|z—a|-L<1 ()]

und divergent, wenn

limsup'wc,(z—a)" =lg—al-L>1 (6)

ist. Im Fall R = O gilt stets (6), d. h., die Reihe ist fiir kein # mit # <= @ konvergent.
Im Fall R = oo gilt stets (5), d. h., die Reihe ist fiir alle z absolut konvergent. Ist
0 < R < o0, 80 ist die Reihe fiir

lz — a |z — al
R

<1 bzw. >1

absolut konvergent bzw. divergent. Damit ist der Satz bewiesen.

Definition 2. Die Menge aller z mit |z — a| < R heiBt der Konvergenzkreis der
Potenzreihe mit dem Mittelpunkt @ und dem Konvergenzradius R (0 < R < oo).

Nach unserem Satz ist der Konvergenzbereich stets eine Teilmenge des Konver-
genzkreises, da die Reihe fiir [ — a| > R divergiert. Das Innere des Konvergenz-
kreises ist dagegen stets im Konvergenzbereich enthalten. Wenn R bekannt ist,
hat man zur Bestimmung des Konvergenzbereiches nur die Randpunkte des Kon-
vergenzkreises in Betracht zu ziehen.

Fiir reelle Potenzreihen ist der Konvergenzbereich im Fall B == 0 stets ein (offenes,
halboffenes oder abgeschlossenes) Intervall, so daB in diesem Fall der Konvergenz-
bereich sinnvoll als Konvergenmterva.ll bezeichnet werden konnte. Im Interesse
einer einheitlichen Darstell b h wir auch fiir reelle Potenzreihen das
abgeschlossene Intervall (x: lz — a| = R} als Konvergenzintervall, obwohl auch
hier die Randpunkte nicht notwendig Konvergenzpunkte sind.

Beispiel. Wir betrachten die Potenzreihen mit dem Mittelpunkt O und den Ko-
effizienten

=t =1, =L, =L, o=-
] ’ ’ » " I (] P
n n n

Wegen
lim“n"=oc,
1
hm}/’ im /L —tim J/L =1,
A—+00 n n—>00 n3
-
lim J/L =0

00 n*



3.4. Potenzreihen 85

ist die Potenzreihe 3 n*z* nirgends, die Potenzreihe 3 n~z* bestandig konvergent.
Die Potenzreihen 3 2%, 3’ n-z", 3 n~%* haben alle den Konvergenzradius 1. Die
erste ist fiir kein z mit [z| = 1 konvergent, da die Glieder dann keine Nullfolge
bilden. Die zweite ist z. B. fiir x = 1 divergent (harmonische Reihe), fiir z = —1
konvergent (ihre Summe ist nach 3.3.3. (24) gleich —In 2). Die dritte Potenzreihe
ist fiir alle z mit |z| = 1 absolut konvergent.

Wie diese Beispiele zeigen, kénnen iiber das Konvergenzverhalten auf dem Rand
des Konvergenzkreises bzw. Konvergenzintervalls keine allgemeinen Ausssgen ge-
macht werden.

Mit Hilfe des Konvergenzkriteriums von WEIEBSTRASS (2.6.2., Satz 2) beweisen
wir, daB jede Pot: ihe ,fast gleichmiBig konvergent* ist, d. h., es gilt

Satz 2. Ist B eine sm Innern des Konvergenzkreises der Po the 3 cu(z — a)*
Uiegende beschrinkte abgeschl Punktmenge, so ist die Pot the sn B gleichmafig
konvergent.

Beweis. Es sei r = sup {|z — a|: z € B}. Dann ist r kleiner als der Konvergenz-
radius R, da B sonst einen Punkt mit dem Rand des Konvergenzkreises gemein
hitte. Die Reihe 3 |c,| r* ist daher nach Satz 1 konvergent. Wegen |c,(z — a)"|
=< |eq| ™ fiir alle z € B ist die Potenzreihe nach 2.6.2., Satz 2, in B gléichmiBig
konvergent.

Insbesondere ist die Pot; ihe in jeder abgeschl Kreisscheibe (bzw.
in jedem abgeschlossenen Intervall) {z: |z — a| S r} mit r < R gleichmiBig kon-
vergent.

3.4.2.  Analytische Funktionen

Uber Funktionen, die sich in jedem Pun.kt ihres Definitionsbereiches in eine Potenz-
reihe entwickeln lassen, ko de Aussagen bewiesen werden. Diese
Funktionen spielen deher in der Analysis eine hervorragende Rolle.

Definition 1. Eine Funktion heift im Punkt a ihres Definitionsbereichs analytisch
oder regulir oder holomorph, wenn sie sich im Punkt a in eine Potenzreihe entwickeln
laBt.

Hiernach ist f in a analytisch genau dann, wenn es eine Folge (c,) und eine positive
reelle Zahl r mit

fl@) = % aEz—af (z—a <) W

gibt. Der Konvergenzradius R dieser Potenzreihe muB dann natiirlich von 0 ver-
schieden sein, und es gilt r < R.
Aus 3.3.3. (1) ersehen wir, da8 jedes Polynom in jedem Punkt analytisch ist.
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Satz 1. Ist f in a analytisch, so ist f in a stebig.

Beweis. Die Behauptung folgt wegen 2.6.2., Satz 1, sofort aus der fast gleich-
miigen Konvergenz einer Potenzreihe.

Satz 2. Jede in einem Punkt a shres Definstionsbereichs analytische Funktion sst
#n allen Punkten einer Umgebung von a analytisch.

Beweis. Ea sei r > 0 eine Zahl, so daB (1) erfiillt ist, und es sei 0 < |b —a| < r.
Wir wiihlen eine Zahl r, mit |b — a| < r, < r und setzen

|b—al
q "
Dann ist ¢ < 1 und [b — a| = gr, < r,. Fiir alle z mit
Z—b=(1-gn=rn—|b—al<r—|p—a

gilt
g—alSjz—b+Pb—al=(l-gn+tgm=n<r
(Abb. 3.27), und es folgt

fz) = 2 Gle—0 + ¢ —a)

AmQ ke

._z'o,z( )z—b)'(b—a)’-*.

Abb. 3.27

Wegen(:)=0ﬁirk>nist

=3 Za(})e-ore—a. ®
Wir zeigen, daB der groBe Umordnungssatz angewendet werden kann. Setzen wir

=550 )z—b)*(b—a)ﬂ

R=0 k=0
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80 gilt
5<% 3 |o.|( )m — Q.

n=0 k=0
Wiederum wegen (:) = 0 fiir £ > n wird die rechte Seite der letzten Ungleichung

héchstens groBer, wenn wir die obere Grenze p in der zweiten Summe durch n er-
setzen:
»

Z ( ) (1 — g)tg™*n"

Ic.l ri*[(1—q) +qI*

8 1M :.M-

=3 leal .
=0

Die rechte Seite ist endlich, denn aus (1) ersehen wir, daB der Konvergenzradius R
der Potenzreihe nicht kleiner als r sein kann, und fiir alle z mit |z — a| S, <r =< R
ist die Reihe (1) sogar absolut konvergent. Damit sind die Voraussetzungen des
groBen Umordnungssatzes erfiillt, und aus (2) folgt

) =‘§ f'c.(") (b — a)~*(z — by,
K=0os=0 \K
Ferner sind die Reihen
fc.(:)(b—ww:—b)* k=012,..),

=0

bei denen wir die untere Summationsgrenze 0 durch k ersetzen konnen, konvergent.
Somit gibt es Zahlen d; mit

d.=fc.(:)(b—a)~-* OSP—a<rk=012..), @
a=k
und mit

f@) =§«w—w (o= bl <r—[b—al) @

halten wir die gewiinschte Darstellung. Die Funktion f ist in b analytisch.

Sate 3. Jede in einem Punkt a analytische Funktion ist in einer Umgebung von a
stetig differenzierbar, und die Ablestung sst wieder eine in allen Punkten dieser Umgebung
analytische Funktion.
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Beweis. Es gelte (1) und 0 < [b — a| < r. Aus (4), (3) folgt

fl@) — 1) =kZ; di(z — b — dy = (2 — b)kZ: di(z — b1,
Fiir 0 < | — b| < r — |b — a] ist somit

f@) — 1)

= b1,
== Zd (z — b}

Da die rechts stehende Potenzreihe fiir Zahlen z mit z 4 b konvergent ist, hat sie
einen positiven Konvergenzradius, und aus Satz 1 und (3) folgt

)

= T — b
Die Funktion f ist in b differenzierbar. Aus (1) folgt somit stets

=y = 3 nals — a1,

f@) = 551 nl— )t (2 —a| <r). ®

Man kann also eine fiir [z — a| < r < R durch eine Potenzreihe I’ c,(z — a)* dar-
gestellte Funktion differenzieren, indem man die Reihe bildet, deren Glieder sich
durch Differentiation ihrer Glieder ¢,(z — @)* ergeben. Man spricht daher auch von
gliedweiser Differentiation der Pot: ihe. Es ist zu beachten, daB diese Differen-
tiationsregel fiir Randpunkte des Konvergenzbereiches im allgemeinen nicht ange-
wendet werden darf.

Die Funktion ' ist fiir [+ — a| < r wiederum durch eine Potenzreihe dargestellt
und damit analytisch. Nach dem Bewiesenen ist sie dann differenzierbar, also erst
recht stetig fiir [z — a] < r. Damit ist Satz 3 bewiesen.

Als Folgerung erhalten wir

Satz 4. Besitzt die Potenzreshe mit dem Mittelpunkt a und den Koeffizienten c, den
Konvergenzradius R, so it die Funktion

fl@) = 5 oxlz — a)®

tm Innern des Konvergenzkreises bdoebw oft stetig diff ierbar. Die Ablest
kinnen durch gliedweise Differenti di ,undalleaopebtlddenPotmz
reshen haben denselben Kmvergmradaua

Es bleibt nur die letzte Behauptung zu beweisen. Wegen |nc,| = |cs| kann der
Konvergenzradius der durch gliedweise Differentiation gewonnenen Reihe nicht
groBer werden, und da sich (5) als Folgerung aus (1) ergab, kann er nicht kleiner
werden.
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Die Entwicklung einer in & analytischen Funktion f in eine Potenzreihe mit
dem Mittelpunkt a ist durch diese Funktion eindeutig bestimmt, denn es gilt
Satz 5. Aus

fo)=Saw—ar  (z—d<n ®
folgt

) = ué; (:) @ —ar*  (£=0,1,2,...) (7)
und

c.=% k=0,1,2,..). ®

Beweis. Die Behauptung (7) gilt fiir k = 0. Gilt (7) fiir eine natiirliche Zahl k,
80 ist

fB@) =kle + k! ﬁ‘ (") ol — @)™+,
w=kt1 \ K

e =kt 3 - k)(:) onl@ — a1
nmk

ne=k+1

—kr > ( 1) oale — a0,

die Behsuptung gilt auch fiir ¥ + 1 und damit allgemein. Setzen wu: in (1) z=a,
80 erhalten wir f*(a) = k! ¢;, womit auch (8) bewiesen ist.
Beispiel. Fiir |z| < 1 ist
Ll
=3,

1—z =0

1 (] k! ® fm
(1—3) T U—apn =H.§.(k)w'

Setzen wir (8) in (8) ein, so erhalten wir die T'aylorsche Reshe

0 H(8)
fa) =2 o) E—af (z—a <) ()]
=0 nl
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Es gibt Funktionen, die in einer Umgebung eines Punktes beliebig oft stetig
differenzierbar, aber nicht analytisch sind. Dies gilt z. B. fiir die Funktion

0 fir z=0,
fo=1 ,
e ® fir 240
an der Stelle 0. Auf den Beweis dieser Behauptung wollen wir hier nicht eingehen.

Dieses Beispiel einer Funktion, die bei Null nicht in eine Taylorreihe entwickelt werden kann,
gab AuGUBTIN-Lovis CAUCHY 1829 in seinen ,,Legons sur le caloul différentiel”, Auf Cavomy
geht auch der Begriff ,,n.mlyt.inhe Funktion* zuriick, der allerdings erst durch WEIERSTRASS
weiter aufgeklirt wurde.

Nach dem Taylorschen Satz gilt fiir jede in U,(a) beliebig oft stehg differenzier-
bare Funktion f und fiir alle n € N

_ < @) f*1(a + 8z — a )) .~ _
Hzx) —E;—“ (x—a)+ 1) (x — a) (lz—a| <1).
Die Darstellung (9) der Funktion f als Taylorsche Reihe ist somit genau dann méglich,
‘wenn das Restglied fiir |z — a| < r gegen 0 strebt, d. h. wenn

hW(x—a':O 1z — ol <1) (10)

ist.
Wir geben noch ein weiteres Kriterium dafiir an, daB eine Funktion f an einer
Stelle a ihres Definitionsbereichs analytisch ist.

Satz 6. Eine Funktion [ ist an der Stelle a genau dann analytisch, wenn | in einer
Umgebung von a beliebig oft differenzierbar ist und wenn es positive reelle Zahlen K, r
gibt mit

[f¥@) < nlE*  (z—al <7). (11)

Beweis. Es sei f in a analytisch, d. h., es gelte (6). Wegen

lim sup m =L <oo
00

gibt es eine Schranke K, > 1 der Folge mit den Gliedern m , d. h,, esist |c,| < K,
Wir wihlen ein r > 0 mit ¢ := rK, < 1. Fiir alle z mit |z — a| < r folgt aus (7) die
Abschitzung
1)) < kIZ ( )Ko'r‘-*=le > ( )
=k
Aus dem obigen Beispiel folgt

1 K, \*
e < b B G s ()
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und (11) ist mit K = K3(1 — g)-3 erfiillt. Ist umgekehrt (11) erfiillt und [ — a| < r,
so folgt

M@;_a)» <Ko,

n!

und fiir r < K-1 ist (10) erfiillt. Damit gilt (9), und die Funktion f ist in a ana-
lytisch.

3.43. Verkniipfungen analytischer Funktionen

Fiir Funktionen, die, durch Verkniipfungen analytischer Funktionen entstehen, kon-
nen #hnliche Sitze wie fiir die Stetigkeit von verkniipften Funktionen bewiesen
werden.

Satz 1. Sind die Funkiionen f, g an der Stelle a analytisch, so sind die Funktionen
A (A€ Rbzw. A€ C), f L g, f - g-an der Stelle a analytisch.

Beweis. In einer Umgebung von a sei
fo =S ow—ar, g =3 de—ar. M

Hieraus ersehen wir sofort, daB Af und f 4- g an der Stelle a analytisch sind. Die
Behauptung fiir das Produkt f - g folgt aus dem Satz iiber die Multiplikation absolut
konvergenter Reihen. Hiernach ist

) k
@) - @) =2(2c,dH) (@ —aF, @
¥=0 \j=0

womit die Behauptung bewiesen ist.
Satz 2. Ist die Funktion g ¢n a und die Funktion b in g(a) lytisch, so st die
zusamniengeselzte Funkiion h o g sn a analytisch.

Beweis. Fiir jede in a analytische Funktion f, deren Pot i twicklung
in a die Koeffizienten ¢, besitzt, setzen wir

f*=): Z' lexl (= — a)F. @)

Die Pot. il twicklungen von f und f* haben denselben Konvergenzradius R.
Fiir zwei in a analytische Funktionen f, g mit den Pot. ih twicklurgen (1) sei

f(z) - gla) = E"’ az —a)f, [Hz)g*e)= Z az — a)f.
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Wegen '(2) und (3) ist

@] =

[ E
E"ﬂHI = 3 lejl - ldegl = e 4
=0 =0
Es sei nun ¢ in @ und 4 in g(a) analytisch, d. b., es sei

o) = % d@—ar, ko= g bz — g@)) ®

wobei diese Reihen den von O verschied Konvergenzradius R, bzw. R, besitzen
moégen. Wegen g(a) = d, ist

oo 0 k
Hote) = Z (e - oy ®
Wir setzen
9o(2) = g(@) — dy = g hE—af, grE)i= g': ldal (2 — a)*-

Nach Satz 1 gind mit g,, go* auch alle k-ten Potenzen von gy, go* analytisch in @, d. h.,
es ist '
L 00
(o) = S dnle —a)*,  (pe*@) = 3 dunle — )" )
R N

Aus (4) folgt durch vollstindige Induktion stets |di| < . Setzen wir die erste
Gleichung (7) in (6) ein, so erhalten wir

hg(e) = g"o b gd..w —ay

=b+3 3 bl — o
k=] pm=1

Konnen wir zeigen, daB der groBe Umordnungssatz angewendet werden darf, so
folgt

h(g(a:)) =by +§ (é‘lbﬁh> (x — a)*,

und die Behauptung ist bewiesen.

Wegen der Stetigkeit von go* in a und go*(@) =0 gibt es ein positives ¢
mit |go*(z)| < Ry fiir |z —a| <e. Fiir alle z mit [z —a|] <& setzen wir
2:=a+ |xr—a| und 2':=g*@2’) +dp. Wegen |2’ —a|=2' —a = |z —a| ist
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dann |2 — dy| = |g*(z')] < R,, und fiir alle p mit p = 1 folgt

Z Z [edin(z — a)*| = Z Z’ O] Opw |2 — al*

k=1

= Z (Bl 2"”("’ —a)
k=1 =1
p
=3 |bl (g*@=")
=

S5 bl (& — do)*
=)
=h*z') < o0,
der groBe Umordnungssatz darf angewendet werden, und Satz 2 ist bewiesen.
Als Folgerung aus Satz 2 erhalten wir den
Satz 3. Ist f eine im Punkt a analytische Funktion mit f(a) < 0, so ist die Funktion
% sm Punkt a analytisch.
Beweis. Es sei
f@) = Z; oz —a)®
und ¢, 3= 0. Setzen wir

g(x) = —c_ Zo,.(a: —a), @) i=— __Zz-

0 A=l =0
80 ist g im Punkt a und 4 im Punkt 0 analytisch, und es ist
1 _ 1 1 1
f(”) e 1—gl@) o
Die Behauptung folgt nun aus Satz 2.

In Verbindung mit Satz 1 ergibt sich aus Satz 3, daB der Quotient zweier in a
analytischer Funktionen £, g mit g(a) = O wieder eine in a analytische Funktion ist.

Beispiel. Die Funktion

sin z n
tan z = —— =k
z o (EGR,z#bz+2, ganz)
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ist wegen 2.5.1. (5), (6) und cos 0 = 1 im Punkt O analytisch, d. h., es gibt Koeffi-
zienten a; und ein r > 0 mit .

tan z = ay + @,z + -+ + agz” + -+ (l=] <1).
Da die Tangensfunktion ungerade ist, gilt @y = O fiir alle natiirlichen Zahlen k.
Die Koeffizienten @y ermitteln wir mit Hilfe der Cauchyschen Produktreihe
aus dem Ansatz cos z tan 2 = sin z, d. h. aus

2 3
1—= = — ... ) =T e e
( Tt )(a.x+a.x‘+¢;z“+ y=z—ort5r—t
durch Koeffizientenvergleich. Fiir die Koeffizienten a,, a, a5 ergeben sich die Glei-
chungen

Ead

1 1
a % &

=1, —_———— —_—— —_——,
& Y 3 BT T u T

ausdenena, =1, a, =%, Gy = 12—5 folgt. Die Pot: ihenentwicklung der Tang,

funktion im Punkt 0 beginnt somit mit den Gliedern
2t
tanz = ZiZE L.
nz x+3+15+

Eine explizite Formel zur Berechnung der Koeffizienten ag., kann mit Hilfe der
sogenannten Bernoullischen Zahlen angegeben werden.

Die Entwicklung Tangensfunktion findet sich erstmals 1671 bei GREGORY, die Sinus-,
Koeinus- und Exp ialreihe sind eine Entdeckung NEwTONS, wenn ihre systematische Dar-
stellung auch erst durch EvLEr erfolgte.

3.44.  Aufgaben

1. Man bestimme die Eonvergenzradien der folgenden Potenzreih
Imar, I 2B PR
=0 =1 B! n=0 7*
5 6. §(1+l)' -
a=0 »* n=1 n
2. Man bestimme den Konvergenzradius der Potenzreihe 3* 6,z®, wenn
=1
2F fir n=2k
“““{3' far k1 END
1
a,,={7 far n =2k (& eN)
Elnk far n=2k+1



3. Man entwiokle die folgenden Funkti nach P von z:

f(z) =sinz ocos z, g(z) = :.+2 h(z)=-:-;—:.

4. Es sei { eine fir |z| < r analytische Funktion und E’ cyz® die Potenzreihenentwicklung von f

-0
imPunktO.Istfeinogersdmekﬁon,d&nngﬂt'c,H,,=0 (k € N), und ist / eine ungerade
Funktion, dann gilt ¢y = 0 (k € N).

1
5. Man besti die Punk in der die k lexe Funktion f(z) = e ¥ analytisch ist.

3.5.  Anwendingen des Banachschen Fixpunktsatzes
in der Differentialrechnung

3.5.1. Fixpunkte differenzierbarer Funktionen

Nach den Betrachtungen in 2.4.5. heiBt eine Abbildung f eines Intervu.lls I in sich
kontrahierend, wenn
fe) — @) Sglon—zl  (@z:el) 0
ist, wobei 0 < ¢ < 1 gilt. Fiir eine differenzierbare Funktion f gibt es nach dem
Mittelwertsatz zu z,, z, ein ¢ mit
fl@y) — f(@s) = F(€) (@1 — 7).
Gilt also |f'(z)] < ¢ < 1fiir z € I, so ist die Abbildung f kontrahierend, und aus dem
Satz in 2.4.5. folgt der
Satz. Jede tn esnem abgcochl«mem Intervall I differenzierbare Funktion f, die den
Bedingungen
feyel (zel), (2
f@l=g<1 (@el) (3)
geniigt, besitzt genau esnen Fizpunkt in I.
Beispiel. Es sei 0 < b < 1, und  sei eine positive natiirliche Zahl. Wir setzen
& —b
. 4
% 4)

Es ist f(z) = z genau dann, wenn z* = b ist. Falls f einen Fixpunkt besitzt, haben
wir damit zugleich einen neuen Beweis fiir die Existenz der k-ten Wurzel und ein
Verfahren zu ihrer numerischen Berechnung gefunden.

f@) =z —
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Wir wihlen eine positive reelle Zahl ¢ mit
0<ct<b. (8)
Wir konnen z. B. ¢ = b setzen. Firc <z < 1 ist
0Sf@)=1—PT<s1—c1<1,
und die Abbildung f ist im Intervall I = ¢, 1] kontrahierend mit dem Kontraktions-
faktor
g=1—c1. (6)
Es ist f(z) < 2 bzw. f(z) = = genau dann, wenn z* = b bzw. 2* < b ist. Es folgt
f1) =1, fe) 2 ¢ und
f@) —ec=f@z)—fle)=(z—e)f(t) 20,
1—f@zf)—fe)=01—2)fE) =0,
d.h.,esist ¢ < f(z) < 1-(z € I), und f bildet das Intervall I in sich ab. Damit besitzt
1 genau einen Fixpunkt in I. Wihlen wir eine beliebige reelle Zahl a, mit ¢ < @ < 1,
so konvergiert die- durch

E_b
" (€N )

definierte Folge gegen die k-te Wurzel aus b, und die Abschiitzungsformeln 2.4.5.
(5), (8) ermoglichen eine Berechnung der k-ten Wurzel mit jeder gewiinschten Ge-
nauigkeit. Fiir nahe bei 1 gelegene Zahlen b konvergiert die Folge sehr gut. Es
empfiehlt sich daher, zunichst eine Zahl d zu suchen, fiir die 1 — d*b eine sebr
kleine positive Zahl ist, und die k-te Wurzel von b’ = d*b zu ermitteln. Es ist dann

"
B-lE
d
Zur Berechnung von }/2_ setzen wir z. B. b": = 2. (0,7)? = 0,98 und
f(z)=z—”'—_2(ﬂ =o,49+% @ —2).

Mit ay = 1 erhalten wir die folgende Tabelle:

. = 2-a  b="@2—0) an=040+b
1] 0,6 1 0,6 0,99
1 0,495 1,01 0,49995 0,98995

2 0,494975 1,01006 0,49994956 0,9899495
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Gemi5B (5) kénnen wir ¢ = 0,98 wihlen. Denn ist ¢ = 1 — ¢ = 0,02 und

|yoe8 a,|s—-—|a, &) = 92 5.107 < 1,02- 10,

1,02 °
-2 10 < 1,6 109,
o= 7 <

V2 a 1,4142136 (4 2 - 10-9).

3.5.2. Das Newtonsche Niherungsverfahren

Im Beweis des Satzes von Borzano (2.4.2., Satz 2) haben wir ein sehr einfaches

Verfahren zur Ermittlung einer Nullstelle unter der alleinigen Voraussetzung der

Stetxgkew der betrachteten Funktion kennengelernt. Unter stirkeren Voraus-
konnen tlich besser konvergierende Verfahren entwickelt werden.

Abb. 3.28

[;}) POS————

———d e
2 .
Q

Wir gehen von einer geometrischen Betrachtung aus. Hat die Funktion f.in der
Umgebung einer Nullstelle @ den in Abb. 3.28 dn.rgesul.lben Verlauf und ist z > a,
80 kdnnen wir zu z eine niher an der Nullstelle a liegende Zahl 2* ermitteln, indem
wir den Schnittpunkt der Tangente durch den Kurvenpunkt Pz, f(z)) mit der -
Achse bestimmen. Offensichtlich ist

l(x)

T —

s =@

und, wenn wir die von z abhiingige Zahl z* mit ¢(z) bezeichnen,
f(x)
-, (0]
@)
Es ist ¢(z) = z genau dann, wenn z eine Nullstelle der Funktion f ist. Damit haben
wir einen Zusa hang zum Banachschen Fixpunktsatz aufgedeckt.

plz) ==z
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Satz 1. Es ses | eine zweimal stetig differenzierbare Funktion, und es gebe ein abge-
schlossenes Intervall I mit I & D({) derart, daf

f@) +0  @el), @
f=)
——clI I), 3
it ®<D @
Iar@l 2,1 @er @

re)p

M.Dambu“dlgmueimNMaimln&cmuL Wihlen wir die Zahl a, aus I
beliebig und setzen

cma, —J@T N 5
Gty 1= Gy F@a) meN), (8)
80 gilt a, —> a filr n — oo.

Beweis. Fiir die durch (1) definierte Funktion ¢ gilt

(rep -t te _f@ie
(Fap rep”’
und wegen (3), (4) erfiillt ¢ die Voraussetzungen des Satzes aus 3.5.1. Hieraus folgen
ittelbar die Behaupt

Die Berechnung der Nullstelle mit Hilfe der durch (5) definierten Folge wird als
Newtonsches Niherungsverfahren bezeichnet. Dieses Verfahren konvergiert sehr gut,
doch ist der Nachweis, da8 alle Voraussetzungen erfiillt sind, oft recht schwierig.
In vielen Fillen fithrt der Ansatz (5) auch dann zum Ziel, wenn die Vorsussetzungen
(3), (4) nicht erfiillt sind.

Es geniigt zum Beispiel die Kenntnis eines Intervalls I = [[b, cJ, in dessen End-
punkten die Funktion f verschiedene Vorzeichen annimmt und in dessen Innerem die
beiden ersten Ableitungen der Funktion nicht verschwinden. Die Funktion ist dann
in diesem Intervall streng monoton und von unten konkav bzw. konvex. Wir kénnen
uns auf den Fall f'(z), f'(z) > 0 fiir = € I beschriinken. Anderenfall tzen wir f
durch die Funktion g gemaB der folgenden Tabelle:

Py =1- ®

f@>0 f@ <0
f'@)>0 9(@) = f) 9(z) =f(—=)
f'@) <0 9(@) = —f(—2) 9(z) = —f(z)

Wegen f'(z) > 0 ist f(b) < 0 < f(c), und nach dem Satz von Borzano und wegen
der strengen Monotonie gibt es genau eine Nullstelle ¢ mit b < a < ¢ (Abb. 3.28).



Fira <z < cist

#2) — & = plo) — 9la) = (z — o) ¢'(E) = (z—a)"(‘,f(—’f')')‘f’ >0,
=)
z— (@) = @ >0,

d.h., aus a < z < ¢ folgt @ < @(z) < z. Setzen Wir ay:= ¢, Ge4y := @(ay) (n € N),
80 ist die Folge (a,) streng monoton fallend und (durch @) nach unten beschrinkt.
Sie besitzt daher einen Grenzwert a*, und wegen der Stetigkeit von g ist

a* =1lim gy = w(lim a-) = p(a*).
Lad J N->00
Folglich ist a* die gesuchte Nullstelle a.

Die Fehlerabschitzung enteprechend dem Banachschen Fixpunktsatz kann ein-
setzen, sobald die Voraussetzungen von Satz 1 erfiillt sind.

Beispiel. Es sei f(z) =z — cosz. Dann ist f(z) =1+ ginz, f'(z) =cosz,
10) = —1, f(%)=§ Fiir0§2<i2‘- ist f/(z) > 0, "(z) > 0, und die oben ge-
nannten Voraussetzungen sind erfiillt. Wenn wir mit einem beliebigen Startwert a,
mit 0 < g < % beginnen, konvergiert die durch (5) definierte Folge gegen eine

Naullstelle von f, d. h. gegen eine Losung der Gleichung cos z = z. Es empfiehlt sich
natiirlich — etwa mit Hilfe einer Logarithmentafel — einen méglichst genauen
Niherungswert als Startwert durch Probieren zu ermitteln.

Auf Einzelheiten in der ischen Auswertung des Verfahrens soll hier nicht
eingegangen werden. Dies geschieht im Rahmen des Lehrgangs Numerische Mathe-
matik. Wir behandeln nur noch kurz das sogenannte modifizierte Newtonverfahren.

/

/ %9 /"1 %

Abb. 3.29
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Es erméglicht eine Abschwichung der Voraussetzungen und eine einfachere Be-
rechnung der Niherungswerte, nimmt aber dafiir den Nachteil einer 1

Konvergenz in Kauf. Hierbei wird nicht fiir jeden Néherungswert die “Kurven-
tangente konstruiert. Entsprechend Abb. 3.29 ermitteln wir die Schnittpunkte der
z-Achse mit den zur Tangente im ersten Naherungswert a, parallelen Geraden durch

die za den Naherungswerten a, g den Kurvenpunkte. Setzen wir
f(as)
I Gy — €Ny, 7
= = ) meN) ™
80 ist entsprechend g trischen Deatung
fa) _,,(a)
Guty —

Satz 2. Es ses f eine in einem offenen Intervall I differenzierbare Funktion mst
1'(ao) = O fiir ein a, € I. Dann gibt es positive reelle Zahlen o, ¢ mit

Il—’,"—"’ Sg<1l (z—afsa). ®
f'(@0)
Ist
@)l S a(1 — g) If @o)], ®)

80 besitzt | genau eine Nullstelle a mst |a — ay| < «, und 2war st a der Grenzwert der
durch (7) definserten Folge.

Beweis. Es sei

@)
1'(@0)

Pz) =2z —

Dann ist
f'(@)
1 1@ —ay S ),
IT7%) =g (B—a s«

und g ist kontrahierend. Wegen (9) ist

l¢'@) =

lp@) — ao < lp(@) — @lao)l + lp(@o) — adl
fao)
f'(@o)
und ¢ bildet das Intervall (@ — «, @y + «] in sich ab. Hieraus folgen die Behaup-
tungen.

