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2. Andlylische Darstellung der euklidischen Geometrie

21.  Die Methode der analytischen Geometrie

21.4.  Andlytische Geometrie und verwandte Disziplinen

Die Methode der analytischen Geometrie besteht darin, mittels eines Koordi-
natensystems eine bijektive Abbildung zwischen geometrischen Objekten und Objekten,
die aus Zahlen gebildet werden, herzustellen. Dadurch entsteht eine neuartige Mog-
lichkeit, im Bereich der Geometrie Schliisse zu ziehen: Man geht von den geo-
metrischen Voraussetzungen eines Schlusses zunichst durch die genannte Ab-
bildung (x) zu Voraussetzungen fiir Zahlen iiber. Aus diesen gewinnt man nach
den fiir Zahlen geltenden Gesetzen SchluBfolgerungen (g), die man abschlieBend
in die Geometrie zuriick iibertrigt (x~!) (vgl. Abb. 2.1).

Der Namo ,,umzlytuche Geomarw“ fiir dieses Verfahren ist mit dem heutigen mathe-

Sp: h des Wortes ,,analytisch‘‘ nicht gut zu erkliren. Er lehnt
sich einerseits an das der Philosophie entnommene Begriffspaar ,,analytisch*—,,syn-
thetisch* an, splegelt also dle Vorstellung wider, da da.s SchluBfolgem fir Zahlen
mehr rech dernd (analysi d) sei, wihrend ein rein geometrisches Schlie-
Ben mehr konstmktlv (synthetisierend) vorgehe So nennt man auch heute noch
geometrische Verfahren dann ,,synthetisch’‘, wenn sie ohne Koordinaten, nur mit
geometrischen Objekten, Satzen und Konstruktionen arbeiten.

Andererseits entspricht der Name ,,analytische G trie‘‘ dem th tisch

Sprwhgebruuch aus der Zeit (etwa bis 1850), als man alle zahlenméBigen Unter-
noch ,»Analysis* nannte. Ma.n untersohled dnrm die ,,analysis

finitorum** (,,Un h des Endlichen*, arith gen) von
der ,,analysis infinitorum* ( (,»Untersuchung des Unendhchen 3 dm‘a.us entste,nd — ur-
spriinglich also als Abkiirzung — der Name Anal; fir Dif 1-, Int
usw.).

]:bemaoh konnte man daran denken, die nna.lytnsche Geometrie heut,e et,wa ,elge-

o' zu zumal sich d trischen U

und Verallgememerungen, die. wesenthch von der . Ana]ysns (1m heuhgen Smne) Ge-
zu einer andigen Disziplin, der Differ lg ie, ausg
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haben. Jedoch ist der Name algebraische Geometrie bereits fiir eine andere neuere
Disziplin iiblich geworden. Diese ist aus der algebraischen Diskussion von sogenannten
Kurven und Flachen hoheren als zweiten Grades entstanden; in ihr werden (oft weit-

hend) verallg, te ,,g trische'* Objekte mit modernen algebraischen und
topologlschen Methoden untersucht.

Voraussetzungen e Behauptung
AAAAAAAAAAAN
fiir Zahlen fiir Zahlen
*® x71
v
Geometrische Geometrische
Voraussetzungen c Behauptung
== Zuordnung vermittels Koordinaten
Mng SchlieBen mit Zahlen (,,Rechnen*‘)
-7 SchlieBen mit geometrischen Objekten
(Sy"““ +icnh g trisches SchlieB )

-1
;bv\lgf\/% analytisch-geometrisches SchlieBen
Abb. 2.1

Daher wird auch heute noch die traditionelle Bezeichnung ,,analytische Geometrie‘
beibehalten fiir die — unmittelbar an das Einfiihren von Koordinaten anschlieBende —
Theorie der sogenannten Gebilde ersten und zweiten Grades. Darin benétigt man als
,,analytischen‘* (d. h. aritk isch-alget hen) Bestandteil h achlich die lineare
Algebra mit ihren Hilfsmitteln (vgl. das sch tisch vereinfacht D)agrumm Abb. 2.2).

In den folgenden Abschnitten soll nach Gewinnung der Koordinaten méglichst
schnell mit Hilfe des Vektorbegriffs der AnschluB an die lineare Algebra hergestellt
werden. Die Aussagen iiber lineare Unterriume (Vektorraume), Gleichungs-
systeme, Matrizen, Determinanten, skalares und vektorielles Produkt aus MfL
Band 3 sollen dann fiir das weitere analytisch-geometrische Arbeiten genutzt
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werden. Die in MfL Band 3 zur Veranschaulichung vorgreifend eingefiigten geo-
metrischen Bemerkungen werden dagegen im folgenden nicht vorausgesetzt.

Differential- Algebraische
geometrie Geometrie
£ AN an

Analysis Algebra
. (Differential-, Topologie
Integralrechnung) Lineare Algebra
(Vektorraume,
Matrizen,
Determinanten)
Il

Y

Analytische Geometrie

Gebilde ersten Grades «—
Gebilde zweiten Grades«' | algebraische Gebilde<{-———-"
1—-> Gebilde héheren Grades

~~4 - nichtalgebraische Gebilde

Abb. 2.2

2.1.2.  Abszissen auf einer Geraden

Fiir die Geometrie auf einer Geraden g vermittelt bereits der Satz von der
Zahlengeraden (vgl. 1.1.4.) eine bijektive Abbildung x:g — R. Die in jenem Satz
willkiirlich auf g zu wihlenden Punkte O, E nennen wir Anfangspunkt (Nullpunkt
oder Ursprung) bzw. Einheitspunkt (Einspunkt). Man nennt das System aus g
und den Punkten O, E (sowie, zuweilen noch mit in die Bezeichnung einbezogen,
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der Abbildung x) ein Koordinatensystem von g. Darin heiBt g die Achse, ferner
OE+*, OE- die positive bzw. negative Halbachse des Koordinatensystems.

Fiir P € g heiit die Zahl x(P) die Koordinate oder Abszisse von P. Besonders
einfach 1Bt sie sich mit Hilfe des Begriffes der gerichteten Strecke AB (Strecke
mit festgelegter Reihenfolge der Endpunkte 4, B¢ g) und ihrer (vorzeichen-
fahigen) Linge m(AB) beschreiben. Diese Léinge m(A4B) ist dadurch definiert,
daB ihr Betrag |m(4B)| := |4 B| gesetzt wird und daB m(4B) im Fall 4 & B,
d. h. |4B| & 0, positiv bzw. negativ sein soll, je nachdem, ob die Strahlen OE*,
AB* gleichorientiert bzw. entgegengesetzt orientiert sind. Wir bemerken, daB
hiernach fiir 4, B, 4’, B’ ¢ g genau dann m(4 B) = m(4’B’) gilt, wenn die Vektor-
gleichheit b(4B) = b(A’B’) besteht; denn die Verschiebungen (Vektoren) sind
die einzigen kongruenz- und orientierungserhaltenden Abbildungen in g.

Nach der Definition von % in 1.1.4. ergibt sich nun: Die Abszisse von P (€ g)
ist die MaBzahl von m(OP), bezogen auf die MaBeinheit m(OE) (= |0OE|). Um
diesen Zusammenhang noch iibersichtlicher zu formulieren, pflegt man in der
analytischen Geometrie den folgenden ,abstrakten Standpunkt der Lingen-
messung‘‘ einzunehmen: Die MaBeinheit |OE| wird der Zahl 1 ,gleichgesetzt*.
Damit hat man jede Linge |AB| bzw. m(4B) mit ihrer Mafzahl ,gleichgesetzt*.
Man ,,schreibt** also die bijektive Abbildung L — R von der Menge L aller Léngen
m(AB) auf die Menge R, die jeder Linge ihre MaBzahl zuordnet, ,,als Identitat‘
L = R. Ein solcher Vorgang des Identifizierens dient in der Mathematik auch
sonst zuweilen zur Vereinfachung der Ausdrucksweise. Von diesem ,,abstrakten
Standpunkt‘‘ aus konnen wir abschlieflend feststellen: Die Abszisse = := %(P)
von P (€ g) tst '

z = m(OP). (1)

2.1.3. Koordinaten in der Ebene und im Raum

In der analytischen Geometrie der Ebene werden die Punkte auf Zahlenpaare
(2, 7,) € R X R abgebildet, in der analytischen Geometrie des Raumes auf Zahlen-
tripel (z;, 25, 23) € R X R X R. Um die Gewinnung dieser Abbildungen weitgehend
gemeinsam zu fassen, bezeichnen wir die Ebene mit R2 und den Raum mit R3. Unter
Verwendung eines Buchstabens n, der die Werte 2 und 3 (spiiter, ab 2.1.4., auch
groBere Werte) annimmt, konnen wir die Zielstellung einheitlich angeben: Die
Punkte des n-dimensionalen euklidischen Raumes R™ sollen auf n-Tupel (z,, ..., T)€R®
abgebildet werden. (Das hochgestellte » bedeutet bei R® die Dimension, bei R®
die Anzahl der ,,Faktoren* in R X -+ X R.) Der Leser formuliere jede von jetzt
an auftretende Aussage iiber den R" in diesem Sinne einmal fiir n = 2, einmal
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fiir » = 3. (Auch der Fall » = 1, also die Gerade R?, 1aBt sich den meisten fol-
genden Aussagen unterordnen, héufig allerdings erst in sinngeméaBer Verein-
fachung.)

Wir wiiblen im BR" eine Gerade g, und auf ihr zwei Punkte O, E, (& 0). Wie in
2.1.2. setzen wir |OE,| = 1. Ist n > 1, so gibt es im R"™ eine zu g, senkrechte
Gerade g, durch 0. Ist n = 3, s0 gibt es im R™ eine zu &(g,g,) senkrechte Gerade g,
durch 0. Auf jeder der Geraden g, (v = 2, 3) gibt es genau zwei Punkte im Ab-
stand 1 von O; je einen von diesen wihlen wir und bezeichnen ihn mit E,. Der
Punkt O heiBt Anfangspunkt (Ursprung), die Gerade g, (v = 1, ..., n) jeweils die
v-te Achse, der Punkt E, ihr Einheitspunkt. Nennen wir die Strahlen OE}, OE;
positive bzw. negative Halbachse von g,, so kénnen wir auf der Geraden g, mit
dieser Orientierung wieder (vorzeichenfihige) Lingen m(4 B) gerichteter Strecken
AB c g, definieren. Das System aus O, den g,, den E, (zuweilen auch noch aus
der zu definierenden Abbildung x) heiBt ein Koordinatensystem des R".

Ist nun P € B gegeben, so wird als Bild »(P) das folgendermaBen gewonnene
n-Tupel (2, ..., ¥4) definiert: Im Fall n = 2 (Abb. 2.3) sei u := g, gesetzt. Die zu
gs perallele Gerade b durch P schneidet % in genau einem Punkt Q. Seine Ko-
ordinate (beziiglich des Koordinatensystems mit dem Anfangspunkt O und dem

9,
T2 P
Xz fz
U 2] a e Abb. 2.3
|

Einheitspunkt E; auf der Achse g,) sei z;. Die zu u parallele Gerade v durch P
schneidet g, in genau einem Punkt T,. Seine Koordinate (beziiglich des Koordi-
natensystems mit O, E, auf g,) sei ;. Damit sind z,, x, definiert.

Im Fall » = 3 (Abb. 2.4) sei  := £(g,9,). Die zu g; parallele Gerade » durch P
schneidet » in genau einem Punkt @. Sein Koordinatenpaar (beziiglich des Ko-
ordinatensystems mit dem Anfangspunkt O und den Einheitspunkten E,, E, auf
den Achsen g,,g,) sei (;, z,). Die zu u parallele Ebene v durch P schneidet gy
in genau einem Punkt T';. Seine Koordinate (beziiglich des Koordinatensystems
mit O, E; auf g,) sei 2. Damit sind 2, 2,, 2, definiert.
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93

Abb. 2.4

9

Den Beweis, daB x bijektiv ist, kann man schrittweise fir » = 2 und dann
n = 3 erbringen. Es geniigt dazu (vgl. 2.1.6., Aufgabe 1) nachzuweisen, daB der
R* durch die in beiden Fillen genannten Konstruktionen bijektiv auf die Menge
aller Paare (@, T») mit Q € u, Ty, € gn abgebildet wird. Nun wird in der Tat ein
solches Paar (Q, T,) genau dann durch diese Konstruktionen aus einem Punkt
P € R erhalten, wenn P sowohl auf der zu g, parallelen Geraden k2 durch Q als
auch auf der zu u parallelen Geraden bzw. Ebene v durch T, liegt. Da h und v
genau einen Schnittpunkt haben, ist hiermit die behauptete Bijektivitit bewiesen.
Die Zahlen z,, 2,, x5 heiBen erste, zweite, dritte Koordinate (oder Abszisse, Ordinate,
Applikate) von P. Zur Vereinfachung schreibt man auch @ := @,y :=x,,2 := 2,.

Um (1) zu verallgemeinern, nennen wir im Fall » = 2 den Punkt @ auch T,
(Abb. 2.5). Dann ist OT,PT, das achsenparallele Rechteck mit OP als Diagonale.
(Wir gebrauchen dabei die' Bezeichnung ,,Rechteck auch in Entartungsfillen
Peg, oder Pecg, Ahnliches gilt schon fiir die ,,Strecke” OP in (1), wo P = 0
zugelassen war, sowie auch spiter fiir den ,,Quader*’.) Ferner bestimmen wir im
Fall » = 3 (Abb. 2.6) analog wie eben das achsenparallele Rechteck OT,QT,,
wonach T, T,, Ty Eckpunkte der von O ausgehenden Kanten in dem achsen-
parallelen Quader mit OP als Kérperdiagonale sind. Aus der Betrachtung der so
ermittelten Rechtecke bzw. Quader folgt

Satz 1. Die v-te Koordinate eines Punktes P € R™ ist
z, =m(0T,),
wobei T, der Fuppunkt des Lotes von P auf g, ist.
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Zuweilen schreibt man x: R® — R" als ,,Identifikation", also statt #(P) = (z;, ..., Tp)
bzw. P = x7(x,, ..., T,) einfach P = (z,, ..., z,). Wir wollen diese erneute Identifi-
kation begrifflich und in den Formeln nicht vornehmen, sprachlich allerdings statt
der Ausdrucksweise ,,der Punkt mit dem Koordinaten-n-Tupel (z,, ..., x,)* die kiirzere
Wendung ,,der Punkt (z;, ..., 2,)" zulassen. In der Schule wird noch die Schreibweise
P(z,, ..., z,) gebraucht, d. h. die Zuordnung x durch blo8es Hintereinanderschreiben
ausgedriickt.

2.1.4. Hoherdimensionale Rdume

Die Abbildung von Punkten auf n-Tupel (» = 1,2, 3) kann man zum AnlaB
nehmen, auch fiir n > 3 den Begriff des n-dimensionalen euklidischen Raumes R™
zu bilden. Seine Punkte werden durch n-Tupel (zy, ..., #,) charakterisiert; wir
sprechen wieder von ,,dem Punkt mit dem Koordinaten-n-Tupel (z;, ..., za)‘ oder
kiirzer von ,,dem Punkt (z,,...,z,)“. Zum geschichtlichen Auftreten der Be-
trachtung hoherdimensionaler Réume vgl. MfL Band 4, 1.5.

Im folgenden ergibt sich nunmehr fiir das Verstindnis von Aussagen iiber den
R" auBer den beiden Moglichkeiten n = 2, 3 noch eine dritte: Wird ein geome-
trischer Begriff im R (» < 3) analytisch charakterisiert und bleibt der Wortlaut
dieser Charakterisierung auch fiir » > 3 sinnvoll, so fasse man ihn fiir n > 3 als
Definition eines analogen Begriffes im R" (n > 3) auf. Das weitere analytisch
herleitende Arbeiten mit den so charakterisierten (n < 3) bzw. definierten (n > 3)
Begriffen erfolgt dann fiir alle # einheitlich. Jedoch sei dem Leser geraten, auch
dabei stets die Fille n = 2, 3 zu vermerken.
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Die folgenden einfachen Beispiele mégen diese Arbeitsweise erliutern: Als Fol-
gerung aus Satz 1 ergibt sich, daf man im R" (n < 3) die »-te Achse g, charak-
terisieren kann als

gy = {# 1@y Ta) 1 F v >, =0} (2)
Hierauf definieren wir: Im E* (n > 3) heifit die Menge (2) die »-te Achse des Ko-
ordinatensystems. Ebenso laft sich die Aussage, der Punkt auf g, mit z, = 1 sei
der Einheitspunkt der v-ten Achse, im R™ (n < 3) aus Satz 1 folgern, im R" (n > 3)
aber als Definition des Begriffes Einheitspunkt verwenden. Fiir alle n = 2 ein-
heitlich kann man aus (2) z. B. die Aussage herleiten, daB g, n -+ n g, der Punkt
., 0) ist. Er ist der Anfangspunkt oder Ursprung des Koordinatensystems (dies

gilt wieder fiir n < 3 als Satz, fiir n > 3 als Definition).

2.1.5. René Descartes, Pierre de Fermat und ihre Beitrdge zur Heraus-
blldung der analytischen Geometrie

Die Zeit, in der sich der Grundgedanke der analytischen G trie h bildet:

1aBt zugleich erkennen, welche gesellschaftlichen Bedingungen die Entstehung dieses
mathematischen Grundgedankens erméglichten und erforderten. Es war die Zeit des
er kenden Frithkapitali: in der ein rascher Aufschwung der Produktivkrafte
sowohl durch verstnkbe Arbeitsteilung als auch durch bis dahin ungekannte Aus-
nutzung von Naturkriften und Naturgesetzen stattfand. Fir diese Entwicklung
typisch sind die Manufakturen und die zur Verrichtung zahlreicher mechanischer
Leistungen konstruierten Maschinen. Im Interesse der sich formierenden neuen Klasse

der Bourgeoisie erhielten die Naturws. haften einen Aufschwung, der sie in groSer
Breite iiber den seit der Antike erreichten Sta.nd hinauswachsen lieB. Man begann
die Grundg der Mechanik, Ki: tik, Optik usw. umfassender zu formulieren

und anzuwenden. Es zeigte sich, daB hierfiir eine Mathematisierung der Naturwissen-
schaft erforderlich war und da8 innerhalb der Mathematik vor allem die neuartigen
praxisbezogenen Anforderungen an die Geometrie von dieser die Gewinnung einheit-
licher Methoden und eine engere Verbindung zu den iibrigen mathematischen Diszi-
plinen verlangten.

Vorformen und Elemente der analytischen Geometrie fanden sich z. B. bei der Be-
handlung der Kegelschmtte durch AroLLONIUS VON PERGA (etwa 260—170 v.u. Z.),
ferner bei phil lastisch orientierten grafischen Darstellungen variabler
»»Quantitaten‘ durchN OREsME (1323 —1382), bei kinematischen und astronomischen
Kurvenuntersuchungen durch J. KepLER (1571—1630), G. GALILET (1564—1642),
E. TorrICELLI (1608—1647) u. a. Eine wichtige Voraussetzung fiir das Entstehen
der analytischen Geometrie waren auch die in der Behandlung allgemeiner Gleichungs-
typen unter Verwendung von Buchstabensymbolen seit F. VIiTE (latinisiert: VIETA,
1540—1603) in der Algebra erreichten Fortschritte.

Nach diesen Vorlaufern haben wir als Begriinder der analytischen Geometrie R. DEs-
cABTES und P. pE FERMAT anzusehen. RENE DESCABTES (latinisiert: CARTESIUS), 1596
in Frankreich geboren, hatte einige Zcit im Heer MorITz VON ORANIENS am DreiBig-
jahrigen Krieg teilgenommen, lebte dann in den von den Spaniern befreiten Nieder-
landen und starb 1650 in Schweden. Im Jahr 1637 veréffentlichte er anonym ein
Buch ,,Discours de la méthode', in dem er die Methode einer einheitlichen wissenschaft-
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lichen Erkenntnis darzulegen versuchte Anders als die scholastisch-kirchliche Philo-
sophie war sie (ideali 1l fundiert (cogito, ergo sum: ich denke, also bin
ich). In dieses allgemem phllosoph)sche Prinzip ordnete nun DESCARTES im letzten
Teil des ,,Discours'’ Beispiele geometrischer Unt hungen nach dem einheitlich
Verfahren un, vermittels Strecken- (Koondmaten -)relationen geometrische Orter als Ge-
raden, K hnitte usw. hzuweisen oder durch Gleichungen héheren Grades zu
kennzeichnen.

hurz zuvor hatte PIERRE DE FERMAT eine Abhandlung ,,4d locos planos et solidos
isagoge’* (Emfuhrung in die Theoric der Geraden,| Kreise (= Kurven der ebenen Ele-
mentargeometrie) und Kegelschnitte (= Schnitte des rdumlichen Kegels)) verfaBt, die
aber erst 1679 postum verdffentlicht wurde. FERMAT lebte 1601 —1665 als Jurist in
Toulouse. Er ist bedeutend als Vorlaufer der Differential- und Integralrechnung, in
zahlenth 2: Untersuchungen sowic mit Pascar) als Begriinder
der Wahrscheinlichkei 2} In der ,Isagoge‘* bringt er das Prmztp, Kurven
durch Gleichungen zu erfassen, explizit zum Ausdruck; algebraisch-b
nisch geht er nicht wesentlich tiber die Vietaschen Verbesserungen hinaus. DESCARTES’
,,Discours** hingegen enthilt wichtige Neuerungen des formalisierten Ausdrucks (z. B.

die Exponentenschreibweise z" und l/ z). Ferner befreit er sich von der Vorstellung,
Potenzen z? oder z° koénnten nur durch Flacheninhalte bzw. Volumina geometrisch
gedeutet werden. Erst damit ergab sich ja die Moglichkeit, in einer Gleichung wie
z. B. y = z? sowohl z als auch y durch Léngen (Koordinaten) darzustellen.

Wie FERMAT fithrte auch DEscARTES bereits Tang und Flacheninhal
suchungen an Kurven héheren Grades durch, z. B. an dem sogemmnten karmuchen
Blatt z® + y* — cxzy = 0. Bei der Untersuchung der Lo b
Gleichungen iiberwindet er die vor ihm zum Teil i immer noch auftretende Nlchtbeach-
tung negativer Losungen. Er formuliert einen heute kartesische Zeichenregel genannten
Satz zur Abschitzung der Anzahlen positiver und negativer Lésungen. An DESCARTES
erinnern die Bezeichnungen kartesische Koordinaten und (wegen der dabei auftretenden
Menge R X R) kartesisches Produkt.

Aus der weiteren Geschichte der analytischen Geometrie kénnen hier nur wenige
Stichworte genannt werden. Das Prinzip, Kurveneigenschaften allein aus der Glei-
chung zu gewinnen, setzte sich in der Darstellungsweise erst allméhlich durch. Bei
NEwroN finden wir als ein in sich geschlossenes Beispiel dieser Art die Klassifizierung
aller Kurven dritter Ordnung. In EULERs ..Introductio in analysin infinitorum‘
(Einfithrung in die Analysis unendlich kleiner Gré8en; 1748) finden sich zahlreiche
analytisch-geometrische Kurven- und Flichenuntersuchungen. Die von LEIBNIZ
und G. CBAMER (1704 —1752) eingefithrten Determinanten spielten in der analytischen
Geometrie eine Rolle, sobald man dort zur Verwendung von Gl
iberging. Einige besonders iibersichtlich zu ft lierende Ergebni der analy-
tischen und algebraischen Geometrie in dieser Hinsicht verdanken wir O. HEssE
(1811—1874). Im weiteren Verlauf erkannte man die Méglichkeit, die Gesetze linearer
GIewhungssysteme abstrakt als cin Rechnen mit Matrizen wiederzugeben. Grund-

matr heoretische Sétze stammen von A. CAYLEY (1821—1895) und J.J.
SYLVESTER (1814—1897). Etwas eher begann die Herambtldung des Vektorbegriffs in

zwei zunichst vollig getrennt verl Entwickl i Die cine kniipft an
die von W.R. HamiLToN (1805--1865) eingefithrten Quaternionen an, geht also zur
geometrischen Anwendung von zunéchst mehr algebraisch orientierten Vorstellungen
aus. Die andere Entwicklung kniipft an H. GRASSMANNS (1809 —1877) Buch ,,Lineale
Ausdehnungslehre an. Darin werden Operationen mit Vektoren (und Verallgemei-
nerungen) sogleich rein geometrisch definiert. V. PoNCELET (1788—1867), A.F. MSp1Us
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(1790 —1868), J. PLucxm (1801 - 1868) enthckelten, auch mit komplexzen Koordinaten,
die mehrdis pr G ie. Im 20. Jh. entstanden
Theorien abstrakter Vcktorfdume sowie neuartlge Anwendungen, z. B. Optimierungs-
verfahren.

2.1.6. Aufgaben

1. Man fithre den Beweis der Bijektivitédt von % firr n = 2, 3 schrittweise mit Hilfe
der in 2.1.3. gezeigten Bijektion R" — u X g, durch.
2. Man beweise aus Satz 1, da8 im R® die Menge {x~!(z;, %3, %3):%; = 0} die Ebene

- &(ga9s) ist.
3. Man beweise aus Aufgabe 2 und einer analogen Darstellung von é&(g,g;), daB

£(g:95) N £(ga93) = 95 gilt. .
4. Man beweise aus Satz 1, daB im R" (n = 2, 3) die in 2.1.3. genannte Gerade bzw.
Ebene v die Menge {%x73(2;, ..., 24):2p = X} ist.

2.2.  Vekioren, ihre Addition und Vervielfachung

221. Die Komponenten eines Vektors

Nachdem wir die Punkte des R™ analytisch-geometrisch erfaft haben, wollen
wir dasselbe fiir die Vektoren durchfiihren. Das ist deswegen leicht méglich,
weil man den R" bijektiv auf die Menge aller Vektoren des R* abbilden kann,
indem man jeweils einem Punkt P ¢ R" den Vektor p := p(OP) zuordnet (das ist
diejenige Verschiebung p, die O in P iiberfithrt). Wir nennen p den Ortsvektor
von P (beziiglich des Koordinatensystems mit dem Ursprung 0). Das Koordi-
naten-n-Tupel (z;, ..., Zs) von P nennen wir das #-Tupel der Komponenten von p
und schreiben
=<2 s Ta> « 1

In der Literatur findet sich u. a. auch die Schreibweise p = {z,, ..., zn}, die wir
hier wegen der Verwechslungsméglichkeit mit der Bezeichnung einer Menge (vgl.
ML Band 1,1.3.) vermeiden. Spiter, in 2.2.4.(2), kénnen wir noch eine andere
Schreibweise einfithren, die ebenfalls weithin iiblich ist. Zuweilen wird in der
Literatur ein Vektor (z,, ..., z,) mit sei Kompc ten-n-Tupel (x,, ..., Zn)
identifiziert, wobei dann eine besondere Bezeichnung wie etwa (1) iiberfliissig
wird. Wir wollen jedoch diese Identifikation um der begrifflichen Klarheit willen
unterlassen.

Zum Gebrauch des Terminus ,,Komponenten“ beachte man ferner die Bemer-
kung zu 2.2.4.(2).

Um die Komponenten eines Vektors auch dann geometrisch charakterisieren zu
konnen, wenn der Vektor p = (4 B) durch ein Punktepaar (4, B) mit beliebigem
A reprisentiert wird, zeigen wir als Vorbereitung
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Satz 1. Haben die Lote von Punkten A, B, A’, B’ € R auf eine Gerade g des
R* (n = 2, 3) die FuPpunkte F,G, F', @' und gilt v(AB) = b(A’'B’), so gilt auck
o(FG) = v(F'Q').

5
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q 4
Abb. 2.7 Abb. 2.8

Beweis (Abb. 2.7, 2.8). Es sei ¢ in den Fillen n = 2, 3 die zu g senkrechte
Gerade bzw. Ebene durch B. Die Parallele durch 4 zu g schneidet ¢ in genau
einem Punkt C. Dann ist G auch der FuBpunkt des Lotes von C auf g, also ist
FGCA ein (eventuell entartetes) Rechteck; daher gilt H(4AC) = v(F@). Definieren
wir C’ durch p(AC) = p(4'C"), so gilt wegen

9(AC) + H(CB) = b(4AB) = v(4'B’) = v(A’C") + b(C"B’)
anch
b(CB) =b(C'B").

Also liegt C’ in der zu g parallelen, d. h. zu g senkrechten Geraden bzw. Ebene
durch B’. Somit ist @ auch der FuBpunkt des Lotes von C’ auf g. Da C’ nach
seiner Definition auf der Parallelen durch 4’ zu g liegt, ist folglich F*G'C’4’ ein
Rechteck und daher b(4'C") = v(F'@).

Hiermit ergibt sich die gewiinschte Charakterisierung:

Satz 2. Die (einzige) Komponente eines Vektors v(AB) im R ist
2, =m(4B).
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Die v-te Komponente eines Vektors v(AB) im R" (n = 2, 3) ist
z, =m(FG),
wobei F,, G, die FuBpunkte der Lote von A, B auf g, sind (v = 1, ..., n).

Beweis. Es sei P durch b(OP) = 9(4B) definiert. Im R! folgt damit x,
= m(OP) = m(4B). Im R" (n = 2, 3) erhélt man aus 2.1.3., Satz 1, zunichst
z, = m(0T,), wobei T, der FuBpunkt des Lotes von P auf g, ist. Nach Satz 1
gilt aber b(07,) = v(F,G,), womit z, = m(0T,) = m(F,G,) bewiesen ist.

2.2.2. Addition von Vektoren

Die Addition von Vektoren, d. h. die Komposition von Verschiebungen (vgl.
L.1.1.), 1Bt sich folgendermaflen analytisch charakterisieren:

Satz 3. Ist a = (ay, ..., @n), b = <by, ..., bp), 0 ist
a+b=<(a + by, ..., an + bo).

Folgerung. Liegen Punkte U, V, W auf einer orientierten Geraden g, so gilt
m(UW) = m(UV) + m(VW).

Beweis. Es seien 4, B,C ¢ R"; €y, s €n € R durch b(04) =a, (OB) =),
p(AC) = b und (¢, ..., €p> = D(OC) = a + b definiert. Zu zeigen ist ¢, = a, + b,
r=1.,n)

Falll: n=1 Ist @, =0, so folgt A =0, C =B, ¢;=b =a; +b. Ist
b =0,s0folgt B=0,C=A4, ¢, =a, =a,+b,. Sinda, b, 5 0 und von glei-
chem Vorzeichen (Abb. 2.9a), so sind die Strahlen 04+, OB* und somit auch die
Strahlen 04+, AC* gleichorientiert. Daraus folgt Zw(0AC), also |¢,| = |0C|
= |a,| + [b] = |a; + b,|. Da 0A*, OC* ebenfalls gleichorientiert sind, hat ¢,
auch dasselbe Vorzeichen wie a,, also wie a, + b;.

Sind @y, b, == 0 und von ent, tztem Vorzeichen, so sind 04+, AC* ent-
gegengesetzt orientiert. Ist dann la,l > |b] (Abb. 2.9b), so folgt Zw(OCA), also

ley] = 10C| = lay| — [by] = la, + by3
ferner sind 0A*, OC* gleichorientiert, somit hat ¢, das Vorzeichen von a,, also
von a, + b,. Ist |a| = |b;], so folgt C = O und demit ¢, =0 =a, 4+ b;. Ist
laz| < |by] (Abb. 2.9¢), so folgt Zw(COA), also

lea] = [ba] — laa| = oy + b1l
ferner sind 0A*, OC* entgegengesetzt orientiert, somit hat ¢, das Vorzeichen
von (—a,), also von a, + b,.

Bereits aus dem somit gezeigten Fall 1 und dem ersten Teil von Satz 2,
angewandt auf die Geometrie in der Geraden g, erhilt man die Folgerung.
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a) —
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Abb. 2.9
Fall 2:n = 2 oder 3 (Abb. 2.10). Nach Satz 2 gilt a, = m(OF,), b, = m(¥,H,),
¢, = m(OH,), wobei F,, H, die FuBpunkte der Lote von A4, C auf g, sind
(» =1, ..., n). Wegen der Folgerung ergibt sich daraus die Behauptung.

.‘l3>\

H) Abb. 2.10
]

2.23. Vervielfachung von Vektoren

Fiir die Menge der Punktepaare (4, B) laBt sich eine Operation mit dem Opera-
torenbereich R definieren, die Vervielfachung oder Streckung genannt werden
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-3

kann: Durch Streckung von (4, B) mit ¢ € R entstehe das Paar (4, C) mit folgen-
dermafen definiertem C: Ist B = 4, so sei auch C := 4. Ist B34 4, so sei C
derjenige Punkt, fiir den erstens [AC| = |t] - |4 B| gilt und der zweitens auf dem
Strahl 4B+ oder auf dem Strahl A B~ liegt, je nachdem, ob ¢ = 0 oder ¢ < 0 ist.
Der Leser zeige (vgl. 2.2.5., Aufgabe 1), daB hierdurch jedem Vektor b(4B)
eindeutig ein Vektor 9(AC) zugeordnet ist. Auch von diesem sagen wir, daB er
aus b(A4 B) durch Vervielfachung oder Streckung mit ¢ entstanden sei, und schreiben
9(AC) = t - y(AB). Die analytische Charakterisierung dieser Operation lautet:

Satz 4. Ist a = (ay, ..., an), 80 ist ta = (ta, ..., tas).

Beweis. Es seien 4,C¢ R"; ¢, ...,cn € R durch p(04) = a und {c,, ..., cp»
= p(0C) = ta definiert. Zu zeigen ist ¢, = ta, (v = 1, ..., n).

Im Fall n = 1 folgt dies unmittelbar aus den Definitionen von @, und ¢;. Im
Falln = 2 oder 3 seien F,, H, die FuBpunkte der Lote von 4, C aufg, (v = 1, ..., n).
Wir betrachten ein». Gilt @, = 0, so gibt es eine zu g, senkrechte Gerade, auf der
0, 4, C liegen; daher ist ¢, = 0 = ta,. Gilt a, 5= 0, s0 seien f, b die zu g, senk-
rechten Geraden durch 4, C (Abb. 2.11, 2.12). Dann schneidet f den Strahl
OF} in F, und den Strahl OA* in 4; ferner schneidet & die Gerade g, in H, sowie
je nach dem Vorzeichen von ¢ den Strahl 04+ oder den Strahl 04~ in C. Folglich
liegt H, je nach dem Vorzeichen von ¢ auf OF;} oder OF;. Nach dem Strahlensatz
ist ferner

|OH,| : |OF,| = |0C| : |04] = |¢] .
Damit ist die Behauptung m(OH,) = t - m(OF,) gezeigt.

95 95
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\\ L‘\ \\\
4 \\ * A
\ \ \ \
A A \ Ja g
0 AN %2 HBY [ f2\
\ \
\ \
\ \
\
() ¢ \ )
1 9,
\ 1

Abb. 2.11 Abb. 2.12
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2.2.4. Vektorraum und Punktraum

Wegen der Komponentendarstellung (1) sowie Satz 3 und 4 bildet die Menge der
Vektoren des R" einen zum Zahlenraum R* (vgl. MfL Band 3) isomorphen Vektor-
raum iiber R.

Der Ortsvektor des Ursprungs, d. h. die identische Verschiebung b(00), ist das
Nullelement dieses Vektorraums und wird Nullvektor genannt und mit o bezeich-
net. Die Ortsvektoren der Einheitspunkte E,,

e, := 9(0E,) =<1,0, ..., 05,

¢, i= B(0E,) = <0, 1, ..., 03,

e, :=0(0E,) =(0,0, ..., 1>.
bilden eine orthonormierte Basis (vgl. MfL Band 3, 7.3.). Bei Zugrundelegung
dieser Basis sind die Komponenten eines Vektors ¢ die Koeffizienten, mit denen g
als Linearkombination der e, dargestellt ist:

T =<2y, s ) = <10, ..., 05 + 20, 1, ..., 05 + ++ 4+ 24(0, 0, ..., 1>
= 218; + %3€; + -+ + Tns . (2
Fiir (2) schreiben wir in den Fillen n = 2, 3 auch <z, y) = «i + yj bzw. {2, ¥, 2)
=i +yj+ 2k

Bemerkung. Weit verbreitet ist auch der Sprachgebrauch, in (2) nicht die Zahlen
&y, ..., Ty, sondern die Vektoren x,e,, .... Zpe, als die Komponenten von g zu bezeichnen.

Um die algebraische Struktur des Vektorraums im Sinne des Grundprinzips
der analytischen Geometrie zu , wollen wir Ubergangsmoglichkeiten zwi-
schen Vektoren und Punkten formulieren: Einerseits kann man Aussagen iiber
Punkte oft dadurch giinstig fassen, dap man zu ihren Ortsvektoren iibergeht. Zum
anderen besteht nun folgende Gewinnungsmaoglichkeit eines Vektors v(AB) aus 4, B:

Satz 5. Haben Punkte A, B die Ortsvektoren a = {ay, ..., an), b = (by, ..., ba),
30 gilt fiir v := v(4B)

a+b=50, 3)

also
pb=b—a=<(b —ay,...b,—am. (4)

Beweis. Wegen 0(04) + b(4B) = v(0B) gilt (3); hieraus folgt (4) nach den
Gesetzen der linearen Algebra.

Zuweilen werden in der Literatur (vgl. etwa [3]) Punkte mit ihren Ortsvektoren
identifiziert. Man hat dann statt (3) die Schreibweise 4 + b = B als Ausdruck da-
fir, da 4 durch die Verschiebung b in B iibergeht. Das Pluszeichen bezeichnet
dabei keine Verkniipfupg innerhalb einer Menge, sondern die Anwendung einer Ope-
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ration auf die Menge Rﬂ wobei der Operator b aus der Menge aller Verschiebungen

ist. Dieses P! ichen ist somit begrifflich von dem in (3) zu unterscheiden,
das eine Verknupfung in der Menge der Vektoren bezeichnet. Wir wollen die genannte
Identifizierung sowie die Schreibweise 4 + b = B nicht verwenden, zuweilen aber
sagen, B sei durch ,,Anheften von b an A entstanden.

Die Summe aus zwei oder drei Vektoren besitzt eine geometrische Deutung, die
sich analytisch-geometrisch folgendermafen ergibt:

Gegeben seien a = b(PU), b = b(PV). Wir wollen den durch a + b = b(PW)
definierten Punkt W geometrisch beschreiben (Abb. 2.13). Ist p der Ortsvektor
von P, so haben U, V, W nach (3) die Ortsvektoren p +a, p + b, p +a + b.
Nach (4) gilt daher

PU)=@p+a)—p=(pP+a+b)—(p+b=0W),
DPV)=(p+5) —p=-+a+b—(p-+a=0TW,
also ist PUWYV ein Parallelogramm, das auch zur Strecke oder zum Punkt ent-
artet sein kann, falls nimlich P, U, V kollinear sind. Es ist durch P, a, b ein-

deutig bestimmt und heiBt das von a, b aufgespannte Parallelogramm mit der
Anfangsecke P.

Abb. 2.13 Abb. 2.14

Gegeben seien a = b(PU), b = b(PV), ¢ = b(PW). Definiert man X, Y, Z, Q
durch b + ¢ = 9(PX), a + ¢ = b(PY), a + b = b(PZ), a + b + ¢ = b(PQ), so
beschreiben wir @ (Abb. 2.14): Wie eben errechnet man

v(PU) = p(VZ) = v(WY) = 1(XQ),
o(PV) = o(UZ) =p(WX) =9(¥YQ),
o(PW) =p(UY) =bp(VX) = 0(ZQ) .
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Also ist PUZVWYQX ein von den Parallelogrammflichen PVXW, UZQY,
PUYW, VZQX, PUZV, WYQX begrenzter Korper, das von a, b, ¢ aufgespannte
Spat mit der Anfangsecke P.

In der Physik treten Vektoren eincrseits als Ortsvektoren von Punkten auf, Von
grundlegender Bedeutung sind andererseits folgende Anwendungsfille: Bewegt sich
ein Massenpunkt von 4 nach B, so heiBt v(4B) der zugehorige Weg-Vektor. Beim
Uberlagern zweier Bewegungen addieren sich die Weg-Vektoren. Das von ihnen auf-
gespanntc Parallelogramm, das diese Addition wiedergibt, heiBt daher das Parallelo-
gramm der Wege. Von den Weg-Vektoren kann man durch Operationen wie ein-,
zweimaliges Differenzieren nach der Zeit, Multiplizieren mit der Masse usw. zu Ge-
schwindigkeits-, Beschleunigungs-, Kraftvektoren usw. ibergehen. Deren Uberlagerung
fithrt dann zum Parallelogramm der Geschwindigkeiten, der Krifte usw.

225. Aufgaben

1. Man beweise: Gehen aus (4, B), (4’, B’) durch Streckung mit ¢ die Paare (4, C)

bzw. (4’, C’) hervor und gilt v(AB) = b(A’B’), so gilt auch p(4AC) = v(4'C’).
" Hinweis: Man beweise, daB erstens |AC| = |4’C’| gilt und daB zweitens AC*,

A’C’* gleichen Richtungssinn haben.

2. Man berechne die Eckpunkte des von a =<¢2,1, —3), b =(1,3,2), ¢ =(1,1,
—1) aufgespannten Spats mit dem Anfangspunkt (—2, 2, 3).

3. Es seien q,, ..., a; die Ortsvektoren gegebener Punkte A4,, ..., A;; es sei § der
Punkt mit dem Ortsvektor 8 := (1/k)(a; + ‘- + ag). Man beweise b(S4,) + -
+ v(S4;) = 0. Man berechne und zeichne A4,, ...., A, S, b(S4,), ..., 5(S4;) und
bestatige damit die Behauptung firr a, = (2, 3), a, = {(—1, 2), a3 = (-1, —1),
a, = {4, —4).

23.  Ldnge, WinkelgréBe, Fldcheninhalt, Volumen

2.3.1. Das Skalarprodukt

Gegeben seien im R* (n < 3) zwei Vektoren a, b. Wir wollen ihr Skalarprodukt ab
geometrisch definieren. (AnschlieBend erfolgt dann in Satz 2 die analytische
Charakterisierung, die wieder fiir n > 3 als Definition dienen kann und die schon
in fritheren Binden als Definition iiberhaupt auftrat.)
Es seien P, U, V mit
o(PU)=a, (PV)=5b (1)

gewihlt, Ist U = P, d. h. a = 0, so setzen wir ab := 0. Ist U 3 P, so sei eine
Orientierung von g := g(PU) gewihlt, und dann sei

ab := m(PU) - m(PF) (2)
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gesetzt, wobei F der FuBpunkt des Lotes von V auf g ist (Abb. 2.15). Da sich
|PU|, |PF| und das Produkt der Vorzeichen von m(PU), m(PF) bei anderer
Wahl von P, U, V mit (1) und bei anderer Orientierung von g nicht &ndern,
hingt (2) in der Tat nur von a und b ab.

Man nennt a, b orthogonal genau dann, wenn fiir P, U, V mit (1) zwei Geraden
g | hmit P,Ueg; P, V € h existieren. Fiir a, b 5= 0 kann man ferner Elementar-
winkelgroen zwischen Vektoren definieren durch |<(a, b)| := |XUPV|, da
|<«UPV| von Verschiebungen, d.h. von anderer Wahl der P, U, V mit (1),
unabhiingig ist. Entsprechend kann m(<X (a, b)) := m(X UPV) eingefiihrt wer-
den, was wir. spiter benétigen.

v

B O U

P P Abb. 2.15

P ()

- .
Unmittelbar aus der Definition (2) entnimmt man nun

Satz 1. Genau dann ist ab = 0, wenn a,b orthogonal sind. Genau dann ist
ab > 0 bzw. ab < 0, wenn a, b = o sind und |(a, b)| < 90° bzw. |X(a, b)| > 90°
gilt.

Als typischer An dungsfall skalarer Produkte in der Physik sei erwahnt: Ist
a ein Weg-Vektor und b ein Kraft-Vektor, so ist ab die bei Einwirkung der Kraft b
auf eine den Weg a zuriicklegende Masse verrichtete Arbeit.

Satz 2. Ista = <ay, ..., @), b = (by, ..., b,), so0 ist

ab = a;b; + - + azb,

Beweis. Nach (2)gilt e = 1, nach Satz 1 gilt e,e, = 0 (u,» = 1, ..., m 0 £ ).
Daher und wegen 2.2.4.(2) geniigt es nach MfL Band 3, 7.1., Folgendes nachzu-
weisen: Fiir beliebige Vektoren a, b, ¢ und beliebige Zahlen ¢ gilt

(ta)b = a(tb) =¢ - ab, (3)
a® + ¢) = ab + ac, 4)
ab = ba. (5)

In allen Féllen mit a = 0 oder b = o oder ¢ = 0 sind (3), (4), (5) richtig. In den
iibrigen Féllen kann man folgendermaBen schlieBen:

Zu (3): AuBer den obigen P, U, V, g, F seien S, T durch b(PS) = ta, b(PT) =
definiert, und G sei der FuBpunkt des Lotes von T auf g. Nach 2.2.3., Satz 4
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(angewandt auf ein Koordinatensystem, in dem g eine Achse ist), gilt dann
m(PS)=t-m(PU), m(PG)="¢-m(PF),
also

(ta)b = m(PS) - m(PF) =t-m(PU) - m(PF) =t ab
und

a(th) = m(PU) - m(PG) = ¢t - m(PU) - m(PF) =¢t-ab.
Zu (4): Ferner seien W,Z durch b(PW) = 9(VZ)=r¢, also b(PZ)=Db + ¢

definiert (Abb. 2.16), und K, L seien die FuBpunkte der Lote von W,Z auf g.
Nach 2.2.1., Satz 1, gilt dann 9(PK) = b(FL); daher folgt

a(b + ¢) = m(PU) - m(PL) = m(PU) - (m(PF) + m(FL))
= m(PU) - m(PF) + m(PU) - m(PK) = ab + ac.

|
|
|
|
I
= 2\ « f\l Abb. 2.16
F

13 IS

Zu (5): In dem Spezialfell |PU| = |PV|, |XUPV| < 90° ist die Behauptung
richtig (vgl. 2.3.9., Aufgabe 1). Bei beliebigen a, b 5= 0 gibt es ein ¢ 5= 0, so dall
fiir ta und b dieser Spezialfall vorliegt. Nach (3) folgt dann

1 1
ab =7 (ta)b = b(ta) = ba .
Damit ist Satz 2 bewiesen (der Leser notiere den weiteren Beweisverlauf aus
MfL Band 3, 7.1., mit den notwendigen Bezeichnungsinderungen).

Folgerung. Das Skalarprodukt eines Vektorsa mit e, =0, ..., 1,...,0> ist
die v-te Komponente a, von a (v = 1, ..., n).

2.3.2. Betrag eines Vektors

Als Linge oder Beirag eines Vektors a = b(PQ) kann man die Zahl |a| := |PQ)|
definieren, da |PQ| von Verschiebungen, d. h. von anderer Wahl der P,Q mit
a = b(PQ), unabhingig ist. (Wegen des in 2.1.2. eingefiihrten ,,abstrakten Stand-
punktes‘ tritt |PQ| als Zahl ohne MaBeinheit auf.) Die analytische Charakteri-
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sierung lautet:
Satz 3. Ist a = (a, ..., @), 0 ist
la] = ya? = yal + ~ +ai.
Beweis. Nach Satz 2 und (2) ist
a} + - + @i = a2 = (m(PQ))® = PR = |af?,
woraus wegen |a| = 0 die Behauptung folgt.

Bemerkung. Die Rechenregeln fiir skalare Produkte und Betrige von Vek-
toren wurden schon in MfL Band 3 und Band 4 ausgefiihrt. Beispielsweise fiihren
sie zu dem dort genannten analytisch-geometrischen Beweis der Dreiecksunglei-
chung. Ferner enthilt Satz 3 fiir n = 2 den Satz des PYTHAGORAS.

Aus Satz 3 und 2.2.4., Satz 5, folgt als Formel fiir die Linge der Strecke PQ
mit den Endpunkten (p,, ..., Pa), (¢15 ++s gn)

PRl =Ylgy — P + - + (g

2.3.3. Orientierung von Vektorpaaren in der Ebene. Die GraBmannsche
Ergdnzung

Wir betrachten geordnete Paare (a, b), (a’, b’), ... von Vektoren in der orientierten
Ebene R? und denken sie reprisentiert durch Tripel (P, U, V), (P, U’, V"), ...
mit a = b(PU),b = v(PV),a’ = b(P'U’), b’ = b(P'V’),... Der Leser bestitige
bei allen folgenden Definitionen, daB sie von Verschiebungen, d. h. von der Wahl
dieser P, U, V, ... unabhingig sind.

Zwei Paare (a, b), (a’, b’), fiir die weder P, U, ¥V noch P’, U’, V' kollinear sind,
heiBen einander gleichorientiert, wenn die Fahnen PU*V+, P'U*V'* gleich-
orientiert sind (vgl. 1.1.2.2.). Ein Vektorpaar (a, b) heiBt positiv bzw. negativ
orientiert, wenn es zum Paar (i, ) bzw. zum Paar (i, —{) gleichorientiert ist. Legt man
hierbei ein in ,,anschaulich-iiblicher Weise gewihltes Koordinatensystem zu-
grunde (OET ,nach rechts”, OEF ,,nach oben‘‘), so ist (a, b) genau dann positiv
orientiert, wenn a, b ,,entgegen dem Uhrzeigersinn aufeinander folgen*‘.

Unter dem Orientierungssinn eines beliebigen Vektorpaares (a, b) verstehen wir
die Zahl 1, —1 oder 0, je nachdem, ob (a, b) positiv oder negativ orientiert ist
oder ob P, U, V kollinear sind. In Anlehnung an das Symbol sgn z fiir das Vor-
zeichen einer reellen Zahlz (vgl. MfL Band 4, 1.1.) bezeichnen wir den Orien-
tierungssinn von (a, b) mit sgn(a, b). Beispielsweise ist

sgn(i, j) = sgn(j, —i) = 1.

Sind allgemeiner zwei Vektoren a = (z,y> = 0(04) 0, b=<(z,y) =
= p(0OB) = 0 zueinander orthogonal, so ist sgn(a, b) eine der Zahlen 1, —1, iiber
die folgendes gilt (Abb. 2.17): '
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5

£ Abb. 2.17

ny——————3n

0| ¢

Ist > 0 (bzw. < 0), so sind fiir den FuBpunkt F des Lotes von 4 auf g,
die Strahlen OF* und OE} (bzw. OE7) gleichorientiert. In diesem Fall sind die
Vektorpaare (a,b) und (i, j) genau dann gleichorientiert, wenn fiir den FuBpunkt G
des Lotes von B auf g, auch die Strahlen OG'+ und OE§ (bzw. OE3) gleichorien-
tiert sind, d. h. genau dann, wenn auch y’ > 0 (bzw. ¥’ < 0) ist. Ist y > 0 (bzw.
y < 0), so sind analog genau dann (a, b) und (j, —1i) gleichorientiert, wenn z’ < 0
(bzw. 2’ > 0) ist. Im Fall z = 0 ist 3’ = 0 und umgekehrt. Im Fall y = 0 ist
2’ = 0 und umgekehrt. Beide Fille schlieBen einander aus.

Diese Aussagen ergeben das Kriterium: Fir zwei orthogonale Vektoren a
=<2, ¥> += 0, b = (&', y'> = 0 gilt genau dann sgn(a, b) = 1, wenn

sgnz =sgny’ und sgny = — sgna’
gelten. .

Ist a ein gegebener Vektor im RZ, so wird durch folgende Forderungen ein-
deutig ein Vektor d charakterisiert, der die Grafmannsche Erginzung (der positiv
um 90° gedrehte Vektor) zu a genannt wird (Abb. 2.17 mit b := @): Erstens soll a
die gleiche Linge wie a haben: |d| = |a]. Im Fall a = o ist hierdurch bereits & = o0
definiert. Zweitens soll & zu a orthogonal sein: a@ = 0. (Fiir a = & = 0 ist diese
Forderung von selbst erfiillt.) Drittens soll das Paar (a,8) im Fall a & 0 (also
@ 3= 0) positiv orientiert sein: sgn(a, 8) = 1. Mit a = (=, y>, & = <=, y’) besagt
diese Forderung sgnz = sgn y’, sgny = — sgn ' (und in dieser.Gestalt ist sie
auch von selbst fiir a = @ = 0 erfiillt).

Satz 4. Die Grapmannsche Erginzung zu a = (z, y) ist & = {(—y, 2).
Beweis. Der Vektor (', y’) := {—y, z) erfilllt die Bedingungen
Ke', g3 = Y(—9)* + 2* = la| ,

@&, y)=—ay+zy=0
und
sgnz =sgny’, sgny = — sgna’ .
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Da andererselts nur die GraBmannsche Erginzung @ diese Bedingungen erfiillt,
folgt & = <z’, y'>.

2.3.4. Trigonometrische Funktionen. ElementarwinkelgréBe

Die sogenannte ,,Definition am Einheitskreis* fir trig trische Funkti 1aBt
sich fo]gendermﬂen fassen: Gegebensei eine Grofe ¢ orientierter Elementarwinkel.
Dann gibt es im R? genau einen Vektor p mit |p| = 1 und m(X(@, p)) = ¢. Ist
dieser Vektor p = (p, ¢), so definiert man (Abb. 2.18):

cosQ i=1p, sing :=gq. (6)
y
£2
/A
LAW] &
o [ *
Abb. 2.18

Ist nun a = 9(04,) ein Vektor mit [a| = 1, so ist die GraBmannsche Erginzung &
nach ihrer Definition der Ortsvektor des Bildpunktes von E, bei derjenigen Drehung
um O, die E, in 4, iiberfiihrt. Es sei b der Ortsvektor des Bildpunktes von (p, g)
bei dieser Drehung. Dann ist einerseits m(<(a, b)) = @; andererseits folgt aus
p = pi + qi auch b = pa + ¢gd. (Wir werden diesen SchluB spéter fiir beliebige
Bewegungen ausfiihren, vgl. 2.7.1., Satz 2 und 3.) Somit folgt

Satz b. Smd a,B Vektoren mtt la] = |b] =1 und m(X(a, b)) = ¢, so sind
die eindeutig ten Koeffizienten p,q in der Darstellung b = pa + qa die
Zahlen p = cos @, ¢ =sing.

Bereits aus (6) und p? = 1 folgt cos? + sin?p = 1. Weiterhin kann man
den Kosinus und Sinus auf andere Arten von WinkelgroBen iibertragen: Ist w
eine Drehprozefigrofe und ¢ die GroBSe w mod 360° orientierter Elementarwinkel, so
sind durch cosw := cos ¢, sin w := sin ¢ die trigonometrischen Funktionen fiir
beliebige reelle Zahlen mit der MaBeinheit Grad definiert (und zwar mit der
Periode 360°). Beschrinkt man diese Erklirung auf Werte 0° < w < 180° bhzw.
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0° < w < 360° bzw. —360° < w < 360°, so hat man Definitionen des Kosinus
und Sinus fiir Elementarwinkelgrofen bzw. Winkelgropen bzw. Grofen orientierter
Winkel. Aus (6) ergeben sich dann auch speziell die bekannten Kosinus- und
Sinuswerte aller k& - 90° (k € Z).

Ferner definiert man fir

sin w
= . 180° o.
tanw.—cosw (w = k-180° 4+ 90°; ke Z),
cos @
cotw.=sinw (w % k- 180°),

Sodann lassen sich an (6) die trigonometrischen Formeln fiir rechtwinklige Dreiecke
anschlieBen: Ist ABC bei C rechtwinklig mit @ := |BC|, b := |AC|, ¢ := |4B|,

y

Abb. 2.19

« := | X BAC/|, so kann man das Koordinatensystem so wihlen, daB 4, B, C die
Koordinaten (0, 0), (b, a), (b, 0) haben (Abb. 2.19). Fiir den Vektor p mit [p| = 1
und m(X(i, p)) = « mod 360° gilt dann <b, a) = v(4AB) = cp, also b =c - cos,
a = ¢ - sinx, woraus auch

a b

7= tano , 7= cot o
folgt.

Alle weiteren goniometrischen Formeln beruhen (vgl. 2.3.9., Aufgabe 2) auf den
Additionstheoremen:

Satz 6. Fiir je zwei Grofen «, f orientierter Ele"nentarwinkel gilt
cos (% + B) = cosx - cos f — sinwx - sin §, (7)
sin (« + B) = sina - cos § + cosa + sin B, (8)
Beweis. Es seien a, b Vektoren mit |a| = [b] = 1 und

m(X(, ) =«, m(X(,b)=4.
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Dann gilt
b=cosf-a+sing- @ = cos B - {cosa, sina) + sin f - {— sine, cosx)
= (cosx - cos f§ — sina - sinf, sinx « cos f + cosx - smﬂ)
Wegen m(X(i, b)) =« T B (vgl. 1.1.3.2.) ist damit der Satz bewiesen. Er iiber-
trigt sich auf die anderen Arten von Winkelgroflen, sofern «, § und & 4 8 die
dafiir erforderlichen Einschrinkungen erfiillen.

Um das Skalarprodukt ab fiir a, b 5 o durch |a], [b] und y := |<X(a, b)| aus-
zudriicken, seien P, U, V, F wie in 2.3.1. Im Fall y < 90° gilt dann |PF| =
= |PV|- cosy,im Fally > 90°aber |PF| = |PV| - cos (180° — y) = — |PV{.cosy
(vgl. 2.3.9., Aufgabe 2), in beiden Fillen also |ab| = |PU|-|PV|- |cosy],
was auch im Fall y = 90° zutrifft. In allen drei Fillen ist nach Satz 1 ferner
sgn ab = sgn cos y. Also gilt

Satz 7. Fiir a,b = o ist ab = |a] - |b] - cos | X(a, b)].

Hiermit kann man umgekehrt bei gegebenen a, b == 0 zunichst cos |<X(a, b):

und daraus wegen 0° < |<X(a, b)| < 180° eindeutig die ElementarwinkelgroBe
!X (a, b)| ermitteln.

Zu einem geg 'ebenen Vektor a =|= o benétigt man &fter den Vektorl ol a. Sein

Betrag ist L | al |a| = 1; sein Richtungssinn stimmt mit dem von a {iberein.
Man sagt daher, man habe a zu dem gleichgerichteten Einheitsvekt :l ,,n0T-
miert“. Wegen der Folgemng zu Satz 2 ist seine »-te Komponente

1

m |Cl| le | = cos [X(a, e e,)|

der v-te Richtungskosinus von a, das ist der Kosinus der GroBe des Elementar-
winkels zwischen a und der »-ten positiven Koordinatenhalbachse (v = 1, ..., n).

2.3.5. Flicheninhalt, GréBe orientierter Elementarwinkel

Im R? wird auBer dem Flicheninhalt |PUW V| auch der (vorzeichenfihige) Flichen-
inhalt m(PUW V) des von zwei Vektoren a, b aufgespannten Parallelogramms PUW V
(vgl. 2.2.4.) dadurch definiert, daB sein Betrag |m(PUWV)| := |PUWV| und
sein Vorzeichen sgn m(PUWIﬁ = sgn(a, b) gesetzt wird.
Satz 8 Ist a = {ay, ap), b = (b, b,), s0 gilt

@, a; ’
by by |
Insbesondere gilt sgn(a, b) = sgn det(a, b).

m(PUWYV) = det(a, b) :=
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Beweis. Fiir a = 0 oder b = p ist die Behauptung richtig. Fiir a,b <= 0 sei
U durch b(Pfl) =@ definiert, und H sei der FuBpunkt des Lotes von V auf
g(PU) (Abb.2.20). Dann ist |db| = |PD|- |PH|= |PU|-|PH| = |PUWYV|.
Ferner gilt sgn ib = 1, —1, 0, je nachdem, ob | (&, b)| < 90°, > 90°, =90° ist,
d. h. jenachdem, ob sgn(a, b) = 1, —1, Oist. Das besagt sgn b = sgn m(PUWYV),
und daher gilt insgesamt m(PUWV) = ab = — ayb, + a;b, = det(a, b).

Abb. 2.20

P

Hinweis: Zum Rechnen mit Determinanten vgl. MfL Band 3, 8.2. Wir
benstigen beispielsweise spiter in 2.6.2. Rechenregeln wie etwa det(a, b)
= det(a + ub, b) (u € R).

Zur Flicheninhaltsberechnung fiir PUWV aus den Seiten und dem eingeschlos-
senen Winkel dient die unten folgende Formel (10). Mit Beachtung der Vor-
zeichen gilt genauer

Satz 9. Fir Vekioren a,b == 0 im R* ist det(a, b) = |a| - [b] - sin m((a, b)).
Beweis. Wir vermerken die — spiiter nochmals verwendete — Identitiit
@+ y? + 2% (@2 + y? + 2 — (a2’ +yy + @)
= 2%'? 4 222’3 + Y22’ 4 y2'? + 2222 + %% — 2zyax'y’ — 2xzx'7 — 2yzy'?
= (zy’ — y2') + (@2’ — 22')* + (yz' — 2y')*. ®
Firz:=ay, y:=a, 2:=0,2 :=b, y' 1= by, 2’ := 0 ergibt sie

a%h? — (ab)? = (det(a, b))?,
also

la] « b] - |sin m(X(a, B))| = y[af2- [b]2 — (la[ - [B] - cos [X(a, b)])?
= |det(a, b)| .
Stellt man ferner den zu b gleichgerichteten Einheitsvektor |%| als Linearkombi-

nation aus dem Vektor & und dessen GraBmannscher Erginzung dar, so erhilt

lo]
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letztere den Koeffizienten sin m(<X(a, b)). Daraus folgt
sgn sin m((a, b)) = sgn(a, b),,
und der Satz ist bewiesen.
Aus der Gleichung cos (—¢) = cos ¢ folgt
cos |<X(a, b)| = cos m(X(a, b)) .
Hiernach kann man bei gegebenen a, b 5= 0 aus Satz 7 und 9 zunéchst cos m(X(a,b))
und sin m(<(a, b)) und damit eindeutig m((a, b)) ermitteln.
Ferner 1a8t sich die aus den Sitzen 8 und 9 sowie aus (9) folgende Formel
|PUWYV| = ya®?® — (ab)®> = |a| - |b] - sin | X(a, b)| ) (10)
auch im RS, nach zunichst willkiirlich festgesetzter Orientierung einer Koordi-
natenebene durch P, U, V, herleiten; sie ist andererseits von der Wahl und der
Orientierung dieser Ebene unabhéngig und gilt daher allgemein im R? (bzw.
kann im R" (n > 3) als Definition von |PUW V| dienen).
Die Gramsche Determinante
6% ab)
ab b
wurde schon in MfL Band 3, 8.3., erwahnt.

= a%h% — (ab)?

2.3.6. Orientierung von Vektortripeln. Das Vektorprodukt

Wir betrachten geordnete Tripel (a, b, ¢), (a’, b, ¢’), ... von Vektoreni m orien-
tierten dreidimensionalen Raum R? und denken sie reprisentiert durch Quadrupel
(P, U, V,W),(P,U,V’, W),.. von Punkten des R* mit a = o(PU), b = p(PV),
¢ =b(PW), o’ =0(P'U’), b =0(P'V’), ¢ =b(P'W),... Die folgenden Defi-
nitionen sind von Verschiebungen unabhingig.

Zwei Tripel (a, b, ¢), (a’, b’, ¢), fiir die weder P, U, V, W noch P',U", V', W’
komplanar sind, heiBen einander gleichorientiert, wenn die Orientierungsfiguren
PU+V*+W+, P'U*V'+W'* gleichorientiert sind. Ein Tripel (a, b, ¢) heilit positiv
bzw. negativ orientiert, wenn es zum Tripel (i, j, f) bzw. zum Tripel (i, j, —¥) gleich-
orientiert ist. Bei ,anschaulich-iiblichem* Koordinatensystem besagt positive
Orientierung, daB ,,auf a, b im Windungssinn einer Rechtsschraube ¢ folgt‘.
Unter dem Orientierungssinn sgn(a, b, c) eines beliebigen Tripels (a, b, ¢) verstehen
wir die Zahl 1, —1 oder 0, je nachdem, ob (a, b, ¢) positiv oder negativ orientiert
ist oder ob P, U, V, W komplanar sind. Beispielsweise ist

sgn(i, , ) = sgn(i, }, —j) = sgn(j, 1, i) = 1.

Sind P, U, V nicht kollinear und ist ¢ 5= 0 zu ¢(PUV) orthogonal, so ist sgn(a, b,¢)
eine der Zahlen 1, —1. Fir a = (z,¥,2) = 9(04), b = (=, y,2’) = v(0B),
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¢ = (a* y*, z*) = p(0C) gilt dabei (Abb. 2.21): Ist 2y’ — yz' > 0 (bzw. zy’
— ya’ < 0), so ist fiir die FuBpunkte F, G der Lote von 4, B auf &(g,g,), d. h.
fiir die Vektoren b(OF) = <z, y, 0, b(0G) = (', y', 0), das Paar (v(OF), v(0G))
positiv (bzw. negativ) orientiert. In diesem Fall sind genau dann (a, b, ¢) und
(i, j, T) gleichorientiert, wenn fiir den FuBpunkt H* des Lotes von C auf g; die
Strahlen OH** und OE{ (bzw. OEj3) gleichorientiert sind, d.h. genau dann,
wenn auch z* > 0 (bzw. z* < 0) ist. Ist 22’ — 22’ > 0 (bzw. <0), so sind (a, b, ¢),

Abb. 2.21

(i, £, —j) genau fiir y* < 0 (bzw. >0) gleichorientiert. Ist yz’ — 2y’ > 0 (bzw.
<0), so sind (a, b, ¢), (j, }, i) genau fiir z* > 0 (bzw. <O0) gleichorientiert. Im
Fall 2y’ — ya' = 0 ist e(OAB) | ¢(g:gy), also C € g(gyg.), d. h. 2* =0 und um-
gekehrt. Im Fall 2z’ — zz’ = 0 ist y* = 0 und umgekehrt. Im Fall yz' — 2y’ =0
ist 2* = 0 und umgekehrt. Alle drei Fille treten nicht gleichzeitig ein.

