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Vorwort

Dem Anliegen der Reihe ,,Mathematik fiir Lehrer* entsprechend ist das vorliegende
Lehrbuch vor allem fiir die obligatorische Ausbildung der angehenden Mathematik-
lehrer im Fach Grundlagen der Mathematik bestimmt und lehnt sich daher inhaltlich
eng an das prizisierte Lehrprogramm dieser Veranstaltung an. Ein Lehrbuch folgt
jedoch stets anderen Gesetzen als eine Vorlesung, und so ist auch hier ein Buch ent-
standen, das bei aller prinzipiellen Beschrinkung auf den Stoff der genannten Vor-
lesung und bei aller Wahrung seines einfilhrenden Charakters als erste Quelle fiir
weiterfilhrende Studien dienen kann und in einigen Richtungen mehr und anderes
bringt als alle mir bekannten Lehrbiicher aus dem Bereich der Grundlagen der
Mathematik.

Grundlagen der Mathematik im Sinne dieses Buches sind weder mit mathemati-
scher Logik oder gar einem bestimmten Logikkalkiil noch mit gewissen traditionel-
len Inhalten des Begriffs Grundlagen (etwa Mengenlehre, Aufbau der Zahlbereiche,
Grundlagen der Geometrie und anderer spezieller mathematischer Disziplinen) zu
identifizieren. Vielmehr wird eine moglichst el tere und durchsichtige Einfiih-
rung in die semantischen (inhaltlichen), syntaktischen (formalen) und algorithmi-
schen Aspekte der Metatheorie beliebiger deduktiver Theorien sowie in die gegen-
seitigen Beziehungen zwischen diesen Aspekten angestrebt. Im Gegensatz zu vielen
Lehrbiichern #hnlicher Thematik wurden viele (fiir den Anfinger meist langweilige

. bzw. abschreckende) technische Einzelheiten von Beweisen zugunsten von ausfiihr-
lichen Begriffsmotivationen, Diskussion von Beweismethoden, Beispielen und An-
wendungen unterdriickt. Die letzten ergeben insbesondere insgesamt einen gewissen
AufschluB iiber die Grundlagen dreier spezieller mathematischer Theorien: der
Mengenlehre, der Arithmetik der natiirlichen Zahlen und der ebenen euklidischen
Geometrie.




6 Vorwort

Die Abschnitte 4.7., 6.4., 7.4., 7.5., 8.3. und das Kapitel 5 konnen iiberschlagen
werden, ohne daB der rote Faden des Buches verlorengeht. Sie tragen zum Teil
(etwa 4.7. und Kapitel 5) reinen Beispielcharakter, zum Teil vermitteln sie Stoff,
der iiber ein Minimalprogramm hinausgeht (etwa 6.4.), oder sie tragen gewissen im
Lehrprogramm der Vorlesung Grundlagen der Mathematik vorgeseh Alternati-
ven Rechnung (zum Beispiel verschiedene Varianten der Emfuhnmg des prézisierten

barkeitsbegriffes). Ausdriicklich zu empfehlen ist ein solches abgekiirztes
Studlum des Buches jedoch nicht.

Die wesentlichsten Unterschiede gegeniiber anderen Einfiihrungen in die Grund-
lagen der Mathematik sind

1. der Bezug auf im allgemeinen mehrsortige Strukturen und dementsprechend
mehrsortige Sprachen von Anfang an,

2. eine sehr allgemeine Auffassung des Begriffs nichtelementare Sprache,

3. eine sehr allgemeine Auffassung des Begriffs definitorische Spracherweiterung,

4. die Zulassung partieller Operationen zur Interpretation von Operationssymbolen
formalisierter Sprachen,

b. eine sehr allgemeine Auffassung der Begriffe SchluBregel und Beweiskalkiil.
Die ersten drei dieser ,,Neuerungen*‘ stehen miteinander in engem Zusammenhang,
genauer: 3. erfordert 2., 2. erfordert 1. Die genannten fiinf Schritte vom Gewohnten
weg in Richtung auf groBere Abstraktheit bzw. Allgemeinheit fordern, wie es dem
Verfasser auf Grund langjihriger Erfahrungen erscheint, den ,,Fach ‘“, der
bereits alles auf andere Weise kennt, mehr heraus als den Anfinger, der hier sowieso
mit einer Fiille von génzlich Neuem konfrontiert wird. Sie bringen letzten Endes
simtlich die in der Metamathematik untersuchten Strukturen und Sprachen niher
an die in der mathematischen Praxis verwendeten heran und fordern dadurch die
Bereitschaft des Unvoreing zum , Mitmachen*.

Den Herren Professor H. WussiNg und Dr. G. Kasporr danke ich fiir einige
berichtigende bzw. vertiefende Hinweise zum historischen Abschnitt 9. Ferner danke
ich allen an der Herstellung beteiligten Kollegen des VEB Deutscher Verlag der
Wissenschaften und des VEB Druckhaus ,,Maxim Gorki‘ fiir ihre sorgfaltige Arbeit.
Vorallem aber gilt mein Dank meinem verehrten Lehrer, Herrn Professor G. ASSER,
dessen prinzipielle Positionen zu den Grundlagen der Mathematik wesentlich in dieses
Buch eingeflossen sind. Ich widmete es ihm in Dankbarkeit zu seinem 50. Geburtstag
am 26. Februar 1976.

Stralsund, im Dezember 1976 PETER SCHREIBER
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1. Zeichenreihen

In diesem Buch wird die Mathematik selbst zum Gegenstand mathematischer Unter-
suchungen gemacht. Das ist aber nur dadurch méglich, da8 die in der Mathematik
benutzten ,,Sprachen‘‘ und die in diesen Sprachen formulierten ,,Theorien‘“ in recht
formaler Weise als Mengen von geschrieb (oder indest prinzipiell schreib-
baren) Zeichenfolgen aufgefaBt werden. Demgemi8 wird viel von solchen Begriffen
wie Alphabet, Zeichenreihe, Vorkommen eines Zeichens in einer Zeichenreihe usw.
die Rede sein. Dieses Kapitel fiihrt in die wichtigsten Begriffe und Sachverhalte
aus diesem Bereich ein, wobei wir uns bemiihen werden, den Leser nicht schon im
ersten Kapitel durch die unnétig abstrakte Behandlung anschaulicher Dinge abzu-
schrecken.

Unter einem Alphabet verstehen wir im folgenden stets eine beliebige nichtleere
(nicht notwendig endliche) Menge D1e Elemente eines Alphabets A4 werden als
Buchstaben oder auch als Grundzeich ichnet. Eine Zeichenreihe im Alphabet A
(im folgenden meist kiirzer als Wort im Alphabet A bezeichnet) ist eine beliebig
endliche Folge von Elementen von 4. Ein Wort wird im allgemeinen durch emfaches
Hintereinanderschreiben seiner Folgeglieder angegeben. Zum Beispiel sind abbab,
ababe, cc, cab, b, ¢ und ba Worter im Alphabet ln b, c}. Die Menge aller Wérter im
Alphabet A bezeichnen wir mit W(A4). Ist A eine hochstens abzihlbare (d. h. endliche
oder abzihlbare) Menge, 80 ist W(A) stets abzahlbar Dies werden wir spiter be-
weisen.

Aus verschiedenen Griinden ist es zweckmiiBig, in jede Menge W(A) auBler den
oben betrachtet: ichtleeren Wortern ein leeres Wort aufzunehmen, das dadurch
bestimmt ist, daB es keinen Buchstaben enthilt bzw. eine Folge der Liinge O ist.
Das leere Wort wird (da man es offenbar nicht durch Hintereinanderschreiben seiner
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Buchstaben notieren kann) mit dem Symbol A bezeichnet. Die Niitzlichkeit des
leeren Wortes sei an folgendem Beispiel erliutert: Es sei A ein Alphabet und a € 4
einer seiner Buchstaben. Dann kann man jedem Wort W € W(A) ein eindeutig
bestimmtes Wort W’ ¢ W(A4) zuordnen, das dadurch aus W entsteht, daB man alle
in W vorkommenden Buchstaben a herausstreicht. Zum Beispiel ist W’ = bb fiir
W = abab und auch fiir W = bbaaaa, und allgemein ist W' = W genau dann,
wenn W den Buchstaben a nicht enthélt. Ohne die Vereinbarung iiber das leere Wort
wiire nun die Operation des Streichens von a an solchen Wértern, die keinen von a
verschiedenen Buchstaben enthalten (d. h. fiir W € W((a)) < W(A)), nicht ausfiihr-
bar. Diesen Sachverhalt kénnen wir jedoch unter Benut von A einfacher und
kiirzer formulieren: W' = A genau dann, wenn W € W((a)). Ubngens kann man das
Vorhandensein von A in jeder Wortmenge W(A4) auch formaler dadurch rechtfertigen,
daB 0 eine natiirliche Zahl und daher jede Folge der Linge O eine endliche Folge ist.
‘Somit kommt unter den anfangs als Elemente von W(A) definierten endlichen Folgen
von Buchstaben aus A automatisch eine (und nur eine) Folge der Linge 0 vor.

In jeder Menge W(A) ist eine Verkeltung genannte und mit dem Symbol o bezeich-
nete zweistellige Operation definiert, die beliebigen Wortern U, V € W(A) dasjenige
Wort Uo V zuordnet, das man durch Hintereinanderschreiben der Worter U, V
(in dieser Reihenfolge) erhilt. Es ist also zum Beispiel abe o cac = abccac und
insbesondere Uo A = A o U = U fiir jedes Wort U € W(A4). Es ist anschaulich klar,
daB die Verkettungsoperation jativ ist, d. h.

(WoU)oV=Wo([UoV)

fiir U, V, W € W(A) gilt. Aus diesem speziellen Assoziativgesetz fiir die Operation o
folgt bekanntlich!) das allgemeine Assoziativgesetz: Die Verkettung endlich vieler
Worter W,, Wy, ..., W, ist unabhingig von der Klammerung und kann daher ohne
MiBverstindnisse in der Form W, o W, 0 ... o0 W, geschrieben werden. Insbesondere
1Bt sich jedes nichtleere Wort a;a,, ... a;_ in dieser Form auf genau eine Weise als
Verkettung einbuchstabiger Worter a; o a;, 0 --- 0 a; schreiben, und die einbuch-
stabigen Worter sind unter allen nichtleeren Wértern gerade dadurch ausgezeichnet,
daB sie sich nicht in zwei echte Verkettungsfaktoren zerlegen lassen, d. h., daB fiir
sie aus der Gleichung W = U o V stets W = U (und damit V = A) oder W=V
(und damit U = A) folgt.

Bisher haben wir uns unter Buchstaben immer geschriebene bzw. schreibbare
Zeichen vorgestellt, und die Tatsache, da man Erérterungen iiber Buchstaben von
moglicherweise anderer Natur nicht niederschreiben kann, ohne fiir sie wenigstens
Bezeichnungen in Form ,.echter Buchstaben zu wihlen, unterstiitzt diese Vorstel-
lung. Die allgemeine Definition der Begriffe Alphabet und Wort (beliebige nicht-

1) Vgl. MfL, Band 1, S. 125. Der dort fiir eine bestimmt: iative Op ion gefithrte Beweis
kann wortlich auf jede andere assoziative Operation iibertragen werden.
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leere Menge bzw. endliche Folge von Elementen dieser Menge) schlieBt jedoch nicht
aus, daB im konkreten Fall die Buchstaben z. B. auch Laute oder Lichtsignale
(verschiedener Farbe oder Linge) sein kénnen und die Verkettung der so gebildeten
Warter als zeitliche Aufeinanderfolge von Buchstaben realisiert ist. Wie es auch in

d Gebieten der Mathematik iiblich ist, 16sen wir unsere Untersuchungen da-
durch von den Problemen der verschiedenartigen Deut oglichkeit,
Begriffe, daB wir im folgenden von einer axiomatischen Beschrelbung der Begriffe
Buchstabe, Wort, Verkett ausgehen, wobei die Axiome durch Abstraktion aus
den Elgenschaft,en der ursprungllch intendierten Objekte entstehen.

Definition 1. Es sei F eine nichtleere Menge, E eine nichtleere Teilmenge von F,
e € F ein beliebiges Element von F, das Symbol o bezeichne eine binire Operation
in F, d. h. eine Abbildung von F X F in F. Das System § = (F, o, e, E) heiBt eine
freie Halbgruppe mit dem neutralen Element ¢ und dem Erzeugendensystem E (kurz
Jreie Halbgruppe), wenn folgende Axiome erfiillt sind:

Al o 18t assozialiv, d. h., es qilt
(xoy)oz==zo(yoz) firallez,y,z€F.
A2 e 18t neutrales Element, d. h., es gilt
zoe=eozx ==z firallez€F.
A3 E 18t Erzeugendensystem, d. h., fiir alle Teilmengen M von F qilt:
Wenn e € M und E = M und fiirz,y € M stetsz oy € M folgt,s0 st M = F
(d. h., F ist die kleinste beziiglich o abgeschlossene Teilmenge von F, die
¢ und alle Elemente von E enthilt).
A4 F st frei, d. h.,
a) firz,y€ F folgtauszoy =estelsx =y == ¢,
b) fiir 2,y € F und a,b € E folgt aus xoa =yob stets x =yund a = b.
A5 e¢ E. )

Zuniichst ist anschaulich klar, daB das System (W(4), o, 4, A), wobei o hier die
Verkettung bezeichnet, bei beliebi Alphabet A die Axiome A1 bis Ab erfiillt und
daher eine frele Halbgmppe ist. Solche freien Halbgruppen werden wir Worthalb-
gruppen nennen. Der folgende Satz, dem wir aber noch eine Definition voranstellen,
prézisiert, in welcher Weise der Begriff der freien Halbgruppe eine axiomatische
Charakterisierung der anschaulichen Begn{fe Alphabet, Buchstabe, Wort, Verket-
tung usw. liefert.

Definition 2. Ein Isomorphismus einer freien Halbgruppe (F, o,, €1, B,) auf eine
freie Halbgruppe (F;, 0,, €5, E,) ist eine eineindeutige Abbildung f von F, auf F,, fiir
die gilt:

f@ory) =f@) oy fly) fiir allex,y € F. (1)
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Zwei freie Halbgruppen heiBen isomorph, wenn ein Isomorphismus zwischen ihnen
existiert. (Die Isomorphie von freien Halbgruppen ist offenbar eine Aquivalenz-
relation.)

Satz 1. Sind §, = (Fy, 0y, €, By) und §; = (Fy, 0y, &, E;) frete Halbgruppen und
18t [’ eine eineindeutige Abbildung von E, auf E,, so gibt ¢s genau einen Isomorphismus
| von Fy auf F,, fiir den

fle)=[(a) firackE, @)

gilt, d. h., jede eineindeutige Abbildung von E, auf E, lift sich auf genau eine Weise
2u einem Isomorphismus von F, auf F, fortsetzen. Ist umgekehrt f ein Isomorphismus
von F, auf F,, so ut /(E,) = E,. d h. /rew Halbgruppen sind genau dann isomorph,
wenn thre Erzeug iichtig sind. Durch Vorgabe einer (endlichen oder
unendlichen) M achhgkeu 8¢ 7ewezls eine umi bis auf Isomorphie genau eine freve
Halbgruppe bestimmd.

Beweis. Zuniichst ziehen wir einige Folgerungen aus den Axiomen A1 bis A5.

1. Es gibt aufer e kein weiteres Element ¢' von F mat

zoe =z firallexe F 3)
oder
eox==z firallex€ F. 4)
Wiire z. B. (3) erfiillt, so wiire insbesondere e 0 ¢/ = ¢, aber nach A2auchcoe’ =¢’,
folglich e = ¢’. Analog ist (4) zu behandeln.

2. F = E = {e) mit e 0 e = e erfiillt die Axiome A1 bis A4, jedoch nicht A5. Exi-
stiert wenigstens ein # = ¢ in F, so muB es auch ein a 3 e¢in E geben, denn E = {e}
hiitte nach A2 und A3 auch F = (e} zur Folge. Wiire nun e € E, so wire wegen
(@oa)oe=aoa auf Grund von A4b) auf a0 a = a und e = a zu schlieBen, im
Widerspruch zu a = e. Folglich dient das Axiom A5 lediglich dazu, den Fall E = F

= {e] auszuschlieBen. Es kann gleichwertig durch das Axiom ,,Es gibt ein x =c= e
ersetzt werden.

3. Auf Grund von A1 liBt sich ]edes Halbgruppenelement z, das iiberhaupt als
Verkettung von endlich vielen Erzeug (d. h. El ten von E) darstellbar ist,
z.B.(@ob) o ((c 0 d) o a), wobei a,b,c,d € E, darstellen, in der kanonischen Form
(( (@,0a;)0a;)0 m)oa,»') mit a;, € E fir v = 1, ..., n. Dabei sei der Falln = 1
nicht ausgeschlossen. Die kanonische Darstellung kiirzen wir im folgenden mit
a; 0 a0 - 0a; ab und bezeichnen sie auch als ein ,,E-Wort*. Diejenige Menge M,
die aus ¢ und allen durch ein E-Wort darstellbaren Halbgruppenelementen besteht,
erfiillt die Voraussetzungen von A 3. Hierbei ist nur der Fall nichttrivial, daBz, y € M,
z = a; 0-:0@;, y = a; 0---0a; gilt. Auf Grund des Assoziativgesetzes A1 ist aber
dannzoy =a; 0:-0a; 0 a;,0---a;, d. h. durch ein E-Wort darstellbar und folglich
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Element von M. Nach A3 folgt nun M = F, d. h., F besteht genau aus allen durch
ein E-Wort darstellbaren Elementen und dem (etwa durch das leere E-Wort darge-
stellten) neutralen Element ¢ von F. Es ist jetzt noch zu zeigen:

4. Zwei durch (eventuell leere) E-Worte dargestellte Halbgmppenelemenbe sind
genau dann gleich, wenn ihre Darstellungen ,buchstabenweise’ iiberei
d. h., fiir n > 0 ist niemals a; 0 -:: 0a; =e¢, und aus @; 0 ---0a; =¢; 0--0a;
fo],gt n =m und g;, =g, fir » = 1, ..., 7 (in beiden Fiillen a, € E vorausgesetzt).
Die erste dieser Behauptungen folgt fiir » = 1 aus A5 und fiir n» = 2 aus A4a. Die
zweite Behauptung zeigt man leicht unter der unwesentlichen Annahme n =m mit
Hilfe von A4b durch vollstindige Induktion beziiglich n.

Wir kommen nun zum eigentlichen Beweis von Satz 1. Auf Grund des bisher
Gezeigten ist schon klar, daB jede freie Halbgruppe (F, o, ¢, E) im wesentlichen als
Worthalbgruppe (W(E), o, 4, E) aufgefaBt werden kann, wenn man die urspriing-
lichen -Halbgruppenelemente durch ihre ihnen eineindeutig zugeordneten Darstellun-
gen mittels E-Wértern ersetzt. Sind nun (F,, 0,, ¢, E,) und (F,, 0,, ¢, E,) freie
Halbgruppen und ist /' eine eineindeutige Abbildung von E, auf E, und soll so zu
eincr Abbildung f von F, auf F, fortgesetzt werden, da (1) gilt, so mu8 insbesondere

f@) = oy &) = f(x) 0y fle))  fiir alle z € F,,

d. h. fiir alle f(z) € F, gelten. Wegen der Eindeutigkeit des neutralen Elements ist
daher f(e;) = ;. Ein beliebiges Element z von F,, das von e, verschieden ist, wird
durch ein ihm eineindeutig entsprechendes E-Wort a; 0, a;, 0, --- 0, a;, dargestellt.
Aus (1) folgt daher sofort (genauer: durch Induktion beziiglich ») !

f(@) = f(ai) 07 fl@i,) 07 -+ 02 f(a;)) = f'(a;) Op +- 02 f'(@i )+
Das bedeutet, daB ein Isomorphismus von F, auf F,, falls er existiert, durch seine

Werte fiir die Erzeugenden bereits eindeutig bestimmt ist. Umgekehrt erfiillt aber
die durch

f@) :=f(a) firacE,.
fle) := ey,
f(ai, 0y - 0y @;)) := f(a;) Oy -+ 05 fla;)

definierte Abbildung f von F, auf F, die Isomorphiebedingung (1). Es blelbt noch zu
zeigen, daB isomorphe freie Halbgruppen gleichmiichtige Er

haben. Dazu geniigt es zu zeigen, daB fiir einen Isomorphlsmus / fiir a € E, stets
f(a) € E, gilt. (Anwendung auf den Isomorphismus f! von F, auf F, ergibt die
Umkehrung.) Es sei a € E, und f ein Isomorphismus. Dann ist f(a) € Fy genau
dann kein Element von E,, wenn f(a) sich als Verkettung b o4 ¢ zweier Elemente
b, ¢ & ¢, von.F, darstellen 1dBt. Nehmen wir dies an, so ist a = /—'(/(a)) = fboyc)
= f-1(b) o, f*(c), da mit f auch f ein Isomorphismus ist. Daher folgt auch wegen
b, ¢ = e, daB f-1(b), fX(c) + e, gilt. Mithin ist a als Verkettung zweier von e, ver-




14 1. Zeichenreihen

schiedener Elemente dargestellt, folglich kein Element von E,. Damit ist Satz 1
vollstindig bewiesen. y

Der durch Definition 1 erfaBte Begriff der freien Halbgruppe ist in gewissem Sinn
etwas allgemeiner als der anschauliche Begriff der Worthalbgruppe, da in den Axio-
men Al bis A5 die Michtigkeit des Erzeugendensystems iiberhaupt keine Rolle
spielt, withrend es kaum méglich sein diirfte, ein System von iiberabzihlbar vielen
schreibbaren und paarweise unterscheidbaren Zeichen als Alphabet im anschaulichen
Sinn zu definieren. Als ein abzihlbares Alphabet im anschaulichen Smn konnten
z. B. die Zeichen

LU, W, Wi, ), ut), ..

dienen. In diesem Buch wird nirgends ein iiberabzihlbares Alphabet vorausgesetzt
oder benutzt werden. Im folgenden werden wir wieder anstelle von Er

ystem, Erzeugendes (El t), Halbgruppenelement und neutrales Element dle
anschaulich Bezeichnungen Alphabet, Buchstabe, Wort bzw. leeres Wort ver-
wenden, jedoch in den folgenden Definitionen, Sitzen und Beweisen keine dariiber
hinausgehenden Grundbegriffe und keine Voraussetzungen auBer den in den Axiomen
A1 bis A5 formulierten benutzen. Wir beginnen mit der Deﬁnition einiger Begriffe.
(»,: «*“ bedeutet: Das Llnksstehende ist definiti gleichbedeutend mit dem
Rechtsstehenden. ,,:=* bedeutet: Das links bezelchnew Ob]ekt ist defmmonsgemn.l}
gleich dem rechts bezelchneten Objekt.) GroBbuchstaben, vorzugsweise P, Q, R, S, T,
U, V, W, dienen als Variablen fiir beliebige Wérter, Kleinbuchstaben, vorl.ugswelse
a, b, c, x,y, als Variablen fiir Buchstaben, d. h. El te des Erzeug

Das Symbol fiir die Verkettungsoperation wird unterdriickt, d. h., UV steht. fur
UoV,RaS fiirRoaoS8, usw.

W beginné mit U :«+ Es gibt ein Wort R, so da W = UR.
Da R = A sein kann, beginnt W stets mit W. Da R = W sein kann, beginnt W stets
mit 4.

W endet mit U :«> Es gibt ein Wort S, so daf W = SU.
Da S = A sein kann, endet W stets mit W. Da S = W sein kann, endet W stets mit A.

U kommt in W vor .« Es gibt Worter S, R, so dap W = SUR. (5)
Statt U kommt in W vor sagen wir auch: U ist Teilwort von W. Durch die Definition (5)
ist die zukiinftige Verwendung dieser Redeweisen klar von anderen denkbaren Be-
deutungen abgegrenzt. (In gewissem Sinne kommt z. B.auch aa in bababb vor, je-
doch nicht im Sinne von Definition (5).) Da die Wérter S, R gleich dem leeren Wort
sein konnen, folgt sofort: Wenn W mit U beginnt, so kommt U in W vor. Wenn W

mit U endet, 8o kommt U in W vor. Stets kommt W in W vor. Kommt U in W vor
und ist ungleich W, so sagen wir auch: U ist echtes Teilwort von W.
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Wir definieren nun eine dreistellige Operation Sub (Substitution), und zwar soll
Sub (W, a, U) fiir Worter W, U und Buchstaben a dasjenige Wort bezeichnen, das
aus W entsteht, wenn man alle in W vorkommenden Buchstaben a durch das Wort
U ersetzt. Anders ausgedriickt: Hat W die Form

§,88a8; ... §,,a8,, ©
wobei a in den Wortern S, ..., S, nicht vorkommt, so soll
Sub(W, a, U) = §,US8,US; ... S,-,US,

sein. (Da S, bzw. S, das leere Wort sein kann, sind auch die Fille erfaBt, in denen W
mit a beginnt bzw. endet.) Insbesondere soll Sub(W, a, U) = W sein, falls a nicht
in W vorkommt. Man konnte also z. B. definieren:

W, falls a nicht in W vorkommt,
Sub(W, a, U) :=1{ S,US,US;... S,,US,, falls W = S,aS;88, ... S, a8, st
und a tn S,, ..., S, nicht vorkommt.

Die in dieser Definition unvermeidlichen ,,...‘ kann man durch eine Art induktiver
Definition vermeiden, die sich auf die Tatsache stiitzt, daB jedes Wort W auf genau
eine Weise durch fortlaufendes Anhingen von Buchstaben aus dem leeren Wort er-
halten werden kann:

Sub(A,a,U) =4
18t schon Sub(W, a, U) definiert, so sei

Sub(W,a,U)ox, fallsx + a,

Sub(Wx, 8, U) =
(W2, 0) {Sub(W,s,U)oU,/allax.—.za..

Als Beispiel fiir die Anwendung der Operation Sub betrachten wir die Elimination
einer Variablen x aus einer Gleichung der Form f(x, y) = O mittels einer zweiten,
bereits nach x aufgelosten Gleichung x = g(y). Hierbei sel vorausgesetzt daB f(x, y)
= 0 und x = g(y) (und eine Schar weiterer Gleich 1 Typs) wirklich
Zelchenmlhen iiber einem bestimmten Alphabet sxnd Ist z.B. das Alphabet

={x,y,8,b,¢,=,0,(,), +, —, 3} gegeben, wobei ? wie iiblich zur Bezeichnung
der zweiten Potenz dient,so kt‘mnte des Wort g(y) die Gestalt ay? + by + ¢ und das
Wort f(x,y) die Gestalt (x + y)* + a(y — x) + cxy haben. Nun ergibt aber
Sub(f(x, y) =0,x, g(y)) die auf Grund der iiblichen Klammerregeln inhaltlich fal-
sche Schlugfolgerung

(ay* + by + ¢ + y)* + a(y — ay? + by + c) + cay? + by + cy =0

Dieser Fehler kann jedoch leicht dadurch behoben werden, daB man statt g(y) das
inhaltlich gleichwertige Wort (ay? + by + c) fiir x einsetzt. Der Leser bilde selbst
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Sub(f(x,y) =0, T, (a.y' + by + ¢)) und denke dabei ein wenig iiber die Rolle der
Kla: n in arit hen Formeln nach, deren iiblicher abgekiirzter Gebrauch
zwar das ,intelligente* Rechnen erleichtert, jedoch einem formalen Operieren mit
Zeichenreihen nach bestimmten Regeln hinderlich ist.

Fiir einige spitere Anwendungen benétigen wir die mehrfache oder -simultane
Substitution: Sind a,, ..., a, paarweise verschiedene Buchstaben, so sei

Sub(W; a,, Uy; 85, Uy; oo 8y, Uy) 1=
W, falls a,, ..., &, nicht in W vorkommen,
SyU S, U8, - .. 84Uy S,, falls
W= Soa.,lS,u,_S, oo 8,48; S, 18t und a,, ..., 8, nicht

n Sy, Sy, ..., S, vorkommen.

Es ist also z. B. Sub(abcbb; a, bb; b, ca) = bbceaccaca.

Wir wollen nun die einfache Substitution auf den Fall ausdehnen, da8 nichv not-
wendig ein Buchstabe a, sondern ein beliebiges nichtleeres Wort V an allen Stellen
seines Vorkommens in W durch ein anderes Wort U ersetzt wird. Dies spielt z. B.
iiberall dort eine Rolle, wo Texte durch An dung einer abkiirzenden Definiti
fiir gewisse mehrfach vorkc de Teilstiicke verkiirzt werden sollen. Eine allge-
meine Definition st8t hier Jedoch auf die Schwierigkeit, daB sich verschiedene Vor-
kommen des Teilwortes V im Wort W iiberschneiden konnen. Zum Beispiel kommt
aba in babababab an den drei unterstrichenen Stellen vor. Was soll nun etwa

Sub(babababab, aba, b) sein? Der Bestimmtheit halber legt man fest: Die Stellen
des Vorkommens von V in W sind von links beginnend so zu markieren, daB
jeweils hinter dem zuletzt markierten Teilwort mit der Suche nach dem niichsten
Vorkommen begonnen wird. Damit dieser ProzeB stets ein Resultat liefert, muB
insbesondere V = A sein, da sonst das zu untersuchende Restwort immer wieder
gleich W wiire. Danach sind alle markierten Vorkommen von V durch U zu ersetzen.
Zur bequemeren Formulierung einer exakten Definition fiihren wir zunichst einen
Hilfsbegriff ein:
V in X héchstens hinten i< Fiir alle Worter PQ jolgt aus X = PVQ
stets Q = A. (7)
nicht definiert fir V= A,
W, falls V nicht in W vorkommt,
Sub(W,V,U) := { §,US,US;...S,,US,, falls W =8,VS,VS;...§,.,VS,
18t und V in S,V hochstens hinten i = 1,...,n — 1)
und V nicht in S, vorkommds.
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Offenbar stimmt diese Definition?) fiir den Fall, daB V ein Buchstabe a ist, mit der
urspriinglichen Definition iiberein, denn fiir Buchstaben a gilt:

a tn Sa hochstens hinten genau dann, wenn a nicht in S vorkommt.

Dem Leser sei zur Ubung empfohlen, diesen Satz unter alleiniger Benutzung der
beiden Definitionen (5) und (7) und der Axiome A1 bis A5 zu beweisen.

Es sei A ein beliebiges Alphabet. Jedem Wort W € W(A) ist in anschaulich unmig-
verstindlicher Weise eine natiirliche Zahl /(W) als seine Linge zugeordnet, so daB !
eine Abbildung von W(4) auf die Menge N der natiirlichen Zahlen ist. Unter Benut-
zung des bereits zur Definition von Sub(W, a, U) herangezogenen Induktionsprinzips
konnte man auch induktiv definieren:

U4) =0,
18t schon Y(W) definiert, so ser
U(Wx) = (W) + 1 fiir beliebige Buchstaben x € A.

Fiir natiirliche Zahlenn = 0, 1, 2, 3, ... sei W"(A4) die Menge aller Worter der Lange n
im Alphabet A. Wie aus der Kombinatorik bekannt ist, besteht W"(4) aus ¥* Wor-
tern, falls das Alphabet A aus k¥ Buchstaben besteht. Dies gilt auch noch fiir n = 0.

Die Abbildung ! ist offenbar genau dann eineindeutig, wenn das Alphabet A genau einen
Bnohstnbon a enthiilt. In diesem Fall konnen wir die Worter aus W({a}) aber selbst mit einiger
g als die iirlichen Zahlen hen. (Kinder lernen die natiirlichen Zahlen zuerst

in dieser wommgan Form kennen: n auf einen Draht gefidelte Kugeln gleicher Art sind nichts
anderes als ein Wort der Linge » in einem einbuchstabigen Alphabet!) Das leere Wort ent-
spricht hier der Null, der einzige Buchstabe der Eins, d:e Verkettung der Addition. Da, wie wir

gezeigt haben, die Axiome A1 bis A5 allgemein eine tisch Clmra.kbermerung der freien
Halbgruppen leisten, ergebén A1 bis A5 mit dem Zusatzaxiom
A6 Es gibt genayu ein Element a von E

eine neue axiomatische Charakterisierung der natiirlichen Zahlen in bezug auf die Addition
(statt wie iiblich NthoIgnrbnldung) :lo Grundverknuptung Umgekehrt kann man beliebige
freie Halbgruppen in einer der P ung der natiirlichen Zahlen?) ihnlich
Woeise statt durch Verkettung durch ein Syntem E von Nachfolgerfunktionen, d. h. einstelligen
Abbildungen von der Menge aller Worter in sich, charakterisieren, wobei jedes vom leeren Wort
A verschiedene Wort auf genau eine Weise in der Form

Figlfinonlee Figld) -.2))

1) Beziiglich and Maglichkeiten, die Substitution zu defini t die Sub i
statt Verkettung als Grundbognﬁ zu wihlen, und vieler weiterer interessanter Details der Theorie
der Zelchem'elhen sel dor Leser verwmsen auf K. Hirmie, Explizite Definitionen einiger Eigen-

haften von Zei Z . f. Math. Logik u. Grdlg. d. Math. 2 (1956), 177—203;
siehe auch 8 (1957), 161 — 166.

%) Vgl. MfL, Band 1, Abschnitt 3.2.
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dargestellt werden kann, die dem Wort f;.f;, ... f;, im Alphabet E entspricht. Es ist dann axio-
matisch zu fordern:

At /(W) + A fir f ¢ E und W ¢ W(E).
A2 Tt fy(V) = f(W), 00 st fy = fyund V = W.
A'3 Fiir alle Teilmengen M von W(E) gils: IdAeMund[urWeMmdleEddcf(W)eM

% st M = W(E) (d. h., W(E) ist die klei iiglich aller Operati | € E ab-
hl und A enthaltende Teil von W(E)).

B

Wie man sieht, ergeben sich hier fiir den Spezialfall E = {f} unmittelbar die Axiome von PEaNO.
Geht man allgemein von der Axiomatisierung durch A1 bis A5 beziglich des Grundbegriffs
Verkettung aus, so lassen sich die Nachfolgerfunktionen sofort durch

fW):=Woa firWeWA) undacA

definieren und fiir die so definierten Funktionen A’1l bis A’3 als Sitze beweisen. Geht man um-
gekehrt vom Grundbegriff ,,Nachfolgerfunktionen* und den Axiomen A’l bis A’3 aus, so laBt
sich die Verkettung nur induktiv definieren:

VodA=V,

ist achon V o W definiert, s0 sei V o {(W) = f(V o W) fiir f ¢ E.

Fir den Spezialfall eines nur aus einer Nachfolgerfunktion f bestehenden Systems E kommt
hier natiirlich die bekannte induktive Definition der Addition heraus.

Ein endliches geordnetes Alphabet A ist eine endliche Menge, die zugleich mit einer
durch die Reihenfolge der Aufzihlung ihrer Elemente angegebenen Ordnungsrela-
tion < versehen ist. Ein geordnetes Alphabet werden wir in der Form 4 = (a,, ..., a,)
(statt {a;, ..., a,}) angeben. Mit Hilfe der vorgegebenen Ordnung eines Alphabets 4
kenn man zunéchst fiir jede feste Zahl n die Menge W*(A) in einer aus der Kombina-
torik wohlbelk ten Weise lextkographisch ordnen. Diese Ordnung in Wn(A) liBt sich
mittels Verkettung und der Ordnung < des Alphabets wie folgt exakt definieren:

V < W i Es existieren Worter U, R, S und Buchstaben a, b, s0 da a < b
tez® und V = UaR und W = UbS.

Es gibt nun zwei wesentlich verschiedene Arten, diese lexikographische Ordnung zu
einer Ordnung der gesamten Menge W(A) fortzusetzen. Die in Worterbiichern be-
nutzte Ordnung (der die lexikographische Ordnung ihren Namen verdankt) liBt sich
wie folgt definieren: :

V < W W beginnt mit V, oder es cxistieren Buchstaben a,b mit a < b
“les und ein Wort U, so daf V mit Ua und W mit Ub beginnt.

Diese Relation bewahrt sich aber in den Wérterbiichern nur deshalb, weil diese
immer nur eine endliche Teilmenge einer Menge W(A4) enthalten. Wollte man die

gesamte Menge W(A) nach diesem Prinzip ordnen (< ist immerhin reflexiv, tran-
i
sitiv und antisymmetrisch!), so kime man zu einer sehr uniibersichtlichen Reihen-

folge. Zum Beispiel folgen auf jedes Wort W erst alle Worter der Form Waa ... s
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(a kleinster Buchstabe von A), bevor wieder kiirzere Worter wie Wb folgen.) Daher
bewihrt sich fir die Gesamtmenge W(A) besser die folgende, mit < bezeiohnete

Variante, bei der die Worter zuniichst nach ihrer Linge und nur die Worter gleicher
Linge untereinander lexikographisch geordnet werden:

V< W:io (V) < UW) oder
e UV) = UW) und V < W
lez®

Die 8o definierte Relation < nennen wir die durch die vorgegebene Ordnung < des

ez
Alphabets 1 ierte lexik hische Ordnung von W(A). Wir zeigen im folgenden,
daB diese Reln.tlon tatawhhch die (xmndelgenschaften einer (irreflexiven) Ordnung
und dariiber h die charakteristischen Ordnungseigenschaften der natiirlichen

Zahlen besitzt.

7

1. Aus der Definition folgt ittelbar: Fiir kein Wort W 1st
W<w.

lex

2. IstU<Vund V< W,eist U<W.

lex lez ler
Die Behauptung ist klar, falls I(U) < {(V) oder V) < W) ist, da dann U) < (W) folgt.
st I(U) = §(V) = I(W), so gibt es Worter S, T und Buchetaben a, b, ¢,d mit a < bund ¢ < d,
80 daB gilt:

U beginnt mit Sa,

V beginnt mit Sb,

V beginnt mit Tec,

W beginnt mit Td.
Falls hierbei 8 = T ist, folgt b = ¢ und damit a <d,d.h. U < W. Ist I(8) < YT), so beginnt

T mit Sb, folglich beginnt auch W mit Sb. Ist i(T) < I(8), sobeglnnt S mit Te, folglich auch U
mit Tc. In beiden Fillen folgt U < w.

3.FﬁrV*WidV<Wod¢rW<VA
lex lex

Dies ist klar, falls (V) 3= (W) ist. Andernfalls gibt es unter den i Anfe y!
U von V und W eines von maximaler Lange, die aber kleiner als {(V) sein mu8, da sonat V=W
wiire. Folglich beginnt V mit Ua und W mit Ub, wobeia 5= b, d. h. a < b oder b < a ist.

4. Jede nichtleere Teilmenge M von W(A) besitzt ein beziiglich < kleinstes Element.

. lex
Zuniichst gibt es in der nichtleeren Menge {{(W): W € M} von natiirlichen Zahlen eine ki
natiirliohe Zahl 7y und wegen der bekannten Anzahl aller Worter der Liinge n, hochstens k%

1) Vgl. hierzu P. ScEREIBER, Lexikographische Ordnung als Grundbegriff der Semiotik, Math.
Nachr. 88 (1968), 53 —60.
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‘Waérter der Linge n, in M (k Anzahl der Elemente von A). Unter diesen endlich vielen gibt es
aber wegen 3. ein kleinstes.

5. Insbesondere ist A < W fiir W == A, da dann stets l(4) < KW) ist.
lez
6. Aus 4. folgt, daB jedes Wort W ¢ W(A) einen unmittelbaren Nachfolger W' beziiglich < besitzt,
le:
nimlich das kleinste Element der Menge {V:V € W(A) und W < V}, die nichtleer ist: da sie
ez,

insbesondere alle Worter V mit {(W) < (V) enthilt.

7. Jedes Wort W == A besitzt einen unmittelbaren Vorgdinger V, so daﬂ V' = W iat. Dazu zeigt
man: Die Menge M aller Worter, die gleich A sind oder einen i Vorgi besit
erfiillt die Voraussetzungen von Axiom A 3. Hierbei ist nur der Fall interessant, daB aus U, W € M,
UW+A4aufUo WGMzu hlieBen ist. Ist V Vorgi von W, so ist U o V Vorginger von
UoW.

Aus 7. ergibt sich rein ordnu.ngsbheomtlsch daB jede Menge M & W(A), die A und mit W
auoh W’ enthilt, gleich W(A) ist: Trife dies auf eine Menge M nicht zu, 8o wire K = W(A)\ M
nichtleer. Es sei dann U das kleinste Element von K; folglich ist U == A (wegen A € M) und V
der daher nach 7. existierende Vorginger von U. Wegen V € M ist auch U = V' ¢ M im Wider-
spruch zu U € K.

Aus unseren Betrachtungen 1. bis 7. iiber die lexikographische Ordnung folgt
insbesondere :

Satz 2. Ist A ein endliches Alphabet, so ist W(A) abzihlbar.
Beweis. A sei irgendwie geordnet, und < sei die durch diese Ordnung induzierte
lexikographische Ordnung von W(A4). Dnn:tist die durch
f4) =0,
W) =f(W) +1
induktiv definierte Abbildung eineindeutig von W(A) auf die Menge N der natiir-
lichen Zahlen.
Satz 3. Ist A ein abzihlbares Alphabet, so wst W(A) abzihlbar.

Beweis. Esseid = {a,:n =0, 1,2, ...}, B = (a, b} ein zweibuchstabiges Alpha-
bet. Nach Satz 2 ist W(B) abzihlbar. Die induktiv durch
g(4) =
g(Wa,) =g(W)oba...ab
¥
definierte Abbildung von W(A4) in W(B) ist offenbar eineindeutig. Demnach ist

W (A) einer unendlichen Teilmenge einer abziihlbaren Menge gleichmichtig, folglich
selbst abzihlbar.
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21.  Aussagen und Wahrheitsfunktionen

" Eine Aussage ist ein zu Mitteil ken di des Objekt, das einen bestimmten
Sachverhalt darstellt.l) In der Praxis treten A gen in den verschiedensten For-
men auf: als gesprochene oder geschriebene Sitze (in deutscher oder einer anderen
,.natiirlichen* Sprache), als Formeln, als Licht- oder Flaggensignale usw. Es geniigt
jedoch, die folgenden Betrachtungen auf solche Aussagen zu beziehen, die den
Charakter von Zeichenreihen iiber einem bestimmten Alphabet haben.

Wenn der durch eine Aussage dargestellte Sachverhalt in der Realitit besteht,
b h wir diese Aussage als wakr, andernfalls als falsch. In der Umgangssprache
trifft ' man auf zahlreiche ,,Aussagen®, die nicht in eindeutiger Weise als wahr bzw.
falsch bewertet werden kénnen. Zum Beispiel bleibt die Wahrheit des Satzes ,,Heute
ist schones Wetter wegen der Verschwommenheit des Begriffs ,,schénes Wetter*
auch dann noch unbestimmt, wenn man weiB, auf welchen Tag und Ort sich ,,heute*
bezieht. Wir beschrinken uns im folgenden auf die Betrachtung von Aussagen, denen
auf Grund hinreichend exakter Vereinbarungen iiber die benutzte ,,Sprache‘ und in
einem bestimmten Zusammenhang genau einer der beiden Wakrheitswerte wahr bzw.
falsch (kurz W, F) zugeordnet ist.

Jede natiirliche Sprache erlaubt gewisse grammatische Konstruktionen, mit
deren Hilfe man aus einer oder mehreren Aussagen beliebigen Inhalts eine neue
Aussage 8o bilden kann, daB der Wahrheitswert dieser neuen Aussage nicht vom
konkreten Inhalt der verwendeten Teil dern nur in einer bestimmten
Weise von deren Wahrheitswerten abhingt. Zum Beispiel kann man in der deutschen

1) Auf eine genauere Definition und Analyse des Begriffs Aussage vom philosophischen Stand-
punkt muB hier verzichtet werden. Der interessierte Leser sei auf [21], insbesondere 8. 31ff.
verwiesen.
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.Sprache aus einer beliebigen A Adie A A st falsch (kurz nicht A) bilden,

die genau dann wahr ist, wenn A falsch ist. Analog kann man aus beliebigen Aussagen
A, B die Aussagen 4 und B, 4 oder B, entweder A oder B, weder A noch B, A gilt genau
dann, wenn B m‘u usw. bilden. Der Wahrhei t der Gesamt 1iBt sich dabei
jeweils durch eine Wertetabelle darstellen, in deren Emgangsspalte alle mogllchen
Kombinationen von Wahrheitswerten fiir die Aussagen A4, B ersch

A B A und B 4 oder B entweder A oder B weder A noch B
w W w w F F
W F F w w F
F w F w w F
F F F F F w

Wir bemerken, daB durch diese Tabelle gleichzeitig im Fall der Worter oder bzw.
entweder oder, deren Gebrauch in der Umgangssprache nicht immer einheitlich ist,
eine gewisse Festlegung getroffen wurde, die innerhalb der Mathematik zweckmiBig
und iiblich ist. Sprachkonstruktionen nach Art der behandelten Beispiele, die auf
eine feste Anzahl (nicht notwendig zwei) beliebiger Aussagen anwendbar sind und
eine Gesamtaussage liefern, deren Wahrheitewert, in einer durch eine Wertetabelle
angebbaren Weise von den Wahrheitswerten der verwendeten Teilaussagen abhingt,

bezeichnef man als extensionale Aussag bindung Um die Bedeutung des
Beiwortes extensional in diesem Zusammenhang zu erléutern, geben wir ein Beispiel
einer nichtextensionalen Aussagenverbindung an. Dazu' denken wir uns eine be-

stimmte Person X fixiert, die iiber alles eine — manchmal richtige und manchmal
falsche — Meinung hat. Nun kann man aus einer beliebigen Aussage A die neue
Aussage X hilt A fiir wahr bilden. Der Wahrheitswert dieser Aussage hiangt offenbar
nicht nur von der Wahrheit bzw. Falschheit von 4 ab.

Die Wertetabelle einer extensionalen A verbindung spiegelt das Wesent-
liche viel besser wider als die Aussagenverbmdung selbst. Es ist z. B. ganz gleich-
giiltig, ob man A und B oder sowohl A als auch B sagt. Beide Aussagenverbindungen
haben die gleiche Wertetabelle, stellen den gleichen logischen Zusammenhang zwi-
schen den Teilaussagen A, B her. Die durch die Wertetabelle einer extensionalen
Aussagenverbindung gegebene Funktion, und allgemeiner jede Funktion (beliebiger
endlicher Stellenzahl) im Bereich der Wahrheitswerte W, F nennt man Wahrheits-
funktion (hdufig auch Boolesche Funktion nach dem englischen Mathematiker GEORGE
BooLE (1815—1864)). Als mogliche Argumente einer k-stelligen Wahrheitsfunktion
treten alle Kombinationen der Linge k aus den beiden Wahrheitswerten W, F auf
(d. h. im wesentlichen alle Wérter der Linge k im Alphabet (W, F}). Der Definitions-
bereich einer k-stelligen Booleschen Funktion besteht d h aus 2¢ Element
Da jedem dieser Elemente wiederum ein beliebiger der beiden Wahrheitswerte als
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Funktionswert zugeordnet sein kann, gibt es 23 k-stellige Wahrheitsfunktionen.
Wir geben im folgenden die Tabellen aller ein- und zweistelligen Wahrheitsfunktionen
an, wobei wir der Ubersichtlichkeit halber die Argumente in senkrechter Richtung
und die Spalten der zugehérigen Werte in waagerechter Richtung lexikographisch
ordnen (in der durch W < F induzierten lexikographischen Ordnung). Allgemein
bezeichnen wir die Wahrheitsfunktionen in diesem Buch mit &;*, wobei der obere
Index die Stellenzahl angibt und der untere Index in der angegebenen Weise zur
Numerierung gleichstelliger Funktionen dient.

o | o2 | o2 | B

w w w F F
w F w F

¢l. Q" ¢I- ¢4’ ¢B’ OC’ q,)72 ¢l’ m.' wno’ d’ll’ ¢n‘ ¢lt’ ﬁll‘ ¢IB’ ¢l.’
www(w(w|w|w|w|w | w|F|F|F|F|F|F|F|F
WFW|wW(w|wW|F|F|F|F|W|W|W[{W|F|F|F|F
FWW|W|F|F|w|w|F|F|wW|W|F|F|wW|W|F|F
FF\W|F|W|F|W|F|W|F|W|F|W|F|W|F|W|F

Unter den so systematisch aufgezihlten Wahrheltsfunktlonen kommen natiirlich
auch diejenigen vor, die den bereits bek t verbindungen und, oder usw.
entsprechen. Fiir die iibrigen kann man nnchtmghch nach darstellenden Aussagen-
verbindung hen. Zum Beispiel liBit sich @,2 durch 4 genau dann, wenn B und
@¢® durch wenn 4, so B, aber auch durch nicht A oder B ausdriicken. Die letztere
Aussagenverbindung miiBte man eigentlich, um MiBversténdni hlie8
in der Form (nicht A) oder B schreiben, da sie andernfalls auch als nicht (4 oder B)
verstanden werden kann, was der Funktion &,;? entspricht. Derartige Probleme ver-

schirfen sich bei komplizierteren Ineinanderschachtelungen von einfachen A
verbiridungen. In der téglich Umgangsspmchetmtensolchekomplmertzusammen-
gesetzten Aussagenverbindungen kaum auf, und man kann dann meist aus dem

Zusammenhang erkennen, was gemeint ist. In der Mathematik spielen jedoch kom-
plizierte Aussagenverbindungen eine groBe Rolle. Dabei treten u. a. folgendeé Fragen
auf:

— Welche Wahrheitsfunktionen kann man aus einem gegebenen Grundsystem von
Wahrheitsfunktionen iiberhaupt durch fortgesetzte Superposition (Ineinandcr-
schachtelung) erhalten?

— @ibt es endliche Systeme von einfachen (niedrigstelligen) Wahrheitsfunktionen,
aus denen sich jede Wahrheitsfunktion durch Superposition gewinnen laBt?
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— Wie kann man den Werteverlauf einer als Superposition dargestellten Wahr-
heitsfunktion rationell ermitteln?

— Wie kann man feststellen, ob zwei verschachtelte Aussagenverbindungen logisch
gleichwertig sind, d. h. die gleiche Wahrheitsfunktion darstellen?

Der Beantwortung dieser Fragen sind die beiden folgenden Abschnitte gewidmet.

2.2.  Aussagenlogische Ausdriicke, Allgemeingiiltigkeit
und semantische Aquivalenz

Wir wiihlen in Anlehnung an den iiblich thematischen Sprachgebrauch fiinf
Wahrheitsfunktionen als Grundfunktionen aus und bauen einen Funktionskalkiil zur
exakten Beschreibung aller aus diesen Grundfunktionen erhiltlichen Wahrheits-
funktionen auf.

n traditionella Reseich darstellende
* s Aussagenverbindung Symbol’)
Dyt Negation nicht -
[ A Konjunktion und A
D, Alternative oder v
[ A [_mplilmtion wenn, 80 -
[ X3 . Aquivalenz genau dann, wenn -
1) In der Li sind hied andere Symbole verbreitet, u.a. ~ statt —, & statt a,

« statt v, O statt —, = statt <.

Das Alphabet C bestehe aus den fiinf Funktionssymbolen —, A, v, —>, <>, den beiden
Zeichen (,) und den abzihlbar vielen Buchstaben p, py, P, ..., die als Variable
fiir Wahrheitswerte benutzt werden. Aus der Wortmenge W(C) sondern wir durch
eine induktive Definition die Teilmenge ausd der (aussagenlogischen) Ausdriicke
aus:

Definition 1.

(8)pi€ausd (1 =0,1,2,...);

(b) Wenn H € ausd, so sei auch — H € ausd; -
(Ausfiihrlich bedeutet (b): Wenn die Zeichenreihe H zur Menge ausd gehért, so

gehort auch diejenige Zeichenreihe — H zu ausd, die aus H entsteht, indem man den
Buchstaben — davorschreibt. Wegen (a) ist also beispielsweise

— Ps € ausd, — Pyyg € ausd,



folglich auch
P € ausd, — — — Ps € ausd, —— ———— — Pags € ausd usw.

Der Buchstabe H, eventuell mit Indizes, wird hier und im folgenden als Variable zur
Bezeichnung beliebiger Ausdriicke benutzt.) )
(c) Wenn H, € ausd und H, € ausd, 8o sei auch (H; A H,) € ausd, (H, v H,) € ausd,
(H, - H,) € ausd und (H, « H,) € ausd;
(d) Eine Zeichenreihe Z € W(C) sei nur dann Element der Menge ausd, wenn sich
dies durch endlich viele A dungen der Regeln (a), (b), (c) ergibt.

Definition 1 bedeutet anders formuliert: Die Menge ausd ist die kleinste Teilmenge
von W(C), die alle einbuchstabigen Worter der Form p; enthilt, mlt jedem Element
H auch die Zeichenreihe — H und mit je zwei (nicht not hied )
Elementen H,, H, auch die Zeichenreihen (H, A H,), (H, v H,), (Hl — H,) und
(H, « H,) enthiilt.

Beispiel 1. Aufbau eines Ausdrucks durch Anwendung von (a), (b), (c):

Py, Ps € ausd Pa, Py € ausd nach (a).
Nach (b) folgt: ] Nach (c) folgt:

=Py, P; € ausd (ps = p4) € ausd
Nach (c) folgt: Nach (b) folgt:

(1 A P2) € ausd —1(ps = Pa) € ausd

Nach (c) folgt:
(21 A= P2) v — (ps > Pa)) € ausd
Nach (b) folgt:
= ((=P1 A= pa) v (Ps > o)) € ausd (1)

Jeder Ausdruck beschreibt offenbar eine bestimmte, durch Superposition aus den
gewiihlten Grundfunktionen erzeugbare Wahrheitsfunktion, und umgekehrt wird
jede derartige Wahrheitsfunktion durch wenigstens einen Ausdruck dargestellt.
Diese haulich klare Bezieh hen Ausdriicken und Wahrheitsfunktionen
wird durch die folgende Definition priizisiert.

Definition 2. Ist H € ausd, so heiBt eine Abbildung f, die mindestens den in
H vorkommenden Variablen je einen der beiden Wahrheitswerte zuordnet, eine
Belegung von H. Ist f eine Belegung von H, so sei Wert(H, f) der Wahrheitswert, den
die durch H dargestellte Wahrheitsfunktion an der durch f gegebenen Stelle ihres
Definitionsbereiches immt. Ausfiihrlich wird dies durch folgende induktive
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Regeln zur Definition (und Berechnung) von Wert(H, f) ausgedriickt:

(@) Wert (pi, f) = /(p));

(b) Wert (— H, f) = &5 (Wert (H, f);
(Das heit, Wert(— H. f) = W genau dann, wenn Wert(H, f) = F. Wir bemerken:
Ist f eine Belegung von — H, so ist f erst recht eine Belegung von H. Ist also schon
Wert(H, f) fiir alle Belegungen von H definiert, so ist durch (b) Wert(— H, f) fiir
alle Belegungen von — H definiert. Analoge Erklirungen zu den folgenden Schritten
mége der Leser selbst formulieren.)

(c) Wert((H, A Hy), f) = ®2(Wert(H,, f), Wert(H,, f)):

(d) Wert((H, v H,), f) = @} (Wert(H,, /), Wert(H,, f));

() Wert((Hy — H,), /) = P Wert(H,, f), Wert(H,, f));

() Werl((H, < H,), /) = A Wert(Hy, f), Wert(H,, /).
Beispiel 2. Berechnung der Wertetabelle des Ausdrucks (1).

1 2 3 4| 5 6 7 8 9 10 11
~Pl Ps Ps Po| 1P| P: [(MPiA—IP)| (Ps—> Pd) —8 | (Tv9) |10
W W WW| F F F w F F w
W WW F| F F F F w w F
W W F W| F F F w F F w
W W F F| F F F w F F w
W F W W| F w F w F F w
W F W F| F w F F w w F
W F F W| F w F w F F w
W F F F| F w F w F F 4
F WWW|W F F w F F w
F WWF| W F F r w w F
F WPF W W F F w F F w
F WP F F| W F F w F F w
F F WW| W w w w F w F
F FWF| W w w F w w F
F F FW| W w w w F w F
F F F F| W w w w F w F

In Spalte 1 bis 4 sind in lexikographischer Reihenfolge alle Belegungen der Variablen
Pus -+, Py aufgefiihrt. Spalte 5 wird aus Spalte 1 durch Anwendung der Negation
gewonnen, ebenso Spalte 6 aus Spalte 2. Spalte 7 entsteht durch Anwendung der
Konjunktion auf Spalte 5 und Spalte 6 usw. Die letzte Spalte enthilt das Endresultat,
d. h. die Wertetabelle der durch den Ausdruck (1) dargestellten Wahrheitefunktion.
Es ist klar, daB man prinzipiell die Wertetabelle jedes Ausdrucks nach dem gleichen
Verfahren berechnen kann, jedoch ist dies fiir hinreichend komplizierte (lange)
Ausdriicke ohne Hilfe der EDV kaum durchfiihrbar.
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Definition 3. Ein Ausdruck H heiBt allgemeingiiltig, wenn Wert(H, f) = W fiir
alle Belegungen f von H gilt. Die Menge der allgemeingiiltigen Ausdriicke wird mit ag
bezeichnet. :

Die Allgemeingiiltigkeit eines Ausdrucks kann man offenbar grundsitzlich durch
Berechnung seiner Wertetabelle nachweisen bzw. widerlegen. Der Leser priife dies
fiir die folgenden Ausdriicke nach.

Beispiel 3. Aligemeingiiltige Ausdriicke sind unter anderen

(P1—>p1),

(prv—1p1),

(P = (P2 > p1})>

(tpr<'P2) > ((Br A PPV (1 P1 A 1 P2))) -

Jeder allgemeingiiltige Ausdruck kann als ein Schema zur Bildung von zusammen-
gesetzten Aussagen aufgefaBt werden, die bei beliebigem Inhalt der verwendeten
Teilaussagen insgesamt stets wahr sind, anders formuliert: Jeder allgemeingiiltige
Ausdruck ist das Schema einer Schar von Aussagen, die allein auf Grund ihrer logisch
sprachlichen Struktur, also unabhingig vom konkreten Inhalt, wahr sind. Das
systematische Aufsuchen derartiger Schemata, spiter die Erfassung und Beschrei-
bung aller derartigen Schemata, gehort zu den dltesten Aufgaben der traditionellen
Logik.

Definition 4. Ausdriicke H;, H, heiB tisch dquivalent, wenn der Ausdruck
(H, « H,;) allgemeingiiltig ist.

Auf Grund des Wertverlaufs der Aquivalenzfunktion &.? sind Ausdriicke genau
dann semantisch dquivalent, wenn fiir jede Belegung f aller in H, und H, insgesamt
vorkommenden Variablen Wert(H,, f) = Wert(H,, f) gilt, d.h., wenn H, und H,,
abgesehen von gewissen eventuell vorkommenden fiktiven Variablen, die den Wert-
verlauf nicht beeinflussen, die gleiche Wahrheitsfunktion darstellen. Die tisch
Aquivalenz von Ausdriicken ist von groBer Bedeutung fiir das richtige logische
SchlieBen, da jedes Paar semantisch équivalenter Ausdriicke die exakte Begriindung
fiir die Gleichwertigkeit zweier extensionaler Aussagenverbindungen liefert. Zum
Beispiel ist die Gleichwertigkeit der Aussagenverbindungen wenn A, so B bzw. nicht
A oder B eine Folge der semantischen Aquivalenz der Ausdriicke (p, — p,) und
(— P1V Ppy) bzw. der Allgemeingiiltigkeit des Ausdrucks ((pl > P (P Vv p,)).
Allgemein ist die intuitiv richitige Anwendung einfacher semantischer Aquivalenzen
ein gewisses Kriterium fiir den Entwicklungsgrad des ,logischen Denkens“. In
komplizierteren Fillen kann jedoch die semantische Aquivalenz auch von erfahrenen
Mathematikern nicht ohne Rechnung erkannt werden.
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Beispiel 4. Paare semantisch dquivalenter Ausdriicke:
—am semantisch dquivalent p,,
(P1 A Py) semantisch dquivalent (pg A Py),
(P1 = Py) semantisch dquivalent (— py = — D),
(P A (s v — py)) semantisch Gguivalent p; .

Bevor wir weitere Beispiele formulieren, sollen einige allgemein iibliche Kl -
sparungsregeln zur Vereinfachung der Schreibweise konkreter Ausdriicke vereinbart
werden.

(a) Die AuBenklammern fertiger Ausdriicke werden weggelassen.
(b) Die zweistelligen Funktionssymbole <>, —, v, A haben in der angegebenen
Reihenfolge zunehmende Bindekraft.

P1 < P2 > Ps bedeutet demnach (p, <> (p, — ps)) und nicht
((151  Py) > Pa)- )
P1 A Ps = Ps V Pu bedeutet demnach ((p; A pg) = (ps v py)) und nicht
(P1 A (Pu - (psV Pa)))o
(c) Konjunktion und Alternative sind assoziativ, d. h.,

((Pl APg) A Ps) semantisch dquivalent (Pl AP A Pa)),
((p1 v Ps) v Ps) semantisch dquivalent (p, v (p, v ps)).

Unter Berufung auf die hieraus folgenden allgemeinen Assoziativgesetze schreiben

wir im folgenden p; A ps A ... A p, statt (p, A (p, A(es A (Paa AP ))) oder einer
semantisch dquivalenten Klammerung, analog p; v p; V ... V Py

a : 1 thioh

(d) Statt der Variablenp; (: =0, 1, 2, 3, ...) ver wir geleg P, q, 1,8 t.

Es sei nachdriicklich betont, daB Zeichenreihen, die unter Verwendung der Regeln
(a) bis (d) geschrieben sind, selbst keme Ausdriicke im Sinne von Definition 1, sondern

diglich b les- und schr Abkiirzung, Icher Ausdriicke sind. Ins-
besondere beziehen sich auch im folgenden allgemeine Betrachtungen (Definitionen,
Siitze usw.) stets auf Ausdriicke im Sinne der Definition 1. Der Leser , riickiibersetze‘
zur Ubung einige der folgenden ,,Ausdriicke* in die unabgekiirzte Form.

Wichtige semantische Aquivalenzen, als allgemeingiiltige Ausdriicke geschrieben,
sind:
P1 APy P2 APy (Kommulativgesetz der Konjunkiion)

PiAP1e Py (Verschmelzungsgeselz der Konjunktion)
VP P v (Kommutativgesetz der Alternative)



PiVPie Py
PiVPsAPs< (P1V D) A (PLV Ps)
PiA(P2VPs)«>P1 AP VPLAP:

(Verschmelzungsgesetz der Alternative)
} (Dristributivgesetze)

= (P1AP) PV P
—1(P1VP) <+ P1 APz } (de Morganache Regeln)
Pr =P P> (Regel der Kontraposition)
(Pr<> Pa) > (P > Po) A (P2 > P1)  (Elimination der Aquivalenz)
PP PV P (Elimination der Implikation)
Pr > (P1 > P2) <> P1 —>P: (Pramissenverschmelzung)
1 —> (P2 = Ps) <> P1 A P2 —>Ps (Primissenverbindung)

— (p; = Pa) <> P2 —> (pr = Pa)  (Primissenvertauschung)

AbschlieBend sei vermerkt, da8 auch die Aquivalenz assoziativ ist:

(1> po) = ps')«» (Pr<> (P2 P3)-

Es sei aber die Warnung angebracht, daB die Schreibweise p, <> p; ++ ps im iiblichen
mathematischen Sprachgebrauch nicht etwa p, < (p; <> ps) bedeutet wie im Fall
der Konjunktion und Alternative, sondern gleich

PiAP: APV — P1A—PrA—Ps
zu setzen ist.

Es wurde schon darauf hmgewlesen, daB ein Ausdruck im wesenthchen nichts
anderes ist als das Sch einer ineinand hachtelten Aussagenverb
Insbesondere lmnn man sich fiir die in einem Ausdruck vorkommenden Vamblen

solche A tzt denk die ihrerseits nach einem durch einen Ausdruck
beschreibbaren Sche genlogisch gesetzt sind. D h muB
gelten:

Satz 1. Sind H, und H, beliebige Ausdriicke, so ist die Zeichenreihe Sub(H,, p;, Hy),
die aus H, entsteht, indem man die Variable p; an allen Stellen thres Vorkommens in H,
durch H, ersetzt, ebenfalls evn Ausdruck Hs. Ist f eine Belegung von H, so sei f’ die durch

" _ Wert(H,, f)
fpy) = { fo)
definierte Belegung. Dann gilt
We't(s”b(ﬂh Pis Hy), /) = Wert(H,, }'). 2)

Einen exakten Beweis dieses anschaulich recht klaren Satzes kann man unter
Benutzung von Definition 1 durch Induktion iiber die Kompliziertheit von H,
fiihren : Es sei zuniichst H, eine ei Variable p;. Falls p; gleich der zu ersetzenden

fiir v=7,
sonst
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Variablen p; ist, ist Sub(H,, p;, Hy) = H, und Wert(H,, /) = f'(p;) = Wert(H,, [’)
fiir jede Belegung f von H,. Im Fall j == < ist Sub(H;, p;, H,;) = H, und Wert(H,, f)
= f(p;) = /'(p;) = Wert(H,, }') fiir jede Belegung f von H,. Es sei nun Hy, = — H,
und der Satz fiir H, schon (bei beliebigem p; und H,) bewiesen. Zunichst ist

Sub(Hy, pi, Hy) = — Sub(H,, p;, H,).

Da nach Vomussetzting Sub(H,, p;, H,) ein Ausdruck ist, trifft dies daher auch auf
Sub(H,, p, H,) zu, und f ist genau dann eine Belegung des einen dieser Ausdriicke,
wenn f auch Belegung des anderen Ausdrucks ist. Es sci nun f einc solche Belegung.
Da (2) nach Voraussetzung fiir H, gilt, ist

Wert(Sub(H,, pi, Ha), f) = Wert(— Sub(H,, p;, H,), /)
= @5} Wert(Sub(H,, p;, Hy), /)

= @y (Wert(H,, [')) = Wert(— H,, ')

= Wert(H,, f').

Folglich ist der Satz fiir Hy bewiesen.

Es sei nun Hy = (H, A H,’) und der Satz fiir H, und H,’ bei beliebigem f und H,
bewiesen. Offenbar ist Sub(Ho, p;, Hy) gleich (Sub(H,, pi, Hy) A Sub(Hy', p;. Ha)),
und folglich ein Ausdruck. (Hier erweist es sich als zweckmifBig, daB wir bei der
Formulierung des Satzes das Vorkommen von p; in H, nicht verlangt haben. Einc
Variable p;, die in H, vorkommt, mu8 nicht in H, und in H,’ vorkommen.) Es sei
nun Hj ein beliebiger Ausdruck, f eine Belegung von Sub(H,, p;, H,). Dann ist f auch
Belegung von Sub(H,, py, H,) und von Sub(H,’, p;, H,), und es gilt

Wert(Sub(H,, pi, Hy), f). .
= ¢,'( Wert(Sub(H,, p;, Hy), /), Wert(Sub(H,’, p;, H,), /))
= ONWert(H,, /'), Wert(Hy', [)) = Wert((H, A Hy'), ')
= Wert(H,, ).
Fiir die restlichen Fille verliuft der Beweis vollig amalog.
Aus Satz 1 folgt unmittelbar

Satz 2. Ist H, ein allgemeingiiltiger Auadrwic, 80 1st fiir beliebige Variablen p; und
Ausdriicke Hy der Ausdruck Sub(H,, pi, H,) ebenfulls allgemeingiiltig.

Als Bpezialfall von Satz 2 ergibt sich weiter

Satz 3. Sind H, und H, semantisch iquivalent, so sind fiir beliebige Variablen p;
und Ausdriicke H, die Ausdriicke Sub(H,, p;, Ho) und Sub(H,, pi, H,) ebenfalls seman-
tisch dquivalent.
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Zum Beweis von Satz 3 hat man auBer Satz 2 und Definition 4 nur die offenbar
richtige Gleichung

Sub((H, « Hy), pi, Ho) = (Sub(H,, pi, Ho) < Sub(H,, p;, Hy))

fiir Zeichenreihen zu benut:

Satz 4. Sind H, und H, tisch dquivalent und entsteht die Zeichenreihe H,
dadusrch aus dem Ausdruck Hy, daf man em Vorkommen von H, in Hy durch H, ersetzt
(d. h., es gibt Worter P, Q, so daff Hy = PH,Q und H, = PH,Q), so ist H, ein zu H,
semantisch dquivalenter Ausdruck.

Beweis. Wir betrachten zunichst den Spezialfall H, = Hy. Dann ist H, = H,
und folglich H, ein zu H, semantisch iquivalenter Ausdruck. Der allgemeine Fall
wird nun durch Induktion iiber die Kompljzierthéit. von H, bewiesen. Ist Hj eine
einzelne Variable, so tritt der Spezialfall ein. Der Satz gelte schon fiir einen Ausdruck
Hj, und H, sei ein Teilausdruck von — Hy. Dann ist H, Teilausdruck von Hj, und
nach Induktionsannahme entsteht durch Ersetzen von H,; durch H, in H; der zu H;
scmantisch dquivalente Ausdruck H,. D h entsteht durch Ersetzung von H, in
—+ Hy der zu — H, semantisch équivalente Ausdruck — H,. Gilt der Satz schon fiir
Ausdriicke Hy', Hy"", 8o ist ein Teilausdruck H, von (Hy' o Hy”') (wobei o eines der
Zeichen A, v, —, <> bedcutet) entweder gleich dem G tausdruck (Spezialfall)
oder einem Teilausdruck von H;' oder einem Teilausdruck von H;”. In den letzten
beiden Fillen schlie8t man analog zum Fall — Hy weiter.

Satz 4 bedeutet, daB man jedes Paar semantisch équivalenter Ausdriicke als
Regel zur schrittweisen semantisch dquivalenten Umformung beliebiger anderer
Ausdriicke auffassen kann. Insbesondere gestatten z. B. die bereits als Eliminations-

1

regeln bezeichnet ti Aquival

(P1 <> Pa) < (P1 > Pa) A (P2 > P1),
(Pr—>P) > PV Py,
die auf Grund von Satz 2 auch als Schemata
(Hy <> Hy) «> (Hy - Hy) A (H, > H,),
(Hy - Hy) > — H, v H,
geschrieben werden kénnen, die sohrittweise Umformung eines beliebigen Ausdrucks

H in einen zu H semantisch dquivalenten Ausdruck H', in dem die beiden Zeichen «
und — niclit mehr vorkommen. Ferner folgt aus der ersten de Morganschen Regel

—(P1AP) > PV Pe @)
die Eliminationsregel

PiAPre> (= P1V D), 4
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h

analog folgt aus der zweiten de Morg; Regel

P1VPs+ — (1 P1A—Pa)-

(Die Allgemeingiiltigkeit von (4) kann man natiirlich direkt mittels der Wertetabelle
erschlieBen. Wenn wir hier formuliert haben, daB (4) aus (3) folgt, so bedeutet dies
ausfiihrlich: Da p <> — — p allgemeingiiltig ist, ist nach Satz 2 auch

PiAPr<> 1 (P1APs) ) (5)
allgemeingiiltig. Ersetzt man hierin nach Satz 4 den Teilausdruck — (p; A p,) durch
den laut (3) semantisch dquivalenten Ausdruck — p; v — p,, 8o erhélt man einen zu
(8) tisch dquivalenten, mithin wieder allgemeingiiltigen Ausdruck (4).)

Folgerung. Jede durch Superposition aus den fiinf hier betrachteten Grundfunkti
darstellbare Wahrheitsfunktion lift sich allein mittels Negation und Konjunktion und
allein mattels Negation und Allernative erzeugen.

23. Normalformen

Es bleibt zu zeigen, daB die fiinf betrachteten Grundfunktionen ausreichen, um jede
Wahrheitsfunktion beliebiger Stellenzahl durch Superposition zu erzeugen. Zu diesem
Zweck betrachten wir Normalformen.

Ein Ausdruck der Form H; A Hy A ... A H,, wobei fiir 7 =1, 2,...,n jeder der
Ausdriicke H; (unabhiingig von den anderen) entweder gleich p; oder gleich — p; ist,
heiBt eine Elementarkonjunkiion in den Variablen p,, ..., p,. Es sind zum Beispiel
P1 A— Ps A Ps, P1 A — P2 A — Ps Elementarkonjunktionen in den Variablen p,, p;, ps-
Offenbar gibt es fiir » = 1 genau 2" verschiedene Elementarkonjunktionen in den
Variablen py, ..., p,, und wie man durch Induktion iiber n leicht bestitigt, nimmt
jede El tarkonjunktion fiir genau diejenige Belegung ihrer Variablen den Wert W
an, die jeder giert vork den Variablen den Wert W.und jeder negiert vor-
kommenden Variablen den Wert F zuordnet. Man kann also einer Elementarkon-
junktion sofort ihren vollstindigen Werteverlauf ansehen und umgekehrt zu jeder
Wahrheitsfunktion, die genau einmal den Wert W annimmt, sofort eine sie dar-
stellende Elementarkonjunktion aufschreiben. Zum Beispiel entsprechen sich auf
diese Weise die durch

L4

i P+ P P P

W W ' F W F w
sonst F

gegebene Wahrheitsfunktion @ und die Elementarkonjunktion

PiAPt A P3s APy A—Pse
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Sind E, und E, verschiedene Elementarkonjunktionen in den Variablen py, ..., p,,
sosei E; < E,, falls an der ersten Stelle von links, an der sich E, und E, unterscheiden,
die negierte Variable in E, und die unnegierte Variable in E, steht. (Das entspricht
einer ,lexikographischen‘ Ordnung nach der Vorschrift ,,unnegiert vor negiert*.)

Ein Ausdruck heiBt eine (eigentliche) kanonische alternative Normalform (kurz aNf),
wenn er die Form E,v E;v...v E; (k = 1) hat, wobei E,, ..., E, paarweise ver-
schiedene Elementarkonjunktionen in den gleichen Variablen sind und E; < E; fiir
1 £ ¢ < j £ kgilt. Neben den eigentlichen aN{ bezeich wir auch den Ausdruck
PiA—P1V P2 A—Ps V...V Py A— D, 818 (uneigentliche) aNf in den Variablen py, ..., p,.
Dann gibt es offenbar fiir beliebiges n = 1 insg t genau 2% aNf in den Variablen
p tERERE] Pﬂ'

Sind Hj, ..., H, beliebige Ausdriicke, so gilt, wie man leicht durch Induktion iiber
k bestiitigt, fiir beliebige Belegungen f des Ausdrucks H, v H, v ... v H, genau dann

Wert(H,v Hyv...vH,, ) =W,

wenn Wert(H,, f) = W fiir wenigstens einen der Ausdriicke H,, ..., H, gilt.

Unter Beriicksichtigung des bereits diskutierten Wertverlaufs der Elementar-
konjunktionen folgt hieraus sofort:

Jede eigentliche aNf E, v Ey v ... v E, wird fiir genav diejenigen k Belegungen wahr,
bei denen jeweils eine der ElementarRonjunktionen E,, ..., E, wahr wird. Die uneigent-
liche aN| (und nur diese) nimmi bet jeder Belegung threr Variablen den Wert F an.

Folglich kann man zu jeder Wahrheitsfunktion beliebiger Stellenzahl sofort eine
sie darstellende aNf aufschreiben und umgekehrt von jeder aNf ohne besondere
Rechnung sofort ihren vollstindigen Werteverlauf ablesen. Die Zuordnung zwischen
den n-stelligen Wahrheitsfunktionen und den sie darstellenden aNf ist eineindeutig.
Zum Beispiel entsprechen sich die aNf

PiAP:APsVPiATPeA—1PsV A Pi AP A Ps

und die Funktion

)21 P Ps Pros®
w w W w
w F F w
F w F w
sonst ¥

Folgerung. Jede Wahrheitsfunktion ist als Superposition von Negation und Kon-
Junktion bzw. von Negation und Alternative darstellbar. (Man kann ja wahlweise noch
die Konjunktion oder die Alternative aus den aNf eliminieren.)
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Wir zeigen abschlieBend, daB eine geeignet gewihlte Wahrheitsfunktion allein
ausreicht, um die Negation und Konjunktion und damit alle Wahrheitsfunktionen
auszudriicken. Um diesen Sachverhalt méglichst kurz und iibersichtlich formulieren
zu konnen, denken wir uns das Zeichen | als Operationssymbol fiir die Funktion
&,* (weder noch, Nicodsche Funktion) genommen und die Definition der Ausdriicke
entsprechend erweitert. Dann ist offenbar

— p semantisch dquivalent p | p,
P A Q semantisch dquivalent —p | — q;
folglich gilt

P A q semantisch dquivalent (p | p) | (| q).

Dem entspricht die logische Gleichwertigkeit der Aussagenverbindungen 4 und B
und weder (weder A noch A) noch (weder B noch B).

Aufgaben. 1. Man zeige, daB auch die' Funktion ®,* (Sheffersche Funktion)
allein zur Erzeugung von Negation und Konjunktion geniigt.

2. Unter Benutzung der Assoziativgesetze fiir Konjunktion, Alternative und Aqui-
valenz charakterisiere man jeweils die Gesamtheit aller durch eine dieser Funktionen
allein erzeugbaren Wahrheitsfunktionen und folgere daraus, daB keine dieser Funk-
tionen allein zur Erzeugung aller Wahrheitsfunktionen auereicht.

3. Durch Vertauschen der Operationssymbole A und v entstehen aus den Begriffen
Elementarkonjunktion bzw. (eigentliche und uneigentliche) kanonische alternative
Normalform die Begriffe El tarallernative bzw. (eigentliche und igentliche)
kanonische konjunktive Normalform. Man zeige, daB jede thrheltsfunktlon auch auf
genau eine Weise durch eine kanonische konjunktive Normalform dargestellt werden
kann.

4. Durch systematische Anwendung von semantisch équivalenten Umformungen
kann man jeden Ausdruck schrittweise in die ihm dquivalente aN/ uberfuhren
Man eliminiere zunichst alle Symbole «» und —, treibe die Negati ittel
der de Morganschen Regeln so weit wie méglich nach innen, lmm doppelte Nega-

tionen, verwandle den erhaltenen Ausdruck durch Anwendung des entspr
Distributivgesetzes in eine Alternative von Konjunktionen, ordne die erhaltenen
Konjunktions- und Alternativglieder mittels K tativ- und Assoziativgeset;

in der gewiinachten Reihenfolge, verschmelze dabei doppelt auftretende Glieder und
fiille fehlende Variablen mittels der Regel

+ PoPAQVPA—G

auf. Der Leser baue diese Andeutungen zu einem allgemeinen Verfahren aus und
wende gs auf Beispiele.an.



3. Strukturen und formalisierte Sprachen

3.1.  Kartesische Produkte, Relationen und Operationen

Das aus beliebigen Dingen 2z, ..., z, gebildete n-Tupel (z,, ..., z,) ist in dhnlicher
Weise ein gedankliches Objekt wie z. B. die Menge {z,, ..., z,}. Fiir den praktischen
Gebrauch der n-Tupel ist nur die Voraussetzung wesentlich, daB die n-Tupel folgende
Grundeigenschaft besitzen: .
(Z1, 0005 Xa) = (%) +++, Yn) genau dann, wenn z; = y; (t = 1, ..., n). 1)
Die These, daB der Mengenbegriff allein ausreicht, alle in der Mathematik vorkom-
menden Begriffe zu definieren, erfordert es, im jeweils gewihlten System der Mengen-
lehre fiir jede natiirliche Zahl n = 2 eine n-stellige Operation zu definieren, di¢ je n
Dingen eine Menge (zy, ..., z,) 80 zuordnet, daB (1) erfiillt ist. Dies ist stets méglich,
jedoch im allgemeinen auf sehr viele verschiedene Arten, so daB jeder mengentheore-
tischen n-Tupel-Definition eine gewisse Willkiir anhaftet.

