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Vorwort

Aufbauend auf den im Grundkurs Mathematik erworbenen Kenntmssen werden die

451 Gehiot:

im Lehrprogramm fiir die Disziplin Numerische Math ausg

Approximationstheorie (Kapitel 5),
Losung von Gleichungen (Kapitel ) und
Lineare Optimierung (Kapitel 7)

behandelt. Wihrend Kapitel 7 im Umfang den verfiigbaren Vorlesungsstunden ent-
spricht, enthalten die beiden anderen Kapitel erginzenden Stoff und weiterfiihrende
Betrachtungen. Diese Teile des Buches konnen den Anschlu fiir einen mit dem
Numerikstudium gekoppelten Kurs der wahlobligatorischen Ausbildung vermitteln
und eignen sich auch fiir die Gestaltung des mathematischen Fachpraktikums.
Letazteres gilt zum Beispiel fiir die Abschnitte 5.2.3. bis 5.2.5., 5.3.2. und die Betrach-
tungen zur Lokalisierung von Polynomnullstellen in 6.2.2. Der Abschnitt 5.4. zu
Theorie und Anwendung von Splinefunktionen geht thematisch iiber das Lehr-
programm hinaus. Splinefunktionen haben aber in den letzten Jahren eine solche
Bedeutung fiir die Numerische Mathematik gewonnen, daB eine Einfiihrung in deren
Theorie in dem hier dargebotenen Umfang vertretbar erscheint.

Kapitel 8 enthélt Ausfiihrungen zum linguistischen Aspekt der Informationsver-
arbeitung. Sie erginzen die allgemei Betrachtungen der Kapitel 1 und 2 aus
MSL Bd. 9 und prizisieren die Vorstellungen zur Syntax formaler Sprachen, die in
Kapitel 3 entwickelt wurden. Der Verfasser hofft, daB dieser Text trotz seines frag-
mentarischen Charakters zum tieferen Versténdnis der mit den Begriffen Signal,
Information, Zeichen zu beschreibenden informationellen Prozesse beitrigt, deren
methodische Gestaltung auch fiir die Schule wachsende Bedeutung erhilt, z. B. im
Biologieunterricht der Abiturstufe. Vor allem soll Kapitel 8 aber eine Verbindung
zum Lehrgebiet Grundlagen der Mathematik herstellen.

Die letzten Bemerkungen weisen darauf hin, da8 die nunmehr vorliegenden Teile I
und IT einer Einfiihrung in die Numerische Mathematik und Rechentechnik als eine
Einheit zu betrachten sind. Dessen ungeachtet war der erste Band mit Riicksicht
auf die Studierenden des Nebenfachs als selbstindiges, den einschligigen Stoff des




[ Vorwort

mathematischen Grundkurses umfassendes Lehrbuch zu konzipieren. Diese Neben-
bedingung muBte sich notwendigerweise auf die Systematik der Darstellung aus-
wirken, die aber so dem tatsichlichen Vorgehen im Studienbetrieb entspricht. Der
Einheitlichkeit wegen wurden die in Teil I benutzten PAP-Symbole der TGL
224611967 beibehalten,

Das zu beiden Binden in Zusammenarbeit mit Herrn Dr. A. FUERICE entwickelte
Ubungsmaterial wird in MfL Bd. 16 erscheinen und liegt bereits als Sonderdruck
vor. Es enthilt Anwendungsaufgaben, deren mathematische Modellierung mit den
in der EOS vermittelten naturwissenschaftlichen Kenntni moglich ist. Die
Gliederung der Ubungen entspricht der von MfL Bd.9 und 10. Jedem Abschnitt
sind einige durchgerechnete Beispielaufgaben vorangestellt, die zum Teil den Charak-
ter einer komplexen Belegiibung haben und als Muster fiir Praktikumsaufgaben
dienen kénnen.

Bei der Arbeit am Manuskript bin ich wieder durch mehrere Hinweise und Rat-
schlige der Herren des Herausgeberkollegiums, namentlich von Professor Dr. ENeBL
und Professor Dr. SOENEIDER, unterstiitzt worden, denen ich dafiir meinen herzlichen
Dank ausspreche. Dieser gilt in besonderer Weise meiner Frau, die das Manu-
skript geschrieben und alle Organisationsarbeiten im Rechenzentrum der Akademie
iibernommen hat, sowie meinem Sohn Hans-CHRISTOPH, der die Programmierung
und Durchfiihrung numerischer Experimente besorgte. Sehr zu danken habe ich
auch Frau Dipl.-Math. B. Ma1 vom DVW fiir Hinweise auf Errata und die angenehme
Zusammenarbeit wihrend der Drucklegung sowie allen, die an der Herstellung des
schwierigen Satzes beteiligt waren.

Berlin, Sommer 1979 H., KAsER
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5. Approximation von Funktionen

5.1.  Begriffsbildungen und aligemeine Sachverhalte

51.1. Formulierung des Approximationsproblems
Gegeben sei eine reelle Funktion f einer reellen Verinderlichen z,
/: X >R, (1)

wobei X S R im folgenden meist ein Intervall ist. Daneben wird eine von » Para-
metern

a1, 8y ey By @i= (81,085 ...,8,)T, aEASR" @)
abhiingige Schar solcher Funktionen
Fg:X >R ®3)

betrachtet, deren Werte wir an Stelle von F,(z) auch mit F(a, z) oder F(a,,a,,...,a,,7)
bezeichnen. Wir stellen uns die Aufgabe, f durch eine Funktion der Schar (3) iiber X
oder einer Teilmenge M S X in einem gewissen Sinn méglichst gut anzunihern.
Nach Einschrinkung aller betrachteten Funktionen auf M kann stets X = M an-
genommen werden.

Solche approximativen Darstellungen von Funktionen ergeben sich bei der kon-
struktiven Losung von Aufgaben der Analysis. Im besonderen ist darauf hinzuweisen,
daB in einem Computer Funktionswerte im allgemeinen aktuell erzeugt und nicht
— dem Arbeiten mit einem Tafelwerk vergleichbar — aus einem Speicher entnom-
men werden. Da der Aufruf von Funktionsprozeduren in einem Programm héufig
erfolgen kann, I t es im Hinblick auf die Rech it sehr d f an, einfache
Verfahren zu entwickeln, die Niherungswerte hoher Genauigkeit liefern. Das ge-
schieht meist durch Konstruktion einer rationalen Niherungsfunktion, die dann der
Berechnung zugrunde liegt.

Neben der Auswahl der Schar (3) fiir die Approximation zugelassener Funktionen
ist ein MaB fiir deren Giite festzulegen. Dies geschieht mit Hilfe einer Abstands- oder
Distanzfunktion g, die dem Funktionspaar f, F, eine nichtnegative Zahl zuordnet,
wobei kleine Werte von g ,,gute* Niaherungen charakterisieren. Man beachte, da
dann g(f, F,) eine auf 4 definierte von @ abhingende Funktion ist, die wir weiterhin
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mit Z bezeichnen:
Z(a) := o(f, Fyq)- 4)

Meist hat ¢ die Eigenschaft einer Norm ||:|| oder wird mit Hilfe von Normen gebildet.
Das setzt voraus, da8 die Funktionen (1) und (3) Elemente eines reellen linearen
Vektorraumes E) im Sinne von MfL Bd. 3, Kap. 9., sind. Ein Bemplel dafiir ist der
in MfL Bd. 4, 2.6.3., behandelte Raum C)p, der auf einer abgeschl hriinkten
Menge D stetigen Funktionen mit der durch die Tochebyaclw/f—lllcmk gegebenen
Abstandsbestimmung. Wahlen wir D als das abgeschlossene Intervall [a, bJ, so gilt
hier fiir f, Fy € Cgp,

Z(a) = |f — F,|| := max |{(z) — F(a, )|- (6)
z€(a.d)

Im folgenden werden wir die Funktionen (1) und (3) gewdhnlich als Elemente von
O,y 8nnehmen, an Stelle van (6) aber auch andere Normen betrachten. Wir er-
innern daran, daB diese durch folgende Eigenschaften charakterisiert sind:

1. M=o fiir alle f € E und ||f|| = O nur fiir das Null-
element von E;
2. llefll = lex] - (I firallea € Rund f € E; (6)
3. If + gll < |Ifll + ligll fiir alle £, g € E (Dreiecksungleichung).
Das uns int jerende Approximationsproblem kann endgiiltig so formuliert
werden :
Fiir evne gegebene Funktion (1) wird beziiglich evner ichnet

Funlmmwmchar (3) und einer Distanzfunktion o ein oolcher Para-
metervekior a* € A S R® gesucht, daf

Z(a) = Z(a*) (7
filr alle @ € A gilt.

Die Aufgabe besteht also darin, fiir die (Ziel-) Funktion (4) ein absolutes Minimum
auf A zu bestimmen. Ist a* ein solches, so heiBt F,e Bestapprozimation von f oder
wegen (7) Minimallosung. Die Theorie befaBt sich vor allem mit zwei Fragenkomplexen :
1. Entscheidung, ob ein (7) geniigender Parametervektor a* existiert, in Verbindung
mit dessen Charakterisierung durch Kriterien (gegebenenfalls interessiert die
Einzigkeit der Minimallgsung).
2. Entwicklung von Algorithmen zur effektiven Bestimmung von a*.
Wir betrachten ein Beisprel: Es seien X S R und f gegeben. F, bedeutet ein be-
liebiges Polynom héchstens (m — 1)-ten Grades (m = 1, ganz), wobei der Parameter-
vektor @ durch das System der Koeffizienten bestimmt wird:

m—1
Fo(z) = X ayzr. ®)
=0
1) Im folgenden wird man erk daB die Natur der EI te von E im allgemeinen keine

Rolle spielt.
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In X wihlen wir m paarweise verschiedene Punkte z; und bilden damit den Vektor
d=(d,dy ... dn)7,  di:=f(z) — Fa@)l- )

Eine Distanzfunktion wird etwa mit Hilfe der euklidischen Norm |||l (MfL Bd. 4,
1.5.) von d definiert:

2t0) = ot P = I = ( £ )" (10)

Wegen Z(a) = 0 wird Bestapproximation erreicht, wenn Z(a) = 0, also d; = 0 fiir
t=1,2,...,m ist, d. h., wenn F, die mit den Wertepaaren

(@ f@), =12...m,

formulierte Interpolationsaufgabe 16st. Auf Grund des Satzes 1 in MfL Bd. 9, 4.2.1.,
gibt es genau ein Polynom mit dieser Eigenschaft in der Schar (8); es ist u. a. in Form
des Lagrangeschen Interpolationspolynoms bestimmbar.

An Stelle von ||-||; kann man fiir beliebiges p = 1 Distanzfunktionen mit der Vektor-
norm

Il = (é |d‘|ﬂ)"" a1)
bilden:
m 1/p
olf, Fo) = Idll, = (;.2, @) — Fla, zmv) . (12)

Fir |||l sind die ersten beiden Normeigenschaften (8) offensiohtlich. Der Beweis der
Dreiecksungleichung kann im Falle p = 1 dem Leser iiberlassen bleiben. Wenn
p > 1 ist, bendtigt man dazu eine Verallgemeinerung der Schwarzschen Unglei-
chung. Ohne darauf niher einzugehen, sei nur erwiihnt, da man im Falle p = 2 mit
dieser selbst auskommt. Die Durchfiihrung der Betrachtungen findet man in MfL
Bd. 4, 1.5.2.

Wir wollen noch ||d]|, fiir p — oo untersuchen. Dabei wird diese Gro8e bei festem
d = 0 als Funktion von p betrachtet. Es sei

h) :=1n|dl, = ~1n (2" ldd')
V4 i=1
und

pi= max |d.
=12

Die Indexmenge {1,2,...,m} denke man sich in zwei disjunkte Teilmengen
{81, B2y - s Ty {815 30 +o0s 2} (K + U = m) derart zerlegt, daB

|l =p fir §=1,2,...,k
und

gyl <p fir j=1,2,..1
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gilt. Dann ist — wenn |d;| = ayu, 0 S &y <1 —
!
h(p) =-l—1n(k+2a’;) +Ing.
r j=1 "

:
Wegen lim (k + 3 a:_’,) =k folgt lim A(p) =Inx und
proo j=1 % p—oo

lim [}, = . (13)
proo
Auf Grund von (13) fiihren wir die GroBe
]l := max |dy| (14)
i=12,...,m

ein, die als Grenzwert der p-Norm selbst die Normeigenschaften (6) besitzt. Letzt,
kann man auch leicht direkt zeigen.
Die Funktion

o Fo)i= Il = max i, (16)

wobei d den Vektor (9) bedeutet, ist eine weitere hiaufig benutzte Distanzfunktion.

Die Norm (14) ist das diskrete Analogon zu der in (5) auftretenden Norm, die der
Tschebyscheff-Metrik zugrunde liegt. Fiir 1 < p < oo kann gezeigt werden, daB die
|l, entsprechende GroBe

b 1/p
W= ( f I/(z)l’dz) (16)

auf Cy,,, die Eigenschaften (6) besitzt. Schwieriglkeiten bereitet dabei nur der Beweis
der Dreiecksungleichung. Dazu benétigt man die im Zusammenhang mit |||}, er-
withnten Ungleichungen fiir Integrale. Mit der Norm (16) wird die Distanzfunktion

b 1/p ‘
ol Fo) = If — Fal = ( [ If@) — F(a, z)l? dz) 1

gebildet.

In der Praxis werden iiber X an die Giite der Approximation gelegentlich unter-
schiedliche Anforderungen gestellt. Das legt nahe, die in den Distanzfunktionen auf-
tretenden Abweichungen f(z) — F(a, ) mit Gewichten zu versehen und etwa an
Stelle von (12) und (17)

o P = (£ wilfiwd — Flo zmv)"”. (18)

w; > 0, 1=12...,m,
bzw.

b 1p
off, Fo) = ( [ @ If=) — Fla, ) dz) ' (19)
w(z) =0 fir a<z<H,
zu betrachten.
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Es trifft den Sachverhalt gut, wenn man die bei der Formulierung eines Approxi-

tionsprobl vo! de Besti g der Funktic har (3) und einer
Distanzfunktion, J. R. RioE [43] folgend, als dle Wahl von ,,Form* und ,,Norm*
bezeichnet. Erstere ist durch den Anwendungsbezug héufig vorgegeben, wihrend
hinsichtlich der Distanzfunktion eine gewisse Willkiir herrscht. Dabei ist zu beachten,
daB sich fiir dieselbe Funkti har (3), aber verschiedene Distanzfunktionen, im
allgemeinen voneinander abweichende Bestapproximationen ergeben. Das sei an
einem einfachen Beispiel erliutert. Eine auf [a, b] definierte Funktion f mit positiver
zweiter Ableitung soll durch ein lineares Polynom

P(z) =ay+ ax (20)

approximiert werden. Wihlt man (10) als Distanzfunktion mit m = 2 und z, = a,
x, =b, 8o ist das durch die Verbindungsgerade der Punkte (a, f(a)) und (b, f(b))
reprisentierte Polynom (20) beste Approximation. Beziiglich der mit der Tscheby-
scheff-Norm gebildeten Abstandsfunktion (6) gewinnt man dafiir ein Polynom,
dessen Graph die nach der Parallelenkonstruktion der Abb. 5.1 bestimmte Gerade g
ist; g schneidet die Sehne AT im Mittelpunkt M. Wir werden diesen Sachverhalt
in 5.3. mit Hilfe des Tschebyscheffschen Alternantensatzes begriinden.

57 | 8

» Abb. 5.1

Qe
o
X

5.1.2. Lineare Approximationsprobleme

Die in 5.1.1. erorterte Polynomapproximation weist die Besonderheit auf, daB die
als Koeffizienten von (8) bestimmten Komponenten des Parametervektors in
F(a, z) linear auftreten. Allgemein bezeichnet man ein Approximationsproblem als
linear, wenn n Funktionen

¢ X >R, 1=12..,n, (21)
derart existieren, daf die Funktionen (3) in der Form

Fo=X ap (22)
i=1
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darstellbar sind. Dem Beispiel vergleichbar lassen auch andere lineare Probleme eine
in gewissem Sinne ,,explizite‘ Bestimmung der (oder einer) Bestapproximation zu.

Offenbar ist es verniinftig, die ¢; auf X von vornherein als linear unabhiingig an-
zunehmen (vgl. MfL Bd. 4, 1.3.3.), da sonst jede der Funktionen (21) durch eine
Linearkombination linear unabhingiger @, ausgedriickt, d. h. eine Reduktion von
(22), also der Zahl der zu bestimmenden Psrameter, vorgenommen werden kénnte.

Dieser Gesichtspunkt ist in dem betrachtet 1 beriicksichtigt, da gomnB
M.fL Bd. 4, 1.3.4., Satz 2, das System der Potenzfunktlonan 7-ten Gmdes #=0,1,.
— 1) linear unabhéngig ist.

Endgiiltig wird ein lineares Approximationsproblem so charakterisiert:
E sei ein linearer Raum von Funktionen!) f: X — R (z. B E=0Cy, ,,,)
und {p;} (2 =1,2,...,n) ein System linear bhd El
aus E. Fir eine gq;ebene Funktion f ¢ E wird ein Vektor a* €R
derart gesucht, dap beziiglich einer Abstandsfunkion, (4)
"
Foe =‘2 LA (23)
=1
Bestapprozimation von | ist tm Vergleich mit allen anderen Linear-
kombinationen
"
F, =Z @i
=1
Fiir lineare Probleme gilt:
8atz 1. Die mit einer Norm || iber E gebildete Distanzfunktion Z (Z(a) := i —F.l)
8¢ fiir beliebiges f € E stetig.
Beweis. Wir haben die Werte von Z an benachbarten Stellen @ und @ + k zu
betrachten, wobei k = (ky, ks, ..., k,)T sei. Dann ist

2@ + b) — Z(@)| = [lf — Fayal = lf — Ful| < Fuyn— Fdl = |z hm'
g-é; ol - Il

Diese Abschitzung liSt erkennen, daB |Z(e + h) — Z(a)| mit h — 0 gegen Null
strebt.

Bemerkung. Zum Beweis der Ungleichung
1N —1gl <Ilf —gl fir fgecE (24)

benétigt man nur die zweite und dritte der Normeigenschaften (6). Eine Abbildung h: £ — R,,
far welohe

haf) = || M) (25)
M +9)<kH+Mg), fgeE, «cR,
1) Vgl. dazu die FuBnote auf S. 10.
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gilt, heiBt eine Halbnorm iber E. Betrachten wir als Beispiel
E = Cep.

%j,j =1,2,..., m, seien paarweise verachiedene Punkte des Intervalls [(a, bJ), und es sei
I=(fvfa-s ’M)Tv fi = V(%N-

Dann ist die mit einer beliebigen Vektornorm des R™ definierte Abbildung
A =1ifi

Halbnorm iiber Cyg,5). Offenbar gilt Satz 1 auch noch, wenn man |-| durch eine Halbnorm

ersetzt.

Im folgenden wird die Existenz einer Bestapproximation nachgewiesen. Dem
Leser sei die Analyse der Beweise von Satz 2 und des vorangestellten Hilfssat
empfohlen, da in diesen fiir die Approximationstheorie typische SchluBweisen be-
nutzt werden, die auf dem Satz von BoLzaNo-WEIERSTRASS, d. h. Kompaktheits-
eigenschaften des R* (vgl. MfL Bd. 4, 2.1.6. und 2.4.2.) beruhen.

Hilfssatz 1. |-| set esne Norm iiber E und || || eine Norm iiber R*, z. B. die euklidz-
sche. Dann gilt

Ve Aas (lal=1=|F|=p).
u>0 acR»

Beweis. Im Sinne eines indirekten Beweises nehmen wir an, daB die Negation der
Aussage wahr ist:

AsVa (lal=1AlF] < p).
#>0 acR™
Fiir g = %, k € N*, gei a® ein erfiillendes Element, d. h., es gilt ||@®]| = 1 und

1Fq(k)l < % Die beschriinkte Folge der a® enthilt nach dem Satz von BoLzaNo-

'WEIERSTRASS eine kanvergente Teilfolge (a'), deren Limes a’ sei. Nach Satz 1 (fiir f
wihle man das Nullelement von E) ist dann

lim |Foup] = |Fel
Froo
und wegen der Stetigkeit der Norm
lla’)| = lim [lat®| = 1. (26)
oo
Andererseits gilt aber auf Grund der Bestimmung der a®
lim |Fqu] = 0.
o0

‘Wir haben also
IFe] =0
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und auf Grund der ersten Normeigenschaft (6)
»
Fg =) agi=0.
im1

Wegen der linearen Unabhingigkeit der ¢; folgt daraus @’ = 0, im Widerspruch
zu (26).

Satz 2. || ses Norm iiber E, und Z sei die durch Z(a) = |f — F 4| definierte Distanz-
funktion. Dann besitzt das diesbeziiglich formulierte lineare Approximationsproblem
(23) etne Lisung.

Beweis. Da |f — Fg] = 0 ist, existiert
I:=inf|f — F,| = inf Z(a),
acR» acR*
und es gibt eine Folge (a¥’), a® ¢ R", mit der Eigenschaft
lim Z(a®) = I. 27
koo
Fir k> K sei Z(a®) = |f — Fgw] <I + 1, d. h., wenn M :=|f],
Fawl <I+ M+ 1. (28)
Die Menge der a'¥ ist beschrinkt. Zum Beweis betrachten wir eine Norm || ||

des R* und ein Element a dieses Raumes, fiir welches |[a]] > ist, wobei

- p eine die Aussage des Hilfssatzes 1 verifizierende positive Zahl bedeutet. Dann gilt

mit & := 2 auf Grund dieses Hilfssatzes

llel]

1
17 = |uaum F.I =l 1Pl 2l p > T+ M 1.

Wegen (28) ist also fiir ¥ > K

la®| < I_"'_M ,
14

d. h., die Menge der a‘® ist beschrinkt.
Nach dem Satz von BoLzaNo-WERIERSTRASS enthilt (a®) eine konvergente Teil-
folge (a'*), deren Limes a* sei. Fiir diese gilt auf Grund von Satz 1

lim Z(a's) = Z(a*),
Fo0
und wegen (27) ist lim Z(a%) = I, also
froo
Z@*)=1.

Das heiBt, das Infimum der Werte der Distanzfunktion wird als Funktionswert bei a*
angenommen. a* ist absolutes Minimum von Z und F,. folglich Minimallésung.
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Wir beschlieBen diesen Abschnitt mit Unitdtsb htungen, welche dle eindeutige Bestimmt-
heit der durch Satz 2 gesicherten B tion zum G tand haben.
Mit der in E gegebenen Norm |-| definieren wir far r > 0 und | € E den Begriff der (ab-
geschlossenen) r-Umgebung von f als die Menge der Elemente g ¢ E, far die
gelhelg—N=sr (29)
gilt. MaBgebend fiir die Einzigkeit der Losung von (26) sind gewisse Eigenschaften der Kon-
vezitit von U,(f). Die Definition der Konvexitit einer Menge M < RP in MfL Bd. 4, 1.5.2.,
léBt sich glos auf beliebj ierte Réume E {ibertragen und in einer fiir unser Problem
wesentlichen Hinsicht verschirfen:
M(SE)konvex :& A A W+p=1Az+ uy ¢ M); (30)
z9eM LueR,
M (S E) streng konvez :& A A A+ p =1 Az + py innerer Punkt von M}.
Sh hneR? @1)

Ein innerer Punkt von M ist dadurch charakterisiert, daB noch eine gewisse r-Umgebung
desselben zu M gehort.

Hilfesatz 2. In einem normierten Raum E ist jede Umgebung ﬁ,(/) (r > 0, f € E) konvexz.

Beweis. Fir z,y ¢ Z_J,(I), A, p=0und A+ pu =1 ist zu zeigen, daB Az + uy zu (7,([)
gehort:

f—Gz+upl=1A+u)f—z+pl SAf—al+plf —yl SAr +pr=r.

*

Abb. 5.2. U(0) firp =1,2,c0und 1 < p < 2,2< p < o0

Zur Vi haulich betrachten wir Nullpunktumgebungen, die mit hiad »
Normen des R? (vgl. (12), (14)) gebildet sind (vgl Abb. 5. 2):
&= (n,z)T R, |z, = Vlznl’ + [@l?,  kelle = max (|24, |z,l).

Man vermutet zu Recht, da8 die U,(f)-Umgeb des betrachteten Beispiels fir 1 < p < oo
mit Ausnahme von p = 1 und p = oo streng konvex sind.
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Definition 1. Ein normierter Raum E heiBt streng normiert, wenn jede Umgebung U,(f),
(r > 0,/ € E) im Sinne von (31) streng konvex ist.

Satz 3. E sei ein beziiglich | - | streng normierter Raum, und es ses Z(a) = |f — Fal. Dann hat
das Approzimationsproblem (23) genau eine Losung.
Beweis. Im Sinne eines indirekten Beweises sei daB Fgeund Fgee(a*,a** ¢ R®,
a* + a**) Bestapproximationen von f sind. Wir setzen
ri=|f — Fasl = If — Fass|.
Dann gilt
1 1
rgy—nwa1s;u—nq+7u—nq=n (32)
2

d. h., in dieser Abschitzung muB berall das Gleichheitszeichen stehen. Fiir 7> 0 ist Fae4 ave
2
wegen Fae, Faee ¢ U,(f) und %F.- + %F..n = Fas 4 a+s auf Grund der strengen Normiert-
- 2
heit von E innerer Punkt von U,(f), also
I[ — F,._H,-ol <r;
2 " n
dem widerspricht (32). Ist aber r = 0, s0 gilt f = Fas = 3 afp; = Faes = 3 al*p;, also
i=1 i=1
Ld
Zer—atei=o.
i=
Wegen der linearen Unabhiingigkeit der ¢; folgt daraus
“i. =af* fir i=1,2,..,n2,
im Widerspruch zu a* 3 a**.
Ohne Beweis sei erwihnt:

Satz 4. Der Funktionenraum Cy,, tst beziiglich der Normen |5 1 < p < oo,
streng normiert; fiir ||, und |- |, g2l das nicht.

In diesem Abschnitt wurden gelegentlich verschiedene Normen zugleich betrach-

tet; sie waren daher auch in der Bezeichnung zu unterscheiden. Weiterhin werden wir
— wenn nur eine Norm im Spiele ist — dafiir wie iiblich ||- || schreiben.

5.2.  Quadratmittelapproximation

5.2.1. Problemformulierung

Die in 6.1.1. betrachteten Normen

Il = (é d?)”’. deRe,
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und

b 1/2
e = ( | lf(zn’dz) SERAY

haben die besondere Eigenschaft, daB ihre Quadrate als ein Skalarprodukt der Ele-
mente d bzw. f mit sich selbst dargestellt werden konnen. Wie iiblich identifizieren
wir dabei den Begriff des Skalarproduktes mit dem der positiv definiten symmetri-
schen Bilinearform im Sinne von MfL Bd. 3, 7.1., bezichen uns weiterhin also auf
folgende

Definition 1. E sei ein reeller linearer Raum gemif MfL Bd. 3, Kap. 9. Eine
Abbildung

(- ):ExE—->R
heiBt Skalarprodukt auf E, wenn fiir beliebige Elemente f, g, 4 aus E folgendes gilt:

1 (, /) > 0, sofern f vom Nullel t des R verschieden ist;
2 o=@

3. F+g.h)=(Fh+@h);

4 (af,9) = a(f, g) fiir jedes « € R.

Definition 2. Ein linearer Raum E, auf dem ein Skalarprodukt erklért ist, heiBt
unatir (beziiglich dieses Skalarproduktes).

Fiir die zu Anfang betrachtete Norm gilt
1l = (d d,
wenn (., -) das durch
m
(edy:=Yedi, €=(enco-nen)s d=(dydy..dn) m
i=1

definierte Skalarprodukt bedeutet (vgl. MfL Bd. 3, 7.2.).
Fiir den Raum E = Cy,,, ist die Abbildung

€ ):Cupy X Cay >R

b @)
{h9) = f/(”) g@)dz,  f,9€Cim»

ein Skalarprodukt. Die Eigenschaften 2 bis 4 der Definition 1 folgen unmittelbar
aus den Rechenregeln fiir reelle Zahlen in Verbindung mit dem Integralbegriff. Ferner
ist

(/,/)=f/=dzgo.
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Das Gleichheitszeichen kann nur gelten, wenn f(z) = 0 auf [a, b] ist. Wire n@mlich
fiir ein ¢ dieses Intervalls

y:=1f€) >0,
so folgt aus Stetigkeitsgriinden

Ifz)] = %

fiir alle x eines gewissen ¢ enthaltenden Teilintervalls von [[a, ] und daraus, wenn !
dessen Linge bedeutet,

b ]
[ferdzzT1>o0.

Damit erhalten wir

1= ¢ N @)
Allgemein hat iiber einem unitiren Raum beziiglich des Skalarproduktes (-, -) die
durch
II-Il: & —~R,
4)

W:=Vthh, f[e€E,

definierte Abbildung die Eigenschaften einer Norm. Das ist die Aussage von MfL
Bd. 3, 7.2, Satz 1, wenn man dort B(x, y) durch (@, y) und R® durch E ersetzt. Auch
im folgenden wird diese Substitution bei Verweisen auf MfL Bd. 3 vorzunehmen
sein, ohne daB dies noch besonders erwihnt wird. Es ist in jedem Fall leicht zu er-
kennen, daB die Verallgemeinerung der Sachverhalte auf beliebige lineare bzw. uni-
tire Ridume moglich ist.
Ein unitirer Raum ist beziiglich (4) streng mormiert: Fu.r Y € Uf), z+yund 4, u> 0,
A + p = 1 ergibt sich mit Beachtung der Schwarzsch
1Az + uy — fI* = lIA(z — f) + w(y — DI
=Mz —fI* + #*lly — fI* + 24u(z — f,y — /)
S8z —fit + ptlly — AF + 24 llz — il lly — Al
Daraus folgt, wenn ig! eines der El te z, y innerer Punkt von ﬁ,(/) ist,
Az + py — fIF < 134t + p* + 24p) =

4. h., Az + py ist innerer Punkt von U,(f). Gilt aber ||z — f|| = r und |ly — f|| = r, so gewinnt
man dieses Resultat jedenfalls dann, wenn in der Schwarzschen Ungleichung nicht das Gleich-
heitszeichen steht. Dieses kann wegen z = y nur auftreten, wenn z — f = f — y ist. Dann gilt

aber
Wz + py — fIP = P + 2 — 200) = 1A — ) < 2

Nach Satz 3 besitzt daher das mit (4) formulierte Approximationsproblem (23) genau eine
Losung. Wir werden im folgenden Abschnitt noch einen anderen Beweis fir die Einzigkeit
kennenlernen.

& &
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Die eingangs erwihnte Besonderheit hat bemerkenswerte Konsequenzen fiir die
Loésung des mit einer solchen Norm formulierten Approximationsproblems. Wir
werden diese im weiteren genauer untersuchen und prézisi zunéchst die zu be-
trachtende Spezialisierung von 5.1. (23), die man als das Problem der Quadratmittel-
approxzimation bezeichnet:

E sei ein unitirer Raum von Funktionent) f: X — R beziiglich des
Skalarproduktes (-, -) und ||-||: E — R die durch (4) definierte Norm;

{pil, ©=1,2,...,n, bedeutet ein System linear unabhiingiger Ele-

mente aus E. Fiir eine gegebene Funktion f € E wird ein Vektor 5
a* ¢ R derart gesucht, daf ©)
IIf — Fooll® < |If — Foll®

n
fir alle a € R*, Fo= 3 aip;, @ = (a,ay,...,a,)T st
s

Bemerkung 1. Offensichtlich sind die Minimumprobleme fiir die durch |f — F,ll
und |f — F,|? bestimmten Distanzfunktionen dquivalent. Auf Grund von (4) ist es
zweckmiBig, mit der Zielfunktion

Z:aw ||f — Fq?
zu arbeiten.
Bemerkung 2. Die Bezéichnung fiir das Problem (5) nimmt auf den Spezialfall
E = 0(0’", ()= (., )

Bezug, da hier die bis auf einen konstanten Faktor mit |If — F, iibereinstimmende
GroBe

b
1
= [ -Fe

die sogenannte mittlere quadratische Abweichung der Funktionen f und F, ist.

5.2.2. Die Normalgleichungen

Des Problem (5) besitzt nach 5.1.2., Satz 2, eine Losung a*, fiir welche die Distanz-
funktion

Z=12Z@)=(f— Fof—F,)
=1 — 2, Fo) + (Fa, F)

—0h-2Lat o)+ 5 Loapo ®

1) Vgl. dazu die FuBnote auf S. 10.
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ein absolutes Minimum annimmt. Da Z offensichtlich diffe jerbar ist, muB
oZ
-— =0, j=12..,mn, (Y]
08 |g=q*

gelten. Man findet mit Benutzung des Kronecker-Symbols

s 1 for i=j,
Y¥=10 fir 4

die Beziehungen
az " n " n
o =2 ) + X8y 2 anlpn @) + X as X byl o)
7] i=1 k=1 i=1 k=1
= =2(/, ¢ +‘Z; (@) Pe) +~§ ai(pi @5)

==2(/, @) + 2i£ ai(pi 95)

und an Stelle von (7) die sog! ten Normalgleich

ié; alpop) =he), J=12..m, 8

die in den a; linear sind.

Satz 1. Fiir das Problem der Quadratmittelapprozimation besitzt das System (8) der
Normalgleichungen — und damit (5) — genau eine Losung.

Das folgt aus dem Nichtverschwinden der Koeffizi determinant Iches mit
dem niichsten Satz bewiesen wird.

Satz 2. E sei ein unitirer Raum beziiglich des Skalarproduktes (-,-) und (@},
1=1,2,...,n, ein System von Elementen aus E. Dann ist die sogenannte Gramsche
Determinante

(P P1) @Pue) -0 (@1 @a)
(P2 1) (P2s@2) .- (P2 @n) ®

(Por 1) (Pus @2) - (Pns )

genau dann von Null verschieden, wenn {g;) ein System lLinear unabhingiger Elemente
8.

Beweis. Wir nehmen zunichst an, da8 die ¢; linear abhéngig sind und etwa

L]
o =2 o (10)
i+
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gilt. Auf Grund der Definition 1, Bedingungen 3 und 4, erweist sich dann in (9) die
j-te Zeile nach Ersetzung des ersten Operanden ¢; geméB (10) als eine Linearkombi-
nation der iibrigen Zeilen, d. h., die Gramsche Determinante verschwindet. Wire
dies andererseits bei linearer Unabhingigkeit der ¢; der Fall, so existierten Konstan-
ten B, € R (= 1,2, ..., n), fir die

ifl B > 0 (1)
und
Zhlme) =0, =12, (12)

ist. Wir betrachten die Linearkombination
=‘Z: Big: 13

und erhalten wegen (12) (p;, F) = 0 fiir j = 1, 2, ..., n. Damit ist auch
(Fp, Fg) = ||IF4l* =0,

d. h., (13) ist das Nullelement von E. Auf Grund der linearen Unabhingigkeit der ¢;
folgt daraus g; = O fiir ¢ = 1, 2, ..., n. Dem widerspricht aber (11).

Die Bestimmung der besten Quadratmittelapproximation kann somit durch Lésen
des Gleichungssystems (8), wesentlich alsa durch Invertierung seiner Koeffizienten-
matrix erfolgen. Letzteres ist von dem zu approximierenden f unabhidngig und 1a8t
sich fiir ein gegebenes System {g,} ein fiir alle Mal durchfiihren. Auf die numerischen
Probleme, die bei der Losung der Normalgleichungen auftreten, werden wir in 6.1.
eingehen.

5.23. Orthogonalsysteme

Besonders einfach ist die Losung der Normalgleich wenn das Syst 8)

v

Diaganalgestalt hat, d. h., wenn (g, @;) fiir ¢ 5= 7 verschwmdet und fiir ¢ = j positiv
ist. Derartige Elementsysteme {@;} nennt man orthogonal, speziell orthonormyiert, wenn

(pir @5) = 8y

(vgl. MfL Bd. 3, 7.3.). Ein Orthogonalsystem {¢;} ist linear unabhingig. Das folgt
unmittelbar aus MfL Bd. 3, 7.3., Satz 1, oder aus Satz 2.

Im Prinzip kann man bei der Quadratmittelapproximation immer von der An-
nahme ausgehen, daB das Elementsystem {g;} orthonormiert ist. Nach MfL Bd. 3,
7.3., Satz 2, ist ndmlich jedes linear unabhiingige Elementsystem g;, @q, ..., ¢a
durch ein orthanormiertes System ,, v, ..., y, ersetzbar, dessen lineare Hiille mit
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der von (@} iibereinstimmt. Der Beweis dieses Satzes enthilt ein Verfahren zur
Konstruktion der ;. Wir wiederholen — ohne auf Einzelheiten einzugehen — die
wesentlichen Schritte der von E. ScHMIDT stammenden Methode :

Zunichst wird mit Bezug auf (4)

" (14)
gesetzt. Sodann bestimmt man ein Element y, der Form

=9 — Py,
fiir welches g, | 1, gilt. Das fiihrt auf

A = (2 11)-
v ergibt sich aus y; durch Normierung:

—
[l

8ind y,, v, ..., ¥& (k < n) bereits konstruiert, so bildet man

e = Prn —‘_é Ay, (16)
und fordert xi,y 1 ¥, ¥, «.., v Daraus folgt

A = (g, ), =12,k (18)
g, ergibt sich aus y;,, durch Narmierung:

Yo = ZEL ()

Iz +alt

Man beachte, da das Verfahren in dem Sinne endgiiltig ist, da8 man bei Hinzunahme

weiterer Elemente g, ,;, @y4s, ... (unter Wahrung der linearen Unabhingigkeit) die

Konstruktion der y fortsetzen kann, ohne die schon bestimmten Elemente zu é&ndern.
Fiir ein Orthogonalsystem {g,}, ¢; € E, folgt aus (8)

. (Hhe)
=

Diese GréSen werden die Fourierkoeffizienten von f beziiglich des Systems {p;} ge-
nannt. Nach Satz 1 ist die mit den Koeffizienten (18) gebildete Linearkombination
die beste Quadratmittelapproximation von f. Man nennt das gelegentlich die Mvnz-
maleigenschaft der Fourierkoeffizienten. Dafiir werden wir einen weiteren direkten

i=1,2,..,n. (18)
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Beweis finden im Zusammenhang mit der folgenden Herleitung einer wichtigen Ab-
schiitzung fiir die af.
Im Falle eines Orthogonalsystems ergibt sich aus (6) mit (18)

Z(@) = If — Fult = 1P — 2_2"] al )+ 2 ot It

— I — 2.5 a? g + 2 ot ot (19)
und fiir @; = af
Z(a*) = |f — Foolt = I _j, af* il 20)

Damit folgt
n n
Z(a) — Z(a*) =‘Zl' (@} — 2010} + o) llpill* = X (af — a.)* [lpl* 2 0. (21)
- $=1
Das Gleichheitszeichen gilt in (21) genau dann, wenn @ = a* ist, d. h., die mit den

Fourierkoeffizienten von f gebildete Linearkombination und nur diese ist beste
Quadratmittelapproximation von f. Aus (20) erhalten wir

e _‘L:, o* gl 2 0,
also
Z“ af? g < IR, (22)

und speziell fiir ein Orthonormalsystem

é ot S IR (228)

(22) wird als Besselsche Ungleichung bezeichnet.
Wir wollen annehmen, da8

P> Pas v Phr oo (23)

eine unendliche Folge zueinander orthogonaler und linear unabhingiger Elemente
aus F ist. Damit ist gemeint, daB jedes endliche Teilsystem {g;}, 2 =1, 2, ..., n, von
(23) orthogonal und linear unabhingig ist. Zunichst sei darauf hingewiesen, da die
fiir ein System (@}, 7 = 1, 2, ..., n, bestimmten af auf Grund von (18) keine Ande-
rung erfahren, wenn man zu einem erweiterten System der g iibergeht (Endgiiltigkeit
der Fourierkoeffizienten). Die unendliche Reihe

‘_i: a? lpil® (24)
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konvergiert, da ihre Partialsummen auf Grund von (22) beschrinkt sind. Notwendi-
gerweise ist dann

lim a? |jpy* = 0. @)
Wir betrachten Beispiele.

1. Eseei E = C(yp) und (;, -) das gemiiB (2) entsprechend gebildete Skalarprodukt.
Satz 3. Fiir die Folge der durch

1 . 2n 27
Polz) = 3 @i@) =sin —z,  @y(x) = cos —z,
4 P

. 4n 4n
@s(x) =s8in —=z,  @z) = cos —z,
? P

(26)
. 2m 27
P2n1(¥) = BiD — 70z, @g4(%) = 008 —nz
. P P
definierten Funktionen gilt
(poo) =0  fir i%j,
fir 1=0, @n

(@i i) =
fir i 0.

ol ew

Die Funktionen (28) bilden also ein Orthogonalsyst Wir bezeichnen die Fourter-

g

koeffizienten einer Funktion f € Cyg,y) 2 @at, @ar—y mit af bzw. b}. Dann 18t

)
e

14
= o) 2 f(z)cos — kxdx, k=0,1,2,..,
8
lpsl® 2 P

Gons) _2 [ 1o in 22 -
b = ";ﬂ_l'“" =;-f/(x)sin—p—kzdx, k=12,...
°
Unier allen Linearkombinaty der Funkti Pos P1s -+ os Paa 18
p=ﬁ+)f‘(a,‘eoszn+b,‘sinzvz) (29)
2 = P P

die beste Quadratmitielapproximation von f.
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Beweis. Mit Bezugnahme auf die in 2.2. und 2.3. entwickelte Theorie reduziert
sich der Beweis auf die Verifikation der folgenden Integralformeln, in denen k, 7 € N
ist:

13

fcoszkwsin%lxzo fiir beliebige k, I,
P

0

» 0 fir k $1,
2% 2n P "

fcos-;-kzcos;lx= 0 fir k=10, (30)
° p fir k=1=0,

N 0 fir k<1,
fsin-zikzsinﬁlz= 2 fiir k=130,

, P P 2

0 fir k=1=0.

Diese ergeben sich leicht mit Hilfe der trigonometrischen Beziehungen
2 cos % 8in v = sin (v + v) — sin (v — v),
2 cos u cos v = cos (u + v) + cos (v — v),
2 sin u 8in v = o8 (¥ — v) — cos (v + v).

Bemerkung 3. 8atz 3 bleibt giiltig, wenn man an Stelle von [0, p] ein beliebiges
Intervall (a, b] der Linge p betrachtet, die Definition des Skalarproduktes gemif (2)
entsprechend dndert und die Integrale (28) mit den Grenzen a, b schreibt. Das folgt
aus der Tatsache, daB die Integralformeln (30) auch gelten, wenn man an Stelle von

0, p die Grenzen a, b einsetzt. Zur Begriindung sei an folgendes erinnert: Eine Funk-
tion f: R — R heiBt periodisch mit der Periode p (p > 0), wenn fiir alle 2 ¢ R

=z + p) = f(=) (31)

gilt. Ist f beziiglich eines bestimmten Intervalls I der Linge p integrabel, so gilt das
fiir jedes derartige Intervall, und die entsprechenden Integralwerte sind gleich (vgl.
Abb. 5.3).

_» Abb.53
X

Die Berechnung der Fourierkoeffizienten (28) wird als harmonische Analyse be-
zeichnet.
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2. Wir betrachten die iber einem Intervall [0, p] stiickweise stetigen Funktionen. Zwei
derartige Funktionen f, g seien dqusvalent genannt (f ~ g) genau dann, wenn die Menge

= fo:z € [0, ] A f(2) + g(x))

endlich ist. Die Relation ~ ist offenbar reflexiv, sy trisch und itiv. Wir bezeich
die davon erzeugten Aquivalenzklassen mit 7, §, ..., wenn diese f bzw. g bzw. ... als Reprisen-
tanten enthalten. In der Gesamtheit E dieser Klassen definieren wir eine Addition und Ver-
vielfiltigung mit Skalaren durch

P+o=1%0 (320)
=% AeR. (32b)
Offenbar sind diese Festl tant bhi und @ den Axiomen des

linearen Raumes. Nullvektor ist das durch die auf Co, p] ldenhsch verschwindende Funktion
repriisentierte Element aus E. SchlieBlich verifiziert man leicht, da8 durch

. 9):= f 1) 9(a) dz (33)
bhiingiger Weise ein Skalarprodukt in E definiert wird. Zu den Funktio-

nen (26) betrachten wir die Vektoren
Pos P15+ s Pamr (34)

die auf Grund von (33) und (27) ein Orthogonalsystem bilden. Die beste Quadratmittelapproxi-
mation eines Elementes f ¢ E durch Lmearkombmatxonen der ¢. wird mlt den Fourierkoeffi-
zienten (18) gewonnen. Wir wéhlen dafiir P d die gleich gen wie im
vorigen Beispiel und erhalten

14
‘:=Ml=lf 2 i dz —0,1,2...
= ~p ) O S
(35)
¢ @ur) f
bE o= 2 —x gz, k=1,2....
o =2 [
Daraus folgt:

Satz 4. Ist f ein stetiger Reprasentant von | ¢ E, so erwml mb die Funlmon (29) als ein
Reprisentant der aus den Elementen §;, ¢ = 0, 1, ..., 2n, gebild: pp vcmf

hi 1

Bemerkung 4. Im Sinne der Bemerkung 3 lassen sich die Bet: dieses B
auf beliebige Intervalle [(a,5] der Linge p ibertragen. Eine auf [a,, b] stuckweme sfetlge
Funktion f kann geméB (31) periodisch iiber die ganze Zahl Die
Definition der Funktionswerte in den Punkten a + kp (k behoblg ganz) lst t dabei unbestimmt,

wenn f(a) = f(b) ist. Wir wollen daher f(a + kp) durch einen beliebigen von k unabhs
Wert ¢ erkla.ren und die so fir alle reellen z definierte Funktion mit f, bezeichnen und eine
periodi. For g von f Dann gilt offenbar

Satz 5. Es sei E der unitdre Raum der Klassen dquivalenter auf [(a, b)) stiickweise stetiger
Funktionen, p := b — a und ¢; das Orthogomlayatem (34) Dann kénnen die cherkoeﬂszmten
emuElemnmfeEmuemer"" per tung f, esnes Reprd. von |
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gemdp
a:=£ff,(z)cosz—nkzd:, k=0,1,...,
P(" ?

5 lf/,(z)sinz—"kzdz, k=1,2...,
PU) ¥4

berechnet werden, wobei I ein beliebiges Intervall der Linge p bedeutet.

A\1 4 (x)

] Abb. 5.4

3. Durch

14
2*n! da®

Pa(z) = Py(z) 1= [(=*— D"],Y) n€N, (36)
sind die Legendreschen Polynome definiert. Es ist zum Beispiel (vgl. Abb. 5.4)

Polz) =1,

o(@) ==,

pae) = 5 (32— 1),

o) = - (68 — 3a), @7
pue) = 5 (352 = 3023 + 3,
ool@) = % (6325 — 7043 + 152).

1) Diese Darstellung der Legendreschen Polynome wird als Formel von Rodrigues bezeichnet.
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Betrachtet man die ¢, als Funktionen des Raumes C(_, ), so sind diese beziiglich
des entsprechenden Skalarproduktes (2) orthogonal.

Durch partielle Integration ergibt sich, wenn m < = ist,

1
@n Pm) = [ Pal@) () dz
-1

2%n! 2™m!
21

Lt e — 0 ae - m
[T

T 2mpt 9mpt -1

1 {[a-‘[w 107 et — )

d.—l zl_l)ﬂ d-+l( ’_!)ﬂ
f CEYLELCE 1,&}.

Der integralfreie Term verschwindet, da die (» — 1)-te Ableitung von (z* — 1)® offensichtlich
bei +1 eine Nullstelle hat. Das verbleibende Integral wird entsprechend behandelt; so fort-
fahrend erhilt man nach » Schritten

1 1
[ouoromeds = g o -vr [ -1
21 : 21

Wenn m < n und daher » + m > 2m ist, verschwindet das Integral auf der rechten Seite von
(38), d. h.

(P Pm) =0 fir m + 2.
Im Fall m = n folgt aus (38)

||¢.u'=flw: =z 1)'<2n)'f<z=—1)-d=
=1

Das letzte Integral geht mit # = cos ¢ in

dmm[(z2 — 1)™]
U 2 e (38)

1 1 =2
J@ —rdz =2 [ @ — 1)*dz = 2(—1)" [ sin?*1 ¢t
-1 0 0

dber; partielle Integration liefert weiter fir » = 1
=l2

f 8in®™+1 ¢ dt = [—sin®™ ¢ cos ¢]3" + 2nf 8in?*? ¢ cos? ¢ dt
°
=2n fsin"-ltdt - 2nf.in=-+-m,
0 ]
also
/2 =[2
sin?*1tdt =

2n in?-1 ¢ ds 39
20+ !fsm tde. (39)
°
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PP

Mehrmalige Anwendung der Rekursionsformel (39) ergibt

/2
sini™1¢ dt = 2n .2n—2...£.1, (40)
2n4+1 2n—1 3
°
so daB
2%n! (2n)! 2
gl = 2 2Bl _ 2 @

(2n 4+ 1)! 2°%2! 22 + 1

ist; (41) gilt offenbar nuch im Fa.lle n=0.

Die beste Quad tion einer Funktion f € C(—1,1) durch eine Linearkombi-
nation der Legendreschen Polynomo @o» P1» - - +» Pg €rgibt sich, wenn diese mit den entsprechen-
den Fourierkoeffizienten gebildet wird. Gema.B (18), (36) und (41) findet man

1
op =) _ 2’—*——‘f/(z> 9y(z) da

llepgll®
27 +1 .
oty f/(z) 70 — )]dz, j=0,12,.... (42)
Dn. die Legondreschen Polynoms auch Kugelfunktlonen t werden, bezeichnet man die
hnung der Koeffizi (42) gelegentlich als Kug !

4. Die GroBe cos n¢ 148t sich fiir jedes ¢ € R und » € N durch ein Polynom =n-ten
Grades in = cos ¢ darstellen. Beispielsweise ist

cos 2t = 223 — 1,
cos 3t = 4a® — 3z,

cos 4t =824 — 82341, (3)
cos 6t = 162 — 202® + bz.

Allgemein definiert man durch
cos (n arccos ) = Ty(z),!) n=01,..., (44)

die T'schebyscheff-Polynome (1. Art) T, (vgl. Abb. 5.5). Um zu zeigen, daB
cos (n arccos z) tatsichlich ein Polynom n-ten Grades in z ist, gehen wir von der
Moivreschen Formel (MfL Bd. 2, 7.3.) aus. Fiir |z| < 1, { = arccosz und n € N ist

cos n¢ + % 8in n¢ = (cos t + 7 sin ¢)*,

cos nt — 1 sinné = (cost — 7 sin ¢)",
cosm=%[(z+iyl—x’)'+ (z—iVl—-z”'].

1) Hier kann ein beliebiger Zweig des Arkuskosinus gewihlt werden.
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PP

Y L)

T w6

-1 1 x

50
Abb. 5.5

-1

Mit Hilfe des binomischen Satzes erkennt man, daB sich auf der rechten Seite die

Terme mit ungeraden Potenzen von }/1 — z? aufheben und ein Palynom n-ten Grades
in # resultiert:

connt = 2% — (’2') 21— 2?) + (:) 241 — 29
— (™Y 201 — 23 & ...
(})a - e
Dasselbe Polynom ergibt sich, wenn man fiir || > 1 den Ausdruck
Fle+ 7=+ - =)

nach dem binomischen Satz entwickelt, so da3

Ty(z) = o — ('2‘) 231 — o) + (Z) 241 — )t — (Z) 21—z 4 ..
%[(z +i T + (e —iVT—a)Y] fir |5 =1,

- (46)

%[(z+}/z’—l)'+(z—}/z’-l)'] fiir |z] > 1.
Damit folgt

o Tam) o1 Y [ .
‘;27=,‘::'z‘[(‘+l“‘§)+(1*l/‘—y)]ﬂ oo

{46) zeigt, daB T, den Leitkoeffizienten 2"~ besitzt.
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PP

Fiir
A imcos DT g0,
2n
ist nach (44)

Ty (™) = cos (n arccos z{") = cos ((2" -b %) =9

(vgl. Abb. 5.6). Damit sind sémtliche Nullstellen von 7', bestimmt.

|
1
=
-1 !

|

!

]

I I

1 I

| _ !
S 3 g0 7] S0 0.
XDk Pt x| 5 x
Abb. 5.8 Null- und Extremstellen von 7'y

Auf [—1,1] ist gemiB (44) | Ts(x)| < 1. Von Interesse sind die Stellen in [—1,1],
wo T, Werte vom Betrag 1 annimmt. Nach (44) sind das die » + 1 Argumente

In
2}"’=cos-;, 1=0,12,...,n,

wofiir
To(£™) = cosln = (—1)
gilt (vgl. Abb. 5.6). Wir fassen die Ergebnisse in einem Satz zusammen :

Satz 6. Die durch (44) definierten T, sind Polynome n-ten Grades mit dem Leit-
koeffizienten 2%, Diese besitzen n reelle Nullstellen vm Intervall [—1, 1] be

M —oosZEZDT p o 7
2n
Auf |z| < 11t
To(@) < 1; 489
das Gleichheitszeichen gilt fiir
B =osZ, 1=01,..m, 9)

wobes das Vorzeichen der Funkti te gemiif To(Z™) = (—1)} alterniert.
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Im Raum C_,,,, fithren wir durch
1

. 9) =‘/‘}/,(lz)_+(:: dz, f,9€Cc 11y (50)
=

ein Skalarprodukt ein. Vor Verifikation der Eigenschaften in Definition 1 wird die
Existenz des uneigentlichen Integrals gezeigt. Gemi8 MfL Bd. 5, 4.1.7., ist

g

1 [ b
f 1@9@) 40 im f 1@ 9@ 40 1 tim f @) 9@ 4.
a’y-1 b1
-1 a [

Y1 — a2 V1 — a2 J1—at
Mit der Substitution z = cos ¢ und
F(t) = f(cost),  G(t) = g(cos?) (61)
erhilt man dafiir

=/2

1 n n

129@ 4. [ ryoma+ | Foema= [ Foena. @2
fm f() (t) d¢ + (¢) G(t) () G(¢) (62)
-1 nf2 0 ']

Es ist also
(hg)=(F,6), (63)

wobei (-, -) das in (2) eingefiihrte Skalarprodukt fiir das Intervall [0, z] bedeutet.
Aus (53) folgt unmittelbar, da8 (-, -) Skalarprodukt in C_, ,, ist.

Satz 7. Die Tschebyscheff-Polynome T, sind beziiglich (60) orthogonal; dabes ist

igp =15 fir n o,
n  fir n=0.