Diese Aussagen ergeben das Kriterium: Fiir zwei Vektoren a = (z,y,2)
= p(PU), b = (&', ', 2’ = D(PV) mit nicht kollinearen P, U,V und fiir einen
2u beiden orthogonalen Vektor ¢ = {(zx*, y*, z*) % 0 gilt genau dann sgn(a, b, ¢) =1,
wenn

sgn(ry’ — yx’) = sgn z*,

sgn(zz’ — zz’) = — egn y*
und )

sgn(yz’ — zy’) = sgn z*
gelten.
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Sind a, b zwei gegebene Vektoren im R?, so wird durch folgende Forderungen
eindeutig ein Vektor charakterisiert, der das Vektorprodukt a X b genannt wird
(Abb. 2.21 mit ¢ := a X b): Erstens soll die Linge von a X b der Flicheninhalt
des von a, b aufgespannten Parallelogramms PUWYV sein, nach (10) also |a X b]
= |a| - |b| - sin |<X(a, b)|. Im Fall kollinearer P, U, V ist hierdurch bereits a Xb = o
definiert. Zweitens soll a X b zu a und b orthogonal sein: a(a X b) = b(a X b) = 0.
(Fiir a X b = p ist diese Forderung von selbst erfiillt.) Drittens soll das Tripel
(a,b, a X B) im Fall a X b 5 0 positiv orientiert sein. (Das obige Kriterium
hierfiir ist auch bei a X b = o erfiillt.)

Satz 10. Ista =<z, y,2),b = (z',y’,2’), so ist
y z | z y >
yl zl | T x» yl .
Beweis. Der angegebene Vektor erfiillt die drei an a X b gestellten Forde-
rungen: Erstens ist nach (9) sein Betrag }/a?h? — (ab)®. Zweitens ist

x z

axb=< R
x z

Y Ty
y 7 oy
und ebenso b(a X b) = 0. Drittens sind die Vorzeichenbedingungen des obigen
Kriteriums erfiillt.

Ist O der Drehpunkt eines starren Kérpers und a der Ortsvektor des Angriffspunktes
einer Kraft b, so charakterisiert a X b das entstehende Drehmoment: Dieses hat die

Gréfe la X b|, und der Richtungssinn von a X b ist der der Drehachse (wobei man
den letzten so wihlt, daB er dem Drehsinn des Korpers ,,als Rechtsschraube folgt*‘).

ala X b) == —y +z = det(a,q,b) =0

r z
x 2

23.7. Volumen

Im R® wird auBer dem Volumen |PUZVWYQX| auch das (vorzeichenfihige)
Volumen m(PUZVW YQX) des von drei Vektoren a, b, ¢ aufgespannten Spats (vgl.
2.2.4.) dadurch definiert, daB sein Betrag |m(P...X)| := |P...X| und sein Vor-
zeichen sgn m(P...X) := sgn(a, b, ¢) gesetzt wird.

Satz 11 Ist a = <@y, @y, ag), b = <by, by, bd, ¢ = ey, 03, €5, 80 gilt
m(P...X) = det(a, b, ).
Beweis. Fir kollineare P, U, V, d. h. a X b = v, ist die Behauptung richtig.
Es sei a X b=0(PT) =0, und H sei der FuBpunkt des Lotes von W auf

g(PT) (Abb. 2.22). Dann ist |@@ X b)e|=|PT|-|PH|=|PUZV|-|PH|
= |PUZVWYQX|. Ferner zeigt eine Diskussion der Fille |(a X b, ¢)| = 90°,
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.

daB sgn(a X b) ¢ = sgn(a, b, ¢) ist. Damit ist

G O3
by by |

e a4y
by b

a; a;

m(P..X)= (@ X b) ¢ = o+ ‘ - }ca = det(a, b, ¢)
1 2

gezeigt.

Abb. 2.22

2.3.8. Ubertragung auf hdherdimensionale RGume

In der Folge der Raume R!, R?, R?, ... kann man die Folge der Begriffsbildungen
durch Punkte begrenzte Strecke im R!,
durch Strecken begrenztes Flachenstiick (Polygon) im R?,
durch Polygone begrenzter Korper (Polyeder) im R?
fortsetzen und fir jedes n den Begriff des ,,n-dimensionalen Kérpers' im R" ein-
fizthren, wobei dieser ,,Kérper* durch (zuvor definierte) ,,(n — 1)-dimensionale Kor-
per* begrenzt ist. Man nennt einen solchen ,,n-dimensionalen Kérper* ein Polytop.

Sind nun n Vektoren a(1), ..., a(® sowie ein Punkt P des R® gegeben, so sei fiir jede
Untermenge M der Menge {1, ..., n} ein Punkt Py dadurch definiert, da8 man die
Summe aus allen o) mit 4 € M an P anheftet. (Speziell sei Py :=: P.) Die so ge-
fundenen 2* Punkte Py sind die Ecken eines Polytops, das die Folge der Begriffs-
bildungen Strecke im R!, Parallelogramm im R?, Spat im R?, ... fortsetzt und Paral-
lelotop heiBt. In Fortsetzung von 2.2.1., Satz 2 (erste Aussage) sowie von Satz 8 und
11 hat das Parallelotop das vorzeichenfahige Volumen det(a(D), ..., a®).

Wahlt man von den Ecken eines Parallelotops nur die mit den Ortsvektoren.p,
p + a), ..., p + a™ aus, so erhilt man den Begriff des Polytops mit kleinstmoglicher
Eckenzahl n + 1 im R». Dieses wird Simplez genannt; es setzt die Folge der Begriffe
Strecke im R}, Dreieck im R?, Tetraeder im R? fort. Man kann ein Parallelotop aus

n! vol leichen Simplexen und hat demnach — det(a(‘) ., a™)
als vorzenchenfa.l'ugas Volumen des n-dimensionalen Simplex. !

2.3.9. Aufgaben
1. Man beweise ab = ba fir (1) mit |PU| = |PV| + 0, 0° < |XUPV| < 90°, in-

dem man das Lot von U auf g(PV) fillt und die Kongruenz zweier Dreiecke
nachweist. Ferner beweise man ab = ba in den Fillen | UPV| = 0°, 90°.
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2. Man lése (7), (8) nach cos f und sin § auf und schreibe das Ergebnis mit y :=a + 8
als Formeln fiir cos (y — a), sin (y — a). In diesen wihle man y := 0° und be-
weise cos (—a) = co8 a, sin (—a) = — sin a. Ahnlich gewinne man cos (90° — a)
= sin & und weitere entsprechende Formeln fiir k- 90° 4- a (k € Z).

Aus (7), (8) entnehme man

8in 24 = 2 - sin a - cos &, cos 2a = cos®a — sina,

also, wenn cos a =% O ist,

. 2tan a 1 — tana

sm2u=m, cos2a=m,
folglich

tanta — 1 — cos 2a

1 + cos 2a
und d (Vorzeichendiskussion!)
sin 2a
tana = 1 4 cos 2a °

(Das letzte gewinnt man auch aus der Formel fiir sin (y — a) mit y := 2a.)
3. Man berechne die Seitenlangen und die GréBen der orientierten Elementarwinkel
zwischen den Seiten des Dreiecks (—2, —2) (4, 0) (0, 6). ’
4. Man berechne das Volumen und den Flidcheninhalt der Oberflache des Spats aus
2.2.5., Aufgabe 2, sowie die GréBen der Elementarwinkel, die seine Seitenkanten
miteinander und mit den positiven Halbachsen des Koordinatensystems bilden.
Fir a + o beweise man cos? | X(a, ¢,)| + -+ + cos? | X(a, eg)] = 1.
Fir die Seitenldngen a, b, ¢ eines Dreiecks ABC und 8 : = }(a + b + ¢) beweise
man: Mit a := p(BC), b := p(CA4) gilt

¢t = ((a + b)?)? = (a%)? + 4a%(ab) + 24262 + 4(ab)? -+ 4(ab)b® + (62)2.
Hieraus gewinne man die Heronische Formel

|ABC|® = 8(s —a) (8 — b) (8 — ¢)

o

(= %(— at — b — b+ 207t + fatc? + wcz)).

2.4.  Lineare Parameterdarstellungen

2.41. Geraden, Strahlen, Strecken; Teilverhiltnis

Der folgende Satz gibt eine Moglichkeit zur rechnerischen Erfassung von Geraden,
Strahlen und Strecken im R" (n < 3) (bzw. zur Definition dieser Begriffe im R"
(n > 3)) (Abb. 2.23).

Satz 1. Es sei p = b(OP), a = v(PQ) = 0. Dann entsteht eine bijektive Ab-

bildung von R auf g(PQ), wenn man je einer Zahl t € R den Punkt X mit dem Orts-
vekior

r=p+ta (oY)
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Abb. 2.23

zuordnet. Dabei ist die Menge aller Punkte X mit (1) und ¢t = O der Strahl PQ*.
Ferner ist die Menge aller X mit (1) und 0 < ¢t < 1 die Strecke PQ.

Beweis. Nach der Definition des Vervielfachens in 2.2.3. ist g(PQ) bzw. PQ*
bzw. PQ die Menge aller derjenigen X, die mit den jeweils angegebenen ¢ durch
die Bedingung 9(PX) =t - b(PQ), d. h. f — p = ta, charakterisiert sind.

Zusatz. Ist p = v(OP), P =Q, also a := b(PQ) = v, so fikrt (1) fiir jedes
t € R auf denselben Punkt X = P = Q.

In der Ausdrucksweise der Analysis (vgl. MfL. Band 5) haben wir in (1) die
speziellen Kurven Gerade, Strahl, Strecke durch Parameterdarstellungen erfaBt.
Aus Symmetriegriinden verwendet man bei der Darstellung von g(PQ) und PQ
manchmal statt eines Parameters ¢ zwei voneinander abhéngige Variable 4, u:

Satz 2. Es sei p = 0(OP) &= q = b(0Q). Dann entsteht eine bijektive Abbildung
von der Menge aller derjenigen Paare (), p) reeller Zahlen, die die Bedingung
Atu=1 @)

erfillen, auf die Gerade g(PQ), wenn man je einem solchen Paar den Punkt X mit
dem Ortsvektor

=M +uq @
zuordnet. Dabei ist die Menge aller X mit (3), (2) und

Az20, pu=0 (4)
die Strecke PQ.

Beweis. Wegena = v(PQ) = q — p ist (1) gleichwertigmitz = (1 — ¢) p + ¢q,
und darin ist die Bedingung 0 < ¢t < 1 gleichwertig mit 1 —¢ =0, ¢ = 0.

Zusatz 1. Ist P =Q, so fiikrt (3) fiir jedes Paar (4, u) mit (2) auf denselben
Punkt X = P =Q.
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Zusatz 2. Ist p=3+u, q=8+0b, so ist (3) gleichbedeutend mit
Tt =38+ M+ ub.

Die Zahlen 4, u aus (3) stehen in Beziehung zu dem Begriff des T'eilverhiltnisses
(vgl. Satz 3). Bereits in der Schulgeometrie tritt dieser Begriff als die Zahl
|PX| : |QX| auf (iibrigens selbst dann als Zahl ohne MaBeinheit, wenn man nicht
den ,,abstrakten Standpunkt* aus 2.1.2. einnimmt, sondern |PX|, |QX| mit einer
MaBeinheit, etwa dem Meter, angibt). Wir wollen hier auch Vorzeichen einbe-
ziehen, denken uns zunichst g(PQ) orientiert und definieren als Teilverhiltnis
die Zahl

TV(P,Q; X) := m(PX) : m(QX) (X <€ g(PQ),+Q). (5)
Dabei hiingt (5) in Wirklichkeit nicht von der Orientierung der Geraden g(PQ)
ab, sondern nur von der Lage des Punktes X (+@) auf ihr; denn bei anderer
Orientierung bleibt das Vorzeichen des Quotienten (5) unverindert.
Satz 3. In (3) gilt, wenn X = Q, also A == O ist,
pi:d=—TV(PQ;X).
Beweis. Nach (3) gilt
O(PX) =g — p = plq — p) = pb(PQ) ,
BQX) =g —q=—Aq—p) = — W(PQ),

m(PX) =um(PQ), m(QX)= —im(PQ),
woraus die Behauptung durch Division folgt.

Aus Satz 3 liest man folgende Eigenschaften des Teilverhilinisses ab: Wegen
A+ p =+ 0 gilt stets TV(P,Q; X) + 1. Fir X = P ist TV(P,Q; X) =0. Da
wegen A + u > O niemals gleichzeitig A < 0, x < 0 sind, folgt nach (4): Genau
dann ist TV(P,Q; X) < 0, wenn X im Innern der Strecke PQ liegt; genau dann
ist TV(P, Q; X) > 0, wenn X (¢ g(PQ)) auferhalb der Strecke PQ liegt.

Zuweilen ist es vorteilhaft, statt TV(P, Q; X) die Zahl

m(PX) : m(XQ) = — TV(P, Q; X)
zu verwenden; diese ist also genau fiir die Punkte X im Innern von PQ positiv.

also

Satz 4. Zu beliebig gegebenen l, me Rmitl 0,1+ m 40 gibt' es genau einen
Punkt X € g(PQ) mit m(PX) : m(XQ)=m : 1, d. h. mit TV(P,Q; X) = —m : I
Er hat den Ortsvektor

1
t=7 W +ma). (6)

Beweis. Es gibt genau ein Paar (4, #) mit (2) und g : A = m : [, nimlich
m l
E=T¥m *=ixw

Hiermit wende man Satz 2 an.
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Der Punkt X mit (6) tritt in der Physik als Schwerpunkt des Massensystems
auf, das aus einer im Punkt P befindlichen Masse von ! Gramm und einer im
Punkt @ befindlichen Masse von m Gramm besteht: Dieses Massensystem kann
(hinsichtlich seines Schwereverhaltens) durch eine in X angebrachte Masse von
(! + m) Gramm ersetzt werden.

Der Punkt X mit m(PX) = m(XQ), d.h. mit TV(P,Q; X) = — 1, ist der
Mittelpunkt von PQ. Er hat den Ortsvektor ¢ = 5(p + q).

Die Ausnahmevorschriften I % 0 (d h X :t: Q) und l4+m %0 (d.h. TV(P,Q; X)

# 1) konnen in der ten pr trie folgendermaBen beseitigt wer-
den: Erstens erweitert man die Menge R um ein neues Element, das Verhdiltnis 1:0.
Dieses Teilverhiltnis, das keiner reellen Zahl gleich ist, schreibt man dem Punkt
X = Q zu. Zweitens erweitert man die Gerade g um ein neues Element, thren soge-
nannten uneigentlichen Punkt. Fir diesen werden zwar keine Langen m(PX), m(QX)
definiert, aber man schreibt ihm (beziiglich des vorliegenden Koordinatensystems) das
Teilverhéltnis 1 zu.

Nachdem wir nun Geraden durch (1) bzw. (2), (3) rechnerisch erfassen kénnen,
gelangen wir auch zu rechnerischen Kriterien fiir die Kollinearitdt.

Satz 5. Qenau dann sind P, Q, X (¢ R") kollinear, wenn die Vektoren a := b(PQ)
und b := p(PX) linear abhingig sind.

Beweis. Kollinearitét liegt genau dann vor, wenn entweder P =@ (d. h.
a = 0) gilt oder fiir @ = 0 gemiB Satz 1 ein t € R mit f — p = ta (d. h. b = fa)
existiert. Das sind aber genau alle Moglichkeiten fiir die lineare Abhdngigkeit
der Vektoren a, b.

Satz 6. Genau dann sind im R2 gelegene Punkie (py, py), (41, @), (21, @p) Kollinear,
wenn

1 1 1
P @ =0
P2 22 %

gile.

Beweis. Kollinearitit liegt nach Satz 2 und seinem Zusatz 1 genau dann vor,
wenn man die Reihenfolge der Punkte so wihlen kann, daB ein Paar (4, u) € R?
mit

1-A4+1-p+1- (=) =0,

Pdtqp+m-(-1)=0,

P dt+gp+2-(-1)=0
existiert. Dies trifft genau dann zu, wenn

1 1 1
P 4
P 2 T

die Koeffizientenmatrix eines nichttrivial 16sbaren homogenen linearen Gleichungs-
systems ist.
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2.42. Ebenen, Halbebenen, Dreiecksflichen; Raum, Halbrdume,
Tetraederkérper

Satz 7. Esseien P, Q, S nicht kollinear;es seip := b(OP),a := b(PQ),b := b(P8S).
Dann entsteht eine bijektive Abbildung von R? auf die Ebene ¢ := e(P@S), wenn
man je einem Zahlenpaar (u, v) € R? den Punkt X mit dem Ortsvektor

T=p+ ua+b M
zuordnet. Dabei ist die Menge aller X mit (7) und u = 0 die Halbebene PSQ*.

_—

/ .

Abb. 2.2¢4

Beweis (Abb. 2.24). Fir jedes (u, v) € R? liegen nach Satz 1 die Punkte U, V
mit den Ortsvektoren p + ua bzw. p + vb auf g := g(PQ) bzw. auf k := g(PS),
und PUXV (mit 9(0X) =  aus (7)) ist das von ua und vb aufgespannte Parallelo-
gramm mit der Anfangsecke P; daher liegt X in £(gh) = &. Also bildet die durch
(7) definierte Abbildung R® in ¢ ab. Sie ist surjektiv; denn fiir jedes X € e gibt
esUegund Vehso, daB PUXV ein (eventuell entartetes) Parallelogramm ist,
und wendet man Satz 1 auf U und V an, so erhilt man » und v mit (7). Die Ab-
bildung ist auch injektiv, da aus p + w,a + v,b =p + w,a + v,b zundchst
(4g — u)a 4+ (v, —v) b =0 und dann wegen der linearen Unabhingigkeit
(Satz 5) u, = u, und v, = v, folgt. SchlieBlich liegt X genau dann in PSQ*,
wenn U € P@* ist, also nach Satz 1 genau im Fall w = 0.

Satz 8. Es seien p, q, 8 die Ortsvektoren dreier nicht kollinearer Punkte P, @, S.
Dann entsteht eine bijektive Abbildung von der Menge aller Tripel (A, p,v) reeller
Zahlen mit

Adptr=1 @)
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auf die Ebene e(P, Q, 8), wenn man je einem solchen Tripel den Punkt X mit dem
Ortsvektor
T=2p 4 pq + 8 . ®
zuordnet. Dabei ist die Menge aller X mit A = 0, u = 0, v = 0 die Dreiecksfliche
PQS.
Beweis. Wegena =q — p, b =8 — p ist (7) gleichwertig zu
t=(1—u—v)p+uqg+3,
also zu (9) mit (8). Hierbei ist PSQ*+ durch u (= #) = 0 charakterisiert. Analog
kann man PQS* durch » (= v) = 0 charakterisieren. Schreibt man (9) als g =3
+ A(p — 8) + u{q — 8), so erhilt man ebenso A = 0 als Charakterisierung von

SQP+. Also ist die Dreiecksfliche PQS = PSQ* n PQS* n SQP+ (Abb. 2.25)
durch 4, u, » = 0 charakterisiert.

w7,

POS"———
=

UENN

Abb. 2.25

Die A, u, » haben die in 2.6.1. motivierbare Bezeichnung baryzentrische Koordinaten
von X. Als Beispiel fiir die durch sie erreichbare Symmetrie in der Schreibweise nennen
wir

Satz 9. Sind fir p, q, 3 wie in Satz 8 drei Punkte U (i = 0, 1, 2) durch ihre Orts-
vektoren
Ui = piop + pirq + piod  (mio + pi1 + piz = 1)
gegeben, so sind sie genau dann kollinear, wenn det(uy) = 0 4st.

Beweis. Haben P, Q, S in einem Koordinatensystem der Ebene ¢(PQS) die Ko-
ordinaten (p,, Ps), (¢15 %) (%, Z5), 80 sind die Uy nach Satz 6 genau fiir

Hoo + oL + boa HoP1 + Hads + Hey HooPa T+ Hords t+ HoaTa
o + puy + s HPr + pndy + sy B + Ends + BTy | =0
| Hoo + o1 + oo HoPy + tn + Hn® pwPr t+ dnds t EnT

kollinear. Diese Determinante ist das Produkt aus det(u) und der Determinante in
Satz 6. Da die letztgenannte nach der Vor: ng iber P, @, S nicht verschwindet,

folgt die Behauptung.
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Auf die geometrische Bedeutung von 4, u, v gehen wir in 2.6.2. ein.
Die folgenden Aussagen lassen sich in naheliegender Analogiebildung zu den
Siitzen 1 bis 8 herleiten; die einzelnen Beweise kénnen wir dem Leser iiberlassen.
Komplanar sind Punkte P,Q,S,X (¢ R") genau dann, wenn a := b(PQ),
b := B(P8), ¢ := b(PX) linear abhingig sind. Im R3 ist die Bedingung
11 1 1
G S T 0 (10)
P B2 8 X
|25 & 8 =
notwendig und hinreichend dafiir, daB (p,, Py, Pa); ---s (&1, Ty, T3) komplanar sind.
Fiir nicht komplanare P,Q, S, T definiere man X mit dem Ortsvektor
r=9 + ua + vb + we
((u, v, w) € R®; a :=b(PQ), b := b(PS), ¢ := b(PT)); (11)
dies ergibt eine bijektive Abbildung von R® auf den R®. Dabei charakterisiert w = 0
den Halbraum PSTQ*. Den R® erhilt man auch — statt durch (11) — durch
r=Ap+tuq+B+9t @A+pt+r+9=1); (12)
dabei charakterisiert A, u, v, ¥ = O den Tetraederkorper PQST.

2.43. Lineare Mannigfaltigkeiten

Die Parameterdarstellungen (1), (7), (11) haben die gemeinsame Gestalt
T=P+ ua; + o+ wls (43 ooy ur € R) (13)
mit k = 1, 2, 3. Die bei (1), (7), (11) auftretenden Voraussetzungen iiber die dort
genannten Punkte P, Q, ... besagen (nach jeweils zuvor genannten Kriterien),
daB ay, ..., @z in (13) als linear unabhéngig vorausgesetzt werden. Daher sind
Geraden, Ebenen und der R® dasselbe wie die in MfL Band 3, 5.3., betrachteten
linearen Mannigfaltigkeiten der Dimension 1, 2 bzw. 3. Man kann (13) auch fiir
= 0 sinngemiB als r = p betrachten und damit den Punkt X = P als lineare
Mannigfaltigkeit der Dimension O erhalten. Im R™ mit n > 3 laBt sich ferner (13)
mit mehr als drei linear una.bhﬁngigen @y, ..., 3 bilden (hoherdimensionale lineare

Mannigfaltigheiten). Speziell heiBt fiir jedes n eine (» — 1)-dimensionale lineare
Manmgf&ltlgkelt im R™ eine Hyperebene.
Werden a,, ..., ax tn (13) nicht als linear bhingig vor tzt, so entsteh

lineare Mannigfaltigkeiten, deren Dimension sich nach MfL Band 3, 5.3., als
Rang(ay, ..., a) bestimmen lift. (Einen einfachen Spezialfall hiervon, k = 1 und
a; = 0, enthielt bereits der Zusatz zu Satz 1.) Entsprechend wird die Dimension
der durch (3), (9), (12) dargestellten linearen Mannigfaltigkeiten kleiner, wenn
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die dort auftretenden Voraussetzungen iiber P, @, ... nicht erfiillt sind (speziell
bei (3) vgl. Zusatz 1 zu Satz 2). Der Leser zeige auch, da8 die durch (3), (9), (12);
(13) gegebenen Abbildungen von der Menge der Parameter-Tupel auf die lineare
Mannigfaltigkeit in diesen sogenannten Entartungsfillen nicht mehr injektiv sind.

Geht eine lineare Mannigfaltigkeit durch den Ursprung O, so kann man in (13)
p = o withlen. Die Vektoren in (13) bilden dann einen linearen Unterraum (Vektor-
raum), eine Unterstruktur der algebraischen Struktur ,,Vektorraum* (MfL Band 3,
3.4.).

Eine lineare Mannigfaltigkeit durch O wird beim Identifizieren von Punkt und
Ortsvektor identisch mit dem betreffenden Vektorraum. So erkliren sich die in
MfL Band 3, 3.4., g v haulichungen linearer Unterra durch Ur-
sprungsgeraden, -ebenen usw.

Wird nun wieder fiir beliebiges p = v(OP) die Menge (lineare Mannigfaltigkeit)
M aller Punkte X mit Ortsvektoren (13) betrachtet, so kénnen wir dies mit Hilfe
des Vektorraums

Q1= {u0; + 4 Wy : (%, ..., ue) € R¥}
als

M= {X:p(PX)c &}
wiedergeben. Wir sagen, M sei durch Anheften von & an P entstanden. Nach
MfL Band 3, 5.3., entsteht M auch, wenn man denselben Vektorraum & anirgend-
einen anderen Punkt @ € M anheftet.

Die Bezeichnung ,.linear (bei Mannigfaltigkeiten, Vektorrdumen, iiberhaupt
in der linearen Algebra) wird geometrisch plausibel durch

Satz 10. Eine nichtleere Punktmenge M ist genau dann eine lineare Mannig-
faltigkeit, wenn sie (falls sic mehr als einen Punkt enthilt) zu je zweien threr Punkte
deren Verbindungsgerade enthilt.

Zum Beweis ist zu zeigen, daB fir P ¢ M die Vektormenge L := {b(PX):
X ¢ M} genau dann ein Vektorraum ist, wenn M die genannte Eigenschaft
(UeMAVeEM AUV = g(UV)S M) hat. Setzt man p :=b(0P),
u:=p(PU), b := b(PV), so ist diese Eigenschaft wegen des Zusatzes 2 zu Satz 2
gleichbedeutend damit, daB & die Eigenschaft

UERAVERAAWERALFu=1=>Au+tube @ (14)

hat. Zu beweisen ist somit, daB fiir Vektormengen @ mit o € & die Eigenschaft
(14) genau dann vorliegt, wenn & ein Vektorraum ist, d. h. genau dann, wenn sogar

uelavea(l,meRr=>4mpe (16)

gilt.

Aus (15) folgt sofort (14). Umgekehrt sei (14) vorausgesetzt. Wendet man
dies auf b := 0 an, 8o erhdlt man den SchluB (1€ @ A2e R=> Aue€ &). Daher
kann man nun (14) auf 2u, 20 (mit u, b € Q) statt u, b sowie auf A := ; und
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# 1= % anwenden und erhilt den SchluB (ue L Ave & = u + b ¢ Q). Die beiden
erhaltenen Schliisse fiihren zur Behauptung (15).

2.4.4. Durchschnitt und lineare Hille. Der Dimensionssatz

Nach MfL Band 3, 3.4., ist der Durchschnitt jeder Familie von Vektorriumen
im R" wieder ein Vektorraum. Daraus ergab sich: Zu jeder Vektormenge B im
R™ existiert genau ein (beziiglich der Relation <) kleinster Vektorraum L, der B
umfapt, und zwar ist L, der Durchschnitt aller 8 umfassenden Vektorriume &
im R". Fiir & wurde die Bezeichnung lineare Hiille (im Sinne eines Vektorraums)
gebraucht.

Nach MfL Band 3, 5.3., ist ferner der Durchschnitt jeder Familie linearer
Mannigfaltigkeiten im R" entweder leer oder eine lineare Mannigfaltigkeit. Daraus
folgt analog: Zu jeder Punkimenge N & R™ existiert genau eine (beziiglich =)
kleinste lineare Mannigfaltigkeit My, die N umfapt, und zwar ist M, der Durch-
schnitt aller N umfassenden linearen Mannigfaltigkeiten M S R". Fiir M, ge-
brauchen wir die Bezeichnung H(N), lineare Hiille (im Sinne einer linearen Man-
nigfaltigkeit) von N. Sind A4, B lineare Mannigfaltigkeiten, so schreiben wir statt
H(A v B) kiirzer H(AB). Zur Berechnung dieser Hiille dient

Satz 11. Sind A, B lineare Mannigfaltigkeiten mit den Parameterdarstellungen
=P+ w0+ +wl (2..,u6ER) (16)
bzw.
T=q+vb + - 490, (v15 +-rs 95 €. R) (17)
(P, q Ortsvektoren gegebener Punkte P,Q; a ..., ay, by, ..., b, gegebene Vektoren), so
hat H(AB) die Parameterdarstellung

T =04 w(q — P) + wia, + - 4wy 4 wyysby + o+ wy b,
(W «oes Wryg € R), . (18)
also insbesondere die Dimension h = Rang(q — p, ay, ..., a7, by, ..., by).

Beweis. Ist H(AB) durch Anheften eines Vektorraums § an P entstanden,
so enthilt ¢ die Vektoren a, ..., a5,q — 9, q + b, — P, ..., § + b, — p und deren
Linearkombinationen mit Koeffizienten wy, ..., wy, wo — Wpyq — ++ — Wy g, wpiy,

.y Wyig 8lso enthilt H(AB) alle Punkte mit Ortsvektoren (18). Andererseits
bllden diese Punkte selbst schon eine 4 und B umfassende lineare Mannigfaltig-
keit, die folglich auch H(4 B) umfaBt und demnach gleich H(4 B) ist.

Einer der wichtigsten Sitze der analytischen Geometrie und linearen Algebra
ist der Dimensionssatz:

_ Satz 12. Haben zwei lineare Mannigfaltigkeiten A, B nichtleeren Durchschnitt

D := A n B, so gilt fiir die Dimensionen f,g,d, h von A, B, D bzw. H := H(AB)
die GQleichung f + g =d + h.
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Beweis. Nach Voraussetzung existiert ein Punkt P ¢ D. Es seien 4, B, D, H
durch Anheften von §, ®, D, 9 an P gebildet. Der Vektorraum ® = Fn &
(vgl. MfL Band 3, 5.3.) hat eine Basis aus d Vektoren 3, ..., 3;. Diese kann wegen
D & & nach dem Austauschsatz (vgl. MfL Band 3, 4.2.) durch f —d weitere
Vektoren g;, ..., Zy_q zu einer Basis von  erginzt werden, ebenso durch g — d
Vektoren 1), ..., §);_4 zu einer Basis von §.

In Satz 11 seien q :=p sowie als a;, ..., a; bzw. by, ..., b, die ebengenannten
Basen von {, @ gewihlt; hiernach wird § durch 3, ...; 34, L3s vo0s Er—a> D1s -0 Yg—a
erzeugt. Konnen wir nun zeigen, daB diese f + g — d Vektoren linear unab-
héngig sind, so ist ihre Anzahl gleich der Dimension k2 von H, und der Satz ist
bewiesen. Es sei also eine Gleichung

b+ Flga i+t rpoalp-a 8+ + 8 _dh)p_a =0
(b1 +es tas T2y wooes Ty_ay 81, -0y §g—a € R) angenommen. Es geniigt, hieraus s = .-
= 854 = 0 zu schlieBen; denn dann folgt wegen der linearen Unabhingigkeit
der 3y, v 3> L1» oo Ey—g BUCh § = o =ty =1, =« =7, ;= 0. Nun liegt der
Vektor

bi=bg + o+ liga + b+ Troalpea = — S — o — 8g-aly-a
sowohl in § als auch in @, also in D; es gibt daher u,, ..., u; € R mit

U+ UG =0 = — s — = S alya -

Hieraus folgt wegen der linearen Unabhingigkeit der 3y, ..., 3g D1s e Pg—a die
Behauptung §; = «+ =g,_4=0.

Der Grundgedanke dieses Beweises besteht darin, je ecine Basis von § und @ so
zu finden, daB8 ihr Durchschnitt eine Basis von T bildet (hierzu dient der Austausch-
satz) und ihre Vereinigungsmenge eine Basis von (hxerbel lst nach der Anwendung
von Satz 11 die lineare Unabhangigkeit die entscheid weisende Aussage).
Der Dimensionssatz ist dann nur noch die Anzahlformel MfLBand 1, 3.6. (11), fiir diese:
mengentheoretische Situation.

2.4.5. Durchschnittsberechnung. Parullele und windschiefe Mannigfaltig-
keiten

Die theoretische Strukturaussage des Dimensionssatzes soll nun erginzt werden
durch praktische Berechnungsméglichkeiten fiir D := A n B: Sind 4, B durch
(16) bzw. (17) gegeben, so ist D die Menge aller derjenigen Punkte X, zu denen
f + g Zahlen w,, ..., uy, vy, ..., v, existieren, fiir die beide Glelchungen (16), (17),
gelten. Daher entsteht D durch Einsetzen der Losung ge des Gi s

U8y + o + %0y — by — - — v b, =q —p (19y

in (16) oder — was dann auf dasselbe kinausliuft — in (17). Insbesondere ist genau.
dann D =+ 0, wenn (19) losbar ist.
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Nach MfL Band 3, 6.5., trifft dies genau im Fall
Rang(ay, ..., 8, by, .., b,) = Rang(ay, ..., ay by, ..., by, ¢ — p)

zu. Hieraus 1Bt sich nach Satz 11 ein zweiter Beweis des Dimensionssatzes ge-
winnen (2.4.7., Aufgabe 2). Aulerdem aber konnen wir nun den Dimensionssatz
noch durch analoge Aussagen fiir den Fall D = 0 vervollstindigen. Wir wollen
dies jedoch (vgl. die Sitze 13 und 14) nur fiir zwei spezielle Lageméglichkeiten
von A4, B ausfiihren, die zunichst definiert seien:

Zwei lineare Mannigfaltigkeiten A, B, entstanden durch Anheften von Vektor-

¢

raumen F, & an Punkte P, Q, heifen genau dann zueinander parallel, wenn
FSOVEESH

gilt. (Man beachte, daB dies auch fiir 4 n B = 0 moglich ist. Es ist dann gleich-

bedeutend mit A & Bv BES A; der Dimensionssatz besteht hierbei in der

Gleichung f + g = min(f, g) + max(f, g).)

Zwesi lineare Mannigfaltigkeiten A, B heiflen genau dann zueinander windschief,
wenn A n B =@ gilt und Parameterdarstellungen (16), (17) von A, B derart exi-
stieren, dap das Vektorsystem ay, ..., ay by, ..., b, linear unabhingig ist. (Wir be-
weisen, dal dies dquivalent mit

AnB=0AFnG = {0}
ist: Durch Anheften von {5, ® an einen gemeinsamen Punkt S bilde man zwei
lineare Mannigfaltigkeiten A’, B’. Fiir diese zeigt der Dimensionssatz, daB
Rang(a,, ..., Ay, by, ..., b)) = f + g dquivalent ist mit 4° n B’ = {§}.)

In den folgenden Beweisen seien o. B. d. A. sogleich (16) mit linear unabhingigen
ay, ..., Gy und (17) mit linear unabhéngigen by, ..., b, gewihlt.

Satz 13. Haben zwei lineare Mannigfaltigkeiten A, B leeren Durchschnitt, so
gilt fiir die Dimensionen f, g, h von A, B bzw. H(A B) genau dann h = max(f, g) + 1,
wenn A, B parallel sind.

Beweis. Aus 4 n B =0 und Satz 11 folgt

max(f, ) < Rang(qy, ..., ay, by, ---, by)
< Rang(ay, ..., a7, by, o0, Bg, g — p) = k. (20)
Sind 4, B parallel, etwa mit § & ®, also qay, ..., a; € &, so geht (20) in

g < Rang(by, ..., b g —p) =4
iiber. WegenRang(b,, ..., by, ¢ — p) < g + lfolgtdamith = ¢ + 1 =max(f,g) + 1.
Wird umgekehrt » = max(f, g) + 1 vorausgesetzt, etwa fir f < galsoh =g + 1,
so folgt aus (20), d.h. aus- g < Rang(ay, ..., 5, by, ..., by) < g + 1 zunichst
Reng(ay, ..., ay, by, ..., b;) = g und daraus q,, ..., a,€¢ @, also F S @.
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Satz 14. Fiir lineare Mannigfaltigkeiten A, B und die Dimensionen f, g, h von
A, B bzw. H(AB) gilt genaw dann b = f + g + 1, wenn A, B windschief sind.

Beweis. Nach Satz 11 gilt
h = Rang(ay, ..., a5, by, o0, Bpyg —p) < f + 9+ 1.

Darin gilt genau dann das Gleichheitszeichen, wenn das Vektorsystem g, ..., ay,
by, ..., By, ¢ — p linear unabhingig ist. Dies ist dquivalent damit, daB erstens
das System a,, ..., a4, by, ..., b, den Rang f + g hat und zweitens 4 n B = 0 gilt.

In der projektiven Geometne ordnet sich Satz 13 dem Dimensionssatz unter, weil

die parallelen linearen M g igentliche Punkte besi die
ihren Durchschnitt, eine lineare ‘Mennigfal igkeit der L‘ 1 d = min(f,g) — 1,
bilden. Beispielsweise haben zwei voneinand der parallele

Geraden als Durchschnitt genau einen unexgenthchen Punkt.

Windschiefe lineare Mannigfaltigkeiten haben auch in der projektiven Geometrie
keine gemeinsamen Punkte; Satz 14 1aBt sich aber formal dadurch dem Dimensions-
satz unterordnen, daB man de,hmm der leere Durchachnitt windschiefer linearer Mannig-
Jaltigkeiten sei eine lineare Mannigfaltigkest der ,,Di ton* d = — 1.

2.4.6. Lagemdglichkeiten linearer Mannigfaltigkeiten im R? und R®

Die Ergebnisse aus 2.4.4. und 2.4.5. befiahigen uns, alle Moglichkeiten aufzuzihlen,
die bei linearen Mannigfaltigkeiten 4, B S R? fiir die Dimensionen f, g,k von
A, B, H(AB) sowie fiir das Vorliegen von 4 n B =0 oder 4 n B & 0 und im
letzten Fall fiir die Dimension d von 4 n B bestehen. Ohne Beschrinkung der
Allgemeinheit kann man f < g annehmen und dann wie folgt vorgehen:

Man stelle alle Tripel ganzer Zahlenf, g, » mit0<f<g<h<3 und
h<f+ g+ 1fest. Zu jedem dieser Tripel ist genau dann 4 n B = 0 méglich,
wenn sogar k< f + ¢ gilt, und dann erhilt man d aus dem Dimensionssatz.
Ferner ist genau dann 4 n B = § méglich, wenn g 4+ 1 < h gilt. Wie Tabelle 2.1
zeigt, trifft dies im R® nur fiir Anwendungsfille von Satz 13 oder 14 zu. Die
Lageméglichkeiten im R? entnimmt man der Tabelle 2.1, indem man alle Fille
mit b = 3 wegliBt. Die Buchstaben P, Q bedeuten Punkte; k,! Geraden; ¢, é
Ebenen.

Damit ist zugleich gezeigt, da8 die in 2.4.5. gegebenen Definitionen paralleler
und windschiefer linearer Mannigfaltigkeiten mit den Definitionen aus MfL Band 6
fiisr den R2% und R? iibereinstimmen: Komplanare Geraden k,l sind genau dann
parallel, wenn sie identisch oder disjunkt sind. Dasselbe gilt fiir Ebenen ¢, ¢ R3.
Eine Gerade k und eine Ebene ¢ im R® sind genau dann parallel, wenn sie inzident
oder disjunkt sind. Geraden k,l c R® sind genau dann windschief, wenn sie nicht
kompl sind oder, dquivalent hiermit, wenn sie disjunkt und nicht parallel sind.
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Tabelle 2.1
f g b d Aund B Hiille Durchschnitt
00 00 P, P P P
00 1 — P,Q mit P +Q k(PQ) ]
0110 P,k mit Pek k P
01 2 — P,k mit Pek &(Pk) ]
0 2 2 0 P,e mit Pee € P
0 2 3 -— P,e mit Pee R3 [}
0 3 30 P, R? R? P
1111 k, k g k
112 0 k, I komplanar, nicht parallel e(kl) P=knl
112 — k, l parallel, mit &k + I e(kl) [}
113 — k, ! windschief R? [}
1 2 21 k, e mit kcCe 3 k
1 230 k, ¢ nicht parallel R? P=Fkne
1 2 3 — k, ¢ parallel, mit k ¢ ¢ R3 )
13 31 k, R? pid k
2 2 2 2 &€ € &
2 2 381 &, 6 nicht parallel R k=¢end
2 2 3 - ¢, 6 parallel, mit ¢ + & R? 9
2 3 3 2 e, R? R? €
3 3 3 3 R, R® R? R?

2.4.7. Avufgaben

1.

2.

Man beweise Satz 6 aus Satz 5 unter Verwendung der Bedingung det(q — p,
t—p)=0

In (19) setze men g, ..., a; als linear unabhangig und b, ..., b, als linear unab-
héngig voraus. Ist (19) losbar, so schlieBe man aus Satz 11: Jede Lésung

U := (4, ..., Uy, ¥y, ..., ¥) laBt sich kombinieren aus einer speziellen Lésung U©)
und f+ g — h linear unabhéngigen Losungen U*) (i = 1,..,f + g — k) des
zugehorigen homogenen Systems. Man beweise, da8 nun die durch Einsetzen der
U*® in wa, + - + wa, (oder, was dasselbe ergibt, in b, + - + v,b,) ent-
stehenden f + g — h Vektoren eine Basis von D bilden.

In der Ebene seien P + Q und Z die Punkte (0, 0), (g, 0) bzw. (g, 1). Man be-
rechne fir X € g(PQ) (Angabe nach 2.1.3.) die Gerade g(ZX) (Darstellung nach
Satz 2) und dann ihren Schnittpunkt (0, ¢) mit der y-Achse. Diesem Ergebnis der
Projektion der x-Achse auf die y-Achse aus dem Projektionszentrum Z (Abb. 2.26)
entnehme man ¢ = TV(P,@; X). Man verdeutliche sich hieran die Ausnahme-
Bedingungen X * Q und ¢ * 1 sowie ihre Uberwindung in der projektiven Geo-
metrie. (Deren Name laBt sich aus der ausnahmefreien Moglichkeit solcher Projek-
tionen erkléren.)

Aus gegebenen Ortsvektoren von P, Q sowie gegebenem TV(P,Q; X) berechne
man X und dann TV(P, X; Q), TV(Q, X ; P) (Ausnahmefille beachten!). Hieraus
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Abb. 2.26

und aus der in 2.4.1. gezeigten Aussage (TV(P,Q; X) < 0 < Zw(PXQ)) beweise
man TV(P,Q; X) > 1 & Zw(PQX) und 0 < TV(P, Q; X) < 1 & Zw(QPX). Man
leite diese drei Aussagen auch geometrisch aus Aufgabe 3 her.

5. Ist PUZVWYQX ein Spat, so nenne man die linearen Hiillen 4 und B geeignet
gewihlter Eckenmengen derart, daf fir jeden der Falle aus 2.4.6. ein Beispiel
entsteht. Man berechne fiir das Spat aus 2.2.5., Aufgabe 2, in allen diesen Bei-
spielen jeweils H nach Satz 11 und D nach 2.4.5.

2.5.  Lineare Gleichungen

2.51. Stellungsvektor, Hessesche Normalform, Lot; Neigungswinkel

Nach MfL Band 3, 5.3., ist fiir gegebene a,, ay, ..., @, € R mit (a,, ..., a,) £ (0, ..., 0)
die Losungsmenge M der linearen Gleichung

a2y + - + Gory + @y = 0 M
eine Hyperebene im R™. Dabei ist M durch (1) eindeutig bestimmt, umgekehrt
aber (1) durch M nur bis auf einen von 0 verschiedenen Faktor.

Bei gegebener Gleichung (1) nennen wir M ,,die Hyperebene mit der Gleichung
(1)“ oder auch kurz ,,die Hyperebene (1)“. Bei gegebener Hyperebene M wird
jede zugehorige Gleichung (1) ,.eine (nicht: die) Gleichung von M* genannt.

Fiir die ebene Geometrie haben wir somit zur analytisch-geometrischen Erfassung
von Geraden g ¢ R? auBer den Parameterdarstellungen 2.4.1.(1); (3), (2) auch die
Moglichkeit, g als Lésungsmenge von

ar+by+c=0 (abceR; (b =+ (0,0) 1)
anzugeben. Ebenso di in der rd@umlichen G trie zur Erfassung von Ebenen
£ ¢ R? deren Gleichungen

ax +by+cz+d=0 (@, b,c,d e R; (a,b,¢) +(0,0,0) . )
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Fiihren wir die Vektoren r := <z, ..., 2,0, N := (@, ..., @) ein, so erhilt (1) die
Gestalt

N +a=0. 2
Ist nun g, der Ortsvektor eines Punktes X, € M, so erfiillt er (2), d. h., so gilt
@y = — Mg, Setzt man dies in (2) ein, so erhilt man als weitere Gestalt der
Hyperebenengleichung

R —5)=0. (3)

Sie besagt: M ist die Menge aller derjenigen Punkte X ¢ R*, fiir die die Vek-
(oren N und v(X,X) orthogonal sind, also die zu N senkrechte Hyperebene durch X,
tAbb. 2.27).

Abb. 2.27

Der aus (1) ablesbare Vektor 9 (speziell ¢ = (a, b) fiir Geraden (1') im R?
bzw. N = {a, b, c) fiir Ebenen (1) im R?) hat also die Eigenschaften, von o
verschieden und zu allen Vektoren b(X,X) mit X,, X € M orthogonal (kurz: zu
M orthogonal) zu sein. Man nennt jeden Vektor mit diesen beiden Eigenschaften
einen Stellungsvektor von M. Durch M ist N bis auf Vervielfachung mit einer
von 0 verschiedenen Zahl eindeutig bestimmt. Heftet man daher den eindimen-
sionalen Vektorraum mit der Basis {:#} an irgendeinen Punkt P ¢ R" an, so
erhilt man die (durch M und P eindeutig bestimmte) zu M senkrechte Gerade s
durch P. (Ist P ¢ M, so heiBt sie iiblicherweise die Senkrechte in P auf M; fiir
beliebiges P € R™ heiBt sie das Lot von P auf M.) Aus der Geometrie des R?
und R® wissen wir und fiir den R" werden wir sogleich zeigen, da8 sich s und M
in genau einem Punkt @, dem Fuppunkt des Lotes, schneiden. (Zuweilen nennt
man auch nur die Strecke PQ das Lot von P auf M.) Die Linge |QP| heiit der
Abstand zwischen P und M.

Zum Nachweis der eindeutigen Existenz von @ und zur Berechnung von |@P|
gelangt man vorteilhaft nach folgender Vorbereitung: Man multipliziere die Glei-
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chung (1) bzw. (3) mit der Zahl
1 1
L7y
Es ergibt sich als spezielle Gestalt der Gleichung von M

T (@)% + ++ + @n¥s + @) =0 (4)
Yol + - + ap
bzw. mit der Abkiirzung n := W
nr—w)=0 (n=1. ®)
Die Gleichung (4) bzw. (5) heiBt Hessesche Normalform der Gleichung von M.
Ihre linke Seite ist durch M bis auf Multiplikation mit der Zahl —1 eindeutig
bestimmt ; jede Hyperebene hat also genau zwei (nur im Vorzeichen unterschie-
dene) Hessesche Normalformen. Nach 2.3.4. sind die Komponenten von 1, d. h.
die Koeffizienten der z, in der Hesseschen Normalform, die Kosinus der Gréfen der
Elementarwinkel von N gegen die positiven Koordinatenhalbachsen (Abb. 2.28).

Abb. 2.28

Satz 1. Das Lot s von einem Punkt P auf eine Hyperebene M schneidet diese
in genau einem Punkt Q. Orientiert man s gleichsinnig mit n (aus esner Hesseschen
Normalform (5) von M), so ist die Zahl

np — %) (6)
(mit p := 0(OP)) der hierdurch mit Vorzeichen versehene Abstand m(QP) zwischen
P und M.

Beweis. Nach seiner Definition ist das Lot s durch die Parameterdarstellung
t=9p -+t (t€R) gegeben. Sein Durchschnitt mit M ergibt sich durch Ein-
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setzen aller derjenigen Parameterwerte t*, fiir die p. 4 ¢*n die Gleichung (5) er-
fiilllt. Diese Forderung, n(p + t*n — r,) = 0, wird wegen n? = 1'von genau einer
Zahl, t* = — n(p — g,), erfiillt. Daher besteht der Durchschnitt genau aus dem
Punkt @ mit dem Ortsvektor

q=p+t*n, )

womit die erste Behauptung gezeigt ist.
Nun kann man s auch durch die Parameterdarstellung

r=q+un (zeR) ®)
geben; wegen (7) wird speziell p = q — t*n. Bei der Darstellung (8) ist wegen:
[n] = 1 und nach der im Satz genannten Orientierung von s stets m(@X) = u;
speziell wird m(QP) = — t* = n(p — ), W.z. b. w.

h

Abb. 2.29

Zur besseren Veranschaulichung von (6) sei noch ein zweiter Beweis angegeben,
der die Definition des Skalarproduktes mehr synthetisch verwendet, insbesondere
die eindeutige Existenz von LotfuBpunkten schon benutzt (Abb. 2.29): Man er-
richte die Senkrechte h in X, auf M und fille das Lot PL von P auf h. Dann
ist PQX,L ein Rechteck. Wir orientieren auch k gleichsinnig mit n; nach 2.3.1.(2)
ist dann n(p — gp) = 1 - m(X,L) = m(QP), w.z. b. w.

Anders als der zweite Beweis zeigte der erste in seinem ersten Teil zugleich eine
Berechnungsméglichkeit fiir LotfuBpunkte. Allgemeiner kann man diesen Beweis-
schritt als Beispiel eines Verfahrens zur Durchschnittsermittlung linearer Mannigfaltig-
keiten nehmen, von denen die eine in Parameterdarstellung, die andere durch Gleichungen
gegeben ist.

Der Hauptnutzen von Satz 1 besteht jedoch darin, den Abstand m(QP) angeben
zu konnen, okne erst Q@ berechnen zu miissen:
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Man findet den Abstand () eines Punktes P von einer Hyperebene, indem
man in die linke Seite der Hesseschen Normalform (5) statt der Variablen zy, ..., za
die Koordinaten p,, ..., pn von P einsetzt. Es ist also speziell

1
— (@ b c
m( P + bg + ¢)
der Abstand zwischen einem Punkt (p, q) in der Ebene und der Geraden (1),
ebenso

1
WT—“—_'_T(GP+59+M‘+¢)

der Abstand zwischen einem Punkt (p, ¢, 7) und der Ebene (1).

Wendet man diese Regel auf P := O an, so erhilt man: Das von z,,...,%a freie
Glied in der Hesseschen Normalform ist der Abstand des Ursprungs O von der Hyper-
ebene.

Um das Vorzeichen sgn m(QP) des Abstandes (6) zwischen P und M geometrisch
zu deuten, lasse man @ auf ganz M variieren und denke sich demgemi8 in (8)
fiir q eine Parameterdarstellung von M eingesetzt. In der entstehenden Para-
meterdarstellung des R™ beachte man die Bedeutung von sgn u nach 2.4.2.(7),
(11) (bzw. nach entsprechenden Verallgemeinerungen fiir den R* (n > 3)). So
erhilt man: Der Ausdruck (6) hat fiir alle P in je einem der beiden durch M ge-
trennten offenen Halbraume des R™ einheitliches Vorzeichen. Dieselbe Aussage gilt
(wie man durch Multiplikation von (6) mit |®| sieht) auch fiir den Ausdruck
a,py + + + @nPa + @

Esseien nun M, M’ zwei Hyperebenen mit Stellungsvektoren R, N'. Wir kénnen
durch eventuelle Multiplikation eines Stellungsvektors mit —1 erreichen, daB
|X(R, N)| < 90° gilt. Ist dies geschehen, so nennen wir | X (N, N')| die Grope des
Neigungs- (oder Schnitt-Ywinkels zwischen den Hyperebenen M, M, kurz (Abb. 2.30):

| XM, M) = | )] (£907).

4

Abb. 2.30
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Bei beliebigen (auch eventuell einen stumpfen Elementarwinkel bildenden)
Stellungsvektoren 9, N’ kann diese GroBe aus ihrem Kosinus

(92|

cos | X(M, M) = |eos | (R, W)|| = - ®

berechnet werden.

2.52. Parallele und konzentrische Hyperebenen

Eine Hyperebene M mit (1) bzw. (3) als Gleichung sei durch Anheften eines
Vektorraums B an einen ihrer Punkte (z{?, ..., z{) gebildet. Dann ist B die
Menge aller Vektoren b = (v, ..., vy, fiir die die Punkte (z® + vy, ..., ? + v,)
zu M gehoren. Daraus folgt (vgl. 2.5.5., Aufgabe 1), dal B die Losungsmenge
der zu (1) bzw. (3) gehorigen homogenen Gleichung a,v; + - + @,v, = 0, d. h.
Nb =0, ist.

Eine zweite Hyperebene M’ mit R’ als Stellungsvektor ist nun (nach der De-
finition paralleler linearer Mannigfaltigkeiten in 2.4.5. und wegen der Gleichheit
der Dimensionen) genau dann zu M parallel, wenn sie durch Anheften desselben
Vektorraums entsteht. Dies ist somit genau dann der Fall, wenn B auch die
Losungsmenge von N'0 = 0 ist. Damit ist gezeigt:

Satz 2. Zwei Hyperbenen M, M’ mit Stellungsvektoren N, N’ sind genau dann
parallel, wenn N, N’ linear abhdngig sind.

Sind zwei Hyperebenen im R" (n = 2) nicht parallel, so haben sie einen Durch-
schnitt der Dimension n — 2. (Der Leser beweise diese Behauptung.) Allgemein
kann man schrittweise zeigen: Sind m (=n) Hyperebenen Mj, ..., M, im R™ so ge-
legen, daB der Reihe nach fiir o = 2, ..., m jeweils M, nicht parallel zu M, n - n M,
ist, so hat M, n --- n M, die Dimension n — m. Statt dieser schrittweise formulierten
Bedingung kann man im Fall m = n folgende Bedingung angeben:

Satz 3. Genau dann haben n Hyperebenen des R™ mit Stellungsvektoren N, ..., Nn
genau einen gemeinsamen Punkt, wenn det(N;, ..., Np) = 0 gilt.

Beweis. Sind 945 + @, =0, ..., RaL + @4o = 0 Gleichungen der Hyper-
ebenen, so ist dieses Gleichungssystem genau im Fall det(%,, ..., M) == O ein-
deutig 16sbar.

Nach Satz 2 sind zwei Hyperebenen ,,im allgemeinen‘ nicht parallel. Hiermit
meint man: Fir die Parallelitit ist eine ,,besondere Bedingung', das Nullwerden
aller zweireihigen Unterdeterminanten der Matrix (f, '), erforderlich. Ahnlich haben
n Hyperebenen nach Satz 3 ,,im allgememen genau einen gemeinsamen Punkt. Nun
geht eine weitere (n + 1)-te Hyperebene ,,im allgemeinen‘* nicht durch diesen Pu.nkt
Dafiir also, da n + 1 Hyperebenen des R" iiberhaupt (mind ) einen g
samen Punkt haben, wird wieder eine ,,besondere Bedingung' arforder]lch sem Mit
dieser Voriiberlegung (die sich der Leser speziell fiir n = 38 deutlich mache) ist die
Behandlung der folgenden Aussagen motiviert:
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Man nennt » + 1 Hyperebenen M,, ..., M, ¢ R® konzentrisch, wenn ein Punkt
Pe M, ..., M, existiert. Die Hyperebenen seien

g + Ty +  + GoaTa = 0, l
..... . C e e e e e e (10)
@y + Ay Ty + © + Guan = 0; I
wir fithren zur Abkiirzung die Spaltenvektoren
@y,
, = w=0,..n)
aﬂ!
ein,
Die Hyperebenen (10) sind nun genau dann konzentrisch, wenn
Rang(a,, ..., a,) = Rang(ay, a,, ..., @)
gilt; denn genau in diesem Fall ist das Gleichungssystem (10) losbar.
Wegen der Zeilenzahl n + 1 des Systems (10) kann man diese Rangbedingung
im 1 durch folgende Beschreibung von Determinanten erfassen:

Satz 4. Genau dann sind n + 1 Hyperebenen (10) des R" konzentrisch, wenn
die beiden folgenden Forderungen erfiillt sind:

(I) Die Determinante det(a,, @,, .. ,a,.) wt ylewh 0.

(II) Mindestens eine ihrer nicht Unterdeter
Reihenzahl ist sogar Unterdeterminante der Matriz (@, ..., @,).

Nun kann man weiterhin fragen, welche geometrische Bedeutung die einfachere
Teilforderung (I) dieser Beschreibung hat. Hieriiber zeigen wir in der ebenen
Geometrie den

Zusatz 1. Im R?gilt fiir drei Geraden (10) (mit n = 2) genau dann det (ay,a,,a;) =0,
wenn die Geraden konzentrisch oder paarweise parallel sind.

Beweis. Fiir das Vorliegen von det(a,, @;, @;) = 0 gibt es genau die beiden
(einander nicht notwendig ausschlieBenden) Moglichkeiten, daB Rang(a,, a,)
= Rang(a,, @,, @,) (konzentrische Geraden) oder Rang(a,, @,) = 1 gilt. Die zweite
Maoglichkeit liegt nach Satz 2 genau dann vor, wenn die Geraden paarweise parallel
sind.

Zusatz 2. Im R? gilt fiir vier Ebenen (10) (mitn = 3) genau dann det(a,, a,, a,, a;) =0,
wenn die Ebenen konzentrisch oder paarweise parallel sind oder, falls Schnittgeraden
von Paaren nichtparalleler Ebenen auftreten, alle diese Geraden paarweise parallel sind.

Beweis. Fiir det(a,, a,, a,, a;) = 0 gibt es genau die Moglichkeiten
Reng (a,, a,, a;) = Rang (a,, a,, @,, @) (konzentrische Ebenen)

oder

Rang (a,, a,, @) = 1 (paarweise parallele Ebenen)
oder

Rang (0}, a5, a5) = 2.
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Die letztere Moglichkeit liegt genau dann vor, wenn sowohl Rang (a,, @y, a5) > 1
(Existenz mindestens eines nichtparallelen Eb paares) als auch Rang (a,, a;, a,) <3
(Nichtexistenz eines Ebenentripels mit genau einem gemeinsamen Punkt) gilt. Hier-
mit gleichwertig ist es, zu fordern: Es treten Schnittgeraden nichtparalleler Ebenen-
paare auf, aber keine solche Schnittgerade hat mit einer weiteren Ebene genau einen
gemeinsamen Punkt. Der Leser zeige, da8 die zuletzt genannte Teilforderung genau
dann erfiillt ist, wenn zu je einer solchen Schnittgeraden héchstens noch parallele
Schnittgeraden vork

In der projektiven Geometrie haben die genannten parallelen Mannigfaltigkeiten

igentliche Punkte; d. h. die Bedmgung det(ao, a, .. a,,) 0 st fiir

die projektive G trie ein diges und hinreich % kriterium.

Um dies und einige frithere Bemerkungen iber pro;ektlve Geometrie (vgl. 2.4.1.,
2.4.5.) zu erlautern, sei eine kurze zusammenfassende Beschreibung der analytisch-
geometrischen Erfassung projektiv-geometrischer Sachverhalte eingeschaltet.

Ein Punkt des projektiven Raumes S™ wird durch ein Verhdiltnis (z, : z, : ... : zp) an-
gegeben. Darunter versteht man eine Aquivalenzklasse in der Menge R*+1\(0, 0, ..., 0)
beziiglich der Aquivalenzrelation der Proportionalitét. (Zwei (n + 1)-Tupel (%, z;,

wves Ty)y (Tg, X1y ...y 7p) heien proportional, wenn ein ¢ *+ 0 mit x5 = ¢y, ..., Tn = CTp
, .

existiert.) Die Punkte (%, : Z; : ... : Z,) Mit 7, + 0 werden mit den Punkten (;: . ;")
o

des euklidischen R" identifiziert. Die Punkte mit x, = 0 dagegen sind die ,,uneigent-
lichen*, dem R" nicht angehérenden Punkte des S".

Die baryzentrischen Koordinaten (vgl. 2.4.2.) erweisen sich (bei geeignetem Ko-
ordinatensystem) als spezielle projektive Koordinaten 4 : u : .

Eine andersartige Beziehung zum projektiven Raum S" erhilt man, wenn mean
einen euklidischen ,,Hilfsraum'‘ Rn+! heranzieht. In ihm legt néamlich je ein Ver-
héltnis (7, : 2, : ... : @,) stets eine gesamte Ursprungsgerade fest, die folglich mit dem
Punkt (z, : 2, : z,) des S™ identifiziert werden. kann. So kann man sich z. B. die
projektive Ebene S vorstellen als das Biindel aller Ursprungsgeraden des R?; jede
Gerade des Biindels ,,ist‘* ein ,,Punkt‘‘ des S2. Eine gewohntere Form erhilt diese
Veranschaulichung, wenn man (statt der identifizierenden Ausdrucksweise) nur sagt,
der Punkt ,sei die Projektion* der Geraden auf die projektive Ebene. Diese Ebene
kann man sich dann wieder ,,konkret‘‘ (nur ohne ,konkret sichtbare* uneigentliche
Punkte) als irgendeine Ebene vorstellen, die nicht durch den Ursprung geht. (Vgl.
auch 2.4.7., Aufgabe 3, wo das Biischel aller Geraden durch Z auf die projektiven
Geraden z = 0 und y = 0 projiziert wurde.)

Schreibt man eine Gleichung eincr Hyperebene M ¢ R", also

x x

a, +a,z—:+ +a,,z—:= 0
mit (a,, ..., @aq) * (0, ..., 0), in der Form

aZy + oz + o+ AaTa = 0, (11
so heiBt die Menge aller Punkte des S", die diese Gleichung erfiillen, eine Hyperebene
des S™. (Ahnlich entsteht allgemein fiir ein Polynom f des Grades m aus der Gleichung

f(? s ....:”) 0 durch Multiplikation mit #}* eine Gleichung F(zy, 2y, ..., Zn) = 0, in
) 0

der F ein homogenes Polynom m-ten Grades ist. In diesemn Sinne heit die neue
Variable z,, die beim Ubergang vom R"™ zum S" auftrat, eine ,homogenisierende
Variable''.) AuBer den genannten Hyperebenen gibt es im S™ noch die Hyperebene
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(11) mit (a,, ..., ag) = (0, ..., 0) und a, * 0, also kurz die Hyperebene z, = 0, die die
Menge aller uneigentlichen Punkte ist.

Nunmehr sind Punkte P und Hyperebenen M des S™ in vollig gleichartiger Weise
durch Verhéltnisse (%, : @, : ... : Ty) bzw. (@ : @, : ... : a4) charakterisiert. Die Be-
dingung der Inzidenz P € M ist (11); auch in ihr treten die z, und die a, in gleich-
artiger Weise auf. Daraus folgt das Dualititsprinzip der projektiven Geometrie: Jede
wahre Inzidenzaussage iiber Punkte und Hyperebenen geht in eine wahre Aussage iber,
wenn man die Begriffe

Punkt — Hyperebene
€ - 3
und aus ihnen in gleichartiger Weise gebildete Begriffe jeweils untereinander vertauscht.
In dieser Weise dual zueinander sind z. B. synthetisch-geometrische Satzpaare wie
etwa fiir die projektive Ebene S?%:

{Durch je zwei Punkte P + Q geht }_{Je zwei Geraden g + h schneiden}
genau eine Gerade sich in genau einem Punkt.

Aber auch analytisch-geometrisch duale Satzpaare lassen sich zusammenstellen,
z. B. das obengenannte Konzentrizitdtskriterium det(a;;) = 0 far n + 1 Hyperebenen

n
3 ajjxj = 0 (¢ = 0, ..., n) und die Kollinearitits- bzw. Komplanarititskriterien 2.4.1.,
=0

Satz 6, bzw. 2.4.2. (10) fir die dort genannten drei Punkte (1 :p, : 2,), (1 :¢; :G5),
(1 : a; : z,) (vgl. auch 2.4.2., Satz 9) bzw. vier Punkte (1 : p; : Dy : D), ..., (1: 2y : 2 : Ty).
Die Gleichung (ll), die im 8" eine (n — 1)-dimensionale lineare Manmgfaltlgkelt
darstellt, bedeutet in dem ,,Hilfsraum*‘ Rn+1 eine n-di ionale Ursprung
faltigkeit. Analog sind den im Rn+! durch homogene lineare Gleichungssysteme ge-
gebenen (m + 1)-dimensionalen Ursprungsmannigfaltigkeiten die m-dimensionalen
linearen Mannigfaltigkeiten im S" zugeordnet. Dem Nullpunkt O € Rn+1 laBt sich
dabei nur die leere Menge des S" zuordnen, z. B., wenn sie als Durchschnitt wind-
schiefer linearer Mannigfaltigkeiten 4, B ¢ S" auftritt (da dann der entsprechende
Durchschnitt im Rn+1 genau aus dem Nullpunkt besteht). Damit haben wir die

formale Festsetzung der ,,.Dimension‘ —1 fiir die leere Menge motiviert. Der Di-
mensionssatz f + g =d + h gilt mmmehr lm projektiven Raum ohne Ausnahme, da
die entsprechend Urspr gk im Rn+1 stets nichtleeren Durch-

schnitt haben und fir sie aus 2.4. 4., Satz 12, selbst die Gleichung (f 4- 1) -+ (g + 1)
=(d+ 1)+ (h + 1) folgt.

2.53. Symmetriehyperebenen

Zu den aus der Elementargeometrie bekannten ,geometrischen Ortern und
,»Grundkonstruktionen gehéren auBler den schon behandelten Loten und Senk-
rechten auch gewisse Symmetriekonstruktionen, die wir nun als Anwendungs-
beispiele der allgemein bereitgestellten analytisch-geometrischen Methoden be-
handeln wollen.

