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Vorwort

Die hiermit vorgelegten beiden Binde Geometrie I und Geometrie II der Studien-
biicherei ,,Mathematik fiir Lehrer* sind aus Vorlesungen entstanden, die die Auto-
ren in Erfurt, Halle und Jena vor Lehrerstudenten gehalten haben. Der Stoff ist
eng an das von der Fachkommission Mathematik erarbeitete Programm fiir den
Grundkurs in Mathematik der ersten beiden Studienjahre zur Ausbildung von Fach-
lehrern mit dem Haupt- oder Nebenfach Mathematik angelehnt.

Es war eine schéne, aber zugleich schwierige Aufgabe fiir unser Autorenkollek-
tiv, dessen Mitglieder in den oben genannten Orten zu Hause sind, ein einheitliches
Vorgehen in Inhalt und Form zu finden. Wir hoffen, daB uns dieses im grofien und
ganzen gelungen ist, wenn auch der individuelle Stil der einzelnen Autoren unver-
kennbar geblieben ist und auch bleiben sollte. Aber simtliche Autoren haben alle
Kapitel der beiden Geometrie-Biande gemeinsam beraten und immer gemeinsam
nach jeweils besseren Wegen gesucht, so daB diese Biinde in einer echten Gemein-
schaftsarbeit entstanden sind.

Viel Kopfzerbrechen haben uns die Bezeichnungen und die Symbolik bereitet.
Bereits vor dem Schreiben des Manuskripts muBten wir bei der Vorbereitung dar-
auf immer wieder feststellen, wie vielfaltig in verschiedenen Lehrbiichern Symbolik
und Bezeichnungen fiir geometrische Objekte gehandhabt werden. Mit einer sol-
chen Problematik wurden nun die Autoren wihrend ihrer Arbeit immer von neuem
konfrontiert. Es war darum vor allem unser Anliegen, prizise, einheitlich und
hoffentlich auch vorbildlich fiir die zukiinftigen und gegenwirtigen Lehrer die geo-
metrischen Begriffe und ihre Bezeichnungen einzufiihren. Gewisse dafiir notwen-
dige Festlegungen wurden in lingeren Diskussionen mit den Herausgebern, anderen
Autoren der Studienbiicherei und Mitarbeitern der Akademie der Padagogischen
Wissenschaften zu Berlin erarbeitet. Allen Kollegen, die uns dabei behilflich
waren, sagen wir unseren herzlichsten Dank.



8 Vorwort

Leider lieB sich aber infolge der eingefiihrten Bezeichnungen eine mehr: oder
weniger schwerfillige Darstellung und Sprechweise nicht ganz vermeiden, da es
unser wesentlichstes Bestreben war, fiir den Anfanger alle geometrischen Begriffe
mathematisch einwandfrei einzufiihren, zu erkliren und zu verwenden. Der An-
finger sollte nun tatsichlich auch versuchen, sich zunichst dieser hier eingefiihrten
Redeweise zu bedienen, um mit den grundlegenden geometrischen Dingen véllig
vertraut zu werden. Unser Ringen um diese Begriffe sollte nicht als ein Hang zu
Spitzfindigkeiten, sondern als ein Versuch einer echten Hilfe fiir den Studenten
und Fachlehrer fiir Mathematik aufgefalt werden. Erst wenn der Leser alles bis
ins letzte verstanden hat, sei es erlaubt, falls keine MiBverstindnisse entstehen
konnen, schlieBlich wieder zu einer etwas groBziigigeren Sprechweise iiberzugehen,
um eine gewisse Umstéindlichkeit des Ausdrucks zu beseitigen. Der Fachlehrer fiir
Mathematik moge sich aber stets im klaren sein, daB es unabdingbar fiir seine Lehr-
titigkeit in der Schule ist, die geometrischen Begriffe zunichst einmal selbst in
allen Einzelheiten und bis in ihre Wurzeln verstanden zu haben. Erst dann ist er
in der Lage, diese bei seinen Schiilern der entsprechenden Altersklasse gemaf in
exakter Weise einzufiihren.

Die Praxis wird zeigen, wie sich unsere zum Teil neu durchdachten Wege be-
withren werden. Fiir jede kritische Bemerkung ist das Autorenkollektiv jederzeit
dankbar.

Herr Kollege H. WussinG hat freundlicherweise als Fachmann einige historische
Bemerkungen zur Entwicklung der Geometrie verfaBt, die im ersten Band auf-
genommen wurden und fiir die wir unseren besten Dank sagen. Besonderer Dank
gilt noch Herrn Kollegen W. ENGEL, der mit Ratschligen und kritischen Hinweisen
unsere Arbeit sehr unterstiitzt hat. Ich persénlich méchte mich bei allen iibrigen
Autoren dieser beiden Geometrie-Binde fiir das verstindnisvolle Eingehen auf die
diversen Wiinsche und fiir die Geduld bei allen unseren unvermeidlichen Beratun-
gen iiber dieses Vorhaben recht herzlich bedanken. Unser Dank gilt auch dem
VEB Deutscher Verlag der Wissenschaften und dem VEB Druckerei ,,Thomas
Miintzer*, die in dieser ansprechenden Form diese beiden Binde fiir den studen-
tischen Benutzer hergestellt und viele unserer Wiinsche beriicksichtigt haben. So
hoffen wir, da8 hiermit ein Lehrbuch vorgelegt wird, das der Geometrie-Grund-
ausbildung der Mathematiklehrer eine echte Hilfestellung gibt.

Jena, Juli 1973 JoHANNES BOHM



0. Einleitung

0.1. Verschiedene Aspekte der Geometrie

In der mehrtausendjéhrigen Geschichte der Geometrie ist nicht nur ein betricht-
licher Bestand an geometrischen Einzelkenntnissen entstanden, sondern es haben
sich auch sehr verschiedenartige Betrachtungs- und Aufbauweisen der Geometrie
als Gesamtdisziplin herausgebildet. Daher bietet die Geometrie heute eine beson-
ders interessante Moglichkeit, zu beobachten, wie ein und derselbe Sachverhalts-
bereich unter verschiedenen Aspekten betrachtet und strukturiert werden kann.
In den folgenden zwei Binden soll versucht werden, den Leser in einige wichtige
Aspekte der Geometrie einzufiihren.

Ein erster Aspekt besteht darin, da man die Geometrie — wie grundsitzlich
jede mathematische Disziplin — aufbauen kann aus Aussagen, die ohne Beweis an
den Anfang gestellt werden, d. h. den Axiomen des betreffenden Aufbaues der
Geometrie.

Eine zweite, anders ausgerichtete Betrachtungsweise stellt den Anschluff der
Geometrie an das Rechnen mit Zahlen (Arithmetik, Algebra und Analysis) dadurch
her, daBl vermittels des Koordinatenbegriffs Punkte durch Zahlenpaare oder -tripel
erfaBt werden.

Eine dritte Moglichkeit, geometrische Strukturzusammenhinge deutlich zu
machen, ergibt sich, wenn man als Leitbegriff bei ihrer Formulierung den Begriff der
Abbildung wihlt: Geometrische Aussagen lassen sich als Eigenschaften von Abbil-
dungen formulieren; diese Abbildungseigenschaften gestatten zuweilen neuartige
Beweisfiihrungen einzelner Aussagen, vor allem aber erfihrt die Gesamtstruktur der
Geometrie vermittels bestimmter Gruppen von Abbildungen eine besonders klare
Beschreibung.

Eine vierte Betrachtungsweise geht davon aus, dafl durch geometrische Aussagen
zugleich Moglichkeiten des Konstruierens geometrischer Objekte vermittelt werden
kénnen und daB sich umgekehrt die Untersuchung von Konstruktionsméglich-
keiten, -ablaufen und -ergebnissen wieder in geometrische Aussagen umsetzen laft.
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Mehrmals spielen dabei Querverbindungen zwischen Geometrie und Algebra, insbe-
sondere dem algebraischen Begriff des Korpers, eine Rolle.

Um diese vier Aspekte im Beispiel zu verdeutlichen (wobei sich der Leser die geome-
trischen Aussagen an Hand von Schulkenntnissen ungefihr plausibel machen kann und
auf genauere Begriindungen verzichtet sei), betrachten wir den Begriff zweier paralleler
Geraden.

Bei dem Bestreben, die G trie axi isch aufzub nahm bereits EvKLID
in das Axiomensystem seiner ,,Elemente‘‘ ein besonderes Axiom auf (vgl. 8. 15), aus
dem er dann den Satz von der Existenz genau einer parallelen Geraden h zu einer gege-
benen Geraden g durch einen gegebenen Punkt P herleitete. Erst nach jahrhunderte-
langen vergeblichen Versuchen, dieses Axiom als Lehrsatz aus den ibrigen Axiomen
zu beweisen, wurde die Unabhingigkeit dieses Axioms (oder einer mit ihm gleichwer-
tigen Aussage) durch GAvuss, BoLyar und LoBagEvSKIs erkannt. Man kann sich nun
beim axiomatischen Aufbau der Geometrie fiir die Frage interessieren, welche Satze
ohne dieses Parallelenaxiom herleitbar sind. Dies sind dann Sétze, die sowohl in der
sogenannten euklidischen Geometrie (Geometrie mit Annahme des Parallelenaxioms)
als auch in den sog nichteuklidischen Geometrien (Geometrien, in denen statt
des Parallelenaxioms eine andere Aussage als Axiom zugrunde gelegt wird) gelten.
Solche Sitze nennt man auch Satze der ,,absoluten Gec ie*‘. Im folgenden Aufbau
wird nur die euklidische Geometrie entwickelt, und die Frage, welche Sitze der ,,abso-
luten Geometrie‘* angehéren, wird nicht weiter verfolgt. DemgeméB8 tritt das Parallelen-
axiom schon unter den ersten verwendeten Axiomen auf, um es maglichst vorteilhaft
beim weiteren Aufbau nutzen zu kénnen.

In der analytischen Geometrie konnen Geraden g, h als Lisungsmengen linearer Glei-
chungen ax + by + ¢ = 0 bzw. @’z + b’y + ¢’ = 0 fur die Koordinaten z,y gekenn-
zeichnet werden ((a, b) * (0, 0), (a’, b") #* (0, 0)). Da die Forderung, beide Gleichungen
zusammen zu erfiillen, genau dann nicht befriedigt werden kann, wenn eine reelle Zahl
q * 0 mit

a’ =gqa, b =g¢gb, ¢ *qc

existiert, ist dies die analytisch-geometrische Charakterisierung des geometrischen Sach-
verhaltes

gllh, g+h.

Gehoren etwa zwei Punkte (2,, y,), (2, ;) der Geraden g an, so bildet man in der analy-
tischen Geometrie den vom ersten zum zweiten fithrenden Vektor {w, — x,, ¥, — ¥,).
Dic Menge aller derart aus Punkten von g zu bildenden Vektoren erweist sich als eine
aus der linearen Algebra bekannte algebraische Struktur, nimlich ein Vektorraum der
Dimension 1. (Historisch gesehen entstand umgekehrt diese algebraische Struktur
durch Abstraktion aus der geometrischen Vektormenge auf einer Geraden.) Man kann
sich vorstellen, da3 g entsteht, indem man diesen Vektorraum an einen Punkt von ¢
..anheftet. Hiernach ergibt sich genau dann g || h, wenn g und h durch ,,Anheften*
ein und desselben Vektorraumes gebildet werden konnen.

Um die Bedeutung des Abbildungsbegriffes fiir die Untersuchung paralleler Geraden
zu erkennen, kann man z. B. von der Beobachtung ausgehen, da eine Gerade g in sich
iibergeht, wenn man sie an ciner auf g senkrechten Geraden k spiegelt, und daB bei
dieser Spiegelung genau diejenigen Geraden h ebenfalls in sich ibergehen, die zu g parallel
gind. Hat man die Eigenschaften von Spiegelungen (als speziellen Abbildungen) syste-
matisch untersucht, so erhilt man hiermit auch einen Zugang zu Untersuchungen
paralleler Geraden. Haben z. B. g und & einen gemeinsamen Punkt P, so kann man
k(1 g) mit k ng + P wihlen; dann wird der Spiegelpunkt P’ von P ein zweiter ge-




0.1. Verschiedene Aspekte der Geometrie 11

meinsamer Punkt von g und k, und es folgt g = h. Noch wichtiger ist in der Abbildungs-
geometrie aber folgende Verwendung der Parallelitdt: Man kann unter allen bijektiven
Abbildungen einer Ebene auf sich alle diej Abbild @ betracht fiir die
die Bildmenge je eines Paares paralleler (‘emden g, h wteder ein Paar paralleler Geraden
9" = @(g), K’ = @(h) ist. Diese Abbildungen heilen Affinititen. Die Menge der Affini-
titen ist eine Gruppe (eine Untergruppe der Gruppe aller bijektiven Abbildungen der
Ebene auf sich). Die Aussagen iiber geometrische Eigenschaften, die bei allen Affini-
tiaten erhalten bleiben, faBt man zur ,,affinen Geometrie*' zusammen. Zu diesen Eigen-
schaften gehort z. B. das Teilverhéltnis eines Punktes X auf einer Strecke PQ; zur
affinen Geometrie gehort beispielsweise der Satz, daB in jedem Dreieck die Seitenhal-
bierenden einen gemeinsamen Punkt haben, der jede von ihnen im Verhaltnis 1:2 teilt.

Als Beispiel (einer Fragestellung im Z hang mit parallelen Geraden) in der
Theorie der Konstruktionen sei die Aufgabe erwithnt, die Parallele 2 durch einen gege-
benen Punkt P zu einer gegebenen Geraden g zu konstruieren, wenn als Konstruktions-
mittel nur das Lineal und der Zirkel (also kein Zeichendreicck oder anderes technisches
Hilfsmittel zur Parallelverschiebung von Geraden) zugelassen sind. Ist diese Aufgabe
gelést, so kann man sie ihrerseits als Hilfsmittel bei weiteren Konstruktionsproblemen
emsetzen, z. B. bei allen Aufgaben, bei denen cin Punkt auf Grund einer gefordert,en

haft auf einer besti Parallelen liegen muB. Soll beispielsweise ein Punkt 4
Mlttelp\mkt eines Kreises sein, der zwei gegebene Parallelen g + k beriihrt, so muB
er auf der sogenannten Mittelparallelen von g und & liegen.

Es sei nun betont, daB derartige Aspekte geometrischen Vorgehens nicht zu einer
Einteilung der Geometrie nach geometrischen Objektbereichen fiihren; grundsitz-
lich 1éBt sich vielmehr jedes inhaltliche Teilgebiet geometrischer Objekte unter jedem
dieser Aspekte betrachten und nach dessen Prinzipien aufbauen. Auch bestehen
Wechselbeziehungen, Ubergangs- und Mischformen zwischen den Aspekten.

So kann man z. B. die affine Geometrie unmittelbar aus ihren Aziomen aufbauen; man
hat denn ein Axiomensystem zugrunde zu legen, das gerade die affinen Eigenschaften
herzuleiten gestattet. Man kann aber auch fragen, welche algebraischen Vektoreigen-
schaften in der analytischen Geometrie als Ausdruck dieser Eigenschaften auftreten,
die bei Affinitiiten erhalten bleiben. Man erhilt alle diejenigen Eigenschaften, die durch
Addition von Vektoren und Vervielfachung von Vektoren mit reellen Zahlen wiedergegeben
werden koénnen, also z. B. Fragen der linearen Abhéngigkeit, des Ranges von Trans-
formationsmatrizen (dagegen z. B. nicht Eigenschaften des skalaren oder vektoriellen
Produktes).

Den vier genannten Aspekten entsprechen die vier Kapitel dieser beiden Geo-
metriebinde. Sie kniipfen in der angegebenen Reihenfolge aneinander an, sind
jedoch in ihrem jeweiligen Grundanliegen, der Ausfiihrung des betreffenden Aspek-
tes, relativ in sich geschlossen. Der Leser benétigt zu ihrem Verstindnis einige
wichtige algebraische Grundbegriffe (Gruppe, Kérper) und einfachste Eigenschaften
hiervon (etwa die mit den Stichworten Einselement, Nullel t, tnverses El t
Untergruppe, Unterkorper, Isomorphismus, Homomorphismus zusammenhingen-
den). Es ist jedoch nicht notwendig, vor einem Studium dieser beiden Geometrie-
binde ausfiihrlichere Kenntnisse z. B. der Gruppentheorie (soweit sie insgesamt im
Grundstudium vorgesehen ist) zu erwerben. Fiir die analytische Geometrie wird
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der Abschnitt iiber lineare Algebra aus MfL, Bd. 3 vorausgesetzt; ferner werden
stets die mengentheoretisch-logischen Begriffe sowie die grundlegenden Eigenschaften
der reellen Zahlen aus MfL, Bd. 1 und Bd. 2 bendtigt.

0.2. Handhabung terminologischer Fragen

Die Bezeichnung geometrischer Objekte ist in der gegenwirtigen Literatur durch
groBe Unterschiede, ja Widerspriiche belastet. Daher erscheint es erforderlich, das
terminologische Vorgehen in den vorliegenden beiden Binden kurz zu erldutern.

Es soll in méglichst einheitlicher Weise versucht werden, begriffliche Verschieden-
heiten zwischen geometrischen Objekten maglichst deutlich zu bezeichnen und hierbei
eingefiihrte Bezeichnungsweisen dann méglichst konsequent anzuwenden. Die
Autoren hoffen, den Leser dadurch zu weitgehendem begrifflichen Unterscheiden
anzuregen. Gewisse Weitlaufigkeiten in der Symbolik und Terminologie, die dabei
auftreten, wurden um dieses Zieles der logischen Klarheit willen in Kauf genom-
men.

So fithren wir beispielsweise folgende — stets voneinander zu unterscheidende —
Symbol- und Bezeichnungspaare ein: Sind 4, B zwei verschiedene Punkte, so be-
zeichnet

g(AB) die Gerade durch A und B,

AB* den Strahl aus A durch B,

AB die Strecke mit den Endpunkten 4, B,

|AB| die Linge der Strecke A B,

m(4 B) die (in der Geometrie einer Geraden erklirte) vorzeichenfdhige Lange
der gerichteten Strecke AB,

9(AB) den von A zu B fiihrenden Vektor (:= die 4 in B iiberfithrende
Verschiebung).

Besonders schwierig ist oft in der Literatur ein klares Erfassen verschiedener
Winkelbegriffe. Entsprechend dem eben genannten Prinzip des deutlichen be-
zeichnungstechnischen Unterscheidens soll in unserer Darstellung eine Bezeich-
nungsweise benutzt werden, die sonst in der Literatur nicht iiblich ist (vgl. die
Ubersicht am SchluB von 1.1.3.2.3.). Der Leser kann dabei jeweils sofort ablesen,
ob der betreffende Winkelbegriff mit oder ohne Beachtung der Reihenfolge der
Schenkel gebildet wurde, ob ein Gebiet der Ebene als ,,Inneres' des Winkels ausge-
zeichnet wurde oder nicht sowie ob der Winkelbegriff ein ,,mehrmaliges volles Um-
laufen eines beweglich gedachten Schenkels* wiedergibt oder nicht.

SchlieBlich sei als spezielle Frage der Terminologie und Symbolik die Gestaltung
von Grofenangaben erwihnt. Wie in 1.1.4. ausfiihrlicher dargelegt wird, verstehen
wir GroBen geometrischer Objekte (z. B. Streckenlingen, Flicheninhalte, Volu-
mina, verschiedene Arten der Winkelgrofien) zunichst ,abstrakt® als gewisse
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Aquivalenzklassen, gelangen dann aber auch (mit Hilfe geeigneter Abbildungen in
die Menge R) zu der in der Geometrie gewohnten!) ,,konkreten‘‘ GréBenangabe als
,,formales Produkt aus Mafzahl und MafBeinheit*.

Am SchluBl dieses Bandes, nachdem durch den systematischen Aufbau ein ge-
naueres Verstandnis der Einzelheiten erméglicht ist, sind die wichtigsten Bezeich-
nungsfestsetzungen fiir die beiden Geometriebinde in einer Tabelle zusammen-
gefaBt.

0.3. Bemerkungen zur Geschichte der Geometrie
(H. WussinG)

Das Wort Geometrie wurde von den Philosophen und Mathematikern der Antike
schon seit dem 6. Jahrhundert v. u. Z. als Bezeichnung eines Teilgebietes der Mathe-
matik verwendet. Es bedeutet so viel wie Erdmessung und verweist damit auf die
handgreiflichen praktischen Bediirfnisse, denen die Geometrie ihre Entstehung
verdankt.

Neben der Orientierung in der Zeit gehort die Orientierung im Raum zu den
Grundbediirfnissen der menschlichen Gesellschaft. Daher weisen die friihen Klas-
sengesellschaften im alten Agypten, in Mesopotamien, in den FluBtilern des alten
Indien und China bereits im zweiten Jahrtausend vor unserer Zeitrechnung erstaun-
liche geometrische Kenntnisse auf. Bestimmungen von Entfernungen und von
Flachen- und Rauminhalten gehérten zum gesicherten Bestand der Anfinge der
Mathematik in dieser Zeit; freilich handelte es sich nur um geradlinig begrenzte
Flichen und einfache Korper wie Wiirfel, Quader, Prisma und Zylinder. Das
Glanzstiick der altagyptischen Mathematik war eine Rechenanweisung, eine Art
Formel, die die Inhaltsbestimmung des Pyramidenstumpfes erméglichte. Die Vor-
stellung des Winkels war ebenso fest eingebiirgert wie die Zerlegung von kompli-
zierten geradlinig begrenzten Flichen in Dreiecke und Rechtecke. Die altbabylo-
nische Mathematik kannte sogar den uns unter dem Namen von PYTHAGORAS be-
kannten Sachverhalt am rechtwinkligen Dreieck, und man verwendete dort, wo
kiinstliche Bewdsserung eine Voraussetzung der Existenz der Gesellschaft war, bei
Kanalbauten, einen ,,Boschungswert‘, der auf das trigonometrische Verhiltnis des
Kotangens hinauslduft. Auch war die A tzung von Verhiltni am Dreieck
durchaus geliufig; man kann dies als eine Vorstufe der Ahnlichkeitslehre verstehen.

1) In der Physik setzt man nach TGL 0-1313, Schreibweise physikalischer Glei-
chungen,

GroBe = Zahlenwert mal Einheit .
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Fiir Kreisberechnungen wurde mit Niherungen fiir 7 gerechnet, im allgemeinen
mit 7 ~ 3, in Agypten gelegentlich mit dem recht guten Wert

n 8\2

4 \9)"
Doch wurden diese geometrischen wie iiberhaupt alle mathematischen Kennt-
nisse aus der Friihzeit nur nach Art von Rezepten oder Anweisungen verwendet.

Es handelte sich sozusagen um eine implizite Geometrie, die in den vielféltigen
gesellschaftlich-praktischen Anwendungen der Mathematik ,,drinsteckte.

Erst mit dem Ubergang zur hoherstehenden Gesellschaftsordnung der entwickel-
ten Sklavenhaltergesellschaft erhielt auch die Mathematik eine andere, sozusagen
explizite Form: Als die griechischen Vélker auf der Grundlage der von ihnen aus-
gebildeten neuen Gesellschaftsformation, begiinstigt durch klimatische und geogra-
phische Faktoren und bei spontaner materialistischer philosophischer Grundhal-
tung, im dstlichen Mittelmeerraum politisch-6konomisch bestimmend wurden, voll-
zog sich in den kleinasiatischen ionischen Stidten in Beriihrung mit der babyloni-
schen mathematischen Tradition ein Umschlag, der fiir die Mathematik zur Aus-
bildung eigener wissenschaftlicher Methoden und Zielstellungen und damit auch
zur Herausbildung von innerwissenschaftlichen Triebkriften und GesetzmaiBig-
keiten der Entwicklung fithrte. Aus einer empirisch entstandenen und nach Art
von Rezepten betriebenen Mathematik entstand in mehreren Etappen eine syste-
matische, logisch-deduktiv dargelegte, eigenstindige Wissenschaft Mathematik.

Dies trifft auch fiir die Geometrie zu. Den Anfang machte THALES voN MILET
(624?—548? v. u. Z.), der u. a. die lingst bekannten Tatsachen bewies, dal im
gleichschenkligen Dreieck die Basiswinkel gleich sind und daB der Durchmesser die
Kreisflache halbiert. Auf HipPOKRATES VON CHIOS (um 440 v. u. Z.) geht die noch
heute iibliche Bezeichnung von Strecken durch deren beide Endpunkte zuriick. Er
fand fiinf verschiedene Typen (,,Méndchen‘‘) von krummlinig begrenzten Flichen,
die sich quadrieren, d. h. durch ausschlieBliche Verwendung von Zirkel und Lineal
in ein flichengleiches Quadrat verwandeln lassen. Der Geheimbund der Pytha-
goreer (6./5. Jh. v. u. Z.) verfolgte zwar religiése und politisch reaktionire Ziele,
doch spielte in dessen Ideologie die Mathematik als mystikbeladene Geheimwissen-
schaft eine bestimmende Rolle. Nebenbei sozusagen trugen die Pythagoreer We-
sentliches zur Entwicklung der Geometrie bei, u. a. die Kreislehre und die Theorien
der Flichenverwandlung und der um- und einbeschriebenen Vielecke.

Schon HIPPOKRATES hatte eine Zusammenfassung der damaligen Geometrie
verfafit, und zwar bereits nach dem klassischen strengen Darstellungsschema: Vor-
aussetzung, Satz, Beweis. Doch gingen seine ,,Elemente’* verloren. Sie wurden
durch die spiteren, ausfiihrlicheren und wohl auch pidagogisch besseren ,,Ele-
mente'‘ des in Alexandria wirkenden Mathematikers EUKLEIDES (3652 —300?
v.u. Z.) verdringt. In 13 Biichern fafite EUKLEIDES die Mathematik seiner Zeit
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zusammen; allerdings lieB er als Anhinger der idealistischen Philosophie PLATOS
(427—347? v. u. Z.) die Anwendungen der Mathematik véllig aus.

Die ebene und rdumliche Geometrie ist in den Biichern I—VI (planimetrische
Biicher) und XI—XIII (stereometrische Biicher) der ,,Elemente‘‘ dargestellt. Das
Buch X enthilt die schwierige Klassifikation der quadratischen Irrationalititen
mittels der geometrischen Theorie der Flichenanlegungen.

Uber das Inhaltliche hinaus stellen die ,,Elemente‘* auch vom Methodischen her
einen Hohepunkt der Entwicklung der Mathematik dar: EUKLEIDES griindete die
,,Elemente* auf Definitionen der Grundbegriffe, auf fiinf Postulate und auf neun
Axiome.

Die Definitionen — z. B. von Punkt, Linie, Grenze, Figur — stellen den schwiich-
sten Teil der ,,Elemente* dar. Im Grunde handelt es sich nur um beschreibende
Verbalerklairungen. Wer etwa noch nicht durch Abstraktion in den Besitz des
Begriffes ,,Punkt‘‘ gelangt ist, konnte ihn auch nicht gewinnen durch die Erkli-
rung: ,,Ein Punkt ist das, was kleine Teile hat.*

Die drei ersten Postulate sichern, dal man jeden Punkt mit jedem durch eine
Strecke verbinden, jede begrenzte Linie geradlinig zusammenhingend verlingern
und Kreise von beliebigem Mittelpunkt und Radius schlagen darf. Dadurch wur-
den die Konstruktionshilfsmittel der antiken Geometrie auf Zirkel und Lineal ein-
geschrinkt. Ferner wird postuliert, daB alle rechten Winkel gleich sind.

Das fiinfte Postulat, das sogenannte Parallelenpostulat, lautet in originaler For-
mulierung: ,,Wenn eine gerade Linie beim Schnitt mit zwei geraden Linien bewirkt,
daB die innen auf derselben Seite entstehende Winkel zusammen kleiner als zwei
rechte werden, dann treffen sich die zwei geraden Linien bei Verlingerung ins Un-
endliche auf der Seite, auf der die Winkel liegen, die zusammen kleiner als zwei
rechte sind.* Dieses Postulat war schon im Altertum insofern umstritten, als es
nicht dasselbe MaB an Selbstverstandlichkeit zu besitzen schien wie die anderen
vier. Daher wurden Versuche unternommen, es mit Hilfe der vier anderen zu
beweisen.

Die Geschichte der Mathematik kennt seit der Antike zahlreiche Scheinbeweise,
d. h. ,,Beweise‘‘ des Parallelenpostulates mit Hilfe der anderen vier, bei denen unzu-
lassigerweise eine weitere geometrische, scheinbar selbstverstindliche Annahme
mitverwendet wurde.

Erst seit den Untersuchungen von J. WaLLis (1616 —1703), A. M. LEGENDRE
(1752 —1833), G. SaccHERI (1667—1733), F. K. ScuwEIkART (1780—1857), F. A.
TAURINUS (1794 —1874) und C. F. Gavss (1777—1855) weil man, daB es vielerlei
Postulate gibt, die dem Parallelenpostulat dquivalent sind. So fand z. B. WaLLIS
im Jahre 1663, daB mit den ersten vier Euklidischen Postulaten und dem ,,Ersatz-
postulat‘: ,,Zu jeder beliebigen Figur gibt es stets eine andere ihr dhnliche von be-
liebiger GroBle** ebenfalls die euklidische Geometrie aufgebaut werden kann. Aber
erst GAuss und nach und unabhingig von ihm J. BoLya1 (1802—1860) und N. I.
Lopaevsk1s (1793 —1856) konnten beweisen, daB das fiinfte Postulat unabhingig
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von den ersten vier ist und daB daher nichteuklidische Geometrien méglich sind,
die durch Einwechslung mit einem zum Parallelenpostulat nicht &quivalenten
Postulat entstehen. LoBAGEVSKIT kommt der Ruhm zu, als erster iiber nichteukli-
dische Geometrie publiziert zu haben. Auch BoLyAr schrieb mit voller Klarheit
dariiber, wihrend sich GAuss nicht zur Veroffentlichung entschlieBen konnte im
Hinblick auf die damalige Vorherrschaft der Philosophie KanTs, in deren System
die euklidische Geometrie als schlechterdings denknotwendig galt.

Inden ,,Elementen‘‘ des EUKLEIDES schlieflen sich neun Axiome an die Postulate
an. Es handelt sich um Fixierungen, die zum Ziehen logischer Schliisse berech-
tigen. So wird z. B. festgehalten: ,,Was demselben gleich ist, ist auch unterein-
ander gleich*‘ oder ,,Das Ganze ist groBer als der Teil*‘.

Die ,,Elemente* des EUKLEIDES haben auf Grund ihrer inhaltlichen und me-
thodologischen Meisterschaft die weitere Entwicklung der Mathematik wesentlich
geformt, noch weit bis in die Neuzeit hinein. Noch im 20. Jahrhundert wurden sie
als offizielles Lehrbuch verwendet ; sie sind auch heute fiir den Mathematiker noch
sehr lesenswert und iibrigens auch in deutscher Sprache bequem zuginglich.

Die griechisch-hellenistische Mathematik hat iiber EUKLEIDES hinaus noch wei-
tere hervorragende Leistungen vollbracht. Auf geometrischem Gebiet zeichneten
sich insbesondere ARCHIMEDES (287?—212? v.u.Z.) aus, wohl iiberhaupt der
bedeutendste Mathematiker der Antike, und APoLLONIOS VON PERGE (262 ?—190?
v. u. Z.), der eine systematische Theorie der Kegelschnitte entwickelte.

Nach dem Zusammenbruch der antiken Sklavenhaltergesellschaft wurden haupt-
sichlich in den Lindern des Islam bedeutende Teile der antiken Mathematik be-
wahrt. In Bagdad iibersetzte man seit dem 8. Jahrhundert systematisch griechische
Schriften ins Arabische, darunter natiirlich Werke von EUKLEIDES und ARCHI-
MEDES. Auf dieser Grundlage und unter Einbeziehung von Teilen der indischen
Mathematik entwickelten die islamischen Mathematiker eine weitreichende Mathe-
matik, die ihrer inneren Struktur nach allerdings eher algebraisch-rechnerisch als
geometrisch-konstruktiv orientiert war.

Seit dem 11. Jahrhundert gelangten mit dem allgemeinen Kultur- und Wissen-
schaftsgefille vom Osten nach dem Westen auch Teile der islamischen bzw. der
durch die Araber geretteten antiken Geometrie in die europdischen Lander des
Feudalismus. Doch blieben sie unter den 6konomischen und ideologischen Bedin-
gungen des Mittelalters ohne durchgreifende Resonanz im wissenschaftlichen Ge-
fiige des Lehrgebaudes der Scholastik.

Erst mit dem Heraufkommen des Friihkapitalismus, seit dem 15. Jahrhundert,
trat ein grundlegender Wandel ein. Die sich formierende neue Klasse, die Bour-
geoisie, erkannte in ihrem Kampf gegen die Feudalgesellschaft die Aneignung von
Wissen als Mittel ihrer eigenen politischen und 6konomischen Emanzipation.
Ging es im 15. und 16. Jahrhundert um die Wiedergeburt (Renaissance) der antiken
Wissenschaft, so konnten im 17. und 18. Jahrhundert die Kenntnisse der Antike
bei weitem iibertroffen werden, auch in der Mathematik.
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Die antiken mathematischen Schriften — soweit sie iiberliefert worden waren
— wurden wihrend der Renaissance in sorgfiltigen textkritischen Ausgaben in der
Originalsprache gedruckt; beispielsweise erschienen die ,,Elemente von EUKLEI-
DEs 1533 in Basel.

Im AnschluB an die wiedererstandenen geometrischen Schriften der Antike lie-
ferte J. KEPLER (1571 —1630) bedeutende Beitrige zur Kegelschnittslehre. P. pr
FERMAT (1601 —1665) suchte das verlorengegangene Buch VIII der Kegelschnitts-
lehre des APOLLONIOS zu rekonstruieren und begriindete zusammen mit dem Philo-
sophen und Mathematiker R. DESCARTES (1596 —1650) in den dreiBiger Jahren des
17. Jahrhunderts die analytische Geometrie. (Einige historische Bemerkungen zur
Geschichte der analytischen Geometrie finden sich in MfL, Bd. 7.) Mit L. B. AL-
BERTI (1401 —1472), LEONARDO DA VINCI (1452 —1519) und A. DURER (1471 —1528)
hegannen sich in den Kreisen der Handwerker, Kiinstler und Festungsbaumeister
die Lehre von der Perspektive und die projektive Geometrie herauszubilden; diese
Entwicklungslinie fiihrte schlieBlich bei dem politisch progressiven franzosischen
Politiker und Mathematiker G. MONGE (1746 —1818) zur Begriindung der darstel-
lenden Geometrie als selbstindige mathematische Disziplin. (Historische Bemer-
kungen zur Geschichte der darstellenden Geometrie finden sich in MfL, Bd. 8.)

Auf dem Untergrund des allgemein werdenden gesellschaftlichen Interesses an
den Naturwissenschaften und der Mathematik wihrend der Zeit der industriellen
Revolution und der Entfaltung des Kapitalismus konnte auch die Geometrie im
19. Jahrhundert eine stiirmische Entwicklung nehmen. Einige Haupttendenzen
seien hier hervorgehoben.

Die kritische Besinnung auf die Grundlagen der Geometrie fiihrte zu Anfang des
19. Jahrhunderts zur Ausarbeitung der nichteuklidischen Geometrie und spiter,
1854, bei B. RIEMANN (1826 —1866) zur differentialgeometrischen Behandlung
n-dimensionaler Mannigfaltigkeiten und der Klassifizierung aller drei Grundtypen
der Geometrie, der elliptischen, der euklidischen (oder parabolischen) und der
hyperbolischen Geometrie.

Im Streit zwischen den Anhingern der damaligen synthetischen Geometrie — hier
ist besonders der Schweizer Mathematiker J. STEINER (1796 —1863) zu nennen —
und denen der mehr analytischen Richtung konnten sich schliefllichdurchdas Wirken
u. a. von A. F. MoB1us (1790—1868), J. PLUCKER (1801 —1868) und H. GRASSMANN
(1809 —1877) der durchgehende Gebrauch von Koordinaten und algebraische Hilfs-
mittel in der Geometrie durchsetzen. Und schlieBlich lieferten der norwegische
Mathematiker S. LiE (1842 —1899) und F. KLEIN (1849—1925) — das sog. Erlanger
Programm KLEINS stammt aus dem Jahre 1872 — auf gruppentheoretischer Grund-
lage eine Klassifizierung aller (bis dahin bekannten) Geometrien: Geometrische
Eigenschaften von riaumlichen Gebilden sind solche, die sich gegeniiber einer be-
stimmten Transformationsgruppe als invariant erweisen.

Doch waren die schwierigen Fragen der axiomatischen Grundlegung der Geo-
metrie noch offen geblieben, ein Mangel, der mit dem Aufkommen der mathema-
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tischen Logik gegen Ende des 19. Jahrhunderts besonders deutlich wurde. H. PoIN-
CARE (1854—1912) in Frankreich und M. PascH (1843—1930) und D. HILBERT
(1862—1943) in Deutschland und weitere Mathematiker widmeten sich diesem
Problem. In seiner zuerst 1899 aus Anlafl der Enthiillung des GauB-Weber-Denk-
mals in Géttingen versffentlichten Festschrift ,,Uber die Grundlagen der Geome-
trie* begriindete HILBERT die gesamte Geometrie axiomatisch. Dabei fiihrte er die
Widerspruchsfreiheit der Geometrie auf die der Arithmetik zuriick und wies die
Unabhiingigkeit verschiedener von ihm aufgestellter Axiomgruppen (Verkniipfung,
Anordnung, Kongruenz, Parallele, Stetigkeit) nach. HILBERT bezog von vorn-
herein einen ganz abstrakten Standpunkt und warf dabei giinzlich neue Fragen der
Axiomatik iiberhaupt auf: Die geometrischen Elementarbegriffe Punkt, Gerade,
Ebene werden nicht explizit definiert. Vielmehr werden die zwischen ihnen be-
stehenden Beziehungen durch die Axiome und die aus ihnen abgeleiteten Sitze
festgelegt und daher die geometrischen Elemente und Relationen nur implizit
definiert.

Mit der Problemstellung der axiomatischen Grundlegung von Teilgebieten der
Mathematik waren zugleich schwierige erkenntnistheoretische Fragen aufgeworfen
worden. Unter den Bedingungen der allgemeinen Krisis des Imperialismus wurden
innermathematische Schwierigkeiten, auch im Zusammenhang mit solchen der sich
entwickelnden Mengenlehre, von Seiten idealistischer Philosophen hochgespielt
und iiberbetont. HILBERT selbst wandte sich mit voller Schirfe gegen Tendenzen
des Agnostizismus und stellte seinerseits das ,,Axiom von der Losbarkeit jeder
mathematischen Aufgabe im weiten Sinne des Wortes‘‘ auf. Heute ist die Geometrie
eine sicher begriindete mathematische Teildisziplin, die ihre feste erkenntnistheore-
tische Basis im dialektischen und historischen Materialismus besitzt; doch gibt es
noch eine Vielzahl offener Fragen in der mathematischen Grundlagenforschung der
Geometrie.



1. Axiomatischer Aufbau der Geometrie

1.0. Vorbemerkungen

Die elementare Geometrie ist ein Zweig der Mathematik, der in einem verhiltnis-
méBig engen und unmittelbaren Zusammenhang mit der uns umgebenden physi-
kalischen Welt steht. Das tigliche Leben bringt jeden Menschen auf Schritt und
Tritt mit Objekten in Beriihrung, an denen geometrische Figuren zu erkennen sind :
ebenflichig begrenzte Gegenstinde, geradlinig begrenzte Flichen, Dreiecke, Vier-
ecke, Kreise, parallele Strecken, kongruente Winkel usw. Das hat zur Folge, daB
jeder Mensch von vielen geometrischen Begriffen schon eine gewisse Vorstellung
hat, auch ohne daf3 er sich besonders intensiv oder bewuBt mit Geometrie befat
hat. Die Geometrie gilt daher als eine besonders anschauliche Disziplin der Mathe-
matik. Aber es ergibt sich aus diesem Umstand auch die Moglichkeit, Geometrie in
gewissermaflen experimenteller und phédnomenologischer Art zu betreiben. Diese
Moglichkeit wird besonders im Schulunterricht ausgenutzt. Die Schiiler werden
im Geometrieunterricht im Zusammenhang mit der Beschreibung anschaulicher
geometrischer Sachverhalte erst langsam an mathematische Denkweisen heran-
gefithrt. Im Laufe des Geometrielehrganges der Schule werden von einer gewissen
Stufe an deduktive Schliisse durchgefiihrt und strenge Beweise gegeben ; die Grund-
lagen der Geometrie bleiben jedoch fiir den Schiller — wie es nicht anders sein
kann — eine gréBere Anzahl induktiv gewonnener Kenntnisse.

Jeder Mathematiklehrer sollte sich jedoch bewuft sein, daB die Geometrie
andererseits auch von Anfang an als eine rein deduktive Theorie dargestellt und
betrieben werden kann, und er sollte einen solchen Aufbau der Geometrie kennen,
der natiirlich — wie es heute in jeder mathematischen Disziplin der Fall ist — von
einem Axio ystem a hen hat. In dem folgenden ,,Axiomatischen Aufbau
der Geometrie* wird ein solcher rein deduktiver Weg zur Geometrie beschritten.
Er lehnt sich an den klassischen um 1900 von DAvip HILBERT gegebenen Aufbau
der Geometrie an, nimmt dabei aber auch auf den im modernen Unterricht stirker
hervortretenden abbildungstheoretischen Aspekt Riicksicht.
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Fiir das Verstindnis des folgenden axiomatischen Aufbaus der Geometrie sind
an sich nur einige Grundkenntnisse aus der Mengenlehre und der Algebra erforder-
lich (nidmlich etwa folgende Begriffe: Enthaltensein von Mengen, Abbildungen,
Hintereinanderausfiihrung von Abbildungen, Relation, Aquivalenzrelation und
Zerlegung, Halbgruppe, Gruppe, kommutative Gruppe, Homomorphie, Isomor-
phie), aber der Studierende wird gut daran tun, vor dem Durcharbeiten des vor-
liegenden Geometrielehrganges seine eigenen Kenntnisse der Elementargeometrie
kritisch zu sichten und ein wenig in Frage zu stellen, indem er z. B. iiber Fragen
folgender Art nachdenkt: Was ist eigentlich ein Winkel ? Welche Begriffe braucht
man zur Definition des Winkelbegriffes, und wie kann man wiederum diese Begriffe
definieren ? Was meint man eigentlich, wenn man sagt, daB eine Strecke grofBer
als eine andere sei oder daB sie die Linge 3 cm habe ? Was bedeutet es, wenn man
sagt, ein Dreieck gehe aus einem anderen durch eine Verschiebung (Drehung,
Spiegelung) hervor? Im Zusammenhang mit der Beantwortung solcher Fragen
wird der mit einem axiomatischen Aufbau der Geometrie noch nicht vertraute Leser
bei sich eine gewisse Unsicherheit feststellen, er wird aber auch immer wieder auf
bestimmte grundlegende geometrische Aussagen und Begriffe kommen (beispiels-
weise: Durch zwei Punkte gibt es genau eine Gerade, oder: eine Gerade wird durch
einen auf ihr liegenden Punkt in zwei Strahlen zerlegt, usw.), die Ausgangspunkt
fiir viele andere Sitze sein konnen, und er wird dann bereit sein, derartige Aussagen
als Axiome fiir einen systematischen Aufbau der Geometrie an den Anfang gestellt
zu finden. Beim weiteren schrittweisen Studium des axiomatischen Aufbaus der
Geometrie muBl der Leser darauf achten, keine anderen Sachverhalte als gegeben
und richtig anzunehmen, als in den bis zur jeweiligen Stelle aufgefiihrten Axiomen
und daraus gefolgerten Sitzen niedergelegt sind. Das erfordert einige Miihe und
etwas Abstraktionsvermogen, belohnt den Leser aber damit, daB er fiir grund-
legende Fragen der Elementargeometrie sicheren Boden gewinnt und die erwihnte
Unsicherheit verliert.