Beweis. Auf Grund von (44), (63) und (30) ist
1
T o(z) Ta(2)

iea

(Tmy To) = da:=fcosmteosntdt
[}

-1

= 2x
=-21—fcosnuoosntdt=%fcosmtcosmdt
Eatd 0

fir m +n,

0
= % fir m =n %0,
n  fir m=n=0.
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Die beziiglich der Tschebyscheff-Polynome gebildeten Fourierkoeffizienten (18) sind

lfz«'(z).a fiir 5 =0,
BTy )T
o IR ®
—fF(t)cosildt fir <0,
T

(]

wobei F gemi (51) zu bilden ist.
Polynomsysteme, die beziiglich eines Skalarproduktes orthogonal sind, besitzen

allein auf Grund dieses Umstandes eine Reihe gemeinsamer Eigenschaften. Zum Bei-
spiel gilt der folgende
Satz 8. (P}, k=0,1,2,..., bed ein System von Poly k-ten Grades, die

(evngeschrinkt auf eine Menge X & R) Elemente eines unitiren Raumes E von Funk-
tionen f: X — R sind. Beziiglich des in E gegebenen Skalarproduktes sei

=0 fir j+k,
+0 fir j=k
und )
(IPy, P)) = (P, IP)), §,k=0,1,2,..., (85)
‘wobes I das Pol, I(z) = z bezeichnet. Dann existieren reelle K Ay, B, C;
(k=1,2,3,...) derart, dap fiir alle x ¢ R die Rekursionsformeln
Ppy(2) = (4iz + By) Pi(z) + CuPia () (66)
gelten.

Beweis. E enthilt simtliche Potenzen 1, 2, 23, ..., 2%, ..., da diese aus den P;
linear kombinierbar sind.
Es sei p; der Leitkoeffizient von P, und
4, = Pn
P
Dann ist Pg,; — Al P; ein Polynom maximal k-ten Grades und daher

k
Py — AIP, = 3 aP; (67
i=o
mit gewissen a{¥ € R. Fiir k > 1 liefert skalare Multiplikation dieser Gleichung mit
P; (j <k — 1) unter Beachtung von (55) und der Orthogonalitit des Polynom-
systems
k
2 ofP(Py, P)) = afP |P|P = —AIPy, Pj) = —4y(Ps, IP;)) = 0.  (88)
-0



36 5. Approximation von Funkti

IP; ist némlich ein Polynom maximal (k — 1)-ten Grades und als solches in der
Form
-1
IP; = }'bP,
i=0
darstellbar.
Aus (58) falgt a{* = 0 fiir j = 0, 1, ..., k — 2 und in Verbindung mit (57)
Piyy — AP = aPPy 4 aP\ P, ;.
Setzt man By := af, C; := af},, so ergibt sich (56).
Fiir & = 1 folgt unmittelbar aus (57)
Py = (4] + a(ll)) P, +a{'P,,
also wieder (56).
Bemerkung 5. Von besonderem Interesse sind fiir uns die mit einem Skalar-

produkt ausgestatteten Riume C\, und der Raum aller auf einer endlichen Menge
X = (z,, %3, ..., T} definierten Funktionen f: X — R beziiglich des Skalarproduktes

¢:9) = 5 wite) ot) (69)
2

fiir fest gewihlte w; ¢ R} und f,g € {h: h:X—>R X ={(z,2,..., z_)}. Offensicht-
lich ist (85) fiir die Skalarprodukte (2), (50) und (59) erfiillt.

Als Anwendung des Satzes 8 leiten wir Rekursionsformeln fiir die Legendreschen
und Tschebyscheffschen Polynome her.

Die Bestimmung der Konstanten A;, B, Cp kann zum Beispiel durch einen
Koeffizientenvergleich oder durch Einsetzen spezieller Werte erfolgen.

Der Leitkoeffizient ¢! des Legendreschen Polynoms P, ist nach (36)
(2n)!
an(n )

[9) 1 _—
o™ =E!-2n(2n— e+ 1)=

_@n—1@En—3 .31

: (60)
n!

Wendet man die Leibnizsche Differentiationsformel
:.;: (uv) = (uv)® = uy 4 ('1‘) wlry 4 (’2’) WDy e g™

(Beweis durch vollstindige Induktion) auf das Produkt (z2 — 1)* = (x — 1)*(z 4 1)
an, so ergibt sich auf Grund von (36)

1
Pl) = ol =1,

L (61)
Py(—1) = o 2l (=1 = (=1
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Nun vergleichen wir in der Rekursionsformel (56) fiir die Legendreschen Polynome
die Koeffizienten bei z¥+1. Man erhilt mit Hilfe von (60)

@k+ 1)@k —1)--3-1 (@k—1)(@k—3)--3-1

4,
(& + 1! k! k
also
a,=Ft1
E+1
Fiir z = £ 1 folgt weiter aus (56) mit Beachtung von (61)
2k +1
= B, ,
F 1 + B+ C
2k 41
= — B, s
¥ 1 h + O
d.h.
k
B,=0, OC,=-—
3 3 Tri
Die Legendreschen Polynome geniigen also der Rekursionsformel
(k + 1) Ppyy(2) — (2 + 1) @Py(z) + kPp_y(2) = 0. (62)

Fiir die Tschebyscheffschen Polynome liefert der Koeffizientenvergleich bei z*+1
in (56) auf Grund von Satz 6

A, =2,
und durch Einsetzen der Werte z = 4-1 erhélt man
=2+4+B.+0C,
1=2—B;+ G,

also
B,=0, Cp=-1.

Die Rekursionsformel fiir die 7', lautet
Tin(@) — 22Tyx) + Tpy(@) = 0. (63)

Bemerkung 6. Da die lineare Hiille eines Systems (g;} linear unabhiingiger Ele-
mente des unitiren Raumes E mit der des daraus nach E.SommipT gebildeten
Orthogonalsystems {y;} iibereinstimmt, kann die Konstruktion der besten Quadrat-

ittelapproximation eines El tes f € E in Gestalt einer Linearkombination der

@1, also die Losung des Problems (5), nach folgendem Algorithmus erfolgen:

1. Orthogonalisierung (Orthonormalisierung) der ¢; (z = 1, 2, ..., n).
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2. Bestimmung der Fourierkoeffizienten af von f beziiglich des konstruierten Ortho-
gonalsystems ¢, (? = 1,2, ..., ).

n
3. Umordnung von J; ay, in die entsprechende Linearkombination der g;.
i=1

5.2.4.  Polynomapproximation

Die weiteren Betrachtungen dieses Paragraphen befassen sich mit Algorithmen zur
Losung spezieller Probleme. Dabei werden stets Orthagonalsysteme zugrunde gelegt
bzw. eigens konstruiert, um die gesuchte Bestapproximation durch die Berechnung
von Fourjerkoeffizienten bestimmen zu kénnen. Dieser Abschnitt ist der Polynom-
approximation von Funktionen gewidmet, die auf einer endlichen Menge
X = (%, %y, ..., T} paarweise verschiedener z; € R definiert sind. Beziiglich des
Skalarproduktes (59) und der iiblichen Linearoperationen stellen diese in ihrer
Gesamtheit einen unitiren Raum dar, den wir (wie auch dessen Triigermenge) mit My
bezeichnen. Wenn ein Polynom P als Element von M, angesprochen wird, ist damit
die Einschrinkung P|X im Sinne von MfL Bd. 4, 1.3.1., gemeint.

Wir untersuchen die optimale Quadratmittelapproximation einer Funktion f € My
durch Linearkombinationen der Potenzen

pol@) =1, @) == ... @i2)=2"1) (64)

Zunichst beweisen wir

Hilfssatz 1. Die Funktionen (64) sind — als Elemente des Raumes My betrachtet —
Jiir n < m — 1 linear unabhingig.

Beweis. Es sei
m—1
o= 2 api
i=0

eine auf X identisch verschwindende Linearkombination, d. h., es gilt

wo + a2 + w@] + oo+ ap 27 =0,

oo + 03 %p + %a7f + o+ + a7 =0,

o+ T + 0T + o0 + apozn = 0.
Das ist ein lineares Gleichungssystem fiir die «;, dessen Koeffizientendeterminante
die mit den z;, j =1, ..., m, gebildete Vandermondesche Determinante ist. Diese
verschwindet nicht, da die z; paarweise verschieden sind. Mithin ist «, = O fiir
t=0,1,..,m— 1.

1) Dem Exponenten entsprechend werden die Funktionen (64) im Untersohied zu 5.1.(21)
mit Null beginnend indiziert.
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‘PP

Es gibt also auf Grund von Satz 1 in der Menge der Polynome maximal n-ten
Grades (n < m — 1) genau eins, das beste Quadratmittelapproximation einer be-
liebig vorgegebenen Funktionf € M ist. Seine Koeffizienten konnen durch Losen der
mit dem Skalarprodukt (58) gebildeten Normalgleich i werden, Wir
bevorzugen jedoch den durch Bemerkung 6 vorgozelchneten Losungsweg und kon-
struieren ein beziiglich (59) auf der Menge X orthogonales Polynomsystem
Py, Py, ..., P,. Dabei wird zundchst w; = 1,§ = 1, 2, ..., m, gesetat; es ist dann vor-
teilhaft, die P; gemiB

(P Py) =mdy, O=dks=ns=m-—1 (65)

zu normieren. Die im folgenden beschriebene Methode wurde von R. Lupwia [31]
fiir Zwecke der Ausgleichsrechnung entwickelt.
Wir bezeichnen die Koeffizienten von Py mit ¢;;:

3
Py(z) =’Z‘;Gu-‘l«“: k=0,1,...m— 1. (66)

Aus dem Orthogonalisierungsansatz (15) des E. Schmidtschen Verfahrens folgt un-
mittelbar, da8 die P mit einem positiven Leitkoeffizienten konstruiert werden
konnen. Ergiinzen wir (65) durch diese Forderung, so erweisen sich diese Polynome
als eindeutig bestimmt. Man findet zunéchst

megy =m, also Py(x) =co=1. (67)
‘Weiter ist
m m
(Poy Py) = 000_2; (Cor + €ny) = Coo ('Mol +ent z,-) =
j= i=1
d. h.
L
meo, + c,,iZ; z; =0.
Damit folgt nach Multiplikation von
m m
(Py, Py) = megy + c?x‘Z # + 200n X 75 =m
= i=1
mit m !
m m t]
a(Eaf+mEat—2(Laf] = t[n St - (£=)] =
j=1 =1 J=1
Mit der Abkiirzung

(88)

erhiilt man nun -

u=3  Cu=- =L, (69)
1
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Die Konstruktion der weiteren Polynome erfolgt nicht nach dem E. Schmidtschen
Verfahren, sondern mit Hilfe von P, und P, auf Grund der Rekursionsformel (56).
Skalare Multiplikation der Gleichung

Py(z) = (412 + Biy) Pry(2) + CpyPr_o(7)
mit Py_, und Py _, liefert unter Beachtung von (65)
»
0= A;_xiz ziPy_y(%;)* + By_ym,
-1
u (70)
0=A4;, ztpb-x("ﬁ Py_o(2)) + Croym.
=1

Multipliziert man beide Seiten der Rekursionsformel skalar mit sich selbst, so resul-
tiert

m m
m = AL)}Z f}Pk_l(zi)’ + 243 ,By, Y zipk-x(zj)’
-] j=1

+ (B, + Ci)m + 24; ,Ci 4 Z: T Py_y(25) Pr_a(z)).
f

In dieser Gleichung werden B;_, und C;_, mit Hilfe von (70) eliminijert:
md = A}, {"‘ Z:‘ @2Py ()t — 2 [ Z': ziPl-l(zi)’].‘l' [iZ": P b—x(’/)’]’
= J= -
+[ Zripiser Poso| - 2| Bt Prsen] ]
j= =
m m 2
= A:—-x {miz; Z}Pt—l(’i)’ - LZ; szt—x(x})’]
- [’2'—4‘: Z}P k-1(%7) P, b-z(”l)]’}-

SohlieBlich gewinnt man mit der Abkiirzung

Np:= V’"Z:' Z}Py_y () — [ Z:' z}PE—l(xf)’:r— [2!,': % Py_(z;) P:;.x(ﬂb‘)]ﬁ
i= i= =

die Beziehungen (71)
™
m X Py (x;)?
4,=—, B,=—=——,
N} Nk
(72)

Lad

X Py (x)) Pealzy)

05_, = —'-l——-——.
N
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Die beste Quadratmittelapproximation einer Funktion f € My durch ein Polynom
vom Grade n (n <m — 1) oder — gleichbedeutend damit — durch eine Linear-
kombination

L]
=Fap;, n=m-—1,
k=0

der mit Hilfe der Rekursionsformel und (72) konstruierten Orthogonalpolynome
ergibt sich, wenn diese mit den Fourierkoeffizienten

2 flay) Pifwy)
=B — =12, (13)

gebildet wird. Die Approximationsgiite ist nach (20) und (65) durch

I — Foolt =fE: et —m 3 o )

bestimmt.

Um die mit den Koeffizienten (73) gebildeten Polynome F, fiir ein Argument
z+2; (j=1,2,...,m) zu berechnen, wird man nach dem Hornerschen Schema
verfahren und dazu die Linearkombination der P, nach Potenzen von z oder einer

and geeignet erscheinenden EntwicklungsgréBe 2 — z, umordnen:
L n
Folz) =;2 % Py(z) =¢‘ZE; Ol «*. (78)
- Ll
Zu di Zweck besti wir zunidchst mit Hilfe der Formel (56) rekursiv die

Koeffizienten in (66). Fiir k¥ = 2 erhilt man

ot = By scok1 + CrrCoi-zs
e =ApaCopa +Biacika + Ot

e =G+ Beatik,  + CiaCiioas (16)
ook = Apa 31+ BetGiair + CeaGinis,
Ckork = Ap 1k 2k-1 + BeaCer ks
o =Ap i
Mit
= (Cobs Cas s )Ty Ri= (A1, By, Cpt)T ()]

1a 8¢ sich (76) als Matrizengleichung

o = (0 Cry cb-z) R, (78)
Ci_1 0 (1}



42 5. A imation von Funkti

PP

n
schreiben. Aus Fy = 3 a,P; folgt
k=0

O] = kZ”"cua., (79)

was nach Einfiihrung der oberen (n + 1, 7 4 1)-Dreiecksmatrix

C € ... C Coo Co1 Co2z -+ Con
0 ¢y Ca o Cn
D= =00 0 cp ... c (80)
0 0 0 0 Cun
in der Form
C =Da (81)

ausgedriickt werden kann, wenn
€ = (C[0], C[1], ..., C[n])T und @ = (ag, @y, ..., a)T
ist.

Im folgenden wird eine ALGOL-Prozedur ORTPOL beschrieben, welche bei ge-
gebenen y; = f(z;), j = 1,2, ..., m, die mit den Koeffizienten (73) gebildete beste
Polynomapproximation Fae bestimmt, die Werte Fa.(z;) und die FehlergroBe (74)

"
berechnet und F,e = J af P} nach Potenzen einer vorgegebenen EntwicklungsgrsSe

k=0
Z — o ordnet. Als formale Parameter treten auf:

m, n, 20: diese GréBen haben die oben eingefiihrte Bedeutung und werden
in den Werteteil iibernommen;

z: reelle Variable, welcher der Wert ||f — F.||? Zugeordnet wird;

nz: Index < 7, bei dem die Berechnung der Orthogonalpolynome ab-
gebrochen wird, sofern die Fehlergri8e z auf Grund von Rundungs-
fehlern negativ wird ;

X,Y,FA: Felder zur Aufnahme der z;, y; = f(2;) und Foe(2y), j = 1, 2, ..., m;

C: Feld zur Speicherung der Koeffizienten des nach Potenzen von

x — z, geordneten Polynoms der Bestapproximation von f.
Neben HilfsgroBen werden lokal vereinbart :

1) T2, T3 reelle Variable in der Bedeutung der nachf(72) zu” berechnenden
Koeffizienten 4;_,, B;_;, C;_; der Rekursionsformel (56);

A[0:n] als Feld zur Speicherung der Fourierkoeffizienten (73);
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D[0:n, 0:n] als Felder mit der Bedeutung des ersten Matrixfaktors der rechten
CC[0:m, 1:3] Seite von (81) bzw. (78);

P[0:n, 1:m] als Feld zur Speicherung der Py(z;), k = 0,1,...,n,7 = 1,2,...,m.

Weitere Erklirungen zur Prozedur ORTPOL sind im ALGOL-Text enthalten. Das
Einfiigen solcher Erlauterungen hat nach bestimmten Regeln zu erfolgen und wird
dann bei der Ubersetzung eines Programms iibergangen. Danach ist speziell folgen-
der Kommentar zulissig:

Nach einem Semikolon erscheint das Grundsymbol comment gefolgt von ALGOL-
Zeichen, deren letztes ein Semikolon ist, wihrend im iibrigen kein Semikolon in der
Zeichenreihe auftritt. Mit Erlauterungen dieser Art wird in der Prozedur ORTPOL
der Inhalt eines nachfolgenden Textstiickes beschrieben:

procedure ORTPOL(mn,202,n2,X,Y,FAC);
value m,n,z0; integer m,n,nz; real 20,z;
array X,Y,FA,C;
begin integer 7,j; real s1,82,nen,r1,r2,r3;
array A[0:n], CC[0:n,1:3], P[0:n,1:m], D[0:n,0:n];
comment 20 wird Ursprung der Abszissen;
if 20 == O then for j := 1 step 1 until m do
X[j]:= X[j] — «0;
comment Bestimmung von P0 und P1 gemif (66) bis (89);
8l := 82 :=12z:= A[0] := A[1] := 0;
for j := 1 step 1 until m do begin
81 := sl + X[j]; $2:= 82 + X[j] x X[j];
z:=z2+ Y[j]x Y[{] end;
D[0,0]:=1; nen := sqrt(m X 82 — sl X s1);
D[0,1]) := —sl/nen; D[1,1] := m/nen;
comment Berechnung der Fourierkoeffizienzen 4[0], A[1];
for j := 1 step 1 until m do begin
P[0,j] := D[0,0]; P[1,§]:= D[0,1] + D[1,1] x X[j];
A[0] := A[0] + Y[j]; A[1]:= A[1] + Y[j] x P[1,f] end;
A[0] := A[0)/m; A[1]:= A[1]/m;
comment anteilige Berechnung der FehlergriBe z, der Werte FA[j] und von C[0],
C[1] gemiB (81);
z:=12z — (A[0] x A[0] + A[1] X A[1]) X m;
for j := 1 step 1 until m do
FA[j] := A[0] 4 A[1] x P[1,5];
C[0] := A[0] + D[0,1] x A[1]; C[1] := D[1,1] x A[1];
comment Bestimmung der héheren Orthogonalpolynome, Fourierkoeffizienten und
Clil;
it » 4 1 then begin for ¢ := 2 step 1 until » do
begin A[7] := O[] :=7r1:=12:=r3:=0;
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comment Berechnung der Koeffizienten in der Rekursionsformel (56) gemdB (72);
for j := 1 step 1 until m do begin
8l := X[{] X P[t — 1,§]; 82:=s1 X P[i — 2,7];
8l :=8l X P[ — 1,7]; r1 :=r1 + X[j] x s1;
72:=12 + 81; 73 := 13 + §2; end
nen 1= sgri(m X rl — r2 X r2 — r3 X 73);
rl:= m[nen; 12 := —r2nen; 13 := —r3/nen;
comment Berechnung der Werte des i-ten Orthogonalpolynoms an den Stellen ;
nach (66) und des Fourierkoeffizienten A[7] nach (73);
for j := 1 step 1 until m do begin
Plif) = (r1 X X[j] + r2) X P[i — 1, ] + 8 X Pli — 2,];
A[7] ;= A[2] + Y[§] X P[5, ) end;
A[7] := A[2)/m;
comment Fortsetzung der Berechnung von FA[j];
for j := 1 step 1 until m do
FA[j] := FA[j] + A[?] x P[i];
t teilige Berechnung der C[4] fiir 5 von 0 bis 7 nach (78) und (81);
for j:= Ostep 1 until7 — 1 do  begin
CClj + 1,1]:= CC[j,2) := D[j, ¢ — 1;

CCTj,3] := D[j, < — 2]; end
CC[0,1] := CC[%,2) := CC[+,3] := CC[z — 1, 3] := 0;
for j := 0 step 1 until 7 do begin

D[j,i] := r1 x CC[4,1] 4 72 x CC[j,2] + 3 x CC[},3];
Clj] := Olj] + 4[] x Dljz] ~ end
z:=2z —m X A[7] X A[7];
if 2 < O then begin z := 0; nz :=7; goto L end
end;
end;
L: end

Bemerkung 7. Eine Transformation des Koordinatenursprungs empfiehlt sich,
wenn der Mittelwert der z; nicht in der Nihe von Null liegt. Sonst kann in diesem
Fall — z. B. bei der A rtung der arithmetischen Ausdriicke (72) — ein Verlust
an wesentlichen Ziffern eintreten.

Bemerkung 8. Die im AnschluB an (65) dargelegte Konstruktion von Orthogonal-
polynomen 1iBt sich mit geringfiigigen Modifikationen auf den Fall eines beliebig
gewichteten Skalarproduktes (59) iibertragen. Es ist dann vorteilhaft, (65) durch die
Normierung

Py P)=Wéy, O k=n=m-—1
mit
L3
W= w; (82)

j=1
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zu ersetzen. Die Durchfiihrung im einzelnen sei dem Leser als Ubungsaufgabe iiber-
lassen.
Wenn die z; dquidistant sind und

b=z, — z;,
gewinnt man mit Hilfe der linearen Transformation

z—z
t=
A

an Stelle von X die Argumentmenge T' = {0, 1, ..., m — 1}. Fiir diese Normierung des
Problems hat erstmalig TSOHEBYSCEEFF explizit Orthogonalpolynome bestimmt, die
auch in modifizierter Form besonders fiir Anwendungen in der Statistik tabuliert
wurden. Fiir weiterfiihrende Studien sei der Leser auf die Literaturhinweise zu [31],
Kap. 5, und auf [10), Kap. I, verwiesen.

Wir beschlieBen diesen Abschnitt mit einem Beispiel aus [10], das mit der Prozedur
ORTPOL gerechnet wurde.

i z 1y 9
1 0,000 1,300 —0,003 m =10
2 0,3 1,245 0,009
3 0,6 1,095 —0,003
4 0,9 0,855 —0,012
b 1,2 0,614 0,000
6 1,6 0,037 0,020
7 1,8 —0,600 0,002
8 2,1 —1,206 —0,033
9 2,4 —1,767 0,025
10 2,7 —1,914 —0,008
Tabelle 5.1

Beispiel. Die mit Tabelle 5.1 gegebene Funktion soll durch ein Polynom fiinften
Grades approximiert werden. ORTPOL liefert fiir z, = 1,35 die Minimallssung

Foe(z) = 0,283 — 1,857(z — ) — 0,797(2 — 2p)* + 0,100(z — z,)°
+ 0,261(z — )¢ + 0,086(x — o)

mit dem Normfehler

|If — Foul2 = 0,0024.
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Die Abweichungen

b=} — Fﬂ‘(’!)v j = Y110,
findet man in der letzten Spalte der Tabelle 5.1. Abb. 5.7 zeigt den Graphen der
Funktion F,. iiber dem Intervall [0; 2,7] und die Punkte (=, f;), j = 1(1)10.

i

03 06 0971 12 % 18 27 a4 27 %

Abb. 5.7

5.2.5. Angeniherte Harmonische Analyse

Wir erortern folgende Diskretisierung des dem Satz 3 zugrunde liegenden Sach-
verhaltes:

X = (2, T3y -o0 T}
sei die Menge der dquidistanten Teilpunkte
P .
==j, =12..,m,
=1 7 m (83)
des Intervalls [0, pJ, p > 0, und My die Gesamtheit der Funktionen

;X >R

My wird als unitdrer Raum beziiglich des Skalarproduktes (59) mit w; = 1,§ = 1(1)m,
betrachtet. Dann gilt
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Satz 9. Die auf X eingeschrinkten Funkti

1 . 2 27
@o: T H> —, @z +>sin—z, @3: 2 > cos —z,
2 P P
. 4n 4dn
@i > sin—z, @41 Z > o8 —z,
P P

. 2n 2n
Pan1i X > sm;nx, Pan T > cos-;-nz

bilden unter der Vorausselzung

2+ 1=m
etn Orthogonalsystem m1t
(P 9;) =0 fir i %7,
2 iri=o,
4
(po @) = m
> fiir © 0.

Die Fourierkoeffizienten a}, b} einer Funktion f € My 2u g bzw. @g_, stnd

, 2 = 2nikj
a;:=(’—"”—';)=—2/(z,)oos—’, £=0,1,2,...,
lpsill m j=1 m
(/»'Pak-x) 2 n . 2mkj
= = z;) sin —~, k=12,....
S . ~m & ’
Unter allien Linearkombinationen der Funktionen, (84) st
. n
F=ﬂ+2(a:m@+b:sm2”—“)
2 A P P

die beste Quadratmittelapproximation von f.

(84)

(86)

(86)

87

(88)

Beweis. Es geniigt, die Orthogonalitétsrelati (86) zu b
die trigonometrischen Summen

» » y
Zcos-zn—hz,=2cos@l,
j=1 y =1 m
& o 2mh LA
sin — z; = J sin ——,
A A

h = 1(1)2n, berechnet. Mit Beachtung der Eulerschen Formel und der Summen~
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formel fiir die geometrische Reihe ergibt sich

» Omha, ™ m 2k m ;3mh
2 cos > L © ) sin ;
j=1

L S
P

j=1 j=1 j=1
gizah _ 1 23k
=m0
e™ —1
also
m 2“,'3 m 5
Yes—L =) cosM =0,
j=1 I =1 m (89)
™ L ;
X' sin 2mhay = }'sin 2mhf =0,
j=1 P j=1 m

A
h = 1(1)2n. Es sei bemerkt, daB wegen (85) 0 < - < 1 und daher ¢ ™ = 1 ist.
m

Auf Grund der beim Beweis von (30) benutzten trigonometrischen Formeln hat man

L] 2kx; . 2nlz; 1 M 2m(k+lz 1 B 2m(k—1l)a
cos Sm—=—Zsm——-——-2sm———_,
IE P ? 2= P 2 =1 b4
- m m — .
5 cos 2mka; cos 2nlzy _ 1 5 cos 2n(k + 1) z; + 1 5 oos 2a(k — 1) z,’ 90)
1 P P 2 j=1 P 2 j=1
. m p— m
f‘ sin 2k sin 2z 1 2 cos Ik —hy L 2 cos 2kt h =
jm1 P P 2= P 2 =

Wegen (89) ergibt sich fiir 0 < k, I < » und ¥ 5= auf der rechten Seite von (90)
jedesmal Null, in der ersten Gleichung auch dann noch, wenn & =1I. Falls k =1 + 0
ist, verschwindet in den letzten beiden Gleichungen (90) je eine Summe auf der
rechten Seite, withrend die andere den Wert m hat. Fiir ¥ = ! = 0 sind alle Kosinus-
summen auf der rechten Seite gleich 7. Damit erhilt man als Analogon zu (30) fiir

kELIeEN,OSEI<mn:

m
Zcosznkz' sin%=0.
j=1 P 4
0 fir k<1,
f‘cmmmﬁl’_’= L;- fir k=140, (91)
j=1 p P
m fir k=1=0,
0 fir k1,
=
Zsinznkz’sin%= % fir k=10,
=1
0 firk=1=0,

woraus (86) folgt.
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Fiir den bei der Approximation von f durch das trigonometrische Polynom (88)
tstehenden Fehler berechnet man nach (20) und (86)

»2 n
I — Fip = — 2 [‘i +Z @+ b:’)]. (92)
212 e
Diesbeziiglich heben wir den Spezialfall van (85)
2n+1=m (93)

hervor. Hier gilt

Satz 10. Unter der Voraussetzung (93) ist ||f — F|| = 0, d. h., (88) lost die Aufgabe
der trigonometrischen Interpolation

. n
fa) = Fla) =2 + 5 (a,‘ cos 2% + b? sin 2m’) (94)
2 = P P
j=1(1)m,
an den Stellen (83). Stnd umgekehrt die Qleichungen (94) fiir eine Linearkombination F
der Funktionen (84) mit Koeffizienten a,, b, erfiillt, so miissen diese simtlich mit den
entsprechenden Fourierkoeffizienten (87) iibereinstimmen.

Beweis. Der zweite Teil des Satzes 10 folgt aus der im Zusammenhang mit (21)
hervorgehobenen Minimaleigenschaft der Fourierkoeffizienten, da bei Erfiilltsein von
(94) |If — F|® verschwindet und die Abweichungsfunktion Z fiir das Koeffizienten-
system a,, b, ihr absolutes Minimum annimmt.

Die Umkehrung wird durch Berechnung der FehlergroBe ||f — F|? verifiziert.
Dazu fassen wir in (92) iichst die rein quadratischen Glieder zusammen, die sich

.2
aus (87) bei der Bildung von a}? + b}%, k = 1(1)n, und % ergeben. Nach Multi-

plikation mit % findet man dafiir unter Beachtung von (93) die GréBe

2n+1

2 m 4 m
S B+ n g Brent| =252 Bt = Z e = e

Auf Grund von (92) ist also nur noch das Verschwinden der Gesamtheit aller ge-
mischten Glieder bei der Berechnung von
*2 »
o+ X b
k=1
zu zeigen. Fiir zwei verschiedene Indizes ¢, j mit 1 < 4, j§ < m = 2n 4 1 ergibt das
entsprechende gemischte Glied von a}? und b}? zusammen

f@:) fl=;) o 2nky 2nkj 1 sin 2nki sin 2nkj
(2n+1>'(

mt1 a1 1 P omr1

_ gl fa)  omkii—j)
(2n + 1)2 2n + 1
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Auf Grund der durch vollstindige Induktion leicht zu beweisenden Formel

.n+1 n
. sin zoos
Jeoskr =—-"— (95)
k=0 . x
sin —
2
liefert die Summation dieser Terme von ¥ = 1 bis k = n mit z:= 2n( — )
2n +1
L+ Ya@—g)  wn@@—g)
g 1) flz)) Tl et 1
(2n +1)2 . (i —j)
sin ————
2n+1
. o . At —7)
sin z(¢ — L 24
et | TP e
(@n+1)* - (i — ) (2n 4+ 17"
2 sin ————
2n 4+ 1

*2
Das noch nicht beriicksichtigte gemischte Glied zum Indexpaar 7, § von %— hat aber

gerade den Wert +M so daB sich die gemischten Glieder insgesamt

@n + 19’
tatsichlich annullieren.

Die weiteren Betrachtungen konzentrieren sich auf algorithmische Fragen im
Zusammenhang mit der Berechnung der Fourierkoeffizi Die Ausdriicke (87)
sind trige trische S der Form

' ]
C=2Xcicosjz, 8=) ¢sinjz (96)
j=0 1

mit gegebenen Werten fiir ¢; und z. Man beachte, daB sich in (87) die Summanden
fiir j = m auch fiir j = 0 ergeben, wenn man

Zo=0 und f(x) = f(*m)

setzt. Seit langem ist ein Verfahren von C. RUNGE in Gebrauch, das in Verbindung
mit Hilfsmitteln wie Schablonen und Formularen zur Berechnung der S (98)
von Hand entwickelt wurde. Dieses eignet sich auch gut fiir den Computereinsatz
(vgl. etwa [31]), ist aber hinsichtlich der Rechenzeit nicht so giinstig wie der folgende
Algorithmus von G. GOERTZEL [17], der bei der Bestimmung aller Koeffizienten (87)
mit einem zweimaligen Aufruf von Prozeduren zur Berechnung eines Kosinus- und
Sinuswertes auskommt. Das Verfahren wird wesentlich durch den folgenden Satz be~
schrieben.




5.2. Quadratmittelapproximati 51

PP

Satz 11. Beziiglich der Summen (96) seten U, die rekursiv durch
Upi=U04,4:=0,

87
U,:=¢+2U0,,,cosz — U,,,, ®=U—11,
bestimmien Grofen. Dann vst
C=cy+ Uycosz — U,, (98)
8 ="U,sinz. (99)
Beweis. Wir setzen
1
Vei=23 ¢;sin(j —x+ 1)z, x = 1(1)l,
= (100)
Vigi=Vi:=0.
Dafiir gilt
¢ 8inz + 2V, co82 — V, o
1
=c.sinz+ Y ¢f2coszsin(j — %)z —sin(j —x — 1)z]
j=x+1
]
=c,sinz+ Y ¢sin(j—xz+1)2z=7,, (101)
jmxt1

letzteres wegen

cos  8in v =%sin (u+ v) — %sin ( —v).
Bei der Herleitung von (101) ist zunichst 1 < » <! — 2 anzunehmen. Die Formel
gilt aber auch fiir x =l und x = ! — 1, denn es ist

gsinz=7V,
und
¢y 8in z 4 2V, cos z = ¢;_, sin  + 2¢; 8in 2 cos z

=¢_,8inz+ ¢sin2z=7V,_,.
Mit Hilfe von (101) wird induktiv gezeigt, da8
V,=U,sinz, x=1(1), (102)

ist. Fiir x =1 und » =1 — 1 folgt (102) nacheinander aus (101), (100) und (97).
Nehmen wir nun an, daB (102) fiir x = k£ > 1 gilt, dann ergibt sich auf Grund von
(101), der Induktionsannahme und (97)

Via=¢ 8inz + 2V, cosz — Vi,
= (Cg-y + 2U; cos 2 — Up.,) sinz = Uy, sin 2,
was zu beweisen war. Speziell ist

V,=8 = U,sinz.
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Zum Beweis von (98) zeigen wir zunéichst
cosinz + Vycosz — V,

1
= ¢o8in z + Y ¢;[cos z sin jz — sin (j — 1) z]
j=1

]
=co8inz + Y ¢;co8 jzsinz = Csinz. (103)
j=1
Mit (102) folgt aus (103)
Csinz = (¢ + U, cosz — U,)sinz

und nach Division durch sin x die Gleichung (98). Aus Stetigkeitsgriinden gilt (98)
auch fiir Argumente z, deren Sinus verschwindet.

Speziell findet man nach Satz 11 fiir die Fourierkoeffizienten (87) bei Beachtung
von (86) mitl =m — 1

ai=2 (/(z.,) + U1 oos 2% U;n)

(104)
by = 2 U™ gin -2lk,
m ! m
wobei
U®,, = W =0,
UW i— f(z,) + 202, o0 %" —ow,, (105)

x=m—1(—11, k=0(1m.
Wir zeigen noch, daB zur Ermittlung simtlicher a}, b} nur ein Sinus- und ein
Kosinuswert berechnet werden miissen. In der Tat gilt fiir die GroSen

ep = cos pd, Tp := 8in pd

auf Grund der trigonometrischen Additionstheoreme die Matrizengleichung

(Qpﬂ) - (91 —71) (9»), (106)
Tp1 T €1/ \%p
L . 2k . 2nk
80 daB die in (104) und (105) auftretenden GréBen cos — und sin — nach (108)
m m

simtlich aus cc:»s2 und sinﬁ bestimmt werden kénnen.
m m

Der PAP in Abb. 5.8 stellt die Berechnung der Fourierkoeffizienten (87) nach (104)
dar; anschliefend wird diese in einer ALGOL-Prozedur HARMON zusammen-
gefaBt. Im PAP sind die Strukturen von zwei ineinandergeschachtelten Lauf-
anweisungen erkennbar, deren innere die Berechnung der zur Bestimmung von
a, b} bendtigten GroBen U®, UM betrifft. Zur Speicherung der Fourierkoeffizien-
ten und Funktionswerte f(z;) dienen die Felder A[0:n], B[0:n] bzw. F[0:m — 1].
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hiz 2m; h1:=h % 7;
cl:=cos(h1); st:=sin(hl)

Alk] :=h*(f,+cxUT-U2); UO: =fp42 % cxU1-U2;
Blk]i=h*s *U1 U2:=01; U1:=U0

[}
qi=cl¥c=-sl*s;| "

1mClok. * '
Giag orsiRes | Abb.5.8

+1

Im k-Lauf werden die Formeln (104) ausgewertet und der fiir den nichsten Schritt
dazu benétigte Kosinus- und Sin t bereitgestellt. Letzt erfolgt gemaB (106),
wobei den GréBen g, v die Variablen ¢, 8 zuzuordnen sind:

procedure HARMON (m,n,F,A,B);
value m,n; integer m,n; array F,4,B;

begin integer %,j; real h,k1,u0,ul,u2,c,8,cl1,81,q;
h:=2/m; k1 := h x 3.14159265;
cl := cos(hl); 8l := sin(hl); c:=1; 8:=0;
for k := 0 step 1 until » do begin
ul ;= u2:=0;
for j :=m — 1 step —1 until 1 do begin
0 := F[j]1 + 2 x¢ X ul — u2;
62 :=ul; ul :=u0 end;
A[k] := h % (F[0] 4+ ¢ X ul — u2); B[k]:=h X8 X ul;
g:=cl Xc—38l xs8; 8:=8l Xc+clXxs;
ci=¢q end

end
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Mit Hilfe der Prozedur HARMON wurden folgende Beispiele gerechnet:
1. Tabelle 6.2 enthilt die in Volt gemessenen Werte fiir den zeitlichen Verlauf einer
Kippspannung mit der Periode p = % s an den m = 12 dquidistanten Stellen (83).

Der Ungleichung (85) entsprechend wurden zur Approximation trigonometrische
Polynome des Grades » = 3 und n = 6 gewihlt; die Prozedur HARMON liefert
dafiir folgende Systeme von Fourierkoeffizienten:

ap= 8,85 E’

ay = —2,41 b= 321
ay = —1,20 by = —0,04
ay = —0,20 b, = —0,08
e s
a, = —2,42 b= 321
a; = —1,20 by = —0,04
a; = —0,20 by = —0,08
a, = —0,22 b= 0,16
ag = —0,28 b= 0,04
j 1 2 3 4 5 6 7 8 9 10 11 12

Yi 3,85 6,45 885 9,10 7,30 5.80 4,45 3,25 2,20 1,30 0,65 0,00

Tabelle 5.2

Abb. 5.9 zeigt den Verlauf der Bestapproximation fiinften Grades iiber einem
Periodenintervall und die Abweichungen von den MeBwerten der Tabelle 5.2.

y
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2. Um bei optischen Bauelementen den Anteil des reflektierten und des durch-
gelassenen Lichtes durch Interferenz in gewiinschter Weise zu beeinflussen, werden
»diinne Schichten‘ geeigneter Substanzen aufgedampft. 7' (Transmissionsgrad) be-
deutet den von der Vakuumwellenlinge A abhingenden Bruchteil der durchgel
Lichbenergio bei senkrechtem Einfall.

Fiir einen Belag aus vier dielektrischen Schichten glei optischer Dicke 4 auf
einem Glastriger ergaben sich die in Tab. 5.3 zusammengefa.ﬂtﬁn Werte fiir F :=T"-1

in Abhéngigkeit von der Grofe z := %7—’- 4 an den m = 9 iiquidistanten Stellen (83)

des Intervalls [0, p] = [0, 2z]. Bestimmt man die Bestapproximation in der Klasse
der trigonometrischen Polynome vierten Grades, so werden nach Satz 10 die Werte
der Tabelle 5.3 im Rahmen der Rechengenauigkeit interpoliert.

i 1 2 3 4 1] [ 7 8 9

T; 1,192 1,319 1,112 1,031 1,031 1,112 1,319 1,192 1,042

Tabelle 5.3

Die Prozedur HARMON liefert fiir m = 9 und n = 4 folgendes System von
Fourierkoeffizienten:

a=2300 a, = 0,061 a, = —0,123
a; = —0,061 a, = 0,015;

die Sinuskoeffizienbon verschwinden. Dieses Ergebnis ist in Ubereinstimmung mit
der Theorie der Inter hichtsyst wonach 7-1 in dem betrachteten Fall ein
Kosinuspolynom vierten Grades in z sein muB.

Wir betrachten noch zwei weitere Anwendungen des Satzes 11, zundchst die
Berechnung sogenannter T'schebyscheff-Reihen, auf die wir in 5.3.2. zuriickkommen
werden. Zu berechnen sei die Linearkombination von Tschebyscheff-Polynomen
1. Art

]
1@) = 5 o/T(e)- (107)
i<

Auf Grund von (44) handelt es sich dabei um eine Kosinussumme (96) mit dem Argu-
ment arccos z. Nach Satz 11 ist

@) =co+ Uiz —U, (108)
mit

Upy:= Uy :=0

(109)
U,:=c¢,+ %Unn — Uy, % =l(—1)1.
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AbschlieBend erortern wir einen Algorithmus zur Berechnung von Polynomen
]
Py =) ci!
j=0
mit reellen Koeffizienten fiir komplexes Argument (vgl. [8])
z=x+1y=r(cosp +ising), r=0.
Es ist
] ] !
Py =X cp! = X ot cos jp + i 3 ot sin jp
j=0 j=0 j=1
die Zerlegung von P(z) in Real- und Imaginirteil. Nach Satz 11 findet man dafiir
Re P(z) =c¢o + U,cosp — U,, Im P(z) = U, sing,
wenn
Upsg 1= Uy :=0,
Ui=cr+2c089 Upy — Usia, =z =1U-11,
ist. Mit der Transformation U, = W, folgt daraus fiir » > 0, daf mit
Wi =Wy :=0,
W, :=c¢, + 2rcos oW,,, — r*tW,,, =c¢, + 22W,,y — r*W,,q, (110)
x =1U—1)]1,
die Beziehungen
Re P(z) = ¢ + W, cos ¢ — r*W, = ¢o + zW, — r*W,, 1
Im P(z) = rW,sinp = yW,
gelten.
Fiir die manuelle Berechnung von (111) nach der Rekursion (110) eignet sich das
sogenannte doppelzeilige Hornerschema:
€ €1 C3 C-3 ..o C O Co
Ci8 6,8 ... C8 €8 €8

ot eyt ¢t ... cF cit (112)
¢ Gy Ca Cg - G G G
In (112) ist
8:= —(z® + ¥, t:=2z, (113)

und ¢}, » = {(—1)0, bezeichnet die Summe der iiber dieser GréBe stehenden Werte.
Diese lassen sich schrittweise mit » = ! beginnend berechnen. Man erkennt sofort,
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daB die ¢, fiir x = I(—1)1 mit den entsprechenden W, der Rekursion (110) iiberein-
stimmen. Auf Grund dessen ist nach (111), (112)

Re P(z) = zc; + ¢, Im P(z) = ye;. (114)

Wir wollen das Verfahren noch in einer ALGOL-Prozedur POLKA zusammen-
fassen. Formale Parameter derselben sind das Feld C der Koeffizienten, z, y als
Real- bzw. Imaginirteil des Argumentes z und p, ¢ als Real- bzw. Imaginirteil
von P(z); I steht fiir den Grad des Polynoms:

proecedure POLKA(C,l2,y,p.9);
value z,y; integer /; real z,y,p,q; array C;
begin
integer j; real s,t,w,wl,w2;
8= —(zXzx+yXy) ti=z+z; wl:=w2:=0;
for j := I step —1 until 1 do begin
w:= C[j]+ ¢t xwl + 8 X w2;

w2 :=wl; wl:=w end;
p:=0[0]+zxwl +8Xxw2; ¢g:=yxXwl
end

5.3.  GleichmaBige Approximation

Dieser Abschnitt betrifft das mit der Norm
I = m“ 1)) (6))

iiber Cyypy formullem lineare Approximationsproblem 5.1.2.(23). Nach der Erérte-
rung grundlegender Begriffsbildungen werden einige Ergebnisse der Theorie (zum
Teil ohne Beweis) mitgeteilt und angewendet.

5.3.1. Grundlegende Begriffe und Ergebnisse

Es sei daran erinnert, da8 das eingangs formulierte Problem nach 5.1.2., Satz 2, eine
Losung besitzt, die jedoch auf Grund der Unititsbetrachtung in 5.1.2. im Hinblick
auf Satz 4 dieses Abschnittes nicht eindeutig bestimmt sein muB. Die Frage, unter
welchen zusitzlichen Forderungen an das linear unabhingige Funktionensystem
{@i} genau eine Bestapproximation existiert, wurde von dem ungarischen Mathe-
matiker ALFRED Haar (1895—1933) gekliart. Ausgehend von Praxisproblemen der
angeniherten Synthese von Mechanismen hat P. L. TSOREBYSCHEFF (1821—1894)
etwa von 1850 bis zum Ende seines Lebens die Theorie der gleichméBigen Approxi-
mation in zahlreichen Arbeiten untersucht und wesentlich begriindet (vgl [51 52]).
Es ist daher berechtigt, diese auch als Tschebyscheff-Approzimation zu b h
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Folgende Definitionen und Sitze sind grundlegend:

Definition 1. » Funktionen @; € C(,4), ¢ = 1(1)n, bilden ein Tschebyscheff-
System?) beziiglich des Intervalls [(a, b] genau dann, wenn jede nichttriviale Linear-
kombination

»
F.=.Zaa% a=+0,
=1

auf [(a, b] hochstens n — 1 Nullstellen besitat.

Beispiel 1. Die Gesamtheit der Funktionen @;: z > 2%, ¢ = 0(1)n — 1, ist beziig-
lich jedes Intervalls ein Tschebyscheff-System, da eine nichttriviale Linearkombi-
nation ein Polynom vom Grade < n — 1 darstellt und nach dem Fundamentalsatz
der Algebra hochstens n — 1 Nullstellen hat.

Beispiel 2. Die Funktionen

1 1
@iz 1, @2z, @iz —, @z —
z z?

bilden beziiglich jedes Intervalls, das den Nullpunkt nicht enthilt, ein Tschebyschef-
System. Der Beweis 18t sich wieder auf den Fundamentalsatz der Algebra zuriick-
fiihren und sei dem Leser als Ubung empfohlen.

Bemerkung 1. Wenn fiir alle ¢; die Bezichung @;(a) = ¢(b) gilt, d. h. die ¢, als
stetige Funktionen iiber die Zahlgerade periodisch fortgesetzt werden ké dann
sind bei der Besti g eines Tschebyscheff-Systems Nullstellen an den Enden des
Intervalls [(a, b)) nur einmal zu zihlen.

Beispiel 3. Auf die Funktionen 5.2.5.(84) trifft die Bemerkung 1 zu. Diese bilden
im Sinne der fiir periodische Funktionen modifizierten Definition 1 ein Tscheby-
scheff-System beziiglich des Intervalls [0, p]. Im Sinne emes mdu'ekten Beweises

sei angenommen, daB das durch nichttriviale Li kombi n entstehende tri-
gonometrische Polynom
F(x)——+2(a,cos—+b sm—) 2)
=1 P P

igstens 2n + 1 Nullstellen im Intervall JO0, p] besitzt; diese seien 2, < 2, < ---
< Zgq41. Mit ¢ als imaginérer Einheit gilt

‘2»": ‘w ‘W _'ﬁmz
? » ? — »
cos 2mva _e + e . sin 2mvx _¢ .e ®)
P 2 P 2¢

Coi= g.?., ¢, 1= —;—(a, —1b,), c¢,:i= %(a, +b,), v=11)n, (4)

1) Diese Bezeichnung wurde von S. N. BERNSTEIN eingefiihrt. — Wenn es zweckmiiBig er-
scheint, wird auch eine mit Null beginnende Indizierung der ¢; verwendet.
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gesetzt wird —
" ‘ﬂ
Flz)= Yce?
_‘25-: %u u-z
=e 7 [-..+c-..ﬂe [ +coe P 4t P]
‘axu ;a2
= 7 Py, (e » (6)

wobei Py, ein Polynom vom Grade <2n bedeutet, dessen Koeffizienten c_y,¢_g41,.--1¢5
sind. Da die Exponentialfunktion fiir kein Argument verschwindet, besitzt P,, die
Nullstellen
]
H=e¢r, j=112n+1

Diese sind paarweise verschieden. Aus {; ={p 1 <7,k <2n+1, j <k, wirde
nidmlich

und damit
2 —2; =mp mit mecN*

folgen. Dem widerspricht aber 2; — z; < p. Das Polynom P,, besitzt also mindestens
2n + 1 Nullstellen und ist nach dem Fundamentalsatz der Algebra das Nullpolynom.
Auf Grund von (4) verschwinden dann auch sémtliche a,, b,, und (2) wire im Wider-
spruch zur Annahme die triviale Linearkombination des Funktionensystems 5.2.5.(84).

Bemerkung 2. Man kann allgemein zeigen, daB die Anzahl der in einem periodi-
schen Tschebyscheff-System enthaltenen Funktionen ungerade ist (vgl. [6], 2.10.).

Satz 1. Die Funkti eines Tschebyscheff-Systems sind linear unabhiingig.
Beweis Es sei (¢}, © = 1(1)n, ein Tachebyscheff-System beziiglich [a, 5] und
Z a@i(z) = 0 auf diesem Intervall. Dann miissen siamtliche a; verschwinden, da

andemfal]s die betrachtete Linearkombination héchst n — 1 Nullstellen auf
{e, b] hiitte, dort also nicht identisch verschwinden konnte.

Es gibt jedoch linear unabhingige Funktionen, die kein Tschebyscheff-System
bilden:

Beispiel 4. Die Funktionen ¢,:  — z, ;: > €* sind beziiglich jedes Intervalls
linear unabhiingig. In der Tat folgt aus

ax + ae* =0

durch imalige Diffe iation aze? = 0, also a; = 0 und dann auch g, = 0. Die
Funktionen @, @, bilden aber z. B. beziiglich des Intervalls [0, 3] kein Tscheby-
scheff-System. Die spezielle Linearkombination F(x) = 4x — e ist negativ bei
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z = 0und # = 3, positiv bei z = 1. Damit existieren nach dem Zwischenwertsatz
fiir stetige Funktionen mindestens 2 (= n) Nullstellen von F im Intervall [0, 3].

Im folgenden werden zwei Hilfssitze iiber Tschebyscheff-Systeme bewiesen, aus
denen sich u. a. ein wichtiges Resultat der Interpolationstheorie ableiten 1a8t.

Hilfssatz 1. Es sei {g,}, © = 1(1)n, ein Tschebyscheff-System beziiglich [a, b}, und
Jiir gewrsse i, Tiyq, - ooy Tpy 1 ¢ S k < 1, dieses In«tcroalla gelte
oi@)  gm@) ... =)
Qi) Q@) .. @el@in)

o) pual@) ... @)
Dann gibt es fiir jedes g, k < ¢ < n, Punkte 3., Zpss, --., T, auf [a, b)) derart, dap

+0. (6)

oi@)  gml@) . @lm) . pel@)
PilTin) Pial@ina) oo @) o @lin)

(T

Qiz)) Pz o @lm) - @elT)

78t.
Beweis. Die durch

o) - @@ @eal@)

PuZier) o @) @Eal@in)
Fla) = [-ooeeriii ®)

Piz) oo @) gealm)
ei@) o @l®)  geal@)

auf (@, b] definierte Funktion F ist eine nichttriviale Linearkombination der Funk-
tionen g;, ..., 1, Pr+; und damit auch eine solche des in der Varaussetzung gegebenen
Techebyscheff-Systems {p;}. Um das einzusehen, braucht man (8) nur nach der
letzten Zeile zu entwickeln und (6) zu beachten. F besitzt hichstens n — 1 Null-
stellen auf [, b], und es muB daher ein von den z,, ..., z; verschiedenes Argument
2., dieses Intervalls geben, fiir welches F(z.,) & O ist. Indem man erneut eine
Determinante der Form (8) mit den Punkten x;, ..., 24, #3+; und den Funktionen
@is -+ +» Phs Phe1s Prez bildet, gelangt man so weiterschlieBend zu dem Resultat (7).

Hilfssatz 2. Es set (), © = 1(1)n, ein Tschebyscheff-System beziiglich [(a, b)) und
Ty, Ty, ...y 2 (B S n) eine beliebige Menge paarweise verschiedener Punkte dieses Inter-
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valls. Dann hat die Matriz
Pi(@) Palz1) ... @ul@)
o e ©
01(e)  @o(ze) ... Palai)

den Rang k.

Beweis. Wir beweisen die Behauptung induktiv. Fiir k = 1 ist zu zeigen, daB
nicht alle der Werte ¢,(z,), j = 1(1)n, verschwinden. Indirekt schlieBend betrachte
man Punkte y;, ys, ..., ¥, des Intervalls [a, b, fiir welche

@2(ys) Pa(ya) .. @aly2)
Pa(ya) @s(¥a) .- Palvn)

P2(Un) @3(¥s) .o Palya)

ist. Deren Existenz liBt sich so erkennen: Auf Grund van Satz 1 gibt es ein y, € [(@,b]),
fiir welches @,(y;) 3 0, und nach Hilfssatz 1 weitere Punkte ys, ..., y,, die (10) veri-
fizieren. Die durch
Piz) @) ... gal@)
Fla) = 71ya) ee(y)) - @aly) 1

?1¥s)  Palyn) oo @alyn)

definierte Funktion F ist eine nichttriviale Linearkombination der Funktionen
@15 P2 --» Pu, da der Koeffizient bei ¢, der von Null verschiedene Determinanten-
wert (10) ist. Diese hiitte bei z, eine Nullstelle, sofern g;(z,) = 0, j = 1(1)n, ist, und
suBerdem gilt F(z) = 0 fiir 2 = y;, j = 2(1)n, da dann zwei Zeilen in (11) iiberein-
stimmen. Mit Riicksicht auf Definition 1 kann F aber nicht » Nullstellen haben, und
daher ist ¢;(z,) % O fiir mindestens ein j € {1, 2, ..., ).

Wir nehmen nun an, da8 die Behauptung des Hilfssatzes 2 fiirk = 1,2,...,m — 1
(m = n) gilt, und betrachten die Matrix (9) fiir z,, 23, ..., Zp. Durch Umnumerierung
der ¢; kann dann stets erreicht werden, daB

+0 (10)

Pa(za) .. Pm(za)

@2(Tm) oo Pm(Tm)
ist. Auf Grund des Hilfssatzes 1 existieren Punkte yu.1, ¥ms2s - -s Yo derart, dad
Po(22) oo Pm(®2) Pmal(®) ... gal@)

@2Ys) o Pm¥n) Pmal¥n) oo Palya)
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gilt. Somit ist die durch
?1(2) P2(2) coo Pal®)
P1(@2)  @alza) o Palas)

?1(Zn)  P2(En) oo PaEm) (12)
P1Yme1) PoUmi1) oo PaYmar)

?1¥n) @) oo ealyn)

definierte Funktion eine nichttriviale Linearkombination der @;. Diese besitzt offen-
bar die n — 1 Nullstellen

Lgy T35 <<y Tms Yma1s o003 Yn»

Wiirde (9) beziiglich der Argumente z,, 2, ..., Z,, nicht den Rang m haben, so ver-
schwiinde (12) auch fiir z;, was man sofort durch Entwicklung dieser Determinante
nach den ersten m Zeilen erkennt. Die Existenz von n Nullstellen fiir (12) widerspricht
aber der Eigenschaft von (g}, ein Tschebyscheff-System zu sein. Damit ist die In-
duktionsbehauptung bewiesen.