Sind M,,..., M, beliebige Mengen (n = 2), 8o sci
My XXM, :={(®,...,25): 2 € My und'... und z, € M,}.
Die so definierte Menge M, X --- X M, heift kartesisches Produkt (auch Kreuz-
produkty der Mengen M,, ..., M,. Insbesondere sei
M =M, M :=MX--XM firnz=2.
ARG
n-mal
Sind M,, ..., M, beliebige nichtleere und paarweise disjunkte Mengen (n = 1),
8o verstehen wir unter einer Relation ¥m Bereich der Mengen M, ..., M, eine beliebige
Teil ge eines kartesischen Produkts der Form M X M X .- X M;, wobei
m2=1,17,€(1,...,n} fir g =1, ..., mist. Dabei heiBt dasm-Tulpel (3,, ..., i) Vvon
natiirlichen Zahlen der T'yp der Relation und die Zahl m die Stellenzahl der Relation.
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Relationen im Bereich einer Menge M und nur solche sind allein durch ihre Stellen-
zahl charakterisiert. Eine solche Relation R ist einfach eine Teilmenge von M™ und
wird kurz als m-stellige Relation in M bezeichnet.

Beispiel 1. Es sei M, die Menge aller Punkte und M, die Menge aller Geraden
einer beliebigen fest gewiihlten euklidischen Ebene. Ferner sei

Riy; = {(, 23): 7, € M, und z, € M, und z, liegt auf z,}, .

Ri = {(Z1, T3, T3): Ty, Xy, T3 € M, und z, liegt zwischen x, und
zy (auf der Strecke x,z,)},

Riong := (21, 23, 25, 7,): 2y, 25, X3, T4 € M, und die Strecke z,25
18t kongruent der Strecke xyx,),

Rpar := (21, 23): 2, 3 € M,y und =, st parallel zu 5:,],
Rorta 1= ((®1, 73): %y, 73 € My und x, steht senkrecht auf z,}.

Die angegebenen fiinf Mengen sind Relationen im Bereich der Mengen M,, M,.
(In konkreten Fillen wie dem vorliegenden sagen wir z. B. auch: Relationen im
Bereich der Punkte und Geraden der betrachteten Ebene.) R;,, ist eine zweistellige
Relation vom Typ (1, 2) und heiBt in der Geometrie Inzidenzrelation. R,,; ist eine
dremtelhge Relation vom Typ 1,1, 1) (d. h. eine drelsbell.\ge Relation in M,) und
heiBt in der G trie I Riong ist eine vierstellige M,-Relation und
wird in der Geometrie als (Strecken-) Kongruenz bezeichnet. Ry, und R,y sind
zweistellige Relationen in M, (d. h. vom Typ (2, 2)).

Sind M, ..., M,_ irgendwelche (nicht notwendig verschiedene) der nichtleeren
und paarweise disjunkten Mengen M|, ..., M,, 8o heiBt eine beliebige Abbildung
(Zuordnung) «, die jedem Element der Menge M, X --- X M, einen der beiden
Wahrheitswerte W, F zuordnet, ein m-stelliges Attribut (in manchen Biichern auch
Priidvkat) vom Typ (3y, ..., 1) im Bereich der Mengen M, ..., M,. Ist « ein Attribut
vom Typ (3), ..., tw) im Bereich der Mengen M,, ..., M,, so ist offenbar die durch

R, = (@1, .ees ¥m): a(@y, +00, Zn) = W)

definierte Menge eine Relation vom Typ (%, ..., %) im Bereich der Mengen M,, ..., M,.
Ist umgekehrt R eine beliebige solche Relation, so ist die durch

\

W, falls z,, ..., z0) € R,
OR(Zyy ooy Ty) 1= F, falls (z,, ..., z,) € (M;IXW XM;_)\R,

definierte Abbildung «p ein Attribut vom Typ (3, ..., %) im Bereich der Mengen
M, ..., M,. Dabei gilt R, = R und ap, = .

Demnach entsprechen Relationen und Attribute’ einander umkehrbar eindeutig.
In gewisser Weise ist ein Attribut nichts anderes als die charakteristische Funktion
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einer Relation. Beide Begriffe stellen im wesentlichen die gleiche Art von Sachver-
halten dar und werden hiufig nebeneinander benutzt bzw. gar nicht streng unter-
schieden. Wir werden im folgenden stets den Relationsbegriff benutzen.

Ist F eine Relation vom Typ (3, ..., im, j) im Bereich der Mengen M,,..., M,
mit der Eigenschaft, daB es zu jedem (z,, ..., z,) € M, X .- X M, hochstens ein
y € M;mit (2,, ..., Zy, y) € F gibt, so heiBt F eine m-stellige partielle Operation vom
Typ (%, -.., im; j) tm Bereich der Mengen M, ..., M,. Stdtt (z,, ..., z,, y) € F schrei-
ben wir in diesem Fall y = F(z,, ..., z,,).

Der 8o definierte Begriff der (partiellen) Operation ist inhaltlich identisch mit den
Begriffen Funktion bzw. Abbildung. Welche dieser Bezeichnungen jeweils benutzt
wird, hingt vor allem von gewissen Traditionen ab. Insbesondere spricht man in der
Algebra vorwiegend von Operationen, in der Geometrie vorzugsweise von Abbildun-
gen usw.

Fiir eine partielle m-stellige Operation F sei
Dy := {(xy, : Zp): s gibt ein y mit (z,, s Ty y) € F)
der Definitionsbereich von F,
Wp:={y:esgibt z,, ..., x, mit (z,, ..., Zpy, y) € F}

der Wertebereich von F. Ist Dp = M; X --- X M, fiir eine Operation F vom Typ
(%1, +++, i3 §) im Bereich der Mengen M,, ..., M,, so bezeichnen wir F als eine volle
Operation. Meist werden wir im folgenden die Beiworte voll bzw. partiell fortlassen
und nur in besonderen Fillen ausdriicklich darauf hinweisen, da eire Operation
voll oder (echt) partiell ist.

Beispiel 2. Es seien M,, M, die in Beispiel 1 betrachteten Mengen. Ferner sei

Fiin 1= ((2), Zg, %3): 21, X3 € M und 23 € M, und 2, & x und z,
liegt auf xy und x, liegt auf z},

Fio 1= {(®1, 23, 23): 7 € M, und 2,, 23 € M, und z, legt auf x5 und z,
8steht senkrecht auf zg).

Fy;y und Fy, sind dreistellige Relationen im Bereich der Mengen M,, M,. Zugleich
ist F;, eine zweistellige echt partielle Operation vom Typ (1, 1;2) und F;, eine
zweistellige volle Operation vom Typ (1, 2; 2). Beim Ubergang von der Relations-
zur Operationsschreibweise bedeutet F4(x;, ;) diejenige Gerade, die durch die
beiden (als verschieden vorauszusetzenden) Punkte z,, z; geht und Fu(z,, z,) die-
jenige Gerade, die durch den Punkt z, geht und auf der Geraden z, senkrecht steht.
Offenbar ist

Dy, = (%1, %a): 21, 7 € My und 2, + 33}, Wp, = M,,
Dy, = MyX My, Wy =M,
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3.2.  Strukturen

Unter einer n-sortigen Struktur (n = 1) verstehen wir ein (n + m + I + p)-Tupel
der Form

(Mo ooy M5 0150205 0m3 @15 o005 P13 V15 +o05 Vo) (1)

wobei M,, ..., M, nichtleere und paarweise disjunkte Mengen, g,, ..., on Relationen
im Bereich der Mengen M,,..., M,, ¢y, ..., ¢; partielle Operationen im Bereich

dieser Mengen und y,, ..., y, gewisse Elemente der Menge U M, sind. Die Mengen

=1

M,, ..., M, heiBen die Grundbereiche (auch Grundmengen) der Struktur. Im konkreten
Fall kann jede der Zahlen m, I, p gleich Null sein. Jedoch soll m + I > 0 sein. Struk-
turen, die durch m = 0 gekennzeichnet sind, werden hiufig als (universelle) Algebren
bezeichnet. In letzter Zeit wird diese Bezeichnung auch schon gleichbedeutend mit
dem hjer definierten Strukturbegriff gebraucht. Strukturen mit ! = p = 0 wurden
eine Zeitlang mit dem heute nicht mehr gebriuchlichen Namen Relativ bezeichnet.
Da jede k-stellige partielle Operation eine spezielle (k 4 1)-stellige Relation ist und
jede der Konstanten y, (x = 1, ..., p) einer Struktur auch durch die einstellige Rela-
tlon {yx) beschrieben werden kann ist der Spezialfall ,Relativ*‘ des Strukturbegriffs

tlich genauso al in wie der Strukturbegriff. Man kann sich sogar auf die
Betrachtung elnaortlger Strukturen beschriinken, indem man aus den ursprunghchen

Grundbereichen M,,..., M, den einheitlichen neuen Grundbereich M = U M,

-1
bildet und die Mengen M,, ..., M, als in ihm gegebene einstellige Relationen (so-
genannte Sortenpridikate) auffaBt. Fiir die meisten gegenwirtigen Anwendungen
erweist sich jedoch der Strukturbegriff in der oben eingefiihrten Form als am zweck-
miBigsten.

Ist y, € M, 80 bezeichnen wir y, als eine Konstante vom Typ (; j). (Die Bezeichnung
(j) konnte mit dem Typ einer einstelligen Relation verwechselt werden.) Aus der
Gesamtheit aller Typen der zur Struktur (1) gehorigen Relationen, Operationen und
Konstanten und der Sortenzahl kann man nun den Typ der Struktur (1) wie folgt
bilden:

(n; Typler), .-, Typlem)s Typ(@r), «--r Typl@s); Typ(), ---, Typ(yy))-

Fiir einsortige Strukturen liBt sich diese Angabe wieder wesentlich vereinfachen,
da der Typ einer solchen Struktur bereits villig durch die Stellenzahl der Relationen
und Operationen und die Anzahl der Konstanten gekennzeichnet ist.

Beispiele.
1. Die natiirlichen Zahlen bilden unter anderem die Struktur

RN = (N; 015 @1, @2 Y1, 72)
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Dabei ist N die Menge der natiirlichen Zahlen, g, die iibliche Ordnung der Menge N,
d. h. eine zwelstelhge Relatlon in N; @, bzw. @, bezeichnen die Addition bzw. Multi-
plikation in N, d. h. tellige Operati in N; y, bezeichnet die Zahl Null,
ys die Zahl Eins. Vom gleichen Typ wie die Struktur N ist z. B. jeder geordnete
Kérper. Ein solcher wird bekanntlich durch eine Grundmenge K, eine in K definierte

istellige Ordnungsrelation, zwei in K definierte zweistellige Operationen (Addi-
tion und Multiplikation) und die neutralen Elemente beziiglich Addition und Multi-
plikation gegeben.

2. Bei einem axiomatischen Aufbau der ebenen euklidischen Geometrie nach dem
Vorbild HriLBERTS?) kann man euklidische Ebenen als gewisse Strukturen der Form

(My, My; Rinzy Rogis Riong)

charakterisieren, wobei die einzelnen Bestandteile die in Abschnitt 3.1., Beispiel 1,
eingefiihrte Bedeutung haben. Demnach sind euklidische Ebenen gewisse Strukturen
vom Typ (2;(1,2),(1,1,1),(1,1,1, 1)).
3. Ein Vektorraum % iiber einem Kérper K als Skalarbereich ist eine Struktur Yom
Typ
(2;:(1,151), (2,15 1), (2, 2; 2), (2, 2; 2); (51), (52), (;2))- (2)

Aus (2) kann man ablesen: Es gibt zwei Grundbereiche (ndmlich die Menge M, der
Vektoren und die Menge M, der Skalare), keine Relationen, eine zweistellige Opera-
tion in M, (die Vektoraddition), eine Operation, die je einem Skalar und einem Vektor
einen Vektor zuordnet (die Skalarmultiplikation), zwei zweistellige Operationen in M,
(die Addition und Multiplikation der Skalare untereinander), schlieBlich einen aus-
gezeichneten Vektor (den Nullvektor) und zwei ausgezeichnete Skalare (Null- und
Einselement des Skalarkorpers).

Um Aussagen iiber Strukturen eines bestimmten Typs formulieren zu konnen,

benétigt man eine geeignete Sprache. Wesenthche Bestandteile einer solchen Sprache
sind:

(a) Fiir Dinge jeder Sorte benétigt man einen Vorrat von Variablen, der abziahlbar

sein soll, um endliche Aussagen beliebiger Linge bzw. Kompliziertheit formulieren
zu kénnen.

Zum Beispiel verabredet man in der Geometric, Punkte mit groBen Buchstaben
A,B,C,...,Py, P, P,, ... (eventuell mit Indizes) und Geraden mit kleinen Buch-
staben g, h,a,b, ..., g, g, g, ... (eventuell mit Indizes) zu bezeichnen. In der
linearen Algebra benutzt man kleine lateinische Buchstaben zur Bezeichnung von
Vektoren und kleine griechische Buchstaben zur Bezeichnung von Skalaren oder

1) Vgl. [16].
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(vor allem in ilteren Biichern) kleine Frakturbuchstaben fiir Vektoren und kleine
lateinische Buchstaben fiir Skalare.

(b) Zur Bezeichnung einer k-stelligen Relation benétigt man eine k-stellige Aus-
sageform. Dabei verstehen wir unter einer k-stelligen Aussageform ein sprachliches
Gebilde mit k Variablen, das jedesmal dann, wenn fiir jede diescr k Variablen der
Name eines bestimmten Objekts aus dem zu dieser Variablen gehorigen Grundbereich
eingesetzt wird, zu einer Aussage wird.

Zum Beispiel wihlt man in der Geometrie zur Bezeichnung der vierstelligen Punkt-
relation Ry,,, das Zeichen =~ mit der Verabredung, da8 sich davor und dahinter je
zwei Leerstellen fiir Punktvariablen befinden, d. h., man bildet die Aussageformen
AB =~ CD, AP = PQ, PP, o P,P; usw. Die Zeichenreihe AB ~ CD wird hiufig
filschlich als A ge angesehen. Sie ist jedoch weder wahr noch falsch, solange man
A, B, C und D nicht als Bezeichnungen ganz bestimmter Punkte auffaBt. Soweit
A, B, C, D als Punktvariablen benutzt werden, ist die Zeichenreihe AB >~ CD eine
Aussageform im oben definierten Sinn. Andere Beispiele fiir Aussageformen zur
sprachlichen Bezeichnung von Relationen sind

g || h zur Bezeichnung der Parallelititsrelation Ry,

m < n zur Bezeichnung der Ordnungsrelation fiir natiirliche Zahlen,
A auf g zur Bezeichnung der Inzidenzrelation R;,,,

A zwischen B und C zur Bezeichnung der Zwischenrelation R,,;.

() Fiir jede Operation benétigt man ein Operationssymbol (das auch aus mehreren
getrennten Zeichen bestehen kann) nebst der Verabredung iiber die Plitze, an denen
die jprechenden Variablen stehen sollen. Fiir zweistellige Operationen verwendet
man tr

diti 4B Zeichen wie +, —, -, :, X, 0 mit der Verabredung, daB die
Variable fiir das erste Argument davor und die fiir das zweite Argument dahinter
stehen soll. Eine bei beliebiger Stellenzahl anwendbare Art, eine Operation zu kenn-

ichnen, ist das vorangestellte Operatic ichen, etwa F, @, 8, mit in Klammern
emgeschlossenen und durch Komma getrennten nachgestellten Variablen, belsplels-
welse F(x,y,z), G(x), B(M). Wir erwihnen noch das nachgestellte Operati h

’ zur Bezeichnung der einstelligen Nachfolgeroperation im Bereich der natiirlichen
Zahlen, wobei also n’ den Nachfolger der durch » bezeichneten Zahl darstellt. SchlieB-
lich haben auch gewisse Wortkombinationen der Umgangssprache den Charakter von
Operationssymbolen, z. B.

— das Lot von P auf g (wofiir man, um den Operationscharakter deutlicher zu
hen, Lot (P, g) schreiben kénnte),
—. die Parallele zu g durch P (wofiir man, auch zwecks Abkiirzung, Par(g, P) oder
éhnlich schreiben kann),
— das Produkt von x und y (wofiir sich bereits zu einem friihen Zeitpunkt symbo-
lische Abkiirzungen, die gleichzeitig das Wesen der Sache verdeutlichen, heraus-
bildeten).
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(d) Zur Bezeichnung einer Konstanten einer Struktur benétigt man eine spezielle
Zeichenreihe oder einen einzelnen Buchstaben, die natiirlich von den verwendeten
Variablen verschieden sein miissen.

Von dieser Art sind z. B. allgemein bekannte Symbole wie 0, 1, e (fiir das neutrale
Element einer Gruppe). Grundsitzlich sind auch alle Eigennamen der na.turl.lchen
Sprachen wie Euklid, Nero, Goethe von dieser Art.

Im nichsten Abschnitt werden wir so allgemein wie méglich diejenige Sprache
beschrelben, die durch die Wahl der in (a) bis (d) genannten Bestandteile implizit
bereit deutig bestimmt ist. Eine solche Sprache bezeichnet man als eine formali-
sterte (pradzkalenlogwche) Sprache. Um die Beschreibung einer beliebigen formali-
sierten Sprache, die ohnehin recht kompliziert ist, nicht noch weiter zu erschweren,
wollen wir dabei annehmen, daB die Bestandteile (a) bis (d) in einer normierten Form
gewihlt sind. Wer die Definition der formalisierten Sprachen in dieser normierten
Form verstanden hat, wird sie leicht auf solche Fille abwandeln kénnen, in denen
die Bestandteile (a) bis (d) unter Beriicksichtigung von Traditionen und gedéchtnis-
stiitzenden Symbolen variabler gehandhabt werden. So erweist sich, daB — eventuell
nach geringen Korrekturen — jede in einem genau abgegrenzten Gebiet der Mathe-
matik benutzte Sprache im wesentlichen eine formalisierte Sprache ist.

3.3.  Formalisierte Sprachen

Eine Basis B einer formalisierten Sprache ist ein System (n; B,, By, B,), bestehend
aus einer natiirlichen Zahl n > 1 (der Sortenzahl), einer Menge B, von Relations-
symbolen, einer Menge B, von Operationssymbolen und einer Menge B, von Kon-
stantensymbolen. Jedes Relationssymbol hat die Form R, wobei die obere
Indexkombination als T'yp des Symbols bezeichnet wird und den Typ der bezeichne-
ten Relation angibt, wilhrend der untere Index zur Unterscheidung bzw. Aufzihlung
aller Elemente von B, dient. Jedes Operationssymbol hat die Form F w4 und
jedes Konstantensymbol die Form ¢/, wobei die unteren und oberen Indizes jeweils
die analoge Rolle spielen wie bei den Relationssymbolen. Ist » der erste Bestandteil
der Basis B, so miissen alle als obere Indizes auftretenden natiirlichen Zahlen ¢,
bzw. j kleiner oder gleich n seiy.

Ist B eine Basis, so besteht das Grundalphabet A der durch B bestimmten Sprache
aus den Elementen von B, u By u B, sowie aus den Zeichen zf (1 <j<n,1=0),
=, 4, AV, >, o, AV, ((Klammer auf), ) (Klammer zu) und , (Komma). Dabei sind
die Variablen z, und die Elemente von B, u By u B, trotz der Indizes jeweils als ein
Buchstabe anzusehen. Aus der Wortmenge W(A) sondern wir durch induktive Defi-
nitionen zunichst die Mengen 7" (1 < » < n) und danach die Menge S aus. Die
Elemente von T’ heiBen Terme der Sorte » und werden sich als Formeln zur Be-



42 3. Strukturen und formalisierte Sprachen

zeichnung von Dingen der Sorte » in denjenigen n-sortigen Strukturen erweisen, auf
die sich die zu beaéhreibende Sprache bezieht. Die El te von S heiBen Ausdriicke
und werden sich als Aussageformen bzw. Aussagen in bezug auf die genannten Struk-
turen erweisen. Die Menge S heiBt die durch die Basis B definierte formalisierte
pridikatenlogische Sprache (kurz Sprache).

Definition 1.

(a) x;f e T! Z=0,1<j<n);

(b)efe T (cf € Be);

(c) Ist Fiivwtsit € By und t, € Tt fiir x = 1, ..., k, 80 ist
Fiheinid(ty, .., t) € TY.

Definition 2. Die Variable x;f kommt in der Zeichenreihe Z € W(A) vollfre: vor,
wenn x;! in Z vorkommt, jedoch die Zeichenreihen A x;/ und V x;f nicht in Z vor-
ke H(x,/) bezeichnet stets einen Ausdruck, in dem die Variable x;/ vollfrei
vorkommt.

Definition 3.
(a) Ist Rfveete € B und t, € T fiir x = 1, ..., k, so ist

Rifuia(ty, ..., t;) € S.

(b) Ist ty € T4 und ty € T fiir ein j < m, soist t, = by € S.

() Tst He S, s04st — H e S; sind Hy, Hy € S, s0at (H, A Hy) € S, (H, v Hy) € S,
(H, - H,) € S und (H, ~ H,) € 8.

(d) Ist H(x;!) € S und kommt x;! vollfrei in H(x,) vor, 86 st A xJH(x;!) € S und
V x/H(x;!) € S.

Der Ausdruck A x;/H(x;!) ist zu lesen: Fiir alle x,/ gilt H(x;). Der Ausdruck
V x/H(x,f) ist zu lesen : Es gibt ein x,/ mit der Eigenschaft H(x,). Den Ubergang von
einem Ausdruck H(x;f) zu einem der Ausdriicke A x;/H(x;f) bzw. V x;fH(x,!) bezeich-
net man als Quantifizierung, wobei man genauer im ersten Fall von Generalisierung,
im zweiten Fall von Partikularisierung spricht.l) Der Sinn der iibrigen Bestandteile
der Definitionen 1 und 3 diirfte nach den vorangegangenen Erklirungen bereits
anschaulich klar sein. Insbesondere vergleiche man Definition 1 mit der Definition
der aussagenlogischen Ausdriicke, die vom jetzigen Standpunkt aus eigentlich Terme
einer einsortigen Sprache mit den Variablen p; und den (ein- bzw. zweistelligen)

1) In der Literatur sind auch andere Symbole gebriuchlich, vor allem Vx und (x) statt Ax,
3x statt Vx.
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Operationssymbolen —, A, v, —, <> sind. Diese Termsprache der Aussagenlogik
dient zur Verstindigung iiber die Struktur

(W, F); @3, g, B2, B3, &%)
vom Typ (1; (1; 1), (1, 1;1), (1, 15 1), (1, 1; 1), (1, 15 1)).

Ausdriicke der Formen t, = t, (Termgleichungen) und Ry, ..., t,;) heiBen
priidikative Ausdriicke. Mit diesen Bezeichnungen kann man der Definition 3 offenbar
auch folgende verbale Fassung geben: Die Sprache S st die kleinste Menge von
Zeichenreihen, die alle pridikativen Ausdriicke (die mittels der vorgegebenen Basis B
gebildet werden konnen) umfaft und beziiglich agenlogischer Verkniipfungen und
Quagntifizierungen abgeschlossen 1st. :

Beispiel 1. Wir betrachten die Basis B = (2, {R,!2, R}, RgM111}, @, ).

Aus B; = B, = 0 folgt nach Definition 1, daB die Variablen x und x;? ( = 0)
die einzigen Terme sind. Pridikative Ausdriicke der durch diese Basis gegebencn
Sprache S haben daher eine der folgenden einfachen Formen:

xt =x3, %, =0;

x3 =x3, %,7=0;

R M3(x ., x;2), 1,§20;

R 1(x;1, x;1, x,1), 5,5, k=05
Rt (x, x, xt, x/1), %5, k1=0.

Durch aussagenlogische Verkniipfung entsteht hieraus unter anderem:
((R‘l.l.l.l(xll’ x5!, X3!, X,1) A R’m.u(x’x; X3, X, Xg1)
— Ryt M (xy1, x,!, x4, xnl)) ’ (1)
(Rll‘z(xll: x%) A Ry M(x,!, xl’))' (2)
Die Variable x,? kommt im Ausdruck (2) vollfrei vor. Daher ist auch
\ xl’(le(xll: x,?) A RyM3(x,!, xl’))
ein Ausdruck. Da auch die Termgleichung x,! = x,! ein Ausdruck ist, ist
(—| X! = x>V x)’(Rll"(xllr x,%) A RyM(x,!, xl’))) ®
ebenfalls ein Ausdruck. Analog erschlieBt man, da8 die Zeichenreihen
(3t = x> VxR x, 1), X)), (4)
A xg?V xR M(x,!, x,%) (5)

Ausdriicke sind.
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Die Basis B ist zu einem bestimmten Zweck eingefiihrt worden, nimlich um etwas
iiber euklidische Ebenen in formalisierter Form aussagen zu kénnen. Dies ist moglich,
wenn man die Variablen x;! als Variablen fiir Punkte und die Variablen x;? als
Variablen fiir Geraden, das Symbol R, als Symbol fiir die Relation Rj,,, Rg*!
als Symbol fiir R,y; und Rg*11! als Symbol fiir Ry,,, deutet. Die Ausdriicke (1) bis
(5) konnen dann wie folgt gelesen werden:

(1') Wenn das Punktepaar x,, x,! zum Punktepaar xg!, x,! kongruent ist und das
Punktepaar x,!, x;! zum Punktepaar x;!, x,! kongruent ist, so ist x,', x,! kongruent
zZu X!, Xg!.

(2') Die Gerade x,? geht durch die Punkte x,! und x,!.

(3') Wenn die Punkte x,! und x,! verschieden sind, gibt es eine Gerade x,3, die
durch x,! und x,! geht.

(4') Wenn die Punkte x,! und x,! verschieden sind, gibt es einen Punkt x;!, so daB
X,! zwischen x,! und x4! liegt. )

(6’) Zu jeder Geraden x,? gibt es einen Punkt x,}, so daB x,! auf x,3 liegt.

Beispiel 1 ist in strenger Anlehnung an die Definitionen 1 bis 3 formuliert. Es
zeigt, daB eine formalisierte Sprache im Sinne dieser Definitionen recht schwer
lesbar und umsténdlich ist. Andererseits wurde schon in 3.2..bemeérkt, daB man
die allgemeine Definition der formalisierten Sprachen fiir konkrete Fille modifizieren
kann. Wir geben nun eine solche Modifizierung fiir Beispiel 1 an und empfehlen dem
Leser, die Definition konkreter formalisierter Sprachen an weiteren Beispielen
selbstiindig zu iiben.

Beispiel 2. Definition einer modifizierten formnhslerten Sprache fiir die ebene
eukhdxsche Geometrie nach HILBERT.

Varmblen fiir Punkte: groBe lateinische Buchstaben, eventuell mit Indizes;

Variablen fiir Geraden: kleine lateinische Buchstaben, eventuell mit Indizes;
(Eine besondere Termdefinition entfillt, da keine Operationen oder Konstanten
unter den Hilbertschen Grundbegriffen auftreten.)

Definition der Spmche Seunt:

(a) Zeichenrethen der Formen X =Y, x =y, X auf y, (X, Y, Z] (zu lesen: ,)Y
liegt zwischen X und Z*“) und XY o~ UV seien pridikative Ausdriicke der Sprache
Sourt, wenn fiir X, Y, U, V beliebige Punktvariablen und fiir x,y beliebige Geraden-
variablen eingesetzt werden.

(b) Wenn H € Sy, 80 sei auch — H € Sup; wenn Hy, Hy € Seun, 80 et auch
(H, 0 Hy) € Souu, falls fiir o eines der Zeichen A, v, —, <> eingesetzt wird.

(¢) Wenn H(X) € Syuuy und die Punkt- oder Geradenvariable x vollfrer in H(x)
vorkommd, so sei auch A xXH(x) € Sy und V xH(x) € S,y
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Die Aussageformen bzw. Aussagen (1') bis (5’) lassen sich in der Sprache Sy
2. B. wie folgt schreiben:

(1) ((AB=~ CD A CD = EF) > AB ~ EF);

(2”) (A auf g A B auf g);

(3") (1P =Q—>VgPauf gaQaufg));

4") (P =Q—>VR[P,Q,R));

%) AgVPPaufg

Analoges wie fiir die Beziehungen zwischen den Beispielen 1 und 2 gilt auch fiir
die Definition der Terme einer formalisierten Sprache bzw. deren Modifizierung
im konkreten Fall unter Benutzung traditioneller oder einpriigsamer Schreibweisen.
Im folgenden Beispiel geben wir die Definition einer modifizierten formalisierten
Sprache mit ,,echten Termen und empfehlen dem Leser, diese Definition in die
durch die Definition 1 und 3 vorgeschriebene Form zu iibersetzen.

Beispiel 3. Eine Sprache fiir die Vektorrechnung.

Skalarvariablen: kleine griechische Buchstaben, eventuell mit Indizes;

Vektorvariablen: kleine lateinische Buchstaben, eventuell mit Indizes;

Bezeichnung des Nullvektors: o

Bezeichnung der Skalarnull: 0

Bezeichnung der Skalareins: 1

Bezeichnung der Vektoraddition: @

Bezeichnung der Skalaraddition: +

Bezeichnung der Multiplikation im Skalarbereich: -

Bezeichnung der Multiplikation von Skalaren mit Vektoren: o

Definition der Menge der Skalarterme und der Menge der Vektorterme:

(a) Alle Skalarvariablen und die Symbole 0, 1 sind Skalarterme;

(b) alle Vektorvariablen und das Symbol o sind Vektorterme;

(c) sind t, und t, Vektorterme, so st (t, @ ty) etn Vektorterm;

(d) sind t, und t, Skalarterme, so sind (t, + t,) und (t, - ty) Skalarterme;

() st t, ein Skalarterm und t, ein Vektorterm, so st (t, o ty) ein Vektorterm.

Die Komponente B, der Sprache der Vektorrechnung ist leer, demnach sind
Termgleichungen die einzigen priidikativen Ausdriicke. Der Rest der Ausdrucks-
definition kann wortlich aus Beispiel 2 iibernommen werden. Unter Benutzung der
so definierten formalisierten Sprache kann man einige bekannte Axiome der Kérper-
theorie bzw. Vektorrechnung z. B. wie folgt formulieren:

(x+0) =a,
@@o)=a=a,

(loa) =a,
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(«+8-7) =(-n+6-7)
(«+Poa) =(xoa)@ (Boa),
(xo@@®b)) =((x0a) D (xob)),
(x0(Boa)) =((x-B)oa).

Der Leser iiberpriife in allen Fillen den vorschriftsmiifigen Aufbau der Terme
laut (a) bis (e) und verifiziere, daB auf beiden Seiten der angegeb Gleichung
jeweils Terme der gleichen Sorte stehen. Ferner he sich der Leser klar, da8 die
ungewohnt vielen Klammern den Ersatz fiir gewisse iiblicherweise verabredete
Vorrangregeln darstellen.

Wir werden im folgenden allgemein von kanonischen und modifizierten formalisierten
Sprachen reden. Die ersten sind die durch Definition 1 und 3 erfaiten, die letzten
solche, wie sie in den Beispielen 2 und 3 behandelt wurden. Beide Arten von formali-
sierten Sprachen dienen verschiedenen Zwecken. Die Definition der kanonischen
formalisierten Sprachen umfaBt im Prinzip alle vorkommenden Fille und ist in
Anbetracht dessen relativ einfach. Allgemeine Untersuchungen iiber beliebig
formalisierte Sprachen lassen sich leicht auf diese Definition beziehen und werden
auch im folgenden stets darauf bezogen. Formalisierte Sprachen sind jedoch nicht
nur ein Hilfsmittel fir metamathematische Untersuchungen (auch wenn dies in
vielen Lehrbiichern der mathematischen Logik mehr oder weniger deutlich zum
Ausdruck gebracht wird). Sie dringen vielmehr in immer stirkerem MaBe in die
mathematische Praxis ein, zunichst als eine Art mathematischer Stenographie,
wie sie heute hiufig schon von Studenten der ersten Semester mehr oder weniger
richtig verwendet wird. Es zeigt sich, daB die Beherrschung formalisierter Sprachen,
vor allem in ihrer modifizierten Form, zu gré8erer Sicherheit und Exaktheit auch
bei der umgangssprachlichen Formulierung mathematischer und anderer Sach-
verhalte verhilft. Nicht zuletzt sind mathematische und andere Aussagen nur in
formalisierter Form einer automatischen Verarbeitung zuginglich, und es gibt so
zahlreiche Beriihrungspunkte zwischen den formalisierten pridikatenlogischen
Sprachen und anderen Typen formalisierter Sprach besondere Programmi
sprachen, daB eine intensive Beschéftigung mit den Formalisierungsmethoden auch
unter diesem Gesichtspunkt von groStem Nutzen ist.

3.4, Abgekiirzter Gebrauch formalisierter Sprachen

In Anelogie zu den in 2.2. verabredeten Klammersparungsregeln der Aussagenlogik
vereinbaren wir hier eine Reihe von Regeln zur vereinfachten Schreibung und leich-
teren Lesbarkeit konkreter Ausdriicke. Zeichenreihen, die unter Verwendung
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dieser Regeln gebildet werden, gelten nicht als Ausdriicke einer formalisierten Sprache,
sondern als Abkiirzungen solcher Ausdriicke. Insbesondere beziehen sich allgemeine
Betrachtungen iiber formalisierte Sprachen immer auf die Ausdriicke in ihrer ur-
spriinglichen (unabgekiirzten) Form, auch wenn in einigen Fillen zur bequemeren
Darstellung solcher allgemeinen Betrachtungen die hier vereinbarten Abkiirzungs-
regeln benutzt werden.

(a) Alle in 2.2. vereinbarten aussagenlogischen Klammetsparungsregeln werden
fiir pridikatenlogische Sprachen iibernommen. Es kann also z. B.

((AB = CD A CD ~ EF) > AB ~ EF)
(vgl. 3.3., Beispiel 2) zu
AB =~ CD A CD ~ EF > AB ~ EF

und

((((—, V g((A auf g A B auf g) o C auf g) A AB = AB)) A AC A,c,)

ABC & B,c,)

- Vh((A, auf h A B, auf h) A C, auf h)) )
za

— Vg(Aaufg A Baufg A Caufg) A AB ~ A;B, A AC =~ A,C, A BC =~ B,C,
—— Vh(4, auf h A B, auf h A C, auf h)

vereinfacht werden. (Der Leser priife zuniichst den korrekten Aufbau des Ausdrucks
(1) und ,,lese** dicsen dann nach dem Muster der Beispiele 1 und 2 aus 3.3.)

(b) Kommen im Ausdruck H die Variablen x,, ..., x;, vollfrei vor, so schreiben
wir H(x;,, ..., X;,) und kiirzen den Ausdruck A x; Ax,, ... A x, H(x,, ..., x;,) durch
Axy ... xi Hixy, ..., x;) ab. Analog ist dic Abkiirzung V x; ... x; H(x, ..., ;)
zu verstehen. Wir schreiben also z. B. (vgl. 3.3., Beispiel 3)

A 0‘10‘:“30‘47173(—\ ayrog=op-ag >V b+ oar fa=n
Aoy By + ag s fy = ).

(¢) Kommt die Variable x im Ausdruck H(x) vollfrei vor und ist y eine in H(x)
nicht vorkommende, zu x sortengleiche Variable, so bezeichnet H(y) die Zeich ih
Sub (H(x), x, y). Durch Induktion iiber die Kompliziertheit von H 1aBt sich leicht
zeigen, daB dann H(y) ebenfalls ein Ausdruck ist, in dem die Variable y vollfrei
vorkommt,

Ein Ausdruck der Form

VX X [ (X, =X, VX =X, VeV =X, VR =X,V
v, =x,v...vx  =x)AHxg)aHx,) ... AHx))
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hat offenbar die Bedeutung: Es gibt mindestens n verschiedene Dinge x mit der durch
den Ausdruck H(x) dargestelllen Eigenschaft. Derartige Ausdriicke kiirzen wir im
folgenden durch V xH(x) ab, wobei natiirlich im konkreten Fall fiir x eine beliebige

Variable der entsprechenden Sorte aus der betrachteten Sprache stehen kann.
Wir schreiben also z. B. kurz

AgVPPauig
statt T2

AgVPPPy(— (P, =PyvP, =Py;vP, =P;)AP,auf g

A P, auf g A Py auf g) 2)

und bringenl damit in formalisierter Form zum Ausdruck: Auf jeder Geraden liegen
mindestens drei verschiedene Punkte. (Der Leser schreibe (2) ohne Benutzung der
Abkiirzungsregeln (a) und (b)!)

(d) Bei Benutzung der Abkiirzungsregel (c) kénnen wir Aussagen der Bedeutung:
Es qibt hochstens n Dinge x mit der Eigenschaft H(x) bzw. Es qibt genau n Dinge x
mat der Eigenschaft H(x) offenbar durch

— VxH(x) bzw. VxH(x)A—VxH(x)
nt+1 L] n+1

formalisiert ausdriicken. Das erste kiirzen wir durch leH(x) und das letzte durch
Vl'xH(x) ab. Insbesondere schreiben wir V!xH(x) fur ﬁVxH(x) und V!IxH(x)
fur V xH(x) A VIxH(x).

Unter Verwendung der eingefiihrten Abkiirzungen kann man z. B. sehr einfach
' formulieren

A AB(— A =B — V!ig(A auf g A B auf g)), (3)
A giga(V P(P auf g, A P auf gy) A — g, = gy — VIIP(P auf g, A P auf &),
(4

A AB(— A = B -V P[A, P, B)). (8)
10000
Der Leser verwandle die Zeichenreihen (3) und (4) in korrekte Ausdriicke der Sprache

Seunt (vgl. 3.3., Beispiel 2) und mache sich klar, da8 diese Aufgabe fiir die Zeichen-
reihe (5) praktisch undurchfiihrbar ist.
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41.  Interpretationen

Wir haben formalisierte Sprachen bisher unter dem Aspekt betrachtet, da8 alle zu
ihrem Aufbau nétigen Grundbegriffe (Variablensorten, Relations-, Operations- und
Konstantensymbole] eine feste Bedeutung haben. Unter dieser Voraussetzung ist
anschaulich klar, daB jeder Term eine ganz bestimmte Operation darstellt, deren
Stellenzahl gleich der Anzahl der in ihm vorkommenden Variablen ist, wobei der
Variabilitatsbereich der einzelnen Variablen durch die den Variablensorten (still-
schweigend) zugeordneten Grundbereiche gegeben ist. Ebenso stellt anscheinend jeder
Ausdruck eine ganz bestimmte Aussageform (vgl. 3.2., (b)) dar, d. h. im allgemeinen
eine Relation, deren Stellenzahl und Typ der Anzahl und Sorte der in dem Ausdruck
frei (d. h. nicht quantifiziert) vorkommenden Variablen entspricht. Insbesonderc
hat ein Ausdruck ohne freie Variablen dann den Charakter einer Aussage.

Der entscheidende Schritt vom bloBen praktischen Gebrauch formalisierter
Sprachen zu den Grundlagen der Mathematik besteht in der Erkenntnis, daB fiir
eine beliebige formalisierte Sprache jede mit ihrer syntaktischen Struktur (Sorten-
zahl, Anzahl und Typ der Relations-, Operations- und Konstantensymbole) ver-
trigliche Deutung moglich ist und da8 das Wesen der axiomatischen Methode
gerade’ darin besteht, aus den in einer (formalisierten) Sprache gegebenen Voraus-
setzungen (Axiomen) solche Schliisse zu ziehen, die bei einer beliebigen Deutung
der in den Axiomen vorkommenden Grundbegriffe gerechtfertigt sind. Die folgenden

Abschnitte di der Prizisierung dieses Konzepts. Dabei zeigt sich, daB die
Formalisierung der betrachteten Sprachen unentbehrliche Voraussetzung fiir eine
solche Prizisierung ist.

Definition 1. Die n-sortige Sprache S sei durch ihre Basis B = (n, B,, B, B,)
gegeb Eine Interpretation w der Sprache S ist eine Abbildung mit folgenden
Eigenschaften:
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(8) w ordnet jeder Sortennummer § (1 < j < n) eine Menge M; = w(j) zu, 80 daf-
die Mengen M nichtleer und paarweise disjunkt sind.

(b) w ordnet jedem Relationssymbol R.fv-i* ¢ B, eine Relation g; = w (R 1) vom
Typ (G -+, fx) m Bereich der Mengen M,, ..., M, zu.
(c) w ordnet jedem Operationssymbol F it ¢ By eine im allgemeinen partielle)

Operation ; = w(F 11y vom Typ (y, ..., ji; j) tm Bereich der Mengen M,, ..., M,
2u.

(d) w ordnet jedem Konstantensymbol ¢! € B, ein Element y; = w(c;!) € M; zu.

Ist w eine Interpretation von S, so bilden die Grundbereiche w(1), ..., w(n) zu-
cammen mit den Relationen w(R) (R € B,), den (partiellen) Operationen w(F)
(F € By) und den Konstanten w(c) (¢ € B,) eine Struktur, die wir, wenn sich keine
MiBverstindnisse daraus ergeben, ebenfalls mit w bezeich

Beispiel 1. Wir betrachten die Basis
B = (2, (R, Ry%, Ryt421), 8, 0)

(vgl. 3.3., Beispiel 1) und geben folgende (von der bisherigen Deutung dieser Sprache
abweichende) Interpretation w an:

w(l):=RY, @):=(I':T€cR* und es existieren «,f,8€ R, s0 daf
ot + f* > 0 und (£, ) € I" genau dann, wenn af + pn + 8 = 0}.

(Die so definierte Menge w(2) der ,,Geraden“ ist offenbar eine Menge von ,,Punkt*-
mengen.) Das Symbol R,»* wird durch die Elementrelation zwischen ,,Punkten‘
und ,,Geraden‘ interpretiert, d. h.

‘o) := (T, :T€ w(l) und I'€ 02) und HMeT).

Ferner definieren wir:
@Ry™) = {((2, 1), (€ a)s (2, 79)) ¢ &1, s €3, M1y 7as 72 € R und s exiatiort
entTERmMit0<t<lundé =& + vl — &) ma=m+tln—m)},
@Ry 111 1= {((51» M) (25 72), (3 73), (&5 m)) ey ees oy - M€ R
und (& — £ + (m — na) = (6 — £0° + (s — '}

Die Struktur (w(l), ®(2); o(Ry?), w(Ry111), w(R,""“)) bezeichnen wir als die
reelle euklidische Ebene. Sie ist dem Leser im Prinzip aus der analytischen Geometrie
bekannt.

1) Hier weichen wir im I einer b Anp g des Iuw;r ionsbegriffs an die
Bediirfnisse konkret. h ischer Theorien erheblich von dem in Lehrbiichern der mathe-
matischen Logik iblichen Vorgehen ab.




4.1. Interpretationen 51

: Beispiel 2. Wir geben noch eine zweite Interpretation ' der in Beispiel 1 be-
trachteten Sprache an. Es sei

w'(l):=(1,2,3,4},. '(2):={a,b,c,d,ef],
o'(Ry1?) 1= {(1, a), (2, a), (2,B), (4. D), 3,¢), (4,¢), (1,4), 3,d), (1, ¢),
4,0, 21,3, N),
o' (RyMY) 1= ((1, 2, 4), (2, 4, 3), (4, 3, 1)},
o' (R := ((1,2,3,4), 2, 1,3,4),(1,2,4,3),(21,4,3),3,4,1,2),
(3,4,2,1),4,3,1,2), (4,3,2,1)).
Es ist klar, daB man die hier fiir kanonische formalisierte Sprachen ausgefiihrte
Definition des Begriffs Interpretation sinnigemiB auf jede modifizierte formalisierte

Sprache anwenden kann. und daB eine konkrete Interpretation einer konkreten

Sprache in vielen Fillen ohne groBen Formelaufwand mit wenigen Sitzen hin-

reichend exakt angegeben werden kann. So lieBe sich etwa die in Beispiel 1 aus-

fishrlich definierte Interpretation wie folgt fiir die modifizierte Sprache S (vgl.
3.3., Beispiel 2) beschreiben :

»Punkie'‘ seien alle Paare von reellen Zahlen.

»Geraden' seien alle Mengen von ,,Punkten’ (£, n), die sich durch eine Gleichung der
‘Form a«f + pn + 8 = O beschretben lassen, wobet «, 5,6 € R und «, f nicht gleich-
zeitig gleich Null sind.

Das Relationssymbol auf werde durch die Elementrelation zwischen ,,Punkien'
und ,,Geraden'* interpretiert.

Die durch [A, B, C] symbolisierte Zunschenrelation sev fiir Punkte (&, ;) (£2s 7a)s
(&3, ms) erfiillt, wenn die Vektorgleichung

(m)==(m)+a=2(3)

*fiir etn gewrisses reelles T mit 0 < v < 1 erfiillt st.
Das Zeichen ~ werde durch die Aquidistanz von ,,Punkten‘ tm Sinne der Abstands-

formel
(€, m), (Gas )=V (& — &) + (m — m)?

inlerpretiert.

Die Tatsache, daB die Terme und Ausdriicke einer formalisierten Sprache vor der
Fixierung einer bestimmten Interpretation véllig sinnleere Zeichenreihen sind, wird;
wie schon gesagt, hiufig dadurch verschleiert, daB man bei der Konstituierung einer
formalisierten Sprache bereits an eine ganz bestimmte Interpretation denkt und
dies womdglich dadurch unterstreicht, daB man pridikative Sprachbestandteile
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withlt, die mit einer anschaulichen Bedeutung vorbelastet sind. Man vergleiche
hierzu noch einmal die hinsichtlich ihrer Interpretierbarkeit gleichwertigen Sprachen
aus den Beispielen 1 und 2 in 3.3. Die Sprache S,,;; scheint von vornherein mit
einer bestimmten Interpretation versehen zu sein, wihrend hinter der gleichwertigen
kanonischen Sprache ohne den erliuternden Kommentar kaum jemand einen
bestimmten Sinn vermuten wiirde. Der Leser mache sich klar, daB dieser scheinbare
Unterschied nicht von einem Betrachter wahrgenommen wird, der zwar mit dem
Inhalt der ebenen euklidischen Geometrie vertraut ist, dem aber die uns geldufigen
Vereinbarungen iiber Punkt- und Geradenvariablen, die Bedeutung des Wortes
»auf und die Zeichen fiir die Kongruenz- und Zwischenrelation unbekannt sind.
(Man denke etwa an einen geometrisch gebildeten ,,Marsmenschen*!)

Ein durch eine Interpretation w einer Sprache S zu einer Aussageform gewordener
Ausdruck H € S wird durch Einsetzen je eines Elements des zugehérigen Grund-
bereichs fiir alle in ihm vorkommenden Variablen zu einer Aussage (iiber die durch
 gegebene Struktur). Insbesondere bezeichnet jeder Term nach Einsetzung von
Objekten entsprechender Sorte fiir die in ihm vorkommenden Variablen ein be-
stimmtes Element eines der Grundbereiche der Struktur. Dies wird durch die folgen-
den Definitionen prizisiert, wobei wir uns wieder auf kanonische formalisierte
Sprachen beschrinken.

Definition 2. Ist w eine Interpretation der n-sortigen Sprache S, so heiBt eine
Abbildung f, die jeder Variablen x;/ (i = 0,1 < j < n) ein Ding f(x;!) € ©(j) zu-
ordnet, eine Belegung beziiglich w. Ist f eine solche Belegung, x,! eine beliebige Variable

g
und £ € w(j) ein beliebiges Ding der Sorte j, so bezeichnet /( Xi ) die wie folgt ab-
geéinderte Belegung: ¢
x! £ alls j = k und 1 =1,
7)) &)= i falls §
13 f(x*) sonst.

In der folgenden Definition wird durch Induktion iiber die Kompliziertheit der
Terme das Objekt Wert(t, w, f) definiert, das der Term t (eventuell) bei der Inter-
pretation w und der Belegung f beziiglich w darstellt. (Da wir die Interpretation von
Operationssymbolen durch partielle Operationen zulassen, existiert Wert(t, w, f)
im allgemeinen nicht fiir alle t, w und f.!)

Definition 3.

@) Werl(xi, o, f):=fx) (=0,15j<n);

(b) Wertie, o, ) i=oled)  (of € Bo);

1) In hen Z hi ist es zweckms,ﬂlg, den Interprouhonubegn!f dahin zu
verallgemeinern, daB w(c) nicht fir alle Konst: c definiert sein muB. In der Umgangs-

sprache sind z. B. Teufel und Mann im Mond solche nicht interpretierten Konstanten. In solchen
Fillen existiert Wert(c, w, f) fir keine Belegung f beziiglich w.
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(c) wenn Wert(t,, w, f) (= &,) fiirt, € T™*undx = 1, ..., k existiert und Fj--iic B,
ein Operationssymbol der betrachteten Sprache ist, so ist

t = Fifobiit(ty, ..., t) € T4

(nach 3.3., Definition 1). Falls die Operation ¢ = w(F ity an der Stelle (&), ..., &)
definiert ist, sei

Wert(t, w, f) := @(éy, ..., &)-

Andernfalls (d. k., falls einer der Werte &, nicht definiert ist oder @(&,, ..., &) nicht
existiert) sev Wert(t, w, f) nicht definiert.

Jeweils durch Induktion iiber die Kompliziertheit der Terme kann man leicht
beweisen :

Folgerung 1. Werl(t, w, f) existiert bei festem w fiir alle t und f, falls die Inter-
pretation o jedem Operationssymbol eine volle Operation zuordnet.

Folgerung 2. Weri(t, w, f) hangt nur von den Werten von f fiir diejenigen Variablen
ab, die in t vork Insb dere qilt

Folgerung 3. Kommen in einem Term t keine Variablen vor (solche Terme be-

zeichnen wir kurz als variablenfrei), d. k., ist t nur aus Konstanten- und Operations-
symbolen aufgebaut, so hingt Wert(t, w, f) nur von w ab.

In der folgenden Definition wird durch Induktion iiber die Kompliziertheit der
Ausdriicke der Wahrheitswert Wert(H, w, f) definiert, den die durch den Ausdruck
H bei der Interpretation w dargestellte Aussageform bei der Belegung f annimmt.
Man beachte, daB diese Definition (Teil (a)) fiir den Fall der Termgleichungen mit
sinnleerer linker oder rechter Seite eine Normierung des in diesem Fall nicht ein-
heitlichen mathematischen Sprachgebrauchs herbeifiihrt.

Definition 4.

(a) Wert(ty = ty, w, f) = W genau dann, wenn Werl(t;, w, f) fiir 1 =1, 2 existiert
und
Wert(ty, o, f) = Wert(ty, w, f)

i8t. (D.h., Wert(ty = ty, w, f) = F, falls einer der Werte Wert(t;, w,f) oder beide
nicht existieren, oder falls beide existieren, aber hieden sind.)

(b) Wert(Rfowta(ty, ..., ), , f) = W genau dann, wenn &, = Werl(t,, , f) fir
% =1,..., k existiert und (&, ..., &) € w(Rh'v) ist.

() Wert(— H, w, f) = &} Wert(H, », /),

Wert((H, a Hy), o, f) = ®3(Wert(H,, o, f), Wert(Hy, , /)),
Wert{(H, v Hy), 0, f) = & Wert(H,, o, f), Wert(H,, o, /),
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Werl((H, - Hy), w, f) = ®X(Wert(H,, o, f), Wert(H,, w, )),
Wert((H, < Hy), 0, f) = O Wert(H,. w, ), Wert(H,, », f)).
(d) Wert(Ax;/H(x/), w, f) = W genau dann, wenn

Wert (H(x"), o, f (x: )) =W firalle ¢ € w(j);
Wert(Vx/H(x;{), 0, f) = W genau dann, wenn

g
Wert (H(xi’), w,f (xf. )) =W fiir wenigstens ein & € w(j).
Der Leser durchdenke diese Definition, besonders Teil (d), sorgfaltig und bestatige,
deB sie genau die anschauliche Vorstellung vom Zutreffen einer durch einen formali-
sierten Ausdruck dargestellten Aussageform auf ein gewisses System von fiir die
Variablen eingesetzten Dingen wiedergibt.

Definition 5. Eine Variable x;/ komm¢ in einem Ausdruck H an einer bestimmien
Stelle frei vor, wenn diese Stelle nicht in einem Teilausdruck von H der Form A x#H' (x;7)
oder V x;/H'(x,/) enthalten ist. Eine Variable komm¢ in einem Ausdruck frei vor,
wenn sie in ihm an wenigstens einer Stelle frei vorkommt. (Kommt eine Variable
in einem Ausdruck vollfrei vor (vgl. 3.3., Definition 2), so kommt sie offenbar in
diesem Ausdruck frei vor, und zwar.an allen Stellen ihres Vorkommens.) Eine
Variable kommt in einem Ausdruck an einer bestimmien Stelle gebunden vor, wenn sie
dort vorkommt, aber an dieser Stelle nicht frei vorkommt. Ein Ausdruck, in dem’
keine Variable frei vork t, heiBt abgeschl Die Menge der abgeschlossenen
Ausdriicke einer Sprache S bezeichnen wir mit S.

Beispiel 3. In dem Ausdruck
VPPaufgaPaufh

der Sprache S, kommt die Variable P an der unterstrichenen Stelle frei und an
den beiden nicht unterstrichenen Stellen gebunden vor. Da sie somit im Gesamt-
ausdruck nicht vollfrei vorkommt, ist nach 3.3., Definition 1 (d) die Zeich ih
AP(V PP auf g A P auf h) kein Ausdruck. Der Ausdruck A gh(V PP aufga VPP
auf h) ist abgeschlossen.

Satz 1. Wert(H, w, f) hingt nur von den Werten der Belegung [ fiir diejenig
Variablen ab, die in H frei vorkommen, d. k., die Stellenzahl einer durch einen inter-
pretierten Ausdruck dargestellten Aussageform ist gleich der Anzahl der hied
n thm frei vork den Variablen. Insbesondere hingt Wert(H, w, f) fir He 8
nur von o (und nicht von f) ab, d. h., evn interpretierter abgeschlossener Ausdruck ist eine
(wahre oder falsche) Aussage.

Wir beweisen Satz 1 durch Induktion iiber die Kompliziertheit von H. Die Be-
hauptung gilt fiir pridikative Ausdriicke auf Grund von Folgerung 2 und Defi-
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nition 4 (a), (b). Aus der Giiltigkeit der Behauptung fiir einen Ausdruck H folgt ihre
Giiltigkeit fiir — H, da die Ausdriicke H und — H die gleichen freien Variablen

thalten. Nach Definition 4(c) hiingt Wert((H, » H,), , f) nur von Wert(H,, o, f)
und Wert(H,, w, f) ab. Setzen wir die Giiltigkeit der Behauptung fiir die Ausdriicke
H, und H, voraus, so hingen diese Werte wiederum nur von den Werten der Be-
legung f fiir diejenigen Variablen ab, die in H, oder in H, frei vorkommen. Das sind
aber genau diejenigen Variablen, die im Ausdruck (H, A H,) frei vorkommen.
Analog schlieBt man fiir die iibrigen aussagenlogischen Verkniipfungen. Wir setzen
nun voraus, daB die Behauptung fiir den Ausdruck H(x) bei beliebigen Belegungen
f beziiglich einer festen Interpretation w gilt. (Hier und im folgenden lassen wir die
Indizes der Variablen fort, wenn sich daraus keine MiBverstindnisse ergeben.) Es
sei f, eine beliebige Belegung, beziiglich w. Wert(A xH(x), w, fo) hiingt nach Defini-
tion 4(d) nur von den Werten ab, die der Ausdruck H(x) bei gewissen abgeinderten

Bel fo : beziiglich der Interpretation w apnimmt. Nach Vor t

BUE

-]

héngen diese Werte aber nur von den Werten der Belegungen f, : fiir diejenigen

Variablen ab, die in H(x) frei vorkommen. Die Abhiingigkeit von der Variablen x
ist dabei durch (d) eliminiert. Die restlichen in H(x) frei vorkommenden Variablen
sind genau die in A xH(x) frei vorkommenden Variablen, d. h., Wert(/\ xH(x), o, ’o)
hiingt nur von /(y) fiir die in A xH(x) frei vorkommenden Variablen y ab. Analog
schlieBt man fiir Ausdriicke der Form V xH(x).

Beispiel 4. Wir beziehen uns auf die in Beispiel 2 definierte Interpretation o’
der kanonischen Sprache fiir die ebene euklidische Geometrie und betrachten den
Ausdruck

=V ’ll(Rll =t 5% A R (x,, x,’)). (1)

In ihm kommen genau die Variablen x. und x,* frei (und sogar vollfrei) vor. Dem-
nach stellt (1) bei der Interpretation o’ eine zweistellige Aussageform dar, der eine
zweistellige ,,Genden“relnnon in der Struktur o’ entspricht. Zur Berechnung des
Wahrheitswertes Wert((1), ', f) fiir eine Belegung / beziiglich ' geniigt nach Satz 1
die Vorgabe von { fiir die Variablen x,2 und x,% Wir setzen z. B, f(x,?) := a, f(x,*) :=b.
Dann ergibt sich

W"‘(Rll"(‘ll» x,%), o', /) = { :

fir  f(x')=1,2,

fir  f(x;!) = 3,4,

W fir  f(x") =24,

F fir [fx)=13,

W far f(xt) =2,

F  fir f(x,))=1,3,4.

Wert(R,*3(x,2, 5,1), o', f) = {

Wm(Rll"(xll: x,%) A Ry1A(xy), x,2), @, f) = {
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Folglich gibt es ein £ € w'(2), nimlich & = 2, so daB

1

Wert (R,lv'(x,‘, x,%) A Ry13(x,!, x,%), o, f ( xfl )) =W.
Demnach ist

Wert (V 11‘(R11”(x1', x,%) A Ry M3(x,, xz’))» o', /) =W. (2)
Hieraus ergibt sich schlieBlich

Wert ('_l \ xll(Rll"(xll) x,%) A RyL3(x,?, Xz’)), @, /) =F. 3)
Veranschaulicht man sich die Inzidenzverhéltnisse der Struktur o’ durch eine Skizze
mit vier beliebig gelegenen Punkten ,,1, ,,2, ,;3* und ,,4 und den sie zu je zweien
verbindenden ,,Geraden* a bis f, so wird die Bedeutung von (2) bzw. (3) sofort
anschaulich klar. Von einer solchen Skizze liest man sofort ab, daB der besprochene

Ausdruck H fiir die iibrigen Belegungen der Variablen x,? und x,? folgende Werte
annimmt:

f(x,2) a b ¢ d e
fz) c d a b [ e | ™
Wert(H, o', /) WWWwWWWW F

Aus dieser Tabelle kann man wiederum ablesen, da8 der abgeschlossene Ausdruck
A x,2 V!!x.*H, dessen Wahrheitswert bei der Interpretation w’ nicht mehr von
einer Belegung abhingt, den Wert W annimmt, d. h. eine in der Struktur o’ giiltige
Aussage darstellt.

4.2.  Pridikatenlogische Allgemeingiiltigkeit, pradikatenlogische
Normalformen

Definition 1. Es sei S eine formalisierte Sprache, w eine Interpretation von S.
Ein Ausdruck H € S heiBt allgemeingiiltig bei der Interpretation o (bzw. allg
giiltig in der durch w definierten Struktur), wenn Wert(H, w, f) = W fiir alle Belegungen
1 beziiglich  gilt.

Aus den letzten Bemerkungen des vorigen Abschnitts folgt: Der Ausdruck

Ax? Vit — V x(RA(x,2, x,2) A Ry1A(x, Y, x,2)
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ist bei der Interpretation ' allgemeingiiltig. Dieses Resultat wurde auf Grund der
Endlichkeit der Grundbereiche der Struktur o’ durch Berechnen von Wert(H, o', f)
fiir alle moglichen Belegungen der in H frei vorkommenden Variablen erzielt. Es
ist klar, daB dieses Verfahren bei unendlichen Grundbereichen nicht anwendbar
ist.

Definition 2. Ein Ausdruck H € S heiBt allgemeingiiltig, wenn Wert(H, o, f)
= W bei jeder Interpretation w der Sprache S und jeder Belegung f beziiglich »
ist, d. h., wenn H bei jeder Interpretation allgemeingiiltig ist. Die Menge aller
allgemeingiiltigen Ausdriicke einer Sprache S bezeichnen wir mit agg.

Allgemeingiiltigkeit eines Ausdrucks H im Sinne der Definition 2 bedeutet, daB
H ohne irgendwelche inhaltlichen Voraussetzungen (iiber die Bedeutung der in ihm
vorkommenden Variablen, Relations-, Operations- und Konstantensymbole), d. h.
allein auf Grund seiner sprachlichen Struktur stets wahr ist. Unter den allgemein-
giiltigen Ausdriicken einer Sprache S kommen insbesondere diejenigen vor, die
schon auf Grund ihrer aussagenlogischen Struktur allgemeingiiltig sind. Ist z. B.
H ¢ S ein beliebiger Ausdruck, so ist (H v — H) € agg. Allgemein gilt: Ist A ein
allgemeingiiltiger Ausdruck der Aussagenlogik, der hochstens die Variablen p, ..., p,
enthilt (fiir hinreichend groBes = ist dies stets erfiillt) und ist jeder dieser Variablen -
p: ein Ausdruck H; € S zugeordnet, so ist

Sub(A; py, Hy; ...; pas Hy) € ags.

Ein typisches Beispiel eines Ausdrucks, dessen pridikatenlogische Allgemein-
giiltigkeit sich nicht aussagenlogisch begriinden liBt, ist jeder Ausdruck der Form

A xH(x) - V xH(x), (1)

wobei fiir H(x) ein beliebiger Ausdruck gewihlt werden kann, der eine Variable x
vollfrei enthilt. Der exakte Beweis der (anschaulich einleuchtenden) Allg
giiltigkeit von (1) ergibt sich wie folgt: Ist Wert(/\ xH(x), w, /) = F (bei beliebigem
w und f), 8o ist wegen des Wertverlaufs der Implikation Wert((1), w, f) = W. Ist
Wert(A xH(x), o, f) = W, so ist (vgl. 4.1., Definition 4 (d)).

Wert (H(x), ] ( : )) —W firalle £ € w(j),

wobei j die Sorte der Variablen x ist. Da nach Definition des Interpretationsbegriffs
die Grundbereiche w(j) stets nichtleer sind, gibt es ein £ € w(4), und fiir dieses ist

Wert (H(x), w,/ ( : )) —w,

d. h. (wiederum nach 4.1., Definition 4)
Wert (V xH(x), 0, f) = W.
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Es ist ohne weiteres klar, daB (1) bei Zulassung von Interpretationen mit leeren
Grundbereichen nicht allgemeingiiltig wire.

Definition 3 Ausdriicke H,, H, einer Sprache S heifien ntisch dquivalent
wenn H, — H, € agg, d.h., sie sind gena.u dann semantisch nqmvalent wenn
Wert(H,, w, f) = Wert (H,, w, f) fiir jede Interpretation w und jede Belegung f be-
ziiglich w gilt.

Die Untersuchung der Allgemeingiiltigkeit und semantischen Aquivalenz von
prnd.lkshenlognschen Ausdriicken ist Gegenstand der Pradikatenlogik. Der ent-
idende Unterschied iiber der Aussagenlogik besteht darin, daB beide
Fragen nicht durch Aufstellen endlicher Wertetabellen und, wie sich zeigen wird
(vgl. Kapitel 8), iiberhaupt nicht durch ein auf beliebige Ausdriicke beliebiger
Sprachen einheitlich anwendbares endliches Verfahren beantwortet werden kénnen.

Im folgenden geben wir eine Ubersicht iiber hiufig benutzte semantisch dqui-
valente Umformungen an pridikatenlogischen Ausdriick Wir formuli sie
jeweils als Regeln der Form S, <> S;, wobei S, und S, Schemata von Ausdriicken
sind. Eine Regel S, <> S; bedeutet: Bei jeder Einsetzung konkreter Ausdriicke der
durch S, bzw. S, beschriebenen Bauart fiir S, und S, wird 8§, <> S, ein allgemein-
giiltiger Ausdruck, d. h., beide Seiten sind semantisch #quivalent. Die praktische
Anwendung dieser Regeln beruht auf dem (zu 2.2., Satz 4, analogen)

Ersetzbarkeitstheorem. Sind H,, H,, Hy Ausdriicke einer gemeinsamen
Sprache S, st H, < H, € agg (d. h. H, semantisch dquivalent zu H,), enthilt H,
den Teilausdruck H, und ist die Zeichenrethe, die durch Ersetzen irgendeines Vor-
kommens von H, in Hy durch H, entsteht, wieder ein Ausdruck H,, so vst

Hy o H; € agg.

Der Beweis dieses Sat: (durch Induktion iiber die Kompliziertheit von H,)
sei dem Leser iiberlassen. Wir bemerken nur, daB die als Resultat der Ersetzung
(nicht notwendig Substitution!) entstehende Zeich ihe Hy immer dann ein

Ausdruck ist, falls nicht eine im eingesetzten Ausdruck H, schon gebundene Variable
durch das Einsetzen von H, in H, nochmals gebunden wird.

Die ,,Richtigkeit* der folgenden Regeln, d. h. die Allgememgulhgkelt der durch
sie beschnebenen Ausdrucke, ist in allen Fillen ebenso ittelbar einleuchtend wie
bei (1). Auch die exakten Beweise sind nicht schwerer als der Beweis von (1) und
seien dem Leser als Ubung empfohlen.

Regel der gebundenen Umbenennung. Voraussetzung: Die Variablen x
und y sind sortengleich, y kommt nicht in H(x) vor, H(y) bezeichnet wie friiher
Sub(H(x), x, y). Dann ist

AxH(x) > AyH(y), VxH(x)« VyH(y) (2)
allgemeingiiltig.
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Durch eine geeignete Umbenennung gebundener Variablen kann man also stets
erreichen, daB alle in einem Ausdruck frei vorkommenden Variablen in diesem
Ausdruck vollfrei vorkommen: Kommt x in H frei, jedoch nicht vollfrei vor, so
existieren Teilausdriicke von H, die die Form A xH(x) oder V xH(x) haben. Wenn
man schrittweise in jedem derartigen Teilausdruck x durch eine im Gesamtausdruck
noch nicht vorkommende Variable gleicher Sorte ersetzt, erhilt man sclieSlich
einen zum urspriinglichen Ausdruck H semantisch dquivalenten Ausdruck, in dem
x vollfrei vorkommt. In vielen Fillen ist es zweckméBig, sich auf die Betrachtung
solcher Ausdriicke zu beschrinken, in denen alle frei vorkommenden Variablen
vollfrei vorkommen, d. h. in denen diejenigen Variablen, von denen der Wert des
Ausdrucks bei einer Interpretation und Belegung nur abhingt, zugleich die in diesem
Ausdruck quantifizierbaren Variablen sind. Ist H(x,, ..., X,) ein Ausdruck, der die
Variablen x,, ..., x, vollfrei und keine weiteren Variablen frei enthilt, so bezeichnen
wir den Ausdruck

Axy ... x H(xy, ..., X,)

als Generalisierte des Ausdrucks H(x,, ..., x,) (kurz Gen H). Offenbar ist Gen H
stets abgeschlossen, und bei einer beliebigen Interpretation @ der betreffenden
Sprache ist H genau dann allgemeingiiltig, wenn Gen H allgemeingiiltig ist.!) Dies
prizisiert die anschaulich klare Behauptung, daB man sich bei der Formulierung
von Sachverhalten grundsitzlich auf abgeschl Ausdriicke beschrinken kann.
Umgekehrt kann man nichtabgeschlossene Ausdriicke, wo sie als Formulierung
von Aussagen (z. B. Axiomen) und nicht zur Darstellung von Relationen vorkommen,
immer als Abkiirzung ihrer Generalisierten auffassen.

Regeln der Quantorenvertauschung.

AxAyH(x,y) - Ay AxH(x,y), ®)
VxVyH(x,y)o VyVxH(x,y). 4)
(3) und (4) liefern die Begriindung fiir die in der mathematischen Umgangssprache

(und auch beim Lesen formalisierter Ausdriicke) iiblichen Redeweisen ,,Fiir alle x
und y gilt ...* (statt ,Fiir alle x gilt, daB fiir alle y gilt: ...”“) bzw. ,,Es gibt ein x
und ein y, so daB ... (statt ,Es gibt ein x, so daB es ein y gibt, so daB ...*). Zwei
verschiedene Quantoren diirfen jedoch nicht vertauscht werden. Da8 A x V yH(x, y)
nicht semantisch dquivalent zu V y A xH(x, y) ist, mache der Leser sich am unter-
schiedlichen Sinn der beiden Aussagen AnVmn <m bzw. VmAnn < m klar,
von denen im Bereich der natiirlichen Zahlen die erste richtig und die zweite falsch
ist. :

1) H und Gen H sind jedoch nicht etwa semantisch dquivalent, da H(x) «» A xH(x) nicht
allgemeingiiltig ist.
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Regeln der Quantorenverschiebung.

A x — H(x) & — V xH(x), (6)
Vx — H(x) & — A xH(x), (6)
A x(Hy(x) A Hy(x)) < A xH;(x) A A xHy(x), (7)
V x(Hy(x) v Hy(x)) < V xH,(x) v V xHy(x), (8)
A x(Hy(x) A H) A xHy(x) A H,, 9)
V x(H(x) A Hp) <> V xH,(x) A H,. (10)

(9) und (10) sind allgemeingiiltig, falls die Variable x nicht in H, vorkommt. Die
Bezeichnung ,,Regeln der Quantorenverschiebung ist so zu verstehen, daB die
Regeln (5) bis (10) — je nachdem, in welcher Richtung man sie anwendet — es
gestatten, den Wirkungsbereich eines Quantors (d. h. denjenigen Teilausdruck, vor
dem A x bzw. V x steht) zu vergréBern oder zu verkleinern. (5) und (6) sind in
gewissem Sinn Verallgemeinerungen der de Morganschen Regeln (vgl. 2.2.). Durch
Ubergang zur Negation auf beiden Seiten ergibt sich

- A x— H(x) « V xH(x), (5"
—Vx — H(x) & A xH(x), (6"

d. h., man kann wahlweise entweder die Partikularisierung durch die Generalisierung
oder umgekehrt ausdriicken. Es ist also einer der beiden Quantoren iiberzihlig im
gleichen Sinn, wie einige der verwendeten aussagenlogischen Grundfunktionen
entbehrlich sind. Hier wie dort dient die Aufnahme der grundsitzlich entbehrlichen
Sprachbestandteile der besseren Anpassung der formalisierten Sprachen an die
mathematische Umgangssprache.

Definition 4. Ein Ausdruck der Form Q,x,Q,x, ... Qx,H(x,, ..., X,), wobei
Q€A V) (¢t=1,...,n) und der Ausdruck H(x,, ..., x,) keine Quantoren enthilt,
heiBt eine prineze Normalform.!) Der Ausdruck H(x,, ..., x,) heit Kern der Normal-
form, der Bestandteil Q,x, ... Q,x, wird als Prifiz der Normalform bezeichnet.

Satz 1. Zu jedem Ausdruck gibt es eine semantisch iquivalente prinexe Normalform.

Zum Beweis von Satz 1 beschreiben wir ein Vetfahren, durch das man jeden
Ausdruck in endlich vielen Schritten durch semantisch équivalente Umformungen
der oben behandelten Art in eine prinexe Normalform iiberfiihren kann. Zunichst
konnen wir den gegebenen Ausdruck unter Benutzung aussagenlogischer Aquivalen-
zen 8o umformen, daB die Symbole <>, —, v nicht mehr vorkommen. Danach handelt
es sich darum, alle vorkommenden Quantoren so weit wie méglich nach ,,auBen*

1) Insbesondere ist also jeder quantorenfreie Ausdruck selbst eine prinexe Normalform.
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zu treiben. Dies geschieht mit Hilfe der (von rechts nach links angewandten) Regeln
(), (8), (9) und (10). Ist die Voraussetzung fiir die Anwendung von (9) bzw. (10)
zunichst nicht erfiillt, so kann man dies durch Anwendung der gebundenen Um-
benennung erreichen.

Beispiel. Wir betrachten eine Sprache mit Variablen x,y,z und Relations-
symbolen R (einstellig) und S (zweistellig) und geben uns den Ausdruck

AxR(x) -V x A yS(x, y)
vor. Im ersten Schritt wird — eliminiert:
—(AxR(x) A 1V x AyS(x, y)).

Um den Quantor an der unterstrichenen Stelle aus der Klammer herausziehen zu
konnen, wird der entsprechende Teilausdruck durch gebundene Umb g ver-
wandelt:

— (A 2R@) AV x A YS(x, ).

Anwendung von (9) ergibt jetzt
—Az(Rz) AV x AyS(x,y)).

Die weiteren Schritte sind

—Az(R(z) A A x — AyS(x, y)) (Regel (8)),
—AzRiz) AAxVy —8(x,)) (Regel (6)),
—AzAxVyR) A 8(x,y) (Regeln (9), (10)),
VzVxAy— (R A—S(x,y) (Regeln (5); (6)).

Der zuletzt erhaltene Ausdruck ist bereits eine prinexe Normalform, aber man
kann dem Kern wieder eine aussagenlogisch iibersichtlichere Gestalt geben:

VzVxAy(Riz) > S(x, y).

In der Pridikatenlogik spielen neben den prinexen Normalformen verschiedene
andere Normalformen (u.a. prinexe Normalformen mit speziellen Prifixen und
sogenannte kontraprinexe Normalformen, bei denen alle Quantoren maoglichst weit
»innen‘ stehen) eine groBe Rolle. Oft liBt sich die Uberﬁ.ihrung eines beliebigen
Ausdrucks in eine zu lhm dquivalente Normalform einer bestimmten Art nur fiir
pezielle Sprachen erreich oder man muB die semantische Aquivalenz durch
eine schwi chere Aquival lation zwischen Ausdruck und Normalform ersetzen.
Zum Beispiel wird verlangt: Der gegebene Ausdruck soll genau dann allgemein-
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giiltig sein, wenn die ihm zugeordnete (eventuell in einer anderen Sprache formu-
lierte) Normalform allgemeingiiltig ist.!) Fiir weitere Informationen iiber pridikaten-
logische Normalformen und ihre Anwendungen sei auf [3, § 9] verwiesen.

4.3. Modelle, Folgern, semantische Widerspruchsfreiheit,
Unabhingigkeit und Vollstindigkeit elementarer Theorien

Definition 1. Es sei § eine formalisierte Sprache, A S S cine beliebige (eventuell
leere) Menge von Ausdriicken von 8. Eine Interpretation w von S (und auch die
durch o definierte Struktur) heiBt ein Modell von A, wenn alle Ausdriicke H € 4
bei der Interpretation w (bzw. in der Struktur «) allgemeingiiltig sind. (Insbesondere
ist jede Interpretation von S ein Modell von @ = §S.)

Beispiel 1. Es sei S die durch Variablen a, b, ¢, ..., Xy, X, X,, ... und ein zwei-
stelliges Operationssymbol + gegebene einsortige modifizierte Sprache. In dieser
Sprache lassen sich die aus der Algebra bekannten Gruppenaxiome z. B. wie folgt
formulieren:

(@+b)+c=a+(b+c), (1)
AabVca+b=c, (2)
AacVba+b=c, @3)
AbcVaa+b=c. (4)

((2) "ist notig, da wir generell die Interpretation von Operationssymbolen durch
partielle Operationen zulassen und solche Interpretationen bei einer Definition des
Gruppenbegriffs ausschlieBen miissen.) Eine Gruppe, in der Algebra iiblicherweise
definiert als ,,ein System (@, +), wobei G eine beliebige nichtleere Menge und + eine
zweistellige Operation in @ mit den Eigenschaften (1) bis (4) ist*, ist nun nichts
anderes als ein Modell der Menge ((1), (2), (3), (4)}, d. h. eine Interpretation w der
Sprache S, bei der die Ausdriicke (1) bis (4) allgemeingiiltig sind. Eine solche Inter-
pretation besteht im Fall der Sprache S aus der Angabe des Grundbereichs und der
Interpretation des Symbols + durch eine istellige (zunichst tuell partielle)
Operation in diesem Grundbereich. Wie man sieht, besteht der einzige wesentliche
Unterschied zwischen der ,,alten‘ und der ,,neuen* Definition des Gruppenbegriffs
in einer sorgfiltigeren Unterscheidung zwischen dem Operationssymbol + und der

1) In diesem Sinne ist jeder aus einem Ausdruck H durch g dene Umb und
Generalisierungen entstehende abgeschl Ausdruck H zu H allgomemgulngkeluglelch
jedooh nicht semantisch 5qmulem. (vgl. FuBnote auf 8. 59).
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durch dieses Symbol dargestellten Operation. Vollig analog kann man die aus der
Algebra bekannten Begriffe Ring, Korper, Vektorraum usw. neu definiercn.

Definition 2. Es sei S eine formalisierte Sprache, 4 S S, H € S. H folgt aus A,
wenn H in jedem Modell von A allgemeingiiltig ist. (Insb dere folgt H aus 2,
wenn H bei jeder Interpretation von S allgemeingiiltig ist; vgl. Definition 1.) Die
Menge aller Ausdriicke H, die aus einer Menge A S S folgen, nennen wir die Folge-
rungshiille von A und bezeichnen sie mit Flg(A). Es gilt also H € Flg(A4) genau dann,
wenn H in allen Modellen von A allgemeingiiltig ist, insb dere ist Flg(0) = agg.

Die durch das Wort folgt ausgedriickte Relation zwischen Ausdriicken und Aus-
drucksmengen ciner formalisierten Sprache geht in der in Definition 2 prizisierten
Form auf den polnischen Logiker ALFRED TARSKI (geb. 1901)') zuriick und erweist
sich als der zentrale Begriff im Bereich der semantischen Aspekte der Metamathe-
matik. (Unter tischen Aspekten verstehen wir hier mit TARSKI die Beziehungen
zwischen formalisierten Sprachen und ihren méglichen Bedeutungen, wihrend alle
rein formalen, vom Interpretationsbegriff unabhiingigen Betrachtungen der math
matischen Logik unter der Bezeichnung Syntax zusammengefa8t werden.)

Satz 1. Bei beliebiger Sprache S ist die in der Polenzmenge von S definierte ein-
stellige Operation Flg ein Hiillcnoperator, d. h.

(®) A S Flg(A) firACS;

(b) wenn A S B = S, s0 st Flg(A) S Flg(B);

(c) Flg(Flg(A)) = Flg(A) firalle ASS.

Beweis. (2) Zu zeigen ist, daB jeder Ausdruck H € 4 in jedem Modell von A
allgemeingiiltig ist. Dies folgt sofort aus Definition 1.

(b) Ist A & B, so ist jedes Modell von B erst recht ein Modell von A. Gilt folg-
lich H in jedem Modell von A4, so gilt H in jedem Modell von B. )

(c) Zu zeigen ist wegen (a) nur die Inklusion FIB(FIS(A)) S Flg(A). Es sei H
€ Fl,(Fl,(A)), d. h., Hgilt in jedem Modell von Flg(A). Aus Definition 1 folgt sofort,
daB jedes Modell von A ein Modell von Flg(A) ist. Daher gilt H in jedem Modell von
A, d.h. H¢ Flg(A).

Definition 3. Eine Teilmenge A einer formalisierten Sprache S heiBt deduktiv
abgeschlossen, wenn Flg(A) = A gilt.

Unter B, g von Definition 3 kann man Satz 1 (c) offenbar auch wie folgt
formulieren: Die Folgerungshiille einer beliebigen Menge von Ausdriicken 1st deduktiv
abgeschlossen.