Es sei darauf hingewiesen, daB der hier dargestellte Weg nur einer unter vielen
moglichen ist. Er beschrinkt sich hauptsichlich auf die Geometrie der Ebene,
weil hier das fiir einen axiomatischen Aufbau Charakteristische in geniigendem
MagBe erkennbar wird. Fiir den Aufbau der Geometrie des dreidimensionalen Rau-
mes werden nur ein Axiomensystem und einige grundlegende Definitionen und
Sachverhalte angegeben werden.

1.1. Geometrie der euklidischen Ebene
114, Inzidenz, Parallelitdt, Verschiebungen

An den Beginn des Aufbaus der euklidischen Geometrie der Ebene werden folgende
als richtig vorausgesetzte Aussagen gestellt: Unter dem Begriff Ebene versteht
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man eine Menge mit bestimmten, im folgenden angegebenen Eigenschaften; ihre
Elemente werden Punkte genannt. Es gibt ein nicht leeres System von Teilmengen
der Ebene, dessen Elemente Geraden genannt werden; eine Gerade ist also eine
spezielle Punktmenge.

Weitere Aussagen, die als grundsitzlich wahr vorausgesetzt werden — es sind
Eigenschaften, denen Punkte und Geraden geniigen —, werden in Form von Axio-
men formuliert.

Axiom (1). Sind A und B zwe? beliebige voncinander verschiedene Punkte, so gibt
¢s genau etne Gerade, die A und B enthdlt.

Axiom (2). Jede Gerade enthilt mindestens zwei Punkte.
Axiom (3). Es gibt keine Gerade, die simtliche Punkte der Ebenc enthiilt.

Eine Punktmenge, die in einer Geraden enthalten ist, soll kollinear genannt wer-
den. Die nach Axiom (1) eindeutig bestimmte Gerade, die zwei gegebene Punkte
A und B enthilt, nennt man auch Verbindungsgerade der Punkte 4 und B, sie
moge mit dem Symbol g(4 B) bezeichnet werden. Der Sachverhalt, daB ein Punkt P
zu einer Geraden g gehort, soll auch mit den Worten ,,der Punkt P liegt auf der
Geraden g oder ,,g geht durch P beschrieben werden. Aus Axiom (1) folgt, daB
zwei verschiedene Geraden hochstens einen gemeinsamen Punkt haben. Denn
hiitten die beiden voneinander verschiedenen Geraden g, und g, zwei Punkte 4
und B gemeinsam, so miifite sowohl g, als auch g, gleich der nach Axiom (1) ein-
deutig bestimmten Verbindungsgeraden von 4 und B sein, es wire also g, = g,
im Widerspruch zur Voraussetzung.

Mit einem besonderen Wort wird der Fall bezeichnet, daB zwei Geraden keine
oder alle Punkte gemeinsam haben. Hierzu wird fiir Geraden g und % definiert:

Definition. g||h:=gnh=0vg=nh

Das Zeichen ,,||* wird ,,parallel gelesen. Statt ,,g || k** sagt man auch ,,g ist
eine Parallele zu 4 oder ,,g ist zu k parallel”. Fiir das Parallelsein wird folgendes
gefordert :

Axiom (4) (Parallelenaxiom). Ist g eine beliebige Gerade und P ein beliebiger
Punkt, so gibt es genau eine Gerade, die P enthiilt und die zu g parallel ist (Abb. 1.1).

Das Parallelsein ist offenbar eine Relation in der Menge der Geraden. Es soll
nun gezeigt werden, daB es sich um eine Aquivalenzrelation handelt. Aus der Defi-
nition folgen unmittelbar Reflexivitit und Symumetrie, d. h., fiir jede Gerade g
gilt g || g, und gilt fiir zwei Geraden g und % die Relation g || , so gilt auch & || g.
Zum Beweis der Transitivitit sei fiir drei Geraden g, h, k vorausgesetzt, daB g || b
und k || k gilt. Wenn g = k ist, dann ist nach Definition ¢ || k, und die Transitivitdt
ist bewiesen. Es sei nun g & k. Wire g n k = 0, so wiire, wie oben gezeigt wurde,
dieser Durchschnitt ein Punkt S, und g und k wiren zwei verschiedene, den Punkt §
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Abb. 1.1

enthaltende und zu % parallele Geraden. Das ist ein Widerspruch zum Parallelen-
axiom. Es kann also nur g n k = 0 und somit g || & sein. Damit ist die Relation
,paralle] als eine Aquivalenzrelation nachgewiesen. Die Menge aller Geraden
zerfillt demnach in Klassen zueinander paralleler Geraden. Jede solche Klasse
moge als Parallelenklasse bezeichnet werden. Es ist auch méglich, den Namen
Richtung hierfiir zu verwenden. Eine Parallelenklasse ist durch Angabe einer ihrer
Geraden eindeutig festgelegt. Zwei Geraden, die zu verschiedenen Parallelenklassen
gehoren, haben genau einen gemeinsamen Punkt.

Unter den bijektiven Abbildungen der Ebene auf sich spielt ein spezieller Typ
von Abbildungen eine besondere Rolle, der zunéchst definiert werden soll.

Definition: v ist eine Verschiebung genau dann, wenn 7 eine bijektive Abbil-
dung der Ebene auf sich mit folgenden Eigenschaften ist:

(V1) Das Bild einer beliebigen Geraden g ist eine zu g parallele Gerade.

(V2) Wenn die Abbildung nicht die identische Abbildung ist, so ist jeder
Bildpunkt von seinem Original verschieden.

Die Eigenschaft (V1) miite genau genommen wie folgt formuliert werden: Die
Menge der Bilder aller Punkte einer beliebigen Geraden g ist eine zu g parallele
Gerade. Da aber keine MiBverstindnisse zu befiirchten sind, wird — auch in
den weiteren Ausfitlhrungen und in analogen Zusammenhidngen — die obige
kiirzere Sprechweise verwendet. Weiterhin wird folgendes vereinbart: Ist I eine
Punktmenge, ¢ eine Abbildung der Ebene auf sich, so soll unter ¢(I) die Menge
{X: X = ¢(P), P ¢ M) verstanden werden.

Die identische Abbildung, d. h. die Abbildung, die jeden Punkt auf sich selbst
abbildet, hat offenbar die Eigenschaften (V1) und (V2), sie ist also eine spezielle
Verschiebung. Zur Bezeichnung der identischen Abbildung wird im folgenden

1 tlich der Buchstabe ¢ verwendet werden.

&8

Die folgenden Hilfssiitze geben weitere Eigenschaften von Verschiebungen an.
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Erster Hilfssatz iiber Verschiebungen. Ist t eine Verschiebung, t== ¢, P
ein beliebiger Punkt und g die Verbindungsgerade von P und v(P), so wird die Gerade g
bet der Verschiebung v auf sich selbst abgebrldet.

Beweis. Die Gerade g enthilt den Punkt P, folglich enthédlt 7(g) den Punkt
7(P). Nach (V1)ist das Bild von g eine Parallele zu g. Die Parallele zu g durch z(P)
ist aber, da g den Punkt 7(P) enthilt, die Gerade g selbst. Also ist das Bild von g
wieder die Gerade g, und der Hilfssatz ist bewiesen.

Eine Gerade, die bei einer Abbildung auf sich selbst abgebildet wird, soll Fiz-
gerade dieser Abbildung genannt werden. Desgleichen nennt man einen Punkt, der
auf sich selbst abgebildet wird, einen Fixpunkt der betreffenden Abbildung. Ein
gemeinsamer Punkt zweier verschiedener Fixgeraden ist ein Fixpunkt; denn das
Bild dieses Punktes muB sowohl auf der einen Fixgeraden als auch auf der anderen
liegen, kann also nur der gemeinsame Punkt selbst sein. Eine Fixgerade braucht
keinen einzigen Fixpunkt zu enthalten. Besteht eine Gerade nur aus Fixpunkten,
so soll sie Fizpunktgerade genannt werden.

Zweiter Hilfssatz iiber Verschiebungen. Ist v eine Verschiebung, v + ¢,
und sind P und Q zwei Punkte, so ist die Verbindungsgerade von P und t(P) parallel
zur Verbindungsgeraden von @ und 7(Q).

Beweis. Der Beweis wird indirekt gefiihrt. Die Geraden g(Pz(P)) und g(Q(Q))
seien als nicht parallel angenommen. Sie haben dann genau einen gemeinsamen
Punkt S. Da beide Geraden nach dem ersten Hilfssatz Fixgeraden sind, ist S ein
Fixpunkt. Das ist aber ein Widerspruch zur Eigenschaft (V2); und somit ist der
zweite Hilfssatz bewiesen.

Auf Grund des zweiten Hilfssatzes ist fiir eine feste Verschiebung v (v = 1) die
Menge aller Verbindungsgeraden von Original- mit zugehérigen Bildpunkten eine
Parallelenklasse, die man Verschiebungsrichtung nennt. Die Verschiebungsrichtung
ist auf Grund des ersten Hilfssatzes zugleich die Menge aller Fixgeraden von 7,
denn jede nicht zu der genannten Parallelenklasse gehorende Fixgerade wiirde mit
den Fixgeraden der Verschiebungsrichtung gemeinsame Punkte haben, also Fix-
punkte ergeben, was wegen (V 2) nicht sein kann.

In einem spiteren Abschnitt wird der Begriff Verschiebungsrichtung noch eine
Verfeinerung erfahren.

Aus dem Bisherigen kann nicht gefolgert werden, daB es iiberhaupt — auBer der
identischen Abbildung — Verschiebungen gibt. Es wird daher folgendes Axiom
aufgestellt :

Axiom (5) (Existenz von Verschiebungen). Die Menge aller Verschiebungen hat
folgende Eigenschaft: Sind A und B zwei beliebige Punkte, so gibt es genau eine Ver-
schiebung, bet der A auf B abgebildet wird.
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Dieses Axiom besagt unter anderem, da8 eine Verschiebung durch Vorgabe eines
Original- und eines Bildpunktes eindeutig festgelegt ist. Sind also 7, und 7, zwei
Verschiebungen und ist P ein Punkt mit 7,(P) = 7,(P), 80 ist 7; = 7,.

Es sei auf folgenden Sachverhalt hingewiesen: Unter Benutzung von (V1), (V2)
und dem zweiten Hilfssatz iiber Verschiebungen kann bewiesen werden, daB es
nicht mehr als eine Verschiebung geben kann, die 4 auf B abbildet. Das Wort
»genau‘‘ konnte also aus dem Axiom (5) gestrichen werden, dafiir miiBte der ge-
nannte Beweis ausgefiihrt werden.

Es kann jetzt nachgewiesen werden, daB die Menge aller Verschiebungen beziig-
lich der Operation der Hintereinanderausfiihrung eine Gruppe bildet. Zunichst ist
klar, daB fiir diese Operation das Assoziativgesetz gilt, wie es bekanntlich bei Pro-
dukten von Selbstabbildungen einer Menge immer der Fall ist. Als neutrales Ele-
ment fungiert die identische Abbildung ¢«. Aus der Definition der Verschiebungen
ergibt sich, daB die Umkehrabbildung einer Verschiebung ebenfalls die Eigenschaf-
ten (V1) und (V2) hat, also eine Verschiebung ist. SchlieBlich hat das Produkt
T, o 7, zweier Verschiebungen t, und 7, wegen der Transitivitit des Parallelseins die
Eigenschaft (V1), und die Eigenschaft (V2) ergibt sich folgendermaBen: Gilt fiir
einen Punkt F die Gleichung v, o 7,(F) = F, so ergibt die Anwendung von ;! die
Gleichung 7,(F) = 75 !(F), das bedeutet aber 7,(X) = 7;*(X) fiir alle X, und hieraus
folgt durch Anwendung von 7,: 7,07;(X) = X fiir alle X, d. h. 7,07, = ¢, und
75 o 7; hat somit die Eigenschaft (V2).

Die Verschiebungen bilden also eine Gruppe. Es wird nun gezeigt, daB diese
Gruppe sogar kommutativ ist. Dazu wird angenommen, daB die Verschiebungz, den
Punkt 4 auf den Punkt B, die Verschiebung 7, den Punkt B auf den Punkt C ab-
bildet, 7, und 7, seien beide von der identischen Abbildung verschieden.

Fall 1: 4, B, C sind nicht kollinear (Abb. 1.2).

Es sei D = 1,(4). Nach Eigenschaft (V1) liegt D auf der Parallelen zu g(4 B)
durch C, die Geraden g(4 B) und ¢(DC) sind also parallel. Nach dem zweiten Hilfs-
satz iiber Verschiebungen liegt D auf der Parallelen zu g(BC) durch 4, so daB die

Abb. 1.2
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Geraden g(BC) und g(4D) parallel sind. Es sei E = 7,(D). Wegen (V1) ist E ein
Punkt der Parallelen durch B zu g(4D), also ein Punkt von g(BC). Nach dem zwei-
ten Hilfssatz iiber Verschiebungen ist E ein Punkt der Parallelen durch D zu g(4 B),
also ein Punkt von g(DC). Der einzige gemeinsame Punkt der Geraden g(BC) und
g(DC) ist aber C. Folglich gilt

7, 07(4) =1,01y(4) = C,
d. h.

T 0Ty =T3°T; .

Fall 2: A, B, C sind kollinear (Abb. 1.3).

Abb. 1.3

Dieser Fall wird auf den ersten zuriickgefiihrt. Es sei Q ein beliebiger, nicht auf
¢(A B) ligender Punkt, der auf Grund von Axiom (3) sicher existiert, und es sei 7,
die Verschiebung, die 4 auf Q abbildet. Ferner sei v5(B) = @,. Fiir die Produkte
7307, und 7, o 75! liegt dann sicherlich der erste Fall vor, die Faktoren sind jeweils
vertauschbar. Ferner ist 7, o 73(4) = @, 7, 75 1(@,) = C, und da 4, @,, C nicht kol-
linear sind, liegt auch fiir das Produkt (t, o 73) ¢ (7, 73 *) der erste Fall vor. Daher
ist die folgende Gleichungskette richtig, die sich auf Grund des jeweils vorliegenden
ersten Falles durch Faktorenvertauschung ergibt:

Len=Tenot=T0(nety)or
= (Tz°7a_l) o (1 0T3) =T,°(T3°7T,) °Ts-‘
=T oT(Teory) =107,
Die letzten Ergebnisse lassen sich zusammenfassen zu dem

Satz iiber die Gruppe der Verschiebungen. Die Verschicbungen bilden
beziiglich der Hintereinanderausfithrung eine kommutative Gruppe.

Ist eine feste Parallelenklasse gegeben, so bildet die Menge aller Verschiebungen,
die diese Klasse als Verschiebungsrichtung haben, unter Hinzunahme der identi-
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schen Abbildung eine Untergruppe der Gruppe der Verschiebungen. Dies folgt
leicht aus der Definition des Begriffes Verschiebungsrichtung; der Beweis kann
dem Leser iiberlassen werden.

Eine wichtige Anwendung ist der Begriff der Verschiebungsgleichheit. Fiir irgend-
welche Punktmengen oder Systeme von Punktmengen 9, und I, definiert man:

Definition. IR, ist verschiebungsgleich zu I, genau dann, wenn es eine Ver-
schiebung gibt, bei der I, auf M, abgebildet wird.

Die Relation ,,verschiebungsgleich‘ ist reflexiv, weil die identische Abbildung
eine Verschiebung ist, sie ist transitiv, weil mit zwei Verschiebungen auch deren
Produkt eine Verschiebung ist, und sie ist symmetrisch, weil mit jeder Verschiebung
auch deren Umkehrabbildung eine Verschiebung ist. Aus der Gruppeneigenschaft
der Verschiebungen folgt also, daB die Verschiebungsgleichheit eine Aquivalenz-
relation ist.

Als Beispiel mogen verschiebungsgleiche geordnete Paare von Punkten betrach-
tet werden. Es sei (4, B) ein beliebiges geordnetes Paar von Punkten, und &
sei die Klasse aller dazu verschiebungsgleichen Paare, also

® :={(X, ¥): X =1(4) A Y = 7(B) A 7ist Verschiebung} .

Diese Klasse hat eine bemerkenswerte Eigenschaft. Sie besteht genau aus denjeni-
gen geordneten Punktepaaren ,,(Originalpunkt, Bildpunkt)*, die eine Verschiebung
ausmachen, und zwar diejenige, die 4 auf B abbildet. Zum Beweis sei angenommen,
daB (X, Y) ein beliebiges zu (4, B) verschiebungsgleiches Punktepaar sei, also
7(4) = X, ©(B) = Y, und daB 7, durch 7,(4) = B festgelegt sei. Zu zeigen ist:
7(X) = Y. Es ist aber 7o(X) =1,07(4). Wegen der Kommutativitit ist dies
gleich 7 o 7y(4). Weiter gilt v o 74(4) = 7(B) = Y, also insgesamt 7o(X) = Y. Ist
umgekehrt (X, Y) ein aus Original- und Bildpunkt bestehendes Punktepaar, also
Y = 7,(X), so folgt mit 7'(X) = A4 die Gleichungskette

T(Y) =7 o7y(X) =10°7(X) =19(4) = B,

d. h., (X, Y) ist vermoge der Verschiebungt’ verschiebungsgleich zu (4, B), gehort
also zu .

Eine derartige Klasse verschiebungsgleicher geordneter Paare von Punkten
nennt man einen Vektor. Da eine Verschiebung — wie jede Abbildung — eine Menge
von geordneten Paaren ist, geht aus dem soeben Gezeigten hervor, daB ein Vektor
nichts anderes als eine Verschiebung ist; der in dem eben durchgefiihrten Beweis
genannte Vektor ist mit der Verschiebung 7, identisch.

Zur Bezeichnung von Vektoren wird folgendes vereinbart: Derjenige Vektor, der
den Punkt A in den Punkt B iiberfiihrt, werde mit b(4 B) bezeichnet. Sind b(4 B)
und b(CD) zwei Vektoren, so werde der aus diesen Vektoren durch Hintereinander-
ausfiithrung entstehende Vektor mit v(4B) 4+ v(CD) bezeichnet und die S




1.1. Geometrie der euklidischen Ebene 27

dieser Vektoren genannt. Es gilt dann fiir beliebige Punkte X, ¥, Z ausnahmslos
die Gleichung

b(XY) + 0(¥YZ) = b(XZ).

Diese Bezeichnungsweise wird allerdings in den folgenden Abschnitten des vor-
liegenden Bandes zunichst nicht verwendet werden, da die Verschiebungen bald
in eine umfassendere Gruppe von Abbildungen eingegliedert werden, fiir die eine
derartige Bezeichnung nicht zweckmifig ist. Erst im Rahmen der analytischen
Geometrie, wo den Vektoren wieder eine besondere Rolle zukommt, wird von der
zuletzt eingefithrten Schreibweise Gebrauch gemacht werden.

Gehoren die Paare (4, B) und (C, D) zu ein und demselben Vektor, so ist ent-
weder A = Bund C = D (falls die betreffende Verschiebung die identische Abbil-
dung ist), oder es ist A &= B und C == D. Im letzten Fall sind wegen des zweiten
Hilfssatzes iiber Verschiebungen die Geraden g(A4 B) und g(CD) parallel, und wegen
(V1) sind auch (falls 4 &= C) die Geraden g(AC) und g(BD) parallel (Abb. 1.4). Man
nennt deshalb Punktepaare (4, B) und (C, D), die zum gleichen Vektor gehoren,
parallelgleich.

Man héitte die bisher dargestellte Theorie auch so aufbauen konnen, daB man vor der
Einfithrung des Begnffes Verschlebung die Parallelgleichheit von geordneten Punkte-
paaren durch die in Abb. 1.4 anged g ische Eigy haft definiert hatte. An-
stelle von Axiom (5) hitte man die Transitivitat der Rclanon ,,parallelgleich‘‘ axioma-
tisch gefordert, und hierauf hiitte man den Begriff Verschiebung definieren und Axiom
(5) als Satz beweisen kénnen. Dieser Weg wire etwas miithsamer gewesen.

Abb. 1.4

1.1.2 Anordnung

1.1.2.1. Grundlegende Axiome, Sitze und Begriffe zur
Anordnungslehre

In diesem Abschnitt wird der Begriff der Ordnungsrelation benutzt. Eine iiber einer
beliebigen Menge I erklirte Relation ,,<*, die die Eigenschaften
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(T) Ausz < yund y < z folgt z < z fiir alle z, y, z ¢ M.
(I) Es gibt kein x in M, fir das z < z gilt.
(K) Fiir beliebiges x und y aus M ¢ilt x < y oder y < z oder z = y.

hat, heiBt irreflexive Ordnung; die Menge M zusammen mit dieser Relation heiflt
geordnet. Die Vereinigung einer irreflexiven Ordnung mit der Gleichheitsrelation
heiBt reflexive Ordnung, sie wird mit ,,<‘ bezeichnet. Sie hat die Eigenschaft,
antisymmetrisch zu sein, d. h., ausz < yund y < z folgt = y.

Die zu einer irreflexiven Ordnungsrelation ,,<‘‘ inverse Relation ,,>>*, die durch
x> y & y < z definiert ist, ist ebenfalls eine irreflexive Ordnungsrelation, man
nennt sie zur urspriinglichen Relation entgegengesetzt. Jede geordnete Menge kann
daher sofort auf eine zweite Weise geordnet werden.

Die Grundlage der Anordnungslehre wird durch das folgende Axiom gegeben:

Axiom (6). Einer jeden Geraden ist ein Paar einand tgegengesetzter irreflexi-
ver Ordnungen auf der Menge der Punkte dieser Geraden zugeordnet.

Von diesen beiden Ordnungen ist keine vor der anderen irgendwie ausgezeichnet.
Manchmal ist es jedoch erforderlich, eine der beiden Relationen auszuzeichnen.
Man benutzt dann den folgendermaBen definierten Begriff der orientierten Geraden.

Definition. oist eine orientierte Gerade genau dann, wenn o ein Paar (g, <) ist,
das aus einer Geraden g und einer der beiden nach Axiom (6) zu g gehérenden Ord-
nungsrelationen besteht.

Jede Gerade kann also auf zweierlei Art orientiert werden.

Axiom (7). Es sei (g, <) eine orientierte Gerade. Ist P ein Punkt von g, so gibt
es mindestens zwet Punkte X und Y auf g mit X < P < Y. Sind A und B Punkte
von g mit A < B, so gibt es mindestens einen Punkt Z von g mit A < Z < B.

Ist (g, <) eine orientierte Gerade und 4 ein Punkt von ¢, so kann die Menge der
von A verschiedenen Punkte von g folgendermaBen zerlegt werden: Die eine Menge
ist

{(X:XegnX <4y,
die andere ist

{(Y:YegnAd<Y).
Wenn man g durch die zu ,,<“ entgegengesetzte Ordnungsrelation orientiert, erhilt
man die gleiche Zerlegung, sie ist also unabhingig von der Wahl der Orientierung.
Auf Grund von Axiom (7) sind die beiden Mengen nicht leer. Man fiigt beiden
Mengen jeweils den Punkt 4 hinzu und nennt sie die beiden von 4 auf g erzeugten
Strahlen. (Statt Strahl ist auch die Bezeichnung Halbgerade gebréuchlich.) A4 wird
Anfangspunkt der beiden Strahlen genannt, die beiden Strahlen nennt man zuein-
ander entgegengesetzt. Die Gerade g nennt man T'rigergerade der beiden Strahlen.
Ein Strahl ist offenbar durch Angabe seines Anfangspunktes und eines zu ihm geho-
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renden Punktes P(+ A)eindeutig bestimmt, man bezeichnet ihn dann mit AP*.
Aus X € AP+ und X + A folgt AP+ = AX*. Mit AP- bezeichnet man den zu A P*
entgegengesetzten Strahl. Es gilt also stets AP+ n AP- = {A} und AP+ v AP-
= g(AP).

Eine wichtige Relation fiir die Punkte einer Geraden ist die folgendermagen defi-
nierte dreistellige Zwischenrelation:

Definition. Zw(4BC) ist mit folgender Aussage gleichbedeutend: A4, B, C
sind Punkte einer Geraden ¢, und bildet man mit g eine orientierte Gerade (g, <),
sogilt A < B CoderC < B<A.

Fiir ,,Zw(A BC)* sagt man ,,B liegt zwischen 4 und C*“. Man sieht sofort, da
diese Relation in sich iibergeht, wenn man (g, <) durch (g, >) ersetzt, die Zwischen-
relation ist unabhingig von der Orientierung. Offenbar folgt aus Zw(4 BC) die
Giiltigkeit von Zw(CBA). Sind X,, X,, X, drei verschiedene Punkte einer Geraden,
so gilt genau eine der Relationen Zw(X,X,X;), Zw(X,X,X,), Zw(X,X,X,). Denn
wegen der Eigenschaften von Ordnungsrelationen gibt es genau eine Permutation
(i), 7g, 75) der Zahlen 1, 2, 3, so daBl X; < X;, < X, gilt, und das hat eine und nur
eine der drei angegebenen Relationen zur Folge.

Weiter folgt aus der Definition der Zwischenrelation und der des Begriffes
Strahl, daB zwei Punkte X und Y einer Geraden g genau dann zu verschiedenen
Strahlen mit dem Anfangspunkt A und der Trigergeraden g gehiren, wenn
Zw(XAY) gilt.

Mit Hilfe der Zwischenrelation wird folgendermaBen der Begriff Strecke definiert :
Sind A4 und B zwei Punkte, so wird die Menge

{X:Zw(AXB)vX =Av X = B)

die Strecke A B genannt; sie soll mit AB bezeichnet werden. Die Punkte 4 und
B heiflen Endpunkte, die iibrigen innere Punkte der Strecke AB. Eine Strecke ist
durch Angabe ihrer Endpunkte eindeutig bestimmt, und umgekehrt hat jede
Strecke genau zwei Endpunkte. Aus Zw(A4 BC) folgt B € AC (nicht aber umgekehrt :
denn aus X € YZ kann auch X = Y oder X = Z folgen).

Betrafen die bisherigen Betrachtungen zur Anordnungslehre nur immer die Punkte
jeweils einer Geraden, so wird im folgenden Axiom eine Beziehung zwischen Anord-
nungseigenschaften verschiedener Geraden festgelegt.

Axiom (8). (Ubertragung der Zwischenrelation): Sind g,, g, g; paarweise par-
allele Geraden, die nicht alle gleich sind, A, und B, Punkte auf g,, A, und B, Punkte
auf gy, Ay und By Punkte auf gy, so folgt aus Zw(A,A,A,) und der Kollinearitit von
B,, B, und By die Relation Zw(B, B,B,) (Abb. 1.5).

Es sei auf mogliche Spezialfille hingewiesen, in denen z. B. 4, = B, sein kann
(Abb. 1.6).
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Abb. 1.5

Abb. 1.6

Aus Axiom (8) folgt leicht der

Satz von der Invarianz der Zwischenrelation bei Versehiebungen.
Sind A,, A,, A, drev Punkte mit Zw(A,4,A;) und Vst v eine Verschiebung, so gilt auch
Zw(’(Ax)f(Az)f(Aa))-

Beweis. Gehort die Verbindungsgerade der Punkte A,, 4,5, 4; nicht zur Ver-
schiebungsrichtung von 7, so sind die Geraden g(Atr(A¢)) (i =1, 2, 3) nach dem
zweiten Hilfssatz iiber Verschiebungen paarweise parallel, Axiom (8) ist anwendbar
und liefert unmittelbar die Behauptung. Gehért aber die Verbindungsgerade der
Punkte A4,, 4,, A; zur Verschiebungsrichtung von 7, so setze man 7 aus zwei Ver-
schiebungen 7, und 7, zusammen, deren Richtungen nicht mit der von 7 iiberein-
stimmen, indem man einen beliebigen Punkt Q aulerhalb g(4,4,) wihlt und 7, durch
7,(4,) = Q sowie 7, durch 7,(Q) = 7(4,) festlegt. Auf Grund des ersten Falles bleibt
dann die Zwischenrelation der Punkte A4,, 4,, 4; bei 7, o 7, (= 7) ungeindert.

Aus der Definition des Begriffes Strecke und dem eben bewiesenen Satz folgt, dafl
das Bild einer Strecke bei einer Verschiebung wieder eine Strecke ist, wobei End-
punkte in Endpunkte iibergehen.

Im AnschluB an die Definition der Zwischenrelation wurde bemerkt, daB sich die
Einteilung einer Geraden in zwei Strahlen mit gegebenem Anfangspunkt unabhin-
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gig von der Orientierung allein mittels der Zwischenrelation beschreiben li8t.
Daraus folgt vermaoge der Invarianz der Zwischenrelation, daB das Bild eines Strahls
bei einer Verschiebung wieder ein Strahl ist, wobei Anfangspunkt in Anfangspunkt
iibergeht.

Fiir Fixgeraden von Verschiebungen la8t sich der Satz von der Invarianz der
Zwischenrelation verschirfen zum

Satz iiber die Invarianz der Ordnungsrelation auf Fixgeraden von
Verschiebungen. Ist (g, <) eine orienticrte Gerade und v eine Verschiebung, die g
in sich selbst iiberfiihrt, so folgt aus A < B die Relation v(A) < t(B) fiir alle A, B
von g.

Beweis (Abb. 1.7). Zunichst wird ein spezielles Punktepaar mit der im Satz
behaupteten Eigenschaft konstruiert. Es sei X, ein beliebiger Punkt von g und Y,
ein Punkt mit Zw(X,Y,r(X,)). Ferner sei X, ein beliebiger nicht auf g liegender
Punkt, und 7, sei die Verschiebung, die X, auf X, abbildet. Die Geraden g(Y,7,(¥,))
und g(X,7(X,)) gehéren zu unterschiedlichen Verschiebungsrichtungen, schneiden
sich also in einem Punkte X. Nach dem zweiten Hilfssatz iiber Verschiebungen, an-
gewendet auf z,, gilt

g(xoxl)”g( Yo’l(Yn)) .
Also folgt aus Zw(X, Y,7(X,)) nach Axiom (8) (Spezialfall) Zw(X,X7(X,)). Weiter
ist

9(Xo Yo)llg(Xy7:(Yo))
wegen Eigenschaft (V1) von 7,, also folgt aus Zw(X,X7(X,)) nach Axiom (8)
Zw(7y(Y)X Y,). Ferner ist nach dem zweiten Hilfssatz iiber Verschiebungen, ange-
wendet auf 7o 7]1,

Q(Xﬂ(xo))ﬂg(ﬁ( Yo)t(Yy) ,
nach Axiom (8) folgt aus Zw(Y,X7,(Y,)) die Relation Zw(Y,7(X,) 7(Y,)). Aus

Zw(X,Y,7(X,)) und Zw(Y,7(X,) 7(Y,)) folgt auf Grund der Definition der Zwischen-
relation im Fall X, < Y, die Relation 7(X,) < 7(Y,), im Fall ¥, < X, die Relation

Abb. 1.7
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7(Yy) < 7(X,), so daB entweder (X,, Yy) oder (Y,, X,) ein Paar (4,, By) mit 4, < B,
und 7(4,) < 7(B,) ist. Der Beweis des Satzes kann nun fiir beliebige 4 und B fol-
gendermaflen beendet werden: Es sei zunichst X (3= 4,) beliebig auf g. Es gibt
drei Fille: X < Ay, < By, 49 < X < By, 4y < By = X. Im ersten Fall folgt
wegen der Invarianz der Zwischenrelation Zw(7(X)t(4,)7(By)), wegen 7(4,)
< 7(B,) also 7(X) < 7(4,). Im zweiten und dritten Fall folgt analog 7(4,) < ©(X),
so daf die zwischen beliehigem X und A4, bestehende Ordnungsrelation hei  erhal-
ten bleibt. Sind schlieBlich A, B beliebige Punkte von ¢ mit 4 < B, so gibt es
wiederum drei Fille: 4 < B < 4y, A < 4y = B, 4 < A < B. Im ersten Fall
gilt Zw(4A B4,), also auch Zw(z(4) 7(B) t(4,)); auf Grund des Vorhergegangenen
(man identifiziere X mit A) gilt auch v(4) <7(4,); mit Zw(z(4) 7(B) t(4y))
ergibt dies 7(4) < 7(B). Analog schliet man im zweiten und dritten Fall und er-
hiilt dort jedesmal 7(4) < v(B), womit der Satz bewiesen ist.

Es soll nun die in 1.1.1. angekiindigte Verfeinerung des Begriffes Richtung einge-
fithrt werden. Dazu werde die Menge aller Strahlen betrachtet und auf ihr die Rela-
tion ,,verschiebungsgleich®. Eine jede auf Grund dieser Aquivalenzrelation ent-
standene Klasse soll ein Richtungssinn genannt werden. Ein Richtungssinn wird
also als eine Aquivalenzklasse verschiebungsgleicher Strahlen definiert. Es ist
klar, daB Strahlen mit nicht parallelen Trigergeraden zu verschiedenen Richtungs-
sinnen gehoren (man sagt auch: verschiedenen Richtungssinn haben). Es sei nun
R die Menge der Strahlen, deren Trigergeraden einer festen Richtung angehéren.
Zwei entgegengesetzte Strahlen AP+ und AP- sind sicher nicht verschiebungs-
gleich (denn andernfalls wire A ein Fixpunkt der betreffenden Verschiebung).
80 daB es in R mindestens zwei Klassen gibt. Ist nun XY+ ein beliebiger dritter
Strahl aus R, so gibt es eine Verschiebung, die X auf 4 abbildet, dabei muff XY -
entweder in AP* oder in AP~ iibergehen, X Y+ ist also einem dieser beiden Strahlen
verschiebungsgleich. Es gibt demnach in R genau zwei Klassen verschiebungsglei-
cher Strahlen. Man kann somit sagen: Zu einer Richtung gibt es genau zwei Rich-
tungssinne; man nennt sie einander entgegengesetzt.

Manchmal ist es zweckmiBig, auch einem geordneten Paar von Punkten (4, B)
einen Richtungssinn zuzusprechen. Man definiert ihn als den durch den Strahl 4 B-
gegebenen Richtungssinn. Es zeigt sich nun: Ist 7 eine Verschiebung (r % o), so
haben alle geordneten Punktepaare (X,7(X)) denselben Richtungssinn. Denn
sind X,, X, beliebige Punkte, X| = 7(X,), X, = 7(X,) ihre Bilder bei 7, so giht es
eine Verschiebung ¢ mit ¢(X;) = X,, und es wird wegen (X)) = ¢ c7(X))
=10 p(X,) = 1(X,) = X, das Bild des Strahles X, X, bei ¢ der Strahl X,X}".
d.h, X,X;* und X,X," gehéren zum gleichen Richtungssinn und damit auch die
Paare (X,, X;) und (X,, X,). Esist demnach natiirlich, einer jeden Verschiebung 7
einen Richtungssinn zuzusprechen. Man definiert ihn als den durch das Punktepaar
(X, (X)) gegebenen Richtungssinn; dabei ist X ein beliebiger Punkt.

Es sei 7 eine Verschiebung (== ¢), 4 ein beliebiger Punkt. Die Gerade g(At(A))
werde so orientiert, dafl 4 < v(4) gilt. Hieraus folgt durch Anwendung von 7-!




1.1. Geometrie der euklidischen Ebene 33

wegen der Invarianz der Ordnungsrelation die Beziehung v-1(4) < 4. Die Strah-
len At(A)* und Ar~1(4)* sind also entgegengesetzt, und folglich ist der Richtungs-
sinn einer Verschiebung zu dem ihrer Umkehrabbildung entgegengesetzt.

Ein wichtiger Sachverhalt der Anordnungslehre besteht darin, dal jede Gerade
eine Zerlegung der Ebene — die Punkte der Geraden selbst ausgenommen — in
zwei sogenannte Halbebenen bewirkt, wie jetzt gezeigt werden soll.

Es sei g eine feste Gerade. Sie gehort einer bestimmten Parallelenklasse an, und
die Untergruppe derjenigen Verschiebungen, die diese Klasse als Verschiebungs-
richtung haben, mége mit & bezeichnet werden. Die Gerade ¢ ist Fixgerade bei
allen Verschiebungen aus . Ferner sei k eine Gerade, die g schneidet. Der Schnitt-
punkt erzeugt auf i zwei entgegengesetzte Strahlen; mit s, bzw. s, mége die Menge
der vom Anfangspunkt verschiedenen Punkte eines jeden dieser Strahlen bezeichnet
werden. Nun werden diejenigen Punktmengen betrachtet, die sich ergeben, wenn
man auf die Punkte von s, bzw. von s, alle Verschiebungen aus ¢ anwendet, also
die Mengen

O i={X:X=1Y)AYes nte®)}
und
p = {X: X =1(Y)AYesnTre®).

Diese Mengen haben keine gemeinsamen Punkte; denn wire Z € £, n ,, so gibe
es Punkte Y, aus s; und Y, aus s, sowie Verschiebungen 7,, 7, aus ® mit Z = ,(Y,)
=1,(Y,), als07; 1 o7y (¥;) = Y,; wegent; ! o7, €  und dem zweiten Hilfssatz iiber
Verschiebungen miiBte die Verbindungsgerade von Y, und Y,, also %, parallel zu
¢ sein, was der Voraussetzung widerspriche. Andererseits gehort jeder nicht auf
g liegende Punkt P entweder zu §, oder zu £,; denn die Parallele durch P zu g
schneidet s, oder s, in einem Punkt S, und die Verschiebung 7, die S auf P ab-
bildet, gehort zu @. Die Mengen $), und £, bilden also eine Zerlegung der Menge
aller nicht zu g gehorenden Punkte. Dabei gilt 8, ¢ ,, 8, ¢ Dp. Es zeigt sich nun,
daB diese Zerlegung unabhiingig von der Auswahl der zu ihrer Konstruktion be-
nutzten Geraden & ist. Um dies nachzuweisen, werde eine andere, g schneidende
Gerade ! und die durch sie erzeugte Zerlegung betrachtet. Die Klassen seien &,
und g,. Ferner sei gnh = {H}, gnl = {L}, und o. B.d. A. mégen H, und &,
einen gemeinsamen Punkt P, haben (Abb. 1.8). Die Parallele zu g durch P, mége
lin Py, hin Py schneiden. Ist nun X beliebig aus §),, so ist X das Bild eines Punktes
X, bei einer Verschiebung aus &, X, gehort zu H P}, es gilt also nicht Zw(P,H X,).
Die Gerade g(X X)), die parallel zu g und g(P,P)) ist, schneidet / in einem Punkt
X,. Nach Axiom (8) gilt dann auch nicht Zw(P,LX,), d. h., X; gehort zu LP;",
also gehért X selbst zu €,. Das bedeutet ¥), = £,. Analog ergibt sich umgekehrt
g, € §,, woraus insgesamt ), = &, folgt. Die Zerlegungen §,, $, und &;, L, stim-
men also iiberein. Die fiir die Mengen s, und s, auf der Geraden h getroffene Fest-
stellung (s, ¢ 9, 8, ¢ ;) gilt nun fiir jede Gerade, die g schneidet: Die beiden vom
Schnittpunkt erzeugten entgegengesetzten Strahlen dieser Geraden gehéren — vom
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Abb. 1.8

Abb. 1.9

Anfangspunkt abgesehen — je ganz zu einer der beiden Zerlegungsmengen ),
bzw. §,. Das bedeutet: Zwei Punkte 4 und B liegen genau dann in verschiedenen
Zerlegungsklassen beziiglich der Geraden g, wenn es einen Punkt G auf g gibt, der
zwischen 4 und B liegt.

Die Zerlegungsklassen nennt man die beiden von g erzeugten offenen Halb-
ebenen, g heiBt Randgerade dieser Halbebene. Nimmt man zu einer offenen Halb-
ebene die Randgerade g hinzu, so spricht man schlechthin von einer Halbebene. Die
beiden zu einer Randgeraden gehoérenden Halbebenen nennt man entgegengesetzt.
Ist ein Paar entgegengesetzter offener Halbebenen gegeben, so gibt es nicht mehr
als eine Randgerade dazu. Denn wiren g, und g, zwei Randgeraden (Abb. 1.9)
und 4, bzw. 4,(== 4,) Punkte auf g, bzw. g,, s0 géibe es nach Axiom (7) auf g(4,4,)
bei geeigneter Orientierung Punkte B, und B, mit B, < 4, < B, < 4,, und das wiirde
bedeuten, daB B, und B, wegen Zw(B,4,B,) in unterschiedlichen Halbebenen,
gleichzeitig wegen Zw(B,B,4,) in derselben Halbebene liegen, was nicht sein kann.
Zusammenfassend kann festgestellt werden:

Satz iiber die Zerlegung in Halbebenen. Jede Gerade g bewirkt eine Zer-
legung der Menge der nicht zu ihr gehorenden Punkte in zwer offene Halbebenen derart,
daf zwei Punkte genau dann in derselben offenen Halbebene liegen, wenn zurschen
thnen kein Punkt von g existiert.
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Statt ,,P und @ liegen in derselben von g erzeugten Halbebene‘ sagt man auch
,»P und Q liegen in derselben Halbebene beziiglich ¢g* oder ,,P und @ liegen auf der-
selben Seite von ¢g*. Eine Halbebene ist durch Angabe ihrer Randgeraden g und
eines zur Halbebene, aber nicht zur Randgeraden gehérenden Punktes P bestimmt.
Die Bezeichnung soll dann durch das Symbol gP* erfolgen, gP- soll die zu gP*
entgegengesetzte Halbebene bezeichnen. Wird die Randgerade g durch zwei
Punkte, etwa durch 4 und B, bestimmt, dann soll statt gP+ bzw. gP- auch das
Symbol ABP+ bzw. ABP- verwendet werden. Offenbar ist stets A BP+ = BAP+.

Im weiteren Aufbau der Geometrie wird ein spezieller Typ von Punktmengen
eine wichtige Rolle spielen, der mit dem Namen Fahne bezeichnet werden soll.
Unter einer Fahne versteht man eine Punktmenge, die aus einem Strahl und einer
offenen Halbebene besteht, wobei die Randgerade der offenen Halbebene Triger-
gerade des Strahles ist. Den Strahl nennt man Randstrahl der Fahne, seinen An-
fangspunkt auch Anfangspunkt der Fahne. Eine Fahne ist durch Angabe ihres
Randstrahles s und eines zu ihrer offenen Halbebene gehérenden Punktes P be-
stimmt und soll dann mit sP+ bezeichnet werden. Mit P~ wird die Fahne mit dem
Randstrahl s bezeichnet, deren offene Halbebene zu derjenigen von sP* entgegen-
gesetzt ist. In den Symbolen sP* bzw. sP- darf s durch die oben eingefiihrte Sym-
bolik QR* oder QR- ersetzt werden, so dal durch Symbole der Form QR*P*,
QR*P-, QR-P*, QR- P- wohlbestimmte Fahnen bezeichnet werden. Die Fahnen
QR*P+* und QR-P- nennt man enlgegengesetzt; sowohl ihre Randstrahlen als
auch ihre offenen Halbebenen sind entgegengesetzt.

Wendet man auf die Punkte einer offenen Halbebene

H={X:X=1Y),Yes,te®}
eine Verschiebung ¢ an, so ergibt sich die Bildmenge
9 ={X" X' = ¢X),Xe);
9’ erweist sich als Halbebene. Es gilt namlich
O ={X":X =g¢X),XeDH)
={X":X' =¢ot(Y), Yes,1e®)
={X": X =7o9(Y), p(Y) € ¢(s1), T € B}
={X":X"=12),Z¢ps),tc ).
Beriicksichtigt man, daB das Bild der Randgeraden von § eine zum Original par-
allele Gerade ist, daf also & auch die Gruppe der Verschiebungen in Richtung dieser
Bildgeraden ist, so erkennt man §’ als eine offene Halbebene, deren Randgerade
das Bild der Randgeraden von § ist. Bei Verschiebungen gehen demnach Halb-
ebenen in Halbebenen, Randgeraden in Randgeraden iiber. Analoges gilt fiir Fah-

nen: Das Bild einer Fahne bei einer beliebigen Verschiebung ist wieder eine Fahne,
die das Bild des Randstrahls der Originalfahne als Randstrahl hat.
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Um zu zeigen, wie mit den bisher eingefiihrten Begriffen gearbeitet werden kann
und im Interesse spiterer Anwendung werden jetzt zwei Sitze iiber Anordnungs-
beziehungen bewiesen.