Wir konnen nun ein allgemeines Theorem der Interpolationsthearie ableiten, das
zwei frither behandelte Spezialfille einschlieBt.

Satz2. (p;}, t = 1(1)n, sei ein Tachebyscheff-System beziiglich [(a, b) und z,, %y, ..., Z,
etne Menge paarweise verschiedener Punkte dieses Intervalls. Dann gibt es fiir beliebige
yj € R, j = 1(1)n, genau eine Linearkombination

Fo=Sam, (13)
fiir welche
Fo(z) =‘Z; api(z;) =y, j=11)n, (14)

8, d. h., es gibt in der Menge der Linearkombinationen der @; eine wohlbestimmdie,
welche die Interpolati fgabe beziiglich der Knoten x; und dafiir gegebener Ordinaten
l6st.

Beweis. (14) ist ein lineares Gleichungssystem fiir die in (13) auftretenden a;
mit der Koeffizi d inant

Alm) golzy) ... @alm)
Pilx2)  @a(a) ... @al) .

?1(@) Pa(za) oo @alma)

Diese ist nach Hilfssatz 2 von Null verschieden, und das System (14) besitzt genau
eine Losung.
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Die Bestimmung von (13) fiir das in Beispiel 1 betrachtete Tschebyscheff-
System fiihrt auf die in MfL Bd. 9, 4.2.1., erérterte Interpolation mit ganzen ratio-
nalen Funktionen. (14) besitzt in diesem Falle eine Vandermondesche Koeffizienten-~
determinante, deren Nichtverschwinden auf Grund der bekannten Produktdarstel-
lung offensichtlich ist.

Beziiglich des periodischen Tschebyscheff-Sy aus Beispiel 3 und der Knoten
5.2.5.(83) erhiilt man eine spezielle Aufgabe der trigonometrischen Interpolation,
deren eindeutige Losbarkeit bereits nach 5.2.5., Satz 10, erkannt ist.

In beiden Fillen verfiigen wir iiber Algorith zur Besti g von (13), die
unabhingig von der Lisung des linearen Gleichungssystems (14) sind.

Der Erorterung des oben angt h Einzigkeitsproblems fiir die gleichmiiBige

P &

Approximation schicken wir das folgende notwendige Kriterium voraus:
Hilfssatz 3. {g), = 1(1)n, se ein Tschebyscheff-System beziighich [a,b],
n
} € Cigpy und Foq = 3 aip;. Dann gilt:
i=1

F ist Bestapprozimation (im Tschebyscheffschen Sinne) von f = die
Michtigheit der Menge (z:z € [a,5] A |f(2) — Fa(@)| = IIf — Fall
18t grofer oder gleich n. (18)

Beweis. Wir beweisen (15) in der kontraponierten Form und nehmen an, daB ({z},
z; € [a,b), j = 1(1)m, m < =, die Menge sei, auf der

|(z;) — Fal(z;)| = |If — Fell

gilt. Das lineare Gleichungssystem
"

2; §igilz)) = f@)) — Falzp),  §=11)m, (16)

i=
ist nach Hilfssatz 2 l6sbar, wobei die &; nicht alle verschwinden konnen, da gewiB f + Fg
und folglich [f(2;) — Fa(2))| = |If — Fall = Z(a) > 0 ist. Es sei

RB:z > f(z) — Fafz); 7

R ist auf [a, b)) stetig, und |R| nimmt an den Stellen z; den positiven Wert Z(a) an. Diese
werden durch paarweise disjunkte Mengen U; = I; n [a, ] iiberdeckt, wobei I; ein offenes
Intervall der Form |z — ;| < r; ist. Die r; seien so klein gewihlt, daB die U, offene (bzw. fir
z; € {a, b} halboffene) Intervalle sind, auf denen

py = inf |R(@)| > 0 (18)
zeU,
und — wenn § einen L gsvektor von (16) bezeichnet —
s Z(a
inf |Fe)) = 22 9)
€U, 2
gilt. Auf der abgeschlossenen Menge U* = [[a,5] \ U; \ Uy \ -+ \\ U, bedeutet
M := max |Fg(z)| (20)
zeU*®

und
Z*(a) := max |R(z)]. 21)
zeU*
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Ferner sei
M := sup |Fe(z)]. (22)
zeU,
Da |R(z)| < Z(a) auf U* ist und das Maximum von |R(z)| auf U* als Funktionswert dort an-
genommen wird, ist offenbar
= Z(a) — Z*a) > 0. (23)
Nun wiihlen wir & so, daB8

0<z<mm{M L ﬁ} @)
ist, und bilden den Parametervektor

a':=a -+ &§. (25)
Fiir diesen gilt

Hz) — Fe(@)| = |f(z) — Fa(z) — eFg(@)| = |R(z) — eFe(z)|. (28)

Damit findet man auf U;, j = 1(1)m, unter Beachtung von (19)
e — Fet@l = 1R@) (1 = e ) = 1meoy (1 - e L2EL)

R(z) |B(z)|
Za)
< () (1 —e z<2 )) - Z(a)(l - i) < Z(a).
Beziiglich dieser Abschi g sei darauf hingewiesen, daB R und Fg auf U; das gleiche Vor-

zowhen haben. In der Tat nehmen diese Funktionen gemi8 (16) und (17) bei z, denselben Wert
an und verschwinden wegen (18) und (19) auf U, nicht. Damit folgt die Behauptung aus
Stetigkeitegranden. Ferner ist wegen (18), (22) und (24) auf U;

1@ o, M,
T R@ ST T

Auf U* folgt aus (26), (21), (20), (24) und (23)

If(@) — Fa(z)] < |R(z)| + € |Felz)| < Z*(@) + eM < Z*(@) + p = Z(@).
Durchweg gilt also auf [a, 5]

Z(@) < Z(a),
d. h., Fq ist nicht Bestapproximation von f.

Der folgende Satz von A. HaAr bringt zum Ausdruck, daB die Einzigkeit der
gleichmiBigen Bestapproximation durch Linearkombinationen aus linear unabhin-
gigen Funktionen damit dquivalent ist, daB diese ein Tschebyscheff-System bilden.

Satz 3. (@i, z = 1(1)n, @; € Cyp), et ein System beziiglich des Intervalls [(a, b]
linear unabhd Funkti Dann gilt:

tion tm Techebyscheffschen Sinne
A{leo“‘”:}dmhrum binationen der g; eindeutig bests } @7
& |gi) 78t esn Tschebyacheff-System beziiglich [(a, b).




5.3. GleichmiiBige Approximati 66

Beweis. Die eine der in (27) enthalt Implikati beweisen wir in der kont jerten

Form:  wonn g} kein Tschebyscheff.System beziglich [a, b] ist, dann gibt es fir min-
destens ein f € Cq,5) meh Bestapproximati

Im Sinne der Voraussetzung sei Fz eine nichttriviale Linearkombination der ¢; mit den paar-
weise verschiedenen Nullstellen z,, Z, ..., #,. Fir diese gilt

@1(2) Pa(@) ... @al@)

Pz Pal@2) o Pa(®) | o, (28)

P1(Tn) Ps(a) .. Pa(@n)
da das homogene lineare Gleichungesy (14) die Komponenten von @ als nichttriviale
Losung besitzt. Aus (28) folgt die Existenz von Zahlen

»
Ci» Cgp +ns Cns .Z,;c}>0, (29)
derart, da3 !
»
iZ Gpilz)) =0  fir = 1(l)n. (30)
=1
Mit (30) gewinnt man fir jede Linearkombination Fg der g;
id L n " n
X ciFalz)) = X ¢ X aipi(z;) = X a; X epi(x;) = 0. (31)
j=1 o jml i=1 i=1 j=1
A = 0 sei so gewihlt, daB
max [AFs(z)| < 1, (32)
ze(ad)
und ¢ € Co,p) 80, daB
lg@)l <1 auf [a,b) und g(z;) =sgne; (33)

gilt, sofern ¢; = 0 ist. Eine derartige Funktion kann leicht mit Hilfe eines Streckenzuggraphen
konstruiert werden. Offensichtlich hat auch die auf [(a, b]) stetige Funktion

Hz) = g(z) (1 — |AFa(=)|) (34)
die Eigenschaft (33). Auf Grund dessen gilt fiir einen beliebigen Parametervektor a@
Z(a) =‘l::’:°!' IHz) — Falz)l 2 1, (35)
@,

Andernfalls wire speziell fir die z;, fir welche ¢; + 0 ist,
1;) — Falz)] < 1
und wegen |f(z;)| = 1
agn Fq(z;) = sgn f(z;) = sgn ¢;.
Danach wiirde L-' ¢;Fa(xz;) positiv sein, im Widerspruch zu (31). Nunmehr ergibt sich fir
lel <1 auf Grunrilvon (34), (32) und (33)
|Hx) — eAFa(z)| < |f(z)| + [eAFa(2)|
= lg(@)| (1 — |AF3(2)]) + |eAFa(z)|
=1-—|MFa)| (1 —e)) =1,
also im Hinblick auf (35)
Z(e2@) = |If — eAF&(2)|| = 1.
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Das besagt: Alle Linearkombinationen ¢AF3, |¢| < 1, sind Bestapproximati der Funkti
(34). Die Konklusio der betrachteten Implikation ist damit verifiziert.

Um den Beweis von (27) zu vollenden, bleibt zu zeigen, da8 die Elgenschaft von {p;}, ein
Taehebyseheff System auf [[a,b] zu sein, fir die Einzigkeit der B tion irgend-
einer Funktion aus C(g,p) hinreichend ist. Im Sinne eines indirekten Beweises sei angenommen,
d&B fiar eme gevnsse Funktlon | € Ciapy zwei Linearkombinationen Fg, Fp (@ 3 b) der ¢;
i Dann folgt aus

PP

|l(x) — Fays| S 2 1f@) — Fal@)] + - If2) — Falal,
2

f@) — F:+_..| S 21 — Fall + 51 — Fll, (36)
2

1 1
"t - F.+»H S5 It — Foll + 5 lif — Foll)
2
daB auch Fg.p diese Eigenschaft hat. Nach Hilfssatz 3 besitzt die Gleichung

=z("';"’)=Z(a)=Z(b)=

2
f(x) — Fatb
2

wenigstens # Losungen z,, 2,, ..., Z,, d. h., es gilt

H&;) — Fab(z)) = —;‘(I(z‘y) Fa(zy)) + — (f(xl) — Folzy)) = £Z, j=1(1)n.
iy @1
Auf Grund von (36) ist aber auch

1f(z;) — Fal(z;)| = |f(z;) — Folzy)l = Z
und wegen (37) sogar

f(z;) — Fa(@;) = {(z;) — Folz;) = +Z, j=1(1)n, (38)
mit dem dort bei Z gegebenen Vorzeichen. Aus (38) folgt

Fa_u(z) =0,

d. h., die nichttriviale Li kombination Fgq_p der p; besitzt mindestens n Nullstellen, was der
Voraussetzung widerspricht, daB {p;} ein Tschebyscheff-System ist.

Wir beschlieBen diesen Abschnitt mit Betrachtungen zum Tschebyscheffschen
Alternantensatz, der ein notwendiges und hinreichendes Kriterium dafiir enthilt, daB
eine aus Funktionen eines Tschebyscheff-Systems gebildete Linearkombination F,
eine Funktion'f € Cy,, am besten gleichméBig approximiert. Die Formulierung

bezieht sich auf folgende Definitionen:

Definition 2. Es sei f€ Cgp und X S [a,b], X = (z;}, j =0(1)k, 7 <x
<L e < X
1 alterndert iiber X : & f(z)) = (—1) { max |f(z)], j = O(1)k,
oszsb

wabei £ € {—1, 1} ist. X wird auch als Alternante bezeichnet.

1) Tatsiichlich muB in dieser Abschi g das Gleichheitszeichen gelten.
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Definition 3. f€ Cy,y alterniert auf [a,b) k-mal:& es gibt eine Menge
X < [(a,b) der Michtigkeit k + 1, iiber der f alterniert, und jede Alt t
Y S ((a, b] besitzt eine Machtigkeit < k + 1.

Satz 4. Es ses {g;), © = 1(1)n, ein Tschebyscheff-Sy beziiglich [(a, b], / € Copy
"
und Fq = ) aip;. Dann gilt:
i=1

F, Bestapproxzimation von | & [ — F, alterniert auf [a,b] mindestens
n-mal.

Hiernach gibt es auf Grund von Satz 3 genau eine Linearkombination der g;,

welche dxe Bedingung des Satzes 4 erfiillt. Deren Hinlanglichkeit ist leicht ein-

F, besitzt eine Alternante X mit n + 1 Elementen und ist

nicht Besta,pproxlmatlon von f, sondern dies trifft fiic Fz mit @ 5= @ zu. Dann wech-
selt die Linearkombination

Fs—Fa=(f—Fo) — (f — F3)

beim Ubergang ven einem Punkt z; aus X zum nichstfolgenden das Vorzeich
denn nach Voraussetzuhg ist

If — Fall <If — Fall,  1f(z;) — Falap)l = Iif — Fll
und folglich

sgn (Fs(z;) — Falzy)) = sgn (f(z;) — Falz;))-
Nach dem Zwischenwertsatz fiir stetige Funktionen besitzt Fz — F4 also mindestens
n Nullstellen auf [a, b]. Daraus ergibt sich ein Widerspruch, da die ¢, ein Tscheby-
scheff-System bilden und Fz — F, wegen @ = & eine nichttriviale Linearkombination
dieser Funktionen ist.

Der Beweis der Notwendigkeit der Bedingung des Satzes 4 ist weitliufiger und

soll hier nicht ausgefiihrt werden.

Um zu zeigen, daB man mit Hilfe des Satzes 4 unter Umstidnden die Minimallésung
auch kanstruieren kann, betrachten wir die beste Tschebyscheff-Approximation
einer Funktion f € Cy,,), die auf [a, b)) eine zweite Ableitung konstanten Vorzei-
chens besitzt, durch ein lineares Polynom

Fox) =ag + a2, ) (39)

Ohne Beschrinkung der Allgemeinheit kann /”’ > 0 angenommen werden. Bei den
folgenden Uberlegungen wollen wir uns auf die bewi Hinliinglichkeit des Alter-
nantenkriteriums stiitzen. Danach ist (39) Minimallésung, wenn fiir eimen innerem.
Punkt £ des Intervalls [a, b] die Gleichungen

fla)—a,—aa=1L, (40s)
f§) —ao—a,§ = —1L, (40D)
f®) —ag—ap =L (40c¢)
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mit L := ||f — F,|| erfiillt sind. Aus (40a), (40c) folgt durch Subtraktion zunichst
1®) — f@)
a = b 2 (41)

d. h., die der Minimallésung entsprechende Gerade ist zur Sehne der Kurve y = f(z)
iiber dem Intervall [a,b] parallel. Auf Grund des Mittelwertsatzes gibt es wegen der
Monotonie von /' genau ein & € Ja, b{[, fiir welches

£ = f(b) I(a)

ist. Bedeutet weiterhin in (40) & diesen Wert, so ist wegen (41)

d
2 y—rF =) —a, =
ZU—F) =fe—a=0
und auBerdem
a¢
—(f=F) =f'¢>0,
da? ®leme
d. h., die Abweichung f — Fg nimmt auf [a,b] bei £ ein relatives Minimum an,

sofern a, gemiB (41) bestimmt ist. Da die Ableitung von / — F, auBer bei & nirgends
im Intervall Ja, b[ verschwindet, wird das absolute Minimum von f — F, bei &
oder an den Intervallenden ¢, b angenommen. Daraus folgt: |f — Fq4| wird bei &
oder a, b maximal. Gilt also

IH8) — Folé)l = /(@) — Fqla)l = [f(B) — Fo(b)l, (42)

8o sind diese GréBen der Tschebyscheff-Abweichung L gleich.
Nunmehr wird a, aus (40a), (40b) zu

a0 = 3@ +/(6) — xfa + &) u3)
bestimmt. Dann ist fiir die entsprechende Funktion (39)
1) = Fu®) =10 = 1@ + /0 — axla + ] — i

=5 -0 - 1510 —af

= —(/(@) — Fala)
1

=3 {f(E) — f(®)

= —(16) — Folt))-

=t
e }
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Es gilt also (42) und (40) mit L als Tschebyscheff-Abweichung von f und F,. Die
mit (41) und (43) gebildete Funktion (39) ist folglich Minimallésung. Man verifiziert
leicht, daB deren Graph durch die in Abb. 5.1 angegebene Konstruktion bestimmt
ist.

Zur Beurteilung der mit der besten gleichmiBigen Approximation iiber der Menge
der Linearkombinationen aus Funktionen eines Tschebyscheff-Systems erreichbaren
Anniherung ist folgende Ungleichung von de la Vallée-Poussin niitzlich.

8atz 6. Bs set {pi), © = 1(1)n, ein Tschebyscheff-System beziiglich [a, b], f € Cigpy»
»

Fq = 3 a,p, und speziell F 4. die Bestapproximation von f in der Menge dieser Linear-
=1

kombinationen. Dann gilt:
Nimmt die Differenz | — Fgq iiber n + 1 Argumenten

2y < 2y < -+ < Zgyy des Intervalls [(a, b] (44)
Werte mit wechselndem Vorzeichen an, d. k. 18t
(/@) — Fo(@)1[f®j11) — Fal@s1)] <0,  §=1(1)n,

s0 folgt
Z(a) = Z@*) =m 45)

mit Z(a) = [[f — Fol| und
m := min {|f(z;) — Fo(zy)|}. (46)
f=1e

Beweis. Offensichtlich ist Z(a) 2 Z(a*). Im Sinne eines indirekten Beweises wird
nun angenommen, daf

Z(a*) <m 47)
ist. Aus (47) folgt a* = @ und

1)) — Fas(@)l < If(zy) — Falzy)l  fiir j = 1(1)n.
Auf Grund dessen wechselt die nichttriviale Linearkombination

Fao —Fo=(f — Fo) — (f — Fo0)

iiber der Menge der Punkte (44) das Vorzeichen und besitzt daher auf [a, b] min-
destens » Nullstellen. Dem widerspricht, daB {p;} ein Tschebyscheff-System ist.

5.3.2. Anwendungen und Beisplele
1. Polynome, die iiber einem Intervall am wenigsten von Null abweichen. Wir betrachten

sémtliche Polynome P n-ten Grades mit dem Leitkoeffizienten 1 und stellen diese
in der Form P(z) = z" — Q,_,(z) dar, wobei Q,_, ein Polynom maximal (» — 1)-ten
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Grades bedeutet. Gefragt wird nach der Existenz einer Funktion in dieser Menge,
welche im Sinne der Norm 5.3.(1) iiber dem Intervall [—1, 1] am wenigsten von
Null abweicht. Das Problem liBt sich @quivalent so formulieren: In der n-p
metrigen Schar der Polynome

Q@) = @ + @y + +++ + a2t

ist die beste gleichmifBige Approximation der Potenz f:z > 2" gesucht. Da Q,_,
Linearkombination der Funktionen des in Beispiel 1 betrachteten Tschebyschefi-
Systems ist, hat die Aufgabe nach Satz 3 genau eine Lésung. Um diese zu bestimmen,
wird das normierte Tschebyscheff-Polynom n-ten Grades 7', (vgl. 5.2.3., Beispiel 4)
mit dem Leitkoeffizienten 1 betrachtet. Auf Grund von 5.2.3., Satz 6, ist

1
1, = i Tns (48)
und 7', nimmt an den Stellen 5.2.3.(49)

£ = cosE 1=0,1,..,n
n

—1)
die Werte (2'_11) als absolute Extrema iiber [—1, 1] an, d. h.,, 7', alterniert auf
diesem Intervall n-mal. Wird

To(z) = =* — Q@)

gesetzt, so erweist sich Q% , auf Grund von 5.3.1., Satz 4, als die gesuchte Best-
approximation von z*. Damit gleichbedeutend ist

Hilfssatz 4. T, ist in der Menge der Polynome n-ten Grades mit dem Leitkoeffs-
zientenldaaﬁberdemImervall[-—l,l]am igsten von Null abweichende Poly

Wir veral i die Problemstellung und suchen in der Menge der Polynome
a-ten Grades mit dem Leitkoeffizi 4 dasjeni Iches iiber dem Intervall
@, b] am wenigsten von Null abweicht. Durch die lineare Transformation

b—a a+b 2t — (a+b)
t= —— —_— = — 49
st ¢ T (49)

wird eine eineindeutige Abbildung der Intervalle —1 <2 <1 und @ <¢ <b auf-

2 — b)
der vermittelt. Der nach Pot von ¢ entwickelte Ausdruck T. (%)

2"
stellt daher ein Palynom =z-ten Grades mit dem Leitkoeffizienten ——— - dar, das
auf [a, b)) n-mal alterniert; G-ar

Q.;;..,A(""?‘)"Tu (W) (50)

b—a
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ist ein solches Polynom mit dem Leitkoeffizienten 4. Wie in dem Spezialfall des
Hilfssatzes 4 (4 = 1, [e, b] = [—1, 1]) begriindet man die Aussage

Satz 6. Unter allen Polynomen n-ten Grades mit dem Leitkoeffizienten A st (50)
das auf (a, b)) am igsten von Null abweichende. Dabes ist

®—
120 = mex P =4 -——— 2,,_1 . ®1)
(51) folgt mit (49) und (50) aus max |1',(z)| = L.
N ze(—LD) 2»1
2. Trigonometrische Poly invmaler Abweichung von Null. Gegeben seien reelle

Zahlen 4, B, die nicht zugleich verschwinden. Wu' betrachten samtliche trigono-
metrischen Polynome der Form

TP(x) = A cos nz + Bsin nx
—[a,,_lcos(n— )z +b,,8in(n — 1)z + --- 4 a, cos 2
+ b sinz+ ﬂ] 52)
und suchen unter diesen dasjenige, welches iiber einem Periodenintervall (und dn.mlt

auf der ganzen z-Achse) am wenigsten von Null abweicht. Damit gleichbedeut
ist die Forderung, fiir

f(z) = A4 cos nx + B sin nz

die beste gleichmiBige Approximation in der Menge der trigonometrischen Poly-
nome

s—-1
F(z) = 12"- + X' (a, cos vz + b, sin vz) (63)
=1
zu bestimmen. Die eindeutige Ldsbarkeit der Aufgabe folgt aus Satz 3, da (83)

Linearkombination der Funktionen des in Beispiel 3 (p = 2x) untersuchten Tscheby-
scheff-Bystems ist. Die Funktion f(x) gestattet die Darstellung

f(z) = A cos nxz + Bsinnz
A B
=]/A’+B' ——— co8 "¥ + ———— sin nx
[VA’+B’ y4* + B? ]
= }A4* 4+ B* [cos nx cos nx + sin ne sin nx]
=YA4% + B? cosn(z — &), (54)

wenn « gemiB

A . B

COBNY = —nu—, sin na =

A® + B yA4* + B?
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im Intervall 0 < & < L2 bestimmt wird. Die Funktion (54) nimmt an den 2z Stellen
n
m=at+Zk  k=0LLi%..tm—1n, (85)

des halboffenen Periodenintervalls J—n + «, % + & absolute Extremwerte vom
Betrag y A% + B? mit hselndem Vorzeichen an, alterniert also iiber diesem min-
destens (2n — 1)-mal. Daraus folgt nach Satz 4, daB die mit durchweg verschwinden-
den Koeffizienten gebildete Linearkombination (53) die Funktion f am besten
approximiert oder:

Satz 7. Unter allen trigonometrischen Polynomen (52) weicht
f(z) = A cos nz + Bsin nz, A? - B >0,
iiber der Zahlgeraden am wenigsten. von Null ab. Auf Grund von (54) <st

Il = V4* + B°.

3. Minimierung des Restgliedes bei der Interpolation mitg tionalen Funkti

Es sei f eine auf [[a, b] n-mal stetig differenzierbare Funktion, deren (n +- 1)-te Ab-
leitung in Ja, b[ existiert und beschriinkt ist. P bedeute das iiber den Abszissen
z; € (@, b], j = O0(1)n, mit den Werten von f konstruierte Interpolationspalynom
maximal n-ten Grades. Fiir das durch

f@@) = P(2) + Ry(z)
definierte Restglied R, gilt nach MfL Bd. 9, 4.2.4.(29),

FE,)
Ry(x) = @+ 1! ————=" (),
wobei
@a(7) = (2 — To) (¥ — 21) - (2 — w,)
und

min {z, Zg, 2y, ..., Zy) < &, < MABX (2, Zg, 2y, ..y Ty}

ist. Mit M., als einer oberen Schranke fiir |f"*D(z)| auf Ja, b folgt daraus
M,y

(n 4 1)!
Im Hinblick auf den Faktor |w,(x)| in dieser Abschéitzung wird nun nach einer Ver-
teilung der Interpolationsknoten z;, j = O(1)n, iiber dem Intervall [a, b] gefragt,
bei welcher der Betrag des Restgliedes minimal wird, d. h. w,(z) am wenigsten von
Null abweicht. Die Antwort lautet auf Grund von Satz 6 (4 = 1):

Satz 8. Die rechte Seite der Reatglwdabschwtzung (56) wird genau dann minimal,
wenn die Interpolationsknoten als die Nullstell y P,.1 (vgl. (50)) gewiihit
werden.

|1B(2)| = (@)l (56)
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4. Minimierung des Abbruchfehlers bei Potenzreihen. Wir erldutern diese Problematik
wie falgt: Fiir eine gegebene Funktion f sei iiber dem Intervall [a, b]

/(z) = P.(t) + Rn(z)y
Py(z) =ay+ayz + -+ +@,2",  ay 0,

d. h., R, bezeichnet den Fehler bei der Ersetzung von f durch das Polynom P,.
Um den Rechenaufwand zu verringern, wird ein Polynom niedrigeren Grades ge-
sucht, das an Stelle von P, eine moglichst geringe Verschlechterung der Approxi-
mationsgiite verursacht.

Der Einfachheit halber sei [a, ) = [—1, 1].'Dann ergibt sich die Aufgabe, P,
auf [[—1, 1] durch ein Polynom maximal (» — 1)-ten Grades mdoglichst gut gleich-
miBig zu approximieren. Offenbar kann P, in der Form

67

Py2) =by + bz + o0 + bpaa™ + ¢, Ta(2), ¢ +0, (68)

dargestellt werden, wobei 7', das Tschebyscheff-Polynom 5.2.(44) bezeichnet, wel-
ches nach 5.2., Satz 6, den Leitkoeffizienten 27~ besitzt. Mit

Ty(x) = X o, dpp = 271,

j=0
ergibt sich offenbar
a, a, .
c,.=f'=2':1, bi=a;—c¢dy;, 1=0(1n—1. (69)

Das in (58) auftretende Polynom

P(x) =by + bz + -+ + by 2" (60)
leistet das Gewiinschte, da

P, — P =c¢,T,

auf [—1, 1] n-mal alterniert und P somit nach Satz 4 Bestapproximation von P,
in der Menge der Polynome vom Grade < n — 1 ist.2)

Die Niitzliohkeit der Methode sei an einer [37] entnommenen Aufgabe erliutert: Mit Hilfe
eines aus der Taylorentwicklung von
f:z>sin Zs
2

gemiiB (57) bis (60) hergeleiteten Polynoms sollen Sinuswerte mit 7 giltigen Ziffern berechnet
werden. -

1) Die Ersetzung von P, durch P gemi (58) und (60) wird in der englischsprachigen Litera-
tur gel ioh . tol ing & pol ial* g +

8 ping & poly




4 5. Approximation von Funktionen

Auf Grund der Periodizitits- und Sy: ieeigenschaften von f geniigt es, das Intervall
0 < z < 1 zu betrachten. Es ist
LR T 1
S ah SR 1) R R
und bei Abbru_oh nach der Potenz 231 gilt fiir das Restglied nach MfL Bd. 4, 2.2.3., Satz 2,
7\ ‘l Jakst
Rl <
1Bl = 2k + 1)!
Wird sin12‘-z niiherungsweise mit Hilfe des Polynoms
1 (=) 1 7 \2k-1
Pua)=2a— —(EV 34 ... (mppr—= (% k-1 1
it ) SR S e £ M o)
berechnet, so ergibt sich fiir den Betrag des verfahrensbedingts lativen Fehlers 6 gemiB
MfL Bd. 9, 2.5.(3),
(l)"“,im
Pals—2L ., _1szs1

(2k + l)!sin%z

Mon verifiziort leicht, daB 1< —2— < 2. far z ¢ [[o, %]I gilt, und erhilt schlioBlich

7 \3k+1
2
|6(=)| = FTETTR —1=szs1. (62)

Aus (62) folgt fir k =7
@) < 5 104,

und gemiB MfL Bd. 9, 2.5.(10), sind dann bei Vernachlissigung von Rund fehlern acht
Ziffern des Niherungswertes giiltig. Betrachtet man an Stelle von Py, gemiB (81) das Nihe-
rungspolynom P,,, so ist etwa fiir z = 1 bereits die siebente Dezimale nicht mehr sicher. In
der Tat gilt fiir das vernachlissigte Glied

% %)nu 5710, (63)
Nun reduzieren wir P;; gemdB (58) durch Abspaltung des Tsohebyscheff-Termes und

bestimmen etwa mit Hilfe der Rekursionsformel 5.2.(63) und 5.2.(43)

T1a(z) = 409621 — 13312211 + 166402° — 998427 + 29122° — 3642® 4 13z.
Damit liefert (59)

¢;3 = 1,38969 - 10711,

bp=1by = =0b;3=0,

b, = 1,5707963, b, = —0,64506410, b, = 0,079692580,

b, = —0,0046816164, b, = 0,00016020995, b,; = —0,0000034138477;
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die Koeffizienten b, bis b, sind mit acht lichen Ziffern geben, die alle giltig sind.
Wir vergleichen das gemiB (60) mit den Koeffizienten b;, § = 1(2)11, gebildete Polynom P mit
dem Polynom P,,, das aus P,; durch Weglassen des hchsten Gliedes entsteht. Wegen

Py — P=c¢,T;y und [Ty(z) 1 fir ze(—1,1]

ist
IPy; — Pj| := max |Py(z) — P(@)] < 1,39 - 101,
ze(—~1,1)

d. h., diese Abweichung ist auf Grund von (63) kleiner als ||P,, — Py,||. Die gewiinschte

iebenstellige G igkeit bei der Berechnung von sinZz lst also mit dem Polynom P zu
erreichen. 2
Das Abspalten von Tschebyscheff-" Termen gemn.B (57) und (68) 1iBt sich unter Beachtung
einer Genauigk derung unter Umsti Bei einem Polynom

Pu(z) =a,2" + @y a* 1 4+ -« +ax + ay
80 oft wie méglich angewandt, fithrt dieser ProzeB auf die Umordnung von P,(z) nach Tscheby-
scheff-Polynomen:

Py =Ty + cpyTpy + - + 6Ty + €. (64)

n
Auf Grund der Gleichung (64) ist 3 ¢;T; natiirlich auch beziiglich des Skalarproduktes 5.2.(50)
i=o

diebesteQuadratmittelapproximation von P, in der Menge aller Linearkombinationen der
Polynome T, T, .. T,,, wenn diese als Elemente des Raumes C(_y,1) aufgefaBt werden.
Nach 5.2.3. sind die c,, i = 0(1)n, eindeutig als die Fourierkoeffizienten 5.2.(54) der Funktion
F(t) = Pgy(cos t) besti Aus algorithmischen Griinden ist es zweckmiBig, diese durch Fou-
rierentwicklung der in P, auftretenden Potenzen zf nach den T'; zu konstruieren. Setzt man

1 i
ot = 3 o +‘_Zl' T, (68)
so gilt nach 5.2.(64) einheitlich
x
i = %foos’ tcositdt. (66)
Mit
cos ¢t = cos (i — 1)t cost — sin (§ — 1) ¢siné

gewinnt man daraus
Ed Ed
cﬁ=%fcos'“tcos(i—l)tdt—%feosﬂsintsin(i—- yeds.
0 é

Partielle Integration des zweiten Integrals liefert mit

—d:;?) = cosf tsint, v= —-]_—:_ 1 coshlg,  u(t) =sin(i —1)¢
die Beziehung

x
foosi:sin:sin(e—1)ta=f"
ji+1

n
fcos“‘tcos(i—l)!dt.
°
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Insgesamt ergibt sich damit die Rekursionsformel

2 —1 -
c,i=;[1_" ]fooslﬂtcos(.—l)tdt—[ _7+l]ci”‘"'

‘Wenn c;, fiir beliebiges j bekannt ist, lassen sich damit alle benétigten c;; berechnen. Man findet
mit Hilfe partieller Integration fir j = 2

Joosttdt = [ cos 1t costdt = (j — 1) [ cost2tsinttdt
(1] 0 (]
=—(—1 [eosftdt+ (j— 1) [ costredr,
o o
also
foow.u— i fcos"'tdt

und gemésB (66)
j—

Cjo = Cj-3,0¢

Offenbar ist ¢gp = 2 und ¢;q = 0. Damit haben wir folgendes Rekursi h zur Berech-
nung der c;;:

Cw=2, ¢,=0,

o= 77;1 oo j=2(1)2n, (©7y

(1— = )c,u..»-,. j=i2n —i.
Durch Einsetzen von (65) in das Polynom P, findet man
» » 1 )
= f = — T
Buie) = Zapt = £ o[ Son + 2 e
L Sago+ 2( Zae) i
== X aje; ) Tilz),
2 j=o il :=1(i-=o ic") !
also im Vergleich mit (64)
L5
€= — X agjo,
0 2 % iCio

» » (88y
6 =Xae;=Xag; =11
f=0 j=1

Wir fassen die Berechnung der ¢, in einer ALGOL-Prozedur CHEBY (4,C,n) zusammen, deren
formale Parameter folgende Bedeutung haben:

A Feld der Koeffizienten des nach den 7'; umzuordnenden Polynoms,

7 dessen Grad und

C TFeld der in (64) auftretenden Koeffizienten.
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Lokal wird ein Feld B[0:2n] zur Berech der ¢, inbart. Diese erfolgt gemiB (67)
spalt ise nach dem Sch der Tabelle 5.4. Dla in dem schra.fflorten Teil des Schemas

g P bschnitte gehen in die Koeffizientenberechnung (68) ein.
j i o 1 2 n
)
0 <,
1 c.v;é_ €1
2 Cu,0, 2,1 ——N

Cn,

/ it
2n

Cen,&

Tabelle 5.4
procedure CHEBY (4,C,n); value n; integer n; array 4,B;
begin

integer nn;
ni=mn+ n;

begin

lntosor i,j,#1,j1; array B[0:nn];

2; B[1]:= 0; C[0] := 0;
2MplnnﬂlndoB[ﬂ = B[j — 21X (j — 1)/;
0 step 1 until » do C[0] := C[0] + A[7] x B[j];
C[0] x 0.5;
gtep 1 until » do  begin C[3]:=0; i1 :=4 — 1;
: Mp 1 until nn — ¢ do
begin j1 :=j + 1; B[j]:= (1 — i1/§1) X B[j1] end;

for j := i step 1 until » do
Cli]:= C[#] + Bj] x A[]] end;
end
end
Bei der antomatischen Berechnung kann das Reduktionsverfahren in der folgenden Weise
durchgefiihrt werden:
1. Umord Approximationspoly nach Tschebyscheff-Polynomen mit

Hilfe der Prozedur CHEBY.
2. Weglassen ,,héherer Glieder*, soweit das mit der Genauigkeitsanforderung vertriglich ist.

Wegen
ma.x IT(::)]—-I 1=0,1,2,...,
se(—
ist dafiir nllem die Gra dnung der Koeffizi in (64) maBgebend

3. Die Berech des reduzierten Polynoms erfordert keine Umord.uung nach Potenzen
von z. Auf die verbliebene Partialsumme einer Tschebyscheff-Reihe kann der Goertzel-
Algorithmus in der Form 5.2.(108), (109) angewendet werden.
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5.4.  Zu Theorie und Anwendung von Splinefunktionen

5.41. Einfiihrende Betrachtungen

Splinefunktionen (kurz auch Splines genannt) sind ein spezieller Gegenstand der
Approximationstheorie, dessen Bearbeitung wesentlich nach dem zweiten Weltkrieg
einsetzte und seitdem sehr ergebnisreich verlaufen ist. Die Untersuchungen konzen-
trierten sich zuniichst auf Interpolationsprobleme und damit zusammenhingende
Anwendungen (vgl. [45], 2.6.). Dafiir entwickelte Losungsalgorithmen sind in zahl-
reiche Verfahren der numerischen Mathematik eingegangen; eine Auswahl fiir den
Spezialfall kubischer Splines (8. u.) wird im folgenden erortert. Zur Einfiihrung sei
an die Interpolation mit ganzen rationalen Funktionen und die damit zusammen-
hiingende Fehlerproblematik erinnert (vgl. MfL Bd. 9, 4.2.4.).

Dem Vorzug, beliebig oft differenzierbar zu sein, steht der Nachteil eines Inter-
polationspolynoms entgegen, mit wachsendem Grad, d. h. wachsender Knotenzahl,
stark zu schwanken und so unter Umstinden groBe Abweichungen von den Werten
der zu interpolierenden Funktion zwischen den Knoten zu verursachen. (Man stu-
diere in dieser Hinsicht noch einmal das Beispiel der Abb. 4.12 in MfL Bd. 9, 4.2.4.)
Es liegt daher nahe, die Interpolationsaufgabe fiir ein System von Knoten z;

A< << < Ty <b

und eine Funktion /: [(@, ] — R nicht durch ein Polynom zu lésen, sondern dafiir
— nach einer Zerlegung von [[e, b] in Teilintervalle — iiber diesen Teilintervallen
Polynome entsprechend niedrigeren Grades anzusetzen und die Glattheit eines
Interpolationspolynoms eingeschrinkt durch die Forderung nachzubilden, daB fiir
diese stiickweise polynomiale Funktion alle Ableitungen bis zu einer gewissen Ord-
nung stetig sein sollen. Aus solchen Vorstellungen hat sich der Begriff der Spline-
funktion herausgebildet. Die Bezeichnung stammt von I.J. SOHOENBERG — einem
Begriinder der Theorie — und ist der englische Name eines Gerites zum Zeichnen
von Kurven, bei welchem die Anpassung an ein System zu verbindender Punkte
durch ein an diskreten Stellen belastetes Stahlband realisiert wird. Die Kurve der
Durchbiegung erweist: sich als stiickweise aus kubischen Parabeln zusammengesetzt.
Wir prizisieren die Begriffsbildung in der folgenden

Definition 1. 8: R — R ist eine Splinefunktion m-ten Grades mit den Knoten
z € R 7= 1(1)n, 2, < 23 < :-+ < 2, genau dann, wenn mit 2, = —oo und 2,,; = ©

a) § in jedem der Intervalle Jz;, z;,[, * = O(1)n, durch ein Polynom maximal
m-ten Grades darstellbar ist und

b) 8 auf R stetige Ableitungen bis zur Ordnung m — 1 besitzt.
Bemerkung 1. Wenn m = 0 ist, wird b) gegenstandslos. Eine Splinefunktion

nullten Grades ist eine im allgemeinen in den Knoten unstetige stiickweise konstante
Funktion.
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Bemerkung 2. Man beachte, da8 § in den Intervallen Jz;, %;,,[[ im allgemeinen
durch verschiedene Polynome dargestellt wird. Dennoch geniigen auch alle Poly-
nome vom Grade < m der Definition 1 und sind spezielle Splinefunktionen.

Im Zusammenhang mit Interpolationsproblemen werden sogenunnte natiirliche
Splinefunktionen eine Rolle spielen, die durch folgende Sp jerung der Defini-
tion 1 charakterisiert sind:

Definition 2. Eine der Definition 1 geniigende Funktion 8: R — R?) ist eine
natiirliche Splinefunktion genau dann, wenn der Grad m ungerade ist und & fiir
m = 2k — 1 in den Intervallen J—oo, 2, und Jz,, cof[ durch je ein Polynom vom
Grade < k& — 1 dargestellt wird.

Von grundsitzlicher Bedeutung fiir die Theorie sind die modifizierten Potenzen
" { z™ fir 2> 0,2
2P =
0 fir 250,

Offenbar ist F: z > 2™ eine Splinefunktion m-ten Grades mit dem Knoten z;, = 0.
Die Ableitungen bis zur Ordnung m — 1 lassen sich nach der Differentiationsregel
fiir die Potenz 2™ bilden. Beispielsweise ist fiir m > 1

dF(z)
dz

m € N. (1)

= maft. 2)

Fiir 2 &= 0 gewinnt man

"‘%’l —miat, @)

wobei 2% die in Abb. 5.10 dargestellte sogenannte Heaviside-Funktion ist. Die Funk-
tion
Fizr>(z—o)® c€ER, @

erweist sich entsprechend als Splinefunktion m-ten Grades mit dem Knoten c.

A

1/

»  Abb.5.10
[7] ,' x
1) Fir natiirliche Splinefunktionen wird im folgenden stets ein Kleinbuchstabe als Funk-

tionssymbol gewahle
2) In der englisch higen Li als ,,truncated-power*‘-GroBe bezeioh

P &
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PP

Es wird im folgenden Abschnitt zu zeigen sein, da8 sich jede Splinefunktion m-ten
Grades als eine Linearkombination von Funktionen des Typs (4) mit versclnedenen

Werten fiir ¢ darstellen 1i8t. Wegen dieses fiir die Thearie grundleg ltat
werden die Funktionen (4) auch el tare Splinefunkti g t
5.4.2. Darstellung durch el are Splinefunktionen

Es sei Gy(zy, 3, ..., ,) die Gesamtheit der Splinefunktionen m-ten Grades mit den
Knoten z;, ¢ = 1(1)n, 2, < 7y < ++- < &, und P, die Klasse der Polynome vom
Grade < m. Dann gilt

Satz 1. Fir 7edes 8 € (@), Xy - ., T,) gbE €8 genau evn Sy
reeller Zahlen c,, ¢, ..., ¢, und genau etn Polynom P, € ﬂ},.. derart, daf /aralle z€eR

i ' Jomd,

8(z) = Pp(x) +‘Zl' oz —z)7 (6)

qilt. P, st die Polynomdarstellung von S im Intervall J— oo, z,([.

Die rechte Seite von (B) definiert, wenn Py € By und z,¢; € R, ©=1(1)n,
T < Ty < -or < Xy, beltebig gewithlt werden, eine Splinefunktion der Klasse
Gn(@ys Ty, -y Tp)-

Folgerung Jede natiirliche Splinefunktion 8 € Sy (2, g, ..., z,) gestattet eine

timmie Darstellung der Form

8(z) = Ppy(2) + Z; e — z)F! (6)
mit Py € P

Beweis. Es sei Py, € B die Polynomdarstellung von § im Intervall Jz;, ., [,
2 = 0(1)n, die fiir m > 0 aus Stetigkeitsgriinden auch noch in den Knotenendpunkten
gilt. Weiterhin wird dies angenommen und der Trivialfall m = 0 dem Leser zur ge-
sonderten Betrachtung iiberlassen. Dann ist Py — P iy, © = 1(1)n, ein Polynom
der Klasse B ,, das auf Grund von Definition 1b) bei z; eine Nullstelle der Ordnung m
besitzt. Somit gilt fiir alle =

Ppri(@) — Ppia(7) = cifz — z)™. )
Aus der Identitéit

Poi — Py = (Pmt — Ppi-1) + (Pimjtss — Pea) + +++ + (P — Pry),
1=1,2,...,n, folgt mit (7)

Py(2) = Po(2) +‘§:‘ ez — =)™ (8)
und weiter

8(e) = P + 5 oe =z, * ®
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In der Tat: Fir —oo < z < z, reduziert sich die rechte Seite von (9) auf Pno(z)
und stimmt daher in diesem Intervall mit S(z) iiberein. Entsprechend gewinnt man
fiir # € [, 2,

1
Pryo(x) +‘Z" ez — )™,

und wegen (8) stellt dieser Ausdruck wieder S(z) dar. Nach Umbenennung des Poly-
noms P, in P, geht (9) in (5) iiber, und P, ist die Polynomdarstellung von § im
Intervall J—oo, z,[[.

Wir betrachten nun die durch die rechte Seite von (5) definierte Funktion, wenn
P, € By und zi,¢, € R, =11, 2, < 25 < -+ < 7, beliebig gewihlt wurden.
Diese sei wieder mit S bezeichnet. Auf Grund von (1) erkennt man sofort, da8 § in
den Intervallen Jz,, z;.,[, 7 = 0(1)n, ein Polynom der Klasse P, darstellt; speziell
ist 8(z) = Pp(2) in J—o00, ,[(. GemiB Definition 1 bleibt noch zu zeigen, daB S auf
—00 < z < oo (m — 1)-mal stetig differenzierbar ist. Dazu wird eine der Argument-
stellen z;, j = 1, 2, ..., n, betrachtet. Es ist

j=1
S(x) = Pylx) + X ez — z;)™ in z,<r<z (10a)
i=1
und
;
8(z) = Pp(x) +‘Z cilx — z;)™ in z; <z <. (10b)
=1
Daraus folgt
j=1
lim 8(z) = Pu(z;) + X ci(z; — =)™ (11a)
2z—0 i=1
und
j=t
lim S(z) = Pu(z) + X cilz; — zi)™. (11b)
22,40 i=1
Fiir das Verschwinden des letzten Summanden in (10b) beim Grenziibergang ist die
Ve tzung m = 1 tlich
Unter Beachtung von
j=1
8(z;) = Palz;) +_£l' cj(xj — z;)™ (12)

folgt aus (11) die Stetigkeit von S auf —o0 < z < 0.
Nun betrachten wir §’ in den an z; anschlieBenden Intervallen. Gemé8 (10) und
(11) ist

8'(x) = Pp() + miz_'lc;(a: —z)™1! in z, <<y (13a)
i=1
und

8'(x) = Pp(x) + m‘z" ci(x — z;)™! in 7 << T (13b)
=1
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Im Fall m — 1 = 1 ergibt sich aus (13) analog zu (11)

j=1
lim 8'(z) = Pp(x;) + m Y ciz; — 2;)™ L. (14)
21,40 i=1

Mit Hilfe des Mittelwertsatzes folgt aus (14) auch die Differenzierbarkeit von S
bei z; selbst. In der Tat ist

S(ay) = lim SO =@ _ iy 9e
vy Ty Eae’l
j=1
() + m‘Zl' cy(z; — @)™t @...&;...2). (15)

(14) und (15) ergeben die Stetigkeit von S’ auf —oo < # < oo. So fortfahrend kann
man zeigen, daB alle Ableitungen von § bis zur Ordnung m — 1 einschlieBlich stetig
sind. Beildufig ergibt sich dabei

89(z) = PW(=) + ( )u Seaw—z)™, 0<lism—1. (16)

Die Unitiitsaussage des Satzes 1 folgt aus der Bemerkung, da8 die Parameter der
Splinefunkiion (B), das sind die Koeffizienten von P, und die ¢;, © = 1(1)n, eindeutig
durch 8 bestimmt sind: Es ist P, (z) = S(z) fiir £ < z,; auf Grund des Fundamental-
satzes der Algebra wiirde bereits P, (&) = S(&) fiir m + 1 Argumente &, das Poly-
nom P, charakterisieren. Ferner gewinnt man auf Grund von (18) durch abermalige
Differentiation der (m — 1)-ten Ableitung zwischen aufeinanderfolgenden Knoten

i..
lim 8")z) = P%™(z;) + m! 3 ‘c;,
2-52,—0 i=1

lim 8™(z) = P™(z;) + m! Z" Cis
22+0 i=1
also
o= —( lim ;S’("')(z) lim S(’")(x)). (¢ Y)]
m! 222y—0

Das heiBt, die GréBen m!¢c; sind die Spriinge der m-ten Ableitung von S an den Kno-
ten z;.

5.4.3. Lineare Approximation durch Splinefunktionen

Wie in 5.4.2. betrachten wir auch weiterhin nur Splines mit festen Knoten
A< <Ly < voe <2y < b (18)

[a, b] wird ein Einschliefungsintervall der Knoten genannt, und es werden, wo es
zweckmiBig erscheint, @ und b auch mit z, bzw. z,,, bezeichnet. Satz 1, Gleichung (),
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lehrt, da8 dann &, (2,, ..., z,) fiir gegebenes m aus den Linearkombinationen der
Funktionen
@it > 2, j=0(1)ym,
und (19)
Pupr T > (2 — )7, j=1(L)n,
besteht.
Satz 2. Die m + n + 1 Funktionen (19) sind iiber jedem EinschliePfungsintervall
[a, b] linear unabhingig.
Beweis. Wir betrachten eine auf [a, b] identisch verschwindende Linearkombi-
nation der Funktionen (19):

)_',‘ a,zr + Z ci(x — z;)P = 0. (20)

u=0
Fira <z <o, reduziert sich (20) auf 2 a,z* = 0, woraus nach dem Fundamental-

u=0
satz der Algebra a, = 0 fiir 4 = 0(1)m folgt. Im Intervall 2, < z < z, liefert (20)
dann ¢,(z — ;)™ =0, also ¢; = 0. Indem man weiter sukzessive die Intervalle
L <ES Ty By < T Ty, +eey Tpey < T S T, und 7, < 2 < b betrachtet, ergibt sich
80 ¢; = 0 fiir 7 = 1(1)n. Aus (20) folgt also das Verschwinden aller Kombmatlons-
koeffizienten, d. h. die lineare Unabhiingigkeit des Systems (19).

Satz 3. Die Funktionen (19) bilden auf kei EinschlieBungsintervall ein Tscheby-
scheff-System.

Beweis. Man betrachte eine Linearkombination
m n
8(z) = X aa* + X cile — z)7, (21)
u=0 i=1

in der a, = 0 fiir » = 0(1)m und mindestens eines der ¢; verschieden von Null ist.
8(z) verschwindet dann auf [a, ;] identisch, was nach 5.3., Definition 1, der Eigen-
schaft eines Tschebyscheff-Systems widerspricht.

Betrachten wir nun in Cy,,, das lineare Approximationsproblem 5.1.(23) beziig-
lich des Funktionensystems (19) und einer ausgezeichneten Norm, dann gilt nach
5.1., Satz 2, deB dieses mindestens eine Losung besitzt. Im Falle der Tschebyscheff-
Norm

A := mex IF)] (22)

konnen wir Jedoch die Einzigkeit einer Bestapproximation im Hinblick auf den zu-
letzt bewiesenen Satz und 5.3., Satz 3, nicht behaupten.

Bei der weiteren Erdrterung des Sachverhaltes beziehen wir uns auf folgendes notwendige
und hinreichende Kriterium von L. L. ScEHUMARER [45] zur Charakterisierung einer Best-
approximation in &,(,, ..., Z,), das dem Tschebyscheffschen Alternantensatz fir die Linear-
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kombinati eines Tachebyscheff-Sy entspricht. [[a, 5] bedeutet darin ein Einschlie-
Bungsintervall fiir die Knoten z; im Sinne von (18).

Satz 4. 8¢ Sp(zy, ..., z,) i8t dfige Best tion einer stetigen Funktion
f € Cioy genau dann, wenn eine Altmnle (vgl 53., , Definition 2) X von f — 8 beziiglich
(e, b)) und ein Intervall [(z;, i4jsy )y 0 < i <i+j+ 1< n+ 1, derart existieren, daf die
Machtigkeit von X n [:,, z”f,,] grofer oder gleich © + j + 2 tst.

Mit Hilfe des Satzes 4, auf dessen Beweis hier nicht emgegungen werden kann, lassen sich
stetige Funktlonon konstrmeren, die mehrere Bestapproxnmutlonen in &,,(2,, ..., Z,) besitzen.
Wir betracht

Es sei [[a, b] E L1, m=n=1, ferner Gp(y, .., 7) = ;(0) und die zu approxi-
mierende Funktion duro

1 far —1 gzs—l,
2
1

@ =1 _2r far -3 =zs0,
2z fir 0521
gegeben. Abb. 5.11 zeigt die Graphen von f und der zu &,(0) gehérenden Funktionen
S =g —atet
fir ¢ = % und ¢ = 3. Bei der Anwendung von Satz 4 haben wir die Intervalle (z, = —1,
z=0,z,=1)
Czond (@on) uwd (2,5])

2u betrachten. X, = {—1, —%, o} und X,y = {—1, -%, 0, 1} sind Alternsnten fir 8,

y S5

2 /

B

- Abb. 5.11
7 T 0 % 1%
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bzw. Sy suf [—1,1], die dem Kriterium des Satzes bozugllch des Intervalls [, ]
geniigen. Diese Funktionen sind also gleichméBige Bestapp ti von f in &,(0), und

dies trifft offenbar auch auf alle S, mit % Lc=<3zu

Im Hinblick auf Satz 3 dieses Abschnittes und 5.3., Satz 2, ist nicht zu erwarten,
daB die Interpolationsaufgabe fiir ein beliebiges System von m + » + 1 Knoten
eines EinschlieBungsintervalls (18) und vorgegebene Ordinaten durch Linearkombi-
nationen der Funktionen (19), d. h. in &,(z, ..., z,) 16sbar ist. Das hat zur Formu-
lierung spezieller Interpolationsaufgaben der Splinetheorie gefiihrt; eine derselben
betrachten wir im folgenden Abschnitt.

5.4.4. Interpolation mit natiirlichen Splinefunktionen

Wir kommen auf die Bemerkungen zur Polynominterpolation in den einfiihrenden
Betrachtungen zuriick und versuchen, der Forderung nach Verringerung der Ab-
weichung der interpolierenden Funktion und Wahrung der Stetigkeit fiir gewisse
ihrer Ableitungen dadurch zu entsprechen, deB ei its die Klasse der zur Lisung
einer Interpolationsaufgabe zugelassenen Funktionen erweitert und andererseits
eine die Glattheit derselben charakterisierende GroBe minimiert wird. Im Sinne
dieser Vorstellungen formulieren wir folgendes Interpolationsproblem. Es sei

Ty <Xy < e < Xy (23)

ein System von Interpolationsknoten und y; der bei z; (i = 1(1)n) vorgeschriebene
Funktionswert. Gesucht wird eine auf [[a,b] k-mal stetig differenzierbare Funktionf,
eine Funktion der Klasse Cf, ), fiir die

fzy =9 (F=10)n) (24)
ist und

13
[ 1@ dz (25)

minimal wird. Bei der Losung dieser Extremalaufgabe sind also nur Funktionen
aus Cf,,, zum Vergleich zugelassen, die (24) erfiillen. [a, b] bedeutet ein Einschlie-
Bungsintervall fiir die Knoten im Sinne von (18).

Dieses Problem hat fiir ¥ = n genau eine Losung, nimlich das in der Klasse ,_,
wohlbestimmte Interpolationspolynom P. In der Tat: Da P® identisch verschwindet
und so (25) annulliert, ist P Losung der Aufgabe. Fiir eine weitere Losung f miiBte

fiwepas=o,

d. h.
/™ =0 auf [a,b]
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gelten. Daraus folgt aber f € %,_, und im Hinblick auf (24) und MfL Bd. 9, 4.2.,
Satz 1, ’

f=P fir z¢(a,bd].