=qlz—al+ Sgtall—g =a,
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3.5.3. Implizit definierte Funktionen

In vielen Anwendungen der Analysis sind Funktionen y = f(z) nicht explizit definiert,
sondern durch Bedingungen der Form F(z, y) = ¢ charakterisiert, wobei F eine in
einem Gebiet G des Raumes R; definierte reellwertige Funktion ist. Wir untersuchen
die Frage, welche Voraussetzungen hinreichend dafiir sind, da die Gleichung
F(z, y) = c fiir vorgegeb « nach y aufgeldst werden kann, so daB y in Abhiingig-
kolt von z, also als F\mktxon y = f(z) von einer Variablen z erscheint. Dies wird im

inen nicht in expliziter Form gelingen. So ist es z. B. sinnlos zu versuchen, die
Glewhung

Z3sin (zy) + =Y —In(z + y) =
explizit nach y ,,aufzuldeen‘‘. Mit Hilfe des B&nachschen Fixpunktsatm werden wir

aber eine zum modifizierten Newtonverfahren Methode entwickeln, die eine
Berech der Funkti rte der ,,aufgelﬁsten“ Glelchnng y= /(z) mit jeder
gewii hten G igkeit ermdglicht. Zuni ii wir v , daB wir

iiberhaupt einen Punkt (@, b) mit F(a, b) = ¢ finden konnen. Ferner werden sich
die Differenzierbarkeit der Funktion F und die Bedingung 8,F(a, b) 4= 0 als be-
deutungsvoll erweisen. SchlieBlich miissen wir den Definitionsbereich der Funktion
F auf eine Umgebung des Punktes (a, b) einschrinken, damit es zu vorgegebenem
« nicht mehrere Losungen y der Gleichung F(z, y) == ¢ gibt.

Satz 1. Es ses F eine in esnem Gebiet G des Raumes R, stetig differenzierbare reell-
wertige Funktion. Gilt

F(a,b)=c, 0,F(a,b) + 0, 1)
80 gibt es positive reelle Zahlen «, B derart, dap die Qleichung
F(z,y) =c (2)

fiir vorgegebenes z mit |z — a| < « genau eine Lisung y = f(x) mit |y — b < B
besitzt, und die so definierte Funktion f ist stetsg differenzierbar.

Beweis. Wir setzen

Dz, y) =y — F—;}% ((z,9) € G). 3)

Es ist ®(z, y) = y genau dann, wenn F(z, y) = ¢ ist, womit ein erster Zusammenhang unseres
Problems mit dem Fixpunktsatz aufgedeckt ist. Ist

Ryi={@9):le—alSahAly—bsh @
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ein in @ enthalt Rechtecksbereich, so gibt es nach dem Mittelwertsatz stets ein % mit
(z,7) € B,y und

Bz, 9)) — Pz, 90) =91 — ¥ — W

=0 (1 3red)

Wegen der Stetigkeit von 9,F kdnnen wir «, § und eine poeitive reelle Zahl g so wiihlen, da8
ll _ %F(z,y)
9,F(a, b)
ist. Hieraus folgt offensiohtlich
QF(x,¥)+0 ((z,9) ¢R,p), (6)
9@ 9) — Pl Selni—wl (@ 9), (2. 90) € Byy)- Y]
‘Weiterhin ist
[Pz, y) — b < |B(z, y) — P(z, b)| + [P(=, B) — b]
F(z,0) — ¢
9,F(a, b)
‘Wegen der Stetigkeit von F kdnnen wir « so klein withlen, da8
|F(z,5) — F(a,b)| < (1 — g) |5sF(a,B)] (Iz —al)<a) 8)
ist. Dann ist
P, y) —b=gf+ Bl —9) 8.
Wiihlen wir eine feste Zahl 2 mit [z — a| < & und setzen g(y) := P(z, y), 8o gilt |p{y) — b| < &

sowie

lpln) — ow)| S ¢ lyy — wil
fér |y — b, [y, — b, lys — b| = &, und p erfillt die V Es gibt
daher genau eine — von der z nnno.hutfutgowihltenhhlz.bhinm mllehhll(z) mit
#/(@) = 7, Bz, f(z) = , d. h. mit

Sg<1  (@yeRy) ®)

Sqly—b +

Flz @) = F@b) (= — ol Sm,|f@) — b < B). ®
Setzen wir

BE)=b, ) = fa) - TSl e, “o
8o gilt

@) =limfy@ (z—alSa) an
Die a-priori-Abschiitzung lautet in Fall, wenn wir (8) berticksichtigen,

~ _ ¢ |F@=b—c
i) — il s 15 1) — ol = 11 | S

@) — @) S B  (z—al=a). (12)
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Hieraus entnehmen wir, da8 die Folge (f,) im Intervall {z: |z — a| < &} gleichmiBig konvergent
und die Grenzfunktion f in diesem Intervall stetig ist.
Bisher haben wir beim Beweis nur die Existenz und Stetigkeit von 9,F

Co

Es
existiere nun auch 3,F, und 3, F sei in @ stetig. Dann ist F in @ stetig differenzierbar. Fﬁ.rlz —al,
Iz, —a|Saist

F(zy, f(z))) — Flz, (z) =¢ — e =0,

und nach dem Mittelwertsatz 3.3.4. (4) gibt ee einen auf der Verbindungsstrecke von (z, f(z)),
(2y, /(z,)) liegenden Punkt (£, ) mit

(21 — 2) 3,F (&, 1) + ({(z)) — /(2)) 2 F (&, m) =

f@) — =) _ _ aF¢ )
Hh—z T aFE )’
wobei wir (6) beachtet haben. Fir , - z gilt § — z, und wegen der Stetigkeit von { folgt weiter-
hin f(z,) - {(z), n — f(z). Somit ist
8117!4:, I(z)! .
1@ = = 5 ¥ @)’ 3)
und unser Satz ist vollstindig bewiesen.

Beispiel. Es seia,b > 0 und

2
F<z,y)=;;+%:- (z,y € R)

und ¢ = 1. Wegen

0.F(z,, =2-“'-ll
2F (2o, ¥o) M

sind die Voraussetzungen von Satz 1 (mit z,, y, statt a, d) fiir alle z,, y, mit y, > 0
und

Z! Yo*
20 4 0 g
a? + b
erfiillt (Abb. 3.11). Die Gleichung F(z, y) = 1 kann in einer Umgebung von (z,, %)
eindeutig nach y aufgeldst werden, und nach (13) ist
__0Fzy_ Bz

F@y) ey’
Dieses Ergebnis kénnen wir im vorliegenden Fall direkt nachpriifen.
Die Auflosung der Gleichung F(z, y) = 1 ergibt, wenn y > 0 ist,

!I=‘—I:“Va’—z’ (lz| = a),
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und fiir |z| < a ist

Emetzt man in den Voraussetzungen von Satz 1 die Forderung 9,F(a, b) + 0
du.rch 9,F(a, b) = 0, so kann die Gleichung F(z, y) = ¢ in analoger Weise in einem
------ ichend kleinen Rechtecksbereich eindeutig nach z aufgelost werden. Die Be-
dingung ,,0,F(a,b) 0 oder 3,F(a,b) + 0 ist dquivalent mit der Bedingung
,.grad F(a, b) %= (0, 0)“. Durch jeden Punkt (a, b), in dem der Gradient von F nicht
verschwindet, geht somit genau eine glatte Kurve C derart, daB in einer hinreichend
kleinen Umgebung von (a, b) die Aussagen (z, y) € C und F(z, y) = F(a, b) iquivalent

Abb. 3.30

sind. Man nennt die Menge aller Punkte (z, y) mit F(z, y) = ¢ die Niveaulinie der
Funktion (oder des ,,Skalarfeldes*) F mit dem ,,Niveau* ¢ = F(a, b). In Abb. 3.30

2 3
sind einige Niveaulinien der Funktion z = cx—’ + % eingezeichnet. Der (im Raum
a

R, liegende) Graph der Funktion z = F(z, y) ergibt sich, indem man in jedem Punkt
einer Niveaulinie das zugehérige Niveau in Richtung der z-Achse abtriigt. Auf Grund
dieser geometrischen Deutung heiBen die Niveaulinien auch Hékenlinien der ,,Fliche
z = F(z,y)"

Die Betrachtungen dieses Abschnitts ko inngemiB auf Funktionen von mehre-
ren Variablen iibertragen werden. Wir formulieren hier nur das Ergebnis fiir den Fall
einer in G S R, stetig differenzierbaren reellwertigen Funktion % = F(z,y,2)
von drei Variablen. Ist F(a,b,¢) = d, 3,F(a, b, ¢) + 0, so gibt es positive Zahlen
&, B, y derart, daB fiir alle z, y mit |z — a| < «, |y — b| < § genau eine reelle Zahl
z = f(z, y) mit |z — ¢| < y und F(z, y, z) = d existiert. Die so definierte Funktion f
ist stetig differenzierbar, und es ist

o, = — 2HmL /e 9)

0,F(z, 9, f(z, 9) "

oz, ) = — 2B e 9)

85F(z,y, fx,9))
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Analoge Aussagen gelten, wenn 9,F(a, b, c) + 0 bzw. 3,F(a, b, ¢) & 0 ist. Durch
jeden Punkt (a, b, ¢) € @ mit grad F(a, b, ¢) = (0, 0, 0) geht daher genau eine glatte
Fliiche F derart, daB die Aussagen (z, y, z) € F und F(z, y, z) = F(a, b, c) dquivalent
sind. Sie heiBt die zum Niveau F(a, b, ¢) gehdrende Niveaufliche.

Die Beweise all dieser Aussagen sind ganz analog wie oben zu fiihren.

Ist t(t) = (x(t), y(¢), 2(8)) (¢ € I) eine glatte Kurve, die ganz in der Niveaufliche
mit der Gleichung F(z, y,2) = ¢ liegt, so gilt F(r(t) =c (¢ € 1). Hieraus und sus
3.2.3. (8) folgt

0= ﬂ;ﬁ)l = grad F(x(t)) - £).

Als Tangentenvektor einer in der Niveaufliche verlaufenden Kurve liegt i(¢) in der
Tangentialebene dieser Fliche. Der Gradient steht daher stets auf der Niveaufliche
(genauer auf ihrer Tangentialebene) senkrecht.

3.5.4. Aufgaben

1. Man berechne ;’3- mit Hilfe des Beispiels in 3.5.1. auf vier Stellen hinter dem Komma.

2. Man zeichne die Niveaulinien der Funkti F(z,y)=%—%ﬁrc=lundc=2und
zeige, daB der Gradient in den zu z = 5 und z = 8 gehorenden Punkten auf den Niveaulinien
senkrecht steht.

3. Man zeige, daB die Bedingungen (5) und (8) fir die Funktion F(z,y) =¢* —4y — 2z — 2
(vgl. 1.3.5. (6)) mit a = —8, b =1, « = 0,005, § = 0,01, ¢ = 0,5 erfiillt sind, und berechne
die ersten Naherungswerte fiir die durch F(z, y) = F(a, b) implizit definierte Funktion y = f(z)
an der Stelle z = —5,005.




4. Integralrechnung

41.  Riemannscher Inhalt und Riemannsches Integral

41.1. Das Inhaltproblem

Eine klassische Problemstellung der Mathematik behandelt die Frage, in welcher
Weise man gewissen Punktmengen M der Ebene, z. B. Dreiecken, Rechtecken,
Kreisen usw., eine reelle Zahl u(M) als Inhalt zuordnen kann. Von anschaulichen
Vorstellungen ausgehend, wird man hierbei fordern, daB gewisse Bedingungen
erfiillt sind. Die folgenden Forderungen sind recht naheliegend.

1. Die Summe der Inhalte zweier durchschnittsfremder Mengen ist gleich dem
Inhalt ihrer Vereinigungsmenge (endliche Additivitit).

II. Kongruente Mengen haben den’gleichen Inhalt.
III. Das Einheitsquadrat hat den Inhalt 1.

Man kann zeigen, daB es moglich ist, jeder beschrinkten Menge der Ebene eine
reelle Zahl als Inhslt zuzuordnen, 80 daB diese Eigenschaften erfiillt sind.!) Die
Losung ist aber auBerordentlich ki rt. Wir werden uns daher damit begniigen,
ein méglichst umfassendes System von Teilmengen M der Ebene anzugeben, denen
ein Inhalt 4(M) mit den geforderten Eigenschaften zugeordnet werden kann. Die
im folgenden Abschnitt ausgefiihrte Konstruktion geht auf die Mathematiker
RIEMANN, JoEDAN und PEANO zuriick.?)

Wir skizzieren den Aufbau und formulieren die spiter benutzten Ergebnisse, so
daB Abschnitt 4.1.2., in dem die Beweise ausgefiihrt werden, auch ohne Gefahr fiir
das weitere Verstindnis iibergangen werden kann.

Wir konstruieren im Reum R, mit dem Halbierungsverfahren eine Folge von
Systemen £, (n = 0, 1, 2, ...), die aus Quadraten bestehen. Zum System £, gehéren

1) Das analoge Problem fiir den Raum ist dagegen nicht 15sbar.

1) Eine umfassendere, von HENgI-LoN anul (18'76— 1941) angegebene l;limng dle fir
die mod Mathematik von grundlegy tung ist, kd wir in dieser
nicht behandeln. Man vergleiche hierzu die historischen A kungen am Schlu8 von 4.1.3.
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alle Quadrate @ der Seitenlinge 1, deren Eckpunkte ganzzahlige Koordinaten haben.
Halbieren wir alle Kanten eines Quadrates @ aus ), 8o entstehen aus ihm 22 Qua-

drate mit der Kantenlinge %, deren Eckpunktskoordinaten in der Form 12'- (m ganz) V
dargestellt werden konnen. Entsprechend besteht £, aus allen Quadraten @ der
Kantenliinge 21’, deren Eckpunktkoordinaten dyadische Zahlen n-ter Ordnung sind,
d. h., die in der Form % mit ganzzahligem m dargestellt werden kénnen (Abb. 4.1).

5957’ 0eq,

Abb. 4.1

0 1 7]

2
22

Als elementargeometrischen Inhalt e, eines Quadrats Q aus ), bezeichnen wir die
Zahl
1 L ]

o= (2,) @€y, M
Es sei M eine beschrinkte Teilmenge des Raumes R,. Fiir jede natiirliche Zahl n
bestimmen wir die (stets endliche) Anzahl i,(M) bzw. a,(M) aller Quadrate @ aus
2, die ganz in M enthalten sind bzw. wenigstens einen Punkt mit M gemein haben
(Abb. 4.2). Multiplizieren wir diese Anzahl mit dem elementargeometrischen Inhalt
e, der Quadrate Q aus £,, so erhalten wir Niherungszahlen u,(M) bzw. fI,(M) fiir
den zu definierenden Inhalt. Die Zahlenfolgen mit den Gliedern u,(M) bzw. &,(M)
sind monoton wachsend bzw. fallend und (wegen u,(M) < f,(M)) beschrinkt. Sie
besitzen dsher Gn te u(M) baw. @(M), die als innerer baw. Guferer Inhalt der
beschriinkten Menge M bezeichnet werden. Die Menge M heiBt quadrierbar'), wenn
diese Grenzwerte iibereinstimmen. In diesem Fall setzen wir (M) := g(M) = p(M)
und nennen diese Zahl den Riemannschen oder Peano-Jordanschen Iuhall der Menge
M. Ist u(M) = 0, so heiBt M eine Menge vom Inhalt 0. Stets ist u(8) =

1) Diese Bezeichnung erinnert an das beriihmte Problem der Quadratur des Kreises,
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I\
M
N
A
j Abb. 4.2
/
L~
h(M)=8, g, (M) =30
Aus Inhaltsdefinition werden wir die folgenden Sitze herleiten.

Satz 1. Eine Punktmenge ist quadrierbar genau dann, wenn sie beschrinkt ist und
wenn shre Begrenzungspunkte eine Menge vom Inhalt O bilden.

So hat zum Beispiel die Peripherie eines Kreises den Flicheninhalt 0. Dasselbe
gilt fiir alle in der Elementargeometrie behandelten Figuren, d. h., alle diese Figuren
sind quadrierbar.

Satz 2. Sind die Mengen M, N quadrierbar, so sind auch thre Differenzmenge und
thy Durchschnitt quadrierbar.
Satz 3. Sind die Mengen M, N quadrierbar und durchschnittsfremd, so ist thre
Vereinigung quadrierbar, und es gilt
(M u N) = p(M) + ().

Satz 4. Ist die Menge M* kongruent zur quadrierbaren Menge M, so ist auch M*
quadrierbar, und es ist u(M*) = u(M).

Sind M, N beliebige quadrierbare Mengen, so folgt aus Satz 3 wegen M u N
=M v (N \ M) stets

#M uN) = pM) + p(N\ M).
Aus (M n N) u (N \\ M) = N folgt andererseits
#(M 0 N) + (N \ M) = u(N),

und Addition der letzten Gleichungen ergibt die fiir beliebige quadrierbare Mengen
M, N giiltige Formel

B 0 N) + p(M 0 N) = u(M) + p(N). @
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Sie ist haulich einleuchtend, denn der Durchschnitt der Mengen M, N wird

auf beiden Seiten doppelt g Eine ittelbare Folgerung von (2) ist die
Verallgemeinerung

#(M 0 N) = 02> u(M v N) = u(M) + p(N) ®
von Satz 3.

Aus M S N folgt u(N) = u(M) + u(N \ M). Daher gilt das Monotoniegesetz
M SN = u(M) < u(d).

Fiir den Inhalt eines Rechtecks
R=|z,y):ascsbrcsy<d

wird sich bei unserer Konstruktion entsprechend unseren elementargeometrischen
Kenntnissen das Produkt seiner Kantenlingen ergeben, d. h. u(R) = (b — a) (d — ¢).
Diese Formel bleibt auch fiir « = b oder ¢ = d giiltig, d. h., der Flicheninhalt einer
(achsenparallelen) Strecke bzw. eines Punktes ist gleich Null.

Bei unserer Definition des Inhalts sind wir von einer speziellen Folge von Systemen
£, ausgegangen. Die Aussage von Satz 4 ist gleichbedeutend damit, daB unsere In-
haltsdefinition bei Parallelverschiebungen, Drehungen und Spiegelungen dieses Netzes
zu den gleichen quadrierbaren Mengen und zum gleichen InhaltemaB fiihrt. Geht
die Punktmenge M* aus einer quadrierbaren Punktmenge M durch zentrische

Streckung mit dem (positiven) Faktor ¢ hervor, d. h., ist

M* = (tx, y): (=, y) € M), @

8o ist auch M* quadrierbar, und es ist
HM*) = Bu(H). ®
Alle hier skizzierten A ) ihelos auf den Raum R; bzw. R, oder ganz

allgemein auf den Raum R, ubertra.gen werden. An Stelle des Einheitsquadrates
tritt hierbei der p-dimensionale Einheitswiirfel {(zy,...,2p): 0= 2; S 1 (6 =1,...,p)},
und die Mengensysteme Q, bestehen aus allen p-di ionalen Wiirfeln @ deer,nten-
linge 2-*, deren Eckpunktskoordinaten dyadische Zahlen n-ter Ordnung sind. Der
elementargeometrische Inhalt e, eines solchen Wiirfels ist die p-te Potenz seiner
Kantenlinge, d. h., es ist

1
2o

Fiir den Inhalt eines Rechtecksbereichs

ey = €, =

(6)

R={@@y....z): s S S b; (i = 1,..., p)}
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mit a; < b; oder allgemeinera; < b; (¢ = 1, ..., p) werden wir die aus der Elementar-
geometrie bekannte Formel

HR) = (by — @) -+ (b, — ap) ]
gewinnen. Allgemeiner wird sich fiir den Zylinderbereich
MP = (@1, e0r Tp1) : @1, .00y Tp) € M AG S Ty S B) 8)

des Raumes R;y; mit der quadrierbaren ,,Grundfliche M (M — R;) und der Hohe
b — a die zu erwartende Formel

pPN(MP) = (b — a) u®(M) 9
ergeben, wobei der obere Index von u darauf hindeutet, daB es sich um Inhalts-
in verschied Ri (Rp+; bzw. R;) handelt.
Die Sétze 1 bis 4 bleiben bei der Ubertragung auf den p-dimensionalen Fall un-
veriindert giiltig.
Ist M quadrierbar, ¢ > 0 und
M* = {2y, ..., Zp): (@1, .-+, Tp) € M), (10)
8o ist ’
#(M* = vu(M). (11)

4.1.2.  Riemannscher Inhalt

Ent: hend den einfihrenden Erliuterungen in 4.1.1. bezeichnen m.r m:t D. odor genauer

D.") die Menge aller Wirfel des R, mit der Seitenlénge 2~*, deren Eck
Zahlen n-ter Ordnung sind. Ferner sei e, oder genauer e,,(’) durch 4.1.1. (6) definiert, so daB stete
e =2P- ey (1)

gilt. Fir jede beschrinkte Menge M des Raumes R, sei 1,(}) bzw. a,(¥) wie in 4.1.1. definiert,
und es sei

Bl M) =iy(M) ey,  [ip(M) = ap(H)e,. (2)
Du. ‘bei einer Halbierung der Kmtenll.nge ]ednr Wurfel in 2P Teilwiirfel mlegt wird und bei den
bzw. dub Wiirfel weitere bzw. einige entfallen kénnen,
gelten die Ungleichungen
2ig(M) S byur(M) S ag0y(M) < 2ay(H). @)
Aus (1) folgt, wenn wir (3) mit e,,, multiplizieren,
BalH) S paid(M) S Fun( M) < f10(H). 4)

Die Zahlenfolgen mit den Gliedern Ho(H) bzw. fI,(M) sind dahar konvergent.
Dies rechtfertigt die folgende
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Definition. Unter dem snneren bzw. duferen Inhalt einer beschrinkten Punktmenge M
des ischen R retehen wir die Zahl

(M) = p®(H) := lim p,(M)

bzw.
F(M) = g® (M) := lim g (M).
00

Die Menge heift guadrierbar, wenn pu(M) = ji(M) ist, und die Zahl
B(M) = pOXM) := p(M) = A(H)
heiBt in diesem Fall der (Riemannsche) Inhalt der Menge M.

Da wegen (4) stets 0= (M) < /i(M) gilt, ist jede Menge M, deren duBerer Inhalt 0 ist, quadrier-
bar. Ihr Inhalt ist 0, und insbesondere gilt u(8) = 0. Wir beweisen einen Hilfssatz.

Satz 1. Fiir alle beschrdnkten Mengen M, N gilt

M S N = p(M) < p(N) A B(H) < 5, (6)

MoN =82 uM) + pN) < p(MoN), ®

A(MuN) s g(M) + a(N), (7

AM) < p(M) + aBM), ) (8)
wobei BM die Menge der Begremzungopunkte von M bedeutet

Beweis. Aus M C N folgt stets
(M) S4u(N),  au(M) S ay(N).

Dabher gilt (5). Sind M, N durchschnittsfremd, so folgt aus @ ¢ 0, und @ & M.stets @n N = 9.
Dabher ist 1,(M) + $,(N) < t,(M u N), und es gilt (8). Far beliebige beschrinkte Mengen M, N
ist ay(M v N) < a,(M) + a,(N), woraus (7) folgt. Ist schlieBlich @ e Q, und @n M %+ &, so

enthilt @ der einen Beg gspunkt von M oder Q liegt im Innern von M, denn auf der
Verbindungsstrecke eines i und eines &u Punktes von M liegt stets ein Begrenzungs-
punkt von M.!) Daher ist

a(M) < a,(BH) + (M),

und (8) ist bewiesen.

Als Folgerung aus (5) und (7) ergibt sich, daB jede Teilmenge einer Menge vom Inhalt 0 bzw.
die Vereimgung von zwei Mengen vom Inhalt 0 wieder den Inhsalt 0 besitzt.

Satz 2. Jeder Rechtecksbereich des Ry, ist quadrierbar, und sein Inhalt ist gleich dem Produkt seiner
Kantenlingen.

Beweis. Wir betrachten zuerst den Fall p = 1. Es seien 4, b dyadische Zahlen n-ter Ordnung
mit ¢ < b und I = [(a,b], I’ = Ja, b[[. Dann ist i,(I) = 2(b — a) = a,(I"), folglich

pall) =b— 6 = £,

1) Man beweist dies mit Hilfe des Halbierungsverfahrens.
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und allgemeiner

I_‘Ml(l) =b—a=fgull) (keN).
Somit ist

B =b—a=pal),

falls a, b dyadische Zshlen sind. Sind a, b beliebige reelle Zahlen mit a < b, so gibt es fir alle
natiirlichen Zahlen n mit 2!~* < b — a dyadische Zahlen n-ter Ordnung a,, b, mit

o,-%<as%<b.§b<b.+%. ®
Dann ist

(b lSab]S )a. —ht ;‘—( 10)
and aus dem bereits Bewicsenen folgt

b — o 5 400D S Ao DS (0 + 35) = (& — 55)- an

Fiir n — oo gilt a, — a, b, —> b, und folglich ist [[a, ] quadrierbar, u([a, b]) b — a. Damit
utder&uinl'lllp=lbewmen

Der Beweis fir p > 1 verliuft ganz anslog. Mtnulgtzuent,dnldermmmlnhsltemabge
schloesenen bzw. der éuBere Inhalt eines offenen Rech
Zahlen sind, gleich dem Produkt der Kantenliingen ist. Men hat dazu nur die in (10), (ll) suf-
tretenden Intervalle durch die analog gebildeten abgeechlossenen bzw. offenen Rechtecks-
bereiche zu ersetzen. Damit ist Satz 2 bewiesen.

Aus ihm folgt, daB die Menge der Randpunkte eines Rechtecksbereichs den Inhalt 0 besitzt,
dlmnjedeemulnodnhlhndﬂhohenmomenmmhbemd\behoblgkkmﬂbhoem
schlieBen kann.
In Verschirfung von (8) gilt
Satz 3. Fir alle beschrinkien Mengen M ist

FPM) = EM) — p(M). (12

Beweis. Es sei R, die Vereinigungsmenge aller @ aus {,, deren
punkt von M enthﬁlt. Dann liegen alle Punkte von SM n R, auf den Réndern von endlich vielen
‘Wiirfeln, \md ea ist (R, n Ml) = 0. Ferner sei 8, die Verem.ig\mglmengo aller Q aus ., deren

einen B k von)l enthiilt. Far diese Wiirfel Q gilt @ n M + 9,

Inneres

aber nicht Q G M. Da.lwrmt
34(8y) + $5(H) S a,(H),
Aa(By) S fin(M) — I_‘a(x)°

Da jeder Punkt des Raumes in R, oder 3, enthalten ist, gilt
BM & (Byn M) u (8, n BM),

uand wegen (7) folgt
(M) S F(Ry n M) + F(S, n M)

= i#(8y n PM) < j(8,) S Fu(M) — pa(H).




4.1. Riemannscher Inhalt und Riemannsches Integral 113

Der Grenziibergang n — oo ergibt z(BM) < a(M) — u(M), und zusammen mit (8) erhalten wir
die Behauptung. ' B

Eine unmittelbare Folgerung ist Satz 1 aus 4.1.1.

Zum Beweis von 4.1.1., Satz 2, zeigen wir zuerst, daB stets S(M\ N) S SM u BN ist. Es sei
x ¢ M upN. Iaegtzm&uﬂmvonﬂodsr:mlnnemvonl\' 80 liegt & im AuBeren von
M\ N, Liegt aber & gleichzeitig im Innern von M und im AuBern von N, 80 liegt « im Innern von
MN\N. In beiden Fillen gilt @ ¢ (M \\N). Da weitere Fille nicht suftreten kdnnen, gilt’
B(M\N) S M upN. Sind M, N quadrierbar, so besitzt M u SN und damit S(M \ N) den
Inhalt 0, und M\ N ist quadrierbar. Wegen M n N = M\ (M \ N) ist auch M n N quadrier-
bar. Damit ist 4.1.1., Satz 2, bewiesen.

Sind M, N quadrierbar und durchschnittafremd, so folgt aus (8), (7) die Abschiitzung

#(M) + p(N) < p(M u N) < (M v N) < (M) + p(N),
womit auch 4.1,1., Satz 3, bewiesen ist.

Zum Beweis der Inhaltaformel 4.1.1. (9) fir Zylinderbereiche M, sei M,* bzw. M, die Ver-
exmgnngpmengenllerQan.(’)th nM + Dbzw. Q c M Dmnut(jl_ ," S Mo (M0
Da (M,),* und (M,*),b Vereini von R hen sind, die kqmo inneren
Punkte gemein haben, folgt aus Satfz 2, dnB

AP((M,)0) = b — a) uPUH,),  pP((H,00) = (b — a) uPAH,%)
ist. Daher gilt
(b — a) wPUM,) < pPOMY) < FPD(HL) < (b — o) uP(HLY),

und der Grenziibergang n — oo liefert die Behauptung 4.1.1. (8). Eine analoge Formel gilt fiir
Zvlinderbereiche beziiglich anderer Koordinatenach
JWir betrachten eine lineare Abbildung

?
g =.zlc“z, + ¢ ($=1,..,D7). (13)

Sie ordnet jedem Punkt & = (zy, ..., ;) des Raumes R, einen Bildpunkt &* = (z,*, .. - %%
dieses Raumes und damit )odar Tellmongo M von R, eine Bildmenge M* zu. Mit C boumhnon wir
die Determinante der Tranaf iz (cq) und bewei

Satz 4. Jede quadrierbare Menge M geht bei der Abbildung (13) in eine quadrierbare Menge M*
iber, und es st

w(M*) = [C| u(H). (14)
Beweis. Wir setzen zuerst voraus, da8 far alle  aus , (» ¢ N) die Behauptung
B(Q@*%) = 0| u(@) (15)

bereita bewiesen sei. Die Bildmenge M* einer jeden besohriinkten Menge M ist wieder beschrinkt.
Nehmen wir an, es sei u(M*) < |C| u(¥M). Nach Definition des inneren Inhslts gibt es dann ein n
mit

#(H*) < |C| pa(M) = |C| (M.
Die Zahl u,(M) ist der Inhalt einer Vereinigungsmenge R, von Wiirfeln @ ¢ Q,, (siche Abb. 4.2,
S. 108), und wegen (15) ist u(R,*) = |C| - u(R,). Aus R, S M folgt R,* S M*, iind wir gelangen
zum Widerspruch

1C] #(Ry) = p(Ry*) < p(M*) < [C| pa(M) = |C]| p(Ry).
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Somit ist stets u(M*) = |C| p(M). In analoger Weise fihren wir die Annahme z(M*) > (C| F(M)
zum Widerspruch und erhalten zusammenfassend

1C] u(M) < w(M*) < G(H*) < 10| 3(H).
Mit M ist daher auch M* quadrierbar, und es gilt (14).

Es bleibt somit (15) zu beweisen, was wir zunichst fiir spezielle Abbildungstypen durchfiihren.
Fir jede T'ranslation
t=z+e¢ (i=1,..,p) (16)

ist (cy) die Einheitsmatrix, und wegen C = 1 und Satz 2 ist (16) erfiillt.
Als niichstes betrachten wir im Spezialfall p = 2 die Scherung

#=z, =ty

in Richtung der y-Achse. Das Rechteck
R={z,y):0SzSaA0<y<b

geht hierbei in das Parallelogramm
RY = (2% y*"): 0S2*SaAOS y* —tz* < b}

={=zy):0Sz<aAtzsystz+ b

R*
b
R
HHHH
_é" ” Abb. 4.3
a
iber (Abb. 4.3). Die aus der EI bel Inhaltsgleichheit von R und R*

konnte an dieser Stelle ohne groBen Aufwand bewiesen werden, doch wird sie sich in 4.1.4. (Satz7)
zwanglos ergeben. Wegen der bereits bewiesenen Invarianz des Inhalts bei Translationen gilt
daher u(@*) = (Q) fir alle @ aus ,. Da diese Gleichung auch fiir die Spiegelung

=y, Y=z

an der Geraden mit der Gleichung y = z erfullt ist, gilt u(@*) = u(Q) auch fiir eine Scherung in
Richtung der z-Achse. Allgemeiner gilt die Gleichung »(Q*) = () wegen der Inhaltsformel fiir
Zylinderbereiche auch im Fall p = 2 fir die Seherungen

7+, fir i=r (r+3),
far s,

2 = n
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Die Transf i trix einer solchen Scherung ist eine sogenannte Additionsmalriz, und zwar
ist ¢,y = ¢, wiihrend alle El te der Hi di len gleioh 1 und die restlichen gleich 0 sind.
Die Determinante einer Additionsmatrix ist 1, 80 daB wiederum (15) erfallt ist.