Ein Punktquadrupel (4, B, C, D) soll (hier kurz, spiter wird der Begriff noch
etwas anders gefaBt werden) Parallelogramm genannt werden, wenn die Punkte
nicht kollinear sind und das geordnete Paar (4, B) verschiebungsgleich zum Paar
(C, D) ist. Die Strecken AB, BD, DC, CA heiBen Seiten, die Strecken BC und AD
Diagonalen des Parallelogramms (Abb. 1.10). Es gilt g(4B) || g(CD) und g(AC)
|| ¢(BD). Nun gilt folgender

Satz vom Diagonalenschnittpunkt. Ist (4, B, C, D) ein Parallelogramm,
so haben die Diagonalen AD und BC einen gemeinsamen Punkt.

Beweis (Abb. 1.11). Es geniigt zu zeigen, daB B und C auf verschiedenen Seiten
der Geraden g(AD) liegen. Denn denn gehort ein Punkt der Strecke BC zu g(4D),
und durch Analogie ergibt sich auch g(BC) n AD = 8, woraus dann insgesamt die
Behauptung des Satzes folgt.

Ay

(»
/ /N

Abb. 1.10 Abb. 1.11

Es sei v die Verschiebung, die 4 auf C abbildet und o die Verschiebung, die 4
auf Babbildet. Ist 4, = 7-1(4), so sind AC* und A4 entgegengesetzte Strahlen.
Es gilt also Zw(CAA4,), d. h., 4, und C liegen auf verschiedenen Seiten der Geraden
9(AD). Andererseits ist 7o o(4) =7(B) = D, to0(4,) =0 °7(4,) =0(4d) = B;
hieraus folgt: Die Strahlen AA4;" und DB* sind verschiebungsgleich beziiglich der
Verschiebung 7 o 0, die die Richtung der Geraden g(4D) hat. Das bedeutet, da8
A, und B in derselben Halbebene beziiglich g(4D) liegen. Da 4, und C auf ver-
schiedenen Seiten von g(4.D) liegen, gehéren auch B und C zu verschiedenen Halb-
ebenen von g(AD), was zu zeigen war.

Der nichste Satz betrifft eine Anordnungsbeziehung dreier Strahlen mit gemein-
samem Anfangspunkt.
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Satz iiber drei Strahlen. Von drei gegebenen paarweise micht kollinearen
Strahlen mit gemeinsamem Anfangspunkt hat entweder genau einer die Eigenschaft,
dap beziiglich seiner Trigergeraden die beiden anderen Strahlen auf verschiedenen
Seiten liegen, oder alle drei Strahlen haben diese Eigenschaft.

Beweis. Esseien s,, s,, s; drei paarweise nicht kollineare Strahlen mit dem An-
fangspunkt A, und g,, g,, g, seien ihre Trigergeraden (s, C g;). Es gibt folgende
drei Fille (und bei geeigneter Bezeichnung der Strahlen keine weiteren):

a) §, und s, liegen auf derselben Seite von g,, s, und s, liegen auf derselben Seite
von g, (Abb. 1.12a),

b) s, und s, liegen auf derselben Seite von g, s, und s, liegen auf verschiedenen
Seiten von g, (Abb. 1.12b),

c) $, und s, liegen auf verschiedenen Seiten von g, s, und s, liegen auf verschie-
denen Seiten von g, (Abb. 1.12¢).

Es sei P, (3 A) ein beliebiger Punkt von s,. Die Parallele g durch P, zu g,
schneidet g, in einem Punkt P,, die Parallele ¢ durch P, zu g, schneidet g5 in einem
Punkt P,. Das Quadrupel (P,, P,, A, P,) ist ein Parallelogramm.

In den Fillen a) und b) ist g;P;* n g, = s,, und da andererseits g; in g, P;" ent-
halten ist, gehort in beiden Fillen P, zu s,. Im Fall a) sind g; und s, beziiglich g,
in derselben Halbebene enthalten (in g, P;"), folglich gehort Py zu s;. Nach dem
Satz vom Diagonalenschnittpunkt liegen also die Punkte P, und P, und demnach
die Strahlen s, und s, auf verschiedenen Seiten von g,, so da im Fall a) der Satz
bewiesen ist. Im Fall b) sind g; und s; beziiglich g, in verschiedenen Halbebenen
enthalten, folglich liegt P, auf dem zu s, entgegengesetzten Strahl s;. Aus dem Satz
vom Diagonalenschnittpunkt folgt dann, daBl s, und sy auf verschiedenen Seiten
von g, liegen; s, und s; liegen somit auf derselben Seite von ¢,, so daB auch im Fall
b) der Satz bewiesen ist. Im Fall ¢) schlieBlich ist gy P{" n g, der zu s, entgegen-

S3

Abb. 1.12
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gesetzte Strahl s, also P, € s;; ferner sind beziiglich g, die Strahlen s; und s; in
derselben Halbebene enthalten, so daB P, zu s; gehort. Nach dem Satz vom
Diagonalenschnittpunkt liegen P; und P; und folglich die Strahlen s, und s, auf
verschiedenen Seiten von g,. Damit ist der Satz bewiesen.

1.1.2.2. Orientierung

Von der durch die alltagliche Erfahrung gebildeten Anschauung her ist es offenbar
sinnvoll zu sagen, da8 bei einer gegebenen Fahne deren offene Halbebene — in Blick-
richtung des Randstrahls gesehen — rechts bzw. links vom Randstrahl liegt. In diesem
Sinne kann man daher anschaulich zwischen zwei Sorten von Fahnen unterscheiden.
Dieser Sachverhalt soll nun auch im Rahmen des bisherigen Aufbaues — also von den
Axiomen (1) bis (8) und deren Folgerungen her — erfat werden. Dabei ist es jedoch
nicht méglich, die Begriffe ,,Rechts* und ,,Links* einzeln herzuleiten, sondern es kann
nur die Existenz zweier Sorten von Fahnen nachgewiesen werden. Denn bei der Ent-
scheidung iiber ,,Rechts‘‘ und ,,Links‘‘ im praktischen Leben wird ja immer — bewuft
oder unbewuBt — ein Vergleich mit einer speziellen real vorhand Punkt- oder
Gegenstandskonfiguration vorgenommen (z. B. beim menschlichen Kérper mit dem
Richtungssinn ,,Kopf — FiiBe‘ zusammen mit der Secite, auf der sich das Herz be-
findet).

Die genannte Einteilung der Fahnen geschieht iiber eine Aquivalenzrelation, die
durch die Anschauung nahegelegt wird, und von der gezeigt wird, da8 die Anzahl der
zugehorigen Aquivalenzklassen gleich 2 ist.

Es sei A ein beliebiger, fest gewdhlter Punkt. &, sei die Menge aller Strahlen,
die den Anfangspunkt A4 haben, und 4 sei die Menge aller Fahnen, deren Rand-
strahlen zu &, gehoren. In der Menge ¥, wird eine Relation definiert, die mit den
Worten ,,gleichorientiert beziiglich 4 benannt und mit dem Symbol ,,go, be-
zeichnet werden soll.

Definition. Sind die Randstrahlen der Fahnen f, und f, nicht kollinear, so gelte
f 804 [, genau dann, wenn entweder der Randstrahl von f, in f, oder der Randstrahl
von f, in f, enthalten ist, aber nicht beides gilt; haben f, und f, kollineare Randstrahlen
80 gelte f, go 4 f, genau dann, wenn f, = f, oder f, zu f, entgegengesetzt ist.

Abb. 1.13 zeigt Paare von Fahnen, die man intuitiv als gleichorientiert (Abb. 1.13a)
bzw. als nicht gleichorientiert (Abb. 1.13b) ansprechen wiirde. Man mache sich zum

Zwecke der Motivierung der Definition von ,,go 4* anschaulich klar, daB die Aussage
»f1 804 fp'* fr die Beispiele von Abb. 1.13a richtig, fiir diejenigen von Abb. 1.13b falsch
ist.

Das Ziel der weiteren Uberlegungen ist es, folgenden Satz zu beweisen:

Satz iiber die Relation ,,go,*“: Die Relation ,,g0," ist eine Aquivalenzrelation,
und die Anzahl der zugehérigen Aquivalenzklassen ist gleich 2.

Um einige Beweisschritte leichter formulieren zu kénnen, wird eine Definition
eingefiihrt, die lediglich fiir diesen Abschnitt wichtig ist. Fiir Fahnen f,, f, aus .
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Abb. 1.13

A

mit nicht kollinearen Randstrahlen wird gesetzt: f,(f,) = 1 genau dann, wenn der
Randstrahl von f, in f, enthalten ist; f,(f,) = —1 sonst. Fiir Fahnen aus {, mit
nicht kollinearen Randstrahlen gilt dann offenbar f, go, f, genau dann, wenn
h(f) - fo(f) = —1ist. Ferner gilt: Sind £, und f, entgegengesetzte Fahnen aus 4,
so gilt fiir jede Fahne f aus $,, deren Randstrahl nicht zu denen von f, und f,
kollinear ist,

) hify == fh und fih) = — f(f) -
Im Beweis des Satzes wird folgender Hilfssatz benétigt:

Hilfssatz. Sind f,, f,, f, beliebige Fahnen aus 4 mit paarweise nicht kollinearen
Randstrahlen, so gilt

/1(’2) BARF AR AIAR /3(/1) hlf) = —1.

Beweis. Die linke Seite der Gleichung besteht aus drei Faktoren der Form
filfe) + fi(i). Ein solches zweigliedriges Produkt ist genau dann gleich —1, wenn
die Randstrahlen von f, und f; auf verschiedenen Seiten der Trigergeraden des
Randstrahles von f; liegen. Auf Grund des Satzes iiber drei Strahlen ist dies aber
entweder fiir genau ein Produkt oder fiir alle drei der Fall, so daB8 das Produkt
aller drei Produkte stets gleich —1 ist.

Nun wird der Satz bewiesen. Aus der Definition folgt unmittelbar, da8 die Rela-
tion ,,go,*“ reflexiv und symmetrisch ist. Fiir den Beweis der Transitivitit sei
angenommen, daB f, go, fo, f, 804 f, ist. Die Behauptung lautet f, go, f;. Sind
irgend zwei dieser drei Fahnen gleich, so ist die Behauptung trivial. Ebenso leicht
ergibt sich die Behauptung auf Grund der Gleichungen (1), falls f, zu f, oder f,
zu f; entgegengesetzt ist, die betreffenden Rechnungen kénnen dem Leser iiberlassen
bleiben. Es seien also f,, f,, f; paarweise verschieden und f, zu f, sowie f, zu f; nicht
entgegengesetzt. Dann gilt

(2) hth) - h(h) = fz(/a) k) = —1.

Die Randstrahlen von f, und f, sind entweder nicht kollinear oder entgegengesetzt
oder gleich. Haben f, und f, nicht kollineare Randstrahlen, so ergibt das Einsetzen



40 1. Axiomatischer Aufbau der Geometrie

von (2) in die linke Seite der im Hilfssatz angegebenen Gleichung die Beziehung
hfs) - fs(y) = —1, also f, gos f;. Haben f, und f, entgegengesetzte Randstrahlen,
so gilt fo(f}) = — f.(f;). Einsetzen in (2) ergibt f,(f,) = — fs(f,). Hieraus folgt, dal
f, und f; entgegengesetzte offene Halbebenen haben, beide Fahnen sind demnach
entgegengesetzt und stehen somit in der Relation ,,go,‘“. Haben schliefllich f; und
f gleiche Randstrahlen, so gilt f,(f,) = f,(f;). Einsetzen in (2) ergibt f,(fy) = f4(f,).
Hieraus folgt die Gleichheit der offenen Halbebenen von f; und f;, also die Gleich-
heit von f, und f;. Damit ist ,,go,* als Aquivalenzrelation nachgewiesen. Es bleibt
zu zeigen, daB die Anzahl der Aquivalenzklassen gleich 2 ist. Sie ist mindestens
2, denn zwei Fahnen f,, f, aus 4 mit gleichen Randstrahlen und entgegengesetzten
offenen Halbebenen sind sicher nicht gleichorientiert beziiglich 4. Ist dann f; eine
beliebige dritte Fahne (= f,, f,) aus $4, so erweist sie sich als gleichorientiert ent-
weder zu f, oder zu f,. Denn ist ihr Randstrahl mit dem von f, und f, kollinear, so
ist sie notwendig zu f, oder f, entgegengesetzt, also gleichorientiert beziiglich 4.
Ist dagegen ihr Randstrahl nicht zu denen von f, und f, kollinear, so ist er aber in
einer der beiden Fahnen, etwa in f,, enthalten, d. h., es gilt f,(f) = 1, f,(fs) = —1.
Wegen f5(fy) = fi(f) wird fy(fs) - /o)) - (fs) - fa(fz) = —1. Hieraus folgt, dall eines
von den Produkten f,(fy) - f5(f,) und fy(f5) - f5(f2) gleich —1 ist, d. h., fy ist zu f, oder
zu f, gleichorientiert beziiglich 4. Damit ist der Satz bewiesen.

Die Relation ,,gleichorientiert beziiglich A* wird nun zu einer Aquivalenzrela-
tion iiber der Menge aller Fahnen erweitert.

Diese Erweiterung wird durch die anschauliche Vorstellung begrindet, nach der der
Sachverhalt ,,Die offene Halbebene einer Fahne liegt rechts von ihrem Randstrahl*
ungedndert bleibt, wenn man die Fahne in der Ebene verschiebt. Verschiebungsgleiche
Fahnen werden also als gleichorienticrt zu definieren sein.

Zunichst wird der zu Beginn dieses Abschnittes fest gewihlte Punkt 4 variabel
gedacht, d. h., es wird zu jedem Punkt X die Menge §x und in ihr die Relation
..gox"‘ gebildet, und fiir beliebige Fahnen f,, f, wird definiert: f, go, f, gilt genau
dann, wenn f, und f, einen gemeinsamen Anfangspunkt P haben und f, gop f, in §p
gilt. Diese Relation ist offensichtlich eine Aquivalenzrelation in der Menge aller
Fahnen. Es gibt aber unendlich viele Aquivalenzklassen, da Fahnen mit unter-
schiedlichen Anfangspunkten nicht in dieser Relation stehen. Wichtig ist, daBl
diese Relation verschiebungsinvariant ist: Sind f,, f, zwei Fahnen mit f, go, f,
und ist 7 eine Verschiebung, so gilt ©(f,) go, 7(f,); denn die in der Definition von
804" bzw. ,,g0, vorkommenden Eigenschaften sind Enthaltenseins- und Anord-
nungseigenschaften, die sich bei Verschiebung nicht dndern.

Die endgiiltige Definition der Gleichorientierung erfolgt nun durch Kombination
der Relationen ,,verschiebungsgleich* und ,,go, *“. Fiir beliebige Fahnen f,, f, wird
die Relation ,gleichorientiert — abgekiirzt mit dem Symbol ,,go‘ — in der fol-
genden Weise definiert.
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Definition. f, go f, gilt genau dann, wenn es eine Verschiebung v gibt, so da
7(f) goy f; gilt.

Da ,,go,* die Gleichheitsrelation enthélt, sind verschiebungsgleiche Fahnen stets
gleichorientiert.

Es ist klar, daB die Relation ,,go* reflexiv ist. Auf Grund der Verschiebungs-
invarianz der Aquivalenzrelation ,,go,‘ ist sie auch symmetrisch und transitiv;
denn aus 7(f,) goy, f, folgt f, go, T7(f,), und aus 7,(f,) go, fo und 7,(f,) go, f; folgt
7,97, (fy) 0y fo- Also ist ,,go* eine Aquivalenzrelation.

Da zwei Fahnen f,, f,, die den gemeinsamen Anfangspunkt A haben und die
nicht in der Relation ,,g0,* stehen, nicht verschiebungsgleich sein konnen (die
betreffende Verschiebung miiBte ja A4 auf sich selbst abbilden, also die identische
Abbildung sein), gibt es mindestens zwei Aquivalenzklassen. Ist f eine beliehige
Fahne, so gibt es eine Verschiebung 7, die ihren Anfangspunkt auf 4 abbildet,
7(f) gehért dann zu 4 und steht entweder mit f, oder f, in der Relation ,,go,
so daf f mit f, oder mit f, in der Relation ,,go*‘ steht. Es gibt also nicht mehr als
zwei Klassen, man nennt sie die beiden Orientierungsklassen.

Insgesamt gilt der

Satziiber die Gleichorientierung von Fahnen. Die Relation ,gleichorien-
tiert* ist eine Aquivalenzrelation in der Menge aller Fahnen, die eine Zerlegung dieser
Menge in zwei Klassen bewirkt.

Fahnen, die nicht gleichorientiert sind, nennt man auch entgegengesetzt orientiert.

Manchmal ist es erforderlich, eine der beiden Orientierungsklassen auszuzeich-
nen. Ist eine solche Auszeichnung erfolgt, so sagt man, die Ebene sei orientiert.

Unter einem orientierten Elementarwinkel soll ein geordnetes Paar von Strahlen
mit gemeinsamem Anfangspunkt verstanden werden. Die Strahlen nennt man
Schenkel, den gemeinsamen Anfangspunkt Scheitel des orientierten Elementarwin-
kels. Zur Bezeichnung des aus dem Strahlenpaar (&, k) bestehenden orientierten
Elementarwinkels soll das Symbol & (k, k) verwendet werden; ist h = A B*,
k = AC*, so soll statt X (4B*, AC*) kiirzer & BAC geschrieben werden. Einen
orientierten Elementarwinkel, dessen Schenkel entgegengesetzte Strahlen sind,
nennt man gestreckt; sind die beiden Schenkel gleich, so spricht man kurz von
einem Nullwinkel.

Es ist nun sinnvoll, auch die orientierten Elementarwinkel — Nullwinkel und
gestreckte ausgenommen — in zwei Orientierungsklassen einzuteilen. Es wird defi-
niert: ¥ PAQ ist mit ¥ RBS genau dann gleichorientiert, wenn die Fahnen
AP*Q* und BR*S* gleichorientiert sind. Die orientierten Elementarwinkel
X YXZ und X ZXY sind — X, Y, Z nicht kollinear vorausgesetzt — entgegen-
gesetzt orientiert, denn die Fahnen XY+*Z* und XZ*Y* haben die Eigenschaft,
daB jeweils der Randstrahl der einen in der anderen enthalten ist, d. h., sie stehen
nicht in der Relation ,,go,*. Die Anderung der Reihenfolge der Schenkel eines
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orientierten Elementarwinkels bewirkt also den Ubergang in die entgegengesetzte
Orientierungsklasse.

Es soll nun noch der Begriff des Umlaufssinnes eingefiihrt werden. Man defi-
niert: Die geordneten Tripel von nicht kollinearen Punkten (4, B, C) und (P, @, R)
haben genau dann denselben Umlaufssinn, wenn die Fahnen A B*C* und PQ*R*
gleichorientiert sind. Unter Umlaufssinn eines geordneten nicht kollinearen Punkte-
tripels (4, B, C) kann man also die Orientierungsklasse der Fahne 4 B*C+ ver-
stehen. Es lifit sich leicht zeigen, daf die Tripel (4, B, C), (B, C, 4), (C, 4, B)
denselben Umlaufssinn haben, der zu demjenigen der Tripel (4, C, B), (C, B, A)
und (B, 4, C) entgegengesetzt ist ; der Beweis sei dem Leser als Aufgabe iiberlassen.

11.3. Bewegungen und Kongruenz
1.1.3.1. Axiome und grundlegende Sitze iiber Bewegungen

Die Grundlage fiir die Lehre von den Bewegungen und der Kongruenz ist das fol-
gende Axiom:

Axiom (9) (Bewegungsaxiom). Es gibt eine Menge B von bijektiven Abbildungen
der Ebene auf sich, die Bewegungen genannt werden und die folgende Eigenschaften
haben :

(B1) Die Bildmenge einer (eines) beliebigen Geraden (Strahls, Strecke, Halb-
ebene, Fahne) ist eine (ein) Gerade (Strahl, Strecke, Halbebene, Fahne);
dabei werden Anfangspunkt, Endpunktepaar, Randgerade, Randstrahl der
Originalmengen auf Anfangspunkt, Endpunktepaar, Randgerade, Rand-
strahl der betreffenden Bildmengen abgebildet. Sind X, Y, Z drei Punkte
mit Zw(X YZ), so gilt Zw(p(X) ¢(Y) ¢(Z)) fiir jede Bewegung ¢.

(B2) Sind f, und f, zwes beliebige Fahnen, so gibt es genau eine Bewegung ¢
mit ¢(fy) = f.

(B3) Sind A und B zwei beliebige Punkte, so gibt es eine Bewegung ¢ mit
¢(A) = B und ¢(B) = A.

(B4) Sind h und k zwei Straklen mit gemeinsamem Anfangspunkt, so gibt es
eine Bewegung ¢ mit o(h) = k und p(k) = h.

(B5) Die Menge B ist beziiglich der Hintereinanderausfithrung der Abbildungen

eine Gruppe.

Im folgenden werden die Begriffe Fixpunkt, Fixgerade und Fixpunktgerade eine
Rolle spielen, der Leser sei an das in 1.1.1. iiber diese Begriffe Gesagte erinnert.

Ein weiterer wichtiger Begriff ist der der Involution. Unter einer Involution
versteht man eine von der identischen Abbildung verschiedene bijektive Abbil-
dung ¢ einer Menge auf sich selbst — in diesem Abschnitt wird es die Menge der
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Punkte sein, und ¢ wird immer eine Bewegung sein — mit der Eigenschaft ¢ o ¢
=1, d. h,, fiilhrt man ¢ zweimal hintereinander aus, so ergibt sich die identische
Abbildung. Eine Abbildung, die Involution ist, nennt man auch ¢nvolutorisch. Ist
Y das Bild des Punktes X bei einer involutorischen Bewegung ¢, so ist auch X
das Bild von Y, denn es ist

P(Y)=gop(X) = (X)=X.

Es gilt also ¢~1 = ¢. Man sagt, die involutorische Bewegung vertausche Original-
und Bildpunkt. Hieraus folgt, daB die Verbindungsgerade von Original- und Bild-
punkt einer involutorischen Bewegung stets Fixgerade dieser Bewegung ist, denn
es ist

?(9(XTY)) = g(e(X) p(Y)) = g(¥YX).

Ebenso ist der Schnittpunkt (falls vorhanden) von Original- und Bildgerade einer
involutorischen Bewegung Fixpunkt, denn es ist

?(9(AB) n g(9(4) ¢(B))) = ¢(9(4B)) n ¢(g(9(4) ¢(B)))
= g(e(4) ¢(B)) n g(4B) .

Beispiele fiir involutorische Bewegungen werden weiter unten gegeben werden.
Aus dem Bewegungsaxiom sollen jetzt zwei wichtige Folgerungen gezogen wer-
den.

Folgerung 1. Ist f eine Fahne und ¢ eine Bewegung mit ¢(f) = [, so ist ¢ die
identische Abbildung.

Beweis. Wegen (B5) ist die identische Abbildung ¢ als neutrales Element der
Abbildungsgruppe % sicher eine Bewegung, und sie bildet f auf sich ab. Nach (B2)
gibt es aber nicht mehr als eine Bewegung, die f auf sich abbildet, also ist ¢ = ¢.

Folgerung 2. Ist s ein Strahl und ¢ eine Bewegung mit ¢(s) = s, so ist die
Trigergerade von s eine Fixpunktgerade von ¢.

Beweis. Eskann ¢ == ¢ vorausgesetzt werden, denn fiir ¢ = ¢ ist der Satz trivial.
Zuniichst wird durch einen indirekten Beweis gezeigt, daB die Punkte von s Fix-
punkte von ¢ sind. s habe den Anfangspunkt 4, es gilt ¢(4) = A. Nach (B1) wird
jede der beiden Fahnen, die den Randstrahl s haben, auf eine Fahne mit dem Rand-
strahl s abgebildet. Wegen Folgerung 1 kann keine von ihnen auf sich selbst abge-
bildet werden, sie werden also miteinander vertauscht. Bei der Bewegung @ o ¢
wird dann jede dieser Fahnen wieder auf sich selbst abgebildet. Nach Folgerung 1
ist o p =1, d. h., ¢ ist Involution. Es sei nun P (3 4) ein Punkt von s mit
@(P) = Q und P = Q, Q ist wegen (B1) von A verschieden. Da 4 Anfangspunkt
von ¢ ist, gilt entweder Zw(A4 PQ) oder Zw(AQP), aber nicht beides.

Gilt Zw(A PQ), so gilt nach (B1) fiir die Bildpunkte Zw(p(4) ¢(P) ¢(Q)), also
Zw(AQP), im Widerspruch zu Zw(4 PQ).
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Gilt Zw(AQP), so ergibt sich nach (B1) die Beziehung Zw(p(4) ¢(Q) ¢(P)), also
Zw(APQ), was ebenfalls ein Widerspruch ist. Alle Punkte von s sind somit Fix-
punkte. Auf den zu s entgegengesetzten Strahl kénnen nun die analogen Uber-
legungen angewendet werden, er und damit die gesamte Triagergerade von s besteht
aus lauter Fixpunkten.

Die Bewegungen sollen nun etwas genauer studiert werden. Dabei wird sich
zeigen, daB es unterschiedliche Typen von Bewegungen gibt.

Zunichst wird der Begriff der Geradenspiegelung definiert. Es sei f, eine belie-
bige Fahne, und die Fahne f, habe denselben Randstrahl wie f;, aber ihre offene
Halbebene sei zu der von f, entgegengesetzt. g sei die Trigergerade des Rand-
strahls von £, und f,. Die nach (B2) eindeutig bestimmte Bewegung ¢, die f, auf f,
abbildet, hat folgende Eigenschaften:

(S1) Jeder Punkt der Geraden g ist Fixpunkt.
(S2) Die beiden offenen Halbebenen der Geraden g werden miteinander ver-
tauscht.

Die Eigenschaft (S1) folgt aus der Folgerung 2, weil der Randstrahl von f, und
f» auf sich abgebildet wird. (S2) ergibt sich wie im Beweis von Folgerung 2 aus
(B1) und Folgerung 1. Aus (S2) folgt iiberdies, daB ¢ eine Involution ist. Sind f;
und f; zwei andere Fahnen, die einen gemeinsamen, auf g liegenden Randstrahl
haben und deren offene Halbebenen entgegengesetzt sind, so gilt auch fiir diese
Fahnen ¢(f;) = f,. Zusammen mit (B2) ergibt das, daB es bei vorgegebener Ge-
raden ¢ nur eine einzige Bewegung mit den Eigenschaften (S1) und (S82) gibt. Man
nennt eine Bewegung mit den Eigenschaften (S1) und (S2) eine Geradenspiegelung
(oder auch nur kurz eine Spiegelung) an der Geraden g, und es gilt:

Erster Existenzsatz fiir Geradenspiegelungen. Zu jeder Geraden gibt es
genau eine Geradenspiegelung an dieser Geraden.

Die Gerade g nennt man Spiegelgerade, sie besteht genau aus den Fixpunkten der
betreffenden Geradenspiegelung. Zur Bezeichnung der Spiegelung an der Geraden ¢
wird das Symbol g, verwendet werden. Es gilt ferner ein

Zweiter Existenzsatz fiir Geradenspiegelungen. Sind h und k zwei ver-
schiedene Strahlen mit gemeinsamem Anfangspunkt, so gibt es genau eine Geraden-
spiegelung, die h auf k und k auf h abbildet.

Beweis. Fall 1: Die beiden Strahlen sind nicht kollinear. Nach (B4) gibt es
eine Bewegung ¢ mit ¢(h) = k und ¢(k) = h. Da jede derartige Bewegung die k
enthaltende Fahne mit dem Randstrahl % auf die & enthaltende Fahne mit dem
Randstrahl k abbilden muB, gibt es nach (B2) genau eine derartige Bewegung.
Uberdies werden die beiden genannten Fahnen bei ¢ miteinander vertauscht, so
daB ¢ eine Involution ist. Es wird nun gezeigt, da ¢ Geradenspiegelung ist. Es
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sei h = AB* (Abb. 1.14) und Z ein Punkt von k mit Zw(AZB), ferner ¢(B) = B’
und ¢(Z) = Z’'. Nach (B1) folgt Zw(AZ’'B’). Aus beiden Zwischenrelationen ergibt
sich, daB beziiglich der Geraden g(BZ') die Punkte 4 und Z in ein und derselben
Halbebene liegen, 4 und B’ jedoch in verschiedenen. Also liegen Z und B’ auf ver-
schiedenen Seiten dieser Geraden, d. h., die Geraden g(BZ’) und g(ZB’), die iiber-
dies Original und Bild voneinander sind, schneiden sich in einem Punkt S, der
Fixpunkt von ¢ ist, weil ¢ Involution ist. Aus Folgerung 2 ergibt sich — es ist ja
o(AS+) = A8+ —, daB g(48) Fixpunktgerade von ¢ ist. Dies zusammen mit dem
involutorischen Charakter von ¢ ergibt die Eigenschaften (S1) und (S2).

Abb. 1.14

Fall 2: h und k sind kollinear. Nach (B4) gibt es eine Bewegung ¢ mit ¢(h) = k
und ¢(k) = h. Es kann angenommen werden, daB bei ¢ jede der beiden Halb-
ebenen der Trigergeraden von b und k auf sich selbst abgebildet wird; wenn es von
vornherein nicht der Fall ist, kann es durch Zusammensetzung mit der Geraden-
spiegelungan dieser Geraden erreicht werden. (Im anderen Fall ist, wie sich spiter
zeigen wird, ¢ keine Geradenspiegelung, sondern eine sogenannte Punktspiege-
lung). ¢ ist durch diese Forderung eindeutig bestimmt und ist Involution, denn es
ist p(hX*) = kX* und ¢(kX+) = hX+. Es sei h, ein Strahl = h und = k, der den-
selben Anfangspunkt wie » und k hat und der von seinem Bild ; verschieden ist;
ein solcher Strahl existiert, weil andernfalls ¢ die identische Abbildung wire. *,
ist zu k; nicht entgegengesetzt, denn beide Strahlen liegen auf derselben Seite der
Trigergeraden von k und k. Folglich sind &, und k; nicht kollinear; ferner gilt, da
¢ Involution ist, p(h;) = &, und es kénnen nun auf &, und k] die Uberlegungen des
ersten Falles angewendet werden. Damit ist der Satz bewiesen.

Fiir bestimmte Anwendungen ist folgender Hilfssatz niitzlich:

Hilfssatz iiber die Spiegelung an dem Bild einer Geraden. Ist ¢ eine
beliebige Bewegung und o, die Geradenspiegelung an der Geraden g, 50 ist ¢ © 0g © 9%
die Spiegelung an der Geraden g(g).

Beweis. Esmiissen fiir ¢ o g, o ¢! die Eigenschaften (S1) und (S2) nachgewiesen
werden. Ist X € ¢(g) und ¥ = ¢~1(X), so ist ¥ ¢ g, es gilt also 0,(Y) = Y. Hier-
aus folgt

pogo i (X) =gogy(Y)=9(Y)=X,
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d. h., X ist Fixpunkt von ¢ oo, ¢~1, ¢(g) ist Fixpunktgerade von ¢ oo, 0 91,
(S1) ist nachgewiesen. Da aus ¢ o g, o ¢! = ¢ die Gleichung o, = ¢ folgen wiirde,
ist @ o g, o @~ nicht die identische Abbildung. Die beiden offenen Halbebenen der
Geraden ¢(g) koénnen bei dieser Bewegung demnach nicht auf sich selbst abgebildet
werden, sondern miissen vertauscht werden, womit auch (S2) nachgewiesen ist.

Mit Hilfe des Begriffes Geradenspiegelung léaBt sich eine wichtige Relation in der
Menge der Geraden definieren : das Senkrechtsein. Man nennt die Fixgeraden einer
Geradenspiegelung, die von der Spiegelgeraden verschieden sind, zur Spiegelgeraden
senkrecht (Zeichen: | ), definiert also fiir Geraden ¢ und h:

Definition. g | h:&ag)k) =hAag=£h.

Man sagt auch: g ist ein Lot zu h. Diese Relation ist symmetrisch; denn wenn
0y(h) = h ist, ist auf Grund des ersten Existenzsatzes fiir Geradenspiegelungen und
nach dem Hilfssatz iiber die Spiegelung an dem Bild einer Geraden

On = Ogyn) = 04 ° 04 °0p -
Hieraus folgt

Og = 0n° 0y ° 0y = Ugpg) »
also g = g(g), d. h., aus g | % folgt & | g. Ferner bleibt die Relation bestehen,
wenn man auf die Geraden eine Bewegung anwendet: Ist ¢ eine beliebige Bewe-
gung und g | A, also o,(k) = &, so ist

O (?(R) = @ o0g0 97 o p(h) = (k) ,
d. h., ¢(g) L o(h).

Fiir viele Anwendungen ist der folgende Satz bedeutsam.

Existenz- und Einzigkeitssatz fiir Lote. Ist a eine Gerade und P ein be-
liebiger Punkt, so gibt es genau ein Lot zu a, das den Punkt P enthdlt.

Beweis. Fall 1: P gehort nicht zu a. Esist g4(P) & P, die Verbindungsgerade s

von P und g,(P) ist von a verschieden, aber es ist
04(8) = g(0u(P) P) = 5,

d. h., s ist ein Lot zu a durch P. Da jedes Lot zu a durch P notwendig auch durch
0q(P) gehen muB, ist s das einzige derartige Lot. Da P und g,(P) auf verschie-
denen Seiten der Geraden « liegen, haben s und a einen gemeinsamen Punkt.

Fall 2: P gehort zu a. Es sei ¢ das nach dem ersten Fall existierende Lot zu a
durch einen nicht zu a gehérenden Punkt Q. Es sci a n ¢t = {S} und, falls § &= P
ist, ¢ die Bewegung, die SP*Q* auf PS*Q* abbildet. ¢(t) ist dann ein Lot zu a
durch P. Da a Fixpunktgerade bei o, ist, wird jede Halbebene beziiglich eines
beliebigen Lotes zu a bei g, auf sich selbst abgebildet. Daher kann eskeine zwei Lote
zu a durch P geben; denn wiiren !, und I, zwei solche Lote und 4 (s P) ein Punkt
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[P

(4
“ Abb. 1.15

von I, so ligen wegen g,(PA*) = PA- die Punkte 4 und g,(4) auf verschiedenen
Seiten von [,, was nicht sein kann (Abb. 1.15).

Aus dem letzten Beweis geht hervor, daB senkrechte Geraden stets cinen Schnitt-
punkt haben. Istein Lot zu a und S der Schnittpunkt von @ und /, so nennt man
S den Lotfuppunkt von I auf a.

Ein weiterer spezieller Typ von Bewegungen wird durch den Begriff der Punkt-
spiegelung gegeben, der jetzt definiert werden soll. Es seien f, und f, zwei entgegen-
gesetzte Fahnen, A4 sei ihr gemeinsamer Anfangspunkt. Die nach (B2) eindeutig
bestimmte Bewegung ¢, die f, auf f, abbildet, hat folgende Eigenschaften:

(P1) Jede Gerade durch A wird so auf sich selbst abgebildet, daf thre beiden
vom Punkt A erzeugten Strahlen miteinander vertauscht werden.
(P2) Jede Gerade wird auf eine zu thr parallele Gerade abgebildet.

Beweis. Wegen ¢(f,) = f, kann ¢(f,) nur f, sein. Daraus folgt, daB ¢ eine In-
volution ist. Es sei f, = AB*C*. Fiir die Gerade g(4 B) ist die Eigenschaft (P1)
offensichtlich, sie ist Fixgerade von ¢. Es sei a eine beliebige von g(4 B) verschie-
dene durch 4 gehende Gerade und X (3 A) ein Punkt von a. Aus X ¢ AB*C+
folgt ¢(X) € AB-C-; aus X € AB-C- folgt ¢(X) e AB*C*, so dafl X und ¢(X)
jedenfalls auf verschiedenen Seiten der Geraden g(4 B) liegen. Folglich schneiden
sich g(4B) und g(X¢(X)) in einem Punkt S. Die Gerade g(X¢(X)) ist als Verbin-
dungsgerade von Original- und Bildpunkt einer Involution Fixgerade, und § ist als
Schnittpunkt zweier Fixgeraden ein Fixpunkt. Wegen ¢(4B*) = AB- ist aber
der einzige Fixpunkt auf der Geraden g(4 B) der Punkt 4, also ist S = 4. Die Ge-
raden a und g(X¢(X)) sind somit gleich, denn beide enthalten X und 4. Da X
und ¢(X) auf verschiedenen Seiten von g(4 B) liegen, folgt Zw(XAg(X)), und hier-
aus folgt ¢(4X*) = AX-, womit (P1l) bewiesen ist. Die Eigenschaft (P2) ist fiir
Geraden durch 4 offenbar erfiillt. Ist aber g eine beliebige Gerade, die 4 nicht ent-
hiilt, ¢’ die Parallele durch 4 zu g und ist X ein beliebiger Punkt von g, so folgt
durch Anwendung von Eigenschaft (P1) auf die Gerade g(4X), dal X und ¢(X)
auf verschiedenen Seiten von g’ liegen. Das gilt fiir alle Punkte von g, und hieraus
folgt: Da g ganz in einer offenen Halbebene beziiglich g liegt, liegt die Bildgerade
ganz in der dazu entgegengesetzten offenen Halbebene, d. h., g und die Bildgerade
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von g haben keine gemeinsamen Punkte, sind also parallel, womit (P2) nach-
gewiesen ist.

Ist f eine beliebige Fahne mit dem Anfangspunkt A, so ist wegen (P1) ihre Bild-
menge die dazu entgegengesetzte Fahne. Das ergibt unter Beriicksichtigung von
(B2), daBl es bei vorgegebenem Punkt 4 nur eine einzige Bewegung gibt, die die
Eigenschaften (P1) und (P2) hat.

Eine Bewegung mit den Eigenschaften (P1) und (P2) nennt man Punktspiegelung
am Punkt 4; sie wird mit 4 bezeichnet. Auf Grund der letzten Uberlegung gilt
ein

Erster Existenzsatz fiir Punktspiegelungen. Zu jedem Punkt gibt es
genau eine Punktspiegelung an diesem Punkt.

Es gilt dariiber hinaus noch ein

Zweiter Existenzsatz fiir Punktspiegelungen. Zu zwei beliebigen Punk-
ten P und Q mit P % Q gibt es genau eine Punktspiegelung, die P auf Q und gleich-
zeitly Q auf P abbildet.

Beweis. Nach Axiom (B3) gibt es eine Bewegung ¢ mit ¢(P) = Qund ¢(Q) = P.
Es kann angenommen werden, daB bei ¢ auch die Halbebenen PQX+ und PQX-
(X sei ein beliebiger nicht zu g(PQ) gehérender Punkt) miteinander vertauscht
werden ; denn wenn es von vornherein nicht der Fall ist, kann es durch Zusammen-
setzung mit der Geradenspiegelung an g(PQ) erreicht werden. Esgilt also ¢(PQ~X~)
= QP+X- und p(QP*X") = PQ*X*; daraus folgt, daBl ¢ eine Involution ist. Die
Geraden g(X¢(X)) und g(PQ) sind somit Fixgeraden. Wegen ¢(X) ¢ PQX- gibt
es auf g(X¢(X)) einen Punkt R, der zu g(PQ) gehort; er ist als Schnittpunkt zweier
Fixgeraden ein Fixpunkt. Das Bild des Strahls RP+, der Strahl RQ*, kann nicht
wieder RP+* sein, weil nach Folgerung 2 dann P = @ sein miifte. Also ist RQ- zu
RP+ entgegengesetzt. Das Bild der Fahne RP*X* ist daher die zu ihr entgegen-
gesetzte Fahne RP-X-. Das bedeutet, daB8 ¢ eine Punktspiegelung an R ist. Dall
es nicht mehr als eine Punktspiegelung der im Satz genannten Art gibt, folgt aus
Axiom (B2) und daraus, da8 jede derartige Punktspiegelung die Fahne PQ*X+* auf
die Fahne @P*X- abbilden mu8.

Von besonderer Wichtigkeit ist nun, daB sich die Verschiebungen als spezielle
Bewegungen erweisen, wie jetzt gezeigt werden soll.

Es seien A, B zwei beliebige Punkte. Nach dem zweiten Existenzsatz fiir Punkt-
spiegelungen gibt es eine Punktspiegelung o¢ mit o¢(4) = B. Essei¢ = opo0c.
Die Behauptung lautet: ¢ ist die Verschiebung, die 4 auf B abbildet. Offensicht-
lich gilt ¢(A4) = 0p°0¢(4) = 0p(B) = B, und um die Behauptung zu beweisen,
geniigt es zu zeigen, daB ¢ die Eigenschaften (V1) und (V2) von Verschiebungen
hat; denn auf Grund der in 1.1.1. an Axiom (5) angeschlossenen Bemerkung, wo-
nach es nicht mehr als eine Abbildung mit den Eigenschaften (V1) und (V2) geben
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kann, die 4 auf B abbildet, folgt hieraus schon die Behauptung. AuBerdem kann
als Folge jener Bemerkung leicht eingesehen werden, daB die in Axiom (5) stehende
Einzigkeitsaussage auch innerhalb der Gruppe der Bewegungen ihre Giiltigkeit bei-
behiilt, d. h., es gibt keine Bewegung mit den Eigenschaften (V1) und (V2), die
nicht schon in der in 1.1.1. eingefithrten Gruppe der Verschiebungen enthalten
wiire.

Nun zum Beweis von (V1) und (V2) fiir ¢. (V1) folgt unmittelbar aus (P2) und
der Transitivitit der Parallelitit. Fiir den Beweis von (V2) sei zunichst festgestellt:
Aus 0¢(4) = B und (P1) folgt Zw(ACB), also ist AB+ = AC* und BC- = BA-.
Ferner gilt ¢(C) = g5(C) € BC- wegen (P1). Aus allem folgt ¢(4AB*) = ¢(AC*)
= BC- = BA-. Nun wird der Beweis von (V2) indirekt gefiihrt. Es sei F ein Fix-
punkt von ¢.

Fall 1: F gehort zu g(AB). Dann gilt ¢(FA*) = FB*. Wegen Folgerung 2
miissen FA+* und FB* verschieden sein, also ist FB* = FA- und FB- = FA*.
Ebenfalls wegen Folgerung 2 ist ¢(FB*) = FB-, also ¢(FB*) = FA*. Aus dem
Bisherigen folgt ¢ o 9(FA*) = FA*, nach Folgerung 2 also insbesondere ¢ o ¢(A4)
= A4,d.h, ¢(B) = A. Aus ¢(A) = B und ¢(B) = A folgt aber ¢(4AB*) = BA*
im Widerspruch zur obigen Feststellung ¢(4B*) = BA-.

Fall 2: F gehort nicht zu g(4B). Der LotfuBpunkt des Lotes ! durch F zu
g(AB)sei 8. Da ¢(l) durch F gehen und zu g(4 B) senkrecht sein muB, ist nach dem
Einzigkeitssatz fiir Lote ¢(!) = [ und folglich S als Schnittpunkt zweier Fixgeraden
ein Fixpunkt. Er gehort zu g(4B), und damit ist der zweite Fall auf den ersten
zuriickgefiihrt.

Die Verschiebungen sind also spezielle Bewegungen. Bei jeder Bewegung werden
wegen deren Eineindeutigkeit parallele Geraden auf parallele Geraden abgebildet,
denn ein gemeinsamer Punkt der Bilder zweier paralleler Geraden hitte zwei ver-
schiedene Originalpunkte. Somit ist die Menge aller Bildgeraden einer Parallelen-
klasse wieder eine Parallelenklasse. Jede Bewegung induziert also eine Abbildung
der Menge aller Parallelenklassen auf sich. Bei Verschiebungen ist dies die iden-
tische Abbildung. Hieraus ergibt sich ein fiir die folgenden Betrachtungen bené-
tigter

Hilfssatz. Istt eine Verschiebung und « eine Bewegung, so ist o oT o™ eine
Verschiebung.