Wenn k > n ist, existieren offenbar unendlich viele Losungen, z. B. ke alle
Interpolationspolynome in Betracht, die iiber (24) hinaus Wertvorgaben an k — n
: A tstellen realisi

Fiir 1 < k& < n werden wir sehen, daB in Verallgemeinerung des Falles £ = n das
Interpolationsproblem genau eine Lésung besitzt, und zwar eine natiirliche Spline-
funktion des Grades 2k — 1 mit den Knoten (23). Dieses Ergebnis ist eine Konse-
quenz der folgenden Sitze 5 und 6, deren Formulierung und Beweis wir einen Hilfs-
satz vorausschicken.

Hilfssatz 1. Es sei 8 € G4y (24, ..., 2,) eine natiirliche Splinefunktion, ferner

L
8(z) = Py, (z) + ‘Z‘ cilz — z)¥*!,  Ppy € P (26)
-1
die nach Satz 1 wohlbestimmée Darstellung durch clementare Splinefunitionen und

b
o:= [ [8¥(z)] dz.

[a, b)) bedeutet ein EinschlieBungsintervall fiir die Knoten x,. Dann gilt
o= (—1)*(2k— l)lzu‘c;c(z;). 27
i=1

Beweis. Wir setzen k = 2 voraus; die geringfiigigen Modifikationen des Beweises
fiir £ = 1 seien dem Leser iiberlassen. Da s in den Intervallen —oo < 2 < x; und
2z, <2 < oo durch je ein Polynom der Klasse ;., dargestellt wird, ist daselbst
8W(z) = 0 fiir I = &, k + 1, ..., 2k — 2. Unter Beriicksichtigung, daB die Ableitun-
gen bis zur Ordnung 2k — 2 iiberall stetig sind, findet man durch partielle Integra-
tion

b
o= [ [V dz

a-1 2

£23 b
= [®@Pd + 2 [ D)+ [ D@)Pd
a =1 2 Z,

=1 T4y
=X [P@Pde

i=1 2

r—1 Ti41
=3 {[g(k-l)(z) ,(k)(x)]::ﬂ _ J’ #k-D(z) gk+D(z) dz}
i=1 zy

=1 Z
=- f 8¢-1(z) g4+ 1)(z) dz.

i=1 oz
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Durch Wiederholung dieser SchluBweise ergibt sich nach ¥ — 1 Schritten
=12

o= (=113 [&(@) %) dz.

=1 2

&®-1)(z) ist in den Intervallen J;, z;.,[, * = 1(1)n — 1, einer Konstanten y; gleich,
die in der Form

71 = 8%z + 0) = @Dz, — 0) (28)
bestimmt werden kann. Damit gilt weiter

=1 Zyy

o= (=11 Ty [s()dz

g4
= (=1 o) — o)
= (—1y {w(zo +§:‘m = i) o) — y.-,a(z.)},
mit Beachtung von (28) also
o= (—1)*{e<’*-”(z1 + 0) s(zy) +'_"z:~‘(,m—n(,‘ + 0) — #8-U(z; — 0)) a(z)
— g0z, o) c(z,.)}. (29)

Nach (2k — 1)- mshgor Differentiation gewinnt man aus (28) an jeder von den
Knoten verschi tstelle (vgl. (16))

-

88-1(z) = (2k — 1)! Z cilx — z;)%.
Folglich ist -
-1 (z) — (2k — 1)! E'lc, in Jr,al, t= 2(1);t,
und - (30)
s (z) = (2k — l)!z“ ¢ in Jr, [, {=1lm—1.
Damit kann fiir (29) "
o= (=12 —1! {010(1’1) + Z i8(2;) — 8(za) 2 04}

=2
geschrieben werden.
Fiir z > z, folgt aus (26)

o(2) = Pas(2) +6251 oz -zt 81)
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Da s als natiirliche Splinefunktion des Grades 2k — 1 in diesem Argumentbereich
aber durch ein Polynom aus P;._, dargestellt wird, miissen in (31) alle Potenzen von z
verschwinden, deren Exponent groer als ¥ — 1 ist. Daraus ergibt sich

Hilfssatz 2. Die Parameter ¢, ¢ = 1(1)n, einer natiirlichen Splinefunktion
8 € Cgps(2y, 23y ..., ,) 1 (20) geniigen den Gleichungen

é‘qzﬂ:O fir j=0,1,...k—1. (32)

Umgekehrt folgt auf Grund von Satz 1 aus dem Erfiilltsein von (32), daB (26)
eine natiirliche Splinefunktion der Klasse ©,,(z),...,,) darstellt. Fir j =0
liefert (32)

n—1
cn=—2¢;,
i=1

womit der zuletzt erhaltene Ausdruck fiir ¢ die Gestalt (27) annimmt.
Wir beweisen nun

Satz b. Es sei k,n € N* und k < n. Dann gibt es fiir ein beliebiges Knotensystem
(23) genau eine natiirliche Splinefunktion 8 € Gy y(2, %5, ..., 2,), welche an den
Stellen x; vorgegebene Werte y;, © = 1(1)n, annimmd.

Beweis. Legen wir fiir ¢ die Darstellung (26) zugrunde, wobei
k-1
Py () = Z; a,z*

gesetzt sei, 80 bedeutet die Interpolationsanforderung die Erfiillung des Gleichungs-
systems

k-1 "

z;a’nx; +‘Z; alzi—z) ¥ =y;,  j=11m. (33)
Zusammen mit den nach Hilfssatz 2 von jeder natiirlichen Splinefunktion aus
Gap1(2y, T3, - .., 2,) Zu erfiillenden Gleichungen (32) sind dies #» + & lineare Gleichun-
gen fiir die Parameter von s. Offenbar ist die Behauptung von Satz 6 mit der ein-
deutigen Losbarkeit dieses linearen Systems équivalent. Das ist bewiesen, wenn wir
zeigen konnen, daB das zugehérige homogene System nur die triviale Losung besitat.
Wir schlieBen indirekt und nehmen fiir das homogene System die Existenz einer
nichttrivialen Losung

60' ﬁl» ceey ﬁl—p 61: 6’) sy 6n

an. Die mit diesen Parametern gemdB (26) gebildete natiirliche Splinefunktion
§ € Gyps(my, 2, - .+, 7,) 188t die Interpolationsaufgabe

§x) =0, =1(1)m. (34)
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Nach Hilfssatz 1 ist dann
1]
5:= [[{W@)Pdz=0
a

und fiir ¥ > 1 aus Stetigkeitsgriinden
i0(2) =0 auf [a,bd]; (35)

wenn k = 1 ist, gilt (35) eventuell mit Ausnahme der Knotenargumente z;. In diesem
Fall folgt aus der Stetigkeit von § und dem Umstand, da8 & auf (@, z,] und [z,, b
durch ein Polynom nullten Grades dargestellt wird, das bei z, und x, verschwindet,

5(x)=0 auf [a,b]. (36)

Fiir £ > 1 gewinnt man (36) durch folgende Uberlegung: Auf Grund von (35) wird &
auf [a, b)) durch ein Polynom aus P,_, dargestellt. Dieses verschwindet gemiB (34)
an n (> k — 1) Stellen und ist daher das Nullpolynom. Mit Satz 2 folgt nun aus (36)
das Verschwinden aller Parameter &,, &;, im Widerspruch zu unserer Annahme iiber
diese GroBen.

Mit dem folgenden Satz 6 werden wir erkennen, daB die nach Satz 5 in
Sap-1(%y, 2y, ..., ¥,) Wohlbestimmte natiirliche Splinefunktion nicht nur die Forde-
rung (24) des zu Anfang dieses Abschnitts formulierten Interpolationsproblems er-
fiillt, sondern fiir ¥ > 1 auch einzige Lésung der mit (25) verkniipften Extremal-
aufgabe ist.

Satz6. Esaeik, n € N*, k < nund 8 die zu dem Knotensystem (23) und vorgegeb
Ordinaten y;, © = 1(1)n, gemif Satz 5 wohlbestimmie natiirliche Splinefunktion. Dann
st beziiglich fedes Binachliefungsintervalls [a, b

b b
JUP@Pd = [ [#9@)] d @7

fiir alle f € Ok, die (24) erfiillen. Im Fall k > 1 gilt das Gleichheitszeichen in (37)
genav dann, wenn f = 8 auf [a, b] 7st.

Beweis. Ausgangspunkt unserer Uberlegungen ist folgende Umformung:

b 1]
[ D@ dz = [[s®@) + (f9() — (@) dz
[ Do R
= [[® @) dz + [ (fB(2) — (@)t de

1]
+ 2 [ 8¥(z) (f0(2) — ¥(z)) dz. (38)
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Auf Grund von (38) ergibt sich (37), wenn gezeigt werden kann, da8
b
B:= [ a¥(g) (fO(z) — s®(z)) dz = 0 (39)

ist. Dazu wird das Integrationsintervall von (39) in die durch die Knoten (23) be-
stimmten Teilintervalle zerlegt. Unter Beachtung, da8 ¢ in [(a, 2,] und [z, b] durch
je ein Polynom aus P, dargestellt wird, folgt

b
R = [ s9() [*() — 69(2)] dz

n—1 Ty

=2 [ M) — s9@) dz. (40)

=1 z

Im Falle k = 1 ergibt sich aus (39) weiter mit Benutzung der durch (28) bestimmten
Konstanten y; ’

A—1 Zy
R=37[l/=) — ¢@)dz
]

=1
n—1

=‘2 P{(f@i1) — 8@ia)) — (Fl@i) — 8],
-1

also R = 0 auf Grund der Voraussetzung, daB / und s die Interpolationsforderung
(24) erfiillen. Fiir k£ > 1 gelangt man zu diesem Resultat durch partielle Integration
in (40). Zunéchst ist

R=T {[s‘n(z) (@) — o))
§=1

T
— [ 840 () [f*-D(z) — s-D(2)] dx}

und weiter wegen der Stetigkeit der im integralfreien Term auftretenden Funktionen
und des Verschwindens von &¥(z,) und s*¥(z,)

=1 2
R=-X% f S () [f4-D(z) — D (2)] da.

i=1 %
Durch abermalige partielle Integration gewinnt man daraus auf entsprechende
Weise

w-1 24,

R=J [s49)[f4D(z) — s*-D(z)]do

i=-1 2
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und so fortfahrend nach & — 1 Schritten

8—1 Ziyy

BR= (115 [o-D)[f(x) — 8'@)] dz.

i=1 g

##-D(z) ist in den Intervallen J=;, ;[ gleich den gemiB (28) bestimmten
Konstanten y;, und von hier aus kann der Beweis wie im Falle k£ = 1 gefiihrt
‘werden.

.Bei Gleichheit von

b b
JUP@Pdz und [ [0 dr
ergibt sich auf Grund von (38) *
b
J119@) — s¥@)Pdz = 0. 1)

Im Fall k > 1 ist der Integrand stetig, und man gewinnt aus (41)
B (z) — 8% (z) == 0 auf [a,b],

d. h., f — s ist auf [a, b] durch ein Polynom aus %;, darstellbar. Da f und s nach
Voraussetzung (24) erfiillen, verschwindet dieses an mindestens # (> k — 1) Stellen
und daher identisch auf [a, b]. Damit ist der Satz bewiesen.

Wie bei der Interpolo,tlon mlt ganzen rationalen Funkti geben sich auch bei der
Spline-Interpolation i in Hinsicht i Spezialisierungen, wenn man die
Knoten als dquidi i Man vergleiche dazu etwa [18), Abschnitt 6; [33] und [44],
Abschnitt 1.5

5.4.5. Kubische Splines

Unter einem kubischen Spline verstehen wir eine natiirliche Splinefunktion & dritten
Grades. Sind deren Knoten durch (23) gegeben, so ist &'’ eine durchweg stetige
Funktion, die in ]—oo, 2,] und (=, oo[ identisch verschwindet und in den Inter-
vallen Jz;, 2., ¢ = l(l)n — 1, durch ein Polynom der Klasse B, dargestellt wird.

Ziel der folgend gen ist ein Algorithmus zur Konstruktion des durch
die Siitze b und 6 chn.mkbenslerten interpolierenden Splines in dem hier zu erortern-
den Spezialfall.

T. N. E. GREviLLE [19] folgend, gehen wir von der Newtonschen Darst
formel (MfL Bd. 9, 4.3.2.(17), (19)) aus. Danach gilt fiir beliebiges = + z;, zm
f=11)n—-1)

8(x) = 8(z)) + (= — @) 8z, ] + (@ — 7)) (& — Zin) 8[7, 2, Tina],  (42)



92 5. A imation von Funkti

PP

wobei die mit eckigen Klammern gebildeten Terme Steigungen von s bedeuten; die
Definition dieser GrofBen findet man in MfL Bd. 9, 4.2.2.

Algorithmen fiir Aufgaben mit kubischen Splines beruhen wesentlich auf dem
Umstand, daB man die im Restglied von (42) auftretende Steigung s{z, z;, z;.]
durch eine Linearkombination der Werte 8(z;) und &'(x;,,) ausdriicken kann. Das
ist — wie jetzt gezeigt werden soll — eine Konsequenz der oben hervorgehobenen
B derheit der iten Ableitung von s: Auf Grund des Taylorschen Satzes ist
fiir € Jay, 211

(e) = ofa) + #(a0) (2 = =) + 36 — 2P (@) + oo — 2 ED,

n<&f<uw, (43)
und folglich
1 1
8z, 7] = &' (i) + ) (@ — @) 8"(z;) + 3 (& — 2i)?8"(&). (44a)

Da &' in Jz;, 2., konstant ist und in diesem Intervall den Wert

8 @) — 8"()

§(z) = = 8"[zi, Zjn]
Ty — &
hat, nimmt (44a) die Form
1 1
sz, ) = &'(z) + 3 (@ —z)8"(x) + + (z — )2 8" [y, zia] (44b)

an. LaBt man in dieser Gleichung z gegen z;,, streben, so resultiert
. 1 " 1 ”
oz, i) = &'(z) + E(zm — ) 8" () + E(”m — i) 8"[zi, zin]  (46)
und, indem man (44b) von (45) subtrahiert und durch z;,; — z dividiert,

2, — 2 — 2z(ziy — ),
2t B = ) iy, 2]

1 1
8z, 2y, i) = 0 &(x) + 3 = z
i+ T

1, 1 "
=3¢ (=) + + (@1 — 21+ 7 — ) 8"[2), Tia]
1
2

= 5800 + 5 (8" (ain) = #"(@0) + (& — 20 8"[zw zia).

Da ¢” im Intervall [z, 2;,,] durch ein Polynom aus %, dargestellt wird, kann die
Steigung des letzten Terms durch s”[z, z;] ausgedriickt werden. Mit Beachtung dessen



5.4. Zu Theorie und Anwendung von Splinefunktionen 93

findet man schlieBlich
1 1 1
8z, z;, 2in] = 'E“”(zi) + E(‘”(xiﬂ) —&"(2) + E(’"(’?) — &"(zy)
1
=3 [ (=) + 8"(2) + 8"(2in1)] (46)

und erkennt, daB8 (46) eine Linearkombination der Werte &’'(z;) und 8”'(z;,,) ist. Im
Hinblick auf (42) kénnen wir demnach feststellen:

Der durch Satz 5 charakierisierte kubische Interpolationsspline 1st
berechenbar, wenn aupfer den Funktionswerten

szi) =y, T=1l)m, (47)
noch die Werte 8’ (z;) an den Knoten (23) bekannt sind.

Weil &” iiberall stetig und &"(z) == 0 fiir —o0 < z < 2, und z, < z < oo ist, gilt
zunichst

8"(z;) = &"(zs) = 0. (48)
Im weiteren wird gezeigt, daB s'’(z,), 8'(z;), ..., 8" (z,-,) als Losung eines linearen
Gleichungssyst: bestimmt werden konnen. Wegen

&' (@) — 8" (1)

8"[zi 2] =
Tier — T

folgt aus (46)
8[zy, 2i41] = 8'(2)) + (i1 — 7)) {% &'(z;) + ‘é“"(’m)} (49)

Durch Anwendung des Taylorschen Satzes auf das Intervall J,,, z,[[ mit z; als
Bezugspunkt der Entwicklung gewinnt man der Herleitung von (49) entsprechend

1 1
szig, 2] = &'(z) — (@i — 71-) {; &'(z) + ry "'(zi—x)}- (80)

Subtraktion der Gleichung (50) von (49) liefert

@1 — 2ie1) 8”(Zi) + 2@i1 — 2i1) 87 (@) + (@01 — 7)) 87 (701)

= 6blezy, Tin] — Sz @), T=2(1)n — 1. (61)
(81) stellt in Verbindung mit (48) ein System von n — 2 linearen Gleichungen zur
Bestimmung der GréBen 8" (z;), © = 2(1)n — 1, dar, dessen Koeffizienten und rechte

Seite mit den Knoten (23) und den zu interpolierenden Werten s(z;) = y;, ¢ = 1(1)n,
gegeben sind. In 6.1.2. werden wir zeigen, daB (51) fiir paarweise verschiedene z,
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und beliebige y; genau eine Losung besitzt, und eine Interpolationsaufgabe durch-
rechnen. Abb. 5.12 ver haulicht schematisch die Struktur der Koeffizienten-
matrix, die nur in der Hauptdiagonalen und der dariiber und darunter liegenden
Schriglinie von Null verschiedene Elemente enthélt. Deshalb bezeichnet man diese
als (spezielle) Bandmatriz oder tridiagonale Matriz.

X

i X, X3 X . .. Xo—2 Xnog

2 X

3 *

4 X X

n-2 E I S 3

n-1 X X Abb.5.12

Das in der Einleitung zu MfL Bd. 9, 4.3., formulierte Prinzip zur Gewinnung von
Niherungsformeln der ischen Differentiation und Integration mit Hilfe von
Interpolationspolynomen kann auch fiir interpolierende Splinefunktionen iiber-
nommen werden. Wir fijhren das mit dem gemaB (42), (46) und (561) bestimmten
kubischen Spline & durch.

Differentiation von (42) liefert mit Beachtung von (46) und der Konstanz von s’
zwischen zwei aufeinanderfolgenden Knoten

§'(2) = s[zi, Tina] + (22 — 2 — Tin) 8z, 23, 23]

+ g (= 20 @ = 5 ¢'lz1 20l (52)

Man erkennt an (52), da8 s,uch &' aus den in (47) beschrieb Daten berechenbar ist.
Bei der Bestimmung von f 8(x) dz wird das Integrationsintervall in die durch die
Knoten berandeten Te:].mtoml]e zerlegt. Die Integrale

Zeer
fa(z) dz, i=1ln—1,
£
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lassen sich auf Grund von MfL Bd. 9, 4.3.(31), okne Verfahrensfehler mit der Kepler-
schen FaBregel berechnen. Dabei benétigt man die Werte von s an den Intervall-
mitten

&= % @+ 2w), T=1U)p—1, (83)

die mit Hilfe von (42) berechnet werden. Wegen der Linearitit von s" auf [, Zi,]
ist gemdB (46)

8é i, 2] =

{ o' (@) + &'(@) -1-20"(2“1) + 0"(3(»1)}

1
=7 (@) + (@)

und folglich
s() = slz)) + Ilﬂ — % 8(ZTi1) — ‘(1-) (Tisg — @i)? (’N(zl) + a"(:c.,,))
Ziv1 — Ty 1
1 (@i — @), "
=3 (8(z) + 8(@is1) — T (8”@) + 8" @n))- (64)

Man findet nun auf die beschriebene Weise unter Beachtung von MfL Bd. 9, 4.3.(24),

81 Zn

f sw)dz =% [olz)de=— ): @i — ) {8(z) + 48(£1) +8(@00))
=1

=1 Z

1 81
=3 X @i — ) (8(@1) + 8(2411))
i=1
1 81 ,
~u X @i — 2 (8" (@) — 8" (%0n))- (65)
i1
Der erste Term der rechten Seite von (55) entspricht der Trapezregel zur Berechnung
Z,

von f 8(z) dz. Fir die Auswertung der Quadraturformel sind wieder die in (47)

z,
charakterisierten Daten maBgebend.

Allgemein (d. h. fiir beliebiges k) gewinnt man bei der niherung; Berech

&' -]

[
von f/(:)dz durch Integration des beziiglich eines Knotensyst: (23) gemiB
o
Satz b zu y = f(z) bestimmten interpolierenden Splines s eine Quadraturformel der
Gestalt

f o) do ~ X (e (56)

i=1
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mit von f unabhiingigen Gewichten 4;. Das folgt aus der Bemerkung, daB man die
Parameter der natiirlichen Splinefunktion 8 bei der Ldsung des linearen Systems
(33) als Linearkombination der Werte y; = f(z;) gewinnt, deren Koeffizienten nur
von den Knoten abhingen.

Auf Grund einer von A. SaRD entwickelten Theorie iiber die Bestapproximation
linearer Funktionale und eines dafiir grundlegenden Satzes von I.J. SCHOENBERG
gelangt man zu der Einsicht, daB die mit den nach Satz 5 bestimmten natiirlichen
Splinefunktionen konstruierten numerischen Differentiations- und Quadratur-
formeln (speziell also (62) und (55)) in einem gewissen Sinne optimal sind. Im Rahmen
dieser Einfiilhrung kann auf diesen Problemkreis nicht niher eingegangen werden,
und wir miissen daher auf Fehlerbetrachtungen zu (52) und (56) verzichten. Fiir ein
weiterfilhrendes Studium sei auf [19, 20, 44] verwiesen.



6. Losung von Gleichungen

In diesem Kapitel werden die Betrachtungen von MfL Bd. 9, 4.1., weitergefiihrt und
auf Gleich bzw. Gleichungen in mehrdimensionalen Rsumen ausgedehnt.
Ausfishrlicher gehen wir dabei auf lineare Systeme ein unter besonderer Beruck-
sichtigung der Spezialfiille, die sich bei der Erorterung von Approximatic

ergeben haben. Der zweite Teil des Kapitels ist nichtlinearen Gleich g gewnimet.
Nach allgemeiner Erérterung iterativer Methoden werden speziell algebraische
Gleichungen behandelt, wobei mit Riicksicht auf die Schule die Lokalisierung von
Poly llstellen verhiltnismiBig breit dargestellt ist.

6.1.  Numerische L6sung linearer Gleichungssysteme
6.1.1.  Allgemeine B kungen und Ergd gen zur linearen Algebra
Wir befassen uns mit der numerischen Lésung des li Gleichungssy

an®y + ¥ + ot + Qs = by,
Ty + Ty + v+ GouTy = by,

(1)

amT) + BmeTz + o+ + ApnZp = b
im Korper der reellen Zahlen. Mit der Koeffizientenmatrix
= (ay)
vom Typ m X n und
b=(0y,by.0 b)), T= (20 T2z,

ai; b, 2 € R, t=1(1m, j=1(1)n,
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nimmt (1) die Gestalt

Az =0 2)
an.
Von einem rein theoretischen Standpunkt aus betra,chwt lassen sich die mit (2)
zusammenhingenden algorithmischen Probl so besch :

Es sind Verfahren zu entwickeln, welche dw Lésbarkeit von (2) 2u entscheiden ge-
statten. und mit denen gegebenenfalls s L gen dieser Gleichung berechnet
werden konnen.

Grundlage fiir die Bestimmung der Struktur der Losungsgesamtheit von (2) ist
der in MfL Bd. 3, 5.4., behandelte Gaufsche Algorithmus. Dabei ist es wesentlich zu
wissen, ob gewisse bei dem EliminationsprozeB gebildete Koeffizienten und Stéor-
glieder (Komponenten der rechten Seite) verschwinden oder nicht. Offensichtlich
ist das beim Rechnen mit gerundeten Gréfen und im Hinblick darauf, daB ver-
schiedene EDVA im allgemeinen unterschiedlich runden, ein kritischer Punkt
(vgl. 6.1.2.). Aus diesem Grunde wird bei der Entwicklung numerischer Verfahren
zur Losung von linearen Gleich meist vorausgesetzt, dal die Matrix 4
in (2) regulir, also das System quadrtmsch ist (m = n). Diese Verfahren lassen sich
wesentlich in zwei Klassen einteilen:

a) die sogenannten exakten oder direkten, welche die Losung mit endlich vielen
arithmetischen Operationen bei Ab heit von Rundungsfehlern exakt besti
und

b) die werativen, mit deren Hilfe eine Folge von Vektoren des R” konstruiert wird,
die gegen die Losung konvergieren.

Mehrere der a) zuzuordnenden Methoden sind Weiterentwicklungen des GauBschen
Algorithmus. Das einfachste Iterationsverfahren ist das der sukzessiven Approxi-
mation(en). Es beruht auf einer geeigneten Umformung von (2) (m = =) in eine
Gleichung zweiter Art (vgl. MfL Bd. 9, Einleitung von 4.1.).

In den Anwendungen ergeben sich lineare Gleichungssysteme hiufig aus Mes-
sungen, und die zu berechnenden Ldsungen sind auf diese Weise im allgemeinen
iiberbestimmt. Zur Erliuterung betrachten wir das folgende [31] entnommene
Beispiel.

Fur vier Punkte 4, B, C, D einer Geraden (vgl. Abb. 6.1) wurden die Absténde in

iberschiissiger Anzahl g Dabei erhielt man

z,:=(4,B) =117,34 m,
=(B,C) = 68,46m,
=(C,D) = 4127Tm,

(4,C) = 185,81 m,
(B, D) = 109,70 m,
(4, D) = 227,05 m.

@)
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Aus (3) Itiert folgendes li Gleichungssystem zur Bestimmung von z,, z,, z3:
z = 117,34,
£ = 68,45,
= 41,27,
" @
) + 2 = 185,81,

z, + 2z, = 109,70,
z + 2, + 23 = 227,05.

= % —2 X5, Abb.ed

A B c 0

Lineare Glelchungssystzme, die verglewhbar dem System (4) aufgestellt werden,
sind wegen moglicher MeB im i mcht losbar. Anderer-
seits wire es unvemunftlg, korrekt durchgefuhm iiberschii M gen als

Hinderungsgrund fiir die Bestimmbarkeit der beobacht GroBen zu akzeptieren.
In solchen Fillen hilft die sogenannte Gaufsche Transformation weiter, die aus der

Umformung des Glei gsprobl in eine spezielle Aufgabe der Quadratmittel-
approxnma.tlon resultiert.
ichnet man die Spaltenvektoren der Matrix A mit a,, @,, ..., @,, so lassen sich
(1), (2) in der Form
7,8, + 28y + -+ + 2,8, = b (6)

schreiben. An Stelle von (B) betrachten wir folgende Aufgabe in dem unitiren Raum
E, der aus dem R™ durch Einfiihrung des Skalarproduktes 5.2.(1) entsteht:

Gesucht wird diejenige Linearkombination der Vektoren a;, © = 1(1)n, die tm Sinne
von 5.2.(5) am wenigsten von b abweicht.

Nach der in 6.2. entwickelten Theorie geniigen die Koeffizienten z; dieser Best-
approximation den Normalgleichungen 5.2.(8). Mit den notwendigen Ersetzungen
erhilt man fiir diese im vorliegenden Fall

ﬁ‘j. z(ana) = (b,a), j=1{1n. ®

In Matrixschreibweise kann (6) in der Form
ATAx = A"b 7
ausgedriickt werden. Offensichtlich ist in (7) die Koeffizientenmatrix symmetrisch

((ATA)T = ATA™T = ATA). Den Ubergang von (1) zu (7) bezeichnet man als Gaug-
sche Transformation. Auf Grund von 5.2., Satz 2, gilt:

Satz 1. Sind die Spaltenvektoren a;, © = 1(1)n, linear unabhingig, so st die Matriz
AT A regulir, und (7) besstzt fiir belichiges b ¢ R™ genau eine Losung.
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Die Voraussetzung des Satzes 1 ist offenbar fiir das System (4) unseres Beispiels
erfiillt. Das transformierte System (7) lautet :

3z, + 22, + z3 = 530,20,
2z, + 4x; + 22, = 591,01, (8)
xy + 2z, + 32, = 378,02.
Satz 2. Ist in (2) A reguliir, so sind die Systeme (2) und (7) dquivalent und eindeutig
loshar. )
Beweis. Die eindeutige Losbarkeit folgt aus Satz 1, die Aquivalenz der Gleichungs-
yst durch linksseitige Multiplikation von (2) mit AT bzw. von (7) mit (AT)-1

Fiir die Durchfithrung des GauBschen Algorithmus ist es von Interesse, ob die so-
genannten Abschknittsdeterminanten von A

ay @

Qg1 Gz

s eeny dyi= 9)

Guy oo Ggg

4y :=ay, 4, :=

ungleich Null sind (s. u. Satz 5). Im Zusammenhang damit heben wir folgenden
Spezialfall hervor:

Definition 1. Eine reelle symmetrische Matrix A = (a;;) vom Typ 7 X n heiBt
positiv definit genau dann, wenn ihre Abschnittsdeterminanten (9) positiv sind.

Lineare Gleichungssysteme mit positiv definiter Koeffizientenmatrix treten in den
Anwendungen haufig auf, und einige Verfahren zur numerischen Lsung von linearen
Gleichungen machen von dieser Eigenschaft wesentlich Gebrauch. Im Hinblick auf
die Probleme der Quadratmittelapproximation (5.2.) beweisen wir:

Satz 3. @), @y, ..., @, selen linear unabhingige Elemente eines unitiren Raumes.
Dann st die Koeffizi triz der Normalgleich 5.2.(8) positiv definit.

¢

Beweis. Wir bemerken zunichst, da8 4, die Gramsche Determinante der Vektoren
@i t = (1), ist. Um zu zeigen, daB die 4,, © = 1(1)n, in (9) positiv sind, wird die
formale Determinante

Pue) @ue) -0 @uod) @

(@0 1) (@2 @2) «ov (P2 Pua) @2

(Pur @1) (P @2) -or (Pns Pn-1) P
betrachtet, die bei Entwicklung nach der letzten Spalte eine gewisse Linearkombi-
nation

Yn =@ + @y + ++ + Xpo1@Pu-1 + dn1Pry X € R, i=1(1)n—1, (10)
der ¢; darstellt. yp, ist nicht der Nullvektor, da 4,-, sonst auf Grund der linearen
Unabhingigkeit der ¢;, © = 1(1)n, verschwinden miiBte. 4,, ist aber als Gramsche
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Determinante des linear unabhiingigen Systems ¢,, @,, ..., ps—; nach 5.2., Satz 2,
ungleich Null. Offenbar ist fiir £ = 1(1)n

(Pu@) (@u@) o (Pu@e1) (91 92)
) = (P90 (e oo o) oo
(@ @) @n@) oo (P @ast)  (Par 2)
und folglich
_ [0 fir k<m,
oo =15 o )

Skalare Multiplikation der Gleichung (10) mit y, liefert unter Beachtung von (11)
(¥ ¥a) = 4a14a >0, (12)

d. h., 4., und 4, haben gleiches Vorzeichen.

Nunmehr kann der Satz leicht durch Induktion nach n bewiesen werden: Offenbar
ist 4, = (@1, 1) > 0. Wird angenommen, daB 4,_, > 0 gilt, so folgt aus der letzten
Bemerkung auch 4, > 0.

Im besonderen ergibt sich aus Satz 3 der

Satz 4. Unter der Voraussetzung von Satz 1 ist ATA positiv definit.

Beweis. ATA ist die Matrix der Gramschen Determinante der linear unabhingigen
Spaltenvektoren von A.

6.1.2. Direkte (exakte) Verfahren

Prototyp eines solchen Verfahrens ist der in MfL Bd. 3, 5.4., behandelte GauBsche
Algorithmus, mit dessen Hilfe (2) in ein dquivalentes lineares Gleichungssystem von
Trapezform iibergefiihrt wird. Dessen Losbarkeit und gegebenenfalls Ldsungs-
gesamtheit ist wie bekannt leicht zu bestimmen. Das Verfahren beruht auf den in
MfL Bd. 3, 5.4., Satz 1, genannten elementaren Umformungen

h

1. Vertauschung zweier Gleichungen

2. Ersetzen einer Gleichung durch ein mit einem von Null verschiedenen Skalar
gebildetes Vielfaches,

3. Ersetzen einer Gleichung durch die Summe dieser Gleichung und einer beliebigen
anderen des Systems,

denen wir mit Riicksicht auf die numerischen Belange noch

4. Vertauschung von Spelten der Matrix A und entsprechende Umbenennung der
Unbekannten

hinzufiigen.
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Die Umformung auf Trapezgestalt geschieht in Schritten, die wir mit der Variablen
k zihlen. Im k-ten Schritt wird in der Gesamtheit der Koeffizienten a;; (7, j = k) des
dann vorliegenden Systems ein von Null verschiedener gesucht; ist a;;, ein solcher,
8o vertauscht man in (1) die k-te Zeile und Spalte mit der 7;-ten Zeile bzw. j,-ten Spalte.
Wird die durch den Spaltenindex bestimmte Numerierung der Unbekannten bei-
behalten, so erfordert das — wenn j; & ¥ — eine Umbenennung derselben. Diese
ist in geeigneter Weise zu protokollieren, wozu im folgenden ein Feld integer array
PER[1:n] vereinbart wird, das am Anfang mit den Indizes der Unbekannten in
der natiirlichen Reihenfolge zu belegen ist. Bei Vertauschung der j;-ten und k-ten
Spalte werden die Werte von PER[;j1] und PER[k] ausgetauscht, so daB am SchluB
auf dem betrachteten Feld eine Permutation der natiirlichen Zahlen von 1 bis n
steht. Zur Formulierung von ALGOL-Prozeduren fiir Probleme, die mit der Losung
von (1) zusammenhingen, wollen wir uns die a;;, b; als Elemente eines array A[1 : m,
1:7n + 1] vorstellen, das durch die vorzunehmenden Umformungen laufend ver-
éndert wird. Urspriinglich gilt

Al j]:=ay firlsism1<j<n,
Alt,n + 1]:=b; fir 1 <7< m.

(13)

‘Wenn im weiteren ein Element A[%, j] angesprochen wird, so ist jeweils sein aktueller
Wert gemeint. Der k-te Schritt wird mit der oben erwihnten Zeilen- und Spalten-
vertauschung eingeleitet, wobei die Wertzuweisung A[k, k] := A[+1, j1] erfolgt.
Weiterhin subtrahiert man von der (k + 1)-ten bis zur letzten Gleichung ein solches
Multiplum der k-ten, daB (k-ter Eliminationsschritt)

A3, k}=0firt=k+1,...,m
ist. Das hat im iibrigen die Wertzuweisung

Al5, 71 := AL, 7] — Ak, jY ALk, k] x Al k] (14)

firk<i=mk<j<n+1
zur Folge. Nach endlich vielen Schritten gelangt man auf diese Weise zu einem (bis
auf die Bezeichnung der Unbekannten) équivalenten System der Form

A1, 1) 2, + A[1, 2] @, + + oo+ A[l, n]x, = A[1, 7 + 1],

0 +4[22a+ o A2 ) = 4120+ 1],

0 + O + A[r, 7]z, + - + A[r,n] 2z, = A[r,n + 1],
0 + 0 + 0 4o+ 0 =Alr+ 1, n + 1),

0 + 0 + 0 4t 0 —dAmn+1]
(15)
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Beziiglich (15) lassen sich die Losungsverhéltnisse bei dem Gleichungssystem (1)
mit dem folgenden Algorithmus entscheiden (Abb. 6.2): Im Lésbarkeitsfall 7 = m
=n hat die Koeffizientenmatrix von (15) obere Dreiecksgestalt, und die z; sind
eindeutig berechenbar. Wenn r < m und die Bedingung

Ar+ Lo+ 1] =Afr +2,n+1]=--=A[mn+1] =0 (16)

(ALl =Alr2,n 5]~ =Almn]=0)

;—.lfa neinl

(1) besitzt eine
{n-r)-parametrige

(1)ist nicht (Gsbar

Losungsschar
Abb. 6.2
erfiillt ist, erfordert die vollstindige Losung des Sy (1) die Besti g einer
speziellen Losung und eines Fundamentalsy fiir die zugehorige homogene

Gleichung (2). Eine spezielle Losung ergibt sich aus (16), indem man die (r + 1)-te
bis m-te Gleichung beiseite liBt (reduziertes System),

Ty =Tpppg =+ =2, =0 (17)

setzt und weiter wie im Falle r = m = n verfihrt. Ein Fundamentalsystem fiir die
homogene Gleichung (2) gewinnt man aus dem reduzierten homogenen System (16),
indem man nacheinander die Variablen 2,1, Z 43, - --, T, gemaB der Tabelle 6.1 belegt
und dann sukzessive die Werte von z,, z,_y, ..., Z, berechnet.

Die Durchfiihrung des GauBschen Algorithmus in dieser Form ist auf einem Rechner
nicht sinnvoll. Zur Begriindung wird ein numerisches Experiment betrachtet,
welches das lineare Gleichungssystem

br, + 4z, + 73+ x + 32 =0,

32, + 4y + 37, + 32, + =0,

2z, 4+ 25+ z+ z+ =0,

) + 2z + 225 + 22, =0
zum Gegenstand hat.

(18)
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Trsr | Bres | Tres | Tpea | oo Tn-1 Tn

1 1] 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 . 1 0

0 0 0 (1} . 0 1
Tabelle 6.1

Zuniichst 16sen wir (18) von Hand nach dem GauBschen Algorithmus, wobei
rundungsfehlerfrei mit rationalen Zahlen gerechnet wird. Bei geeigneter Wahl der
Eliminationsschritte gelangt man zu dem édquivalenten System

%+ 22, + 223+ 22, =0,
x5 — 22, — 323 — 3z, = 0.

Demnach ist r = 2, und man gewinnt durch Belegung der Variablen z;, z; und z,
gemii8 Tabelle 6.1 zu (18) das Fundamentalsystem

—2 -2 —2
1 0 0
& = o], X = 1 und & = 01. (19)
0 0 1
2 3 3

Der von Hand abgearbeitete GauBsche Algorithmus wurde in ALGOL program-
miert und auf verschiedenen EDVA aktiviert. Bei einem R300-Lauf ergaben sich die
in Tabelle 6.2 angegebenen Resultate. Der Rechner bestimmt also 7 zu 3 und gibt
entsprechend nur zwei Fundamentallosungen aus, deren erste exakt ist. Mit dem
gleichen Programm lieferte eine englische ICT 1900-Maschine nur eine Fundamental-
16sung, und zwar die erste der Tabelle 6.2. Ursache fiir diese Abweichungen sind die
Rundungsfehler bei den Computerlidufen. Da diese fiir das betrachtete Beispiel iiber-
schaubar klein sind, 1d8t sich der Sachverhalt auch so ausdriicken: Kleine Fehler in
den Ausgengsdaten und Zwischenergebnissen bewirken eine sprunghafte Anderung
des Resultates. Aufgaben, bei denen solche Effekte auftreten, sind offenbar fiir eine
EDVA, wo mit maschinenspezifisch gerundeten Zahlen gerechnet wird, ungeeignet.
Wir betrachten daher den GauBschen Algorithmus weiterhin fiir ein quadratisches
System (2) mit regulirer Koeffizientenmatrix A.
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Um den Rechenaufwand zu verringern, kann man in (14) fiir jedes ¢ = k + 1(1)n

den Multiplikator A[%, k)/A[k, k] berechnen und auf dem durch die Indizes 7, k& be-

stimmten Feldplatz speichern:

Afz, k] := A[z, k) A[k, k]; (14a)
danach nimmt (14) die Gestalt
Al J:= Al 1 — Alk, fl x A R),  k<is=mk<js=n+1, (14b)

an. In 6.1.4. werden wir die Anzahl der insgesamt beim GauBschen Algorithmus

auszufiihrenden Operationen abschitzen.

106

spezielle Losung 1. Fund tal 2. Fund 1

des inhomogenen 16sung 16sung

Systems
z, .00000000 3 08 00000000 3 01 —.66666668 3 00
EN 00000000 #: 08 00000000 #: 08 .10000000 #: 01
zq 00000000 # 15 —.10000000 3 01 —.86666667 3 00
EX 00000000 3 08 10000000 # 01 00000000 #: 08
25 00000000 3 15 00000000 #: 08 00000000 #: 08

Tabelle 6.2

‘Wenn mit Naherungswerten gerechnet wird, kann die Subtraktion in (14b) zu einem
Verlust an giiltigen Ziffern und — damit zusammenhiingend — zu einer betricht-
lichen ErhGhung des relativen Fehlers im Vergleich mit den Operanden (vgl. MfL
Bd. 9, 2.5.3.) fithren. Der absolute Fehler bei der Bestimmung von A4z, ;] wird
wesentlich durch die Quotientenbildung (14a) beeinfluBt; nach Formel (23) in MfL
Bd. 9, 2.5.3., vergroBert sich dessen Betrag in dem MaBe, wie A[k, k] klem mt Aus
diesem Grunde ist es fiir die Gewinnung méglichst g Resultat , den
k ten Schntt mit dem (bzw. einem) betragsgrofiten der verfiigbaren Koefflzlenten

Man bezeichnet diesen als Pivotelement und den Vorgang selbst als
Pivotierung.

Die folgende ALGOL-Prozedur GAUSS(4,X,n) berechnet nach dem GauBschen
Algorithmus fiir ein System von 7 linearen Gleichungen mit reguliirer Koeffizienten-
matrix den Ldsungsvektor und iibermittelt dessen Komp ten an das eindi
sionale Feld X. Der formale Parameter 4 bezeichnet ein Feld, das der erweiterten
Koeffizientenmatrix zuzuordnen ist. Die Pivotierung wird in GAUSS durch eine
lokale Prozedur PIV (k) realisiert, welche im k-ten Schritt des Verfahrens die Indizes
71, j1 eines betragsgrofSten unter den Elementen A[z, §], © = k(1)n, j = k(1)n, er-
mittelt. 71, j1 sind in PIV global. Die moglicherweise vorgenommenen Spalten-
vertauschungen bzw. Umb g von Unbekannten werden auf dem lokalen
integer array PER([1 : n] protokolliert. Das lokale Feld Y[1 :n] dient der Zwischen-
speicherung bei der Berechnung der Losungskomponenten nach Umformung der
Koeffizi trix auf Dreijecksgestalt
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procedure GAUSS(4,X,n);
integer n; array 4,X;
hegin
integer ,7,k,21,j1,kj,n1; real ha;
integer array PER[1:xn]; array Y[1:n];
procedure PIV(k); integer k;
begin
integer 7,5; real k,h1;
h:=0;
for ¢ := k step 1 until » do
for j := k step 1 until » do  begin Al := abs(4[%,j]);
it » < h1 then begin % := kl1; i1 :=<; jl := j; end;
end;
end;
nl:=mn + 1; for k := 1 step 1 until » do PER[k] := k;
for k := 1 step 1 until n — 1 do begin PIV(k);

it ©1 <= k then for j := k step 1 until n1 do begin
ha:= Alkjl; Akj]:= A[iL); A[sl):=ha;  end;
if j1 5= k then for 7 := 1 step 1 until » do begin

ha := A[%,k]; A[s,k) := A[2,j1); A[7,j1] := ha; end;

hj := PER[k); PER[k]:= PER[j1); PER[j1] := kj;

for i := k + 1 step 1 until » do begin A[i,k] := A[4,k)/A(k,k];

for j := k + 1 step 1 until n1 do A[i,f] := A[ij] — A[k,j] X A[5,k];
end;
end;

Y[n) := A[n,n1])/A[nn];

for ¢ :=n — 1 step —1 until 1 do begin Y[¢] := A4[¢,n1];

for j := ¢ + 1 step 1 until » do Y[z] := Y[¢] — A[2,5] x Y[4];

Y[7] := Y[i)/A[+7]; end;

for ¢ := 1 step 1 until » do X[PER[@]] = Y[3];

end

Die Bestimmung eines betragsgroBten Elementes mit Hilfe der Prozedur PIV
vor jedem Eliminati hritt des GauBschen Verfahrens zum Zwecke der Rundungs-
fehlerdémpfung erfordert natiirlich zusitzliche Rechenzeit. Im folgenden konzi-
pieren wir den sogenannten verketteten Gaufschen Algorithmus (auch als Schema von
Crout bezeichnet) ohne Pivotsuche, d. h., wir arbeiten bei der Elimination in der
k-ten Spalte unmittelbar mit dem dann gegebenen Element A[k, k], dessen Nicht-
verschwinden wegen der Division in (14) gefordert werden, d. h. a priori bekannt
sein muB.

Die hier zu erdrternde Weiterentwic]dung des GauBlschen Algorithmus vermeidet
die Speicherung gewisser Zwisch Itate, vora tzt, daB man Produktsummen
(Slmlarprodukte) durch Auflaufen der Produktsummn.nden in einem Register
(méglichst doppelter Wortlinge) bilden kann. Da das bei den meisten Taschen-
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rechnern der Fall ist, eignet sich der verkettete GauBsche Algorithmus besonders
fiir die Abarbeitung von Hand. Dafiir spricht auch, da8 man seine Anwendung
wegen der nicht gedimpften Rundungsfehler i. a. auf kleine Systeme (1) beschrinken
muB.

Um die Zusammenhiinge bei der Umformung der Koeffizientenmatrix des Systems
(1) in eine obere Dreiecksmatrix nach dem GauBschen Algorithmus zu erkennen,
wird zunichst die Aktualisierung indizierter Variabler gemi8 (14) durch die Ein-
filhrung neuer GréBen in jedem Umformungsschritt ersetzt. Wir verabreden, die
Elemente a;; und b;, ¢ = 1(1)n, j = 1(1)n, auch mit a};” bzw. a{’), , zu bezeichnen, und
definieren induktiv auf Grund von (14)

a;q-n,,g:—n fir t=k+ 1(1)n,

a® := gl¥-v — 20,
e af j=Hin+1, =
afh : =qft-» fir 7= 1(1)k, j =11 + 1
und z=k+ I(1)n, = 1(1)k — 1.
Dann ist die Matrix
A = (@), i=1ln, j=11)n, (21)

diejenige, welche aus der Koeffizient: trix des Systems (1) nach dem k-ten Um-
for gsschritt des GauBschen Algorithmus erhalten wird.

Besti d fiir das wei Vorgehen sind die GroBen
k-1
by=——, k<j=n41, 22a,
ks D j + k= 1(1)n. (22a)
cpi=alf", k<iza, (22b)

Die ¢;; werden fiir k < ¢ <7 im k-ten Umformungsschritt zum Verschwinden
gebracht, withrend c;; das k-te Diagonalelement der Matrix A™ ist. Aus (20) gewinnt
man damit schrittweise

alf = o™ — cubyy = aff ™ — ¢y prbrorg — Cubyy =
X
= af’ — cubyy — Cubyy — -+ — caby; = ay; —‘E cubijs
=1
C=k4 Wln, j=kim+1,
und speziell firk =7 — 1bzw. k =j — 1
i1
Qi-v @ — X cuby;
y =t =—2tL— d<jZn41, (23a)
ali~y Cii
" "

j=1
¢ = ag"’ =ay —‘zl' cubyj, J=<i<n. (23b)
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Die Formeln (23) gestatten die rekursive Berechnung der by;, ¢;; nach dem Schema

€y by by by... 1. Schritt
€2 by .. 2. Schritt
[ Cas  bye...  3.Schritt (24)

Zunéichst werden die ¢;, und b,; fiir ¢ = 1(1)n, j = 2(1)n + 1 gemiB (22) als die
Elemente der ersten Spalte der urspriinglich gegebenen Koeffizientenmatrix bzw.
als die durch den Diagonalkoeffizienten dividierten Elemente in deren erster Zeile
bestimmt. Im folgenden Schritt gewinnt man nach (23b) mit Hilfe der ¢y, b,; die
¢ig fiir # = 2(1)n und anschlieBend nach (23a) die b,; fiir j = 3(1)n + 1. In dieser
Weise fortfahrend ergeben sich simtliche ¢, b;j, wobei in jedem Schritt mit der
Berechnung der c;; zu begi ist.

Auf Grund von (22a) sind die b;; die durch den Diagonalkoeffizienten ¢y divi-
dierten Koeffizienten und Storglieder des nach dem GauBschen Algorithmus um-
geformten Gleichungssystems (1), so da dessen Losung durch

n
Ty = by — 3 byz;, i=n(—11, (26)
=it

gegeben ist.

Mit der folgenden ALGOL-Prozedur CROUT werden die by;, ¢;; gemiB (23) be-
stimmt und auf einem Feld BC[1 : 7, 1:n + 1] gespeichert. Das noch als formaler
Parameter auftretende Feld A ist der erweiterten Koeffizientenmatrix zuzuordnen.

procedure CROUT(A,BC,n); integer n; array A,BC;
begin
integer 7,j,k,nl; real k;
nl:=n+1;
for 7 := 1 step 1 until » do BC[,1] := A[:,1];
for j := 2 step 1 until 1 do BC[1,j] := A[1,j]/A[1,1];
for k := 2 step 1 until » do begin
for 7 := k step 1 until » do begin 4 := 0;
for j := 1 step 1 until £ — 1 do » := & + BC[:,j] X BC[j,k];
BO[i,k] := A[i,k] — kb end;
for j := k + 1 step 1 until n1 do begin % := 0;
for 7 := 1step 1 until k¥ — 1 do % := & + BC[k,] X BC[4,j];
BC[k,j] := (A[k,j] — k)/BC[k,k] end; end
end
Irgendeine Variante des Gauflschen Algorithmus, welche eine regulire Matrix A
in Dreiecksgestalt iiberfiihrt und neben Zeilen- und Spaltenvertauschungen nur die
Addition eines Vielfachen einer Zeile zu einer anderen benutzt (also keine Normie-
rung der Diagonalelemente vornimmt), 148t bis auf das Vorzeichen die Determinante
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von A invariant, d. h., es gilt
|4] = +|B|,})

wenn B hier die durch den EliminationsprozeB erzeugte obere Dreiecksmatrix be-
deutet. Die Determinante von B ist aber gleich dem Produkt der Diagonalkoeffi-
zienten, und man gewinnt so ein praktisches Verfahren zur Berechnung von Deter-
minantenwerten. In 6.1.4. wird die Anzahl der dabei auszufiihrenden arithmetischen
Operationen mit dem Aufwand bei der Auswertung der Leibnizschen Summen-
formel verglichen.

LiBt sich der GauBsche Algorithmus ohne Zeilen- und Spaltenvertauschungen
durchfiihren, so gilt

|14| = |B|

auch fiir die Abschnittsdeterminanten (9) von 4 und B, d. h., man gewinnt mit den
in (20) eingefiihrten Bezeichnungen
(0),

1 1] —1]
4y =a®, 4, =alal), ..., d,=alal . oV (26)

Im besonderen folgt aus (26), daB die Abschnittsdeterminanten von A nicht ver-
schwinden. Offenbar gilt auch die Umkehrung dieses Sachverhalts.

‘Sa.t,z 5. A set eine Matriz vom Typ n X n, und es set A; = 0, j = 1(1)n. Dann ist
af™ + 0, und das Gaupsche Eliminationsverfahren kann ohne Zeilen- und Spalten-
vertauschung durchgefiihrt werden.

Damit haben wir ein hinreichendes Kriterium fiir die Durchfiibrbarkeit des
Croutschen Algorithmus gewonnen. Nach Definition 1 ist die Voraussetzung des
Satzes 5 fiir eine positiv definite Matrix und nach Satz 3 speziell fiir die Koeffizienten-
matrix der Normalgleichungen im Falle linear unabhingiger Vektoren erfiillt.

Wir gehen noch auf ein Faktorisierungsproblem fiir Matrizen ein, das eng mit dem
GauBschen Algorithmus verkniipft ist. Dabei wird nach der Darstellbarkeit einer
quadratischen Matrix als Produkt einer unteren und oberen Dreiecksmatrix gefragt.
Wir zeigen, daB eine solche existiert, wenn A die Voraussetzungen des Satzes 5 er-
fiillt. Es sei dann B diejenige obere Dreiecksmatrix, die man aus der in (21) definier-
ten Matrix A™ durch Normierung der Hauptdiagonalelemente gewinnt, d. h., in

(1 b by .o by
1 by bow
B= . (1)
0

1]
sind die
a?pl a:(‘- 1)

by = i=1lm—1, i<j,

G- gi-D’
i g

1) |A| bedeutet die Determinante von A.
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die mit dem Croutschen Algorithmus bestimmten Elemente. Die dabei auszufiihren-
den Umformungen lassen sich durch linksseitige Multiplikation von A mit n Xn
Matrizen der folgenden Art realisieren:

1
1 0
D, = @) = o
1
0
1
@ = 0fiir ¢ & j, df = 1fir< £ &, dij = o); (28)
1
1 0
0 e
D, =@d3) = |’ .1
0 - - . 01

@ =0firi+jundilj+k(>k), df =a dP =1)

In der Tat: Die linksseitige Multiplikation von A mit D, hat die Ersetzung der
k-ten Zeile von A durch ihr a-faches zur Folge, wihrend alle iibrigen Zeilen unver-
#ndert bleiben. Fiihrt man diese Operation mit D, aus, so wird der l-ten Zeile von A
die mit « multiplizierte k-te Zeile hinzugefiigt und sonst nichts verindert. Damit
1aBt sich die Matrix (27) durch linksseitige Multiplikation von 4 mit einem Produkt D
von Matrizen (28) gewinnen:

DA=B. (29)
D ist eine untere Dreiecksmatrix und regulir, de die x-Werte in den Matrixfaktoren
vom Typ D, beim verketteten GauBschen Algorithmus nicht, verschwinden. Offenbar
ist aber die zu einer reguliren unteren Dreiecksmatrix gebildete Inverse wieder eine
untere Dreiecksmatrix, so da8 sich aus (29) mit

A=D"'B (30)
eine Losung des oben formulierten Faktorisierungsproblems ergibt. Dariiber hinaus
1aBt sich zeigen, daB in (30)

D'=C
gilt, wenn
‘1 0
Cc=[n ©m . (31)
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die mit den nach dem Croutschen Algorithmus zu besti den El ten (22b)
gebildete untere Dreiecksmatrix ist. In der Tat ergibt sich, wenn CB = (u;) gesetzt
wird, nach (23a) fiir j > ¢

. i i-1
uy =3 euby; = 3 euby = X cuby; + cuby = ay;
=1 =1 =1
und nach (23b) firr ¢ = j

n i j-1
wy =X cubyy = X cuby = ¢ij + X cubyy = ayy,
I=1 =1 I=1
also
CB=A4.

Demnach gilt

Satz 6. A sel eine Matriz vom Typ n X n, und es sei 4; + 0, j = 1(1)n. Dann lift
sich A als Produkt evner unteren und evner oberen Dretecksmatriz darstellen.

Eine spezielle Faktorisierung
A=CB

gewinnt man mit den Matrizen (27) und (31) nach dem Croutschen Algorithmus.
Der folgende Satz klirt die eindeutige Bestimmtheit der Produktdarstellung.