2.5.3.1. Mi?telsenkrechte

Gegeben seien p, = b(OP)) % b(OP,) = p,. Die Menge aller Punkte X mit |P,X|
= IP,X| wird fiir f = v(0X) charakterisiert durch (f — p,)2 = (f — p,)? oder,
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gleichwertig hiermit, durch

2r - (py — p1) = p3 — 9i- (12)
Wegen p, — p, = 0 ist (12) die Gleichung einer Hyperebene. Diese geht, da (12)
von g = 4+ (p; + p,) erfiillt wird, durch den Mittelpunkt der Strecke P;P,, und

sie steht senkrecht auf ihr, da sie (P, P,) = p, — p, als Stellungsvektor hat. Daher
ist sie die mittelsenkrechte Hyperebene der Strecke P,P, (Abb. 2.31).

P

Abb. 2.3]

2.5.3.2. Winkelhalbierende und Mittelparallele

Gegeben seien zwei Hyperebenen M, &= M, mit fi(z) :=n(z — p) =0 (1 =1, 2)
als Hesseschen Normalformen. Die Menge aller Punkte X, deren Abstand von
M, gleich threm Abstand von M, ist, wird nach Satz 1 durch |f,(£)| = |f3(z)| charak-
terisiert. Sie ist daher die Vereinigungsmenge aus der Menge H, aller X mit

h@®) — ) =0 (13)
und der Menge H, aller X mit
h@ + hE =0. (14)

a) Sind M,, M, nicht parallel, so ist n; == 1, und n, & — n,. Daher sind (13),
(14), némlich (1, — 1) £ = WP, — NPy bzw. (1 + 1) £ = 1P, + NyPy, Hyper-
ebenengleichung Man bestitigt sofort: Jede der Hyperebenen H,, H, hat mit
jeder der Hyperebenen M;, M, denselben (n — 2)-dimensionalen Durchschnitt
wie M;, M, untereinander. Aus den Stellungsvektoren 1,, 11y, 1, — Ty, 1, + 1y VOR
M,, M,,H,, H, berechnet men ferner nach (9) leicht, daB | <x(M,, Hy)| = (X (My,Hy)|
(k = 1, 2) gelten. Daher sind H,, H, die beiden winkelhalbierenden Hyperebenen zu
M,, M, (Abb. 2.32).
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Abb. 2.32 Abb. 2.33

b) Sind M,, M, parallel, so 1aBt sich durch eventuelle Multiplikation eines der
Stellungsvektoren mit —1 erreichen, daB n := n, = n, gilt. Damit gehen (13),
(14) in 0 = n(p; — p,) bzw. 2ng = n(p, + p,) iiber. Ist p = V(0P (+ =1, 2),
also Py € My, so ist P, ¢ My, d. h. 1(p, — ;) = fa(py) = O und daher H, leer. Da-
gegen ist H, eine Hyperebene. Sie geht durch den Mittelpunkt von PP, und
hat 2n als Stellungsvektor. Folglich ist sie die mittelparallele Hyperebene zu M,, M,
(Abb, 2.33).

25.4. Spezielle Hyperebenengleichungen

Die folgenden Sitze nennen noch einige Gestalten von Hyperebenengleichungen,
in denen spezielle geometrische GroBen auftreten, durch die sich eine Hyperebene
festlegen ldBt.

Satz 5. Fiir eine Gerade g ¢ R? sei im Fall O € g ein beliebiger Stellungsvektor N
gewdhlt, im Fall O ¢ g aber N := b(0Q), wobei @ der Fufpunkt des Lotes von O
auf g ist. Sind dann « := m(X(i, N)) und & := |0Q| gegeben (Abb. 2.34), so ist
zcosx + ysina — d = O Hessesche Normalform von g.

X
¢  Abb.234
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Beweis. Der erste bzw. zweite Richtungskosinus von R ist

cos | X(M, 1) = cos m(X(i, N)) = cosa
bzw.
cos | XM, j)| = cos (m(X(@, 1)) — m(X(i, N)) = sinw;
wird das Lot von O auf g gleichsinnig mit N orientiert, so ist der Abstand m(Q0}
=—d.
Zusatz. Ersetzt man N durch (=), so gekt cos m(X(i, N)) tiber in
cos (m (i, —90) = cos (m((i, M) + m(XE, —M)))
= — cosm(¥(, ) ,
ebenso cos m(X(j, RN)) in — cos m(X(j, N)), ferner m(QO) wegen der Umorientierung
in —m(QO). Dabes entsteht also die mit —1 multiplizierte Hessesche Normalform.
Satz 6. FireineGerade g ¢ R? seien P,Q € g mit a := v(PQ) + 0, sgn(i,a) = 0
gewdhklt. Wird dann o := | (i, a)| & 90° vorausgesetzt und sind o sowie der (folg-
lich eindeutig existierende) Schnittpunkt (0, b) von g mit der y-Achse gegeben (Abb.
2.35), s0 ist y = mx + b (mit m := tan o) Gleichung von g.

Abb. 2.35

a] s

Beweis. Wegen sgn(i, a) = Oist m(<(i, a)) = ¢ mod 360°. Da man in Satz 5

oder seinem Zusatz % := G wihlen kann, wird dann fiir
o :=m(X(i, )) = (o + 90°) mod 360°; & := 1 oder e:= —1.

z(— sino) + y coso — ed = O eine Hessesche Normalform von g. Sie wird von
(0, b) erfiillt; daher gilt ed = b coso. Setzt man dies ein und dividiert durch
cos g, 8o erhélt man (—m)x +y — b =0.

Man nennt ¢ den Anstiegswinkel und m den Anstieg von g; die Gleichung
y = mx + b wird Normalform genannt.

Satz 7. Ist die lineare Hiille von n Punkten (2yy, ..., Z15); vy (Tp1s ors Tun) d€8
R* eine Hyperebene M, so hat sie

1 z, .. 2,

=0 (15)

1 2y . Zpn
als Gleichung.
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Der Beweis folgt aus 2.4.1., Satz 6, bzw. der Aussage iiber 2.4.2.(10) bzw. der
entsprechend herzuleitenden A ge im R™.

Man kann den Satz auch daraus erhalten, daB die Determmante aus (156) durch Sub-
traktion der ersten Zeile von den dbrigen und de Entwicklung nach der
ersten Spalte in det(q,, ..., a,) libergeht, wobei a, := {z,; — 2, ..., ,n — %4> der von
(@3, +--» Ty) ZU (Zy1, ..., Zyn) fithrende Vektor ist (» = 1, ..., n). Die linke Seite von (15}
ist also das Volumen des von ay, ..., a, aufgespannten Parallelotops; sie verschwindet
genau dann, wenn dieses entartet, d. h. (z,, ..., 2y) in M liegt.

Diese Herleitung zeigt auch nochmals, daB fiir Punkte auBerhalb M das Vorzeichen
der linken Seite von (15) die beiden durch M getrennten Halbraume charakterisiert
(vgl. diese Charakterisierung durch a,p, + -+ + apps + @ in 2.5.1.).

Fiir n = 2 ist (15), d. h.

1 =z gy
1 2 4(=0
1 % y
bei gegebenen (z;, ¥;) & (23, ¥,), die sogenannte Zweipunktegleichung der Gerad

@ —2) (¥ — %) — (¥ — ) (&, — %) = 0. Von ihr kann man, wenn ) %+ x, ist,
zur Punkt- Richtungsgleichung y — y, = m(x — z,) iibergehen, wobei ein Vergleich

mit Satz 6 zeigt, daB m = :’ — :‘ der Anstieg ist.
2 T 1

2.5.5. Aufgaben

1. Fir gegebene a, und RN := <{a,, ..., ay> beweise men: Ist {0 := (a:(xo), vy T
Loésung von N + a, = 0 und b := <v,, ..., v> Lésung von Nv = 0, so ist 0 + v
Lésung von Ng + @y = 0. Sind r(® und z® + p Losungen von Ng + g, = 0,
80 ist b Losung von fo=0.

2. Man berechne ohne Ermittlung der HéhenfuBpunkte die Héhenlingen in dem
Dreieck aus 2.3.9., Aufgabe 3.

3. Fir dasselb Dreleck ittle man Gleich der Mittelsenkrechten der Seiten
sowie Gl gen der winkelhalbierenden Geraden der Innen- und der Auflen-
winkel.

4. Man stelle ohne Zeichnung oder sonstige Anschauungsmittel fest, welche der in
Aufgabe 3 gefundenen Geraden Innen- und welche AuBenwinkelhalbierende sind.
Hinweis: Man ermittle nach 2.4.2., Satz 8, einen Punkt im Innern des Dreiecks
und vergleiche die Ve ich die ) wenn man diesen Punkt sowie
Punkte der Winkelhalbierenden in die bei Aufgabe 3 verwendeten Hesseschen
Normalformen der Dreiecksseiten einsetzt.

5. Man weise die in Aufgabe 3 gefundenen Mittelsenkrechten als konzentrisch nach,
ebenso die Innenwinkelhalbierenden, ferner je zwei Halbierende von AufBen-
winkeln und die Halbierende des dritten Innenwinkels.

6. Man gewinne eine Gleichung der Ebene durch (—2,2,3), (0,3,0), (—3,5,5)
a) nach Satz 7, b) nach (3) unter Verwendung von % := (2,1, —3) x {—1,3, 2).

7. Man berechne fiir je zwei nichtparallele Seitenflichen des Spats aus 2.2.5., Auf-
gabe 2, die GroBe ihres Neigungswinkels.
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26.  Konvexe Polygone

2.6.1. Konvexe Hulle, Schwerpunkt

In formaler Analogie zu 2.4.3., Satz 10, steht die Definition: Eine Punktmenge
C S R* heiBt konvex, wenn sie zu je zweien ihrer Punkte auch deren Verbindungs-
strecke enthilt. Aus dieser Definition folgt: Der Durchschnitt jeder Familie kon-
vexer Mengen im R™ ist wieder eine konvexe Menge. Hieraus laBt sich mit denselben
SchluBverfahren wie bei Vektorraumen und linearen Mannigfaltigkeiten herleiten:
Zu jeder Punkimenge N & R™ existiert genau eine (beziiglich &) kleinste konvexe
Menge C,, die N umfapt, und zwar ist C, der Durchschnitt aller N umf: d
konvexen Mengen C & R™. Man nennt C, die konvexe Hille von N. Die konvexe
Hiille einer einpunktigen Menge { P} ist {P}; die konvexe Hiille von {P, @} ist
die Strecke PQ.

Wir konnen die formale Analogie noch fortsetzen: Die lineare Hiille einer
endlichen Punktmenge {P,, ..., Pi} 1iBt sich, z. B. durch wiederholte Anwendung
von 2.4.4., Satz 11, nachweisen als Menge aller X mit Ortsvektoren

T=po+ 4 —Po) + o+ tlpr —Po) (b s b€ R)
(worin p; := b(OP;) ist) oder — in symmetrischer Schreibweise — mit

T = poPo + by + - + pube (Mo +m+ - +m=1. (03]
Entsprechend hierzu gilt nun

Satz 1. Die konvexe Hiille Cy von {P,, ..., Py} ist die Menge aller X, deren
Ortsvektoren eine Darstellung (1) mit
Ho=0, ooy =0 (2)
besitzen.

Beweis. Fiir einpunktige Mengen {P,} ist die Behauptung richtig. Sie gelte
bereits fiir k-punktige Mengen {P,, <o, Py} statt fiir (k 4 1)-punktige { Py, ..., Pi}.
Aus dieser Annahme schlieBen wir zuerst, daB C,, die Menge aller X mit (1), (2)
umfaflt: Es séi X ein Punkt mit (1), (2). Dann wihlen wir, falls y, = 1, also
o = + -+ u = 0ist, k Zahlen 4}, ...,4, =0 mit 4, + -+ + 4, = 1. Falls
aber uy <1, also o :=p, + - + u; >0 ist, definieren wir 4, := p,/a, ..., & 1= wfo.
Hiernach gilt in beiden Fillen

= tabo+ oy + - + Aapy)
sowie
moto=h+ - +h=1;
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o, @, Ayy ooyl = 0. Daher liegt X auf der Verbindungsstrecke von P, mit einem
Punkt der konvexen Hiille von {P;, ..., P;}; folglich gilt X € C,.

Andererseits rechnet man leicht nach, dag die Punkte mit (1), (2) selbst eine
konvexe Menge bilden. Diese enthilt P, ..., Py, also auch C, und ist demnach
gleich C,.

Jede einzelne der Forderungen p, = 0, ..., yp = 0 sondert aus der linearen Hiille
(1) einen Halbraum aus; somit ist C, bereits der Durchschnitt von (P, ..., P; um-
fassenden) Halbraumen. Daher sind die hier in Satz 1 charakterisierten konvezen
Hiillen endlicher Punkimengen in der Ebene bzw. im Raum dasselbe wie die in 1.1.5.
bzw. 1.2.5. betract k Polyg bzw. k Polyeder.

Durch vollsténdige Induktion folgt aus der physikalischen Deutung von 2.4.1.(6)
deren Verallgemeinerung:

Satz 2. Besteht ein Massensystem aus den in P befindlichen Massen von m,

my
Gramm (i =1, ..., k), so hat der Schwerpunkt den Ortsvektor (1) mit y; 1= —— .
G )s 80 erpu Wmitp =

Fiir m, = -+ = m; = 1 vergleiche man bereits 2.2.5., Aufgabe 3.

2.6.2. Die Sétze von Ceva und Menelaos

Es seien a, b, ¢ die Ortsvektoren dreier nichtkollinearer Punkte A4, B, C ¢ R2.
Nachdem wir die Bildung von X mit dem Ortsvektor £ =Aa + ub +vc (A 4 u
+ v = 1) zur Darstellung der Ebene sowie (bei 4, s, » = 0) des Dreiecks unter-
sucht und als Schwerpunkt physikalisch gedeutet haben, wollen wir zu speziell
geometrischen Deutungen kommen.

Satz 3. Firg=Aa4+ub+rvc(A+pu+v=1qgilt
A=m(XBC): m(4BC), u=m(dXC): m(4BC),
v = m(4BX) : m(4BC). 3)
Beweis (vgl. 2.3.5. und den dort gegebenen Hinweis). Ersetzt man in 2m(X BO)
=det(b — r, ¢ — z) = det(r — ¢, b — r) den zweiten Vektor b — ¢ durch die

Summe (b —z) + (f— ¢)=b— ¢ und dann den ersten Vektor ¢ — ¢ durch
(t — ¢) — p(b — ¢) =A(a — ¢), 80 erhiilt man

2m(XBC) = A det(a — ¢, b — ¢) = 24 m(4BC).

Entsprechend folgen die anderen Formeln.
Eine weitere geometrische Deutung erhilt man unter der Voraussetzung, da
X +4,B,C ist und auch U :=g(4X)ng(BC), V :=g(BX)ng(CA),
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W := g(CX) n g(4 B)samtlich existieren und von allen Punkten 4, B, C verschieden
sind (Abb. 2.36), durch die entstehenden Teilverhiltnisse. Es gilt namlich

TV(B,C;U)y=—v»:u, TV(C,A; V)= —A4:v,
TV, B;W)=—p: 2. ™

[

Abb. 2.36

A W

Man kann dies synthetisch-geometrisch aus (3) beweisen, etwa mit Hilfe der
Lote von B, C auf g(AX) (der Leser fiihre dies aus). Analytisch-geometrisch ergibt
sich (4) z. B. so: Es gibt 8, y;6,é mit § +y =a + & = 1 und
u _bOU) B + ye =oaa + & = (¢ + A%) a + uéb + véc.
Wegen der in 2.4.2., Satz 8, gezeigten Bijektivitit ergibt sich B=uk, y=1
und hieraus (da aus g + y == 0 nun £ == 0 folgt) nach 2.4.1., Satz 3, also
TV(B,C;U)y=—9yp:f=—»:pu.
Aus (4) folgt unmittelbar der sogenannte Satz von Ceva:
Satz 4. Bilden A, B, C ¢in Dreieck und sind U, V, W auf g(BC), g(CA), g(4 B)
verschieden von A, B, C so gelegen, daf g(AU), g(BV), g(CW) konzentrisch sind,

80 gilt
TV(B,C;U)-TV(C,4;V)-TV(4,B; W)= —1. B)

Nach den Betrachtungen aus 2.5.2. naheliegend ist der
Zusatz. Ist g(AU)||g(BV)|ig(CW), so gilt ebenfalls ().

Beweis. Es sei b = b(OD) % 0 ein Vektor parallel zu g(AU), g(BV), g(CW).
Wegen O, D € (4 BC) gibt es g,7 € R mit D =o(b — a) + 7(¢c — a), d.h., es gibt
@,0,7mitg + ¢ +7 =Oundbd = ga + ob + vc. Danngibtesf, y; {mit f+y =1
und

u=pb+yc=a+ = (1+eba+alb+lc.

Hieraus folgt wie vorhin TV(B, C; U) = — 7 : 0, entsprechend die and Teil-
verhaltmsse und damlt (5).
en mit Zusatz ist Satz 4 umkehrbar:
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Satz 5. Bilden A, B, C ein Dreieck und sind U, V, W auf g(BC), g(CA), g(AB)
verschieden von A, B, C so gelegen, daf (5) gilt, so sind g(AU), g(BV), g(CW) kon-
zentrisch oder paarweise parallel.

Beweis. Falls g(AU)||g(BV) (wegen U ¢ g(4 B) aber g(AU) 4 g(AB)) ist, sei
W’ der Schnitt von g(4B) mit der Parallelen durch C zu g(AU). Falls aber
X :=g(AU) n g(BV) eindeutig existiert, sei ¢ := p(0X) =2a 4 ub + »¢ mit
A+ pu 4+ v=1. Wie im Beweis von (4) folgt

TV(B,C;U)=—v:u, TV(C, 4; V)= —A4:v,

nach Voraussetzung (6) also 1 4= TV(4, B; W) =— u : 4, d.h. A + u = 0. Somit
sind die Vektoren t —c =A@ —¢)+pub—c)und b—a=— (a —¢) + (6 —¢)
linear unabhéngig; demnach existiert eindeutig W’ := g(CX) n g(4 B).

In beiden Fillen 148t sich Satz 4 bzw. sein Zusatz auf 4, B,C; U, V, W’ an-
wenden, also gilt (5) mit W’ statt W. Zusammen mit der Voraussetzung (5) folgt
hieraus TV(4, B; W’) = TV(4, B; W). Wegen der Eindeutigkeitsaussage in
2.4.1., Satz 4, folgt damit W’ = W. Aus der Definition von W’ erhilt man dann
die Behauptung.

Statt nach einer ,besonderen Lage der Geraden g(AU), g(BV), g(CW) zu
fragen, kann man dies auch fiir die Punkte U, V, W selbst tun. Hierzu gilt eine
bemerkenswert dhnliche Aussage, der sogenannte Salz von Menelaos, den wir
sogleich zusammen mit seiner Umkehrung formulieren als

Satz 6. Bilden A, B, C ein Dreieck und sind U, V, W auf g(BC), g(CA), g(4 B)
verschieden von A, B, C, so gilt genau dann

TV(B,C;U)-TV(C,4; V)-TV(4,B; W)=1, (6)
wenn U, V, W kollinear sind (Abb. 2.37).

¢

Abb. 2.37

A 8

Beweis. Sind g, r,s die Teilverhaltnisse in (6), so haben U, V, W nach 2:4.1.,
Sétze 3, 4, die Ortsvektoren

. 1 1
n=—l_q(b—qc), V=g (c—ra), W=7 (a—ab).
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Nach 2.4.2., Satz 9, sind daher U, V, W genau dann kollinear, wenn
01 —gq|
- .= |=r 0 1 |=09
1 —& O

ist, d. h. genau fiir 1 — grs = 0.

Vgl. 2.6.4., Aufgabe 1. Bei starkerer Verwendung baryzentrischer Koordinaten bzw.
ihrer projektiven dualen Entsprechung kénnen auch die Aussagen um den Satz von
CEva (Satz 4, Zusatz, Satz 5 sowie 2.6.4., Aufgabe 2) dhnlich einfach bewiesen werden.

Liegen auf einer Geraden g vier Punkte 4, B, P,Q mit P & B,Q %+ 4,Q + B,
80 kann man die Teilverhiltnisse TV(4, B; P) und TV(4, B; @) bilden, und das
letzte ist nicht 0. Daher existiert die Zahl
TV(4, B; P) m(4P): m(BP)

TV(4, B;Q)  m(4Q) : m(BQ) ’

das sogenannte Doppelverhiltnis von P, Q beziiglich A, B. Ist speziell DV(4, B; P, Q)
= — 1, (d. h., teilen P und @ die Strecke 4 B innerlich und &uBerlich in betrags-
gleichem Verhiltnis |AP| : |[BP| = |AQ| : |BQ|), so heiBen (4, B) und (P, Q)
harmonische Punktepaare.

Ist z. B. dieses Verhéltnis 6:1, so fithrt etwa |4B| = 12 auf |[AP] = 10, |4Q| = 15.

Gleichartige Instrumentalsaiten dieser Langen geben Terz, Quinte und Grundton
eines Durdreiklanges.

DV(4, B; P,Q) :=

Allgemein besagt
IBP| _|BQ| 4B 4B
14P| — |4Q1” 4P| 14Q1°
1 . . . 1 1 .
daB Bl das arithmetische Mittel von 4P| und g d. h. |AB| das harmonische
. 204P|-14Q| ;
Mwm von |AP| und |AQ| ist.

Aus den Siitzen von CEVA und MENELAOS ergibt sich nun folgende Beschreibung
des Auftretens harmonischer Punktepaare nur durch Inzidenzen (Abb. 2.38).

A P 8 a
Abb. 2.38
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Satz 7. Sind H, K, M, N paarweise verschieden und so gelegen, daf
A :=gHM) n g(KN), B :=g(HN)n g(KM),
P :=g(4B) ng(HK), Q :=g(4B) n g(MN)
eindeutig existieren, so gilt DV(4, B; P,Q) = — 1.

Beweis. Man wende Satz 4 und 6 auf 4, B, H sowie auf g(4N), g(BM),‘ g(HP)
bzw. M, N,Q an.

2.6.3. Satze fur Dreiecke

Im R? sei ein Dreieck A BC durch u := 9(0A4) = (uy, u,), b := b(0OB) = (v}, vy,
10 := p(0C) = (w;, w,) gegeben. Die Seitenlingen und InnenwinkelgroBen seien
wie iiblich a, b, ¢, x, §, y genannt. Wir wollen einige elementargeometrische Sitze
analytisch-geometrisch herleiten.

Setzt man ¢ := 9(4B), b :=(40) (Abb. 2.39), so ist |X(b, ¢)] =« sowie
b — ¢ = p(BC). Hiermit erhélt man den Kosinussatz

a?= (b — )2 =05%4 c? — 2bc-cosax .

Abb. 2.39
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Auso=0B—c) X (b—¢)=b X (b —¢c)— ¢ X (b — ¢) folgt wegen
|26, b — ol =y, [¥(b—o=180°=p
ferner ba - sin y = ca - sin B, also der Sinussatz
b:c=sinp :siny.

Der Schwerpunkt S des Systems aus den mit einander gleichen Massen belegten
Punkten 4, B, C hat den Ortsvektor 8 = 4 - (1 + b + ). Mit den Ortsvek-
toren m,, Mg, m, der Seitenmitten M,, My, M, gilt somit

= Ju+ §m,= 30+ Fmp = w + Em,.

Also liegt S auf allen drei Seitenkalbierenden AM,, BMy, CM, und teilt jede von
ihnen im Verhiltnis 1:2.

Um den Schwerpunkt der Dreiecksfliche (wenn diese gleichmaBig mit Masse belegt
ist) zu ermitteln, kann man die Dreiecksfliche nach Art der Integralrechnung beliebig
gensau durch el ische Addition geniigend schmaler Rechtecke annéahern,
deren langere Seiten zu einer Dreiecksseite pml.lel sind. Dle Masse jedes solchen
Rechtecks werde in dessen Schwerpunkt ,,zusammengezogen Nach Grenzwert-
bildung 148t sich herleiten, daB der hte D punkt auf der Seiten-
halbierenden der betreffenden Seite llegen muB. Daher stimmt er mit dem Schnitt-
punkt § der Seitenhalbierenden iiberein.

Sind H,, Hy, H, die Héhenfufpunkte, so hat g(AH,) den Vektor u(BC) als
Stellungsvektor und daher (w — 9) (z — u) =0 als Gleichung. Ebenso sind
(1t — ) (r — ) =0, (v — u) (£ — w) = 0 Gleichungen von g(BH,), g(CH,). Die
Summe der Stellungsvektoren ist 0, die Summe der von den z, freien Glieder
(t — ) (—b), (b — u) (—w), (v — b) (—u) betrigt 0, ferner ist

D :=det(lv — v, u — w) = 2m(4BC) 5 0;
nach 2.5.2., Satz 4, sind also g(4H,), g(BH}), g(CH,) konzentrisch. Die Auf-

16sung des Gleichungssystems ergibt nach leichten Umformungen den Hoken-
schnittpunkt H mit dem Ortsvektor

1 1 wotwy) + wy(vptw,) u, 1wy wy(otwy) + wp(vetwy) |
b= B/ 1 wwtw) + vplwptuy) v |, |1 o wylwt+u) + wptup) .
\ 1 wy(u49) + wy(uy+v,) w, |1 wy wy(uytoy) + wa(utv, )/

Durch éhnliche Uberlegungen erkennt man die Mittelsenkrechten 2i(1o — b)
= ? — %, 2r(u — w) = u? — w2, 2z(v — u) = b? — u? als konzentrisch und
findet fiir ihren Schnittpunkt, den Umkreismittelpunkt M, den Ortsvektor

l/|1 uj + uy Uy 1w, ul4u \
m=g5t ’1 o+l v, (1o i+
A Y S D L R e
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Durch Anwendung einfacher Determinantenregeln folgt nun f 4 2m = 33.
Das besagt: Der Schwerpunkt liegt auf der Verbindungsstrecke vom Hohenschnitt-
punkt zum Umkreismittelpunkt und teilt diese Strecke im Verhiltnis 1:2. Fir H + M
heiBt die Gerade g(HM) nach EULER, der diesen Satz entdeckte, die Eulersche
Gerade.

Fiir die Hohenlangen %, := |BH,|, k. := |CH,| gilt 2 ABC| = bk, = ck,, also

hy:ho=c:b.

Sind ng, M, zu b = — u bzw. ¢ = b — u orthogonale Einheitsvektoren, so
sind fi(z) := np(x — u) = 0, fo(r) := n(z — u) = 0 Hessesche Normalformen von
g(4C), g(AB), und bei geeigneter Orientierung von 1y, 1, folgt ky = f4(b) = nge,
ho = fo(0) = nb; ferner hat die Innenwinkelhalbierende durch A4 hierbei f,(r)
= f(x) als Gleichung. Hat ihr Schnittpunkt W, mit BC' den Ortsvektor v,
=09 4+ (0 +7 = 1), so folgt v, — u =oc + vb, und da 1, die Gleichung
fo(0a) = fe(1,) erfiillt, gilt

ng(oc + 1b) = ne(oc + b),

also onge =Tnh, also v :o=mgc : nb =hy:he=c:b, d. h., je eine Innen-
winkelhalbierende teilt die Gegenseite im Betragsverhiltnis der anliegenden Seiten:
|BW,| : |CWa| =c: b, |CWy : |[AW,| =a:c, |[AW,|: |BW,|=b:a.

Hieraus folgt nach Satz 5 (und wegena /2 + §/2 == 180°, also g(AW,) {- g(BW,)),
daB g(4AW,), g(BWs), g(CW,) konzentrisch sind. Hat ihr Schnittpunkt, der In-
kressmittelpunkt Q den Ortsvektor q =Au +ub +vw @A +pu+v = l), so folgt
nach (4) ferner A : u :» =a : b : c; daher ist

q= (au + bo + ciw) .

a+b+c

Den Schwerpunkt R des (gleichmdfig mit Masse belegten) Dreieckrandes kann man
als Schwerpunkt des Systems aus den Seitenmittelpunkten M, M, M, erhalten,
wenn diese mit Massen belegt werden, die sich wie a:b:c verhalten. Nach Satz 2 hat

1
R somit den Ortsvektor t == ———— (amq + bmp + cm¢). Da sich die Seiten-
a+b+c i

lingen des Mittendreiecks M MM, ebenfalls wie a:b:c verhalten, folgt (durch Ver-
gleich mit der Formel firr q), daB R der Inkreismittelpunkt des Mittendreiecks ist.

Wir zeigen noch: Der Mittelpunkt des Umkreises von MaMyM, ist der Mittelpunkt F
der Strecke HM ; dieser Kreis geht auch durch H,, Hy, H, sowie durch die Mittelpunkte
Ka, Ky, K der Strecken AH, BH, CH. Er heilt der Neunpunktekreis oder Feuerbachsche
Kreis von ABC. Zum Beweis fiir |FM,| = |FK,| = 4 |[MA| entnehme man aus
f:=%(h + m), daB

=h)4+m=3—m=uLto+mw—m,
also
f—30+mw=F@—-m und [—3u-+BHh=73m=uw



72

2. Analytische Darstellung der euklidischen G trie

gilt. Ein Beweis fiir |[FH,| = 3|MA| ergibt sich mit Bs := b(OH,) aus

(2(ha — )2 = (2Ba —u — » — W 4+ m)?
=(m—u)?+ (2hg— v — w) (2(m — u) + 2hs — » — W)
=(m—u?+ (2)g — b — W) (2m — b — W + 2(ha — u))

und v(MgH,) | v(M M), v(AH,).

2.6.4. Aufgaben

1.

Mean beweise die Aussage ,,dann‘‘ in Satz 6 (Satz von MENELAOS), indem man
nach dem Strahlensatz die Teilverhéltnisse aus (6) durch Verhaltnisse der Ab-
stande von 4, B, C zu g(UV) ausdriickt. Die Aussage ,,nurdann‘‘ beweise man éhn-
lich wie Satz 5. Um dabei W’ als Schnitt nichtparalleler Geraden g(UV), g(4B)
bilden zu kénnen, schlieBe man aus (6) und TV(4, B; W) =+ 1 zunachst TV(B,C; U)
+ TV(4,C; V).

Man beweise folgenden zweiten Zusatz zu (4) und Satz 4: Existieren fir X + 4, B,C
mit f~=21a+ b+ v (A+ p+ v =1) eindeutig V := g(BX) ng(CA) und
W := g(CX) n g(AB), ist aber g(4X)||g(BC), so bleiben (4), (56) nach Weglassen
der ersten Gleichung bzw. des ersten Faktors giiltig.

Welche Aussage iiber TV(4, B; W) verbleibt, wenn entsprechend auch an die
Stelle von g(BV) die Parallele g(BX)||g(CA) tritt ?

Man beweise aus Satz 5, da8 in jedem Dreieck die Seitenhalbierenden k trisch
sind. Dasselbe zeige man fiir die Hohen, wobei man den Fall des rechtwinkligen
Dreiecks gesondert betrachte (warum ?) und sonst |AH,| : |AH,| = c:b verwende
(und zuvor beweise).

Mit gleichen Methoden (mit (4), Satz 5 und Aufgabe 2) wie fiir @ zeige man, da8
die Halbierenden der AuBlenwinkel bei B, C und des Innenwinkels bei 4 konzen-
trisch sind und da8 ihr Schnittpunkt Q,, der Mittelpunkt eines Ankreises, den
Ortsvektor

1

= o Tb+ec

(— au + by -+ cw)

hat.
Welche Punktetripel aus den Schnittpunkten von Innen- und AuBenwinkel-
halbierenden mit den Gegenseiten sind kollinear ?
Man berechne fiir das Dreieck aus 2.3.9., Aufgabe 3, die Punkte, Geradenglei-
chungen und Vektoren aus 2.6.3. sowie aus den Aufgaben 3 bis 5.
Man beweise fiir die Ortsvektoren a, b, ¢, b nicht komplanarer Punkte 4, B,C, D € R3:
Istz :=9(0X)=Ada+ ub+ve+ 9 A+ u+ v+ 8=1),s0ist

A = m(XBCD) : m(4 BCD) usw.
Hinweis: In det(x — b,z — ¢,z — b) ersetze man den zweiten Vektor durch
seine Differenz zum dritten, den dritten durch seine Differenz zum ersten, und
dann addiere man zum ersten die durch Vervielfachung mit » bzw. # entstandenen
Vektoren.
Ferner beweise man: Ist ¢g(AX) ne(BCD)= P und bY(OP) = gb + oc + D
(0 + 0+ 7=1), 80 ist p:0:7 = pu:v:9. Hieraus und aus (4) bestimme man die
Teilverhédltnisse, die auf den Strecken 4B, AC, AD, BC, BD, CD durch den
Schnitt mit den Ebenen ¢(XCD), ¢(XBD), ¢(XBC), ¢(XAD), ¢(XAC), ¢(XAB)
entstehen.
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27.  Bewegungen und Koordinatentransformationen

2.71. Invarianz von Skalarprodukten, Summen und Vielfachen

Von einer Abbildung ¢ des R” in sich sagen wir, sie lasse Vektorgleichheiten be-
stehen oder kurz, sie erkalte Vektoren, wenn fiir Punkte A4, B, C, D € R" aus
v(4B) = b(CD) stets v(p(4) ¢(B)) = v(p(C) (D)) folgt. Man kann dann als
Bild des Vektors H(4B) den Vektor g(v(4B)) := b(p(4) p(B)) definieren.

Abbildungen, die Vektoren erhalten, werden genauer in 3.4. unter der Gblichen
Bezeichnung Affini beh It

Ist diese Voraussetzung erfiillt, so sagen wir weiterhin, ¢ erkalte Skalarprodukte,
wenn fiir Vektoren a,b des R™ stets ab = @(a) ¢(b) gilt. Die folgende Charak-
terisierung des Begriffs ,,Bewegung‘ sei wieder fiir die Ebene und den Raum als
Satz ausgesprochen; fiir den R® mit » > 3 kann sie als Definition dieses Begriffes
dienen.

Satz 1. Eine Abbildung des R® (n < 3) in sich ist genau dann eine Bewegung,
wenn sie Vektoren und Skalarprodukte erhilt.

Beweis (vgl. auch 2.7.5., Aufgabe 1). Es sei erstens ¢ als Bewegung voraus-
gesetzt. Die Vektorgleichheit b(4.B) = b(CD) ist charakterisiert durch die Gleich-
heit der Lingen |4B| = |CD| und, wenn diese nicht 0 sind, die Gleichgerichtetheit
der Strahlen 4 B*, CD*. Da diese Bedingungen fiir die Bilder von 4, B, C, D
bestehen bleiben, erhiilt ¢ Vektoren. DaB ¢ auch Skalarprodukte erhilt, ergibt
sich aus 2.3.4., Satz 7, weil die darin vorkommenden Lingen |a| := [PU]|, |b|
:= |PV| und Elementarwinkelgré8en |<(a, b)| := |<UPV| (vgl. 2.3.1,, 2.3.2.)
bei @ erhalten bleiben.

Wird umgekehrt von einer Abbildung ¢ vorausgesetzt, daB sie Vektoren und
Skalarprodukte erhilt, so gilt dies insbesondere fiir Skalarprodukte von Vektoren
mit sich selbst, also bleibt jede Linge

|[4B| = yb(4B)* = {p(0(4B))* = |p(4) ¢(B)|
erhalten. Somit geht nach dem Kongruenzsatz (sss) jedes Dreieck in ein kon-
gruentgs iiber; daher ist ¢ eine Bewegung.

Satz 2. Ist ¢ eine Bewegung und sind a,b Vektoren, so gilt

pla + b) = g(a) + @(b) .
Beweis. Esseia=b9(UV), b = b(VW). Dann ist
9(a) + ¢(6) = v(p(T) p(V)) + b(p(V) p(W)
= b(p(U) p(W)) = pla + b) .

Satz 3. Ist p eine Bewegung, a ein Vektor und ¢ eine reelle Zahl, so gilt

glta) = tp(a).
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Der Beweis folgt aus der Definition von ta in 2.2.3., da die dort suftretenden
Beziehungen |AC}| = [t| - |4 B] und C € AB* oder C € AB- bei ¢ erhalten bleiben.

272. Orthogonule Matrizen

Eine Abbildung des R" in sich kann analytisch-geometrisch durch ein Funktionen-
n-Tupel
Ty = [y @ e Tn)s s X = fal®y s Za)
beschrieben werden, das jedem Punkt (..., %) seinen Bildpunkt (xy, ..., 2;)
zuordnet.
Zur zusammenfassenden Schreibweise seien die Koordinaten von Punkten
X, X', ... in Spaltenvektoren

x, )

xz=| -], = -1,..
: ;
Tn 2,

angeordnet, ebenso auch die Komponenten von Vektoren. Wir sprechen dann
kurz von dem Punkt & oder dem Vektora. Fiir das Skalarprodukt zweier Vek-
toren @, b hat man nun die Schreibweise a’b; die Zahl wird also als Matrix vom
Typ 1 X 1 geschrieben, die sich als Produkt zweier Matrizen vom Typ 1 X n
bzw. n X 1 ergibt (vgl. MfL Band 3, 6.). Da jede Matrix des Typs 1 X 1 mit
ihrer Transponierten iibereinstimmt, haben wir a’d = (a’b)” = b"a als Ausdruck
des Kommutativgesetzes der skalaren Multiplikation.

Satz 4. Eine Abbildung des R™ in sich ist genau dann eine Bewegung, wenn ein
Vektor v und eine orthogonale Matriaz M so existieren, daf jeweils ein Punkt x den

Bildpunkt

x =v + Mx (1)
hat. Ist dies der Fall, so hat jeweils ein Vektor a den Bildvektor

a = Ma. (2)

Beweis. Erstens sei ¢ als Bewegung vorausgesetzt. Wir definieren v
1= p(0p(0)), m, = g(e,) (» =1, ...,n) und M als die aus den Spaltenvektoren
m,, ..., M, zusammengesetzte Matrix. Dann ist

mim, = gle) ¢le;) = ele; = &y,
also M orthogonal. Fiir X ¢ R" und X’ := ¢(X) gilt ferner
B(0X") = b(0p(0)) + b(g(0) (X)) = © + (b(0X))
=0 + g, + - + Ta€y) =T + Tip0(€)) + 0 + Tap(en)
=v +am, + - + a;m, =0 + Mr,
also (1).
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Umgekehrt sei ¢ die durch (1) definierte Abbildung. Gilt fiir Punkte @, y, p, q

dann y — @ = q — p, so folgt

Yy —® =(v+ My) — (v + Mx) =My — x) = Mq — p)

=@®+Mq)—(v+Mp)=q —p'.

Also erhilt ¢ Vektoren; zugleich ist (2) gezeigt. Wegen der Orthogonalitit von
M ist ferner MM = E die n-reihige Einheitsmatrix. Fiir je zwei Vektoren a, b
gilt somit

a’’b’ = (Ma)" (Mb) =a’M'Mb =a'b,
also erhilt ¢ Skalarprodukte.

Satz 5. Die Bewegung (1) ist gleichsinnig oder ungleichsinnig, je nachdem, ob
det M = 1 oder det M = — 1 ist.

Beweis. Nach Definition des vorzeichenfihigen Flicheninhalts bzw. Volumens
in 2.3.6., 2.3.7. (bzw. der Verallgemeinerung in 2.3.8.) ist eine Bewegung genau
dann gleichsinnig, wenn bei ihr fiir je » Punkte X, ..., X, das Vorzeichen von
m(0X, ... X,) erhalten bleibt. Fiir die Spaltenvektoren @, = b(0X,), ihre Bild«
vektoren @, = p(0'X,) (v =1, ..., n) und die aus ihnen zusammengesetzten Ma-
trizen A, A’ gilt nach (2) aber A’ = MA und daher

m(0'X; ... X,) = det A’ = det M - det A
= det M - m(0X, ... X,),
womit die Behauptung gezeigt ist.

2.7.3. Verschiebungen, spezielle Spiegelungen und Drehungen

Wir gewinnen nun fiir einige einfache Bewegungen ihre analytische Darstellung
(1) direkt aus ihrer geometrischen Definition (oder einer gleichwertigen geome-
trischen Charakterisierung).

2.7.3.1. Ist v ein gegebener Vektor, d. h. eine gegebene Verschiebung, so besteht
zwischen den Ortsvektoren &, ®’ je eines Punktes X und seines Bildes X’ (bei
dieser Verschiebung v) nach 2.2.4., Satz 5, die Beziehung

r=v+x®.
Verschiebungen sind also in (1) durch M = E gekennzeichnet.

2.7.3.2. Die Spiegelung o, an der Hyperebene z, = 0 (k einer der Indizes 1, ..., n)
kann charakterisiert werden als diejenige Abbildung des E" in sich, bei der fiir
jeden Punkt X € R* die Strecke Xox(X) auf der Hyperebene xy = 0 senkrecht
steht und von ihr halbiert wird. Wie man nach 2.5.3.1. bestitigt, ist diese Cha-
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rakterisierung erfiillt fiir

z, 2

E Zr_y

A =|—-=].

“;5+1 Ze+1

= Z
Die Spiegelung o, wird also in (1) durch » = 0 und die Matrix M mit den Ele-
mentenm,, =1 w=1..,0;v=%k), mp=—1my=0(@Ej=1.,n;iF7)
gekennzeichnet.

2.1.3.3. Die Drehung 6, ,, in der Ebene R* um den Punkt O und mit gegebener
zugeordneter GroPe w orientierter Elementarwinkel (vgl. 1.1.3.2.) ist diejenige Ab-
bildung, die jeweils einen Punkt X mit r := |0X| auf den Punkt X’ mit |0X'| = r
und m(¥ X0X’) = w abbildet. Setzen wir  := m(XE,0X) (Abb. 2.40), so hat

y
x'

33

1
!
1
!
!
|
| X
|
1
|
|
I
1

0 3 X Abb. 2.40

nach 2.3.4. einerseits X die Koordinaten z = r - cos«, y = r - sin « ; andererseits
ist m(X E,0X’) = « + w, also hat X’ die Koordinaten

' =r-cos(x+w)=r-cosx-cosw — r-8inx -sinw,
y=r-sin(d +w)=r-cosx-sinw + r-sinax - cosw,
d. h.
' =2x:co8w —y-s8inw, Yy =z 8inw+y-cosw. (3)

Dieselben Formeln, ergiinzt durch

2=z,
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gung:

beschreiben im R® die Drehung 9, , mit zugeordneter Grofe w orientierter Elementar-
winkel und mit der z-Achse als Drehachse (Fizpunkigerade).

2.7.3.4. Weitere Bewegungen gewinnt man, indem man Verschiebungen, Spiege-
lungen 6, und Drehungen um Koodrdinatenachsen nacheinander ausfiihrt (vgl.
etwer 2.7.5., Aufgabe 4). Auf diese Weise lassen sich sogar alle Bewegungen des
R? bzw. R® zusammensetzen, worauf wir nicht niaher eingehen. Fiir den R? und
ohne Beriicksichtigung von Verschiebungen (also mit » = 0 in (1)) wurde dies
iibrigens bereits — abgesehen von der erst hier in MfL Binde 6 und 7 vollzogenen
geometrischen Fundierung des Verfahrens — in MfL Band 3, 7.5., erhalten.

2.7.4. Koordinatentransformationen

Eine Koordinatentransformation wird ausgefiihrt, indem man auBer einem zu-
néchst vorliegenden (,,alten‘‘) Koordinatensystem ein weiteres (,,neues‘‘) heran-
zieht, womit also jedem Punkt X ¢ R™ sowohl seine Koordinaten z,, ..., z beziig-
lich des ,alten als auch seine Koordinaten 2, ..., %, beziiglich des ,,neuen*
Koordinatensystems zugeordnet sind, und indem man nun eine funktionale
Abhingigkeit der z, von den z, (oder umgekehrt) bildet. Zwischen den Begriffen
Bewegung und Koordinatentransformation besteht folgender Zusammenhang:

Ist ¢ eine Bewegung und sind die bei ¢ entstehenden Bilder der ,,alten* Ko-
ordinatenachsen g, gerade die ,,neuen‘ g, := ¢(g,), so wird aus dem ,,alten*
Koordinaten-n-Tupel (zy, ..., z4) eines Punktes X sein ,,neues* (z, ..., %,) genau
80 gefunden, als habe man (wie bisher bis 2.7.3. in einem festbleibenden Koordi-
natensystem rechnend) aus einem Punkt & sein Bild bei der zu @ entgegengesetzten
Bewegung,

T = g7l(®) 4)
zu errechnen.

Um dies zu beweisen, wenden wir die Bewegung ¢ nicht nur auf die ,,alten‘
Koordinatenachsen, sondern auch auf den Punkt X an. Es entsteht ein Punkt
@(X), der nach 2.1.3., Satz 1, beziiglich des ,,neuen‘ Koordinatensystems das-
selbe Koordinaten-n-Tupel & = (,, ..., z,)" hat wie X beziiglich des ,,alten*.
Wendet man nun auf ¢(X) die Bewegung ¢! an, so erhilt man einerseits gerade
wieder den Punkt X, andererseits aber fiir ihn (im ,,neuen* Koordinatensystem
rechnend) eben das durch (4) definierte Koordinaten-n-Tupel @’.

Wir lésen nun (4) nach & auf und beachten auBerdem noch Satz 4. Dann
konnen wir das Ergebnis formulieren als

Satz 6. Entstehen aus den Koordinatenachsen g, bei der durch (1) ausgedriickten
Bewegung ¢ die Achsen g, := @(g,) eines ,neuen” Koordinatensystems, so besteht
zwischen den Koordinaten-n-Tupeln ®, x’ ein und desselben Punktes X beziiglich
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des ,,alten’‘ bzw. ,,neuen’’ Koordinatensystems die Beziehung
x=v+ Mx . (6)

Entsprechend besteht zwischen den Komp ten-n-Tupeln a,a’ ein und desselben
Vektors a beziiglich des ,alten* bzw. ,neuen*’ Koordinatensystems die Beziehung

a=Ma. (8)

Zur Anwendung einer Koordinatentransformation auf einzelne Punkte oder auf
Parameterdarstellungen z, =y, (t) (»=1,..,n) von Kurven, z, = (1, v)
(» = 1,...,,mn) von Flachen usw. ist die Form (4), d. h. & = — M- + M-
giinstiger, da sich dann sofort durch Einsetzen in (4) der einzelne Punkt hzw. die
Parameterdarstellung im ,,neuen‘ Koordinatensystem ergibt. Ist dagegen eine
Punktmenge (z. B. eine Hyperebene) als Menge aller X € B" gegeben, deren
Koordinaten-n-Tupel & eine Gleichung f(@) = 0 (z. B. N'@ 4 @, = 0) erfiillt, so
ist zur Durchfithrung der Koordinatentransformation die Form (5) giinstiger, da
sie sogleich f(v + Max’) = O als Gleichung derselben Punktmenge beziiglich des
,neuen‘ Koordinatensystems aufzuschreiben gestattet.

Mit Hilfe des Transformationsbegriffes kann man zu einer genaueren Formu-
lierung des Unterschiedes zwischen n-Tupeln (,,Punkten‘ des Zahlenraumes R*
nach MfL Band 3) und Punkten (im Sinne der Geometrie) gelangen, wobei diese
Formulierung auch fiir » > 3 verwendbar ist: Ein ,,geometrischer* Punkt X ist
nicht durch ein einzelnes n-Tupel  anzugeben, sondern durch eine Zuordnung,
die jedem Koordinatensystem oder — noch etwas abstrakter — jedem Paar (v, M)
aus Spaltenvektor » und orthogonaler Matrix M das n-Tupel &’ zuordnet, fiir das
(5) gilt. (Das spezielle n-Tupel &, das wir bisher immer zur Angabe von X ver-
wendeten, war gerade das dem Paar (0, E) zugeordnete.) Entsprechend wird ein
»geometrischer* Vektor a durch eine Zuordnung angegeben, die jedem Koordinaten-
system das n-Tupel @’ zuordnet, fiir das (6) gilt.

Eine ,,Eigenschaft eines geometrischen Vektors liegt erst dann vor, wenn sie
Eigenschaft aller zugeordneten n-Tupel ist, d. h., wenn sie nicht von der Wahl
des Koordinatensystems abhidngt. So ist z. B. die Linge

la| = ya'a = ja™MMa’ = ya'w’

eine solche Eigenschaft; allgemeiner ist z. B. das Skalarprodukt eine ,,Eigenschaft
zweier geometrischer Vektoren.

2.7.5. Aufgaben

1. Man beweise die Aussage, daB jede Bewegung ¢ Vektoren erhilt, aus dem Hilfs-
satz in 1.1.3.1., wonach fiir jede Verschiebung r auch 7’ := @ o v 0 =1 Verschie-
bung ist.
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w

o

Man zeige: Wird @’ = @(&) zu (3) spezialisiert, so spezialisiert sich (4) zu

' =z-cosw+ ¥y -sinw, yY=—2-sihw+y-cosw, (7
den Formeln einer Koordi ransformation bei Drehung des Koordinaten-
systems um O mit zugeordneter GréB8e w orientierter Elementarwinkel.
Man wende (3) und (7) auf die Punkte aus 2.3.9., Aufgabe 3, an.
Gegeben sei t := ,% <1, —1,2)> und eine GréBe w orientierter Elementarwinkel
durch p :=cos $ ¥ (also @ = ?). Man wahle geeignete GroBen «, § orien-
tierter Elementarwinkel so, daB durch die Komposition 8y, g © d;, 4 der Drehung
0:,o und der anschlieBend ausgefithrten Drehung 6y, die x-Achse in die Gerade
t = tt (¢ € R) iibergeht. Dann ist

6y,ﬂ°6z,u°6z.w°6z, —a®dy, -p
die Drehung mit w als zugeordneter GroBe orientierter Elementarwinkel und mit
der Geraden § = ¢t als Drehachse. Man berechne die Gestalt (1) dieser Drehung.
Man beweise, da im R® die Beziehung a X b = ¢ eine orienticrungsabhingige
,»Eigenschaft dreier geometrischer Vektoren** ist, d. h., daB sie bei (6) mit det M =1
in @’ X b’ = ¢’ ubergeht.
Eine Quaternion £ = ay + a;¢ + @ + ask wird definiert als Paar (a,, a) aus einer
Zahl a, und einem Vektor a = <a,, a,, ag>. Summe und Produkt werden definiert.
durch

(a0 @) + (bo, b) := (2 + bo» @ + D),

(ag, @) (b B) = (agby — ab, @b + bpa + a X b).
Mean beweise, daB alle Kérperaxiome aufier dem Kommutativgesetz der Multi-
plikation erfiillt sind.
Es sei 0 = (p, 1) eine gegebene Quaternion mit p? + 12 =1. Man beweise:
Definiert man zu gegebenem Vektor f = 5(0X) und beliebigem z € Rdie Q nion

@)=L @y 27, 8)
8o ist p(OX’) := ¢’ von z unabhingig und z’ = 2. Fiir je zwei Vektoren g, y
und ihre Bilder ¢,y wende man dies auf (—g'y’, ¢’ X 9’) = (0,¢) (0,9")
= - (—tY, £ X y) - £71an und zeige so: Die Abbildung g > ¢’ erhélt Skalarpro-
dukte. Speziell firr ¢ := t (und 2z := p) gewinne man ¢’ = r; hiernach erweise man
die Gerade ¢ = ¢r als Fixpunktgerade, die Abbildung X +» X’ also als Drehung
um diese Achse. Wird dagegen 1r = 0 und g? = 1 vorausgesetzt, so errechne man
' =p*—12=2p*— 1 und ¢ X ' = 2pr, also sgn det (z, ¢’, t) = sgn p. Hier-
aus entnehme man, da8 p der Kosinus der halben (der Drehung zugeordneten)
GroBe  orientierter Elementarwinkel ist. Man schreibe (8) mit p, t aus Aufgabe 4
in der Gestalt (1) und vergleiche die Ergebnisse.

2.8.  Kurven zweiter Ordnung

28.1. Der Kreis

Bei gegebenem Mittelpunkt M ¢ R? mit m := v(OM) = <a, b) und gegebenem
Radius r > 0 wird die Kreislinie k definiert als Menge aller derjenigen Punkte
X € R? (mit g := v(0X) = (z, ¥>), fiir die |MX| =r, d. h.

T—mE—r2=0 1)
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gilt. Wir nennen k wie in 1.3.3. auch kurz Kreis, und zwar den Kreis mit (1)
als Gleichung oder einfach den Keis (1). Diese Kreisgleichung lautet also

2? + y* — 2ax — 2by + ¢ =0 (2)
mit

c:i=a?+ b2 — 12, 3)
Umgekehrt stellt jede Gleichung (2) mit gegebenen a, b, ¢ einen Kreis (1) dar,
sobald ein r > 0 mit (3) existiert. Dies trifft genau im Fall ® + 52 — ¢ > 0 zu
und ergibt dann r = y'a2 + b2 —c. Ist dagegen a® + b% — ¢ =0, so wird (2)
genau von dem Punkt M erfiillt (,,Entartungsfall”“ r = 0), und ist a® 4 b* — ¢ < 0,
so ist die Menge aller X mit (2) leer.

Man kann in denjenigen Formeln der analytischen Geometrie, die nur Rechen-
operationen und Axiome fiir Kérper benétigen, statt reeller Zahlen Elemente irgend-
eines anderen Korpers zulassen.- Es entsteht dann ein anderer ,,Raum*, fiir den zwar
gewisse Aussagen liber den euklidischen R" giiltig blelben (z. B. die in 2 4.3. bis 2.4.6.

ledlgheh aus Koérperaxiomen herleitbaren Di gen), andere aber nicht,
je nach den Eigenschaften des zugrunde gelegten Korpers. (Bestehen z. B. in dem
Korper andere oder keine A haften, so erhilt man andere Aussagen

oder aber iiberhaupt keine smnvollen Definitionen fiir die Begriffe der Strecke, des
Strahls, der konvexen Punktmenge usw.) In vielen Féllen, so auch bei der Diskussion
von (2), liegt es nahe, statt R den Korper C der komplezen Zahlen zuzulassen. In dem
dann entstehenden ,,Raum‘ gilt folgendes iiber (2):

Im Fall @® + b2 — ¢ = 0 geht (2) in (x + iy — a — b) (x — iy — a + b) = 0 iber
und stellt daher nicht nur den Punkt M dar, sondern dio Vereinigungsmenge
der beiden ,Geraden" x + iy —a — ib =0 (Menge aller ,Punkte (z,y) mit
t=m+t-<1,9) (¢ €C)) und & — iy — @ + ib = 0 (Menge aller ,,Punkte** (z, y) mit
t=m+¢t-<1, —i> (€ C)).

Im Fa a?+ b? — ¢ <0 ist gleichfalls die Menge aller ,,Punkte’* mit (2) nicht
leer; da es eine (bis auf den Faktor —1 cindeutig besummbe) rem lmagmare Zahl r
mit (3) gibt, kann diese Menge ,,Kreis* mit gindrem ,, R t werden.

Wir bleiben auch im folgenden stets, wenn nicht ausdriicklich etwas anderes er-
wahnt wird, bei der Zugrundelegung des Korpers R.

Dle Menge aller Punkte P € R? mit |MP| < r heiBt offene Krewﬂache oder
Krei. es, ihre Vereinigung ge mit & heiBt (abgeschl ) Krei.
Die Menge aller P mit |M P| > r heiBt das Aupere des Kreises. Der folgende Sat,z
wird je nachdem, ob |[MP| < r oder |MP|>r ist, Sek oder S
genannt:

Satz 1. Fiir jede (orientierte) Gerade g durch P, fiir die g 0 k = {X,, X,} existiert,
hat das Produkt m(PX,) . m(PX,) denselben, nur von P und k abhingigen Wert.

Beweis. Ist p := b(OP), ist A ein Punkt auf g mit |[PA| = 1 und ist g gleich-
sinnig mit a := b(PA) orientiert, so ist bei der Parameterdarstellung r = p + ta
(t€R) von g stets ¢t = m(PX). Daher ist das genannte Produkt gleich ¢ - t,,
wobei 4, ¢, die Losungen der Gleichung (p + ta — m)? — 2 = 0 sind (falls solche
existieren). Diese quadratische Gleichung hat bei ¢ den Koeffizienten a2 = 1,
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also ist ¢ + ¢, nach dem Satz von VIETA das von ¢ freie Glied
(p — m)t — 2, 4)
Da (4) nur von P und k abhingt, ist der Satz bewiesen.
Man nennt das Produkt m(PX,) - m(PX,) die Potenz von P beziiglich k. Sie er-

gibt sich nach (4) durch Einsetzen der Koordinaten von P in die linke Seite der
Kreisgleichung (1) (oder (2)). Hiernach gilt

Satz 2. Fiir zwei Kreise (f — mg? —ri=0 (i =1,2) mit m;, & m, ist die
Menge aller Punkte X, die beziiglich beider Kreise gleiche Potenz haben, die Gerade
2(my —my) - g+ mf —mi — 3 4+ =0.

Diese Gerade heiBt die Potenzlinie der beiden Kreise. Sie steht auf der Ver-
bindungsgeraden ihrer Mittelpunkte senkrecht. Haben die Kreise zwei Punkte
8 = T gemeinsam, so ist g(ST') ihre Potenzlinie; sonst vgl. 2.8.5., Aufgabe 2.

Jeder Winkel mit M als Scheitel heift Zentriwinkel von k. Der Durchschnitt
der Kreislinie k& mit der Vereinigung; ge aus Winkelinnerem I und Schenkeln
8, 8" heiBt ein Kreisbogen b mit den Endpunkten A :=snk, B :=s" nk (Abb.
2.41). Ist Pe I nk und W e k\b, so heiBt X(AWB; P*) ein Peripheriewinkel

Abb. 2.41

von k, und zwar ein auf dem Bogen b stehender oder ein zum Zentriwinkel <(A M B; P+)
gehoriger. Hierfiir gilt der Peripheriewinkelsatz:

Satz 3. Jeder zu einem Zentriwinkel gehorige Peripheriewinkel ist halb so grof
wie dieser.

Beweis. Es sei P auf dem halbierenden Strahl h von <X(AMB; P+) gewihlt.
Nach geeigneter Wahl des Koordinatensystems ist ¥ — O und P der Punkt
(r, 0); fiir & := 3| X(AMB; P*)| haben 4, B die Ortsvektoren

a=r-{co8ax, — 8ina), b =r-{cosx,sina).
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Fiir ¢ := m(3(PMW; BY)) gilt & < ¢ < 360° — « und
1 1= b(OW) = r - {cos @, sin p) .
Nun rechnet man nach (etwa mit 2.4.1., Satz 1), da8 der Punkt

1— cosx 5
T+ C08G, T prvps -r-sing
wegen cos ¢ < cosa < 1 sowobl auf dem Strahl WP* als auch im Innern der

Strecke 4 B liegt. Demnach ist X(AWB; P*) nicht iiberstumpf, also
|Z(AWB; P+)| = | XAWB| = |X(u, b)|

mit
U :=p(WA) =r-(cosx — cosp, — sinax — sing),
p :=9(WB) =r-{cosx — cos ¢, sinx — sin @) .
ub
Daher ist der Satz bewiesen, wenn man E] |F| = cos & erhilt, was in der Tat
aus

[ul - [o] =r2y2(1 — cosa - cos @ -+ sina - 8in @) J/2(1 — cos o - cos p — sino - sin @)

= 2r?/(1 — cosa - cos g)* — (1 — cos?ax) (1 — cos? @)
= 2r2|cosx — co8 ¢| = 2r%(cosx — cos @) ,
up = r2((cosx — cos @) — (1 — cos?a) + (1 — cos? p))

= 2r%(cosx — cos @) cosx = |u| - |b| cosa

folgt.

2.8.2. Ellipse, Parabel, Hyperbel

Gegeben seien_eine positive Zahl e sowie im R? eine Geradel, und ein Punkt
F, a¢l,. Die Menge c aller Punkte X ¢ R?, deren Abstand zu F, gleich ihrem mit
& multiplizierten Abstand zu 1, ist, heiBt fiir 0 < ¢ < 1 eine Ellipse, fiir ¢ = 1 eine
Parabel, fiir ¢ > 1 eine Hyperbel. Der Punkt F; heilt Brennpunkt, die Gerade [,
Leitlinie, das Lot von F, auf I, heit Achse von c. Schneidet sie I, in G;, so heit
der zu ¢ gehérende Punkt S; der Strecke F,G; (eindeutig existierend nach 2.4.1.,
Satz 4) Scheitel von c.

Wir wihlen ein Koordinatensystem so, da8 F; der Punkt (f, 0) mit einer posi-
tiven Zahl f ist und daB I, die Gleichunga = —f/e¢ hat (womit wirS; = O erreicht
haben) (Abb. 2.42). Die Bedingung

P |
l/(==—/)2+y’=e’x+ﬂ
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ist dann dquivalent mit

2? — 2fz + f* + ot = e%a® + 2¢fx + f
und dies mit

¥ =2+ 1)fr + (2 — 1)a?.

Setzen wir p := (¢ + 1) f, also p — 2f = (¢ — 1) f, so lautet die erhaltene Glei-
chung, die Scheitelgleichung von c,

y? = 2pzx + (* — 1)t 6)
y

I
oY (xy)

e+ £]

Yix-fPe y?

(£.0) (o0
& 5 2 g

Abb. 2.42
oder auch
1
¥ =2p +Epe =2t

Aus z :=f folgt hiernach y? = p?; auf ¢ haben also genau die beiden Punkte
(f, p) und (f, —p) die gleiche Abszisse wie F,; somit ist p der halbe Abstand zwi-
schen diesen beiden Punkten und heiBt der Halbparameter von c.

Die Parabel y* = 2pz bhat mit der z-Achse nur den Nullpunkt gemeinsam;
Ellipse und Hyperbel (5) auBerdem noch den Punkt (2p/(1—e¢2), 0). Im folgenden
sei vereinbart, fiir £ 4= 1 zur gemeinsamen Behandlung von Ellipse und Hyperbel
Doppelvorzeichen zu verwenden, und zwar gelte stets das obere Vorzeichen fiir die
Ellipse, das untere fiir die Hyperbel. Wir setzena := 4 p/(1—¢?), dannist a > 0,
und der ebengenannte Punkt ist (42a, 0); damit kann (5) in der Form
y2=(e2 — 1) z- (& F 2a) geschrieben werden.

Wir machen nun den Mittelpunkt (4a, 0) zwischen (0, 0) und (4 2a, 0) zum
Ursprung eines ,,neuen” Koordinatensystems, indem wir die Verschiebung
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« =2’ 4 a, y = y’ durchfithren. AnschlieBend éndern wir die ,,neuen* Koordi-
natenbezeichnungen z’, ¥’ wieder in z, y ab. (Da wir die fritheren Bezeichnungen
«, y nicht gleichzeitig mit den jetzigen verwenden, resultieren hieraus keine Fehler.)
Es entsteht die Gleichung y* = (¢ — 1) (x® — a?). Aus ihr ist ersichtlich, da
die Ellipse und die Hyperbel bei der Spiegelung an der y-Achse in sich iibergehen.
Der Nullpunkt heiBt der Mittelpunkt der Ellipse bzw. Hyperbel c; symmetrisch
(beziiglich des Mittelpunktes) zu den bisher betrachteten F,,; liegen ein zweiter
Brennpunkt F, und eine zweite Leitlinie I, mit denen folglich ¢ ebenso charakteri-
siert werden kann wie eingangs mit F, und /,. Insbesondere liegt zwischen ihnen,
ebenso wie S zwischen F; und [;, ein zweiter Scheitel S, von ¢ symmetrisch zu S;.
Da 8, die ,,neuen‘‘ Koordinaten (Fa, 0) hat, lautet der zweite Scheitel (+a, 0).
Die Liinge |S,8,| = 2a heiBt die Hauptachse(nlinge) von c.

Wir setzen nun b := a}/ 4 (1 — &%) und konnen die vorhin erhaltene Gleichung
als y2 = F (b%/a?)(2? — a?) und damit schlieBlich in der bekannten Gestalt der
Mittelpunktsgleichung

32 yl

aip=1 ®)
schreiben. Man nennt 2b die Nebenachse(nlinge) von c. Aus b2 = 4 a?(1 — &?)
ergibt sich :

b2

p=tal—e)=—; (7
setzen wir ferner

e:=ac, (8)
8o folgt einerseits

a?® — ¢t = 4 b2, ®
andererseits

P _ — ) =
f=-l—_l_—8—-:ka(l g)=4aFe.

Der Brennpunkt F; hat somit die ,,neuen‘ Koordinaten (f F a,0) = (Fe, 0),
der zweite, symmetrisch hierzu gelegene Brennpunkt F, ist also (1e, 0). Damit
ist e der Abstand je eines Brennpunkts vom Mittelpunkt und heiBt die Exzentrizi-
tdt von c; die Zahl ¢, durch die (zusammen mit F; und l,) der Kegelschnitt defi-
niert wurde, ist hiernach zugleich das Verhiltnis ¢ = efa von Exzentrizitit und
halber Hauptachse und wird als numerische Exzentrizitit bezeichnet. Die Gleichung
vonl, im ,,neuen‘‘ System ist = — (f/e) F a, wegen f £ ae =f + e = + a also
2 = F afe; symmetrisch hierzu hat I, die Gleichung = + afe.
Fiir die Ellipse (Abb. 2.43) ist

a a
—;<—a<—e<0<e<a<;,
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daher besteht auf der z-Achse die Anordnung
G<E<FH<OLF, <8 <G,.

Aus (8) folgt ferner, daB nur fir — ¢ < # < a Punkte (z,y) auf ¢ existieren
konnen. Ist X € ¢ und H¢ der FuBpunkt des Lotes von X auf /i, so gilt folglich
Zw(H,XH,) und daher

|F.X| + |F,X| = e(|H,X| + |HX]) = ¢| B, H,|

2a
= £|G,G,) =e-:=2a.

Abb. 2.43

LS |6

N

\/}r{yﬂ
(0% Abb. 2.44

. a a
—e<—al =< 0 —<ale,
daher gilt
F<8<GCO0KGS < F.

Fiir die Hyperbel (Abb. 2.44) ist
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Aus (6) folgt, daB nur fiir 2 < — a oder x = a Punkte (z, y) auf ¢ existieren. Also
gilt fiir X € ¢ entweder Zw(XH,H,) oder Zw(H,H,X) und daher in beiden Fillen

|17, X| — |FoX|| = e||H,X| — |H,X|| = &|H,H,|
2a
=¢|GG,| =¢- ?=2a.