Beweis. Durch & o7 ox~! wird dieselbe Abbildung der Parallelenklassen indu-
ziert wie durch & o x~1, nimlich die identische Abbildung. Somit hat x 7 0 -1 die
Eigenschaft (V1) von Verschiebungen. Auch die Eigenschaft (V2) ist erfiillt; denn
gilte fiir einen Punkt F die Gleichung « ot ca~1(F) = F, so gilte auch v ca~1(F)
= «~1(F), d. h., die Verschiebung 7 hitte den Fixpunkt «~1(F), was fiir v & ¢ nicht
sein kann.
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In 1.1.2.2. wurde gezeigt, daBl die Menge aller Fahnen in zwei Orientierungs-
klassen zerlegt werden kann. Zwei Fahnen sind genau dann gleichorientiert, wenn
sie durch Verschiebungen auf ein Paar von Fahnen mit gemeinsamem Anfangs-
punkt abgebildet werden konnen, das — bei kollinearen Randstrahlen — entweder
aus zwei gleichen oder zwei entgegengesetzten Fahnen besteht oder das — bei
nicht kollinearen Randstrahlen — die Eigenschaft hat, daB der Randstrahl genau
einer der beiden Fahnen in der anderen enthalten ist. Bildet man ein Paar gleich-
orientierter Fahnen mit gemeinsamem Anfangspunkt durch eine Bewegung ab, so
ergibt sich wieder ein Paar gleichorientierter Fahnen mit gemeinsamem Anfangs-
punkt; denn die genannten Eigenschaften, die die Gleichorientierung charakteri-
sieren, sind Enthaltenseins- und Anordnungseigenschaften, die wegen Axiom (B1)
von den Original- auf die Bildmengen iibergehen. Aber auch die Verschiebungs-
gleichheit zweier Fahnen geht nicht verloren, wenn man sie einer Bewegung unter-
wirft : Ist f, verschiebungsgleich zu f,, 8o existiert eine Verschiebung z mit v(f,) = f,.
Ist o eine heliebige Bewegung, so folgt & o 7(f;) = a(fy) baw.x o7 e~ ok (fy) = a(fy).
Nach dem oben bewiesenen Hilfssatz ist aber « o 7 o =1 eine Verschiebung 7y, d. h.,
«(f) und «(f,) sind vermége 7, verschiebungsgleich. Insgesamt folgt aus diesen
Uberlegungen der

Satz von der Invarianz der Gleichorientierung bei Bewegung. Sind
} und f, zwe? gleichorientierte Fahnen und ist ¢ eine Bewegung, so sind auch die Fah-
nen o(f,) und @(f,) gleichorientiert.

Dieser Satz bedeutet, daB bei einer jeden Bewegung die Bildfahnen aller zu ein
und derselben Orientierungsklasse gehorenden Fahnen ebenfalls zu ein und der-
selben Orientierungsklasse gehoren und, da jede Fahne eine Originalfahne hat, einc
Orientierungsklasse bilden. Da es nur zwei Orientierungsklassen gibt, hat man zwi-
schen zwei Sorten von Bewegungen zu unterscheiden: solchen, bei denen jede
Orientierungsklasse in sich selbst iibergeht, und solchen, bei denen die beiden
Klassen vertauscht werden. Man definiert entsprechend diesen beiden Fillen:

Definition. Die Bewegung ¢ ist gleichsinnig genau dann, wenn jede Fahne f
mit g(f) gleichorientiert ist; die Bewegung ¢ ist ungleichsinnig genau dann, wenn
jede Fahne f zu ¢(f) entgegengesetzt orientiert ist.

An Stelle des Wortpaares ,,gleichsinnig — ungleichsinnig* sind auch die Aus-
driicke ,,direkt — indirekt*, ,,gerade — ungerade®, ,eigentlich — uneigentlich*
und ,,orientierungserhaltend — orientierungsindernd‘‘ gebrauchlich. Es sei darauf
hingewiesen, daB in der Literatur manchmal der Name Bewegung nur fiir die soeben
definierten gleichsinnigen Bewegungen verwendet wird.

Die Verschiebungsgleichheit zweier Fahnen hat ihre Orientierungsgleichheit zur
Folge; demmnach sind die Verschiebungen gleichsinnige Bewegungen. Bei der
Punktspiegelung am Punkt P wird eine Fahne mit dem Anfangspunkt P auf die
zu ihr entgegengesetzte Fahne ahgebildet, und da entgegengesetzte Fahnen gleich-
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orientiert sind, erweisen sich die Punktspiegelungen ebenfalls als gleichsinnige Be-
wegungen. Bei jeder Geradenspiegelung wird eine Fahne, deren Randstrahl in der
Spiegelgeraden enthalten ist, auf die Fahne mit demselben Randstrahl und der
entgegengesetzten offenen Halbebene abgebildet; diese beiden Fahnen sind nicht
gleichorientiert, also sind Geradenspiegelungen ungleichsinnige Bewegungen.

Eine Zusammensetzung zweier gleichsinniger Bewegungen ist offenbar ebenfalls
gleichsinnig, ebenso ist die Umkehrabbildung einer gleichsinnigen Bewegung gleich-
sinnig. Infolgedessen bilden alle gleichsinnigen Bewegungen eine Untergruppe der
Gruppe der Bewegungen. Da cin Produkt zweier ungleichsinniger Bewegungen eine
gleichsinnige Bewegung ist, bilden die ungleichsinnigen Bewegungen keine Unter-
gruppe.

Sind s, und s, zwei beliebige Strahlen und sind f,, f; die Fahnen mit dem Rand-
strahl s, f, und f; diejenigen mit dem Randstrahl s,, so gibt es nach Axiom (B2)
genau zwei Bewegungen, die s, auf s, abbilden: Das geordnete Paar (f,, f;) wird bei
der einen auf das geordnete Paar (f,, f;), bei der anderen auf (f;, f,) abgebildet. Da
f, und f; entgegengesetzt orientiert sind, ist genau eine von diesen Bewegungen
gleichsinnig. Es gilt also der

Existenzsatz fiir gleich- und ungleichsinnige Bewegungen. Zu zwei
belichigen Strahlen s, und s, gibt es genau eine gleichsinnige und genau eine ungleich-
sinnige Bewegung, die s, auf s, abbildet.

Folgerung. Haben die beiden im Satz genannten Strahlen s, und s, den An-
fangspunkt gemeinsam, so ist dic betreffende ungleichsinnige Bewegung stets eine
Geradenspiegelung. Denn nach dem zweiten Existenzsatz fiir Geradenspiegelungen
gibt es eine Geradenspiegelung, die s, auf s, abbildet, und nach dem eben bewie-
senen Satz kann es keine weitere ungleichsinnige Bewegung geben, bei der s, auf
s, abgebildet wird.

Nun soll ein weiterer Typ von Bewegungen betrachtet werden. Es sei 4 ein
Punkt. Man definiert:

Definition. & heiBt Drehung mit dem Zentrum A genau dann, wenn § eine
gleichsinnige Bewegung ist, die A als Fixpunkt hat.

Fiir jede von der identischen Abbildung verschiedene Drehung mit dem Zen-
trum 4 ist A der einzige Fixpunkt. Denn wire B ein weiterer Fixpunkt, so wiirde
der Strahl A B* auf sich selbst und wegen der Gleichsinnigkeit jede der Fahnen mit
dem Randstrahl AB* auf sich selbst abgebildet werden, was nach Folgerung 1
einen Widerspruch ergibe.

Offenbar sind die Umkehrabbildung einer Drehung mit dem Zentrum A und die
Zusammensetzung zweier solcher Drehungen wieder Drehungen mit dem Zentrum
A. (Statt ,,Drehung mit dem Zentrum A‘‘ sagt man auch kurz ,,Drehung um 4*.)
Fiir festes 4 ist also die Menge aller Drehungen um A eine Gruppe, eine Unter-
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gruppe der Gruppe der gleichsinnigen Bewegungen. Diese Gruppe erweist sich
sogar als kommutativ. Es gilt der folgende

Satz iiberdieGruppeder DrehungenumeinenPunkt. Fiir jeden Punkt A
st die Menge aller Drehungen mit dem Zentrum A eine kommutative Gruppe.

Es braucht nur noch die Kommutativitit bewiesen zu werden. Zum Beweis wird
folgender Hilfssatz benutzt:

Hilfssatz. Ist § eine Drehung mit dem Zentrum A, o eine Spiegelung an einer
beliebigen Geraden durch A, soistgodog = 6L

Beweis. Die Bewegung ¢ o § ist eine ungleichsinnige Bewegung mit dem Fix-
punkt A, sie bildet einen beliebigen Strahl mit dem Anfangspunkt 4 auf einen
Strahl mit dem Anfangspunkt A ab. Nach der Folgerung aus dem Existenzsatz
iiber gleich- und ungleichsinnige Bewegungen ist g  § eine Geradenspiegelung o,.
Es gilt o, = 05%, also 0 0§ = (g 2 8)"! = 6~ > g, und hieraus folgt g 0 d o 0~1 = 4!
bzw.godog =41

Beweis des Satzes. Es seien d, und 4, zwei Drehungen um 4 und a ein belie-
biger Strahl mit dem Anfangspunkt A, ferner sei d,(a) = a’ und §,(a’) = «”’. Durch
die Forderungen o,(a) = a’, g,(a’) = a”', 03(a’) = a' werden nach dem zweiten
Existenzsatz fiir Geradenspiegelungen drei Geradenspiegelungen g, 0,, g, fest-
gelegt, ihre Spiegelgeraden enthalten den Punkt 4. Die Bewegung o, ° o, ist eine
gleichsinnige Bewegung, die a auf a’ abbildet, es ist also g3 © 9, = 4,. Ebenso ist
0 © g, gleichsinnig und bildet a’ auf a’’ ab, das bedeutet g, c 03 = d,. Nun ist §, o,
=03°0,°0,°0; Es ist 0, o0, eine gleichsinnige Bewegung mit dem Fixpunkt 4,
also eine Drehung 6 um 4. Aus 6, °d, = 0 o g, folgt nach dem oben bewie-
senen Hilfssatz

0,00, =01 =(0,°0) ' =05'c0; =000
=0,0100) =0,°03°0;°0; =0,°0;,
was zu zeigen war.

Die Struktur der Gruppe der Drehungen um den Punkt A4 hingt nun nicht von
der Wahl des Punktes 4 ab, wie die folgenden Uberlegungen zeigen. Ist B (+ A)
ein anderer Punkt, v die Verschiebung, die A4 auf B abbildet und 4 eine beliebige
Drehung um A4, so ist v ¢ § o v~! eine gleichsinnige Bewegung, die B als Fixpunkt
hat, also eine Drehung um B. Die Abbildung @: 8 +> 7 o4 o7~ ordnet somit jeder
Drehung um 4 eine Drehung um B zu. Diese Abbildung ist eindeutig umkehrbar:
Aus P(0) =Todo7 ! folgt § =7-1o@®P(d) o7, und das Bild eines Produktes ist
gleich dem Produkt der Bilder:

D(O) o D@By) =Tod 0T oTodyorl =T0d 0b0rt =P (00).

@ ist demnach ein Isomorphismus zwischen der Gruppe der Drehungen um A und
der Gruppe der Drehungen um B. Beide Gruppen haben also gleiche Struktur.
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Die Struktur dieser kommutativen Gruppen ist von derjenigen der ebenfalls
kommutativen Gruppe der Verschiebungen verschieden. Das erkennt man z. B.
daraus, dafl die Verschiebungsgruppe keine Involutionen enthilt, wohl aber die
Drehungsgruppen. Denn aus dem Beweis des zweiten Existenzsatzes fiir Punkt-
spiegelungen folgt, daB eine gleichsinnige involutorische Bewegung notwendig eine
Punktspiegelung, also keine Verschiebung ist, und Punktspiegelungen sind spezielle
Drehungen. In einem spiteren Abschnitt wird iiber den Begriff des orientierten
Elementarwinkels ein enger Zusammenhang zwischen der Drehungsgruppe und
einer gewissen aus Restklassen reeller Zahlen gebildeten Gruppe aufgezeigt werden
konnen.

1.1.3.2. Klassen kongruenter Figuren

So wie in 1.1.1. auf der Grundlage der Existenz der Gruppe der Verschiebungen die
Verschiebungsgleichheit von Punktmengen eingefiihrt wurde, wird jetzt unter
Zugrundelegung der Gruppe der Bewegungen der fiir die Elementargeometrie sehr
wichtige Begriff der Kongruenz definiert. Er bezieht sich auf Punktmengen oder
Systeme von Punktmengen, fiir beides moge die Bezeichnung ,,geometrische Figur
verwendet werden.

Es seien I, und I, geometrische Figuren.

Definition. M, =~ M, bedeutet: Es gibt eine Bewegung ¢ mit ¢(M;) = M,.
(I, = M, wird gelesen: , M, kongruent (zu) M,*“.)

Genau wie bei der Verschiebungsgleichheit folgt aus der Gruppeneigenschaft der
Bewegungen der

Satz. Die Kongruenz ist eine Aquivalenzrelation.

Beispiele fiir Paare kongruenter Figuren sind: zwei beliebige Geraden, Strahlen,
Halbebenen, Fahnen. Zwei Strecken sind im allgemeinen nicht kongruent. Zwei
zueinander verschiebungsgleiche Figuren sind auch zueinander kongruent.

Wird ein Paar (J%,, M,) kongruenter Figuren durch eine Bewegung & abgebildet,
so sind die Bildfiguren ebenfalls kongruent; denn aus ¢(M,) = M, folgt fiir jede
Bewegung o :

a0 g(Iy) = (M)
bzw.
xopoalox(I) =@y,
und das bedeutet: «(9,) ist Bild von «(IN,) bei der Bewegung o o ¢ o ~1,

In manchen Zusammenhingen ist es zweckmiBig, einen enger gefaBten Kon-
gruenzbegriff zu verwenden und dabei nicht die volle Bewegungsgruppe zugrunde
zu legen, sondern nur die Untergruppe der gleichsinnigen Bewegungen. Man defi-
niert:
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Definition. M, =+ M, gilt genau dann, wenn es eine gleichsinnige Bewegung
¢ mit (I,) = M, gibt. (,,=** wird gelesen: ,gleichsinnig kongruent‘.)

Auch die gleichsinnige Kongruenz ist eine Aquivalenzrelation. Zwei Geraden,
Strahlen, Halbebenen oder zwei verschiebungsgleiche Figuren sind stets gleich-
sinnig kongruent. Zwei beliebige Fahnen sind genau dann gleichsinnig kongruent,
wenn sie gleichorientiert sind.

Auf einen Spezialfall der Kongruenz sei besonders hingewiesen. Man sagt, zwei
Figuren I, und M, liegen spiegelsymmetrisch oder einfach symmetrisch zur Geraden
g, wenn 0,(I,) = M, gilt. Oft faBt man in diesem Fall I, und M, zu einer Menge
zusammen (es kann auch von vornherein 9, = N, sein) und nennt M, u M, eine
symmetrische Figur, g heiBt dann Symmetrieachse von I, v M,.

Im folgenden Abschnitt werden Klassen kongruenter einfacher Figuren betrach-
tet und Relationen und Operationen fiir diese Klassen definiert und untersucht.

1.1.3.2.1. Léngen

Die Menge © aller Strecken zerfillt beziiglich der Aquivalenzrelation Kongruenz
in Klassen. Die Elemente dieses Systems €/= maogen Lingen genannt werden.
Die Liinge, der die Strecke A B angehort, soll mit |4 B| bezeichnet werden:

|AB| = {s:s = XY A XY= AB} .

Uber die Existenz von Reprisentanten von Lingen auf gegebenen Strahlen gibt
der folgende Satz Auskunft, der zum Ausdruck bringt, daB man auf jedem Strahl
genau einen Punkt finden kann, der mit dem Anfangspunkt des Strahls eine Strecke
gegebener Linge bildet.

Streckenabtragungssatz. Ist |PQ| eine Linge und AS* ein Strahl, so gibt es
genau einen Punkt B mit B ¢ AS* und AB ¢ |PQ)|.

Beweis. Die Existenz von B folgt aus dem Existenzsatz fiir Bewegungen aus
1.1.3.1., wonach es mindestens eine Bewegung ¢ mit ¢(PQ*) = AS* gibt; setzt
man B = ¢(Q), so ist AB= PQ. Hitte man noch einen weiteren Punkt B’ aus
AS* mit AB’' =~ PQ, so wire AB’ =~ AB, es gibe eine Bewegung y mit y(4) = 4,
w(B) = B, also y(4B*) = AB'* = AB*. Nach Folgerung 2 in 1.1.3.1. gilt dann
y(B) = B, also B' = B.

In diesem Beweis wurde schon von einer Tatsache Gebrauch gemacht, die auch
in den kommenden Betrachtungen 6fters verwendet werden wird: Aus der Kon-
gruenz zweier Strecken 4, B, und 4, B, folgt nach Definition die Existenz einer Be-
wegung ¢, bei der 4,B, auf 4,B, abgebildet wird, und dabei kann nach Belieben
¢(4;) = 4, und @(B,) = B, oder aber ¢(4,) = B, und ¢(B,) = 4; angenommen
werden, denn jede der beiden Moglichkeiten kann erforderlichenfalls auf Grund
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von Bewegungsaxiom (B3) erreicht werden. Analoges gilt fiir Paare von Strahlen
mit gemeinsamem Anfangspunkt.

Im System &/=< wird jetzt eine Operation erklirt, die dem anschaulichen ,,gerad-
linigen Aneinanderlegen‘* von Strecken entspricht.

Es seien s, und s, beliebige Langen. A B sei eine beliebige Strecke aus s,, BC die
nach dem Streckenabtragungssatz eindeutig bestimmte Strecke aus s,, die auf
BA- liegt. Durch AC ist eine weitere Linge s; bestimmt. Sie scheint zundchst
auBer von s, und s, auch von der Auswahl der Strecke 4B aus s, sowie der Fest-
legung von B als Anfangspunkt des Strahles abhéngig zu sein. Auf Grund des fol-
genden Hilfssatzes besteht diese Abhingigkeit jedoch nicht.

Hilfssatz. Aus A\ B, =~ A,B,, B,C, =~ B,C,, Zw(A,B,C)) und Zw(A4,B,C,) folgt
A,C, = A,C,.

Beweis. Es existiert eine Bewegung ¢ mit ¢(4,Bf) = 4,B;. Wegen 4,B,
= A, B, ist auf Grund des Streckenabtragungssatzes ¢(B,) = B,, und da ¢(B,47)
= B,Aj; ist, ergibt sich aus demselben Grunde ¢(C,) = C,.

Ersetzt man in der oben beschriebenen Konstruktion von s die Strecke A B durch
eine beliebige andere Strecke PQ aus s,, so ergibt sich nach dem Hilfssatz (man setze
A,B, = AB, A,B, = PQ) wiederum die Liinge s;. Man bezeichnet s, als die Summe
der Liingen ¢, und s, und schreibt s; + s, = s;. Damit ist eine Addition der Liingen
erklirt, das System &/ ist zu einer Struktur (&/=, +) gemacht worden.

Die Léingen und deren Addition konnen in einfacher Weise mit gewissen Ver-
schiebungen in Zusammenhang gebracht werden, woraus sich Rechengesetze fiir
die Addition ergeben. Es sei R, ein beliebiger, fest gewihlter Richtungssinn (vgl.
1.1.2.1.) und B, die Menge aller Verschiebungen, die den Richtungssinn R, haben.
Diese Menge ist beziiglich der Hintereinanderausfiihrung der Verschiebungen abge-
schlossen. Die Umkehrabbildungen der in 8B, enthaltenen Verschiebungen haben
den zu R, entgegengesetzten Richtungssinn, gehéren also nicht zu B,. Demnach
ist B, nur eine Halbgruppe. Istz ¢ B, so gehéren alle Strecken X7(X) zur gleichen
Linge, die der Verschiebung v zugeordnet und mit s, bezeichnet werden mége. Ist
umgekehrt ¢ eine Liinge, so gibt es auf Grund des Streckenabtragungssatzes genau
eine Verschiebung ¢, die zu B, gehort und fiir die die Strecken X¢(X) zu ¢ gehéren.
Durch die Zuordnung 7 > s, ist also eine bijektive Abbildung der Menge B, auf
die Menge aller Lingen gegeben. Aus der Definition der Zusammensetzung von
Verschiebungen und der Addition von Liingen folgt unmittelbar, daB dem Produkt
zweier Verschiebungen aus B, die Summe der zugeordneten Lingen zugeordnet
wird, ¢ o7 > 8, + 8, die genannte Zuordnung ist also ein Isomorphismus. Daraus
ergibt sich, daB die Addition der Lingen assoziativ und kommutativ ist, d. h., es
gilt der

Satz iiber die Halbgruppe der Lingen. Die Lingen bilden beziiglich der
Addition eine k tative Halbgruppe.
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Diese Halbgruppe (€/=2, +) wird in einem spéteren Abschnitt in einen engen
Zusammenhang mit der additiven Halbgruppe der positiven reellen Zahlen ge-
bracht werden kénnen.

Von der Anschauung her hat man die Vorstellung, daB die Léngen geordnet
werden konnen und daB insbesondere die Summe zweier Lingen groBer als jeder
der Summanden ist. Es liegt also nahe, fiir Langen s, und s, zu definieren:

Definition. s, < s, bedeutet: Es gibt eine Liinge x, so daB s, + z = s, ist.

Es wird nun gezeigt, daB hierdurch in der Menge der Lingen eine irreflexive
Ordnungsrelation gegeben ist. Dazu sind die in 1.1.2.1. genannten Eigenschaften
(T), (I) und (K) nachzuweisen. Gilt s; < s, und s, < 8y, s0 gibt es Lingen x und y
mit 8, + z = s, und s, + y = s;. Hieraus folgt s, + = + y = 8, d. h., es gibt ein
z (= x + y) mit 8, + z = 85, und das bedeutet 8, < 3, womit (T) nachgewiesen ist.
Aus der Definition der Addition von Lingen folgt, :daB die Gleichung s + x =s
fiir kein s eine Losung z hat, womit (I) bewiesen ist. Zum Beweis von (K) sei ange-
nommen, daB fiir die Lingen s, und s, weder s, < s, noch s, = s, gilt. Die Gleichung
8 + « =8, hat also keine Lésung, und es kann demnach, falls s, = |AB|,
8y = |AC| mit C ¢ AB* gilt, der Punkt C nicht auf BA- liegen. Es muBl Zw(ACB)
gelten, und das bedeutet |[AC| + |CB| = |AB|, d. h., die Gleichung s, + « = s, hat
eine Losung z (= |CB), es gilt s, < s;, womit auch (K) bewiesen ist.

Die hier erklirte Ordnungsrelation fiir Liangen kann auch auf die Strecken iiber-
tragen werden. Man definiert: AB < CD :& |AB| < |CD|. Hierdurch ist fiir die
Menge der Strecken allerdings nur eine teilweise Ordnung erklirt, denn die Eigen-
schaft (K) ist nicht erfiillt, wie man am Beispiel eines Paares verschiedener, aber
kongruenter Strecken sieht.

Die Addition und die Ordnung der Lingen hiingen iiber folgendes Monotonie-
gesetz zusammen:

Monotoniesatz fiir Lingen. Sind s,, ,, 8 Liingen mit s, < s,, so gilt auch
8+ 8 <8+

Beweis. 8 < 8, gilt genau dann, wenn es ein  mit 8, + x = s, gibt. Hieraus
folgt aber 8; + 8 + z = 8, + s, als0 8, + s < 8, + 8.

Fiir die Geometrie der Strecken ist der Begriff des Mittelpunktes wichtig. Man
definiert:

Definition. M ist genau dann Mittelpunkt der Strecke A B, wenn M ein Punkt
von g(4B) mit MA = MB ist.

Es gilt der

Satz vom Mittelpunkt. Jede Strecke AB hat genau einen Mittelpunkt M, und
es gilt Zw(AM B).
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Beweis. Es sei AB eine beliebige Strecke. Nach dem zweiten Existenzsatz fir
Punktspiegelungen gibt es einen Punkt M, so daB die Spiegelung an M den Punkt 4
auf Babbildet, d. h., es gilt MA =~ M Bund Zw(AM B). Ist M’ ein weiterer Mittel-
punkt von AB, so kann wegen des Streckenabtragungssatzes (Einzigkeit beziiglich
des Strahles M’A+*) nicht Zw(M'A B) oder Zw(M'BA) gelten. Aus Zw(AM'B) folgt
aber, falls 0. B. d. A. Zw(AM ' M)gilt, [AM'| < |[AM| = |BM| < |BM'| = |[AM'],
was nicht sein kann.

1.1.3.2.2.  GroBen orientierter Elementarwinkel

Wiirde man die Menge %8, der orientierten Elementarwinkel (vgl. 1.1.2.2.) beziiglich
der Kongruenz in Klassen einteilen, so wiirden auf Grund des Bewegungsaxioms
(B4) die orientierten Elementarwinkel & (k, k) und X (k, k) in derselben Klasse
liegen, was sich fiir die Anwendungen — inshesondere fiir die Beschreibung von
Drehungen — als unzweckmiBig erweisen wiirde. Da X (&, k) (Nullwinkel und
gestreckte orientierte Elementarwinkel ausgenommen) nur durch eine ungleich-
sinnige Bewegung auf X (k, k) abgebildet werden kann, liegen diese beiden orien-
tierten Elementarwinkel in verschiedenen Klassen, wenn man die Einteilung hin-
sichtlich der gleichsinnigen Kongruenz vornimmt. Es wird deshalb jetzt das System
(W,/=+) der Klassen gleichsinnig kongruenter orientierter Elementarwinkel be-
trachtet, seine Elemente mégen Grofen orientierter Elementarwinkel (solange keine
MiBverstindnisse zu befiirchten sind, kurz: GroBen) genannt werden. Die X (k, k)
enthaltende GroBe werde mit m(< (k, k)) bezeichnet:

m(& (b, k) =X (@9 X @y =* LR b).
Alle Nullwinkel & (k, &) bilden eine Klasse, die Nullwinkelgrofie; ebenso bilden alle
gestreckten orientierten Elementarwinkel & (X Y+, XY-) eine Klasse.

Uber die Existenz von Reprisentanten einer gegebenen GréBe gibt folgender Satz
Auskunft:

Abtragungssatz fiir orientierte Elementarwinkel. Ist w eine Grofe
orientierter Elementarwinkel und s ein Strahl, so ¢ibt es genau einen Strahl t, so daf
X (8, t) ein orientierter Elementarwinkel aus w ist.

Beweis. Es sei w = m(< (h, k). Nach dem Existenzsatz fiir gleichsinnige
Bewegungen aus 1.1.3.1. gibt es eine gleichsinnige Bewegung ¢, die k auf s abbildet.
Man setze t = ¢(k) und hat damit die Existenz bewiesen. Die Einzigkeit folgt dar-
aus, daB jeder orientierte Elementarwinkel X (s, t) aus w Bild von X (&, k) bei
einer gleichsinnigen Bewegung ist und es nach dem eben genannten Satz nicht mehr
als eine solche Bewegung gibt.

Der Abtragungssatz erlaubt es, fiir GroBen orientierter Elementarwinkel eine
Operation zu erkliren, die dem anschaulichen ,,Aneinanderlegen* entspricht. Es
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seien w; und w, beliebige solche GriBen, X (k, k) beliebig aus w, und X (&, I) der
nach dem Abtragungssatz eindeutig bestimmte orientierte Elementarwinkel aus w;,
der k als ersten Schenkel hat. Durch & (&, [) ist eine Grole orientierter Elementar-
winkel gegeben : sie werde mit w; bezeichnet. Sie ist auf Grund des folgenden Hilfs-
satzes unabhingig von der Auswahl von X (&, k) aus w;.

Hilfssatz. Aus X (h, k) =+ X (W', k') und X (k, 1) =* X (', V) folgt
X=X @, 0.

Beweis. Ausder ersten Kongruenz folgt die Existenz einer gleichsinnigen Bewe-
gung ¢, mit ¢,(h) = k’ und @,(k) = k’. Aus der zweiten Kongruenz folgt die Exi-
stenz einer gleichsinnigen Bewegung g, mit g,(k) = k' und g,(l) = I'. Auf Grund
des Existenzsatzes fiir gleichsinnige Bewegungen sind wegen ¢,(k) = @,(k) beide
Bewegungen gleich. Also ist ¢,(1) = ¢o() = I, d. h. ¢, (X (&, ) = X (&', 1)-

Die oben beschriebene Konstruktion von w; fithrt also bei jeder Wahl von < (k, k)
aus w, auf dieselbe Klasse w,. Man nennt w; Summe der GroBen w, und w, und
schreibt w, + w, = w;. Damit ist eine Addition der Gréfen orventierter Elementar-
winkel erklirt und y/=* zu einer algebraischen Struktur (,/=*, +) gemacht
worden. Fiir beliebige Strahlen %, k, I mit gemeinsamem Anfangspunkt gilt aus-
nahmslos

m(X (&, k) + m(X (&, 1) = m(X (B, D) .

Zwischen der Struktur (W,/=~*, +) und der Gruppe der Drehungen um einen
festen Punkt besteht ein enger Zusammenhang, wie jetzt gezeigt werden soll. Es
sei A ein fester Punkt und ¢ eine Drehung mit dem Zentrum 4; & und k seien zwei
beliebige Strahlen mit dem Anfangspunkt A und k' = §(k) sowie k' = 8(k). Nach
dem Existenzsatz aus 1.1.3.1. gibt es eine gleichsinnige Bewegung ¢ mit ¢(h) = k.
@ ist Drehung um 4, so daB ¢ 0§ = § o ¢ ist. Esgilt

oh') =@odh) =009h) =0dk) =k .

Die orientierten Elementarwinkel < (k, h’) und X (k, k) sind also vermége der
Drehung ¢ gleichsinnig kongruent. Es gilt somit der

Satz. Bei jeder Drehung um A sind die orientierten Elementarwinkel mit dem
Scheitel A, deren zweite Schenkel jeweils Bild des ersten sind, alle zueinander gleich-
sinnig kongruent.

Die genannten orientierten Elementarwinkel gehoren also zu ein und derselben
GroBe, die der betreffenden Drehung ¢ zugeordnet und mit w, bezeichnet werden
moge. Ist umgekehrt w eine GroBe orientierter Elementarwinkel, so gibt es auf
Grund des Abtragungssatzes genau eine Drehung um A, fiir die die zugeordnete
GroBe gerade w ist. Durch die Zuordnung 6 > w, ist also eine bijektive Abbildung
der Menge aller Drehungen um A auf die Menge B,/=* gegeben. Offenbar wird
dem Produkt zweier solcher Drehungen die Summe der zugeordneten GroBen zuge-
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ordnet: 6,0, > w5 + ws, die genannte Zuordnung ist demnach ein Isomorphis-
mus. Unter Beriicksichtigung des Satzes iiber die Gruppe der Drehungen um einen
Punkt ergibt sich, daB (B,/=+*, +) eine kommutative Gruppe ist, es gilt der

Satz iiber die Gruppe der GroBen orientierter Elementarwinkel. Die
Grofen orientierter Elementarwinkel bilden beziiglich der Addition eine kommutative
Gruppe, die zur Gruppe der Drehungen um einen Punkt isomorph vst.

Wie iiblich soll mit —z die zur GréBe z inverse bezeichnet werden. Offenbar ist
— m(X (h, k) = m (X (k, b)) .

Die Reprisentanten von z und — x liegen — von der NullwinkelgréBe und der
GroBe der gestreckten orientierten El tarwinkel abgesehen — in verschiedenen
Orientierungsklassen. Statt y + (—x) soll einfach y — z und statt z 4 z soll 2=
geschrieben werden.

Die GrofBe der gestreckten orientierten Elementarwinkel entspricht bei dem
oben genannten Isomorphismus der Punktspiegelung ¢,. Da ¢, Involution ist,
ergibt jene GroBe zu sich selbst addiert die NullwinkelgroBe. Die GroBe der ge-
streckten orientierten Elementarwinkel ist demnach Losung der Gleichung
2z = m(X (k, %)) und ist auBer der NullwinkelgréBe selbst die einzige Lésung dieser
Gleichung.

In Verallgemeinerung dieses Sachverhaltes gilt der

Satz iiber die Halbierung von GréBenorientierter Elementarwinkel.
Ist w eine gegebene Grofe orientierter Elementarwinkel, so hat die Gleichung 22 = w
genau zwer Losungen x, und x,, und es ist 2, — x, die Grofie der gestreckten orientierten
Elementarwinkel.

Beweis. Ist w die NullwinkelgroBe, so ist der Beweis bereits erbracht. Nun
werde w durch X (k, k) mit b & k reprisentiert. Nach dem zweiten Existenzsatz
fiir Geradenspiegelungen gibt es genau eine Gerade g, so daB o,(k) = k ist. g wird
durch den Scheitel von & (k, k) in zwei entgegengesetzte Strahlen s, und s, zer-
legt. Fir ¢ = 1,.2 gilt

m(X (k, k) = m(X (B, 8;)) + m(X (si, k)

Es ist aber

o(X (b, 8)) = X (&, 80,
X (hy 8) =+ X (8, k)

m(X (&, 8)) = m(X (s;, k) ,

d. h., z; = m(<X (b, 8;)) sind Losungen der Gleichung. Andererseits ist leicht einzu-
sehen, daB jeder Strahl s mit der Eigenschaft < (k, s) =* & (8, k) in der Geraden g

also

bzw.
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enthalten sein muB, so daB die genannten Lésungen der Gleichung die einzigen
sind. Es gilt
7 —ap=m(X (&) — m(X (b, &)
= m(X (, 8,)) + m(X (s, b))
=m(X (s &),
und dies ist die GroBe der gestreckten orientierten Elementarwinkel, womit der
Satz bewiesen ist.

Besondere Beachtung verdient der Fall, daB w die GréBe der gestreckten orien-
tierten Elementarwinkel ist, sie sei mit w, bezeichnet. Fiir die beiden Losungen z,
und x, der Gleichung 2z = w, gilt ; — 2, = w, = x, 4+ x,, also x; = — x,. Die
diesen beiden GrofBen angehérenden orientierten Elementarwinkel bekommen den
gemeinsamen Namen rechte orientierte Elementarwinkel; es gibt demnach zwei Sor-
ten rechter orientierter Elementarwinkel, zwei Vertreter verschiedener Sorten sind
ungleichsinnig kongruent. Rechte orientierte Elementarwinkel haben die Eigen-
schaft, daB die Trigergeraden ihrer Schenkel senkrechte Geraden sind; das ergibt
sich aus dem Beweis des letzten Satzes, wenn man dort . und k als entgegengesetzte
Strahlen voraussetzt. Ist umgekehrt & PAQ ein orientierter Elementarwinkel,
dessen Schenkel senkrechte Trigergeraden haben, und s ein Strahl mit

X (4Q*, )=+ X PAQ,
so muB s wegen der Einzigkeit des Lotes zu g(Q4) durch 4 und wegen der Invarianz
des Senkrechtseins zur Geraden g(A4P) gehoren. s = AP+ ist unméglich, weil
X QAP und ¥ PAQ ungleichsinnig kongruent sind, also ist s = AP-, und es gilt

2m(X (4 P+, AQ%) = w,,

d. h., & PAQ ist ein rechter orientierter Elementarwinkel. Somit ist X (k, k)
genau dann rechter orientierter Elementarwinkel, wenn die Trigergeraden von &
und k senkrecht sind.

1.1.3.2.3.  Winkelgréflen

Unter einem Elementarwinkel soll ein ungeordnetes Paar (also eine Zweiermenge)
von Strahlen mit gemeinsamem Anfangspunkt verstanden werden; die Strahlen,
die hier (im Gegensatz zum Begriff des orientierten Elementarwinkels) stets von-
einander verschieden sind, nennt man Schenkel, den gemeinsamen Anfangspunkt
Scheitel des Elementarwinkels. Der aus den Strahlen 4 und k bestehende Elementar-
winkel soll mit < (k, k) bezeichnet werden. Statt < (4P*, 4Q*) kann auch kurz
<X PAQ geschrieben werden. Ein aus zwei entgeg tzten Strahlen bestehender
Elementarwinkel heiBit gestreckt, ein Elementarwmkel dessen Schenkel senkrechte
Trigergeraden haben, heilit rechter Elementarwinkel. Die Menge der Elementar-
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winkel kann beziiglich der Kongruenz in Klassen eingeteilt werden; eine genauere
Untersuchung und Strukturierung dieser Klassen soll hier jedoch nicht erfolgen.
Dafiir wird der Begriff des Winkels eingefiihrt.

So wie jede Gerade eine Zerlegung der nicht zu ihr gehérenden Punkte in zwei
Halbebenen bewirkt, erzeugt auf folgendem Wege jeder Elementarwinkel eine Zer-
legung der nicht zu seinen Schenkeln gehirenden Punkte in zwei Klassen: Ist
X (h, k) gestreckt, so seien die beiden durch die Trégergerade von % und k erzeugten
offenen Halbebenen die Klassen. Ist < (4P, AP; ) nicht gestreckt, so betrachte
man die Mengen I, = AP, Py n AP,P} und M, = AP, P; uAP,P (alle genannten
Halbebenen sind offen zu denken). Es ist

My n My = (AP, Py n AP,P}) n (AP, Py v AP,PT)
=(AP,PF nAP,P{ n AP, P,)u(AP,Py n AP,P{ n AP,P[)
=0u0=290.

Ist X ein Punkt, der weder zu AP} noch zu APJ gehort, so gehort er entweder zu
AP, P} oder zu AP, P; oder zu APy, und er gehort entweder zu 4 PP’} oder zu
AP,P[ oder zu AP;. Hieraus folgt unter Beriicksichtigung von AP; \ {4}
CAP,P[ und AP; \ {4} ¢ AP,P;, dai X zu IR, oder zu N, gehort. Also ist
durch die Mengen IR, und 9, eine Zerlegung der nicht zu A P} oder A P, gehoren-
den Punkte in zwei Klassen gegeben. Wihrend bei der Halbebenenzerlegung keine
der beiden von einer Geraden erzeugten Halhebenen vor der anderen ausgezeichnet
ist (sie sind zueinander kongruent), zeigt sich hier eine Asymmetrie: 0, ist Durch-
schnitt, IR, Vereinigung zweier Halbebenen, beide Mengen sind nicht kongruent.
Ein Winkel wird nun definiert als ein Paar (< (k, k), ;), bestehend aus einem Ele-
mentarwinkel und einer der beiden von ihm erzeugten Zerlegungsmengen I,
oder M,. Die Menge M, heiBt dann Inneres des betreffenden Winkels, Schenkel und
Scheitel von < (&, k) heilen Schenkel und Scheitel des Winkels, die zu ihnen gehéren-
den Punkte nennt man auch Randpunkte des Winkels. Ein Winkel ist durch Angabe
seines Elementarwinkels < (%, k) und eines zu seinem Inneren gehérenden Punktes
P festgelegt und moge dann mit < (h, k; P*) bezeichnet werden; unter < (h,k; P-)
(P @ h, 4 k) soll der Winkel mit den Schenkeln % und k verstanden werden, in dessen
Innerem P nicht enthalten ist. Ein Winkel mit gestrecktem Elementarwinkel
moge gestreckter Winkel heillen. Je nachdem, ob das Innere eines nicht gestreckten
Winkels als Durchschnitt oder als Vereinigung von offenen Halbebenen entstanden
ist, mége der betreffende Winkel Winkel erster Art oder Winkel zweiter Art
genannt werden (Abb. 1.16). Gestreckte Winkel sind weder von der ersten noch
von der zweiten Art. Ein Winkel erster Art, dessen Schenkel senkrechte Triger-
geraden haben, heifit rechter Winkel. Jeder Elementarwinkel kann auf genau
zwei Weisen zu einem Winkel erweitert werden, im Fall eines nicht gestreckten
Elementarwinkels ist einer dieser beiden Winkel von der ersten, der andere von der
zweiten Art.
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Abb. 1.16

Unter dem Bild eines Winkels < (k, k; P*) bei einer Bewegung ¢ hat man den
Winkel < (g(h), ¢(k); ¢(P)*) zu verstehen. Es folgt ohne weiteres aus der Defi-
nition von Winkeln erster und zweiter Art, daB sich die Eigenschaft eines Winkels,
von der ersten oder der zweiten Art zu sein, bei Bewegung nicht dndert. Fiir die
Kongruenz zweier nicht gestreckter Winkel ist es also notwendig und hinreichend,
daB ihre Elementarwinkel kongruent und dafl beide Winkel von derselben Art sind.

Die Menge 8 aller Winkel zerfallt beziiglich der Kongruenz in Aquivalenzklassen.
Es ergibt sich ein Restsystem /=2, dessen Elemente Winkelgrofien genannt wer-
den sollen und die wie folgt (analog zur Bezeichnung der Lingen) bezeichnet werden
sollen:

[ (h, k5 PH)| = {w:w = < (x,y;Z*) Awe= L (h, k; P} .

Da alle zu einem Winkel z. B. erster Art kongruenten Winkel ebenfalls von der
ersten Art sind, konnen die WinkelgroBen, deren Vertreter keine gestreckten Win-
kel sind, wie die Winkel selbst in zwei Sorten eingeteilt werden: WinkelgrdBen
erster und zweiter Art. Die gestreckten Winkel bilden eine Klasse fiir sich, die
gestreckte Winkelgrofe genannt werden soll.

Fiir die WinkelgrdBen soll nun eine Addition eingefiihrt werden, die der anschau-
lichen Vorstellung des Aneinanderlegens von Winkeln entspricht.

Es ist moglich, der Anschauung gemiB den Begriff der Vereinigung von Punktmen-
gen zur Einfiihrung der Addition von WinkelgréB8en heranzuziehen. Die dazu notwen-
digen Uberlegungen sind jedoch etwas miihsam. Einfacher, aber abstrakter ist der im
folgenden beschrittene Weg, bei dem von GréBen orientierter Elementarwinkel und
von Orientierungsklassen Gebrauch gemacht wird.

In 1.1.2.2. wurde die Gleichorientierung von orientierten Elementarwinkeln defi-
niert. Die orientierten Elementarwinkel, die nicht Nullwinkel oder gestreckte orien-
tierte Elementarwinkel sind, kénnen in zwei Orientierungsklassen eingeteilt werden.
Es sei daran erinnert, dafl die Vertauschung der Schenkel eines orientierten Elemen-
tarwinkels den Ubergang in die entgegengesetzte Orientierungsklasse bewirkt;
dasselbe bewirkt auch die Ersetzung eines Schenkels durch den zu ihm entgegen-
gesetzten Strahl; das letzte kann fiir die GroBe des betreffenden orientierten Ele-
mentarwinkels als Addition der GréBe der gestreckten orientierten Elementar-
winkel gedeutet werden.
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Von den beiden Orientierungsklassen mége eine ausgezeichnet und mit O, be-
zeichnet werden, die andere Klasse werde mit O, bezeichnet. Die folgenden Be-
trachtungen spielen sich also in einer orientierten Ebene ab.

Da jeder Elementarwinkel auf zwei Weisen zu einem orientierten Elementar-
winkel gemacht werden und ebenso auf zwei Weisen zu einem Winkel erweitert
werden kann, bietet es sich an, folgende Abbildung w zu betrachten, die jedem Win-
kel einen orientierten Elementarwinkel zuordnet:

Ist < (h, k; P*) ein Winkel erster (bzw. zweiter) Art, so sei w (X (h, k; P*))
derjenige von den orientierten Elementarwinkeln X (k, k) und & (k, k), der zur
Orientierungsklasse O, (bzw. 0,) gehort. Ist & (k, k; P*) ein gestreckter Winkel, so
sei (<X (h, k; P*)) derjenige von den orientierten Elementarwinkeln X (A, k)
und X (k, k), fiir den die Fahne mit dem ersten Schenkel als Randstrahl, die P
enthilt, zur Orientierungsklasse O, gehort.