Satz 7. Es ser A eine reguliire Matriz vom Typ n X n, die sich als Produkt A = CB
einer unteren und einer oberen Dretecksmatriz C baw. B darstellen lift. Dann st diese
Faktorisierung eindeutiyg durch die Diagonalelemente von B oder C bestimmt.

Beweis. Mit A sind auch B, C regulir, und das bedeutet ¢;; & 0, b;; <= 0 fiir
% = 1(1)n. Wir fiihren den Beweis durch Induktion nach n und nehmen etwa die
Diagonalelemente von B als gegeben an. Fir » = 1 folgt die Behauptung aus
@y = ¢yyby;. Um von n — 1 auf » zu schlieBen, stellt man die Matrizen 4, B, C in
der Form

Au-l U Cu-l o Bn—l Y
4= C= , B=
(V a,.,,)’ (X Can o bpa
dar; U, Y sind Matrizen vom Typ (n — 1) X 1, V, X solche vom Typ 1X (n — 1)
und B,_;, C,_, obere bzw. untere Dreiecksmatrizen. Dann folgt aus
C,\B,., C,,Y )
CB = = A,
(XB’I-l XY + c!l'lbﬁ!l
daB
A, = Co By, (32a)

C.Y=U, (32b)
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XB,, =V, (32¢)
XY + Capban = Gpn (32d)

ist. Auf Grund der Induktionsannahme sind C,., und B,_, eindeutig durch (32a)

bestimmt. Die Komponenten von ¥ und X ergeben sich dann als wohlbestimmte

Losungen der linearen Gleichungssysteme (32b) bzw. (32¢) in Dreiecksgestalt,

deren Kooffmenwnmamzen wegen by; & 0 und c¢;; & O regulir sind. SchlieBlich
man c,, eindeutig aus (32d).

Auf Grund des Satzes 7 ist die mit dem Croutschen Algorithmus erzeugte Faktori-
sierung von A diejenige, bei der in der Hauptdiagonalen von B Einsen stehen.
Sperziell gilt

Satz 8. Fir eine symmetrische Matriz A, deren Abschnittsdeterminant leich
Null sind, liefert der Croutsche Algorithmus eine Faktorisierung

A=CB mit b,,_c iz (33)
(3

Beweis. Wegen AT = BYCT = A = CB und

R S
€3 Cz .- Cpy cn 0 n C11
CT = Ca2  +-e Com| _ Co2 1 o2
0 . 0 o] o
1]
hat man
1 |
‘1 0 ‘n cn
A =BT Ce2 . % 1 On2 s
0 .. Ca22
GR.J
1

wobei > eine Darstellung von A als Produkt einer unteren und einer oberen Drei-
ecksmatrix markiert. Da die Elemente in der Hauptdiagonalen des zweiten Faktors
Einsen sind, muB dieser nach Satz 7 mit der durch den Croutschen Algorithmus be-
Matrix B iibereinsti d. h., es gilt (33).
Aus (33) konnen wir noch die Folgerung ziehen, daB sich eine symmetrische
Matrix A unter der Voraussetzung des Satzes 7 in der Form

A=STS (34)
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mit einer ob Dreiecksmatrix S darstellen 1a8t. (34) ergibt sich aus der Matrix-
gleichung

R -
% 0 Cn n
Cn  Ca . * 1 Cn3
.. Coz
Car Cnz ++o Cap 0 .
1

Ale 7
7
&

0
Ca1 &_ Va‘ Onn
Vou  Vou _ (38)
L oo o
w0 Von o o
—_— Cn
0 ! 0

Vom Youn
You Vo 2. Zm
Ca1

Ca1 Cng

Die Elemente Jc;; brauchen indessen nicht reell zu sein. Im Falle einer positiv defi-
niten Matrix 4 gilt jedoch

(=}

Satz 9. Es sei A eine positiv definite Matriz vom Typ n X n. Dann existiert eine
reelle obere Dretecksmatrixz S derart, daf
A=S'S
gilt.
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Beweis. Wir wihlen fiir S = (s;;) die gemiB (35) mit Hilfe des Croutschen Algo-
rithmus konstruierte obere Dreiecksmatrix. Dann gilt nach (21) cu = afs™?, und
auf Grund von (26) ist ¢z > O wegen 4; > 0, 7 = 1(1)n. Die in (36) auftretenden
Woaurzeln sind also sémtlich reell.

Satz 9 ist Grundlage fiir die Methode von CHOLESKY zur Losung linearer Glei-
chungssysteme mit positiv definiter Koeffizientenmatrix 4.

Es sei 8 = () eine Matrix, die im Sinne von Satz 9 eine Faktorisierung von 4
bestimmt. Dafiir gilt

n
a; =23 84
=1

wobei 7 < j wegen der Symmetrie von A angenommen wird. 8§ ist eine obere Drei-
ecksmatrix und daher 8;; = O fiir I > %, so daB

]
ay =1 2 sy fiir 1<y (36)
=1
gilt. Mit Hilfe von (36) lassen sich die von Null verschiedenen s;; zeilenweise mit
7 = 1 beginnend berechnen. Man findet zunichst a,; = &}, also &, = ]/(;; hier wie
im folgenden wihlen wir fiir die Wurzel das positive Zeichen. Weiterhin ist

a; =88y, d.h. ;= Y fiir §=2(1)n.

Sind die Elemente der (¢ — 1)-ten Zeile von S schon bestimmt, so folgt aus (36)

i
ay =23 l’fu
=1
also
23N
8 = |/a“ —'Z; & (37)
und
‘ .
@y =l2: &,  j>1,
d. h.

i-1
a5 —‘2 81581
-1

8 = (33)

84

Wegen der Symmetrie von A4 kann in (38) a;; durch a;; ersetzt werden.
Hat man auf diese Weise fiir 4 eine Darstellung der Form 4 = STS ermittelt,
80 kann die Losung des inhomogenen Gleichungssystems

Az =>b, d.h. STSz=0, (39)



6.1. N ische Losung li Gleich st 116

in folgenden Etappen erfolgen: Zunichst wird ein Vektor y als Losung von

STy=>= (40)
und danach @ als Losung von
Sex=y (41)

bestimmt. Da (40) und (41) Systeme in Dreiecksgestalt sind, bereitet deren Losung
keine Schwierigkeiten.

Die Faktorisierung von A gemiB Satz 9 und die Lisung von (39) in den Etappen
(40) und (41) macht das Verfahren von CHOLESKY aus. Wir fassen dieses in einer
ALGOL-Prozedur CHOLESKY(A,B,X,n) zusammen, wobei A ein Feld ist, das
mit der positiv definiten Koeffizientenmatrix A vom Typ n Xn in (39) korre-
spondiert und B, X eindi ionale Felder bedeuten, die sich auf die rechte Seite
und den Ldsungsvektor beziehen. 8 wird auf 4 oberhalb der Hauptdiagonalen ge-
bildet.

procedure CHOLESK Y(4,B,X,n); integer n; array 4,B,X;
begin
integer 7,j,l; real &;
A[1,1] == sqrt(A[1,1]);
for j := 2 step 1 until » do A[1,j] := A[1,j)/A[1,1];
for 7 := 2 step 1 until = do begin 4 := 0;
forl:=1step 1 untils — 1doh:=h + A[ld] x A[1,7];
A[73) := sqre(A[25] — h);
for j := 1 + 1 step 1 until » do begin % := 0;
for I:=1step 1 until ¢ — 1 do h:= h + A[l,] x A[1,3];
A[2,j] := (A[%,j1 — k)/A[Z7] end  end;
for < := 1 step 1 until » do begin % :=0;
for j:= 1 step 1 until © — 1 do % := h + A[j] x X[j];

X[7] := (B[¢] — h)/A[2s]; B[?] := X[] end;

for v:=nstep —1 until 1 do  begin % := 0;

for j :=nstep —1 until ¢ + 1 do & := h + A[s,7] x X[j];
X[7] := (B[] —h)/A[%7]; end

end

In 5.4.5. haben wir gesehen, daB die Interpolation mit kubischen Splines auf ein
Li Gleichungssystem mit einer tridiagonalen Koeffizientenmatrix fiihrt, die
wir allgemein in der Form

a b 0
A= ciiviiiiiiiiiiiiinens . (42)

Cn Qn
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notieren. Speziell gilt fiir das mit den Knoten 5.4.(23) gebildete System, 5.4.(51)
(n — 2 Gleichungen)
a, = 2(x3 — m), =23 —z

¢ = (@i — ), a; = 2(ivz — T), b = Zus — Zin 43)

Cn-g = (Ta-1 — Tn-2), Ay = 2Tn — Tn-g)
1= 2(1)n — 3.

Aus (43) folgt unter Beachtung von z; < z; < -++ < %, nach Umbenennung von
n—2inn

|@s] > [b)| >0,
lail = b + lei] fir 7= 2(1)n — 1, (44)
|aal > |ca| > 0.

Diese Eigenschaften gestatten eine bemerkenswerte Folgerung:

Satz 10. Unter der Vorausselzung (44) ist die Matriz (42) reguldr und lipt sich
evndeutig in der Form

a, b
g ay by 0
0 Co1 @po1 Dpy
Ca a,
% 1 B
C & 0 1 5 0
= 6 1 B (45)
. 0 L Bea
0 Cx A 1
Jaktorisieren. Dabes gelten die Abschétzungen
1Bl <1 (46a)
und
ladl — leal <ol < lail + leif- (46Db)

Beweis. Setzen wir zuniichst voraus, daB eine Produktdarstellung der Form (46)
mit von Null verschiedenen «,;, * = 1(1)n, existiert. Dann gilt

oy =y, B = by/oy, (47a)
oy =a; — 6ifi-y, T =2(1)n, (47b)
Bi = b/, t1=2(1)n — 1. (47¢)
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Wir zeigen nun auf Grund von (44), da8 sich die «;, 8, rekursiv nach dem Schema (47)
bestimmen lassen und fiir diese GroBen die Ungleichungen (46) gelten. Wegen
lay| > |by] > O ist zundchst klar, daB dies fiir ¢ = 1 zutrifft. Nehmen wir nun im
Sinne eines induktiven Beweises an, da8 die Aussage fir 1 =1,2,...,j — 1 wahr
sei. Dann ist nach (47b) und (44)

lagl + legl > |a&;l > lag] — le;l = b, also «; > 0.
B; kann folglich nach (47c) bestimmt werden, und es gilt
Bl
losl
Offensichtlich realisieren die geméB (47) konstruierten Bandmatrizen die Faktori-

sierung (45). Bezeichnen wir diese mit L bzw. R, so kann ein mit (42) gebildetes
lineares Gleichungssystem

184 = <1

Ar=r (48)
analog zu (39) bis (41) in den Etappen

Iy=r, Rx=y (49)
gelost werden.

Wir schreiben dafiir unter der Voraussetzung von (44) eine ALGOL-Prozedur
TRIDAG(A,B,C,R,X,n), in der A,B,C,R, X eindimensionale Felder sind, die
mit den entsprechend bezeichneten Diagonalen der Koeffizientenmatrix (42) bzw.
mit der rechten Seite und dem Losungsvektor von (48) korrespondieren.

procedure TRIDAG(A,B,C,R,X n); integer n; array 4,B,C,R,X;

begin
integer ;
B[1]:= B[1}/4[1};
for ¢ := 2 step 1 untiln — 1 do begin

A[7] := A[+] — C[¢] X B[i — 1]; B[7}:= B[7]/A[] end;

A[n] := A[n] — C[n] X B[n — 1};

X[1]:= R[1]/A[1); R[1]:= X[1];

for 7 := 2 step 1 until » do

X[] := (B[?] — O] x X[¢ — 1])/A[:];

for < :=n — 1 step —1 until 1 do X[¢] := X[2] — B[s] X X[+ + 1];

end

In einem Programm, das TRIDAG benutzt, miissen die Feldvereinbarungen array
A[1:n), array B[1:n— 1], array C[2:n], array R,X[1:n] erfolgen.

Mit Hilfe von TRIDAG l6sen wir vergleichsweise zu dem in MfL Bd. 9, 4.2.4.,
betrachteten Beispiel folgende Interpolationsaufgabe: Es ist diejenige lkubische
Splinefunktion zu bestimmen, die in den Knoten

o =—8+2, j=0(18,
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die Werte 1 1 annimmt. Die Koeffizienten (43) sind dann

+

a; =8, by=1c¢;=2.

Der Losungsvektor s des linearen Gleichungssystems 5.4.(51) ist zusammen mit
dessen rechter Seite in Tabelle 6.3 erfaBt. Dabei bedeutet s, die zweite Ableitung des
interpolierenden Splines an der Stelle z; = —8 + 2k, k = 1(1)7. Abb. 6.3a zeigt den
Graphen des mit diesen Daten nach 5.4.(42), (46) berechneten kubischen Splines und

In Abb. 6.3b ist zum Vergleich der

der zu interpolierenden Funktion y = .
14 22

mit den Knoten z; = —8 + j, j = 0(1)16, konstruierte Interpolationsspline dar-
gestellt.

7
o1+
1
1 X
a)
y
o1
1
1 X
b)

Abb. 6.3
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k R 8{(%e: Tpn) — (21 2}
1 0,029010 0,060462
2 —0,085810 0,328140
3 0,478299 1,976471
4 —0,839149 —4,800000
5 0,478209 1,976471
6 —0,085810 0,328140
7 0,029010 0,060462
Tabelle 6.3

6.1.3. Iterative Verfahren

Weiterhin wird die Gleichung (2) mit einer quadratisch oeffizi trix vom
Typ n X n betrachtet. Iterative Verfahren bestimmen die Lésung als Grenzelement
einer Folge von Vektoren; ihre Theorie beinhaltet wesentlich Kriterien fiir deren
Konvergenz und Untersuchungen zur Konverg hwindigkeit bzw. Abschitzun-
gen des Fehlers, der bel Abbruch einer solchen Folge entsteht.

Die im R* durchzufiihrenden Konvergenzbetrachtungen werden iibersichtlich
wenn man Normen verwendet. Da in linearen Gleichungssystemen Vektoren in Ver-
bindung mit Matrizen auftreten, ist folgende Ergiinzung der in 5.1.1. entwickelten
Vorstellungen durch den Begriff der Matriznorm zweckmiBig. Jede reelle Matrix A
vom Typ n Xn kann als ein Element des R* aufgefaBt werden, und es ist dann ||4||
mit einer im R*" definierten Vektornorm ||-|| bildbar. Auf Grund von 6.1.(6) gilt fiir
solche Matrizen A, B

llxdll = || - |4,  x€R,

4 + Bl = |4l + Bl
im allgemeinen jedoch nicht

llAB| < ||4] - B (50)
Da die letzte Ungleichung eine tliche Grundlage fiir Abschiitzungen ist, wird
folgende Definition eingefiihrt:

Definition 2. Eine (Vektor-)Norm des R* heiBt Matriznorm, wenn fiir alle
Matrizen des Typs n X7 bei einer bestimmten Zuordnung ihrer Elemente zu den
Vektorkoordinaten die Ungleichung (50) gilt.

Wir zeigen, daB es Matrixnormen gibt, und betrachten zu diesem Zweck eine be-
liebige Norm ||-|| des R und fiir eine Matrix 4 vom Typ n X n die Menge der Quo-
tienten

14|l
ll=l

xcRe, ®+0. (61)



120 6. Losung von Gleichungen

Diese ist beschrinkt: Zunéchst gilt mit y := — ||z|| (lyll =

14z x

= ||A —|| = || A

] Huzn " ” e “ 1y

und (52)
4zl
= \Ayl|.
o ol pom Iy
Ivll=1

||l Az|| stellt eine im R® stetige Funktion dar. Das lift sich aus 5.1., Satz 1, folgern,
wenn man Ax als Linearkombination z,@, + z.a, + --- + z,a, der Spaltenvektoren
von A auffaBt und folgende Zuordnung vornimmt:

Bezeichnung in 5.1., Satz 1 Interpretation
E R*

/ 0

P1s Pes »o» P a,,a,...,a,
81,y .00y Gy Ty, Ty, oeny Ty

Da die Menge M = {y:y € R* A |ly|| = 1} abgeschlossen und beschrinkt ist, nimmt
||yl auf M pach M{L Bd. 4, 2.4.2., Satz 1, das Minimum an, d. h., die oberen Gren-
zen in (52) sind endlich.
Wir definieren nun fiir die Matrix A (und damit fiir ein beliebiges Element des R*")
ll4z||

= = . 53
4] : sux: el :gg 4yl (63)

lll=1

Die durch (53) bestlmmw Abbildung |-| des R™ in R, hat die Eigenschaften einer
Norm. Von den Normeigenschaften 5.1.(6) sind nur die Dreiecksungleichung und
die Implikation J4] = 0 = A = 0 nicht unmittelbar ersichtlich. Gilt |4] = 0, so
folgt fiir allex € R*, & + 0,

Ax =0
und speziell fiir die Vektoren &, = (3;)), 7 = 1(1)», j = 1(1) =,

a; =0, also A4=0.
Fiir zwei quadratische Matrizen 4, B erhilt man |(4 + B) y|| < [|4y|| + ||By|| und,
wenn |ly|| = 1ist, (4 + B) y|| < |4] + |B]. Auf Grund dessen ist

4 + Bl =|:llrplll(4 + B)yl < 14} + 1B,

was zu beweisen war. Mit der Norm |-| gewinnt man aus (83) fiir eine beliebige
Matrix A vom Typ n Xn und € R", & & 0,
llAz| _

41,
el = =M
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also
Azl < JA] - |lll; (64)

die Abschitzung (64) gilt offenbar auch fiir den Nullvektor. Damit zeigt man leicht,
daB |-] eine Matrixnorm ist. Fiir zwei Matrizen A, B der betrachteten Art und
einen Vektor & € R* gilt ndmlich

|ABe| = JAB)| < 141 - |Bxi < 141 - 1B - e %)
und folglich
1481 — sup 122 < 11 11 ®)
PS

Definition 3. |-| heiBt die durck die Vektornorm ||-|| tnduzierte Matriznorm.
Irgendeine Matrixnorm, fiir die beziiglich einer Vektornorm || || des R” (54) gilt, wird
als mit dieser vertriglich bezeichnet.

Wir betrachten Beispiele. Fiir die in 5.1.(11) eingefiihrten Normen |||, » = 1,
einschlieBlich des durch 5.1.(14) definierten Falles p = oo sei die induzierte Matrix-
norm mit |-|, bezeichnet. Dann gilt fiir quadratische Matrizen A des Typs n X n

"
Ml = max  Jlay, (67a)
je(1.2.....8) w1
L]
], = max Jayl. (87b)
i€(1.2,...0) j=1

Um |A|, und ]A4j,, zu finden, muB man also bei den Komponenten von A4 zu den
absoluten Betrigen iibergehen und das Maximum der Spalten- bzw. Zeilensummen
bestimmen. Beim Beweis von (57) gehen wir von (53) aus. Im Falle p = 1 ist gemi8
5.1.(11)

| Azfl, = f"é‘ @4

S5 Syl Il
i=1 j=1
—2 il Iz;ISZ( max ZIauI) e

JE(1.2,....0} im
=( mex 2 Im,l) 5l = lolh max 5o (58)
j€(1.2,...,8} dml 1,200} §=1
und speziell fiir einen normierten Vektor y
L]
llAyll, S mx 2,: el - (69)

Damit folgt

"
AL < mex ) layl
je(r.2,...n) f=1
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Andererseits 1a8t sich leicht ein normierter Vektor y angeben, so da8 mit * =y
in (68) und (69) iiberall das Gleichheitszeichen auftritt: Wird das Maximum von

Z' |ay| fiir j = k angenommen, so wihle man nur y; = O fiir j 4 & und % = 1. Es
gllt also (57a). Im Falle (B7b) ist

I42] = max Z‘a.m

i€{1,3,....n}

S max Zla.,] [EZ)
oo} fom1

" n
< max J'( max lxbl) layl = "m”co max 2 @il
i€(L20m) j=1 \B=(L2... B2} =

und speziell fiir einen normierten Vektor y
»
14yl él max ' [ayl.

€{1,2.....8} j=1

"
Wird das Maximum von J; |a| fiir # = ¥ angenommen und setzt man
j=1

= M fir a; +0,
(7]

yy=1 fir a;=0,

80 wird fiir den hierdurch bestimmten normierten Vektor # = y in diesen Abschit-
zungen wieder iiberall das Gleichheitszeichen realisiert, und man gewinnt (67b)

Wir betrachten noch |- |3, begniigen uns aber mit einer Abschétzung der ind -

ten Matrixnorm. Die genaue Bestimmung von |-]; wiirde ein Emgehen auf die
Eigenwerttheorie bei Matrizen erfordern. Zunichst ist

s » n 2
vzt = £ (£ oy
i=1\j=1
und auf Grund der Schwarzschen Ungleichung (MfL Bd. 4, 1.5.2.)

(Z ""”) (2 )( )=||2Il§i§a§,.

Damit folgt f|Az|} < Ila'll§ Z' Z' ajj, also nach (53)

14k = (2 P aii) . (60)

i1 f=1

Fiir ein umfassendes Verstiindnis der Iterationsmethoden sind — wie schon im
Z hang mit der letzten Betrachtung bemerkt — Kenntnisse aus der Eigen-
werttheorie erforderlich. Da hierauf nicht zuriickgegriffen werden kann, erértern wir
nur das einfachste dieser Verfahren, die Methode der sukzessiven Approximation(en).
Dabei gehen wir von einer geeigneten Umformung von (2) in eine dquivalente Glei-
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chung der Form
=Bz +c (81)

aus, in der B eine Matrix vom Typ n X n ist und @, ¢ Spaltenvektoren bedeuten.

In den Anwendungen tritt hiufig der Fall auf, daf die Diagonalkoeffizienten der
Matrix 4 in (2) von Null verschieden sind und ihre Betriige deutlich die der anderen
Elemente iibertreffen. Dann kann mit Riicksicht auf das Weitere folgende Um-
formung von (1) zweckmaiig sein:

o= B U LU W
an an 73 an
an Q23 Q2n b,
Ty =———x — =Xy = — =%y +—
an an " ey’ (62)
z'l:_a,, z, _ﬁx a"’ga_...._ +h..
Can Qan Qnn Apn

In Matrixschreibweise stellt (62) offenbar eine Gleichung der Form (61) dar.
Die durch

fix+>Bx+c (63)
gegebene Abbildung ist ausnahmslos im R* definiert und bildet diesen Raum in sich
ab. (61) erscheint damit als die Gleichung zweiter Art
die wir weiterhin mit Bezug auf den Banachschen Fixpunktsatz diskutieren. Dieser
wurde in MfL Bd. 4, 2.4.5., fiir einen Spezialfall bewiesen mit dem Kommentar,
daB sich die Giiltigkeit des Satzes, ohne am Beweis etwas zu dndern, auf Kontrak-
tionsoperatoren in beliebigen vollstindigen metrischen Réumen ausdehnen 1i8t. Der
Begriff des metrischen Raumes und der Konvergenz von Punktfolgen in einem sol-

chen ist in MfL Bd. 4, 1.5. und 2.1., erklirt. Der Ubersichtlichkeit halber stellen wir
die wichtigsten Fakten noch einmal zusammen:

1. Mit einer beliebigen Norm |- || des R* ist durch

o@y) :=le—yl, =xyecR, (85)
eine Abstandsfunktion g definiert, d. h., es gilt fiir beliebige @, y, 2 € R*
ol y) =20,

o(®, y) = 0 genau dann, wenn r =y,
ol@, y) = oy, ),
o®, 2) = o(®, y) + o, 2).
Der Beweis folgt unmittelbar aus den Normeigenschaften 5.1.(6).

(66)
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2. Eine Folge (@), x; € R", konvergiert beziiglich einer Abstandsfunktion ¢ gegen
& € R" genau dann, wenn

lim o(x, &) = 0
k—oo

ist. DefinitionsgeméB heiBt (x;) Fundamentalfolge (Cauchyfolge), wenn o(x, &)
gegen Null strebt mit &, I — oo oder, genauer gesagt,
AV AAMKRIZESon,®) <é (67)
>0 KeR keN [eN
(vgl. MfL Bd. 4, 2.1.7.).

Der Raum R" ist beziiglich jeder der Metriken (66) vollstédndig, d. h., es gilt das
Cauchysche Konvergenzkriterium, nach dem eine Folge (a;) denn und nur dann
konvergiert, wenn sie Fundamentalfolge ist. Das wurde in MfL Bd. 4, 2.1.7., hin-
sichtlich der Norm |- ||, festgestellt. Um diesen Sachverhalt in der ausgesprochenen
Allgemeinheit zu begriinden, fiihren wir in der Menge aller Normen eines linearen
normierten Raumes E folgende Aquivalenzrelation ein.

Definition 4. Zwei Normen ||-|| und |- ||, des Raumes E heiBen dquivalent genau
dann, wenn

V Akl = K |y A llelly = L i) (68)
K,LeR, xcE
Offensichtlich ist die durch (68) erklirte Relation zwischen Normen reflexiv, sym-
metrisch und transitiv.
Fiir E = R gilt
Satz 11. Zwes beliebige Normen des R* sind dquivalent.

Beweis. Es sei e;, j = 1(1)n, der Spal ktor mit den Koordinaten d;;, ¢ = 1(1)n. Dann
gilt fir jeden Vektor & = (2, y, ..., Z,)T die Darstellung

z= 3 e (69)
j=1

Wegen der Transitivitit und Symmetrie der Normiiquivalenz geniigt es zu zeigen, daB jede
Norm ||| des R® der in 5.1.(11) definierten Norm ||-||, &quivalent ist. Auf Grand von (69) ist

Ld
llzll = 21 1z4] llegll
=

und mit K := max |lej]|
fe{1,2,...,n}
il = K ||aefl;.

Um die zweite Abschitzung in (68) zu beweisen, betrachten wir die Funktion

F@) = Pay, 2y .. T) = |

n
2 zje;
j=1

Diese ist fiir alle & = (z,, %y, ..., z,)7 stetig, was genauso zu begriinden ist wie die Stetigkeit
der GraBe || Ax|| bei der Erérterung von (52). F ist fiir & = 0 positiv und nimmt daher nach dem
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Satz von BorLzaxNo-WEIERSTRASS auf der abgeschl beschrénkten Menge
M={y:yecRralyl=1)

ein positives Minimum an, das in der Form % ausgedriiokt sei. Fiir einen beliebigen Vektor

@ + 0 des R® gilt dann mit y;:= —i, j = 1(1)n,

IIelly
=YYyt € Y
und
Il
F
O
also
lielly < L |jaei].

Diese Abschiitzung gilt offenbar auch fiir den Nullvektor.

Wir heben zwei K q des Satzes 11 hervor: a) Eine Folge (x;) des R",
die in einer Norm |-|| gegen ein Element des Raumes konvergiert, hat dieses auch
beziiglich einer anderen Norm zum Grenzelement. b) Ist (@;) Cauchyfolge in einer
Norm, so auch hinsichtlich jeder and

3. Der in MfL Bd. 4, 2.4.5., bewiesene Banachsche Fixpunktsatz wire fiir Funk-
tionen (Operatoren) f, die auf dem R* definiert sind, beziiglich einer bestimmten
Norm ||-|| dieses R 80 zu formulieren:

Satz 12. Ist f eine kontrahierende Abbildung des R® in sich, d. h. gilt mit einem ge-
wisgen ¢, 0 < q < 1, fiir beliebige 2, @, € R®
@) — f@oll < g lley — @, (70)

80 besitzt | genau einen Fizpunkt § € R*, und die mit einem beliebigen Startpunkt
@, € R" gebildete Iterationsfolge

T i=f) (GEN) (71)
konvergiert gegen diesen:
= lim ;.
oo

Satz 12 ergibt sich aus dem in MfL Bd. 4, 2.4.5., erdrterten Spezialfall des
Banachschen Fixpunktsatzes, wenn man dort R durch R* und in den Abschétzungen
Betriige durch Normen ersetzt. Mit dieser Modifikation kann der Beweis wortwort-
lich iibernommen werden. Das gilt in entsprechender Weise fiir die in MfL Bd. 9,
4.1.1., behandelte Variante des Prinzips der kontrahierenden Abbildung, speziell
fiir die Herleitung der Fehlerschranken (8) und (9):

Satz 13 Unter der Vwausaetzung des Satzes 12 gelm» fiir jede Iterationsfolge (71)
bet der niherung g des Fi: ktes § die Fehlerabschétzungen a priors
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bzw. a posteriors

i
18—l = Tl — il (12)
und
1§ — @il < ;%; le; — el (13)

Der Algorithmus zur niherungsweisen Berechnung des Fixpunktes von f bzw. der
Losung der mit f gebildeten Gleich iter Art (64) gemaB (71) heiBt das Ver-
fahren der sukzessiven Appronmatlon(en), ein PAP mit einer nach (73) gebildeten
Abbruchbedingung ist in MfL Bd. 9, Abb. 4.1, dargestellt. Man hat nur wieder den
Betrag durch die Norm des Kontraktionsoperators und die Wertzuweisungen durch
Punk isungen zu er , die iiber Feldbelegungen zu realisi sind.

Wir unt hen, unter welchen Voraussetzungen die Operatoren (63) kontra-
hierend sind:

Satz 14. Die mit dem linearen Gleichungssystem (61) gegeb Operatoren (63)
sind beziiglich einer Vektornorm ||-|| kontrahierend, wenn fiir eine damit vertrigliche
Matriznorm |B] < 1 gilt; q := |B] ist ein Kontraktionsfaktor.

Beweis. Nach Definition 3 und (64) ist
If (@) — f@o)ll = 1By — &,)l| < 1Bl - ljy — @sll = ¢ ||y — @l (74)

Speziell kann man in Satz 14 die durch ||-|| induzierte Matrixnorm betrachten. In
Verbindung mit (57) und (60) folgt nun

Satz 15. Die Operatoren (63) sind kontrahierend, wenn fiir B = (b;;)
max z”' byl <1 (Spaltensummenkriterium), (75a)

j€{L.2...,8) =1

max 2":‘ byl <1 (Zeslensummenkriterium), (75b)
i€{1,2,...,0}) jm=1
( 2 2 b ) <1 (Quadratsummenkriterium) (78¢)
1 1

gilt. Die links vom <-Zeichen stehenden Grofen stellen Kontraktionsfaktoren fiir die
Vektornormen

a) I, B[l bzw. o) [l-lle
dar.
Da die Menge der Fixpunkte von f die L& ge der ent henden Gleich
zweiter Art ist, folgt nun auf Grund von Satz 12:

Satz 16. Die Gleichung (61) hatgenau eine Losung §, wenn fiir eine mit einer Vektor-
norm ||- || vertrigliche Mairiznorm |-|

1Bl<1
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gilt. Fiir die mit (63) gebrldete Iterationsfolge (71) ist
I§ — @l = IBI - 1§ — ll.
Die Folge (;) konvergiert in jeder Vekiornorm gegen §.

Beweis. Nach Satz 14 ist der Operator (63) beziiglich der Norm ||-|| kontrahierend
mit dem Kontraktionsfaktor ¢ := |B] und besitzt daher nach Satz 12 genau einen
Fixpunkt §, welcher zugleich einzige Losung der Gleichung (61) ist. Subtrahiert man
&;,, = Bx; + ¢ von § = B§ + ¢, so folgt

18 — @l = |BE — =)l < 1B] - § — .

(;) konvergiert in der Norm ||+ || und dann nach Satz 11 in jeder Norm des R" gegen §.
Die Voraussetzung des Satzes 16 ist speziell erfiillt, wenn eine der Abschitzungen
(75) gilt.

Wir wollen noch das Verfahren der sukzessiven Approximation zur Lésung linearer
Gleichungssysteme nach dem PAP der Abb. 4.1 in MfL Bd. 9, 4.1.1., in einer ALGOL-
Prozedur SAPO darstellen. Als formale Parameter treten auf:

B zweidimensionales Feld, das der Koeffizientenmatrix (61) entspricht;
¢, 20,y eindimensionale Felder zur Aufpahme der Komponenten des Vektors ¢
in (61), eines Startvektors bzw. der sukzessive zu berechnenden Itera-

tionen;
eps reelle Variable, die der Fehlerschranke, und
n ganzzahlige Variable, welche der Anzahl der Gleichungen oder Unbekann--

ten in (61) zuzuordnen ist.

Der Algorithmus wird mit der Fehlerschranke (73) als Abbruchbedingung program-
miert, und zwar beziiglich der durch ||-||,, definierten Metrik. Die Abstandsbestim-
mung erfolgt mit Hilfe einer lokal vereinbarten Prozedur DISTANZ, dabei wird
die Abweichung aufeinanderfolgender Niherungen der Variablen m zugewiesen. Im
iibrigen ist SAPO analog der Prozedur SAP in MiL Bd. 9, 4.1.1., aufgebaut, wobei
jedoch der Kontraktionsfaktor nicht iiber einen formalen Paramebar vermittelt,
sondern gemdB (75b) intern mit Hilfe der lokalen GréBen m, p berechnet wird. Das
lokal vereinbarte eindimensionale Feld z entspricht der Variablen z in S4P und
dient zum Zwischenspeichern von Vektoren der Iterationsfolge.

procedure SAPO(B,x0,c,y,eps,n);
value eps; integer n; real eps; array B,x0,c,y;
begin
integer 7,j; real m,p; array z[1:n];
procedure DISTANZ;
begin integer z; real & ;
m := abs(y[1] — 2[1});
for ¢ := 2 step 1 until » do begin
h = abs(y[i] — 2[7]);
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it m < hthenm:=h end
end;
p:=0;

for 1 step 1 until » do  begin m := 0;
for j := 1 step 1 until » do m := m + abs(B[7,j]);
itm>pthenp:=m end;

p:=p/(1l —p);

for 2 := 1 step 1 until » do z[7] := 20[7];

L for 7 := 1step 1 until » do  begin
Y] == [?];
for j := 1 step 1 until » do y[¢] := y[2] + B[7,j] x 2[7]
end;
DISTANZ;

it p X m = eps then begin
for 7 := 1 step 1 until » do z[7] := y[];
goto L end

end

Beispiel. Wir betrachten das lineare Gleichungssystem 5.4.(51), das bei Inter-
polation mit kubischen Splines zu l3sen ist. Dieses umfaBt bei » Knoten n — 2 Glei-
chungen. Nimmt man die Umformung (62) vor, so ergibt sich eine Gleichung zweiter
Art mit der Koeffizientenmatrix

0 L Tk
2 x5 — 7
R ek B S ¥k
22—z 2z — 2 0
0 _ l Zn-2 — Tn-3 0 _lzn-l—zn-!
2 Tpy— Tng 2 Ty — Tpy
_l%—l"‘"»-a 0
2 Xy — Tn-g

(78)

In (76) bedeuten die z;, ¢ = 1(1)n, gemiB fritherer Bezeichnung die Knoten 5.4.(23)
und diirfen nicht mit den Unbekannten des linearen Gleichungssy verwechselt
werden. Offenbar sind das Spalten- und Zeilensummenkriterium erfiillt. Der durch

die linken Seiten von (75a), (75b) bestimmte Kontraktionsfaktor ist ¢ = %
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Bei iquidistanten Knoten haben die von Null verschiedenen Elemente in (76) den
Wert -—-i-. Fiir die am SchluB von 6.1.2. formulierte Interpolationsaufgabe findet

men mit SAPO die in Tabelle 6.4 erfaBte Naherungslésung des entsprechenden
linearen Systems, wenn das Verfahren mit dem Nullvektor gestartet und eps = 10~
gesetzt wird. Wie in Tabelle 6.3 sind die Vektorkoordinaten mit &, k = 1(1)7, indi-
ziert; j ziahlt die Iterationen. Der Abbruch erfolgt bei j = 15.

k j—> 1 2 13 14 16
{

1 0,007568 —0,002697 0,028002  0,028007  0,020008
2 0,041017 —0,022637 —0,085796 —0,085803 —0,085807
3 0,247059 0,386804 0,478279 0,478280 0,478294
4 —0,600000 —0,723529 —0,839130 —0,839140 —0,839145
5 0,247059 0,386804 0,478279 0,478290 0,478284
6 0,041017 —0,022637 —0,085796 —0,085803 —0,085807
K 0,007558 —0,002697 0,020002  0,020007  0,029008
Tabelle 6.4

Bei der Bildung der sukzessiven Approximationen gemi (71) berechnet man die
Komponenten von x;,, durch Einsetzen der Komponenten von &; in den Matrizen-
ausdruck (63). Dieses Vorgehen wird als Gesamtschrittverfahren bezeichnet. Statt
dessen lieBe sich eine Vektorfolge konstruieren, bei der man in die Berechnung der
i-ten Komponente von ;,, die jeweils schon vorliegenden Komponenten von &y,
einbezieht. Bezeichnen wir die ¢-ten Komponenten des Vektors &; mit z{", so werden
bei diesem sogenannten Evnzelschrittverfahren die Iterationen nach der Vorschrift

i1 n
Zd =k2; by +k2 buzd + ¢ (77)
an Stelle von
L
2t = £ bl + o, (78)
=1

beim Gesamtschrittverfahren gebildet. GeméaB (77) 1aBt sich die Bildung von x;,,
aus &; in die Zwischenstufen

G-1) (G+1) G+1)
zY ES z¥
() (j+1) (j+1)
Z3 Ty =
; ; -
PO I PP RS PO (79)
() (G (j+1)
zﬂ z'l zl

zerlegen. Weiterhin wird jedoch der Ubergang von ; zu ;,, als ein Schritt des Ver-
fahrens betrachtet.
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Das Einzelschrittverfahren kann als sukzessive Approximation gemi8 (71) mit einem ge-
eignet gewithlten Operator (63) aufgefaBt werden. Stellt man (61) in der Form

=L+ U)xz+e (80)
mit
0 [ N 0
b 0 ieiiienn b by ban
= 0 by ban
L=|b; b O (81)
........................ o o b
LA I bpn1 O "
dar, so laBt sich die Iterationsvorschrift (77) in der Matrizenform
&jyy = Ly, + Uxy + ¢
drick Mit I als Einhei ix gewi man nach Zusammenfagsung der Glieder, die
&;,, enthalten,
@py = (I — Ly Uy + (I — Ly e; ®2)
die Matrix I — L ist wegen |[I — L| = 1 reguliir. (82) stellt die zur Gleichung
z=(I—-L'Uzx+ I—-L)*c (83)
gebild k iven Approximati dar. Offenbar ist (83) mit
x=Bx+c
dquivalent.

Der folgende Satz beinhaltet ein hinreichendes Kriterium fiir die Konvergenz des
Einzelschrittverfahrens ([12], § 32).

Satz 17. Ist in (61)

n
IBlo= mex X jbyl<p<1,
i€{1,2,....0} j=1

20 konvergiert das Einzelschriltverfahren fiir jeden Startvektor gegen die wohlbestimmie
Losung dieser Gleichung.
Beweis. Satz 16 besagt, daB (61) unter dieser Voraussetzung genau eine Losung §
besitzt. Fir diese gilt
»
f=Xbulitc, i=1In.
£=1
Subtrahiert man davon (77), so folgt
i-1 n
& — P = T ball — 2*Y) + 3 bals — o))
k=1 k=i
und

) i-1 ) n
16— &) é"Z [Bal - & — 2V + X [bul - 16 — 2. (84)
-1 k=i
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Mit
i—1 »
Pr:=0, B :=.2 [bal, =2(1)n, :=k2 [bwl, =11,
-] -
gewinnt man aus (84)
16 — 20+ V] < Bi 1§ — @jalloo + ¥i 1§ — Bylloo- (85)
Das Maximum der Betrige |£; — x{/*!| mége fiir ¢ = ¢, angenommen werden, d. h.,
es sei )
&, — 2] = 1§ — i)l
Dann liefert (85) fiir ¢ = 7,
I8 — @pilleo < Bi, 1§ — Zjurlleo + 1, 1§ — @jllos
also

18 — Tpalles < —F— |5 — - (86)

=1_h
Man beachte, daB 8, ¥ = 1(1)n, auf Grund der Voraussetzung kleiner als Eins ist. Mit

Yi
= 87
’ ie(txl.]::,n) 1—8 (87)
resultiert aus (86)
15 — Epusllos < £ 115 — @lloo- (88)

Die Konvergenz der mit dem Einzelschrittverfahren erzeugten Iterationsfolge be-
ruht auf der Beziehung

b=p<l. (89)
In der Tat folgt aus den Abschitzungen

Bi+w =k21|bwl Su

und
71 Bi(1 — B —
+yi— = 2 0,

ftrn— 1 .
daB

n2 mex (i+y)z, mex L

i€{1,2.....n} 1-— ﬂl

ist. Damit gllt

1§ — @jilleo = A7 115 — @olleo
und wegen (89)

lim |I§ — @l = 0.
o0
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Aus (88) a8t sich eine Fehlerabschitzung herleiten, die nur Elemente der Itera-
tionsfolge benutzt und sich somit zur Formulierung einer Abbruchbedingung eignet.
Zuniichst ist

ks — Bl = 1§ — @ — (§ — Tji)lleo Z 1 11§ — Fylle — 1§ — Tjealll -
Mit (88) folgt daraus unter Beachtung von (89)

2 — 2o = 11§ — 4llec (1 — )
und nach Multiplikation mit g die Fehlerabschéitzung a posteriori

18 = il S 2 oo — il (90)
Die folgende aus SAPO entwickelte Prozedur SAP1 realisiert das Einzelsohrittver-
fahren. Die Einfiihrung der Hilfsvariablen s ist durch den Unterschied in den Itera-
tionsvorschriften (77) und (78) bedingt. Die Abbruchbedingung wurde gemi8 (90)
gebildet, wobei 2 mit Benutzung der lokalen Variablen p, 3, m innerhalb der Prozedur
berechnet wird. Danach ist p mit der GroBe 2/(1 — p) belegt. Wie in AP0 bestimmt
die lokale Prozedur DISTANZ die Abweichungen aufeinanderfolgender Vektoren
einer Iterationsfolge und aktualisiert damit die Variable m.

procedure SAP1(B,c,x0,y,eps,n);
value eps; integer n; real eps; array B,c,20,y;
begin
integer ,j; real p,s,m; array z[1:n];
procedure DISTANZ;
begin

end;

p:=0;

for j := 1 step 1 until » do p := p + abs(B[1,j]);

for 7 := 2 step 1 until » do begin m := s:= 0;

for j:=1step 1 until ¢ — 1 do m :=m + abs(B[,j]);
for j := ¢ step 1 until » do 8 := 8 + abs(B[1,j]);
m:=8f(1 —m);

itm>p thenp:=m end;

p:=p/(l —p);

for ¢ := 1 step 1 until » do y[¢] := 2[7] := 20[<];

L: for::= 1 step 1 until » do begin s := c[];
for j := 1 step 1 until » do s := s + B[17,j] X y[j];
yli):=s end;

DISTANZ;

if p X m = eps then begin

for 7 := 1 step 1 until » do z[7] := y[]; goto L
end

end



6.1. N ische Losung li Gleich 133

Zum Vergleich mit den Ergebnissen der Tabelle 6.4 wurde das Beispiel noch einmal
mit SAP1 gerechnet. GemaB (87) hat 4 hier den Wert % und ist damit kleiner als
1Bl = % Die Werte 2 und | B, bestimmen nach (88) bzw. Satz 16 die Konvergenz-

geschwindigkeit in SAP1 und SAPO. Einige der nach dem Einzelschrittverfahren
berechneten Naherungen sind in Tabelle 6.5 erfaBt. Der Algorithmus wurde mit dem
Nullvektor gestartet; fiir eps := 105 erfolgte der Abbruch bei j = 9.

k j—> 1 2 .1 8 9

4

1 0,0075668 —0,00222¢4 ...  0,028957  0,028098  0,020008
2 0,039128 —0,017746 ... —0,085764 —0,086800 —0,085808
3 0,237277 0,416325 0,478271 0,478293 0,478297
4 —0,650319  0,807023 ... —0,839135 —0,839146 —0,830149
5 0,411880  0,464311 ...  0,478293  0,478297  (,478298
6 —0,061955 —0,080822 ... —0,085808 —0,085809 —0,085810
7 0,023046  0,027736 ...  0,020010  0,028010  0,029010

Tabelle 6.5

6.1.4.  Untersuchung des Rechenaufwandes und Fehlerbetrachtungen

Fiir die Bewertung eines Verfahrens (Algorithmus) der numerischen Mathematik
sind tlich zwei Gesichtspunkte maBgebend: die Genauigke:t der Ergebnisse und
der Rechenaufwand. Letzterer driickt sich in dem Speicherplatzbedarf und der er-
forderlichen Rechenzeit aus, die wiederum von der Anzahl der auszufiihrenden arith-
metischen Operationen abhingt. Da bei jeder dieser Operationen Rundungsfehler
auftreten konnen, welche die Genauigkeit des Resultates beeinflussen, miissen die
genannten beiden Aspekte im Zusammenhang gesehen werden.

Wir beginnen damit, die Verfahren zur Losung linearer Gleichungssysteme hin-
sichtlich der erforderlichen arithmetischen Operationen zu vergleichen. Deren An-
zahl ist bei den iterativen Verfahren das Produkt aus der Anzahl der Schritte und
der in einem solchen auszufiihrenden Operationen. Betrachten wir wie bisher n
lineare Gleichungen mit » Unbekannten, so ergeben sich zum Beispiel in einem
Iterationsschritt im allgemeinen #? Multiplikationen. Wir werden uns darauf be-
schrinken, die Multiplikationen und Divisionen (weiterhin ,,Operationen* genannt)
zu zéhlen. Damit gewinnt man ein MaB fiir die Rechenzeit, da in den meisten Ver-
fahren zur Losung linearer Gleichungssysteme diese Operationen etwa gleich oft wie
Additionen und Subtraktionen auftreten und moderne Rechner — grob geschétzt —
dafiir das Doppelte der fiir die letat zu veranschlagenden Zeit bendtigen. Die
Anzahl der Operationen wird mit «, bezeichnet.

Bei der Erorterung der direkten Verfahren wollen wir zunichst «, fiir den Fall
bestimmen, daB man zu der als regulir angenommenen Koeffizientenmatrix A die
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Inverse bildet und (2) geméB der Formel
) (91)

16st. Legen wir der Bildung der Adjunkten von A die Leibnizsche Berechnung von
Determinanten zugrunde, so ergeben sich insgesamt n*(n — 2) (n — 1)! Multipli-
kationen. Denen sind noch » Multiplikationen bei der Bestimmung von |4| nach dem
Entwicklungssatz und weitere n? bei der Bildung von A-'b hinzuzufiigen. Damit
ergibt sich

lim —2 1,
o (. — )18

wofiir man auch
oy 22 (n — 1)1 03 (92)

schreibt. Fiir » = 10 hat die auf der rechten Seite von (92) stehende GriBe den Wert
3,6288 - 108, Offensichtlich ist das betrachtete Verfahren schon fiir relativ kleine
Systeme numerisch unbrauchbar wegen der Akkumulation von Rundungsfehlern
und unrealistischen Rechenzeit

Wir vergleichen damit den Rechenaufwand beim GauBschen Verfahren, wobei
der Einfachheit hnlbet angenommen sei, daB keine Zeilenvertauschungen und
keine Spaltenver gen vorgenc werden. Im k-ten Eliminationsschritt hat
man bei der Umformung der Koeffizient trix auf Dreiecksgestalt gemiB (20a),
(20b) n — k Quotienten A[z, k)/A[k, k], © = k + 1(1)n, zu bilden und damit die
Elemente A[k,j] der k-ten Zeile fiir j = k + 1(1)n zu multiplizieren. Wie in der
Prozedur GAUSS mag man sich diese Quotienten in der &-ten Spalte unterhalb der
Hauptdiagonalen gespeichert denken. Dabei léuft £ von 1 bis n — 1, so daB sich ins-
gesamt

ﬂn=~2(n—k)+7("—")'-21’+2v’ p=n—k (93)
[

v=1

Operationen ergeben. Mit Hilfe der durch vollsténdige Induktion leicht beweisbaren
Formeln

Z',y=n(n+l) Z',vg=n(n+l)(2n+l) 04
=1 2 =1 6
gewinnt man
21
B = M (95)
3
Dem sind im k-ten Schritt » — & Multlpllkstxonen zur Umformung der rechten Seite
des li Gleichungssy , insgesamt also
o= (96)

2
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Operationen hinzuzufiigen. SchlieBlich erfordert die Losung des triangulierten
Systems weitere

_ n(n + 1)

[ % 3

(97)
Operationen. In der Tat fallen » — & Multiplikationen und eine Division bei der Be-
rechnung von z; an, woraus sich durch Summation iiber £ von 1 bis n (97) ergibt.
Betrachten wir weiterhin den Fall, daB m Gleichungssysteme (2) mit derselben
Koeffizientenmatrix fiir verschiedene rechte Seiten zu 16sen sind. Dann hat man die
GroBen y, und 8, noch mit dem Faktor m zu versehen, so daB sich insgesamt

3
%=%+Mu% (98)

Operationen ergeben. Zum Vergleich mit (92): Fiir » = 10 und m = 1 ist «, = 430.
Nach MfL Bd. 3, 6.5., li8t sich die zu einer reguliiren Matrix A4 inverse Matrix 4-1

aus den Losungen der li Gleich Ax = ¢;, j = 1(1)n, bilden, wobei
e; den Spaltenvektor mit den Koordma.ten 6,, bedeutet. Dazu sind gemés (98)
P . (99)
3 3

Operationen erforderlich. Dieser Aufwand léBt sich reduzieren, wenn man zur Lésung
der betrachteten Gleichungssysteme eine Variante des GauBschen Algorithmus be-
nutzt, welche die spezielle Form der rechten Seiten beriicksichtigt.

Wir wollen noch die Auswirkungen von Ungenauigkeiten in den Koeffizienten und

der rechten Seite des linearen Gleich yst (2) hen. Es sei & die Losung
von (2) und & + dx die eines gestorben Systems
(A + d4) (x + dx) = b + bd; (100)
JA und db sind Matrizen - vor Typ n Xn bzw. n X 1, deren Kompouenton als Inkre-
mente der exakt besti Koeffizi und rechten Seiten aufzuf: sind. Das
Ergebnis der folgenden Erérterung wird eine Abschitzung der relativen FehlergroBe
Iidazl (101)
[l

sein, wobei ||-|| eine Norm des R® bedeutet. Dazu beweisen wir den

Hilfssatz 1. Fiir eine Matriz B des Typs n X n sei beziiglich der durch i1l ndu-
zierten Matriznorm |B| < 1. Dann 7st I — B regulir, und es gilt

o S B)“IS;. (102)

1 + 1B 18]
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Beweis. Nach Satz 16 hat die Gleichung (I — B) & = ¢ fiir beliebiges ¢ € R"
genau eine Losung & Daraus folgt die Regularitit von I — B. Nach (53) gewinnt
man

=1 (103)

und wegen I = (I — B) (I — B)~! auf Grund von (50)
1= - B||I—-B)Y <1+ |B)|I— B

Damit ist der linke Teil von (102) bewiesen. Die andere Abschitzung erhilt man auf
Grund von (103) gemi 8

(I— By =1+ B(I— By,
|- B)| =1+ |B|WI— B,

1
I—BYsS—.
-BHs o

Im Hinblick auf das oben formulierte Problem nehmen wir nun an, da8 die Stérung
der Matrix A so klein sei, da8
164] < 1/)4-1}. (104)

Dann ist J41dA] <1 und der Hilfssatz 1 fiir B:= A-1dA anwendbar, d.h.,
I — A~1dA ist reguliir, und es gilt

1 1
1—]4d4] ~ 1 — |4 - 4]
Durch linksseitige Multiplikation der Gleichung (100) mit A~! gewinnt man
I — AdA) (x® + dx) = A7'b + A~'db
und unter Beachtung von Az = b
dx = (I — A71dA)™! A"Y(dAx + db).
Mit (105) folgt daraus die Abschitzung
1471 - |04z + dbj|
1—147-144]

I — 4704y = (108)

oz <

ligzel| _ 147} (1941 + 11b]/ll])
lel =  1—147-1641

Wegen |A] - ||| = ||b|| kann auf der rechten Seite der Term % majorisierend

1 1dbll - 141

durec] ersetzt werden. Damit haben wir folgenden Satz [23] gewonnen,

in dem wie bisher |- | die durch eine Vektornorm ||- || induzierte Matrixnorm bedeutet :
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it

Satz 18. A et eine reguliire Matriz, und fir die Stormatriz dA gleichen Typs gelte
(104). Qeniigen dann & und dx den Gleichungen (2) bzw. (100), so Vst

Wol _ g (udbn wAl) (106)
el = 1= gloaliar\ ol 141
mit
4= p(d) = 4] - |47, (107)
. . |ldz|} |ldbi| |d4] . . .
Die Quotienten ——, =—- und ~— sind analog dem relativen Fehler eines
llell * [0l 141

Naherungswertes gebildet. Beziiglich dieser relativen Anderungen 148t sich die Sach-
lage so einschéitzen:

Kleinen relativen Anderungen in den Daten von (2) (Koeffizientenmatrix
und rechte Seite) entspricht eine kleine relative Anderung der Losung,
sofern die sog te Konditionszahl u (107) der Matrix A klein ist. Ist
letzteres nicht der Fall, so nennt man A schlecht konditioniert.

Wir entnehmen [12] folgendes Beispiel fiir eine solche Matrix:

5 7 6 5
a=|7 0 8 7|

6 8 10 9

5 7 9 10

Dafiir ist |4| = 1 und

68 —41 —17 10
—41 25 10 —6
—17 10 5 —3|°
10 —6 —3 2

Beziiglich ||- |, findet man nach (57b) ||, = 33, }4-1},, = 136 und u(4) = 4488.

Wir schlieBen mit einer Fehlerbetrachtung zu den Iterationsverfahren. Diese
konvergieren unter geeigneten Voraussetzungen bei exakter Berechnung der suk-
zesslven Apptonmatlonen fiir jeden Startvektor gegen die wohlbestimmte Losu.ng I3
des 1 Sie sind dann insofern selbstkorrigierend, als ein
fehlerbehafteter Vektor i m der Iterationsfolge (;) stets wieder als Startvektor einer
neuen Iterationsfolge aufgefat werden kann und so die Konvergenz von (x;) gegen
§ zwar verlangsamen, aber nicht verhindern kann. Die Dinge liegen anders, wenn
mit Hilfe des Operators (63) nur Naherungen @] der sukzessiven Approximationen
&; berechnet werden. In diesem Falle gilt ein MfL, Band 9, 4.1.3.(42), entsprechendes
Resultat.