Als letzten Spezialfall betrachten wir die Abbild
et =dg G=1,..0), (18)

bei der die i-te Seitenlinge eines jeden Wiirfels @ aus £, mit |d;| multipliziert wird, so daB
#(Q*) = ldy - d,,l p(Q) ist. Sind alle d; von 0 verschieden, 80 handelt s sich um eine Maﬂalaba
dnderung in den mit Richtungsumkehr. Die D i
Transformationsmatrix von (18) ist |d, .-+ dp|, und (15) gilt auch fiir diese Abbildung. Nach einem
Satz der linearen Algebra kann |edo quadratische Matrix (cy) mit der Determinante C als Produkt
von Additi i und einer Di lmatrix, deren Det i wiederum C ist, dar-
gmlltwexden ‘)DnoAbbﬂdnng(lS)kmdahor (in geeigneter Reihenfolge) durch Nacheinand:

ausfithrung einer Translation, einer Mameﬁndemng in den thsennchtungen und von Sche-
rungen erzeugt werden. Bei jedem Teilschritt gilt (15), wobei fiir Translationen und Scherungen
C = 1 zu setzen ist. Damit ist Satz 4 bewiesen.

Jede Kongruenztransformation liBt sich in der Form (13) mit orthogonaler Transf th
matrix d llen. Die D inante einer orthogonalen Matrix ist stets gleich + 1, und mit Satz'4
ist auch 4.1.1., Satz 4, bewi Fir die Abbildung z* = #z; (s = 1, ..., p) ist |C| = t?, und aus
(14) folgt 4.1.1. (11).

41.3. Riemannsches Integral

Die klassische Problemstellung der Integralrechnung besteht darin, fiir eine in einem
Intervall I = [a, ] beschriinkte Funktion f mit f(z) = 0 fiir 2 < 2 < b den Inhalt
der sog ten Ordinat

Iy ={xy):a=2Sbr0=y < f(z)) M
(der ,,Fliiche unter der Kurve y = f(z)“) zu berechnen (Abb. 4.4). Zur Lisung dieses
Problems betrachten wir etwas allgemeiner eine beliebige beschrinkte Funktion aus

Abb. 4.4

1) Vgl. BeeamEr-BELKNER, Einfihrung in die analytische Geometrie und lineare Algebra.
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R in R. Fiir jede Teilmenge M ihres Definitionsbereiches setzen wir
HM):=inf {f(z): z € M}, (2)
F(M) := sup (f(x): x € M} ®)

(Abb. 4.5). Der Definitionsbereich von f enthalte das Intervall I = [a,b]. Ein
Mengensystem 8 = (I}, Iy, ..., I} von abgeschlossenen Intervallen heiBe eine
Zerlegung des Intervalls I, wénn I die Vereinigung der Intervalle Iy, ..., Iy ist und

(™M) L(M)

Abb. 4.5

! M
wenn I; und J; fiir ¢ + j hochstens Randpunkte gemein haben. Eine solche Zerlegung
8 ist offensichtlich durch k 4 1 Punkte z,, z,, ..., Z; mit
a=z <y < <z=b
bestimmt, wobei I; = [#;, ;] zu setzen ist. Die Linge des Intervalls I ist gleich
der Summe der Intervallingen von I}, d. h., es ist
& [}
sl)=b—a=3 (2 —zm) =3 ply).
j=1 J=1

Die maximale Intervallinge d(3), d. h., die Zahl
d(8) = max {(u(l;):j=1,..., k)

heiBt der Durch der Zerlegung 3.
Fiir jede Zerlegung 3 besti wir eine Unt durch
) k
S, 3) =z;!(li) wl;) =.Z; ;) (=5 — =5-0) (4)
i= i=
und eine Obersumme durch
P k - k -
8(f, 8) = Z:/(Ii)ﬂ(lf) =z;/(11) (@ — Z4-1)- (®)
i= =
Dann ist
- k -
8(t, 8) — 8¢, 8) = 3 (T — fI)) wIp) Z 0. ®

=1
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Ist f nichtnegativ, so besitzen Unter- und Obersumme eine einfache geometrische
Bedeutung (Abb 4. 6) Die § den der Unt bzw. Ob sind die
Flicheninhalte von Rechtecken, die keine inneren Punkte gemein haben. Die Summe

Abb. 4.6

ﬂ-% X, Xz ‘j X‘ D-Xs

dieser Inhalte, also die Unter- bzw. Obersumme, ist der Flicheninhalt einer Punkt-
menge, die der Ordinatenmenge I ein- bzw. umbeschrieben ist. Hieraus folgt
8, 8) = ply) < B < 8(t, 3) (@) =0 fir z¢ 1). ™

Die weit Betracht sind zunéchst von der Inhaltslehre unab . Daher
ist die Voraumetzung f(z) = O'nicht erforderlich. Wegen f(I;) = (I) und /(I NSFD
firj=1,...,kist

k k
8(f, 8) =i_2" ) pily) 2 I(I);-le‘(m =[G —a).

Fiir die Ober gilt die ent, tzte Abschitzung. Daher ist stets

BEBEHE

®—a) fiD =8 B) < 8(1,8) = b —a) /(D). ®)

Eine Zerlegung 3’ heiBt eine Verfeinerung der Zerlegung 3, wenn jedes Intervall
der Zerlegung 8’ in einem Intervall der Zerlegung 3 enthalten ist.

Satz 1. Bei einer Verfeinerung einer Zerlegung wird die zugehdrige Untersumme
hichstens grofer, die zugehirige Obersumme hichstens kleiner.
Beweis. Es geniigt, den Fall zu betrachten, da8 nur ein Intervall I* aus der
Zerlegung 8 in die Teilintervalle I', I"’ zerlegt wird (Abb. 4.7). Wegen (8) ist
pI*) fUI*) = S(l, o, ry.

Da alle anderen S 1 in den Zerl unveriindert bleiben, wird
die Untersumme hochstens groBer Analog ‘verliuft der Beweis fiir Obersummen.

Es seien 8, 8" zwei beliebige Zerlegungen des Intervalls [(a, b]. Dann ist I' n I
fir I' € 8, I'" € B ein abgeschlossenes Intervall, eine Einermenge oder die leere
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wd

LMp) , Y gl
I I Abb. 4.7
‘ I *

Menge. Die Menge aller Intervalle I’ n I’ bildet wiederum eine Zerlegung 8 von
(a, b)), die Uberlagerung der Zerlegungen ', 8" (Abb. 4.8). Die Uberlagerung 8 von
8, 8" ist eine Verfeinerung von 3’ und von 8. Daher ist stets

8¢, 8) < 8¢, B) = 8¢, 8) = 8, 8",

d. h., eine beliebige Obersumme (Untersumme) ist eine obere (untere) Schranke fiir
eine beliebige Untersumme (Obersumme). Wir kdnnen hiernach die folgende Defi-
nition aussprechen. ’

7 + + —t +—
7
Sttt 4y ADb.4S

Definition 1. Es sei f eine auf [a,b] definierte und beschrinkte Funktion.
Dann heiBt die kleinste obere Schranke aller Untersummen das untere (Darbouzsche)
Integral, in Zeichen J(f; a,b), und die groBte untere Schranke aller Obersummen
das obere (Darbouzsche) Integral, in Zeichen J(f; @, b), von f in [a, b].

Nach dieser Definition ist

-!(I;a.b)=sgp§(l, 8), ©
j(f;a,b)=i§f§(l, 8), (10)

wobei 8 die Menge aller Zerlegungen des Intervalls [, 5] durchliuft. Wegen (8),
(9), (10) ist stets
8(t, 8) = J(f;a,b) < J(f;6,b) < 8(f, 8)- (11

Es gibt beschrinkte Funktionen, fiir die J(f; a, b) < J(f; a, b) ist.
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Beispiel 1. Esseia = 0,5 =1 und
1 fiir z rational,
fl@) = o
0 fiir z irrational.

Fiir jedes Teilintervall I von [0, 1] gilt f(I) = 0, f(I) = 1. Setzen wir diese Werte
fiir eine Zerlegung 3 in (4) bzw. (B) ein, so erhalten wir (f, 8) = 0 und

k
3¢, 8) ='g:‘ al;) = p((0,1]) =1.

Somit ist J(f; 0, 1) = 0, J(f; 0,1) = 1.

Die Klasse der Funktionen, fiir die das untere mit dem oberen Darbouxschen
Integral iibereinstimmt, erhilt einen besonderen Namen.

Definition 2. Eine Funktion f heiBt (im Riemannschen Sinn) iiber das Intervall
[(a, b] integrierbar, wenn sie im Intervall [(4,b] definiert und beschriinkt ist und
wenn jhr oberes und ihr unteres (Darbouxsches) Integral iibereinsti Dre Zahl
J(f; a, b) mit

J(f;a,b) = J(f;a,b) = J(f;a,b)

heiBt dann das (Riemannsche) Infegral oder auch das bestimmie (Riemannsche)
Integral der Funktion f iiber das Intervall [a, bJ.

Neben dieser auf RIEMANN zuriickgehenden Definition') haben zahlreiche andere
Mathematiker den Begriff des Integrals eingefiihrt. Die meisten dieser Definitionen
sind zwar etwas komplizierter als die hier gegebene, haben aber den Vorteil, da8 die
Klasse der integrierbaren Funktionen umfassender ist. Fiir uns erweist sich die
Riemannsche Definition als ausreichend, zumal wir zeigen konnen, da8 alle in einem
Intervall (a, b)) stetigen Funktionen iiber dieses Intervall integrierbar sind.

Neben der Bezeichnung J(f; a, b) werden wir, wie in der mathematischen Literat
fast durchweg iiblich, die auf LErsN1z zuriickgehende Bezeichnung

b
f f(@) dz:= J(f; 0, b) (12)
verwenden. Sie entstand aus der Dmtellung

S(f, 8) =Z 1) Azy

fiir Untersummen (oder g fiir Ob ), und zwar ist das Summenzeichen
in das Zelchen f ein nes §, und die Differenzen 4z; = 2, — z;, sind in

das ,,Diff 1 dz iib

EEBENE

1) RieMANN hat allerdings den weiter unten behandelten Weg fiber die sogenannten Zwischen-
summen gewihlt.
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Das Zeichen f findet sich im Druck in den Acta Eruditorum 1688, war von LEIBNIZ aber in
Manuskripten schon seit 1675 verwendet worden.

In (12) ist z als gebundene Variable zu betrachten, die durch andere Variable ersetzt
werden kann. So ist z. B.

b b b
[1@ dz = [ fz) dz = [ ) de.

Die Zahl a bzw. b heiBt die untere bzw. obere Grenze des Integrals, und beide Zahlen
heiBen Integrationsgrenzen. Die Funktion f heiBit der Integrand.

Aus (7) ersehen wir, da die Ordinatenmenge I fiir jede im Riemannschen Sinne
iiber das Intervall I =((a, b]) integrierbare nichtnegative Funktion  quadrierbar
ist und daB ihr Integral gerade den Flicheninhalt angibt. Unter der genannten
Voraussetzung gilt also

[3
sl =[f@)dz  (f&)2 0 fir a<z=d). (13)

Wir beweisen das Ri he Integrabilititskriterium.
Satz 2. Die Funktion f ist iiber das Intervall [[a, b)) integrierbar genau dann, wenn
es zu jedem & > O eine Zerlegung 8 mit S(f, 3) — S(f, 8) < « gidt.

Beweis. Wegen (11) ist die Bedingung hinreichend fiir die Integrierbarkeit. Sei
umgekehrt f integrierbar. Zu vorgegebeném & > 0 gibt es nach Definition 1 eine Zer-
legung 8’ und eine Zerlegung 8’ mit

Jfat)—8¢:8) <5, BB —Jhab <.
Fiir die Uberlagerung 8 von 8 und 8" gilt
B¢, 8) — 8¢, 8) = 5, 8" — 8, 8) <5 +5 =,

und Satz 2 ist bewiesen.

Unser niichstes Ziel ist der Beweis der Integrierbarkeit einiger wichtiger Klassen
von Funktionen und die Bereitstellung von Methoden fiir die numerische Berechnung
ihrer Integrale. Zuniichst fiihren wir den Begriff der Zwischensumme S(f, 8, &)
ein. Ist 8 = (I, ..., I} eine Zerlegung, so bezeichnen wir mit £ eine auf der Menge
8 definierte Auswahifunktion, die jedem Intervall I; aus 8 ein Element £; dieses
Intervalls zuordnet, und setzen

k k
80, 8,6):= 2 1) wlI) = 3 16) (& — 22 (14)
= 1=
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(Abb. 4.9). Wegen f(I;) < f(§;) < f(I;) ist stets

8¢, B) = 8¢, 8,8 = 8¢, 3). (15)
Die angeniherte Berechnung von Integralen werden wir mit Hilfe von Zerlegwnga-
folgen durchfiihren. Wir nennen eine Folge von Zerl 8™ eine

Zerlegungsfolge, wenn die Folge ihrer Durchmesser d(ﬁ(’") eine Nullfolge 1s.t Dies ist
z. B. fiir die durch

B("); a= zn(") < 31(.) < & z-(l) =b

mit
o) b—a ;
2™ =a+4j (j=0,1,...,m)
1
|
L Abb.4.9
I ""‘ol x X, x X | bexg
& 2 3} L

definierte Zerlegungsfolge der Fall. Wir bezeichnen die so definierte Zerlegungsfolge
(8®) als die dquidistante Zerlegungsfolge, weil die Linge aller Intervalle aus der

— % jat.

Zerlegung 3™ gleich b
Eine Folge von Zwmchensummen S8(t, 8™, &) wir eine
Folge von Zwischensummen, wenn die Folge der Durchmesser d(8®) eine Nullfolge
ist.
Satz 3. Jede auf dem Intervall [(a, b)) monotone Funktion | st iiber das Intervall
[a, b)) tntegrierbar, und jede ausgezeichnete Folge von Zwischensummen konvergiert
gegen das Integral der Funktion iiber das Intervall [a, b].

nhmot,

Beweis. Sei f monoton wachsend. Wegen (8) gilt stets

- ko k
B¢, 8) — 8¢, 8) = d(@) X (1) — ) = d(B) 3 (fen) — fiar).
31, 8) — 8(t, 8) < d(8) (f6) — f(@)- (16)
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Fiir jede ausgezeichnete Zerlegungsfolge ist daher

lim (3(f, 8™) — 8(f, 8*)) =0, (17)
und aus (11), (15) folgt, wenn wir die zu 3™ gehorenden Auswahlfunktionen &®
beliebig withlen,

Jim B(f, §%) = lim §(, 3) = lim 5(/, 8, &) = f f(z) dz. (18)

Belsplel 2. Wir berechnen das Integml der monotonen Funktion f(z) = « iiber
em Intervall (s, b] mit Hilfe der iquidistanten Zerlegungsfolge, wobei wir als Zwi-
kte die rechten Endpunkte der Intervalle wihlen. Die Zwischensumme ist
dann glelch der Obersumme, und zwar ist
_ —a ® b—a b—a b —a\' >
8, 3™ = b—a i) — ;
) n,_zl(”n’) —na+ (0 3
—a\? —
=@®—a)a +(b__a) M=(b_a)(a+b ant 1),
n 2 2 n
lim 8(f, 3™) = (b — @) ¢+?;a' =Q—_a)_&-_}-_a)'
#—>00 " 2 2
b

b —a?
dz .

6
Wie dieses Beispiel zeigt, kann schon die Integration sehr einfacher Funktionen mit
Hilfe von Zwisch recht miih sein.
Satz 4. Jede auf einem beschrinkten abgeschlossenen Intervall stetige Funktion ist
dber dieses Intervall integrierbar.
Beweis. Es sei f auf dem Intervall [, b] stetig. Nach 2.4.3. ist f auf diesem Inter-
vall gleichmiiBig stetig. Zu vorgegeb & > 0 besti wir ein 4 > 0 mit

) — f)l < 5=

—a
fiir |2’ — 2"| < 8. Wihlen wir eine Zerlegung 8 = {I,, ..., I} von [a, b], deren Durch-
messer kleiner als 4 ist, so gilt f(I;) — f(I;) < b—s— (§ =1,..., k) und folglich
- —a

k
8(f, 8)— 8(t, 8) = 2 (Fy) — fdp) mdy)

2/‘(11) —(b—¢)=€,

und die Behauptung folgt aus dem Rlemumschen Integrabilititskriteriam.
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Unter der stirk Vi tzung der stetigen Differenzierbarkeit kann der
Beweis der Integrierbarkeit ohne den tiefliegenden Satz von der gleichmiiBigen Stetig-
keit mit den in der Schulmathematik bereitstehenden Hilfsmitteln gefiihrt werden.

Satz 5. Jede auf einem abgeschlossenen Intervall stetig differenzierbare Funktion ist
tiber dieses Intervall integrierbar, und jede ausgezeschnete Folge von Zwischensummen
konvergiert gegen das Integral der Funktion iiber das Intervall.

Beweis, Die Funktion f sei im Intervall (a, b)) stetig differenzierbar. In jedem ab-
geschlossenen Teilintervall I von [[a,b] gibt es Punkte 2, z” mit f(z') = f(I),
f(@'’) = f(I). Ist K das Maximum von |f'(z)| fir @ < z < b, so folgt aus dem Mittel-
wertsatz

) — ) =@ —2) &) S K|v — 2| < Ku(l).

Wegen (6) ist
k k
8, B) — 8¢, B) s{zl (Bu(I)) plIj) < Kd(B) : 2 uly,
8(f, 8) — 8(f, B) < Kd(B) b — a). (19)

Fiir jede ausgezeichnete Zerlegungsfolge gelten daher wiederum die Relationen (17),
(18), und Satz b ist bewiesen,

Mit Hilfe der Sitze 3 und 5 sowie einiger noch zu beweisender Eigenschaften des
bestimmten Integrals (vgl. 4.1.4.) sind wir prinzipiell in der Lage, fast alle in der
Schulmathematik auftretenden Integrale numerisch zu berechnen, wobei wir wegen
(16), (19) durch Wahl einer Zerlegung mit hinreichend klei Durch jede
vorgeschriebene Genauigkeit erreichen konnen. Mit dem Hauptsatz der Differential
und Integralrechnung werden wir allerdings Methoden entwickeln, die in vielen Fillen

110k einfanh. fatd

eine e Ber

Mit Ausnahme der Sitze 3 und 5 kénnen alle Begriffe und Siitze nahezu unverindert
auf den mehrdimensionalen Fall iibertragen werden. An die Stelle des Intervalls
[(a, b] tritt eine beliebige quadrierbare Menge M des Raumes R,, und f ist eine auf
M definierte beschrinkte reellwertige Funktion. An Stelle der Intervalle I; der
Zerlegung 3 treten paarweise punktfremde quadrierbare Teilmengen M; von M mit
M =M, u--- u M;. In den Unter- bzw. Obersummen

k
S(’- B) ='§ _/(MI) /‘(Ml)v
- k -
S(f, 8) ==£,; F(M;) u(M;)

liefern Summanden mit u(M;) = O keinen Beitrag, so daB wir solche Summanden
auch weglassen oder mehrfach aufzihlen konnen. Es spielt daher keine Rolle, ob
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wir die Begrenzungspunkte der quadrierbaren Mengen M;, die jo Mengen vom Inhalt
0 bilden, beriicksichtigen oder auch mehrfach auftreten lassen. Es geniigt zu for-
dern, daB die Mengen M keine inneren Punkte gemein haben. Die Uberlagerung 8
zweier Zerl 8', B” besteht aus allen nichtleeren Mengen M’'n M’ mit
Me3, M" 8" wobei Mepgen mit u4(M’'n M’"') =0 auch weggelassen werden
konnen.

Die Definition der Integrierbarkeit und des Integrals, das Riemannsche Inte-
grabilititekriterium sowie der Satz iiber die Integrierbarkeit von Funktionen, die
auf einer beschriinkten abgeschl Punktmenge stetig sind, bleiben unveriindert.
Das Integral einer beschrinkten Funktion iiber eine Menge vom Inhalt 0 ist stets 0.
Bezeichnungen fiir das Integral sind

Jit M) = [f@)de = [ fzy, ..., z) (@, oo, 7).
. M M

Im Fall p = 2 bzw. p = 3 nennt man dies auch ein ebenes Integral bzw. ein Raum-
sntegral.

/ - b
7 .
Moy \ ™\
201 M |\ M Abb. 4.10.
—

Ist stets f() 2 O (& = (z, ..., Z,)), 50 stellen die Summanden der Unter- bzw.
Obersumme Inhalte von Zylindern des Raumes R,., dar, deren Vereinigungsmenge der
Ordinatenmenge

M = (@1, > Tpy Tpr1): (@1, -+, Tp) € M A O S Zpry < f(24, -00, ) (20)

ein- bzw: umbeschrieben ist (Abb. 4.10). Hieraus folgt in Verallgemeinerung von (13)
die Inhaltsformel

wMy) = [f@)dz  (f@) =0 fir xeM). (e1)
M
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Im Fall p =1 ist der in diesem Anhang definierte Integralbegriff etwas allgemeiner,
als wir jhn im Hauptteil ehtwickelt haben. Wahrend wir anfiinglich nur abgeschlos-
sene Intervalle [a, ] betrachtet haben, sind jetzt fiir den Integrationsbereich be-
liebige quadrierbare Mengen M des Raumes R, zugelassen, und dies sind nicht
notwendig abgeschlossene Intervalle. Im Interesse der einfacheren Darstellung
wollen wir aber im Fall p =1 welt,erlnn nur abgeschlossene Intervalle betrachten

und nur in 4.1.8. eine kleine Verallg ang vor
Die Berech und Vi von ebenon Fliachensticken, Oberflichen und Volumina ist
ein Bediirfnis ]oder hlich of Man denke dabei etwa an die Vermessung

von Feldern, es muBte der I.nl.ult und die Oberfliche von Dammbauten festgestellt werden,
ebenso Inhalte von Handelswaren und vieles andere mehr. Das Problem der Inhaltsbestimmung
hatte 80 von jeher praktische wirtschaftliche Bedeutung. So sind auch aus emer Re:he der bo-
kannten #ltesten Kulturen (Agypun, Bobylon, China) golche notwendi
Auch eine der altesten hi iten zur Mathematik, die T' ng des Hrero-
zl.A'l':svcm(?hu:m(400—370vuZ)zm"'L dratur der sog t ismondchen, ist einem
solchen Problem, allerdings schon recht th ischer Art, gewid Obd:ese Quadratur auf den
Kreis ! inert werden kann, blieb eine oHenz Frage. Wahrscheinlich dachte man
zuerst daran, die atomistisohe Mothode des DEMOERIT (460—370 v. u. Z.), die sich bei einfachen
Kubaturen bewiihrt hatte, d Spiter hiebt sich die Wahl der Methoden bei
Quadraturen dahingehend, daB man obere und untere Schranken fiir den gesuchten Inhalt be-
stimmt und dann versucht, durch (inkorrekte) Verfahren zur Grenze diberzugehen.

D B8

Abb. 4.11
C

Mit der Schaffung einer neuen g isch Gr&B" durch E vor Kwmos
(4081 —3561 v. u. Z.) wurde ein Hilfsmittel gefund imale Betrachtu streng durch-
zufithren, indem man die ermittelten Ergebmase durch eine doppelte indirekte Methode bewiee.
Allerdings besaB die gneehmhe Mathematik keine Mlttal neue Ergebnisse auf Gebieten, die

honudpt' finitesi ung zugeord: wolden, Igorithmisch zu finden. Von den griechisch-
helleni Math ik dete b A auf genisle Weise die geo-
metrische Gnﬁlknlehre zur Ibnmg von Problomen, die in moderner Ausdrucksweise die Integra-
tion g ) Als Beispiel soll sein-Beweis fiir die mittels mecha-

nischer Hilfsiberlegungen gefundono Fliche des Parabelsegmentes angefiihrt werden (Abb. 4. 11).

Dem Segment iiber AC wird das Dreieck 4 BC einbeschrieben: H ha.lblert AC, HB ist paml.lel
zur Achse der Parabel. Durch AB und BC werden wieder Parabel auf sie
wird das Verfahren wieder angewendet, man erhilt die Dreiecke ADB und BEC. Aus den Eigen-
schaften der Parabel folgt, daB A ABC viermal so gro8 ist wie die Summe dieser beiden Dreiecke.
Nach dem niichsten Schnitt erhiilt man vier Dreiecke, deren Summe ein Viertel der Fliohen-
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inhalte der beiden vorigen ht, usw. Ang der Satz wiire-falsch, dann miBte der
Flicheninhalt des Seg; d grbﬂeroderkleinerall%dumtchmlnhalfuxvon Drei-
eck ABC sein. Sei zunéchst Segment > % Dreieck gesetzt. Bei dem Verfahren der einzu-

beschreibenden Dreiecke ,,wird es ","‘sein,...soweit.xvf hreiten, da8 die S der
iibriggebliebenen Restsegmente kleiner ist als die Differenz, um die das Segment die Fliche K
ubertrifft. Daraus wiirde folgen, daB das eingeschriebene Vieleck' (d.i. eine Partialsumme
A + B +--- + E),,groBer ist als die Fliiche K. Dlesutabernnmbglloh Denn da gewisse Flichen

vorhanden sind, die eine geometrische Reihe mit dem Quotxenton - bﬂden“ (die obige Konstruk-
tion) ,,..., 80 ist klar, daB die Summe aller dieser Flachen klemn ist Alﬁ— von der groBten.

Beides zusammen ergibt einen Widerspruch. (Nach: H. Wussmvg ,Mnchemzuk in der Antike*,
Leipzig 1962, . 134) -
Diese 8 hellenistischer Mathematik sind weit @ber tausend Jahre nicht dber-
troffen worden. Vielfach waren sio nioht bekannt bzw. wurden nicht verstanden. Die Neubegeg-
nung | mit dem antiken Wissen in dpr Rem.msmoe bringt auch neue Ergebnisse auf dem Gebiet
der heutigen Inhaltalehre und I hnung, so die V. he zur Kreisquadratar des
Nmouus Vo Cvu (1401 —1464). Es beginnt 1 neues I far g trisoh-infi
zu erwach mepors ViEra fithrt K.remqud.ramren unter Ver-
d infach Gnnznt ging durfh und steht kurz vor der Integralformel (in heutiger
Schreibweise)

£ ]
Jeintdt=1.
(1]

In der Folgozeit gelingen vielen Math a e Ouad and Ve .
mungen, meist mit hanischen Hilfsbetrachtu So besti LUCAVmo (1662— 1008)
den Inhalt der Kugelschicht, des Drehellipeoids “und dss emsolmhgsn Hyperbolmda GALILEO
Gavnrer, sus physikalischen Griinden stark an infinif M i veran-
Ia.Bto seinen Schiler Bomm'rm CAVALIERI (16081— 1647) za deuen Geometm indivisibili-

..."* (1635), die eine Z: g der b ui imalem Gebiet

darstellt und in der sich sinngemiB die Integralf

Seite niherte sich JoRANNES KrPLER (1571—1630) Pr bl der heutij Inhaltslehre und
I.ntagml.leohnu.ng,mdpmerdmh’ ichere) Grenziibergiinge die Inhslt, komphuetcmmmen-

P (s»Doliometrie* 1616) und meist zu niherungsweise riohtigen
Ergebni-an kam.

Das Frihbarock bringt insg geseh ]edoch nur omo Reihe von viohtlgen Emmlergeb-
nissen. Wie in der Geschichte der Ditf ung die neuen
Ideen erst durch die Ve he einer algebraischen F' Lisi ....,derM hematik (D;
FerMAT) und dureh Arbeiten, die g ische Infinitesimalb h inhalten (Hu¥aENs,
PasoaL, BARROW u. a.), wobei it himedische Strenge ang eb wird. Die Entwiokl
der Integralrechnung war in d.mur Panoda cngsﬁem mit dpr der Dlﬁmhdmhnung verk.nﬂpft.
Eine von der Diff ung g gr der L Irechnung ist das Ver-
dienst von BERNHARD R Einen wiohti A kt hierfar bildete eine Arbeit

von JRAX BaPTISTE JOSEPE DE FoURIER (1768 — 1330) ,.Théone mlthue dela ohnleur“ (1&07
1822). Hierin hatte FouRmzr die Darstellung ,,willki durch trij
Reihen . Die h i nhii genden Diskussi beeinfluBten wesentlich den
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Funktionsbegriff und den Grenzwertbegriff. Fir die Frage, wann eine ,,beliebige" Funktion
durch eine trigonometrische Reihe darstellbar ist, hatten AveusToN Lours Cavory im Jahre 1826
und Pgrxe Gustav LEsEuNE Dreiomier 1829 Teillssungen gegeben. In seiner Habilitations-
schrift ,,Uber die Darstellbarkeit einer Function durch eine tngonomeh'imhe Reihe'* von 1854
(verdffentlicht 1867) von BERNHARD RIEMANN werden die Di hen Bedi gen fir die
Entwickelbarkeit einer Funktion in eine Fourierreihe betrachtet. Eine dieser Bedingungen
forderte, daB die Funktion ,,integrabel* sein muB (und nicht unendlich viele Maxima und Minima.
hat). RIEMANN untersuchte diese Bedingungen und definierte den Begriff des bestimmten Inte-
grals und den Umfang seiner Giltigkeit neu, indem er festsetzt: ,,Es wird alsdann der Werth der
Summe

8 =0d,f(a + &,8) + 8uf(@; + &) + - + 8uf(Za_s + €ads)

von der Wahl der Intervalled und der Grd8en & abhiingen. Hat sie nun die Eigenschaft, wie auch:
6 und e gewiihlt werden méogen, sich einer festen Grenze 4 unendlich zu nihern, sobald simmt-
b

liche 8 unendlich klein werden, 8o heiBt dieser Werth [ f(z) dz."
a

Damit S, wenn simbliche & gegen Null gehen, konvergiert, ,,ist auBer der Endlichkeit der
Function f(z) noch erforderlich, daB die groBe der Intervalle, in welchen die Schwan-
kungen > o sind, was auch o sei, durch geelgnobe ‘Wahl von & beliebjg klein gemwhtwerdan
kann“. Das so eingefiihrte ,,Riemannsche Integral' wurde zum festen Bestandteil der sich in
der 2. Hiilfte des 19. Jahrhunderts auBerordentlich sohnell entwickelnden Theorie der Funktionen
reeller Variabler (KARL WEIERSTRASS, PAUL DU Bo1s-REYMOND (1831 —1889), HERMANN HaNKEL,
Utrisse Dt (1845—1918)) und war ebenso wie die Mengenlehre letztlich durch die Fourierreihen.

angeregt worden.