Diese Abbildungsvorschrift kann folgendermafien anschaulich gedeutet werden:
Denkt man O, als die Klasse derjenigen orientierten Elementarwinkel, deren zweite
Schenkel rechts vom ersten liegen, so wird einem jeden Winkel derjenige orientierte
Elementarwinkel zugeordnet, der dieselben Schenkel hat und fir den das Innere des
Winkels rechts vom ersten Schenkel liegt.

Offenbar ist diese Abbildungsvorschrift umkehrbar: Jedem orientierten Elemen-
tarwinkel, der nicht Nullwinkel ist, entspricht genau ein Winkel, dem dieser orien-
tierte Elementarwinkel bei w zugeordnet ist. Durch w ist also eine bijektive Abbil-
dung der Menge aller Winkel auf die Menge der orientierten Elementarwinkel ge-
geben, die nicht Nullwinkel sind. Aus der Zuordnungsvorschrift folgt ferner, daf
kongruenten Winkeln gleichsinnig kongruente orientierte Elementarwinkel zuge-
ordnet werden und daB die Urbilder gleichsinnig kongruenter orientierter Elemen-
tarwinkel kongruente Winkel sind. Das bedeutet, daB durch w eine bijektive Abbil-
dung 2 der Menge aller Winkelgrofien auf die Menge der von der Nullwinkelgrd e
verschiedenen GréBen orientierter Elementarwinkel gegeben ist.

Die Einteilung der Menge 8, der orientierten Elementarwinkel in zwei Orientie-
rungsklassen iibetriagt sich auf das System ®,/=* der GréBen orientierter Elemen-
tarwinkel; die beiden Klassen mégen ebenfalls mit O, und O, bezeichnet werden.
Die NullwinkelgrBe und die GroBe der gestreckten orientierten Elementarwinkel
gehoren keiner dieser beiden Klassen an.

Nun wird in der Menge der WinkelgréBen eine partielle Operation erklirt, die
Addition genannt und mit dem Zeichen + geschrieben wird. w, und w, seien Winkel-
groBen. In den drei Fillen

a) (w,) und Q2(w,) gehoren beide zu O,,

b) Q(w,) und L(w,) gehéren zu verschiedenen Orienticrungsklassen, und
Q(w,) + Q2(w,) gehort zu O,,

¢) von den GréBen 2(w,) und 2(w,) ist eine die GréfBe der gestreckten orientierten
Elementarwinkel, die andere gehért zu 0,



64 1. Axiomatischer Aufbau der Geometrie

Abb. 1.17

definiert man
wy, + wy 1= 2°Y(Qw,) + 2(w,)):
in allen anderen Fillen ist eine Summe nicht erklart (Abb. 1.17).

Der Leser moge sich an Hand konkreter Beispiele davon tiberzeugen, daB diese Defi-
nition der Vorstellung des Ancinanderlegens von Winkeln entspricht. Nur um fir die
anschlieBend zu definierende Ordnungsrelation fir WinkelgréBen die Monotonie be-
ziglich der Addition zu sichern, wurde nicht fir belichige Winkelgré8en eine Summe
erklirt (obwohl der rechts vom Definitionszeichen stehende Ausdruck fiir belicbige
WinkelgréBen einen Sinn hat).

Man iiberlege sich, dal man dieselbe Winkelgrife als Summe bekommt, wenn
man statt O, die Klasse O, auszeichnet, die Addition ist also unabhingig von der
Orientierung der Ebene. Somit ist eine algebraische Struktur (W/=, +) mit
partieller Operation + entstanden.

Aus der Definition folgt sofort: Wenn w, 4 w, existiert, dann existiert auch
w, + w;, und es ist w; + w, = w, + w,. Ferner kann gezeigt werden — der Beweis
soll hier unterbleiben —, daB die Summe (w; + w,) + w, genau dann existiert, wenn
w; + (wy + w,) existiert; im Falle der Existenz sind beide Summen gleich, denn es
ist dann

(0, + w,) + wy = 27YR(w, + w,) + Q(wy))
= Q[Q(Q (2w, + L(wp))) + 2(w,)]
= Q7Y(Q0w,) + Q(w,) + 2(wy))
= Q7[Q(w,) + (R (R(w,) + L(wy)))]
= 27 (Q(w,) + 2w, + wy)) = wy + (wp + wy) .
Es gilt also der

Satz iiber die Addition von WinkelgréBen. Die Addition von Winkel-

gropen ist eine teilweise ausfiihrbare assoziative kommutative Operation.

Ein neutrales Element existiert fiir diese Operation nicht; denn wire w + v = w,
so gilte Q(w) = Q(w) + 2(v), d. h., 2(v) wire die NullwinkelgréBe, ein solches v
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existiert aber nicht. Es gilt jedoch eine Kiirzungsregel: Aus a + b = a + ¢ folgt
b = ¢. Der Beweis sei als Aufgabe gestellt.

Fiir Winkelgré8en w,;, w, kann jetzt folgendermaBlen eine Ordnungsrelation er-
klirt werden:

Definition. w, < w,bedeutet: Es gibt eine WinkelgroBe z,sodaBw, + 2 = w,
ist.

Fiir diese Relation sind die Eigenschaften (T), (I), (K) von Ordnungsrelationen
(vgl. 1.1.2.1.) nachzuweisen. Gilt w, < w, und w, < ws, so gibt es Winkelgréen «
und y mit w, + = w, und w, + y = w,. Hieraus folgt w, + (z + y) = w,, d. h,,
es ist w; < wy; die Eigenschaft (T) ist also erfiillt. Da es fiir die Addition der Win-
kelgroBen kein neutrales Element gibt, ist die Gleichung w + = = w nicht auflés-
bar, d. h., es gilt nicht w < w, und das bedeutet Erfiilltsein der Eigenschaft (I).
Fiir den Nachweis von (K) sind mehrere Fille zu betrachten. Zunichst sei bemerkt :
Ist 2(iy) € O, und Q2(w,) € Oy, s0 ist w; < w,. Denn es existiert eine Winkelgrsfie x,
so daB in der Gruppe der GréBen orientierter Elementarwinkel

Q) + 2(x) = 2(wy)
ist, also gilt

w, = Q7Y (Qw,) + L)) ,
und unabhingig davon, ob £(z) zu O, oder zu 0, gehért oder die GroBe der gestreck-
ten orientierten Elementarwinkel ist, kann dies auf Grund der geltenden Voraus-
setzungen nach der Definition der Addition als gleichbedeutend mit w, + x = w,
angesehen werden. Ferner gilt: Ist g, die gestreckte WinkelgroBe, so besteht fiir
jedes w mit 2(w) € 0, die Relation w < g, und fiir jedes » mit 2(v) € 0, gilt g, < v.
Ist ndmlich (w) € 0y, so ist — Q(w) € 0,, — 2(w) + 2(go) (= R(w’) mit einem
passenden w’) gehért zu Oy, w + w’ existiert also und ist gleich

Q7(Qw) + ') = 2-(Q(w) — Lw) + 2(g,)) = o,
d. h., die Gleichung w + # = g, hat die Losung w’, woraus w < g, folgt. Analoge
Schliisse fithren zur zweiten Behauptung. Sind schlieflich w, und w, WinkelgréBen,
fiir die 2(w;) (¢ = 1, 2) in ein und derselben Orientierungsklasse liegen, und existiert
kein z mit w, + & = wy, so gibt es doch ein x mit 2(w,) + 2(z) = 2(w,), und wegen
der Unlésbarkeit von w, + x = w, muB Q(z) zu O, gehéren. Es gehort dann
—Q(x) (= 2(y) mit einer passenden WinkelgroBe y) zu 0,, folglich existiert w, + y
und ist gleich

274(Qw,) + 2(y)) = 2-Y((w,) — Q(w,) + R(wy)) = w,,
also ist w, < w,. Insgesamt ist damit gezeigt worden, daB die Relation ,,<‘‘ eine
irreflexive Ordnungsrelation in der Menge der WinkelgréBen ist.

Die Ordnungsrelation der WinkelgroBen kann auf die Winkel selbst iibertragen
werden. Man definiert:

Xk ks X4) <X ms Yy o Xy B X9 <X (hm; Y
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Abb. 1.18

Allerdings ist hierdurch nur eine tcilweise Ordnung in der Menge der Winkel ge-
geben; denn die Eigenschaft (K) ist nicht erfiillt, wie man am Beispiel eines Paares
verschiedener, aber kongruenter Winkel sieht.

Fiir manche Anwendungen ist folgender Satz niitzlich (Abb. 1.18):

Satz. Aus Zw(PQR) folgt fiir jeden nicht auf g(PQ) licgenden Punkt S
XL (SP+, 8Q*; X*) < X (SP*,SR*; ¥*),
falls diese beiden Winkel von der ersten Art sind.
Beweis. Aus Zw(PQR) folgt, daB die Fahnen SP*Q* (= SP*R*) und SQ*R*,
also auch die orientierten Elementarwinkel & (SP+, SQ*) und < (SQ*, SR*)

gleichorientiert sind, o. B. d. A. mégen sie zu O, gehéren (andernfalls &ndere man
die Reihenfolge der Schenkel). Folglich ist
[ (8P+, 8Q+; X+*)| 4 |<X (SQ*, SR*; Z+)|
= QY(m(X (SP*, $Q*) + m(X (SQ*, SR*)))
= Q7 Y(m(X (SP*, SRY)))
= 1< (SP*, SR*; Y*)|
(Z ist so zu wiihlen, daB der betreffende Winkel von der ersten Art ist), und hieraus

ergibt sich auf Grund der Definition der Relation ,,<* fiir Winkel die Behauptung
des Satzes.

Dem soeben gefiihrten Beweis entnimmt man noch folgenden Satz, durch den die
Addition von WinkelgréBen erster Art durch Lagebeziehungen von Reprisentanten
verdeutlicht wird.

Satz. Sind < (PSQ; X*), <X (QSR; Y+), X (PSR; Z*) Winkel erster Art und
gilt Zw(PQR), so st
| (PSQ; X*)| + | (@SR;Y+)| = | (PSR; Z¥)| .
Winkel, die kleiner als ein rechter Winkel sind, nennt man spitz; Winkel, die
nicht kleiner als ein rechter, aber kleiner als ein gestreckter sind, nennt man —
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rechte Winkel ausgenommen — stumpf; Winkel, die nicht gestreckt und nicht klei-
ner als ein gestreckter sind, heifien dberstumpf. Wie aus dem Beweis der Eigen-
schaft (K) hervorgeht, sind die iiberstumpfen Winkel genau die Winkel zweiter
Art. Die Menge der Winkel erster Art zerfillt in spitze, rechte und stumpfe
Winkel. Die Bezeichnungen spitz, stumpf, iiberstumpf kénnen in gleicher Weise
fiir die WinkelgréBen verwendet werden.

Es gilt folgender

Monotoniesatz fiir WinkelgréBen. Sind w,, w,, w Winkelgrofen mit wy, < w,
und existiert w, + w, so gilt w; + w < w, + w.

Beweis. Aus w;, < w, folgt die Existenz einer WinkelgroBe x, fiir die w, + =
existiert und gleich w, ist. Da w, + w existiert, gilt w;, + 2z + w = w, + w, das
hedeutet w, + w < w, + w.

Die Frage nach der ,,Halbierung* einer Winkelgréfe bedeutet die Frage nach
Loésungen x der Gleichung x + x = w, wobei w eine gegebene WinkelgroBe ist.
Jede Losung dieser Gleichung geniigt der Gleichung 2(w) = 2Q(x). Nach dem Satz
iiber die Halbierung von Gréen orientierter Elementarwinkel hat aber die Glei-
chung 2y = Q(w) genau zwei Lésungen y, und y,, und y, gehort genau dann zu O,
wenn ¥, zu 0, gehort. Daraus folgt, daB nur fiir eine von diesen Lésungen 2-1(y;)
+ 0-1(y,) existiert. Es gilt also der

Satziiber die Halbierung von WinkelgroBen. Ist w eine gegebene Winkel-
grofe, so hat die Gleichung x + x = w genau eine Losung, und diese Lisung st keine
iberstumpfe Winkelgrofe.

Hieraus folgt unter Beriicksichtigung der Feststellungen im Beweis des Halbie-
rungssatzes fiir GroBen orientierter Elementarwinkel: Ist <((k, k; P*) ein gege-
bener Winkel, so gibt es genau einen Strahl I, der den Winkelscheitel als Anfangs-
punkt hat, so daB8 < (k, I; @*) und < (k, I; R*) zur gleichen Winkelgrée gehoren
und die Addition dieser Winkelgrofie zu sich selbst | < (k, k; P*)| ergibt. Der
Strahl [ liegt auf der Symmetrieachse von % u k, und man kann iiberlegen, daB er
bis auf seinen Anfangspunkt im Inneren von << (k, k; P*) enthalten ist. Man nennt
die Tréagergerade von ! (manchmal auch [ selbst) die Winkelhalbierende von
<X (k, k; P*) und hat den

Satz von der Winkelhalbierenden. Zu jedem Winkel gibt es genau eine
Winkelhalbierende.

Es sei < (AP*, AQ*; R*) ein nicht iiberstumpfer Winkel. Sein Bild bei der
Punktspiegelung an A4 ist X (AP-, AQ-; R~) (Abb. 1.19a); diesen Winkel nennt
man den Schestelwinkel von X (A P+, AQ*; R*). Es gilt offenbar: Ist W, Scheitel-
winkel zu W,, so ist W, Scheitelwinkel zu W,, und es ist W, = W,.
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Abb. 1.19

Es sei < (AP, AQ*; R*) ein nicht {iberstumpfer und nicht gestreckter Winkel.
Die beiden nicht iiberstumpfen Winkel mit den Schenkeln 4P+, AQ- bzw. AP-,
AQ* nennt man die Nebenwinkel von < (AP*, AQ*; R*) (Abb. 1.19b). Sie sind
zueinander Scheitelwinkel, also untereinander kongruent. Ist W, Nebenwinkel
zu W,, so ist W, Nebenwinkel zu W,. Sind I¥, und W] kongruente Winkel, ist W',
Nebenwinkel zu W, und W, ein Nebenwinkel zu W, so ist auch W, zu W3 kongru-
ent; denn wird ein Winkel durch eine Bewegung abgebildet, so werden die zu seinen
Schenkeln entgegeng Strahlen auf die entgegengesetzten Strahlen der
Schenkel des Bildwinkels abgebildet, und nicht iiberstumpfe Winkel gehen bei
Bewegung wieder in ebensolche iiber, so daB die Bildmenge eines Nebenwinkels
wieder Nebenwinkel des Bildwinkels wird.

Addiert man die WinkelgroBe eines nicht iiberstumpfen und nicht gestreckten
Winkels zu derjenigen seiner Nebenwinkel, so erhélt man die gestreckte Winkel-
groBe. Denn ist w = | (AP*, 4Q+; R*)|, w' die WinkelgréBe der zugehérigen
Nebenwinkel und o. B. d. A. Q(w) = m(X (4P*, AQ")), so ist Q(w’) durch den-
jenigen orientierten Elementarwinkel gegeben, dessen Schenkel die Strahlen 4 P+
und AQ- sind und der mit ¥ PAQ gleichorientiert ist; das ist aber < (4Q-, AP*).
Dann gilt

$ot

Qw) + Q') = m(X (4Q-, 4Q%),
also ist w + w’ die gestreckte WinkelgroBe. Umgekehrt ist leicht nachzuweisen,
daB man zu WinkelgroBen w und w’, deren Summe die gestreckte Winkelgrse ist,
ein in der Relation Winkel-Nebenwinkel stehendes reprisentierendes Paar von
Winkeln findet.

Ist w die WinkelgréBe eines spitzen Winkels, v’ die Groe der Nebenwinkel zu
den Winkeln aus w, r die WinkelgréBe der rechten Winkel, g die gestreckte Winkel-
groBe, so gibt es eine WinkelgroBie # mit w + z = r. Hieraus folgt g =7 4 7
=w + z + r. Das bedeutet z + r = w’, und dies besagt, daB w’ eine stumpfe
WinkelgroBe ist. Also gilt: Nebenwinkel von spitzen Winkeln sind stumpf.

Ein Nebenwinkel eines beliebigen rechten Winkels kann demnach weder spitz
noch stumpf sein, muB also ebenfalls rechter Winkel sein. Ein rechter Winkel ist
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somit zu seinen Nebenwinkeln kongruent. Umgekehrt kann ein nicht iiberstumpfer
und nicht gestreckter Winkel, der zu seinen Nebenwinkeln kongruent ist, nicht
spitz oder stumpf sein, und so gilt der

Satziiberrechte Winkel. Ein nicht iiberstumpfer und nicht gestreckter Win-
kel ist genaw dann rechter Winkel, wenn er zu seinen Nebenwinkeln kongruent ist.

Der folgende Satz spielt in vielen Anwendungen eine Rolle.

Satz iiber Elementarwinkel an geschnittenen Parallelen (Abb. 1.20).
Sind g(PyQ,) und g(P,Q,) zwei parallele Geraden und liegen @, und Q, in derselben
Halbebene beziiglich g( Py Py), so gelten die Kongruenzen

X (PQF, PyPY) = X (PQ:, PPT) = X (PyQy, P,PY).

Den zweiten in dieser Kongruenzenkette vorkommenden Elementarwinkel
nennt man einen Stufenwinkel zum ersten, den dritten einen Wechselwinkel zum
ersten.

<

D

<O

Abb. 1.20

Beweis. Die erste Kongruenz ergibt sich durch Anwendung der Verschiebung,
die P, auf P, abbildet; sie bildet auf Grund der Invarianz der Ordnungsrelation auf
Fixgeraden von Verschiebungen den Strahl P,P; auf P,P[ ab und nach Eigen-
schaft (V1) und der Voraussetzung P, P,Q} = P,P,Q; den Strahl P,Q{" auf P,Q;.
Die zweite Kongruenz ergibt sich durch Anwendung der Punktspiegelung an P,.

In Abb. 1.20 sind P, und P, Anfangspunkte von acht auf drei Geraden liegenden
Strahlen; erweitert man die von diesen Strahlen gebildeten nicht gestreckten Ele-
mentarwinkel zu nicht iiberstumpfen Winkeln, so erhilt man acht Winkel, die
sich auf zwei WinkelgroBen verteilen ; deren Summe ist die gestreckte WinkelgraBe.
Im Fall g(P,P,) | g(P,@,) sind alle acht Winkel rechte Winkel.

Es gilt auch eine Umkehrung des eben bewiesenen Satzes: Liegen die Punkte Q,
und Q, auf derselben Seite der Geraden g(P,P,) und gilt die Kongruenz

X (PR, PPF) = X (PRF, P,Pr),

so sind die Geraden g(P,@,) und g(P,Q,) parallel. Der Beweis kannsebenfalls mit der
Verschiebung b(P, P,) gefiihrt werden; er sei dem Leser als Aufgabe iiberlassen.
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Es soll nun noch eine zusammenfassende Ubersicht iiber verschiedene Winkel-
begriffe gegeben werden. Es sind folgende vier Winkelbegriffe zu unterscheiden, von
denen im Vorangegangenen drei mehr oder weniger ausfiihrlich behandelt wurden.
Der einfachste ist der Begriff des Elementarwinkels; ein Elementarwinkel ist eine
Zweiermenge von Strahlen mit gemeinsamem Anfangspunkt. Geht man von der
Zweiermenge zum geordneten Paar iiber, legt also eine Reihenfolge der Schenkel fest,
80 entsteht der Begriff des orientierten Elementarwinkels. Zum Begriff des Winkels
schlechthin gelangt man, wenn man ausgehend von einem Elementarwinkel die vorn
beschriebene Zerlegung der Ebene in die Mengen I, und M, vornimmt und eine
dieser Mengen als Inneres auszeichnet; ein Winkel ist dann das System aus einem
Elementarwinkel und Innerem. SchlieBlich kann man noch fiir die Schenkel eines
80 definierten Winkels eine Reihenfolge festlegen und kommt so zum Begriff des
orientierten Winkels. Die folgende Tabelle faBt diese Begriffsbildungen noch ein-
mal zusammen:

Reihenfolge der Schenkel

nicht festgelegt | festgelegt
kein Inneres Elementarwinkel orientierter Elementar-
ausgezeichnet X ABC winkel & 4BC
Inneres Winkel orientierter Winkel
ausgezeichnet < (ABC; P*) | % (4BC; P+)

In der Analysis sowie in physikalischen und technischen Anwendungen wird auler
diesen noch ein anderer Winkelbegriff gebraucht. Da er zur Beschreibung von Dre-
hungsvorgingen dienen kann, kénnte man ihn ,,Drehwinkel*‘ nennen; jedoch sei darauf
hingewiesen, daB diese Bezeichnung oft in andercm Sinne verwendet wird. Daher sei
hier die Bezeichnung (abstrakter) Drehprozeff gewdhlt. Dieser Begriff wird dadurch
festgelegt, daB auller einem orientierten Elementarwinkel noch angcgeben wird, durch
welchen méglicherweise auch mehrerc volle Umdreh Benden — der Ein-
fachheit halber zunichst als gleichférmig vorzustellenden — Drehungsvorgang der
erste Schenkel des orientierten Elementarwinkels in den zweiten iibergefiihrt werden
soll. Der physikalisch-konkrete Begriff ,,Vorgang' kann nach entsprechender Vorbe-
reitung mathematisch gefaBt werden, indem man definiert, ein Drehungsvorgang sei
eine stetige Abbildung, die jeder Zahl cines (,,Zeit‘‘-)Intervalles einen vom Scheitel
ausgehenden Strahl zuordnet. Mit Hilfe einer geeigneten Definition ,,geniigend wenig
voneinander abweichender Drehungsvorgiinge‘‘ kann man sich auch von der Einschrin-
kung auf gleichférmige Drehungsvorginge hefreien: Man betrachtet Drehungsvorginge
als abstrakt nicht verschieden, wenn sie durch schrittweises Vergleichen mit (beim
Vergleich dazwiscl halteten) wenig voneinander abweichenden Drehungsvor-
géngen ineinander uberfuhrbar sind. (Diese zum Vergleich neu eingefithrten Drehungs-
vorgange miissen dabei alle dieselben Anfangs- und Endschenkel besitzen.) Wegen
dieses Abstrahierens wurde der damit gewonnene fiinfte Winkelbegriff als abstrakter
Drehproze8 bezeichnet. Math isch vorteilhafte Methoden zu seiner Beschreibung
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liefert die t th ische Top : Mit ihren Begriffen kann der
hier umschriebene (abstrakbe) Drehproze3 kurz als eine Homotopieklasse von Dre-
hungsvorgingen definiert werden.

1.1.3.2.4. Dreiecke

Vorbemerkung. In diesem Abschnitt kommen keine Elementarwinkel vor.
Dagegen sind alle vorkommenden Winkel nicht iiberstumpf. Zur Vereinfachung
der Bezeichnung wird daher vereinbart, da8 in diesem Abschnitt < (, k) den nicht
iiberstumpfen Winkel mit den Schenkeln % und k bezeichnen soll.

Es sei d = {4, B, C} eine beliebige nicht kollineare Dreiermenge von Punkten.
Sie bestimmt eine Dreiermenge s von Strecken, s = {4B, AC, BC}, und drei
Winkel <t ABC, < BCA, & CAB. Der Durchschnitt des Inneren dieser drei Win-
kel ist eine wohlbestimmte Punktmenge 5. Das System (d, s, &) heiBt Dreseck.
d wird Menge der Ecken, s Menge der Seiten und § das Innere des Dreiecks genannt.
Die Vereinigungsmenge der Seiten heiBt Rand, die Vereinigungsmenge des Inneren
mit dem Rand heillt abgeschlossene Dreiecksfliche. Die Seite A B nennt man dem
Eckpunkt C bzw. dem Winkel <t AC B gegeniiberliegend, der Winkel ¢ ACB heilt
den Seiten AC und BC anliegend (analog fiir die anderen Seiten und Winkel). Die
drei genannten Winkel heilen Innenwinkel des Dreiecks, die Nebenwinkel der
Innenwinkel heilen Aufenwinkel des Dreiecks. Ein Dreieck ist durch seine Ecken
4, B, C eindeutig festgelegt, es moge einfach mit 4 BC bezeichnet werden. Es ist
auch gebriuchlich, unter einem Dreieck nur die Menge d oder auch nur den Rand
oder nur die abgeschlossene Dreiecksflache zu verstehen.

Es sei ABC ein beliebiges Dreieck. Es soll die Summe der Winkelgré8en der
Innenwinkel bestimmt werden. Dazu wird zunéchst die Summe der GréBen der be-
treffenden orientierten Elementarwinkel berechnet, indem fiir sie geeignete Repri-
sentanten mit dem gemeinsamen Scheitel C bestimmt werden (Abb. 1.21). Die
Verschiebung 7, bilde 4 auf C, die Verschiebung 7, bilde B auf C ab, und es sei
7,(B) = B’, 1,(4) = A’. Das Bild von g(4 B) ist sowohl bei 7, als auch bei 7, die

Abb. 1.21
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Parallele zu g(4 B) durch C; sie enthélt die Punkte B’ und A'. Esist (4, B, C, B’)
ein Parallelogramm. Nach dem Satz vom Diagonalenschnittpunkt aus 1.1.2.1.
liegen A und B’ auf verschiedenen Seiten von g(BC), also ist B’ ¢ BCA-. Aus der
Festlegung von 7, folgt andererseits A’ € BCA*, also gilt Zw(A’CB’). Nun ist in-
folge 7,

X (AC*, AB*)=* X (CA-,CB'™*),
infolge 7, ist

X (BA*, BC*)=* ¥ (CA™*,CB"),
ferner ist vermoge der Punktspiegelung a¢

X (CB*, CA*)=* ¥(CB-, C4").
Hieraus erhilt man

m(X CAB) 4+ m(X ABC) + m(X BCA)

=m(X (C4A~, CB'*)) + m(Z (CA’*, CB~)) + m(X (CB-, CA~))

=m(X (CA'*, CB'Y)).
Wegen Zw(A4'CB’) ist dies die GroBe der gestreckten orientierten Elementarwinkel.
Die orientierten Elementarwinkel wurden so gewihlt, daB sie zur gleichen Orien-
tierungsklasse — o. B. d. A. zur Klasse O, — gehéren (vgl. die Aufgabe am Schluf
von 1.1.2.2.). In derselben Orientierungsklasse liegt auch 3 (CA'+, CA~), der
ja zur Gréfie

m(X (BA*, BCY)) + m(X (CB*, C4"))
gehort, so daB

| BAC| + |<x CBA| + | ACB|
existiert und gleich

Q-Y(m(X (AC*, AB*)) + m(X (BA*, BC+)) + m(X (CB*, CA")),
also gleich der gestreckten WinkelgroBe ist. Somit gilt der

Satz iiber die Innenwinkelsumme fiir Dreiecke. Die Summe der Innen-
winkelgrofen eines beliebigen Dreiecks ist die gestreckte Winkelgrope.

Hieraus ergibt sich eine Folgerung fiir die AuBienwinkel eines Dreiecks. Da die
Summe der WinkelgréBen eines Innenwinkels und der des zugehérigen AuBenwin-
kels per definitionem die gestreckte Winkelgrofle ergibt, gilt wegen der Kiirzungs-
regel fiir WinkelgroBen der

Satz iiber AuBenwinkel. Die Winkelgrofe cines Aufenwinkels ist gleich der
Summe der WinkelgréPen der beiden ihm nicht zugehérigen Innenwinkel.

Folgerung. Insbesondere ist jeder Innenwinkel kleiner als jeder ihm nicht zuge-
hérige AuBenwinkel.



1.1. Geometrie der euklidischen Ebene 73

Aus dem Satz iiber die Innenwinkelsumme folgt ferner, daB ein Dreieck hichstens
einen stumpfen oder rechten Winkel haben kann, dieser ist dann immer der groBte
der drei Innenwinkel. Dreiecke mit einem stumpfen bzw. einem rechten Winkel
nennt man stumpf- bzw. rechtwinklig.

Ein Dreieck A BC, das zwei kongruente Seiten hat, wird gleichschenkliy genannt.
Sind 4 B und AC die kongruenten Seiten, so nennt man BC die Basis und die Win-
kel ¢ ABC und & BCA die Basiswinkel. Die Spiegelung an der Winkelhalbie-
renden von < BAC fiihrt die kongruenten Seiten 4B und AC ineinander iiber.
Daraus folgt, daB die Basiswinkel kongruent sind und daB die genannte Winkel-
halbierende Lot zur Trigergeraden der Basis ist. Der Schnittpunkt von Winkel-
halbicrender und Basis ist aulerdem Mittelpunkt der Basis. (Das Lot im Mittel-
punkt einer Strecke heiBt Mittelsenkrechie dieser Strecke.) Ist von einem Dreieck
bekannt, daB es zwei kongruente Innenwinkel hat, so kann man schlielen, daB es
gleichschenklig ist. Denn eine bestimmte Seite ist in je einem Schenkel der beiden
kongruenten Winkel enthalten, und die Spiegelung an der Mittelsenkrechten dieser
Seite fiihrt, wie man leicht einsehen kann, die beiden iibrigen Seiten ineinander
iiber. Somit gilt der

Satz iiber gleichschenklige Dreiccke. Ein Dreieck Vst genau dann gleich-
schenklig, wenn es zwei kongruente Winkel hat.

Eine Folgerung ist, daB die Basiswinkel eines gleichschenkligen Dreiecks stets
spitz sein miissen.

Eine Beziehung zwischen den GroBenrelationen der Seiten und Winkel eines
Dreiecks wird im folgenden Satz angegeben.

Satz iiber gegeniiberliegende Winkel und Seiten. In einem beliebigen
Dreieck ABC gilt AB < BC genau dann, wenn X ACB < X BAC g¢ilt, d. h.,
der kleineren Seite liegt der kleinere Winkel gegeniiber und umgekehrt.

Beweis (Abb. 1.22a): Im Dreieck ABC gelte AB < BC. Essei A, der nach dem
Streckenabtragungssatz eindeutig bestimmte Punkt auf BC* mit BA, =~ AB.
Wegen AB < AC muB Zw(BA,C) gelten. Daraus folgt nach einem Satz aus
1.1.3.2.3. X BAA, < < BAC. Andererseits ist nach dem Satz iiber gleichschenk-.
lige Dreiecke <t BAA, =~ <X BA,;A und nach dem Satz iiber AuBlenwinkel < ACB
< X BA,A, so daB insgesamt die behauptete Relation

<X ACB < & BAC

gilt. Gilt umgekehrt im Dreieck 4 BC die Relation ¢ ACB < <t BAC und wiire
BC < AB oder BC = AB, so hiitte man sofort einen Widerspruch zum bisher
Bewiesenen bzw. zum Satz iiber gleichschenklige Dreiecke.

Eine Beziehung zwischen den Lingen der Seiten eines Dreiecks gibt der folgende
Satz an.
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Satz von der Dreiecksungleichung. In jedem Dreieck ABC gilt
|4B| < |BC| + |CAl,

d. k., die Summe der Liingen zweier Seiten ist grofer als die Linge der dritten Seite.

Beweis (Abb. 1.22b). Es sei B, der Punkt auf CA-, fiir den CB, = CB ist.
Dann ist nach dem Satz iiber gleichschenklige Dreiecke <t CB,B= < CBB,,
und nach einem Satz aus 1.1.3.2.3. ist ¢ CBB;, < < ABB,. Aus beidem folgt
nach dem Satz iiber gegeniiberliegende Winkel und Seiten fiir das Dreieck 4 BB,
dann AB < AB,; es ist aber [AB,| = |AC| + |CB,|, und hieraus folgt die Behaup-
tung.

Aus der Kongruenz zweier Dreiecke folgen drei Kongruenzen fiir ihre einander
zugeordneten Seiten sowie drei Kongruenzen fiir ihre einander zugeordneten Win-
kel. Umgekehrt geniigt — von gewissen Einschrinkungen abgesehen — schon die
Kenntnis von drei dieser sechs Kongruenzen, um auf die Kongruenz der Dreiecke
schlieBen zu kénnen. Genaue Aussagen hierzu liefern die Kongruenzsitze fiir
Dreiecke, die jetzt bewiesen werden sollen.

Kongruenzsatz ,Seite — Seite — Seite”. Gelten fiir zwei Dreiecke ABC
und A'B’'C’ die Kongruenzen

(1) AB=~A'B,
(2) BC =~ B'C',
3) CA=C'4",

80 sind diese Dreiecke kongruent. (Aus der Kongruenz in drei Seiten folgt die Kon-
gruenz schlechthin.)

Beweis. Es sei ¢ die Bewegung, die AB*C* auf A’B’+C’* abbildet. Dann ist

wegen (1) ¢(4d) = 4', ¢(B) = B, ¢(C) = C, (¢ A'B'C'*). Ist C, = (', so ist der
Beweis gefiihrt. Es sei C; == C’ (Abb. 1.23), 0, die Geradenspiegelung, die 4'C;" auf
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i g Abb-123

A'C’+ abbildet, g, die Geradenspiegelung, die B'C; auf B'C’* abbildet. Esist wegen
(3) 0,(C,) = €', wegen (2) ist 0,(C,) = C’. Folglich ist

0,(C'CF A’ = C,C'+4'~
und
0y(C'CH A" = g,(C'CY B':) = C\C"+*B'* = C,C'*4’+,

wobei bei B’ gleichzeitig das obere oder untere Zeichen zu nehmen ist, je nachdem,
ob A’ und B’ auf derselben oder auf verschiedenen Seiten von g(C’'C)) liegen
(A’ € g(C'Cy) oder B’ € g(C'Cy) ist unméglich). Die Fahne C'Ci" A’* hat also bei g,
und g, dasselbe Bild; deshalb ist 0, = 0,, und die Verbindungsgerade g(4'B’) der
Fixpunkte 4’ und B’ ist die gemeinsame Spiegelgerade. Dann muB aber C, als
Bild von C’ bei g, in A’B'C’~ liegen, was ein Widerspruch ist. Der Fall ¢(C) 5= C’
ist also unmdglich, womit der Beweis heendet ist.

Kongruenzsatz ,,Seite — Seite — Winkel““. Gelten fiir zwei Dreiecke A BC
und A’'B'C’ die Kongruenzen

(1) AB=~ A'B',

(2) BC= B'(C',

(3) <X BAC =~ & B'A'C’
und ist

(4) AB < BC,

so sind diese Dretecke kongruent. (Aus der Kongruenz in zwei Seiten und dem der
groBeren Seite gegeniiberliegenden Winkel folgt die Kongruenz schlechthin.)

Beweis. Wegen (3) gibt es eine Bewegung ¢ mit ¢(AC*) = A'C'*+, ¢(AB*)
= A'B’+; wegen (1) ist ¢(B) = B’. Es sei ¢(C) = C), es ist C; e 4'C'*. Ist
C, = (', so ist der Beweis gefithrt. Ist C, & C’, so ist wegen (2) das Dreieck
B'C'C, gleichschenklig. Es gilt Zw(4'C,C’) oder Zw(A'C’'Cy). Im ersten Fall
(Abb. 1.24a)ist ¢ B'C;A’ als Nebenwinkel eines Basiswinkels des genannten gleich-
_schenkligen Dreiecks stumpf, infolgedessen ist der Innenwinkel < B'A’C; des
stumpfwinkligen Dreiecks A4’ B’C; spitz. Daraus folgt nach dem Satz iiber gegen-
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Abb. 1.24

iiberliegende Winkel und Seiten die Beziehung B'C, < A'B’ im Widerspruch zur
Voraussetzung (4). Analog schlieBt man im Fall Zw(AC'C,). Der Fall C, = C"' ist
also unméglich, womit der Beweis beendet ist.

Dall die Voraussetzung (4) tatsdchlich erforderlich ist, zeigt das Beispiel der
Abb. 1.24b: Das Dreieck BC,C, sei gleichschenklig mit der Basis C,C,, auf C,CT
wird A beliebig angenommen. Dann treffen fiir die Dreiecke 4 BC, und ABC,
die Voraussetzungen (1) bis (3) zu, aber die Dreiecke sind nicht kongruent.

Kongruenzsatz ,Seite — Winkel — Seite®. Gelten fiir zwei Dreiecke ABC
und A’'B’'C’ die Kongruenzen

(1) AB= A'B,
2) BC = B'C’,
®3) X ABC= g A'B'C",

80 sind diese Dreiecke kongruent. (Aus der Kongruenz in zwei Seiten und dem von
ihnen eingeschlossenen Winkel folgt die Kongruenz schlechthin.)

Beweis. Wegen (3) gibt es eine Bewegung ¢ mit ¢(BA*) = B'A’" und
¢(BC*) = B'C'*. Wegen (1), (2) und des Streckenabtragungssatzes ist ¢(4) = 4’
und ¢(C) = C’, womit der Beweis gefiihrt ist.

Kongruenzsatz ,Winkel — Seite — Winkel“. Gelten fiir zwei Dreiecke
ABC und A'B'C’ die Kongruenzen

@ X ABC= ¥ A'BC’,
2) <X BAC =~ & B'A'C’,
@) AB~ A'B’,

so sind diese Dreiecke kongruent. (Aus der Kongruenz in einer Seite und den beiden
anliegenden Winkeln folgt die Kongruenz schlechthin.)
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Beweis. Es gibt eine Bewegung ¢ mit ¢(4B*C*) = A’B'*C'*. Es gilt ¢(4)
= A’, und wegen (3) ist ¢(B) = B’. Aus (1) folgt ¢(AC*) = A'C'*, aus (2) folgt
¢(BC-) = B'C’*. Somit ist

#(C) = ¢(AC* n BC*) = ¢(AC*) n ¢(BCY)
=A'C'* n B'C'* ={C"},
und dies ergibt zusammen mit ¢(4) = A’ und ¢(B) = B’ die Behauptung.

Kongruenzsatz ,,Winkel — Winkel — Seite’. Gelten fiir zwei Dreiecke

ABC und A’'B’C’ die Kongruenzen

(O] <X ABC=~ X A'B'C",
(2) X BAC = X B'A'C’,
(3) AC= A'C",

so sind diese Dreiecke kongruent. (Aus der Kongruenz in zwei Winkeln und einer
nicht von ihnen eingeschlossenen Seite folgt die Kongruenz schlechthin.)

Beweis. Aus dem Satz iiber die Innenwinkelsumme folgt mit Hilfe der Kiir-
zungsregel fiir WinkelgréBen aus (1) und (2) auch die Kongruenz < BCA
=~ & B'C'A’, so daB iiber den Kongruenzsatz ,,Winkel — Seite — Winkel‘* die Be-
hauptung bewiesen werden kann.

h  Abb. 1.25

Ist ABC ein beliebiges Dreieck (Abb. 1.25), B’ (% A, B) ein beliebiger Punkt
auf AB* und k die Parallele durch B’ zu g(BC), so schneidet & die Gerade g(4C)
in einem Punkt C’. Fiir die Dreiecke ABC und AB’C’ gelten auf Grund des Satzes
iiber Elementarwinkel an geschnittenen Parallelen die Kongruenzen < ABC
= Y AB'C’ und X ACB = X AC'B’, auBerdem ist < BAC =~ < B'AC’, beide
Dreiecke sind aber nicht kongruent. Aus der Kongruenz zweier Dreiecke in den
drei Winkeln folgt also nicht die Kongruenz der Dreiecke schlechthin.

1.1.4. Strecken- und Winkelmessung

Das Messen geometrischer Objekte 148t sich, bei aller Verschiedenheit im einzel
allgemein durch folgende gemeinsame Beschreibung des Verfahrens erklaren:
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In einem ersten, ,,abstrakten‘‘ Vorgehen (vgl. etwa 1.1.3.2.) werden fiir die betreffen-
den Objekte geeignete Aq\uvalenzre]atlonen eingefithrt, und dann wird je eine Aqui-
valenzklasse als ,,GréBe** der darin enthalt Objekte bezeichnet und mit besonderem
Namen verschen, z. B. ,,Linge* einer Strccke, ,,Volumen‘ eines Polyeders, ,,Winkel-
groBe* usw. Man folgt damit dem Vorbild, die ,,Anzahl* oder ,,Miichtigkeit‘ einer
Menge als Klasse dquivalenter Mengen zu definieren.

Ein zweiter, ,,konkret‘‘-recchnerischer Schritt schlieBt sich an: Man gewinnt eine 4b-
bildung der geometrischen Objektv in die Menge der reellen Zahlen. Dicse Abbildung
erfiillt die Forderung, daf sie Objekten, dic in der zuvor genannten Aquwalenzrclatlon
zueinander stehen, dieselbe Zahl zuordnet. Sie induziert daher eine Abbildung der
..GroBen* (Aquivalenzklassen) in dic Menge der reellen Zahlen. Weiterhin wird gefor-
dert, dag diese letztgenannte Abbildung injektiv ist, so da3 jede ,,GréBe‘* auch wieder-
um durch ihre zugeordnete Zahl, dic Mapzahl, cindeutig bestimmt ist. AuBerdem wird
in den konkréten Einzelfillen noch mehr verlangt: Die im einzelnen betrachteten geo-
metrischen Objekte gestatten nimlich, jeweils eine Operation des ,,Anfiigens* oder
,»Antrdgens‘‘ zu definieren ; und cs wird verlangt. dal dabes die Mapzahlen sich addieren.
Allgemeiner ist dann ein Verdoppeln, Verdreifachen usw. méglich, ferner ein Halbieren,
Dritteln usw., kurz ein Vervielfachen mit positiven rationalen Zahlen sowie (nach ent-
sprechenden Grenzwertbetrachtungen) auch mit beliebigen positiven reellen Zahlen.

Dicjenige ,,Gré8e*, die die MaBzahl 1 hat, wird Magfeinheit genannt. Sie spiclt eine
besondere Rolle, da man aus ihr alle anderen ,,Gréen‘ durch Vervielfachen mit ihrer
MaBzahl gewinnen kann. Somit stellt sich schlieBlich jede ,,Grofe'* als Vervielfachungs-
crgebnis, als ,,formales Produkt'* aus Mapzahl und Mafeinheit dar.

\Vichtig ist noch folgende Unterscheidung: Manche ,,Gréflen’, z. B. die Strecken-
lungen in der ebenen oder riaumlichen Geometrie, besitzen stets positive MaBzahlen
(ho die so Entnrtungsfnlle mit der MaBzahl 0 pflegt man bei diesen

,-GroBen'* zuzulassen). Andere ,,GroBen aber konnen MaBzahlen beliebigen Vorzeichens
Ilabcn, z. B. dic Lingen gerichtcter Strecken in der Geometrie einer orienticrten Ge-
raden.

Dxe Bezeichnungsweise beim Messen geometrischer Objekte ist in der Literatur sehr

heitlich. Es k Querstriche, Betragsstriche, ,,doppelte Betmgsatnche

(Norm-Symbole), spezielle Buchstaben wie m, u (,,MaB*), 1 (,Linge‘‘), A (,,area‘),
arc (,,Bogenmaf‘‘) und andere speziclle Symbolo vor, teils zur Bezeichnung der GréBe,
teils zur Bezeichnung ihrer MaBzahl, teils fiir beides. Man findet auch das Weglassen
jeder Bezeichnung, d.h. die Verwendung cin und desselben Symbols etwa fiir eine
Strecke wie fir ihre Linge. Haufig wird sogar nicht einmal im Wortlaut zwischen einer
Strecke und ihrer Lénge unterschieden (der Leser betrachte als Beispiel einmal einige
weitverbreitete Formulierungen des Satzes von PYTHAGORAS). In diesen Binden sollen
die grundsdtzlich positiven ,,Grbﬁen“ durch Betragsstriche und die grundadtzlich beliebiger
Vorzeichen fahigen ,,Grofen durch den Buchstaben m augedmckt werden, wie das auch
schon in 1.1.3.2. geschehen ist. Eine Tabelle der wichtigsten B gsfestleg)
befindet sich am SchluB3 dieses Bandes.

ung

Bereits in 1.1.3. wurde von Streckenlingen und Winkelgré8en gesprochen. Die
Streckenlinge |4 B| war dort als Klasse aller zu 4B kongruenter Strecken einge-
fiihrt worden. Fiir die Praxis ist dieser Begriff der Liange jedoch zu abstrakt. Man
ist es vielmehr gewohnt, Strecken (Entfernungen) zu messen und als Ergebnis
dieser Messung die Linge durch eine Zahl, die MaBzahl, anzugeben. Der Vorgang
des Messens besteht dabei in dem Vergleich der zu messenden Strecke mit einem
»MaBstab‘ — die MaBzahl gibt dann an, wie oft der MaBstab oder irgendein Teil



1.1. Geometrie der euklidischen Ebene 79

desselben in der zu messenden Strecke ,,enthalten‘ ist. Fiir eine mathematisch
exakte Einfiihrung der Theorie des Messens von Strecken, Winkeln, Flichen- und
Rauminhalten ist das folgende Axiom erforderlich:

Axiom (10) (Archimedisches Axiom). Zu zwei beliebigen Strecken AB und CyD,
gibt es stets eine natiirliche Zahl n = 1 und Punkie Cy, C,, ..., Co mit folgenden Eigen-
schaften:

1. Die Punkte C,, ..., Cy liegen auf dem Strahl CoDy .

2. CCipy=2AB (¢=0,1,...,n—1).

3. C; lieg; zwischen C;_yund C;yy (1=1,2,..,n —1).

4. D, liegt zwischen Cy und Cp, aber nicht zwischen Cy und C,_,.

Anschaulich bedeutet die Aussage dicses Axioms gerade, da man jede (noch so

grofie) Strecke C,D, durch eine endliche Anzahl von Abtragungen einer (noch so
kleinen) Strecke 4 B ,,ausmessen‘‘ kann (Abb. 1.26).