1) Vgl. hierzu die in [4] wieder abgedruckten (sonst schwer zugiinglichen) Arbeiten von TaBskI.
Dem Sinne nach war das Folgern bereits von BERNABD BorzaNo (1781—1848) richtig definiert
und sals zentraler Begriff der Logik erkannt worden. Vgl. Kapitel 9.
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Definition 4. Eine elementare Theorie ist eine deduktiv abgeschlossene Menge
von Ausdriicken einer formalisierten Sprache.

Nach Definition 4 wird eine elementare Theorie insbesondere durch eine formali-
sierte Sprache S und ein in dieser Sprache formuliertes Axiomensystem A gegeben.
Die Theorie ist in diesem Fall gleich der Menge Flg(A) aller Folgemngen, die man
aus den gegeb Axiomen zieh teh

kann. Unter einem Axi ver wir
bis auf weit eine beliebige Teilmenge A einer formalisierten Sprache S. Zwei
Axiomensysteme A, B S S definieren die gleiche elementare Theorie genau dann,
wenn Flg(A) = Flg(B) gilt. Wir zeigen unter alleiniger Vora g der Hiillen-

eigenschaften (a), (b), (c) des Folgerungsoperators Fls

Satz 2. Fir A, B S gilt Flg(A) = Flg(B) genau dann, wenn A = Flg(B) und
B < Flg(A) vst.

Beweis. Es sei Flg(A) = Flg(B). Dannist nach (a) A £ Flg(B) und B S Flg(A).
Es sei umgekehrt A S Fig(B) und B S Flg(A) vorausgesetzt. Dann ist

Flg(A) S Fig(Fig(B)) < Flg(B)
® ©

und ebenso Flg(B) S Flg(A), d. h. Flg(A) = Flg(B).

(Satz 2 liefert die Rechtfertigung fiir die in der mathematischen Praxis intuitiv
richtig gehandhabte Methode, die ,,Gleichwertigkeit* zweier Axiomensysteme zu be-
weigen. Die Beweise der Sitze 1 und 2 enthiillen zugleich, wie einfach sich viele in
den Anwendungen weitreichende Sitze der Metamathematik beweisen lassen, sobald
man iiber exakte Definitionen der in ihnen vorkommenden Begriffe verfiigt. Wir
werden im folgenden éhnlich triviale Beweise hiufig dem Leser iiberlassen.)

Die wichtigsten Eigenschaften eines Axic ystems und der hierdurch definierten
elementaren Theorie sind Widerspruchsfreiheit, Unabhingigkeit, Vollstindigkeit
und Kategorizitit. Die Untersuchung dieser Eigenschaften fiir eine konkrete mathe-
matische Theorie ist Gegenstand der Grundlagen dieser Theorie (bzw. der Meta-
theorie dieser Theorie). Die pmznse Definition der vier genannten Begriffe und die
Untersuchung ihrer all, i haften gehort demgegeniiber zu den Auf-
gaben der Grund] g der Mathematik (im Sinne dieses Buches und seines Titels).
In den folgenden Definitionen versehen wir die drei erstgenannten Begriffe mit dem
Beiwort semantisch, um sie von den spiiter zu behandelnden analogen syntaktischen

Begriffen zu unterscheiden.

Definition 5. Eine Teilmenge X einer Sprache S heiBt semuntisch widerspruchs-
frei, wenn X ein Modell besitzt. (Bis zur Einfiihrung des Begriffs syntaktische Wider-
spruchsfreiheit bezeichnen wir semantisch widerspruchsfreie Ausdrucksmengen
kurz als widerspruchsfrei.)
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Satz 3. Es sei S eine formalisierte Sprache und X S S. Dann gilt

(8) X 7st underspruchsfrei genau dann, wenn Flg(X) = S (d. h. wenn Flg(X) + S)
18t.

(b) X st underspruchsfrei genau dann, wenn fir keinen Ausdruck H € S zugleich
H € Flg(X) und — H € Flg(X) qilt.

(c) X st widerspruchsfrer genau dann, wenn Flg(X) widerspruchsfre: ist.

(d) Ist X widerspruchsfrei und ¥ S X, 8o 18t Y underspruchsfrei.

(a) und (b) bedeuten die Méglichkeit zweier zu Definition 5 dquivalenter Defi-
nitionen des Begriffs der semantischen Wlderspruc.hsfmlhelt (c) begriindet die
hiufig terminologisch undeutliche Unterscheid zwischen der Widerspruchs-

freiheit einer Theorie und der. deerspmohsfrelhent des diese Theorie definierenden
Axic yst Die leichten Beweise von (a) bis (d) seien dem Leser iiberlassen.

Der Nachweis der Widerspruchsfreiheit eines Axi t erfolgt gemif
Definition 6 primir durch die Angabe eines Modells. Die Konstmktlon einer Inter-
pretation einer formalisierten Sprache und der Nachweis, daB diese Interpretation
ein Modell der vorgegebenen Axiome ist, ist jedoch in einer direkten, unanfechtbaren
und effektiv durchfiihrbaren Weise nur im Fall der Existenz endlicher Modelle
moglich. Zum Beispiel kann man die Widerspruchsfreiheit der Gruppentheorie
(d. h. des Axiomensystems {(1), (2), (3), (4)} aus Beispiel 1) ohne irgendwelche Vor-
aussetzungen aus anderen Gebieten der Mathematik dadurch beweisen, da8 man
eine endliche Gruppe durch ihre Wertetafel vollstindig beschreibt und die Giiltigkeit
der Gruppenaxiome durch Nachpriifen aller Fille verifiziert. Die meisten inter-
essanten mathematischen Theorien besitzen jedoch kein endliches Modell. (Man
denke an die Theorie der natiirlichen und die der reellen Zahlen, die Mengenlehre,
die euklidische und die hyperbolische Geometrie usw.) In solchen Fillen kann man
ein Modell nur im Rahmen eines als existent vorausgesetzten Modells einer anderen
mathematischen Theorie nachweisen.

Definition 6. Es seien X und ¥ Teilmengen von eventuell verschied formali-
sierten Sprachen. Dann heiBt X relativ (semantisch) widerspruchsfrei beziiglich Y,
wenn gilt: Wenn ¥ widerspruchsfrei ist, so ist auch X widerspruchsfrei.

Beispiel 2. Der Nachweis, daB die in 4.1., Beispiel 1, angegebene Interpret
der Sprache der ebenen euklidischen Geometrie ein Modell des in dieser Sprache

formulierten Hilbertschen Axi yst ist, setzt die Giiltigkeit aller derjenigen
Eigenschaften der reellen Zahlen voraus, die bei diesem Nachweis benutzt werden.
Man zeigt also in Wirklichkeit nur: Wenn das Axi ystem der reellen Zahlen

ein Modell besitzt, so besitzt auch die ebene euklidische Geometrie ein Modell, d. h.,
die letztere ist relativ widerspruchsfrei beziiglich der Theorie der reellen Zahlen.
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Definition 7. Es sei S eine formalisierte Sprache, X £ S, H € S. Der Ausdruck
H heiBt (semantisch) unabhingig von X, wenn H ¢ Flg(X) ist. Eine Menge X S S
heiBt (semantisch) unabhiingig, wenn fiir alle H € X

H ¢ Fls(X \ (H}))
gilt.

Satz 4. Fiir abgeschlossene Ausdriicke H (und nur fiir solche, auf die man sich
aber bei der Formulierung von Azxiomensystemen beschrinken kann) gilt: H st un-
abhiingig von X genau dann, wenn X u {(— H} widerspruchsfres ist.

Beweis. Es ist H ¢ Flg(X) gleichbedeutend damit, daB wenigsténs ein Modell w
von X existiert, in dem H nicht allgemeingiiltig ist. Ist H abgeschlossen, so ist die
Nichtallgemeingiiltigkeit von H in w gleichbedeutend mit der Allgemeingiiltigkeit
von — H in w, d. h., » ist ein Modell von X v (— H}. Satz 4 bedeutet, da man die
Unabhiingigkeit eines Ausdrucks (Axioms) von einem Axiomensystem ebenfalls
durch Angabe eines Modells zu beweisen hat.

Beispiel 3. Es sei 8§ die Sprache der ebenen euklidischen Geometrie, H das in
dieser Sprache als abgeschlossener Ausdruck formuliérte Parallelenaxiom

APg(—P auf g V!h(Pauf ha —V QQ auf g A Q auf h))),

X das System der restlichen Hilbertschen Axiome. Zum Nachweis, daB H un-
abhiingig von X ist {also insbesondere mit den Voraussetzungen X allein nicht
bewiesen werden kann), hat man ein Modell fiir das Axiomensystem X u{— H}
anzugeben. Ein solches Modell kann hier nur skizzenhaft beschrieben werden, zumal
der Nachweis der Giiltigkeit aller Axiome aus X erhebliche geometrische Kenntnisse
voraussetzt. Man wihle in der euklidischen Ebene einen beliebigen Kreis k, inter-
pretiere die Punktvariablen durch Punkte im Innern von k, die Geradenvariablen
durch Sehnen von k, die Inzidenz durch die auf ,,Punkte‘‘ und ,,Geraden‘* der vor-
liegenden Interpretation eingeschrinkte Inzidenz der euklidischen Geometrie,
ebenso die Zwischenrelation durch die auf ,Punkte’ eingeschrinkte Zwischen-
relation der euklidischen Geometrie. (Man sagt in solchem Fall auch: Die Begriffe
liegt auf und zwischen werden standardinterpretiert.) Es ist leicht zu verifizieren
und sei dem Leser, falls er dieses Modell noch nicht kennt, zur Ubung empfohlen,
daB alle iiblichen Inzidenz- und Anordnungsaxiome erfiillt sind. ,, Punkte‘‘ 4,B,0,D
dieses Modells mégen in der durch AB ~ CD ausgedriickten Kongruenzrelation
stehen, wenn eine projektive Abbildung ¢ der betrachteten Ebene in sich existiert,
die den Kreis k¥ und damit auch sein Inneres invariant li8t und fiir die p(4) = C
und ¢(B) = D gilt (d. h., die nichteuklidischen Bewegungen werden durch die pro-
jektiven Abbildungen des Kreisinneren auf sich interpretiert). Bei dieser Inter-
pretation sind, wie sich zeigt, alle Kongruenzaxiome sowie die geeignet formulierten
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Stetigkeitsaxiome erfiillt. DaB das Parallelenaxiom H dagegen falsch bzw. seine
Negation wahr wird, ist wieder sofort zu sehen.?)

Jedes nicht unabhingige Axiomensystem ist unnétig umfangreich, denn wenn fiir
einen Ausdruck H € X

H ¢ Flg(X \ (H})

gilt, ist Flg(X) = Flg(X \\ {H}). Dies folgt wiederum allein aus den Hiilleneigen-
schaften (a), (b), (¢) (Satz 1) des Folgerungsoperators: Flg(X \ {H}) & Flg(X) gilt
nach (b). Die umgekehrte Inklusion ergibt sich so: X\ (H} & Flg(X \ (H}) gilt
nach (a), und nach Voraussetzung ist H € Flg(X \ (H}), also ist X & Flg(X \ {H}),
folglich gilt nach (b) und (c)

Flg(X) S Flg((Flg(X \ (H})) = Flg(X \ (H)).

Wihrend die Unabhingigkeit einzelner Axiome oft aus inhaltlichen oder auch nur
historisch erklirbaren Griinden von groBem Interesse ist, hat die Frage nach der
Unabhii U'U‘ it eines g ten Axic yst im Sinne von Definition 7 keine
besondere Bedeut . Insb dere kann einem iibertriebenen Streben nach einer
maglichst geringen Anmhl von Axiomen durch den Hinweis begegnet werden, daB
man doch jedes endliche Axiomensystem (H,,..., H,} durch das einzelne Axiom

H, A ... A H, ersetzen kann.

Definition 8. Eine Teilmenge X einer formalisierten Sprache S heiBt (semantisch)
vollstindig, wenn H € Flg(X) oder — H € Flg(X) fiir jeden abgeschlossenen Ausdruck
H ¢ § gilt.

Aus Definition 8 folgt sofort, daB jede widerspruchsvolle Menge vollstindig ist.
Eine widerspruchsfreie Menge hingegen ist genau dann vollstindig, wenn fiir jeden
abgeschlossenen Ausdruck H € S genau eine der beiden Beziehungen H € Flg(X),
— H € Flg(X) gilt. Wir zeigen

Satz 8. Eine Teillmenge X einer formalisierten Sprache S st genau dann wider-
spruchsfrer und vollstindig, wenn Flg(X) eine mazimale widerspruchsfreie Teillmenge
von S.18t, d. h., wenn Flg(X) widerspruchsfrei und jede Menge ¥ mit FlgX)—c Y S S
widerspruchsvoll ist.

Beweis. Wir setzen zuniichst voraus, daB X widerspruchsfrei und vollstindig
ist. Dann ist nach Satz 3 (c) auch Flg(X) widerspruchsfrei. Wir nehmen an, ¥ sei
eine echte Obermenge von Flg(X), die noch widerspruchsfrei ist. Es sei H € ¥ \ Flg(X).
Falls H abgeschlossen ist, sei H' = H. Andernfalls sei H' ein Ausdruck, der aus H
entsteht, indem man zunichst durch gebundene Umbenennungen alle frei vor-

l) Ausfihrliche Behandlungen des hier skizzierten Kleinschen Modells findet man u. a. in
yklopadie der EI {7 th tik, Band 6, DVW, Berlin 1971, sowie in A. P. NORDEN,
Elemenum Einfiihrung in die Lobatschewskische G trie, DVW, Berlin 1958 (Ubersetzungen

aus dem Russischen).
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kommenden Variablen vollfrei macht und dann zur Generalisierten iibergeht. In
beiden Fiillen gilt fiir beliebige Z & S, daB H € Flg(Z) genau dann, wenn H' € Fig(Z).
Insbesondere ist daher

H' € Flg(Y), (5)

H' ¢ Flg(X). (6)
Da H’ abgeschlossen und X vollstindig ist, ist (6) gleichbedeutend mit

— H' € Flg(X) = ¥ S Flg(Y).

Dies bedeutet zusammen mit (5), daB Flg(¥) und daher auch Y widerspruchsvoll
ist, im Widerspruch zu unserer Annahme. Es sei nun Flg(X) eine maximale wider-
spruchsfreie Menge. Dann ist mit Flg(X) auch X widerspruchsfrei. Wir nehmen an,
X wiire nicht vollstindig, d. h., es gibt einen abgeschlossenen Ausdruck H, so daB
weder H € Flg(X) noch — H € Flg(X) gilt. Das erste bedeutet, daB es ein Modell
von X gibt, in dem H nicht allgemeingiiltig, d. h. wegen der Abgeschlossenheit
— H allgemeingiiltig ist. Demnach ist Flg(X)u (— H)} widerspruchsfrei und wegen
— H ¢ Flg(X) eine echte Obermenge von Flg(X).

Ist X ein in einer Sprache S formuliertes widerspruchsfreies und vollstindiges
Axiomensystem, so gilt nach Satz 5 fiir jeden abgeschlossenen Ausdruck H ¢ §
entweder H € Flg(X) oder — H € Flg(X). Im ersten Fall gilt H in allen Modellen
von X, im zweiten Fall gilt H in keinem Modell von X. Demnach gibt es keine in der
Sprache S formulierbare Aussage, durch die sich zwei beliebige Modelle von X
unterscheiden lassen. Wir sagen: Je zwei Modelle eines widerspruchsfreien und
vollstindigen Axiomensyst sind el tar ununterscheidbar.

4.4.  Isomorphie von Interpretationen, Kategorizitat

Definition 1. Es seien w, und w, Interpretationen einer Sprache S, die durch die
Basis B = (n, B,, B, B,) gegeben ist. Ein Isomorphismus von w, auf w, ist eine Ab-
bildung ¢, die fiir j = 1, ..., n den Grundbereich w,(j) eineindeutig auf den Grund-
bereich wy(j) abbildet, so daB gilt:

(8) Fiir Ryfvntx € B, gilt fiir beliebige £, € 0,(ja) (¢ =1, ..., k)

\(b) Fiir F il € By qilt fiir beliebige &, € w,(5,) (¢ =1,..., k):
wy(Ffideif) (&), ..., &) existiert genau dann, wenn
@y(Fhrtiit) (p(£1), ..., @l&y)) existiert und im Fall der Existenz gilt
Py (Fftiit) (&, ..., £)) = wg(Fifr-s) (&), ..., (&)

(e) Fiir ¢! € B, gilt p(w,(ci)) = wylcs).
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Der Leser priife nach, da8 die Bedingungen (b) und (c) sich zwangsliufig aus (a)
ergeben, wenn man Konstanten und (partielle) Operationen als spezielle Relationen
auffaBt.

Beispiel 1. Es sei S die in 4.3., Beispiel 1, betrachtete Sprache (zur Formulierung
,,gruppentheoretischer* A ), wy und w, seien Interpretationen dieser Sprache.
Wir bezeich den Grundbereich von w; mit M; ( = 1, 2) und die in M, definierte
Operation w;(+) mit ,,4;*. Dann ergibt sich aus Definition 1 (in diesem Fall wird '
nur (b) benétigt): Ein Isomorphismus der Interpretation w, auf die Interpretation.
wy (und damit von der Struktur (M,, +,) auf die Struktur (M,, +,)) ist eine einein-
deutige Abbildung ¢ von M, auf M,, so daB fiir beliebige &, 7 € M, genau dann
& +, n existiert, wenn @(£) +, @(n) existiert, und im Fall der Existenz gilt

(€ +17) = @) +2 90)- (1)

Der Leser wird (1) als die aus der Gruppentheorie bekannte Isomorphiebedingung
erkennen. (Wenn man schon voraussetzt, daB (M,, +,) und (M,, +;) Gruppen sind,
die entsprechenden Operati also fiir alle Elementpaare ausfiihrbar sind, ent-
fallt natiirlich die im Fall partieller Operatlonen zusitzlich gestellte Bedingung, da
die linke Seite von (1) genau dann definiert sein soll, wenn die rechte Seite definiert
ist.)

Beispiel 2. Mit S;,, bezeichnen wir die durch die Basis (2, (R'?), @, @) gegebene
Tell.spmche der kanonischen Sprache der ebenen Geometrie. In dieser Sprache der

Inzic trie kann man natiirlich nicht nur Aussagen der euklidisch
sondern auch der hyperbolischen, projektiven oder sonsti b Inzidenz-
trie formuli Eine beliebige Interpretation w der Spn.che Sy wird gegeben

durch eine Menge ¢ von .,Punkten eine Menge ¢ von ,,Geraden‘‘ und eine Rela-
tion Inz & # X 9. Eine Struktur der Form (2, 9, Inz) nennen wir eine (ebene) Inzi-
denzatruldur. Dabei brauchen die Elemente von & durchaus nicht Punkte in irgend-
einem geometrischen Sinn und die Elemente von & keine Geraden zu sein, sondern
es kann sich, wie HILBERT einmal formulierte, um Tische, Binke oder Bierseidel
handeln. Eine Inzidenzstruktur (2,4, Inz) wollen wir als speziell bezeich wenn ¥
eine Teil der Pot. ge von 2 ist (die ,,Geraden‘* also Mengen von ,,Punk-
ten* sind)und Inzdieauf # X ¥ eingeschrinkte Elementrelationist. Nach Definition 1
sind zwei Inzidenzstrukturen w; = (#;, 9, Inz;) ({ =1, 2) isomorph, wenn eine
eineindeutige Abbildung ¢ von #; auf #, und von ¥, auf ¥, existiert, so daB fiir
beliebige n € 2, und ¥ € @, genau dann (, y) € Inz gilt, wenn (g(n), p(y)) € Inz,
gilt. Wir bewei genden fiir das hauliche Arbeiten mit Inzidenzstrukturen
wesentlichen

Satz 1. Ist eine Inzidenzstruktur ein Modell der beiden Aussagen

A x,‘x,‘(—| x! = x,' - VI3 (RM(x!, x,3) A RM(x,), x,’)))
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(d. h., zu je zwei verschiedenen Punkten gibt es genau eine mit beiden inzidierende
Gerade),

A x,2V x,'R¥M(x,}, x,%)
2

(d. h., auf jeder Geraden gibt es wenigstens zwei Punkte), so existiert eine zu ihr
18omorphe spezielle Inzidenzstruktur.

Beweis. Es sei w, = (&, 9, Inz) ein beliebiges Modell der beiden im Satz ge-
nannten Aussagen. Wir definieren eine zu w, isomorphe Interpretation w, und zugleich
einen Isomorphismus ¢ von w, auf w, durch

Py =P, @n)=nfirne P,
o) = {m: (7, y) € Inz), 9, = lp(y):y € F1).

Offenbar ist (#,, ¥,, €) eine spezielle Inzidenzstruktur und ¢ eine Abbildung von
2, auf 2, und von¥, auf ¥,. Aus der Giiltigkeit der im Satz genannten Aussagen in
w, ergibt sich, daB jede ,,Gerade‘* dieser Struktur durch die Gesamtheit der mit ihr
inzidierenden ,,Punkte‘ eindeutig bestimmt ist, d. h., ¢ ist nicht nur eineindeutig
von 2, auf #,, sondern auch von ¢, auf &,. Die Isomorphiebedingung fiir ¢ folgt
nun sofort aus der Definition von g(y).

Satz 1 und sein Beweis bedeuten: Sind die ,,Geraden* einer Inzidenzstruktur zu-
nichst nicht Mengen von ,,Punkten* (sondern z. B. ,,geometrische Orter im Sinne
der antiken Geometrie), 80 kann man unter den in Satz 1 genannten (in fast allen in
Frage kommenden geometrischen Theorien erfiillten) Voraussetzungen zu einer
isomorphen Struktur mit den gleichen ,,Punkten‘ iibergehen, in der jede Gerade
gleich der Menge der mit ihr inzidierenden Punkte ist. In welchem Sinn die Betrach-
tung der isomorphen Struktur der Betrachtung der urspriinglichen Struktur gleich-
wertig ist, wird durch den folgenden Satz prizisiert.

Satz 2. Sind w, und w, Interprelationen einer beliebigen Sprache S, ist ¢ evn Iso-
morphismus von w, auf w, und | eine Belegung beziiglich w,, so0 sei f, die durch f,(x)
= qp(/(x)) definierte Belegung beziiglich w,. Es gilt

(a) fiir alle Terme t der Sprache S: Wert(t, w,, f) existiert genau dann, wenn auch
Wert(t, w,, f,) existiert,und im Fall der Existenz ist qz( Wert(t, o,, /)) = Werl(t, w,, f,);

(b) fiir alle Ausdriicke H € S: Werlt(H, w,, f) = Wert(H, w,, f,).

Wir beweisen zunichst (a) durch Induktion iiber die Kompliziertheit des Terms t.
Ist t eine Variable, so gilt (a) nach Definition von f,. Ist t ein Konstantensymbol, so
gilt (a) nach Definition 1(c). Es sei t = Ff-fif(t,, ..., t;), und (a) sei schon fiir
die Terme t,, ..., t, bei beliebiger Belegung f bewiesen. Existiert Wert(t, w,, f), so
existieren

& = Werl(ty, o, f) firx=1,...,k,
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und die Operation w,(F-#) ist auf das k-Tupel &, ..., & anwendbar. Nach
Induktionsannahme existieren dann auch die Elemente ¢(£,) und sind fiirx = 1,..., %
gleich Wert(t,, w,, f,). Da @ ein Isomorphismus von , auf w, ist, folgt nach Defi-
nition 1 (b) die Gleichung

@(Wert(t, w,, f)) = (wy(Fifubi) (&, ..., &))
= wy(Fipte) (pl&y), -, @lés) = Wertlt, wg, fp)-

Existiert Weri(t, @y, f) nicht, so sind folgende zwei Fiille maglich:

a) Wert(t,, w,, f) existiert fiir wenigstens ein x € {1, ..., k} nicht. In diesem Fall
existiert nach Induktionsannahme auch Wert(t,, w,, f,) nicht und daher erst recht
nicht Wert(t, w,, f,).

b) Wert(t,, w,, f) existiert zwar fiir x = 1, ..., k, aber die Operation cw,(F;fi-ff)
ist auf das k-Tupel dieser Werte nicht anwendbar. In diesem Fall existieren nach
Induktionsannahme zwar die Werte Wert(t,, w,, f,), aber da @ ein Isomorphismus ist,
ist die Operation w,(F;fv-#f) auf das k-Tupel dieser Werte nicht anwendbar,
d. h., Wert(t, w,. f,) existiert nicht.

Wir beweiszn nun (b) durch Induktion iiber die Kompliziertheit des Ausdrucks H.
Ist H eine Termgleichung t, = t,, so ist Wert(H, w,, f) = W genau dann, wenn
Wert(ty, w,, f) fiir © =1, 2 existiert und diese Werte gleich sind. Auf Grund des
bereits bewiesenen Teils (a) von Satz 2 ist dies aber genau dann der Fall, wenn
Wert(t;, wy, f,) fiir © =1, 2 existiert und diese Werte (wegen der Ememdeuhgkelt
von @) ebenfalls iibereinsti d. h., wenn Wert(H, w,, f,) =W ist. Ist H ein
priddikativer Ausdruck der Form Ri(t, ..., t;), wobei R ein k-stelliges Relationssymbol
der Sprache S bezeichnet, so ist Werl(H, w,, /) = W genau dann, wenn

Wert(t,, w,, ) =&, firx=1,...,k
existiert und (&, ..., &) € w;(R) gilt. Da @ ein Isomorphismus von w, auf w, ist,
gilt dies genau dann, wenn (p(£)), ..., @(&)) € wy(R) ist. Auf Grund des bereits be-
wiesenen Teils (a) ist aber '
P& = Wert(t,, @, f,)  firx =1,..., k,
d. h,, es gilt insgesamt Wert(H, w,, /) =W genau dann, wenn Wert(H, w,, f,) =
Ist schon Wert(H, w,, f) = Wert(H, w,, /,) fiir einen beliebigen Ausdruck H, so g)lt
trivialerweise

Wert(— H, w,, ) = Wert(— H, w,, [,).

Analog schlieBt man fiir die iibrigen aussagenlogischen Verkniipfungen.
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Wir setzen nun voraus, da8 die Behauptung fiir den Ausdruck H(x) bei beliebigen
Belegungen f beziiglich w, bewiesen ist. Es gilt

Wert(A xH(x), w,. f) = W @)

genau dann, wenn fiir alle Elemente ¢ des bei der Interpretation w, zur Variablensorte
von x gehérigen Grundbereichs M,

Wert (H(x), oy, f ( :)) -w @)

gilt. Nach Induktionsannahme ist (3) gleichbedeutend mit

Wert ( H(x), ws, (/ ( : ))') =w. @

Offenbar st (/ ( : )) =1, (q)(’f) ) Da g eine eineindeutige Abbildung von M, auf
L4

den entsprechenden Grundbereich M, der Interpretation w, ist, ist die Giiltigkeit von
(4) fiir alle & € M, gleichbedeutend mit der Giiltigkeit von
Went (H(x), o fy (" )) =W firalle 5 € M,, d. h. mit
n

Wert(A xH(x), ws, f,) = W. (6)

Folglich gilt (2) genau dann, wenn (b) gilt. Der hierzu weitgehend analoge letzte
Beweisschritt fiir Ausdriicke der Form V xH(x) sei dem Leser iiberlassen.

Aus Satz 2(b) ergibt sich sofort

Folgerung. Sind w, und w, 1somorphe Interpretati einer beliebigen Sprache S,
80 ist ein beliebiger Ausdruck H bei w, allgemeingiiltig genau dann, wenn er bei w,
allgemeingiiltig 1st, d. h., isomorphe Interpretationen sind erst recht elementar ununter-
scheidbar.

Beispiel 3. Als Anwendungen der obigen Folgerung ergeben sich Sitze folgender
Art: Ist (M,, +,) eine Gruppe und (M,, +,) eine Struktur, von der nur vorausgesetzt
wird, daB die mit -, bezeichnete (eventuell partielle) Operation in der Menge M,
zweistellig ist, so folgt aus der Existenz eines Isomorphismus von (M,, +,) auf
(M, +,), daB auch (M,, +,) eine Gruppe ist. Unter den in (M,, +,) und folglich
auch in (M,, +,) allgemeingiiltigen Ausdriicken befinden sich nimlich die Gruppen-
axiome (vgl.4.3., Beispiel 1). Analog erhélt man: Jede zu einem Ring isomorphe Struk-
tur ist ein Ring; jede zu eincm Korper isomorphe Struktur ist ein Korper; eine zu
einer kommutativen Gruppe isomorphe Gruppe ist ebenfalls kommutativ; ein zu
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cinem Korper der Charakteristik p isomorpher Korper hat ebenfalls die Charakteri-
stik p usw.

Definition 2. Ein in einer formalisierten Sprache S formuliertes widerspruchs-
freies Axiomensystem X — S (und die durch X definierte elementare Theorie Flg(X))
heiBt kategorisch, wenn je zwei Modelle von X zueinander isomorph sind. (In diesem
Fall sagen wir auch: X besitzt bis auf Isomorphie nur ein einziges Modell.)

Definition 2 gestattet cs, iiber zwci tlich verschiedene Ziele der axiomatisch
Methode in verschied Teilgebieten der Mathematik zu hen. Manche Axi-
omensysteme (wie z. B. die in der Gruppen-, Ring-, Korper und Verbandstheorie
benutzten) sind absichtlich so ,,schwach‘* gewihlt, daB sie sehr viele wesentlich ver-
schiedene (d.h. paarweise nicht zueinander isomorphe) Modelle besitzen. Hier
sollen gewisse gemeinsame GesetzmiBigkeiten, die in hiedensten Strukturen
auftreten, unter einem gemeinsamen Gesicht kt untersucht werden bzw. gewisse
Sitze, deren Beweise andemfalls in verschxedenen Teilgebieten der Mathematik
jeweils wortlich zu wiederholen wiren, werden als z. B. gruppentheoretische Sitze
erkannt und nur einmal, nimlich in der Gruppentheorie, bewiesen. Demgegeniiber
verfolgen gewisse andere axiomatische Theorien das Ziel, im wesentlichen (d. h. bis
auf Isomorphie) eine einzige Struktur durch innere Eigenschaften zu charakterisieren.

Hierher gehéren z. B. die axiomatischen Theorien der verschied Zahlbereich
und die ebene und ridumliche euklidische G trie. In diesen Theorien wird also
cin kategorisches Axiomensystem gesucht, d (bis auf I phie)

Modell die zu charakterisierende Struktur ist. Allerdings zeigt sich, da8, ubgesehen
von Trivialfillen, eine solche axiomatische Charakterisierung mit den bisher be-
handelten Mitteln nicht moglich ist. Es gilt der

Satz 3 (Satz von TARSKI). Besilzt ein Axi ystem cin dliches Modell
(d. h. etn Modell mit igstens esnem dlichen Grundbereich), so ist dieses Axiomen-
8system nicht kategorisch.

Auf den Beweis dieses Satzes miissen wir hier verzichten. In 6.4. wird der Weg,
auf dem dieser Satz erhalten werden kann, skizziert werden. Der folgende Abschnitt
ist einer solchen Modifizierung des bisher behandelten Sprach- und Folgerungs-
begriffs gewidmet, mit deren Hilfe kategorische Axi yst auch fiir d
liche Strukturen erhalten werden konnen.

45.  Nichtelementare Sprachen und Theorien

Definition 1. Ist S eine beliebige formalisierte Sprache und ¢ eine beliebige nicht-
leere Klasse von Interpretationen von S, so heit das Paar (S, o) eine Sprache. Mit
ay bezeichnen wir stets die Klasse aller Interpretationen von S und nennen die
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Sprachen (S, o,) elementar. Ist o eine echte Teilklasse von gy, so heiBt die Sprache

(S, o) nichtel tar. Die El te von ¢ werden als zulissige Interpretati von
(8, o) bezeichnet.
Der Begriff der elementaren Sprache stimmt im tlichen mit dem bisher

betrachteten Sprachbegriff iiberein. Fiir konkrete nichtelementare Sprachen wird
die Klasse o der zulissigen Interpreta,tionen meist durch eine verbale Beschreibung
dieser Interpretationen gegeben. (Zum Beispiel bezeichne oy, stets die Klasse aller
Interpretationen von S, bel denen alle Opemtlonssymbole durch volle Opemtlonen
interpretiert werden.) Diese Beschrei ichnen wir al in als eine Inter-
pretationsvorschrift fir S (und 1dentlfmeren sie zuweilen mit der Klasse o der be-
schriebenen Interpretationen, wenn keine MiBverstindnisse moglich sind). Der hier
definierte Begriff der nichtelementaren Sprache ist etwas allgemeiner und abstmkber
als die in der Literatur unter diesem Namen behandelten speziellen nichtel
Sprachen (bei denen die Interpretationsvorschrift mehr oder weniger stillschweigend
verabredet und hiufig durch ganz spezielle Modifizierungen der benutzten formali-
sierten Sprache zum Ausdruck gebracht wird). Er umfaBt jedoch, wie die folgenden
Beispiele zeigen werden, alle diese speziell ichtel t Sprachen, verall-
rt sie in naheli der Weise und gestattet es zugleich, viele fiir elementare
Sprs.chen formulierte Begnffe und Sachverhalte fast wortlich auf beliebige nicht-
elementare Sprachen zu iibertragen.

Beispiel 1. Die zweisortige Sprache S enthalte die Variablen x;* der zweiten
Sorte nur in priidikativen Ausdriicken der Form x;! € x,2, so daB also € ein Relations-
symbol vom Typ (1, 2) ist. Es sei oy die Klasse aller Interpretationen von S, bei
denen der Grundbereich w(2) die Potenzmenge des Grundbereichs w(1) ist und
das Symbol € durch die Elementrelation interpretiert wird. Nichtelementare Sprachen
der Form (8, a(5)) bezeichnet man als Sprachen zweiter Stufe. Analog zu den Sprachen
zweiter Stufe kann man fiir » > 2 nichtelementare Sprachen n-ter Stufe bilden. Dazu
withle man n Variablensorten z;/ (1 < j < n) und pridikative Ausdriicke der For-
men x;f € x,”*! (1 < j < n — 1; als Pridikatensymbol kann man stets das gleiche
Zeichen € nehmen, da die jeweilige Bedeutung aus den Sortenindizes der dabeiste-
henden Variablen hervorgeht). Es sei o, die Klasse aller Interpretationen dieser
Sprache S, bei denen w(j + 1) durch die Potenzmenge von w(j) (1 < j < n — 1) und
€ durch die Elementrelation interpretiert wird. Eine Interpretation w € o(,) von 8
ist daher jeweils durch die Wahl einer beliebigen nichtleeren Menge w(1) bereits ein-
deutig bestimmt.

Beispiel 2. Enthilt eine Sprache S Variablen der Sorten x; und f; und ist bei
beliebigen ¢, k die Zeich ihe f(x,) ein Term der Sorte x (d. h.,...(...) ist ein
modifiziertes Operationssymbol vom Typ (1, 2; 2)), so ist damit (meist stillschwei-
gend) folgende Interpretationsvorschrift verbunden: Ist bei einer Interpretation der
zu den Variablen x; gehorige Grundbereich M, so ist der zu den Variablen f; gehérige
Grundbereich eine Menge von eindeutigen Abbildungen von M in sich, und dem
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Operationssymbol ... (...) wird die durch ®(g, £) := @(§) definierte sogenannte
Anwendungsoperation zugeordnet.

Definition 2. Ist (S, o) eine nichtelementare Sprache, so verstehen wir unter
einem o-Modell eines Axiomensystems X & S eine Interpretation w € o, die im
friiher definierten Sinn ein Modell von X ist. Ferner sei

Flg®(X) := {H:H € S und H allgemeingiiltig in allen o-Modellen von X}
die o-Folgerungshiille von X.

Wie man leicht zeigt (vgl. 4.3., Satz 1), ist Flg° bei beliebigem S und o ein Hiillen-

opera.tor in der Potenzmenge von S. Als Spezialfall des durch die Operation Flg® ge-

ichtel taren o-Folgerns ergibt sich fiir ¢ = o, das in 4.3. betrachtete

Folgem, das wir von nun an als elementar bezeichnen werden. Sind ¢, ¢’ Klassen von
Interpretationen einer Sprache S mit ¢ S o', so gilt fiir beliebige X S S stets

Fig(X) S Flg°(X),

d. h., die Menge der aus einem Axiomensystem erhiltlichen Folgerungen wiichst
mit der Verkleinerung der Klasse der zulissigen Interpretationen. Insbesondere ist

Fly(X) S Flg°(X)

fiir beliebige nichtelementare Sprachen (S, o) und X S S. Als einen zum elementaren
Folgern -entgegengesetzten Ausnahmefall betrachten wir eine Klasse ¢ = (w,) von
Interpretationen einer Sprache S, die nur ein einziges Element w, enthilt. Ist fiir
ein Axiomensystem X & S die Interpretation w, kein Modell von X, so ist jeder
Ausdruck H € § in allen o-Modellen von X allgemeingiiltig, d. h., es ist Flg’(X) =
Andernfalls besteht Fig’(X) gerade aus den in w, allgemeingiiltigen Ausdriicken der
Sprache S. Demnach besteht das o-Folgern in diesem Fall in der Uberpriifung, ob der
betrachtete Ausdruck bei der einzig zugelassenen Interpretation w, von 8 allgemein-
giiltig ist.

Die in 4.3. und 4.4. betrachteten Begriffe lassen sich ohne weiteres auf nichtelemen-
tare Sprachen iibertragen, indem man in den jeweiligen Definiti das el tare
Folgern Flg durch das ¢-Folgern Flg°® ersetzt:

Definition 3. Eine nichtelementare Theorie T ist eine Menge der Form T
= Flg°(X), wobei (S, g) eine nichtelementare Sprache und X & § ein Axiomen-
system ist.

Definition 4. Ist (S, 0) eine nichtelementare Sprache, so heiBt ein Axiomen-
system X & S (und die durch X definierte nichtelementare Theorie Flg°(X))

o-underspruchsfrei, wenn X ein o-Modell besitzt (genau dann, wenn Flg’(X) = S
bzw. genau dann, wenn fiir kein H € S sowohl H € Flg°(X) als auch — H € Flg°(X)
gilt, Beweise analog wie in 4.3.);
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o-unabhingig, wenn fiir kein H € X gilt H € Flg*(X \ {H});

o-vollstindig, wenn fiir H € §gilt H € Flg’(X) oder — H € Flg°(X);

a-kategorisch, wenn X o-widerspruchsfrei ist und je zwei g-Modelle isomorph sind
(d. h., wenn X bis auf Isomorphie genau ein o-Modell besitzt).

Aus der bereits erwihnten Antimonotonie

Flg'(X) S Flg(X) firoS o (1)

ergibt sich sofort

Satz 1. Sind o, o' Interpretationsklassen von S mit o S o', 80 18t

(a) jede o-widerspruchsfreie Menge o’-widerspruchsfrei,

(b) jede o-unabhingige Menge o’-unabhingig,

(c) jede o'-vollstiindige Menge o-vollstindig,

(d) jede o’-kategorische und o-widerspruchsfreic Menge o-kategorisch.

(1) bedeutet : Eine Verkleinerung der Klasse der zulissigen Interpretationen wirkt
sich im Sinne einer VergroBerung der Folgerungshiille aus. Im gleichen Sinne wirkt
aber auch eine VergréBerung des benutzten Axiomensystems. Dies fiihrt uns zu

Definition 5. Eine nichtelementare Sprache (S, o) heiBt unwesentlich nicht-
1 tar, wenn ein Axi ystem ¥ < § existiert, so daBl
Flg"(X) =Flg(XvY) firalle XSS
gilt (d. h., wenn man das nichtelementare o-Folgern gleichwertig durch elementares
Folgern aus einem stiirkeren’ Axiomensystem ersetzen kann).

Offenbar ist eine Sprache (S, o) insb dere dann un tlich nichtel tar,
wenn es ein Axiomensystem ¥ C § gibt, so daB o die Klasse aller Modelle von ¥ ist
(oder wenigstens zu jeder Interpretation w € o ein elementar ununterscheidbares
Modell von ¥ und umgekehrt zu jedem Modell von ¥ eine el tar terscheid-
bare Interpretation w € o existiert).

Beispiel 3. Die Sprachen (S, gy,) sind un tlich nichtel tar. Es sei
néimlich ¥ die Menge aller Ausdriicke der Form
Ax LoV x IR B dii(x b L xgh) = xyd, 2)

{ die Operationssymbole der Sprache S durchliuft. Dann ist oy,
gerade die Klasse aller Modelle von ¥. An dieser Stelle sei bemerkt, daB in den meisten
Lehrbiichern der mathematischen Logik Flg°» statt Flg® als elementare Folgerungs-
operation definiert wird.

Beispiel 4. Die in Beispiel 2 betrachteten Sprachen sind un tlich nichtel
tar. Dazu betrachten wir folgende in der betreffenden Sprache S selbst formulierbare
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Axiome iiber die Dinge der Sorte f; und die Terme der Form f;(x;):

A ‘|fz(/\ x fy(x) = fy(x) -, = fn): 3)
(d. h., die Dinge f; sind durch ihren ,,Werteverlauf* eindeutig bestimmt),

AMyx, V x, (%)) = X, v 4)

(vgl. (2), d. h., die {; sind volle Abbildungen). Es sei ¥ die Menge der beiden Axiome
(3), (4). Unter den Modellen von Y ) alle zulidssigen Interpretationen der
betrachteten Sprache vor. Umgekehrt brauchen in einem beliebigen Modell von ¥ die
f; nicht selbst Abbildungen zu sein. Man kann jedoch zu jedem solchen Modell ein
isomorphes zulissiges Modell konstruieren (vgl. hierzu die Konstruktion zum Beweis
von Satz 1 in 4.4.). Es sei bemerkt, daB man weitere Einschrinkungen der Klasse
der zulissigen Interpretationen, die sich in diesem Fall anbieten, ebenfalls durch
Axiome zum Ausdruck bringen kann. Zum Beispiel bedeutet

A flxlxz(fl(xl) =fi(x) »x, = xz) ,
daB die {; eineindeutig sind, wihrend das Axiom
Aixy Vox, fi(x,) = xy

sichert, daB die f; Abbildungen auf den entsprechenden Grundbereich sind. Es ist
jedoch nicht méglich, durch elementar formulierte Axiome auszudriicken, da8 der
den Variablen f; zugeordnete Grundbereich aus allen Abbildungen des den Variablen
x; zugeordneten Grundbereichs in sich bestehen soll.

Als wichtiges Beispiel einer tlich nichtel taren Sprache behandeln wir
im folgenden die Formalisierung des bekannten Axiomensystems von PEANO zur
Charakterisierung der natiirlichen Zahlen mittels der Grundbegriffe Null und
Nachfolgeroperation (vgl. MfL, Band 1, 3.2.).

Beispiel 5. Die Axiome von PEaNO kann man — zunichst unformalisiert —
etwa wie folgt formulieren:

(a) Null ist eine natiirliche Zahl.

(b) Jede natiirliche Zahl hat genau einen Nachfolger.

(¢) Null hat keinen Vorginger.

(d) Jede natiirliche Zahl hat hochstens einen Vorginger.

(e) Enthiilt eine beliebige Menge M von natiirlichen Zahlen die Zahl 0 und mit
einer beliebigen Zahl auch deren Nachfolger, so enthilt M alle natiirlichen
Zahlen.

Zur Formalisierung dieser Axiome benétigt man Variablen n, fiir natiirliche Zahlen,
Variablen M; fiir Mengen von natiirlichen Zahlen, ein Konstantensymbol o zur Be-
zeichnung der Zahl 0, ein Operationszeichen ‘ zur Bezeichnung der Nachfolger-
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operation und ein Symbol € zur Bezeichnung der EI trelation (zwisch
Dingen der Sorte n; und Dingen der Sorte M;). Die Termdefinition der entsprechenden
modifizierten zweisortigen Sprache lautet demnach:

M; (und nur diese) sind Terme der Sorte ,,Menge*‘.

o 18t ein Term der Sorte ,,Zahl".

n; sind Terme der Sorte ,,.Zahl*.

Ist t ein Term der Sorte ,, Zahl, so ist auch t' ein Term der Sorte ,,.Zahl‘.
Pridikative Ausdriicke sind t; = t; (t;, t; sortengleiche Terme), t; € M; (t; Term der
Sorte ,,Zahl“) und keine weiteren. Wir kommen zur Formalisierung der Axiome
(a) bis (e):

(a’) entfillt auf Grund der syntaktischen Festlegungen
(b") An; Vn,n,’ =n,.

(DaB der Nachfolger einer natiirlichen Zahl eindeutig bestimmt ist, ergibt sich aus
der generellen Festlegung iiber die Interpretation von Operationssymbolen. DaB
— wie in (b’) verlangt — jede natiirliche Zahl wenigstens einen Nachfolger hat, mu
gefordert werden, da wir allgemein die Interpretation von Operationssymbolen
durch .partielle Operationen zulassen. (b’) entfillt natiirlich, wenn man, wie meist
iiblich, Fl°» als elementares Folgern ansieht.)

(c) —Vnn' =o.

d") n’' =ny —>n, = n,.

(e") 0EM, AAD(M €M, >0/ €M) —>An,n, €M,

Die Kategorizitit dieses Axlomensystems beruht darsuf, deB die Variablen M;
(die nur in (e’), dem Indukti vork ) und das Symbol € in der in
Beispiel 1 angegebenen Weise interpretiert werden, daB also die verwendete Sprache
durch diese (mehr oder weniger stillschweigend vereinbarte) Interpretationsvorschrift
zu einer nichtelementaren Sprache (S, o(y)) zweiter Stufe wird. Ein ,,naiver Kate-
gorizititsbeweis kann dann leicht gefiihrt werden, indem man zu zwei beliebigen
Modellen (N,, ‘%, 0,) und (N, %, 0,) induktiv einen Isomorphismus ¢ von N, auf N,
definiert:

(o) := o,,' () = (p()2. (5)

Der exakte Beweis allerdings, daB durch (5) eine eindeutig bestimmte eineindeutige
Abbildung von Nl auf N, definiert ist, erfordert neben (') die von der axiomatischen
M lehre bereitgestellten sogenannten Rechtfertigungssitze fiir induktive
Definitionen und deren Beweise und soll daher hier nicht gefiihrt werden. Notig
sind jedoch noch folgende Bemerkungen.

Zum Beweis der Kategorizitit (hier genauer: o,-Kategorizitit) ist (vgl. Defi-
nition 4) zuniichst die ¢(,)-Widerspruchsfreiheit des betrachteten Axiomensystems
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zu zeigen. Dies kann (wegen der Unendlichkeit des angestrebten Modells) natiirlich
nur im Rahmen einer anderen mathematischen Theorie geschehen. Ublicherweise
konstruiert man in einer (als widerspruchsfrei vorausgesetzten) axiomatischen
Mengenlehre einen Bereich N von natiirlichen Zahlen, die (a’) bis (e’) erfiillen, indem
man z. B. die Kardinalzahlen der endlichen Mengen als natiirliche Zahlen nimmt.
Man zeigt also nur die relative Widerspruchsfreiheit der Peanoschen Axiome in bezug

auf das vorausgesetzte Axic ystem der Mengenlehre, und nur unter der Voraus-
setzung der Widerspruchsfreiheit dieses Axiomensystems gelingt auch der exakte
Kategorizititsbeweis.

Man kann in naheliegender Weise ein elementares Axiomensystem fiir die natiir-
lichen Zahlen erhalten, indem man das Induktionsaxiom (e’) durch ein Schema
ersetzt, in welchem die in (e') fiir beliebige Mengen von natiirlichen Zahlen formulierte
Aussage nur fiir alle in der Sprache selbst beschreibbaren Mengen gefordert wird. Es
sei also S diejenige einsortige elementare Sprache, in der die Axiome (a’) bis (d’)
formuliert sind. X sei das Axiomensystem, das aus (a’) bis (d') und allen Ausdriicken
der Form

(e") H(o) A A ny(H(n;) > H(n,)) — A n,H(n,)

besteht, wobei H € S ein beliebiger Ausdruck ist, der eine Variable vollfrei enthalt.
Die Theorie Flg(X) wird als elementare Nachfolgertheorie der natiirlichen Zahlen
bezeichnet. Aus dem Satz von Tamrskr folgt, daB sie nicht kategorisch ist (also
,,Nichtstandardmodelle‘* besitzt) und auch durch Hinzunahme beliebig vieler weiterer
in S formulierbarer Axiome nicht kategorisch gemacht werden kann.

4.6.  Definitorische Spracherweiterungen

Definition 1. Sind (S, ¢)) und (8, g,) beliebige Sprachen, so heiBt (S;, o;) eine
Erweiterung von (8,, 0,) und (8, 0,) eine Teilsprache von (8S,, 0;), wenn gilt:

(@) 8, < S,;

(b) die Einschrinkung einer beliebigen Interpretation w € ‘o, auf S, ist eine
zuliissige Interpretation von S, (d. h. Element von o,).
Dabei heiBt (S,, 0;) eine Erweiterung erster Art von (S, ,), wenn die Sprachen
S, und S, die gleichen Variablensorten besitzen, also in S, nur zusitzliche Relations-,
Operations- oder Konstantensymbole auftreten. Andernfalls (d. h., wenn S, wenig-
stens eine Variablensorte enthilt, die in S, nicht vorkommt) heiBt (S,, o,) eine
Erweiterung zweiter Art.

Beschrinkt man sich auf die Betrachtung elementarer Sprachen, so werden die
Begriffe Teil- bzw. Erweiterungssprache durch die einfache Beziehung (a) voll-
stindig erfaBt. Die Unterscheidung zwischen Erweiterungen erster und zweiter
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Art ist auch fiir diesen Fall von Bedcutung. Wir beschiftigen uns in diesem Ab-
schnitt mit Spracherweiterungen spezieller Art, die man als definitorisch (oder auch
als tlich) bezeichnet. Zunichst behandeln wir den Fall, daB die Erweiterung
sich nur durch ein zusitzliches Relationssymbol von der urspriinglichen Sprache
unterscheidet. Da man sich grundsitzlich auf die Betrachtung reiner Relations-
strukturen beschrinken kann (vgl. 3.2.), umfaBt dieser Fall im Prinzip alle denk-
baren Fille und wird daher in den meisten Lehrbiichern der mathematischen Logik
als einzige Form der definitorischen Spracherweiterung angesehen. Wir werden
jedoch im AnschluB an diesen Spezialfall eine sehr allgemeine Definition des Begriffs
definitorische Spracherweiterung angeben und zeigen, daB einige fiir die praktische
Handhabung formalisierter Sprachen wichtige Definitionsmethoden sich als Spezial-
fiille dieses Begriffs erweisen.

Es sei S eine formalisierte Sprache, H(x,, ..., x,) ein Ausdruck dieser Sprache.
der genau die angegebenen Variablen vollfrei und keine weiteren freien Variablen
enthilt, R ein (eventuell modifiziertes) Relationssymbol, das in S noch nicht vor-
kommt. Unter einer korrekten Definition verstehen wir eine Zeich ihe der Form

R(xy, -.., Xp) 1> H(xy, .., X,). (1

Zu Definitionen dieser Form sind folgende Standpunkte méglich:

(a) Das im folgenden verwendete Symbol R hat lediglich den Charakter eincr
Abkiirzung, d.h., ,,Ausdriicke®, in denen dieses Symbol vorkommt, sind nicht im
strengen Sinn Ausdriicke einer formalisierten Sprache, sondern in dhnlicher Weise
Abkiirzungen korrekter Ausdriicke, wie dies fiir Zeichenreihen zutrifft, die unter
Benutzung der in 3.4. vereinbarten Regeln geschrieben werden.

(b) Es bezeichne S’ diejenige Erweiterung von S, die durch Hinzunahme des
Relationssymbols R entsteht. (Der Typ von R ist durch Anzahl und Sorte der im
definierenden Ausdruck H vollfrei vorkommenden Variablen bestimmt.) Bei der Be-
handlung eines beliebigen Axic tems X S S werde vom Zeitpunkt der Nieder-
schrift der Definition (1) an die Spmche S’ benutzt und gleichzeitig das Axiomen-
system

X = Xvu {R(xy, ..., x3) & H(x,, ..., X,)}

zugrunde gelegt. Das hinzugefiigte Axiom bezeichnet man in diesem Fall als Ein-
Jihrungsaziom fiir den Begriff R. Ist w ein Modell dieses Einfiihrungsaxioms, so
ist die Relation w(R) offenbar eindeutig bestimmt, wenn die Interpretation der
urspriinglichen Sprache S gegeben ist. Ist umgekehrt in einer (elementaren oder
nichtelementaren) Theorie T ein Ausdruck der Form

R(x}, ..o, X))« H(xy, ..oy Xg)

allgemeingiiltig, wobei das Relationssymbol R nicht in H(x, ..., x,) vorkommt, so
kann man das Symbol R in jedem Ausdruck eliminieren: H' enthalte einen Teil-
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ausdruck der Form R(t;,...,t;), wobei t; Terme entsprechender Sorte sind.
Durch gebundene Umbenennungen erhilt man einen zu H(x,, ..., x,) semantisch
dquivalenten Ausdruck H,(x,,...,Xx,), in dem keine in H' vorkommende Variable
gebunden vorkommt. H, bezeichne den Ausdruck Sub (Hy; x;, t;;.--; Xy, ti.) der
aus H, entsteht, indem man jede der Variablen x, (v = 1, ..., n) durch den Term
t;, ersetzt. Dann sind in der betrachteten Theorie T auch die Ausdriicke R(t;, ..., t; )
<> H, und

H' o Sub (H', Rity,, ..., t.), Ha) (2)

allgemeingiiltig, wobei das Relationssymbol R im rechten Teilausdruck von (2)
mindestens einmal weniger als in H' vorkommt. Indem man eventuelle weitere
Vorkommen von R (mit anderen Termkombinationen) in gleicher Weise ersetzt,
erhilt man in endlich vielen Schritten einen zu H' in der Theorie T gleichwertigen
Ausdruck H” (d. h., H' < H"” ist in T allgemeingiiltig), in dem R nicht vorkommt.
Das bedeutet, daB der dem Symbol R entsprechende Begriff beim axiomatischen
Aufbau dieser Theorie prinzipiell entbehrlich ist. Man kann zu einer um das Symbol R
reduzierten Sprache iibergehen und R mit Hilfe von (1) sofort wieder definitorisch
einfijhren, wobei man sich nach Belieben auf den Standpunkt (a) oder (b) stellen
kann.

Beispiele. Es sei 8 die durch Punktvariablen (groBe lateinische Buchstaben),
Geradenvariablen (kleine lateinische Buchstaben) und pridikative Ausdriicke der
Form P auf g charakterisierte modifizierte Sprache der Inzidenzgecmetrie (vgl. 4.4.,
Beispiel 2). Wir definieren

P+Q:e—P=Q; 3)
A, B, C paarweise verschieden :«<» A +=BAA 3+ CAB +C; 4)
A, B, C kollinear :«» V g(A auf g A B auf g A C auf g); (5)
A, B, C nicht kollinear :«> — A, B, C kollinear; (6)
glh:e> — V P(P auf g A P auf h). (7)

Bei (3) kommt der Abkiirzungscharakter der Definitionen besonders klar zum
Ausdruck. Demgegeniiber ist bei (4) der definitorisch eingefithrte Ausdruck sogar
linger als der ihn definierende Ausdruck. (4) zahlt sich'als Abkiirzung erst aus, wenn
man nach dem Muster dieser Definition fortfihrt:

Py, ..., P, paarweise verschieden :«> P, = P, AP, = Py ...
AP, =P, AP, +=PyA...AP,_, &+ P,. (8)

Es sei jedoch nachdriicklich betont, daB die Zeichenreihe (8) keinesfalls als eine
korrekte Definition im Sinne von (1) aufzufassen ist, sondern lediglich als eine
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3

(allerdings wohl unmiBverstindliche) Zusa dlich vieler zu (4)
dhnlicher korrekter Einzeldefinitionen. Ahnlich konnte man (5) verallgemeinern zu

P,, ..., P, kollinear :<> Vg(P, auf g A ... A P, auf g). 9)

Das Problem der Definitionsschemata nach Art von (8) und (9) besteht darin, daB
die Art und Weise, wie der definierende Ausdruck in Abhingigkeit von der Zahl der
Variablen zu bilden ist, von Fall zu Fall verschieden ist, so daB die richtige Deutung
der in ihm vorkommenden ,,...” beim Leser stets Intelligenz und guten Willen
voraussetzt. Definition (6) zeigt, daB man durch hinreichend viele Definitionen auch
in formalisierten Sprachen eine gewisse sprachliche Glitte erreichen kann. SchlieBlich
wirft (7) das Problem der ,richtigen‘ Definition auf. In diesem Fall ist eine zwei-
stellige Geradenrelation Parallelitit inhaltlich schon vorgegeben, und es handelt
sich eigentlich darum, ihre Entbehrlichkeit im Rahmen der Grundbegriffe einer
axiomatischen Gecometrie dadurch nachzuweisen, daB man sie durch eine formal
korrekte Definition inhaltlich richtig erfaBt. Formal korrekt wire (7) auch in der
riumlichen Inzid trie. Der so definierte Parallelititsbegriff fiir Geraden
decktsich dann aber nicht mehr mit dem anschaulichen Parallelititsbegriff, daer auch
windschiefe Geraden umfaBt. Inhaltlich richtig ist in diescm Fall z. B.

glh:e VPPaufgaPauf h)AVaAQQauf gv Qauf h > Qauf «),

wobei « eine Ebenenvariable ist und ,,auf* in diesem Zusammenhang die Inzidenz
zwischen Punkten und Ebenen bezeichnet.

Um von der zunichst behandelten definitorischen Einfithrung von Relations-
symbolen zum angekiindigten allgemeinen Begriff der definitorischen Sprach-
erweiterung zu gelangen, bemerken wir zunichst, daB wir uns im folgenden durchweg
auf den Standpunkt (b) stellen werden (ohne dem anderen Standpunkt seine grund-
sitzliche Berechtigung abzusprechen). Bei der Verallgemeinerung dieses Stand-
punktes auf andere Definitionsmethoden macht es sich allerdings storend bemerkbar,
daB die Definiti die ja eigentlich nur den Ubergang zu einer anderen Sprache
betreffen, durch die jeweiligen Einfiihrungsaxiome mit der jeweils betrachteten
Theorie verkniipft werden. Dem naiven Gebrauch von Definitionen in der mathe-
matischen Praxis entspricht besser die Vorstellung, daB eine Definition im Ubergang
zu einer Erweiterungssprache besteht, wobei den neuen Sprachbestandteilen eine
Interpretationsvorschrift mitgegeben wird, die Erweiterungssprache also in jedem
Fall zuniichst nichtelementar ist. Die Einfiihrungsaxiome zeigen dann nachtriglich,
daB die so erhaltenen Sprachen unwesentlich nichtelementar sind.

Definition 2. Eine Erweiterung (S,, o;) einer Sprache (S, 0,) heiBt definitorisch,
wenn gilt:

(a) Jede zuliissige Interpretation w € o, der urspriinglichcn Sprache S, liBt sich
zu einer zulissigen Interpretation w’ € o, der erweiterten Sprache S, fortsetzen, die
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bis auf Isomorphie eindeutig durch w bestimmt ist, d. h., sind o', " € o, Inter-
pretationen von S, deren Einschrinkungen auf die Sprache S, mit w € o, iiberein-
stimmen, so existiert ein Isomorphismus ¢ von o’ auf w”’ (vgl. S. 68) mit (&) = £ fir
alle £ aus den gemeinsamen (schon zu w gehérenden) Grundbereichen.
(Fiir den Fall einer definitorischen Erweiterung erster Art liBt sich Bedingung (a)
tlich kiirzer formuli : Jede zuldssige Interpretation w € o, der urspriing-
lichen Sprache S, liBt sich auf genau eine Weise zu einer zulissigen Interpretation
' € gy von S, fortsetzen.)

(b) (Ss, 05) ist un tlich nichtel tar in bezug auf (S,, ¢;), d. h., es existiert
cin System E — S, von Einfihrungsaziomen,so daB o, die Klasse aller Fortsetzungen
von Interpretationen aus o, ist, die Modelle von E sind.

(¢) Zu jedem Ausdruck H € S,, der hochstens solche Variablen frei enthilt, die
bereits zu S, gehéren; existiert ein Ausdruck [H] € S, mit den gleichen freien Variablen
(als Riickiibersetzung von H bezeichnet), so daB

He [H] € FIg(0)

gilt.

Ist insbesondere die Ausgangssprache S, el tar und E das System der Ein-
fithrungsaxiome, so léBt sich die in (c) an die Ruckubersetzung gestellte Forderung
in der Form

H [H] € Flg(E)

schreiben. Wic man sieht, ist dies trivialerweise erfiillt, wenn man bei gegebener
Riickiibersetzungsvorschrift die Gesamtheit der Ausdriicke der Form H« [H] als
Einfiihrungsaxiome nimmt. In den folgenden Spezialfillen definitorischer Erwej-
terungen werden wir dieses System jedoch immer auf ein endliches System von
Einfithrungsaxiomen (hiufig sogar auf ein einzelnes Axiom) reduzieren kénnen.

Wie man sieht, bringt Bedingung (a) der Definition 2 den Definitionsaspekt
der definitorischen Erweiterungen zum Ausdruck, d h. die Forderung, daf die
Bedeutung der definierten Begriffe im tlich fddeutig festliegt, wenn man
eine beliebige Interpretation der urspriinglichen Sprache vorglbt Demgegeniiber
bringt (c) den Aspekt der Entbehrlichkeit zum Ausdruck, d. h. die Forderung, da8
man prinzipiell ohne die definitorisch eingefiihrten Sprachbestandteile auskommen
kann. Es sei bemerkt, daB bei der praktischen Handhabung halbformalisierter
Sprachen zum Aufbau konkreter Theorien hiufig nur der Aspekt (a) beachtet wird,
so daB im Laufe der Zeit Begriffe ,,definiert’ werden, die die Ausdrucksfahigkeit der
benutzten Sprache tlich erweitern (mit anderen Worten, die der Forderung (c)
richt geniigen). Zum Beispiel kann man in einen Aufbau der ebenen’ euklidischen
Geometrie scheinbar unverfinghch die ,,Definition‘ einbauen:

Variablen M; bezeich im folgenden beliebige Punktmengen, und P € M
bedeute das Liegen des Punktes P in der Menge M.
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Es ist klar, daB sich (zumindest von einem metatheoretisch naiven Standpunkt aus)
jede Interpretation der elementaren Ausgangssprache zu einer eindeutig bestimmten
Interpretation der neuen Sprachbestandteile fortsetzen liBt. Die Erweiterungssprache
ist jedoch nichtel tar und tlich ansdrucksfihiger, da man in ihr z. B. das
Dedekindsche Stetigkeitsaxiom formulieren und demit ein kategorisches Axiomen-
system fiir die euklidische Ebene aufstellen kann.

Als Folgerung aus Definition 2 formulieren wir (hier ohne Beweis)

Satz 1. Ist (8S,, 0;) eine definilorische Erweiterung von (S,, 0,) und X S S, (€ S,)
ein o,-kategorisches Axiomensystem, 8o 15t X auch o,-kategorisch.

Der Beweis sei dem Leser zur Ubung empfohlen.

Es diirfte klar sein, in welcher Weise die bisher behandelten definitorischen
Einfilhrungen neuer Relationssymbole Spezialfille des in Definition 2 erfaBten
allgemeinen Begriffs der definitorischen Spracherweiterung sind. Wir behandeln
anschlieBend verschiedene Formen der definitorischen Einfiihrung von Operations-
und Konstantensymbolen und einen hiufig vorkommenden Typ definitorischer
Erweiterungen zweiter Art. Wihrend die diskutierten Formen der definitorischen
Erweiterung erster Art bei mehrfacher Wiederholung im wesentlichen den Begriff
der definitorischen Erweiterung erster Art ausschépfen, sind die Méglichkeiten fiir
definitorische Erweiterungen zweiter Art in gewissem Sinn uferlos, und der be-
handelte Typ ist nicht mehr als ein Beispiel.

Es sei S eine formalisierte Sprache, t,(x,, ..., X,), t3(x,, ..., X,) seien sortengleiche
Terme dieser Sprache, die genau die angegebenen Variablen enthalten, H sei ein
Ausdruck, der hochstens die Variablen x;, ..., x, vollfrei und keine weiteren Variablen

frei enthilt, F sei ein in S noch nicht vorkommendes Operationssymbol. Eine
korrekte Definition durch Superposition, zum Ausdruck gebracht durch

F(x,, ..., %) i =ty(xy, .0, x,),
besteht im Ubergang zu der durch das Symbol F erweiterten Sprache und im Uber-

gang von der Klasse der bisher zulissigen Interpretation zur Teilklasse derjenigen
Interpretationen, die auBerdem Modelle des Einfiihrungsaxioms

' F(xy, ..., x,) = ty(xy, ..., X,)

fiir F sind. (Auf Grund der in 4.1., Definitionen 3 und 4, getroffenen Wertfestsetzung
fiir Terme und Termgleichungen ist die so definierte Funktion F bei beliebigen
Interpretationen der urspriinglichen Sprache im allgemeinen partiell definiert, und
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zwar fiir genau diejenigen Werte, fiir die der definierende Term einen Wert hat.)
Eine korrekte Definition durch Fallunterscheidung, zam Ausdruck gebracht durch die
Gleichung

ti(xy, ...y %), falls H,
ta(xy, ..o, X,),  falls — H,
besteht im Ubergang zu der durch das Symbol F erweiterten Sprache und im Uber-

gang von der Klasse der bisher zulissigen Interpretationen zur Teilklasse derjenigen
Interpretationen, die auBerdem Modelle des Einfiihrungsaxioms

F(x,,...,x_)::{

y=F@,...x) e (Hay =t(x, ..., X-))V (‘! HAy =ty(xy, ..., x_))

fiir F sind. (Fiir y ist eine von x,, ..., x, verschiedene Variable zu nehmen, deren
Sorte sich aus der Sorte der Terme t,, ty ergibt.)

Die Riickiibersetzbarkeit ist im Fall der Definition durch Superposition unmittel-
bar klar. Bei den Definitionen durch Fallunterscheidung hat man nur zu iiberlegen,
wie man einen beliebigen Ausdruck, der das Symbol F enthilt, semantisch dquivalent
in einen Ausdruck umformen kann, in dem F nur noch in Gleichungen der Form
y = F(t, ..., t,) auftritt (deren Eliminierbarkeit sich wieder sofort aus dem Ein-
fiithrungsaxiom fiir F ergibt). Dazu ersetze man jeden pridikativen Teilausdruck H,
der einen Term der Form F(t,, ..., t,) enthdlt, durch den semantisch dquivalenten
Teilausdruck

v y(y =TF(t,, ..., t,) A Sub (H, F(ts, ..., t,), y)),

wobei fiir y eine im Gesamtausdruck nicht vorkommende Variable entsprechender
Sorte zu nehmen ist.

Eine Maglichkeit der definitorischen Einfiihrung von Konstanten ergibt sich als
Spezialfall (n = 0) der Definition durch Superposition. Ist t ein variablenfreier Term
einer Sprache S, ¢ ein in S noch nicht vorkommendes Konstantensymbol, so ist
¢ := t eine korrekte Definition. Sie besteht im Ubergang zu der durch c erweiterten
Sprache und in der Einschriankung der bisher zulissigen Interpretationen auf solche, die
Modelle des Einfiihrungsaxioms ¢ =t sind.!) Als Anwendung der letzten Methode
erhilt man z. B. in der Sprache der Peano-Arithmetik (vgl. 4.5., Beispiel 5) aus der
zunichst einzigen Konstanten o fortlaufend

=0, 2:=1, 3:=2,...

Die bisher betrachteten Definitionsmethoden fiir Operationen und Konstanten
sind nur anwendbar, falls die urspriingliche Sprache schon solche Symbole enthiilt.

1) Spitestens hier muB man die Forderung fallenlassen, daB jede Interpretation jedem Kon-
stantensymbol ein Objekt zuordnet (vgl. die FuBnote auf S. 52). Ist w eine Interpretation von
S, fiir die Wert (t, w) nicht existiert, so liBt sich w nicht zu einer Interpretation von c fortsetzen,
die das Einfiihrungsaxiom ¢ = t erfiillt.
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Wir kommen nun zur Definition von Operationen und Konstanten aus Relationen,
die die oben behandelten Definitionsarten und viele weitere als Spezialfille umfat.
Es sei S eine Sprache, die das Symbol F noch nicht enthilt, H, € S ein Ausdruck,
der héchsténs die Variablen x,, ..., x, vollfrei und keine weiteren freien Variablen
enthiilt, H, € S ein Ausdruck, der die Variable y vollfrei und auBerdem hochstens
Xy, ..., X, vollfrei und keine weiteren freien Variablen enthilt. Dann ist die Zeichen-
reihe
F(xy, ..., x,) :=yH,, falls H, (10)
(zu lesen: ... dasjenige Ding y mit der Eigenschaft H,) eine korrekte Definition einer
Operation durch bestimmien Artikel.

Durch eine solche Definition wird die Sprache S um das Symbol F zu einer Sprache
S’ erweitert und gleichzeitig jede (zulissige) Interpretation w von S zu derjenigen
eindeutig bestimmten Interpretation des Symbols F fortgesetzt, die das Einfiihrungs-
axiom

y=F(x,,..., X,) > Gen (H, — V!lyH,) A H, A H, (11
erfiillt, d. h. ein Modell dieses Axioms ist. Die tatsichliche Anwendung einer Defini-
tion der Form (10) erfolgt meist im Rahmen einer in der Sprache S formulierten
Theorie T, zu deren giiltigen Sitzen der abgeschlossene Ausdruck Gen (H, — V!lyH,)
gehort. In diesem Fall ist (11) dquivalent zu

y =F(x,, ..., x,) H, AH,,

d. h., das Symbol F soll bei jeder Interpretation der urspriinglichen Sprache, die
ein Modell der betrachteten Theorie ist, diejenige Operation bezeichnen, deren
Definitionsbereich durch den Ausdruck H, beschrieben wird und fiir die die Relation
zwischen Argumenten und Wert durch den Ausdruck H; dargestellt wird. In einer
Interpretation, in der der abgeschlossene Ausdruck Gen (H, — V!!yH,) falsch ist,
stellt F auf Grund des Einfiihrungsaxioms (11) offenbar eine nirgends definierte
Operation dar.

Belaplel 1. Es sei S wieder die bereits betrachtete modifizierte Sprache der
b Inzid »metrie. Unter Bezug auf die in der ebenen euklidischen Geometrie
giiltigen Ausdriicke

A+ B> V!lgAauf gaBaufg),
—lPaufg»V'lh(Pauth—\VQ(QnufgAQnuih))

definiert man
AB:=g(AaufgABaufg), fullsA<+B

und
Parallele durch P zu g:= :h(P auf h A — V Q(Q auf g A Q auf b)),

falls — P auf g.
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(In beiden Fillen ist der logische Charakter der so emgefuhmm neuen Sprach-
bestandteile als Operationssymbole durch den hier éichst b iiblich
Sprachgebrauch etwas verwischt. Statt AB bzw. Parallele durch P zu g kénnte man
aber auch z. B. L(A, B) bzw. Par(P, g) schreiben.) .

Beispiel 2. Es bezeichne S die durch das zweistellige Operationssymbol + er-
zeugte einsortige Sprache (vgl. 4.3., Beispiel 1). Unter Bezug auf den in der Gruppen-
theorie giiltigen Ausdruck

Vilxa+x=Db

definiert man die zweistellige Operation Subtraktion durch
b—a:=uxa+x=D>b.

(Die einschriinkende Bedingung ,,..., falls H,“ kann hier offenbar unterdriickt
werden, da man als Ausdruck H, einen beliebigen allgemeingiiltigen Ausdruck
nehmen kann, der keine freien Variablen auBer a, b enthilt.) Demgegeniiber fiihrt
die sonst analoge Definition der Division in der Korpertheorie schon wieder auf eine

echt partielle Operation. Hier definiert man unter Bezug auf

a+0—->V!lxa.x=b
die mit dem Symbol : bezeichnete Division durch
b:a:=ixa-x=Db, fallsa 0.

Die Elimination von Operationssymbolen, die durch den bestimmten Artikel ¢
definitorisch eingefiihrt worden sind, kann man unter Benutzung des Einfiihrungs-
axioms (11) offenbar in analoger Weise durchfiihren, wie dies fiir den Fall der Defi-
nition durch Fallunterscheidung erklirt wurde. Die letzte Definitionsmethode ergibt
sich als Spezialfall der Definition durch bestimmten Artikel, wenn man fiir Hy den
Ausdruck

(HAay =ti(xy, oo, X))V (m HAY = ta(xy, ..., X))

und fiir H; den Ausdruck V yH, setzt. Analog ergibt sich die Definition durch
Superposition, indem man fiir H, den Ausdruck y = t,(x,, ..,, x,) und fiir H, den
Ausdruck V yH, setzt.

Die Definition von K durch bestimmten Artikel kann man als einen ge-
wissen Ausartungsfall (» = 0) der Definition von Operationen durch bestimmten
Artikel ansehen. In diesem Fall enthilt der Ausdruck H, genau die Variable y
vollfrei und keine weiteren freien Variablen. Da H, dementsprechend ein abge-
schlossener Ausdruck sein miiBte, kénnen wir uns auf den Fall beschrinken, daB
seine Giiltigkeit in der betrachteten Theorie vorausgesetzt wird. Die korrekte Defi-
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nition eines neuen Konstantensymbols lautet dann

o= iyHy(y).
Die zulissigen Interpretationen der entsprechenden Erweiterungssprache werden
durch das Einfiihrungsaxiom

y = ¢ VIlyHy(y) A Hy(y)

charakterisiert. Hier macht sich wieder (vgl. die FuBnote auf 8. 85) storend bemerk-
bar, daB dasSymbol ¢ in solchen Interpretationen w der urspriinglichen Sprache, bei
denen der Ausdruck V1!yH,(y) falsch wird, nicht interpretiert werden kann. Terme,
in denen diese Konstante vorkommt, haben dann bei keiner Belegung einen Wert.
Setzt man andererseits die Giiltigkeit des Ausdrucks V!!yH,(y) voraus, so ist ein
beliebiger Ausdruck H(c), der ¢ enthiilt, gleichbedeutend mit dem Ausdruck

V y(Ha(y) A Sub (H(e), ¢, ),

c ist demnach sehr leicht zu eliminieren. (Fiir y ist eine in H(c) nicht vorkommende '
Variable zu nehmen.)

Beispiel 3. Wir nehmen an, die Sprache der Peano-Arithmétik (vgl. 4.5., Beispiel 5)
sei zunichst ohne das Konstantensymbol o gegeben. Dann kann man unter Bezug
auf das neu aufzunehmende Axiom

Viln, — Vngn/ =n, (12)
definieren
o:=m; —mVn,n =n,.
Die Elimination der so definierten Konstanten o aus dem Axiom (c)
—Vnn'=o0 '
nach der oben angegebenen Regel liefert
Vng(—Vngn =nga—Vn n'=n),
was sich semantisch dquivalent zu
Vng—Vn,n, =n,

vereinfachen liBt. In dieser Form ist es aber offenbar eine Folgerung aus dem neuen
Axiom (12). Damit haben wir folgendes Ergebnis erhalten: Der Grundbegriff o ist
fiir die Formulierung des kategorischen Axiomensystems der natiirlichen Zahlen
entbehrlich. Ersetzt man im urspriinglichen Axiomensystem (vgl. 4.5., Beispiel 5)
das Axiom (c’) durch das Axiom (12) und eliminiert die Konstante o aus dem Induk-
tionsaxiom nach der Regel, so erhélt man ein gleichwertiges Axiomensysten, in dem
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die Konstante o nicht vorkommt. Fiihrt man diese Konstante unter Berufung auf
Axiom (12) definitorisch ein, so gibt es zu jedem Ausdruck H der Erweiterungssprache
einen Ausdruck H’, der die Konstante o nicht enthilt, so dal H<«> H' aus dem
Axiomensystem folgt.

Als Beispiel fiir definitorische Erweiterungen zweiter Art betrachten wir eine
Definitionsmethode, die vor allem in der Geometrie eine wichtige Rolle spielt. Es
sei S eine Sprache, H, € S ein Ausdruck, der genau die Variablen y, x,,..., x,
(n = 1) vollfrei und keine weiteren freien Variablen enthilt, H, ¢ S enthalte hoch-
stens X,, ..., x, vollfrei und keine weiteren freien Variablen. Wir erweitern S durch
Variablen Y,, Y,, Y, einer neuen Sorte und priadikative Ausdriicke der Form y; € Y},
wobei y; zu y sortengleiche Variablen sind. Die Interpretation dieser neuen Sprach-
bestandteile wird durch folgende Einfiihrungsaxiome festgelegt:

AYYEeY, < yeY,) Y, =Y,

(d. h., die Dinge der Sorte Y sind durch ihre ,,Elemente eindeutig bestimmt, sie
sind bis auf Isomorphie Mengen von Dingen der Sortey).

H, —)VY,/\y(yEY,q—» H,(y,x,,...,x,))

(d. h., daB sich alle ,,Mengen*“ der Form {y: H,(y, x,, ..., X,)} unter den Dingen der
Sorte Y befinden, wobei die Parameter x,, ..., x, die Bedingung H, erfiillen).

AY,Vx ... x.(H, AAy(y € Yy Hyly, Xy, -0, x,)))

(d. h., auBer den oben genannten Mengen gibt es keine weiteren unter den Dingen
der Sorte Y).

Offensichtlich kann man jede Interpretation w der Sprache S auf genau eine
Weise 8o zu einer Interpretation w’ der erweiterten Sprache S’ fortsetzen, daB diese
drei Einfiihrungsaxiome erfiillt sind. Daher ist die an beliebige definitorische Er-
weiterungen gestellte Bedingung (a) erfiillt. Riickiibersetzbarkeit nichtabgeschlosse-
ner Ausdriicke von §' in S kann jetzt natiirlich nicht mehr erreicht werden. Quantifi-
zierte Variablen der Sorte Y kdonnen nach folgendem Verfahren eliminiert werden:
Enthilt H(Y) die Variable Y vollfrei, so seien x,’ zu x, sortengleiche Variablen
(» =1, ..., n), die in H,, H; und H nicht vorkommen. Es sei

H:=8ub (H;; X, Xy’'; ...; Xa, X)) fiirt=1,2,
und H' entsteht aus H(Y), indem man jeden priidikativen Teilausdruck der Form
y;j € Y durch den Ausdruck Sub (H,', y, y;) ersetzt. Dann folgt aus den Einfiihrungs-
axiomen

VYH(Y) Vx/...x,/(Hy’ A H'),

AYH(Y)« Axy...x,'(H, - H).

Beispiel 4. Wir erweitern die modifizierte Sprache der ebenen euklidischen

Geometrie durch Variablen k; (+ =0, 1, 2,3,...) fiir Kreise und pridikative Aus-
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driicke der Form P € k; (P Punktvariable). Die Einfiihrungsaxiome lauten in diesem
Fall
APP ek, Peky) -k =k,

B +C->VkAP(P¢ ke PAxBC),
AkV BC(B % CaAP(P ¢ ko PA ~ BC).

Sie bedeuten, daB die Variablen k; bei einer beliebigen Interpretation der Grund-
begriffe Punkt und =< (Streckenkongruenz) die Gesamtheit aller Punktmengen der
Form {P:PA o~ BC]}, wobei B = C ist, als Grundbereich haben.