Beziiglich der Gleichung (64) wird vorausgesetzt, da8 fiir eine mit einer Vektor-
norm ||-|| vertriglichen Matrixnorm |B] <1 gilt. Wie in MfL Bd.9, 4.1.3.(40),

A1 =
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stellen wir die Naherungen «; in der Form
3;-'-1 =/(z;) + by (G=012..) (108)

dar und nehmen an, daB ||| < & mit einer festen positiven Konstanten 4 gilt;
/(®) bedeutet stets den mit dem Operator (63) zu & exakt gebildeten Vektor. Nach
Satz 16 gilt fiir genau ein § € R®

§ = f(§).
Durch Subtraktion dieser Gleichung von (108) gewinnt man
e}y — &l = IB(@} — &) + Ryl < IBI - lke] — &Il + Iyl
SIBl- o} — &l + 6
und nach wiederholter Anwendung dieser Abschétzung mit ¢ := | B}
ey — &Il < glie} — 8l + 0 < g llwf—y — §ll + 0 + 8 <
SRy — 8l + @ + g+ + 1) 8

o
= ¢ ey — 8l + T—e (109)

Aus (109) kann nicht mehr auf die Konvergenz der Folge (x}) gegen § geschlossen
werden, wohl aber gilt

tim sup [ — &l < —2—,
jroo 1—¢

und dies besagt, daB man § mit der Folge (x}) angenéhert bestimmen kann, sofern

gefordert ist.

keine hdhere Genauigkeit als I 3
-9

6.2.  Nichtlineare Gleichungen

6.2.1. lterative Lésung nichtlinearer Gleichungssysteme

Es seien g;, 7 = 1(1)n, reellwertige Funktionen von n reellen Verinderlichen, die in
einem Gebiet G des R* definiert sind. Entsprechend MfL Bd. 9, 4.1.(1), und in
Verallgemeinerung von 6.1.(2) (m = n) betrachten wir das Gleichungssystem

91(@1, Ty -y Tn) = u(®) =0,
ga(@y, T3, ..., Tp) = gu(@®) =0,

(1)

Inl(@1s Tay -y Zp) = ga(®) = 0
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oder in Vektorform die Gleichung

g(x)=0 @)
mit

9(®) = (9:(), go(), -, gula))T . 3
Ohne eine weitergehende Spezifizierung der Funktion g; ist die Erérterung exakter
Verfahren wie bei den li Syst offenbar gegenstandslos. Wir wenden uns

daher von vornherein iterativen Methoden zu, die sich auf Gleichungen zweiter Art
beziehen. Diese haben die Gestalt

f@) ==, 4)
wobei jetzt

J@) = (fl(m)! k@), ..., fn(z)).r (6)
und die

fi(®): @ >R, © = 1(1)n, (8)

in einem Gebiet G des R* definierte reellwertige Funktionen sind.

Grundlage fiir die iterative Ldsung von (4) ist eine Verallgemeinerung des Satzes 1
aus MfL Bd. 9, 4.1. Dabei fassen wir den R" als vollstindigen metrischen Raum
(vgl. MiL Bd. 4, 2.1.7.) beziiglich einer mit einer Norm ||-|| gebildeten Distanz-
funktion g auf, d. h., wir definieren

o(®, y) := |z — yil. (7
Dann gilt
Satz 1. Fir r > O und z € R ser
U 2) ={@:xc R A g(,2) <7} (8)

die abgeschl r-Umgebung des Punktes z und f: U(z) — R" konirahierende Ab-

¢

bildung zum Kmraktwna/alctor g (0 < g < 1), d.h., es ist fiir alle @,, @, € Uy(z)

f@:) — f@a)ll < g lkey — all; 9
ferner gelte
le—fRI=1—gr. (10)

Dann besitzt f genaw einen Fizpunkt § < U,(2), und die mit einem beliebigen Startpunkt
&, € U,(2) gebildete Iterationsfolge

Ty 1= f(5) (7€ N) (11)
konvergrert gegen diesen:
§ = limx;. (12)

oo
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Es gelten die Fehlerabschiitzungen
1§ — 2l < 2L iz, — | (13)
fil = 1_ q 1 0l
und
1§ — @l < T ey — syl (14)

Der Beweis entspricht vollstindig dem des Satzes 1 in MfL Bd. 9, 4.1.1., wenn
man dort die Betrage durch Normwerte ersetzt.

Bemerkung 1. Im Fall, daB f kontrahierende Abbildung des R* in sich ist, gilt
Satz 1 ohne die Bedingung (10) fiir den R® (an Stelle von U,(2)). (10) wird nur be-
nétigt, um die Bildbarkeit der Iterationsfolge zu sichern, die auf dem Nachweis
beruht, daB @; € U,(2) fiir 7 € N ist.

Wir befassen uns mit Kriterien, die fiir die Kontraktivitdt von f hinreichend sind,
und fiihren dazu den Begriff der Lipschilzbedingung ein:

Definition 1. Eine Funktion f: @ — R, G S R®, erfillt in G eine Lipschitz-

bedingung mit nichtnegativen Konstenten b;, § = 1(1)n, genau dann, wenn fiir alle
®,Yycl
.
1) — f@)] < 2 b by — (16)
=
gilt.

Im folgenden Satz wird angenommen, da die Funktionen (6) Lipschitzbedin-
gungen in G mit den Konstanten by; = 0 erfiillen, die wir in einer n X n-Matrix B
zusammenfassen. Wir sagen dann: Der Operator f erfiillt in @ eine Lipschitzbedin-
gung mit der Matrix B.

Satz 2. Der Operator f: G — R® mage in G einer Lipschitzbedingung mit der Matriz
B geniigen. Dann st f kontrahierend in @, wenn B eine der Bedingungen 6.1(75)
erfiillt. Die linken Seiten von (75a)— (75c¢) stellen Kontrakiionsfakioren fiir die Vektor-
normen a) ||- 1, b) ||l bz ¢) |- |12 dar.

Beweis. Fiir zwei Punkte ,, &, € G mit den Koordinaten z{" bzw. z®, § = 1(1)n,
ist gemiB (15)

i) — fi)l 52: By 29 — 2. (153)
P
Ist nun eine der Bedingungen 8.1.(75) erfiillt, so gilt im
Falla)
(@) — fi@l = 2 @) — fi)
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n n L
< 2oyt — a1 = £ (i — 21 5 0)
{j=1 j=1 i=1
”
s ( mex  Eou) e — e, )
JE{1.2....8} §=1
d. h., f ist beziiglich der Norm ||-||, kontrahierend mit dem Kontraktionsfaktor

¢:= max z"b“; (16a)
fElL2..m) im1

Fall b)
If(@,) — f@s)lloo =‘e‘;t;ax”|h(w,) — fi(@s)|

< max (Z" by [ — ,;m|)

GE{1 2.8} \jm=1
"
< mex 3 by @ — @yl 7
i€(1.2,0.,8) j=1
d. h,, f ist beziiglich der Norm ||-||,, kontrahierend mit dem Kontraktionsfaktor
»
g:= max Jby; (17a)
i€1,2,...0) j=1

Fall c)
I1f(es) — fiaes)liz =i,§ 1F(@r) — files)*,

und durch Anwendung der Schwarzschen Ungleichung auf die rechte Seite von (15a)
gewinnt man

i) — Hea)? sjé B ey — ll?

und folglich
) el < 2 b e — il (18)
d. h,, f ist beziiglich der Norm ||-||, kontrahierend mit dem Kontraktionsfaktor

Bedeutet, || || eine der in Satz 2 betrachteten Normen, so gilt auf Grund von (16),
(17) bzw. (18)
@) — fla:)ll < @ lkey — | (19)

mit einer positiven Konstanten @ fiir beliebige &,, @, € R*. Da nach 6.1., Satz 11,
alle Normen des R® #quivalent sind, folgt (nach 6.1., Definition 4) fiir eine Norm
|l |l des R® mit positiven Konstanten K, L

@) — fel 2 T @) — Fle
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und
|y — x| < K |, — 1’2”1«,

nach (19) also

@) — f@2)lle = KLQ iy — ol
(19) gilt demnach bei Erfiilltsein einer Lipschitzbedingung fiir f mit einer beliebigen
Norm des R", wobei die Konstante @ von dieser abhingt. Ist @ < 1, so ist f Kon-
traktionsoperator. Wir fassen das Ergebnis in dem folgenden Satz zusammen:

Satz 3. Geniigt f einer Lipschitzbedingung in G, so gibt es fiir jede Norm ||-|| des R*
eine positive Konstante Q derart, daf (19) fir alle ,, x, € G gilt. f 78t Kontraktions-
operator im Fall Q < 1.

Der konstruktive Teil des Satzes 1 beinhaltet den Algorithmus der sukzessiven
Approximation, der fiir den eindimensionalen Fall im PAP der Abb. 4.1 aus MfL
Bd. 9 dargestellt ist. Allgemein hat man dort den Betrag durch eine Norm zu ersetzen
und jede Wertzuweisung auf alle Komponenten entsprechender Vektoren auszu-
dehnen.

Die folgende ALGOL-Prozedur SAP2(f1,/2,20,q,eps) beschreibt den Algorith-
mus fiir # = 2 und die mit ||-||, gebildete Abbruchbedingung. Darin bedeuten die
formalen Parameter:
f1,/2  linke Seiten der Gleichung (4);

20,y eindimensionale Felder zur Speicherung der Komponenten des Start-
vektors bzw. der sukzessive zu berech den Iterationen;

g.eps  reelle Variable, die dem Kontraktionsfaktor bzw. der Fehlerschranke zu-
zuordnen sind.

procedure SAP2(f1,/2,20,y,q,eps); value g,eps;
real g,eps; array z0,y; real procedure f1,/2;
begin
real p; array z[1:2];
pi=gq/(l —q);
2[1] := 20[1]; 2[2] := 20{2];
L:  y[1]:= fl(z); y[2] := f2(x);
it p x(abs(y[1] — 2[1]) + abs(y[2] — [2])) = eps then
begin z[1] := y[1]; 2[2] := y[2]; goto L end

end
Wir betrachten ein Beispiel:l)

1 1 . 1
/,(z)=:oosz,—gsmx,+gzg=xl,
(20)

1 . 1 1
fi(®) =geinz + o8 — - n =1

1) Ein Beispiel dieser Art wird in [11] behandelt.
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Fiir @, y € R? ist

Lo va) — Az, ) = % (cosy, — co8Zy) — — (sm Y —sinay) + — (1/:

=lsin11+ylsiuzx_!/1
2 2 2
, — 1
+= cos’:y’m 2y’+—5-(yz—-rq)

und wegen [sin u| < [u] fiir allew € R

1
h(y y2) — hil@ 22)| S |?Il 2|+ =

1
3 lyz — 2, +gly=—zzf

1 2
=‘4_|y1*11|+—lyz_z!|'

5
Entsprechend findet man

121 ¥2) — faly, 22)| S Iy1 | + ly2 —

f1» I geniigen also Lipschitzbedingungen zur Matrix

12
B=45
3 1
8 6

Auf Grund von (16a), (17a) und (18a) folgt, daB f kontrahierende Abbildung des
R? in sich beziiglich der Normen |||}, [|lle und |||l ist. Das System (20) besitzt
also nach der Bemerkung 1 genau eine Losung § € R3. Fiir ||-|; erhidlt man nach

(16a) den Kontraktionsfaktor ¢ = max {% ;%} = 0,625. Mit diesem, eps = 10-¢

und dem Nullvektor als Startelement liefert die Prozedur SAP2 nach 8 Schritten
die Niherungslésung

& =0,2431779, &3 = 0,2522838. (21)

Im Beispiel ergaben sich die Lipschitzkonstanten auf Grund bekannter trigono-
metrischer Formeln. Meist bestimmt man diese mit Hilfe des Mittelwertsatzes der
Differentialrechnung, so daB die Bemerkung 1 aus MfL Bd. 9, 4.1.1., auch auf den
allgemeinen Fall zutrifft. Dementsprechend werden die Funktionen f;, © = 1(1)n,
in Uyz) (® € U,(2) & | — 2| <) als differenzierbar und auf U,(2) als stetig an-
genommen. Dann gilt fiir zwei Punkte &,, @, € U,(2) mit den Koordinaten z{l, a:;.”

* Oh(E)
Hi@) = fiey) = 2 —;,214 @ — ), (22)
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wobei die partiellen Ableitungen an einer gewissen Stelle §; im Inneren der gerad-
linigen Verbindungsstrecke von @; und @, zu nehmen sind. Setzen wir noch voraus,
daB diese in U,(2) beschrinkt sind und etwa

9fi(x)
oz

fiir ® € U,() gilt, so folgt aus (22) und (23)

by (23)

@) — fial g,Z: Byl — 22, (24)

d. h., f erfiillt auf U,(2) eine Lipschitzbedingung mit der Matrix B = (by;).

Die in MfL Bd.9, 4.1.2., durchgefiihrten Uberlegungen zum Newtonschen Ver-
fahren, die auf einer Linearisierung der linken Seite der Gleichung g(z) = 0 beruhen,
lassen sich auf (2) iibertragen. Dabei setzen wir folgendes voraus:

1. Die Komponenten des Vektors (3) besitzen in einem Gebiet @ < R" stetige

partielle Ableitungen bis zur zweiten Ordnung.
II. Fiir ein Element #©® € @ ist die mit der Tschebyscheffnorm 5.1.(15) gebildete
Umgebung U, (@) = (@: | — 9| < 7} in G enthalten.
III. Die Funktionalmatrix ( Jacobische Matriz)

% 9 o o0
oz, Oxy, Oxy oy,
992 o9 0g, . %_
J@®) = |0z, 0Ox, 0z oz,

besitzt an der Stelle (® eine Inverse K,, und beziiglich der durch |-|| indu-
zierten Matrixnorm |-| gilt mit einer positiven Konstanten 4,

K| < 4,.

IV. Fiir ein gewisses B, > 0 ist mit Bezug auf Voraussetzung IT
r
IBg(@) = Bo = —-.
V. Es sei
r | Pgile)
Ox; 0y

=C

k=1

fiir ¢, j = 1(1)n und @ € U, (@®).
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VI. Die Konstanten 4y, B, und C geniigen der Bedingung
Ho:=2n4,BC < 1.

Dem Vorgehen im eindimensionalen Fall entsprechend, ersetzen wir in (1) die g;
durch die Tangentialebenenanteile der Taylorentwicklung bei ® (vgl. MfL Bd. 5,
3.2.2.(7)) und erhalten auf diese Weise das lineare Gleichungssystem

(-‘D‘)

o)+ 2 I g, — o) —0. )
Die auf Grund von Vora g III wohlbesti Lésung sei mit & bezeichnet :

a0 = p0 — Kog(z(")). (26)
&M ist das mit dem Operator

f(@) :=x — J(x)™ g(x) 7

nach der Methode der sukzessiven Approximation aus &® erzeugte Element. Der
folgende Satz bringt zum Ausdruck, daB man die so begonnene Iterationsfolge fort-
setzen kann und diese gegen eine Léosung & € U, (@®) von (2) konvergiert. Fir

n=1 (g, =g)ist J@) = (—,:—)), und (27) ist der in MfL Bd.9, 4.1.(13), ein-
BAUACS
gefiihrte Operator des Newtonschen Verfahrens.

2

Satz 4. Unter den Voraussetzungen 1—VI ist die Iterationsfolge des Newt
Verfahrens
2D = P — K@®) g@®), p=01,.., (28)
bildbar und konvergiert gegen eine Losung § € U,(@®) von (2). Dafiir gilt die Ab-
schiitzung
. 1 _
5 — )| < prets Y (29)

K(x) bedeutet die Inverse der Funktionalmatriz J(x) = (%) .
/]

Beweis. Der Darstellung in [8] folgend zeigen wir, daB die Voraussetzungen I—VI auch fir
&) mit geeignet gewihlten Konstanten 4,, B, und beziiglich der Umgebung Uy y(x®) er-
fallt sind. Zunichst ergibt sich aus (26) mit Voraussetzung IV

e — 20| = |Kog@O)| < By < -, (30)
also

2 € T (@)
und daher

Typ(®) < Tyeo) g 6.
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Nun vnrd die Invemerbukelt vonJ(zM) gezexgt Anf Grund von 6.1.(67b) erhilt man nach

A ung des Mi der Diffy g unter Beachtung von Voraus-
setzung V und (30)
(@) +(a(0)
WE®) — JEo)] = max 3 |HED)_ @ )l
i€(12.m) j=1] 0%
max & 5’7-("-[) (a:“)
ieh.s. ) j=1|k=1 0z; Oz}
Pgi(mig)
< max (1) — gp(0) 79i(Mif)
$€{1,2,....8] ||z I é‘l k£1 0z 0z
=nC ||a:(l) — 20| < nCBy; (31)

7 bedeutet einen inneren Punkt der Verbindungsstrecke von () und ™). Mit (31) und den
Voraussetzungen ITI und VI folgt (I Einheitsmatrix)

I — B J@)| = [K(J@®) — Ja))]
SIBY - @) — J@0)) S ndoB0 =42 < 2

Diese Abschitzung hat auf Grund von 6.1., Satz 16, zur Konsequenz, daB die Matrix

EJ(@®) = I — (I — BJ(@)

und somit auch J(&W) regulir ist. (Bekanntlich folgt aus der eindeutigen Losbarkeit eines
linearen Gleichungssystems 6.1.(2) (m = =) fiir beliebige rechte Seite das Nichtverschwinden
der Koeffizientendeterminante.) Wir setzen zur Abkiirzung

B:—I— EJ@v) (lBl < %)

und erhalten sus (K J(@®)) = (I — By = I + B(I — By!
B J@) ] < ] + 1B| - I — Bl = 1 + |B] - [(HJ@®),

also
1
@) = =2 32

B < g 32)
Far

K, := K(xW) = J(@®)!
gewinnt man iiber die Darstellung

R, = [J(=®) EJ(@)]} = (EJ(@M))* K,
mit Hilfe von (32) die Normabschétzung

IK,| < 21K,| < 24,. 83)
Im Hinblick auf Voraussetzung III wird daher

A,:=24, (33a).
gesetzt.

Wir den uns der Normabsch g von K,g(x®) zu. Aus (26) folgt
g@®) + J(@®) @O —20) =0,
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so da8
g@W) = glat) — glz®) — Jz®) (@ — z)

gl.lt Die Komponenten der reohtan Seite kénnen durch die mit den zweiten Ableitungen ge-
ldets tglieder der Tay ioklung von g; bei @ zum Inkrementvektor &) — 2(°)
ausgedrickt werden. Man hst also

[ X () — }0)) i]’ (%)
j=1 2;

gl = —

" a 2
[;‘3 o — 5"”5,] nin) | .

» ’ a H
1 _ 0
[/‘3 &P — o )az'] galn0)

bei der polynomuehen Entmeklung der KI n sind Produkte von Diff i
als ent; partielle Ableitungen zweiter Ordnung zu deuten; 7;, ¢ = l(l)n,
bezeichnet einen inneren Punkt der Verbindungsstrecke von &(*) und &), Nun ist aber

P _ Pgi(ns)
[0 =] ana= £ [ —am £ - )] e

und folglich unter Beachtung von Vi v

g

|[2! (" — =) azi]' v.-(m)l S nje® — 200,
J= ] .

also wegen (30)
llgEm)) < % nC Jle® — O < -;— nCBE. (38)

Unter Beriicksichtigung von (33) ergibt sich damit

K@) < UKl - lg(@)| S 24530 = o koBo (30)
und — wenn

Byi=ubB (368)
gesetzt wird —

tty 1= 2nd,B,C = 2nA,BCuy = pb < 1.

ZusammengefaBt gilt:

Wiihlt man 4,, B, gemiiB (33a) bzw. (36a), 80 sind die Bedingungen I— VI fiir () mit diesen
Konstanten an Stelle von 4, B, beziglich der Umgebung U, ,(x®) erfiillt.

Wendet man diese Uberlegung wiederholt an, so ergibt sich die Existenz der Punktfolge (28)
mit der EinschlieBungseigenschaft

6 2T @) 2 T py(@t) 2 - 2 Typpol@®) 2 -1 @n

Fiar jedes p gewinnt man Konstanten 4, By, u,, die gemi8 (33a) und (36a) den Rekursions-
gleichungen

1
Ap=24,,, B, = 2z Hp1Bpey (38)
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geniigen; dabei ist
ppi=2n4,B,C, p=12,... (39)
Da nach (37) fir beliebige p, g ¢ N

e — 20| < = (40)

gilt, ist () eine Fundamentalfolge im R® und konvergiert wegen der Vollstindigkeit dieses
Raumes gegen ein Element § ¢ U (x®):

lim &® = §. (1)
Pp—roo
§ ist Losung der Gleichung (2): Aus (28) folgt
g(@®) = J(@)) (@) — xF+) 42)
und wegen der Stetigkeit der Komp: ten von g

,1im g(x®) = g(§).

Beziiglich der rechten Seiten von (42) ist zu beachten, daB die Komp ten der Funktional-
matrix auf der abgeschlossenen Menge U, (x(”) ebenfalls stetig und daher beschrinkt sind.
Daraus folgt die Besohriinktheit von |J(x)] auf U,(x(”), und man gewinnt aus (42) mit (40) fir
p - 00

gl =o,

g(§) =0.
Auf Grund von (38) und (39) ist pz, = p§” und

1 1
By = 55 Hp-tp-a*+ HoBo = o sy Bo.

Damit erhilt man fir ¢ > p unter Beachtung von 0 < po =< 1
le® — @) < @@ — TEHY|| 4 |jEPH) — FE+2Y| 4 ... 4 @D 4 2@
= By + Bpyy + -+ + By

1 1 1
§5/‘3’ﬂ50 (1 +? + - +2°_‘7“—)
1 27 —1
< E;;po B,
and fir ¢ > oo
1
I§ — =@ < 2= ui>~'Bo.
Bemerkung 2. Unter den Vora gen I—VI besitzt die Gleichung (2) auf

b oeschl b
der abg Umg g

e — @) < 2B, (43)
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genau eine Lésung. Ferner gilt fiir die Konvergenzgeschwindigkeit des Newtonschen
Verfahrens eine dem eindimensionalen Fall entsprechende Aussage. Man zeigt leicht,

daB die mit d; := [ — §|| gebildete GroBe % fiir § — oo beschrinkt bleibt.
]

Bemerkung 3. Auch fiir ||-|l;, ||-|, und die davon induzierten Matrixnormen
(vgl. 6.1.(67), (60)) laBt sich ein Konvergenzsatz fiir das Newtonsche Verfahren
formulieren. Dieses wurde von L. W. KanTorOWITSCH auf die Lisung von Operator-
gleichungen in Banachriumen ausgedehnt (vgl. [24], Kap. XVIII; [27], Kap. III).
Grundlage fiir diese wichtige funktionalanalytische Methode ist eine Verallgemeine-
rung des Ableitungsbegriffs.

Bemerkung 4. Der Rechenaufwand bei der Bildung der Iterationsfolge (28) riihrt
wesentlich von der Invertierung der Jacobischen Matrix an den Stellen ®® ber.
Man kann ein modifiziertes Newtonsches Verfahren betrachten, wo in jedem Schritt
in (28) mit derselben Matrix K, = K(x'?) multipliziert wird. Dieses konvergiert,
wenn die Voraussetzungen I— VI mit der Verschirfung

Ho 1= 2n4,B,C < 1
erfiillt sind.
Beispiel. Gesucht sind Lésungen des Gleichungssy

9@y, 7)) = o4 + 32iw, + 2 — o} — 25 — 7, — 2 =0,

92y, 23) = 27} + 20,2 — 7z, — 22, — 1= 0.

Die mit einer BESM6 berechnete Tabelle 6.6 enthilt fiir p = 0(1)10 die Kompo-
nenten der mit dem Nullvektor gestarteten Iterationsfolge (28) und die Werte von
|E(x®)] sowie | K(x®) g(xP)|. Man erkennt, daB die Folge der ® auf der EDVA
konvergiert, da sie fiir p = 9 stationir ist. Auf Grund des Satzes 4 ergibt sich die
Konvergenz, indem man etwa fiir %) die Umgebung U, betrachtet, wo Voraus-

P z{P) =P | K(x®)] I K('P)) g(z®)]|

0 | 0.00000000000 +00 | 0.00000000000 00 |7.50000000000 —O01 | 7.50000000000 —O01
1 | —17.50000000000 —01 | —5.00000000000 —01 |1.27179487179 01 | 2.56089743589 00
2 | —1.16987179485 —O01 | —3.06089743589 +00 |1.43838304528 —O01 | 1.48172606701 +00
3 | —2.04944765880 —01 | —1.57917136888 00 |2.62001635608 —O01 | 549655529604 —01
4 [ —2.90735405978 —01 | —1.02051583928 00 |4.20215562849 —O01 | 1.14809442388 —O01
5 | —3.27819774629 —O01 | —9.14706396893 —01 |5.39392286721 —O01 | 591156473677 —03
6 | —3.32272097464 —O1 | —9.087948321566 —O01 |5.46866923727 —O01 | 4.72098233666 —06
7 { —3.32319307288 —01 | —9.08790735955 —O01 |5.46868264754 —O1 | 2.83413528483 —09
8 | —3.32319303168 —01 | —0.08790738790 —O1 |5.46868260767 —O1 | 1.50715467993 —12
9 | —3.32319309168 —01 | —9.08790738788 —O01 | 5.46868260768 —01 | 0.00000000000 +00
10 | —3.32319309168 —01 | —9.08790738788 —01

Tabelle 6.6



160 8. Loésung von Gleichungen

setzung V mit C := 12 erfiillt ist. Nach den Angaben in den letzten beiden Spalten
der Tabelle 6.8 gelten die Voraussetzungen III und IV mit

Ay =054-10"1 bzw. B,=6,0.10"3,
8o daB

1o = 2nAdByC < 0,2

ist. Nach Bemerkung 2 zu Satz 4 besitzt das Gleichungssystem auf Uy, ,3(x®) genau
eine Losung, und zwar die mit der betrachteten Iterationsfolge niherungsweise
bestimmte. In 6.2.2. werden wir sehen, dafl auBerhalb dieser Umgebung noch eine
weitere Losung existiert.

6.2.2. Losung von Polynomgleichungen

Die Besti g der Nullstellen eines Polynoms

P(z) = ap2" + @y 12" + -+ + 17 + @y, a, +0, (45)
ist eine Standardaufgabe der Numerischen Mathematik, nicht zuletzt, weil Poly-
nome hiufig zur Approximation anderer Funktionen benutzt werden. AuBerdem
ergibt sie sich im Zusa hang mit zahlreichen physikalischen und technischen
Fragestellungen. Auch fiir diesen Spezialfall der in MfL Bd. 9, 4.1., behandelten
Gleichungsprobleme ist die Lokalisierung der Nullstellen in gewissen EinschlieBungs-

intervallen tliche Vor g fiir die Anwendung schrittweise vorgehender
Verfahren zu ihrer beliebig genauen Bestimmung. Wir beginnen daher mit der Er-
orterung einiger Lokalisierungssi Grundlage fiir die meisten Betrachtungen ist

der Fundamentalsatz der Algebra, nach dem ein Polynom (45) mit komplexen
Koeffizienten ay, a,, ..., a, in der GauBschen Zahlenebene genau n Nullstellen besitzt,
vorausgesetzt, dafl diese entsprechend ihrer Vielfachheit gezihlt werden.

Eine mit einem Polynom gebildete Gleichung P(x) = 0 wird algebraisch genannt.

Satz 5. Beziiglich der Koeffizi in (45) set
4 := max {|ag|, [ay], ..., |@p-1]}. (46)
Dann sind die Betrige simtlicher Nullstellen dieses Polynoms kleiner als
Ki=1+2, @n
|l

Beweis. Fiir [z] > 1 folgt aus (45)
|P(@)] 2 [@8g2"| — |@a12"2 + +++ + a1z + ol
= |ay| - 2] — A(l2|*t + (2] 4 oo 4 2] + 1)
lz* — 1
o] — 1

A id
> (1ol = )

= ol - lal* — 4
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|P(z)| ist also positiv, wenn
o — —2— 20, dh |21+,
|| —1 1@l
und die durch (47) definierte GroBe K gewiB eine obere Schranke?) fiir die Betrige
simtlicher Nullstellen.

Weiterhin betrachten wir nur Polynome (45) mit reellen Koeffizienten. Fiir ein
eingehendes Studium der Verteilung der Nullstellen solcher Polynome sei der Leser
auf die Monographie [34] von N. OBRESCHEOFF verwiesen.

Satz 6 (Regel von Lagrange und Maclaurin). In dem normierten. Polynom (45)
(a, = 1) set « der absolute Betrag des betragsgropten negativen Koeffizienten und m die
Differenz 2wischen dem Grad und dem Ezxponenten des hochsten Gliedes mit einem
negativen Koeffizienten. Dann ist

Li=1+7a (48)
esne obere Schranke fiir die reellen Nullstellen von (45).
Beweis. Wir zeigen, da8 P(z) > 0 fiir # = L. Offenbar ist fiir positive z

P g S |
P@)zar —al@m a1 4 ) =2 — —

also P(z) > 0, sofern

zﬂ—ﬂ-}l_l
> 5 ———
z—1

gilt. Wird sogar z > 1 angenommen, so ist defiir hinreichend, da8
A—-t+1

z"gaz
z—1

oder Yz —1)=a

oder a fortiori
-1z«

ist. Also gilt P(z) > 0 fiirz = 1 +'i/a—; = L und ¢ < L fiir jede Nullstelle £ von P.

Bemerkung 5. Wenn in dem normierten Polynom (46) keine negativen Koeffi-
zienten auftreten, hat dieses keine positiven Nullstellen, und L = 0 ist eine obere
Schranke fiir die reellen Wurzeln von P(z) =

Satz 7 (Regel von Newton). Wenn fir L€ R simtliche Ablestungen PW(L),
k = O(1)n, des Polynoms (45) positiv sind, ist L eine obere Schranke fiir die reellen
Wurzeln von P(z) = 0.

‘) Auch im folgenden wird der Begriff ,,Sohranke* bei der EinschlieBung von Polynom-
llen stets in Verbindung mit dem echten Kleiner- bzw. GroBerzeichen benutzt.
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Beweis. Durch Umordnung des Polynoms P nach Potenzen von 2 — L gewinnt
man
P

P(n)(L) @— Ly + Pn-1 (L)
1!

n! (n — 1!
und auf Grund der Voraussetzung
Px) >0 fir z=L.

Es ist naheliegend, die Regel von NEwTON in Verbindung mit dem erweiterten
Hornerschen Schema (MfL Bd. 9, 4.1.2.) anzuwenden. Schneller kommt man nach
der folgenden Regel von Laguerre ([64, 29]) zum Ziel.

Satz 8. Nach Division des Polynoms P durch x — L (L > 0) mit Rest,
Pz) = (z— L)@ual®) +7, rER, (49)

mdgen r positiv und die Koeffizienten von Q,_, nicht negativ sein. Dann ist L eine obere
Schranke fiir die reellen Wurzeln von P(z) = 0.

P(z)=

(z—Ly 144 (x— L)+ P(L)

Beweis. Offenbar ist nach (49) unter den Voraussetzungen des Satzes P(z) > 0
fiir z = L. Die Koeffizienten von @, ; und r gewinnt man nach MfL Bd. 9, 4.1.
(16)—(17), indem man mit dem Polynom P einen Hornerschritt fiir x, = L rechnet.

Bemerkung 6. Ist & eine Nullstelle von P(—z), so ist —¢ eine solche von P(z)
und umgekehrt. 8ind die reellen Nullstellen von P(—x«) also kleiner als L € R, so ist
—L eine untere Schranke fiir die reellen Wurzeln von P(z) = 0 und kann demnach
durch Anwendung der Sitze 6, 7 und 8 auf P(—=z) oder (—1)® P(—x) bestimmt
werden. Auch positive untere und negative obere Schranken fiir die positiven bzw.
negativen Nullstellen eines Polynoms lassen sich damit in Verbindung mit der line-

aren Transformation z' = 1 finden. Zum Beispiel ist & eine positive Nullstelle des
Polynoms (45) genau dann,z wenn & = —2— > 0 der Gleichung P (%) =0, alsoauch
P (l) =0,d. h.
z
Q@) =awz" +az" 1 4 oo + a4z +0a, =0 (50)

geniigt. Ist daher L eine obere Schranke fiir die positiven Nullstellen von @, so folgt
aus ¢’ <L
1
&> Z’

d. h, l:= % ist positive untere Schranke fiir die positiven Nullstellen von P(z).
Entsprechend begriindet man: Ist L eine obere Schranke fiir die positiven Null-

stellen von @(—z), so ist I := — l eine negative obere Schranke fiir die negativen
Nullstellen von P(z). L
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Wir betrachten ein

Beispiel. Es sind die Wurzeln der algebraischen Gleichung

Pa)y=28—2*— 22— 22— 1=0 (61)
zu lokalisieren. GemiB (46) ist 4 = 2 und nach Satz 5 fiir jede Nullstelle z von P
|z} < 3. (62)

Nach Satz 6, (48) findet man

L=1+1712 <24142 (53)

als eine obere Schranke fiir die reellen Wurzeln von (51).
Um Satz 8 anzuwenden, rechnen wir mit dem Polynom in (51) einen Hornerschritt
fiir 2, = 2:
10 —1 —2 —2 —1
2 4 6 8 12

2
12 3 4 6 1

Da unter dem Strich nur positive Werte erscheinen, kann L durch den kleineren
Wert L, = 2 ersetzt werden.
Fiir die mit P(—z) gebildete Gleichung

P-4 22— 2+ 1=0 (54)
findet man nach Satz 6 wieder (53) als eine obere Schranke fiir die reellen Wurzeln von

(64). Diese ldBt sich nach der Regel von LAGUERRE. zu L, = 1 verschirfen. In der
Tat ist

1

1

-l O
=3 L
N[O N
(=3
O -

1

Auf Grund der Bemerkung 6 liegen demit simtliche reellen Wurzeln von (61) im
Intervall

—Li=—-l1<z<IL,=2. (66)
Die (50) entsprechende Gleichung lautet
—Qz) =25+ 20+ 23 + 22— 1 =0, (56)

Nach der Regel von LAGUERRE findet man Ly = 1 als eine obere Schranke fiir die
positiven Wurzeln von (56), d. h., die positiven Wurzeln von (51) liegen nach Be-
merkung 6 im Intervall

Ltce<r =2 7
L,
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Fiir die reellen Wurzeln der Gleichung
Q—z)=2a"—224+2"—2*+1=0 (68)

liefert Satz 8 die obere Schranke L, = 2, so da8 nach Bemerkung 6 simtliche nega-
tiven Wurzeln der Gleichung (51) dem Intervall

1 1
—L,=—1 —_—— == 59
2 <z< . ) (69)
angehdren.
Wir wenden uns nun Methoden zu, die es gestatten, die Anzahl der reellen Wurzeln
eines Polynoms P in einem Intervall zu besti Mit dem folgenden Satz laBt

sich entscheiden, ob diese gerade oder ungerade ist; der Beweis ergibt sich durch
Anwendung des Satzes 2 aus MfL Bd. 4, 2.4., auf P.

Satz 9. Fiir ein Intervall [a, b)) sei a) P(a) P(b) < 0 bzw. b) P(a) P(b) > 0. Dann
besitzt P in Ja, b[ m Fall a) eine ungerade, 7m Fall b) keine oder eine gerade Anzahl
von Nullstellen. Daber sind mehrfache Nullstellen entsprechend oft zu zihlen.

In dem zuvor betrachteten Beispiel liegt fiir das Intervell (57) der Fall a), fiir (59)
der Fall b) vor.

Die Bestimmung der Anzahl reeller Nullstellen eines Polynoms in einem Intervall
beruht auf der Feststellung von Zeich hseln iiber gewissen endlichen Zahlen-
folgen. Wir priizisieren diesen Begriff nach [9] durch die folgende

Definition 2. Es sei

eyt (122) (60)
eine endliche Folge von Null verschiedener reeller Zahlen. Fiir das Paar c;, cg,, liegt
k‘em Zeichenwechsel vor, wenn ¥k >0 ist.

in Cilpyy < O

Die Anzahl simtlicher Zeich hsel bei aufeinanderfolgenden El ten ¢, Cpiy,
k = 1(1)n — 1, heiBt Anzahl der Zeich hsel in (60) und wird mit W bezeichnet.
Werden in (60) auch verschwindende Elemente ¢, ¥ = 2(1yn — 1, ¢, &0, ¢, + 0,
zugelassen, so sei W die Anzahl der Zeichenwechsel, die in (60) nach Weglassen der-
selben auftreten, W diejenige, welche sich fiir eine nach folgender Vorschrift trans-
formierte Folge (60) ergibt: Man betrachte simtliche Null-Sequenzen

Cp = Cpyy = +++ = Cpyy-y = 0,

wobei ¢;_; = 0 und ¢z, =+ O ist, und ersetze darin ;. durch eine reelle Zahl &,
i =0(1)l — 1, mit

8g0 &pyy = (— 1) sgn cpyy- (61)
Fiir eine Folge nichtverschwindender Zahlen (60) sei definitionsgem&8
W = w = Wo
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Beispielsweise ist fiir die Folge
4,0,0,-2,0,1
W = 2. Zur Bestimmung von W wird mit einem positiven & die transformierte Folge
1, —¢ 6 —2, —¢ 1

gebildet, wonach sich W = 4 ergibt. Man beachte, daB gemi8 (61) am Ende einer
Null-S8equenz gegeniiber dem folgenden Element stets ein Vorzeichenwechsel auftritt.

Satz 10 (Regel von Budan-Fourier). Es sei
P@) =ap" ! +ap 2"+ -t oz ta

ein Polynom vom Grade n und a,b € R, a < b, P(a) = 0, P(b) + 0. W(z), W(2), W(z)
bed die tn Definition 2 eingefiihrien Groen fir die Folge der Ableitungen

P(z), P'(z), ..., P*D(z), P™)(z). (63)
Dann gilt fiir die Anzahl N(a, b) der Nullstellen von P im Intervall [, b] mit Beriick-
sichtigung ihrer Vielfachheit

N(a,b) = W(@) — W) — g, (64)

wobes g eine nichinegative gerade Zahl bedeutet. Man nennt W(a) — W(b) die Anzahl
der verlorenen Zeichenwechsel tn der Folge (63) bevm Durchlaufen des Intervalls [a, b).
Beweis. Man gewinnt (64) aus der Einsicht, daB die GréBe W(z) eine monoton
fallende Treppenfunktion mit einem charakteristischen Sprungverhalten an den
Unstetigkeitsstellen ist. Um das zu zeigen, beweisen wir zunichst den folgenden

Hilfssatz 1. Fiir ein beliebiges Argument £ € R gilt

lim W(z) = W(¢) = W(£) = lim W(z) (65a)
z-56—0 2E+0
und mit einer nichtnegativen geraden Zahl g
W() — W(£) = lim W(z) — lim W(z) =g 4 m, (65Db)
zt—0 2540

wenn & eine m-facke Nullstelle von P ist (m = O fir P(£) == 0).

Beweis. Wir beginnen mit dem Fall P(¢) = 0 und stellen in Tabelle 6.7 schema-
tisch die Vorzeichenverhéltnisse in der Folge (63) fiir 2 = & dar. Das Zeichen o bzw.
A wird gesetzt, jo nachdem, ob die entsprechende GréBe verschwindet oder nicht.

("),
Am Anfang und am Ende der Zeile fiir P(£) steht A, da a, = % und P(§)

nach Voraussetzung von Null verschieden sind. Offensichtlich gilt (65a) mit dem
Gleichheitszeichen an Stelle von = und (66b) mit g =m = 0, wenn PU)¢) 5= 0
fiir j = O(1)» ist. Dann ist némlich fiir alle = einer gewissen Umgebung von &

Wiz) = W(E) =W(E) = W(E).
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j 01 2 ... r—k) r—k+1) ... '—1) r (¢ +1) ... n—1) n
POE — |h)) . A A . A a
PUNE) A ......... A [¢] .. O O A ... A
PUME 4 |h)) . A A .. A A
Tabelle 6.7
Weiterhin wird daher angenommen, da8 in (63) fiir z = & mindestens eine Null

Pr-k1)(f) = Pr—643)(¢) = ... = PO(§) = 0,
PrbE) 0, PO 40 (r, ke N¥)
auftritt.l) Wir diskutieren mit einem Inkrement & in einer hinreichend kleinen Um-

gobung
I:=7k—¢ &+ e (e>0)

von § die Taylorentwicklungen der Funktionen P(f) bei . Die GroBe ¢ sei so klein
gewihlt, daB fiir

POE + By = POE) + KPUE) + o0 PODE) o1, = Ot

(66)

das erste Glied der rechten Seite mit einer von Null verschiedenen Ableitung in 1
vorzeichenbestimmend ist. Tragen wir dann fiir [k| < ¢ in Tabelle 6.7 die Werte fiir
Pd(E — [k]) und PH(& + |k]) ein, so stimmen diese im Vorzeichen mit denen von
P)(¢£) iiberein, sofern PY)(£) &= 0 ist, in der Zeile dieser GroBen also A steht. Wir
untersuchen die Vorzeichenverhiltnisse iiber einer Nullsequenz (66) und betrachten
zu diesem Zweck fiir z = & + & € I speziell die T&ylomntwicklu.ngen

Pe(E 4 R) = PUHD(E) 4 RPUH(E) + .-
PONE +h) = hPU(E) + h— Pesd(g) + -

P('_l)(f + h) P('+1)(£\ + P(”'”(5
(87)

r—k+1) — " pes N pey,
Pu-b(E + b) P(+(€)+(k+l)!P”(E)+
k) = Pt 2 p

Pe8(g 4 k) P (5)+(k+l)lp“'(f)+

Fiir z = £ sind die Elemente der Folge
Pird)(g), Pirk)(g), ..., P)(z), Pr+D(z) (zel) (68)

1) Offenbar geniigt s, eine Nullsequenz zu betrachten.
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ungleich Null. Aus (67) ist zu erkennen, daB die Werte (68) fiir z > ¢ das Vorzeichen
von Pr+D(£) besitzen und fiir z < & alternieren, und zwar so, daB beim Ubergang
von P")(z) zu Pr+)(z) ein Vorzeichenwechsel auftrittl). Damit stellt die Zeile der
Werte von PP(£ — |h|) in Tabelle 6.7 eine Zahlenfolge dar, wie man sie zur Be-
stimmung von W(£) gemaB (61) konstruieren miifite. D. h., W(z) existiert fiir z € I,
z < &, und es gilt

lim W(z) = W(¢&).

-0
(68) liefert fiir z > £ einen oder keinen Vorzeichenwechsel, je nachdem, ob

Plrb(g) + PO-b(E) (69a)
oder
Pl (g) = Plr-9)(g) (69b)

gilt. Aus diesem Grunde enthilt die Folge der Werte P(£ + |k|) eben so viele
Vorzeichenwechsel wie die um die Nullsequenzen reduzierte Folge der Werte P(£),
d. h., es gilt

lim W(z) = W(¢)-
240

Damit ist (65a) bewiesen.

Wir betrachten nun die Differenz W (&) — W (&), d. h. die Abnahme der fiir z < &
bzw. z > £ in I konstanten GréBe W(z) beim Uberschreiten von £. Offenbar treten
keine Vorzeichenwechselverluste beim Vergleich der ersten und dritten Folge in
Tabelle 6.7 iiber Abschnitten auf, die auch in der mittleren Zeile mit A belegt
sind. Beziiglich einer Nullsequenz fijhren wir die Betrachtungen auf Grund von (67)
getrennt fiir gerades bzw. ungerades k durch. Die Anzahl der Zeichenwechsel in (68)
fiir z € I und z < £ bzw. z > £ sind in Tabelle 6.8 mit den daraus resultierenden
Zeichenwechselverlusten beim Uberschreiten von ¢ vermerkt. Dabei spielt eine Rolle,
ob (69a) oder (69b) gilt. In jedem Falle ist die Anzahl der verlorenen Zeichenwechsel
beim Uberschreiten von ¢ gerade, und man findet insgesamt (65b) mit m =0
besttigt.

k gerade k ungerade
z<§ z>¢ Zeichen- z< § z>¢ Zeichen-
wechsel- wechsel-
verluste verluste
(69a) k+1 1 k k 1 k—1
(69b) k 0 k k+1 0 k+1

Tabelle 6.8

1) In Tabelle 8.7 durch & markiert.
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Beweisen wir nun (65) unter der Annahme, da & eine m-fache Nullstelle von P

ist, also

P(§) = P'(§) = ++» = Pm-D(§) = 0, (70)
aber

Pm(g) £ 0
gilt. Der Unterschied zu den Betrachtungen im Fall m = 0 besteht lediglich darin,
daB die Tabel.le 8.7 gema,B (70) mit einer Nullseq beginnt. Um iiber di Ab-

h.

hnitt die Z Iverluste beim Ub von £ zu besti bet:
ten wir analog zu (87) die Taylorentwicklungen

PO+ B) = Peg) + hP«"»«s) +oo

PODE + B) = hP<"’(E)+ P(ﬂ*“(e)+

PO-9(§ 4 ) = o pou(e) 4 2 powsd(g) 4 ..., (1)
2! 3!

_h_ (™ (m+1)
P+ o) + ¢ +1),P( ) + -

und entnehmen daraus, da8 in der Folge
P(z), P'(z), ..., P™-)(z), P™(z) (72)

fiir a: cel,z< ém Zelchenwechsel auftreten, die beim Uberschreltnn von & simtlich
hen. Die Zeich hselverluste iiber eventuell sonst noch vorhandenen
Nu]lsequenzen sind gerade, und man gewinnt insgesamt (65b). Der Beweis von (65a)
entspricht vollkommen dem im Falle m = 0.
Nunmehr ergibt sich die Regel von BuDAN-FoURIER sehr einfach: Wir betrachten
neben den Intervallendpunkten £, = a und &,,, = b die endlich vielen Stellen

bb=a< b <b < < <b=¢m,

an denen irgendein Polynom der Folge (63) verschwindet. Nach (65a) ist W(x) eine
auf [a,b] \ (&, &, -+ &5 501} definierte monoton fallende stiickweise konstante
Funktion. Bezeichnet man die in (65b) auftretende gerade Zahl fiir £; mit g;, so gilt
auf Grund von (65)

o)~ W) = lim Wie) — lim W)
2041
= 5[ lim W) — lim W() Zg, + N b),
j=1 |e—4-0 440

8
also (84) mit g := Y g;.
j=1
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Wir wenden Satz 10 auf die Gleichung (51) an und betrachten zuniichst das Inter-
vall (57). Um die Zeichenwechsel in der Polynomfolge (63) bei z = 1 und 2 = 2 zu
bestimmen, bedient man sich des erweiterten Hornerschen Schemas. Fiir z = 1
resultiert

1 0-—-1-2-2-1
1 1 1 0-2—4
11 0-—-2—4-56
1 2 2 0
12 2 0-—4
1 3 b
13 5 b
1 4
1 4 9
11
15 also W(1) =1
und entsprechend W(2)=0.

Nach (84) ist N(1, 2) = 1, da g hier notwendigerweise verschwinden muB. Fiir das
Intervall (59) ergibt sich auf die gleiche Weise

W(—1)=6 und W(—-—;-)=3,

d. h., im Intervall (69) liegen zwei oder keine Wurzeln der Gleichung (51).
Wie die letzte Betrachtung zeigt, gestattet die Regel von BupAN-FOURIER im
11 i keine endgiiltige Bestimmung der Anzahl der Nullstellen eines Poly-
noms in einem Intervall. Das wird jedoch durch eine aufwendigere Methode méghch
Iche den Zeich hselverlust an Stelle von (63) beziiglich einer sog
Sturmschen Kette untersucht. Ohne diesen Begriff allgemem zZu defmleren, sei nur
mitgeteilt, wie eine solche, ausgehend von P(z) und P,(z) = P’(z), durch einen
modifizierten Euklidischen Algorithmus konstruiert werden kann. Zunichst divi-
diert man P durch P; mit Rest,

P(z) = Qi(z) Py(z) + Ry(),

und definiert

Py(z) 1= —Ry(x).
Anschliefend wird

Py(2) = Qu(2) Pyo(z) + Bs(x)
gebildet und

Pyfz) := —By(2)
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gesetzt und so fort. Da bei diesem Vorgehen die Gradzahlen von P, P,, P,, ... stindig
abnehmen, gelangt man nach endlich vielen Schritten erstmalig zu einem Polynom

P, = const,
mit dem die Sturmsche Kette

P,P,P,,.., P, (73)
abbricht. Diesbeziiglich gilt

Satz 11. P sei esn Polynom okne mehrfache Nullstellen') und [a, b)) ein Intervall,
fiir welches P(a) == 0, P(b) + 0 und die mit (73) zu bildenden Grofen W(a), W(b)
existieren. Dann st die Anzahl der tm Intervall [(a, b)) gelegenen Nullstellen von P

N(a,b) = W(a) — W(). (74)

Auf den Beweis des Satzes 11 kann hier nicht eingegangen werden. Wir erldutern
seine Anwendung bei der Bestimmung der Anzahl der Wurzeln von (51) im Inter-
vall (59). Fiir die Sturmsche Kette (73) erhilt man

Px) =25 — 23— 222 —2x— 1,

Py(z) = bt — 322 — 4z — 2,

Py(z) = 0,42% 4+ 1,222 + 1,62 + 1, 18)
Py(z) = —222® — 43,62 — 35,5,

P(z) = —0,1456635z — 0,3398775,

Py(z) = 53,77615.

Wegen Pj = 0 treten keine mehrfachen Wurzeln auf. Fiir die Sturmsche Kette (75)
gewinnt man leicht durch eine Uberschlagsrechnung

W(—1) = W(—l) =3,
2
d. h., im Intervall (59) liegen auf Grund von (74) keine Lisungen der Gleichung (51).

Diese besitzt also neben der im Intervall (57) bestimmten noch zwei Paare konju-
giert komplexer Wurzeln.

Wir beschlieSen die Betrachtungen iiber die Lokalisierung von Polynomnullstellen

mit dem Beweis eines Satzes von DESOARTES, welcher eine Aussage iiber die Anzahl
der positiven Nullstellen eines Polynoms macht.

Satz 12 (Cartesische Zeichenregel). Die Anzahl der positiven Wurzeln einer alge-
braischen Qleichung

P(x) = a,a" + apya™ 1t + - +ax + a4 =0, a, +0, a,+0,

1) Nach der in MfL Bd. 3, Kap. 13 und 14, entwickelten Teilbarkeitslehre fiir Polynome ist
das genau dann der Fall, wenn P, < O ist.
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w8t (mit Beriicksichtigung ihrer Vielfachheit) gleich der fiir die Koeffizientenfolge
Uy, Aoy, -y By, G gebildeten Grofe W oder um eine gerade Zahl klevner als diese.

Beweis. Die Aussage kann aus dem Satz von Bupan-FouriEe gefolgert werden.
Dazu sei G > 0 so gewihlt, daB in der Folge (63)
Plz) =a,2"+a,,2" 1+ - - az +ay,
Ple) =mna,2"t+ (n— 1) ap2* 2+ + oy,
P'(z) =nr—1)aaz"?+ (n—1) (@ —2)a, 2"+ - + 2a,,
P (z) =nla,

simtliche Glieder fiir = @ das Vorzeichen von a, besit Wir wenden Satz 10
auf das Intervall [0, G an. Dann ist W(0) an der Folge

aq, 11a,, 2la,, 3la,, ..., nla,

oder — was auf dasselbe hinauskommt — an der Koeffizientenfolge zu bestimmen.
W(G) = W(G) verschwindet, da in der entsprechenden Folge keine Zeichenwechsel
auftreten. Damit folgt die Behauptung aus (64).
In Anwendung auf die Gleichung (51) hat man W beziiglich der Folge
-1, -2,-2,—-1,0,1

zu bestimmen und findet gemiB Definition 2
W=1,
was zugleich die Anzahl der positiven Wurzeln von (51) ist.

Die Lokali thoden gestatten in Verbi g mit den in MfL Bd. 9, 4.1.,
erbrterten Iumtlonsverfahren, die reellen Nullstellen eines Polynom.s mit beheblg\ar
G keit zu berech Beispielsweise findet man fir die im Intervall {1, 2]
gelegene Wourzel £ der Gleichung (51) den Naherungswert

&% = 1,7346913457, (76)

dessen simtliche Ziffern giiltig sind. Die Bestimmung von £* kann man etwa mit der
Methode der Bisektion anlaufen lassen und danach mit dem Newtonschen Verfahren
fortsetzen.

Nach Berechnung einer reellen Wurzel ¢ der Polynomgleichung P(x) = 0 liegt es
nahe, den Linearfaktor z — & gemil

Pl@) = (z —¢) Pla)

abzuspalten und — wenn alle Nullstellen von P besti den sollen — weiterhin
diejenigen von P zu ermitteln. Dabei treten i. a. Genauigkeitsverluste auf, die davon
herriihren, daf & meist nur niiherungsweise bekannt ist und auch beim ,,Abdivi-
dieren‘‘ des Linearfaktors nach dem Hornersch Fehler entstehen. Diese Effekte
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machen sich natiirlich nach mehreren solchen Schritten, d. h. bei den zuletzt berech-
neten Nullstellen verstirkt bemerkbar. In diesem Zusammenhang ist auf ein Ver-
fahren von MAEHLY hinzuweisen, bei welchem diese Schwierigkeiten nicht auf-
treten (vgl. [48], 5.5).

Wir wollen uns noch mit der néherungsweisen Bestimmung auch der komplexen
Wourzeln einer algebraischen Gleichung

P(x) =a,a® + @py2* '+ - + a2 +a,=0

mit reellen Koeffizienten bef: Ist
Li=é+w

eine solche, so auch die dazu konjugiert komplexe GroBe
L=0=¢6— o,

und ¢, £, sind Nullstellen des reellen quadratischen Polynoms
Ry=@—l)z—L)=2— (i + )2+ 4
=22 —rz—gq.

Weiterhin bedeutet R dieses Polynom zweiten Grades mit zunichst unbestimmten
reellen Koeffizienten r, g. Nach Division von P durch R ergibt sich

Plz) = Q) (@* — rx — q) + Az + B, (77
wobei die Koeffizienten 4, B des Restpolynoms natiirlich von r und ¢ abhéngen:
A4 =A(r,q), B = B(r, q).
Gelingt es, r und ¢ so zu bestimmen, da

Ar,9)=0, B(r,g)=0 (78y
gilt, so sind die Wurzeln der quadratischen Gleichung
P2—rz—q=0 (79)

zugleich auch Nullstellen von P und als solche reell oder konjugiert komplex. Bei-
spielsweise findet man fiir das Polynom der Gleichung (51)
Pe)y=[F+mt+ (P +g— Dzt +2g—7-2]@ —rm—9)
+ Az + B
mit
Afr,q) =r+3rlg + ¢ — 12 — 2r — 2,
Brg) =g+ 2r¢* —gr — 2% — 1.

Das entsprechende Gleichungssystem (78) haben wir in 6.2.1. als Beispiel zum
Newtonschen Verfahren betrachtet. Die mit der dort bestimmten Losung gebildete
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Gleichung (79) hat die Wurzeln
¢, = —0,166169654 + < - 0,938712792, &, = ().