Der Begriff des bestimmten R\emnnschen Integrslsmthmtonuhdlter&lsdzrmtxbmeng
verwandte Begriff des Ri (oder P Jordanschen) Inhalts. Die Mathematik trat
derFuganwhdemMaB beliebiger** beschriinkter Punk erst um 1880 niher. Erste

Versuche in diese Richtung machten OTTO STOLZ (1842 —1805), Axer. Harwack (1851—1888)
und besonders GEORG CANTOR (1846—1918) in den Jahren 1884 —1885. Ihre MaBbestimmungen,
die im wesentlichen mit dem von uns eingefiihrten duB Inhalt dbereinsti litten dar-
unter, daB nur ausgesagt werden konnte, da8 das MaS der Ve igung zweier disjunkter Mengen.
niocht groBer ist als die Summe der MaBe der beiden Mengen (vgl 412, (7). Um dieso Schwierig-
keit zu vermeiden, fithrten GruserpE PraNo (1858—1932) in .,Apphomom geometrische del
calcolo infinitesimale** von 1887 und im glexchen Jahr CAMILLE JOI.DAN im ,,Coun d’Analyse*
neben dem Cantorschen Inhalt das,,innere‘‘ MaB einer beschrink ein und

Mengen meBbar oder quadrierbar, wenn Cantorsches und inneres Mn.B zusammentielen. Die Ver-
einigung von zwei disjunkten quadrierbaren Mengen 4, B hatte nun als Ma8 wirklich die Summe
der MaBe von 4 und B. In der weiteren Entwicklung erwies sich die Klasse der Mengen, denen
auf diese Art eine MaBzahl zugeordnet werden konnte, als zu eng. Weitere wesentliche Fort-
schritte errelchw 1898 Eun.n BoreL (1871 1956) in seinen ,,Legons sur la théorie des fonotions*‘.

Seine E; lsches MaB) stellten die Verbindung her zwischen gleich-
wertigen Arbeleen von REN-Louts BAIRE (18’14 1932) zur Funktionen- und MaBtheorie (Baire-
sche Mengen, B. hes MaB8), bild den A kt einer Reihe von Untersuchungen

zur Klassifikation der Punktmengen und bereiteten die Arbeltem von HENRI LEBESGUE (1875 bis
1941) vor. 1900 stellte LEBESGUE seine Arbeit, die erst 1902 unter dem Titel ,,Intégxsle, longucu.r,
aire' verdffentlicht wurde, fertig. In ibr ist die MaBtheorie von Punktm zu einem g
Abschluf ﬂ besguesches MaB) g ht Sle thilt suoh seine Integratwnst.heone, d:e eine
Verall ung der Ri Int 11t. Andere Verall

gehen “suf die Mathematiker Tnom JEAN STIELTIES (1856—1884), WiLLIaM HENBY Youxe
(1863 —1942) und andere zuriick.
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4.1.4. Eigenschaften Riemannscher Integrale
In den folgenden Sitzen stellen wir einige wichtige Eigenschaften Ri h
Integrale zusammen.

Satz 1. Ist K, eine untere und K, eine obere Schranke einer iiber das Intervall [a, b]
sntegrierbaren Funktion f, so ist

b
Kyb —a) < [ f(z) dz < Ky(b — a). (1)

Beweis. Die Behauptung folgt aus 4.1.3. (8). Eine unmittelbare Folgerung ist die
Formel

b
[edz=cb—a) @

fiir die Integration einer konstanten Funktion mit dem Funktionswert ¢, da wir
K, = Ky'=c in (1) setzen konnen. Im Fall ¢ > 0 haben wir damit die Formel fiir
den Rechtecksinhalt wiedergewonnen.

Das Integral ist beziiglich des Integranden homogen und additiv, d. h., es gilt

Satz 2. Fiir alle iiber das Intervall [(a, b)) integrierbaren Funktionen f, g und fiir alle
reellen Zahlen s, t 15t

b b b
[ (o) + tg(@)) de =5 [ f(z) dz + ¢ [ g(z) d=. @)
Beweis. Setzen wir A(z): = sf(z) + tg(x), so ist stets
siI) + tgy) < hiI)) < Ry < of (L)) + 45Ty,
woraus _
s8(t, 8) +t8(g, B) < S, 8) < 84, 8) < 48, B) + ¢85, B)
und damit die Behauptung folgt.

Satz 3. Es sei a < ¢ < b. Die Funktion | ist iiber das Intervall [(a, b)) genau dann
sntegrierbar, wenn f iiber die beiden Teilintervalle [a, c], [(c, b)) integrierbar ist, und es
gilt dann

b ¢ b
[H@) dz = [ f@) de + [ fiz) d= @

(Abb. 4.12).
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Beweis. Es sei I =[(a,b), I' =(a,¢), I" = [c, b]. Jede Vereinigung 8 von
Zerlegungen 8', 8" der Intervalle I', I ist eine Zerlegung von I, und es ist stets

8(f, 8) + 8, 8") = 8(, B) = J(f;a,b),

also auch
J(fia,e) +J(fie,b) s J(f;a,b).

Abb. 4.12

[ - TS
[} SrE——
[ S

Andererseits entsteht aus jeder Zerlegung 8 von I ‘durch Uberlagerung mit der
Zerlegung von I, die nur aus den Intervallen I’, I besteht, eine Zerlegung 8* von I,
die in zwei Zerlegungen 8’', 8'' von I', I'’ zerfallt. Daher ist stets

8(1, 8) < 8(/, 8" =38(f, 8" + 8(f, 8") = J(f;a,¢) + I (f; ¢, b),
also auch

J(fia,b) = J(f;a,0) +J(fi e, b).
Somit ist

J(f;a,b) =J(f;a,¢) + J(f; e, b). ®)
Eine analoge Gleichung gilt fiir die oberen Integrale, und folglich ist

(e, b) — (0,0l = [T (fia,0) — d(fs @, 0] + [T (fi 0, 0) — I (fi ¢, B)].

Die drei in eckigen Klammern stehenden Terme sind nichtnegativ. Die linke Seite
verschwindet genau dann, wenn die beiden rechts stehenden Summanden verschwin-
den. Damit ist die erste Behauptung des Satzes bewiesen. Die Behauptung (4) folgt
nun aus (5).

Fiir eine teilweise allgemeinere Fassung von Satz 3 fiihren wir die folgenden Be-
zeichnungen ein. Setzen wir

o a b
[f@dz:=0, [f@yde:=—[f)dz (a<b), (6)
L] b [
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so gilt
Satz 4. Ist die Funktion f iiber ein Intervall I integrierbar und gilt a, b, c € I, s0 18t

1 ¢ e
[t@)dz + [f@)dz + [ fz)dz =0. Y]
L] b <

Beweis. Die Behauptung folgt aus (6), wenn zwei der Zahlen a, b, ¢ iiberein-
stimmen. Anderenfalls kénnen wir wegen der Symmetrie der Formel (7) in a, b, ¢
voraussetzen, daB ¢ zwischen a und b liegt. Ist a < ¢ < b, so folgt die Behauptung
aus (6) und (4). Der Fall b < ¢ < @ kann durch Umbenennung auf diesen Fall
zuriickgefiihrt werden.

Satz 5. Sind die Funktionen f, g iiber das Intervall (a,b]) inlegrierbar und ist
fx) S g(x) fira <z < b, s0 st

1] 1
[ 1) dz < [ g(a) da. ®
e a
Sind die Funktionen f,g dariber hinaus stetig, so gilt das Gleichheitszeichen genau

dann, wenn f(z) = g(z) fiira < x < b ist.

Beweis. Nach Satz 2 ist die Funktion » mit k(z) = g(x) — f(z) integrierbar, und
wegen 0 < h(z) und Satz 1 ist

b b b
0= [(9@) — f(@)) de = [g(a) dz — [ f(=) de,

und (8) ist bewiesen.

Sind £, g sogar stetig und gibt es einen Punkt ¢ mit a < ¢ < b und f(c) < g(c),
so gibt es ein Intervall [a’,b') mit e <a'<c=<b <) und f(z) <glx) fir
a’ < z < V. Ist m das Minimum von g(z) — f(z) fira’ £ z < ¥, so ist m > 0 und

b b
[o@ — f=) dz 2 [ (@) — f(@)) d= 2 mp' — @) >0,
L] o

und Satz b ist bewiesen.

Satz 6. Ist die Funktion | iiber das Intervall [(a,b] integrierbar, so ist auch shr
Absolutbetrag, d. h. die Funktion f* mit f*(x) = |f(z)| (z € D(f)), @ber das Intervall
(a, b] integrierbar, und es ist

13 1
I [I@) dz|< [ f@)de  (@=<b). ©)



4.1. Riemannscher Inhalt und Riemannsches Integral 131

Beweis. Fiir alle z,, z, aus einem Intervall I S (a, b] gilt
114(=z2) — Pl = | f@)] — If@)] | < If(@) — Haa)l < F) — HI),
und es folgt
> — ) = fa) — 1D
Damit gilt stets
8¢+, 8) — 8(* 8) < 8¢, 3) — 8. B)-
Die Integrierbarkeit von f* folgt nun aus dem Riemannschen Integrabilititekri-
terium. Die Ungleichung (9) folgt aus (8), indem wir hierin f bzw. g durch 4 f bzw. f*
ersetzen.

Wir stellen einige weitere Zi hiinge zwischen der Integralrechnung und der
Inhaltalehre her. ’

[ S——
opem————————

Abb. 4.13

1

Satz 7. Ist I = ((a, b)), und sind {, g iiber das Intervall I inlegrierbare Funktionen
mit f(z) < g(z) fiir a < z < b, s0 hat die Punktmenge

Ip={=y:asz=brflz) =y =g), (10)

d. h. die von den Geraden x = a, z = b und von den Graphen der Funkiionen f und g
begrenzte Punkimenge (Abb. 4.13),«den Inhalt

b

wlp) = [ (g@ — f@) d=. an

Beweis. Es sei zuniichst f(z), g(z) = 0 fir a = 2 < b, Nach 4.1.3. (13) ist
1] 14
pld) = [g@)dz,  pld) = [ 1) dz.

Der Graph der Funktion f, den wir gemi8 (10) mit I/ bezeichnen konnen, enthiilt
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nur Randpunkte von I¢f und hat somit den Inhalt 0. Wegen I# = (I¢ \ Iy) u I/
und der Quadrierbarkeit der rechten Seite ist daher

slp) = pl$) — pldd),

was mit (11) gleichbedeutend ist.

Ist die Voraussetzung f(z), g(z) = O nicht erfiillt, so verschieben wir die Punkt-
menge I# nach oben, bis sie oberhalb der z-Achse liegt. Da hierbei Flicheninhalte
und die Differenz g(z) — f(x) invariant bleiben, gilt (11) auch in diesem Fall.

X3
g (x1,X2)

Lo

/
o ——
f (x,xp)

—

-1
-

N

/ )

Die Siitze dieses Abschnittes konnen wie folgt auf den p-dimensionslen Fall
iibertragen werden. An Stelle von (1) tritt die Abschitzung

Abb. 4.14

EpM) < [f@) de S (M) (K, S fl@) S K,), (12)
M
und die Formeln (2) bzw. (3) lauten
[ ¢ de = cu(), (13)
M
[ (of(@) + tg@) de = s [ f(z) d + ¢ [ g() dex. (14)
M M M

Der Graph einer integrierbaren Funktion f bildet wegen der Quadrierbarkeit von
M eine Menge vom (p + 1)-dimensionalen Inhalt 0, und in Verallgemeinerung von
(11) erhalten wir im Fall f(®) < g(®) (x € M) fiir den Normalbereich

Mp = (@1, ee) Tpy Tpt1): (1 2oy Tp) € M Af(Z1, oo, ) S Tpry S 9(T1y 0005 Zp)) (16)
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beziiglich der 2,;-Achse (Abb. 4.14) die Inhaltsformel

wMp) = [ (g(x) — fa)) do. (16)
M
Weiterhin gilt
[t@)dz < [g@ydz  (f@) <g@) fir zeH). (a7
M M

Sind £, g stetig und ist u(M) > 0, so gilt das Gleichheitszeichen genau dann, wenn
f(®) = g(x) fir alle 22 € M ist. An die Stelle von (4) tritt die Formel

[f@)dz = [f@)de + [fz)de (M =M,y My, u(My 0 M;) =0). (18)
M Ay My

SchlieBlich ist
f f(m)dml < [ if(@)) de. (19)
M M

Die Beweise dieser Behauptungen konnen fast unverindert iibernommen werden.

Bemerkung. Ist f eine komplexwertige, auf einer quadrierbaren Menge M des
Raumes R, definierte Funktion, deren Real- bzw. Imaginirteil f; bzw. f, iiber M
integrierbar ist, so setzt man

JH@) dz: = [h@) dz + i [ fy@) de. (20)
M M M

4.1.5. Mittelwertsitze der Integralrechnung

Wir wenden uns einem Mittelwertsatz zu, den wir zuniichst fiir eine nichtnegative
stetige Funktion geometrisch interpretieren (Abb. 4.16). Nach 4.1.3. (13) stellt das
Integral von f iiber das Intervall [@,b] den Inhalt der Ordinatenmenge Iy (vgl.

Abb. 4.15
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4.1.3. (1)) dar. Wir betrachten die Schar der Parallelen zur z-Achse, die die y-Achse
in Punkten # mit 7 > O schneiden. Jede solche Parallele besti ein Rechtecl
R, mit der Grundlinie > — a und der Hohe 7. Liegt 5 echt zwischen dem Minimum
und dem Maximum der Funktionswerte von f, so sind die Mengen R, \ I und
I \ R, nicht leer. Nach unseren anschaulichen Vorstellungen kénnen wir 5 so
wiihlen, daB diese beiden Differenzmengen gleichen Inhalt haben. Dann sind auch
R, und I/ inhaltsgleich. Da f stetig ist, schneldet die zu 7 gehdrende Parallele den
Gmphen von f in einem Kurvenpunkt, d isse wir mit ¢ bezeichnen. Dann
ist n = f(£), und das Produkt von f(£) und b — a, der Rechtecksinhalt, ist gleich dem
Fliicheninhalt von Iy, also gleich dem Integral der Funktion f iiber das Intervall

(a, b3.
Unabhiingig von haulichen Vorstellungen formulieren und beweisen wir den
Mittelwertsatz der Integralrechnung.

Satz 1. Ist | eine auf dem Intervall [(a, b)) stetige Funktion, so gibt es ein & mit
6 << b)und

b
[ 1@ dz=1t6) 6 — a). m

Beweis. Wir wihlen in 4.1.4., Satz 1, fiir K, bzw. K, das Minimum bzw. das
Msaximum von { auf dem Intervall (@, ). Die Zahl

b
" =b—1‘;f/(z)dz @

liegt dann wegen 4.1.4. (1) zwischen dem Minimum und dem Maximum von f, und
nach dem Zwischenwertsatz 2.4.2., Satz 3, gibt es ein & mit 5 = f(£). Aus (2) folgt
nun die Behauptung (1).

Wir geben dem Mittelwertsatz noch eine andere Fassung. Ist f auf dem Intervall
[a,b]swtigundz,{c+h€[a,b],sogibteseint’mitogo <1lund

o+h

[10dt =hfz + oh)3) ®
Fiir A > 0 folgt dies unmittelbar aus (1), und fiir & < 0 ist

2+

fl(f)dt— —ff(:)dt— —(=h) fiz + Bh),

z+h
womit (3) bewiesen ist.

1) Es kann sogua<5< bgefotdurtwotden (vgl. den Beweis von Satz 3).
1) Die Int. iable muBte t werden, da = anderweitig verbraucht wurde.
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Ebenso wie in der Differentialrechnung gibt es einen veraligemesnerten Mitielwert-
salz der Integralrechnung.

Satz 2. Sind f, g auf dem Intervall ((a, b)) stetige Funktionen und ist g(z) = 0 (oder
gx)=0)fira<z<bsogibteseinimita<{=<bund

1 b
[ @) 9@) dz = 1®) [ 9(=) d=. @

Beweis. Es sei K, bzw. K, das Minimum bzw. das Maximum von f(z) fiir
a < z < b. Ist stets g(z) = 0, so ist K,g(z) < f(z) g(z) < Kg(z), und aus 4.1.4. (8)
folgt
olg [ [} b

K, [9) dz < [ (@) g(a) do < K, [ g(a) da.
Ist

b
Jomaz=o,

so ist auch das mittlere Integral gleich Null, und (4) gilt fiir alle § mit ¢ < ¢ < b.
Anderenfalls setzen wir

b
[ 1) 9(a) d=
ni= ‘_'o_'_’
[ otz)dz

und wegen K; < 7 < K, gibt es ein ¢ mit ¢ < £ < b und f(£) = 5, womit (4) be-
wiesen ist.

Ist g(z) = 1 fiira < z < b, s0 geht (4) in (1) iiber.

Um die Mtwlwormtze auf den p-dimensionalen Fall iibertragen zu kénnen,
betrachten wir Punktmengen. Unter einem Bereick B verstehen wir eine
Punktmenge, d.le sich aus einem (nichtl ) beschrinkten Gebiet G und dessen
Begrenzungspunkten zusammensetzt. Dann gilt

Satz 3. Ist f eine auf einem quadrierbaren Bereich B stetige reellwertige Funktion, so
gibt es einen im Inneren von B liegenden Punkt § mst

[ 1@) dz = f(&) u(B). ®)
B .

Beweis. Es sei

. —-—fr(z)az,
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und die Funktion f nehme im Punkt &, bzw. &, ihr Minimum bzw. Maximum an. Es ist f(,) 4(B)
= cu(B) = f(acy) #(B), /(%) = ¢S f(acy). Nehmen wir an, fiir alle inneren Punkte von B, also im
Gebiet @ sei steta f(x) > c. Nach 4.1.4. (13), (12) ist

J @iz = [ (@) dx > [ cde = cu(@) = cu(B),
B G [

was der Definition von ¢ wid ich E!glbtdsheremz’mltz’ € @ und f(x') < c. Ebenso gibt
e8 ein & mit &’ ¢ G und f(z” ’) 2 c. Die Punkte x', z" konnen nach Definition des Gebietes
(1.6.5., Defmmon 3) durch einen ganz in @ verlaufe St verbunden werden. Sind
a,b zwei E kte dieses Streckenzuges und setzen wir g(t) —l(a+t(b—a)) o=t<1),
80 nimmt die nach 2.3. 3., Satz 2, stetige Funktion g alle Werte zwischen 9(0) /(a) u.ud (1) = [(b)
anDAhormmmtd:e]L“ f auf jeder Teil ke des Streck

und es muB einen Punkt § auf diesem Streckenzug, also in @, mit f(§) =c geben Damit lat der
Mittelwertsatz bewiesen.

Es gilt auch der ) inerte Mitlel:

Satz 4. Sind [, g auf einem quadrierbaren Bereich B stetige Funkdionen und ist g(x) = 0 (oder
g(®) < 0) fiir alle T € B, so0 gibt es einen im Inneren von B liegenden Punkt § mit

] 1) g(@) de = 1(8) [ g(ax) daz. (6)
B B

Der Beweis verliuft analog zum Beweis von Satz 2.

In vielen Anwendungen ist die zu integrierende Funktion noch von einem Parameter ¢ oder von
t t,, ..., t, abhéngi Du.nn ist du Integral, falls es existiert, ebenfalls von ¢
bzw. ¢y, ..., t, bhiingig. In diesem Z li wir den

Satz 5. Es ses f eine in einem Gebiet G des Raumes R, , stetige Funktion, und G, bzw. G, seien
Gebiete des Raumes R, bzw. Ry mit (@, t) € @ fiir & € G, und t € G,. Ist dann B ein in G, enthaltener
guadrierbarer Bereich, so st die durch

90 = [ f, 0 d= ()
B

definierte Funktion g in G, stetig.

h h

Beweis. Fiir jedes £, mit ¢, ¢ G, existiert das in (7) rechts de Integral. Zu vorgeg
e > 0 wahlen wir einen Rechtecksbereich R mit R — (7, und ¢, ¢ R. Die Menge aller Punkte
(®, t) mit & ¢ B und ¢ ¢ R ist dann beschrinkt und abgeschlossen. und die Funktion/ ist

auf dieser Menge gleichmiBig stetig. Es gibt daher eind mit |f(x, ?) — f(x, &) < — fir x ¢ B,
Ift — #yJ] < é. Nach dem Mittelwertsatz gibt es ein § mit § ¢ B und (-B)

lo(&) — gite)] = | (=, — f@, t) dz | = u(B) 116, ©) — fi8, t)l <,
B

d. h., die Funktion g ist stetig.
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4.1.6. Definition des Riemannschen Integrals mit Hiife von Zwischensummen?)

Wir gehen zuniichst von der urspriinglichen Definition aus und beweisen einen Hilfs-
satz.

Satz 1. Ist | auf dem Intervall [(a, b)) beschrinkt, so gibt es fiiralle ¢ > 0 ein 8 > O
derart, daf aus d(8) < 8 stets

0=J(f;a,b) — 8(f B) <e, (1}

0<58(,8) —J(fia,b) <e @
folgt
Beweis. Es geniigt der Beweis von (1), da (2) ganz analog bewiesen wird. Zu
vorgegebenem & > 0 wihlen wir eine Zerlegung 3' = (I’ ..., I’} mit

0<J(f0,5) — 8¢, 8) < 4 @
7 -
? e .
;ﬁ —t
§ b — .
e —_ ' Abb. 4.16
bk

Dies ist auf Grund der Definition 1 in 4.1.3. mdglich. Dann bestimmen wir eine
natiirliche Zahl k mit

- I3
f—1m)< =k U=(ab). @

Es sei nun 8 = (I}, ..., I} eine beliebige Zerlegung mit d(8) < %, und 8* sei die

Uberlagerung von 8 und 8’ (Abb. 4.16). Wir zerlegen 8 in zwei disjunkte Teil-
mengen 8, und 8,. Die (méglicherweise leere) Menge 8, enthalte alle Intervalle,
die ganz im Innern eines Intervalls aus 3’ liegen und demzufolge auch in der Zer-
legung 3* auftreten. Bilden wir die Differenz von S(f, 8*) und S(f, 8), so heben sich

1) Von diesem Abschnitt wird im folgenden kein Geb h g ht
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die zu diesen Intervallen gehérenden S den heraus. Es sei I; ein Intervall
aus der Menge 3, der Intervalle, die wenigstens einen Randpunkt eines Intervalls
aus 8’ enthalten. Dann gibt es Intervalle Iy, ..., I;, aus 8*, die eine Zerlegung von
I; bilden. Da Untersummen bei einer Verfeinerung der Zerlegung hichstens groBer

werden, erhalten wir, wenn wir (4) und u(I;) < %bea.chten,
P
100wl — 1) wit) = 2 ({030 — 10) it

< 5 (Fw - 1) it
= (f(I) — {D) pd)
ek 1 €

im'E am
Da 3, hochstens 2m Intervalle enthalten kann, erhalten wir durch Summation
iiber alle Intervalle I; aus 8, die Abschitzung

8(, 8% — 8, B) < 2m- — == ®)
. 4m 2

Aus (3), (8) und S(f, 8* — S(f, 8") = 0 folgt
0=<J(f;a,b) — 8, 8)
=J(f;a,5) — 8, 8" — (84, 8% — 8(f, 8") + S, 8% — 8(/, 3)
<%+%=h
und Satz 1 ist bewiesen.
Eine unmittelbare Folgerung ist
Satz 2. Fiir jede ausgezeichnete Zerlegungsfolge (3™) ist
1f:8,5) = lim 50, 89), ©

J(f; 8, b) = lim 8(f, 3™). m
Ist die Funktion f iiber das Intervall [(a, b] integrierbar, so gilt

1]
[ #@) d= =lim §(f, 8®) = lim 8f, ™). ®

n—c0



4.1. Riemannscher Inhalt und Riemannsches Integral 139

Die Definition des Ri hen Integrals kann auch auf die Betrachtung von
Zwischensummen gegrundet werden, denn es gilt der

Satz 3. Die Funktion f ist iiber das Intervall [(a, b] integrierbar genau dann, wenn
die Folge (S(f, 3™, E("))) fiir jede Wahl einer auagezetdmetcn Zerlegungsfolge und einer
zugehérigen Folge von A hlfunkti E™ & ()

Beweis. Wegen (8) und 4.1.3. (15) ist die Bedingung notwendig. Existiert um-
gekehrt stets lim S(f, 3™, £™), so existiert auch der Grenzwert einer jeden Misch-

W00
folge von zwei solchen Folgen, und daher haben alle diese Folgen den gleichen
Grenzwert J. Sei (3™) eine beliebige Zerlegungsfolge mit d(8®™) — 0. Wir bestimmen
Auswahlfunktionen &%, £® mit

0.5 8, 8%, &) — 8, 8 < ., ®

058y, 8% — 8¢, 8%, € < . (10)

Dies ist méglich, denn wir kénnen in jedem der k, zur Zerlegung 3™ gehorenden
Intervalle I/ einen Punkt {® bzw. £,® mit

1 1
(b —a) (b—a)

finden, und fiir die so definierten Auswahlfunktionen gilt (9), (10). Der Grenziiber-
gang n—>oo ergibt 0<J —J(f;0,0) <0, 0<J(f;6,0) —J <0, woraus
J = J(f; a, b) und unsere Behauptung folgen.

Alle Betrachtungen dieses Abschnittes konnen wieder sinngemiB auf den mehr-
dimensionalen Fall iibertragen werden. Der Beweis von Satz 1 bedarf allerdings
eunger zusitzlicher Uberlegungen. Wir gehen hierauf nicht niher ein, da wir von den
E keinen Gebrauch hen werden.

&'

H&®) — fI™) < » )= fE™) < ——— -

41.7. Integration iber offene und halboffene Intervalle.
Uneigentliche Integrale

Wir haben im ersten Teil von 4.1.3. den Begriff der Integrierbarkeit nur fiir Funk-
tionen definiert, die auf einem beschrinkten, abgeschlossenen Intervall definiert
sind. Wir verallgemeinern unsere bisherigen Definitionen. Zuerst betrachten wir eine
Funktion f, die etwa auf dem beschrinkten Intervall [, b definiert und iiber jedes
abgeschlossene Teilintervall [(a, b']) mit @ < b’ < b integrierbar ist. Wir prufen, ob
das Integral J(f; a, b') fiir b’ — b einen eigentlichen oder uneigentlich
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besitzt. Ist dies der Fall, so setzen wir
b b
[ @) de = ﬁ;n [t=)de  (D(f) = (a, D). m
° ¥ive
Ganz analog verfahren wir im Fall eines Intervalls der Form Ja, b], d. h., wir setzen
b 1
/ I(z)dw:=lifa [i@d=  (D(f) =]a, b)), @
o aloo

falls der rechts stehende Grenzwert existiert. Im Fall eines offenen Intervalls Ja, b
wihlen wir einen Punkt ¢ mit @ < ¢ < b und setzen

b c b
[f@)de:= [f@)dz + [f@)dz (D) =T, b[,a <c <B), @

falls die beiden rechts stehenden Integrale existi Diese Definition ist dann
wegen 4.1.4., Satz 3, unabhingig von der Wahl des Punktes ¢ mit a < ¢ < b.

Die Definition (1) bzw. (2) iibertragen wir unveriindert auf den Fall b = oo bzw.
a = —oo und nennen den jeweiligen Grenzwert, falls er existiert, das uneigentliche
Integral der Funktion f iiber das unbeschrinkte Intervall (@, —[ bzw. J<, b]. Die
Definitionen (1), (2) nehmen dann die Form

oo 1]

J @) de:=lim [ f(z)dz, @
e b a

1 1

J @) dz:= lim [f(z)dz ®

an. Die Definition (3) geht ganz analog in die Form

L4 [ L
1@ de:= [ f(z) dz + [ fz) dz ®

-0 —00 c
Die Bezeichnung igentliches Integral“ wird nicht nur dann verwendet,
wenn das Integrationsintervall unbeschriinkt ist, sondern auch wenn die Funktion f

im Intervall [(a, b[ bzw. Ja, b] bzw. Ja, b unbeschrinkt ist.
Man kann gewisse Kriterien fiir die Existenz uneigentlicher Integrale angeben,
worauf wir hier nicht niher eingehen.
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4.1.8. Aufgaben

1. Man berechne mit Hilfe der Identitit

.
2ain 2 Foin2l — cosk — cos 2Rt 1)
2n4o; B 25 2n

das Integral der Funktion y — sin 2 ﬁberdulnt.erv;ll( 12'-)

2. Man berechne das Integral der Funktion f(z) = * iber ein Intervall [[a, 5].
3. Man gebe eine untere und eine obere Schranke des Integrals J mit

a3 .
J= f Yoos z dx
°
an.
4. Man beweise, daB

1
ind L
fnnzdzsa
0

ist.
5. Gegeben sei die Funktion

Man berechne das Integral von f tiber das Intervall (0, 3].

6. Man beweise, daB eine Funktion, die aus einer tber das Intervall [a, b] integrierbaren Funk-
tion f durch Abiinderung der Funkti te an endlich vielen Stellen entsteht, diber dieses
Intervall integrierbar ist.

Anleitung. Man beweise, daB die Funktion

0 fir z ¢,
ge(z) = {

1 fir z=¢

iiber jedes Intervall [[a, b]) integrierbar ist.
7. Gegeben sei die Funktion f(z) = 3z* + 2. Man bestimme eine Zahl £ mit —2 < § < 5, fir die

5
J =) dz = (&) (6 — (—2))
-2

gilt.
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4.2.  Hauptsatz der Differential- und Integralrechnung

4.21. Stammfunktion und bestimmtes Integral
als Funktion der oberen Grenze

Der Abschnitt 4.1. iiber Riemannschen Inhalt und Riemannsches Integral wurde —
ubgesehen von dem Beweis des Satzes 6 in 4.1.3. — um.bhanglg von der leferentml-
behandelt. Im Abschnitt 4.2. stellen wir einen Zi hang zwi
diesen beiden Stoffgebieten her. Es wird sich zeigen, daB die I.ntegm.lmhnung in
gewissem Sinne als Umkehning der Differentialrechnung aufgefaBt werden kann.
Mit Hilfe des Riemannschen Integrals werden wir nimlich die Existenz einer Funk-
tion beweisen konnen, deren Ableitung eine vorgegebene, auf einem Intervall (a, b))
stetige Funktion ist, und umgekehrt werden wir das Riemannsche Integral einer
Funktion f berechnen kénnen, wenn uns eine Funktion F bekannt ist, deren Ab-
leitung die Funktion f ist.

Definition 1. Es sei f eine auf einem Intervall I definierte Funktion. Die Funktion
F heiBt eine Stammfunkiion (oder primitive Funktion) von f, wenn F auf dem Inter-
vall I differenzierbar und F’(z) = f(z) fiir alle z aus I ist.

Die Ermittlung einer Stammfunktion ist also das elgenthche Umkehrproblem der

Dlﬁerentla.lrechnnng und aus den in Kapitel 3 bew Differentiationsformeln
kann bereits fiir eine groBe Zahl von Funktionen eine St: funktion angegeb
werden. Stammfunktionen sind, wenn sie existieren, nicht eindeutig bestimmt, aber
es gilt

Satz 1. Es sei F eine Stammfunktion der Funktion f auf dem Intervall I. Dann st
G genau dann eine Stammfunktion von f auf I, wenn die Differenz der Funktionen F
und @ konstant ist.

Beweis. Ist G(z) = F(z) + ¢, so ist G’(z) = F'(z) = f(z), d. h., G ist eine Stamm-
funktion von f. Ist umgekehrt @ eine S funktion von f und H = @ — F, so ist

H'(z) = @ (@) — F'(z) = f(z) — f(2) =

und nach 3.1.4., Satz 4, ist H(z) = ¢ und folglich G(z) = F(z) + c fiir z aus I. Damit
ist Satz 1 bewiesen.