Beispiel 5. Wir gehen von einer Formalisierung der eb euklidischen Geo-
metrie aus, bei der die Begriffe Gerade und Inzidenz zunichst nicht zu den Grund-
begriffen gehoren, dafiir die dreistellige Punktrelation Kollinearitit (die man ihrer-
seits durch die Zwischenrelation definitorisch einfiilhren kann). Dann kann man die
Geraden als Punktmengen der Form {P:P, Q, R kollinear}, wobei Q + R, zusammen
mit der Punkt-Geraden-Inzidenz € nach dem Muster des Beispiels 4 definitorisch
einfiithren. Der Leser formuliere die Einfithrungsaxiome fiir diesen Fall! Als Beispiel
fiir die Riickiibersetzung abgeschlossener Ausdriicke eliminieren wir g und € aus dem
wie folgt formulierten Axiom von Pascr

AgABC(—. A,B,CkojlinearA VDD € g ADazwischen A, B)a mAcg
'A—|B€g/\—,CEg—>VE(E€gA(E zwischen B, C v E zwischen A,C))).

Die nach der oben angegebenen Vorschrift gebildete Riickiibersetzung lautet

A PQ(P +Q—>A ABC(—| A, B, C kollinear AV D(D, P, Q kollinear
A D zwischen A, B) A — A, P, Q kollinear A — B, P, Q kollinear
A —C, P, Q kollinear — V E(E, P, Q kollinear A (E zwischen B, C
v E zwischen A, C)))).
Beispiel 6. Wir zeigen als komplexe Anwendung der definitorischen Sprach-
erweiterungen, daf die Streckenkongruenz allein geniigt, alle anderen Grundbegriffe

der nach HmBERT formalisierten ebenen euklidischen Geometrie zu definieren.
Auf Grund des Resultats aus Beispiel 5 geniigt es zu zeigen:

(a) Kollinearitét ist durch die Zwischenrelation definierbar.

(b) Die Zwischenrelation ist durch die Streckenkongruenz definierbar.

Man definiert:

A, B, Ckollinear :«<» A = Bv A = Cv B = Cv A zwischen B, C
v B zwischen A, Cv C zwischen A, B.
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Zur bequemeren Formulierung einer Definition der Zwischenrelation definieren wir
mittels Kongruenz zuniichst den Hilfsbegriff R(A, B, C) (Bedeutung: A, B, C bilden
ein bei B rechtwinkliges Dreieck):

R(4, B, C):> V DE(A, B, C, D, E paarweise verschieden A AB ~ BD
ACB 2 BEAAC2~ CD ACD =~ DE A DE =~ EA)
B zwischen A, C: V D(R(A, B, D) A R(C, B, D) A R(4, D, C))

(Inhaltliche Rechtfertigung durch den Satz des THALES. Der Leser veranschauliche
sich den geometrischen Sinn beider Definitionen durch Skizzen!)

Der allgemeine Begriff der definitorischen Spracherweiterung ermdglicht es, die
Gleichwertigkeit verschiedener Systeme von Grundbegriffen fiir den Aufbau einer
axiomatischen Theorie genauso exakt zu fassen wie die Gleichwertigkeit zweier in
der gleichen Sprache (8, o) formulierter Axiomensysteme X, ¥ (die sich ja einfach
durch Flg?(X) = Flg°(Y) ausdriicken lieB).

Definition 3. Zwei Sprachen (S,, ¢,) und (S,, ;) heiBen vertriglich, wenn gilt:

a) Es existiert die kleinste gemeinsame Erweiterung 8,8, der formalisierten Spra-
chen 8,, S;, d. h. eine Sprache S > S, u 8S,, die genau die in S, oder 8§, vorkommen-
den Variablensorten, Relations-, Operations- und Konstantensymbole enthilt.

b) Die Klasse 0,0, aller Interpretationen von 8,S;, deren Einschrinkung auf
S, zu o, und deren Einschrinkung auf S, zu o, gehort, ist nicht leer.

Kanonische elementare Sprachen sind stets vertriiglich, und ihre kleinst:
same Erweltemng ist ebenfalls elementar. Fiir modifizierte formalisierte Spmchen
ist jedoch im allgemeinen nicht einmal a) erfiillt: Kommt etwa das einstellige Re-
lationssymbol R in S, mit Variablen x; und in 8, mit Variablen y,; vor, so miiBite
man, um zu einer gemeinsamen Frweiterung S,S, zu gelangen, entweder R(x;)
und R(y;) als priddikative Ausdriicke zur Darstellung zweier verschiedener Relationen
ansehen oder die Variablensorten x; und y; identifizieren.

Definition 4. Es seien T, = Flg (X,) und T, = FIg(X,) zwei in vertriglichen
Sprachen (S,, 0y) bzw. (S,, 0;) formulierte Theorien. Dann heit T, semantisch
einbeitbar in T,, wenn die gemeinsame Erweiterung (S, o) der beiden Sprachen eine
definitorische Erweiterung von (8S,, ;) ist und X; S Flg°(X,) gilt, d. h., wenn die
Grundbegriffe von T, soweit sie nicht schon selbst in der Sprache von T, vorkom-
men, in dieser Sprache so definierbar sind, dali in der entsprechenden definitorischen
Erweiterung die Axiome von T, aus'den Axiomen von T, (und den Definitionen der
Grundbegriffe) folgen. Die Theorien T, und T, heiBen diguivalent, wenn jede der
beiden semantisch in die andere einbettbar ist.

Ein wichtiger Anwendungsfall dieser Begriffe wird im nichsten Abschnitt be-
handelt. Hier sei noch erwiahnt
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Satz 2. Ist T, = Flg (X,) semantisch einbettbar in Ty = FI (X,), so wst T, relativ
widerspruchsfres beziiglich T,.
(Nachtriglich stellt sich heraus, daB die Methode, eine Theorie semantisch in eine

andere einzubetten, fast stets den Beweisen der relativen Widerspruchsfreiheit zu-
grunde liegt.)

Beweis. Nach Vora tzung ist die gemeinsame Erweiterung (S, o) von (S, 0y)
und (S;, 0,) eine definitorische Erweiterung von (S,, a,). Ist also T, widerspruchsfrei
und w ein beliebiges g,-Modell von X,, so liit sich w zu einer o-Interpretation '
von 8 so fortsetzen, daB «’ ein Modell von X, bleibt, mithin X, auch als in (S, o)
formuliertes Axiomensystem widerspruchsfrei bleibt. Wegen der Voraussetzung

X, € Flg"(X,)

ist @’ ein o-Modell von X, und wegen der Vertriglichkeit von ¢, und o, ist die Ein-
schrinkung '’ von o’ auf 8, ein g,-Modell von X, also ist X, o,-widerspruchsfrei.

47.  Aquivalenz der Grundbegriffe Kongruenz und Bewegung fiir die
ebene euklidische Geometrie

Dieser Abschnitt ist vor allem als ein komplexes Beispiel fiir die im vorigen Ab-
schnitt behandelten Begriffe der definitorischen Spracherweiterung und der seman-
tischen Einbettbarkeit von Theorien aufzufassen. Davon unabhingig ist sein Inhalt
wichtig fiir die Grundlagen des modernen Geometrieunterrichts. Wir schlieBen mit
diesem Abschnitt die in vielen Beispielen der vorangehenden Abschnitte verstreuten
Bemerkungen zu den Grundlagen der Elementargeometrie ab.

Wir erinnern an die in 3.3., Beispiel 2, eingefiihrte modifizierte formalisierte
Sprache S, fiir die Formalisierung der ebenen euklidischen Geometrie nach dem
Vorbild HILBERTS (d. h. mittels der Grundbegriffe Punkt Gerade, Inzidenz, Zwischen-
und Kongruenzrelation). Einc beliebige Interpretation dieser Sprache wird durch
eine Struktur der Form (M,, My; R;.;, R.ui» Riony) gegeben (vgl. 3.2., Beispiel 2),
deren Signatur gleich (2; (1, 2), (1, 1, 1), (1, 1, 1, 1)) ist. Eine solche Struktur heiBt
eine euklidische Ebene, wenn sie ein Modell des folgenden Axio yst ist, das
aus drei Inzidenzaxiomen I1 bis I3, vier Anordnungsaxiomen 01 bis 04 und neun
Kongruenzaxiomen K1 bis K9 besteht. (Zur Formulierung der sogenannten Mag-
oder Stetigkeitsaxiome ist eine nichtelementare Spracherweiterung nitig. Diese
Axiome bewirken letzten Endes die Kategorizitit des gesamten Axiomensystems.
Ein grofler Teil der Elementargeometrie lafit sich jedoch unabhingig von diesen
Axiomen aufbauen, und wir wollen sie hier nicht’in den Begriff der euklidischen
Ebene einbeziehen. Demzufolge gibt es zahlreiche paarwecise nicht isomorphe Modelle
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unseres Axiomensystems, d.h. zahlreiche tlich verschied euklidische

Ebenen.)

11 V ABC A, B, C nicht kollinear.?)

12 P £ Q - V!ig(P auf g A Q auf g).

I3 — A auf g - V!!h(A auf h A hjjg).

01 [A,B,C] - A, B,Ckollinear AA3+=BAA +CaB+C.

02 [A,B,C]—[C, B, A]A —[B, A, C].

03 A +B-—>VC(C[A, B, Cl.

04 A, B, C nicht kollinear A V D(D auf g A [A, D, By A w4 Aaufg
A—Bauf gan—Cauf gV E(E auf g A ([A, E, C] v [B, E, C]).

K1 AB =~ AB.

K2 AB =~ BA.

K3 AB =~ CD — CD =~ AB.

K4 AB~CDACD~EF - AB ~ EF.

K5 .AB~CC—> A =B.

K6 A +BAC +D— V!E(A, B, E]A BE =~ CD).

K7 A, B, C nicht kollinear A D, E, F nicht kollinear A AB ~ DE
- VIIG(AC 2 DG A BC = EG A — V H([G, H, F] A D, E, H kollinear)).

K8  [A,B,C]A([D,E, F]AAB =~ DE A BC ~ EF - AC ~ DF.

K9 [A, B,C] A [E, F, G] A A, B, D nicht kollinear A AB ~ EF A BC ~ FG
AAD >~ EH A BD >~ FH - CD =~ GH.

Will man den Grundbegriff (Strecken-) Kongruenz im Rahmen einer elementaren
Theorie durch den Grundbegriff Bewegung ersetzen, so sind die euklidischen Ebenen
als Strukturen der Form

(M, My, My; Ry, R.yi; F)

aufzufassen, wobei M, eine zu M, und M, disjunkte Menge von Dingen einer dritten
Sorte (Bewegungen genannt) und F eine Abbildung von M, X M, in ‘M, ist (die je
einer Bewegung ¢ und einem Punkt P den Punkt ¢(P) zuordnet). Derartige Strukturen
werden wir im folgenden als Bewegungsebenen bezeich Eine p de Sprache
Spew zur Beschreibung dieser Strukturen entsteht aus S,,, indem man das Rela-
tionssymbol ~ aus der Basis entfernt, statt dessen Variablen ¢, ¢; einer dritten
Sorte fiir Bewegungen aufnimmt und die Spracherzeugungsregeln durch folgende
Termbildungsvorschrift erginzt :

1) Hier. und im folgenden werden abki gshalber die Definiti (5), (8), (7) aus 4.6.
benutzt.
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Ist t, ein Term der Sorte Bewegung und t, etn Term der Sorte Punkt, so ist t,(t;)
ein Term der Sorte Punkt.

In der so erhaltenen Sprache S,,, kann man die (im wesentlichen von F. ScHur
aufgestellten) Bewegungsaxiome etwa wie folgt formulieren:

B1 A @12 V @3 A P go(1(P)) = @5(P),
(d. h., die Hintereinanderausfiihrung zweier Bewegungen ist eine Bewegung).
B2 AgV g AP o (P)) =P,
(d. h., zu jeder Bewegung gibt es eine inverse Bewegung).
B3 [A, B, Cl < [¢(A), ¢(B), 9(C)],
(d. h., bei einer beliebigen Bewegung stehen drei Punkte genau dann in der Zwischen-
relation, wenn ihre Bildpunkte in der gleichen Relation stehen. Aligemein bezeichnet
man Abbildungen ¢ ‘mit der Eigenschaft B3 als affin).
B4 A, B, C nicht kollinear A D, E, F nicht kollincar — Vl!¢(4p(A) =D
A((D, ¢(B), E]v ¢(B) = Ev [D, E, p(B)}) A = V P([¢(C), P, F]A D, E, P
kollinear)) s

(d. h., eine Bewegung ist jeweils eindeutig bestimmt, wenn man fiir drei nicht
kollineare Punkte den Bildpunkt des ersten, von dort ausgehend den Strahl, auf
dem der Bildpunkt des zweiten Punktes liegen soll, und fiir den dritten die Halb-
ebene des Bildpunktes willkiirlich vorgibt).

B5 APQV ¢(p(P) = QA ¢(Q) = P).

B6 A, B, C nicht kollinear A V ¢(p(4) = A A p(B) = C)
- qu(q:(A) =AArpB)=CaplC) = B).

Um die Bewegungen im Rahmen einer elementaren Sprache in der von ScmUor
beabsichtigten Weise zu beschreiben, muB nun noch die iiblicherweise vor der
Formulierung der Axiome B1 bis B6 mitgeteilte Interpretationsvorschrift, daB die
Dinge der Sorte ¢ Abbildungen des Bereichs der Punkte auf sich sein sollen, durch
weitere Axiome ersetzt werden (d. h., die in den iiblichen Darstellungen benutzte
nichtelementare Sprache ist un tlich nichtel tar; vgl. 4.5.).

B7 A @1pa(A P @1 (P) = @o(P) —> ¢y = o).
B8 AgPVQg((P)=Q.
B9 APV Q¢(Q) = P.

Die Axiome B7 bis B9 sichern, da8 die Objekte, durch die die Variablen ¢ inter-
pretiert werden, bis auf Isomorphie gewisse Abbildungen des Bereichs der Punkte
auf sich sind. Die Axiome B4 bis B6 sichern, daB alle Bewegungen im inhaltlichen
Sinn zu den mit ¢ bezeichneten Objekten gehoren. Die Axiome B1 bis B3 bedeuten
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zusammen, da8 die Bewegungen eine Untergruppe der Gruppe der affinen Abbildun-
gen bilden.

In der Sprache S,,, ist die Kongruenz nach dem gewdhnlichen Verfahren der
Relationsdefinition definierbar:

D1 AB = CD:o V g(p(A) = C A ¢(B) = D).
Fiir die so definierte Kongruenz folgen aus dem Axiomensystem
X = {I1,12,13,01,02, 03,04, B1,..., B9}

der Bewegungsebenen die Kongruenzaxiome K1, ..., K9. (Die Beweise gehéren der
Elementargeometrie an und werden hier nicht durchgefiihrt.) Bezeichnet ¥ das
System der Axiome der euklidischen Ebenen, so ist demnach die euklidische ebene
Geometrie, aufgefaBt als Flg , (Y), semantisch einbettbar in die Theorie Flg _(X)
der Bewegungsebenen, d. h., es gilt

Y S Flg(X v (E)),

wobei 8 die durch D1 aus 8,,, entstehende Erweiterungssprache und E das D1
- entsprechende Einfiihrungsaxiom ist. Wir zeigen nun, daB ,,im wesentlichen‘‘ auch
die Umkehrung dieses Sachverhalts richtig ist.

Ausgehend von der Sprache S, und der in dieser Sprache formulierten Theorie
Flg . (Y) mochte man, inhaltlichen Erwigungen folgend, etwa ,,definieren*:

Im folgenden sollen die neuen Variablen g, ¢; (bis auf Isomorphie) Abbildungen
des Bereichs der Punkte auf sich sein, fiir die

P(A) (B) =~ AB , (1)

gilt, und ¢(P) soll den Bildpunkt von P bei der Abbildung ¢ bezeichnen.

Dies bedeutet zuniichst den Ubergang zu einer Erweiterungssprache (wiederum
S, der kleinsten gemeinsamen Erweiterung von S, und Sy,). Damit diese Er-
weiterung definitorisch im Sinne von 4.6., Definition 2, sein kann, muB zunichst
die dortige Bedingung (a) erfiillt sein, daB sich jede Interpretation von S, zu
einer Interpretation von S fortsetzen liBt. DaB es aber iiberhaupt Abbildungen ¢
des Punktbereichs auf sich mit der Eigenschaft (1) gibt, hiingt wesentlich von den
bei der unformalen ,,Definition‘* vorausgesetzten Axiomen Y ab. (Aus der Sicht
dieses Falles und vieler anderer scheint es manchmal zweckméBig zu sein, neben
dem Begriff der definitorischen Spracherweiterung einen Begriff der definitorischen
Erweiterung von Theorien zur Verfiigung zu haben.) Man kann sich in diesem Fall
(und in allen Fillen, in denen eine Definition, um sinnvoll zu sein, die Giiltigkeit

eines gewissen Axi yst Y voraussetzt) durch folgenden Kunstgriff helfen:
Es sei ¢ die Klasse aller Interpretationen von S, die Modelle von ¥ sind. Statt
der Sprache S,y wird nun die (unw tlich nichtel tare) Sprache (S, o)

definitorisch erweitert. Damit ist die Bedingung (a) sofort erfiillt. Um (b) zu erfiillen,
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kann man als Einfiihrungsaxiome fiir die definierten Bewegungen z. B. das aus
(1), B7, B8, B9 und B4 bestehende System E’ nehmen, wobei die Rolle von B4
darin besteht, zu sichern, daB unter den definitorisch eingefiihrten Bewegungen
alle Bewegungen im inhaltlichen Sinn vorkommen. Wesentlich interessanter fiir die
geometrische Praxis ist jedoch das Verfahren der Riickiibersetzung von Ausdriicken
HeS, in denen hochstens quantifizierte Bewegungsvariablen vorkommen, in
semantisch iquivalente Ausdriicke [H] der Sprache S, mit anderen Worten: die
Eliminierbarkeit quantifizierter Bewegungsvariablen mittels des Kongruenz-
begriffes. Eine Bewegungsvariable ¢ kann in Termen der Sorte Punkt (im folgenden
mit t, bezeichnet) und in Termgleichungen ¢ = ¢; (bzw. ; = @) vorkommen. Wir
geben zunichst drei vorbereitende Reduktionsschritte an.

1. Schritt. Vorkommen von ¢ in der Form ¢ = p; werden auf Vorkommen von
@ in Punkttermen reduziert, indem man unter Benutzung einer im gesamten be-
trachteten Ausdruck nicht vorkommenden Punktvariablen P den Ausdruck ¢ = ¢,
semantisch dquivalent durch A P ¢(P) = ¢;(P) ersetzt.

2. Schritt. Vorkommen von ¢ in Punkttermen t, werden auf solche der Form
t, = P reduziert, indem man (wieder unter Benutzung einer noch nicht vorkommen-
den Punktvariablen P) H(t,) semantisch iquivalent durch V P(t, = P A H(P))
ersetzt.

3. Schritt. Vorkommen der Form q),(... @ (t)) ) = P werden auf solche der
Form ¢(t) = P reduziert, wobei ¢ in t nicht mehr vorkommt. Ist ¢ ein ,innerstes*
Vorkommen im Term p,(... oi(e(t)) ), so wird die entsprechende Termgleichung
unter Benutzung einer noch nicht vorkommenden Punktvariablen Q semantisch
dquivalent durch V Q(q:,(. L o(Q) .. ) =Pagt) = Q) ersetzt.

Bei der eigentlichen Elimination gehen wir von dem (aus ¥ und den Einfiihrungs-
axiomen E’ folgenden) Sachverhalt aus, daB eine Bewegung durch drei beliebige,
nicht kollineare Punkte A, B, C und deren Bildpunkte A’, B’, C' in der Weise be-
stimmt ist, daB dann fiir jeden Punkt P die Strecken PA, PB, PC gleich den Strecken
P'A’, P'B’, P'C’ sind (P’ Bildpunkt von P). Es sei H(p) € S ein Ausdruck, der die
Variable g vollfrei enthilt, ferner seien A, B, C, A’, B’, C’ in H(g) nicht vorkommende
Punktvariablen. Dann ist V ¢H(p) semantisch dquivalent zu

V ABCA’B'C’(A, B, C nicht kollincar A AB ~ A’B’ A AC ~ A’C’ A BC
~ B'C A HY),

wobei H* aus H(p) entsteht, indem man jeden pridikativen Teilausdruck der Form
@(t) =P (p nicht in t) durch den Ausdruck tA o~ PA’AtB =~ PB' AtCx~PC
ersetzt. Auf Grund der Reduktionsschritte 1, 2, 3 kénnen wir annehmen, daB es in
H(p) keine anderen Vorkommen der Variablen ¢ gibt. Den Fall A pH(p) kann man
analog behandeln oder durch Umformung in —V ¢ — H(g) auf den behandelten
Fall zuriickfiihren.
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Damit haben wir erhalten: S mit der durch die Axiome ¥ und E’ gegebenen
Interpretationsvorschrift ist eine definitorische Erweitenmg zweiter Art von (S, 0).
Es liegt nun wiederum im Rahmen der El \? trie, die tische Einbett-
barkeit der Theorie Flg,_(X) der Bewegungsebenen in dle ebene euklidische Geo-
metrie Flg  (Y) zu zeigen, d.h. X S Flg(Y v E’). Wegen I1, I2, IS, 01, 02, 03,
MeY und B4, B7, B8, B9 € E’ist dabeiin Wahrheit nur nachzuweisen,da8 B1, B2,
B3,B5,B6 € Fig (Y u E’) gilt.




5. Eine Formalisierung der Mengenlehre

E3 gibt gegenwiirtig mehrere axiomatische Syst der Mengenlehre, die sich zum
Teil nicht nur in mehr oder weniger formalen Einzelheiten, sondern tlich in den
ihnen zugrunde liegenden inhaltlichen Vorstellungen unterscheiden. Dieses Kapitel
fishrt in eines der verbreitetsten dieser Systeme ein, das im wesentlichen von J. v.
NEeUMANN, P. BERNAYS und K. GODEL (siche hierzu [6, 9]) entwickelt wurde. Die
hicr behandelte Variante unterscheidet sich von der urspriinglichen Form vor allem
durch die Einbeziehung von sog ten Urel ten in die Betrachtung. Das An-
liegen des Kapitels besteht einerseits in der Vermittlung von Grundk i iiber
axiomatische Mengenlehre, andererseitsin einer komplexen Wiederholung und Anwen-
dung der in den vorangehenden Kapiteln behandelten Formalisierungstechniken.

Der Wahl einer geeigneten modifizierten formalisierten Sprache sind (wie stets)
einige inhaltliche Uberlegungen. vorauszuschicken. Wie bekannt, wiinscht man in
der Mengenlehre nach Méglichkeit mit der Elementrelation und eventuell Identitét
als einzigen Grundbegriffen auszukommen. Ist H(x) eine beliehige, mittels dieser
Begriffe formulierbare Eigenschaft von Dingen x (d.h. ein Ausdruck der ent-
sprechenden Sprache mit der vollfreien Variablen x), so soll die Menge aller Dinge
x mit der Eigenschaft H(x) existieren. Bekanntlich léBt sich das von G. CANTOR,
dem Begriinder der Mengenlehre, naiv formulierte Mengenbildungsprinzip nicht in
dieser Allgemeinheit widerspruchsfrei verwirklichen. Zum Beispiel folgt aus der
Annahme der Existenz der Menge M = {z: — z € z] die Antinomie von RUSSELL:
Wenn M € M gilt, soist - M € M; wenn —M € M, so0ist M € M.J. v. NEUMANN
bemerkte als erster!), daB diese Antinomie und andere sich noch nicht aus der

1) Gewisse Briefe von CANTOR an DEDEKIND deuten allerdings darauf hin, daB CANTOR selbst
schon vor 1900 den Begriff der Unmenge ins Auge gefaBt hatte. Vgl. hierzu O. BECKER, Grund-
lagen der Mathematik, Verlag Karl Alber, Freiburg—Miinchen 1954, S. 308 —309.
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Annahme der Existenz einer gewissen Gesamtheit (z. B. {z: — z € z)) an sich er-
geben, sondern erst, wenn man annimmt, daB fiir diese Gesamtheit ihrerseits die
Frage sinnvoll ist, ob sie Element gewisser Mengen ist oder nicht. Er erginzte
daher das System aller Mengen durch die Annahme gewisser Unmengen, die zwar
— wie die Mengen — Gesamtheiten von Dingen sind, aber im Gegensatz zu den
Mengen selbst nicht ‘El t anderer G theiten sein konnen.

Ein besonderer Zug des axiomatischen Systems von v. NEUMANN, BERNAYS und
GODEL wie auch anderer axiomatischer Systeme (z. B. des Systems von ZERMELO-
FRAENKEL) besteht darin, da8 eine Fiille von Mengen, einschli Blich der verschiede-
nen Zahlbereiche, sozusagen aus dem Nichts erschaffen wird: Betrachtet man die
Elemente der Elemente der ... der Elemente der Elemente beliebiger Mengen, so
st6Bt man letzten Endes immer auf die leere Menge als einzigen ,,Baustein‘. Natiirlich
ist es einerseits interessant, daB die gedankliche Konstruktion aller mathematischen
Begriffe auf einer so schwachen Grundlage grundsitzlich méglich ist, und von vielen
Mathematikern wurde ein solcher Aufbau der Mengenlehre sogar als besonders
»rein bzw. befriedigend geriilhmt, aber als Materialisten erwarten wir von einem
axiomatischen System der Mengenlehre unter anderem gerade die Modellierung der
Beziehungen zwischen mathematischen Begriffen einerseits und Dingen der objek-
tiven Realitdt andererseits. Ein uns befriedigendes System der Mengenlehre soll
nicht nur die tatsiichliche historische Entstehung der mathematischen Begriffe aus
dem Gegenstiindlichen heraus im tlichen richtig widerspiegeln, sondern auch
die theoretische Begriindung fiir die Anwendungen der Mathematik in der Praxis
liefern.

Diesen Uberlegungen entsprechend, gehen wir bei der folgenden Axiomatisierung
der Mengenlehre davon aus, daB der Bereich aller betrachteten Dinge Objekte von
dreierlei Art umfaBt:

(a) Urelemente, d. h. Dinge, die zwar als Elemente von Gesamtheiten auftreten
konnen, aber selbst keine Elemente enthalten,

(b) Mengen, d.h. Dinge, die sowohl Gesamtheiten als auch Elemente gewisser
anderer Gesamtheiten sind,

(¢) Unmengen, d. h. Gesamtheiten, die nicht als El te anderer Gesamtheit
auftreten koénnen.

Urelemente und Mengen bezeichnen wir mit dem gemeinsamen Namen El 4
Mengen und Unmengen mit dem gemeinsamen Namen, Klassen.

Wenn man nicht auf die Existenz einer leeren Menge verzichten will, verursacht
die Zul g von Urel ten die Schwierigkeit, daB die charakteristische Eigen-
schaft der leeren Menge, kein Element zu besitzen, auch auf alle Urelemente zutrifft,
d. h., ohne einen zuséitzlichen Grundbegriff 158t sich die leere Menge nicht von den
Urelementen unterscheiden. Anders gesagt: Unter allen Dingen, die kein Elenfent
besitzen, ist genau eines als eine Menge auszuzeichnen. Vom Standpunkt der formali-
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sierten Sprachen ist das am einfachsten durch die Aufnahme eines Individuen-
symbols fiir die leere Menge mdglich.

Wir benutzen demnach folgende modifizierte einsortige Sprache S,,: Die Konstante
2 (zur Bezeichnung der leeren Menge) und kleine lateinische Variablen (eventuell
mit Indizes) fiir Dinge sind die Terme dieser Sprache. Pridikative Ausdriicke haben
die Form x =y oder x € y (wobei x, y Variable oder gleich 9 sind). Im folgenden
notieren wir (manchmal mit Erliuterungen) in zweckmiBiger Reihenfolge formali-
sierte Definitionen (bezeichnet mit D1, D2, D3,...), Axiome (bezeichnet mit
A1, A2, A3,...) und Folgerungen aus den Axiomen und Definitionen (bezeichnet
mit F1, F2, F3, ...). Wir erinnern nochmals daran, da8 die Notierung einer formali-
sierfen Definition den Ubergang zu der durch die definierten Sprachbestandteile
erweiterten Sprache bei gleichzeitiger Erweiterung des bisher benutzten Axiomen-
systems durch die entsprechenden Einfiihrungsaxiome bedeutet und daB alle mit
Hilfe der definierten Begriffe formulierten Siitze (Axiome und Folgerungen) prin-
zipiell in die anfangs benutzte Sprache Sy, riickiibersetzt werden kénnen.

Zuniichst verwandeln wir unsere oben diskutierten inhaltlichen Vorstellungen
iiber die verschiedenen Arten von Dingen in formalisierte Definitionen:

D1 x Element :> Vy x € y.
D2 xKlasse: > x =0BvVyye€x.

D3 x Menge :«> x Klasse A x Element.
D4 x Unmenge :«> — x Element.
D5 x Urelemeént :«» — x Klasse.

Wie man durch entsprechende Modellbetrachtungen sofort sieht, folgt aus D1
bis D5 noch nicht, daB jedes Urelement ein Element ist, da8 jede Unmenge eine
Klasse ist, daB die leere Menge kein Element besitzt und eine Menge ist und daB es
iiberhaupt Dinge aller definierten Arten gibt.

Al @ Element.

F1 9 Menge.

A2 u Urelement — u Element.

F2 x Unmenge — x Klasse.

(Eine Unmenge, die keine Klasse ist, wire nach D35 ein Urelement, folglich nach

A2 ein Element, im Widerspruch zu D4. Somit folgt F2.) Der Bereich aller Dinge
ist demnach wie folgt aufgeteilt:

Unmengen

Urelemente Me;gen

El te ~—
emen Klassen
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A3 (Axiom der leeren Menge) — V x x € 0.
A4 (Extensionalititsaxiom)
xKlasse Ay Klasse AANZZ € x> 2€y) >x =Y.

(Wollten wir das Extensionalititsaxiom fiir beliebige Dinge x, y statt nur fiir Klassen
formulieren, so hiitte dies sofort zur Folge, daB es keine Urelemente gibt, da dann
jedes Urelement gleich @, andererseits wegen D2 und D6 ungleich @ sein miiBte.)

F3 —Vxx€ye yUrelementvy = 0.

F4 Ist H(x) € S,, ein belicbiger Ausdruck, der x vollfrei enthilt, so folgt aus
einer Aussage der Form
Y z(z Klasse ~ A x(x €z H(x)))

8ets sofort die Verschiirfung
V!!z(z Klasse A A'x(x € 2> H(x)))-
D6 x§yierXEYy.
D7 XFyier—x=Y.
D8 xS y:xKlasseayKlasseAAz(z € x>z €y).

(Wiirden wir D8 nicht auf Klassen x, y beschrinken, so wiirde sich sofort u £ x
fiir beliebige Urelemente u und Dinge x ergeben.)

D9 XCYy:oXSEyAXFY.
Fb5 x Klasse A y Klasse > (x =y x S yAay S x).
Ab (Paarmengenaxiom)
x Element A y Element — V z(z Menge AAa(a ¢ z+> 8 =xva =y)).
Unter Beriicksichtigung von F4 verschirft sich Ab sofort zu
Feé x Element A y Element — V!!z(z Menge AAa(a € z>a =xva =y)).

Unter Berufung auf F6 definieren wir
D10  (x,y}:=u(zMengeaAaacza=xva=y)),
falls x Element A y Element .

D11 (x) := (x, x},
D12 (x,y):={ix), (x,y}}.
Die 8o definierten Operationen Paarmenge, Einermenge und geordnetes Paar sind
jeweils fiir Elemente definiert und liefern als Resultat Mengen.
F7 XL Y1) = (Xg, Ya) > Xy =X Ay, =

Beweis. Offenbar ist nur ,,—‘ zu zeigen. Ist x, =y, so ist (x;, y,) = {{x;}}.
Folglich kann auch (x,, y5) = {{xy), (Xz, y2)} nur ein Element enthslten, d. h., es muB

auch x, =y, sein und dann wegen {({x,]} = {(x,}) schlieBlich x, = x,. Ist x, & y,,
80 ist (X)) % (X, 71}, d. b, (x5, 31) = {{x), (xs, ¥1)} enthilt zwei verschiedene Ele-
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mente. Dann muB auch (x,, y;) aus zwei Elementen bestehen, d. h., es muB x; =+ y,
sein. Jetzt muB jedes der beiden Elemente {x,}, {x,,y;} gleich einem der beiden
Elemente (x,}, {X,, ¥} sein, was sich nur mit x, = X, und y, = y, vereinbaren liBt.

Aus D12 gewinnt man fiir jede natiirliche Zahl » = 3 den Begriff des n-Tupels
von Elementen:
D13 (x,y,2):=(xy)2)
D14 (x,5,2w):=((xY,2), W)

Wir bemerken, daBl die naheliegende Zusammenfassung unendlich vieler korrekter
Einzeldefinitionen zur induktiven Definition
(Xyy eony Xy Xp) 1= ((xn v Xy), xlﬂ-l)
sich innerhalb der Sprache S, oder einer elementaren Erweiterung nicht korrekt
formulieren 148t (vgl. S. 81f.).
Unter Benutzung der induktiven Definition kann man jedoch sehr leicht induktiv
beweisen, wobei F'7 Anfangs- und Induktionsschritt liefert :

M1 Fiir jede natiirliche Zahl n = 2 gilt
(Xp) oo, X)) = (Y1 oo, Ya) O X = Y1 A et AXy =Yy (1)

Natiirlich ist M 1 genausowenig wie die zugrunde liegende Definition in der Sprache
S, formulierbar, sondern eine Zusammenfassung von unendlich vielen in S, formu-
lierbaren Einzelsitzen. Sétze dieser Art werden wir im folgenden als Metasiitze
bezeichnen und mit M1, M2, M3, ... numerieren. Nachtriglich stellen wir fest, daB
F4 ebenfalls ein Metasatz ist. Fiir das Folgende vereinbaren wir
D15 (x) := x, falls x Element.
Dann gilt (1) auch fiir » = 1. Wir formulieren nun einige Klassenbildungsaxiome.
A8 VaAx(x€ao Vyz(x = (y,2) Ay € 2)).
D16 E:=wuAx(xcae Vyz(x = (y,2) Ay € 2)).
A7 VaAx(x€ae Vyx=(yy).
D17 I:=wAx(xcaeVyx=(yy).
Die Axiome A6 bzw. A7 bedeuten: Die auf El te eingeschrinkten Relationen
des El ins und der Identitit existieren als (wegen A4 eindeutig bestimmte)
Klassen von geordneten Paaren. Die Symbole E bzw. I sind demnach definitorisch
eingefiihrte Konstanten zur Bezeichnung spezieller Klassen.
A8 AbVaAzx(x€ae xElement Ax ¢ b).
ID8  b:=a A x(x € a< x Element A x ¢ b)), falls b Klasse.
A9 AbcVaAx(x€a<x€bAXEc).
D19 bne:=wAx(x€a« x€bAxEc), falls b Klasse A ¢ Klasse.
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(Es ist nicht nétig, in der Formulierung von A8 und A9 b bzw. b und ¢ auf Klassen
einzuschriinken, da die entsprechende Aussage fiir Urel te durch die axiomatische
Forderung einer leeren Menge jeweils automatisch erfiillt ist. Die zugehorigen Opera-
tionen der Komplementbildung und des Durchschnitts sollen jedoch nur fiir Klassen
definiert sein.)
D20 b\c:=bng buc:=bns.
D21 A:=10.
(D21 ist ein Beispiel fiir die Definition einer Konstanten durch einen variablenfreien
Term; vgl. S. 85. Die so definierte Klasse A aller Elemente wird als Allklasse bezeich-
net.)
F8 x Element «» x € A.
F9 x Klasse —» x S A.
F10 x Unmenge <> x ¢ A.
A10  AbeVaAx(x€ae Vyzx=(y,z)Ay€ebazec).
D22 bxc:=mAx(an.<—>Vyz(x=(y,z)AyebAzec)),

falls b Klasse A ¢ Klasse.
Metadefinitionen:

by X by X -+ X byi= (... (by X bg) X -+ X by},

b%:=94, bl:=b, b**l:=b*"Xb.
Vorsicht! Es ist im allgemeinen a X (b X ¢) & a X b Xc usw., insbesondere ist
b* X b= ES br+m,
All AbVaAx(x€ae Vyzx = (y,2)A(zY) €b)).
D23 bli=wAx(xcae Vyzx=(y,2)A@Yy)€b)),

falls b Klasse.
(b-? soll von jeder Klasse b gebildet werden kénnen. Enthilt insbesondere b keine
geordneten Paare, 8o ist b-! = @. Allgemein ist (b-!)-! & b und gerade die Klasse
aller in b enthaltenen geordneten Paare.)
A12 AbVaAx(xeao Vyzw(x = (y,2,w) A (W,Y,2) € b)).
D24 br:=wAx(xeae Vyw(x =(y,2 W) A (W,¥,2) €b)),

falls b Klasse .
A13 /\an./\x(xéa«-»Vy(x,y)eb).
D25 V(b):=wa A x(x € a & V y(x, y) € b), falls b Klasse.
D26  N(b):= V(b-}). )
Die Klassen V(b) bzw. N(b) werden als Vorbereich bzw. Nachbereich von b bezeichnet.
F11 z € N(b)« Vy(y, z) € b.
Ein Ausdruck H ¢ S, heiBie primitiv, wenn alle in ihm vork« den Quantifizie-
rungen auf Elemente relativiert sind, d. h., wenn in jedem Teilausdruck der Form
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V xH'(x) der Teilausdruck H’(x) die Form (x Element A H"(x)) und in jedem Teil-
ausdruck der Form A xH'(x) der Teilausdruck H'(x) die Form (x Element — H"(x))
hat. Wir bemerken, da8 man zu jedem primitiven Ausdruck einen semantisch dqui-
valenten primitiven Ausdruck finden kann, in dem die logischcn Funktoren v, —, <>
und A nicht vorkommen.

M2 (Satz von GODEL) Ist n 2 1, sind x,, ..., X, beliebige Variablen und ist H
ein primitiver Ausdruck, der keine der Variublen x,, ..., x, gebunden enthilt,
80 folgt aus A1 bis A13

VaAx(x€eo Vx..x,(x = (x,...,X,) A H)). 2)

Das heiBt, jede n-stellige, durch einen primitiven Ausdruck definierbare Relation im
Bereich der Elemente existiert als Klasse von n-Tupeln. Ist H ein derartiger Aus-
druck, so werden im allgemeinen nicht alle Variablen x,; ..., x, in H frei vorkommen.
Von den nicht frei vorkommenden Variablen hingt die durch (2) geforderte Klasse a
bzw. die durch sie dargestellte Relation dann nur fiktiv ab. Andererseits kénnen in
H auch gewisse Variablen y,, y,, ... frei vorkommen, die von X, ..., x, verschieden
sind. Diese Variablen spielen dann die Rolle von Parametern, von denen die Relation
a noch abhiingt. Sind y,, ..., yn diese Parameter in einem primitiven Ausdruck H
und ist » = 1, so ergibt sich als Spezialfall von (2)

AYi-..Ym Ve Ax(x € ae> xElement A H(x, y3, ..., Yu))» 3)

d. h. eine unendliche Schar von Kl bild

die zu den Definitionen

Fa(¥1, ++» Ym) := 18 A x(x € 8 <> x Element A H(x, y}, ..., Ym))

berechtigen. Es ist das Verdienst von GSDEL, erkannt zu haben, da8 man die un-
endlich vielen Klassenbildungsaxiome (3) und allgemeiner (2) durch ein endliches
Axi ystem (im tlichen A6 bis A13) ersetzen kann. Nachtriglich erkennt
man, daB die Klassenbildungsaxiome A6 bis A13 Spezialfille von (2) sind. Wir
skizzieren einen Beweis des Godelschen Satzes, dessen Originalfassung natiirlich
gemiB der dort benutzten Formalisierungsvariante etwas anders lautet.

Hilfssatz 1. Zu jeder Klasse a und beliebigen natiirlichen Zahlen i,n mit + < n
existiert eine Klasse b S A*, so daf

X € 8> (Xpy eres X 000y X5) € b
Offenbar leistet b = A X - X AXa XA X XA das Verlangte.
i1 i
Hilfssatz 2. Zu jeder Klasse a und beliebigen natiirlichen Zahlen i, j,nmit1 < j < n
existiert eine Klasse b & A", g0 daf (X, X;) € 8> (X3, ooy Xjy o0y Xj, 000, X,) € b

Zum Beweis konnen wir o. B. d. A. annehmen, da8 a eine Klasse von geordneten
Paaren ist, indem wir andernfalls a durch a n A2 ersetzen. Man bevyeist nun zunichst
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die drei Spezialffille n =3 und (a8) i =1,j =2, (b)i=1,7=3, ()i =2,j=3.
Im Fall (a) haben wir

(X3, Xg) € 8> (X3, Xy, X3) € 8 X A,
Im Fall (b) ergibt sich
(x1, X3) € 8> (X3, X)) € 871> (X3, Xy, Xp) € 271 XA
(X1, X5, X3) € (871X A) 2
Im Fall (¢) ist
(X3, X5) € 8> (Xy, X3, X)) € 8 X A > (Xg, X, Xy) € (8 X A)2
« (X1, Xy, Xy) € ((8 X A)Y)2.
Im illgemeinen Fall erhilt man zunichst analog zu (c)
(X, X)) € 8> (X, Xy, (Xy, .00 i) € 8 X AFE
© (X1y 000y Xpot Xy X)) € (@ X A2 (:=1).
Durch wiederholte. Anwendung von (b) ergibt sich nun die Existenz von Klassen
€y, Cgy «ety Cj—iy, 80 daB
» (=1 +ees X3) X;) € b (X1, 200, X0), Xiars X)) € €44

((xn cees Xin)y x,—) €c e ((xn coor Xin)s Xy Xi) € ¢y,

an (%15 +ees Xjma), X;) € €jmima > (X5 s Xjoa)s Xjors Xj) € Gt

(X3, oe0r Xp) € Cpugmy (i=1d).
Durch wiederholte Anwendung von (a) ergibt sich schlieBlich
Xy, 00 X)) Ed o> (Xy, .00, Xj, Xjg) EA XA
(X1, e Xja) EAXAXA L.
(X5, 000, X)) EAXAX - X AL
———
Wir beweisen nun den Satz M2 (Satz von GOpEL) durch Induktion iiber dic

Kompliziertheit der Ausdriicke, indem wir zu gegebenem primitivem Ausdruck
H eine Klasse Ky*++** konstruieren, so daB

X1y +ee, Xa) € Kyt o H

gilt. Zuniichst betrachten wir pridikative Ausdriicke H der Form x € y.

1. Fall: x =x;, y =x;, 1 < j. Dann folgt die Existenz der gesuchten Klasse
durch Anwendung von Hilfssatz 2 auf die Klasse E.
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2. Fall: wie oben, jedoch mit j < 7. Dann ist Hilfssatz 2 auf E-* anzuwenden.

3. Fall: 1 =4 (d.h., H hat die Form x; € x;). Dann gilt He x,€ V(En I).
Demnach ist Hilfssatz 1 auf die Klasse V(E n I) anzuwenden.

4. Fall: x = x,, y kommt nicht unter x,, ..., X, vor. Dann ist Hilfssatz 1 auf die
Klasse y anzuwenden.

5. Fall: y = x;, x kommt nicht unter x,; ..., x, vor. Falls x Element ist, gilt

x € xjo x; € N(E n ({x} X 4)),

demnach ist Hilfssatz 1 auf diese Klasse anzuwenden. Andernfalls gibt es kein x;
mit X € x;, d. h. KXo 1=

6. Fall: Weder x noch y kommt unter den Variablen x,, ..., x, vor. Die jetzt
von zwei Parametern x,y abhingige Klasse KXy, ist durch Fallunterscheidung
zu definieren:
A*, fallsx€y,
g, fallsxqy.
Analog (wobei im allgemeinen die Klasse I statt E zu benutzen ist) lassen sich die

Fille behandeln, in denen H die Form x =y hat. Wir nehmen nun an, es seien
schon fiir beliebige Variablensyst Xq, -+, Xy die Klagse Kg%*» bzw. die Klas-

sen Kj:~** und Kjy++** definiert. Dann ist offenbar

(vgl. D20),

zu setzen. (Im letzten Fall muB x eine Variable sein, die in H nicht gebunden vor-
kommt.) Damit ist der Satz M2 bewiesen.

Wir formulieren nun einige Mengenbildungsaxiome.

Al4 (Potenzmengenaxiom)
A x(x Menge — V y(y Menge A A z(z € y <> z S x))).

D27 B(x) := 1y(y Menge A A 2(z € y <> 2 X)), falls x Menge.
F12 x Menge A z S x — z Menge.
D28 Unf:eAxyz((x,y)efA(yg,z)Ef—»y=1.).
(Un £ bedeutet demnach: Die Klasse (f-1)-! derjenigen Elemente von f, die geordnete
Paare sind, ist eindeutig, d. h. eine Abbildung. Dieser Begriff wird der Bequemlich-
keit halber auf beliebige Dinge f iibertragen.)
A16 (Ersetzbarkeitsaxiom)

Un f A V(f) Menge — N(f) Menge,



5. Eine Formalisierung der Mengenlehre 107

v

(d. h., das eindeutige Bild einer Menge bei einer durch eine Klasse von geordneten
Paaren gegebenen Abbildung ist eine Menge. Dieses Axiom driickt die anschauliche
Vorstellung aus, daB jede Klasse, die der Michtigkeit nach nicht groBer als eine
gewisse Menge ist, selbst eine Menge ist.)

D29 U a:= KV plement Axey Aven) « . ) )
(,»y Element* sichert, daB der als unterer Index benutzte Ausdruck primitiv ist
und daB damit nach M2 die Klasse U a existiert. Es kann jedoch semantisch dqui-
valent fortgelassen werden, da es aus y € a folgt. Die Klasse U a heiBt Vereinigung
der Klasse a. Aus D29 folgt, daB \J a = @ ist, falls a = & oder falls a nur Urelemente
und eventuell die leere Menge als Elemente enthilt.)
A1l6 (Axiom der Vereinigungsmenge)

a Menge — U a Menge.

Wir formulieren nun eine Art Induktionsaxiom (vgl. das Induktionsaxiom von
PEANO), das zum Ausdruck bringen soll, daB es auBer den Urelementen, der leeren
Menge und allen Mengen, die man durch fortlaufende Mengenbildung aus bereits
bekannten Elementen gewinnen kann, keine weiteren Elemente gibt.

A17 (Fundierungsaxiom)
/\a(ﬂe aA/\u(uUrelement—»uea)AAx(iMengeAx Ca—>x€a)
—>a= A).

F13 x ¢ X.

Beweis. Fiir Unmengen x gilt F13 nach D1 und D4. Es sei a die nach M2
existierende Klasse K%, aller Elemente x mit x ¢ x. Wir zeigen, daB diese Klasse a
die Voraussetzungen von A 17 erfiillt. & € a ist klar, ebenso u € a fiir alle Urelemente
u. Es sei x S a eine Menge. Wiire x ¢ a, 80 wiire x € x. Demnach wiirde x wenigstens
ein nicht zu a gehorendes Element (niémlich x) enthalten, im Widerspruch zu x £ a.
Nach A17 folgt nun a = A, d. h., F 13 gilt auch fiir alle Elemente x.

Analog zu F13 beweist man
M3 Zu keiner natiirlichen Zahl n = 2 existieren Dinge Xy, ..., Xa, 80 dafl

X EXpAX €E XgA ... AXp EX,AXL E X,
qilt.
F14 A Unmenge.

Beweis. Wire A keine Unmenge, so wiire A Element, demnach wiire A € A, im
Widerspruch zu F13.

" Einige Mathematiker haben in Erwigung gezogen, auf A17 zu verzichten und
die dann eventuell existierenden Dinge x mit x = (x} als Urelemente anzusehen.

Dann lassen sich die Urelemente natiirlich ohne Benutzung eines zusitzlichen Grund-
begriffs (wie der Konstanten @ in unserer Formalisierung) von der leeren Menge
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unterseheiden. Mit A17 sind wir bereits in den Bereich solcher Axiome gelangt,
iiber deren Aufnahme in ein Axiomensystem der Mengenlehre nicht alle Mathe-
matiker der gleichen Meinung sind. Weitere umstrittene Axiome sind u.a. das
Auswahlaxiom, die Formulierung des Unendlichkeitsaxioms und die verallgemeinerte
Kontinuumhypothese.
A18 (Auswahlaxiom fiir Klassen)
VaAx(xMengerx & 0 —VIly((x,y) €aay€x)),
d. h,, es gibt eine als Klasse von geordneten Paaren existierende universelle Auswahl-
funktion a, die jeder nichtleeren Menge eines ihrer Elemente zuordnet. Ist a eine
universelle Auswahlfunktion und b eine beliebige Klasse von nichtleeren Mengen, so
ist a n (b X A) eine Auswahlfunktion fiir b. Umgekehrt schlieBt die Forderung, daB
jede solche Klasse b eine Auswahlfunktion besitzen soll, die Existenz einer Auswahl-
funktion fiir die Klasse A, d. h. einer universellen Auswahlfunktion ein. Ist b eine
nichtleere Klasse von nichtleeren und paarweise disjunkten Mengen und a eine
Auswahlfunktion fiir b, so ist N(a) eine Auswaklklasse fiir b, d. h. eine Klasse, die mit
jeder Menge aus b genau ein Element gemeinsam hat. Eine echte Abschwiichung von
A 18, die fiir viele Anwendungen ausreicht, ist
A18 (Auswahlaxiom fiir Mengen)
' /\b(bMenge—»Vn/\x(xMengeAx +OAxeEb>Viy((x,y)€a
Ay E€x).
Wiihrend die Mengenbildungsaxiome A5, A14 und A16 und die Klassenbildungs-
axiome A6 bis A 13 auf Grund des Extensionalititsaxioms A4 zu solchen Aussagen
verschirft werden konnen, die die Definition von Konstanten (E, I, A usw.) und
partiellen Operationen wie Kompl t, Durchschnitt, kartesisches Produkt usw.
erméglichen, sind die auf Grund von A18 existierenden Auswahlmengen bzw.
-funktionen im allgemeinen nicht eindeutig bestimmt, vielmehr gibt es in denjenigen
Fillen, in denen die Existenz einer solchen Auswahlmenge bzw. -funktion tatsichlich
nur auf Grund von A18 erschlossen werden kann, sogar unendlich viele solche,
von denen keine irgendwie vor der anderen ausgezeichnet ist. Daher wird A18 im
Gegensatz zu den iibrigen Exist: gen des Axic ystems als nichtkonstruktiv
bezeichnet. Hinzu kommt, daB mit Hilfe von A18 einige paradox erscheinende
Sitze bewiesen werden kénnen. Andererseits lassen sich viele wichtige Sitze ohne
Benutzung von A18(’) nicht beweisen bzw. sind zu diesem Axiom iquivalent.
Diese Umstiinde fiihrten dazu, daB die Benutzung des Auswahlaxioms von manchen
Mathematikern abgelehnt wird und daB metamathematische Untersuchungen iiber
die Stellung dieses Axioms im Gesamtsystem der axiomatischen Mengenlehre in den
Grundlagen der Mengenlehre eine ihnliche hervorragende Rolle gespielt haben wie
die Untersuchungen iiber das Parallelenpostulat in den Grundlagen der Geometrie.
Eine der wichtigsten zu A18 iquivalenten Aussagen ist der Vergleichbarkeitssatz
fiir Miichtigkeiten A 18". Dazu erst einige Definitionen.
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D29 x~y:o xKlassenyKlasse AV{UnfaUnf-1a V() =xaN(f) =y).
D30 x<<y:eVix~zazSy).
A18” xKlasse Ay Klasse >x Syvy S x.
Wir wenden uns nun dem grundlegenden Begriff der Ordinalzahl zu.
D31 x Ordinal ;<> x Klasse AAy(y € x -y & X)
ANYZ(yEXAZEX>YELVZEYVY =13).
D32 x Ordinalzahl ;<> x Ordinal A x Menge.
F15 2 Ordinalzahl.
F16 x Ordinalzahl — x v {x) Ordinalzahl.
F17 V a A x(x € &+« x Ordinalzahl).
D33 On := @ A x(x € 8« x Ordinalzahl).
F18 x Ordinal > x € Onv x = On.
F19 On Unmenge.
F20 XEONAYEONAZEODAXEYyAYEZ>XE 2.
F21 YSOnay+0>VIUx(x€yAAz@zEyAz £ x>XxE€1)).
Die Sitze F 15 bis F21 sind nicht schwer zu beweisen und seien dem Leser als Ubungs-
aufgaben empfohlen. F20 und F21 bedeuten zusammen:
Die Klasse On st durch die zweistellige Relation € wohlgeordnet.
Dabei ist @ offenbar das kleinste Element von On. Weiter ergibt sich, daB x u {x}
der unmittelbare Nachfolger einer Ordinalzahl x ist, daB jede Ordinalzahl gleich
der Menge der ihr vorangehenden Ordinalzahlen ist und da8 U, die erste Ordinalzahl

ist, die auf alle Elemente von y folgt, falls y eine Menge von Ordinalzahlen ohne
groBtes Element ist. F21 rechtfertigt die Definiti

D3¢ miny:=x(x€yAaAz@z€yArz+x—>x€2), falsySOnny=+0.

Es ist iiblich, die natiirlichen Zahlen mit dem Anfang der wohlgeordneten Ordinal-
zahlreihe zu identifizieren, d. h.

D35 0:=4,
1:=0u(9) = (8},
2:= (8} v (10)) = {0, (2]}

x;+l:=nu(n].
D36 x natiirliche Zahl &> x € OnAAy(y€x—>y=0vVzzu(z] =Yy),

d. h., natiirliche Zahlen sind solche Ordinalzahlen, denen auBer @ keine Ordinalzahl
ohne ittelb Vorgiinger vorangeht.
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Unter Benutzung von A 17 kann man jedem Ding x ein Ordinal st(x) (Stufe von x)
so zuordnen, dal

st(x) =0, falls x Urelement, st(d) =1,

st(x) = min (On \ (st(y):y € x]), falls x nichtleere Menge,

st(x) = On, falls x Unmenge
gilt. Demnach ist also die Stufe einer nichtleeren Klasse das kleinste Ordinal, das
groBer ist als die Stufen aller ihrer El te. Im axiomatischen Aufbau der Mengen-
lehre nach Krava [20]) wird die hieraus ableitbare Relation x —y .(x ist stufen-
kleinergleich y) neben € als Grundbegriff benutzt. Diese Formalisierung erweist sich

hinsichtlich ihrer Ausdrucksfihigkeit als gleichwertig zur vorliegenden, da man
unter Benutzung von

x Urelement :> Ayx—y
@ := ix(— x Urelement A | Vy y € x)

definieren kann.

Die Axiome A1l bis A18 besitzen ein Modell, das aus (im anschaulichen Sinne)
abzihlbar vielen endlichen Mengen und Urel ten und abzihlbar vielen Un-
mengen besteht. Gibt man sich etwa zwei beliebige Dinge a, b als Urelemente vor,
8o erhilt man )

Mengen 1. Stufe: @, {a}, {b}, {a, b},

Mengen 2. Stufe: {8}, {{all, {{bl], ({a, bl}, (8, a}, {8, b}, {8, {a}}, {8, {b}), (D, {a, b}},
{tal,a), ({ak b}, {(al,{b}}, {{a}{a,b}}, {{b},a}, {{b},b}, {{b},{a,b}}, {{a, b}, 8},
{(a, b}, b}, {2, a, b}, {2, a, {a}} usw.

In diesem Bereich ist die Klasse aller Elemente offenbar abzihlbar. Es geniigt,
als Unmengen des Modells alle abzihlbaren Teilmengen dieses Bereichs hinzuzu-
nehmen, die die Form K* haben. Wegen der Abzihlbarkeit der Menge der Ausdriicke
von S, ist der Bereich dieser U gen ebenfalls abzéhlbar. Das skizzierte Modell
laBt sich unter der Voraussetzung der Widerspruchsfreiheit der Peanoschen Axiome
exakt definieren. Analoge Modelle erhilt man bei Vorgabe einer beliebigen endlichen
Anzahl von Urelementen, insbesondere auch, wenn man von der Nichtexistenz von
Urel t geht. De; h gilt:

Aus A1 bis A18 folgt nicht die Existenz von Urelementen und nicht die Existenz
etner unendlichen Menge.

Insbesondere ist in den genannten Modellen die Klasse der natiirlichen Zahlen
gleich On, also bereits eine Unmenge. Daher kénnen die weiteren Zahlbereiche auf
der Grundlage von A1 bis A18 nicht in der iiblichen Weise konstruiert werden. Wir
beschéftigen uns nun mit einigen Varianten von Unendlichkeitsaxiomen, d. h.
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Axiomen, die die Existenz einer unendlichen Menge aussagen. Diesen Zweck erfiillt
A19  VafaMenger D €anAx(xe€a—(x]€a)).

Dieses Axiom bedeutet: Es gibt eine (im anschaulichen Sinne) unendliche Menge,
deren Stufe keine natiirliche Zahl ist. Hieraus folgt, daB es wenigstens eine Ordinal-
zahl gibt, die keine natiirliche Zahl ist, und folghch (etwa nach F 16) unendlich
viele solche Ordinalzahlen.

Will man die Existenz einer unendlichen Menge schon im Bereich der Mengen
endlicher Stufe fordern, so ist dies offenbar gleichbedeutend mit der Forderung der
Existenz einer unendlichen Menge von Urelementen. Man kann in Anlehnung an
A19 etwa formulieren:

A19  VHUnfaUnf'aV(f)Mengen 0 € V(f)aAx(x € V() > {x} € V()
AAy(y € N(f) - y Urelement)).

Offenbar folgt A19 aus A19’, da V(f) = a der Forderung von A19 geniigt, falls f
der Forderung von A19’ geniigt. Es sei bemerkt, daB offen bleibt, ob die Klasse
aller Urelemente eine Menge oder eine Unmenge ist, und daB sich aus der scheinbar
stirkeren Forderung, daB die Klasse aller Urelemente eine Unmenge ist, nicht die
Existenz einer unendlichen Menge von Urelementen oder iiberhaupt einer unendlichen
Menge ergibt. Will man die Existenz einer unendlichen Menge endlicher Stufe
fordern, ohne gleichzeitig die Existenz von Mengen unendlicher Stufe voraus-
zusetzen, 8o benétigt man eine explizite Endlichkeitsdefinition.
Eine explizite Endlichkeitsdefinition ist eine Definition der Form

x endlich : > H(x),

wobei H(x) € S,, keine freie Variable auBer x enthilt. Dabei soll in jedem Modell
w der Axiome A1 bis A17 folgendes gelten:
(%) Wert (H(x), w, /) W< Es gibt nur endlich viele Dinge & vm Gmndberewh

von w, fir die Wert (ze X, w, /<:>) =W.

(Die von uns gewihlte Formulierung schlieBt ein, daB die Eigenschaft ,,endlich*
auf alle Urelemente zutreffen soll. Die einstelligen Relationcn ,,x endlich* und
,»X endliche Menge* sind aber offenbar gegenseitig definierbar.) Es wird sich zeigen
(vgl. 6.3.), daB eine Endlichkeitsdefinition in diesem strengen Sinne unmdglich ist:
Jede in einer elementaren Sprache der Mengenlehre definierbare einstellige Relation
H(x), die in jedem Modell der Mengenlehre auf alle (im anschaulichen bzw. meta-
theoretischen Sinne) endlichen Objekte zutgfft, trifft in wenigstens einem Modell
auch auf eine im anschaulichen Sinne unendiche Gesamtheit zu. Demnach muB die
Definition des Begriffs Endlichkeitsdefinition dahin abgeschwicht werden, da8 in
(%) ,ye>*“ durch ,,«* ersetzt wird. Weiterhin muB man aber noch fordern, daB aus
einer Endlichkeitsdefinition alle hiiufig benutzten Eigenschaften der endlichen
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Mengen gefolgert werden kénnen, wie z. B.

@ endlich,

{x} endlich,

x endliche Menge A y endliche Menge — x v y endlich A x X y endlich,
x endliche Menge — P(x) erdlich,

x endliche Menge A y S x — y endlich.

In der Literatur sind zahlreiche Endlichkeitsdefinitionen verbreitet, die allen diesen
Forderungen geniig, Hinzu } t, daB alle bisher vorgeschlagenen Endlich-
keitsdefinitionen sich unter der Voraussetzung des Auswahlaxioms als iiquivalent
erweisen. Manche dieser Aquivalenzen gelten jedoch nachweislich ohne Vorausset-
zung des Auswahlaxioms nicht allgemein.!). Wir stellen zwei der verbreitetsten End-

lichkeitsdefinitionen vor, die von DEDERIND bzw. RUSSELL eingefiihrt wurden:

D36 x endlich (D) :e> qVy(y c xAy~x).

Hiernach sind Urel te x aut tisch endlich, da sie nach D8 bzw. D9 nicht in
der Relation — stehen ké Eine Klasse x ist nach DEDERIND endlich, wenn sie
keiner echten Teilklasse gleichmichtig ist. Es folgt z. B. sofort: @ endlich (D), da
@ keine echte Teilklasse besitzt.

D37 x endlich (R) :> A a(d € a A A u(u Urelement — u € a)

AN yz(y € a Ay Klasse A z Element — y u {z} € 8) > x € a),

d. h., ein Ding x ist endlich im Sinne von RUSSELL, wenn es Element jeder Klasse a
ist, die @ und alle Urelemente enthilt und mit einer beliebigen Menge y stets auch
die (eventuell) um ein Element groBere Menge y u {z} bei beliebigem z enthilt.
Hiernach ist z. B. sofort klar, daB & endlich (R), u endlich (R) fiir alle Urelemente u
und {z} (= @ v {z)) endlich (R) fiir jedes Element z ist. (Beide Definitionen sind
gegeniiber ihrer urspriinglich Formuherung geringfiigig modifiziert, im sie unserer
Formalisierung iante mit Urel t p ) Es gilt ohne Voraussetzung
des Auswahlaxioms

F22 x endlich (R) — x endlich (D).
Unter Benutzung von A 18’ folgt
F23 x endlich (D) — x endlich (R).
Weiterhin gilt jedoch:
F23 ist unabhiingig von A1 bis A17 und A19".

1) Siehe hierzu etwa A. LEvy, The independence of various definitions of finiteness, Fund.
Math. 46 (1958), 1—13.
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Unter Benutzung einer beliebigen Endlichkeitsdefinition kann man verschiedene
weitere Varianten des Unendlichkeitsaxioms formulieren, z. B.

A19”  Va(—endlich a A a Menge)
oder schirfer

A19""  Va(a Menge A —endlich a A A x(x € a — x Urelement)).

Offenbar ist A19’ die stirkste und A19” die schwichste Forderung, wihrend A19
und A19"” voneinander unabhingig sind.

Wir kommen nun zur Diskussion der verallgemeinerten Kontinuumhypothese.
Aus A1 bis A17 folgt

xendlichD)Ax £ 0A—Vyx={y)>Vylyc BEx)rqySx

A=y ~ B(x)).
(Dies entspricht der Tatsache, daB fiir natiirliche Zahlen » = 2 (hier als Michtig-
keiten endlicher Mengen aufgefaBt) stets ein m mit n < m < 2* (der Elementanzahl
der Potenzmenge) existiert.) Schon CANTOR scheiterte &n dem Versuch, fiir unendliche
Mengen (insbesondere abzihlbare) entweder die Existenz oder die Unméglichkeit
der Existenz einer Menge nachzuweisen, die der Machtigkeit nach echt zwischen
der gegebenen Menge und ihrer Potenzmenge liegt. Fiir verschied
innerhalb der Mathematik benétigt man aber die im folgenden als Axiom A20
notierte Voraussetzung

Anwend

A20 (Verallgemeinerte Kontinuumhypothese)
— xendlich(D) >Ay(y S Bx)AxSy—>y~ B(x))-
Aus dem Axiom A20 folgt das Auswahlaziom.)

Wir beschlieBen dieses Kapitel mit der Mitteilung einiger wichtiger Resultate
aus den Grundlagen der Mengenlehre. Hierzu sei im voraus bemerkt, daB diese
Resultate in bezug auf unterschiedliche und nicht immer voll formalisierte Axiomen-
systeme erhalten wurden und daher nicht ohne weiteres auf andere Formalisierungs-
varianten (insbesondere die hier benutzte) iibertragen werden konnen. Weiter soll
nicht unerwidhnt bleiben, daB die zur Erzielung derartiger metamathematischer
Sitze im Bereich der Grundlagen der Mengenlehre erforderlichen Modellkonstruk-
tionen bzw. sonstigen Methoden hiufig sehr kompliziert und jeder Anschauung
entzogen sind und zum Teil zu den hervorragendsten Leistungen der Mathematil
in unserem Jahrhundert gehoren.?)

1) W. SierpiNskr, Fund. Math. 84 (1947), 1—5.
') Em gut zugénglicher und relativ aktueller Bericht iiber den Stand der Grundlagen der
énlehre ist der K zum ersten Hilbertschen Problem von A. S. ESENIN-VoL'PIN
in: Die Hilbertschen Probl Akad. Verlagsgesellschaft Lalpzng 1971 (rusu Original: Nauka,
Moskau 1969). AuBerdem sei auf die umfangrelche Bibliographie in [9] verwiesen.
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Das System von V. NEUMANN-BERNAYS-GODEL (mit Unmengen) ist relativ
widerspruchsfrei in bezug auf das System von ZERMER0-FRAENKEL (ohne Unmengen)
und umgekehrt (Rosser, Hao Wana 1950, u. a.).

Die Annahme der Existenz unendlich vieler Urelemente ist relativ widerspruchsfrei
in bezug auf ein System ohne Urel te und umgekehrt (Mosrowskr 1939).

Sind die Axiome A1 bis A17 und A 19 widerspruchsfrei, so ist auch das System
der Axiome A1 bis A20 widerspruchsfrei (GoDEL 1938).

Das Auswahlaxiom ist unabhingig von den Axiomen A1 bis A17 und A19 bzw.
A19’ (FRAENKEL 1922, MosTowskl 1939, CoHEN 1963).

Das Axiom A 20 ist unabhiingig von den iibrigen Axiomen (einschlielich Auswahl-
axiom) (CoHEN 1963).

Die beiden letztg ten Sitze bedeuten insbesondere, daB sowohl das Auswahl-
axiom als auch (bei Forderung des Auswahlaxioms) die verallgemeinerte Kontinuum-
hypothese mit gleicher Berechtigung als giiltig oder ungiiltig angesehen werden
konnen. Die auf den ersten Blick verwirrende Erkenntnis, daB sich die Verhiltnisse
im Bereich unendlicher Mengen nicht eindeutig festlegen lassen, hat bei vielen
Mathematikern Zweifel an der Brauchbarkeit der axiomatischen Methode ausgelost.
Auf die hiermit hiingenden Fragen kc wir im -letzten Kapitel
zuriick.




6. Syntaktische Grundbegriffe der Metamathematik

6.1.  SchluBregeln und Beweiskalkiile

Definition 1. Es sei S eine formalisierte Sprache, m, k = 0 seien beliebige natiirliche
Zahlen. Eine k-gliedrige m-parametrige Schlufregel fiir S ist eine (k + m)-stellige
Wortfunktion ¢ mit folgenden Eigenschaften:

@) Ist fiir gewisse Worter W,, ..., Wi, die Anwendung von ¢ definiert, so st
W eStfiri=1,..., kund

P(Wi, ..., Weem) € Flg((Wy, ..., Wal). m
(b) In einem spiter zu prizisierenden Sinne ist fiir beliebige (k + m)-Tupel von
Wortern effektiv entscheidbar, ob ¢ dbar ist, und im Fall der Anwendbarkeit

lafe sich (W, ..., Wyi,n) aus den Wortern W,, ..., Wy, durch ein algorithmisches
Verfahren gewinnen.

Unter Beriicksichtigung der Bedingung (a) schreiben wir die Argumente einer
k-gliedrigen m-parametrigen SchluBregel ¢ im folgenden in der Form Hj, ..., H,;
P,, ..., P, und bezeichnen H,, ..., H, als Primissen (Voraussetzungen), P,,..., P,
als Parameter und das Resultat ¢(H,, ..., H,; Py, ..., P,) der Anwendung von ¢ auf .
Hy, ..., Hy; Py, ..., Py, als Conclusio (Folgerung) der SchluBregel ¢. Die Bedingung
(1) bezeichnen wir als Zulissigkeit der Regel . Auf Grund der Hiilleneigenschaften
des Folgerungsoperators Flg istisie der folgenden Bedingung gleichwertig:

Fiir beliebige X = S gilt: Ist H; € Flg(X) fiir v = 1, ..., k und existiert das Resultat
@My, ..., H; Py, ..., Py), 80 st (H,, ..., Hy; Py, ..., P,) € Flg(X).

O-parametrige SchluBregeln bezeichnen wir auch als parameterfrei. Ist umgekehrt
@ eine 0-gliedrige m-parametrige SchluBregel (m > 0), so gilt fiir alle Parametertupel
P,, ..., P, aus dem Definitionsbereich von ¢ nach (1) die Beziehung

?(Py, ..., Pn) € Flg(D).
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Daher nennen wir die Menge aller Ausdriicke der Form ¢(P;, ..., P,) und auch die
Abbildung ¢, die diese Menge ,,aufzihlt* bzw. als Wertebereich hat, ein Schema
logischer Aziome. Ist k =m =0, so ist ¢ eine Konstante und daher ein einzelnes
logisches Aziom. Um O-parametrige und O-gliedrige SchluBregeln auch bezeichnungs-
miBig moglichst deutlich voneinander zu unterscheiden, schreiben wir im ersten
Fall p(H,, ..., H;) und im zweiten Fall ¢(;P;, ..., Pp).

Beispiele.
1. Regel der Konstanteneinsetzung.
po(H(x); x, ¢) := Sub (H(x), x, ¢), falls x in H(x) vollfrei vorkommt und c ein
2u X Sortengleiches Konstantensymbol 1st.
Die sodefinierte Regel ¢, ist offenbar eingliedrig und zweiparametrig. Thre Eﬂektlvlt&t
ist anschaulich klar. Thre Zuldssigkeit ergibt sich aus H(c) € Fls([H(x)})

2. Abtrennungsregel.
o(Hy - Hyp, Hy):=H, (H,, H, € S beliebig).

Diese Regel wird in der klassischen Logik auch als modus ponens bezeichnet. Sie ist
zweigliedrig und parameterfrei.

3. Fiir m = 1 sei ¢,"(;A, H,, ..., H,,) definiert, falls H, € S (z =1,...,m) und
A ein allgemeingiiltiger Ausdruck der Aussagenlogik ist, der hochstens die Variablen
P1s ---> Pm enthilt. Es sei dann ¢,™(;A, H,, ..., H,) derjenige Ausdruck der Sprache
S, den man erhilt, wenn man in A jede der Variablen p, an allen Stellen ihres Vor-
kommens durch den Ausdruck H, ersetzt. Die so definierten SchluBregeln sind
offenbar (m + 1)-parametrige Axiomenschemata, die in ihrer Gesamtheit genau die
Menge aller aussagenlogisch allgemeingiiltigen Ausdriicke der Sprache S umfassen.
Die Effektivitit der SchluBregeln ¢,™ ergibt sich aus der Entscheidbarkeit der aus-
sagenlogischen Allgemeingiiltigkeit (etwa durch Wertetabelle; vgl. 2.2.). Es sei
poch bemerkt, daB der in diesen Regeln bzw. Axiomenschemata vorkommende
erste Parameter A zwar auch ein Wort in einem gewissen Alphabet, jedoch im
Unterschied zu den sonstigen in den bisher betrachteten Beispielen vorkommenden
Parametern weder ein Ausdruck noch ein Term der betrachteten Sprache 8 ist.

4. Wir wollen nun die bereits in 4.2. behandelte Regel der g d Umb
als formale SchluBregel im hier definierten Sinne prizisieren. Es sei zuniichst daran
erinnert, daB H, durch gebundene Umbenennung #is H, entsteht, indem man in
einem gewissen Vorkommen eines gewissen Teilausdrucks von H,, der die Form
A xH(x) oder V xH(x) hat, iiberall x durch eine Variable y gleicher Sorte ersetzt,
die folgende Bedingungen erfiillt:

a) (Vermeidung von Variablenkonfusion) y kommt im Ausdruck H(x) nicht frei
vor (da solche Vorkommen durch die Umbenennung inhaltlich unrichtig in die
Quantifizierung einbezogen wiirden).
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b) (Vermeidung von Variablenkollision) y steht im betrachteten Vorkommen
des Teilausdrucks H(x) in H, nirgends im Wirkungsbereich einer in H, vorkommenden
Quantifizierung von y (da solche Vorkommen von y durch die Umbenennung zweimal
quantifiziert wiirden).

Eine Variable y, die die Bedingungen a) und b) erfiillt, nennen wir (fiir die beab-
sichtigte Umbenennung) verfiigbar. Sehen wir nun H, als Primisse und H, als conclusio
der zu definierenden SchluBregel an, so miissen die Parameter dieser SchluBregel
angeben, in welchem Teilausdruck H(x) von H, und welcheth Vorkommen dieses
Teilausdrucks die Umbenennung ausgefiihrt werden soll und welche Variable y
benutzt werden soll. Demnach kénnen wir etwa definieren:

¢:(H;; P, y) := H,, falls H, E S P etn auf A oder V endendes Anfangsstiick von
H, ist (worauf dann ein eindeuts immites Teilstiick der Form xH(x) folgen mup),
die Varialle y von gleicher Sorte wie x und fiir die Umbenennung an dieser Stelle
verfiigbar ist und H, dadurch aus H, entsteht, daf man in dem auf P folgenden Teilstiick
xH(x) iberall x durch y ersetzt.

5. Wir formulieren nun vier SchluBregeln, die in diesem Buch keine weitere Rolle
spielen werden, die jedoch zusammen mit ¢, g, und einer noch zu behandelnden
Verallgemeinerung @, von ¢, einen in der traditionellen Logik hdufig benutzten
Kalkiil bilden:

Regel der vorderen Generalisierung: -
@s(Hi(x) > Hy; x) := A xH, (x) - Hy, falls x vollfrei in H,(x) vorkommt.

(Die Angabe des Parameters x ist nétig, da H,(x) ungeachtet der von uns bereits
gewiihlten Schreibweise auBer x weitere vollfreie Variablen enthalten kann. Analoges
gilt fiir die folgenden Regeln.)

Regel der hinteren Partikularisierung:
Q.(H, — Hy(x); x) = H, <> V xH,(x), falls x vollfrei in Hy(x) vorkommt.

Regel der hinteren Generalisierung:

@s(Hy; = Hy(x); x) := H; - A xH,(x), falls x in H, vollfret und in H,
nicht frei vorkommt.

Regel der vorderen Partikularisierung:
pe(Hy(x) > H,; x):= V xH,(x) > H,, falls x @n H, vollfrei und in H,
nicht fret vorkomms.

Der Leser iiberpriife die Zuldssigkeit der vier Regeln und mache sich klar, daB

die Regeln @, p; ohne die genannten einschrinkenden Bedingungen nicht zuldssig
wiiren.
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Der Begriff der SchluBregel 148t sich leicht auf beliebige nichtel tare Sprachen
(8, o) itbertragen. Dazu hat man lediglich in Definition 1 die Bedingung (1) in

@(Wy, .., Wiew) € FIS (W, ..., W) (1)

abzuindern (Zul(iacigke';'t der Schlufregel g fiir (S, o). Sind oy, o; Klassen von Inter-
pretationen der prjache S mit g, S 0y, 80 ist wegen

Flg&(X) S Flg(X) firXc$

jede fiir (S, a,) zuldssige SchluBiregel erst recht fiir (S, o,) zuldssig, insbesondere ist
also jede fiir (S, g,) zuldssige SchluBregel (solche SchluBregeln werden wir als elementar
bezeichnen) fiir jede nichtel tare Sprache (S, o) zuldssig. Als Beispiel einer
nichtelementaren (d.h. fiir (S, 0,) nicht zuldssigen) SchluBregel betrachten wir die

Termeinsetzungsregel :

@.(H(x); x, t) := Sub (H(x), x, t), falls x vollfrei in H(x) vorkommt und t ein
2u X sortengleicher Term 1st.

Die eingliedrige einparametrige SchluBregel ¢, ist offenbar eine naheliegende Ver-
allgemeinerung der Regel @, der Konstanteneinsetzung und enthélt diese Regel als
Spezialfall. Sie ist jedoch nicht zulissig fiir (S, o), falls S eine Sprache mit Operations-
symbolen ist, da sie z. B. den allgemeingiiltigen Ausdruck Vy y = x in den nicht
allgemeingiiltigen Ausdruck Vyy = F(x,,...,x,) iiberfiihrt (F ein n-stelliges
Operationssymbol von S). Wie man sieht, ist die Regel @, gerade zuliissig fiir nicht-
elementare Sprachen (S, g(;)). (Wir erinnern daran, daB o, stets die Klasse aller
Interpretationen bezeichnet, die jedem Operationssymbol eine volle Operation zu-
ordnen; vgl. 4.5.)

Definition 2. Es sei S eine formalisierte Sprache. Eine nichtleere (endliche oder
wenigstens in einem spiter zu prizisierenden Sinne effektiv aufzihlbare) Menge ¥
von SchluBregeln definiert einen Beweiskalkiil fiir S. (Analog definiert eine Menge
& von fiir (S, o) zulissigen SchluBregeln einen Beweiskalkiil fiir die nichtel tare
Sprache (S, 0).) Ist & cin Beweiskalkiil fiir S, so heiBt eine Menge X S S von
Ausdriicken J-abgeschlossen, wenn fiir ¢ € X gilt:

Wenn ¢(Hj,, ..., Hy; Py, ..., P,) = H existiert und H, € X fiir » = 1, ..., k gilt,
soist H € X.

Fir X < S sei
Bewy (X):= N Y
Xcvycs
Y -abge-
schlossen.

Bew -(X) heiBt die Beweishiille von X (beziiglich J).
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Zuniichst erliutern wir die Definition 2: J(-Abgeschlossenheit einer Menge X
von Ausdriicken schlieBt insbesondere ein, daB X jede durch eine etwa zu J gehérige
0-gliedrige SchluBregel aufgezihlte Menge von logischen Axiomen enthilt. Zerlegt
man insbesondere einen Beweiskalkiil, wie es traditionell iiblich ist, in eine Menge
A von logischen Axiomen und eine Menge J’ von echten, d. h. nicht O-gliedrigen
SchluBregeln, so ist eine Menge X & S genau dann K -abgeschlossen, wenn sie A
umfaBt und J('-abgesohlossen ist. Die Beweishiille Bew ,-(X) 18t sich dann auchin
der Form Bew (X u A) darstellen. Allgemein gilt: Die gesamte Ausdrucksmenge
S ist stets JH-abgeschlossen, und der Durchschnitt eines beliebigen nichtleeren
Syst: von J(-abgeschl Teilmengen von § ist J(-abgeschlossen. Demnach
ist Bew -(X) gerade die kleinste J-abgeschl Ober von X.

Satz 1. Ist X ein beliebiger Beweiskalkiil fiir S (bzw. fiir (S, o)), soist Bew - ein
Hiillenoperator.

Der Beweis von Satz 1 sei dem Leser iiberlassen.