Spaltet man von dem Polynom
Q=B+ 4 (Pt g— Dzt P2 —r—2)

den Linearfaktor der reellen Nullstelle ab, so ergibt sich die quadratische Gleichung
z* + 1,402372037z + 0,634328020 = 0

zur Bestimmung des zweiten Paares konjugiert komplexer Wurzeln der Gleichung
(51):
z, = —0,701186018 + <. 0,377711778,  x, = F,.

Das im folgenden beschriebene Verfahren von Bamsrow und Hrromcock beruht
auf der Lésung des Systems (78) nach dem Newtonschen Verfahren, wobei jedoch
die dazu erforderlichen partiellen Ableitungen von 4, B und diese GriBen selbst mit
Hilfe des doppelzeiligen Hornerschemas 5.2.(112) aus 7, ¢ und den Koeffizienten
von P berechnet werden. Der Darstellung in [48] folgend, gewinnt man durch
Differentiation von (77) nach r und ¢

® _,_ % o4, o8
o =0 Bt et )
oP oQ 04 oB
—=0=—R—-Q+4—z+4 —
oq oq oq oq
und nach Division von @ durch R ¢
Q@) = Qi(x) R(z) + 4,2 + B,. (81)

Nach (81) ist, wenn (), {, die als verschieden angenommenen Nullstellen von R
bedeuten,

Q&) = At + B =12
und wegen (80)
—&ildili + By) + C.+——

(82)
oB
—(41€-+Bx)+zfi+—=0
Die zweite dieser Gleichungen liefert fiir « = 1, 2 ein lineares System zur Bestim-
04 B .. Vi 2 PTS ;
mung von — und — mit nichtverschw Koeff b
% oq
Als Lésung liest man unmittelbar ab:
A _u Zos (®3)

o o
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Auf entsprechende Weise ergibt sich aus der ersten Gleichung (82) wegen(? = 7{; + ¢
04 oB
Byli+ (1l + 9) 4, = (By +r4y) & + ¢4y =7Ci + r

und somit
04 oB
- B, +r4,, o q4,. (84)

Setzt man @(z) = by_o2™ 2 + bysz® 2 + --- + bz + by, s0 folgt durch einen Koeffi-
zientenvergleich aus (77)

ay =Dy
Gy = bpg — bp-sts

a; =biy—byr—bg fir i=n—2(—-1)2,

a = -bof —_ blq + A4,
a = —by+ B
oder
ba-2 = @y,
by = Gpg + bpat,
by =a;+ biyr +byg fir i =n— 2(—1)2, (88)
A =a, + by + by,
B =a,+ byg.

Entsprechend folgt mit @,(z) = cy_&* % + --- + ¢,& + ¢, aus (81)

Cn-s = On-2

Ca-s = baeg + Comaty

g =bi +ciar +cg fiir : =n — 4—1)2, (86)
4, =b +cr +ag,

B, = b, + cog.

Mit Hilfe von (83) bis (86) lassen sich die Iterationen (28) des Newtonschen Ver-
fahrens zur Losung des Gleichungssyst: (78) berech Man kann zeigen, daB
dieses fiir Startwerte r, g, die hinreichend nahe bei einer Losung liegen, konvergiert.
Die Rekursionen (85) und (86) sind gemiB 5.2.(112) gebildet, wenn man die ¢,
im doppelzeiligen Hornerschema mit den Koeffizienten der Polynome P bzw. Q
und s, ¢ mit ¢ bzw. r identifiziert. Die GréBen A, B, A,, B, kénnen demnach mit der
(geringfiigig zu éndernden) Prozedur POLK A (5.2.5.) bestimmt werden.
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71.  Formulierung des LO-Problems

In MfL Bd. 9, 1.1, haben wir die optimale Planung eines Produktionsprozesses als
eine Aufgabe der Systemsynthese vorgestellt und auf die Besonderheiten des ent-
sprechenden mathematischen Modells hingewiesen. Wir betrachten als ein weit
Beispiel fiir eine derartige Organisationsaufgabe das folgende Transportproblem :

In m Depots lagern a;, ©* = 1(1)m, Mengeneinheiten eines Produktes; davon sind
b;, j = 1(1)n, Einheiten an n ortsgebundene Verbraucher zu beférdern. Bei einer
Versorgung bedeuten

z,; die Menge des Produktes, die vom i-ten Depot an den j-ten Verbraucher
geliefert wird,
¢y die entsprechenden Transportkosten fiir eine Mengeneinheit.

Mit minimalen Transportkosten ist eine ausgeglichene Belieferung zu organisi
bei welcher jedes Depot gerdumt und der Bedarf aller Verbraucher gedeckt wird.

Eine konkrete Aufgabe dieser Art ergibt sich etwa bei der Versorgung von m Bau-
stellen mit Kies aus » Gruben innerhalb eines Territoriums, wenn fiir einen bestimm-
ten Zeitraum das Forderaufkommen dem G tbedarf f angeg lichen ist.

Auch in diesem Beispiel wird durch Festlegung der z;; eine Strukturierung einer
Objektmenge (Verbraucher und Depots) zu einem System vorgenommen. Diese soll
im Hinblick auf ein gegebenes Ziel optimal gestaltet werden. Die mathematische
Formulierung des Problems ist offensichtlich. Die li Zielfunktion

Z= iZl' E] iy (1)
-1 j-
ist unter den Nebenbedingungen

L
,2 zy=a; (E=12...,m), (2)

=1

hiad
z;:,,:b,- i=12..,n), 3)
z; 20 =12 ..,m; j=12,..,n) 4)

zum Minimum zu machen.
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Sehen wir von speziellen Bezeichnungsweisen ab, so lassen sich die Probleme
M{L Bd. 9, 1.1.(7)—(10) und (1)—(4), einheitlich so formul

Problem 1. Eine lineare Zielfunktion
Zy(@) = Z ®ofTj (6)
18t unter den Nebenbedingungen (eines LO-Problems)

% + 0% + 0+ GTa = o
A%y + Gge%y + -+ + G20%n S Ga0)
.................................... (8)
ATy + ez + - + AmnTn = Emos

7 20,2,20,..,2, 20 0]

zum Maximum zu machen, d. h., es ist ein Vektor § in der Erfillungsmenge B, der
linearen Ungleichungen (8), (7) 8o zu bestimmen, daf

Z,(®) < Z,(§) fiir alle ® € B, (8)
gilt.

B, heiBt der Zuldssigkeitsbereich des Problems; die a;; im Ausdruck der Zielfunk-
tion und in den Nebenbedingungen sind als gegeben anzusehen. Die Bedeutung von
m, n ist eine andere als in den zuvor betrachteten Beispielen. Problem 1 ist die Grund-
aufgabe der linearen Optimierung (LO-Problem), die wir noch mit einigen Bemerkun-
gen kommentieren.

Bemerkung 1. Mit dem Maximumproblem beherrscht man auch die entsprechende
Minimumaufgabe. Nimmt némlich Z fiir § in B, das Maximum an, so besitzt —Z dort
ein Minimum und umgekehrt. Jedes derartige Minimumproblem 1i8t sich demnach
in ein dquivalentes LO-Problem (5)— (8) iiberfiihren.

Bemerkung 2. Lineare Nebenbedingungen in Gleichungsform — wie etwa (2)
und (3) — kénnen durch Paare linearer Ungleichungen ausgedriickt werden. Bei-
spielsweise ist

Ty + A%y + o+ ATy =a
dquivalent mit

4,2 + @y + -0 + Ty 2 @,

%) + %y + o+ ATy S @

Bemerkung 3. Jede mit = gebildete lineare Ungleichung léaBt sich durch Multi-
plikation mit —1 dquivalent in eine solche mit < umwandeln. Damit ist alles gesagt,
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was notig ist, um Praxisaufgaben von der Art unserer Beispiele auf die Form (5)—(8)
zu bringen.

Bei der mathematischen Behandlung legt man LO-Probleme in einer Gestalt zu-
grunde, in welcher die Nebenbedingungen (6), die im Vergleich mit (7) gelegentlich
die nichttrivialen genannt werden, lineare Gleichungen sind. Ist das wie bei dem
oben betrachteten Transportproblem nicht ohnehin schon der Fall, so 1aBt es sich
durch Einfiihrung sogenannter Schlupfvariabler (je einer fiir die in (6) auftretenden
linearen Ungleich ) erreichen. Wir bezeichnen diese mit

)

Tns1r Tntzs =+ Taem 9

und erginzen die in (5) und (6) auftretenden Koeffizienten a;;, ¢ = 0(1)ym, j = 0(1)n,
noch durch die GréBen

Gone1 = Qopez 7= *+* I= Qg e 1= 0. (10)
Damit formulieren wir folgendes

Problem 2. Fiir die lineare Zielfunktion

n4+m
Z, = Y agz;
=1

st unter den Nebenbedingungen
an?y + 019% + <0 + Q%o + Tnin =0y,
ATy + @og%y + +-+ + GonZs + Tz = @2,
............. s an
Om?%1 + @maty + o0 + Gy + Zarm = @mo»
2,20,2,20,..,2, 20,20 20, ..., Ty =0 (12)

das Mazximum zu bestimmen.

Diejenigen Vektoren & ¢ R*™, die (11) und (12) geniigen, bilden den Zulassigkeits-
bereich B, des Problems.

Die Probleme 1 und 2 sind in folgendem Sinne dquivalent:

Behauptung 1. Ist §M € R® eine Losung des Problems 1 und seizt man
"
bpii=an — Y ayg, = 1(1)m, (13)
i=1

80 st
§(’) B G  TR Eu-)‘r
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Losung des Problems 2.
Behauptung 2. Ist
E® = (&, . Eus Em1s +os Envm) T € RMHP
eine Losung des Problems 2, so vst
§W:i=(&,...&)TER"

Lésung des Problems 1.
Wir beweisen etwa Behaupt l Aus der Voraussetzung folgt, daB die Grolen
(13) nicht negativ sind und defin gemiB den Gleichungen (11) geniigen. Daher

ist §® ¢ B,. Gébe es einen Vektor g € B,, fiir den
2,8) > ZE™)

ist, so wiirde auf Grund von (10) mit §® := (,, ..., £,)7 auch
2,E®) > Z,E™)

gelten. Da offensichtlich §, € B,, widerspricht diese Ungleichung der V¢
daB § Losung des Problems 1 ist.
Entsprechend beweist man die Behauptung 2.

Wir gehen nun noch einen Schritt weiter und 13sen uns von der speziellen Form
der Koeffizientenmatrix in (11); dabei wird 2 + m in # umbenannt:

Problem 3. Es set A = (ay), 1 = 1(1)m, j = 1(1)n, eine reelle Matriz des Typs
m X n und Rang A = m < n. Gegeben seten ferner zwei Vektoren

Boy = (Bo1, Bogs ++ a7,

By = (G10) B30 -+ 03 Tpo) "

des R". Zu besti: 18t das absolute Max1s der linearen Funktion
Zy(x) = al,@ (14)
iiber dem Zulissigkeitsbereich
By = [a::An:=a,oAa.'20].l) (15)
Unsere Betracht haben g , da man jedes LO-Problem durch Ein-

fuhrung von Sch]upfvsmblen in den Ty-p 3 iiberfiihren kann. Weiterhin bezeichnen
wir die Aufgabe, (14) iiber dem Zuliissigkeitsbereich (18) zu maximieren, als Normal-
Iorm des linearen Opnmmnqo?roblema und entwickeln dafiir im Rahmen seiner

tischen Untersuchung einen Lésungsalgorith Der Index bei Z und B
wird dann weggelassen.

1) @ = 0 bed daB alle Komp ten von & nicht tiv sind,
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7.2.  Konvexitit des Zulissigkeitsbereichs. Basisldsungen

7.21. Einfiihrendes Beispiel

Besonders fiir die Behandlung der li Optimierung im fakultativen Unterricht
der Schule ist es hilfreich, gewnsse Grundvorstel]ungen iiber den Zulissigkeitsbereich
und die Lage des gesuchten Extr an zweidi ionalen Probl des Typs 1
zu entwickeln. Wir betrachten etwa die Aufgabe, das Maximum von
Z = 0,6z, + z, (1)
unter den Nebenbedingungen
—z; + 32, £ 21,
2%, — 32, < 6,
7+ <1l @
z 20,
2, =0

zu berechnen. Der Zuléssigkeitsbereich B, des Problems — die Erfiillungsmenge der
Ungleichungen (2) — ist der Dur von Halbeb und mit den Hilfsmitteln
der analytisohen Geometrie leicht zu bestimmen. Man findet dafiir den polygonal

deten konvexen Bereich der Abb. 7.1. Die Niveaulinien Z = ¢ = const sind

hachnitt

X

/vﬁa'-wqu\ Y

Abb. 7.1
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parallele Geraden, und das LO-Problem liuft geometrisch betrachtet darauf hinaus,
die Niveaulinie mit dem gréBten ¢ zu bestimmen, die noch Punkte mit B, gemeinsam
hat. Das ist, wie man durch Parallelverschiebung der Geraden Z = 0 erkennt,

Z = 0,5z, + z, = 9,6;
diese Gerade hat mit B, den Eckpunkt
z =3, z, =8

und nur diesen gemeinsam.

Im folgenden wird gezeigt, daB der an diesem Beispiel wahrgenommene Sach-
verhalt unter einer gewissen Voraussetzung fiir alle LO-Probleme Giiltigkeit hat: Der
Zuldssigkeitsbereich ist konvex, und das Maximum der Zielfunktion wird in einem
Eckpunkt desselben angenommen. Dieser ist durch die Extremalforderung im all-
gemeinen nicht eindeutig bestimmt. Wenn man etwa in dem betrachteten Beispiel
die Zielfunktion (1) durch

Z=—x + 3,

ersetzt, wiirde diese auf B, ihr Maximum in allen Punkten der Verbindungsstrecke
von (0, 7) und (3, 8) erreichen.

7.2.2. Konvexe Mengen

In MfL Bd. 4, 1.5.2,, wurden die Begriffe der Strecke und konvexen Menge in
endlichdimensionalen Zahlenrdumen eingefiihrt, die schon im fakultativen Teil von
5.1.2. bei der Erorterung der Einzigkeitsfrage des linearen Approximationsproblems
eine Rolle spielten. Wir begi die Untersuchung des Zulissigkeitsbereichs eines
LO-Problems mit einer Wiederholung der prechenden Definiti Es sei noch
angemerkt, daB sich die folgenden Betrachtungen auf unendlichdimensionale lineare
Riume ausdehnen lassen.

Definition 1. Unter der Verbindungsstrecke S(x, y] zweier Punkte @,y € R* ver-
steht man die durch

zeS[ryle V (r=6x+ (1—0)y)
0€(0.1)
charakterisierte Menge.
Definition 2. M = R® konver :& A @, y(x,y € M = Sz, y] S M).
Offenbar gilt
Satz 1. Der Durchschnitt beliebig vieler konvexer Mengen vst konvez.
Der Beweis sei dem Leser als leichte Ubungsaufgabe empfohlen.
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Im R bezeichnet man die Gesamtheit der Punkte &, die mit ihren Koordinaten
einer linearen Gleichung

n n
Ux):=Y agi=a, a,acR, Jal>0, 3)
i=1 i=1
geniigen, als eine Hyperebene und die Erfiillungsmenge der Ungleichung
) <a O]
allgemein als einen Halbraum (Halbebene im Falle n = 2).
Hilfssatz 1. Jede Hyperebene und jeder Halbraum ist konvex.

Beweis. &, y seien zwei Punkte der Hyperbenene (3) oder des Halbraumes (4).
Dann gilt auf Grund der Linearitit des Funktionals ! (vgl. MfL. Bd. 3, 3.2.) fiir
001

oz + (1 —B)y) =6lx) + (1 —O)U(y) =82+ (1 —Ba=2a
bzw.

l(0.‘l:+ (l—O)y) <ba+(1—6)a=a;
in jedem Fall gehort also S[a, y] der Menge an.

Da die Zulissigkeitsbereiche der in 7.1. betrachteten LO-Probl Durchschnitte
von Halbriumen bzw. von Halbriumen und Hyperebenen sind, folgt aus Satz 1 und
Hilfssatz 1

Satz 2. Der Zulissigkeitsbereich eines LO-Problems ist konvex.

Die kleinste konvexe Menge, die eine Menge U S R® umfaBt, heiBt deren konveze Hiille.
Die folgenden Betrachtungen zu ihrer Charakterisierung sind denen ahnlich, die in MfL Bd. 3,

3.4., beziiglich der linearen Hiille einer T ge des R” angestellt wurden.

Definition 3. Es sei U & R". Die konvexe Hiille K(U) ist der Durchschnitt aller U um-
fassenden konvexen Teilmengen des R®:

K(U):=NK (K konvexe Teilmenge des R® mit K 2 U).

Definition 4. Es seien &,, &,, ..., &; Elemente des R®. Dann heit jedes Element & ¢ R*®
von der Form

k k
® = Az, 4 =z0, i=1(1)k, =1
i=1 i=1
eine konveze Linearkombination der ;.
Damit 148t sich die konvexe Hiille einer Menge U < R" o charakterisieren:

Satz 3. @ ¢ K(U) © x ist konveze Linearkombination endlich vieler Elemente aus U.

Beweis. a) Wir nehmen & ¢ K(U) an und zeigen zunichst, da8 die Menge M aller konvexen
Linearkombinationen iiber U konvex ist. Dazu werden zwei Elemente §, % € M betrachtet.
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Fir diese gelten Darstellungen der Form

& I3
=Zh%, A=z20, XYi=1. xeU,
=

=1
1 ]
n=iZ;u;y,», # 20, lep,=1. yjeU,
so daB mit 6 ¢ R
¥ 1
06+ (1—0)7 =.Z; 0 + 21(1 — 0) wy;
i= Po=

ist. Fiir 0 < 6 < 1 ist das eine konvexe Li kombination der El te x;, y;, ¢ = 1(1)k,
7 = 1(1)I, denn es gilt

0,20, (1—0pm20

und
k !
201.‘+Z(1—9)ﬂ1=9+(1"0)=1-

Es gehort also auch die Verbindungsstrecke von § und 7 zu M, d h., diese Menge ist konvex.
Da jedes Element 2 ¢ U auf Grund der Darstellung 2z = 1 - 2 eine &
iber U ist, gilt weiter U & M und nach Definition 3 auch K(U) & M, also

zeKU)yxe M.

b) Dle Umkeh.mng dieser Imphka.tlon wird durch Induktion nach der Linge ¥ der konvexen
iber U bewiesen. Fir £ = 1 sind das die Elemente von U selbst die
oﬁenbur zu K(U) gehdren. Wir nehmen nun an, daB alle } Li
deren Linge kleiner oder gleich k (k> 1) ist, in K(U) liegen, und betrachten eine konvexe
Linearkombination der Linge k& + 1:

k1 k+1
=A%, xeU, X420 Ti=1.
=1 i=1
Beim Nachweis, daB & Element von K(U) ist, kénnen wir uns auf den Fall beschrinken, da8
alle Koeffizienten 4; positiv sind, da sonst & ¢ K(U) schon aus der Induktionsvoraussetzung
folgen wiirde. Fiir & wird eine Darstellung der Form

k+1 3
=‘z,‘l}.;c,- = O‘Z;p;w; + 1 -0z, (5)
gesucht, in der
&

u>0, ‘Z; =1 (6a)
und 0 < 6 < 1 ist. Es ist naheli d, die Besti; g von y;, 1 = 1(1)k, und 6 suf Grund der
Beziehungen

A =0, =11k, (6)
und

hy=1-10 (M

k+1
vorzunehmen. Aus (7) folgt wegen 4; > 0, ¢ = 1(1)k + 1, und‘z‘ =1
=1

0=‘£').,- und 0<6<1. (8)
=1
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Mit dem nach (8) berechneten Wert 0 erhilt man aus (6) u;-Werte, die auch (5a) erfiillen
und mit 6 die gew llung (5) liefern. & erweist sich demnach als Element

k
der Verbindungsstrecke von ZA,:I:, und &;,,. Die Elemente 2 A;®; und &, sind konvexe

h

Linearkombinationen iiber U der Linge k bzw. 1 und g mch Indukti zZu
E(U). Wegen der Konvexitit dieser Menge gilt das folgllch auch fir .

Bemerkung 4. Speziell kann U eine endliche Menge U = {®,, &;, ..., &,} sein. Dann besteht
K(U) aus allen Elementen der Form

Z=Z.'l,-t.~, A z0, z,.‘}..'=1. )
=1 i=1

Von besonderem Interesse sind die Punkte einer konvexen Menge K, die nicht
dem Inneren der Verbindungsstrecke irgend zweier Elemente von K angehéren.
Diese sogenannten Eckpunkte sind also folgendermaBen zu definieren:

Definition 5. ® Eckpunkt einer konvexen Menge K : &

TeEKA YV V (@ +rz=0z + (1—0)x)
®uTEX 6€)0,1(
Beispielsweise sind die Punkte, die man im Hinblick auf Abb. 7.1 anschaulich als
Ecken des Zulissigkeitsbereichs des LO-Problems aus 7.2.1. bezeichnen wiirde, auch
Eckpunkte im Sinne von Definition 5.

Definition 6. Eine beschrinkte konvexe Menge mit nur endlich vielen Eck-
punkten heiBt ein konvexes Polyeder.

Satz 4. Die konveze Hille einer endlichen Menge U = {&), &,, ..., &y} ist ein konvezes
Polyeder, dessen Eckpunkte in U enthalten sind.

Beweis. Wir zelgen zunichst, daB K(U) beschrinkt ist. In MfL Bd 4, l 5.3., wurde die
Beachriinktheit einer Menge des R* mit Hilfe der euklidischen Norm ch iert. Auf Grund
des Satzes 11, 6.1.3., kann man |||, durch eine beliebige Norm dieses Raumes ersetzen. Be-
deutet dann

m:= max [\,
i€{1.2,....8}

80 gilt fiir ein & aus K(U) auf Grund von (9)
n
£
=1
woraus die Beschrinktheit von K(U) folgt.

Nun betrachten wir einen Eckpunkt & von K(U) und wihlen dafiir unter den Darstellungen
(9) eine solche minimaler Linge ! < n:

llell =

L) n
SX M-l = m X A =m,
i=1 i=1

i ]
x = X 4%, 4 >0, XA =1.
=1 i=1
Es wird gezeigt, daB ! = 1 ist, also ® € U. Wiire [ > 1, so wiirde aus

-1
x =i£1 A5 + A%y,



174 7. Lineare Optimierung

wie beim Beweis von Satz 3b) eine Darstellung der Form
-1
T = 9,2.'114.'% +(1—6)=,
=

-1
mit 6 € J0, 1 und p; > 0, X p; = 1 folgen, d. h.,  kénnte nicht Eckpunkt von K(U) sein.
i=1

7.23. Basisiésungen

Wir betrachten das LO-Problem in der Normalform und definieren beziiglich des
Zulissigkeitsbereiches 7.1.(15)

Definition 7. @ Basislsung: <
Ax = a,, A ® enthilt genau m von Null verschiedene Komponenten
Tigy Tigy o+ s T,
A die Spaltenvektoren a;,@;, ..., @;_ der Matrix 4 sind linear
unabhiingig.
Eine Basislosung & heiBt zuldssig, wenn & = 0 ist.

Es sei daran erinnert, daB A eine Matrix vom Typ m X = ist, fiir die RangA=m <n
gilt.

Zulissige Basislosungen gehoren dem Zulissigkeitsbereich B des LO-Problems
an. Sofern nicht ausdriicklich etwas anderes gesagt wird, beziehen sich auch im
folgenden alle Aussagen auf das LO-Problem in Normalform und die in 7.1.(14), (15)
eingefiihrten Bezeichnungen.

Zur Erliuterung der in Definition 7 eingefiihrten Begriffe transformieren wir das
LO-Problem des Beispiels (1), (2) durch Einfiihrung von Schlupfvariablen 3, %, s
in Normalform. Fiir den Zulissigkeitsbereich des déquivalenten Problems 2 ergibt sich
gemiB 7.1.(11), (12) folgendes System linearer Gleichungen und Ungleichungen:

—z; + 3%, + 7 =21,

2z, — z, = 6,
2, ~ 3z, + 2 (10)
2 + 2 + x; =11,

2,20,  i=1(1)5.

Man iiberpriift sofort, daB die den Ecken des Bereichs der Abb. 7.1 entsprechenden
Punkte zuldssige Basislo sind. Beispielsweise erhilt man aus der Ecke z, =0,

-5

23 = 7 den Punkt & mit den (10) geniigenden Koordinaten

=0, z=17 x=0, =z=27, z=4 (11)
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Die zu betrachtenden Spaltenvektoren von 4 sind

()l 6

man iiberzeugt sich leicht, daB diese linear unabhingig sind. SchlieBlich treten in
(11) genau m = 3 von Null verschiedene Koordinaten auf, und es ist & = 0. Damit
erweist sich @ als zulissige Basislosung.

Wir wollen den Nebenbedingungen (2) noch die Ungleichung

—ntm =T 12

hinzufiigen. Die hierdurch bestimmte Halbebene enthilt den Zulissigkeitsbereich
der Abb. 7.1, und dieser wird folglich durch das Hinzufiigen von (12) nicht verindert.
Das neue LO-Problem hat dieselbe Losung wie die in 7.2.1. betrachtete Aufgabe; es
wird sich aber zeigen, daB die iiberfliissige Nebenbedingung (12) Schwierigkeiten bei
deren Bestimmung verursacht. Um diese genauer zu charakterisieren, gehen wir
wieder geméB 7.1.(11), (12) zur Normalform iiber. Da eine nichttriviale Nebenbedi
gung hinzugekommen ist, muB auch eine weitere Schlupfvariable z, eingefiihrt
werden, und an Stelle von (10) ergibt sich

—zy + 32, + 23 =21,

— 3z, + z = 6,
z + T, + x5 =11, (13)
-+ 2 +zg= 1,

20, =1(1)8.

Der Ecke x, = 0, z, = 7 entspricht jetzt der Punkt & mit den (13) geniigenden
Koordinaten

=0, =7, 23=0, 2,=27, z3=4, z,=0.
Damit ist die Existenz einer Losung des lmes,ren Gleichung y (13) mit ig
als m (= 4) von Null verschiedenen Komp hgewiesen. Wegen dieser Er-
scheinung bezeichnet man das betrachtete LO-Problem a.ls ausgeartet (oder entartet)
und definiert allgemein:

Definition 8. Ein LO-Problem heiBt ausgeartet, wenn das lineare G]elchungs-
system Ax = a,, Losungen mit weniger als m von Null verschied K«
besitzt. ’

P

Bei der Entwicklung eines Losungsalgorithmus fiir das LO-Problem werden wir
voraussetzen, daB dieses nicht ausgeartet ist.

Das Beispiel legt die Vermutung nahe, daB zwischen den Ecken von B und den
zuldssigen Basislésungen ein Zusammenhang besteht. In der Tat gilt
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Satz b. @ st zuldssige Basislosung => x st Eckpunkt des Zulissigkeitsbereiches B.

Beweis. Wenn notig, kann man durch Umbenennung der Variablen erreichen, daB
die ersten m Koordinaten der betracht Basislosung @ von Null verschieden sind.
Dann gilt

2 >0,2,>0,...,2,, > 0,24y = Tpyp = +++ =2, =0, (14)

und die Spaltenvektoren @,, @,, ..., @, von A sind linear unabhingig. Nehmen wir
nun im Sinne eines indirekten Beweises an, daB @ nicht Eckpunkt von B ist, dann
existieren nach Definition 5 zwei verschiedene Punkte @,, &, in B, fiir die mit einem
gewissen 6 € JO, 1

x=6x, +(1—06)x, (15)

gilt. Wir bezeichnen deren Koordinaten mit z{! bzw. z?, 7 = 1(1)n. Da z{¥, 2{» = 0
und 8, 1 — 6 positiv sind, folgt aus (15) mit Beachtung von (14)

P =gP =0 fir j=m+ 1n, (16)
also

02 + aurf) + oo + @pl)= 8y,

6,20 + a2 + o0 + a2l = ayo
und

afaft — ofh) + aalefp — ) + - + An(all — o) = 0. (1)
Auf Grund der linearen Unabhingigkeit der a;, j = 1(1)m, folgt aus (17) 2 = 2
und mit (16)

o =,
Das aber ist ein Widerspruch zur vor tzten Verschiedenheit dieser Punkte.

)

Satz b 1Bt sich umkehren, wenn das LO-Problem nicht ausgeartet ist:
Satz 6. LO-Problem nicht

rtet A @ Eckpunkt von B = ® zulissige Basislosung

¢

Beweis. @ sei Eckpunkt von B und r die Anzahl seiner von Null verschiedenen
Koordinaten. Aus @ € B folgt

Ax =ay, (18)
und — wegen der ausgeschlossenen Ausartung — nach Definition 8
r=m. (19)

Ohne Beschriinkung der Allgemeinheit sei wieder angenommen, daB die ersten 7 Ko-
ordinaten von & nicht verschwinden, also positiv sind. Dann kann (18) in der Form

@2 + Ty + o0+ Gy = By (20)
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ausgedriickt werden. Die in (20) auftretenden Spaltenvektoren a; sind linear unab-
hingig. Im Sinne eines indirekten Beweises dieser Behauptung wird eine nicht-
triviale Linearkombination

ay, + @y + o+ ay, =0 @y

dieser Vektoren zum Nullvektor betrachtet. Darin sei etwa y, %= 0. Wir multipli-
zieren (21) mit einer positiven Zahl ¢ und addieren und subtrahieren diese Gleichung
zu bzw. von (20). Auf diese Weise ergibt sich

(2, + 891) + @2 + 8Y2) + -0 A+ Bo(zy + 8Ye) + o+ + @r(2, + 8Y;) = Byo,
(22)
ay(z, — 8y1) + Go(@2 — 8Ys) + -+ + @2, — 8Y,) + - + Bz — 8Yy) = @y

Durch Wahl eines geniigend kleinen s kann erreicht werden, da8 sémtliche der in (22)
auftretenden GroBen z; 4 8y;, © = 1(1)r, positiv sind. Wir bilden damit die Vektoren
x,, , mit den Koordinaten

V) =2; + 8y; fiir v = 1()r,

V=0 fiir 7 =7+ 1(1)n?)
bzw.
oD =z, — sy, fiir i = (1),

P =0 fir + =7+ 1(1)n.
An der o-ten Koordinate erkennt man, daB @®, = @,, und wegen (22) gilt @,, 2, < B;
auferdem ist

1

x = 0 (@, + @;). (23)
(23) widerspricht der Voraussetzung, daB @ Eckpunkt von B ist. Die dem R™ an-
gehorenden a;, j = 1(1)r, sind also tatsichlich linear unabhingig, und es ist

r<m, (24)

da mehr als m Vektoren dieses Raumes stets linear abhiéngig sind. Aus (19) und (24)
folgt r = m, d. h., @ ist Basislgsung.

Satz 7. Es gibt nur endlich viele Basislosungen zu etnem LO-Problem.

Beweis. In dem n-Tupel # = (zy, ..., 7,)7 kann man (n) Systeme z;,, %, - .-, %i,,
m

als Basisvariable auszeichnen, womit diejenigen Variablen gemeint sind, die in einer
Basislésung nicht verschwinden. Sind dann noch die Spaltenvektoren a;, ay, ..., a;_
linear unabhingig, so gibt es genau eine Losung des Systems Ax = a,, mit ver-

1) Auch fiir das Folgende sei vereinbert: Ist in einem Laufbereich die untere Grenze groSer
als die obere, 80 ist dieser als leer zu betrachten.
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schwindenden Komponenten, 2, z;,, ..., %;,_,, wenn
(21 25 o os S} U {1y F2s <o s Fn-ml = {1, 2, ..., m}.

Diese ist Basislosung, falls z;, + 0 fir k = 1(1)m. Damit erweist sich ( ) als eine
obere Schranke fiir die Anzahl der Basislésungen.

Mit Satz 7 folgt aus Satz 6

Satz 8. Der Zuldssigkeitsbereich B eines nicht ausgearteten LO-Problems besitzt nur
und — in Verbindung mit Definition 6 und Satz 2 —

Satz 9. Ist der Zulissigkeitsbereich B eines nicht ausgearteten LO-Problems be-
schrinkt, so 78t B ein konvexes Polyeder.

7.3.  Das Fundamentaltheorem der linearen Optimierung

Man iiberlegt sich leicht, daB der Zuléssigkeitsbereich eines LO-Problems unbeschrinkt
und dieses dann unlésbar sein kann. Setzen wir jedoch seine Lisbarkeit voraus, so
wird im folgenden gezeigt, daB eine Losung — oder, wie man auch sagt, ein optimaler
Vektor — bereits in der endlichen Menge der Basislésungen enthalten ist, sofern keine
Ausartung vorliegt. Wir schicken dem Beweis dieses Lokalisierungssatzes Betrachtun-
gen iiber speziell gebildete El te des Zulissigkeitsbereiches voraus, die auch fiir
die anschlieBende Erorterung des Simplexalgorithmus wichtig sind.

Es sei angenommen, daB8 der Spaltenvektor @, von den Vektoren @;, 7 = 1(1)r,
r < k, linear abhiingig ist:

T
a =Z Aut;, Ag € R. (1).
=1
Fiir jedes ¢ € B gilt
L]
2 za = 2 2@ + Z T = Qo (2)
i=1 i=rt1

Multipliziert man (1) mit einem beliebigen % € R und subtrahiert diese Gleichung
von (2), so folgt

2 (2 — hiy) a; + Z xa‘ + @+ ha + 2 zﬂu =@y,
=]

d. h., der Vektor #® mit den Koordinaten

z; — hdy  fir <= 1(1)r,

z; fir e=r+ 11Dk —1,

i+ k fiir © =k,

z fir i =k + 1(1)n

W) —
=
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geniigt der Gleichung
Ax® = ay,; @)
der entsprechende Wert der Zielfunktion ist

Z(a®) = 3 aya® = Z(z) + b (au - ao.z..)
=1 =1

oder, wenn
r
dy := ag — 3 agidix )
im1
gesetzt wird,
Z(x®) = Z(x) + hd;. (6)
Die beiden folgenden Hilfssiitze lassen erk daB die GroSe (B) im weiteren eine

wichtige Rolle spielen wird. Darin bedeutet k einen Index, fiir den (1) mit k > r gilt.

Hilfssatz .2 € BAz; > 0 fiir 2= 1(1)r und ¢ = kadp < 0= 1 (% 8¢ opli-
maler Vektor).

Beweis. Fiir die durch

R’ := max {ﬂ, —:c,,} (7
i-1nr | A
A0
definierte GroBe gilt
A <0 und x*) =0. (8)

Mit Beachtung von (4) ist also #*> € B, und nach (6) hat man auf Grund der Vor-
aussetzung

Z(x®) > Z(x).
Daraus folgt die Behauptung.
Hilfssatz 2. LO-Problem losbar ndp > 0 = (Ag:?=1(1)rAdy >0} 9.

Beweis. Im Sinne eines indirekten Beweises wird angenommen, daB die in der
Konklusion auftretende Menge leer ist. Dann definiert (3) fiir ein fest gewiihltes
@ € B und jedes positive h einen Vektor des Zulissigkeitsbereiches. Fiir solche x®
gilt nach (8) wegen d; > 0

lim Z(@®) = 4-o0.

h—00
Die Zielfunktion nimmt also in B beliebige groBe Werte an, und das LO-Problem
besitzt im Widerspruch zur Voraussetzung keine Losung.

Nunmehr sind wir in der Lage, fiir ein nicht ausgeartetes LO-Problem das folgende
Fundamentaltheorem zu beweisen.
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Satz 1.
V (& optimaler Vektor) = V (x optimale zulissige Basislosung).
z€B z€B

Beweis. # bedeutet einen der Voraussetzung dieses Satzes geniigenden Vektor
mit k von Null verschiedenen — also positiven — Komponenten. Nétigenfalls durch
Umnumerierung von Variablen sei dafiir gesorgt, daB #; > 0 fiir ¢ = 1(1)k und
— falls maximal r der Spaltenvektoren @, @, ..., @ linear unabhingig sind —
dieses auf a;, © = 1(1)r, zutrifft. Wegen der ausgeschlossenen Entartung gilt

kzm )
und wegen a; € R™, ¢ = 1(1)n,

mzr. (10)
Es ist also

k=r. (11)

k = r gilt genau dann, wenn in (1) und (2) das Gleichheitszeichen steht, und das
charakterisiert & als Basislésung. In diesem Fall bleibt nichts zu beweisen. Ist aber
k > r, so konstruieren wir ausgehend von & einen optimalen Vektor @' mit &' < k
von Null verschiedenen Komponenten (s. u.), wobei wieder ohne Beschrinkung der
Allgemeinheit z; > 0, = 1(1)k’, angenommen werden kann. Gemi8 (11) gilt
k=, (12)

wenn 7’ die maximale Anzahl linear unabhingiger Vektoren im System der a;,
7 = 1(1)k’, bedeutet. Gilt in (12) das Gleichheitszeichen, so ist ®' optimaler Basis-
vektor, anderenfalls konstruiert man nach dem Prinzip, das zu @’ gefiihrt hat, einen
optimalen Vektor &'’ mit & < k’ von Null verschiedenen Koordinaten und so fort.
Wegen k > k' > k'’ > .-- wird nach endlich vielen Schritten ein optimaler Vektor
bestimmt, der (11) mit dem Gleichheitszeichen erfiillt, also optimaler Basisvektor
ist.

Konstruktion von &’. Wenn 7 < k und somit @; von den @;, + = 1(1)r, linear
abhiingig ist, folgt aus der Kontraposition des Hilfssatzes 1 mit * = &

4 =0.
Wir wollen
=0 (13)

zeigen und nehmen im Sinne eines indirekten Beweises d; > 0 an. Dann ergibt sich
aus Hilfssatz 2 unter Beriicksichtigung der Losbarkeit des LO-Problems

Li={Ag:i=11yAadg>0) + 2.
IAuf Grund dessen existiert

h' := min {ﬂ} (14)

i=1r | ik
>0
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und ist positiv. Fiir den mit (14) gemiB (3) gebildeten Vektor &' := &®) ist ' = 0,
also wegen (4) &’ € B und nach (6)

Z(@') = Z(&) + Wdy > Z(F).

Dem widerspricht, da & optimal ist, und folglich gilt (13).
Nunmehr wird A’ gemiB (7) bzw. (14) gebildet, je nachdem, ob L = @ oder
L + @. Dann ist &' := &™) ein zulissiger Vektor, fiir den nach (8) wegen (13)

Z(x') = Z(F)

gilt; auBerdem verschwindet bei &’ nach (3) mindestens eine Koordinate mehr als
bei &.

7.4.  Der Simplexalgorithmus

Dieses Verfahren ist eine effektive Methode zur Besti g einer optimalen Basis-
16sung. Wir setzen voraus, daB keine Ausartung vorliegt und fiir das vorgelegte
LO-Problem schon eine zulidssige Basislosung bekannt ist.

In der kombinatorischen Topol ,' (vg] [41]) bezeichnet man gewme durch konvexe
Hiillenbild te Punkt; plexe. Sie stellen n-di Verall
rungen der Beguffe Dreleck (n=2) und Tetraeder (n = 3) dar. Wegen ihrer Beziehung zu
den konvexen Polyedern und damit den Zulissigkei ich von LO-Probl wurde die
Bezeichnung ,,Simplex** mit dem dafiir maBgebenden L gsalgorith verkniipft.

7.41.  Simplexkriterium und Austauschverfahren

Vorgelegt sei ein nicht ausgeartetes LO-Problem und eine seiner zulidssigen Basis-
l6sungen &. Ohne Beschrinkung der Allgemeinheit konnen wir beziiglich der Koordi-
naten wieder

5 >0, .., En>0, Zpy=Epe='=%,=0 (1)
annehmen. Es gilt also
™
2 58 = ay, @

i=1

und die Spaltenvektoren @, @,, ..., @, von A sind linear unabhéngig. Fiir einen
Index k& > m sei

m
@ =3 law, 3

i=1



182 7. Lineare Optimierung

und entsprechend 7.3.(6) wird
-
;1= agr — X aoidie O]
=1
definiert. Dann gilt beziiglich (1) der

Satz 1.

V  (@>0) = V (= Basislosung A Z(x') > Z())
ke(m+1....m} @'€B
v LO-Problem nicht loshar.

Beweis. Bei den folgenden Uberlegungen werden wir uns auf Definitionen und
Siétze von 7.3. beziehen; dabei ist stets r = m und @ = & zu setzen. Nach Voraus-
setzung gilt d; > O fiir ein gewisses k € {m + 1, ..., n}; auBerdem sei angenommen,
daB das LO-Problem eine Losung besitzt. Dann ist auf Grund von 7.3., Hilfssatz 2,
die Menge

Ag:t=1(1mA Ay > 0)
nicht leer und die positive Zahl b’ gemi8 7.3.(14) bestimmbar. Fiir den nach 7.3.(3)
gebildeten Vektor @' := ®®*) ¢ B ergibt sich nach 7.3.(6)

Z(x') > Z(&). )}

Wir zeigen noch, daB &’ Basislésung ist: Nach Konstruktion hat dieser Vektor
nicht mehr als m von Null verschiedene Koordinaten, wegen der ausgeschlossenen
Entartung aber auch nicht weniger. Wegen z; > 0 muf genau eine der Koordinaten
}, © = 1(1ym, verschwinden. Bezeichnet man deren Index mit I, so ist

&
llk '

Mit (3) ergibt sich fiir eine beliebige Linearkombination der zu den Basisvariablen
gehorenden Spaltenvektoren von A

A>0 und A =

Y10y + Y82 + -+ + Y@y + YinaGia + o0 + YmBm + Vi

m
=2 i + vehu) 85 + Anyea;.
&
Ist diese dem Nullvektor gleich, so folgt wegen der linearen Unabhingigkeit der
a;, © = 1(1)ym, und A; + O zunichst 4 = 0 und weiter fiir alle 7 = 1(1)m, ¢ =1
auch y; = 0. Die Spaltenvektoren bei den Basisvariablen von @’ sind also linear un-
abhingig. Wegen (5) stellt &' eine zulissige Basislosung dar, fiir welche die Ziel-
funktion einen gréBeren Wert annimmt als bei .

In kontraponierter Form lautet Satz 1:
LO-Problemlosbar A A (&' Basislosung = Z(®') < Z(E)) = A ([ <0).
z'¢B

ke{m+1,...,n}
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Offenbar ist die Primisse dieser Implikation aus der Aussage
& ist optimale Basislésung des LO-Problems (£, > 0, 1 = 1(1)m)
ableitbar, so daB folgendes notwendiges Kriterium fiir eine optimale Basisldsung gilt:
Satz 2.
& optimale Basuslosung (5, > 0, ¢ = 1(1ym) =>.m ﬁ ,,(d' <0).
Dieses ist auch hinreichend:

Satz 3.
A (& <0) = F optimale Basislosung (%, > 0, ¢ = 1(Lym).
}

ke{m+1.....8)
Beweis. Es sei & ein beliebiges Element von B, d. h., es ist
Ty + Taly + o+ Tl =By, % 20, T=1(1)n. (6)

Wir dehnen die Bestimmung der A geméiB (3) auch auf die Basisvektoren @,,a,, ..., Gy
aus und erhalten dafiir

A = 8, k= 1(1)ym; (U]
zur Abkiirzung wird noch
n
% :=‘2 Goikis ()
=

gesetzt. Dann ist nach (7) ag, = 2 fiir k = 1(1)ym, und auf Grund der Voraussetzung
von Satz 3 ist ag < 2 fiir ¥ = m + 1(1)n, in jedem Fall also

ap <z, k=11n. 9
Mithin gilt
Z(x) = Y agr = 3 - (10)
= i1

Substituiert man (3) in (8), so folgt:
m L m
2 3 A+ 2, 5 Al 4 oo 4 20 S din@i = By
=1 i=1 i=1
und nach Umordnung
" e »
(Zrota) o+ (£ ta) o o (£ ) 02 = 00n 1)
-] o1 J=

Aus (10) resultiert nach Einsetzen von (8) durch entsprechende Umordnung (die ao;
spielen die Rolle der a;)

Z(@) < (j’;lu) an + (i_:l Zf‘zj) tgp + -+ + (,Z; 21/1-1) Tom - (12)
j=1 - =
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Wegen der linearen Unabhingigkeit der Vektoren @, @, ..., @, kann a,, nur auf
eine Weise aus diesen linear kombiniert werden. Daher gilt auf Grund von (2) und (11)

n
&= lm;, 1=1lm, (13)
i=1

und in Verbindung mit (12)

Z(x) < an% + oy + oo+ + Gonin = Z(&),
was zu beweisen war.

Nach Satz 2 und 3 ist
A @=0 (14)

ke{m+1.....8}
also notwendig und hinreichend dafiir, daB eine Basislosung @, deren erste m Ko-
ordinaten von Null verschieden sind, optimal ist. (14) heit deshalb das Simplex-
kritervum. In Verbindung damit konzipieren wir ein Austauschverfahren, das nach
endlich vielen Schritten eine optimale Basislosung liefert. Zunichst wird diese
Grundform des Simplexalgorithmus in einem PAP dargestellt und dann im einzelnen
erliutert. Die theoretische Begriindung des Austauschverfahrens ist in der Bemer-
kung 6 enthalten.

Bemerkungen zum PAP der Abb. 7.2.

1. Die Eingabe am Anfang betrifft die Daten des LO-Problems in Normalform.
& bedeutet eine zulissige Basislosung mit z; > 0, ¢ = 1(1ym, zu der gemiB der
folgenden Anweisung der Wert der Zielfunktion zu berechnen ist.

2. Fiir¢ = 1(1ym und k = m 4+ 1(1)n sind dann die GréBen 4,;; und d; zu bestimmen.
Im AnschluB an diese Erlduterungen befassen wir uns mit einem Verfahren zur
Berechnung der 4;;.

3. Das folgende Entscheidungskistchen enthélt das Simplexkriterium (14). Wie
sohon bemerkt, bedeutet seine Erfiillung, da die im PAP mit & bezeichnete Basis-
13sung optimal ist. Diese Information wird zusammen mit dem Wert der Zielfunktion
im Ja-Zweig ausgegeben, und der Algorithmus bricht ab.

4. Anderenfalls wird im Hinblick auf Satz 1 ein k € {m + 1, ..., n} bestimmt, fiir
welches d; > 0. Ist dann die Aussage

Ag:t=11mA2y >0 =90
wahr, so folgt aus der Kontraposition des Hilfssatzes 2 in 7.3. die Unldsbarkeit
des LO-Problems. Nach Ausgabe dieser Information im Ja-Zweig bricht der Algo-
rithmus ab.

6. Im Nein-Zweig wird wie beim Beweis von Satz 1 eine Basislésung &' konstruiert,
fiir die Z(®') = Z(x) ist. Dabei sind die Koordinaten z;, + = 1(1)m, ¢ %I, und z}
positiv, wihrend die iibrigen verschwinden. Die neuen Basisvektoren sind also

@y, @y ooy poyy Bpeyy oo oy By B (16)
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&

A oy x ]

Berechne Z(x)

Berechne Ajy, d, fir
i=1()m, k=m+I(1)n

A 1d, 0)
ke{m+1,0yn}
ja nein
Bestimme k so, dafl
k€{(m+1,...,n}und d,>0

X optimal;
2(x)
{Ai: i=1)mAA,>0}=@
j nein

He=min{3L: i=tnmar; 20}

X
Bestimme ( so, daf? h= x[‘

Vertausche

X, und X,

ay und ap,

a ud a;
protokolliere diese
Vertauschung

Abb. 7.2

6. Die im Verfahren benutzte zulidssige Basislésung wird mit dem in 5. bestimmten
Basisvektor @' aktualisiert. Dabei ist durch eine Umformung des Problems dafiir zu
sorgen, daB der zu Anfang erhobenen Forderung des Nichtverschwindens der ersten
m Komponenten geniigt wird. Man erreicht das durch Vertauschung der Vektor-
koordinaten z; und z;, der Spaltenvektoren @; und @, sowie der Koeffizienten a,
und ay in der Zielfunktion. Diese Transformation ist in geeigneter Weise zu proto-
kollieren und bei der Ausgabe der Endlésung zu beriicksichtigen.

7. Da sich der Wert der Zielfunktion beim Austausch der Basislosungen ver-
groBert hat und nur endlich viele Basislosungen existieren, mufl das Verfahren nach
endlich vielen Schritten mit der Besti g eines optimalen Basisvektors oder der

Feststellung der Nichtlésbarkeit des LO-Problems abbrechen. Man wird bemiiht
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sein, in jedem Schritt einen méglichst groBen Zuwachs der Zielfunktion zu gewinnen.
Mit Riicksicht auf 7.3.(8) bedeutet das, k€ {m + 1,...,n) so zu wihlen, daB d;
unter den moglichen dieser Werte maximal ist.

Wir befassen uns jetzt mit der Berechnung der 1;;, j =m + 1(1)n, ¢ = 1(1)m,
in (3). Dabei bedeuten I € (1,2, ...,m} und k € {m + 1, ..., n} weiterhin die im PAP
der Abb. 7.2 bestimmten Indizes. Wir gehen von der Annahme aus, daB die Basis-
darstellung (3) fiir die am Anfang des Verfahrens vorliegenden @;, j = m + 1(1)n,
bekannt ist. Mit Hilfe der so gegebenen i;; wollen wir die Koeffmenfen X
in (3) nach Ausfithrung der durch ! und k bestimmten Vert
Konsequent wird dabei an folgender Indizierung festgehalten: ;; bedoutet den in
der Basisdarstellung von a; bei a; stehenden Koeffizienten. Uberha.upt werden die
in 7. eingefiihrten GroBenbezeichnungen nicht aktualisiert, d. h., eine bestimmte
Bezeichnung behilt ihre urspriingliche Bedeutung bei. Das gilt nicht fiir die sym-
bolischen Adressen der fiir die Abarbeitung des Simplexalgorithmus reservierten
Speicherplitze und insofern auch nicht fiir den PAP der Abb. 7.2.

Zunichst bestimmten wir 4}, fiir

i=1,2..,0=Lkl+1,..,m. (18)
-
Es ist @ = 3 Au@; und folglich
{1

ey = @ — ).',‘ Auay. (17)
H-l

Da 2; > 0 ist und die Vektoren auf der rechten Seite von (17) linear unabhingig
sind, gilt

1 !
M= N und A= —i (18)
fiir die iibrigen Indizes (16). Nun sei
jeEm+1,..,n), j+k. (19)
Dann ist

L m m »
= Z; Ao + Ao =‘E; g+ Ay );; Ay =‘Zl' Aiydy,
i i

und die lineare Unabhingigkeit der Vektoren @, ¢ = 1(1)m, erlaubt folgenden
Koeffizientenvergleich:

i=1: Aydp = Ay, also

M= 3_1; (20)
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il A+ 2Ae = Ay; und wegen (20)

Ak
M= Ay — —‘/11—"' (21)
d3

7.4.2. Rechenschema

Wir entwickeln ein Rechenschema fiir die Abarbeitung des Simplexalgorithmus von
Hand. Das diesem zugrunde liegende Formular spiegelt etwa die Speicherplatz-
verteilung der ALGOL-Prozedur in 7.4.3. wider. Die dabei auftretenden Felder
werden im Ablauf des Verfahrens aktualisiert, d. h. sukzessive mit neuen Werten
iiberschrieben. Das als Simplextabelle (-tableau) bezeichnete Sch enthilt m Zeilen
und n—m Spalten zur Aufnahme der jeweils aktuellen A-Koeffizienten in der Basis-
darstellung (3). Zuss.tzhch findet man am linken und oberen Tabelleneingang von
1 bis m bzw. m + 1 bl.s 7 indizierte eindi ionale Felder, die der Protoko].herung
der im PAP ausg Vertauschung dienen, und solche, welche die in einem
Zyklus bestimmten Werte der neuen Basisvariablen und der entsprechenden Koeffi-
zienten der Zielfunktion enthalten. In einer (m + 1)-ten Zeile erscheinen die Werte
der Zielfunktion fiir die aktuelle zuldssige Basislésung und der d;, j = m + 1(1)n.
Diese gewinnt man geméiB 7.1.(14) und (4) wesentlich als Skalarprodukte von Spalten-
vektoren des Schemas. Das Anfangstableau hat danach die Form von Tabelle 7.1.
Alle in Tabelle 7.1 einzut den Werte beziehen sich auf die StartgroBen des

Simplexalgorithmus. Sollte des Simplexkriterium nicht erfiillt sein, 80 wird die im
Zyklus des PAP bestimmte neue Basislésung mit den henden Vertauscl

P

und den gemiB (18), (20) und (21) zu berechnenden i-Koeffizienten der Ba.msdarstel-

m+1 m+2 [... k e »

m+1 m+2 |... k e n

4 z i B9, m+1 Bo,mea |- - - ok o Aon

1 1 £ Oo1 Amn J,men i Aan

2 2 Ty ] Aome Za,mea Ak Aan

! 1 7 | G | Ame | Ames L An

n m T Gom Am,met Am.msa Amk Amn
m+ 1 Z(x) dmia Ay “e d . d,

Tabelle 7.1
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m+1 m+2 |... k N n

m+1 m+2 |... i e n

U i Bog o, m+1 Go,mez |-+ @y v on

1 1 2] o | Amer Moms2 M Ma

2 2 z3 G0 2. m+1 ms2 A An

! E | % | aq | Aimer | Phmse A Ain
m |\ m | 2 | Gm | Aamer | Aamee Amt Amn
m+1 @) | dier | dee 4 A

Tabelle 7.2

lung der Vektoren @y, @meg; -+ @i-y» @iy Bpays - -, @, durch die Vektoren (15) in
einer umgeformten Simplextabelle (vgl. Tabelle 7.2) festgehalten. In Tabelle 7.2 ist

m
d; = agy — X agiki; — aordyy, (22)
i
wobei j einem der Indizes (19) oder ! gleich sein kann. Fiir diese j ist wiederum das
Simplexiriterium d] < 0 zu iiberpriifen und gegebenenfalls ein weiterer Umformungs-
sohritt mit der Tabelle durchzufiihren, wobei jedesmal die fiir die Bestimmung der
neuen Basislosung und das Austauschverfahren erforderlichen GréBen &', k, I zu
berechnen sind, usw.; mit Riicksicht auf die Verwendung in Programmen wird A’
weiterhin mit % bezeichnet.
Wir erliutern das Vorgehen an dem Beispiel 7.2.1. in der durch 7.2.3.(10) gegebenen
Normalform. Startbasislésung sei

2, =0, 7,=0, 2, =21, 2,=86, z=11. (23)

Um der Annahme zu entsprechen, da8 die ersten m (= 3) Koordinaten positiv sind,
formulieren wir die Aufgabe so, daB die eingefiihrten Schlupfvariablen die Indizes
1, 2 und 3 erhalten: Es ist dann das Maximum der Zielfunktion

Z = 0,6z, + 5 (24)
iiber dem Zulissigkeitsbereich
EN — =z, + 325 =21,

T+ 22— 3z, = 6,
T+ 2+ zs=11,
2,20, i=1(1)8,

(25)
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zu bestimmen. Der Basislésung (23) entspricht
=21, z,=6, z,=11, 2,=0, z;,=0, (26)

und die Anfangstabelle 7.1 hat die Gestalt der Tabelle 7.3. Wegen d, = 0,6 und
dy = 1 ist das Simplexkriterium nicht erfiillt, und wir miissen zur Gewinnung der
umgeformten Simplextabelle die GroBen kb, k, I berech Mit Beachtung der
Bemerkung 7 findet man dafiir die Werte der ersten Zeile in Tabelle 7.4. Nach 7.3.(3)
(r = m = 3) ergibt sich als neue Basislésung

2,/=0, 2,=21, 23=4, ,=0, z="1, (@7

und die umgeformte Simplextabelle erhilt auf Grund von (18), (20) und (21) die
Gestalt der Tabelle 7.5. Auf Grund des Simplexkriteriums ist die Basislésung (27)
noch nicht optimel, und es werden aus Tabelle 7.5 die A,k,l-GroBen der zweiten
Zeile von Tabelle 7.4 ermittelt, um damit einen weit Aust: hschritt durch-
zurechnen. Behalten wir die mit (24) und (25) eingefiihrte Koordinatenumerierung
bei, so ist gemdB 7.3.(3)

2= T—3% = 8,

z, =27 — 3%, = 24,

zp= 4—31,= 0, (28)
zi= 04+3 = 3,

;= 0

die neue Basislésung, und man gewinnt diesbeziiglich mit dem Austauschverfahren
die Tabelle 7.6. Man erkennt: Das Simplexkriterium ist erfiillt, und (28) stellt eine
optimale Basislosung dar. In der urspriinglichen Formulierung der Aufgabe ent-
spricht dieser die Ecke der Abb. 7.1, welche auf Grund einer anschaulich-geome-
trischen Betrachtungsweise in 7.2.1. als optimal ermittelt wurde. (27) ist der vom
Ursprung verschiedenen Ecke des Zulissigkeitsbereichs auf der z,-Achse zuzuordnen.