Wihrend Stammfunktionen einer Funktion f mit Hilfe des Begriffs der Ableitung
definiert wurden, ordnen wir nun mit Hilfe des Begriffs des bestimmten Integrals
jeder integrierbaren Funktion eine neue Funktion zu.
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Definition 2. Es sei f eine iiber das Intervall [(a, b] integrierbare Funktion. Dann
heiBt die Funktion

F(z):= f/(t)dt @s=z=<?) 1)

das bestimmte Integral von f als Funkiion der oberen Grenze.
f

!
]
1
1
!
]
]
!
]
i

Abb. 4.17
b

!
1
|
a x & xeh

Ist f(z) nichtnegativ, so stellt die Differenz F(z 4 k) — F(z) den Inhalt des in
Abb. 4.17 schraffierten Bereichs dar, ist also gleich A - f(&), wobei z < ¢ <z + R
gilt. Fiir eine stetige Funktion f wird somit der Quotient von F(z + k) — F(z)
und A, der Differenzenquotient von F, fiir h — 0 gegen f(x) streben. Damit haben
wir bereits den Beweis fiir den Hauptsatz der Differential- und Integmlrechnuny
skizziert.

Satz 2. Das' bestimmie Integral einer im Intervall [(a, b)) stetigen Funktion I als
Funktion der oberen Grenze ist eine Stammfunkiion der Funktion f.

Beweis. Nach dem Mittelwertsatz der Integralrechnung 4.1.5. (3) ist

w=%fﬂw=ﬂz+m.

und fiir A — O erhalten wir F'(z) = f(z). Damit ist der Hauptsatz bewiesen.

Zu jeder in einem abgeschlossenen Intervall [(a, b) stetigen Funktion f gibt es
nach diesem Satz eine Stammfunktion, d. h., das Umkehrproblem der Differential-
rechnung ist fiir die Klasse der auf abgeschlossenen Intervallen stetigen Funktionen
stets losbar. Damit ist nicht gesagt, daB die Stammfunktion in geschlossener Form,
etwa mit Hilfe der elementaren Funktionen, dargestellt werden kann. Vielmehr gibt
uns der Hauptsatz ein Mittel in die Hand, neue bisher nicht aufgetretene differenzier-
bare Funktionen zu definieren. Ist aber von einer gegebenen Funktion f eine Stamm-
funktion bereits bekannt, so hefert uns die nachfolgende Umkehrung des Hauptsaizes
der DtﬂcrenhaL und Integral ein beq Mittel fiir die numerische Be-

von

g bestimmt: Integmlen.
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Satz 3. Ist F eine Stammfunktion der auf dem abgeschlossenen Intervall [(a, b]
stetigen Funktion f, so tst

fbtm dz = F(b) — F(a). @)
Bewei's. Setzen wir

Q(z):= ff(t) d (@=<z=<b), 3)

80 ist @(z) = f(z) = F’(z) nach Satz 2, und wegen Satz 1 gibt es eine Konstante ¢

mit G(z) = F(z) + c. Speziell ist 0 = G(a) = F(a) + ¢, ¢ = —F(a), G(x) = F(z)
— F(a), und aus (3) folgt die Behauptung (2).

Die rechte Seite von (2) wird hiufig mit [F(z))} oder F(z) |: bezeichnet, so daB (2)
die Form

3
[ @) dz =(F@k =F@)|, (F'@) =f@) @
annimmt.
So ist z. B.
fsinzdz=—cosz|:=—cosb+oosa. (6)

Der Hauptsatz der Differential- und Integralrechnung ist nebst seiner Umkehrung
von so grofer Bedeutung fiir das Verstindnis der Zusammenhinge zwischen Diffe-
rential- und Integralrechnung, da8 der Lernende gut daran tut, sich auch die Beweise
der Sitze 2 und 3 einzuprigen.

Satz 3 kann auch wie folgt formuliert werden.

Satz 4. Ist f in [a, b)) stetig differenzierbar, so gilt
b
[ t@) dz = fb) — f(a).

Die V¢ tzung der Stetigkeit der Ableitung ist hierbei wesentlich, denn es gibt
differenzierbare Funktxonen, deren Ableitung nicht integrierbar ist.

Die Erkenntms, d&B Dl.ﬁerentmtion und Integration ,,inverse* Prozesse sind, findet sich —
allerdings in sch he — bereits bei Isaac BARROW, dem Lehrer NEw-
‘TONS. Dio Flux:lonnoehnung von NlI'WTON und der Calculus von LEBNIZ enthalten neben der
Diffe g such eine Integ; Die wichtig Regeln der Integralrechnung
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finden sich in einer Arbeit von Lnnmlz aus dem Jahre 1686. Slo enthleltduSymbol f ebenso wie
dan Namen .,calculus . Die B t. lis* geht auf eine Ab-
sprache von LEIBNIZ und JOHANN Bnuouu.z aus dem Jahre 1696 zuruck Der Begriff ,,Integral*
scheint eine Erfindung der Briider BERNOULLI zu sein.

Die durch die Antontbt von Em.n gestiitzte Praxis, die I Irechnung nur als Umkehrung
der Differential g wird erst durch die Arbeiten von RIEMANN {iberwunden.

Beispiel 1. Die Funktion y =
y = 2", und folglich ist

b

1 1
= l+l = — (™1 a1 N
fz"da:—n 1% = 1( a™1) n€N)

! 1 z*+1 igt eine Stammfunktion der Funktion

e
(vgl. 4.1.3., Beispiel 2, und 4.1., Aufgabe 2).
Beispiel 2. Wir schlieBen eine Liicke im Abschnitt 3.3.3. und leiten die Taylor-

entwicklung bzw. die Taylorsche Reihe der Arcus-Tangens-Funktion her. Diese
Funktion ist eine Stammfunktion von y = (1 + 2%, und folglich ist

z
—dt arctan ¢ —mbanz.
1+ o

Ersetzen wir @ in der Identitit

l—a)z‘a’—l—a"
j=0
durch —, 8o erhalten wir nach Umstellung

1 m
—_— = (—1) —1y .
g Eo( 1y + (—1) i

Mit den Rechenregeln fiir bestimmte Integrale erhalten wir nach Beispiel 1

v . Fiid
[ze= z<—l)'ft"dt+( 1) f1+:"“
o

z
(il
1 — —_—
23“ + l).fl+t!d‘

—-2( 1)’

j=0

[

—z——+——+ e
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mit
. Y
Ry(z) = (—1) fl “dt

o
Wegen ¢** 2= 0 gibt es nach dem veraligemeinerten Mittelwertsatzeind mit0 <6 < 1
und

fcl-ae=(_1)~ 1 _ =

Ry(z) = (—1)*

11 0%z 1+ 6% 2n+ 1
¢
Fir jedes z mit |2| < 1 ist die Folge (R,(x)) eine Nullfolge. Daher ist
had ™+ 2 2P
= —1)* mg e — . =1).
arctan z .2_20( 1) Wmri-""3 +5 -+ (=l =1) (8)

Fiir z = 1 erhalten wir auf der linken Seite =, d. h., es ist, wie wir bereits in 2.2.3.
behauptet hatten, 4

n 1 1
el ——d = — 4, 7
2 3+5 + M
Fiir die numerische Berechnung von x ist diese Reihe allerdings sehr schlecht ge-
eignet.

4.2.2. Unbestimmtes Integral

Die Reohenregeln fiir das Umkeh.rproblem der Differentialrechnung werden ge-
wohnlich mit Hilfe von sog Integralen formuliert. Eine exakte
Definition unbestimmter Integrale und des Rechnens mit diesen Objekten ist mit
gewissen Schwierigkeiten verbunden, die ihre Ursache darin haben, daB Stamm-
funktionen nur bis auf additive Konstante bestimmt sind.

Wir wollen zunichst die Problematik erldutern. In vielen Lehrbiichern findet man
-die folgende Definition:

Unter dem unbestimimten Integral einer Funktion f, in Zeichen

[tz) de, m

versteht man die Menge aller Stammfunktionen von f.
Aus dieser Definition wiirde zunichst hervorgehen, da8 die Variable z in (1) ge-
bunden ist, d. h., daB z. B.

Ji@ dz = [ fe)at




4.2. K der Differential- und I Irech 147

P 4 &

ist. Diese sich aus der Definition ergebende Konsequenz wird aber ignoriert, und
es ist iiblich, die Variable z in (1) als freie Variable za betrachten. Aus diesem Grunde
hiitte man genauer

[l@)dz=(F@):F@) =f=) (@cl) @

zu setzen. Hi h ist das unbestimmte Integral (1) eine Menge von Termen in der
Variablen z, die sich nach 4.2.1., Satz 1, jeweils nur um eine additive Konstante
unterscheiden. Die Gleichung (2) wird im allgemeinen durch die nicht ganz exakte
Form

Jledz=Fa)+C (F@)=f@) fir z¢l) @

wiedergegeben, in der C die Inkamﬁomlwnmm heiBt. Von dieser Gleichung kann
man stets za der Gleichung 4.2.1. (4) iiberg , wenn a, b € I ist.

Das niichste Problem isb eine exakte Einfijhrung von Rechenopentwnen mit
unbestimmten Integralen. Die Definitionen

Jta)dz + [9@) dz = [(f@) £ 9()) d=, @

t[f() dz = [tf() da, ®)

[P @) dz + g@) = F@) + g(z) + C ®)
_erscheinen naheliegend, fiihren aber zu iiber henden Konseq Nach (2) ist
offenbar

Jodz=(C:CcR), ()
wotiir wir nach der Vereinbarung (3) auch

fodz=0 8)
schreiben. Aus (4) bzw. (5) und (8) folgt somit

Ji@yde — [f@)da =0, ®

0 [f(z)dz =C. (10)

Diese Beispiele zeigen, wie problematisch die obigen Definitionen sind. Aus diesem
Grunde' vermeiden viele Auboren die Definition (2) und betrachten (1) als ,,eine*
Stammfunktion von f. Die Gleichungen (4) und (5) sind bei dieser Autfusung
dann erfiillt, wenn die jeweiligen Stammfunktionen der auftretenden Integmnden
passend gewihlt sind. Wir werden spiter an Beispielen zeigen, da8 man zu Wider-
spriichen gelangt, wenn man mit den Rechenregeln (4), (6) und (6) sorglos umgeht. Es
konnen jedoch keinerlei Schwierigkeiten auftreten, wenn man die Gleichung
f f(x) dz = F(z) + C (x € I), wie wir dies im folgenden tun wollen, ausschlieBlich
als Synonym fiir die Formel F'(z) = f(z) (z € I) verwendet.
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Aus den in der Differentialrechnung bewiesenen Rechenregeln ergeben sich die
folgenden Formeln, die in allen Intervallen I erfiillt sind, in denen die rechtsstehenden
Funktionen definiert und differenzierbar sind:

._1 1
- - 1
fz‘dz a+1z-+ +C  (xeRn=-—1), (11)
f% =iz +C} (12)
fe‘dz=e”+0, (13)
fcoszda:=si.nz+0, (14)
fsinzda:=—cosz+0, (15)
fl“:—=mnz+c, (16)
cos” z
f.dx = —cotz +C, (17)
sin? 2
dz
———— =arcsinz + C, 18
f'_l—z' + (18)
f dz = —arccosz + C, (19)
1—23
dz
fl_'_—z.—arctanx+0, (20)
dz
1+—I’ = —arccot z + C, (21)
fsinh z de = cosh z + C, (22)
feosh zdz =sinh z + 0, (23)
dx
=arcoshz + C, 24)
7= <
dx
———— =arsinhz + C. (25)
J7=

. 1 . - dz
1) An Stelle vonfm dz schreibt man kirzer fl(?)
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Wir geben einige Erliuterungen. Die Formel (11) gilt im Fall x € N fiir das
Intervall I = R, im Fall negativer ganzzahliger « entweder fiir das Intervall J<, O
oder fiir das Intervall J0, —[. Ist « nicht ganzzahlig, so gilt (11) nur fiir das Intervall
J0, > [. In allen Fillen ergibt sich (11) aus

z‘*)

(@Y =(+ 12, =z =(

a4+ 1
Die Formel (12) gilt nach 3.1.2. (3) fiir das Intervall [0, —[[. Fiir z € J«, 0] ist
1 1

(njaly =l (—2)) = ——=—,

was wiederum mit (12) gleichbedeutend ist.

Aus der Gleichheit der linken Seiten von (18), (19) darf man nicht etwa schlieBen,
daB arc sin z und —arc cos z iibereinstimmen. Bei der Auffassung des Symbols (1)
als Menge der Stammfunktionen kann aus (18), (19) nur gefolgert werden, dafl die
Mengen (arcsinz + C:C € R}, (—arccosz + C:C € R} iibereinstimmen. Dies ist
genau dann der Fall, wenn es eine Konstante Cy mit arcsin z = —arccosz + C,

gibt. Nach 2.5.2. (9) ist dies mit Cy = % erfiillt. Bei der zweiten Auffassung des

unbestimmten Integrals als ,einer* (passend gewihlten) Stammfunktion hat man in
dhnlicher Weise zu schlieBen. Fiir das Formelpaar (20), (21) gelten nach 2.5.2. (10)
analoge Aussagen. Die in den Formeln (11) bis (25) auf der linken Seite stehenden
Integrale bezeichnet man als Grundintegrale.

4.3. Integrationsmethoden

4.31. Elementar integrierbare Funktionen

Wie wir in 4.2.1. bewiesen haben, existiert zu jeder in einem Intervall stetigen Funk-
tion eine Stammfunktion. Es ist aber, wie bereits erwihnt, im allgemeinen nicht
méglich, eine Stammfunktion ,,in geschl Form* anzugeben. Wir eine
Funktion im offenen Intervall I elementar (oder in geschlossener Form darstellbar),
wenn sie sich (im ganzen Intervall) mit Hilfe endlich vieler Verkniipfungen f 4 g,
f-g, f:g, fog aus den elementaren Funktionen (Potenzfunktionen, Exponential-
funktionen, trigonometrische Funktionen sowie deren Einschrinkungen auf offene
Intervalle und ihrer Umkehrungen) darstellen 1i8t. Nach dieser Definition ist jede im
offenen Intervall I elementare Funktion auf Grund der in Kapitel 3 bewiesenen
Sitze in I stetig differenzierbar, und ihre Ableitung ist wiederum elementar. Da-
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gegen gibt es elementare Fanktionen sehr einfacher Bauart, die nachweislich keine
elementare Stammfunktion besitzen. So gibt es zum Beispiel keine in einem Intervall
Ja, b (—oo < a < b < ) elementare Funktion F mit

;'mz—’-'dz=r(z)+c @<z<b).

Wir nennen eine in einem offenen Intervall I stetige Funktion in I elementar
sntegrierbar, wenn sie in I eine el tare St funktion besitzt. Die Funktion
f(x) =z 'sinz ist hiernach in keinem Intervall Ja,b[ mit —c0 Sa<b < oo
elementar integrierbar. Dagegen ist jede ganzrationale Funktion wegen 4.2.2. (4),
(6) und (11) elementar integrierbar.

Die in 4.2. bewiesenen Sitze iiber bestimmte Integrale liefern uns die Moglichkeit,
mit Hilfe von stetigen, nicht el tar integrierbaren Funktionen f vermége

F@):=ffoydt  (zel)

neue Funktionen bzw. neue Funktionenklassen zu definieren. So kann man zum
Beispiel die Theorie der Logarith und Exponentislfanktionen aufbauen, indem
man von der Definition

lnz:=f«?— (z € R*
1

ausgeht. Dieser rationelle Weg wurde von uns nicht beschritten, da er nicht schul-
bezogen ist und wBerdem wichtig pielmaterial erst sehr spit zur Verfiigung
steht.
Es gibt keine allgemein giiltigen Regeln, um zu entacheiden, ob eine stetige Funk-
tlon in einem Interval.l elementar integrierbar ist oder nicht. M&n kann aber unter
tzung von Rechenregeln der Diff ialrechnung gewisse Regeln fiir die Um-
iormung von Integralen entwickeln, mit deren Hilfe in gewissen Fillen eine Zuriick-
fiihrung der Integrale auf Grundintegrale méoglich ist. Mit Hilfe dieser Regeln ge-
lingt es, groBe K.Ia.saen von Funktionen nnzugeben, die elementar integrierbar sind.
' Die beid icht In stellen wir in den nichsten Abschnitten bereit.

L5 ()

4.3.2. Partlelle Integration
Nach der Regel fiir die Differentiation eines Produktes ist
@ 9@ + 9@ f@) = (f) g@)) (=€ D),
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und aus 4.2.2. (8), (4) folgt
JH=) g @ dz + [g(2) f' @) dz = [(f(2) g'(@) + 9(=) f (@) d=
= [(t@) ga)) dz = f(=z) g() + C.
Hieraus ergibt sich die folgende Regel fiir die partielle Integration.
Satz. Sind }, g in einem Intervall I stetig differenzierbare Funktionen, so gilt .

J1@) ¢'@) dz = f@) g() — [92) f(@)de  (@e D). v
Die Intogmtlonskonstante C konnte in (1) weggel den, da auf beid
Seiten ti Integrale stehen. Wir erliutern an einigen Belsplelen, wie man

in manchen Fillen mit Hilfe der Formel (1) Integrale elementar auswerten kann.

Beispiel 1. Wir berechnen [z coszdx. Um (1) anwenden zu kdnnen, miissen
wir den Integranden als Produkt einer Funktion f(z) und der Ableitung einer Funk-
tion g(z) darstellen. Hierzu kénnen wir etwa das Schema

f@) =z, g = @

@)=, g@=cosz
oder auch
f@) =cosz, g = ,

9 . 3
)= , g ==z
aufstellen und so ergiinzen, daB richtige Gleichung tstehen. Die Auswahl des
geeigneteren Schemas ergibt sich aus der Betrachtung der rechten Seite von (1),
und zwar priift man, ob die hiernach gebildete Funktion g(z) f () elementar inte-
grierbar ist. Beim Schema (3) gelangen wir zu der Funktion

g f (@) = —%z’ sinz,
die eine kompliziertere Gestalt als der urspri'mgl.ich.e Integrand besitzt. Das Schema
(2) kann dagegen durch f'(z) = 1, g(x) = sin z ergiinzt werden, und somit ist
fzcoszda:=zsinz—fsinzdx, @
fzcoszdz=zsinz + cosz + C.
Beispiel 2. Wir berechnen fcos’zda:. Mit f(z) = cos z, ¢'(z) = cos z erhalten
wir f'(z) = —sin 2, g(x) = sin «, und es folgt

fcos’:cdx = cos z sin = +fsin'xdx.
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Obwohl auf der rechten Seite ein dhnliches Integral wie auf der linken Seite erscheint,
fiihrt hier ein Kunstgriff zum Ziel. Setzen wir nimlich sin?z = 1 — cos?® z, so er-
scheint rechts noch einmal das gesuchte Integral, und eine Umformung ergibt

feos'zdz=ooszsinz+fdz—fcos’xdx
=ooszsinz+a:—fcos’zdz,

2fcos'zdz=eoszsinz+z+0,

feos’zda:=%(coszsinz+z)+0. 3)

(@ > 1). Mit f(z) = hL: und

Beispiel 3. Wir betrachten das I.nwgmlf dl:
zhnz

g = -l erhalten wir
z

'(Z) = — ——, =In
o)== d@ =z
und folglich
dx dz
—_=1 _—
zlnz + zlnz
Nach den in 4.2.2. ausgesproch Warnungen vor dem Rechnen mit unb

Integralen wird der Leser aus dieser richtigen Gleichung nicht den iibereilten Schiu8
0 = 1 ziehen!

Die partielle Integration gestaltet sich besonders iibersichtlich, wenn wir die fol-
gende Bezeichnung einfiihren. Fiir alle stetigen Funktionen f und alle stetig differen-
zierbaren Funktionen g setzen wir

[t dg@):= [1(z) ¢ @) d. ®)
Speziell ist hiernach

[t = [¢@ de,

Jdom) =g + . ™
Die Regel (1) fiir die partielle Integration lautet in dieser Bezeichnungsweise

[Hz) dgtz) = (@) gtz) — [9(=) df(=). ®)

Wir wenden sie auf das in Beispiel 1 behandelte Integral an:
fzcoszdz = f:cdsin:c =zsinz — fsinzdz

=zsinz + cosz + C.
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Wie dieses Beispiel zeigt, eriibrigt es sich bei dieser Symbolik, ein Schema der Form
(2) aufzustellen.

Die Regel (1) bzw. (8) fiir die partielle Integration nimmt fiir bestimmte Integrale
die Form

b [
[H=) g @) de = [{(@) g — [9(=) (@) dz (9
bzw.
b b
JH=) dgla) = [1=) @) — [9(=) df(@) (10)
an. Der Beweis folgt sofort aus
b b 1]
[1@) 9@ dz + [9(@) 1 @) dz = [({(2) g(@))' dz = [f() g@) .

Beispiel 4. Wir berechnen das uneigentliche Integral

f:’e-’dz =lim fx:e" dz.
[ bso0
Wegen (%) = —e* ist
[otee de = — [P des = —(zte® — [es da?)
= —a%* + [e*(22)dz
= —a¥%* -2 [zde~.
Nochmalige partielle Integration fiihrt zu
[#ee dz = —a%* — 2(zes — [e* da)
= —ale® — 2207 — 207 4 C
= —e*2 4 22+ 2) + C.
Fiir das bestimmte Integral iiber das Intervall [0, b] erhalten wir

b
fa:’r'dz =[—e2?+ 22+ 2)
o
=—e*®* + 2>+ 2) + 2.
Nach der Regel von BERNOULLI-DE L’HOSPITAL ist

2
lim b2 = lim b— = 2lim L = 2lim l =0,
bseo brco €0 1roo €7 s €0



164 4. Integralrechnung

und es folgt
f;:'e—'dz=lim fz‘r’d.fc=2.
o b0 0

Die Fliche, die von der z-Achse und dem Graphen der Funktion y = z3%-* begrenzt
wird, ist nicht beschriinkt, bat aber einen endlichen ,,Inhalt* (Abb. 4.18).

1
1 y-;tze'x

lm Abb. 4.18
1

Das vorstehende Beispiel fiihrt an die Theorie der Eulerschen Gammafunktion heran. Diese
wird fir positive reelle a durch das uneigentliche Integral

(o) := ft‘"r‘ @ (x>0) (11)
[
definiert. Zum Beweis der Konvergenz fihren wir die Teilintegrale
1 o
Tya):= fttetdt, Iyo):= [tetetdt (12)
[ 1
ein. Fir « = 1 gilt
1
= feta=—[(h=1-1, a3
0 e
H 1 11
r,(1)=lfr'.a=? _.1_.:’7=?, (14)
‘woraus
rq)=1 (15)
folgt. Nach (12) gelten die Abschitzungen
Dsn @21, (16)
N=I() ©O<ast). tY))

Fiir 0 < 4 < v < oo und & > 0 ist gemiB (10)

fvw-*dt = —ft'de-' = —[tee ']} + fr‘dl‘,

° u " °
Jeeetde = w—ate Jetetas (18)
- -
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m-%:-so @>0), (19)

und aus der Bernoulli-de 1'Hospitalschen Regel folgt, falls 0 < « < n (n ¢ N) ist,

osimZSlm S —alim T —. —milim £ —o,
o—sc0 € os0 € . v € o—so0 €°
d b, esist
. v
hm?=0 (> 0). (20)
0=+00

In (18) betrachten wir die Fille v = 1, u | 0 bzw. u = 1, v — oo und erhalten mit (19), (20) die
Identitdten

Ta+1)=— % + alyo), @1

L+ 9=+ +an). @2

Wegen (18) ist I'y(x + 1) stets endlich, und aus (21) folgt die Endlichkeit von Iy (x) far alle s > 0.
Wegen (17) ist I'y(x + 1) zuniichst fir 0 < o < 1 endlich. Aus (22) schlieBen wir dann durch
vollstindige Induktion auf die Endlichkeit von I'y(«) fir alle & > 0. Somit kann I'(«) fiir alle
o > 0 durch (11) definiert werden.

Addition von (21), (22) ergibt mit

Do + 1) = al'() (23)

ktionalgleichung der Gt funkison. Mit (15) erhalten wir der Reihe nach I'2) =1,
I"(3) =1.2, 1‘(4) =1.2- 3., und vollstindige Induktion ergibt

=TI +1)= firetdt  (neN). (24)
]

Diese Formel bildet ein wichtiges Hilfsmittel fiir die Herleitung von Abschiit: o In fiir die
Fakultit groBer natiirlicher Zahlen. Ohne Beweis vermerken wir, daB die Gunmfunktlon ana-
Lytisch ist und der weiteren Funktionalgleichung

D) Il — o) = i:Tm O<a<i) (25)

geniigt. Mit o = ; liefert dies

))’ = @)



156 4. Integralrechnung

4.3.3. Substitutionsregel fiir unbestimmte Integrale

Wihrend sich die Regel fiir die partielle Integration aus der Produktregel der Diffe-
rentialrechnung ergab, leitet sich die Regel fiir die Integration durch Substitution aus
der Formel

Flg() = F'(g() ¢'(@) 1)

fiir die Differentiation einer zusammengesetzten Funktion ab. Setzen wir F' =,
80 konnen wir die Aussage (1) wie folgt formulieren:

Satz 1. Ist F eine Stammfunktion der in einem Intervall I stetigen Funktion f
und sst der Wertebereich der stetig differenzierbaren Funktion g in I enthalten, so st
Flg(2)) eine Stammfunktion der Funktion f(g(z)) g'()-

Hiernach ist
[1o(@)) ¢'@) dz = Plg(a)) + C, @)

wobei F eine beliebige Stammfunktion von f ist. Der Inhalt von Satz 1 wird hiiufig in
der Form

[Mo@) g @ dz = [fzrdz (2 = g) 3)
oder, mit der im vorigen Abschnitt eingefiihrten Bezeichnung,
[o@) dg@@) = [tz dz (= = g(a)) )

angegeben. Die Funktion z = g(z) heiBt hierbei die Substitutionsfunktion. Die Formel

(3) bzw. (4) ist wie folgt zu interpretieren: Wenn es gelingt, den Integranden eines

gegebenen Integrals in der Form [(q(z)) g'(z) darzustellen, so kann die Integration

ausgefiihrt werden, wenn man eine Stammfunktion F(z) von f(z) kennt, und man erhilt
- eine Stammfunktion von f(g(z)) g'(z), wenn man z in F(z) durch g(z) ersetzt.

Beispiel 1. Es ist
finsinz)coszdz = finsinzdsing = flnzdz  (z =sin2).
Wegen Inz —2) =Inz+1—1=Inzist
finzdz=zlnz—z2+0C,
und wir erhalten

f(lnsinz)coszdz=sinzlnsi.nz—sinz+0.
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Beispiel 2. Fiir alle in einem Intervall von 0 verschied stetig diff ierbaren
Funktionen f gilt
'@ e (L tpey = [Laz= =
@ dz _ff(’v') df(z) _fz dz=Inlz|+C (2 =f@),
P8 az = 1m e + 0. ®

Beispiel 3. Wir werten das Beispiel 3 aus 4.3.2. aus. Es ist

dx 1 dz
X [~ dmz= | B = =
fz - f zd z fz Injzl +C (z=lng),

und da In z > 0 fiir z > 1 gilt, folgt

;‘l:-=1n(mz)+c (@ > 1).

Beispiel 4. Fiir alle von —1 verschiedenen reellen Zahlen « und fiir alle in einem
Intervall stetig differenzierbaren Funktionen f mit f(z) > 0 gilt

Jl@) 1@ dz = [({@) df@) = [ dz

z‘*
=75 +0 =fe)

Ji@yr@d=—= )+ 0 @+ -1, 0

Eine Zusammenfassung von (5) und (6) ergibt

1
— (@) +C fir a1,
f (f(x))‘dl(z)= «+ 1( ) « o

In [f(z)| + C fiir o = —1.

Ist o eine natiirliche Zahl, so kann die Voraussetzung f(z) > 0 entfallen. Ist « eine
negative ganze Zahl, so brauchen wir nur zu fordern, daB f(z) im betrachteten Inter-
vall von O verschieden ist.

Die Ubertragung der Regel (7) auf bestimmte Integrale ergibt

b
» /()»*] fir «%—1,
[f@) dfz) = [a+1( o), fir ®)

[In |#(=)115 fir «=—1.
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Diese Formel gilt unter der Voraussetzung, da8 (f(z))* fiir alle z ans dem Intervall
mit den Randpunkten a, b definiert ist.

Fiir die Anwendung der Substitutionsregel muBte bisher vorausgesetzt werden,
daB sich der Integrand in der Form [(g(z)) ¢'(z) darstellen liBt. Dieser Sachverhalt
liegt leider nur sehr selten vor. Einige wichtige Fille haben wir in den obigen Bei-
spielen behandelt. Weit hiufiger tritt aber der Fall auf, daB der Integrand nicht von
dieser speziellen Gestalt ist. Auch in diesem Fall kann man eine Umformung des
Integrals durch Substitution vorneh wenn die zu substituierende Funktion eine
zusétzliche Voraussetzung erfiillt.

Satz 2. Ist f eine in esnem Intervall I stetige Funktion und g eine stetig differenzier-
bare Funktion, die ein Intervall umkehrbar eindeutig auf das Intervall I abbildet,
80 ist

[t dz = [flg2) @) dz (2 =g"@),z € I). ©

Der Beweis ergibt sich sofort aus (3), indem man z und z vertauscht. Bei der
Anwendung der Substitutionsregel (9) bleibt es allerdings fraglich, ob das rechte
Integral einfacher als das linke ausgewertet werden kann. Es ist ja sogar mdglich,
daB gar keine Substitutionsfunktion existiert, durch die das gegebene Integral in ein
elementar answertbares Integral iibergefiihrt werden kann. Hat man aber eine solche
Funktion g gefunden, so ist die Variable z nach ausgefiihrter Integration durch die
Umkehrfunktion g-1(z) der Substitutionsfunktion z = g(z) zu ersetzen.

Wir geben noch einige Erléuterungen fiir den formalen Umgang mit der Substi-
tutionsregel (9). Bezoichnen wir die Umkehrfunktion von g mit A, so treten im Ver-
laufe der Rechnung Gleichungen der Form

z=g@), z=h)
auf, die durch ,,Auflésung* inander hervorgel Je nach den Erfordernissen
hat man hierbei von der ersten oder iten Gleich hen. In jedem Fall

wird aber, wie wir aus (9) ersehen, die Ableitung der Fuﬁtion g ='bem“)t,igl;. In manchen
Fillen ist es zweckmiBig, diese Ableitung nicht unmittelbar, sondern mit Hilfe
der Formel

v'(z) = .._l_.
Kg(2)
fiir die Ableitung der Umkehrfunktion einer Funktion zu bestimmen. Fiir die Aus-
fiihrung der Substitution (9) wird man also ein Schema der Form

z=h(@), =z=4g@),

dz , de (10)
= =Hk(z), - =g'()
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fatellen, wobei die Ableitung von % nicht in allen Féllen benstigt wird. Wegen der
letzten Gleichung kann man sich den Inhalt der Substitutionsregel (9) formal wie
folgt einprigen: Im Integral f f(z)dz setze man z = g(z) und ersetze dz durch

by
Beispiel 5. Bei der Auswertung des Integrals
fsin 2z — 1) dz
setzen wir
z=2z—1, z=z+1, E=l
2 dz 2

und erhalten

1
i — 1)dz = [sinz.—dz
fsm(2z ) fsmz )
1
=—_;cosz+0 (z=22-1),

fdn(%—l)h:—%cos(h——l)+0.

Beispiel 6. Die Grundintegrale 4.2.2. (24), (25) konnen mit Hilfe der Substi-
tutionsregel wie folgt gewonnen werden. Mit

z = cosh z, z = arcosh z, %=sinhz z>1)
erhalten wir
f de, =f ! sinh z dz
Va2 —1 Veoshiz — 1

8inh z
=fsinhzdz=fdz=z+c (z:—a.reoshz),

f—d-z——-=srcoshz+0 z>1).