&

Definition 3. Es sei S eine formalisierte Sprache, J ein Beweiskalkiil fiir S,
X = S ein Axiomensystem und H € S ein beliebiger Ausdruck. Ein J-Bewevs fiir
H (aus X) ist eine endliche Folge H,, H,, ..., H, von Ausdriicken aus S, so da8 gilt:
H, = H und fiir 1 <7< nist H; € X, oder es existieren eine k-gliedrige m-parametrige
SchluBregel ¢ € J, Parameter Py,...,P, und (nicht notwendig verschiedene)
Indizes %, ..., % < ¢, so daB '

H;= 'P(Ha,, seey Hi.i Py, ..., Py)

gilt. (Ist insbesondere hierbei k = 0, so ist H; demnach ein logisches Axiom des
Kalkiils JX.) .

Definition 3 bedeutet also, daB ein Beweis (beziiglich ) eine endliche Folge von
Ausdriicken ist, von denen jeder ein logisches Axiom des Kalkiils oder ein (inhalt-
liches) Axiom des benutzten Axiomensystems ist oder durch Anwendung einer
echten SchluBregel auf gewisse friihere Folgenglieder entsteht. Hieraus folgt sofort,
daB jedes nichtleere Anfangsstiick eines Beweises ebenfalls ein Beweis ist.

Satz 2. H € Bew 4 (X) qilt genau dann, wenn ein X-Beweis fir H aus X existiert

Beweis. Es bezeichne B(X) die Menge aller Ausdriicke, fiir die ein J{-Beweis
aus X existiert. Fiir H € X ist die nur aus H bestehende Folge ein Beweis fiir H aus
X; folglich ist X & B(X). Ist H, € B(X) fiilr x =1, ...,k ¢ eine k-gliedrige m-
parametrige SchluBregel aus & und H = ¢(H,, ..., Hy; Py, ..., P,) fiir gewisse
Parameter P, ..., P,, so sei fiir x = 1, ..., k die Folge Hy%, ..., Hy, ein Beweis fiir
H, aus X. Dann ist die Folge H,%,...,H},H3,...,HZ, ..., H}, ..., HE , H ein
Beweis fiir H aus X. Folglich ist B(X) J-abgeschlossen, also Bew 4-(X) S B(X).

Zum Beweis der umgekehrten Inklusion zeigen wir durch Induktion iiber die
Beweislinge: Das Endglied jedes Beweises aus X (d. h. jedes Element von B(X))
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liegt in jeder JC-abgeschlossenen Obermenge ¥ von X, folglich auch im Durchschnitt
aller dieser Mengen, demnach in Bew,-(X). Es sei also ¥ eine beliebige J-ab-
geschlossene Obermenge von X. Ist H ein J-Beweis der Linge 1 aus X, so mufl
sein Endglied H ein logisches Axiom oder Element von X sein. Im ersten Fall ist
Hec Y wegen der J-Abgeschlossenheit von Y, im zweiten Fall wegen X S Y.
Wir nehmen nun an, daB die Behauptung fiir die Endglieder aller J(-Beweise mit
einer Linge < n gilt, und es sei H,, ..., H,, H,,, ein K-Beweis der Linge n 4 1.
Falls H,,, € X ist, so ist H,,, € ¥, andernfalls existieren eine SchluBregel ¢ € J(,
Parameter P, ..., P, und Indizes 7, ..., 3 < n, so daB

Hyy =@H;, ..., Hy; Py, ..., Pp)

gilt. Fiir jeden der Ausdriicke H; (x =1,...,k) ist dasjenige Anfangsstiick des
Beweises Hj, ..., Hy,, welchés mit H; endet, ein JX-Beweis fiir diesen Ausdruck,
dessen Linge < n ist. Folglich ist nach Induktionsannahme H; ¢ Y firx =1, ...,k
Wegen der J-Abgeschlossenheit von ¥ ist daher auch H,,, € ¥. Damit ist Satz 2
bewiesen.

Wir empfehlen dem Leser, mit Hilfe von Satz 2 den Satz 1 neu zu beweisen.

Satz3. Fir X S S gilt Bewy(X) S Fig(X). (Vollig analog gilt Bew,(X) S
Flg"(X), falls X ein Beweiskalkiil fiir die nichtelementare Sprache (8, o) ist.)

Beweis. Wir stiitzen uns auf Satz 2 und zeigen durch Induktion iiber die Beweis-
linge: Fiir das Endglied H eines beliebigen Beweises aus X gilt H € Flg(X). Ist
H ein Beweis der Liinge 1, so ist H € X oder H ein logisches Axiom des Kalkiils &,
in beiden Fillen ist daher H € Flg(X). Die Behauptung sei fiir alle Beweise der
Linge < n giiltig, und H,, ..., H,,, sei ein Beweis aus X. Falls H,,, € X oder H,,,
ein logisches Axiom ist, schlieBt man wie oben. Andernfalls existiert eine echte
SchluBregel ¢ € I, so daB H,,; = ¢(H,, ..., H;,; Py, ..., Py) fiic gewisse Parameter
P,, ..., P, und gewisse im Beweis vorangehende Ausdriicke H; gilt. Fiir diese gilt
nach Induktionsannahme H; € Fig(X). Daher folgt H,,, € Flg(X) aus der Zu-
liissigkeit von ¢.

Bei der zum Beweis von Satz 3 angewandten Induktion iiber die Beweislinge
wird man immer wieder darauf stoBen, da8 die beim Induktionsanfang vorkommen-
den Fille H logisches Axiom oder H € X beim Induktionsschritt noch einmal auf-
treten. Die Charakterisierung der Beweishiille Bew -(X) als kleinste beziiglich aller
SchluBregeln ¢ € J abgeschlossene Obermenge von X liefert die theoretische Recht-
fertigung fiir eine weniger schwerfillige Methode, Sitze der Form , Fiir alle H
€ Bew 4 (X) gilt ...* zu beweisen. Wir zeigen:

.a) Ist H € X, so gilt ...

b) Ist H logisches Axiom von J, so gilt ... )

c) Entsteht H durch Anwendung einer echten SchluBregel ¢ € X auf Ausdriicke
H,, ..., H,, fiir die bereits ... gilt, so gilt ... auch fiir H.
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Damit ist gezeigt: Die Menge M = S aller Ausdriicke, fiir die ... gilt, ist eine
beziiglich J abgeschlossene Obermenge von X. Demnach ist Bewy(X) & M,
d. h., ... gilt fiir alle H € Bew -(X).

Diese Beweismethode werden wir als Induktion tiber die Beweiskompliziertheit
bemlchnen DaB Definition 3 und Satz 2 dennoch fiir gewisse Eigenschaften -der
Beweishiille den einfachsten Beweis ermdglichen, zeigt z. B.

Satz 4 (Endlichkeitssatz fiir Bew ). Ist H € Bew (X), 80 existiert eine endliche
Tetlmenge E von X, so daf H € Bew ,-(E) gilt.

Beweis. Ist H € Bew4'(X), so existiert nach Satz 2 ein Beweis von H aus X.
Ist E die Menge aller in diesem Beweis vorke den El te von X, so ist
derselbe Beweis offenbar ein Beweis von H aus E, folglich ist H € Bew ,~(E) nach
Satz 2.

Neben den hier betrachteten durch Systeme von SchluBregeln definierten Beweis-
kalkiilen werden in der Literatur hiufig Beweishiillen Bew betrachtet, die induktiv
durch Festlegungen etwa folgender Art definiert sind:

Wenn H, € Bew(X) und H, € Bew(X), so sei auch H; A H, € Bew(X).. (3)

Wenn H, € Bew(X u (H,}) und H, abgeschlossen, so sei H, — H, € Bew(X).
4)
Regeln der ersten Art lassen sich ohne weiteres in' SchluBregeln umformen. Zum
Beispiel kann die Eigenschaft (3) fiir einen durch einen Beweiskalkiil J definierten
Hiillenoperator Bew,- dadurch erreicht werden, da man in J die SchluBregel
@s(H;, H,) := H, A Hy aufnimmt. Dagegen ist die Umwandlung von Definitions-
regeln der Form (4) in SchluBregeln nicht ohne weiteres moglich. Entscheidend ist
jedoch, daB auch derartige induktiv definierte Beweishiillenoperatoren die in den
Sitzen 1, 3 und 4 formulierten Eigenschaften haben. Bei einer abstrakteren Auf-
fassung des Beweisbarkeitsbegriffs konnte man daher diese Eigenschaften als
axiomatische Charakterisierung des Begriffs Beweiskalkiil benutzen.

Ist Bew ein beliebiger Beweishiillenoperator fiir die Sprache S (bzw. die nicht-
elementare Sprache (S, 0)), so kann man wissenschaftstheoretische Begriffe wie
Widerspruchsfreiheit, Unabhingigkeit und Vollstindigkeit auf syntaktische Weise
definieren, indem man in den Definitionen der entsprechenden semantischen Begriffe
(vgl. 4.3.) den Folgerungsoperator Fl (bzw. FI°) durch den Beweishiillenoperator
Bew ersetzt. Dies sei zunichst am Beispiel der Widerspruchsfreiheit erldutert.

Ein Axiomensystem X in einer formalisierten Sprache S ist nach 4.3. genau dann
semantisch widerspruchsfrei, wenn eine der drei folgenden équivalenten Bedingungen
erfiillt ist:

X besitzt ein Modell. (5)
FiX)cS. (6)
Fiir H € 8 gilt: H ¢ FI(X) oder — H ¢ FI(X). )
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Offenbar besitzt (5) kein unmittelbares syntaktisches Analogon, wihrend (6) und
(7) zu folgenden Definitionen fiihren:

Definition 4.

a) X S8 heiBt syntaktisch widerspruchsfrei beziiglich Bew, wenn Bew(X) = S
gilt.

b) X S 8 heiBt formal widerspruchsfrei beziiglich Bew, wenn fir He S gilt:
H ¢ Bew(X) oder — H ¢ Bew(X).

Satz 5. Fiir beliebige Beweiskalkiile Bew fiir S gilt:

a) Wenn X semantisch widerspruchsfret ist, so ist X formal widerspruchsfrez.

b) Wenn X formal widerspruchsfrei ist, so ist X syntaktisch widerspruchsfres.

Die Umkehrungen von a) und b) gelten fiir beliebige Beweiskalkiile im allgemeinen
nicht. Jedoch liBt sich die Umkehrung von b) leicht durch Aufnahme einer ge-
eigneten SchluBregel erreichen.

Beweis. a) Da stets Bew(X) S FI(X) sein muB, folgt: Wenn fiir einen gewissen
Ausdruck H € S gleichzeitig H € Bew(X) und — H'€ Bew(X) gilt, so ist auch
H, 4 H € Fi(X), d. h., eine nicht formal widerspruchsfreie Menge X kann erst recht
nicht semantisch widerspruchsfrei sein.

b) Ist X formal widerspruchsfrei und H € S ein beliebiger Ausdruck, dann gehort

g einer der beiden Ausdriicke H, — H nicht zu Bew(X); folglich ist Bew(X)
< 8. Ist der Beweishiillenoperator Bew z. B. mit Hilfe eines Kalkiils definiert, der
die SchluBregel py(H, — H; Hy) := H, enthilt, die es gestattet, aus zwei Priimissen
der Form H, — H auf jeden beliebigen (hier als Parameter auftretenden) Ausdruck
H, € 8 zu schlieBen, so gilt fiir Bew offenbar diec Umkehrung von b).

Zwei einfache Beispiele mogen zeigen, daB die Umkehrungen von a) und b) fiir
beliebige Beweishiillenoperatoren nicht zu erwarten sind. Ist Bew durch einen
Kalkiil definiert, der nur die bereits erwihnte SchluBregel @, (q:,(H,, H;) = H, A H,)
enthilt, so kann man auch aus einer semantisch widerspruchsvollen Menge X nicht
auf einen lormn.len Widerspruch H, — H schlieSen, falls X selbst keine mit dem
Negati hen begi den Ausdriicke enthilt. Enthilt andererseits X genau
zwel Ausdriicke der Form H,, — H,, s0 ist X schon formal widerspruchsvoll, jedoch
beziiglich des genannten Kalkiils syntaktisch widerspruchsfrei, da man mittels @,
aus X niemals den Ausdruck — (Hy A — H,) ableiten kann.

Analog zu Definition 4 erhilt man aus den entsprechenden semantischen Defi-
nitionen:

H € S heiBt syntaktisch bhiingig (beziiglich Bew) von X S S, wenn H ¢ Bew(X)
gilt.

X S 8 heiBt syntaktisch vollstiindig (beziiglich Bew), wenn fiir H € SstetsHe Bew(X)
oder — H € Bew(X) gilt.
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Der Leser sei angeregt, analog zu Satz 5 die allgemein giiltigen Beziehungen zwi-
schen diesen und den entsprechenden semantischen Begriffen und auch zwischen
sa.mtllchen syntaktlschen Begriffen untereinander zu ermitteln und die nicht all-

h durch Gegenbeispiele zu bel

Satz 6. Zu jedem fiir eine (eventuell nichtel tare) Spracke S (bzw. (S, o)) zu-
lissigen Kalkil K kann man einen Kalkiil JX' konstruieren, dessen einzige echte
Schlufregeln die Abtrennungsregel @,, die Regel @, der gebund Umb g und
dve durch

@1o(H(x); x) := A xH(x), falls x in H(x) vollfrei vorkommt,

definierte Regel ¢4 sind, so dap fiir alle X S S
Bew 4 (X) S Bew 4 4(X) = Bewyn(X uA) S FI'(X)

gilt, wober X' = (@), s, P10} und A das System aller logischen Axiome von H' 7st.
Insbesondere kann man, da @, p,, p,o elementare Schlufregeln sind, den Gebrauch
nichtelementarer echter Schlufregeln villig vermeiden bzw. sie durch michtelementare
logische Axiome ersetzen.

Beweis. Fiir jede echte SchluBregel ¢ € J (k-gliedrig, m-parametrig) sei
@ GHy, oo, Hy, Py oo, Pr) = HyY > (Hy > ... > (HY > Hy) ..), 8)

falls Hy = ¢(H,, ..., H,; Py, ..., P,) existiert, wobei fiir 7 = 1, ..., k der Ausdruck
H; aus H; dadurch entsteht, daB man durch gebundene Umbenennungen alle
freien Variablen vollfrei macht und anschlieBend zur Generalisierten iibergeht. Es
ist also insbesondere H;” = H;, falls H; abgeschlossen ist. Somit ist jeder k-gliedrigen
m-parametrigen SchluBregel ¢ € J ein (k + m)-parametriges Axiomenschema ¢’
zugeordnet. Fiir 0-gliedrige SchluBregeln ¢ € J sei ¢’ = @, und es sei

={¢': 9 € K @+ 1, 92 Pro} U (P1 P2 Pr0l-
Die Voraussetzung, daB alle Regeln ¢ € J zuliissig fiir (S, o) sind, bedeutet
H, € Fl°({H,, ..., Hy)).

Wir haben daraus zunichst zu folgern, daB die Axiomenschemata ¢’ Ausdriicke aus
Fl°(9) ergeben, daB X’ mithin ebenfalls fiir (S, o) zulissig ist. Es sei w € o eine
zulissige Interpretation von S. Falls w Modell fiir H,, ..., H; ist, ist » auch Modell
fiir H, und daher der Ausdruck (8) bei w allgemeingiiltig. Ist dagegen einer der
Ausdriicke H; (i =1, ..., k) bei o nicht allgemeingiiltig, so ist der entsprechende
Ausdruck H;' (da abgeschlossen) bei jeder Belegung f beziiglich  falsch, mithin ist
(8) wiederum bei w allgememgultlg Wie man sieht, wiire die Zuliissigkeit der Axiomen-

hemata ¢’ nicht al geben, wenn man in (8) statt H;' die Ausdriicke H;
einsetzen wiirde. Zum Belsplel wiirde snch aus der zulissigen elementaren SchluBregel
@10 das nicht allgemeingiiltige Axiomenschema H(x) — A xH(x) ergeben.
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Wir zeigen nun durch Induktion iiber die Beweiskompliziertheit : Ist Hy € Bew (X)),
so ist Hy € Bew y~(X). Dabei ist nur der Fall interessant, da H, durch Anwendung
einer echten SchluBregel @ € K aus Ausdriicken H;, ..., H, erhalten wird, fiir die
schon H, € Bew -(X) gilt. Die Herleitung von H, beziiglich X' kann offenbar dadurch
geleistet werden, daB man zuniichst mittels @, und ¢,, aus den Primissen H,, ..., H,
die entsprechenden Ausdriicke H,', ..., H,’ gewinnt und dann auf diese und das
Axiom (8) k-mal die Abtrennungsregel anwendet.

6.2.  Aussagenlogisches SchlieBen

Eine Abbildung f, die jeder Aussagenvariablen p; ({ =0, 1,2, ...) einen Ausdruck
H = f(p;) einer gewissen formalisierten Sprache S zuordnet, heiBt eine Belegung
beziiglich S. Ist A ein aussagenlogischer Ausdruck, so bezeichne f(A) denjenigen
Ausdruck der Sprache S, den man erhilt, wenn man jede in A vorkommende Variable
pi durch den Ausdruck f(p;) ersetzt. Offenbar kann man f(A) auch induktiv durch die
Regeln

2 8) == 1A),

f(Ay 0 &) = f(A)) 0 f(A;)  fiiro=n,v, >«

definieren und berechnen, wenn f(p;) fiir die vorkommende Variablen vorgegeben
ist.

Eine fiir eine Sprache S (bzw. (S, ¢)) zulissige k-gliedrige und m-parametrige
SchluBregel @ heilt eine aussagenlogische Schlufregel, wenn zu beliebigen Hy, H,, ...,
H, € Sund Py, ..., P, mit

o(Hy, oo, He; Py oo, Pr) = Hy

aussagenlogische Ausdriicke A,, A,, .. ., A, und eine Belegung f beziiglich S existieren,
so daB der aussagenloglsche Ausdmck A —>(A;— = (Ay—>A,) ...) allgemein-
giiltig und

fA) =H, firi=0,1,...,k

ist, mit anderen Worten, wenn H, aus Hj, ..., H; bereits auf Grund der aussagen-
logischen Struktur der beteiligten Ausdriicke folgt

Von den im vorigen Abschnitt definierten Schlul}regeln sind ¢, ¢,™ (m = 1),
@s und @, aussagenlogische SchluBregeln, die iibrigen nicht. Fiir den Spezialfall
0-gliedriger SchluBregeln ergibt sich : Ein Schema logischer Axiome (bzw. ein einzelnes
logisches Axiom) heiBt aussagenlogisch, wenn jedes Axiom H dieses Schemas die
Form f(A,) hat, wobei A, ein allgemeingiiltiger Ausdruck der Aussagenlogik und f
eine Belegung der Aussagenvariablen beziiglich § ist.
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Zur Motivation dieser Definition sei bemerkt, da zum Beispiel die Axiomen-
schemata @,™ (m = 1) nicht unter den Begriff a.ussagenloglscher SchluBregel fallen
wiirden, wenn man, wie die iibrigen Beispiele nahel eine a g
SchluBregel ¢ als eine solche definiert, zu der feste Ausdriicke Ag, Ay, .. A exlsueren,
so daB das oben Verlangte immer dann fiir eine geeignete Belegung f gilt, wenn
o(Hy, ..., Hy; Py, ..., Pp) = H, ist.

Ein Kalkul Bew (spezlell Bewx) heiBt isch vollstindig, wenn fiir jeden

logisch allg giiltigen Ausdruck der Form A - (A, - — (Ay = Ay)

- und ]ede Belegung f

f(Ao) € Bew((f(A,), -, [(Au))
gilt (also insbesondere f(A,) € Bew(d) fiir jeden aussagenlogisch allgemeingiiltigen
Ausdruck A, und jede Belegung f).
Satz 1. Der Kalkii] Ky:= (p,™: m = 1) u(gy) ist genlogisch vollstindig

Beweis. Ist A=A, —>(A; > > (A, > Ay ) a logisch allg

5

giiltig und m der groBte Index darm vorkommender Variablen p;, so wird fiir jede
Belegung f der Ausdruck f(A) in der Form

%”( L9 {1 JY PR f(Pm))

als logisches Axiom erhalten. Daherist f(A) € Bew x.(l/(A,), ey /(A,,)]). Wendet man
auf f(A) und die Ausdriicke f(A;) (: =1, ..., k) k-mal die Abtrennungsregel ¢, an,
8o erhdlt man

f(Aq) € Bew . ((f(A), ..., (AL)),

was zu beweisen war.

Im Kalkiil &, ist die Abtrennungsregel die einzige echte SchluBregel, wihrend
die Gesamtheit aller aussagenlogisch allgemeingiiltigen Ausdriicke als Axiomen-
system dient. Das letzte ist wegen der Entscheidbarkeit (im anschaulichen Sinne)
der aussagenlogischen Allgemeingiiltigkeit zuldssig und fiir die praktische Hand-
habung des aussagenlogischen SchlieBens relativ unproblematisch. In der Aussagen-
logik beschiftigt man sich jedoch ausfiithrlich mit den Moglichkeiten, aussager.-
logisch vollstindige endliche Kalkiile aufzusuchen, d. h. solche, die aus nur endllch
vielen SchluBregeln und jeweils durch einen einzelnen a logisch allg,
tigen Ausdruck A g Axio hemata besteh wobel meist die Abtren-
nungsregel als einzige echte SchluBregel beibehalten wird. Einzelheiten hieriiber
findet man in weiterfiihrenden Lehrbiichern (siche insbesondere [2]). Wir teilen
hier nur ohne Beweis ein gebrauchliches System mit, wobei wir lediglich die den ein-
zelnen Schemate zugrunde liegenden allgemeingiiltigen aussagenlogischen Ausdriicke
angeben:

1. p—>(q—>p)
2. (p—>q)—>p)>p
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3. (p>q >(@g>r)—>(p->r)

4. pAq—>p

6. pAq—q

6. p>q —>(p>r)—>(@—>qar)
7.p>pvq

8..q—>pvq

9. (p—»r)—»((q—-)l‘)—»(pvq—»r))
10. (p~q) —>(—>q)

11. (pe q)~> (@ —p)

12. (p>q) > ((@—>Pp) > (P Q)
13. (p>q) > (1 q9—>—P)

14. p>——p

18. 4 —p—>p

Dabei entspricht z. B. dem Ausdruck 1. die 0-gliedrige 2-parametrige Schlufiregel
(bzw. das 2-parametrige Axiomenschema)

eW(H,, Hy) :=H, - (Hy — H,) (H,, H, € S beliebig).

Zu den iibrigen Ausdriicken 2. bis 16. gehéren analog definierte Axiomenschemata
@ bis g'®, Als einzige echte SchluBregel dient hier wieder die Abtrennungsregel

P1-
Als Beispiel eines korrekten Beweises beziiglich des logisch vollstindigen

-5 )

Kalkiils X = {g,, ¢V, ..., p(18)] zeigen wir:

(H' > (H' > H")) > (H' > H") € Bew,(8) filr beliebige H', H".

GemiiB der allgemeinen Definition des Beweisbegriffs ist hierzu eine Folge H,, H,,
..., H, von Ausdriicken so anzugeben, daB H, der zu beweisende Ausdruck und jedes
Glied der Folge ein logisches Axiom ist oder durch Anwendung von ¢, auf voran-
gbhende Folgenglieder erhalten werden kann. Diese Bedingungen erfiillt z. B. die
Folge

H, = g®(H, B’ - H", H")
= (H' - (H' > H")) > ((H' > H") > H") > (H' > H"),
H® HM

H, = p®(;H’' - H", H")

=((d'»H")>H") > (H' > H")) > (H' > H"),

=Y H®
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H, = ¢®(HM, H®), H®)

= (H® - H®) ((Hm — H®) > (HO —» Hm)),

H, = g(Hy, Hy) = H, - (H® ~ H®),

Hs = ¢,(H,, H;) = H® — H® ist der zu beweisende Ausdruck.
Offenbar erhilt man durch Vertatischung einiger Folgeglieder weitere Bewcise fiir
H;, z. B. H,, H,, Hs, H,, Hy oder Hj, H;, H,, H,, H;. Ferner sei bemerkt, daB wir,
genau betrachtet, nicht einen einzelnen Beweis fiir einen bestimmten Ausdruck,
sondern ein‘Schema von Beweisen fiir alle Ausdriicke der Form

(K> (H' > H")) > (H' - H")

aufgeschrieben haben. Ersetzt man in diesem Schema die Variablen H', H” fiir
beliebige Ausdriicke einer beliebigen priidikatenlogischen Sprache wieder durch
Variablen der Form p; bzw. p, q, 1, ..., 80 erhdlt man einen Beweis fiir die Ableitbar-
keit des Ausdrucks

P> @—>9)—>(P—>q)

aus den Axiomen 1. bis 15. mittels Abtr gsregel und Einsetzung beliebiger
aussagenlogischer Ausdriicke fiir die Variablen in den Axiomen. Demnach sind solche
sussagenlogischen Ableitungen im Prinzip nichts anderes als Schemata von Beweisen
fiir die aussagenlogische Allgemeingiiltigkeit ganzer Klassen von Ausdriicken
beliebiger priidikatenlogischer Sprachen. AbschlieBend wollen wir H— H € Bew 4-(3)
fiir beliebige Ausdriicke H zeigen:

" Als Spezialfall des oben Bewiesenen ergibt sich fiir H' = H” = H

(H > (H > H)) > (H > H) € Bewy(9),
ferner '
pOGH, H) = H - (H — H) € Bew (@),

demnach die Behauptung durch Anwendung der Abtrennungsregel. Um aus diesem
,,Metabeweis‘ einen Beweis im Sinne der Definition 3 aus 6.1. zu erhalten, miiSte
man zuniichst die bereits erhaltene Folge H,, H,, Hy, H,, H fiir den Fall H' = H"”
= H neu aufschreiben und dann durch

H, = ¢"W(;H, H), H, = g\(H;, Hy)

fortsetzen. Auch hier bleibt die Beweiseigenschaft bei gewissen Vertauschungen
der Beweisglieder wieder erhalten. Der Leser ermittle alle Permutationen der Folge .
H,, ..., H,, die Beweise fiir H, sind.
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6.3.  Der Hauptsatz der mathematischen Logik und seine Folgerungen

Definition. Ein Beweiskalkiil # fiir eine Sprache S (bzw. (S, 0)) heiBt vollstindzg,
wenn

Bewy(X) = FI(X) firXc$§
gilt.

Da die Zuldssigkeit eines Kalkiils fiir eine Sprache (S, o) durch Bew ,-(X) S FI*(X)
charakterisiert ist, ist nur die umgekehrte Inklusion von Bedeutung. Demnach ist
ein Kalkiil genan dann vollstindig, wenn fiir jeden Ausdruck H € FI*(X) ein J-
Beweis fiir H aus X existiert, mit anderen Worten, wenn das inhaltliche ¢-Folgern
in S gleichwertig durch ein formales Beweisen mit Hilfe der SchluBregeln und
logischen Axiome von J( ersetzt werden kann. Es gilt der

Hauptsatz der mathematischen Logik (Satz von GGpEL-MAL'CEV). Zu
jeder clementaren Sprache S8 kann man einen endlichen vollstindigen Kalkil JX an-
geben. (Da ein solcher Kalkiil tm tlichen fiir alle el en Sprachen auf ein-
heitliche Weise definierbur ist, kann man auch sagen: Man kann einen endlichen
Kalkil J so angeben, daf Bew (X) = FU(X) fiir jede in einer elementaren Sprache
formulierte Satzmenge X 1ist.)

Der Beweis dieses Satzes, der seinem wesentlichen Inhalt nach zuerst von GopEL
ausgesprochen und bewiesen wurde,?) ist trotz vieler im Laufe der letzten Jahrzehnte
daran vorgenommener Vereinfachungen bzw. neuer Beweiswege immer noch recht
kompliziert.?) Einen Beweisweg werden wir im nichsten Abschnitt skizzieren und
uns in diesem Abschnitt ausschlieBlich mit verschiedenen Folgerungen und An-
wendungen des Hauptsatzes und deren gegenseitigen Beziehungen beschiftigen.

1. Als unmittelbarer Spezialfall des Hauptsatzes ergibt sich fiir X = @ der

Vollstandigkeitssatz von GOpEL. Man kann einen endlichen Kalkill X so
konstruieren, daf

Bew 4-(0) = Flg(9)

fiir jede elementare Sprache S gilt, d. h., die Menge agg der allgemeingiiltigen Ausdriicke
einer elementaren Sprache 8 ist durch fortlaufende Anwendung der Schlufregeln von I
auf die logischen Axziome von X ,aufzihlbar".

1) K. G6peL, Die Vollstindigkeit der Axiome des logisch unkti kalkiils, tsh
Math. Phys. 87 (1930), 349 —360; nachgedruckt in [4].

2) Siehe hierzu N. J. ZyaMUNT, A survey of the methods of proof of the Godel-Malcev’s comple-
teness theorem, in [38].
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2. Enthilt K die Abtrennungsregel, so folgt aus Bew 4 (8) = FU@) fiir endliche
Mengen X von abgeschlossenen Ausdriicken bereits Bew (X) = FUX). Enthilt X
auferdem @, und @4 (vgl. 6.1., Satz 6), so gilt dies fiir beliebige endliche Mengen X.

Beweis. Es sei X = (H,, veey Hyly H; ein durch Anwendungen von ¢, und ¢,y
aus H; entstehender abg Ausdruck. Ist nun H € FI(X), so ist auch
H € FY{H,, ..., H,}), folglich gilt (wegen der Giiltigkeit des Deduktionstheorems fiir
das Folgern, vgl. S. 133)

H, - (Hy > (... > (Hy = H) ...)) € FUB) = Bew 4-(8) S Bew 4 (X).

Falls nicht alle H; selbst abgeschlossen sind, ergibt sich H,, ..., H, € Bew )y (X) mittels
@ und @y, woraus H € Bew 4(X) durch n-malige Abtrennung beweisbar ist.

3. Da fiir jeden Beweisoperator Bew - trivialerweise der Endlichkeitssatz (6.1.,
Satz 4) gilt, folgt aus dem Hauptsatz sofort der

Endlichkeitssatz fiir das Folgern. Ist H € FUX), so existiert eine endliche
Teilmenge E von X mit H € FUE).

4. Dem Endlichkeitssatz fiir das Folgern ist équivalent der

Satz von Mav'ckv?) (Endlichkeitssatz fiir Modelle). Besitzt jede endliche Teil
eines Aziomensystems X ein Modell, so besitzt auch X ein Modell.

Wir beweisen die Aquivalenz der beiden Endlichkeitssatze. Zuniichst sei der
Endlichkeitssatz fiir das Folgern vorausgesetzt, und es sei X eine solche Teilmenge
einer Sprache S, daB jede endliche Teilmenge von X ein Modell besitzt. Aus der An-
nahme, X besitzt kein Modell, d. h. ist semantisch widerspruchsvoll, ergibt sich
fiir einen beliebigen Ausdruck H ¢ S sowohl H € FI(X) als auch — H € FI(X).
Nach Voraussetzung gibt es daher endliche Teilmengen E,, E, von X mit H ¢ FI(E,),
— H € FU(E,), daher ist H, — H € FI(E, u E,). Dies ist aber ein Widerspruch zur
Voraussetzung, da E, u E, als endliche Teilmenge von X ein Modell besitzen muB.
Wir setzen nun die Giiltigkeit des Satzes von MAL'CRV voraus und betrachten eine
Satzmenge X und einen Ausdruck H € FI(X). Die Annahme, daB H ¢ FI(E) fiir alle
endlichen Teilmengen E von X gilt, ist gleichbedeutend damit, daB fiir alle der-
artigen Mengen E gilt: Es gibt ein Modell fiir E v (H'}, wobei H' dadurch aus H
entsteht, daB man zunichst alle freien Variablen vollfrei macht, dann zur Generali-
sierten iibergeht und diese negiert. Da somit jede endliche Teilmenge von X v {H')
ein Modell besitzt, besitzt nach dem Satz von Mar'cev die Menge X u (H’) ein
Modell, d. h., X besitzt ein Modell, in dem H nicht allgemeingiiltig ist, im Widerspruch
zur Voraussetzung H € FI(X).

1) Manbnes, A. 1., Ui hungen aus dem Gebiete der math ischen Logik, Marex. 6.1
(43) (1936), 323— 336,
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5. Enthiilt K die Regeln @y, @s, 910, 80 folgt aus dem Satz von MAL'CEV und der
Vorausselzung Bew - (0) = FUD) die Vollstindigkeit von K.

Beweis. Zu H ¢ Fl(X) existiert nach dem Satz von MAL'CEv eine endliche Teil-
menge E = {H,, ..., H,} von X mit H € Fl({H,, ..., H,}), woraus nach 2.

H € Bewy((Hy, ..., Hy}) S Bewy-(X)
folgt.

Der Satz von MAL'CEV, von diesem bei algebraischen Untersuchung tdeckt
und unabhiingig vom Gédelschen Vollstindigkeitssatz mit algebraischen Methoden
bewiesen, hat in den letzten Jahrzehnten viele An dungen in der Mathematik,
insbesondere in der Algebra gefunden. Wir geben nachfolgend einige einfache Beispiele
fiir solche Anwendungen an. ’

6. Zu jeder Primzahl p qibt es einen unendlichen Korper der Charakteristik p.

Aus der Theorie der endlichen Kérper (Galois-Felder) ist bekannt, da8 es bei vor-
gegebener Primzahlcharakteristik p genau dann einen Korper der Charakteristik p
mit n Elementen gibt, wenn n eine Potenz p™ von p ist, und daB es zu vorgegebenem
p und m bis auf Isomorphie genau einen Korper GF(p™) der Charakteristik p mit
p™ Elementen gibt. Die Theorie der Galois-Felder sagt jedoch nichts iiber die Existenz
unendlicher Koérper mit Primzahlcharakteristik aus, und alle ,bekannten* un-
endlichen Korper haben die Charakteristik 0.

Essei S eine elementare einsortige Sprache und X, ein in dieser Sprache formuliertes
endliches Axiomensystem der Korpertheorie, dem wir noch als Axiom iiber die
Charakteristik den Ausdruck x + x + .-+ + x = 0 hinzufiigen. Ferner sei H, fiir

P
n=1,2,3,... der Ausdruck Vxx = x (d. h., es gibt mindestens n Dinge) und

n
X=X,u(H,;n=1,2,3,...). De jede endliche Teilmenge von X hdchstens
endlich viele der Aussagen H, iiber die Mindestzahl enthilt, besitzt sie ein Modell
in Gestalt eines Galois-Feldes GF(p™) mit hinreichend groBem m. Daher besitzt
nach dem Satz von MaL'CEV auch die gesamte Menge X ein Modell. Dieses mu8 ein
(wegen der Giiltigkeit aller H, in ihm) unendlicher Kérper der Charakteristik p
sein.

7. Es gibt einen nichtarchimedisch geordneten Korper.

Wir erweitern die in 6. betrachtete Sprache der Kérpertheorie durch ein zwei-
stelliges Relationssymbol ,,<‘‘ und ein weiteres Konstantensymbol ¢ und formulicren
in dieser Sprache S’ ein endliches Axiomensystem X, fiir geordnete Kérper, in dessen
Axiomen die Konstante ¢ zunéchst nicht vorkommt, so daB eine Interpretation der
Sprache S’ genau dann ein Modell von X, ist, wenn sie einen geordneten Kérper
definicrt, in dem die Konstante ¢ durch ein beliebiges Korperel t interpretiert
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ist. Fir n = 1,2,3,... sei nun H, der Ausdruck 1 +1+1+4 .- 4+ 1 <c, und es
sei —
X=X,u(H,:n=1,23,..}.

Jede endliche Teilmenge von X besitzt ein Modell in Gestalt etwa des Korpers der
rationalen Zahlen, wobei die Konstante ¢ durch eine hinreichend groBe natiirliche
Zahl zu interpretieren ist, damit die jeweils endlich vielen Ausdriicke H, erfiillt
werden. Folglich besitzt die Gesamtmenge X ein Modell, und dies muB ein geordneter
Koérper sein, in dem die Konstante ¢ durch ein Element interpretiert ist, das groBer
als alle endlichen Vielfachen des Einselements ist. Mithin muB dieser Korper
nichtarchimedisch geordnet sein. '

8. Mit einer éhnlichen Uberlegung wie in 7. kénnen wir zeigen, daB das archi-
medische Axiom fiir geordnete Korper in keiner elementaren Sprache der Kérper-
theorie formulierbar ist. Dazu nehmen wir an, §’ wiire eine zur Formulierung des
archimedischen Axioms geeignete elementare Sprache (die eventuell auBer den
Grundbegriffen ,,+, ,,-%, ,,<*, 0, 1, ¢ noch beliebig viele weitere Relations-, Opera-
tions- und Konstantensymbole enthalten kann), und X, wire ein in 8’ formuliertes
endliches Axiomensystem fiir geordnete Korper einschliefllich des archimedischen
Axioms. Es sei dann fiir » = 1,2,3, ... der Ausdruck H, wie in 7. gebildet und
wieder

X=Xyu{H,:n=123,...).

Falls die Sprache §’, das Axiomensystem X, und insbesondere die darin enthaltene
Formulierung des archimedischen Axioms ,,verniinftig* sind, muB sich 8’ so im
Koérper der rationalen Zahlen interpretieren lasscn, daB ein Modell von X, entsteht,
wobei wiederum die Konstante ¢, die in X, nicht vorkommen soll, durch eine beliebige
rationale Zahl interpretiert werden kann. Demnach ist jede endliche Teilmenge von
X, und damit auch X selbst, semantisch widerspruchsfrei, d. h., es mu8 einen im
Sinne des Axic ystems X, ,,archimedisch* geordneten Kérper geben, in dem
zugleich ein Element existiert, das groBer als alle endlichen Vielfachen des Eins-
elements ist.

Aus 8. folgt sofort: Ist umgekehrt in einer nichtel taren Sprache ein inhaltlich
zutreffendes archimedisches Axiom formulierbar, so kann fiir diese nichtelementare
Sprache (8, ¢) der Satz von MAL'CEV nicht gelten und daher auch kein fiir (S, o)
vollstindiger Kalkiil existieren. 8. und die eben formulierte Folgerung bilden das
Musterbeispiel fiir eine Reihe von Resultaten folgender Art: Gewisse Begriffe kénnen
in elementaren Sprachen nicht definierbar bzw. gewisse Sachverhalte nicht formulier-
bar sein. Sind diese Begriffe bzw. Sachverhalte andererseits in gewissen nicht-
elementaren Sprachen nachweislich doch definier- bzw. formulierbar, so kann fiir
diese Sprachen ein zum Hauptsatz analoger Satz nicht gelten. Als wesentliche
weitere Resultate dieser Art behandeln wir noch die Nichtexistenz eines vollstindigen
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Kalkiils fiir die durch ein einstelliges Relationssymbol erweiterte nichtelementare
Sprache der Peano-Ax.iome (vgl. 4.5., Beispiel 5) und die Unmdglichkeit einer

Endlichkeitsdefinition in el taren Formalisierungen der Mengenlehre (vgl.
Kapitel 5).

9. Es set S die um ein einstelliges Relati bol R bereicherte Sbmche zur Formu-
Uerung der Peano-Axiome und a(,, die dort betrachiete Interpretati hrinkung

Dann qibt es keinen vollstindigen Kalkiil fiir (S a(g))-

Beweis. Wir nehmen an, daB ein vollstindiger Kalkiil fiir-(S, o)) existiert.
Dann gilt fiir das oy)-Folgern der Endlichkeitssatz und folglich auch ein Endlichkeits-
satz fiir o;-Modelle: Besitzt jede endliche Teilmenge von X S 8 ein o(;)-Modell, so
besitzt ebenfalls X ein o(;)-Modell. Es sei nun X, das in § formulierte endliche
System der Peano-Axiome (worin das Symbol R nicht vorkommt) und H, der Aus-

druck V n — R(n) sowie H, der Ausdruck R(o’.- ) fir m = 1 (d. h,, H, hat die
Bedeutung: Die durch R bezeichnete einstellige Relation trifft auf d1e Zahl m zu).
Jede endliche Teilmenge von X = X,u {Ha:m =0, 1; 2, ...} besitzt ein o(y)-Modell
in Gestalt der natiirlichen Zahlen, wobei R durch eine geeignete einstellige Relation
im Bereich der natiirlichen Zahlen zu interpretieren ist. Ist m, der groBte Index der
in einer solchen Teilmenge von X vorkommenden Ausdriicke H,, so braucht man
fiir R nur diejenigen Relationen zu wihlen, die auf die Zahlen 0, 1, ..., my zutrifft
und auf die iibrigen nicht (damit gegebenenfalls H, erfiillt wird). Auf Grund des
Endlichkeitssatzes fiir o(3)-Modelle miite daher auch die gesamte Menge X ein
o(s)-Modell besitzen. Da X, bereits o,)-kategorisch ist, kann es sich hierbei nur um
,,die’ natiirlichen Zahlen handeln, in denen zusitzlich eine Relation existiert, die
auf 0,1,2,3,... zutrifft, jedoch nicht auf alle natiirlichen Zahlen. Ein herrlicher
Widerspruch!

10. In einer elementar formalisierten Mengenlehre gibt es keinen Ausdruck H(x)
mit genau einer vollfreien Variablen x, der in jedem Modell des betrachieten Axiomen-
systems genau auf die endlichen Mengen dieses Modells zutrifft.

Beweis. Es sei X, ein endliches elementares widerspruchsfreies Axiomensystem
der Mengenlehre, S die zu seiner Formulierung benutzte elementare Sprache, ver-
mehrt um eine Konstante M zur Bezeichnung einer beliebigen festen Menge. Ist
H(x) eine ,,Endlichkeitsdefinition‘* in der Sprache S, so sei H, der Ausdruck H(M)
und, fiir m = 1 sei der Ausdruck H, durch Vx x € M gegeben. Jede endliche Teil-
menge von

X,u(Hy:m=0,1,2,3,. )
besitzt als Modell indest das vorausgesetzte Modell von X, worin die zusitzliche

Konstante M durch eine geniigend groBe endliche Menge interpretiert ist. Daher
muB nach dem Satz von MAL'cEv ein Modell von X| existieren, in dem es eine im
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Sinne der Definition H(x) endliche Menge gibt, die jedoch im anschaulichen Sinn
unendlich viele Elemente enthilt. Fiir viele konkrete Axiomensysteme und Endlich-
keitsdefinitionen konnte man solche ,,Nichtstandardmodelle* explizit angeben. Wir
verweisen nochmals auf Kapitel 5 und die dort zum Thema Endlichkeitsdefinitionen
angegebene Literatur (vgl. S. 112).

11. Eine nichtelementare Sprache (S, ¢) war als un tlich nichtel tar be-
zeichnet worden (vgl. 4.5., Definition 5), wenn ein Axiomensystem ¥ — 8 existiert,
so daB

Fig(X) = FlgXvY) firX< S

gl.lt Prizisiercn wir dies nachtriglich dahingehend, da8 ¥ durch ein endliches oder
g haub System von Axiomenschemata (im Sinne O-gliedriger
SchluBregeln) erzeugbar sein soll, so kénnen wir einen beliebigen vollstindigen Kal-
kiil JC fiir die elementare Sprache 8 so zu einem Kalkiil K’ erweitern, daB fiir
X c Sgilt:

Bew (X) = Bew (X u ¥) = FI(X u Y) = FI/(X),

iiber

d. h., zu jeder lich nichtel taren Sprache (S, 0) gibt es einen vollstindigen
Kalkul und umgekehrt kann eine solche nichtelementare Sprache, fiir die kein voll-
tindiger Kalkiil t (vgl. die in Kapitcl 8 und 9 betrachteten Sprachen) nicht
u N ool 4, ae,"n

6.4.  Beweis des Hauptsatzes

Fiir den detaillierten Nachweis, daB bestimmte Kalkiile vollstindig sind, verweisen
wir auf weiterfiihrende Lehrbiicher. In diesem Abschnitt geht es darum, einen der
heute bekannten Beweiswege, der auf L. HENKIN?) zuriickgeht, in seinen Grund-
ziigen, ohne Bezugnahme auf einen bestimmten Kalkiil, darzulegen und dabei her-
auszuarbeiten, wie man anhand der Beweisidee die Axiome und SchluBregeln, die
ein vollstindiger Kalkiil enthalten miiBte, nach und nach zusammenstellen kann.

Fiir das Folgende wird sich eine mogliche Eigenschaft von Beweiskalkiilen als
duBerst wichtig erweisen, die im Fall ihrer Giiltigkeit als Deduktionstheorem fiir den
entsprechenden Kalkiil bezeichnet wird:

Ist Hy € Bew(X u (H,)) und H, abgeschlossen, so ist Hy — H, € Bew(X).

Der Leser iiberpriife zunichst, daB dieses Deduktionstheorem fiir beliebige Folge-
rungsoperatoren FI° (fiir Bew eingesetzt) erfiillt und daB hierbei die Voraussetzung

!) L. HENEIN, The completeness of the first order functional calculus, J. of Symb. Logic 14
(1949), 159—166.
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der Abgeschl heit von H, wesentlich ist. Die Giiltigkeit des Deduktionstheorems
fiir das Folgern bedeutet insbesondere, daB es fiir jeden vollstindigen Kalkiil eben-
falls gelten muB, mit anderen Worten, daB es eine notwendige Bedingung fiir die
Vollsténdigkeit eines Kalkiils ist. Im folgenden Satz formulieren wir ein System von
hinreichenden (jedoch keineswegs notwendigen) Bedingungen dafiir, daB fiir einen
Beweiskalkiil X das Deduktionstheorem gilt.

Satz 1. Ist J ein aussagenlogisch vollstindiger Kalkiil mit @y, @s, @1 als einzigen
echten Schlupregeln (vgl. 6.1., Satz 6) und

a) (H' — H"(x)) — (H" — A xH"'(x) € Bew 4-(9), falls H' abgeschlossen,
_b) (H' > H") > (H' —> H*) € Bew (@), falls H' abgeschlossen und H* durch
etnmalige Anwendung von @y auf H'' entsteht,
(die Voraussetzungen a), b) lassen sich z. B. durch Aufnahme der entsprechenden
Ausdriicke unter die logischen Axiome von X" erfiillen), so gilt fiir den Kalkil X das
Deduktionstheorem.

Zum Beweis von Satz 1 denken wir uns X und den abgeschlossenen Ausdruck H;
beliebig gewihlt und zeigen die Behauptung durch Induktion beziiglich.des indukti-
ven Aufbaus von Bew (X v {H,}).

1. Fall: H, € X oder H, ist logisches Axiom von X. Dann ist H, € Bew (X),
ferner ist H, — (H, — H,) aussagenlogisch allgemeingiiltig, folglich Element von
Bew 4-(X). Anwendung von ¢, auf diese beiden Primissen ergibt die Behauptung.

2. Fall: Hy = H,. Dann ist H, — H, € Bew ,-(X) wegen seiner aussagenlogischen
Allgemeingiiltigkeit.

3. Fall: H, entsteht durch Anwendung von ¢, auf Ausdriicke Hy — H,, H; € Bew X
(X {Hy)), fir die schon H, - (H, - H,), H, - H; € Bew 5 (X) gilt. Aussagen-
logisch allgemeingiiltig ist aber (H; — (Hy — H,)) — ((H, - Hs) - (H; - H;)). Da-
her gehort dieser Ausdruck zu Bew 4-(X), und man erhilt die Behauptung durch
zweimalige Anwendung der Abtrennungsregel.

4. Fall: H, entsteht durch Anwendung der Regel @, der gebundenen Umbenen-
nung aus einem Ausdruck H, € Bew (X u{H,}), fiir den schon H, —~H; € Bew -(X)
gilt. Dann erhélt man H, — H, € Bew 4-(X) durch Anwendung der Abtrennungsregel
auf das logische Axiom (H, — Hy) - (H; — H,) € Bew (X), das unter den gege-
benen Voraussetzungen in das Schema von Axiom b) gehért.

5. Fall: H, = gyo(Hs(x); x) = A xHy(x) mit Hs(x) € Bewy (X u (H,}), wobei
schon H;, — Hy(x) € Bew 4(X) gilt. In diesem Fall erhilt man die Behauptung analog
zum 4. Fell unter Benutzung von Axiom a).

Satz 2. Qilt fiir einen Kalkiil X:
a) K ist aussagenlogisch vollstindig,
b) das Deduktionstheorem,
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-¢) entsteht der abgeschl Ausdruck H aus H durch gebundene Umbenennungen

)

und Generalisierungen, so st H > He€ Bew (D),
d) jede syntaktisch widerspruchsfreie Menge besitzt esn Modell,
80 18t I vollstiindig.

Alle vier Voraussetzungen sind offenbar notwendige Bedingungen fiir die Voll-
stindigkeit. Dabei lassen sich a) und b) gemi8 6.2. und Satz 1 leicht verwirklichen
und c) gegebenenfalls durch Aufnahme eines entsprechenden Schemas logischer
Axiome, ohne daf dadurch die Voraussetzungen a), b) wieder gefihrdet werden.
Demnach liefert Voraussetzung d) eine handliche Methode fiir den Nachweis, daB
gewisse Kalkiile vollstandig sind. Wir beweisen zunichst Satz 2:

Es ist nur zu zeigen, daB fiir beliebige Ausdriicke H und Ausdrucksmengen X
aus H ¢ Bew ,-(X) stets H ¢ FI(X)folgt. Essei H ¢ Bew - (X), H ein abgeschlossener
Ausdruck, der dadurch aus H entsteht, daB man alle eventuellin H frei vorkommenden
Variablen durch gebundene Umbenennungen vollfrei macht und dann zur Generali-
sierten iibergeht. Wire X v (— H|} syntaktisch widerspruchsvoll, so wire insbe-
sondere H € Bew (X u {— H}), folglich nach dem Deduktionstheorem — H — g
€ Bew y(X), woraus wegen der aussagenlogischen Vollstindigkeit von & nun H
€ Bew_y-(X) und daher wegen Voraussetzung c) und a) auch H € Bew~(X) folgt, im
Widerspruch zum Beweisanfang. Demnach ist X v {— H} syntaktisch widerspruchs-
frei, besitzt also nach d) ein Modell. Dies ist ein Modell von X, in dem H nicht allge-
meingiiltig ist, d. h. H ¢ FI(X), was zu zeigen war.

Die Idee von HENKIN, fiir geeignete Kalkiile die Voraussetzung d) von Satz 2 zu
beweisen, besteht darin, im wesentlichen die Menge der variablenfreien Terme der
betrachteten Sprache als Grundbereich eines zu konstruierenden Modells w fiir eine
als syntaktisch widerspruchsfrei vorausgesetzte Menge X zu benutzen. In diesem
Grundbereich soll w wie folgt definiert werden:

a) Fiir Konstantensymbole ¢ der Sprache sei w(c) = c.

b) Ist F-ein n-stelliges Operationssymbol und sind t,, ..., t, variablenfreie Terme
entsprechender Sorte, so sei w(F) (ty, ..., t,) := F(t,, ..., t,). Auf diese Weise ordnet
in der Tat die Operation w(F) variablenfreien Termen t,, ..., t, wieder einen variablen-
freien Term zu.

c) Ist R ein n-stelliges Relationssymbol und sind t, ..., t, variablenfreie Terme
entsprechender Sorte, so sei

(b, +ve ta) € @ (R) 1> Rty, ..., t,) € Bewy(X).

Auf diese Weise ist in der Tat eine n-stellige Relation w(R) im Bereich der variablen-
freien Terme definiert.

Aus der Anfangsfestsetzung c) soll sich durch Induktion beziiglich der Kompli-
ziertheit der Ausdriicke ergeben: Kommen in H genau die Variablen x,, ..., x,
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frei vor und ordnet eine Belegung f beziiglich der betrachteten Interpretation w
diesen Variablen die Tcrme t,, ..., t, zu, so gilt

Wert(H, w, f) = W genau dann, wenn Sub(H; x,, t;; ...; X, ty) € Bew 4(X).
’ (1)

Ist K nun vollstindig, so muB durch geeignete SchluBregeln bzw. logische Axiome
gesichert sein, da8 aus H jeder Ausdruck der Form Sub(H; x,, t,; ... ; X,, t,) beweis-
bar ist. Daher ergibt sich aus (1): Ist H € Bew 4(X), so ist H beider Interpretation w
allgemeingiiltig, d. h., w ist ein Modell fiir Bew 4-(X) und damit erst recht fiir X.

Die Ausarbeitung dieser Idee zu einem Beweis erfordert allerdings einige Korrektu-
ren des Ansatzes:

1. Da die eventuell vorhandenen Operationssymbole auch durch partielle Opera-
tionen interpretiert werden diirfen, bezeichnet nicht jeder variablenfreie Term bei
jeder Interpretation ein Ding. Vielmehr folgt die Existenz einer Bedeutung des
variablenfreien Terms t genau dann aus X, wenn t = t € FI(X), d. h. (unter Voraus-
setzung der Vollstindigkeit des betrachteten Kalkiils) wenn t = t € Bew 4(X) gilt.
Die Menge dieser variablenfreien Terme bezeichnen wir mit 7'(X). (Im Fall des in der
Literatur meist betrachteten Nachweises der Vollstindigkeit von Kalkiilen fiir
Sprachen (S, a(;)) (vgl. 4.5.) entfillt diese Betrachtung, ebenso, falls die betrachtete
Sprache keine Operationssymbole enthilt. In beiden Fillen ist also 7'(X) unabhéngig
von X die Menge aller variablenfreien Terme.)

2. Ist t, = t, € Bewy(X) fiir variablenfreie Terme t,,t, (dann ist schon t;, t,
€ T(X)), so bezeichnen t, und t, in jedem Modell von X das gleiche Ding. Demnach
darf man nicht 7'(X) selbst, sondern die Aquivalenzklassen beziiglich der durch

by o ty 1o by =ty € Bew y(X)

definierten Relation als Grundbereich des zu konstruiercnden Modells nehmen. Der
Nachweis, daB ,,~‘ eine Aquivalenzrelation in 7'(X) ist und daB die sinngemiB
auf die Aquivalenzklassen iibertragenen Definitionen von o(F) bzw. w(R) repriisen-
tantenunabhiingig sind, fithrt auf ein System von identitdtstheoretischen Ausdriicken,
die fiir jeden vollstindigen Kalkiil (analog zu einem aussagenlogisch vollstindigen
Axiomensystem) in Bew -(8) enthalten, also entweder logische Axiome von J oder
aus solch ittels der SchluBregeln von J beweisbar sein miissen. Zum Beispiel
fishrt die Forderung der Symmetrie von ,,~* auf

b =ty > t, = t; € Bew(0),

so daB wegen der aussagenlogischen Vollstindigkeit von J aus t, = t, € Bew (X)
wie gewiinscht t, = t, € Bew 4(X) folgt. Analog fiihrt die Forderung der Repriisen-
tantenunabhiingigkeit der Definition von w(R) auf

i =t ARy, oo, bicy, By oons 8) = Riby, oo, iy, b, oo, t) € Bewy(8).
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Reduziert man diese Ausdriicke unter Beriicksichtigung der SchluBregeln eines
speziellen Kalkiils noch so weit wie méglich, so gelangt man auf diesem Wege fast
zwangsliufig zu einem System identititstheoretischer Axiome als notwendigem
Bestandteil eines vollstindigen Kalkiils.

3. Im allgemeinen ist der Ubergang von der zuniichst betrachteten Sprache S zu
einer durch hinreichend viele Konstantensymbole erweiterten Sprache S’ nétig
(in S braucht es iiberhaupt keine variablenfreien Terme zu geben!), denn zur Reali-
sierung des angestrebten Modells mu8 es zu jedem Ausdruck der Form V xH(x) aus
Bew 4-(X) einen variablenfreien Term t geben, so da8 H(t) € Bew 4-(X) gilt.

4. Als Spezialfall ergibt sich aus (1), daB fiir abgeschlossene Ausdriicke H

H € Bewy(X) & — H ¢ Bew ¢(X)

gelten muB. Hierin folgt die Richtung ,,=* aus der vorausgesetzten syntaktischen
Widerspruchsfreiheit von X (die wegen der aussagenlogischen Vollstindigkeit von J
mit der formalen Widerspruchsfreiheit iibereinstimmt). Die Gegenrichtung ,&*
gilt aber nur dann, wenn Bew ~(X) sogar eine maximale widerspruchsfreie Menge ist.
Ist andererseits w ein Modell fiir eine maximale widerspruchsfreie Menge ¥ mit
Y 2 X, so ist w auch ein Modell fiir X. Daher benétigen wir:

Satz 3. Zu jeder syntaktisch (und formal) widerspruchsfreien Menge X gibt es eine
mazximale syntaktisch widerspruchsfreie Menge ¥ 2 X.

Beweis. Unter den von uns ang Voraussetzungen ist jede formalisierte
Sprache S als unendliche Teilmenge einer Wortmenge W(4) mit abzihlbarem
Alphabet selbst abziihlbar. Wir gehen von einer Abzihlung S = {H,, H,, H,, ...}
von S aus und definieren induktiv Obermengen X,, von X:

Xo =X N
X e X, v {H,), falls X, v {H,) widerspruchsfres,
" X sonst. -

Dann gilt X, € X, € X, S -+, und alle Mengen X, sind nach Konstruktion wider-
spruchsfrei. Wir behaupten nun, da8 ¥ := U X, eine maximale widerspruchsfreie

A=0

Obermenge von X ist. Klar ist X & Y. Wir zeigen, daB ¥ widerspruchsfrei ist:
Falls nicht, gibt es einen Ausdruck H, so daB H, — H € ¥ ist. Nach Definition von ¥
existieren daher natiirliche Zahlen m, n mit H € X, und — H € X,,. Ist dabeim < =,
so ist H, — H € X,. Fir » < m ist H, - H € X,,. Alle Mengen X, sind aber wider-
spruchsfrei. Wir zeigen weiter, daB ¥ eine maximale widerspruchsfreie Menge ist,
mit anderen Worten, daB ¥ v {H} widerspruchsvoll fiir H ¢ ¥ wird. Jedcr Ausdruck
H hat eine gewisse Nummer 7 beziiglich der betrachteten Abzihlung von S. Ist nun
X, v (H,} widerspruchsfrei, so ist H, € X,,; & Y. Fallsalso H, ¢ ¥, so0 ist X, u {(H,}
widerspruchsvoll, daher ist ¥ v {H,} erst recht widerspruchsvoll.



138 6. Syntaktische Grundbegriffe der Metamathematik

Wir geben nun in Einzelschritten die endgiiltige Konstruktion eines Modells fiir
eine syntaktisch widerspruchsfreie Menge an, wobei wir solche Beweise auslassen,
die nur unter Bezug auf den jeweils betrachteten konkreten Kalkiil gefiihrt werden
konnen.

1. Schritt. Gegeben sei eine syntaktisch widerspruchsfreie Teilmenge X einer
elementaren Sprache S. Die Sprache S’ entstehe aus S durch Hinzunahme abzihlbar
vieler neuer Konstantensymbole ¢, ¢,, ¢, ... (fiir jede Sorte; wir beschrinken uns
hier und im folgenden zwecks Vereinfachung der Formulierungen auf den Fall ein-
sortiger Sprachen). Ferner sei Hy, H,, H,, ... eine Abzihlung aller abgeschlossenen
Ausdriicke der Form V xH(x) in §’, so da8 H, die Form V xH,)(x) mit einer gewissen
Variablen x hat. Wir definieren induktiv in S’ abzihlbar viele neue Axiome A,:

A, sei der Ausdruck H, — H(g)(cs,); wobei c;, die beziiglich der Numerierung dieser
Konstanten erste neue Konstante sei, die in H, nicht vorkommt.

Ist schon A,,..., A, definiert, so sei A,,, der Ausdruck H,, — Hg.y(c,,),
wobei ¢, = die erste neue Konstante ist, die in H,, ..., H,,; nicht vorkommt und
von ¢, ..., ¢, verschieden ist.

foatonl

Der Sinn dieser Axiome besteht darin, daB ¢, ein gewisses Ding mit
der Eigenschaft H,(x) bezeichnen soll, falls die Existenz eines solchen Dinges x
beweisbar ist. ' '

2. Schritt. Unter Benutzung des konkreten Kalkiils J zeigt man: Ist X syntak-
tisch widerspruchsfrer in S, so 1st die Menge X u (A, Ay, ..., A,} fiir jede natiirliche
Zahl n syntaktisch widerspruchsfrei in S'.

Nach dem fiir Bew 4 geltenden Endlichkeitssatz folgt hieraus sofort: Die Menge
Xu{As:n =0,1,2,...} ist syntaktisch widerspruchsfrer in S'.

3. Schritt. Es sei Y eine nach Satz 3 existierende maximale syntaktisch (und
formal) widerspruchsfreie Obermenge von Xu{A,:n=0,1,2,...]. Dann ist
iibrigens Bew y-(Y) = ¥, da mit ¥ auch Bew () syntaktisch widerspruchsfrei ist
und wegen der Maximalitit von ¥ keine echte Obermenge von Y sein kann. Fiir
t € T(Y) sei T:=(t':t' =t € ¥}, und es sei T(¥) := (t:t € T(Y)}. Wir definieren
nun in der bereits besprochenen Weise eine Interpretation w von S’ im Grundbereich
T(Y). Aus dieser Definition folgt zuniichst fiir pridikative abgeschlossene Ausdriicke
H € 8’ (einschlieBlich Termgleich )

Wert(H, w) = W genau dann, wenn H € Y. (2)

4. Schritt. Zur Rechtfertigung des folgenden Beweises ist zunichst zu zeigen,
daB jeder abgeschlossene Ausdruck H € 8’ aus abgeschlossenen pridikativen Aus-
driicken durch aussagenlogische Verkniipfungen und Ubergéinge von Ausdriicken
der'Form H(t) (t variablenfreier Term) zu Ausdriicken A xH(x) bzw. V xH(x) erhalten
werden kann. Fir beliebige Sprachen ist dies schon deshalb nicht richtig, weil es gar
keine abgeschlossenen pridikativen Ausdriicke gibt, wenn es keine Konstanten-
symbole (und damit auch keine variablenfreien Terme) gibt. In 8’ kann man jedoch
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in einem abgeschlossenen Ausdruck H alle in seinen pridikativen Teilausdriicken
eventuell vorkommenden Variablen dort durch paarweise verschiedene Konstanten c;
ersetzen, die in H sonst nicht vorkommen. Beim induktiven Aufbau von H aus den
so abgeinderten pridikativen Teilausdriicken werden die urspriinglichen Variablen
durch Ubergiinge von H'(t) zu A xH'(x) bzw. V xH'(x) nach und nach wieder einge-
fiihrt. Zum Beispiel entsteht der abgeschlossene Ausdruck

V x A y(Ry(x) - Ra(x, y)) 3)

wie folgt induktiv aus abgeschlossenen Ausdriicken: R,(c,) und Ry(e,, c,) sind abge-
schlossene Ausdriicke. Folglich ist auch (R,(c,) = Ry(cy, ¢)) ein abgeschlossener
Ausdruck. Da in ihm die Variable y noch nicht gebunden vorkommt, ist auch
V y(Ry(e;) = Ra(ey, y)) und aus dem gleichen Grund auch (3) ein abgeschlossener
Ausdruck.

5. Schritt. Wir zeigen durch das im 4. Schritt gerechtfertigte Induktionsprinzip,
daB (2) fiir alle abgeschlossenen Ausdriicke H € 8’ gilt. Dabei kann die Giiltigkeit
fiir den Fall, daB8 H pridikativ ist, schon vorausgesetzt werden. Setzen wir voraus,
daB (2) fiir H schon gilt, so ist Wer{(— H, w) = W genau dann, wenn Wert(H, w) = F
gilt. Das ist aber nach Induktionsannahme genau dann der Fall, wenn H ¢ Y ist.
Da Y widerspruchsfrei ist, folgt H4 ¥ aus . H€ ¥, und da ¥ sogar maximal
widerspruchsfrei ist, folgt umgekehrt — H € ¥ aus H ¢ Y. Daher ist Wert(— H, w)
= W genau dann, wenn — H € Y. Wir setzen nun voraus, daB (2) bereits fiir abge-
schlossene Ausdriicke H,, H, gilt. Es ist Wert(H; A H;, w) = W genau dann, wenn
Wert(H,, w) = Wert(H,, w) = W, also nach Induktionsannahme genau dann, wenn
H, €Y und H, € Y gilt. Wegen der aussagenlogischen Vollstiéndigkeit von J
(und ¥ = Bew(Y)) ist dies genau dann der Fall, wenn H, A H, € ¥ ist. Die rest-
lichen Fille aussagenlagischer Verkniipfung von H,, H, sind nach folgendem Muster
zu behandeln: Wert(H, v H,, ») = W genau dann, wenn Wert(—(— H, A — H,), w)
= W, d. h. auf Grund des bereits Gezeigten genau dann, wenn

— = (Hy A Hy) € ¥(= Bewy(Y))

gilt. Wegen der aussagenlogischen Vollstindigkeit des Kalkiils J ist dies genau dann
der Fall, wenn H, v H; € Y ist. Wir setzen nun voraus, daB (2) bei festem H(x) fiir
alle H(t) mit t € T(Y) gilt. Es ist Wert(V xH(x), w) = W genau dann, wenn es
einen Term t € T(Y) gibt, so daB Wert(H(x), w, f) = W f{iir alle Belegungen f mit
f(x) =%, d.h.,, wenn Wert(H(t), w) = W ist. Nach Induktionsannahme gilt das
letzte. genau dann fiir einen Term t € T(Y), wenn H(t) € ¥ ist. Durch geeignete
SchluBregeln in J 1éBt sich nun leicht erreichen, daB mit H(t) € Bew 4-(Z)stets auch
V xH(x) € Bew4-(Z) fiir Variablen entsprechender Sorte gilt, die in H(t) nicht vor-
kommen. Die Umkehrung, die ja in beliebigen Sprachen und Theorien gar nicht
richtig ist, wird fiir ¥ gerade durch die Axiome A, erzwungen. Der betrachtete
abgeschlossene Ausdruck V xH(x) ist gleich einem gewissen H,, so daB das ent-
sprechende Axiom V xH(x) — H(c,,) zu ¥ gehort. Ist nun noch V xH(x)€ ¥, so
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folgt aus der aussagenlogischen Vollstindigkeit von J sofort H(c,)€ ¥, d.h.
H(t) € Y fiir einen Term t € T(Y). Insgesamt ergibt sich daher

Wert(V xH(x), w) = W genau dann, wenn V xH(x) € ¥.

Wir setzen wie oben voraus, daB bei festem H(x) schon (2) fiir alle Ausdriicke der
Form H(t) mit t € T'(Y) gilt. Dann ist

Wert(A xH(x), o) = W genau dann, wenn Wert(—V x — H(x), 0) = W,

und das ist auf Grund des schon Bewiesenen genau dann der Fall, wenn — V x — H(x)
€ Y ist. Durch ein geeignetes logisches Axiom bzw. geeignete SchluBregeln kann man
nun leicht erreichen, daB aus — V x — H(x) der Ausdruck A xH(x) beweisbar ist und
umgekehrt.

6. Schritt. Ist H € ¥ ein beliebiger (nicht notwendig abgeschlossener) Ausdruck,
80 ist bei Vorhandensein geeigneter SchluBregeln (etwa @, und g,,) erreichbar, daB
auch jeder abgeschlossene Ausdruck H, der aus H durch gebundene Umb g
und Generalisierungen entateht, zu ¥ gehort. Nach dem Bewiesenen folgt aus H ¢ ¥
aber Wert(H, w) = W, d. h., H selbst ist in o allgemeingiiltig bzw. o ist ein Modell
fiir ¥. Daher ist die Einschrinkung der Interprctation w der Sprache S’ auf die
Sprache S ein Modell der in S formulierten Teilmenge X von Y.

Da der Grundbereich des so fiir X konstruierten Modells aus den Aquivalenz-
klassen einer in der Menge T'(Y) definierten Aquivalenzrelation besteht und 7(Y)
als Teilmenge einer Wortmenge W(A) mit abzihlbarem Alphabet gewiB abzihlbar
ist, haben wir zugleich mit dem Hauptsatz bewiesen:

Satz von LOWENHEIM-SKOLEM. Jede semantisch (und daher erst recht syntaktisch)
widerspruchsfreie elemeniare Theorve besitzt ein hiochstens abzihlbares Modell.

Die hiiufig als ,,Skolemsches Paradoxon* bezeichnete Anwendung dieses Satzes
auf elementar formalisierte Syst: der M lehre, in denen ja axiomatisch die
Existenz iiberabzihlbarer Mengen gefordert werden kann, besagt in Wirklichkeit

_nur: Eine im Sinne eines Modells der Mengenlehre iiberabzihlbare Menge M kann im
metatheoretischen Sinne durchaus abzihlbar sein. Ihre Uberabzihlbarkeit im Modell
ist dann einfach dadurch verursacht, daB keine der metatheoretisch existierendcn
eineindeutigen Abbildungen von M auf eine im Sinne des Modells abzihlbare Mengc
als Menge von geordneten Paaren im Modell vorhanden ist.

Durch eine dhnliche Konstruktion, wie sie hier zum Beweis des Hnupts&tzes und
des Satzes von LOWENHEIM-SEOLEM benutzt wurde, kann man auch den Satz von
TaBskr (vgl. 4.4.) beweisen. Dazu ist im wesentlichen die Michtigkeit der zur ur-
spriinglichen Sprache S hinzugefiigten Menge von Konstantensymbolen zu ver-
groBern, was dann freilich ein Arbeiten mit iiberabzihlbaren Alphabeten erfordert.




7. Algorithmen

71.  Kodierungen

Effektive Umfor gs-, Berechnungs- und Entscheidungsprozesse an mathemati-
schen (und zuweilen auch an auBermathematischen) Objekten werden meist nicht
direkt an diesen Objekten, sondern an gewissen Bezeichnungen fiir diese Objekte
durchgefiihrt. Unter mathematischen Objekten verstehen wir hier z. B. natiirliche,
ganze, rationale Zahlen, Folgen, Funktionen und Mengen, unter effektiven Prozessen
z. B. die Ausfithrung der vier Grundrechenarten, die Bestimmung des groBten
gemeinsamen Teilers und des kleinsten gemeinsamen Vielfachen von natiirlichen
Zahlen, die Superposition von Funktionen, die Entscheidung, ob eine g
natiirliche Zahl eine Primzahl ist, usw. Die ver deten Bezeichnungen fiir Objekt:
eines bestimmten Bereichs haben dabei entweder von vornherein den Charakter von
Wortern iiber einem endlichen Alphabet, oder man kann sie durch geringfiigige
Anderungen auf diese Form bringen. Das erste trifft z. B. auf die Darstellung der
natiirlichen Zahlen im Dezimal- oder Dualsystem zu. (Das benutzte Alphabet be-
steht hier aus den ,,Buchstaben“ 0, 1, ..., 9 bzw. aus den beiden Grundzeichen 9, 1

(oder 0, L)). Das letzte ist z. B. dann der Fall, wenn man Briiche n , die zunachst
n

keine Worter sind, in der gleichwertigen Form m:n als Worter schreibt. (Dabei wird
vorausgesetzt, daB m bzw. n wortartige Darstellungen von natiirlichen Zahlen sind.)

Indem man jeden Teilterm der Form :—:— durch die Zeichenkombination (t,:ts)

ersetzt, kann man jeden rationalen Term , linearisieren‘‘ und die so erhaltenen Wérter
als Darstellungen der abstrakten mathematischen Objekte rationale Funktionen
benutzen. Wenn wir vor tzen, daB wir bereits wortartige Darstellungen fiir die
El te eines R besit 80 kann man die Polynome mit Koeffizienten aus
diesem Ring, die i ln der iiblichen Schreibweise zundchst keine Worter sind, ohne
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Informationsverlust in der Form

89 + 8)X + 89XX + 83XXX + -+ + 8,X ... X
——

als Worter iiber einem Alphabet A u (4, x} darstellen, wobei A das zur Darstellung
der Koeffizienten benutzte Alphabet ist, das natiirlich die Zeichen + und x nicht
enthalten darf.

Die Unt hung vieler Beispiele lehrt, daB die Zuordnung zwischen den bezeich-
neten (abstrakten) Objekten und den sie bezeichnenden Wortern nicht eineindeutig
zu sein braucht, daB es vielmehr geniigt, wenn jedes Wort, das in dem betreffenden
Zusammenhang iiberhaupt als Bezeichnung eines Objektes auftritt, eine eindeutig
bestimmte Bedeutung hat.

Definition 1. Ist M eine beliebige nichtleere Menge und A ein héchstens abzihl-
bares Alphabet, so heiBt eine Abbildung k aus der Menge W(A) aller Worter iiber
dem Alphabet A auf die Menge M eine Kodierung der Menge M vm Alphabet A. Ist k
eine solche Kodierung und gilt fiir ein = € M und ein W € W(A) die Beziehung k(W)
= z, 80 heiBt x die Bedeutung von W (beziiglich k) und W ein Kodewort von z (beziiglich
k).

Der durch Definition 1 erfafte allgemeinste Kodierungsbegriff umfaBt insbeson-
dere folgende Fille:

1. k ist eine eineindeutige Abbildung von W(A) auf M, d.h., jedes Wort des
benutzten Alphabets hat eine Bedeutung, und die Zuordnung zwischen Kodewdértern
und ihren Bedeut ist umkehrbar eindeutig. Wichtigstes Beispiel fiir diesen
Fall ist die durch ko(W) Liinge von W definierte eineindeutige Abbildung k, von
der Menge W({|}) aller Worter iiber einem einelementigen Alphabet auf die Menge
der natiirlichen Zahlen. Hier ist also die Zahl n die Bedeutung des Wortes || .| und

dieses Wort das Kodewort der Zahl n. Insbesondere entsprechen einander dle Zahl 0
und das leere Wort. Die 8o definierte Kodierung k, der natiirlichen Zahlen werden
wir im folgenden als primitive Kodierung der natiirlichen Zahlen bezeichnen und
unter Berufung auf sie hiufig die (abstrakten) natiirlichen Zahlen mit ihren (kon-
kreten bzw. ,,handhabbaren) Kodewdértern beziiglich k, identifizieren.

2. k ist noch eincindeutig, aber nicht alle Worter iiber dem benutzten Alphabet
haben eine Bedeutung, d. h., der Definitionsbereich von k ist eine echte Teilmenge
einer Menge W(A4). Hierunter fillt z. B. die bereits erwihnte Kodierung der natiir-
lichen Zahlen im Dual- oder Dezimal- (oder einem anderen Positiors-) System unter
der Bedingung, daB das Auftretcn iiberzihliger Nullen am Anfang der Kodewdrter
ausgéschlossen wird. Die entsprechende Dualkodierung im Alphabet {0, 1} bezeichnen
wir mit ky, die Dezimalkodierung im Alphabet {0, 1, 2,3, 4,5, 6 7 8, 9| mnt k,o
Es ist also ky(1101) die Zahl dreizehn, k,4(1101) die Zahl ¢ N
ky(01) und k,4(01) sind nicht definiert.
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3. Alle Worter des benutzten Alphabets haben eine Bedeutung, aber die Kodierung
ist nicht eineindeutig. Dies trifft z. B. auf die Dual- und Dezimalkodierung (und
allgemein auf beliebige Positionskodierungen) zu, falls das Auftreten iiberzihliger
Nullen am Anfang der Kodewérter erlaubt wird. Die so modifizierte Dual- bzw.
Dezimalkodierung bezeichnen wir im folgenden mit k,' bzw. k,y'. Es ist also z. B.
ky'(01) = k;'(001) = ky'(1) die Zahl eins. )

4. (Allgemeiner Fall) & ist nicht eineindeutig, und nicht alle Worter des benutzten
Alphabets haben eine Bedeutung. Als Beispiel betrachten wir die durch

k1o(W), falls kio(W) definiert ist,
die zu Ko(V) enigegengesetzte Zahl, falls W = —V und Kio(V) definiert ist

definierte Kodierung der ganzen Zahlen im Alphabet {—, 0, 1, 2; ..., 9). Kodewdérter
sind hier genau diejenigen Wérter des benutzten Alphabets, die das Zeichen ,,—*
héchstens an erster Stelle enthalten.

k(W) := {

Der Leser wird vielleicht schon selbst bemerkt haben, daB es recht schwierig ist,
ohne Benutzung irgendeiner Kodierung iiber so abstrakte Objekte wie z. B. natiir-
liche Zahlen zu sprechen. Die bel der Erlaubemng der Kodierung k, und ¥,, benutzten
Worter dreizehn und & detns sind natiirlich auch Kodewdorter,
allerdings in bezug auf eine kaum fiir alle natiirlichen Zahlen exakt definierbare
»Kodierung*. Relativ hiufig tritt jedoch in der Mathematik der Fall auf, daB eine
neue Kodierung unter Benutzung einer bereits gegebenen Kodierung definiert wird.
Ist allgemein k, eine Kodierung einer Menge M im Alphabet A und k; eine Kodierung
der Menge W(A) im Alphabet B, so ist die Verkettung ¥, o k, der beiden Abbildungen
offenbar eine Kodierung der Menge M im Alphabet B. Diesen Proze8 der Gewinnung'
einer neuen Kodierung aus einer bereits vorhandenen unter Benutzung einer Kodie-
rung der die urspriinglichen Kodeworter umfassenden Wortmenge bezeichnet man
als Umkodierung. Unter den hierzu benétigten Kodierungen von Wortmengen W(4)
spielen die ,,buchstabenweisen Kodierungen eine besondere Rolle, die sich durch
verkettungshomomorphe Fortsetzung einer Kodierung des Alphabets A erzeugen
lassen. Es sei 4 = {a,, ..., a,) ein beliebiges Alphabet. (Aus dem folgenden geht
hervor, daB A auch abzihlbar sein kann.) Ferner sei W, ..., W, € W(B) ein System
von Pseudoatomen in W(B), d. h., jedes iiberhaupt als Verkettung der Worter Wy, ...,
W, darstellbare Wort W € W(B) 1iBt sich auf genau eine Wcise so erzcugen. Dann ist

KW,) =8, @=1,..,m)
eine Kodierung von A im Alphabet B und die durch
k'(A):=4,

KW, o0:.oW,):=kW;)o -0 k(W,)=a,...a8;,

definierte Abbildung k' aus W(B) auf W(A) eine eineindeutige Kodierung von W(A4)
im Alphabet B. Da offenbar in einem Alphabet B, das wenigstens die beiden Buch-
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staben a, b enthilt, die Worter der Form ba ... ab (n = 0) ein abzihlbares System
—— )

n
von Pseudoatomen bilden, kann man jede Wortmenge W(A) iiber einem hichstens
abzihlbaren Alphabet A4 in einem zweielementigen Alphabet {a, b} kodieren. Dabei
ist dann ba...abba...ab...ba...ab das eindeutig bestimmte Kodewort von
—— —— ——

8,8, ... 8, € liil’(A).

i

Wir stellen nun einige grundlegende Sachverhalte iiber Kodierbarkeit von Mengen
Zusammen:

Da eine kodierbare Menge immer als Bild einer abzihlbaren Menge W(A4) (vgl.
Kapitel 1, Sitze 2 und 3) bei einer eindeutigen Abbildung (némlich der Kodierung)
erscheint, i3t jede kodierbare Menge hochstens abzihlbar. Umgekehrt kann es also fiir
eine iiberabzihlbare Menge (etwa die Menge der reellen Zahlen) keine einheitliche
Kodierung im hier definierten Sinne geben.

Jede iiberhaupt kodierbare Menge ist schon in einem zweielementigen Alphabet ko-
dierbar. Insbesondere st jede eineindeutiy kodierbare Menge schon in einem zwetelemen-
tigen Alphabet eineindeutig kodierbar. Man hat hierzu nur die nach Voraussetzung
existierende Kodierung in der oben beschriebenen Weise unter Benutzung eines
zweielementigen Alphabets umzukodieren.