B
=
Co )
¢ G G Cnr Cn Abb. 1.26

Es soll nun zunichst die Theorie der Streckenmessung entwickelt werden. Nach
den obigen Bemerkungen bedeutet das Messen von Strecken — vom mathemati-
schen Standpunkt aus — die Angabe ciner Abbildung I der Menge aller Strecken
in die Menge der reellen Zahlen. Dabei sind an die Abbildung ! gewisse ,,natiir-
liche* Forderungen zu stellen. Zunichst soll die MaBzahl einer Strecke nicht
negativ sein — vorzeichenbehaftete Ldngen sind fiir gerichtete Strecken vorbe-
halten. AuBerdem soll die Streckenmessung unabhingig von dem Ort sein, an
welchem sie erfolgt, d.h. Strecken, die durch eine Bewegung ineinander iiber-
gefithrt werden kénnen, sollen dieselbe MaBzahl haben. Ferner soll die MafBzahl
einer in Teilstrecken zerlegten Strecke gleich der Summe der MaBzahlen dieser
Teilstrecken sein, und schlieBlich soll ¢in ,,MaBstab‘“ existieren, d. h. eine Strecke
PQ, deren MaBzahl I(PQ) gleich 1 ist.

Definition. Unter Streckenmessung wird die Angabe einer Abbildung ! der
Menge © aller Strecken in die Menge R, der nicht negativen reellen Zahlen mit
folgenden Eigenschaften verstanden:

(e Aus AB =~ CD folgt (A B) = I(CD) (Bewegungsinvarianz).
(2) Liegt B zwischen 4 und C, so gilt I(AC) = (A B) + I(BC) (Additivitiit).
(3) Es gibt eine Strecke PQ (P 3= Q) mit I(PQ) = 1 (Normiertheit).

Das Bild I(A4 B) einer Strecke 4 B heilit Mafzahl von AB, die Abbildung ! Lingen-
funktional.
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Geht man von dem in 1.1.3.2. erklirten System (&/=, +) der Streckenlingen
aus, wobei G/~ die Menge der Aquivalenzklassen untereinander kongruenter
Strecken und + die Addition dieser Klassen bedeutet, so kann ! als Isomorphis-
mus der kommutativen Halbgruppe (E/=, +) in die kommutative Halbgruppe
(R4, +) der nicht negativen reellen Zahlen interpretiert werden. Bei diesem Iso-
morphismus wird im iibrigen auch die Anordnung der Streckenlingen isomorph
auf die iibliche Ordnung der reellen Zahlen iibertragen.

Beziiglich des mit obiger Definition prizisierten Begriffs der Streckenmessung
miissen nun folgende Fragen untersucht werden: Gibt es iiberhaupt eine Abbildung!
mit den Eigenschaften (1), (2), (3) und wie viele gegebenenfalls?

Zuniichst wird die erste Frage beantwortet durch den

Satz von der Existenz eines Lingenfunktionals. Es gibt wenigstens eine
Abbildung | der Menge © aller Strecken in die Menge R, der nicht negativen reellen
Zahlen mit den Eigenschaften (1), (2) und (3).

Beweis. Es seien P und @ zwei beliebige verschiedene Punkte. Dann werde
die Konstruktion der gesuchten Abbildung ! begonnen mit der Festsetzung I(PQ)
:= 1. Ist M, der Mittelpunkt der Strecke PQ, so ist gemiB (2)

UPM,) + (M,Q) = (PQ) = 1
und gemiB (1) (PM,) = I(M,Q), also I(PM,) := 2-1 zu setzen. Ist M, Mittelpunkt
der Strecke PM,, so folgt analog, dal I(PM,) := 2-2 zu setzen ist usw. Damit er-
geben sich Strecken PM, beliebig kleiner Mafizahl: {(PM,) = 2~". Es sei nun
C,D, eine beliebige Strecke. Die zum Beweis des Existenzsatzes anzugebende Kon-
struktion des Bildes dieser Strecke, d. h. die MaBzahl I(C,D,), erfolgt nun in meh-
reren (eventuell ,,unendlich vielen*) Schritten durch Messen der Strecke C,D, mit
dem MaBstab PQ bzw. geeigneten Teilen PM, von PQ. Fiir C, = D, wird I(C,D,)
1= 0 gesetzt.!) Im allgemeinen Fall (C, & D,) gibt es zunichst nach dem Archi-
medischen Axiom auf dem Strahl C,Dj Punkte Cy, C,, ..., Cy mit C,C;,, = PQ
und Zw(C,DyC,) und nicht Zw(C,D,C,_;). Dann wird gemiB (1), (2) und (3)
UCoDy) = UCCy_1) + UCp_1Dy) bzw.

UCoDp) = n — 1 + UCp_yDy)
gesetzt. Im Fall C,_, = D, ist (C,_,D,) = 0, und man ist fertig — es ist I(C,Dy)
:=mn — 1 zu setzen. Im anderen Fall (C,_, % D,) wird auf C,_,Dg von C,_,
aus die Strecke PM, abgetragen, was zu einem Punkt D; fithren mége (PM,
=~ C,_,D)). Dann ergibt sich

" UCp_1Dy) = &UCp_1D}) + UD,Dy) = & - 27 + UD,Dy)

mi
. Jo fir Zw(C,_,DyD3), D : C,_, fir e =0,
= {l sonst, 1= {D; fiir = 1

1) Dieser Entartungsfall sei jetzt stets zugelassen.
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und DD, < PM,. Ist D, = Dj, also & = 1 und {(D,D,) = 0, so ist man wieder
fertig, d. h., es ist {(CyDy) :=n — 1 + 27! zu setzen. Anderenfalls wird das Ver-
fahren fortgesetzt: Auf D,C;; wird von D, aus die Strecke PM, abgetragen (PM,
= D,D)), so daB
UD,Dy) = &l(D,D;) + 1(D,Dy)
wird mit
. Jo fir Zw(D,DyDy) ,
2711 sonst,
D, fir =0,
D, _{D; fiir e, =1
und DyD, < PM,. Insgesamt ergibt sich
UCDy) i=n—1+ 2% mz1.
y=1%

Wegen ¢, € {0, 1} gilt

P

I\
I b4

L
=1

l\'a|‘

d. h., die in der Definition von I(CyD,) auftretende unendliche Reihe ist konver-
gent, [(CyD,) also eine wohlbestimmte nicht negative reelle Zahl. ! ist damit als
Abbildung der Menge aller Strecken in R, nachgewiesen, und ! besitzt nach Defi-
nition die Eigenschaft (3). DaB die so erklirte Abbildung I auch die Eigenschaft
(1) der Bewegungsinvarianz besitzt, folgt leicht aus der Invarianz der Zwischen-
relation bei Bewegungen: Ist ¢(CD) = AB, also CD =~ AB, so konnen niamlich
die ,,MeBpunkte“ D;, die bei der Ausmessung der Strecke CD auftreten, durch die
Bewegung ¢ unter Erhaltung ihrer Anordnung auf A4 B iibertragen werden. Somit
entsteht bei der Messung der Strecke 4 B dieselbe Summe der obigen Gestalt wie
bei der Messung von CD. SchlieBlich muBl noch die Additivitdt (2) der Abbildung !
nachgewiesen werden. Dazu wird zunichst die Bemerkung auf S. 80 iiber die Kon-
struktion beliebig kleiner Strecken erweitert:

a) Ist RS eine beliebige Strecke (R == 8), so gibt es eine natiirliche Zahl » und
einen Punkt T mit Zw(RTS) und RT = PM,, also [(RT) = 2", Anderenfalls
kénnte nidmlich die Strecke RS auf der Einheitsstrecke PQ beliebig oft ,hinter-
einander abgetragen‘ werden im Widerspruch zum Archimedischen Axiom. Aus
a) schliefit man weiter auf folgende Hilfsaussage:

b) Aus Zw(QRS) folgt (QR) < I(QS). Der Leser beweise dies.
Wird nun fiir drei Punkte 4, B, C mit Zw(4 BC) von B aus auf BA* und BC~

die Strecke PM, (n = l) abgetragen, so dal Punkte A4, bzw. C, entstehen mit
PM, =~ BA, =~ A4, = - baw. PM, = BC, = C,C, = -, so gibt es nach dem
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Archimedischen Axiom natiirliche Zahlen % und m mit

Zw(A; 114 B) und entweder 4, = A oder Zw(4A,B)
bzw.
Zw(BCC,, ,) und entweder C, = C oder Zw(BCnC).

Daraus folgt mit (PM,) = 2" unter Beriicksichtigung von b)

k +

g S UAB) <5,

m _ m + 1

2 = UBC) < on -
und

k+m k+m+ 2

G = 1A40) <~ *

Die ersten beiden Ungleichungen liefern

k + k + m + 2

woraus sich mit der dritten Ungleichung

2,‘_1 < UAB) + U(BC) — I(AC) < 575 o1

1
[{AB) + UBO) — UAO <533

ergibt. Da n beliebig wahlbar ist, muB I(4C) = (A B) + I(BC) gelten, womit der
Beweis des Existenzsatzes endgiiltig abgeschlossen ist.

Beziiglich der Anzahl méglicher Abbildungen I gilt folgender

Satz von der Einzigkeit des Lingenfunktionals. Zu jeder Strecke PQ
mit P % Q gibt es hochstens eine Abbildung 1 der Menge aller Strecken in R, mit den
Eigenschaften (1), (2) und (3).

Beweis. Hat man zwei Abbildungen ; und I, mit I,(PQ) = 1,(PQ) = 1 und den
Eigenschaften (1) und (2), so kann die Messung einer beliebigen Strecke C,Dy nach
dem beim Beweis des Existenzsatzes angegebenen Verfahren erfolgen. Weil dabei
lediglich die sowohl fiir I, als auch fiir I, zutreffenden Eigenschaften (1), (2) und
(3) benutzt werden, muB 1,(CyDy) = 1,(C,D,) sein. Folglich gilt I, = 1,.

Dieser Satz von der Einzigkeit des Lingenfunktionals besagt, daB die MaBzahl
1(AB) einer Strecke AB von der speziellen Wahl der Einheitsstrecke PQ, dem
MaBstab, abhingt. Da auBerdem kongruenten Strecken, also Strecken derselben
Linge, dieselbe Mafizahl zugeordnet wird, ist es schlieBlich sinnvoll, nach fester
Wahl von PQ die Linge |4 B| als formales Produkt aus MaBzahl und MaBeinheit



1.1. G trie der euklidischen Ebene 83

anzugeben: |AB| = a - |PQ|. Dabei heiflt nun die reelle Zahl a = (4 B) Mafzahl
der Linge von AB und |PQ| Mafeinheit. Die MaBeinheit ist also die Linge mit
der Mafizahl 1 ((PQ) = 1). Die in der Praxis gebriuchlichste MaBeinheit der
Streckenmessung ist das Meter (symbolisch: m) — auf der Generalkonferenz der
Meterkonvention im Jahre 1960 als das 1650763,73fache der Wellenlinge der
Orangelinie vom Kryptonisotop 86 (im Vakuum) festgelegt.

Als weitere Anwendung des Archimedischen Axioms sollen die fiir die Elementar-
geometrie wichtigen Strahlensiitze hergeleitet werden. Zunichst gilt folgender

Hilfssatz. Sind AD} und AE} nicht auf derselben Geraden liegende Strahlen
mit dem gemeinsamen Anfangspunkt A, ist D, Mittelpunkt der Strecke AD, und E,
ein Punkt auf g(AE,) mit g(D,E,) || g(D\E,), so ist E; Mittelpunkt von AE, (Abb.
1.27a).

8y
G

@ 5,

y

Abb. 1.27

Beweis. Die Punktspiegelung an D, vertauscht die Punkte 4 und D, und iiber-
fiihre E, in E; € g(E,\D,) — es entsteht das Parallelogramm (E,, E,, E{, D,). Dem-
nach ist D,E; = E,E,; bei der Spiegelung an D, wird 4E, in D,E] iibergefiihrt,
also ist insgesamt AE, =~ E,E, und demnach E, Mittelpunkt der Strecke AE,.

Aus diesem Hilfssatz ergibt sich leicht folgende Verallgemeinerung: Sind AC}
und AB{ nichtkollineare Strahlen mit dem gemeinsamen Anfangspunkt 4, ist
die Strecke AC, in m kongruente Teilstrecken ,,zerlegt*:

ADy = DD, = - = D,,_,C,,
und sind E, Punkte des Strahls 4 Bf mit g(D,Ey) || g(C,B)) fiir ¢ =1, ...,m — 1,
so ist auch

AE, = E\Ey=~ - =E, B
(Abb. 1.27a).

Demnach kann zu einer beliebigen natiirlichen Zahl m > 0 jede Strecke AB,
in genau m untereinander kongruente Teilstrecken ,,zerlegt* werden, indem man
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eine beliebige Strecke AD, von A ‘aus auf AD{ m-mal hintereinander abtrigt,
wobei D, ¢ g(AB,) ist. Der letzte Teilpunkt Dy, wird mit B, verbunden; die Par-
allelen zu g(Dy, B,) durch die Teilpunkte D; schneiden dann die Strecke 4 B, in den
gesuchten Punkten E;.

Nun kann eine erste Form des Strahlensatzes bewiesen werden. Dazu wird be-
merkt, daB die hier auftretenden Quotienten von Lingen als Verhiltniszahlen auf-
zufassen sind, was am einfachsten maoglich ist durch Benutzung der ,,MaBeinheit
1%, so daB Linge und MaBzahl identifiziert werden kénnen: |[AB| = l(AB)- 1
= I(AB).

Strahlensatz (erster Teil). Schneiden sich zwei Geraden g(B,B,) und g(C,C,)
im Punkt A und gilt g(B,C)) || g(B,C,), so ist

4G, |4By
|4Cy| ~ |1ABy|
Beweis. Von den beiden in Abb. 1.27 charakterisierten Fillen, die durch Punkt-
spiegelung an A4 leicht ineinander iibergefiihrt werden kénnen, soll nur der Fall

behandelt werden, in welchem Zw(A4 B, B,) und Zw(AC,C,) gilt (Abb. 1.27a). Eine
iibliche Sprechweise fiir diesen Fall ist:

Werden zwei von einem Punkt ausgehende Strahlen von (2wet) parallelen Geraden
geschnitten, so verhalten sich die entstchenden Abschnitte auf dem einen Strahl wie die
entsprechenden Abschnitte auf dem anderen Strahl.

Zum Beweis sei AC, in m kongruente Teilstrecken zerlegt mit den Teilpunkten
D, D,, ..., D, = C,. Dann wird die Strecke AD, von C, aus auf C,C; weiter ab-
getragen, so daB die Punkte D,,,,, D, s, ..., D, entstehen. Alle Teilpunkte D,
werden durch zu g(B,C)) parallele Geraden auf 4 Bj ,iibertragen®, so daB die
Punkte E,, E,, ..., E, = By, E, .1, ..., E, entstehen.

Fall 1: Es gibt ein m und ein %, so daB D, = C, und somit E, = B, ist (die
Strecken AC, und AC, sind kommensurabel). Dann folgt aus |AC,| = m . |AD,|,
|ACy| = n - |AD,| und |AB,| = m - |AE,|, |AB,| = n - |AE,| sofort die Behauptung

4G _ 4By
|ACyl ~ |ABy| -

Fall 2: Fiir kein m gibt es ein » mit D, = C, (AC, und AC, sind inkommensura-
bel). Nach dem Archimedischen Axiom gibt es in diesem Fall aber zu jeder natiir-
lichen Zahl m ein n mit Zw(D, _,C,D,), so daB

(n — 1) |AD,| < |4C,| <nl4ADy| und |AC| = m|4D,|,
(n — 1) [AE,| < |AB,| < n|AE,| und |4B,| = m|AE,|
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gilt. Daraus folgt
n—1 |ACG| =

m [P LA <m

und
n—1 |ABy =
m |AB)| ~m

146G 14By) 1

{1AC,| ~ |AB,| T~m®

Da diese letzte Ungleichung fiir alle natiirlichen Zahlen m > 0 richtig ist, mu
schlieBlich

G| _|AB) 4G _|AB
|4C,| 4By |4C|  |ABy
gelten. Durch einfache Umformungen dieser Gleichungen findet man noch
4G, — |AC,| _|AB) — |AB,|  |AG| _ 140y
|4Cy| B |4B,| * |4B|| " |AB,|’
[4Gy| — |AC)| _ 146G

|AB,) — |AB,| ~ |ABy

Werden schlieBlich noch die Langen |B,C| und |B,C,| in Betracht gezogen, so gilt
folgende zweite Aussage:

Strahlensatz (zweiter Teil). Schneiden sich zwei Geraden g(B, By) und g(C,Cy)
im Punkt A und gilt g(B,C,) || g(B,C,), so st

IB,Cil _ 4G,
)X ARV T

Beweis. Es geniigt wieder, den in Abb. 1.27a dargestellten Fall zu behandeln:

Werden zwei von einem Punkt A ausgehende Strahlen von (zwei) parallelen Ge-
raden geschnitten, so verhalten sich die entstehenden Abschnitte auf den Parallelen wie
die zugehorigen von A ausgehenden Abschnilte ein und desselben Strahls.

Zum Beweis lege man durch C, eine zu g(4 B,) parallele Gerade, die mit B,C, den
Punkt F gemeinsam habe. Nach dem ersten Teil des Strahlensatzes (bzw. geeig-
neter Umformung) gilt beziiglich der Strahlen C,4+*, C,B; und der Parallelen
g(C,F), g(AB,) die Beziehung

IC,Al _ 1C,Bdl
IC,A| ~ FB,’
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und mit FB, =~ C, B, folgt
IBC,| 14|
IBCl 4G
Einfache Umformungen liefern ferner
4G, _|AG,| 4B, _|ABl  |BG) _|Bud]
1B 1BGl”  IBGI BGIT  [BGIT B
Die gewonnenen Aussagen lassen sich durch Betrachtung von mehr als zwei von

A ausgehenden Strahlen weiter verallgemeinern. AuBerdem gelten folgende Um-
kehrungen des Strahlensatzes, deren Beweise vom Leser gefiihrt werden kénnen:

Schneiden sich g(B,B,) und g(CyC,) in A und gilt entweder Zw(B, A B;) und zugleich
Zw(CLAC,) oder keine dieser beiden Relationen, so gilt:

usw.

1. Aus
14C,| _ 14B,|
|AC,| ~— |AB,|
folgt
9(B,Cy) || 9(BCy) -
2. Aus
|1C,B,|  14G| und  |C,By|> |4C,|
|CB,| — |4C,| i !
folgt

9(B,Gy) || g(B,Cy) -
In weitgehender Analogie zur Messung der (nicht orientierten) Strecken wird
nun zunichst die Messung von Winkeln eingefiihrt.

Definition. Unter Winkelmessung wird die Angabe einer (eindeutigen) Ab-
bildung w der Menge B aller Winkel in die Menge R, der nicht negativen reellen
Zahlen mit folgenden Eigenschaften verstanden:

) Aus & (hy, hy; P*) =2 < (ky, ka3 Q) folgt
w (X (Ry, kg; P*)) = w (X (ky, ky; @)  (Bewegungsinvarianz),
(2) Sind a = 04+, b = OB*, ¢ = OC* Strahlen mit dem gemeinsamen

Anfangspunkt O und ist das Innere der Winkel < (@, b; D*) und
<X (b, ¢; E*) jeweils Teilmenge vom Inneren des Winkels <X (a, ¢; B*),

- 8o gilt
w (X (@ ¢; BY) = w (X (@ b; DY) + w (X (b, ¢; B*) (Additivitit).
3) Es gibt einen Winkel < (k, k; P*) mit 3= k und

w (X (b k; P*)) =1 (Normiertheit).



1.1. Geometrie der euklidischen Ebene 87

Wie bei der Streckenmessung la8t sich nun Existenz und Einzigkeit eines solchen
Winkelfunktionals w nachweisen. Es gilt folgender

Satz von der Winkelmessung. Zu jedem Winkel < (h, k; P*) gibt es genau
ein Winkelfunktional w mit den Eigenschaften (1) bis (3).

Der Beweis kann analog zum Beweis der Sitze iiber Existenz und Einzigkeit des
Lingenfunktionals gefiihrt werden und soll deshalb iibergangen werden. Es sei
lediglich bemerkt, daB eine dem Archimedischen Axiom entsprechende Aussage
fiir die Winkelmessung nicht als Axiom gefordert werden muB, sondern aus dem
Archimedischen Axiom hergeleitet werden kann.

Alle angefiihrten Analogien zwischen Strecken- und Winkelmessung diirfen
nicht dariiber hinwegtiuschen, daB zwischen der Streckenmessung und der Winkel-
messung wesentliche theoretische und praktische Unterschiede bestehen. Ein wich-
tiger Unterschied ist der folgende: Wihrend die Strecken hinsichtlich der Aus-
wahl der Einheitsstrecke alle gleichberechtigt sind, gibt es unter den Winkeln sehr
wohl besonders ausgezeichnete, die sich rein geometrisch — unabhingig von der
Theorie der Winkelmessung — erkldren lassen, namlich die rechten Winkel und
die gestreckten Winkel. Es ist demnach sinnvoll, solche Winkel zur Festlegung
der MaBeinheit heranzuziehen. In der Praxis ist die wichtigste MaBeinheit der
Winkelmessung das Grad, auch Altgrad genannt (symbolisch: °). In diesem Fall
wird durch w einem rechten Winkel < (s, ¢; R*) die reelle Zahl 90 zugeordnet:
w (X (s, ¢; R*)) = 90. Wegen der Bewegungsinvarianz des Winkelfunktionals w
wird kongruenten Winkeln dieselbe reelle Zahl zugeordnet, so daB man eine Klasse
| (4, 153 Q)| untereinander kongruenter Winkel, also die WinkelgroBe, durch
diese Zahl charakterisieren kann. Man schreibt |<X (I, l,; @*)| = «°, wobei die reelle
Zahl o« = w (X (4, ly; @*)) Gradzahl der WinkelgroBe | (I, l; @*)| heiBt.

Ist dagegen der ,,Einheitswinkel‘‘ so gewihlt, da8 einem rechten Winkel < (s, ¢; R*)
die Zahl 100 zugeordnet wird, so ist die MaBeinheit das Neugrad (symbolisch: &), und
es gilt

£ % (6 £5 R¥)] = 1008, '

Schlagt man um den Scheitel eines Winkels einen Kreis vom Radius 7, so sei der
Durchschnitt vom Inneren des Winkels mit der Kreislinie ein Kreisbogenstiick b.
Werden r und b in derselben MaBeinheit gemessen, so kann man schlieBlich als Ma8-
einheit fir die Winkelmessung einen Winkel (bzw. dessen GroBe) wihlen, fir welchen
das Verhéltnis von b zu r gleich 1 ist, nachdem man die Existenz eines solchen Winkels
nachgewiesen hat. In diesem Fall spricht man davon, daB die Winkelmessung im
B 18 bzw. in Radiant erfolgt. Fiir den rechten Winkel < (s,¢; R*) gilt dann

| (8, t; R*)| = %, wobei die reelle Zahl » das fiir alle Kreise feste Verhéltnis vom

Umfang zum Durchmesser bedeutet und die MaBeinheit ,,Radiant‘‘ weggelassen wird
— man driickt die GréBe | < (4, l,; @*)| eines Winkels gewissermafen durch die ,,unbe-
nannte‘‘ Verhaltniszahl b:r aus und identifiziert die Grole eines gestreckten Winkels

mit der Zahl #, d. h., man setzt 1° = 1%'
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SchlieBlich sei noch folgender wesentlicher Unterschied zwischen der Strecken-
und Winkelmessung erwiahnt: Wihrend man durch Vervielfachung, d. h. wieder-
holtes Abtragen, jeder Strecke PQ mit P + Q Strecken beliebig groBer Linge bzw.
MafRzahl erzeugen kann, ist die Menge der Werte w(«x) fiir Winkel & beschrinkt:
0 < w(x) < 360. Der algebraische Hintergrund fiir diesen Unterschied besteht
offenbar darin, daB die ,,Vervielfachung* eines Winkels nicht in gleicher Weise
unbeschriankt ausfiihrbar ist wie bei den Strecken, d. h., die Addition -+ ist nur
eine partielle Operation iiber der Menge /= aller WinkelgroBen. Trotzdem kann
das Winkelfunktional in Analogie zur Streckenmessung als Isomorphismus der
Struktur (B/=, +) in die Teilstruktur (J0, 360[, +) der additiven Gruppe der
reellen Zahlen aufgefaBt werden, denn die Zuordnung

X (@, b; P*) > w (X (a, b; P?))
induziert wegen der Bewegungsinvarianz des Winkelfunktionals w eine Zuordnung
I (a, b5 P*)| = w (X (a, b3 PY)) .

Bei diesem Isomorphismus iibertrigt sich auch die Anordnung der Winkel-
groBen auf die Ordnung der reellen Zahlen. Man beachte aber, daB die Addition
in der Menge JO0, 360[ ebenfalls nur partiell definiert ist!

Zur Messung orientierter Elementarwinkel sei daran erinnert, daB jeder vom
Nullwinkel verschiedene orientierte Elementarwinkel < A BC als Bild w (< (4 BC;
P+)) eines Winkels <t (ABC; P*) aufgefaBt werden kann. Durch den Ansatz

w (™! (X ABC)) mod 360,

(3 ABO) := {o mod 360, falls X 4BC Nullwinkel,

wird ein Funktional % definiert, das jedem orientierten Elementarwinkel & 4 BC
eindeutig eine reelle Zahl modulo 360 zuordnet. i ist auierdem invariant gegen-
iiber gleichsinnigen Bewegungen, so daB  eine Zuordnung m(< 4 BC) > (XA BC)
induziert, d. h., jeder GréBe orientierter Elementarwinkel m(& 4 BC) laBt sich
schlieBlich eindeutig ihre Gradzahlrestklasse zuordnen. Man schreibt m(< 4 BC)
= «°® mod 360° mit

w (X ABC) =«  mod 360.

Der Leser iiberlege sich, daB % als Isomorphismus der kommutativen Gruppe
(Wy/==+, +) in die Gruppe (R/360, +) interpretiert werden kann, wenn g,/=+*
die Menge der Grifien orientierter Elementarwinkel und R/360 die Menge der Rest-
klassen reeller Zahlen modulo 360 ist.

Zwischen den verschiedenen Arten von WinkelgréBen bestehen z. T. sehr ein-
fache Beziehungen, die zur Folge haben, daB die hier zur genaueren begrifflichen
Klidrung ausgefiihrten Unterschiede sonst in der Literatur kaum so auftreten. Von
diesen Beziehungen seien abschlieBend noch einige erwihnt, deren Begriindung
fiir den Leser eine niitzliche Ubung ist.
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(I) Die Messung eines Elementarwinkels <t 4 BC 1é8t sich auf die Messung eines
Winkels <t (4 BC'; P*) zuriickfithren durch

1< (4BC; P¥)| fiir | (4BC; PY)| < 180°,
| ABC| :=1360° — |& (ABC; P+)| fiir | (4BC; P*)| = 180°,
0° fir BA+ = BC*.

Fiir ElementarwinkelgroBen gilt demnach 0° < | ABC| < 180°.

(II) Fiir jeden Winkel <t (4BC'; P*) gilt je nach der Festlegung der Reihenfolge
der Schenkel beim Ubergang vom Elementarwinkel <C ABC zum orientierten
Elementarwinkel X 4 BC die Beziehung

m(<X ABC) = | (ABC; P*)] mod 360°
oder die Beziehung
m(X ABC) = — | (ABC; P*)| mod 360°.

(III) Fiir jeden Elementarwinkel < ABC gilt je nach Festlegung der Reihen-
folge der Schenkel beim Ubergang zum orientierten Elementarwinkel & 4 BC die
Beziehung

m(x ABC) = | ABC| mod 360°
oder die Beziehung
m(X ABC) = — | ABC| mod 360° .

(IV) Schreibt man schlieBlich die Gréf3e eines Drehprozesses 4 in der Formm(4) =e:(a
+n+360°) mit 0°< a < 360° e = +1 und n ¢ N, so haben ¢, n und a die folgenden
anschaulichen Bedeutungen: e ist der Drehsinn, n ist die Anzahl der vollen Umdrehungen
und a ist die Winkelgré8e, die die verbleibende Restdrehung miBt.

Das letzte zum Aufbau der ebenen euklidischen Geometrie erforderliche Axiom
1aBt sich nun — nach Einfithrung der Streckenmessung — leicht formulieren als

Axiom (11) (Vollstindigkeitsaxiom). Zu jeder nicht negativen reellen Zahl A gibt
es etne Strecke A B, deren Mafzahl gleich dieser Zahl ist: (AB) = .

Archimedisches und Vollsténdigkeitsaxiom werden oft auch als Stetigkeitsaziome
bezeichnet, weil aus ihnen gefolgert werden kann, daBl die Geraden stetige Punkt-
mannigfaltigkeiten sind im Sinne der Giiltigkeit von folgendem

Stetigkeitssatz. Sind die Punkte einer beliebigen Geraden g so in zwei nicht
leere Klassen R, und R, eingeteilt, dap zwischen keinem Punktepaar ein und derselben
Klasse ein Punkt der anderen Klasse liegt, so gibt es genau einen Punkt Z auf g mit
Zw(A\ZA,) fir alle A\(= Z) aus ®, und alle A)(F Z) aus R,.

Die Bezeichnung ,,Vollstindigkeitsaxiom** fiir Axiom (11) ist dadurch gerecht-

fertigt, daB auf Grund dieses Axioms die euklidische Geometrie als vollstindig
nachgewiesen werden kann in folgendem Sinne: Das System der Punkte und Ge-
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raden, welches die durch die Axiome (1) bis (10) charakterisierten Eigenschaften
besitzt, ist unter Beibehaltung aller dieser Eigenschaften keiner Erweiterung fahig
durch Hinzunahme weiterer Punkte oder Geraden. Eine andere (schirfere) Fas-
sung des Begriffs der Vollstindigkeit ist die folgende: Alle Modelle (vgl. 1.4.) des
hier angegebenen Axiomensystems sind untereinander isomorph.

Aus der Theorie der Streckenmessung und dem Axiom (11) laft sich eine fiir die
analytische Geometric wichtige Folgerung ziehen. Es sei g eine Gerade, O und £
seien zwei Punkte von g mit O & E. g werde so orientiert, daB O < E ist. Schliefi-
lich sei die Ebene mit demjenigen Liangenfunktional versehen, fiir das [(OF) = 1
ist. Dann 1aBt sich folgende Abbildung % von OE* in R definieren:

. 0 fir X =0,
#(X) 1= - R
{I(OA) fir X¢ OE*und X + 0.
Auf Grund der Sitze iiber Existenz und Einzigkeit des Lingenfunktionals, des
Vollstindigkeitsaxioms und des Streckenabtragungssatzes ist dies eine bijektive
Abbildung von OE+ auf die Menge der nicht negativen reellen Zahlen. Sind X
und Y zwei Punkte von OE*, so folgt aus X < Y die Beziehung »(X) < »(Y),
d. h., x ist ordnungstreu. Denn X < Y hat fiir X 3 O (fir X = O ist die Behaup-
tung klar) Zw(OXY) zur Folge; wegen der Additivitit des Langenfunktionals gilt
demnach (0Y) = (OX) + I(XY), also [(XY) = »(Y) — »(X); mit [(XY) > Oer-
gibt sich daraus #(X) < %(Y). Fiir beliechige Punkte 4, B von OE* gilt [(AB)
= |x(B) — #(4)|, wie aus der Gleichung fiir (X Y) hervorgeht. Nun liegt es nahe,
die Abbildung » auf ganz g fortzusetzen, indem man definiert

1(0X) fir X ¢ OE*und X 40,
#(X) :=140 fir X =0,
— 0X) fir Xe¢eOE-und X 0.

Damit ist eine bijektive Abbildung von g auf R gewonnen. Fiir Punkte X, ¥ von
OE- rechnet man analog zu oben leicht nach, daB aus X < Y die Gleichung
UXY) ==(Y) — %(X) und die Beziehung »(X) < »(Y) folgen; beides gilt auch,
falls X zu OE- und Y zu OE* gehort. Insgesamt gilt also folgender

Satz von der Zahlengeraden. Ist (g, <) eine orientierte Gerade, so gibt es
eine bijektive ordnungstreue Abbildung x von g auf die Menge der reellen Zahlen, so
dap fiir beliebige Punkte X, Y von g die Mafzahl der Liinge von XY gleich |x(Y)
— x(X)| ust.

Der Leser iiberlege sich, daB es zu vorgegebenen Punkten O und E mit 0 < E
genau eine Abbildung » der im Satz genannten Art gibt, wenn man %(0) = 0 und
%(E) = 1 fordert. Unter Verwendung der Abbildung x kann ferner gezeigt werden,
daB die frither betrachtete Halbgruppe (&/=, +) der Streckengréfen isomorph
und ordnungstreu auf die additive Halbgruppe der nicht negativen reellen Zahlen
abgebildet werden kann. Die im Zusammenhang mit der Addition von Strecken-
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groflen betrachtete Beziehung zwischen StreckengrofBen und Verschiebungen eines
festen Richtungssinnes erlaubt es schlieBlich zu beweisen, da$8 die Gruppe aller Ver-
schiebungen einer festen Verschiebungsrichtung isomorph zur additiven Gruppe
der reellen Zahlen ist.

Im Satz von der Zahlengeraden wurde dic Strecke XY mit der Zahl |x(¥) — »(X)|
in Beziehung gesetzt. In vielen Zusammenhingen — insbesondere in der analytischen
Geometric — ist es niitzlich, die Betragsbildung wegzulassen und die Zahl %(Y) — »(X)
mit dem geordneten Punktepaar (X, Y) in Bezichung zu setzen. Man definiert m(X ")
:= #(Y) — %(X) und nennt m(X 1Y) die Linge des geordneten Punktepaares bzw. der
gerichteten Strecke XY . Die geordneten Punktepaare (P, Q) und (R, S) (P,Q, R, S ¢ g)
haben genau dann gleichen Richtungssinn, wenn m(PQ) und m(RS) gleiches Vorzeichen
haben.

AbschlieSend sollen noch zwei andere Folgerungen aus dem Vollstindigkeitsaxiom
angegeben werden, deren Beweise bei Kenntnis der entsprechenden Begriffe dem Leser
nicht schwer fallen werden. Zuniichst eine ,,analytische Konsequenz‘‘ des Axioms (11):

Definiert man als ,,Abstand‘‘ g(4, B) zwcier Punkte 4 und B der Ebene die Lingen-
maBzahl [(4B) der Strecke 4 B, so wird die Ebenc beziiglich dicser Abstandsdcfinition
cin metrischer Raum. Axiom (11) hat zur Folge, daB dieser metrische Raum vollstiindig
ist, d. h.. in ihm konvergiert jede Cauchyfolge von Punkten. SchlieSlich ergibt sich als
.,algebraische Konsequenz‘‘ aus Axiom (11), daB die im Zusammenhang mit der Strek-
ken- und Winkelmessung als Isomorphismen interpretierten Abbildungen ! und w sogar
surjektiv sind, also als Isomorphismen auf (R,, +) bzw. (]0, 360[, +) auffaBbar sind.

1.1.5. Elementarer Inhalt
Wie bei der Streckenmessung handelt es sich auch bei der Inhaltsmessung um die
Angabe von MaBzahlen fiir bestimmte Punktmengen. Aus diesem Grunde werden
sich einige wichtige Analogien zwischen der Theorie der Streckenmessung und der
im folgenden entwickelten Inhaltslehre ergeben. Der in diesem Kapitel eingefiihrte
Begriff des elementaren Inhalts bezieht sich auf eine besonders einfache Klasse
ebener Punktmengen, namlich die der Polygone.

Es sei M eine endliche Punktmenge; der Durchschnitt A aller Halbebenen $,
welche die Punktmenge It enthalten, heiflt konvexes Polygon oder konvexes Viel-
eck: A = N H. Eine andere Sprechweise dafiir ist: 4 ist die konvexe Hiille der

me

PunktmengebﬂJ?. Ist A die konvexe Hiille einer endlichen Punktmenge I, aber
nicht einer echten Teilmenge von I, so heifien die Punkte aus MM Eckpunkte des
konvexen Polygons 4. Jedes konvexe Polygon A besitzt umgekehrt eine eindeutig
bestimmte Menge von Eckpunkien; sind das z. B. die n Punkte Py, P,, ..., P,, so
werde A im Fall » > 2 auch eigentliches konvexes Polygon und insbesondere kon-
vexes n-Eck genannt und mit A = P,P, ... P, bezeichnet. Im Fall n = 2 ist A
offenbar eine Strecke, fiir n = 1 ist A ein Punkt, und fiir » = 0 (N = 0) ist A das
»leere Polygon . Strecken, Punkte und die leere Menge heiBen uneigentliche kon-
vexe Polygone.
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Die hier gegebene Definition des konvexen n-Ecks entspricht nicht dem friiher
schon benutzten Begriff etwa des Dreiecks. Da es aber in diesem ganzen Kapitel
um einen Begriff geht, der im friitheren Sinne besser als n-Ecksfliiche bzw. (konvexe)
Polygonfliche bezeichnet werden miiBite, soll der Zusatz ,,-fliche’* weggelassen wer-
den. Der in der obigen Definition eingenommene punktmengengecometrische Stand-
punkt ist im iibrigen durch das hier zu hehandelnde Problem des elementaren In-
halts mit seinen spiteren Verallgemeinerungen gerechtfertigt.

Die Strecken P;P; eines konvexen Polygons A = P, P, ... P, gehoren wie alle
Verbindungsstrecken zweier Punkte von 4 ganz zu A: P;P, < A. Gibt es im Fall
n > 2 einen Punkt P mit Zw(P;PP,), der auch noch auf wenigstens ciner anderen
Eckenverbindungsstrecke P P, (s P;I’) liegt, so heiBt P;P; Diagonale des kon-
vexen Polygons A, anderenfalls Polygonscite. Jeder Eckpunkt ist gemeinsamer
Randpunkt von genau zwei Polygonseiten, folglich besitzt ein konvexes n-Eck
(n > 2) genau n Seiten. Die Menge der Punkte aller n Seiten des konvexen n-Ecks
A heiBt Rand von A bzw. n-Eckslinie. Nennt man die Punkte von A, die nicht zum
Rand gehoren, innere Punkte des konvexen Polygons 4, so erweisen sich die eigent-
lichen konvexen Polygone als beschrinkte und abgeschlossene Punktmengen mit
inneren Punkten, wihrend die uneigentlichen konvexen Polygone keine inneren
Punkte besitzen.

Fiir die Elementargeometrie besonders wichtige Polygone sind die Dreiecke und
Vierecke. Von den Vierecken wurde frither schon das Parallelogramm henutzt,
welches jetzt als konvexes Viereck mit zwei Paaren paralleler Seiten erscheint.
Sind diese Seitenpaare zueinander senkrecht, so heifit das Parallelogramm auch
Rechteck. Ein Rechteck, dessen Seiten alle dieselbe Lange haben, heifit Quadrat.

Nun soll der Begriff des konvexen Polygons verallgemeinert werden: Eine Punkt-
menge Q heiBt (allgemeines) Polygon, wenn sie sich als Vereinigung endlich vieler
konvexer Polygone darstellen 1aBt:

1) Q=A4,vA,u-- vA,, A konvexesPolygon (i=1,..,2).

Ein Polygon Q heifle eigentlich (uncigentlick), wenn es eine Darstellung (1) fir Q
gibt, in welcher die A; simtlich eigentliche (uneigentliche) konvexe Polygone sind.
Die Menge der eigentlichen Polygone vereinigt mit {8} sei R,, die Menge der un-
eigentlichen Polygone sei B, (B, n R; = {0}). Das leere Polygon 9 soll sowohl zu
den eigentlichen als auch zu den uneigentlichen Polygonen gezihlt werden.

Als niichstes wird die Menge ‘R, strukturiert. Zunichst soll eine Operation in R,
erklirt werden, nadmlich die elementargeometrische Addition P + Q zweier Poly-
gone P und Q, die héchstens Randpunkte gemeinsam haben — in diesem Fall ist
die Summe einfach die Vereinigung der Punktmengen P und Q:

R=P+Q:R=PuQAPnQc%R,;.

Die Schreibweise R = P + Q bedeute auch, daf$ das Polygon R in die Teilpoly-
gone P und Q zerlegt ist. Dieser Begriff der. elementargeometrischen Zerlegung
darf nicht verwechselt werden mit dem algebraischen Begriff der Zerlegung einer
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Menge in disjunkte Klassen. Ferner sei ausdriicklich vermerkt, daB die Operation
+ in R, nicht unbeschriankt ausfiihrbar ist; P + Q ist nicht erklirt, wenn P und
0 innere Punkte gemeinsam haben. Im Fall der Ausfiihrbarkeit der auftretenden
Additionen gilt jedenfalls fiir beliebige P, Q, R aus R,

R+(P+Q) =R+P+Q
und

P+Q=0+P.
Deshalb ist es gerechtfertigt, als Abkiirzung fiir cine (ausfiihrbare) elementargeo-
metrische Addition endlich vieler Polygone das iibliche Summenzeichen zu be-
nutzen:

Ql+Qz+~~~+Qn=i§Qi-

Der Leser iiberlege sich ferner, da simtliche Geraden, die eine Seite der konvexen
Polygone A; in der Darstellung (1) ganz enthalten, das Polygon Q in endlich viele
eigentliche konvexe Polygone ,,zerlegen‘, die paarweise keine inneren Punkte ge-
meinsam haben, so daB statt (1) fiir jedes eigentliche Polygon Q sogar eine Dar-
stellung

m

(2) Q = X B, (B;eigentlich konvex, i = 1,2, ..., m)
i=1

existiert.

Soll unter der Inhaltsmessung von Polygonen in Analogie zur Streckenmessung
die eindeutige Zuordnung positiver reeller Zahlen zu allen eigentlichen Polygonen
verstanden werden, so erhebt sich die Frage, welche Polygone als ,,gleich** (inhalts-
gleich) anzusehen sind in dem Sinne, daB ihnen dieselbe reelle Zahl als Inhalt zuzu-
ordnen ist. In Anlehnung an die Strecken- und Winkelmessung denkt man dabei
zunichst an kongruente Polygone, um die ,,Ortsunabhingigkeit‘ der Inhaltsmes-
sung zu sichern. Als Spezialfall des Satzes von der Kongruenz als Aquivalenzrela-
tion gilt der

Satz von der Kongruenz der Polygone. Die Kongruenz = ist eine Aqui-
valenzrelation in der Menge R, der cigentlichen Polygone.