Fiir alle Ellipsenpunkte X ist also die Summe, fiir alle Hyperbelpunkie X der Betrag
der Differenz der Abstinde von X zu den Brennpunkten konstant gleich 2a. Diese
Eigenschaft charakterisiert die Ellipse bzw. Hyperbel (vgl. 2.8.5., Aufgabe 6).

Die Formeln (7), (8), (9) bleiben auch fiir den bisher ausgeschlossenen Wert
& = 0 sinnvoll; sie ergeben dann e = 0, a = b = p, und (6) wird zu 2? 4 y* = a%
Es entsteht also der Kreis mit dem Radius (= halbe Hauptachse = halbe Neben-
achse = Halbparameter) @ und dem Mittelpunkt (= F, = F;) = 0. Auch die
Eigenschaft |F,X| 4 |F;X| = 2a bleibt somit erhalten, so daB es gerechtfertigt
ist, den Kreis als Spezialfall der Ellipse unterzuordnen; dagegen existiert fiir den
Kreis keine Leitlinie.

Eine besondere Beziehung zur Hyperbel z2/a® — y2/b2 = 1 haben die Geraden

z Y
——3=0 (10)
xz Y

Liegen nimlich fiir gegebene Abszisse z, (mit z, < — a oder %, > a) die Punkte
(@0 &), (@ —yg) auf der Hyperbel und (2o, ¥g), (%0, —¥e) auf (10), (11) (wobei
Ym, Yg > 0 gewidhlt seien), so gilt

Iz yo

T Yu
a,—b,—- und T_T=0.

Subtrahiert man von der ersten Gleichung die mit (l%l b ) multiplizierte
zweite, so ergibt sich

Yo 9m b®

=1, also yo—ya—ya+yx>0
Nun istyo = (b/a)|xy|; fiir || > a2 folgt ferner yg > b, also

b
0 — —
< Yo yﬂ<|z°|+1

Damit ist
lim (yo —yg) =0,

(PR
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also auch
lim (—ys — (—yg)) =0
|Zo] > 00
gezeigt, d. h., fiir ) — + oo und fiir z, - — 0o néhert sich die Hyperbel mit je
einem ihrer Teilb6gen unbegrenzt sowohl der Geraden (10) als auch der Geraden
(11) an, ohne (wegen yg — yg = O fiir alle 2,) einen gemeinsamen Punkt mit
(10), (11) zu besitzen: Die Geraden (10), (11) sind Asymptoten der Hyperbel.

2.83. Diskussion der Kurven zweiter Ordnung

Die bisher erhaltenen Gleichungen von Ellipsen (einschlieBlich Kreisen), Parabeln
und Hyperbeln (vgl. auch 2.8.5., Aufgabe 7) haben simtlich die Form einer
Gleichung zweiten Grades,

a0 + 2007 + 20y + 0y2® + 200y + Gpey® = 0 12)
mit geeigneten Zahlen ay;, wobei (ay,, @4, @) == (0, 0, 0) ist. Diese Kurven heifien
daher Kurven zweiter Ordnung. Wir wollen untersuch unter welchen Bedin-
gungen umgekehrt eine Kurve zweiter Ordnung, d. h. die Menge ¢ aller X mit
(12), eine Ellipse, Parabel oder Hyperbel ist. Mit Hilfe der Matrizen

Qoo A1 To 1
A:=|ayayay |, X:=|= (13)
oz Gy Gz Y

kann man (12) in der Form
X'AX =0
schreiben.
Ist a,, = 0, so gibt es eine GroBe w orientierter Elementarwinkel mit cot 2w
s . Fithrt man hiermit die Drehung

20,

z=4a'-co8w —y -sinw, y=2x -sinw 4y -cosw (14)

durch, so erhdlt in der aus (12) entstehenden Gleichung das Glied mit 2’ y’ den
Koeffizienten

—2a,, - o8 + 8in  + 2a15(c0s? w — 8in? w) + 2ay, - cOS W - 8in @

= 2a,; - 08 2w — (@ — @yy) * 8in 200 =0,
Wir bezeichnen anschlieBend z’,y’ wieder mit z,y und die Koeffizienten der
erhaltenen Gleichung wieder wie in (12). Damit ist gezeigt, daf man in (12) durch
eine Drehung (14) stets

a =0
erreichen kann. (Vgl. auch 2.8.5., Aufgabe 8.)
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Auf die Matrizen (13) wirkt sich (14) so aus, d#8 nach Einfiihrung von

1 0 0 1
M:={0 cosw — sinow], X i=|
0 sinw cos w Yy

X = MX’ gilt, wonach X"AX = X'"M'AMX' wird. Die Koeffizienten der er-
haltenen Gleichung sind folglich ebenso aus der Matriz MTAM abzulesen wie die der
urspriinglichen Gleichung (12) aus A. Da M orthogonal ist, gilt

det(MTAM) = det A (det M)2 = det A .
Die folgende Fallunterscheidung det A = 0, == 0 bleibt also von der Drehung (14)
unberiihrt. Auf die Frage, wie man die weitere Fallunterteilung an der urspriing-
lichen Matrix A ablesen kann, gehen wir nicht mehr ein; hierzu vgl. etwa [10].

Fall 1: det 4 = 0.

1.1. Ist @y = @y = 0, s0 ist (12) eine lineare Gleichung. Deren Diskussion ist
bekannt: Fir ay, = ay = ag = 0ist ¢ die ganze Ebene R?; fiir agy & 0,8y = ap = 0
ist ¢ leer; fiir (ay;, @es) = (0, 0) ist ¢ eine Gerade.

1.2. Ist genau eine der Zahlen ay, a,, nicht 0, etwa ay; 3= 0, a,, = 0, so folgt
aus 0 = det A = — afa,, auch ay = 0. Multipliziert man (12) mit a,;, so ent-
steht gleichwertig (ay, + 2,2)® + away — af; = 0. Je nachdem, ob d := aya, —ad
positiv ist oder nicht, ist somit ¢ leer oder die Vereinigungsmenge paralleler Geraden
ay2 + ay + fld] = 0, ayz + ay — {[d| = 0, die im Fall d = 0 zu einer Geraden
2usammenfallen.

1.3. Ist a;; 3 0, @y == 0, so sind die letzten beiden Zeilen in A4 linear unab-
hiingig. Von ihnen hingt wegen det A = 0 die erste linear ab, also ist

r’p + &% p sq
A =( rp P 0 )
L 0 q
mit Zahlen p, ¢, r, 8, von denen p, ¢ 5= 0 sind. Hiernach lautet (12) nun
ple+rP+aly+9*=0.
Je nachd ob p, g gleiches Vorzeichen haben oder nicht, ist somit ¢ der Punkt
(—r, —3) oder die Vereinigungsmenge nichtparalleler Geraden .
Vipl @+ 0 +Vidly +9 =0, {lplz+n =yl +9=0.
Fall 2: det A & 0. Dies ist nur fiir (@, a5,) 3= (0, 0) moglich.
2.1. Ist genau eine der Zahlen ay,, a,, nicht 0, etwa ay, =+ 0, ay, = 0, so folgt
aus 0 &= det A = — a,a,, nun ag == 0. Nach Division durch ay, wird (12) dqui-
valent mit

ay\? Gop ( P — “51)
z4+—) = —-2—=|y+——),
( * au) ay\' T 2aue,
so daB ¢ als Parabel nachgewiesen ist.
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2.2. Ist a,; == 0, @y, = 0, s0 lautet (12)

a
a,.(x+ )+a,.(y+ )=—aw+af:+% (18)

worin die rechte Seite D :=—(det A)/(ay,a54) = 0 ist. Dividiert man (15) durch D,
80 erkennt man: Fiira, /D < 0, a,/D < 0 ist cleer. Fiir a;,/D > 0, ay/D > 0 ist
(15) eine Ellipse. Fiir (ayy/D) - (ag/D) < 0, also 0.B.d. A.ay,/D > 0, a,/D < 0 ist
(15) eine Hyperbel.

Damit ist die Fallunterscheidung abgeschlossen. Durch det A = 0 und die
Forderung, nicht leer zu sein, ist somit ¢ als Parabel, Ellipse oder Hyperbel (regu-
lire oder nicht ausgeartete Kurven zweiter Ordnung) charakterisiert; fiir den Fall
det A = 0 kommen nur noch Ausartungsfille hinzu (9, eine oder zwei Geraden
oder der R?).

Der Fall ¢ = @ erklart sich, wenn man zur projektiven Gec ie mit } 1
Grundkérper ibergeht, in 1.1. dadurch, da8 die igentlich Gerade auftrltt In 1.2.
dagegen erhalt man statt 8, daB ¢ die Vereini k paral-

leler Geraden lst Der in 1 3. vorkommende Punkt ist der (reelle) Schmttpu.n.kt zZweier

lleler Geraden, deren Vereinigungsmenge c ist. Somit

bedeutet in der prOJektlven Geometrie mit Grundkbrper C der Fall det A = 0 (mit

A £ O) stets ein ,,Zerfallen‘* von ¢ in zwei Geraden (die auch uneigentlich, komplex
i ).

oder mit d fallend sein }

2.8.4. Tangenten, Pol und Polare

Satz 4. Jede regulire Kurve zweiter Ordnung (12) hat in jedem ihrer Punkte

(2, ¥,) die Gerade
o + (2 +21) + 3y + ) + anzE + @y, + 2Y) + ayy, = 0 (16)

als Tangente.

Zum Beweis setzen wir Methoden der Tangentenermittlung in der Differential-
rechnung aus MfL Band 5 voraus.

Fiir die Parabel 2pz — y® = 0 erhalten wir z = @(y) := (1/2p) y* (mit y € Rals
unabhiéngiger Variablen), also ¢’(y;) = (1/p) ¥; und daher als Tangentengleichung

1
z—xx':"f?/l(y—!/:)»
d. h. wie behauptet

P — gy, = (pry — 4} =) — pzy -
Fiir die Ellipse bzw. Hyperbel (6) kann man z. B. die Parameterdarstellung

Feo
s =ay @ WO=byia amn

liﬁ
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(t€ R bei der Ellipse; t € R, ¢ 5 1, —1 bei der Hyperbel) heranziehen, die alle
Punkte von (8) aufer (—a, 0) erfaBt, wie sich folgend Ben bestitigen 1aBt:
Alle Punkte (17) erfiillen (), liegen also auf der Kurve. Umgekehrt ist fiir jedes
2, (mit —a < z; < a bei der Ellipse bzw. mit 2, < — a oder #; = a bei der Hy-
perbel) die Zahl

wi=+ ——

a—az at — 2}

- — 1
at+z  Tlatxn)
nichtnegativ, und die Gleichung

1Fe
=1
1+
hat genau die Losungen ¢, = |/1; und t), = — ;/1; ; somit erfaBt (17) zwei (gehau

im Fall w = 0 zusammenfallende) Kurvenpunkte mit der Abszise z;, also, da es
nach (6) nur zwei solchegibt (genau im Fall z; = a zusammenfallend), alle be-
haupteten Kurvenpunkte.

Aus (17) errechnet man nun fiir jeden Parameterwert ¢, also fiir jeden Kurven-
punkt (2, 41) := (2(ty), ¥(k)) + (—a, 0) zuniichst

) = T 2 2t 2a
z(4) = F a(l i_‘§)¢'= + b1 + &) Y»

, 1F & 2b
MR E S

daher erhiilt man als Tangentengleichung (z — z,) ¥(t;,) — (¥ — ¥,) #(;) = O nach
Multiplikation mit (1 4 ¢%)/(2ab), wie behauptet,

Yy, %
(e

In dem Scheitel (—a, 0) erhilt man die zur Tangente # = a des anderen Scheitels
(@, 0) symmetrische Tangente 2 = — a, also ebenfalls die behauptete Gerade.

Nach der Diskussion in 2.8.3. kann aus den Parabeln 2px — y?® = 0 sowie den
Ellipsen und Hyperbeln (6) durch geeignete Koordinatentransformation jede
reguliire Kurve (12) erhalten werden. Diese Transformation, angewandt auf z, y
und zugleich auf w,, y;, wirkt sich aber auf die Koeffizienten von (16) genau so
aus wie die gleiche Transformation auf dieselben Koeffizienten von (12). Damit
ist Satz 4 allgemein bewiesen.

Satz 5. Fiir jeden Ellipsen- bzw. Hyperbelpunkt P, ist die Tangente in P, eine
winkelhalbierende Gerade der Geraden g(P,F,), g(P,F,) (Abb.2.45). Fiir jeden
Parabelpunkt P, ist die Tangente in P, eine winkelhalbierende Gerade von g(P,F,)
und der Achsenparallelen durch P,.
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(e,0)

(-¢,0)

b)

Abb. 2.45
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Beweis. Ist P, einer der Scheitel S;, S, oder ist die Ellipse ein Kreis, so sind
die beiden genannten Geraden identisch, und die Tangente steht senkrecht darauf
(vgl. 2.8.5., Aufgabe 10). Diese Fille seien jetzt ausgeschlossen.

Fiir die Ellipse bzw. Hyperbel (6) hat g(P,F;) die Gleichung

E—m)p— @G —%h) @ te=0.
Nach (6) und (9) gilt

yi=(a® —e?) (1

22
zy
@
und daher
. e? .
v+ @mtef=d —af —e2+%+x%:t2u,+e'=(ai?) .
Hiernach und wegen (8) hat g(P,F,) die Hessesche Normalform
=0.

%
(z—zl)m y— yl)aiex

Ebenso hat g(P,F,) diese Gleichung mit vertauschten Doppelvorzeichen als Hesse-
sche Normalform. Nach ihrer Subtraktion entsteht wegen

Y1 % 2ex,y

aiex,_a$sxl’=q:u’—s’g:§
und
z,te a:liFe_ 2(ae—ex1)_ 2
aj:ezl—aZFex,_i a? — ¢%? to *x’(a —ai)
2 a?

e e”x’ﬁﬁ

— et
eine Gleichung, die durch Multiplikation mit 2',’; in
1

C—n) Aty —w) =

iibergeht, also die Tangente darstellt.
Fiir die Parabel y* = 2pa hat g(P,F;) wegen f = p[(¢ + 1) = p/2 die Gleichung

_ (z—my,—(y—yl)(x,—;—’)=o,
also wegen

RN

die Hessesche Normalform

—P

(z—x])ﬁ—(y—%) ::—+P=0-'
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Die Achsenparallele durch P, hat die Hessesche Normalform y — g, = 0. Durch
Subtraktion entsteht wegen
e Sl 2
2z, + p

_ 4z, - 21/%

22, +p P2z, + p)
(2%, + p) .
———in

1

1=

eine Gleichung, die durch Multiplikation mit
E—2)p—@G—9)yn=0

iibergeht, also die Tangente darstellt.

Mit Hilfe der Matrizen (13) und X, := (1, 2,, )" 1aBt sich (16) in der Form
XJAX = 0 schreiben. Wir betrachten diese Gleichung nun bei beliebig gegebenem
Punkt (z,, y,). Sie ist auch dann eine lineare Gleichung in « und y. Die Koeffi-
zienten bei z und y lauten ay + a,x, + ay,y; bzw. ag, + %, + agy,. Sie sind
dann und nur dann beide 0, wenn folgendes gilt: Bringt man (z,, y;) durch eine
Verschiebung in (0, 0), so gilt fiir die dabei in (12) entstehenden Koeffizienten
(die wir wieder a(; nennen) a, = @, = 0. Das besagt: Zu jedem Kurvenpunkt
(z, y) liegt auch (—z, —y) auf der Kurve, d. h., diese ist eine Ellipse oder Hyperbel
und (0, 0) ihr Mittelpunkt.

Damit ist gezeigt: Fiir jeden Punkt (z,, %), der nicht im Mittelpunkt der re-
guliren Kurve zweiter Ordnung (12) liegt, ist X]AX = O eine eindeutig be-
stimmte Gerade. Sie heifit die Polare von (z,, y,). Insbesondere ist nach Satz 4
die Polare jedes Kurvenpunktes dasselbe wie die Tangente in diesem Punkt.

Man kann umgekehrt zeigen: Zu jeder Geraden u, + v,z + wy = 0, die bei
Ellipsen und Hyperbeln nicht durch den Mittelpunkt geht bzw. bei Parabeln
nicht parallel zur Achse ist, gibt es genau einen Punkt (z,, %,), dessen Polare die
gegebene Gerade ist. Bei Einfithrung von U, := (u,, v, w;)" erfiillt dieser Punkt
die Gleichung X4 = U], d. h. AX, = U,. Er heiBt der Pol der Geraden.

Fiir Pole und Polaren gilt der grundlegende

Satz 6. Geht eine Gerade g (bei Parabeln: nicht parallel zur Achse) durch einen
Punkt P (bei Ellipsen und Hyperbeln: verschieden vom Mittelpunkt), so liegt der
Pol von g auf der Polaren von P.

Beweis. Hat g die Gleichung %, + v,z + w;y = 0 und P die Koordinaten
(23, ¥5), 80 gilt AX, = U, fiir den Pol (x,, ,) von ¢ und AX, = U, fiir die Polare
Uy + vx + wyy = 0 von P. Wegen P € g ist U X, = 0. Daraus folgt

UIX, = X]A4"U, = 0,

w.z. b.w.
Aus Satz 6 ergeben sich folgende Konstruktionsméglichkeiten (Abb. 2.46, vgl.
auch 2.8.5., Aufgabe 13):
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Folgerung 1. Schneidet g die Kurve zweiter Ordnung in zwes Punkten P, + P,,
schneiden sich die in Py, P, an die Kurve gelegten Tangenten im Pol Q von g.

Folgerung 2. Gehen durch einen PunktQ zwei Tangenten an die Kurve, so

tst die Verbindungsgerade der Berithrungspunkte die Polare von Q.

1 Abb. 2.46

2.8.5. Aufgaben

1.
2.

o

Man beweise, daB jede Kreisflache eine konvexe Punktmenge ist.
Man beweise: Sind ky, k,, ky Kreise mit paarweise v hi Mittelpunkten
und ist gy die Potenzlinie von k, und %, so sind die Geraden gsy, gs1» §12 konzen-
trisch oder zu je zweien parallel. Man verwende diesen Satz, um die Potenzlinie
zweier Kreise mit k, n ky = @ zu finden.
Man beweise. den Peripheriewinkelsatz fiir den Spezialfall M ¢ WA durch die
Wahl eines Koordinatensystems, in dem W, 4, B die Punkte (—r, 0), (r,0),
(r - cos 2a, r - 8in 2a) sind, unter Anwendung der Gleichung

sin 2a
1 + cos 2a
und der (zuvor gesondert zu zeigenden) Ungleichung | (AW B; P*)| < 90°.
Man beweise durch Umkehrung einzelner Beweisschritte aus 2.8.1. die folgende
Umkehrung des Peripheriewinkelsatzes: Jeder Punkt W, dessen Abszisse kleiner
als die von 4 ist und fiir den |X(AWB; P*)| = a gilt, liegt auf k. Welches ist
dagegen die Menge aller I’'unkte W € R?, +4, B mit |X(AWB; P*)| =
Man ibertrage Satz 1 auf die Schnittpunkte X,, X,, die eine Kugel (z — m)® — 72
=0 im R® mit den Geradeng durch einen Punkt P hat, und beweise nach
entsprechender Definition der Potenz von P beziiglich der Kugel das Analogon
zu Satz 2 (Potenzebene zweier Kugeln).
Man beweise, daB jeder Punkt X mit ||F,X| &+ |F,X|| = 2a auf der Ellipse bzw.
Hyperbel (6) liegt.
Hinweis: Wie dndert sich ||F,X| + |F,X||, wenn man X von einem Ellipsen-
bzw. Hyperbelpunkt aus parallel zur y-Achse bzw. zur z-Achse verschiebt ?

tan a =
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7. Man zeige, daB aus (6) fir e = }/2 die gleichseitige Hyperbel a® — y® = a® wird,
deren Asymptoten aufeinander senkrecht stehen. Welche Glelchung entsteht.
nach einer Drehung, bei der die Asymp zu Koordi

8. Man zeige ohne Trigonometrie, daB es auf rcell 16sbare quadratische Gleichungen
fihrt, 0, T mit o? + 72 = 1 so}zu bestimmen, daB bei der Transformation z
= 0z’ — wy’, y = 12’ + oy’ in (12) das Glied mit 2y’ den Koeffizienten 0 erhalt.

9. Man he unter Ver dung des Ansat: von Aufgabe 8, was fiir eine
Kurve

(@ = 20) 2 + (a* — 4)y + 2* + 2azy + ¥ = 0

ist, wobei man die Félle ¢ % —1, 0, 1, 2 unterscheide.

10. Man beweise aus Satz 4, daB jede Kreistangente auf der Verbindungsgeraden
vom Berihrungspunkt zum Mittelpunkt senkrecht steht.

11. Man beweise: Ist ¢ ein vom Berithrungspunkt B gehender Strahl auf einer
Tangente an einem Kreis k, sind 4, P € k (voneinander und von B verschieden)
so gelegen, daB | (s, BA*; P*)] < 180° ist, und ist b der Bogen mit 4, B a]s
Endpunkten und mit Peb 80 hat der sc i
X(t, BA*; P*) dieselbe GréBe wie die iiber b stehenden Penphenewmkel

12. Man beweise: Die Strecke zwischen den Schnittpunkten einer Hyperbeltangente
mit den Asymptoten wird vom Beriihrungspunkt" halbiert.

13. Man entnehme aus Satz 8 und seinen Folgerungen K kti lichkeit
far den Pol einer Geraden 9 die die Kurve zweiter Ordnung nicht schneldet,
desgleichen fiir die Polare eines Punktes, von dem aus keine Tangenten.an die
Kurve existieren.

Hinweis: Man beginne mit der Wahl zweier Punkte auf g, auf die sich Folgerung 2
anwenden lagt.

14. Man beweise: Schneidet eine Gerade durch P eine Kurve zweiter' Ordnung in
A, B und die Polare von P in @, so sind (4, B) und (P, Q) harmonische Punkte-
paare.

2.9.  Ausblick auf weitere Themen der analytischen Geometrie

Fast jedes der hier behandelten Themen hat in der analytischen Geometrie einen
weiteren systematischen Ausbau erfahren. Die mcisten Aussagen in 2.1. und 2.2
lassen sich ohne die Begriffe der Orthogonalitdt und der Linge (nur mit Hilfe
von Lingenverhdltnissen) beibehalten, was zu einem analytischen Aufbau der
affinen Geometrie fiihrt. Zu 2.4. wurden beispielsweise weitergehende deter-
minantentheoretische Méglichkeiten der Erfassung linearer Mannigfaltigheiten ge-
bildet, etwa fiir Geraden im R3. AuBer den in 2.7. genannten Transformationen
betrachtet man auch solche, die zu andersartigen Koordinatensystemen fithren,
(schiefwinklige Koordinaten, Polarkoordinaten usw.). Die bei Transformationen
invarianten Eigenschaften von Vektoren, Matrizen, Koeffizienten-n-Tupeln usw.
werden in der Tensorrechnung ausgebaut, die zugleich die Theorie der skalaren
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und vektoriellen Produkte fortsetzt und ihrerseits die Grundlage der Vektor- und
Tensoranalysis bildet.

In der analytischen Geometrie der Ebene kann man zu Kurven hoheren Grades
iibergehen. Bekannt sind z. B. die sogenannten Parabeln hoheren Grades y = a®
(n = 3,4,...) und Hyperbeln hoheren Grades (vgl. 2.8.5., Aufgabe7) y =z
{n =2,3,..). Stirkeren Einsatz algebraischer Hilfsmittel erfordert die Unter-
suchung von Kurven, die nicht explizit als y = f(z), sondern (wie 2.8.3.(12))
implizit durch Nullsetzen eines Polynoms definiert sind, wenn dieses von héherem
Grad ist. Hierbei und erst recht bei Einbeziehung nichtalgebraischer Funktionen
ist die Analysis als wesentliches Hilfsmittel heranzuziehen.

In der analytischen Geometrie des Raumes kann man durch Ausbau matrizen-
theoretischer Hilfsmittel die Fldchen zweiter Ordnung dhnlich diskutieren, wie dies
in 2.8.3. fiir die Kurven geschah. Flichen hoherer Ordnung und andere in hoher-
dimensionalen Réumen durch algebraische Gleichungssysteme definierte Punkt-
mengen werden dann in der algebraischen Geometrie behandelt. Jede solche Punkt-
menge bleibt unveriandert, wenn man zu dem Gleichungssystem solche Gleichungen
hinzufiigt, die durch Multiplikation mit beliebigen Polynomen oder durch Addition
entstehen. Daher ist fiir algebraisch-gi trische Untersuchungen der Begriff
des (Polynom-)Ideals grundlegend. Das Auftreten von Parameterdarstellungen
wie z. B. 2.8.4.(17) vermittelt mit Ausnahme endlich vieler Punkte bijektive und
in beiden Richtungen stetige Abbildungen zwischen algebraischen Punktmengen
(hier: zwischen der reellen t-Achse und der Kurve zweiter Ordnung). Damit
kann man sich den EinfluB der T'opologie auf die algebraische Geometrie plausibel
machen. Die Anwendungen und Ankniipfungen reichen von stark praxisbezo-
genen Themen wie der Kartographie bis zu immer weitergehenden Abstrak-
tionen und Verallgemeinerungen.




3.  Abbildungen als Ordnungsprinzip in der Geometrie

Dieses Kapitel beschéftigt sich mit den geometrischen Abbildungen. Dabei soll
eine eindeutig umkehrbare Abbildung einer Punktmenge auf sich eine Trans-
formation genannt werden. Nach den Bewegungen, die bereits in den ersten
beiden Kapiteln eingefiihrt worden sind, werden nacheinander die dquiformen,
die affinen und (im Uberblick) die projektiven Transformationen der Ebene auf
sich behandelt. Im Gegensatz zum vorangegangenen Kapitel, in dem vorwiegend
analytisch gearbeitet wurde, soll jetzt der synthetischen Behandlung der Vorrang
eingerdiumt werden, und auf die konstruktive Erfassung der Abbildungen wird
besonderer Wert gelegt. Die Einfiihrung einer neuen Abbildung erfolgt stets durch
die Angabe einer als Definition aufzufassenden Konstruktionsvorschrift. Aus ihr
werden moglichst viele Sitze und SchluBfolgerungen hergeleitet, ohne daB der
Formelapparat der analytischen Geometrie in Anspruch genommen wird. Das
schlieBt allerdings nicht aus, daB auch gelegentlich mit analytischen Methoden
gearbeitet wird, wo es dem zu behandelnden Problem angemessen erscheint, vor
allem bei der Aufstellung der jeweiligen Abbildungsgleichungen.

31.  Das Erlanger Programm

In den ersten beiden Dritteln des 19. Jahrhunderts hatte sich die Mathematik so
stiirmisch entwickelt, daB es einem einzelnen Mathematiker nicht mehr méglich
war, alle ihre Disziplinen, die sich herausgebildet hatten und die, bereichert durch
neue Erkenntnisse, immer umfangreicher geworden waren, in ihrer Gesamtheit
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zu iiberschauen. Selbst fiir Teilgebiete wie die Geometrie fiel das schwer, und
deshalb ging das Bestreben der Mathematiker dahin, die Fiille der Erkenntnisse
unter vereinheitlichenden Prinzipien zu ordnen.

Eine solche Ordnung fiir die Geometrie wurde von dem deutschen Mathematiker
FeLix KLEIN (1849—1925) durch die Einfilhrung des Gruppenbegriffs in die
Geometrie erreicht. Seine grundlegenden Gedanken hierzu legte KLEIN im Jahre
1872 anldBlich seiner Berufung als Professor fiir Mathematik an die Universitit
in Erlangen in seiner Antrittsvorlesung dar, die unter dem Namen Erlanger
Programm bekannt geworden ist. Sie trigt den Titel ,,Vergleichende Betrach-
tungen iiber neuere geometrische Forschungen*. KLEIN erklirte, daB jedem Ge-
biet der Geometrie eine Transformationsgruppe zugeordnet werden kann (z. B.
der auf dem Kongruenzbegriff aufgebauten Geometrie die Gruppe der Bewe-
gungen) und daB die jeweilige Geometrie durch die Invarianten dieser Gruppe
vollstindig bestimmt wird, d. h. durch solche Eigenschaften, die durch die Trans-
formation nicht geéndert werden. Betrachtet man eine Untergruppe, so nimmt
die Anzahl der Invarianten zu, und die Geometrie dieser Transformationsgruppe
wird inhaltlich reicher. Geht man dagegen zu einer erweiterten Gruppe iiber, so
wird die Anzahl der Invarianten geringer, und die Geometrie wird allgemeiner,
jedoch inhaltlich d&rmer. Wie bereits angekiindigt, soll hier dieser zuletzt genannte
Weg, ausgehend von den Bewegungen als Transformationsgruppe und der zu-
gehorigen Kongruenzgeometrie, beschritten werden. Durch die Einfiihrung des
Gruppenbegriffs in die Geometrie wurde eine Synthese von Geometrie und Algebra
ermoglicht, und der Gruppenbegriff, dessen Anwendungsbereich sich bis dahin
auf Permutationsgruppen beschrinkt hatte, erfuhr auf diese Weise eine inhalt-
liche Bereicherung, indem nun Gruppen mit unendlich vielen Elementen in die
Betrachtungen einbezogen wurden.

Die Forderung, bei der Behandlung einer Geometrie neben den Invarianten
auch die Transformationen selbst bei der Gewinnung von Erkenntnissen zu be-
nutzen, sollte iiberall in der mathematischen Ausbildung erfiillt werden. Das in
ihr enthaltene wesentliche didaktische Anliegen ist in den Lehrplinen unserer
Schulen beriicksichtigt worden.

3.2.  Bewegungen

Vorbemerkung: In den Abschnitten 3.2. bis 3.6. treten keine iiberstumpfen
Winkel und keine nicht orientierten Elementarwinkel auf. Zur Abkiirzung der
Bezeichnungen wird daher festgelegt, daB mit <x(k, k) bzw. X ABC stets der
nicht iiberstumpfe Winkel mit den Schenkeln 2 und & bzw. mit den Schenkeln
BA* und BC* gemeint sein soll.
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Die Bewegungen sind in Kapitel 1 axiomatisch eingefiihrt worden, es wurden
dort die Verschiebungen, die Drehungen (einschlieBlich der Punktspiegelungen als
Spezialfall) sowie die Geradenspiegelungen synthetisch behandelt. Die Gruppen-
eigenschaft aller Bewegungen wurde axiomatisch gesichert, und auf wichtige
Untergruppen wurde eingegangen. In Kapitel 2 wurden schlieBlich die Abbil-
dungsgleichungen fiir diese Bewegungen aufgestellt.

Jetzt soll zunidchst untersucht werden, ob es auBer Verschiebung, Drehung
und Geradenspiegelung noch weitere Bewegungen gibt. Hierzu werden zwei
kongruente Dreiecke 4 BC und A’B’C" in beliebiger Lage zueinander betrachtet.
Dann gibt es nach der Definition der Kongruenz stets eine Bewegung ¢, durch die
das Dreieck A BC auf das Dreieck 4'B’C’ abgebildet wird, und es wird gefragt,
ob zur Bestimmung von ¢ die bisher bekannten Bewegungen ausreichen.

o

7‘\

¢

»

A
Abb. 3.1 Abb. 3.2

Zuniichst werde vorausgesetzt, daB die Dreiecke gleichsinnig kongruent sind.
Ist AB parallel zu A’ B’, so ist auch AC parallel zu A°C’ und BC parallel zu B'C’,
und ¢ ist eine Verschiebung, nimlich der Vektor v(44’) (Abb.3.1), oder
eine Punktspiegelung mit dem Schnittpunkt von g(4A4’) und g(BB’) als Zentrum
(Abb. 3.2). Ist dagegen AB nicht parallel zu A’B’, so sind auch AC und 4'C’
sowie BC und B’C’ nicht zueinander parallel. Schneiden sich die Mittelsenkrecht
der Strecken AA’ und BB’ in einem Punkt Z, so ist ¢ eine Drehung mit dem
Zentrum Z und der zugeordneten Grofe m(J AZA’) orientierter Elementarwinkel
(Abb. 3.3), da ¥ AZA’ und X BZB’ gleichsinnig kongruent sind, was aus der
Kongruenz der Dreiecke ABZ und A’'B'Z folgt. Wegen der vorausgesetzten
Kongruenz der Dreiecke ABC und A’B’C’ ordnen sich die Punkte C und C’
mit in die Betrachtungen ein, und die Mittelsenkrechte auf der Strecke CC’
verlduft ebenfalls durch Z. Es kann der Spezialfall eintreten, da genau zwei der
drei Mittelsenkrechten zusammenfallen (Abb. 3.4). Weitere Sonderfille gibt es
nicht, wie man sich leicht iiberlegt. Jede gleichsinnige Bewegung ist daher eine
Verschiebung oder Drehung.

Jetzt seien die beiden Dreiecke 4 BC und A’B’C’ ungleichsinnig kongruent
(Abb. 3.5). Dann wird zunichst das Dreieck ABC so verschoben, daB etwa B
auf B’ abgeliildet wird, und man erhilt das Dreieck A”’B’C"’. Dieses Dreieck
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wird an der Winkelhalbierenden w von & C"'B'C" gespiegelt und geht damit in
das Dreieck 4'B’C’ iber. Die gesuchte Bewegung ¢ setzt sich in diesem Fall
aus einer Verschiebung und einer Geradenspiegelung zusammen. Die Transfor-
mation ¢ kann auch noch auf eine andere Weise gewonnen werden: Durch den
Mittelpunkt der Strecke BB’ wird die Parallele zur Winkelhalbierenden w ge-

Abb. 3.6

zogen. Dann wird das Dreieck A BC an dieser Parallelen gespiegelt, und man
erhilt das Dreieck A*B*C*. Man priift leicht nach, daB das Dreieck 4*B*C*
durch die Verschiebung, die den Punkt B* in den Punkt B’ iiberfiihrt, auf das
Dreieck A’B’C’ abgebildet werden kann. Damit liegt eine Geradenspiegelung o
und eine Verschiebung 7 mit der Verschiebungsrichtung parallel zur Spiegelgeraden
(der Achse der Spiegelung) vor. Eine solche Transformation, die offenbar die
all inste ungleichsinnige Bewegung ist, heiBe Spiegelschiebung, Schubspi

gel?mg oder Gleitspiegelung. Es ist leicht einzusehen, daB es dabei auf die
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Reihenfolge der Transformationen ¢ und 7 nicht ankommt, also Kommutativitit
vorliegt. Die Bezeichnungen Spiegelschiebung bzw. Schubspiegelung sind daher
vollig gleichberechtigt.

Man erkennt sofort, daB die Schubspiegelung keinen Fixpunkt, jedoch eine
Fixgerade, namlich die Achse der Geradenspiegelung, besitzt.

Damit ist die eingangs gestellte Frage beantwortet: Zwei kongruente Dreiecke
mit gleichem Umlaufssinn lassen sich durch eine Drehung oder Verschiebung,
zwei Dreiecke mit ungleichem Umlaufssinn durch eine Schubspiegelung, die im
Spezialfall eine gewdhnliche Geradenspiegelung sein kann, aufeinander abbilden.

Die Abbildungsgleichungen fiir eine Schubspiegelung lassen sich lexcht aus den
Gleichungen fiir Geradenspiegelung und Verschiebung durch Zusa, 1 ge-
winnen, so daB hierauf nicht weiter eingegangen zu werden braucht.

Im folgenden soll gezeigt werden, dafl jede Bewegung das Produkt von zwei
oder drei Geradenspiegelungen ist.

Satz 1. Jede Verschiebung v lipt sich als Zusammensetzung von zwei Geraden-
spiegelungen darstellen, deren Achsen parallel sind und senkrecht zur Verschiebungs-
richtung verlaufen. Ihr Abstand betrigt die halbe Linge des Vektors t.

Zum Beweis dieses Satzes werde eine beliebige Verschiebung betrachtet, die
den Punkt A auf den Punkt A’ abbilden moge. Eine Geradenspiegelung o; wird
durch die Angabe ihrer Achse s, (Abb. 3.6) senkrecht zu g(4.4°) beliebig gewahlt.
In Abb. 3.6 sind drei mégliche Fille eingezeichnet. Es ist dann o,(4) = 4".

[«

S2

$1

Abb. 3.6

Die Achse s, der Spiegelung g, ist die Mittelsenkrechte auf der Strecke 4’4", so
daB o,(4") = A’ gilt. Man iiberlegt sich leicht, da8 dann der Abstand der beiden
Achsen [AA’|/2 betrigt.

Auch die Umkehrung dieses Satzes ist richtig, wie man leicht beweisen kann.
So erhédlt men durch die Zusammensetzung zweier Geradenspiegelungen mit
parallelen Achsen mit dem Abstand a stets eine Verschiebung, deren zugeordnete
Original- und Bildpunkte den Abstand 2a haben.
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Satz 2. Jede Drehung lipt sich als Zusammensetzung von zwei Geradenspiege-
lungen darstellen, deren Achsen sich im Zentrum Z der Drehung schneiden und Trager-
geraden der Schenkel eines orientierten Elementarwinkels der Grofe u[2 sind, wenn der
Drehung die Groe u orientierter Elementarwinkel zugeordnet tst.

Beweis. Die Drehung sei durch das Zentrum Z und durch « = m(< (b, k")) als
zugeordnete GréBe orientierter Elementarwinkel bestimmt (Abb. 3.7.). Die durch
den Strahl & bestimmte Gerade s, sei die Achse der ersten Geradenspiegelung ¢, die
Halbierende des orientierten Elementarwinkels X (k, k') die Achse s, der zweiten Ge-
radenspiegelung o,. Man priift leicht nach, da die Zusammensetzung von ¢, und g,
gerade die vorgegebene Drehung ergibt.

Abb. 3.7 Abb. 3.8

Auch hier gilt die Umkehrung des Satzes: Die Zusammensetzung zweier Geraden-
spiegelungen, deren Achsen ecinen orientierten Elementarwinkel der Grofie v ein-
schlieBen, ergibt eine Drehung, deren Zentrum der Schnittpunkt der Achsen ist
und deren zugeordnete GréBe orientierter Elementarwinkel 2v ist.

Da sich jede ungleichsinnige Bewegung aus einer Geradenspiegelung und einer
Verschiebung, die als Produkt von zwei weiteren Geradenspiegelungen dargestellt
werden kann, zusammensetzen 1aBt, kann zusammenfassend festgestellt werden:

Satz 3. Jede gleichsinnige Bewegung kann als das Produkt von zwei, jede un-
gleichsinnige Bewegung als das Produkt von drei Geradenspiegelungen dargestellt
werden.

Zum AbschluB dieses Abschnitts soll zur Anwendung des Satzes 2 der Satz
von Thales bewiesen werden.

Gegeben seien ein Halbkreis mit dem Durchmesser 4 B und dem Mittelpunkt M
und ein Punkt P auf seiner Peripherie. Es soll gezeigt werden, daB8 dann g(4 P)
senkrecht auf g(BP) steht (Abb. 3.8).

Die Lote s; und s, von M auf g(4 P) und g(BP) haben die FuBipunkte L, und
L,, die bekanntlich Mittelpunkte der Strecken AP und BP sind. o, und o, seien
die Geradenspiegelungen an s, und s,. Dann ist ¢,(4) = P und o,(P) = B. Die
Zusa tzung beider Spiegelungen ist nach der Umkehrung von Satz 2 eine
Drehung mit dem Zentrum M, deren zugeordnete GréBe orientierter Elementar-
winkelnach Voraussetzung die gestreckte WinkelgroBe ist. Nach Satz2und 1.1.3.2.2.
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stehen dann s, und s, aufeinander senkrecht. Das Viereck PL; ML, besitzt damit
drei rechte Winkel. Daher muB auch g(4P) senkrecht auf g(BP) stehen. Nach
demselben Prinzip kann man auch die Verallgemeinerung des Satzes von THALES,
den in 2.8.1. analytisch hergeleiteten Peripheriewinkelsatz, beweisen.

"Aufgaben

1. In einen gegebenen Kreis mit dem Durchmesser d ist eine Sehne von gegebener
Lange 8 einzuzeichnen, die zu einer gegebenen Geraden parallel verlauft (@ > s).

2. Uber den Seiten 4B und BC eines gegeb D ks A BC den nach auen
die Quadrate AA’B’B und BB"C’'C konstruiert. Es ist zu beweisen, dag8 die Ver-
langerung der Héhe k;, des Dreiecks ABC im Dreieck BB’B’ die Seite B’B’
halbiert.

3. Gegeben sind drei inander verschied parallele Geraden. Es ist ein gleich-
seitiges Dreieck so zu konstruieren, daB auf jeder der Geraden ein Eckpunkt des
Dreiecks liegt.

4. Gegeben sind ein Kreis K, ein Punkt P innerhalb K und eine WinkelgroBe a.
Es ist durch P diejenige Sehne zu konstruieren, die a als Peripheriewinkelgro8e
besitzt. Unter welcher Voraussetzung ist diese Aufgabe lbsbar?

6. Zwei Punktspnegelungen 0, und 0, mit sind
zusetzen. Was fur eine Bewegung entstaht? Ist die Z g | -
tativ ?

3.3.  Ahnlichkeitstransformationen

3.3.1.  Zentralstreckungen

Eine Zentralstreckung wird als eine Abbildung der Ebene auf sich definiert, die
folgendermafen durch die Angabe eines (Zentrum genannten) Punktes Z sowie einer
reellen Zahl ¢ == 0 bestimmt ist: Zu einem beliebig vorgegebenen Originalpunkt
P = Z findet man den Bildpunkt P’ auf Grund der Folgerungen P’ ¢ g(ZP) und

m(ZP’) =t -m(ZP) (nach Wahl einer Orientierung). (1)

Ist ¢t > 0, so liegt P’ auf dem Strahl ZP*; ist ¢t < 0, so liegt P’ auf dem
Strahl ZP-. Dem Punkt Z wird dabei als Bild wieder Z selbst zugeordnet, Z ist
daher Fixpunkt der Abbildung. Um zum Bild P’ des Punktes P zu kommen, hat
man also die Linge der gerichteten Originalstrecke ZP mit der reellen Zahl ¢ zu
multiplizieren, und man erhilt die Linge der gerichteten Bildstrecke ZP’. Der
Faktor ¢ wird daher auch Streckfaktor genannt. Die Gleichung (1) kann auch in
der Form

m(ZP’)

™EP) =TV(P,P;Z)=t (2)
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geschrieben werden und besagt dann, dafl der Bildpunkt P’ auf g(ZP) so zu
bestimmen ist, daB TV(P’, P; Z) gleich ¢ wird. Durch diese Abbildungsvorschrift
wird jedem Punkt der Ebene eindeutig umkehrbar ein Bildpunkt zugeordnet.
Statt des Streckfaktors ¢ kann ein Paar zugeordneter Punkte P und P’ vorgegeben
werden, wobei Z, P und P’ kollinear sein miissen. Aus der Gleichung (2) 148t sich
dann ¢ bestimmen.

Es sollen nun Eigenschaften der Zentralstreckung hergeleitet werden. Aus der
Definition folgt, daB alle Geraden durch das Zentrum auf sich selbst abgebildet
werden, also Fixgeraden sind, und daB Z fiir ¢t == 1 der einzige Fixpunkt ist.
Sind P und Q zwei Originalpunkte, die nicht mit Z kollinear sind, P’ und @’

Abb. 3.9

ihre Bilder, so sind ¢g(PQ) und g(P'Q’) zueinander parallel (Abb. 3.9). Der Beweis
ergibt sich aus den Gleichungen
m(ZP’) _ m(ZQ’)
m(ZP) m(ZQ)
unter Anwendung einer Umkehrung des Strahlensatzes.
Nimmt man auf g(PQ) einen weiteren Punkt R an, so gilt fiir dessen Bild R’
m(ZR’)_ __m(ZP)
m(ZR)  ~ m(ZP)’
und hieraus folgt auf Grund einer Umkehrung des Strahlensatzes, da R’ auf
g(P'Q’) liegt, und es gilt
_mZR) mP'R) m@R) m(PR)  m(P'R)
“mZE) ~ mPRE _ m@R ’ *° m@R - m@E)
und schlieBlich TV(P, Q; R) = TV(P’,Q’; R’).

Diese Gleichung gilt fiir jeden beliebigen Punkt R auf g(PQ) und den ent-
sprechenden Bildpunkt R’ auf g(P'Q’). Daher wird g(PQ) eindeutig umkehrbar
auf g(P'Q’) abgebildet, und das Teilverhiltnis von drei Punkten einer nicht durch
das Zentrum Z verlaufenden Geraden bleibt invariant.

Sind Z, P und P’ vorgegeben, so 1aBt sich jetzt zu @ das Bild @’ auf folgende
Weise konstruieren (Abb. 3.9): @’ ist der Schnittpunkt von g(Z@) mit der Parallelen

t
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zu g(PQ) durch P’. Liegt @ auf g(ZP), so hat man diese Konstruktion unter Ein-
schaltung der Hilfspunkte R und R’ zweimal anzuwenden (Abb. 3.10).

Es soll jetzt gezeigt werden, daB die oben hergeleiteten Eigenschaften fiir
Geraden, die nicht durch das Zentrum verlaufen, auch fiir Geraden durch Z

Abb. 3.10

gelten, d. h., daB auch in diesem Fall m(P'Q’)/m(PQ) = ¢ ist und daB das Teil-
verhéltnis von drei Originalpunkten einer Fixgeraden erhalten bleibt. Es seien
Z, P, Q kollinear. Dann gilt -

m(P'Q) =m(PZ)+ mZQ) =t - mPZ) +t-mZQ) =t - m(PQ),
also ist auch hier m(P'Q’')/m(PQ) = ¢t. Sind S und 8’ zwei weitere zugeordnete
Punkte auf g(PQ), so gilt fiir sie analog m(S'Q’)/m(SQ) = ¢, und aus beiden Glei-
chungen folgt

m(PQ)  m(P'Q)

miQ) m(SQ)
Die Invarianz des Teilverhéltnisses gilt demnach auch fiir Punktetripel auf Fix-
geraden der Zentralstreckung.

Die bisher gezeigten Eigenschaften der Zentralstreckung werden zusammen-
gefaBt im

bzw. TV(P, S;Q) = TV(P,8; Q).

Satz 1. Bei jeder Zentralstreckung werden Geraden durch das ZentrumZ auf
sich selbst abgebildet (Fixgeraden). Jede nicht durch Z verlaufende Gerade wird auf
eine zu ihr parallele Gerade abgebildet. Die Linge einer gerichteten Bildstrecke ist
das Produkt aus der Linge der gerichteten Originalstrecke und dem Streckfaktor.
Das Teilverhiltnis von drei kollinearen Punkten bleibt invariant.

Bildet man ein Dreieck 4 BC durch Zentralstreckung auf das Bilddreieck 4’B'C’
ab, so sind nach Satz 1 entsprechende Dreiecksseiten parallel, und es gelten daher
die Gleichungen

|[4B| _ |BC| _ lcA4|

4B~ 1BCT = 104’
d. h., die Verhiltnisse der Langen entsprechender Seiten sind gleich, auBerdem
sind entsprechende Winkel der Dreiecke kongruent, was aus den Sitzen iiber
Elementarwinkel an geschnitt Parallelen folgt.
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Zwei Dreiecke, die diese beiden Eigenschaften erfiillen, sollen zueinander &hnlich
heiBen. Es wird also definiert:

Definition 1. Zwei Dreiecke heiBen zueinander Ghnlich, wenn die Verhiltnisse
der Liangen entsprechender Seiten gleich und die entsprechenden Winkel kon-
gruent sind.

Die Definition 1 laBt sich sofort auf beliebige Polygone iibertragen. Durch
Zentralstreckung wird ein beliebiges Polygon auf ein zu ihm dhnliches abgebildet.
Man kann leicht zeigen, daB die so definierte Ahnlichkeit eine Aquivalenzrelation
ist.

Definition 2. Zwei déhnliche Polygone, von denen das eine durch eine Zentral-
streckung auf das andere abgebildet werden kann, heiBen in Ahnlichkeitslage.

Aus dieser Definition folgt, daB zwei &hnliche Polygone sich genau dann in Ahn-
lichkeitslage befinden, wenn die Verbindungsgeraden entsprechender Original- und
Bildpunkte durch einen Punkt, das Zentrum der Streckung, verlaufen.

Bei jeder Zentralstreckung bleibt infolge der Winkelkongruenz und der Ver-
haltnisgleichheit entsprechender Seiten die ,,Gestalt’ einer Figur erhalten, jedoch
nicht ihre GréBe. Daher ist es gerechtfertigt, Zentralstreckungen auch Aknlick-
keitstransformationen (oder dquiforme Transformati ) zu 1. Der Streck-
faktor ¢ ist eine von Null verschiedene reelle Zahl. JIst 1 < t < 00, 80 ist m(ZP’)
> m(ZP), es liegt dann eine VergroBerung vor. Fir¢ =1 erhilt man die_Iden:
Litdt. Gilb 0 < lt bszwl, so ist das Bild gegeniiber_dem. Qriginal verklginert. Fir

— 00 S — 1<t FO gilg das.Angloge, wobei zu beachten ist, daBl
Je nal noch eine Punktspiegelung am Zentrum t. Firt=_—1
liegt dann die Mﬁﬁéﬁ sergst, also eine spezielle Bewegung, vor. 'Mit
anderen Worten: Fiir ¢ > 0 ist Z duBerer Punkt der Strecke PP’, fiir ¢t < O da-
gegen innerer Punkt. In Abb. 3.11 ist bei vorgegebenem Z und ¢ = — 2 das
Dreieck A BC auf das Dreieck 4'B’C’ abgebildet worden.

Abb. 3.11
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Satz 2. Bei jeder Zentralstreckung ist der Umlaufssinn eines beliebigen Original-
dreiecks gleich dem Umlaufssinn seines Bilddreiecks.

Die Zentralstreckung ist demnach eine gleicksinnige Abbildung.

Der Beweis fiir Satz 2 kann unter Verwendung der Ergebnisse aus 1.1.2.2.
gefiihrt werden.

Im folgenden sollen nun die Abbildungsgleichungen der Zentralstreckung her-
geleitet werden. Ordnet man nach Festlegung eines Ursprungs den Punkten P,
P’ und Z die Ortsvektoren g, ' und 3 zu, so erhilt man nach den Gesetzen der
Vektorrechnung die folgende Gleichung (Abb. 3.12):

r—3=1tr—a @)

\;\,\\
. Abb. 3.12

)3
und hieraus

F=3tt— -
Das ist die Gleichung der Zentralstreckung in vektorieller Darstellung, die noch
auf die Gestalt

U=t +5 4)
mit 3 = (1 —¢) 3 gebracht werden kann. Ist das Zentrumwder Streckung der

Ursprung des Koordinatensystems, so erhilt man_z’ = tr. Legt man ein kar-
tesisches Koordinatensystem zugrunde und setzt man

=<2y, =<y> ud 8=<ef),
so erhilt man die Gleichungen
T=trte, y=ty+f. (5)
Die Gleichungen enthalten drei Parameter: ¢, e und f. Zwei davon werden fiir
die Wahl des Zentrums verbraucht, einer fiir den Streckfaktor. Sind die Glei-
chungen einer Zentralstreckung in der Gestalt (5) vorgegeben, so erhilt man die
Koordinaten (xr, yr) des Zentrums, das Fixpunkt ist, indem man in (5) z = =’
=xp und y =y’ = yp setzt und die Gleichungen nach zp bzw. yr auflost. Es
ergibt sich
e f
i TR L pr S
Dabei ist ¢t 4= 1 vorauszusetzen. ¢ = 1 fiihrt fiir den Fall e = f = 0 auf die Iden-
titit, sonst auf eine Verschiebung.
Durch Zentralstreckung soll nun unter Verwendung der Gleichung (4) ein Kreis
abgebildet werden. Er habe die Gleichung (r — a)2 = r2. Setzt man in seine
Gleichung die nach g aufgeloste Gleichung (4) der Streckung ein, so erhilt man
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(' —8 — ta)? = t*%, und das ist wieder die Gleichung eines Kreises mit dem

Mittelpunkt m’ = 8 + ta und dem Radius ' = [¢| - r
Man hat so den

Satz 3. Durch Zentralstreckung wird ein Kreis k wieder auf einen Kreis k' abge-
bildet. Das Bild des Mittelpunkts des Originalkreises ist der Mittelpunkt des Bild-
kreises. Die Radiuslinge des Bildkreises ist gleich der mit dem Betrag des Streck-
faktors multiplizierten Radiuslinge des Originalkreises.

Konstruktiv wird k durch Zentralstreckung in k' iibergefiihrt, indem man

den Mittelpunkt M und einen Punkt P auf der Peripherie von k abbildet.
Durch M’ und P’ ist dann der Bildkreis ¥’ eindeutig bestimmt (Abb. 3.13).

Abb. 3.13

Abb. 3.14

Durch einfache Uberlegungen erkennt man, daf die Tangenten von Z an & den
Kreis k' in den entsprechenden Bildpunkten beriihren, wihrend die Sekanten
von Z zum Kreis k den Kreis ¥’ in den entsprechenden Bildpunkten schneiden.

Zu zwei Kreisen in allgemeiner Lage kann man stets zwei Streckzentren finden.
Man erhilt sie durch die in Abb. 3.14 angedeutete Konstruktion. Durch diese
Zentren verlaufen dann die gemeinsamen Tangenten beider Kreise, sofern sie
existieren. Liegen die Kreise konzentrisch oder haben sie gleiche Radien, so
existiert nur ein Streckzentrum.

Die Zentralstreckung kann man zur Lésung von Konstruktionsaufgaben verwenden.

Als Beispiel werde hier ein Sonderfall des Beriihrungproblems des APOLLONIUS ange-
fihrt: Es sind Kreise zu konstruieren, die zwei gegebene Geraden g, und g, berithren
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und durch einen gegebenen Punkt P verlaufen. Schneiden sich g; und g, in Z, so
dient Z als Zentrum einer Zentralstreckung. Es wird zunachst ein Kreis k& gezeichnet,
der g, und g; beriihrt (Abb. 3.15). Die Gerade durch P und Z schneide den Kreis k
in den Punkten @, und Q,. Einer der gesuchten Kreise ergibt sich, wenn man den
Kreis k der durch Z und durch die Zuordnung @ > P besti Zentral kung
unterwirft, der zweite, wenn man anstelle von @, den Punkt @, verwendet.

Sind g, und g, parallel, so tritt an die Stelle der Zentralstreckung eine Verschiebung.
Die Aufgabe ist in diesem Fall nicht mehr fiir jede Lage von P lésbar.

ad 9

Abb. 3.15

Im folgenden sollen die Zentralstreckungen nach gruppentheoretischen Aspekten
untersucht werden.

Es seien zwei Zentralstreckungen ; und {, mit demselben Zentrum Z und den
Streckfaktoren ¢, und ¢, gegeben. Ihre Gleichungen lauten nach (3)

r=3+u—p uwd =3+6¢—3-
Die Zusammensetzung ergibt '

T =3+ thixr —3)-
Das ist im Allgemeinfall wieder eine Zentralstreckung mit dem Zentrum Z, im
Sonderfall t,t, = 1 die Identitdt. Man erkennt, daB wegen t,¢, = t,¢, die Hinterein-
anderausfithrung kommutativ ist.
Es gilt

Satz 4. Die Menge der Zentralstreckungen einer Ebene mit gemeinsamem Zen-
trum bildet eine kommutative Gruppe.

Da das Assoziativgesetz (wie stets beim Zusammensetzen von Abbildungen) gilt
und da die identische Abbildung der genannten Menge angehért, bleibt zum Beweis
des Satzes noch zu zeigen, daB zu jeder Zentralstreckung mit dem Zentrum Z die in-
verse Abbildung existiert und wieder eine Zentralstreckung ist, was unter der ge-
troffenen Voraussetzung ¢ 4 O stets gewihrleistet ist:

1
Aus ' =3 +tx—3) folgt =3+, 9.

Es sollen nun zwei Zentralstreckungen ¢, und {, mit verschiedenen Zentren Z,
und Z, und beliebigen Streckfaktoren zusammengesetzt werden. Ihre Gleichungen
lauten

U=%u+h—3%) und U=1t+ b —3)-
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Fiihrt man erst ;, dann {, aus, so erhélt man

T =th(t — &) + e + bld — 3) -
Das stellt fiir ¢, = 1 wieder eine Zentralstreckung, fiir 4,t; = 1 eine Verschiebung
dar. Man erkennt, daB# die Zusammensetzung nicht kommutativ ist, daB also
im allgemeinen {, o £; & £, o {, gilt. Nimmt man zu den Zentralstreckungen noch die
Verschiebungen hinzu und beriicksichtigt man, daB die Zusammensetzung von
Zentralstreckung und Verschiebung wieder eine Zentralstreckung ergibt, so kann
man folgenden Satz aussprechen:

Satz 5. Die Menge der Zentralstreckungen und Verschiebungen einer Ebene
bildet eine (nichtkommutative) Gruppe.
Der Beweis bleibe dem Leser als Aufgabe iiberlassen.

3.3.2.  Allgemeine Ahnlichkeitstransformationen

In der Definition 1 wurde als-Bedingung fiir die Ahnlichkeit von Dreiecken die
Kongruenz entsprechender Winkel und die Gleichheit entsprechender Seiten-
verhiltnisse gefordert. Analog den vier Kongruenzsitzen fiir Dreiecke gibt es
vier Ahnlichkeitssitze, die besagen, daB man zur Feststellung der Ahnlichkeit
zweier Dreiecke nicht alle Forderungen der Definition 1 zu iiberpriifen braucht.

Satz 6 sAhnlichkeitssatz ww, Hauptahnlichkeitssatz), Gelten fiir zwei Dreiecke
ABC und A’'B'C" die Kongruenzen {BAC =~ < B'A'C’ und XABC =~ <A'B'C’",
80 sind die beiden Dreiecke dhnlich.

Satz 7 (Ahnlichkeitssatz sss). Gelten fiir zwei Dreiecke ABC und A'B'C’ die
Gleichungen

|AB| _ |BC| _ |c4|
IA,Bfl - IB,C,I - IC,A,I 4
so sind die Dreiecke dhnlich.
g§nt.z 8 (Ahnlichkeitssatz sws). Gilt fiir zwei Dreiecke ABC und A'B'C’ die

Bleichung
|4B|  lac|
[A'B] ~ 40
und ist LBAC =~ X B'A'C’, so sind die beiden Dreiecke ihnlich.
Satz 9 (Ahnlichkeitssatz dsw). Gilt fiir zwei Dreiecke ABC und A'B'C’ die
Gleickhung
|AB| 14C|
Zr
ist |AB| < |AC| und <X ABC = XA'B'C’, so sind die beiden Dreiecke dhnlich.
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Es werde hier lediglich der Hauptéhnlichkeitssatz bewiesen, die Beweise der
iibrigen drei Ahnlichkeitssitze werden dem Leser iiberlassen.

Zum Beweis des Satzes 6 gemidf Definition 1 ist zu zeigen, dall ¢ ACB =~
< 4’C’ B’ ist und daB die Verhiltnisse entsprechender Seiten gleich sind. Die Kon-
gruenz der genannten Winkel folgt aus dem Winkelsummensatz fiir Dreiecke.
Nun wird das Dreieck 4’ B’C” durch eine Bewegung ¢ so abgebildet, daB ¢(4’) = 4,
¢(B’) = B*¢ AB* und ¢(C’) = C* ¢ AC* ist. Dann ist das Dreieck A’B’'C’ dem
Dreieck A B*C* kongruent, und aus der Kongruenz der entsprechenden Winkel
folgt nach der Umkehrung des Satzes iiber Elementarwinkel an geschnittenen
Parallelen, da g(BC) parallel zu g(B*C*) ist. Damit kann der Strahlensatz
angewendet werden, und es folgt die Gleichheit der entsprechenden Seitenverhilt-
nisse.

Mit Hilfe der Ahnlichkeitssitze kénnen weitere bekannte Sitze, die zum Be-
stand des Schulstoffs gehoren, bewiesen werden, auf deren Herleitung aber ver-
zichtet werden soll, z. B. Sitze iiber Héhen, Seiten- und Winkelhalbierende im
Dreieck, Sitze iiber Sekanten und Tangenten an einen Kreis.

Die bisher behandelten Zentralstreckungen erwiesen sich als Transformationen,
bei denen Original- und Bilddreiecke zueinander éhnlich sind. Solche Transforma-
tionen werden Ahnlichkeitstransformationen genannt. Zwei dhnliche Dreiecke in be-
liebiger Lage zueinander kénnen im sllgemeinen nicht durch eine Zentralstreckun
aufeinander abgebildet werden. Es sollen daher in diesem Abschnitt weitere E;E
lichkeitstranstformationen gesucht werden, durch die zwei zueinander &hnliche
Dreiecke in beliebiger Lage aufeinander abgebildet werden. Dabei gibt ‘es zwei
Fille: Die beiden Dreiecke koénnen gleichen oder verschiedenen Umlaufssinn haben,
und es ist zweckmiBig, beide Falle getrennt zu behandeln.

Zunichst werde der Fall betrachtet, daBl beide Dreiecke. den gleichen Umlaufs-
sinn_haben (Abb. 3.16). Dann werden auf 4’B’* ein Punkt B* und auf_4'C"+
ein_Punkt C* so gewidhlt, daB die Dreiecke 4 BC und 4’B*C* kongruent sind.
Es gibt eine Drehung, die das Dreieck 4 BC auf das Dreieck 4" B*C* gbbildet,
(Eine Verschiebung ist hier auszuschlieBen, da in diesem Fall wegen der Parallelitit
der Dreiecksseiten die Dreiecke durch Zentralstreckung aufeinander abgebildet
werden konnen.) Die Dreiecke A’B*C* und A’B’'C’ sind jetzt in Ahnlichkeits-
lage, Dreieck A'B*C* kann daher durch eine Zentralstreckung mit dem Zen-
trum 4’ und dem Streckfaktor ¢ = m(4’'C’)/m(4’'C¥auf das Dreieck A’B’C’ abge-

Abb. 3.16
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bildet werden. Die ZusammensBtzung beider T'ransformationen liefert dann die
g hte Ahnlichkeitstransformation. Sie wird in diesem Fall auch_Drehstreckung

genannt, und es handelt sich um eine_gleichsinnige Ahnlichkeitstmnsformation,

wie man leicht nachpriift. Ihre Gleichung erhilt man durch Zusammensetzung
E)er Gleichungen von Drehung und Zentralstreckung, die jetzt entsprechend der

arstellung in 2.7.2. unter Verwendung von Spaltenvektoren und Matrizen wie
ffolgt geschrieben werden sollen:
cosa  —sinoa

x = Ax + 8, mit A= ( ) (Drehung)

sin & cos &
und
X =1t + 8, (Zentralstreckung).

Es ergibt sich
x'=tAx + s mit s=1s, +8,.

Die Koeffizient trix der gleichsinnigen Ahnlichkeitstransformation hat dann
die Gestalt

(t cosa  —t sina) _( a b)
¢ sin o tcosa, —b af’
die Transforma#f®nsdeterminarfte ist
{_Z zj= a4+ b > P
Fiir die Koordinaten z’ und y’ eines Bildpunktes gelten also die Gleichungen
v =azx+by+e,
Ty =—brtay+/.

In ihnen sind die gleichsinnigen Bewegungen und die Zentralstreckungen als
Spezialfille enthalten (Drebung: @ = cosx, b = — sina, o & 0; Verschiebung:
a=1,b=0; Zentralstreckung: a £ 0,1, b = 0).

(6

Abb. 3.17

Es werde nun der Fall betrachtet, daB beide Dreiecke 4 BC und A4’B'C’ ver-
schiedenen Umlaufssinn haben (Abb. 3.17). Er wird aul den orsten Fall zurack-

gefiihrt, indem zunachst_das Dreieck ABC an g(4.B) gespiegelt und dann die
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Drehstreckung des ersten Falles angewendet wird. Man hat also hier drei Trans-
formafionen zusammenzusetzen, eine Spiegelung, eine Drehung und eine Zentral-

streckung.
Die so zusammengesetzte Transformation ist, wie man sich leicht iiberlegt,

eine ungleichsinnige Ahnlichkeitstransformation. Zur analytischen Behandlung
wihlt man g(4 B) als z-Achse eines kartesischen Koordinatensystems, so da8 die
Spiegelung durch die Gleichungen

r* =z,

y*=—y
beschrieben wird. Setzt man diese Spiegblung mit der Drehstreckung (6) zu-
sammen, so erhilt man

¥ =axr —by +e, }

Yy =—br—ay+f
mit der Transformationsdeterminante —a? — b2 <C 0. In diesem Fall ist es aber
denkbar, daB die in (6) enthaltene Drehung zu einer Verschiebung entartet, daB
also « = 0 wird. Setzt man in'den Gleichungen (7) —b = b’ und schreibt fiir b’
schlieBlich wieder b, so erhélt man die Gleichungen

' =ax + by +e,

y=br—ay+/.
In ihnen sind die ungleichsinnigen Bewegungen mit enthalten. So erhilt man

fir e = 1 und b = 0 die Glelchungen emer Spiegelung, wenn ¢ = f = 0 ist, oder
einer Spiegelschiebun

Umgekehrt kann man zeigen, daB_jedes Paar von Abbildungsgleichungen der
Gestalt (6) oder (8) sich in eine Bewegung und eine Zentralstreckung aufspalten
1aBt.