Eine Kodierung einer beliebigen Menge M in einem einelementigen Alphabet
bezeichnet man als eine Numerierung von M. Dabei werden die als Kodewdérter auf-
tretenden Worter hiufig mit den ihnen umkehrbar eindeutig entsprechenden natiir-
Jichen Zahlen identifiziert, so daB man eine Numerierung der Menge M auch als eine
Abbildung aus der Menge N der natiirlichen Zahlen auf die Menge M definieren kann.
Umgekehrt bezeichnet man eine eineindeutige Abbildung g von M in die Menge N
der natiirlichen Zahlen als eine Godelisierung von M. Gibt es eine solche Abbildung g,
80 heiBt die Menge M godelisierbar, und fiir x € M wird die Zahl g(z) als Géodelzahl
von z (beziiglich g) bezeichnet. Offenbar ist dann g-! eine eineindeutige Numerierung
von M. Demnach ist eine Menge M genau dann godelisierbar, wenn sie eineindeutig
numerierbar ist. (In der Literatur wird der Terminus Gédelisierung, der historisch
élter ist als die Begriffe Numerierung und Kodierung, nicht einheitlich, insbesondere
hiufig im Sinne von Numerierung einer Menge W(A) verwendet.)

Jede Wortmenge W(A) iiber einem hochstens abzihlbaren Alphabet ist godelisierbar.
(Folglich ist jede iiberhaupt kodierbare Menge numerierbar und jede eineindeutig
kodierbare Menge godelisierbar.)

Zum Beweis geben wir zwei hiufig verwendete Godelisierungen an.

1. Es sei 4 = (a,, ..., 8,) ein endliches geordnetes Alphabet (n = 2). Offenbar
erhiilt man eine Godelisierung der Menge W(A), wenn man sie in der durch die gege-
bene Ordnung des Alphabets induzierten lexikographischen Ordnung aufzihlt (vgl.
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Kapitel 1): Die so entstehende Gédelisierung bezeichnen wir im folgenden mit g, :

W(A): A, 81, ..., 8,, 8181, ..., 818y, 8581, ooy Baly, ooy Bply,  ByByBy,
Giex: 0, 1,...,m, n+1,...,2n, 20+ 1,...,3n, ...,n2+n,n2+n+1,...

Prinzipiell kann man zu vorgegebenem W ¢ W(A) die Gédelzahl g,.,(W) und umge-
kehrt zu jeder natiirlichen Zahl » das Wort g;.1 () effektiv berechnen, indem man die
Worter aus W(A) in der lexikographischen Anordnung geniigend weit aufschreibt
und durchzihlt. Wir wollen jedoch eine ,,direkte” Formel fir gi(a;, ... 8;,) ablei-
ten, indem wir die Anzahl der diesem Wort lexikographisch vorangehenden Wérter

abzihlen. Das sind:

1 Wort der Linge 0,
n Worter der Linge 1,

n™1 Worter der Linge m — 1,
ferner unter den gleichlangen Wértern der Linge m
(2, — 1) ™! Worter, die mit einem der Buchstaben &, ..., a; _, beginnen,

(& — 1) n™* Worter, die mit a;a; beginnen, wobei j < 1, ist,

(tm—1 — 1) » Worter, die mit a,a;, ... a;,_a; beginnen, wobei j < iy, ist,

(4 — 1) Worter der Form 8;, ... 8;,_a; mit j < 7,

m
Dem Wort a, ... a;_ gehen also insgesamt J 7,n™* Worter lexikographisch voran.
Daher ist k=1

m
Grex(84, -+ 8y,) = I jnmF
k=1
2. Es sei A = (a,, 8,, ...} ein endliches oder abzihlbares Alphabet. Fiir n = 1,
2,3, ... sei p, die n-te Primzahl in bezug auf deren natiirliche Reihenfolge. Wir de-
finieren ’
Jorim(4) 1= 0,
gprlm(a'i. cee8y)) 1= Pn"l’z" Pu"'-

Die so definierte Godelisierung g, hat gegeniiber den Gddelisierungen der Form
Giex den Vorteil, daB sie sich unabhéngig von der Michtigkeit des hochstens abzihl-
baren Alphabets A definieren liBt und insbesondere auch noch im Fall abzihlbarer
Alphabete verwendbar ist. Sie hat jedoch gegeniiber den Gédelisierungen g, den
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Nachteil, daB nur ,sehr wenige* natiirliche Zahlen als Gédelzahlen auftreten, nim-
lich auBer 0 genau diejenigen, die mit einem beliebigen Primfaktor alle kleineren
Primzahlen als Faktor enthalten (und fiir die auBerdem, falls das Alphabet 4 endlich
ist und aus n Buchstaben besteht, jeder Primfaktor hichstens in der n-ten Potenz
vorkommt). Sowohl g, , als auch g,., samt ihren inversen Abbildungen sind in einem
noch unpriizisierten Sinne aber unzweifelhaft ,effektiv berechenbar.

Eine Abbildung, deren Definitionsbereich eine Menge von Wortern oder allgemeiner
eine Menge von n-Tupeln von Wértern und deren Wertebereich ebenfalls eine Menge
von Wortern ist, bezeichnen wir im folgenden als eine Wortfunktion. Dabei geniigt
es grundsitzlich, sich auf die Betrachtung von Abbildungen aus einer Menge W(A)
in sich zu beschrinken: Sind A4,, 4,, ..., 4, beliebige (nicht notwendig verschie-
dene oder gar disjunkte) Alphabete, so sei * ein beliebiger, in keinem dieser Alpha-
bete vorkommender Buchstabe und

A=UA uls}.
»=0"

"Die Betrachtung einer n-stelligen Abbildung f aus W(4,) X -+ X W(A4,) in W(4,)
kann offenbar durch die Betrachtung der durch

TWi s Wy oo s W) i= (W, W,, ..., W,)

definierten Abbildung /' aus W(A)‘in sich ersetzt werden. Abbildungen aus einer
Menge W(A) in sich werden wir kurz.als Wortfunktionen in W(A) bezeichnen.

Definition 2. Es sei M eine beliebige nichtleere Menge, k eine Kodierung von M
in einem Alphabet A und ¢ eine Abbildung aus M in sich. (Allgemeinere Fille kann
man wieder durch entapmchende Strukturierung der Menge M einbeziehen.) Eine
Wortfunktion fin W(A) heiBt eine Darstellung von ¢ b h k, wenn fiir jedes Wort
W € W(A) des Ding g(k(W)) genau dann exlstlert wenn k(I(W)) existiert und im
Fall der Existenz beide gleich sind.

Die Kenntnis einer Darstellung einer Abbildung bedeutet, da8 man das Operieren
mit den Objekten der abstrakten Menge in diesem Zusammenhang durch ein kon-
kreteres Operieren mit Kodewortem ersetzen kann. Ist insbesondere die zugrunde
Li de Kodierung k indeutig, so ist die Darstellung f einer Abbildung ¢ durch
die Forderung ¢ o k = k o f eindeutig als f = k~! 0 p 0 k bestimmt, und es ist dann
umgekehrt ¢ = ko fo k™, d. h., um in diesem Fall fiir ein 2 € M das Bildobjekt
@(z) zu erhalten, nechme man dns Kodewort k-!(z), wende die Wortfunktion f auf
dieses Wort an und besti die Bedeut k(/(k-l(z))) des erhaltenen Worbes
Khr 1st auch, daB eine Abblldung be "o" h einer nicht igen Kodierung
im inen viele Darstell t

) L)

Beispiel. Es sei M = N die Menge der natiirlichen Zahlen und ¢ die in 4.5.
betrachtete Nachfolgeroperation in N. Beziiglich der eineindeutigen primitiven
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Kodierung k, von N im Alphabet 4 = {a} wird ¢ durch die sehr einfache Wort-
funktion f(W) := Wa (W ¢ W({a])) dargestellt. Die offenbare ,effektive Berechen-
barkeit* der Wortfunktion f rechtfertigt es, die durch sie dargestellte Funktion ¢
ebenfalls als ,,effektiv berechenbar‘‘ anzusehen, obwohl das unmittelbare Operieren
mit — etwa als Aquivalenzklassen von gleichmachtigen endlichen Mengen aufgefaten
— natiirlichen Zahlen sicher nicht ,effektiv ausfiihrbar* ist.

Beziiglich der nicht eineindeutigen Dualkodierung k,’ der natiirlichen Zahlen im
Alphabet {0, 1) wird die Nachfolgerfunktion ¢ unter anderem durch die wie folgt
induktiv definierte Wortfunktion f in W((0, 1)) dargestellt:

fd):=1,

J(WO0) := W1,

J(W1) := (W) 0.
Legt man fiir die Kodierung k," etwa die induktive Definition

k'(4) = 1_wll,

ky'(WO) := 2. ky'(W),

ky'(W1) := ky'(WO) + eins
zugrunde, so 1a8t sich durch Induktion iiber die Wortlinge leicht zeigen, daB, wie
gefordert,

k' (f(W)) = gk’ (W) fiir W € W((0, 1})
gilt. Fiir jede natiirliche Zahl n = 1 sei nun

fa(W) :=0... 0f(W).

.

Dann ist fiir jedes Wort W € W((0, 1}) offenbar &,'(f{(W)) = ky'(fo(W)) und daher

@(ky' (W) = ky'(f(W)) = ky'(fa(W)), d. h., zugleich mit f sind unter anderem auch
alle Wortfunktionen f, Darstellungen von ¢ beziiglich der Kodierung k,’.

7.2.  Der anschauliche Algorithmenbegriff, formalisierte FluB-
diagramme und deren Interpretation

Das Wort Algorithmus ist durch Verstiimmelung (Latinisierung) aus dem Namen
des mittelasiatischen Mathematikers MUHAMMAD IBN MUSA ,,AL-CHORESMI® (d. h.
der Choresmier!)) entstanden, der uin 825 in Bagdad wirkte und in seinen Biichern

1) In thematischen und th ikhistorischen Biichern meist als AL-KEwaRIzMI,
AL-HUARISMI u. &. geschrieb Zur hier b Schreibweise und Deutung des Namens
vgl. B. BRENTIES, Die orientalische Welt, DVW, Berlin 1970, S. 366.
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unter anderem die Ausfiihrung der Grundrechenarten unter Benutzung des indisch-
arabischen Dezimalsystems lehrte, die in dieser Form zuerst durch seine Biicher in
Europa bekannt wurde. Demgemi8 bedeutete das ,,Rechnen nach dem Algorithmus*
urspriinglich die Anwendung der jedem Schiiler gelidufigen elementaren dezimalen
Rechenverfahren. Im Laufe der Jahrhunderte wurde die Bedeutung des Wortes
Algorithmus immer mehr verallgemeinert. Heute versteht man unter einem Algo-
rithmus ein schrittweise ablaufendes (Berechnungs-, Entscheidungs-, allgemein
Umformungs-) Verfahren fiir Objekte eines bestimmten Bereichs, das folgenden
Bedingungen geniigt :

(a) Das Verfahren ist in endlich vielen Regeln unmiBverstindlich formulicrt.

(b) Es gibt eine cindeutig bestimmte Regel, die als erste anzuwenden ist.

(c) Nach Anwendung einer Regel steht fest, ob das Verfahren damit beendet ist
bzw. welche Regel als niichste anzuwenden ist.

(d) Jede Regel ist im gegebenen Zusammenhang ,effektiv ausfiihrbar bzw.
cehne Anwendung von Intelligenz rein mechanisch realisierbar.

Die genauere Untersuchung vorliegender Algorithmen lehrt, da8 man durch ge-
eignete Abirderung der Formulierung jeden Algorithmus unter alleiniger Benutzung
zweier spezieller Arten von Regeln formulieren kann, die als Operations- bzw. Priif-
regeln bezeichnet werden. Eine Operationsregel verlangt die Bildung eines neuen
Zwischenresultats aus gewissen zu diesem Zeitpunkt vorliegenden Zwischenresul-
taten bzw. EingabegroBen. Die als nichste anzuwendende Regel wird, unabhingig
vom Zwischenresultat, in der Regel angegeben. Eine Priifregel verlangt die Ent-
scheidung, welche Regel als nichste anzuwenden ist, in Abhingigkeit davon, ob
gewisse zu diesem Zeitpunkt vorliegende Zwischenresultate bzw. EingabegroSen
in gewissen Relationen zueinander stehen bzw. gewisse Eigenschaften haben. Ein
neues Zwischenresultat wird bei Anwendung einer Priifregel nicht gebildet. Die Art
und Weise der Aufeinanderfolge der einzelnen Regeln eines Algorithmus li8t sich
einfach und zugleich exakt durch einen Graphen darstellen, den man als den Struk-
turgraphen des betreffenden Algorithmus bezeichnet. Der Definition des Begriffs
Strukturgraph stellen wir in aller Kiirze einige allgemeine graphentheoretische Defini-
tionen voran.

Definition 1. Ein endlicher gerichteter Graph @ ist eine endliche nichtleere Mengo
G von geordneten Paaren (z, y), die als die Kanten von G bezeichnet werden. Ein Ding
x heiBt ein Knoten von @, wenn es ein y gibt, so daB (z, y) € @ oder (y, z) € G ist.
Mit K(G) bezeichnen wir die Menge aller Knoten von G. Daher ist stets G & K(G)*.
Ist (z, y) € G, 80 heiBt z ein Vorginger von y und y ein Nachfolger von z. Im folgenden
werden nur Graphen betrachtet, in denen jeder Knoten hochstens zwei Nachfolger
hat. Knoten mit genau einem Nachfolger heiBen dann Arbeitsknoten, Knoten mit
genau zwei Nachfolgern heiBen Priifknoten, und Knoten ohne Nachfolger heiSen
Ausgéinge. Sind z,, ..., z, (n = 2) Knoten von @, so daB (z;, z;,,) € G fiiri =1, ...,
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n — 1 gilt, so heiBt die Folge z,, ..., z, ein Weg in G von x, nach z,. Existiert ein
solcher Weg, 8o heiBt z, von z, erreickbar. Ein Weg heiBt einfach, wenn seine Knoten
paarweise verschieden sind. Ein Weg von z nach z heiBt ein Zyklus. Ein Graph,
in dem es keinen Zyklus gibt, heiBt zyklenfre:.

Definition 2. Ein Paar (G, ) heiBt ein Strukturgraph, wenn gilt:

() @ ist ein Graph und e einer seiner Knoten, der kein Ausgang ist. (e heiBt Ein-
gangsknoten oder kurz Eingang von (G, €).)

(b) Jeder Knoten von G hat hochstens zwei Nachfolger.

(c) Jeder von e verschiedene Knoten ist von e erreichbar. Von jedem Knoten,

der kein A g ist, ist igstens ein Ausgang erreichbar.

(d) Die beiden Nachfolger eines Priifknotens sind von diesem und voneinander
verschieden.

Ein Strukturgraph wird iiblicherweise graphisch dargestellt, indem man jedem
Knoten des Graphen ein umrandetes Feld zuordnet, so da8 diese Felder sich nicht
iiberlappen. Jede Kante (z, ) € G wird durch einen Pfeil dargestellt, die von dem z
zugeordneten Feld zu dem y zugeordneten Feld fiihrt. Der Eingangsknoten wird
durch einen in ihn hineinfiihrenden Pfeil markiert. Es ist iiblich (und im Bereich
technischer Anwendungen sogar durch TGL geregelt), die verschiedénen Knoten-
arten zusitzlich durch unterschiedliche Umrah g zu ich insbesondere
Arbeitsknoten rechteckig, Priifknoten abgerundet. Jedoch ist dies prinzipiell ent-
behrlich, da die Knotenart bereits aus der Zahl der Nachfolger hervorgeht.

Aus einem Strukturgraphen entsteht ein Flufdiag , indem man an den Ein-
gangspfeil endlich viele Variablen fiir EingabegroBen schreibt, fiir jeden Priifknoten
die beiden aus ihm herausfithrenden Pfeile durch ,,ja‘‘ und ,,nein* oder eine gleich-
wertige Kennzeichnung unterscheidet und unter Benutzung der Eingabevariablen
sowie weiterer Variablen fiir die Zwischenresultate in jeden Arbeitsknoten die dort
auszufiihrende Operation und in jeden Priifknoten die dort zu entscheidende Rela-
tion hineinschreibt. Je nachdem, ob das FluBdiagramm einen Berechnungs- oder
einen EntscheidungsprozeB realisieren soll, konnen die Ausgangsknoten entweder
mit den Variablen fiir die als Endresultat angesehenen Zwischenresultate oder mit
gewissen ,,Antworten*, im einfachsten Fall ,ja‘‘ und ,nein“ beschriftet werden.
Eine ganz naive Darstellung des inhaltlich als bekannt vorausgesetzten Euklidischen
Algorithmus zur Bestimmung des groBten gemeinsamen Teilers zweier natiirlicher
Zahlen kénnte demnach wie (1) auf S. 150 aussehen, wobei R die durch

Rin,m) :=x(0 S xAx<mAVqn=gm+ %)), fallsm =0

im Bereich der natiirlichen Zahlen definierte partielle Operation bezeichren soll,
die dem Zahlenpaar n, m den Rest bei Division von n durch m zuordnet. Der Leser
mache sich klar, daB das FluSdiagramm (1) unverstindlich bleibt, wenn man nicht
weill, daB n, m, r Variablen fiir natiirliche Zahlen sind, welche Operation durch R
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bezeichnet wird und welche spezielle natiirliche Zahl das Symbol O darstellt. So
ergibt sich, daB ein FluBdiagramm in dhnlicher Weise wie ein Ausdruck einer forma-
lisierten Sprach ichst ein bedeutungsloses syntaktisches Gebilde ist, das im all-
gemeinen viele verschiedene Interpretationen gestattet. Die folgend Definitionen
stellen den Zusammenhang zwischen Formalismus und méglicher Bedeutung fiir
FluBdiagramme (in Analogie zur Definition der Begriffe Interpretation, Belegung
und Wert fiir Ausdriicke einer formalisierten Sprache) her.

m,m M
!

r=R@o,m) [¢—|m=r
T
s

Definition 3. Es szi S eine formalisierte Sprache, (@, e) ein Strukturgraph,
y eine Abbildung, die jedem Priifknoten von @ einen seiner beiden Nachfolger zu-
ordnet, ¢ eine Abbildung, die jedem Priifknoten von G eincn Ausdruck H € S und
jedem Arbeitsknoten von @ eine Termgleichung der Form x; = x; oder x; =¢
.oder x; = F(x,, ..., x;) der Sprache S zuordnet. Dann heiBt das System (G, ¢, y, p)
ein formalisiertes Flufdiagramm iiber S.

Beispiel 1. Die Sprache S sei einsortig und enthalte unter anderem die Variablen
n, m, r, das zweistellige Operationssymbol R und das Konstantensymbol 0. Der dem
bereits diskutierten FluBdiagramm (1) zugrunde liegende Strukturgraph kann in der
abstrakten mengentheoretischen Form z. B. als

(i(e, b), (b, @), (, ), (e, d), (d, o)), )

notiert werden. Hierin ist b der einzige Priifknoten, und es sei y(b) := a (der ,ja‘-
Nachfolger von b). Ferner sei durch ¢ dem Priifknoten b der Ausdruck r = 0 und
den Arbeitsknoten ¢, ¢, d die Termgleichungen r = R(n, m) bzw. n = m bzw. m =r
zugeordnet. Stellt man den angegebenen Strukturgraphen zeichnerisch dar, schreibt
die durch ¢ vorgegebenen Ausdriicke in die entsprechenden Knoten hinein und
beschriftet den Pfeil zwischen einem Priifknoten z und seinem Nachfolger y(z)
durch ,,ja%, so erhiilt man ein FluBdiagramm im anschaulichen Sinne, insbesondere
in unserem Beispiel das bereits gezeichnete Diagramm (1) bis auf die Beschriftungen
des Eingangspfeils und der Ausginge.

Definition 4. Es sei (G, ¢, y, ¢) = § ein formalisiertes FluBdiagramm iiber S, o
eine Interpretation von S und f eine partielle Belegung beziiglich w, d. h. eine Abbil-
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(-

dung, die einigen Variablen der Sprache S je ein Ding entsprechender Sorte aus der
Struktur o dnet. Wir defini induktiv die (endliche oder abzihlbare) Folge
ky, kg, ks, ... der Knoten von @, die bei Abarbeitung der Anfangsbelegung f in G
der Reihe nach durchlaufen werden, und die gleichlange Folge f,, /s, /s, ... der Be-
legungen, die dabei als Zwischenresultate auftreten:

@) ki=e f:=f.

Es seien schon der Knoten k, von @ definiert und die Belegung f,, mit der man ,,in
diesen Knoten hineingeht*‘.

(b) k, ist ein Arbeitsknoten mit @(k,) = x; =t (wobei t ein Term der Form x;
oder ¢ oder F(x,, ..., x;) ist. Falls Weri(t, », /,) existiert, d. h., falls f, fiir alle in ¢t
vork: den Variablen definiert und gegeb: falls die Operation w(F) an der

betreffenden Stelle definiert ist, sei k,,, der Nachfolger von k, und

Wert(t, o, f,) fir x = x,
fan(x) := 1fu(x), falls fo(x) definiert und x + x;,
nicht definiert fiir die iibrigen Variablen.
Falls Weri(t, w, f,) nicht existiert, sind k,,, und f,,, nicht definiert.

(c) k, ist ein Priifknoten mit ¢(k,) = H. Falls f, fiir alle in H frei vorkommenden
Variablen definiert ist, sei f,,y :== f, und

v(ky), falls Wert(H, o, f,) = W
kasy := {der von yp(k,) verschiedene Nachfolger von k,,
falls Wert(H, , f,) = F.

Falls £, nicht fiir alle in H frei vorkommenden Variablen definiert ist, sind k,,, und
fa+1 nicht definiert.

(d) k, ist ein Ausgang. Dann sind k,,, und f,,, nicht definiert.

Ist § ein formalisiertes FluBdiagramm iiber der Sprache S und  eine Interpreta-
tion von S, so ist das Paar (§, w) ein konkretes Flufdiagramm. Offenbar éndert sich
nichts wesentlich, wenn man annimmt, daB S eine nichtelementare Sprache ist und
nur zulissige Interpretationen dieser Sprache betrachtet. In einem konkreten Flug-
diagramm spielen die Variablen etwa die Rolle von Ad (N h

von Speicher-
plitzen), und die gegebene partielle Anfangsbelegung gibt an, unter welchen Adressen
zu Beginn der Abarbeitung welche konkreten Objekte entsprechender Sorte aus
der Struktur w gespeichert sind. Ebenso gibt die partielle Belegung f, den Bele-

tand des Speichers zu Beginn des n-ten Taktes der Berechnung an. Aus

- B

dneser Sicht bedeutet die Ausfithrung einer in einem Arbeitsknoten stehenden
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Anweisung der Form x; = F(x,, ..., X;): Man wende die Operation, die durch F be-
zeichnet wird, auf diejenigen Dinge £, ..., & an, die zum betreffenden Zeitpunkt
unter den Ad Xy, ..., X; gespeichert sind, und speichere das erhaltene Resultat
unter der Adresse x;, wobei der alte Inhalt der Speicherzelle x;, falls sie schon be-
setzt war, automatisch geléscht wird. Analog sind die iibrigen Knotenbeschriftungen
zu verstehen. Stop ohne Resultat, d. h. Abbrechen der Folge der k, und f, vor Er-
reichen eines Ausgangsknotens, tritt ein, wenn eine der aufzurufenden Speicher-
zellen leer ist oder wenn ein System von aufgerufenen Speicherinhalten nicht im
Definitionsbereich der in diesem Takt anzuwendenden Operation liegt. Falls fiir
eine bestimmte Anfangsbelegung f ein Ausgangsknoten erreicht wird, wird man, je
nachdem, ob das FluBdiagramm einen Berechnungs- oder einen Entscheidungs-
prozeB darstellt, einige Komponenten der erhaltenen Endbelegung oder den Aus-
gang, an dem diese erscheint, als Resultat ansehen. Im ersten Fall definiert das
FluBdiagramm eine partielle Operation, die in sehr allgemeiner Weise aus den in den
Arbeitsknoten vorkommenden Operationen superponiert ist. (Die gewdhnliche
Superposition und die Definition durch Fallunterscheidung (vgl. 4.6.) ergeben sich
offenbar als einfache Spezialfille.) Im zweiten Fall definiert das FluBdiagramm
zusammen mit einem bestimmten seiner Ausginge eine Relation, die fiir Dinge
&, ..., &y der Struktur o genau dann besteht, wenn die Abarbeitung der durch
J(xi) := &; definierten partiellen Belegung zum gewiihlten Ausgang des FluBdia-
gramms fiihrt. Zusammenfassend sei gesagt, daBl es viele Moglichkeiten gibt, das
Endresultat der Anwendung eines konkreten FluBdiagramms (J, ) auf eine partielle
Belegung f beziiglich w zu definieren, die sich in Abhingigkeit vom jeweiligen
Zusammenhang bzw. beabsichtigten Zweck mehr oder weniger eignen. Fiir uns ist
vor allem die Feststellung wichtig, da8

(a) ein durch ein FluBdiagramm definierter Berechnungs- oder Entscheidungs-
proze8 immer dann effektiv ausfiihrbar ist, wenn die in seinen Arbeitsknoten vor-
kommenden Operationen effektiv ausfiihrbar und die in seinen Priifknoten vorkom-
menden Relationen effektiv entscheidbar sind;

(b) umgekehrt nach unserem heutigen Wissen die Methode, als effektiv voraus-
gesetzte Berechnungs- und Entscheidungsprozesse durch FluBdiagramme mitein-
ander zu verkniipfen, die allgemeinste Methode zur Erzeugung weiterer Berech-
nungs- und Entscheidungsprozesse ist, die im gleichen MaBe effektiv ausfiihrbar
sind wie die gegebenen ,,Bausteine‘.

Hat man daher in einem bestimmten Bereich der Mathematik ein System von
Operationen und Relationen gewiihlt, die als effektiv ausfiihrbar bzw. entscheidbar
gelten sollen, so ist damit implizit die Gesamtheit aller effektiv ausfiihrbaren Be-
rech und Entscheid Igorith fixiert.!)

-3 SEE

1) Der so priizisierte Algorithmenbegriff ist, insbesondere in Anwendung auf die G
in [60] behandelt.
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7.3.  Berechenbarkeit von Wortfunktionen, Entscheidbarkeit
und Aufzihlbarkeit von Wortmengen, die Hypothese von Church

Wiihrend es in beliebig thematischen Theorien kaum moglich, ja wahrscheinlich
nicht einmal wiinschenswert ist, ein fiir allemal einen absoluten Effektivitatsbegriff
fiir Operationen und Relationen zu definieren, hat es sich als moglich und niitzlich
erwiesen, einen solchen absoluten Effektivititsbegriff im Bereich der Wortfunktionen
und Wortmengen zu defini Da ein Umformungs- oder Entscheidungsproze8 an
beliebigen Objekten durch eine Kodierung des betreffenden Bereichs hiufig in einen
auf Worter anzuwendenden Proze8 iibersetzt werden kann, reichen die Konsequenzen
des absoluten Effektivititsbegriffs fiir Worter viel weiter, als es zunichst scheint.

In diesem Abschnitt werden wir aus der Existenz einer mathematisch exakten
Definition des Begriffs berechenbare Wortfunktion, die alle einfachen, im anschau-
lichen Sinn gewiB berechenbaren Wortfunktionen umfagt, alle fiir die Anwendungen
in Kapitel 8 wesentlichen Folgerungen ziehen, ohne zunichst die Definition selbst
anzugeben. Eine solche Definition (mittels Turingmaschinen) wird erst in 7.4. ge-
geben und in 7.5. mit einigen gleichwertigen anderen Definitionen verglichen. Die
beiden der mehr technischen Seite der Algorithmentheorie gewidmeten Abschnitte
7.4. und 7.5. sind fiir das Verstindnis von Kapitel 8 nioht unbedingt erforderlich.

Offenbar geniigt es grundsitzlich, den Begriff der berechenbaren arithmetisch
Funktion (d.h. Abbildung aus der Menge N der natiirlichen Zahlen in sich) zu
definieren: Ist g eine samt ihrer Inversen effektiv ausfithrbare Godelisierung der
Menge W(A) (z. B. g,ex 0der gyim; vgl. 7.1.), so ist offenbar eine Wortfunktion f in
W(A) genau dann berechenbar, wenn die arithmetische Funktion

t=gofog? (1)

berechenbar ist: Sieht man f als berechenbar an, so ist auch die Hintereinander-
ausfithrung der drei berechenbaren Funktionen g-!, f, g effektiv berechenbar. Um-
gekehrt folgt aus (1)

I=glopoy,

8o daB mit ¢ auch f berechenbar ist.

. Weiterhin geniigt es, den Begriff der entscheidbaren Wortrelation fiir den. Fall
einstelliger Relationen zu definferen: Sind A4,, ..., A, beliebige (nicht notwendig
verschiedene) Alphabete, 80 sei * ein in keinem dieser Alphabete vorkommender

L]
Trennbuchstabe und 4 := U 4, u {*}. Eine Relation

R S W(A) X W(d,) X X W(4,)
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ist im anschaulichen Sinn offenbar genau dann entscheidbar, wenn die einstellige
Relation

[W, # Wy % o8 Wt (W, Wi, ..., W) € R) @

eine entscheidbare Teilmenge von W(A) ist. Die Definition der Entscheidbarkeit
(der Zugehorigkeit eines Wortes zu) einer Teilmenge M von W(A4) kann wiederum
leicht auf den Begriff der Berechenbarkeit von Wortfunktionen zuriickgefiihrt
werden: Ist & ein beliebiger fester Buchstabe des Alphabets A4, so ist M & W(4)
offenbar im anschaulichen Sinne genau dann entscheidbar, wenn die durch

A, falls W e M,
a, falls W € WA)\ M

definierte charakieristische Funktion der Menge M berechenbar ist.

Wiihrend vieler Jahrhunderte, in denen die Mathematiker sich darauf beschrink-
ten, fiir bestimmte (Berechnungs- und Entscheidungs-) Aufgaben Algorithmen zu
deren Losung anzugeben, wurde die Notwendigkeit, den Begriff des Algorithmus
bzw. der Entscheidbarkeit und Berechenbarkeit mathematisch exakt zu definieren,
nicht empfunden, da an der effektiven Durchfiihrbarkeit der konkreten angegebenen
Verfahren nie ein Zweifel bestand. Eine solche Prizisierung wurde aber natiirlich
nétig, sobald man nachweisen wollte, daB ein bestimmtes Problem grundsitzlich
nicht algorithmisch 16sbar ist. Tatsdchlich standen die ersten Definitionsversuche
(Begriff der primitiv rekursiven arithmetischen Funktion durch G6pEL, 1931) in un-
mittelbarem Zusammenhang mit dem (versuchten) Nachweis, daB ein bestimmtes
Problem der mathematischen Logik nicht algorithmisch entscheidbar ist. Wenig
spiter wurde entdeckt, daB die Klasse der primitiv rekursiven Funktionen nicht
alle im anschaulichen Sinne berechenbaren arithmetischen Funktionen umfaBt.
Daraufhin wurde eine umfassendere Klasse von berechenbaren arithmetischen
Funktionen definiert, die als partiell rekursive Funktionen bezeichnet wurden, und
der amerikanische Mathematiker A. CEURCH stellte die nach ihm benannte Hypo-
these!) auf, daB jede im anschaulichen Sinne berechenbare arithmetische Funktion
partiell rekursiv ist, mit anderen Worten, daB der mathematisch exakt definierte
Begriff der partiell rekursiven Funktion (und damit der mit ihm durch (1) ver-
kniipfte Begriff der berechenbaren Wortfunktion) sich genau mit dem verschwom-
menen anschaulichen Begriff der effektiven Berechenbarkeit deckt und daB auch der
durch (3) mit dem Begriff der Berechenbarkeit verkniipfte Begriff der rekursiven
Entscheidbarkeit sich gerau mit dem verschwom anschaulichen Begriff der
effektiven Entscheidbarkeit deckt.

Sollte die Hypothese von CHURCH falsch sein (woran allerdings gegenwirtig wohl
kein Mathematiker der Welt glaubt), so kann sich dies eines Tages durch die Angabe

(W) := { (3

1) A. CHURCH, An unsolvable problem of elementary number theory, Amer. J. Math. 58 (1936),
345—363.
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einer Wortfunktion erweisen, die nicht partiell rekursiv, jedoch in irgendeinem
verniinftigen anschaulichen Sinne algorithmisch berechenbar ist. Hingegen kann die
Richtigkeit der Hypothese von CEURCH grundsitzlich nicht exakt bewiesen werden,
wenn wir unter einem exakten Beweis einen Beweis von der Art verstehen, wie er
fiir mathematische Sitze verlangt wird. Jeder solche Beweis miiite sich ja auf eine
Definition des Begriffs der anschaulichen Berechenbarkeit bzw. Entscheidbarkeit
stiitzen, und die Annahme, daB diese Definition genau das Richtige trifft, wire eine
neue Hypothese. Es gibt allerdings gegenwiirtig mehrere (schon vom begrifflichen
Ansatz her) wesentlich verschiedene Wege zur Definition des Begriffs der berechen-
baren Wortfunktion bzw. arithmetischen Funktion, die simtlich als gleichwertig
nachweisbar sind. Es ist klar, daB diese Tatsache sehr fiir die Wahrheit der Hypo-
these von CHURCH spricht. Wie bereits erwihnt, werden die wichtigsten Methoden
zur Definition des Berechcnbarkeitsbegriffs in 7.4. und 7.5. kurz vorgestellt und die
Beweise der Gleichwertigkeit zumindest skizziert. In den folgenden grundsitzlichen
Uberlegungen zu den Begriffen Berechenbarkeit, Entscheidbarkeit und Aufzihlbar-
keit stiitzen wir uns nicht auf eine solche exakte Definition, deren technische Einzel-
heiten viele recht klare Sachverhalte eher verwirren. Vielmehr berufen wir uns darauf,
daB der prizisierte Begriff der Berechenbarkeit gewiB allen einfachen Forderungen
an einen solchen Begriff geniigt, da andernfalls die Hypothese von CHURCH lingst
verworfen bzw. die Definition des Berechenbarkeitsbegriffs entsprechend korrigiert
worden wire. Unser Vorgehen ist natiirlich nicht mathematisch exakt, jedoch kén-
nen alle unbewiesenen Annahmen iiber den Berechenbarkeitsbegriff mit Hilfe des
in 7.4. behandelten Begriffs der Turing-Berechenbarkeit nachtriiglich gerechtfertigt
werden.

Es sei A ein beliebiges endliches Alphabet. Wir setzen vom prizisierten Berechen-
barkeitshegriff voraus, daB jede berechenbare Wortfunktion f in W(A) durch we-
nigstens einen Algorithmus realisiert wird und daB es ein héchstens abzihlbares
Alphabet B gibt, so daB jeder Algorithmus ¥ vollstindig durch ein gewisses Wort
Wy € W(B) beschrieben wird. Durch Umkodierung der Menge W(B) im Alphabet A
konnen wir dann gewissen Wértern W € W(A) einen Algorithmus ¥ als Bedeutung
zuordnen, der eine berechenbare Wortfunktion in W(A4) realisiert. Ist W beziiglich
dieser Kodierung ein Kodewort fiir einen Algorithmus %, so schreiben wir W als
(%) und nennen das Wort (%) eine Niederschrift von . Wir setzen voraus, daB die
Menge aller so definierten Niederschriften eine (im prizisierten Sinne) entscheidbare
Teilmenge von W(A) ist und daB man bei Kenntnis einer Niederschrift (%) eines
Algorithmus % die Folge der Zwischenresultate A%(W) = W, AY(W), ..., AY(W)
= H(Q["(W)), ..., die bei der taktweisen Anwendung von % auf ein Wort W € W(4)
entstehen, soweit sie existieren, effektiv berechnen und ferner entscheiden kann, ob
ein gewisses Zwischenresultat A*(W) das Endresultat ist, welches dann mit (W)
bezeichnet wird.

AmRandesei bemerkt, daB bei Benutzung iiblicher Algorithmenbegriffe und Nieder-
schriftsverfahren die Zuordnung zwischen Algorithmen und ihren Niederschriften
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sogar eineindeutig ist. FaBt man jedoch die Niederschrift () eines Algorithmus
nicht als Kodewort des Algorithmus 9 (d. h. des Berechnungsverfahrens), sondern
als Kodewort fiir die durch % realisierte Wortfunktion auf, so ist die so definierte
Kodierung der Menge der berechenbaren Wortfunktionen in W(A) niemals einein-
deutig, selbst wenn die Kodierung der Algorithmen durch ihre Niederschriften ein-
eindeutig ist, da eine iiberhaupt berechenbare Wortfunktion immer durch unendlich
viele verschiedene Algorithmen realisiert wird. Die Menge der berechenbaren Wort-
funktionen in W(A4) bildet daher ein markantes Beispiel fiir eine Menge abstrakter
Objekte, die sich zwar kodieren lassen, deren urspriingliche Kodierung aber nicht
eineindeutig ist und, wie sich zeigt, auch nicht in konstruktiver Weise zu einer ein-
eindeutigen Kodierung umgestaltet werden kann.

Setzen wir voraus, daB alle konstanten Wortfunktionen berechenbar sind, so gibt
es mindestens abzihlbar viele berechenbare Wortfunktionen in W(A). Andererseits
ist die Menge aller berechenbaren Wortfunktionen in W(4) als kodierbare Menge
héchstens abzihlbar (vgl. 7.1.), mithin abzihlbar. Da die Menge aller Abbildungen
aus einer abzihlbaren Menge in sich bekanntlich iiberabzihlbar ist, konnen wir
schlieBen, daB es iiberabzihlbar viele nicht berechenbare Wortfunktionen in W(A4)
gibt.

Die Menge aller Teilmengen einer abzihlbaren Menge ist bekanntlich iiberabzihl-
bar. Da jede entscheidbare Teilmenge von W(A) eine berechenbare charakteristische
Funktion besitzt, kann es hichstens abzihlbar viele entscheidbare Teilmengen von
W(A) geben. Andererseits sind sicher alle Einermengen von Wortern aus W(A)
entscheidbar. Daher gibt es genau abzihlbar viele entscheidbare Teilmengen von W(A4)
und folglich iiberabzihlbar viele nicht entscheidbare Teilmengen von W(A4). Im
folgenden geben wir drei spezielle Teilmengen von W(A4) an und beweisen, daB diese
nicht entscheidbar sind. Jeder dieser nicht entscheidbaren Wortmengen entspricht
ein unentscheidbares Problem.

Problemder Selbstanwendbarkeit. Es sei M, die Menge aller Niederschriften
von Algorithmen 9, fiir die A((A)) existiert. Die Annahme, M, sei entscheidbar,
bedeutet, daB es einen Algorithmus B gibt, der auf alle Worter W € W(A) anwendbar
ist und fiir den

A, falls W = () fiir einen Algorithmus U, fiir den A((A)) existiert,
a andernfalls (d. h. falls W nicht Niederschrift.eines Algorithmus
oder Niederachrift eines solchen Algerithmus ist, fiir den A (())

nicht existiert)

BW) =

gilt. Aus einem solchen Algorithmus 8 kann man sicher einen Algorithmus %, kon-
struieren, fiir den gilt
a, falls B(W) = a,

W) =
(W) {m‘cht definiert andernfalls.
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Daher existiert %y(W) genau dann, wenn W nicht Niederschrift eines Algorithmus
oder Niederschrift eines solchen Algorithmus ist, fiir den A((%)) nicht existiert. Ins-
besondere ergibt sich aus unserer Annahme der Widerspruch, daB %o((¥,)) genau
dann existiert, wenn %,((%,)) nicht existiert. Demnach ist die Menge M, und damit
das Problem der Selbstanwendbarkeit eines Algorithmus nicht entscheidbar.

Uniformes Halteproblem. Durch geeignete effektive Kodierung sei jedem
Paar U, V von Wortern aus W(A) eineindeutig ein Wort [U, V] € W(4) zugeordnet.
(Falls A wenigstens zwei Buchstaben a,b enthdlt, kann man z. B. das Wort
aa ...aba ... aaals [U, V] nehmen. Enthilt A nur einen Buchstaben a, so nehme man

fextU)

DrealV)
etwa die GSdelzahl des obigen Wortes.) Es sei
M, = {[(A), W]: A(W) existiert).

Aus der Annahme, daB M, entscheidbar, d. h. die charakteristische Funktion von M,
durch einen Algorithmus B berechenbar ist, konstruieren wir einen Algorithmus
zur Berechnung der charakteristischen Funktion von M, :

U (e W(A))

oy n U = (907 (nach Voraussetzung iiber die
( Existiert ein % mit U = (¥)? ) Niederschriften entscheidbar)

nein i
l£1=_.l | v, =l[U_ U] | (nach Voraussetzung berechenbar)
!

(nach Voraussetzung ist N
A, falls %(N)) existiert,

Vo= { a andernfalls.)

&)

Da M, bereits als nicht entscheidbar erkannt ist, folgt die Unentscheidbarkeit von
M,. .

Der Beweis der Unentscheidbarkeit von M, enthiillt beispielhaft einen typisch
Zug: Die Tatsache, daB M, nicht entscheidbar ist, ist ,,relativ uninteressant*‘, M, ist
offenbar iiberhaupt nur zu dem Zweck definiert worden, auf méglichst bequeme
Weise von einer konkreten Menge die Unentscheidbarkeit nachweisen zu kénnen.
Der Beweis der inhaltlich tlich inter t Unentscheidbarkeit von -M;
(sie bedeutet immerhin, daB es kein effektives Verfahren gibt, durch das man im
voraus entscheiden kann, ob die Anwendung eines Algorithmus auf ein Wort definiert
ist) wird auf die bereits bewiesene Unentscheidbarkeit einer anderen Menge, nimlich
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M,, zuriickgefiihrt, indem man feststellt, daB das unentscheidbare Problem sozuta-
gen ein Spezialfall des neuen Problems ist, also entscheidbar sein miiBte, wenn das
allgemeinere neue Problem entscheidbar wire. Nun ist auch das Problem der Ent-
scheidbarkeit von M, noch ein ,,inneres Problem‘ der Algorithmentheorie, die ins-
gesamt zu dem Zweck entwickelt wurde, die Frage der Entscheidbarkeit gewisscr
allgemeiner Probleme (z. B. der mathematischen Logik) zu kléren. Es wird sich zeigen,
daB die Unentscheidbarkeit von logischen und mathematischen Problemen allgemein
auf die Unentscheidbarkeit gewisser innerer Probleme der Algorithmentheorie bzw.
auf die Existenz solcher Probleme in grundsitzlich éhnlicher Weise zuriickgefiihrt
wird wie die Unentscheidbarkeit von M, auf die Unentscheidbarkeit von M,.

Die Unentscheidbarkeit des uniformen Halteproblems schlieBt nicht aus, daB es fiir
spezielle Algorithmen (moglicherweise sogar fiir jeden Algorithmus %?) einen Ent-
scheidungsalgorithmus ¥ fiir den Definitionsbereich Dy von % gibt bzw. daB die
charakteristische Funktion des Definitionsbereichs fiir einige berechcnbare Funktio-
nen berechenbar ist. Das entsprechende Problem bezeichnet man als Halteproblem
fiir ¥. Das Halteproblem ist z. B. trivialerweise fiir jede berechenbare volle Funktion
/ in W(4) (d.h. D, = W(A)) entscheidbar, da die zugehorige charakteristische
Funktion als konstante Funktion sicher berechenbar ist. Wir zeigen, da8 es berechen-
bare Funktionen mit nicht entscheidbarem Definitionsbereich gibt, mit anderen
Worten, daB es Algorithmen mit unentscheidbarem Halteproblem gibt:

Aus unseren Voraussetzungen iiber die taktweise Berechenbarkeit der Zwischen-
resultate A*(W) bei Vorliegen der Niederschrift (%) eines Algorithmus und eines
Eingabewortes W ergibt sich, daB es einen universellen Algorithmus % geben muB,
der auf beliebige Eingaben der Form [(), W] genau dann anwendbar ist, wenn
A(W) existiert, und in diesem Fall als Resultat ebenfalls A(W) liefert. Tatsichlich
gestattet jede der bisher betrachteten Prizisierungen des Algorithmenbegriffs,
einen solchen universellen Algorithmus explizit zu konstruicren, jedoch setzt diese
Konstruktion im allgemei eine a feilte ,,Unterprogrammtechnik in bezug
auf den jeweiligen prizisierten Algorithmenbegriff voraus. Das Halteproblem eines
universellen Algorithmus kann nicht entscheidbar sein, denn es ist im wesentlichen
mit dem uniformen Halteproblem identisch.

Einen gewissen Ersatz fiir die nicht erfiillte Entscheidbarkeit vieler wichtiger
Wortmengen stellt die im folgenden behandelte Aufzihlbarkeit dar.

Definition 1. Es sei A ein beliebiges Alphabet, a € A4 ein beliebiger fester Buch-
stabe. Eine Menge M & W(A) heiBt aufzihlbar, wenn M = @ oder wenn eine be-
rechenbare Wortfunktion f in W(4) mit dem Definitionsbereich W({a}) und dem
Wertebereich M existiert.

Den Zusammenhang mit der anschaulichen Bedeutung des Wortes aufzihlen
sieht man am besten, wenn man fiir eine durch eine berechenbare Wortfunktion f
aufgezihlte nichtleere Menge M das Bildwort f(a ...a) in der Form W, schreibt.

——
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Dann ist M = (W,: n =0, 1, 2,...}, wobei fiir jede natiirliche Zahl » das Wort W,
aus dem Index n effektiv gewonnen werden kann. Man beachte, daB die aufzihlende
Abbildung nicht eineindeutig sein muB. Insbesondere stellt sich leicht heraus, daB
jede endliche Menge aufzihlbar ist. Weiterhin ist die Menge W(A) stets (z. B. durch
die berechenbare Wortfunktion /(a. . ) := gjt(n)) aufzihlbar. Da jede aufzihlbare

Teilmenge von W(A4) durch wemgst.ens eine berechenbare Wortfunktion aufgezihlt
wird, folgt aus der Abzihlbarkeit der Menge der berechenbaren Wortfunktionen
in W(A) sofort, daB es hichstens (und mithin genau) abzihlbar viele aufzihlbare
Teilmeng=n von W(A) gibt.

Satz 1. Eine Menge M S W(A) ist aufzihlbar genau dann, wenn M Wertebereich
einer berechenbaren Wortfunktion in W(A) wst.

Beweis. In der einen Richtung ist nur noch zu zeigen, daB auch @ als Wertebereich
einer berechenbaren Wortfunktion auftritt, mit anderen Worten, daB die nirgends
definierte Wortfunktion berechenbar ist. Dies kann man natiirlich nur nach Kenntnis
einer konkreten Prizisierung des Algorithmenbegriffs nachweisen. Der bei fliichtiger
Betrachtung vielleicht wenig anschauliche Sachverhalt wird verstindlicher, wenn man
beriicksichtigt, daB-die Menge der berechenbaren Funktionen natiirlich beziiglich
Verkniipfung mittels FluBdiagrammen abgeschlossen sein soll.!) Es ist aber sehr
leicht, aus gewiB berechenbaren Funktionen und gewiB entscheidbaren Relationen
ein nirgends definiertes FluBdiagramm zu organisieren, z. B.

W (e w(a))
!
W=Wa
W=41?
nein
3

&

Es sei nun M der Wertebereich einer berechenbaren Wortfunktion f mit nichtleerem
Definitionsbereich. (Falls D, = @, ist auch W, =@, folglich nach Definition 1
aufzihlbar.) Wir haben zu zeigen, da8 M auch als Wertebereich einer auf W({a}) (bzw.
zur Vereinfachung der folgenden Formulierungen: auf N) definierten Funktion h

1) Das heiBt, wir stellen folgende Grund.fon:lerung an einen prizisierten Berechenbarkeits-
begriff: Belegt man alle Arbeiteknoten eines beliebigen Strukturg ,‘ mit im prizisierten
Sinn berechenbaren Funktionen und alle seine Priifk mit im prézisierten Sinn heid

baren Relationen, so ist die durch das so entstehende FluBdiagramm defmleru partielle Funktion
im priizisierten Sinn berechenbar (vgl. auch (a) auf S. 152).

P
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erhalten werden kann, die ebenfalls berechenbar ist. Es sei 9 ein Algorithmus, der f
berechnet. Ist A*W) fiir W € D, und n € N das Endresultat f(W), so setzen wir
A™W) = A" W) firm > n.

Fir W ¢ D, bricht die Folge der Zwischenresultate %™(W) ohnehin nicht ab.
Es sei ferner Wy, W,, W,, ... eine berechenbare Aufzihlung von W(4). Dann ist
jedes Element des zweifach unendlichen quadratischen Schemas

— 1 |

!l'(wn), A(W,), AYW,), A(W,), ?I‘(W.,

A

‘l’(Wx)- AW(Wy), AW, WW,), AW,

b

(W), A(W,), A(W,), WW,), A(W,),

\

A(W,), W(W,), A(W,), A(W,), FYW,),

aus vorgegeb Zeil n und Spalt m berechenbar. Berechnet
man die Worter ¥™(W,) in der durch die Pfeile angedeuteten Reihenfolge, so stoBt
man, da W, + @ ist, irgendwann ein erstes Mal auf ein End Itat, d. h. ein El t
von W, = M, und da alle in einer Zeile auf ein Endresultat folgenden Worter eben-
falls Endresultate sind, st68t man nach jedem Endresultat (spitestens beim nachst
Durchgang durch die entsprechende Zeile) wieder auf ein Endresultat. Es sei nun
h(0) das erste so erhaltene Endresultat und k(n + 1) das erste in der angegebenen
Weise nach h(n) erhaltene Endresultat. Es ist klar, daB die so definierte Abbildung
h eine berech deutige (aber nicht eineindeutige!) Wortfunktion mit dem
Definitionsbereich N (bzw. W ({a})) und dem Wertebereich M ist.

Satz 2. Eine Menge M S W(A) 1st aufzihlbar genau dann, wenn M Definitions-
bereich einer berechenbaren Wortfunktion f in W(A) ist.

Beweis. Fir M =0 ist der Satz auf Grund vorausgegangener Bemerkungen
klar. Es sei nun f eine berechenbare Wortfunktion in W(A4) mit dem Definitionsbereich
M. Dann ist die durch

W) 1= W, /alla’ /SW) existiert,
nicht definiert andernfalls
definierte Funktion % gewiB auch berechenbar, und es ist W) = D, = M daher ist
M nach Satz 1 aufzihlbar. Umgekehrt sei k eine berechenbare Funktion mit dem Defi-
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nitionsbereich N(W({a})) und dem Wertebereich M. Dann ist die Wortfunktion f,
die jedem Wort W € M die kleinste natiirliche Zahl n mit h(rn) = W zuordnet, gewiB
auch berechenbar, wie das folgende FluBdiagramm bestitigt:

W (e W(A))

k=0 (bzw. K = A)

“+

(oow = )
]

E (bzw. N = K) (bzw. K = Ka)

Offenbar ist D, = M.

Folgerung. Es gibt aufzihlbare Mengen, die nicht entscheidbar sind. Der Defini-
tionsbereich einer beliebigen Wortfunktion mit unentscheidbarem Halteproblem
(2. B. einer universellen Wortfunktion) hat diese Eigenschaft.

Satz 3. Eine Menge M S W (A) ist entscheidbar genau dann, wenn M und W(A4) \ M
fziihlbar sind. Insbesondere ist jede entscheidbare Menge aufzihlbar.

Wir beweisen zunichst den Zusatz. Ist M entscheidbar, so ist die durch

W, fallsWeM,
fW) = {m’du definiert andernfalls

definierte Wortfunktion f offenbar berechenbar, und es ist D, = W, = M, folglich
ist M aufziahlbar. Da mit einer Menge M auch ihre Komplementirmenge W(4) \ M
entscheidbar ist (durch das gleiche Verfahren, wobei lediglich ,,ja‘“- und ,,nein*-
Ausgang zu vertauschen sind), sind folglich M und W(A4) \ M aufzihlbar, falls M
entscheidbar ist. Es seien nun M und W(A4) \ M als aufzihlbar vorausgesetzt, wobei
wir annehmen kénnen, daB f, eine berechenbare Abbildung von N auf M und f,
eine berechenbare Abbildung von N auf W(4) \ M ist. Unter dieser Voraussetzurg
ist ein Entscheidungsverfahren fiir das Problem W € M? gegeben durch



W (e W(A4))

W1 nein m—n+1

Folgerung. Wir kinnen einige der iiberabzihlbar vielen nicht aufzihlbaren Teil-
mengen von W(A) explizit angeben. Nach Satz 3 ist das Komplement einer aufzihl-
baren, aber nicht entscheidbaren Menge nicht aufzihlbar. Vgl. die vorige Folgcrung.

Wie bereits betrachtct, wird die Berechenbarkeit n-stelliger Wottfunktionen auf
die Berechenbarkeit spezieller einstelliger Wortfunktionen in einem durch einen
Hilfsbuchstaben * vergréBerten Alphabet zuriickgefiihrt. Dem entepricht dic Defini-
tion eines modifizierten kartesischen Produkts

M, xM, := (W, *W,: W, ¢ M, AW, € M,}, falls M;, M, S W(A4),x¢A.

Das so definierte Produkt von Wortmengcn ist, im Gegensatz zum mcngentheoreti-
schen kartesischen Produkt, sogar assoziativ.

Satz 4. Sind My, M; & W(A) aufzihlbare Mengen, so sind auch M, u My, M, n M,
und M, * M, aufzihlbar.

Bewcis. Falls einc der Mengen M,, M, (etwa M,) leer ist, so ist M, u M, = M,,
M, nM, =M, * M, = 0; folglich sind alle drei Mengen aufzihlbar. Es seien
nun M, und M, nichtleer, f, sei eine berecchenbare Abbildung von N auf M, und f,
eine berechenbare Abbildung von N auf M,. Da gewiB entscheidbar ist, ob eine
natiirliche Zahl n gerade oder ungerade ist, und ebenso gewiB diejenige Zahl k mit
n = 2k bzw. n = 2k + 1 aus n berechenbar ist, ist die durch

fi(k), falls n = 2k,

him) = {/.(k» falls m = 2k + 1,
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definierte Funktion f, berechenbar und zihlt M, u M, auf. Wir nehmen weiter an,
daB die durch

h(2*(2m + 1)) := (n, m)
definierte eineindeutige Abbildung von N \ {0} auf N2 berechenbar ist. Dann ist
1,(2*@m + 1)) := fy(n) * fy(m)

eine berechenbare Abbildung von N\ {0) auf M, * M,. Daraus folgt wiederum, daB
die durch

Ay = W, falls f(n) = W » W,
S nicht definiert andernfalls

definierte Abbildung aus N auf M, n M, berechenbar ist.

Vor der Formulierung des folgenden Satzes erinnern wir daran, daB eine n-stellige
Operation fin W(A4) als berechenbar gilt, wenn fiir einen beliebigen Hilfsbuchstaben
* § A die durch

fWyx Wy x W) i= f(W,, Wy, ..., W)
definierte Wortfunktion f in W{A4 u (*}) berechenbar ist.

Satz 5. Ist M S W(A) aufzihlbar und F eine aufzihlbare Menge von (eventuell
mehrstelligen und zum Teil partiellen) berechenbaren Operationen in W(A) (wober man
sich jedes Element f von F etwa durch die in W(A) formulierte Niederschrift eines Algo-
rithmus zur Berechnung von | gegeben denken kann,) so ist die kleinste beziiglich aller
Operati aus F abgeschl, Obermenge M von M ebenfalls aufzihlbar.

Beweis. Der Satz gilt trivialerweise, falls M = @ oder F = @ ist, da dann
M = @ bzw. M = M ist. Es sei daher fo, f;, fs, ... eine berechenbare Aufzihlung
von F, d. h.,, man kann bei gegebenem m die Niederschrift eines Algorithmus zur
Berechnung von f, und bei weiter gegebenen Wortern W,,..., W, das Wort
Im(Wi, ..., W,) berechnen, falls es existiert. Weiterhin eei V,, V,, V,, ... eire be-
rechenbare Aufzihlung von M. Die Menge M ist offenbar gleich der Mcnge aller
Werte, die die Terme einer passend zu wihlenden Termsprache annchmen, wenn
man ihre Operationssymbole durch die Operationen f,, interpretiert und die Variablen
mit Wortern aus M belegt. Um eine solche Termsprache als Teilmenge eines endlichen
Alphabets erhalten zu kénnen, bezeichnen wir die abzihlbar vielen Variablen mit x,
X0, X00, X000 usw. Als Operationssymbol fiir die Funktion f,, wihlen wir, falls diese
Funktion n-stellig ist, die Zeichenkombination o ... oFo ... 0. Damit ist die Menge T

Nt N et

L] m
der wie iiblich hieraus aufgebauten einsortigen Terme eine Teilmenge von W((F, x,
0, (,), ¥}) (* dient beim Aufbau der Terme als Komma). Interpretiert man nun, wie
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beabsichtigt, das Symbol o . . o durch die Operation f,, (diese Interpretation
_,_ _,_,

sei mit w, bezeichnet) und belegt man die Variable xo0 ... o mit dem Wort V,, (diese
——
L]
Belegung sei mit b bezeichnet), so ist offenbar das Wort Weri(t, wy, b), falls es in
W(A) existiert, fiir jeden Term t € T effektiv berechenbar, mit anderen Worten: Es
existiert, eine berechenbare Abbildung von der Wortmenge T auf die Menge

M = (Wert(t, w,, b): t € T).
Das bedeutet aber, daB M aufzihlbar ist.

7.4.  Turingmaschinen

Die bis heute wohl verbreitetste und beliebteste Priizisierung des Berechenbarkeits-
bagriffs beruht auf dem Begriff der Turingmaschine und wurde 1937 von A. M. Tu-
BRING') und unabhingig davon in #hnlicher Form bereits 1936 von E. Post?) vor-
geschlagen. Das Konzept der Turingmaschine erhilt man fast zwangsliufig, wenn
man einerseits von einer Zerlegung der Wortalgorithmen in kleinstmégliche Einzel-
schritte und andererseits von der Vorstellung ausgeht, daB ein wirklich streng algo-
rithmischer WortumformungsprozeB8 prinzipiell von einer geeignet konstruierten
Maschine ausfiihrbar sein muB. Turingmaschinen, die heute in vielen verschiedenen
(aber prinzipiell gleichwertigen) Varianten betrachtet werden, existieren nirgendwo
in der Welt real. Man kann ihre Bauart und Arbeitsweise mehr oder weniger formal
beschreiben und dann ihre Arbeit taktweise in Gedanken verfolgen bzw. mit Papier
und Bleistift nachrechnen — in dhnlicher Weise, wie auch in der Physik gewisse
Experimente nur in Gedanken durchgefiihrt werden. Fiir eine praktische Anwendung
in der Rechentechnik sind Turingmaschinen, obwohl ihre technische Realisierung
heute leicht moglich wire, nicht geeignet, da sie jeden noch so einfachen ProzeB in
sehr viele Einzelschritte auflésen und daher ,,sehr langsam* arbeiten. Die Beschiifti-
gung mit Turingmaschinen vermittelt jedoch sowohl grundlegende Erkenntnisse
s.ls auch praktische Fertlgkelten, die in der Kybernetik und Rechentechnik sehr

itzlich sind. In zunehmendem MaBe werden die von der Theorie der Turingmaschi-
nen bereitgestellten Formali Simulati thoden u. &. auch als Zwischer-
stufe bei der mathematischen Modellierung kompllznerter Prozesse in Medizin,
Naturwi haft, Technik und Gesellschaftsw haften g t. So kann man
feststellen, daB dxe Turing hi trotz ihrer schattenhaften Existenz im Laufc

1) A. M. TurmNg, On bl bers, with an application to the Entscheidungsprobl
Proc. London Math. Soc. 42 (1937), 230—266
%) E. Posr, Finite bi 'y process-fi lation I, J. of Symb. Logic 1 (1936), 103—105.
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der letzten 30 Jahre einen erheblichen EinfluB auf die Theorie und Praxis des pro-
grammgesteuerten Rechnens ausgeiibt haben.

Wir geben zunichst eine recht allgemeine Beechreibung der Turingmaschine an,
die viele mogliche Varianten umfaBt. Eine Turingmaschine besteht aus einem oder
mehreren potentiell unendlichen, in diskrete Zellen eingeteilten Speichern und einem
mit diesen Speichern in Wechselwirkung stehendcn cndlichen Automaten, d.h.
einem endlichen diskreten dynamischen System, das durch endlich viele Zustinde,
endlich viele Ein- und Ausgabesignale und eine endliche Tabelle charakterisiert wird,
die die taktweisen Ausgaben und Zustandsinderungen des Systems in Abhingigkeit
vom jeweils herrschenden Zustand und dcn empfangencn Eingabesignalen festlegt.
Um die Wechselwirkung eines solchen endlichen Automatcn mit dem oder den duBe-
ren Speichern zu erméglichen, miissen die Zellen der Speicher in dcr Lage sein, jeweils
ein Ausgabesignal bzw. eine (iiber cinen bestimmten Ausgabekanal ausgegebene)
Komponente davon zu speichern. Umgekehrt mu8 der Automat in der Lage sein,
den Inhalt gewisser momentan eingestcllter Speicherzellen zu lesen (als Eingabe-
signale zu empfangen) und iiber gewisse Ausgabekanile (Transporteinrichtungen)
sich relativ zum Speicher zu bewegen. Im folgenden beschreiben wir zunéchst an-
schaulich und dann formalisiert eine moglichst einfache, zur Berechnung von Wort-
funktionen geeignete Variante des allgemeinen Konzepts.

Wir nehmen an, daB die Spcicherzellen ein links beschrénktes, rechts unbeschriank-
tes Band bilden (Abb. 1). Die am weitesten links befindliche Speicherzelle trigt ein
Symbol s, das gelesen, aber nicht geléscht und auch nicht in andere Zellen geschrieben
werden kann. In jeder der iibrigen Zellen steht zu jedem Zeitpunkt genau ein von s
verschiedener Buchstabe des endlichen Bandalphabets B, wobei B die Vereinigung
des nichtleeren Ein- und Ausgabealphabets 4 und eines Hilfsalphabets H ist, welches
auBer s mindestens noch ein sogenanntes Leerzeichen o, auBerdem eventuell weitere
Buchstaben enthiilt. Wir nehmen an, daB8 die eigentliche Maschine eine endliche
Menge@ von Zusténden annehmen kann, unter denensich ein ausgezeichreter Anfangs-
zustand ¢, und eine nichtleere Teilmenge Q, von g, verschiedcner Stopzustéinde
befinden. Die Maschine kann mittels eincs sogenannten Lece- und Schreibkopfes (kurz
LS-Kopf) jeweils den Inhalt einer Zelle des Bandes lesen. Ihre Arbeitsweise wird durch
eine endliche Tabelle beschrieben, in der, in Abhingigkeit vom gerade herrschenden
Zustand und vom gerade gelesenen Buchstaben, festgelegt ist: a) der in die gerade

1 . Zelle hinei hreibende Buchstabe (wobei der alte Inhalt der Zelle ge-
loscht wird), b) der im nichsten Takt herrschende Zustand, c) die im nichsten Takt
zu bearbeitende Zelle, welche die links benachbarte (Steucrbefehl L), rechts benach-
barte (Steuerbefehl R) oder wieder die gleiche Zelle (Steuerbefehl N) sein kann. Wir
nehmen schlieBlich an, daB zu Beginn der Berechnung der LS-Kopf auf die mit 8
markierte Anfangszelle und der Automat auf den Zustand g, eingestellt ist (Abb. 1a),
daB sich in endlich vielen, rechts an s anschlieBenden Zellen ein Wort W € W(A) be-
findet und daB in den potentiell unendlich vielen weiteren Zellen das Lecrzeichen o
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steht. Unter diesen Voraussetzungen sind offenbar die sich Takt fiir Takt einstellen-
den Folgesituationen (bestehend aus dem jeweiligen Speicherinhalt, Zustand und
Stellung des LS-Kopfes) im anschaulichen Sinne berechenbar. Damit jede so defi-
nierte Turingmaschine eine ganz bestimmte (eventuell partielle oder gar nirgends
definierte) Wortfunktion realisiert, setzen wir noch fest: Die Programmtafel der
Maschine sei 80 beschaffen, daB ein Zustand aus Q, hochstens beim Lesen des Buch-
staben s angenommen werden kann und da8 in diesem Fall der Steuerbefehl N gege-
ben wird, so daB der LS-Kopf im Zustand ¢, € Q, iiber der Anfangszelle stehenbleibt.
(Es wird nicht verlangt, daB die Maschine bei jeder Riickkehr auf die Anfangszelle
stoppt ) Fiir die Stopzustinde g, € @, braucht in der Tafel keine Festsetzung von
Folg d usw. angegeben werden. Erreicht die Maschine, ausgehend von der
beschrieb Anfangssituati nach endlich vielen Takten eine Situation mit
einem Stopzustand (Abb. 1c), so gilt das lingste zusammenhingende Wort aus W(4),
das sich zu diesem Zeitpunkt rechts an die Anfangszelle anschlieBt, als das dem
Eingabewort zugeordnete Rzsultatwort. Wird eine solche Stopsituation nicht erreicht,
so ist die betreffende Wortfunktion fiir das Eingabewort W mcht defmlert
Wir verwandeln nun die wesentlichen Angaben der h Beschreib
Turing hinen-Variante in eine abstrakte mathematische Definition.

Definition 1. Eine Turingmaschine ist ein System der Form (4, H, Q, q;, Qo, 8,
0, 7), wobei
A eine nichtleere endliche Menge (Ein- und Ausgabealphabet) ist,
H eine zu A disjunkte Menge (Hulfsalphabet) ist, die mindestens die beiden Elemente 8
(Anfangsmarkierung) und o (Leerzeichen) enthilt,
Q eine endliche Menge (Zustandsmenge) ist, die ¢, (Anfangssustand) und die nicht-
leere Teilmenge Q, (der Stopzustinde) mit g, ¢ Q, enthilt,
7 eine Abbildung von (Q\ @,) X (4 u H)in @ X (4 u H) X {L,N, R} (das Programm)
mit folgenden Eigenschaften ist (fiir © = 1, 2, 3 bezeichne 7,(q, x) die i-te Kompo-
nente des Tripels (g, x) = (¢, ¥, 8) (¢, ¢ €@, x,y€ AuH =B, S ¢ (L, N, R))):

a) 15(g, 8) = s fiir ¢ € Q (d. h., s wird nicht gelscht),

b) 74(g, x) &= 8 fiir x 5= 8 (d. h., 8 wird nicht neu geschrieben),

¢) 73(g, 8) # L fiir ¢ € Q (d. h., die Maschine darf nicht vom Band herunterlaufen),

d) Ist 7,(g, X) € @y, 80 ist x =8 und 74(¢, x) = N (d. h., die Maschine stoppt
héchstens auf der Anfangszelle und bleibt dann dort stehen).

Eine konkrete Turingmaschine wird immer durch die Wertetabelle ihres Pro-
gramms 7 gegeben, die wir in rechteckiger Form mit Zeileneingingen fiir die nicht
zu Q, gehorigen Zustinde und Spalteneingingen fiir die Buchstaben des Bandalpha-
bets B = A u H schreiben. Dabei wird der ersten Zeile immer der Anfangszustand
gy zugeordnet, und die Stopzustinde sind gerade diejenigen Zustinde (immer mit

go und eventuell oberen Indizes bezeichnet), die zwar im Innern der Tabelle, aber
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nicht am Zeileneingang auftreten. (Sollte die Maschine noch weitere Stop de

2sitzen, die iiberhaupt nicht in der Tabelle auftreten, so kann man diese offenbar
entfernen, ohne an der Wirkungsweise der Maschine etwas zu éndern.) Somit enthilt
die Tabelle einer Turing hine die Information iiber alle jhre abstrakten Kompo-
nenten, und wir werden daher eine Turingmaschine (A, H, Q, go, @, 8, 0, T) mit
dem Programm bzw. der Tabelle v im folgenden hiufig kurz als Turingmaschine v
bezeichnen.

Beispiel 1. Tabelle einer Turingmaschine.

i H A

8 o a b
'a @8R g;a L 7.2 R : mwaR
% - qaa L 0o R e R
[ - @abL %bR bR
'8 %8N - ¢ aL gsbL

Die durch diese Tabelle gegebene Turingmaschine fiihrt ein beliebiges Eingabewort
W e W((a, b}) in folgender Weise in das Wort aW iiber: Zunichst wird (noch im
Zustand ¢,) in die rechts neben s befindliche Zelle ein a gedruckt. Dabei ,,merkt‘ sich
die Maschine den alten Inhalt dieser Zelle (im allgemeinen a oder b), indem sie in
den Zustand g, bzw. g, iibergeht. Die Maschine liuft nun von links nach rechts iiber
das Eingabewort und verschiebt es um eine Zelle nach rechts, indem sie jeweils den
Inhalt der i-ten Zelle 16scht, sich dann den entsprechenden Zustand merkt und den
geloschten Buchstaben in der (¢ + 1)-ten Zelle wieder druckt. In der ersten leeren
(d. h. mit o bedruckten) Zelle wird der zuletzt gemerkte Buchstabe abgeladen,
worauf die Maschine im Zustand g, nach links bis in die Zelle s liuft, wo sie
stoppt. Man iiberpriife, daB das gewiinschte Résultat aW auch im Sonderfall W = A
erhalten wird, in dem bereits die rechte Nachbarzelle von s leer ist. Die in drei
Feldern des Programms stehenden Striche deuten an, daB die entsprechenden
Kombinationen von Zustand und Bandsymbol nicht auftreten konnen. Der
konkrete Inhalt dieser Felder hat somit keinen EinfluB auf die Arbeit der Maschine,
-80 da8 man sich diese Felder (unter Beachtung der Bedingungen a) bis d) aus Defini-
tion 1) beliebig ausgefiillt denken kann. Derartige Striche werden wir auch in Zukunft
zur bequemeren Notierung konkreter Programme benutzen. Dariiber hinaus ver-
cinbaren wir folgende Abkiirzung: Zustinde und Bandsymbole, die gegeniiber dem
vorigen Takt konstant bleiben, werden nicht aufgeschrieben, d. h.

(g, x) = (¢', R) bedeutet 7(g, x) = (¢’, x, R),
(¢, ) = (y, L) bedeutet (¢, x) = (¢, y, L),
74g, X) = R bedeutet (g, x) = (g, x, R) usw.
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Unter Benutzung dieser Abkiirzungen ist das obige Programm wie folgt zu schreiben:

: H A

8 ° a )
é,_ R g8 L R gva R
[ - [X 3 R g@wakR
'y - gabL bR R
' %N - L L

Definition 2. Es sei (4, H, Q, ¢, Qo 8, 0, 7) cine Turingmaschine. Eine Kon-
stellation beziiglich dieser Turingmaschine ist ein Wort im Alphabet B u (B X Q)
(B = AuH), das mit s oder einem Buchstaben (s, g) beginnt und genau einen
Buchstaben aus B X Q enthilt.

Der Begriff der Konstellation (in der angloamerikanischen Literatur mit nstan-
[? description, kurz ID, bezeichnet) gibt offenbar genau das Wesentliche einer
momentanen Stellung der Turingmaschine wieder, die vorher als Situation bezeichnet
wurde, wenn man annimmt, da8 die unendlich vielen Zellinhalte, die auf den letzten
angegebenen Buchstaben folgen, o sind. Um den Zusammenhang mit dem anschau-
lichen Situationsbegriff noch deutlicher zu machen, werden wir den Buchstaben der

Form (x, g) einer Konstellation, der Zustand und Stellung des LS-Kopfes angibt,

" .
als x schreiben. Die Anwendung der in Beispiel 1 angegebenen Maschine auf das
Eingabewort baabb kann dann durch folgende endliche Folge von Konstellationen
exakt beschrieben werden:

@

sbaabb

L
sbaabb
qo
saaabb
s
sababb
o
sababb
[
sabaab

o
sabaabo

o
sabaabb
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@
sabaabb-
@
sabaabb
o
sabaabb
o
sabaabb
@ :
sabaabb
a
sabaabb

Definition 3. Beziiglich einer Turingmaschine 7 sei K eine Konstellation, die den

]
Buchstaben z enthiilt. Falls g ¢ @, ist, sei die Folgekonstellation v(K) durch folgende
Tabelle definiert:

K ©(K)
q [
UxV UyV falls 7(g, x) = (¢', y, N)
[ ¢
UzxV UzyV falls 7(g, x) = (¢, y, L)})
(] L4
UxzV UyzV
falls 7(g, x) = (¢, y, R)
q 9
Ux Uyo

1) Dann ist x + 8 nach Definition 1, Bedingung c).

Falls g € Q, ist, heiBe K Endkonstellation, und 7(K) sei in diesem Fall nicht definiert.
Es sei 71(K) = 7(K); ist die Konstellation z*(K) schon definiert und keine End-
konstellation von 7, 8o sei t**}(K) = 7{r*(K)). Jede Turingmaschine r mit dem Ein-
und Ausgabealphabet A realisiert (berechnet) eine wie folgt definierte Wortfunktion
f.in W(A):
}.(W):=V genau dann, wenn eine natiirliche Zahl n, ein Hilfsbuchstabe x ¢ 4
(evertuell x = o) und ein (eventuell leeres) Wort R € W(A4 u H) existieren, so daB

@ 3 o @
™sW) =8V oder *(sW)=sVxR,
@
wobei ¢, ein Stopzustand von r ist (d. h., z"(s W) ist eine Endkonstellation von z).
Eine Wortfunktion f in W(A) heiBt Turing-berechenbar, wenn eine Turingmaschine
7 mit dem Ein- und Ausgabealphabet A4 existiert, so daB f = /, ist.

@
Die Bestimmung, daB in der bei Abarbeitung der Konstellation s W erhaltenen
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Endkonstellation auf das Ausgabewort V € W(A) ein Rest folgen darf, der dann aber
mit einem Buchstaben x ¢ A beginnen muB, prazisiert die schon in der anschaulichen
Beschreibung der Turingmaschinen getroffene Festsetzung, daB derjenige Teil
des letzten Bandinhalts als Resultat gedeutet wird, der in der rechten Nachbarzelle
von 8 beginnt und in der linken Nachbarzelle des ersten Buchstaben x ¢ 4 endet.
Insbesondere ist also f,(W) = 4, falls fiir ein »

@ K
™sW)=8xR
gilt, wobei x ¢ A ist. Unter Bezug auf Definition 3 kénnen wir der in 7.3. vorliufig
formulierten Hypothese von CHURCH folgende prizisierte Fassung geben:

Jede im anschaulichen Sinn effektiv berechenbare W ortfunktion st Turing-berechenbar.

Definition 4. Konstellationen K,, K, einer Turingmaschine heiSen dquivalent,
wenn eine natiirliche Zahl m = 0 existiert, so daB K, = K,0...00der K, = K,0...0

. ——— e
ist., m "

Demnach sind dquivalente Konstellationen nichts anderes als verschiedene endliche
Beschreibungen des gleichen (unendlichen) Bandinhalts nebst Zustand und Stellung
des LS-Kopfes. Es ist leicht zu sehen, daB die Eigenschaften Reflexivitit, Symmetrie
und Transitivitit einer Aquivalenzrelation hier tatsiichlich erfiillt sind. Ferner ergibt
sich aus Definition 3, daB fiir dquivalente Konstellationen K,, K; und beliebige
natiirliche Zahlen n genau dann %K) existiert, wenn t*(K,) existiert, und daB im
Fall der Existenz beide Konstellationen ebenfalls dquivalent sind. Insbesondere ist
daher f,(W) =V genau dann, wenn eine natiirliche Zahl =, ein Hilfsbuchstabe
x ¢ A und ein Wort R € W(A u H) existieren, so daB fiir jede Konstellation K der

L [
Form 8 Wo ... o die Endkonstellation t"(K) zur Konstellation s VxR équivalent ist

@
(mithin genau dann zu 8 V iquivalent ist, falls hierbei xR € W({o}) gilt). Unter Bezug
auf diese Tatsachzn werd>n wir im folgenden hiufig dquivalente Konstellationen
identifizieren.

Wir weisen nun die Turing-Berechenbarkeit einiger einfacher Wortfunktionen
nach, indem wir jeweils ein die betreffende Funktion realisierendes Turingprogramm
angeben. Als Ein- und Ausgabzalphabet benvczen wir dabei der Einfachheit halber
in allen Fillen A = (a, b}. Die Beispiele sind jedoch so beschaffen, da man ohne
weiteres sieht, wie die Turing-Berechenbarkeit der fiir andere Alphabete analog
definierten Wortfunktionen zu zeigen ist. Dem Leser sei dringend empfohlen, fiir
einige weitere Wortfunktionen selbstindig Turingprogramme zu konstruieren.

Beispiel 2. Die nirgends definierte Wortfunktion in W(A4) wird durch die
Maschine
| s [ o]~

| ®
o |R|R|R[|R
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realisiert, der auBerdem ein in der Tabelle selbst nicht vorke der St tand
¢, zuzuordnen ist.

Beispiel 3. Die Funktion f(W) := A wird durch die Maschine

8 o a b

' R |¢L|oR | oR

' N L - -
realisiert.
Beispiel 4. Die Funktion f(W) := Wa wird durch die Maschine

8 o a b

' R qaL R R

92 %N . - L L
realisiert.
Beispiel 6. Es sei f(4) = A und, falls (W) schon definiert ist, {(Wx) = xf(W)

fiir x € A4, d. h., (W) ist das ,,umgedrehte* Wort W, im folgenden mit W bezeichnct.
Diese Wortfunktion f wird durch die folgende Maschine realisiert :

8 o a b
[ R 2L @%WoR goR
[ - ¢:oL R R -
'S - ¢:bL R R
3 - %R 9 oL g'oL
%’ - X3 L L
@ - bR L L
[ - uR %ok ok
'A - oL R R
9 - - 7./ oL g oL
@' | - %8l L gy’ aL
@’ - g bL ¢ bL L
' W N - L L



7.4. Turingmaschinen 173

Definition 5. Eine Turingmaschine bzw. ihr Programm 7 heiBen sauber, wenn
fiir alle W € W(A) (A Ein- und Ausgabealphabet) gilt: Falls V = f (W) existiert,

@
hat die Endkonstellation die Form s Vo ..., d.h., der in Definition 3 zugelassene
nichtleere Rest R des Bandinhalts enthilt keine vom Leerzeichen o verschied
Buchstaben.

Eine saubere Turingmaschine hinterlat demnach keine Spuren von Zwischen-
rechnungen auf dem Band. Alle bisher betrachteten' Beispielprc e sind saub

PEIPtOE

Definition 6. Turingprogramme 7,, 7, mit gleichem Ein- und Ausgabealphabet
A (aber eventuell verschiedenen Hilfsalphabeten) heiBen dquivalent (v, =~ t,), wenn
,r. = f,' ist.

Satz 1. Zu jedem Turingprogramm v kann man ein dquivalentes sauberes Turing-
programm v konstruieren.