V= -1

Ganz analog ergibt sich 4.2.2. (23), indem wir z = sinh z substituieren.
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Beispiel 7. Wir berechnen

f_dz__ (1)
V42* + Bz + C
fir
a) A= 4, =12, C= 25,
by 4= 4, B =—12, C=-1,
0) A=—4, B = 12, = 7,
d) 4=—4, B= 12, = —25,
e) A= 4, B=—12, C=
Es ist
(22 — 3)* + 4% im Fall a),
2z — 3)» — 4* im Fall b),
Ar*+ Bz 4+ C={ —(2x— 3+ 4% im Fallc), (12)
—(2z — 3)2 — 4* im Fall d),
2z — 3)* im Fall e).

Der Fall d) braucht nicht weiter betrachtet zu werden, da der Radikand stets negativ
und der Integrand folglich nirgends definiert ist. In den Fillen a), b), c) fiihren wir die
Substitution

2z — 3 dz
4 ' dx
durch und erhalten

L2
=

z =

-4 2
2

f dx =f 2dz
Y@z —3yp+ 4 V4P £ 4

e -5

In jedem der drei Fille stoBen wir auf ein Grundintegral, und zwar ist

f———-—=-1—arsinhz+0 (z=2z—3),

2z — 3 + 4 2 4

f————zz d:‘ = =%arcoshz+0 (z=2x_3,z>l),
Yoz —3p—4a

2z — 3
4

=%srcsinz+0 (z= ,|z]<l).

f de
V—@z -3+ 4



Daher ist
f————d‘ =lemmnZ=3 ¢,
V4t — 122 + 26 2 4
dz 1 2z —3 7
————————— = — arcosh +C (z>—),
f«w—m—'l 2 4 2
f————dz—=lamsinzz_3+0 (@z—3p < 4).
V=4 F 122+ 7 2 4
Im Fall e) setzen wir
dz dz 1
=2—-3, —=2, — ==,
? dz dz 2
und es folgt
==l fE
Vax® — 122 + 9 [22—31 2 Il
_=lsgnz £=lsgnzln|z|+0 (z=2x—3).
2 z 2
Somit ist

%ln(zz—:i)—}-o fiir z>%,

f &
Vi —1
et — 122+ 9 —%h(3—2z)+0 fir z<%.

Die Umformungen (12) erldutern, wie man im allgemeinen Fall bei der Auswertung
eines Integrals der Form (11) vorzugehen hat. Wenn der Integrand in einem Intervall
definiert ist, ist dieses Integral stets elementar auswertbar.

4.3.4. Substitutionsregel fiir bestimmte Integrale

Wir iibertragen die im vorigen Abschnitt behandelten Substituti geln auf be-
stimmte Integrale.
Satz 1. Ist g eine sm Intervall (a, b)) stetig differenzierbare und f eine im Werte-
bereich von g stetige Funktion, so gilt
2(b)

b
[Hlo@) ¢'(z) dz = [1(2) dz M
e g(a)
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1] 7o)
[Ho)) dg(@) = [tz) d. @
a ole)

Beweis. Ist F eine Stammfunktion von f, so ist die Fanktion F(g(z)) nach 4.3.3.,
8atz 1, eine Stammfunktion von f{g(z)) g'(2), und aus 4.2.1., Satz 3, folgt

1] o)
[Ho@) ¢ (@) dz = Flg)) — Flg(a)) = [#z) dz.
. gla)

Beispiel 1. Es ist
Ed

T
eweoszdx=fe"“dsinz
°

°“-»I!

=
=fe:dz=fe‘dz=e—l.
sin 0 ]

sin

Beispiel 2. Setzen wir g(z) = —z in (2), so erhalten wir
[ o []
J1@) dz = [{(—z) d(—2) = — [f(—2) dz,
[ [
[te) dz = [{(—2) da.
-0 (1]
Es folgt

[H=) dz = [(f(z) + {(—2)) dz,
-a [

und speziell gilt
[i@)dz =2 [f@)dz  (f gerade), @

-a o
[H@yde =0  (f ungerade). @

Wir iibertragen auch die Substitutionsregel 4.3.3. (9) auf bestimmte Integrale.
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Satz 2. Ist | eine in einem Intervall (a, b)) stetige Funkiion und bildet die stetig
differenzierbare Funktion g ein Intervall umkehrbar eindeutig auf das Intervall [a, b)
ab, 80 st

b e
J1@) dz = [flg(2) ¢'(2) da. ®)
a #a)

Der Beweis ergibt sich aus (1), indem wir g(a) = «, g(b) == f setzen und anschlieBend
x, B wieder in @, b umbenennen.
Die Forderung der Umkehrbarkeit von g ist bekanntlich gesichert, wenn die

Ableitung von g im betrachteten Intervall nicht verschwindet. Fiir die numerische
Rechnung empfiehlt sich das Schema

z =g(z), z = h(z),
2 v,  «=ha)
B =h).
Hierbei sind «, # die G des transformierten Integrals.
Beispiel 3. Wir werten das Integral
fo1

Jzln (@ + 1) dz
1

aus und setzen

In@z*+1)=z2, z=)e&—1,

m+1)=hs, B¢
dz 2y —1
m(fe—1"+1)=1.
Es folgt
=

len(z’+l)dz f}‘ —1.z.

1
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Beispiel 4. Wir betrachten das Integral

1
[Vi—7& o0s=sesy

Es stellt den Flicheninhalt des in

[4
Abb. 4.19

schraffierten Bereichs dar. Die Substitution

T =co82 (ngg-;i),

Z = Arccos 0=z,
& = arccos a,

0 = arccos 1,

sinx =}1 — cos? =}/1—a‘,

fiihrt zu
1 [
JVT=Pde=—[ sin*zdz
L] a
=1 [sinzcosz—z]°
=3 X

= = [srccosa — a}T=a.

z =coshz (z=0),

2% — 1 =sinh z,
%’:— =sginhz
z = arcosh z =z=1),

« = arcosh a,

0 =arcosh 1,

sinhx = Yeosh? w — 1 = Ya® —1,

s

2 —ldr = ! sinh? = dz

-

f

[sinh z cosh z - z{]

2o~ rofm

[a Va? — 1 — arcosh u] .
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Addieren | Subtrahieren
wir den so bestimmten Inhalt
zum Inhalt vom Inhalt
%al‘l—a’ %076’—1
des Dreiecks mit den Eckpunkten 0, P(a, 0) und
P(a,Vl—a‘), | Pla,¥ar=1).
so erhalten wir fiir den
Kreissektor Sg (Abb. 4.21) Hyperbelsektor Sy (Abb. 4.22)
y=Ya2-7
i
!
i
! 5 |
| 1
1 a
Abb. 4.21 Abb. 4.22
die Inhaltsformel
1 1
w(8x) = 3 arccos a@. u(Sy) = ) arcosh a. (6)
Speziell ergibt sich fur @ = 0 der Inhalt
des Viertelkreises zu %
Diese Gegeniiberstellung rechtfertigt unter and die Bezeichnung ,,Hyperbel-

funktionen. In Analogie hierzu werden die trigonometrischen Funktionen auch
,»Kreisfunktionen* genannt.

Beispiel 5. In der Wahrscheinlichkeitstheorie spieltduaauﬁache Fehlerintegral

fme-"dz=2f¢-"dz
—oc [
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(vgl. (3)) eine groBe Rolle. Die Substitution
dz 1 _1
= V;, -I = E- t 3

ergibt, da mit z auch ¢ = 2? gegen oo strebt,

f,—s'a,=2f%r%e—'au=r(%)
—00 o
(vel. 4.3.2. (11)), und wegen 4.3.2. (26) erhalten wir

fa-"dz=}/;. )

43.5. Integration rationaler Funktionen

Das wesentliche Ziel dieses Abschnittes ist der Beweis von
Satz 1. Jede rationale Funktion ist elementar integrierbar.

Zum Beweis dieses Sat: den einige Hilfsmittel aus der alg Theorie
der rationalen Funktionen bendtigt, vor allem der Satz von der Partialbruchzerlegung

tionaler Funkiv Hi h kann jede rationale Funktion als Summe einer
ganzrationalen Funktion und von rationalen Funktionen der Form

hraienh

A Bz + D
@—ayr’ (—0p+e)

dargestellt werden. Wir haben auf Grund dieses Satzes nur noch zu beweisen, daB
diese speziellen rationalen Funktionen elementar integrierbar sind. Zunichst ist

»=12,...;a,bc, 4,B,DcR,c+0)

f 4 dz=Aln[z—a| 4+ C, (1)
(z —a)
A4 A 1
f(z_a),d@=mm+0 (p=23,..). (2)
DbhtagmledeszweitenTypsmlegenwirindieSnmme
dz D | —m ——— 3
» [ et [ o= P @
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Thre Integration beruht auf den Ableitungsformeln

z—bY c
S = @
2(:1: —b)
— b+ et
f m—mw—w
(@ — b)’ + c')"' ({@—dp+ap’
[«—z—_za}_—:o-_):] === b (@ — 2 + o}
=((z — b + N? + 2(1 — p) (& — B (= — D) + )P
= ((@ — b + MNP + 2(1 — p) (= — b + &%) (@ — b)* + &¥)*
—2%1 — p) (& — b)* + &3)*
__ 20— __ 2p-—3
(z—bp+ap  (@—bp+c)pt
Aus (4), (6) folgt

(n(@ -+ o) = ®)

(6)

™

1 1 z—b

f(z_";‘:_c. %ln((z—b)’+c’)+0.

®

Wegen (3) gibt es somit zu B, D stets reelle Zahlen 8, 4 mit

Bx +D N
f@—w+e“=p

Im Fall p =2, 8, ... lesen wir aus (6), (7) die Integrationsformeln

W) +C. @)

1 1
fw_w+ﬂ' W _ple—mrap O wszaﬁg
— 1 z—b
(@—bp+eP 20 —1) [z — b + S
423 da P=23...

2p — 1 —bp + APt
@ — 1) (@ — 0P + - h
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ab. Die letzte Formel ist eine Rekursionsformel, mit deren Hilfe der Exponent p
stufenweise reduziert werden kann, bis wir zum Exponenten 1 gelangen, so da8 wir
(8) anwenden kénnen. Fassen wir die dann in (10), (11) auftretenden echt gebrochenen
rationalen Funktionen mit den Nennern ((a: — 34} (j=1,...,p — 1) zu einer
rationalen Funktion mit dem Nenner ((x — b2+ c')"l zusammen, so erhalten wir
im Zihler eine ganzrationale Funktion g, deren Grad hichstens 2p — 3 ist. Somit ist

Bz + D _ g(z) z—b
(Etrrap = (@ b+ o T 2o

(p=2,8,...;degg < 2p — 3). (12)

+C

Die Formeln (1), (2), (9) und (12) liefern nun zusammen mit dem Satz iiber dic
Partialbruchzerlegung rationaler Funktionen den Beweis von Satz 1.

Um eine rationale Funktion zu integrieren, gehen wir wie folgt vor.

1. Mit Hilfe des Euklidischen Algorithmus priifen wir, ob Zihler- und Nenner-
funktion teilerfremd sind, bzw. kiirzen gegebenenfalls einen groBten gemeinsamen
Teiler.

2. Wir stellen die rationale Funktion (mit dem Verfahren der Restdivision) als
Summe einer ganzrationalen Funktion f(z) und einer echt gebrochenen rationalen
Funktion r(z) dar. Das Integral von f kann unmittelbar berechnet werden.

3. Wir zerlegen den Nenner von r(z) in die voneinander verschiedenen Linear-
faktoren (z — z;}** (i =1,...,k) bzw. quadratischen Faktoren ohne reelle Null-
stellen

(=82 +ep)r  (G=1,...,m.

4. Sind alle p; und alle g; gleich 1, so machen wir entsprechend (1), (9) den Ansatz

Jre)de =iz —z| + - + Ao — =

+BIn(@— 5P+ 6% + - + Baln(z — bu)? + oul)

+ Dy arcten =% 1 ... £ D arctan 2= 4 . (13)
(2% Cm

Ist wenigstens ein p; bzw. g; groBer als i. so treten wegen (2) bzw. (12) echt gebrochene
rationale Funktionen bei der Integration auf. Da die Summe echt gebrochener ratio-
naler Funktionen mit teilerfremden Nennern wieder echt gebrochen ist, machen wir

) Wie wir in 2.4.4. bemerkt haben, ist eine exakte Bestimmung der Zahlen z;, b,», ¢; nur in
seltenen Fillen moglich. Das hier beschriebene Verfahren besitzt daher mehr theoretisch-struk-
turelle als praktische Bedeutung.
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den Ansatz
h(z)
@ =zl @ — P (@ — b + 0\’)"—' ((3 — ) + 0-’)""’
+ A4z —z| 4+ AyIn |z — z
+ ByIn (@@ — b + ¢8) + - + Baln (@ — bl + )
z—
L2

fr(z)d¢=

z — by

+ D, arctan b + .-+ + D,  arctan

+C, (14)

wobei der Grad von k(z) kleiner als der Grad des Nenners zu wihlen ist. Die Koeffi-
zienten A;, B;, D; und die Koeffizienten der ganzrationalen Funktion k(z) ermitteln
wir, indem wir die rechten Seiten von (13) bzw. (14) differenzieren, mit dem Nenner
von r(z) multiplizieren und nach der Methode des Koeffizientenvergleichs mit dem
Ziihler von r(z) vergleichen. Das sich ergebende Gleichungssystem muB suf Grund
der abgeleiteten Formeln (1), (2), (9) und (12) 16sbar sein.

Dieses Verfahren ist universell anwendbar. Der Rechenaufwand kann aber in
konkreten Beispielen durch gewisse Modifikationen reduziert werden.

Beispiel 1. Es ist

dz dx
fz’+4=z+3—f(m+1)(z+3)—A]nlz+l|+Bhlz+sl+0’

woraus durch Differentiation

1 __A B
@+1)@+3) z+1 z+3
1=A@z+3)+Bz+1)

folgt. Koeffizientenvergleich ergibt 4 + B =0, 34 + B = 1, und wir erhalten

dz 1 1 ) |x+l
—_— e — ] J— 3 = .
fz’-!—b:-:—f% 2nl:v:—i—ll 2ln|x+“l,+0 lnl/z+3+0

Beispiel 2. Es ist

z+3 _ z+3
z-+z'—2d‘_f(x_1)((z+1)-+ 1) &
=Alnjz— 1|+ Bln((z + 1?+ 1) + Darctan (z + 1) + C,
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z4+3 - A 2B(z + 1) + D
243 -2 z—1 @+1p+1 @+1p+1°
z+3=d(E+10+1)+2Be+1)(z—1)+D—1),
z+3=(4+2B)2*+ (24 + D)z + (24 —2B— D),

z+3

2 a2

da:=%ln|z-l|—%ln(z‘+2c+2)

—%mt&n(z+l)+0.
Beispiel 3. Es ist
—20t — 2% | 22 4 22 + 4 dx=f—2z‘—2z'+2z’+?a+4
?+20+3 +4P + 3+ 22+ 1 @+1p @ +1p
E2* 4 Bz + E,
E+1)E+1)

=Aln|z+ 1)+ Bln(z*+ 1) + Darctan z + + C.

Differentiation ergibt
220+ 2+ t+4 4 + 2Bz + D
@+ 19 (2 + 1 z+1 P41 P41
+(ZE,z+E.)(z+l)(z'+1)—(3a:’+2a:+l)(E,z'+E,z+E.)'
@+ E+ 10
—2A— 2%+ 228+ 22 + 4= A(z +1) (z* + 1)*+ (2Bz + D) (z + 1)* (z*+ 1)
+.2Ez + By) (& + 1) (a* + 1) — (3a* + 22 + 1) (By2* + Eyz + E,),
—24—284 20+ 2t 4=AP+ 22+ 2P+ 20+ 2+ 1)
+ 2B(z* + 224 + 2 + 22° + @) + D(at + 2% + 22 + 22 4+ 1)
+2E@t+ 2P+ +2)+ By + 2+ 2+ 1)
— E\(3at + 22* + 2%) — Ey(32* + 2* + 2) — Ey(32* + 22 4 1).
Durch Koeffizientenvergleich gewinnen wir das Gleichungssystem
0=4+ 2B,
—2=A+4B+D—E,,
—2=24 + 4B + 2D — 2E,,
2=24 +4B +2D + E, — E, — 3E,,
2=A 4 2B + 2D + 2E, — 2E,,
4=A+D+E,—E,
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mit der Losung 4 =2, B=—1,D =0, E, =0, E, = 1, E; = —1. Somit ist

—274 — 20% 4 25 + 2 + 4
=2In|z+1] —ln (@ + 1
P g i gy g v gy fed bl el G

z—1
—_—C
terneTy
AbschlieBend bemerken wir, daB die Koeffizienten, die bei den Ansitzen fiir die
Integration rationaler Funktionen auftreten, auch mit anderen, zum Teil weniger
zeitaufwendigen Methoden berechnet werden k Entsprechend der Bemerkung
in der FuBnote auf S. 168 verzichten wir auf eine ausfithrlichere Behandlung.

Eine einfache Folgerung aus Satz 1 ist

Satz 2. EamFummﬁmkFunlamvtmzm: Variablen, d. h., F lasse sich als
Quotient von zwes ganzrat Funkty n zwes Vaﬂablcndantdku Ist dann

H(z) = F(cos z,8in2)  (lz| <=),

80 it die Funktion f elementar integrierbar.

Beweis. Die Substitution
dz 2
SStID%, z=2ucta.nz, Ez-=1+—z’
fiihrt wegen
2tan%
amz=2sm—eos—=2tm% oos'%= ,
l+1:a.|.'|'i
sinz = 2
T 142
z z z 2
=cos? — — sin® — =2coe® — — 1 = -
e 2 2 2 1+a
1—22
cosz =
1422

E4)

Jrow= [1(35 ) rime (=t=3)

und damit auf die Integration einer rationalen Funkti
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4.3.6. Integration und Differentiation
von Folgen und Relhen von Funktionen

Wir betrachten in di Abschnitt Funktionen f, die gemiB 2.6. als Grenzwerte
von F\mktmnen!olgen (fa) bzw. als 8 von Reihen 3 f, dargestellt sind, und

hen den Z h zw:schen den Integralen der Funktion f und der
Funktionen f,. Unter der Vor ung der gleichmiiBigen Konvergenz li8t sich eine

sehr einfache A g 1

Satz 1. Es ses (f,) eine gleichmdipige konvergente Folge von Funktionen, die auf dem
abgeschlossenen Intervall [(a, b)) stetig sind. Dann ist

b ®
[lim @) dz =lim [ fo(a) de. m
6 N0 f-—>00 o

Beweis. Die Grenzfunktion f(z) = lim [,.(z) ist nach 2.6.2., Satz 1, stetig

Wegen 2.6.2. (1) gibt es zu vorgegebenem &> 0 ein N mit [{(x) — [o(2)| <—
firn = N,a <z < b. Es folgt —a

b b b
[ t@) dz — [ fa(@) de| < [ Ifz) — fo(z)] do

b
= i fd.z=s,
b—a
L]
und Satz 1 ist bewiesen.

Den Inhalt dieses Satzes driickt man hiufig wie folgt aus: Bei ykwlmuiﬂsger
Konvergenz darf die Reihenfolge von G ribildung und Integ verl,
werden.

Die zu (1) analoge Formel zur Integration gleichmiBig konvergenter Reihen stetiger

Funktionen lautet

b o ™ b
[ 2 h@dz=3 [ fuda), @

o #=0 =00

d. h., gleichmiiBig konvergente Reihen stetiger Funktionen kann man gliedwesise
sntegrieren. Fiir reelle Potenzreihen ist die Voraussetzung nach 3.4.1., Satz 2, stets
erfiillt, wenn das Intervall [(a, b)) im Innern des Konvergenzkreises liegt.
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Beispiel 1. Wir berechnen
T

frmirae
o

=0

Nach Beispiel 4 in 2.6.2. ist die zu integrierende Reihe gleichmiBig konvergent, und
aus (2) folgt

: H
S sn(10%) 2 1 . 10%z) dz
f.é:, w0 E= ,.é; 107 .,fsm( 2

4
=_— 3L [deos (107)

-Gl )
=1,002 — %}/é

Die in Satz 1 geforderte gleichmiBige Konvergenz ist fiir die Zulissigkeit der
gliedweisen Integration zwar hinreichend aber keineswegs notwendig. Integrieren
wir zum Beispiel die in 2.6.2., Beispiel 3, definierten Funktionen f, iiber ein beliebiges
Intervall [(a, b, so strebt die Folge der Integrale gegen 0, also gegen das Integral der
Grenzfunktion, obwohl die Folge nicht gleichmiBig konvergent ist. Bei nicht gleich-
miéBiger Konvergenz ist sorgfiltig zu untersuchen, ob die Grenzprozesse miteinander
vertauscht werden diirfen.

In diesem Zusammenhang untersuchen wir auch das Problem der gliedweisen
Differentiation von Folgen und Reihen von differenzierbaren Funktionen. Fiir
Potenzreihen haben wir es bereits in 3.4.2., Satz 4, behandelt. Im allgemeinen Fall
ist aber die gleichmiBige Konvergenz nicht hinreichend fiir die gliedweise Differen-
tiation. Zu deren Nachweis muB man vielmehr die Folge der Ableitungen der Glieder
auf gleichmiBige Konvergenz untersuchen.

Satz 2. Es sei (f,) eine Folge von auf dem abgeschlossenen Intervall (a, b] stetig
differenzierbaren Funktionen. Ist die Folge (f,') auf diesem Intervall gleichmifig
konvergent, so existiert fiir jedes ¢ € [(a, b)) die Grenzfunktion

g(@) :=1lim (fo(@) — fale)  (z € [a, B]), @3)
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und es vst
g'(@) =Ef-'(¢)- 4

Beweis. Da die Folge der Ableitungen f,’ auch in jedem Teilintervall von [a, b))
gleichmiBig konvergiert, folgt aus Satz 1 stets

Jtim £,/(¢) &t = lim (1) dt =lim (fu(2) — fa(c)) = g(2), )

womit die Existenz der Funktion g bewiesen ist. Mit dem Hauptsatz der Differential
und Integralrechnung folgt aus (5) die Behauptung (4).

In Satz 2 wird keine Aussage iiber die Konvergenz der gegeb Folge f, ge-
macht. Unter einer zusitzlichen Vor tzung kann eine Verschirfung von Satz 2
bewiesen werden.

Satz 3 Ea ses (f,) eine Folge von auf dem abgeschlossenen Intervall [a, b)) stetiy
diff baren Funltionen, und die Zahlenfolge (f,(c)) sei fiir wenigstens ein ¢ € [a, 5]
kommgent Ist dann die Folge der Ablemmgen [, auf dem Intervall [, b] gleichmapsg
konvergent, so existiert die Grenzfunktion

f@) = ._h: h@ (@elab]) ©)

sm Sinne der punktweisen Konvergenz. Diese Funktion ist stetig differenzierbar, und
es ist

(@) =lim f,(z). Y}
Beweis. Die Funktion g sei durch (3) definiert. Setzen wir
f@): = glz) + lim fa(c) =._'1!§ (fa@) — fale) + ._ha fule),
so gilt offensichtlich (6). Da f und g sich nur um eine additive Konstante unter-
scheiden, ist g’ = f', und die Behauptung (7) folgt aus (4).
4.3.7. Aufgaben

1. Man beweise, daB die Integrale
8) [z%¢*dz, b) [coszdr, o) [**sinzdz

fir natirliche Zahlen # el tar integrierbar sind und fir negative ganzzahlige n auf die
(nicht elementar auswertbaren) Integrale

.)f%az. b)f“’—:fdz, ) ‘i%’az

gurickgefihrt werden konnen.
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2. Man werte die folgenden Integrale aus:
o
J@ —1)coszdz, [2*ooezdz,
°
[(einh z)*dz,  [sin®zdz.
3. Mmbmhmdanlnh&ltdarFlﬁohaF,diadumhdioanhanduFunkhonenl(z)=z‘lnz,
g(z) = —(In2%) (1 < 5 ¢) und die Gerade z = ¢ begrenzt wird.
4. Man werte die folgenden Integrale aus:

fin@z+bds  @+0), fweiz.

‘008 (z1) dz
fz, dz, fv;wm' [lFFd e @>o,

Ll
cos Z) In (1 + sinz)dz,  [(2z + 2 cos z) e**+38ins dz,
)

°
- 2wl

2
A+ Pz, fds,
-1 o

1
2z 8
ofH_—z‘dt. lflsz—lciz.
5. Man zeige, daB die Graphen der Funktionen
=2V +1lz—= (0szs4),
o) =21z —Viz—2* (0=<z<4)

den Rand einer Fliche F bilden, und besti den Flacheninhalt von F.

6. Man werte die folgenden Integrale aus:

2 —3z43 2 — b4z —1
P —da—Tz+ 10 228 + 1)

7. Man gebe den Inhalt der Fliche F an, die durch die Funktion

1
1) = ¥ ows’

die z-Achse und die Geraden z = ——;‘-.z=%begreutwird.
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8. Man gebe eine P ik icklung der Funkti

f'i':'de, frt'ae

an,

9. Man zeige, daB die Reihe
© [om e+

-—1(—; - »+ 1)

im Intervall [0, 1] gleichmiiBig konvergent ist, daB die durch gliedweise Differentiation ent-
stehende Reihe fir alle z cgo. 1] konvergiert, aber im Punkt z = 1 nicht die Ableitung der
durch die Reihe gegebenen Funktion liefert.

4.4.  Weltere Anwendungen der Integralrechnung

4.41. Bogenlinge, Kriimmung

Nach haulichen Vorstellungen kann man gewissen Kurvenstiicken
eine Bogenldnge zuordnen. Wir wollen diesen Begriff prizisieren. Ein Mengensystem
8 von Kurvenstiicken Cj, ..., C; heiit eine Zerlegung eines Kurvenstiicks C, wenn
€ =0, v uC, ist und wenn die Kurvenstiicke C;, C; fiir ¢ % j hochstens einen
Randpunkt gemein haben. Die Verbindungsstrecken §; der Randpunkte von C;

Abb. 4.23

(¢ =1, ..., k) bilden einen dem Kur tiick C esnbeschrieb Polygonzug (Abb.
4.23). Die Summe 8(8) der Lingen aller Strecken S; bezeichnen wir als die Linge
dieses Polygonzugs. Sie kann offensichtlich nicht linger als die zu definierende Linge
des Kurvenstiicks sein und kommt dieser Zahl um so niher, je ,feiner** wir die Zer-
legung wiihlen. Diese heuristischen Betrachtungen fithren zu folgender

Definition. Ein Kurvenstiick C heiBt rektifizierbar (streckbar), wenn die Lingen
aller einbeschrieb Polygonziige eine obere Schranke besitzen. Die kleinste obere

Schranke heiBt in diesem Fall die Bogenlinge s(C) des Kurvenstiicks C.

¢
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Nach dieser Definition ist
3(0):= m;p 8(3), M

wobei 3 alle Zerlegungen von C durchliuft. Es gibt Kurvenstiicke, die nicht rekti-
fizierbar eind, doch gilt der
Satz. Jedes glatte Kurvenstiick C ist rektifizierbar. Ist x =1t(t) (a St < b) eine
Parameterdarstellung von C mit stetig differenzierbaren Koordinatenfunktionen, so ist
b

s(0) = [lew)l dt. @

e

Beweis. Jeder Zerlegung 8 von C kann umkehrbar eindeutig eine Zerlegung
Fra=t<th<-<k{=>b

von [a,b] zugeordnet werden. Wir konnen dabei noch voraussetzen, da C; die
Randpunkte 1, = t(4;_;) und t; = (;) (¢ = 1, ..., k) besitzt. Dann ist

I}
S(8) =3It — vl @)
im1
die Linge des einbeschriebenen Polygonzuges. Zur Vereinfachung der Schreibwei
beschriinken wir uns jetzt auf ebene Kurven. Der Beweis fiir Raumkurven verliduft
analog, es ist nur eine dritte Koordinate hinzuzufiigen. Fiir ebene Kurven ist

=t = (2() — 2(tima), Y1) — ylti),
und nach dem Mittelwertsatz gibt es im Intervall J¢,_,, t;{ Zahlen 7;, 7;' mit
4 — tig = (&%) 6 — i)y 905 (6 — tica))-
Ist K eine Schranke von &(t) und y(t) fiir a < ¢ < b, so folgt aus (3)
:
8(8) =‘Z; l@wa, 9 )} @ — tia)s (C)]

8(8) < 2K 2‘: (b — tiy) = 2K(b — a).
i=1

Somit ist C rektifizierbar, und nach Definition der Bogenlinge als Supremum kénnen
wir zu vorgegebenem & > 0 eine Zerlegung 3 mit

0<s(0) — $3) < % )

finden. Da die Linge eines einbeschriebenen Polygonzuges bei einer Verfeinerung
der Zerlegung héchstens gréBer wird, gilt (5) auch fiir jede Verfeinerung von 3.
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Die Funktion f mit f(f) = [£(t)] = |(2(), #(t))] ist stetig. Wir setzen
1] >
J = [f@) dt = [lie) . ©)
Nach dem Mittelwertsatz der Integralrechnung gibt es im Intervall Jt;,, & ein z;*
it
™ 1] 3 k
J=3 [fe)d =3 {z* (; — ti). m

=1ty =1
Wir bestimmen ein 4 > O derart, daB aus |t — ¢''| < & stets

o ) — G < —
() — &) ) — 907 < o

folgt. Ferner wihlen wir die Zerlegung 8 so fein, da8 der Durchmesser von §* kleiner
als 4 ist. Aus (7) und (4) folgt nun
3
W =831 = 3| 1(ee), )] = e, s | - 6 — -
Wegen
[le.b)] —J@.0)]| sje—a,b—-b)| Sla—a'| + b — b
ist weiterhin

W —8(8) éé’ (12*) — &) + [96*) — §E1) G — tea)
3
S Skt =1,
und zusammen mit (5) erhalten wir
18(C) — J| = 18(0) — 8(B)| + |/ — 8(8)| <ee.
Da & beliebig gewéhlt war, ist unser Satz bewiesen.
Fir eine ebene Kurve lautet (2) in ausfiihrlicherer Schreibweise

1]
#(0) = [ V(@) + (g0 de ®
und fiir eine Raumkurve

[]
#(0) = [ VRO + O + (o) de. ®
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Die Bogenlinge des Graphen einer stetig differenzierbaren Funktion y = f(z)
(8 < 2 S b) ergibt sich nach 3.1.5. (4) zu

b
o(0) = [ Y1+ (f@)dz. (10)

’_\

Abb. 4.24

=

Beispiel 1. Die archimedische Spirale (Abb. 4.24) besitzt die Parameterdarstellung
z=ctcost, y= —ctgint t>0),

wobei ¢ > 0 ist. Wegen

#e=clooat — tsint), § == —c(sint + £oosf)
und
B+P=c(1+0)

hat das zum Intervall (a, b)) gehérende Teilstiick C,> dieser Spirale die Bogenlinge

3(Ch) = f Yer(1 + %) dt = —;— Y144 u'sinht]‘:.
Beispiel 2. Setzen wir f(z) := cosh z in (10), so ergibt sich fiir die Bogenlinge der
Kettenlinie
3 3
8(0.%) =j V1 + ainh®z da:=feoshzda;
e [ ]
= ginh b — ginh a.
Beispiel 3. Fiir die Ellipse
t(t) = (@cost, bsint) (0=t=2n)
gilt £(¢) = (—a sin ¢, b cos t), und ein Ellipsenbogen hat die Linge

[
&(C}) = [ YaPuind ¢ + b¥ costt dt.
4
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Dieses Integral ist fiir a == b nicht elementar auswertbar und heiBt wegen seiner geo-
trischen Bed g ein elliptisches Integral. Fiir @ = b, d. h. fiir die Liinge eines
Kreisbogens erhalten wir

s
a(0£)=afdt =at; — t). (1)

ist also die vom Krei kt P(1,0) g

Fiir den Umfang des Kreises mit dem Radius a erhalten wir aus (11) die Formel
U = 2az, womit die in 2.3.1. gegebene Definition der Zahl = ihre Rechtfertigung er-
fiihrt.