Die Gleichungen (6) und (8) enthalten_jeweils vier Parameter: @, b, e und f.
Man errechnet, daB jeweils eine Transformation (6) bzw. (8) eindeutig bestimmt ist,
wenn man zwei geordnete Punktepaare (4, 4’) und (B, B’) mit 4 £ B vorgibt
und dabei festlegt, daB 4 und B Originalpunkte, 4’ und B’ die zugehdrigen
Bildpunkte sein sollen. Eine solche Zuordnung von Original- und Bildpunkten

werde hier und im folgenden durch Pfeile veranschaulicht, wobei die_Pfeilspitze

stets dem Bildpunkt zugeordnet wird. Fir diese Pfeile wird gelegentlich der
Bogri{L AV salell - zervwendet
Da eine Ahnlichkeitstransformation sich aus einer Bewegung und einer Zentral-

streckung zusammensetzt, besitzt sie alle Eigenschaften, die sowohl fiir die Be-
wegung als auch fiir die Zentralstreckung zutreffen: Geradentreue, Winkeltreue,
Invarianz des Teilverhiltnisses von drei kollinearen Punkfen. Original- und Bild-
gerade sind im allgemeingn picht zueinander parallel. Die Eigenschaft der Paral-
lelitét von Original- und Bildgerade besitzt zwar die Zentralstreckung, aber nicht

(M

8)
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jede Bewegung, so daB sie nicht allgemein fir die Ahnlichkeitstransformationen
gilt.

Fiir die folgenden Betrachtungen werde vorausgesetzt, daB g(4B) nicht mit
g(4'B’) zusammenfillt. Zum Originalpunkt C, der zunichst nicht auf g(4B)
liegen soll, erhilt man den Bildpunkt C* der gle)chsmmgen Ahnlichkeitstransfor-

mation als dritten Eckpunkt eines Dreiecks A’B’C’, das man als gleichsinnig
dhnliches zum Dreieck ABC mit A’B’ als Grund].inie konstruiert (Abb. 3.18).
Fillt C mit C’ zusammen, so ist C = C’ Fixpunkt der Abbildung. Spiegelt man
T an glA’B), so erhalt man C” als Bild von C in der durch (4, 4°) und (B, B’)
bestimmten ungleichsinnigen Ahnlichkeitstransformation. Liegt Caufg(4B) =g,
so mull C" aul ﬂA’F ) = g’ Tiegen, und wegen der Invarianz der Teilverhiltnis:

gilt TV(4, B; C) = TV(4’, B’; C"). €’ muB daher so konstruiert werden, da

T
Abb. 3.18 Abb. 3.18

diese Gleichung erfiillt ist. Ist g parallel zu g’, so liegt ein linearer Ausschnitt
aus einer Zentralstreckung oder Verschiebung vor, und die Konstruktion bedarf
keiner weiteren Erléuterung. Sind dagegen g und g’ nicht zueinander parallel, so
wird wie folgt konstruiert:

Durch C wird eine Parallele zu g(44’) gezogen, die g(4’B) im Punkt H schneide.
Die Parallele zu g(BB’) durch_H schneidet dann g(4’B’) im Punkt ” (Abb. 3.19).
Die Richtigkeit der Konstruktion folgt nach zweimaliger Anwendung des Strahlen-
satzes aus

TV(4, B; C) = TV(4’, B; H) TV(4’, B'; CY).

Auf dlese We:se ka.nn man zu ]edem Ongmalg nkt auf g seinen Blldounkt auf
g’ eindeutig bestimmen.
Tst ggzz ) E&ra.]lel zu g(BB), so wu-d die Konstruktion besonders einfach, da

sich hie AA") durch C ergibt.
Der Schnittpunkt von g und g’ ist in diesem Fall Fixpunkt.

Es soll noch eine zweite Konstruktion zur Gewinnung von Bildpunkten auf g’
angegeben werden, und dazu ist es zweckmiBig, den Begriff Streifen zu benutzen.
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Definition 3. Sind zwei Halbebenen X, und H, mit den parallelen Begren-
zungsgeraden k, und %, gegeben und ist %, € H, und A, ¢ H;, so nennt man den
Durchschnitt beider Halbebenen einen Streifen, h, und ky die Begrenzungsgeraden
des Streifens.

Y\ Mg\ W  \J Abb. 3.20

Die Originalgerade $und die Bildgerade g’ werden durch verschiebungsgleiche
Streifen mit den Begrenzungsgeraden %, und k; (i = 1, 2, ...) geschnitten. k schneide
gin 4;und ¢’ in A¥, k] schneide g’ in A; (Anordnung der Punkte gemd8 Abb. 3.20).
Um 4; und 4} als zugeordnete Punkte einer Ahnlichkeitstransformation nach
weisen, ist

TV(4y A 4) =TV(A4,, 45;4)  fir  pgreN
zu zeigen. Wegen der Parallelitat der Begrenzungsgeraden ist zunichst
TV(4,, 4, 4,) = TV(45, 475 A}) ,

und wegen der Verschiebungsgleichheit der Streifen gilt
E(A*EAE') = m(AM)) = m(4*4)).
Die Punkte A%, A}, A} konnen daher durch eine Verschiebung auf die Punkte

A,',, A4, Ii, abges;'jdet werden, und dabei ist
TVAR AZ AN = TV(A, A 4D,
so daB schlieBlich
TV(dy, 4; 4,) = TV(4,, 4g; 4))
gilt. Die Begrenzungsgeraden jedes Streifens der Schar schneiden also aus Ori-
ginal- und Bildgeraden jeweils ein zugeordnetes Punktepaar aus.

Ist umgekehrt eine Ahnlichkeitstransformation durch die beiden geordneten
Punktepaare (4, A’) und (B, B’) gegeben, so kann man, falls g(44’) nicht parallel
zu g(BB') ist, stets genau eine Schar verschiebungsgleicher Streifen finden, die auf
der Originalgeraden g = g(4 B) und der Bildgeraden g’ = g(4’B’) weitere zugeord-
nete Punktepaare erzeugt. Man verschiebt den durch 4 und A4’ bestimmten Abbilj

dungspfeil so, dal 4 in B iibergeht (Abb. 3.21). Der Punkt A’ wird dabei au
einen Punkt A" abgebildet, und durch g(B’A’’) ist eine Begrenzungsgerads
des erzeugenden Streifens bestimmt. Die zugehérige zweite Begrenzungsgerade
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ist die Parallele zu g(B’A") durch B. Verschiebt man diesen Streifen, so erhilt
man auf die oben beschriebene Weise jeweils einander zugeordnete Punktepaare

der beiden Geraden g und g’. Die Konstruktion ist eindeutig und erfaBt die

beiden vorgegebenen Punktepaare (4, A°) und (B, B’).

Abb. 3.21 AbY. 3.22

Auf die méglichen Spezialfille (g paral

zu g’ oder g(4A’) parallel zu g(BB")),
fiir die die Konstruktion besonders ej

ach wird, werde hier nur hingewiesen.

Die Konstruktion mit Hilfe dgs” erzeugenden Streifens findet Anwendung,
wenn man zu zwei durch (4, und (B, B’) aufeinander bezogenen Geraden
g = g(4B) und ¢’ = g(4' B') Ainen Abbildungspfeil von vorgegebener Richtung
7w hestimmen hat (Abb, 3.22), wobei jetzt von den oben erwihnten Spezialfallen
abgesehen wird. Der durch (B D"y mit D" eg(B'A”) festgelegte Pfeil habe
die vorgegebene Richtung. Er kann so verschoben werden, da8 er sich in die Ab-
bildung von g auf g’ einordnet: Die Parallele zu g(4.B) durch D schneidet die
Gerade g’ in D', die Parallele zu g(BD") durch D’ schneidet die Gerade g in D.
Drurch die Punkte D und D’ ist damit der Abbildungspfeil der gewiinschten Rich-
tung zu den beiden vorgegebenen Geraden g und g’ bestimmt. Diese Aufgabe hat
nur in genau einem Fall keine Losung, niamlich dann, wenn die vorgegebene
Richtung die gleiche wie die der Begrenzungsgeraden des emugenden Streifens ist.

Im folgenden sollen die gleichsinnigen und ungleichsi Ahnlichkeit
transformationen auf Fixpunkte untersucht werden, und zwar zunéchst durch
analytische Betrachtungen. Zuerst werden gleichsinnige Ahnlichkeitstransfor-
mationen behandelt.

Zur Fixpunktbestimmung setzt man in den Gleichungen (6) # = 2’ = z» und

¥y =¥’ = yr, und man erhilt das folgende lineare Gleichungssystem fiir xr und yr:
b—1ar+ byr = —e,
—brp+(@—Dyr=—1.

Die Koeffizientendeterminante ist {a — 1> + b%, Fiir a &= 1 oder b = 0 ist sie
stets groBer als Null, mithin existiert in diesem Fall stets genau eine Losung des

Gleichungssystems und somit genau ein Fixpunkt. Der Fall a =1 und b =0
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fiithrt auf die Verschiebung und kann daher hier ausgeschlossen werden. Jede
von einer Verschiebung verschiedene gleichsinnige Ahnlichkeitstransformation be-
sitzt daher genau einen Fixpunkt.

Zur Untersuchung der Fixpunkte einer ungleichsinnigen Ahnlichkeitstrans-
formation erhilt man aus den Gleichungen (8) das lineare Gleichungssystem

@—Dap+byp=—e
bxp —(@a+ Dyp=—1f
Die Koeffizientendeterminante ist hier —a? — %% 4+ 1, Ist sie von Null ver-

schieden, so gibt es genau eine Lésung des linearen Gleichungssystems und mithin
genau einen Fixpunkt, Ist dagegen a? 4 b% =1, so liegt eine_ungleichsinnige
Bewegung vor, die entweder als Spiegelung eine Il nynkﬁggude oder alg Spiegel-
scEIebung keinen Fixpupkt besitzt. Auf einen Beweis hierzu werde verzichtet.

Zusammenfassend kann man daher sagen:

Satz 10. Jede Ahnlichkeitstransformation, die nicht Bewegung ist, besitzt genau
“einen Fizpunkt.

Im folgenden soll gezeigt werden, wie die Fixpunkte von Ahnlichkeitstransfor-
mationen konstruktiv bestimmt werden konnen. Dabei wird in jedem Fall genau
ein Fixpunkt vorausgesetzt, die (bereits frither behandelten) Bewegungen sollen
ausgeschlossen sein.

Gegeben sei eine gleichsinnige Ahnlichkeitstransformation durch die beiden
geordneten Punkte_Paa.re (A, A’) und (B, B’) (Abb. 3.23), wobei g(4A4’) nicht

Abb. 3.23

parallel zu g(BB’) und g(4B) nicht parallel zu g(4’B’) voraus, W Der

chnittpunkt von g(4B) und g(4’'B’) sei S. (Im Fall der Parallelitit von g(44’)
und g(BB’) ist S bereits der Fixpunkt sowohl der gleichsinnigen als auch der
ungleichsinnigen Ahnlichkeitstransfor: on.) Dann schneiden sich die Umkreise
der Dreiecke SAA’ und SBB’ gufler in 8 poch in einem weiteren Punkt, dem
gesuchten Fixpunkt F der gleichsinnigen Ahnlichkeitstransformation. Zum Be-
weis der Richtigkeit der Konstruktion hat man zu zeigen, daB F auf sich selbst

-




118 3. Abbildungen als Ordnungsprinzip in der Geometrie

abgebildet wird. Das ist sicher dann der Fall, wenn in Analogie zur Abb. 3.18
das Dreieck ABF als Originaldreieck dem Dreieck A’B'F als Bilddreieck éhnlich
ist.

Der Beweis hierfiir werde fiir die in Abb. 3.23 gezeigte Anordnung der Punkte-
paare (4, A’) und (B, B’) beziiglich S gefiihrt. Fiir andere mégliche Anordnungen
ist der Beweis geringfiigig abzuéndern.

Es ist <SBF =~ 4SB'F als Peripheriewinkel iiber dem gleichen Bogen. Aus
dem gleichen Grund gilt <SAF =~ <SA'F. Aus der Kongruenz dieser beiden
Winkel folgt die Kongruenz ihrer Nebenwinkel, so daB SXFAB = JFA'B gilt.
Damit stimmen die Dreiecke in zwei WinkelgroBen iiberein, sie sind nach dem
Hauptihnlichkeitssatz ghnlich, und auBierdem haben sie den gleichen Umlaufs-
sinn. F ist daher tatsichlich der gesuchte Fixpunkt. Sind g(4B) und g(4’'B’)
zueinander parallel, so erhdlt man den Fixpunkt F als Schnittpunkt von g(44’)
mit g(BB’). Es liegt dann der Spezialfall der Zentralstreckung vor.

e 7 5 Abb. 3.24

Jetzt soll eine analoge Komstruktion fiir die upngleichsinnige Ahnlichkeite. .
transformation angegeben werden (Abb. 3.24).

In der gegebenen Zuordnung von zwei Geraden g = g(4.B) und g’ = g(A'R’)
durch die geordneten Punktepaare (4, 4') und (B, B’) werden diejenigen' beiden
Abbildungspfeile mit Hilfe des erzeugenden Streifens konstruiert, von denen der
eine auf g, der andere auf g’ senkrecht steht. In Abb. 3.24 stehen CC’ auf g und
DD’ auf g’ senkrecht. Den Fixpunkt F erhilt man dann als Schnittpunkt von
g(CD" und g(PC"). Zum Beweis fiir die Richtigkeit der Konstruktion hat man
nach Uberlegungen analog denen fiir die gleichsinnige Ahnlichkeitstransformation
zu zeigen, daB die Dreiecke CDF und C"D’F ungleichsinnig ghnlich sind. Ent-

sprechend Abb. 3.24 gilt SCFD =~ X C'FD’ nach dem Scheitelwinkelsatz. Nach
Konstruktion ist das Viereck CDD’C’ ein Sehnenviereck. Daher sind die Winkel

JCDF und <C'D'F als Peripheriewinkel iiber demselben Bogen kongryent.
‘Die Dreiecke, deren Umlaufssinn verschieden ist, stimmen demnach jn zwei

WinkelgroBen iiberein, sind also ihnlich, und F ist der gesuchte Fixpunkt. (Fiir
andere mogliche Lagen der Punktepaare (4, 4’) und (B, B’) ist der Beweis un-
wesentlich abzuéndern.) Die Konstruktion versagt, wenn die Begrenzungsgeraden

des zu b den erzeugenden Streifens entweder auf g oder auf g’ senkrecht
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stehen. Dann hat man ein anderes geeignetes Sehnenviereck CDD’'C’ zu konstru-
ieren. Das gilt auch fiir den Fall, wenn g und g’ parallel sind (Abb. 3.25). Man
konstruiert dann so, daB etwa ein gleichschenkliges Trapez, also ebenfalls ein
Sehnenviereck, entsteht (CBB‘C’ in der Abb. 3.25), und verfihrt dann weiter
analog. Fallen g und g’ zusammen (Abb. 3.26), so erhilt man den Fixpunkt F
durch eine Konstruktion, die auf Abb. 3.10 zuriickgreift: Die Punkte H und H’
werden so gewihlt, da das Dreieck A BH dem Dreieck 4’B’H’ dhnlich ist. Dann
schneidet g(HH') die gemeinsame Triigergerade g = g’ im gesuchten Fixpunkt F.

g 8/ Ja a
8 4 j 3
Abb. 3.25 Abb. 3.26

Nachdem die Fixpunkte analytisch und synthetisch bestimmt worden sind,
soll noch nach Fizgeraden gefragt werden, nach solchen Geraden also, die bei der
Transformation auf sich abgebildet werden, ohne daB sie punktweise fest bleiben
miissen. Die Betrachtungen beschrinken sich wiederum auf solche Ahnlichkeits-
transformationen, die nicht Bewegungen sind, die also genau einen Fixpunkt F
besitzen. Es wird zunichst gezeigt, daB jede Fixgerade durch diesen Fixpunkt
verlaufen muB, Der Bewgis wird indirekt gefiihrt. Angenommen, es giibe eine
Fixgerade, die nicht durch F verlduft; dann darf es auf ihr keinen weiteren Fix-
punkt geben, da F der einzige Fixpunkt sein soll. Die Abbildungspfeile auf ihr
miissen demnach alle die gleiche Lange und den gleichen Richtungssinn haben,
da sonst entsprechend Abb.3.26 cin Fixpunkt konstruiert werden kann. In
Abb. 3.27 sind zwei solche Abbildungspfeile, 4.4’ und BB, eingezeichnet. Dann
muf das Dreieck FAB als Originaldreieck dem Bilddreieck FA’B’ dhnlich sein,

Abb. 3.27
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und es muB XFBA =~ JFB'A’ gelten. Nach dem AuBenwinkelsatz, angewendet
auf das Dreieck FB'B, gilt jedoch <FBA > X FB'A’, womit ein_Widerspruch
ereits gezeigt ist. Alle moglicherweise auftretenden Fixgeraden miissen also
Furch den Fixpunkt F verlaufen. Die Bestimmung der Fixgeraden erfolgt ana-
ytisch. Zur Vereinfachung wird F als Nullpunkt (Ursprung) eines kartesischen
Koordinatensystems gewihlt. Dann erhilt man als Abbildungsgleichungen fiir die
gleichsinnige Ahnlichkeitstransformation

2 =azx + by,
y = —bz+ay

mit b % 0, da sonst eine Zentralstreckung vorliegt, von der bereits bekannt ist,
daB fiir @ 5= 1 genau alle Geraden durch ihr Zentrum Fizxgeraden sind. Jetzt wird
ein beliebiger Punkt P <= F mit den Koordinaten (p, g) abgebildet. Sein Bild-
punkt P” hat die Koordinaten (ap + bg, —bp 4 aq). Es werde angenommen, da8

P und P aul einer Fixgeraden liegen. Dann miissen die Punkte F', P und P’
kollinear sein, d. h., es muB nach 2.4., Satz 6,

0 0 1

P q 1/=0

ap + bq —bp+ag 1
gelten. Hieraus folgt p? + ¢ = 0. Dieser Gleichung miissen die Koordinaten p
und ¢ geniigen, wenn eine Fixgerade vorliegen soll. Sie ist nur fir p =¢ =10

erfiillt; da aber P 4= F vc gesetzt war, liegt ein Widerspruch vor. Es kann
daher bei gleichsinnigen Ahnlichkeitstransformationen keine Fixgerade mit b = 0
geben. -

Jetzt werden shnliche Uberlegungen fiir die ungleichsinnigen Ahnlichkeits-
transformationen

7' =azx + by,
y =br —ay
angestellt. Sie fithren auf die Gleichung
0 0 1
P q 1/=0,

ap+bg bp—ag 1
und hijeraus folgt
bg® + 2apq — bp? = 0.
Man erhilt fiir b 5= 0

—a ta* + 8
g=——"73,—""°?
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und hieraus die Gleichungen von zwei Fixgeraden

— 2 bZ —a — 'a? b2
eV, o
die in diesem Fall stets reell sind. Man iiberzeugt sich leicht, daBl es sich tat-
sichlich um Fixgeraden handelt, wenn man diese beiden Geraden durch die un-
gleichsinnige Ahnlichkeitstransformation abbildet. Wie man nach kurzer Rech-
nung schnell erkennt, stehen beide Fixgeraden aufeinander senkrecht. Ist b = 0,

80 erhiilt man als Fixgeraden die beiden Koordinatenachsen,

Als Zusammenfassung érgibt sich

Satz 11, Jede gleichsinnige Ahnlichkeitstransformation mit genaw einem Fiz-
punkt, die nicht Zentralstreckung ist, besitzt keine Fixgerade. Jede ungleichsinnige
Ahnlichkeitstransformation mit genau einem Fixpunkt besitzt stets zwei Fizgeraden,
die aufeinander senkrecht stehen.

Die Fixgeraden einer ungleichsinnigen Ahnlichkeitstransformation lassen sich
leicht konstruieren (Abb. 3.28), wenn man den Fixpunkt auf die oben geschilderte
Weise vorher bestimmt. Es sei g(44°) senkrecht auf g, g(BB’) senkrecht auf g’.

Abb. 3.28

Die gesuchten Fixgeraden sind die Winkelhalbierenden des Winkels <x*4FB und
seines Nebenwinkels. Die Winkelhalbierende des Winkels < AF B schneide g in
C, g’ in C'. Der Beweis fiir die Richtigkeit der Konstruktion ist erbracht, wenn
gezeigt wird, daB €’ das Bild von C ist, d. h., wenn das Dreieck CBF dem Drei-
eck C'B'F ungleichsinnig &hnlich ist. Das ist aber in der Tat der Fall, wie man
leicht durch Uberlegungen wie beim Beweis fiir die Richtigkeit der Fixpunkt-.
konstruktion erkennt.

Am SchluB dieses Abschnitts iiber die Ahnlichkeitstransformationen sollen
wieder einige gruppentheoretische Uberlegungen stehen.

Satz 12.. Die Menge aller Ahnlichkeitstransformationen einer Ebene bildet eine
Gruppe.
Da das Assoziativgesetz bei Zusammensetzingen von Transformationen stets

erfiillt ist und die identische Abbildung die Rolle des Einselements iibernimmt,
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hat man noch zu zeigen, daB bei Zusammensetzungen zweier Ahnlichkeitstransfor-
mationen wieder eine Ahnlichkeitstransformation entsteht und da8 zu jeder Ahn-

lichkeitstransformation dle mverse Element der Menge 1st Dleses folgt sofort

natiirlich auch leicht durch eine analytische Rechnung na.chprufen

Aus der Gruppe der Ahnlichkeitstransformationen sollen folgende Untergruppen
erwiihnt werden:

Die gleichsinni Ahnlichkeitstransformationen bilden eine Untergruppe, die
ungleichsinnigen dagegen nicht. AuBerdem sind die in den Sitzen 4 und 5 be-
handelten Gruppen Untergruppen der Gruppe der Ahnlichkeitstransformationen.
Auch die Gruppe der Bewegungen ist eine Untergruppe, denn alle Bewegungen

als spezielle Ahnlichkeitstransformationen aufgefaBt werden, ihre Glei-
chungen erhilt man bekanntlich durch spezielle Wahl der Koeffizienten in den
Gleichungen (6) und (8).

3.33. Aufgaben

1. Gegeben sind zwei Punkte P, und P,, die auf derselben Seite einer Geraden g
liegen. Es ist ein Kreis zu konstruieren, der durch P; und P, verlduft und g be-
rihrt.

2. Die drei Eckpunkte eines Dreiecks sind unzuginglich. Es sind die drei Seiten-
halbierenden und die drei Héhen des Drelecks zu konstrmeren

3. In ein gegebenes Dreieck ist ein Quadrat so beschreiben, daB auf einer Seite
des Dreiecks zwei, auf den beiden anderen Seiten des Dreiecks je ein Eckpunkt
des Quadrates liegen.

4. Es ist ein Kreis ¥ zu konstruieren, der einen gegebenen Kreis k¥’ in einem ge-
gebenen Punkt P und eine gegebene Gerade g berithrt. Welche Sonderfille be-
ziglich der Lage von k’ P und g sind zu beachten ?

5. Gegeben sei eine glei Ahnlichkei tion durch die beiden Ori-
ginalpunkte 4 und B sowie die zugeordneten Bildpunkte A’ und B’. Dazu werde
dle du.rch A und A' sls Ongma]punkte und B und B’ als zugehérige Bildpunkte

formation betrachtet. Es ist zu be-

weisen, deB beide T f tionen den gleichen Fixpunkt besit
Gllt dlese Aussage auch dann, wenn die belden Ahnlichkei formationen als
unglei g vorausg werden ?

3.4.  Affine Transformationen

In diesem Abschnitt werden Punkttransformationen der Ebene behandelt, durch
die sich ein beliebig vorgegebenes Dreieck in ein vorgegebenes Bilddreieck iiber-
fiihren 148t. MuBte beim Ubergang von den Bewegungen zu den Ahnlichkeits-
transformationen die Streckentreue aufgegeben werden, so soll jetzt auch noch
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auf die Winkeltreue verzichtet werden. Das Vorgehen ist dem bei den Ahnlich-
keitstransformationen analog. Auch hier werden zunichst spezielle Abbildungen
behandelt, die Orthogonalstreck (Kontrakti ).

3.41. Orthogonalstreckungen

Zur Einfithrung der Ahnlichkeitstransformationen diente die Zentralstreckung,

gegeben durch das Zentrum und das Teilverhéltnis f, Eine Orthogonalstreckung
wird durch Vorgabe einer Fixpunktgeraden (Achse s) und eineg Teilverhiltnisses
_k == 0 bestimmt. An die Stelle des Zentrums tritt damit eine Achse, deren simt-

liche Punkte Fixpunkte sind. _Ein beliebiger Originalpunkt P wird wie folgt ab-

gebildet: Schneidet das Lot von P auf die Achse diese im Punkt F, so soll P’
auf diesem Lot liegen, und es soll gelten
m(FP)=Fk -m(FP) oder TV(P P F)= (Abb. 3.29).
Es bestehen d h analoge Beziehungen wie bei der Zentralstreckung. Bildet

man weiterhin den Punkt Q auf den Punkt @’ ab (zundchst @ ¢ g(PP’) und g(PQ)

1 = F
Abb. 3.20 Abb. 3.30

nicht parallel zu 8), so schneiden sich nach einer Umkehrung des Strahlensatzes
9(PQ) und g(P'Q’) auf der Achse. Die weiteren Betrachtungen verlaufen analog
denen bei der Zentralstreckung, Durch die gegebene Konstruktionsvorschrift
kann zu jedem Punkt eindeutig sein Bild und zu jedem Bildpunkt eindeutig sein
Original konstruiert werden. An die Stelle des Teilverhiltnisses ¥ konnen zur
Festlegung der Transformation auch ein Originalpunkt P und sein Bildpunkt P’
treten, wobei deren Verbindungsgerade auf der Achse senkrecht stehen muB.
Zum Punkt @ findet man dann das Bild, indem man den Schnittpunkt F, von
g(PQ) und der Achse mit P’ verbindet und diese Verbindungsgerade mit dem
Lot von @ auf die Achse schneidet. Der Schnittpunkt ist dann Q' (Abb. 3.29).
~Liegt @ auf g(PP’), so hat man analog der entsprechenden Betrachtung bei der
Zentralstreckung unter Verwendung von geeigneten Hilfspunkten R und R’ diese
Konstruktion zweimal durchzufiihren.
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Bildet man drei kollineare Punkte ab, etwa P, Q, R (Abb. 3.30), so folgt wegen

m(F,P) mFQ) mFR)
m(F,P)  m(F,Q) m(FR)

daB auch P, @ und R’ kollinear sind, und wegen der Parallelitit der Abbildungs-
pfeile gilt TV(P, Q; R) = TV(P’,@Q’; R’). Das Teilverhiltnis von drei kollinearen
Purikten bleibt also auch bei dieser Transformation erhalten. Die Eigenschaft
der Winkeltreue ist dagegen nicht mehr gewihrleistet, wie man erkennt, wenn
man das Dreieck F, F,R als Originaldreieck und das Dreieck F,F,R’ als Bilddreieck
betrachtet. Jedoch bleibt die Parallelitit von Geraden erhalten, d.h., zwei
parallele Originalgeraden werden auf zwei Geraden abgebildet, die wieder parallel
sein miissen; denn hitten sie einen gemeinsamen Schnittpunkt 8, so miiite der
zugehérige Originalpunkt S wegen der Eineindeutigkeit der Abbildung auf beiden
Originalgeraden liegen, die sich demnach schneiden miiBten, was ein Widerspruch
zur Voraussetzung wire.

Es handelt sich bei der Orthogonalstreckung also um eine Transformation, bei
der Geraden in Geraden iibergehen und bei der die Parallelitdt von Geraden und
das Teilverhiltnis von drei kollinearen Punkten Invarianten sind.

Es soll nun gezeigt werden, daB zwei beliebig vorgegebene Dreiecke durch
Zusammensetzung von Orthogonalstreckungen und Ahnlichkeitstransformationen

¢
¢ 5

A 8 4 [4

Abb. 3.31

stets aufeinander abgebildet werden konnen. Zunichst wird der Spezialfall be-
handelt, daB beide Dreiecke rechtwinklig sind. Das rechtwinklige Dreieck 4 BC
mit |XACB| = 90° soll auf das ebenfalls rechtwinklige Dreieck A‘B’C’ mit
| XA'C’'B’| = 90° abgebildet werden (Abb. 3.31). Das geschieht auf die folgende
Weise: Zunichst wird das Dreieck ABC durch eine Ahnlichkeitstransformation
so abgebildet, daB C auf C’, 4 auf 4’ und B auf einen Punkt B’ des Strahls
C' B+ fillt. Daran schlieBt sich eine Orthogonalstreckung mit g(C’4’) als Achse
an. Der Streckfaktor k wird so gewahlt, daB B’’ auf B’ abgebildet wird. Damit
Iist; das Dreieck A BC in der geforderten Weise auf das Drejeck A’B’C’ abgebildet
! worden.

Jetzt soll der Allgemeinfall betrachtet werden. ABC und A’'B'C’ seien zwei
beliebige Dreiecke. Dann wird das Dreieck A BC durch eine geeignete Orthogonal-
streckung auf ein rechtwinkliges Dreieck 4 BC’ abgebildet (Abb. 3.32).
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Nimmt man g(4B) als Achse der Orthogonalstreckung, so erhilt man C"’ als
Schnittpunkt des Lotes von C auf die Achse mit dem Thaleskreis iiber A B. Voraus-
setzung fiir die Konstruktion ist die Existenz eines solchen Schnittpunktes, die
aber durch passende Wahl der Achse stets gesichert werden kann. (Falls das
Dreieck 4 BC stumpfwinklig ist, muB die Achse dem stumpfen Winkel gegeniiber
liegen.) Jetzt wird das rechtwinklige Dreieck 4 BC" auf das rechtwinklige Dreieck
A’B'C abgebildet, wobei sich der Punkt C* als Schnitt des Lotes von C auf

I
A 8 Ve I

Abb. 3.32

A'B’ mit dem Thaleskreis iiber A'B’ ergibt. (Falls diese Konstruktion nicht
moglich ist, muB durch eine weitere Orthogonalstreckung das Dreieck A’'B'C’
zuniichst in ein fiir diese Konstruktion geeignetes Dreieck iibergefiihrt werden.)
Es schlieBt sich nun noch die Orthogonalstreckung mit A’B’ als Achse an, die
C" in den Punkt ¢’ iiberfiihrt.

Zusaemmenfassend kann festgestellt werden, daBl es stets mdglich ist, zwei
beliebige Dreiecke durch eine endliche Folge von Ahnlichkeitstransformationen
und Orthogonalstreckungen ineinander iiberzufiihren. Die Orthogonalstreckung
fiithrt damit auf eine neue Klasse von Transformationen, die die Eigenschaften
haben, dal Geraden auf Geraden abgebildet werden, daf8 Parallelitit von Geraden
und Teilverhiltnisse kollinearer Punkte erhalten bleiben. Diese Transformationen
heiBen affin, ihre weiteren Eigenschaften sollen im folgenden untersucht werden.

Zur analytischen Behandlung ist es zunichst notwendig, Abbildungsgleichungen
der _Orthogonalstreckung aufzustellen. Nimmt man als Fixpunktgerade die
Abszissenachse, so erhilt man als Gleichungen der Orthogonalstreckung

=z, 1
y =ky, k0. M
Dabei [iihrt k = 1 auf die Identitit, k = — 1 auf die Spiegelung an der z-Achse.

Bildet man mit Hilfe der Gleichungen (1) den Kreis mit der Gleichung 2  *
=7t ab, 80 erhdlf man als Bild eine Ellipse mit der Gleichung

2
m"+%=r’.
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Die Orthogonalstreckung ist also im Gegensatz zu den Ahnlichkeitstransforma-
tionen micht kreistreu.

Die Gleichung einer Orthogonalstreckung, die die Gerade g mit der Gleichung
px + qy + r = 0 zur Achse hat, wird im folgenden mit Hilfe der Vektorrechnung
~unter Benutzung eines kartesischen Koordinatensystems hergeleitet (Abb. 3.33).

Es sei P ein Originalpunkt, P’ der zugehérige Bildpunkt, P* der FuBpunkt
des Lotes von P auf die Achse. Die Ortsvektoren der Punkte seien t, r’ und

t*, k sei der Streckfaktor der Orthogonalstreckung. Dann ist

vV — =kt — ™.
AuBerdem gilt

r=r1*+4dn°,

P

7 Abb. 3.33

wobei d der Abstand der Punkte P und P* und 1 ein Einheitsnormalenvektor
der Achse ist. _Eliminiert man aus beiden Gleichungen t*, so erhilt man

=1+ (k— 1)dn®

als Gleichung der Orthogonalstreckung in vektorieller Darstellung. Geht man zur
Schreibweise in kartesischen Koordinaten iiber, so ergibt sich

(Prtay+ry » q >

NV +e /N +¢ Ve + ¢

&y =&+ k-1

oder
P +qy+r
= k—1).p——2
=z + ) P P
Pr4gy+r
= k—1).q————.
Y=yt k- g g
Damit hat man die allgemeine Gleichung einer Orthogdhalstreckung erhalten, die
fiir k=—1 in die Gleichung einer Gerad iegelung iibergeht. Sie enthélt neben.

k noch zwei wesentliche Parameter, die sich aus der Glelchung derAchse prtqyt+r
=0 ergeben. Man erkennt, daB es sich um Abbildungsglei handelt

-




3.4. Affine Transformationen 127

die in « und y linear sind. Setzt man eine Ahnlichkeitstransformation mit einer
solchen Orthogonalstreckung zusammen, so bleiben die Koordinaten der Bild-
punkte lineare Funktionen von z und y, und man erhilt Abbildungsgleichungen
der Gestalt

=ax+by+e,

y=cx+dy+f
oder in vektorieller Schreibweise
x =Ax + ¢

wref) an 2o() = ee()
=\y) =\ca) z_y un L—l.

3.4.2. Analytische Definition der ebenen affinen Abbildungen

Definition 1. Eine lineare Abbildung mit den Gleichungen

¥ =ar+byte,
y=cx+dy+f

heiBe affine Abbildung. Sie heiBe reguldr, wenn det A = ad — be + 0 gilt, singuldr,
wenn det A = ad — be = 0 ist.

Man erkennt, daB in der Menge der durch die Gleichungen (2) bestimmten Ab--
bildungen die Ahnlichkeitstransformationen und auch die Orthogonalstreckungen
bei spezieller Wahl der Koeffizienten als Sonderfille enthalten sind.

Setzt man die gegebene affine Abbildung (2) als regular voraus — solche regu-
liren Abbildungen sollen zunichst ausschlieBlich betrachtet werden —,_so lassen
sich die Gleichungen (2) eindeutig nach x und y auflésen, und man erhilt die

} bzw. ' =Ax +c (2y

Gleichungen der zu (2) inversen Abbildung in der Gestalt

z=Ax' + By + E,

y=Cz' +Dy +F
wobei die neuen Koeffizienten 4, B, C, D, E und F eindeutig durch die Koeffi-
zienten von (2) bestimmt sind. Punkte werden daher eindeutig umkehrbar abge-
bildet, und es liegt eine affine Transformation oder Affinitdt vor.

Es soll nun untersucht werden, ob alle Abbildungen (2) die bei der Behandlung
der Orthogonalstreckungen herausgestellten Eigenschaften — Geradentreue,
Paralleleninvarianz und Teilverhéltnisinvarianz — besitzen

Zunichst werde die Gerade mit der Parameterdarstellung (vgl. 2.4.(1))

r=rtta (-0t ™),

} bzw. x =AYz —¢), (3)
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abgebildet. Man erhilt
= Ary + ¢ + tda,

also_wieder eine Parameterdarstellung einer Geraden. det 4 =ad —bc+ 0
sichert, daB tatsichlich wieder eine Gerade und nicht nur ein Punkt entsteht.
Die beiden parallelen Geraden mit den Parameterdarstellungen

r=r+ta und r=mr,+4a
werden auf die beiden Geraden mit den Parameterdarstellungen
=A4r, + ¢ + t,Aa und v =Ar, + ¢ + t,da
abgebildet, die Bildgeraden besitzen den gleichen Richtungsvektor Aa und sind
demnach wieder parallel.

Es bleibt noch zu zeigen, daB das_Teilverhiltnis dreier kollinearer Punkte in-
variant bleibt. Betrachtet werden die drei kollinearen Punkte 4, B und P mit
dem Teilverhiltnis t = TV(4, B; P). Variiert P auf g(4 B), so verandert sich auch
das Teilverhdltnis ¢. Das kommt in der aus 2.4.1., Satz 2 und 3, sich ergebenden
Pammete:darstellung

zum Ausdruck. Dabei sind a, b und » die Ortsvektoren der kollinearen Punkte A.
B und P. Bildet man diese Gerade mit Hilfe der Gleichungen (2) ab, so erhilt

oder
Aa+c—t(Ab+c)
1—t¢
Aa 4 ¢ und Ab + ¢ sind nach (2) die Ausdriicke fiir die Bilder 4’ und B’ der
Punkte 4 und B, so daB sich
a —tb
11—t
und hieraus schlieBlich wieder ¢t = TV(4’, B’; P’) ergibt.

Damit _ist gezeigt, daB das Teilverhiltnis von drei kollinearen Originalpunkten
gleich dem der Bildpunkte igt. Die bei der Orthogonalstreckung herausgestellten
Eigenschaften gelten also auch fiir die durch die Gleichungen (2) eingefiihrte affine
Abbildung. Die Abbildungsgleichungen enthalten sechs Parameter.

7

Satz 1. Eine regulire affine Abbildung wird durch die Vorgabe von drei nicht
kollinearen Originalpunkten Py (i = 1,2,3) und drei ebenfalls nicht kollinearen
Bildpunkten P; eindeutig bestimmt.
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Zum Beweis ist zu zeigen, daB es Abbildungsgleichungen (2) mit eindeutig
bestimmten Koeffizienten gibt, durch die die Punkte P, auf die Punkte P; ab-
gebildet werden.

Die Punkte P; haben die Koordinaten (z:, y;), die Punkte P; die Koordinaten
(2;, ¥;). Man erhilt nach dem Einsetzen in die Gleichungen (2) fiir die unbekannten
Koeffizienten die folgenden beiden Gleichungssysteme:

z =ax, + by, +e, yi=cx +dy +1,
z2'=a:¢,+by,+e, und Yo=cz+dy, + 1,
2y = axy + by, + ¢ ys=cz+dys + 1.

Das erste System kann eindeutig nach @, b und e, das zweite eindeutig nach ¢, d
und f aufgeldst werden, da die Koeffizientendeterminante

E T
T 4 1
z3 Yy 1

wegen der getroffenen Voraussetzung stets von Null verschieden ist. Da die drei
Bildpunkte als nicht kollinear vorausgesetzt worden sind, existiert auch eine in-
verse Abbildung. Damit ist dieser Satz, der auch Hauptsatz der affinen Geometrie
genannt wird, bewiesen.

3.4.3. __ Synthetische Definition und konstruktive Behandlung der
affinen Abbildungen

Bisher wurden die affinen Abbildungen durch die Gleichungen (2) definiert und
die bekannten Eigenschaften, deren Giiltigkeit nach der Behandlung des Spezial-
falles der Orthogonalstreckung nahelagen, bewiesen. Es besteht nun auch die
Moglichkeit, die affinen Abbildungen durch diese Eigenschaften zu definieren.

Definition 2. Eine Abbildung einer Ebene auf sich heit_affin, wenn Geraden
auf Geraden abgebildet werden und das Teilverhdltnis von je drei kollinearen
Punkten invariant bleibt.

Die Eigenschaft, daB parallele Geraden auf parallele Geraden abgebildet werden,
wird nicht mit in die Definition aufgenommen, da sie unter Benutzung der De-
finition bewiesen werden kann. Der Beweis, der hierzu bei der Behandlung der
Orthogonalstreckungen gefiihrt worden ist, gilt auch in diesem Zusammenhang.

Demnach wird durch eine affine Transformation ein Parallelogramm wieder
in ein Parallelogramm iibergefiihrt. Dabei werden die Diagonalenschnittpunkte
aufeinander abgebildet, da wegen der Invarianz der Teilverhdltnisse Strecken-
mittelpunkte in Streckenmittelpunkte iibergehen miissen.

Aus der synthetischen Definition der affinen Abbildungen lassen sich nun die
Abbildungsgleichungen (2) herleiten, so da8 auf diese Weise die Gleichwertigkeit
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beider Definitionen fiir den reguliren Fall bewiesen werden kann, was aber nicht
weiter ausgefiihrt werden soll.

Zur konstruktiven Behandlung der affinen Abbildungen ist es erforderlich,
entsprechend dem Hauptsatz drei Originalpunkte 4, B, C und die entsprechenden
Bildpunkte 4’, B’, ¢’ in allgemeiner Lage vorzugeben. Zu einem vierten Original-
punkt D ist der Bildpunkt D’ zu konstruieren (Abb. 3.34). D wird mit einem

g

A ”/( ¢
C
0
Abb. 3.34
4 I 8

er drei Punkte 4, B, C verbunden, so daB diese Verbindungsgerade die Gerade
urch die beiden anderen Punkte schneidet. Das ist stets auf mindestens eine
Weise moglich; es geht auf genau eine Weise, wenn die vier Punkte 4, B, C, D
ein Parallelogramm bilden, dann ist aber die Konstruktion von D’ besonders
einfach. Entsprechend der Abb. 3.34 schneide g(CD) die Gerade g(4 B) im Punkt H.
Sein Bild H’ 1aBt sich nach Abb. 3.19 konstruieren. Durch ¢’ und H’ ist dann
eine Bildgerade bestimmt, auf der der gesuchte Punkt D’ liegen muB. Man erhilt
ihn durch Ubertragung des Teilverhiltnisses in analoger Weise wie H'.

3.4.4. Fixpunkte von Affinitdten

Die_Affinitét (2) soll auf Fixpunkte untersucht werden. Um sie zu bestimmen,
setzt man # = 2’ = 7 und y = ¥’ = yp. Man erhilt damit aus (2) das folgende
lineare Gleichungssystem in z und yr:

(1—a)zp — byr =e,

—ozp+(1=d)yge=/f.
Die Untersuchung der Koeffizientenmatrix und der erweiterten Matrix fithrt auf
vier Moglichkeiten:
1. Die Affinitdt (2) besitzt genau einen Fixpunkt.

2. Die Affinitit (2) besitzt keinen Fixpunkt.
3. Die Affinitdt (2) besitzt eine einparametrige Schar von Fixpunkten, die alle,

der Theorie iiber lineare Gleichungssysteme entsprechend auf einer Geraden
liegen. Diese Gerade heiBe Achse der Affinitit.
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. Die Affinitit (2) besitzt eine zweiparametrige Schar von Fixpunkten, d. h.,

'S

jeder Punkt der Ebene ist Fixpunkt, und es handelt sich um die identische

Abbildung. Dieser Trivialfall tritt fira =d =1und b=c=¢=f =0 ein.

Aus dem Hauptsatz folgt sofort in diesem Zusammenhang

Satz 2. Jede Affinitdt mit drei nichtkollinearen Fixpunkten ist die Identitit.

Spezielle Affinititen mit genau einem Fixpunkt sind bereits bekannt, z. B. die
gleichsinnige Ahnlichkeitstransformation mit ihren Sonderfillen, der Zentral-
streckung und der Drehung. Eine Affinitit ohne Fixpunkt ist beispielsweise die
Verschiebung, eine Affinitit mit einer Achse die Orthogonalstreckung.

Definition 3. Die Affinititen mit einer Achse heiBen axiale Affinitdten .
(Hauptaffinitdten, perspektive Affinititen).

Wegen ihrer vielfiltigen Anwendungsméglichkeiten sollen sie jetzt niher be-
handelt werden.

3.45. Axiale Affinitdten
Eine axiale Affinitdt wird entsprechend dem Heuptsatz durch zwei Fixpunkte F,
und F,, wodurch die Achse festgelegt ist, und ein geordnetes Punktepaar (4, 4°)

bestimmt. Die Konstruktion von Bildpunkten zu weiteren Originalpunkten ge-
staltet sich hier besonders einfach (Abb. 3.35): Zum vorgegebenen Originalpunkt B

A

A

©

Abb. 3.35 Abb. 3.36

soll der Bildpunkt B’ konstruiert werden. g(AB) schneide die Achse in F;. Dann
erhilt man B’ als den Schnittpunkt von g(Fs4’) mit der Parallelen zu g(44°’)
durch B. Die Richtigkeit der Konstruktion ergibt sich aus der Ubereinstimmung
der Teilverhiltnisse:
TV(4, B; F;) =TV(4’, B'; F,) .

Ist g(AB) parallel zur Achse, so versagt diese Konstruktion. In diesem Fall
erhilt man B’ als Schnittpunkt der Parallelen zu g(4 B) durch A’ mit der Paral-
lelen zu g(AA’) durch B (Abb. 3.36).
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Aus dieser Konstruktion folgt sofort

Satz 3. Die Verbindungsgeraden von zugeordneten Original- und_Bildpunkten
sind bei einer axialen Affinitit zueinander parallel.

Hieraus ergibt sich, daB die axiale Affinitit neben der Achse als Fixpunktgerade

noch eine einparametrige Schar von Fixgeraden besitzt, auf denen alle zugeord-
neten Original- und Bildpunkte liegen. Stehen diese Fixgeraden auBerdem noch

senkrecht auf der Achse, so liegt eine Orthogonalstreckung vor.

Eine weitere wesentliche Eigenschaft der axialen Affinitit enthilt

Satz 4. Wird der beliebige Originalpunkt A durch eine axiale Affinitit auf den
Bildpunkt A’ = A abgebildet und ist F, der Schnittpunkt von g(AA’) mit der Achse,
80 wird die Strecke AA’ durch F, in einem Verhiltnis geteilt, das fir alle (von den
Fizpunkten verschied: ) zugeordneten Paare von Original- und Bildpunkten der
axialen Affinitit konstant ist.

Diese zur Definition der Orthogonalstreckung benutzte Eigenschaft kann damit
auf die allgemeinen axialen Affinititen iibertragen werden. Zum Beweis werde

f

¢ Abb. 3.37

Abb. 3.37 betrachtet, in die drei Abbildungspfeile eingezeichnet worden sind. Die
Schnittpunkte ihrer Trigergeraden mit der Achse seien F,, F, und F,. Nach dem
Strahlensatz gilt dann
TV(4', 4; F) =TV(B', B F)) =TV(C", C; Fy) = k.
Definition 4. Dieses Teilverhiltnis k heiBe charakteristisches Teilverhiltnis
oder Inhaltsmafstab der axialen Affinitdit.

Fiir & sind zunichst alle reellen Zahlen mit Ausnahme von 0 und +1 denkbar.
Ist k = — 1, 80 werden alle Strecken zwischen Original- und Bildpunkten von der

“Achse halbiert.
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Definition 5. Eine axiale Affinitit, bei der die Strecken zwischen Original-
und Bildpunkten von der Achse halbiert werden, heiBe Affinspiegelung.

Stehen dazu die Trigergeraden der Abbildungspfeile senkrecht auf der Achse,

50 liegt eine gewdhnliche Geradenspiegelung vor, die schon als spezielle Orthogonal-

streckung erwahnt wurde und die von nun an im Unterschied zur Affinspiegelung

Satz 5. Jede Aﬂmo, gel ist eine involutorische Abbildung.

Y

Der Beweis dieses Satzes ergibt sich sofort aus der Definition der Affinspiegelung.
Als weitere Folgerung aus Satz 4 und den Ergebnissen von 1.1.2.2. erhélt man

Satz 6. Eine axiale Affinitdt mit positivem charakteristischem Teilverhdltnis k
ist eine gleichsinnige Abbildung, mit negati k eine ungleichsinnige Abbildung.

Im ersten Fall liegen Originalpunkt und zugehériger Bildpunkt stets auf der-
selben Seite der Achse, im zweiten Fall liegen sie auf verschiedenen Seiten der
Achse.

In den folgenden Betrachtungen werde entsprechend den Ausfiihrungen in
Kapitel 2 der Flicheninhalt eines Polygons mit seiner MaBzahl identifiziert.

Satz 7. Liegen zwei durch eine axiale Affinitit aufeinander bezogene Dreiecke
vor, o erhilt man den Inhalt des Bilddreiecks A'B'C’ durch Multiplikation des
Inhaltes des Originaldreiecks ABC mit dem Inhaltsmapstab.

Es gilt also m(4’'B’C") = km(4BC) . (C)]

Damit ist die Bezeichnung ,,Inkaltsmafstab‘ fiir die Zahl k gerechtfertigt. Da
der InhaltsmaBstab eine positive oder negative reelle Zahl ist, erklirt sich auch in
diesem Zusammenhang die Verwendung vorzeichenfihiger Flicheninhalte, und
zwar gemiB Satz 6 so, daB den Flicheninhalten von zwei Dreiecken mit gleichem
Umlaufssinn gleiche Vorzeichen, den Flacheninhalten von zwei Dreiecken mit ver-
schiedenem Umlaufssinn verschiedene Vorzeichen zukommen.

Der Beweis zu Satz 7 wird zunéchst fiir den Spezialfall gefiihrt, daB 4 und B
auf der Achse liegen, also Fixpunkte sind (Abb. 3.38). Die Gerade g(CC") schneide
die Achse im Punkt F. CH und C’H’ seien die HShen der Dreiecke 4 BC und
ABC’ senkrecht zur Achse. Dann ist bei geeigneter gleichsinniger Orientierung
von g(CH), g(C'H')

ﬂAB) . m(CEﬁ _ m(AB) - m(C'H")

m(4BC) = ) und m(4BC) )

Hieraus folgt
m(4BC") _ m(C'H') _ m(C'F) _
m(4BC)  m(CH) m(CF)
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4 F K 8N
Abb. 3.38 Abb. 3.39

und schlieBlich
m(ABC’) = km(ABC) .
Mit Hilfe dieses Spezialfalles wird nun der Allgemeinfall bewiesen. Mit den
Bezeichnungen der Abb. 3.39 gilt
m(4BC) + m(BF,F;) = m(AF,F;) + m(CF;F,) %)
und
m(4'B'C’) + m(B'F,F,) = m(4'F,F;) + m(C'F,F,) .
Aus der letzten Gleichung folgt
m(4'B'C’) = m(A'F\F,) + m(C'F,F,) — m(B'F,F,).
Auf die Dreiecksinhalte auf der rechten Seite der Gleichung kann nun der oben
betrachtete Spezialfall angewendet werden, so daB man
m(4'B’C’') = km(AF,Fg) + km(CF,F,) — km(BF,F,)
erhilt. Unter Verwendung von Gleichung (5) ergibt sich schlieBlich
m(4’'B'C’) = km(4 BC) ,
und damit ist der Satz bewiesen.

Es ist offensichtlich, daB sich dieser Satz auf zwei durch eine axiale Affinitat
aufeinander bezogene Polygone erweitern 1a8t. AuBerdem ergibt sich, daB jede
Affinspiegelung den elementaren Inhalt nicht éndert.

Der zunichst ausgeschlossene Fall k = 1 fiihrt einmal auf den Trivialfall der
identischen Abbildung, zum anderen auf einen bisher noch nicht erwihnten
Sonderfall der axialen Affinititen. Er tritt ein, wenn der neben den zwei Fix-
punkten nétige Abbildungspfeil A4’ parallel zur Achse verliuft (Abb. 3.40).
Die Konstruktion des Bildpunktes B’ zum vorgegebenen Originalpunkt B erfolgt
hier in analoger Weise wie im Allgemeinfall: Wenn g(4B) mit der Achse einen
Punkt F gemeinsam hat, schneidet die Parallele zur Achse durch B die Gerade
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A& F Abb. 3.40

g(FA’) im gesuchten Punkt B’. Die Forderung nach Teilverhiltnisinvarianz ist
bei dieser Konstruktion ebenfalls erfiillt. Liegt B auf g(44’), so liegt auch B’
auf dieser Geraden, und es gilt
m(44’) = m(BB’).
Wie man sich an Hand von Abb. 3.40 iiberzeugt, gilt jetzt
m(F,F,4) = m(F,F,4"), (8)
und damit handelt es sich in diesem Fall auch um eine inhaltstreue Transformation.
Das charakteristische Teilverhiltnis k existiert in diesem Fall nicht, da die Trager-
geraden der Abbildungspfeile die Achse nicht schneiden, doch erweist es sich als
sinnvoll, dieser axialen Affinitit in Ubereinsti g mit Gleichung (6) das Teil-
verhéltnis k = 1 definitorisch zuzuordnen, das bisher ausgeschlossen war.
Definition 6. Affine Transformationen, die den elementaren Inhalt nicht &n-
dern, heiBen dquiaffine Transformationen.
Als Beispiel fiir spezielle dquiaffine Transformationen sind die Bewegungen zu
nennen.
Aus den Betrachtungen iiber den InhaltsmaBstab folgt

Satz 8. Bildet man ein Dreieck A BC hintereinander durch zwei beliebige axiale
Affinititen &, und &, mit den Inhaltsmapstiben k, und k, ab, so gilt fir den Flichen-
tnkalt des Bilddreiecks A"’ B"'C"”

m(4”B"C") = kkym(4BC) .

Der Flicheninhalt des Bilddreiecks ist also gleich dem Flacheninhalt des Ori-
ginaldreiecks, multipliziert mit dem Produkt der InhaltsmaBstibe.

Beweis. «, fiihre das Dreieck ABC in das Dreieck A’B’C’ iiber, «, das Drei-
eck A'B'C’ in das Dreieck A”B’C"’. Dann gilt

m(4’B'C") =k, - m(4ABC)
m(4”B"C") = kym(A4'B'C") = kykym(ABC) .

Dieser Satz 1Bt sich sofort auf die Zusammensetzung von endlich vielen axialen

Affinitéten und auf Polygone iibertragen.

Eine Anwendung der axialen Affinitdten erfolgt bei einem erneuten Beweis des
Satzes von MENELAOS, der hier im Sinne des Erlanger Programms unter Benutzung
von Transformationen und ohne Verwendung von Hilfslinien gefiihrt wird (Abb. 3.41).
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Abb. 3.41

Die Gerade g schneide die Seiten des gegebenen Dreiecks ABC oder deren Ver-

lingerungen in den Punkten C’, 4’ und B’, und die Behauptung lautet dann
TV(4, B;C')TV(B,C; A') TV(C,4; B') = 1.

Der Beweis wird mit Hilfe von drei axialen Affinitdten a,, a; und a; gefiihrt, die alle
die Gerade g als Achse haben sollen. Es sei a,(4) = C, a3(C) = B, ay(B) = A. Die
Hmt.eremandemusfuhmng aller drei axialen Affinitdten ergibt dann die Identitét.
ky, kg und k4 seien die drei InhaltsmaBstébe, so da %, = TV(C’ A B’) ky = TV(B,C; 4’),
ky = TV(A4, B; C’) gilt. Bei der Z g mul sich nach Satz 8
die InhaltsmaBatabe, und da man als Z d ie Identitat erhalt, ergibt
sich kgkyk, = 1 und somit TV(4, B; C') TV(B, C; A") TV(C’ A; B)=1.

3.46. Der InhaltsmaBstab von Affinitdt

Um den Begriff des InhaltsmaBstabes auf allgemeine Affinitditen iibertragen
zu konnen, wird der folgende Satz ausgesprochen, der einen Zusammenhang zwi-
schen axialen Affinititen und allgemeinen Affinitaten herstellt.

Satz 9. Jede Affinitit lipt sich aus hochstens drei axialen Affinititen zusammen-
sefzen.

Beweis. Eine beliebige Affinitit sei durch die drei nicht kollinearen Original-
punkte 4, B und C sowie durch die drei ebenfalls nicht kollinearen Bildpunkte
A’, B’ und C’ gegeben. Dann ist das Dreieck 4 BC durch Zusammensetzung von
drei axialen Affinitdtena;,«, und &g auf das Dreieck 4’ B’C’ abzubilden (Abb. 3.42).
Die Achse von «, werde durch die Punkte 4 und B bestimmt, C werde auf C’
hbgebildet, so daB «, das Dreieck ABC in das Dreieck 4 BC" iiberfiihrt. «, habe
g(AC") als Achse, und B werde durch «, auf B’ abgebildet, so daB durch &, das
Dreieck ABC’ in das Dreieck AB’C” iibergeht. x; habe g(B’C’) als Achse, und 4

c ¢’

ra

h ) Abb. 3.42
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werde in A’ iibergefiihrt, so daB schlieBlich das Dreieck 4 B'C" auf das Dreieck
A’B'C’ abgebildet wird.

Es ist noch zu bemerken, daB unter Umstinden eine andere Reihenfolge der
axialen Affinititen gewahlt werden muB, wenn die spezielle Lage der Original-
und Bildpunkte das verlangt, wie es z. B. in Abb. 3.43 der Fall ist. Néhme man

A

[4

A

4 8 8

Abb. 3.43

hier g(AB) als Achse und bildete C auf C’ ab, so wire die entstehende Abbildung
singulidr. Daher wird man hier etwa zunichst g(AC) als Achse nehmen und B
auf B’ abbilden. Bei der Zusammensetzung der drei axialen Affinititen multi-
plizieren sich dann nach Satz 8 die InhaltsmaBstibe, und das Produkt kann als
InhaltsmaBstab der resultierenden Affinitdt angesehen werden. Somit laBt sich fiir
jede beliebige (reguldre) Affinitdt ein InhaltsmaBstab definieren, und die Gleichung
(4) gilt fiir beliebige Affinititen.

Im folgenden soll der InhaltsmaBstab einer beliebigen Affinitit mit den Glei-
chungen (2) bestimmt werden. Zu diesem Zweck werden ein_Originaldreieck
P,P,P; und das zugehorige Bilddreieck P;P,P, betrachtet. Ordnet man den
Punkten Py die Koordinaten (x, y) und den Punkten P; die Koordinaten (z;, y;)
(i =1,2,3) zu, so erhilt man fiir den Inhalt des Originaldreiecks

z oy 1
2m(P,P,P,)=ia:, ¥ ll=—nun+@B—nont+ @ — %)%
oy 1

und analog fiir den Inhalt des Bilddreiecks
2m(PiP;P3) = (v, — 3) &5 + (o — y1) 22 + (51 — 92) % -

Setzt man in diese Gleichung die folgenden, aus den Abbildungsgleichungen .(2)
entstandenen Ausdriicke

zi=av+byi+e und  y;=cr;+dy+ f
ein, so ergibt sich
2“‘(P1'P;P:;) = [c(@y — 23) + Ay, — ¥5)] (az) + by, + €)
+ [o(zs — 1) + d(ys — 91)] (e, + by, + €)
+ [e(@ — @) + d(y — ¥2)] (a5 + by; +€) .
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5P

Multipliziert man die Klammern aus und faBt men jeweils alle mit ac, ad, bc,
bd, ec und ed behafteten Terme zusammen, so verschwinden die Koeffizienten von
ac, be, ec und ed, und man erhilt

2m(P; Py Py) = ad[(y, — 93) % + (¥ — yx)v z, + (1 — %) %]
+ be[(ys — o) 11 + (1 — %) %2 + (Y2 — Y1) %)

und hieraus
2m(P{PyPy) = (ad — bo) (% — %) @ + W — 1) %2 + (1 — %) %] -
Die eckige Klammer der rechten Seite dieser Gleichung ist der Inhalt des Original-
dreiecks, so daB schlieBlich
m(PPyP;) = (ad — bo) - m(P, P,Py)
gilt (vgl. auch 2.7.2., Beweis zu Satz 5). Das Ergebnis werde gefalBt im
Satz 10. Der Inhaltamaﬂatab der Affinitit mit den Gleichungen (2) ist deren
Transformati inante ad — be.
Fiir ad — bc > 0 liegt eine gleichsinnige Affinitdt vor, fiir ad — bc < 0 eine
unglelchsmmge Affmxtat Ist ad — bc = + 1, so handelt es sich um eine (gleich-

ige oder ungleichsinnige) équiaffine Transformation.
Haben zwei Orlginaldr_elecke die Inhalte F, und F,, die entsprechenden durch

eine Affinitdit mit dem InhaltsmaBstab k entstand Bilddreiecke die Inhalte
Fi und F,, so gilt F; = kF, und Fy = kF,. Aus beiden Gleichungen folgt
F, F
FoF
Damit hat man eine weitere Invariante der affinen Transformation erhalten,
nidmlich das Inhaltsverhiltnis, und es gilt

Satz 11. Das Inkaltsverhiltnis zweier Dreiecke bleibt bei affinen Transformationen

erhallen.
Auch dieser Satz 1iBt sich auf beliebige Polygone iibertragen.

3.4.7. Fixpunktkonstruktionen

Bei der analytischen Ermittlung der Fixpunkte einer affinen Transformation hatte
sich ergeben, daB es Affinititen mit genau einem Fixpunkt, mit einer Fixpunkt-
geraden und fixpunktfreie Affinititen gibt. Es sei eine Affinitdt durch drei nicht
kollineare Originalpunkte 4, B, C und drei zugeordnete ebenfalls nicht kollineare
Bildpunkte 4’, B’, C’ gegeben, wobei A &= 4’, B & B’, C & C’ vorausgesetzt
werde. Mogliche Fixpunkte dieser Affinitdt sind konstruktiv zu bestimmen.
Prinzip dieser Konstruktion ist es, zwei Abbildungspfeile zu ermitteln, deren
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Triigergeraden parallel sind. Existiert dann ein Schnittpunkt der Verbindungs-
geraden der Originalpunkte mit der Verbindungsgeraden der Bildpunkte, so ist er
ein Fixpunkt der Affinitdt (vgl. Abb. 3.35). '

Sind die drei vorgegebenen Abbildungspfeile parallel, so erhilt man auf diese
Weise im allgemeinen drei Fixpunkte, die, da nach Voraussetzung die Identitdt
nicht vorliegen kann, auf einer Achse liegen miissen. In diesem Fall handelt es sich
um eine axiale Affinitit.

Sind zwei der vorgegebenen drei Abbildungspfeile parallel, etwa 44’ und BB,
so erhdlt man, wenn g(4B) nicht parallel zur Geraden g(4’B’) verliuft, genau
einen Fixpunkt (Abb. 3.44). Einen zweiten Fixpunkt kann es in diesem Fall
nicht geben, da sonst eine Fixgerade existieren und eine axiale Affinitit vorliegen
miiBte, in der bekanntlich alle Abbildungspfeile parallel sein miiBten, was aber
ausgeschlossen war. Sind zusitzlich Original- und Bildgerade der beiden parallelen

y

1

R
L\

¢

Abb. 3.44 Abb. 3.45

Abbildungspfeile parallel, so erhilt man zundchst keinen Fixpunkt. Das tritt
genau dann ein, wenn die Abbildungspfeile 44’ und BB’ gleichen Richtungssinn
und gleiche Linge haben, also verschiebungsgleich sind. Durch die folgende
Rechnung soll nachgewiesen werden, daBl die so bestimmte Affinitdt iiberhaupt
keinen Fixpunkt besitzt. Die beiden verschiebungsgleichen Abbildungspfeile wer-
den durch die Punkte 4 und A’ sowie B und B’ gegeben. Der dritte Abbildungs-
pfeil CC” ist nicht zu ihnen parallel, eine axiale Affinitat ist damit ausgeschlossen.
Nimmt man o. B. d. A. den Punkt 4 zum Nullpunkt eines kartesischen Koordi-
natensystems und g(A4 B) als z-Achse dieses Systems, ordnet man dem Punkt B
die Koordinaten (1,0) zu und nimmt man weiterhin fir 4’ die Koordinaten
(%1, ¥1) an, so erhilt man fiir den Punkt B’ die Koordinaten (z, + 1, ;) (Abb. 3.45).
Setzt man diese Koordinaten in die Abbildungsgleichungen (2) ein, so ergibt sich

a=1, ¢=0, e=x, f=y
und somit

¥ =xz+by+e,

y = dy +f.
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Nimmt man jetzt analytisch eine Fixpunktuntersuchung vor, wie sie in 3.4.4.
durchgefiihrt wurde, so erhidlt man

zp=2zp+byr+e,

Yr = dye +f.
Gilt bf — (d — 1) e &= 0, so hat das Gleichungssystem keine Lsung und die vor-
gegebene Affinitdit damit keinen Fixpunkt. Ist dagegen bf — (d — 1)e = 0, so
erhélt man eine axiale Affinitit oder eine Verschiebung, die aber nach Voraus-
setzung ausgeschlossen sind.

Man kann also zusammenfassend den folgenden Satz aussprechen:

Satz 12. Smd 2wei von drei vorgegeb Abbildungspfeilen einer Affinitit
verschieb ich oder ko in einer Affinitit zwes solcher Abbildungspfeile
konstruiert werden, ohne daf eine axiale Affinitdt vorliegt, so besitzt die Affinitdt

keinen Fizpunkt.

Abb. 3.46

Es bleibt nun noch der Allgemeinfall zu betrachten, daB die drei vorgegebenen
Abbildungspfeile keiner Einschrinkung beziiglich der Parallelitit unterworfen
werden (Abb. 3.46).

Die Gerade g(4AB) wird auf g(4’'B’) abgebildet. Auf diesen beiden Geraden
konstruiert man mit Hilfe des erzeugenden Streifens (vgl. 3.3.2.) ein zugeordnetes
Punktepaar (HH’) so, da8 g(HH’) parallel zu g(CC") verlduft. Der Schnittpunkt
von g(HC) mit g(H’C’) ist dann der gesuchte Fixpunkt. Sind diese beiden Ge-
raden parallel, so existiert nach Satz 12 in der gegebenen Affinitéit kein Fixpunkt.

In engem Zusammenhang mit den Fixpunkten steht die Frage nach den Fix-
geraden von Affinititen. Sie soll hier nicht ausfiihrlich behandelt werden. Die
Frage ist fiir Ahnlichkeitstransformationen bereits in 3.3.2., fiir axiale Affinititen
in 3,4.5. beantwortet worden.