4 5 | ok ]
¢ | 5 7 5 1
i | & | an | 2| 1 3 " 3
1 1121 0 ) -1]3 Tabelle 7.4
2 2 6| o 2| -3
3 3 [ 1] o 1] 1
4 0 2| 1

Tabelle 7.3
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4 5 4 5
4 3
s z; ay; 1/2 0 i EN ag; 0 0
1 5 7 1 |—1y3| 13 1 5 8 1| ya | 14
2 2 27 0 1 1 2 2 24 0 | —3/4| 5/4
3 3 4 0 4/3 | —1/3 3 4 3 | 1/2 | 3/4 | —1/4
4 7 5/6 | —1/3 4 19/2 —5/8| —1/8
Tabelle 7.5 Tabelle 7.6

7.43. ALGOL-Prozedur zum Simplexalgorithmus

Wir entwickeln eine Prozedur SIMPLEX zur Losung eines LO-Problems nach dem
in 7.4.2. erérterten Rechenschema. Diesem liegt die in Abb. 7.3 angegebene Modi-
fikation des PAP der Abb. 7.2 zugrunde. In der Prozedur treten als formale Para-
meter auf:

- B “nh g R, g Rodort: g
mmn integer Gemii8 Darstellung des LO-Problems in Normalform.
A.X array Eindimensionale Felder zur Speicherung der Koeffi-

zienten der Zielfunktion bzw. Koordinaten der Start-
basislosung. Nach Abarbeitung der Prozedur steht auf

X eine optimale Basislosung.
ST array Zweidimensionales Feld zur Speicherung der A-Koeffi-
ienten in der Basisdarstellung 7.4.(3) (Simplextabelle).
w Boolean w ist mit false belegt, wenn das LO-Problem nicht 16s-
bar ist, sonst mit true.
z real 2z ist nach Abarbeitung der Prozedur mit dem Maximum

der Zielfunktion iiber dem Zulissigkeitsbereich belegt.

Nehmen wir an, da8 in einem Programm die den formalen Parametern entsprechen-
den aktuellen Felder die gleichen Bezeichnungen tragen, so sind diese in der Form
A,X[1:n] bzw. ST[1:m,m + 1:n] zu vereinbaren.

Lokal werden in SIMPLEX folgende GriBen benutzt:

Variable [, k, 2 mit der oben eingefiihrten Bedeutung;

%, j sind Laufvariable; )

hh ist reellwertig und dient zum Zwischenspeichern.
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Belegung der
Anfangstabelle

A 1d, 3 0)
ke{m+1,...,n}

X optimal ; Bestimme k so, daf}
2Z(x) k€{m+1....,n}und d, >0

{Ail:: I=)m AN, >0}=¢

ja nein

Qe [ nemrmin(3 imitoman0)]
i

Ifesﬁmmelso,abﬂh-%,‘l-‘ —l

Transformation der
Simplextabelle

Abb. 7.3

Auf dem Feld P werden die Vertauschungen bei der Bildung neuer Basissysteme
protokolliert; D speichert die fiir das Simplexkriterium maBgebenden GroBen d;,
und auf dem Feld ¥ werden sukzessive nach dem Simplexalgorithmus zuldssige
Basislosungen gebildet, deren letzte optimal ist.

procedure SIMPLEX (mm,4,X,ST,wz); value m,n;
Boolean w; integer m,n; real z; array 4,X,8T;
begin
integer 7,j,l,k; real h,kh;
integer array P[1:n]; array Y[1:n], D[m 4 1:2];
w := true;
for ¢ := 1 step 1 until n do begin P[] := ¢; ¥Y[¢] := X[7] end;
LA: forj:=m + 1 step 1 until » do begin D[j] := A[j];
for ¢ := 1 step 1 until m do D[j] := D[j] — A[7] X ST[2,5}
end;

k:=m+1;

for ¢ := m + 2 step 1 until » do i D[] > D[k] then k := 7;

it D[k] < O then begin z:= 0;

for © := 1 step 1 until m do begin z := z + A[z] x Y[]; X[P[:]]):= Y[:]
end;
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for ¢ :=m + 1 step 1 until » do X[P[:]] := Y[:]; goto LC
end;
for 7 := 1 step 1 until m do it ST[7,k] > O then
begin & := Y[:}/ST[:,k]; 1:=7;
for j:=1 + 1 step 1 until m do it ST[j,k] > O then begin
hh .= Y[j1/ST(j.k]; it kh < h then begin k := hh; I := j end
end;
goto LB
end;
w := false; goto LC;
LB: for<:=1step 1 until m do Y[¢] := Y[¢] — h x ST[4,k};
Y[l):=h; Y[k]:=0;
j:=P[l]; P[] := P[k]; P[k]:=7;
kh = A[l); A[l]:= A[k]; A[k] := hh;
kb := 1ST[LE]; STILE] := hh;
for j :=m + 1 step 1 until £ — 1 do ST[L,j] := ST[L,j] x kh;
j :=k + 1 step 1 until » do ST(L,j] := ST[1,j] X hk;
; := 1 step 1 until  — 1 do begin
for j := m 4 1 step 1 until ¥ — 1 do ST[z,j] := ST[s,j]1 — ST[¢,k] X ST[L,];
for j := k + 1 step 1 until » do ST(,j] := ST[,5] — ST[s.k] x ST[Lj];
ST[i,k) := —ST[2,k] X kh, end;
for v :=1 -+ 1 step 1 until m do begin
for j := m + 1 step 1 until k¥ — 1 do ST[s,j] := ST(%,j]1 — ST[:,k] x ST(1,51;
for j := k + 1 step 1 until » do ST[%,j] := ST[?,j] — ST[%,k] x 8T[1,j1;
ST[,k] := —8T[¢,k] X hh end;
goto LA;
LC: end

AbschlieBend noch einige Erliuterungen zur Prozedur SIMPLEX: Zu Anfang
werden die Boolesche Variable w mit trune und die Felder P, ¥ mit den Zahlen
1,2,...,n in der natiirlichen Anordnung bzw. den Koordinaten der Startbasis-
16sung belegt. Die folgenden Anweisungen erzeugen wesentlich die Anfangstabelle
und bestimmen k. Im Fall D[k] < 0 ist das Simplexkriterium erfiillt, und ¥ enthilt
bis eventuell auf Koordinatenvertauschungen eine optimale Basislésung; diese wird
nach Berechnung des Wertes der Zielfunktion und Herstellung der urspriinglichen
Koordinatenfolge dem Feld X iibermittelt, und der Algorithmus bricht ab. Sonst
wird die auf ST gespeicherte Simplextabelle transformiert. Dieser Programmteil
beginnt mit einer Laufanweisung, welche die durch Hinweisungspfeile heraus-
gehobene Struktur des PAP der Abb. 7.3 realisiert. Damit werden 4 und ! bestimmt.
Sind samtliche ST[7,k], ¢ = 1(1)m, kleiner oder gleich Null, so hat das LO-Problem
keine Losung und der Algorithmus bricht nach Belegung von w mit false ab. Anderen-
falls werden diese Anweisungen iibersprungen, und es erfolgt die Bildung eines
neuen zulissigen Basisvektors gemd8 7.3.(3) und der k-I-Positionstausch. Die weiteren
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Anweisungen betreffen die Umformung der Simplextabelle gemiB den Formeln
7.4.1.(18), (20) und (21). Der Riicksprung zur Marke L4 leitet einen neuen durch das
Simplexkriterinm gesteuerten Zyklus ein.

7.4.4. Bestimmung einer zuldssigen Basislosung

Der von uns erérterte Simplexalgorithmus setzt die Kenntnis einer zulissigen Basis-
16sung voraus. Die Bestimmung einer solchen ist sehr einfach bei einem Problem 1,
wenn die in 7.1.(6) auftretenden GroSen ay, 7 = 1(1)m, positiv sind. Nach Ein-
fiihrung von Schlupfvariablen gewinnt man hicr fiir das Problem in Normalform zu
den Nebenbedingungen 7.1.(11) mit

== =2, =0, Zpuy =010, Tniz = G20y -+ Tpsm = o (29)

eine zuliissige Basislésung. Fiir das Beispiel aus 7.2.1. erhilt man so auf Grund von
7.2.(10) den in 7.4. benutzten Startvektor (23).

Es gibt mehrere Verfahren, nach denen im allgemeinen Fall eine zulissige Basis-
16sung konstruiert werden kann. Das im folgenden betrachtete geht von der An-
nahme aus, daf das LO-Problem nicht ausgeartet und schon ein Element & seines
Zulassigkeitsbereichs mit & (= m) von Null verschiedenen Koordinaten bekannt ist.
Letzteres bedeutet fiir die Praxis keine erhebliche Einschrinkung der Allgemeinheit,
da das zu optimierende System mit seinen (vor der Optimierung) gegebenen Para-
metern ein solches Element liefert.

Der zu erérternde Algorithmus ist im PAP der Abb. 7.4 dargestellt; wegen der
fortlaufenden Aktualisierung wurde & mit @ bezeichnet. Bei der Begriindung des
Verfahrens beziehen wir uns auf die in 7.3. entwickelte Theorie.

Zuniichst wird durch Koordinatenvertauschung dafiir gesorgt, daB z; > 0 fiir
4= 1(1)k und — wenn maximal r der Vektoren @;, + = 1(1)k, linear unabhingig
sind — dieses fiir @;, = 1(1)r, zutrifft. Nach 7.3.(11) ist dann

k=r,

und & = r gilt genau dann, wenn @ zulissige Basislsung ist. Es sei also ¥ > r. Nach
Bestimmung der Basisdarstellung von a; durch die Vektoren a;, ¢ = 1(1)r, und der
GroBe d;, verzweigt sich das Programm, je nachdem, ob diese negativ ist oder nicht. Im
zweiten Fall ist zu priifen, ob die in 7.3. eingefiihrte Menge L leer ist. Trifft dies zu,
so folgt aus 7.3., Hilfssatz 2, die Unlosbarkeit des Problems, sofern d; > 0. In allen
anderen Fillen wird geméd8 7.3.(7) oder (14) die Grofle 2’ bestimmt und damit der
zulissige Vektor &’ := ®*" nach 7.3.(3) gebildet. &’ hat weniger von Null verschiedene
Koordinaten als &, und auBerdem ist wegen k'd; = 0 nach 7.3.(6)

Z(x@')y = Z(x).

Nach Aktualisierung von ® durch &’ wird durch Riicksprung zum Progmmma,nfa.ng
eine weitere Reduzierung der Zahl von Null verschied Koordi leitet,

)
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X, Gy, ee @, Gy

k:=Anzah! der pos. Koordinaten von X ; vertausche Koordinaten so, daf
x;>0 far i=1(1) k; protokolliere Vertauschung

ri=Maxir linear unabhdi Vektoren des Systems ["’t"’z""'ﬂa}i
vertausche Koordinaten so,dafl {€,, @, ,} linear unabhdngig;
protokolliere Vertauschung

r=k

. Jja
nein

r .
IBesfimme Ay so,dal} a, -]5 A q,I

[ P=max[{£L: i=1t0ra <05 )| (I o@

nein Jja
(X,
<—ih:=mln /1_.,';, /=m)r/\/\,.,,>a}|

-‘Iffimme Xx'nach 73.(3); x & x' I

ja
LO-Problem hat
keine L&sung

sofern nicht k = r. Dieser Fall tritt nach endlich vielen Schritten ein, und der Algo-
rithmus bricht mit der Bestimmung einer zuldssigen Basislésung oder der Fest-
stellung der Nichtlosbarkeit des LO-Problems ab.

Es sei dem Leser empfohlen, das Verfahren in einer ALGOL-Prozedur zusammen-
zufassen und mit dieser und SIMPLEX ein Programm zur automatischen Lésung
eines LO-Problems zu formulieren.

Abb. 7.4




8. Zum linguistischen Aspekt der Informationsverarbeitung

81.  Information — Signal — Zeichen

In MfL Bd. 9, 2.3., haben wir Informationen als Aquivalenzklassen gleichbedeutender
Signalmengen erkliirt und demit zum Ausdruck gebracht, daB sie bei ihrer Speiche-
rung, Ubertragung und Verarbeitung stets materiell gebunden sind. Es ist iiblich
geworden, eine derartig reprisentierte Information Nachricht zu nennen. Wir gehen
nicht genauer auf den Signalbegriff ein und stellen uns weiterhin gespeicherte In-
formationen als zeitlich stabile materielle Strukturen vor [53). Diese seien als rium-
liche Gebilde gedacht, welche sich aus ganzheitlichen El tarbestandteilen zu-

tzen, die ik its wieder Signalcharakter haben. Beispiele fiir derartige
Muster (pattern) sind die Datentriger der Rechentechnik wie Lochband, Lochkarte,
Magnetband, Ferritkernspeicher in konkreten Zustinden, aber auch Strukturen, die
im Laufe der Evolution gepriigt worden sind wie die Triger der genetischen Infor-
mation (s. u.). In diesen Fillen ist leicht einzusehen, da man die elementaren Ganz-
heiten in einer Folge anordnen kann, und es soll auch weiterhin angenommen werden,
daB eine solche ,,Linearisierung* des Informationstrigers nach einem bestimmten
Pnnznp méglich ist. Grundlegend fiir das hliche Denken, die Erkenntnis-
gew g und Kc ikation ist der Vollzug folgender Abbildung und Abstraktion:

1. Den Elementarbestandteilen des linearisierten Informationstrigers werden
Symbole zugeordnet, die auf diese hindeuten.

2. Symbole sind selbst materielle Gebilde, die nach prag hen Gesich kten

gebildet werden und auf Grund der unter 1. gemmnten Funktion ngnalchamkter
haben.

3. Das an den Symbolen gestaltlich Wahrnehmbare heilt Zeich

4. Wir sind in der Lage, gleichgestaltete Zeichen zu erk H ,,glewhgestaltob“ be-
stimmt eine Aqulvalenzrelatlon in der Menge der Zeichen, deren

Klasseneinteilung in objektivierbarer Weise vollzogen werden kann. Diese
Aquivalenzklassen heiBen Zeichengestalten.

Um Schwerfilligkeiten im Ausdruck zu vermeiden, werden wir weiterhin auch
Z talten Zeich 80 dafl aus dem Z

B

)i ng entnc
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werden muB, ob die Abstraktionsklasse oder ein Reprisentant derselben gemeint ist.
Die Menge Z der Zeichen(gestalten) heiBt Alphabet; wie bisher sei angenommen, daB
Z endlich ist. Auf Grund von 1. bis 4. werden Informationen durch gewisse Zeichen-
Jolgen oder Worter (strings) iiber einem Alphabet reprisentiert. So lassen sich etwa
Zahlen schriftlich durch Ziffernfolgen oder — wie in der babylonischen Mathe-
matik — durch Keileindriicke in Tontafeln darstell

Ein Beispiel aus der Biologie ist die Speicherung der genetischen Information fiir
die Biosynthese der EiweiBe in den Makromolekiilen der Desoxyribonukleinsdure
(DNS) (vgl. [30], Abschnitt ,,Aus der Genetik*‘). Diese sind — wie 1953 von WaTsox
und Criok entdeckt wurde — Ketten sogenannter Nukleotide, die sich aus einem
Zuckermolekiil, einem Phosphorsidurerest und je einer von vier Stickstoffbasen
zusammensetzen. Nach dem in Abb. 8.1 dargestellten Prinzip kann sich an jedes
Zuckermolekiil eine der Stickstoffbasen

Adenin (a), Thymin (t), Guanin (g), Cytosin (c) (1)

h

anlagern, und derartige Seq sind Reprisentanten der geneti Informatio-
nen. Die Chromosomen enthalten (vermutlich) schraubenférmig gewundene DNS-
Doppelstringe, die durch Wasserstoffbriicken miteinander verbunden sind. Diese
bilden sich jeweils nur zwischen Adenin und Thymin sowie zwischen Guanin und
Cytosin aus, so daB eine solche DNS-Doppelhelix aus gemiB Abb. 8.2 komplemen-
tiren Nukleotidketten besteht (Positiv/Negativ). Auf dieser Anordnung beruht die

Abb. 8.2
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originalgetreue Kopierung der DNS bei ihrer Replikation und der Steuerung der
Proteinsynthese als wesentlicher Zellfunktion.

Die Stickstoffbasen (1) sind chemische Verbindungen, die als elementare Bau-
steine eines Informationstrigers fungieren. Durch Einfiihrung der Symbole a, t, g, ¢
wird der Ubergang zur Wortdarstellung der genetischen Information iiber einem
Alphabet vollzogen.

Wir betrachten die Verarbeitung einer Information, die als Wort w iiber einem
Alphabet 4 dargestellt ist, durch ein technisches oder biologisches System, dessen
Signalstruktur mit einem Alphabet B korrespondiert. Dabei ist die gegebene Nach-
richt dieser Signalstruktur anzupassen, was auf eine Codierung des Wortes w iiber B
hinauslduft. Das sei an zwei Beispielen erldutert:

1. Auf Grund der Darstellung im Dezimalsystem entspricht jeder natiirlichen
Zahl ein Wort z iiber dem Alphabet
4=10,1,23,4,5678,9.

Benutzt man zur Signalisierung der Zahlinformation einen bistabilen Speicher, dessen

Zustinde durch 0, L symbolisiert werden, so ist z in ein Wort iiber dem Alphabet
B = {0, L}

zu iibersetzen. Das kann z. B. mit Hilfe des direkten dezimalen Codes (vgl. MfL

Bd. 9, 2.3.) geschehen, indem man in z jeden Buchstaben aus 4 durch die ent-
sprechende Tetrade der Zeichen 0, L ersetzt.

2. Proteine sind lineare Aneinanderreihungen von Aminosiuren. Da es 20 ver-
schiedene Aminoséuren gibt, kann jedes Protein durch ein Wort iiber einem Alphabet
A ausgedriickt werden, das 20 Zeichen enthilt. Man kann dafiir etwa die in Tabelle
8.1 angegebenen Abkiirzungen wihlen. Zur Signalisierung der Information, ein
bestimmtes Protein zu synthetisieren, bedient sich die Natur der Stickstoffbasen-
Sequenzen an einem DNS-Molekiil, was als Verschliisselung eines Wortes iiber 4
durch eins iiber dem Alphabet B = (a, t, g, ¢} zu deuten ist. Die dabei stattfindende
Codierung wurde in der ersten Hilfte der sechziger Jahre entdeckt. Der genetische
Code hat gleiche Wortlinge (vgl. MfL Bd. 9, 2.3.), und zwar entsprechen den Zeichen
von 4 Triaden (Tripletts) von B. Eine Zuordnungstabelle findet man im Biologie-
lehrbuch der Klasse 12.

Ala Alanin Leu Leuzin

Arg Arginin Lys Lysin

AsN Asparagin Met Methionin
Asp Asparaginsiure Phe Phenylalanin
Cys Cystein Pro Prolin

GIN Glutamin Ser Serin

Glu Glutaminsiure Thr Threonin
Gly Glyzerin Try Tryptophan
His Histidin Tyr Tyrosin

Ile Isoleuzin Val Valin

Tabelle 8.1. Die zwanzig Aminosiuren



8.2. Zur Syntax formaler Sprachen 199

8.2.  Zur Syntax formaler Sprachen

Nach den in 8.1. skizzierten Vorstellungen lassen sich Informationen durch Folgen
von Zeichen eines Alphabets X ausdriicken, die wir Wérter nennen. Wie in MfL Bd. 9,
3.1.1, sei 2* die Menge aller Worter iiber Z, der auch das leere Wort ¢ angehdren
soll. Wérter w,, w, € Z* konnen als Zeichenreihen aneinandergefiigt werden und
bilden dann ein neues Wort w. Wir bringen diese als Verkettung bezeichnete Verkniip-
fung durch

0 =w, 0wy 0
zum Ausdruck. K. SOHROTER [46] hat die Struktur
G =(Z*o0,¢2) (2)

ein semiotisches Quadrupel genannt. In MfL Bd. 12, Kap. 1, wird gezeigt, daB & eine
freie Halbgruppe mit dem neutralen Element ¢ und dem Erzeugungssystem Z ist.
Darauf beruhen alle algebraischen Methoden zur Untersuchung formaler Sprachen
iiber £ (vgl. [2]), worunter wir wie in MfL Bd. 9, 3.1.1., beliebige Teilmengen von
Z* verstehen. Ist L S X* eine solche, so interessieren vor allem folgende Fragen:

1. Wie li8t sich L formal charakterisieren?

2. Kann mit Hilfe eines Algorithmus von einem beliebigen Wort w € Z* entschieden
werden, ob w zu L gehért oder nicht?

3. Nach welchen Prinzipien lésen technische oder biologische Systeme die unter 2.
formulierte Erkennungsaufgabe?

8.21. Generative Grammatiken

Uberwiegend bedient man sich bei der Charakterisierung formaler Sprachen L der
von N. CEoMSKY eingefiihrten generativen Gr tiken. Diese b neben dem
Alphabet X der Basiszeichen (Terminals), das L zugrunde liegt, ein weiteres Alphabet
@ (auch Hilfsvokabular genannt, & n X = @) sogenannter metalinguistischer Vari-
abler zur Formulierung endlich vieler grammatikalischer Regeln der folgenden Art:
Jede Regel ist ein geordnetes Paar (u, v) von Wortern u, v iiber dem Gesamtalphabet

Ir'=oéuvZx (3)

mit der MaBgabe, daB » mindestens ein Element von ® enthilt. R sei die Menge
aller Regeln. Eine generative Grammatik (Regelgrammatik) @ wird nach Auszeich-
nung eines Elementes § € @ als sogenannter Startvariabler als das Quadrupel

8= (9,2Z,RS) @
bestimmt.
Um die Charakterisierung einer Sprache L S Z* durch (4) zu beschreiben, fijhren

wir den Begriff der 4blestung ein. Dazu wird ein Wort w iiber I' betrachtet und
daraufhin untersucht, ob dieses ein Teilwort u enthélt, das als erste Komponente in
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einer Regel (u, v) € R vorkommt. Ist dies der Fall und wird « durch v ersetzt, so sagt
man von dem neu entstandenen Wort y, da8 dieses unmittelbar aus w ableitbar ist.
und schreibt dafiir w = y.

Definition 1. w=>y genau dann, wenn Wérter z,, 2, € I™* und eine Regel (u,v) € R
existieren, so daB w =z, 0cu 02, und y =1z 000z, ist.

Offenbar gilt (2, = 2z, = ¢):
Wenn (u,v) € R, so u=>v. (5)

Wegen (5) werden die Regeln von R hiufig in der Form « — v an Stelle der Paar-
schreibweise (z, v) angegeben. Definition 1 erklirt eine Relation iiber I'*.

Definition 2. y ist ausw ableitbar mit dem Regelsystem R (w = y), wenn es Worter
Wo, Wy, «.., wi (K > 0) derart gibt, daB w = wy=> w; > w, = --- > wp =y gilt.
Damit gelangen wir zu der grundlegenden

Definition 3. Die von der Regelgrammatik (4) erzeugte (generierte) Spracke Lg
ist die Menge aller Worter aus 2*, die aus der Startvariablen 8 mit dem Regelsystem
R ableitbar sind:

Lg=(z:2€ 2*A8 S ). (6)

Von den zahlreichen speziellen Regelgrammatiken und zugehérigen Sprachen
heben wir nur die folgenden hervor:

Definition 4. ® heiBt beschrinkt (nicht verkiirzend, kontextsensitiv), wenn in jeder
Regel (z,v) € R
Uu) < Uv)
ist, wobei l(w) die Linge des Wortes w (Anzahl der Zeichen) bedeutet.

Definition 5. & heiBt konfextfrei, wenn in jeder Regel (u, v) € R u eine Hilfs-
variable ist (x € ®). Eine kontextfreie Grammatik heiBt e-frev oder O-frei, wenn in
R keine Regel der Form 4 — ¢ mit 4 € ® auftritt.

Offenbar ist eine e-freie Grammatik beschriankt.

Definition 8. @ heiBt rechis-linear, wenn jede Regel in R von der Form 4 —zB
oder A — z ist, wobei 4, B € ® und x € T*,

8.2.2. Backus-Systeme

Besonders bei der Dokumentation von Programmiersprachen bevorzugt man an
Btelle kontextfreier Grammatiken sogenannte Backus-Systeme, die eine signifikante
Bildung metalinguistischer Variabler ermoglichen und im iibrigen nur beziiglich der
Regelnotation eine Variante von (4) darstellen. Dazu betrachtet man ein Alphabet
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Z,, neben dem noch die bereits in MfL, Bd. 9, 3.1., eingefiihrten Zeichen
<’ )» n=, l (7)

benutzt werden, die weder Z noch X, angehoren sollen. & sei eine endliche Teilmenge
von X} \ {¢), d. h. eine endliche Menge ,,eigentlicher‘* Worter iiber dem Alphabet X, :

b=z m .. @) ®
Mit Hilfe von (8) bildet man die Zeichenmenge
= ‘(zl>r <22>» ceey (Zk>|» 9)

deren Elemente als bildliche Ganzheiten aufzufassen sind. M sei eine Menge von
Regeln der Form
zi=y |yl 1t @21, (10
wobei z € @ und y; € ™ fiir 1 < 7 < n ist. I' bedeutet das mit (9) und dem Alphabet
Z der Basiszeichen gebildete Gesamtalphabet (3). Das Quadrupel
=(2,Z,M,8) (11)

heiBt ein Backus-System iiber ® und Z. Die durch B erzeugte Sprache Ly wird iiber
eine zugeordnete generative Grammatik erklirt. Dazu formt man jede Regel (10)
von M in geordnete Paare (z,y,), (2, ¥3), ..., (%, y,) um und betrachtet deren Gesamt-
heit als Rege]system R der im ubngen mit den Komponenten &, £ und § von B

gebildet tiven Gra
= (P, Z, R, 8). (12)
DefinitionsgeméB ist dann
Ly = Lg. (13)
Offenbar gilt

Satz 1. Eine formale Sprache L S X* ist kontextfrei genau dann, wenn ein Backus-
System B = (@, X, M, 8) existiert mit der Eigenschaft

L=Lg.

In MfL Bd. 9, Kep. 3, wurde ALGOL 60 mit Hilfe eines Backus-Systems ein-
gefiihrt. Das dieser Sprache zugrunde liegende Alphabet X umfaBt 116 Basiszeichen
(Grundsymbole). X, ist das lateinische Alphabet, mit dem die Variablen von & ge-
bildet werden, die wir in MfL. Bd. 9, 3.1.1., mit einem Hinweis auf die hier erfolgte
Priizisierung metalinguistische Begriffe genannt haben. Der an dieser Stelle erwiihnte
ALGOL-Report [42] umfaBt wesentlich die damit gebildeten Regeln (10). Die
konsequente Charakterisierung von ALGOL 60 durch ein Backus-System hitte in
der Welse zu erfolgen, daB man eine etwa durch (Programm) symbolisierte meta-
Ii ische Variable a ichnet und ALGOL als die Menge der daraus mit den

&
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Regeln ableitbaren und nur Grundsymbole enthaltenden Worter definiert, welche
dann als syntaktisch richtig gebildete Programme anzusprechen wiren. DaB man diese
80 nicht bestimmen kann und sich mit einer verbalen Beschreibung etwa wie am
Ende von MfL Bd. 9, 3.2., begniigen mu8, liegt daran, da8 ALGOL nicht vollsténdig
durch Regeln der Form (10) beschrieben ist. Ein syntaktisch korrektes Programm
muB z. B. der Forderung geniigen, daB jede benutzte GroBe (mit Ausnahme der
Marken) vereinbart ist.

8.2.3. Belsplele und Anwend

P

J

1. In MfL Bd. 9, 3.1.1., haben wir die Gesamtheit der Ausdriicke des Aussagenkalkiils
als Sprache iiber dem Alphabet

=29 ()A VD) (14)

durch ein Backus-System charakterisiert.!) Dafiir soll jetzt eine Regelgrammatik an-
gegeben werden.
Zunichst bestimmen wir in dieser Weise die Menge der Aussagenvariablen

z, 2V, 2VVY, ...
als Sprache L, iiber dem Alphabet (14): Es sei
®, = ((S,H), 2, B, 8), (1)
wobei R, aus den Regeln?)
8 —aH
H - vH (16)
H-—>¢
besteht. @, ist kontextfrei; das Hilfsvokabular @ enthélt nur zwei Zeichen S, H,

von denen das erste als Startvariable fungiert. Beispiele fiir Ableitungen sind die von
oben nach unten zu lesenden Wortfolgen

S 8 S
xH xH xH
z xVH avH
zv aVVH
A AN

Offensichtlich ist L, = Lg,.
Die Wortmenge L, der Ausdriicke des Aussagenkalkiils 1dBt sich durch die kon-
textfreie Grammatik

©, = ({S, H, K}, Z, Ry, 8) amn
1) Das Zeichen => in (14) mége man nicht mit dem in Definition 1 eingefiihrten Ableitungs-

pfeil verwechseln.
%) Vgl. die Bemerkung zu (5).
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generieren, in der 2 das Alphabet (14) und R, das Regelsystem
8—~>H
8—>-8
8> (8A8)
S—> (v
8>18=>8)
S>Be8
H —»zK
K >vK

K—>e

(18)

bedeutet. Eine vollsténdige, d. h. mit einem Wort aus Basiszeichen endende Ab-

leitung ist z. B.
S
8=>8)
((S v8)=> S)
(@v8)=8)
(@K v8) = §)
(@K v 8) = H)
(@vS)=H)
(@vH)=> H)
(@ vzK)= H)
((.t vaVK)=> H)
(@vav)=H)
(@vav) = 2K)
(@vav)=2vE)
(@ vav)=>2vVEK)
(@vav)=avy).

(19)

Nach 8.2.2. gewinnt man aus dem Backus-System von MfL Bd. 9, 3.1.1., folgende
e-freien Grammatiken @&; und @; zur Charakterisierung von L, bzw. L,, wenn bei
der Bildung von @&; (Aussagenvariable) mit S und bei der Bildung von @; (Ausdruck)
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und (Aussagenvariable) mit § bzw. H abgekiirzt werden; X bedeutet weiterhin das
Alphabet (14):

G = (18}, Z, R, 8) (20)
mit dem Regelsystem R
S>>z

(21)
S —>8v

und
®; = (18, H), Z, R;, 8) (22)

mit dem Regelsystem R;
S—>H
8§—>—8
8§ —>(8AS8)
‘S—>(8vs)
S—>(8=>8)
§>Se8)

(23)

H->z
H —~Hv.

Im Hinblick auf die Charakterisierung von L, und L, durch &,, ®;, bzw. &,, @,
fiihren wir folgende Definition ein.

Definition 7. Zwei Regelgrammatiken & und @&’ heiBen dguivalent (in Symbolen
ausgedriickt @ ~ @), wenn Lg = Lg ist.
Damit gilt
G ~@ und @~ .

Wie in dem Beispiel int: iert all in die Frage, ob eine kontextfreie Gram-

&

matik einer e-freien dquivalent ist. Diesbeziiglich gilt folgender

Satz 2. Es sei L eine durch die kontextfreie Grammatik & = (P, 2, R, S) erzeugte
Sprache. Dann kann durch einen Algorithmus entschieden werden, ob ¢ € L oder ¢ ¢ L.
Zu L’ = L\ (¢} 1st eine e-freie Grammatrk &' konstruierbar, fiir welche

L' =Lg
18t. Danach existiert zu jeder kontexifreien Sprache, die das leere Wort nicht enthdlt,

eine diese erzeug e-frete Gr tik.

Einen Beweis des Satzes 2 findet man in [32], 1.2.18.
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2. Die in den zuriickliegenden 25 Jahren entwickelte Theorie der generativen Gram-
matiken war urspriinglich auf die Analyse natiirlicher Sprachstrukturen gerichtet.
Die Grundidee dieses Vorgehens findet man schon bei W. v. HumBoLDT, der das
Erfassen der Unendlichkeit einer Sprache durch den Gebrauch endlicher Mittel als
das Wesentliche einer Gra tik hervorhob. Der darin enthaltende Gedanke der
Spracherzeugung ist Ausgangspunkt der grundlegenden Arbeiten von N. CHOMSKY.
Die formalen syntaktischen Methoden werden auf verschiedene Ebenen des Sprach-
materials angewandt. Beispielsweise untersucht man in der Morphologie den Aufbau
von Wortformen und in der Syntax (im engeren Sinne der Sprachwissenschaft) die
Struktur von Sitzen. In diesem Fall sind Wérter der betreffenden Sprache atomare
Zeichen — entsprechen also den Buchstaben des Alphabets ' —, und der linguistische
Begriff ,,Satz‘‘ korrespondiert mit dem bei der Bestimmung von X* eingefiihrten
Wortbegriff. Untersuchungen dieser Art sind Gegenstand der mathematischen Lin-
gursttk [16, 21, 3]. Als Beispiel betrachten wir eine kontextfreie Grammatik in Form
eines Backus-Systems zur Erzeugung einiger Siitze der englischen Sprache. Die
Elemente von 2 sind Wérter derselben, die zur Verdeutlichung ihres Zeichencharak-
ters in runde Klammern eingeschlossen werden:

Z = {(a), (the), (child), (girl), (boy), (teases), (sees), (kisses), (catches)). (24)

Fiir X, wihlen wir das lateinische Alphabet und bilden damit die metalinguistischen
Variablen

(Satz), (Nominalphrase), (Verbalphrase), (Artikel), (Nomen), (Verb), (25)
die in ihrer Gesamtheit @ ausmachen. Die Regeln der Form (10) sind

(Satz) ::= (Nominalphrase) (Verbalphrase)

(Nominalphrase) ::= (Artikel) (Nomen)

(Verbalphrase) ::= (Verb) (Nominalphrase) (26)
(Artikel) 1= (the) | (a)

(Nomen) ::= (child) | (girl) | (boy)

(Verb) ;1= (teases) | (sees) | (kisses) | (catches)

Eine mégliche Ableitung ist
(Satz) = (Nominalphrase) (Verbalphrase) =
(Artikel) (Nomen) (Verbalphrase) =
{Artikel) (Nomen) (Verb) (Nominalphrase) =
(Artikel) (Nomen) (Verb) (Artikel) (Nomen) = -+- =
(the)  (boy) (teases) (a) (girl)
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3. Erkenninisgewinnung griindet sich auf Informationsaufnahme. Nach 8.1. erfordert
diese die Erkennung materieller Strukturen in ihrer Zusammensetzung aus Elemen-
tarbausteinen (Mustererkennung, pattern recognition). Bei der Bestimmung der letzteren
ist zu beriicksichtigen, welches informa,tionsvemrbeitende System an diesem Vor-
gang beteiligt ist. Zur Anpassung an ein solches ist im al inen eine Vereinfach
und Reduktion der Struktur im Hinblick auf deren leichte Erkennbarkeit und das
in einem bestimmt hang Wesentliche (feature extraction) erforderlich.
Die hierbei eingesetzten Methoden sind sehr vielfaltig und werden seit einigen Jahren
intensiv bearbeitet [14).

Um etwa einen Kurvenverlauf zu analysieren, konnte man diesen durch Geraden-
stiicke approximieren und speziell durch eine Treppenfunktion (Puls) ersetzen.
Nach Wahl einer Norm fiir die Abweichung (meist ist es die Quadratmittel- oder
Tschebyscheffnorm) bestimmt man die Parameter in der Geradendarstellung eines
Kurvenstiickes so, daB eine vorgegebene Abweichungstoleranz nicht iiberschritten
wird. Mit der Losung der Approximationsaufgabe ist also die Auffindung einer
zweckmiiBigen Segmentierung des gesamten Kurvenverlaufs verbunden. Da die
Ersatzstruktur einfach sein soll, wird man bemiiht sein, mit mdglichst wenig Seg-
menten auszukommen.

Beispielsweise untersucht G. M. PHILLIPS in [38] folgende Aufgabe: f sei eine auf
[a, b) zweimal differenzierbare Funktion, deren zweite Ableitung dort konstantes
Vorzeichen besitzt. Es ist eine stetige Approximation des Graphen von f durch
Geradenstiicke in der Darstellung y = pz -+ ¢ zu bestimmen, fiir die mit einem vor-
gegebenen & > 0 auf dem betreffenden Segment [(«, 8] S [(a, b)

max |f(z) — (pzr+ @)l S ¢ @n
zE(ap)
gilt und die Anzahl aller Segmente minimal ist. Fiir die Lsung wird ein Algorithmus
angegeben, der tlich auf das Gleichungssystem 5.3.1.(40) Bezug nimmt. Andere
Algorithmen zur Kurvensegmentierung mit Anwendungen auf Praxisprobleme findet
man in [35] und [36].

Syntaktische Methoden der Mustererkennung [13] beruhen darauf, da8 man den
zu untersuchenden Strukturen Worter iiber einem Alphabet zuordnet und an Stelle
der Strukturanalyse eine adidquate linguistische Aufgabe beziiglich einer geeignet
konstruierten formalen Sprache betrachtet. Meistens handelt es sich um die Losung
eines Entscheidungsproblems im Sinne der Einleitung zu 8.2. Nehmen wir zum
Beispiel an, daB die zu untersuchenden Strukturen Elektrokardiogramme sind,
denen Woérter iiber einem Alphabet 2 entsprechen. Ein bestimmtes Krankheitsbild
ist dann durch eine Teilmenge L & 2* zu beschreiben. Um festzustellen, ob ein
Patient an dieser Erkrankung leidet, ist das seinem EKG entsprechende Wort zu
besti und zu entscheiden, ob dieses zu L gehért oder nicht. Dieses Diagnose-
problem wird in Verbmdung nut der oben betracht: Kurvenseg) ierung in
[22] erortert.
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8.24. B k ur S ik

9

Die Syntax einer formalen Sprache charakterisiert diese als eine Menge in bestimmter
Woeise strukturierter Zeichenreihen, ohne etwas iiber deren Bedeutung festzulegen.
Das ist Gegenstand der S ik, die wir in MfL Bd. 9, 3.5., mit Hilfe einer Abbil-
dung beschrieben haben. Am Beispiel einer Programmiersprache wurde dort gezeigt,
wie man diese mit Hilfe einer EDVA realisieren kann.

In den letzten Jahren sind wesentlich fiir kontextfreie Sprachen Versuche unter-
nommen worden, die Bedeutung eines Wortes in Verbindung mit seiner Generierung
festzulegen. So hat D. E. KNuTH eine Konzeption entwickelt [26], mit Hilfe gewisser
Attribute semantische Regeln zu formulieren, die — in Verbindung mit den syntak-
tischen angewendet — Form und Inhalt (Bedeutung) eines Wortes einer formalen
Sprache schematisch bestimmen. Beispielsweise konnte man so den Normalformen
des Aussagenkalkiils Schaltpline im Sinne von MfL Bd. 9, 2.4., entsprechen lassen
(vgl. dazu [3]).

8.3.  Entscheidungsverfahren

Bei der Erorterung von Fragen der Strukturerkennung wurde auf die praktische
Bedeutung von Entscheidungsproblemen hingewiesen. In diesem Abschnitt priizisieren
wir damit zusammenhéngende Begriffe und zeigen die Losbarkeit eines wichtigen
Entscheidungsproblems.

Eine formale Sprache L S Z* heiBt entscheidbar (rekursiv), wenn ein Algorithmus
existiert, der in endlich vielen Schritten 1estsbellt, ob ein Wort w € Z* zu L gehért
oder nicht. Dieser wird dann ein Entscheidungsverfahren g

Satz 1. Jede von einer beschrinkten Grammatik (8.2., Definition 4) erzeugte Sprache L
st entscheidbar.

Beweis. Es sei (@, Z, R, 8) eine L erzeugende beschriinkte Regelgrammatik und
w ein beliebiges n Zeichen enthaltendes Wort aus 2*. Das Wort w gehort der Menge M
aller Worter iiber dem Gesamtalphabet I' = @ u X an, die sich aus nicht mehr als.
n Zeichen zusam t: I' mége insgesamt p (p > 1) Zeichen enthalten. Die

Anzahl der Elemente von M ist

pP—1
|M|=P°+P1+P’+"'+P'=ﬁ<1’"“~ (1)
w € L gilt genau dann, wenn es eine Ableitung
S w=> - Swy=>w, wel*, t=110)k—1, (2)

gibt, von der angenommen werden kann, daB jedes der auf § folgenden Worter nur
einmal vorkommt. Anderenfalls konnte man die einer Wortwiederholung entspre-
chende Schleife herauslosen. Fiir die folgende Betrachtung wollen wir k die Lénge
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2!

der Ableitung (2) nennen. Da L von einer nicht verkiirzenden Grammatik erzeugt
wird, gilt w; € M, 7 = 1(1)k — 1. Es existieren nur endlich viele Folgen paarweise
verschiedener Worter

Wy, W,y .« ooy Wiy, Wy, Wi € M, 7 = 1(1)k, (2a)

der Linge k, und zwar

14N
k
Insgesamt lassen sich iiber M
1M1 (| M
k=2 (F)u @

solcher Folgen (2a) bilden. Wegen

ist
K< |M|!- M| < (M) + 1) < @™+ DI < @9 4)

Damit hat sich folgendes Verfahren ergeben: Um zu entscheiden, ob w € L oder
w ¢ L ist, sind endlich viele Folgen (2a) zu iiberpriifen, ob sie eine Ableitung

S>wy>w=>-c>w, welr*, lw)=<n,

konstituieren und mit dem Wort w; = w enden. L ist also entscheidbar.

Der Beweis moge auch verstandlich h Iche Bedeutung die Kombinatorik
fiir die Algorithmentheorie, speziell fiir die Bewertung von Algorithmen besitzt. Un-
geniigende Vorstellungen iiber die Anzahl der durchzufiihrenden Schritte fiihren oft
zu MiBerfolgserlebnissen bei Programmliufen. Die Abschétzung (4) liBt erkennen,
daB man das Entscheidungsproblem fiir die von einer beschrinkten Grammatik
erzeugte Sprache praktisch so nicht 16sen kann.

Satz 1 gilt speziell fiir Sprachen, die von ¢-freien Grammatiken erzeugt werden.
Ein Entscheidungsverfahren fiir die in 8.2.3. betrachtete Sprache L, liBt sich mit
dem PAP der Abb. 8.3 beschreiben. Darin bedeutet ,,El tarausdruck‘‘ einen
Ausdruck der Form

I\
—1(Aussagenvariable) oder ((Aussagenvana.ble)
@

Nach Eingabe des Wortes w wird gepriift, ob w aus einem Wort w, durch Anfiigen
des Zeichens ¥ erzeugt werden kann.

Die Teilstruktur der Abb. 8.4 entspricht der Entscheidung, ob w A
variable ist, also der in 8.2.3. definierten Sprache L, S L, angehért; w & w, bedeuwt

(Aussagenvarls,ble))
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die Aktualisierung von w durch w;. Angewendet auf du in 8.2.3.(19) abgeleitete Wort
liefert der Algorithmus nacheinander die Z

(@vav)=>2vv)
(z=>2vY)

z

und bestimmt so w als Wort der Sprache L,. Die Begriindung, da8 der mit dem PAP
der Abb. 8.3 dargestellte Algorithmus ein Entscheidungsverfahren fiir L, ist, ergibt
sich ittelbar aus dem Regelsystem 8.2.3.(18) (vgl. dazu auch [4], §2).

&

&

Ersetze den ersten inw
'~ vorkornmenden Elemen-
tarausdruck durch x

Abb. 8.3 Abb. 8.4

Um zu zeigen, da8 Entscheidungsprobleme auch in eingekleideter Form auftreten
kénnen, betrachten wir nach [32] noch ein Beispiel aus der linearen Algebra. S8imt-

liche linearen Gleichungssysteme mit g hligen Koeffizienten und Storgliedern
lassen sich als Woérter iiber dem Alphabet
={0,1,2,3,4,5,6,7,8,9, 4+, —, =,7, ;}
interpretieren. Das Zuordnungsprinzip sei am Beispiel des Systems
Tt o=1,
3z, —z, =2

erklirt, dem des Wort
ol + 122 =1;  +301 — 122 =2;
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entsprechen soll. M, sei die Menge aller dieser Worter und M; & M, S Z* die mit
den lasb Gleich t korrespondierende Teilmenge. Dann ist die Unter-
suchung der Losba.rkelt eines konkreten der betrachteten Systeme damit gleich-
bedeutend, daB von dem entsprechenden Wort w € M, festgestellt wird, ob dieses
zu M, gehort oder nicht. Nach 6.1.3. kann das mit Hilfe des GauBschen Algorithmus
geschehen. M, heiBt entscheidbar relativ zu M,, da sich das Entscheidungsproblem
hier nur beziiglich der M; umfassenden Teilmenge M, von Z* stellt.
In [21] findet man eine ziemlich umfassende Erérterung entscheidbarer und
tscheidbarer Eigenschaften kontextfreier Grammatiken. Entscheidbar ist z.B.,
ub die von einer solchen erzeugte Sprache leer ist. Eine weitere entscheidbare Eigen-
ochaft wird in 8.2., Satz 2, ausgedriickt.

8.4.  Sprachen und Automaten

Bisher haben wir Informationsaufnahme tlich als ein Strukturerk g
problem charakterisiert, ohne auf die Beschaffenheit technischer und biologischer
Systeme einzugehen, die dazu befihigt sind. Es liegt nahe, deren abstrakte Beschrei-
bung auf der Ebene einer die Information darstellenden Sprache vorzunehmen. Man
gelangt so zum Begriff des Automaten, der eine bestimmie Sprache L akzeptiert. Dabei
ist zu erwarten, daB die Kompliziertheit des Automaten mit der Kompliziertheit
von L zunimmt,

Deas sei genauer fiir die in 8.2. mit Definition 6 eingefiihrten rechts-linearen Spra-
chen erldutert. Als Beispiel betrachte man die Grammatik

= (P, %, R, 8)

mit @ = (8}, Z = {a, b} und dem Regelsystem R
8 —>aS
8—>b.

Eine mdgliche Ableitung ist
8 = a8 = aa8 = aaal = aaab.

Offenbar ist Lg die aus den Wortern a"b (n =0, 1, 2, ...) bestehende Sprache, wenn
a” das n-malige Hintereinanderschreiben des Buchstaben a bedeutet.

Im Zusammenhang mit der Erkennung rechts-] lmearer Sprachen fithren wir den
Begriff des endlichen (deter hen) Automaten ein. ichst denke man dabei an
ein Gerit, das iiber eine Emgabeemheu und eine Steuereinhest mit endlich vielen Zu-
stinden verfiigt. Die Eingabeeinheit sei ein in Zellen eingeteiltes Band, in welche
Zeichen eines Eingabealphabets 2 eingetragen werden (vgl. Abb. 8.5). Diese Redeweise
soll eine bestimmte Signalisierung dieser Zeichen zum Ausdruck bringen. Uber
dem Band kann sich ein zur Steuereinheit gehérender Lesekopf von links nach rechts
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bewegen, und zwar so, daB er sich in Ruhe stets iiber einer Zelle befindet. — Die
Zustinde der Steuereinheit sind ebenfalls als Signale aufzufassen, die den Zeichen
eines Alphabets P entsprechen. Der Automat durchldguft nach dem folgenden Schema
in Takten ¢t = 1, 2, ... eine Sequenz von Sttuati ©;: Die Ste inheit befinde
sich im Zustand Z, € & und der Lesekopf iiber dem Zeichen a; € 2. Dann wird ver-
mittels einer Uberfiihrungsfunktion

$:OXE>D (1)

aus Z; und a; ein neuer Zustand
Zsy = 8(Zy, ay)

fiir die Steuereinheit gebildet, und zugleich bewegt sich der Lesekopf um ein Feld
nach rechts. Wird dort ein Zeichen aus X' wahrg 80 schlieBt sich ein wei-
terer Takt an, usw.

Steuereinheit
des end!. det.
Automaten im
Zustand Z,

Lesekopt I l —

HEEEEEN
Abb. 8.5

Eingabeband

Offenbar hiingt der Ubergang von &; nach S, nicht nur von Z; und a;, sondern
auch von der Vorgeschichte des Automaten ab. Genauer: Z,, wird durch den
Anfangs(Initial-)zustand S und die vor a; gelesenen Zeichen

ay, @y, ey @y € X

bestimmt. Das wird mit der folgenden Funktion A erfaBt, deren Argumente S und
das diese Vorgeschichte einschlieBende Wort w = a,a, ... @;a; € Z* sind. Wir defi-
nieren 4 als Abbildung

4:0XZ* > @
induktiv nach der Linge des Wortes im zweiten Argument:

AS,e) =8,

A(S, wa) = 8( A(S, w), a), (3)

SED, ac X, weZ*.

Befreit man sich von allen geritetechnischen Vorstellungen, so verbleibt als fiir
die determinierte Abfolge der Situationen &, wesentlich: @, X, 4 und ein Anfangs-
zustand 8.
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Zur Erkennung von Wortern einer Sprache wird der Automat durch Auszeichnung
einer gewissen Teilmenge F & & sog Endzusténde in der folgenden Weise
befdhigt: Es sei w = a,a, ... a, ein Wort, das mit seinen Zeichen in aufeinander-
folgende Zellen des Bandes eingetragen ist. Der Automat wird im Anfangszustand S
auf das Zeichen a, angesetzt und arbeitet, bis sich unter dem Lesekopf kein Zeichen
von X mehr befindet. Ist der Zustand dieser Situation ein Element von F, so akzep-
tiert der Automat das Wort w, und im Hinblick auf diese Funktion wird schlieSlich
das Quintupel

A=(P,%,4,8F) (4)
als endlicher (deterministischer) Automat verstanden. Die Menge der von % akzep-
tierten Worter ist definitionsgemi 8 die von U akzeptierte Sprache Ly & 2*:

Ly :={w:we Z*A A(S, w) € F}. ®)
Beziiglich (5) kann man fiir das System (4) im Sinne von MfL Bd. 9, 1.2., eine Ana-
lyse- und Syntheseaufgabe formulieren:

Welche Sprache wird von einem konkreten Automaten ¥ akzeptiert?

Welcher Automat 9 akzeptiert eine vorgegebene Sprache?

Es gilt folgender

Satz 1 [1, 13). Fiir jeden endlichen Automaten N ist Ly eine rechts-lineare Sprache,
und 2u jeder rechis-linearen Sprache L kann ein endlicher Automat N konstruiert
werden, fir den L = Ly grit.

Beispielsweise findet man fiir die von der Grammatik (1) generierte Sprache als
Akzeptor den endlichen Automaten (4) mit

D = {A,, 4,, 4y}, 2= {a, b}, 8 = {4;}, F = {4,)
und der durch Tabelle 8.2 bestimmten Uberfiihrungsfunktion.

(6)

s a b

4, 4, A,
4, 4, 4
A, Ag A Tabelle 8.2

Fiir die Losung der Aufgaben (6) ist es niitzlich, die Uberfithrungsfunktion in der

folgenden Weise graphisch darzustellen. Ist
D= {4}, 4, ..., 4pn) und Z={aya,...,a},

8o wird jedem Zeichen von @ ein Punkt zugeordnet und mit diesem markiert. So-
dann verbindet man die 4;, 4;, 1 < ¢, k < m, entsprechenden Punkte durch einen
mit @;, 1 < § < n, markierten und von 4, nach 4, gerichteten Bogen genau dann,
wenn A4; = 6(4,, a;) ist. Man erhilt so einen gerichteten Graphen, der als Zustands-
diagramm (Zustandsgraph) des Automaten bezeichnet wird.
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Beispiel. Wir betrachten nach [50] eine Mausefalle als endlichen Automaten (4).
Es sei @ = (8, T} und X = {a, b} je ein Biniralphabet, wobei folgende Signalisierung
der Zeichen stattfindet:

.[ 8 Falle gespannt [ @ Maus geht in die Falle
T TFalle nicht gespannt b Maus geht nicht in die Falle

Die Ubergangsfunktion 18t sich mit der folgenden Tabelle beschreiben:

s a
8 T 8
T T T

Der Anfangszustand sei S und die Menge der Endzustinde F = {T}. In Abb. 8.8 ist
das Zustandsdiagramm des Automaten dargestellt; man erkennt mit einem Blick,
daB dieser alle Worter akzeptiert, die mit einem Wort der Form b*a (n =0, 1, 2, ...)

beginnen.

Abb. 8.6

Beispiele der Biologie ergeben sich aus dem Verhalten niederer Organismen, die
in ihrer Reaktion auf Umweltsignale als endliche Automaten beschrieben werden
konnen.

Die mit (4) gegebene abstrakte Beschrelbung eines endlichen Automaten % kann
als Grundlage fiir den Entwurf technischer Syst dienen, welohe die Arbei
von ¥ realisieren. Dabei werden Hilfsmittel der Schaltalgebra benutzt, die insofern
einer Ergiinzung bediirfen, als fiir eine taktgerechte Riickfiihrung des gemi8

Zyyy = 82y, a)
gebildeten Qutputzustandes gesorgt werden musB.
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