Mit Hilfe der Bogenlinge definieren wir einen weiteren wichtigen Begriff der
Kurventheorie, nimlich den Begriff der Kriimmung. Wir betrachten zwei benach-
barte Kurvenpunkte ry = t(to), t; = x(¢,) einer glatten Kurve.

Der Parameter ¢ in der Parameterdarstellung t(t) = (oost sin ¢) des Einheitskreises
Bogenlinge.

r

Abb. 4.25

Die zu diesen Punkten gehérenden Tang, vektoren t,, t, schlieBen einen Winkel
ein, den wir mit «(t,, t;) bezeichnen (Abb. 4.25). Bei gleichbleibender hi h
kleiner Bogenliinge s(C}!) bildet die GroBe dieses Winkels ein Ma8 fiir die Abweichung
der Kurve vom geradlinigen Verlauf. Man bezeichnet daher den Quotienten von
a(t, t;) und s(ty, ;) : = 3(C}!) als mittlere Kriimmung des von 1, nach 1, fiihrenden
Kurvenbogens. Existiert der Grenzwert

“(tﬂ’ tl)
k) =l o) @

50 bezeichnet man ihn als die Kriimmung der Kurve C im Punkt t,. Setzen wir

sinz fir 240,
S@) = z

1 fir =0,
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gr

so gilt S(z) -1 fir z -0 (vg}‘ 2.5.1. (8)), und es ist zS(z) =sinz (x € R). Aus
4 — &, folgt a(ty, t;) — 0. und daber ist
aity, 1)

k(t.,)_th(a(to ty)) —=L YRR,

_ _sin a(to. 1)

tote  Sloe b))
Im Fall einer Raumkurve ist nach Definition des Vektorprodukts
Bl . T
it TEh) |

sin a(ty, ty) = [to X t| =

Wegen i(t;) X i(ty) = 0 konnen wir dies auch in der Form

sinatty 1) = )X (E6) = £t

[E(o)! - 1E(t))!
schreiben. Dividieren wir durch

[
ot 1)) = [lHOI dE = ED (1 —t) (L STSH),
- ;

so tritt der Quotient von £(f;) — £(f,) und £, — ¢, auf. Sind die Koordinatenfunktionen

von t(f) zweimal stetig diffe ierbar, so ist
lim £60) — ) _ i),
s, h—h
und wir erhalten
li(to»x £ — :(t..)
k(t,) = lim _‘_.‘;_._0_’
) = e, TG ) )
|E(to) X E(to)]
k(t)) = ———. (13)
* et
Hierfiir schreiben wir kiirzer
It Xl
= - 14
£ (14)

Ist z(t) = O fiir alle ¢, so konnen wir die Raumkurve als ebene Kurve auffassen. In
diesem Fall ist

IXi= (9,0 X &9 0 = (0,0, — &j),
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und gemiB (14) hiitte man
P
V& + 4%
zu setzen. Im Gegensatz zn Raumkurven kann man jedoch der Kriimmung ebener
Kurven sinnvoll ein Vorzeichen zuweisen, und man bezeichnet
39— 2y
=22 (18)
B+
als Kriimmung der ebenen Kurve t(f) = (z(t), (). Eine genauere Analyse ergibt,
daB k positiv bzw. negativ ist, je nachdem, ob die Kurve fiir wachsende ¢ nach links
bzw. rechts von der Tangentenrichtung abweicht.
Fiir die Kriimmung des Graphen einer zweimal stetig differenzierbaren Funktion
y == f(z) erhalten wir gemiB 3.1.5., Beispiel 3, die Formel

k= V#f" (16)
Beispiel 4. Fiir die Funktion y = sin « erhalten wir
sin
YT+ coz®
Beispiel 5. Fiir die Ellipse (vgl. Beispiel 3) gilt
ab
ad gind ¢ 4 b® cos? ¢ ’

k=—

k=
Indenzuf,—=Oundt = % gehorenden Scheitelpunkten gil

a b
ky= F: ky = ;
Beispiel 6. Fiir die Kurve

) 2.
N0) =(¢, eg :')
gilt
i) =@1,2,20, i) =(024),
[E() XE(0)] = (4%, —4,2)] = 42 4 2,
2

[B@#) =1 4 28, k=m.
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4.4.2. Oberfliche von Rotationskérpern

Wir berechnen den Flicheninhalt eines Kreissektors Sy mit dem Radius s und dem
Offnungswinkel* ¢ (Abb. 4.26). Fiir 0 < ¢ < % und s = 1 ergibt sich aus 4.3.4. (6)
die Formel u(Sg) = 52- Fiir beliobiges ¢ > 0 ist der Inhalt nach 4.1.1. (11) mit &

zu multiplizieren, und wir erhalten

W(Sx) = 8- —;— )

Abb. 4.26

Wir betrachten nun einen geraden Kreiskegel mit dem Grundkreisradius r und
der Hobe b (Abb. 4.27). Schneiden wir seinen Mantel lings einer ,,Mantellinie
auf, 5o konnen wir ihn nach unseren Erfahrungen (verzerrungsfrei) in die Ebene
abrollen. Als Oberfliche o(M) der Mantelfliche M des Kegels bezeichnen wir daher
den Inhalt des bei diesem Abrollen entstehenden Kreissektors mit dem Radius
8 =} + kY. Den Offnungswinkel dieses Kreissektors bestimmen wir aus 4.4.1.
(11). Der zum Kreissektor gehérende Bogen hat hiernach die Linge sf, und anderer-
seits ist diese Liinge gleich dem Umfang 2rx des Grundkreises des Kegels. Somit ist

t= H’ und aus (1) folgt
8

o(M) = nrs. 2)

Als niichstes berechnen wir die Oberfliche o(M) des Mantels M eines Kegel-
stumpfes (Abb. 4.28). Er entstehe aus dem geraden Kreiskegel mit dem Grundkreis-
radius r, und der Hohe A, durch Abschneiden des Teilkegels mit der Hohe A, (hy < 4,)
und dem Grundkreisradius r;. Nach (2) ist

o(M) = n(r18, — 1:8;).
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Abb. 4.27 Abb. 4.28

Wegen r,:7, = 8,:8;, 118, = 138, ist.
o(M) = "(’n(’x — 8) + r3(8 — ’a))‘

Der Mantel des Kegelstumpfes mit dem Grund- bzw. Deckkreisradius r; bzw. r,
und der Mantellinie 8 = 8, — 8, hat somit die Oberfliche

o(M) = =n(r, + ry) 8. @)

Diese Formel bleibt auch fiir den Mantel eines Zylinders, d. h. fiir r, = r, giiltig.

Es sei nun y = f(z) eine im Intervall (4, b] stetig differenzierbare iiberall nicht-
negative Funktion. Durch Rotation des Graphen von f um die z-Achse entsteht die
Mantelfliche M eines Rotationskorpers. Wir wollen den Begriff der Oberfliche
o(M) von M definieren. Hierzu withlen wir eine Zerlegung

Ba=z <z < <z;p=0b

des Intervalls (@, b] und bilden den zugehérenden Polygonzug (Abb. 4.29) mit den
Seitenlingen s;. Bei Rotation der Teilstrecken des Polygonzuges entstehen Kegel-
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stiimpfe. Die Summe
3
8(8) := ‘Zl alfex) + f(zia)) & 4)
der Inhalte der Mantelflichen dieser Kegelstiimpfe nihert sich nach unseren anschau-

lichen Vorstellungen um so mehr der zu definierenden Oberfliiche, je feiner wir die
Zerlegung withlen. Wir wollen zeigen, daB sich die Summen 3(8) fiir einen hin-

reichend kleinen Durch d(3) beliebig wenig von dem Integral
3
o) :=2= [{z) V1 + (f @)} d= ®)

unterscheiden, so daB es sinnvoll ist, diese Zahl als Oberflache des Mantels des Ro-
tationskorpers zu bezeichnen.l)

Zum Beweis unserer Behauptung setzen wir
9@ := V1 + (F(2)* = (L, F @)

Dann ist

b k x
olM) =22 [[(z)g(x)dz =22 5  [I(=) g(z) dz,

i=1 20,
und nach dem Mittelwertsatz der Integralrechnung gibt es Zahlen §; mit x;_, < & < z; und
1
o) = 27"2‘ 160 9(80) (@ — =)

Andererseits gibt es nach dem Mittelwertsatz der Differentialrechnung Zahlen §* mit
2y < &* < z;und

& = Vim — 20 + (H(z) — flz)
=V — =z + (FEA) & — 2
= g(&*) (zi — zi1)»

so daB

X
8(8) == .2 l(I("k) + f(=2)) 9(6e*) (20 — 2ia)s
N .
lo(¥) — 8(8)l = “‘Z; 12f(€) 9€0) — (F) + f(ze-1)) 9(E*)] (@ — Z-)

1) Inhaltsberechnungen von Drehflachen treten bereits 1857 bei HuyaENs und 1673 bei LEmNm
auf.
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M.Wogandarsteﬁgkmtvon[undvmldom bgeschl Intervall (4, b] k wir eine
Schranke K beider F' ben und zu vorgegeb &> 0eind > 0'mit
=) — H=*)], lo(=) — g(=*)} < m Iz — =% < 9)

finden. Fir jede Zerlegung § mit d(8) < & ist dsnn
12/(80) 9(80) — (Hz) + H(zi0)) 96

S 16D — HE0l K+ HE) — fow] K + lote) — o) K < =,
lo(an) — 8(8)l < s,
und unsere Behauptung ist bewiesen.

Beispiel. Wir berechnen die Oberfliche des Mantels M der Kugelzone, die durch
Rotation von

f@) =Yt — 2 @sz=<bH)
mit —r < @ < b < r um die z-Achse entsteht (Abb. 4.30). Es ist

(@Y1 +F@)F =r,
[y .
o(M) = 2ar [dz = 2ar(b — a).

Die Oberfliche der Kugelkappe K, mit der Héhe A = r — a ergibt sich hieraus
durch den Grenziibergang b — r, d. h., es ist

o(Ey) = 2arh.
Speziell ist die Oberfliche der Halbkugel gleich 27s3.

Abb. 4.30
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4.4:3. Rauminhalte von Rotationskérpern

Es sei f eine im Intervall [a, 5] stetige Funktion. Lassen wir die zu f gehdrende
Ordinatenmenge um die z-Achse rotieren, so entsteht ein Rolationskorper M, dessen
Quadrierbarkeit wir nachweisen wollen. Die zur z-Achse senkrechte Ebene durch
den Punkt z schneidet den Rotationskérper in einem Kreis mit dem Flicheninhalt
g(@) = a{f(=)). (o)

Wir wiihlen eine Zerlegung

Ba=z <z < <z =b

des Intervalls [a, ] in die Intervalle F; := [z, 2;). Die zwischen den Stufen z;_,
und z; liegende ,,Scheibe* des Rotationskérpers ist dann einem Zylinder mit der
Héhe z; — 2, und einer Grundfliche mit dem Inhalt g(I;) bzw. g(I;) ein- bzw.
umbeschrieben. Daher ist

k
S, 8) ='Z; ady) (@ — @) = p(M)
f=

k -
= AU S 39U (@~ 2) = 5@ B)-
p-

Wegen der Integrierbarkeit von ¢ ist M quadrierbar, und der Rauminhalt von M ist
gleich dem Integral der Querschnittsfunktion g, d. h., es ist

wM) == f (f))? de. @)
Beispiel 1. Der zu
I(x)=-;rz O<z<h

gehorende Rotationskorper K ist ein Kegel mit dem Grundkreisradius r und der
Hahe A. Sein Volumen ist

A
art nrh
”‘K)“Ff”'d"‘T‘
0

Beispiel 2. Der zu
f@y=VYrt—2% (@=z<)h)
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mit —r < a < b < r gehorende Rotationskorper ist eine Kugelzone K,°. Ihr Volumen
ist

»
BEL) == [(* — 2) dz = a{r*(b — a) — % ®* — a%).
e
Fiir a = —r, b = r erhalten wir das Volumen der Kugel K, und zwar ist

4
wE) = 3 ar®.

4.4.4. Cavalierisches Prinzip. Berechnung mehrfacher Integrale

Das in 4.4.3. entwickelte Prinzip der Volumenberechnung iiber die ,,Querschnitts-
funktion‘ g(z), die den Flicheninhalt des Q hnitts in der ,,Hohenstufe z an-
gibt, kann von Rotationskorpern auf beliebige quadrierbare Punktmengen M iiber-
tragen werden.

Satz 1. Es ses M eine quadrierbare Menge des Raumes Ry, und
M(z) :={y,2): (=, ¥, 2).6 M) (6]
sei die Projektion des Querschnitts von M in der Hohe x auf die y,z-Ebene. Fiir z < a
bzw. y > b sei M(z) = . Setzen wir
q(@) := p(M(z)).}) @

d. h., ist g(x) der Inhalt des zu x gehorenden Querachmua 80 i3t g iiber [(a, b)) integrierbar,
und es tst

13
wM) = [q@)do @

(Abb. 4.31).

Beweis. Wegen g(z) = 0 fiir z < a und z > b knnen wir das Intervall [(a,5] so weit ver-
lingern, da8 a, b ganze Zahlen sind. Fiir jede natiirliche Zohl 7 bilden wir die iquidistante Zer-

legu.nngon[a, b]mdlelntorv:llel; =[%4-1,2;]1G = 1, ..., k) der Lingeh = 2~". Mit R, bzw.
S, b wir die Vereinig allerQ.usB.(vgl412)mthCszanM B
"Wir betracht d.ie ischen den Hohenstuf Zjy, icht M; bzw. R,; bzw. 8,

von M bzw. R, bzw. 8, (Abb. 4.32). Ist r,; bzw. & der Inhalt der Projektion von R,; bzw. S,;
in die y,z- Ebene, 80 gllt fir z;., < & < z; stets r,; = g(§) < 2, und folglich ist

1o S ) S I < a0y

') Wenn M(z) nicht quadrierbar ist, kénnen wir g(z) = u(M(z)) oder g(z) = fi(M(z)) setzen.
Der Beweis bleibt dann unverindert giiltig.
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)
; z Abb.431
I

Abb. 4.32

Wegen u(R,;) = rou(I;), 4(8y;) = 8p5u(I;) erhalten wir

x E
#R,) = 3 w(Ry) = X rap(ly)
j=1 i=1
& k
§AZ'11(11) ) §.Z; ;) ud;
i= j=

k k
= Z 0.;14(1;) = 2 #(S..;) = 5(S)-

Da wir die Quadnerbsrkelt von M vorausgesetzt haben, gnlt ,u(R )—> y(M). p(ﬂ )—»u(M) far
n — oo. Dies besagt, daB das untere und das obere Integ g tiber
[a, b)) abereinstimmen und u(M) gleich dem Integral von g iiber [a, 5] ist. Damit ist Sntz 1 be-
wmeen

Eine analoge Formel gilt, wenn wir die Q hnittsfunktion ¢ beziiglich der
Variablen y oder z bilden. Ferner kann Satz 1 sinngemi8 auf den p-dimensionalen,
speziell auf den zweidimensionalen Fall iibertragen werden. Im letzten Fall ist g(x)
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natiirlich kein Flicheninhalt, sondern die Linge eines Intervalls oder die Summe
der Lingen mehrerer Intervalle (Abb. 4.33). Der obige Beweis blelbtfurden p-dimen-
sionalen Fall unveriindert giiltig.

Aus (3) lesen wir das (in der Schulmathematik gewohnlich aus der Anschauung
gewonnene und als Axiom benutzte) Cavalierische Prinzip (nach BONAVENTURA
CAVALIEEI) ab.

Satz 2. Haben die Querschnitte zweier quadrierbarer Punldmngen des Raumes R,
(oder Ry) sn allen Hohenstufen gleichen Inhalt, so sind die Punktm ynhaltsgles

Ist nur von einer der Punktmengen bekannt, daB sie qun.d.rierba.r ist, so kann
nicht auf Inhaltsgleichheit geschlossen werden. Bei den fiir die Elementarmathematik

q(x

Abb 4.33

bedeutungsvollen Korpern kann die Quadrierbarkeit hiiufig mit Hilfe der Invarianz
des Inhalts bei Kongruenztransformationen und Scherungen bzw. mit Hilfe von
4.1.2., Satz 4, bewiesen werden. Fiir Normalbereiche My mit stetigen Funktionen
1, g (vgl. 4.1.4. (18)) ist die Quadrierbarkeit nach 4.1.4. (11) bzw. 4.1.4. (16) gesichert.

Das Cavalierische Prinzip tritt in der ,,Geometria indivisibilibus ... (1635) des BONAVERTURA
Cavarixer auf. Das gesamte Werk, auBerordentlich unklar abgefagt, beruht wesentlich auf dem
Satz ,,Ebene Figuren oder auch Kérper stehen in demselben Verhiltnis wie die Geu.mﬁhomsn
ihrer Geraden, ihrer Ebenen, welche nach i dei Roguls wurden" (,,G tria ...
p. 111). ,,Regula* ist eine Gerade (oder Ebene), die eine geschlossene ebene Figur (oder eines
Karper) beriihrt, und die Gesamtheiten sind die zur ,,Regula’ parallelen Geraden (Ebenen) bis zur

bschlieBenden‘* Geraden (t: ita) oder Ebene. Ausdemobigensstzmoﬁtd&nnu.nm

d der Satz ,,Raumgebil Ide der Ebene wie des Raumee sind inhaltlich gleich, wenn in gleicher
Hahe bei beiden gefiihrte Schnitte gleiche Strecken bzw. gleiche Flichen ergeben** (p. 482—483).
Dieees Prinzip ist allerdings schon vorweggenommen von HEROX VON ALEXANDRIA (um 100 u. Z.).

Beispiel 1. Mit Hilfe des Cavalierischen Prinzips kann das Volumen der Halb-
kugel aus der Formel fiir das Volumen von Zylinder und Kegel wie folgt gewonnen
werden (Abb. 4.34).

Wir betrachten den Restkérper, den wir erhalten, wenn wir aus dem Zylinder Z
mit dem Grundkreisradius und der Hohe r den auf der Spitze stehenden Kegel K
mit gleichem Grundkreisradius und gleicher Héhe ausschneiden. Der Querschnitt
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Abb. 4.34

dieses Restkérpers in der Hohe z hat den Inhalt #r® — n2%, und da ¢ :=Vr’—z'
der Radius des Querschnitts der Halbkugel H mit dem Radius r in der Héhe z ist,
hat dieser Querschnitt den gleichen Inhalt. Daher ist

2
w(H) = p&\ K) = p(2) — p(B) =r'm — T, pll) = 5 rix.

Die Berechnung von mehrdimensionalen Integralen kann mit Hilfe von Satz 1
auf die sukzessive Berechnung von eindimensionalen Integralen zuriickgefiihrt
werden.

Satz 3. Der Normalbereich B der z.y-Ebene ses durch die Ungleichungen
TSTS7, Y@)SySyle) 4y

Y (x) Aé

B

Y*Yal

X Ye

Abb. 4.35

mit stetigen Funkiionen y,, y, charakierisiert (Abb. 4.35). Ist dann f eine stetige Funk-
tion, deren Definitionsbereich B enthdlt, so ist

2e yelo)

[tz d@y) = [ [fz,y)dydz. ®
B 20 pelz)

Beweis. Es sei zunichst f(z, y) = 0 fiir (z, y) € B. Da B quadrierbar ist, ist auch
der Normalbereich

M:=Bf=(2,92:2 S50, AE) SYSy@@) A0Sz < fzy)
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zafixy)

y Abb. 4.36

N YaYo(X)

quadrierbar (Abb. 4.36), und nach 4.1.4. (16) ist

uM) = [f(, y) d=, y). 8)
B

Der zur Hohenstufe 2, gehorende Querschnitt

M(ze) = ((4,2): Ysl%0) < ¥°S 4alo) A 0 < 2 < f@or 9}
hat nach 4.1.4. (11) den Flicheninhalt

velzs)
g(@o) = F(M(f‘o)) = ff(zo, y)dy.

¥ol20)

Aus Satz 1 folgt

Ed Ze pelz)
pM) = [qlx)dz = | [ [ ta, 9) -iy] dz.

Y Zs ve(2)

Zusammen mit (6) ergibt sich die Behauptung (5). Es ist iiblich, die eckigen Klam-
mern wegzulassen, wie dies in (5) bereits geschehen ist.

Ist die Bedingung f(z, ) = O fiir (z, ) € B nicht erfiillt, so wihlen wir eine Kon-
stante ¢ mit f(z, y) + ¢ = 0 fiir (z, y) € B. Wegen

[l 9) + ¢) d(z, ) = [z, 9) d(z, y) + cu(B), M
B B

Zs pol(2) Zo [ polz)
[ [t y) +o)dydz = [ [ [z, 9) dy + c(y=) —y..(z))]dz

Ze pal2) Ze Valz)
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Za pel2)

= [feydydz+ec f(y.(x) Yu(@)) dz
Za  yal2)
Ze pel2)

=/ [ty dyds + uB) ®)

%o Yal2)

und der zuvor bewiesenen Gleichheit der linken Seiten in (7) und (8) gilt (5) aligemein.

Beispiel 2. Es sei B die von der Parabel y* = z und den Geraden z =a,z = b
(0 =< a < b) begrenzte Punktmenge. Sie kann durch die Ungleichungen

a<z=0b,

—Vz =y=Vz
charakterisiert werden, ist also ein Normalbereich. Wir berech mit Hilfe von (5)
das Integral der Funktion f(z, y) = }/; y?3 liber den Bereich B. Es ist

b Iz
[Vayday =] [Vzyrdyda.
B a ___’f;'

Fiir das innere Integral iiber y ist Jz wie eine Konstante zu behandeln. Wir erhalten

rd 21" e
JFra=f[g] =3

[
[V =1 [pae=F 0.

Kann der IN ormalbereich B durch Ungleichungen der Form

Y=Y =Y
Z(y) Sz < 2,(y) (9)

Abb. 4.37
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mit stetigen Funktionen z, und z, charakterisiert werden (Abb. 4.37), so geht (5) in

yo zdp)

[tandey) =] [ty dcdy (10)
B

Ve 2elp)

Beispiel 3. Wir berechnen das Integral von f(z, y) = «y® iiber den Bereich B,
der durch die Geradeny = 0,y = 1,y = z + 1 und die Parabel y* = z begrenzt wird.
Dann ist B ein Normalbereich beziiglich der y-Achse, der durch die Ungleichungen

0sy=s1l, y—1=sz=s¢
charakterisiert ist. Folglich gilt
O
[opde,g)= [ [optdzdy
B 0 y-1

1A 1 2 23
=6"y’[3-]'~]dy=§6f(y'—y‘+2y'—y‘)d =

Ist keine der Darstellungen (4) bzw. (9) méglich, so versuche man, eine Zerlegung
8 = (By, ..., By} von B zu finden derart, daB diese Darstellung fiir die Teilbereiche
B; (i = 1,..., k) mdglich ist. Nach 4.1.4. (18) ist dann

k
[tepdey =3 [tz9)d@y. an
B =1 By

Fiir die Integration iiber Rechtecksbereict

R=|z,y):a<z<brcZysd
kann (5) oder (10) angewendet werden, d. h., es ist

b d 4 b
[te.ndzy) =[ [tay)dyds= [ [fa,y)dzdy, (12)
B a ¢ ¢ o

die Reihenfolge der Integrationen darf bei konstanten G: vertauscht werden.
Die Berechnung eines Integrals einer stetigen Funktion f iiber einen rdumlichen
Bereich B, der durch Ungleichungen der Form
2, Sz =Sz,
%(®) =y = y(2), (13)
(2, y) S 2 = 2,2, 9)



mit stetigen Funktionen y,, y,, Z, 2, gegeben ist (Abb. 4.38), geschieht nach der
Formel

Zo Yo%) 2e(2.9)

[lwy.9d@ya=[ [ [fzy2dedyds, (14
B

Za pal(2) rtelz.y)

und entsprechende Formeln gelten fiir Permutationen der Variablen in (13), (14).
Der Beweis von (14) erfolgt durch mehrfache Anwendung der SchluBweisen des
Beweises von Satz 3.

Beispiel 4. Wir berechnen

1
fm d(z, 9,2),
B

wobei B der von den Ebenen z + y 4+ 2z =1,z =0, y = 0, z = 0 begrenzte Bereich
ist. Die Punkte von B gind durch

0osz=1, 0sy<1l—=z, 0sz=1—z—y
charakterisiert (Abb. 4.39), und es ist

1 1-z 1—z—y

1 1
[z senn=[ [ [aamaas
B o o o

11 : """d o
'f f [_2(1"")’]0 Y
o o
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o
|
ad

Abb. 4.39

X

4.4.5. Transformationsformeln fiir mehrfache Integrale

Die in 4.3.4., Satz 2, bewiesene Substitutionsregel kann auf mehrdimensionale Inte-
grale iibertragen werden. Eine exakte Behandlung dieses Problems ist sehr aufwendig,
80 daB wir uns an dieser Stelle mit der Angabe von Berechnungsformeln begniigen
miissen. Wir schreiben 4.3.4. (1) in der Form

z(b) b

Jt@)dz = [flzw) ) at, m

2(a) a

wobei die stetig diffcrenzierbare Funktion z = z(t) mit z’'(¢) 3 O das Intervall I*
mit den Endpunkten a. b umkehrbar eindeutig auf das Intervail 7 mit den End-
punkten x(a), z(b) abbildet. Ist stets z’(t) >~ 0 bzw. z'(t) < 0. =0 ist x(@) < z(b) bzw.
z(a) > z(b) genau dann, wenn a < b ist. Daher konnen wir (1) auch in der Form

J1@ dz = [Hz0) =) dt @
1 I*

schreiben.
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Ist das Integral der Funktion z = f(z, y) iiber eincn ebenen quadrierbaren Bereich
B zu ermitteln, so empfiehlt es sich hiufig, durch Gleichungen der Form

z=1z(u,v), y=yu,v) @)
kr linige Koordinaten einzufiihren. Sie vermitteln eine eindeutige Abbildung

aus der u,v-Ebene in die z,y-Ebene Gibt es einen Bereich B* der u,v-ibene, der —
von Beg kten abgesehen — durch (3) umkehrbar eindeutig auf B abge-

bildet wird, und nst im Innern von B* die Funktionaldeterminante

_ 0=y _ | E @

T A, v)

T Yo
von 0 verschieden, so gilt die Transformationsformel
f f(z,9) diz, y) = f flz(u, v), y(u, v)) | Dia, v)] d(u, v). ®

Der Vergleich mit (2) zelgt daB die Funktionaldeterminante in (5) der Ableltung
der Substitutionsfunktion in (2) entspricht. Die Anwend der Transf

formel ist besonders dann niitzlich, wenn fiir B* ein Rechtecl ab h gewiihlt werd
kann, da dann konstante Integrationsgrenzen auftreten.

Beispiel 1. Wir berechnen das Integral der Funktion z = zy iiber den Bereich B,
der begrenzt wird von den Kreisen mit den Radien r, = 1, r; = 2 und den von 0
ausgehenden Halbgeraden, die mit der positiven z-Achse den (orientierten) Winkel

% baw. % bilden (Abb. 4.40).
Wihlen wir fiir (3) die Abbildung

z=rcosg, y=rsing, (6)

d. h., fiihren wir ebene Polarkoordinaten ein, so wird der Rechtecksbereich B* der
r, p-Ebene, der durch

1srs2 Tses<

Abb. 4.40
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charakterisiert ist, durch (8) amkehrbar eindeutig auf B abgebildet. Gemi8 (4) ist

o8 ¢ sin ¢

Dir, ¢) =
* 9) —rsing rcos¢

‘=r>0 )

fiir 1 < r < 2, und nach (5) ist

fzyd(r,y) -ff'oowainw'd(r,e’)
B B*

s
1 e
=f fr'wsnpsm:pdq:dr
bt
3=
T 16
= | — [sin? ] ® dr = — —.
=g lentel dr=—
h O

Die Berechnung dieses Integrals ohne Verwendung der Transformationsformel ist
miihsamer.

Die Transformationsformel (5) kann auch auf Funktionen von drei Variablen

iibertragen werden.
Wird der quadrierbare Bereich B* — von Beg gspunkten sbgesehen —
durch
z = z(u,v,w), y=yu,v,w), 2 = z(u, v, w) (8)

umkehrbar eindeutig auf den quadrierbaren Bereich B abgebildet und ist die Funk-
tionaldeterminante

I 7 :: :- :: ©)
a(u, v, w) x ; s
'« Jw “w

der Abbildung (8) im Innern von B* von 0 verschieden, so lautet die Transformations-
formel

[t 4,2) dz,9,2) = [f{au, v, 0), y(u, v, w), 2(x, v, w)) |D(x, v, w)| d(v, v, w). (10)
B B*

Fiir raumliche Zylinderkoordinaten haben wir

z=gcosp, y=psing, z=2 (11)
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(vgl. 2.5.3. (12)), und die Funktionaldeterminante ist

cos ¢ sin ¢ 0
D(o,9,2) = | —psing gcosp O |=¢. (12)
0 0 1
Fiir riumliche Polarkoordinaten
z=rsind cosg, y=rsindsing, z=rcosd (13)

(vgl. 2.5.3. (13)) ist die Funktionaldeterminante durch
.sin & cos @ sindsing cosd
D(r,®, @) = | rcosdcosg rcosdsing —rsind | =risind (14)
—reindsing rsindcosg O
gegeben.

Beispiel 2. Wir berech das R integral der Funktion % = 2% + y* + 2?
iiber die Hohlkugel H mit dem Mittelpunkt O und dem inneren bzw. &uBeren Radius
a bzw. b (0 < a < b). Durch riumliche Polarkoordinaten wird der durch

esr=b, 0=9=<a, -—n=¢=n

charakterisierte Bereich H* eindeutig auf H abgebildet. Im I von H* ist die
Funktionaldeterminante (14) von 0 hieden, und das Ii von H* wird um-
kehrbar eindeutig in H abgebildet. Wegen 2 + y* 4 z? = #* und sin # = 0 erhalten
wir

f{_z'+y’+z')d(z,y,z)=fr’r’sin0d(r,0,w)
H H*
=fffr«sinod¢dodr
a 0 —=

T,

4.4.6. Aufgaben
1. Die gewdhnliche Zykloide
=1t —rgint, y=r—rocost
wird durch einen Punkt eines Kreises mit dem Radius r beschrieben, der auf der :;:::::

abrollt (Abb. 4.41). Man berechne die Liinge des zu einer vollen Drehung des Xreises geh:
Zykloidenbogens.



Abb. 4.41

wird durch einen Punkt eines Kreises mit dem Radius % beschrieben, der auf dem Inneren
einer Kreislinie mit dem Radius r abrollt (Abb. 4.42). Man berechne den Umfang der Astroide.

Abb. 4.42

3. Bei Rotation einer durch die Gleichung 72 + (y — b)* = a® (b > a < 0) bestimmten Kreis-
fliche um die z-Achse wird ein T'orus erzeugt (Abb. 4.43). Man berechne die Oberflache und
das Volumen des Torus.

4

'li
=|l . Abb. 443

4. Man berechne das Volumen des Korpers, der sich bei Rotation des Graphen von y = ginz
(0 < 2= n) um die z-Achse ergibt.
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5. Man berechne die Integrale [2*d(x,y), [¥*d(z,y), [zyd(z,y) Gber die obere Hilfte des
Einheitakreises.
6. Man berechne
[ o1+ d(z, g, 2),

wobei B durch die Ebenen z =2,y =0, y = z, z = 0, z = z + y begrenzt wird.