Liegt eine Affinitit mit genau einem Fixpunkt vor, so wird in Analogie zu den
Ahnlichkeitstransformationen auch hier zunichst gezeigt, daB eventuell vor-
handene Fixgeraden durch den Fixpunkt verlaufen miissen. Ohne Beschrinkung
der Allgemeinheit werde der Fixpunkt als Nullpunkt eines kartesischen Ko-
ordinatensystems angenommen, so daf3 dann die Abbildungsgleichungen

z =az+by,
y =cx+dy
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lauten. Um Zentralstreckungen auszuschlieBen, diirfen b und ¢ nicht gleich-
zeitig verschwinden. Jetzt wird der Punkt P mit den Koordinaten (p, ¢) = (0, 0)
der affinen Abbildung unterworfen. Sein Bildpunkt P’ hat die Koordinaten
(ap + bg, cp + dg), und eine Fixgerade liegt dann vor, wenn O, P und P’ kolli-
near sind, d. h., wenn

0 0 1
4 q 1. =0
ap+bg op+dg 1]
gilt. Hieraus folgt bg? + (@ — d) pg — cp? = O und schlieBlich fiir b 4= 0

d—a (@ —a)2+4_b;
q=(—2b—:tV—T*—)P

Ist die Diskriminante groBer als Null, so erhdlt man zwei reelle Fixgeraden, ist
sie gleich Null, eine reelle Fixgerade, und ist sie kleiner als Null, keine reelle
Fixgerade durch analoge Uberlegungen wie beim Beweis des Satzes 11 in 3.3.

Betrachtet man schlieBlich eine fixpunktfreie Affinitit, die keine Verschiebung
ist, so besitzt diese hochstens eine Fixgerade. Auf den Beweis dieses Sachverhaltes
soll hier ebenso verzichtet werden wie auf die konstruktive Ermittlung dieser
Fixgeraden.

3.4.8. Die Affinitdten als Gruppe

Satz 13. Die Menge der reguliren affinen Abbildungen einer Ebene auf sich
bildet mit der Hintereinanderausfihrung als Operation eine Gruppe.

Beweis. Aus den Gleichungen (2) folgt, daB bei der Zusammensetzung zweier
affiner Transformationen wegen der Linearitit der Abbildungsgleichungen wiedereine
affine Transformation entsteht. Aus der Forderung der Regularitat (ad — bc & 0)
folgt, daB zu jeder affinen Transformation stets eine inverse affine Abbildung
existiert. Das Assoziativgesetz gilt hier wie bei allen Transformationen, und als
Einselement dient die identische Abbildung.

Fragt man nun nach Untergruppen dieser Gruppe, so sind sofort die Ahnlich-
keitstransformationen zu nennen. AuBerdem bilden die gleichsinnigen Affinititen
(ad — be > 0) eine Untergruppe, die ungleichsinnigen Affinititen dagegen nicht,
da die Zusammensetzung zweier ungleichsinniger Affinititen eine gleichsinnige
Affinitdt ergibt. Auch die dquiaffinen Transformationen (ad — bc = 4 1) bilden
eine Untergruppe, von ihnen sind die gleichsinnigen #quiaffinen Transformationen
wieder eine Untergruppe, die ungleichsinnigen dagegen nicht. Weiterhin bilden
die axialen Affinititen mit fester Achse eine Untergruppe. Daf axiale Affinititen
mit beliebigen Achsen keine Gruppe bilden, folgt aus Satz 9.
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Es gibt auch Untergruppen der affinen Gruppe mit endlich vielen Elementen.
Als Beispiel werde eine Gruppe angefiihrt, die aus zwei Elementen besteht, namlich
aus einer Affinspiegelung und der Identitit.

3.49. Ausblick auf singulére affine Abbildungen

Wie bereits in 3.4.2. ausgefiihrt, werden die singuléren affinen Abbildungen durch
die Gleichungen (2) sowie durch die Bedingung ad — bc = 0 charakterisiert. Das
hat zur Folge, daB zu diesen Abbildungen keine Inversen existieren.
Ist a = b =c¢ =d = 0, so erhilt man

x=e,

y=1
fiir alle z und y. In diesem Fall werden alle Punkte der Ebene auf den einzigen
Punkt mit den Koordinaten (e, f) abgebildet (Abb. 3.47). Verschwinden dagegen

A3
Ag

A1 4 Abb. 3.47

nicht alle Koeffizienten a, b, ¢, d und sei etwa a 5 0, so erhilt man d = bc/a.
Fithrt man diesen Ausdruck in die Gleichungen (2) ein, so ergibt sich

z=ax+by+te,
be [2
y=cxt+y+tf=_lz+by+f.

Setzt man ax + by = #,, so erkennt man, daB alle Punkte der Geraden ax + by = ¢,
auf einen Punkt P’ mit den Koordinaten (f, + e, (¢/a) {, + f) abgebildet werden,
wodurch der singulire Charakter dieser Abbildung zum Ausdruck kommt. Er-
setzt man f, durch ein variables t, das alle reellen Zahlen durchlaufen kann, so
wird die Schar paralleler Geraden mit der Gleichung ax + by = ¢, die jeden Punkt
der Ebene genau einmal erfaBt, auf eine Gerade abgebildet, die die Parameter-
darstellung

z=t+e,

I_c‘
y=—t+f
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oder die parameterfreie Darstellung
cx' —ay —ce+af =0

besitzt. Diese Gerade heiBe die Senkgerade s der singuliren affinen Abbildung.
Damit ist gezeigt, daB in diesem Fall alle Punkte der Ebene auf die Punkte einer
Geraden abgebildet werden, daB jeder Punkt der Senkgeraden Bild einer Original-
geraden ist und daB demzufolge die Abbildung nicht eindeutig umgekehrt werden
kann. In Abb. 3.48 wird diese singuldre affine Abbildung veranschaulicht. Jede
Gerade der Parallelenschar mit der Gleichung axz + by = ¢ wird auf einen Punkt.

8

A

Abb. 3.48 Abb. 3.49

der Senkgeraden abgebildet. Eine beliebige andere Gerade wird dagegen punkt-
weise eindeutig umkehrbar auf die Senkgerade, ein beliebiges Dreieck 4 BC auf
das entartete Dreieck A'B’C’ abgebildet (Abb. 3.49), wobei auch noch zwei der
drei Bildpunkte auf der Senkgeraden zusammenfallen kénnen.

In Analogie zu den reguliren affinen Abbildungen konnen auch die singuliren
analytisch und synthetisch nach Fixpunkten untersucht werden, was aber hier
nicht naher ausgefiihrt werden soll. So gibt es singulire affine Abbildungen, die
fixpunktfrei sind, die genau einen Fixpunkt oder die Senkgerade als Fixpunkt-
gerade besitzen.

3.4.10. Ausblick auf affine Abbildungen in hdherdimensionalen Rdumen

Bisher beschrinkten sich die Betrachtungen auf Abbildungen einer Ebene auf
sich. Die Frage liegt nahe, ob affine Abbildungen in héherdimensionalen Riumen
eingefiihrt werden konnen. Eine Verallgemeinerung der affinen Abbildung auf
den dreidimensionalen Raum R? ist analytisch ohne weiteres moglich. Man de-
finiert sie durch die Abbildungsgleichungen

2 = ay + @Y + ay + ay,
Y = Ay + gl + g5z + ayy (7
Z = ayT + agY + a3z + @y, ]
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F

durch die ein Punkt P mit den Koordinaten (z, y, z) auf den Punkt P’ mit den
Koordinaten (z’, ', 2’) abgebildet wird, wobei ein kartesisches Koordinatensystem
zugrunde gelegt wird. Die vektorielle Darstellung lautet auch hier ' = Ax + ¢,
wobei jetzt A eine dreireihige Matrix ist und @, ' und ¢ dreizeilige Spalten-
vektoren sind. Ist die Koeffizientendeterminante det A = det(ay) (i, k = 1, 2, 3)
von Null verschieden, so ist die Abbildung regulir, ist sie gleich Null, dann ist
die Abbildung singulir. Betrigt dabei der Rang der Koeffizientenmatrix 2, so
wird der dreidimensionale Raum auf eine Ebene abgebildet. Dieser Fall spielt
in der Darstellenden Geometrie eine groe Rolle, denn die dort zu behandelnde
schriige Parallelprojektion ist eine singulére affine Abbildung des Raumes auf eine
Ebene, in diesem Fall auf die Zeichenebene. Ist der Rang dagegen 1, so wird der
Raum auf eine Gerade, ist er 0, so wird der Raum auf einen Punkt abgebildet.
Man kann nun zeigen, daB auch bei der reguldren Abbildung mit den Gleichungen
(7) Geraden auf Geraden abgebildet werden. Dariiber hinaus werden Ebenen in
Ebenen iibergefiihrt, und die Parallelitit iibertrigt sich ebenfalls, d. h., parallele
Geraden werden auf parallele Geraden und parallele Ebenen auf parallele Ebenen
abgebildet. Auch das Teilverhiltnis von drei kollinearen Punkten bleibt invariant.
Fordert man zunichst die Winkeltreue, so liegt eine rdumliche Ahnlichkeitstrans-
formation vor, verlangt man dariiber hinaus die Lingentreue, so hat man eine
rdumliche Bewegung. Wird dagegen nur det A = det(ay) = + 1 gefordert, so
liegt eine rdumliche inhaltstreue Transformation (iquiaffine Transformation) vor.

Diese Uberlegungen lassen sich auf Riume hoherer Dimension iibertragen, wo
eine affine Abbildung durch die Gleichung

T =Amu® + € (8)

definiert werden kann. Dabei ist 4 eine Matrix von m Zeilen und n Spalten.
x ein n-dimensionaler Spaltenvektor, und &’ und ¢ sind m-zeilige Spalten-
vektoren. Durch die Gleichungen (8) wird demnach ein n-dimensionaler Raum R"
in einen m-dimensionalen Raum R™ affin abgebildet. Ist n = m, stimmen Original-
und Bildraum iiberein und ist die Koeffizientendeterminante von Null verschieden,
so liegt eine affine Transformation eines n-dimensionalen Raumes auf sich vor.

3.411. Aufgaben

1. Das Dreieck mit den Eckpunkten 4 = (—2,1), B = (8, —4), C = (7. 6) soll affin
auf das Dreieck mit den Eckpunkten 4’ = (—11, 3), B’ = (14, —2), C’ = (2, 27)
abgebildet werden. Wie lauten die Transformationsgleichungen ? Die Abbildung
ist auf Fixpunkte zu untersuchen.

9. Gegeben ist ein gleichseitiges Dreieck ABC. Die Seite AB wird iiber den Punkt B
hinaus um sich selbst bis zum Punkt C’ verlingert. In entsprechender Weise
werden auf der Verlangerung von BC der Punkt A’ und auf der Verlingerung
von CA der Punkt B’ konstruiert. Durch welche spezielle affine Transformation
wird das Dreieck ABC auf das Dreieck A’B’C’ abgebildet ?
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3. Gegeben sind in einer Ebene ein Kreis und eine Ellipse in beliebiger Lage zuein-
ander. Es ist analytisch und synthetisch eine affine Transf tion zu b
durch die der Kreis auf die Ellipse abgebildet wird.

4. Die drei nicht kollinearen Punkte 4, B und C werden durch eine affine Trans-
formation @ so abgebildet, da8 p(4) = B, ¢(B) = C, ¢(C) = 4 gilt. Es ist also
?(p(9(4))) = A oder ¢3(4) = A. Es ist zu zeigen:

a) Der Schwerpunkt des Dreiecks 4 BC ist einziger Fixpunkt dieser affinen Trans-
formation.

b) Es handelt sich um eine zyklische Affinitdt dritter Ordnung, d. h., fir jeden
beliebigen Originalpunkt P gilt ¢3(P) = P.

5. Es ist zu boweisen: Die Menge aller Affinititen einer Ebene, die einen gemein-
samen Fixpunkt besitzen, bildet eine Untergruppe der Gruppe der affinen Trans-
formationen dieser Ebene.

3.5.  Projektive Transformationen

Die Behandlung der Transformationen begann mit den Bewegungen. Anschlie-
Bend wurden die Ahnlichkeitstransformationen auf dem Wege iiber die Zentral-
streckungen eingefiihrt. Deren Zusammensetzung mit den Bewegungen ergab die
allgemeinen Ahnlichkeitstransformationen. Es folgte die Behandlung der affinen
Transformationen, die man als Zusammensetzung von den als neue Erzeugende
eingefiihrten Orthogonalstreckungen mit den allgemei Ahnlichkeitstransfor-
mationen erhielt. Unter gruppentheoretischem Aspekt ergab sich, daB die Ahnlich-
keitstransformationen eine Untergruppe der affinen Transformationen und die
Bewegungen eine Untergruppe der Ahnlichkeitstransformationen sind. Die In-
varianten der affinen Transformationen — z. B. Kollinearitit, Parallelitat, Teil-
verhiltnisse — sind natiirlich auch Invarianten der betreffenden Untergruppen,
die infolge der Spezialisierung noch weitere Invarianten aufzuweisen haben:
die Winkeltreue bei den Ahnlichkeitstransformationen und die Langentreue bei den
Bewegungen.

Das bisherige Vorgehen beim Aufbau der geometrischen Transformationen soll
auch bei der Einfithrung von projektiven Transformationen beibehalten werden.
Als neue Transformationen der Ebene auf sich werden die Zentralkollineationen
eingefiihrt, die mit den affinen Transformationen zusammengesetzt werden. Man
erhilt auf diese Weise allgemeine projektive Transformationen, die eine Gruppe
bilden, in der die affinen Transformationen als Untergruppe enthalten sind. Diese
Gruppe enthilt also Transformationen, die noch allgemeiner als die Affinititen
sind, die Invarianten dieser Gruppe sind daher inhaltlich érmer als die der affinen
Transformationen.
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3.5.1. Zentralkollineationen

Die Zentralkollineationen werden wie folgt definiert:

Gegeben seien eine Achse s, ein Zentrum Z sowie ein geordnetes Punktepaar
(4, 4’) so, daB Z auf g(4A4’) liegt, wobei weder A noch A4’ mit einem Punkt der
Achse oder mit dem Zentrum Z zusammenfallen sollen (Abb. 3.50). Alle Punkte
der Achse sowie Z seien Fixpunkte. Zum gegebenen Originalpunkt B (B¢ g(44")
B¢ s) wird dann der Bildpunkt B’ in der folgenden Weise konstruiert: g(4 B)
schneide s in F. Dann erhilt man B’ als Schnittpunkt von g(F4’) mit g(BZ).
Ist g(A B) parallel zu s, so erhilt man B’ als den Schnittpunkt der Parallelen zur

G
il
Abb. 3.50

Achse 8 durch A’ mit g(ZB). Auf diese Weise konnen weitere Punkte der Ge-
raden g(4B) =g abgebildet werden, deren Bildpunkte alle auf g(4’B’) =g’
liegen, und umgekehrt kénnen zu Punkten auf g’ die Originalpunkte auf g kon-
struiert werden. Es sei E ein weiterer Originalpunkt auf g(44’), sein Bild E’
findet man durch die soeben beschriebene Konstruktion unter Benutzung des
Abbildungspfeiles BB’ (Abb. 3.50). Damit werden alle Geraden durch das Zen-
trum Z auf sich selbst abgebildet, sie sind also Fixgeraden.

Durch die gegebene Konstruktionsvorschrift kann zunichst ein Punkt der Ge-
raden g nicht abgebildet werden: Es existiert auf g genau ein Punkt C, fiir den
-9(CZ) parallel zug(FA’) ist, d. h., C besitzt keinen Bildpunkt. Andererseits gibt es
auf der Geraden g’ einen Punkt D', fiir den g(ZD’) parallel zu g ist und der dem-
zufolge keinen Originalpunkt hat. C heiBe Verschwindungspunkt der Geraden g,
D’ Fluchtpunkt der Geraden g’ beziiglich der zugrunde gelegten Zentralkollineation.
Bildet man eine andere Gerade  durch analoge Konstruktion auf die Gerade A’
ab, 8o erhilt man auch auf k einen Verschwindungspunkt und auf 4’ einen Flucht-
punkt.

Diese Sonderstellung des Verschwindungs- und Fluchtpunktes soll sogleich be-
seitigt werden. Es liegt zunichst nahe, dem Verschwindungspunkt den Flucht-
punkt und umgekehrt zuzuordnen. Das wiirde sich jedoch fiir die folgenden Be-
trachtungen nicht als zweckmiBig erweisen. Man fiihrt daher auf g’ einen un-
eigentlichen Punkt C\, ein, den man als Schnittpunkt der beiden parallelen Ge-
raden g(FA’) und g(CZ) bezeichnet. In analoger Weise definiert man auf g einen
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uneigentlichen Punkt D, den Schnittpunkt der beiden parallelen Geraden g(ZD’)
und g(FA). Ebenso wird mit jeder anderen Geraden verfahren. Die Menge ihrer
Punkte wird durch ein zusdtzliches Element, den uneigentlichen Punkt der Ge-
raden, erginzt. Die bisher zugrunde gelegte euklidische Ebene wird damit durch
diese uneigentlichen Punkte erweitert, und die so entstehende Ebene wird pro-
jektive Ebene genannt. Somit ist die Zentralkollineation eine eindeutig umkehr-
bare Abbildung der projektiven Ebene auf sich.

In der projektiven Ebene braucht nun nicht mehr zwischen sich schneidenden
und parallelen Geraden unterschieden zu werden. Zwei Geraden haben hier immer
einen gemeinsamen Schnittpunkt, der entweder eigentlich oder uneigentlich sein
kann. Man legt fest, daB Geraden, die einem Parallelgeradenbiischel angehéren,
genau einen gemeinsamen uneigentlichen Punkt besitzen. Er entspricht dem
Grundpunkt eines eigentlichen Geradenbiischels. Soll man also einen beliebigen
Punkt P mit dem uneigentlichen Punkt einer Geraden g verbinden, so hat man die
Parallele durch P zu g zu ziehen, die dann P mit dem uneigentlichen Punkt der
Geraden g verbindet.

Jeder Schar von parallelen Geraden einer Ebene wird genau ein uneigentlicher
Punkt als Schnittpunkt zugeordnet. Aus Griinden der ZweckmiBigkeit wird de-
finiert, daB die Menge aller dieser uneigentlichen Punkte der projektiven Ebene
eine Gerade bildet, die uneigentliche Gerade, auf der alle uneigentlichen Punkte
der Ebene liegen und die keine eigentlichen Punkte der Ebene enthilt.

Die projektive Ebene ist damit die um die uneigentliche Gerade erweiterte
euklidische Ebene.

Im folgenden wird nach der Rolle der uneigentlichen Geraden bei der Zentral-
kollineation gefragt, die wiederum durch das Zentrum Z, die Achse s und das
geordnete Punktepaar (4, A’) gegeben sei, wobei A, A’ und Z kollinear seien
(Abb. 3.51). Es sei F & g(AZ) ein beliebiger Punkt der Achse, C sei Verschwin-

Abb. 3.51

dungspunkt von g(AF) = g, sein Bild ist daher der uneigentliche Punkt Oy, auf
g(4'F) = g'. Jetzt werde durch C die Parallele v zu s gezogen. Zur Ermittlung
ihres Bildes wird auf v der Punkt D ¢ g(AZ) angenommen. Zur Konstruktion
seines Bildpunktes D’ bestimmt man zunichst F; als Schnittpunkt von g(DA)
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mit der Achse s. Der Schnittpunkt von g(F,4’) mit g(ZD) ist dann der gesuchte
Bildpunkt D’. Es wird nun behauptet, daB D’ uneigentlicher Punkt der Geraden
g(FyA’) ist. Zum Beweis hat man zu zeigen, daB g(F,4’) zu g(ZD) parallel ist.
Das ergibt sich mit Hilfe des Strahlensatzes:
Aus |AC|: |AF| = |AZ| : |A4’| und |AC|: |[AF| = |AD|: |AF,| folgt
|AZ) : |[A4’| = |[AD| : |AF,|
und hieraus die Parallelitit von g(F;4’) und g(ZD). D h ist der Bildpunkt D’
von D der uneigentliche Punkt von g(F,4’). Da D ein beliebiger Punkt der Ge-
raden v ist, wird jeder Punkt von v (auch der Schnittpunkt von v mit g(4Z) und
der uneigentliche Punkt von v, wie man zusitzlich zeigen kann) auf einen un-
eigentlichen Punkt der projektiven Ebene abgebildet, und umgekehrt ist jeder
uneigentliche Punkt Bild eines Punktes von v, wie man sich leicht iiberlegt. Das
Bild der Geraden v ist damit die uneigentliche Gerade der projektiven Ebene. In
der euklidischen Ebene hat die Gerade v kein Bild, weshalb ihr hier der Name
Verschwindungsgerade gegeben wird.

In analoger Weise erhélt man bei der Zentralkollineation eine Fluchigerade f,
die in der euklidischen Ebene kein Original besitzt, in der projektiven Ebene da-
gegen ist ihr Original die uneigentliche Gerade.

Zur Konstruktion der Fluchtgeraden werde wieder eine Zentralkollineation be-
trachtet, die durch ihre Achse s, das Zentrum Z und das geordnete Punktepaar
(A, A’) gegeben sei. "€’ sei Fluchtpunkt der durch 4’ und einen Punkt F ¢ g(4Z)
der Achse bestimmten Geraden. Dann wird die Parallele zur Achse durch C’
als Fluchtgerade definiért und mit f bezeichnet, denn man kann zeigen, da8 das
Original D eines beliebigen Punktes D’ ¢ g(4A4’) auf ihr uneigentlicher Punkt ist

Abb. 3.52). g(D'A4’) schneide s in F,. Dann erhilt man D als Schnitt von g(F,4)

_ Abb. 3.52

mit g(ZD’). Man kann auch hier wieder nachweisen, daf der Schnittpunkt un-
eigentlich ist, d. h., daB beide Geraden parallel sind. Es gilt nimlich

|4'C| : |A'F| = |4°Z) : |4’A] und |A'C"| : |A'F| = |A'D'| : |A'F,].
Hieraus folgt |4'Z| : |4'4A| = |A'D’| : |4'F,|, und damit ergibt sich die Paralle-
litat von g(Fy4) und ¢g(ZD’). Auch hier fiigen sich der Schnittpunkt von f mit
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9(AZ) sowie der uneigentliche Punkt von f mit in die Betrachtungen ein, wie
leicht nachzuweisen ist.

Damit ist gezeigt, daB bei der Zentralkollineation die uneigentliche Gerade die
Rolle sowohl einer Original- als auch einer Bildgeraden iibernehmen kann, sie
ordnet sich in die Abbildung ein. Es wurde bereits betont, daB in der projek-
tiven Ebene sich schneidende und parallele Geraden nicht mehr prinzipiell von-
einander unterschieden werden miissen. Die Herausstellung und gesonderte Be-
arbeitung des Falles der Parallelitit, was in der affinen Geometrie nétig war,
entfillt demnach hier. So braucht man jetzt den eingangs bei der Definition der
Zentralkollineation erwihnten Sonderfall nicht mehr besonders zu behandeln
(vgl. Abb.3.50). Ist g(4 B) parallel zu s, so wird F' uneigentlicher Punkt von s, und
die Gerade durch ihn und A’ schneidet g(ZB) in B". :

Bisher wurde die Zentralkollineation durch das Zentrum Z, die Achse und einen
Abbildungspfeil bestimmt, auf dessen Trigergerade Z liegt. Eine andere Méglichkeit
dafiir ist die folgende: Gegeban sind ein Zentrum Z sowie drei Abbildungspfeile 44’,

BB’ und CC’, deren Tragergeraden durch Z wverlaufen (Abb. 3.53). Wird bei dieser
Lage von A, B, C, A’, B’, C’ noch die eindeutige Existenz der Schnittpunkte

Abb. 3.53

9(4B)ng(4’B’), g(BC) n g(B’ C"), g(CA) n g(C’A’) vorausgesetzt, 8o besagt der Satz von
DEsarGUES (der hier ohne Beweis angefiihrt sei), daf diese Schnittpunkte kollinear
sind. Mit der durch sie gelegten Geraden s als Achse und mit Z als Zentrum gewinnt
man daher die Zentralkollineation, die die vorgegebenen Abbildungspfeile realisiert.

Die néichste Frage gilt den Invarianten der Zentralkollineation. Vergleicht man
mit den affinen Transformationen, so stellt man fest, daB nach wie vor Geraden
auf Geraden abgebildet werden, daB also die Kollinearitit auch eine Invariante
der Zentralkollineation ist, was bereits im Namen zum Ausdruck kommt. Das
Teilverhéltnis von drei kollinearen Punkten ist jedoch offensichtlich nicht mehr
invariant, wie Abb. 3.50 zeigt, da hier TV(4, B; F) & TV(A4’, B’; F) ist. Die
Teilverhiltnisse wiren nur gleich, wenn g(44') parallel zu g(BB’) wiire, was aber
auf Grund der Konstruktionsvorschrift ausgeschlossen ist.

Es werden nun zwei parallele Originalgeraden betrachtet, d. h. Geraden mit
einem gemei en uneigentlichen Punkt. Sein Bild ist im allgemeinen ein
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eigentlicher Punkt, und die beiden parallelen Geraden werden somit auf zwei
Geraden mit eigentlichem Schnittpunkt abgebildet. Demnach ist bei der Zentral-
kollineation auch die Paralleleninvarianz nicht mehr vorhanden.

An die Stelle des Teilverhiltnisses als Invariante tritt bei der Zentralkollineation
das Doppelverhdlinis von vier kollinearen Punkten. Das wird an einem linearen
Ausschnitt aus der Zentralkollineation gezeigt (Abb. 3.54), wobei zunichst nur

y

9 9

=

&}

2 Abb. 3.54

eigentliche Original- und Bildpunkte betrachtet werden sollen. g sei eine Original-
gerade, g’ die zugehorige Bildgerade. Ist g parallel zu g’, so besteht auf Grund
des Strahlensatzes sogar Teilverhéltnisinvarianz. Dieser Fall wird daher im fol-
genden als trivial ausgeschlossen.

Die Trigergeraden aller Abbildungspfeile verlaufen durch das 7entrumZ Es
sei Z der Nullpunkt eines kartesischen Koordinatensystems, dessen Achsen so
gewihlt werden, daB g die Parallele zur y-Achse mit der Gleichung = 1 und
g’ eine beliebige von g verschiedene Gerade mit der Gleichung ax + by + ¢ = 0,
b0, c 0, ist. In dieser Wahl des Koordinatensystems liegt keine Einschrin-
kung der Allgemeinheit. Alle Geraden durch Z mit der Gleichung y = max,
—o00 < m < oo, schneiden aus g und ¢’ jeweils ein zugeordnetes Punktepaar aus,
m ist dabei Parameter. Der Originalpunkt P hat die Koordinaten (1, m), der

—c —cm
Bildpunkt P’ die Koordinaten (a Tom’ o1 bm
a + bm = 0 vorauszusetzen ist. Um nachzuweisen, daB das Doppelverhiltnis
eine Invariante der Zentralkollineation ist, werden vier Originalpunkte Py (i = 1,
2, 3, 4) auf g und ihre vier Bildpunkte P; auf ¢’ bctrachtet und es ist zu zeigen,
daB

~), wobei zunidchst noch

DV(P,, P,; Py, P,) = DV(P;, P;; P;, P})
gilt. m seien die zu den Punkten P, und P; gehorenden Parameterwerte. Dann
ist

DV(P,, P,; P;, P,) = DV(m,, my: mg, my) ,
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da das Doppelverhiltnis der Originalpunkte gleich dem Doppelverhdltnis ihrer
Ordinaten ist. Das Doppelverhiltnis der Bildpunkte kann gleich dem Doppel-
verhiltnis ihrer Abszissen gesetzt werden. (Die dabei benutzte Parallelprojektion
1aBt sogar die Teilverhiltnisse und daher erst recht die Doppelverhiltnisse in-
variant.) Also gilt

o C o Em—m m @
DV(P;, Py; Py, Py) = DV(zy, 25; x5, 75) = :

7 V= g
Ty — Ty Ty — Xy

—c c —c c
_a+bm,+a+bm,. a-}—bm‘-*-a—i-bml
T —c c | —c ¢

+

a+bmy a4+ bm, a+bm‘+a+bm,

Mg — My My — My .
= g =g DV M My, M)
und damit ist
DV(Py, Py; Py, P) = DV(P;, Py; Py, Py) .
Es gilt also

Satz 1. Bei der Zentralkollineation bleibt das Doppelverhiiltnis von vier kolli-
nearen eigentlichen Punkten invariant.

Auszunehmen sind zunichst noch der uneigentliche Punkt auf g, dessen Bild
der Fluchtpunkt auf ¢’ ist, im vorliegenden Fall der Schnittpunkt von g’ mit der
y-Achse, sowie der Verschwindungspunkt auf g, der die Koordinaten (1, — a/b)
hat. Das ist erforderlich, weil an dieser Stelle die uneigentlichen Punkte noch
nicht koordinatenmé8ig erfaBt werden konnen, was offenbar fiir eine koordinaten-
geometrische Behandlung der Zentralkollineation notwendig ist. Ein Weg hierzu
werde im folgenden kurz angedeutet (vgl. auch 2.5.2.):

Der projektiven Ebene liege nach wie vor ein kartesisches Koordinatensystem
zugrunde, und es sei P(X, Y) ein beliebiger Punkt der Ebene. Man fiihrt nun
eine reelle Zahl ¢t & 0 ein, indem man

z ¥

X=‘— und Y=? (1)

setzt, man ordnet also dem Punkt P drei Koordinaten z, y und ¢ zu, wobei es
allerdings nur auf deren Verhiltnis ankommt. Man nennt diese Zahlen z, y und
t homogene Koordinaten des Punktes P und schreibt dafiir auch z : y : ¢.

Derselbe Punkt P 18t sich auch durch kx : ky : kt, k reell, k 5= 0, beschreiben.
Variiert ¢ bei festem « und y, so erhilt man fiir ¢ 5= 0 alle eigentlichen Punkte der
durch den Nullpunkt und P bestimmten Geraden. Dem uneigentlichen Punkt
dieser Geraden wird denn ¢ = 0 als einzige noch zur Verfiigung stehende reelle
Zahl zugeordnet, so daB er die Koordinaten « : y : O erhiilt.
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Die Gleichung einer Geraden aX + bY + ¢ = 0 lautet wegen der Gleichungen
(1) nach dem Ubergang zu homogenen Koordinaten ax + by + ct = 0.

Ihr uneigentlicher Punkt hat die Koordinaten —b : a : 0. Variiert man ¢, so
erhiltman eine Parallelgeradenschar, deren Geraden alle denselben uneigentlichen
Punkt —b : a : O besitzen, was der Definition des uneigentlichen Punktes ent-
spricht.

Nach wie vor ist 2 = 0 die Gleichung der y-Achse, deren Punkte durch 0 : y : ¢
bestimmt sind. Fiir ¢ 4 O erhilt man eigentliche Punkte, fiir y 4= 0 und ¢t = 0
den uneigentlichen Punkt der y-Achse. Analoges gilt fiir die z-Achse. Ihre Glei-
chung ist ¥y = 0, ihre Punkte werden durch x : 0 : ¢ bestimmt.

Die Gleichung ¢ = 0 charakterisiert alle uneigentlichen Punkte, sie ist daher
die Gleichung der uneigentlichen Geraden, ihre Punkte sind durch z : y : O ge-
geben. Der Ursprung des Koordinatensystems wird durch O : 0 : 1 charakterisiert.
Zu beachten ist, daB fiir homogene Koordinaten stets 22 4 y + t* > 0 gelten
muB, d. h., mindestens eine der drei Koordinaten muB von Null verschieden sein,

b Abb. 3.55

Mit Hilfe der homogenen Koordinaten kann man die uneigentlichen Punkte
gleichberechtigt neben den eigentlichen in analytischen Rechnungen verwenden.
So kann man zeigen, daB der Satz 1 allgemein fiir eigentliche und uneigentliche
Punkte gilt, daB das Doppelverhiltnis von vier kollinearen Punkten ohne Ein-
schrinkung eine Invariante der Zentralkollineation ist. Das gilt auch dann, wenn
Original- und Bildgerade zusammenfallen, also eine Fixgerade vorliegt.

Im folgenden soll nun die Zentralkollineation analytisch behandelt werden, und
zwar zunichst unter Benutzung von inhomogenen Koordinaten, d. h., die un-
eigentlichen Punkte werden vorliufig nicht mit erfaBt.

Zu diesem Zweck wird das Zentrum Z in den Ursprung eines kartesischen Ko-
ordinatensystems mit einer X- und einer Y-Achse gelegt. Die Achse der Zentral-
kollineation erhalte die Gleichung Y = — 1, worin keine Einschrinkung der
Allgemeinheit liegt (Abb. 3.55). Zur vollstindigen Bestimmung der Zentral-
" kollineation ist noch die Angabe eines Originalpunktes und des zugehérigen Bild-
punktes erforderlich, die mit dem Zentrum kollinear sein miissen. Der Original-
punkt P habe die Koordinaten (p, ¢), sein Bildpunkt P’ die Koordinaten (kp, kq).
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Die Punkte P und P’ miissen beide vom Zentrum verschieden sein, also muB
2+ ¢2 >0, k & O gelten. P und P’ miissen voneinander verschieden sein, das
wird durch k 3= 1 gewilhrleistet. Ferner diirfen weder P noch P’ auf der Achse
liegen, daher muB ¢ &= — 1 und kg &= — 1 gelten. Jetzt wird der beliebig gewihlte
Punkt U mit den Koordinaten (u, v) abgebildet. U darf ebenfalls nicht auf der
Achse liegen oder mit dem Zentrum zusammenfallen und soll auflerdem zunéachst
nicht auf der durch P und P’ bestimmten Geraden liegen. Die Koordinaten
(u’, v’) seines Bildpunktes U’ werden nun berechnet. Sie stellen Funktionen der-
Koordinaten » und » dar und fithren auf die gesuchten Abbildungsgleichungen.

Die Gerade g(PU) schneide die Achse im Punkt S. (Der Fall des uneigentlichen
Schnittpunktes werde dchst ausgeschlossen.) Die Koordinaten von § konnen
berechnet werden, und man erhilt

S=(—-(1+q)u+pv+z” _1>‘

v—q
Die Gleichung der durch U und Z bestimmten Geraden lautet
vX —uY =0. 2y

Diese Gerade ist mit g(SP’) zu schneiden, die die Gleichung

A+k)— X +[-A+Qu+ A —kpr+pl+k)]Y

= k(1 + q) (pr — qu) ' 3
besitzt. Man hat also, um die Koordinaten (u’, v') von U’ zu erhalten, das durch
die Gleichungen (2) und (3) gegebene lineare Gleichungssystem nach X und Y
aufzuldsen, und man erhilt

Fewe Ml¥Qu L Hl4gv

AI—kv+ 1+ k)’ T(—k)v+ (14 k)

Nach Voraussetzung sind die Koeffizienten von « und » sowie das Freiglied 1 + kg
von Null verschieden.

Die Gleichungen (4) sind damit die gesuchten Abbildungsgleichungen. Die zu-
niichst ausgeschlossenen Fille, daB S uneigentlich wird oder U auf g(ZP) liegt,
ordnen sich mit in die Gleichungen (4) ein, was leicht nachzupriifen ist. U kann
daher in der ganzen Ebene variieren, U’ dndert sich mit U. Aus diesem Grund
werden jetzt fiir die Koordinaten von U und U’ die laufenden Koordinaten (X, Y)
bzw. (X', ¥') eingefithrt. AuBerdem wird aus Griinden der Ubersichtlichkeit
k(1 4+ ¢q) = A und (1 — k) = B gesetzt. Dann ist 1 + kg = A + B. Die Glei-
chungen (4) lauten dann

x AX , AY
“BY+4+B’ Y TBY+4+EB"

Durch sie werden die in der Definition der Zentralkollineation geforderten Eigen-
schaften realisiert: Das Zentrum Z mit den Koordinaten (0, 0) wird auf sich abge~

. (4)

®)-
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bildet, die Gerade mit der Gleichung ¥ = — 1 bleibt punktweise fest, und die
Determinante

0 0 1

X Y

AX AY

BY tA+B BY T4+ B !
verschwindet, was gleichbedeutend damit ist, daB jeder Originalpunkt mit seinem
Bildpunkt auf einer Geraden durch das Zentrum liegt. Es muB zundchst noch
BY + A + B = 0 vorausgesetzt werden. Alle Punkte auf der Geraden mit der
Gleichung BY + A4 + B = 0 besitzen kein Bild, es handelt sich um die Verschwin-
dungsgerade, die in Ubereinstimmung mit den synthetisch erhaltenen Ergebnissen
zur Achse parallel ist.

Lost man die Gleichungen (5) nach X und Y auf, so erhilt man die Gleichungen
der zur gegebenen Zentralkollineation inversen Abbildung

(4% B)X _4+BY 6
“BY + 4’ ="By +4 )

Da dabei Zentrum und Achse erhalten bleiben, handelt es sich wieder um eine’
Zentralkollineation, und — BY’ + A = 0 ist die Gleichung der Fluchtgeraden der
Zentralkollineation, ebenfalls zur Achse parallel in Ubereinstimmung mit den syn-
thetischen Uberlegungen. Um die uneigentlichen Elemente mit in die Betrach-
tungen aufnehmen zu konnen, werden jetzt homogene Koordinaten eingefiihrt.
Man setzt X =2ft, ¥ = yjt, X’ = a’[t’ und ¥’ = y’[t’ und erhilt aus den Glei-
chungen (5)

X =

¥ e v___ Ay .

v By+ A+ B¢’ +t Byt A+ Bt ™
Fiihrt man einen Proportionalititsfaktor 7 == 0 ein, 8o kann man die Gleichungen
{7) in der Form

re’ = Az, l

ry = Ay, (8)

r =By+(A+B)t|
schreiben. Die Gleichungen der inversen Abbildungen lauten nach Einfiihrung
von homogenen Koordinaten in die Gleichungen (6) mit dem Proportionalitits-
faktor s = 0

sz = (4 + Bya',

sy=A+ By, (9)

8t = — By + At'.
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Jetzt erkennt man, daB die uneigentliche Gerade mit der Gleichung ¢ = 0 sowohl
als Original- als auch als Bildgerade in die Abbildung einbezogen wird. Ist sie
Originalgerade, gilt also ¢t = 0, so erhiilt man aus (9) die Gleichung der Flucht-
geraden — By’ + At' = 0. Ist dagegen t' = 0, so erhilt man aus (8) die Glei-
chung der Verschwindungsgeraden By + (4 + B)t = 0.

3.5.2. Ausblick auf Kollineationen

Setzt man nun die Zentralkollineation mit den Gleichungen (7) bzw. (8) mit
affinen Abbildungen mit den Gleichungen (2) von 3.4. zusammen, so erhilt man
x' a4 agy + ant Y % + Ggy + Gyt

U ayw + oy + e’ U aq® o+ agy + agt o
72" = @nT + @Y + a55t,
1Y =auz +agy +agt, T+ 0. an
= ayZ + ayy + axt, l
Die Gleichungen (10) bzw. (11) stellen Abbildungen dar, die allgemeiner als die
Zentralkollineationen sind. Es sind dies die sogenannten Kollineationen. Ist die
Koeffizientendeterminante det(aq) von Null verschieden, so ist die Abbildung
regulir. In diesem Fall liegt eine eindeutig umkehrbare Abbildung der projek-
tiven Ebene auf sich, eine projektive Transformation, vor. Ist die Determinante
gleich Null, so ist die Abbildung singulér.

In analogem Vorgehen wie bei den Affinititen kann gezeigt werden, daB bei
reguliren Kollineationen Geraden auf Geraden abgebildet werden und daB die
Doppelverhiltnisse von vier kollinearen Punkten invariant bleiben. Die un-
eigentliche Gerade nimmt keine Sonderstellung ein.

Es ist leicht nachzuweisen, daB die Menge aller reguliren Kollineationen der
Ebene auf sich mit den Gleichungen (11) eine Gruppe bildet, die als Untergruppe
die Gruppe der ebenen affinen Transformationen enthélt. In diesem Fall gilt
ay, = ay, = 0, was, abgesehen von einem Proportionalititsfaktor, ¢ = ¢’ zur Folge
hat. Das heiBt, daB die uncigentliche Gerade Fixgerade ist. Die affinen Trans-
formationen kénnen daher auch als diejenigen Kollineationen der Ebene auf sich
aufgefaBt werden, bei denen die uneigentliche Gerade Fixgerade ist. Bereits die
Zentralkollineationen enthalten spezielle affine Transformationen: Wird das Zen-
trum Z uneigentlich, dann verlaufen die Trigergeraden aller Abbildungspfeile
parallel, und es liegt eine axiale Affinitit vor. Wird dagegen die Achse uneigent-
liche Gerade, so liegt eine Zentralstreckung vor, und sind schlieBlich Zentrum und
Achse gleichzeitig uneigentliche Elemente, so handelt es sich um eine Verschiebung.

An dieser Stelle sollen die Darlegungen iiber projektive Transformationen ab-
gebrochen werden. Auf eine ausfiihrliche Behandlung der durch die Gleichungen
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(11) dargestellten Transformationen analog dem Vorgehen bei den affinen Trans-
formationen wird hier verzichtet. Dieses Kapitel sollte lediglich in die Zentral-
kollineationen als vor allem fiir die Darstellende Geometrie bedeutsame Abbil-
dungen einfiihren, einen ersten Einblick in die Geometrie der projektiven Ebene
vermitteln und dabei die uneigentlichen Punkte und die uneigentliche Gerade
synthetisch und analytisch vorstellen.

3.53. Aufgaben

1. Es ist zu untersuchen, wieviel igentliche Punkte Ellipse, Hyperbel und Parabel
besitzen. Zu diesem Zweck sind diese Kegelschnitte der Reihe nach mit der

1i Geraden zu

2. Es ist zu zelgen Bildet man einen Kreis durch eine Zentralkollineation ab, so
erhélt man eine Kurve iter Ord Schneidet der Kreis die Verschv.mdungs-
gerade, so erhdlt man eine Hyperbel, beriihrt er sie, eine Parabel, meidet er sie,
eine Ellipse.

3. Von einer Zentralkollineation sind die Achse, ein zugeordnetes Punktepaar (4, 4’)
sowie
a) die Verschwindungsgerade,

b) die Fluchtgerade
gegeben. In beiden Fillen ist das Zentrum zu konstruieren.

4. Gegeben sind zwei Zentra]kollmeauonen mit gememsamem Zentrum, aber ver-
schiedenen Achsen. Es ist zu b , daB die Hint d filhrung beider
Transformationen wieder eine chtmlkollmeat:on ergibt. Danach ist zu zeigen,
daB die Menge aller Zentralkollineationen mit gemeinsamem Zentrum eine Gruppe
bildet.

3.6.  Spiegelungen an Kreisen

Abschliefend soll eine Abbildung der Ebene auf sich eingefiihrt werden, die
Spiegelung am Kreis oder Inversion genannt wird. Diese Abbildung wird wie folgt
definiert : Gegeben ist ein fester Kreis k; mit dem Radius 7 und dem Mittelpunkt M,
der auch Inversionskreis genannt wird. Zu einem beliebigen Originalpunkt P &= M
findet man den Bildpunkt P’ auf folgende Weise: P’ liege auf dem Strahl M P+,
und es gelte
|MP|. |MP| =12, 1)
Die Punkte P und P’ heilen dann zueinander invers beziiglich des Kreises ki,
und aus Gleichung (1) folgt, daB es sich bei der Inversion um eine involutorische
Abbildung handelt. Weiterhin kann aus Gleichung (1) iiber die Lage von P~
folgende Aussage gemacht werden: Liegt P innerhalb ki, ist also [MP| < r, so
muB |MP’| > r gelten und daher P’ auBerhalb k, liegen. Liegt dagegen P aufer-
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halb ki, so muB P’ innerhalb k; liegen. Ist schlieflich P ein Punkt von k, gilt
also [MP| = r, so ist auch |MP’| =r, und P und P’ fallen zusammen, d. h., es
liegt in diesem Fall ein Fixpunkt der Abbildung vor. Damit gilt

Satz 1. Eine Inversion hat als Fixpunkte genau die Punkte des Inversions-
kreises.

Gegeben seien der Inversionskreis k; und ein Punkt P, der zunichst als innerer
Punkt von k; angenommen werde. Zur Konstruktion von P’ errichte man in P
auf MP die Senkrechte, die den Kreis im Punkt 7' schneidet (Abb. 3.56). Die

Abb. 3.56

Tangente in T an k, schneidet dann den Strahl M P+ im gesuchten Punkt P’.
Wendet man den Kathetensatz auf das rechtwinklige Dreieck M P'T an, so erhiilt
man die Gleichung (1) und hat damit die Richtigkeit der Konstruktion bestitigt.
Liegt P auBerhalb k;, so zieht man von P eine Tangente an ¥ und erhilt P’ als
FuBpunkt des Lotes vom Beriihrungspunkt 7' auf den Strahl MP*. Es gilt
dann ebenfalls Gleichung (1).

Dem Punkt M kann auf diese Weise kein Bildpunkt zugeordnet werden, er
wird zunichst durch die Definition und damit auch durch die Konstruktion nicht
erfaBt. Um diese Ausnahme zu beseitigen, nimmt man zur euklidischen Ebene
einen uneigentlichen Punkt P, hinzu, den man als das Bild von M erklirt. Die
durch diesen uneigentlichen Punkt erweiterte euklidische Ebene heifit inversions-
geometrwche Ebene. Sie besitzt im Gegensatz zur projektiven Ebene nur ein un-

tliches El t. Dem igentlichen Punkt der inversionsgeometrischen
Ebene wird als Bild der MlttelpunktM des Inversionskreises zugeordnet, und
damit wird auch in diesem Spezialfall der involutorische Charakter der Abbildung
gewahrt.

Im folgenden soll untersucht werden, wie Geraden und Kreise abgebildet wer-
den. Aus der Definition der Inversion ergibt sich

Satz 2. Jede Gerade durch das Inversionszentrum wird auf sich abgebildet, ist
also Fizgerade.

Fiir die Abbildung von Geraden, die nicht durch das Inversionszentrum ver-
laufen, gilt
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Satz 3. Jede Gerade, die nicht durch das Inversionszentrum M verliuft, wird auf
einen Kreis durch M abgebildet.

Zum Beweis werde eine beliebige Gerade g, auf der M nicht liegt, betrachtet
(Abb. 3.57). Von M wird das Lot auf g gefillt, und der LotfuBpunkt 4 wird am
Inversionskreis k; gespiegelt. Sein Bildpunkt sei A’. Der auf g beliebig ange-

Abb. 3.57

nommene Punkt P (P 5 A4) wird durch die Inversion auf den Punkt P’ abge-
bildet. Dann gilt entsprechend der Gleichung (1)
|MA|. |MA’| = |MP|. |[MP'| =2

Nach der Umkehrung des Sekantensatzes liegen 4, A’, P und P’ auf einem Kreis.
Da |XPAA’'| = 90° gilt, ist A’P nach der Umkehrung des Satzes von THALES
Durchmesser dieses Kreises, und es gilt deshalb |XPP'A’'| = |XA'P'M| = 90°.

Der Punkt P’ liegt daher ebenfalls nach der Umkehrung des Satzes von THALES
auf dem Kreis mit dem Durchmesser M4’. Durchliuft P die Gerade g, so er-
hilt man fiir P’ alle Punkte dieses Kreises, und damit ist der Satz bewiesen.

Da es sich bei der Inversion um eine involutorische Transformation handelt,
gilt auch umgekehrt: Jeder Kreis durch das Inversionszentrum wird auf eine
Gerade abgebildet. Das Inversionszentrum M geht dabei in den uneigentlichen
Punkt der inversionsgeometrischen Ebene iiber, den man sich in diesem Zu-
sammenhang als gemeinsamen Punkt aller Geraden der inversionsgeometrischen
Ebene vorzustellen hat.

Zur Konstruktion des Bildkreises von g reicht die Kenntnis von zwei Bild-
punkten 4’ und P’ aus, da man als notwendigen dritten Punkt den Mittelpunkt M
des Inversionskreises benut; kann. Schneidet g den Inversionskreis k; in den
beiden Punkten S und 7', so ist nach Satz 1 der Bildkreis g’ bereits durch M, S
und 7' bestimmt. :

Es werde noch auf eine Folgerung aus Satz 3 hingewiesen: Die Tangente ¢ in
M an den Kreis g’ ist zur Geraden g parallel. Hitten nidmlich ¢ und g einen ge-
meinsamen Schnittpunkt S, so lige das Bild 8 von § nach Satz 2 auf ¢, nach
Satz 3 auch auf ¢/, d. h., die Gerade ¢t und der Kreis g hatten auBer M noch einen
weiteren Punkt S’ gemeinsam, und dann wire ¢ entgegen der Vor tzung nicht
Tangente an g'.
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Als niichstes sollen Kreise durch Inversion abgebildet werden, und zwar zu-
niichst ein Kreis, der durch zwei zueinander inverse Punkte verlduft. Fir diesen
Spezialfall gilt :

Satz 4. Jeder Kreis k durch zwei beziiglich des Inversionskreises kq inand
inverse Punkte wird auf sich selbst abgebildet.

Zum Beweis dieses Satzes werde Abb. 3.58 betrachtet, in der P und P’ die
beiden beziiglich des Kreises k; zueinander inversen Punkte sind. Durch P und

Abb. 3.58

P’ werde ein beliebiger Kreis k gezogen. @ sei ein von P und P’ verschiedener
Punkt auf ihm, @’ der zweite Schnittpunkt von k¥ mit dem Strahl MQ*. Dann
gilt nach dem Sekantensatz

|MP|- |MP| = |MQ| - |MQ],
und nach Gleichung (1) ist [MP| - |[MP’| = r%. Also ist auch
|MQ| - |MQ| =r*,
und @ und @’ sind daher beziiglich k; zueinander invers.
Da Q beliebig auf k angenommen werden kann, ist damit gezeigt, daB k; durch

Inversion in sich iibergefiihrt wird. Als Folgerung aus Satz 4 kann festgestellt
werden, daB alle Kreise durch P und P’ bei der Inversion in Ruhe bleiben.

Eine weitere Eigenschaft dieser Kreise beinhaltet

Satz 8. Jeder Kreis k durch zwei beziiglich des Inversionskreises ki zuesnander
tnverse Punkte P und P’ schneidet k; rechtwinklig.

Als Schnittwinkel zweier Kreise ist dabei der Schnittwinkel zwischen den im
Schnittpunkt an beide Kreise gezogenen Tangenten zu verstehen.

Zum Beweis des Satzes werden von M aus die Tangenten an k gezogen. T,
und T, seien die Beriihrungspunkte (Abb. 3.58). Da sowohl beide Tangenten als
Geraden durch das Inversionszentrum als auch der Kreis k¥ auf sich abgebildet
werden, miissen T, und T, Fixpunkte sein, d. h., die Berithrungspunkte liegen



160 3. Abbildungen als Ordnungsprinzip in der Geometrie

auf dem Inversionskreis k;, und die Strecken' MT, und MT, sind Radien des
Inversionskreises. Die Tangenten in T, bzw. T, an k; stehen daher auf den ent-
sprechenden Tangenten an k senkrecht, und die beiden Kreise schneiden sich
rechtwinklig.

Jetzt soll ein Kreis k in beliebiger Lage zum Inversionskreis k; abgebildet wer-
den. Es gilt

Satz 6. Das inversionsgeometrische Bild jedes Kreises k, der nmicht durch den
Mittelpunkt M des Inversionskreises k, verliuft, ist wieder ein Kreis.

Der Kreis ¥ mit dem Mittelpunkt N soll am Inversionskreis k, gespiegelt wer-
den (Abb. 3.59). Die Gerade g(MN) schneide k in den Punkten A und B. Die

Abb. 3.59

Punkte A’ und B’ seien ihre durch Inversionen an k entstandenen Bilder. C sei
ein weiterer von 4 und B verschiedener Punkt auf &, C’ sein Bild. Dann gilt

|MA| - |MA'| = |MC|- |MC"| = |MB|- |[MB'| =rt.

Hieraus folgt
|mM4|  |uC| |MB| |MC|
ol T ma) ¢ (o] T |MB|

.

Damit ist nach Satz 8 von 3.3. das Dreieck M AC dem Dreieck MC'A’ und das
Dreieck MBC dem Dreieck MC’'B’ ahnlich, wenn man noch beachtet, daB
| CMA| in jedem der vier Dreiecke enthalten ist. Hieraus folgt fiir die
GréBen von Innenwinkeln der genannten Dreiecke
|XMAC| = |<MC'A| =0, |§:MBC| =|XMC'B|=y,

und hieraus ergibt sich |<A4BC| = |<B'C'C| =

Dacx + f = 90° ist, gilt | A'C'B’| = 90°, und darmt liegt C’ nach Umkehrung
des Satzes von THALES auf dem Kreis &’ mit A’B’ als Durchmesser. Variiert C
auf &, so durchlauft ¢’ den Kreis k’, und damit ist der Satz bewiesen.
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Satz 7. Die Inversion ist winkeltreu.

In diesem Satz wird ausgesagt, daB der Schnittwinkel zweier Originalkreise
kongruent dem Schnittwinkel der entsprechenden Bildkreise nach Abbildung durch
eine Inversion ist. Zum Beweis werden die beiden Kreise ¥ und ! betrachtet, die
sich in den Punkten § und T schneiden mogen (Abb. 3.60). Die Tangenten a
und b in S an k und ! schlieBen dann den Schnittwinkel § der beiden Kreise ein.
Die beiden Tangenten werden jetzt durch Inversion am Kreis k; abgebildet.
Ihre Bilder o’ und b’ sind nach Satz 3 zwei Kreise, die sich auBer im Inver-
sionszentrum M noch in S’, dem Bild des Punktes S, schneiden. Diese Kreise
besitzen in M Tangenten, die nach der Folgerung aus Satz 3 zu @ und b parallel
sind, d.h., also einen zu & kongruenten Schnittwinkel bilden. Die Tangenten in S’
an a’ und b haben ebenfalls einen hierzu kongruenten Schnittwinkel. Jetzt wird k auf

:a'
a S,

Abb. 3.60 Abb. 3.61

den Kreisk’ abgebildet. Da k und @ den Punkt S als einzigen Punkt gemeinsam haben,
besitzen ihre Bilder ¥’ und a’ als einzigen gemeinsamen Punkt das Bild 8" von S,
d. h., sie beriihren sich in §’, haben dort also eine gemeinsame Tangente. Analoges
gilt auch fiir die Bilder I’ und b’ des Kreises I und seiner Tangente b. Damit sind
die Tangenten in §’ an a’ und b’ auch gleichzeitig Tangenten an k' und I'. Wie
bereits gezeigt, ist ihr Schnittwinkel zu é kongruent, und damit ist bewiesen, daB
die Bildkreise &’ und I’ ebenfalls einen zu § kongruenten Schnittwinkel haben, die
Inversion also eine winkeltreue Abbildung ist.

Damit sind wesentliche Eigenschaften der Spiegelung am Kreis synthetisch
behandelt worden. Im folgenden sollen nun die Abbildungsgleichungen der In-
version hergeleitet werden.

Zu diesem Zweck werde M als Ursprung eines kartesischen Koordinatensystems
angenommen (Abb. 3.61). Der Inversionskreis k; besitzt dann die Gleichung
22 + y? = 2. Der Originalpunkt P habe die Koordinaten (z, y), der Bildpunkt P’
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die Koordinaten (2, y’). Dann gilt
T =iz, y=ty, t>0, (2)
wobei der Falétort noch zu bestimmen ist.
Aus Gleichung (1) folgt |[MP|?. |MP’|* = r4 und hieraus
@+ 2ty =1t
]IJJnt.er Verwendung der Gleichungen (2) erhélt man 3(z% 4 y2)2 = r* und schlieB-
ich .

,2
‘ = ;—2—4-_!/2 .
Damit ist ¢ bestimmt, und aus (2) ergeben sich die gesuchten Abbildungsgleichungen
, g X 2y
YoEae YV Tmag

Alle Eigenschaften der Inversion, die bisher synthetisch hergeleitet worden sind,
kénnen nun mit Hilfe dieser Gleichungen erneut und ohne Schwierigkeiten be-
wiesen werden, worauf hier verzichtet werden soll.

Vergleicht man die Inversion mit den vorher behandelten Transformationen,
so stellt man fest, daB sie keine geradentreue Transformation ist. FaBt man die
Geraden als Kreise mit unendlich groBem Radius auf, so gilt ohne Ausnahme,
daB Kreise auf Kreise abgebildet werden. Die Spiegelung am Kreis steht in enger
Beziehung zur Orthogonalspiegelung an einer Geraden, die als Inversion an einem
Kreis mit unendlich groSem Radius aufgefaBt werden kann.

Auf die Zusammensetzung von Inversionen und gruppentheoretische Uber-
legungen soll hier verzichtet werden. Auch auf die vielfiltigen Anwendungs-
moglichkeiten der Inversion wird hier nicht niher eingegangen. Es werde ledig-
lich darauf hingewiesen, da sie z. B. zur Lésung des Beriihrungsproblems des
Apollonius benutzt werden kann, worauf im folgenden Kapitel niher eingegangen
wird.

3.61. Aufgaben

1. Die Satze 1 bis 4 sowie 6 sind analytisch zu beweisen.

2. Die Menge aller konzentrischen Kreise mit einem beliebigen Mittelpunkt ist durch
Inversion am Einheitskreis abzubilden. Sind die Bildkreise wieder k isch 7

3. Durch einen Punkt P auBerhalb eines Kreises k sind Kreise zu konstruieren, die
k orthogonal schneiden. Wo liegen ihre Mittelpunkte ?




4.  Theorie der geometrischen Konstruktionen

41.  Einleitung und historische Bemerkungen

Geometrische Konstruktionen waren und sind nicht nur ein beliebter Gegenstand
des Geometrieunterrichts der Schule; sie haben auch in der Entwicklung der
Mathematik eine nicht unbedeutende Rolle gespielt. Interessante Konstruktions-
probleme sind uns bereits aus dem Altertum bekannt. Eines davon ist das Be-
riihrungsproblem des APOLLONTUS (262 ?—190? v. u. Z.), bei dem zu drei gegebenen
Kreisen ein vierter Kreis zu suchen ist, der die drei gegebenen Kreise beriihrt.
Weitere klassische Konstruktionsprobleme sind die Dreiteilung des Winkels, die
Verdoppelung des Wiirfels und die Quadratur des Kreises. Es ist moglich, mit
Zirkel und Lineal jeden Kreis zu konstruieren, der drei gegebene Kreise beriihrt,
falls iiberhaupt solche Kreise existieren. (Wenn wir von ,,Konstruktionen mit
Zirkel und Lineal sprechen, meinen wir Konstruktionen, bei denen auBer Zirkel
und Lineal keine weiteren Konstruktionsinstrumente erforderlich sind; nihere
Erlduterungen iiber die Verwendung der Konstruktionsinstrumente werden spiter
gegeben.) Uber zwei Jahrtausende lang haben sich Mathematiker vergeblich be-
miiht, die Dreiteilung des Winkels, die Verdoppelung des Wiirfels und die Qua-
dratur des Kreises mit Zirkel und Lineal durchzufiihren, bis schlieBlich am Ende
des 18. Jahrhunderts in der Mathematik eine neue Fragestellung in den Vorder-
grund riickte, nimlich die Fragestellung: ,,Wie kann man beweisen, daBl gewisse
Aufgaben unlésbar sind 2. Ende des 18. Jahrhunderts konnte bewiesen werden,
daB die Dreiteilung des Winkels und die Verdoppelung des Wiirfels mit Zirkel
und Lineal unméglich sind ; der Beweis fiir die Unmoglichkeit der Quadratur des
Kreises mit Zirkel und Lineal gelang erst 1882 durch den Nachweis der Trans-
zendenz der Zahlz durch F. LINDEMANN (1852—1939). Zu den interessanten
Konstruktionsaufgaben gehért auch die Konstruktion regelmiBiger n-Ecke. Bis
zum Ende des 18. Jahrhunderts waren fiir die regelmiBigen p-Ecke mit p als
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Primzah]l Konstruktionen mit Zirkel und Lineal nur fiir p = 3 und p = 5 be-
kannt; eine entsprechende Konstruktion des regelmiBigen 7-Ecks war trotz
groBer Bemiihungen nicht gelungen. Im Jahre 1796 gelang dem knapp 19jihrigen
C. F. Gauss (1777—1853) der Nachweis, daB fir Primzahlen p das regelmiBige
p-Eck mit Zirkel und Lineal dann und nur dann konstruiert werden kann, wenn
p eine Fermatsche Primzahl ist, d. h. eine Primzahl der Form 2% + 1, k¢ N;
bis heute sind nur fiinf Fermatsche Primzahlen bekannt, nimlich 3, 5, 17, 257
und 65537. Gauss konnte auch alle natiirlichen Zahlen » charakterisieren, fiir
die die Konstruktion des regelmiBigen n-Ecks mit Zirkel und Lineal méglich ist.
Geometrische Konstruktionsaufgaben fiihrten also am Ende des 18. Jahrhunderts
mit zu den ersten Unméglichkeitsbeweisen in der Mathematik.

Es ist moglich, Theorien geometrischer Konstruktionen fiir Konstruktions-
instrumente der verschiedensten Art zu entwickeln. Hiufig verwendete Kon-
struktionsinstrumente sind z. B. Zirkel, Lineal (ohne MaBeinheiten), Zeichen-
dreieck oder die Zeicl hine als Vereinigung mehrerer einfacherer Instru-
mente (des Lineal mit MaBeinheiten und der Winkelmesser sind MeBinstrumente,
die in der Konstruktionspraxis zwar eine Rolle spielen konnen, die aber nicht
in die folgenden Betrachtungen einbezogen werden sollen); seltener verwendete
Konstruktionsinstrumente sind z. B. das Parallellineal, das Winkellineal, das
Einschiebelineal (vgl. 4.5.) oder Gerite zum Konstruieren gewisser Punkte und
Kurven; und schlieBlich sei auch noch auf Instrumente verwiesen, mit deren
Hilfe Konstruktionen auf einer Kugelfliche oder in einer nichteuklidischen Ebene
durchgefithrt werden konnen. Forschungen der neueren Zeit befassen sich mit
zugehorigen Theorien. Fiir theoretische Untersuchungen geometrischer Kon-
struktionen ist es notwendig, genau zu erkliren, in welcher Weise die Konstruk-
tionsinstrumente zu verwenden sind. Wir werden im Rahmen dieses Buches eine
Theorie der geometrischen Konstruktionen mit Zirkel und Lineal in der eukli-
dischen Ebene entwickeln. In einem abschlieBenden Abschnitt werden wir iiber
geometrische Konstruktionen mit einigen anderen K ktionsinst ten be-
richten. Fiir weiterfilhrende Studien zur Theorie geometrischer Konstruktionen
verweisen wir auf die Literatur am Ende dieses Bandes.

Das Zeichendreieck ist ein Konstruktionsinstrument, welches in Verbindung
mit Zirkel und Lineal gewisse Konstruktionen, die auch mit Zirkel und Lineal
allein ausgefiihrt werden konnen, vereinfacht, welches aber keine prinzipiell neuen
Konstruktionen gestattet. Dies rechtfertigt unser Vorgehen, von den gebriuch-
lichsten Konstruktionsinstrumenten das Zeichendreieck bei unseren Betrach-
tungen auszuschlieBen. Eine dhnliche Situation findet sich bei axiomatisch auf-
gebauten Theorien. Wird zu einem System unabhéingiger Axiome ein aus diesen
Axiomen beweisbarer Satz als weiteres Axiom hinzugenommen, so vereinfachen
sich die Beweise gewisser Sitze, aber eskann kein Satz bewiesen werden, der nicht
auch schon mit den urspriinglich gegebenen Axiomen bewiesen werden konnte.
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Die Theorie der geometrischen Konstruktionen mit Zirkel und Lineal ist ein
mathematisches Gebiet, in dem geometrisches und algebraisches Denken fast
gleichermaBen erforderlich sind und sich gegenseitig beeinflussen. Wir werden in
unseren Ausfiihrungen besonders diesen Aspekt der Theorie der geometrischen
Konstruktionen betonen. Bei der Behandlung geometrischer Konstruktions-
aufgaben wollen wir unser Augenmerk besonders auf Uberlegungen richten, die
zu Aussagen iiber die Existenz und die Menge aller Losungen einer gegebenen
Aufgabe fiihren; damit lassen sich auch fiir die mathematische Gesamtausbildung
wertvolle Beziehungen zu anderen mathematischen Gebieten, wie etwa zur Auf-
l6sungstheorie bei Gleichungen und Gleichungssystemen, aufzeigen; auch auf Kon-
struktionsaufgaben, fiir die zwar Losungen existieren, die aber prinzipiell nicht
mit vorgegebenen Konstruktionsinstrumenten gefunden werden konnen, werden
wir eingehen. Ein besonderes Anliegen istes uns auch, bei der Durchfiihrung
geometrischer Konstruktionen in 4.2. das Augenmerk auf gewisse Ablaufpline
fiir die Konstruktionen zurichten und diese Ablaufpline als Algorithmen mit
Elementen der FluBbildtechnik zu behandeln. Darauf sollte auch in der Schule
neben der Betonung gewissenhafter, sauber ausgefiihrter Konstruktionen Wert
gelegt werden.

In jeder Theorie geometrischer Konstruktionen wire auch die Frage nach den
unvermeidlichen Abweichungen praktisch durchgefiihrter Konstruktionen gegen-
iiber den ideal gedachten Konstruktionen von gewissem Interesse; denn kein
gezeichneter Punkt ist ein idealer Punkt, und keine gezeichnete Linie ist eine
ideale Linie. Schranken fiir solche unvermeidlichen Abweichungen sind von den
verwendeten Konstruktionsinstrumenten und vom Ausfiihrenden der Konstruk-
tion abhingig; jede Verbesserung der Konstruktionsinstrumente und jedes Be-
mithen des Ausfithrenden der Konstruktion um gréfere Genauigkeit fithren zu
immer besseren Anniherungen an eine ideal gedachte Konstruktion, ohne diese
jemals zu erreichen. Auf solche und verwandte Fragen kann jedoch im Rahmen
unserer Ausfithrungen nicht weiter eingegangen werden.

Wir wollen nun erkliren, in welcher Weise Zirkel und Lineal in einer gegebenen
euklidischen Ebene zu verwenden sind. In der gegebenen Ebene wollen wir noch
zwei voneinander verschiedene Punkte O und E als gegeben voraussetzen (ohne
diese beiden Punkte konnte keine Konstruktion beginnen); der Strecke OF wird
die LingenmaBzahl 1 zugeordnet; die Strecke OF spielt also die Rolle einer
Einheitsstrecke.