Allen Polygonen ein und derselben vermage der Relation % entstehenden Aqui-
valenzklassen miifite jeweils dieselbe reelle Zahl als Inhalt zugeordnet werden.
Wiirde man sich aber darauf beschrinken, so konnte z. B. ein Quadrat Q niemals
mit einem Dreieck D inhaltsgleich sein, da @ und D nicht in ein und derselben
Aquivalenzklasse liegen kénnen. Das bedeutet, daBl der Inhalt eines Polygons von
dessen Form abhingig wire entgegen den Erfordernissen der Praxis.

Andererseits licgt auch vom mathematischen Standpunkt aus der Sachverhalt bei
dem System %,/z~ der Klassen kongruenter Polygone anders als z. B. beim System
€/ der Klassen kongruenter Strecken: Im Gegensatz zum letzten kann in dem

System P,/ keine Addition durch Riickgang auf Repriisentanten eingefiihrt werden,
so daB (P,/=2, +) eine Halbgruppe wiirde.
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Die Relation der Kongruenz muB also abgeschwicht werden, so daB etwa er-
reicht wird, daB zwei Polygone denselben Inhalt haben, wenn sie sich in zueinander
kongruente Teilpolygone zerlegen lassen. Es wird deshalb eine neue Relation er-
klért durch folgende

Definition. Zwei Polygone P und Q heiflen zerlegungsgleich (P < Q), wenn
sie sich in eine endliche Anzahl paarweise kongruenter Teilpolygone zerlegen lassen:

PLQ:oP= EPAQ 2QAP=0 (=12..n).

i=1
Dann gilt der

Satz von der Zerlegungsgleichheit von Polygonen. Die Zerlegungs-
gleichheit = ist eine Aquivalenzrelation in der Menge B, der eigentlichen Polygone.

Beweis. Reflexivitdt und Symmetrie der Relation £ ergeben sich sofort aus
dem vorigen Satz von der Kongruenz; £ ist Abschwichung der Relation =, d. h.
aus P = Q folgt auch P £ Q. Zum Beweis der TransitivititseiP = Qund Q * R
mit den folgenden Realisierungen:

PLQ: P=XP, Q=230., Pi=0Q. (=12 ..n),
i=1 i=1
O =R: Q=ZQ}, R=.2R,, Qi=R, (j=12,..,m).

Mit Q;; :=Qn Q} gilt O, = Z' Q,;- Der Durchschnitt Q; n Qj beliebiger Poly-

gone Q; und Q, ist ndmlich stets entweder ein eigentliches oder uneigentliches
Polygon — im letzten Fall kann Q,; ohne Beeintrichtigung des weiteren Beweis-
ganges weggelassen werden. Wegen P;= Q; gibt es sicher Polygone P;; mit

i
P;=~ Q; und P, = X P, so daB schlieBlich
j=1

n n mn n n m
P=XP =X2XP; und 0=20,=X X Q;
i=1 i=1j=1 i=1 imljml
mit P; =~ Q; gilt. Analog folgt
m m n
R=2R=5% IR,
j=1 j=li=1
mit Q;; 2 R;;. Unter Beriicksichtigung der Transitivitit von = ist also insgesamt
n mn

P=2X 2 P; und R=3 ZR.,

i=1j=1 j=11i=1

mit P;; = Ry; und mithin P * R.

ij =
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Auf der Basis der hier entwickelten Zerlegungstheorie der Polygone kénnte nun
leicht eine Addition iiber der Menge %R,/-Z aller Aquivalenzklassen untereinander zer-
legungsgleicher Polygone eingefiihrt werden durch Riickgang auf die clementargeome-
trische Addition von Représentanten. Man wiirde einc dem Gréfensystem (&/=~, +)
der Strecken entsprechende kommutative Halbgruppe (B,/<, +) mit Nullelement er-
halten. InFortfithrung dieser Analogie kénnte dann der Flicheninhalt cines Polygons P
als Klasse aller zu P zerlegungsgleichen Polygone eingefiihrt werden. Wie bei den
Strecken kann aber auch fiir Polygone ein solcher GréBenbegriff fir praktische Zwecke
nicht befriedigen. Deshalb wird nun die Inhaltsmessung von Polygonen entwickelt,

hend von der folgend

Definition. Unter Inhaltsmessung von Polygonen wird die Angabe einer Ab-
bildung F der Menge B, aller eigentlichen Polygone in die Menge R. der nicht nega-
tiven reellen Zahlen mit folgenden Eigenschaften verstanden:

1) Aus A = B folgt F(A) = F(B) (Bewegungsinvarianz).
(2) Aus C = 4 + B folgt F(C) = F(A) + F(B) (Additivitit).
3) Es gibt ein eigentliches Polygon Q mit: F(Q) = 1 (Normiertheit).

Das Bild F(P) eines Polygons P heiflt Mafzahl des elementaren Inhalts von P,
die Abbildung F werde elementares Inhaltsfunktional genannt. Bei erforderlicher
Unterscheidung zwischen Polygonfliche und Rand des Polygons sollte man F(P)
auch InhaltsmaBzahl der Polygonfliche nennen. Damit wird der Unterschied
deutlicher zu einer anderen ,,MaBzahl®, die jedem Polygon P eindeutig zugeordnet
werden kann, namlich der Umfangsmafzahl u(P), die als Summe der LingenmaB-
zahlen aller Seiten von P definiert ist.

Bei der Bestimmung des elementaren Inhalts eines Polygons P, dem ,,Ausmes-
sen‘‘ von P, handelt es sich wieder um die Feststellung, wie oft das Einheitspolygon
Q bzw. geeignete Teile von Q in P enthalten sind. Man schreibt deshalb den ele-
mentaren Inhalt (Flacheninhalt) |P| wieder als formales Produkt |P| =a-|Q|,
wobei die reelle Zahl a = F(P) die MaBzahl und |Q| die Mafeinheit bezeichnet. Ist
die MaBleinheit der Streckenmessung gegeben (z. B. das Meter), so kann man cine
einfache Beziehung zur MafBeinheit der Inhaltsmessung herstellen, indem man fiir
Q cin Einheitsquadrat Q, wihlt, dessen Seitenlinge die MaBzahl 1 hat — die Ma8-
einheit der Inhaltsmessung wiire dann z. B. Quadratmeter (m?). Wird namlich die
unten hergeleitete Formel F(R) = a - b fiir diec Berechnung der InhaltsmaBzahl
eines Rechtecks aus den SeitenlingenmaBzahlen « und b iibertragen auf die Be-
rechnung des Flicheninhaltes |[R| aus den Lingen « - |PQ| und b - | PQ| der Seiten,
wobei |PQ| die MaBeinheit der Streckenmessung ist, dann gilt fiir das Einheits-
quadrat (@ =b = 1)

1@ =1-1PQ|-1-|PQ|=1-|PQS.

Das Produkt zweier Lingen wird also als Flicheninhalt aufgefat. Die Forderung
(3) soll deshalb im folgenden ersetzt werden durch

(3" Ist Q, ein Quadrat der Seitenlingenmafzahl 1, so st F(Q,) = 1.



96 1. Axiomatischer Aufbau der Geometrie

Selbstverstandlich muB nun wieder die Frage der Existenz und Einzigkeit des In-
haltsfunktionals F beantwortet werden. Zunichst gilt folgender

Satz von der Existenz des Inhaltsfunktionals. Es gibt wenigstens eine
Abbildung F von R, in R, mit den Eigenschaften (1), (2) und (3).

Zum Beweis dieses Satzes wird eine Abbildung F zunichst fiir Dreiecke definiert :
Ist D = ABC ein beliebiges Dreieck, die LingenmaBzahl der Seite 4B gleich g
und die LangenmaBzahl der zur Seite 4B gehorenden Hohe gleich &, so werde
F(D) := +g-h gesetzt. (Dabei ist die zn AB gehorende Héhe die Strecke CH
bhzw. deren Linge, wenn H der Schnittpunkt des Lotes durch C zu g(4 B) mit der
Geraden g(AB) ist.) Nun werden einige Hilfssdtze formuliert und bewiesen.

1. Hilfssatz. Sind g,, g, Lingenmafzahlen zweter beliebiger Seiten eines Dreiecks
und hy, hy die Lingenmafzahlen der zugehirigen Hohen, so gilt gyhy = goh,.

Beweis. Essei D = ABC ein beliebiges Dreieck mit /(A B) = ¢, und I[(BC) = g,.
Die zu AB bzw. BC gehérenden Hohen seien CH, bzw. AH, mit den Lingenma8-
zahlen I(CH,) = h, und {(AH,;) = h,. Nun wird 4B von B aus auf BC* abgetragen,
so dafl sich A’ ergibt, und BH, von B ausauf BA+, so daB sich Hjergibt (Abb. 1.28).
Ist das Dreieck D bei B rechtwinklig, so ist dic Behauptung trivial; ist das Drei-
eck D bei B stumpfwinklig, so werde BH, auf BA~ abgetragen. Damit ist nach
dem Kongruenzsatz ,,Seite— Winkel —Seite das Dreieck 4 BH, kongruent zum
Dreieck A’BH;. Dann gilt ((4'B) = ¢, l(A'H}) = h, und g(A’H}) || ¢(CH,),
%

1

Iy
g = ;1; baw. giky = goh,.

nach dem Strahlensatz (zweiter Teil) also
Aus diesen Uberlegungen kann noch eine wichtige Folgerung gezogen werden.
Ist im Falle eines spitzen Winkels bei B I(AH,) = q und I(H,B) = p, also
g + p = ¢y, so gilt nach dem Strahlensatz (erster Teil) noch
g l(BA") UAB)

p UBH}) ~ I(BHp

Ha

g
'
i

4 H;  Hy B Abh. 1.28
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Diese Beziehungen bleiben richtig, wenn die Geraden g(4C) und ¢(BC) zueinander
senkrecht sind, D also ein rechtwinkliges Dreieck mit den Katheten AC und BC und
der Hypotenuse AB ist. In diesem Fall ist H, = C, und die letzte Gleichung ver-
einfacht sich zu

==-——-=— bzw. g} =gp.
Wird zur Vereinfachung a := U(BC) =g, b:=1U1AC) und ¢:=§d4B) =g,
gesetzt, so gilt demnach folgender

Kathetensatz. Im rechtwinkligen Dreieck ist das Quadrat einer Kathetenlinge
gleich dem Produkt der Hypotenusenlinge und der Liinge des zur Kathete gehorenden
Hypotenusenabschnitts:

a?=p-.c bzw. b =gq-c.
Daraus folgt sofort a? + b2 = pc + gc = (p + ¢) ¢ = c?. Das ist der
Satz des Pythagoras. Im rechtwinkligen Dreieck ist das Quadrat der Hypo-
tenusenlinge gleich der Summe der Quadrate der Kathetenlingen: c® = a* + b

Nun wird das Verhalten des Funktionals F bei Zerlegungen des Dreiecks D
untersucht.

2. Hilfssatz. Ist ein Dreieck D = ABC in zwei Dreiecke D, = ADC und
D, = DBC zerlegt mit Zw(ADB), so gilt F(D) = F(D,) + F(D,).

Beweis. Esseil(4B) = g und die LingenmaBzahl der zu 4 B gehérenden Héhe
des Dreiecks D gleich k. Mit [(4D) = g, und {DB) = g, ist ¢ = ¢, + ga, F(D))
= 3 g1k, F(D,) = 5 g;h und somit

F(D) + F(D,) = 5 (g, + 9) h = 3 gh = F(D).

Durch vollstindige Induktion liBt sich dieses Ergebnis leicht verallgemeinern:

3. Hilfssatz. Ist eine Zerlegung D = D, + Dy + -+ + D, eines Dreiecks D in
Teildreiecke D, gegeben, deren Ecken alle auf zwet festen Seiten von D liegen, so gil-

n
FD)= X F(Dy)
i=1
(Abb. 1.29).

SchlieBlich werden beliebige Zerlegungen eines Dreiecks in Teildreiecke be-
trachtet:

4. Hilfssatz. Ist eine beliebige Zerlegung D = Dy + D, + -+ + Dy, eines Drei-
ecks D = ABC in endlich viele Teildreiecke D; gegeben, so gilt

F(D) = 2 F(D,) .

i=1
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0, /0D, [ A
A 8
Abb. 1.29 Abb. 1.30

Beweis. Es sei D =D, + D, + -+ + D, eine beliebige Zerlegung des Drei-
ecks D = ABC in Teildreiecke. Werden etwa von C aus Strahlen durch die Ecken
samtlicher Dreiecke D, gelegt, so zerfillt D in Dreiecke T, (Abb. 1.30): D = T,
+ T, + -+ + Tp. Das ist eine Zerlegung von D im Sinne des dritten Hilfssatzes,
so daB

nm=fﬂm
i=1

gilt. Die Durchschnitte T; n D, liefern Zerlegungen der Dreiecke T, in Dreiecke
und eventuell Vierecke, deren Eckpunkte jeweils nur auf den beiden durch C
gehenden Seiten von T, liegen. Werden die Vierecke durch eine Diagonale in je-
weils zwei Dreiecke zerlegt, so liegt schlieBlich eine Zerlegung T, = Di 4 D}
+ «+ + Dj im Sinne des dritten Hilfssatzes vor mit

FT) =52 FD) (=1,2..m).
r=1

Andererseits bedeutet diese ,,verfeinerte Zgrlegung“ fiir die urspriinglichen Teil-
dreiecke D, eine Zerlegung in Teildreiecke D}, auf die der zweite und dritte Hilfssatz
angewendet werden kann, so daf} sich aus

m m ey )
FD)=2X FT) =2 X FDj
j=1 j=1v=1
durch geeignetes Zusammenfassen schlieflich F(D) = X F(D,) ergibt.
i=1

Beriicksichtigt man, daB jedes Polygon in konvexe Polygone zerlegt werden
kann und jedes konvexe Polygon durch simtliche von einem festen Eckpunkt aus-
gehende Diagonalen in lauter Dreiecke zerlegt wird, so sieht man, daB jedes Poly-
gon in Dreiecke zerlegt werden kann. Damit kann das Inhaltsfunktional F auf die
Menge B, aller (eigentlichen) Polygone fortgesetzt werden durch den Ansatz

FP):= 2 FDy,
t=1
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n
wobei P = X D, eine beliebige Dreieckszerlegung von P ¢ B, ist. Die MaBzahl des

i=1
,»Flicheninhalts eines uneigentlichen Polygons P’ ¢ B; kann durch F(P') := 0
erklirt werden, insbesondere gilt F(0) = 0. Es ist lediglich noch zu zeigen, daB der

Wert F(P) unabhanglg von der Art der Dreieckszerlegung ist. Sind etwa P = 2 D,
und P = Z D zwei verschiedene Zerlegungen von P in Dreiecke D; bzw. Dj, 80

1aBt sich wxe beim Beweis der Transitivitdt von = durch

n m ,
P=2X 2D D
i=1j=1
eine ,,verfeinerte Zerlegung* von P in konvexe Polygone gewinnen, die sich ihrer-
seits in Dreiecke T zerlegen lassen, so da$ insgesamt Darstellungen

Di=2XT; und D;:ZTi”
v 4 "

existieren, und nach dem vierten Hilfssatz gilt
Hm:zmn)mdﬂm=2H%L
Folglich ist
FP) = £ Pt = £ Py = 5 F D)
i= j=

Damit ist F als (eindeutige) Abbildung von R, in R, nachgewiesen, denn F(P) = 0
liegt nach Definition von F auf der Hand.

Zum vollstindigen Beweis des Satzes von der Existenz des Inhaltsfunktionals
muB noch gezeigt werden, daB die so definierte Abbildung F die Eigenschaften
(1), (2) und (3’) hat. Der Nachweis der Bewegungsinvarianz braucht wegen der
Definition von F nur fiir Dreiecke gefiihrt zu werden. Sind D = ABC und
D' = A’ B'C’ zwei kongruente Dreiecke, so muB insbesondere A B=~ A’ B’,also (A B)
= l(A'B’), und eine entsprechende Gleichung fiir die MaBzahlen der zu 4B bzw.
A’'B’ gehorenden Hohen gelten. Demnach ist F(D) = F(D’). Zum Nachweis der

Additivitit sei C = A + B mit den Dreieckszerlegungen 4 = Z D;und B = E T,
von A bzw. B. Dann ist i=1 =1

C= Em+2n
i=1
eine Dreieckszerlegung von C und deshalb F(C) = F(A) + F(B). Zum Nachweis
der Normiertheit schlieBlich beriicksichtige man, daB die InhaltsmaBzahl eines
rechtwinkligen Dreiecks D, dessen Kathetenlingen die MafBzahlen a und b haben,
durch F(D) = + ab dargestellt werden kann und ein Einheitsquadrat Q, durch
eine Diagonale in zwei kongruente rechtwinklige Dreiecke zerlegt wird, so daB
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wegena = b = 1 und der eben bewiesenen Additivitit F(Q,) = +-1- 14 3.1
= 1 wird. Damit ist der Satz von der Existenz des Inhaltsfunktionals endgiiltig
bewiesen.

Eine einfache Verallgemeinerung der Uberlegung beim Beweis der Normiertheit
(3) liefert sofort den

SatzvomInhaltdesRechtecks. IstR ein Rechteck mit den Seitenlingenmaf-
zahlen a und b, so gilt F(R) =

Zur vollsténdigen Entwicklung der elementaren Inhaltslehre gehort schlieBlich
noch folgender

Satz von der Einzigkeit des Inhaltsfunktionals. Es gibt hichstens eine
Abbildung F von B, in R, mit den Eigenschaften (1), (2) und (3').

Der Beweis dieses Satzes, der hier nicht ausgefithrt werden soll, kann z. B. so
gefiihrt werden, dafi man durch ,,Ausmessung‘‘ eines beliebigen Rechtecks mit
den SeitenlingenmafBzahlen a und b durch das Einheitsquadrat Q, bzw. geeignete
Teile desselben die Giiltigkeit der Formel F(R) = ab allein aus den Eigenschaften
(1), (2) und (3') herleitet — analog zur At g einer beliebigen Strecke durch
die Einheitsstrecke (vgl. 1.1.4.). Damit ergibt sich auch fiir jedes Inhaltsfunktional
F die Formel F(D) = + gh fiir zunichst rechtwinklige Dreiecke; wegen der Zer-
legbarkeit eines beliebigen Dreiecks in zwei rechtwinklige Dreiecke mufl diese
Formel fiir alle Dreiecke gelten, und daraus kann man mit den obigen Uberlegun-
gen auf die Einzigkeit von F schliefen.

In Analogie zur Streckenmessung kann jetzt das Inhaltsfunktional F als Homomor-
pt der ke ven Halbgruppe (R,/=%, +) der Aquivalenzklassen von unter-

i d rl leichen Polygonen in die kommutative Halbgruppe (R,, +) der
nicht negatlven reellen Zahlen aufgefalt werden. Bei dieser Interpretation ist F' sogar
surjektiv. Ist A ndmlich eine beliebige positive reelle Zahl, so gibt es eine Strecke der
LiangenmaBzahl 4 und mithin ein Rechteck R mit den SeitenlingenmaBzahlen 1 und 4,
also der InhaltsmaBzahl F(R) = A. Als Urbild von A bei dem durch F induzierten
Homomorphismus kann folglich die Klasse aller zu R zerlegungsgleichen Polygone er-
klart werden. F ist ferner injektiv und kann demnach sogar als Isomorphismus von
(B./£, +) auf (R,, +) aufgefaBt werden. Diese Tatsache bedeutet, daB notwendig
und hinreichend fir die Zerleg leichheit P £ Q zweier Polygone P und Q ihre
Inhaltsgleichheit (F(P) = F(Q)) ist — die iiber 9, erklarbaren Relationen ,,zerlegungs-
gleich'* und ,,inhaltsgleich sind équivalent.

1.2 Geometrie des euklidischen Raumes

Der Aufbau der euklidischen Geometrie des dreidimensionalen Raumes kann analog
zu dem in 1.1. durchgefiihrten Aufbau der Geometrie der Ebene erfolgen. Dieser
Aufbau soll jetzt kurz geschildert werden. Es werden ein Axiomensystem sowie
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einige Definitionen, Sitze und Sachverhalte — weitgehend ohne Beweise — ange-
geben werden.

1.21. Inzidenz, Parallelitdt, Verschiebungen

Als grundlegende Aussage wird festgelegt und als wahr vorausgesetzt, da der
Raum eine Menge ist, deren Elemente Punkte genannt werden, daB ferner zwei
Systeme von Teilmengen des Raumes besonders ausgezeichnet sind; die Elemente
des einen werden Geraden, die des anderen werden Ebenen genannt. Jede Teil-
menge einer Geraden soll kollinear, jede Teilmenge einer Ebene komplanar genannt
werden. Punkte, Geraden und Ebenen sollen folgenden Axiomen geniigen:

Axiom (R1). Jede Gerade enthiilt mindestens zwei Punkte, und jede Ebene enthilt
mindestens drei nicht kollineare Punkte.

Axiom (R2). Sind A und B zwet beliebi inander verschiedene Punkte, 8o
gibt es genau eine Gerade, die A und B enthalt (Sie werde mit g(4B) bezeichnet.)

Axiom (R3). Sind A, B, C drei nicht kollineare Punkte, so gibt es genau eine
Ebene, die A, B und C enthdlt. (Sie werde mit ¢(4.BC) bezeichnet.)

Axiom (R4). Der Durchschnitt einer Geraden mit einer Ebene ist entweder leer
oder genau ein Punkt oder die betreffende Gerade insgesamt.

Axiom (R5). Der Durchschnitt zweier voneinander verschiedener Ebenen st ent-
weder leer oder eine Gerade.

Axiom (R6). Es gibt keine Ebene, die simtliche Punkte des Raumes enthilt.
Die Parallelitit von Geraden wird folgendermaBen definiert:

Definition. g || b ist gleichbedeutend damit, daB g u A komplanar ist und daf
g nh =0 oderg =h gilt.

Axiom (R7). Ist g eine beliebige Gerade und P ein beliebiger Punkt, so gibt es
genau eine Gerade, die P enthilt und die zu g parallel ist.

Die Parallelitit von Geraden erweist sich auf Grund von Axiom (R7) auch im
Raum als Aquivalenzrelation. Ferner folgt aus Axiom (R3): Zu zwei verschiedenen
parallelen Geraden gibt es genau eine Ebene, die beide Geraden enthilt.

Auch fiir Ebenen la8t sich ein Parallelititsbegriff einfiihren. Sind ¢, und e, zwei
Ebenen, so definiert man:

Definition. g || 1@ gne=0v ¢ = ¢,
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SchlieBlich definiert man auch eine Parallelitit zwischen Geraden und Ebenen.
Es sei g eine Gerade und ¢ eine Ebene. Man setzt:

glle:®gne=0vgce.

Es 1dBt sich leicht zeigen, daB ¢ || ¢ genau dann gilt, wenn es eine Gerade ¢’ mit
g'ceund ¢’ [| g gibt; ebenso gilt g || ¢ genau dann, wenn es eine Ebene ¢ mit
gc ¢ und ¢ || ¢ gibt.

Die Parallelitit von Ebenen ist eine Aquivalenzrelation, und es gilt ein zum
Axiom (R7) analoger beweisbarer Satz: Ist ¢ eine Ebene, P ein Punkt, so gibt es
genau eine Ebene ¢’ mit P ¢ ¢’ und ¢’ || e. Etwas Entsprechendes gilt fiir die Par-
allelitit zwischen Geraden und Ebenen nicht.

Aus den Axiomen (R1) bis (R4) folgt, daBl es zu zwei Geraden, die genau einen
gemeinsamen Punkt haben, genau eine Ebene gibt, die beide Geraden enthilt.

Sind g, und g, zwei verschiedene nicht parallele Geraden ohne gemeinsame Punkte,
80 gibt es genau eine Ebene ¢, die g, enthilt und zu der g, parallel ist; ebenso gibt
es genau eine Ebene ¢,, die g, enthilt und zu der g, parallel ist. Es gilt dann ¢, || e,.
Zwei nicht parallele Geraden ohne gemeinsame Punkte nennt man zueinander
windschief, und es gibt also zu jedem Paar windschiefer Geraden genau ein Paar
paralleler Ebenen, so dal jede Ebene dieses Paares je eine der windschiefen Ge-
raden enthilt. Windschiefe Geraden sind nicht komplanar.

Réumliche Verschiebungen werden genauso wie in der Geometrie der Ebene
als bijektive Abbildungen des Raumes auf sich mit den Eigenschaften (V1) und
(V2) (vgl. 1.1.1.) definiert. Es folgt dann, daB die Bildmenge einer jeden Ebene ¢
eine zu ¢ parallele Ebene ist. Die in 1.1.1. bewiesenen Hilfssitze iiber Verschie-
bungen gelten auch im Raum. Fordert man schlieBlich als

Axiom (R8). Zu zwei beliebigen Punkten A, B gibt es genau eine Verschiebung,
die A auf B abbildet,

s0 kann man nachweisen, daB die Menge aller Verschiebungen beziiglich der Hinter-
einanderausfiihrung eine kommutative Gruppe ist. Fiir jede Ebene e ist die Menge
aller Verschiebungen, die ¢ auf sich selbst abbilden, eine Untergruppe.

1.2.2 Anordnung

Die Axiome (6), (7), (8) aus 1.1.2.1. kénnen als Axiome (R9), (R10), (R11) fiir den
Raum genommen werden, ebenso kénnen die im Zusammenhang mit diesen Axio-
men gegebenen Definitionen der Begriffe orientierte Gerade, Strahl, Zwischenrela-
tion, Strecke, Richtungssinn, Halbebene und Fahne fiir den Raum unverindert
iibernommen werden. (Gegebenenfalls ist von den jeweils betrachteten Punkt-
mengen deren Komplanaritiit zu fordern.) Auch die mit der Anordnungslehre zu-
sammenhingenden Eigenschaften der Verschiebungen gelten in der Geometrie des
Raumes.
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Ein neuer Begriff ist der des Halbraumes, der analog zur Definition von Halb-
ebenen folgendermafen eingefithrt werden kann:

Es sei ¢ eine Ebene, g eine ¢ in genau einem Punkte 4 schneidende Gerade, s,
und s, seien die Mengen der Punkte (5= A) der beiden auf g von A4 erzeugten
Strahlen. Auf g werden alle Verschiebungen angewendet, die ¢ auf sich abbilden,
die Menge aller Bilder der Punkte von s; sei §; ({ = 1, 2). Es zeigt sich, daB §,
und ), eine Zerlegung der Menge der nicht zu ¢ gehérenden Punkte des Raumes ist,
sie erweist sich als unabhiingig von der Wahl der Geraden g. Man nennt $, und ©,
die beiden von ¢ erzeugten offenen Halbriume oder Seiten, die Mengen §, u ¢ und
£, u £ nennt man Halbrdume schlechthin, ¢ heiBt Randebene, $, und $, nennt man
zueinander entgegengesetzt. Zwei Punkte P Q(¢ ¢) liegen genau dann auf verschie-
denen Seiten von ¢, wenn es einen Punkt Z mit Zw(PZQ) gibt, der zu ¢ gehort.

Auch fiir den Begriff Fahne wird ein raumliches Analogon definiert, es moge
Orientierungsfigur heifen. Unter einer Orientierungsfigur versteht man die Ver-
einigungsmenge einer Fahne mit einem der beiden offenen Halbrdume, in deren
Randebene die Fahne enthalten ist; die Fahne, ihr Randstrahl und Anfangspunkt
heiBen Randfahne, Randstrahl und Anfangspunkt der betreffenden Orientierungs-
figur. Der Durchschnitt einer Orientierungsfigur mit einer Ebene, die den Rand-
strahl in genau einem Punkt schneidet, ist eine Fahne.

Wie in der Geometrie der Ebene fiir Fahnen kann in der Geometrie des Raumes
fiir Orientierungsfiguren die Aquivalenzrelation ,,gleichorientiert* eingefiihrt
werden, und es zeigt sich, daB es beziiglich dieser Aquivalenzrelation genau zwei
Klassen gibt.

Die Definition kann folgendermaBen gegeben werden: Man definiert zunichst fir
Orientierungsfiguren drei Relationen g,, g, und g;. Es seien F; und F, Orientierungs-
figuren.

Definition. F, g, F, bedeutet: F, und F, haben gleiche Randstrahlen, und ist ¢
eine Ebene, die mit diesem Randstrahl genau einen Punkt gemeinsam hat, so sind die
Schnittfahnen £, n ¢ und F, n ¢ in ¢ gleichorientiert im Sinne von 1.1.2.2.

Man weist nach, daB das Bestehen von g, unabhingig von der Wahl von ¢ ist.

Definition. F, g, F, bedeutet: F, und F, haben denselben Anfangspunkt und kom-
planare Randfahnen (Ebene ¢), und entweder sind die offenen Halbrdume von F, und
F, gleich und die Randfahnen in ¢ gleichorientiert, oder es sind die offenen Halbraume
von F, und F, entgegengesetzt und die Randfahnen in ¢ nicht gleichorientiert.

Sind F, und F, beliebige Orientierungsfiguren mit gemeinsamem Anfangspunkt, so
gibt es eine Ebene ¢, die beide Randstrahlen enthilt, und man definiert:

Definition. F, g, F, bedeutet: Es gibt eine Orientierungsfigur F; bzw. F;, die mit
F, bzw. F, den Randstrahl gemeinsam hat und deren Randfahne in ¢ liegt und fiir die
Fy o, F, bzw. Fj 0, F, gilt, und es ist F} g, F5.

Fir ganz beliebige Orientierungsfiguren wird schlieBlich definiert:

Definition. F, ist genau dann mit F, gleichorientiert, wenn es eine Verschiebung v
gibt, so daB t(F),) g, F, ist.
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1.23. Bewegungen, Kongruenz, Senkrechtsein

Die Grundlage fiir die Lehre von den Bewegungen ist folgendes Axiom:

Axiom (R12). Es gibt eine Gruppe von bijektiven Abbildungen des Raumes auf
sich — Bewegungen genannt — mit folgenden Eigenschaften:
(Brl) Aus Zw(X YZ) folgt Zw(¢(X) ¢(Y) ¢(2)) fiir jede Bewegung .
(Bg2) Sind Fy und F, beliebige Orientierungsfiguren, so gibt es genau eine Bewegung
¢ mit ¢(F)) = F,.
(Bg3) Sind h und k zwei Strahklen mit gemeinsamem Anfangspunkt, so gibt es eine
Bewegung ¢ mit (k) = k und ¢(k) = h.

Die Verschiebungen erweisen sich als spezielle Bewegungen. Bewegungen, fiir
die es eine aus lauter Fixpunkten bestehende Ebene ¢ gibt und bei der die beiden
Halbriume von e miteinander vertauscht werden, heiBen Ebenenspiegelungen
(Bezeichnung: g,); zu jeder Ebene gibt es genau eine Ebenenspiegelung. Die Gleich-
orientierung von Orientierungsfiguren ist eine Relation, die sich bei Bewegung
nicht éndert. Folglich gibt es zwei Sorten von Bewegungen, gleichsinnige und un-
gleichsinnige. Die gleichsinnigen Bewegungen bilden eine Untergruppe, die un-
gleichsinnigen nicht. Verschiebungen sind Beispiele fiir gleichsinnige, Ebenenspie-
gelungen fiir ungleichsinnige Bewegungen.

Die Kongruenz von Figuren wird genau wie in der Geometrie der Ebene defi-
niert:

Definition. I, = I, bedeutet: Es gibt eine Bewegung ¢ mit ¢(M,) = MN,,
und auch fiir den Raum ist die Kongruenz eine Aquivalenzrelation. Entsprechend
wie in der Ebene wird gleichsinnige Kongruenz definiert.

Da man jede Fahne auf genau zwei Weisen durch Hinzunahme eines offenen Halb-
raumes zu einer Orientierungsfigur erweitern kann und diese beiden Orientierungs-
figuren dann entgegengesetzt orientiert sind, gibt es zu zwei beliebigen Fahnen f,
und f, nach Axiom (Bf2) genau eine gleichsinnige und genau eine ungleichsinnige
Bewegung, die f, auf f, abbilden. (Man beachte im Unterschied hierzu das Bewe-
gungsaxiom (B2) fiir die Geometrie der Ebene!) Das bedeutet insbesondere, daf
man zwei komplanare, nicht gleichorientierte Fahnen durch eine gleichsinnige
Bewegung aufeinander abbilden kann. Es ist deshalb im Raum nicht sinnvoll, fiir
beliebige Fahnen eine Gleichorientierung zu erkliren. Desgleichen kann im Raum
ein orientierter Elementarwinkel & (k, k) bereits durch eine gleichsinnige Bewegung
auf X (k, k) abgebildet werden, so daB es sich nicht lohnt, Klassen orientierter
Elementarwinkel beziiglich gleichsinniger Kongruenz zu bilden.

Mit Hilfe des Begriffes Ebenenspiegelung kann das Senkrechtsein von Ebenen
definiert werden. Sind &, ¢, Ebenen, so setzt man:

g 1 i a,le)=—AegFe.
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Diese Relation ist symmetrisch und bewegungsinvariant, und der Durchschnitt
senkrechter Ebenen ist stets eine Gerade.

Analog ldBt sich fiir Geraden und Ebenen das Senkrechtsein definieren. Fiir
Geraden g und Ebenen ¢ setzt man:

gleeolg =grgne=kg.

Man nennt dann g ein Lot zu e. Der Durchschnitt g n ¢ ist stets ein Punkt (Lot-
fuBpunkt). Esgiltg | ¢ genau dann, wenn alle Ebenen ¢’ mit g ¢ ¢’ zu ¢ senkrecht
sind. Ferner hat das gleichzeitige Bestehen von g | ¢ und g | e, die Parallelitit
von ¢ und ¢, zur Folge, und umgekehrt folgt aus ¢|le, und g | & auch g | ¢,
Aus ¢ | cund ¢, | e folgt, falls & n ¢, eine Gerade g ist, g | e.

Es gibt eine Reihe von Existenz- und Eindeutigkeitsaussagen iiber senkrechte
Ebenen und Geraden, die auf Grund der Definitionen und angefiihrten Eigenschaf-
ten bewiesen werden kénnen: Zu einem beliebigen Punkt P und einer beliebigen
Ebene ¢ gibt es genau eine Gerade durch P, die zu ¢ senkrecht ist. Zu einem belie-
bigen Punkt P und einer beliebigen Geraden ¢ gibt es genau eine Ebene ¢ durch P,
sodaB g | eist. Zu einer beliebigen Ebene ¢ und einer beliebigen zu ¢ nicht senk-
rechten Geraden g gibt es genau eine Ebene ¢ mit ¢’ | eundg ¢ ¢'. SchlieBlich defi-
niert man auch fiir Geraden g¢,, g, das Senkrechtsein bzw. den Begriff Lot:

Definition. g, | ¢, bedeutet: Es ist g; n g, & 0, und es gibt eine Ebene ¢,
die ¢, enthilt, so daB g, | ¢ist. (Die Bedingung g, n g, & 0 wird auch gelegentlich
weggelassen, so daBl es auch windschiefe senkrechte Geraden geben kann.)

Aus g; | g, folgt g, | g,- Zu einer beliebigen Geraden g und einem beliebigen
nicht zu g gehérenden Punkt P gibt es genau eine Gerade g’, die P enthilt und zu ¢
senkrecht ist.

Sind g und % zwei windschiefe Geraden, ¢, und ¢, die parallelen Ebenen, die ¢
bzw. k enthalten, & die zu ¢, senkrechte Ebene, die g enthilt, ¢, die zu ¢, senkrechte
Ebene, die h enthilt, so ist & n ¢, eine sowohl zu g als auch zu k senkrechte Gerade,
und zwar die einzige dieser Art. Zwei windschiefe Geraden haben also stets genau
ein gemeinsames Lot.

1.2.4. Stetigkeit und Vollstdndigkeit

Das Archimedische Axiom (10) kann wértlich als Axiom (R13) fiir den Raum iiber-
nommen werden, und auf Grund dessen kann wie in der Geometrie der Ebene eine
Streckenmessung eingefiihrt werden.

Die Linge |4 B| wird auch als Abstand der Punkte 4 und B bezeichnet. Ein Ab-
standsbegriff wird auch fiir Punkte und Geraden sowie fiir Punkte und Ebenen defi-
niert. Ist P ein Punkt, g eine Gerade und Q der Schnittpunkt des eindeutig bestimm-
ten Lotes durch P zu g mit g, so heiBt die Linge | PQ| Abstand des Punktes P von
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der Geraden g. Ist P ein Punkt, ¢ eine Ebene und @ der Schnittpunkt des Lotes
durch P zu £ mit ¢, so heilit die Lange | PQ| Abstand des Punktes P von der Ebene ¢.

Unter dem Abstand zweier paralleler Ebenen ¢, und ¢, versteht man die Lange
|PyP,|, falls P, € e, und g(P,P,) | & (i =1, 2) gilt; alle diese Strecken P, P, sind
verschiebungsgleich. Analog wird der Abstand zweier paralleler Geraden definiert.
Auch fiir windschiefe Geraden ¢,, g, definiert man einen Abstand, nimlich den Ah-
stand der heiden parallelen Ebenen, die ¢, und g, enthalten.

Als letztes Axiom fiir den Aufbau der Geometrie des Raumes ist das Vollstindig-
keitsaxiom (11) als Axiom (R14) aufzufithren. Die im Zusammenhang mit diesem
Axiom in 1.1.4. genannten Folgerungen gelten auch fiir den Raum.

Fiir den durch die Axiome (R1) bis (R14) gekennzeichneten euklidischen drei-
dimensionalen Raum ist die Bezeichnung R® gebriuchlich, fiir die euklidische Ebene
die Bezeichnung R2.

Es sei noch darauf hingewiesen, dafl jede Ebene ¢ des R® eine Ebene im Sinne
von 1.1, also ein R? ist ; die Bewegungsgruppe von ¢ ergibt sich dabei aus der Unter-
gruppe der gleichsinnigen die Ebene ¢ auf sich abbildenden Bewegungen des Raumes
durch Einschrinkung des Definitionsbereiches dieser Abbildungen auf .

1.2.5. Elementarer Inhalt

Der Begriff des elementaren Inhalts im Raum kann zunichst in volliger Analogie
zum elementaren Inhaltsbegriff in der Ebene entwickelt werden (vgl. 1.1.5.).
In der folgenden Darstellung werden deshalb nur die wesentlichsten Begriffe einge-
fithrt und die grundlegenden Sitze angegeben.

Ein konvexes Polyeder (konvexes Vielflach) ist der Durchschnitt 4 aller Halbraume
9, welche eine endliche Punktmenge IR enthalten:

A:=NH.
nc

Ist P ein Punkt von I, der bei der Erzeugung der konvexen Hiille 4 von M nicht
weggelassen werden kann, so heiBt P Eckpunkt von A. Liegt A ganz in einer Ebenea,
s0 heifit A uneigentlich — A besitzt keine inneren Punkte und ist entweder ein in &
liegendes eigentliches konvexes Polygon, eine Strecke, ein Punkt oder das ,,leere
Polyeder* 8. Anderenfalls heiBt A eigentlich. Das einfachste eigentliche konvexe
Polyeder besitzt also mindestens vier Eckpunkte, es ist namlich die konvexe Hiille
von vier nicht in einer Ebene liegenden Punkten und heiBt Simplex (Tetraeder oder
dreiseitige Pyramide). Liegt ein eigentliches konvexes Polyeder A ganz in einem der
beiden durch eine Ebene x bestimmten (abgeschlossenen) Halbrdume und ist der
Durchschnitt A n « ein in« eigentliches (konvexes) Polygon, so heiBt dieses Seiten-
fliche von A und die Seiten dieses Polygons Kanten von A. Die Vereinigung aller
Seitenflichen von A heit Rand von A bzw. Polyederfliche. Jedem eigentlichen
(konvexen) Polyeder 4 1iBt sich dann eindeutig eine nicht negative reelle Zahl O(4)



1.2. Geometrie des euklidischen Raumes 107

zuordnen, die Maflzahl des Oberflicheninhalts bzw. des Inhalts der Polyederfliche,
als Summe der Mafzahlen des elementaren Inhalts seiner Seitenflichen.

Es seien noch einige spezielle eigentliche (konvexe) Polyeder angefithrt. Wird
ein in einer Ebene o gelegenes konvexes Polygon P, P, ... P, durch eine Verschie-
bung auf das nicht in « liegende Polygon P P; ... I, abgebildet, so heifit die kon-
vexe Hiille der Punkte P, ..., Py, Py, ..., P, n-seitiges konvexes Prisma mit der
Grundfliche P, P, ... P, und der Deckfliche P[P, ... P,. Ist der Verschiebungs-
vektor senkrecht zur Ebene «, so heifit das Prisma gerade, im anderen Fall schief.
Ist die Grundfliche ein Parallelogramn, so heifit das Prisma auch Parallelepiped
oder Spat. Ein gerades Prisma mit rechteckiger Grundfliche heifit Quader. Ein
Quader, dessen Kanten alle dieselbe Liinge haben, heilt Wiirfel. Wird neben dem
in einer Ebene o liegenden konvexen Polygon P,P,... P, ein Punkt @ ¢ x be-
trachtet, so heifit die konvexe Hiille der Punkte P, ..., P,, @ n-seitige konvexe
Pyramide mit der Grundfliche P, P, ... P, und der Spitze Q.

Die Vereinigungsmenge P = A, u A, u .- u 4, endlich vieler konvexer Poly-
eder A; heiBt (allgemeines) Polyeder. Sind alle A eigentlich oder gleich 0,
so heifle auch P eigentliches Polyeder, sind alle A; uneigentlich, so heile auch P
uneigentlich. Es sei P, die Menge aller eigentlichen Polyeder. Dann heifit R € B,
elementargeometrische Summe der Polyeder P, Q € B; oder R in P und Q zerlegt -
(R =P + Q), wenn R =P u Q gilt und der Durchschnitt P n Q ein uneigent-
liches Polyeder ist. Diese Operation ist im Fall ihrer Ausfiihrbarkeit wieder assozia-
tiv und kommutativ. SchlieBlich heiBen die Polyeder P und Q zerlegungsgleich
(P £ @), wenn sie in paarweise kongruente Teilpolyeder zerlegbar sind. Die Zer-
legungsgleichheit ist eine Aquivalenzrelation iiber B,.

In der Menge P/ der vermoge der Relation Z iiber R, entstehenden Aquivalenz-
klassen kann cine Addition erklirt werden durch elementargeometrische Addition ge-
eigneter Reprisentanten, so da (¥;/<, +) eine kommutative Halbgruppe wird.

Nun wird der elementare Inhalt im Raum eingefiihrt durch folgende

Definition. Unter Inhalts- bzw. Volumenmessung von Polyedern wird die An-
gabe einer Abbildung V der Menge %B; aller eigentlichen Polyeder in die Menge R.
der nicht negativen reellen Zahlen mit folgenden Eigenschaften verstanden:

(1) Aus A= B folgt V(A) = V(B) (Bewegungsinvarianz).

(2) Aus C = A4 + B folgt V(C) = V(A) + I'(B) (Additivitit).

(3) Ist W, ein Wiirfel der Kantenlingenmafizahl 1, so gilt V(W,) = 1 (Normiert-
heit).

Das Bild V(P) eines Polyeders P heillt Mafzahl des elementaren Inhalts oder
Volumens von P, die Abbildung V" elementares Volumenfunktional. Ist die Lingen-
maBeinheit das Meter, so wird das Volumen in Kubikmeter (m?) gemessen, d. h.,
das Volumen wird wieder als formales Produkt aus MaBzahl und MaBeinheit (m3)
angegeben. Hauptsatz der Theorie des elementaren Inhalts im Raum ist folgender
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Satz von der Existenz und Einzigkeit des Volumenfunktionals. Es
g7bt genau eine Abbildung V von Rz in R, mit den Eigenschaften (1), (2) und (3).