Beweis. Die Idee besteht darin, die eventuell achst nicht b Turing-
maschine nach AbschluB der eigentlichen Berechnung ein letztes Mal nach rechts
laufen zu lassen, wobei alle hinter dem letzten Buchstaben des Resultats gefundenen,
von o verschiedenen Buchstaben geléscht werden. Die Maschine kann jedoch zu
diesem Zeitpunkt im allgemeinen nicht mehr ,wissen*, wie weit diese Suche fort-
zusetzen ist, bevor sie endgiiltig nach s zuriickkehren kann, da die eigentlichen

Stiicke des zu beseitigenden ,,Abfalls** im allgemei durch beliebig lange Liicken
aus Leerzeichen getrennt sein konnen. Um diese Schwierigkeit zu umgehen, ersetze
man im urspriinglichen Programm v jede Anweisung, o zu druck durch die An-

weisung, ein gewisses neues Hilfszeichen * zu druck Iches beim Lesen in allen

Fillen wie o behandelt wird. Dadurch bilden die im Laufe der Arbeit der Maschine
jemals beriihrten Speicherzellen ein zusammenhingendes (d. h. nicht durch Leer-
zeichen getrenntes) Wort. Fiir jeden Stopzustand g, des urspriinglichen Programms
hinge man nun folgende Zeilen an das Programm an:

xeH
] o . X80 xed
[ R |¢'L| g'oR o' oR R
9 — | gL oR oR oR
% |%'N| L - - L

und nehme {gy': g, € Q,} als neue Stopzustinde.

Satz 2. Sind f, und f, Turing-berechenbare Wortfunktionen in W(A), 8o ist auch
/2 o fy Turing-berechenbar. Ein Turingprogramm zur Berechnung von f, o f, lipt sich
nach einem einheitlichen Verfahren aus gegebenen Programmen fiir |, und f, aufstellen.

Bewejs. Wir konnen anneh daB das gegebene Programm 7, zur Berechnung
von f, sauber ist und nur einen Stopzustand besitzt. (Andernfalls ersetze man alle
Stopzustinde von 7, durch einen einzigen, wodurch man offenbar ein équivalentes
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Programm erhilt.) Ist f, = f,, so kann man durch entsprechcnde Umbencnnung
der Zustinde (eigentlich Ubergang zu einem isomorphen und daher erst recht dqui-
valenten Programm) erreichen, daB der Anfangzsustand von 7, mit dem Stopzu-
stand ¢, von 1, iibereinstimmt und die iibrigen Zustinde von 7, keine Zustinde
von 7, sind. SchlieBlich kénnen wir erreichen, daB beide Programme das gleiche
Hilfsalphabet H benutzen, indem wir H = H, u H, setzen, wobei H; das Hilfs-
alphabet von t; ist, und 7,(g, x) beliebig fiir x € H, \ H, bzw. 7,(q, y) beliebig
fiir y € H, \ H, definieren (d. h. an den entsprechenden Stellen dcr Tabellen Striche
setzen). Schreibt man unter all diescn Vorauseetzungen die Zeilen des Programms
7y einfach unter die Programmzeilen von 7,, nimmt dcn Anfargezustand von T,
als neuen Anfangszustand und die Stopzustinde von 7, als neue Stopzustirdc, co
erhdlt man schon ein Programm t zur Berechnung der Funktion f; o f,. Fir

We W(A) sti die Konstellationcn z'(s W) 8o lange mit 7," (s W) iiberein,
bis eventuell der Zustand qo errelcht wird. Da 7, sauber ist, ist die entsprechende

Konstellation dquivalent zu s /,(W). Auf eine solche Konstellation wirkt nun t ge-
nau wie 7,, so da genau dann nach endlich vielen Takten ein Stopzustand von 1,
(und damit von 7) erreicht wird, wenn /,(f,(W)) cxistiert. In diesem Fall hat dic

q
Endkonstellation bei Anwendung von t auf W demnach die Gestalt 8 fy(f, (W) R,
wobei ¢ ein Stopzustand von 7, ist und R leer ist oder mit einem Hilfsbuchstaben
beginnt. (v, ist nicht als sauber vorausgesetzt.)

Beispiel 6. Aus den in den Beispielen 3 und 4 angegebencn Programmen zur
Berechnung von f,(W) = A und f;(W) = Wa soll ein Programm zur Berechnung
von fy(W) = fo(f,(W)) = a zusammengesetzt werden. Da beide Programme die
gleichen Hilfsbuchstaben benut: und das angegeb Programm fiir f, bereits
sauber ist, brauchen wir dle Programme nur untereinanderzuechreiben, wobei die

Bezeichnung, det Zustinde des zweiten Programms entsprecherd abzuindern
sind:
[ o [ b
' R ¢.L oR | oR Programm fiir f,
g N L - - !
' R g a L R R
(statt ¢,)
' | % N - L L Programm fir f,
(statt ¢;)

{go’ statt gy neuer Stopzustand).
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Aus dem allgemeinen Zusammenhang zwischen Berechenbarkeit und Entscheid-
barkeit (vgl. 7.3.) ergibt sich ' )

Definition 7. Eine Menge M & W(A) heiBt Turing-entscheidbar, wenn ihre
charakteristische Funktion Turing-b:rechenbar ist, d.h. wenn es eine Turing-
maschine 7 mit dem Ein- und Ausgabealphabet 4 gibt, so daB

A, falls WeM,

" (a € A beliebi
o falls Wewa\m &€ Abeliebig)

o =
gilt.

Fiir den Einbau von Entscheidungsverfahren als Unterprogramme in kompliziertere
Turingprogramme erweist sich jedoch eine Variante dieses Begriffs als giinstiger,
bei der iiberdies die Willkiir in der Wahl der beiden Werte der charakteristischcn
Funktion wegfillt.

Satz 3. Eine Menge M = W(A) ist Turing-entscheidbar genau dann, wenn es ein’

Turingprogramm v mit dem Ein- und Ausgabealphabet A und genau zwet Stopzustinden
go* und qq- gibt, so daB fiir W € W(4)

@ o
1"(8 W) =8 W fiir eine natiirliche Zahl n, falls W ¢ M,
@ W
1"(9 W) =8 W fiir eine natiirliche Zahl n, falls W € W(A4) \ M.
Ein Programm r der in Satz 3 beschriebenen Art heiBt ein Entscheidungsprogramm
(fiir M).
Wir beweisen Satz 3. Zuniichst sei 7 ein Entscheidungsprogramm fiir M. Wir
konstruieren aus 7 ein Programm zur Berechnung der charakteristischcn Funktion

von M, indem wir an v folgende Zeilen anfiigen: .
8 o x;: :,’o xeA
'S R ¢ L - oR
¢ %N L - -
' R ¢ L - oR
¢ | ¢R L - -
¢ | = | L | - -
' o N - - -

Dabei sollen ¢!, g%, ¢*, ¢4, go neue (d. h. in 7 nicht vorkommende) Zustinde sein; g,
sei der Stopzustand des neuen Programms. Die Wirkungsweise ist klar. Ebenso klar
ist, daB man, ausgehend von einem Entscheidungsprogramm fiir M, nach Belieben
Unterprogramme an g,* bzw. g;~ anhiingen kann, die das Resultat der Entscheidung
auf andere Weise als durch 4 bzw. a auf dem Band sichtbar werden Jassen. Zum
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Beispiel kann man die Worter ja bzw. nein ausdrucken lassen, falls die dazu be-
notigten Buchstaben zu A gehoren. Die so berechnete Wortfunktion ist in gewissem
Sinne auch eine ,,charakteristische Funktion von M. Allgemein kann jede auf
W(A) voll definierte Wortfunktion, die genaa zwei Werte annimmt, als charak-
teristische Funktion gedeutet werden.

Es sei nun 7 ein Programm zur Berechnung der charakteristischen Funktion (im
urspriinglichen Sinne) einer Menge M. Wir kénnen annehmen, da8 v sauber ist, den
Anfangszustand ¢,, genau einen Stopzustand g, und das Hilfsalphabet H hat. Das
Programm z’ geht aus v hervor, indem man iiberall s durch einen neuen Hilfsbuch-
staben * ersetzt. Aus v’ konitruieren wir nun ein Entscheidungsprogramm fiir M,
wobei wir hier den Fall 4 = (a, b) explizit aufschreiben. Es ist dann leicht zu sehen,
wie man im Fall eines anderen Ein- und Ausgabealphabets zu verfahren hat (vgl.
die folgende Tabelle). In kurzen Worten liBt sich die Wirkungsweise des so er-
génzten Programms 7’ wie folgt beschreiben : Zunichst wird hinter das Eingabewort

xeH

s ° * x=$8,0,¢ 8 b
q R | ¢oN - - %oR [ gyoR | ¢ @&
A - PaR - — .R waR fuhr:‘aomao
:: - z:b}f - - @WbR R und s W x in

- . - - - - @
¢ — - ¢L - L sWxos Wx fir
gz ¥ - - aL | @l | xel bl WeWsbh

- - — iber
' - - - - gloL | gyoL
! _ a'aR — — — — 7’ fidhrt
| — | abR - - - - L
P - R @R _ R R 8 ...: Win,
o | - R 'R - R R |e.eofarWeM,
9° - ¢al - - R R 'S
PR _ ¢#bL — _ R R s...eafirWgM

iber
o

- ? L R - L - @
;: - q_ oL - q.i _ fihrt s Wo e 0
@[N] L - - L L | insWund
'y - - g°oL - - . T “
™ |e N L - - L L sWoeain s W iiber

W ein Trennzeichen * geschrieben, Ist W 3 A, so wird dabei gleichzeitig W um
eine Zelle nach rechts verschoben, so daB zwischen s und dem ersten Buchstaben
von W ein Leerzeichen o steht. Hinter * wird nun W buchstabenweise noch einmal
abgeschrieben, wobei nach jedem Abschreiben eines Buchstaben das anfangs vorn
stehende Leerzeichen um eine Stelle nach rechts verschoben wird, um so beim
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néichsten Riicklauf die Stellung des zu iibertragenden Buchstaben zu markieren.
Dieser ProzeB8 wird schlieBlich dadurch beendet, daB einmal beim Riicklauf das
Leerzeichen unmittelbar links von * gefunden wird. Auf das hinter » stehende zweite
Exemplar von W wirkt nun ' genauso wie r, wobei lediglich * statt s als ,,Pseudo-
anfangszelle” benutzt wird, so daB das links von * stehende erste Exemplar von W
dabei nicht beriihrt wird. Die Berechnung der charakteristischen Funktion endet
damit, daB der LS-Kopf im Zustand ¢, (dem Stopzustand von t bzw. t’) auf * stehen-
bleibt. Ausgehend von dieser Situation wird durch die letzten Programmzeilen
getestet, ob rechts neben * das Zeichen o oder a steht. Je nachdem, welches Zeichen
dort steht, kehrt die Maschine in zwei parallel laufend Interprog zur
Zelle s zuriick, wobei im ersten Fall #, im zweiten Fall xa geléscht wird und im ersten
Fall der Stopzustand g,*, im zweiten Fall der Stopzustand g, erreicht wird.

Beispiel 7. Wir wollen die Turing-Entscheidbarkeit der Menge aller Worter
W € W({a, b)) nachweisen, die die Buchstaben a und b in gleicher Anzahl enthalt:
Dazu geben wir zunichst ein Programm zur Berec]mung der charakteristischen
Funktion dieser Menge an. Dem hierin steckenden eigentlichen Priifproze8 liegt die
Idee zugrunde, daB die Maschine durch Umordnen der Buchstaben eines beliebigen
Eingabewortes W versucht, dieses auf die Form abab ... ab zu bringen. So weit, wie
das Eingabewort bereits diese Bauart hat, liuft die Maschine von links nach rechts
dariiber hinweg, wobei si¢ abwechselnd die Zustinde ¢, und ¢, annimmt. Im Zustand
¢ erwartet* sie ein & und im Zustand g, ein b. Falls einmal nicht der gewiinschte
sondern der andere Buchstabe gefunden wird, 16scht die Maschine diesen und sucht
rechts davon den ersten zum Austausch brauchbaren Buchstaben. Der Proze8
bricht genau dann mit positivem Resultat ab, wenn im Zustand ¢, statt a das Leer-

zeichen o gefunden wird. Das Programm hat d h folgende Gestalt:
8 o, 8 b
' R L @R 9%.oR a erwarten
qs %N L oL oL positiver Ausgang, Eingabe l16schen
'S - @ L gsoR @R b erwarten
4 - 6L | ¢bL R s zum Austausch suchen
qs - o R - L Riicklauf dazu
'S - %L R ¢;aL b zum Austausch suchen
[ - bR L - Ricklauf dazu
ds o R L oL oL negativer Ausgang, Eingabe
: 13echen
'S - g8 L - - a drucken

Der Leser fiihre dieses Programm nach dem im Beweis von Satz 3 angegebenen
Verfahren in ein Entscheidungsprogramm iiber und priife dieses an den Eingabe-
wortern A, ab, aba und abbab.



178 7. Algorithmen

Satz 4. Ist M & W(A) Turing-entscheidbar und sind f, und f, Turing-berechenbare
-Wortfunktionen in W(A), so st die durch

[(W),  falls W € M und f,(W) existiert,
f(W):= 1 (W), falls W € W(A)\ M und fo(W) existiert,
nicht definiert andernfalls

definierte Wortfunktion fy Turing-berechenbar. Aus Turingprogrammen zur Ent-
scheidung von M (bzw. zur Berechnung der charakieristischen Funktion von M) und
zur Berechnung von f, und f, kann nach einem einheitlichen Verfahren ein Turing-
programm zur Berechnung von fy konstrutert werden.

Beweis. Es sei 7, ein Entscheidungsprogramm fisr M mit dem Anfangszustand
¢, und den Stopzustanden g,* und g,~. Ferner seien 7, bzw. t, Turingprogramme zur
Berechnung von f, bzw. f,, wobei 7, den Anfangszustand ¢,* und den Stopzustand
¢o und 7, den Anfangszustand g;~ und den Stopzustand g, hat und die drei Programme
aufler den genannten Fillen keine Zustinde gemeinsam haben. Wir konnen weiter
voraussetzen, daB alle drei Programme das gleiche Hilfsalphabet benutzen, indem
wir sie andernfalls fiir die urspriinglich nicht benutzten Buchstaben des kleinsten
gemeinsamen Erweiterungsalphabets beliebig (d. h. durch Striche in der Tafel) fort-
setzen. Unter diesen Voraussetzungen ist offenbar schon 7, u 7, u 7, ein Programm
zur Berechnung von f,, das man also im konkreten Fall einfach durch Aneinander-
reihen der Programmzeilen der drei Programme erhiilt. Als Anfangszustand fiir das
Gesamtprogramm dient dabei g¢;, als Stopzustand g,.

Satz 5. Ist M S W(A) und f eine Wortfunktion in W(A), so sei f™ die durch

W), falls P(W) =W, (W) = (W), ..., (W) = f(f2(W))
MW):= existieren, [(W) 4 M fir i<=n, f(W)eM,
nicht definiert andernfalls '

definierte bzw. durch das Flufdiagramm

W (e W(A))
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dargestellte Wortfunktion in W(A). Ist M Turing-entscheidbar und f Turing-berechenbar,
s0 ist fM Turing-berechenbar, und ein Programm zur Berechnung von f™ kann aus
gegebenen Programmen zur Entscheidung von M und Berechnung von | nach einem
einheitlichen Verfahren konstruiert werden.

Beweis. Es sei 7, ein Entscheidungsprogramm fiir M mit dem Anfangszustand
¢, und den Stopzustinden g,* und g¢-, t, ein sauberes Programm zur Berechnung von
{ mit dem gleichen Hilfsalphabet, dem Anfangszustand g und dem Stopzustand
q,, 80 daB beide Programme keine weiteren Zustinde gemeinsam haben. Dann ist
7ou7, mit dem Anfangszustand ¢, und dem Stopzustand g,* ein Programm zur
Berechnung von /M.

Die in den Beweisen der Sitze 2 bis b zusammengefaBten Methoden zur Verdopp-
lung von Eingabewortern und Verkniipfung von Programmen bezeichnet man als
Unterprogrammiechnik fiir Turingmaschinen. Das Wesentliche dieser Unterprogramm-
technik besteht in der geeigneten Identifizierung von Anfangs- und Stopzustinden
verschiedener Programme mit im iibrigen disjunkten Zustandsmengen. Die Einfach-
heit dieser Technik (insbesondere im Vergleich zur analogen Programmverkniipfung
fiir andere Prizisierungen des Algorithmenbegriffs) ist einer der Griinde fiir die
Bevorzugung der Turingmaschinen. +

Ist A ein beliebiges Alphabet und sind |,  zwei nicht in 4 enthaltene Zeichen, so
sei g; durch |...| verschliisselt. Die in einem beliebigen Turingprogramm mit dem
e

it+1
Ein- und Ausgabealphabet A benutzten Hilfsbuchstaben kann man in der Form
h, (= 8), hy (= 0), hy, hy, ... annehmen und daher h; durch *...x verschliisseln. Dann
S——
1
entspricht jedem moglichen Quintupel eines Turingprogramms r mit dem Ein- und
Ausgabealphabet 4, d. h. jeder Vorschrift der Form

©(gi, X) = (4, ¥, S)
ein Kodewort |...| X |...| YS im festen Alphabet B = A u ||, ¥, L, N, R}, wobei
N~ e

i+1 j+1

X,Y e Au W({x)) ist. ’Die Gesamtheit aller dieser Kodeworter bildet ein System
von Pseudoatomen (vgl. 7.1.), d. h., man kann jedes als Verkettung colcher Wérter
geschriebene Wort eindeutig wieder in seine Bestandteile zerlegen. Da die Reihenfolge
bzw. Anordnung der einzelnen Befehle eines Turingprogramms iiberhaupt keine
Rolle spielt (formal mengentheoretisch ist ja 7 als Abbildung nichts anderes als eine
ungeordnete Menge von Quintupeln), 1iBt sich jedes Programm beziiglich des
fcsten Alphabets A durch ein Kodewort im Alphabet B darstellen, wobei jedoch
diese Darstellung nicht eindeutig bestimmt, sondern die Reihenfolge der darin
vorkommenden Pseudoatome beliebig ist. Zum Beispiel ist

[l R ek [ L] xR [b| e B | [N [ e Lo
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ein Kodewort fiir das in Beispiel 3 angegebene Turingprogramm. Wir haben es hier
mit dem allgemeinsten Typ einer Kodierung (vgl. 7.1.) zu tun, d. h., nicht alle (sogar
nur sehr wenige) Worter aus W(B) sind Kodeworter eines Turirgprogramms, urd
viele verschiedene Kodewérter haben jeweils die gleiche Bedeutung. Das letztc
konnte man zunichst vermeiden, indem man irgendeine kanonische Reihenfolge
der einzelnen Quintupel eines Programms vorschreibt. Faft man-jedoch die Kode-
worter als Kodewérter der durch das jeweilige Programm berechneten Wortfunktion
auf, so laBt sich die Mehrdeutigkeit nicht mehr vermeiden, da ja eine iiberhaupt
Turing-berechenbare Wortfunktion durch viele verschiedene Programme realisierbar
ist, deren Aquivalenz nicht einmal entscheidbar ist. Es ist jedoch (zundchst im
anschaulichen Sinne) entscheidbar, ob ein gegebenes Wort aus W(B) Kodewort einer
Turing-berechenbaren Wortfunktion in W(A) ist. Hierfiir ist wichtig, daB man die
in Definition 1 formulierten Bedingungen a) bis d) am Kodewort eines Programms
effektiv iiberpriifen kann und daB nach unseren Festsetzungen iiber die Deutung
des Resultats bei einem eventuell nicht sauberen Programm jedes Turingprogramm eine
Wortfunktion definiert. Es ist nun nicht schwer, durch Umkodierung eine Nieder-
schrift (r) der iiber dem Ein- und Ausgabealphabet A operierenden Turingprogramme
7 80 zu definieren, daB (r) € W(A) ist und die oben diskutierte Entscheidbarkeit
erhalten bleibt. Damit ist eine Grundforderung, die in 7.3. an den prazisierten
Berechenbarkeitsbegriff gestellt wurde, erfiillt. Beziiglich eincs solchen Nieder-
schriftebegriffs fiir Turingprogramme (fiir den es natiirlich viele konkrete Méglich-
keiten gibt) kann man nun unter Benutzung der Unterprogrammtechnik auch einc
universelle Turingmaschine 'explizit angeben. Die Konstruktion einer solchen
Maschine, deren Angabe den Rahmen dieses Buches iiberschreiten wiirde, erfordert
weit mehr Schreib- als Kopfarbeit. Der interessierte Leser sei auf [19] verwiesen.

7.5.  Andere Prizislérungen des Berechenbarkeitsbegriffes
und deren Gleichwertigkeit

1. Varianten des Begriffs der Turingmaschine. In der Theorie der Turing-
maschinen wurden und werden zahlreiche Varianten des in 7.4. benutzten Formalis-
mus der Turingmaschinen untersucht. Dabei stellte sich bisher in allen Fillen die
prinzipielle Gleichwertigkeit hinsichtlich der Berechenbarkeit von Wortfunktionen
heraus. Das ,,Umsteigen“ von einem Programm beziiglich einer gewissen Variantc
zu einem gleichwertigen Programm beziiglich einer anderen Variante erfordert im
allgemeinen lediglich eine groBere Zahl von Zustinden oder Takten bzw. gestattet
die Verkleinerung der Zustandszahl oder Rechenzeit. Daher werden derartige Unter-
suchungen schon seit einiger Zeit nicht mehr unter dem Aspekt durchgefiihrt, die
Hypothese von CHURCH zu bestiitigen oder gar zu widerlegen, sondern im Zusammen-
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hang mit dem sehr komplizierten Begriff der Komplmerthelt eines Algonthmus oder
einer Wortfunktion. Ohne da8 hier auf Einzelheit. Inter ein-
gegangen werden kann, sei erwihnt, daB man zwischen der Bereehnungakmnphzwrt-
heit eines Algorithmus, d. h. der zur Erreichung des Resultats (in Abhingigkeit vom
Eingabewort) benétigten Schrittzahl, und der (etwa durch die Anzahl der Regeln
bzw. der Zustiéinde eines Turingprogramms gegebenen) Beschreibungskompliziertheit
eines Algorithmus zu unterscheiden hat. Aus der Fiille der noch nicht oder nicht
restlos geklirten Probleme in diesem Bereich sei die Frage angefiihrt, ob bzw. wie
man sinnvoll die Kompliziertheit einer Wortfunktion unabhiingig vom Berechnungs-
formalismus definieren kann. Wir skizzieren nun einige wesentliche Varianten des
Begriffs der Tunngmaschme, wobei wir den in 7.4, definierten Maschinentyp als
Standard-Turing ichnen werden.

1.1. Turing hinen mit beidscitig unbegrenztem Speicherband. Es ist klar, da8 man
jede Standard-Turing hine auf einer solchen Magchine simulieren kann, indem
man eine beliebige Zelle des beidseitig unbegrenzten Speichers mit s bedruckt und
dann das gleiche Programm verwendet, wobei der links von s befindliche Teil des
Speichers natiirlich nicht benutzt wird. Umgekehrt kann man eine Maschine r mit

v: Anfangsstellung
des LS-Kopfes
\/

O nDOnonE

t': Anfangsstellung

des LS-Kopfes
N/
| s | 1i—1| 2 |—2| 3 |—‘3| 4 l-;[
Abb.2 :

beidseitig unbegrenztem Speicher auf einer Standard-Turi hine in folgend
Weise slmuheren Die Zellen des unbsschrinkten Speichers , werden den Zellen des
links beschriinkten Speichers, wie in Abb. 2 dargestellt, zugeordnet. Jedem Zustand
g des Programms 7 entsprechen im allgemeinen sechs Zustinde ¢, ¢, g, 7, 3y, Jr des

neuen Programms 7’ fiir die Standard-Turing hine. Ist ¢, der Anfangszustand
von 7, 80 sei ¢,* der Anfangszustand von 7', und es sei 7'(¢,*, 8) := (¢,, 8, R),

7'(¢:*, x) beliebig fiir x + s, d. h., im ersten Takt wird die simulierende Maschine z’
auf die richtige Anfangszelle (vgl. Abb. 2) eingestellt. Fiir jeden Befehl der Form
(g, x) = (¢', y, R) wird

(g, x) = (@gr, Y, R), 7'(gr’,z) = (7,2 R) } fiir alle z des Bandalphabets,

Y@ =@ 'y, L, @2 =@ zL)
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in 7’ aufgenommen, d. h., wenn die Maschine sich im Zustand g auf einer Zelle mit
positiver Nummer befindet und x liest, so druckt sie y, geht nach rechts und in einen
Wartezustand gr’, in dem einerseits der im iiberniichsten Takt einzunehmende
Zustand ¢', andererseits die Bewegungsrichtung R und schlieBlich das Arbeiten auf
der rechten Hilfte des simulierten Bandes, d.h. auf den Zellen mit positiver
Nummer, verschliisselt sind. In diesen Zusténden der Form gp werden demnach
gerade die Zellen mit negativer Nummer passiert, ohne deren Inhalt zur Kenntnis
zu nehmen oder zu éndern. SinngeméB ist ein Rechtslauf der Maschine v auf den
Zellen mit negativen N n im allgemeinen durch einen Linkslauf der simulieren-
den Maschine 7' zu ersetzen, wobei in den Zwischenzustinden der Form §,, die Zel-
len mit positiver Nummer passiert werden, ohne deren Inhalt zur Kenntnis zu
nehmen oder zu éndern. Es ist nun schon fast klar, wie ein Befehl der Form (g, x)
= (¢, ¥, L) in das Programm 7’ zu iibernehmen ist, namlich durch

1,(3' X = (({L ) y.L), 1, (_‘_h,' = (Z,’ Z' L)} fiir alle z des Bandalphabets.
¥(@x) =@’ ¥, R), Y@’2) =(T,%R)

Einem Befehl der Form (g, x) = (¢, y, N) entsprechen die Befehle
“@x)=(,y7N), “@x)=@,yN).

Es ist noch der Ubergang von der positiv numerierten Bandseite auf die negativ
numerierte und umgekehrt zu realisieren. Dies leisten offenbar die Befehle

¥(qw 8) = @x 8 R), 73 8) =(g8R).

Sind Programm und Anfangsinhalt des Speichers fiir eine Maschine mit unbe-
grenztem Band so beschaffen, daB der nichtleere Teil des Speichers in jedem Takt
ein zusammenhingendes Wort bildet (dies kann man z. B. durch Benutzung eines
Pseudo-Leerzeichens erreichen; vgl. den Beweis von Satz 1 in 7.4.), so kann man
diese Maschine einfacher als durch den oben angegebenen Proze8 dadurch auf einer
Standard-Turingmaschine simulieren, da man jedesmal, wenn ein s gelesen wird,
in ein Unterprogramm springt, durch welches der gesamte nichtleere Speicherinhalt
um eine Zelle nach rechts verschoben wird, wonach der LS-Kopf auf die nun leere
rechte Nachbarzelle von s (bzw. linke Nachbarzelle des nichtleeren Speicherinhalts)
zuriickkehrt. Mit anderen Worten: Wenn die Maschine am linken Ende von ihrem
jeweiligen Zwischenresultat herunterrutscht bzw. dort Platz braucht, so schiebt
sie das gesamte Zwischenresultat um jeweils eine Zelle nach rechts.

1.2. Turingmaschinen im Quadrupel- und Tripel-Formalismus. Hier wird die Arbeit
einer Turingmaschine (unabhiingig von der Speichergestalt) in noch kleinere
Einzelschritte zerlegt. Im urspriinglichen Quadrupel-Formalismus haben die Be-
fehle die Form 7(g, x) = (¢’, Y), wobei Y ein Bandsymbol oder ein Steuerbefehl
ist, d.h., in jedem Takt kann, in Abhiéngigkeit vom Zustand g und vom gelesenen
Symbol x, nur entweder der Zelleninhalt geindert oder eine Bewegung des
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LS-Kopfes ausgefiihrt werden. Zuniichst ist klar, daB man jedes im Quadrupel-
Formalismus geschriebene Progmmm in ein Takt fiir Takt gleichwertiges Programm
im Quintupel-Formali iben kann. Umgekehrt kann man zu jedem
Progmmm im Quintupel-Formalismus ein dquivalentes Programm im Quadrupel-
Formalismus angeben, das jeden Takt der Quintupel-Maschine in zwei Takten
realisiert. Man ersetze z. B. den Befehl (g, x) = (¢, y, R) durch

(g, x) =g’ y), 7(2r,y) = (d,R).

In analoger Weise sind auch die beiden anderen kombinatorisch méglichen Quadrupel-
Formalismen (im ersten Fall wird in jedem Takt der Zellinhalt gedndert, aber als
zweites wahlweise ein neuer Zustand oder ein Steuerbefehl vorgeschrieben ; im zweiten
Fall wird in jedem Takt ein Steuerbefehl ausgefiihrt, aber als zweites nur entweder
eine Zustandsinderung oder eine Anderung des Zellinhalts) zum klassischen Quin-
tupel-Formalismus équivalent. Es ist etwas iiberraschend, daB man diesen klassi-
schen, Formalismus sogar noch in einem Tripel-Formalismus simulieren kann, bei
dem in jedem Takt nur eine der drei Komponenten Zustand, Zellinhalt, gelesene
Zelle geiindert werden darf.?)

1.3. Turingmaschinen mit mehreren Bindern oder mehreren LS-Kopfen auf etnem
Band. Es sei’ A, das Alphabet der auf dem x-ten Band (1 < x < k) lesbaren und
schreibbaren Zeichen. Eine k-Band-Maschine mit der Zustandsmenge @ und der
Menge Q, = Q von Stopzustinden wird dann durch eine Abbildung = von (@ \ Qo)
XAy X+ XAy in QXA X XA X S* beschrieben, wobei S = (L, N, R} ist.
Das bzdeutet, daB in Abhingigkeit vom jeweiligen Zustand ¢ und den auf dcn &
Biindern gelesenen Symbolen x,, ..., x;

a) der neue Zustand ¢,

b) fiir jedes der k Biinder der in die gel Zelle zu schreibende Buchstabe

X eeey Xy )
c) fiir jedes der k Binder die Bewegung des LS-Kopfes

festzulegen ist. Die Simulation einer solchen k-Band-Maschine auf einer 1-Band-
Maschine kann nach éhnlichen Prinzipien erfolgen, wie sie in 1.1. benutzt wurder.
Die Stellung der k LS-Kopfe in einem bestimmten Takt ist dabei durch k Hilfe-
buchstaben zu markieren. Der eine LS-Kopf der simulierenden Maschine verindert
nun nach den Anweisungen des simulierten Programms die Stellungen dieser k Pseu-
do-Képfe und die Inhalte der entsprech 1 Zellen auf den k Pseudo-Béndern,
deren jedes durch jede k-te Zelle des einen Bnndes dargestellt wird. Es mt klar, dnB
hier die Simulation eines einzigen Taktes der k-Band-Maschine ein 8
Unterprogramm und sehr viele Schntte der mmuherenden Maschine erfordert. Um-
gekehrt sind natiirlich viele prinzipiell algorithmisch losbare Aufgaben auf einer

) 4

1) Siehe hierzu P. C. Fisagr, On Formalism for Turing Machines, J. Assoc. Comput. Machin.
12 (1965), 570—580.
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Mehrband-Maschine viel leichter und schneller zu bewiiltigen als auf einer Einband-
Maschine. Zum Beispiel erfordert die Addition zweier Dualzahlen auf zwei Bindern,

wobei das Resultat auf dem iten Band erschei soll, nur zwei Zustinde und
8o viele Takte, wie der Stellenzahl des ling S d prechen:
1. Band 0 0 1 1 o o 0 1 o
2. Band [ 1 0 1 [ 1 o o
oL oL oL oL oN oN oL oL oN

[} ¢ OL|¢, 1L|g, 1L|g, OL[g, OL|g, 1L|gq, OLjg, 1L|g, oN
oL ol o]: oL oN oN oL oL oN
9 q; 1L|g, OL|g, OL|g, 1Ljg, 1L|g, OL|g, 1L|g, OL|g, ) 1N

Dabei bedeutet o das Leerzeichen, 0 bzw. 1 die Dualziffern, g, Addition ohne Uber-
trag von der vorhergehenden Stelle und g, Addition mit Ubertrag, und wir gehen
der Einfachheit halber von der in Abb. 3 dargestellten Anfangskonstellation aus.

vt oo oo o Ao o oo o] =
2.Band ... [oJo]o]ofofo]1]0]0fo 1 o]oo]

Abb. 3

Wie man sieht, ist die Tabelle des Turing-Programms in diesem Fall kaum etwas
anderes als die vollstindige Niederschrift des beim handschriftlichen Addieren
befolgten Algorithmus. Es sei dem Leser empfohlen die Addition zweier durch em
Zeichen * getrennter Dualzahlen auf einer Standard-Turi hine zu prc
ren und Uberlegungen zur hierbei benétigten Zustandszahl und Rechenzeit (Taktmhl)
stellen. Fazit: Turing hi mit zwei Bindern sind ein fiir die Addition von
Dualzahlen ,,problemorientierter Formalismus. Standard-Turingmaschinen lésen
diese Aufgabe prinzipiell auch, sind aber im Vergleich extrem ungeeignet dafiir.
Unter Benutzung zweier Binder wird es insbesondere relativ leicht, eine univer-
selle Turingmaschine fiir alle Standard-Turing; hi zu konstrui Dazu
schreibe man das Programm der zu simulierenden Maschine auf das eine und das
Eingabewort auf das andere Band. Unter Berufung auf die prinzipielle Simulierbar-
keit jeder 2-Band-Maschine durch eine 1-Band-Maschine erhilt man so die Existenz
einer universellen Turingmaschine im urspriinglich geforderten Sinn.

1.4. Turing hi mit eb Speicher. Hier wird der Rahmen der Wortalgo-
rithmen in gewisser Weise iiberschritten, da als Ein- und AusgabegréBen wie auch
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als Zwischenresultate kreuzwortritselartige Gebilde (Abb. 4) auftreten. An die
Stelle der Steuerbzfehle L, N, R treten Befehle L (linke Nachbarzelle), R (rechte
Nachbarzelle), O (obere Nachbarzelle), U (untere Nachbarzelle), N (gleiche Zelle wie
vorher). Im iibrigen entspricht der Formalismus dem der klassischen Turingmaschi-
nen mit Bandspeicher. Schon bei einem nur aus Leerzeichen und einem davon ver-
schiedenen Symbol bestehenden Alphabet ergeben sich nun natiirlich viele interes-

Abb. 4

sante Fragen hinsichtlich der Entscheidbarkeit gewisser ,,geometri’schei‘“ Eigen-
schaften der Eingabegebilde und der ,,architektonischen Umgestaltung. Allerdings
sind die ,,kreuzwortritselartigen Gebilde in naheliegender Weise eineindeutig durch
Worter kodjerbar, und die Zuordnung zwischen Kodewértern der Ein- und Ausgabe-
groBen, die durch eine solche ebene Turingmaschine ineinander iibergefiihrt werden,
erweist sich als Turing-berechenbar im Standardsinne. Demnach wird die Hypothese
von CHURCH durch die Existenz derartiger Maschinen nicht unmittelbar angetastet.
Ebene Turingmaschinen sind jedoch in noch extremerer Weise als Mehrbandmaschi-
nen fiir gewisse Aufgaben ,,problemorientiert*, deren Uberfithrung in eine klassische
Berechnungs- bzw. Entscheidungsaufgabe durch entsprechende Kodierung das
urspriingliche Problem unvorstellbar komplizieren wiirde. Zum Beispiel sind ebene
Turingmaschinen problemorientiert fiir die Frage nach der Orientierungsfihigkeit
von Automaten in Labyrinthen, da man solché Labyrinthe in einem ebenen Speicher-
feld unmittelbar vorgeben kann.!)

2. Rekursive Funktionen. Die Klasse der primitiv rekursiven Funktionen und
danach die umfassendere Klasse der partiell rekursiven Funktionen werden induktiv
als kleinste Klasse von arithmetischen Funktionen definiert, die gewisse einfache
(im anschaulichen Sinne berechenbare) Funktionen enthilt und beziiglich gewisser

1) Vgl. hierzu etwa K. Dopp, Automaten in Labyrinthen, EIK 7 (1971), 79—94, 167—190,
sowie P. ScHREIBER, Theseus im Labyrinth als Turingmaschine, Zeitschr. f. Math. Logik u.
Grdlg. d. Math. 17 (1971), 57—60.
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hanlich, henh

Erzeugungsprinzipien (die von im Sinne b ren Funktionen
zu im gleichen MaBe berechenbaren Funktionen fiihren) abgeschlossen ist:

Definition 1. .

a) Die Nullfunktion fo, definiert durch f°(n) := 0, ist primitiv rekursiv.

b) Die Nachfolgerfunktion f, definiert durch f}(n) := % + 1, ist primitiv rekursiv.

¢) Die Projektionsfunktionen f,' (m = 1,1 < ¢ < m), definiert durch die Beziehung
fu' (14, ..., np) 1= m;, Bind primitiv rekursiv.

d) Sind die m-stellige Funktion g und die m k-stelligen Funktionen f; (1 < ¢ < m)
primitiv rekursiv,soist auch die ausihnen durch Superposition gewonnene Funktion &,
definiert durch h(n,, ..., ny) 1= g(fy(m, ..., M), «vv, fm(Mss -+, 7)), Primitiv rekursiv,

e) Sind die m-stellige Funktion g, und die (m 4 2)-stellige Funktion g, primitiv
rekursiv, 8o ist auch die aus ihnen durch primitive Rekursion gewonnene, durch

h(ny, ..., Ny, 0) := go(ny, ..., Ny),
BBy, eees Ty 1+ 1) 3= gy(na, -, Ny 1, By, oy T, ) 8]
definierte (m + 1)-stellige Funktion A primitiv rekursiv.

Die Klasse der primitiv rekursiven Funkti ist d h die kleinste Funktionen-
menge, die die Nullfunktion, die Nachfolgerfunktion und alle Projektionsfunktionen
enthiilt und beziiglich Superposition und primitiver Rekursion abgeschlossen ist.

Beispiel. Wir wollen zeigen, daB die durch f,(m, n) :=m + n definierte zwei-
stellige Funktion f, primitiv rekursiv ist. Dazu setzen wir im Schema (1) der primi-
tiven Rekursion m = 1, wihlen fiir g, die primitiv rekursive Funktion f,! und fiir g,
die durch Superposition aus den primitiv rekursiven Funktionen f! und f,? entstehende
und also auch primitiv rekursive Funktion

gilm, n, k) := fYfs¥m, n, k)) =& + 1.
Die bekannte rekursive Definition der Addition
m+0:=m, m+m+1):=m+n)++1
liBt sich nun offenbar in der Form (1) als
,o(m» 0) := golm),  fulm,m + 1) := 91(7"» n, /+(m’ n))
schreiben. Folglich ist f, primitiv rekursiv.
- Definition 2.

a) Die Nullfunktion, die Nachfolgerfunktion und alle Projektionsfunktionen sind
partiell rekursiv.

b) Die Klasse der partiell rekursiven Funktionen sei beziiglich Superposition und
primitiver Rekursion abgeschlossen.
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c) Ist die (m + 1)-stellige Funktion g (m = 1) partiell rekursiv, so ist die m-stellige,

durch kleinste Zahl n mit g(ny, ..., Ny, n) = 0, falls eine solche
h(ny, ..., ny) := { existiert und g(n,, ..., nm, k) fiir k < n stets definiert ist,
) nicht definiert andernfalls

definierte Funktion  partiell rekursiv.
Fiir das in ¢) benutzte Definitionsprinzip schreibt man kurz
h(ny, ..., ny) = pnfg(n,, ..., Ny, n) = 0]

(gelesen: das kleinste », fiir das g(n,, ..., n,, 7) = 0ist) und bezeichnet die Operation,
die auf diese Weise jeder (m + 1)-stelligen arithmetischen Funktion eine m-stellige
arithmetische Funktion zuordnet, als u-Operator. Mit dieser Bezeichnung kann man
Definition 2 auch so aussprechen: Die Klasse der partiell rekursiven Funktionen ist die
kleinste Funktic ge, die die Nullfunktion, die Nachfolgerfunktion und alle
Projektionsfunktionen enthdlt und beziiglich Superposition, primitiver Rekursion
und x-Operator abgeschlossen ist. Aus den Definitionen folgt sofort, daB jede pri-
mitiv rekursive Funktion erst recht partiell rekursiv ist. Es ist leicht zu sehen, daB
die Klasse der partiell rekursiven Funktionen die der primitiv rekursiven Funktionen
echt umfaBt: Alle primitiv rekursiven Funktionen sind volle, d. h. iiberall definierte
Funktionen. Jedoch fiihrt der u<Operator aus der Klasse der vollen Funktionen her-
aus. So ergibt seine Anwendung auf die primitiv rekursive Funktion f, die Funktion

0, falls m = 0,
nicht definiert fiir m > 0,

h(m) := un [m>+ n=0] = {

die folglich partiell rekursiv, aber nicht primitiv rekursiv ist. Die Berechtigung, den
u-Operator als Erzeugungsprinzip fiir berechenbare Funktionen zu benutzen, ergibt
sich aus dem folgenden FluBdiagramm, das sicher einen im anschaulichen Sinne
effektiven BerechnungsprozeB darstellt, falls die Funktion g berechenbar ist:

My eeey Mgy

)
1 * o)t |
o

(= g, ..., npy ) = 0)
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Definition 3. Eine partiell rekursive Funktion heiBt allgemein rekursiv, wenn sie
iiberall definiert ist.

Aus dieser Definition folgt sofort, da8 jede primitiv rekursive Funktion allgemein
rekursiv ist, und daB die allgemein rekursiven Funktionen eine echte Teilmenge der
Klasse der partiell rekursiven Funktionen bilden. Man kann zeigen, da8 es allgemein
rekursive Funktionen gibt, die nicht primitiv rekursiv sind. Dies ist jedoch natiirlich
nicht ganz so leicht wie der Nachweis, daB es partiell rekursive Funktionen gibt,
die nicht allgemein rekursiv sind. Merkwiirdigerweise wurde die Hypothese von
CHURCH, die sich, wie bereits in 7.3. bemerkt, urspriinglich auf die Klasse der primitiv
rekursiven Funktionen bezog, zuniichst auf Grund der Entdeckung von allgemein,
jedoch nicht primitiv rekursiven Funktionen berichtigt. Die uns heute viel niher
liegende Uberlegung, daB die Klasse aller im haulichen Sinne berechenbaren
Funktionen selbstverstindlich auch viele partielle Funktionen enthalten mu8 und
daB die Klasse der primitiv rekursiven Funktionen schon deshalb nicht alle im

haulichen Sinne berechenb Funktionen umfassen kann, drang erst relativ
spét ins BewuBtsein der Mathematiker.

Die (auf arithmetische Funktionen bezogene) heutige Fassung der Hypothese von
CHURCH, daB jede im anschaulichen Sinne berechenbn.re Funktion partiell rekursiv
ist, wirft sofort fiir eine Unzahl von Erzeugung ipien fiir im anschaulichen Sinne
berechenbare Funktionen (z. B. viele weitere Formen der Substitution und Rekur-
sion) die Frage auf, ob sie denn nicht aus der Klasse der partiell rekursiven Funktio-
nen herausfiihren. Tatsiichlich erscheinen ja die zur Definition dieser Klasse be-
nutzten Grundfunktionen und Erzeugungsprinzipien auf den ersten Blick sehr
,»8chwach‘. Hierzu ist zu sagen, daB die heutige ,.elegante‘ Definition das Resultat
jahrzehntelanger miih Jntersuchungen ist, in deren Verlauf die urspriinglich
zur Definition benutzten Prinzipien reduziert und die Entbehrlichkeit vieler weiterer
Erzeugungsprinzipien nachgewiesen wurden (vgl. hierzu insbesondere [31]). Die folgen-
den Siitze erschlieen den tatsichlichen Umfang bzw. Reichtum der Klasse der partiell
rekursiven Funktionen auf einem anderen Weg.

Satz 1. Eine m-stellige (m = 1) arithmetische Funktion f ist genau dann partiell
rekursiv, wenn die durch
> f(@...aba...ab...ba...a):=a...8

Nt
N ny fm SRy fim) N

definierte partielle Wortfunktion f in W({a, b)) Turing-berechenbar ist.

Wir. skizzieren den Beweis dieses Satzes: a) Der Beweis, da8 fiir alle partiell
rekursiven Funktionen f die zugehérige Wortfunktion f Turing-berechenbar ist,
wird durch Induktion beziiglich Definition 2 gefiihrt. Es ist also zu zeigen: f5, fi, /.3

sind Turing-berechenbar. (E hende Turingprogramme kann der Leser selbst
miihelos konstmleren ) Mit Hilfe der Unterprogrammtechnik fiir Turingmaschinen
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ist ferner zu zeigen: Entsteht k durch Superposition aus g und f,, ..., f, und sind
3, f1s -+ fm Turing-berechenbar, so ist auch % Turing-berechnebar. Entsteht h durch
primitive Rekursion aus g, und g, (bzw. durch Anwendung des u-Operators auf g) und
sind Jo, 7; (bzw. §) Turlng-berechnebar, so ist auch & Turing-berechenbar.

b) Der Beweis, daB f partiell rekursiv ist, wenn f Turing-berechenbar ist, erfordert
den Nachweis, daB gewisse spezielle Funktionen partiell rekursiv sind. Setzt man
dies als bekannt voraus, so liBt sich der Beweisweg leicht skizzieren. Die Wort-
funktion f werde durch das Turingprogramm v berechnet. Man wihlt eine eineindeu-
tige Godelisierung g von der Menge aller Konstellationen K beziiglich r auf die
Menge der natiirlichen Zahlen und zeigt, daB folgende Funktionen partiell (und wie
sich zeigt, sogar primitiv) rekursiv sind:

o
hy(nyy oeny M) 1= g(sn. ...aba...ab...ba... a),

N —
ny LS m

n, falls m Godelzahl einer Endkonstellation der Form

a0 e
ha(m) := sa...abzw. . sa...ax... (x F a),
—_ —_
0 sonst,
ha(m) 1= 0, falls m Godelzahl einer Endkonstellati
11 sonat, -

hy(g(K)) := g(v(K)) (K beliebige Konatellation).

(Damit h, iiberall definiert ist, muB 7(K) fiir jede Konstellation K definiert sein.
Man setzt zweckmiBigerweise 7(K) = K, falls K Endkonstellation ist.) Mit k, ist
auch

hs(g(K), m) :=g(x*(K)) () :=K)

primitiv rekursiv, da ks den Rekursionsgleichungen
hy(m,0) =m, hy(m, n + 1) = hy(hs(m, n))

geniigt. Mit hy und A ist als Superposition auch
ha(m, n) = hy(hy(m, n))

primitiv rekursiv, und es ist offenbar

0, falls v*(K) Endkonstellation,
1 sonst.

he(g(K), n) = {
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Daher ist
hy(m) := pnhgtm, n) = 0
partiell rekursiv. Die Funktion k, ordnet g(K) die Nummer desjenigen Taktes zu,

in dem die Maschine 7 bei Anwendung auf die Konstellation K stoppt, falls ein solcher
Takt existiert. Die Funktion f 18t sich nun offenbar durch

for, ey ) = ht(hs(hl(nh oy M)y h1(h1("n ceey "m))))
darstellen, d.h. als Superposition partiell rekursiver Funktionen. Folglich ist f
selbst partiell rekursiv. Zugleich haben wir eine wichtige Teil ge des Darstellung
satzes von KLEENE bewiesen, nidmlich:

Satz 2. Jede partiell rekursive Funktion lift sich aus primitiv rekursiven Funk-
tionen durch Superposition und hichstens einmalige Anwendung des u-Operators
- erzeugen.

Den Zusammenhang zwischen der Turing-Berechenbarkeit von Wortfunktionen
und der partiellen Rekursivitdt von arithmetischen Funktionen kann man auch noch
auf eine andere Weise formulieren :

Satz 3. Es sei g eine Giodelisierung der Wortmenge W(A), so daf g.und g-* Turing-
berechenbar sind (d. k., fiir beliebiges a € A sind die Wortfunktionen f,(W) :=a ... 8

——
o?(w)
und f, = ;- Turing-berechenbar). Dann ist eine beliebige Wortfunktion f in W(A) genaw
dann Turing-berechenbar, wenn die durch

L Ag(W)) := g(f(W))

definierte arithmetische Funktion @, partiell rekursiv ist.
Beweis. Ist f Turing-berechenbar, so ist zum Beweis, daB8 @, partiell rekursiv
ist, nach Satz 'l nur zu zeigen: Die durch

fsa...8):=4a...8
e ——
§(W) WD
definierte Wortfunktion f, ist Turing-berechenbar. Da fy = f, 0 fo f, ist und f, f,, f,
Turing-berechenbar sind, folgt dies aus 7.4., Satz 2. Ist umgekehrt g, partiell rekursiv,
80 ist nach Satz 1 die Wortfunktion f; Turing-berechenbar. Damit ist aber auch
} ='f 0 /3 0 , Turing-berechenbar.

3. Normale Algorithmen. Die normalen Algorithmen wurden 1951 von A. A.
MaggoV als Prizisierung des Algorithmenbegriffs vorgeschlagen. Sie stellten den
ersten unmittelbar auf Wortfunktionen zugeschnittenen Algorithmenbegriff dar.
(Turingmaschinen wurden urspriinglich nur zur Berechnung arithmetischer Funk-
tionen genutzt.) Analog zu den Turingmaschinen existieren heutc zum Begriff der
normalen Algorithmen mehrere équivalente Varianten.
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Als Markov-Substitution (Mark) bezeichnen wir die wie folgt definierte dreistellige
volle und im anschaulichen Sinne gewi8 effektiv ausfiihrbare Wortoperation:

W,  falls P nicht. Tetlwort von W 1st,
Mark(W, P, Q) := y UQR, falls W = UPR und P in keinem
echten Anfangsstiick von UP vorkommt,

Demnach wird, falls P iiberhaupt in W vorkommt, das am weitesten links gelegene
Vorkommen von P in W'durch Q ersetzt. Insbesondere ist Mark(W, 4, Q) = QW,
da das leere Wort stets in W am Anfang als Teilwort vorkommt, und Mark(W, P, A)
das Resultat des Streichens des ersten Vorkommens von P in W.

Es sei A ein endliches Alphabet, das die Zeichen — und e nicht enthilt. Eine
nichtabbrechende (Markovsche) Regel ist ein Wort der Form P — Q mit P, Q € W(4).
Eine abbrechende Regel ist ein Wort, der Form P — ¢ Q mit P, Q € W(4). Inbeiden
Fillen wird P als linke Seite und Q als rechte Seite der betreffenden Regel bezeichnet.
Ein normaler Algorithmus im Alphabet A ist eine endliche geordnete Liste von (ab-
brechenden oder richtabbrechenden) Regeln, allgemein in der Form

P, > (o) Q
q_lPo@Q
P, —> (o) Q,
geschrieben. Dabei deutet die Schreibweise (o) an, daB im korkreten Algorithmus
jede Regel unabhingig von den anderen abbrechend oder nichtabbrechend sein
kann. Die von MAREOV vorgeschriebene Art der Anwendung eines solchen Algorith-
mus laBt sich exakt durch folgendes FluBdiagramm beschreiben:

W (e W(4))
(P, Teilwort von WY ) 2 [ W = Mark (W, Py, Q,) 'I:t >
neln
(B, Teslwort von W2 ) 223 [ W = Mark (W, P, Q) |—* >

lneln

(P, Teilwort von W1 ) L2y [ W = Mark (W, P, Q,) |=*'_,|

[

AW) =W {
i

A(W,
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Dabei gilt im konkreten Fall jeweils der durchgezogene Pfeil, falls die entsprechende
Regel nichtabbrechend ist, und der gestrichelte Pfeil, falls sie abbrechend ist. In
Worten kann man demnach die Anwendung eines normalen Algorithmus auf ein
Wort etwa wie folgt beschreiben:

Eine Regel ist anwendbar auf ein Wort W, wenn ihre linke Seite in W vorkommt.
Die Regeln werden in der gegebenen Reihenfolge auf ihre Anwendbarkeit gepriift. -
Falls keine Regel anwendbar ist, ist (W) = W. Andernfalls wird die erste anwend-
bare Regel angewendet, indem das erste Vorkommen ihrer linken Seite in W durch
die entsprechende rechte Seite ersetzt wird. War die ang dete Regel abbrechend
80 ist das erhaltene Wort %(W), andernfalls beginnt man von vorn mit der Priifung
der Anwendbarkeit der ersten Regel.

bab — ba,
Beispiel. Essei A = {a,b} und A = {ba > ea,
A —ba.

Anwendung auf W = b liefert der Reihe nach folgende Zwischenresultate

b (1. und 2. Regel nicht anwendbar, 3. Regel anwendbar),
bab (1. Regel anwendbar),

ba (1. Regel nicht anwendbar, 2. Regel anwendbar),

a (= %A(b), da die zuletzt angewendete Regel abbrechend ist).

Anwendung auf a ergibt

a (1. und 2. Regel nicht anwendbar, 3. Regel anwendbar),
baa (1. Regel nicht anwendbar, 2. Regel anwendbar),
aa (= M(a), da die letzte Regel abbrechend ist).

Es zeigt sich, daB man nicht jede Turing-berechenbn.re Wortfunktion in W(A4)
durch emen normalen Algorithmus in W(A) berechnen kann. Dazu werden im
allg te Hilfsbuchstuben benétigt, die in den Regeln und daher auch
in den Zwlschenresultaten, jedoch nicht im Endresu]tat vorkommen diirfen. Ein
normaler Algorithmus im Alphabet A v H (H Alphabet der Hilfsbuchstaben) heiBt
ein Algorithmus itber A, wenn fiir W ¢ W(A) stets A(W) € W(4) ist (falls A(W)
existiert). Als Beispiel hierzu betrachten wir die Berechnung der Wortfunktion

fW) :=Wa (W€ W(fs, b))

durch einen normalen Algorithmus % iiber W((a, b}) (in W((a, b, *)). Die bei der
Lésung dieser Aufgabe zu iiberwindende Schwierigkeit besteht darin, daB nicht das
erste, sondern das letzte Vorkommen von A in W durch a ersetzt werden soll. (f'(W)
= aW wiire sehr leicht durch den Algorithmus 8’ = {4 — e a} zu realisieren.) Der
fiir die mormalen Algorithmen fast typisohe Kunstgriff besteht in der Einfiihrung
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eines Hilfsbuchstaben * vorn, der dann das Wort durchliuft und an dessen Ende
durch a ersetzt wird:

*8 —> 8%
*b—>bx
*—>08
A>=

Bei Anwendung von 8 auf baab erhilt man der Reihe nach die Zwischenresultate

baab
*baab
bxaab
baxab
baaxb
baab=*
baaba

Man beachte, daB die dritte Regel abbrechend sein mu8, de an;iemfnﬂs immer wieder
die letzte Regel angewendet werden konnte!

Maggov arbeitete die Theorie der normalen Algorithmen mit vielen Sétzen und
mit Methoden zur Unterprogr technik bis zur expliziten Konstruktion eines
universellen normalen Algorithmus 11 aus, der bei Anwendung auf die geeignet ko-
dierte Niederschrift eineg Paares (%, W) das Resultat %(W) liefert, falls dieses exi-
stiert. Wir zeigen nun

Satz 4. Eiﬁe Wortfunktion in W(A) st genau dann Turing-berechenbar, wenn sie
sich durch einen normalen Algorithmus iiber W (A) realisieren lift.!)

Beweis. a) Zum Beweis, daB jede durch einen normalen Algorithmus realisierte
Wortfunktion Turing-berechenbar ist, geniigt es auf Grund der Unterprogrammtech-
nik fiir Turingmaschinen, zu jedem Paar P, Q von Woértern ein Programm r mit
zwei Stopzustinden ¢;* und ¢,~ anzugeben, so daB f,(W) = Mark (W, P, Q) ist und
dabei 7 in ¢4+ stoppt, falls P in W vorkommt, bzw. in g¢-, falls P nicht in W vorkommt.
Wir geben ein solches Programm fiir den Fall an, daB das Alphabet des Algorithmus
gleich {a, b, c} und P = ba, Q = ccb ist. Man erkennt daraus, wie im allgemeinen
vorzugehen ist.

!) Dabei kann man immer mit einem einzigen Hilfsbuchstabe ) Vgl. H. M.
Harorruit, O JbHOM andaBHTE ANrOp ¢ , Tp. maten.
HH.-ra #M. Crexnosa AH CCCP 52 (1958), 66— 74 und P Smmn, “Uber dn Entbehrlich-
keit von Hilfsbuchstaben bei der Berech hratelliger Wortfunkti durch Mark b

Algorithmen, Zeitachr. f. Math. Logik u. Grdlg d. Math. 12 (1966), 241—242.
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[ o a b c ba — ccb

@ R L R @R R b wird gesucht

qs - L ¢cL R @R a (nach b) wird gesucht

' - - - cR wR ba ist gefunden und wird durch
cc ersetzt

[ - el R waR (23 b wird nach cc eingefiigt und der

' — qubL | ¢.bR R g.bR } Rest des Wortes um eine Zelle

% - geL g.cR ek R nach rechts verschoben

I'A %N — L L L Substitution beendet, LS-Kopf
kehrt nach s zurick

‘&5 |e@ N - L L L ba kommt nicht im Eingabewort

vor, LS-Kopf kehrt zu s zurick

b) Jede Turing-berechenbare Wortfunktion ist durch einen normalen Algorithmus
realisierbar. Dazu simulieren wir die Arbeit einer Turingmaschine 7, indem wir die
Zustinde von v als Hilfsbuchstaben benutzen, die jeweils links neben dem gerade
gelesenen Buchstaben eingefiigt werden. Die Zwischenresultate eines so konstruierten
normalen Algorithmus entsprechen im wesentlichen den Konstellationen derjenigen
Turingmaschine, von der wir voraussetzen, daB A ihr Ein- und Ausgabealphabet,

H = {8, 0,...} das Alphabet ihrer Hilfsb

hstaben, g, ihr Anfang d und Q,

die Menge ihrer Stopzustinde ist. Der simulierende normale Algorithmus hat dann
folgende Gestalt:

(1) z9x - q'zy
(2) gx —>q'y
3) qx —>yq’
4 q —yq
6 q —qy
(6) zq —»q'zy
(7) g8 —*
(8) *x —>x*
@ -+
(10) + x>+
(1) + —ed
(12) A4 —>q,8

(ze AuH)

(x€A)

fiir 7(q, x) = (q', Y, L)
fiir 7(q, x) = (9, ¥, N)
fiir 7(q, x) = (¢, y, R)
fiir 7(q, 0) = (¢, ¥, R)
fiir 7(q, 0) = (q', y, N)
fiir 7(q, 0) = (q', Y, L)
fiir qo € Qo

(x€ AuH, x+5s)

Die angegebenen Regeln sind bis auf (7), (9), (11) und (12) endliche Schemata von
Regeln, die im konkreten Fall jeweils fiir alle dahinter angegebenen Fille aufzu-
nehmen sind. Die Reihenfolge der Regeln, die im allgemeinen in normalen Algorith-
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men wesentlich ist, ist hier, von den folgenden Ausnahmen abgesehen, beliebig, da
im allgemeinen auf die Zwischenresultate genau eine der Regeln (auBer (12)) anwend-
bar ist. Die Ausnahmen sind folgende: (12) muB letzte Regel sein, da sie immer
anwendbar ist und daher alle unter ihr stehenden Regeln blockieren wiirde. Die
Regeln der Form (4), (8), (6) miissen unterhalb der jeweiligen Regeln der Form (1),
(2), (3) stehen, also z. B. q — q'y nach qo — q'y und zq — q'zy nach zqo — q'zy
usw. Die Regeln der Form (4), (5), (6) sollen ja nur dann angewendet werden, wenn
der LS-Kopf der simulierten Turingmaschine iiber der ersten leeren Zelle hinter'der
t Konstellation steht. Die linken Seiten der zugehérigen Markovschen
Regeln kommen jedoch als Teilwort auch in denjenigen Zwisch Itaten vor,
auf die die entsprechende Regel der Form (1), (2) oder (3) angewendet werden sollte.
SchlieBlich muB (9) hinter (8) und (11) hinter (10) stehen. Die Regeln (7) bis (11)
dienen, wie man leicht einsieht, dem Zweck, die Endkonstellation in das ihr ent-
sprechende Resultatwort zu verwandeln, d. h. den Anfang g¢s und alle eventuell auf
das dahinter stehende Resultatwort folgenden Leerzeichen und sonstigen Buchstaben

morr

zu léschen. Falls die simulierte Turing] hine sauber ist, kann man (9), (10), (11)
durch

*0 —> %

*—>eod

ersetzen. Die auBer den Zustinden q € @ und Buchstaben h ¢ H vom normalen
Algorithmus benutzten Hilfsbuchstaben * und + diirfen natiirlich in Av Hu @
nicht vorkommen.



8. Entscheidbarkeit und Aufzdhlbarkeif von Sprachen
und Theorien-

'81.  Entscheidbarkeit formalisierter Sprachen

Damit man die Frage nach der Entscheidbarkeit einer formalisierten Sprache S
exakt (etwa im Sinne der Turing-Entscheidbarkeit) stellen kann, mu8 S Teilmenge
einer Menge W(A) mit endlichem Alphabet A sein. Dies ist bei der urspriinglichen
Auffassung weder fiir kanonische noch fiir modifizierte Sprachen der Fall, da schon
die Menge aller Variablen einer Sprache stets abzihlbar ist. Man kann diese Forderung
jedoch durch naheliegende und geringfiigige Modifizierung (Umkodierung) der
Sprachgrundbestandteile erfiillen. Im Fall n-sortiger Sprachen wihle man etwa fiir
die Variablensorten n paarweise verschiedene Grundbuchstaben x,y,...,z und
einen von diesen verschiedenen Buchstaben a zur Indexkodierung und schreibe die
Variablen x;, y;j, ... in der Form xa ..., ya ... a (3, j = 0). Im Fall abzéhlbar vieler
-.,-—r —v—f

Variablensorten ist in analoger Weise auch d)e Sortennummer zu kodieren, d. h.,
man schreibt etwa xb...ba ... a statt x;&. Werden nur endlich viele verschiedene
——

Relationssymbole R; benotlgt 80 kann man diese fiir den jetzigen Zweck als paar-
weise verschiedene Grundbuchstaben ansehen. Andernfalls sind die Nummer des
Relationssymbols und eventuell auch dessen Typ in analoger Weise wie die Indizes
der Variablen zu kodieren. Gleiches gilt fiir Operations- und Konstantensymbole.
Wir behaupten nun, da8 jede kanonische und jede ,,verniinftig* definierte modi-
fmerte formalisierte Sprache § & W(A4), wobei 4 ein endliches Alphabet ist, eine
heidbare Teilmenge von W(A) ist, d. h., daB es ein auf alle Worter W € W(4)
a.nwendbares algorithmisches Verfahren gxbt das fiir W € S eine positive und fiir
W € W(A) \ S eine negative Antwort gibt. Bei der Angabe eines solchen Verfahrens
werden wir uns, wie in solchen Fillen iiblich, auf die inhaltliche Beschreibung be-
schriinken und es den miBtrauischen Lesern iiberl diese Beschreibung in ein
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adidquates Turingprogramm oder einen Markovschen Algorithmus iiberzufiihren.
Es sei jedoch auch bemerkt, daB das Problem der Entscheidung, ob eine beliebig
Zeichenreihe W € W(A) ein Ausdruck einer Sprache § & W(A) ist, nicht ganz so
trivial ist, wie es manchem Leser auf den ersten Blick erscheinen mag, da er gewohnt,
ist, an relativ , iberschaubare* Zeichenreihen zu denken. Ein allgemeines Verfahren
muB aber prmzlplell auf beliebig lange Worter anwendbar sein.

Von den inhaltlich verschied Méglichkeiten bzw. Wegen, die Entscheidbarkeit
der formalisierten Spmchen einzusehen, behandeln wir eine Methode, die man als
,,Einschmel ‘ bezeichnen konnte, da sie im tlichen darin besteht, zuniichst
von kumstmoghchen und dann von immer lingeren Teilwortern des gegebenen
Wortes W auf Grund der induktiven Definition von S festzustellen, daB sie Terme
bzw. Ausdriicke von S sind, wobei die bereits erkannten Teilstiicke durch solche
nicht selbst zu S gehérige Worter méglichst einfacher Bauart ersetzt werden, die
lediglich die fiir das weitere SchlieBen notwendigen Informationen enthalten, d. h.
ob es sich um einen Term (dann welcher Sorte) oder einen Ausdruck handelt und
welche Variablen darin vollfrei bzw. gebunden vorkommen.

Wir demonstrieren dieses Verfahren zuniichst am Beispiel der Sprache Soyy; der

b euklidischen Geometrie (vgl. 3.3., Beispiel 2), die wir fiir den jetzigen Zweck
noch wie folgt abindern: Als Punktvariablen dienen Pa ... a (: = 0), als Geraden-
[

1
variablen ga ... a (¢ 2 0), wobei wir diese Zeichenreihen jedoch im folgenden abkiir-
——

f .
zend wieder mit P; bzw. g; bezeichnen. Statt P; auf g; schreiben wir P, € g;, statt
[Py, P;, P;] schreiben wir ZP;cP;cP;c. Damit ist S,y eine Menge von Wortern im
endlichen Alphabet

={P,g,8,¢,€,Z, 22, =, A V,>, o, AV, ()]}
g

HPc...cP; cg;c... cg; cdPyc... cPregc ... 'cg;c) bedeute einen Ausdruck,
der die Punkte- bzw. Geradenvariablen, die vor dem Trennzeichen d stehen, vollfrei
und die hinter d stehenden Variablen gebunden enthilt. Dabei brauchen die auf-
gefiihrten Variablen nicht unbedingt paarweise verschieden zu sein. Den induktiven
Definitionsregeln fiir die Sprache S, entsprechen nun folgende Einschmelzungs-
regeln der Form U => W, wobei eine einzelne Anwendung einer solchen Regel darin
besteht, ein beliebiges Teilwort der Form U durch das entsprechende Teilwort W zu
ersetzen:

P, = P;= H(PcPxd)

8 = &= H(gicgjed)

P; € g;= H(Picg;ed)
ZPcPcPic => H(PcP;cPied)
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PP, o PP, => H(P;cP,cPscPcd)

—H=>H -

(H(..) o H(..)) = H(...), (0 € (A, Vv, =, <)),
wobei in der neuen Zeichenreihe alle diejenigen Variablen hinter dem Trennzeichen
d, d. h. als gebunden aufgezihlt werden, die in wenigstens einer der beiden alten
Zeichenreihen als gebunden aufgezihlt waren, wihrend diejenigen Variablen vor

dem Trennzeichen d als vollfrei aufgezihlt werden, die in einer der beiden alten
Zeichenreihen als vollfrei und in der anderen nicht als gebunden aufgezihlt waren.

APH(UP;cVdW)=> H(RdWP;c), wobei R = Sub(UP,cV; Pic, 4), (1)

d. h., falls eine Teilzeichenreihe die Form A P;H(...) hat und unter den in H(...) als
vollfrei aufgezihlten Variablen P; wenigstens einmal vorkommt, wird der Anfang
A P; gestrichen, desgleichen alle Vorkommen von Pic vor dem Trennzeichen d.
Statt dessen wird P;c am Ende der Liste der gebundenen Variablen neu hinzugefiigt.
Man beachte die Rolle des hier mit ¢ bezeichneten ,,Kommas‘‘! Wiirde man die
Variablen einfach als Pa ... aPa ... aPa ... a usw. aneinanderreihen, so wiirden beim
Streichen aller Vorkommen von P; auch die entsprechenden Anfinge aller P; mit
§ > 1 gestrichen.

Zu (1) analoge Regeln sind nun noch fiir A g;H(...), V P;H(...), V g;H(...) zu for-
mulieren. .

Zwei Beispiele mogen die Wirkung des Systems der Einschmelzungsregeln ver-
deutlichen. Anwendung auf die Zeichenreihe

V Py((PyP; 2 P3Py A ZP,cPycPyc) — V gy(P; € g3 A A P,ZPycPicPyc))
liefert nach und nach folgende Zwischenresultate:

\ P,((H(PlcP,cP,cP,cd) A H(P cPycPyed)) — V gy H(Pyogqed)

A A P, H(PyoP;cPyed))),

Y P,(H(P,cP,cP,cP,cP,cd) — V go(H(Pycgsed) A H(P,cP.ch,c))) s

V P,(H(P,cPycPycP cPyed) — V gy H(PycPyegaedPyc)),

V Py(H(P;cP;cPycPcPyed) — H(P,cPyedPyegc)),

V P,H(P,cPycPcPyedPycg;e),

H(P3cPcPgedPyegecPc),

d. h., die untersuchte Zeichenreihe ist ein Ausdruck, in dem die Variablen P, P,, P
vollfrei und die Variablen P,, P,, g, gebunden vorkommen.
Wendet man das gleiche Verfahren auf die Zeichenreihe

Ags VP (PP PPy AP, € gg) > P € gy)
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s aoh

an, 8o erhilt-man nach einigen Zw hritten

)

H(P,c}’,odP,cg,c) nd H(Plc&ed))’

worauf wegen der vorn fehlenden Klammer keine Regel mehr anwendbar ist, d. h.,
diese Zeichenreihe ist kein Ausdruck.

Prinzipiell kommt es offenbar nicht auf die Reihenfolge der Anwendung von
Einschmelzungsregeln an. Um jedoch einen Algorithmus zu erhalten, kann man
etwa vereinbaren, die Liste der Regeln als Programm im Markovschen Sinne anzu-
sehen, d.h. die Regeln in der Reihenfolge der Liste auf ihre Anwendbarkeit zu
priifen, jeweils die am weitesten links im bearbeiteten Wort ersetzbaren Teilworter
umzuformen und nach jeder Anwendung einer Regel zur Priifung der Anwendbarkeit
der ersten Regel zuriickzukehren. Das Verfahren ist dann beendet, wenn keine Regel
mehr anwendbar ist, so daB das Resultat (W) fiir beliebige W € W(A) eindeutig
bestimmt ist. Es ist nun zu zeigen:

Fiir W € W(A) existiert A(W), und (W) hat genau dann die Form H(U), wobet in
U das Zeichen ) nicht vorkommt, wenn W € Sy 8.

Der erste Teil der Behauptung folgt sofort daraus, daB die Gesamtzahl der Buch-
staben =, €, Z, o, —, A, v, =, <, A, V bei jeder Anwendung einer Regel um eins
abnimmt, so daB das Resultat spitestens dann erreicht wird, wenn diese Gesamtzahl
null ist.

Zum Beweis der zweiten Behauptung zeigt man

a) durch Induktion iiber die Kompliziertheit der Ausdriicke H: Fiir H € S,,;; hat
A(H) die Form H(U), wobet ) nicht in U vorkommt;

b) durch’ Induktion iiber die Schrittzahl: Hat A(W) die Form H(...d ...), und ist
dieses Resultat tn n Schritten erreichi wordm, 8o 18t W ein Ausdruck von S,_,,, in dem
genau die vor bzw. hinter dem T d aufgezihlten Variablen vollfrei bzw
gebunden vorkommen.

Fiir b) skizzieren wir den Beweis. Wird das Resultat in einem Schritt erreicht,
so muB W ein pridikativer Ausdruck von S,,,; sein, da dann nur eine der fiinf ersten
Regeln in Frage kommt. Alle iibrigen Regeln enthalten niémlich in ihren linken
Seiten den Buchstaben H, der im Eingabewort W nicht vorkommen kann. Die Be-
hauptung sei nun schon fiir alle W € W(A) bewiesen, fiir die das Resultat in hich-
stens n Schritten erreicht wird, und W sei jetzt ein solches Wort, fiir das das Resultat
YU(W) in n 4 1 Schritten erhalten wird. Man hat nun eine umfangreiche Fallunter-

heidung durchzufithren, je nachd Iche Regel als letzte angewendet wurde.
War dies etwa die Regel (1), so muB das letzte Zwischenresultat von der Form
APH(... P;...d...) gewesen und in n Schritten erreicht worden sein. Da keine der
Regeln ein Schreiben von A P; vor ein Wort vorsieht, muB schon das Eingabewort
die Form A P;R gehabt haben, so da8 in den gleichen n Schritten Rin H(... P,...d...)
iibergéfithrt wurde. Nach Induktionsannahme ist daher R ein Ausdruck aus Sy,
in dem genau die vor bzw. hinter d aufgezihlten Variablen vollfrei bzw. gebunden
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vorkommen. Daher ist W = A P;R ein Ausdruck, der die gleichen Variablen vollfrei
bzw. gebunden enthilt, abgesehen davon, daB P; jetzt gebunden statt vollfrei vor-
‘kommt. Laut Regel (1) wird aber P; beim (n + 1)-ten Schritt vor d geléscht und
hinter d neu geschrieben.

Um das Vorgehen im Fall von'Sprachen mit ,,echten‘‘ Termen zu erliutern, be-
trachten wir noch die Sprache der Vektorrechnung, in der Termgleichungen die
einzigen pridikativen Ausdriicke sind. Wir nehmen jetzt an, daB alle Skalarvariablen
die Form s; und alle Vektorvariablen die Form v; haben (ausfiihrlich sa ... a bzw.

——

v:q.:). Ferner erinnern wir an die Bedeutung folgender Symbole (vgl. 7;.3., Bei-
spie’i 3):

o: Nullvektor,

0 bzw. 1: Skalarnull bzw. -eins,

@: Vektoraddition,

+ bzw. .: Addition bzw. Multiplikation der Skalare,

o: Skalarmultiplikation.

V(sic ... 8,¢vc... v, ¢) bezeichne nun einen Term der Sorte Vektor, der genau die

angegebenen Variablen enthilt, analog S(s;c...s;cv;c...v; ¢c) einen Term der
Sorte Skalar. Insbesondere bemmhnen S hzw V allein varmblenfrele Terme. An die
Stelle der fiir S,; angegeb: Eir gsregeln fiir pridikative Ausdriicke
treten nun folgende Regeln (die iibrigen konnen sinngemi8 iibernommen werden):

o>V 8, = S(sic)

0=>8 v;=> V(vie)

1=>8

(Vioie .- 8i.0v;¢ oo vy ) D V(Ere ... 8 8V,C ... Vi C))

= V(8,00 8,08,C ... B CV;C... V; CVIC ...V, 0)
analog

(SG-) + 8(..))=> S8(...)
(8(...) - 8(...)) = S8(...)
(8- 0 V(..))=> V(.2.)
8(...) = S(...)=> H(...d)
V(...) = V(...)= H(...d).
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Neben und vor der Entscheidbarkeit der Sprache 8 ist hier natiirlich dic Entscheid-
barkeit der Mengen TV bzw. T aller Terme der Sorte Vektor bzw. Skalar von Inter-
esse. Es ist plausibel (und analog zum Satz iiber die Entscheidbarkeit von S,y zu
beweisen), daB genau die Zeichenreihen aus TV sich durch Anwendung von Ein-
schmelzungsregeln auf die Form V(...) bringen lassen und da8 Analoges fiir T gilt.

Als Folgerung aus der Entscheidbarkeit der formalisierten Sprachen entnehmen
wir fiir die beiden folgenden Abschnitte:

" Ist A ein endliches Alphabet, S & W(A) eine formalisierte Sprache und existiert
ein auf alle Worter W € S anwendbares Entscheidungsverfahren fiir eine Teilmenge
M von 8, so ist M auch eine entscheidbare Teilmenge von W(A4). Um W ¢ M? fiir
W € W(A) zu entscheiden, hat man achst W € S zu testen und im Fall positiven
Ausgangs anschlieSend das fiir El te von S verwendbare Entscheidungsverfahren
fisr M anzuwenden.

8.2. Entscheidbarkeit formalisierter Theorien, Satz von Church

Es sei (S, o) eine beliebige (insbesondere eventuell el tare) Sprache, wobei wir
annehmen, daB ein endl.lches Alphabet A mit S — W(A) existiert (vgl. 8.1.). Eine
(durch ein Axic ystem X gegebene) in (S, o) formulierte Theorie T = Flg°(X)

heiBt entscheidbar, wenn T eine (etwa im Sinne der Turing-Entscheidbarkeit) ent-
scheidbare Teilmenge von W(A) ist. Als Spezialfall exgibt sich fiir X = @ die Frage
nach der Entscheidbarkeit der Mengen Flg°(d), d. h. nach der Entscheidbarkeit
der logischen Allgemeingiiltigkeit in der Sprache (S, a) Die folgenden Uberlegungen
werden zeigen, daB die meisten ,,wichtigen* bzw. ,,int nten‘ math

Theorien nicht entscheidbar sind und daf insbesondere die logische Allgemeingiiltig-
keit nur fiir sehr spezielle Sprachen entscheidbar ist.

Definition 1. Es sei B ein beliebiges endliches Alphabet. Eine Theorie Flg°(X)
= T < W(A) heiBt B-ausdrucksfihig, wenn es eine berechenbare eineindeutige Abbil-
dung (Wortfunktion) k von W(B) in die Menge der variablenfreien Terme von S
und zu jeder berechenbaren Wortfunktion f in W(B) einen Ausdruck H,(x,y) mit
genau zwei vollfreien und keinen weiteren freien Variablen gibt, so daB fiir alle
Worter U, V € W(B) gilt:

/(U) = V genau dann, wenn H{h(U), h(V)) € T.

Insbesondere heiBt eine Sprache (S, o) B-auédrucksﬂhig, wenn die Theorie Flg?(9)
B-ausdrucksfihig ist.

’

Definition 1 bedeutet im wesentlichen, daB eine Theorie bzw. Sprache B-aus-
drucksféhig ist, wenn man in ihr iiber die Wérter des Alphabets B sprechen und einen
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priizisierten Berechenbarkeitsbegriff fiir die Wertfunktionen in W(B) definieren
kann.

Satz 1. Zu. jedem endlichen Alphabet B gibt es eine B-au.vdrucka/ahzge elemntare
Theorie T = Flg(X) mit endlichem A X.

Zum Beweis von Satz 1 wihlen wir eine einsortige Sprache § zur Formalisierung
des elementaren Teils der Theorie der freien Halbgruppen (vgl. Kapitel 1). Ist
B = (by, ..., b,) das gegebene Alphabet, so enthalte S Variablen x, x; fiir Woérter,
ein Konstantensymbol O zur Bezeichnung des leeren Wortes, Konstantensymbole
€y, +++, C ZUr Bezeichnung der Buchstaben b,, ..., b,, und fiir spitere Zwecke noch
weitere Konstantensymbole a, b, ¢, d, ferner ein zweistelliges Operationssymbol +
zur Bezeichnung der Verk g mit der Vorschrift, Terme nach dem Schema
(t; + t;) zu bilden. In der so beschriebenen Sprache S kénnen wir ein endliches
Axiomensystem X formulieren, das alle in Kapitel 1 formulierten Halbgruppen-
axiome bis auf das nichtelementare Axiom A3 umfaBt:

(=1 + %3) + x3) = (%1 + (X3 + x3))  (entspricht A1),
(x+0=x
O4+x)=x
(X; + X)) =0—>x, =0AX, =0 (entspricht A4§),

} (entspricht A2),

X+yY)=X+yY)>x=X (y=c,...,cn,8,Db,cd),

Kty =x+2z (y,z=c¢,..,Cna,b,e,dy=2z)
(Die endlich vielen Axiome, die durch alle genannten Einsetzungen fiir y,z aus
diesen beiden abkiirzenden Schemata entstehen, entsprechen zusammen A4b.)
Hieraus folgt

ay=z {,z2=¢,...,Cn8,b,0d,y=12)
(Diese Siitze bedeuten, daB die von O verschiedenen Konstanten paarweise ver-
schiedene ,,Buchstaben‘ bezeichnen. Hieraus folgt insbesondere A5 (vgl. Kapitel 1)).