Mit dem Lineal soll es moglich sein, die Gerade durch zwei gegebene, voneinander
verschiedene Punkte geben (in der Praxis wird es sich dabei stets nur um
eine endlich lange gerade Linie als Teil der gesamten Geraden handeln); andere
Funktionen, wie etwa das Vergleichen von Liingen, hat das Lineal nicht zu
erfiillen.
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Mit dem Zirkel soll es moglich sein, den Kreis um einen gegebenen Punkt durch
einen anderen gegeb Punkt geben; andere Funktionen hat der Zirkel
nicht zu erfiillen.

Durch den Gebrauch von Zirkel und Lineal in der angegebenen Weise ist es
moglich, die folgenden Konstruktionsschritte auszufiihren:

a) Konstruktion der Geraden durch zwei gegebene, voneinander verschiedene
Punkte;

b) Konstruktion des Schnittpunktes zweier nichtparalleler Geraden, von denen
eine durch zwei voneinander verschiedene Punkte gegeben ist;

¢) Konstruktion des Kreises um einen gegebenen Punkt durch einen anderen
gegebenen Punkt;

d) Konstruktion der zwei Schnittpunkte eines gegebenen Kreises und einer den
Kreis schneidenden Geraden, welche durch zwei voneinander verschiedene
Punkte gegeben ist, bzw. Konstruktion der zwei Schnittpunkte einer gegebenen
Geraden und eines die Gerade schneidenden Kreises, welcher durch seinen
Mittelpunkt und einen anderen Punkt gegeben ist;

e) Konstruktion der zwei Schnittpunkte eines gegebenen Kreises und eines diesen
Kreis schneidenden zweiten Kreises, welcher durch seinen Mittelpunkt und
einen anderen Punkt gegeben ist.

In unseren Ausfithrungen zur Theorie der geometrischen Konstruktionen soll
mit dem Wort ,,Kreis* stets die Kreislinie gemeint sein. Die Existenz und die
Eindeutigkeit der durch die Konstruktionsschritte a) bis e) konstruierten geome-
trischen Objekte (Punkte, Geraden, Kreise) sind auf Grund des Axiomensystems
der euklidischen Geometrie der Ebene, welches wir im ersten Band der beiden
Geometriebiande behandelt haben, gewihrleistet. Die Existenz und die Eindeutig-
keit sind im Fall a) unmittelbar durch ein Axiom gesichert, und in den Fillen b)
und ¢) konnen sie aus den behandelten Axiomen und Begriffsbildungen leicht
gefolgert werden. In den Fillen d) und e) muB zur Begriindung der Existenz
und Eindeutigkeit wesentlich auf die sogenannten Stetigkeitsaxiome (Archime-
disches Axiom und Vollstindigkeitsaxiom) zuriickgegriffen werden; es ist méglich,
mit Hilfe des behandelten Axiomensystems die folgenden beiden Sitze zu beweisen
(auf die Ausfiihrung der Beweise wollen wir verzichten):

1. Enthilt eine Gerade einen Punkt im Inneren eines Kreises, dann trifft sie
den Kreis, und zwar in genau zwei Punkten.

2. Enthélt ein Kreis einen inneren und einen duBeren Punkt eines zweiten
Kreises, dann schneiden sich die beiden Kreise, und zwar in genau zwei Punkten.

Definition 1. Jede Folge von endlich vielen Konstruktionsschritten der Arten
a) bis e) heiBt eine Konstruktion mit Zirkel und Lineal. (Wir werden, wenn keine
MiBverstandnisse zu befiirchten sind, auch kurz von einer Konstruktion sprechen.)
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Von der Bohandlung der Konstruktionen mit Zirkel und Lineal in der Schule
sind die folgenden einfachen Konstruktionsaufgaben bekannt:

1. Eine gegebene Strecke 4 B ist zu halbieren. Diese Aufgabe ist gleichbedeutend
mit der Aufgabe, den Mittelpunkt der Strecke 4B zu konstruieren.

2. Ein gegebener Winkel <(s, ¢; P*) ist zu halbieren. Diese Aufgabe ist gleich-
bedeutend mit der Aufgabe, die Winkelhalbierende des Winkels <X(s, ¢; P*)
zu konstruieren. (In den Betrachtungen dieses Abschnittes wollen wir die
Winkelhalbierenden nicht als Geraden, sondern als Strahlen definieren.)

3. In einem gegebenen Punkt P einer gegebenen Geraden g ist die Senkrechte zu
errichten. (Unter einer Senkrechten im Sinne dieser Aufgabenstellung wollen
wir eine Gerade verstehen.)

4. Von einem gegebenen Punkt P ist auf eine nicht durch P gehende Gerade g

das Lot zu fillen. (Unter einem Lot im Sinne dieser Aufgabenstellung wollen

wir nicht einen Strahl, auch nicht eine Strecke, sondern ebenfalls eine Gerade
verstehen.)

Zu einer gegebenen Geraden g ist durch einen nicht auf g gelegenen Punkt P

die Parallele zu konstruieren.

6. Auf einem gegebenen Strahl ist vom Anfangspunkt aus die Strecke, welche
gleiche Linge wie eine gegebene Strecke besitzt, abzutragen.

7. An einem gegebenen Strahl ist vom Anfangspunkt aus nach einer angege-
benen Seite der Elementarwinkel, welcher gleiche Grofle wie ein gegebener
Elementarwinkel besitzt, anzutragen.

&

Die Existenz und die Eindeutigkeit der nach den Aufgaben 1 bis 7 zu konstruie-
renden geometrischen Objekte sind auf Grund des Satzes vom Mittelpunkt, des
Satzes von der Winkelhalbierenden, des Existenz- und Eindeutigkeitssatzes fiir
Lote, des Parallelenaxioms, des Streckenabtragungssatzes und des Winkel-
abtragungssatzes gewahrleistet (vgl. die entsprechenden Sitze in MfL Band 6).
DaB die von der Schule bekannten Konstruktionen tatséchlich zur Lésung der
genannten einfachen Konstruktionsaufgaben fiihren, kann mit Hilfe weiterer be-
wiesener Sitze der Geometrie begriindet werden; im Fall der Aufgabe 1 sind
dafiir z. B. gewisse Kongruenzsitze fiir Dreiecke in Verbindung mit dem Satz
iiber gleichschenklige Dreiecke geeignet.

Es bereitet keine Schwierigkeiten, Folgen von endlich vielen Konstruktions-
schritten der Arten a) bis e) anzugeben, die zur Losung der gestellten Aufgaben
fithren. An dieser Stelle muB bemerkt werden, dafi beim Konstruieren haufig
mit sog ten ,,beliebigen‘ Elementen gearbeitet wird, z. B. mit einem ,,be-
liebigen* Punkt auf einer gegebenen Geraden, mit einer ,,beliebigen Geraden
durch einen gegebenen Punkt, mit einem ,,beliebigen* Kreis um einen gegebenen
Punkt. Derartige ,beliebige’ Elemente sind fiir die Arbeitsokonomie zweck-
méBig, aber fiir unsere theoretischen Untersuchungen sind sie stérend. Sie kénnen
vermieden werden, wenn an die Stelle der Konstruktion eines derartigen ,,belie-
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bigen*‘ Elements ein oder mehrere Konstruktionsschritte der Arten a) bis e) ge-
setzt werden. Bei den Konstruktionen in 4.2. wollen wir die Konstruktion ,,be-
liehiger* Elemente zulassen; bei der algebraischen Behandlung geometrischer
Konstruktionsaufgaben in 4.3. und 4.4. sollen sie aber ausgeschlossen werden.

Aufgabe 1. Man iiberlege sich zu den oben erwahnten Konstruktionsaufgaben 1
bis 7 Konstruktionen, in denen keine ,,beliebigen‘* Elemente, sondern nur Konstruk-
tionsschritte der Arten a) bis e) vorkommen.

Es ist zu empfehlen, von den Schiilern im Geometrieunterricht der Schule dic
Konstruktionen zu den Aufgaben 1 bis 7 mit allen Konstruktionsschritten der
Arten a) bis e) — eventuell auch mit Verwendung sogenannter ,,beliebiger‘ Ele-
mente — einmal beschreiben zu lassen, dann aber beim Beschreiben anderer
Konstruktionen, bei denen Teilkonstruktionen entsprechend der Aufgabenstel-
lungen 1 bis 7 auftreten, diese als Teilkonstruktionen kurz zu nennen, ohne sie
weiter in Konstruktionsschritte der Arten &) bis e) zu zerlegen. Von dieser Stelle
an méchten wir dann auch den Gebrauch des Zeichendreiecks als Konstruktions-
instrument neben Zirkel und Lineal bei den geometrischen Konstruktionen in der
Schule empfehlen. Wir haben zwar das Zeichendreieck aus unseren theoretischen
Betrachtungen ausgeschlossen, wir wollen aber darauf verweisen, da8 die Funk-
tionen des Zeichendreiecks iiber die Konstruktionsaufgaben 3, 4 und 5 durch die
Funktionen des Zirkels und des Lineals ersetzt werden konnen.

Als Konstruktionsaufgaben in der Theorie der geometrischen Konstruktionen
betrachten wir Aufgaben, aus endlich vielen Strecken gegebener MaBzahlen
@y, @y, ..., s € R% endlich viele Strecken der MaBzahlen z,, ..., 2w € R} zu kon-
strujeren, wobei sich jedesz; (j = 1, ..., m) entsprechend der Aufgabenstellung in
einer vorgeschriebenen Abhingigkeit von den a; (¢ = 1,...,n) befindet. Jede
solche Konstruktionsaufgabe kann in Teilaufgaben zerlegt werden, so daB in jeder
Teilaufgabe nur eine Strecke der MaBzahl 2 € R zu bestimmen ist.

Diese Betrachtungsweise geometrischer Konstruktionsaufgaben erweist sich fiir
theoretische Untersuchungen als zweckmiBig, sie ist jedoch fiir den Geometrie-
unterricht der Schule nicht zu empfehlen. Alle in der Schule iiblichen Aufgaben
zu den Konstruktionen mit Zirkel und Lineal konnen in dieser Weise umformuliert
werden; jeden gegebenen Winkel einer gegebenen GroBe « denken wir uns dabei
mittelbar durch eine Strecke gegeben, etwa durch eine Strecke der MaBzahl sin o ;
auch die in Konstruktionsaufgaben gesuchten Winkel werden mittelbar durch
Strecken angegeben. In den von uns betrachteten Konstruktionsaufgaben sind
entartete Strecken der MaBzahl 0 ausgeschlossen. Falls bei Konstruktionsaufgaben
derartige entartete Strecken auftreten konnen, wird auf diesen Sachverhalt be-
sonders hingewiesen.

Aufgabe 2. Man iiberlege sich, wie durch eine Konstruktion mit Zirkel und Lineal

aus einer Strecke der MaBzahl sin a ein Winkel der GréB8e a und wie aus einem Winkel
der GréBe a eine Strecke der MaBzah! sin a gefunden werden kann.
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Definition 2. Jedes System von Strecken der MaBzahlen z;, ..., n, welches
aus den Strecken der MaBzahlen a,, ..., @, entsprechend einer gegebenen Kon-
struktionsaufgabe konstruiert werden kann, heiBt eine Losung dieser Konstruk-
tionsaufgabe.

Definition 3. Eine Konstruktionsaufgabe heiBt genau dann geldst, wenn die
Menge aller Losungen (auch Lisung ge oder Losungsg theit genannt) kon-
struiert ist.

Definition 4. Eine Konstruktionsaufgabe heiBt genau dann mit Zirkel und
Lineal losbar, wenn eine Losung mit Zirkel und Lineal konstruiert werden kann.

Mit den eingefiihrten Begriffsbildungen konnen wir von Konstruktionsaufgaben
sprechen, die nicht mit Zirkel und Lineal 16sbar sind, fiir die aber dennoch Lé-
sungen existieren; solche Losungen kénnten z. B. durch eine Folge von unendlich
vielen Konstruktionsschritten der Arten a) bis e) mit Zirkel und Lineal oder durch.
Verwendung anderer Konstruktionsinstrumente gefunden werden.

Definition 5. Eine mit Zirkel und Lineal l6sbare Konstruktionsaufgabe heift.
genau dann mit Zirkel und Lineal gelost, wenn alle mit Zirkel und Lineal konstru-
ierbaren Lésungen konstruiert sind.

4.2 Geometrische Konstruktionen mit Zirkel und Lineal

Im vorliegenden Abschnitt werden nur Konstruktionen mit Zirkel und Lineal
behandelt; auch alle formulierten Konstruktionsaufgaben sind mit Zirkel und
Lineal 16sbar. Deshalb wollen wir in diesem Abschnitt bei allen Konstruktionen
und bei allen Konstruktionsaufgaben den Zusatz ,,mit Zirkel und Lineal* weg-
lassen. Bei den Formulierungen fiir Konstruktionsaufgaben werden wir neben
Strecken auch andere geometrische Objekte (z. B. Dreiecke, n-Ecke, Winkel,
Systeme von Kreisen usw.) verwenden. Diese geometrischen Objekte konnen
aber stets entsprechend unserer Auffassung von Konstruktionsaufgaben als Sy-
steme von endlich vielen Strecken, die gegebenenfalls noch durch Kreise oder-
Kreisbogen zu ergi sind, angesehen werden.

42.1.  Konstruktion von Strecken der MaBzahlen a + b, a—b, n-a, a/n,
a- b, a/b, Ja aus Strecken der MaBzahlen 1, g, b

Wir denken uns auBer der Einheitsstrecke OF noch eine Strecke der MafBzahl a
und eine Strecke der MaBzahl b gegeben. Zur Losung aller Konstruktionsaufgaben
dieses Abschnittes tragen wir auf dem Strahl OE* vom Anfangspunkt O aus die-
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Strecke der MaBzahl a ab; der Anfangspunkt dieser Strecke moge mit 4, (=0)
und der Endpunkt mége mit A4, bezeichnet werden. Wir 16sen nun die folgenden
Konstruktionsaufgaben.

1. Zu konstruieren ist eine Strecke der MaBzahl a + b.

Wir tragen auf dem Strahl 4,47 vom Anfangspunkt 4, aus die Strecke der
MaBzahl b ab; der Anfangspunkt mége mit B, (=4,) und der Endpunkt mége
mit B, bezeichnet werden. Die Strecke 4B, ist eine Strecke der MaBzahl a + b.

2. Zu konstruieren ist eine Strecke der MafBzahl @ — b. Bei dieser Aufgabe
wird @ > b vorausgesetzt.

Wir tragen auf dem Strahl 4,43 vom Anfangspunkt 4, aus die Strecke der
Mafizahl b ab; der Anfangspunkt mge mit B, (=4,) und der Endpunkt mége
mit B, bezeichnet werden. Die Strecke 4,B, ist eine Strecke der Mafzahl ¢ — b.

3. Zu konstruieren ist eine Strecke der MaBzahl n - a. Bei dieser Aufgabe wird
n als natiirliche Zahl >1 vorausgesetzt (im Fall » = 1 miiBte die folgende Be-
schreibung der Konstruktion etwas modifiziert werden, und auBerdem lige in
diesem Fall gar keine echte Konstruktionsaufgabe vor).

Wir tragen auf dem Strahl 4,45 vom Anfangspunkt 4, aus die Strecke der
Mafizahla ab; der Endpunkt dieser Strecke mdége mit A, bezeichnet werden.
Ist » > 2, so werden in entsprechender Weise weitere Strecken der MaBzahl a
abgetragen, und zwar noch (n — 2)-mal. Allgemein kénnen wir formulieren:
Nach (» — 1)-maligem Abtragen einer Strecke der MaBzahl @ auf dem Strahl OE+
von O aus erhalten wir den Punkt 4,,_,; auf dem Strahl 4,_,47 tragen wir von
A, _; aus nochmals die Strecke der MaBzahl @ ab; der Endpunkt dieser Strecke
moége mit A, bezeichnet werden. Die Strecke A4,4, ist eine Strecke der MaB-
zahl n - a.

4. Zu konstruieren ist eine Strecke der MaBzahl a/n. Bei dieser Aufgabe wird
n als natiirliche Zahl >1 vorausgesetzt (man vergleiche die Bemerkung iiber »
zur vorangegangenen Aufgabe).

Im Punkt O der Geraden durch O und E errichten wir die Senkrechte, und auf
einem der beiden von O ausgehenden Strahlen dieser Senkrechten wird von O
aus eine Strecke der MaBzahl 1 und auf demselben Strahl ebenfalls von O aus
eine Strecke der Mafizahl » - 1 (man vergleiche die vorangegangene Konstruktions-
aufgabe) abgetragen; der Endpunkt der Strecke der MaBzahl 1 mége mit E, und
der Endpunkt der Strecke der MafBzahl » -1 mége mit E, bezeichnet werden.
Wir konstruieren nun zur Geraden durch E, und 4, dic Parallele durch E,, und
diese Parallele schneidet die Strecke 4,4, in einem inneren Punkt P. Die Strecke
AP ist eine Strecke der MaBzahl a/n; denn wenn wir die MaBzahl dieser Strecke
zunéchst mit x bezeichnen, gilt nach dem Strahlensatz x : 1 =a :n, d. h.,, es
ist z = a/n. (Mit dem soeben beschriebenen Konstruktionsverfahren kann auch
die Streckenhalbierung durchgefiihrt werden.)
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5. Zu konstruieren ist eine Strecke der MaBzahl a - b. Bei dieser Aufgabe wird
a % 1 vorausgesetzt (im Fall @ = 1 miiBte die Beschreibung der Konstruktion
etwas modifiziert werden, und auBerdem ergibe der Fall @ = 1, genauso wie der
Fall b = 1, keine echte Konstruktionsaufgabe).

Im Punkt O der Geraden durch O und E errichten wir die Senkrechte, und auf
einem der beiden von O ausgehenden Strahlen dieser Senkrechten wird von O
aus die Strecke der MaBzahl b abgetragen; der Endpunkt dieser Strecke mége mit
B, bezeichnet werden. Wir konstruieren nun zur Geraden durch B, und E die
Parallele durch 4,, und diese Parallele schneidet den Strahl OB; in einem Punkt
P & 0. Die Strecke OP ist eine Strecke der MaBzahl @ - b; denn wenn wir die
MafBzahl dieser Strecke zunichst mit & bezeich gilt nach dem Strahlensatz
z:a="b:1,d.h, es ist  =a-b. (In dieser Konstruktionsaufgabe sind die
Aufgaben 3 und 4 als Sonderfille enthalten.) .

6. Zu konstruieren ist eine Strecke der MaBzahl a/b. Bei dieser Aufgabe wird
b 3= 1 vorausgesetzt (man vergleiche die Bemerkung iiber @ zur vorangegangenen
Aufgabe).

Im Punkt O der Geraden durch O und E errichten wir die Senkrechte, und
auf einem der beiden von O ausgehenden Strahlen dieser Senkrechten wird von
O aus die Strecke der MaBzahl 1 und ebenfalls von O aus die Strecke der MaBzahl b
abgetragen; der Endpunkt der Strecke der MaBzahl 1 mége mit E, und der End-
punkt der Strecke der MaBzahl b moge mit B, bezeichnet werden. Wir konstru-
ieren nun zur Geraden durch B, und 4, die Parallele durch E,, und diesé Parallele
schneidet den Strahl AT in einem Punkt P 3 0. Die Strecke OP ist eine Strecke
der MaBzahl a/b; denn wenn wir die Mafizahl dieser Strecke zunichst mit z be-
zeichnen, gilt nach dem Strahlensatz x : 1 =@ : b, d. h., es ist z = afb.

7. Zu konstruieren ist eine Strecke der MaBzahl }a.

Auf dem Strahl OE- wird von O aus die Strecke der MafBzahl 1 abgetragen;
der Endpunkt dieser Strecke mége mit E, bezeichnet werden. Wir halbieren die
Strecke E;A; und konstruieren um den Mittelpunkt dieser Strecke den Kreis k
durch E,. Nun errichten wir im Punkt O der Geraden durch O und E die Senk-
rechte; wir wihlen einen der beiden von O ausgehenden Strahlen dieser Senk-
rechten, und dieser schpeidet k in einem Punkt P. Die Strecke OP ist eine Strecke
der MaBzahl ;/n; ; denn wenn wir die MaBzahl dieser Strecke zunichst mit x be-
zeichnen, gilt in den! rechtwinkligen Dreieck E,4,P (dieses Dreieck ist recht-
winklig nach dem Satz des THALES) die Beziehung 22 = 1-a,d. h., es ist = ﬁ
(Der beschriebene Weg zur Losung der vorliegenden Konstruktionsaufgabe beruht
auf dem Héhensatz.)

Aufgabe 1. Man lése die vorliegende Konstruktionsaufgabe unter Verwendung
des Kathetensatzes und d h unter Ver d des Sel Tangent zes!

In den soeben behandelten Konstruktionsaufgaben ging es jeweils um die Kon-
struktion einer Strecke, deren MaBzahlx sich aus den MaBzahlen gegebener
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Strecken durch endlich viele rationale Operationen (Additionen, Subtraktionen,
Multiplikationen, Divisionen) bzw. durch eine Quadratwurzeloperation errechnen
lat. DaB solche Strecken existieren und jeweils bis auf Kongruenz eindeutig
bestimmt sind, kann aus den Axiomen der euklidischen Geometrie der Ebene
gefolgert werden. Wir wollen jede Konstruktion entsprechend der Konstruktions-
aufgaben 1 bis 6 rationale Konstruktion nennen; jede Konstruktion entsprechend
der Konstruktionsaufgabe 7 wollen wir Quadratwurzelkonstruktion nennen. Aus
der Losbarkeit der Konstruktionsaufgaben 1 bis 7 kann unmittelbar der nach-
stehende Satz gefolgert werden.

Satz 1. Ist x eine nichinegative reelle Zahl, die sich durch endlick viele rationale
Operationen und endlich viele Quadratwurzeloperationen aus den Mafzahlen endlich
vieler gegebener Strecken errechnen lift, so kann aus den gegebenen Strecken durch
eine Konstruktion mit Zirkel und Lineal eine Strecke der Mafzahl x konstruiert
werden.

Nach diesem Satz ist die Darstellbarkeit der Zahl z durch endlich viele rationale
Operationen und endlich viele Quadratwurzeloperationen aus den MaBzahlen
endlich vieler gegebener Strecken ein hinreichendes Kriterium fiir die Konstruier-
barkeit einer Strecke der MaBzahl 2 aus den endlich vielen gegebenen Strecken
mit Zirkel und Lineal; wir werden spiter zeigen, daB dieses Kriterium auch not-
wendig ist.

Aufgabe 2. Aus einer Einheitsstrecke ist eine Strecke der MeBzahl +(J5 — 1)
zu konstruieren. (Wird eine Einheitsstrecke so in zwei Teile geteilt, da8 die MaBzahl
der groBeren Teilstrecke gleich 3(f6 — 1) ist, so ist die groBere Teilstrecke mittlere
Proportionale zwischen der Gesamtstrecke und der kleineren Teilstrecke, d. h., es gilt

LG - D=GVE-3H:0-GE—3).
Derartige Streckenteilungen d Teil oder Teilungen nach dem
Gold Schnitt* ; der Goldene Schnitt spielt in der Kunst und in der
Asthetik eine bedeutende Ro]le )

422. Uber die Behandlung von Konstruktionsaufgaben

Zur Behandlung von Konstruktionsaufgaben gibt es zahlreiche Empfehlungen.
So wird z. B. in der Enzyklopiidie der Elementarmathematik, Band IV (Geometrie),
unter der Uberschrift ,,Ein allgemeines Losungssch fiir Konstruktionsaufgaben‘
empfohlen, in der Regel die Behandlung von Konstruktionsaufgaben in die Teile
,»Analysis*, , Konstruktion‘, ,,Beweis*, ,,Diskussion‘‘ zu zerlegen; in friiherer Li-
teratur (vgl. etwa P. CRANTZ und M. HAuPTMANN, Planimetrie, Teubner, Leipzig
1953, S. 51) wird die Behandlung von Konstruktionsaufgaben hiufig nach dem
Schema: ,,Analysis®, , Konstruktion (mit Konstruktionsbeschreibung)®, ,,Be-
hauptung®, ,,Beweis*, ,,Determination‘ behandelt. Welches Schema fiir die Be-
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handlung einer Konstruktionsaufgabe gewahlt wird und wie die einzelnen Teile
genannt werden, spielt eine untergeordnete Rolle; wichtig sind eine mathematisch
einwandfreie Behandlung der Aufgabe und im Fall der Losbarkeit eine iibersicht-
liche Darstellung des Losungsweges bis zur Angabe der Menge aller Losungen
entsprechend der Aufgabenstellung.

Wir empfehlen bei der Behandlung der Konstruktionsaufgaben eine Zweiteilung
der Arbeit entsprechend der beiden Arbeitsteile beim Losen von Bestimmungs-
gleichungen. Beim Loésen von Bestimmungsgleichungen kennen wir als ersten
Teil die sogenannte ,,Auflésung® (mit dem SchluB: ,,Wenn z Losung ist, dann
ist = ++-“) und als zweiten Teil die sogenannte ,,Probe‘‘ (mit dem Schlu: ,,Wenn
% =+, dann ist « Loésung); die Bezeichnung ,,Probe* sollte jedoch vermieden
werden, weil sie die logische Bedeutung dieses zweiten Teiles verschleiert. Auf
Grund der weitgehenden Ubereinstimmung zwischen Bestimmungsgleichung und
Konstruktionsaufgaben beziiglich ihrer logischen Struktur zerlegen wir die Be-
handlung jeder Konstruktionsaufgabe ebenfalls in zwei Teile. Zum I. Teil zahlen
wir das Aufsuchen eines Losungsweges, die Angabe eines Konstruktionsplanes
und die Durchfiihrung der Konstruktion; die Behandlung soll so erfolgen, daB
der SchluB gewihrleistet ist: ,,Wenn ein geometrisches Objekt X Losung ist, dann
ist X nach dem Konstruktionsplan konstruierbar. Zum II. Teil zdhlen wir die
Angabe aller Losungen mit allen notwendigen Beweisfithrungen; die Behandlung
soll so erfolgen, daB der SchluB gewihrleistet ist: ,,Wenn ein geometrisches Ob-
jekt X nach dem Konstruktionsplan konstruierbar ist, dann ist X Losung*.

4.2.3.  Der |. Teil der Behandlung jeder Konstruktionsaufgabe

Wir beginnen die Behandlung jeder Konstruktionsaufgabe mit der Annahme, wir
hétten die Aufgabe bereits gelost. Jede Losung miiBte dann aus einem endlichen
System gegebener Strecken entsprechend der Aufgabenstellung durch eine An-
einanderreihung von endlich vielen Konstruktionsschritten der Arten a) bis e)
(vgl. 4.1.) konstruiert werden kdnnen. Es kommt nun darauf an, fiir jede Losung
einen Losungsweg, d. h. eine Aneinanderreihung endlich vieler Konstruktions-
schritte, die auch zu gewissen Schrittkombinationen zusammengefaBt sein konnen,
zu finden, um dann einen Konstruktionsplan zur Durchfiihrung der Konstruktion
angeben zu kénnen; beim Aufschreiben eines Konstruktionsplanes mu8 also bereits
ein Losungsweg bekannt sein. Mitunter ist ein Losungsweg unmittelbar zu er-
kennen ; andernfalls empfiehlt es sich, zunachst cine Uberlegungsfigur (auch Plan-
figur, Uberlegungsskizze oder Analysisfigur genannt) anzufertigen; eine Uber-
legungsfigur ist eine skizzenhafte Darstellung einer oder mehrerer Losungen aus
der Menge aller Losungen in Verbindung mit den gegebenen Strecken der Aufgaben-
stellung (jede Uberlegungsfigur soll moglichst frei sein von stdrenden Speziali-
sierungen). Gelegentlich werden zur Uberlegungsfigur noch gewisse algebraische
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Beziehungen zwischen den MafBzahlen der gegebenen Strecken und den MaBzahlen
der gesuchten Strecken hinzugenommen, um das Auffinden eines Losungsweges zu
erleichtern.

Ergibt sich nach der Annahme, wir hitten eine Konstruktionsaufgabe bereits
gelost, durch richtige Schliisse ein offensichtlicher Widerspruch, dann ist die
vorgegebene Aufgabe nicht 16sbar; derartige Konstruktionsaufgaben werden in
4.4. behandelt. '

Haben wir aber einen Lésungsweg erkannt (entweder unmittelbar oder mit
Hilfe einer Uberlegungsfigur bzw. mit Hilfe algebraischer Beziehungen), so folgt
die Aufstellung eines Konstruktionsplanes, d. h. eines Ablaufplanes fiir die Durch-
fithrung der Konstruktion im Sinne eines Algorithmus, wobei symbolische Ab-
kiirzungen und Elemente von FluBdiagrammen Anwendung finden sollten. Auch
in der Schule sollte auf das Aufstellen klarer und gut durchdachter Konstruktions-
pléine groBer Wert gelegt werden; denn im Erwerb von Fahigkeiten und Fertig-
keiten dieser Art sehen wir eines der Erziehungsziele des modernen Mathematik-
unterrichts.

Jeder Konstruktionsplan besteht aus endlich vielen, hintereinander angeord-
neten Arbeitsschritten, das sind Konstruktionsschritte der Arten a) bis e) (vgl.
4.1.) bzw. Kombinationen solcher Schritte (wie z. B. die Konstruktionen zu den
Aufgaben 1 bis 7 in 4.1.); auch die Bezeichnung eines Schnitt ktes, der im
Verlauf einer Konstruktion entstanden ist, werden wir als einen Arbeitsschritt
ansehen. Die Konstruktion eines ,,beliebigen‘ Punktes auf einer gegebenen Ge-
raden, die Konstruktion einer ,,beliebigen‘ Geraden durch éinen gegebenen Punkt
und die Konstruktion eines ,,beliebigen“ Kreises um einen gegebenen Punkt
wollen wir ebenfalls als Arbeitsschritte eines Konstruktionsplanes zul ob-
wohl sie entsprechend den Ausfiihrungen in 4.1. vermieden werden kénnen. In
Konstruktionsplinen werden wir hiufig die Konstruktion eines Punktes (eines
Hilfspunktes oder eines Punktes, der entsprechend der Aufgabenstellung zu kon-
struieren ist) als einen Arbeitsschritt ansehen. Zur genaueren Beschreibung eines
solchen Arbeitsschrittes werden wir entweder zwei sich schneidende Geraden oder
einen Kreis und eine schneidende Gerade oder zwei sich schneidende Kreise ver-
wenden ; im Fall eines Kreises und einer schneidenden Geraden und im Fall zweier
sich schneidender Kreise miissen stets beide Schnittpunkte in die Betrachtungen
einbezogen werden. Gegebenenfalls kann einer der beiden Schnittpunkte durch
eine Zusatzbedingung wieder ausgeschlossen werden; andernfalls beginnt nach
einem solchen Arbeitsschritt eine Verzweigung des Konstruktionsplanes. Gelegent-
lich werden wir statt einer Geraden einen Strahl oder eine Strecke auf dieser
Geraden verwenden. Beispiele fiir Konstruktionspline bringen wir zu den Kon-
struktionsaufgaben in 4.2.5.

Auf der Grundlage eines richtigen Konstruktionsplanes bereitet es keine Schwie-
rigkeiten, jede Losung einer gegebenen Konstruktionsaufgabe zu konstruieren.
Trotz der erzieherischen Bedeutung der Ausfithrung der Konstruktion sind wir
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nicht der Meinung, daB in der Schule beim Losen jeder Konstruktionsaufgabe die
Konstruktion auch tatsichlich auszufithren ist. Bei gewissen Konstruktions-
aufgaben sollte allerdings auf eine sauber und gewissenhaft ausgefiihrte Kon-
struktion groBer Wert gelegt werden; auch auf eine Konstruktionsbeschreibung
auf der Grundlage des Konstruktionsplanes sollte gelegentlich wegen der Pflege
der Sprache im Mathematikunterricht nicht verzichtet werden. Wir werden im
folgenden bei der Behandlung von Konstruktionsaufgaben keine Konstruktions-
beschreibungen und auch keine Konstruktionen ausfiihren.

Als Kernstiick des I.Teils jeder Konstruktionsaufgabe betrachten wir den
Konstruktionsplan, mit dessen Hilfe es méglich sein muB, jede Losung zu kon-
struieren. Damit ist der SchluB gewihrleistet: ,,Wenn ein geometrisches Objekt
Lésung einer gegebenen Konstruktionsaufgabe ist, dann ist es nach dem Kon-
struktionsplan konstruierbar.

42.4. Der |l. Tell der Behandlung jeder Konstruktionsaufgabe

Im II. Teil der Behandlung jeder Konstruktionsaufgabe ist die Menge aller Lo-
sungen (abgesehen von kongruenten Losungen, eventuell auch abgesehen von
dhnlichen oder anderen geometrisch verwandten Losungen) anzugeben. Dazu ge-
hort der Beweis, dafl jedes geometrische Objekt, welches nach dem Konstruktions-
plan konstruiert werden kann, Losung der gegebenen Konstruktionsaufgabe ist.
Damit ist dann der SchluB gewihrleistet: ,,Wenn ein geometrisches Objekt X
nach dem Konstruktionsplan konstruierbar ist, dann ist X Losung‘.

Es gibt Konstruktionsaufgaben fiir die ein Konstruktionsplan zu einem (bis
auf Kongruenz) eindeutig bestimmten geometrischen Objekt fithrt, welches auf
Grund bekannter geometrischer Sitze und Axiome unmittelbar als Losung zu
erkennen ist; auch bei mehreren geometrischen Objekten, auf die ein Konstruk-
tionsplan fiihren kann, ist mitunter unmittelbar einzusehen, daB alle diese Objekte
Losungen der gestellten Konstruktionsaufgabe sind. Bei anderen Konstruktions-
aufgaben erfordert die Behauptung, daB jedes nach dem Konstruktionsplan
konstruierte geometrische Objekt tatsichlich Losung ist, eine Beweisfiilhrung
mit Hilfe bekannter Sitze, Axiome und SchluBweisen der Geometrie. Wir ver-
treten die Auffassung, daB geometrische Konstruktionsaufgaben sehr gut geeignet
sind, in der Schule friihzeitig einfache geometrische Beweisfiihrungen zu iiben
und Elemente des axiomatischen Denkens zu pflegen.

Neben Konstruktionsaufgaben, bei denen die gegebenen Objekte (Strecken oder
auch andere geometrische Objekte) ,spezielle’* GroBen besitzen, gibt es Kon-
struktionsaufgaben, bei denen die GroBen der gegebenen Objekte ,allgemein‘
oder ,,unbestimmt‘‘ angegeben sind. Bei Konstruktionsaufgaben der erstgenann-
ten Art ist der IL Teil der Behandlung der Konstruktionsaufgabe mit der An-
gabe aller Lésungen und den eventuell notwendigen Beweisfithrungen abgeschlos-
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sen, und es eriibrigen sich zusitzliche Untersuchungen iiber die GroBen der ge-
gebenen Objekte; das ist z. B. der Fall, wenn die Aufgabe lautet, aus einer gege-
benen Einheitsstrecke ein regelmiBiges 6-Eck zu konstruieren, oder wenn die
Aufgabe lautet, aus Strecken der Lingen 3 cm, 4 cm, 6 cm ein Dreieck zu kon-
struieren, in dem eine Hohe 3 cm, eine andere Hohe 4 cm und die dritte Hohe
6 cm lang ist. Bei Konstruktionsaufgaben der zweitgenannten Art gehort zum
II. Teil der Behandlung der Konstruktionsaufgabe eine zusitzliche Untersuchung
iiber die GréBen der gegebenen Objekte. Es kann vorkommen, daB nur beim
Erfiilltsein gewisser Bedingungen zwischen diesen GréSen die Konstruktions-
aufgabe 16sbar ist; es kann auch vorkommen, daB beim Erfiilltsein gewisser Be-
dingungen zwischen den GroBen der gegebenen Objekte genau eine Losung existiert
und daB beim Erfiilltsein anderer Bedingungen mehrere (eventuell auch unendlich
viele) paarweise inkongruente Losungen existieren. Die Angabe derartiger Be-
dingungen darf bei der Angabe der Lésungsmenge bei solchen Konstruktions-
aufgaben nicht fehlen (hiufig sind auf Grund derartiger Bedingungen auch bereits
unterschiedliche Konstruktionspline vorhanden). Konstruktionsaufgaben der
zweitgenannten Art wollen wir an zwei Beispielen erliutern. Wenn die Aufgabe
z. B. lautet, aus Strecken der Lingen a cm, b cm und (sin 60°) cm alle paarweise
inkongruenten Dreiecke 4 BC' zu konstruieren, fiir die die Seiten BC bzw. CA
eine Linge von @ cm bzw. b cm haben und fiir die |<ABC| = 60° ist, stellen
wir fest:

fiir 0 < b < a - sin 60° existiert keine Lisung,

fiir b = a - sin 60° existiert (bis auf Kongruenz) genau eine Lésung,

fiir @ - 8in 60° < b < a existieren genau zwei inkongruente Losungen,
~ fiir b = a existiert (bis auf Kongruenz) genau eine Lésung.
Als zweites Beispiel betrachten wir die Aufgabe, aus Strecken der MaBzahlen a,
h., sin B ein Dreieck A BC zu konstruieren, in dem die Seite BC die MaBzahl a,
die Héhe zur Seite AB die MaBzahl &, und <ABC die GréBe § besitzt. Offen-
sichtlich existiert keine Losung, falls &, == a - sin § ist. Ist jedoch kA, = a - sin §,
so existieren unendlich viele paarweise inkongruente Loésungen; laut Aufgaben-
stellung geniigt es, ein einziges solches Dreieck zu konstruieren, und dafiir kann
ein beliebiges von den unendlich vielen ausgewihlt werden.

42.5. Einige Beispiele fir Konstruktionsaufgaben

In den vorliegenden Ausfiihrungen haben wir neben Strecken und Streckenlingen
sehr oft die MaBzahl einer Strecke 4 B beziiglich der vorgegebenen Einheitsstrecke
OE zu betrachten. Demzufolge wire es gerechtfertigt, zu dem Symbol 4B einer
Strecke und dem Symbol [4 B| der Streckenlinge noch ein Symbol fiir die MaBzahl
der Strecke A B beziiglich der Einheitsstrecke OE einzufiihren. Da wir bei den
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algebraischen Betrachtungen geometrischer Sachverhalte nicht mit Streckenlingen,
sondern mit MaBzahlen arbeiten, kénnen wir die Einfiihrungen eines neuen Sym-
bols vermeiden, indem wir in den folgenden Ausfiihrungen zur Theorie der geo-
metrischen Konstruktionen mit |4 B| die MaBzahl der Strecke A B beziiglich der
Einheitsstrecke OF bezeich (vgl. 2.1.2.). Imfolgenden wird hiufig die For-
mulierung ,,Kreis um M mit r = |4 B|* oder ,,Kreis um M mit r = 1 verwendet
werden; dabei ist r nicht als Radius, sondern als RadiusmaBzahl zu lesen.

Beispiel 1. Zu einem Einheitskreis ist ein einbeschrieb regelmiiBiges

)

Sechseck zu konstruieren (ein »-Eck heiit genau dann einem Kreis einbeschrieben,
wenn jeder Eckpunkt des n-Ecks auf der Kreislinie liegt).

I Wir nehmen an, die Aufgabe wire gelost (vgl. Abb. 4.1), und wir suchen
einen Losungsweg. Offensichtlich ist jede Lésung kongruent zu einer Lésung, die

& £2

g £,

& t Abb. 4.1

nach dem folgenden Konstruktionsplan konstruiert werden kann. (Die Kon-
struktion, die ebenfalls zum I. Teil der Behandlung jeder Konstruktionsaufgabe
gehort, werden wir in diesem und in den folgenden Beispielen nicht ausfiihren).
Konstruktionsplan:
(Jeder Konstruktionsplan besteht aus einer Folge von Arbeitsschritten entspre-
chend den Ausfiihrungen in 4.2.3.) -
a) Konstruktion des Kreises ¥ um O durch E;
b) Konstruktion des Punktes E,:
L. auf k, 2. auf dem Kreis um E mit r = |OE| (Entscheidung fiir einen der
beiden Schnittpunkte);
c) Umbenennung des Punktes E in E,;
d) Konstruktion der Punkte E; ., ({ =2, ..., 5):
1. auf k, 2. auf dem Kreis um E, mlt r = |OE| (Entscheidung fiir den von
E;_, verschiedenen Punkt).

II. Jedes Sechseck E,E, ... E,, welches nach dem angegebenen Konstruktions-
plan konstruiert werden kann, lst offensichtlich Losung. Beim Arbeitsschritt b)
ist durch die beid tsteh Schnittpunkte die Weiterfilhrung der Kon-
struktion auf zwei Wegen moglich; beide Wege fithren jedoch zu kongruenten
Sechsecken. Die vorliegende Konstruktionsaufgabe besitzt bis auf Kongruenz
eine eindeutig bestimmte Losung.
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Bemerkung zu Beispiel 1. Mit Hilfe eines einem Einheitskreis einbeschrie-
benen regelmiBigen Sechsecks ist es leicht, ein beliebiges regelmiBiges (2*- 3)-
Eck (v = 0, 2, 3, ...) zu konstruieren (fiir v = 0 brauchen wir z. B. nur die Punkte
E,, E;, Ey auszuwiihlen).

Aufgabe 3. Es ist ein Konstruktionsplan zur Konstruktion eines regelmaB8igen
(27+1 . 3)-Ecks aufzustellen, wenn ein dem Kreis ¥ um O durch E einbeschriebenes
regelméBiges (2 - 3)-Eck E\E, ... Egs.3 gegeben ist.

Beispiel 2. Zu einem Einheitskreis ist ein einbeschriebenes regelmaBiges Vier-
eck zu konstruieren.

£
£ £
g Abb. 4.2
I. Wir nehmen an, die Aufgabe wire gelost (vgl. Abb. 4.2), und wir suchen
nach einem Losungsweg. Offensichtlich ist jede Losung kongruent zu einer Lo-
sung, die nach dem folgenden Konstruktionsplan konstruiert werden kann.
Konstruktionsplan:

a) Konstruktion des Kreises k um O durch E;

b) Konstruktion des Punktes Ey:
1. auf k, 2. auf dem Strahl OE-;

c) Konstruktion der Senkrechten s zur Geraden durch O und E in O;

d) Bezeichnung der beiden Schnittpunkte von s und k in beliebiger Reihenfolge
mit E, und E,;

e) Umbenennung des Punktes E in E,.

II. Jedes Viereck E,E,E.E,, welches nach dem angegeb Konstruktionsplan

konstruiert werden kann, ist offensichtlich Losung. Die vorliegende Konstruk-
tionsaufgabe besitzt bis auf Kongruenz eine eindeutig bestimmte Losung.

Bemerkung zu Beispiel 2. Mit Hilfe eines einem Einheitskreis einbeschrie-
benen regelmiBigen Vierecks ist es leicht, ein beliebiges regelmiBiges (2°)-Eck
(v = 3,4, ...) zu konstruieren.

Beispiel 3. Zu einem Einheitskreis ist ein einbeschriebenes regelmiBiges Zehn-
eck zu konstruieren.

I. Wir nehmen an, die Aufgabe wire gelost (vgl. Abb. 4.3), und wir suchen nach
einem Losungsweg. Ist H im Inneren der Strecke ME, derjenige Punkt, fiir den
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|HE,| = |E,E,| gilt, so sind die gleichschenkligen Dreiecke E,ME, und HE,E,
dhnlich, und es gilt

|<E,ME,| = |XHE,E,| = 36°; (O]
und weil | E,E,M| = 712° ist, ist auch | HE,M| = 36°, und folglich ist das
Dreieck MHE, gleichschenklig, und es gilt

|HM| = |HE,| = |E,E,| .

£ 3

£

£ 7] Abb. 4.3

Aus diesen Beziehungen und auf Grund der Ahnlichkeit der Dreiecke B, ME, und
HE,E, folgt
1: |E\E,| = |EE,| : (1 — |E\E,)), @2
d. h.
|B\Ey|? + |EyEg| — 1 = 0.
Auf Grund des vorliegenden geometrischen Sachverhaltes kommt fiir |E,E,| nur
der Wert
BBl =3 - (/35— 1) )
in Betracht (vgl. Aufgabe 2 in 4.2.1.). Somit ist jede Léosung der vorliegenden
Konstruktionsaufgabe kongruent zu einer Lésung, die nach dem folgenden Kon-
struktionsplan konstruiert werden kann.
Konstruktionsplan:
a) Konstruktion des Kreises ¥ um O durch E;
b) Konstruktion einer Strecke der Ma8zahl 1 ()5 — 1);
¢) Konstruktion des Punktes E,:
1. auf k, 2. auf dem Kreis um E mit r = }()/5 — 1) (Entscheidung fiir einen
der beiden Schnittpunkte);
d) Umbenennung des Punktes & in E,;
e) Konstruktion der Punkte E;,, (1 =2,...,9):
1. auf %, 2. auf dem Kreis um E; mit r = ;—(}/5 — 1) (Entscheidung fiir den
von E;_, verschiedenen Punkt).
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II. Jedes Zehneck E,E, ... Ey,, welches nach dem angegebenen Konstruktions- -
plan konstruiert werden kann, ist Losung, da man aus (3) auf (2) und hieraus auf
(1) schlieBen kann. Beim Arbeitsschritt ¢) ist durch die beiden entstehenden Schnitt-
punkte die Weiterfiilhrung der Konstruktion auf zwei Wegen maoglich; beide Wege
fithren jedoch zu kongruenten Zehnecken.

Bemerkung zu Beispiel 3. Mit Hilfe der Konstruktion eines einem Ein-
heitskreis einbeschriebenen regelmiBigen Zehnecks ist es leicht, ein beliebiges
regelméBiges (2” - 6)-Eck (v = 0, 2, 3, ...) zu konstruieren.

Wie bereits in 4.1. erwihnt wurde, hat C.F. Gauss alle natiirlichen Zahlen
n = 3 charakterisiert, fiir die die Konstruktion eines regelmifigen n-Ecks mit
Zirkel und Lineal aus einer vorgegebenen Einheitsstrecke méoglich ist; die Kon-
struktion ist dann und nur dann méglich, wenn in der Primfaktorzerlegung von n
alle von 2 verschiedenen Primfaktoren voneinander verschiedene Fermatsche
Primzahlen sind. Fiir die Zahlen n = 3, 4, ..., 20 bedeutet dies, daB die Konstruk-
tion der regelmiBigen 3-, 4-, 5-, 6-, 8-, 10-, 12, 16-, 16-, 17-, 20-Ecke mit Zirkel
und Lineal mdglich ist, wihrend es fiir die regelmiBigen 7-, 9-, 11-, 13-, 14-, 18-,
19-Ecke prinzipiell keine exakte Konstruktion mit Zirkel und Lineal geben kann
(Niherungskonstruktionen sind selbstverstindlich méglich). Fiir die regelmaBigen
7-Ecke werden wir in einem spéteren Abschnitt die Unmaoglichkeit der Konstruk-
tion (mit Zirkel und Lineal) beweisen. Von besonderer Uberraschung fiir Gauss
und die Mathematiker seiner Zeit war die Entdeckung der Konstruierbarkeit der
regelmiBigen 17-Ecke; zur Erinnerung an diese mathematische Leistung wurde
auf dem Grabstein fiir GAuss ein regelmiBiges 17-Eck angebracht. Ebenfalls
zum Gedenken an diese hervorragende Jugendleistung von Gauss wurde als Ab-
zeichen fiir die ,,Olympiaden Junger Mathematiker in der Deutschen Demokra-
tischen Republik ein regelmiBiges 17-Eck mit Zirkel und Lineal gewihlt. Gauss
hat eine Konstruktion fiir ein regelmiBiges 17-Eck angegeben; dabei verwendet
er eine Hilfsstrecke der MaBzahl

1 1

360° -1
cos g = — e+ g V17 + 5 V34 — 2+ /17

+%V17+3V1_7—V34—2'Vﬁ—21/34+2}/1_7-

In den folgenden drei Beispielen werden Dreieckskonstruktionen behandelt.
Wir wollen bei Dreiecken ABC hier und auch an spiteren Stellen folgende Be-
zeichnungen verwenden :

a:=|BC|, b:=|CA|, c¢:=|AB|;
o :=|XBAC|, p:=|XCBA|, y:=|XACB|;
H, Hp H, HohenfuBpunkte,
84,85, 8¢ Schnittpunkte der Seitenhalbierenden mit den Gegen-
seiten,
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Wa l“V,, W, Schnittpunkte der Winkelhalbierenden mit den Gegen-
seiten

(der Index gibt jeweils die Ecke an, durch die die betreffende Linie

verlduft).

Beispiel 4. Zu gegebenen Strecken der MafBzahlen k,, y, b, und einer Ein-
heitsstrecke sind alle paarweise inkongruenten Dreiecke ABC zu konstruieren,
fiir die |AH 4| = ha, |BHp| = hs, |CH¢| = k. gilt.

I. Wir nehmen an, die Aufgabe wire gelost, und wir suchen nach einem L&-

- sungsweg. Fiir jedes Dreieck 4 BC gilt
a-|AH, =b.|BHg| =c - |CH,|,
d. h.
1 b 1 1
@i =bi =l
[4H 4| | BH | |CH,|
und folglich ist jedes Dreieck A BC &hnlich zu jedem Dreieck 4’ B’C’, fiir welches
1 1
04 = -
s 1O41= 13, O]
gilt. Somit ist jede Losung der vorliegenden Konstruktionsaufgabe kongruent zu
einer Lésung, die nach dem folgenden Konstruktionsplan konstruiert werden
kann (vgl. Abb. 4.4).

|BC| =

|[4'B| =

AzA' H 8 8 Abb. 4.4

Konstruktionsplan:
a) Konstruktion einer Strecke der MafBzahl 1/h,, einer Strecke der MaBzahl 1/k,
und einer Strecke der MaBzahl 1/,;
b) Konstruktion eines Dreiecks A4’B’C’ mit
|B'C’| =hl’ |4'¢’) = 1 und |4'B’| =
'a hb

1
W’
falls ein solches existiert;
c) Umbenennung des Punktes 4’ in 4;
d) Konstruktion des Lotes ! von A auf die Gerade g durch B’ und C’;
e) Konstruktion des Punktes H ,:
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1. aufl, 2. auf dem Kreis um A mit 7 = k, (Entscheidung fiir einen der beiden
Schnittpunkte);
im weiteren Verlauf des Konstruktionsplanes sind zwei Fille zu unterscheiden;
liegt H, micht auf g, so folgen die Arbeitsschritte f), g), liegt H 4 auf g, so folgt
der Arbeitsschritt ') (auf Schwierigkeiten, die bei derartigen Entscheidungen auf-
treten, kénnen wir hier nicht eingehen);
f) Konstruktion des Punktes B:

1. auf der Parallelen zu g durch H ,, 2. auf der Geraden durch 4 und B’;
g) Konstruktion des Punktes C:

1. auf der Parallelen zu g durch H,, 2 auf der Geraden durch A und C".
) Umbenennung des Punktes B’ in B und des Punktes C’ in C.

II. Die gegebene Konstruktionsaufgabe ist genau dann 16sbar, wenn die Summe
von je zwei der Zahlen 1/k,, 1/ky, 1/h, groBer ist als die dritte Zahl. Ist diese Be-
dingung erfiillt, so ist die Losung bis auf Kongruenz sogar eindeutig bestimmt,
und jedes Dreieck ABC, welches nach dem angegebenen Konstruktionsplan kon-
struiert werden kann, ist Lésung.

Beispiel 5. Zu gegebenen Strecken der MaBzahlen s,, sy, s, sind alle paarweise
inkongruenten Dreiecke ABC zu konstruieren, fiir die [4S8,] = s,, |BSp| = 85,
|C8e| = s, gilt.

1. Wir nehmen an, die Aufgabe wire gelést, und wir suchen nach einem Lo-
sungsweg. Jedes Dreieck A BC konnen wir zu einem Parallelogramm ABCD er-
ginzen, in dem S, Diagonalenschnittpunkt ist. Der Schnittpunkt M der Seiten-
halbierenden im Dreieck 4 BC und der Schnittpunkt H der Seitenhalbierenden
im Dreieck BDC bilden mit B ein Dreieck, fiir das

|BM| = §-|BSs|, |BH|=%-108|, |MH|=7% |48

gilt (vgl. Abb. 4.5). Somit ist jede Losung der vorliegenden Konstruktionsaufgabe
kongruent zu einer Losung, die nach dem folgenden Konstruktionsplan konstruiert
werden kann.

Konstruktionsplan:
a) Konstruktion einer Strecke der MaBzahl %s,, und einer Strecke der MaBzahl

24

0

Abb. 4.5
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b) Konstruktion einer Strecke AM der MafBzahl %—a,;
¢) Konstruktion des Hilfspunktes H:
1. auf dem Strahl MA-, 2. auf dem Kreis um M mit r = £s,;
d) Konstruktion des Punktes B (falls diese Konstruktion ausfiihrbar ist):
1. auf dem Kreis um M mit r = %s,, 2. auf dem Kreis um H mit r = %s,
(Entscheidung fiir einen der beiden Schnittpunkte);
e) Konstruktion des Mittelpunktes S, der Strecke MH ;
f) Konstruktion des Punktes C':
1. auf dem Strahl S,B-, 2. auf dem Kreis um S, mit r = |BS,|.

II. Die Konstruktionseufgabe ist genau dann l6sbar, wenn die Summe von je
zwei der Zahlen %.t,, 28y, =5, (also auch der Zahlen s,, s, s,) groBer als die dritte
Zahl ist. Ist diese Bedingung erfiillt, so ist die Losung bis auf Kongruenz sogar
eindeutig bestimmt, und jedes Dreieck 4 BC, welches nach dem angegebenen Kon-
struktionsplan konstruiert werden kann, ist Losung.

Beispiel 6. Zu gegebenen Strecken der MaBzahlen %,, s4, w,, fiir die nicht
ks = 8, = w, gelten moge, sind alle paarweise inkongruenten Dreiecke 4 BC zu
konstruieren, fiir die |[AH 4| = hq, |A84| = 84, |AW 4| = w, gilt. (Im Fall b, = &,
= w, wiirden die Punkte H,, S,, W, zusammenfallen, und es wiren alle Dreiecke
mit |AB| = |AC| und |AH 4| = h, Losung.)

I. Wir nehmen an, die Aufgabe wiire gelost, und wir suchen nach einem Losungs-
weg. In jedem Dreieck A BC ist entweder |AH ,| < |AW | < |484| oder |AH 4|
= |AW,| = |A48,|, und in jedem dieser beiden Fille halbjert der Strahl AW}

i Abb. 4.6

auf dem Umbkreis des Dreiecks 4 BC denjenigen von B und C bestimmten Kreis-
bogen, auf dem A nicht liegt (vgl. Abb. 4.6). Somit ist jede Losung der vor-
liegenden Konstruktionsaufgabe kongruent zu einer Lésung, die nach dem fol-
genden Konstruktionsplan konstruiert werden kann.
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Konstruktionsplan:
a) Konstruktion eines rechtwinkligen Dreiecks AH ,8, mit
| XAH 484 = 90°, |AH,| =k, und |48,4] =343
b) Konstruktion des Punktes W ,:
1. auf dem Strahl H,S}, 2. auf dem Kreis um 4 mit r = w,;
¢) Konstruktion des Hilfspunktes H (Schnittpunkt des Strahls A W% mit dem
Umkreis):
1. auf dem Strahl AWY, 2. auf der Senkrechten s zur Geraden g durch H, und
S, im Punkt S,;
d) Konstruktion des Umkreismittelpunktes M :
1. auf 8, 2. auf der Mittelsenkrechten zur Strecke AH;
e) Konstruktion des Punktes B:
1. auf g, 2. auf dem Kreis um M durch 4 (Entscheidung fiir einen der beiden
Schnittpunkte);
f) Bezeichnung des im Arbeitsschritt e) erhaltenen zweiten Schnittpunktes mit C.
II. Die Konstruktionsaufgabe ist genau dann lésbar, wenn h, < w, < 84 ist.
Ist diese Bedingung erfiillt, so ist die Losung bis auf Kongruenz sogar eindeutig
bestimmt ; und jedes Dreieck 4 BC, welches nach dem angegebenen Konstruktions-
plan konstruiert werden kann, ist Losung.

Beispiel 7. Zu einem gegebenen Punkt P, ist der inverse Punkt P, beziiglich
eines gegebenen Kreises k mit dem Mittelpunkt M und der RadiusmaBzahl r zu
konstruieren; es sei P, &= M vorausgesetzt (der inverse Punkt P; zu P, beziiglich
k ist derjenige Punkt auf dem Strahl MP{, fiir den das Produkt |MP,|- [MP,|
gleich 72 ist; vgl. 3.6., insbesondere S. 167).

I. Wir nehmen an, die Aufgabe wiire gelést, und wir suchen nach einem Lé-
sungsweg. Es empfiehlt sich eine Fallunterscheidung fiir die Lage von P, be-
viiglich k (auBerhalb %, innerhalb k, auf k; vgl. Abb. 4.7). Offensichtlich ist der

Abb. 4.7
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inverse Punkt P, von P, in jedem der drei Fille eindeutig bestimmt; liegt P,
auf k, so ist P, = P), und in jedem der beiden anderen Fille kann P, mit Hilfe
des Kathetensatzes gefunden werden. Der Punkt P, liBt sich nach dem fol-
genden Konstruktionsplan konstruieren.

Konstruktionsplan:

Fall 1: P, liege auBerhalb k.

2) Konstruktion des Strahls M Py ;

b) Konstruktion des Mittelpunktes H, der Strecke M P;;

c) Konstruktion des Kreises ¥; um H, durch P;;

d) Bezeichnung der beiden Schnittpunkte von & und %; mit §; und 8, in beliebiger
Reihenfolge;

e) Konstruktion des Punktes P,:
1. auf dem Strahl M P}, 2. auf der Geraden durch S; und S,.

Fall 2: P, liege innerhalb k.

a’) Konstruktion des Strahls M Pf;

b’) Konstruktion des Hilfspunktes S, :
1. auf %, 2. auf der Senkrechten zur Geraden durch M und P, in P, (Ent-
scheidung fiir einen der beiden Schnittpunkte);

¢’) Konstruktion des Punktes P,:
1. auf dem Strahl MP{, 2. auf der Senkrechten zur Geraden durch M und 8,
in 8.

Fall 3: P, liege auf k.

a’’) Bezeichnung des Punktes P; mit P,.

II. Jede Konstruktion nach dem vorliegenden Konstruktionsplan fiihrt zu dem
eindeutig bestimmten Punkt P,, fiir den |MP,| - |MP,| = r? ist. Die durch den
Arbeitsschritt d) bzw. b’) bewirkte Verzweigung in der Konstruktion wird jeweils
durch den folgenden Arbeitsschritt wieder zusammengefiihrt.

Bemerkung zu Beispiel 7. Da die Inversion am Kreis (vgl. 3.6.) eine kreis-
treue Abbildung ist, falls man auch die Geraden als Kreise ansieht, kann der zu
einem Kreis k, inverse Kreis k; beziiglich des Inversionskreises k im allgemeinen
dadurch gefunden werden, daB zu drei Punkten Py, P,, P; auf k, die inversen
Punkte P;, P;, Py beziiglich k konstruiert werden (falls ¥ und %, gemeinsame
Punkte besitzen, sind diese mit jhren inversen Punkten identisch); der Kreis k;
ist der durch Pj, P;, P; bestimmte Kreis (der Mittelpunkt von k; ist nicht not-
wendig der inverse Punkt des Mittelpunktes von k).

Aufgabe 4. Zu jedem Konstruktionsplan der Beispiele 1 bis 7 ist eine Konstruk-
tion mit Zirkel und Lineal auszufiihren.
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4.2.6. Das Berihrungsproblem des Apollonius

Als Beriihrungsproblem des ArorroNius wird die Aufgabe bezeichnet, zu drei
gegebenen Kreisen alle diejenigen Kreise zu konstruieren, die jeden der drei
gegebenen Kreise beriihren; bei dieser Aufgabenstellung sind auch Punkte und
Geraden als ,,entartete‘* Kreise zugelassen. Aus einer Untersuchung aller denk-
baren Lagebeziehungen der drei gegebenen Kreise erkennt man, daB zur Menge
aller gesuchten Kreise maximal acht Kreise gehdren; bei den dazu erforderlichen
Uberlegungen empfiehlt es sich, in einer Fallunterscheidung jeweils die Anzahl
derjenigen existierenden Kreise zu bestimmen, die drei, zwei, einen, keinen der
drei gegebenen Kreise im Inneren enthalten und jeden dieser drei Kreise be-
rithren.

Wir wollen in diesem Abschnitt das Beriihrungsproblem des ApoLLONIUS bei
einer Lage der vorgegebenen Kreise 16sen, bei der die Menge der gesuchten Kreise
aus tatsichlich acht Kreisen besteht; auBerdem: wollen wir noch annehmen, da
je zwei der drei gegebenen Kreise auBerhalb des dritten Kreises liegen. Bei der
zu behandelnden Konstruktionsaufgabe beschrinken wir uns auf die Konstruk-
tion desjenigen Kreises, der alle drei gegebenen Kreise beriihrt und im Inneren
enthdlt. Auf dem von uns gewihlten Losungsweg wird die gegebene Aufgabe
zunéchst in eine dquivalente Aufgabe umgewandelt, bei der die urspriinglich ge-
gebenen Kreise k; (¢ = 1, 2, 3) durch Kreise k; mit unverinderten Mittelpunkten,
aber verinderten Radien ersetzt sind, und zwar so, daB zwei der Kreise k; sich
in einem Punkt M beriihren und jede RadiusmaBzahl r; gegeniiber der Radius-
maBzahl 7, um denselben Wert vergréBert ist. Durch Inversion der Kreise k;
am Einheitskreis um M entsteht wiederum eine dquivalente Aufgabe fiir ,,Kreise**
k;, von denen auf Grund der Eigenschaften der Inversion am Einheitskreis um M
zwei,, Kreise* zu parallelen Geraden ,,entartet‘‘ sind ; diese Aufgabe kann leicht gelost
werden. Dann bereitet es aber auch keine Schwierigkeiten, die Aufgabe fiir die Kreise
k; und schlieBlich die urspriingliche Aufgabe fiir die Kreise k; zu 1osen (vgl. Abb. 4.8
und 4.9). Die Konstruktion der anderen sieben Kreise kann in analoger Weise
erfolgen; dabei entstehen die 7; nicht in jedem Fall nur durch VergroBerung der
7., sondern in gewissen Féllen auch durch Verkleinerung um denselben Wert. In
analoger Weise konnen auch die entsprechenden Konstruktionsaufgaben bei an-
derer Lage der vorgegebenen (nicht entarteten) Kreise gelost werden; befinden
sich unter den vorgegebenen Kreisen ,,entartete‘ Kreise (Punkte oder Geraden),
s0 treten beim Lésen der entsprechenden Konstruktionsaufgaben Vereinfachungen
auf. Fiir die Konstruktionsaufgabe, die wir 16sen wollen, setzen wir beziiglich der
drei gegebenen Kreise noch voraus, daB jede Tangente an zwei dieser Kreise mit
dem dritten Kreis keinen gemeinsamen Punkt besitzt (in diesem Fall besteht die
Menge aller Losungen fiir das Beriithrungsproblem des APOLLONIUS aus acht
Kreisen).
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Abb. 4.8 Abb. 4.9
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I. Wir nehmen an, wir hitten die Aufgabe bereits gelst, und wir suchen nach
einem Losungsweg. Offensichtlich ist die Lésung eindeutig bestimmt, und der
folgende Konstruktionsplan, der wesentlich auf den Eigenschaften der Inversion
am Kreis beruht, ist zur Konstruktion der Lésung geeignet. Die drei gegebenen
Kreise seien mit k; (i = 1, 2, 3) die jeweiligen Mittelpunkte mit M; und die je-
weiligen RadiusmaBzahlen mit r; bezeichnet. Ohne Beschrinkung der Allgemein-
heit diirfen wir die Numerierung so wihlen, daf3

MM, — 1y — 1y < MM — 1y — 1y
und
MMy — 1y — 1y < |MyMy| — 1, — 1y
ist (vgl. Abb. 4.8).
Konstruktionsplan:
a) Konstruktion von Strecken der MaBzahlen
ri=rn4+ (MM —r—1) (i=1223);
b) Konstruktion des Kreises k; um M; mit r = r; (s = 1, 2, 3);
c) Konstruktion des Hilfspunktes 3 :
1. auf dem Strahl M, M, 2. auf k;;
der Punkt M ist Beriihrungspunkt der Kreise k; und k;;
d) Konstruktion des Hilfskreises ¥ um M mit r = 1;
e) Konstruktion des zu k; inversen Kreises k; beziiglich k, ¢ = 1,2, 3 (vgl. die
Bemerkung zu Beispiel 7 in 4.2.5.);
auf Grund der Eigenschaften der Inversion an einem Kreis sind k7 und k, parallele
Geraden, und kj ist ein nicht entarteter Kreis zwischen diesen beiden Geraden
(Berithrung mit kj oder k; ist nicht ausgeschlossen);
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f) Bezeichnung des Mittelpunktes von k3 mit M und der RadiusmaBzahl dieses
Kreises mit 7 (es ist My + M);

g) Konstruktion einer Senkrechten s zu k; (wir wihlen das Lot von My auf ky);

h) Bezeichnung des Schnittpunktes von s und k] mit S, und des Schnittpunktes

von s und kj mit S,;

Konstruktion des Hilfspunktes M;

1. auf der Mittelsenkrechten zur Strecke §,S,, 2. auf dem Kreis um M; mit

r =1y + 5 - |S,S,y| (Entscheidung fiir denjenigen der beiden Schnittpunkte,

dessen AbstandsmaBzahl von M kleiner als § - |S,S,| ist; es gibt genau einen

solchen Punkt);

j) Konstruktion des Kreises k; um M} mit r = § - |S,Sy|;

k) Konstruktion des zu k inversen Kreises k; beziiglich k;

1) Bezeichnung des Mittelpunktes von k; mit M, und der RadiusmaBzahl dieses
Kreises mit 7y ;

m)Konstruktion des Kreises k, um M, mit r, = r; — 3 - (M M,| — r, — 1,);

n) Konstruktion des Berithrungspunktes B; des Kreises k, mit dem Kreis k;
t=12,3):
1. auf k;, 2. auf dem Strahl M M7.