Die Idee des Existenzbeweises ist dieselbe wie beim Existenznachweis fiir das
ebene Inhaltsfunktional. Ist S = P,P,P,P, ein Simplex mit der InhaltsmaBzahl
F(P,P,P,) der Grundfliche P,P,P; und der MaBzahl % der zugehdrigen Hohe
(d. h. des Abstandes der Spitze P, von der durch P,, P,, P, bestimmten Ebene),
so wird

V(S) := 3 F(P,P,P;) - h

gesetzt. Der Nachweis, daf3 der Wert V(S) unabhingig von der Auswahl der Grund-
fliche von S ist und daB fiir eine beliebige Zerlegung § = S, + S, + -+ + S, eines
Simplexes S in Teilsimplexe S; die Beziehung

*) V(S) =_21 V(S

gilt, soll hier iibergangen werden. Jedes Polyeder lit sich als elementargeometri-
sche Summe konvexer Polyeder darstellen — vgl. die Darstellung von Polygonen als
Summe konvexer Polygone in 1.1.5. Zerlegt man die Seitenflichenpolygone eines
konvexen Polyeders A in Dreiecke und bildet die konvexen Hiillen eines festen
inneren Punktes von A und jeweils der drei Eckpunkte dieser Dreiecke, so entsteht
eine Zerlegung von A4 in lauter Simplexe. Insgesamt kann also jedes Polyeder in

Simplexe zerlegt werden. Damit ist der Ansatz
m

V(P) := X V(S))

t=1

fir die VolumenmaBzahl eines allgemeinen Polyeders P gerechtfertigt, wobei
P= .Z' S, eine beliebige Simplizialzerlegung von P ist. DaB der Wert V(P) von der

i=1
speziellen Wahl dieser Zerlegung unabhiingig ist, kann mit Hilfe von (*) leicht nach-
gewiesen werden. V ist also Abbildung von %; in R,. Die Definition werde wieder
durch V(P’) := 0 ergiinzt fiir uneigentliche Polyeder P’. Die einfachen Eigenschaf-

Abb. 1.31
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ten (1) und (2) von V kann der Leser selbst nachweisen. Zum Beweis der Normiert-
heit (3) werden zunichst einige Folgerungen aus der Definition von V gezogen. Zur
Volumenbestimmung eines beliebigen Prismas P geniigt die Kenntnis einer Formel
zur Berechnung des Volumens der dreiseitigen Prismen, da das Grundfléchenpoly-
gon von P stets in Dreiecke und damit P selbst in dreiseitige Prismen zerlegt wer-
den kann. Ein gerades dreiseitiges Prisma P, P,P, P; P, P; wird aber von den beiden
durch die Punkte P,, P,, P] bzw. P;, P;, P| bestimmten Ebenen in drei volumen-
gleiche Simplexe P,P,P,P;, P,P,P,P; und P,P,P,P, zerlegt (Abb. 1.31). Es gilt
nimlich, wenn kb = I(P,P;) und h’' die MaBzahl des Abstandes des Punktes P von
der Ebene durch P,, P;, P;, P, ist, nach Definition von V(S) fiir Simplexe S

V(PlszaP;) =%F(P1P,P,,)-h,
V(P;.PQPQP:)=%F(P;PQP;)'h=%F(P1Pan)‘h= V(PIP,P,P;),
V(P,PyP;P}) = + F(P,P,P;) - k' = 4 F(P,P;P,) - k' = V(P P, P P;).
Mithin gilt fiir das Volumen des dreiseitigen geraden Prismas
V(P,P,P;P|P,P;) =3 . V(P,P,P,P}) = F(P,P,P;) - .
Nach der obigen Bemerkung gilt also allgemein der

Satz vom Volumen des Prismas. Das Volumen eines Prismas P ist gleich
dem Produkt aus dem Inhalt der Grundfliche von P und der Hohe von P.

Diese Aussage gilt iibrigens auch fiir schiefe Prismen, wenn man unter der Héhe
den Abstand von Grund- und Deckflichenebene versteht.

Da die InhaltsmaBzahl eines Rechtecks mit den SeitenlingenmafBzahlen @ und b
gleich ab ist, gilt fiir die VolumenmaBzahl eines Quaders mit den Kantenlidngen-
maBzahlen a, b, ¢ die Formel V(Q) = a - b - ¢, da ein Quader Q als Prisma mit recht-
eckiger Grundfliche aufgefaBt werden kann. Fiir einen Wiirfel W der Kantenléin-
genmaBzahl a folgt daraus V(W) = a3, fiir einen Einheitswiirfel W, also V(W;) =1,
womit die Normiertheit des Volumenfunktionals nachgewiesen ist.

Auf den Beweis der Tatsache, daB es nur eine Abbildung ¥ von P, in R, mit den
Eigenschaften (1), (2) und (3) gibt, soll hier verzichtet werden. Man kann sich ohne-
hin auf den , konstruktiven* Standpunkt stellen, daB die VolumenmaBzahl eines
Polyeders P die oben definierte Zahl V(P) ist.

AbschlieSend soll noch eine einfache Formel zur Berechnung der VolumenmaB-
zahl einer Pyramide hergeleitet werden. Ist P = P, ... P,Q eine Pyramide mit der
Grundfliche PP, ... P,, der Spitze @ und der HéhenmaBzahl 2 (MaBzahl des
Abstandes des Punktes Q von der Grundflichenebene), so kann das Grundflachen-
polygon in endlich viele Dreiecke 4,B,C; (+ = 1,2, ..., m) zerlegt werden. Die
Simplexe S; = 4,B,C,Q haben dann alle dieselbe Hohe beziiglich der Grundflichen



110 1. Axiomatischer Aufbau der Geometrie

m
A,B,C; und liefern eine Zerlegung P = X' S, der Pyramide P. Dann gilt
i=1

V)= E v(S) = £ 3 FABCY b
i=1 i=1

m
=+h X F(A4BC) =+ F(P,P,...P,)-h;
i=1
es gilt also folgender

Satz vom Volumen der Pyramide. Das Volumen einer Pyramide ist gleich
dem dritten Teil vom Produkt aus dem Grundflicheninhalt und der Hohe.

Selbstverstandhch kann das hier definierte Volumenfunktional V in Analogie zur
g und zur el taren Inhalt g in der Ebene als Homomorphis-
mus der kommutativen Halbgruppe (R,/ %, +) der Klassen zerlegungsgleicher Polyeder
in die kommutative Halbgruppe (R,, -+) der nicht negativen reellen Zahlen aufgefaﬂc
werden. Bemerkenswert ist aber, daB diese Analogie nicht weiter reicht: Die so inter-
pretlem Abbxldung V ist némlich nicht injektiv, d. h. auch kein Isomorphismus. Das
tet, daB es volu gleiche Polyeder P und Q gibt (V'(P) = V(Q)), die nicht zer-
legungsgleich sind. Die iiber %, erklirbaren Relationen ,,volumengleich‘ und ,,zerle-
gungsgleich‘ sind also im Gegensatz zum ebenen Fall nicht dquivalent — oder anders
ausgedriickt: Die Volumengleichheit zweier Polyeder ist notwendlg, aber nicht hinrei-
chend fiir ihre Zerleg leichheit. So ist beispielsweise ein regulires Tetraeder (Sim-
plex, dessen Kanten alle die gleiche Linge haben) nicht mit einem volumengleichen
Wiirfel zerlegungsgleich.

1.3. Allgemeiner Inhalt

In 1.1.5. und 1.2.5. wurde die Inhaltsmessung von Polygonen bzw. Polyedern einge-
fiihrt. Dieser Inhaltsbegriff hiel elementar, weil er sich auf cine besonders einfache
Klasse ebener bzw. raumlicher Punktmengen bezog, namlich die ,,geradlinig** bzw.
,,ebenflichig begrenzten‘‘ Punktmengen. Nun gibt es sowohl in der Ebene als auch
im Raum wesentlich allgemeinere Punktmengen, die fiir die Geometrie und ihre An-
wendung in der Praxis von groBer Bedeutung sind und fiir die eine Inhaltsmessung
erforderlich ist. Ziel dieses Kapitels ist es, fiir bestimmte Klassen ebener bzw. rdum-
licher nicht elementarer Punktmengen einen Inhaltsbegriff einzufiihren, den allge-
meinen Inhalt, der im hier behandelten Fall auch Jordanscher oder Riemannscher
Inhalt heiBt. Dabei wird man fordern, daB der neue Inhaltsbegriff eine Verallge-

inerung des el taren Inhalts ist, d. h., der allgemeine Inhalt soll auch von
Polygonen bzw. Polyedern gebildet werden kénnen und in diesem Fall mit dem
elementaren Inhalt iibereinstimmen. Da der ebene und der rdumliche Fall véllig
analog zu behandeln sind, werde in diesem Kapitel I, := F und I := V gesetzt,
s0 daB die zu lésende Aufgabe wic folgt formuliert werden kann: Es ist eine Fort-
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setzung Jp des elementaren Inhaltsfunktionals I, von B, auf eine Klasse £, von
Punktmengen des R* gesucht (k = 2, 3); dabei stehe R fiir die euklidische Ebene
(k = 2) bzw. den euklidischen Raum (k = 3).

1.3.1. Quadrierbare Punktmengen

Zunichst muB die Klasse £, der Punktmengen charakterisiert werden, auf welche
sich der allgemeine Inhaltsbegriff beziehen soll. Das geschieht in folgender

Definition. Eine PunktmengeP des R heiBit quadrierbar, wenn es zu jeder reellen
Zahl ¢ > 0 Elemente 4 und B aus P, gibt mit

ACPcCB und IB) — Iyd) <e.

Die Menge saller in diesem Sinne quadrierbaren Punktmengen des R sei {,.
Als unmittelbare Folgerung aus der Definition ergibt sich, da8 die quadrierbaren
Punktmengen beschrinkt, d. h. stets in einem geniigend groBen Wiirfel bzw. Qua-
drat enthalten sind. AuBerdem ergibt sich, daB8 Polygone und Polyeder quadrier-
bar sind: P, S Oy

Als besondere Klasse quadrierbarer Punktmengen sei ferner die der Nullmengen
erwiahnt: Eine Punktmenge N heillt Nullmenge, wenn es zu jeder positiven reellen
Zahl ¢ ein Element B aus B, gibt mit N < B und I(B) < ¢. DaB eine Nullmenge N
tatsichlich quadrierbar ist, ergibt sich aus 8 € N < B und 0 € B, mit I,(8) = 0,
also Ip(B) — I(8) = I(B) < ¢. Einfache Beispiele fiir Nullmengen sind die un-
eigentlichen Polygone im Fall k = 2 und die uneigentlichen Polyeder im Fall

= 3.

Bevor nun die allgemeine Inhaltslehre fiir £, entwickelt werden kann, benstigt
man noch eine frither nicht erwihnte Eigenschaft des elementaren Inhaltsfunktio-
nals. Es gilt folgender

Satz von der Monotonie des elementaren Inhalts. Aus A, B € P, und
A < B folgt I(A) < I(B).

Beweis. Aus A, B ¢ B, und A = B kann man auf die Existenz eines C € P,
schlieBen (eventuell C = @), so dafl B die elementargeometrische Summe von A und
C wird: A 4+ C = B. Daraus folgt mit der Additivitit von I, die Beziehung I,(A)
+ I(C) = I(B) und mit I,(C) = 0 schlieBlich I (A) < I(B).

Im folgenden soll fir A + C = B mit A, B, C ¢ ‘B, auch die elementargeometri-
sche Differenz A = B — C geschrieben werden, die fiir C © B ,,ausfithrbar* ist und
fiir welche dann
(1) I(A) = I(B) — 1.(C)
ist.
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Ferner gilt der

Satz von der erweiterten Additivitit des elementaren Inhalts. Fiir
alle A, B aus P ist
@ 1A uB) = I,(4) + I(B) — I(An B).

Beweis. Ist A n B uneigentlich, so ist [y(AnB)=0und AuB =4+ B,
dann féllt aber (2) mit der fritheren einfachen Additivitit zusammen. Ist A n B
€ Py, so gilt

IA uB) = I,(A + (B — (4 n B))) = I(4) + I(B — A n B)
und wegen A n B < B nach (1)
I(A v B) = I(4) + I(B) — I(A n B) .

Wie bei der Einfithrung der Polygone und Polyeder kénnen nun auch Operationen

iiber £, erklirt werden. Es gilt der

Satzvonden Operationen iiber £y Fiir beliebige quadrierbare Punktmengen
P und Q sind auch die Mengen P u Q, P n Q und P\ Q quadrierbar.

Beweis. Esseien P und Q aus £, und ¢ eine beliebige positive reelle Zahl. Dann
gibt es Elemente 4, und B, aus P, (¢ = 1, 2) mit

@®) A,cPcB, LB)-I4)<3

und

@ 4,CQcSB, LB) - L) <5

Aus (3) und (4) folgt

(5) A, vA,cPuQC B, uB,

und mit (2)

(6) Iu(B, u By) — Iy(A, u A;) = Iu(B,) + In(B;) — It(B, n B,)

— I(A)) — Ix(Ay) + (A, n A4y) .
Wegen A, n A, & B, n B, und der Monotonie von I; ist
14, n 4,) < I(B, n By) ,
und die linke Seite der Gleichung (6) kann abgeschiitzt werden durch
I(B, u B,) — Ii(4, u 4,) < Iu(B)) — I(4,) + I(B,;) — Ix(4,) ,
mit (3) und (4) gilt dann
LB, v By) — L4, uA) <5+ 5 =¢,

was mit (5) zusammen P u Q ¢ £, bedeutet.
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Andererseits folgt aus (3) und (4)
(7) A nA,cPnQSB nB,.
Nach dem Satz iiber die erweiterte Additivitit von Iy folgt
4 1A, n 4y) = I(A)) + 1(4,) — I(4, v Ay)
ung B
Iu(B, n By) = Ii(B,) + I(By) — It(B, u B,) .
Damit gilt
Ix(By 0 By) — I(A; n Ay) = I(By) — In(4,) + I(By)
— I(4,) + In(4, v A,) — I(B, v B,) .
Wegen (5) und der Monotonie von Iy ist I(4; v A4,) < I.(B, u B,), so daB unter
Beachtung von (3) und (4)

Iy(B, n B,) — I(4, n A,) < I(B)) — I(4,)
& &
+ I(B,) — I.(Ay) <gtg=c¢
wird, was mit (7) zusammen P n Q € £ bedeutet.

Zum Beweis von P \ Q € £, schlieBlich werde beachtet,daB P\ Q = P \ (PnQ)
gilt, so daB o. B.d. A. Q € P angenommen werden kann. Dann folgt aus (3)
und (4) zunéchst
(8) A1_(AlnBz)§P\QgB1_A2’
und die Differenz I;(B, — A;) — I(A, — (4, n B,)) = akann wie folgt abgeschitzt
werden:

a = I(B,) — I(4;) — I(4,) + I(4, n By),

a = I(B,) — I(A)) — I(4,) + I(A,)) + I(B,) — I(A, u B,) .
Wegen A, C A, u By, also I,(4,) = I(4, v By), ist weiter

a = Iy(By) — I(4)) +1:(B,) — Ix(4,) ,
nach (3) und (4) also a < ¢, was zusammen mit (8) schlieBlich P \ Q ¢ £ bedeutet,
womit der Satz vollstindig bewiesen ist.

AbschlieBend sei noch folgendes bemerkt:

1. Die scheinbar willkiirliche Forderung der Quadrierbarkeit an die zu messenden
Punktmengen erlaubt einmal die unmittelbare Folgerung P, < £y, zum anderen
1d Bt sich zeigen, daB bei Zulassung aller beschrinkten Punktmengen zumindest im
Fall k > 2 kein Inhaltsfunktional im Sinne von 1.3.2. gefunden werden kann.

2. Fiihrt man den Begriff des Randes einer Punktmenge ein, so ergibt sich fol-
gendes Quadrierbarkeitskriterium: Eine beschrinkte Menge P ist genau dann qua-
drierbar (P € £), wenn ihr Rand eine Nullmenge ist.
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3. Durch die Ansitze
Ji(P) :=sup {I;(A): Aec P nAC P}
und
4(P) := inf {Iy(B): B ¢ ¢ A P < B}
lassen sich die fiir alle beschrinkten Punktmengen P erklirten Funktionale des
inneren bzw. duferen (Jordanschen) Inhaltes erkliren. Damit gilt:

Pelye JyP) = JYP).

132, Jordanscher Inhalt

Nun kann in Analogie zum elementaren Inhalt der allgemeine Inhaltsbegriff fiir
£ eingefiihrt werden durch folgende

Definition. Unter Inhaltsmessung quadrierbarer Punktmengen wird die An-
gabe einer Abbildung J) von £ in die Menge R. der nicht negativen reellen Zahlen
mit folgenden Eigenschaften verstanden:

1) Aus P, Q¢ und P== Q folgt Jy(P) = J(Q) (Bewegungsinvarianz).

(2) Aus P,Qecf® und Pn Q=0 folgt Jp(P uQ)=J(P)+ J(Q)
(Additivitit).

(3) Ist W, ein Quadrat der SeitenlingenmaBzahl 1 (k = 2) bzw. ein
Wiirfel der KantenléngenmaBzahl 1 (k= 3), so gilt Jy(W;) =1
(Normiertheit).

Das Bild J(P) einer quadrierbaren Punktmenge P heiit Mafzahl des allgemeinen
oder Jordanschen Inhalts von P, die Abbildung J, allgemeines oder Jordansches
Inhaltsfunktional. Die Forderung (3) legt es wieder nahe, den Jordanschen Inhalt
einer Punktmenge P als Klasse aller Punktmengen @ mit J,(Q) = Ji(P) aufzu-
fassen und durch das formale Produkt aus Mafzahl und MaBeinheit anzugeben:
\P| = Jx(P) |Wil.

Bei dieser (axiomatischen) Einfiihrung des allgemeinen Inhalts erhebt sich sofort
wieder die Frage nach der Existenz und Einzigkeit des Funktionals J;. Zunichst
gilt der

Satz von der Existenz des Jordanschen Inhaltsfunktionals. Es gibt
wenigstens eine Abbildung Ji von £y tn R, mit den Eigenschaften (1), (2) und (8).
Beweis. Durch den Ansatz
Ji(P) :=sup {I(A): A e Pe AAS P}

ist wegen der Beschriinktheit der quadrierbaren Punktmengen eine (eindeutige)
Abbildung von £ in R gegeben. Wegen I,(4) = 0 fiir alle 4 aus P, ist auch stets
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J(P) = 0, also J, sogar eine Abbildung in R,. Bewegungsinvarianz (1) und Nor-
miertheit (3) ergeben sich ebenfalls sofort aus der Definition von J; und 0. Zum
Nachweis der Additivitdt (2) von J) seien P und Q quadrierbare Mengen mit
P n Q = 0. Dann gibt es fiir jede reelle Zahl ¢ > 0 Elemente 4,, 4,, B, B, € B; mit

9) A4, cPc B, ©L/(B)—I4) <%.
(10) 4,CQCB, LB)-Lid)< o

bzw.

(11) I(B,) + Li(B;) — (I(4,) + L(Ay) < ¢.

AuBerdem ergibt sich aus der Definition von J; und der Monotonie von I, noch
I(4,) = Ju(P) < I(By)

und
1I(4,) < Jx(Q) = I(By)
bzw.
(12) I(A4)) + LAy < Ju(P) + Ji(Q) = Lu(By) + 1I(By) .

Andererseits folgt aus (9) und (10)

A, vA,cPuQcS B uB,
und, da mit P n Q = @ auch A, n 4, = 0 gelten muB,

1.(4, u 4y) = In(4)) + In(Ay) < Ju(P v Q)

= Iu(B, u By) < I(B,) + I(B,)

bzw.
(13) I(A) + I(4,) = Ju(P v Q) < Ii(B)) + L(By) .
Da ¢ beliebig wihlbar ist mit ¢ > 0, besagen (11), (12) und (13) zusammen gerade
Ji(P u Q) = Ji(P) + Ji(Q), womit der Existenzsatz endgiiltig bewiesen ist.

Bevor die Frage der Einzigkeit des Funktionals J, untersucht wird, sollen aus
den Eigenschaften (1), (2) und (3) noch einige Folgerungen gezogen werden. Zu-
niichst gilt der

Satz von der Fortsetzung des Funktionals I;. Jede Abbildung J, von
£ tn R, mit den Eigenschaften (1), (2) und (3) vst eine Fortsetzung von I.

Beweis. Da I, die einzige Abbildung von ; in R, mit (1), (2) und (3) ist, mu8
fiir alle C € B, zwangsldufig I(C) = J,(C) gelten.

Ferner gilt der

Satz vonder Monotoniedesallgemeinen Inhalts. Jede Abbildung J, von
L in R, mit den Eigenschaften (1), (2) und (3) ist monoton, d. h., aus P, Q € Oy und
P c Q folgt Jy(P) = Ji(Q).
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Beweis. Esseien P, Q €0, mit P = Q. Dann ist nach dem Satz von den Opera-
tionen iiber 0 auch R := Q \ P eine quadrierbare Punktmenge. AuBerdem ist
R n P =9, so daB aus der Additivitit von J, die Beziehung J(R u P) = Ji(R)
+ Ji(P) folgt. Also ist Ji(Q) = Ji(R u P) = Ji(R) + Ji(P) und mit Jx(R) = 0
auch Jy(P) = Jx(Q)-

SchlieBlich gilt folgender

SatzvomallgemeinenInhaltalsobere Grenze. Fiir jede Abbildung J, von
£ tn R, mat (1), (2) und (3) gilt

Ji(P) = sup {I(C): C ¢ P, A C = P} fir Pey.

Beweis. Nach dem Satz von der Monotonie des allgemeinen Inhalts folgt fiir be-
liebiges 4, P € O, aus A — P zuniichst

Ji(4) < sup {Ji(C): € ¢ D, AC S P} < Jy(P).

Andererseits gibt es zu jeder reellen Zahl ¢ > 0 Elemente A und B aus B, mit
AC PC Bund I,(B) — I;(4) < e. Unter Beriicksichtigung des Satzes von der
Fortsetzung des Funktionals I, gilt also

I(A) < sup {Ii(C): C € P A C < P} < Ji(P) < Iu(B)
bzw. ’

0 < Ji(P) —sup {[(C) : C = P} < Ii(B) — I(A) < ¢,
also

Je(P) = sup {I(C): C e Py AC = P} .

Der beim Beweis des Existenzsatzes gegebene Ansatz ist demnach ,,zwangsliufig**;
unter Beriicksichtigung der Einzigkeit von I, gilt also auch der

Satz von der Einzigkeit des Jordanschen Inhaltsfunktionals. Es gibt
héochstens eine Abbildung von Ly in R, mit den Eigenschaften (1) bis (3).

Damit ist das eingangs gestellte Ziel erreicht: Das Jordansche Inhaltsfunktio-
nal J, ist die einzige Fortsetzung des elementaren Inhaltsfunktionals I; von P, auf
die Menge £, der quadrierbaren Punktmengen des R*.

Ergiinzend sei noch folgendes erwihnt :

1. Man hitte statt mit der oberen Grenze der elementaren Inhalte ,einbeschrie-
bener* Polygone bzw. Polyeder auch mit der unteren Grenze der Inhalte ,,umbe-
schriebener arbeiten kénnen — fiir quadrierbare Punktmengen P stimmen ném-
lich nach einer fritheren Bemerkung innerer und duBerer Jordanscher Inhalt iiber-
ein, so daB

Ji(P) =sup {I;(4): Ac Py AAS P} = inf {I(B): Be P A P < B}
gilt.
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2. Statt der vollen Klasse P, hiitte zu den ,,Uber-* bzw. ,,Unterdeckungen‘ der
Punktmengen P auch eine Teilklasse von B, ausgereicht, etwa die Menge aller
Quadrate bzw. Wiirfel oder auch die Menge aller ,,achsenparallelen Rechtecke
bzw. Quader (vgl. MfL, Bd. 5).

3. Das hier angegebene Verfahren des Ubergangs vom elementaren zum Jordan-
schen Inhalt bewirkt, falls es auf Q, angewendet wird, keine Erweiterung von Oy,
d.h., wenn X eine beliebige Punktmenge des R* ist, so daB sich zu jedem ¢ > 0 qua-
drierbare Punktmengen P und Q finden lassen mit P€ X< Qund Ji(Q) — J:(P)<e,
so ist auch X quadrierbar. In diesem Sinne ist die Menge £, bzw. das Jordansche
Inhaltssystem vollstindig.

1.33. Berechnung des Inhalts spezieller Punktmengen

Die im vorigen Abschnitt entwickelte Inhaltstheorie wird nun auf wichtige spezielle
Punktmengen angewandt, deren (Jordanscher) Inhalt berechnet werden soll. Die
dabei benstigten geometrischen Konstruktionen werden z. T. erst im zweiten Geo-
metrieband gerechtfertigt.

Zunichst wird eine ganz in einer Ebene « enthaltene Punktmenge betrachtet,
némlich der Kreis: Eine ebene Punktmenge

K := {P:|PM| < |AB| A P c o}

heiBt Kreisfliche mit dem Mittelpunkt M und dem Radius |AB|; die Menge
{P:|PM| = |AB| A P €x} heiBt Rand von K oder Kreislinte. Der Radius |4 B|
ist also die Linge der Verbindungsstrecken PM von Randpunkten P des Kreises
mit dem Mittelpunkt; jede solche Strecke soll selbst Radius genannt werden. So
wie in vielen Fillen die Kreislinie auch kurz ,,Kreis* genannt wird, soll im folgenden
der Zusatz ,,-fliche‘‘ weggelassen werden und kurz vom ,,Kreis* gesprochen werden
im Sinne der Kreisfliche, von der nun untersucht werden soll, ob sie eine quadrier-
bare Menge ist (K € £,). Wenn das der Fall ist, soll die InhaltsmaBzahl J,(K) be-
rechnet werden. Dazu werden zwei sich in M schneidende und zueinander senk-
rechte Geraden mit der Kreislinie zum Schnitt gebracht, was die Punkte P,, P,, P,,
P, liefere. Das Polygon P, = P,P,P,P, ist dann ein Quadrat, dessen Diagonalen
(wie alle durch M gehenden Verbindungsstrecken zweier Punkte der Kreislinie)
Durchmesser des Kreises heifien. Fiir P, gilt P, = K. Von M aus wird das Lot !
auf die Quadratseite P, P, gefillt; die Gerade I schneide die Kreislinie in den Punk-
ten Ty, Ty, durch welche die Parallelen ¢, zu g(P, P,) gelegt werden — ¢, hat mit der
Kreislinie keinen weiteren Punkt gemeinsam und ist deshalb Tangente in T,.
Werden auch beziiglich P,P; solche Geraden konstruiert, so entsteht schlieBlich
ein neues Quadrat Q, = Q,Q,0;Q,, welches wie P, das Symmetriezentrum M hat
und fiir welches K < Q, gilt (Abb. 1.32). Insgesamt ist P, = K < Q, mit F(Q,)
— F(P,) = 4r* — 2 = 2r%, wenn r = [(AB) die RadiusmaBzahl des Kreises K



118 1. Axiomatischer Aufbau der Geometrie

% 7 g
B @
B &
q 2, Abb. 1.32

ist. Die beiden Parallelen durch M zu den Quadratseiten schneiden die Kreislinie
in Punkten Py, Pgund P,, P, — es entsteht ein Achteck P, = K, zu dem wie heim
Ubergang von P, zu Q, ein Achteck Q, gefunden wird (K < @,), dessen Seiten
die Kreislinie beriihren und parallel zu denen von P, sind. KEs gilt

P,cP,cKcS Q. C Q.

Dieses Verfahren wird fortgesetzt. Es ist dann zu zeigen, dal F(Q,) — F(P) be-
liebig klein wird. Dazu wird die Seite P,P, des nach dem n-ten Schritt entstan-
denen Polygons P, betrachtet (Abb. 1.332). Dabei sei k, die HohenmaBzahl im
Dreieck P,MP, und a, = + (P,P,). Dann gilt nach der Dreiecksungleichung
0 <7 — hy < an. Da a, beliebig klein wird fiir wachsendes n, konvergiert die
Folge der h, gegen 7:

(14) limh, =r.

n-»oco

3)

Abb. 1.33
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Ferner gilt nach dem Strahlensatz (zweiter Teil)

1
(13) _‘;_lw = ’i‘

+ UQ:Q,) r
SchlieBlich ergibt sich fiir die InhaltsmaBzahlen der Dreiecke P,P,M und Q,Q,M:
(16) F(P,P,M) = UP.P) - ha, FQQM) =71QQ) 7.
Wegen F(P,) = 2"+*'F(P,P,M) und F(Q,) = 2"*'F(Q,Q,M) folgt also unter Be-
riicksichtigung von (15) und (16)

F(Py) (h.,)2

F(Qn) “A\r
Wegen (14) gilt fiir beliebiges ¢ > 0 bei geeignetem n also F(Q,) — F(P,)
2!
= F(Q,.)(l — (}-'i') ) < e. Der Kreis K ist also quadrierbar mit der InhaltsmafBzahl
r
17 Jo(K) = sup {F(Py)} .

Werden zwei Kreise K und K’ mit den RadiusmaBzahlen  und »' und demselben
Mittelpunkt M betrachtet, K und K’ sind konzentrisch (Abb. 1.33b), so ergibt sich
fiir die ,einbeschriebenen Polygone P, bzw. P, mit denselben Uberlegungen
F(P,) r\?
FP)~ (7)
und somit

(18) JoK) - 7’2 = Jy(K') - 1.

Setzt man fiir die InhaltsmaBzahl eines Kreises K’ der RadiusmaBzahl 7’ = 1 kurz
Jy(K') = =z, so gilt nach (18) folgender

Satz vom Flacheninhalt des Kreises. Die InhaltsmapBzahl eines Kreises K
mit der Radiusmafzahl r ist J,(K) = 7 - r2.

Dabei ist 7 eine transzendente Zahl, die etwa nach (17) mit beliebiger Genauig-
keit berechnet werden kann; ihr Wert ist naherungsweise 3,14159.

Wird die in einer Ebene & gelegene beliebige Punktmenge A durch eine Verschie-
bung v auf die nicht in « liegende Punktmenge A’ abgebildet, so heiBt die Punkt-
menge

Z:={P:PcAA' NAcANA =vd)}

in Verallgemeinerung des Begriffs ,,Prisma‘ Zylinder mit der Grundfliche 4, der
Deckfliche A’ und der HohenmaBzahl &, wenn &k die MaBzahl des Abstandes der
Ebenen o und v(x) ist. Es gilt folgender

Satz vom Zylindervolumen. Ist die Grundfliche A eines Zylinders Z mit der
Hohenmapzahl b eine quadrierbare Punktmenge mit der Inhaltsmafzahl Jy(A), so ist
auch Z eine quadrierbare Punktmenge, und es gilt Jy(Z) = Jyo(A) - k.
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Beweis. EsseiZ ein Zylinder mit der Grundfliche A, der Deckfliche v(4) = 4’
und der HohenmaBzahl k. Aus der Quadrierbarkeit von A folgt fiir jedes ¢ > 0

die Existenz von Polygonen B und C mit B A< C und F(C) — F(B) < %_

Ist X das Prisma mit der Grundfliche B und der Deckfliche »(B) und ¥ das Prisma
mit der Grundfliche C und der Deckfliche v(C), so gilt X Z < ¥ und V(Y)
— V(X) = h(F(C) — F(B)) < . Folglich ist Z quadrierbar mit
Jy(Z) =sup {V(X): XS Z} =h-sup{F(B): B A},
woraus Jy(Z) = h - Jy(A) folgt.
Fiir einen Kreiszylinder Z°, dessen Grundfliche ein Kreis mit der RadiusmaBzahl
7 ist, gilt also insbesondere J4(Z°) = nr2h.

Wird auBer der in einer Ebene « liegenden Punktmenge A ein Punkt S ¢ x be-
trachtet, so heiBt die Punktmenge

M:={(P:PcASAAcA)

Kegel mit der Grundflache A, der Spitze S und der HohenmaBzahl &, wenn die Hohe
der Abstand des Punktes S von der Ebene « ist. Dann gilt folgender

Satzvom Kegelvolumen. Istdie Grundfliche A eines Kegels M mit der Hohen-
mafzahl h eine quadrierbare Punktmenge mit der Inhaltsmapzahl Jyo(A), so ist auch
M eine quadrierbare Punktmenge mit der Inhaltsmafzahl

Jy(M) =+ Jy(A) - k.

Der Beweis ist vollig analog zum vorigen und kann dem Leser als Ubung iiber-
lassen werden.

Fiir einen Kreiskegel M, dessen Grundfliche ein Kreis mit der RadiusmaBzahl »
ist, gilt insbesondere Jy(M®) = 5 7rh.

Eine Punktmenge K des Raumes heilt Kugel mit dem Mittelpunkt M und der
RadiusmaBzahl 7 (r € R, 7 > 0), wenn K := {P: [(PM) < r} ist. Es gilt folgender

Satz vom Kugelvolumen. Jede Kugel K ist eine quadrierbare Punktmenge mit
der Inhaltsmapzahl J3(K) = + nr3, wenn r die Mafzahl des Kugelradius ist.

Beweis. Es sei K eine Kugel mit der Radiusma@zahl r = 7, und dem Mittel-
punkt M,. Eine Ebene &, durch M, zerlegt K in zwei zu x, symmetrische — also
kongruente — Halbkugeln. Es geniigt, eine dieser Halbkugeln (H) zu betrachten.
Der zu &, senkrechte Halbkugelradius wird in » kongruente Teilstrecken zerlegt,
und durch jeden der entstehenden Teilpunkte Py, P,, ..., P,_; wird eine zu «,
parallele Ebene & gelegt. Der Durchschnitt o« n H ist ein Kreis K, mit der Radius-
maBzahl ry (¢t =0, 1,..,n — 1). Auf diesen Kreisen K; werden gerade Kreiszy-

linder Z, Z; mit der HohenmaBzahl o ,,nach beiden Seiten errichtet*, so daBl K;
n
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Abb. 1.34

jeweils Grundfliche von Z; und Deckfliche von Z, ist (Abb. 1.34 stellt das Ver-
fahren im Querschnitt dar). Mit

Sp:=2,uZ,u-UZ,; und S,:=2ZuZ;u- VZ,_,
gilt

(19) S,cHCS,.
Aus Abb. 1.34 liest man ferner nach dem Satz des PYTHAGORAS ab, daB
r 2
Qz+,g=(i._°) +r=n
n

ist. Damit wird

n-1 n—1 r 7".3 n—1 22
(20) JsSp) =2 Jy(Z) =L wr? L ="2 3% (1 - _2)

=1 i=1 n N =l n
und

n—1 3 n-1 ;2
@) JS) =T sz =2 (1 - %)»

i=0 N i=0 n
so daf}

. nry

(22) Js(sn) - J,(S,,) = 7 <e

fiir beliebiges ¢ > 0 bei geniigend groBem = gilt. Wegen der Vollstindigkeit des
Jordanschen Inhaltssystems (vgl. Bemerkung 3 in 1.3.2.) bedeutet (22) zusammen
mit (19), daB die Punktmenge H quadrierbar ist, und mit (19) gilt

(23) J3(Sn) = Jy(H) = Jy(S)) -

Zur Berechnung der InhaltsmaBzahl J,(H) werden die Beziehungen (20) und (21)
weiter ausgewertet. Es gilt

nH1 g2 1 3.
(20") J3(Sn) = nry X (— - —3) = m'g(l -5 2 z’)

i=1 \N" n n'i=0
und

, n-1/1 72 1 n5t

(21 Jo(Sy) =ar§ X (— - 7?) = nrg(l -2 i’).

i=0 \ 7 N im0
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Mit der durch vollstindige Induktion leicht zu bestitigenden Ungleichung
n—1 n3 n .
el <Xre
i=0 3 im0

folgt aus (20') und (21’) insgesamt

Ja(Sa) <ard (1 — 3) < Jy(S,)
bzw.

(24) J3(Sn) < '%"”3 < J:,(S;) .

Nach (22), (23) und (24) ist |J3(H) — % ard| < e fir jede beliebige reelle Zahl ¢ > 0,
also Jy(H) = %+ ard. Fiir die MaBzahl dcs Volumens der ganzen Kugel K mit » = 7o
gilt demnach

Jo(K) =+

1.4. AbschlieBende Bemerkungen

Wird eine mathematische Theorie axiomatisch aufgebaut, so wird an das zugrunde
gelegte Axiomensystem die natiirliche Forderung gestellt, daB es in sich widerspruchs-
frei sei, d. h., da8 es nicht méglich sei, aus den Axiomen eine Aussage und zugleich
deren Negation herzuleiten. Die Widerspruchsfreiheit eines Axiomensystems weist man
gewohnlich durch Angabe eines Modells nach. Bei dem im vorliegenden Aufbau be-
nutzten Axiomensystem kann das so geschehen, daB fiir die Grundbegriffe wie Punkt,
Gerade usw. Realisierungen innerhalb der Theorie der reellen Zahlen angegeben werden,
so daB die Axiome — die dann als Aussagen iiber diese Realisierungen aufgefaBt werden
— bewiesen werden kénnen. So realisiert man fiir die Geometrie der Ebene die Menge
der Punkte als die Menge aller geordneten Paare (z, y) reeller Zahlen, die Geraden als
Losungsmengen linearer Gleichungen der Form ax + by + ¢ = 0 mit a? + b* * 0, und
es ist leicht, fiir die so erkldrten ,,Punkte‘‘ und ,,Geraden‘‘ die Axiome (1) bis (4) aus
1.1.1. nachzuweisen. Die Ordnungsrelationen auf den kollinearen Punktmengen werden
durch Ordnungsbeznehungen zwischen den die Punkte realisierenden Zahlenpaaren

realisiert, die Bewegungen durch gewisse lineare Abbildungsgleichungen fiir die Zahlen-
pa.are, und die betreffenden Axlome kénnen dann bewiesen werden; die Einzelheiten
6 der analytischen G ie (vgl. MfL, Bd. 7) entnommen werden. Das vor-

liegende Axiomensystem wird auf diese Weise als widerspruchsfrei relativ zur Theorie
der reellen Zahlen nachgewiesen.

Eine weitere wiinsch rte Eig haft von Axic yst ist die der Unab-
héngigkeit. Sie bedeutet, da keines der Axiome aus den iibrigen Axiomen hergeleitet
werden kann, oder, noch schirfer — da viele Axiome schon aus mehreren Teilaussagen

bestehen —, daB keine der im Axi )ystem angegeb A aus den anderen
Aussagen des Axiomensystems herleitbar ist, kurz, daB das Axnomensystem keme
iiberfliissigen Aussagen enthélt. Diese Eigi haft hat das vorliegende A

nicht; man vergleiche hierzu z. B. die Bemerkungen im AnschluB an Axnom (5) in
1.1.1,, auch im Bewegungsaxiom (9) in 1.1.3.1. kénnte eine Reihe von Aussagen aus den
ibrigen hergeleitet werden (so geniigt in (B1) der letzte Satz, (B3) kann hergeleitet
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werden). Strebt man némlich nach Unabhingigkeit aller A des Axi
bzw. nach Einschriankung der in den Axiomen gestellten Forderungen, so verlioren die
Axiome an Ubersichtlichkeit, und es hen sich Beweise vieler ,,einfacher*, im Aufbau

am aniang stehender Aussagen erforderlich, aber gerade solche Beweise bereiten oft
ziemliche Miihe. Es ist also auch eine psychologisch-methodische Frage bzw. eine
Frage der Bequemlichkeit, ob man ein Axiomensystem umfangreicher als unbedingt
notig wihlt oder nicht. Die im vorliegenden Axiomensystem herrschenden Abhéngig-
keitc.. ".eziehen sich jedoch hauptsichlich auf Teilaussagen von Axiomen, die einzelnen
Axiome als Ganzes genommen sind weitgehend voneinander unabhiingig. Ein markan-
tes und historisch interessantes Beispiel ist das Parallelenaxiom (4). Wird es durch
seine Negation ersetzt und werden alle anderen Axiome (auBer (5), das ja wesentlich auf
(4) aufbaut) beibehalten, so erhilt man ein widerspruchsfreies Axiomensystem, das zur
Begriindung der sogenannten hyperbolischen nichteuklidischen Geometrie dienen kann.
Die Ausfithrungen des vorliegenden Bandes geben fir einen Aufbau der Geometrie
nur eine Grundlage. Daher ist einc Vielzahl von Sitzen und Begriffen, die iiblicherweise
zur elementaren Geometrie gerechnet werden und deren hauptsdchlichen Inhalt aus-
hen, nicht ausgesprochen bzw. angegeben worden. So fehlen z. B. viele Sitze iiber
Dreiecke und andere Vielecke, es fehlen Sitze iiber Kreise (wie Peripheriewinkel- und
Sekantensatz), es fehlen die Tngonometne und die Ahnlichkeitslehre. Zu all solch
Begriffen und Sétzen sei gesagt, da8 sie sich auf Grund der in diesem Band eingefiihrten
Axiome, Begriffe und Sitze formulieren und beweisen lassen. Der Leser wird das be-
stitigt finden, wenn er irgendeinen dieser Sitze mit einem zugehérigen Beweis etwa
in einem Schullehrbuch nachliest. Im zweiten Geometrieband (MfL, Bd. 7) wird der
eine oder andere derartige Begriff oder Satz noch angegeben bzw. bewiesen, aber eine
Reihe dieser Satze wird auch als bekannt vorausgesetzt.




Tabelle zur Bezeichnung bei GréBenangaben

j Zahlenbereich
Geometrisches Name und abstrakte De- | fiir die MaB- Symbol und
Objekt finition der ,,GroBe‘ : zahlen (Ent- Name der
Je des Objektes artungsfille MaBeinheit
zugelassen)

Strecke AB . Linge |4 B| reelle Zahl 2 m Meter

= Klasse kongruenter mit z = 0

Strecken
Polygon(fliche) Flicheninhalt |4, ... 4, reelle Zahl z m?Quadrat-
A4, ... A, = Klasse flichengleicher nitz = 0 meter

(= zerlegungsgleicher)

Polygonflichen
Polyeder(korper) t Volumen |4, ... 44| reelle Zahl z m?® Kubik-
4,..4, ! = Klasse volumengleicher mitx = 0 meter

Polyederkérper
gerichtete Linge m(4B) beliebige reelle | m Meter
Strecke AB in = Klasse gleichgerichteter ~ Zahl =
der orientierten kongruenter Strecken
Geraden
orientierte Flicheninhalt m(4, ... 4,)  beliebige reelle | m? Quadrat-
Polygonfliche = Klasse gleichorien- i Zahl x meter
A, ... Ay in der tierter flichengleicher
orientierten Polygonflichen

Ebene
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Zahlenbereich
Geometrisches Name und abstrakte De- fiir die Mag- Symbol und
Objekt finition der ,,Gro8e‘ zahlen (Ent- Name der
) des Objektes artungsfille MaBeinheit
zugelassen)

orientierter Volumen m(4, ... 4,) beliebige reelle | m® Kubik-
Polyederkérper = Klasse gleichorien- Zahl z meter
A ... A, tierter volumengleicher |

Polyederkérper i
El tarwin- El tarwinkelgroBe | reelle Zahl = ° Grad
kel X ABC | ABC| mit 0 < z

= Klasse kongruenter = 180

Elementarwinkel
Winkel WinkelgréBe reelle Zahl x ° Grad
X (ABC; P+) |X (ABC; P+)| mit 0 < 2

= Klasse kongruenter - =360

Winkel
orientierter Ele- GroBe des orientierten Ele- | additive Rest- | © Grad
mentarwinkel mentarwinkels m( 4BC) | klasse
¥ ABC in der = Klasse gleichsinnig x mod 360
orientierten kongruenter orientierter (mit beliebigem
Ebene Elementarwinkel | reellen x)
orientierter GrofBe des orientierten reelle Zahl « ° Grad
Winkel Winkels m (< (4BC; P*)) | mit —360 < =
X (ABC; P+) = Klasse gleichsinnig = 360
in der orien- kongruenter orientierter
tierten Ebene Winkel
DrehprozeB 4 GroBe m(A4) des Dreh- beliebige reelle | ° Grad

in der orien-
tierten Ebene

prozesses
= Klasse gleichsinnig
kongruenter Drehprozesse

Zahl z
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