5. Einiges Uber Differentialgleichungen

5.4.  Problemstellung, Grundbegriffe

Bei zahlreichen mathematischen und naturwi haftlichen Untersuchungen sto68t
man auf Gleichungen, in denen neben einer gesuchten Funktion y = f(z) auch Ab-
leitungen dieser Funktion auftreten. Ks handelt sich dann um folgende Problem-
stellung. Gegeben ist eine Funktion z = G(z,y, ¥1, ..., ¥s) Von n + 2 Variablen.
Es sind salle auf einem Intervall I n-mal stetig differenzierbaren Funktionen f ge-
sucht, die der Bedingung

6, f@), F (@), o0 [P@) =0 (z€) )
geniigen. Dieses Problem formuliert man kiirzer durch
Gz, 9.y, ..., !I"") =0, (2

und nennt (2) eine gewdhnliche Diffs ialgleichung n-ter Ordnung. Die zur Funk-
tion Q(z,y, Y1, ¥s) := 2% + y1y» gehdrende Differentialgleichung lautet z. B.
aty +y'y’ =0.

Jede auf einem Intervall I definierte Funktion f, die (1) erfiillt, heiBt eine Lasung
oder ein Infegral der Differentialgleichung (2) auf I. Die letzte Bezeichnung riihrt
daher, daB unser Problem im Spezialfall der Funktion Q(z, y, ¥,) := 3 — g(z) die
Form y' = g(z) annimmt, so daB jede Losung eine Stammfunktion der Funktion g
ist. Die Problemstellung der Theorie der Differentialgleichungen erweist sich somit
als eine Verallgemeinerung des Umkehrproblems der Differentialrechnung.

Der Graph einer Losung von (2) heiBt eine Lisungskurve oder Integralkurve. Die
Menge aller Losungen auf I heit die Lésungsmannigfaltighest oder das vollstindige

Integral auf I.
Hat die Diff ialgleichung (2) die spezielle Gestalt

¥ =F&, 9y, ..., ¥*), @
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80 sprechen wir von einer expliziten gewdhnlichen Differentialgleschung n-ter Ord:
Insbesondere heiBt

y =F(z,y) (C)]

eine explizite gewohnliche Differentialgleichung erster Ordnung.

Der Zusatz ,,gewohnliche Differentialgleichung besagt, daB eine Funktion von
einer Variablen gesucht wird. Im Gegonsatz dezu spricht man von einer pamelleu
Dnlferenmlglewbung, wenn eine Funktion von mehreren Variablen durch eine

kterisiert wird, in der partielle Ableitungen dieser Funktion auftreten.
So ist zum Beispiel
(@ + y*) 2s + 22,, — 2(siny) 2, =0
eine partielle Differentialgleichung fiir eine gesuchte Funktion z = f(z, y), und zwar
eine partielle Differentialgleich it Ordnung weil die héchste Ordnung der

auftretenden partiellen Ableltm.ngen der gesuchten Funktion gleich 2 ist.

Die Problemstellung kann weiterhin dadurch verallgemeinert werden, da8 man
ein System von gesuchwn Funktionen fy, ..., f, durch ein Differentialgleichungs-
system

yi' = Fy(@, 41, -, Yn) G=1..n)

charakterisiert. Die Differentialgleichung n-ter Ordnung (3) ist mit dem Differential-
gleichungssystem
% =y,
%' =Y,
.......... (5)
Ya1="0n>
Y =F@, 1, ..., Yn)
dquivalent, wenn man jeder Losung y von (3) die Funktionen y, =y, y, =1y, ...,
=y zuordnet und umgekehrt y =y, setzt, falls die Funktionen y,, ...,
dem Differentialgleichungssystem (5) geniigen.

Wir beschrinken uns im tlichen auf die Differentialgleichung (4). Geht eine
Losungskurve der Gleichung (4) durch einen gegebenen Punkt (zo, ¥,), 80 hat die
Tangente an die Lésungskurve in diesem Punkt wegen (4) den Anstieg F (2o, o).
Wir bekommen also eine Vorstellung von dem méglichen Verlauf der Lsungskurven,

wenn wir in jedem Punkt (z,, y,) € D(F) ein kurzes Geradenstiick mit dem Anstieg
F(2q, Yo) einzeichnen. So liBt zum Beispiel Abb. 5.1 sofort vermuten, da8 die L3-

sungskurven der Differentialgleichung y' = % die Gestalt von Hyperbelbogen haben.

Auf Grund der geschilderten geometrischen Deutung nennt man jedes Zahlentripel
(-.e, y, Fl(z, y)) ein Richtungselement von (4). In allen Punkten der zum Niveau ¢
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Abb. 5.1

gehorenden Niveaulinie der Funktion F haben die Richtungsel te den gleich
Anstieg c. Daher heiBlen diese Niveaulinien die Isoklinen der Differentialgleichung (4).
In Abb. 5.1 sind die Isoklinen Halbgeraden.

Die Differentialgleichung (4) besitzt fiir jede in einem Gebiet stetige Funktion F
unendlich viele Losungen. Erginzen wir die durch diese Differentialgleichung aus-
gesprochene Bedingung fiir die gesuchte Funktion f, indem wir einen Punkt (a, b)
€ D(F) vorgeben und fordern, daB die Anfangsbedingung f(a) = b erfiillt ist, so spre-
chen wir von einem Anfangswertproblem. In Kurzfassung formulieren wir dieses
Anfangswertproblem durch das Formelpaar

Yy =F@y), ya) =0 (6)

Die zweite Bedingung bedeutet, da8 die Lisungskurve durch den Punkt (a, b) gehen
soll. Ist f eine Losung des Anfangswertproblems, so konnen wir von der Gleichung
1'@) = Flz, {(z)) durch Integration zu

f(@ — f@) = [F(, 1) &t

und, unter Beriicksichtij der Anfangsbedi zu

f@) =5+ j F(e, 1) dt M

iibergehen. Erfiillt umgekehrt eine stetige Funktion f diese Bedingung, so ist f stetig
dlffemnnerbar, da dies fiir die rechte Seite der Fall ist. Aus dem Hauptsatz der
Differential- und Integralrechnung folgt f'(z) = F(z, f()), und offensichtlich ist
fl@) =1, d. h,, f ist eine Losung des Anfangswertproblems (6). Die Bedingung (7)
ist somit zum Anfangswertproblem (6) équivalent. Man nennt (7) eine Infegral-
leichung, weil die gesuchte Funktion f unter dem Integralzeichen erscheint.
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5.2.  Existenz- und Einzigkeitssatz

Wir beschiiftigen uns nun mit der Integralgleichung 5.1. (7), wobei F eine in einem
Gebiet @ S R, stetige Funktion und (a, b) € G ist. Eine Funktion g heiBe zulissig,
wenn g in einem Intervall I mit a € I stetig ist und wenn aus z € I stets (z, g(z)) €q
folgt. Dann ist F(z, g(z)) fiir alle z € I definiert und stetig. Wir konnen daher jeder
zuliissigen Funktion ¢ die durch

z
@ =b+ [Flt,gt)dt (el m
o
definierte Funktion g* zuordnen. Unser Problem besteht hiernach darin, zulissige

Funktionen f zu finden, fiir die f* = f ist.
Der Definitionsbereich I einer Lisung / heiBt ein Mouwsimmall. Eine Losung f

heiBe mazimal, wenn jedes Lo gl intervall im Defin bereich von f enthalten ist.

Um zu méglichst einfachen Exi und Einzigkeit: tell
wir an die stetige Funktion F eine zusitzliche Bedmgung Wir fordern, daB zu jedem
in G enthalt Rechtecksbereich R eine sog ipachitzkonstante (RupoLF
Lrescarrz (1832—1903)) K = K(R) existiert, derart, da stets die Lipschitzbedingung
P, 9) — F@ 9 S Klyy— 9l (@ %), (=, 92) € R) @

erfiillt ist. Besitzt F' in G eine stetige partielle Ableitung ,F, so ist die Lipachitz-
bedingung, wie man sich leicht iiberlegt, stets erfiillt.

Nunmehr kénnen wir den Existenz- und Einzigkeitssatz fiir explizite gewShnliche
Differentialgleichungen erster Ordnung formulieren.

Satz 1. Es sei F eine in einem Gebiet G des R, stetige Funktion, und zu jedem (ab-

Y/ ) Rechtecksbereich R — G gebe es eine Lipschitzkonstante K = K(R),

/dr die die Lipschitzbedingung (2) erfiillt ist. Dann gibt es zu jedem Punkt (a,b) € G
genau eine maximale Losung f des Anfangswertproblems y' = F(z, y), y(@) = b.

Den Beweis von Satz 1 fiihren wir in meh Schritten und geben gleichzeitig ein Verfah
zur Konstruktion einer Lésung an. Wir wihlen zwei reelle Zahlen «, # derart, dag
R:=({zy):lz—aSaArly—b<=pcG @)

gilt, und bestimmen eine reelle Zahl 4 mit

Pz, yl=A4  ((=v9)cR). (4)
Es sei M(ax,f) die Menge aller stetigen Funktionen von dem Intervall I, := {z: |z — a| < o}
in das Intervall I;* := {y: |y — b| < B}. Jede Funktion g ¢ M(«, f) ist zuldesig, und wegen (4) ist

lg%(=) — b = Sir—a-4 (z—a=Sa).

[ R, g0 a




206 5. Einiges @iber Differentialgieichungen

Wenn wir « der zusitzlichen Bedingung
ad<p ®)

unterwerfen, ist g* wieder eine stetige Funktion von I, in I,*, d. h., aus g ¢ M(x, f) folgt stets
g* € M(x, ). Die Menge M(x, f) ist eine Teilmenge des vollstxnd:gen metrischen Raumes Cj,
aller auf dem abgeschlossenen Intervall I, stetigen Funktionen (vgl. 2.6.3.). Die Menge M(«, f)
ist abgeschlossen, denn ist (g,) eine gleichmiBig konvergente Folge von Funktionen aus M(x, 5)
mit dem Grenzwert g, 8o gilt

lg@) — 8l =£lﬂ.;lv.(z) —b =8,

d.h., es ist auch g ¢ M(«, f). Far zwei zulissige Funktionen g, b von I, in I,* ist wegen der
Lipechitzbedingung

[7%(@) — h*(z)| =

[ (Pt o) — F et b)) a‘
= I f [£(, 90)) — F(e be)| "‘|

SK

1 1ot — Mo dc‘
< K|z — of max gff) — hA).
tels

Mit der in 2.6.3. eingefiihrten Tschebyschew-Metrik gilt daher

ols*, ™) = Koelg, b).
‘Wiihlen wir nun noch « so klein, daB

Kasg<1 (]
ist, 80 ist die Abbildung

p:g>9(g) =g*

eine kontrahijerende Abbildung von der abgeschl Menge M(x, f) in sich, so daB wir den
Bmmhnhanleyunkmu(vgl245) den ké Hi h gibt es genau einen Fixpunkt
f von @, d. b., es gibt genau eine stetige Funktion f von I, in I;* mit f = f*, also mit

@) =b+ f Fefe)d  (z—al<a). @)

Setzen wir
fol@) =1,
. 8
fanr(@) :=1*@) = b+ f F(b, fo(®)) dt,

s0 konvergiert die Folge der Funktionen £, unter den Voraussetzungen (4), (5), (8) auf dem Inter-
vall I, gleichmiBig gegen die Losung f.
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Fiir unsere wei Betrach benétigen wir einen Hilfssatz.

L3 8

Satz 2. Ist f eine in einem Intervall I mit a ¢ I stetige reellwertige Funktion, so folgt axs

0S /@K | froa @en ®

astets f(z) =0 (z e I).
Beweis. Es sei zuerst z = a. Aus (9) folgt, wenn wir mit e-X(#-9) multiplizieren,

K(o-9) (z) — KeK(e—0) f fyd <o,
Aut der linken Seite steht die Abloi;ung der Funktion
ofe) 1= o [ 0,
d. b, esist ¢(#)S 0, )

9(®) = gl2) — g(@) = [ gy <0,

K f‘/(:)al =xf;(¢).u= Kg(z) K> < 0,

Setzen wir dies in (9) ein, 8o erhalten wir 0 < f(z) < 0, und die Behauptung ist fir z = & be-
wiesen. Den Fall 2 < a fihren wir hierauf durch die Substitution

E=—z,8=—a, f@z) =[(—2)
zuriick.
Jetzt kdnnen wir zeigen, da8 es in jedem Ldsungsintervall I héch eine L3eung gibt. Sind
niimlich £,, f, Ldsungen in I, so gilt

- 2
|h@) — hi@) = f IF(t 110) — F(& he)] d#ls K

ho)l a I.

and nach Satz 2 ist f,(z) — f4(x) =0 firz ¢ I.

Enmnun!dionlmgungammgoa er Ldeunggintervalle. Ist z € I, so gibt es eine im Inter-
vall mit den Randp e,z te Losung. Daher ist I selbst ein Intervall mit a ¢ I. Wir
defini in I eine Funktion f, indem wir fiir z ¢ I eine beliebige in z definierte Losung g withlen
und f(z) = g(z) setzen. Nach dem soeben Bewiesenen ist diese Definition von der Wahl der
Lésung ¢ mit a, z ¢ D(g) unabhéngig, und f ist eine Lsung von (7). Damit ist Satz 1 vollstindig
bewiesen.

Man kann noch zeigen, da8 der Graph der maximalen Losung in keiner beschrink-
ten abgeschlossenen Teilmenge von G enthalten ist. Ist G beschrinkt, so besagt dies,
daB die maximale Lisung bis zur Begrenzung von G fiihrt.

Der Existenz- und Einzigkeitssatz kann mit geringen Modifikationen auf Systeme
gewdhnlicher Differentialgleichungen iibertragen werden.
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5.3.  Einige elementar integrierbare Differentialgleichungen

In 5.2. haben wu' ein konstruktives Verfahren zur Bestimmung der Losung eines
Anfangswertpr gegeben. Die Iosung ergab sich hierbei als Grenzwert der
leichmiBig konverg Funktionenfolge 3.2. (8), deren Glieder rekursiv zu be-
rechnen sind. Man wird also mit diesem Verfahren die Losung im allgemeinen nur
niherungsweise bestimmen kénnen. Ferner ist zu bedenken, daB bei jedem Teil-
schritt ein Integral zu berechnen ist, das wiederum nur in igen Fillen el t
integrierbar sein wird und daher nur niherungsweise berechnet werden kann. In der
numerischen Mathematik werden zahlreiche Verfahren entwickelt, die eine be-
quemere Berechnung von Niherungslésungen erméglichen. Es ist verstindlich, daB
man von jeher nach Methoden gesucht hat, wenigstens gewisse Klassen von Diffe-

rentialgleich mit el taren Methoden zu lésen. Der Begriff ,.elementar
ist hierbei nicht ganz leicht zu priizisieren. Man nennt jedenfalls alle diejenigen Diffe-
tialgleich tar integrierbar, deren Losungsfunktion .mit Hilfe der

elementaren Funktionen und ihrer Integrale — auch dann, wenn diese nicht elemen-
tar integrierbar sind (vgl. 4.3.1.) — dargestellt werden konnen.

Als erstes Beispiel betrachten wir die Methode der Trennung der Variablen. Sie kann
auf Anfangswertprobleme der Form

y'=g@@)hky), y@)=>b (¢))

angewendet werden, wobei g bzw. % in einem Intervall stetig ist, das den Punkt a
bzw. b im Innern enthilt. Ist k(b) = 0, so ist die konstante Funktion y = b offen-
sichtlich eine Losung des Anfangswertproblems. Wenn k sogar differenzierbar ist,
so erfiillt die Funktion F(z, y) = g(z) k(y) die Lipschitzbedingung, und die Losung
ist eindeutig bestimmt. Ist die Lipschitzbedingung nicht erfiillt, so kann (1) im Fall
k(b) = 0 auch mehrere Lésungen haben.

Es sei nun A(b) # 0, und f sei eine Losung von (1) auf I. Dann ist f'(z) = g(z) h(f(z))
Ist h(f(z)) = O fiir z € I, so folgt
f'(=)
A{f(x))

=g(x),

und Integration ergibt

G
f W) & = fv(me
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Mit der Substitutionsregel erhalten wir
st2)

dn H

— = |g(&) d¢. 2

o) f 9(&) @
)

Ist H eine Stammfunktion der Funktion %, so folgt

Hif(z)) — HE) = [g(¢) d&. @

Da H als Integral einer Funktion von konstantem Vorzeichen streng ton ist,
existiert eine Umkehrfunktion @, und wir erhalten

fl@) = G(H(®) + f 9(£) dE). @

Defini wir umgekehrt die Funktion f durch (4), 80 konnen wir der Reihe nach
auf (3), (2) und (1) schlieBen. Das Anfangswertproblem (1) besitzt also in einer Um-
gebung von a genau eine Losung.

Den soeben exakt geschilderten Ldsungsweg kann man sich in formaler Schreib-

weise wie folgt einprigen. Wir multiplizieren dio Differentialgleichung mit ~=- und
erhalten Ay
dy
z) dzx.
) = g(z)
Integration beider Seiten fithrt zu
,,(n) famae

[)
(vgl. (2)), und ,,Auflésung* dieser Gleichung nach y ergibt die gesuchte Losung.
Beispiel 1. Das Anfangswertproblem
= (cosh z) (y* + 1), y(0)=0

hat wegen
1=y
y dn H .
= cosh = =
) cosh z, fr)'+1 ofeoehgde, arctan f(z) = sinh z

o
die Lésung f(z) = ten (sinh z).
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Wir behandeln als weitere Klasse von elementar integrierbaren Differential-

gleichungen den Typ

y=r(%). wo=t @+o. ®
Wir betrachten nur Losungsintervalle, die die Zahl 0 nicht enthalten. Fiir jede
Losungsfunktion y = f(z) fiihren wir die Funktion z = g(z) mit g(z) = @, also
f(z) = zg(z), f’(z) = g(z) + ¢’ (z) ein. Hiernach ist f genau dann Losung von (6),
wenn g eine Losung der Differentialgleichung

z 4+ 22’ = F(z)
oder
b

1
2 =—(F@z) — 7), @) =— (6)
z a
ist. Damit haben wir die Behandlung des Anfangswertproblems (5), in dem eine
Differentialgleichung mst homog Variablen vorliegt, auf die Methode der Trennung

der Variablen zuriickgefiihrt.

Beispiel 2. Wir schreiben das Anfang ;probl
3x’ — -
Y= 22y y‘, y(2) =14
in der Form
2
- (3)
z
y = , Y2 =4,
2. ¥
z

itz = 3;:"

3121 =
=3 , A2 =2,
2¢ _ 1

L”—ldt— 3 Edé (z>1),

2
In@#—1)—h3=—3(Mmz—m2),

22—1 z\2 24
(o), emis 2
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Driicken wir z wieder durch y aus, so ergibt sich mit

y=|[z’+% (x> 0)

die Losung des Anfangswertproblems.

Von besonderer Bedeutung ist die sog te lineare Differentialgleichung
Y = —9(=) y + h(z) oder

¥ + 9@y =hiz), m
in der (z) als inhomogenes Glied oder, wegen gewisser physikalischer Anwendung
als Storfunktion bezeichnet wird. Die Differentialgleichung

Y +9)y=0 @
heit die zu der im Fall & ¥ 0 s Differentialgleich ),, d
homogene Differentialgleichung. Die Lﬁsungen von (7) und (8) stehen in emem &hn-
lichen Zusammenhang, wie dies von den inhc und h
Gleich bek ist. Es sei f, eine pamlculdre (fest gewah]te) Losung

von (7). ). Iat [., eine beliebige Losung von (8), so ist

@) + 9@ h@) =h@), fo'@) + 9() folx) =0,
und Addition zeigt, daB die Funktion f(z) = f,(z) + fo(x) wieder eine Losung von (7)
ist.

Haben wir umgekehrt neben der partikuliren Léosung f, eine beliebige andere
Losung f der inhomogenen Differentialgleichung (7), so ist die Differenz fo(x) = f(z)
— hi(z) eine Losung der homogenen Differentialgleichung (8).

Man driickt den hiermit bewiesenen Sachverhalt stichwortartig wie folgt aus: Die

allgememe Lésung der inhomog Differentialgleichung ergibt sich, indem man zu

einer parnku]a,ren Losung d.\eser Dlﬂerentm]g]exchung die allgemeine Losung der
hérigen h inlgleichung addiert.

Wir bescha.ftlgen uns zuniichst mit der h g Differentialgleichung (8), deren

Losungen wir durch Trenmmg der Variablen ermitteln konnen. Ist die Anfangs-
bedingung y(a) = b vorgegeben, so ist im Fall b = 0 die Nullfunktion y = 0 die
einzige Losung dieses Anfangswertproblems, und im Fall b < 0 erhalten wir

v

d_" _ —2
fn = —~Jowr ez,
L}

hl%‘=—!a(e>a,

y =bexp (—[g(¢) d&), ®
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und dies ist offensichtlich auch fiir b = 0 die Losung von (8) mit der Anfangsbedin-
gung y(a) = b. Durch Variation von @ und b erhalten wir die I..osungsmanmgfaltlg-
keit von (8), die bei linearen homogenen Differentialgleichung a.ls} g
Ljsung bezeichnet wird.

Aus (9) gewinnen wir durch einen Kunstgriff auch eine partikulire Losung der
inhomogenen linearen Diff ialgleichung (7). Wir versuchen eine Lisung von (7)
in der Form (9) anzusetzen, wobei wir die Konstante b durch eine Funktion f(z)
ersetzen. Der Ansatz

y = B(z) exp (— fot&) de) (10)

wird daher auch als Variation der Konstanten bezeichnet. Wenn (10) eine Losung
von (7) sein soll, dann muB sich durch Einsetzen von (10) in (7) eine Identitit er-
geben, d. h., f(z) muB mit der Abkiirzung

6(z) = exp (— fo® de) (1)
der Bedingung

8'(@) G(z) + B@) G'(z) + g(x) B(z) G(z) = h(z)
geniigen. Wegen

G'(z) = —g(z) Gx)
ist dies mit

8 (@) G(z) = ha),

h) 4
b@) = Blo) + f L

dquivalent. Da es nur auf ein partikulires Integral ankommt, kénnen wir f(a) =
setzen und erhalten

z ]
Blz) = f h(t) exp ( fo® de) . (12)

Day= bG(x) die allgemeine Losung der homogenen und y = (z) G(z) eine parti-
kulire der inhomog Diff ist, erhnlben wir mit

s

y = G(z) (b + B(z)), d. h. mit

z ¢
y—exp( —f o de) (b + [ b exp( Jo@® de)d:) (13)
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die allgemeine Lésung der inhomogenen Differentialgleichung, die von den Para-
metern @ und b abhingt. Offensichtlich ist y(a@) =b, “und folglich ist (13) fiir vor-
gegebene a, b die Losung des Anfangswertproblems

Y +9@)y=ha), ya)=b5. (14)
Beispiel 3. Im Anfangswertproblem
y +3y=—z, y0)=1
liegt eine lineare Differentialgleichung mit g(x) = 3z, k(z) = —=z vor. Wegen
z 3 an 2
fssde=§, (—t)ert=—%(cT—-l)
o

o

erhalten wir die Lésung

1 _E
= —(4e 2% —1].
r=g (e

Als weiteres Beispiel fiir eine Klasse elementar integrierbarer Differentialgleichun-
gen skizzieren wir die Behandlung der komogenen linearen Differentialgleichung n-ter
Ordnung mst konstanten reellen Koeffizienten

Y™ + a4 o 4 ag,y + ay =0. (16)
Hier fiihrt der sogenannte e-Ansatz
y=e* (16)

zum Ziel. Wegen y*) = rte'* gelangen wir durch Einsetzen in (15) zu
eF(r® + a1l 4+ - + @y r + a,) =0. 17

Wegen e 3= 0 ist (16) genau dann eine Losung der Differentialgleichung, wenn r
eine Nullstelle des charakteristischen Polynoms

pir) =1+ ar"? + o + apyr +ay

ist. Besitzt dieses Polynom n verschiedene reelle Nullstellen r,, ..., r,, 80 ist jede der n
Fu.nktiongn

Yy =e* G=1..n2) (18)
und damit auch jede Linearkombination
Y= 01" + e+ et (19)

eine Losung der Differentialgleichung. Die Losung wird eindeutig festgelegt, wenn
man nicht nur wie bei Differentialgleichungen erster Ordnung den Funktionswert
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by an der Stelle a, sondern auch die Funktionswerte b; der ersten n—1 Ableitungen
der Funktion an der Stelle ¢ vorgibt. Diese Anfangsbedingungen lauten also
y(@) = by, ¥'(a) = by, ..., ¥* V(@) = b,.s.

In (19) bzw. in die Ableitungen von (19) eingesetzt liefern sie ein Gleichungssystem
von n linearen Gleichungen fiir die Koeffizienten ¢,, ..., ¢,. Es ist eindeutig 13sber,
denn die Koeffizientendeterminante ist — von einem Faktor abgesehen — eine
Vandermondesche Determinante.

Beispiel 4. Vorgegeben sei das Anfangswertproblem
¥ - -y +2=0,
y0 =3 y0O0=-2 y'0)=8.
Das charakteristische Polynom p(r) = r* — 2r* — r + 2 hat die Nullstellen r, = 2,
rg=1,r,=—1,und
Y =€ +0” + "
ist eine dreiparametrige Losungsschar der Differentialgleichung. Wegen
Y = 206" + cie® — cpe ",
Y = doied + et + e *
fiihren die Anfangsbedingungen zum Gleichungssystem
a+ete=3,
20, + ¢ — ¢y = —2,
4+ +c=6
mit der Losung ¢, = 1, ¢; = —1, ¢; = 3. Somit ist
y=e¥ — e + 3¢
Losung des Anfangswertproblems.

Besitzt das charakteristische Polynom eine k-fache reelle Nullstelle r,, so sind
neben y = ¢"* auch die Funktionen y = ze"2, ..., y = z*1¢"* Losungen der homo-
genen Differentialgleichung, wie man durch Einsetzen bestiitigen kann. Wir gehen
auf diesen Fall nicht niher ein.

Wir beschiiftigen uns noch mit dem Auftreten einer komplexen Nullstelle
r =1, +ir, (r,, 13 € R, ry 5= 0). Die Losungsfunktion (16) ist dann komplex. Mit r
ist auch die konjugiert komplexe Zahl 7 eine Nullstelle von p(r). Wegen der Homo-
genitéit der Differentialgleichung sind dann auch die Funktionen

1 - 1 -
y=?(¢rz+eu), y=§(e"—e"),
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er - &

d. h. die reellen Funktionen

y=Re(e”), y=Im(")
Losungen der Differenéidgleichung.

Beispiel 5. Fiir das Anfangswertproblem

¥ —y=0, y0) =3, yO) =1, y"0)=—1, y"(0) =1
besitzt das charakteristische Polynom p(r) = r* — 1 die Nullstellenr, = 1,7, = —1,
ry =3, r, = —¢. Daher ist

Y =0e® + 6 + & Re (e) 4 ¢, Im (),
b Yy =0 + c;e* + cyco8z + ¢ 5in 2z
fiir alle ¢; € R eine Losung der Differentialgleichung. Das Gleichungssystem zur
Bestimmung der Koeffizienten ergibt sich wegen

Y =ce® — cye* —cy8inz + ¢ co8 @,
Y =cef +c,e";c,eosx—c‘sinx,
Y =0c* —cee™ +¢y8inT — ¢ co8 T

z
at+a+e6=3,
6—6te=1,
Gt+e—c=-—1,
6G—6—¢=1,
und das Anfang problem besitzt die (sogar eindeutig bestimmte) Losung

y=¢e 4 2cosz.

Die inhomogene Differentialgleichung n-ter Ordnung mit konstanten reellen Ko-
effizienten

Y™ + ayf* D + e+ apay + aay = h(z)

kann nach dem Prinzip der Variation der Konstanten behandelt werden. Im Fall
von n verschied reellen Nullstellen hat man in (19) die Konstanten ¢; durch
Funktionen y;(z) zu ersetzen. Diese Funktionen lassen sich bei vorgegebenen An-
fangswerten so bestimmen, daB sich eine Losung des Anfangswertproblems ergibt.

Als letztes Beispiel fiir eine el tare Lo thode behandeln wir den so-
genannten Polenzrethenansalz. Er stiitzt sich auf den folgenden Satz, den wir hier ohne
Beweis mitteilen:
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Satz. Es seten g, g, (k =0, 1,...,n — 1) in einer Umgebung von a € R analytische
Funktionen. Dann besitzt das Anfangswertproblem

Y + gaa@) ¥V + o 4 1@ Y+ g0(2) y = 9(2), (20)
y®@) =b (k=0,1,...,n— 1;b,€R) (1)

in einer Umgebung von a genau eine Losung, und diese st in a analytisch.
Auf Grund dieses Satzes kann man fiir die Losung den Ansatz

y= g‘ iz — a) (22)
k=0

machen, wobei

_ ¥
T TR

gilt. Der Vergleich mit (21) zeigt, daB die ersten n Koeffizienten durch die Anfangs-
bedingungen bestimmt sind, und zwar ist

b
=— k=0,1,...,n — 1),
*=gy »=1

Die nachfolgenden Koeffizienten ¢, der Potenzreihenentwicklung (22) kénnen dann
aus (20) mit der Methode des Koeffizientenvergleichs rekursiv berechnet werden.

Beispiel 6. Fiir das Anfangswertproblem
1
'+ tay=e, g0 =1, yO=5
machen wir den Ansatz

d
y=2 et
=)
aus dem sofort ¢p =1, ¢, = -;—-folgt. Wir setzen die Potenzreihe in die gegebene

Differentialgleichung ein und erhalten

g‘k(k — 1) eat? + 22‘100,::“-' + E‘c.:t‘*’ =§' f
=) =1 ¥=o k=o k!

Wegen des Einzigkeitssatzes fiir die Potenzreihenentwicklung analytischer Funk-
tionen miissen die Koeffizienten gleicher Potenzen z® auf beiden Seiten iiberein-
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stimmen. Dies fiihrt zu den folgenden Gleichungen :

1
2% 2.1. 2-1.¢,=—,
¢ + € o

2 3.2.c,+2.2-c,=lil,

S (04 20+ 1) cura + 200 + 1) Curs +Cag = % n=2).

Wegenc, =1, ¢, = —;— berechnen wir rekursiv

1 1
=0, a=1, a=—g. 6=

5.4.  Aufgaben

1. Man zeichne die durch die Punkte (0, 0), (1, 0), (1, 1) gehenden Isoklinen der (nachweisbar nicht
\ integrierbaren) Ditferentislgleichung
y=2—y
vom Riccatischen Typ!) und haffe sich hiermit einen Uberblick iiber den ungefihren

Verlauf der Lsungskurven durch die oben genannten Punkte. Man berechne die ersten vier
Niherungefunktionen 5.2. (8) fiir die Anfangsbedingung y(0) = 0.

2. Man bestimme alle Kurven y = f(z), deren Tangentenabschnitt auf der Ordinatenachse gleich
z — y ist.
3. Man l3se die Anfangswertprobleme

v=L1 -4

y=Vi+y, wyl)=3;
Yy —ytanz =cosz, y(0)=1;

L % +RI=V@), I0) =1, (L,R konstant);

¥y’ =Ty +6y=0, y(0) =1, y(0)=0, y"(0)=2;
Y +Ry=0, yO)=1, Y0 =2;
Y’ +3" +3 +y=0, y0) =y(0)=y"0)=3.

1) Die bedeutendsten Arbeiten von JacoPo Riccati (1676 —1754) zur Theorie der Differential-
gleichungen stammen aus den Jahren 1722/23 und sind méglicherweise durch ein Manuskript
von JAEOB LI zu der Differentialgleich Yy’ = z® + y? angeregt worden.
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