Die voéllige Unterdriickung von A3 hat zur Folge, daB es in einem beliebigen Modell

® von X auBer den Wortern im Alphabet

{w(ey), ..., wlen), w(a), o(b), w(c), w(d)}

eventuell noch weitere Objekte gibt, z. B. Folgen unendlicher Linge oder Woérter,
die unter Verwendung weiterer ,,Buchstaben‘ aufgebaut sind. Jedoch sichern die
formulierten Axiome bereits, daB es in jedem Modell von X einen zur Wortmenge
W({cy, +.., Cm, 8, b, ¢, d}) isomorphen Teilbereich gibt. Bei weiteren Formulierungen
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in der Sprache § werden wir zur Abkiirzung alle Termklammern und das Verket-
tungssymbol + wieder weglassen und ferner die bereits in Kapitel 1 eingefiihrten
abkiirzenden Ausdriicke ,,x; beginnt mit x;* (d. h. V xx; = x;x), ,,x; endet mit x;
und ,,x; kommt in x; vor* benutzen. (Natiirlich hétten wir unsere Sprache S gleich
der beim Behandeln von Wortern iiblicherweise verwendeten Sprache angleichen
konnen. Dann wiirde jedoch vielleicht fiir manchen Leser der Unterschied zwischen
den formalisierten Ausdriicken der Sprache S und den daneben ,,metatheoretisch‘*
benutzten Aussagen iiber Worter, z. B. iiber die Zeichenreihen der Sprache S, zu
undeutlich.) Die durch

kA) :=0, kWb :=(RhW)+c) @E=1,...,m)

induktiv iiber die Wortkompliziertheit in W(B) definierte Abbildung & ist offenbar

eine eineindeutige Abbildung von W(B) in (nicht auf!) die Menge d:r variablenfreien

Terme von S, womit die erste an die B-Ausdrucksfiéhigkeit von S gestellte Forderung

erfiillt ist. Unter Benutzung weiterer Konstanten a, b, ¢, d formalisieren wir nun in

8 die Turing-Berechenbarkeit der Wortfunktionen in W(B). Dazu kodieren wir

durch ba ...ab (n = 1) die in beliebigen Turingprogrammen benutzten Hilfsbuch-
o

stabzn, insbesondere bedeuten bab bzw. baab das Startzeichen s und das Leerzeichen

o und werden im folgenden auch so abgekiirzt. Ganz ausfiihrlich gesagt bedeutet

also der Buchstabe s in Ausdriicken der Sprache S eine Abkiirzung fiir den variablen-

freien Term ((b + a) + b). Analog kodieren wir durch beb, beeb, beeeb die Steuer-

befehle L, N, R und kiirzen diese Terme von S im folgenden auch so ab. Durch

be ... cb (n = 4) kodieren wir schlieBlich die in einem beliebigen Turingprogramm
Ne—p— )

L]

bendtigten Zustinde ¢; und kiirzen diese Terme im folgenden auch durch g; ab.
Nach diesen Vorbereitungen wollen wir zu gegebener Turing-berechenbarer Wort-
funktion f in W(B) einen Ausdruck H,(x;, X,) € § mit den in der Definition 1 ver-
lengten Eigenschaften konstruieren. Es sei v ein sauberes Turingprogramm zur
Berechnung von f. Den in 7.4. definierten Konstellationsbegriff modifizieren wir
hier so, daB die Zustandsbezeichnung jeweils links neben der gelesenen Zelle steht.
Wir geben nun zunéchst einen Ausdruck Hj'(x;, x,) mit folgender Bedeutung an:
xs und x, sind Konstellationen beziiglich 7, so daB x, in einem Takt durch 7 in x,
iibergefiihrt wird. Im konkreten Fall ergibt sich H,'(xs, x,) aus der Tabelle von 7 im
wesentlichen durch alternative Verkniipfung aller endlich vielen méglichen Fille
von Zustand und gelesenem Buchstaben. Dies sei am einfachen Beispiel des Pro-
gramms

T | 8 I o | b,
A R [@L | oR
@2 |oN| L -
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demonstriert. Der Ausdruck H,'(x,, x,) lautet in diesem Fall wie folgt:
V xg(xg = q;8X5 A X, = Bq;X;)
VvV Xg(Xg = X50Q; A X = XsQy) V (X3 = 8Q; A X, = q49)
V V XyXq(X3 = X5Q;C1Xg A Xg = X50(;Xg) V (X3 = (28 A X( = q,8)
V V X4(Xg = X50gp A X4 = X5q5) V (X3 = 8Gp A X, = qs8).

Dabei gehort das erste Alternativglied zum Fall (g, 8), die nichsten beiden Alter-
nativglieder gehoren zum Fall (g,, o), und zwar das erste zu dem Unterfall, da8 in der
linken Nachbarzelle das Leerzeichen steht, das letzte zu dem Unterfall, daB in der
linken Nachbarzelle das Zeichen s steht. Das vierte Alternativglied gehort zum Fall
(1, by), wobei b, in der Sprache S die Konstante ¢, entspricht. Das fiinfte Alternativ-
glied gehort zum Fall (gy, s) und die letzten beiden zum Fall (g,, o).

Es lige nun nahe, den Ausdruck H,(x,, x;) wie folgt zu bilden:

V nxgx; ... Xa(Hy'(q18%y, Xg) A H,' (%3, X4) A Hy' (x4, X3) A ... A HY (x4, qoSx,))

Etwas Derartiges ist jedoch in einer elementaren Sprache nicht formulierbar. Wir
konnen uns hier dadurch helfen, da8 wir die endliche Folge der Konstellationen von
7, die schlieBlich von der Anfangskonstellation q,8x, zur Endkonstellation gesx,
fiihrt, mit Hilfe des bisher noch nicht verwendeten ,,Buchstaben‘ d zu einem langen
Wort q,sx,dxydx,d ... dx,dgesx; zusammenkleben. Die Bauart eines solchen Wortes
1Bt sich in der Sprache S elementar beschreiben, und der gesuchte Ausdruck H,(x,,x,)
lautet
\ x(x beginnt mit q,8x,d A x endet mit dq,sx,

AN x,x.((x beginnt mit xzdx,d v dxydx,d kommt in x .vor v x endet mit
dx,dx,)
A —d kommt in xsx, vor — H,'(x,, x.))).
Damit beschlieBen wir den Beweis von Satz 1.
.Satz 2. Ist eine Theorie B-ausdrucksfihig fiir ein beliebiges endliches Alphabet B,
80 18t sie auch C-ausdrucksfihig fiir jedes andere endliche Alphabet C.

Beweis. Es sei Flg’(X) eine B-ausdrucksfihige Theorie, C ein beliebiges endliches
Alphabet. Dann gibt es eine eineindeutige Abbildung & von W(C) in W(B), so da8
% und k! berechenbare Wortfunktionen sind (vgl. 7.1.). Ist h eine eineindeutige
berechenbare Wortfunktion von W(B) in die Menge der variablenfreien Terme der
Sprache S, 80 ist k- k eine eineindeutige berechenbare Abbildung von W(C) in die
Menge der variablenfreien Terme von S. Ist f eine berechenbare Wortfunktion in
W(C), so ist

frmk-f k2
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eine berechenbare Wortfunktion in W(B). Daher existiert nach Voraussetzung ein
Ausdruck Hyx, y) € S, so da8 fiir U, V ¢ W(B) gilt: f(U) = V genau dann, wenn
Hj(h(U), k(V)) € Flg*(X). Daher gilt insbesondere fiir Worter R Se W(C): R) =
genau dann, wenn f(k(R)) = k(S), und das letzte ist genau denn der Fall, wenn
H; ,(h(k(R) h(k(S))) € Flg"(X) gilt. Das heiBt aber, Flg?(X) ist C-ausdrucksfihig.

Satz 2 rechtfertigt die

Definition 3. Eine Theorie Flg"(X) heiBt ausdrucksfihig, wenn sie ausdrucksfiahig
fiir wenigstens ein endliches Alphabet (und damit fiir jedes endliche Alphabet) B
ist.

Satz 3. Jede ausdrucksfihige Theorie ist unentscheidbar.

Beweis. Es sei T = Flg°(X) ausdrucksfihig und dabei A ein endliches Alphabet
mit § < W(A). Dann ist T insbesondere A-ausdrucksfihig, d. h., es gibt eine ein-
eindeutige berechenbare Wortfunktion 2 von W(A) in die Menge der variablen-
freien Terme von S und zu jeder berechenbaren Wortfunktion f in W(A) einen
Ausdruck Hy(x, y) € 8, so daB fiir U, V € W(4)

f(U) = V genau dann, wenn H/(k(U), h(V)) € T, 1)

gilt. Dabei kann man offenbar bei beliebiger Funktion f immer die gleichen Variablen
X,y in den Ausdricken Hy(x,y) benutzen. Da die durch g(U):= Sub(U, X, h(U))
definierte Wortfunktion in W(A) iiberall definiert und offenbar berechenbar ist,
folgt aus der Annahme der Entscheidbarkeit von T, daB auch die durch .

<[4, falls W
U :={ » fallsg(Uye WAN\T,

)
nicht definiert, falls g(U) € T
definierte Wortfunktion f berechenbar ist. Dies fiihren wir zum Widerspruch,
indem wir das Wort U = H X, h(A)) betrachten. Nach (1) ist f(U) = A genau dann,
wenn H,(h(U), h(4)) € T. Nach (2) ist f(U) = A genau dann, wenn ¢(U) § T, aber
offenbar ist g(U) = H,(k(U), k(4)).
Satz 4. Existiert in einer Sprache (S, o) ein endliches Axi tem X, so daf

Y

die Theorie Flg°(X) unentscheidbar ist, so ist auch Flg*(@) unentscheidbar.

Beweis. Ist X endlich, so kénnen wir Flg’(X) auch als Fls'([Hol) mit Hoe S
erhalten, indem wir von den urspriinglichen Axiomen zuniichst zu gleichbedeut
abgeschlossenen Ausdriicken iibergehen und diese dann kon]unktnv miteinander zu
einem einzigen Axiom H, € S verkniipfen. Dann gilt fir H € S: H € Flg°(X) genau
dann, wenn H, — H € Flg°(@). Gibe es daher ein Entscheidungsverfahren fiir das
letzte Problem, so hitte man es nur auf den aus H effektiv erhiltlichen Ausdruck
H, - H anzuwenden.
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Satz 5. Ist (S', o') eine definitorische Erweiterung von (S, o) mit berechenbarer
Riickitbersetzung f (vgl. 4.6.) und st Flg*'(3) unentscheidbar, so ist auch Flg(9) un-
cntscheuiba,r (Alle zu den in 4.6. behandelten Definitionsmethoden gehorigen Riick-

schriften lassen sich so normieren, daB die Zuordnung f, die einem
Ausdruck H € 8’ den entsprechenden Ausdruck [H] € S zuordnet, eine berechenbare
Wortfunktion wird.)

Beweis. Nach Definition 2 aus 4.6. gilt fiir solche Ausdriicke H € §’, die eine
Riickiibersetzung [H] = f(H) besitzen,

H o [H] € Flg”'(9),

also insbesondere H € Flg?(J) genau dann, wenn [H] € Flg°(9). Wire nun Flg°(d)
entscheidbar, so hitte man, um H € Flg(@)? zu entscheiden, nur zu einem zu H
gleichbedeutenden Ausdruck H (notfalls H abgeschlossen) iiberzugehen, der eine
Riickiibersetzung besitzt, und dann [H] € Fig’() zu testen.

Satz 6 (Satz von CHURCH). Enthdlt eine einsortige Sprache S wenigstens ein zwei-
stelliges Relationssymbol oder ein zweistelliges Operationssymbol, so ist die Menge Flg(9),
d. h. die Allgemeingiiltigkeit in S beziiglich des elementaren Folgerns, unentscheidbar.

Der wesentliche Teil des Beweises dieses Satzes steckt in den Sitzen 1 bis 5.
Enthilt S ein zweistelliges Relationssymbol, so kann man dieses z. B. als Element-
relation der Mengenlehre deuten und jede beliebige Formalisierung der Theorie der
Worter und ihrer rekursiven Berechenbarkeit (wie auch jede andere mathematische
Theorie) als definitorische Erweiterung von S auffassen. Enthilt S ein zweistelliges
Operationssymbol F, so kann man z. B. die Tatsache benutzen, daB sich aus der
zuniichst inhaltlich durch

|9, falsxcy,
F""”“{m», falls x4y,

definierten ,,charakteristischen Funktion* der Elementrelation einer geeignet forma-
lisierten Mengenlehre die Konstante @ und die €-Relation zuriickdefinieren lassen:

= 1z(VzF(z,x) = z A — V xF(x, 2) == 2},
xey:oFix,y) =

Da man mittels eines n-stelligen Relationssymbols R (n > 2) eine zweistellige
Relation R’ (z. B. durch R'(x,y): <V z, ... 2, 3R(z), ..., Zy-2, X, ¥)) und mittels
eines n-stelligen Operationssymbols F (n > 2) eine zweistellige Operation F (z. B.
durch F'(x,y) := F(x, ..., x,y)) definieren kann, folgt aus dem Satz von CHURCH
(unter Beriicksichtigung von Satz 5) sofort die Unentscheidbarkeit der Allgemein-
giiltigkeit in allen einsortigen elementaren Sprachen mit Ausnahme derjenigen, deren
Basis nur aus einstelligen Relationssymbolen und eventuell Konstantensymbolen
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besteht. In bezug auf mehrsortige Sprachen sei nur bemerkt, daB sich der Satz von
CrurcH sofort auf alle Fille ausdehnen 1iBt, in denen fiir eine gewisse Sortennummer
j eine Relation vom Typ (j, j) oder eine Operation vom Typ (j, j; %) (¢, j beliebige
Sortennummern) definierbar ist.

8.3.  Entscheidbarkeit der Allgemeingiiltigkeit von Ausdriicken,
die nur einstellige Relationssymbole enthalten

Aus Griinden der einfacheren Formulierung beschrinken wir uns hier auf Ausdriicke
einsortiger Sprachen, die aus pridikativen Ausdriicken der Formen z; = z; und
Ry(x,) aufgebaut sind. Eventuelle Mehrsortigkeit kann durch Einfiihrung von Sorten-
priidikaten (vgl. 3.2.) auf den einsortigen Fall zuriickgefiihrt werden. Konstanten-
symbole ¢ kénnen durch zusitzliche einstellige Relationssymbole R, eliminiert
werden. Statt H(c) ist dann der semantisch dquivalente Ausdruck

VIxR(x) A V x(Re(x) A H(x))

zu betrachten. Daher gilt die im folgenden behauptete Entscheidbarkeit der All-
gemeingiiltigkeit im Prinzip fiir Sprachen S, die durch Basen der Form (n; B,, 9, B,)
definiert werden, wobei B, nur aus einstelligen Relationssymbolen besteht.

Zu jedem Ausdruck H kann man durch gebundene Umbenennung und Generali-
sierung vollfreier Variablen einen Ausdruck H konstruieren, der abgeschlossen und
bei einer beliebigen Interpretation w genau dann wahr ist, wenn H bei nllgemein-
giiltig ist. Daher konnen wir uns auf die Untersuch der Allg giiltigkeit
abgeschlossener Ausdriicke beschrinken. Ein abgeschlossener Ausdruck  heibt
erfiillbar, wenn er bei wenigstens einer Interpretation wahr wird. Er ist daher genau
dann erfiillbar, wenn seine Negation nicht allgemeingiiltig ist. Damit folgt

Satz 1. Fiir eine elementare Sprache S ist die Menge Flg(Q) (= agg) genau dann
entscheidbar, wenn die Menge der erfiillbaren abgecchlmenen Ausdriicke von S ent-
scheidbar 1st.

Es seien R,, ..., R,, einstellige Relationssymbole. Eine Elementarkonjunktion in
Ry, ..., Ry ist ein Ausdruck der Form

() By(x) A () Ry(x) A ... A () Ri(x),

wobei die eingeklammerten Negationszeichen (—) andeuten sollen, daB das i-te
Konjunktloneghed unabhiingig von den anderen gleich Ry(x) oder gleich -—.R.(x)
sein kann (vgl. die Definition der a genl hen Elementarkonjunktionen in

2.3.). Demnach gibt es 2™ Elementa,rkon]unknonen K, (x) (u=1,...,2" in
Ry, ..., Ry
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Eine Normulkonjunktion beziiglich R,, ..., Ry ist ein abgeschlossener Ausdruck
der Form
VK, (x)A...AVK, () A 7 VK, () A... A VK, (x), (1)
L ! & h 3
wobei K,,...,K, und K,,...,K, jeweils paarweise verschied El "

konjunktionen in R,,...,R, sind. Eine kontraprinexe Normalform beziiglich
Ry, ..., Ry (hier im folgenden kurz als Nf bezeichnet) ist eine Alternative von
endlich vielen Normalkonjunktionen der Form (1).

Satz 2. Es qibt ein algorithmisches Verfahren, durch das man jeden abgeschlossenen
Ausdruck H, in dem keine Basissymbole aufer R,, ..., R, vorkommen, in eine zu
thm semantisch dquivalente Nf iiberfithren kann.

Das zum Beweis von Satz 2 anzugebende Verfahren ist recht kompliziert. Wir
verweisen auf 3, § 9], wo es ausfiihrlich dargestellt wird.

Eine beliebige Interpretation w der durch die Basissymbole R, ..., R,, gegebenen
Sprache wird durch eine nichtleere Grundmenge M und m (eventuell zum Teil leere)
Teilmengen

Mi:=(5:6eMrbcoR)) (F=1,..,m)
definiert. Sind M und M, vorgegeben, 8o kann man M so in 2" paarweise disjunkte
Mengen E; ;. (i, ..., iw € {0, 1)) zerlegen, daB jede der Mengen M, als Ver-
einigung von 2™~! dieser Bausteinmengen E; . darstellbar ist. Wir definieren
induktiv:

M, falls i, = 1,
Tl ¥\ M, fallsi,=0;

Ei.oivivnt = {

N My, /aua =1,
ix N My, falls dgyy = 0.

-
Eio1,..0 = MinMyn...n M,)\ M,
usw. und
M;=UE; ;.

ig=1
Man sieht nun, da8 jede der 2™ El tarkonjunktionen gerade die Lage des mit x
bezeichneten Dinges in einer ganz bestimmten der Mengen E; ; aussagt und
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daB daher jede Normalkonjunktion fiir gewisse dieser Mengen eine endliche Mindest-
zahl von Elementen und fiir gewisse (zum Teil andere) dieser Mengen eine endliche
Hochstzahl von Elementen aussagt. Da umgekehrt durch die Wahl von 2* paarweise
disjunkten Mengen E;_ ; mit der Nebenbedingung, da8 ihre Vereinigung (d. h. M)
nicht leer sein soll, jeweils eine Interpretation w eindeutig bzw. durch Vorgabe der
Michtigkeiten der Mengen E; ; eine Interpretation w bis auf Isomorphie ein-
deutig bestimmt ist, folgt sofort

Satz 3. Eine Normalkonjunktion (1) ist genau dann erfiillbar, wenn sie nicht die
Form

— VK (x) A 5 VKyx) Ao A V xKopa(x)
hat und wenn auperdem aus K, = K, stets k; < ; folgt.

Da eine Alternative genau dann erfiillbar ist, wenn wenigstens ein Alternativglied
erfiillbar ist, ist folglich die Erfiillbarkeit einer Nf in einfacher Weise entscheidbar.

Aus den Sitzen 2 und 3 folgt sofort die Entscheidbarkeit der Allgemeingiiltigkeit
fiir alle Ausdriicke der betrachteten Art. Ferner ergibt sich aus Satz 2 nachtriiglich,
daB man in pridikatenlogischen Sprachen der hier betrachteten Art nur sehr einfache
Sachverhalte iiber die méglichen Interpretationen formulieren kann, nidmlich nur
gewisse endliche Alternativen iiber die endlichen Mindest- und Hochstzahlen von
Mengen E; ;. Esist also z. B. nicht moglich, in einer solchen Sprache Aussagen des
Inhalts
— der Grundbereich ist endlich
— die Anzahl der Elemente des Grundbereichs ist eine Primzahl

zu formulieren. Weiterhin folgt aus Satz 3: Jeder iiberhaupt erfiillbare Ausdruck der
betrachteten Art ist schon in einem endlichen Grundbereich erfiillbar.

Wir wollen nun fiir den Fall, daB in den betrachteten Ausdriicken das Zeichen
»=" nicht vork t, ein ites Entscheidungsverfahren fiir die Allgemeingiiltig-
keit behandeln, das sich wesentlich einfacher theoretisch rechtfertigen 1i8t und auch
in der praktischen Anwendung hiufig schneller zum Ziel fiihrt als das oben be-
schriebene Verfahren iiber die Aufstellung einer &quivalenten Nf.

Der (nicht notwendig abgeschlossene) Ausdruck H sei aus pridikativen Ausdriicken
der Form R;(x;) aufgebaut, wobei insgesamt genau m verschiedene Relationssymbole
Ry, ..., R, vorkommen. Ist w eine beliebige Interpretation mit dem Grundbereich
M, 80 sei fir &, € M

(e Firi=1,...,mist§ € w(R;) genau dann, wenn 1 € w(Ry). (2)

Wie man leicht nachpriift, ist ,,~* eine Aquivalenzrelation in M, deren Aquivalenz-
klassen iibrigens gerade die nichtleeren unter den vorher betrachteten zu w gehorigen
Mengen E;  ;_ sind. Folglich ist ihre Anzehl < 2. Es sei nun § die Aquivalenz-
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klasse von £ fiir £ € M und ¥ die Menge dieser Aquivalenzklassen. Im Grundbereich
M definieren wir eine neue Interpretation & durch

GR):={E:tcolR)) @E=1,...,m).

Diese Definition ist wegen (2) reprisentant. bhiingig. Setzen wir noch f(z): = R;:S
fiir Belegungen f beziiglich w, so 1aBt sich durch Induktion iiber die Kompliziertheit
von H leicht zeigen:

Wert(H, o, f) = Wert(H, @, f).

Ist daher w eine Interpretation und / eine Belegung beziiglich w, so daB Wert(H, o, f)
= F ist, 8o ist auch Wert(H, @, ) = F, d. h., jeder nicht allgemeingiiltige Ausdruck
(der hier betrachteten Art) ist schon bei einer solchen Interpretation nicht allgemein-
giiltig, bei der jede der 2= Mengen E; ; ubabhingig von den anderen leer ist
oder aus genau einem Element besteht (wobei der Fall, daB alle diese Mengen leer
sind, nusgewhlouen wird). Das sind aber nur 22" — 1 paarweise nichtisomorphe
Interpretationen, von denen keine aus mehr als 2™ Dingen besteht. Das sich hieraus
ergebende Entscheidungsverfahren fiir die Allgemeingiiltigkeit identitatsfreier Aus-
driicke ist insbesondere fiir kleine Zahlen m und relativ lange (komplizierte) Aus-
driicke giinstiger als dn.s natiirlich auch hier anwendbare Verfahren iiber die Her-
tellung der kont Nf, da die Gewinnung dieser Nf natiirlich mit wachsen-
der Innge der Ausdriicke beliebig kompliziert wird.

8.4. Aufzahlbarkeit und Axiomatisierbarkeit, Godelscher
Unvollstindigkeitssatz

Es liegt nahe, als Ersatz fiir die in vielen Fillen nicht gegebene Entscheidbarkeit
formalisierter Theorien deren Aufzihlbarkeit zu verlangen. Hierzu stellen wir ein-
leitend fest, daB die in 6.1., Definitionen 1 und 2, erhobenen Forderungen an Schlug-
regeln und Beweiskalkiile sich nachtriglich wie folgt prizisieren lassen:

Eine Schlupregel ist eine berechenbare Wortfunktion mit entscheidbarem Definitions
bereich. Ein Beweiskalkiil ist eine aufzihlbare Menge von Schlufregeln (genauer: eine
aufzihlbare Menge von Niederschriften von Algoritt zur Berechnung der be-
treffenden Wortfunktionen). Aus der Charakterisierung der Schluiregeln als be-

henbare Wortfunkti folgt nach 7.3.,8atz 1,sofort: Jedes durch eine Schlufiregel
gegebene Sch logischer Aziome 1st eine aufzihlbare Menge von Ausdriicken. Weiter
folgt aus 7.3., Satz 5:

Sutz 1. Ist V(S o) eine nichtel tare (eventuell el tare) Sprache, X = S ein
f es A tem und A~ eine au/zahlbare Menge von fiir (S, o) zuldssigen
Schluﬁregdn (d. h. ein fiir (S, o) zuliissiger Beweiskalkiil), so ist Bew (X) aufzihibar.
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Folgerung. Ist S eine elementare Sprache und X S S aufzihlbar, so 1st die el
tare Theorie Flg(X) aufzihlbar. (Dies folgt unmittelbar aus Satz 1 und dem Hauptsatz
der mathematischen Logik.)

Es liegt nun sehr nahe, den Begriff Axiomensystem, der bisher (insbesondere in
4.3. bis 4.6.) im Sinne einer beliebigen Teilmenge X einer Sprache S gebraucht
wurde, auf aufzihlbare Mengen X von Ausdriicken einzuschrinken. Dadurch werden
die in konkreten mathematischen Theorien benutzten Axi yst nicht
beriihrt, da diese (falls sie nicht sogar endlich und daher nach 7.3., Satz 3, aufzihlbar
sind) ja immer durch irgendwelche Schemata, Erzeugungsregeln o. d. angegeben
werden, was gerade ihre Aufzihlbarkeit bewirkt. Insbesondere definieren wir nun:

Definition 1. Eine in einer Sprache (S, ¢) gegebene Theorie T (d. h. eine Teil-
menge T von S mit Flg*(T) = T) heiBt aziomatisierbar, wenn ein Axiomensystem,
d. h. eine aufzihlbare Menge X S S mit T = Flg°(X), existiert. Insbesondere heifit
T endlich axiomatisierbar, wenn eine endliche Menge E & 8 mit T = Flg°(E)
existiert.

Satz 2. Eine elementare Theorie ist genau dann axiomatisierbar, wenn sie aufzihlbar
st.

Die Aufzihlbarkeit axiomatisierbarer elementarer Theorien folgt dabei, wie
. bereits bemerkt, aus Satz 1. Ist andererseits eine elementare Theorie T = Flg(T)
aufzihlbar, so kann man offenbar im Sinne der priizisierten Definition T selbst als
Axiomensystem fiir T' nehmen.

An Definition 1 knupft sich natiirlich die Frage, ob und wie man denn im kon-
kreten Fall iiberhaupt eine Theorie definieren kann, deren Axiomatisierbarkeit
zunichst noch offen ist. Dazu ein Beispiel: Es sei (S, a(y)) die in 4.5. zur Formu-
lierung der Axiome von PEANO benutzte nichtelementare Sprache, E das endliche
in S formulierte Axiomensystem von PEaNo, demnach T = Fig*»(E) die Menge aller
in S formulierbaren und im Bereich der natiirlichen Zahlen allgemeingiiltigen
Ausdriicke. Diese Menge T ist offenbar erst recht beziiglich elementarer Folgerungen
abgeschlossen, d. h., es kann T = Flg(T) auch als elementare Theorie aufgefaBt
und im Rahmen der elementaren Sprache S die Frage nach der Axiomatisierbarkeit
von T gestellt werden. Diese Frage werden wir spiter negativ beantworten Einst-
weilen stellen wir in Anlehnung an dieses Beispiel fest:

Theorien, d. h. Satzmengen T einer formalisierten Sprache, die beziiglich eines
gewissen (im allgemeinen nichtelementaren) Folgerungsbegriffes abgeschlossen sind,
d. h. fiir die T = Flg°(T) gilt, kénnen auf mannigfache Weise (etwa als Menge aller
bei einer bestimmten Interpretation giiltigen Sitze) semantisch definiert werden,
so daB die Frage lhrer Aufzahlbarkext und ihrer Axiomatisierbarkeit zunichst

ffenbleibt. Dy iber b hnet man Sat gen T, die durch ein (aufzihl-

bares) Anomensystem X und einen (nicht notwendig aus nur elementaren Schlug-
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regeln bestehenden) Beweiskalkiil ¥" als T = Bew (X)) definiert sind, als Theorien
mit syntaktisch definierter Satzmenge. Es sei bemerkt, daB extreme Formalisten unter
den Grundlagenmathematikern nur den letzteren Standpunkt anerkennen. Theorien
mit syntaktisch definierter Satzmenge sind auf Grund von Satz 1 stets aufzdhlbar.
Der Hauptsatz der mathematischen Logik 1iBt sich unter den neuen Aspekten
auch so interpretieren, daB zumindest fiir elementare Sprachen (bzw. fiir das elemen-
tare Folgern) jede axiomatisierbare Theorie mit semantisch definierter Satzmenge
auch als Theorie mit syntaktisch definierter Satzmenge aufgefaBt werden kann.

Satz 3. Jede (el tare oder nichtel tare) aufzihlbare und vollstindige Theorie
15t entscheidbar.

Beweis. Essei T = Flg°(X) (X S S beliebig) vollstindig, d. h., fiir abgeschlossene
Ausdriicke He § gilt He T oder — H € T. Falls T o-widerspruchsvoll ist, d. h.
T =8, ist T entscheidbar nach 8.1. Andernfalls gilt fiir H € § genau eine der
Beziehungen H € T und — H € T. Ist daher T aufzihlbar und f eine Aufzihlung
von T, d. h. eine berechenbare Abbildung von der Menge der natiirlichen Zahlen
auf T, so gewinnt man ein Entscheidungsverfahren fiir T, indem man, ausgehend
von einem beliebigen Ausdruck H € 8, zuniichst durch gebundene Umbenennungen
und Generalisierungen zu einem abgeschlossenen Ausdruck H iibergeht und dann

gemiiB f so lange T aufzihlt, bis entweder H oder — H erreicht wird.

Auf elementare Theorien spezialisiert, bedeutet Satz 3:

Eine aziomatisierbare und vollstindige Theorie ist entscheidbar. Hieraus erhilt man
durch einfache aussagenlogische Umstellung:

a) Eine (etwa auf Grund ihrer Ausdrucksfihigkeit, vgl. 8.2.) nicht entscheidbare
aziomatisierbare Theorie st nicht vollstindig.

b) Eine nicht entscheidbare vollstindige Theorie ist nicht axiomatisierbar.

Es zeigt sich, daB die in 4.5. erklirte elementare Nachfolgertheorie der natiirlichen
Zahlen vollstindig und entscheidbar ist. PRESBURGER?) zeigte, daB dieser Sachverhalt
sogar fiir diejenige elementare Theorie der natiirlichen Zahlen zutrifft, die man erhalt,
wenn man die Sprache durch ein Symbol +- fiir die Addition und das Axiomsnsystem
{(d"), ("), (d’), (')} (vgl. S. 78) durch die bekannte induktive Charakterisierung

n+0=n,
n+m' = (n+ m)

1) M. PresBuraer, Ubar die Volistindigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt, Comptes rendus du I Congres
des Mathematiciens des Pays Slaves, Warszawa 1930.
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der Addition erweitert. Nimmt man jedoch weiterhin die Multiplikation zu den
Grundbegriffen und die Ausdriicke

n-0=0,

n-m'=(@-m)+n
zum Axiomensystem hinzu, so wird die so erhaltene elementare Theorie der natiir-

lichen Zahlen ausdrucksfihig und folglich unentscheidbar. Durch Spezialisierung
von Satz 3 auf diesen Fall erhilt man den folgenden Satz:

Godelscher Unvollstindigkeitssatz. Jedes. aufzihlbare Az tem fiir
eine elementare Theorie der natiirlichen Zahlen, in der Addition und Multzphkalum 2u
den Qrundbegriffen gehiren bzw. definierbar sind, ist unvollstindig.

Bekanntlich gibt es eine Reihe von elementar formulierbaren Aussagen iiber
natiirliche Zahlen, die bis heute weder bewiesen noch widerlegt werden konnten.
Hierzu gehéren einige beriihmte zahlentheoretische Probleme wie z. B. die Fermat-
sche Vermutung, daB es fiir » = 3 keine natiirlichen Zahlen a, b, ¢ > 0 mit a® 4 b*
= c" gibt, oder die Goldbachsche Vermutung, daB jede natiirliche Zahl n = 6 sich
als Summe dreier Primzahlen darstellen lifit. Da die Gesamtheit X aller bisher
jemals bei zahlentheoretischen Beweisen verwendeten bzw. zugelassenen Axiome
gewiB aufzihlbar ist und daher nach dem Gédelschen Unvollstindigkeitssatz die
Theorie FI(X) unvollstindig sein muB, ist es durchaus méglich, daB z. B. gerade die
Fermatsche Vermutung zu denjenigen abgeschlossenen Ausdriicken H gehért, die
mittels X weder bewiesen noch widerlegt werden kénnen, d. h. fiir die weder H € FI(X)
noch — H ¢ FI (X) gilt. In diesem Fallist es nicht ausgeschlossen, da8 man eines Tages
durch irgendwelche metatheoretischen oder bis heute unbekannten Beweismethoden
hinreichende GewiBheit iiber die Giiltigkeit von H im Bereichder natiirlichen Zahlen ge-
winnt. Dann kénnte man H einfach den bisher benutzten Axiomen hirzufiigen, aber
auch das Axiomensystem X u {H} wird, da immer noch aufzihlbar, wiederunvollstindig
sein. Allgemein wird zu jedem Zeitpunkt die Menge Bew -(¥) aller zahlentheoretischen
Aussagen, die man aus einem Axiomensystem ¥ mittels eines zuldssigen (nicht
notwendig elementaren) Kalkiils " beweisen kann, unvollstindig sein.

AbschlieBend sei bemerkt, daB véllig analoge Verhiltnisse auch auf jede mittels
aufziihlbarer Axiomensysteme und Beweiskalkiile betriebene formalisierte Mengen-
lehre (wegen der Ausdrucksfihigkeit dieser Theorien) zutreffen. Hier sind Auswahl-
axiom und verallgemeinerte Konti hypothese erste Beispiele fiir elementar
formulierbare Aussagen, die mit den herkdmmlichen Axiomen (heute schon nachweis-
bar) weder bewiesen noch widerlegt werden kénnen. Mag man sich nun entschlieBen,
das bisher benutzte Axiomensystem durch die als unabhéngig und widerspruchsfrei
erkannten Aussagen oder deren Negation zu verstirken, man wird immer wieder auf
Sachverhalte stoBen, deren Giiltigkeit auch mit dem neuen Axiomensystem weder
beweisbar noch widerlegbar ist.




9. Historische Entwicklung und gegenwdrtige Tendenzen
der Grundlagen der Mathematik

Die Mathematik entstand in den Anfingen der hlichen Gesellschaft als ein
Instrument zur Bewiltigung von Probl des taglichen Lebens. Demgemi8

- bestand sie zuniichst in der Anhiiufung einfacher arithmetischer und geometrischer
Begriffe, einfacher Sachverhalte und der rezepta.rtlgen Losung einfacher Aufgaben.
Als erste Beweisform trat in der spitbabyloni Mat tik die rechnerische
Probe numerischer Losungen von einfachen arithmetischen und algebraischen Auf-
gaben auf. Etwa in der Zeit zwischen 700 und 400 v. u. Z. verwandelte sich die

Math tik in den griechischen Stadtstaaten in Z hang mit der dort
tstehenden materialistisch ionisch Naturp}u]osophxe in eine allgemeine
Siitze formulierende und beweisende Wi haft. Fiir die weitere Entwicklung

wurde zunichst der EinfluB der platonischen Philosophie bestimmend. PraTon
(4297 —348 v. u. Z.) und seine Anhinger negierten die historische Entstehung der
mathematischen Begriffe durch Abstraktion aus der Realitit, sprachen ihnen
vielmehr eine von der materiellen Welt und vom menschlichen BewuBtsein un-

abhiingige metaphysische Existenz zu und degradierten die materiellen Vorbilder
der Begriffe zu unvollkommenen und unzuverlissigen ,,nachtriglichen* Hilfs-
itteln der Ver haulichung. Sichere Erkenntnisse konnten nach PLATON niemals

durch Erfahrung und Erprabung, sondern nur durch reines Denken gewonnen
werden.

Als typisches Produkt dieser philosophischen Lehren entstand um 300 v. u. Z.
das dlteste uns erhaltene Lehrbuch der Mathematik, die Elemente des EUgLID,
zugleich der erste Versuch, eine Wi haft axiomatisch-deduktiv aufzubauen.
Die vieldiskutierte Frage nach der Rolle der Definitionen, Axiome und Postulate bei
EvkLm und nach dem Charakter der logischen Beweisfiihrung in einem Stadium,
in dem die wahre Natur des Folgerns noch unklar war, beantwortet sich vor dem
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Hintergrund der platonischen Philosophie fast von selbst: Es gibt nur eine Inter-

tation der math tischen Begriffe Punkt, Gerade, Kreis, rechter Winkel usw.,
nkmllch durch die von Anbeginn und unabhiingig von Realitit und BewuBtsein
existierenden Ideen dieser Begriffe. Daher stehen auch alle Eigenschaften dieser
Begriffe und alle Beziehungen zwischen ihnen von vornherein fest und sind sozusagen
denknotwendig. Es liegt nur an der Unvolll heit des hlichen Verstand
daB er nicht alle diese Tatsachen sofort und ohne Unterweisung erkennen kann.
Die einfachsten unter ihnen sind jedoch ohne weiteres ,,evident, und alle weiteren
lassen sich nach und nach durch richtiges Denk thiillen. Dabei wurde iibersehen,
daB die dem ,richtigen Denken* zugrunde liegenden Normen in Wirklichkeit
ebenfalls durch Abstraktion aus praktischen Erfahrungen entstanden sind. Vom
platonischen Standpunkt aus ist es natiirlich kei gs beliebig, welche Sitze als
Axiome genommen werden. Aber das Kriterium fiir ihre Auswahl ist nicht ihre durch
Erfahrung bestiitigte (approximative) Giiltigkeit in der Realitit, sondern ihre
,,Evidenz‘. So erklért sich auch die Kritik der antiken Math tiker am V. Postulat,
das in der euklidischen Formulierung eben nicht im gleichen MaBe wie die iibrigen
Axiome und Postulate ,,evident‘ war. Daher wurde mehrfach der Verdacht geduBert,
Evrum habe diesen Satz nur deshalb als Postulat bezeichnet, weil es ihm nicht
gelungen war, ihn zu beweisen (d. h. im Sinne der damals herrschenden Auffassung:
ihn auf ,evidentere Aussagen zuriickzufithren). Von diesem Standpunkt aus sind
die zahlreichen aus unserer Sicht nicht stichhaltigen ,,Beweise‘ des V. Postulats
vollig legitim, insofern sie seine Giiltigkeit tatsichlich aus der Giiltigkeit subjektiv
»evidenterer* Sachverhalte begriinden. Zu den euklidischen D:finitionen (Ein
Punkt ist, was keinen Teil hat usw.), die natiirlich keine Definitionen im Sinne der
mathematischen Logik sind, sei bemerkt, daB sie im Grunde auch vom platonischen
Standpunkt aus iiberfliissig sind, da die Begriffe der Geometrie ja in gleicher Weise
denknotwendig sind wie die Sitze. EUELID selbst mag diese Definitionen, die im
Gegensatz zum groBten Teil des mathematischen Inhalts der Elemente wahrscheinlich
von ihm stammen, aber natiirlich nirgends benutzt werden, als literarischen Schmuck
empfunden haben. Spitere Generationen haben, da es am eigentlich themati
schen Aufbau der Elemente wenig zu verbessern gab, mit Vorliebe an diesen Defini-
tionen gefeilt.

Die platonische Auffassung vom Wesen der mathematlschen Begriffe und des
mathematischen Beweises blieb schon in der Antike nicht unwiderlegt, obwohl sie
damals dominierte, da der Platoni zugleich eine ideologische Stiitze der Sklaven-
haltergesellschaft war. DEMOKRIT von Abdera (460?—370? v.u.Z.), ARCHIMEDES
von Syracus (287?—212 v. u. Z.), HERON von Alexandria (um 100 u. Z.) und andere
antike Mathematiker vertraten mehr oder weniger ausgesprochen materialistische
Auffassungen, die sich nicht nur fruchtbar auf ihr mathematisches Schaffen,sondern
auch auf ihre Position zur Frage der Anwendung der Mathematik in der Praxis
auswirkten. Andererseits spielt der Platonismus speziell in der Mathematik noch
bis in die Gegenwart hinein eine gewisse Rolle. Auf den ersten Blick mag es harmlos
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erscheinen, wenn der Mathematiker bei seiner Arbeit von den von ihm untersuchten
Objekten (insbesondere etwa Mengen, reelle Zahlen o. d.) eine im wesentlichen dem
Platoni entsprechende Vorstellung hegt. SchlieBlich sind weite Teile klassischer
und noch heute giiltiger Mathematik auf dieser erkenntnistheoretischen Grundlage
entstanden. Philosophische Auffassungen innerhalb der Mathematik werden jedoch
nicht unabhingig von den allgemeinen weltanschaulichen Positionen ihrer Trager
gebildet. Letzten Endes fiihrt die Leugnung des Widerspiegelungscharakters der
mathematischen Begriffe und allgemein das Aufgeben materialistischer Positionen
in der Mathematik immer wieder zu einer Entfremdung von der Praxis, zur Ver-
kennung ihrer Rolle in der Gesellschaft und ihres humanistischen Anli
Zugleich mit der axiomatischen Methode entstanden die Anfinge ciner formalen
Logik als Anleitung zum richtigen SchluBfolgern. ARISTOTELES (384—322 v. u. Z.)
gab 19 zulissige SchluBregeln an, im Bereich von Aussagen der vier Formen
*(a) Alle A sind B (z. B.: Alle Fische sind Tiere),
(i) Einige A sind B (z. B.: Einige Rechtecke sind Quadrate),
(e) Kein A ist ein B (z. B.: Kein Mensch ist ein Fisch),
(o) Einige A sind nicht B (z. B.: Einige Fische sind keine Fleischfresser),
aus jeweils zwei Primissen auf eine Conclusio zu schlieBen. Zu den Aristotelischen
SchluBweisen gehéren also z. B.
(1) Alle A sind B.
Alle B sind C.
(Folglich) Alle A sind C.
2) Einige A sind B.
Alle B sind C.
(Folglich) Einige A sind C.
Spiiter hat man fiir diese SchluBweisen dreisilbige Merkwérter eingefiihrt, welche die
der ersten und zweiten Primisse und der Conclusio zugeordneten Vokale (a, e, i, 0)
angeben, so z. B. barbara fiir (1) und dimatis fiir (2). Die Aristotelische Regellogik
wird als Syllogistik bezeichnet. Die Stoiker (etwa 300—200 v. u. Z.) formulierten dem
Sinne nach die moderne Definition der Implikation als Wahrheitsfunktion und gaben
eine Reihe von allgemeingiiltigen aussagenlogischen Schemata im Zusammenhang
mit der Implikation an, wie z. B. (in moderner Schreibweise)

p—>p und (p—>q)—>((@—>r)—>(p—>1).

Diese Fragmente einer Aussagenlogik bildeten zusammen mit der Syllogistik einen
Teil derjenigen Errungenschaften der antiken Wissenschaft, die auch wihrend der
Zeit des europiischen Feudalismus bewahrt und gepflegt wurden, insbesondere im
Rahmen der Scholastik des 12. bis 14. Jahrhunderts. Bis zum Ende des 18. Jahr-
hunderts wurden jedoch insgesamit nur geringe Fortschritte in der formalen Logik
erzielt, und diese wurde meist, losgelost von der Mathematik, als Teil der Philosophie
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betrieben. Als Vertreter der mittelalterlichen Logik seien hier die Briten Duns
ScoTus (1270?—1308) und"RoGER BacoN (1214—1294) und die Spanier RAIMUNDUS
LurLus (1234—1315) und PerrRUs Hispanus (1210—1277) genannt. Letzterer
formulierte u. a. die logische Aquivalenz von — A xH(x) und V x — H(x) und &hn-
liche Gesetze, freilich nur in Gestalt von Sitzen wie Non omnis, quidam non (d. h.,
nicht fiir alle [bedeutet so viel wie] fiir ein gewisses nicht). Bei den meisten dieser
mittelalterlichen Philosophen war der rationale Kern der formalen Logik tief ver-
borgen unter einem Wust mystischer und religioser Spekulationen. (So konstruierte
LuLLus eine ,Jogische Maschine* in der Absicht, auf diesem Wege die Existenz
Gottes zu bewexsen ) Es ga.b jedoch, vor allem bei BAcoN, auch erstaunliche Ansitze

spontan materialisti ) z. B. richtige Erkenntnisse iiber die Entstehung
logischer SchluBweisen durch Verallgemeinerung von Erfahrungen.
In allen traditionellen Zweigen der Mathematik wurde die Umgangssprache in der

Formulierung von Sitzen und Beweisen und sogar in der Durchfithrung von Rech-
nungen erst spit durch die Ansitze einer Formalisierung, d. h. durch fachspezifische
Woarter und Symbole fiir Objekte, Operationen und Relationen und den Gebrauch
von Variablen zuriickgedringt. Wo dies geschah, bildeten sich Kalkiile und Algo-
rithmen. Die mit den neuen Methoden relativ schnell erzielten groBen praktischen
Fortschritte waren aber zuniichst oft mit einem Mangel an begrifflicher Klarheit
verbunden. Als markante Beispiele seien die Entwicklung des logarithmischen
Rechnens und die Entstehung der analytischen Geometrie genannt. Im 17. Jahr-
hundert entstand mit der Differential- und Integralrechnung zum ersten Mal seit
Jahrhunderten eine neue mathematische Disziplin, in der der Kalkiil von Anfang an
die Hauptrolle spielte und der inhaltlichen Bewiltigung der neuen Begriffe weit
vorauseilte. Unter dem Eindruck der im numerischen Rechnen, in der Algebra,
analytischen Geometrie und Analysis rasch erzielten groBen Fortschritte konnte
der Glaube an die Moglichkeit immer umfassenderer und leistungsfihigerer mathe-
matischer Kalkiile entstehen. GorrFrIED WILHELM LEIBNIZ (1646—1716), der selbst
in der Erfindung zweckmiBiger Symbole und Algorithmen viel Bleibendes geleistet
hat, widmete mehrere Arbeiten dem Projekt einer universellen formalisierten
Sprache, in der man jeden Sachverhalt formulieren und iiber seine Wahrheit durch
ein rechnerisches Verfahren entscheiden konnen sollte. Diese unausgefiihrten (und
natiirlich in dieser Allgemeinheit undurchfiihrbaren) Projekte von LEBNIZ wurden
erst zu Beginn dieses Jahrhunderts wiederentdeckt, so da LEIBN1z nicht zu den
direkten Vorldufern der sich im 19. Jahrhundert sprunghaft entwickelnden modernen
Logik geziihlt werden kann.

Den Grundstein fiir die Entwicklung der modernen Logik legte GEORGE BooLE
(1816—1864) mit seiner 1847 erschienenen Arbeit The Mathematical Analysis of
Logic, Being an Essay Towards a Calculus of Deductive Reasoning. Hierin ent-
wickelte er den heute noch aktuellen Begriff der Booleschen Algebra als einer Struktur
mit Addition, Subtraktion, Multiplikation und zwei ausgezeichneten Elementen 0
bzw. 1. Die Axiome BooLEs erweisen sich als aussagenlogisch allgemeingiiltige
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Ausdriicks, wenn man 0 bzw. 1 als Wahrheitswerte falsch bzw. wahr, die Addition
z + y als entweder x odér y, die Substraktion z — ¥ als = und nicht y und die Multi-
plikation zy als = und y deutet. Interpretiert man andererseits 1 als festen Grund-
bereich, 0 als leere Menge, die Variablen als Variablen fiir beliebige Teilmengen des
Grundbereichs, die S als sy trische Differenz, die Subtraktion als Mengen-
differenz und die Multiplikation als Durchschnitt, so erhilt man die aus den An-
fingen der Mengenlehre wohlbekannte Boolesche Mengenalgebra. BooLES in weiteren
Arbeiten ausgebaute Theorie gipfelte in der Ermittlung der zu einer vorgegebenen
Formel idquivalenten kanonischen Normalformen (vgl. 2.3.). Die spitere groBSe
Ausstrahlungskraft seiner Arbeiten mag z. T. darauf beruhen, daB er die den Zeit-
genossen vertraute Symbolik der traditionellen Arithmetik benutzte und die weit-
gehenden Analogien zwischen den dort und in der Aussagenlogik geltenden Rechen-
gesetzen herausschilte. Gleichzeitig mit BooLE und unabhingig von ihm begann
auch AUGUSTUS DE MoEGAN (1806—1871) mit Versffentlichungen zur Grundlegung
der modernen Logik. Er bemiihte sich um die Klirung der priidikatenlogischen
Natur der Aristotelischen Schliisse und suchte diese zu verallgemeinern. W. Sr.
JEVONS (1835—1882) ersetzte die Boolesche Addition durch die Alternative (Ver-
einigung) und die Subtraktion durch die einstellige Negation (Komplementbildung)
und gab damit den Booleschen Normalformen die endgiiltige (heutige) Form.
CHARLES SANDERS PEIRCE (1839—1914) und ERNsT ScHRODER (1841—1902) be-
zogen die Quantifizierung in den algebraischen (daher als Algebra der Logik bezeich-
neten) Aufbau der Logik ein, indem sie dic Generalisierung als unendliches Produkt
und die Partikularisierung als unendliche Alternative deuteten. (Bei SCHERODER
steht J]x statt Ax und ¥'x statt Vx.) ScHRODER beschiftigte sich erstmals syste-

matisch mit dem allgemeinen Relationsbegriff und fiihrte grundlegende Begriffe der
Relationentheorie wie Symmetrie, Transitivitit, Aquivalenz- und Ordnungs-
relationen, Verkettung von Relati und inverse Relation ein. Sein Hauptwerk

Vorlesungen iiber die Algebra der Logik erschien in drei Binden in den Jahren 1890
bis 1906. Zu den Pionieren der modernen Logik zahlte weiterhin GorrLoB FEEGE
(1848—1925), der mit seiner Begriffsschrift, eine der arithmetischen nachgebildete
Formelsprache des reinen Denkens (1879), eine formalisierte pridikatenlogische
Sprache entwickelte. FREGE wendete seine Begriffsschrift auch auf konkrete mathe-
matische Theorien an, z. B. in Grundgesetze der Arithmetik, begriffsschriftlich ab-
geleitet (1893). Die Begriffsschrift konnte sich jedoch wegen ihrer eigenwilligen und
nichtlinearen Schreibweise (vgl. die Beilage zu [35]) nicht durohsetzen, und FrrcEs
spitere Arbeiten wurden durch die in der naiven Mengenlehre aufgetret Anti-
nomien stark erschiittert.

GRzEGORCZYK legt im Anhang zu seinem Lehrbuch [11] iiberzeugend dar, wie die
Erkenntnis der pridikatenlogischen Struktur der Sprache (insbesondere der in der
Mathematik gebrauchten) und der Ausbau der Pridikatenlogik Hand in Hand gingen
mit den Bemiihungen um die Prizisierung der Grundbegriffe der Arithmetik und
Analysis. Er fiihrt aus, wie in den von AveusTIN Louis Cavony (1789—1857),
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KaBL WEIERSTRASS (1815—1897) und anderen Mathematikern des 19. Jahrhunderts
formulierten Definitionen solcher Begriffe wie Konvergenz, Stetigkeit und Differen-
zierbarkeit aussagenlogische Verkniipfungen und Quantifizierungen von bisher
unbekannter Kompliziertheit auftraten, wihrend die vorher in der Mathematik
iiberwiegend ' gebrauchten Formulierungen keine komplizierte Logik erforderten.
In der Tat finden sich unter den Vertretern der neuen Strenge in der Mathematik
auch einige bedeutende Logiker. In diesem Zusammenhang seien vor allem BERNARD
Borzano (1781—1848) und GrusepPE PeaNo (1858—1932) genannt. BorzaNo
wirkte in Prag. Sein Name ist jedem Mathematik-Studenten durch den Satz von
BorLzaNo-WEIERSTRASS geliufig. Dieser Satz ist jedoch nur eine kleine Probe von
Borzanos tiefgriindigen Untersuchungen iiber reelle Zahlen und Zahlenmengen,
Konvergenz, Stetigkeit und Differenzierbarkeit. Sein Hauptwerk zur Philosophie
und Logik der Mathematik erschien 1827 unter dem Titel Wissenschaftslehre. Hierin
gab er als erster eine der heutigen Definition annihernd entsprechende Erklirung
des Folgerns (vgl. hierzu den in [4] abgedruckten Ausschnitt). BoLzaNos Arbeiten
blieben leider ohne groSen Widerhall, zumal er aus politischen Griinden aus dem
Universititsdienst entlassen wurde und Publikationsverbot erhielt. PEANO wirkte
in Turin. Von seinen mathematischen Leistungen sei hier neben der axiomatischen
Charakterisierung der natiirlichen Zahlen ((1891), die iibrigens fast gleichzeitig analog
auch von RicHARD DEDERIND (1831—1916) vorgeschlagen wurde, die Kritik des
Kurvenbegriffs (1890) und die von ihm erstmals formulierten Existenzsitze fiir die
Losbarkeit von Differentialgleichungen erwihnt. PEaNos Schaffen ist durch die
konsequente Anwendung der mathematischen Logik in der Mathematik und sein
Bemiihen gekennzeichnet, durch geschickte und manchmal schockierende Beispiele
die Notwendigkeit exakter Defmmonen und Beweise auch in scheinbar anschaulichen
Bereichen der Mathematik zu demonstrieren.

Parallel zur Entstehung der modernen Logik vollzieht sich im 19. Jahrhundert
eine andere, fiir die Grundlagen der Mathematik ebenso wichtige Entwicklung. Als
N. I. LoBAGEVSEL (1792—1856) und J. BoLyar (1802—1860) um 1830 die
Widerspruchsfreiheit der nichteuklidischen Geometrie behaupten, stoBen sie auf
Unverstindnis und Ablehnung ihrer Zeitgenossen, zumal der Begriff der Wider-
spruchsfreiheit einer mathematischen Theorie zu diesem Zeitpunkt iiberhaupt noch
nicht klar ist und sie den exakten Beweis ihrer Behauptung (durch Angabe eines
Modells) nicht erbringen kénnen. Die These von der Denknotwendigkeit der euklidi-
schen Geometrie ist gerade im 18. Jahrhundert durch die damals erhebliche Autoritit
von IMMANUEL KANT (1724—1804) neu bekriftigt worden. Erst die sich haupt-

"sichlich durch und nach Carr FRIEDRICE GAUSS (1777—1855) entwickelnde innere
Geometrie gekriimmter Flichen verhilft allméhlich der Erkenntnis zum Durchbruch,
daB die euklidische Geometrie sozusagen nur ein Ausartungsfall unter vielen in der
Natur realisierten Geometrien ist und da8 die Frage nach den geometrischen Eigen-
schaften des physikalischen Raumes nicht durch die Philosophie, sondern nur durch
Experimente geklirt werden kann. Inzwischen hat ,die Geometrie sich bereits
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in eine Anzahl von nach Methode und Inhalt sehr unterschiedlichen Theorien auf-
gespalten: projektive Geometrie, darstellende Geometrie, sphirische Geometrie,
Differentialgeometrie usw. Gegen Ende des 19. Jahrhunderts schilt sich nach einem
langen schwierigen Entwicklungsproze8 die abstrakte Gruppentheorie als eine erste
bewuBt nicht kategorische algebraische Theorie heraus. Damit hat sich das Bild der
Mathematik griindlich gewandelt. Sie ist nicht mehr nur die Wissenschaft von den
Zahl- und RaumgrsBen (wie sie noch kurz zuvor etwa von ENGELS durchaus zu-
treffend charakterisiert werden konnte), sondern eine Anhiufung héchst unter-
schiedlicher Theorien, denen scheinbar nur eines gemeinsam ist: Aus gewissen Grund-
annahmen (Axiomen), die sich auf gewisse Grundbegriffe beziehen, werden SchluB-
folgerungen gezogen. Spiitestens die Gruppentheorie zeigt, daB dabei im allgemeinen
die platonische und die Kantsche Vorstellung vom Wesen der Grundbegriffe unhaltbar
sind, und Davip HiLBERT (1862—1943) macht um die Jahrhundertwende mit seinem
beriihmt gewordenen Ausspruch, man miisse statt Punkte, Geraden und Ebenen
auch TFische, Biinke und Bierseidel sagen konnen, klar: Was fiir die Gruppentheorie
gilt, das gilt auch fiir die euklidische Geometrie. Unter den Grundbegriffen einer
axiomatischen Theorie hat man sich beliebige Dinge vorzustellen, die lediglich in
den durch die Axiome formulierten Beziehungen zueinander stehen. Ein mathemati-
scher Beweis ist nur dann exakt, wenn er jegliche anschauliche Vorstellung von
den Grundbegriffen ausschlieBt und unter alleiniger Anwendung von ausdriicklich

hriebenen Vor tzungen und durch die Logik sanktionierten SchluBweisen
erfolgt DaB es von der Aufstellung dieses Programms noch ein weiter Weg bis zu
seiner konsequenten Ausfithrung ist, zeigt am besten ein Blick in die verschiedenen
Auflagen von HILBERTS Grundlagen der Geometrie (1899), in denen viele vom heutigen
Standpunkt grobe Formulierungsfehler erst nach und nach mit HILBERTS eigener
wachsender Einsicht in die Grundlagenprobleme beseitigt werden.

Eine Disziplin der Mathematik wurde zuniichst vom sonst allgemein anerkannten
axiomatischen Vorgehen ausgenommen, und zwar war es die um 1870 von GEORG
CanToR (1845—1918) begriindete Mengenlehre, die in gewisser Weise den Platz der
euklidischen Geometrie einnahm, indem jetzt ihre Grundbegriffe mit einer a priori
gegebenen denknotwendigen Interpretation versehen wurden. Anders gesagt: Der
in weiten Teilen der Mathematik iiberwundene Platonismus fand zunichst in der
Mengenlehre eine neue Heimstatt. Das Reich der Mengen existiert fiir CANTOR
von Anbeginn, unabhingig von jeder materiellen Realitit und vom menschlichen
BewuBtsein. Die in diesem Reich geltenden Gesetze sind denknotwendig und lassen
sich durch reines Denken nach und nach entdecken. Dieser neue Platonismus, zu
dem CanToR sich wiederholt nachdriicklich bekannte, liegt z. B. der anfangs herr-
schenden Vorstellung von der Denknotwendigkeit des Auswahlaxioms (wo in Wahrheit
lediglich eine im Endlichen gesammelte Erfahrung unbewuBt auf unendliche Mengen
iibertragen wurde) und der Idee CANTORS und seiner Zeitgenossen zugrunde, es
miisse im Prinzip feststehen, ob die Kontinuumhypothese gilt oder nicht, und man
brauche den wahren Sachverhalt nur zu entdecken. Der naiven Mengenlehre war
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nur ein kurzes Leben bis zur Entdeckung der ersten Antinomien (Widerspriiche)
beschieden. Die aus heutiger Sicht fast unvorstellbar niederschmetternde Wirkung
dieser Antinomien auf viele damalige Mathematiker (jedoch bei weitem nicht alle!)
liegt gerade darin begriindet, daB die Mengenlehre nicht als eice beliebige mathe-
matische Theorie, sondern als Bestandteil der Logik aufgefaBt wurde und daB daher
die Widerspriiche in der Mengenlehre nicht nur Zweifel an der Mengenlehre, sondern
am logischen SchlieBen schlechthin weckten.

Es ist heute iiblich geworden, die verschiedenen Reaktionen, die der Zusammen-
bruch der naiven Mengenlehre ausloste, in drei Richtungen der (methodischen und
philosophischen) Bewiltigung einzuteilen, die als Log , Formali: und
Intuitionismus bezeichnet werden. Diese Klassifikation mag einer ersten Ubersicht
forderlich sein. Sie vereinfacht und vergrébert aber die genaue Analyse der vielen
tatséchlichen Tendenzen. In Wirklichkeit schwankten gerade die fiihrend an den
Grundlagenauseinandersetzungen beteiligten Mathematiker zwischen den durch
die drei Richtungen markierten Extremen. AuBerdem sollte sorgfiltig zwischen den
mathematisch-methodischen (und als solche oft sehr fruchtbaren) Ansitzen und den
motivierend dahinterstehenden philosophischen Strémungen unterschieden werden.

Der Logizismus beharrte auf der Position, da8 die Mengenlehre, und damit im
Prinzip die gesamte Mathematik, ein Teil der Logik sei. Ausgehend von dieser
These umging man die in der naiven Mengenlehre aufgetretenen Widerspriiche durch
eine strenge Stufung der Mengen und allgemeiner der Relationen derart, daB der
Typ einer beliebigen Relation stets héher (komplizierter) ist als die Typen der
Dinge, die in dieser Relation stehen kénnen. Dieser Ansatz fiihrte zur verzweigten
Typentheorie. Im Hauptwerk des Logizismus, den von BERTRAND RUSSELL
(1872—1969) und ALFRED NorTH WHITEHEAD (1861—1947) verfaBten dreibandigen
Principia Mathematica, wird der Versuch unternommen, die gesamte Mathematik
im Rahmen der verzweigten Typentheorie formalisiert aufzubauen. Dieser Forma-
lismus ist jedoch so schwerfillig, daB sich schon bald die boshafte Legende bildete,
kein Mensch habe jemals das gesamte Werk studiert, nicht einmal RUSSELL und
WHITEHEAD selbst, denn keiner von beiden habe den vom anderen verfaBten Teil
vollstindig gelesen. Die Kompliziertheit der verzweigten Typentheorie beruht z. T.
darauf, daB es zum Zeitpunkt ihrer Entstehung (1910 bis 1913) noch keine mengen-
theoretische Definition des allgemeinen Relationsbegriffes und daher keine Méglich-
keit gab, beliebige n-stellige Relationen als spezielle einstellige Relationen (Mengen)
aufzufassen. Durch die mengentheoretische Definition des n-Tupel-Begriffs ver-
einfacht sich die verzweigte Typentheorie zur einfachen Typentheorie, deren Gegen-
stand lediglich die auf einem gewissen System von Urelementen aufgebaute Hierarchie
von Mengen endlicher Stufe ist. Dabei bestehen Mengen erster Stufe aus Urelementen,
und Mengen (n + 1)-ter Stufe enthalten als Elemente nur Mengen n-ter Stufe. Die
einfache Typentheorie wird heute meist als eine gewisse Variante der axiomatischen
Mengenlehre aufgefaBt, die zwar infolge der strengen Homogenitit der Mengen
technisch etwas schwerfillig ist, jedoch gewisse methodische Vorziige besitzt und im
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Prinzip fiir die meisten Bediirfnisse der Mathematik ausreicht. Von dieser Auffassung
ist der eigentliche Logizismus deutlich unterschieden durch die platonische Inter-
pretation des Begriffs ,,Menge n-ter Stufe* (in bezug auf einen gegebenen Bereich
von Urel ten). Fiir den Logizi ist die Frage der Widerspruchsfreiheit der

theoretischen Mengenlehre, und damit aller in sie semantisch einbettbaren
mathemstlschen Theorien, durch das als existent angenommene ,,Standardmodell*
gegenstandslos. Als philosophische Plattform ist der Logizismus heute schwer er-
schiittert durch die auch fiir den typentheoretischen Aufbau der Mengenlehre nach-
vollziehbare Konstruktion von Nichtstandardmodellen, und insbesondere auch durch
das Skolemsche Paradoxon (vgl. 6.4.).

Der von HILBERT begriindete Formalismus verzichtete unter dem Eindruck der
Antinomien fiir die Mengenlehre wie fiir die gesamte Mathematik iiberhaupt auf den
Interpretationsbegriff und wollte jede mathematische Theorie rein syntaktisch be-
griinden. HILBERT formulierte um 1900') das nach ihm benannte Programm, wenig-
stens solche Theorien wie die Mengenlehre und die Arithmetik der natiirlichen
Zahlen, auf deren gesicherte Widerspruchsfreiheit die Widerspruchsfreiheit vieler
anderer mathematischer Theorien zuriickgefiilhrt werden kann, durch elementare
Axiomensysteme zu charakterisieren und deren syntaktische Vollstindigkeit und
Widerspruchsfreiheit mittels unanfechtbarer ,finiter Methoden zu beweisen. Der
realisierbare Teil des Hilbertschen Programms wird als Beweistheorie bezeichnet.
Die Beweistheorie hatte neben der genauen Untersuchung der syntaktischen Aspekte
der Metamathematik auch einige direkte Teilerfolge in Richtung des Hilbertschen
Programms aufzuweisen. So gelang G. GENTZEN 1936 der Nachweis der syntaktischen
Widerspruchsfreiheit eines Fragments der elementaren Zahlentheorie mit annihernd
,finiten* Mitteln, P. S. Novikov 1941 ein noch weitergehendes Ergebnis, allerdings
mit stirkeren Hilfsmitteln. Die prinzipielle Undurchfiihrbarkeit des Hilbertschen
Programms bewies jedoch KurT G6pEL (1906—1978) schon 1930. Uber den in 8.4.
behandelten Unvollstindigkeitssatz hinaus zeigte er, daB der Beweis der Widerspruchs-
freiheit einer Theorie, die ein hinreichend ausdrucksfihiges Fragment der Zahlen-
theorie enthilt, mit den von HILBERT zugelassenen Mitteln unmaglich ist. Die Resul-
tate der Beweistheorie sind u. a. in [18] und [30] lehrbuchmiBig dargestelit.

Als Vorliufer des Intuitionismus ist LEoPoLD KRONECKER (1823—1891) an-
zusehen, der bereits. die gesamte Mathematik auf die ,,intuitiv** einsichtigen Eigen-
schaften der natiirlichen Zahlen zuriickfiilhren wollte und insbesondere in scharfem
Gegensatz zu CANTOR jeglichen Gebrauch des Aktualunendlichen in der Mathematik
ablehnte. Als eigentlicher Begriinder des Intuitionismus gilt LurrzeN EGBERTUS JAN
BroUWER (1882—1967) neben HENRI PoINCARE (1854—1912), HENRI LEBESGUE
(1876—1941), HERMANN WEYL (1885—1955) und anderen, die in z. T. gemiBigterer

1) U. a. in seinem beriihmten ,,Problemvortrag auf dem 2. Internationalen Math tik
kongreB als 2. Problem. Siehe hierzu und fiir das Folgende auch den Kommentar von A. S.
ESENIN-VOL'PIN zum 2. Hilbertschen Problem in: Die Hilbertschen Probleme, Leipzig 1971
(Ub g aus dem Russischen)
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Form &hnliche Ansichten vertraten. Die Intuitionisten suchten die Ursache fiir die
aufgetretenen Widerspriiche im unbedachten Gebrauch des Aktualunendlichen und
insbesondere im Existenzbegriff der klassischen Mathematik. Existenz ist nach
Ansicht der Intuitionisten im Sinne von Konstruierbarkeit zu interpretieren (wobei
allerdings niemals véllige Ubereinstimmung iiber die zulissigen Konstruktic ittel
herrschte). Aus der Sicht der Intuitionisten sind viele Grundgesetze der klassisch
Logik zu verwerfen, vor allem das ,,tertium non datur*, d. h. die Allgemeingiiltigkeit
vonp v — p. Wihrend BRouwER selbst jede Formalisierung und Kalkiilisierung seiner
Vorstellungen ablehnte, gab A. HEyTNG 1930 einen aus Axiomen und SchluBregeln
bestehenden Beweiskalkiil an, der genau die im intuitic hen Sinne giiltig
Ausdriicke einer pridikatenlogischen Sprache aufzihlt. Wenig spiter interpretierte
A. N. KoLmogoBov diesen Kalkiil als eine Logik der Konstruktionsaufgaben.
Hieran ankniipfend hat sich in den vergangenen Jahrzehnten die konstrukiive Mathe-
matik entwickelt, als deren wichtigste Vertreter hier A. A. Markov, P. S. Noviov,
N. A. Saniv, A. S. EseNmy-Vor’piv und R. L. GOODSTEIN genannt seien. Die
Konstruktivisten schrinken ihre Betrachtungen auf effektiv kodierbare Objekte
ein (vgl. 7.1.) und interpretieren Existenz als algorithmische Berechenbarkeit. Die
konstruktive Mathematik spiegelt in gewisser Weise viele Verhiltnisse besser wider
als die klassische Mathematik. Jedoch wiirde die Anwendung ihrer Prinzipien auf
die g te Mathematik diese erheblich komplizieren, inhaltlich verarmen und (wie
HieerT schon in bezug auf den Intuitionismus formulierte) am Streik der Masse
der Mathematiker scheitern. Es besteht hier eine gewisse Analogie zum Verhiltnis
zwischen klassischer und relativistischer Physik. Die letzte spiegelt die Realitit
genauer wider, ist aber zugleich komplizierter, und es. wiirde niemandem einfallen,
sie auf alltégliche Probleme anzuwenden, fiir die die klassische Physik nach wie vor
genau genug ist.

Zusammenfassend kann man sagen, daB jede der drei Hauptstromungen die Mathe-
matik um wertwolle inhaltliche und methodische Gesichtspunkte bereicherte, jedoch
jeweils einen Aspekt der Mathematik verabsolutierte: der Logizismus den semanti-
schen Aspekt und die Rolle der Mengenlehre, der Formalismus den syntaktischen
Aspekt und die Rolle der axiomatischen Methode, der Konstruktivismus den Aspekt
der Effektivitat.

Nach den grundlegenden Resultaten von GODEL wandte sich die Mehrheit der an
Grundlagenfragen interessierten Mathematiker den mit dem prizisierten Berechen-
barkeits- und Entscheidbarkeitsbegriff zusammenhingenden Fragen zu. Dabei
standen zunichst im Vordergrund?)

— die Entwicklung mehrerer Varianten des Algorithmenbegriffs und der Nachweis
ihrer Gleichwertigkeit (vgl. 7.5.),

‘) Zu den folgenden Angsben vgl. A. Mos-rowsxl u. a., Der gegenwiirtige Stand dar Gnmdlagen-
hung in der Mathematik, in: Die H: deaSI‘" hen M

DVW, Berlin 1954. Das Studium dieses Berichts als E g zum vorliegenden Abschnitt ist

sehr zu empfehlen. :
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— der Nachweis der Unentscheidbarkeit zahlreicher Probleme aus verschiedenen
ichen der Mathematik und Logik (u. a. Unentscheidbarkeit der elementaren
Arithmetik der rationalen Zahlen, J. RoBINsoN 1949; Unentscheidbarkeit des
Wortproblems fiir Halbgruppen, E. Post 1943 und A. A. MARKOV 1947; Unent-
scheidbarkeit des Wortproblems fiir Gruppen, P. S. Novikov 1952),
— der Nachweis der Entscheidbarkeit einiger elementarer Theorien (u. a. elemen-
tare Arithmetik der reellen Zahlen und elementare euklidische Geometrie,
A. Tarskr 1951; kommutative Gruppentheorie, W. SzMreLEW 1948),

— die Ubertragung des Berechenbarkeitsbegriffs auf kodierbare Objekte, wie
reelle Zahlen, Ordinal- und Kardinalzahlen u. a. (Uberginge zur konstruktiven
Mathematik).

In den letzten Jahren entwickelte sich aus der innerhalb der mathematischen
Logik entstandenen Reduktionstheorie des Entscheidungsproblems [37] die Theorie
der relativen Berechenbarkeit und Entscheidbarkeit [34] und aus Fragestellungen
der konstruktiven Mathematik die Theorie der numerierten (kodierten) Mengen.!)

Wiihrend die bisher genannten neuen Forschungsrichtungen letzten Endes aus
syntaktischen Problemen der Logik hervorgegangen sind, entwickelte sich aus den
semantischen Aspekten in breitem MaBe die Modelltheorie (u. a. [25], [33], [46]) als
Zweig der allgemeinen Algebra. Im weiteren Sinne sollten zur Modelltheorie auch die
mannigfachen algebraischen Charakterisierungen der Modellklassen geometrischer
Axiomensysteme geziihlt werden. Hier sei als Beispiel eines in letzter Zeit erzielten
Fortachritts die Aufklirung der Rolle des Axioms von PascH (insbesondere der Nach-
weis seiner Unabhingigkeit) genannt.?)

Zusammenfassend kann heute festgestellt werden, da mathematische Theorien,
die historisch aus Grundlagenproblemen entstanden sind, sehr schnell einen hohen
Abstraktionsgrad und eine betrichtliche Selbstindigkeit erreichen, so daB ihnen
die. Spuren ihrer Entstehung oft nach kurzer Zeit kaum noch anzusehen sind und
sie hidufig Anwendungen in vom Ausgangspunkt ihrer Entstehung weit entfernten
Bereichen der Mathematik und Technik finden. Die starke Verzweigung und hohe
Spezialisierung der Grundlagen der Mathematik, die schon lingst von keinem einzel-
nen mehr iiberblickt werden kann, geht wohl am deutlichsten aus der gegenwirtig
in den internationalen Referatenorganen der Mathematik gebriuchlichen Klassifi-

1) Der gegenwiirtige Stand dieser Theorie ist in drei in d her Ub g vorli d
Verdffentlichungen von Ju. L. ErSov dargestellt (vgl. Ju. L. ErSov, Theorie der Numenemngen]
DVW, Berlin 1873, oder Zeitschr. f. Math. Logik u. Grdig. d. Math. 19 (1972), 289—388; II,
DVW, Berlin 1976, oder Zeitachr. f. Math. Logik u. Grdlg. d. Math. 21 (1975), 473—584; III,
DVW, Berlin 1978, oder, Zeitachr. f. Math. Logik u. Grdlg. d. Math. 28 (1977), 289—371).

1) L. W. Szczerea, Independence of Pasch's axiom, Bull. Acad. Polon. Sci., Sér. Sci. Math.
Astron. Phys., 18 (1970), 491—498, und L. W. SzczeeBa and W, SzMreLEW, On the euclidean
geometry without the Pasch axiom, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astron. Phys., 18
(1870), 659 —686. Weitere Arbeiten zu diesem Problemkreis sind zitiert in: Kolloquium Grund-
lagen der G etrie und algebraische Methoden, Potsd Forschungen, Reihe B, Heft 3, 1974.
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kation des Gebietes Logik und Grundlagen der Mathematik hei'vor, die im folgenden
gekiirzt wiedergegeben wird :

Klassische looische S

Aussagenkalkiil
Priidikatenkalkiil erster Stufe
Priidikatenkalkiile hoherer Stufe
Uniibliche Quantoren
Formalisierte Sprachen mit unendlich langen Ausdriicken
Sonstiges
‘
Nichtklassische formale Systeme
Mehrwertige Logik
Modale Logik u. &.
Formalisierungen der intuitionistischen Logik u. &.
Kombinatorische Logik
Sonstiges

Beweistheorie
Konstruktive Mathematik

Intuitionistische Math )

Algorithmen
Berechenbare Funktionen
Sonstiges

Rekursionstheorie

Thue- und Post-Systeme u. .
Automaten

Turingmaschinen

Klassifikation rekursiver Funktionen
Avufziihlbare Mengen
Rekursionstheorie im Bereich von Ordinalzahlen, Mengen und anderen
abstrakten Strukturen
Unentscheidbarkeitsgrade
Hierarchien

Rekursive Aquivalenztypen

Formale Systeme der Berechenbarkeit
Kombinatorische Funktionen
Wortprobleme

Anwendungen

Sonstiges
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Methodologie der dedukiiven Systeme
Entscheidbarkeit und Unentscheidbarkeit
Axiomatisierbarkeit

Endliche Axiomatisierbarkeit
Vollstindigkeit, Kategorizitit usw.
Sonstiges

Modelltheorie

Modelle elementarer Theorien

Modelle anderer Theorien -
Modcllkonstruktionen

Anwendung auf Algebra, Zahlentheorie u. a.
Nichtstandardmodelle

Sonstiges

Algebra der Logik

Boolesche Algebren, Verbinde, Topologien
Relationenalgebra

Zylindrische und polyadische Algebren
Sonstiges

Mengenlehre

Widerspruchsfreiheit und Unabhingigkeit

Nichtklassische Mengentheorien

Axiomatik

Auswahlaxiom und dquivalente Sitze

Kontinuumhypothese (einschlieBlich verallgemeinerter)

Deskriptive Mengenlehre

GroBe Kardinal- und Ordinalzahlen

Sonstiges

Die hier kurz dargestellte historische Entwicklung mathematischer Grundlagen-

fragen von der Antike bis in unsere Zeit macht eine Tendenz deutlich: Uberwogen
am Arnfang der Entwicklung Fragestellungen deutlich philosophischen Inhalts, so
sind die Untersuchungen mathematischer Grundlagenfragen heute — etwa seit
50 Jahren — vornehmlich auf innermathematische und logische bzw. metamathe-
matische und metalogische Fragestellungen gerichtet und werden dementsprechend
im allgemei mit mathematischen und nicht mit philosophischen Methoden
durchgefuhrt Die dabei gewonnenen Erkenntnisse haben iiber zahlreiche Probleme,
80 iiber das Verhiltnis von Mathematik und Logik, von Mathematik und Sprache,
von Semantik und Syntax, iiber die Tragweite und die Grenzen der axiomatischen
und der konstruktiven Methode u. a. m. Klarheit geschaffen oder zumindest vieles
erhellt, was vorher im Dunklen war. Nicht wenige dieser Erkenntnisse haben in-




9. Historische Entwicklung und gegenwiirtige Tendenzen 227

zwischen auch fiir andere Wissenschaften Bedeutung erlangt oder sogar zur Heraus-
bildung neuer Wissenschaftszweige, wie der Kybernetik und der Informations-
wissenschaft, beigetragen. Darin zeigt sich die groBe Leistungsfihigkeit und Be-
deutung der mathematischen Grundlagenforschung in dem in diesem Lehrbuch
dargestellten ,,engeren Sinne‘‘.

Zu den Grundlagenfragen jeder Wissenschaft, also auch der Mathematik, gehoren
dariiber hinaus oder sogar in erster Linie philosophische, vor allem erkenntnistheore-
tische Probleme, Grundlagenfragen im ,,weiteren Sinne®, in die die von der betref-
fenden Einzelwissenschaft untersuchten Grundlagenprobleme eingebettet sind und
mit denen sie in Wechselwirkung stehen. Wir haben das Wechselverhiltnis zwischen
den Grundlagen der Mathematik und der. marxistisch-leninistischen Philosophie
in diesem Lehrbuch bereits an verschiedenen Stellen behandelt.

Die im Vergleich zu anderen Wissenschaften sehr weit- und tiefgehende mathe-
matische Grundlagenforschung hat bei nicht wenigen Mathematikern und Philoso-
phen nichtmarxistischer Weltanschauung in den letzten Jahrzehnten die Auffassung
hervorgebracht, in der Mathematik gibe es keine philosophischen Grundlagenpro-
bleme bzw. die Mathematiker vermogen diese Probleme mit innermathematischen
Methoden selbst zu lésen bzw. brauchten sich nicht um sie zu kiimmern. Mathe-
matik einschlieBlich mathematischer Grundlagenforschung kénne man auch betrei-
ben, ohne iiber philosophische Fragen der Mathematik Bescheid zu wissen oder iiber
sie nachzudenken. Eine solche Leugnung der Notwendigkeit und Bedeutung philoso-
phischer Grundlagenuntersuchungen in der Mathematik ist nach A. D. ALExaNDROV
,»nichts anderes als selbstzufriedene Kulturlosigkeit‘?).

Es konnte nicht Anliegen dieses Lehrbuches sein, die philosophischen Grundlagen
der Mathematik in diesemn umfassenden Sinne in die Darstellung einzubeziehen.

" Es erscheint aber notwendig, auch an dieser Stelle nachdriicklich auf die Existenz
und Bedeutung der philosophischen Probleme der Mathematik hinzuweisen.

1) A. D. ALExaNDROV, Mathematik und Dialektik, in: Id;aen des exakten Wissens 4 (1971),
S. 256 [russ.].
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