II. Jede Konstruktion nach dem vorliegenden Konstruktionsplan fiihrt zu dem
eindeutig bestimmten Kreis k;, also zur eindeutig bestimmten Losung der ge-
gebenen Konstruktionsaufgabe, denn offensichtlich liegen ky, k3, k3 im AuBeren
von k, und werden von k, beriihrt, wihrend M im Inneren von k liegt; dann
liegen auf Grund der Eigenschaften der Inversion am Kreis k die Kreise kj, k;,
kg im Inneren von k; und werden von k; beriihrt, und folglich liegen auch die
Kreise k), k,, k; im Inneren von k, und werden von k, beriihrt.

i

Aufgabe 5. Drei Kreise k,, k,, k3 mogen dieselben V. gen wie in der
soeben behandelten Konstruktionsaufgabe erfiilllen. Man gebe einen Konstruktions-
plan zur Konstruktion desjenigen Kreises k, an, der jeden der drei gegebenen Kreise
beriihrt und der nur den Kreis %, im Inneren enthélt.

43.  Geometrische Konstruktionen mit Zirkel und Lineal in
algebraischer Behandlung

4.3.1. Algebraische Fassung geometrischer Konstruktionsprobleme

Fiir die algebraische Behandlung geometrischer Konstruktionen mit Zirkel und
Lineal in der euklidischen Ebene denken wir uns ein kartesisches Koordinat
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system unter Verwendung der bereits fixierten Punkte O und E (vgl. 4.1.) ein-
gefithrt. Der Punkt O sei Koordinatenursprung, und die Gerade durch O und E
sei z-Achse mit E; = F als Einheitspunkt; fiir den Einheitspunkt E, auf der y-
Achse gilt |OE,| = |OF,| (vgl. 2.1.3.).

Entsprechend unserer Auffassung von Konstruktionsaufgaben (vgl. 4.1.) sind
bei jeder Konstruktionsaufgabe aus endlich vielen gegebenen Strecken der MaB-
zahlen m,, m,, ..., m, endlich viele Strecken der MaBzahlen My, Mg, «..y My Z0 kon-
struieren, wobei sich jedes m} (j =1, ..., n') entsprechend der Aufgabenstellung
in einer vorgeschriebenen Abhéngigkeit von den m¢ (i = 1, ..., n) befindet; jede
solche Konstruktionsaufgabe kann in Teilaufgaben zerlegt werden, so daB in
jeder Teilaufgabe nur eine Strecke der MaBzahl m’ zu konstruieren ist. Die ge-
gebenen Strecken jeder Konstruktionsaufgabe denken wir uns durch ihre End-
punkte festgelegt, und diese Endpunkte konnen wir durch ihre Koordinaten in
dem eingefiihrten kartesischen Koordinatensystem erfassen; auch die zu kon-
struierenden Strecken konnen in diesem Sinne durch ihre Endpunkte und diese
wiederum durch ihre Koordinaten beschrieben werden. Jede Gerade, die im Ver-
lauf einer Konstruktion auftritt, beschreiben wir durch eine Gleichung der Form
az + by + ¢ = 0; jeden Kreis, der im Verlauf einer Konstruktion auftritt, be-
schreiben wir durch eine Gleichung der Form 22 + y? + az + bz 4+ ¢ = 0. Zur
Vereinfachung der Sprechweise wollen wir im folgenden die Formulierung ,,der
Punkt P mit den Koordinaten (z, ) durch die kiirzere Sprechweise ,,der Punkt
(x, y)** ersetzen; in entsprechender Weise werden wir auch die Formulierungen
»die Gerade ax + by + ¢ = 0“ und ,der Kreis ® + y? + az + by 4+ ¢ = 0
verwenden.

Wir suchen nun nach einer algebraischen Charakterisierung aller Strecken, die
mit Zirkel und Lineal aus gegebenen Strecken konstruiert werden konnen. Eine
solche Charakterisierung liefert der folgende Satz, der die Umkehrung des Satzes 1
in 4.2.1. ist.

Satz 2. Wenn aus gegebenen Strecken der Mapzaklen my, my, ..., ma durch eine
Konstruktion mit Zirkel und Lineal eine Strecke der Mafzahl m’ konstruiert werden
kann, dann lipt sich m’ aus my, my, ..., mq durch endlich viele rationale Operationen
(Multiplikationen, Divisionen, Additionen, Subtraktionen) und endlich viele Qua-
dratwurzeloperati errech

Beweis. Nach Definition 1in 4.1. ist jede Konstruktion mit Zirkel und Lineal
eine Aneinanderreihung von endlich vielen Konstruktionsschritten der Arten a)
bis e). Wir verfolgen zunichst diese fiinf Arten der Konstruktionsschritte mit
Hilfe des eingefiihrten kartesischen Koordinatensystems.

Konstruktionsschritt der Art a):

Die gegebenen Punkte seien (a,, b,) und (ay, by).

Eine Gleichung der Geraden durch diese Punkte ist az + by + ¢ = Omita:=b, —b,
b: =a, —a,, c: = a;b, — by,
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Konstruktionsschritt der Art b):

Die gegebenen sich schneidenden Geraden seien ;2 + b,y + ¢; = 0 und a,x + bgy
+ ¢, = 0. Die Koordinaten des Schnittpunktes (s, ys) ergeben sich durch zs = e/d
und ys =f/d mit d: = a,b, — bya,, e: =byc, — ¢,by, f: =y, —ay0q; d = a;b, — biay
ist bei sich schneidenden Geraden stets ungleich 0.

Konstruktionsschritt der Art c):

Der gegebene Mittelpunkt sei (ay, by), und der gegebene Punkt des zu konstru-
ierenden Kreises sei (a,, b,). Eine Gleichung des zu konstruierenden Kreises ist
22 + y* 4 ax + by + ¢ = 0 mit

a:= —2ay, b:= — 2by, c:=aly + bl — (aw — @) — (by — b))%
Konstruktionsschritt der Art d):

Die gegebene Gerade sei a,z + by + ¢, = 0, und der von dieser Geraden ge-
schnittene gegebene Kreis sei 22 + y? + a,z + by + ¢, = 0. Die Koordinaten
der beiden Schnittpunkte (zs, ys) und (x5, ys) ergeben sich im Fall b, & 0 durch

25 = — 2 4 L yBE—44C A a
3_—2A+2A'V - , Ys= —p T
, B , a ., ¢

S T =_ 2. a
zg 3424 yB* — 44C, Ys 5, %,

mit
i=af 48}, B:=1bl -0+ 200 —abb, C:=cl—bob+bi e

im Fall b, = 0 ist a; & 0, und die Koordinaten der Schnittpunkte ergeben sich
durch

we— — 2 ys = — 2+ L yB TiAc

' 24724 ,
e = _ 2 y's=—£——i-;/l?—4AC
S a,’ 24~ 24

mit
. — a? L= L2 2
A:=a?, B:=al,, C:=c}—aa+dc.

Es ist in beiden Fillen 4 > 0, und bei Existenz zweier Schnittpunkte, die wir bei
Konstruktionsschritten der Art d) vora tzen, ist in beiden Fillen auch
B2 —44C > 0.

Konstruktionsschritt der Art e):

Die gegebenen sich schneidenden Kreise seien 22 + % + a,2 + by + ¢, = 0 und
#? + y® + agx + by + ¢, = 0. Die beiden Schnittpunkte (zs, ys) und (zs, ¥s)
sind gleichzeitig die Schnittpunkte des Kreises 2% 4 y% + @,z + by + ¢, = 0 mit
der Geraden (a, — a,)  + (b, — by) y + ¢, — ¢, = 0, weil die Gerade die Potenz-
gerade der beiden Kreise ist, und somit fiihrt unsere Betrachtung des Konstruk-
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tionsschrittes der Art e) zu entsprechenden Ergebnissen wie die Betrachtung des
Konstruktionsschrittes der Art d).

Die Ergebnisse der durchgefiihrten Uberlegungen kénnen wir in der folgenden
Weise interpretieren: Wenn eine Strecke der MaBzahl m’ aus gegebenen Strecken
der MaBzahlen m,, m,, ..., ms durch eine Konstruktion mit Zirkel und Lineal
(d. h. durch endlich viele Konstruktionsschritte der Arten a) bis e)) konstruiert
werden kann, dann laBt sich die Zahlm’' aus m,, m,, ..., my durch endlich viele
rationale Operationen und endlich viele Quadratwurzeloperationen errechnen.
Damit. ist Satz 2 bewiesen.

Auf Grund des soeben bewiesenen Satzes 2 und des Satzes 1 in 4.1. ist die
Darstellbarkeit der Zahl m’ aus Zahlen m,, my, ..., ma durch endlich viele rationale
Operationen und endlich viele Quadratwurzeloperationen ein notwendiges und
auch ein hinreichendes Kriterium fiir die Konstruierbarkeit einer Strecke der
MaBzahl m’ aus gegebenen Strecken der MaBzahlen m,, m,, ..., mqy mit Zirkel und
Lineal. Damit haben wir die Moglichkeit geschaffen, bei geometrischen Konstruk-
tionen mit Zirkel und Lineal die Frage nach der Losbarkeit gegebener Konstruk-
tionsaufgaben in die Sprache der Algebra zu iibersetzen und mit Mitteln der
Algebra zu untersuchen. Auf dicse Weise konnte bei zahlreichen konkreten
Konstruktionsaufgaben bewiesen werden, dafl sie nicht lésbar sind. Wenn fiir
cine Konstruktionsaufgabe trotz intensiver Bemithungen auf geometrischem Wege
keine Losung gefunden werden kann, liegt die Vermutung nahe, daB diese Aufgabe
unlésbar ist; die Entscheidung dariiber kann — auch bei Verwendung algebraischer
Hilfsmittel — in konkreten Fillen sehr schwierig oder auch ,,praktisch* unméglich
sein. Es gibt aber auch Konstruktionsaufgaben, fiir die zunichst keine Losung
bekannt war und fiir die die Losbarkeit erst nach Ubertragung in die Sprache
der Algebra erkannt werden konnte. So wurde z. B. in einer 1961 verdffentlichten
Sammlung iiber 16sbare Dreiecks-Konstruktionsaufgaben die Aufgabe, mit Zirkel
und Lineal ein Dreieck 4 BC aus Strecken der MaBzahlen h, = |AH 4|, s, = |BSp,,
w, = |AW 4| (und einer Einheitsstrecke) zu konstruieren, als unlésbar registriert,
ohne einen Beweis fiir die Unlgsbarkeit zu erwihnen. Bei einem spiteren Ver-
such, einen Beweis mit algebraischen Hilfsmitteln fiir die Unlosbarkeit dieser
Aufgabe zu fiihren, ergab sich wider Erwarten ein Beweis fiir die Losbarkeit;
wir werden in 4.3.2. diesen Beweis ausfiihren.

In den meisten Abhandlungen zur Theorie der geometrischen Konstruktionen
mit Zirkel und Lineal werden umfangreiche Hilfsmittel aus der Algebra, insbe-
sondere aus der Korpertheorie bzw. aus der Galois-Theorie herangezogen, um die
Unlésbarkeit gewisser Konstruktionsaufgaben zu beweisen. Wir wiihlen im Rah-
men unserer Abhandlung solche Beispiele fiir unlésbare Konstruktionsaufgaben
aus, fiir die die Beweise der Unlésbarkeit mit wenigen elementaren Hilfsmitteln
aus der Algebra gefiihrt werden kénnen; diese Hilfsmittel behandeln wir in 4.3.3.
Fiir weiterfiihrende Studien algebraischer Hilfsmittel in der Theorie der geome-
trischen Konstruktionen verweisen wir auf Literatur am SchluB dieses Buches.
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4.3.2. Entscheidung Uber die Losbarkeit geometrischer Konstruktions-
aufgaben durch algebraische Betrachtungen

Wir beweisen in diesem Abschnitt mit algebraischen Hilfsmitteln die Losbarkeit
fiir zwei Konstruktionsaufgaben. Eine Ausfiilhrung der Konstruktion — eventuell
gar noch in einer zweckmaBigen Form — und die Bestimmung der Ldsungs-
gesamtheit sollen uns dabei nicht interessieren; uns geniigt der Nachweis fiir die
Moglichkeit der Konstruktion. Als erstes Beispiel wihlen wir die in 4.3.1. er-
wiithnte Dreiecks-Konstruktionsaufgabe. Das zweite Beispiel steht in Verbindung
zu gewissen Betrachtungen iiber die Lagerung inkongruenter Kreise in einem
Viereck.

Beispiel 1. Mit Zirkel und Lineal ist ein Dreieck 4 BC aus gegebenen Strecken
der MaBzahlen h, = |AH,|, 8 = |BSs|, w, = |AW 4| (und einer Einheitsstrecke)
zu konstruieren. Einfache Uberlegungen zeigen (vgl. Abb. 4.10), daB fiir w, > hq,
8 = tha und fiir w, = k4, 8 > 3k, jeweils mindestens ein Dreieck mit den
geforderten Eigenschaften existiert. '

Abb. 4.10

Beweis der Losbarkeit. Wir nehmen an, die Aufgabe sei bereits gelost.
Das Dreieck ABC denken wir uns durch D zu dem Parallelogramm erginzt, in
dem Sp der Diagonalenschnittpunkt ist. Es sei # die MaBzahl der Strecke BH ,,
und p sei MaBzahl der Strecke BW 4. Dann gelten die folgenden Beziehungen:

(@ — z)? = 4§ — B2, )
(P + ) =wi—h2, (2
¢ =h? 4 a?, 3)

b =kl + (@ + %)%, (4)
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a— ‘ b
a-P_2 ; (5
P c
die Beziehung (B) gilt, weil in jedem Dreieck jede Winkelhalbierende die Gegen-
seite im Verhiltnis der anliegenden Seiten teilt. '
Aus (1) bzw. (2) folgt
a=K+z mit K:=ds? — h? (1)
bzw. o
p=L—=z mit L:=ypwl—5i. @)
Mit (2%), (3) und (4) folgt aus (6)
Ll
a 2 a? 4 2ax
(L—r —l) = ae
und schlieBlich '
a? 2a a? + 2ax
L—z¢ L—z RKta’

Nach Division durch @ erhilt man unter Verwendung von (1°)

K4z 2 K 4 3z

L=z L—z h+az

und daraus
(K — 2L + 3z) - (B2 + 2?) = (K+3x)~(L2—2Lz+z’),
d. h. . :
(4L) - 2% + (3h% — 3L% + 2KL) -z + (Kh? — 2Lh% — KL*) = 0.

Jede der beiden Losungen dieser quadratischen Gleichungen in z kann durch
endlich viele rationale Operationen und endlich viele Quadratwurzeloperationen
aus h,, 8, w, (und 1) berechnet werden. Die Diskriminante der quadratischen
Gleichung ist auf Grund der eingangs genannten Bedingungen stets groBer als Null,
Da mindestens einer der beiden z-Werte als MaBzahl der Strecke BH , in Betracht
kommt, ist es méglich, die Strecke BH 4 eines zu konstruierenden Dreiecks 4 BC aus
den gegebenen Strecken mit Zirkel und Lineal zu konstruieren. Dann kann aber
auch das Dreieck A BC selbst aus den gegebenen Strecken mit Zirkel und Lineal
konstruiert werden.

Beispiel 2. Zu einem gegebenen Kreis k, der RadiusmaBzahl 7, (und einer:
E_irmfé) ist mit Zirkel und Lineal ein groBtmoglicher Kreis k;, der den
folgenden Bedingungen geniigt, zu konstruieren: 1. k, beriihrt k, und liegt im
AuBeren von k, 2. k, und k, liegen in einem gleichschenkligen Trapez mit drei’
gleichlangen Seiten, von denen jede mit ihrem Mittelpunkt &, beriihrt, wihrend
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die vierte Seite mit ihrem Mittelpunkt k, beriihrt (vgl. Abb. 4.11): Einfache Uber-

legungen zeigen, daB r, in Abhingigkeit von r, eindeutig bestimmt ist.
Beweis der Lésbarkeit. Wir neh an, die Aufgabe sei bereits gelost.

Wir bezeichnen den Mittelpunkt von k; mit M,, den Mittelpunkt von &, mit M,

Abb. 4.11
und die Mittelpunkte der Trapezschenkel mit @ bzw. R. Der Schnittpunkt des
Lotes von M, auf die Gerade durch M, und @ sei S, und der Schnittpunkt der
Geraden durch M; und M, mit der Geraden durch @ und R sei 7. Dann ist
|M,T| = r,, weil die MaBzahl des Abstandes der beiden parallelen Trapezseiten
gleich 2r, + 2r; ist, und somit gilt, da die Dreiecke M,QT und M, M,S éhnlich sind,

n_nTn

nontrn
Daraus folgt

242 —1ri=0
und schlieBlich

rn=—nd }/'%-‘T"f
(das Minuszeichen kommt fiir den vorliegenden geometrischen Sachverhalt nicht
in Betracht). Somit ist

=(2—1-n.

Es kann also r, durch endlich viele rationale Operationen und endlich viele Qua-
dratwurzeloperationen aus 7, (und 1) berechnet werden, und demzufolge ist es
méglich, einen Kreis k, entsprechend der Aufgabenstellung mit Zirkel und Lineal
zu konstruieren.

4.3.3. Konstruierbare Zahlen und zwei Hilfssdtze aus der Algebra

Zur Vorbereitung der Beweise fur die Unlésbarkeit einiger Konstruktionsaufgaben,
die wir in 4.4. behandeln, b wir zunichst zwei Hilfssiitze aus der Algebra.
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Es erweist sich dabei als vorteilhaft, fiir gewisse Zahlen den Begriff der Kon-
struierbarkeit in Anlehnung an den geometrischen Begriff der Konstruierbarkeit
einzufiihren. :

Definition 6. Eine Zahlz heiBt genau dann aus den Zahlen a;, ay, ..., @
konstruierbar, wenn z aus a,, ds, ..., @, durch endlich viele rationale Operationen
und endlich viele Quadratwurzeloperationen errechnet werden kann.

So ist z. B. -;—(}/5 — 1) eine aus rationalen Zahlen konstruierbare Zahl; da
jede rationale Zahl aus der Zahl 1 konstruierbar ist, kann die Zahl unseres Bei-
spiels auch als eine aus der Zahl 1 konstruierbare Zahl angesehen werden. Die

Zahl -;-;/; + 7 VS — ;/2_ ist eine aus den beiden Zahlen 1 und = konstruierbare
Zahl. Bei Reihenentwicklungen fiir reelle Zahlen kann nichts iiber die Kon-
struierbarkeit aus gegebenen Zahlen, etwa aus den rationalen Zahlen, ausgesagt
werden, weil in Reihenentwicklungen unendlich viele Operationen auftreten; man
denke z. B. an

2=14+3+c+s+

[l e B T L

Fiir den Beweis des folgenden Hilfssatzes erinnern wir an den Begriff der Korper-
erweiterung eines gegebenen Korpers durch Adjunktion eines Elementes. Ad-
jungiert man zu einem Korper K ein durch eine Quadratwurzeloperation entstan-
denes Element }/E (ke K, ;/l? ¢ K), so entsteht ein echter Erweiterungskérper K';
jedes Element von K’ gestattet die Darstellung a + b - |/'I; mit geeigneten a,be K.
Aus a + bk = 0 folgt hierbei wegen |k ¢ K stets 5 =0 und a = 0.

Hilfssatz 1. Wenn eine kubische Gleichung
2B tapt+azta=0 (O]

mit rationalen Koeffizienten keine rationale Liosung besitzt, dann ist keine ihrer
Lésungen aus rationalen Zahlen konstruierbar.

Beweis. Der nachfolgende indirekte Beweis beruht auf Beweisgedanken von
E. Lanpav (1877—1938).

Nach Voraussetzung liegt keine der drei Losungen von (1) im Kérper der ra-
tionalen Zahlen Q; im folgenden Beweis wollen wir den Koérper der rationalen
Zahlen mit K, bezeichnen.

Angenommen, es gibe eine aus rationalen Zahlen konstruierbare Losung der
Gleichung (1); diese Losung sei mit x, bezeichnet. Dann lige diese Losung in
einem durch n Quadratwurzeladjunktionen aus K, entstandenen Erweiterungs-
korper K, mit minimalem n > 1. Fiir z, giibe es damit eine Darstellung der Form

zn=p+qg-yo (BoweK,,, jwek,_ ;).
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Dann miifite auch
Zi=p—q-fweck,
eine Losung von (1) sein; denn wegen 2, = p + ¢ y’w
o +agl + oz ta=a+bjuw
mit
a:=p® + 3pg*w + a, - (p* + ¢*w) + ap + o€ K,y
b:=3p+ qw +ay- 2pg +age K,y
und weil z, Losung von (1) ist, wire a + & - ;/1_4} =0,d.h.a=0und b =0, und
somit wire .
T3+ aaf + a2z +a=a—b-jw=0.

Die beiden Losungen x, und z, wiren verschieden, d. h., es wire z;, — 2, = 29;/17) +0;
denn andernfalls wiire ¢ = 0, und das wiire gleichbedeutend mit z, = %, = p€ K, _,
im Widerspruch zu den Eigenschaften von K,.

Nach dem Vietaschen Wurzelsatz wire

B+ T+ o= —a,

d.h
’ Ty=—— (@& + ) =—a,— 2p.

Damit lige z; in K, _, und wiire eine aus rationalen Zahlen konstruierbare Lisung
von (1). Eine Wiederholung der soeben fiir 2, durchgefiihrten Betrachtungen mit
der Lésung z; wiirde dann zu einem offensichtlichen Widerspruch zu den Eigen-
schaften von K, fiihren. Also war die Annahme falsch, d. h., es gibt keine aus
rationalen Zahlen konstruierbare Lésung der Gleichung (1), wenn diese Gleichung
keine rationale Losung besitzt.

Bei den Anwendungen des Hilfssatzes 1 in den Unldsbarkeitsbeweisen von 4.4.
berufen wir uns nicht auf die Aussage des Hilfssatzes in der Form der vorliegenden
Implikation, sondern wir verwenden die Kontraposition dieser Implikation: Wenn
eine kubische Gleichung z® + ay2?® + @,z + @, = 0 mit rationalen Koeffizienten
eine aus rationalen Zahlen konstruierbare Losung besitzt, dann ist mindestens
eine ihrer Lésungen rational.

Hilfssatz 2, Wenn eine kubische Gleichung z° + a,a® + a,z + ay = 0 mit ganz-
hligen Koeffizienten eine rationale Losung x, besitzt, dann ist x, ganzzahlig und
ein Teiler von a,.

Beweis. Es sei z, eine rationale Losung der Gleichung

2 taxtazta=0 (a,a,0¢Z).
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Dann gestattet 2, die Darstellung z, = I/m mit !, me Z, m >0, ggT (I, m) = 1.
Weil 2, eine Losung ist, folgt

1B + a,l’m + a,lm? + agm® = 0. 2
Aus (2) folgt

B= —m-(a® + aylm + am?),
und daraus folgt m = 1. Aus (2) folgt aber auch

am® = — 1. (12 + aglm + aym?),
und daraus folgt, daB I ein Teiler von a, ist.

Aus der Darstellung z, = I/m folgt nun unmittelbar die Behauptung des Hilfs-
satzes 2.

4.4, Die Unlssbarkeit einiger Konstruktionsaufgaben mit Zirkel
und Lineal

Die im folgenden behandelten Aufgaben sind bei den Mathematikern unter kurzen
Formulierungen bekannt, die auch wir zur Bezeichnung dieser Aufgaben ver-
wenden wollen. Dabei miissen wir uns aber dariiber im klaren sein, daB diese
kurzen Formulierungen einer Prizisierung bediirfen, weil in ihnen wesentliche
Voraussetzungen und wesentliche Bedingungen der eigentlichen Aufgabenstellung
nicht explizit zum Ausdruck kommen; wir werden in jedem Fall eine solche pri-
zisierte Aufgabenformulierung vornehmen. Wenn diese nicht explizit genannten
Voraussetzungen und Bedingungen einer solchen Aufgabe aufler acht gelassen
werden, dann sind MiBverstiandnisse und Fehlinterpretationen leicht moglich; eine
solche Aufgabe, fiir die wir ‘die Unlésbarkeit beweisen, konnte dann sogar 16sbar
werden. Die vielen ,,Wiirfelverdoppeler und ,,Winkeldreiteiler*, die es auch
heute in den Reihen der Nichtmathematiker noch immer gibt, haben hiufig die
eigentliche Aufgabenstellung gar nicht verstanden, oder sie verwenden Zirkel und
Lineal in anderer Weise, als es in der Theorie der geometrischen Konstruktionen
iiblich ist.

4.4.1. Die ,Verdoppelung des Wiirfels** (auch das ,,Delische Problem*‘
genannt)

Zu einer Strecke der MaBzahl a, die als KantenmaBzahl eines Wiirfels mit der
Vo_lumenmal}zshl a® angesehen werden kann, (und zu einer Einheitsstrecke) jst =
mit Zirkel und Lineal eine Strecke der MaBzahl a - {/2, di

eines Wiirfels der VolumenmaBzahl 2 - a® angesehen werden kann, zu konstruieren.
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Beweis der Unlgsbarkeit. Offensichtlich ist die formulierte Konstruktions-
aufgabe genau dann lésbar, wenn es moglich ist, aus einer Einheitsstrecke mlt
Zirkel und Lineal eine Strecke der Malizahl y/2 zu konstruieren.

Wire die gegebene Konstruktionsaufgabe losbar, dann wire nach Satz 2 in
4.3.1. auch die Zahl z := ';/2_ eine aus der Zahl 1 konstruierbare Zahl, und es
hitte die Gleichung

2 —2=0 (1)

eine aus rationalen Zahlen konstruierbare Losung.

Nach Hilfssatz 1 (wir verwenden hier und auch in den folgenden Beispielen die
Kontraposition der im Hilfssatz 1 formulierten Implikation) miiBte dann die
Gleichung (1) mindest. eine rationale Losung besitzen, und diese wire nach
Hilfssatz 2 ein Teiler von 2. Damit ergibe sich ein Widerspruch; denn keine der
Zahlen —2, —1, +1, +2 ist Losung von (1). Also ist die gegebene Konstruktions-
aufgabe nicht 1oshar.

4.42. Die ,Dreiteilung des Winkels*

Zu jeder gegebenen WinkelgroBe ¢ ist mit Zirkel und Lineal ein Winkel der GréBe
++@ zu konstruieren. (Einen Winkel der Gréfe ¢ denken wir uns mittelbar
durch eine Strecke gegeben, etwa durch eine Strecke der MaBzahl sin ¢.)

Beweis der Unlésbarkeit. Die Unlosbarkeit der formulierten Konstruk-
tionsaufgabe ist bewiesen, wenn wir fiir einen speziellen Winkel, z. B. fiir einen
Winkel der GréBe @ := 30° bewiesen haben, daB es nicht moglich ist, aus einer
Strecke der MaBzahl sin 30°: = 3 mit Zirkel und Lineal eine Strecke der MaBzahl
sin 10° zu konstruieren.

Wire die gegebene Konstruktionsaufgabe losbar, dann wire nach Satz 2 in
4.3.1. auch die Zahl z := sin 10° eine aus der Zahl - konstruierbare Zahl, und es
hdtte auf Grund der aus der Trigonometrie bekannten Formel sin 3x = 3 - sinx
— 4 - sin®« die Gleichung

42 — 3z + 5 =0 2)
eine aus rationalen Zahlen konstruierbare Losung. Dann miiBte aber auch die
Gleichung

¥—3y+1=0, ®)
die durch die Substitution y = 2z aus der Gleichung (2) hervorgeht, eine aus
rationalen Zahlen konstruierbare Losung haben. Nach Hilfssatz 1 miiBte dann

die Gleichung (3) mindestens eine rationale Losung besitzen, und diese wire nach
Hilfssatz 2 ein Tefler von 1. Damit ergibe sich ein Widerspruch, denn weder —1
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noch 41 ist Losung von (3). Also ist die gegebene Konstruktionsaufgabe nicht
16sbar.

Bemerkung. Es gibt selbstverstindlich Winkel spezieller Gréfen ¢, so_da8
mit Zirkel und Lineal Winkel der GréBe 5 - ¢ konstruiert werden konnen; das
ist_z. B. fiir jede WinkelgréBe ¢: = 360°/2n (n =0,1,2,...) der Fall. Diese
Tatsache steht aber nicht im Widerspruch zum Beweis der Unldsbarkeit der oben
formulierten Konstruktionsaufgabe. Wenn wir auBer Zirkel und Lineal noch
gewisse andere Konstruktionsinstrumente zulassen, dann gibt es Verfahren, mit
denen zu jedem Winkel jeder GréBe ¢ ein Winkel der GroBe 3 - ¢ exakt kon-
struiert werden kann; wir werden in 4.5.1. ein derartiges Verfahren behandeln.

4.43. , Konstruktion des regelmdBigen 7-Ecks*

Zu einem Einheitskreis ist mit Zirkel und Lineal ein einbeschriebenes regelmiBiges

7-Eck zu konstruieren.

Beweis der Unlésbarkeit. Wir verwenden fiir den folgenden Beweis eine
Betrachtung iiber komplexe Zahlen. Die Gleichung 27 — 1 = 0 besitzt auBer der
Losung z, = 1 noch die sechs weiteren komplexen Lésungen

60° . v-360°
7 + ¢ -8in 0 v=1,..6);

z, = cos

die Losungen 2z, und z,, die Losungen z, und z; und die Losungen z; und 2, sind
jeweils Paare konjugiert komplexer Zahlen, und es ist

1 1 1

Z:z,, —=z, =z.
Die sieben Lisungen z, z;, ..., 24 werden die siebenten Einheitswurzeln genannt.
Bei Abbildung der siebenten Einheitswurzeln in die GauBsche Zahlenebene er-
geben die Bildpunkte die Ecken eines regelmiBigen 7-Ecks; die Ecken liegen auf
dem Einheitskreis um den Punkt (0, 0), und eine Ecke ist der Einheitspunkt
(1, 0) auf der reellen Achse (vgl. Abb. 4.12). Aus 27 — 1 = 0 folgt wegen

21— 1=+ +24 4224224241 (z—1)
fiir die von 1 verschiedenen siebenten Einheitswurzeln die Gleichung
22428422+ 284+22+24+1=0

und daraus

ShatRtsqatliiico
Ptgtd+atz+o+1=0,
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22

z Abb. 4.12

1y 3 ! 1y 2 ! 1=0;
it =3z to) et ) — +lzt+5)+1=0;
mit Hilfe der Substitution y = (z + 1/z) entsteht schlieBlich die Gleichung

¥+y—2—1=0 @
mit den Lésungen

d. h.

1
y.=2y+z—'
»-360° ».360° v+360° | »-360°
= Co8 + ¢ . 8in + cos — ¢ 8in
7 d 7 7
. 360°
—2.cos” »=123).

Wiire die gegebene Konstruktionsaufgabe losbar, dann konnte auch mit Zirkel
und Lineal eine Strecke der MaBizahl 2 - cos (360°/7) aus einer Einheitsstrecke kon-
struiert werden, und nach Satz 2 in 4.3.1. wire die Zahl y: = 2 - cos (360°/7) eine
aus 1 konstruierbare Zahl. Dann hitte aber auch die Gleichung (4) eine aus
rationalen Zahlen konstruierbare Losung. Nach Hilfssatz 1 miiBte die Gleichung
(4) mindest: eine rationale Losung besitzen, und diese wiire nach Hilfssatz 2
ein Teiler von 1. Damit ergibe sich ein Widerspruch; denn weder die Zahl —1
noch die Zahl +1 ist eine Losung von (4). Also ist die gegebene Konstruktions-
aufgabe nicht 1osbar.

4.4.4. ,Konstruktion eines Dreiecks aus g, b, w,*

Zu jedem Tripel reeller Zahlen a, b, w,,, fiir welche ein Dreieck 4 BC mit a = |BC|,
b = |AC|, w, = |AW,| existiert, ist ein solches mit Zirkel und Lineal aus ge-
gebenen Strecken der MaBzahlen a, b, w, (und einer Einheitsstrecke) zu konstru-
ieren.
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Beweis der Unlésbarkeit. Die Unlosbarkeit der formulierten Konstruk-
tionsaufgabe ist bewiesen, wenn wir fiir ein spezielles Zahlentripel a, b, w,, fiir
welches ein Dreieck A BC mit @ = |BC|, b = |4C|, w, = |AW 4| existiert, zeigen
konnen, daB es nicht méglich ist, ein solches Dreieck 4 BC aus gegebenen Strecken
der MaBzahlen a, b, w, (und 1) mit Zirkel und Lineal zu konstruieren. Es ist leicht
einzusehen, daB fiir @: = 1,b: = 1, w,: = 1 ein Dreieck mit den geforderten
Eigenschaften existiert ; denn wenn man | BC| = |AC| = 1 annimmt und | X (4CB)|
von einer Gro8e in hinreichend kleiner Umgebung von 0° bis zu einer GréBe in
hinreichend kleiner Umgebung von 180° wachsen 1iBt, dann wichst |4 W 4| von
einem Wert, der offensichtlich kleiner ist als 1. bis zu einem Wert, der offen-
sichtlich groBer ist als 1, und aus Stetigkeitsgriinden muf es dann auch ein Dreieck
mit |AW 4| = 1 geben.

Wiire die gegebene Konstruktionsaufgabe und damit auch die Aufgabe mit
den speziellen Zahlenwerten 16sbar, dann wire auch die Zahl ¢ = |4 B] eine aus
der Zahl 1 konstruierbare Zahl.

Fiir jedes Dreieck ABC gilt

1 b .8 3 1 X oz_l b 3

7 Yar -sln—2—+§-w,~c-sm2_2~ -c-sina,
d. h.

o

w, (b + ¢) = 2bc - cos - ;

wegen
o b2 ¢ —a?
2. cos?— — -z
2 . cos 3 1 + cosx und cos o %e

folgt schlieBlich fiir jedes Dreieck 4 BC die Beziehung

wle b+t =bc-((b+c)2—a?).
Mit @ = b = w, = 1 ergibt sich

A+e2=c-(1+ec2—1),
d. h.

e +ct—2—1=0. (5)
Wire also ¢ aus der Zahl 1 konstruierbar, dann miiBite die Gleichung (5) eine
aus rationalen Zahlen konstruierbare Losung besitzen. Nach Hilfssatz 1 miiBite
dann die Gleichung (5) auch mindestens eine rationale Lésung haben, und diese
wire nach Hilfssatz 2 ein Teiler von 1. Damit ergibe sich ein Widerspruch, denn
weder —1 noch -1 ist Lésung von (5). Also ist die gegebene Konstruktionsaufgabe
nicht 16sbar.

Bemerkung. Mit dem Beweis der Unlosbarkeit der oben formulierten Kon-

struktionsaufgabe ist die Moglichkeit nicht ausgeschlossen, daB es Zahlentripel
‘a, b, w, gibt, fiir die die spezielle Konstruktionsaufgabe 16sbar ist.
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4.45. ,Konstruktion eines Dreiecks aus w,, wg, w,"*

Zu jedem Tripel reeller Zahlen w,, wg, w,, fiir welche ein Dreieck 4BC mit
w, = |AW,|, w; = |BWp|, w, = [CW| existiert, ist ein solches mit Zirkel und
Lineal aus gegebenen Strecken der MaBzahlen w,, ws, w, (und einer Einheits-

._strecke) zu konstruieren.

Beweis der Unlésbarkeit. Die Unlosbarkeit der formulierten Konstruk-
tionsaufgabe ist bewiesen, wenn wir fiir ein spezielles Zahlentripel w,, wy, w,,
fiir welches ein Dreieck 4 BC mit w, = |AW 4|, w; = |BW 5|, w, = |CW| existiert,
zeigen konnen, daB es nicht moglich ist, ein solches Dreieck 4 BC aus gegebenen
Strecken der MaBzahlen w,, ws, w, (und 1) mit Zirkel und Lineal zu konstruieren.
Es ist leicht einzusehen, daB fiir w,: = %, wg: = w,: = 2, ein gleichschenkliges
Dreieck mit den geforderten Eigenschaften existiert ; denn wenn man mit |A W | = 4
alle moglichen gleichschenkligen Dreiecke 4 BC' mit |4 B| = |AC| betrachtet und
| X(BAC)| von einer GroBe in hinreichend kleiner Umgebung von 0° bis zu einer
GroBe in hinreichend kleiner Umgebung von 180° wachsen 1i8t, dann wichst
|BW 5| = |CW | von einem Wert, der offensichtlich kleiner ist als 2, bis zu einem
Wert, der offensichtlich gréBer ist als 2, und aus Stetigkeitsgriinden muB es dann
auch ein gleichschenkliges Dreieck mit |[BW | = |CW¢| = 2 geben. Wiire die
gegebene Konstruktionsaufgabe und damit auch die Aufgabe mit den speziellen
Zahlenwerten losbar, dann wiire auch die Zahl z: = 4 - sin (8/2) eine aus den Zahlen
+ und 2 konstruierbare Zahl. In jedem gleichschenkligen Dreieck ABC mit
|AB| = |AC| ergibt sich bei Anwendung des Sinussatzes auf das Teildreieck 4 BW 5
die Beziehung

b . sin 28 = wj - sin 38;
auBerdem gilt

b.sinf=w,.
Mit w, = 4 und w, = 2 folgt

+-8in28 =2-sin 2§ -sin g
und daraus

cosf = 2-sin 38,

d. h.
B B B
—2. 2— =6.8in—— 8 -sin3=;
1 2sm2 65|n2 85m2,
mit der Substitution z = 4 - sin (8/2) folgt schlieBlich
x— a2 — 126 +8=0. (6)

Wiire also z = 4 - sin (8/2) eine aus den Zahlen 4 und 2 konstruierbare Zahl,
dann miiBte die Gleichung (6) eine aus rationalen Zahlen konstruierbare Losung
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besitzen. Nach Hilfssatz 1 miiite dann die Gleichung (6) auch mindestens eine
rationale Lésung haben, und diese wire nach Hilfssatz 2 ein Teiler von 8. Damit
ergibe sich ein Widerspruch; denn keine der Zahlen —8, —4, —2, —1, +1, 42,
+4, +8 ist Losung von (6). Also ist die gegebene Konstruktionsaufgabe nicht
16sbar.

Bemerkung. Es gibt selbstversténdlich auch Zahlentripel w,, g, w,, so daB
die spezielle Konstruktionsaufgabe 16sbar ist.

4.4.6. Eine vollstindige Aufzdhlung aller 16sbaren und unlésbaren Dreiecks-
konstruktionsaufgaben aus Seiten, Winkeln, Héhen, Seitenhalbieren-
den und Winkelhalbierenden

‘Wir haben in den vc Abschnitten mit algebraischen Hilfsmitteln die
Losbarkeit und auch die Unlosbarkeit gewxsser Konstrukt:onsaufgsben bewiesen. In
den von uns ausgewdhlten D; ks-Konstrukt fgaben waren die MaBzahlen der

b Strecken ,,allgemein‘‘ (oder ,,unbesti ‘ b Es gibt uniiber-

sehbar viele derartige ,,al]gememe“ Dreiecks- Konstruktwnsaufgaben, und die Ent-
scheidung iiber die Losbarkeit ist in vielen Fallen sehr schwer (falls sie iiberhaupt
moglich ist). Wir mochten im folgenden eine Ubers:cht iber die (mit Zirkel und
Lineal) l6sbaren und unlésbaren ;,all inen‘‘ Dreiecks-Konstruktionsaufgaben geben,
wenn fiir die Gré8en der gegebenen Objekte (hier wollen wir neben Strecken auch
wieder Winkel zulassen) nur

a,b, ¢, a, B, ¥, has R, ke 8as 81 8, Wy, W, Wy (7)
verwendet werden sollen (erforderliche Beweise findet der interessierte Leser in der
Arbeit von O. KROTENHEERDT, Zur Theorie der Dreieckskonstruktionen, Wiss. Z. Univ.
Halle XV (1966), 677—1700).

Mit_jeweils drei der in (7) gegebenen GréBen 1aBt sich eine ,,allgemeine* Dreiecks-

0] jlonsauigabe lormu. leren. ensic! 1C. sl
15\ 16-14-13
=2ty
(3) 1-2-3 5

derertige Aufgaben. Jede Aufgabe wird durch eine Klammer um die drei gegebenen
GroBen bezeichnet; als Reihenfolge dieser Groflen wihlen wir diejenige, die der in
(7) gegebenen Reihenfolge entspricht.

Die 455 Aufgaben fassen wir zu Aufgabenkomplexen zusammen, so daB jeweils
alle die Aufgaben zu einem Komplex gehbren, die durch Umb der D )
ecken und der dadurch verursachten Umb g der gegeb GroBen i
ubergehen die Aufgaben Jedes Komplexes erfordern zu ihrer Behandlung gleichartige
Thb Einen solchen Aufgabenkomplex bilden z. B. die Aufgaben (a, b, a),
{a, b, B), (b ¢, B), (b, ¢, ), (@, ¢, a), (a, c, y). Es gibt insgesamt 95 derartige Aufgaben-
komplexe, und zwar 60 Komplexe mit jeweils sechs Aufgaben, 30 Komplexe mit
jeweils drei Aufgaben und fiinf Komplexe mit jeweils einer Aufgabe.

Wiihlt man nun aus jedem der 95 Aufgabenkomplexe nach einem gewissen lexiko-
graphischen Prinzip (die durch (7) gegebenen GréBen mogen in der gegebenen Reihen-
folge als ,,Alphabet‘‘ dienen) jeweils die erste Aufgabe aus, so haben wir damit ein

d
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eindeutiges Symbol fiir den Typ aller in dem betreffenden Komplex erfaBten Aufgaben.
In diesem Sinne ergeben sich die 95 Aufgabentypen, die in Tabelle 4.1 aufgezahlt
silﬁmman—mxfﬁbeit fithrten zu folgendem Er-
gebnis:
83 Aufgabentypen sind 16sbar;
30 Aufgabentypen sind (im allgemeinen) unlésbar;
ufgabentypen sind unterbestimmt, und zwar

@, B, ko) mit der Beziehung A, = a - sin § und
(2, B, ) mit der Beziehung o + § + y = 180°.

Tabelle 4.1
[
Anzahl i Anzahl
Nr. Aufgaben- der Aufgaben | lésbar | Nr. Aufgaben- der Aufgaben | losbar
yP gleichen Typs ! yP gleichen Typs
1| (ab ¢) 1 ja 1368 | (ahy w,) 6 nein
2| (@b «) 6 ja i 37 (@ hy wp) 6 ja
3| @b 3 e |38 | (ahy w) 6 ja
4| (adb hy) 6 a 39| (asg &) 6 ja
5| (@b h) 3 a 40 | (a8, w,) 3 ja
8 (ab a,) [ . ja |} 4l | (a8, wp) [ nein
7| (@b s) 3 & 42 | (asy 8,) 3 ja
8| (adb w,) 6 ' nein | 43 | (a8 w,) [ nein
9| (adb w,) 3 1 Jja 44 | (a8 wp) [ nein
10 | (@aa B) 6 i ja ] 45 | (a8 w) 6 nein
11 | (aa hy) 3 a 46 | (a w, wp) 6 nein
12 | (aa hy) 6 a 47 | (awpw,) 3 nein
13 | (@a &) 3 a 48 | (a B ) 1 u. b.
14 | (aa &) 6 a 49 | (a B hy,) 6 ja
16 | (aa w,) 3 ja 50 | («pB k) 3 ja
16 | (aa wp) 6 nein || 51 | (af s,) 6 ja
17| @B ) 3 ja 62| (af &) 3 ja
18 | (@B hg) 6 ja 53 | (a B w,) [} ja
19 | (@B hy) 6 ja 154 (af w) 3 ja
20, (@B ke 6 wb. 55| («hehy) 6 ja
21 | (@B a5) 6 ja 56 | (a kg 8g) 3 ja
22| (@B &) 6 ja | 87 | (a hg8p) [} ja
23 | (@B &) 6 ja ‘ 58 | (a hgw,) 3 ja
24 | (af w,) 6 nein | 59 | (« kg wp) 6 nein
26 | (aB wp) 6 ja 60 | (a hp k) 3 ja
26| (@f w) [ ja 61 (a hp 85) 6 ja
27 | (a hg hp) X 8 ja 62 | (ahysp) ) ja
28 | (ah, 8,) ! 3 ja ‘ 63 | (ahya,) 6 ja
29 | (ah,8p) 6 ja | 64| (ahyw,) 6 ja
30 | (ahgw,) 3 ja ' 65 | (a hywp) 8 ja
31 | (a kg wp) 6 nein | 66 | (a kpw,) 6 nein
32 ! (ahyhy) 3 ja | 67 | («8g8) 6 ja
33 | (ahy8g) 6 ja | 68| (a8gw,) 3 ja
34 | (ahysy) 6 ja { 69 | (a 85 wp) 6 nein
35 | (ahys,) ) ja 70! (as88,) i 3 ja
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Tabelle 4.1 (Fortsetzung)

Anzahl | | Anzahl :
Nr. Au:'ga,ben- der Aufgaben | 1gsbar | Nr. I Auftgaben- ] der Aufgaben | lésbar
‘ yP gleichen Typs i P gleichen Typs

1| (s 8 w,) 8 nein | 84 | (ks 8 8) | 3 ja
72 | (s 8 wp) 8 nein ; 85 | (kg 8 w,) & 6 ja
8| (s & w) 6 nein | 86 | (kg & wp) | 6 nein
74 | (o w, wp) ] nein | 87 | (kg 8 wy) | [} nein
5 | (o wgw,) 3 nein || 88 | (ks w, wp) ! [} nein
78 | (hahy he) 1 ja 180 (kg wpw,) ! 3 nein
77 | (ha by 85) 6 jo 190 | (s, 28 | 1 i
78 | (kg by 8¢) 3 ja 91 (82 8 w,) ! 6 nein
79 | (ha by w,) 8 nein | 92 : (8, & w,) | 3 nein
80 | (kg by w,) 3 ja 93! (s, w,wp) 6 nein
81 | (hq 8q &) 6 je 94 (8, wpw,) 3 nein
82 | (hgoq w,) 3 ja n 95 (w, wyw,) 1 nein
83 | (Ra 85 wp) [ nein | ;

Die Beweise der Unlésbarkeit wurden nach der gleichen Methode wie in 4.4.4. und
4.4.5. gefiihrt, indem fiir ein spezielles Zahlentripel, fiir welches ein Dreieck existiert,
die Unlosbarkeit nachgewiesen wurde; das schlieBt nicht aus, daB es zu jedem un-
l6sbaren Aufgabentyp auch spezielle Zahlentripel geben ksnn, fir die die spezielle
Aufgabe 16sbar ist. Bei den lésbaren Aufgabentypen ist zu beachten, daB die gegeb 1
GroBen die Existenz mindestens eines Dreiecks entsprechend der Aufga.benstellung
gewihrleisten miissen; so sind z. B. beim Aufgabentyp (a, b, c) die Bedingungen
a+b>c¢, b+ c>a,c+ a>bzubeachten. Bei Beriicksichtigung derartiger Ein-
schrinkungen kann dann aber bei jedem losbaren Aufgebentyp zu jedem Tripel der
gegebenen GroBen jedes Dreieck, welches den Bedingungen der Aufgabenstellung
geniigt, konstruiert werden.

4.47.  Aufgaben

1. Es ist mit algebraischen Hilfsmitteln fir den Aufgabentyp (ka. hy, w,) und fiir
den Aufgabentyp (a, 8,5, w,) die Lésbarkeit zu beweisen.

2. Man beweise fiir den Aufgabentyp (a, f, w,) und fiir den Aufgabentyp (kg, by, w,)
die Unlosbarkeit.

4.5, Konstruktionen mit anderen Hilfsmitteln

Alle bisher behandelten Konstruktmnsaufgaben waren mit der Forderung ver-
kniipft, als K te nur den Zirkel und das Lineal in einer be-
stimmten Weise zu verwenden.

Im vorliegenden Abschnitt wollen wir nun noch iber einige Konstruktionen be-
richten, in denen Zirkel und Lineal in anderer als in der bisher beschriebenen Weise
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zu verwenden sind oder bei denen entweder nur der Zirkel oder nur das Lineal zur
Anwendung kommen darf. Auch auf den Gebrauch einiger anderer Konstruktions-
instrumente bei gewissen Konstruktionen werden wir kurz eingehen. Weitere Aus-
fithrungen zu den Theorien derartiger Konstruktionen bzw. Ansitze zu solchen Theo-
rien findet der interessierte Leser in [3], [7] und [14].

4.5.1. Eine Winkeldreiteilung

Die im folgenden behandelte Winkeldreiteilung ist bereits in den Werken von
ARCHIMEDES (287 ?—212 v. u. Z.) zu finden.

Zu jedem Elementarwinkel <ASB jeder GroBe g (0° < @ < 90°) jst ein Winkel
der GrdBe 49 zu konstruieren.

Abb. 4.13

« I. Konstruktionsplan (vgl. Abb. 4.13):
&T Konstruktion des Kreises k¥ um S mit r = |SA|;
b) Konstruktion der Geraden g durch S und B;
¢) Konstruktion des Punktes C:
1. auf k, 2. auf der Geraden durch 4 und D;
Konstruktion des Punktes D:
1. auf dem Strahl SB-, 2. auf dem Kreis um C mit r = |[SC| = |SA| (Entschei-
dung fir denjenigen der beiden Schnittpunkte, der von § verschieden ist).
Der Arbeitsschritt c), mit dem die beiden Punkte C und D zu konstruieren sind, kann
nicht ausgefithrt werden, falls als Kc ktionsinst; te nur der Zirkel und das
Lineal im bisherigen Sinne verwendet werden diirfen. Der Arbeitsschritt ¢) ist jedoch
ausfithrbar, wenn ein Lineal mit MaBeinheiten derart zur Anwendung kommt, daB
mit ihm eine Gerade durch A4 konstruiert werden kann, welche k in C und den Strahl
SB- in D so schneidet, da8 |CD| = |CS] ist.

II. Der Elementarwinkel JxADS besitzt die GréBe ¢.
Denn wenn man die Gro8e diescs Winkels dchst mit y bezeichnet, ist

| 4XCDS| = |&CSD| =y,
148SCA| = |§SAC| =2y,
|4 ASC| =180° — 4y

und schlieSlich
v + (180° — 4p) + ¢ = 180°,

=1.9.

Obwohl die soeben beschriebenc Konstruktion bei Verwendung von Zirkel und
Lineal im bisherigen Sinne offensichtlich nicht ausgefithrt werden kann, wére es zu-
nachst denkmdoglich, daB der Elementarwinkel ADS bei jeder GroBe ¢ auf anderem
‘Wege unter Verwendung von Zirkel und Lineal im bisherigen Sinne konstruiert werden
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konnte. Das ist aber auf Grund des Unlésbarkeitsbeweises der in 4.4.2. behandelten
Konstruktionsaufgabe und der abschlieBenden Bemerkung jenes Abschnittes nicht
bei jeder GréBe ¢ moglich.

4.5.2. Die Mohr-Mascheroni-Konstruktionen mit dem Zirkel allein

Es ist weniger von praktischer als vielmehr von theoretischer Bedeutung, daB jede
Konstruktion, die mit Zirkel und Lineal ausgefithrt werden kann, auch mit dem
Zirkel allein méglich ist, falls man sich bei jeder im Verlauf einer Konstruktion auf-
tretenden Geraden mit mindestens zwei Punkten dieser Geraden begnigt. Bei der-
artigen Konstruktionen wird z. B. die Konstruktion des Schnittpunktes zweier nicht-
paralleler Geraden zu einer nichttrivialen Konstruktionsaufgabe.

Man kann die obige Behauptung beweisen, indem man zeigt, daB die Ausfithrung
der Konstruktionsschritte der Arten a) bis e) (vgl. 4.1.) unter Beachtung der Be-
merkung iiber die Geraden mit dem Zirkel allein ausgefuhrt werden _koénnen, Die
Konstruktionsschritte der Art a) entfallen, und die Konstruktionsschritte der Arten c)
und e) sind offensichtlich mit dem Zirkel allein ausfithrbar. Somit reduziert sich der
Beweis auf die Ausfiihrung der Konstruktionsschritte der Arten b) und d) mit dem
Zirkel allein. Wir wollen im Rahmen unserer Ausfithrungen auf einen Beweis verzichten;
wir werden lediglich eine Hilfskonstruktion, die mit Vorteil fiir einen Beweis der
obigen Behauptung verwendet werden kann, mit dem Zirkel allein durchfithren.

Zu konstruieren ist mit dem Zirkel allein der inverse Punkt P, eines gegebenen
Punktes P, beziiglich eines gegebenen Kreises k um M; es sei P, + M vorausgesetzt.
{Diese Aufgabe wurde mit Zirkel und Lineal als Beispiel 7 in 4.2.5. gelost.)

I. Konstruktionsplan:

Fall 1: P, liege auBerhalb k.

a) Konstruktion des Kreises k; um P, mit r = |[MP,|;

b) Bezeichnung der beiden Schnittpunkte von k und k, mit S, und S, in beliebiger
Reihenfolge;

¢) Konstruktion des Punktes P,:

1. auf dem Kreis um S, mit » = |S,M|, 2. auf dem Kreis um S, mit r = |S;M|
(Entscheidung fiir den von M verschiedenen Schnittpunkt).

Fall 2: P, liege innerhalb k.

a’) Konstruktion eines Hilfspunktes P; auBerhalb k auf dem (gedachten) Strahl MPf,
so daB |[MP;| = n - |MPy| (mit Hilfe der Ecken endlich vieler gleichseitiger Drei-
ecke;

b’) Konstruktion des Kreises k; um P, mit » = [MP|;

¢’) Bezeichnung der beiden Schmttpunkte von k und k mit S; und S, in beliebiger
Reihenfolge;

d’) Konstruktion des Punktes P,:

1. auf dem Kreis um S; mit r = |S;M|, 2. auf dem Kreis um S, mit r = |S,M|
(Entscheidung fiir den von M verschiedenen Schnittpunkt);

e’) Konstruktion des Punktes P, auf dem (gedachten) Strahl MP}, so daB |[MPy|
= n - |MP,| ist (mit demselben n wie beim Arbeitsschritt a’)).

Fall 3: P, liege auf k.

a”’) Bezeichnung des Punktes P, mit P,.

II. Der Punkt P, ist in jedem der drei Falle der eindeutig bestimmte inverse Punkt
zu P, beziglich k. Denn im ersten Fall sind die gleichschenkligen Dreiecke MS,P;
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und MP,S,; ahnlich (die Punkte M, P,, P, sind kollinear), und es gilt
ah |MPy| : |MS,| = |MS,| : |MPy|,
|MS,|2 = |[MP,| - [MPy|;
im zweiten Fall sind die gleichschenkligen Dreiecke MS;P; und MPS, éhnlich, und
es gilt
W |MP,| : |MS;| = |MS;| : [MP;|,

’ ’ . 1
|MS|* = |MP| - [MP,| = n - |MPy|-— - |MPy|;

im dritten Fall lst die Behauptung offensxchthch richtig.

Der italieni Math tik L. MascEERONI (1750—1800) stand lange Zeit in
dem Ruf, als erster einen Beweis fiir die Behauptung am Anfang des Abschnittes 4.5.2.
geliefert zu haben. Im Jahre 1928 wurde jedoch ein Buch aus dem Jahre 1672 ent-
deckt, in welchem der Autor namens G. MoHR bereits lange vor MASCHERONI einen
vollstandigen Beweis fiir die Ausfiihrbarkeit aller mit Zirkel und Lineal durchfiihrbaren
Konstruktionen mit dem Zirkel allein angegeben hatte.

4.53. Konstruktionen mit dem Lineal allein

Durch MAscHERONI angeregt, hat der Schweizer Geometer Jakos STEINER (1796
bis 1863) Konstruktionen untersucht, die mit dem Lineal allein durchfithrbar sind.
Wir wollen ohne Beweis erwiahnen, daB bei Verwendung des Lineals ohne Zuhilfe-
nahme weiterer Konstruktionsinstrumente aus gegebenen Strecken der MafBzahlen
ay, ..., @y die und nur die Strecken konstruierbar sind, deren MaBzahlen aus a, ..., ay
durch endlich viele rationale Operationen errechnet werden kénnen. Um sinnvolle

Konstruktionen mit dem Lineal allein ausfithren zu ké allerdings in der
Konstruktionsebene vier Punkte derart gegeben sein, daB keine drei von ihnen kol-
linear sind; andernfalls kénnten zwar die Verbindungsgeraden der gegeb Punkte,

aber keine weiteren Punkte konstruiert werden.
Die Konstruktionen, die mit dem Lineal allein ausfithrbar sind, werden lineare

Konstrukti oder Konstrukti ersten Grades genennt, wihrend die Konstruk-
tionen, die mit Zu'kel und Lineal ausfithrbar sind, quadratische Konstruktionen oder
Konstruktis Grades werden. J.STEINER hat auch bewiesen, daB

alle Konstruktionen zweiten Grades mit dem Lincal allein ausfihrbar sind, falls in
‘der Konstruktionsebene auBer den vier Punkten noch ein fester Kreis mit seinem
Mittelpunkt gegeben ist; jeder weitere Kreis einer solchen Konstruktion wird als
konstruiert angesehen, wenn sein Mittelpunkt und ein Punkt der Kreislinie konstruiert
wurden. Der Beweis des genannten Satzes kann mit Methoden der projektiven Geo-
metrie gefithrt werden.

Unsere Bemerkungen iiber die Konstruktionen mit dem Lineal allein wollen wir
mit einem Beispiel fir derartige Konstruktionsaufgaben abschlieBen. Gegeben sei
ein Viereck 4 B’BA’ mit dem Diagonalenschnittpunkt P; es mégen sich die Geraden
ga4’ und gpp in einem Punkt S des Konstruktionsblattes und die Geraden g4p und
9.4 B in einem Punkt R auBerhalb des Konstruktionsblattes schneiden. Zu konstruieren
ist mit dem Lineal allein die Gerade gpp (vgl. Abb. 4.14).

I. Konstruktionsplan:

a) Konstruktion einer beliebigen Geraden k durch S, die g4 und g4-p auf dem Kon-
struktionsblatt schneidet, die aber mit dem Rand des Vierecks AB’BA’ keinen
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Punkt gemeinsam hat (die Gerade h ist ein ,,beliebiges’* Element im Sinne der
Ausfiihrungen in 4.1.; um dieses ,,beliebige’ Element zu vermeiden, kénnte eine
Gerade b’ mit entsprechenden Eigenschaften wie kb mit Hilfe mehrerer Konstruk-
tionsschritte der Arten a) und b) aus 4.1. mit dem Lineal allein konstruiert werden);

b) Bezeich des Schnittpunktes von k und g4p mit C;
¢) Bezeichnung des Schmttpunktes von k und g4’ mit C’;
d) Konstruktion des Punktes @:

1. auf der Geraden ggc, 2. auf der Geraden gpc';
e) Konstruktion der Geraden gpq.

II. Die eindeutig bestimmte Grade gpq ist mit der gesuchten Geraden gppr identisch;
denn fiir die Dreiecke 4 BC und A’B’C’ gehen die Verbindungsgeraden entsprechender
Ecken durch S, und nach dem Satz des DESARGUES (1591 —1661) liegen dann die
Schnittpunkte P, Q, R der Trigergeraden entsprechender Seiten auf einer Geraden.

4.5.4.  Konstruktionen in begrenzter Ebene

Unter einer ,,Konstruktion in begrenzter Ebene’ wird eine Konstruktion auf einem
begrenzten Konstruktionsblatt verstanden. Die Konstruktionen in der Praxis sind

ausnahmslos de: m:ge Konstruktionen. Eine Konstruktion, die auf einem (nur in
der Vorstellung existierenden) unbeg; ,»Konstruktionsblatt' leicht zu be-
schreiben ist, kann auf einem begr Konstruktionsblatt Schwierigkeiten bereiten;
die Konstruktlonsaufgabe am SchluB von 4.5.3. ist dafiir ein Beispiel.

Auch die Kc k te stehen in der Praxis nicht in der idealen Form
zur Verfugung, in der wir z. B. den Zirkel und das Lineal in unserer Theorie der geo-
metrischen Kc ktionen behandelt haben. Jedes in der Praxis verwendbare Lineal
besitzt eine endliche Lange, und mit jedem in der Praxis verwendbaren Zirkel konnen
nur Kreise bis zu einer gewissen RadiusgroBe konstruiert werden.

Wir begniigen uns zum SchluB dieses Abschnittes mit dem Hinweis, da8 es moglich
ist, eine Theorie der geometrischen Konstruktionen in begrenzter Ebene fur vorge-

bene Konstruktionsi zu entwickeln. Die gegeb K ktic u-
mente konnten z. B. das »ideale Lineal* und der ,,ldeale Zirkel‘* oder das Lineal von
endlicher Lénge und der Zirkel von begrenzter Spannweite oder auch ganz andere
Konstruktionsinstrumente sein.




210 4. Theorie der geometrischen Konstruktionen

4.5.5. Bemerkungen Uber das Parallellineal, das Winkellineal
und das Einschiebelineal

In diesemn abschlieBenden Absck mochten wir noch drei weniger bekannte

Konstruktionsinstrumente erwihnen und ihre Verwendung beschreiben.

Das Parallellineal ist ein Lincal mit zwei parallelen Kanten, die den Abstand a
voneinander haben. Wir legen fest, da3 das Parallellineal in zweierlei Weise zu ver-
wenden ist. Es soll erstens wie ein gewéhnliches Lineal verwendet werden kénnen,
d. h., es kann mit einer Kante an zwei gegeb Punkte angelegt werden, um die
Gerade durch diese beiden Punkte zu konstruieren. Und es soll zweitens so zu zwei
gegebenen Punkten P,, P, gelegt werden kénnen, daB an jeder Kante des Parallel-
lineals einer der beiden Punkte P, und P, liegt, um die Gerade g, durch P; und die
Gerade g, durch P, zu konstruieren; der Abstand der beiden Punkte P, und P, darf
dabei nicht kleiner als a sein (vgl. Abb. 4.15).

Abb. 4.16 Abb. 4.16

Es kann bewiesen werden, daB mit dem Parallellineal in der angegebenen Ver-
wendungsweise alle Konstruktionen zweiten Grades und nur diese ausgefiihrt werden
kénnen; jeder Kreis ist dabei als konstruiert anzusehen, wenn sein Mittelpunkt und
ein Punkt der Kreislinie konstruiert wurden.

Das Winkellineal ist ein Lineal mit zwei Kanten, dlB von einem Punkt E ausgehen
und einen spitzen, rechten oder stumpfen Winkel miteinander bilden. Wir legen fest,
daB das Winkellineal ebenfalls in zweierlei Weise zu verwenden ist. Es soll erstens wie
ein gewdhnliches Lineal ver det werden ko Und es soll zweitens so zu zwei
gegebenen Punkten P;, P, und zu einer gegebenen Geraden g gelegt werden kénnen,
daB sich E auf g befindet und an jeder der beiden Kanten des Winkellineals einer
der beiden Punkte P, und P, liegt, um den durch E bestimmten Punkt P auf g zu
konstruieren; die Punkte P, P, und die Gerade g miissen sich dabei in geeigneter
Lage befinden (vgl. Abb. 4.16).

Es kann bewiesen werden, daB auch mit dem Winkellineal in der angegebenen Ver-
wendungsweise alle Konstruktionen zweiten Grades, und nur diese, ausgefiihrt werden
konnen; fir Kreislinien gelten dabei wieder die Einschrdnkungen wie beim Parallel-
lineal.
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Das Einschiebelineal ist ein Lineal mit einer markierten Strecke 4B an einer Kante.
Wir legen fest, daB das Einschiebelineal in viererlei Weise zu verwenden ist: 1. zum
Konstruieren der Geraden durch zwei gegebene Punkte; 2. zum Konstruieren der
beiden Punkte, die auf einer gegebenen Geraden von einem gegebenen Punkt dieser
Geraden denselben Abstand haben, den die Punkte A und B voneinander besitzen;
3. zum Konstruieren der Schnittpunkte einer gegebenen Geraden mit dem Kreis mit
r = |AB| um einen gegebenen Punkt; 4. zum Konstruieren einer Geraden g durch
einen gegebenen Punkt P, so daB auf g von zwei gegebenen Geraden g, und g, eine:
Strecke 8,S; mit |S,S,| = |4B| ausgeschnitten wird (vgl. Abb. 4.17).

9
P V 9
N
8
5 %\’?
Z Abb. 4.17
Es kann bewiesen werden, da8 mit dem Einschiebelineal alle Kc kti aus--

gefithrt werden kénnen, bei\denen die MaBzahlen der zu konstruierenden Strecken
aus den MaBzahlen der gegebenen Strecken durch endlich viele rationale Operationen,
endlich viele Quadratwurzeloperationen und endlich viele Kubikwurzeloperationen
errechnet werden kénnen ; solche Konstruktionen werden Konstruktionen dritten Grades
genannt. Von einem verallgemeinerten Gebmuch des Einschiebelineals wird gespro-

chen, wenn man den Zirkel als Kc )t trument hi i t und bei der
vierten Ver dungsweise des Einschiebelineals fiir eine der beiden gegebenen Geraden
einen Kreis ver det; auf diese Weise kann dann z. B. auch die Kon-

8eg
struktion zur Winkeldreiteilung in 4.5.1. ausgefiihrt werden.

Mit diesen Hinweisen auf andere Konstruktionstheorien beenden wir unsere Aus-
fithrungen zur Theorie der geometrischen Konstruktionen.
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